code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def get_queue(cls, name, priority=0, **fields_if_new): """ Get, or create, and return the wanted queue. If the queue is created, fields in fields_if_new will be set for the new queue. """ queue_kwargs = {'name': name, 'priority': priority} retries = 0 while retries < 10: retries += 1 try: queue, created = cls.get_or_connect(**queue_kwargs) except IndexError: # Failure during the retrieval https://friendpaste.com/5U63a8aFuV44SEgQckgMP # => retry continue except ValueError: # more than one (race condition https://github.com/yohanboniface/redis-limpyd/issues/82 ?) try: queue = cls.collection(**queue_kwargs).instances()[0] except IndexError: # but no more now ?! # => retry continue else: created = False # ok we have our queue, stop now break if created and fields_if_new: queue.set_fields(**fields_if_new) return queue
Get, or create, and return the wanted queue. If the queue is created, fields in fields_if_new will be set for the new queue.
Below is the the instruction that describes the task: ### Input: Get, or create, and return the wanted queue. If the queue is created, fields in fields_if_new will be set for the new queue. ### Response: def get_queue(cls, name, priority=0, **fields_if_new): """ Get, or create, and return the wanted queue. If the queue is created, fields in fields_if_new will be set for the new queue. """ queue_kwargs = {'name': name, 'priority': priority} retries = 0 while retries < 10: retries += 1 try: queue, created = cls.get_or_connect(**queue_kwargs) except IndexError: # Failure during the retrieval https://friendpaste.com/5U63a8aFuV44SEgQckgMP # => retry continue except ValueError: # more than one (race condition https://github.com/yohanboniface/redis-limpyd/issues/82 ?) try: queue = cls.collection(**queue_kwargs).instances()[0] except IndexError: # but no more now ?! # => retry continue else: created = False # ok we have our queue, stop now break if created and fields_if_new: queue.set_fields(**fields_if_new) return queue
def _to_chimera(M, N, L, q): "Converts a qubit's linear index to chimera coordinates." return (q // N // L // 2, (q // L // 2) % N, (q // L) % 2, q % L)
Converts a qubit's linear index to chimera coordinates.
Below is the the instruction that describes the task: ### Input: Converts a qubit's linear index to chimera coordinates. ### Response: def _to_chimera(M, N, L, q): "Converts a qubit's linear index to chimera coordinates." return (q // N // L // 2, (q // L // 2) % N, (q // L) % 2, q % L)
def parse( version, strict=False # type: str # type: bool ): # type:(...) -> Union[Version, LegacyVersion] """ Parse the given version string and return either a :class:`Version` object or a LegacyVersion object depending on if the given version is a valid PEP 440 version or a legacy version. If strict=True only PEP 440 versions will be accepted. """ try: return Version(version) except InvalidVersion: if strict: raise return LegacyVersion(version)
Parse the given version string and return either a :class:`Version` object or a LegacyVersion object depending on if the given version is a valid PEP 440 version or a legacy version. If strict=True only PEP 440 versions will be accepted.
Below is the the instruction that describes the task: ### Input: Parse the given version string and return either a :class:`Version` object or a LegacyVersion object depending on if the given version is a valid PEP 440 version or a legacy version. If strict=True only PEP 440 versions will be accepted. ### Response: def parse( version, strict=False # type: str # type: bool ): # type:(...) -> Union[Version, LegacyVersion] """ Parse the given version string and return either a :class:`Version` object or a LegacyVersion object depending on if the given version is a valid PEP 440 version or a legacy version. If strict=True only PEP 440 versions will be accepted. """ try: return Version(version) except InvalidVersion: if strict: raise return LegacyVersion(version)
def get_all_constants(): """ Get list of all uppercase, non-private globals (doesn't start with ``_``). Returns: list: Uppercase names defined in `globals()` (variables from this \ module). """ return filter( lambda key: key.upper() == key and type(globals()[key]) in _ALLOWED, filter( # filter _PRIVATE variables lambda x: not x.startswith("_"), globals() ) )
Get list of all uppercase, non-private globals (doesn't start with ``_``). Returns: list: Uppercase names defined in `globals()` (variables from this \ module).
Below is the the instruction that describes the task: ### Input: Get list of all uppercase, non-private globals (doesn't start with ``_``). Returns: list: Uppercase names defined in `globals()` (variables from this \ module). ### Response: def get_all_constants(): """ Get list of all uppercase, non-private globals (doesn't start with ``_``). Returns: list: Uppercase names defined in `globals()` (variables from this \ module). """ return filter( lambda key: key.upper() == key and type(globals()[key]) in _ALLOWED, filter( # filter _PRIVATE variables lambda x: not x.startswith("_"), globals() ) )
def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = signature(init) # Consider the constructor parameters excluding 'self' parameters = [p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError("POT estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s with constructor %s doesn't " " follow this convention." % (cls, init_signature)) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters])
Get parameter names for the estimator
Below is the the instruction that describes the task: ### Input: Get parameter names for the estimator ### Response: def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = signature(init) # Consider the constructor parameters excluding 'self' parameters = [p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError("POT estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s with constructor %s doesn't " " follow this convention." % (cls, init_signature)) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters])
def run_for_time(self, duration: float=10.0) -> None: '''Execute the tasky/asyncio event loop for `duration` seconds.''' Log.debug('running event loop for %.1f seconds', duration) try: asyncio.ensure_future(self.init()) self.loop.run_until_complete(asyncio.sleep(duration)) self.terminate() self.loop.run_forever() except RuntimeError as e: if not e.args[0].startswith('Event loop stopped'): raise finally: self.loop.close()
Execute the tasky/asyncio event loop for `duration` seconds.
Below is the the instruction that describes the task: ### Input: Execute the tasky/asyncio event loop for `duration` seconds. ### Response: def run_for_time(self, duration: float=10.0) -> None: '''Execute the tasky/asyncio event loop for `duration` seconds.''' Log.debug('running event loop for %.1f seconds', duration) try: asyncio.ensure_future(self.init()) self.loop.run_until_complete(asyncio.sleep(duration)) self.terminate() self.loop.run_forever() except RuntimeError as e: if not e.args[0].startswith('Event loop stopped'): raise finally: self.loop.close()
def openflow_controller_controller_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") openflow_controller = ET.SubElement(config, "openflow-controller", xmlns="urn:brocade.com:mgmt:brocade-openflow") controller_name = ET.SubElement(openflow_controller, "controller-name") controller_name.text = kwargs.pop('controller_name') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
Below is the the instruction that describes the task: ### Input: Auto Generated Code ### Response: def openflow_controller_controller_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") openflow_controller = ET.SubElement(config, "openflow-controller", xmlns="urn:brocade.com:mgmt:brocade-openflow") controller_name = ET.SubElement(openflow_controller, "controller-name") controller_name.text = kwargs.pop('controller_name') callback = kwargs.pop('callback', self._callback) return callback(config)
def run_mp(songs): """ Concurrently calls get_lyrics to fetch the lyrics of a large list of songs. """ stats = Stats() if CONFIG['debug']: good = open('found', 'w') bad = open('notfound', 'w') logger.debug('Launching a pool of %d processes\n', CONFIG['jobcount']) chunksize = math.ceil(len(songs) / os.cpu_count()) try: with Pool(CONFIG['jobcount']) as pool: for result in pool.imap_unordered(get_lyrics, songs, chunksize): if result is None: continue for source, runtime in result.runtimes.items(): stats.add_result(source, result.source == source, runtime) found = process_result(result) if CONFIG['debug']: if found: good.write(f'{id_source(source)}: {result.song}\n') good.flush() else: bad.write(str(result.song) + '\n') bad.flush() finally: if CONFIG['debug']: good.close() bad.close() return stats
Concurrently calls get_lyrics to fetch the lyrics of a large list of songs.
Below is the the instruction that describes the task: ### Input: Concurrently calls get_lyrics to fetch the lyrics of a large list of songs. ### Response: def run_mp(songs): """ Concurrently calls get_lyrics to fetch the lyrics of a large list of songs. """ stats = Stats() if CONFIG['debug']: good = open('found', 'w') bad = open('notfound', 'w') logger.debug('Launching a pool of %d processes\n', CONFIG['jobcount']) chunksize = math.ceil(len(songs) / os.cpu_count()) try: with Pool(CONFIG['jobcount']) as pool: for result in pool.imap_unordered(get_lyrics, songs, chunksize): if result is None: continue for source, runtime in result.runtimes.items(): stats.add_result(source, result.source == source, runtime) found = process_result(result) if CONFIG['debug']: if found: good.write(f'{id_source(source)}: {result.song}\n') good.flush() else: bad.write(str(result.song) + '\n') bad.flush() finally: if CONFIG['debug']: good.close() bad.close() return stats
def _data_is_binary(self, data): """Check if the data contains binary components.""" if isinstance(data, six.binary_type): return True elif isinstance(data, list): return functools.reduce( lambda a, b: a or b, [self._data_is_binary(item) for item in data], False) elif isinstance(data, dict): return functools.reduce( lambda a, b: a or b, [self._data_is_binary(item) for item in six.itervalues(data)], False) else: return False
Check if the data contains binary components.
Below is the the instruction that describes the task: ### Input: Check if the data contains binary components. ### Response: def _data_is_binary(self, data): """Check if the data contains binary components.""" if isinstance(data, six.binary_type): return True elif isinstance(data, list): return functools.reduce( lambda a, b: a or b, [self._data_is_binary(item) for item in data], False) elif isinstance(data, dict): return functools.reduce( lambda a, b: a or b, [self._data_is_binary(item) for item in six.itervalues(data)], False) else: return False
def select_options(self, options_prefix): """ Select options from this selection, that are started with the specified prefix :param options_prefix: name prefix of options that should be selected :return: WConfigSelection """ return WConfigSelection( self.config(), self.section(), self.option_prefix() + options_prefix )
Select options from this selection, that are started with the specified prefix :param options_prefix: name prefix of options that should be selected :return: WConfigSelection
Below is the the instruction that describes the task: ### Input: Select options from this selection, that are started with the specified prefix :param options_prefix: name prefix of options that should be selected :return: WConfigSelection ### Response: def select_options(self, options_prefix): """ Select options from this selection, that are started with the specified prefix :param options_prefix: name prefix of options that should be selected :return: WConfigSelection """ return WConfigSelection( self.config(), self.section(), self.option_prefix() + options_prefix )
def create_file_vdev(size, *vdevs): ''' Creates file based virtual devices for a zpool CLI Example: .. code-block:: bash salt '*' zpool.create_file_vdev 7G /path/to/vdev1 [/path/to/vdev2] [...] .. note:: Depending on file size, the above command may take a while to return. ''' ret = OrderedDict() err = OrderedDict() _mkfile_cmd = salt.utils.path.which('mkfile') for vdev in vdevs: if os.path.isfile(vdev): ret[vdev] = 'existed' else: res = __salt__['cmd.run_all']( '{mkfile} {size} {vdev}'.format( mkfile=_mkfile_cmd, size=size, vdev=vdev, ), python_shell=False, ) if res['retcode'] != 0: if 'stderr' in res and ':' in res['stderr']: ret[vdev] = 'failed' err[vdev] = ":".join(res['stderr'].strip().split(':')[1:]) else: ret[vdev] = 'created' if err: ret['error'] = err return ret
Creates file based virtual devices for a zpool CLI Example: .. code-block:: bash salt '*' zpool.create_file_vdev 7G /path/to/vdev1 [/path/to/vdev2] [...] .. note:: Depending on file size, the above command may take a while to return.
Below is the the instruction that describes the task: ### Input: Creates file based virtual devices for a zpool CLI Example: .. code-block:: bash salt '*' zpool.create_file_vdev 7G /path/to/vdev1 [/path/to/vdev2] [...] .. note:: Depending on file size, the above command may take a while to return. ### Response: def create_file_vdev(size, *vdevs): ''' Creates file based virtual devices for a zpool CLI Example: .. code-block:: bash salt '*' zpool.create_file_vdev 7G /path/to/vdev1 [/path/to/vdev2] [...] .. note:: Depending on file size, the above command may take a while to return. ''' ret = OrderedDict() err = OrderedDict() _mkfile_cmd = salt.utils.path.which('mkfile') for vdev in vdevs: if os.path.isfile(vdev): ret[vdev] = 'existed' else: res = __salt__['cmd.run_all']( '{mkfile} {size} {vdev}'.format( mkfile=_mkfile_cmd, size=size, vdev=vdev, ), python_shell=False, ) if res['retcode'] != 0: if 'stderr' in res and ':' in res['stderr']: ret[vdev] = 'failed' err[vdev] = ":".join(res['stderr'].strip().split(':')[1:]) else: ret[vdev] = 'created' if err: ret['error'] = err return ret
def make_report(plots, settings): ''' Creates a fat html report based on the previously created files plots is a list of Plot objects defined by a path and title statsfile is the file to which the stats have been saved, which is parsed to a table (rather dodgy) ''' logging.info("Writing html report.") html_content = ['<body>'] # Hyperlink Table of Contents panel html_content.append('<div class="panel panelC">') if settings["filtered"]: html_content.append( '<p><strong><a href="#stats0">Summary Statistics prior to filtering</a></strong></p>') html_content.append( '<p><strong><a href="#stats1">Summary Statistics after filtering</a></strong></p>') else: html_content.append( '<p><strong><a href="#stats0">Summary Statistics</a></strong></p>') html_content.append('<p><strong><a href="#plots">Plots</a></strong></p>') html_content.extend(['<p style="margin-left:20px"><a href="#' + p.title.replace(' ', '_') + '">' + p.title + '</a></p>' for p in plots]) html_content.append('</div>') # The report itself: stats html_content.append('<div class="panel panelM"> <h1>NanoPlot report</h1>') if settings["filtered"]: html_content.append('<h2 id="stats0">Summary statistics prior to filtering</h2>') html_content.append(utils.stats2html(settings["statsfile"][0])) html_content.append('<h2 id="stats1">Summary statistics after filtering</h2>') html_content.append(utils.stats2html(settings["statsfile"][1])) else: html_content.append('<h2 id="stats0">Summary statistics</h2>') html_content.append(utils.stats2html(settings["statsfile"][0])) # The report itself: plots html_content.append('<h2 id="plots">Plots</h2>') for plot in plots: html_content.append('\n<h3 id="' + plot.title.replace(' ', '_') + '">' + plot.title + '</h3>\n' + plot.encode()) html_content.append('\n<br>\n<br>\n<br>\n<br>') html_body = '\n'.join(html_content) + '</div></body></html>' html_str = utils.html_head + html_body htmlreport = settings["path"] + "NanoPlot-report.html" with open(htmlreport, "w") as html_file: html_file.write(html_str) return htmlreport
Creates a fat html report based on the previously created files plots is a list of Plot objects defined by a path and title statsfile is the file to which the stats have been saved, which is parsed to a table (rather dodgy)
Below is the the instruction that describes the task: ### Input: Creates a fat html report based on the previously created files plots is a list of Plot objects defined by a path and title statsfile is the file to which the stats have been saved, which is parsed to a table (rather dodgy) ### Response: def make_report(plots, settings): ''' Creates a fat html report based on the previously created files plots is a list of Plot objects defined by a path and title statsfile is the file to which the stats have been saved, which is parsed to a table (rather dodgy) ''' logging.info("Writing html report.") html_content = ['<body>'] # Hyperlink Table of Contents panel html_content.append('<div class="panel panelC">') if settings["filtered"]: html_content.append( '<p><strong><a href="#stats0">Summary Statistics prior to filtering</a></strong></p>') html_content.append( '<p><strong><a href="#stats1">Summary Statistics after filtering</a></strong></p>') else: html_content.append( '<p><strong><a href="#stats0">Summary Statistics</a></strong></p>') html_content.append('<p><strong><a href="#plots">Plots</a></strong></p>') html_content.extend(['<p style="margin-left:20px"><a href="#' + p.title.replace(' ', '_') + '">' + p.title + '</a></p>' for p in plots]) html_content.append('</div>') # The report itself: stats html_content.append('<div class="panel panelM"> <h1>NanoPlot report</h1>') if settings["filtered"]: html_content.append('<h2 id="stats0">Summary statistics prior to filtering</h2>') html_content.append(utils.stats2html(settings["statsfile"][0])) html_content.append('<h2 id="stats1">Summary statistics after filtering</h2>') html_content.append(utils.stats2html(settings["statsfile"][1])) else: html_content.append('<h2 id="stats0">Summary statistics</h2>') html_content.append(utils.stats2html(settings["statsfile"][0])) # The report itself: plots html_content.append('<h2 id="plots">Plots</h2>') for plot in plots: html_content.append('\n<h3 id="' + plot.title.replace(' ', '_') + '">' + plot.title + '</h3>\n' + plot.encode()) html_content.append('\n<br>\n<br>\n<br>\n<br>') html_body = '\n'.join(html_content) + '</div></body></html>' html_str = utils.html_head + html_body htmlreport = settings["path"] + "NanoPlot-report.html" with open(htmlreport, "w") as html_file: html_file.write(html_str) return htmlreport
def sentence(self): """ The sentence related to this mention :getter: returns the sentence this mention relates to :type: corenlp_xml.document.Sentence """ if self._sentence is None: sentences = self._element.xpath('sentence/text()') if len(sentences) > 0: self._sentence = self._coref.document.get_sentence_by_id(int(sentences[0])) return self._sentence
The sentence related to this mention :getter: returns the sentence this mention relates to :type: corenlp_xml.document.Sentence
Below is the the instruction that describes the task: ### Input: The sentence related to this mention :getter: returns the sentence this mention relates to :type: corenlp_xml.document.Sentence ### Response: def sentence(self): """ The sentence related to this mention :getter: returns the sentence this mention relates to :type: corenlp_xml.document.Sentence """ if self._sentence is None: sentences = self._element.xpath('sentence/text()') if len(sentences) > 0: self._sentence = self._coref.document.get_sentence_by_id(int(sentences[0])) return self._sentence
def apply(self, resource): """ Apply filter to resource :param resource: Image.Image :return: Image.Image """ if not isinstance(resource, Image.Image): raise ValueError('Unknown resource format') resource_format = resource.format if resource.mode != 'RGBA': # pragma: no cover resource = resource.convert('RGBA') layer = Image.new('RGBA', resource.size, (0, 0, 0, 0)) image, left, upper = getattr(self, '_' + self.position + '_position')(resource) layer.paste(image, (left, upper)) image = Image.composite(layer, resource, layer) image.format = resource_format return image
Apply filter to resource :param resource: Image.Image :return: Image.Image
Below is the the instruction that describes the task: ### Input: Apply filter to resource :param resource: Image.Image :return: Image.Image ### Response: def apply(self, resource): """ Apply filter to resource :param resource: Image.Image :return: Image.Image """ if not isinstance(resource, Image.Image): raise ValueError('Unknown resource format') resource_format = resource.format if resource.mode != 'RGBA': # pragma: no cover resource = resource.convert('RGBA') layer = Image.new('RGBA', resource.size, (0, 0, 0, 0)) image, left, upper = getattr(self, '_' + self.position + '_position')(resource) layer.paste(image, (left, upper)) image = Image.composite(layer, resource, layer) image.format = resource_format return image
def count_between(self, min_score=None, max_score=None): """ Returns the number of members whose score is between *min_score* and *max_score* (inclusive). """ min_score = float('-inf') if min_score is None else float(min_score) max_score = float('inf') if max_score is None else float(max_score) return self.redis.zcount(self.key, min_score, max_score)
Returns the number of members whose score is between *min_score* and *max_score* (inclusive).
Below is the the instruction that describes the task: ### Input: Returns the number of members whose score is between *min_score* and *max_score* (inclusive). ### Response: def count_between(self, min_score=None, max_score=None): """ Returns the number of members whose score is between *min_score* and *max_score* (inclusive). """ min_score = float('-inf') if min_score is None else float(min_score) max_score = float('inf') if max_score is None else float(max_score) return self.redis.zcount(self.key, min_score, max_score)
def account_product(self, product_id): ''' a method to retrieve details about a particular account product { "error": "", "code": 200, "method": "GET", "url": "https://...", "headers": { }, "json": { "productId": "3300", "productName": "Capital One 360 Money Market Account", "cdTerms": [ "12M" ], "annualPercentageYieldDetails": { "annualPercentageYieldType": "simple", "annualPercentageYield": 1.4, "tieredAnnualPercentageYield": [ { "tierDescription": "$0 - $9,999.99", "annualPercentageYield": 1.4 } ], "termBasedAnnualPercentageYield": [ { "term": "6M", "annualPercentageYield": 1.2 } ] }, "disclosures": { "productDisclosureUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#360savingsdisclosure", "termsAndConditionsUrl": "https://www.capitalone.com/online-money-market-account/disclosures/#360moneymarketagreement", "electronicFundTransferDisclosureUrl": "https://www.capitalone.com/cds/online-cds/disclosures/#electronicfundtransferdisclosurestatement", "privacyPolicyUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#privacypolicy", "wireTransferAgreementUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#wirefundstransferdisclosurestatement", "paperlessAgreementUrl": "https://www.capitalone.com/terms_eddn", "fraudProtectionAgreementUrl": "https://www.capitalone.com/terms-personal-data", "tcpaDisclosureContent": "If number(s) provided above is(are) mobile phone number(s), it is (they are) my mobile phone number(s), by clicking on the button below, I consent to receive autodialed and prerecorded/artificial calls , including texts, relating to my relationship with Capital One (which may include handling, servicing, and billing for any of my accounts). Message and Data rates may apply. You can stop these types of messages by replying STOP in response to a text message, or by following any other instructions contained in the time-sensitive call.\n[Radio button] You can call or text me through automated means\n[Radio button] You can only contact me through non-automated mean" } } } ''' title = '%s.account_product' % self.__class__.__name__ # validate inputs input_fields = { 'product_id': product_id } for key, value in input_fields.items(): object_title = '%s(%s=%s)' % (title, key, str(value)) self.fields.validate(value, '.%s' % key, object_title) # construct url url = self.deposits_endpoint + 'account-products/%s' % product_id # construct method specific errors error_map = { 404: 'Not Found. No products found for the provided productId.' } # send request details = self._requests(url, errors=error_map) return details
a method to retrieve details about a particular account product { "error": "", "code": 200, "method": "GET", "url": "https://...", "headers": { }, "json": { "productId": "3300", "productName": "Capital One 360 Money Market Account", "cdTerms": [ "12M" ], "annualPercentageYieldDetails": { "annualPercentageYieldType": "simple", "annualPercentageYield": 1.4, "tieredAnnualPercentageYield": [ { "tierDescription": "$0 - $9,999.99", "annualPercentageYield": 1.4 } ], "termBasedAnnualPercentageYield": [ { "term": "6M", "annualPercentageYield": 1.2 } ] }, "disclosures": { "productDisclosureUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#360savingsdisclosure", "termsAndConditionsUrl": "https://www.capitalone.com/online-money-market-account/disclosures/#360moneymarketagreement", "electronicFundTransferDisclosureUrl": "https://www.capitalone.com/cds/online-cds/disclosures/#electronicfundtransferdisclosurestatement", "privacyPolicyUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#privacypolicy", "wireTransferAgreementUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#wirefundstransferdisclosurestatement", "paperlessAgreementUrl": "https://www.capitalone.com/terms_eddn", "fraudProtectionAgreementUrl": "https://www.capitalone.com/terms-personal-data", "tcpaDisclosureContent": "If number(s) provided above is(are) mobile phone number(s), it is (they are) my mobile phone number(s), by clicking on the button below, I consent to receive autodialed and prerecorded/artificial calls , including texts, relating to my relationship with Capital One (which may include handling, servicing, and billing for any of my accounts). Message and Data rates may apply. You can stop these types of messages by replying STOP in response to a text message, or by following any other instructions contained in the time-sensitive call.\n[Radio button] You can call or text me through automated means\n[Radio button] You can only contact me through non-automated mean" } } }
Below is the the instruction that describes the task: ### Input: a method to retrieve details about a particular account product { "error": "", "code": 200, "method": "GET", "url": "https://...", "headers": { }, "json": { "productId": "3300", "productName": "Capital One 360 Money Market Account", "cdTerms": [ "12M" ], "annualPercentageYieldDetails": { "annualPercentageYieldType": "simple", "annualPercentageYield": 1.4, "tieredAnnualPercentageYield": [ { "tierDescription": "$0 - $9,999.99", "annualPercentageYield": 1.4 } ], "termBasedAnnualPercentageYield": [ { "term": "6M", "annualPercentageYield": 1.2 } ] }, "disclosures": { "productDisclosureUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#360savingsdisclosure", "termsAndConditionsUrl": "https://www.capitalone.com/online-money-market-account/disclosures/#360moneymarketagreement", "electronicFundTransferDisclosureUrl": "https://www.capitalone.com/cds/online-cds/disclosures/#electronicfundtransferdisclosurestatement", "privacyPolicyUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#privacypolicy", "wireTransferAgreementUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#wirefundstransferdisclosurestatement", "paperlessAgreementUrl": "https://www.capitalone.com/terms_eddn", "fraudProtectionAgreementUrl": "https://www.capitalone.com/terms-personal-data", "tcpaDisclosureContent": "If number(s) provided above is(are) mobile phone number(s), it is (they are) my mobile phone number(s), by clicking on the button below, I consent to receive autodialed and prerecorded/artificial calls , including texts, relating to my relationship with Capital One (which may include handling, servicing, and billing for any of my accounts). Message and Data rates may apply. You can stop these types of messages by replying STOP in response to a text message, or by following any other instructions contained in the time-sensitive call.\n[Radio button] You can call or text me through automated means\n[Radio button] You can only contact me through non-automated mean" } } } ### Response: def account_product(self, product_id): ''' a method to retrieve details about a particular account product { "error": "", "code": 200, "method": "GET", "url": "https://...", "headers": { }, "json": { "productId": "3300", "productName": "Capital One 360 Money Market Account", "cdTerms": [ "12M" ], "annualPercentageYieldDetails": { "annualPercentageYieldType": "simple", "annualPercentageYield": 1.4, "tieredAnnualPercentageYield": [ { "tierDescription": "$0 - $9,999.99", "annualPercentageYield": 1.4 } ], "termBasedAnnualPercentageYield": [ { "term": "6M", "annualPercentageYield": 1.2 } ] }, "disclosures": { "productDisclosureUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#360savingsdisclosure", "termsAndConditionsUrl": "https://www.capitalone.com/online-money-market-account/disclosures/#360moneymarketagreement", "electronicFundTransferDisclosureUrl": "https://www.capitalone.com/cds/online-cds/disclosures/#electronicfundtransferdisclosurestatement", "privacyPolicyUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#privacypolicy", "wireTransferAgreementUrl": "https://www.capitalone.com/savings-accounts/online-savings-account/disclosures/#wirefundstransferdisclosurestatement", "paperlessAgreementUrl": "https://www.capitalone.com/terms_eddn", "fraudProtectionAgreementUrl": "https://www.capitalone.com/terms-personal-data", "tcpaDisclosureContent": "If number(s) provided above is(are) mobile phone number(s), it is (they are) my mobile phone number(s), by clicking on the button below, I consent to receive autodialed and prerecorded/artificial calls , including texts, relating to my relationship with Capital One (which may include handling, servicing, and billing for any of my accounts). Message and Data rates may apply. You can stop these types of messages by replying STOP in response to a text message, or by following any other instructions contained in the time-sensitive call.\n[Radio button] You can call or text me through automated means\n[Radio button] You can only contact me through non-automated mean" } } } ''' title = '%s.account_product' % self.__class__.__name__ # validate inputs input_fields = { 'product_id': product_id } for key, value in input_fields.items(): object_title = '%s(%s=%s)' % (title, key, str(value)) self.fields.validate(value, '.%s' % key, object_title) # construct url url = self.deposits_endpoint + 'account-products/%s' % product_id # construct method specific errors error_map = { 404: 'Not Found. No products found for the provided productId.' } # send request details = self._requests(url, errors=error_map) return details
def _set_defaults(self): """ Set default values to fields. We assume that they are not yet populated as this method is called just after creation of a new pk. """ for field_name in self._fields: if field_name in self._init_fields: continue field = self.get_field(field_name) if hasattr(field, "default"): field.proxy_set(field.default)
Set default values to fields. We assume that they are not yet populated as this method is called just after creation of a new pk.
