code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def _update_params(self, constants): """Update the params.""" constants = np.max(np.min(constants, 1)) self.params['r']['value'] = max([self.params['r']['value'], constants]) epsilon = constants / self.params['r']['value'] influence = self._calculate_influence(epsilon) # Account for learning rate return influence * epsilon
Update the params.
Below is the the instruction that describes the task: ### Input: Update the params. ### Response: def _update_params(self, constants): """Update the params.""" constants = np.max(np.min(constants, 1)) self.params['r']['value'] = max([self.params['r']['value'], constants]) epsilon = constants / self.params['r']['value'] influence = self._calculate_influence(epsilon) # Account for learning rate return influence * epsilon
def _load_template(dev_path): """ There are a couple of template scripts in the package. This function loads one of them and prepares it for use. """ # See https://bitbucket.org/pypa/setuptools/issue/134 for info # on script file naming and downstream issues with SVR4 name = 'script.tmpl' if dev_path: name = name.replace('.tmpl', ' (dev).tmpl') raw_bytes = resource_string('setuptools', name) return raw_bytes.decode('utf-8')
There are a couple of template scripts in the package. This function loads one of them and prepares it for use.
Below is the the instruction that describes the task: ### Input: There are a couple of template scripts in the package. This function loads one of them and prepares it for use. ### Response: def _load_template(dev_path): """ There are a couple of template scripts in the package. This function loads one of them and prepares it for use. """ # See https://bitbucket.org/pypa/setuptools/issue/134 for info # on script file naming and downstream issues with SVR4 name = 'script.tmpl' if dev_path: name = name.replace('.tmpl', ' (dev).tmpl') raw_bytes = resource_string('setuptools', name) return raw_bytes.decode('utf-8')
def _setup_program(self): """ Create a temporary file containing the program code. The code is fetched via :meth:`_get_program`. """ filename = self._get_program_filename() path = os.path.join(self.get_temp_dir(), filename) self.program_fp = open(path, 'wb') self.program_fp.write(self._get_program()) self.program_fp.flush() os.chmod(self.program_fp.name, int('0700', 8)) reopen_readonly(self.program_fp)
Create a temporary file containing the program code. The code is fetched via :meth:`_get_program`.
Below is the the instruction that describes the task: ### Input: Create a temporary file containing the program code. The code is fetched via :meth:`_get_program`. ### Response: def _setup_program(self): """ Create a temporary file containing the program code. The code is fetched via :meth:`_get_program`. """ filename = self._get_program_filename() path = os.path.join(self.get_temp_dir(), filename) self.program_fp = open(path, 'wb') self.program_fp.write(self._get_program()) self.program_fp.flush() os.chmod(self.program_fp.name, int('0700', 8)) reopen_readonly(self.program_fp)
def _read_header(self): ''' Little-endian |... 4 bytes unsigned int ...|... 4 bytes unsigned int ...| | frames count | dimensions count | ''' self._fh.seek(0) buf = self._fh.read(4*2) fc, dc = struct.unpack("<II", buf) return fc, dc
Little-endian |... 4 bytes unsigned int ...|... 4 bytes unsigned int ...| | frames count | dimensions count |
Below is the the instruction that describes the task: ### Input: Little-endian |... 4 bytes unsigned int ...|... 4 bytes unsigned int ...| | frames count | dimensions count | ### Response: def _read_header(self): ''' Little-endian |... 4 bytes unsigned int ...|... 4 bytes unsigned int ...| | frames count | dimensions count | ''' self._fh.seek(0) buf = self._fh.read(4*2) fc, dc = struct.unpack("<II", buf) return fc, dc
def create_track(self, href=None, media_url=None, label=None, audio_channel=None): """Add a new track to a bundle. Note that the total number of allowable tracks is limited. See the API documentation for details. 'href' the relative href to the tracks list. May not be None. 'media_url' public URL to media file. May not be None. 'label' short name for the track. May be None. 'audio_channel' the channel(s) to use in a stereo file. May be None. For details see the API documentation. Returns a data structure equivalent to the JSON returned by the API. If the response status is not 2xx, or if the maximum number of tracks is exceeded, throws an APIException. If the JSON to python data struct conversion fails, throws an APIDataException.""" # Argument error checking. assert href is not None assert media_url is not None # Prepare the data we're going to write. data = None fields = {} fields['media_url'] = media_url if label is not None: fields['label'] = label if audio_channel is not None: fields['audio_channel'] = audio_channel if len(fields) > 0: data = fields raw_result = self.post(href, data) if raw_result.status < 200 or raw_result.status > 202: raise APIException(raw_result.status, raw_result.json) # Convert the JSON to a python data struct. return self._parse_json(raw_result.json)
Add a new track to a bundle. Note that the total number of allowable tracks is limited. See the API documentation for details. 'href' the relative href to the tracks list. May not be None. 'media_url' public URL to media file. May not be None. 'label' short name for the track. May be None. 'audio_channel' the channel(s) to use in a stereo file. May be None. For details see the API documentation. Returns a data structure equivalent to the JSON returned by the API. If the response status is not 2xx, or if the maximum number of tracks is exceeded, throws an APIException. If the JSON to python data struct conversion fails, throws an APIDataException.
Below is the the instruction that describes the task: ### Input: Add a new track to a bundle. Note that the total number of allowable tracks is limited. See the API documentation for details. 'href' the relative href to the tracks list. May not be None. 'media_url' public URL to media file. May not be None. 'label' short name for the track. May be None. 'audio_channel' the channel(s) to use in a stereo file. May be None. For details see the API documentation. Returns a data structure equivalent to the JSON returned by the API. If the response status is not 2xx, or if the maximum number of tracks is exceeded, throws an APIException. If the JSON to python data struct conversion fails, throws an APIDataException. ### Response: def create_track(self, href=None, media_url=None, label=None, audio_channel=None): """Add a new track to a bundle. Note that the total number of allowable tracks is limited. See the API documentation for details. 'href' the relative href to the tracks list. May not be None. 'media_url' public URL to media file. May not be None. 'label' short name for the track. May be None. 'audio_channel' the channel(s) to use in a stereo file. May be None. For details see the API documentation. Returns a data structure equivalent to the JSON returned by the API. If the response status is not 2xx, or if the maximum number of tracks is exceeded, throws an APIException. If the JSON to python data struct conversion fails, throws an APIDataException.""" # Argument error checking. assert href is not None assert media_url is not None # Prepare the data we're going to write. data = None fields = {} fields['media_url'] = media_url if label is not None: fields['label'] = label if audio_channel is not None: fields['audio_channel'] = audio_channel if len(fields) > 0: data = fields raw_result = self.post(href, data) if raw_result.status < 200 or raw_result.status > 202: raise APIException(raw_result.status, raw_result.json) # Convert the JSON to a python data struct. return self._parse_json(raw_result.json)
def _hash(self, hash_name): """ Returns a hash object for the file at the current path. `hash_name` should be a hash algo name (such as ``'md5'`` or ``'sha1'``) that's available in the :mod:`hashlib` module. """ m = hashlib.new(hash_name) for chunk in self.chunks(8192, mode="rb"): m.update(chunk) return m
Returns a hash object for the file at the current path. `hash_name` should be a hash algo name (such as ``'md5'`` or ``'sha1'``) that's available in the :mod:`hashlib` module.
Below is the the instruction that describes the task: ### Input: Returns a hash object for the file at the current path. `hash_name` should be a hash algo name (such as ``'md5'`` or ``'sha1'``) that's available in the :mod:`hashlib` module. ### Response: def _hash(self, hash_name): """ Returns a hash object for the file at the current path. `hash_name` should be a hash algo name (such as ``'md5'`` or ``'sha1'``) that's available in the :mod:`hashlib` module. """ m = hashlib.new(hash_name) for chunk in self.chunks(8192, mode="rb"): m.update(chunk) return m
async def _download_text(url, session): """Asynchronously request a URL and get the encoded text content of the body. Parameters ---------- url : `str` URL to download. session : `aiohttp.ClientSession` An open aiohttp session. Returns ------- content : `str` Content downloaded from the URL. """ logger = logging.getLogger(__name__) async with session.get(url) as response: # aiohttp decodes the content to a Python string logger.info('Downloading %r', url) return await response.text()
Asynchronously request a URL and get the encoded text content of the body. Parameters ---------- url : `str` URL to download. session : `aiohttp.ClientSession` An open aiohttp session. Returns ------- content : `str` Content downloaded from the URL.
Below is the the instruction that describes the task: ### Input: Asynchronously request a URL and get the encoded text content of the body. Parameters ---------- url : `str` URL to download. session : `aiohttp.ClientSession` An open aiohttp session. Returns ------- content : `str` Content downloaded from the URL. ### Response: async def _download_text(url, session): """Asynchronously request a URL and get the encoded text content of the body. Parameters ---------- url : `str` URL to download. session : `aiohttp.ClientSession` An open aiohttp session. Returns ------- content : `str` Content downloaded from the URL. """ logger = logging.getLogger(__name__) async with session.get(url) as response: # aiohttp decodes the content to a Python string logger.info('Downloading %r', url) return await response.text()
def _reset_kvstore(self): """Reset kvstore.""" if self._kvstore and 'dist' in self._kvstore.type: raise RuntimeError("Cannot reset distributed KVStore.") self._kv_initialized = False self._kvstore = None self._distributed = None self._update_on_kvstore = None self._params_to_init = [param for param in self._params]
Reset kvstore.
Below is the the instruction that describes the task: ### Input: Reset kvstore. ### Response: def _reset_kvstore(self): """Reset kvstore.""" if self._kvstore and 'dist' in self._kvstore.type: raise RuntimeError("Cannot reset distributed KVStore.") self._kv_initialized = False self._kvstore = None self._distributed = None self._update_on_kvstore = None self._params_to_init = [param for param in self._params]
def create_module(sym, data_shapes, label_shapes, label_names, gpus=''): """Creates a new MXNet module. Parameters ---------- sym : Symbol An MXNet symbol. input_shape: tuple The shape of the input data in the form of (batch_size, channels, height, width) files: list of strings List of URLs pertaining to files that need to be downloaded in order to use the model. data_shapes: list of tuples. List of tuples where each tuple is a pair of input variable name and its shape. label_shapes: list of (str, tuple) Typically is ``data_iter.provide_label``. label_names: list of str Name of the output labels in the MXNet symbolic graph. gpus: str Comma separated string of gpu ids on which inferences are executed. E.g. 3,5,6 would refer to GPUs 3, 5 and 6. If empty, we use CPU. Returns ------- MXNet module """ if gpus == '': devices = mx.cpu() else: devices = [mx.gpu(int(i)) for i in gpus.split(',')] data_names = [data_shape[0] for data_shape in data_shapes] mod = mx.mod.Module( symbol=sym, data_names=data_names, context=devices, label_names=label_names ) mod.bind( for_training=False, data_shapes=data_shapes, label_shapes=label_shapes ) return mod
Creates a new MXNet module. Parameters ---------- sym : Symbol An MXNet symbol. input_shape: tuple The shape of the input data in the form of (batch_size, channels, height, width) files: list of strings List of URLs pertaining to files that need to be downloaded in order to use the model. data_shapes: list of tuples. List of tuples where each tuple is a pair of input variable name and its shape. label_shapes: list of (str, tuple) Typically is ``data_iter.provide_label``. label_names: list of str Name of the output labels in the MXNet symbolic graph. gpus: str Comma separated string of gpu ids on which inferences are executed. E.g. 3,5,6 would refer to GPUs 3, 5 and 6. If empty, we use CPU. Returns ------- MXNet module
Below is the the instruction that describes the task: ### Input: Creates a new MXNet module. Parameters ---------- sym : Symbol An MXNet symbol. input_shape: tuple The shape of the input data in the form of (batch_size, channels, height, width) files: list of strings List of URLs pertaining to files that need to be downloaded in order to use the model. data_shapes: list of tuples. List of tuples where each tuple is a pair of input variable name and its shape. label_shapes: list of (str, tuple) Typically is ``data_iter.provide_label``. label_names: list of str Name of the output labels in the MXNet symbolic graph. gpus: str Comma separated string of gpu ids on which inferences are executed. E.g. 3,5,6 would refer to GPUs 3, 5 and 6. If empty, we use CPU. Returns ------- MXNet module ### Response: def create_module(sym, data_shapes, label_shapes, label_names, gpus=''): """Creates a new MXNet module. Parameters ---------- sym : Symbol An MXNet symbol. input_shape: tuple The shape of the input data in the form of (batch_size, channels, height, width) files: list of strings List of URLs pertaining to files that need to be downloaded in order to use the model. data_shapes: list of tuples. List of tuples where each tuple is a pair of input variable name and its shape. label_shapes: list of (str, tuple) Typically is ``data_iter.provide_label``. label_names: list of str Name of the output labels in the MXNet symbolic graph. gpus: str Comma separated string of gpu ids on which inferences are executed. E.g. 3,5,6 would refer to GPUs 3, 5 and 6. If empty, we use CPU. Returns ------- MXNet module """ if gpus == '': devices = mx.cpu() else: devices = [mx.gpu(int(i)) for i in gpus.split(',')] data_names = [data_shape[0] for data_shape in data_shapes] mod = mx.mod.Module( symbol=sym, data_names=data_names, context=devices, label_names=label_names ) mod.bind( for_training=False, data_shapes=data_shapes, label_shapes=label_shapes ) return mod
def fetcher(ctx, xmlrpc, xmlrpc_host, xmlrpc_port, poolsize, proxy, user_agent, timeout, phantomjs_endpoint, puppeteer_endpoint, splash_endpoint, fetcher_cls, async_mode=True, get_object=False, no_input=False): """ Run Fetcher. """ g = ctx.obj Fetcher = load_cls(None, None, fetcher_cls) if no_input: inqueue = None outqueue = None else: inqueue = g.scheduler2fetcher outqueue = g.fetcher2processor fetcher = Fetcher(inqueue=inqueue, outqueue=outqueue, poolsize=poolsize, proxy=proxy, async_mode=async_mode) fetcher.phantomjs_proxy = phantomjs_endpoint or g.phantomjs_proxy fetcher.puppeteer_proxy = puppeteer_endpoint or g.puppeteer_proxy fetcher.splash_endpoint = splash_endpoint if user_agent: fetcher.user_agent = user_agent if timeout: fetcher.default_options = copy.deepcopy(fetcher.default_options) fetcher.default_options['timeout'] = timeout g.instances.append(fetcher) if g.get('testing_mode') or get_object: return fetcher if xmlrpc: utils.run_in_thread(fetcher.xmlrpc_run, port=xmlrpc_port, bind=xmlrpc_host) fetcher.run()
Run Fetcher.
Below is the the instruction that describes the task: ### Input: Run Fetcher. ### Response: def fetcher(ctx, xmlrpc, xmlrpc_host, xmlrpc_port, poolsize, proxy, user_agent, timeout, phantomjs_endpoint, puppeteer_endpoint, splash_endpoint, fetcher_cls, async_mode=True, get_object=False, no_input=False): """ Run Fetcher. """ g = ctx.obj Fetcher = load_cls(None, None, fetcher_cls) if no_input: inqueue = None outqueue = None else: inqueue = g.scheduler2fetcher outqueue = g.fetcher2processor fetcher = Fetcher(inqueue=inqueue, outqueue=outqueue, poolsize=poolsize, proxy=proxy, async_mode=async_mode) fetcher.phantomjs_proxy = phantomjs_endpoint or g.phantomjs_proxy fetcher.puppeteer_proxy = puppeteer_endpoint or g.puppeteer_proxy fetcher.splash_endpoint = splash_endpoint if user_agent: fetcher.user_agent = user_agent if timeout: fetcher.default_options = copy.deepcopy(fetcher.default_options) fetcher.default_options['timeout'] = timeout g.instances.append(fetcher) if g.get('testing_mode') or get_object: return fetcher if xmlrpc: utils.run_in_thread(fetcher.xmlrpc_run, port=xmlrpc_port, bind=xmlrpc_host) fetcher.run()
def any_embedded_linux(self): """Check whether the current board is any embedded Linux device.""" return self.any_raspberry_pi or self.any_beaglebone or \ self.any_orange_pi or self.any_giant_board or self.any_jetson_board
Check whether the current board is any embedded Linux device.
Below is the the instruction that describes the task: ### Input: Check whether the current board is any embedded Linux device. ### Response: def any_embedded_linux(self): """Check whether the current board is any embedded Linux device.""" return self.any_raspberry_pi or self.any_beaglebone or \ self.any_orange_pi or self.any_giant_board or self.any_jetson_board
def prependsitedir(projdir, *args): """ like sys.addsitedir() but gives the added directory preference over system directories. The paths will be normalized for dots and slash direction before being added to the path. projdir: the path you want to add to sys.path. If its a a file, the parent directory will be added *args: additional directories relative to the projdir to add to sys.path. """ # let the user be lazy and send a file, we will convert to parent directory # of file if path.isfile(projdir): projdir = path.dirname(projdir) projdir = path.abspath(projdir) # any args are considered paths that need to be joined to the # projdir to get to the correct directory. libpaths = [] for lpath in args: libpaths.append(path.join(projdir, path.normpath(lpath))) # add the path to sys.path with preference over everything that currently # exists in sys.path syspath_orig = set(sys.path) site.addsitedir(projdir) for lpath in libpaths: site.addsitedir(lpath) syspath_after = set(sys.path) new_paths = list(syspath_after.difference(syspath_orig)) sys.path = new_paths + sys.path
like sys.addsitedir() but gives the added directory preference over system directories. The paths will be normalized for dots and slash direction before being added to the path. projdir: the path you want to add to sys.path. If its a a file, the parent directory will be added *args: additional directories relative to the projdir to add to sys.path.
Below is the the instruction that describes the task: ### Input: like sys.addsitedir() but gives the added directory preference over system directories. The paths will be normalized for dots and slash direction before being added to the path. projdir: the path you want to add to sys.path. If its a a file, the parent directory will be added *args: additional directories relative to the projdir to add to sys.path. ### Response: def prependsitedir(projdir, *args): """ like sys.addsitedir() but gives the added directory preference over system directories. The paths will be normalized for dots and slash direction before being added to the path. projdir: the path you want to add to sys.path. If its a a file, the parent directory will be added *args: additional directories relative to the projdir to add to sys.path. """ # let the user be lazy and send a file, we will convert to parent directory # of file if path.isfile(projdir): projdir = path.dirname(projdir) projdir = path.abspath(projdir) # any args are considered paths that need to be joined to the # projdir to get to the correct directory. libpaths = [] for lpath in args: libpaths.append(path.join(projdir, path.normpath(lpath))) # add the path to sys.path with preference over everything that currently # exists in sys.path syspath_orig = set(sys.path) site.addsitedir(projdir) for lpath in libpaths: site.addsitedir(lpath) syspath_after = set(sys.path) new_paths = list(syspath_after.difference(syspath_orig)) sys.path = new_paths + sys.path
def endswith(self, suffix, start=None, end=None): """Return whether the current bitstring ends with suffix. suffix -- The bitstring to search for. start -- The bit position to start from. Defaults to 0. end -- The bit position to end at. Defaults to self.len. """ suffix = Bits(suffix) start, end = self._validate_slice(start, end) if start + suffix.len > end: return False start = end - suffix.len return self._slice(start, end) == suffix
Return whether the current bitstring ends with suffix. suffix -- The bitstring to search for. start -- The bit position to start from. Defaults to 0. end -- The bit position to end at. Defaults to self.len.
Below is the the instruction that describes the task: ### Input: Return whether the current bitstring ends with suffix. suffix -- The bitstring to search for. start -- The bit position to start from. Defaults to 0. end -- The bit position to end at. Defaults to self.len. ### Response: def endswith(self, suffix, start=None, end=None): """Return whether the current bitstring ends with suffix. suffix -- The bitstring to search for. start -- The bit position to start from. Defaults to 0. end -- The bit position to end at. Defaults to self.len. """ suffix = Bits(suffix) start, end = self._validate_slice(start, end) if start + suffix.len > end: return False start = end - suffix.len return self._slice(start, end) == suffix
def __get_query_filters(cls, filters={}, inverse=False): """ Convert a dict with the filters to be applied ({"name1":"value1", "name2":"value2"}) to a list of query objects which can be used together in a query using boolean combination logic. :param filters: dict with the filters to be applied :param inverse: if True include all the inverse filters (the one starting with *) :return: a list of es_dsl 'MatchPhrase' Query objects Ex: [MatchPhrase(name1="value1"), MatchPhrase(name2="value2"), ..] Dict representation of the object: {'match_phrase': {'field': 'home'}} """ query_filters = [] for name in filters: if name[0] == '*' and not inverse: # An inverse filter and not inverse mode continue if name[0] != '*' and inverse: # A direct filter and inverse mode continue field_name = name[1:] if name[0] == '*' else name params = {field_name: filters[name]} # trying to use es_dsl only and not creating hard coded queries query_filters.append(Q('match_phrase', **params)) return query_filters
Convert a dict with the filters to be applied ({"name1":"value1", "name2":"value2"}) to a list of query objects which can be used together in a query using boolean combination logic. :param filters: dict with the filters to be applied :param inverse: if True include all the inverse filters (the one starting with *) :return: a list of es_dsl 'MatchPhrase' Query objects Ex: [MatchPhrase(name1="value1"), MatchPhrase(name2="value2"), ..] Dict representation of the object: {'match_phrase': {'field': 'home'}}
Below is the the instruction that describes the task: ### Input: Convert a dict with the filters to be applied ({"name1":"value1", "name2":"value2"}) to a list of query objects which can be used together in a query using boolean combination logic. :param filters: dict with the filters to be applied :param inverse: if True include all the inverse filters (the one starting with *) :return: a list of es_dsl 'MatchPhrase' Query objects Ex: [MatchPhrase(name1="value1"), MatchPhrase(name2="value2"), ..] Dict representation of the object: {'match_phrase': {'field': 'home'}} ### Response: def __get_query_filters(cls, filters={}, inverse=False): """ Convert a dict with the filters to be applied ({"name1":"value1", "name2":"value2"}) to a list of query objects which can be used together in a query using boolean combination logic. :param filters: dict with the filters to be applied :param inverse: if True include all the inverse filters (the one starting with *) :return: a list of es_dsl 'MatchPhrase' Query objects Ex: [MatchPhrase(name1="value1"), MatchPhrase(name2="value2"), ..] Dict representation of the object: {'match_phrase': {'field': 'home'}} """ query_filters = [] for name in filters: if name[0] == '*' and not inverse: # An inverse filter and not inverse mode continue if name[0] != '*' and inverse: # A direct filter and inverse mode continue field_name = name[1:] if name[0] == '*' else name params = {field_name: filters[name]} # trying to use es_dsl only and not creating hard coded queries query_filters.append(Q('match_phrase', **params)) return query_filters
def generate_cdef(): """Generate the cdef output file""" include_libc_path = path.join(HERE, 'fake_libc_include') include_vulkan_path = path.join(HERE, 'vulkan_include') out_file = path.join(HERE, path.pardir, 'vulkan', 'vulkan.cdef.h') header = path.join(include_vulkan_path, 'vulkan.h') command = ['cpp', '-std=c99', '-P', '-nostdinc', '-I' + include_libc_path, '-I' + include_vulkan_path, '-o' + out_file, '-DVK_USE_PLATFORM_XCB_KHR', '-DVK_USE_PLATFORM_WAYLAND_KHR', '-DVK_USE_PLATFORM_ANDROID_KHR', '-DVK_USE_PLATFORM_WIN32_KHR', '-DVK_USE_PLATFORM_XLIB_KHR', header] subprocess.run(command, check=True)
Generate the cdef output file
Below is the the instruction that describes the task: ### Input: Generate the cdef output file ### Response: def generate_cdef(): """Generate the cdef output file""" include_libc_path = path.join(HERE, 'fake_libc_include') include_vulkan_path = path.join(HERE, 'vulkan_include') out_file = path.join(HERE, path.pardir, 'vulkan', 'vulkan.cdef.h') header = path.join(include_vulkan_path, 'vulkan.h') command = ['cpp', '-std=c99', '-P', '-nostdinc', '-I' + include_libc_path, '-I' + include_vulkan_path, '-o' + out_file, '-DVK_USE_PLATFORM_XCB_KHR', '-DVK_USE_PLATFORM_WAYLAND_KHR', '-DVK_USE_PLATFORM_ANDROID_KHR', '-DVK_USE_PLATFORM_WIN32_KHR', '-DVK_USE_PLATFORM_XLIB_KHR', header] subprocess.run(command, check=True)
def send_email_message(self, recipient, subject, html_message, text_message, sender_email, sender_name): """ Send email message via Flask-Sendmail. Args: recipient: Email address or tuple of (Name, Email-address). subject: Subject line. html_message: The message body in HTML. text_message: The message body in plain text. """ if not current_app.testing: # pragma: no cover # Prepare email message from flask_sendmail import Message message = Message( subject, recipients=[recipient], html=html_message, body=text_message) # Send email message self.mail.send(message)
Send email message via Flask-Sendmail. Args: recipient: Email address or tuple of (Name, Email-address). subject: Subject line. html_message: The message body in HTML. text_message: The message body in plain text.
Below is the the instruction that describes the task: ### Input: Send email message via Flask-Sendmail. Args: recipient: Email address or tuple of (Name, Email-address). subject: Subject line. html_message: The message body in HTML. text_message: The message body in plain text. ### Response: def send_email_message(self, recipient, subject, html_message, text_message, sender_email, sender_name): """ Send email message via Flask-Sendmail. Args: recipient: Email address or tuple of (Name, Email-address). subject: Subject line. html_message: The message body in HTML. text_message: The message body in plain text. """ if not current_app.testing: # pragma: no cover # Prepare email message from flask_sendmail import Message message = Message( subject, recipients=[recipient], html=html_message, body=text_message) # Send email message self.mail.send(message)
def estimate_duration(self): """ Estimate duration (timedelta) for this task. Estimate the average length of time we expect between this task's start and end times. :returns: deferred that when fired returns a timedelta object for the estimated timedelta, or the actual timedelta, or None if we could not estimate a time for this task method. """ if self.completion_ts: # Task is already complete. Return the exact duration timedelta. return defer.succeed(self.duration) if not self.package: # TODO: estimate duration some other way besides # getAverageBuildDuration. For example, we could estimate # completion time for newRepo/createrepo tasks by looking back at # the the past couple of tasks for this tag. return defer.succeed(None) if self.method == 'tagBuild': # These are pretty short. Haphazardly guess the max SLEEPTIME plus # a few seconds. tag_build_time = SLEEPTIME + timedelta(seconds=15) return defer.succeed(tag_build_time) return average_build_duration(self.connection, self.package)
Estimate duration (timedelta) for this task. Estimate the average length of time we expect between this task's start and end times. :returns: deferred that when fired returns a timedelta object for the estimated timedelta, or the actual timedelta, or None if we could not estimate a time for this task method.
