code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def get_slide_number(self): """ Return the slide-number for this trigger """ a, slide_number, b = self.get_id_parts() if slide_number > 5000: slide_number = 5000 - slide_number return slide_number
Return the slide-number for this trigger
Below is the the instruction that describes the task: ### Input: Return the slide-number for this trigger ### Response: def get_slide_number(self): """ Return the slide-number for this trigger """ a, slide_number, b = self.get_id_parts() if slide_number > 5000: slide_number = 5000 - slide_number return slide_number
def _set_persistent_module(mod): ''' Add a module to loader.conf to make it persistent. ''' if not mod or mod in mod_list(True) or mod not in \ available(): return set() __salt__['file.append'](_LOADER_CONF, _LOAD_MODULE.format(mod)) return set([mod])
Add a module to loader.conf to make it persistent.
Below is the the instruction that describes the task: ### Input: Add a module to loader.conf to make it persistent. ### Response: def _set_persistent_module(mod): ''' Add a module to loader.conf to make it persistent. ''' if not mod or mod in mod_list(True) or mod not in \ available(): return set() __salt__['file.append'](_LOADER_CONF, _LOAD_MODULE.format(mod)) return set([mod])
def log_to_stream(stream=sys.stderr, level=logging.NOTSET, fmt=logging.BASIC_FORMAT): """ Add :class:`logging.StreamHandler` to logger which logs to a stream. :param stream. Stream to log to, default STDERR. :param level: Log level, default NOTSET. :param fmt: String with log format, default is BASIC_FORMAT. """ fmt = Formatter(fmt) handler = StreamHandler() handler.setFormatter(fmt) handler.setLevel(level) log.addHandler(handler)
Add :class:`logging.StreamHandler` to logger which logs to a stream. :param stream. Stream to log to, default STDERR. :param level: Log level, default NOTSET. :param fmt: String with log format, default is BASIC_FORMAT.
Below is the the instruction that describes the task: ### Input: Add :class:`logging.StreamHandler` to logger which logs to a stream. :param stream. Stream to log to, default STDERR. :param level: Log level, default NOTSET. :param fmt: String with log format, default is BASIC_FORMAT. ### Response: def log_to_stream(stream=sys.stderr, level=logging.NOTSET, fmt=logging.BASIC_FORMAT): """ Add :class:`logging.StreamHandler` to logger which logs to a stream. :param stream. Stream to log to, default STDERR. :param level: Log level, default NOTSET. :param fmt: String with log format, default is BASIC_FORMAT. """ fmt = Formatter(fmt) handler = StreamHandler() handler.setFormatter(fmt) handler.setLevel(level) log.addHandler(handler)
def remove_checksum(path): """ Remove the checksum of an image from cache if exists """ path = '{}.md5sum'.format(path) if os.path.exists(path): os.remove(path)
Remove the checksum of an image from cache if exists
Below is the the instruction that describes the task: ### Input: Remove the checksum of an image from cache if exists ### Response: def remove_checksum(path): """ Remove the checksum of an image from cache if exists """ path = '{}.md5sum'.format(path) if os.path.exists(path): os.remove(path)
def addSourceGroup(self, sourceGroupUri, weight): """ add a list of relevant sources by specifying a whole source group to the topic page @param sourceGroupUri: uri of the source group to add @param weight: importance of the provided list of sources (typically in range 1 - 50) """ assert isinstance(weight, (float, int)), "weight value has to be a positive or negative integer" self.topicPage["sourceGroups"].append({"uri": sourceGroupUri, "wgt": weight})
add a list of relevant sources by specifying a whole source group to the topic page @param sourceGroupUri: uri of the source group to add @param weight: importance of the provided list of sources (typically in range 1 - 50)
Below is the the instruction that describes the task: ### Input: add a list of relevant sources by specifying a whole source group to the topic page @param sourceGroupUri: uri of the source group to add @param weight: importance of the provided list of sources (typically in range 1 - 50) ### Response: def addSourceGroup(self, sourceGroupUri, weight): """ add a list of relevant sources by specifying a whole source group to the topic page @param sourceGroupUri: uri of the source group to add @param weight: importance of the provided list of sources (typically in range 1 - 50) """ assert isinstance(weight, (float, int)), "weight value has to be a positive or negative integer" self.topicPage["sourceGroups"].append({"uri": sourceGroupUri, "wgt": weight})
def build_command(self, parameter_values, command=None): """ Build the command for this step using the given parameter values. Even if the original configuration only declared a single `command`, this function will return a list of shell commands. It is the caller's responsibility to concatenate them, likely using the semicolon or double ampersands. It is also possible to override the `command`. :param parameter_values: Parameter values to augment any parameter defaults. :type parameter_values: dict[str, object] :param command: Overriding command; leave falsy to not override. :type command: str|list[str]|None :return: list of commands :rtype: list[str] """ command = (command or self.command) # merge defaults with passed values # ignore flag default values as they are special # undefined flag will remain undefined regardless of default value values = dict(self.get_parameter_defaults(include_flags=False), **parameter_values) parameter_map = ParameterMap(parameters=self.parameters, values=values) return build_command(command, parameter_map)
Build the command for this step using the given parameter values. Even if the original configuration only declared a single `command`, this function will return a list of shell commands. It is the caller's responsibility to concatenate them, likely using the semicolon or double ampersands. It is also possible to override the `command`. :param parameter_values: Parameter values to augment any parameter defaults. :type parameter_values: dict[str, object] :param command: Overriding command; leave falsy to not override. :type command: str|list[str]|None :return: list of commands :rtype: list[str]
Below is the the instruction that describes the task: ### Input: Build the command for this step using the given parameter values. Even if the original configuration only declared a single `command`, this function will return a list of shell commands. It is the caller's responsibility to concatenate them, likely using the semicolon or double ampersands. It is also possible to override the `command`. :param parameter_values: Parameter values to augment any parameter defaults. :type parameter_values: dict[str, object] :param command: Overriding command; leave falsy to not override. :type command: str|list[str]|None :return: list of commands :rtype: list[str] ### Response: def build_command(self, parameter_values, command=None): """ Build the command for this step using the given parameter values. Even if the original configuration only declared a single `command`, this function will return a list of shell commands. It is the caller's responsibility to concatenate them, likely using the semicolon or double ampersands. It is also possible to override the `command`. :param parameter_values: Parameter values to augment any parameter defaults. :type parameter_values: dict[str, object] :param command: Overriding command; leave falsy to not override. :type command: str|list[str]|None :return: list of commands :rtype: list[str] """ command = (command or self.command) # merge defaults with passed values # ignore flag default values as they are special # undefined flag will remain undefined regardless of default value values = dict(self.get_parameter_defaults(include_flags=False), **parameter_values) parameter_map = ParameterMap(parameters=self.parameters, values=values) return build_command(command, parameter_map)
def authenticate(self, verify=True): """ Creates an authenticated and internal oauth2 handler needed for \ queries to Twitter and verifies credentials if needed. If ``verify`` \ is true, it also checks if the user credentials are valid. \ The **default** value is *True* :param verify: boolean variable to \ directly check. Default value is ``True`` """ self.__oauth = OAuth1(self.__consumer_key, client_secret=self.__consumer_secret, resource_owner_key=self.__access_token, resource_owner_secret=self.__access_token_secret) if verify: r = requests.get(self._base_url + self._verify_url, auth=self.__oauth, proxies={"https": self.__proxy}) self.check_http_status(r.status_code)
Creates an authenticated and internal oauth2 handler needed for \ queries to Twitter and verifies credentials if needed. If ``verify`` \ is true, it also checks if the user credentials are valid. \ The **default** value is *True* :param verify: boolean variable to \ directly check. Default value is ``True``
Below is the the instruction that describes the task: ### Input: Creates an authenticated and internal oauth2 handler needed for \ queries to Twitter and verifies credentials if needed. If ``verify`` \ is true, it also checks if the user credentials are valid. \ The **default** value is *True* :param verify: boolean variable to \ directly check. Default value is ``True`` ### Response: def authenticate(self, verify=True): """ Creates an authenticated and internal oauth2 handler needed for \ queries to Twitter and verifies credentials if needed. If ``verify`` \ is true, it also checks if the user credentials are valid. \ The **default** value is *True* :param verify: boolean variable to \ directly check. Default value is ``True`` """ self.__oauth = OAuth1(self.__consumer_key, client_secret=self.__consumer_secret, resource_owner_key=self.__access_token, resource_owner_secret=self.__access_token_secret) if verify: r = requests.get(self._base_url + self._verify_url, auth=self.__oauth, proxies={"https": self.__proxy}) self.check_http_status(r.status_code)
def sru(x, num_layers=2, activation=None, initial_state=None, name=None, reuse=None): """SRU cell as in https://arxiv.org/abs/1709.02755. As defined in the paper: (1) x'_t = W x_t (2) f_t = sigmoid(Wf x_t + bf) (3) r_t = sigmoid(Wr x_t + br) (4) c_t = f_t * c_{t-1} + (1 - f_t) * x'_t (5) h_t = r_t * activation(c_t) + (1 - r_t) * x_t This version uses functional ops to be faster on GPUs with TF-1.9+. Args: x: A tensor of shape [batch, ..., channels] ; ... is treated as time. num_layers: How many SRU layers; default is 2 as results for 1 disappoint. activation: Optional activation function, try tf.nn.tanh or tf.nn.relu. initial_state: Optional initial c-state, set to zeros if None. name: Optional name, "sru" by default. reuse: Optional reuse. Returns: A tensor of the same shape as x. Raises: ValueError: if num_layers is not positive. """ if num_layers < 1: raise ValueError("Number of layers must be positive: %d" % num_layers) if is_xla_compiled(): # On TPU the XLA does a good job with while. return sru_with_scan(x, num_layers, activation, initial_state, name, reuse) try: from tensorflow.contrib.recurrent.python.ops import functional_rnn # pylint: disable=g-import-not-at-top except ImportError: tf.logging.info("functional_rnn not found, using sru_with_scan instead") return sru_with_scan(x, num_layers, activation, initial_state, name, reuse) with tf.variable_scope(name, default_name="sru", values=[x], reuse=reuse): # We assume x is [batch, ..., channels] and treat all ... as time. x_shape = shape_list(x) x = tf.reshape(x, [x_shape[0], -1, x_shape[-1]]) initial_state = initial_state or tf.zeros([x_shape[0], x_shape[-1]]) cell = CumsumprodCell(initial_state) # Calculate SRU on each layer. for i in range(num_layers): # The parallel part of the SRU. x_orig = x x, f, r = tf.split( layers().Dense(3 * x_shape[-1], name="kernel_%d" % i)(x), 3, axis=-1) f, r = tf.sigmoid(f), tf.sigmoid(r) x_times_one_minus_f = x * (1.0 - f) # Compute in parallel for speed. # Calculate states. concat = tf.concat([x_times_one_minus_f, f], axis=-1) c_states, _ = functional_rnn.functional_rnn( cell, concat, time_major=False) # Final output. if activation is not None: c_states = activation(c_states) h = c_states * r + (1.0 - r) * x_orig x = h # Next layer. return tf.reshape(x, x_shape)
SRU cell as in https://arxiv.org/abs/1709.02755. As defined in the paper: (1) x'_t = W x_t (2) f_t = sigmoid(Wf x_t + bf) (3) r_t = sigmoid(Wr x_t + br) (4) c_t = f_t * c_{t-1} + (1 - f_t) * x'_t (5) h_t = r_t * activation(c_t) + (1 - r_t) * x_t This version uses functional ops to be faster on GPUs with TF-1.9+. Args: x: A tensor of shape [batch, ..., channels] ; ... is treated as time. num_layers: How many SRU layers; default is 2 as results for 1 disappoint. activation: Optional activation function, try tf.nn.tanh or tf.nn.relu. initial_state: Optional initial c-state, set to zeros if None. name: Optional name, "sru" by default. reuse: Optional reuse. Returns: A tensor of the same shape as x. Raises: ValueError: if num_layers is not positive.
Below is the the instruction that describes the task: ### Input: SRU cell as in https://arxiv.org/abs/1709.02755. As defined in the paper: (1) x'_t = W x_t (2) f_t = sigmoid(Wf x_t + bf) (3) r_t = sigmoid(Wr x_t + br) (4) c_t = f_t * c_{t-1} + (1 - f_t) * x'_t (5) h_t = r_t * activation(c_t) + (1 - r_t) * x_t This version uses functional ops to be faster on GPUs with TF-1.9+. Args: x: A tensor of shape [batch, ..., channels] ; ... is treated as time. num_layers: How many SRU layers; default is 2 as results for 1 disappoint. activation: Optional activation function, try tf.nn.tanh or tf.nn.relu. initial_state: Optional initial c-state, set to zeros if None. name: Optional name, "sru" by default. reuse: Optional reuse. Returns: A tensor of the same shape as x. Raises: ValueError: if num_layers is not positive. ### Response: def sru(x, num_layers=2, activation=None, initial_state=None, name=None, reuse=None): """SRU cell as in https://arxiv.org/abs/1709.02755. As defined in the paper: (1) x'_t = W x_t (2) f_t = sigmoid(Wf x_t + bf) (3) r_t = sigmoid(Wr x_t + br) (4) c_t = f_t * c_{t-1} + (1 - f_t) * x'_t (5) h_t = r_t * activation(c_t) + (1 - r_t) * x_t This version uses functional ops to be faster on GPUs with TF-1.9+. Args: x: A tensor of shape [batch, ..., channels] ; ... is treated as time. num_layers: How many SRU layers; default is 2 as results for 1 disappoint. activation: Optional activation function, try tf.nn.tanh or tf.nn.relu. initial_state: Optional initial c-state, set to zeros if None. name: Optional name, "sru" by default. reuse: Optional reuse. Returns: A tensor of the same shape as x. Raises: ValueError: if num_layers is not positive. """ if num_layers < 1: raise ValueError("Number of layers must be positive: %d" % num_layers) if is_xla_compiled(): # On TPU the XLA does a good job with while. return sru_with_scan(x, num_layers, activation, initial_state, name, reuse) try: from tensorflow.contrib.recurrent.python.ops import functional_rnn # pylint: disable=g-import-not-at-top except ImportError: tf.logging.info("functional_rnn not found, using sru_with_scan instead") return sru_with_scan(x, num_layers, activation, initial_state, name, reuse) with tf.variable_scope(name, default_name="sru", values=[x], reuse=reuse): # We assume x is [batch, ..., channels] and treat all ... as time. x_shape = shape_list(x) x = tf.reshape(x, [x_shape[0], -1, x_shape[-1]]) initial_state = initial_state or tf.zeros([x_shape[0], x_shape[-1]]) cell = CumsumprodCell(initial_state) # Calculate SRU on each layer. for i in range(num_layers): # The parallel part of the SRU. x_orig = x x, f, r = tf.split( layers().Dense(3 * x_shape[-1], name="kernel_%d" % i)(x), 3, axis=-1) f, r = tf.sigmoid(f), tf.sigmoid(r) x_times_one_minus_f = x * (1.0 - f) # Compute in parallel for speed. # Calculate states. concat = tf.concat([x_times_one_minus_f, f], axis=-1) c_states, _ = functional_rnn.functional_rnn( cell, concat, time_major=False) # Final output. if activation is not None: c_states = activation(c_states) h = c_states * r + (1.0 - r) * x_orig x = h # Next layer. return tf.reshape(x, x_shape)
def add_to_deleted_models(sender, instance=None, *args, **kwargs): """ Whenever a model is deleted, we record its ID in a separate model for tracking purposes. During serialization, we will mark the model as deleted in the store. """ if issubclass(sender, SyncableModel): instance._update_deleted_models()
Whenever a model is deleted, we record its ID in a separate model for tracking purposes. During serialization, we will mark the model as deleted in the store.
Below is the the instruction that describes the task: ### Input: Whenever a model is deleted, we record its ID in a separate model for tracking purposes. During serialization, we will mark the model as deleted in the store. ### Response: def add_to_deleted_models(sender, instance=None, *args, **kwargs): """ Whenever a model is deleted, we record its ID in a separate model for tracking purposes. During serialization, we will mark the model as deleted in the store. """ if issubclass(sender, SyncableModel): instance._update_deleted_models()
def delete_action_cache(self, action_key): """Delete action needs and excludes from cache. .. note:: It returns the action if a cache system is defined. :param action_key: The unique action name. """ if self.cache: self.cache.delete( self.app.config['ACCESS_ACTION_CACHE_PREFIX'] + action_key )
Delete action needs and excludes from cache. .. note:: It returns the action if a cache system is defined. :param action_key: The unique action name.
Below is the the instruction that describes the task: ### Input: Delete action needs and excludes from cache. .. note:: It returns the action if a cache system is defined. :param action_key: The unique action name. ### Response: def delete_action_cache(self, action_key): """Delete action needs and excludes from cache. .. note:: It returns the action if a cache system is defined. :param action_key: The unique action name. """ if self.cache: self.cache.delete( self.app.config['ACCESS_ACTION_CACHE_PREFIX'] + action_key )
def set_acls(path, acls, version=-1, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None): ''' Set acls on a znode path path to znode acls list of acl dictionaries to set on the znode version only set acls if version matches (Default: -1 (always matches)) profile Configured Zookeeper profile to authenticate with (Default: None) hosts Lists of Zookeeper Hosts (Default: '127.0.0.1:2181) scheme Scheme to authenticate with (Default: 'digest') username Username to authenticate (Default: None) password Password to authenticate (Default: None) default_acl Default acls to assign if a node is created in this connection (Default: None) CLI Example: .. code-block:: bash salt minion1 zookeeper.set_acls /test/name acls='[{"username": "gtmanfred", "password": "test", "all": True}]' profile=prod ''' conn = _get_zk_conn(profile=profile, hosts=hosts, scheme=scheme, username=username, password=password, default_acl=default_acl) if acls is None: acls = [] acls = [make_digest_acl(**acl) for acl in acls] conn = _get_zk_conn(profile=profile, hosts=hosts, scheme=scheme, username=username, password=password, default_acl=default_acl) return conn.set_acls(path, acls, version)
Set acls on a znode path path to znode acls list of acl dictionaries to set on the znode version only set acls if version matches (Default: -1 (always matches)) profile Configured Zookeeper profile to authenticate with (Default: None) hosts Lists of Zookeeper Hosts (Default: '127.0.0.1:2181) scheme Scheme to authenticate with (Default: 'digest') username Username to authenticate (Default: None) password Password to authenticate (Default: None) default_acl Default acls to assign if a node is created in this connection (Default: None) CLI Example: .. code-block:: bash salt minion1 zookeeper.set_acls /test/name acls='[{"username": "gtmanfred", "password": "test", "all": True}]' profile=prod
Below is the the instruction that describes the task: ### Input: Set acls on a znode path path to znode acls list of acl dictionaries to set on the znode version only set acls if version matches (Default: -1 (always matches)) profile Configured Zookeeper profile to authenticate with (Default: None) hosts Lists of Zookeeper Hosts (Default: '127.0.0.1:2181) scheme Scheme to authenticate with (Default: 'digest') username Username to authenticate (Default: None) password Password to authenticate (Default: None) default_acl Default acls to assign if a node is created in this connection (Default: None) CLI Example: .. code-block:: bash salt minion1 zookeeper.set_acls /test/name acls='[{"username": "gtmanfred", "password": "test", "all": True}]' profile=prod ### Response: def set_acls(path, acls, version=-1, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None): ''' Set acls on a znode path path to znode acls list of acl dictionaries to set on the znode version only set acls if version matches (Default: -1 (always matches)) profile Configured Zookeeper profile to authenticate with (Default: None) hosts Lists of Zookeeper Hosts (Default: '127.0.0.1:2181) scheme Scheme to authenticate with (Default: 'digest') username Username to authenticate (Default: None) password Password to authenticate (Default: None) default_acl Default acls to assign if a node is created in this connection (Default: None) CLI Example: .. code-block:: bash salt minion1 zookeeper.set_acls /test/name acls='[{"username": "gtmanfred", "password": "test", "all": True}]' profile=prod ''' conn = _get_zk_conn(profile=profile, hosts=hosts, scheme=scheme, username=username, password=password, default_acl=default_acl) if acls is None: acls = [] acls = [make_digest_acl(**acl) for acl in acls] conn = _get_zk_conn(profile=profile, hosts=hosts, scheme=scheme, username=username, password=password, default_acl=default_acl) return conn.set_acls(path, acls, version)
def remove_existing_pidfile(pidfile_path): """ Remove the named PID file if it exists. Removing a PID file that doesn't already exist puts us in the desired state, so we ignore the condition if the file does not exist. """ try: os.remove(pidfile_path) except OSError as exc: if exc.errno == errno.ENOENT: pass else: raise
Remove the named PID file if it exists. Removing a PID file that doesn't already exist puts us in the desired state, so we ignore the condition if the file does not exist.
Below is the the instruction that describes the task: ### Input: Remove the named PID file if it exists. Removing a PID file that doesn't already exist puts us in the desired state, so we ignore the condition if the file does not exist. ### Response: def remove_existing_pidfile(pidfile_path): """ Remove the named PID file if it exists. Removing a PID file that doesn't already exist puts us in the desired state, so we ignore the condition if the file does not exist. """ try: os.remove(pidfile_path) except OSError as exc: if exc.errno == errno.ENOENT: pass else: raise
def get_default_config(self): """ Returns the default collector settings """ config = super(ProcessCollector, self).get_default_config() config.update({ 'use_sudo': False, 'sudo_cmd': self.find_binary('/usr/bin/sudo'), }) return config
Returns the default collector settings
Below is the the instruction that describes the task: ### Input: Returns the default collector settings ### Response: def get_default_config(self): """ Returns the default collector settings """ config = super(ProcessCollector, self).get_default_config() config.update({ 'use_sudo': False, 'sudo_cmd': self.find_binary('/usr/bin/sudo'), }) return config
def backprop(self, input_data, df_output, cache=None): """ Backpropagate through the hidden layer **Parameters:** input_data : ``GPUArray`` Input data to compute activations for. df_output : ``GPUArray`` Gradients with respect to the activations of this layer (received from the layer above). cache : list of ``GPUArray`` Cache obtained from forward pass. If the cache is provided, then the activations are not recalculated. **Returns:** gradients : tuple of ``GPUArray`` Gradients with respect to the weights and biases in the form ``(df_weights, df_biases)``. df_input : ``GPUArray`` Gradients with respect to the input. """ # Get cache if it wasn't provided if cache is None: cache = self.feed_forward(input_data, prediction=False) if len(cache) == 2: activations, dropout_mask = cache else: activations = cache[0] # Multiply the binary mask with the incoming gradients if self.dropout > 0 and dropout_mask is not None: apply_dropout_mask(df_output, dropout_mask) # Get gradient wrt activation function df_activations = self.df(activations) delta = mult_matrix(df_activations, df_output) # Gradient wrt weights df_W = linalg.dot(input_data, delta, transa='T') # Gradient wrt bias df_b = matrix_sum_out_axis(delta, 0) # Gradient wrt inputs df_input = linalg.dot(delta, self.W, transb='T') # L1 weight decay if self.l1_penalty_weight: df_W += self.l1_penalty_weight * sign(self.W) # L2 weight decay if self.l2_penalty_weight: df_W += self.l2_penalty_weight * self.W return (df_W, df_b), df_input
Backpropagate through the hidden layer **Parameters:** input_data : ``GPUArray`` Input data to compute activations for. df_output : ``GPUArray`` Gradients with respect to the activations of this layer (received from the layer above). cache : list of ``GPUArray`` Cache obtained from forward pass. If the cache is provided, then the activations are not recalculated. **Returns:** gradients : tuple of ``GPUArray`` Gradients with respect to the weights and biases in the form ``(df_weights, df_biases)``. df_input : ``GPUArray`` Gradients with respect to the input.