Below is the the instruction that describes the task: ### Input: Set default values to fields. We assume that they are not yet populated as this method is called just after creation of a new pk. ### Response: def _set_defaults(self): """ Set default values to fields. We assume that they are not yet populated as this method is called just after creation of a new pk. """ for field_name in self._fields: if field_name in self._init_fields: continue field = self.get_field(field_name) if hasattr(field, "default"): field.proxy_set(field.default)
def dispatch(self, **changes): """ Patch the swarm with changes and then trigger the swarm. """ self.patch(**changes) trigger_url = self._vr._build_url(self.resource_uri, 'swarm/') resp = self._vr.session.post(trigger_url) resp.raise_for_status() try: return resp.json() except ValueError: return None
Patch the swarm with changes and then trigger the swarm.
Below is the the instruction that describes the task: ### Input: Patch the swarm with changes and then trigger the swarm. ### Response: def dispatch(self, **changes): """ Patch the swarm with changes and then trigger the swarm. """ self.patch(**changes) trigger_url = self._vr._build_url(self.resource_uri, 'swarm/') resp = self._vr.session.post(trigger_url) resp.raise_for_status() try: return resp.json() except ValueError: return None
def posthoc_dscf(a, val_col=None, group_col=None, sort=False): '''Dwass, Steel, Critchlow and Fligner all-pairs comparison test for a one-factorial layout with non-normally distributed residuals. As opposed to the all-pairs comparison procedures that depend on Kruskal ranks, the DSCF test is basically an extension of the U-test as re-ranking is conducted for each pairwise test [1]_, [2]_, [3]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. sort : bool, optional If True, sort data by block and group columns. Returns ------- Pandas DataFrame containing p values. Notes ----- The p values are computed from the Tukey-distribution. References ---------- .. [1] Douglas, C. E., Fligner, A. M. (1991) On distribution-free multiple comparisons in the one-way analysis of variance, Communications in Statistics - Theory and Methods, 20, 127-139. .. [2] Dwass, M. (1960) Some k-sample rank-order tests. In Contributions to Probability and Statistics, Edited by: I. Olkin, Stanford: Stanford University Press. .. [3] Steel, R. G. D. (1960) A rank sum test for comparing all pairs of treatments, Technometrics, 2, 197-207. Examples -------- >>> import scikit_posthocs as sp >>> import pandas as pd >>> x = pd.DataFrame({"a": [1,2,3,5,1], "b": [12,31,54,62,12], "c": [10,12,6,74,11]}) >>> x = x.melt(var_name='groups', value_name='values') >>> sp.posthoc_dscf(x, val_col='values', group_col='groups') ''' x, _val_col, _group_col = __convert_to_df(a, val_col, group_col) if not sort: x[_group_col] = Categorical(x[_group_col], categories=x[_group_col].unique(), ordered=True) x.sort_values(by=[_group_col], ascending=True, inplace=True) groups = np.unique(x[_group_col]) x_grouped = x.groupby(_group_col)[_val_col] n = x_grouped.count() k = groups.size def get_ties(x): t = x.value_counts().values c = np.sum((t ** 3 - t) / 12.) return c def compare(i, j): ni = n.loc[i] nj = n.loc[j] x_raw = x.loc[(x[_group_col] == i) | (x[_group_col] == j)].copy() x_raw['ranks'] = x_raw.loc[:, _val_col].rank() r = x_raw.groupby(_group_col)['ranks'].sum().loc[[i, j]] u = np.array([nj * ni + (nj * (nj + 1) / 2), nj * ni + (ni * (ni + 1) / 2)]) - r u_min = np.min(u) s = ni + nj var = (nj*ni/(s*(s - 1.))) * ((s**3 - s)/12. - get_ties(x_raw['ranks'])) p = np.sqrt(2.) * (u_min - nj * ni / 2.) / np.sqrt(var) return p vs = np.zeros((k, k)) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 combs = it.combinations(range(k), 2) for i, j in combs: vs[i, j] = compare(groups[i], groups[j]) vs[tri_upper] = psturng(np.abs(vs[tri_upper]), k, np.inf) vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups)
Dwass, Steel, Critchlow and Fligner all-pairs comparison test for a one-factorial layout with non-normally distributed residuals. As opposed to the all-pairs comparison procedures that depend on Kruskal ranks, the DSCF test is basically an extension of the U-test as re-ranking is conducted for each pairwise test [1]_, [2]_, [3]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. sort : bool, optional If True, sort data by block and group columns. Returns ------- Pandas DataFrame containing p values. Notes ----- The p values are computed from the Tukey-distribution. References ---------- .. [1] Douglas, C. E., Fligner, A. M. (1991) On distribution-free multiple comparisons in the one-way analysis of variance, Communications in Statistics - Theory and Methods, 20, 127-139. .. [2] Dwass, M. (1960) Some k-sample rank-order tests. In Contributions to Probability and Statistics, Edited by: I. Olkin, Stanford: Stanford University Press. .. [3] Steel, R. G. D. (1960) A rank sum test for comparing all pairs of treatments, Technometrics, 2, 197-207. Examples -------- >>> import scikit_posthocs as sp >>> import pandas as pd >>> x = pd.DataFrame({"a": [1,2,3,5,1], "b": [12,31,54,62,12], "c": [10,12,6,74,11]}) >>> x = x.melt(var_name='groups', value_name='values') >>> sp.posthoc_dscf(x, val_col='values', group_col='groups')
Below is the the instruction that describes the task: ### Input: Dwass, Steel, Critchlow and Fligner all-pairs comparison test for a one-factorial layout with non-normally distributed residuals. As opposed to the all-pairs comparison procedures that depend on Kruskal ranks, the DSCF test is basically an extension of the U-test as re-ranking is conducted for each pairwise test [1]_, [2]_, [3]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. sort : bool, optional If True, sort data by block and group columns. Returns ------- Pandas DataFrame containing p values. Notes ----- The p values are computed from the Tukey-distribution. References ---------- .. [1] Douglas, C. E., Fligner, A. M. (1991) On distribution-free multiple comparisons in the one-way analysis of variance, Communications in Statistics - Theory and Methods, 20, 127-139. .. [2] Dwass, M. (1960) Some k-sample rank-order tests. In Contributions to Probability and Statistics, Edited by: I. Olkin, Stanford: Stanford University Press. .. [3] Steel, R. G. D. (1960) A rank sum test for comparing all pairs of treatments, Technometrics, 2, 197-207. Examples -------- >>> import scikit_posthocs as sp >>> import pandas as pd >>> x = pd.DataFrame({"a": [1,2,3,5,1], "b": [12,31,54,62,12], "c": [10,12,6,74,11]}) >>> x = x.melt(var_name='groups', value_name='values') >>> sp.posthoc_dscf(x, val_col='values', group_col='groups') ### Response: def posthoc_dscf(a, val_col=None, group_col=None, sort=False): '''Dwass, Steel, Critchlow and Fligner all-pairs comparison test for a one-factorial layout with non-normally distributed residuals. As opposed to the all-pairs comparison procedures that depend on Kruskal ranks, the DSCF test is basically an extension of the U-test as re-ranking is conducted for each pairwise test [1]_, [2]_, [3]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. sort : bool, optional If True, sort data by block and group columns. Returns ------- Pandas DataFrame containing p values. Notes ----- The p values are computed from the Tukey-distribution. References ---------- .. [1] Douglas, C. E., Fligner, A. M. (1991) On distribution-free multiple comparisons in the one-way analysis of variance, Communications in Statistics - Theory and Methods, 20, 127-139. .. [2] Dwass, M. (1960) Some k-sample rank-order tests. In Contributions to Probability and Statistics, Edited by: I. Olkin, Stanford: Stanford University Press. .. [3] Steel, R. G. D. (1960) A rank sum test for comparing all pairs of treatments, Technometrics, 2, 197-207. Examples -------- >>> import scikit_posthocs as sp >>> import pandas as pd >>> x = pd.DataFrame({"a": [1,2,3,5,1], "b": [12,31,54,62,12], "c": [10,12,6,74,11]}) >>> x = x.melt(var_name='groups', value_name='values') >>> sp.posthoc_dscf(x, val_col='values', group_col='groups') ''' x, _val_col, _group_col = __convert_to_df(a, val_col, group_col) if not sort: x[_group_col] = Categorical(x[_group_col], categories=x[_group_col].unique(), ordered=True) x.sort_values(by=[_group_col], ascending=True, inplace=True) groups = np.unique(x[_group_col]) x_grouped = x.groupby(_group_col)[_val_col] n = x_grouped.count() k = groups.size def get_ties(x): t = x.value_counts().values c = np.sum((t ** 3 - t) / 12.) return c def compare(i, j): ni = n.loc[i] nj = n.loc[j] x_raw = x.loc[(x[_group_col] == i) | (x[_group_col] == j)].copy() x_raw['ranks'] = x_raw.loc[:, _val_col].rank() r = x_raw.groupby(_group_col)['ranks'].sum().loc[[i, j]] u = np.array([nj * ni + (nj * (nj + 1) / 2), nj * ni + (ni * (ni + 1) / 2)]) - r u_min = np.min(u) s = ni + nj var = (nj*ni/(s*(s - 1.))) * ((s**3 - s)/12. - get_ties(x_raw['ranks'])) p = np.sqrt(2.) * (u_min - nj * ni / 2.) / np.sqrt(var) return p vs = np.zeros((k, k)) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 combs = it.combinations(range(k), 2) for i, j in combs: vs[i, j] = compare(groups[i], groups[j]) vs[tri_upper] = psturng(np.abs(vs[tri_upper]), k, np.inf) vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups)
def ReadTag(buffer, pos): """Read a tag from the buffer, and return a (tag_bytes, new_pos) tuple. We return the raw bytes of the tag rather than decoding them. The raw bytes can then be used to look up the proper decoder. This effectively allows us to trade some work that would be done in pure-python (decoding a varint) for work that is done in C (searching for a byte string in a hash table). In a low-level language it would be much cheaper to decode the varint and use that, but not in Python. """ start = pos while six.indexbytes(buffer, pos) & 0x80: pos += 1 pos += 1 return (buffer[start:pos], pos)
Read a tag from the buffer, and return a (tag_bytes, new_pos) tuple. We return the raw bytes of the tag rather than decoding them. The raw bytes can then be used to look up the proper decoder. This effectively allows us to trade some work that would be done in pure-python (decoding a varint) for work that is done in C (searching for a byte string in a hash table). In a low-level language it would be much cheaper to decode the varint and use that, but not in Python.
Below is the the instruction that describes the task: ### Input: Read a tag from the buffer, and return a (tag_bytes, new_pos) tuple. We return the raw bytes of the tag rather than decoding them. The raw bytes can then be used to look up the proper decoder. This effectively allows us to trade some work that would be done in pure-python (decoding a varint) for work that is done in C (searching for a byte string in a hash table). In a low-level language it would be much cheaper to decode the varint and use that, but not in Python. ### Response: def ReadTag(buffer, pos): """Read a tag from the buffer, and return a (tag_bytes, new_pos) tuple. We return the raw bytes of the tag rather than decoding them. The raw bytes can then be used to look up the proper decoder. This effectively allows us to trade some work that would be done in pure-python (decoding a varint) for work that is done in C (searching for a byte string in a hash table). In a low-level language it would be much cheaper to decode the varint and use that, but not in Python. """ start = pos while six.indexbytes(buffer, pos) & 0x80: pos += 1 pos += 1 return (buffer[start:pos], pos)
def _ParseFileEntry(self, knowledge_base, file_entry): """Parses artifact file system data for a preprocessing attribute. Args: knowledge_base (KnowledgeBase): to fill with preprocessing information. file_entry (dfvfs.FileEntry): file entry that contains the artifact value data. Raises: errors.PreProcessFail: if the preprocessing fails. """ if file_entry.link: # Determine the timezone based on the file path. _, _, time_zone = file_entry.link.partition('zoneinfo/') else: # Determine the timezone based on the timezone information file. file_object = file_entry.GetFileObject() time_zone = None try: time_zone_file = tz.tzfile(file_object) date_time = datetime.datetime(2017, 1, 1) time_zone = time_zone_file.tzname(date_time) except ValueError: # TODO: add and store preprocessing errors. logger.error('Unable to read time zone information file.') finally: file_object.close() # TODO: check if time zone is set in knowledge base. if time_zone: try: knowledge_base.SetTimeZone(time_zone) except ValueError: # TODO: add and store preprocessing errors. logger.error('Unable to set time zone in knowledge base.')
Parses artifact file system data for a preprocessing attribute. Args: knowledge_base (KnowledgeBase): to fill with preprocessing information. file_entry (dfvfs.FileEntry): file entry that contains the artifact value data. Raises: errors.PreProcessFail: if the preprocessing fails.
Below is the the instruction that describes the task: ### Input: Parses artifact file system data for a preprocessing attribute. Args: knowledge_base (KnowledgeBase): to fill with preprocessing information. file_entry (dfvfs.FileEntry): file entry that contains the artifact value data. Raises: errors.PreProcessFail: if the preprocessing fails. ### Response: def _ParseFileEntry(self, knowledge_base, file_entry): """Parses artifact file system data for a preprocessing attribute. Args: knowledge_base (KnowledgeBase): to fill with preprocessing information. file_entry (dfvfs.FileEntry): file entry that contains the artifact value data. Raises: errors.PreProcessFail: if the preprocessing fails. """ if file_entry.link: # Determine the timezone based on the file path. _, _, time_zone = file_entry.link.partition('zoneinfo/') else: # Determine the timezone based on the timezone information file. file_object = file_entry.GetFileObject() time_zone = None try: time_zone_file = tz.tzfile(file_object) date_time = datetime.datetime(2017, 1, 1) time_zone = time_zone_file.tzname(date_time) except ValueError: # TODO: add and store preprocessing errors. logger.error('Unable to read time zone information file.') finally: file_object.close() # TODO: check if time zone is set in knowledge base. if time_zone: try: knowledge_base.SetTimeZone(time_zone) except ValueError: # TODO: add and store preprocessing errors. logger.error('Unable to set time zone in knowledge base.')
def create_function_f_c(self): """condition function""" return ca.Function( 'f_c', [self.t, self.x, self.y, self.m, self.p, self.ng, self.nu], [self.f_c], ['t', 'x', 'y', 'm', 'p', 'ng', 'nu'], ['c'], self.func_opt)
condition function
Below is the the instruction that describes the task: ### Input: condition function ### Response: def create_function_f_c(self): """condition function""" return ca.Function( 'f_c', [self.t, self.x, self.y, self.m, self.p, self.ng, self.nu], [self.f_c], ['t', 'x', 'y', 'm', 'p', 'ng', 'nu'], ['c'], self.func_opt)
def rgb_to_hsv(self,RGB): "linear rgb to hsv" gammaRGB = self._gamma_rgb(RGB) return self._ABC_to_DEF_by_fn(gammaRGB,rgb_to_hsv)
linear rgb to hsv
Below is the the instruction that describes the task: ### Input: linear rgb to hsv ### Response: def rgb_to_hsv(self,RGB): "linear rgb to hsv" gammaRGB = self._gamma_rgb(RGB) return self._ABC_to_DEF_by_fn(gammaRGB,rgb_to_hsv)
def _set_auto_watering(self, zoneid, value): """Private method to set auto_watering program.""" if not isinstance(value, bool): return None ddata = self.preupdate() attr = 'zone{}_program_toggle'.format(zoneid) try: if not value: ddata.pop(attr) else: ddata[attr] = 'on' except KeyError: pass self.submit_action(ddata) return True
Private method to set auto_watering program.
Below is the the instruction that describes the task: ### Input: Private method to set auto_watering program. ### Response: def _set_auto_watering(self, zoneid, value): """Private method to set auto_watering program.""" if not isinstance(value, bool): return None ddata = self.preupdate() attr = 'zone{}_program_toggle'.format(zoneid) try: if not value: ddata.pop(attr) else: ddata[attr] = 'on' except KeyError: pass self.submit_action(ddata) return True
def gui(): """remove libraries by GUI.""" sel = psidialogs.multi_choice(libraries(), 'select libraries to remove from %s!' % libraries_dir(), title='remove boards') print('%s selected' % sel) if sel: if psidialogs.ask_yes_no('Do you really want to remove selected libraries?\n' + '\n'.join(sel)): for x in sel: remove_lib(x) print('%s was removed' % x)
remove libraries by GUI.
Below is the the instruction that describes the task: ### Input: remove libraries by GUI. ### Response: def gui(): """remove libraries by GUI.""" sel = psidialogs.multi_choice(libraries(), 'select libraries to remove from %s!' % libraries_dir(), title='remove boards') print('%s selected' % sel) if sel: if psidialogs.ask_yes_no('Do you really want to remove selected libraries?\n' + '\n'.join(sel)): for x in sel: remove_lib(x) print('%s was removed' % x)
def auto_name_prefix(self): """ Generate platform prefix for cross-platform downloads. """ # if the platform is not native, auto_name would clobber native downloads. # make a prefix to avoid this native_system = std_platform.system() native_machine = self.CPU_ALIASES.get(std_platform.machine(), std_platform.machine()) if native_system == self.system and native_machine == self.machine: return '' platform = { 'linux': 'linux32', 'android-api-16': 'android-arm', 'android-aarch64': 'android-arm64', }.get(self.gecko_platform, self.gecko_platform) return platform + '-'
Generate platform prefix for cross-platform downloads.
Below is the the instruction that describes the task: ### Input: Generate platform prefix for cross-platform downloads. ### Response: def auto_name_prefix(self): """ Generate platform prefix for cross-platform downloads. """ # if the platform is not native, auto_name would clobber native downloads. # make a prefix to avoid this native_system = std_platform.system() native_machine = self.CPU_ALIASES.get(std_platform.machine(), std_platform.machine()) if native_system == self.system and native_machine == self.machine: return '' platform = { 'linux': 'linux32', 'android-api-16': 'android-arm', 'android-aarch64': 'android-arm64', }.get(self.gecko_platform, self.gecko_platform) return platform + '-'
def set_sim_params(self, nparams, attr_params): """Store parameters in `params` in `h5file.root.parameters`. `nparams` (dict) A dict as returned by `get_params()` in `ParticlesSimulation()` The format is: keys: used as parameter name values: (2-elements tuple) first element is the parameter value second element is a string used as "title" (description) `attr_params` (dict) A dict whole items are stored as attributes in '/parameters' """ for name, value in nparams.items(): val = value[0] if value[0] is not None else 'none' self.h5file.create_array('/parameters', name, obj=val, title=value[1]) for name, value in attr_params.items(): self.h5file.set_node_attr('/parameters', name, value)
Store parameters in `params` in `h5file.root.parameters`. `nparams` (dict) A dict as returned by `get_params()` in `ParticlesSimulation()` The format is: keys: used as parameter name values: (2-elements tuple) first element is the parameter value second element is a string used as "title" (description) `attr_params` (dict) A dict whole items are stored as attributes in '/parameters'
Below is the the instruction that describes the task: ### Input: Store parameters in `params` in `h5file.root.parameters`. `nparams` (dict) A dict as returned by `get_params()` in `ParticlesSimulation()` The format is: keys: used as parameter name values: (2-elements tuple) first element is the parameter value second element is a string used as "title" (description) `attr_params` (dict) A dict whole items are stored as attributes in '/parameters' ### Response: def set_sim_params(self, nparams, attr_params): """Store parameters in `params` in `h5file.root.parameters`. `nparams` (dict) A dict as returned by `get_params()` in `ParticlesSimulation()` The format is: keys: used as parameter name values: (2-elements tuple) first element is the parameter value second element is a string used as "title" (description) `attr_params` (dict) A dict whole items are stored as attributes in '/parameters' """ for name, value in nparams.items(): val = value[0] if value[0] is not None else 'none' self.h5file.create_array('/parameters', name, obj=val, title=value[1]) for name, value in attr_params.items(): self.h5file.set_node_attr('/parameters', name, value)
def assignment(self): """ assignment ::= relation_name assign expression | relation_name param_start attribute_list param_stop assign expression """ lhs = Group(self.relation_name + Optional(self.parenthesize(self.attribute_list))) return Group(lhs + Keyword(self.syntax.assign_op) + self.expression)
assignment ::= relation_name assign expression | relation_name param_start attribute_list param_stop assign expression
Below is the the instruction that describes the task: ### Input: assignment ::= relation_name assign expression | relation_name param_start attribute_list param_stop assign expression ### Response: def assignment(self): """ assignment ::= relation_name assign expression | relation_name param_start attribute_list param_stop assign expression """ lhs = Group(self.relation_name + Optional(self.parenthesize(self.attribute_list))) return Group(lhs + Keyword(self.syntax.assign_op) + self.expression)
def is_rfc1918(ip): """Checks to see if an IP address is used for local communications within a private network as specified by RFC 1918 """ if ip_between(ip, "10.0.0.0", "10.255.255.255"): return True elif ip_between(ip, "172.16.0.0", "172.31.255.255"): return True elif ip_between(ip, "192.168.0.0", "192.168.255.255"): return True else: return False
Checks to see if an IP address is used for local communications within a private network as specified by RFC 1918
Below is the the instruction that describes the task: ### Input: Checks to see if an IP address is used for local communications within a private network as specified by RFC 1918 ### Response: def is_rfc1918(ip): """Checks to see if an IP address is used for local communications within a private network as specified by RFC 1918 """ if ip_between(ip, "10.0.0.0", "10.255.255.255"): return True elif ip_between(ip, "172.16.0.0", "172.31.255.255"): return True elif ip_between(ip, "192.168.0.0", "192.168.255.255"): return True else: return False
async def destroy_unit(self, *unit_names): """Destroy units by name. """ connection = self.connection() app_facade = client.ApplicationFacade.from_connection(connection) log.debug( 'Destroying unit%s %s', 's' if len(unit_names) == 1 else '', ' '.join(unit_names)) return await app_facade.DestroyUnits(list(unit_names))
Destroy units by name.