Below is the the instruction that describes the task: ### Input: Estimate duration (timedelta) for this task. Estimate the average length of time we expect between this task's start and end times. :returns: deferred that when fired returns a timedelta object for the estimated timedelta, or the actual timedelta, or None if we could not estimate a time for this task method. ### Response: def estimate_duration(self): """ Estimate duration (timedelta) for this task. Estimate the average length of time we expect between this task's start and end times. :returns: deferred that when fired returns a timedelta object for the estimated timedelta, or the actual timedelta, or None if we could not estimate a time for this task method. """ if self.completion_ts: # Task is already complete. Return the exact duration timedelta. return defer.succeed(self.duration) if not self.package: # TODO: estimate duration some other way besides # getAverageBuildDuration. For example, we could estimate # completion time for newRepo/createrepo tasks by looking back at # the the past couple of tasks for this tag. return defer.succeed(None) if self.method == 'tagBuild': # These are pretty short. Haphazardly guess the max SLEEPTIME plus # a few seconds. tag_build_time = SLEEPTIME + timedelta(seconds=15) return defer.succeed(tag_build_time) return average_build_duration(self.connection, self.package)
def _parse_conference(self, stats): """ Parse the conference abbreviation for the player's team. The conference abbreviation is embedded within the conference name tag and should be special-parsed to extract it. Parameters ---------- stats : PyQuery object A PyQuery object containing the HTML from the player's stats page. Returns ------- string Returns a string of the conference abbreviation, such as 'big-12'. """ conference_tag = stats(PLAYER_SCHEME['conference']) conference = re.sub(r'.*/cbb/conferences/', '', str(conference_tag('a'))) conference = re.sub(r'/.*', '', conference) return conference
Parse the conference abbreviation for the player's team. The conference abbreviation is embedded within the conference name tag and should be special-parsed to extract it. Parameters ---------- stats : PyQuery object A PyQuery object containing the HTML from the player's stats page. Returns ------- string Returns a string of the conference abbreviation, such as 'big-12'.
Below is the the instruction that describes the task: ### Input: Parse the conference abbreviation for the player's team. The conference abbreviation is embedded within the conference name tag and should be special-parsed to extract it. Parameters ---------- stats : PyQuery object A PyQuery object containing the HTML from the player's stats page. Returns ------- string Returns a string of the conference abbreviation, such as 'big-12'. ### Response: def _parse_conference(self, stats): """ Parse the conference abbreviation for the player's team. The conference abbreviation is embedded within the conference name tag and should be special-parsed to extract it. Parameters ---------- stats : PyQuery object A PyQuery object containing the HTML from the player's stats page. Returns ------- string Returns a string of the conference abbreviation, such as 'big-12'. """ conference_tag = stats(PLAYER_SCHEME['conference']) conference = re.sub(r'.*/cbb/conferences/', '', str(conference_tag('a'))) conference = re.sub(r'/.*', '', conference) return conference
def serialize(self, sw, **kw): ''' sw -- SoapWriter instance, add WS-Address header. ''' for pyobj in self.header_pyobjs: if hasattr(pyobj, 'typecode') is False: raise RuntimeError, 'all header pyobjs must have a typecode attribute' sw.serialize_header(pyobj, **kw)
sw -- SoapWriter instance, add WS-Address header.
Below is the the instruction that describes the task: ### Input: sw -- SoapWriter instance, add WS-Address header. ### Response: def serialize(self, sw, **kw): ''' sw -- SoapWriter instance, add WS-Address header. ''' for pyobj in self.header_pyobjs: if hasattr(pyobj, 'typecode') is False: raise RuntimeError, 'all header pyobjs must have a typecode attribute' sw.serialize_header(pyobj, **kw)
def flexifunction_read_req_encode(self, target_system, target_component, read_req_type, data_index): ''' Reqest reading of flexifunction data target_system : System ID (uint8_t) target_component : Component ID (uint8_t) read_req_type : Type of flexifunction data requested (int16_t) data_index : index into data where needed (int16_t) ''' return MAVLink_flexifunction_read_req_message(target_system, target_component, read_req_type, data_index)
Reqest reading of flexifunction data target_system : System ID (uint8_t) target_component : Component ID (uint8_t) read_req_type : Type of flexifunction data requested (int16_t) data_index : index into data where needed (int16_t)
Below is the the instruction that describes the task: ### Input: Reqest reading of flexifunction data target_system : System ID (uint8_t) target_component : Component ID (uint8_t) read_req_type : Type of flexifunction data requested (int16_t) data_index : index into data where needed (int16_t) ### Response: def flexifunction_read_req_encode(self, target_system, target_component, read_req_type, data_index): ''' Reqest reading of flexifunction data target_system : System ID (uint8_t) target_component : Component ID (uint8_t) read_req_type : Type of flexifunction data requested (int16_t) data_index : index into data where needed (int16_t) ''' return MAVLink_flexifunction_read_req_message(target_system, target_component, read_req_type, data_index)
def load_gene_exp_to_df(inst_path): ''' Loads gene expression data from 10x in sparse matrix format and returns a Pandas dataframe ''' import pandas as pd from scipy import io from scipy import sparse from ast import literal_eval as make_tuple # matrix Matrix = io.mmread( inst_path + 'matrix.mtx') mat = Matrix.todense() # genes filename = inst_path + 'genes.tsv' f = open(filename, 'r') lines = f.readlines() f.close() # # add unique id to all genes # genes = [] # unique_id = 0 # for inst_line in lines: # inst_line = inst_line.strip().split() # if len(inst_line) > 1: # inst_gene = inst_line[1] # else: # inst_gene = inst_line[0] # genes.append(inst_gene + '_' + str(unique_id)) # unique_id = unique_id + 1 # add unique id only to duplicate genes ini_genes = [] for inst_line in lines: inst_line = inst_line.strip().split() if len(inst_line) > 1: inst_gene = inst_line[1] else: inst_gene = inst_line[0] ini_genes.append(inst_gene) gene_name_count = pd.Series(ini_genes).value_counts() duplicate_genes = gene_name_count[gene_name_count > 1].index.tolist() dup_index = {} genes = [] for inst_row in ini_genes: # add index to non-unique genes if inst_row in duplicate_genes: # calc_non-unque index if inst_row not in dup_index: dup_index[inst_row] = 1 else: dup_index[inst_row] = dup_index[inst_row] + 1 new_row = inst_row + '_' + str(dup_index[inst_row]) else: new_row = inst_row genes.append(new_row) # barcodes filename = inst_path + 'barcodes.tsv' f = open(filename, 'r') lines = f.readlines() f.close() cell_barcodes = [] for inst_bc in lines: inst_bc = inst_bc.strip().split('\t') # remove dash from barcodes if necessary if '-' in inst_bc[0]: inst_bc[0] = inst_bc[0].split('-')[0] cell_barcodes.append(inst_bc[0]) # parse tuples if necessary try: cell_barcodes = [make_tuple(x) for x in cell_barcodes] except: pass try: genes = [make_tuple(x) for x in genes] except: pass # make dataframe df = pd.DataFrame(mat, index=genes, columns=cell_barcodes) return df
Loads gene expression data from 10x in sparse matrix format and returns a Pandas dataframe
Below is the the instruction that describes the task: ### Input: Loads gene expression data from 10x in sparse matrix format and returns a Pandas dataframe ### Response: def load_gene_exp_to_df(inst_path): ''' Loads gene expression data from 10x in sparse matrix format and returns a Pandas dataframe ''' import pandas as pd from scipy import io from scipy import sparse from ast import literal_eval as make_tuple # matrix Matrix = io.mmread( inst_path + 'matrix.mtx') mat = Matrix.todense() # genes filename = inst_path + 'genes.tsv' f = open(filename, 'r') lines = f.readlines() f.close() # # add unique id to all genes # genes = [] # unique_id = 0 # for inst_line in lines: # inst_line = inst_line.strip().split() # if len(inst_line) > 1: # inst_gene = inst_line[1] # else: # inst_gene = inst_line[0] # genes.append(inst_gene + '_' + str(unique_id)) # unique_id = unique_id + 1 # add unique id only to duplicate genes ini_genes = [] for inst_line in lines: inst_line = inst_line.strip().split() if len(inst_line) > 1: inst_gene = inst_line[1] else: inst_gene = inst_line[0] ini_genes.append(inst_gene) gene_name_count = pd.Series(ini_genes).value_counts() duplicate_genes = gene_name_count[gene_name_count > 1].index.tolist() dup_index = {} genes = [] for inst_row in ini_genes: # add index to non-unique genes if inst_row in duplicate_genes: # calc_non-unque index if inst_row not in dup_index: dup_index[inst_row] = 1 else: dup_index[inst_row] = dup_index[inst_row] + 1 new_row = inst_row + '_' + str(dup_index[inst_row]) else: new_row = inst_row genes.append(new_row) # barcodes filename = inst_path + 'barcodes.tsv' f = open(filename, 'r') lines = f.readlines() f.close() cell_barcodes = [] for inst_bc in lines: inst_bc = inst_bc.strip().split('\t') # remove dash from barcodes if necessary if '-' in inst_bc[0]: inst_bc[0] = inst_bc[0].split('-')[0] cell_barcodes.append(inst_bc[0]) # parse tuples if necessary try: cell_barcodes = [make_tuple(x) for x in cell_barcodes] except: pass try: genes = [make_tuple(x) for x in genes] except: pass # make dataframe df = pd.DataFrame(mat, index=genes, columns=cell_barcodes) return df
def is_tone(char, strict=True): """ Check whether the character is a tone or word accent symbol. In strict mode return True only for the symbols listed in the last group of the chart. If strict=False, also accept symbols that belong to the Modifier Tone Letters Unicode block [1]. [1]: http://www.unicode.org/charts/PDF/UA700.pdf """ if char in chart.tones: return True if not strict: return 0xA700 <= ord(char) <= 0xA71F return False
Check whether the character is a tone or word accent symbol. In strict mode return True only for the symbols listed in the last group of the chart. If strict=False, also accept symbols that belong to the Modifier Tone Letters Unicode block [1]. [1]: http://www.unicode.org/charts/PDF/UA700.pdf
Below is the the instruction that describes the task: ### Input: Check whether the character is a tone or word accent symbol. In strict mode return True only for the symbols listed in the last group of the chart. If strict=False, also accept symbols that belong to the Modifier Tone Letters Unicode block [1]. [1]: http://www.unicode.org/charts/PDF/UA700.pdf ### Response: def is_tone(char, strict=True): """ Check whether the character is a tone or word accent symbol. In strict mode return True only for the symbols listed in the last group of the chart. If strict=False, also accept symbols that belong to the Modifier Tone Letters Unicode block [1]. [1]: http://www.unicode.org/charts/PDF/UA700.pdf """ if char in chart.tones: return True if not strict: return 0xA700 <= ord(char) <= 0xA71F return False
def rename(self, new_name): """ Renames this NIO :param new_name: new NIO name """ yield from self._hypervisor.send("nio rename {name} {new_name}".format(name=self._name, new_name=new_name)) log.info("NIO {name} renamed to {new_name}".format(name=self._name, new_name=new_name)) self._name = new_name
Renames this NIO :param new_name: new NIO name
Below is the the instruction that describes the task: ### Input: Renames this NIO :param new_name: new NIO name ### Response: def rename(self, new_name): """ Renames this NIO :param new_name: new NIO name """ yield from self._hypervisor.send("nio rename {name} {new_name}".format(name=self._name, new_name=new_name)) log.info("NIO {name} renamed to {new_name}".format(name=self._name, new_name=new_name)) self._name = new_name
def _extract_word(self, source, position): """ Extracts the word that falls at or around a specific position :param source: The template source as a unicode string :param position: The position where the word falls :return: The word """ boundry = re.search('{{|{|\s|$', source[:position][::-1]) start_offset = boundry.end() if boundry.group(0).startswith('{') else boundry.start() boundry = re.search('}}|}|\s|$', source[position:]) end_offset = boundry.end() if boundry.group(0).startswith('}') else boundry.start() return source[position - start_offset:position + end_offset]
Extracts the word that falls at or around a specific position :param source: The template source as a unicode string :param position: The position where the word falls :return: The word
Below is the the instruction that describes the task: ### Input: Extracts the word that falls at or around a specific position :param source: The template source as a unicode string :param position: The position where the word falls :return: The word ### Response: def _extract_word(self, source, position): """ Extracts the word that falls at or around a specific position :param source: The template source as a unicode string :param position: The position where the word falls :return: The word """ boundry = re.search('{{|{|\s|$', source[:position][::-1]) start_offset = boundry.end() if boundry.group(0).startswith('{') else boundry.start() boundry = re.search('}}|}|\s|$', source[position:]) end_offset = boundry.end() if boundry.group(0).startswith('}') else boundry.start() return source[position - start_offset:position + end_offset]
def visit(self, url=''): """Visit the url, checking for rr errors in the response @param url: URL @return: Visit result """ result = super(CoyoteDriver, self).visit(url) source = self.page_source() return result
Visit the url, checking for rr errors in the response @param url: URL @return: Visit result
Below is the the instruction that describes the task: ### Input: Visit the url, checking for rr errors in the response @param url: URL @return: Visit result ### Response: def visit(self, url=''): """Visit the url, checking for rr errors in the response @param url: URL @return: Visit result """ result = super(CoyoteDriver, self).visit(url) source = self.page_source() return result
def find_cumulative_indices(list_of_numbers, search_sum): """ find_cumulative_indices([70, 58, 81, 909, 70, 215, 70, 1022, 580, 930, 898], 285) -> [[4, 5],[5, 6]] """ u = 0 y = 0 result = [] for idx, val in enumerate(list_of_numbers): y += list_of_numbers[idx] while y >= search_sum: if y == search_sum: result.append(range(u, idx+1)) y -= list_of_numbers[u] u += 1 # if matches are not found, empty string is returned # for easier cell data handling on pandas dataframe return result or ''
find_cumulative_indices([70, 58, 81, 909, 70, 215, 70, 1022, 580, 930, 898], 285) -> [[4, 5],[5, 6]]
Below is the the instruction that describes the task: ### Input: find_cumulative_indices([70, 58, 81, 909, 70, 215, 70, 1022, 580, 930, 898], 285) -> [[4, 5],[5, 6]] ### Response: def find_cumulative_indices(list_of_numbers, search_sum): """ find_cumulative_indices([70, 58, 81, 909, 70, 215, 70, 1022, 580, 930, 898], 285) -> [[4, 5],[5, 6]] """ u = 0 y = 0 result = [] for idx, val in enumerate(list_of_numbers): y += list_of_numbers[idx] while y >= search_sum: if y == search_sum: result.append(range(u, idx+1)) y -= list_of_numbers[u] u += 1 # if matches are not found, empty string is returned # for easier cell data handling on pandas dataframe return result or ''
def MakeSelfExtractingZip(self, payload_data, output_path): """Repack the installer into the payload. Args: payload_data: data payload for zip file output_path: filename for the zip output Raises: RuntimeError: if the ClientBuilder.unzipsfx_stub doesn't require admin. Returns: output_path: filename string of zip output file """ context = self.context + ["Client Context"] src_zip = zipfile.ZipFile(io.BytesIO(payload_data), mode="r") zip_data = io.BytesIO() output_zip = zipfile.ZipFile( zip_data, mode="w", compression=zipfile.ZIP_DEFLATED) config_file_name = config.CONFIG.Get( "ClientBuilder.config_filename", context=context) # Copy the rest of the files from the package to the new zip. for template_file in src_zip.namelist(): if template_file != config_file_name: # Avoid writing the config file twice if we're repacking a binary that # has already been run through deployment. We write it in the next step, # so no need to copy over from the original here. CopyFileInZip(src_zip, template_file, output_zip) client_config_content = self.GetClientConfig(context) output_zip.writestr( config_file_name, client_config_content.encode("utf-8"), compress_type=zipfile.ZIP_STORED) # The zip file comment is used by the self extractor to run the installation # script. Comment has to be `bytes` object because `zipfile` module is not # smart enough to properly handle `unicode` objects. We use the `encode` # method instead of `SmartStr` because we expect this option to be an # `unicode` object and in case it is not, we want it to blow up. output_zip.comment = b"$AUTORUN$>%s" % config.CONFIG.Get( "ClientBuilder.autorun_command_line", context=context).encode("utf-8") output_zip.close() utils.EnsureDirExists(os.path.dirname(output_path)) with open(output_path, "wb") as fd: # First write the installer stub stub_data = io.BytesIO() unzipsfx_stub = config.CONFIG.Get( "ClientBuilder.unzipsfx_stub", context=context) stub_raw = open(unzipsfx_stub, "rb").read() # Check stub has been compiled with the requireAdministrator manifest. if b"level=\"requireAdministrator" not in stub_raw: raise RuntimeError("Bad unzip binary in use. Not compiled with the" "requireAdministrator manifest option.") stub_data.write(stub_raw) # If in verbose mode, modify the unzip bins PE header to run in console # mode for easier debugging. SetPeSubsystem( stub_data, console=config.CONFIG.Get("ClientBuilder.console", context=context)) # Now patch up the .rsrc section to contain the payload. end_of_file = zip_data.tell() + stub_data.tell() # This is the IMAGE_SECTION_HEADER.Name which is also the start of # IMAGE_SECTION_HEADER. offset_to_rsrc = stub_data.getvalue().find(b".rsrc") # IMAGE_SECTION_HEADER.PointerToRawData is a 32 bit int. stub_data.seek(offset_to_rsrc + 20) start_of_rsrc_section = struct.unpack("<I", stub_data.read(4))[0] # Adjust IMAGE_SECTION_HEADER.SizeOfRawData to span from the old start to # the end of file. stub_data.seek(offset_to_rsrc + 16) stub_data.write(struct.pack("<I", end_of_file - start_of_rsrc_section)) # Concatenate stub and zip file. out_data = io.BytesIO() out_data.write(stub_data.getvalue()) out_data.write(zip_data.getvalue()) # Then write the actual output file. fd.write(out_data.getvalue()) if self.signer: self.signer.SignFile(output_path) logging.info("Deployable binary generated at %s", output_path) return output_path
Repack the installer into the payload. Args: payload_data: data payload for zip file output_path: filename for the zip output Raises: RuntimeError: if the ClientBuilder.unzipsfx_stub doesn't require admin. Returns: output_path: filename string of zip output file
Below is the the instruction that describes the task: ### Input: Repack the installer into the payload. Args: payload_data: data payload for zip file output_path: filename for the zip output Raises: RuntimeError: if the ClientBuilder.unzipsfx_stub doesn't require admin. Returns: output_path: filename string of zip output file ### Response: def MakeSelfExtractingZip(self, payload_data, output_path): """Repack the installer into the payload. Args: payload_data: data payload for zip file output_path: filename for the zip output Raises: RuntimeError: if the ClientBuilder.unzipsfx_stub doesn't require admin. Returns: output_path: filename string of zip output file """ context = self.context + ["Client Context"] src_zip = zipfile.ZipFile(io.BytesIO(payload_data), mode="r") zip_data = io.BytesIO() output_zip = zipfile.ZipFile( zip_data, mode="w", compression=zipfile.ZIP_DEFLATED) config_file_name = config.CONFIG.Get( "ClientBuilder.config_filename", context=context) # Copy the rest of the files from the package to the new zip. for template_file in src_zip.namelist(): if template_file != config_file_name: # Avoid writing the config file twice if we're repacking a binary that # has already been run through deployment. We write it in the next step, # so no need to copy over from the original here. CopyFileInZip(src_zip, template_file, output_zip) client_config_content = self.GetClientConfig(context) output_zip.writestr( config_file_name, client_config_content.encode("utf-8"), compress_type=zipfile.ZIP_STORED) # The zip file comment is used by the self extractor to run the installation # script. Comment has to be `bytes` object because `zipfile` module is not # smart enough to properly handle `unicode` objects. We use the `encode` # method instead of `SmartStr` because we expect this option to be an # `unicode` object and in case it is not, we want it to blow up. output_zip.comment = b"$AUTORUN$>%s" % config.CONFIG.Get( "ClientBuilder.autorun_command_line", context=context).encode("utf-8") output_zip.close() utils.EnsureDirExists(os.path.dirname(output_path)) with open(output_path, "wb") as fd: # First write the installer stub stub_data = io.BytesIO() unzipsfx_stub = config.CONFIG.Get( "ClientBuilder.unzipsfx_stub", context=context) stub_raw = open(unzipsfx_stub, "rb").read() # Check stub has been compiled with the requireAdministrator manifest. if b"level=\"requireAdministrator" not in stub_raw: raise RuntimeError("Bad unzip binary in use. Not compiled with the" "requireAdministrator manifest option.") stub_data.write(stub_raw) # If in verbose mode, modify the unzip bins PE header to run in console # mode for easier debugging. SetPeSubsystem( stub_data, console=config.CONFIG.Get("ClientBuilder.console", context=context)) # Now patch up the .rsrc section to contain the payload. end_of_file = zip_data.tell() + stub_data.tell() # This is the IMAGE_SECTION_HEADER.Name which is also the start of # IMAGE_SECTION_HEADER. offset_to_rsrc = stub_data.getvalue().find(b".rsrc") # IMAGE_SECTION_HEADER.PointerToRawData is a 32 bit int. stub_data.seek(offset_to_rsrc + 20) start_of_rsrc_section = struct.unpack("<I", stub_data.read(4))[0] # Adjust IMAGE_SECTION_HEADER.SizeOfRawData to span from the old start to # the end of file. stub_data.seek(offset_to_rsrc + 16) stub_data.write(struct.pack("<I", end_of_file - start_of_rsrc_section)) # Concatenate stub and zip file. out_data = io.BytesIO() out_data.write(stub_data.getvalue()) out_data.write(zip_data.getvalue()) # Then write the actual output file. fd.write(out_data.getvalue()) if self.signer: self.signer.SignFile(output_path) logging.info("Deployable binary generated at %s", output_path) return output_path
def get_obj_cols(df): """ Returns names of 'object' columns in the DataFrame. """ obj_cols = [] for idx, dt in enumerate(df.dtypes): if dt == 'object' or is_category(dt): obj_cols.append(df.columns.values[idx]) return obj_cols
Returns names of 'object' columns in the DataFrame.
Below is the the instruction that describes the task: ### Input: Returns names of 'object' columns in the DataFrame. ### Response: def get_obj_cols(df): """ Returns names of 'object' columns in the DataFrame. """ obj_cols = [] for idx, dt in enumerate(df.dtypes): if dt == 'object' or is_category(dt): obj_cols.append(df.columns.values[idx]) return obj_cols
def rollforward(self, dt): """ Roll provided date forward to next offset only if not on offset. """ dt = as_timestamp(dt) if not self.onOffset(dt): dt = dt + self.__class__(1, normalize=self.normalize, **self.kwds) return dt
Roll provided date forward to next offset only if not on offset.
Below is the the instruction that describes the task: ### Input: Roll provided date forward to next offset only if not on offset. ### Response: def rollforward(self, dt): """ Roll provided date forward to next offset only if not on offset. """ dt = as_timestamp(dt) if not self.onOffset(dt): dt = dt + self.__class__(1, normalize=self.normalize, **self.kwds) return dt
def _render(self): """ Render the text. Avoid using this fonction too many time as it is slow as it is low to render text and blit it. """ self._last_text = self.text self._surface = self.font.render(self.text, True, self.color, self.bg_color) rect = self._surface.get_rect() self.size = rect.size
Render the text. Avoid using this fonction too many time as it is slow as it is low to render text and blit it.
Below is the the instruction that describes the task: ### Input: Render the text. Avoid using this fonction too many time as it is slow as it is low to render text and blit it. ### Response: def _render(self): """ Render the text. Avoid using this fonction too many time as it is slow as it is low to render text and blit it. """ self._last_text = self.text self._surface = self.font.render(self.text, True, self.color, self.bg_color) rect = self._surface.get_rect() self.size = rect.size
def config_get(args): """ Retrieve a method config from a workspace, send stdout """ r = fapi.get_workspace_config(args.project, args.workspace, args.namespace, args.config) fapi._check_response_code(r, 200) # Setting ensure_ascii to False ensures unicode string returns return json.dumps(r.json(), indent=4, separators=(',', ': '), sort_keys=True, ensure_ascii=False)
Retrieve a method config from a workspace, send stdout
Below is the the instruction that describes the task: ### Input: Retrieve a method config from a workspace, send stdout ### Response: def config_get(args): """ Retrieve a method config from a workspace, send stdout """ r = fapi.get_workspace_config(args.project, args.workspace, args.namespace, args.config) fapi._check_response_code(r, 200) # Setting ensure_ascii to False ensures unicode string returns return json.dumps(r.json(), indent=4, separators=(',', ': '), sort_keys=True, ensure_ascii=False)
def trace_requirements(requirements): """given an iterable of pip InstallRequirements, return the set of required packages, given their transitive requirements. """ requirements = tuple(pretty_req(r) for r in requirements) working_set = fresh_working_set() # breadth-first traversal: from collections import deque queue = deque(requirements) queued = {_package_req_to_pkg_resources_req(req.req) for req in queue} errors = [] result = [] while queue: req = queue.popleft() logger.debug('tracing: %s', req) try: dist = working_set.find_normalized(_package_req_to_pkg_resources_req(req.req)) except pkg_resources.VersionConflict as conflict: dist = conflict.args[0] errors.append('Error: version conflict: {} ({}) <-> {}'.format( dist, timid_relpath(dist.location), req )) assert dist is not None, 'Should be unreachable in pip8+' result.append(dist_to_req(dist)) # TODO: pip does no validation of extras. should we? extras = [extra for extra in req.extras if extra in dist.extras] for sub_req in sorted(dist.requires(extras=extras), key=lambda req: req.key): sub_req = InstallRequirement(sub_req, req) if req_cycle(sub_req): logger.warning('Circular dependency! %s', sub_req) continue elif sub_req.req in queued: logger.debug('already queued: %s', sub_req) continue else: logger.debug('adding sub-requirement %s', sub_req) queue.append(sub_req) queued.add(sub_req.req) if errors: raise InstallationError('\n'.join(errors)) return result
given an iterable of pip InstallRequirements, return the set of required packages, given their transitive requirements.