Below is the the instruction that describes the task: ### Input: Backpropagate through the hidden layer **Parameters:** input_data : ``GPUArray`` Input data to compute activations for. df_output : ``GPUArray`` Gradients with respect to the activations of this layer (received from the layer above). cache : list of ``GPUArray`` Cache obtained from forward pass. If the cache is provided, then the activations are not recalculated. **Returns:** gradients : tuple of ``GPUArray`` Gradients with respect to the weights and biases in the form ``(df_weights, df_biases)``. df_input : ``GPUArray`` Gradients with respect to the input. ### Response: def backprop(self, input_data, df_output, cache=None): """ Backpropagate through the hidden layer **Parameters:** input_data : ``GPUArray`` Input data to compute activations for. df_output : ``GPUArray`` Gradients with respect to the activations of this layer (received from the layer above). cache : list of ``GPUArray`` Cache obtained from forward pass. If the cache is provided, then the activations are not recalculated. **Returns:** gradients : tuple of ``GPUArray`` Gradients with respect to the weights and biases in the form ``(df_weights, df_biases)``. df_input : ``GPUArray`` Gradients with respect to the input. """ # Get cache if it wasn't provided if cache is None: cache = self.feed_forward(input_data, prediction=False) if len(cache) == 2: activations, dropout_mask = cache else: activations = cache[0] # Multiply the binary mask with the incoming gradients if self.dropout > 0 and dropout_mask is not None: apply_dropout_mask(df_output, dropout_mask) # Get gradient wrt activation function df_activations = self.df(activations) delta = mult_matrix(df_activations, df_output) # Gradient wrt weights df_W = linalg.dot(input_data, delta, transa='T') # Gradient wrt bias df_b = matrix_sum_out_axis(delta, 0) # Gradient wrt inputs df_input = linalg.dot(delta, self.W, transb='T') # L1 weight decay if self.l1_penalty_weight: df_W += self.l1_penalty_weight * sign(self.W) # L2 weight decay if self.l2_penalty_weight: df_W += self.l2_penalty_weight * self.W return (df_W, df_b), df_input
def wider_next_conv(layer, start_dim, total_dim, n_add, weighted=True): '''wider next conv layer. ''' n_dim = get_n_dim(layer) if not weighted: return get_conv_class(n_dim)(layer.input_channel + n_add, layer.filters, kernel_size=layer.kernel_size, stride=layer.stride) n_filters = layer.filters teacher_w, teacher_b = layer.get_weights() new_weight_shape = list(teacher_w.shape) new_weight_shape[1] = n_add new_weight = np.zeros(tuple(new_weight_shape)) student_w = np.concatenate((teacher_w[:, :start_dim, ...].copy(), add_noise(new_weight, teacher_w), teacher_w[:, start_dim:total_dim, ...].copy()), axis=1) new_layer = get_conv_class(n_dim)(layer.input_channel + n_add, n_filters, kernel_size=layer.kernel_size, stride=layer.stride) new_layer.set_weights((student_w, teacher_b)) return new_layer
wider next conv layer.
Below is the the instruction that describes the task: ### Input: wider next conv layer. ### Response: def wider_next_conv(layer, start_dim, total_dim, n_add, weighted=True): '''wider next conv layer. ''' n_dim = get_n_dim(layer) if not weighted: return get_conv_class(n_dim)(layer.input_channel + n_add, layer.filters, kernel_size=layer.kernel_size, stride=layer.stride) n_filters = layer.filters teacher_w, teacher_b = layer.get_weights() new_weight_shape = list(teacher_w.shape) new_weight_shape[1] = n_add new_weight = np.zeros(tuple(new_weight_shape)) student_w = np.concatenate((teacher_w[:, :start_dim, ...].copy(), add_noise(new_weight, teacher_w), teacher_w[:, start_dim:total_dim, ...].copy()), axis=1) new_layer = get_conv_class(n_dim)(layer.input_channel + n_add, n_filters, kernel_size=layer.kernel_size, stride=layer.stride) new_layer.set_weights((student_w, teacher_b)) return new_layer
def set_name(self,name=None): """ Set the name of the object. If no name is given, the name is extracted via the extract_name method. """ if name: self.name = name[:254] else: self.name = self.extract_name()[:254] self.save() return self.name
Set the name of the object. If no name is given, the name is extracted via the extract_name method.
Below is the the instruction that describes the task: ### Input: Set the name of the object. If no name is given, the name is extracted via the extract_name method. ### Response: def set_name(self,name=None): """ Set the name of the object. If no name is given, the name is extracted via the extract_name method. """ if name: self.name = name[:254] else: self.name = self.extract_name()[:254] self.save() return self.name
def _pad(expr, width, side='left', fillchar=' '): """ Pad strings in the sequence or scalar with an additional character to specified side. :param expr: :param width: Minimum width of resulting string; additional characters will be filled with spaces :param side: {‘left’, ‘right’, ‘both’}, default ‘left’ :param fillchar: Additional character for filling, default is whitespace :return: sequence or scalar """ if not isinstance(fillchar, six.string_types): msg = 'fillchar must be a character, not {0}' raise TypeError(msg.format(type(fillchar).__name__)) if len(fillchar) != 1: raise TypeError('fillchar must be a character, not str') if side not in ('left', 'right', 'both'): raise ValueError('Invalid side') return _string_op(expr, Pad, _width=width, _side=side, _fillchar=fillchar)
Pad strings in the sequence or scalar with an additional character to specified side. :param expr: :param width: Minimum width of resulting string; additional characters will be filled with spaces :param side: {‘left’, ‘right’, ‘both’}, default ‘left’ :param fillchar: Additional character for filling, default is whitespace :return: sequence or scalar
Below is the the instruction that describes the task: ### Input: Pad strings in the sequence or scalar with an additional character to specified side. :param expr: :param width: Minimum width of resulting string; additional characters will be filled with spaces :param side: {‘left’, ‘right’, ‘both’}, default ‘left’ :param fillchar: Additional character for filling, default is whitespace :return: sequence or scalar ### Response: def _pad(expr, width, side='left', fillchar=' '): """ Pad strings in the sequence or scalar with an additional character to specified side. :param expr: :param width: Minimum width of resulting string; additional characters will be filled with spaces :param side: {‘left’, ‘right’, ‘both’}, default ‘left’ :param fillchar: Additional character for filling, default is whitespace :return: sequence or scalar """ if not isinstance(fillchar, six.string_types): msg = 'fillchar must be a character, not {0}' raise TypeError(msg.format(type(fillchar).__name__)) if len(fillchar) != 1: raise TypeError('fillchar must be a character, not str') if side not in ('left', 'right', 'both'): raise ValueError('Invalid side') return _string_op(expr, Pad, _width=width, _side=side, _fillchar=fillchar)
def set(self, key: str, value: Any) -> None: """ Stores a setting to the database of its object. The write to the database is performed immediately and the cache in the cache backend is flushed. The cache within this object will be updated correctly. """ wc = self._write_cache() if key in wc: s = wc[key] else: s = self._type(object=self._obj, key=key) s.value = self._serialize(value) s.save() self._cache()[key] = s.value wc[key] = s self._flush_external_cache()
Stores a setting to the database of its object. The write to the database is performed immediately and the cache in the cache backend is flushed. The cache within this object will be updated correctly.
Below is the the instruction that describes the task: ### Input: Stores a setting to the database of its object. The write to the database is performed immediately and the cache in the cache backend is flushed. The cache within this object will be updated correctly. ### Response: def set(self, key: str, value: Any) -> None: """ Stores a setting to the database of its object. The write to the database is performed immediately and the cache in the cache backend is flushed. The cache within this object will be updated correctly. """ wc = self._write_cache() if key in wc: s = wc[key] else: s = self._type(object=self._obj, key=key) s.value = self._serialize(value) s.save() self._cache()[key] = s.value wc[key] = s self._flush_external_cache()
def future_request(self, msg, timeout=None, use_mid=None): """Send a request messsage, with future replies. Parameters ---------- msg : Message object The request Message to send. timeout : float in seconds How long to wait for a reply. The default is the the timeout set when creating the AsyncClient. use_mid : boolean, optional Whether to use message IDs. Default is to use message IDs if the server supports them. Returns ------- A tornado.concurrent.Future that resolves with: reply : Message object The reply message received. informs : list of Message objects A list of the inform messages received. """ if timeout is None: timeout = self._request_timeout f = tornado_Future() informs = [] def reply_cb(msg): f.set_result((msg, informs)) def inform_cb(msg): informs.append(msg) try: self.callback_request(msg, reply_cb=reply_cb, inform_cb=inform_cb, timeout=timeout, use_mid=use_mid) except Exception: f.set_exc_info(sys.exc_info()) return f
Send a request messsage, with future replies. Parameters ---------- msg : Message object The request Message to send. timeout : float in seconds How long to wait for a reply. The default is the the timeout set when creating the AsyncClient. use_mid : boolean, optional Whether to use message IDs. Default is to use message IDs if the server supports them. Returns ------- A tornado.concurrent.Future that resolves with: reply : Message object The reply message received. informs : list of Message objects A list of the inform messages received.
Below is the the instruction that describes the task: ### Input: Send a request messsage, with future replies. Parameters ---------- msg : Message object The request Message to send. timeout : float in seconds How long to wait for a reply. The default is the the timeout set when creating the AsyncClient. use_mid : boolean, optional Whether to use message IDs. Default is to use message IDs if the server supports them. Returns ------- A tornado.concurrent.Future that resolves with: reply : Message object The reply message received. informs : list of Message objects A list of the inform messages received. ### Response: def future_request(self, msg, timeout=None, use_mid=None): """Send a request messsage, with future replies. Parameters ---------- msg : Message object The request Message to send. timeout : float in seconds How long to wait for a reply. The default is the the timeout set when creating the AsyncClient. use_mid : boolean, optional Whether to use message IDs. Default is to use message IDs if the server supports them. Returns ------- A tornado.concurrent.Future that resolves with: reply : Message object The reply message received. informs : list of Message objects A list of the inform messages received. """ if timeout is None: timeout = self._request_timeout f = tornado_Future() informs = [] def reply_cb(msg): f.set_result((msg, informs)) def inform_cb(msg): informs.append(msg) try: self.callback_request(msg, reply_cb=reply_cb, inform_cb=inform_cb, timeout=timeout, use_mid=use_mid) except Exception: f.set_exc_info(sys.exc_info()) return f
def signature_validate(signature, error = None) : "is signature a valid sequence of zero or more complete types." error, my_error = _get_error(error) result = dbus.dbus_signature_validate(signature.encode(), error._dbobj) != 0 my_error.raise_if_set() return \ result
is signature a valid sequence of zero or more complete types.
Below is the the instruction that describes the task: ### Input: is signature a valid sequence of zero or more complete types. ### Response: def signature_validate(signature, error = None) : "is signature a valid sequence of zero or more complete types." error, my_error = _get_error(error) result = dbus.dbus_signature_validate(signature.encode(), error._dbobj) != 0 my_error.raise_if_set() return \ result
def average(var, key, N): '''average over N points''' global average_data if not key in average_data: average_data[key] = [var]*N return var average_data[key].pop(0) average_data[key].append(var) return sum(average_data[key])/N
average over N points
Below is the the instruction that describes the task: ### Input: average over N points ### Response: def average(var, key, N): '''average over N points''' global average_data if not key in average_data: average_data[key] = [var]*N return var average_data[key].pop(0) average_data[key].append(var) return sum(average_data[key])/N
def to_binary_string(obj, encoding=None): """Convert `obj` to binary string (bytes in Python 3, str in Python 2)""" if PY2: # Python 2 if encoding is None: return str(obj) else: return obj.encode(encoding) else: # Python 3 return bytes(obj, 'utf-8' if encoding is None else encoding)
Convert `obj` to binary string (bytes in Python 3, str in Python 2)
Below is the the instruction that describes the task: ### Input: Convert `obj` to binary string (bytes in Python 3, str in Python 2) ### Response: def to_binary_string(obj, encoding=None): """Convert `obj` to binary string (bytes in Python 3, str in Python 2)""" if PY2: # Python 2 if encoding is None: return str(obj) else: return obj.encode(encoding) else: # Python 3 return bytes(obj, 'utf-8' if encoding is None else encoding)
def _get_run_hash(self): """Gets the hash of the nextflow file""" # Get name and path of the pipeline from the log file pipeline_path = get_nextflow_filepath(self.log_file) # Get hash from the entire pipeline file pipeline_hash = hashlib.md5() with open(pipeline_path, "rb") as fh: for chunk in iter(lambda: fh.read(4096), b""): pipeline_hash.update(chunk) # Get hash from the current working dir and hostname workdir = self.workdir.encode("utf8") hostname = socket.gethostname().encode("utf8") hardware_addr = str(uuid.getnode()).encode("utf8") dir_hash = hashlib.md5(workdir + hostname + hardware_addr) return pipeline_hash.hexdigest() + dir_hash.hexdigest()
Gets the hash of the nextflow file
Below is the the instruction that describes the task: ### Input: Gets the hash of the nextflow file ### Response: def _get_run_hash(self): """Gets the hash of the nextflow file""" # Get name and path of the pipeline from the log file pipeline_path = get_nextflow_filepath(self.log_file) # Get hash from the entire pipeline file pipeline_hash = hashlib.md5() with open(pipeline_path, "rb") as fh: for chunk in iter(lambda: fh.read(4096), b""): pipeline_hash.update(chunk) # Get hash from the current working dir and hostname workdir = self.workdir.encode("utf8") hostname = socket.gethostname().encode("utf8") hardware_addr = str(uuid.getnode()).encode("utf8") dir_hash = hashlib.md5(workdir + hostname + hardware_addr) return pipeline_hash.hexdigest() + dir_hash.hexdigest()
def _brownian_eigs(n_grid, lag_time, grad_potential, xmin, xmax, reflect_bc): """Analytic eigenvalues/eigenvectors for 1D Brownian dynamics """ transmat = _brownian_transmat(n_grid, lag_time, grad_potential, xmin, xmax, reflect_bc) u, lv, rv = _solve_msm_eigensystem(transmat, k=len(transmat) - 1) return u, rv
Analytic eigenvalues/eigenvectors for 1D Brownian dynamics
Below is the the instruction that describes the task: ### Input: Analytic eigenvalues/eigenvectors for 1D Brownian dynamics ### Response: def _brownian_eigs(n_grid, lag_time, grad_potential, xmin, xmax, reflect_bc): """Analytic eigenvalues/eigenvectors for 1D Brownian dynamics """ transmat = _brownian_transmat(n_grid, lag_time, grad_potential, xmin, xmax, reflect_bc) u, lv, rv = _solve_msm_eigensystem(transmat, k=len(transmat) - 1) return u, rv
def get_user(session, user_id): """Get user.""" try: user_id = int(user_id) except ValueError: user_id = find_user(session, user_id) resp = _make_request(session, USER_URL, user_id) if not resp: raise VooblyError('user id not found') return resp[0]
Get user.
Below is the the instruction that describes the task: ### Input: Get user. ### Response: def get_user(session, user_id): """Get user.""" try: user_id = int(user_id) except ValueError: user_id = find_user(session, user_id) resp = _make_request(session, USER_URL, user_id) if not resp: raise VooblyError('user id not found') return resp[0]
def setup(__pkg: str) -> jinja2.Environment: """Configure a new Jinja environment with our filters. Args: __pkg: Package name to use as base for templates searches Returns: Configured Jinja environment """ dirs = [path.join(d, 'templates') for d in xdg_basedir.get_data_dirs(__pkg)] env = jinja2.Environment( autoescape=jinja2.select_autoescape(['html', 'xml']), loader=jinja2.ChoiceLoader([jinja2.FileSystemLoader(s) for s in dirs])) env.loader.loaders.append(jinja2.PackageLoader(__pkg, 'templates')) env.filters.update(FILTERS) return env
Configure a new Jinja environment with our filters. Args: __pkg: Package name to use as base for templates searches Returns: Configured Jinja environment
Below is the the instruction that describes the task: ### Input: Configure a new Jinja environment with our filters. Args: __pkg: Package name to use as base for templates searches Returns: Configured Jinja environment ### Response: def setup(__pkg: str) -> jinja2.Environment: """Configure a new Jinja environment with our filters. Args: __pkg: Package name to use as base for templates searches Returns: Configured Jinja environment """ dirs = [path.join(d, 'templates') for d in xdg_basedir.get_data_dirs(__pkg)] env = jinja2.Environment( autoescape=jinja2.select_autoescape(['html', 'xml']), loader=jinja2.ChoiceLoader([jinja2.FileSystemLoader(s) for s in dirs])) env.loader.loaders.append(jinja2.PackageLoader(__pkg, 'templates')) env.filters.update(FILTERS) return env
def get_path_from_to(self,from_tid, to_tid): """ This function returns the path (in terms of phrase types) from one term to another @type from_tid: string @param from_tid: one term id @type to_tid: string @param to_tid: another term id @rtype: list @return: the path, list of phrase types """ shortest_subsumer = self.get_least_common_subsumer(from_tid, to_tid) #print 'From:',self.naf.get_term(from_tid).get_lemma() #print 'To:',self.naf.get_term(to_tid).get_lemma() termid_from = self.terminal_for_term.get(from_tid) termid_to = self.terminal_for_term.get(to_tid) path_from = self.paths_for_terminal[termid_from][0] path_to = self.paths_for_terminal[termid_to][0] if shortest_subsumer is None: return None complete_path = [] for node in path_from: complete_path.append(node) if node == shortest_subsumer: break begin=False for node in path_to[-1::-1]: if begin: complete_path.append(node) if node==shortest_subsumer: begin=True labels = [self.label_for_nonter[nonter] for nonter in complete_path] return labels
This function returns the path (in terms of phrase types) from one term to another @type from_tid: string @param from_tid: one term id @type to_tid: string @param to_tid: another term id @rtype: list @return: the path, list of phrase types
Below is the the instruction that describes the task: ### Input: This function returns the path (in terms of phrase types) from one term to another @type from_tid: string @param from_tid: one term id @type to_tid: string @param to_tid: another term id @rtype: list @return: the path, list of phrase types ### Response: def get_path_from_to(self,from_tid, to_tid): """ This function returns the path (in terms of phrase types) from one term to another @type from_tid: string @param from_tid: one term id @type to_tid: string @param to_tid: another term id @rtype: list @return: the path, list of phrase types """ shortest_subsumer = self.get_least_common_subsumer(from_tid, to_tid) #print 'From:',self.naf.get_term(from_tid).get_lemma() #print 'To:',self.naf.get_term(to_tid).get_lemma() termid_from = self.terminal_for_term.get(from_tid) termid_to = self.terminal_for_term.get(to_tid) path_from = self.paths_for_terminal[termid_from][0] path_to = self.paths_for_terminal[termid_to][0] if shortest_subsumer is None: return None complete_path = [] for node in path_from: complete_path.append(node) if node == shortest_subsumer: break begin=False for node in path_to[-1::-1]: if begin: complete_path.append(node) if node==shortest_subsumer: begin=True labels = [self.label_for_nonter[nonter] for nonter in complete_path] return labels
def polygon_to_geohashes(polygon, precision, inner=True): """ :param polygon: shapely polygon. :param precision: int. Geohashes' precision that form resulting polygon. :param inner: bool, default 'True'. If false, geohashes that are completely outside from the polygon are ignored. :return: set. Set of geohashes that form the polygon. """ inner_geohashes = set() outer_geohashes = set() envelope = polygon.envelope centroid = polygon.centroid testing_geohashes = queue.Queue() testing_geohashes.put(geohash.encode(centroid.y, centroid.x, precision)) while not testing_geohashes.empty(): current_geohash = testing_geohashes.get() if current_geohash not in inner_geohashes and current_geohash not in outer_geohashes: current_polygon = geohash_to_polygon(current_geohash) condition = envelope.contains(current_polygon) if inner else envelope.intersects(current_polygon) if condition: if inner: if polygon.contains(current_polygon): inner_geohashes.add(current_geohash) else: outer_geohashes.add(current_geohash) else: if polygon.intersects(current_polygon): inner_geohashes.add(current_geohash) else: outer_geohashes.add(current_geohash) for neighbor in geohash.neighbors(current_geohash): if neighbor not in inner_geohashes and neighbor not in outer_geohashes: testing_geohashes.put(neighbor) return inner_geohashes
:param polygon: shapely polygon. :param precision: int. Geohashes' precision that form resulting polygon. :param inner: bool, default 'True'. If false, geohashes that are completely outside from the polygon are ignored. :return: set. Set of geohashes that form the polygon.
Below is the the instruction that describes the task: ### Input: :param polygon: shapely polygon. :param precision: int. Geohashes' precision that form resulting polygon. :param inner: bool, default 'True'. If false, geohashes that are completely outside from the polygon are ignored. :return: set. Set of geohashes that form the polygon. ### Response: def polygon_to_geohashes(polygon, precision, inner=True): """ :param polygon: shapely polygon. :param precision: int. Geohashes' precision that form resulting polygon. :param inner: bool, default 'True'. If false, geohashes that are completely outside from the polygon are ignored. :return: set. Set of geohashes that form the polygon. """ inner_geohashes = set() outer_geohashes = set() envelope = polygon.envelope centroid = polygon.centroid testing_geohashes = queue.Queue() testing_geohashes.put(geohash.encode(centroid.y, centroid.x, precision)) while not testing_geohashes.empty(): current_geohash = testing_geohashes.get() if current_geohash not in inner_geohashes and current_geohash not in outer_geohashes: current_polygon = geohash_to_polygon(current_geohash) condition = envelope.contains(current_polygon) if inner else envelope.intersects(current_polygon) if condition: if inner: if polygon.contains(current_polygon): inner_geohashes.add(current_geohash) else: outer_geohashes.add(current_geohash) else: if polygon.intersects(current_polygon): inner_geohashes.add(current_geohash) else: outer_geohashes.add(current_geohash) for neighbor in geohash.neighbors(current_geohash): if neighbor not in inner_geohashes and neighbor not in outer_geohashes: testing_geohashes.put(neighbor) return inner_geohashes
def table_convert_geometry(metadata, table_name): """Get table metadata from the database.""" from sqlalchemy import Table from ..orm import Geometry table = Table(table_name, metadata, autoload=True) for c in table.columns: # HACK! Sqlalchemy sees spatialte GEOMETRY types # as NUMERIC if c.name == 'geometry': c.type = Geometry # What about variants? return table
Get table metadata from the database.
Below is the the instruction that describes the task: ### Input: Get table metadata from the database. ### Response: def table_convert_geometry(metadata, table_name): """Get table metadata from the database.""" from sqlalchemy import Table from ..orm import Geometry table = Table(table_name, metadata, autoload=True) for c in table.columns: # HACK! Sqlalchemy sees spatialte GEOMETRY types # as NUMERIC if c.name == 'geometry': c.type = Geometry # What about variants? return table
def process_Text( self, text, **kwargs ): ''' Executes the preprocessing pipeline on estnltk's Text object. Returns a list: lines of analyses in the VISL CG3 input format; ''' mrf_lines = convert_Text_to_mrf( text ) return self.process_mrf_lines( mrf_lines, **kwargs )
Executes the preprocessing pipeline on estnltk's Text object. Returns a list: lines of analyses in the VISL CG3 input format;
Below is the the instruction that describes the task: ### Input: Executes the preprocessing pipeline on estnltk's Text object. Returns a list: lines of analyses in the VISL CG3 input format; ### Response: def process_Text( self, text, **kwargs ): ''' Executes the preprocessing pipeline on estnltk's Text object. Returns a list: lines of analyses in the VISL CG3 input format; ''' mrf_lines = convert_Text_to_mrf( text ) return self.process_mrf_lines( mrf_lines, **kwargs )
def getScans(self, modifications=False, fdr=True): """ get a random scan """ if fdr: sql = self.base_sql+"WHERE p.ConfidenceLevel >= {} and p.SearchEngineRank <= {} {}".format(self.clvl, self.srank, self.extra) try: self.cur.execute(sql) except sqlite3.OperationalError: sql = self.base_sql+"WHERE p.ConfidenceLevel >= {} {}".format(self.clvl, self.extra) self.cur.execute(sql) else: sql = self.base_sql self.cur.execute(sql) while True: # results = self.cur.fetchmany(1000) # if not results: # break try: tup = self.cur.fetchone() except: sys.stderr.write('Error fetching scan:\n{}\n'.format(traceback.format_exc())) else: while tup is not None: if tup is None: break if tup[1] is not None: scan = self.parseFullScan(tup, modifications=modifications) scan.spectrumId = tup[3] yield scan try: tup = self.cur.fetchone() except: sys.stderr.write('Error fetching scan:\n{}\n'.format(traceback.format_exc())) if tup is None: break yield None
get a random scan
Below is the the instruction that describes the task: ### Input: get a random scan ### Response: def getScans(self, modifications=False, fdr=True): """ get a random scan """ if fdr: sql = self.base_sql+"WHERE p.ConfidenceLevel >= {} and p.SearchEngineRank <= {} {}".format(self.clvl, self.srank, self.extra) try: self.cur.execute(sql) except sqlite3.OperationalError: sql = self.base_sql+"WHERE p.ConfidenceLevel >= {} {}".format(self.clvl, self.extra) self.cur.execute(sql) else: sql = self.base_sql self.cur.execute(sql) while True: # results = self.cur.fetchmany(1000) # if not results: # break try: tup = self.cur.fetchone() except: sys.stderr.write('Error fetching scan:\n{}\n'.format(traceback.format_exc())) else: while tup is not None: if tup is None: break if tup[1] is not None: scan = self.parseFullScan(tup, modifications=modifications) scan.spectrumId = tup[3] yield scan try: tup = self.cur.fetchone() except: sys.stderr.write('Error fetching scan:\n{}\n'.format(traceback.format_exc())) if tup is None: break yield None
def gen_stm(src, dst): """Return a STM instruction. """ return ReilBuilder.build(ReilMnemonic.STM, src, ReilEmptyOperand(), dst)
Return a STM instruction.