Below is the the instruction that describes the task: ### Input: Destroy units by name. ### Response: async def destroy_unit(self, *unit_names): """Destroy units by name. """ connection = self.connection() app_facade = client.ApplicationFacade.from_connection(connection) log.debug( 'Destroying unit%s %s', 's' if len(unit_names) == 1 else '', ' '.join(unit_names)) return await app_facade.DestroyUnits(list(unit_names))
def _create_file(self, filename): """Ensure a new file is created and opened for writing.""" file_descriptor = os.open(filename, os.O_WRONLY | os.O_CREAT | os.O_EXCL) return os.fdopen(file_descriptor, 'w')
Ensure a new file is created and opened for writing.
Below is the the instruction that describes the task: ### Input: Ensure a new file is created and opened for writing. ### Response: def _create_file(self, filename): """Ensure a new file is created and opened for writing.""" file_descriptor = os.open(filename, os.O_WRONLY | os.O_CREAT | os.O_EXCL) return os.fdopen(file_descriptor, 'w')
def stop_all_children(self): '''Kill all workers.''' # There's an unfortunate race condition if we try to log this # case: we can't depend on the logging child actually receiving # the log message before we kill it off. C'est la vie... self.stop_log_child() for pid in self.children: try: os.kill(pid, signal.SIGTERM) os.waitpid(pid, 0) except OSError, e: if e.errno == errno.ESRCH or e.errno == errno.ECHILD: # No such process pass else: raise
Kill all workers.
Below is the the instruction that describes the task: ### Input: Kill all workers. ### Response: def stop_all_children(self): '''Kill all workers.''' # There's an unfortunate race condition if we try to log this # case: we can't depend on the logging child actually receiving # the log message before we kill it off. C'est la vie... self.stop_log_child() for pid in self.children: try: os.kill(pid, signal.SIGTERM) os.waitpid(pid, 0) except OSError, e: if e.errno == errno.ESRCH or e.errno == errno.ECHILD: # No such process pass else: raise
def plot_hpars(HDD, hpars, sym): """ function to plot hysteresis parameters deprecated (used in hysteresis_magic) """ plt.figure(num=HDD['hyst']) X, Y = [], [] X.append(0) Y.append(old_div(float(hpars['hysteresis_mr_moment']), float( hpars['hysteresis_ms_moment']))) X.append(float(hpars['hysteresis_bc'])) Y.append(0) plt.plot(X, Y, sym) bounds = plt.axis() n4 = 'Ms: ' + '%8.2e' % (float(hpars['hysteresis_ms_moment'])) + ' Am^2' plt.text(bounds[1] - .9 * bounds[1], -.9, n4) n1 = 'Mr: ' + '%8.2e' % (float(hpars['hysteresis_mr_moment'])) + ' Am^2' plt.text(bounds[1] - .9 * bounds[1], -.7, n1) n2 = 'Bc: ' + '%8.2e' % (float(hpars['hysteresis_bc'])) + ' T' plt.text(bounds[1] - .9 * bounds[1], -.5, n2) if 'hysteresis_xhf' in list(hpars.keys()): n3 = r'Xhf: ' + '%8.2e' % (float(hpars['hysteresis_xhf'])) + ' m^3' plt.text(bounds[1] - .9 * bounds[1], -.3, n3) plt.figure(num=HDD['deltaM']) X, Y, Bcr = [], [], "" if 'hysteresis_bcr' in list(hpars.keys()): X.append(float(hpars['hysteresis_bcr'])) Y.append(0) Bcr = float(hpars['hysteresis_bcr']) plt.plot(X, Y, sym) bounds = plt.axis() if Bcr != "": n1 = 'Bcr: ' + '%8.2e' % (Bcr) + ' T' plt.text(bounds[1] - .5 * bounds[1], .9 * bounds[3], n1)
function to plot hysteresis parameters deprecated (used in hysteresis_magic)
Below is the the instruction that describes the task: ### Input: function to plot hysteresis parameters deprecated (used in hysteresis_magic) ### Response: def plot_hpars(HDD, hpars, sym): """ function to plot hysteresis parameters deprecated (used in hysteresis_magic) """ plt.figure(num=HDD['hyst']) X, Y = [], [] X.append(0) Y.append(old_div(float(hpars['hysteresis_mr_moment']), float( hpars['hysteresis_ms_moment']))) X.append(float(hpars['hysteresis_bc'])) Y.append(0) plt.plot(X, Y, sym) bounds = plt.axis() n4 = 'Ms: ' + '%8.2e' % (float(hpars['hysteresis_ms_moment'])) + ' Am^2' plt.text(bounds[1] - .9 * bounds[1], -.9, n4) n1 = 'Mr: ' + '%8.2e' % (float(hpars['hysteresis_mr_moment'])) + ' Am^2' plt.text(bounds[1] - .9 * bounds[1], -.7, n1) n2 = 'Bc: ' + '%8.2e' % (float(hpars['hysteresis_bc'])) + ' T' plt.text(bounds[1] - .9 * bounds[1], -.5, n2) if 'hysteresis_xhf' in list(hpars.keys()): n3 = r'Xhf: ' + '%8.2e' % (float(hpars['hysteresis_xhf'])) + ' m^3' plt.text(bounds[1] - .9 * bounds[1], -.3, n3) plt.figure(num=HDD['deltaM']) X, Y, Bcr = [], [], "" if 'hysteresis_bcr' in list(hpars.keys()): X.append(float(hpars['hysteresis_bcr'])) Y.append(0) Bcr = float(hpars['hysteresis_bcr']) plt.plot(X, Y, sym) bounds = plt.axis() if Bcr != "": n1 = 'Bcr: ' + '%8.2e' % (Bcr) + ' T' plt.text(bounds[1] - .5 * bounds[1], .9 * bounds[3], n1)
def tables(self): """ :return: all tables stored in this database """ cursor = self.connection.cursor() cursor.execute("show tables in %s" % self.db) self._tables = [t.Table(r[0], con=self.connection, db=self.db) for r in cursor.fetchall()] return self._tables
:return: all tables stored in this database
Below is the the instruction that describes the task: ### Input: :return: all tables stored in this database ### Response: def tables(self): """ :return: all tables stored in this database """ cursor = self.connection.cursor() cursor.execute("show tables in %s" % self.db) self._tables = [t.Table(r[0], con=self.connection, db=self.db) for r in cursor.fetchall()] return self._tables
def remove_and_append(self, index): """Remove previous entrances of a tab, and add it as the latest.""" while index in self: self.remove(index) self.append(index)
Remove previous entrances of a tab, and add it as the latest.
Below is the the instruction that describes the task: ### Input: Remove previous entrances of a tab, and add it as the latest. ### Response: def remove_and_append(self, index): """Remove previous entrances of a tab, and add it as the latest.""" while index in self: self.remove(index) self.append(index)
def handle_error(self, request: Any, status: int = 500, exc: Any = None, message: Optional[str] = None) -> web.Response: """Handle errors. Returns HTTP response with specific status code. Logs additional information. It always closes current connection.""" if self.transport is None: # client has been disconnected during writing. if self._access_log: request_ip = RequestHandler.get_request_ip(request, None) version_string = None if isinstance(request.version, HttpVersion): version_string = 'HTTP/{}.{}'.format(request.version.major, request.version.minor) logging.getLogger('transport.http').info('[{}] [{}] {} {} "{} {}{}{}" - {} "{}" -'.format( RequestHandler.colorize_status('http', 499), RequestHandler.colorize_status(499), request_ip or '', '"{}"'.format(request._cache['auth'].login.replace('"', '')) if request._cache.get('auth') and getattr(request._cache.get('auth'), 'login', None) else '-', request.method, request.path, '?{}'.format(request.query_string) if request.query_string else '', ' {}'.format(version_string) if version_string else '', request.content_length if request.content_length is not None else '-', request.headers.get('User-Agent', '').replace('"', '') )) headers = {} headers[hdrs.CONTENT_TYPE] = 'text/plain; charset=utf-8' msg = '' if status == 500 or not message else message headers[hdrs.CONTENT_LENGTH] = str(len(msg)) headers[hdrs.SERVER] = self._server_header or '' resp = web.Response(status=status, # type: ignore text=msg, headers=headers) # type: web.Response resp.force_close() # type: ignore # some data already got sent, connection is broken if request.writer.output_size > 0 or self.transport is None: self.force_close() # type: ignore elif self.transport is not None: request_ip = RequestHandler.get_request_ip(request, None) if not request_ip: peername = request.transport.get_extra_info('peername') if peername: request_ip, _ = peername if self._access_log: logging.getLogger('transport.http').info('[{}] [{}] {} {} "INVALID" {} - "" -'.format( RequestHandler.colorize_status('http', status), RequestHandler.colorize_status(status), request_ip or '', '"{}"'.format(request._cache['auth'].login.replace('"', '')) if request._cache.get('auth') and getattr(request._cache.get('auth'), 'login', None) else '-', len(msg) )) return resp
Handle errors. Returns HTTP response with specific status code. Logs additional information. It always closes current connection.
Below is the the instruction that describes the task: ### Input: Handle errors. Returns HTTP response with specific status code. Logs additional information. It always closes current connection. ### Response: def handle_error(self, request: Any, status: int = 500, exc: Any = None, message: Optional[str] = None) -> web.Response: """Handle errors. Returns HTTP response with specific status code. Logs additional information. It always closes current connection.""" if self.transport is None: # client has been disconnected during writing. if self._access_log: request_ip = RequestHandler.get_request_ip(request, None) version_string = None if isinstance(request.version, HttpVersion): version_string = 'HTTP/{}.{}'.format(request.version.major, request.version.minor) logging.getLogger('transport.http').info('[{}] [{}] {} {} "{} {}{}{}" - {} "{}" -'.format( RequestHandler.colorize_status('http', 499), RequestHandler.colorize_status(499), request_ip or '', '"{}"'.format(request._cache['auth'].login.replace('"', '')) if request._cache.get('auth') and getattr(request._cache.get('auth'), 'login', None) else '-', request.method, request.path, '?{}'.format(request.query_string) if request.query_string else '', ' {}'.format(version_string) if version_string else '', request.content_length if request.content_length is not None else '-', request.headers.get('User-Agent', '').replace('"', '') )) headers = {} headers[hdrs.CONTENT_TYPE] = 'text/plain; charset=utf-8' msg = '' if status == 500 or not message else message headers[hdrs.CONTENT_LENGTH] = str(len(msg)) headers[hdrs.SERVER] = self._server_header or '' resp = web.Response(status=status, # type: ignore text=msg, headers=headers) # type: web.Response resp.force_close() # type: ignore # some data already got sent, connection is broken if request.writer.output_size > 0 or self.transport is None: self.force_close() # type: ignore elif self.transport is not None: request_ip = RequestHandler.get_request_ip(request, None) if not request_ip: peername = request.transport.get_extra_info('peername') if peername: request_ip, _ = peername if self._access_log: logging.getLogger('transport.http').info('[{}] [{}] {} {} "INVALID" {} - "" -'.format( RequestHandler.colorize_status('http', status), RequestHandler.colorize_status(status), request_ip or '', '"{}"'.format(request._cache['auth'].login.replace('"', '')) if request._cache.get('auth') and getattr(request._cache.get('auth'), 'login', None) else '-', len(msg) )) return resp
def has_attr(cls, attr_name): """Check to see if an attribute is defined for the model.""" if attr_name in cls.attrs: return True if isinstance(cls.primary_key_name, str) and cls.primary_key_name == attr_name: return True if isinstance(cls.primary_key_name, tuple) and attr_name in cls.primary_key_name: return True if cls.timestamps is not None and attr_name in cls.timestamps: return True return False
Check to see if an attribute is defined for the model.
Below is the the instruction that describes the task: ### Input: Check to see if an attribute is defined for the model. ### Response: def has_attr(cls, attr_name): """Check to see if an attribute is defined for the model.""" if attr_name in cls.attrs: return True if isinstance(cls.primary_key_name, str) and cls.primary_key_name == attr_name: return True if isinstance(cls.primary_key_name, tuple) and attr_name in cls.primary_key_name: return True if cls.timestamps is not None and attr_name in cls.timestamps: return True return False
def build_dict(img_iterator): """ Build a dict from files from iterator. {'absolute_filename': {'EXIF field': 'exif tag value'}} Parse DateTime from filename in the same loop, added as 'TIME'. """ files_with_tags = dict() for f in img_iterator: with open(str(f.abspath()), 'rb') as jpg: tags = exifread.process_file(jpg) # Dont waste space on thumbnails try: del tags['JPEGThumbnail'] except KeyError: pass tags['TIME'] = get_time(str(f.abspath()), tags) files_with_tags[str(f.abspath())] = tags return files_with_tags
Build a dict from files from iterator. {'absolute_filename': {'EXIF field': 'exif tag value'}} Parse DateTime from filename in the same loop, added as 'TIME'.
Below is the the instruction that describes the task: ### Input: Build a dict from files from iterator. {'absolute_filename': {'EXIF field': 'exif tag value'}} Parse DateTime from filename in the same loop, added as 'TIME'. ### Response: def build_dict(img_iterator): """ Build a dict from files from iterator. {'absolute_filename': {'EXIF field': 'exif tag value'}} Parse DateTime from filename in the same loop, added as 'TIME'. """ files_with_tags = dict() for f in img_iterator: with open(str(f.abspath()), 'rb') as jpg: tags = exifread.process_file(jpg) # Dont waste space on thumbnails try: del tags['JPEGThumbnail'] except KeyError: pass tags['TIME'] = get_time(str(f.abspath()), tags) files_with_tags[str(f.abspath())] = tags return files_with_tags
def has_comment(src): """Indicate whether an input line has (i.e. ends in, or is) a comment. This uses tokenize, so it can distinguish comments from # inside strings. Parameters ---------- src : string A single line input string. Returns ------- Boolean: True if source has a comment. """ readline = StringIO(src).readline toktypes = set() try: for t in tokenize.generate_tokens(readline): toktypes.add(t[0]) except tokenize.TokenError: pass return(tokenize.COMMENT in toktypes)
Indicate whether an input line has (i.e. ends in, or is) a comment. This uses tokenize, so it can distinguish comments from # inside strings. Parameters ---------- src : string A single line input string. Returns ------- Boolean: True if source has a comment.
Below is the the instruction that describes the task: ### Input: Indicate whether an input line has (i.e. ends in, or is) a comment. This uses tokenize, so it can distinguish comments from # inside strings. Parameters ---------- src : string A single line input string. Returns ------- Boolean: True if source has a comment. ### Response: def has_comment(src): """Indicate whether an input line has (i.e. ends in, or is) a comment. This uses tokenize, so it can distinguish comments from # inside strings. Parameters ---------- src : string A single line input string. Returns ------- Boolean: True if source has a comment. """ readline = StringIO(src).readline toktypes = set() try: for t in tokenize.generate_tokens(readline): toktypes.add(t[0]) except tokenize.TokenError: pass return(tokenize.COMMENT in toktypes)
def get(self): """API endpoint to get the related blocks for a transaction. Return: A ``list`` of ``block_id``s that contain the given transaction. The list may be filtered when provided a status query parameter: "valid", "invalid", "undecided". """ parser = reqparse.RequestParser() parser.add_argument('transaction_id', type=str, required=True) args = parser.parse_args(strict=True) tx_id = args['transaction_id'] pool = current_app.config['bigchain_pool'] with pool() as bigchain: blocks = bigchain.get_block_containing_tx(tx_id) return blocks
API endpoint to get the related blocks for a transaction. Return: A ``list`` of ``block_id``s that contain the given transaction. The list may be filtered when provided a status query parameter: "valid", "invalid", "undecided".
Below is the the instruction that describes the task: ### Input: API endpoint to get the related blocks for a transaction. Return: A ``list`` of ``block_id``s that contain the given transaction. The list may be filtered when provided a status query parameter: "valid", "invalid", "undecided". ### Response: def get(self): """API endpoint to get the related blocks for a transaction. Return: A ``list`` of ``block_id``s that contain the given transaction. The list may be filtered when provided a status query parameter: "valid", "invalid", "undecided". """ parser = reqparse.RequestParser() parser.add_argument('transaction_id', type=str, required=True) args = parser.parse_args(strict=True) tx_id = args['transaction_id'] pool = current_app.config['bigchain_pool'] with pool() as bigchain: blocks = bigchain.get_block_containing_tx(tx_id) return blocks
def infer(cls, nij, Ti, root_state, fixed_pi=None, pc=5.0, gap_limit=0.01, **kwargs): """ Infer a GTR model by specifying the number of transitions and time spent in each character. The basic equation that is being solved is :math:`n_{ij} = pi_i W_{ij} T_j` where :math:`n_{ij}` are the transitions, :math:`pi_i` are the equilibrium state frequencies, :math:`W_{ij}` is the "substitution attempt matrix", while :math:`T_i` is the time on the tree spent in character state :math:`i`. To regularize the process, we add pseudocounts and also need to account for the fact that the root of the tree is in a particular state. the modified equation is :math:`n_{ij} + pc = pi_i W_{ij} (T_j+pc+root\_state)` Parameters ---------- nij : nxn matrix The number of times a change in character state is observed between state j and i Ti :n vector The time spent in each character state root_state : n vector The number of characters in state i in the sequence of the root node. pc : float Pseudocounts, this determines the lower cutoff on the rate when no substitutions are observed **kwargs: Key word arguments to be passed Keyword Args ------------ alphabet : str Specify alphabet when applicable. If the alphabet specification is required, but no alphabet is specified, the nucleotide alphabet will be used as default. """ from scipy import linalg as LA gtr = cls(**kwargs) gtr.logger("GTR: model inference ",1) dp = 1e-5 Nit = 40 pc_mat = pc*np.ones_like(nij) np.fill_diagonal(pc_mat, 0.0) count = 0 pi_old = np.zeros_like(Ti) if fixed_pi is None: pi = np.ones_like(Ti) else: pi = np.copy(fixed_pi) pi/=pi.sum() W_ij = np.ones_like(nij) mu = nij.sum()/Ti.sum() # if pi is fixed, this will immediately converge while LA.norm(pi_old-pi) > dp and count < Nit: gtr.logger(' '.join(map(str, ['GTR inference iteration',count,'change:',LA.norm(pi_old-pi)])), 3) count += 1 pi_old = np.copy(pi) W_ij = (nij+nij.T+2*pc_mat)/mu/(np.outer(pi,Ti) + np.outer(Ti,pi) + ttconf.TINY_NUMBER + 2*pc_mat) np.fill_diagonal(W_ij, 0) scale_factor = np.einsum('i,ij,j',pi,W_ij,pi) W_ij = W_ij/scale_factor if fixed_pi is None: pi = (np.sum(nij+pc_mat,axis=1)+root_state)/(ttconf.TINY_NUMBER + mu*np.dot(W_ij,Ti)+root_state.sum()+np.sum(pc_mat, axis=1)) pi /= pi.sum() mu = nij.sum()/(ttconf.TINY_NUMBER + np.sum(pi * (W_ij.dot(Ti)))) if count >= Nit: gtr.logger('WARNING: maximum number of iterations has been reached in GTR inference',3, warn=True) if LA.norm(pi_old-pi) > dp: gtr.logger('the iterative scheme has not converged',3,warn=True) elif np.abs(1-np.max(pi.sum(axis=0))) > dp: gtr.logger('the iterative scheme has converged, but proper normalization was not reached',3,warn=True) if gtr.gap_index is not None: if pi[gtr.gap_index]<gap_limit: gtr.logger('The model allows for gaps which are estimated to occur at a low fraction of %1.3e'%pi[gtr.gap_index]+ '\n\t\tthis can potentially result in artificats.'+ '\n\t\tgap fraction will be set to %1.4f'%gap_limit,2,warn=True) pi[gtr.gap_index] = gap_limit pi /= pi.sum() gtr.assign_rates(mu=mu, W=W_ij, pi=pi) return gtr
Infer a GTR model by specifying the number of transitions and time spent in each character. The basic equation that is being solved is :math:`n_{ij} = pi_i W_{ij} T_j` where :math:`n_{ij}` are the transitions, :math:`pi_i` are the equilibrium state frequencies, :math:`W_{ij}` is the "substitution attempt matrix", while :math:`T_i` is the time on the tree spent in character state :math:`i`. To regularize the process, we add pseudocounts and also need to account for the fact that the root of the tree is in a particular state. the modified equation is :math:`n_{ij} + pc = pi_i W_{ij} (T_j+pc+root\_state)` Parameters ---------- nij : nxn matrix The number of times a change in character state is observed between state j and i Ti :n vector The time spent in each character state root_state : n vector The number of characters in state i in the sequence of the root node. pc : float Pseudocounts, this determines the lower cutoff on the rate when no substitutions are observed **kwargs: Key word arguments to be passed Keyword Args ------------ alphabet : str Specify alphabet when applicable. If the alphabet specification is required, but no alphabet is specified, the nucleotide alphabet will be used as default.
Below is the the instruction that describes the task: ### Input: Infer a GTR model by specifying the number of transitions and time spent in each character. The basic equation that is being solved is :math:`n_{ij} = pi_i W_{ij} T_j` where :math:`n_{ij}` are the transitions, :math:`pi_i` are the equilibrium state frequencies, :math:`W_{ij}` is the "substitution attempt matrix", while :math:`T_i` is the time on the tree spent in character state :math:`i`. To regularize the process, we add pseudocounts and also need to account for the fact that the root of the tree is in a particular state. the modified equation is :math:`n_{ij} + pc = pi_i W_{ij} (T_j+pc+root\_state)` Parameters ---------- nij : nxn matrix The number of times a change in character state is observed between state j and i Ti :n vector The time spent in each character state root_state : n vector The number of characters in state i in the sequence of the root node. pc : float Pseudocounts, this determines the lower cutoff on the rate when no substitutions are observed **kwargs: Key word arguments to be passed Keyword Args ------------ alphabet : str Specify alphabet when applicable. If the alphabet specification is required, but no alphabet is specified, the nucleotide alphabet will be used as default. ### Response: def infer(cls, nij, Ti, root_state, fixed_pi=None, pc=5.0, gap_limit=0.01, **kwargs): """ Infer a GTR model by specifying the number of transitions and time spent in each character. The basic equation that is being solved is :math:`n_{ij} = pi_i W_{ij} T_j` where :math:`n_{ij}` are the transitions, :math:`pi_i` are the equilibrium state frequencies, :math:`W_{ij}` is the "substitution attempt matrix", while :math:`T_i` is the time on the tree spent in character state :math:`i`. To regularize the process, we add pseudocounts and also need to account for the fact that the root of the tree is in a particular state. the modified equation is :math:`n_{ij} + pc = pi_i W_{ij} (T_j+pc+root\_state)` Parameters ---------- nij : nxn matrix The number of times a change in character state is observed between state j and i Ti :n vector The time spent in each character state root_state : n vector The number of characters in state i in the sequence of the root node. pc : float Pseudocounts, this determines the lower cutoff on the rate when no substitutions are observed **kwargs: Key word arguments to be passed Keyword Args ------------ alphabet : str Specify alphabet when applicable. If the alphabet specification is required, but no alphabet is specified, the nucleotide alphabet will be used as default. """ from scipy import linalg as LA gtr = cls(**kwargs) gtr.logger("GTR: model inference ",1) dp = 1e-5 Nit = 40 pc_mat = pc*np.ones_like(nij) np.fill_diagonal(pc_mat, 0.0) count = 0 pi_old = np.zeros_like(Ti) if fixed_pi is None: pi = np.ones_like(Ti) else: pi = np.copy(fixed_pi) pi/=pi.sum() W_ij = np.ones_like(nij) mu = nij.sum()/Ti.sum() # if pi is fixed, this will immediately converge while LA.norm(pi_old-pi) > dp and count < Nit: gtr.logger(' '.join(map(str, ['GTR inference iteration',count,'change:',LA.norm(pi_old-pi)])), 3) count += 1 pi_old = np.copy(pi) W_ij = (nij+nij.T+2*pc_mat)/mu/(np.outer(pi,Ti) + np.outer(Ti,pi) + ttconf.TINY_NUMBER + 2*pc_mat) np.fill_diagonal(W_ij, 0) scale_factor = np.einsum('i,ij,j',pi,W_ij,pi) W_ij = W_ij/scale_factor if fixed_pi is None: pi = (np.sum(nij+pc_mat,axis=1)+root_state)/(ttconf.TINY_NUMBER + mu*np.dot(W_ij,Ti)+root_state.sum()+np.sum(pc_mat, axis=1)) pi /= pi.sum() mu = nij.sum()/(ttconf.TINY_NUMBER + np.sum(pi * (W_ij.dot(Ti)))) if count >= Nit: gtr.logger('WARNING: maximum number of iterations has been reached in GTR inference',3, warn=True) if LA.norm(pi_old-pi) > dp: gtr.logger('the iterative scheme has not converged',3,warn=True) elif np.abs(1-np.max(pi.sum(axis=0))) > dp: gtr.logger('the iterative scheme has converged, but proper normalization was not reached',3,warn=True) if gtr.gap_index is not None: if pi[gtr.gap_index]<gap_limit: gtr.logger('The model allows for gaps which are estimated to occur at a low fraction of %1.3e'%pi[gtr.gap_index]+ '\n\t\tthis can potentially result in artificats.'+ '\n\t\tgap fraction will be set to %1.4f'%gap_limit,2,warn=True) pi[gtr.gap_index] = gap_limit pi /= pi.sum() gtr.assign_rates(mu=mu, W=W_ij, pi=pi) return gtr
def get_region_for_chip(x, y, level=3): """Get the region word for the given chip co-ordinates. Parameters ---------- x : int x co-ordinate y : int y co-ordinate level : int Level of region to build. 0 is the most coarse and 3 is the finest. When 3 is used the specified region will ONLY select the given chip, for other regions surrounding chips will also be selected. Returns ------- int A 32-bit value representing the co-ordinates of the chunk of SpiNNaker chips that should be selected and the blocks within this chunk that are selected. As long as bits (31:16) are the same these values may be OR-ed together to increase the number of sub-blocks selected. """ shift = 6 - 2*level bit = ((x >> shift) & 3) + 4*((y >> shift) & 3) # bit in bits 15:0 to set mask = 0xffff ^ ((4 << shift) - 1) # in {0xfffc, 0xfff0, 0xffc0, 0xff00} nx = x & mask # The mask guarantees that bits 1:0 will be cleared ny = y & mask # The mask guarantees that bits 1:0 will be cleared # sig bits x | sig bits y | 2-bit level | region select bits region = (nx << 24) | (ny << 16) | (level << 16) | (1 << bit) return region
Get the region word for the given chip co-ordinates. Parameters ---------- x : int x co-ordinate y : int y co-ordinate level : int Level of region to build. 0 is the most coarse and 3 is the finest. When 3 is used the specified region will ONLY select the given chip, for other regions surrounding chips will also be selected. Returns ------- int A 32-bit value representing the co-ordinates of the chunk of SpiNNaker chips that should be selected and the blocks within this chunk that are selected. As long as bits (31:16) are the same these values may be OR-ed together to increase the number of sub-blocks selected.
