code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def register_nonzero_counter(network, stats): """ Register forward hooks to count the number of nonzero floating points values from all the tensors used by the given network during inference. :param network: The network to attach the counter :param stats: Dictionary holding the counter. """ if hasattr(network, "__counter_nonzero__"): raise ValueError("nonzero counter was already registered for this network") if not isinstance(stats, dict): raise ValueError("stats must be a dictionary") network.__counter_nonzero__ = stats handles = [] for name, module in network.named_modules(): handles.append(module.register_forward_hook(_nonzero_counter_hook)) if network != module: if hasattr(module, "__counter_nonzero__"): raise ValueError("nonzero counter was already registered for this module") child_data = dict() network.__counter_nonzero__[name] = child_data module.__counter_nonzero__ = child_data network.__counter_nonzero_handles__ = handles
Register forward hooks to count the number of nonzero floating points values from all the tensors used by the given network during inference. :param network: The network to attach the counter :param stats: Dictionary holding the counter.
Below is the the instruction that describes the task: ### Input: Register forward hooks to count the number of nonzero floating points values from all the tensors used by the given network during inference. :param network: The network to attach the counter :param stats: Dictionary holding the counter. ### Response: def register_nonzero_counter(network, stats): """ Register forward hooks to count the number of nonzero floating points values from all the tensors used by the given network during inference. :param network: The network to attach the counter :param stats: Dictionary holding the counter. """ if hasattr(network, "__counter_nonzero__"): raise ValueError("nonzero counter was already registered for this network") if not isinstance(stats, dict): raise ValueError("stats must be a dictionary") network.__counter_nonzero__ = stats handles = [] for name, module in network.named_modules(): handles.append(module.register_forward_hook(_nonzero_counter_hook)) if network != module: if hasattr(module, "__counter_nonzero__"): raise ValueError("nonzero counter was already registered for this module") child_data = dict() network.__counter_nonzero__[name] = child_data module.__counter_nonzero__ = child_data network.__counter_nonzero_handles__ = handles
def get_final_version_string(release_mode, semver, commit_count=0): """Generates update dictionary entries for the version string""" version_string = ".".join(semver) maybe_dev_version_string = version_string updates = {} if release_mode: # in production, we have something like `1.2.3`, as well as a flag e.g. PRODUCTION=True updates[Constants.RELEASE_FIELD] = config.RELEASED_VALUE else: # in dev mode, we have a dev marker e.g. `1.2.3.dev678` maybe_dev_version_string = config.DEVMODE_TEMPLATE.format( version=version_string, count=commit_count ) # make available all components of the semantic version including the full string updates[Constants.VERSION_FIELD] = maybe_dev_version_string updates[Constants.VERSION_STRICT_FIELD] = version_string return updates
Generates update dictionary entries for the version string
Below is the the instruction that describes the task: ### Input: Generates update dictionary entries for the version string ### Response: def get_final_version_string(release_mode, semver, commit_count=0): """Generates update dictionary entries for the version string""" version_string = ".".join(semver) maybe_dev_version_string = version_string updates = {} if release_mode: # in production, we have something like `1.2.3`, as well as a flag e.g. PRODUCTION=True updates[Constants.RELEASE_FIELD] = config.RELEASED_VALUE else: # in dev mode, we have a dev marker e.g. `1.2.3.dev678` maybe_dev_version_string = config.DEVMODE_TEMPLATE.format( version=version_string, count=commit_count ) # make available all components of the semantic version including the full string updates[Constants.VERSION_FIELD] = maybe_dev_version_string updates[Constants.VERSION_STRICT_FIELD] = version_string return updates
def clone(self, id, name=None): """Clone a gist Arguments: id: the gist identifier name: the name to give the cloned repo """ url = '[email protected]:/{}'.format(id) if name is None: os.system('git clone {}'.format(url)) else: os.system('git clone {} {}'.format(url, name))
Clone a gist Arguments: id: the gist identifier name: the name to give the cloned repo
Below is the the instruction that describes the task: ### Input: Clone a gist Arguments: id: the gist identifier name: the name to give the cloned repo ### Response: def clone(self, id, name=None): """Clone a gist Arguments: id: the gist identifier name: the name to give the cloned repo """ url = '[email protected]:/{}'.format(id) if name is None: os.system('git clone {}'.format(url)) else: os.system('git clone {} {}'.format(url, name))
def call_with_context(func, context, *args): """ Check if given function has more arguments than given. Call it with context as last argument or without it. """ return make_context_aware(func, len(args))(*args + (context,))
Check if given function has more arguments than given. Call it with context as last argument or without it.
Below is the the instruction that describes the task: ### Input: Check if given function has more arguments than given. Call it with context as last argument or without it. ### Response: def call_with_context(func, context, *args): """ Check if given function has more arguments than given. Call it with context as last argument or without it. """ return make_context_aware(func, len(args))(*args + (context,))
def authenticate(self, req, resp, resource): """ Extract basic auth token from request `authorization` header, deocode the token, verifies the username/password and return either a ``user`` object if successful else raise an `falcon.HTTPUnauthoried exception` """ username, password = self._extract_credentials(req) user = self.user_loader(username, password) if not user: raise falcon.HTTPUnauthorized( description='Invalid Username/Password') return user
Extract basic auth token from request `authorization` header, deocode the token, verifies the username/password and return either a ``user`` object if successful else raise an `falcon.HTTPUnauthoried exception`
Below is the the instruction that describes the task: ### Input: Extract basic auth token from request `authorization` header, deocode the token, verifies the username/password and return either a ``user`` object if successful else raise an `falcon.HTTPUnauthoried exception` ### Response: def authenticate(self, req, resp, resource): """ Extract basic auth token from request `authorization` header, deocode the token, verifies the username/password and return either a ``user`` object if successful else raise an `falcon.HTTPUnauthoried exception` """ username, password = self._extract_credentials(req) user = self.user_loader(username, password) if not user: raise falcon.HTTPUnauthorized( description='Invalid Username/Password') return user
def twofilter_smoothing(self, t, info, phi, loggamma, linear_cost=False, return_ess=False, modif_forward=None, modif_info=None): """Two-filter smoothing. Parameters ---------- t: time, in range 0 <= t < T-1 info: SMC object the information filter phi: function test function, a function of (X_t,X_{t+1}) loggamma: function a function of (X_{t+1}) linear_cost: bool if True, use the O(N) variant (basic version is O(N^2)) Returns ------- Two-filter estimate of the smoothing expectation of phi(X_t,x_{t+1}) """ ti = self.T - 2 - t # t+1 in reverse if t < 0 or t >= self.T - 1: raise ValueError( 'two-filter smoothing: t must be in range 0,...,T-2') lwinfo = info.hist.wgt[ti].lw - loggamma(info.hist.X[ti]) if linear_cost: return self._twofilter_smoothing_ON(t, ti, info, phi, lwinfo, return_ess, modif_forward, modif_info) else: return self._twofilter_smoothing_ON2(t, ti, info, phi, lwinfo)
Two-filter smoothing. Parameters ---------- t: time, in range 0 <= t < T-1 info: SMC object the information filter phi: function test function, a function of (X_t,X_{t+1}) loggamma: function a function of (X_{t+1}) linear_cost: bool if True, use the O(N) variant (basic version is O(N^2)) Returns ------- Two-filter estimate of the smoothing expectation of phi(X_t,x_{t+1})
Below is the the instruction that describes the task: ### Input: Two-filter smoothing. Parameters ---------- t: time, in range 0 <= t < T-1 info: SMC object the information filter phi: function test function, a function of (X_t,X_{t+1}) loggamma: function a function of (X_{t+1}) linear_cost: bool if True, use the O(N) variant (basic version is O(N^2)) Returns ------- Two-filter estimate of the smoothing expectation of phi(X_t,x_{t+1}) ### Response: def twofilter_smoothing(self, t, info, phi, loggamma, linear_cost=False, return_ess=False, modif_forward=None, modif_info=None): """Two-filter smoothing. Parameters ---------- t: time, in range 0 <= t < T-1 info: SMC object the information filter phi: function test function, a function of (X_t,X_{t+1}) loggamma: function a function of (X_{t+1}) linear_cost: bool if True, use the O(N) variant (basic version is O(N^2)) Returns ------- Two-filter estimate of the smoothing expectation of phi(X_t,x_{t+1}) """ ti = self.T - 2 - t # t+1 in reverse if t < 0 or t >= self.T - 1: raise ValueError( 'two-filter smoothing: t must be in range 0,...,T-2') lwinfo = info.hist.wgt[ti].lw - loggamma(info.hist.X[ti]) if linear_cost: return self._twofilter_smoothing_ON(t, ti, info, phi, lwinfo, return_ess, modif_forward, modif_info) else: return self._twofilter_smoothing_ON2(t, ti, info, phi, lwinfo)
def account_update(self, data, **kwargs): "https://developer.zendesk.com/rest_api/docs/chat/accounts#update-account" api_path = "/api/v2/account" return self.call(api_path, method="PUT", data=data, **kwargs)
https://developer.zendesk.com/rest_api/docs/chat/accounts#update-account
Below is the the instruction that describes the task: ### Input: https://developer.zendesk.com/rest_api/docs/chat/accounts#update-account ### Response: def account_update(self, data, **kwargs): "https://developer.zendesk.com/rest_api/docs/chat/accounts#update-account" api_path = "/api/v2/account" return self.call(api_path, method="PUT", data=data, **kwargs)
def list_objects(self, bucket_name=None, **kwargs): """ This method is primarily for illustration and just calls the boto3 client implementation of list_objects but is a common task for first time Predix BlobStore users. """ if not bucket_name: bucket_name = self.bucket_name return self.client.list_objects(Bucket=bucket_name, **kwargs)
This method is primarily for illustration and just calls the boto3 client implementation of list_objects but is a common task for first time Predix BlobStore users.
Below is the the instruction that describes the task: ### Input: This method is primarily for illustration and just calls the boto3 client implementation of list_objects but is a common task for first time Predix BlobStore users. ### Response: def list_objects(self, bucket_name=None, **kwargs): """ This method is primarily for illustration and just calls the boto3 client implementation of list_objects but is a common task for first time Predix BlobStore users. """ if not bucket_name: bucket_name = self.bucket_name return self.client.list_objects(Bucket=bucket_name, **kwargs)
def create_vpnservice(subnet, router, name, admin_state_up=True, profile=None): ''' Creates a new VPN service CLI Example: .. code-block:: bash salt '*' neutron.create_vpnservice router-name name :param subnet: Subnet unique identifier for the VPN service deployment :param router: Router unique identifier for the VPN service :param name: Set a name for the VPN service :param admin_state_up: Set admin state up to true or false, default:True (Optional) :param profile: Profile to build on (Optional) :return: Created VPN service information ''' conn = _auth(profile) return conn.create_vpnservice(subnet, router, name, admin_state_up)
Creates a new VPN service CLI Example: .. code-block:: bash salt '*' neutron.create_vpnservice router-name name :param subnet: Subnet unique identifier for the VPN service deployment :param router: Router unique identifier for the VPN service :param name: Set a name for the VPN service :param admin_state_up: Set admin state up to true or false, default:True (Optional) :param profile: Profile to build on (Optional) :return: Created VPN service information
Below is the the instruction that describes the task: ### Input: Creates a new VPN service CLI Example: .. code-block:: bash salt '*' neutron.create_vpnservice router-name name :param subnet: Subnet unique identifier for the VPN service deployment :param router: Router unique identifier for the VPN service :param name: Set a name for the VPN service :param admin_state_up: Set admin state up to true or false, default:True (Optional) :param profile: Profile to build on (Optional) :return: Created VPN service information ### Response: def create_vpnservice(subnet, router, name, admin_state_up=True, profile=None): ''' Creates a new VPN service CLI Example: .. code-block:: bash salt '*' neutron.create_vpnservice router-name name :param subnet: Subnet unique identifier for the VPN service deployment :param router: Router unique identifier for the VPN service :param name: Set a name for the VPN service :param admin_state_up: Set admin state up to true or false, default:True (Optional) :param profile: Profile to build on (Optional) :return: Created VPN service information ''' conn = _auth(profile) return conn.create_vpnservice(subnet, router, name, admin_state_up)
def settings(self): '''Generator which returns all of the statements in all of the settings tables''' for table in self.tables: if isinstance(table, SettingTable): for statement in table.statements: yield statement
Generator which returns all of the statements in all of the settings tables
Below is the the instruction that describes the task: ### Input: Generator which returns all of the statements in all of the settings tables ### Response: def settings(self): '''Generator which returns all of the statements in all of the settings tables''' for table in self.tables: if isinstance(table, SettingTable): for statement in table.statements: yield statement
def install_package(self, name, index=None, force=False, update=False): """Install a given package. Args: name (str): The package name to install. This can be any valid pip package specification. index (str): The URL for a pypi index to use. force (bool): For the reinstall of packages during updates. update (bool): Update the package if it is out of date. """ cmd = 'install' if force: cmd = '{0} {1}'.format(cmd, '--force-reinstall') if update: cmd = '{0} {1}'.format(cmd, '--update') if index: cmd = '{0} {1}'.format(cmd, '--index-url {0}'.format(index)) self.pip('{0} {1}'.format(cmd, name))
Install a given package. Args: name (str): The package name to install. This can be any valid pip package specification. index (str): The URL for a pypi index to use. force (bool): For the reinstall of packages during updates. update (bool): Update the package if it is out of date.
Below is the the instruction that describes the task: ### Input: Install a given package. Args: name (str): The package name to install. This can be any valid pip package specification. index (str): The URL for a pypi index to use. force (bool): For the reinstall of packages during updates. update (bool): Update the package if it is out of date. ### Response: def install_package(self, name, index=None, force=False, update=False): """Install a given package. Args: name (str): The package name to install. This can be any valid pip package specification. index (str): The URL for a pypi index to use. force (bool): For the reinstall of packages during updates. update (bool): Update the package if it is out of date. """ cmd = 'install' if force: cmd = '{0} {1}'.format(cmd, '--force-reinstall') if update: cmd = '{0} {1}'.format(cmd, '--update') if index: cmd = '{0} {1}'.format(cmd, '--index-url {0}'.format(index)) self.pip('{0} {1}'.format(cmd, name))
def rot(vm): """Rotate topmost three items once to the left. ( a b c -- b c a )""" c = vm.pop() b = vm.pop() a = vm.pop() vm.push(b) vm.push(c) vm.push(a)
Rotate topmost three items once to the left. ( a b c -- b c a )
Below is the the instruction that describes the task: ### Input: Rotate topmost three items once to the left. ( a b c -- b c a ) ### Response: def rot(vm): """Rotate topmost three items once to the left. ( a b c -- b c a )""" c = vm.pop() b = vm.pop() a = vm.pop() vm.push(b) vm.push(c) vm.push(a)
def parsecommonarguments(object, doc, annotationtype, required, allowed, **kwargs): """Internal function to parse common FoLiA attributes and sets up the instance accordingly. Do not invoke directly.""" object.doc = doc #The FoLiA root document if required is None: required = tuple() if allowed is None: allowed = tuple() supported = required + allowed if 'generate_id_in' in kwargs: try: kwargs['id'] = kwargs['generate_id_in'].generate_id(object.__class__) except GenerateIDException: pass #ID could not be generated, just skip del kwargs['generate_id_in'] if 'id' in kwargs: if Attrib.ID not in supported: raise ValueError("ID is not supported on " + object.__class__.__name__) isncname(kwargs['id']) object.id = kwargs['id'] del kwargs['id'] elif Attrib.ID in required: raise ValueError("ID is required for " + object.__class__.__name__) else: object.id = None if 'set' in kwargs: if Attrib.CLASS not in supported and not object.SETONLY: raise ValueError("Set is not supported on " + object.__class__.__name__) if not kwargs['set']: object.set ="undefined" else: object.set = kwargs['set'] del kwargs['set'] if object.set: if doc and (not (annotationtype in doc.annotationdefaults) or not (object.set in doc.annotationdefaults[annotationtype])): if object.set in doc.alias_set: object.set = doc.alias_set[object.set] elif doc.autodeclare: doc.annotations.append( (annotationtype, object.set ) ) doc.annotationdefaults[annotationtype] = {object.set: {} } else: raise ValueError("Set '" + object.set + "' is used for " + object.__class__.__name__ + ", but has no declaration!") elif annotationtype in doc.annotationdefaults and len(doc.annotationdefaults[annotationtype]) == 1: object.set = list(doc.annotationdefaults[annotationtype].keys())[0] elif object.ANNOTATIONTYPE == AnnotationType.TEXT: object.set = "undefined" #text content needs never be declared (for backward compatibility) and is in set 'undefined' elif Attrib.CLASS in required: #or (hasattr(object,'SETONLY') and object.SETONLY): raise ValueError("Set is required for " + object.__class__.__name__) if 'class' in kwargs: if not Attrib.CLASS in supported: raise ValueError("Class is not supported for " + object.__class__.__name__) object.cls = kwargs['class'] del kwargs['class'] elif 'cls' in kwargs: if not Attrib.CLASS in supported: raise ValueError("Class is not supported on " + object.__class__.__name__) object.cls = kwargs['cls'] del kwargs['cls'] elif Attrib.CLASS in required: raise ValueError("Class is required for " + object.__class__.__name__) if object.cls and not object.set: if doc and doc.autodeclare: if not (annotationtype, 'undefined') in doc.annotations: doc.annotations.append( (annotationtype, 'undefined') ) doc.annotationdefaults[annotationtype] = {'undefined': {} } object.set = 'undefined' else: raise ValueError("Set is required for " + object.__class__.__name__ + ". Class '" + object.cls + "' assigned without set.") if 'annotator' in kwargs: if not Attrib.ANNOTATOR in supported: raise ValueError("Annotator is not supported for " + object.__class__.__name__) object.annotator = kwargs['annotator'] del kwargs['annotator'] elif doc and annotationtype in doc.annotationdefaults and object.set in doc.annotationdefaults[annotationtype] and 'annotator' in doc.annotationdefaults[annotationtype][object.set]: object.annotator = doc.annotationdefaults[annotationtype][object.set]['annotator'] elif Attrib.ANNOTATOR in required: raise ValueError("Annotator is required for " + object.__class__.__name__) if 'annotatortype' in kwargs: if not Attrib.ANNOTATOR in supported: raise ValueError("Annotatortype is not supported for " + object.__class__.__name__) if kwargs['annotatortype'] == 'auto' or kwargs['annotatortype'] == AnnotatorType.AUTO: object.annotatortype = AnnotatorType.AUTO elif kwargs['annotatortype'] == 'manual' or kwargs['annotatortype'] == AnnotatorType.MANUAL: object.annotatortype = AnnotatorType.MANUAL else: raise ValueError("annotatortype must be 'auto' or 'manual', got " + repr(kwargs['annotatortype'])) del kwargs['annotatortype'] elif doc and annotationtype in doc.annotationdefaults and object.set in doc.annotationdefaults[annotationtype] and 'annotatortype' in doc.annotationdefaults[annotationtype][object.set]: object.annotatortype = doc.annotationdefaults[annotationtype][object.set]['annotatortype'] elif Attrib.ANNOTATOR in required: raise ValueError("Annotatortype is required for " + object.__class__.__name__) if 'confidence' in kwargs: if not Attrib.CONFIDENCE in supported: raise ValueError("Confidence is not supported") if kwargs['confidence'] is not None: try: object.confidence = float(kwargs['confidence']) assert object.confidence >= 0.0 and object.confidence <= 1.0 except: raise ValueError("Confidence must be a floating point number between 0 and 1, got " + repr(kwargs['confidence']) ) del kwargs['confidence'] elif Attrib.CONFIDENCE in required: raise ValueError("Confidence is required for " + object.__class__.__name__) if 'n' in kwargs: if not Attrib.N in supported: raise ValueError("N is not supported for " + object.__class__.__name__) object.n = kwargs['n'] del kwargs['n'] elif Attrib.N in required: raise ValueError("N is required for " + object.__class__.__name__) if 'datetime' in kwargs: if not Attrib.DATETIME in supported: raise ValueError("Datetime is not supported") if isinstance(kwargs['datetime'], datetime): object.datetime = kwargs['datetime'] else: #try: object.datetime = parse_datetime(kwargs['datetime']) #except: # raise ValueError("Unable to parse datetime: " + str(repr(kwargs['datetime']))) del kwargs['datetime'] elif doc and annotationtype in doc.annotationdefaults and object.set in doc.annotationdefaults[annotationtype] and 'datetime' in doc.annotationdefaults[annotationtype][object.set]: object.datetime = doc.annotationdefaults[annotationtype][object.set]['datetime'] elif Attrib.DATETIME in required: raise ValueError("Datetime is required for " + object.__class__.__name__) if 'src' in kwargs: if not Attrib.SRC in supported: raise ValueError("Source is not supported for " + object.__class__.__name__) object.src = kwargs['src'] del kwargs['src'] elif Attrib.SRC in required: raise ValueError("Source is required for " + object.__class__.__name__) if 'begintime' in kwargs: if not Attrib.BEGINTIME in supported: raise ValueError("Begintime is not supported for " + object.__class__.__name__) object.begintime = parsetime(kwargs['begintime']) del kwargs['begintime'] elif Attrib.BEGINTIME in required: raise ValueError("Begintime is required for " + object.__class__.__name__) if 'endtime' in kwargs: if not Attrib.ENDTIME in supported: raise ValueError("Endtime is not supported for " + object.__class__.__name__) object.endtime = parsetime(kwargs['endtime']) del kwargs['endtime'] elif Attrib.ENDTIME in required: raise ValueError("Endtime is required for " + object.__class__.__name__) if 'speaker' in kwargs: if not Attrib.SPEAKER in supported: raise ValueError("Speaker is not supported for " + object.__class__.__name__) object.speaker = kwargs['speaker'] del kwargs['speaker'] elif Attrib.SPEAKER in required: raise ValueError("Speaker is required for " + object.__class__.__name__) if 'auth' in kwargs: if kwargs['auth'] in ('no','false'): object.auth = False else: object.auth = bool(kwargs['auth']) del kwargs['auth'] else: object.auth = object.__class__.AUTH if 'text' in kwargs: if kwargs['text']: object.settext(kwargs['text']) del kwargs['text'] if 'phon' in kwargs: if kwargs['phon']: object.setphon(kwargs['phon']) del kwargs['phon'] if 'textclass' in kwargs: if not Attrib.TEXTCLASS in supported: raise ValueError("Textclass is not supported for " + object.__class__.__name__) object.textclass = kwargs['textclass'] del kwargs['textclass'] else: if Attrib.TEXTCLASS in supported: object.textclass = "current" if 'metadata' in kwargs: if not Attrib.METADATA in supported: raise ValueError("Metadata is not supported for " + object.__class__.__name__) object.metadata = kwargs['metadata'] if doc: try: doc.submetadata[kwargs['metadata']] except KeyError: raise KeyError("No such metadata defined: " + kwargs['metadata']) del kwargs['metadata'] if object.XLINK: if 'href' in kwargs: object.href =kwargs['href'] del kwargs['href'] if 'xlinktype' in kwargs: object.xlinktype = kwargs['xlinktype'] del kwargs['xlinktype'] if 'xlinkrole' in kwargs: object.xlinkrole = kwargs['xlinkrole'] del kwargs['xlinkrole'] if 'xlinklabel' in kwargs: object.xlinklabel = kwargs['xlinklabel'] del kwargs['xlinklabel'] if 'xlinkshow' in kwargs: object.xlinkshow = kwargs['xlinkshow'] del kwargs['xlinklabel'] if 'xlinktitle' in kwargs: object.xlinktitle = kwargs['xlinktitle'] del kwargs['xlinktitle'] if doc and doc.debug >= 2: print(" @id = ", repr(object.id),file=stderr) print(" @set = ", repr(object.set),file=stderr) print(" @class = ", repr(object.cls),file=stderr) print(" @annotator = ", repr(object.annotator),file=stderr) print(" @annotatortype= ", repr(object.annotatortype),file=stderr) print(" @confidence = ", repr(object.confidence),file=stderr) print(" @n = ", repr(object.n),file=stderr) print(" @datetime = ", repr(object.datetime),file=stderr) #set index if object.id and doc: if object.id in doc.index: if doc.debug >= 1: print("[PyNLPl FoLiA DEBUG] Duplicate ID not permitted:" + object.id,file=stderr) raise DuplicateIDError("Duplicate ID not permitted: " + object.id) else: if doc.debug >= 1: print("[PyNLPl FoLiA DEBUG] Adding to index: " + object.id,file=stderr) doc.index[object.id] = object #Parse feature attributes (shortcut for feature specification for some elements) for c in object.ACCEPTED_DATA: if issubclass(c, Feature): if c.SUBSET in kwargs: if kwargs[c.SUBSET]: object.append(c,cls=kwargs[c.SUBSET]) del kwargs[c.SUBSET] return kwargs
Internal function to parse common FoLiA attributes and sets up the instance accordingly. Do not invoke directly.