Below is the the instruction that describes the task: ### Input: given an iterable of pip InstallRequirements, return the set of required packages, given their transitive requirements. ### Response: def trace_requirements(requirements): """given an iterable of pip InstallRequirements, return the set of required packages, given their transitive requirements. """ requirements = tuple(pretty_req(r) for r in requirements) working_set = fresh_working_set() # breadth-first traversal: from collections import deque queue = deque(requirements) queued = {_package_req_to_pkg_resources_req(req.req) for req in queue} errors = [] result = [] while queue: req = queue.popleft() logger.debug('tracing: %s', req) try: dist = working_set.find_normalized(_package_req_to_pkg_resources_req(req.req)) except pkg_resources.VersionConflict as conflict: dist = conflict.args[0] errors.append('Error: version conflict: {} ({}) <-> {}'.format( dist, timid_relpath(dist.location), req )) assert dist is not None, 'Should be unreachable in pip8+' result.append(dist_to_req(dist)) # TODO: pip does no validation of extras. should we? extras = [extra for extra in req.extras if extra in dist.extras] for sub_req in sorted(dist.requires(extras=extras), key=lambda req: req.key): sub_req = InstallRequirement(sub_req, req) if req_cycle(sub_req): logger.warning('Circular dependency! %s', sub_req) continue elif sub_req.req in queued: logger.debug('already queued: %s', sub_req) continue else: logger.debug('adding sub-requirement %s', sub_req) queue.append(sub_req) queued.add(sub_req.req) if errors: raise InstallationError('\n'.join(errors)) return result
def keep_segments(self, segments_to_keep, preserve_segmentation=True): ''' Keep the faces and vertices for given segments, discarding all others. When preserve_segmentation is false self.segm is discarded for speed. ''' v_ind, f_ind = self.vertex_indices_in_segments(segments_to_keep, ret_face_indices=True) self.segm = {name: self.segm[name] for name in segments_to_keep} if not preserve_segmentation: self.segm = None self.f = self.f[f_ind] if self.ft is not None: self.ft = self.ft[f_ind] self.keep_vertices(v_ind)
Keep the faces and vertices for given segments, discarding all others. When preserve_segmentation is false self.segm is discarded for speed.
Below is the the instruction that describes the task: ### Input: Keep the faces and vertices for given segments, discarding all others. When preserve_segmentation is false self.segm is discarded for speed. ### Response: def keep_segments(self, segments_to_keep, preserve_segmentation=True): ''' Keep the faces and vertices for given segments, discarding all others. When preserve_segmentation is false self.segm is discarded for speed. ''' v_ind, f_ind = self.vertex_indices_in_segments(segments_to_keep, ret_face_indices=True) self.segm = {name: self.segm[name] for name in segments_to_keep} if not preserve_segmentation: self.segm = None self.f = self.f[f_ind] if self.ft is not None: self.ft = self.ft[f_ind] self.keep_vertices(v_ind)
def to_graphml(graph: BELGraph, path: Union[str, BinaryIO]) -> None: """Write this graph to GraphML XML file using :func:`networkx.write_graphml`. The .graphml file extension is suggested so Cytoscape can recognize it. """ rv = nx.MultiDiGraph() for node in graph: rv.add_node(node.as_bel(), function=node.function) for u, v, key, edge_data in graph.edges(data=True, keys=True): rv.add_edge( u.as_bel(), v.as_bel(), interaction=edge_data[RELATION], bel=graph.edge_to_bel(u, v, edge_data), key=key, ) nx.write_graphml(rv, path)
Write this graph to GraphML XML file using :func:`networkx.write_graphml`. The .graphml file extension is suggested so Cytoscape can recognize it.
Below is the the instruction that describes the task: ### Input: Write this graph to GraphML XML file using :func:`networkx.write_graphml`. The .graphml file extension is suggested so Cytoscape can recognize it. ### Response: def to_graphml(graph: BELGraph, path: Union[str, BinaryIO]) -> None: """Write this graph to GraphML XML file using :func:`networkx.write_graphml`. The .graphml file extension is suggested so Cytoscape can recognize it. """ rv = nx.MultiDiGraph() for node in graph: rv.add_node(node.as_bel(), function=node.function) for u, v, key, edge_data in graph.edges(data=True, keys=True): rv.add_edge( u.as_bel(), v.as_bel(), interaction=edge_data[RELATION], bel=graph.edge_to_bel(u, v, edge_data), key=key, ) nx.write_graphml(rv, path)
def set_vm_status(self, device='FLOPPY', boot_option='BOOT_ONCE', write_protect='YES'): """Sets the Virtual Media drive status and allows the boot options for booting from the virtual media. """ return self._call_method('set_vm_status', device, boot_option, write_protect)
Sets the Virtual Media drive status and allows the boot options for booting from the virtual media.
Below is the the instruction that describes the task: ### Input: Sets the Virtual Media drive status and allows the boot options for booting from the virtual media. ### Response: def set_vm_status(self, device='FLOPPY', boot_option='BOOT_ONCE', write_protect='YES'): """Sets the Virtual Media drive status and allows the boot options for booting from the virtual media. """ return self._call_method('set_vm_status', device, boot_option, write_protect)
def bulk_write(self, requests, **kwargs): """ See http://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.bulk_write Warning: this is wrapped in mongo_retry, and is therefore potentially unsafe if the write you want to execute isn't idempotent. """ self._arctic_lib.check_quota() return self._collection.bulk_write(requests, **kwargs)
See http://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.bulk_write Warning: this is wrapped in mongo_retry, and is therefore potentially unsafe if the write you want to execute isn't idempotent.
Below is the the instruction that describes the task: ### Input: See http://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.bulk_write Warning: this is wrapped in mongo_retry, and is therefore potentially unsafe if the write you want to execute isn't idempotent. ### Response: def bulk_write(self, requests, **kwargs): """ See http://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.bulk_write Warning: this is wrapped in mongo_retry, and is therefore potentially unsafe if the write you want to execute isn't idempotent. """ self._arctic_lib.check_quota() return self._collection.bulk_write(requests, **kwargs)
def whois(self, record): """ Logs the WHOIS record if needed. :param record: The record to log. :type record: str """ if PyFunceble.CONFIGURATION["debug"] and PyFunceble.CONFIGURATION["logs"]: # The debug and the logs subsystem are activated. if PyFunceble.INTERN["referer"]: referer = PyFunceble.INTERN["referer"] else: referer = None to_write = { self.current_time: { "domain": PyFunceble.INTERN["to_test"], "record": record, "referer": referer, } } if self.output: output = self.output else: output = PyFunceble.OUTPUT_DIRECTORY output += PyFunceble.OUTPUTS["parent_directory"] output += PyFunceble.OUTPUTS["logs"]["directories"]["parent"] output += PyFunceble.OUTPUTS["logs"]["filenames"]["whois"] current_content = self._get_content(output) current_content.update(to_write) self._write_content(current_content, output)
Logs the WHOIS record if needed. :param record: The record to log. :type record: str
Below is the the instruction that describes the task: ### Input: Logs the WHOIS record if needed. :param record: The record to log. :type record: str ### Response: def whois(self, record): """ Logs the WHOIS record if needed. :param record: The record to log. :type record: str """ if PyFunceble.CONFIGURATION["debug"] and PyFunceble.CONFIGURATION["logs"]: # The debug and the logs subsystem are activated. if PyFunceble.INTERN["referer"]: referer = PyFunceble.INTERN["referer"] else: referer = None to_write = { self.current_time: { "domain": PyFunceble.INTERN["to_test"], "record": record, "referer": referer, } } if self.output: output = self.output else: output = PyFunceble.OUTPUT_DIRECTORY output += PyFunceble.OUTPUTS["parent_directory"] output += PyFunceble.OUTPUTS["logs"]["directories"]["parent"] output += PyFunceble.OUTPUTS["logs"]["filenames"]["whois"] current_content = self._get_content(output) current_content.update(to_write) self._write_content(current_content, output)
def request(self, url, post=None, method="GET"): """ Make the request""" dsid = self.get_dsid() baseurl = "https://auth.api.swedbank.se/TDE_DAP_Portal_REST_WEB/api/v1/%s?dsid=%s" % ( url, dsid) if self.pch is None: self.pch = build_opener(HTTPCookieProcessor(self.cj)) if post: post = bytearray(post, "utf-8") request = Request(baseurl, data=post) request.add_header("Content-Type", "application/json") else: request = Request(baseurl) request.add_header("User-Agent", self.useragent) request.add_header("Authorization", self.get_authkey()) request.add_header("Accept", "*/*") request.add_header("Accept-Language", "sv-se") request.add_header("Connection", "keep-alive") request.add_header("Proxy-Connection", "keep-alive") self.cj.set_cookie( Cookie(version=0, name='dsid', value=dsid, port=None, port_specified=False, domain='.api.swedbank.se', domain_specified=False, domain_initial_dot=False, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpsOnly': None}, rfc2109=False)) request.get_method = lambda: method tmp = self.pch.open(request) self.data = tmp.read().decode("utf8")
Make the request
Below is the the instruction that describes the task: ### Input: Make the request ### Response: def request(self, url, post=None, method="GET"): """ Make the request""" dsid = self.get_dsid() baseurl = "https://auth.api.swedbank.se/TDE_DAP_Portal_REST_WEB/api/v1/%s?dsid=%s" % ( url, dsid) if self.pch is None: self.pch = build_opener(HTTPCookieProcessor(self.cj)) if post: post = bytearray(post, "utf-8") request = Request(baseurl, data=post) request.add_header("Content-Type", "application/json") else: request = Request(baseurl) request.add_header("User-Agent", self.useragent) request.add_header("Authorization", self.get_authkey()) request.add_header("Accept", "*/*") request.add_header("Accept-Language", "sv-se") request.add_header("Connection", "keep-alive") request.add_header("Proxy-Connection", "keep-alive") self.cj.set_cookie( Cookie(version=0, name='dsid', value=dsid, port=None, port_specified=False, domain='.api.swedbank.se', domain_specified=False, domain_initial_dot=False, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpsOnly': None}, rfc2109=False)) request.get_method = lambda: method tmp = self.pch.open(request) self.data = tmp.read().decode("utf8")
def pyquil_to_image(program: pyquil.Program) -> PIL.Image: # pragma: no cover """Returns an image of a pyquil circuit. See circuit_to_latex() for more details. """ circ = pyquil_to_circuit(program) latex = circuit_to_latex(circ) img = render_latex(latex) return img
Returns an image of a pyquil circuit. See circuit_to_latex() for more details.
Below is the the instruction that describes the task: ### Input: Returns an image of a pyquil circuit. See circuit_to_latex() for more details. ### Response: def pyquil_to_image(program: pyquil.Program) -> PIL.Image: # pragma: no cover """Returns an image of a pyquil circuit. See circuit_to_latex() for more details. """ circ = pyquil_to_circuit(program) latex = circuit_to_latex(circ) img = render_latex(latex) return img
def check_exists(name, path): ''' Check if the given path is an alternative for a name. .. versionadded:: 2015.8.4 CLI Example: .. code-block:: bash salt '*' alternatives.check_exists name path ''' cmd = [_get_cmd(), '--display', name] out = __salt__['cmd.run_all'](cmd, python_shell=False) if out['retcode'] > 0 and out['stderr'] != '': return False return any((line.startswith(path) for line in out['stdout'].splitlines()))
Check if the given path is an alternative for a name. .. versionadded:: 2015.8.4 CLI Example: .. code-block:: bash salt '*' alternatives.check_exists name path
Below is the the instruction that describes the task: ### Input: Check if the given path is an alternative for a name. .. versionadded:: 2015.8.4 CLI Example: .. code-block:: bash salt '*' alternatives.check_exists name path ### Response: def check_exists(name, path): ''' Check if the given path is an alternative for a name. .. versionadded:: 2015.8.4 CLI Example: .. code-block:: bash salt '*' alternatives.check_exists name path ''' cmd = [_get_cmd(), '--display', name] out = __salt__['cmd.run_all'](cmd, python_shell=False) if out['retcode'] > 0 and out['stderr'] != '': return False return any((line.startswith(path) for line in out['stdout'].splitlines()))
def get_templates(self): """ Return a list of template_dicts based on the config.yaml in $self.base_path. Keys correspond to templates and values represent further settings regarding each template. A pystache object containing the parsed corresponding mustache file is added to the sub-dictionary. """ config_path = rel_to_cwd(self.base_path, 'templates', 'config.yaml') templates = get_yaml_dict(config_path) for temp, sub in templates.items(): mustache_path = os.path.join(get_parent_dir(config_path), '{}.mustache'.format(temp)) sub['parsed'] = get_pystache_parsed(mustache_path) return templates
Return a list of template_dicts based on the config.yaml in $self.base_path. Keys correspond to templates and values represent further settings regarding each template. A pystache object containing the parsed corresponding mustache file is added to the sub-dictionary.
Below is the the instruction that describes the task: ### Input: Return a list of template_dicts based on the config.yaml in $self.base_path. Keys correspond to templates and values represent further settings regarding each template. A pystache object containing the parsed corresponding mustache file is added to the sub-dictionary. ### Response: def get_templates(self): """ Return a list of template_dicts based on the config.yaml in $self.base_path. Keys correspond to templates and values represent further settings regarding each template. A pystache object containing the parsed corresponding mustache file is added to the sub-dictionary. """ config_path = rel_to_cwd(self.base_path, 'templates', 'config.yaml') templates = get_yaml_dict(config_path) for temp, sub in templates.items(): mustache_path = os.path.join(get_parent_dir(config_path), '{}.mustache'.format(temp)) sub['parsed'] = get_pystache_parsed(mustache_path) return templates
def select(self): '''If supported, select this frame and return True; return False if unsupported Not all builds have a gdb.Frame.select method; seems to be present on Fedora 12 onwards, but absent on Ubuntu buildbot''' if not hasattr(self._gdbframe, 'select'): print ('Unable to select frame: ' 'this build of gdb does not expose a gdb.Frame.select method') return False self._gdbframe.select() return True
If supported, select this frame and return True; return False if unsupported Not all builds have a gdb.Frame.select method; seems to be present on Fedora 12 onwards, but absent on Ubuntu buildbot
Below is the the instruction that describes the task: ### Input: If supported, select this frame and return True; return False if unsupported Not all builds have a gdb.Frame.select method; seems to be present on Fedora 12 onwards, but absent on Ubuntu buildbot ### Response: def select(self): '''If supported, select this frame and return True; return False if unsupported Not all builds have a gdb.Frame.select method; seems to be present on Fedora 12 onwards, but absent on Ubuntu buildbot''' if not hasattr(self._gdbframe, 'select'): print ('Unable to select frame: ' 'this build of gdb does not expose a gdb.Frame.select method') return False self._gdbframe.select() return True
def describe_training_job_with_log(self, job_name, positions, stream_names, instance_count, state, last_description, last_describe_job_call): """ Return the training job info associated with job_name and print CloudWatch logs """ log_group = '/aws/sagemaker/TrainingJobs' if len(stream_names) < instance_count: # Log streams are created whenever a container starts writing to stdout/err, so this list # may be dynamic until we have a stream for every instance. logs_conn = self.get_log_conn() try: streams = logs_conn.describe_log_streams( logGroupName=log_group, logStreamNamePrefix=job_name + '/', orderBy='LogStreamName', limit=instance_count ) stream_names = [s['logStreamName'] for s in streams['logStreams']] positions.update([(s, Position(timestamp=0, skip=0)) for s in stream_names if s not in positions]) except logs_conn.exceptions.ResourceNotFoundException: # On the very first training job run on an account, there's no log group until # the container starts logging, so ignore any errors thrown about that pass if len(stream_names) > 0: for idx, event in self.multi_stream_iter(log_group, stream_names, positions): self.log.info(event['message']) ts, count = positions[stream_names[idx]] if event['timestamp'] == ts: positions[stream_names[idx]] = Position(timestamp=ts, skip=count + 1) else: positions[stream_names[idx]] = Position(timestamp=event['timestamp'], skip=1) if state == LogState.COMPLETE: return state, last_description, last_describe_job_call if state == LogState.JOB_COMPLETE: state = LogState.COMPLETE elif time.time() - last_describe_job_call >= 30: description = self.describe_training_job(job_name) last_describe_job_call = time.time() if secondary_training_status_changed(description, last_description): self.log.info(secondary_training_status_message(description, last_description)) last_description = description status = description['TrainingJobStatus'] if status not in self.non_terminal_states: state = LogState.JOB_COMPLETE return state, last_description, last_describe_job_call
Return the training job info associated with job_name and print CloudWatch logs
Below is the the instruction that describes the task: ### Input: Return the training job info associated with job_name and print CloudWatch logs ### Response: def describe_training_job_with_log(self, job_name, positions, stream_names, instance_count, state, last_description, last_describe_job_call): """ Return the training job info associated with job_name and print CloudWatch logs """ log_group = '/aws/sagemaker/TrainingJobs' if len(stream_names) < instance_count: # Log streams are created whenever a container starts writing to stdout/err, so this list # may be dynamic until we have a stream for every instance. logs_conn = self.get_log_conn() try: streams = logs_conn.describe_log_streams( logGroupName=log_group, logStreamNamePrefix=job_name + '/', orderBy='LogStreamName', limit=instance_count ) stream_names = [s['logStreamName'] for s in streams['logStreams']] positions.update([(s, Position(timestamp=0, skip=0)) for s in stream_names if s not in positions]) except logs_conn.exceptions.ResourceNotFoundException: # On the very first training job run on an account, there's no log group until # the container starts logging, so ignore any errors thrown about that pass if len(stream_names) > 0: for idx, event in self.multi_stream_iter(log_group, stream_names, positions): self.log.info(event['message']) ts, count = positions[stream_names[idx]] if event['timestamp'] == ts: positions[stream_names[idx]] = Position(timestamp=ts, skip=count + 1) else: positions[stream_names[idx]] = Position(timestamp=event['timestamp'], skip=1) if state == LogState.COMPLETE: return state, last_description, last_describe_job_call if state == LogState.JOB_COMPLETE: state = LogState.COMPLETE elif time.time() - last_describe_job_call >= 30: description = self.describe_training_job(job_name) last_describe_job_call = time.time() if secondary_training_status_changed(description, last_description): self.log.info(secondary_training_status_message(description, last_description)) last_description = description status = description['TrainingJobStatus'] if status not in self.non_terminal_states: state = LogState.JOB_COMPLETE return state, last_description, last_describe_job_call
def sls(mods, saltenv='base', test=None, exclude=None, **kwargs): ''' Create the seed file for a state.sls run ''' st_kwargs = __salt__.kwargs __opts__['grains'] = __grains__ __pillar__.update(kwargs.get('pillar', {})) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) st_ = salt.client.ssh.state.SSHHighState( opts, __pillar__, __salt__, __context__['fileclient']) st_.push_active() mods = _parse_mods(mods) high_data, errors = st_.render_highstate({saltenv: mods}) if exclude: if isinstance(exclude, six.string_types): exclude = exclude.split(',') if '__exclude__' in high_data: high_data['__exclude__'].extend(exclude) else: high_data['__exclude__'] = exclude high_data, ext_errors = st_.state.reconcile_extend(high_data) errors += ext_errors errors += st_.state.verify_high(high_data) if errors: return errors high_data, req_in_errors = st_.state.requisite_in(high_data) errors += req_in_errors high_data = st_.state.apply_exclude(high_data) # Verify that the high data is structurally sound if errors: return errors # Compile and verify the raw chunks chunks = st_.state.compile_high_data(high_data) file_refs = salt.client.ssh.state.lowstate_file_refs( chunks, _merge_extra_filerefs( kwargs.get('extra_filerefs', ''), opts.get('extra_filerefs', '') ) ) roster = salt.roster.Roster(opts, opts.get('roster', 'flat')) roster_grains = roster.opts['grains'] # Create the tar containing the state pkg and relevant files. _cleanup_slsmod_low_data(chunks) trans_tar = salt.client.ssh.state.prep_trans_tar( __context__['fileclient'], chunks, file_refs, __pillar__, st_kwargs['id_'], roster_grains) trans_tar_sum = salt.utils.hashutils.get_hash(trans_tar, opts['hash_type']) cmd = 'state.pkg {0}/salt_state.tgz test={1} pkg_sum={2} hash_type={3}'.format( opts['thin_dir'], test, trans_tar_sum, opts['hash_type']) single = salt.client.ssh.Single( opts, cmd, fsclient=__context__['fileclient'], minion_opts=__salt__.minion_opts, **st_kwargs) single.shell.send( trans_tar, '{0}/salt_state.tgz'.format(opts['thin_dir'])) stdout, stderr, _ = single.cmd_block() # Clean up our tar try: os.remove(trans_tar) except (OSError, IOError): pass # Read in the JSON data and return the data structure try: return salt.utils.json.loads(stdout) except Exception as e: log.error("JSON Render failed for: %s\n%s", stdout, stderr) log.error(six.text_type(e)) # If for some reason the json load fails, return the stdout return stdout
Create the seed file for a state.sls run
Below is the the instruction that describes the task: ### Input: Create the seed file for a state.sls run ### Response: def sls(mods, saltenv='base', test=None, exclude=None, **kwargs): ''' Create the seed file for a state.sls run ''' st_kwargs = __salt__.kwargs __opts__['grains'] = __grains__ __pillar__.update(kwargs.get('pillar', {})) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) st_ = salt.client.ssh.state.SSHHighState( opts, __pillar__, __salt__, __context__['fileclient']) st_.push_active() mods = _parse_mods(mods) high_data, errors = st_.render_highstate({saltenv: mods}) if exclude: if isinstance(exclude, six.string_types): exclude = exclude.split(',') if '__exclude__' in high_data: high_data['__exclude__'].extend(exclude) else: high_data['__exclude__'] = exclude high_data, ext_errors = st_.state.reconcile_extend(high_data) errors += ext_errors errors += st_.state.verify_high(high_data) if errors: return errors high_data, req_in_errors = st_.state.requisite_in(high_data) errors += req_in_errors high_data = st_.state.apply_exclude(high_data) # Verify that the high data is structurally sound if errors: return errors # Compile and verify the raw chunks chunks = st_.state.compile_high_data(high_data) file_refs = salt.client.ssh.state.lowstate_file_refs( chunks, _merge_extra_filerefs( kwargs.get('extra_filerefs', ''), opts.get('extra_filerefs', '') ) ) roster = salt.roster.Roster(opts, opts.get('roster', 'flat')) roster_grains = roster.opts['grains'] # Create the tar containing the state pkg and relevant files. _cleanup_slsmod_low_data(chunks) trans_tar = salt.client.ssh.state.prep_trans_tar( __context__['fileclient'], chunks, file_refs, __pillar__, st_kwargs['id_'], roster_grains) trans_tar_sum = salt.utils.hashutils.get_hash(trans_tar, opts['hash_type']) cmd = 'state.pkg {0}/salt_state.tgz test={1} pkg_sum={2} hash_type={3}'.format( opts['thin_dir'], test, trans_tar_sum, opts['hash_type']) single = salt.client.ssh.Single( opts, cmd, fsclient=__context__['fileclient'], minion_opts=__salt__.minion_opts, **st_kwargs) single.shell.send( trans_tar, '{0}/salt_state.tgz'.format(opts['thin_dir'])) stdout, stderr, _ = single.cmd_block() # Clean up our tar try: os.remove(trans_tar) except (OSError, IOError): pass # Read in the JSON data and return the data structure try: return salt.utils.json.loads(stdout) except Exception as e: log.error("JSON Render failed for: %s\n%s", stdout, stderr) log.error(six.text_type(e)) # If for some reason the json load fails, return the stdout return stdout
def master_open(): """master_open() -> (master_fd, slave_name) Open a pty master and return the fd, and the filename of the slave end. Deprecated, use openpty() instead.""" try: master_fd, slave_fd = os.openpty() except (AttributeError, OSError): pass else: slave_name = os.ttyname(slave_fd) os.close(slave_fd) return master_fd, slave_name return _open_terminal()
master_open() -> (master_fd, slave_name) Open a pty master and return the fd, and the filename of the slave end. Deprecated, use openpty() instead.
Below is the the instruction that describes the task: ### Input: master_open() -> (master_fd, slave_name) Open a pty master and return the fd, and the filename of the slave end. Deprecated, use openpty() instead. ### Response: def master_open(): """master_open() -> (master_fd, slave_name) Open a pty master and return the fd, and the filename of the slave end. Deprecated, use openpty() instead.""" try: master_fd, slave_fd = os.openpty() except (AttributeError, OSError): pass else: slave_name = os.ttyname(slave_fd) os.close(slave_fd) return master_fd, slave_name return _open_terminal()
def binary(self, new_binary): """Sets location of the browser binary, either by string or ``FirefoxBinary`` instance. """ if not isinstance(new_binary, FirefoxBinary): new_binary = FirefoxBinary(new_binary) self._binary = new_binary
Sets location of the browser binary, either by string or ``FirefoxBinary`` instance.