Below is the the instruction that describes the task: ### Input: Get the region word for the given chip co-ordinates. Parameters ---------- x : int x co-ordinate y : int y co-ordinate level : int Level of region to build. 0 is the most coarse and 3 is the finest. When 3 is used the specified region will ONLY select the given chip, for other regions surrounding chips will also be selected. Returns ------- int A 32-bit value representing the co-ordinates of the chunk of SpiNNaker chips that should be selected and the blocks within this chunk that are selected. As long as bits (31:16) are the same these values may be OR-ed together to increase the number of sub-blocks selected. ### Response: def get_region_for_chip(x, y, level=3): """Get the region word for the given chip co-ordinates. Parameters ---------- x : int x co-ordinate y : int y co-ordinate level : int Level of region to build. 0 is the most coarse and 3 is the finest. When 3 is used the specified region will ONLY select the given chip, for other regions surrounding chips will also be selected. Returns ------- int A 32-bit value representing the co-ordinates of the chunk of SpiNNaker chips that should be selected and the blocks within this chunk that are selected. As long as bits (31:16) are the same these values may be OR-ed together to increase the number of sub-blocks selected. """ shift = 6 - 2*level bit = ((x >> shift) & 3) + 4*((y >> shift) & 3) # bit in bits 15:0 to set mask = 0xffff ^ ((4 << shift) - 1) # in {0xfffc, 0xfff0, 0xffc0, 0xff00} nx = x & mask # The mask guarantees that bits 1:0 will be cleared ny = y & mask # The mask guarantees that bits 1:0 will be cleared # sig bits x | sig bits y | 2-bit level | region select bits region = (nx << 24) | (ny << 16) | (level << 16) | (1 << bit) return region
def iter_filtered_dir_entry(dir_entries, match_patterns, on_skip): """ Filter a list of DirEntryPath instances with the given pattern :param dir_entries: list of DirEntryPath instances :param match_patterns: used with Path.match() e.g.: "__pycache__/*", "*.tmp", "*.cache" :param on_skip: function that will be called if 'match_patterns' hits. e.g.: def on_skip(entry, pattern): log.error("Skip pattern %r hit: %s" % (pattern, entry.path)) :return: yields None or DirEntryPath instances """ def match(dir_entry_path, match_patterns, on_skip): for match_pattern in match_patterns: if dir_entry_path.path_instance.match(match_pattern): on_skip(dir_entry_path, match_pattern) return True return False for entry in dir_entries: try: dir_entry_path = DirEntryPath(entry) except FileNotFoundError as err: # e.g.: A file was deleted after the first filesystem scan # Will be obsolete if we use shadow-copy / snapshot function from filesystem # see: https://github.com/jedie/PyHardLinkBackup/issues/6 log.error("Can't make DirEntryPath() instance: %s" % err) continue if match(dir_entry_path, match_patterns, on_skip): yield None else: yield dir_entry_path
Filter a list of DirEntryPath instances with the given pattern :param dir_entries: list of DirEntryPath instances :param match_patterns: used with Path.match() e.g.: "__pycache__/*", "*.tmp", "*.cache" :param on_skip: function that will be called if 'match_patterns' hits. e.g.: def on_skip(entry, pattern): log.error("Skip pattern %r hit: %s" % (pattern, entry.path)) :return: yields None or DirEntryPath instances
Below is the the instruction that describes the task: ### Input: Filter a list of DirEntryPath instances with the given pattern :param dir_entries: list of DirEntryPath instances :param match_patterns: used with Path.match() e.g.: "__pycache__/*", "*.tmp", "*.cache" :param on_skip: function that will be called if 'match_patterns' hits. e.g.: def on_skip(entry, pattern): log.error("Skip pattern %r hit: %s" % (pattern, entry.path)) :return: yields None or DirEntryPath instances ### Response: def iter_filtered_dir_entry(dir_entries, match_patterns, on_skip): """ Filter a list of DirEntryPath instances with the given pattern :param dir_entries: list of DirEntryPath instances :param match_patterns: used with Path.match() e.g.: "__pycache__/*", "*.tmp", "*.cache" :param on_skip: function that will be called if 'match_patterns' hits. e.g.: def on_skip(entry, pattern): log.error("Skip pattern %r hit: %s" % (pattern, entry.path)) :return: yields None or DirEntryPath instances """ def match(dir_entry_path, match_patterns, on_skip): for match_pattern in match_patterns: if dir_entry_path.path_instance.match(match_pattern): on_skip(dir_entry_path, match_pattern) return True return False for entry in dir_entries: try: dir_entry_path = DirEntryPath(entry) except FileNotFoundError as err: # e.g.: A file was deleted after the first filesystem scan # Will be obsolete if we use shadow-copy / snapshot function from filesystem # see: https://github.com/jedie/PyHardLinkBackup/issues/6 log.error("Can't make DirEntryPath() instance: %s" % err) continue if match(dir_entry_path, match_patterns, on_skip): yield None else: yield dir_entry_path
def newTextReaderFilename(URI): """Create an xmlTextReader structure fed with the resource at @URI """ ret = libxml2mod.xmlNewTextReaderFilename(URI) if ret is None:raise treeError('xmlNewTextReaderFilename() failed') return xmlTextReader(_obj=ret)
Create an xmlTextReader structure fed with the resource at @URI
Below is the the instruction that describes the task: ### Input: Create an xmlTextReader structure fed with the resource at @URI ### Response: def newTextReaderFilename(URI): """Create an xmlTextReader structure fed with the resource at @URI """ ret = libxml2mod.xmlNewTextReaderFilename(URI) if ret is None:raise treeError('xmlNewTextReaderFilename() failed') return xmlTextReader(_obj=ret)
def verify_words(self): """Verify the fields source, imagery_used and comment of the changeset for some suspect words. """ if self.comment: if find_words(self.comment, self.suspect_words, self.excluded_words): self.label_suspicious('suspect_word') if self.source: for word in self.illegal_sources: if word in self.source.lower(): self.label_suspicious('suspect_word') break if self.imagery_used: for word in self.illegal_sources: if word in self.imagery_used.lower(): self.label_suspicious('suspect_word') break self.suspicion_reasons = list(set(self.suspicion_reasons))
Verify the fields source, imagery_used and comment of the changeset for some suspect words.
Below is the the instruction that describes the task: ### Input: Verify the fields source, imagery_used and comment of the changeset for some suspect words. ### Response: def verify_words(self): """Verify the fields source, imagery_used and comment of the changeset for some suspect words. """ if self.comment: if find_words(self.comment, self.suspect_words, self.excluded_words): self.label_suspicious('suspect_word') if self.source: for word in self.illegal_sources: if word in self.source.lower(): self.label_suspicious('suspect_word') break if self.imagery_used: for word in self.illegal_sources: if word in self.imagery_used.lower(): self.label_suspicious('suspect_word') break self.suspicion_reasons = list(set(self.suspicion_reasons))
def set_data(self, data): """ Set a new data buffer. :Parameters: `data` : a basestring object New data buffer. """ if not isinstance(data, basestring): raise ValueError("data must an instance of basestring") self._data = data self._current = 0
Set a new data buffer. :Parameters: `data` : a basestring object New data buffer.
Below is the the instruction that describes the task: ### Input: Set a new data buffer. :Parameters: `data` : a basestring object New data buffer. ### Response: def set_data(self, data): """ Set a new data buffer. :Parameters: `data` : a basestring object New data buffer. """ if not isinstance(data, basestring): raise ValueError("data must an instance of basestring") self._data = data self._current = 0
def add(self, layers, above=None, below=None): """ Add one or more layers to the stack of masking layers. Args: layers: A string, NiBabel image, list, or dict. If anything other than a dict is passed, assigns sequential layer names based on the current position in stack; if a dict, uses key as the name and value as the mask image. """ def add_named_layer(name, image): image = self.get_image(image, output='vector') if above is not None: image[image < above] = 0. if below is not None: image[image > below] = 0. self.layers[name] = image self.stack.append(name) if isinstance(layers, dict): for (name, image) in layers.items(): add_named_layer(name, image) else: if not isinstance(layers, list): layers = [layers] for image in layers: name = 'layer_%d' % len(self.stack) add_named_layer(name, image) self.set_mask()
Add one or more layers to the stack of masking layers. Args: layers: A string, NiBabel image, list, or dict. If anything other than a dict is passed, assigns sequential layer names based on the current position in stack; if a dict, uses key as the name and value as the mask image.
Below is the the instruction that describes the task: ### Input: Add one or more layers to the stack of masking layers. Args: layers: A string, NiBabel image, list, or dict. If anything other than a dict is passed, assigns sequential layer names based on the current position in stack; if a dict, uses key as the name and value as the mask image. ### Response: def add(self, layers, above=None, below=None): """ Add one or more layers to the stack of masking layers. Args: layers: A string, NiBabel image, list, or dict. If anything other than a dict is passed, assigns sequential layer names based on the current position in stack; if a dict, uses key as the name and value as the mask image. """ def add_named_layer(name, image): image = self.get_image(image, output='vector') if above is not None: image[image < above] = 0. if below is not None: image[image > below] = 0. self.layers[name] = image self.stack.append(name) if isinstance(layers, dict): for (name, image) in layers.items(): add_named_layer(name, image) else: if not isinstance(layers, list): layers = [layers] for image in layers: name = 'layer_%d' % len(self.stack) add_named_layer(name, image) self.set_mask()
def expires(self): """Union[datetime.datetime, None]: Datetime at which the table will be deleted. Raises: ValueError: For invalid value types. """ expiration_time = self._properties.get("expirationTime") if expiration_time is not None: # expiration_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(expiration_time) )
Union[datetime.datetime, None]: Datetime at which the table will be deleted. Raises: ValueError: For invalid value types.
Below is the the instruction that describes the task: ### Input: Union[datetime.datetime, None]: Datetime at which the table will be deleted. Raises: ValueError: For invalid value types. ### Response: def expires(self): """Union[datetime.datetime, None]: Datetime at which the table will be deleted. Raises: ValueError: For invalid value types. """ expiration_time = self._properties.get("expirationTime") if expiration_time is not None: # expiration_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(expiration_time) )
def reset(self): # pylint: disable=not-context-manager """Reset scheduler:: * Remove waiting results * Clear checks and actions lists :return: None """ logger.info("Scheduling loop reset") with self.waiting_results.mutex: self.waiting_results.queue.clear() self.checks.clear() self.actions.clear()
Reset scheduler:: * Remove waiting results * Clear checks and actions lists :return: None
Below is the the instruction that describes the task: ### Input: Reset scheduler:: * Remove waiting results * Clear checks and actions lists :return: None ### Response: def reset(self): # pylint: disable=not-context-manager """Reset scheduler:: * Remove waiting results * Clear checks and actions lists :return: None """ logger.info("Scheduling loop reset") with self.waiting_results.mutex: self.waiting_results.queue.clear() self.checks.clear() self.actions.clear()
def fromXml(cls, xml): """ Restores an object from XML. :param xml | <xml.etree.ElementTree.Element> :return subclass of <XmlObject> """ clsname = xml.get('class') if clsname: subcls = XmlObject.byName(clsname) if subcls is None: inst = MissingXmlObject(clsname) else: inst = subcls() else: inst = cls() inst.loadXml(xml) return inst
Restores an object from XML. :param xml | <xml.etree.ElementTree.Element> :return subclass of <XmlObject>
Below is the the instruction that describes the task: ### Input: Restores an object from XML. :param xml | <xml.etree.ElementTree.Element> :return subclass of <XmlObject> ### Response: def fromXml(cls, xml): """ Restores an object from XML. :param xml | <xml.etree.ElementTree.Element> :return subclass of <XmlObject> """ clsname = xml.get('class') if clsname: subcls = XmlObject.byName(clsname) if subcls is None: inst = MissingXmlObject(clsname) else: inst = subcls() else: inst = cls() inst.loadXml(xml) return inst
def document_fromstring(html, guess_charset=True, parser=None): """Parse a whole document into a string.""" if not isinstance(html, _strings): raise TypeError('string required') if parser is None: parser = html_parser return parser.parse(html, useChardet=guess_charset).getroot()
Parse a whole document into a string.
Below is the the instruction that describes the task: ### Input: Parse a whole document into a string. ### Response: def document_fromstring(html, guess_charset=True, parser=None): """Parse a whole document into a string.""" if not isinstance(html, _strings): raise TypeError('string required') if parser is None: parser = html_parser return parser.parse(html, useChardet=guess_charset).getroot()
def build_segment_list_one(engine, gps_start_time, gps_end_time, ifo, segment_name, version = None, start_pad = 0, end_pad = 0): """Builds a list of segments satisfying the given criteria """ seg_result = segmentlist([]) sum_result = segmentlist([]) # Is there any way to get segment and segement summary in one query? # Maybe some sort of outer join where we keep track of which segment # summaries we've already seen. sql = "SELECT segment_summary.start_time, segment_summary.end_time " sql += "FROM segment_definer, segment_summary " sql += "WHERE segment_summary.segment_def_id = segment_definer.segment_def_id " sql += "AND segment_definer.ifos = '%s' " % ifo if engine.__class__ == query_engine.LdbdQueryEngine: sql += "AND segment_summary.segment_def_cdb = segment_definer.creator_db " sql += "AND segment_definer.name = '%s' " % segment_name sql += "AND segment_definer.version = %s " % version sql += "AND NOT (%s > segment_summary.end_time OR segment_summary.start_time > %s)" % (gps_start_time, gps_end_time) rows = engine.query(sql) for sum_start_time, sum_end_time in rows: sum_start_time = (sum_start_time < gps_start_time) and gps_start_time or sum_start_time sum_end_time = (sum_end_time > gps_end_time) and gps_end_time or sum_end_time sum_result |= segmentlist([segment(sum_start_time, sum_end_time)]) # We can't use queries paramaterized with ? since the ldbd protocol doesn't support it... sql = "SELECT segment.start_time + %d, segment.end_time + %d " % (start_pad, end_pad) sql += "FROM segment, segment_definer " sql += "WHERE segment.segment_def_id = segment_definer.segment_def_id " if engine.__class__ == query_engine.LdbdQueryEngine: sql += "AND segment.segment_def_cdb = segment_definer.creator_db " sql += "AND segment_definer.ifos = '%s' " % ifo sql += "AND segment_definer.name = '%s' " % segment_name sql += "AND segment_definer.version = %s " % version sql += "AND NOT (%s > segment.end_time OR segment.start_time > %s)" % (gps_start_time, gps_end_time) rows = engine.query(sql) for seg_start_time, seg_end_time in rows: seg_start_time = (seg_start_time < gps_start_time) and gps_start_time or seg_start_time seg_end_time = (seg_end_time > gps_end_time) and gps_end_time or seg_end_time seg_result |= segmentlist([segment(seg_start_time, seg_end_time)]) engine.close() return sum_result, seg_result
Builds a list of segments satisfying the given criteria
Below is the the instruction that describes the task: ### Input: Builds a list of segments satisfying the given criteria ### Response: def build_segment_list_one(engine, gps_start_time, gps_end_time, ifo, segment_name, version = None, start_pad = 0, end_pad = 0): """Builds a list of segments satisfying the given criteria """ seg_result = segmentlist([]) sum_result = segmentlist([]) # Is there any way to get segment and segement summary in one query? # Maybe some sort of outer join where we keep track of which segment # summaries we've already seen. sql = "SELECT segment_summary.start_time, segment_summary.end_time " sql += "FROM segment_definer, segment_summary " sql += "WHERE segment_summary.segment_def_id = segment_definer.segment_def_id " sql += "AND segment_definer.ifos = '%s' " % ifo if engine.__class__ == query_engine.LdbdQueryEngine: sql += "AND segment_summary.segment_def_cdb = segment_definer.creator_db " sql += "AND segment_definer.name = '%s' " % segment_name sql += "AND segment_definer.version = %s " % version sql += "AND NOT (%s > segment_summary.end_time OR segment_summary.start_time > %s)" % (gps_start_time, gps_end_time) rows = engine.query(sql) for sum_start_time, sum_end_time in rows: sum_start_time = (sum_start_time < gps_start_time) and gps_start_time or sum_start_time sum_end_time = (sum_end_time > gps_end_time) and gps_end_time or sum_end_time sum_result |= segmentlist([segment(sum_start_time, sum_end_time)]) # We can't use queries paramaterized with ? since the ldbd protocol doesn't support it... sql = "SELECT segment.start_time + %d, segment.end_time + %d " % (start_pad, end_pad) sql += "FROM segment, segment_definer " sql += "WHERE segment.segment_def_id = segment_definer.segment_def_id " if engine.__class__ == query_engine.LdbdQueryEngine: sql += "AND segment.segment_def_cdb = segment_definer.creator_db " sql += "AND segment_definer.ifos = '%s' " % ifo sql += "AND segment_definer.name = '%s' " % segment_name sql += "AND segment_definer.version = %s " % version sql += "AND NOT (%s > segment.end_time OR segment.start_time > %s)" % (gps_start_time, gps_end_time) rows = engine.query(sql) for seg_start_time, seg_end_time in rows: seg_start_time = (seg_start_time < gps_start_time) and gps_start_time or seg_start_time seg_end_time = (seg_end_time > gps_end_time) and gps_end_time or seg_end_time seg_result |= segmentlist([segment(seg_start_time, seg_end_time)]) engine.close() return sum_result, seg_result
def getVersionFromArchiveId(git_archive_id='$Format:%ct %d$'): """ Extract the tag if a source is from git archive. When source is exported via `git archive`, the git_archive_id init value is modified and placeholders are expanded to the "archived" revision: %ct: committer date, UNIX timestamp %d: ref names, like the --decorate option of git-log See man gitattributes(5) and git-log(1) (PRETTY FORMATS) for more details. """ # mangle the magic string to make sure it is not replaced by git archive if not git_archive_id.startswith('$For''mat:'): # source was modified by git archive, try to parse the version from # the value of git_archive_id match = re.search(r'tag:\s*v([^,)]+)', git_archive_id) if match: # archived revision is tagged, use the tag return gitDescribeToPep440(match.group(1)) # archived revision is not tagged, use the commit date tstamp = git_archive_id.strip().split()[0] d = datetime.datetime.utcfromtimestamp(int(tstamp)) return d.strftime('%Y.%m.%d') return None
Extract the tag if a source is from git archive. When source is exported via `git archive`, the git_archive_id init value is modified and placeholders are expanded to the "archived" revision: %ct: committer date, UNIX timestamp %d: ref names, like the --decorate option of git-log See man gitattributes(5) and git-log(1) (PRETTY FORMATS) for more details.
Below is the the instruction that describes the task: ### Input: Extract the tag if a source is from git archive. When source is exported via `git archive`, the git_archive_id init value is modified and placeholders are expanded to the "archived" revision: %ct: committer date, UNIX timestamp %d: ref names, like the --decorate option of git-log See man gitattributes(5) and git-log(1) (PRETTY FORMATS) for more details. ### Response: def getVersionFromArchiveId(git_archive_id='$Format:%ct %d$'): """ Extract the tag if a source is from git archive. When source is exported via `git archive`, the git_archive_id init value is modified and placeholders are expanded to the "archived" revision: %ct: committer date, UNIX timestamp %d: ref names, like the --decorate option of git-log See man gitattributes(5) and git-log(1) (PRETTY FORMATS) for more details. """ # mangle the magic string to make sure it is not replaced by git archive if not git_archive_id.startswith('$For''mat:'): # source was modified by git archive, try to parse the version from # the value of git_archive_id match = re.search(r'tag:\s*v([^,)]+)', git_archive_id) if match: # archived revision is tagged, use the tag return gitDescribeToPep440(match.group(1)) # archived revision is not tagged, use the commit date tstamp = git_archive_id.strip().split()[0] d = datetime.datetime.utcfromtimestamp(int(tstamp)) return d.strftime('%Y.%m.%d') return None
def get_sitk_image_from_ndarray(data3d): """ Prepare SimpleItk Image object and rescale data to unsigned types. Simple ITK with version higher than 1.0.0 can not write signed int16. This function check the SimpleITK version and use work around with Rescale Intercept and Rescale Slope :param data3d: :return: """ import SimpleITK as sitk rescale_intercept = None if sitk.Version.MajorVersion() > 0: if data3d.dtype == np.int8: rescale_intercept = -2**7 data3d = (data3d - rescale_intercept).astype(np.uint8) elif data3d.dtype == np.int16: # simpleitk is not able to store this. It uses only 11 bites # rescale_intercept = -2**15 rescale_intercept = -2**10 data3d = (data3d - rescale_intercept).astype(np.uint16) elif data3d.dtype == np.int32: rescale_intercept = -2**31 data3d = (data3d - rescale_intercept).astype(np.uint16) dim = sitk.GetImageFromArray(data3d) if sitk.Version.MajorVersion() > 0: if rescale_intercept is not None: # rescale slope (0028|1053), rescale intercept (0028|1052) dim.SetMetaData("0028|1052", str(rescale_intercept)) dim.SetMetaData("0028|1053", "1") return dim
Prepare SimpleItk Image object and rescale data to unsigned types. Simple ITK with version higher than 1.0.0 can not write signed int16. This function check the SimpleITK version and use work around with Rescale Intercept and Rescale Slope :param data3d: :return:
Below is the the instruction that describes the task: ### Input: Prepare SimpleItk Image object and rescale data to unsigned types. Simple ITK with version higher than 1.0.0 can not write signed int16. This function check the SimpleITK version and use work around with Rescale Intercept and Rescale Slope :param data3d: :return: ### Response: def get_sitk_image_from_ndarray(data3d): """ Prepare SimpleItk Image object and rescale data to unsigned types. Simple ITK with version higher than 1.0.0 can not write signed int16. This function check the SimpleITK version and use work around with Rescale Intercept and Rescale Slope :param data3d: :return: """ import SimpleITK as sitk rescale_intercept = None if sitk.Version.MajorVersion() > 0: if data3d.dtype == np.int8: rescale_intercept = -2**7 data3d = (data3d - rescale_intercept).astype(np.uint8) elif data3d.dtype == np.int16: # simpleitk is not able to store this. It uses only 11 bites # rescale_intercept = -2**15 rescale_intercept = -2**10 data3d = (data3d - rescale_intercept).astype(np.uint16) elif data3d.dtype == np.int32: rescale_intercept = -2**31 data3d = (data3d - rescale_intercept).astype(np.uint16) dim = sitk.GetImageFromArray(data3d) if sitk.Version.MajorVersion() > 0: if rescale_intercept is not None: # rescale slope (0028|1053), rescale intercept (0028|1052) dim.SetMetaData("0028|1052", str(rescale_intercept)) dim.SetMetaData("0028|1053", "1") return dim
def load(cls, path): """ Load a SOM from a JSON file saved with this package. Parameters ---------- path : str The path to the JSON file. Returns ------- s : cls A som of the specified class. """ data = json.load(open(path)) weights = data['weights'] weights = np.asarray(weights, dtype=np.float64) s = cls(data['num_neurons'], data['data_dimensionality'], data['params']['lr']['orig'], neighborhood=data['params']['infl']['orig'], valfunc=data['valfunc'], argfunc=data['argfunc'], lr_lambda=data['params']['lr']['factor'], nb_lambda=data['params']['nb']['factor']) s.weights = weights s.trained = True return s
Load a SOM from a JSON file saved with this package. Parameters ---------- path : str The path to the JSON file. Returns ------- s : cls A som of the specified class.