Below is the the instruction that describes the task: ### Input: Internal function to parse common FoLiA attributes and sets up the instance accordingly. Do not invoke directly. ### Response: def parsecommonarguments(object, doc, annotationtype, required, allowed, **kwargs): """Internal function to parse common FoLiA attributes and sets up the instance accordingly. Do not invoke directly.""" object.doc = doc #The FoLiA root document if required is None: required = tuple() if allowed is None: allowed = tuple() supported = required + allowed if 'generate_id_in' in kwargs: try: kwargs['id'] = kwargs['generate_id_in'].generate_id(object.__class__) except GenerateIDException: pass #ID could not be generated, just skip del kwargs['generate_id_in'] if 'id' in kwargs: if Attrib.ID not in supported: raise ValueError("ID is not supported on " + object.__class__.__name__) isncname(kwargs['id']) object.id = kwargs['id'] del kwargs['id'] elif Attrib.ID in required: raise ValueError("ID is required for " + object.__class__.__name__) else: object.id = None if 'set' in kwargs: if Attrib.CLASS not in supported and not object.SETONLY: raise ValueError("Set is not supported on " + object.__class__.__name__) if not kwargs['set']: object.set ="undefined" else: object.set = kwargs['set'] del kwargs['set'] if object.set: if doc and (not (annotationtype in doc.annotationdefaults) or not (object.set in doc.annotationdefaults[annotationtype])): if object.set in doc.alias_set: object.set = doc.alias_set[object.set] elif doc.autodeclare: doc.annotations.append( (annotationtype, object.set ) ) doc.annotationdefaults[annotationtype] = {object.set: {} } else: raise ValueError("Set '" + object.set + "' is used for " + object.__class__.__name__ + ", but has no declaration!") elif annotationtype in doc.annotationdefaults and len(doc.annotationdefaults[annotationtype]) == 1: object.set = list(doc.annotationdefaults[annotationtype].keys())[0] elif object.ANNOTATIONTYPE == AnnotationType.TEXT: object.set = "undefined" #text content needs never be declared (for backward compatibility) and is in set 'undefined' elif Attrib.CLASS in required: #or (hasattr(object,'SETONLY') and object.SETONLY): raise ValueError("Set is required for " + object.__class__.__name__) if 'class' in kwargs: if not Attrib.CLASS in supported: raise ValueError("Class is not supported for " + object.__class__.__name__) object.cls = kwargs['class'] del kwargs['class'] elif 'cls' in kwargs: if not Attrib.CLASS in supported: raise ValueError("Class is not supported on " + object.__class__.__name__) object.cls = kwargs['cls'] del kwargs['cls'] elif Attrib.CLASS in required: raise ValueError("Class is required for " + object.__class__.__name__) if object.cls and not object.set: if doc and doc.autodeclare: if not (annotationtype, 'undefined') in doc.annotations: doc.annotations.append( (annotationtype, 'undefined') ) doc.annotationdefaults[annotationtype] = {'undefined': {} } object.set = 'undefined' else: raise ValueError("Set is required for " + object.__class__.__name__ + ". Class '" + object.cls + "' assigned without set.") if 'annotator' in kwargs: if not Attrib.ANNOTATOR in supported: raise ValueError("Annotator is not supported for " + object.__class__.__name__) object.annotator = kwargs['annotator'] del kwargs['annotator'] elif doc and annotationtype in doc.annotationdefaults and object.set in doc.annotationdefaults[annotationtype] and 'annotator' in doc.annotationdefaults[annotationtype][object.set]: object.annotator = doc.annotationdefaults[annotationtype][object.set]['annotator'] elif Attrib.ANNOTATOR in required: raise ValueError("Annotator is required for " + object.__class__.__name__) if 'annotatortype' in kwargs: if not Attrib.ANNOTATOR in supported: raise ValueError("Annotatortype is not supported for " + object.__class__.__name__) if kwargs['annotatortype'] == 'auto' or kwargs['annotatortype'] == AnnotatorType.AUTO: object.annotatortype = AnnotatorType.AUTO elif kwargs['annotatortype'] == 'manual' or kwargs['annotatortype'] == AnnotatorType.MANUAL: object.annotatortype = AnnotatorType.MANUAL else: raise ValueError("annotatortype must be 'auto' or 'manual', got " + repr(kwargs['annotatortype'])) del kwargs['annotatortype'] elif doc and annotationtype in doc.annotationdefaults and object.set in doc.annotationdefaults[annotationtype] and 'annotatortype' in doc.annotationdefaults[annotationtype][object.set]: object.annotatortype = doc.annotationdefaults[annotationtype][object.set]['annotatortype'] elif Attrib.ANNOTATOR in required: raise ValueError("Annotatortype is required for " + object.__class__.__name__) if 'confidence' in kwargs: if not Attrib.CONFIDENCE in supported: raise ValueError("Confidence is not supported") if kwargs['confidence'] is not None: try: object.confidence = float(kwargs['confidence']) assert object.confidence >= 0.0 and object.confidence <= 1.0 except: raise ValueError("Confidence must be a floating point number between 0 and 1, got " + repr(kwargs['confidence']) ) del kwargs['confidence'] elif Attrib.CONFIDENCE in required: raise ValueError("Confidence is required for " + object.__class__.__name__) if 'n' in kwargs: if not Attrib.N in supported: raise ValueError("N is not supported for " + object.__class__.__name__) object.n = kwargs['n'] del kwargs['n'] elif Attrib.N in required: raise ValueError("N is required for " + object.__class__.__name__) if 'datetime' in kwargs: if not Attrib.DATETIME in supported: raise ValueError("Datetime is not supported") if isinstance(kwargs['datetime'], datetime): object.datetime = kwargs['datetime'] else: #try: object.datetime = parse_datetime(kwargs['datetime']) #except: # raise ValueError("Unable to parse datetime: " + str(repr(kwargs['datetime']))) del kwargs['datetime'] elif doc and annotationtype in doc.annotationdefaults and object.set in doc.annotationdefaults[annotationtype] and 'datetime' in doc.annotationdefaults[annotationtype][object.set]: object.datetime = doc.annotationdefaults[annotationtype][object.set]['datetime'] elif Attrib.DATETIME in required: raise ValueError("Datetime is required for " + object.__class__.__name__) if 'src' in kwargs: if not Attrib.SRC in supported: raise ValueError("Source is not supported for " + object.__class__.__name__) object.src = kwargs['src'] del kwargs['src'] elif Attrib.SRC in required: raise ValueError("Source is required for " + object.__class__.__name__) if 'begintime' in kwargs: if not Attrib.BEGINTIME in supported: raise ValueError("Begintime is not supported for " + object.__class__.__name__) object.begintime = parsetime(kwargs['begintime']) del kwargs['begintime'] elif Attrib.BEGINTIME in required: raise ValueError("Begintime is required for " + object.__class__.__name__) if 'endtime' in kwargs: if not Attrib.ENDTIME in supported: raise ValueError("Endtime is not supported for " + object.__class__.__name__) object.endtime = parsetime(kwargs['endtime']) del kwargs['endtime'] elif Attrib.ENDTIME in required: raise ValueError("Endtime is required for " + object.__class__.__name__) if 'speaker' in kwargs: if not Attrib.SPEAKER in supported: raise ValueError("Speaker is not supported for " + object.__class__.__name__) object.speaker = kwargs['speaker'] del kwargs['speaker'] elif Attrib.SPEAKER in required: raise ValueError("Speaker is required for " + object.__class__.__name__) if 'auth' in kwargs: if kwargs['auth'] in ('no','false'): object.auth = False else: object.auth = bool(kwargs['auth']) del kwargs['auth'] else: object.auth = object.__class__.AUTH if 'text' in kwargs: if kwargs['text']: object.settext(kwargs['text']) del kwargs['text'] if 'phon' in kwargs: if kwargs['phon']: object.setphon(kwargs['phon']) del kwargs['phon'] if 'textclass' in kwargs: if not Attrib.TEXTCLASS in supported: raise ValueError("Textclass is not supported for " + object.__class__.__name__) object.textclass = kwargs['textclass'] del kwargs['textclass'] else: if Attrib.TEXTCLASS in supported: object.textclass = "current" if 'metadata' in kwargs: if not Attrib.METADATA in supported: raise ValueError("Metadata is not supported for " + object.__class__.__name__) object.metadata = kwargs['metadata'] if doc: try: doc.submetadata[kwargs['metadata']] except KeyError: raise KeyError("No such metadata defined: " + kwargs['metadata']) del kwargs['metadata'] if object.XLINK: if 'href' in kwargs: object.href =kwargs['href'] del kwargs['href'] if 'xlinktype' in kwargs: object.xlinktype = kwargs['xlinktype'] del kwargs['xlinktype'] if 'xlinkrole' in kwargs: object.xlinkrole = kwargs['xlinkrole'] del kwargs['xlinkrole'] if 'xlinklabel' in kwargs: object.xlinklabel = kwargs['xlinklabel'] del kwargs['xlinklabel'] if 'xlinkshow' in kwargs: object.xlinkshow = kwargs['xlinkshow'] del kwargs['xlinklabel'] if 'xlinktitle' in kwargs: object.xlinktitle = kwargs['xlinktitle'] del kwargs['xlinktitle'] if doc and doc.debug >= 2: print(" @id = ", repr(object.id),file=stderr) print(" @set = ", repr(object.set),file=stderr) print(" @class = ", repr(object.cls),file=stderr) print(" @annotator = ", repr(object.annotator),file=stderr) print(" @annotatortype= ", repr(object.annotatortype),file=stderr) print(" @confidence = ", repr(object.confidence),file=stderr) print(" @n = ", repr(object.n),file=stderr) print(" @datetime = ", repr(object.datetime),file=stderr) #set index if object.id and doc: if object.id in doc.index: if doc.debug >= 1: print("[PyNLPl FoLiA DEBUG] Duplicate ID not permitted:" + object.id,file=stderr) raise DuplicateIDError("Duplicate ID not permitted: " + object.id) else: if doc.debug >= 1: print("[PyNLPl FoLiA DEBUG] Adding to index: " + object.id,file=stderr) doc.index[object.id] = object #Parse feature attributes (shortcut for feature specification for some elements) for c in object.ACCEPTED_DATA: if issubclass(c, Feature): if c.SUBSET in kwargs: if kwargs[c.SUBSET]: object.append(c,cls=kwargs[c.SUBSET]) del kwargs[c.SUBSET] return kwargs
def setup_signals(self, ): """Connect the signals with the slots to make the ui functional :returns: None :rtype: None :raises: None """ self.browser.shot_taskfile_sel_changed.connect(self.shot_taskfile_sel_changed) self.browser.asset_taskfile_sel_changed.connect(self.asset_taskfile_sel_changed) self.shot_open_pb.clicked.connect(self.shot_open_callback) self.asset_open_pb.clicked.connect(self.asset_open_callback) self.shot_save_pb.clicked.connect(self.shot_save_callback) self.asset_save_pb.clicked.connect(self.asset_save_callback)
Connect the signals with the slots to make the ui functional :returns: None :rtype: None :raises: None
Below is the the instruction that describes the task: ### Input: Connect the signals with the slots to make the ui functional :returns: None :rtype: None :raises: None ### Response: def setup_signals(self, ): """Connect the signals with the slots to make the ui functional :returns: None :rtype: None :raises: None """ self.browser.shot_taskfile_sel_changed.connect(self.shot_taskfile_sel_changed) self.browser.asset_taskfile_sel_changed.connect(self.asset_taskfile_sel_changed) self.shot_open_pb.clicked.connect(self.shot_open_callback) self.asset_open_pb.clicked.connect(self.asset_open_callback) self.shot_save_pb.clicked.connect(self.shot_save_callback) self.asset_save_pb.clicked.connect(self.asset_save_callback)
def _arith_method_SERIES(cls, op, special): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ str_rep = _get_opstr(op, cls) op_name = _get_op_name(op, special) eval_kwargs = _gen_eval_kwargs(op_name) fill_zeros = _gen_fill_zeros(op_name) construct_result = (_construct_divmod_result if op in [divmod, rdivmod] else _construct_result) def na_op(x, y): import pandas.core.computation.expressions as expressions try: result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs) except TypeError: result = masked_arith_op(x, y, op) result = missing.fill_zeros(result, x, y, op_name, fill_zeros) return result def safe_na_op(lvalues, rvalues): """ return the result of evaluating na_op on the passed in values try coercion to object type if the native types are not compatible Parameters ---------- lvalues : array-like rvalues : array-like Raises ------ TypeError: invalid operation """ try: with np.errstate(all='ignore'): return na_op(lvalues, rvalues) except Exception: if is_object_dtype(lvalues): return libalgos.arrmap_object(lvalues, lambda x: op(x, rvalues)) raise def wrapper(left, right): if isinstance(right, ABCDataFrame): return NotImplemented left, right = _align_method_SERIES(left, right) res_name = get_op_result_name(left, right) right = maybe_upcast_for_op(right) if is_categorical_dtype(left): raise TypeError("{typ} cannot perform the operation " "{op}".format(typ=type(left).__name__, op=str_rep)) elif is_datetime64_dtype(left) or is_datetime64tz_dtype(left): # Give dispatch_to_index_op a chance for tests like # test_dt64_series_add_intlike, which the index dispatching handles # specifically. result = dispatch_to_index_op(op, left, right, pd.DatetimeIndex) return construct_result(left, result, index=left.index, name=res_name, dtype=result.dtype) elif (is_extension_array_dtype(left) or (is_extension_array_dtype(right) and not is_scalar(right))): # GH#22378 disallow scalar to exclude e.g. "category", "Int64" return dispatch_to_extension_op(op, left, right) elif is_timedelta64_dtype(left): result = dispatch_to_index_op(op, left, right, pd.TimedeltaIndex) return construct_result(left, result, index=left.index, name=res_name) elif is_timedelta64_dtype(right): # We should only get here with non-scalar or timedelta64('NaT') # values for right # Note: we cannot use dispatch_to_index_op because # that may incorrectly raise TypeError when we # should get NullFrequencyError result = op(pd.Index(left), right) return construct_result(left, result, index=left.index, name=res_name, dtype=result.dtype) lvalues = left.values rvalues = right if isinstance(rvalues, ABCSeries): rvalues = rvalues.values result = safe_na_op(lvalues, rvalues) return construct_result(left, result, index=left.index, name=res_name, dtype=None) wrapper.__name__ = op_name return wrapper
Wrapper function for Series arithmetic operations, to avoid code duplication.
Below is the the instruction that describes the task: ### Input: Wrapper function for Series arithmetic operations, to avoid code duplication. ### Response: def _arith_method_SERIES(cls, op, special): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ str_rep = _get_opstr(op, cls) op_name = _get_op_name(op, special) eval_kwargs = _gen_eval_kwargs(op_name) fill_zeros = _gen_fill_zeros(op_name) construct_result = (_construct_divmod_result if op in [divmod, rdivmod] else _construct_result) def na_op(x, y): import pandas.core.computation.expressions as expressions try: result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs) except TypeError: result = masked_arith_op(x, y, op) result = missing.fill_zeros(result, x, y, op_name, fill_zeros) return result def safe_na_op(lvalues, rvalues): """ return the result of evaluating na_op on the passed in values try coercion to object type if the native types are not compatible Parameters ---------- lvalues : array-like rvalues : array-like Raises ------ TypeError: invalid operation """ try: with np.errstate(all='ignore'): return na_op(lvalues, rvalues) except Exception: if is_object_dtype(lvalues): return libalgos.arrmap_object(lvalues, lambda x: op(x, rvalues)) raise def wrapper(left, right): if isinstance(right, ABCDataFrame): return NotImplemented left, right = _align_method_SERIES(left, right) res_name = get_op_result_name(left, right) right = maybe_upcast_for_op(right) if is_categorical_dtype(left): raise TypeError("{typ} cannot perform the operation " "{op}".format(typ=type(left).__name__, op=str_rep)) elif is_datetime64_dtype(left) or is_datetime64tz_dtype(left): # Give dispatch_to_index_op a chance for tests like # test_dt64_series_add_intlike, which the index dispatching handles # specifically. result = dispatch_to_index_op(op, left, right, pd.DatetimeIndex) return construct_result(left, result, index=left.index, name=res_name, dtype=result.dtype) elif (is_extension_array_dtype(left) or (is_extension_array_dtype(right) and not is_scalar(right))): # GH#22378 disallow scalar to exclude e.g. "category", "Int64" return dispatch_to_extension_op(op, left, right) elif is_timedelta64_dtype(left): result = dispatch_to_index_op(op, left, right, pd.TimedeltaIndex) return construct_result(left, result, index=left.index, name=res_name) elif is_timedelta64_dtype(right): # We should only get here with non-scalar or timedelta64('NaT') # values for right # Note: we cannot use dispatch_to_index_op because # that may incorrectly raise TypeError when we # should get NullFrequencyError result = op(pd.Index(left), right) return construct_result(left, result, index=left.index, name=res_name, dtype=result.dtype) lvalues = left.values rvalues = right if isinstance(rvalues, ABCSeries): rvalues = rvalues.values result = safe_na_op(lvalues, rvalues) return construct_result(left, result, index=left.index, name=res_name, dtype=None) wrapper.__name__ = op_name return wrapper
def _fill_cropping(self, image_size, view_size): """ Return a (left, top, right, bottom) 4-tuple containing the cropping values required to display an image of *image_size* in *view_size* when stretched proportionately. Each value is a percentage expressed as a fraction of 1.0, e.g. 0.425 represents 42.5%. *image_size* and *view_size* are each (width, height) pairs. """ def aspect_ratio(width, height): return width / height ar_view = aspect_ratio(*view_size) ar_image = aspect_ratio(*image_size) if ar_view < ar_image: # image too wide crop = (1.0 - (ar_view/ar_image)) / 2.0 return (crop, 0.0, crop, 0.0) if ar_view > ar_image: # image too tall crop = (1.0 - (ar_image/ar_view)) / 2.0 return (0.0, crop, 0.0, crop) return (0.0, 0.0, 0.0, 0.0)
Return a (left, top, right, bottom) 4-tuple containing the cropping values required to display an image of *image_size* in *view_size* when stretched proportionately. Each value is a percentage expressed as a fraction of 1.0, e.g. 0.425 represents 42.5%. *image_size* and *view_size* are each (width, height) pairs.
Below is the the instruction that describes the task: ### Input: Return a (left, top, right, bottom) 4-tuple containing the cropping values required to display an image of *image_size* in *view_size* when stretched proportionately. Each value is a percentage expressed as a fraction of 1.0, e.g. 0.425 represents 42.5%. *image_size* and *view_size* are each (width, height) pairs. ### Response: def _fill_cropping(self, image_size, view_size): """ Return a (left, top, right, bottom) 4-tuple containing the cropping values required to display an image of *image_size* in *view_size* when stretched proportionately. Each value is a percentage expressed as a fraction of 1.0, e.g. 0.425 represents 42.5%. *image_size* and *view_size* are each (width, height) pairs. """ def aspect_ratio(width, height): return width / height ar_view = aspect_ratio(*view_size) ar_image = aspect_ratio(*image_size) if ar_view < ar_image: # image too wide crop = (1.0 - (ar_view/ar_image)) / 2.0 return (crop, 0.0, crop, 0.0) if ar_view > ar_image: # image too tall crop = (1.0 - (ar_image/ar_view)) / 2.0 return (0.0, crop, 0.0, crop) return (0.0, 0.0, 0.0, 0.0)
def c_rho0(self, rho0): """ computes the concentration given a comoving overdensity rho0 (inverse of function rho0_c) :param rho0: density normalization in h^2/Mpc^3 (comoving) :return: concentration parameter c """ if not hasattr(self, '_c_rho0_interp'): c_array = np.linspace(0.1, 10, 100) rho0_array = self.rho0_c(c_array) from scipy import interpolate self._c_rho0_interp = interpolate.InterpolatedUnivariateSpline(rho0_array, c_array, w=None, bbox=[None, None], k=3) return self._c_rho0_interp(rho0)
computes the concentration given a comoving overdensity rho0 (inverse of function rho0_c) :param rho0: density normalization in h^2/Mpc^3 (comoving) :return: concentration parameter c
Below is the the instruction that describes the task: ### Input: computes the concentration given a comoving overdensity rho0 (inverse of function rho0_c) :param rho0: density normalization in h^2/Mpc^3 (comoving) :return: concentration parameter c ### Response: def c_rho0(self, rho0): """ computes the concentration given a comoving overdensity rho0 (inverse of function rho0_c) :param rho0: density normalization in h^2/Mpc^3 (comoving) :return: concentration parameter c """ if not hasattr(self, '_c_rho0_interp'): c_array = np.linspace(0.1, 10, 100) rho0_array = self.rho0_c(c_array) from scipy import interpolate self._c_rho0_interp = interpolate.InterpolatedUnivariateSpline(rho0_array, c_array, w=None, bbox=[None, None], k=3) return self._c_rho0_interp(rho0)
def hierarchy_name(self, adjust_for_printing=True): """ return the name for this object with the parents names attached by dots. :param bool adjust_for_printing: whether to call :func:`~adjust_for_printing()` on the names, recursively """ if adjust_for_printing: adjust = lambda x: adjust_name_for_printing(x) else: adjust = lambda x: x if self.has_parent(): return self._parent_.hierarchy_name() + "." + adjust(self.name) return adjust(self.name)
return the name for this object with the parents names attached by dots. :param bool adjust_for_printing: whether to call :func:`~adjust_for_printing()` on the names, recursively
Below is the the instruction that describes the task: ### Input: return the name for this object with the parents names attached by dots. :param bool adjust_for_printing: whether to call :func:`~adjust_for_printing()` on the names, recursively ### Response: def hierarchy_name(self, adjust_for_printing=True): """ return the name for this object with the parents names attached by dots. :param bool adjust_for_printing: whether to call :func:`~adjust_for_printing()` on the names, recursively """ if adjust_for_printing: adjust = lambda x: adjust_name_for_printing(x) else: adjust = lambda x: x if self.has_parent(): return self._parent_.hierarchy_name() + "." + adjust(self.name) return adjust(self.name)
def delete_free_shipping_coupon_by_id(cls, free_shipping_coupon_id, **kwargs): """Delete FreeShippingCoupon Delete an instance of FreeShippingCoupon by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_free_shipping_coupon_by_id(free_shipping_coupon_id, async=True) >>> result = thread.get() :param async bool :param str free_shipping_coupon_id: ID of freeShippingCoupon to delete. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._delete_free_shipping_coupon_by_id_with_http_info(free_shipping_coupon_id, **kwargs) else: (data) = cls._delete_free_shipping_coupon_by_id_with_http_info(free_shipping_coupon_id, **kwargs) return data
Delete FreeShippingCoupon Delete an instance of FreeShippingCoupon by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_free_shipping_coupon_by_id(free_shipping_coupon_id, async=True) >>> result = thread.get() :param async bool :param str free_shipping_coupon_id: ID of freeShippingCoupon to delete. (required) :return: None If the method is called asynchronously, returns the request thread.