Below is the the instruction that describes the task: ### Input: Return a STM instruction. ### Response: def gen_stm(src, dst): """Return a STM instruction. """ return ReilBuilder.build(ReilMnemonic.STM, src, ReilEmptyOperand(), dst)
def _process_unresolved_indirect_jumps(self): """ Resolve all unresolved indirect jumps found in previous scanning. Currently we support resolving the following types of indirect jumps: - Ijk_Call: indirect calls where the function address is passed in from a proceeding basic block - Ijk_Boring: jump tables - For an up-to-date list, see analyses/cfg/indirect_jump_resolvers :return: A set of concrete indirect jump targets (ints). :rtype: set """ l.info("%d indirect jumps to resolve.", len(self._indirect_jumps_to_resolve)) all_targets = set() for idx, jump in enumerate(self._indirect_jumps_to_resolve): # type:int,IndirectJump if self._low_priority: self._release_gil(idx, 20, 0.0001) all_targets |= self._process_one_indirect_jump(jump) self._indirect_jumps_to_resolve.clear() return all_targets
Resolve all unresolved indirect jumps found in previous scanning. Currently we support resolving the following types of indirect jumps: - Ijk_Call: indirect calls where the function address is passed in from a proceeding basic block - Ijk_Boring: jump tables - For an up-to-date list, see analyses/cfg/indirect_jump_resolvers :return: A set of concrete indirect jump targets (ints). :rtype: set
Below is the the instruction that describes the task: ### Input: Resolve all unresolved indirect jumps found in previous scanning. Currently we support resolving the following types of indirect jumps: - Ijk_Call: indirect calls where the function address is passed in from a proceeding basic block - Ijk_Boring: jump tables - For an up-to-date list, see analyses/cfg/indirect_jump_resolvers :return: A set of concrete indirect jump targets (ints). :rtype: set ### Response: def _process_unresolved_indirect_jumps(self): """ Resolve all unresolved indirect jumps found in previous scanning. Currently we support resolving the following types of indirect jumps: - Ijk_Call: indirect calls where the function address is passed in from a proceeding basic block - Ijk_Boring: jump tables - For an up-to-date list, see analyses/cfg/indirect_jump_resolvers :return: A set of concrete indirect jump targets (ints). :rtype: set """ l.info("%d indirect jumps to resolve.", len(self._indirect_jumps_to_resolve)) all_targets = set() for idx, jump in enumerate(self._indirect_jumps_to_resolve): # type:int,IndirectJump if self._low_priority: self._release_gil(idx, 20, 0.0001) all_targets |= self._process_one_indirect_jump(jump) self._indirect_jumps_to_resolve.clear() return all_targets
def qname(self): """Get the 'qualified' name of the node. For example: module.name, module.class.name ... :returns: The qualified name. :rtype: str """ # pylint: disable=no-member; github.com/pycqa/astroid/issues/278 if self.parent is None: return self.name return "%s.%s" % (self.parent.frame().qname(), self.name)
Get the 'qualified' name of the node. For example: module.name, module.class.name ... :returns: The qualified name. :rtype: str
Below is the the instruction that describes the task: ### Input: Get the 'qualified' name of the node. For example: module.name, module.class.name ... :returns: The qualified name. :rtype: str ### Response: def qname(self): """Get the 'qualified' name of the node. For example: module.name, module.class.name ... :returns: The qualified name. :rtype: str """ # pylint: disable=no-member; github.com/pycqa/astroid/issues/278 if self.parent is None: return self.name return "%s.%s" % (self.parent.frame().qname(), self.name)
def prepare_tokens(ctx, input, annotations, tout, lout): """Prepare tokenized and tagged corpus file from those supplied by CHEMDNER.""" click.echo('chemdataextractor.chemdner.prepare_tokens') # Collect the annotations into a dict anndict = defaultdict(list) for line in annotations: pmid, ta, start, end, text, category = line.strip().split('\t') anndict[(pmid, ta)].append((int(start), int(end), text)) # Process the corpus for line in input: pmid, title, abstract = line.strip().split(u'\t') for t, section, anns in [(Title(title), 'T', anndict.get((pmid, u'T'), [])), (Paragraph(abstract), u'A', anndict.get((pmid, u'A'), []))]: # Write our tokens with POS and IOB tags tagged = _prep_tags(t, anns) for i, sentence in enumerate(tagged): tout.write(u' '.join([u'/'.join([token, tag, label]) for token, tag, label in sentence])) lout.write(u' '.join([u'/'.join([token, label]) for token, tag, label in sentence])) tout.write(u'\n') lout.write(u'\n') tout.write(u'\n') lout.write(u'\n')
Prepare tokenized and tagged corpus file from those supplied by CHEMDNER.
Below is the the instruction that describes the task: ### Input: Prepare tokenized and tagged corpus file from those supplied by CHEMDNER. ### Response: def prepare_tokens(ctx, input, annotations, tout, lout): """Prepare tokenized and tagged corpus file from those supplied by CHEMDNER.""" click.echo('chemdataextractor.chemdner.prepare_tokens') # Collect the annotations into a dict anndict = defaultdict(list) for line in annotations: pmid, ta, start, end, text, category = line.strip().split('\t') anndict[(pmid, ta)].append((int(start), int(end), text)) # Process the corpus for line in input: pmid, title, abstract = line.strip().split(u'\t') for t, section, anns in [(Title(title), 'T', anndict.get((pmid, u'T'), [])), (Paragraph(abstract), u'A', anndict.get((pmid, u'A'), []))]: # Write our tokens with POS and IOB tags tagged = _prep_tags(t, anns) for i, sentence in enumerate(tagged): tout.write(u' '.join([u'/'.join([token, tag, label]) for token, tag, label in sentence])) lout.write(u' '.join([u'/'.join([token, label]) for token, tag, label in sentence])) tout.write(u'\n') lout.write(u'\n') tout.write(u'\n') lout.write(u'\n')
def predict_moments(self, X, nsamples=200, likelihood_args=()): r""" Predictive moments, in particular mean and variance, of a Bayesian GLM. This function uses Monte-Carlo sampling to evaluate the predictive mean and variance of a Bayesian GLM. The exact expressions evaluated are, .. math :: \mathbb{E}[y^* | \mathbf{x^*}, \mathbf{X}, y] &= \int \mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)] p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi) d\mathbf{w}, \mathbb{V}[y^* | \mathbf{x^*}, \mathbf{X}, y] &= \int \left(\mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)] - \mathbb{E}[y^* | \mathbf{x^*}, \mathbf{X}, y]\right)^2 p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi) d\mathbf{w}, where :math:`\mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)]` is the the expected value of :math:`y^*` from the likelihood, and :math:`p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi)` is the posterior distribution over weights (from ``learn``). Here are few concrete examples of how we can use these values, - Gaussian likelihood: these are just the predicted mean and variance, see ``revrand.regression.predict`` - Bernoulli likelihood: The expected value is the probability, :math:`p(y^* = 1)`, i.e. the probability of class one. The variance may not be so useful. - Poisson likelihood: The expected value is similar conceptually to the Gaussian case, and is also a *continuous* value. The median (50% quantile) from ``predict_interval`` is a discrete value. Again, the variance in this instance may not be so useful. Parameters ---------- X : ndarray (N*,d) array query input dataset (N* samples, d dimensions). nsamples : int, optional Number of samples for sampling the expected moments from the predictive distribution. likelihood_args : sequence, optional sequence of arguments to pass to the likelihood function. These are non-learnable parameters. They can be scalars or arrays of length N. Returns ------- Ey : ndarray The expected value of y* for the query inputs, X* of shape (N*,). Vy : ndarray The expected variance of y* (excluding likelihood noise terms) for the query inputs, X* of shape (N*,). """ # Get latent function samples N = X.shape[0] ys = np.empty((N, nsamples)) fsamples = self._sample_func(X, nsamples) # Push samples though likelihood expected value Eyargs = tuple(chain(atleast_list(self.like_hypers_), likelihood_args)) for i, f in enumerate(fsamples): ys[:, i] = self.likelihood.Ey(f, *Eyargs) # Average transformed samples (MC integration) Ey = ys.mean(axis=1) Vy = ((ys - Ey[:, np.newaxis])**2).mean(axis=1) return Ey, Vy
r""" Predictive moments, in particular mean and variance, of a Bayesian GLM. This function uses Monte-Carlo sampling to evaluate the predictive mean and variance of a Bayesian GLM. The exact expressions evaluated are, .. math :: \mathbb{E}[y^* | \mathbf{x^*}, \mathbf{X}, y] &= \int \mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)] p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi) d\mathbf{w}, \mathbb{V}[y^* | \mathbf{x^*}, \mathbf{X}, y] &= \int \left(\mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)] - \mathbb{E}[y^* | \mathbf{x^*}, \mathbf{X}, y]\right)^2 p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi) d\mathbf{w}, where :math:`\mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)]` is the the expected value of :math:`y^*` from the likelihood, and :math:`p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi)` is the posterior distribution over weights (from ``learn``). Here are few concrete examples of how we can use these values, - Gaussian likelihood: these are just the predicted mean and variance, see ``revrand.regression.predict`` - Bernoulli likelihood: The expected value is the probability, :math:`p(y^* = 1)`, i.e. the probability of class one. The variance may not be so useful. - Poisson likelihood: The expected value is similar conceptually to the Gaussian case, and is also a *continuous* value. The median (50% quantile) from ``predict_interval`` is a discrete value. Again, the variance in this instance may not be so useful. Parameters ---------- X : ndarray (N*,d) array query input dataset (N* samples, d dimensions). nsamples : int, optional Number of samples for sampling the expected moments from the predictive distribution. likelihood_args : sequence, optional sequence of arguments to pass to the likelihood function. These are non-learnable parameters. They can be scalars or arrays of length N. Returns ------- Ey : ndarray The expected value of y* for the query inputs, X* of shape (N*,). Vy : ndarray The expected variance of y* (excluding likelihood noise terms) for the query inputs, X* of shape (N*,).
Below is the the instruction that describes the task: ### Input: r""" Predictive moments, in particular mean and variance, of a Bayesian GLM. This function uses Monte-Carlo sampling to evaluate the predictive mean and variance of a Bayesian GLM. The exact expressions evaluated are, .. math :: \mathbb{E}[y^* | \mathbf{x^*}, \mathbf{X}, y] &= \int \mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)] p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi) d\mathbf{w}, \mathbb{V}[y^* | \mathbf{x^*}, \mathbf{X}, y] &= \int \left(\mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)] - \mathbb{E}[y^* | \mathbf{x^*}, \mathbf{X}, y]\right)^2 p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi) d\mathbf{w}, where :math:`\mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)]` is the the expected value of :math:`y^*` from the likelihood, and :math:`p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi)` is the posterior distribution over weights (from ``learn``). Here are few concrete examples of how we can use these values, - Gaussian likelihood: these are just the predicted mean and variance, see ``revrand.regression.predict`` - Bernoulli likelihood: The expected value is the probability, :math:`p(y^* = 1)`, i.e. the probability of class one. The variance may not be so useful. - Poisson likelihood: The expected value is similar conceptually to the Gaussian case, and is also a *continuous* value. The median (50% quantile) from ``predict_interval`` is a discrete value. Again, the variance in this instance may not be so useful. Parameters ---------- X : ndarray (N*,d) array query input dataset (N* samples, d dimensions). nsamples : int, optional Number of samples for sampling the expected moments from the predictive distribution. likelihood_args : sequence, optional sequence of arguments to pass to the likelihood function. These are non-learnable parameters. They can be scalars or arrays of length N. Returns ------- Ey : ndarray The expected value of y* for the query inputs, X* of shape (N*,). Vy : ndarray The expected variance of y* (excluding likelihood noise terms) for the query inputs, X* of shape (N*,). ### Response: def predict_moments(self, X, nsamples=200, likelihood_args=()): r""" Predictive moments, in particular mean and variance, of a Bayesian GLM. This function uses Monte-Carlo sampling to evaluate the predictive mean and variance of a Bayesian GLM. The exact expressions evaluated are, .. math :: \mathbb{E}[y^* | \mathbf{x^*}, \mathbf{X}, y] &= \int \mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)] p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi) d\mathbf{w}, \mathbb{V}[y^* | \mathbf{x^*}, \mathbf{X}, y] &= \int \left(\mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)] - \mathbb{E}[y^* | \mathbf{x^*}, \mathbf{X}, y]\right)^2 p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi) d\mathbf{w}, where :math:`\mathbb{E}[y^* | \mathbf{w}, \phi(\mathbf{x}^*)]` is the the expected value of :math:`y^*` from the likelihood, and :math:`p(\mathbf{w} | \mathbf{y}, \boldsymbol\Phi)` is the posterior distribution over weights (from ``learn``). Here are few concrete examples of how we can use these values, - Gaussian likelihood: these are just the predicted mean and variance, see ``revrand.regression.predict`` - Bernoulli likelihood: The expected value is the probability, :math:`p(y^* = 1)`, i.e. the probability of class one. The variance may not be so useful. - Poisson likelihood: The expected value is similar conceptually to the Gaussian case, and is also a *continuous* value. The median (50% quantile) from ``predict_interval`` is a discrete value. Again, the variance in this instance may not be so useful. Parameters ---------- X : ndarray (N*,d) array query input dataset (N* samples, d dimensions). nsamples : int, optional Number of samples for sampling the expected moments from the predictive distribution. likelihood_args : sequence, optional sequence of arguments to pass to the likelihood function. These are non-learnable parameters. They can be scalars or arrays of length N. Returns ------- Ey : ndarray The expected value of y* for the query inputs, X* of shape (N*,). Vy : ndarray The expected variance of y* (excluding likelihood noise terms) for the query inputs, X* of shape (N*,). """ # Get latent function samples N = X.shape[0] ys = np.empty((N, nsamples)) fsamples = self._sample_func(X, nsamples) # Push samples though likelihood expected value Eyargs = tuple(chain(atleast_list(self.like_hypers_), likelihood_args)) for i, f in enumerate(fsamples): ys[:, i] = self.likelihood.Ey(f, *Eyargs) # Average transformed samples (MC integration) Ey = ys.mean(axis=1) Vy = ((ys - Ey[:, np.newaxis])**2).mean(axis=1) return Ey, Vy
def getCorrect(self, tolerance): """ Returns the number of nodes within tolerance of the target. """ return Numeric.add.reduce(Numeric.fabs(self.target - self.activation) < tolerance)
Returns the number of nodes within tolerance of the target.
Below is the the instruction that describes the task: ### Input: Returns the number of nodes within tolerance of the target. ### Response: def getCorrect(self, tolerance): """ Returns the number of nodes within tolerance of the target. """ return Numeric.add.reduce(Numeric.fabs(self.target - self.activation) < tolerance)
def write_command(self, request_id, msg): """Send "insert" etc. command, returning response as a dict. Can raise ConnectionFailure or OperationFailure. :Parameters: - `request_id`: an int. - `msg`: bytes, the command message. """ self.send_message(msg, 0) response = helpers._unpack_response(self.receive_message(1, request_id)) assert response['number_returned'] == 1 result = response['data'][0] # Raises NotMasterError or OperationFailure. helpers._check_command_response(result) return result
Send "insert" etc. command, returning response as a dict. Can raise ConnectionFailure or OperationFailure. :Parameters: - `request_id`: an int. - `msg`: bytes, the command message.
Below is the the instruction that describes the task: ### Input: Send "insert" etc. command, returning response as a dict. Can raise ConnectionFailure or OperationFailure. :Parameters: - `request_id`: an int. - `msg`: bytes, the command message. ### Response: def write_command(self, request_id, msg): """Send "insert" etc. command, returning response as a dict. Can raise ConnectionFailure or OperationFailure. :Parameters: - `request_id`: an int. - `msg`: bytes, the command message. """ self.send_message(msg, 0) response = helpers._unpack_response(self.receive_message(1, request_id)) assert response['number_returned'] == 1 result = response['data'][0] # Raises NotMasterError or OperationFailure. helpers._check_command_response(result) return result
async def select(query): """Perform SELECT query asynchronously. """ assert isinstance(query, peewee.SelectQuery),\ ("Error, trying to run select coroutine" "with wrong query class %s" % str(query)) cursor = await _execute_query_async(query) result = AsyncQueryWrapper(cursor=cursor, query=query) try: while True: await result.fetchone() except GeneratorExit: pass finally: await cursor.release() return result
Perform SELECT query asynchronously.
Below is the the instruction that describes the task: ### Input: Perform SELECT query asynchronously. ### Response: async def select(query): """Perform SELECT query asynchronously. """ assert isinstance(query, peewee.SelectQuery),\ ("Error, trying to run select coroutine" "with wrong query class %s" % str(query)) cursor = await _execute_query_async(query) result = AsyncQueryWrapper(cursor=cursor, query=query) try: while True: await result.fetchone() except GeneratorExit: pass finally: await cursor.release() return result
def create_datasource(jboss_config, name, datasource_properties, profile=None): ''' Create datasource in running jboss instance jboss_config Configuration dictionary with properties specified above. name Datasource name datasource_properties A dictionary of datasource properties to be created: - driver-name: mysql - connection-url: 'jdbc:mysql://localhost:3306/sampleDatabase' - jndi-name: 'java:jboss/datasources/sampleDS' - user-name: sampleuser - password: secret - min-pool-size: 3 - use-java-context: True profile The profile name (JBoss domain mode only) CLI Example: .. code-block:: bash salt '*' jboss7.create_datasource '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' 'my_datasource' '{"driver-name": "mysql", "connection-url": "jdbc:mysql://localhost:3306/sampleDatabase", "jndi-name": "java:jboss/datasources/sampleDS", "user-name": "sampleuser", "password": "secret", "min-pool-size": 3, "use-java-context": True}' ''' log.debug("======================== MODULE FUNCTION: jboss7.create_datasource, name=%s, profile=%s", name, profile) ds_resource_description = __get_datasource_resource_description(jboss_config, name, profile) operation = '/subsystem=datasources/data-source="{name}":add({properties})'.format( name=name, properties=__get_properties_assignment_string(datasource_properties, ds_resource_description) ) if profile is not None: operation = '/profile="{profile}"'.format(profile=profile) + operation return __salt__['jboss7_cli.run_operation'](jboss_config, operation, fail_on_error=False)
Create datasource in running jboss instance jboss_config Configuration dictionary with properties specified above. name Datasource name datasource_properties A dictionary of datasource properties to be created: - driver-name: mysql - connection-url: 'jdbc:mysql://localhost:3306/sampleDatabase' - jndi-name: 'java:jboss/datasources/sampleDS' - user-name: sampleuser - password: secret - min-pool-size: 3 - use-java-context: True profile The profile name (JBoss domain mode only) CLI Example: .. code-block:: bash salt '*' jboss7.create_datasource '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' 'my_datasource' '{"driver-name": "mysql", "connection-url": "jdbc:mysql://localhost:3306/sampleDatabase", "jndi-name": "java:jboss/datasources/sampleDS", "user-name": "sampleuser", "password": "secret", "min-pool-size": 3, "use-java-context": True}'
Below is the the instruction that describes the task: ### Input: Create datasource in running jboss instance jboss_config Configuration dictionary with properties specified above. name Datasource name datasource_properties A dictionary of datasource properties to be created: - driver-name: mysql - connection-url: 'jdbc:mysql://localhost:3306/sampleDatabase' - jndi-name: 'java:jboss/datasources/sampleDS' - user-name: sampleuser - password: secret - min-pool-size: 3 - use-java-context: True profile The profile name (JBoss domain mode only) CLI Example: .. code-block:: bash salt '*' jboss7.create_datasource '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' 'my_datasource' '{"driver-name": "mysql", "connection-url": "jdbc:mysql://localhost:3306/sampleDatabase", "jndi-name": "java:jboss/datasources/sampleDS", "user-name": "sampleuser", "password": "secret", "min-pool-size": 3, "use-java-context": True}' ### Response: def create_datasource(jboss_config, name, datasource_properties, profile=None): ''' Create datasource in running jboss instance jboss_config Configuration dictionary with properties specified above. name Datasource name datasource_properties A dictionary of datasource properties to be created: - driver-name: mysql - connection-url: 'jdbc:mysql://localhost:3306/sampleDatabase' - jndi-name: 'java:jboss/datasources/sampleDS' - user-name: sampleuser - password: secret - min-pool-size: 3 - use-java-context: True profile The profile name (JBoss domain mode only) CLI Example: .. code-block:: bash salt '*' jboss7.create_datasource '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' 'my_datasource' '{"driver-name": "mysql", "connection-url": "jdbc:mysql://localhost:3306/sampleDatabase", "jndi-name": "java:jboss/datasources/sampleDS", "user-name": "sampleuser", "password": "secret", "min-pool-size": 3, "use-java-context": True}' ''' log.debug("======================== MODULE FUNCTION: jboss7.create_datasource, name=%s, profile=%s", name, profile) ds_resource_description = __get_datasource_resource_description(jboss_config, name, profile) operation = '/subsystem=datasources/data-source="{name}":add({properties})'.format( name=name, properties=__get_properties_assignment_string(datasource_properties, ds_resource_description) ) if profile is not None: operation = '/profile="{profile}"'.format(profile=profile) + operation return __salt__['jboss7_cli.run_operation'](jboss_config, operation, fail_on_error=False)
def _read_starlog(self): """ read history.data or star.log file again""" sldir = self.sldir slname = self.slname slaname = slname+'sa' if not os.path.exists(sldir+'/'+slaname): print('No '+self.slname+'sa file found, create new one from '+self.slname) _cleanstarlog(sldir+'/'+slname) else: if self.clean_starlog: print('Requested new '+self.slname+'sa; create new from '+self.slname) _cleanstarlog(sldir+'/'+slname) else: print('Using old '+self.slname+'sa file ...') cmd=os.popen('wc '+sldir+'/'+slaname) cmd_out=cmd.readline() cnum_cycles=cmd_out.split()[0] num_cycles=int(cnum_cycles) - 6 filename=sldir+'/'+slaname header_attr,cols,data = _read_mesafile(filename,data_rows=num_cycles) self.cols = cols self.header_attr = header_attr self.data = data
read history.data or star.log file again
Below is the the instruction that describes the task: ### Input: read history.data or star.log file again ### Response: def _read_starlog(self): """ read history.data or star.log file again""" sldir = self.sldir slname = self.slname slaname = slname+'sa' if not os.path.exists(sldir+'/'+slaname): print('No '+self.slname+'sa file found, create new one from '+self.slname) _cleanstarlog(sldir+'/'+slname) else: if self.clean_starlog: print('Requested new '+self.slname+'sa; create new from '+self.slname) _cleanstarlog(sldir+'/'+slname) else: print('Using old '+self.slname+'sa file ...') cmd=os.popen('wc '+sldir+'/'+slaname) cmd_out=cmd.readline() cnum_cycles=cmd_out.split()[0] num_cycles=int(cnum_cycles) - 6 filename=sldir+'/'+slaname header_attr,cols,data = _read_mesafile(filename,data_rows=num_cycles) self.cols = cols self.header_attr = header_attr self.data = data
def contrastive_loss(left, right, y, margin, extra=False, scope="constrastive_loss"): r"""Loss for Siamese networks as described in the paper: `Learning a Similarity Metric Discriminatively, with Application to Face Verification <http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf>`_ by Chopra et al. .. math:: \frac{1}{2} [y \cdot d^2 + (1-y) \cdot \max(0, m - d)^2], d = \Vert l - r \Vert_2 Args: left (tf.Tensor): left feature vectors of shape [Batch, N]. right (tf.Tensor): right feature vectors of shape [Batch, N]. y (tf.Tensor): binary labels of shape [Batch]. 1: similar, 0: not similar. margin (float): horizon for negative examples (y==0). extra (bool): also return distances for pos and neg. Returns: tf.Tensor: constrastive_loss (averaged over the batch), (and optionally average_pos_dist, average_neg_dist) """ with tf.name_scope(scope): y = tf.cast(y, tf.float32) delta = tf.reduce_sum(tf.square(left - right), 1) delta_sqrt = tf.sqrt(delta + 1e-10) match_loss = delta missmatch_loss = tf.square(tf.nn.relu(margin - delta_sqrt)) loss = tf.reduce_mean(0.5 * (y * match_loss + (1 - y) * missmatch_loss)) if extra: num_pos = tf.count_nonzero(y) num_neg = tf.count_nonzero(1 - y) pos_dist = tf.where(tf.equal(num_pos, 0), 0., tf.reduce_sum(y * delta_sqrt) / tf.cast(num_pos, tf.float32), name="pos-dist") neg_dist = tf.where(tf.equal(num_neg, 0), 0., tf.reduce_sum((1 - y) * delta_sqrt) / tf.cast(num_neg, tf.float32), name="neg-dist") return loss, pos_dist, neg_dist else: return loss
r"""Loss for Siamese networks as described in the paper: `Learning a Similarity Metric Discriminatively, with Application to Face Verification <http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf>`_ by Chopra et al. .. math:: \frac{1}{2} [y \cdot d^2 + (1-y) \cdot \max(0, m - d)^2], d = \Vert l - r \Vert_2 Args: left (tf.Tensor): left feature vectors of shape [Batch, N]. right (tf.Tensor): right feature vectors of shape [Batch, N]. y (tf.Tensor): binary labels of shape [Batch]. 1: similar, 0: not similar. margin (float): horizon for negative examples (y==0). extra (bool): also return distances for pos and neg. Returns: tf.Tensor: constrastive_loss (averaged over the batch), (and optionally average_pos_dist, average_neg_dist)
Below is the the instruction that describes the task: ### Input: r"""Loss for Siamese networks as described in the paper: `Learning a Similarity Metric Discriminatively, with Application to Face Verification <http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf>`_ by Chopra et al. .. math:: \frac{1}{2} [y \cdot d^2 + (1-y) \cdot \max(0, m - d)^2], d = \Vert l - r \Vert_2 Args: left (tf.Tensor): left feature vectors of shape [Batch, N]. right (tf.Tensor): right feature vectors of shape [Batch, N]. y (tf.Tensor): binary labels of shape [Batch]. 1: similar, 0: not similar. margin (float): horizon for negative examples (y==0). extra (bool): also return distances for pos and neg. Returns: tf.Tensor: constrastive_loss (averaged over the batch), (and optionally average_pos_dist, average_neg_dist) ### Response: def contrastive_loss(left, right, y, margin, extra=False, scope="constrastive_loss"): r"""Loss for Siamese networks as described in the paper: `Learning a Similarity Metric Discriminatively, with Application to Face Verification <http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf>`_ by Chopra et al. .. math:: \frac{1}{2} [y \cdot d^2 + (1-y) \cdot \max(0, m - d)^2], d = \Vert l - r \Vert_2 Args: left (tf.Tensor): left feature vectors of shape [Batch, N]. right (tf.Tensor): right feature vectors of shape [Batch, N]. y (tf.Tensor): binary labels of shape [Batch]. 1: similar, 0: not similar. margin (float): horizon for negative examples (y==0). extra (bool): also return distances for pos and neg. Returns: tf.Tensor: constrastive_loss (averaged over the batch), (and optionally average_pos_dist, average_neg_dist) """ with tf.name_scope(scope): y = tf.cast(y, tf.float32) delta = tf.reduce_sum(tf.square(left - right), 1) delta_sqrt = tf.sqrt(delta + 1e-10) match_loss = delta missmatch_loss = tf.square(tf.nn.relu(margin - delta_sqrt)) loss = tf.reduce_mean(0.5 * (y * match_loss + (1 - y) * missmatch_loss)) if extra: num_pos = tf.count_nonzero(y) num_neg = tf.count_nonzero(1 - y) pos_dist = tf.where(tf.equal(num_pos, 0), 0., tf.reduce_sum(y * delta_sqrt) / tf.cast(num_pos, tf.float32), name="pos-dist") neg_dist = tf.where(tf.equal(num_neg, 0), 0., tf.reduce_sum((1 - y) * delta_sqrt) / tf.cast(num_neg, tf.float32), name="neg-dist") return loss, pos_dist, neg_dist else: return loss
def remove(self, key, preserve_data=False): """ :param key: Document unique identifier. Remove the document from the search index. """ if self.members.remove(key) != 1: raise KeyError('Document with key "%s" not found.' % key) document_hash = self._get_hash(key) content = decode(document_hash['content']) if not preserve_data: document_hash.clear() for word in self.tokenizer.tokenize(content): word_key = self.get_key(word) del word_key[key] if len(word_key) == 0: word_key.clear()
:param key: Document unique identifier. Remove the document from the search index.