Below is the the instruction that describes the task: ### Input: Load a SOM from a JSON file saved with this package. Parameters ---------- path : str The path to the JSON file. Returns ------- s : cls A som of the specified class. ### Response: def load(cls, path): """ Load a SOM from a JSON file saved with this package. Parameters ---------- path : str The path to the JSON file. Returns ------- s : cls A som of the specified class. """ data = json.load(open(path)) weights = data['weights'] weights = np.asarray(weights, dtype=np.float64) s = cls(data['num_neurons'], data['data_dimensionality'], data['params']['lr']['orig'], neighborhood=data['params']['infl']['orig'], valfunc=data['valfunc'], argfunc=data['argfunc'], lr_lambda=data['params']['lr']['factor'], nb_lambda=data['params']['nb']['factor']) s.weights = weights s.trained = True return s
def create_snapshot(kwargs=None, call=None, wait_to_finish=False): ''' Create a snapshot. volume_id The ID of the Volume from which to create a snapshot. description The optional description of the snapshot. CLI Exampe: .. code-block:: bash salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826 salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826 \\ description="My Snapshot Description" ''' if call != 'function': raise SaltCloudSystemExit( 'The create_snapshot function must be called with -f ' 'or --function.' ) if kwargs is None: kwargs = {} volume_id = kwargs.get('volume_id', None) description = kwargs.get('description', '') if volume_id is None: raise SaltCloudSystemExit( 'A volume_id must be specified to create a snapshot.' ) params = {'Action': 'CreateSnapshot', 'VolumeId': volume_id, 'Description': description} log.debug(params) data = aws.query(params, return_url=True, return_root=True, location=get_location(), provider=get_provider(), opts=__opts__, sigver='4')[0] r_data = {} for d in data: for k, v in six.iteritems(d): r_data[k] = v if 'snapshotId' in r_data: snapshot_id = r_data['snapshotId'] # Waits till volume is available if wait_to_finish: salt.utils.cloud.run_func_until_ret_arg(fun=describe_snapshots, kwargs={'snapshot_id': snapshot_id}, fun_call=call, argument_being_watched='status', required_argument_response='completed') return r_data
Create a snapshot. volume_id The ID of the Volume from which to create a snapshot. description The optional description of the snapshot. CLI Exampe: .. code-block:: bash salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826 salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826 \\ description="My Snapshot Description"
Below is the the instruction that describes the task: ### Input: Create a snapshot. volume_id The ID of the Volume from which to create a snapshot. description The optional description of the snapshot. CLI Exampe: .. code-block:: bash salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826 salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826 \\ description="My Snapshot Description" ### Response: def create_snapshot(kwargs=None, call=None, wait_to_finish=False): ''' Create a snapshot. volume_id The ID of the Volume from which to create a snapshot. description The optional description of the snapshot. CLI Exampe: .. code-block:: bash salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826 salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826 \\ description="My Snapshot Description" ''' if call != 'function': raise SaltCloudSystemExit( 'The create_snapshot function must be called with -f ' 'or --function.' ) if kwargs is None: kwargs = {} volume_id = kwargs.get('volume_id', None) description = kwargs.get('description', '') if volume_id is None: raise SaltCloudSystemExit( 'A volume_id must be specified to create a snapshot.' ) params = {'Action': 'CreateSnapshot', 'VolumeId': volume_id, 'Description': description} log.debug(params) data = aws.query(params, return_url=True, return_root=True, location=get_location(), provider=get_provider(), opts=__opts__, sigver='4')[0] r_data = {} for d in data: for k, v in six.iteritems(d): r_data[k] = v if 'snapshotId' in r_data: snapshot_id = r_data['snapshotId'] # Waits till volume is available if wait_to_finish: salt.utils.cloud.run_func_until_ret_arg(fun=describe_snapshots, kwargs={'snapshot_id': snapshot_id}, fun_call=call, argument_being_watched='status', required_argument_response='completed') return r_data
def GetFilePathsWithDialog(fileTypes=[]): """ Multipul File Select with dialog fileTypes: you can choise file extension ex) fileTypes=[('Excel Files', '.xlsx')] """ root = tkinter.Tk() root.withdraw() filepath = filedialog.askopenfilenames( filetypes=fileTypes, parent=root) if isinstance(filepath, str): fileList = filepath.split(" ") elif isinstance(filepath, tuple): fileList = list(filepath) elif isinstance(filepath, list): fileList = filepath root.destroy() print(str(len(fileList)) + " files are selected") return fileList
Multipul File Select with dialog fileTypes: you can choise file extension ex) fileTypes=[('Excel Files', '.xlsx')]
Below is the the instruction that describes the task: ### Input: Multipul File Select with dialog fileTypes: you can choise file extension ex) fileTypes=[('Excel Files', '.xlsx')] ### Response: def GetFilePathsWithDialog(fileTypes=[]): """ Multipul File Select with dialog fileTypes: you can choise file extension ex) fileTypes=[('Excel Files', '.xlsx')] """ root = tkinter.Tk() root.withdraw() filepath = filedialog.askopenfilenames( filetypes=fileTypes, parent=root) if isinstance(filepath, str): fileList = filepath.split(" ") elif isinstance(filepath, tuple): fileList = list(filepath) elif isinstance(filepath, list): fileList = filepath root.destroy() print(str(len(fileList)) + " files are selected") return fileList
def _add_bearer_token(self, *args, **kwargs): """Add a bearer token to the request uri, body or authorization header. This is overwritten to change the headers slightly. """ s = super(TwitchOAuthClient, self) uri, headers, body = s._add_bearer_token(*args, **kwargs) authheader = headers.get('Authorization') if authheader: headers['Authorization'] = authheader.replace('Bearer', 'OAuth') return uri, headers, body
Add a bearer token to the request uri, body or authorization header. This is overwritten to change the headers slightly.
Below is the the instruction that describes the task: ### Input: Add a bearer token to the request uri, body or authorization header. This is overwritten to change the headers slightly. ### Response: def _add_bearer_token(self, *args, **kwargs): """Add a bearer token to the request uri, body or authorization header. This is overwritten to change the headers slightly. """ s = super(TwitchOAuthClient, self) uri, headers, body = s._add_bearer_token(*args, **kwargs) authheader = headers.get('Authorization') if authheader: headers['Authorization'] = authheader.replace('Bearer', 'OAuth') return uri, headers, body
def generate_nonce_timestamp(): """ Generate unique nonce with counter, uuid and rng.""" global count rng = botan.rng().get(30) uuid4 = uuid.uuid4().bytes # 16 byte tmpnonce = (bytes(str(count).encode('utf-8'))) + uuid4 + rng nonce = tmpnonce[:41] # 41 byte (328 bit) count += 1 return nonce
Generate unique nonce with counter, uuid and rng.
Below is the the instruction that describes the task: ### Input: Generate unique nonce with counter, uuid and rng. ### Response: def generate_nonce_timestamp(): """ Generate unique nonce with counter, uuid and rng.""" global count rng = botan.rng().get(30) uuid4 = uuid.uuid4().bytes # 16 byte tmpnonce = (bytes(str(count).encode('utf-8'))) + uuid4 + rng nonce = tmpnonce[:41] # 41 byte (328 bit) count += 1 return nonce
def devices(self): """Get a listing of devices registered to the Google Music account.""" response = self._call( mc_calls.DeviceManagementInfo ) registered_devices = response.body.get('data', {}).get('items', []) return registered_devices
Get a listing of devices registered to the Google Music account.
Below is the the instruction that describes the task: ### Input: Get a listing of devices registered to the Google Music account. ### Response: def devices(self): """Get a listing of devices registered to the Google Music account.""" response = self._call( mc_calls.DeviceManagementInfo ) registered_devices = response.body.get('data', {}).get('items', []) return registered_devices
def _assert_version(self, version): ''' Assert that the grid version is equal to or above the given value. If no version is set, set the version. ''' if self.nearest_version < version: if self._version_given: raise ValueError( 'Data type requires version %s' \ % version) else: self._version = version
Assert that the grid version is equal to or above the given value. If no version is set, set the version.
Below is the the instruction that describes the task: ### Input: Assert that the grid version is equal to or above the given value. If no version is set, set the version. ### Response: def _assert_version(self, version): ''' Assert that the grid version is equal to or above the given value. If no version is set, set the version. ''' if self.nearest_version < version: if self._version_given: raise ValueError( 'Data type requires version %s' \ % version) else: self._version = version
def _B(self, R): """Return numpy array from B1 up to and including Bn. (eqn. 6)""" HNn_R = self._HNn / R return HNn_R / self._sin_alpha * (0.4 * HNn_R / self._sin_alpha + 1)
Return numpy array from B1 up to and including Bn. (eqn. 6)
Below is the the instruction that describes the task: ### Input: Return numpy array from B1 up to and including Bn. (eqn. 6) ### Response: def _B(self, R): """Return numpy array from B1 up to and including Bn. (eqn. 6)""" HNn_R = self._HNn / R return HNn_R / self._sin_alpha * (0.4 * HNn_R / self._sin_alpha + 1)
def writeObjectReference(self, obj, output): """Tries to write an object reference, adding it to the references table. Does not write the actual object bytes or set the reference position. Returns a tuple of whether the object was a new reference (True if it was, False if it already was in the reference table) and the new output. """ position = self.positionOfObjectReference(obj) if position is None: self.writtenReferences[obj] = len(self.writtenReferences) output += self.binaryInt(len(self.writtenReferences) - 1, byteSize=self.trailer.objectRefSize) return (True, output) else: output += self.binaryInt(position, byteSize=self.trailer.objectRefSize) return (False, output)
Tries to write an object reference, adding it to the references table. Does not write the actual object bytes or set the reference position. Returns a tuple of whether the object was a new reference (True if it was, False if it already was in the reference table) and the new output.
Below is the the instruction that describes the task: ### Input: Tries to write an object reference, adding it to the references table. Does not write the actual object bytes or set the reference position. Returns a tuple of whether the object was a new reference (True if it was, False if it already was in the reference table) and the new output. ### Response: def writeObjectReference(self, obj, output): """Tries to write an object reference, adding it to the references table. Does not write the actual object bytes or set the reference position. Returns a tuple of whether the object was a new reference (True if it was, False if it already was in the reference table) and the new output. """ position = self.positionOfObjectReference(obj) if position is None: self.writtenReferences[obj] = len(self.writtenReferences) output += self.binaryInt(len(self.writtenReferences) - 1, byteSize=self.trailer.objectRefSize) return (True, output) else: output += self.binaryInt(position, byteSize=self.trailer.objectRefSize) return (False, output)
def orchestration_save(self, mode="shallow", custom_params=None): """Orchestration Save command :param mode: :param custom_params: json with all required action to configure or remove vlans from certain port :return Serialized OrchestrationSavedArtifact to json :rtype json """ save_params = {'folder_path': '', 'configuration_type': 'running', 'return_artifact': True} params = dict() if custom_params: params = jsonpickle.decode(custom_params) save_params.update(params.get('custom_params', {})) save_params['folder_path'] = self.get_path(save_params['folder_path']) saved_artifact = self.save(**save_params) saved_artifact_info = OrchestrationSavedArtifactInfo(resource_name=self.resource_config.name, created_date=datetime.datetime.now(), restore_rules=self.get_restore_rules(), saved_artifact=saved_artifact) save_response = OrchestrationSaveResult(saved_artifacts_info=saved_artifact_info) self._validate_artifact_info(saved_artifact_info) return serialize_to_json(save_response)
Orchestration Save command :param mode: :param custom_params: json with all required action to configure or remove vlans from certain port :return Serialized OrchestrationSavedArtifact to json :rtype json
Below is the the instruction that describes the task: ### Input: Orchestration Save command :param mode: :param custom_params: json with all required action to configure or remove vlans from certain port :return Serialized OrchestrationSavedArtifact to json :rtype json ### Response: def orchestration_save(self, mode="shallow", custom_params=None): """Orchestration Save command :param mode: :param custom_params: json with all required action to configure or remove vlans from certain port :return Serialized OrchestrationSavedArtifact to json :rtype json """ save_params = {'folder_path': '', 'configuration_type': 'running', 'return_artifact': True} params = dict() if custom_params: params = jsonpickle.decode(custom_params) save_params.update(params.get('custom_params', {})) save_params['folder_path'] = self.get_path(save_params['folder_path']) saved_artifact = self.save(**save_params) saved_artifact_info = OrchestrationSavedArtifactInfo(resource_name=self.resource_config.name, created_date=datetime.datetime.now(), restore_rules=self.get_restore_rules(), saved_artifact=saved_artifact) save_response = OrchestrationSaveResult(saved_artifacts_info=saved_artifact_info) self._validate_artifact_info(saved_artifact_info) return serialize_to_json(save_response)
def _parse_prop(self, dd, row): """ :param dd: datadict :param _row: (tablename, row) :return: """ key = row['name'] if key.startswith('#'): deprecated = True else: deprecated = False v = dd.get(key) _value = self._get_value(row) if not v: v = dd.setdefault(key, {}) v[_value] = deprecated else: if not _value in v: v[_value] = deprecated
:param dd: datadict :param _row: (tablename, row) :return:
Below is the the instruction that describes the task: ### Input: :param dd: datadict :param _row: (tablename, row) :return: ### Response: def _parse_prop(self, dd, row): """ :param dd: datadict :param _row: (tablename, row) :return: """ key = row['name'] if key.startswith('#'): deprecated = True else: deprecated = False v = dd.get(key) _value = self._get_value(row) if not v: v = dd.setdefault(key, {}) v[_value] = deprecated else: if not _value in v: v[_value] = deprecated
def organize_models(self, outdir, force_rerun=False): """Organize and rename SWISS-MODEL models to a single folder with a name containing template information. Args: outdir (str): New directory to copy renamed models to force_rerun (bool): If models should be copied again even if they already exist Returns: dict: Dictionary of lists, UniProt IDs as the keys and new file paths as the values """ uniprot_to_swissmodel = defaultdict(list) for u, models in self.all_models.items(): for m in models: original_filename = '{}_{}_{}_{}'.format(m['from'], m['to'], m['template'], m['coordinate_id']) file_path = op.join(self.metadata_dir, u[:2], u[2:4], u[4:], 'swissmodel', '{}.pdb'.format(original_filename)) if op.exists(file_path): new_filename = '{}_{}_{}_{}.pdb'.format(u, m['from'], m['to'], m['template'][:4]) shutil.copy(file_path, op.join(outdir, new_filename)) uniprot_to_swissmodel[u].append(new_filename) else: log.warning('{}: no file {} found for model'.format(u, file_path)) return uniprot_to_swissmodel
Organize and rename SWISS-MODEL models to a single folder with a name containing template information. Args: outdir (str): New directory to copy renamed models to force_rerun (bool): If models should be copied again even if they already exist Returns: dict: Dictionary of lists, UniProt IDs as the keys and new file paths as the values
Below is the the instruction that describes the task: ### Input: Organize and rename SWISS-MODEL models to a single folder with a name containing template information. Args: outdir (str): New directory to copy renamed models to force_rerun (bool): If models should be copied again even if they already exist Returns: dict: Dictionary of lists, UniProt IDs as the keys and new file paths as the values ### Response: def organize_models(self, outdir, force_rerun=False): """Organize and rename SWISS-MODEL models to a single folder with a name containing template information. Args: outdir (str): New directory to copy renamed models to force_rerun (bool): If models should be copied again even if they already exist Returns: dict: Dictionary of lists, UniProt IDs as the keys and new file paths as the values """ uniprot_to_swissmodel = defaultdict(list) for u, models in self.all_models.items(): for m in models: original_filename = '{}_{}_{}_{}'.format(m['from'], m['to'], m['template'], m['coordinate_id']) file_path = op.join(self.metadata_dir, u[:2], u[2:4], u[4:], 'swissmodel', '{}.pdb'.format(original_filename)) if op.exists(file_path): new_filename = '{}_{}_{}_{}.pdb'.format(u, m['from'], m['to'], m['template'][:4]) shutil.copy(file_path, op.join(outdir, new_filename)) uniprot_to_swissmodel[u].append(new_filename) else: log.warning('{}: no file {} found for model'.format(u, file_path)) return uniprot_to_swissmodel
def readSTATION0(path, stations): """ Read a Seisan STATION0.HYP file on the path given. Outputs the information, and writes to station.dat file. :type path: str :param path: Path to the STATION0.HYP file :type stations: list :param stations: Stations to look for :returns: List of tuples of station, lat, long, elevation :rtype: list >>> # Get the path to the test data >>> import eqcorrscan >>> import os >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> readSTATION0(TEST_PATH, ['WHFS', 'WHAT2', 'BOB']) [('WHFS', -43.261, 170.359, 60.0), ('WHAT2', -43.2793, \ 170.36038333333335, 95.0), ('BOB', 41.408166666666666, \ -174.87116666666665, 101.0)] """ stalist = [] f = open(path + '/STATION0.HYP', 'r') for line in f: if line[1:6].strip() in stations: station = line[1:6].strip() lat = line[6:14] # Format is either ddmm.mmS/N or ddmm(.)mmmS/N if lat[-1] == 'S': NS = -1 else: NS = 1 if lat[4] == '.': lat = (int(lat[0:2]) + float(lat[2:-1]) / 60) * NS else: lat = (int(lat[0:2]) + float(lat[2:4] + '.' + lat[4:-1]) / 60) * NS lon = line[14:23] if lon[-1] == 'W': EW = -1 else: EW = 1 if lon[5] == '.': lon = (int(lon[0:3]) + float(lon[3:-1]) / 60) * EW else: lon = (int(lon[0:3]) + float(lon[3:5] + '.' + lon[5:-1]) / 60) * EW elev = float(line[23:-1].strip()) # Note, negative altitude can be indicated in 1st column if line[0] == '-': elev *= -1 stalist.append((station, lat, lon, elev)) f.close() f = open('station.dat', 'w') for sta in stalist: line = ''.join([sta[0].ljust(5), _cc_round(sta[1], 4).ljust(10), _cc_round(sta[2], 4).ljust(10), _cc_round(sta[3] / 1000, 4).rjust(7), '\n']) f.write(line) f.close() return stalist
Read a Seisan STATION0.HYP file on the path given. Outputs the information, and writes to station.dat file. :type path: str :param path: Path to the STATION0.HYP file :type stations: list :param stations: Stations to look for :returns: List of tuples of station, lat, long, elevation :rtype: list >>> # Get the path to the test data >>> import eqcorrscan >>> import os >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> readSTATION0(TEST_PATH, ['WHFS', 'WHAT2', 'BOB']) [('WHFS', -43.261, 170.359, 60.0), ('WHAT2', -43.2793, \ 170.36038333333335, 95.0), ('BOB', 41.408166666666666, \ -174.87116666666665, 101.0)]
Below is the the instruction that describes the task: ### Input: Read a Seisan STATION0.HYP file on the path given. Outputs the information, and writes to station.dat file. :type path: str :param path: Path to the STATION0.HYP file :type stations: list :param stations: Stations to look for :returns: List of tuples of station, lat, long, elevation :rtype: list >>> # Get the path to the test data >>> import eqcorrscan >>> import os >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> readSTATION0(TEST_PATH, ['WHFS', 'WHAT2', 'BOB']) [('WHFS', -43.261, 170.359, 60.0), ('WHAT2', -43.2793, \ 170.36038333333335, 95.0), ('BOB', 41.408166666666666, \ -174.87116666666665, 101.0)] ### Response: def readSTATION0(path, stations): """ Read a Seisan STATION0.HYP file on the path given. Outputs the information, and writes to station.dat file. :type path: str :param path: Path to the STATION0.HYP file :type stations: list :param stations: Stations to look for :returns: List of tuples of station, lat, long, elevation :rtype: list >>> # Get the path to the test data >>> import eqcorrscan >>> import os >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> readSTATION0(TEST_PATH, ['WHFS', 'WHAT2', 'BOB']) [('WHFS', -43.261, 170.359, 60.0), ('WHAT2', -43.2793, \ 170.36038333333335, 95.0), ('BOB', 41.408166666666666, \ -174.87116666666665, 101.0)] """ stalist = [] f = open(path + '/STATION0.HYP', 'r') for line in f: if line[1:6].strip() in stations: station = line[1:6].strip() lat = line[6:14] # Format is either ddmm.mmS/N or ddmm(.)mmmS/N if lat[-1] == 'S': NS = -1 else: NS = 1 if lat[4] == '.': lat = (int(lat[0:2]) + float(lat[2:-1]) / 60) * NS else: lat = (int(lat[0:2]) + float(lat[2:4] + '.' + lat[4:-1]) / 60) * NS lon = line[14:23] if lon[-1] == 'W': EW = -1 else: EW = 1 if lon[5] == '.': lon = (int(lon[0:3]) + float(lon[3:-1]) / 60) * EW else: lon = (int(lon[0:3]) + float(lon[3:5] + '.' + lon[5:-1]) / 60) * EW elev = float(line[23:-1].strip()) # Note, negative altitude can be indicated in 1st column if line[0] == '-': elev *= -1 stalist.append((station, lat, lon, elev)) f.close() f = open('station.dat', 'w') for sta in stalist: line = ''.join([sta[0].ljust(5), _cc_round(sta[1], 4).ljust(10), _cc_round(sta[2], 4).ljust(10), _cc_round(sta[3] / 1000, 4).rjust(7), '\n']) f.write(line) f.close() return stalist
def fetch(task_id, wait=0, cached=Conf.CACHED): """ Return the processed task. :param task_id: the task name or uuid :type task_id: str or uuid :param wait: the number of milliseconds to wait for a result :type wait: int :param bool cached: run this against the cache backend :return: the full task object :rtype: Task """ if cached: return fetch_cached(task_id, wait) start = time() while True: t = Task.get_task(task_id) if t: return t if (time() - start) * 1000 >= wait >= 0: break sleep(0.01)
Return the processed task. :param task_id: the task name or uuid :type task_id: str or uuid :param wait: the number of milliseconds to wait for a result :type wait: int :param bool cached: run this against the cache backend :return: the full task object :rtype: Task
Below is the the instruction that describes the task: ### Input: Return the processed task. :param task_id: the task name or uuid :type task_id: str or uuid :param wait: the number of milliseconds to wait for a result :type wait: int :param bool cached: run this against the cache backend :return: the full task object :rtype: Task ### Response: def fetch(task_id, wait=0, cached=Conf.CACHED): """ Return the processed task. :param task_id: the task name or uuid :type task_id: str or uuid :param wait: the number of milliseconds to wait for a result :type wait: int :param bool cached: run this against the cache backend :return: the full task object :rtype: Task """ if cached: return fetch_cached(task_id, wait) start = time() while True: t = Task.get_task(task_id) if t: return t if (time() - start) * 1000 >= wait >= 0: break sleep(0.01)
def _getsatname(self): """ Get the satellite name used in the rsr-reader, from the platform and number """ if self.platform_name.startswith("Meteosat"): return self.platform_name else: raise NotImplementedError( 'Platform {0} not yet supported...'.format(self.platform_name))
Get the satellite name used in the rsr-reader, from the platform and number
Below is the the instruction that describes the task: ### Input: Get the satellite name used in the rsr-reader, from the platform and number ### Response: def _getsatname(self): """ Get the satellite name used in the rsr-reader, from the platform and number """ if self.platform_name.startswith("Meteosat"): return self.platform_name else: raise NotImplementedError( 'Platform {0} not yet supported...'.format(self.platform_name))
def bh_effective_spin(chi,incl): """ Determines the effective [as defined in Stone, Loeb, Berger, PRD 87, 084053 (2013)] aligned dimensionless spin parameter of a NS-BH binary with tilted BH spin. This means finding the root chi_eff of ISCO_eq_chi_first(chi_eff, PG_ISSO_solver(chi,incl)) with the correct sign. Parameters ----------- chi: float the BH dimensionless spin parameter incl: float the inclination angle between the BH spin and the orbital angular momentum in radians Returns ---------- chi_eff: float the effective dimensionless spin parameter solution """ if incl == 0: chi_eff = chi else: # ISSO radius for the given BH spin magnitude and inclination rISSO = PG_ISSO_solver(chi,incl) # Angle at which the branch of positive solutions has its minumum incl_flip = scipy.optimize.fmin(pos_branch, math.pi/4, args=tuple([chi]), full_output=False, disp=False)[-1] # Use incl_flip to determine the initial guess: the sign difference # in the initial_guess ensures that chi_eff has the correct sign if incl>incl_flip: initial_guess = -1.1 else: initial_guess = 1.0 chi_eff = scipy.optimize.fsolve(ISCO_eq_chi_first, initial_guess, args=(rISSO)) return chi_eff
Determines the effective [as defined in Stone, Loeb, Berger, PRD 87, 084053 (2013)] aligned dimensionless spin parameter of a NS-BH binary with tilted BH spin. This means finding the root chi_eff of ISCO_eq_chi_first(chi_eff, PG_ISSO_solver(chi,incl)) with the correct sign. Parameters ----------- chi: float the BH dimensionless spin parameter incl: float the inclination angle between the BH spin and the orbital angular momentum in radians Returns ---------- chi_eff: float the effective dimensionless spin parameter solution
Below is the the instruction that describes the task: ### Input: Determines the effective [as defined in Stone, Loeb, Berger, PRD 87, 084053 (2013)] aligned dimensionless spin parameter of a NS-BH binary with tilted BH spin. This means finding the root chi_eff of ISCO_eq_chi_first(chi_eff, PG_ISSO_solver(chi,incl)) with the correct sign. Parameters ----------- chi: float the BH dimensionless spin parameter incl: float the inclination angle between the BH spin and the orbital angular momentum in radians Returns ---------- chi_eff: float the effective dimensionless spin parameter solution ### Response: def bh_effective_spin(chi,incl): """ Determines the effective [as defined in Stone, Loeb, Berger, PRD 87, 084053 (2013)] aligned dimensionless spin parameter of a NS-BH binary with tilted BH spin. This means finding the root chi_eff of ISCO_eq_chi_first(chi_eff, PG_ISSO_solver(chi,incl)) with the correct sign. Parameters ----------- chi: float the BH dimensionless spin parameter incl: float the inclination angle between the BH spin and the orbital angular momentum in radians Returns ---------- chi_eff: float the effective dimensionless spin parameter solution """ if incl == 0: chi_eff = chi else: # ISSO radius for the given BH spin magnitude and inclination rISSO = PG_ISSO_solver(chi,incl) # Angle at which the branch of positive solutions has its minumum incl_flip = scipy.optimize.fmin(pos_branch, math.pi/4, args=tuple([chi]), full_output=False, disp=False)[-1] # Use incl_flip to determine the initial guess: the sign difference # in the initial_guess ensures that chi_eff has the correct sign if incl>incl_flip: initial_guess = -1.1 else: initial_guess = 1.0 chi_eff = scipy.optimize.fsolve(ISCO_eq_chi_first, initial_guess, args=(rISSO)) return chi_eff
def ast_to_sympy(expr): '''Converts an AST expression to a sympy expression (STUPID)''' from dolang import to_source s = to_source(expr) not_to_be_treated_as_functions = ['alpha','beta', 'gamma','zeta', 'Chi'] d = {v: sympy.Symbol(v) for v in not_to_be_treated_as_functions} return sympy.sympify(s, locals=d)
Converts an AST expression to a sympy expression (STUPID)
Below is the the instruction that describes the task: ### Input: Converts an AST expression to a sympy expression (STUPID) ### Response: def ast_to_sympy(expr): '''Converts an AST expression to a sympy expression (STUPID)''' from dolang import to_source s = to_source(expr) not_to_be_treated_as_functions = ['alpha','beta', 'gamma','zeta', 'Chi'] d = {v: sympy.Symbol(v) for v in not_to_be_treated_as_functions} return sympy.sympify(s, locals=d)
def block_worker(self, worker_id, reason): """ Block a worker from working on my tasks. """ params = {'WorkerId': worker_id, 'Reason': reason} return self._process_request('BlockWorker', params)
Block a worker from working on my tasks.