Below is the the instruction that describes the task: ### Input: Delete FreeShippingCoupon Delete an instance of FreeShippingCoupon by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_free_shipping_coupon_by_id(free_shipping_coupon_id, async=True) >>> result = thread.get() :param async bool :param str free_shipping_coupon_id: ID of freeShippingCoupon to delete. (required) :return: None If the method is called asynchronously, returns the request thread. ### Response: def delete_free_shipping_coupon_by_id(cls, free_shipping_coupon_id, **kwargs): """Delete FreeShippingCoupon Delete an instance of FreeShippingCoupon by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_free_shipping_coupon_by_id(free_shipping_coupon_id, async=True) >>> result = thread.get() :param async bool :param str free_shipping_coupon_id: ID of freeShippingCoupon to delete. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._delete_free_shipping_coupon_by_id_with_http_info(free_shipping_coupon_id, **kwargs) else: (data) = cls._delete_free_shipping_coupon_by_id_with_http_info(free_shipping_coupon_id, **kwargs) return data
def jsName(path,name): '''Returns a name string without \, -, and . so that the string will play nicely with javascript.''' shortPath=path.replace( "C:\\Users\\scheinerbock\\Desktop\\"+ "ideogram\\scrapeSource\\test\\","") noDash = shortPath.replace("-","_dash_") jsPath=noDash.replace("\\","_slash_").replace(".","_dot_") jsName=jsPath+'_slash_'+name return jsName
Returns a name string without \, -, and . so that the string will play nicely with javascript.
Below is the the instruction that describes the task: ### Input: Returns a name string without \, -, and . so that the string will play nicely with javascript. ### Response: def jsName(path,name): '''Returns a name string without \, -, and . so that the string will play nicely with javascript.''' shortPath=path.replace( "C:\\Users\\scheinerbock\\Desktop\\"+ "ideogram\\scrapeSource\\test\\","") noDash = shortPath.replace("-","_dash_") jsPath=noDash.replace("\\","_slash_").replace(".","_dot_") jsName=jsPath+'_slash_'+name return jsName
def get_config(cls, key, default=None): """ Shortcut to access the application's config in your class :param key: The key to access :param default: The default value when None :returns mixed: """ return cls._app.config.get(key, default)
Shortcut to access the application's config in your class :param key: The key to access :param default: The default value when None :returns mixed:
Below is the the instruction that describes the task: ### Input: Shortcut to access the application's config in your class :param key: The key to access :param default: The default value when None :returns mixed: ### Response: def get_config(cls, key, default=None): """ Shortcut to access the application's config in your class :param key: The key to access :param default: The default value when None :returns mixed: """ return cls._app.config.get(key, default)
def add_done_callback(self, callback): """ Add a callback to run after the task completes. The callable must take 1 argument which will be the completed Task. :param callback: a callable that takes a single argument which will be the completed Task. """ if self._done is None or self._done.is_set(): raise ValueError('Task has already finished') if callable(callback): self.callbacks.append(callback)
Add a callback to run after the task completes. The callable must take 1 argument which will be the completed Task. :param callback: a callable that takes a single argument which will be the completed Task.
Below is the the instruction that describes the task: ### Input: Add a callback to run after the task completes. The callable must take 1 argument which will be the completed Task. :param callback: a callable that takes a single argument which will be the completed Task. ### Response: def add_done_callback(self, callback): """ Add a callback to run after the task completes. The callable must take 1 argument which will be the completed Task. :param callback: a callable that takes a single argument which will be the completed Task. """ if self._done is None or self._done.is_set(): raise ValueError('Task has already finished') if callable(callback): self.callbacks.append(callback)
async def from_href(self): """Get the full object from spotify with a `href` attribute.""" if not hasattr(self, 'href'): raise TypeError('Spotify object has no `href` attribute, therefore cannot be retrived') elif hasattr(self, 'http'): return await self.http.request(('GET', self.href)) else: cls = type(self) try: client = getattr(self, '_{0}__client'.format(cls.__name__)) except AttributeError: raise TypeError('Spotify object has no way to access a HTTPClient.') else: http = client.http data = await http.request(('GET', self.href)) return cls(client, data)
Get the full object from spotify with a `href` attribute.
Below is the the instruction that describes the task: ### Input: Get the full object from spotify with a `href` attribute. ### Response: async def from_href(self): """Get the full object from spotify with a `href` attribute.""" if not hasattr(self, 'href'): raise TypeError('Spotify object has no `href` attribute, therefore cannot be retrived') elif hasattr(self, 'http'): return await self.http.request(('GET', self.href)) else: cls = type(self) try: client = getattr(self, '_{0}__client'.format(cls.__name__)) except AttributeError: raise TypeError('Spotify object has no way to access a HTTPClient.') else: http = client.http data = await http.request(('GET', self.href)) return cls(client, data)
def get_version(self, version_id=None): """Return specific version ``ObjectVersion`` instance or HEAD. :param version_id: Version ID of the object. :returns: :class:`~invenio_files_rest.models.ObjectVersion` instance or HEAD of the stored object. """ return ObjectVersion.get(bucket=self.obj.bucket, key=self.obj.key, version_id=version_id)
Return specific version ``ObjectVersion`` instance or HEAD. :param version_id: Version ID of the object. :returns: :class:`~invenio_files_rest.models.ObjectVersion` instance or HEAD of the stored object.
Below is the the instruction that describes the task: ### Input: Return specific version ``ObjectVersion`` instance or HEAD. :param version_id: Version ID of the object. :returns: :class:`~invenio_files_rest.models.ObjectVersion` instance or HEAD of the stored object. ### Response: def get_version(self, version_id=None): """Return specific version ``ObjectVersion`` instance or HEAD. :param version_id: Version ID of the object. :returns: :class:`~invenio_files_rest.models.ObjectVersion` instance or HEAD of the stored object. """ return ObjectVersion.get(bucket=self.obj.bucket, key=self.obj.key, version_id=version_id)
def alter_targets(self): """Return any corresponding targets in a variant directory. """ if self.is_derived(): return [], None return self.fs.variant_dir_target_climb(self, self.dir, [self.name])
Return any corresponding targets in a variant directory.
Below is the the instruction that describes the task: ### Input: Return any corresponding targets in a variant directory. ### Response: def alter_targets(self): """Return any corresponding targets in a variant directory. """ if self.is_derived(): return [], None return self.fs.variant_dir_target_climb(self, self.dir, [self.name])
def showDescription( self ): """ Shows the description for the current plugin in the interface. """ plugin = self.currentPlugin() if ( not plugin ): self.uiDescriptionTXT.setText('') else: self.uiDescriptionTXT.setText(plugin.description())
Shows the description for the current plugin in the interface.
Below is the the instruction that describes the task: ### Input: Shows the description for the current plugin in the interface. ### Response: def showDescription( self ): """ Shows the description for the current plugin in the interface. """ plugin = self.currentPlugin() if ( not plugin ): self.uiDescriptionTXT.setText('') else: self.uiDescriptionTXT.setText(plugin.description())
def show_hist(self, props=[], bins=20, **kwargs): r""" Show a quick plot of key property distributions. Parameters ---------- props : string or list of strings The pore and/or throat properties to be plotted as histograms bins : int or array_like The number of bins to use when generating the histogram. If an array is given they are used as the bin spacing instead. Notes ----- Other keyword arguments are passed to the ``matplotlib.pyplot.hist`` function. """ if type(props) is str: props = [props] N = len(props) if N == 1: r = 1 c = 1 elif N < 4: r = 1 c = N else: r = int(sp.ceil(N**0.5)) c = int(sp.floor(N**0.5)) for i in range(len(props)): plt.subplot(r, c, i+1) plt.hist(self[props[i]], bins=bins, **kwargs)
r""" Show a quick plot of key property distributions. Parameters ---------- props : string or list of strings The pore and/or throat properties to be plotted as histograms bins : int or array_like The number of bins to use when generating the histogram. If an array is given they are used as the bin spacing instead. Notes ----- Other keyword arguments are passed to the ``matplotlib.pyplot.hist`` function.
Below is the the instruction that describes the task: ### Input: r""" Show a quick plot of key property distributions. Parameters ---------- props : string or list of strings The pore and/or throat properties to be plotted as histograms bins : int or array_like The number of bins to use when generating the histogram. If an array is given they are used as the bin spacing instead. Notes ----- Other keyword arguments are passed to the ``matplotlib.pyplot.hist`` function. ### Response: def show_hist(self, props=[], bins=20, **kwargs): r""" Show a quick plot of key property distributions. Parameters ---------- props : string or list of strings The pore and/or throat properties to be plotted as histograms bins : int or array_like The number of bins to use when generating the histogram. If an array is given they are used as the bin spacing instead. Notes ----- Other keyword arguments are passed to the ``matplotlib.pyplot.hist`` function. """ if type(props) is str: props = [props] N = len(props) if N == 1: r = 1 c = 1 elif N < 4: r = 1 c = N else: r = int(sp.ceil(N**0.5)) c = int(sp.floor(N**0.5)) for i in range(len(props)): plt.subplot(r, c, i+1) plt.hist(self[props[i]], bins=bins, **kwargs)
def fetch_more(self, rows=False, columns=False): """Get more columns or rows (based on axis).""" if self.axis == 1 and self.total_rows > self.rows_loaded: reminder = self.total_rows - self.rows_loaded items_to_fetch = min(reminder, ROWS_TO_LOAD) self.beginInsertRows(QModelIndex(), self.rows_loaded, self.rows_loaded + items_to_fetch - 1) self.rows_loaded += items_to_fetch self.endInsertRows() if self.axis == 0 and self.total_cols > self.cols_loaded: reminder = self.total_cols - self.cols_loaded items_to_fetch = min(reminder, COLS_TO_LOAD) self.beginInsertColumns(QModelIndex(), self.cols_loaded, self.cols_loaded + items_to_fetch - 1) self.cols_loaded += items_to_fetch self.endInsertColumns()
Get more columns or rows (based on axis).
Below is the the instruction that describes the task: ### Input: Get more columns or rows (based on axis). ### Response: def fetch_more(self, rows=False, columns=False): """Get more columns or rows (based on axis).""" if self.axis == 1 and self.total_rows > self.rows_loaded: reminder = self.total_rows - self.rows_loaded items_to_fetch = min(reminder, ROWS_TO_LOAD) self.beginInsertRows(QModelIndex(), self.rows_loaded, self.rows_loaded + items_to_fetch - 1) self.rows_loaded += items_to_fetch self.endInsertRows() if self.axis == 0 and self.total_cols > self.cols_loaded: reminder = self.total_cols - self.cols_loaded items_to_fetch = min(reminder, COLS_TO_LOAD) self.beginInsertColumns(QModelIndex(), self.cols_loaded, self.cols_loaded + items_to_fetch - 1) self.cols_loaded += items_to_fetch self.endInsertColumns()
def boolean(value): """ Configuration-friendly boolean type converter. Supports both boolean-valued and string-valued inputs (e.g. from env vars). """ if isinstance(value, bool): return value if value == "": return False return strtobool(value)
Configuration-friendly boolean type converter. Supports both boolean-valued and string-valued inputs (e.g. from env vars).
Below is the the instruction that describes the task: ### Input: Configuration-friendly boolean type converter. Supports both boolean-valued and string-valued inputs (e.g. from env vars). ### Response: def boolean(value): """ Configuration-friendly boolean type converter. Supports both boolean-valued and string-valued inputs (e.g. from env vars). """ if isinstance(value, bool): return value if value == "": return False return strtobool(value)
def base64ToImage(imgData, out_path, out_file): """ converts a base64 string to a file """ fh = open(os.path.join(out_path, out_file), "wb") fh.write(imgData.decode('base64')) fh.close() del fh return os.path.join(out_path, out_file)
converts a base64 string to a file
Below is the the instruction that describes the task: ### Input: converts a base64 string to a file ### Response: def base64ToImage(imgData, out_path, out_file): """ converts a base64 string to a file """ fh = open(os.path.join(out_path, out_file), "wb") fh.write(imgData.decode('base64')) fh.close() del fh return os.path.join(out_path, out_file)
def convertDate(date): """Convert DATE string into a decimal year.""" d, t = date.split('T') return decimal_date(d, timeobs=t)
Convert DATE string into a decimal year.
Below is the the instruction that describes the task: ### Input: Convert DATE string into a decimal year. ### Response: def convertDate(date): """Convert DATE string into a decimal year.""" d, t = date.split('T') return decimal_date(d, timeobs=t)
def settingsAsFacts(self, settings): """ Parses a string of settings. :param setting: String of settings in the form: ``set(name1, val1), set(name2, val2)...`` """ pattern = re.compile('set\(([a-zA-Z0-9_]+),(\[a-zA-Z0-9_]+)\)') pairs = pattern.findall(settings) for name, val in pairs: self.set(name, val)
Parses a string of settings. :param setting: String of settings in the form: ``set(name1, val1), set(name2, val2)...``
Below is the the instruction that describes the task: ### Input: Parses a string of settings. :param setting: String of settings in the form: ``set(name1, val1), set(name2, val2)...`` ### Response: def settingsAsFacts(self, settings): """ Parses a string of settings. :param setting: String of settings in the form: ``set(name1, val1), set(name2, val2)...`` """ pattern = re.compile('set\(([a-zA-Z0-9_]+),(\[a-zA-Z0-9_]+)\)') pairs = pattern.findall(settings) for name, val in pairs: self.set(name, val)
def scalar(self, tag, value, step=None): """Saves scalar value. Args: tag: str: label for this data value: int/float: number to log step: int: training step """ value = float(onp.array(value)) if step is None: step = self._step else: self._step = step summary = Summary(value=[Summary.Value(tag=tag, simple_value=value)]) self.add_summary(summary, step)
Saves scalar value. Args: tag: str: label for this data value: int/float: number to log step: int: training step
Below is the the instruction that describes the task: ### Input: Saves scalar value. Args: tag: str: label for this data value: int/float: number to log step: int: training step ### Response: def scalar(self, tag, value, step=None): """Saves scalar value. Args: tag: str: label for this data value: int/float: number to log step: int: training step """ value = float(onp.array(value)) if step is None: step = self._step else: self._step = step summary = Summary(value=[Summary.Value(tag=tag, simple_value=value)]) self.add_summary(summary, step)
def StoreStat(self, responses): """Stores stat entry in the flow's state.""" index = responses.request_data["index"] if not responses.success: self.Log("Failed to stat file: %s", responses.status) # Report failure. self._FileFetchFailed(index, responses.request_data["request_name"]) return tracker = self.state.pending_hashes[index] tracker["stat_entry"] = responses.First()
Stores stat entry in the flow's state.
Below is the the instruction that describes the task: ### Input: Stores stat entry in the flow's state. ### Response: def StoreStat(self, responses): """Stores stat entry in the flow's state.""" index = responses.request_data["index"] if not responses.success: self.Log("Failed to stat file: %s", responses.status) # Report failure. self._FileFetchFailed(index, responses.request_data["request_name"]) return tracker = self.state.pending_hashes[index] tracker["stat_entry"] = responses.First()
def config_default(option, default=None, type=None, section=cli.name): """Guesses a default value of a CLI option from the configuration. :: @click.option('--locale', default=config_default('locale')) """ def f(option=option, default=default, type=type, section=section): config = read_config() if type is None and default is not None: # detect type from default. type = builtins.type(default) get_option = option_getter(type) try: return get_option(config, section, option) except (NoOptionError, NoSectionError): return default return f
Guesses a default value of a CLI option from the configuration. :: @click.option('--locale', default=config_default('locale'))
Below is the the instruction that describes the task: ### Input: Guesses a default value of a CLI option from the configuration. :: @click.option('--locale', default=config_default('locale')) ### Response: def config_default(option, default=None, type=None, section=cli.name): """Guesses a default value of a CLI option from the configuration. :: @click.option('--locale', default=config_default('locale')) """ def f(option=option, default=default, type=type, section=section): config = read_config() if type is None and default is not None: # detect type from default. type = builtins.type(default) get_option = option_getter(type) try: return get_option(config, section, option) except (NoOptionError, NoSectionError): return default return f
def spherical(cls, mag, theta, phi=0): '''Returns a Vector instance from spherical coordinates''' return cls( mag * math.sin(phi) * math.cos(theta), # X mag * math.sin(phi) * math.sin(theta), # Y mag * math.cos(phi) # Z )
Returns a Vector instance from spherical coordinates
Below is the the instruction that describes the task: ### Input: Returns a Vector instance from spherical coordinates ### Response: def spherical(cls, mag, theta, phi=0): '''Returns a Vector instance from spherical coordinates''' return cls( mag * math.sin(phi) * math.cos(theta), # X mag * math.sin(phi) * math.sin(theta), # Y mag * math.cos(phi) # Z )
def GetAttributes(self, urns, age=NEWEST_TIME): """Retrieves all the attributes for all the urns.""" urns = set([utils.SmartUnicode(u) for u in urns]) to_read = {urn: self._MakeCacheInvariant(urn, age) for urn in urns} # Urns not present in the cache we need to get from the database. if to_read: for subject, values in data_store.DB.MultiResolvePrefix( to_read, AFF4_PREFIXES, timestamp=self.ParseAgeSpecification(age), limit=None): # Ensure the values are sorted. values.sort(key=lambda x: x[-1], reverse=True) yield utils.SmartUnicode(subject), values
Retrieves all the attributes for all the urns.
Below is the the instruction that describes the task: ### Input: Retrieves all the attributes for all the urns. ### Response: def GetAttributes(self, urns, age=NEWEST_TIME): """Retrieves all the attributes for all the urns.""" urns = set([utils.SmartUnicode(u) for u in urns]) to_read = {urn: self._MakeCacheInvariant(urn, age) for urn in urns} # Urns not present in the cache we need to get from the database. if to_read: for subject, values in data_store.DB.MultiResolvePrefix( to_read, AFF4_PREFIXES, timestamp=self.ParseAgeSpecification(age), limit=None): # Ensure the values are sorted. values.sort(key=lambda x: x[-1], reverse=True) yield utils.SmartUnicode(subject), values
def mimebundle_to_html(bundle): """ Converts a MIME bundle into HTML. """ if isinstance(bundle, tuple): data, metadata = bundle else: data = bundle html = data.get('text/html', '') if 'application/javascript' in data: js = data['application/javascript'] html += '\n<script type="application/javascript">{js}</script>'.format(js=js) return html
Converts a MIME bundle into HTML.
Below is the the instruction that describes the task: ### Input: Converts a MIME bundle into HTML. ### Response: def mimebundle_to_html(bundle): """ Converts a MIME bundle into HTML. """ if isinstance(bundle, tuple): data, metadata = bundle else: data = bundle html = data.get('text/html', '') if 'application/javascript' in data: js = data['application/javascript'] html += '\n<script type="application/javascript">{js}</script>'.format(js=js) return html
def save(self, p_todolist): """ Saves a tuple with archive, todolist and command with its arguments into the backup file with unix timestamp as the key. Tuple is then indexed in backup file with combination of hash calculated from p_todolist and unix timestamp. Backup file is closed afterwards. """ self._trim() current_hash = hash_todolist(p_todolist) list_todo = (self.todolist.print_todos()+'\n').splitlines(True) try: list_archive = (self.archive.print_todos()+'\n').splitlines(True) except AttributeError: list_archive = [] self.backup_dict[self.timestamp] = (list_todo, list_archive, self.label) index = self._get_index() index.insert(0, (self.timestamp, current_hash)) self._save_index(index) self._write() self.close()
Saves a tuple with archive, todolist and command with its arguments into the backup file with unix timestamp as the key. Tuple is then indexed in backup file with combination of hash calculated from p_todolist and unix timestamp. Backup file is closed afterwards.
Below is the the instruction that describes the task: ### Input: Saves a tuple with archive, todolist and command with its arguments into the backup file with unix timestamp as the key. Tuple is then indexed in backup file with combination of hash calculated from p_todolist and unix timestamp. Backup file is closed afterwards. ### Response: def save(self, p_todolist): """ Saves a tuple with archive, todolist and command with its arguments into the backup file with unix timestamp as the key. Tuple is then indexed in backup file with combination of hash calculated from p_todolist and unix timestamp. Backup file is closed afterwards. """ self._trim() current_hash = hash_todolist(p_todolist) list_todo = (self.todolist.print_todos()+'\n').splitlines(True) try: list_archive = (self.archive.print_todos()+'\n').splitlines(True) except AttributeError: list_archive = [] self.backup_dict[self.timestamp] = (list_todo, list_archive, self.label) index = self._get_index() index.insert(0, (self.timestamp, current_hash)) self._save_index(index) self._write() self.close()
def add_path(self, w, h): """Return a newly created `a:path` child element.""" path = self._add_path() path.w, path.h = w, h return path
Return a newly created `a:path` child element.