Below is the the instruction that describes the task: ### Input: Sets location of the browser binary, either by string or ``FirefoxBinary`` instance. ### Response: def binary(self, new_binary): """Sets location of the browser binary, either by string or ``FirefoxBinary`` instance. """ if not isinstance(new_binary, FirefoxBinary): new_binary = FirefoxBinary(new_binary) self._binary = new_binary
def show_description(self): """ Prints the formatted response for the matching return type """ def printit(c, v): underline = "-" * len(dr.get_name(c)) resp = self.responses[v["type"]] name = "%s[%s] %s%s" % (resp.color, resp.label, dr.get_name(c), Style.RESET_ALL) print(name, file=self.stream) print(underline, file=self.stream) print(render(c, v), file=self.stream) print(file=self.stream) for c in sorted(self.broker.get_by_type(rule), key=dr.get_name): v = self.broker[c] _type = v.get('type') if _type in self.responses: self.counts[_type] += 1 if (_type and ((self.fail_only and _type == 'rule') or ((self.missing and _type == 'skip') or (not self.fail_only and _type != 'skip')))): printit(c, v) print(file=self.stream) self.print_header("Rule Execution Summary", Fore.CYAN) for c in self.counts: print(self.responses[c].color + self.responses[c].title + str(self.counts[c]) + Style.RESET_ALL, file=self.stream)
Prints the formatted response for the matching return type
Below is the the instruction that describes the task: ### Input: Prints the formatted response for the matching return type ### Response: def show_description(self): """ Prints the formatted response for the matching return type """ def printit(c, v): underline = "-" * len(dr.get_name(c)) resp = self.responses[v["type"]] name = "%s[%s] %s%s" % (resp.color, resp.label, dr.get_name(c), Style.RESET_ALL) print(name, file=self.stream) print(underline, file=self.stream) print(render(c, v), file=self.stream) print(file=self.stream) for c in sorted(self.broker.get_by_type(rule), key=dr.get_name): v = self.broker[c] _type = v.get('type') if _type in self.responses: self.counts[_type] += 1 if (_type and ((self.fail_only and _type == 'rule') or ((self.missing and _type == 'skip') or (not self.fail_only and _type != 'skip')))): printit(c, v) print(file=self.stream) self.print_header("Rule Execution Summary", Fore.CYAN) for c in self.counts: print(self.responses[c].color + self.responses[c].title + str(self.counts[c]) + Style.RESET_ALL, file=self.stream)
def cmd_startstop(options): """Start or Stop the specified instance. Finds instances that match args and instance-state expected by the command. Then, the target instance is determined, the action is performed on the instance, and the eturn information is displayed. Args: options (object): contains args and data from parser. """ statelu = {"start": "stopped", "stop": "running"} options.inst_state = statelu[options.command] debg.dprint("toggle set state: ", options.inst_state) (i_info, param_str) = gather_data(options) (tar_inst, tar_idx) = determine_inst(i_info, param_str, options.command) response = awsc.startstop(tar_inst, options.command) responselu = {"start": "StartingInstances", "stop": "StoppingInstances"} filt = responselu[options.command] resp = {} state_term = ('CurrentState', 'PreviousState') for i, j in enumerate(state_term): resp[i] = response["{0}".format(filt)][0]["{0}".format(j)]['Name'] print("Current State: {}{}{} - Previous State: {}{}{}\n". format(C_STAT[resp[0]], resp[0], C_NORM, C_STAT[resp[1]], resp[1], C_NORM))
Start or Stop the specified instance. Finds instances that match args and instance-state expected by the command. Then, the target instance is determined, the action is performed on the instance, and the eturn information is displayed. Args: options (object): contains args and data from parser.
Below is the the instruction that describes the task: ### Input: Start or Stop the specified instance. Finds instances that match args and instance-state expected by the command. Then, the target instance is determined, the action is performed on the instance, and the eturn information is displayed. Args: options (object): contains args and data from parser. ### Response: def cmd_startstop(options): """Start or Stop the specified instance. Finds instances that match args and instance-state expected by the command. Then, the target instance is determined, the action is performed on the instance, and the eturn information is displayed. Args: options (object): contains args and data from parser. """ statelu = {"start": "stopped", "stop": "running"} options.inst_state = statelu[options.command] debg.dprint("toggle set state: ", options.inst_state) (i_info, param_str) = gather_data(options) (tar_inst, tar_idx) = determine_inst(i_info, param_str, options.command) response = awsc.startstop(tar_inst, options.command) responselu = {"start": "StartingInstances", "stop": "StoppingInstances"} filt = responselu[options.command] resp = {} state_term = ('CurrentState', 'PreviousState') for i, j in enumerate(state_term): resp[i] = response["{0}".format(filt)][0]["{0}".format(j)]['Name'] print("Current State: {}{}{} - Previous State: {}{}{}\n". format(C_STAT[resp[0]], resp[0], C_NORM, C_STAT[resp[1]], resp[1], C_NORM))
def __fetch_issues(self, from_date, to_date): """Fetch the issues""" issues_groups = self.client.issues(from_date=from_date) for raw_issues in issues_groups: issues = json.loads(raw_issues) for issue in issues: if str_to_datetime(issue['updated_at']) > to_date: return self.__init_extra_issue_fields(issue) for field in TARGET_ISSUE_FIELDS: if not issue[field]: continue if field == 'user': issue[field + '_data'] = self.__get_user(issue[field]['login']) elif field == 'assignee': issue[field + '_data'] = self.__get_issue_assignee(issue[field]) elif field == 'assignees': issue[field + '_data'] = self.__get_issue_assignees(issue[field]) elif field == 'comments': issue[field + '_data'] = self.__get_issue_comments(issue['number']) elif field == 'reactions': issue[field + '_data'] = \ self.__get_issue_reactions(issue['number'], issue['reactions']['total_count']) yield issue
Fetch the issues
Below is the the instruction that describes the task: ### Input: Fetch the issues ### Response: def __fetch_issues(self, from_date, to_date): """Fetch the issues""" issues_groups = self.client.issues(from_date=from_date) for raw_issues in issues_groups: issues = json.loads(raw_issues) for issue in issues: if str_to_datetime(issue['updated_at']) > to_date: return self.__init_extra_issue_fields(issue) for field in TARGET_ISSUE_FIELDS: if not issue[field]: continue if field == 'user': issue[field + '_data'] = self.__get_user(issue[field]['login']) elif field == 'assignee': issue[field + '_data'] = self.__get_issue_assignee(issue[field]) elif field == 'assignees': issue[field + '_data'] = self.__get_issue_assignees(issue[field]) elif field == 'comments': issue[field + '_data'] = self.__get_issue_comments(issue['number']) elif field == 'reactions': issue[field + '_data'] = \ self.__get_issue_reactions(issue['number'], issue['reactions']['total_count']) yield issue
def _get_grouped_dicoms(dicom_input): """ Search all dicoms in the dicom directory, sort and validate them fast_read = True will only read the headers not the data """ # if all dicoms have an instance number try sorting by instance number else by position if [d for d in dicom_input if 'InstanceNumber' in d]: dicoms = sorted(dicom_input, key=lambda x: x.InstanceNumber) else: dicoms = common.sort_dicoms(dicom_input) # now group per stack grouped_dicoms = [[]] # list with first element a list timepoint_index = 0 previous_stack_position = -1 # loop over all sorted dicoms stack_position_tag = Tag(0x2001, 0x100a) # put this there as this is a slow step and used a lot for index in range(0, len(dicoms)): dicom_ = dicoms[index] stack_position = 0 if stack_position_tag in dicom_: stack_position = common.get_is_value(dicom_[stack_position_tag]) if previous_stack_position == stack_position: # if the stack number is the same we move to the next timepoint timepoint_index += 1 if len(grouped_dicoms) <= timepoint_index: grouped_dicoms.append([]) else: # if it changes move back to the first timepoint timepoint_index = 0 grouped_dicoms[timepoint_index].append(dicom_) previous_stack_position = stack_position return grouped_dicoms
Search all dicoms in the dicom directory, sort and validate them fast_read = True will only read the headers not the data
Below is the the instruction that describes the task: ### Input: Search all dicoms in the dicom directory, sort and validate them fast_read = True will only read the headers not the data ### Response: def _get_grouped_dicoms(dicom_input): """ Search all dicoms in the dicom directory, sort and validate them fast_read = True will only read the headers not the data """ # if all dicoms have an instance number try sorting by instance number else by position if [d for d in dicom_input if 'InstanceNumber' in d]: dicoms = sorted(dicom_input, key=lambda x: x.InstanceNumber) else: dicoms = common.sort_dicoms(dicom_input) # now group per stack grouped_dicoms = [[]] # list with first element a list timepoint_index = 0 previous_stack_position = -1 # loop over all sorted dicoms stack_position_tag = Tag(0x2001, 0x100a) # put this there as this is a slow step and used a lot for index in range(0, len(dicoms)): dicom_ = dicoms[index] stack_position = 0 if stack_position_tag in dicom_: stack_position = common.get_is_value(dicom_[stack_position_tag]) if previous_stack_position == stack_position: # if the stack number is the same we move to the next timepoint timepoint_index += 1 if len(grouped_dicoms) <= timepoint_index: grouped_dicoms.append([]) else: # if it changes move back to the first timepoint timepoint_index = 0 grouped_dicoms[timepoint_index].append(dicom_) previous_stack_position = stack_position return grouped_dicoms
def generic_is_view_attribute(parents, attrs): """Generates is_X_attribute function for given parents and attrs.""" def is_attribute(node): return _attribute_is_magic(node, attrs, parents) return is_attribute
Generates is_X_attribute function for given parents and attrs.
Below is the the instruction that describes the task: ### Input: Generates is_X_attribute function for given parents and attrs. ### Response: def generic_is_view_attribute(parents, attrs): """Generates is_X_attribute function for given parents and attrs.""" def is_attribute(node): return _attribute_is_magic(node, attrs, parents) return is_attribute
def export_events(self, filename, evt_type): """Export events to CSV Parameters ---------- filename : str path of export file evt_type : list of str event types to export """ filename = splitext(filename)[0] + '.csv' headings_row = ['Index', 'Start time', 'End time', 'Stitches', 'Stage', 'Cycle', 'Event type', 'Channel'] events = [] for et in evt_type: events.extend(self.get_events(name=et)) events = sorted(events, key=lambda evt: evt['start']) if events is None: lg.info('No events found.') return with open(filename, 'w', newline='') as f: lg.info('Writing to ' + str(filename)) csv_file = writer(f) csv_file.writerow(['Wonambi v{}'.format(__version__)]) csv_file.writerow(headings_row) for i, ev in enumerate(events): csv_file.writerow([i + 1, ev['start'], ev['end'], 0, ev['stage'], '', ev['name'], ', '.join(ev['chan']), ])
Export events to CSV Parameters ---------- filename : str path of export file evt_type : list of str event types to export
Below is the the instruction that describes the task: ### Input: Export events to CSV Parameters ---------- filename : str path of export file evt_type : list of str event types to export ### Response: def export_events(self, filename, evt_type): """Export events to CSV Parameters ---------- filename : str path of export file evt_type : list of str event types to export """ filename = splitext(filename)[0] + '.csv' headings_row = ['Index', 'Start time', 'End time', 'Stitches', 'Stage', 'Cycle', 'Event type', 'Channel'] events = [] for et in evt_type: events.extend(self.get_events(name=et)) events = sorted(events, key=lambda evt: evt['start']) if events is None: lg.info('No events found.') return with open(filename, 'w', newline='') as f: lg.info('Writing to ' + str(filename)) csv_file = writer(f) csv_file.writerow(['Wonambi v{}'.format(__version__)]) csv_file.writerow(headings_row) for i, ev in enumerate(events): csv_file.writerow([i + 1, ev['start'], ev['end'], 0, ev['stage'], '', ev['name'], ', '.join(ev['chan']), ])
def query(self, sql: str, args: tuple = None): """Execute a SQL query with a return value.""" with self._cursor() as cursor: log.debug('Running SQL: ' + str((sql, args))) cursor.execute(sql, args) return cursor.fetchall()
Execute a SQL query with a return value.
Below is the the instruction that describes the task: ### Input: Execute a SQL query with a return value. ### Response: def query(self, sql: str, args: tuple = None): """Execute a SQL query with a return value.""" with self._cursor() as cursor: log.debug('Running SQL: ' + str((sql, args))) cursor.execute(sql, args) return cursor.fetchall()
def Chisholm(m, x, rhol, rhog, mul, mug, D, roughness=0, L=1, rough_correction=False): r'''Calculates two-phase pressure drop with the Chisholm (1973) correlation from [1]_, also in [2]_ and [3]_. .. math:: \frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{ch}^2 .. math:: \phi_{ch}^2 = 1 + (\Gamma^2 -1)\left\{B x^{(2-n)/2} (1-x)^{(2-n)/2} + x^{2-n} \right\} .. math:: \Gamma ^2 = \frac{\left(\frac{\Delta P}{L}\right)_{go}}{\left(\frac{ \Delta P}{L}\right)_{lo}} For Gamma < 9.5: .. math:: B = \frac{55}{G_{tp}^{0.5}} \text{ for } G_{tp} > 1900 .. math:: B = \frac{2400}{G_{tp}} \text{ for } 500 < G_{tp} < 1900 .. math:: B = 4.8 \text{ for } G_{tp} < 500 For 9.5 < Gamma < 28: .. math:: B = \frac{520}{\Gamma G_{tp}^{0.5}} \text{ for } G_{tp} < 600 .. math:: B = \frac{21}{\Gamma} \text{ for } G_{tp} > 600 For Gamma > 28: .. math:: B = \frac{15000}{\Gamma^2 G_{tp}^{0.5}} If `rough_correction` is True, the following correction to B is applied: .. math:: \frac{B_{rough}}{B_{smooth}} = \left[0.5\left\{1+ \left(\frac{\mu_g} {\mu_l}\right)^2 + 10^{-600\epsilon/D}\right\}\right]^{\frac{0.25-n} {0.25}} .. math:: n = \frac{\log \frac{f_{d,lo}}{f_{d,go}}}{\log \frac{Re_{go}}{Re_{lo}}} Parameters ---------- m : float Mass flow rate of fluid, [kg/s] x : float Quality of fluid, [-] rhol : float Liquid density, [kg/m^3] rhog : float Gas density, [kg/m^3] mul : float Viscosity of liquid, [Pa*s] mug : float Viscosity of gas, [Pa*s] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] rough_correction : bool, optional Whether or not to use the roughness correction proposed in the 1968 version of the correlation Returns ------- dP : float Pressure drop of the two-phase flow, [Pa] Notes ----- Applicable for 0 < x < 1. n = 0.25, the exponent in the Blassius equation. Originally developed for smooth pipes, a roughness correction is included as well from the Chisholm's 1968 work [4]_. Neither [2]_ nor [3]_ have any mention of the correction however. Examples -------- >>> Chisholm(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, ... mug=14E-6, D=0.05, roughness=0, L=1) 1084.1489922923738 References ---------- .. [1] Chisholm, D. "Pressure Gradients due to Friction during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels." International Journal of Heat and Mass Transfer 16, no. 2 (February 1973): 347-58. doi:10.1016/0017-9310(73)90063-X. .. [2] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma State University, 2013. https://shareok.org/handle/11244/11109. .. [3] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc (2004). http://www.wlv.com/heat-transfer-databook/ .. [4] Chisholm, D. "Research Note: Influence of Pipe Surface Roughness on Friction Pressure Gradient during Two-Phase Flow." Journal of Mechanical Engineering Science 20, no. 6 (December 1, 1978): 353-354. doi:10.1243/JMES_JOUR_1978_020_061_02. ''' G_tp = m/(pi/4*D**2) n = 0.25 # Blasius friction factor exponent # Liquid-only properties, for calculation of dP_lo v_lo = m/rhol/(pi/4*D**2) Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D) fd_lo = friction_factor(Re=Re_lo, eD=roughness/D) dP_lo = fd_lo*L/D*(0.5*rhol*v_lo**2) # Gas-only properties, for calculation of dP_go v_go = m/rhog/(pi/4*D**2) Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D) fd_go = friction_factor(Re=Re_go, eD=roughness/D) dP_go = fd_go*L/D*(0.5*rhog*v_go**2) Gamma = (dP_go/dP_lo)**0.5 if Gamma <= 9.5: if G_tp <= 500: B = 4.8 elif G_tp < 1900: B = 2400./G_tp else: B = 55*G_tp**-0.5 elif Gamma <= 28: if G_tp <= 600: B = 520.*G_tp**-0.5/Gamma else: B = 21./Gamma else: B = 15000.*G_tp**-0.5/Gamma**2 if rough_correction: n = log(fd_lo/fd_go)/log(Re_go/Re_lo) B_ratio = (0.5*(1 + (mug/mul)**2 + 10**(-600*roughness/D)))**((0.25-n)/0.25) B = B*B_ratio phi2_ch = 1 + (Gamma**2-1)*(B*x**((2-n)/2.)*(1-x)**((2-n)/2.) + x**(2-n)) return phi2_ch*dP_lo
r'''Calculates two-phase pressure drop with the Chisholm (1973) correlation from [1]_, also in [2]_ and [3]_. .. math:: \frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{ch}^2 .. math:: \phi_{ch}^2 = 1 + (\Gamma^2 -1)\left\{B x^{(2-n)/2} (1-x)^{(2-n)/2} + x^{2-n} \right\} .. math:: \Gamma ^2 = \frac{\left(\frac{\Delta P}{L}\right)_{go}}{\left(\frac{ \Delta P}{L}\right)_{lo}} For Gamma < 9.5: .. math:: B = \frac{55}{G_{tp}^{0.5}} \text{ for } G_{tp} > 1900 .. math:: B = \frac{2400}{G_{tp}} \text{ for } 500 < G_{tp} < 1900 .. math:: B = 4.8 \text{ for } G_{tp} < 500 For 9.5 < Gamma < 28: .. math:: B = \frac{520}{\Gamma G_{tp}^{0.5}} \text{ for } G_{tp} < 600 .. math:: B = \frac{21}{\Gamma} \text{ for } G_{tp} > 600 For Gamma > 28: .. math:: B = \frac{15000}{\Gamma^2 G_{tp}^{0.5}} If `rough_correction` is True, the following correction to B is applied: .. math:: \frac{B_{rough}}{B_{smooth}} = \left[0.5\left\{1+ \left(\frac{\mu_g} {\mu_l}\right)^2 + 10^{-600\epsilon/D}\right\}\right]^{\frac{0.25-n} {0.25}} .. math:: n = \frac{\log \frac{f_{d,lo}}{f_{d,go}}}{\log \frac{Re_{go}}{Re_{lo}}} Parameters ---------- m : float Mass flow rate of fluid, [kg/s] x : float Quality of fluid, [-] rhol : float Liquid density, [kg/m^3] rhog : float Gas density, [kg/m^3] mul : float Viscosity of liquid, [Pa*s] mug : float Viscosity of gas, [Pa*s] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] rough_correction : bool, optional Whether or not to use the roughness correction proposed in the 1968 version of the correlation Returns ------- dP : float Pressure drop of the two-phase flow, [Pa] Notes ----- Applicable for 0 < x < 1. n = 0.25, the exponent in the Blassius equation. Originally developed for smooth pipes, a roughness correction is included as well from the Chisholm's 1968 work [4]_. Neither [2]_ nor [3]_ have any mention of the correction however. Examples -------- >>> Chisholm(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, ... mug=14E-6, D=0.05, roughness=0, L=1) 1084.1489922923738 References ---------- .. [1] Chisholm, D. "Pressure Gradients due to Friction during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels." International Journal of Heat and Mass Transfer 16, no. 2 (February 1973): 347-58. doi:10.1016/0017-9310(73)90063-X. .. [2] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma State University, 2013. https://shareok.org/handle/11244/11109. .. [3] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc (2004). http://www.wlv.com/heat-transfer-databook/ .. [4] Chisholm, D. "Research Note: Influence of Pipe Surface Roughness on Friction Pressure Gradient during Two-Phase Flow." Journal of Mechanical Engineering Science 20, no. 6 (December 1, 1978): 353-354. doi:10.1243/JMES_JOUR_1978_020_061_02.
Below is the the instruction that describes the task: ### Input: r'''Calculates two-phase pressure drop with the Chisholm (1973) correlation from [1]_, also in [2]_ and [3]_. .. math:: \frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{ch}^2 .. math:: \phi_{ch}^2 = 1 + (\Gamma^2 -1)\left\{B x^{(2-n)/2} (1-x)^{(2-n)/2} + x^{2-n} \right\} .. math:: \Gamma ^2 = \frac{\left(\frac{\Delta P}{L}\right)_{go}}{\left(\frac{ \Delta P}{L}\right)_{lo}} For Gamma < 9.5: .. math:: B = \frac{55}{G_{tp}^{0.5}} \text{ for } G_{tp} > 1900 .. math:: B = \frac{2400}{G_{tp}} \text{ for } 500 < G_{tp} < 1900 .. math:: B = 4.8 \text{ for } G_{tp} < 500 For 9.5 < Gamma < 28: .. math:: B = \frac{520}{\Gamma G_{tp}^{0.5}} \text{ for } G_{tp} < 600 .. math:: B = \frac{21}{\Gamma} \text{ for } G_{tp} > 600 For Gamma > 28: .. math:: B = \frac{15000}{\Gamma^2 G_{tp}^{0.5}} If `rough_correction` is True, the following correction to B is applied: .. math:: \frac{B_{rough}}{B_{smooth}} = \left[0.5\left\{1+ \left(\frac{\mu_g} {\mu_l}\right)^2 + 10^{-600\epsilon/D}\right\}\right]^{\frac{0.25-n} {0.25}} .. math:: n = \frac{\log \frac{f_{d,lo}}{f_{d,go}}}{\log \frac{Re_{go}}{Re_{lo}}} Parameters ---------- m : float Mass flow rate of fluid, [kg/s] x : float Quality of fluid, [-] rhol : float Liquid density, [kg/m^3] rhog : float Gas density, [kg/m^3] mul : float Viscosity of liquid, [Pa*s] mug : float Viscosity of gas, [Pa*s] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] rough_correction : bool, optional Whether or not to use the roughness correction proposed in the 1968 version of the correlation Returns ------- dP : float Pressure drop of the two-phase flow, [Pa] Notes ----- Applicable for 0 < x < 1. n = 0.25, the exponent in the Blassius equation. Originally developed for smooth pipes, a roughness correction is included as well from the Chisholm's 1968 work [4]_. Neither [2]_ nor [3]_ have any mention of the correction however. Examples -------- >>> Chisholm(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, ... mug=14E-6, D=0.05, roughness=0, L=1) 1084.1489922923738 References ---------- .. [1] Chisholm, D. "Pressure Gradients due to Friction during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels." International Journal of Heat and Mass Transfer 16, no. 2 (February 1973): 347-58. doi:10.1016/0017-9310(73)90063-X. .. [2] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma State University, 2013. https://shareok.org/handle/11244/11109. .. [3] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc (2004). http://www.wlv.com/heat-transfer-databook/ .. [4] Chisholm, D. "Research Note: Influence of Pipe Surface Roughness on Friction Pressure Gradient during Two-Phase Flow." Journal of Mechanical Engineering Science 20, no. 6 (December 1, 1978): 353-354. doi:10.1243/JMES_JOUR_1978_020_061_02. ### Response: def Chisholm(m, x, rhol, rhog, mul, mug, D, roughness=0, L=1, rough_correction=False): r'''Calculates two-phase pressure drop with the Chisholm (1973) correlation from [1]_, also in [2]_ and [3]_. .. math:: \frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{ch}^2 .. math:: \phi_{ch}^2 = 1 + (\Gamma^2 -1)\left\{B x^{(2-n)/2} (1-x)^{(2-n)/2} + x^{2-n} \right\} .. math:: \Gamma ^2 = \frac{\left(\frac{\Delta P}{L}\right)_{go}}{\left(\frac{ \Delta P}{L}\right)_{lo}} For Gamma < 9.5: .. math:: B = \frac{55}{G_{tp}^{0.5}} \text{ for } G_{tp} > 1900 .. math:: B = \frac{2400}{G_{tp}} \text{ for } 500 < G_{tp} < 1900 .. math:: B = 4.8 \text{ for } G_{tp} < 500 For 9.5 < Gamma < 28: .. math:: B = \frac{520}{\Gamma G_{tp}^{0.5}} \text{ for } G_{tp} < 600 .. math:: B = \frac{21}{\Gamma} \text{ for } G_{tp} > 600 For Gamma > 28: .. math:: B = \frac{15000}{\Gamma^2 G_{tp}^{0.5}} If `rough_correction` is True, the following correction to B is applied: .. math:: \frac{B_{rough}}{B_{smooth}} = \left[0.5\left\{1+ \left(\frac{\mu_g} {\mu_l}\right)^2 + 10^{-600\epsilon/D}\right\}\right]^{\frac{0.25-n} {0.25}} .. math:: n = \frac{\log \frac{f_{d,lo}}{f_{d,go}}}{\log \frac{Re_{go}}{Re_{lo}}} Parameters ---------- m : float Mass flow rate of fluid, [kg/s] x : float Quality of fluid, [-] rhol : float Liquid density, [kg/m^3] rhog : float Gas density, [kg/m^3] mul : float Viscosity of liquid, [Pa*s] mug : float Viscosity of gas, [Pa*s] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] rough_correction : bool, optional Whether or not to use the roughness correction proposed in the 1968 version of the correlation Returns ------- dP : float Pressure drop of the two-phase flow, [Pa] Notes ----- Applicable for 0 < x < 1. n = 0.25, the exponent in the Blassius equation. Originally developed for smooth pipes, a roughness correction is included as well from the Chisholm's 1968 work [4]_. Neither [2]_ nor [3]_ have any mention of the correction however. Examples -------- >>> Chisholm(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, ... mug=14E-6, D=0.05, roughness=0, L=1) 1084.1489922923738 References ---------- .. [1] Chisholm, D. "Pressure Gradients due to Friction during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels." International Journal of Heat and Mass Transfer 16, no. 2 (February 1973): 347-58. doi:10.1016/0017-9310(73)90063-X. .. [2] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma State University, 2013. https://shareok.org/handle/11244/11109. .. [3] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc (2004). http://www.wlv.com/heat-transfer-databook/ .. [4] Chisholm, D. "Research Note: Influence of Pipe Surface Roughness on Friction Pressure Gradient during Two-Phase Flow." Journal of Mechanical Engineering Science 20, no. 6 (December 1, 1978): 353-354. doi:10.1243/JMES_JOUR_1978_020_061_02. ''' G_tp = m/(pi/4*D**2) n = 0.25 # Blasius friction factor exponent # Liquid-only properties, for calculation of dP_lo v_lo = m/rhol/(pi/4*D**2) Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D) fd_lo = friction_factor(Re=Re_lo, eD=roughness/D) dP_lo = fd_lo*L/D*(0.5*rhol*v_lo**2) # Gas-only properties, for calculation of dP_go v_go = m/rhog/(pi/4*D**2) Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D) fd_go = friction_factor(Re=Re_go, eD=roughness/D) dP_go = fd_go*L/D*(0.5*rhog*v_go**2) Gamma = (dP_go/dP_lo)**0.5 if Gamma <= 9.5: if G_tp <= 500: B = 4.8 elif G_tp < 1900: B = 2400./G_tp else: B = 55*G_tp**-0.5 elif Gamma <= 28: if G_tp <= 600: B = 520.*G_tp**-0.5/Gamma else: B = 21./Gamma else: B = 15000.*G_tp**-0.5/Gamma**2 if rough_correction: n = log(fd_lo/fd_go)/log(Re_go/Re_lo) B_ratio = (0.5*(1 + (mug/mul)**2 + 10**(-600*roughness/D)))**((0.25-n)/0.25) B = B*B_ratio phi2_ch = 1 + (Gamma**2-1)*(B*x**((2-n)/2.)*(1-x)**((2-n)/2.) + x**(2-n)) return phi2_ch*dP_lo
def mavlink_packet(self, m): '''handle an incoming mavlink packet''' if m.get_type() == 'PPP' and self.ppp_fd != -1: print("got ppp mavlink pkt len=%u" % m.length) os.write(self.ppp_fd, m.data[:m.length])
handle an incoming mavlink packet
Below is the the instruction that describes the task: ### Input: handle an incoming mavlink packet ### Response: def mavlink_packet(self, m): '''handle an incoming mavlink packet''' if m.get_type() == 'PPP' and self.ppp_fd != -1: print("got ppp mavlink pkt len=%u" % m.length) os.write(self.ppp_fd, m.data[:m.length])
def _prepare_axes(node, sort_key): """ Sort axes and combine those that point to the same target and go in the same direction. """ links = node.links o_links = node._overlapping_links overlap = {ax2 for ax in links for ax2 in o_links.get(ax, [])} axes = [] for axis in sorted(links.keys(), key=sort_key): if axis in overlap: continue tgt = links[axis] if axis in o_links: s, e = axis[0], axis[-1] axis = '%s%s%s' % ( s, '&'.join(a[1:-1] for a in [axis] + o_links[axis]), e ) axes.append((axis, tgt)) return axes
Sort axes and combine those that point to the same target and go in the same direction.