Below is the the instruction that describes the task: ### Input: :param key: Document unique identifier. Remove the document from the search index. ### Response: def remove(self, key, preserve_data=False): """ :param key: Document unique identifier. Remove the document from the search index. """ if self.members.remove(key) != 1: raise KeyError('Document with key "%s" not found.' % key) document_hash = self._get_hash(key) content = decode(document_hash['content']) if not preserve_data: document_hash.clear() for word in self.tokenizer.tokenize(content): word_key = self.get_key(word) del word_key[key] if len(word_key) == 0: word_key.clear()
def dump_string_to_file(string, filepath): """Dump @string as a line to @filepath.""" create_dirs( os.path.dirname(filepath) ) with open(filepath, 'a') as outfile: outfile.write(string) outfile.write('\n')
Dump @string as a line to @filepath.
Below is the the instruction that describes the task: ### Input: Dump @string as a line to @filepath. ### Response: def dump_string_to_file(string, filepath): """Dump @string as a line to @filepath.""" create_dirs( os.path.dirname(filepath) ) with open(filepath, 'a') as outfile: outfile.write(string) outfile.write('\n')
def check_api_response(self, response): """Check API response and raise exceptions if needed. :param requests.models.Response response: request response to check """ # check response if response.status_code == 200: return True elif response.status_code >= 400: logging.error( "{}: {} - {} - URL: {}".format( response.status_code, response.reason, response.json().get("error"), response.request.url, ) ) return False, response.status_code
Check API response and raise exceptions if needed. :param requests.models.Response response: request response to check
Below is the the instruction that describes the task: ### Input: Check API response and raise exceptions if needed. :param requests.models.Response response: request response to check ### Response: def check_api_response(self, response): """Check API response and raise exceptions if needed. :param requests.models.Response response: request response to check """ # check response if response.status_code == 200: return True elif response.status_code >= 400: logging.error( "{}: {} - {} - URL: {}".format( response.status_code, response.reason, response.json().get("error"), response.request.url, ) ) return False, response.status_code
def to_native_string(string, encoding='ascii'): """ Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise. """ out = None if isinstance(string, builtin_str): out = string else: if is_py2: out = string.encode(encoding) else: out = string.decode(encoding) return out
Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise.
Below is the the instruction that describes the task: ### Input: Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise. ### Response: def to_native_string(string, encoding='ascii'): """ Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise. """ out = None if isinstance(string, builtin_str): out = string else: if is_py2: out = string.encode(encoding) else: out = string.decode(encoding) return out
def streaming_callback(self, body_part): """Handles a streaming chunk of the response. The streaming_response callback gives no indication about whether the received chunk is the last in the stream. The "last_response" instance variable allows us to keep track of the last received chunk of the response. Each time this is called, the previous chunk is emitted. The done() method is expected to be called after the response completes to ensure that the last piece of data is sent. Args: body_part: A chunk of the streaming response. """ b64_body_string = base64.b64encode(body_part).decode('utf-8') response = { 'message_id': self._message_id, 'data': b64_body_string, } if self._last_response is None: # This represents the first chunk of data to be streamed to the caller. # Attach status and header information to this item. response.update(self._generate_metadata_body()) else: self._last_response['done'] = False self._write_message_func(self._last_response) self._last_response = response
Handles a streaming chunk of the response. The streaming_response callback gives no indication about whether the received chunk is the last in the stream. The "last_response" instance variable allows us to keep track of the last received chunk of the response. Each time this is called, the previous chunk is emitted. The done() method is expected to be called after the response completes to ensure that the last piece of data is sent. Args: body_part: A chunk of the streaming response.
Below is the the instruction that describes the task: ### Input: Handles a streaming chunk of the response. The streaming_response callback gives no indication about whether the received chunk is the last in the stream. The "last_response" instance variable allows us to keep track of the last received chunk of the response. Each time this is called, the previous chunk is emitted. The done() method is expected to be called after the response completes to ensure that the last piece of data is sent. Args: body_part: A chunk of the streaming response. ### Response: def streaming_callback(self, body_part): """Handles a streaming chunk of the response. The streaming_response callback gives no indication about whether the received chunk is the last in the stream. The "last_response" instance variable allows us to keep track of the last received chunk of the response. Each time this is called, the previous chunk is emitted. The done() method is expected to be called after the response completes to ensure that the last piece of data is sent. Args: body_part: A chunk of the streaming response. """ b64_body_string = base64.b64encode(body_part).decode('utf-8') response = { 'message_id': self._message_id, 'data': b64_body_string, } if self._last_response is None: # This represents the first chunk of data to be streamed to the caller. # Attach status and header information to this item. response.update(self._generate_metadata_body()) else: self._last_response['done'] = False self._write_message_func(self._last_response) self._last_response = response
def quantile(arg, quantile, interpolation='linear'): """ Return value at the given quantile, a la numpy.percentile. Parameters ---------- quantile : float/int or array-like 0 <= quantile <= 1, the quantile(s) to compute interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantile if scalar input, scalar type, same as input if array input, list of scalar type """ if isinstance(quantile, collections.abc.Sequence): op = ops.MultiQuantile(arg, quantile, interpolation) else: op = ops.Quantile(arg, quantile, interpolation) return op.to_expr()
Return value at the given quantile, a la numpy.percentile. Parameters ---------- quantile : float/int or array-like 0 <= quantile <= 1, the quantile(s) to compute interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantile if scalar input, scalar type, same as input if array input, list of scalar type
Below is the the instruction that describes the task: ### Input: Return value at the given quantile, a la numpy.percentile. Parameters ---------- quantile : float/int or array-like 0 <= quantile <= 1, the quantile(s) to compute interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantile if scalar input, scalar type, same as input if array input, list of scalar type ### Response: def quantile(arg, quantile, interpolation='linear'): """ Return value at the given quantile, a la numpy.percentile. Parameters ---------- quantile : float/int or array-like 0 <= quantile <= 1, the quantile(s) to compute interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantile if scalar input, scalar type, same as input if array input, list of scalar type """ if isinstance(quantile, collections.abc.Sequence): op = ops.MultiQuantile(arg, quantile, interpolation) else: op = ops.Quantile(arg, quantile, interpolation) return op.to_expr()
def match(ctx, features, profile, gps_precision): """Mapbox Map Matching API lets you use snap your GPS traces to the OpenStreetMap road and path network. $ mapbox mapmatching trace.geojson An access token is required, see `mapbox --help`. """ access_token = (ctx.obj and ctx.obj.get('access_token')) or None features = list(features) if len(features) != 1: raise click.BadParameter( "Mapmatching requires a single LineString feature") service = mapbox.MapMatcher(access_token=access_token) try: res = service.match( features[0], profile=profile, gps_precision=gps_precision) except mapbox.errors.ValidationError as exc: raise click.BadParameter(str(exc)) if res.status_code == 200: stdout = click.open_file('-', 'w') click.echo(res.text, file=stdout) else: raise MapboxCLIException(res.text.strip())
Mapbox Map Matching API lets you use snap your GPS traces to the OpenStreetMap road and path network. $ mapbox mapmatching trace.geojson An access token is required, see `mapbox --help`.
Below is the the instruction that describes the task: ### Input: Mapbox Map Matching API lets you use snap your GPS traces to the OpenStreetMap road and path network. $ mapbox mapmatching trace.geojson An access token is required, see `mapbox --help`. ### Response: def match(ctx, features, profile, gps_precision): """Mapbox Map Matching API lets you use snap your GPS traces to the OpenStreetMap road and path network. $ mapbox mapmatching trace.geojson An access token is required, see `mapbox --help`. """ access_token = (ctx.obj and ctx.obj.get('access_token')) or None features = list(features) if len(features) != 1: raise click.BadParameter( "Mapmatching requires a single LineString feature") service = mapbox.MapMatcher(access_token=access_token) try: res = service.match( features[0], profile=profile, gps_precision=gps_precision) except mapbox.errors.ValidationError as exc: raise click.BadParameter(str(exc)) if res.status_code == 200: stdout = click.open_file('-', 'w') click.echo(res.text, file=stdout) else: raise MapboxCLIException(res.text.strip())
def wait_for_at_least_one_message(self, channel): """ Reads until we receive at least one message we can unpack. Return all found messages. """ unpacker = msgpack.Unpacker(encoding='utf-8') while True: try: start = time.time() chunk = self.ssh_channel[channel].recv(1024) end = time.time() self.read_speeds.append( len(chunk) / (end-start) ) if len(self.read_speeds) > 20: self.read_speeds = self.read_speeds[10:] if chunk == b'': # happens only when connection broke. If nothing is to be received, it hangs instead. self.connection_error(channel, 'Connection broken w') return False except Exception as error: self.connection_error(channel, error) raise unpacker.feed(chunk) messages = [m for m in unpacker] if messages: return messages
Reads until we receive at least one message we can unpack. Return all found messages.
Below is the the instruction that describes the task: ### Input: Reads until we receive at least one message we can unpack. Return all found messages. ### Response: def wait_for_at_least_one_message(self, channel): """ Reads until we receive at least one message we can unpack. Return all found messages. """ unpacker = msgpack.Unpacker(encoding='utf-8') while True: try: start = time.time() chunk = self.ssh_channel[channel].recv(1024) end = time.time() self.read_speeds.append( len(chunk) / (end-start) ) if len(self.read_speeds) > 20: self.read_speeds = self.read_speeds[10:] if chunk == b'': # happens only when connection broke. If nothing is to be received, it hangs instead. self.connection_error(channel, 'Connection broken w') return False except Exception as error: self.connection_error(channel, error) raise unpacker.feed(chunk) messages = [m for m in unpacker] if messages: return messages
def locked_get(self): """Retrieve Credential from file. Returns: oauth2client.client.Credentials """ credentials = None content = keyring.get_password(self._service_name, self._user_name) if content is not None: try: credentials = client.Credentials.new_from_json(content) credentials.set_store(self) except ValueError: pass return credentials
Retrieve Credential from file. Returns: oauth2client.client.Credentials
Below is the the instruction that describes the task: ### Input: Retrieve Credential from file. Returns: oauth2client.client.Credentials ### Response: def locked_get(self): """Retrieve Credential from file. Returns: oauth2client.client.Credentials """ credentials = None content = keyring.get_password(self._service_name, self._user_name) if content is not None: try: credentials = client.Credentials.new_from_json(content) credentials.set_store(self) except ValueError: pass return credentials
def generate(env): """Add Builders and construction variables for m4 to an Environment.""" M4Action = SCons.Action.Action('$M4COM', '$M4COMSTR') bld = SCons.Builder.Builder(action = M4Action, src_suffix = '.m4') env['BUILDERS']['M4'] = bld # .m4 files might include other files, and it would be pretty hard # to write a scanner for it, so let's just cd to the dir of the m4 # file and run from there. # The src_suffix setup is like so: file.c.m4 -> file.c, # file.cpp.m4 -> file.cpp etc. env['M4'] = 'm4' env['M4FLAGS'] = SCons.Util.CLVar('-E') env['M4COM'] = 'cd ${SOURCE.rsrcdir} && $M4 $M4FLAGS < ${SOURCE.file} > ${TARGET.abspath}'
Add Builders and construction variables for m4 to an Environment.
Below is the the instruction that describes the task: ### Input: Add Builders and construction variables for m4 to an Environment. ### Response: def generate(env): """Add Builders and construction variables for m4 to an Environment.""" M4Action = SCons.Action.Action('$M4COM', '$M4COMSTR') bld = SCons.Builder.Builder(action = M4Action, src_suffix = '.m4') env['BUILDERS']['M4'] = bld # .m4 files might include other files, and it would be pretty hard # to write a scanner for it, so let's just cd to the dir of the m4 # file and run from there. # The src_suffix setup is like so: file.c.m4 -> file.c, # file.cpp.m4 -> file.cpp etc. env['M4'] = 'm4' env['M4FLAGS'] = SCons.Util.CLVar('-E') env['M4COM'] = 'cd ${SOURCE.rsrcdir} && $M4 $M4FLAGS < ${SOURCE.file} > ${TARGET.abspath}'
def getModPath(self, *paths): ''' Construct a path relative to this module's working directory. Args: *paths: A list of path strings Notes: This creates the module specific directory if it does not exist. Returns: (str): The full path (or None if no cortex dir is configured). ''' dirn = self.getModDir() return s_common.genpath(dirn, *paths)
Construct a path relative to this module's working directory. Args: *paths: A list of path strings Notes: This creates the module specific directory if it does not exist. Returns: (str): The full path (or None if no cortex dir is configured).
Below is the the instruction that describes the task: ### Input: Construct a path relative to this module's working directory. Args: *paths: A list of path strings Notes: This creates the module specific directory if it does not exist. Returns: (str): The full path (or None if no cortex dir is configured). ### Response: def getModPath(self, *paths): ''' Construct a path relative to this module's working directory. Args: *paths: A list of path strings Notes: This creates the module specific directory if it does not exist. Returns: (str): The full path (or None if no cortex dir is configured). ''' dirn = self.getModDir() return s_common.genpath(dirn, *paths)
def enrollment_identity(self, enrollment_identity): """ Sets the enrollment_identity of this EnrollmentId. Enrollment identity. :param enrollment_identity: The enrollment_identity of this EnrollmentId. :type: str """ if enrollment_identity is None: raise ValueError("Invalid value for `enrollment_identity`, must not be `None`") if enrollment_identity is not None and not re.search('^A-[A-Za-z0-9:]{95}$', enrollment_identity): raise ValueError("Invalid value for `enrollment_identity`, must be a follow pattern or equal to `/^A-[A-Za-z0-9:]{95}$/`") self._enrollment_identity = enrollment_identity
Sets the enrollment_identity of this EnrollmentId. Enrollment identity. :param enrollment_identity: The enrollment_identity of this EnrollmentId. :type: str
Below is the the instruction that describes the task: ### Input: Sets the enrollment_identity of this EnrollmentId. Enrollment identity. :param enrollment_identity: The enrollment_identity of this EnrollmentId. :type: str ### Response: def enrollment_identity(self, enrollment_identity): """ Sets the enrollment_identity of this EnrollmentId. Enrollment identity. :param enrollment_identity: The enrollment_identity of this EnrollmentId. :type: str """ if enrollment_identity is None: raise ValueError("Invalid value for `enrollment_identity`, must not be `None`") if enrollment_identity is not None and not re.search('^A-[A-Za-z0-9:]{95}$', enrollment_identity): raise ValueError("Invalid value for `enrollment_identity`, must be a follow pattern or equal to `/^A-[A-Za-z0-9:]{95}$/`") self._enrollment_identity = enrollment_identity
def _colored_time(self, time_taken, color=None): """Get formatted and colored string for a given time taken.""" if self.timer_no_color: return "{0:0.4f}s".format(time_taken) return _colorize("{0:0.4f}s".format(time_taken), color)
Get formatted and colored string for a given time taken.
Below is the the instruction that describes the task: ### Input: Get formatted and colored string for a given time taken. ### Response: def _colored_time(self, time_taken, color=None): """Get formatted and colored string for a given time taken.""" if self.timer_no_color: return "{0:0.4f}s".format(time_taken) return _colorize("{0:0.4f}s".format(time_taken), color)
def log(self, level, msg=None, *args, **kwargs): """Writes log out at any arbitray level.""" return self._log(level, msg, args, kwargs)
Writes log out at any arbitray level.
Below is the the instruction that describes the task: ### Input: Writes log out at any arbitray level. ### Response: def log(self, level, msg=None, *args, **kwargs): """Writes log out at any arbitray level.""" return self._log(level, msg, args, kwargs)
def parse_estimateReadFiltering(self): """Find estimateReadFiltering output. Only the output from --table is supported.""" self.deeptools_estimateReadFiltering = dict() for f in self.find_log_files('deeptools/estimateReadFiltering'): parsed_data = self.parseEstimateReadFilteringFile(f) for k, v in parsed_data.items(): if k in self.deeptools_estimateReadFiltering: log.warning("Replacing duplicate sample {}.".format(k)) self.deeptools_estimateReadFiltering[k] = v if len(parsed_data) > 0: self.add_data_source(f, section='estimateReadFiltering') if len(self.deeptools_estimateReadFiltering) > 0: header = OrderedDict() header["M Entries"] = { 'title': 'M entries', 'description': 'Number of entries in the file (millions)'} header["pct_Aligned"] = { 'title': '% Aligned', 'description': 'Percent of aligned entries', 'scale': 'YlGn', 'min': 0, 'max': 100 } header["pct_Filtered"] = { 'title': '% Tot. Filtered', 'description': 'Percent of alignment that would be filtered for any reason.', 'scale': 'OrRd', 'min': 0, 'max': 100 } header["pct_Blacklisted"] = { 'title': '% Blacklisted', 'description': 'Percent of alignments falling (at least partially) inside a blacklisted region', 'scale': 'YlOrRd', 'min': 0, 'max': 100 } header["pct_MAPQ"] = { 'title': '% MAPQ', 'description': 'Percent of alignments having MAPQ scores below the specified threshold', 'scale': 'YlOrBn', 'min': 0, 'max': 100 } header["pct_Missing_Flags"] = { 'title': '% Missing Flags', 'description': 'Percent of alignments lacking at least on flag specified by --samFlagInclude', 'scale': 'PuRd', 'min': 0, 'max': 100 } header["pct_Forbidden_Flags"] = { 'title': '% Forbidden Flags', 'description': 'Percent of alignments having at least one flag specified by --samFlagExclude', 'scale': 'OrRd', 'min': 0, 'max': 100 } header["pct_deepTools_Dupes"] = { 'title': '% deepTools Dupes', 'description': 'Percent of alignments marked by deepTools as being duplicates', 'scale': 'PuRd', 'min': 0, 'max': 100 } header["pct_Duplication"] = { 'title': '% Duplication', 'description': 'Percent of alignments originally marked as being duplicates', 'scale': 'OrRd', 'min': 0, 'max': 100 } header["pct_Singletons"] = { 'title': '% Singletons', 'description': 'Percent of alignments that are singletons (i.e., paired-end reads where the mates don\'t align as a pair', 'scale': 'OrRd', 'min': 0, 'max': 100 } header["pct_Strand_Filtered"] = { 'title': '% Strand Filtered', 'description': 'Percent of alignments arising from the wrong strand', 'scale': 'OrRd', 'min': 0, 'max': 100 } tdata = dict() for k, v in self.deeptools_estimateReadFiltering.items(): tdata[k] = { 'M Entries': v['total'] / 1000000.0, 'pct_Aligned': 100. * v['mapped'] / float(v['total']), 'pct_Filtered': 100. * v['filtered'] / float(v['total']), 'pct_Blacklisted': 100. * v['blacklisted'] / float(v['total']), 'pct_Below_MAPQ': 100. * v['mapq'] / float(v['total']), 'pct_Missing_Flags': 100. * v['required flags'] / float(v['total']), 'pct_Forbidden_Flags': 100. * v['excluded flags'] / float(v['total']), 'pct_deepTools_Dupes': 100. * v['internal dupes'] / float(v['total']), 'pct_Duplication': 100. * v['dupes'] / float(v['total']), 'pct_Singletons': 100. * v['singletons'] / float(v['total']), 'pct_Strand_Filtered': 100. * v['strand'] / float(v['total']) } config = {'namespace': 'deepTools bamPEFragmentSize'} self.add_section( name = "Filtering metrics", anchor = "estimateReadFiltering", description = "Estimated percentages of alignments filtered independently for each setting in `estimateReadFiltering`", plot = table.plot(tdata, header, config) ) return len(self.deeptools_estimateReadFiltering)
Find estimateReadFiltering output. Only the output from --table is supported.