Below is the the instruction that describes the task: ### Input: Return a newly created `a:path` child element. ### Response: def add_path(self, w, h): """Return a newly created `a:path` child element.""" path = self._add_path() path.w, path.h = w, h return path
def instruction_PUL(self, opcode, m, register): """ All, some, or none of the processor registers are pulled from stack (with the exception of stack pointer itself). A single register may be pulled from the stack with condition codes set by doing an autoincrement load from the stack (example: LDX ,S++). source code forms: b7 b6 b5 b4 b3 b2 b1 b0 PC U Y X DP B A CC = pull order CC bits "HNZVC": ccccc """ assert register in (self.system_stack_pointer, self.user_stack_pointer) def pull(register_str, stack_pointer): reg_obj = self.register_str2object[register_str] reg_width = reg_obj.WIDTH # 8 / 16 if reg_width == 8: data = self.pull_byte(stack_pointer) else: assert reg_width == 16 data = self.pull_word(stack_pointer) reg_obj.set(data) # log.debug("$%x PUL%s:", self.program_counter, register.name) # m = postbyte if m & 0x01: pull(REG_CC, register) # 8 bit condition code register if m & 0x02: pull(REG_A, register) # 8 bit accumulator if m & 0x04: pull(REG_B, register) # 8 bit accumulator if m & 0x08: pull(REG_DP, register) # 8 bit direct page register if m & 0x10: pull(REG_X, register) # 16 bit index register if m & 0x20: pull(REG_Y, register) # 16 bit index register if m & 0x40: pull(REG_U, register) # 16 bit user-stack pointer if m & 0x80: pull(REG_PC, register)
All, some, or none of the processor registers are pulled from stack (with the exception of stack pointer itself). A single register may be pulled from the stack with condition codes set by doing an autoincrement load from the stack (example: LDX ,S++). source code forms: b7 b6 b5 b4 b3 b2 b1 b0 PC U Y X DP B A CC = pull order CC bits "HNZVC": ccccc
Below is the the instruction that describes the task: ### Input: All, some, or none of the processor registers are pulled from stack (with the exception of stack pointer itself). A single register may be pulled from the stack with condition codes set by doing an autoincrement load from the stack (example: LDX ,S++). source code forms: b7 b6 b5 b4 b3 b2 b1 b0 PC U Y X DP B A CC = pull order CC bits "HNZVC": ccccc ### Response: def instruction_PUL(self, opcode, m, register): """ All, some, or none of the processor registers are pulled from stack (with the exception of stack pointer itself). A single register may be pulled from the stack with condition codes set by doing an autoincrement load from the stack (example: LDX ,S++). source code forms: b7 b6 b5 b4 b3 b2 b1 b0 PC U Y X DP B A CC = pull order CC bits "HNZVC": ccccc """ assert register in (self.system_stack_pointer, self.user_stack_pointer) def pull(register_str, stack_pointer): reg_obj = self.register_str2object[register_str] reg_width = reg_obj.WIDTH # 8 / 16 if reg_width == 8: data = self.pull_byte(stack_pointer) else: assert reg_width == 16 data = self.pull_word(stack_pointer) reg_obj.set(data) # log.debug("$%x PUL%s:", self.program_counter, register.name) # m = postbyte if m & 0x01: pull(REG_CC, register) # 8 bit condition code register if m & 0x02: pull(REG_A, register) # 8 bit accumulator if m & 0x04: pull(REG_B, register) # 8 bit accumulator if m & 0x08: pull(REG_DP, register) # 8 bit direct page register if m & 0x10: pull(REG_X, register) # 16 bit index register if m & 0x20: pull(REG_Y, register) # 16 bit index register if m & 0x40: pull(REG_U, register) # 16 bit user-stack pointer if m & 0x80: pull(REG_PC, register)
def addfield(self, pkt, s, val): # type: (Optional[packet.Packet], Union[str, Tuple[str, int, int]], int) -> str # noqa: E501 """ An AbstractUVarIntField prefix always consumes the remaining bits of a BitField;if no current BitField is in use (no tuple in entry) then the prefix length is 8 bits and the whole byte is to be consumed @param packet.Packet|None pkt: the packet containing this field. Probably unused. # noqa: E501 @param str|(str, int, long) s: the string to append this field to. A tuple indicates that some bits were already # noqa: E501 generated by another bitfield-compatible field. This MUST be the case if "size" is not 8. The int is the # noqa: E501 number of bits already generated in the first byte of the str. The long is the value that was generated by the # noqa: E501 previous bitfield-compatible fields. @param int val: the positive or null value to be added. @return str: s concatenated with the machine representation of this field. # noqa: E501 @raise AssertionError """ assert(val >= 0) if isinstance(s, bytes): assert self.size == 8, 'EINVAL: s: tuple expected when prefix_len is not a full byte' # noqa: E501 return s + self.i2m(pkt, val) # s is a tuple # assert(s[1] >= 0) # assert(s[2] >= 0) # assert (8 - s[1]) == self.size, 'EINVAL: s: not enough bits remaining in current byte to read the prefix' # noqa: E501 if val >= self._max_value: return s[0] + chb((s[2] << self.size) + self._max_value) + self.i2m(pkt, val)[1:] # noqa: E501 # This AbstractUVarIntField is only one byte long; setting the prefix value # noqa: E501 # and appending the resulting byte to the string return s[0] + chb((s[2] << self.size) + orb(self.i2m(pkt, val)))
An AbstractUVarIntField prefix always consumes the remaining bits of a BitField;if no current BitField is in use (no tuple in entry) then the prefix length is 8 bits and the whole byte is to be consumed @param packet.Packet|None pkt: the packet containing this field. Probably unused. # noqa: E501 @param str|(str, int, long) s: the string to append this field to. A tuple indicates that some bits were already # noqa: E501 generated by another bitfield-compatible field. This MUST be the case if "size" is not 8. The int is the # noqa: E501 number of bits already generated in the first byte of the str. The long is the value that was generated by the # noqa: E501 previous bitfield-compatible fields. @param int val: the positive or null value to be added. @return str: s concatenated with the machine representation of this field. # noqa: E501 @raise AssertionError
Below is the the instruction that describes the task: ### Input: An AbstractUVarIntField prefix always consumes the remaining bits of a BitField;if no current BitField is in use (no tuple in entry) then the prefix length is 8 bits and the whole byte is to be consumed @param packet.Packet|None pkt: the packet containing this field. Probably unused. # noqa: E501 @param str|(str, int, long) s: the string to append this field to. A tuple indicates that some bits were already # noqa: E501 generated by another bitfield-compatible field. This MUST be the case if "size" is not 8. The int is the # noqa: E501 number of bits already generated in the first byte of the str. The long is the value that was generated by the # noqa: E501 previous bitfield-compatible fields. @param int val: the positive or null value to be added. @return str: s concatenated with the machine representation of this field. # noqa: E501 @raise AssertionError ### Response: def addfield(self, pkt, s, val): # type: (Optional[packet.Packet], Union[str, Tuple[str, int, int]], int) -> str # noqa: E501 """ An AbstractUVarIntField prefix always consumes the remaining bits of a BitField;if no current BitField is in use (no tuple in entry) then the prefix length is 8 bits and the whole byte is to be consumed @param packet.Packet|None pkt: the packet containing this field. Probably unused. # noqa: E501 @param str|(str, int, long) s: the string to append this field to. A tuple indicates that some bits were already # noqa: E501 generated by another bitfield-compatible field. This MUST be the case if "size" is not 8. The int is the # noqa: E501 number of bits already generated in the first byte of the str. The long is the value that was generated by the # noqa: E501 previous bitfield-compatible fields. @param int val: the positive or null value to be added. @return str: s concatenated with the machine representation of this field. # noqa: E501 @raise AssertionError """ assert(val >= 0) if isinstance(s, bytes): assert self.size == 8, 'EINVAL: s: tuple expected when prefix_len is not a full byte' # noqa: E501 return s + self.i2m(pkt, val) # s is a tuple # assert(s[1] >= 0) # assert(s[2] >= 0) # assert (8 - s[1]) == self.size, 'EINVAL: s: not enough bits remaining in current byte to read the prefix' # noqa: E501 if val >= self._max_value: return s[0] + chb((s[2] << self.size) + self._max_value) + self.i2m(pkt, val)[1:] # noqa: E501 # This AbstractUVarIntField is only one byte long; setting the prefix value # noqa: E501 # and appending the resulting byte to the string return s[0] + chb((s[2] << self.size) + orb(self.i2m(pkt, val)))
def volume_list(search_opts=None, profile=None, **kwargs): ''' List storage volumes search_opts Dictionary of search options profile Profile to use CLI Example: .. code-block:: bash salt '*' nova.volume_list search_opts='{"display_name": "myblock"}' profile=openstack ''' conn = _auth(profile, **kwargs) return conn.volume_list(search_opts=search_opts)
List storage volumes search_opts Dictionary of search options profile Profile to use CLI Example: .. code-block:: bash salt '*' nova.volume_list search_opts='{"display_name": "myblock"}' profile=openstack
Below is the the instruction that describes the task: ### Input: List storage volumes search_opts Dictionary of search options profile Profile to use CLI Example: .. code-block:: bash salt '*' nova.volume_list search_opts='{"display_name": "myblock"}' profile=openstack ### Response: def volume_list(search_opts=None, profile=None, **kwargs): ''' List storage volumes search_opts Dictionary of search options profile Profile to use CLI Example: .. code-block:: bash salt '*' nova.volume_list search_opts='{"display_name": "myblock"}' profile=openstack ''' conn = _auth(profile, **kwargs) return conn.volume_list(search_opts=search_opts)
def expand_dates(df, columns=[]): """ generate year, month, day features from specified date features """ columns = df.columns.intersection(columns) df2 = df.reindex(columns=set(df.columns).difference(columns)) for column in columns: df2[column + '_year'] = df[column].apply(lambda x: x.year) df2[column + '_month'] = df[column].apply(lambda x: x.month) df2[column + '_day'] = df[column].apply(lambda x: x.day) return df2
generate year, month, day features from specified date features
Below is the the instruction that describes the task: ### Input: generate year, month, day features from specified date features ### Response: def expand_dates(df, columns=[]): """ generate year, month, day features from specified date features """ columns = df.columns.intersection(columns) df2 = df.reindex(columns=set(df.columns).difference(columns)) for column in columns: df2[column + '_year'] = df[column].apply(lambda x: x.year) df2[column + '_month'] = df[column].apply(lambda x: x.month) df2[column + '_day'] = df[column].apply(lambda x: x.day) return df2
def healpixMap(nside, lon, lat, fill_value=0., nest=False): """ Input (lon, lat) in degrees instead of (theta, phi) in radians. Returns HEALPix map at the desired resolution """ lon_median, lat_median = np.median(lon), np.median(lat) max_angsep = np.max(ugali.utils.projector.angsep(lon, lat, lon_median, lat_median)) pix = angToPix(nside, lon, lat, nest=nest) if max_angsep < 10: # More efficient histograming for small regions of sky m = np.tile(fill_value, healpy.nside2npix(nside)) pix_subset = ugali.utils.healpix.angToDisc(nside, lon_median, lat_median, max_angsep, nest=nest) bins = np.arange(np.min(pix_subset), np.max(pix_subset) + 1) m_subset = np.histogram(pix, bins=bins - 0.5)[0].astype(float) m[bins[0:-1]] = m_subset else: m = np.histogram(pix, np.arange(hp.nside2npix(nside) + 1))[0].astype(float) if fill_value != 0.: m[m == 0.] = fill_value return m
Input (lon, lat) in degrees instead of (theta, phi) in radians. Returns HEALPix map at the desired resolution
Below is the the instruction that describes the task: ### Input: Input (lon, lat) in degrees instead of (theta, phi) in radians. Returns HEALPix map at the desired resolution ### Response: def healpixMap(nside, lon, lat, fill_value=0., nest=False): """ Input (lon, lat) in degrees instead of (theta, phi) in radians. Returns HEALPix map at the desired resolution """ lon_median, lat_median = np.median(lon), np.median(lat) max_angsep = np.max(ugali.utils.projector.angsep(lon, lat, lon_median, lat_median)) pix = angToPix(nside, lon, lat, nest=nest) if max_angsep < 10: # More efficient histograming for small regions of sky m = np.tile(fill_value, healpy.nside2npix(nside)) pix_subset = ugali.utils.healpix.angToDisc(nside, lon_median, lat_median, max_angsep, nest=nest) bins = np.arange(np.min(pix_subset), np.max(pix_subset) + 1) m_subset = np.histogram(pix, bins=bins - 0.5)[0].astype(float) m[bins[0:-1]] = m_subset else: m = np.histogram(pix, np.arange(hp.nside2npix(nside) + 1))[0].astype(float) if fill_value != 0.: m[m == 0.] = fill_value return m
def getPermanence(self, columnIndex, permanence): """ Returns the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to get permanence for. :param permanence: (list) will be overwritten with permanences. """ assert(columnIndex < self._numColumns) permanence[:] = self._permanences[columnIndex]
Returns the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to get permanence for. :param permanence: (list) will be overwritten with permanences.
Below is the the instruction that describes the task: ### Input: Returns the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to get permanence for. :param permanence: (list) will be overwritten with permanences. ### Response: def getPermanence(self, columnIndex, permanence): """ Returns the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to get permanence for. :param permanence: (list) will be overwritten with permanences. """ assert(columnIndex < self._numColumns) permanence[:] = self._permanences[columnIndex]
def getName(obj): """This method finds the first parent class which is within the buildbot namespace it prepends the name with as many ">" as the class is subclassed """ # elastic search does not like '.' in dict keys, so we replace by / def sanitize(name): return name.replace(".", "/") if isinstance(obj, _BuildStepFactory): klass = obj.factory else: klass = type(obj) name = "" klasses = (klass, ) + inspect.getmro(klass) for klass in klasses: if hasattr(klass, "__module__") and klass.__module__.startswith("buildbot."): return sanitize(name + klass.__module__ + "." + klass.__name__) else: name += ">" return sanitize(type(obj).__name__)
This method finds the first parent class which is within the buildbot namespace it prepends the name with as many ">" as the class is subclassed
Below is the the instruction that describes the task: ### Input: This method finds the first parent class which is within the buildbot namespace it prepends the name with as many ">" as the class is subclassed ### Response: def getName(obj): """This method finds the first parent class which is within the buildbot namespace it prepends the name with as many ">" as the class is subclassed """ # elastic search does not like '.' in dict keys, so we replace by / def sanitize(name): return name.replace(".", "/") if isinstance(obj, _BuildStepFactory): klass = obj.factory else: klass = type(obj) name = "" klasses = (klass, ) + inspect.getmro(klass) for klass in klasses: if hasattr(klass, "__module__") and klass.__module__.startswith("buildbot."): return sanitize(name + klass.__module__ + "." + klass.__name__) else: name += ">" return sanitize(type(obj).__name__)
def run(self, cmd, *args, **kwargs): """Run a command.""" runner = self.ctx.run if self.ctx else None return run(cmd, runner=runner, *args, **kwargs)
Run a command.
Below is the the instruction that describes the task: ### Input: Run a command. ### Response: def run(self, cmd, *args, **kwargs): """Run a command.""" runner = self.ctx.run if self.ctx else None return run(cmd, runner=runner, *args, **kwargs)
def eccentricity(self, **kw): r""" Returns the eccentricity computed from the mean apocenter and mean pericenter. .. math:: e = \frac{r_{\rm apo} - r_{\rm per}}{r_{\rm apo} + r_{\rm per}} Parameters ---------- **kw Any keyword arguments passed to ``apocenter()`` and ``pericenter()``. For example, ``approximate=True``. Returns ------- ecc : float The orbital eccentricity. """ ra = self.apocenter(**kw) rp = self.pericenter(**kw) return (ra - rp) / (ra + rp)
r""" Returns the eccentricity computed from the mean apocenter and mean pericenter. .. math:: e = \frac{r_{\rm apo} - r_{\rm per}}{r_{\rm apo} + r_{\rm per}} Parameters ---------- **kw Any keyword arguments passed to ``apocenter()`` and ``pericenter()``. For example, ``approximate=True``. Returns ------- ecc : float The orbital eccentricity.
Below is the the instruction that describes the task: ### Input: r""" Returns the eccentricity computed from the mean apocenter and mean pericenter. .. math:: e = \frac{r_{\rm apo} - r_{\rm per}}{r_{\rm apo} + r_{\rm per}} Parameters ---------- **kw Any keyword arguments passed to ``apocenter()`` and ``pericenter()``. For example, ``approximate=True``. Returns ------- ecc : float The orbital eccentricity. ### Response: def eccentricity(self, **kw): r""" Returns the eccentricity computed from the mean apocenter and mean pericenter. .. math:: e = \frac{r_{\rm apo} - r_{\rm per}}{r_{\rm apo} + r_{\rm per}} Parameters ---------- **kw Any keyword arguments passed to ``apocenter()`` and ``pericenter()``. For example, ``approximate=True``. Returns ------- ecc : float The orbital eccentricity. """ ra = self.apocenter(**kw) rp = self.pericenter(**kw) return (ra - rp) / (ra + rp)
def set_title(self, title=None): """ Sets the editor title. :param title: Editor title. :type title: unicode :return: Method success. :rtype: bool """ if not title: # TODO: https://bugreports.qt-project.org/browse/QTBUG-27084 # titleTemplate = self.is_modified() and "{0} *" or "{0}" # title = titleTemplate.format(self.get_file_short_name()) title = self.get_file_short_name() LOGGER.debug("> Setting editor title to '{0}'.".format(title)) self.__title = title self.setWindowTitle(title) self.title_changed.emit() return True
Sets the editor title. :param title: Editor title. :type title: unicode :return: Method success. :rtype: bool
Below is the the instruction that describes the task: ### Input: Sets the editor title. :param title: Editor title. :type title: unicode :return: Method success. :rtype: bool ### Response: def set_title(self, title=None): """ Sets the editor title. :param title: Editor title. :type title: unicode :return: Method success. :rtype: bool """ if not title: # TODO: https://bugreports.qt-project.org/browse/QTBUG-27084 # titleTemplate = self.is_modified() and "{0} *" or "{0}" # title = titleTemplate.format(self.get_file_short_name()) title = self.get_file_short_name() LOGGER.debug("> Setting editor title to '{0}'.".format(title)) self.__title = title self.setWindowTitle(title) self.title_changed.emit() return True
def map(func): """Apply function to each value inside the sequence or dict. Supports both dicts and sequences, key/value pairs are expanded when applied to a dict. """ # text is an alias for basestring on Python 2, which cannot be # instantiated and therefore can't be used to transform the value, # so we force to unicode instead. if is_py2 and text == func: func = unicode def expand_kv(kv): return func(*kv) def map_values(value): cls = type(value) if isinstance(value, dict): return cls(_map(expand_kv, value.items())) else: return cls(_map(func, value)) return transform(map_values)
Apply function to each value inside the sequence or dict. Supports both dicts and sequences, key/value pairs are expanded when applied to a dict.
Below is the the instruction that describes the task: ### Input: Apply function to each value inside the sequence or dict. Supports both dicts and sequences, key/value pairs are expanded when applied to a dict. ### Response: def map(func): """Apply function to each value inside the sequence or dict. Supports both dicts and sequences, key/value pairs are expanded when applied to a dict. """ # text is an alias for basestring on Python 2, which cannot be # instantiated and therefore can't be used to transform the value, # so we force to unicode instead. if is_py2 and text == func: func = unicode def expand_kv(kv): return func(*kv) def map_values(value): cls = type(value) if isinstance(value, dict): return cls(_map(expand_kv, value.items())) else: return cls(_map(func, value)) return transform(map_values)
def clean(self): """ Check unauthenticated user's cookie as a light check to prevent duplicate votes. """ bits = (self.data["content_type"], self.data["object_pk"]) request = self.request self.current = "%s.%s" % bits self.previous = request.COOKIES.get("yacms-rating", "").split(",") already_rated = self.current in self.previous if already_rated and not self.request.user.is_authenticated(): raise forms.ValidationError(ugettext("Already rated.")) return self.cleaned_data
Check unauthenticated user's cookie as a light check to prevent duplicate votes.
Below is the the instruction that describes the task: ### Input: Check unauthenticated user's cookie as a light check to prevent duplicate votes. ### Response: def clean(self): """ Check unauthenticated user's cookie as a light check to prevent duplicate votes. """ bits = (self.data["content_type"], self.data["object_pk"]) request = self.request self.current = "%s.%s" % bits self.previous = request.COOKIES.get("yacms-rating", "").split(",") already_rated = self.current in self.previous if already_rated and not self.request.user.is_authenticated(): raise forms.ValidationError(ugettext("Already rated.")) return self.cleaned_data
def _build_context(self, request, customer_uuid): """ Build common context parts used by different handlers in this view. """ # TODO: pylint acts stupid - find a way around it without suppressing enterprise_customer = EnterpriseCustomer.objects.get(uuid=customer_uuid) # pylint: disable=no-member search_keyword = self.get_search_keyword(request) linked_learners = self.get_enterprise_customer_user_queryset(request, search_keyword, customer_uuid) pending_linked_learners = self.get_pending_users_queryset(search_keyword, customer_uuid) context = { self.ContextParameters.ENTERPRISE_CUSTOMER: enterprise_customer, self.ContextParameters.PENDING_LEARNERS: pending_linked_learners, self.ContextParameters.LEARNERS: linked_learners, self.ContextParameters.SEARCH_KEYWORD: search_keyword or '', self.ContextParameters.ENROLLMENT_URL: settings.LMS_ENROLLMENT_API_PATH, } context.update(admin.site.each_context(request)) context.update(self._build_admin_context(request, enterprise_customer)) return context
Build common context parts used by different handlers in this view.