Below is the the instruction that describes the task: ### Input: Sort axes and combine those that point to the same target and go in the same direction. ### Response: def _prepare_axes(node, sort_key): """ Sort axes and combine those that point to the same target and go in the same direction. """ links = node.links o_links = node._overlapping_links overlap = {ax2 for ax in links for ax2 in o_links.get(ax, [])} axes = [] for axis in sorted(links.keys(), key=sort_key): if axis in overlap: continue tgt = links[axis] if axis in o_links: s, e = axis[0], axis[-1] axis = '%s%s%s' % ( s, '&'.join(a[1:-1] for a in [axis] + o_links[axis]), e ) axes.append((axis, tgt)) return axes
def add_cache(self, namespace, key, query_hash, length, cache): """Add cached values for the specified date range and query""" start = 0 bulk_insert = self.bulk_insert cache_len = len(cache) row = '(%s,%s,%s,%s,%s,%s)' query = 'INSERT INTO gauged_cache ' \ '(namespace, key, "hash", length, start, value) VALUES ' execute = self.cursor.execute query_hash = self.psycopg2.Binary(query_hash) while start < cache_len: rows = cache[start:start+bulk_insert] params = [] for timestamp, value in rows: params.extend((namespace, key, query_hash, length, timestamp, value)) insert = (row + ',') * (len(rows) - 1) + row execute(query + insert, params) start += bulk_insert self.db.commit()
Add cached values for the specified date range and query
Below is the the instruction that describes the task: ### Input: Add cached values for the specified date range and query ### Response: def add_cache(self, namespace, key, query_hash, length, cache): """Add cached values for the specified date range and query""" start = 0 bulk_insert = self.bulk_insert cache_len = len(cache) row = '(%s,%s,%s,%s,%s,%s)' query = 'INSERT INTO gauged_cache ' \ '(namespace, key, "hash", length, start, value) VALUES ' execute = self.cursor.execute query_hash = self.psycopg2.Binary(query_hash) while start < cache_len: rows = cache[start:start+bulk_insert] params = [] for timestamp, value in rows: params.extend((namespace, key, query_hash, length, timestamp, value)) insert = (row + ',') * (len(rows) - 1) + row execute(query + insert, params) start += bulk_insert self.db.commit()
def PopAttributeContainer(self): """Pops a serialized attribute container from the list. Returns: bytes: serialized attribute container data. """ try: serialized_data = self._list.pop(0) self.data_size -= len(serialized_data) return serialized_data except IndexError: return None
Pops a serialized attribute container from the list. Returns: bytes: serialized attribute container data.
Below is the the instruction that describes the task: ### Input: Pops a serialized attribute container from the list. Returns: bytes: serialized attribute container data. ### Response: def PopAttributeContainer(self): """Pops a serialized attribute container from the list. Returns: bytes: serialized attribute container data. """ try: serialized_data = self._list.pop(0) self.data_size -= len(serialized_data) return serialized_data except IndexError: return None
def commajoin_as_strings(iterable): """ Join the given iterable with ',' """ return _(u',').join((six.text_type(i) for i in iterable))
Join the given iterable with ','
Below is the the instruction that describes the task: ### Input: Join the given iterable with ',' ### Response: def commajoin_as_strings(iterable): """ Join the given iterable with ',' """ return _(u',').join((six.text_type(i) for i in iterable))
def plate_exchanger_identifier(self): '''Method to create an identifying string in format 'L' + wavelength + 'A' + amplitude + 'B' + chevron angle-chevron angle. Wavelength and amplitude are specified in units of mm and rounded to two decimal places. ''' s = ('L' + str(round(self.wavelength*1000, 2)) + 'A' + str(round(self.amplitude*1000, 2)) + 'B' + '-'.join([str(i) for i in self.chevron_angles])) return s
Method to create an identifying string in format 'L' + wavelength + 'A' + amplitude + 'B' + chevron angle-chevron angle. Wavelength and amplitude are specified in units of mm and rounded to two decimal places.
Below is the the instruction that describes the task: ### Input: Method to create an identifying string in format 'L' + wavelength + 'A' + amplitude + 'B' + chevron angle-chevron angle. Wavelength and amplitude are specified in units of mm and rounded to two decimal places. ### Response: def plate_exchanger_identifier(self): '''Method to create an identifying string in format 'L' + wavelength + 'A' + amplitude + 'B' + chevron angle-chevron angle. Wavelength and amplitude are specified in units of mm and rounded to two decimal places. ''' s = ('L' + str(round(self.wavelength*1000, 2)) + 'A' + str(round(self.amplitude*1000, 2)) + 'B' + '-'.join([str(i) for i in self.chevron_angles])) return s
def can_be_executed_by(self, thread_id): '''By default, it must be in the same thread to be executed ''' return self.thread_id == thread_id or self.thread_id.endswith('|' + thread_id)
By default, it must be in the same thread to be executed
Below is the the instruction that describes the task: ### Input: By default, it must be in the same thread to be executed ### Response: def can_be_executed_by(self, thread_id): '''By default, it must be in the same thread to be executed ''' return self.thread_id == thread_id or self.thread_id.endswith('|' + thread_id)
def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, do not use the index labels. .. versionadded:: 0.19.0 verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame, Series or Panel objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """ from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] + to_append else: to_concat = [self, to_append] return concat(to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity)
Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, do not use the index labels. .. versionadded:: 0.19.0 verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame, Series or Panel objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2]
Below is the the instruction that describes the task: ### Input: Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, do not use the index labels. .. versionadded:: 0.19.0 verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame, Series or Panel objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] ### Response: def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, do not use the index labels. .. versionadded:: 0.19.0 verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame, Series or Panel objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """ from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] + to_append else: to_concat = [self, to_append] return concat(to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity)
def _configure_iam_role(config): """Setup a gcp service account with IAM roles. Creates a gcp service acconut and binds IAM roles which allow it to control control storage/compute services. Specifically, the head node needs to have an IAM role that allows it to create further gce instances and store items in google cloud storage. TODO: Allow the name/id of the service account to be configured """ email = SERVICE_ACCOUNT_EMAIL_TEMPLATE.format( account_id=DEFAULT_SERVICE_ACCOUNT_ID, project_id=config["provider"]["project_id"]) service_account = _get_service_account(email, config) if service_account is None: logger.info("_configure_iam_role: " "Creating new service account {}".format( DEFAULT_SERVICE_ACCOUNT_ID)) service_account = _create_service_account( DEFAULT_SERVICE_ACCOUNT_ID, DEFAULT_SERVICE_ACCOUNT_CONFIG, config) assert service_account is not None, "Failed to create service account" _add_iam_policy_binding(service_account, DEFAULT_SERVICE_ACCOUNT_ROLES) config["head_node"]["serviceAccounts"] = [{ "email": service_account["email"], # NOTE: The amount of access is determined by the scope + IAM # role of the service account. Even if the cloud-platform scope # gives (scope) access to the whole cloud-platform, the service # account is limited by the IAM rights specified below. "scopes": ["https://www.googleapis.com/auth/cloud-platform"] }] return config
Setup a gcp service account with IAM roles. Creates a gcp service acconut and binds IAM roles which allow it to control control storage/compute services. Specifically, the head node needs to have an IAM role that allows it to create further gce instances and store items in google cloud storage. TODO: Allow the name/id of the service account to be configured
Below is the the instruction that describes the task: ### Input: Setup a gcp service account with IAM roles. Creates a gcp service acconut and binds IAM roles which allow it to control control storage/compute services. Specifically, the head node needs to have an IAM role that allows it to create further gce instances and store items in google cloud storage. TODO: Allow the name/id of the service account to be configured ### Response: def _configure_iam_role(config): """Setup a gcp service account with IAM roles. Creates a gcp service acconut and binds IAM roles which allow it to control control storage/compute services. Specifically, the head node needs to have an IAM role that allows it to create further gce instances and store items in google cloud storage. TODO: Allow the name/id of the service account to be configured """ email = SERVICE_ACCOUNT_EMAIL_TEMPLATE.format( account_id=DEFAULT_SERVICE_ACCOUNT_ID, project_id=config["provider"]["project_id"]) service_account = _get_service_account(email, config) if service_account is None: logger.info("_configure_iam_role: " "Creating new service account {}".format( DEFAULT_SERVICE_ACCOUNT_ID)) service_account = _create_service_account( DEFAULT_SERVICE_ACCOUNT_ID, DEFAULT_SERVICE_ACCOUNT_CONFIG, config) assert service_account is not None, "Failed to create service account" _add_iam_policy_binding(service_account, DEFAULT_SERVICE_ACCOUNT_ROLES) config["head_node"]["serviceAccounts"] = [{ "email": service_account["email"], # NOTE: The amount of access is determined by the scope + IAM # role of the service account. Even if the cloud-platform scope # gives (scope) access to the whole cloud-platform, the service # account is limited by the IAM rights specified below. "scopes": ["https://www.googleapis.com/auth/cloud-platform"] }] return config
def sanitize_resources(resource: dict): """Cleans up incoming scene data :param resource: The dict with scene data to be sanitized. :returns: Cleaned up scene dict. """ try: for shade in resource[ATTR_SHADE_DATA]: _name = shade.get(ATTR_NAME) if _name: shade[ATTR_NAME_UNICODE] = base64_to_unicode(_name) return resource except (KeyError, TypeError): LOGGER.debug("no shade data available") return None
Cleans up incoming scene data :param resource: The dict with scene data to be sanitized. :returns: Cleaned up scene dict.
Below is the the instruction that describes the task: ### Input: Cleans up incoming scene data :param resource: The dict with scene data to be sanitized. :returns: Cleaned up scene dict. ### Response: def sanitize_resources(resource: dict): """Cleans up incoming scene data :param resource: The dict with scene data to be sanitized. :returns: Cleaned up scene dict. """ try: for shade in resource[ATTR_SHADE_DATA]: _name = shade.get(ATTR_NAME) if _name: shade[ATTR_NAME_UNICODE] = base64_to_unicode(_name) return resource except (KeyError, TypeError): LOGGER.debug("no shade data available") return None
def _get_prioritized_parameters(plugins_dict, is_using_default_value_map, prefer_default=True): """ :type plugins_dict: dict(plugin_name => plugin_params) :param plugin_dict: mapping of plugin name to all plugin params :type is_using_default_value_map: dict(str => bool) :param is_using_default_value_map: mapping of parameter name to whether its value is derived from a default value. :param prefer_default: if True, will yield if plugin parameters are from default values. Otherwise, will yield if plugin parameters are *not* from default values. """ for plugin_name, plugin_params in plugins_dict.items(): for param_name, param_value in plugin_params.items(): is_using_default = is_using_default_value_map.get(param_name, False) if is_using_default == prefer_default: yield plugin_name, param_name, param_value
:type plugins_dict: dict(plugin_name => plugin_params) :param plugin_dict: mapping of plugin name to all plugin params :type is_using_default_value_map: dict(str => bool) :param is_using_default_value_map: mapping of parameter name to whether its value is derived from a default value. :param prefer_default: if True, will yield if plugin parameters are from default values. Otherwise, will yield if plugin parameters are *not* from default values.
Below is the the instruction that describes the task: ### Input: :type plugins_dict: dict(plugin_name => plugin_params) :param plugin_dict: mapping of plugin name to all plugin params :type is_using_default_value_map: dict(str => bool) :param is_using_default_value_map: mapping of parameter name to whether its value is derived from a default value. :param prefer_default: if True, will yield if plugin parameters are from default values. Otherwise, will yield if plugin parameters are *not* from default values. ### Response: def _get_prioritized_parameters(plugins_dict, is_using_default_value_map, prefer_default=True): """ :type plugins_dict: dict(plugin_name => plugin_params) :param plugin_dict: mapping of plugin name to all plugin params :type is_using_default_value_map: dict(str => bool) :param is_using_default_value_map: mapping of parameter name to whether its value is derived from a default value. :param prefer_default: if True, will yield if plugin parameters are from default values. Otherwise, will yield if plugin parameters are *not* from default values. """ for plugin_name, plugin_params in plugins_dict.items(): for param_name, param_value in plugin_params.items(): is_using_default = is_using_default_value_map.get(param_name, False) if is_using_default == prefer_default: yield plugin_name, param_name, param_value
def prepare_url(self, uri, kwargs): """Convert dict for URL params """ params = dict() for key in kwargs: if key in ('include', 'exclude', 'fields'): params.update({ key: ','.join(kwargs.get(key)) }) elif key in ('search', 'kind'): params.update({ key: kwargs.get(key) }) if params: params = urlencode(params) uri = '%s?%s' % (uri, params) return uri
Convert dict for URL params
Below is the the instruction that describes the task: ### Input: Convert dict for URL params ### Response: def prepare_url(self, uri, kwargs): """Convert dict for URL params """ params = dict() for key in kwargs: if key in ('include', 'exclude', 'fields'): params.update({ key: ','.join(kwargs.get(key)) }) elif key in ('search', 'kind'): params.update({ key: kwargs.get(key) }) if params: params = urlencode(params) uri = '%s?%s' % (uri, params) return uri
def correlation(self, x, y=None, binby=[], limits=None, shape=default_shape, sort=False, sort_key=np.abs, selection=False, delay=False, progress=None): """Calculate the correlation coefficient cov[x,y]/(std[x]*std[y]) between and x and y, possibly on a grid defined by binby. Example: >>> df.correlation("x**2+y**2+z**2", "-log(-E+1)") array(0.6366637382215669) >>> df.correlation("x**2+y**2+z**2", "-log(-E+1)", binby="Lz", shape=4) array([ 0.40594394, 0.69868851, 0.61394099, 0.65266318]) :param x: {expression} :param y: {expression} :param binby: {binby} :param limits: {limits} :param shape: {shape} :param selection: {selection} :param delay: {delay} :param progress: {progress} :return: {return_stat_scalar} """ @delayed def corr(cov): with np.errstate(divide='ignore', invalid='ignore'): # these are fine, we are ok with nan's in vaex return cov[..., 0, 1] / (cov[..., 0, 0] * cov[..., 1, 1])**0.5 if y is None: if not isinstance(x, (tuple, list)): raise ValueError("if y not given, x is expected to be a list or tuple, not %r" % x) if _issequence(x) and not _issequence(x[0]) and len(x) == 2: x = [x] if not(_issequence(x) and all([_issequence(k) and len(k) == 2 for k in x])): raise ValueError("if y not given, x is expected to be a list of lists with length 2, not %r" % x) # waslist, [xlist,ylist] = vaex.utils.listify(*x) waslist = True xlist, ylist = zip(*x) # print xlist, ylist else: waslist, [xlist, ylist] = vaex.utils.listify(x, y) limits = self.limits(binby, limits, selection=selection, delay=True) @delayed def echo(limits): logger.debug(">>>>>>>>: %r %r", limits, np.array(limits).shape) echo(limits) @delayed def calculate(limits): results = [] for x, y in zip(xlist, ylist): task = self.cov(x, y, binby=binby, limits=limits, shape=shape, selection=selection, delay=True, progress=progressbar) results.append(corr(task)) return results progressbar = vaex.utils.progressbars(progress) correlations = calculate(limits) @delayed def finish(correlations): if sort: correlations = np.array(correlations) indices = np.argsort(sort_key(correlations) if sort_key else correlations)[::-1] sorted_x = list([x[k] for k in indices]) return correlations[indices], sorted_x value = np.array(vaex.utils.unlistify(waslist, correlations)) return value return self._delay(delay, finish(delayed_list(correlations)))
Calculate the correlation coefficient cov[x,y]/(std[x]*std[y]) between and x and y, possibly on a grid defined by binby. Example: >>> df.correlation("x**2+y**2+z**2", "-log(-E+1)") array(0.6366637382215669) >>> df.correlation("x**2+y**2+z**2", "-log(-E+1)", binby="Lz", shape=4) array([ 0.40594394, 0.69868851, 0.61394099, 0.65266318]) :param x: {expression} :param y: {expression} :param binby: {binby} :param limits: {limits} :param shape: {shape} :param selection: {selection} :param delay: {delay} :param progress: {progress} :return: {return_stat_scalar}
Below is the the instruction that describes the task: ### Input: Calculate the correlation coefficient cov[x,y]/(std[x]*std[y]) between and x and y, possibly on a grid defined by binby. Example: >>> df.correlation("x**2+y**2+z**2", "-log(-E+1)") array(0.6366637382215669) >>> df.correlation("x**2+y**2+z**2", "-log(-E+1)", binby="Lz", shape=4) array([ 0.40594394, 0.69868851, 0.61394099, 0.65266318]) :param x: {expression} :param y: {expression} :param binby: {binby} :param limits: {limits} :param shape: {shape} :param selection: {selection} :param delay: {delay} :param progress: {progress} :return: {return_stat_scalar} ### Response: def correlation(self, x, y=None, binby=[], limits=None, shape=default_shape, sort=False, sort_key=np.abs, selection=False, delay=False, progress=None): """Calculate the correlation coefficient cov[x,y]/(std[x]*std[y]) between and x and y, possibly on a grid defined by binby. Example: >>> df.correlation("x**2+y**2+z**2", "-log(-E+1)") array(0.6366637382215669) >>> df.correlation("x**2+y**2+z**2", "-log(-E+1)", binby="Lz", shape=4) array([ 0.40594394, 0.69868851, 0.61394099, 0.65266318]) :param x: {expression} :param y: {expression} :param binby: {binby} :param limits: {limits} :param shape: {shape} :param selection: {selection} :param delay: {delay} :param progress: {progress} :return: {return_stat_scalar} """ @delayed def corr(cov): with np.errstate(divide='ignore', invalid='ignore'): # these are fine, we are ok with nan's in vaex return cov[..., 0, 1] / (cov[..., 0, 0] * cov[..., 1, 1])**0.5 if y is None: if not isinstance(x, (tuple, list)): raise ValueError("if y not given, x is expected to be a list or tuple, not %r" % x) if _issequence(x) and not _issequence(x[0]) and len(x) == 2: x = [x] if not(_issequence(x) and all([_issequence(k) and len(k) == 2 for k in x])): raise ValueError("if y not given, x is expected to be a list of lists with length 2, not %r" % x) # waslist, [xlist,ylist] = vaex.utils.listify(*x) waslist = True xlist, ylist = zip(*x) # print xlist, ylist else: waslist, [xlist, ylist] = vaex.utils.listify(x, y) limits = self.limits(binby, limits, selection=selection, delay=True) @delayed def echo(limits): logger.debug(">>>>>>>>: %r %r", limits, np.array(limits).shape) echo(limits) @delayed def calculate(limits): results = [] for x, y in zip(xlist, ylist): task = self.cov(x, y, binby=binby, limits=limits, shape=shape, selection=selection, delay=True, progress=progressbar) results.append(corr(task)) return results progressbar = vaex.utils.progressbars(progress) correlations = calculate(limits) @delayed def finish(correlations): if sort: correlations = np.array(correlations) indices = np.argsort(sort_key(correlations) if sort_key else correlations)[::-1] sorted_x = list([x[k] for k in indices]) return correlations[indices], sorted_x value = np.array(vaex.utils.unlistify(waslist, correlations)) return value return self._delay(delay, finish(delayed_list(correlations)))
def register_macro(name: str, func: Callable, allow_overwrite: bool = False) -> None: """Register new macro to Circuit. Args: name (str): The name of macro. func (callable): The function to be called. allow_overwrite (bool, optional): If True, allow to overwrite the existing macro. Otherwise, raise the ValueError. Raises: ValueError: The name is duplicated with existing macro, gate or method. When `allow_overwrite=True`, this error is not raised. """ if hasattr(Circuit, name): if allow_overwrite: warnings.warn(f"Circuit has attribute `{name}`.") else: raise ValueError(f"Circuit has attribute `{name}`.") if name.startswith("run_with_"): if allow_overwrite: warnings.warn(f"Gate name `{name}` may conflict with run of backend.") else: raise ValueError(f"Gate name `{name}` shall not start with 'run_with_'.") if not allow_overwrite: if name in GATE_SET: raise ValueError(f"Gate '{name}' is already exists in gate set.") if name in GLOBAL_MACROS: raise ValueError(f"Macro '{name}' is already exists.") GLOBAL_MACROS[name] = func
Register new macro to Circuit. Args: name (str): The name of macro. func (callable): The function to be called. allow_overwrite (bool, optional): If True, allow to overwrite the existing macro. Otherwise, raise the ValueError. Raises: ValueError: The name is duplicated with existing macro, gate or method. When `allow_overwrite=True`, this error is not raised.
Below is the the instruction that describes the task: ### Input: Register new macro to Circuit. Args: name (str): The name of macro. func (callable): The function to be called. allow_overwrite (bool, optional): If True, allow to overwrite the existing macro. Otherwise, raise the ValueError. Raises: ValueError: The name is duplicated with existing macro, gate or method. When `allow_overwrite=True`, this error is not raised. ### Response: def register_macro(name: str, func: Callable, allow_overwrite: bool = False) -> None: """Register new macro to Circuit. Args: name (str): The name of macro. func (callable): The function to be called. allow_overwrite (bool, optional): If True, allow to overwrite the existing macro. Otherwise, raise the ValueError. Raises: ValueError: The name is duplicated with existing macro, gate or method. When `allow_overwrite=True`, this error is not raised. """ if hasattr(Circuit, name): if allow_overwrite: warnings.warn(f"Circuit has attribute `{name}`.") else: raise ValueError(f"Circuit has attribute `{name}`.") if name.startswith("run_with_"): if allow_overwrite: warnings.warn(f"Gate name `{name}` may conflict with run of backend.") else: raise ValueError(f"Gate name `{name}` shall not start with 'run_with_'.") if not allow_overwrite: if name in GATE_SET: raise ValueError(f"Gate '{name}' is already exists in gate set.") if name in GLOBAL_MACROS: raise ValueError(f"Macro '{name}' is already exists.") GLOBAL_MACROS[name] = func
def save(cls, network, phases=[], filename=''): r""" Write Network to a Mat file for exporting to Matlab. Parameters ---------- network : OpenPNM Network Object filename : string Desired file name, defaults to network name if not given phases : list of phase objects ([]) Phases that have properties we want to write to file """ project, network, phases = cls._parse_args(network=network, phases=phases) network = network[0] # Write to file if filename == '': filename = project.name filename = cls._parse_filename(filename=filename, ext='mat') d = Dict.to_dict(network=network, phases=phases, interleave=True) d = FlatDict(d, delimiter='|') d = sanitize_dict(d) new_d = {} for key in list(d.keys()): new_key = key.replace('|', '_').replace('.', '_') new_d[new_key] = d.pop(key) spio.savemat(file_name=filename, mdict=new_d)
r""" Write Network to a Mat file for exporting to Matlab. Parameters ---------- network : OpenPNM Network Object filename : string Desired file name, defaults to network name if not given phases : list of phase objects ([]) Phases that have properties we want to write to file
Below is the the instruction that describes the task: ### Input: r""" Write Network to a Mat file for exporting to Matlab. Parameters ---------- network : OpenPNM Network Object filename : string Desired file name, defaults to network name if not given phases : list of phase objects ([]) Phases that have properties we want to write to file ### Response: def save(cls, network, phases=[], filename=''): r""" Write Network to a Mat file for exporting to Matlab. Parameters ---------- network : OpenPNM Network Object filename : string Desired file name, defaults to network name if not given phases : list of phase objects ([]) Phases that have properties we want to write to file """ project, network, phases = cls._parse_args(network=network, phases=phases) network = network[0] # Write to file if filename == '': filename = project.name filename = cls._parse_filename(filename=filename, ext='mat') d = Dict.to_dict(network=network, phases=phases, interleave=True) d = FlatDict(d, delimiter='|') d = sanitize_dict(d) new_d = {} for key in list(d.keys()): new_key = key.replace('|', '_').replace('.', '_') new_d[new_key] = d.pop(key) spio.savemat(file_name=filename, mdict=new_d)
def handle_close(self, header, payload): """ Called when a close frame has been decoded from the stream. :param header: The decoded `Header`. :param payload: The bytestring payload associated with the close frame. """ if not payload: self.close(1000, None) return if len(payload) < 2: raise WebSocketError('Invalid close frame: {0} {1}'.format(header, payload)) rv = payload[:2] if six.PY2: code = struct.unpack('!H', str(rv))[0] else: code = struct.unpack('!H', bytes(rv))[0] payload = payload[2:] if payload: validator = Utf8Validator() val = validator.validate(payload) if not val[0]: raise UnicodeError if not self._is_valid_close_code(code): raise WebSocketError('Invalid close code {0}'.format(code)) self.close(code, payload)
Called when a close frame has been decoded from the stream. :param header: The decoded `Header`. :param payload: The bytestring payload associated with the close frame.