Below is the the instruction that describes the task: ### Input: Find estimateReadFiltering output. Only the output from --table is supported. ### Response: def parse_estimateReadFiltering(self): """Find estimateReadFiltering output. Only the output from --table is supported.""" self.deeptools_estimateReadFiltering = dict() for f in self.find_log_files('deeptools/estimateReadFiltering'): parsed_data = self.parseEstimateReadFilteringFile(f) for k, v in parsed_data.items(): if k in self.deeptools_estimateReadFiltering: log.warning("Replacing duplicate sample {}.".format(k)) self.deeptools_estimateReadFiltering[k] = v if len(parsed_data) > 0: self.add_data_source(f, section='estimateReadFiltering') if len(self.deeptools_estimateReadFiltering) > 0: header = OrderedDict() header["M Entries"] = { 'title': 'M entries', 'description': 'Number of entries in the file (millions)'} header["pct_Aligned"] = { 'title': '% Aligned', 'description': 'Percent of aligned entries', 'scale': 'YlGn', 'min': 0, 'max': 100 } header["pct_Filtered"] = { 'title': '% Tot. Filtered', 'description': 'Percent of alignment that would be filtered for any reason.', 'scale': 'OrRd', 'min': 0, 'max': 100 } header["pct_Blacklisted"] = { 'title': '% Blacklisted', 'description': 'Percent of alignments falling (at least partially) inside a blacklisted region', 'scale': 'YlOrRd', 'min': 0, 'max': 100 } header["pct_MAPQ"] = { 'title': '% MAPQ', 'description': 'Percent of alignments having MAPQ scores below the specified threshold', 'scale': 'YlOrBn', 'min': 0, 'max': 100 } header["pct_Missing_Flags"] = { 'title': '% Missing Flags', 'description': 'Percent of alignments lacking at least on flag specified by --samFlagInclude', 'scale': 'PuRd', 'min': 0, 'max': 100 } header["pct_Forbidden_Flags"] = { 'title': '% Forbidden Flags', 'description': 'Percent of alignments having at least one flag specified by --samFlagExclude', 'scale': 'OrRd', 'min': 0, 'max': 100 } header["pct_deepTools_Dupes"] = { 'title': '% deepTools Dupes', 'description': 'Percent of alignments marked by deepTools as being duplicates', 'scale': 'PuRd', 'min': 0, 'max': 100 } header["pct_Duplication"] = { 'title': '% Duplication', 'description': 'Percent of alignments originally marked as being duplicates', 'scale': 'OrRd', 'min': 0, 'max': 100 } header["pct_Singletons"] = { 'title': '% Singletons', 'description': 'Percent of alignments that are singletons (i.e., paired-end reads where the mates don\'t align as a pair', 'scale': 'OrRd', 'min': 0, 'max': 100 } header["pct_Strand_Filtered"] = { 'title': '% Strand Filtered', 'description': 'Percent of alignments arising from the wrong strand', 'scale': 'OrRd', 'min': 0, 'max': 100 } tdata = dict() for k, v in self.deeptools_estimateReadFiltering.items(): tdata[k] = { 'M Entries': v['total'] / 1000000.0, 'pct_Aligned': 100. * v['mapped'] / float(v['total']), 'pct_Filtered': 100. * v['filtered'] / float(v['total']), 'pct_Blacklisted': 100. * v['blacklisted'] / float(v['total']), 'pct_Below_MAPQ': 100. * v['mapq'] / float(v['total']), 'pct_Missing_Flags': 100. * v['required flags'] / float(v['total']), 'pct_Forbidden_Flags': 100. * v['excluded flags'] / float(v['total']), 'pct_deepTools_Dupes': 100. * v['internal dupes'] / float(v['total']), 'pct_Duplication': 100. * v['dupes'] / float(v['total']), 'pct_Singletons': 100. * v['singletons'] / float(v['total']), 'pct_Strand_Filtered': 100. * v['strand'] / float(v['total']) } config = {'namespace': 'deepTools bamPEFragmentSize'} self.add_section( name = "Filtering metrics", anchor = "estimateReadFiltering", description = "Estimated percentages of alignments filtered independently for each setting in `estimateReadFiltering`", plot = table.plot(tdata, header, config) ) return len(self.deeptools_estimateReadFiltering)
def fromtabix(filename, reference=None, start=None, stop=None, region=None, header=None): """ Extract rows from a tabix indexed file, e.g.:: >>> import petl as etl >>> # activate bio extensions ... import petlx.bio >>> table1 = etl.fromtabix('fixture/test.bed.gz', ... region='Pf3D7_02_v3') >>> table1 +---------------+----------+----------+-----------------------------+ | #chrom | start | end | region | +===============+==========+==========+=============================+ | 'Pf3D7_02_v3' | '0' | '23100' | 'SubtelomericRepeat' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '23100' | '105800' | 'SubtelomericHypervariable' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '105800' | '447300' | 'Core' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '447300' | '450450' | 'Centromere' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '450450' | '862500' | 'Core' | +---------------+----------+----------+-----------------------------+ ... >>> table2 = etl.fromtabix('fixture/test.bed.gz', ... region='Pf3D7_02_v3:110000-120000') >>> table2 +---------------+----------+----------+--------+ | #chrom | start | end | region | +===============+==========+==========+========+ | 'Pf3D7_02_v3' | '105800' | '447300' | 'Core' | +---------------+----------+----------+--------+ """ return TabixView(filename, reference, start, stop, region, header)
Extract rows from a tabix indexed file, e.g.:: >>> import petl as etl >>> # activate bio extensions ... import petlx.bio >>> table1 = etl.fromtabix('fixture/test.bed.gz', ... region='Pf3D7_02_v3') >>> table1 +---------------+----------+----------+-----------------------------+ | #chrom | start | end | region | +===============+==========+==========+=============================+ | 'Pf3D7_02_v3' | '0' | '23100' | 'SubtelomericRepeat' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '23100' | '105800' | 'SubtelomericHypervariable' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '105800' | '447300' | 'Core' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '447300' | '450450' | 'Centromere' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '450450' | '862500' | 'Core' | +---------------+----------+----------+-----------------------------+ ... >>> table2 = etl.fromtabix('fixture/test.bed.gz', ... region='Pf3D7_02_v3:110000-120000') >>> table2 +---------------+----------+----------+--------+ | #chrom | start | end | region | +===============+==========+==========+========+ | 'Pf3D7_02_v3' | '105800' | '447300' | 'Core' | +---------------+----------+----------+--------+
Below is the the instruction that describes the task: ### Input: Extract rows from a tabix indexed file, e.g.:: >>> import petl as etl >>> # activate bio extensions ... import petlx.bio >>> table1 = etl.fromtabix('fixture/test.bed.gz', ... region='Pf3D7_02_v3') >>> table1 +---------------+----------+----------+-----------------------------+ | #chrom | start | end | region | +===============+==========+==========+=============================+ | 'Pf3D7_02_v3' | '0' | '23100' | 'SubtelomericRepeat' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '23100' | '105800' | 'SubtelomericHypervariable' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '105800' | '447300' | 'Core' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '447300' | '450450' | 'Centromere' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '450450' | '862500' | 'Core' | +---------------+----------+----------+-----------------------------+ ... >>> table2 = etl.fromtabix('fixture/test.bed.gz', ... region='Pf3D7_02_v3:110000-120000') >>> table2 +---------------+----------+----------+--------+ | #chrom | start | end | region | +===============+==========+==========+========+ | 'Pf3D7_02_v3' | '105800' | '447300' | 'Core' | +---------------+----------+----------+--------+ ### Response: def fromtabix(filename, reference=None, start=None, stop=None, region=None, header=None): """ Extract rows from a tabix indexed file, e.g.:: >>> import petl as etl >>> # activate bio extensions ... import petlx.bio >>> table1 = etl.fromtabix('fixture/test.bed.gz', ... region='Pf3D7_02_v3') >>> table1 +---------------+----------+----------+-----------------------------+ | #chrom | start | end | region | +===============+==========+==========+=============================+ | 'Pf3D7_02_v3' | '0' | '23100' | 'SubtelomericRepeat' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '23100' | '105800' | 'SubtelomericHypervariable' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '105800' | '447300' | 'Core' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '447300' | '450450' | 'Centromere' | +---------------+----------+----------+-----------------------------+ | 'Pf3D7_02_v3' | '450450' | '862500' | 'Core' | +---------------+----------+----------+-----------------------------+ ... >>> table2 = etl.fromtabix('fixture/test.bed.gz', ... region='Pf3D7_02_v3:110000-120000') >>> table2 +---------------+----------+----------+--------+ | #chrom | start | end | region | +===============+==========+==========+========+ | 'Pf3D7_02_v3' | '105800' | '447300' | 'Core' | +---------------+----------+----------+--------+ """ return TabixView(filename, reference, start, stop, region, header)
def is_valid_project(self, path): """Check if a directory is a valid Spyder project""" spy_project_dir = osp.join(path, '.spyproject') if osp.isdir(path) and osp.isdir(spy_project_dir): return True else: return False
Check if a directory is a valid Spyder project
Below is the the instruction that describes the task: ### Input: Check if a directory is a valid Spyder project ### Response: def is_valid_project(self, path): """Check if a directory is a valid Spyder project""" spy_project_dir = osp.join(path, '.spyproject') if osp.isdir(path) and osp.isdir(spy_project_dir): return True else: return False
def stop_data_frame_transform(self, transform_id, params=None): """ `<https://www.elastic.co/guide/en/elasticsearch/reference/current/stop-data-frame-transform.html>`_ :arg transform_id: The id of the transform to stop :arg timeout: Controls the time to wait until the transform has stopped. Default to 30 seconds :arg wait_for_completion: Whether to wait for the transform to fully stop before returning or not. Default to false """ if transform_id in SKIP_IN_PATH: raise ValueError( "Empty value passed for a required argument 'transform_id'." ) return self.transport.perform_request( "POST", _make_path("_data_frame", "transforms", transform_id, "_stop"), params=params, )
`<https://www.elastic.co/guide/en/elasticsearch/reference/current/stop-data-frame-transform.html>`_ :arg transform_id: The id of the transform to stop :arg timeout: Controls the time to wait until the transform has stopped. Default to 30 seconds :arg wait_for_completion: Whether to wait for the transform to fully stop before returning or not. Default to false
Below is the the instruction that describes the task: ### Input: `<https://www.elastic.co/guide/en/elasticsearch/reference/current/stop-data-frame-transform.html>`_ :arg transform_id: The id of the transform to stop :arg timeout: Controls the time to wait until the transform has stopped. Default to 30 seconds :arg wait_for_completion: Whether to wait for the transform to fully stop before returning or not. Default to false ### Response: def stop_data_frame_transform(self, transform_id, params=None): """ `<https://www.elastic.co/guide/en/elasticsearch/reference/current/stop-data-frame-transform.html>`_ :arg transform_id: The id of the transform to stop :arg timeout: Controls the time to wait until the transform has stopped. Default to 30 seconds :arg wait_for_completion: Whether to wait for the transform to fully stop before returning or not. Default to false """ if transform_id in SKIP_IN_PATH: raise ValueError( "Empty value passed for a required argument 'transform_id'." ) return self.transport.perform_request( "POST", _make_path("_data_frame", "transforms", transform_id, "_stop"), params=params, )
def delete_tag(self, tag_name, **kwargs): """delete a tag by name Args: tag_name (string): name of tag to delete """ resp = self._delete(self._u(self._TAG_ENDPOINT_SUFFIX, tag_name), **kwargs) resp.raise_for_status() # successful delete returns 204, which has no associated json return resp
delete a tag by name Args: tag_name (string): name of tag to delete
Below is the the instruction that describes the task: ### Input: delete a tag by name Args: tag_name (string): name of tag to delete ### Response: def delete_tag(self, tag_name, **kwargs): """delete a tag by name Args: tag_name (string): name of tag to delete """ resp = self._delete(self._u(self._TAG_ENDPOINT_SUFFIX, tag_name), **kwargs) resp.raise_for_status() # successful delete returns 204, which has no associated json return resp
def _segment_color(self, color_im, bounding_box, bgmodel, cfg, vis_segmentation=False): """ Re-segments a color image to isolate an object of interest using foreground masking and kmeans """ # read params foreground_mask_tolerance = cfg['foreground_mask_tolerance'] color_seg_rgb_weight = cfg['color_seg_rgb_weight'] color_seg_num_clusters = cfg['color_seg_num_clusters'] color_seg_hsv_weight = cfg['color_seg_hsv_weight'] color_seg_dist_pctile = cfg['color_seg_dist_pctile'] color_seg_dist_thresh = cfg['color_seg_dist_thresh'] color_seg_min_bg_dist = cfg['color_seg_min_bg_dist'] min_contour_area= cfg['min_contour_area'] contour_dist_thresh = cfg['contour_dist_thresh'] # foreground masking binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel=bgmodel) binary_im = binary_im.prune_contours(area_thresh=min_contour_area, dist_thresh=contour_dist_thresh) if binary_im is None: return None, None, None color_im = color_im.mask_binary(binary_im) # kmeans segmentation segment_im = color_im.segment_kmeans(color_seg_rgb_weight, color_seg_num_clusters, hue_weight=color_seg_hsv_weight) # keep the segment that is farthest from the background bg_dists = [] hsv_bgmodel = 255 * np.array(colorsys.rgb_to_hsv(float(bgmodel[0]) / 255, float(bgmodel[1]) / 255, float(bgmodel[2]) / 255)) hsv_bgmodel = np.r_[color_seg_rgb_weight * np.array(bgmodel), color_seg_hsv_weight * hsv_bgmodel[:1]] for k in range(segment_im.num_segments-1): seg_mask = segment_im.segment_mask(k) color_im_segment = color_im.mask_binary(seg_mask) color_im_segment_data = color_im_segment.nonzero_data() color_im_segment_data = np.c_[color_seg_rgb_weight * color_im_segment_data, color_seg_hsv_weight * color_im_segment.nonzero_hsv_data()[:,:1]] # take the median distance from the background bg_dist = np.median(np.linalg.norm(color_im_segment_data - hsv_bgmodel, axis=1)) if vis_segmentation: logging.info('BG Dist for segment %d: %.4f' %(k, bg_dist)) bg_dists.append(bg_dist) # sort by distance dists_and_indices = zip(np.arange(len(bg_dists)), bg_dists) dists_and_indices.sort(key = lambda x: x[1], reverse=True) # mask out the segment in the binary image if color_seg_num_clusters > 1 and abs(dists_and_indices[0][1] - dists_and_indices[1][1]) > color_seg_dist_thresh and dists_and_indices[1][1] < color_seg_min_bg_dist: obj_segment = dists_and_indices[0][0] obj_seg_mask = segment_im.segment_mask(obj_segment) binary_im = binary_im.mask_binary(obj_seg_mask) binary_im, diff_px = binary_im.center_nonzero() bounding_box = Box(bounding_box.min_pt.astype(np.float32) - diff_px, bounding_box.max_pt.astype(np.float32) - diff_px, bounding_box.frame) if vis_segmentation: plt.figure() plt.subplot(1,3,1) plt.imshow(color_im.data) plt.axis('off') plt.subplot(1,3,2) plt.imshow(segment_im.data) plt.colorbar() plt.axis('off') plt.subplot(1,3,3) plt.imshow(binary_im.data, cmap=plt.cm.gray) plt.axis('off') plt.show() return binary_im, segment_im, bounding_box
Re-segments a color image to isolate an object of interest using foreground masking and kmeans
Below is the the instruction that describes the task: ### Input: Re-segments a color image to isolate an object of interest using foreground masking and kmeans ### Response: def _segment_color(self, color_im, bounding_box, bgmodel, cfg, vis_segmentation=False): """ Re-segments a color image to isolate an object of interest using foreground masking and kmeans """ # read params foreground_mask_tolerance = cfg['foreground_mask_tolerance'] color_seg_rgb_weight = cfg['color_seg_rgb_weight'] color_seg_num_clusters = cfg['color_seg_num_clusters'] color_seg_hsv_weight = cfg['color_seg_hsv_weight'] color_seg_dist_pctile = cfg['color_seg_dist_pctile'] color_seg_dist_thresh = cfg['color_seg_dist_thresh'] color_seg_min_bg_dist = cfg['color_seg_min_bg_dist'] min_contour_area= cfg['min_contour_area'] contour_dist_thresh = cfg['contour_dist_thresh'] # foreground masking binary_im = color_im.foreground_mask(foreground_mask_tolerance, bgmodel=bgmodel) binary_im = binary_im.prune_contours(area_thresh=min_contour_area, dist_thresh=contour_dist_thresh) if binary_im is None: return None, None, None color_im = color_im.mask_binary(binary_im) # kmeans segmentation segment_im = color_im.segment_kmeans(color_seg_rgb_weight, color_seg_num_clusters, hue_weight=color_seg_hsv_weight) # keep the segment that is farthest from the background bg_dists = [] hsv_bgmodel = 255 * np.array(colorsys.rgb_to_hsv(float(bgmodel[0]) / 255, float(bgmodel[1]) / 255, float(bgmodel[2]) / 255)) hsv_bgmodel = np.r_[color_seg_rgb_weight * np.array(bgmodel), color_seg_hsv_weight * hsv_bgmodel[:1]] for k in range(segment_im.num_segments-1): seg_mask = segment_im.segment_mask(k) color_im_segment = color_im.mask_binary(seg_mask) color_im_segment_data = color_im_segment.nonzero_data() color_im_segment_data = np.c_[color_seg_rgb_weight * color_im_segment_data, color_seg_hsv_weight * color_im_segment.nonzero_hsv_data()[:,:1]] # take the median distance from the background bg_dist = np.median(np.linalg.norm(color_im_segment_data - hsv_bgmodel, axis=1)) if vis_segmentation: logging.info('BG Dist for segment %d: %.4f' %(k, bg_dist)) bg_dists.append(bg_dist) # sort by distance dists_and_indices = zip(np.arange(len(bg_dists)), bg_dists) dists_and_indices.sort(key = lambda x: x[1], reverse=True) # mask out the segment in the binary image if color_seg_num_clusters > 1 and abs(dists_and_indices[0][1] - dists_and_indices[1][1]) > color_seg_dist_thresh and dists_and_indices[1][1] < color_seg_min_bg_dist: obj_segment = dists_and_indices[0][0] obj_seg_mask = segment_im.segment_mask(obj_segment) binary_im = binary_im.mask_binary(obj_seg_mask) binary_im, diff_px = binary_im.center_nonzero() bounding_box = Box(bounding_box.min_pt.astype(np.float32) - diff_px, bounding_box.max_pt.astype(np.float32) - diff_px, bounding_box.frame) if vis_segmentation: plt.figure() plt.subplot(1,3,1) plt.imshow(color_im.data) plt.axis('off') plt.subplot(1,3,2) plt.imshow(segment_im.data) plt.colorbar() plt.axis('off') plt.subplot(1,3,3) plt.imshow(binary_im.data, cmap=plt.cm.gray) plt.axis('off') plt.show() return binary_im, segment_im, bounding_box
def quitter(): """Overide the psiTurk quitter route.""" exp = experiment(session) exp.log("Quitter route was hit.") return Response( dumps({"status": "success"}), status=200, mimetype='application/json')
Overide the psiTurk quitter route.
Below is the the instruction that describes the task: ### Input: Overide the psiTurk quitter route. ### Response: def quitter(): """Overide the psiTurk quitter route.""" exp = experiment(session) exp.log("Quitter route was hit.") return Response( dumps({"status": "success"}), status=200, mimetype='application/json')
def _load_json_file_or_url(self, json_path_or_url): '''Return the JSON at the local path or URL as a dict This method raises DataPackageRegistryException if there were any errors. ''' try: if os.path.isfile(json_path_or_url): with open(json_path_or_url, 'r') as f: result = json.load(f) else: res = requests.get(json_path_or_url) res.raise_for_status() result = res.json() return result except (ValueError, requests.exceptions.RequestException) as e: six.raise_from(DataPackageRegistryException(e), e)
Return the JSON at the local path or URL as a dict This method raises DataPackageRegistryException if there were any errors.
Below is the the instruction that describes the task: ### Input: Return the JSON at the local path or URL as a dict This method raises DataPackageRegistryException if there were any errors. ### Response: def _load_json_file_or_url(self, json_path_or_url): '''Return the JSON at the local path or URL as a dict This method raises DataPackageRegistryException if there were any errors. ''' try: if os.path.isfile(json_path_or_url): with open(json_path_or_url, 'r') as f: result = json.load(f) else: res = requests.get(json_path_or_url) res.raise_for_status() result = res.json() return result except (ValueError, requests.exceptions.RequestException) as e: six.raise_from(DataPackageRegistryException(e), e)
def set_edge_weight(self, edge, wt): """ Set the weight of an edge. @type edge: edge @param edge: One edge. @type wt: number @param wt: Edge weight. """ self.set_edge_properties(edge, weight=wt ) if not self.DIRECTED: self.set_edge_properties((edge[1], edge[0]) , weight=wt )
Set the weight of an edge. @type edge: edge @param edge: One edge. @type wt: number @param wt: Edge weight.