Below is the the instruction that describes the task: ### Input: Block a worker from working on my tasks. ### Response: def block_worker(self, worker_id, reason): """ Block a worker from working on my tasks. """ params = {'WorkerId': worker_id, 'Reason': reason} return self._process_request('BlockWorker', params)
def _build(self, inputs): """Connects the Linear module into the graph, with input Tensor `inputs`. If this is not the first time the module has been connected to the graph, the Tensor provided here must have the same final dimension, in order for the existing variables to be the correct size for the multiplication. The batch size may differ for each connection. Args: inputs: A 2D Tensor of size [batch_size, input_size]. Returns: A 2D Tensor of size [batch_size, output_size]. Raises: base.IncompatibleShapeError: If the input is not a 2-D `Tensor` with the size of the second dimension specified. base.IncompatibleShapeError: If reconnecting an already connected module into the graph, and the shape of the input is not compatible with previous inputs. """ input_shape = tuple(inputs.get_shape().as_list()) if len(input_shape) != 2: raise base.IncompatibleShapeError( "{}: rank of shape must be 2 not: {}".format( self.scope_name, len(input_shape))) if input_shape[1] is None: raise base.IncompatibleShapeError( "{}: Input size must be specified at module build time".format( self.scope_name)) if self._input_shape is not None and input_shape[1] != self._input_shape[1]: raise base.IncompatibleShapeError( "{}: Input shape must be [batch_size, {}] not: [batch_size, {}]" .format(self.scope_name, self._input_shape[1], input_shape[1])) self._input_shape = input_shape dtype = inputs.dtype if "w" not in self._initializers: self._initializers["w"] = create_linear_initializer(self._input_shape[1], dtype) if "b" not in self._initializers and self._use_bias: self._initializers["b"] = create_bias_initializer(self._input_shape[1], dtype) weight_shape = (self._input_shape[1], self.output_size) self._w = tf.get_variable("w", shape=weight_shape, dtype=dtype, initializer=self._initializers["w"], partitioner=self._partitioners.get("w", None), regularizer=self._regularizers.get("w", None)) outputs = tf.matmul(inputs, self._w) if self._use_bias: bias_shape = (self.output_size,) self._b = tf.get_variable("b", shape=bias_shape, dtype=dtype, initializer=self._initializers["b"], partitioner=self._partitioners.get("b", None), regularizer=self._regularizers.get("b", None)) outputs += self._b return outputs
Connects the Linear module into the graph, with input Tensor `inputs`. If this is not the first time the module has been connected to the graph, the Tensor provided here must have the same final dimension, in order for the existing variables to be the correct size for the multiplication. The batch size may differ for each connection. Args: inputs: A 2D Tensor of size [batch_size, input_size]. Returns: A 2D Tensor of size [batch_size, output_size]. Raises: base.IncompatibleShapeError: If the input is not a 2-D `Tensor` with the size of the second dimension specified. base.IncompatibleShapeError: If reconnecting an already connected module into the graph, and the shape of the input is not compatible with previous inputs.
Below is the the instruction that describes the task: ### Input: Connects the Linear module into the graph, with input Tensor `inputs`. If this is not the first time the module has been connected to the graph, the Tensor provided here must have the same final dimension, in order for the existing variables to be the correct size for the multiplication. The batch size may differ for each connection. Args: inputs: A 2D Tensor of size [batch_size, input_size]. Returns: A 2D Tensor of size [batch_size, output_size]. Raises: base.IncompatibleShapeError: If the input is not a 2-D `Tensor` with the size of the second dimension specified. base.IncompatibleShapeError: If reconnecting an already connected module into the graph, and the shape of the input is not compatible with previous inputs. ### Response: def _build(self, inputs): """Connects the Linear module into the graph, with input Tensor `inputs`. If this is not the first time the module has been connected to the graph, the Tensor provided here must have the same final dimension, in order for the existing variables to be the correct size for the multiplication. The batch size may differ for each connection. Args: inputs: A 2D Tensor of size [batch_size, input_size]. Returns: A 2D Tensor of size [batch_size, output_size]. Raises: base.IncompatibleShapeError: If the input is not a 2-D `Tensor` with the size of the second dimension specified. base.IncompatibleShapeError: If reconnecting an already connected module into the graph, and the shape of the input is not compatible with previous inputs. """ input_shape = tuple(inputs.get_shape().as_list()) if len(input_shape) != 2: raise base.IncompatibleShapeError( "{}: rank of shape must be 2 not: {}".format( self.scope_name, len(input_shape))) if input_shape[1] is None: raise base.IncompatibleShapeError( "{}: Input size must be specified at module build time".format( self.scope_name)) if self._input_shape is not None and input_shape[1] != self._input_shape[1]: raise base.IncompatibleShapeError( "{}: Input shape must be [batch_size, {}] not: [batch_size, {}]" .format(self.scope_name, self._input_shape[1], input_shape[1])) self._input_shape = input_shape dtype = inputs.dtype if "w" not in self._initializers: self._initializers["w"] = create_linear_initializer(self._input_shape[1], dtype) if "b" not in self._initializers and self._use_bias: self._initializers["b"] = create_bias_initializer(self._input_shape[1], dtype) weight_shape = (self._input_shape[1], self.output_size) self._w = tf.get_variable("w", shape=weight_shape, dtype=dtype, initializer=self._initializers["w"], partitioner=self._partitioners.get("w", None), regularizer=self._regularizers.get("w", None)) outputs = tf.matmul(inputs, self._w) if self._use_bias: bias_shape = (self.output_size,) self._b = tf.get_variable("b", shape=bias_shape, dtype=dtype, initializer=self._initializers["b"], partitioner=self._partitioners.get("b", None), regularizer=self._regularizers.get("b", None)) outputs += self._b return outputs
def register_error_code(code, exception_type, domain='core'): """Register a new error code""" Logger._error_code_to_exception[code] = (exception_type, domain) Logger._domain_codes[domain].add(code)
Register a new error code
Below is the the instruction that describes the task: ### Input: Register a new error code ### Response: def register_error_code(code, exception_type, domain='core'): """Register a new error code""" Logger._error_code_to_exception[code] = (exception_type, domain) Logger._domain_codes[domain].add(code)
def get(self, didMethodName, required=True) -> DidMethod: """ :param didMethodName: name of DID Method :param required: if not found and True, throws an exception, else None :return: DID Method """ dm = self.d.get(didMethodName) if didMethodName else self.default if not dm and required: raise DidMethodNotFound return dm
:param didMethodName: name of DID Method :param required: if not found and True, throws an exception, else None :return: DID Method
Below is the the instruction that describes the task: ### Input: :param didMethodName: name of DID Method :param required: if not found and True, throws an exception, else None :return: DID Method ### Response: def get(self, didMethodName, required=True) -> DidMethod: """ :param didMethodName: name of DID Method :param required: if not found and True, throws an exception, else None :return: DID Method """ dm = self.d.get(didMethodName) if didMethodName else self.default if not dm and required: raise DidMethodNotFound return dm
def get_reviews(self, user_id): """ Get reviews for a particular user """ url = _REVIEWS_USER.format(c_api=_C_API_BEGINNING, api=_API_VERSION, user_id=user_id, at=self.access_token) return _get_request(url)
Get reviews for a particular user
Below is the the instruction that describes the task: ### Input: Get reviews for a particular user ### Response: def get_reviews(self, user_id): """ Get reviews for a particular user """ url = _REVIEWS_USER.format(c_api=_C_API_BEGINNING, api=_API_VERSION, user_id=user_id, at=self.access_token) return _get_request(url)
def center(self, X): """ Center `X` in PCA space. """ X = X.copy() inan = numpy.isnan(X) if self.mu is None: X_ = numpy.ma.masked_array(X, inan) self.mu = X_.mean(0).base self.sigma = X_.std(0).base reduce(lambda y,x: setitem(x[0], x[1], x[2]), zip(X.T, inan.T, self.mu), None) X = X - self.mu X = X / numpy.where(self.sigma == 0, 1e-30, self.sigma) return X
Center `X` in PCA space.
Below is the the instruction that describes the task: ### Input: Center `X` in PCA space. ### Response: def center(self, X): """ Center `X` in PCA space. """ X = X.copy() inan = numpy.isnan(X) if self.mu is None: X_ = numpy.ma.masked_array(X, inan) self.mu = X_.mean(0).base self.sigma = X_.std(0).base reduce(lambda y,x: setitem(x[0], x[1], x[2]), zip(X.T, inan.T, self.mu), None) X = X - self.mu X = X / numpy.where(self.sigma == 0, 1e-30, self.sigma) return X
def fetch(self): """ Fetch a CallSummaryInstance :returns: Fetched CallSummaryInstance :rtype: twilio.rest.insights.v1.summary.CallSummaryInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return CallSummaryInstance(self._version, payload, call_sid=self._solution['call_sid'], )
Fetch a CallSummaryInstance :returns: Fetched CallSummaryInstance :rtype: twilio.rest.insights.v1.summary.CallSummaryInstance
Below is the the instruction that describes the task: ### Input: Fetch a CallSummaryInstance :returns: Fetched CallSummaryInstance :rtype: twilio.rest.insights.v1.summary.CallSummaryInstance ### Response: def fetch(self): """ Fetch a CallSummaryInstance :returns: Fetched CallSummaryInstance :rtype: twilio.rest.insights.v1.summary.CallSummaryInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return CallSummaryInstance(self._version, payload, call_sid=self._solution['call_sid'], )
def gcmt_to_simple_array(self, centroid_location=True): """ Converts the GCMT catalogue to a simple array of [ID, year, month, day, hour, minute, second, long., lat., depth, Mw, strike1, dip1, rake1, strike2, dip2, rake2, b-plunge, b-azimuth, b-eigenvalue, p-plunge, p-azimuth, p-eigenvalue, t-plunge, t-azimuth, t-eigenvalue, moment, f_clvd, erel] """ catalogue = np.zeros([self.get_number_tensors(), 29], dtype=float) for iloc, tensor in enumerate(self.gcmts): catalogue[iloc, 0] = iloc if centroid_location: catalogue[iloc, 1] = float(tensor.centroid.date.year) catalogue[iloc, 2] = float(tensor.centroid.date.month) catalogue[iloc, 3] = float(tensor.centroid.date.day) catalogue[iloc, 4] = float(tensor.centroid.time.hour) catalogue[iloc, 5] = float(tensor.centroid.time.minute) catalogue[iloc, 6] = np.round( np.float(tensor.centroid.time.second) + np.float(tensor.centroid.time.microsecond) / 1000000., 2) catalogue[iloc, 7] = tensor.centroid.longitude catalogue[iloc, 8] = tensor.centroid.latitude catalogue[iloc, 9] = tensor.centroid.depth else: catalogue[iloc, 1] = float(tensor.hypocentre.date.year) catalogue[iloc, 2] = float(tensor.hypocentre.date.month) catalogue[iloc, 3] = float(tensor.hypocentre.date.day) catalogue[iloc, 4] = float(tensor.hypocentre.time.hour) catalogue[iloc, 5] = float(tensor.hypocentre.time.minute) catalogue[iloc, 6] = np.round( np.float(tensor.centroid.time.second) + np.float(tensor.centroid.time.microsecond) / 1000000., 2) catalogue[iloc, 7] = tensor.hypocentre.longitude catalogue[iloc, 8] = tensor.hypocentre.latitude catalogue[iloc, 9] = tensor.hypocentre.depth catalogue[iloc, 10] = tensor.magnitude catalogue[iloc, 11] = tensor.moment catalogue[iloc, 12] = tensor.f_clvd catalogue[iloc, 13] = tensor.e_rel # Nodal planes catalogue[iloc, 14] = tensor.nodal_planes.nodal_plane_1['strike'] catalogue[iloc, 15] = tensor.nodal_planes.nodal_plane_1['dip'] catalogue[iloc, 16] = tensor.nodal_planes.nodal_plane_1['rake'] catalogue[iloc, 17] = tensor.nodal_planes.nodal_plane_2['strike'] catalogue[iloc, 18] = tensor.nodal_planes.nodal_plane_2['dip'] catalogue[iloc, 19] = tensor.nodal_planes.nodal_plane_2['rake'] # Principal axes catalogue[iloc, 20] = tensor.principal_axes.b_axis['eigenvalue'] catalogue[iloc, 21] = tensor.principal_axes.b_axis['azimuth'] catalogue[iloc, 22] = tensor.principal_axes.b_axis['plunge'] catalogue[iloc, 23] = tensor.principal_axes.p_axis['eigenvalue'] catalogue[iloc, 24] = tensor.principal_axes.p_axis['azimuth'] catalogue[iloc, 25] = tensor.principal_axes.p_axis['plunge'] catalogue[iloc, 26] = tensor.principal_axes.t_axis['eigenvalue'] catalogue[iloc, 27] = tensor.principal_axes.t_axis['azimuth'] catalogue[iloc, 28] = tensor.principal_axes.t_axis['plunge'] return catalogue
Converts the GCMT catalogue to a simple array of [ID, year, month, day, hour, minute, second, long., lat., depth, Mw, strike1, dip1, rake1, strike2, dip2, rake2, b-plunge, b-azimuth, b-eigenvalue, p-plunge, p-azimuth, p-eigenvalue, t-plunge, t-azimuth, t-eigenvalue, moment, f_clvd, erel]
Below is the the instruction that describes the task: ### Input: Converts the GCMT catalogue to a simple array of [ID, year, month, day, hour, minute, second, long., lat., depth, Mw, strike1, dip1, rake1, strike2, dip2, rake2, b-plunge, b-azimuth, b-eigenvalue, p-plunge, p-azimuth, p-eigenvalue, t-plunge, t-azimuth, t-eigenvalue, moment, f_clvd, erel] ### Response: def gcmt_to_simple_array(self, centroid_location=True): """ Converts the GCMT catalogue to a simple array of [ID, year, month, day, hour, minute, second, long., lat., depth, Mw, strike1, dip1, rake1, strike2, dip2, rake2, b-plunge, b-azimuth, b-eigenvalue, p-plunge, p-azimuth, p-eigenvalue, t-plunge, t-azimuth, t-eigenvalue, moment, f_clvd, erel] """ catalogue = np.zeros([self.get_number_tensors(), 29], dtype=float) for iloc, tensor in enumerate(self.gcmts): catalogue[iloc, 0] = iloc if centroid_location: catalogue[iloc, 1] = float(tensor.centroid.date.year) catalogue[iloc, 2] = float(tensor.centroid.date.month) catalogue[iloc, 3] = float(tensor.centroid.date.day) catalogue[iloc, 4] = float(tensor.centroid.time.hour) catalogue[iloc, 5] = float(tensor.centroid.time.minute) catalogue[iloc, 6] = np.round( np.float(tensor.centroid.time.second) + np.float(tensor.centroid.time.microsecond) / 1000000., 2) catalogue[iloc, 7] = tensor.centroid.longitude catalogue[iloc, 8] = tensor.centroid.latitude catalogue[iloc, 9] = tensor.centroid.depth else: catalogue[iloc, 1] = float(tensor.hypocentre.date.year) catalogue[iloc, 2] = float(tensor.hypocentre.date.month) catalogue[iloc, 3] = float(tensor.hypocentre.date.day) catalogue[iloc, 4] = float(tensor.hypocentre.time.hour) catalogue[iloc, 5] = float(tensor.hypocentre.time.minute) catalogue[iloc, 6] = np.round( np.float(tensor.centroid.time.second) + np.float(tensor.centroid.time.microsecond) / 1000000., 2) catalogue[iloc, 7] = tensor.hypocentre.longitude catalogue[iloc, 8] = tensor.hypocentre.latitude catalogue[iloc, 9] = tensor.hypocentre.depth catalogue[iloc, 10] = tensor.magnitude catalogue[iloc, 11] = tensor.moment catalogue[iloc, 12] = tensor.f_clvd catalogue[iloc, 13] = tensor.e_rel # Nodal planes catalogue[iloc, 14] = tensor.nodal_planes.nodal_plane_1['strike'] catalogue[iloc, 15] = tensor.nodal_planes.nodal_plane_1['dip'] catalogue[iloc, 16] = tensor.nodal_planes.nodal_plane_1['rake'] catalogue[iloc, 17] = tensor.nodal_planes.nodal_plane_2['strike'] catalogue[iloc, 18] = tensor.nodal_planes.nodal_plane_2['dip'] catalogue[iloc, 19] = tensor.nodal_planes.nodal_plane_2['rake'] # Principal axes catalogue[iloc, 20] = tensor.principal_axes.b_axis['eigenvalue'] catalogue[iloc, 21] = tensor.principal_axes.b_axis['azimuth'] catalogue[iloc, 22] = tensor.principal_axes.b_axis['plunge'] catalogue[iloc, 23] = tensor.principal_axes.p_axis['eigenvalue'] catalogue[iloc, 24] = tensor.principal_axes.p_axis['azimuth'] catalogue[iloc, 25] = tensor.principal_axes.p_axis['plunge'] catalogue[iloc, 26] = tensor.principal_axes.t_axis['eigenvalue'] catalogue[iloc, 27] = tensor.principal_axes.t_axis['azimuth'] catalogue[iloc, 28] = tensor.principal_axes.t_axis['plunge'] return catalogue
def data_check(self, participant): """Check a participants data.""" participant_id = participant.uniqueid nodes = Node.query.filter_by(participant_id=participant_id).all() if len(nodes) != self.experiment_repeats + self.practice_repeats: print("Error: Participant has {} nodes. Data check failed" .format(len(nodes))) return False nets = [n.network_id for n in nodes] if len(nets) != len(set(nets)): print "Error: Participant participated in the same network \ multiple times. Data check failed" return False if None in [n.fitness for n in nodes]: print "Error: some of participants nodes are missing a fitness. \ Data check failed." return False if None in [n.score for n in nodes]: print "Error: some of participants nodes are missing a score. \ Data check failed" return False return True
Check a participants data.
Below is the the instruction that describes the task: ### Input: Check a participants data. ### Response: def data_check(self, participant): """Check a participants data.""" participant_id = participant.uniqueid nodes = Node.query.filter_by(participant_id=participant_id).all() if len(nodes) != self.experiment_repeats + self.practice_repeats: print("Error: Participant has {} nodes. Data check failed" .format(len(nodes))) return False nets = [n.network_id for n in nodes] if len(nets) != len(set(nets)): print "Error: Participant participated in the same network \ multiple times. Data check failed" return False if None in [n.fitness for n in nodes]: print "Error: some of participants nodes are missing a fitness. \ Data check failed." return False if None in [n.score for n in nodes]: print "Error: some of participants nodes are missing a score. \ Data check failed" return False return True
def debug_derivative(self, guess): """returns (explicit, auto)""" from .lmmin import check_derivative return check_derivative(self.component.npar, self.data.size, self.lm_model, self.lm_deriv, guess)
returns (explicit, auto)
Below is the the instruction that describes the task: ### Input: returns (explicit, auto) ### Response: def debug_derivative(self, guess): """returns (explicit, auto)""" from .lmmin import check_derivative return check_derivative(self.component.npar, self.data.size, self.lm_model, self.lm_deriv, guess)
def open(cls, sock, chunk_type, isatty, chunk_eof_type=None, buf_size=None, select_timeout=None): """Yields the write side of a pipe that will copy appropriately chunked values to a socket.""" with cls.open_multi(sock, (chunk_type,), (isatty,), chunk_eof_type, buf_size, select_timeout) as ctx: yield ctx
Yields the write side of a pipe that will copy appropriately chunked values to a socket.