Below is the the instruction that describes the task: ### Input: Called when a close frame has been decoded from the stream. :param header: The decoded `Header`. :param payload: The bytestring payload associated with the close frame. ### Response: def handle_close(self, header, payload): """ Called when a close frame has been decoded from the stream. :param header: The decoded `Header`. :param payload: The bytestring payload associated with the close frame. """ if not payload: self.close(1000, None) return if len(payload) < 2: raise WebSocketError('Invalid close frame: {0} {1}'.format(header, payload)) rv = payload[:2] if six.PY2: code = struct.unpack('!H', str(rv))[0] else: code = struct.unpack('!H', bytes(rv))[0] payload = payload[2:] if payload: validator = Utf8Validator() val = validator.validate(payload) if not val[0]: raise UnicodeError if not self._is_valid_close_code(code): raise WebSocketError('Invalid close code {0}'.format(code)) self.close(code, payload)
def on_tblFunctions1_itemSelectionChanged(self): """Choose selected hazard x exposure combination. .. note:: This is an automatic Qt slot executed when the category selection changes. """ # Clear the selection on the 2nd matrix self.parent.step_fc_functions2.tblFunctions2.clearContents() self.parent.step_fc_functions2.lblAvailableFunctions2.clear() self.parent.pbnNext.setEnabled(True) # Put a dot to the selected cell - note there is no way # to center an icon without using a custom ItemDelegate selection = self.tblFunctions1.selectedItems() selItem = (len(selection) == 1) and selection[0] or None for row in range(self.tblFunctions1.rowCount()): for column in range(self.tblFunctions1.columnCount()): item = self.tblFunctions1.item(row, column) item.setText((item == selItem) and '•' or '')
Choose selected hazard x exposure combination. .. note:: This is an automatic Qt slot executed when the category selection changes.
Below is the the instruction that describes the task: ### Input: Choose selected hazard x exposure combination. .. note:: This is an automatic Qt slot executed when the category selection changes. ### Response: def on_tblFunctions1_itemSelectionChanged(self): """Choose selected hazard x exposure combination. .. note:: This is an automatic Qt slot executed when the category selection changes. """ # Clear the selection on the 2nd matrix self.parent.step_fc_functions2.tblFunctions2.clearContents() self.parent.step_fc_functions2.lblAvailableFunctions2.clear() self.parent.pbnNext.setEnabled(True) # Put a dot to the selected cell - note there is no way # to center an icon without using a custom ItemDelegate selection = self.tblFunctions1.selectedItems() selItem = (len(selection) == 1) and selection[0] or None for row in range(self.tblFunctions1.rowCount()): for column in range(self.tblFunctions1.columnCount()): item = self.tblFunctions1.item(row, column) item.setText((item == selItem) and '•' or '')
def setRows(self, rows): """ Sets the number of rows in the raster (if columns have not been initialized, set to 1 as well) """ self._raster[0] = rows if self._raster[1] == 0: self._raster[1] = 1
Sets the number of rows in the raster (if columns have not been initialized, set to 1 as well)
Below is the the instruction that describes the task: ### Input: Sets the number of rows in the raster (if columns have not been initialized, set to 1 as well) ### Response: def setRows(self, rows): """ Sets the number of rows in the raster (if columns have not been initialized, set to 1 as well) """ self._raster[0] = rows if self._raster[1] == 0: self._raster[1] = 1
def get_network(ipv4addr=None, network=None, return_fields=None, **api_opts): ''' Get list of all networks. This is helpful when looking up subnets to use with func:nextavailableip This call is offen slow and not cached! some return_fields comment,network,network_view,ddns_domainname,disable,enable_ddns CLI Example: .. code-block:: bash salt-call infoblox.get_network ''' infoblox = _get_infoblox(**api_opts) return infoblox.get_network(ipv4addr=ipv4addr, network=network, return_fields=return_fields)
Get list of all networks. This is helpful when looking up subnets to use with func:nextavailableip This call is offen slow and not cached! some return_fields comment,network,network_view,ddns_domainname,disable,enable_ddns CLI Example: .. code-block:: bash salt-call infoblox.get_network
Below is the the instruction that describes the task: ### Input: Get list of all networks. This is helpful when looking up subnets to use with func:nextavailableip This call is offen slow and not cached! some return_fields comment,network,network_view,ddns_domainname,disable,enable_ddns CLI Example: .. code-block:: bash salt-call infoblox.get_network ### Response: def get_network(ipv4addr=None, network=None, return_fields=None, **api_opts): ''' Get list of all networks. This is helpful when looking up subnets to use with func:nextavailableip This call is offen slow and not cached! some return_fields comment,network,network_view,ddns_domainname,disable,enable_ddns CLI Example: .. code-block:: bash salt-call infoblox.get_network ''' infoblox = _get_infoblox(**api_opts) return infoblox.get_network(ipv4addr=ipv4addr, network=network, return_fields=return_fields)
def provideObjectsToLearn(self, learningConfig, plot=False): """ Returns the objects in a canonical format to be sent to an experiment. The input, learningConfig, should have the following format. It is a mapping from object to a list of features to sample locations from, and the number of points to sample from each feature. Note that these objects should be first added with .addObjects(). These features can be either hard-coded with their key or accessed with .getFeatures. An other possibility is to directly specify locations. The machine will use the object to find the corresponding feature (an empty feature will be sent if the location is not on the object's surface). learningConfig = { # hard-coded keys and number of points "cube": [("face", 5), ("edge", 5), ("vertex", 3)], # programmatically-accessed keys and number of points "cylinder": [(feature, 5) for feature in cylinder.getFeatures()], # specific locations "sphere": [(10, 5, 3), (12, 45, 32), (12, 5, 46)], } The returned format is a a dictionary where the keys are object names, and values are lists of sensations, each sensation being a mapping from cortical column index to a pair of SDR's (one location and one feature). Parameters: ---------------------------- @param learningConfig (dict) Configuration for learning, as described above. """ objects = {} for objectName, locationList in learningConfig.iteritems(): sensationList = [] physicalObject = self.objects[objectName] if plot: fig, ax = physicalObject.plot() for element in locationList: # location name and number of points if len(element) == 2: featureName, numLocations = element for _ in xrange(numLocations): location = physicalObject.sampleLocationFromFeature(featureName) sensationList.append( self._getSDRPairs( [(location, physicalObject.getFeatureID(location))] * self.numColumns ) ) if plot: x, y, z = tuple(location) ax.scatter(x, y, z, marker="v", s=100, c="r") # explicit location elif len(element) == 3: location = list(element) sensationList.append( self._getSDRPairs( [(location, physicalObject.getFeatureID(location))] * self.numColumns ) ) if plot: x, y, z = tuple(location) ax.scatter(x, y, z, marker="v", s=100, c="r") else: raise ValueError("Unsupported type for location spec") objects[objectName] = sensationList if plot: plt.title("Learning points for object {}".format(objectName)) plt.savefig("learn_{}.png".format(objectName)) plt.close() self._checkObjectsToLearn(objects) return objects
Returns the objects in a canonical format to be sent to an experiment. The input, learningConfig, should have the following format. It is a mapping from object to a list of features to sample locations from, and the number of points to sample from each feature. Note that these objects should be first added with .addObjects(). These features can be either hard-coded with their key or accessed with .getFeatures. An other possibility is to directly specify locations. The machine will use the object to find the corresponding feature (an empty feature will be sent if the location is not on the object's surface). learningConfig = { # hard-coded keys and number of points "cube": [("face", 5), ("edge", 5), ("vertex", 3)], # programmatically-accessed keys and number of points "cylinder": [(feature, 5) for feature in cylinder.getFeatures()], # specific locations "sphere": [(10, 5, 3), (12, 45, 32), (12, 5, 46)], } The returned format is a a dictionary where the keys are object names, and values are lists of sensations, each sensation being a mapping from cortical column index to a pair of SDR's (one location and one feature). Parameters: ---------------------------- @param learningConfig (dict) Configuration for learning, as described above.
Below is the the instruction that describes the task: ### Input: Returns the objects in a canonical format to be sent to an experiment. The input, learningConfig, should have the following format. It is a mapping from object to a list of features to sample locations from, and the number of points to sample from each feature. Note that these objects should be first added with .addObjects(). These features can be either hard-coded with their key or accessed with .getFeatures. An other possibility is to directly specify locations. The machine will use the object to find the corresponding feature (an empty feature will be sent if the location is not on the object's surface). learningConfig = { # hard-coded keys and number of points "cube": [("face", 5), ("edge", 5), ("vertex", 3)], # programmatically-accessed keys and number of points "cylinder": [(feature, 5) for feature in cylinder.getFeatures()], # specific locations "sphere": [(10, 5, 3), (12, 45, 32), (12, 5, 46)], } The returned format is a a dictionary where the keys are object names, and values are lists of sensations, each sensation being a mapping from cortical column index to a pair of SDR's (one location and one feature). Parameters: ---------------------------- @param learningConfig (dict) Configuration for learning, as described above. ### Response: def provideObjectsToLearn(self, learningConfig, plot=False): """ Returns the objects in a canonical format to be sent to an experiment. The input, learningConfig, should have the following format. It is a mapping from object to a list of features to sample locations from, and the number of points to sample from each feature. Note that these objects should be first added with .addObjects(). These features can be either hard-coded with their key or accessed with .getFeatures. An other possibility is to directly specify locations. The machine will use the object to find the corresponding feature (an empty feature will be sent if the location is not on the object's surface). learningConfig = { # hard-coded keys and number of points "cube": [("face", 5), ("edge", 5), ("vertex", 3)], # programmatically-accessed keys and number of points "cylinder": [(feature, 5) for feature in cylinder.getFeatures()], # specific locations "sphere": [(10, 5, 3), (12, 45, 32), (12, 5, 46)], } The returned format is a a dictionary where the keys are object names, and values are lists of sensations, each sensation being a mapping from cortical column index to a pair of SDR's (one location and one feature). Parameters: ---------------------------- @param learningConfig (dict) Configuration for learning, as described above. """ objects = {} for objectName, locationList in learningConfig.iteritems(): sensationList = [] physicalObject = self.objects[objectName] if plot: fig, ax = physicalObject.plot() for element in locationList: # location name and number of points if len(element) == 2: featureName, numLocations = element for _ in xrange(numLocations): location = physicalObject.sampleLocationFromFeature(featureName) sensationList.append( self._getSDRPairs( [(location, physicalObject.getFeatureID(location))] * self.numColumns ) ) if plot: x, y, z = tuple(location) ax.scatter(x, y, z, marker="v", s=100, c="r") # explicit location elif len(element) == 3: location = list(element) sensationList.append( self._getSDRPairs( [(location, physicalObject.getFeatureID(location))] * self.numColumns ) ) if plot: x, y, z = tuple(location) ax.scatter(x, y, z, marker="v", s=100, c="r") else: raise ValueError("Unsupported type for location spec") objects[objectName] = sensationList if plot: plt.title("Learning points for object {}".format(objectName)) plt.savefig("learn_{}.png".format(objectName)) plt.close() self._checkObjectsToLearn(objects) return objects
def parametrize_peaks(self, intervals, max_peakwidth=50, min_peakwidth=25, symmetric_bounds=True): """ Computes and stores the intonation profile of an audio recording. :param intervals: these will be the reference set of intervals to which peak positions correspond to. For each interval, the properties of corresponding peak, if exists, will be computed and stored as intonation profile. :param max_peakwidth: the maximum allowed width of the peak at the base for computing parameters of the distribution. :param min_peakwidth: the minimum allowed width of the peak at the base for computing parameters of the distribution. """ assert isinstance(self.pitch_obj.pitch, np.ndarray) valid_pitch = self.pitch_obj.pitch valid_pitch = [i for i in valid_pitch if i > -10000] valid_pitch = np.array(valid_pitch) parameters = {} for i in xrange(len(self.histogram.peaks["peaks"][0])): peak_pos = self.histogram.peaks["peaks"][0][i] #Set left and right bounds of the distribution. max_leftbound = peak_pos - max_peakwidth max_rightbound = peak_pos + max_peakwidth leftbound = max_leftbound rightbound = max_rightbound nearest_valleyindex = utils.find_nearest_index(self.histogram.peaks["valleys"][0], peak_pos) if peak_pos > self.histogram.peaks["valleys"][0][nearest_valleyindex]: leftbound = self.histogram.peaks["valleys"][0][nearest_valleyindex] if len(self.histogram.peaks["valleys"][0][nearest_valleyindex + 1:]) == 0: rightbound = peak_pos + max_peakwidth else: offset = nearest_valleyindex + 1 nearest_valleyindex = utils.find_nearest_index( self.histogram.peaks["valleys"][0][offset:], peak_pos) rightbound = self.histogram.peaks["valleys"][0][offset + nearest_valleyindex] else: rightbound = self.histogram.peaks["valleys"][0][nearest_valleyindex] if len(self.histogram.peaks["valleys"][0][:nearest_valleyindex]) == 0: leftbound = peak_pos - max_peakwidth else: nearest_valleyindex = utils.find_nearest_index( self.histogram.peaks["valleys"][0][:nearest_valleyindex], peak_pos) leftbound = self.histogram.peaks["valleys"][0][nearest_valleyindex] #In terms of x-axis, leftbound should be at least min_peakwidth # less than peak_pos, and at max max_peakwidth less than peak_pos, # and viceversa for the rightbound. if leftbound < max_leftbound: leftbound = max_leftbound elif leftbound > peak_pos - min_peakwidth: leftbound = peak_pos - min_peakwidth if rightbound > max_rightbound: rightbound = max_rightbound elif rightbound < peak_pos + min_peakwidth: rightbound = peak_pos + min_peakwidth #If symmetric bounds are asked for, then make the bounds symmetric if symmetric_bounds: if peak_pos - leftbound < rightbound - peak_pos: imbalance = (rightbound - peak_pos) - (peak_pos - leftbound) rightbound -= imbalance else: imbalance = (peak_pos - leftbound) - (rightbound - peak_pos) leftbound += imbalance #extract the distribution and estimate the parameters distribution = valid_pitch[valid_pitch >= leftbound] distribution = distribution[distribution <= rightbound] #print peak_pos, "\t", len(distribution), "\t", leftbound, "\t", rightbound interval_index = utils.find_nearest_index(intervals, peak_pos) interval = intervals[interval_index] _mean = float(np.mean(distribution)) _variance = float(variation(distribution)) _skew = float(skew(distribution)) _kurtosis = float(kurtosis(distribution)) pearson_skew = float(3.0 * (_mean - peak_pos) / np.sqrt(abs(_variance))) parameters[interval] = {"position": float(peak_pos), "mean": _mean, "amplitude": float(self.histogram.peaks["peaks"][1][i]), "variance": _variance, "skew1": _skew, "skew2": pearson_skew, "kurtosis": _kurtosis} self.intonation_profile = parameters
Computes and stores the intonation profile of an audio recording. :param intervals: these will be the reference set of intervals to which peak positions correspond to. For each interval, the properties of corresponding peak, if exists, will be computed and stored as intonation profile. :param max_peakwidth: the maximum allowed width of the peak at the base for computing parameters of the distribution. :param min_peakwidth: the minimum allowed width of the peak at the base for computing parameters of the distribution.
Below is the the instruction that describes the task: ### Input: Computes and stores the intonation profile of an audio recording. :param intervals: these will be the reference set of intervals to which peak positions correspond to. For each interval, the properties of corresponding peak, if exists, will be computed and stored as intonation profile. :param max_peakwidth: the maximum allowed width of the peak at the base for computing parameters of the distribution. :param min_peakwidth: the minimum allowed width of the peak at the base for computing parameters of the distribution. ### Response: def parametrize_peaks(self, intervals, max_peakwidth=50, min_peakwidth=25, symmetric_bounds=True): """ Computes and stores the intonation profile of an audio recording. :param intervals: these will be the reference set of intervals to which peak positions correspond to. For each interval, the properties of corresponding peak, if exists, will be computed and stored as intonation profile. :param max_peakwidth: the maximum allowed width of the peak at the base for computing parameters of the distribution. :param min_peakwidth: the minimum allowed width of the peak at the base for computing parameters of the distribution. """ assert isinstance(self.pitch_obj.pitch, np.ndarray) valid_pitch = self.pitch_obj.pitch valid_pitch = [i for i in valid_pitch if i > -10000] valid_pitch = np.array(valid_pitch) parameters = {} for i in xrange(len(self.histogram.peaks["peaks"][0])): peak_pos = self.histogram.peaks["peaks"][0][i] #Set left and right bounds of the distribution. max_leftbound = peak_pos - max_peakwidth max_rightbound = peak_pos + max_peakwidth leftbound = max_leftbound rightbound = max_rightbound nearest_valleyindex = utils.find_nearest_index(self.histogram.peaks["valleys"][0], peak_pos) if peak_pos > self.histogram.peaks["valleys"][0][nearest_valleyindex]: leftbound = self.histogram.peaks["valleys"][0][nearest_valleyindex] if len(self.histogram.peaks["valleys"][0][nearest_valleyindex + 1:]) == 0: rightbound = peak_pos + max_peakwidth else: offset = nearest_valleyindex + 1 nearest_valleyindex = utils.find_nearest_index( self.histogram.peaks["valleys"][0][offset:], peak_pos) rightbound = self.histogram.peaks["valleys"][0][offset + nearest_valleyindex] else: rightbound = self.histogram.peaks["valleys"][0][nearest_valleyindex] if len(self.histogram.peaks["valleys"][0][:nearest_valleyindex]) == 0: leftbound = peak_pos - max_peakwidth else: nearest_valleyindex = utils.find_nearest_index( self.histogram.peaks["valleys"][0][:nearest_valleyindex], peak_pos) leftbound = self.histogram.peaks["valleys"][0][nearest_valleyindex] #In terms of x-axis, leftbound should be at least min_peakwidth # less than peak_pos, and at max max_peakwidth less than peak_pos, # and viceversa for the rightbound. if leftbound < max_leftbound: leftbound = max_leftbound elif leftbound > peak_pos - min_peakwidth: leftbound = peak_pos - min_peakwidth if rightbound > max_rightbound: rightbound = max_rightbound elif rightbound < peak_pos + min_peakwidth: rightbound = peak_pos + min_peakwidth #If symmetric bounds are asked for, then make the bounds symmetric if symmetric_bounds: if peak_pos - leftbound < rightbound - peak_pos: imbalance = (rightbound - peak_pos) - (peak_pos - leftbound) rightbound -= imbalance else: imbalance = (peak_pos - leftbound) - (rightbound - peak_pos) leftbound += imbalance #extract the distribution and estimate the parameters distribution = valid_pitch[valid_pitch >= leftbound] distribution = distribution[distribution <= rightbound] #print peak_pos, "\t", len(distribution), "\t", leftbound, "\t", rightbound interval_index = utils.find_nearest_index(intervals, peak_pos) interval = intervals[interval_index] _mean = float(np.mean(distribution)) _variance = float(variation(distribution)) _skew = float(skew(distribution)) _kurtosis = float(kurtosis(distribution)) pearson_skew = float(3.0 * (_mean - peak_pos) / np.sqrt(abs(_variance))) parameters[interval] = {"position": float(peak_pos), "mean": _mean, "amplitude": float(self.histogram.peaks["peaks"][1][i]), "variance": _variance, "skew1": _skew, "skew2": pearson_skew, "kurtosis": _kurtosis} self.intonation_profile = parameters
def main(log_files): """ Main executor of the trimmomatic_report template. Parameters ---------- log_files : list List of paths to the trimmomatic log files. """ log_storage = OrderedDict() for log in log_files: log_id = log.rstrip("_trimlog.txt") # Populate storage of current sample log_storage[log_id] = parse_log(log) # Remove temporary trim log file os.remove(log) write_report(log_storage, "trimmomatic_report.csv", log_id)
Main executor of the trimmomatic_report template. Parameters ---------- log_files : list List of paths to the trimmomatic log files.
Below is the the instruction that describes the task: ### Input: Main executor of the trimmomatic_report template. Parameters ---------- log_files : list List of paths to the trimmomatic log files. ### Response: def main(log_files): """ Main executor of the trimmomatic_report template. Parameters ---------- log_files : list List of paths to the trimmomatic log files. """ log_storage = OrderedDict() for log in log_files: log_id = log.rstrip("_trimlog.txt") # Populate storage of current sample log_storage[log_id] = parse_log(log) # Remove temporary trim log file os.remove(log) write_report(log_storage, "trimmomatic_report.csv", log_id)
def main(): """ NAME umich_magic.py DESCRIPTION converts UMICH .mag format files to magic_measurements format files SYNTAX umich_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .mag format input file, required -fsa SAMPFILE : specify er_samples.txt file relating samples, site and locations names,default is none -F FILE: specify output file, default is magic_measurements.txt -spc NUM : specify number of characters to designate a specimen, default = 0 -loc LOCNAME : specify location/study name, must have either LOCNAME or SAMPFILE or be a synthetic -ncn NCON: specify naming convention: default is #1 below -A: don't average replicate measurements Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. Format of UMICH .mag files: Spec Treat CSD Intensity Declination Inclination metadata string Spec: specimen name Treat: treatment step XXX T in Centigrade XXX AF in mT Intensity assumed to be total moment in 10^3 Am^2 (emu) Declination: Declination in specimen coordinate system Inclination: Declination in specimen coordinate system metatdata string: mm/dd/yy;hh:mm;[dC,mT];xx.xx;UNITS;USER;INST;NMEAS hh in 24 hours. dC or mT units of treatment XXX (see Treat above) for thermal or AF respectively xx.xxx DC field UNITS of DC field (microT, mT) INST: instrument code, number of axes, number of positions (e.g., G34 is 2G, three axes, measured in four positions) NMEAS: number of measurements in a single position (1,3,200...) """ # initialize some stuff dir_path='.' infile_type="mag" noave=0 methcode,inst="","" phi,theta,peakfield,labfield=0,0,0,0 pTRM,MD,samp_con,Z=0,0,'1',1 missing=1 demag="N" er_location_name="" citation='This study' args=sys.argv methcode="LP-NO" samp_file,ErSamps='',[] specnum=0 # # get command line arguments # meas_file="magic_measurements.txt" user="" if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if "-usr" in args: ind=args.index("-usr") user=args[ind+1] if '-F' in args: ind=args.index("-F") meas_file=dir_path+'/'+args[ind+1] if '-f' in args: ind=args.index("-f") magfile=dir_path+'/'+args[ind+1] try: input=open(magfile,'r') except: print("bad mag file name") sys.exit() else: print("mag_file field is required option") print(main.__doc__) sys.exit() if "-spc" in args: ind=args.index("-spc") specnum=int(args[ind+1]) if specnum!=0:specnum=-specnum if "-loc" in args: ind=args.index("-loc") er_location_name=args[ind+1] if "-fsa" in args: ind=args.index("-fsa") samp_file=dir_path+'/'+args[ind+1] Samps,file_type=pmag.magic_read(samp_file) if "-A" in args: noave=1 if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="4" samp_con=sys.argv[ind+1] if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="7" MagRecs,specs=[],[] version_num=pmag.get_version() if infile_type=="mag": for line in input.readlines(): instcode="" if len(line)>2: MagRec={} MagRec['er_location_name']=er_location_name MagRec['magic_software_packages']=version_num MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["treatment_ac_field"]='0' MagRec["treatment_dc_field"]='0' MagRec["treatment_dc_field_phi"]='0' MagRec["treatment_dc_field_theta"]='0' meas_type="LT-NO" rec=line.split() labfield=0 code1=rec[6].split(';') date=code1[0].split('/') # break date into mon/day/year yy=int(date[2]) if yy <90: yyyy=str(2000+yy) else: yyyy=str(1900+yy) mm=int(date[0]) if mm<10: mm="0"+str(mm) else: mm=str(mm) dd=int(date[1]) if dd<10: dd="0"+str(dd) else: dd=str(dd) time=code1[1].split(':') hh=int(time[0]) if hh<10: hh="0"+str(hh) else: hh=str(hh) min=int(time[1]) if min<10: min= "0"+str(min) else: min=str(min) MagRec["measurement_date"]=yyyy+":"+mm+":"+dd+":"+hh+":"+min+":00.00" MagRec["measurement_time_zone"]='' instcode='' if len(code1)>1: MagRec["measurement_positions"]=code1[6][2] else: MagRec["measurement_positions"]=code1[7] # takes care of awkward format with bubba and flo being different if user=="":user=code1[5] if code1[2][-1]=='C': demag="T" if code1[2]=='mT': demag="AF" treat=rec[1].split('.') if len(treat)==1:treat.append('0') if demag=='T' and treat!=0: meas_type="LT-T-Z" MagRec["treatment_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin if demag=="AF": meas_type="LT-AF-Z" MagRec["treatment_ac_field"]='%8.3e' % (float(treat[0])*1e-3) # Af field in T MagRec["treatment_dc_field"]='0' MagRec["er_specimen_name"]=rec[0] if rec[0] not in specs:specs.append(rec[0]) # get a list of specimen names experiment=rec[0]+":" MagRec["er_site_name"]="" if specnum!=0: MagRec["er_sample_name"]=rec[0][:specnum] else: MagRec["er_sample_name"]=rec[0] if "-fsa" in args: for samp in Samps: if samp["er_sample_name"] == MagRec["er_sample_name"]: MagRec["er_location_name"]=samp["er_location_name"] MagRec["er_site_name"]=samp["er_site_name"] break elif int(samp_con)!=6: site=pmag.parse_site(MagRec['er_sample_name'],samp_con,Z) MagRec["er_site_name"]=site if MagRec['er_site_name']=="": print('No site name found for: ',MagRec['er_specimen_name'],MagRec['er_sample_name']) if MagRec["er_location_name"]=="": print('no location name for: ',MagRec["er_specimen_name"]) if rec[1]==".00":rec[1]="0.00" MagRec["measurement_csd"]=rec[2] MagRec["measurement_magn_moment"]='%10.3e'% (float(rec[3])*1e-3) # moment in Am^2 (from emu) MagRec["measurement_dec"]=rec[4] MagRec["measurement_inc"]=rec[5] MagRec["magic_instrument_codes"]=instcode MagRec["er_analyst_mail_names"]=user MagRec["er_citation_names"]=citation MagRec["magic_method_codes"]=meas_type MagRec["measurement_flag"]='g' MagRec["er_specimen_name"]=rec[0] MagRec["measurement_number"]='1' MagRecs.append(MagRec) MagOuts=[] for spec in specs: # gather all demag types for this specimen SpecRecs,meths,measnum=[],[],1 for rec in MagRecs: if rec['er_specimen_name']==spec: rec['measurement_number']=str(measnum) measnum+=1 if rec['magic_method_codes'] not in meths:meths.append(rec['magic_method_codes']) SpecRecs.append(rec) expname=spec if "LT-AF-Z" in meths:expname=expname+ ':LP-DIR-AF' if "LT-T-Z" in meths:expname=expname+ ':LP-DIR-T' for rec in SpecRecs: rec['magic_experiment_name']=expname MagOuts.append(rec) pmag.magic_write(meas_file,MagOuts,'magic_measurements') print("results put in ",meas_file)
NAME umich_magic.py DESCRIPTION converts UMICH .mag format files to magic_measurements format files SYNTAX umich_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .mag format input file, required -fsa SAMPFILE : specify er_samples.txt file relating samples, site and locations names,default is none -F FILE: specify output file, default is magic_measurements.txt -spc NUM : specify number of characters to designate a specimen, default = 0 -loc LOCNAME : specify location/study name, must have either LOCNAME or SAMPFILE or be a synthetic -ncn NCON: specify naming convention: default is #1 below -A: don't average replicate measurements Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. Format of UMICH .mag files: Spec Treat CSD Intensity Declination Inclination metadata string Spec: specimen name Treat: treatment step XXX T in Centigrade XXX AF in mT Intensity assumed to be total moment in 10^3 Am^2 (emu) Declination: Declination in specimen coordinate system Inclination: Declination in specimen coordinate system metatdata string: mm/dd/yy;hh:mm;[dC,mT];xx.xx;UNITS;USER;INST;NMEAS hh in 24 hours. dC or mT units of treatment XXX (see Treat above) for thermal or AF respectively xx.xxx DC field UNITS of DC field (microT, mT) INST: instrument code, number of axes, number of positions (e.g., G34 is 2G, three axes, measured in four positions) NMEAS: number of measurements in a single position (1,3,200...)