Below is the the instruction that describes the task: ### Input: Set the weight of an edge. @type edge: edge @param edge: One edge. @type wt: number @param wt: Edge weight. ### Response: def set_edge_weight(self, edge, wt): """ Set the weight of an edge. @type edge: edge @param edge: One edge. @type wt: number @param wt: Edge weight. """ self.set_edge_properties(edge, weight=wt ) if not self.DIRECTED: self.set_edge_properties((edge[1], edge[0]) , weight=wt )
def get_file_info_web(self, fname, delim='<BR>\n'): """ gathers info on a python program in list and formats as string """ txt = '' f = mod_file.File(fname[0]) txt += '<sup>' + f.name + '</sup>' + delim txt += '<sup>' + fname[1] + '</sup>' + delim txt += '<sub><sup><span white-space:nowrap;>' + f.GetDateAsString(f.date_modified)[2:10] + '</span></sup></sub>' + delim txt += '<sup><sup>' + str(f.size) + '</sup></sup>' + delim return txt + '\n'
gathers info on a python program in list and formats as string
Below is the the instruction that describes the task: ### Input: gathers info on a python program in list and formats as string ### Response: def get_file_info_web(self, fname, delim='<BR>\n'): """ gathers info on a python program in list and formats as string """ txt = '' f = mod_file.File(fname[0]) txt += '<sup>' + f.name + '</sup>' + delim txt += '<sup>' + fname[1] + '</sup>' + delim txt += '<sub><sup><span white-space:nowrap;>' + f.GetDateAsString(f.date_modified)[2:10] + '</span></sup></sub>' + delim txt += '<sup><sup>' + str(f.size) + '</sup></sup>' + delim return txt + '\n'
def from_dict(cls: typing.Type[T], dikt) -> T: """Returns the dict as a model""" return util.deserialize_model(dikt, cls)
Returns the dict as a model
Below is the the instruction that describes the task: ### Input: Returns the dict as a model ### Response: def from_dict(cls: typing.Type[T], dikt) -> T: """Returns the dict as a model""" return util.deserialize_model(dikt, cls)
def set_unit(self, unit): """Set the GPS step scale """ # accept all core time units if unit is None or (isinstance(unit, units.NamedUnit) and unit.physical_type == 'time'): self._unit = unit return # convert float to custom unit in seconds if isinstance(unit, Number): unit = units.Unit(unit * units.second) # otherwise, should be able to convert to a time unit try: unit = units.Unit(unit) except ValueError as exc: # catch annoying plurals try: unit = units.Unit(str(unit).rstrip('s')) except ValueError: raise exc # decompose and check that it's actually a time unit dec = unit.decompose() if dec.bases != [units.second]: raise ValueError("Cannot set GPS unit to %s" % unit) # check equivalent units for other in TIME_UNITS: if other.decompose().scale == dec.scale: self._unit = other return raise ValueError("Unrecognised unit: %s" % unit)
Set the GPS step scale
Below is the the instruction that describes the task: ### Input: Set the GPS step scale ### Response: def set_unit(self, unit): """Set the GPS step scale """ # accept all core time units if unit is None or (isinstance(unit, units.NamedUnit) and unit.physical_type == 'time'): self._unit = unit return # convert float to custom unit in seconds if isinstance(unit, Number): unit = units.Unit(unit * units.second) # otherwise, should be able to convert to a time unit try: unit = units.Unit(unit) except ValueError as exc: # catch annoying plurals try: unit = units.Unit(str(unit).rstrip('s')) except ValueError: raise exc # decompose and check that it's actually a time unit dec = unit.decompose() if dec.bases != [units.second]: raise ValueError("Cannot set GPS unit to %s" % unit) # check equivalent units for other in TIME_UNITS: if other.decompose().scale == dec.scale: self._unit = other return raise ValueError("Unrecognised unit: %s" % unit)
def industry_code(self): """ [str] 国民经济行业分类代码,具体可参考“Industry列表” (股票专用) """ try: return self.__dict__["industry_code"] except (KeyError, ValueError): raise AttributeError( "Instrument(order_book_id={}) has no attribute 'industry_code' ".format(self.order_book_id) )
[str] 国民经济行业分类代码,具体可参考“Industry列表” (股票专用)
Below is the the instruction that describes the task: ### Input: [str] 国民经济行业分类代码,具体可参考“Industry列表” (股票专用) ### Response: def industry_code(self): """ [str] 国民经济行业分类代码,具体可参考“Industry列表” (股票专用) """ try: return self.__dict__["industry_code"] except (KeyError, ValueError): raise AttributeError( "Instrument(order_book_id={}) has no attribute 'industry_code' ".format(self.order_book_id) )
def set_camera(self, angles=None, distance=None, center=None, resolution=None, fov=None): """ Create a camera object for self.camera, and add a transform to self.graph for it. If arguments are not passed sane defaults will be figured out which show the mesh roughly centered. Parameters ----------- angles : (3,) float Initial euler angles in radians distance : float Distance from centroid center : (3,) float Point camera should be center on camera : Camera object Object that stores camera parameters """ if fov is None: fov = np.array([60, 45]) # if no geometry nothing to set camera to if len(self.geometry) == 0: return # set with no rotation by default if angles is None: angles = np.zeros(3) rotation = transformations.euler_matrix(*angles) transform = cameras.look_at(self.bounds_corners, fov=fov, rotation=rotation, distance=distance, center=center) if hasattr(self, '_camera') and self._camera is not None: self.camera.fov = fov self.camera._scene = self self.camera.transform = transform else: # create a new camera object self.camera = cameras.Camera(fov=fov, scene=self, transform=transform) return self.camera
Create a camera object for self.camera, and add a transform to self.graph for it. If arguments are not passed sane defaults will be figured out which show the mesh roughly centered. Parameters ----------- angles : (3,) float Initial euler angles in radians distance : float Distance from centroid center : (3,) float Point camera should be center on camera : Camera object Object that stores camera parameters
Below is the the instruction that describes the task: ### Input: Create a camera object for self.camera, and add a transform to self.graph for it. If arguments are not passed sane defaults will be figured out which show the mesh roughly centered. Parameters ----------- angles : (3,) float Initial euler angles in radians distance : float Distance from centroid center : (3,) float Point camera should be center on camera : Camera object Object that stores camera parameters ### Response: def set_camera(self, angles=None, distance=None, center=None, resolution=None, fov=None): """ Create a camera object for self.camera, and add a transform to self.graph for it. If arguments are not passed sane defaults will be figured out which show the mesh roughly centered. Parameters ----------- angles : (3,) float Initial euler angles in radians distance : float Distance from centroid center : (3,) float Point camera should be center on camera : Camera object Object that stores camera parameters """ if fov is None: fov = np.array([60, 45]) # if no geometry nothing to set camera to if len(self.geometry) == 0: return # set with no rotation by default if angles is None: angles = np.zeros(3) rotation = transformations.euler_matrix(*angles) transform = cameras.look_at(self.bounds_corners, fov=fov, rotation=rotation, distance=distance, center=center) if hasattr(self, '_camera') and self._camera is not None: self.camera.fov = fov self.camera._scene = self self.camera.transform = transform else: # create a new camera object self.camera = cameras.Camera(fov=fov, scene=self, transform=transform) return self.camera
def get_algorithm(alg: str) -> Callable: """ :param alg: The name of the requested `JSON Web Algorithm <https://tools.ietf.org/html/rfc7519#ref-JWA>`_. `RFC7518 <https://tools.ietf.org/html/rfc7518#section-3.2>`_ is related. :type alg: str :return: The requested algorithm. :rtype: Callable :raises: ValueError """ if alg not in algorithms: raise ValueError('Invalid algorithm: {:s}'.format(alg)) return algorithms[alg]
:param alg: The name of the requested `JSON Web Algorithm <https://tools.ietf.org/html/rfc7519#ref-JWA>`_. `RFC7518 <https://tools.ietf.org/html/rfc7518#section-3.2>`_ is related. :type alg: str :return: The requested algorithm. :rtype: Callable :raises: ValueError
Below is the the instruction that describes the task: ### Input: :param alg: The name of the requested `JSON Web Algorithm <https://tools.ietf.org/html/rfc7519#ref-JWA>`_. `RFC7518 <https://tools.ietf.org/html/rfc7518#section-3.2>`_ is related. :type alg: str :return: The requested algorithm. :rtype: Callable :raises: ValueError ### Response: def get_algorithm(alg: str) -> Callable: """ :param alg: The name of the requested `JSON Web Algorithm <https://tools.ietf.org/html/rfc7519#ref-JWA>`_. `RFC7518 <https://tools.ietf.org/html/rfc7518#section-3.2>`_ is related. :type alg: str :return: The requested algorithm. :rtype: Callable :raises: ValueError """ if alg not in algorithms: raise ValueError('Invalid algorithm: {:s}'.format(alg)) return algorithms[alg]
def beta_covariance(self): """ Estimates the covariance-matrix of the optimal beta. Returns ------- beta-covariance : ndarray (Xᵀ(s((1-𝛿)K + 𝛿I))⁻¹X)⁻¹. References ---------- .. Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics. John Wiley & Sons. """ from numpy_sugar.linalg import ddot tX = self._X["tX"] Q = concatenate(self._QS[0], axis=1) S0 = self._QS[1] D = self.v0 * S0 + self.v1 D = D.tolist() + [self.v1] * (len(self._y) - len(D)) D = asarray(D) A = inv(tX.T @ (Q @ ddot(1 / D, Q.T @ tX))) VT = self._X["VT"] H = lstsq(VT, A, rcond=None)[0] return lstsq(VT, H.T, rcond=None)[0]
Estimates the covariance-matrix of the optimal beta. Returns ------- beta-covariance : ndarray (Xᵀ(s((1-𝛿)K + 𝛿I))⁻¹X)⁻¹. References ---------- .. Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics. John Wiley & Sons.
Below is the the instruction that describes the task: ### Input: Estimates the covariance-matrix of the optimal beta. Returns ------- beta-covariance : ndarray (Xᵀ(s((1-𝛿)K + 𝛿I))⁻¹X)⁻¹. References ---------- .. Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics. John Wiley & Sons. ### Response: def beta_covariance(self): """ Estimates the covariance-matrix of the optimal beta. Returns ------- beta-covariance : ndarray (Xᵀ(s((1-𝛿)K + 𝛿I))⁻¹X)⁻¹. References ---------- .. Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics. John Wiley & Sons. """ from numpy_sugar.linalg import ddot tX = self._X["tX"] Q = concatenate(self._QS[0], axis=1) S0 = self._QS[1] D = self.v0 * S0 + self.v1 D = D.tolist() + [self.v1] * (len(self._y) - len(D)) D = asarray(D) A = inv(tX.T @ (Q @ ddot(1 / D, Q.T @ tX))) VT = self._X["VT"] H = lstsq(VT, A, rcond=None)[0] return lstsq(VT, H.T, rcond=None)[0]
def prior_prior_model_dict(self): """ Returns ------- prior_prior_model_dict: {Prior: PriorModel} A dictionary mapping priors to associated prior models. Each prior will only have one prior model; if a prior is shared by two prior models then one of those prior models will be in this dictionary. """ return {prior: prior_model[1] for prior_model in self.prior_model_tuples for _, prior in prior_model[1].prior_tuples}
Returns ------- prior_prior_model_dict: {Prior: PriorModel} A dictionary mapping priors to associated prior models. Each prior will only have one prior model; if a prior is shared by two prior models then one of those prior models will be in this dictionary.
Below is the the instruction that describes the task: ### Input: Returns ------- prior_prior_model_dict: {Prior: PriorModel} A dictionary mapping priors to associated prior models. Each prior will only have one prior model; if a prior is shared by two prior models then one of those prior models will be in this dictionary. ### Response: def prior_prior_model_dict(self): """ Returns ------- prior_prior_model_dict: {Prior: PriorModel} A dictionary mapping priors to associated prior models. Each prior will only have one prior model; if a prior is shared by two prior models then one of those prior models will be in this dictionary. """ return {prior: prior_model[1] for prior_model in self.prior_model_tuples for _, prior in prior_model[1].prior_tuples}
def _initial_guess(self): """ Quadratic fit to get an initial guess for the parameters. Returns: tuple: (e0, b0, b1, v0) """ a, b, c = np.polyfit(self.volumes, self.energies, 2) self.eos_params = [a, b, c] v0 = -b/(2*a) e0 = a*(v0**2) + b*v0 + c b0 = 2 * a * v0 b1 = 4 # b1 is usually a small number like 4 vmin, vmax = min(self.volumes), max(self.volumes) if not vmin < v0 and v0 < vmax: raise EOSError('The minimum volume of a fitted parabola is ' 'not in the input volumes\n.') return e0, b0, b1, v0
Quadratic fit to get an initial guess for the parameters. Returns: tuple: (e0, b0, b1, v0)
Below is the the instruction that describes the task: ### Input: Quadratic fit to get an initial guess for the parameters. Returns: tuple: (e0, b0, b1, v0) ### Response: def _initial_guess(self): """ Quadratic fit to get an initial guess for the parameters. Returns: tuple: (e0, b0, b1, v0) """ a, b, c = np.polyfit(self.volumes, self.energies, 2) self.eos_params = [a, b, c] v0 = -b/(2*a) e0 = a*(v0**2) + b*v0 + c b0 = 2 * a * v0 b1 = 4 # b1 is usually a small number like 4 vmin, vmax = min(self.volumes), max(self.volumes) if not vmin < v0 and v0 < vmax: raise EOSError('The minimum volume of a fitted parabola is ' 'not in the input volumes\n.') return e0, b0, b1, v0
def handle_one_command(self): """Process a single command. May have many lines.""" while True: yield from self.write_prompt() codeobj = yield from self.read_command() if codeobj is not None: yield from self.run_command(codeobj)
Process a single command. May have many lines.
Below is the the instruction that describes the task: ### Input: Process a single command. May have many lines. ### Response: def handle_one_command(self): """Process a single command. May have many lines.""" while True: yield from self.write_prompt() codeobj = yield from self.read_command() if codeobj is not None: yield from self.run_command(codeobj)
def venn2(subsets, set_labels=('A', 'B'), set_colors=('r', 'g'), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None): '''Plots a 2-set area-weighted Venn diagram. The subsets parameter can be one of the following: - A list (or a tuple) containing two set objects. - A dict, providing sizes of three diagram regions. The regions are identified via two-letter binary codes ('10', '01', and '11'), hence a valid set could look like: {'10': 10, '01': 20, '11': 40}. Unmentioned codes are considered to map to 0. - A list (or a tuple) with three numbers, denoting the sizes of the regions in the following order: (10, 01, 11) ``set_labels`` parameter is a list of two strings - set labels. Set it to None to disable set labels. The ``set_colors`` parameter should be a list of two elements, specifying the "base colors" of the two circles. The color of circle intersection will be computed based on those. The ``normalize_to`` parameter specifies the total (on-axes) area of the circles to be drawn. Sometimes tuning it (together with the overall fiture size) may be useful to fit the text labels better. The return value is a ``VennDiagram`` object, that keeps references to the ``Text`` and ``Patch`` objects used on the plot and lets you know the centers and radii of the circles, if you need it. The ``ax`` parameter specifies the axes on which the plot will be drawn (None means current axes). The ``subset_label_formatter`` parameter is a function that can be passed to format the labels that describe the size of each subset. >>> from matplotlib_venn import * >>> v = venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=(1, 1, 1), linestyle='dashed') >>> v.get_patch_by_id('10').set_alpha(1.0) >>> v.get_patch_by_id('10').set_color('white') >>> v.get_label_by_id('10').set_text('Unknown') >>> v.get_label_by_id('A').set_text('Set A') You can provide sets themselves rather than subset sizes: >>> v = venn2(subsets=[set([1,2]), set([2,3,4,5])], set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=[set([1,2]), set([2,3,4,5])], linestyle='dashed') >>> print("%0.2f" % (v.get_circle_radius(1)/v.get_circle_radius(0))) 1.41 ''' if isinstance(subsets, dict): subsets = [subsets.get(t, 0) for t in ['10', '01', '11']] elif len(subsets) == 2: subsets = compute_venn2_subsets(*subsets) if subset_label_formatter is None: subset_label_formatter = str areas = compute_venn2_areas(subsets, normalize_to) centers, radii = solve_venn2_circles(areas) regions = compute_venn2_regions(centers, radii) colors = compute_venn2_colors(set_colors) if ax is None: ax = gca() prepare_venn_axes(ax, centers, radii) # Create and add patches and subset labels patches = [r.make_patch() for r in regions] for (p, c) in zip(patches, colors): if p is not None: p.set_facecolor(c) p.set_edgecolor('none') p.set_alpha(alpha) ax.add_patch(p) label_positions = [r.label_position() for r in regions] subset_labels = [ax.text(lbl[0], lbl[1], subset_label_formatter(s), va='center', ha='center') if lbl is not None else None for (lbl, s) in zip(label_positions, subsets)] # Position set labels if set_labels is not None: padding = np.mean([r * 0.1 for r in radii]) label_positions = [centers[0] + np.array([0.0, - radii[0] - padding]), centers[1] + np.array([0.0, - radii[1] - padding])] labels = [ax.text(pos[0], pos[1], txt, size='large', ha='right', va='top') for (pos, txt) in zip(label_positions, set_labels)] labels[1].set_ha('left') else: labels = None return VennDiagram(patches, subset_labels, labels, centers, radii)
Plots a 2-set area-weighted Venn diagram. The subsets parameter can be one of the following: - A list (or a tuple) containing two set objects. - A dict, providing sizes of three diagram regions. The regions are identified via two-letter binary codes ('10', '01', and '11'), hence a valid set could look like: {'10': 10, '01': 20, '11': 40}. Unmentioned codes are considered to map to 0. - A list (or a tuple) with three numbers, denoting the sizes of the regions in the following order: (10, 01, 11) ``set_labels`` parameter is a list of two strings - set labels. Set it to None to disable set labels. The ``set_colors`` parameter should be a list of two elements, specifying the "base colors" of the two circles. The color of circle intersection will be computed based on those. The ``normalize_to`` parameter specifies the total (on-axes) area of the circles to be drawn. Sometimes tuning it (together with the overall fiture size) may be useful to fit the text labels better. The return value is a ``VennDiagram`` object, that keeps references to the ``Text`` and ``Patch`` objects used on the plot and lets you know the centers and radii of the circles, if you need it. The ``ax`` parameter specifies the axes on which the plot will be drawn (None means current axes). The ``subset_label_formatter`` parameter is a function that can be passed to format the labels that describe the size of each subset. >>> from matplotlib_venn import * >>> v = venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=(1, 1, 1), linestyle='dashed') >>> v.get_patch_by_id('10').set_alpha(1.0) >>> v.get_patch_by_id('10').set_color('white') >>> v.get_label_by_id('10').set_text('Unknown') >>> v.get_label_by_id('A').set_text('Set A') You can provide sets themselves rather than subset sizes: >>> v = venn2(subsets=[set([1,2]), set([2,3,4,5])], set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=[set([1,2]), set([2,3,4,5])], linestyle='dashed') >>> print("%0.2f" % (v.get_circle_radius(1)/v.get_circle_radius(0))) 1.41
Below is the the instruction that describes the task: ### Input: Plots a 2-set area-weighted Venn diagram. The subsets parameter can be one of the following: - A list (or a tuple) containing two set objects. - A dict, providing sizes of three diagram regions. The regions are identified via two-letter binary codes ('10', '01', and '11'), hence a valid set could look like: {'10': 10, '01': 20, '11': 40}. Unmentioned codes are considered to map to 0. - A list (or a tuple) with three numbers, denoting the sizes of the regions in the following order: (10, 01, 11) ``set_labels`` parameter is a list of two strings - set labels. Set it to None to disable set labels. The ``set_colors`` parameter should be a list of two elements, specifying the "base colors" of the two circles. The color of circle intersection will be computed based on those. The ``normalize_to`` parameter specifies the total (on-axes) area of the circles to be drawn. Sometimes tuning it (together with the overall fiture size) may be useful to fit the text labels better. The return value is a ``VennDiagram`` object, that keeps references to the ``Text`` and ``Patch`` objects used on the plot and lets you know the centers and radii of the circles, if you need it. The ``ax`` parameter specifies the axes on which the plot will be drawn (None means current axes). The ``subset_label_formatter`` parameter is a function that can be passed to format the labels that describe the size of each subset. >>> from matplotlib_venn import * >>> v = venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=(1, 1, 1), linestyle='dashed') >>> v.get_patch_by_id('10').set_alpha(1.0) >>> v.get_patch_by_id('10').set_color('white') >>> v.get_label_by_id('10').set_text('Unknown') >>> v.get_label_by_id('A').set_text('Set A') You can provide sets themselves rather than subset sizes: >>> v = venn2(subsets=[set([1,2]), set([2,3,4,5])], set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=[set([1,2]), set([2,3,4,5])], linestyle='dashed') >>> print("%0.2f" % (v.get_circle_radius(1)/v.get_circle_radius(0))) 1.41 ### Response: def venn2(subsets, set_labels=('A', 'B'), set_colors=('r', 'g'), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None): '''Plots a 2-set area-weighted Venn diagram. The subsets parameter can be one of the following: - A list (or a tuple) containing two set objects. - A dict, providing sizes of three diagram regions. The regions are identified via two-letter binary codes ('10', '01', and '11'), hence a valid set could look like: {'10': 10, '01': 20, '11': 40}. Unmentioned codes are considered to map to 0. - A list (or a tuple) with three numbers, denoting the sizes of the regions in the following order: (10, 01, 11) ``set_labels`` parameter is a list of two strings - set labels. Set it to None to disable set labels. The ``set_colors`` parameter should be a list of two elements, specifying the "base colors" of the two circles. The color of circle intersection will be computed based on those. The ``normalize_to`` parameter specifies the total (on-axes) area of the circles to be drawn. Sometimes tuning it (together with the overall fiture size) may be useful to fit the text labels better. The return value is a ``VennDiagram`` object, that keeps references to the ``Text`` and ``Patch`` objects used on the plot and lets you know the centers and radii of the circles, if you need it. The ``ax`` parameter specifies the axes on which the plot will be drawn (None means current axes). The ``subset_label_formatter`` parameter is a function that can be passed to format the labels that describe the size of each subset. >>> from matplotlib_venn import * >>> v = venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=(1, 1, 1), linestyle='dashed') >>> v.get_patch_by_id('10').set_alpha(1.0) >>> v.get_patch_by_id('10').set_color('white') >>> v.get_label_by_id('10').set_text('Unknown') >>> v.get_label_by_id('A').set_text('Set A') You can provide sets themselves rather than subset sizes: >>> v = venn2(subsets=[set([1,2]), set([2,3,4,5])], set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=[set([1,2]), set([2,3,4,5])], linestyle='dashed') >>> print("%0.2f" % (v.get_circle_radius(1)/v.get_circle_radius(0))) 1.41 ''' if isinstance(subsets, dict): subsets = [subsets.get(t, 0) for t in ['10', '01', '11']] elif len(subsets) == 2: subsets = compute_venn2_subsets(*subsets) if subset_label_formatter is None: subset_label_formatter = str areas = compute_venn2_areas(subsets, normalize_to) centers, radii = solve_venn2_circles(areas) regions = compute_venn2_regions(centers, radii) colors = compute_venn2_colors(set_colors) if ax is None: ax = gca() prepare_venn_axes(ax, centers, radii) # Create and add patches and subset labels patches = [r.make_patch() for r in regions] for (p, c) in zip(patches, colors): if p is not None: p.set_facecolor(c) p.set_edgecolor('none') p.set_alpha(alpha) ax.add_patch(p) label_positions = [r.label_position() for r in regions] subset_labels = [ax.text(lbl[0], lbl[1], subset_label_formatter(s), va='center', ha='center') if lbl is not None else None for (lbl, s) in zip(label_positions, subsets)] # Position set labels if set_labels is not None: padding = np.mean([r * 0.1 for r in radii]) label_positions = [centers[0] + np.array([0.0, - radii[0] - padding]), centers[1] + np.array([0.0, - radii[1] - padding])] labels = [ax.text(pos[0], pos[1], txt, size='large', ha='right', va='top') for (pos, txt) in zip(label_positions, set_labels)] labels[1].set_ha('left') else: labels = None return VennDiagram(patches, subset_labels, labels, centers, radii)
def trotterize(first_pauli_term, second_pauli_term, trotter_order=1, trotter_steps=1): """ Create a Quil program that approximates exp( (A + B)t) where A and B are PauliTerm operators. :param PauliTerm first_pauli_term: PauliTerm denoted `A` :param PauliTerm second_pauli_term: PauliTerm denoted `B` :param int trotter_order: Optional argument indicating the Suzuki-Trotter approximation order--only accepts orders 1, 2, 3, 4. :param int trotter_steps: Optional argument indicating the number of products to decompose the exponential into. :return: Quil program :rtype: Program """ if not (1 <= trotter_order < 5): raise ValueError("trotterize only accepts trotter_order in {1, 2, 3, 4}.") commutator = (first_pauli_term * second_pauli_term) + \ (-1 * second_pauli_term * first_pauli_term) prog = Program() if is_zero(commutator): param_exp_prog_one = exponential_map(first_pauli_term) exp_prog = param_exp_prog_one(1) prog += exp_prog param_exp_prog_two = exponential_map(second_pauli_term) exp_prog = param_exp_prog_two(1) prog += exp_prog return prog order_slices = suzuki_trotter(trotter_order, trotter_steps) for coeff, operator in order_slices: if operator == 0: param_prog = exponential_map(coeff * first_pauli_term) exp_prog = param_prog(1) prog += exp_prog else: param_prog = exponential_map(coeff * second_pauli_term) exp_prog = param_prog(1) prog += exp_prog return prog
Create a Quil program that approximates exp( (A + B)t) where A and B are PauliTerm operators. :param PauliTerm first_pauli_term: PauliTerm denoted `A` :param PauliTerm second_pauli_term: PauliTerm denoted `B` :param int trotter_order: Optional argument indicating the Suzuki-Trotter approximation order--only accepts orders 1, 2, 3, 4. :param int trotter_steps: Optional argument indicating the number of products to decompose the exponential into. :return: Quil program :rtype: Program
Below is the the instruction that describes the task: ### Input: Create a Quil program that approximates exp( (A + B)t) where A and B are PauliTerm operators. :param PauliTerm first_pauli_term: PauliTerm denoted `A` :param PauliTerm second_pauli_term: PauliTerm denoted `B` :param int trotter_order: Optional argument indicating the Suzuki-Trotter approximation order--only accepts orders 1, 2, 3, 4. :param int trotter_steps: Optional argument indicating the number of products to decompose the exponential into. :return: Quil program :rtype: Program ### Response: def trotterize(first_pauli_term, second_pauli_term, trotter_order=1, trotter_steps=1): """ Create a Quil program that approximates exp( (A + B)t) where A and B are PauliTerm operators. :param PauliTerm first_pauli_term: PauliTerm denoted `A` :param PauliTerm second_pauli_term: PauliTerm denoted `B` :param int trotter_order: Optional argument indicating the Suzuki-Trotter approximation order--only accepts orders 1, 2, 3, 4. :param int trotter_steps: Optional argument indicating the number of products to decompose the exponential into. :return: Quil program :rtype: Program """ if not (1 <= trotter_order < 5): raise ValueError("trotterize only accepts trotter_order in {1, 2, 3, 4}.") commutator = (first_pauli_term * second_pauli_term) + \ (-1 * second_pauli_term * first_pauli_term) prog = Program() if is_zero(commutator): param_exp_prog_one = exponential_map(first_pauli_term) exp_prog = param_exp_prog_one(1) prog += exp_prog param_exp_prog_two = exponential_map(second_pauli_term) exp_prog = param_exp_prog_two(1) prog += exp_prog return prog order_slices = suzuki_trotter(trotter_order, trotter_steps) for coeff, operator in order_slices: if operator == 0: param_prog = exponential_map(coeff * first_pauli_term) exp_prog = param_prog(1) prog += exp_prog else: param_prog = exponential_map(coeff * second_pauli_term) exp_prog = param_prog(1) prog += exp_prog return prog
def dump_stats(self, fdump, close=True): """ Dump the logged data to a file. The argument `file` can be either a filename or an open file object that requires write access. `close` controls if the file is closed before leaving this method (the default behaviour). """ if self.tracker: self.tracker.stop_periodic_snapshots() if isinstance(fdump, type('')): fdump = open(fdump, 'wb') pickle.dump(self.index, fdump, protocol=pickle.HIGHEST_PROTOCOL) pickle.dump(self.snapshots, fdump, protocol=pickle.HIGHEST_PROTOCOL) if close: fdump.close()
Dump the logged data to a file. The argument `file` can be either a filename or an open file object that requires write access. `close` controls if the file is closed before leaving this method (the default behaviour).