Below is the the instruction that describes the task: ### Input: Yields the write side of a pipe that will copy appropriately chunked values to a socket. ### Response: def open(cls, sock, chunk_type, isatty, chunk_eof_type=None, buf_size=None, select_timeout=None): """Yields the write side of a pipe that will copy appropriately chunked values to a socket.""" with cls.open_multi(sock, (chunk_type,), (isatty,), chunk_eof_type, buf_size, select_timeout) as ctx: yield ctx
def installer(cv, ctx, site, force=False): """ Installer factory @param cv: Current version (The version of IPS we are installing) @type cv: ips_vagrant.common.version.Version @type ctx: ips_vagrant.cli.Context @param site: The IPS Site we are installing @type site: ips_vagrant.models.sites.Site @param force: Overwrite existing files / databases @type force: bool @return: Installer instance @rtype: ips_vagrant.installer.latest.Installer """ log = logging.getLogger('ipsv.installer') log.info('Loading installer for IPS %s', cv) iv = None for v in versions: vstring = '.'.join(map(str, v)) if v else 'latest' # cvstring = '.'.join(map(str, cv)) if cv else 'latest' log.debug('Checking if version %s >= %s', vstring, cv.vstring) if (v is None) or (v >= cv.vtuple): log.debug('Changing installer version to %s', vstring) iv = v log.info('Returning installer version %s', '.'.join(map(str, iv)) if iv else 'latest') return versions[iv](ctx, site, force)
Installer factory @param cv: Current version (The version of IPS we are installing) @type cv: ips_vagrant.common.version.Version @type ctx: ips_vagrant.cli.Context @param site: The IPS Site we are installing @type site: ips_vagrant.models.sites.Site @param force: Overwrite existing files / databases @type force: bool @return: Installer instance @rtype: ips_vagrant.installer.latest.Installer
Below is the the instruction that describes the task: ### Input: Installer factory @param cv: Current version (The version of IPS we are installing) @type cv: ips_vagrant.common.version.Version @type ctx: ips_vagrant.cli.Context @param site: The IPS Site we are installing @type site: ips_vagrant.models.sites.Site @param force: Overwrite existing files / databases @type force: bool @return: Installer instance @rtype: ips_vagrant.installer.latest.Installer ### Response: def installer(cv, ctx, site, force=False): """ Installer factory @param cv: Current version (The version of IPS we are installing) @type cv: ips_vagrant.common.version.Version @type ctx: ips_vagrant.cli.Context @param site: The IPS Site we are installing @type site: ips_vagrant.models.sites.Site @param force: Overwrite existing files / databases @type force: bool @return: Installer instance @rtype: ips_vagrant.installer.latest.Installer """ log = logging.getLogger('ipsv.installer') log.info('Loading installer for IPS %s', cv) iv = None for v in versions: vstring = '.'.join(map(str, v)) if v else 'latest' # cvstring = '.'.join(map(str, cv)) if cv else 'latest' log.debug('Checking if version %s >= %s', vstring, cv.vstring) if (v is None) or (v >= cv.vtuple): log.debug('Changing installer version to %s', vstring) iv = v log.info('Returning installer version %s', '.'.join(map(str, iv)) if iv else 'latest') return versions[iv](ctx, site, force)
def view_portfolio_losses(token, dstore): """ The losses for the full portfolio, for each realization and loss type, extracted from the event loss table. """ oq = dstore['oqparam'] loss_dt = oq.loss_dt() data = portfolio_loss(dstore).view(loss_dt)[:, 0] rlzids = [str(r) for r in range(len(data))] array = util.compose_arrays(numpy.array(rlzids), data, 'rlz') # this is very sensitive to rounding errors, so I am using a low precision return rst_table(array, fmt='%.5E')
The losses for the full portfolio, for each realization and loss type, extracted from the event loss table.
Below is the the instruction that describes the task: ### Input: The losses for the full portfolio, for each realization and loss type, extracted from the event loss table. ### Response: def view_portfolio_losses(token, dstore): """ The losses for the full portfolio, for each realization and loss type, extracted from the event loss table. """ oq = dstore['oqparam'] loss_dt = oq.loss_dt() data = portfolio_loss(dstore).view(loss_dt)[:, 0] rlzids = [str(r) for r in range(len(data))] array = util.compose_arrays(numpy.array(rlzids), data, 'rlz') # this is very sensitive to rounding errors, so I am using a low precision return rst_table(array, fmt='%.5E')
def output(self, stream, value): """SPL output port assignment expression. Arguments: stream(Stream): Output stream the assignment is for. value(str): SPL expression used for an output assignment. This can be a string, a constant, or an :py:class:`Expression`. Returns: Expression: Output assignment expression that is valid as a the context of this operator. """ if stream not in self.outputs: raise ValueError("Stream is not an output of this operator.") e = self.expression(value) e._stream = stream return e
SPL output port assignment expression. Arguments: stream(Stream): Output stream the assignment is for. value(str): SPL expression used for an output assignment. This can be a string, a constant, or an :py:class:`Expression`. Returns: Expression: Output assignment expression that is valid as a the context of this operator.
Below is the the instruction that describes the task: ### Input: SPL output port assignment expression. Arguments: stream(Stream): Output stream the assignment is for. value(str): SPL expression used for an output assignment. This can be a string, a constant, or an :py:class:`Expression`. Returns: Expression: Output assignment expression that is valid as a the context of this operator. ### Response: def output(self, stream, value): """SPL output port assignment expression. Arguments: stream(Stream): Output stream the assignment is for. value(str): SPL expression used for an output assignment. This can be a string, a constant, or an :py:class:`Expression`. Returns: Expression: Output assignment expression that is valid as a the context of this operator. """ if stream not in self.outputs: raise ValueError("Stream is not an output of this operator.") e = self.expression(value) e._stream = stream return e
def filter(self, **filters): """ Add a filter to this query. Appends to any previous filters set. :rtype: Query """ q = self._clone() for key, value in filters.items(): filter_key = re.split('__', key) filter_attr = filter_key[0] if filter_attr not in self._valid_filter_attrs: raise ClientValidationError("Invalid filter attribute: %s" % key) # we use __ as a separator in the Python library, the APIs use '.' q._filters['.'.join(filter_key)].append(value) return q
Add a filter to this query. Appends to any previous filters set. :rtype: Query
Below is the the instruction that describes the task: ### Input: Add a filter to this query. Appends to any previous filters set. :rtype: Query ### Response: def filter(self, **filters): """ Add a filter to this query. Appends to any previous filters set. :rtype: Query """ q = self._clone() for key, value in filters.items(): filter_key = re.split('__', key) filter_attr = filter_key[0] if filter_attr not in self._valid_filter_attrs: raise ClientValidationError("Invalid filter attribute: %s" % key) # we use __ as a separator in the Python library, the APIs use '.' q._filters['.'.join(filter_key)].append(value) return q
def unique_flags(items, key=None): """ Returns a list of booleans corresponding to the first instance of each unique item. Args: items (Sequence): indexable collection of items key (Callable, optional): custom normalization function. If specified returns items where `key(item)` is unique. Returns: List[bool] : flags the items that are unique Example: >>> import ubelt as ub >>> items = [0, 2, 1, 1, 0, 9, 2] >>> flags = unique_flags(items) >>> assert flags == [True, True, True, False, False, True, False] >>> flags = unique_flags(items, key=lambda x: x % 2 == 0) >>> assert flags == [True, False, True, False, False, False, False] """ len_ = len(items) if key is None: item_to_index = dict(zip(reversed(items), reversed(range(len_)))) indices = item_to_index.values() else: indices = argunique(items, key=key) flags = boolmask(indices, len_) return flags
Returns a list of booleans corresponding to the first instance of each unique item. Args: items (Sequence): indexable collection of items key (Callable, optional): custom normalization function. If specified returns items where `key(item)` is unique. Returns: List[bool] : flags the items that are unique Example: >>> import ubelt as ub >>> items = [0, 2, 1, 1, 0, 9, 2] >>> flags = unique_flags(items) >>> assert flags == [True, True, True, False, False, True, False] >>> flags = unique_flags(items, key=lambda x: x % 2 == 0) >>> assert flags == [True, False, True, False, False, False, False]
Below is the the instruction that describes the task: ### Input: Returns a list of booleans corresponding to the first instance of each unique item. Args: items (Sequence): indexable collection of items key (Callable, optional): custom normalization function. If specified returns items where `key(item)` is unique. Returns: List[bool] : flags the items that are unique Example: >>> import ubelt as ub >>> items = [0, 2, 1, 1, 0, 9, 2] >>> flags = unique_flags(items) >>> assert flags == [True, True, True, False, False, True, False] >>> flags = unique_flags(items, key=lambda x: x % 2 == 0) >>> assert flags == [True, False, True, False, False, False, False] ### Response: def unique_flags(items, key=None): """ Returns a list of booleans corresponding to the first instance of each unique item. Args: items (Sequence): indexable collection of items key (Callable, optional): custom normalization function. If specified returns items where `key(item)` is unique. Returns: List[bool] : flags the items that are unique Example: >>> import ubelt as ub >>> items = [0, 2, 1, 1, 0, 9, 2] >>> flags = unique_flags(items) >>> assert flags == [True, True, True, False, False, True, False] >>> flags = unique_flags(items, key=lambda x: x % 2 == 0) >>> assert flags == [True, False, True, False, False, False, False] """ len_ = len(items) if key is None: item_to_index = dict(zip(reversed(items), reversed(range(len_)))) indices = item_to_index.values() else: indices = argunique(items, key=key) flags = boolmask(indices, len_) return flags
def unregister(self, uuid): """Unregister a schema registered with input uuid. :raises: KeyError if uuid is not already registered. """ schema = self._schbyuuid.pop(uuid) # clean schemas by name self._schbyname[schema.name].remove(schema) if not self._schbyname[schema.name]: del self._schbyname[schema.name]
Unregister a schema registered with input uuid. :raises: KeyError if uuid is not already registered.
Below is the the instruction that describes the task: ### Input: Unregister a schema registered with input uuid. :raises: KeyError if uuid is not already registered. ### Response: def unregister(self, uuid): """Unregister a schema registered with input uuid. :raises: KeyError if uuid is not already registered. """ schema = self._schbyuuid.pop(uuid) # clean schemas by name self._schbyname[schema.name].remove(schema) if not self._schbyname[schema.name]: del self._schbyname[schema.name]
def filter(self, userinfo, user_info_claims=None): """ Return only those claims that are asked for. It's a best effort task; if essential claims are not present no error is flagged. :param userinfo: A dictionary containing the available info for one user :param user_info_claims: A dictionary specifying the asked for claims :return: A dictionary of filtered claims. """ if user_info_claims is None: return copy.copy(userinfo) else: result = {} missing = [] optional = [] for key, restr in user_info_claims.items(): try: result[key] = userinfo[key] except KeyError: if restr == {"essential": True}: missing.append(key) else: optional.append(key) return result
Return only those claims that are asked for. It's a best effort task; if essential claims are not present no error is flagged. :param userinfo: A dictionary containing the available info for one user :param user_info_claims: A dictionary specifying the asked for claims :return: A dictionary of filtered claims.
Below is the the instruction that describes the task: ### Input: Return only those claims that are asked for. It's a best effort task; if essential claims are not present no error is flagged. :param userinfo: A dictionary containing the available info for one user :param user_info_claims: A dictionary specifying the asked for claims :return: A dictionary of filtered claims. ### Response: def filter(self, userinfo, user_info_claims=None): """ Return only those claims that are asked for. It's a best effort task; if essential claims are not present no error is flagged. :param userinfo: A dictionary containing the available info for one user :param user_info_claims: A dictionary specifying the asked for claims :return: A dictionary of filtered claims. """ if user_info_claims is None: return copy.copy(userinfo) else: result = {} missing = [] optional = [] for key, restr in user_info_claims.items(): try: result[key] = userinfo[key] except KeyError: if restr == {"essential": True}: missing.append(key) else: optional.append(key) return result
def load_state_from_disk(): """ loads the state from a local data.json file """ if is_there_state(): with open('data.json', 'r') as f: data = json.load(f) return data else: return False
loads the state from a local data.json file
Below is the the instruction that describes the task: ### Input: loads the state from a local data.json file ### Response: def load_state_from_disk(): """ loads the state from a local data.json file """ if is_there_state(): with open('data.json', 'r') as f: data = json.load(f) return data else: return False
def remove(name=None, pkgs=None, **kwargs): ''' Remove the passed package(s) from the system using winrepo .. versionadded:: 0.16.0 Args: name (str): The name(s) of the package(s) to be uninstalled. Can be a single package or a comma delimited list of packages, no spaces. pkgs (list): A list of packages to delete. Must be passed as a python list. The ``name`` parameter will be ignored if this option is passed. Kwargs: version (str): The version of the package to be uninstalled. If this option is used to to uninstall multiple packages, then this version will be applied to all targeted packages. Recommended using only when uninstalling a single package. If this parameter is omitted, the latest version will be uninstalled. saltenv (str): Salt environment. Default ``base`` refresh (bool): Refresh package metadata. Default ``False`` Returns: dict: Returns a dict containing the changes. If the package is removed by ``pkg.remove``: {'<package>': {'old': '<old-version>', 'new': '<new-version>'}} If the package is already uninstalled: {'<package>': {'current': 'not installed'}} CLI Example: .. code-block:: bash salt '*' pkg.remove <package name> salt '*' pkg.remove <package1>,<package2>,<package3> salt '*' pkg.remove pkgs='["foo", "bar"]' ''' saltenv = kwargs.get('saltenv', 'base') refresh = salt.utils.data.is_true(kwargs.get('refresh', False)) # no need to call _refresh_db_conditional as list_pkgs will do it ret = {} # Make sure name or pkgs is passed if not name and not pkgs: return 'Must pass a single package or a list of packages' # Get package parameters pkg_params = __salt__['pkg_resource.parse_targets'](name, pkgs, **kwargs)[0] # Get a list of currently installed software for comparison at the end old = list_pkgs(saltenv=saltenv, refresh=refresh, versions_as_list=True) # Loop through each package changed = [] # list of changed package names for pkgname, version_num in six.iteritems(pkg_params): # Load package information for the package pkginfo = _get_package_info(pkgname, saltenv=saltenv) # Make sure pkginfo was found if not pkginfo: msg = 'Unable to locate package {0}'.format(pkgname) log.error(msg) ret[pkgname] = msg continue # Check to see if package is installed on the system if pkgname not in old: log.debug('%s %s not installed', pkgname, version_num if version_num else '') ret[pkgname] = {'current': 'not installed'} continue removal_targets = [] # Only support a single version number if version_num is not None: # Using the salt cmdline with version=5.3 might be interpreted # as a float it must be converted to a string in order for # string matching to work. version_num = six.text_type(version_num) # At least one version of the software is installed. if version_num is None: for ver_install in old[pkgname]: if ver_install not in pkginfo and 'latest' in pkginfo: log.debug('%s %s using package latest entry to to remove', pkgname, version_num) removal_targets.append('latest') else: removal_targets.append(ver_install) else: if version_num in pkginfo: # we known how to remove this version if version_num in old[pkgname]: removal_targets.append(version_num) else: log.debug('%s %s not installed', pkgname, version_num) ret[pkgname] = {'current': '{0} not installed'.format(version_num)} continue elif 'latest' in pkginfo: # we do not have version entry, assume software can self upgrade and use latest log.debug('%s %s using package latest entry to to remove', pkgname, version_num) removal_targets.append('latest') if not removal_targets: log.error('%s %s no definition to remove this version', pkgname, version_num) ret[pkgname] = { 'current': '{0} no definition, cannot removed'.format(version_num) } continue for target in removal_targets: # Get the uninstaller uninstaller = pkginfo[target].get('uninstaller', '') cache_dir = pkginfo[target].get('cache_dir', False) uninstall_flags = pkginfo[target].get('uninstall_flags', '') # If no uninstaller found, use the installer with uninstall flags if not uninstaller and uninstall_flags: uninstaller = pkginfo[target].get('installer', '') # If still no uninstaller found, fail if not uninstaller: log.error( 'No installer or uninstaller configured for package %s', pkgname, ) ret[pkgname] = {'no uninstaller defined': target} continue # Where is the uninstaller if uninstaller.startswith(('salt:', 'http:', 'https:', 'ftp:')): # Check for the 'cache_dir' parameter in the .sls file # If true, the entire directory will be cached instead of the # individual file. This is useful for installations that are not # single files if cache_dir and uninstaller.startswith('salt:'): path, _ = os.path.split(uninstaller) __salt__['cp.cache_dir'](path, saltenv, False, None, '[email protected]$') # Check to see if the uninstaller is cached cached_pkg = __salt__['cp.is_cached'](uninstaller, saltenv) if not cached_pkg: # It's not cached. Cache it, mate. cached_pkg = __salt__['cp.cache_file'](uninstaller, saltenv) # Check if the uninstaller was cached successfully if not cached_pkg: log.error('Unable to cache %s', uninstaller) ret[pkgname] = {'unable to cache': uninstaller} continue # Compare the hash of the cached installer to the source only if # the file is hosted on salt: # TODO cp.cache_file does cache and hash checking? So why do it again? if uninstaller.startswith('salt:'): if __salt__['cp.hash_file'](uninstaller, saltenv) != \ __salt__['cp.hash_file'](cached_pkg): try: cached_pkg = __salt__['cp.cache_file']( uninstaller, saltenv) except MinionError as exc: return '{0}: {1}'.format(exc, uninstaller) # Check if the installer was cached successfully if not cached_pkg: log.error('Unable to cache %s', uninstaller) ret[pkgname] = {'unable to cache': uninstaller} continue else: # Run the uninstaller directly # (not hosted on salt:, https:, etc.) cached_pkg = os.path.expandvars(uninstaller) # Fix non-windows slashes cached_pkg = cached_pkg.replace('/', '\\') cache_path, _ = os.path.split(cached_pkg) # os.path.expandvars is not required as we run everything through cmd.exe /s /c if kwargs.get('extra_uninstall_flags'): uninstall_flags = '{0} {1}'.format( uninstall_flags, kwargs.get('extra_uninstall_flags', '')) # Compute msiexec string use_msiexec, msiexec = _get_msiexec(pkginfo[target].get('msiexec', False)) cmd_shell = os.getenv('ComSpec', '{0}\\system32\\cmd.exe'.format(os.getenv('WINDIR'))) # Build cmd and arguments # cmd and arguments must be separated for use with the task scheduler if use_msiexec: # Check if uninstaller is set to {guid}, if not we assume its a remote msi file. # which has already been downloaded. arguments = '"{0}" /X "{1}"'.format(msiexec, cached_pkg) else: arguments = '"{0}"'.format(cached_pkg) if uninstall_flags: arguments = '{0} {1}'.format(arguments, uninstall_flags) # Uninstall the software changed.append(pkgname) # Check Use Scheduler Option if pkginfo[target].get('use_scheduler', False): # Create Scheduled Task __salt__['task.create_task'](name='update-salt-software', user_name='System', force=True, action_type='Execute', cmd=cmd_shell, arguments='/s /c "{0}"'.format(arguments), start_in=cache_path, trigger_type='Once', start_date='1975-01-01', start_time='01:00', ac_only=False, stop_if_on_batteries=False) # Run Scheduled Task if not __salt__['task.run_wait'](name='update-salt-software'): log.error('Failed to remove %s', pkgname) log.error('Scheduled Task failed to run') ret[pkgname] = {'uninstall status': 'failed'} else: # Launch the command result = __salt__['cmd.run_all']( '"{0}" /s /c "{1}"'.format(cmd_shell, arguments), output_loglevel='trace', python_shell=False, redirect_stderr=True) if not result['retcode']: ret[pkgname] = {'uninstall status': 'success'} changed.append(pkgname) elif result['retcode'] == 3010: # 3010 is ERROR_SUCCESS_REBOOT_REQUIRED report_reboot_exit_codes = kwargs.pop( 'report_reboot_exit_codes', True) if report_reboot_exit_codes: __salt__['system.set_reboot_required_witnessed']() ret[pkgname] = {'uninstall status': 'success, reboot required'} changed.append(pkgname) elif result['retcode'] == 1641: # 1641 is ERROR_SUCCESS_REBOOT_INITIATED ret[pkgname] = {'uninstall status': 'success, reboot initiated'} changed.append(pkgname) else: log.error('Failed to remove %s', pkgname) log.error('retcode %s', result['retcode']) log.error('uninstaller output: %s', result['stdout']) ret[pkgname] = {'uninstall status': 'failed'} # Get a new list of installed software new = list_pkgs(saltenv=saltenv, refresh=False) # Take the "old" package list and convert the values to strings in # preparation for the comparison below. __salt__['pkg_resource.stringify'](old) # Check for changes in the registry difference = salt.utils.data.compare_dicts(old, new) found_chgs = all(name in difference for name in changed) end_t = time.time() + 3 # give it 3 seconds to catch up. while not found_chgs and time.time() < end_t: time.sleep(0.5) new = list_pkgs(saltenv=saltenv, refresh=False) difference = salt.utils.data.compare_dicts(old, new) found_chgs = all(name in difference for name in changed) if not found_chgs: log.warning('Expected changes for package removal may not have occured') # Compare the software list before and after # Add the difference to ret ret.update(difference) return ret
Remove the passed package(s) from the system using winrepo .. versionadded:: 0.16.0 Args: name (str): The name(s) of the package(s) to be uninstalled. Can be a single package or a comma delimited list of packages, no spaces. pkgs (list): A list of packages to delete. Must be passed as a python list. The ``name`` parameter will be ignored if this option is passed. Kwargs: version (str): The version of the package to be uninstalled. If this option is used to to uninstall multiple packages, then this version will be applied to all targeted packages. Recommended using only when uninstalling a single package. If this parameter is omitted, the latest version will be uninstalled. saltenv (str): Salt environment. Default ``base`` refresh (bool): Refresh package metadata. Default ``False`` Returns: dict: Returns a dict containing the changes. If the package is removed by ``pkg.remove``: {'<package>': {'old': '<old-version>', 'new': '<new-version>'}} If the package is already uninstalled: {'<package>': {'current': 'not installed'}} CLI Example: .. code-block:: bash salt '*' pkg.remove <package name> salt '*' pkg.remove <package1>,<package2>,<package3> salt '*' pkg.remove pkgs='["foo", "bar"]'