Below is the the instruction that describes the task: ### Input: Build common context parts used by different handlers in this view. ### Response: def _build_context(self, request, customer_uuid): """ Build common context parts used by different handlers in this view. """ # TODO: pylint acts stupid - find a way around it without suppressing enterprise_customer = EnterpriseCustomer.objects.get(uuid=customer_uuid) # pylint: disable=no-member search_keyword = self.get_search_keyword(request) linked_learners = self.get_enterprise_customer_user_queryset(request, search_keyword, customer_uuid) pending_linked_learners = self.get_pending_users_queryset(search_keyword, customer_uuid) context = { self.ContextParameters.ENTERPRISE_CUSTOMER: enterprise_customer, self.ContextParameters.PENDING_LEARNERS: pending_linked_learners, self.ContextParameters.LEARNERS: linked_learners, self.ContextParameters.SEARCH_KEYWORD: search_keyword or '', self.ContextParameters.ENROLLMENT_URL: settings.LMS_ENROLLMENT_API_PATH, } context.update(admin.site.each_context(request)) context.update(self._build_admin_context(request, enterprise_customer)) return context
def makevAndvPfuncs(self,policyFunc): ''' Constructs the marginal value function for this period. Parameters ---------- policyFunc : function Consumption and medical care function for this period, defined over market resources, permanent income level, and the medical need shock. Returns ------- vFunc : function Value function for this period, defined over market resources and permanent income. vPfunc : function Marginal value (of market resources) function for this period, defined over market resources and permanent income. ''' # Get state dimension sizes mCount = self.aXtraGrid.size pCount = self.pLvlGrid.size MedCount = self.MedShkVals.size # Make temporary grids to evaluate the consumption function temp_grid = np.tile(np.reshape(self.aXtraGrid,(mCount,1,1)),(1,pCount,MedCount)) aMinGrid = np.tile(np.reshape(self.mLvlMinNow(self.pLvlGrid),(1,pCount,1)), (mCount,1,MedCount)) pGrid = np.tile(np.reshape(self.pLvlGrid,(1,pCount,1)),(mCount,1,MedCount)) mGrid = temp_grid*pGrid + aMinGrid if self.pLvlGrid[0] == 0: mGrid[:,0,:] = np.tile(np.reshape(self.aXtraGrid,(mCount,1)),(1,MedCount)) MedShkGrid = np.tile(np.reshape(self.MedShkVals,(1,1,MedCount)),(mCount,pCount,1)) probsGrid = np.tile(np.reshape(self.MedShkPrbs,(1,1,MedCount)),(mCount,pCount,1)) # Get optimal consumption (and medical care) for each state cGrid,MedGrid = policyFunc(mGrid,pGrid,MedShkGrid) # Calculate expected value by "integrating" across medical shocks if self.vFuncBool: MedGrid = np.maximum(MedGrid,1e-100) # interpolation error sometimes makes Med < 0 (barely) aGrid = np.maximum(mGrid - cGrid - self.MedPrice*MedGrid, aMinGrid) # interpolation error sometimes makes tiny violations vGrid = self.u(cGrid) + MedShkGrid*self.uMed(MedGrid) + self.EndOfPrdvFunc(aGrid,pGrid) vNow = np.sum(vGrid*probsGrid,axis=2) # Calculate expected marginal value by "integrating" across medical shocks vPgrid = self.uP(cGrid) vPnow = np.sum(vPgrid*probsGrid,axis=2) # Add vPnvrs=0 at m=mLvlMin to close it off at the bottom (and vNvrs=0) mGrid_small = np.concatenate((np.reshape(self.mLvlMinNow(self.pLvlGrid),(1,pCount)),mGrid[:,:,0])) vPnvrsNow = np.concatenate((np.zeros((1,pCount)),self.uPinv(vPnow))) if self.vFuncBool: vNvrsNow = np.concatenate((np.zeros((1,pCount)),self.uinv(vNow)),axis=0) vNvrsPnow = vPnow*self.uinvP(vNow) vNvrsPnow = np.concatenate((np.zeros((1,pCount)),vNvrsPnow),axis=0) # Construct the pseudo-inverse value and marginal value functions over mLvl,pLvl vPnvrsFunc_by_pLvl = [] vNvrsFunc_by_pLvl = [] for j in range(pCount): # Make a pseudo inverse marginal value function for each pLvl pLvl = self.pLvlGrid[j] m_temp = mGrid_small[:,j] - self.mLvlMinNow(pLvl) vPnvrs_temp = vPnvrsNow[:,j] vPnvrsFunc_by_pLvl.append(LinearInterp(m_temp,vPnvrs_temp)) if self.vFuncBool: vNvrs_temp = vNvrsNow[:,j] vNvrsP_temp = vNvrsPnow[:,j] vNvrsFunc_by_pLvl.append(CubicInterp(m_temp,vNvrs_temp,vNvrsP_temp)) vPnvrsFuncBase = LinearInterpOnInterp1D(vPnvrsFunc_by_pLvl,self.pLvlGrid) vPnvrsFunc = VariableLowerBoundFunc2D(vPnvrsFuncBase,self.mLvlMinNow) # adjust for the lower bound of mLvl if self.vFuncBool: vNvrsFuncBase = LinearInterpOnInterp1D(vNvrsFunc_by_pLvl,self.pLvlGrid) vNvrsFunc = VariableLowerBoundFunc2D(vNvrsFuncBase,self.mLvlMinNow) # adjust for the lower bound of mLvl # "Re-curve" the (marginal) value function vPfunc = MargValueFunc2D(vPnvrsFunc,self.CRRA) if self.vFuncBool: vFunc = ValueFunc2D(vNvrsFunc,self.CRRA) else: vFunc = NullFunc() return vFunc, vPfunc
Constructs the marginal value function for this period. Parameters ---------- policyFunc : function Consumption and medical care function for this period, defined over market resources, permanent income level, and the medical need shock. Returns ------- vFunc : function Value function for this period, defined over market resources and permanent income. vPfunc : function Marginal value (of market resources) function for this period, defined over market resources and permanent income.
Below is the the instruction that describes the task: ### Input: Constructs the marginal value function for this period. Parameters ---------- policyFunc : function Consumption and medical care function for this period, defined over market resources, permanent income level, and the medical need shock. Returns ------- vFunc : function Value function for this period, defined over market resources and permanent income. vPfunc : function Marginal value (of market resources) function for this period, defined over market resources and permanent income. ### Response: def makevAndvPfuncs(self,policyFunc): ''' Constructs the marginal value function for this period. Parameters ---------- policyFunc : function Consumption and medical care function for this period, defined over market resources, permanent income level, and the medical need shock. Returns ------- vFunc : function Value function for this period, defined over market resources and permanent income. vPfunc : function Marginal value (of market resources) function for this period, defined over market resources and permanent income. ''' # Get state dimension sizes mCount = self.aXtraGrid.size pCount = self.pLvlGrid.size MedCount = self.MedShkVals.size # Make temporary grids to evaluate the consumption function temp_grid = np.tile(np.reshape(self.aXtraGrid,(mCount,1,1)),(1,pCount,MedCount)) aMinGrid = np.tile(np.reshape(self.mLvlMinNow(self.pLvlGrid),(1,pCount,1)), (mCount,1,MedCount)) pGrid = np.tile(np.reshape(self.pLvlGrid,(1,pCount,1)),(mCount,1,MedCount)) mGrid = temp_grid*pGrid + aMinGrid if self.pLvlGrid[0] == 0: mGrid[:,0,:] = np.tile(np.reshape(self.aXtraGrid,(mCount,1)),(1,MedCount)) MedShkGrid = np.tile(np.reshape(self.MedShkVals,(1,1,MedCount)),(mCount,pCount,1)) probsGrid = np.tile(np.reshape(self.MedShkPrbs,(1,1,MedCount)),(mCount,pCount,1)) # Get optimal consumption (and medical care) for each state cGrid,MedGrid = policyFunc(mGrid,pGrid,MedShkGrid) # Calculate expected value by "integrating" across medical shocks if self.vFuncBool: MedGrid = np.maximum(MedGrid,1e-100) # interpolation error sometimes makes Med < 0 (barely) aGrid = np.maximum(mGrid - cGrid - self.MedPrice*MedGrid, aMinGrid) # interpolation error sometimes makes tiny violations vGrid = self.u(cGrid) + MedShkGrid*self.uMed(MedGrid) + self.EndOfPrdvFunc(aGrid,pGrid) vNow = np.sum(vGrid*probsGrid,axis=2) # Calculate expected marginal value by "integrating" across medical shocks vPgrid = self.uP(cGrid) vPnow = np.sum(vPgrid*probsGrid,axis=2) # Add vPnvrs=0 at m=mLvlMin to close it off at the bottom (and vNvrs=0) mGrid_small = np.concatenate((np.reshape(self.mLvlMinNow(self.pLvlGrid),(1,pCount)),mGrid[:,:,0])) vPnvrsNow = np.concatenate((np.zeros((1,pCount)),self.uPinv(vPnow))) if self.vFuncBool: vNvrsNow = np.concatenate((np.zeros((1,pCount)),self.uinv(vNow)),axis=0) vNvrsPnow = vPnow*self.uinvP(vNow) vNvrsPnow = np.concatenate((np.zeros((1,pCount)),vNvrsPnow),axis=0) # Construct the pseudo-inverse value and marginal value functions over mLvl,pLvl vPnvrsFunc_by_pLvl = [] vNvrsFunc_by_pLvl = [] for j in range(pCount): # Make a pseudo inverse marginal value function for each pLvl pLvl = self.pLvlGrid[j] m_temp = mGrid_small[:,j] - self.mLvlMinNow(pLvl) vPnvrs_temp = vPnvrsNow[:,j] vPnvrsFunc_by_pLvl.append(LinearInterp(m_temp,vPnvrs_temp)) if self.vFuncBool: vNvrs_temp = vNvrsNow[:,j] vNvrsP_temp = vNvrsPnow[:,j] vNvrsFunc_by_pLvl.append(CubicInterp(m_temp,vNvrs_temp,vNvrsP_temp)) vPnvrsFuncBase = LinearInterpOnInterp1D(vPnvrsFunc_by_pLvl,self.pLvlGrid) vPnvrsFunc = VariableLowerBoundFunc2D(vPnvrsFuncBase,self.mLvlMinNow) # adjust for the lower bound of mLvl if self.vFuncBool: vNvrsFuncBase = LinearInterpOnInterp1D(vNvrsFunc_by_pLvl,self.pLvlGrid) vNvrsFunc = VariableLowerBoundFunc2D(vNvrsFuncBase,self.mLvlMinNow) # adjust for the lower bound of mLvl # "Re-curve" the (marginal) value function vPfunc = MargValueFunc2D(vPnvrsFunc,self.CRRA) if self.vFuncBool: vFunc = ValueFunc2D(vNvrsFunc,self.CRRA) else: vFunc = NullFunc() return vFunc, vPfunc
def purge(self, jid, node): """ Delete all items from a node. :param jid: JID of the PubSub service :param node: Name of the PubSub node :type node: :class:`str` Requires :attr:`.xso.Feature.PURGE`. """ iq = aioxmpp.stanza.IQ( type_=aioxmpp.structs.IQType.SET, to=jid, payload=pubsub_xso.OwnerRequest( pubsub_xso.OwnerPurge( node ) ) ) yield from self.client.send(iq)
Delete all items from a node. :param jid: JID of the PubSub service :param node: Name of the PubSub node :type node: :class:`str` Requires :attr:`.xso.Feature.PURGE`.
Below is the the instruction that describes the task: ### Input: Delete all items from a node. :param jid: JID of the PubSub service :param node: Name of the PubSub node :type node: :class:`str` Requires :attr:`.xso.Feature.PURGE`. ### Response: def purge(self, jid, node): """ Delete all items from a node. :param jid: JID of the PubSub service :param node: Name of the PubSub node :type node: :class:`str` Requires :attr:`.xso.Feature.PURGE`. """ iq = aioxmpp.stanza.IQ( type_=aioxmpp.structs.IQType.SET, to=jid, payload=pubsub_xso.OwnerRequest( pubsub_xso.OwnerPurge( node ) ) ) yield from self.client.send(iq)
def is_readable(filename): """Check if file is a regular file and is readable.""" return os.path.isfile(filename) and os.access(filename, os.R_OK)
Check if file is a regular file and is readable.
Below is the the instruction that describes the task: ### Input: Check if file is a regular file and is readable. ### Response: def is_readable(filename): """Check if file is a regular file and is readable.""" return os.path.isfile(filename) and os.access(filename, os.R_OK)
def _add(self, *rules): # type: (Iterable[Type[Rule]]) -> Generator[Type[Rule]] """ Add rules into the set. Each rule is validated and split if needed. The method add the rules into dictionary, so the rule can be deleted with terminals or nonterminals. :param rules: Rules to insert. :return: Inserted rules. :raise NotRuleException: If the parameter doesn't inherit from Rule. :raise RuleException: If the syntax of the rule is invalid. """ for rule in rules: if rule in self: continue self._validate_rule(rule) for rule in rules: for r in self._split_rules(rule): for side in r.rule: for s in side: self._assign_map[s].add(r) super().add(r) yield r
Add rules into the set. Each rule is validated and split if needed. The method add the rules into dictionary, so the rule can be deleted with terminals or nonterminals. :param rules: Rules to insert. :return: Inserted rules. :raise NotRuleException: If the parameter doesn't inherit from Rule. :raise RuleException: If the syntax of the rule is invalid.
Below is the the instruction that describes the task: ### Input: Add rules into the set. Each rule is validated and split if needed. The method add the rules into dictionary, so the rule can be deleted with terminals or nonterminals. :param rules: Rules to insert. :return: Inserted rules. :raise NotRuleException: If the parameter doesn't inherit from Rule. :raise RuleException: If the syntax of the rule is invalid. ### Response: def _add(self, *rules): # type: (Iterable[Type[Rule]]) -> Generator[Type[Rule]] """ Add rules into the set. Each rule is validated and split if needed. The method add the rules into dictionary, so the rule can be deleted with terminals or nonterminals. :param rules: Rules to insert. :return: Inserted rules. :raise NotRuleException: If the parameter doesn't inherit from Rule. :raise RuleException: If the syntax of the rule is invalid. """ for rule in rules: if rule in self: continue self._validate_rule(rule) for rule in rules: for r in self._split_rules(rule): for side in r.rule: for s in side: self._assign_map[s].add(r) super().add(r) yield r
def write_json_to_temp_file(data): """Writes JSON data to a temporary file and returns the path to it""" fp = tempfile.NamedTemporaryFile(delete=False) fp.write(json.dumps(data).encode('utf-8')) fp.close() return fp.name
Writes JSON data to a temporary file and returns the path to it
Below is the the instruction that describes the task: ### Input: Writes JSON data to a temporary file and returns the path to it ### Response: def write_json_to_temp_file(data): """Writes JSON data to a temporary file and returns the path to it""" fp = tempfile.NamedTemporaryFile(delete=False) fp.write(json.dumps(data).encode('utf-8')) fp.close() return fp.name
def delete_subtrie(self, key): """ Given a key prefix, delete the whole subtrie that starts with the key prefix. Key will be encoded into binary array format first. It will call `_set` with `if_delete_subtrie` set to True. """ validate_is_bytes(key) self.root_hash = self._set( self.root_hash, encode_to_bin(key), value=b'', if_delete_subtrie=True, )
Given a key prefix, delete the whole subtrie that starts with the key prefix. Key will be encoded into binary array format first. It will call `_set` with `if_delete_subtrie` set to True.
Below is the the instruction that describes the task: ### Input: Given a key prefix, delete the whole subtrie that starts with the key prefix. Key will be encoded into binary array format first. It will call `_set` with `if_delete_subtrie` set to True. ### Response: def delete_subtrie(self, key): """ Given a key prefix, delete the whole subtrie that starts with the key prefix. Key will be encoded into binary array format first. It will call `_set` with `if_delete_subtrie` set to True. """ validate_is_bytes(key) self.root_hash = self._set( self.root_hash, encode_to_bin(key), value=b'', if_delete_subtrie=True, )
def AddTask(self, target, args=(), name="Unnamed task", blocking=True, inline=True): """Adds a task to be processed later. Args: target: A callable which should be processed by one of the workers. args: A tuple of arguments to target. name: The name of this task. Used to identify tasks in the log. blocking: If True we block until the task is finished, otherwise we raise queue.Full inline: If set, process the task inline when the queue is full. This implies no blocking. Specifying inline helps if the worker tasks are blocked because it still ensures some progress is made. However, this can generally block the calling thread even after the threadpool is available again and therefore decrease efficiency. Raises: ThreadPoolNotStartedError: if the pool was not started yet. queue.Full: if the pool is full and can not accept new jobs. """ if not self.started: raise ThreadPoolNotStartedError(self.name) # This pool should have no worker threads - just run the task inline. if self.max_threads == 0: target(*args) return if inline: blocking = False with self.lock: while True: # This check makes sure that the threadpool will add new workers # even if the queue is not full. This is needed for a scenario when # a fresh threadpool is created (say, with min_threads=1 and # max_threads=10) and 2 long-running tasks are added. The code below # will spawn a new worker for a second long-running task. if len(self) < self.max_threads: try: self._AddWorker() except (RuntimeError, threading.ThreadError) as e: logging.error( "Threadpool exception: " "Could not spawn worker threads: %s", e) try: # Push the task on the queue but raise if unsuccessful. self._queue.put((target, args, name, time.time()), block=False) return except queue.Full: # We increase the number of active threads if we do not exceed the # maximum _and_ our process CPU utilization is not too high. This # ensures that if the workers are waiting on IO we add more workers, # but we do not waste workers when tasks are CPU bound. if len(self) < self.max_threads: try: self._AddWorker() continue # If we fail to add a worker we should keep going anyway. except (RuntimeError, threading.ThreadError) as e: logging.error( "Threadpool exception: " "Could not spawn worker threads: %s", e) # If we need to process the task inline just break out of the loop, # therefore releasing the lock and run the task inline. if inline: break # We should block and try again soon. elif blocking: try: self._queue.put((target, args, name, time.time()), block=True, timeout=1) return except queue.Full: continue else: raise Full() # We don't want to hold the lock while running the task inline if inline: target(*args)
Adds a task to be processed later. Args: target: A callable which should be processed by one of the workers. args: A tuple of arguments to target. name: The name of this task. Used to identify tasks in the log. blocking: If True we block until the task is finished, otherwise we raise queue.Full inline: If set, process the task inline when the queue is full. This implies no blocking. Specifying inline helps if the worker tasks are blocked because it still ensures some progress is made. However, this can generally block the calling thread even after the threadpool is available again and therefore decrease efficiency. Raises: ThreadPoolNotStartedError: if the pool was not started yet. queue.Full: if the pool is full and can not accept new jobs.
Below is the the instruction that describes the task: ### Input: Adds a task to be processed later. Args: target: A callable which should be processed by one of the workers. args: A tuple of arguments to target. name: The name of this task. Used to identify tasks in the log. blocking: If True we block until the task is finished, otherwise we raise queue.Full inline: If set, process the task inline when the queue is full. This implies no blocking. Specifying inline helps if the worker tasks are blocked because it still ensures some progress is made. However, this can generally block the calling thread even after the threadpool is available again and therefore decrease efficiency. Raises: ThreadPoolNotStartedError: if the pool was not started yet. queue.Full: if the pool is full and can not accept new jobs. ### Response: def AddTask(self, target, args=(), name="Unnamed task", blocking=True, inline=True): """Adds a task to be processed later. Args: target: A callable which should be processed by one of the workers. args: A tuple of arguments to target. name: The name of this task. Used to identify tasks in the log. blocking: If True we block until the task is finished, otherwise we raise queue.Full inline: If set, process the task inline when the queue is full. This implies no blocking. Specifying inline helps if the worker tasks are blocked because it still ensures some progress is made. However, this can generally block the calling thread even after the threadpool is available again and therefore decrease efficiency. Raises: ThreadPoolNotStartedError: if the pool was not started yet. queue.Full: if the pool is full and can not accept new jobs. """ if not self.started: raise ThreadPoolNotStartedError(self.name) # This pool should have no worker threads - just run the task inline. if self.max_threads == 0: target(*args) return if inline: blocking = False with self.lock: while True: # This check makes sure that the threadpool will add new workers # even if the queue is not full. This is needed for a scenario when # a fresh threadpool is created (say, with min_threads=1 and # max_threads=10) and 2 long-running tasks are added. The code below # will spawn a new worker for a second long-running task. if len(self) < self.max_threads: try: self._AddWorker() except (RuntimeError, threading.ThreadError) as e: logging.error( "Threadpool exception: " "Could not spawn worker threads: %s", e) try: # Push the task on the queue but raise if unsuccessful. self._queue.put((target, args, name, time.time()), block=False) return except queue.Full: # We increase the number of active threads if we do not exceed the # maximum _and_ our process CPU utilization is not too high. This # ensures that if the workers are waiting on IO we add more workers, # but we do not waste workers when tasks are CPU bound. if len(self) < self.max_threads: try: self._AddWorker() continue # If we fail to add a worker we should keep going anyway. except (RuntimeError, threading.ThreadError) as e: logging.error( "Threadpool exception: " "Could not spawn worker threads: %s", e) # If we need to process the task inline just break out of the loop, # therefore releasing the lock and run the task inline. if inline: break # We should block and try again soon. elif blocking: try: self._queue.put((target, args, name, time.time()), block=True, timeout=1) return except queue.Full: continue else: raise Full() # We don't want to hold the lock while running the task inline if inline: target(*args)
def partial_update(self, request, *args, **kwargs): """ We do not include the mixin as we want only PATCH and no PUT """ instance = self.get_object() serializer = self.get_serializer(instance, data=request.data, partial=True, context=self.get_serializer_context()) serializer.is_valid(raise_exception=True) serializer.save() if getattr(instance, '_prefetched_objects_cache', None): #pragma: no cover instance = self.get_object() serializer = self.get_serializer(instance) return response.Response(serializer.data)
We do not include the mixin as we want only PATCH and no PUT
Below is the the instruction that describes the task: ### Input: We do not include the mixin as we want only PATCH and no PUT ### Response: def partial_update(self, request, *args, **kwargs): """ We do not include the mixin as we want only PATCH and no PUT """ instance = self.get_object() serializer = self.get_serializer(instance, data=request.data, partial=True, context=self.get_serializer_context()) serializer.is_valid(raise_exception=True) serializer.save() if getattr(instance, '_prefetched_objects_cache', None): #pragma: no cover instance = self.get_object() serializer = self.get_serializer(instance) return response.Response(serializer.data)
def open_image(fn): """ Opens an image using OpenCV given the file path. Arguments: fn: the file path of the image Returns: The image in RGB format as numpy array of floats normalized to range between 0.0 - 1.0 """ flags = cv2.IMREAD_UNCHANGED+cv2.IMREAD_ANYDEPTH+cv2.IMREAD_ANYCOLOR if not os.path.exists(fn) and not str(fn).startswith("http"): raise OSError('No such file or directory: {}'.format(fn)) elif os.path.isdir(fn) and not str(fn).startswith("http"): raise OSError('Is a directory: {}'.format(fn)) elif isdicom(fn): slice = pydicom.read_file(fn) if slice.PhotometricInterpretation.startswith('MONOCHROME'): # Make a fake RGB image im = np.stack([slice.pixel_array]*3,-1) return im / ((1 << slice.BitsStored)-1) else: # No support for RGB yet, as it involves various color spaces. # It shouldn't be too difficult to add though, if needed. raise OSError('Unsupported DICOM image with PhotometricInterpretation=={}'.format(slice.PhotometricInterpretation)) else: #res = np.array(Image.open(fn), dtype=np.float32)/255 #if len(res.shape)==2: res = np.repeat(res[...,None],3,2) #return res try: if str(fn).startswith("http"): req = urllib.urlopen(str(fn)) image = np.asarray(bytearray(req.read()), dtype="uint8") im = cv2.imdecode(image, flags).astype(np.float32)/255 else: im = cv2.imread(str(fn), flags).astype(np.float32)/255 if im is None: raise OSError(f'File not recognized by opencv: {fn}') return cv2.cvtColor(im, cv2.COLOR_BGR2RGB) except Exception as e: raise OSError('Error handling image at: {}'.format(fn)) from e
Opens an image using OpenCV given the file path. Arguments: fn: the file path of the image Returns: The image in RGB format as numpy array of floats normalized to range between 0.0 - 1.0
Below is the the instruction that describes the task: ### Input: Opens an image using OpenCV given the file path. Arguments: fn: the file path of the image Returns: The image in RGB format as numpy array of floats normalized to range between 0.0 - 1.0 ### Response: def open_image(fn): """ Opens an image using OpenCV given the file path. Arguments: fn: the file path of the image Returns: The image in RGB format as numpy array of floats normalized to range between 0.0 - 1.0 """ flags = cv2.IMREAD_UNCHANGED+cv2.IMREAD_ANYDEPTH+cv2.IMREAD_ANYCOLOR if not os.path.exists(fn) and not str(fn).startswith("http"): raise OSError('No such file or directory: {}'.format(fn)) elif os.path.isdir(fn) and not str(fn).startswith("http"): raise OSError('Is a directory: {}'.format(fn)) elif isdicom(fn): slice = pydicom.read_file(fn) if slice.PhotometricInterpretation.startswith('MONOCHROME'): # Make a fake RGB image im = np.stack([slice.pixel_array]*3,-1) return im / ((1 << slice.BitsStored)-1) else: # No support for RGB yet, as it involves various color spaces. # It shouldn't be too difficult to add though, if needed. raise OSError('Unsupported DICOM image with PhotometricInterpretation=={}'.format(slice.PhotometricInterpretation)) else: #res = np.array(Image.open(fn), dtype=np.float32)/255 #if len(res.shape)==2: res = np.repeat(res[...,None],3,2) #return res try: if str(fn).startswith("http"): req = urllib.urlopen(str(fn)) image = np.asarray(bytearray(req.read()), dtype="uint8") im = cv2.imdecode(image, flags).astype(np.float32)/255 else: im = cv2.imread(str(fn), flags).astype(np.float32)/255 if im is None: raise OSError(f'File not recognized by opencv: {fn}') return cv2.cvtColor(im, cv2.COLOR_BGR2RGB) except Exception as e: raise OSError('Error handling image at: {}'.format(fn)) from e
def update(self, request, *args, **kwargs): """ Run **PATCH** request against */api/price-list-items/<uuid>/* to update price list item. Only item_type, key value and units can be updated. Only customer owner and staff can update price items. """ return super(PriceListItemViewSet, self).update(request, *args, **kwargs)
Run **PATCH** request against */api/price-list-items/<uuid>/* to update price list item. Only item_type, key value and units can be updated. Only customer owner and staff can update price items.