Below is the the instruction that describes the task: ### Input: NAME umich_magic.py DESCRIPTION converts UMICH .mag format files to magic_measurements format files SYNTAX umich_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .mag format input file, required -fsa SAMPFILE : specify er_samples.txt file relating samples, site and locations names,default is none -F FILE: specify output file, default is magic_measurements.txt -spc NUM : specify number of characters to designate a specimen, default = 0 -loc LOCNAME : specify location/study name, must have either LOCNAME or SAMPFILE or be a synthetic -ncn NCON: specify naming convention: default is #1 below -A: don't average replicate measurements Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. Format of UMICH .mag files: Spec Treat CSD Intensity Declination Inclination metadata string Spec: specimen name Treat: treatment step XXX T in Centigrade XXX AF in mT Intensity assumed to be total moment in 10^3 Am^2 (emu) Declination: Declination in specimen coordinate system Inclination: Declination in specimen coordinate system metatdata string: mm/dd/yy;hh:mm;[dC,mT];xx.xx;UNITS;USER;INST;NMEAS hh in 24 hours. dC or mT units of treatment XXX (see Treat above) for thermal or AF respectively xx.xxx DC field UNITS of DC field (microT, mT) INST: instrument code, number of axes, number of positions (e.g., G34 is 2G, three axes, measured in four positions) NMEAS: number of measurements in a single position (1,3,200...) ### Response: def main(): """ NAME umich_magic.py DESCRIPTION converts UMICH .mag format files to magic_measurements format files SYNTAX umich_magic.py [command line options] OPTIONS -h: prints the help message and quits. -usr USER: identify user, default is "" -f FILE: specify .mag format input file, required -fsa SAMPFILE : specify er_samples.txt file relating samples, site and locations names,default is none -F FILE: specify output file, default is magic_measurements.txt -spc NUM : specify number of characters to designate a specimen, default = 0 -loc LOCNAME : specify location/study name, must have either LOCNAME or SAMPFILE or be a synthetic -ncn NCON: specify naming convention: default is #1 below -A: don't average replicate measurements Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. Format of UMICH .mag files: Spec Treat CSD Intensity Declination Inclination metadata string Spec: specimen name Treat: treatment step XXX T in Centigrade XXX AF in mT Intensity assumed to be total moment in 10^3 Am^2 (emu) Declination: Declination in specimen coordinate system Inclination: Declination in specimen coordinate system metatdata string: mm/dd/yy;hh:mm;[dC,mT];xx.xx;UNITS;USER;INST;NMEAS hh in 24 hours. dC or mT units of treatment XXX (see Treat above) for thermal or AF respectively xx.xxx DC field UNITS of DC field (microT, mT) INST: instrument code, number of axes, number of positions (e.g., G34 is 2G, three axes, measured in four positions) NMEAS: number of measurements in a single position (1,3,200...) """ # initialize some stuff dir_path='.' infile_type="mag" noave=0 methcode,inst="","" phi,theta,peakfield,labfield=0,0,0,0 pTRM,MD,samp_con,Z=0,0,'1',1 missing=1 demag="N" er_location_name="" citation='This study' args=sys.argv methcode="LP-NO" samp_file,ErSamps='',[] specnum=0 # # get command line arguments # meas_file="magic_measurements.txt" user="" if '-WD' in args: ind=args.index("-WD") dir_path=args[ind+1] if "-h" in args: print(main.__doc__) sys.exit() if "-usr" in args: ind=args.index("-usr") user=args[ind+1] if '-F' in args: ind=args.index("-F") meas_file=dir_path+'/'+args[ind+1] if '-f' in args: ind=args.index("-f") magfile=dir_path+'/'+args[ind+1] try: input=open(magfile,'r') except: print("bad mag file name") sys.exit() else: print("mag_file field is required option") print(main.__doc__) sys.exit() if "-spc" in args: ind=args.index("-spc") specnum=int(args[ind+1]) if specnum!=0:specnum=-specnum if "-loc" in args: ind=args.index("-loc") er_location_name=args[ind+1] if "-fsa" in args: ind=args.index("-fsa") samp_file=dir_path+'/'+args[ind+1] Samps,file_type=pmag.magic_read(samp_file) if "-A" in args: noave=1 if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="4" samp_con=sys.argv[ind+1] if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") sys.exit() else: Z=samp_con.split("-")[1] samp_con="7" MagRecs,specs=[],[] version_num=pmag.get_version() if infile_type=="mag": for line in input.readlines(): instcode="" if len(line)>2: MagRec={} MagRec['er_location_name']=er_location_name MagRec['magic_software_packages']=version_num MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["treatment_ac_field"]='0' MagRec["treatment_dc_field"]='0' MagRec["treatment_dc_field_phi"]='0' MagRec["treatment_dc_field_theta"]='0' meas_type="LT-NO" rec=line.split() labfield=0 code1=rec[6].split(';') date=code1[0].split('/') # break date into mon/day/year yy=int(date[2]) if yy <90: yyyy=str(2000+yy) else: yyyy=str(1900+yy) mm=int(date[0]) if mm<10: mm="0"+str(mm) else: mm=str(mm) dd=int(date[1]) if dd<10: dd="0"+str(dd) else: dd=str(dd) time=code1[1].split(':') hh=int(time[0]) if hh<10: hh="0"+str(hh) else: hh=str(hh) min=int(time[1]) if min<10: min= "0"+str(min) else: min=str(min) MagRec["measurement_date"]=yyyy+":"+mm+":"+dd+":"+hh+":"+min+":00.00" MagRec["measurement_time_zone"]='' instcode='' if len(code1)>1: MagRec["measurement_positions"]=code1[6][2] else: MagRec["measurement_positions"]=code1[7] # takes care of awkward format with bubba and flo being different if user=="":user=code1[5] if code1[2][-1]=='C': demag="T" if code1[2]=='mT': demag="AF" treat=rec[1].split('.') if len(treat)==1:treat.append('0') if demag=='T' and treat!=0: meas_type="LT-T-Z" MagRec["treatment_temp"]='%8.3e' % (float(treat[0])+273.) # temp in kelvin if demag=="AF": meas_type="LT-AF-Z" MagRec["treatment_ac_field"]='%8.3e' % (float(treat[0])*1e-3) # Af field in T MagRec["treatment_dc_field"]='0' MagRec["er_specimen_name"]=rec[0] if rec[0] not in specs:specs.append(rec[0]) # get a list of specimen names experiment=rec[0]+":" MagRec["er_site_name"]="" if specnum!=0: MagRec["er_sample_name"]=rec[0][:specnum] else: MagRec["er_sample_name"]=rec[0] if "-fsa" in args: for samp in Samps: if samp["er_sample_name"] == MagRec["er_sample_name"]: MagRec["er_location_name"]=samp["er_location_name"] MagRec["er_site_name"]=samp["er_site_name"] break elif int(samp_con)!=6: site=pmag.parse_site(MagRec['er_sample_name'],samp_con,Z) MagRec["er_site_name"]=site if MagRec['er_site_name']=="": print('No site name found for: ',MagRec['er_specimen_name'],MagRec['er_sample_name']) if MagRec["er_location_name"]=="": print('no location name for: ',MagRec["er_specimen_name"]) if rec[1]==".00":rec[1]="0.00" MagRec["measurement_csd"]=rec[2] MagRec["measurement_magn_moment"]='%10.3e'% (float(rec[3])*1e-3) # moment in Am^2 (from emu) MagRec["measurement_dec"]=rec[4] MagRec["measurement_inc"]=rec[5] MagRec["magic_instrument_codes"]=instcode MagRec["er_analyst_mail_names"]=user MagRec["er_citation_names"]=citation MagRec["magic_method_codes"]=meas_type MagRec["measurement_flag"]='g' MagRec["er_specimen_name"]=rec[0] MagRec["measurement_number"]='1' MagRecs.append(MagRec) MagOuts=[] for spec in specs: # gather all demag types for this specimen SpecRecs,meths,measnum=[],[],1 for rec in MagRecs: if rec['er_specimen_name']==spec: rec['measurement_number']=str(measnum) measnum+=1 if rec['magic_method_codes'] not in meths:meths.append(rec['magic_method_codes']) SpecRecs.append(rec) expname=spec if "LT-AF-Z" in meths:expname=expname+ ':LP-DIR-AF' if "LT-T-Z" in meths:expname=expname+ ':LP-DIR-T' for rec in SpecRecs: rec['magic_experiment_name']=expname MagOuts.append(rec) pmag.magic_write(meas_file,MagOuts,'magic_measurements') print("results put in ",meas_file)
def has_no_title(self, title, **kwargs): """ Checks if the page doesn't have the given title. Args: title (str | RegexObject): The string that the title should include. **kwargs: Arbitrary keyword arguments for :class:`TitleQuery`. Returns: bool: Whether it doesn't match. """ try: self.assert_no_title(title, **kwargs) return True except ExpectationNotMet: return False
Checks if the page doesn't have the given title. Args: title (str | RegexObject): The string that the title should include. **kwargs: Arbitrary keyword arguments for :class:`TitleQuery`. Returns: bool: Whether it doesn't match.
Below is the the instruction that describes the task: ### Input: Checks if the page doesn't have the given title. Args: title (str | RegexObject): The string that the title should include. **kwargs: Arbitrary keyword arguments for :class:`TitleQuery`. Returns: bool: Whether it doesn't match. ### Response: def has_no_title(self, title, **kwargs): """ Checks if the page doesn't have the given title. Args: title (str | RegexObject): The string that the title should include. **kwargs: Arbitrary keyword arguments for :class:`TitleQuery`. Returns: bool: Whether it doesn't match. """ try: self.assert_no_title(title, **kwargs) return True except ExpectationNotMet: return False
def __normalize_progress(self): """ Adjust the funding progress filter to be a factor of 10 """ progress = self['funding_progress'] if progress % 10 != 0: progress = round(float(progress) / 10) progress = int(progress) * 10 self['funding_progress'] = progress
Adjust the funding progress filter to be a factor of 10
Below is the the instruction that describes the task: ### Input: Adjust the funding progress filter to be a factor of 10 ### Response: def __normalize_progress(self): """ Adjust the funding progress filter to be a factor of 10 """ progress = self['funding_progress'] if progress % 10 != 0: progress = round(float(progress) / 10) progress = int(progress) * 10 self['funding_progress'] = progress
def process_incoming_tuples(self): """Should be called when tuple was buffered into in_stream This method is equivalent to ``addBoltTasks()`` but is designed for event-driven single-thread bolt. """ # back-pressure if self.output_helper.is_out_queue_available(): self._read_tuples_and_execute() self.output_helper.send_out_tuples() else: # update outqueue full count self.bolt_metrics.update_out_queue_full_count()
Should be called when tuple was buffered into in_stream This method is equivalent to ``addBoltTasks()`` but is designed for event-driven single-thread bolt.
Below is the the instruction that describes the task: ### Input: Should be called when tuple was buffered into in_stream This method is equivalent to ``addBoltTasks()`` but is designed for event-driven single-thread bolt. ### Response: def process_incoming_tuples(self): """Should be called when tuple was buffered into in_stream This method is equivalent to ``addBoltTasks()`` but is designed for event-driven single-thread bolt. """ # back-pressure if self.output_helper.is_out_queue_available(): self._read_tuples_and_execute() self.output_helper.send_out_tuples() else: # update outqueue full count self.bolt_metrics.update_out_queue_full_count()
def share(self, name, item): ''' Share an object via the telepath protocol. Args: name (str): Name of the shared object item (object): The object to share over telepath. ''' try: if isinstance(item, s_telepath.Aware): item.onTeleShare(self, name) self.shared[name] = item except Exception: logger.exception(f'onTeleShare() error for: {name}')
Share an object via the telepath protocol. Args: name (str): Name of the shared object item (object): The object to share over telepath.
Below is the the instruction that describes the task: ### Input: Share an object via the telepath protocol. Args: name (str): Name of the shared object item (object): The object to share over telepath. ### Response: def share(self, name, item): ''' Share an object via the telepath protocol. Args: name (str): Name of the shared object item (object): The object to share over telepath. ''' try: if isinstance(item, s_telepath.Aware): item.onTeleShare(self, name) self.shared[name] = item except Exception: logger.exception(f'onTeleShare() error for: {name}')
def scencd(sc, sclkch, MXPART=None): """ Encode character representation of spacecraft clock time into a double precision number. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/scencd_c.html :param sc: NAIF spacecraft identification code. :type sc: int :param sclkch: Character representation of a spacecraft clock. :type sclkch: str :param MXPART: Maximum number of spacecraft clock partitions. :type MXPART: int :return: Encoded representation of the clock count. :rtype: float """ sc = ctypes.c_int(sc) sclkch = stypes.stringToCharP(sclkch) sclkdp = ctypes.c_double() libspice.scencd_c(sc, sclkch, ctypes.byref(sclkdp)) return sclkdp.value
Encode character representation of spacecraft clock time into a double precision number. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/scencd_c.html :param sc: NAIF spacecraft identification code. :type sc: int :param sclkch: Character representation of a spacecraft clock. :type sclkch: str :param MXPART: Maximum number of spacecraft clock partitions. :type MXPART: int :return: Encoded representation of the clock count. :rtype: float
Below is the the instruction that describes the task: ### Input: Encode character representation of spacecraft clock time into a double precision number. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/scencd_c.html :param sc: NAIF spacecraft identification code. :type sc: int :param sclkch: Character representation of a spacecraft clock. :type sclkch: str :param MXPART: Maximum number of spacecraft clock partitions. :type MXPART: int :return: Encoded representation of the clock count. :rtype: float ### Response: def scencd(sc, sclkch, MXPART=None): """ Encode character representation of spacecraft clock time into a double precision number. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/scencd_c.html :param sc: NAIF spacecraft identification code. :type sc: int :param sclkch: Character representation of a spacecraft clock. :type sclkch: str :param MXPART: Maximum number of spacecraft clock partitions. :type MXPART: int :return: Encoded representation of the clock count. :rtype: float """ sc = ctypes.c_int(sc) sclkch = stypes.stringToCharP(sclkch) sclkdp = ctypes.c_double() libspice.scencd_c(sc, sclkch, ctypes.byref(sclkdp)) return sclkdp.value
def is_iq_handler(type_, payload_cls, coro, *, with_send_reply=False): """ Return true if `coro` has been decorated with :func:`iq_handler` for the given `type_` and `payload_cls` and the specified keyword arguments. """ try: handlers = get_magic_attr(coro) except AttributeError: return False hs = HandlerSpec( (_apply_iq_handler, (type_, payload_cls)), ) try: return handlers[hs] == dict(with_send_reply=with_send_reply) except KeyError: return False
Return true if `coro` has been decorated with :func:`iq_handler` for the given `type_` and `payload_cls` and the specified keyword arguments.
Below is the the instruction that describes the task: ### Input: Return true if `coro` has been decorated with :func:`iq_handler` for the given `type_` and `payload_cls` and the specified keyword arguments. ### Response: def is_iq_handler(type_, payload_cls, coro, *, with_send_reply=False): """ Return true if `coro` has been decorated with :func:`iq_handler` for the given `type_` and `payload_cls` and the specified keyword arguments. """ try: handlers = get_magic_attr(coro) except AttributeError: return False hs = HandlerSpec( (_apply_iq_handler, (type_, payload_cls)), ) try: return handlers[hs] == dict(with_send_reply=with_send_reply) except KeyError: return False
def _add_chart_graphicFrame(self, rId, x, y, cx, cy): """Return new `p:graphicFrame` element appended to this shape tree. The `p:graphicFrame` element has the specified position and size and refers to the chart part identified by *rId*. """ shape_id = self._next_shape_id name = 'Chart %d' % (shape_id-1) graphicFrame = CT_GraphicalObjectFrame.new_chart_graphicFrame( shape_id, name, rId, x, y, cx, cy ) self._spTree.append(graphicFrame) return graphicFrame
Return new `p:graphicFrame` element appended to this shape tree. The `p:graphicFrame` element has the specified position and size and refers to the chart part identified by *rId*.
Below is the the instruction that describes the task: ### Input: Return new `p:graphicFrame` element appended to this shape tree. The `p:graphicFrame` element has the specified position and size and refers to the chart part identified by *rId*. ### Response: def _add_chart_graphicFrame(self, rId, x, y, cx, cy): """Return new `p:graphicFrame` element appended to this shape tree. The `p:graphicFrame` element has the specified position and size and refers to the chart part identified by *rId*. """ shape_id = self._next_shape_id name = 'Chart %d' % (shape_id-1) graphicFrame = CT_GraphicalObjectFrame.new_chart_graphicFrame( shape_id, name, rId, x, y, cx, cy ) self._spTree.append(graphicFrame) return graphicFrame
def get_curie(self, uri): '''Get a CURIE from a URI ''' prefix = self.get_curie_prefix(uri) if prefix is not None: key = self.curie_map[prefix] return '%s:%s' % (prefix, uri[len(key):len(uri)]) return None
Get a CURIE from a URI
Below is the the instruction that describes the task: ### Input: Get a CURIE from a URI ### Response: def get_curie(self, uri): '''Get a CURIE from a URI ''' prefix = self.get_curie_prefix(uri) if prefix is not None: key = self.curie_map[prefix] return '%s:%s' % (prefix, uri[len(key):len(uri)]) return None
def notify(self, event_id): """Let the FlowControl system know that there is an event.""" self._event_buffer.extend([event_id]) self._event_count += 1 if self._event_count >= self.threshold: logger.debug("Eventcount >= threshold") self.make_callback(kind="event")
Let the FlowControl system know that there is an event.
Below is the the instruction that describes the task: ### Input: Let the FlowControl system know that there is an event. ### Response: def notify(self, event_id): """Let the FlowControl system know that there is an event.""" self._event_buffer.extend([event_id]) self._event_count += 1 if self._event_count >= self.threshold: logger.debug("Eventcount >= threshold") self.make_callback(kind="event")
def obfn_dfd(self): r"""Compute data fidelity term :math:`(1/2) \| W \left( \sum_m \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right) \|_2^2`. """ Ef = sl.inner(self.Zf, self.obfn_fvarf(), axis=self.cri.axisM) \ - self.Sf return (np.linalg.norm(self.W * sl.irfftn(Ef, self.cri.Nv, self.cri.axisN))**2) / 2.0
r"""Compute data fidelity term :math:`(1/2) \| W \left( \sum_m \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right) \|_2^2`.
Below is the the instruction that describes the task: ### Input: r"""Compute data fidelity term :math:`(1/2) \| W \left( \sum_m \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right) \|_2^2`. ### Response: def obfn_dfd(self): r"""Compute data fidelity term :math:`(1/2) \| W \left( \sum_m \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right) \|_2^2`. """ Ef = sl.inner(self.Zf, self.obfn_fvarf(), axis=self.cri.axisM) \ - self.Sf return (np.linalg.norm(self.W * sl.irfftn(Ef, self.cri.Nv, self.cri.axisN))**2) / 2.0
def is_almost_full(self): """Return whether the activity is almost full (>90%).""" capacity = self.get_true_capacity() if capacity != -1: num_signed_up = self.eighthsignup_set.count() return num_signed_up >= (0.9 * capacity) return False
Return whether the activity is almost full (>90%).