Below is the the instruction that describes the task: ### Input: Dump the logged data to a file. The argument `file` can be either a filename or an open file object that requires write access. `close` controls if the file is closed before leaving this method (the default behaviour). ### Response: def dump_stats(self, fdump, close=True): """ Dump the logged data to a file. The argument `file` can be either a filename or an open file object that requires write access. `close` controls if the file is closed before leaving this method (the default behaviour). """ if self.tracker: self.tracker.stop_periodic_snapshots() if isinstance(fdump, type('')): fdump = open(fdump, 'wb') pickle.dump(self.index, fdump, protocol=pickle.HIGHEST_PROTOCOL) pickle.dump(self.snapshots, fdump, protocol=pickle.HIGHEST_PROTOCOL) if close: fdump.close()
def average(self, axis): """Returns d-1 dimensional histogram of (estimated) mean value of axis NB this is very different from averaging over the axis!!! """ axis = self.get_axis_number(axis) avg_hist = np.ma.average(self.all_axis_bin_centers(axis), weights=self.histogram, axis=axis) if self.dimensions == 2: new_hist = Hist1d else: new_hist = Histdd return new_hist.from_histogram(histogram=avg_hist, bin_edges=itemgetter(*self.other_axes(axis))(self.bin_edges), axis_names=self.axis_names_without(axis))
Returns d-1 dimensional histogram of (estimated) mean value of axis NB this is very different from averaging over the axis!!!
Below is the the instruction that describes the task: ### Input: Returns d-1 dimensional histogram of (estimated) mean value of axis NB this is very different from averaging over the axis!!! ### Response: def average(self, axis): """Returns d-1 dimensional histogram of (estimated) mean value of axis NB this is very different from averaging over the axis!!! """ axis = self.get_axis_number(axis) avg_hist = np.ma.average(self.all_axis_bin_centers(axis), weights=self.histogram, axis=axis) if self.dimensions == 2: new_hist = Hist1d else: new_hist = Histdd return new_hist.from_histogram(histogram=avg_hist, bin_edges=itemgetter(*self.other_axes(axis))(self.bin_edges), axis_names=self.axis_names_without(axis))
def ints(self, qlist): """ Converts a sequence of chimera_index node labels into linear_index node labels, preserving order Parameters ---------- qlist : sequence of ints The chimera_index node labels Returns ------- rlist : iterable of tuples The linear_lindex node lables corresponding to qlist """ m, n, t = self.args return (((n*i + j)*2 + u)*t + k for (i, j, u, k) in qlist)
Converts a sequence of chimera_index node labels into linear_index node labels, preserving order Parameters ---------- qlist : sequence of ints The chimera_index node labels Returns ------- rlist : iterable of tuples The linear_lindex node lables corresponding to qlist
Below is the the instruction that describes the task: ### Input: Converts a sequence of chimera_index node labels into linear_index node labels, preserving order Parameters ---------- qlist : sequence of ints The chimera_index node labels Returns ------- rlist : iterable of tuples The linear_lindex node lables corresponding to qlist ### Response: def ints(self, qlist): """ Converts a sequence of chimera_index node labels into linear_index node labels, preserving order Parameters ---------- qlist : sequence of ints The chimera_index node labels Returns ------- rlist : iterable of tuples The linear_lindex node lables corresponding to qlist """ m, n, t = self.args return (((n*i + j)*2 + u)*t + k for (i, j, u, k) in qlist)
def describe_token_expr(expr): """Like `describe_token` but for token expressions.""" if ':' in expr: type, value = expr.split(':', 1) if type == 'name': return value else: type = expr return _describe_token_type(type)
Like `describe_token` but for token expressions.
Below is the the instruction that describes the task: ### Input: Like `describe_token` but for token expressions. ### Response: def describe_token_expr(expr): """Like `describe_token` but for token expressions.""" if ':' in expr: type, value = expr.split(':', 1) if type == 'name': return value else: type = expr return _describe_token_type(type)
def Plane(center=(0, 0, 0), direction=(0, 0, 1), i_size=1, j_size=1, i_resolution=10, j_resolution=10): """ Create a plane Parameters ---------- center : list or np.ndarray Location of the centroid in [x, y, z] direction : list or np.ndarray Direction cylinder points to in [x, y, z] i_size : float Size of the plane in the i direction. j_size : float Size of the plane in the i direction. i_resolution : int Number of points on the plane in the i direction. j_resolution : int Number of points on the plane in the j direction. Returns ------- plane : vtki.PolyData Plane mesh """ planeSource = vtk.vtkPlaneSource() planeSource.SetXResolution(i_resolution) planeSource.SetYResolution(j_resolution) planeSource.Update() surf = PolyData(planeSource.GetOutput()) surf.points[:, 0] *= i_size surf.points[:, 1] *= j_size surf.rotate_y(-90) translate(surf, center, direction) return surf
Create a plane Parameters ---------- center : list or np.ndarray Location of the centroid in [x, y, z] direction : list or np.ndarray Direction cylinder points to in [x, y, z] i_size : float Size of the plane in the i direction. j_size : float Size of the plane in the i direction. i_resolution : int Number of points on the plane in the i direction. j_resolution : int Number of points on the plane in the j direction. Returns ------- plane : vtki.PolyData Plane mesh
Below is the the instruction that describes the task: ### Input: Create a plane Parameters ---------- center : list or np.ndarray Location of the centroid in [x, y, z] direction : list or np.ndarray Direction cylinder points to in [x, y, z] i_size : float Size of the plane in the i direction. j_size : float Size of the plane in the i direction. i_resolution : int Number of points on the plane in the i direction. j_resolution : int Number of points on the plane in the j direction. Returns ------- plane : vtki.PolyData Plane mesh ### Response: def Plane(center=(0, 0, 0), direction=(0, 0, 1), i_size=1, j_size=1, i_resolution=10, j_resolution=10): """ Create a plane Parameters ---------- center : list or np.ndarray Location of the centroid in [x, y, z] direction : list or np.ndarray Direction cylinder points to in [x, y, z] i_size : float Size of the plane in the i direction. j_size : float Size of the plane in the i direction. i_resolution : int Number of points on the plane in the i direction. j_resolution : int Number of points on the plane in the j direction. Returns ------- plane : vtki.PolyData Plane mesh """ planeSource = vtk.vtkPlaneSource() planeSource.SetXResolution(i_resolution) planeSource.SetYResolution(j_resolution) planeSource.Update() surf = PolyData(planeSource.GetOutput()) surf.points[:, 0] *= i_size surf.points[:, 1] *= j_size surf.rotate_y(-90) translate(surf, center, direction) return surf
def p_inputunit(p): '''inputunit : simple_list simple_list_terminator | NEWLINE | error NEWLINE | EOF''' # XXX if p.lexer._parserstate & flags.parser.CMDSUBST: p.lexer._parserstate.add(flags.parser.EOFTOKEN) if isinstance(p[1], ast.node): p[0] = p[1] # accept right here in case the input contains more lines that are # not part of the current command p.accept()
inputunit : simple_list simple_list_terminator | NEWLINE | error NEWLINE | EOF
Below is the the instruction that describes the task: ### Input: inputunit : simple_list simple_list_terminator | NEWLINE | error NEWLINE | EOF ### Response: def p_inputunit(p): '''inputunit : simple_list simple_list_terminator | NEWLINE | error NEWLINE | EOF''' # XXX if p.lexer._parserstate & flags.parser.CMDSUBST: p.lexer._parserstate.add(flags.parser.EOFTOKEN) if isinstance(p[1], ast.node): p[0] = p[1] # accept right here in case the input contains more lines that are # not part of the current command p.accept()
def generateCoincMatrix(nCoinc=10, length=500, activity=50): """ Generate a coincidence matrix. This is used to generate random inputs to the temporal learner and to compare the predicted output against. It generates a matrix of nCoinc rows, each row has length 'length' and has a total of 'activity' bits on. Parameters: ----------------------------------------------- nCoinc: the number of rows to generate length: the length of each row activity: the number of ones to put into each row. """ coincMatrix0 = SM32(int(nCoinc), int(length)) theOnes = numpy.array([1.0] * activity, dtype=numpy.float32) for rowIdx in xrange(nCoinc): coinc = numpy.array(random.sample(xrange(length), activity), dtype=numpy.uint32) coinc.sort() coincMatrix0.setRowFromSparse(rowIdx, coinc, theOnes) # This is the right code to use, it's faster, but it derails the unit # testing of the pooling for now. coincMatrix = SM32(int(nCoinc), int(length)) coincMatrix.initializeWithFixedNNZR(activity) return coincMatrix0
Generate a coincidence matrix. This is used to generate random inputs to the temporal learner and to compare the predicted output against. It generates a matrix of nCoinc rows, each row has length 'length' and has a total of 'activity' bits on. Parameters: ----------------------------------------------- nCoinc: the number of rows to generate length: the length of each row activity: the number of ones to put into each row.
Below is the the instruction that describes the task: ### Input: Generate a coincidence matrix. This is used to generate random inputs to the temporal learner and to compare the predicted output against. It generates a matrix of nCoinc rows, each row has length 'length' and has a total of 'activity' bits on. Parameters: ----------------------------------------------- nCoinc: the number of rows to generate length: the length of each row activity: the number of ones to put into each row. ### Response: def generateCoincMatrix(nCoinc=10, length=500, activity=50): """ Generate a coincidence matrix. This is used to generate random inputs to the temporal learner and to compare the predicted output against. It generates a matrix of nCoinc rows, each row has length 'length' and has a total of 'activity' bits on. Parameters: ----------------------------------------------- nCoinc: the number of rows to generate length: the length of each row activity: the number of ones to put into each row. """ coincMatrix0 = SM32(int(nCoinc), int(length)) theOnes = numpy.array([1.0] * activity, dtype=numpy.float32) for rowIdx in xrange(nCoinc): coinc = numpy.array(random.sample(xrange(length), activity), dtype=numpy.uint32) coinc.sort() coincMatrix0.setRowFromSparse(rowIdx, coinc, theOnes) # This is the right code to use, it's faster, but it derails the unit # testing of the pooling for now. coincMatrix = SM32(int(nCoinc), int(length)) coincMatrix.initializeWithFixedNNZR(activity) return coincMatrix0
def max_pool(input_layer, kernel, stride, edges=PAD_SAME, name=PROVIDED): """Performs max pooling. `kernel` is the patch that will be pooled and it describes the pooling along each of the 4 dimensions. `stride` is how big to take each step. Because more often than not, pooling is only done on the width and height of the image, the following shorthands are supported: * scalar (e.g. 3): Square pooling on the image (`[b, c, r, d] = [1, 3, 3, 1]`). * singleton list (e.g. [3]): Square pooling on the image (`[b, c, r, d] = [1, 3, 3, 1]`). * list of length 2 (e.g. [3, 2]): Square pooling on the image (`[b, c, r, d] = [1, 3, 2, 1]`). Args: input_layer: The chainable object, supplied. kernel: The size of the patch for the pool, either an int or a length 1 or 2 sequence (if length 1 or int, it is expanded). stride: The strides as a length 1, 2 or 4 sequence or an integer. If an int, length 1 or 2, the stride in the first and last dimensions are 1. edges: Either `pt.PAD_SAME` or `pt.PAD_VALID` to control the padding. name: The name for this operation is also used to create/find the parameter variables. Returns: Handle to this layer. """ return _pool(input_layer, tf.nn.max_pool, kernel, stride, edges, name)
Performs max pooling. `kernel` is the patch that will be pooled and it describes the pooling along each of the 4 dimensions. `stride` is how big to take each step. Because more often than not, pooling is only done on the width and height of the image, the following shorthands are supported: * scalar (e.g. 3): Square pooling on the image (`[b, c, r, d] = [1, 3, 3, 1]`). * singleton list (e.g. [3]): Square pooling on the image (`[b, c, r, d] = [1, 3, 3, 1]`). * list of length 2 (e.g. [3, 2]): Square pooling on the image (`[b, c, r, d] = [1, 3, 2, 1]`). Args: input_layer: The chainable object, supplied. kernel: The size of the patch for the pool, either an int or a length 1 or 2 sequence (if length 1 or int, it is expanded). stride: The strides as a length 1, 2 or 4 sequence or an integer. If an int, length 1 or 2, the stride in the first and last dimensions are 1. edges: Either `pt.PAD_SAME` or `pt.PAD_VALID` to control the padding. name: The name for this operation is also used to create/find the parameter variables. Returns: Handle to this layer.
Below is the the instruction that describes the task: ### Input: Performs max pooling. `kernel` is the patch that will be pooled and it describes the pooling along each of the 4 dimensions. `stride` is how big to take each step. Because more often than not, pooling is only done on the width and height of the image, the following shorthands are supported: * scalar (e.g. 3): Square pooling on the image (`[b, c, r, d] = [1, 3, 3, 1]`). * singleton list (e.g. [3]): Square pooling on the image (`[b, c, r, d] = [1, 3, 3, 1]`). * list of length 2 (e.g. [3, 2]): Square pooling on the image (`[b, c, r, d] = [1, 3, 2, 1]`). Args: input_layer: The chainable object, supplied. kernel: The size of the patch for the pool, either an int or a length 1 or 2 sequence (if length 1 or int, it is expanded). stride: The strides as a length 1, 2 or 4 sequence or an integer. If an int, length 1 or 2, the stride in the first and last dimensions are 1. edges: Either `pt.PAD_SAME` or `pt.PAD_VALID` to control the padding. name: The name for this operation is also used to create/find the parameter variables. Returns: Handle to this layer. ### Response: def max_pool(input_layer, kernel, stride, edges=PAD_SAME, name=PROVIDED): """Performs max pooling. `kernel` is the patch that will be pooled and it describes the pooling along each of the 4 dimensions. `stride` is how big to take each step. Because more often than not, pooling is only done on the width and height of the image, the following shorthands are supported: * scalar (e.g. 3): Square pooling on the image (`[b, c, r, d] = [1, 3, 3, 1]`). * singleton list (e.g. [3]): Square pooling on the image (`[b, c, r, d] = [1, 3, 3, 1]`). * list of length 2 (e.g. [3, 2]): Square pooling on the image (`[b, c, r, d] = [1, 3, 2, 1]`). Args: input_layer: The chainable object, supplied. kernel: The size of the patch for the pool, either an int or a length 1 or 2 sequence (if length 1 or int, it is expanded). stride: The strides as a length 1, 2 or 4 sequence or an integer. If an int, length 1 or 2, the stride in the first and last dimensions are 1. edges: Either `pt.PAD_SAME` or `pt.PAD_VALID` to control the padding. name: The name for this operation is also used to create/find the parameter variables. Returns: Handle to this layer. """ return _pool(input_layer, tf.nn.max_pool, kernel, stride, edges, name)
def get_context(self, string): """ Assuming the cursor is at the end of the specified string, get the context (a list of names) for the symbol at cursor position. """ context = [] reversed_tokens = list(self._lexer.get_tokens(string)) reversed_tokens.reverse() # Pygments often tacks on a newline when none is specified in the input. # Remove this newline. if reversed_tokens and reversed_tokens[0][1].endswith('\n') and \ not string.endswith('\n'): reversed_tokens.pop(0) current_op = '' for token, text in reversed_tokens: if is_token_subtype(token, Token.Name): # Handle a trailing separator, e.g 'foo.bar.' if current_op in self._name_separators: if not context: context.insert(0, '') # Handle non-separator operators and punction. elif current_op: break context.insert(0, text) current_op = '' # Pygments doesn't understand that, e.g., '->' is a single operator # in C++. This is why we have to build up an operator from # potentially several tokens. elif token is Token.Operator or token is Token.Punctuation: current_op = text + current_op # Break on anything that is not a Operator, Punctuation, or Name. else: break return context
Assuming the cursor is at the end of the specified string, get the context (a list of names) for the symbol at cursor position.
Below is the the instruction that describes the task: ### Input: Assuming the cursor is at the end of the specified string, get the context (a list of names) for the symbol at cursor position. ### Response: def get_context(self, string): """ Assuming the cursor is at the end of the specified string, get the context (a list of names) for the symbol at cursor position. """ context = [] reversed_tokens = list(self._lexer.get_tokens(string)) reversed_tokens.reverse() # Pygments often tacks on a newline when none is specified in the input. # Remove this newline. if reversed_tokens and reversed_tokens[0][1].endswith('\n') and \ not string.endswith('\n'): reversed_tokens.pop(0) current_op = '' for token, text in reversed_tokens: if is_token_subtype(token, Token.Name): # Handle a trailing separator, e.g 'foo.bar.' if current_op in self._name_separators: if not context: context.insert(0, '') # Handle non-separator operators and punction. elif current_op: break context.insert(0, text) current_op = '' # Pygments doesn't understand that, e.g., '->' is a single operator # in C++. This is why we have to build up an operator from # potentially several tokens. elif token is Token.Operator or token is Token.Punctuation: current_op = text + current_op # Break on anything that is not a Operator, Punctuation, or Name. else: break return context
def anopheles(self): """ :rtype: Anopheles """ list_of_anopheles = [] desc = self.et.find("description") if desc is not None: for anopheles in desc.findall("anopheles"): list_of_anopheles.append(Anopheles(anopheles)) return list_of_anopheles
:rtype: Anopheles
Below is the the instruction that describes the task: ### Input: :rtype: Anopheles ### Response: def anopheles(self): """ :rtype: Anopheles """ list_of_anopheles = [] desc = self.et.find("description") if desc is not None: for anopheles in desc.findall("anopheles"): list_of_anopheles.append(Anopheles(anopheles)) return list_of_anopheles
def create_parser(self): """Create the CLI parser.""" parser = argparse.ArgumentParser( description=PROGRAM_DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter, epilog=textwrap.dedent(PROGRAM_EPILOG)) parser.add_argument( 'filename', metavar='FILE_NAME', nargs='*', help='the I/O file name') subparsers = parser.add_subparsers( dest='parser', title='markdown parser') subparsers.required = True # github + cmark + gitlab + commonmarker. github = subparsers.add_parser( 'github', aliases=['cmark', 'gitlab', 'commonmarker'], description='Use Commonmark rules to generate an output. If no \ option is selected, the default output will be an \ unordered list with the respective default values \ as listed below') megroup = github.add_mutually_exclusive_group() megroup.add_argument( '-u', '--unordered-list-marker', choices=md_parser['github']['list']['unordered']['bullet_markers'], nargs='?', const=md_parser['github']['list']['unordered']['default_marker'], help='set the marker and enables unordered list. Defaults to ' + md_parser['github']['list']['unordered']['default_marker']) megroup.add_argument( '-o', '--ordered-list-marker', choices=md_parser['github']['list']['ordered']['closing_markers'], nargs='?', const=md_parser['github']['list']['ordered'] ['default_closing_marker'], help='set the marker and enables ordered lists. Defaults to ' + md_parser['github']['list']['ordered']['default_closing_marker']) github.add_argument( '-l', '--header-levels', choices=[ str(i) for i in range(1, md_parser['github']['header']['max_levels'] + 1) ], nargs='?', const=str(md_parser['github']['header']['default_keep_levels']), help='set the maximum level of headers to be considered as part \ of the TOC. Defaults to ' + str( md_parser['github']['header']['default_keep_levels'])) github.set_defaults( header_levels=md_parser['github']['header']['default_keep_levels']) # Redcarpet. redcarpet = subparsers.add_parser( 'redcarpet', description='Use Redcarpet rules to generate an output. If no \ option is selected, the default output will be an \ unordered list with the respective default values \ as listed below. Gitlab rules are the same as \ Redcarpet except that conflicts are avoided with \ duplicate headers.') megroup = redcarpet.add_mutually_exclusive_group() megroup.add_argument( '-u', '--unordered-list-marker', choices=md_parser['redcarpet']['list']['unordered'] ['bullet_markers'], nargs='?', const=md_parser['redcarpet']['list']['unordered'] ['default_marker'], help='set the marker and enables unordered list. Defaults to ' + md_parser['redcarpet']['list']['unordered']['default_marker']) megroup.add_argument( '-o', '--ordered-list-marker', choices=md_parser['redcarpet']['list']['ordered'] ['closing_markers'], nargs='?', const=md_parser['redcarpet']['list']['ordered'] ['default_closing_marker'], help='set the marker and enables ordered lists. Defaults to ' + md_parser['redcarpet']['list']['ordered']['default_closing_marker'] ) redcarpet.add_argument( '-l', '--header-levels', choices=[ str(i) for i in range( 1, md_parser['redcarpet']['header']['max_levels'] + 1) ], nargs='?', const=str(md_parser['redcarpet']['header']['default_keep_levels']), help='set the maximum level of headers to be considered as part \ of the TOC. Defaults to ' + str( md_parser['redcarpet']['header']['default_keep_levels'])) redcarpet.set_defaults(header_levels=md_parser['redcarpet']['header'] ['default_keep_levels']) c_or_i = parser.add_mutually_exclusive_group() c_or_i.add_argument( '-c', '--no-list-coherence', action='store_true', help='avoids checking for TOC list coherence') c_or_i.add_argument( '-i', '--no-indentation', action='store_true', help='avoids adding indentations to the TOC') parser.add_argument( '-l', '--no-links', action='store_true', help='avoids adding links to the TOC') parser.add_argument( '-m', '--toc-marker', metavar='TOC_MARKER', help='set the string to be used as the marker for positioning the \ table of contents. Defaults to ' + common_defaults['toc_marker']) parser.add_argument( '-p', '--in-place', action='store_true', help='overwrite the input file') parser.add_argument( '-v', '--version', action='version', version=VERSION_NAME + ' ' + VERSION_NUMBER) parser.set_defaults(toc_marker=common_defaults['toc_marker']) parser.set_defaults(func=CliToApi().write_toc) return parser
Create the CLI parser.
Below is the the instruction that describes the task: ### Input: Create the CLI parser. ### Response: def create_parser(self): """Create the CLI parser.""" parser = argparse.ArgumentParser( description=PROGRAM_DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter, epilog=textwrap.dedent(PROGRAM_EPILOG)) parser.add_argument( 'filename', metavar='FILE_NAME', nargs='*', help='the I/O file name') subparsers = parser.add_subparsers( dest='parser', title='markdown parser') subparsers.required = True # github + cmark + gitlab + commonmarker. github = subparsers.add_parser( 'github', aliases=['cmark', 'gitlab', 'commonmarker'], description='Use Commonmark rules to generate an output. If no \ option is selected, the default output will be an \ unordered list with the respective default values \ as listed below') megroup = github.add_mutually_exclusive_group() megroup.add_argument( '-u', '--unordered-list-marker', choices=md_parser['github']['list']['unordered']['bullet_markers'], nargs='?', const=md_parser['github']['list']['unordered']['default_marker'], help='set the marker and enables unordered list. Defaults to ' + md_parser['github']['list']['unordered']['default_marker']) megroup.add_argument( '-o', '--ordered-list-marker', choices=md_parser['github']['list']['ordered']['closing_markers'], nargs='?', const=md_parser['github']['list']['ordered'] ['default_closing_marker'], help='set the marker and enables ordered lists. Defaults to ' + md_parser['github']['list']['ordered']['default_closing_marker']) github.add_argument( '-l', '--header-levels', choices=[ str(i) for i in range(1, md_parser['github']['header']['max_levels'] + 1) ], nargs='?', const=str(md_parser['github']['header']['default_keep_levels']), help='set the maximum level of headers to be considered as part \ of the TOC. Defaults to ' + str( md_parser['github']['header']['default_keep_levels'])) github.set_defaults( header_levels=md_parser['github']['header']['default_keep_levels']) # Redcarpet. redcarpet = subparsers.add_parser( 'redcarpet', description='Use Redcarpet rules to generate an output. If no \ option is selected, the default output will be an \ unordered list with the respective default values \ as listed below. Gitlab rules are the same as \ Redcarpet except that conflicts are avoided with \ duplicate headers.') megroup = redcarpet.add_mutually_exclusive_group() megroup.add_argument( '-u', '--unordered-list-marker', choices=md_parser['redcarpet']['list']['unordered'] ['bullet_markers'], nargs='?', const=md_parser['redcarpet']['list']['unordered'] ['default_marker'], help='set the marker and enables unordered list. Defaults to ' + md_parser['redcarpet']['list']['unordered']['default_marker']) megroup.add_argument( '-o', '--ordered-list-marker', choices=md_parser['redcarpet']['list']['ordered'] ['closing_markers'], nargs='?', const=md_parser['redcarpet']['list']['ordered'] ['default_closing_marker'], help='set the marker and enables ordered lists. Defaults to ' + md_parser['redcarpet']['list']['ordered']['default_closing_marker'] ) redcarpet.add_argument( '-l', '--header-levels', choices=[ str(i) for i in range( 1, md_parser['redcarpet']['header']['max_levels'] + 1) ], nargs='?', const=str(md_parser['redcarpet']['header']['default_keep_levels']), help='set the maximum level of headers to be considered as part \ of the TOC. Defaults to ' + str( md_parser['redcarpet']['header']['default_keep_levels'])) redcarpet.set_defaults(header_levels=md_parser['redcarpet']['header'] ['default_keep_levels']) c_or_i = parser.add_mutually_exclusive_group() c_or_i.add_argument( '-c', '--no-list-coherence', action='store_true', help='avoids checking for TOC list coherence') c_or_i.add_argument( '-i', '--no-indentation', action='store_true', help='avoids adding indentations to the TOC') parser.add_argument( '-l', '--no-links', action='store_true', help='avoids adding links to the TOC') parser.add_argument( '-m', '--toc-marker', metavar='TOC_MARKER', help='set the string to be used as the marker for positioning the \ table of contents. Defaults to ' + common_defaults['toc_marker']) parser.add_argument( '-p', '--in-place', action='store_true', help='overwrite the input file') parser.add_argument( '-v', '--version', action='version', version=VERSION_NAME + ' ' + VERSION_NUMBER) parser.set_defaults(toc_marker=common_defaults['toc_marker']) parser.set_defaults(func=CliToApi().write_toc) return parser
def cli(context, verbose, api_key, base_url, workers): '''Planet API Client''' configure_logging(verbose) client_params.clear() client_params['api_key'] = api_key client_params['workers'] = workers if base_url: client_params['base_url'] = base_url
Planet API Client
Below is the the instruction that describes the task: ### Input: Planet API Client ### Response: def cli(context, verbose, api_key, base_url, workers): '''Planet API Client''' configure_logging(verbose) client_params.clear() client_params['api_key'] = api_key client_params['workers'] = workers if base_url: client_params['base_url'] = base_url
def PrepareHttpRequest(self, method_config, request, global_params=None, upload=None, upload_config=None, download=None): """Prepares an HTTP request to be sent.""" request_type = _LoadClass( method_config.request_type_name, self.__client.MESSAGES_MODULE) util.Typecheck(request, request_type) request = self.__client.ProcessRequest(method_config, request) http_request = http_wrapper.Request( http_method=method_config.http_method) self.__SetBaseHeaders(http_request, self.__client) self.__SetBody(http_request, method_config, request, upload) url_builder = _UrlBuilder( self.__client.url, relative_path=method_config.relative_path) url_builder.query_params = self.__ConstructQueryParams( method_config.query_params, request, global_params) # It's important that upload and download go before we fill in the # relative path, so that they can replace it. if upload is not None: upload.ConfigureRequest(upload_config, http_request, url_builder) if download is not None: download.ConfigureRequest(http_request, url_builder) url_builder.relative_path = self.__ConstructRelativePath( method_config, request, relative_path=url_builder.relative_path) self.__FinalizeRequest(http_request, url_builder) return self.__client.ProcessHttpRequest(http_request)
Prepares an HTTP request to be sent.