Below is the the instruction that describes the task: ### Input: Run **PATCH** request against */api/price-list-items/<uuid>/* to update price list item. Only item_type, key value and units can be updated. Only customer owner and staff can update price items. ### Response: def update(self, request, *args, **kwargs): """ Run **PATCH** request against */api/price-list-items/<uuid>/* to update price list item. Only item_type, key value and units can be updated. Only customer owner and staff can update price items. """ return super(PriceListItemViewSet, self).update(request, *args, **kwargs)
def date_from_quarter(base_date, ordinal, year): """ Extract date from quarter of a year """ interval = 3 month_start = interval * (ordinal - 1) if month_start < 0: month_start = 9 month_end = month_start + interval if month_start == 0: month_start = 1 return [ datetime(year, month_start, 1), datetime(year, month_end, calendar.monthrange(year, month_end)[1]) ]
Extract date from quarter of a year
Below is the the instruction that describes the task: ### Input: Extract date from quarter of a year ### Response: def date_from_quarter(base_date, ordinal, year): """ Extract date from quarter of a year """ interval = 3 month_start = interval * (ordinal - 1) if month_start < 0: month_start = 9 month_end = month_start + interval if month_start == 0: month_start = 1 return [ datetime(year, month_start, 1), datetime(year, month_end, calendar.monthrange(year, month_end)[1]) ]
def fetch_all_droplet_neighbors(self): r""" Returns a generator of all sets of multiple droplets that are running on the same physical hardware :rtype: generator of lists of `Droplet`\ s :raises DOAPIError: if the API endpoint replies with an error """ for hood in self.paginate('/v2/reports/droplet_neighbors', 'neighbors'): yield list(map(self._droplet, hood))
r""" Returns a generator of all sets of multiple droplets that are running on the same physical hardware :rtype: generator of lists of `Droplet`\ s :raises DOAPIError: if the API endpoint replies with an error
Below is the the instruction that describes the task: ### Input: r""" Returns a generator of all sets of multiple droplets that are running on the same physical hardware :rtype: generator of lists of `Droplet`\ s :raises DOAPIError: if the API endpoint replies with an error ### Response: def fetch_all_droplet_neighbors(self): r""" Returns a generator of all sets of multiple droplets that are running on the same physical hardware :rtype: generator of lists of `Droplet`\ s :raises DOAPIError: if the API endpoint replies with an error """ for hood in self.paginate('/v2/reports/droplet_neighbors', 'neighbors'): yield list(map(self._droplet, hood))
def create_ramp_plan(err, ramp): """ Formulate and execute on a plan to slowly add heat or cooling to the system `err` initial error (PV - SP) `ramp` the size of the ramp A ramp plan might yield MVs in this order at every timestep: [5, 0, 4, 0, 3, 0, 2, 0, 1] where err == 5 + 4 + 3 + 2 + 1 """ if ramp == 1: # basecase yield int(err) while True: yield 0 # np.arange(n).sum() == err # --> solve for n # err = (n - 1) * (n // 2) == .5 * n**2 - .5 * n # 0 = n**2 - n --> solve for n n = np.abs(np.roots([.5, -.5, 0]).max()) niter = int(ramp // (2 * n)) # 2 means add all MV in first half of ramp MV = n log.info('Initializing a ramp plan', extra=dict( ramp_size=ramp, err=err, niter=niter)) for x in range(int(n)): budget = MV for x in range(niter): budget -= MV // niter yield int(np.sign(err) * (MV // niter)) yield int(budget * np.sign(err)) MV -= 1 while True: yield 0
Formulate and execute on a plan to slowly add heat or cooling to the system `err` initial error (PV - SP) `ramp` the size of the ramp A ramp plan might yield MVs in this order at every timestep: [5, 0, 4, 0, 3, 0, 2, 0, 1] where err == 5 + 4 + 3 + 2 + 1
Below is the the instruction that describes the task: ### Input: Formulate and execute on a plan to slowly add heat or cooling to the system `err` initial error (PV - SP) `ramp` the size of the ramp A ramp plan might yield MVs in this order at every timestep: [5, 0, 4, 0, 3, 0, 2, 0, 1] where err == 5 + 4 + 3 + 2 + 1 ### Response: def create_ramp_plan(err, ramp): """ Formulate and execute on a plan to slowly add heat or cooling to the system `err` initial error (PV - SP) `ramp` the size of the ramp A ramp plan might yield MVs in this order at every timestep: [5, 0, 4, 0, 3, 0, 2, 0, 1] where err == 5 + 4 + 3 + 2 + 1 """ if ramp == 1: # basecase yield int(err) while True: yield 0 # np.arange(n).sum() == err # --> solve for n # err = (n - 1) * (n // 2) == .5 * n**2 - .5 * n # 0 = n**2 - n --> solve for n n = np.abs(np.roots([.5, -.5, 0]).max()) niter = int(ramp // (2 * n)) # 2 means add all MV in first half of ramp MV = n log.info('Initializing a ramp plan', extra=dict( ramp_size=ramp, err=err, niter=niter)) for x in range(int(n)): budget = MV for x in range(niter): budget -= MV // niter yield int(np.sign(err) * (MV // niter)) yield int(budget * np.sign(err)) MV -= 1 while True: yield 0
def create_attribute(self,column=None,listType=None,namespace=None, network=None, atype=None, verbose=False): """ Creates a new edge column. :param column (string, optional): Unique name of column :param listType (string, optional): Can be one of integer, long, double, or string. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param atype (string, optional): Can be one of integer, long, double, string, or list. :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["column","listType","namespace","network","type"],[column,listType,namespace,network,atype]) response=api(url=self.__url+"/create attribute", PARAMS=PARAMS, method="POST", verbose=verbose) return response
Creates a new edge column. :param column (string, optional): Unique name of column :param listType (string, optional): Can be one of integer, long, double, or string. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param atype (string, optional): Can be one of integer, long, double, string, or list. :param verbose: print more
Below is the the instruction that describes the task: ### Input: Creates a new edge column. :param column (string, optional): Unique name of column :param listType (string, optional): Can be one of integer, long, double, or string. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param atype (string, optional): Can be one of integer, long, double, string, or list. :param verbose: print more ### Response: def create_attribute(self,column=None,listType=None,namespace=None, network=None, atype=None, verbose=False): """ Creates a new edge column. :param column (string, optional): Unique name of column :param listType (string, optional): Can be one of integer, long, double, or string. :param namespace (string, optional): Node, Edge, and Network objects support the default, local, and hidden namespaces. Root networks also support the shared namespace. Custom namespaces may be specified by Apps. :param network (string, optional): Specifies a network by name, or by SUID if the prefix SUID: is used. The keyword CURRENT, or a blank value can also be used to specify the current network. :param atype (string, optional): Can be one of integer, long, double, string, or list. :param verbose: print more """ network=check_network(self,network,verbose=verbose) PARAMS=set_param(["column","listType","namespace","network","type"],[column,listType,namespace,network,atype]) response=api(url=self.__url+"/create attribute", PARAMS=PARAMS, method="POST", verbose=verbose) return response
def eValueToBitScore(eValue, dbSize, dbSequenceCount, queryLength, lengthAdjustment): """ Convert an e-value to a bit score. @param eValue: The C{float} e-value to convert. @param dbSize: The C{int} total size of the database (i.e., the sum of the lengths of all sequences in the BLAST database). @param dbSequenceCount: The C{int} number of sequences in the database. @param queryLength: The C{int} length of the query. @param lengthAdjustment: The C{int} length adjustment (BLAST XML output calls this the Statistics_hsp-len). @return: A C{float} bit score. """ effectiveDbSize = ( (dbSize - dbSequenceCount * lengthAdjustment) * (queryLength - lengthAdjustment) ) return -1.0 * (log(eValue / effectiveDbSize) / _LOG2)
Convert an e-value to a bit score. @param eValue: The C{float} e-value to convert. @param dbSize: The C{int} total size of the database (i.e., the sum of the lengths of all sequences in the BLAST database). @param dbSequenceCount: The C{int} number of sequences in the database. @param queryLength: The C{int} length of the query. @param lengthAdjustment: The C{int} length adjustment (BLAST XML output calls this the Statistics_hsp-len). @return: A C{float} bit score.
Below is the the instruction that describes the task: ### Input: Convert an e-value to a bit score. @param eValue: The C{float} e-value to convert. @param dbSize: The C{int} total size of the database (i.e., the sum of the lengths of all sequences in the BLAST database). @param dbSequenceCount: The C{int} number of sequences in the database. @param queryLength: The C{int} length of the query. @param lengthAdjustment: The C{int} length adjustment (BLAST XML output calls this the Statistics_hsp-len). @return: A C{float} bit score. ### Response: def eValueToBitScore(eValue, dbSize, dbSequenceCount, queryLength, lengthAdjustment): """ Convert an e-value to a bit score. @param eValue: The C{float} e-value to convert. @param dbSize: The C{int} total size of the database (i.e., the sum of the lengths of all sequences in the BLAST database). @param dbSequenceCount: The C{int} number of sequences in the database. @param queryLength: The C{int} length of the query. @param lengthAdjustment: The C{int} length adjustment (BLAST XML output calls this the Statistics_hsp-len). @return: A C{float} bit score. """ effectiveDbSize = ( (dbSize - dbSequenceCount * lengthAdjustment) * (queryLength - lengthAdjustment) ) return -1.0 * (log(eValue / effectiveDbSize) / _LOG2)
def _draw_content(self): """ Loop through submissions and fill up the content page. """ n_rows, n_cols = self.term.stdscr.getmaxyx() window = self.term.stdscr.derwin(n_rows - self._row - 1, n_cols, self._row, 0) window.erase() win_n_rows, win_n_cols = window.getmaxyx() self._subwindows = [] page_index, cursor_index, inverted = self.nav.position step = self.nav.step # If not inverted, align the first submission with the top and draw # downwards. If inverted, align the first submission with the bottom # and draw upwards. cancel_inverted = True current_row = (win_n_rows - 1) if inverted else 0 available_rows = win_n_rows top_item_height = None if inverted else self.nav.top_item_height for data in self.content.iterate(page_index, step, win_n_cols - 2): subwin_n_rows = min(available_rows, data['n_rows']) subwin_inverted = inverted if top_item_height is not None: # Special case: draw the page as non-inverted, except for the # top element. This element will be drawn as inverted with a # restricted height subwin_n_rows = min(subwin_n_rows, top_item_height) subwin_inverted = True top_item_height = None subwin_n_cols = win_n_cols - data['h_offset'] start = current_row - subwin_n_rows + 1 if inverted else current_row subwindow = window.derwin(subwin_n_rows, subwin_n_cols, start, data['h_offset']) self._subwindows.append((subwindow, data, subwin_inverted)) available_rows -= (subwin_n_rows + 1) # Add one for the blank line current_row += step * (subwin_n_rows + 1) if available_rows <= 0: # Indicate the page is full and we can keep the inverted screen. cancel_inverted = False break if len(self._subwindows) == 1: # Never draw inverted if only one subwindow. The top of the # subwindow should always be aligned with the top of the screen. cancel_inverted = True if cancel_inverted and self.nav.inverted: # In some cases we need to make sure that the screen is NOT # inverted. Unfortunately, this currently means drawing the whole # page over again. Could not think of a better way to pre-determine # if the content will fill up the page, given that it is dependent # on the size of the terminal. self.nav.flip((len(self._subwindows) - 1)) self._draw_content() return if self.nav.cursor_index >= len(self._subwindows): # Don't allow the cursor to go over the number of subwindows # This could happen if the window is resized and the cursor index is # pushed out of bounds self.nav.cursor_index = len(self._subwindows) - 1 # Now that the windows are setup, we can take a second pass through # to draw the text onto each subwindow for index, (win, data, inverted) in enumerate(self._subwindows): if self.nav.absolute_index >= 0 and index == self.nav.cursor_index: win.bkgd(str(' '), self.term.attr('Selected')) with self.term.theme.turn_on_selected(): self._draw_item(win, data, inverted) else: win.bkgd(str(' '), self.term.attr('Normal')) self._draw_item(win, data, inverted) self._row += win_n_rows
Loop through submissions and fill up the content page.
Below is the the instruction that describes the task: ### Input: Loop through submissions and fill up the content page. ### Response: def _draw_content(self): """ Loop through submissions and fill up the content page. """ n_rows, n_cols = self.term.stdscr.getmaxyx() window = self.term.stdscr.derwin(n_rows - self._row - 1, n_cols, self._row, 0) window.erase() win_n_rows, win_n_cols = window.getmaxyx() self._subwindows = [] page_index, cursor_index, inverted = self.nav.position step = self.nav.step # If not inverted, align the first submission with the top and draw # downwards. If inverted, align the first submission with the bottom # and draw upwards. cancel_inverted = True current_row = (win_n_rows - 1) if inverted else 0 available_rows = win_n_rows top_item_height = None if inverted else self.nav.top_item_height for data in self.content.iterate(page_index, step, win_n_cols - 2): subwin_n_rows = min(available_rows, data['n_rows']) subwin_inverted = inverted if top_item_height is not None: # Special case: draw the page as non-inverted, except for the # top element. This element will be drawn as inverted with a # restricted height subwin_n_rows = min(subwin_n_rows, top_item_height) subwin_inverted = True top_item_height = None subwin_n_cols = win_n_cols - data['h_offset'] start = current_row - subwin_n_rows + 1 if inverted else current_row subwindow = window.derwin(subwin_n_rows, subwin_n_cols, start, data['h_offset']) self._subwindows.append((subwindow, data, subwin_inverted)) available_rows -= (subwin_n_rows + 1) # Add one for the blank line current_row += step * (subwin_n_rows + 1) if available_rows <= 0: # Indicate the page is full and we can keep the inverted screen. cancel_inverted = False break if len(self._subwindows) == 1: # Never draw inverted if only one subwindow. The top of the # subwindow should always be aligned with the top of the screen. cancel_inverted = True if cancel_inverted and self.nav.inverted: # In some cases we need to make sure that the screen is NOT # inverted. Unfortunately, this currently means drawing the whole # page over again. Could not think of a better way to pre-determine # if the content will fill up the page, given that it is dependent # on the size of the terminal. self.nav.flip((len(self._subwindows) - 1)) self._draw_content() return if self.nav.cursor_index >= len(self._subwindows): # Don't allow the cursor to go over the number of subwindows # This could happen if the window is resized and the cursor index is # pushed out of bounds self.nav.cursor_index = len(self._subwindows) - 1 # Now that the windows are setup, we can take a second pass through # to draw the text onto each subwindow for index, (win, data, inverted) in enumerate(self._subwindows): if self.nav.absolute_index >= 0 and index == self.nav.cursor_index: win.bkgd(str(' '), self.term.attr('Selected')) with self.term.theme.turn_on_selected(): self._draw_item(win, data, inverted) else: win.bkgd(str(' '), self.term.attr('Normal')) self._draw_item(win, data, inverted) self._row += win_n_rows
def is_associated_file(self): # type: () -> bool ''' A method to determine whether this file is 'associated' with another file on the ISO. Parameters: None. Returns: True if this file is associated with another file on the ISO, False otherwise. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Directory Record not yet initialized') return self.file_flags & (1 << self.FILE_FLAG_ASSOCIATED_FILE_BIT)
A method to determine whether this file is 'associated' with another file on the ISO. Parameters: None. Returns: True if this file is associated with another file on the ISO, False otherwise.
Below is the the instruction that describes the task: ### Input: A method to determine whether this file is 'associated' with another file on the ISO. Parameters: None. Returns: True if this file is associated with another file on the ISO, False otherwise. ### Response: def is_associated_file(self): # type: () -> bool ''' A method to determine whether this file is 'associated' with another file on the ISO. Parameters: None. Returns: True if this file is associated with another file on the ISO, False otherwise. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Directory Record not yet initialized') return self.file_flags & (1 << self.FILE_FLAG_ASSOCIATED_FILE_BIT)
async def connect(host, port, ssl=None): ''' Async connect and return a Link(). ''' info = {'host': host, 'port': port, 'ssl': ssl} reader, writer = await asyncio.open_connection(host, port, ssl=ssl) return await Link.anit(reader, writer, info=info)
Async connect and return a Link().
Below is the the instruction that describes the task: ### Input: Async connect and return a Link(). ### Response: async def connect(host, port, ssl=None): ''' Async connect and return a Link(). ''' info = {'host': host, 'port': port, 'ssl': ssl} reader, writer = await asyncio.open_connection(host, port, ssl=ssl) return await Link.anit(reader, writer, info=info)
def axis(origin_size=0.04, transform=None, origin_color=None, axis_radius=None, axis_length=None): """ Return an XYZ axis marker as a Trimesh, which represents position and orientation. If you set the origin size the other parameters will be set relative to it. Parameters ---------- transform : (4, 4) float Transformation matrix origin_size : float Radius of sphere that represents the origin origin_color : (3,) float or int, uint8 or float Color of the origin axis_radius : float Radius of cylinder that represents x, y, z axis axis_length: float Length of cylinder that represents x, y, z axis Returns ------- marker : trimesh.Trimesh Mesh geometry of axis indicators """ # the size of the ball representing the origin origin_size = float(origin_size) # set the transform and use origin-relative # sized for other parameters if not specified if transform is None: transform = np.eye(4) if origin_color is None: origin_color = [255, 255, 255, 255] if axis_radius is None: axis_radius = origin_size / 5.0 if axis_length is None: axis_length = origin_size * 10.0 # generate a ball for the origin axis_origin = uv_sphere(radius=origin_size, count=[10, 10]) axis_origin.apply_transform(transform) # apply color to the origin ball axis_origin.visual.face_colors = origin_color # create the cylinder for the z-axis translation = transformations.translation_matrix( [0, 0, axis_length / 2]) z_axis = cylinder( radius=axis_radius, height=axis_length, transform=transform.dot(translation)) # XYZ->RGB, Z is blue z_axis.visual.face_colors = [0, 0, 255] # create the cylinder for the y-axis translation = transformations.translation_matrix( [0, 0, axis_length / 2]) rotation = transformations.rotation_matrix(np.radians(-90), [1, 0, 0]) y_axis = cylinder( radius=axis_radius, height=axis_length, transform=transform.dot(rotation).dot(translation)) # XYZ->RGB, Y is green y_axis.visual.face_colors = [0, 255, 0] # create the cylinder for the x-axis translation = transformations.translation_matrix( [0, 0, axis_length / 2]) rotation = transformations.rotation_matrix(np.radians(90), [0, 1, 0]) x_axis = cylinder( radius=axis_radius, height=axis_length, transform=transform.dot(rotation).dot(translation)) # XYZ->RGB, X is red x_axis.visual.face_colors = [255, 0, 0] # append the sphere and three cylinders marker = util.concatenate([axis_origin, x_axis, y_axis, z_axis]) return marker
Return an XYZ axis marker as a Trimesh, which represents position and orientation. If you set the origin size the other parameters will be set relative to it. Parameters ---------- transform : (4, 4) float Transformation matrix origin_size : float Radius of sphere that represents the origin origin_color : (3,) float or int, uint8 or float Color of the origin axis_radius : float Radius of cylinder that represents x, y, z axis axis_length: float Length of cylinder that represents x, y, z axis Returns ------- marker : trimesh.Trimesh Mesh geometry of axis indicators
Below is the the instruction that describes the task: ### Input: Return an XYZ axis marker as a Trimesh, which represents position and orientation. If you set the origin size the other parameters will be set relative to it. Parameters ---------- transform : (4, 4) float Transformation matrix origin_size : float Radius of sphere that represents the origin origin_color : (3,) float or int, uint8 or float Color of the origin axis_radius : float Radius of cylinder that represents x, y, z axis axis_length: float Length of cylinder that represents x, y, z axis Returns ------- marker : trimesh.Trimesh Mesh geometry of axis indicators ### Response: def axis(origin_size=0.04, transform=None, origin_color=None, axis_radius=None, axis_length=None): """ Return an XYZ axis marker as a Trimesh, which represents position and orientation. If you set the origin size the other parameters will be set relative to it. Parameters ---------- transform : (4, 4) float Transformation matrix origin_size : float Radius of sphere that represents the origin origin_color : (3,) float or int, uint8 or float Color of the origin axis_radius : float Radius of cylinder that represents x, y, z axis axis_length: float Length of cylinder that represents x, y, z axis Returns ------- marker : trimesh.Trimesh Mesh geometry of axis indicators """ # the size of the ball representing the origin origin_size = float(origin_size) # set the transform and use origin-relative # sized for other parameters if not specified if transform is None: transform = np.eye(4) if origin_color is None: origin_color = [255, 255, 255, 255] if axis_radius is None: axis_radius = origin_size / 5.0 if axis_length is None: axis_length = origin_size * 10.0 # generate a ball for the origin axis_origin = uv_sphere(radius=origin_size, count=[10, 10]) axis_origin.apply_transform(transform) # apply color to the origin ball axis_origin.visual.face_colors = origin_color # create the cylinder for the z-axis translation = transformations.translation_matrix( [0, 0, axis_length / 2]) z_axis = cylinder( radius=axis_radius, height=axis_length, transform=transform.dot(translation)) # XYZ->RGB, Z is blue z_axis.visual.face_colors = [0, 0, 255] # create the cylinder for the y-axis translation = transformations.translation_matrix( [0, 0, axis_length / 2]) rotation = transformations.rotation_matrix(np.radians(-90), [1, 0, 0]) y_axis = cylinder( radius=axis_radius, height=axis_length, transform=transform.dot(rotation).dot(translation)) # XYZ->RGB, Y is green y_axis.visual.face_colors = [0, 255, 0] # create the cylinder for the x-axis translation = transformations.translation_matrix( [0, 0, axis_length / 2]) rotation = transformations.rotation_matrix(np.radians(90), [0, 1, 0]) x_axis = cylinder( radius=axis_radius, height=axis_length, transform=transform.dot(rotation).dot(translation)) # XYZ->RGB, X is red x_axis.visual.face_colors = [255, 0, 0] # append the sphere and three cylinders marker = util.concatenate([axis_origin, x_axis, y_axis, z_axis]) return marker
def build_authorization_arg(authdict): """ Create an "Authorization" header value from an authdict (created by generate_response()). """ vallist = [] for k in authdict.keys(): vallist += ['%s=%s' % (k,authdict[k])] return 'Digest '+', '.join(vallist)
Create an "Authorization" header value from an authdict (created by generate_response()).