Below is the the instruction that describes the task: ### Input: Return whether the activity is almost full (>90%). ### Response: def is_almost_full(self): """Return whether the activity is almost full (>90%).""" capacity = self.get_true_capacity() if capacity != -1: num_signed_up = self.eighthsignup_set.count() return num_signed_up >= (0.9 * capacity) return False
def lemmatize(self, tokens): """define list of lemmas""" entries = self.entries forms_and_lemmas = self.forms_and_lemmas lemma_list = [x[0] for x in entries] """Provide a lemma for each token""" lemmatized = [] for token in tokens: """check for a match between token and list of lemmas""" if token in lemma_list: lemmed = (token, token) lemmatized.append(lemmed) else: """if no match check for a match between token and list of lemma forms""" lemma = [k for k, v in forms_and_lemmas.items() if token in v] if lemma != []: lemmed = (token, lemma) lemmatized.append(lemmed) elif lemma == []: """if no match apply regular expressions and check for a match against the list of lemmas again""" regexed = regex(token) if regexed in lemma_list: lemmed = (token, regexed) lemmatized.append(lemmed) else: lemmed = (token, "None") lemmatized.append(lemmed) return lemmatized
define list of lemmas
Below is the the instruction that describes the task: ### Input: define list of lemmas ### Response: def lemmatize(self, tokens): """define list of lemmas""" entries = self.entries forms_and_lemmas = self.forms_and_lemmas lemma_list = [x[0] for x in entries] """Provide a lemma for each token""" lemmatized = [] for token in tokens: """check for a match between token and list of lemmas""" if token in lemma_list: lemmed = (token, token) lemmatized.append(lemmed) else: """if no match check for a match between token and list of lemma forms""" lemma = [k for k, v in forms_and_lemmas.items() if token in v] if lemma != []: lemmed = (token, lemma) lemmatized.append(lemmed) elif lemma == []: """if no match apply regular expressions and check for a match against the list of lemmas again""" regexed = regex(token) if regexed in lemma_list: lemmed = (token, regexed) lemmatized.append(lemmed) else: lemmed = (token, "None") lemmatized.append(lemmed) return lemmatized
def update_resource(self, resource, filename, change=None): """Update resource from uri to filename on local system. Update means three things: 1. GET resources 2. set mtime in local time to be equal to timestamp in UTC (should perhaps or at least warn if different from LastModified from the GET response instead but maybe warn if different (or just earlier than) the lastmod we expected from the resource list 3. check that resource matches expected information Also update self.last_timestamp if the timestamp (in source frame) of this resource is later and the current value. Returns the number of resources updated/created (0 or 1) """ path = os.path.dirname(filename) distutils.dir_util.mkpath(path) num_updated = 0 if (self.dryrun): self.logger.info( "dryrun: would GET %s --> %s" % (resource.uri, filename)) else: # 1. GET for try_i in range(1, self.tries + 1): try: r = requests.get(resource.uri, timeout=self.timeout, stream=True) # Fail on 4xx or 5xx r.raise_for_status() with open(filename, 'wb') as fd: for chunk in r.iter_content(chunk_size=1024): fd.write(chunk) num_updated += 1 break except requests.Timeout as e: if try_i < self.tries: msg = 'Download timed out, retrying...' self.logger.info(msg) # Continue loop else: # No more tries left, so fail msg = "Failed to GET %s after %s tries -- %s" % (resource.uri, self.tries, str(e)) if (self.ignore_failures): self.logger.warning(msg) return(num_updated) else: raise ClientFatalError(msg) except (requests.RequestException, IOError) as e: msg = "Failed to GET %s -- %s" % (resource.uri, str(e)) if (self.ignore_failures): self.logger.warning(msg) return(num_updated) else: raise ClientFatalError(msg) # 2. set timestamp if we have one if (resource.timestamp is not None): unixtime = int(resource.timestamp) # no fractional os.utime(filename, (unixtime, unixtime)) if (resource.timestamp > self.last_timestamp): self.last_timestamp = resource.timestamp self.log_event(Resource(resource=resource, change=change)) # 3. sanity check length = os.stat(filename).st_size if (resource.length is not None and resource.length != length): self.logger.info( "Downloaded size for %s of %d bytes does not match expected %d bytes" % (resource.uri, length, resource.length)) if (len(self.hashes) > 0): self.check_hashes(filename, resource) return(num_updated)
Update resource from uri to filename on local system. Update means three things: 1. GET resources 2. set mtime in local time to be equal to timestamp in UTC (should perhaps or at least warn if different from LastModified from the GET response instead but maybe warn if different (or just earlier than) the lastmod we expected from the resource list 3. check that resource matches expected information Also update self.last_timestamp if the timestamp (in source frame) of this resource is later and the current value. Returns the number of resources updated/created (0 or 1)
Below is the the instruction that describes the task: ### Input: Update resource from uri to filename on local system. Update means three things: 1. GET resources 2. set mtime in local time to be equal to timestamp in UTC (should perhaps or at least warn if different from LastModified from the GET response instead but maybe warn if different (or just earlier than) the lastmod we expected from the resource list 3. check that resource matches expected information Also update self.last_timestamp if the timestamp (in source frame) of this resource is later and the current value. Returns the number of resources updated/created (0 or 1) ### Response: def update_resource(self, resource, filename, change=None): """Update resource from uri to filename on local system. Update means three things: 1. GET resources 2. set mtime in local time to be equal to timestamp in UTC (should perhaps or at least warn if different from LastModified from the GET response instead but maybe warn if different (or just earlier than) the lastmod we expected from the resource list 3. check that resource matches expected information Also update self.last_timestamp if the timestamp (in source frame) of this resource is later and the current value. Returns the number of resources updated/created (0 or 1) """ path = os.path.dirname(filename) distutils.dir_util.mkpath(path) num_updated = 0 if (self.dryrun): self.logger.info( "dryrun: would GET %s --> %s" % (resource.uri, filename)) else: # 1. GET for try_i in range(1, self.tries + 1): try: r = requests.get(resource.uri, timeout=self.timeout, stream=True) # Fail on 4xx or 5xx r.raise_for_status() with open(filename, 'wb') as fd: for chunk in r.iter_content(chunk_size=1024): fd.write(chunk) num_updated += 1 break except requests.Timeout as e: if try_i < self.tries: msg = 'Download timed out, retrying...' self.logger.info(msg) # Continue loop else: # No more tries left, so fail msg = "Failed to GET %s after %s tries -- %s" % (resource.uri, self.tries, str(e)) if (self.ignore_failures): self.logger.warning(msg) return(num_updated) else: raise ClientFatalError(msg) except (requests.RequestException, IOError) as e: msg = "Failed to GET %s -- %s" % (resource.uri, str(e)) if (self.ignore_failures): self.logger.warning(msg) return(num_updated) else: raise ClientFatalError(msg) # 2. set timestamp if we have one if (resource.timestamp is not None): unixtime = int(resource.timestamp) # no fractional os.utime(filename, (unixtime, unixtime)) if (resource.timestamp > self.last_timestamp): self.last_timestamp = resource.timestamp self.log_event(Resource(resource=resource, change=change)) # 3. sanity check length = os.stat(filename).st_size if (resource.length is not None and resource.length != length): self.logger.info( "Downloaded size for %s of %d bytes does not match expected %d bytes" % (resource.uri, length, resource.length)) if (len(self.hashes) > 0): self.check_hashes(filename, resource) return(num_updated)
def bbox(self): bbox = self._df[['id', 'x1', 'y1', 'x2', 'y2']].copy() # TODO: Fix this to become x, y, w, h if self.bbox_with_size: bbox['y2'] -= bbox['y1'] bbox['x2'] -= bbox['x1'] """Converts a dataframe to a list of arrays :param df: :param length: :return: """ return to_array_list(bbox)
Converts a dataframe to a list of arrays :param df: :param length: :return:
Below is the the instruction that describes the task: ### Input: Converts a dataframe to a list of arrays :param df: :param length: :return: ### Response: def bbox(self): bbox = self._df[['id', 'x1', 'y1', 'x2', 'y2']].copy() # TODO: Fix this to become x, y, w, h if self.bbox_with_size: bbox['y2'] -= bbox['y1'] bbox['x2'] -= bbox['x1'] """Converts a dataframe to a list of arrays :param df: :param length: :return: """ return to_array_list(bbox)
def available_repositories(self, **kwargs): """Lists available repositories for the repository set :param synchronous: What should happen if the server returns an HTTP 202 (accepted) status code? Wait for the task to complete if ``True``. Immediately return the server's response otherwise. :param kwargs: Arguments to pass to requests. :returns: The server's response, with all JSON decoded. :raises: ``requests.exceptions.HTTPError`` If the server responds with an HTTP 4XX or 5XX message. """ if 'data' not in kwargs: kwargs['data'] = dict() kwargs['data']['product_id'] = self.product.id kwargs = kwargs.copy() # shadow the passed-in kwargs kwargs.update(self._server_config.get_client_kwargs()) response = client.get(self.path('available_repositories'), **kwargs) return _handle_response(response, self._server_config)
Lists available repositories for the repository set :param synchronous: What should happen if the server returns an HTTP 202 (accepted) status code? Wait for the task to complete if ``True``. Immediately return the server's response otherwise. :param kwargs: Arguments to pass to requests. :returns: The server's response, with all JSON decoded. :raises: ``requests.exceptions.HTTPError`` If the server responds with an HTTP 4XX or 5XX message.
Below is the the instruction that describes the task: ### Input: Lists available repositories for the repository set :param synchronous: What should happen if the server returns an HTTP 202 (accepted) status code? Wait for the task to complete if ``True``. Immediately return the server's response otherwise. :param kwargs: Arguments to pass to requests. :returns: The server's response, with all JSON decoded. :raises: ``requests.exceptions.HTTPError`` If the server responds with an HTTP 4XX or 5XX message. ### Response: def available_repositories(self, **kwargs): """Lists available repositories for the repository set :param synchronous: What should happen if the server returns an HTTP 202 (accepted) status code? Wait for the task to complete if ``True``. Immediately return the server's response otherwise. :param kwargs: Arguments to pass to requests. :returns: The server's response, with all JSON decoded. :raises: ``requests.exceptions.HTTPError`` If the server responds with an HTTP 4XX or 5XX message. """ if 'data' not in kwargs: kwargs['data'] = dict() kwargs['data']['product_id'] = self.product.id kwargs = kwargs.copy() # shadow the passed-in kwargs kwargs.update(self._server_config.get_client_kwargs()) response = client.get(self.path('available_repositories'), **kwargs) return _handle_response(response, self._server_config)
def mps_device_name(): """ Returns name of MPS device that will be used, else None. """ lib = _load_tcmps_lib() if lib is None: return None n = 256 c_name = (_ctypes.c_char * n)() ret = lib.TCMPSMetalDeviceName(_ctypes.byref(c_name), _ctypes.c_int32(n)) if ret == 0: return _decode_bytes_to_native_string(c_name.value) else: return None
Returns name of MPS device that will be used, else None.
Below is the the instruction that describes the task: ### Input: Returns name of MPS device that will be used, else None. ### Response: def mps_device_name(): """ Returns name of MPS device that will be used, else None. """ lib = _load_tcmps_lib() if lib is None: return None n = 256 c_name = (_ctypes.c_char * n)() ret = lib.TCMPSMetalDeviceName(_ctypes.byref(c_name), _ctypes.c_int32(n)) if ret == 0: return _decode_bytes_to_native_string(c_name.value) else: return None
def MI_associators(self, env, objectName, assocClassName, resultClassName, role, resultRole, propertyList): # pylint: disable=invalid-name """Return instances associated to a given object. Implements the WBEM operation Associators in terms of the references method. A derived class will not normally override this method. """ # NOTE: This should honor the parameters resultClassName, role, # resultRole, and propertyList logger = env.get_logger() logger.log_debug('CIMProvider2 MI_associators called. ' \ 'assocClass: %s' % (assocClassName)) if not assocClassName: raise pywbem.CIMError(pywbem.CIM_ERR_FAILED, "Empty assocClassName passed to Associators") ch = env.get_cimom_handle() model = pywbem.CIMInstance(classname=assocClassName) model.path = pywbem.CIMInstanceName(classname=assocClassName, namespace=objectName.namespace) gen = self.references(env=env, object_name=objectName, model=model, result_class_name=resultClassName, role=role, result_role=None, keys_only=False) if gen is None: logger.log_debug('references() returned None instead of ' \ 'generator object') return for inst in gen: for prop in inst.properties.values(): lpname = prop.name.lower() if prop.type != 'reference': continue if role and role.lower() == lpname: continue if resultRole and resultRole.lower() != lpname: continue if self.paths_equal(prop.value, objectName): continue if resultClassName and \ resultClassName.lower() != prop.value.classname.lower(): continue try: if prop.value.namespace is None: prop.value.namespace = objectName.namespace inst = ch.GetInstance(prop.value, propertyList) except pywbem.CIMError as exc: num, msg = exc.args if num == pywbem.CIM_ERR_NOT_FOUND: continue else: raise if inst.path is None: inst.path = prop.value yield inst logger.log_debug('CIMProvider2 MI_associators returning')
Return instances associated to a given object. Implements the WBEM operation Associators in terms of the references method. A derived class will not normally override this method.
Below is the the instruction that describes the task: ### Input: Return instances associated to a given object. Implements the WBEM operation Associators in terms of the references method. A derived class will not normally override this method. ### Response: def MI_associators(self, env, objectName, assocClassName, resultClassName, role, resultRole, propertyList): # pylint: disable=invalid-name """Return instances associated to a given object. Implements the WBEM operation Associators in terms of the references method. A derived class will not normally override this method. """ # NOTE: This should honor the parameters resultClassName, role, # resultRole, and propertyList logger = env.get_logger() logger.log_debug('CIMProvider2 MI_associators called. ' \ 'assocClass: %s' % (assocClassName)) if not assocClassName: raise pywbem.CIMError(pywbem.CIM_ERR_FAILED, "Empty assocClassName passed to Associators") ch = env.get_cimom_handle() model = pywbem.CIMInstance(classname=assocClassName) model.path = pywbem.CIMInstanceName(classname=assocClassName, namespace=objectName.namespace) gen = self.references(env=env, object_name=objectName, model=model, result_class_name=resultClassName, role=role, result_role=None, keys_only=False) if gen is None: logger.log_debug('references() returned None instead of ' \ 'generator object') return for inst in gen: for prop in inst.properties.values(): lpname = prop.name.lower() if prop.type != 'reference': continue if role and role.lower() == lpname: continue if resultRole and resultRole.lower() != lpname: continue if self.paths_equal(prop.value, objectName): continue if resultClassName and \ resultClassName.lower() != prop.value.classname.lower(): continue try: if prop.value.namespace is None: prop.value.namespace = objectName.namespace inst = ch.GetInstance(prop.value, propertyList) except pywbem.CIMError as exc: num, msg = exc.args if num == pywbem.CIM_ERR_NOT_FOUND: continue else: raise if inst.path is None: inst.path = prop.value yield inst logger.log_debug('CIMProvider2 MI_associators returning')
def get_cipher(data): """http://git.kernel.org/cgit/linux/kernel/git/jberg/iw.git/tree/scan.c?id=v3.17#n336. Positional arguments: data -- bytearray data to read. Returns: WiFi stream cipher used by the access point (string). """ legend = {0: 'Use group cipher suite', 1: 'WEP-40', 2: 'TKIP', 4: 'CCMP', 5: 'WEP-104', } key = data[3] if ieee80211_oui == bytes(data[:3]): legend.update({6: 'AES-128-CMAC', 8: 'GCMP', }) elif ms_oui != bytes(data[:3]): key = None return legend.get(key, '{0:02x}-{1:02x}-{2:02x}:{3}'.format(data[0], data[1], data[2], data[3]))
http://git.kernel.org/cgit/linux/kernel/git/jberg/iw.git/tree/scan.c?id=v3.17#n336. Positional arguments: data -- bytearray data to read. Returns: WiFi stream cipher used by the access point (string).
Below is the the instruction that describes the task: ### Input: http://git.kernel.org/cgit/linux/kernel/git/jberg/iw.git/tree/scan.c?id=v3.17#n336. Positional arguments: data -- bytearray data to read. Returns: WiFi stream cipher used by the access point (string). ### Response: def get_cipher(data): """http://git.kernel.org/cgit/linux/kernel/git/jberg/iw.git/tree/scan.c?id=v3.17#n336. Positional arguments: data -- bytearray data to read. Returns: WiFi stream cipher used by the access point (string). """ legend = {0: 'Use group cipher suite', 1: 'WEP-40', 2: 'TKIP', 4: 'CCMP', 5: 'WEP-104', } key = data[3] if ieee80211_oui == bytes(data[:3]): legend.update({6: 'AES-128-CMAC', 8: 'GCMP', }) elif ms_oui != bytes(data[:3]): key = None return legend.get(key, '{0:02x}-{1:02x}-{2:02x}:{3}'.format(data[0], data[1], data[2], data[3]))
def expand_env_variables(lines_enum): # type: (ReqFileLines) -> ReqFileLines """Replace all environment variables that can be retrieved via `os.getenv`. The only allowed format for environment variables defined in the requirement file is `${MY_VARIABLE_1}` to ensure two things: 1. Strings that contain a `$` aren't accidentally (partially) expanded. 2. Ensure consistency across platforms for requirement files. These points are the result of a discusssion on the `github pull request #3514 <https://github.com/pypa/pip/pull/3514>`_. Valid characters in variable names follow the `POSIX standard <http://pubs.opengroup.org/onlinepubs/9699919799/>`_ and are limited to uppercase letter, digits and the `_` (underscore). """ for line_number, line in lines_enum: for env_var, var_name in ENV_VAR_RE.findall(line): value = os.getenv(var_name) if not value: continue line = line.replace(env_var, value) yield line_number, line
Replace all environment variables that can be retrieved via `os.getenv`. The only allowed format for environment variables defined in the requirement file is `${MY_VARIABLE_1}` to ensure two things: 1. Strings that contain a `$` aren't accidentally (partially) expanded. 2. Ensure consistency across platforms for requirement files. These points are the result of a discusssion on the `github pull request #3514 <https://github.com/pypa/pip/pull/3514>`_. Valid characters in variable names follow the `POSIX standard <http://pubs.opengroup.org/onlinepubs/9699919799/>`_ and are limited to uppercase letter, digits and the `_` (underscore).
Below is the the instruction that describes the task: ### Input: Replace all environment variables that can be retrieved via `os.getenv`. The only allowed format for environment variables defined in the requirement file is `${MY_VARIABLE_1}` to ensure two things: 1. Strings that contain a `$` aren't accidentally (partially) expanded. 2. Ensure consistency across platforms for requirement files. These points are the result of a discusssion on the `github pull request #3514 <https://github.com/pypa/pip/pull/3514>`_. Valid characters in variable names follow the `POSIX standard <http://pubs.opengroup.org/onlinepubs/9699919799/>`_ and are limited to uppercase letter, digits and the `_` (underscore). ### Response: def expand_env_variables(lines_enum): # type: (ReqFileLines) -> ReqFileLines """Replace all environment variables that can be retrieved via `os.getenv`. The only allowed format for environment variables defined in the requirement file is `${MY_VARIABLE_1}` to ensure two things: 1. Strings that contain a `$` aren't accidentally (partially) expanded. 2. Ensure consistency across platforms for requirement files. These points are the result of a discusssion on the `github pull request #3514 <https://github.com/pypa/pip/pull/3514>`_. Valid characters in variable names follow the `POSIX standard <http://pubs.opengroup.org/onlinepubs/9699919799/>`_ and are limited to uppercase letter, digits and the `_` (underscore). """ for line_number, line in lines_enum: for env_var, var_name in ENV_VAR_RE.findall(line): value = os.getenv(var_name) if not value: continue line = line.replace(env_var, value) yield line_number, line
def get(cls, whitelist_id, whitelist_result_id, note_text_whitelist_result_id, monetary_account_id=None, custom_headers=None): """ :type api_context: context.ApiContext :type user_id: int :type monetary_account_id: int :type whitelist_id: int :type whitelist_result_id: int :type note_text_whitelist_result_id: int :type custom_headers: dict[str, str]|None :rtype: BunqResponseNoteTextWhitelistResult """ if custom_headers is None: custom_headers = {} api_client = client.ApiClient(cls._get_api_context()) endpoint_url = cls._ENDPOINT_URL_READ.format(cls._determine_user_id(), cls._determine_monetary_account_id( monetary_account_id), whitelist_id, whitelist_result_id, note_text_whitelist_result_id) response_raw = api_client.get(endpoint_url, {}, custom_headers) return BunqResponseNoteTextWhitelistResult.cast_from_bunq_response( cls._from_json(response_raw, cls._OBJECT_TYPE_GET) )
:type api_context: context.ApiContext :type user_id: int :type monetary_account_id: int :type whitelist_id: int :type whitelist_result_id: int :type note_text_whitelist_result_id: int :type custom_headers: dict[str, str]|None :rtype: BunqResponseNoteTextWhitelistResult
Below is the the instruction that describes the task: ### Input: :type api_context: context.ApiContext :type user_id: int :type monetary_account_id: int :type whitelist_id: int :type whitelist_result_id: int :type note_text_whitelist_result_id: int :type custom_headers: dict[str, str]|None :rtype: BunqResponseNoteTextWhitelistResult ### Response: def get(cls, whitelist_id, whitelist_result_id, note_text_whitelist_result_id, monetary_account_id=None, custom_headers=None): """ :type api_context: context.ApiContext :type user_id: int :type monetary_account_id: int :type whitelist_id: int :type whitelist_result_id: int :type note_text_whitelist_result_id: int :type custom_headers: dict[str, str]|None :rtype: BunqResponseNoteTextWhitelistResult """ if custom_headers is None: custom_headers = {} api_client = client.ApiClient(cls._get_api_context()) endpoint_url = cls._ENDPOINT_URL_READ.format(cls._determine_user_id(), cls._determine_monetary_account_id( monetary_account_id), whitelist_id, whitelist_result_id, note_text_whitelist_result_id) response_raw = api_client.get(endpoint_url, {}, custom_headers) return BunqResponseNoteTextWhitelistResult.cast_from_bunq_response( cls._from_json(response_raw, cls._OBJECT_TYPE_GET) )
def parse_readme(): """Parse contents of the README.""" # Get the long description from the relevant file here = os.path.abspath(os.path.dirname(__file__)) readme_path = os.path.join(here, 'README.md') with codecs.open(readme_path, encoding='utf-8') as handle: long_description = handle.read() return long_description
Parse contents of the README.
Below is the the instruction that describes the task: ### Input: Parse contents of the README. ### Response: def parse_readme(): """Parse contents of the README.""" # Get the long description from the relevant file here = os.path.abspath(os.path.dirname(__file__)) readme_path = os.path.join(here, 'README.md') with codecs.open(readme_path, encoding='utf-8') as handle: long_description = handle.read() return long_description
def cached_tree(self, subject_ids=None, visit_ids=None, fill=False): """ Access the repository tree and caches it for subsequent accesses Parameters ---------- subject_ids : list(str) List of subject IDs with which to filter the tree with. If None all are returned visit_ids : list(str) List of visit IDs with which to filter the tree with. If None all are returned fill : bool Create empty sessions for any that are missing in the subject_id x visit_id block. Typically only used if all the inputs to the study are coming from different repositories to the one that the derived products are stored in Returns ------- tree : arcana.repository.Tree A hierarchical tree of subject, vist, session information and that of the filesets and fields they contain """ if subject_ids is not None: subject_ids = frozenset(subject_ids) if visit_ids is not None: visit_ids = frozenset(visit_ids) try: tree = self._cache[subject_ids][visit_ids] except KeyError: if fill: fill_subjects = subject_ids fill_visits = visit_ids else: fill_subjects = fill_visits = None tree = self.tree( subject_ids=subject_ids, visit_ids=visit_ids, fill_visits=fill_visits, fill_subjects=fill_subjects) # Save the tree within the cache under the given subject/ # visit ID filters and the IDs that were actually returned self._cache[subject_ids][visit_ids] = self._cache[ frozenset(tree.subject_ids)][frozenset(tree.visit_ids)] = tree return tree
Access the repository tree and caches it for subsequent accesses Parameters ---------- subject_ids : list(str) List of subject IDs with which to filter the tree with. If None all are returned visit_ids : list(str) List of visit IDs with which to filter the tree with. If None all are returned fill : bool Create empty sessions for any that are missing in the subject_id x visit_id block. Typically only used if all the inputs to the study are coming from different repositories to the one that the derived products are stored in Returns ------- tree : arcana.repository.Tree A hierarchical tree of subject, vist, session information and that of the filesets and fields they contain
Below is the the instruction that describes the task: ### Input: Access the repository tree and caches it for subsequent accesses Parameters ---------- subject_ids : list(str) List of subject IDs with which to filter the tree with. If None all are returned visit_ids : list(str) List of visit IDs with which to filter the tree with. If None all are returned fill : bool Create empty sessions for any that are missing in the subject_id x visit_id block. Typically only used if all the inputs to the study are coming from different repositories to the one that the derived products are stored in Returns ------- tree : arcana.repository.Tree A hierarchical tree of subject, vist, session information and that of the filesets and fields they contain ### Response: def cached_tree(self, subject_ids=None, visit_ids=None, fill=False): """ Access the repository tree and caches it for subsequent accesses Parameters ---------- subject_ids : list(str) List of subject IDs with which to filter the tree with. If None all are returned visit_ids : list(str) List of visit IDs with which to filter the tree with. If None all are returned fill : bool Create empty sessions for any that are missing in the subject_id x visit_id block. Typically only used if all the inputs to the study are coming from different repositories to the one that the derived products are stored in Returns ------- tree : arcana.repository.Tree A hierarchical tree of subject, vist, session information and that of the filesets and fields they contain """ if subject_ids is not None: subject_ids = frozenset(subject_ids) if visit_ids is not None: visit_ids = frozenset(visit_ids) try: tree = self._cache[subject_ids][visit_ids] except KeyError: if fill: fill_subjects = subject_ids fill_visits = visit_ids else: fill_subjects = fill_visits = None tree = self.tree( subject_ids=subject_ids, visit_ids=visit_ids, fill_visits=fill_visits, fill_subjects=fill_subjects) # Save the tree within the cache under the given subject/ # visit ID filters and the IDs that were actually returned self._cache[subject_ids][visit_ids] = self._cache[ frozenset(tree.subject_ids)][frozenset(tree.visit_ids)] = tree return tree
def latex2png(snippet, outfile): """Compiles a LaTeX snippet to png""" pngimage = os.path.join(IMAGEDIR, outfile + '.png') texdocument = os.path.join(IMAGEDIR, 'tmp.tex') with open(texdocument, 'w') as doc: doc.write(LATEX_DOC % (snippet)) environment = os.environ environment['shell_escape_commands'] = \ "bibtex,bibtex8,kpsewhich,makeindex,mpost,repstopdf," + \ ','.join( os.path.basename(n) for n in chain.from_iterable( iglob(os.path.join(chemin, 'gregorio*')) for chemin in os.environ["PATH"].split(os.pathsep) ) ) proc = Popen( ["lualatex", '-output-directory=' + IMAGEDIR, texdocument], stdin=PIPE, stdout=STDERR, env=environment ) proc.communicate() proc.stdin.close() call(["pdfcrop", os.path.join(IMAGEDIR, "tmp.pdf")], stdout=STDERR) call( [ "gs", "-sDEVICE=pngalpha", "-r144", "-sOutputFile=" + pngimage, os.path.join(IMAGEDIR, "tmp-crop.pdf"), ], stdout=STDERR, )
Compiles a LaTeX snippet to png
Below is the the instruction that describes the task: ### Input: Compiles a LaTeX snippet to png ### Response: def latex2png(snippet, outfile): """Compiles a LaTeX snippet to png""" pngimage = os.path.join(IMAGEDIR, outfile + '.png') texdocument = os.path.join(IMAGEDIR, 'tmp.tex') with open(texdocument, 'w') as doc: doc.write(LATEX_DOC % (snippet)) environment = os.environ environment['shell_escape_commands'] = \ "bibtex,bibtex8,kpsewhich,makeindex,mpost,repstopdf," + \ ','.join( os.path.basename(n) for n in chain.from_iterable( iglob(os.path.join(chemin, 'gregorio*')) for chemin in os.environ["PATH"].split(os.pathsep) ) ) proc = Popen( ["lualatex", '-output-directory=' + IMAGEDIR, texdocument], stdin=PIPE, stdout=STDERR, env=environment ) proc.communicate() proc.stdin.close() call(["pdfcrop", os.path.join(IMAGEDIR, "tmp.pdf")], stdout=STDERR) call( [ "gs", "-sDEVICE=pngalpha", "-r144", "-sOutputFile=" + pngimage, os.path.join(IMAGEDIR, "tmp-crop.pdf"), ], stdout=STDERR, )