Below is the the instruction that describes the task: ### Input: Prepares an HTTP request to be sent. ### Response: def PrepareHttpRequest(self, method_config, request, global_params=None, upload=None, upload_config=None, download=None): """Prepares an HTTP request to be sent.""" request_type = _LoadClass( method_config.request_type_name, self.__client.MESSAGES_MODULE) util.Typecheck(request, request_type) request = self.__client.ProcessRequest(method_config, request) http_request = http_wrapper.Request( http_method=method_config.http_method) self.__SetBaseHeaders(http_request, self.__client) self.__SetBody(http_request, method_config, request, upload) url_builder = _UrlBuilder( self.__client.url, relative_path=method_config.relative_path) url_builder.query_params = self.__ConstructQueryParams( method_config.query_params, request, global_params) # It's important that upload and download go before we fill in the # relative path, so that they can replace it. if upload is not None: upload.ConfigureRequest(upload_config, http_request, url_builder) if download is not None: download.ConfigureRequest(http_request, url_builder) url_builder.relative_path = self.__ConstructRelativePath( method_config, request, relative_path=url_builder.relative_path) self.__FinalizeRequest(http_request, url_builder) return self.__client.ProcessHttpRequest(http_request)
def get_userpass_value(cli_value, config, key, prompt_strategy): """Gets the username / password from config. Uses the following rules: 1. If it is specified on the cli (`cli_value`), use that. 2. If `config[key]` is specified, use that. 3. Otherwise prompt using `prompt_strategy`. :param cli_value: The value supplied from the command line or `None`. :type cli_value: unicode or `None` :param config: Config dictionary :type config: dict :param key: Key to find the config value. :type key: unicode :prompt_strategy: Argumentless function to return fallback value. :type prompt_strategy: function :returns: The value for the username / password :rtype: unicode """ if cli_value is not None: return cli_value elif config.get(key): return config[key] else: return prompt_strategy()
Gets the username / password from config. Uses the following rules: 1. If it is specified on the cli (`cli_value`), use that. 2. If `config[key]` is specified, use that. 3. Otherwise prompt using `prompt_strategy`. :param cli_value: The value supplied from the command line or `None`. :type cli_value: unicode or `None` :param config: Config dictionary :type config: dict :param key: Key to find the config value. :type key: unicode :prompt_strategy: Argumentless function to return fallback value. :type prompt_strategy: function :returns: The value for the username / password :rtype: unicode
Below is the the instruction that describes the task: ### Input: Gets the username / password from config. Uses the following rules: 1. If it is specified on the cli (`cli_value`), use that. 2. If `config[key]` is specified, use that. 3. Otherwise prompt using `prompt_strategy`. :param cli_value: The value supplied from the command line or `None`. :type cli_value: unicode or `None` :param config: Config dictionary :type config: dict :param key: Key to find the config value. :type key: unicode :prompt_strategy: Argumentless function to return fallback value. :type prompt_strategy: function :returns: The value for the username / password :rtype: unicode ### Response: def get_userpass_value(cli_value, config, key, prompt_strategy): """Gets the username / password from config. Uses the following rules: 1. If it is specified on the cli (`cli_value`), use that. 2. If `config[key]` is specified, use that. 3. Otherwise prompt using `prompt_strategy`. :param cli_value: The value supplied from the command line or `None`. :type cli_value: unicode or `None` :param config: Config dictionary :type config: dict :param key: Key to find the config value. :type key: unicode :prompt_strategy: Argumentless function to return fallback value. :type prompt_strategy: function :returns: The value for the username / password :rtype: unicode """ if cli_value is not None: return cli_value elif config.get(key): return config[key] else: return prompt_strategy()
def get_language_tabs(request, current_language, available_languages, css_class=None): """ Determine the language tabs to show. """ tabs = TabsList(css_class=css_class) get = request.GET.copy() # QueryDict object tab_languages = [] site_id = getattr(settings, 'SITE_ID', None) for lang_dict in appsettings.PARLER_LANGUAGES.get(site_id, ()): code = lang_dict['code'] title = get_language_title(code) get['language'] = code url = '?{0}'.format(get.urlencode()) if code == current_language: status = 'current' elif code in available_languages: status = 'available' else: status = 'empty' tabs.append((url, title, code, status)) tab_languages.append(code) # Additional stale translations in the database? if appsettings.PARLER_SHOW_EXCLUDED_LANGUAGE_TABS: for code in available_languages: if code not in tab_languages: get['language'] = code url = '?{0}'.format(get.urlencode()) if code == current_language: status = 'current' else: status = 'available' tabs.append((url, get_language_title(code), code, status)) tabs.current_is_translated = current_language in available_languages tabs.allow_deletion = len(available_languages) > 1 return tabs
Determine the language tabs to show.
Below is the the instruction that describes the task: ### Input: Determine the language tabs to show. ### Response: def get_language_tabs(request, current_language, available_languages, css_class=None): """ Determine the language tabs to show. """ tabs = TabsList(css_class=css_class) get = request.GET.copy() # QueryDict object tab_languages = [] site_id = getattr(settings, 'SITE_ID', None) for lang_dict in appsettings.PARLER_LANGUAGES.get(site_id, ()): code = lang_dict['code'] title = get_language_title(code) get['language'] = code url = '?{0}'.format(get.urlencode()) if code == current_language: status = 'current' elif code in available_languages: status = 'available' else: status = 'empty' tabs.append((url, title, code, status)) tab_languages.append(code) # Additional stale translations in the database? if appsettings.PARLER_SHOW_EXCLUDED_LANGUAGE_TABS: for code in available_languages: if code not in tab_languages: get['language'] = code url = '?{0}'.format(get.urlencode()) if code == current_language: status = 'current' else: status = 'available' tabs.append((url, get_language_title(code), code, status)) tabs.current_is_translated = current_language in available_languages tabs.allow_deletion = len(available_languages) > 1 return tabs
def generate_challenges(self, num, root_seed): """ Generate the specified number of hash challenges. :param num: The number of hash challenges we want to generate. :param root_seed: Some value that we use to generate our seeds from. """ # Generate a series of seeds seeds = self.generate_seeds(num, root_seed, self.secret) blocks = self.pick_blocks(num, root_seed) # List of 2-tuples (seed, hash_response) self.challenges = [] # Generate the corresponding hash for each seed for i in range(num): self.challenges.append(Challenge(blocks[i], seeds[i])) response = self.meet_challenge(self.challenges[i]) self.challenges[i].response = response
Generate the specified number of hash challenges. :param num: The number of hash challenges we want to generate. :param root_seed: Some value that we use to generate our seeds from.
Below is the the instruction that describes the task: ### Input: Generate the specified number of hash challenges. :param num: The number of hash challenges we want to generate. :param root_seed: Some value that we use to generate our seeds from. ### Response: def generate_challenges(self, num, root_seed): """ Generate the specified number of hash challenges. :param num: The number of hash challenges we want to generate. :param root_seed: Some value that we use to generate our seeds from. """ # Generate a series of seeds seeds = self.generate_seeds(num, root_seed, self.secret) blocks = self.pick_blocks(num, root_seed) # List of 2-tuples (seed, hash_response) self.challenges = [] # Generate the corresponding hash for each seed for i in range(num): self.challenges.append(Challenge(blocks[i], seeds[i])) response = self.meet_challenge(self.challenges[i]) self.challenges[i].response = response
def _set_af_vrf(self, v, load=False): """ Setter method for af_vrf, mapped from YANG variable /rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf (list) If this variable is read-only (config: false) in the source YANG file, then _set_af_vrf is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_af_vrf() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("af_vrf_name",af_vrf.af_vrf, yang_name="af-vrf", rest_name="vrf", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='af-vrf-name', extensions={u'tailf-common': {u'info': u'VRF unicast', u'alt-name': u'vrf', u'cli-suppress-list-no': None, u'callpoint': u'AfIpv4UcastVrf', u'cli-full-command': None, u'cli-full-no': None, u'cli-mode-name': u'config-bgp-ipv4u-vrf'}}), is_container='list', yang_name="af-vrf", rest_name="vrf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'VRF unicast', u'alt-name': u'vrf', u'cli-suppress-list-no': None, u'callpoint': u'AfIpv4UcastVrf', u'cli-full-command': None, u'cli-full-no': None, u'cli-mode-name': u'config-bgp-ipv4u-vrf'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """af_vrf must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("af_vrf_name",af_vrf.af_vrf, yang_name="af-vrf", rest_name="vrf", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='af-vrf-name', extensions={u'tailf-common': {u'info': u'VRF unicast', u'alt-name': u'vrf', u'cli-suppress-list-no': None, u'callpoint': u'AfIpv4UcastVrf', u'cli-full-command': None, u'cli-full-no': None, u'cli-mode-name': u'config-bgp-ipv4u-vrf'}}), is_container='list', yang_name="af-vrf", rest_name="vrf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'VRF unicast', u'alt-name': u'vrf', u'cli-suppress-list-no': None, u'callpoint': u'AfIpv4UcastVrf', u'cli-full-command': None, u'cli-full-no': None, u'cli-mode-name': u'config-bgp-ipv4u-vrf'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='list', is_config=True)""", }) self.__af_vrf = t if hasattr(self, '_set'): self._set()
Setter method for af_vrf, mapped from YANG variable /rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf (list) If this variable is read-only (config: false) in the source YANG file, then _set_af_vrf is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_af_vrf() directly.
Below is the the instruction that describes the task: ### Input: Setter method for af_vrf, mapped from YANG variable /rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf (list) If this variable is read-only (config: false) in the source YANG file, then _set_af_vrf is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_af_vrf() directly. ### Response: def _set_af_vrf(self, v, load=False): """ Setter method for af_vrf, mapped from YANG variable /rbridge_id/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf (list) If this variable is read-only (config: false) in the source YANG file, then _set_af_vrf is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_af_vrf() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("af_vrf_name",af_vrf.af_vrf, yang_name="af-vrf", rest_name="vrf", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='af-vrf-name', extensions={u'tailf-common': {u'info': u'VRF unicast', u'alt-name': u'vrf', u'cli-suppress-list-no': None, u'callpoint': u'AfIpv4UcastVrf', u'cli-full-command': None, u'cli-full-no': None, u'cli-mode-name': u'config-bgp-ipv4u-vrf'}}), is_container='list', yang_name="af-vrf", rest_name="vrf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'VRF unicast', u'alt-name': u'vrf', u'cli-suppress-list-no': None, u'callpoint': u'AfIpv4UcastVrf', u'cli-full-command': None, u'cli-full-no': None, u'cli-mode-name': u'config-bgp-ipv4u-vrf'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """af_vrf must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("af_vrf_name",af_vrf.af_vrf, yang_name="af-vrf", rest_name="vrf", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='af-vrf-name', extensions={u'tailf-common': {u'info': u'VRF unicast', u'alt-name': u'vrf', u'cli-suppress-list-no': None, u'callpoint': u'AfIpv4UcastVrf', u'cli-full-command': None, u'cli-full-no': None, u'cli-mode-name': u'config-bgp-ipv4u-vrf'}}), is_container='list', yang_name="af-vrf", rest_name="vrf", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'VRF unicast', u'alt-name': u'vrf', u'cli-suppress-list-no': None, u'callpoint': u'AfIpv4UcastVrf', u'cli-full-command': None, u'cli-full-no': None, u'cli-mode-name': u'config-bgp-ipv4u-vrf'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='list', is_config=True)""", }) self.__af_vrf = t if hasattr(self, '_set'): self._set()
def calcR2(predTst, yTest, axis=0): """calculate coefficient of determination. Assumes that axis=0 is time Parameters ---------- predTst : np.array, predicted reponse for yTest yTest : np.array, acxtually observed response for yTest Returns ------- aryFunc : np.array R2 """ rss = np.sum((yTest - predTst) ** 2, axis=axis) tss = np.sum((yTest - yTest.mean()) ** 2, axis=axis) return 1 - rss/tss
calculate coefficient of determination. Assumes that axis=0 is time Parameters ---------- predTst : np.array, predicted reponse for yTest yTest : np.array, acxtually observed response for yTest Returns ------- aryFunc : np.array R2
Below is the the instruction that describes the task: ### Input: calculate coefficient of determination. Assumes that axis=0 is time Parameters ---------- predTst : np.array, predicted reponse for yTest yTest : np.array, acxtually observed response for yTest Returns ------- aryFunc : np.array R2 ### Response: def calcR2(predTst, yTest, axis=0): """calculate coefficient of determination. Assumes that axis=0 is time Parameters ---------- predTst : np.array, predicted reponse for yTest yTest : np.array, acxtually observed response for yTest Returns ------- aryFunc : np.array R2 """ rss = np.sum((yTest - predTst) ** 2, axis=axis) tss = np.sum((yTest - yTest.mean()) ** 2, axis=axis) return 1 - rss/tss
def stop(): """Stop the server, invalidating any viewer URLs. This allows any previously-referenced data arrays to be garbage collected if there are no other references to them. """ global global_server if global_server is not None: ioloop = global_server.ioloop def stop_ioloop(): ioloop.stop() ioloop.close() global_server.ioloop.add_callback(stop_ioloop) global_server = None
Stop the server, invalidating any viewer URLs. This allows any previously-referenced data arrays to be garbage collected if there are no other references to them.
Below is the the instruction that describes the task: ### Input: Stop the server, invalidating any viewer URLs. This allows any previously-referenced data arrays to be garbage collected if there are no other references to them. ### Response: def stop(): """Stop the server, invalidating any viewer URLs. This allows any previously-referenced data arrays to be garbage collected if there are no other references to them. """ global global_server if global_server is not None: ioloop = global_server.ioloop def stop_ioloop(): ioloop.stop() ioloop.close() global_server.ioloop.add_callback(stop_ioloop) global_server = None
def length_prefix(length, offset): """Construct the prefix to lists or strings denoting their length. :param length: the length of the item in bytes :param offset: ``0x80`` when encoding raw bytes, ``0xc0`` when encoding a list """ if length < 56: return ALL_BYTES[offset + length] elif length < LONG_LENGTH: length_string = int_to_big_endian(length) return ALL_BYTES[offset + 56 - 1 + len(length_string)] + length_string else: raise ValueError('Length greater than 256**8')
Construct the prefix to lists or strings denoting their length. :param length: the length of the item in bytes :param offset: ``0x80`` when encoding raw bytes, ``0xc0`` when encoding a list
Below is the the instruction that describes the task: ### Input: Construct the prefix to lists or strings denoting their length. :param length: the length of the item in bytes :param offset: ``0x80`` when encoding raw bytes, ``0xc0`` when encoding a list ### Response: def length_prefix(length, offset): """Construct the prefix to lists or strings denoting their length. :param length: the length of the item in bytes :param offset: ``0x80`` when encoding raw bytes, ``0xc0`` when encoding a list """ if length < 56: return ALL_BYTES[offset + length] elif length < LONG_LENGTH: length_string = int_to_big_endian(length) return ALL_BYTES[offset + 56 - 1 + len(length_string)] + length_string else: raise ValueError('Length greater than 256**8')
def from_path(cls, path): """Creates rule instance from path. :type path: pathlib.Path :rtype: Rule """ name = path.name[:-3] with logs.debug_time(u'Importing rule: {};'.format(name)): rule_module = load_source(name, str(path)) priority = getattr(rule_module, 'priority', DEFAULT_PRIORITY) return cls(name, rule_module.match, rule_module.get_new_command, getattr(rule_module, 'enabled_by_default', True), getattr(rule_module, 'side_effect', None), settings.priority.get(name, priority), getattr(rule_module, 'requires_output', True))
Creates rule instance from path. :type path: pathlib.Path :rtype: Rule
Below is the the instruction that describes the task: ### Input: Creates rule instance from path. :type path: pathlib.Path :rtype: Rule ### Response: def from_path(cls, path): """Creates rule instance from path. :type path: pathlib.Path :rtype: Rule """ name = path.name[:-3] with logs.debug_time(u'Importing rule: {};'.format(name)): rule_module = load_source(name, str(path)) priority = getattr(rule_module, 'priority', DEFAULT_PRIORITY) return cls(name, rule_module.match, rule_module.get_new_command, getattr(rule_module, 'enabled_by_default', True), getattr(rule_module, 'side_effect', None), settings.priority.get(name, priority), getattr(rule_module, 'requires_output', True))
def generate(self, src=None, identifier=None): """Generate static files for one source image.""" self.src = src self.identifier = identifier # Get image details and calculate tiles im = self.manipulator_klass() im.srcfile = self.src im.set_max_image_pixels(self.max_image_pixels) im.do_first() width = im.width height = im.height scale_factors = im.scale_factors(self.tilesize) # Setup destination and IIIF identifier self.setup_destination() # Write out images for (region, size) in static_partial_tile_sizes(width, height, self.tilesize, scale_factors): self.generate_tile(region, size) sizes = [] for size in static_full_sizes(width, height, self.tilesize): # See https://github.com/zimeon/iiif/issues/9 sizes.append({'width': size[0], 'height': size[1]}) self.generate_tile('full', size) for request in self.extras: request.identifier = self.identifier if (request.is_scaled_full_image()): sizes.append({'width': request.size_wh[0], 'height': request.size_wh[1]}) self.generate_file(request) # Write info.json qualities = ['default'] if (self.api_version > '1.1') else ['native'] info = IIIFInfo(level=0, server_and_prefix=self.prefix, identifier=self.identifier, width=width, height=height, scale_factors=scale_factors, tile_width=self.tilesize, tile_height=self.tilesize, formats=['jpg'], qualities=qualities, sizes=sizes, api_version=self.api_version) json_file = os.path.join(self.dst, self.identifier, 'info.json') if (self.dryrun): self.logger.warning( "dryrun mode, would write the following files:") self.logger.warning("%s / %s/%s" % (self.dst, self.identifier, 'info.json')) else: with open(json_file, 'w') as f: f.write(info.as_json()) f.close() self.logger.info("%s / %s/%s" % (self.dst, self.identifier, 'info.json')) self.logger.debug("Written %s" % (json_file))
Generate static files for one source image.
Below is the the instruction that describes the task: ### Input: Generate static files for one source image. ### Response: def generate(self, src=None, identifier=None): """Generate static files for one source image.""" self.src = src self.identifier = identifier # Get image details and calculate tiles im = self.manipulator_klass() im.srcfile = self.src im.set_max_image_pixels(self.max_image_pixels) im.do_first() width = im.width height = im.height scale_factors = im.scale_factors(self.tilesize) # Setup destination and IIIF identifier self.setup_destination() # Write out images for (region, size) in static_partial_tile_sizes(width, height, self.tilesize, scale_factors): self.generate_tile(region, size) sizes = [] for size in static_full_sizes(width, height, self.tilesize): # See https://github.com/zimeon/iiif/issues/9 sizes.append({'width': size[0], 'height': size[1]}) self.generate_tile('full', size) for request in self.extras: request.identifier = self.identifier if (request.is_scaled_full_image()): sizes.append({'width': request.size_wh[0], 'height': request.size_wh[1]}) self.generate_file(request) # Write info.json qualities = ['default'] if (self.api_version > '1.1') else ['native'] info = IIIFInfo(level=0, server_and_prefix=self.prefix, identifier=self.identifier, width=width, height=height, scale_factors=scale_factors, tile_width=self.tilesize, tile_height=self.tilesize, formats=['jpg'], qualities=qualities, sizes=sizes, api_version=self.api_version) json_file = os.path.join(self.dst, self.identifier, 'info.json') if (self.dryrun): self.logger.warning( "dryrun mode, would write the following files:") self.logger.warning("%s / %s/%s" % (self.dst, self.identifier, 'info.json')) else: with open(json_file, 'w') as f: f.write(info.as_json()) f.close() self.logger.info("%s / %s/%s" % (self.dst, self.identifier, 'info.json')) self.logger.debug("Written %s" % (json_file))
def get_accept_license(request): """This produces JSON data for a user (at ``uid``) to view the license(s) they have accepted or will need to accept for a publication (at ``id``). """ publication_id = request.matchdict['id'] user_id = request.matchdict['uid'] # FIXME Is this an active publication? # TODO Verify the accepting user is the one making the request. # For each pending document, accept the license. with db_connect() as db_conn: with db_conn.cursor() as cursor: cursor.execute(""" SELECT row_to_json(combined_rows) FROM ( SELECT pd.uuid AS id, ident_hash(pd.uuid, pd.major_version, pd.minor_version) \ AS ident_hash, accepted AS is_accepted FROM pending_documents AS pd NATURAL JOIN license_acceptances AS la WHERE pd.publication_id = %s AND user_id = %s ) as combined_rows;""", (publication_id, user_id)) user_documents = [r[0] for r in cursor.fetchall()] return {'publication_id': publication_id, 'user_id': user_id, 'documents': user_documents, }
This produces JSON data for a user (at ``uid``) to view the license(s) they have accepted or will need to accept for a publication (at ``id``).
Below is the the instruction that describes the task: ### Input: This produces JSON data for a user (at ``uid``) to view the license(s) they have accepted or will need to accept for a publication (at ``id``). ### Response: def get_accept_license(request): """This produces JSON data for a user (at ``uid``) to view the license(s) they have accepted or will need to accept for a publication (at ``id``). """ publication_id = request.matchdict['id'] user_id = request.matchdict['uid'] # FIXME Is this an active publication? # TODO Verify the accepting user is the one making the request. # For each pending document, accept the license. with db_connect() as db_conn: with db_conn.cursor() as cursor: cursor.execute(""" SELECT row_to_json(combined_rows) FROM ( SELECT pd.uuid AS id, ident_hash(pd.uuid, pd.major_version, pd.minor_version) \ AS ident_hash, accepted AS is_accepted FROM pending_documents AS pd NATURAL JOIN license_acceptances AS la WHERE pd.publication_id = %s AND user_id = %s ) as combined_rows;""", (publication_id, user_id)) user_documents = [r[0] for r in cursor.fetchall()] return {'publication_id': publication_id, 'user_id': user_id, 'documents': user_documents, }