Below is the the instruction that describes the task: ### Input: Create an "Authorization" header value from an authdict (created by generate_response()). ### Response: def build_authorization_arg(authdict): """ Create an "Authorization" header value from an authdict (created by generate_response()). """ vallist = [] for k in authdict.keys(): vallist += ['%s=%s' % (k,authdict[k])] return 'Digest '+', '.join(vallist)
def strict_logical(self, value): """Validate and set the strict logical flag.""" if value is not None: if not isinstance(value, bool): raise TypeError( 'f90nml: error: strict_logical must be a logical value.') else: self._strict_logical = value
Validate and set the strict logical flag.
Below is the the instruction that describes the task: ### Input: Validate and set the strict logical flag. ### Response: def strict_logical(self, value): """Validate and set the strict logical flag.""" if value is not None: if not isinstance(value, bool): raise TypeError( 'f90nml: error: strict_logical must be a logical value.') else: self._strict_logical = value
def _generate_examples(self, images_dir_path): """Generate flower images and labels given the image directory path. Args: images_dir_path: path to the directory where the images are stored. Yields: The image path and its corresponding label. """ parent_dir = tf.io.gfile.listdir(images_dir_path)[0] walk_dir = os.path.join(images_dir_path, parent_dir) dirs = tf.io.gfile.listdir(walk_dir) for d in dirs: if tf.io.gfile.isdir(os.path.join(walk_dir, d)): for full_path, _, fname in tf.io.gfile.walk(os.path.join(walk_dir, d)): for image_file in fname: if image_file.endswith(".jpg"): image_path = os.path.join(full_path, image_file) yield { "image": image_path, "label": d.lower(), }
Generate flower images and labels given the image directory path. Args: images_dir_path: path to the directory where the images are stored. Yields: The image path and its corresponding label.
Below is the the instruction that describes the task: ### Input: Generate flower images and labels given the image directory path. Args: images_dir_path: path to the directory where the images are stored. Yields: The image path and its corresponding label. ### Response: def _generate_examples(self, images_dir_path): """Generate flower images and labels given the image directory path. Args: images_dir_path: path to the directory where the images are stored. Yields: The image path and its corresponding label. """ parent_dir = tf.io.gfile.listdir(images_dir_path)[0] walk_dir = os.path.join(images_dir_path, parent_dir) dirs = tf.io.gfile.listdir(walk_dir) for d in dirs: if tf.io.gfile.isdir(os.path.join(walk_dir, d)): for full_path, _, fname in tf.io.gfile.walk(os.path.join(walk_dir, d)): for image_file in fname: if image_file.endswith(".jpg"): image_path = os.path.join(full_path, image_file) yield { "image": image_path, "label": d.lower(), }
def blocks_to_mark_complete_on_view(self, blocks): """ Returns a set of blocks which should be marked complete on view and haven't been yet. """ blocks = {block for block in blocks if self.can_mark_block_complete_on_view(block)} completions = self.get_completions({block.location for block in blocks}) return {block for block in blocks if completions.get(block.location, 0) < 1.0}
Returns a set of blocks which should be marked complete on view and haven't been yet.
Below is the the instruction that describes the task: ### Input: Returns a set of blocks which should be marked complete on view and haven't been yet. ### Response: def blocks_to_mark_complete_on_view(self, blocks): """ Returns a set of blocks which should be marked complete on view and haven't been yet. """ blocks = {block for block in blocks if self.can_mark_block_complete_on_view(block)} completions = self.get_completions({block.location for block in blocks}) return {block for block in blocks if completions.get(block.location, 0) < 1.0}
def _find_usage_security_groups(self): """find usage for security groups""" vpc_count = 0 paginator = self.conn.get_paginator('describe_db_security_groups') for page in paginator.paginate(): for group in page['DBSecurityGroups']: if 'VpcId' in group and group['VpcId'] is not None: vpc_count += 1 self.limits['Max auths per security group']._add_current_usage( len(group["EC2SecurityGroups"]) + len(group["IPRanges"]), aws_type='AWS::RDS::DBSecurityGroup', resource_id=group['DBSecurityGroupName'] ) self.limits['VPC Security Groups']._add_current_usage( vpc_count, aws_type='AWS::RDS::DBSecurityGroup', )
find usage for security groups
Below is the the instruction that describes the task: ### Input: find usage for security groups ### Response: def _find_usage_security_groups(self): """find usage for security groups""" vpc_count = 0 paginator = self.conn.get_paginator('describe_db_security_groups') for page in paginator.paginate(): for group in page['DBSecurityGroups']: if 'VpcId' in group and group['VpcId'] is not None: vpc_count += 1 self.limits['Max auths per security group']._add_current_usage( len(group["EC2SecurityGroups"]) + len(group["IPRanges"]), aws_type='AWS::RDS::DBSecurityGroup', resource_id=group['DBSecurityGroupName'] ) self.limits['VPC Security Groups']._add_current_usage( vpc_count, aws_type='AWS::RDS::DBSecurityGroup', )
def pem(self): """ Serialize in PEM format """ bio = Membio() if not libcrypto.PEM_write_bio_CMS(bio.bio, self.ptr): raise CMSError("writing CMS to PEM") return str(bio)
Serialize in PEM format
Below is the the instruction that describes the task: ### Input: Serialize in PEM format ### Response: def pem(self): """ Serialize in PEM format """ bio = Membio() if not libcrypto.PEM_write_bio_CMS(bio.bio, self.ptr): raise CMSError("writing CMS to PEM") return str(bio)
def Read(f): """Reads and returns Config data from a yaml file. Args: f: Yaml file to parse. Returns: Config object as defined in this file. Raises: Error (some subclass): If there is a problem loading or parsing the file. """ try: yaml_data = yaml.load(f) except yaml.YAMLError as e: raise ParseError('%s' % e) except IOError as e: raise YAMLLoadError('%s' % e) _CheckData(yaml_data) try: return Config( yaml_data.get('blacklist', ()), yaml_data.get('whitelist', ('*'))) except UnicodeDecodeError as e: raise YAMLLoadError('%s' % e)
Reads and returns Config data from a yaml file. Args: f: Yaml file to parse. Returns: Config object as defined in this file. Raises: Error (some subclass): If there is a problem loading or parsing the file.
Below is the the instruction that describes the task: ### Input: Reads and returns Config data from a yaml file. Args: f: Yaml file to parse. Returns: Config object as defined in this file. Raises: Error (some subclass): If there is a problem loading or parsing the file. ### Response: def Read(f): """Reads and returns Config data from a yaml file. Args: f: Yaml file to parse. Returns: Config object as defined in this file. Raises: Error (some subclass): If there is a problem loading or parsing the file. """ try: yaml_data = yaml.load(f) except yaml.YAMLError as e: raise ParseError('%s' % e) except IOError as e: raise YAMLLoadError('%s' % e) _CheckData(yaml_data) try: return Config( yaml_data.get('blacklist', ()), yaml_data.get('whitelist', ('*'))) except UnicodeDecodeError as e: raise YAMLLoadError('%s' % e)
def clipped_area(ts, thresh=0, integrator=integrate.trapz): """Total value * time above the starting value within a TimeSeries Arguments: ts (pandas.Series): Time series to be integrated. thresh (float): Value to clip the tops off at (crossings will be interpolated) References: http://nbviewer.ipython.org/gist/kermit666/5720498 >>> t = ['2014-12-09T00:00', '2014-12-09T00:15', '2014-12-09T00:30', '2014-12-09T00:45', ... '2014-12-09T01:00', '2014-12-09T01:15', '2014-12-09T01:30', '2014-12-09T01:45'] >>> import pandas as pd >>> ts = pd.Series([217, 234, 235, 231, 219, 219, 231, 232], index=pd.to_datetime(t)) >>> clipped_area(ts, thresh=230) # doctest: +ELLIPSIS 8598.52941... >>> clipped_area(ts, thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5 >>> clipped_area(pd.Series(ts.values, index=ts.index.values.astype(pd.np.int64)), ... thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5 """ integrator = get_integrator(integrator or 0) ts = insert_crossings(ts, thresh) - thresh ts = ts[ts >= 0] # timestamp is in nanoseconds (since 1/1/1970) but this converts it to seconds (SI units) return integrator(ts, ts.index.astype(np.int64)) / 1.0e9
Total value * time above the starting value within a TimeSeries Arguments: ts (pandas.Series): Time series to be integrated. thresh (float): Value to clip the tops off at (crossings will be interpolated) References: http://nbviewer.ipython.org/gist/kermit666/5720498 >>> t = ['2014-12-09T00:00', '2014-12-09T00:15', '2014-12-09T00:30', '2014-12-09T00:45', ... '2014-12-09T01:00', '2014-12-09T01:15', '2014-12-09T01:30', '2014-12-09T01:45'] >>> import pandas as pd >>> ts = pd.Series([217, 234, 235, 231, 219, 219, 231, 232], index=pd.to_datetime(t)) >>> clipped_area(ts, thresh=230) # doctest: +ELLIPSIS 8598.52941... >>> clipped_area(ts, thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5 >>> clipped_area(pd.Series(ts.values, index=ts.index.values.astype(pd.np.int64)), ... thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5
Below is the the instruction that describes the task: ### Input: Total value * time above the starting value within a TimeSeries Arguments: ts (pandas.Series): Time series to be integrated. thresh (float): Value to clip the tops off at (crossings will be interpolated) References: http://nbviewer.ipython.org/gist/kermit666/5720498 >>> t = ['2014-12-09T00:00', '2014-12-09T00:15', '2014-12-09T00:30', '2014-12-09T00:45', ... '2014-12-09T01:00', '2014-12-09T01:15', '2014-12-09T01:30', '2014-12-09T01:45'] >>> import pandas as pd >>> ts = pd.Series([217, 234, 235, 231, 219, 219, 231, 232], index=pd.to_datetime(t)) >>> clipped_area(ts, thresh=230) # doctest: +ELLIPSIS 8598.52941... >>> clipped_area(ts, thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5 >>> clipped_area(pd.Series(ts.values, index=ts.index.values.astype(pd.np.int64)), ... thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5 ### Response: def clipped_area(ts, thresh=0, integrator=integrate.trapz): """Total value * time above the starting value within a TimeSeries Arguments: ts (pandas.Series): Time series to be integrated. thresh (float): Value to clip the tops off at (crossings will be interpolated) References: http://nbviewer.ipython.org/gist/kermit666/5720498 >>> t = ['2014-12-09T00:00', '2014-12-09T00:15', '2014-12-09T00:30', '2014-12-09T00:45', ... '2014-12-09T01:00', '2014-12-09T01:15', '2014-12-09T01:30', '2014-12-09T01:45'] >>> import pandas as pd >>> ts = pd.Series([217, 234, 235, 231, 219, 219, 231, 232], index=pd.to_datetime(t)) >>> clipped_area(ts, thresh=230) # doctest: +ELLIPSIS 8598.52941... >>> clipped_area(ts, thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5 >>> clipped_area(pd.Series(ts.values, index=ts.index.values.astype(pd.np.int64)), ... thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5 """ integrator = get_integrator(integrator or 0) ts = insert_crossings(ts, thresh) - thresh ts = ts[ts >= 0] # timestamp is in nanoseconds (since 1/1/1970) but this converts it to seconds (SI units) return integrator(ts, ts.index.astype(np.int64)) / 1.0e9
def _filter_by_statement(self, statement): """Filter the data collection based on a conditional statement.""" self.__class__._check_conditional_statement(statement, 1) _filt_values, _filt_datetimes = [], [] for i, a in enumerate(self._values): if eval(statement, {'a': a}): _filt_values.append(a) _filt_datetimes.append(self.datetimes[i]) return _filt_values, _filt_datetimes
Filter the data collection based on a conditional statement.
Below is the the instruction that describes the task: ### Input: Filter the data collection based on a conditional statement. ### Response: def _filter_by_statement(self, statement): """Filter the data collection based on a conditional statement.""" self.__class__._check_conditional_statement(statement, 1) _filt_values, _filt_datetimes = [], [] for i, a in enumerate(self._values): if eval(statement, {'a': a}): _filt_values.append(a) _filt_datetimes.append(self.datetimes[i]) return _filt_values, _filt_datetimes
def query(self, query, media=None, year=None, fields=None, extended=None, **kwargs): """Search by titles, descriptions, translated titles, aliases, and people. **Note:** Results are ordered by the most relevant score. :param query: Search title or description :type query: :class:`~python:str` :param media: Desired media type (or :code:`None` to return all matching items) **Possible values:** - :code:`movie` - :code:`show` - :code:`episode` - :code:`person` - :code:`list` :type media: :class:`~python:str` or :class:`~python:list` of :class:`~python:str` :param year: Desired media year (or :code:`None` to return all matching items) :type year: :class:`~python:str` or :class:`~python:int` :param fields: Fields to search for :code:`query` (or :code:`None` to search all fields) :type fields: :class:`~python:str` or :class:`~python:list` :param extended: Level of information to include in response **Possible values:** - :code:`None`: Minimal (e.g. title, year, ids) **(default)** - :code:`full`: Complete :type extended: :class:`~python:str` :param kwargs: Extra request options :type kwargs: :class:`~python:dict` :return: Results :rtype: :class:`~python:list` of :class:`trakt.objects.media.Media` """ # Validate parameters if not media: warnings.warn( "\"media\" parameter is now required on the Trakt['search'].query() method", DeprecationWarning, stacklevel=2 ) if fields and not media: raise ValueError('"fields" can only be used when the "media" parameter is defined') # Build query query = { 'query': query } if year: query['year'] = year if fields: query['fields'] = fields if extended: query['extended'] = extended # Serialize media items if isinstance(media, list): media = ','.join(media) # Send request response = self.http.get( params=[media], query=query ) # Parse response items = self.get_data(response, **kwargs) if isinstance(items, requests.Response): return items if items is not None: return SearchMapper.process_many(self.client, items) return None
Search by titles, descriptions, translated titles, aliases, and people. **Note:** Results are ordered by the most relevant score. :param query: Search title or description :type query: :class:`~python:str` :param media: Desired media type (or :code:`None` to return all matching items) **Possible values:** - :code:`movie` - :code:`show` - :code:`episode` - :code:`person` - :code:`list` :type media: :class:`~python:str` or :class:`~python:list` of :class:`~python:str` :param year: Desired media year (or :code:`None` to return all matching items) :type year: :class:`~python:str` or :class:`~python:int` :param fields: Fields to search for :code:`query` (or :code:`None` to search all fields) :type fields: :class:`~python:str` or :class:`~python:list` :param extended: Level of information to include in response **Possible values:** - :code:`None`: Minimal (e.g. title, year, ids) **(default)** - :code:`full`: Complete :type extended: :class:`~python:str` :param kwargs: Extra request options :type kwargs: :class:`~python:dict` :return: Results :rtype: :class:`~python:list` of :class:`trakt.objects.media.Media`
Below is the the instruction that describes the task: ### Input: Search by titles, descriptions, translated titles, aliases, and people. **Note:** Results are ordered by the most relevant score. :param query: Search title or description :type query: :class:`~python:str` :param media: Desired media type (or :code:`None` to return all matching items) **Possible values:** - :code:`movie` - :code:`show` - :code:`episode` - :code:`person` - :code:`list` :type media: :class:`~python:str` or :class:`~python:list` of :class:`~python:str` :param year: Desired media year (or :code:`None` to return all matching items) :type year: :class:`~python:str` or :class:`~python:int` :param fields: Fields to search for :code:`query` (or :code:`None` to search all fields) :type fields: :class:`~python:str` or :class:`~python:list` :param extended: Level of information to include in response **Possible values:** - :code:`None`: Minimal (e.g. title, year, ids) **(default)** - :code:`full`: Complete :type extended: :class:`~python:str` :param kwargs: Extra request options :type kwargs: :class:`~python:dict` :return: Results :rtype: :class:`~python:list` of :class:`trakt.objects.media.Media` ### Response: def query(self, query, media=None, year=None, fields=None, extended=None, **kwargs): """Search by titles, descriptions, translated titles, aliases, and people. **Note:** Results are ordered by the most relevant score. :param query: Search title or description :type query: :class:`~python:str` :param media: Desired media type (or :code:`None` to return all matching items) **Possible values:** - :code:`movie` - :code:`show` - :code:`episode` - :code:`person` - :code:`list` :type media: :class:`~python:str` or :class:`~python:list` of :class:`~python:str` :param year: Desired media year (or :code:`None` to return all matching items) :type year: :class:`~python:str` or :class:`~python:int` :param fields: Fields to search for :code:`query` (or :code:`None` to search all fields) :type fields: :class:`~python:str` or :class:`~python:list` :param extended: Level of information to include in response **Possible values:** - :code:`None`: Minimal (e.g. title, year, ids) **(default)** - :code:`full`: Complete :type extended: :class:`~python:str` :param kwargs: Extra request options :type kwargs: :class:`~python:dict` :return: Results :rtype: :class:`~python:list` of :class:`trakt.objects.media.Media` """ # Validate parameters if not media: warnings.warn( "\"media\" parameter is now required on the Trakt['search'].query() method", DeprecationWarning, stacklevel=2 ) if fields and not media: raise ValueError('"fields" can only be used when the "media" parameter is defined') # Build query query = { 'query': query } if year: query['year'] = year if fields: query['fields'] = fields if extended: query['extended'] = extended # Serialize media items if isinstance(media, list): media = ','.join(media) # Send request response = self.http.get( params=[media], query=query ) # Parse response items = self.get_data(response, **kwargs) if isinstance(items, requests.Response): return items if items is not None: return SearchMapper.process_many(self.client, items) return None
def resize_file_to(self, in_path, out_path, keep_filename=False): """ Given a filename, resize and save the image per the specification into out_path :param in_path: path to image file to save. Must be supported by PIL :param out_path: path to the directory root for the outputted thumbnails to be stored :return: None """ if keep_filename: filename = path.join(out_path, path.basename(in_path)) else: filename = path.join(out_path, self.get_thumbnail_name(in_path)) out_path = path.dirname(filename) if not path.exists(out_path): os.makedirs(out_path) if not path.exists(filename): try: image = Image.open(in_path) thumbnail = self.resize(image) thumbnail.save(filename) logger.info("Generated Thumbnail {0}".format(path.basename(filename))) except IOError: logger.info("Generating Thumbnail for {0} skipped".format(path.basename(filename)))
Given a filename, resize and save the image per the specification into out_path :param in_path: path to image file to save. Must be supported by PIL :param out_path: path to the directory root for the outputted thumbnails to be stored :return: None
Below is the the instruction that describes the task: ### Input: Given a filename, resize and save the image per the specification into out_path :param in_path: path to image file to save. Must be supported by PIL :param out_path: path to the directory root for the outputted thumbnails to be stored :return: None ### Response: def resize_file_to(self, in_path, out_path, keep_filename=False): """ Given a filename, resize and save the image per the specification into out_path :param in_path: path to image file to save. Must be supported by PIL :param out_path: path to the directory root for the outputted thumbnails to be stored :return: None """ if keep_filename: filename = path.join(out_path, path.basename(in_path)) else: filename = path.join(out_path, self.get_thumbnail_name(in_path)) out_path = path.dirname(filename) if not path.exists(out_path): os.makedirs(out_path) if not path.exists(filename): try: image = Image.open(in_path) thumbnail = self.resize(image) thumbnail.save(filename) logger.info("Generated Thumbnail {0}".format(path.basename(filename))) except IOError: logger.info("Generating Thumbnail for {0} skipped".format(path.basename(filename)))
def get_number_unit(number): """get the unit of number""" n = str(float(number)) mult, submult = n.split('.') if float(submult) != 0: unit = '0.' + (len(submult)-1)*'0' + '1' return float(unit) else: return float(1)
get the unit of number
Below is the the instruction that describes the task: ### Input: get the unit of number ### Response: def get_number_unit(number): """get the unit of number""" n = str(float(number)) mult, submult = n.split('.') if float(submult) != 0: unit = '0.' + (len(submult)-1)*'0' + '1' return float(unit) else: return float(1)
def html_scientific_notation_rate(rate): """Helper for convert decimal rate using scientific notation. For example we want to show the very detail value of fatality rate because it might be a very small number. :param rate: Rate value :type rate: float :return: Rate value with html tag to show the exponent :rtype: str """ precision = '%.3f' if rate * 100 > 0: decimal_rate = Decimal(precision % (rate * 100)) if decimal_rate == Decimal((precision % 0)): decimal_rate = Decimal(str(rate * 100)) else: decimal_rate = Decimal(str(rate * 100)) if decimal_rate.as_tuple().exponent >= -3: rate_percentage = str(decimal_rate) else: rate = '%.2E' % decimal_rate html_rate = rate.split('E') # we use html tag to show exponent html_rate[1] = '10<sup>{exponent}</sup>'.format( exponent=html_rate[1]) html_rate.insert(1, 'x') rate_percentage = ''.join(html_rate) return rate_percentage
Helper for convert decimal rate using scientific notation. For example we want to show the very detail value of fatality rate because it might be a very small number. :param rate: Rate value :type rate: float :return: Rate value with html tag to show the exponent :rtype: str
Below is the the instruction that describes the task: ### Input: Helper for convert decimal rate using scientific notation. For example we want to show the very detail value of fatality rate because it might be a very small number. :param rate: Rate value :type rate: float :return: Rate value with html tag to show the exponent :rtype: str ### Response: def html_scientific_notation_rate(rate): """Helper for convert decimal rate using scientific notation. For example we want to show the very detail value of fatality rate because it might be a very small number. :param rate: Rate value :type rate: float :return: Rate value with html tag to show the exponent :rtype: str """ precision = '%.3f' if rate * 100 > 0: decimal_rate = Decimal(precision % (rate * 100)) if decimal_rate == Decimal((precision % 0)): decimal_rate = Decimal(str(rate * 100)) else: decimal_rate = Decimal(str(rate * 100)) if decimal_rate.as_tuple().exponent >= -3: rate_percentage = str(decimal_rate) else: rate = '%.2E' % decimal_rate html_rate = rate.split('E') # we use html tag to show exponent html_rate[1] = '10<sup>{exponent}</sup>'.format( exponent=html_rate[1]) html_rate.insert(1, 'x') rate_percentage = ''.join(html_rate) return rate_percentage
def docker_installed_rpms(broker): """ Command: /usr/bin/rpm -qa --root `%s` --qf `%s`""" ctx = broker[DockerImageContext] root = ctx.root fmt = DefaultSpecs.rpm_format cmd = "/usr/bin/rpm -qa --root %s --qf '%s'" % (root, fmt) result = ctx.shell_out(cmd) return CommandOutputProvider(cmd, ctx, content=result)
Command: /usr/bin/rpm -qa --root `%s` --qf `%s`
Below is the the instruction that describes the task: ### Input: Command: /usr/bin/rpm -qa --root `%s` --qf `%s` ### Response: def docker_installed_rpms(broker): """ Command: /usr/bin/rpm -qa --root `%s` --qf `%s`""" ctx = broker[DockerImageContext] root = ctx.root fmt = DefaultSpecs.rpm_format cmd = "/usr/bin/rpm -qa --root %s --qf '%s'" % (root, fmt) result = ctx.shell_out(cmd) return CommandOutputProvider(cmd, ctx, content=result)
def as_batch_body(self): ''' return the current message as expected by batch body format''' if sys.version_info >= (3,) and isinstance(self.body, bytes): # It HAS to be string to be serialized in JSON body = self.body.decode('utf-8') else: # Python 2.7 people handle this themself body = self.body result = {'Body': body} # Adds custom properties if self.custom_properties: result['UserProperties'] = {name: self._serialize_basic_properties_value(value) for name, value in self.custom_properties.items()} # Adds BrokerProperties if self.broker_properties: result['BrokerProperties'] = {name: self._serialize_basic_properties_value(value) for name, value in self.broker_properties.items()} return result
return the current message as expected by batch body format
Below is the the instruction that describes the task: ### Input: return the current message as expected by batch body format ### Response: def as_batch_body(self): ''' return the current message as expected by batch body format''' if sys.version_info >= (3,) and isinstance(self.body, bytes): # It HAS to be string to be serialized in JSON body = self.body.decode('utf-8') else: # Python 2.7 people handle this themself body = self.body result = {'Body': body} # Adds custom properties if self.custom_properties: result['UserProperties'] = {name: self._serialize_basic_properties_value(value) for name, value in self.custom_properties.items()} # Adds BrokerProperties if self.broker_properties: result['BrokerProperties'] = {name: self._serialize_basic_properties_value(value) for name, value in self.broker_properties.items()} return result
def get_command_line_key_for_unknown_config_file_setting(self, key): """Compute a commandline arg key to be used for a config file setting that doesn't correspond to any defined configargparse arg (and so doesn't have a user-specified commandline arg key). Args: key: The config file key that was being set. """ key_without_prefix_chars = key.strip(self.prefix_chars) command_line_key = self.prefix_chars[0]*2 + key_without_prefix_chars return command_line_key
Compute a commandline arg key to be used for a config file setting that doesn't correspond to any defined configargparse arg (and so doesn't have a user-specified commandline arg key). Args: key: The config file key that was being set.
Below is the the instruction that describes the task: ### Input: Compute a commandline arg key to be used for a config file setting that doesn't correspond to any defined configargparse arg (and so doesn't have a user-specified commandline arg key). Args: key: The config file key that was being set. ### Response: def get_command_line_key_for_unknown_config_file_setting(self, key): """Compute a commandline arg key to be used for a config file setting that doesn't correspond to any defined configargparse arg (and so doesn't have a user-specified commandline arg key). Args: key: The config file key that was being set. """ key_without_prefix_chars = key.strip(self.prefix_chars) command_line_key = self.prefix_chars[0]*2 + key_without_prefix_chars return command_line_key
def compare_content_type(url, content_type): ''' Compare the content type header of url param with content_type param and returns boolean @param url -> string e.g. http://127.0.0.1/index @param content_type -> string e.g. text/html ''' try: response = urllib2.urlopen(url) except: return False return response.headers.type == content_type
Compare the content type header of url param with content_type param and returns boolean @param url -> string e.g. http://127.0.0.1/index @param content_type -> string e.g. text/html
Below is the the instruction that describes the task: ### Input: Compare the content type header of url param with content_type param and returns boolean @param url -> string e.g. http://127.0.0.1/index @param content_type -> string e.g. text/html ### Response: def compare_content_type(url, content_type): ''' Compare the content type header of url param with content_type param and returns boolean @param url -> string e.g. http://127.0.0.1/index @param content_type -> string e.g. text/html ''' try: response = urllib2.urlopen(url) except: return False return response.headers.type == content_type
def match(self, keys, partial=True): """ Check if the value of this namespace is matched by keys '*' is treated as wildcard Arguments: keys -- list of keys Examples: ns = Namespace("a.b.c") ns.match(["a"]) #True ns.match(["a","b"]) #True ns.match(["a","b","c"]) #True ns.match(["a","*","c"]) #True ns.match(["b","b","c"]) #False """ if not partial and len(keys) != self.length: return False c = 0 for k in keys: if c >= self.length: return False a = self.keys[c] if a != "*" and k != "*" and k != a: return False c += 1 return True
Check if the value of this namespace is matched by keys '*' is treated as wildcard Arguments: keys -- list of keys Examples: ns = Namespace("a.b.c") ns.match(["a"]) #True ns.match(["a","b"]) #True ns.match(["a","b","c"]) #True ns.match(["a","*","c"]) #True ns.match(["b","b","c"]) #False
Below is the the instruction that describes the task: ### Input: Check if the value of this namespace is matched by keys '*' is treated as wildcard Arguments: keys -- list of keys Examples: ns = Namespace("a.b.c") ns.match(["a"]) #True ns.match(["a","b"]) #True ns.match(["a","b","c"]) #True ns.match(["a","*","c"]) #True ns.match(["b","b","c"]) #False ### Response: def match(self, keys, partial=True): """ Check if the value of this namespace is matched by keys '*' is treated as wildcard Arguments: keys -- list of keys Examples: ns = Namespace("a.b.c") ns.match(["a"]) #True ns.match(["a","b"]) #True ns.match(["a","b","c"]) #True ns.match(["a","*","c"]) #True ns.match(["b","b","c"]) #False """ if not partial and len(keys) != self.length: return False c = 0 for k in keys: if c >= self.length: return False a = self.keys[c] if a != "*" and k != "*" and k != a: return False c += 1 return True
def remove_lb_nodes(self, lb_id, node_ids): """ Remove one or more nodes :param string lb_id: Balancer id :param list node_ids: List of node ids """ log.info("Removing load balancer nodes %s" % node_ids) for node_id in node_ids: self._request('delete', '/loadbalancers/%s/nodes/%s' % (lb_id, node_id))
Remove one or more nodes :param string lb_id: Balancer id :param list node_ids: List of node ids
Below is the the instruction that describes the task: ### Input: Remove one or more nodes :param string lb_id: Balancer id :param list node_ids: List of node ids ### Response: def remove_lb_nodes(self, lb_id, node_ids): """ Remove one or more nodes :param string lb_id: Balancer id :param list node_ids: List of node ids """ log.info("Removing load balancer nodes %s" % node_ids) for node_id in node_ids: self._request('delete', '/loadbalancers/%s/nodes/%s' % (lb_id, node_id))
def tuple_of(*generators): """ Generates a tuple by generating values for each of the specified generators. This is a class factory, it makes a class which is a closure around the specified generators. """ class TupleOfGenerators(ArbitraryInterface): """ A closure class around the generators specified above, which generates a tuple of the generators. """ @classmethod def arbitrary(cls): """ Generate a tuple of the enclosed generators. """ return tuple([ arbitrary(generator) for generator in generators if generator is not tuple ]) TupleOfGenerators.__name__ = ''.join([ 'tuple_of(', ', '.join(generator.__name__ for generator in generators), ')' ]) return TupleOfGenerators
Generates a tuple by generating values for each of the specified generators. This is a class factory, it makes a class which is a closure around the specified generators.
Below is the the instruction that describes the task: ### Input: Generates a tuple by generating values for each of the specified generators. This is a class factory, it makes a class which is a closure around the specified generators. ### Response: def tuple_of(*generators): """ Generates a tuple by generating values for each of the specified generators. This is a class factory, it makes a class which is a closure around the specified generators. """ class TupleOfGenerators(ArbitraryInterface): """ A closure class around the generators specified above, which generates a tuple of the generators. """ @classmethod def arbitrary(cls): """ Generate a tuple of the enclosed generators. """ return tuple([ arbitrary(generator) for generator in generators if generator is not tuple ]) TupleOfGenerators.__name__ = ''.join([ 'tuple_of(', ', '.join(generator.__name__ for generator in generators), ')' ]) return TupleOfGenerators
def uncompress_file(input_file_name, file_extension, dest_dir): """ Uncompress gz and bz2 files """ if file_extension.lower() not in ('.gz', '.bz2'): raise NotImplementedError("Received {} format. Only gz and bz2 " "files can currently be uncompressed." .format(file_extension)) if file_extension.lower() == '.gz': fmodule = gzip.GzipFile elif file_extension.lower() == '.bz2': fmodule = bz2.BZ2File with fmodule(input_file_name, mode='rb') as f_compressed,\ NamedTemporaryFile(dir=dest_dir, mode='wb', delete=False) as f_uncompressed: shutil.copyfileobj(f_compressed, f_uncompressed) return f_uncompressed.name
Uncompress gz and bz2 files
Below is the the instruction that describes the task: ### Input: Uncompress gz and bz2 files ### Response: def uncompress_file(input_file_name, file_extension, dest_dir): """ Uncompress gz and bz2 files """ if file_extension.lower() not in ('.gz', '.bz2'): raise NotImplementedError("Received {} format. Only gz and bz2 " "files can currently be uncompressed." .format(file_extension)) if file_extension.lower() == '.gz': fmodule = gzip.GzipFile elif file_extension.lower() == '.bz2': fmodule = bz2.BZ2File with fmodule(input_file_name, mode='rb') as f_compressed,\ NamedTemporaryFile(dir=dest_dir, mode='wb', delete=False) as f_uncompressed: shutil.copyfileobj(f_compressed, f_uncompressed) return f_uncompressed.name
def reverse_lookup_from_nested_dict(values_dict): """ Create reverse-lookup dictionary mapping each row key to a list of triplets: [(column key, value), ...] Parameters ---------- nested_values_dict : dict column_key -> row_key -> value weights_dict : dict column_key -> row_key -> sample weight Returns dictionary mapping row_key -> [(column key, value)] """ reverse_lookup = defaultdict(list) for column_key, column_dict in values_dict.items(): for row_key, value in column_dict.items(): entry = (column_key, value) reverse_lookup[row_key].append(entry) return reverse_lookup
Create reverse-lookup dictionary mapping each row key to a list of triplets: [(column key, value), ...] Parameters ---------- nested_values_dict : dict column_key -> row_key -> value weights_dict : dict column_key -> row_key -> sample weight Returns dictionary mapping row_key -> [(column key, value)]
Below is the the instruction that describes the task: ### Input: Create reverse-lookup dictionary mapping each row key to a list of triplets: [(column key, value), ...] Parameters ---------- nested_values_dict : dict column_key -> row_key -> value weights_dict : dict column_key -> row_key -> sample weight Returns dictionary mapping row_key -> [(column key, value)] ### Response: def reverse_lookup_from_nested_dict(values_dict): """ Create reverse-lookup dictionary mapping each row key to a list of triplets: [(column key, value), ...] Parameters ---------- nested_values_dict : dict column_key -> row_key -> value weights_dict : dict column_key -> row_key -> sample weight Returns dictionary mapping row_key -> [(column key, value)] """ reverse_lookup = defaultdict(list) for column_key, column_dict in values_dict.items(): for row_key, value in column_dict.items(): entry = (column_key, value) reverse_lookup[row_key].append(entry) return reverse_lookup
def selected(self): """Action to be executed when a valid item has been selected""" self.selected_text = self.currentText() self.valid.emit(True, True) self.open_dir.emit(self.selected_text)
Action to be executed when a valid item has been selected
Below is the the instruction that describes the task: ### Input: Action to be executed when a valid item has been selected ### Response: def selected(self): """Action to be executed when a valid item has been selected""" self.selected_text = self.currentText() self.valid.emit(True, True) self.open_dir.emit(self.selected_text)
def load_from_json(data): """ Load a :class:`RegistryReponse` from a dictionary or a string (that will be parsed as json). """ if isinstance(data, str): data = json.loads(data) applications = [ ApplicationResponse.load_from_json(a) for a in data['applications'] ] if data['applications'] is not None else [] return RegistryResponse( data['query_uri'], data['success'], data['has_references'], data['count'], applications )
Load a :class:`RegistryReponse` from a dictionary or a string (that will be parsed as json).
Below is the the instruction that describes the task: ### Input: Load a :class:`RegistryReponse` from a dictionary or a string (that will be parsed as json). ### Response: def load_from_json(data): """ Load a :class:`RegistryReponse` from a dictionary or a string (that will be parsed as json). """ if isinstance(data, str): data = json.loads(data) applications = [ ApplicationResponse.load_from_json(a) for a in data['applications'] ] if data['applications'] is not None else [] return RegistryResponse( data['query_uri'], data['success'], data['has_references'], data['count'], applications )
def digest_content(self, rule): """ Walk on rule content tokens to return a dict of properties. This is pretty naive and will choke/fail on everything that is more evolved than simple ``ident(string):value(string)`` Arguments: rule (tinycss2.ast.QualifiedRule): Qualified rule object as returned by tinycss2. Returns: dict: Dictionnary of retrieved variables and properties. """ data = OrderedDict() current_key = None for token in rule.content: # Assume first identity token is the property name if token.type == 'ident': # Ignore starting '-' from css variables name = token.value if name.startswith('-'): name = name[1:] current_key = name data[current_key] = None # Assume first following string token is the property value. if token.type == 'string': data[current_key] = token.value return data
Walk on rule content tokens to return a dict of properties. This is pretty naive and will choke/fail on everything that is more evolved than simple ``ident(string):value(string)`` Arguments: rule (tinycss2.ast.QualifiedRule): Qualified rule object as returned by tinycss2. Returns: dict: Dictionnary of retrieved variables and properties.
Below is the the instruction that describes the task: ### Input: Walk on rule content tokens to return a dict of properties. This is pretty naive and will choke/fail on everything that is more evolved than simple ``ident(string):value(string)`` Arguments: rule (tinycss2.ast.QualifiedRule): Qualified rule object as returned by tinycss2. Returns: dict: Dictionnary of retrieved variables and properties. ### Response: def digest_content(self, rule): """ Walk on rule content tokens to return a dict of properties. This is pretty naive and will choke/fail on everything that is more evolved than simple ``ident(string):value(string)`` Arguments: rule (tinycss2.ast.QualifiedRule): Qualified rule object as returned by tinycss2. Returns: dict: Dictionnary of retrieved variables and properties. """ data = OrderedDict() current_key = None for token in rule.content: # Assume first identity token is the property name if token.type == 'ident': # Ignore starting '-' from css variables name = token.value if name.startswith('-'): name = name[1:] current_key = name data[current_key] = None # Assume first following string token is the property value. if token.type == 'string': data[current_key] = token.value return data
def walk_direction_preheel(self, data_frame): """ Estimate local walk (not cardinal) direction with pre-heel strike phase. Inspired by Nirupam Roy's B.E. thesis: "WalkCompass: Finding Walking Direction Leveraging Smartphone's Inertial Sensors" :param data_frame: The data frame. It should have x, y, and z columns. :type data_frame: pandas.DataFrame :return: Unit vector of local walk (not cardinal) direction. :rtype: numpy.ndarray """ # Sum of absolute values across accelerometer axes: data = data_frame.x.abs() + data_frame.y.abs() + data_frame.z.abs() # Find maximum peaks of smoothed data: dummy, ipeaks_smooth = self.heel_strikes(data) data = data.values # Compute number of samples between peaks using the real part of the FFT: interpeak = compute_interpeak(data, self.sampling_frequency) decel = np.int(np.round(self.stride_fraction * interpeak)) # Find maximum peaks close to maximum peaks of smoothed data: ipeaks = [] for ipeak_smooth in ipeaks_smooth: ipeak = np.argmax(data[ipeak_smooth - decel:ipeak_smooth + decel]) ipeak += ipeak_smooth - decel ipeaks.append(ipeak) # Compute the average vector for each deceleration phase: vectors = [] for ipeak in ipeaks: decel_vectors = np.asarray([[data_frame.x[i], data_frame.y[i], data_frame.z[i]] for i in range(ipeak - decel, ipeak)]) vectors.append(np.mean(decel_vectors, axis=0)) # Compute the average deceleration vector and take the opposite direction: direction = -1 * np.mean(vectors, axis=0) # Return the unit vector in this direction: direction /= np.sqrt(direction.dot(direction)) return direction
Estimate local walk (not cardinal) direction with pre-heel strike phase. Inspired by Nirupam Roy's B.E. thesis: "WalkCompass: Finding Walking Direction Leveraging Smartphone's Inertial Sensors" :param data_frame: The data frame. It should have x, y, and z columns. :type data_frame: pandas.DataFrame :return: Unit vector of local walk (not cardinal) direction. :rtype: numpy.ndarray
Below is the the instruction that describes the task: ### Input: Estimate local walk (not cardinal) direction with pre-heel strike phase. Inspired by Nirupam Roy's B.E. thesis: "WalkCompass: Finding Walking Direction Leveraging Smartphone's Inertial Sensors" :param data_frame: The data frame. It should have x, y, and z columns. :type data_frame: pandas.DataFrame :return: Unit vector of local walk (not cardinal) direction. :rtype: numpy.ndarray ### Response: def walk_direction_preheel(self, data_frame): """ Estimate local walk (not cardinal) direction with pre-heel strike phase. Inspired by Nirupam Roy's B.E. thesis: "WalkCompass: Finding Walking Direction Leveraging Smartphone's Inertial Sensors" :param data_frame: The data frame. It should have x, y, and z columns. :type data_frame: pandas.DataFrame :return: Unit vector of local walk (not cardinal) direction. :rtype: numpy.ndarray """ # Sum of absolute values across accelerometer axes: data = data_frame.x.abs() + data_frame.y.abs() + data_frame.z.abs() # Find maximum peaks of smoothed data: dummy, ipeaks_smooth = self.heel_strikes(data) data = data.values # Compute number of samples between peaks using the real part of the FFT: interpeak = compute_interpeak(data, self.sampling_frequency) decel = np.int(np.round(self.stride_fraction * interpeak)) # Find maximum peaks close to maximum peaks of smoothed data: ipeaks = [] for ipeak_smooth in ipeaks_smooth: ipeak = np.argmax(data[ipeak_smooth - decel:ipeak_smooth + decel]) ipeak += ipeak_smooth - decel ipeaks.append(ipeak) # Compute the average vector for each deceleration phase: vectors = [] for ipeak in ipeaks: decel_vectors = np.asarray([[data_frame.x[i], data_frame.y[i], data_frame.z[i]] for i in range(ipeak - decel, ipeak)]) vectors.append(np.mean(decel_vectors, axis=0)) # Compute the average deceleration vector and take the opposite direction: direction = -1 * np.mean(vectors, axis=0) # Return the unit vector in this direction: direction /= np.sqrt(direction.dot(direction)) return direction
def ctcp_reply(self, command, dst, message=None): """ Sends a reply to a CTCP request. :param command: CTCP command to use. :type command: str :param dst: sender of the initial request. :type dst: str :param message: data to attach to the reply. :type message: str """ if message is None: raw_cmd = u'\x01{0}\x01'.format(command) else: raw_cmd = u'\x01{0} {1}\x01'.format(command, message) self.notice(dst, raw_cmd)
Sends a reply to a CTCP request. :param command: CTCP command to use. :type command: str :param dst: sender of the initial request. :type dst: str :param message: data to attach to the reply. :type message: str
Below is the the instruction that describes the task: ### Input: Sends a reply to a CTCP request. :param command: CTCP command to use. :type command: str :param dst: sender of the initial request. :type dst: str :param message: data to attach to the reply. :type message: str ### Response: def ctcp_reply(self, command, dst, message=None): """ Sends a reply to a CTCP request. :param command: CTCP command to use. :type command: str :param dst: sender of the initial request. :type dst: str :param message: data to attach to the reply. :type message: str """ if message is None: raw_cmd = u'\x01{0}\x01'.format(command) else: raw_cmd = u'\x01{0} {1}\x01'.format(command, message) self.notice(dst, raw_cmd)
def __set_style_sheet(self): """ Sets the Widget stylesheet. """ colors = map( lambda x: "rgb({0}, {1}, {2}, {3})".format(x.red(), x.green(), x.blue(), int(self.__opacity * 255)), (self.__color, self.__background_color, self.__border_color)) self.setStyleSheet(self.__style.format(*colors))
Sets the Widget stylesheet.
Below is the the instruction that describes the task: ### Input: Sets the Widget stylesheet. ### Response: def __set_style_sheet(self): """ Sets the Widget stylesheet. """ colors = map( lambda x: "rgb({0}, {1}, {2}, {3})".format(x.red(), x.green(), x.blue(), int(self.__opacity * 255)), (self.__color, self.__background_color, self.__border_color)) self.setStyleSheet(self.__style.format(*colors))