Below is the the instruction that describes the task: ### Input: Remove the passed package(s) from the system using winrepo .. versionadded:: 0.16.0 Args: name (str): The name(s) of the package(s) to be uninstalled. Can be a single package or a comma delimited list of packages, no spaces. pkgs (list): A list of packages to delete. Must be passed as a python list. The ``name`` parameter will be ignored if this option is passed. Kwargs: version (str): The version of the package to be uninstalled. If this option is used to to uninstall multiple packages, then this version will be applied to all targeted packages. Recommended using only when uninstalling a single package. If this parameter is omitted, the latest version will be uninstalled. saltenv (str): Salt environment. Default ``base`` refresh (bool): Refresh package metadata. Default ``False`` Returns: dict: Returns a dict containing the changes. If the package is removed by ``pkg.remove``: {'<package>': {'old': '<old-version>', 'new': '<new-version>'}} If the package is already uninstalled: {'<package>': {'current': 'not installed'}} CLI Example: .. code-block:: bash salt '*' pkg.remove <package name> salt '*' pkg.remove <package1>,<package2>,<package3> salt '*' pkg.remove pkgs='["foo", "bar"]' ### Response: def remove(name=None, pkgs=None, **kwargs): ''' Remove the passed package(s) from the system using winrepo .. versionadded:: 0.16.0 Args: name (str): The name(s) of the package(s) to be uninstalled. Can be a single package or a comma delimited list of packages, no spaces. pkgs (list): A list of packages to delete. Must be passed as a python list. The ``name`` parameter will be ignored if this option is passed. Kwargs: version (str): The version of the package to be uninstalled. If this option is used to to uninstall multiple packages, then this version will be applied to all targeted packages. Recommended using only when uninstalling a single package. If this parameter is omitted, the latest version will be uninstalled. saltenv (str): Salt environment. Default ``base`` refresh (bool): Refresh package metadata. Default ``False`` Returns: dict: Returns a dict containing the changes. If the package is removed by ``pkg.remove``: {'<package>': {'old': '<old-version>', 'new': '<new-version>'}} If the package is already uninstalled: {'<package>': {'current': 'not installed'}} CLI Example: .. code-block:: bash salt '*' pkg.remove <package name> salt '*' pkg.remove <package1>,<package2>,<package3> salt '*' pkg.remove pkgs='["foo", "bar"]' ''' saltenv = kwargs.get('saltenv', 'base') refresh = salt.utils.data.is_true(kwargs.get('refresh', False)) # no need to call _refresh_db_conditional as list_pkgs will do it ret = {} # Make sure name or pkgs is passed if not name and not pkgs: return 'Must pass a single package or a list of packages' # Get package parameters pkg_params = __salt__['pkg_resource.parse_targets'](name, pkgs, **kwargs)[0] # Get a list of currently installed software for comparison at the end old = list_pkgs(saltenv=saltenv, refresh=refresh, versions_as_list=True) # Loop through each package changed = [] # list of changed package names for pkgname, version_num in six.iteritems(pkg_params): # Load package information for the package pkginfo = _get_package_info(pkgname, saltenv=saltenv) # Make sure pkginfo was found if not pkginfo: msg = 'Unable to locate package {0}'.format(pkgname) log.error(msg) ret[pkgname] = msg continue # Check to see if package is installed on the system if pkgname not in old: log.debug('%s %s not installed', pkgname, version_num if version_num else '') ret[pkgname] = {'current': 'not installed'} continue removal_targets = [] # Only support a single version number if version_num is not None: # Using the salt cmdline with version=5.3 might be interpreted # as a float it must be converted to a string in order for # string matching to work. version_num = six.text_type(version_num) # At least one version of the software is installed. if version_num is None: for ver_install in old[pkgname]: if ver_install not in pkginfo and 'latest' in pkginfo: log.debug('%s %s using package latest entry to to remove', pkgname, version_num) removal_targets.append('latest') else: removal_targets.append(ver_install) else: if version_num in pkginfo: # we known how to remove this version if version_num in old[pkgname]: removal_targets.append(version_num) else: log.debug('%s %s not installed', pkgname, version_num) ret[pkgname] = {'current': '{0} not installed'.format(version_num)} continue elif 'latest' in pkginfo: # we do not have version entry, assume software can self upgrade and use latest log.debug('%s %s using package latest entry to to remove', pkgname, version_num) removal_targets.append('latest') if not removal_targets: log.error('%s %s no definition to remove this version', pkgname, version_num) ret[pkgname] = { 'current': '{0} no definition, cannot removed'.format(version_num) } continue for target in removal_targets: # Get the uninstaller uninstaller = pkginfo[target].get('uninstaller', '') cache_dir = pkginfo[target].get('cache_dir', False) uninstall_flags = pkginfo[target].get('uninstall_flags', '') # If no uninstaller found, use the installer with uninstall flags if not uninstaller and uninstall_flags: uninstaller = pkginfo[target].get('installer', '') # If still no uninstaller found, fail if not uninstaller: log.error( 'No installer or uninstaller configured for package %s', pkgname, ) ret[pkgname] = {'no uninstaller defined': target} continue # Where is the uninstaller if uninstaller.startswith(('salt:', 'http:', 'https:', 'ftp:')): # Check for the 'cache_dir' parameter in the .sls file # If true, the entire directory will be cached instead of the # individual file. This is useful for installations that are not # single files if cache_dir and uninstaller.startswith('salt:'): path, _ = os.path.split(uninstaller) __salt__['cp.cache_dir'](path, saltenv, False, None, '[email protected]$') # Check to see if the uninstaller is cached cached_pkg = __salt__['cp.is_cached'](uninstaller, saltenv) if not cached_pkg: # It's not cached. Cache it, mate. cached_pkg = __salt__['cp.cache_file'](uninstaller, saltenv) # Check if the uninstaller was cached successfully if not cached_pkg: log.error('Unable to cache %s', uninstaller) ret[pkgname] = {'unable to cache': uninstaller} continue # Compare the hash of the cached installer to the source only if # the file is hosted on salt: # TODO cp.cache_file does cache and hash checking? So why do it again? if uninstaller.startswith('salt:'): if __salt__['cp.hash_file'](uninstaller, saltenv) != \ __salt__['cp.hash_file'](cached_pkg): try: cached_pkg = __salt__['cp.cache_file']( uninstaller, saltenv) except MinionError as exc: return '{0}: {1}'.format(exc, uninstaller) # Check if the installer was cached successfully if not cached_pkg: log.error('Unable to cache %s', uninstaller) ret[pkgname] = {'unable to cache': uninstaller} continue else: # Run the uninstaller directly # (not hosted on salt:, https:, etc.) cached_pkg = os.path.expandvars(uninstaller) # Fix non-windows slashes cached_pkg = cached_pkg.replace('/', '\\') cache_path, _ = os.path.split(cached_pkg) # os.path.expandvars is not required as we run everything through cmd.exe /s /c if kwargs.get('extra_uninstall_flags'): uninstall_flags = '{0} {1}'.format( uninstall_flags, kwargs.get('extra_uninstall_flags', '')) # Compute msiexec string use_msiexec, msiexec = _get_msiexec(pkginfo[target].get('msiexec', False)) cmd_shell = os.getenv('ComSpec', '{0}\\system32\\cmd.exe'.format(os.getenv('WINDIR'))) # Build cmd and arguments # cmd and arguments must be separated for use with the task scheduler if use_msiexec: # Check if uninstaller is set to {guid}, if not we assume its a remote msi file. # which has already been downloaded. arguments = '"{0}" /X "{1}"'.format(msiexec, cached_pkg) else: arguments = '"{0}"'.format(cached_pkg) if uninstall_flags: arguments = '{0} {1}'.format(arguments, uninstall_flags) # Uninstall the software changed.append(pkgname) # Check Use Scheduler Option if pkginfo[target].get('use_scheduler', False): # Create Scheduled Task __salt__['task.create_task'](name='update-salt-software', user_name='System', force=True, action_type='Execute', cmd=cmd_shell, arguments='/s /c "{0}"'.format(arguments), start_in=cache_path, trigger_type='Once', start_date='1975-01-01', start_time='01:00', ac_only=False, stop_if_on_batteries=False) # Run Scheduled Task if not __salt__['task.run_wait'](name='update-salt-software'): log.error('Failed to remove %s', pkgname) log.error('Scheduled Task failed to run') ret[pkgname] = {'uninstall status': 'failed'} else: # Launch the command result = __salt__['cmd.run_all']( '"{0}" /s /c "{1}"'.format(cmd_shell, arguments), output_loglevel='trace', python_shell=False, redirect_stderr=True) if not result['retcode']: ret[pkgname] = {'uninstall status': 'success'} changed.append(pkgname) elif result['retcode'] == 3010: # 3010 is ERROR_SUCCESS_REBOOT_REQUIRED report_reboot_exit_codes = kwargs.pop( 'report_reboot_exit_codes', True) if report_reboot_exit_codes: __salt__['system.set_reboot_required_witnessed']() ret[pkgname] = {'uninstall status': 'success, reboot required'} changed.append(pkgname) elif result['retcode'] == 1641: # 1641 is ERROR_SUCCESS_REBOOT_INITIATED ret[pkgname] = {'uninstall status': 'success, reboot initiated'} changed.append(pkgname) else: log.error('Failed to remove %s', pkgname) log.error('retcode %s', result['retcode']) log.error('uninstaller output: %s', result['stdout']) ret[pkgname] = {'uninstall status': 'failed'} # Get a new list of installed software new = list_pkgs(saltenv=saltenv, refresh=False) # Take the "old" package list and convert the values to strings in # preparation for the comparison below. __salt__['pkg_resource.stringify'](old) # Check for changes in the registry difference = salt.utils.data.compare_dicts(old, new) found_chgs = all(name in difference for name in changed) end_t = time.time() + 3 # give it 3 seconds to catch up. while not found_chgs and time.time() < end_t: time.sleep(0.5) new = list_pkgs(saltenv=saltenv, refresh=False) difference = salt.utils.data.compare_dicts(old, new) found_chgs = all(name in difference for name in changed) if not found_chgs: log.warning('Expected changes for package removal may not have occured') # Compare the software list before and after # Add the difference to ret ret.update(difference) return ret
def drop_database(self, name, force=False): """ Drop an MapD database Parameters ---------- name : string Database name force : boolean, default False If False and there are any tables in this database, raises an IntegrityError """ tables = [] if not force or self.database(name): tables = self.list_tables(database=name) if not force and len(tables): raise com.IntegrityError( 'Database {0} must be empty before being dropped, or set ' 'force=True'.format(name) ) statement = ddl.DropDatabase(name) self._execute(statement)
Drop an MapD database Parameters ---------- name : string Database name force : boolean, default False If False and there are any tables in this database, raises an IntegrityError
Below is the the instruction that describes the task: ### Input: Drop an MapD database Parameters ---------- name : string Database name force : boolean, default False If False and there are any tables in this database, raises an IntegrityError ### Response: def drop_database(self, name, force=False): """ Drop an MapD database Parameters ---------- name : string Database name force : boolean, default False If False and there are any tables in this database, raises an IntegrityError """ tables = [] if not force or self.database(name): tables = self.list_tables(database=name) if not force and len(tables): raise com.IntegrityError( 'Database {0} must be empty before being dropped, or set ' 'force=True'.format(name) ) statement = ddl.DropDatabase(name) self._execute(statement)
def build_post_form_args(self, bucket_name, key, expires_in = 6000, acl = None, success_action_redirect = None, max_content_length = None, http_method = "http", fields=None, conditions=None): """ Taken from the AWS book Python examples and modified for use with boto This only returns the arguments required for the post form, not the actual form. This does not return the file input field which also needs to be added :type bucket_name: string :param bucket_name: Bucket to submit to :type key: string :param key: Key name, optionally add ${filename} to the end to attach the submitted filename :type expires_in: integer :param expires_in: Time (in seconds) before this expires, defaults to 6000 :type acl: :class:`boto.s3.acl.ACL` :param acl: ACL rule to use, if any :type success_action_redirect: string :param success_action_redirect: URL to redirect to on success :type max_content_length: integer :param max_content_length: Maximum size for this file :type http_method: string :param http_method: HTTP Method to use, "http" or "https" :rtype: dict :return: A dictionary containing field names/values as well as a url to POST to .. code-block:: python { "action": action_url_to_post_to, "fields": [ { "name": field_name, "value": field_value }, { "name": field_name2, "value": field_value2 } ] } """ if fields == None: fields = [] if conditions == None: conditions = [] expiration = time.gmtime(int(time.time() + expires_in)) # Generate policy document conditions.append('{"bucket": "%s"}' % bucket_name) if key.endswith("${filename}"): conditions.append('["starts-with", "$key", "%s"]' % key[:-len("${filename}")]) else: conditions.append('{"key": "%s"}' % key) if acl: conditions.append('{"acl": "%s"}' % acl) fields.append({ "name": "acl", "value": acl}) if success_action_redirect: conditions.append('{"success_action_redirect": "%s"}' % success_action_redirect) fields.append({ "name": "success_action_redirect", "value": success_action_redirect}) if max_content_length: conditions.append('["content-length-range", 0, %i]' % max_content_length) fields.append({"name":'content-length-range', "value": "0,%i" % max_content_length}) policy = self.build_post_policy(expiration, conditions) # Add the base64-encoded policy document as the 'policy' field policy_b64 = base64.b64encode(policy) fields.append({"name": "policy", "value": policy_b64}) # Add the AWS access key as the 'AWSAccessKeyId' field fields.append({"name": "AWSAccessKeyId", "value": self.aws_access_key_id}) # Add signature for encoded policy document as the 'AWSAccessKeyId' field signature = self._auth_handler.sign_string(policy_b64) fields.append({"name": "signature", "value": signature}) fields.append({"name": "key", "value": key}) # HTTPS protocol will be used if the secure HTTP option is enabled. url = '%s://%s/' % (http_method, self.calling_format.build_host(self.server_name(), bucket_name)) return {"action": url, "fields": fields}
Taken from the AWS book Python examples and modified for use with boto This only returns the arguments required for the post form, not the actual form. This does not return the file input field which also needs to be added :type bucket_name: string :param bucket_name: Bucket to submit to :type key: string :param key: Key name, optionally add ${filename} to the end to attach the submitted filename :type expires_in: integer :param expires_in: Time (in seconds) before this expires, defaults to 6000 :type acl: :class:`boto.s3.acl.ACL` :param acl: ACL rule to use, if any :type success_action_redirect: string :param success_action_redirect: URL to redirect to on success :type max_content_length: integer :param max_content_length: Maximum size for this file :type http_method: string :param http_method: HTTP Method to use, "http" or "https" :rtype: dict :return: A dictionary containing field names/values as well as a url to POST to .. code-block:: python { "action": action_url_to_post_to, "fields": [ { "name": field_name, "value": field_value }, { "name": field_name2, "value": field_value2 } ] }
Below is the the instruction that describes the task: ### Input: Taken from the AWS book Python examples and modified for use with boto This only returns the arguments required for the post form, not the actual form. This does not return the file input field which also needs to be added :type bucket_name: string :param bucket_name: Bucket to submit to :type key: string :param key: Key name, optionally add ${filename} to the end to attach the submitted filename :type expires_in: integer :param expires_in: Time (in seconds) before this expires, defaults to 6000 :type acl: :class:`boto.s3.acl.ACL` :param acl: ACL rule to use, if any :type success_action_redirect: string :param success_action_redirect: URL to redirect to on success :type max_content_length: integer :param max_content_length: Maximum size for this file :type http_method: string :param http_method: HTTP Method to use, "http" or "https" :rtype: dict :return: A dictionary containing field names/values as well as a url to POST to .. code-block:: python { "action": action_url_to_post_to, "fields": [ { "name": field_name, "value": field_value }, { "name": field_name2, "value": field_value2 } ] } ### Response: def build_post_form_args(self, bucket_name, key, expires_in = 6000, acl = None, success_action_redirect = None, max_content_length = None, http_method = "http", fields=None, conditions=None): """ Taken from the AWS book Python examples and modified for use with boto This only returns the arguments required for the post form, not the actual form. This does not return the file input field which also needs to be added :type bucket_name: string :param bucket_name: Bucket to submit to :type key: string :param key: Key name, optionally add ${filename} to the end to attach the submitted filename :type expires_in: integer :param expires_in: Time (in seconds) before this expires, defaults to 6000 :type acl: :class:`boto.s3.acl.ACL` :param acl: ACL rule to use, if any :type success_action_redirect: string :param success_action_redirect: URL to redirect to on success :type max_content_length: integer :param max_content_length: Maximum size for this file :type http_method: string :param http_method: HTTP Method to use, "http" or "https" :rtype: dict :return: A dictionary containing field names/values as well as a url to POST to .. code-block:: python { "action": action_url_to_post_to, "fields": [ { "name": field_name, "value": field_value }, { "name": field_name2, "value": field_value2 } ] } """ if fields == None: fields = [] if conditions == None: conditions = [] expiration = time.gmtime(int(time.time() + expires_in)) # Generate policy document conditions.append('{"bucket": "%s"}' % bucket_name) if key.endswith("${filename}"): conditions.append('["starts-with", "$key", "%s"]' % key[:-len("${filename}")]) else: conditions.append('{"key": "%s"}' % key) if acl: conditions.append('{"acl": "%s"}' % acl) fields.append({ "name": "acl", "value": acl}) if success_action_redirect: conditions.append('{"success_action_redirect": "%s"}' % success_action_redirect) fields.append({ "name": "success_action_redirect", "value": success_action_redirect}) if max_content_length: conditions.append('["content-length-range", 0, %i]' % max_content_length) fields.append({"name":'content-length-range', "value": "0,%i" % max_content_length}) policy = self.build_post_policy(expiration, conditions) # Add the base64-encoded policy document as the 'policy' field policy_b64 = base64.b64encode(policy) fields.append({"name": "policy", "value": policy_b64}) # Add the AWS access key as the 'AWSAccessKeyId' field fields.append({"name": "AWSAccessKeyId", "value": self.aws_access_key_id}) # Add signature for encoded policy document as the 'AWSAccessKeyId' field signature = self._auth_handler.sign_string(policy_b64) fields.append({"name": "signature", "value": signature}) fields.append({"name": "key", "value": key}) # HTTPS protocol will be used if the secure HTTP option is enabled. url = '%s://%s/' % (http_method, self.calling_format.build_host(self.server_name(), bucket_name)) return {"action": url, "fields": fields}
def structured_partlist(input, timeout=20, showgui=False): '''export partlist by eagle, then parse it :param input: .sch or .brd file name :param timeout: int :param showgui: Bool, True -> do not hide eagle GUI :rtype: tuple of header list and dict list: (['part','value',..], [{'part':'C1', 'value':'1n'}, ..]) ''' s = raw_partlist(input=input, timeout=timeout, showgui=showgui) return parse_partlist(s)
export partlist by eagle, then parse it :param input: .sch or .brd file name :param timeout: int :param showgui: Bool, True -> do not hide eagle GUI :rtype: tuple of header list and dict list: (['part','value',..], [{'part':'C1', 'value':'1n'}, ..])
Below is the the instruction that describes the task: ### Input: export partlist by eagle, then parse it :param input: .sch or .brd file name :param timeout: int :param showgui: Bool, True -> do not hide eagle GUI :rtype: tuple of header list and dict list: (['part','value',..], [{'part':'C1', 'value':'1n'}, ..]) ### Response: def structured_partlist(input, timeout=20, showgui=False): '''export partlist by eagle, then parse it :param input: .sch or .brd file name :param timeout: int :param showgui: Bool, True -> do not hide eagle GUI :rtype: tuple of header list and dict list: (['part','value',..], [{'part':'C1', 'value':'1n'}, ..]) ''' s = raw_partlist(input=input, timeout=timeout, showgui=showgui) return parse_partlist(s)
def get(self, exchange, virtual_host='/'): """Get Exchange details. :param str exchange: Exchange name :param str virtual_host: Virtual host name :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :rtype: dict """ virtual_host = quote(virtual_host, '') return self.http_client.get( API_EXCHANGE % ( virtual_host, exchange) )
Get Exchange details. :param str exchange: Exchange name :param str virtual_host: Virtual host name :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :rtype: dict
Below is the the instruction that describes the task: ### Input: Get Exchange details. :param str exchange: Exchange name :param str virtual_host: Virtual host name :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :rtype: dict ### Response: def get(self, exchange, virtual_host='/'): """Get Exchange details. :param str exchange: Exchange name :param str virtual_host: Virtual host name :raises ApiError: Raises if the remote server encountered an error. :raises ApiConnectionError: Raises if there was a connectivity issue. :rtype: dict """ virtual_host = quote(virtual_host, '') return self.http_client.get( API_EXCHANGE % ( virtual_host, exchange) )
def set_min(self, fmin): """ Updates minimum value """ if round(100000*fmin) != 100000*fmin: raise DriverError('utils.widgets.Expose.set_min: ' + 'fmin must be a multiple of 0.00001') self.fmin = fmin self.set(self.fmin)
Updates minimum value
Below is the the instruction that describes the task: ### Input: Updates minimum value ### Response: def set_min(self, fmin): """ Updates minimum value """ if round(100000*fmin) != 100000*fmin: raise DriverError('utils.widgets.Expose.set_min: ' + 'fmin must be a multiple of 0.00001') self.fmin = fmin self.set(self.fmin)
def inspect_partitions(bucket): """Discover the partitions on a bucket via introspection. For large buckets which lack s3 inventories, salactus will attempt to process objects in parallel on the bucket by breaking the bucket into a separate keyspace partitions. It does this with a heurestic that attempts to sample the keyspace and determine appropriate subparts. This command provides additional visibility into the partitioning of a bucket by showing how salactus would partition a given bucket. """ logging.basicConfig( level=logging.INFO, format="%(asctime)s: %(name)s:%(levelname)s %(message)s") logging.getLogger('botocore').setLevel(level=logging.WARNING) state = db.db() # add db.bucket accessor found = None for b in state.buckets(): if b.name == bucket: found = b break if not found: click.echo("no bucket named: %s" % bucket) return keyset = [] partitions = [] def process_keyset(bid, page): keyset.append(len(page)) def process_bucket_iterator(bid, prefix, delimiter="", **continuation): partitions.append(prefix) # synchronous execution def invoke(f, *args, **kw): return f(*args, **kw) # unleash the monkies ;-) worker.connection.hincrby = lambda x, y, z: True worker.invoke = invoke worker.process_keyset = process_keyset worker.process_bucket_iterator = process_bucket_iterator # kick it off worker.process_bucket_partitions(b.bucket_id) keys_scanned = sum(keyset) click.echo( "Found %d partitions %s keys scanned during partitioning" % ( len(partitions), keys_scanned)) click.echo("\n".join(partitions))
Discover the partitions on a bucket via introspection. For large buckets which lack s3 inventories, salactus will attempt to process objects in parallel on the bucket by breaking the bucket into a separate keyspace partitions. It does this with a heurestic that attempts to sample the keyspace and determine appropriate subparts. This command provides additional visibility into the partitioning of a bucket by showing how salactus would partition a given bucket.
Below is the the instruction that describes the task: ### Input: Discover the partitions on a bucket via introspection. For large buckets which lack s3 inventories, salactus will attempt to process objects in parallel on the bucket by breaking the bucket into a separate keyspace partitions. It does this with a heurestic that attempts to sample the keyspace and determine appropriate subparts. This command provides additional visibility into the partitioning of a bucket by showing how salactus would partition a given bucket. ### Response: def inspect_partitions(bucket): """Discover the partitions on a bucket via introspection. For large buckets which lack s3 inventories, salactus will attempt to process objects in parallel on the bucket by breaking the bucket into a separate keyspace partitions. It does this with a heurestic that attempts to sample the keyspace and determine appropriate subparts. This command provides additional visibility into the partitioning of a bucket by showing how salactus would partition a given bucket. """ logging.basicConfig( level=logging.INFO, format="%(asctime)s: %(name)s:%(levelname)s %(message)s") logging.getLogger('botocore').setLevel(level=logging.WARNING) state = db.db() # add db.bucket accessor found = None for b in state.buckets(): if b.name == bucket: found = b break if not found: click.echo("no bucket named: %s" % bucket) return keyset = [] partitions = [] def process_keyset(bid, page): keyset.append(len(page)) def process_bucket_iterator(bid, prefix, delimiter="", **continuation): partitions.append(prefix) # synchronous execution def invoke(f, *args, **kw): return f(*args, **kw) # unleash the monkies ;-) worker.connection.hincrby = lambda x, y, z: True worker.invoke = invoke worker.process_keyset = process_keyset worker.process_bucket_iterator = process_bucket_iterator # kick it off worker.process_bucket_partitions(b.bucket_id) keys_scanned = sum(keyset) click.echo( "Found %d partitions %s keys scanned during partitioning" % ( len(partitions), keys_scanned)) click.echo("\n".join(partitions))
def _get_format_name_loader_mapping(self): """ :return: Mappings of format-name and loader class. :rtype: dict """ loader_table = self._get_common_loader_mapping() loader_table.update( { "excel": ExcelTableFileLoader, "json_lines": JsonLinesTableTextLoader, "markdown": MarkdownTableTextLoader, "mediawiki": MediaWikiTableTextLoader, "ssv": CsvTableFileLoader, } ) return loader_table
:return: Mappings of format-name and loader class. :rtype: dict
Below is the the instruction that describes the task: ### Input: :return: Mappings of format-name and loader class. :rtype: dict ### Response: def _get_format_name_loader_mapping(self): """ :return: Mappings of format-name and loader class. :rtype: dict """ loader_table = self._get_common_loader_mapping() loader_table.update( { "excel": ExcelTableFileLoader, "json_lines": JsonLinesTableTextLoader, "markdown": MarkdownTableTextLoader, "mediawiki": MediaWikiTableTextLoader, "ssv": CsvTableFileLoader, } ) return loader_table
def user_packages( self, login=None, platform=None, package_type=None, type_=None, access=None): ''' Returns a list of packages for a given user and optionally filter by `platform`, `package_type` and `type_`. :param login: (optional) the login name of the user or None. If login is None this method will return the packages for the authenticated user. :param platform: only find packages that include files for this platform. (e.g. 'linux-64', 'osx-64', 'win-32') :param package_type: only find packages that have this kind of file (e.g. 'env', 'conda', 'pypi') :param type_: only find packages that have this conda `type` (i.e. 'app') :param access: only find packages that have this access level (e.g. 'private', 'authenticated', 'public') ''' if login: url = '{0}/packages/{1}'.format(self.domain, login) else: url = '{0}/packages'.format(self.domain) arguments = collections.OrderedDict() if platform: arguments['platform'] = platform if package_type: arguments['package_type'] = package_type if type_: arguments['type'] = type_ if access: arguments['access'] = access res = self.session.get(url, params=arguments) self._check_response(res) return res.json()
Returns a list of packages for a given user and optionally filter by `platform`, `package_type` and `type_`. :param login: (optional) the login name of the user or None. If login is None this method will return the packages for the authenticated user. :param platform: only find packages that include files for this platform. (e.g. 'linux-64', 'osx-64', 'win-32') :param package_type: only find packages that have this kind of file (e.g. 'env', 'conda', 'pypi') :param type_: only find packages that have this conda `type` (i.e. 'app') :param access: only find packages that have this access level (e.g. 'private', 'authenticated', 'public')
Below is the the instruction that describes the task: ### Input: Returns a list of packages for a given user and optionally filter by `platform`, `package_type` and `type_`. :param login: (optional) the login name of the user or None. If login is None this method will return the packages for the authenticated user. :param platform: only find packages that include files for this platform. (e.g. 'linux-64', 'osx-64', 'win-32') :param package_type: only find packages that have this kind of file (e.g. 'env', 'conda', 'pypi') :param type_: only find packages that have this conda `type` (i.e. 'app') :param access: only find packages that have this access level (e.g. 'private', 'authenticated', 'public') ### Response: def user_packages( self, login=None, platform=None, package_type=None, type_=None, access=None): ''' Returns a list of packages for a given user and optionally filter by `platform`, `package_type` and `type_`. :param login: (optional) the login name of the user or None. If login is None this method will return the packages for the authenticated user. :param platform: only find packages that include files for this platform. (e.g. 'linux-64', 'osx-64', 'win-32') :param package_type: only find packages that have this kind of file (e.g. 'env', 'conda', 'pypi') :param type_: only find packages that have this conda `type` (i.e. 'app') :param access: only find packages that have this access level (e.g. 'private', 'authenticated', 'public') ''' if login: url = '{0}/packages/{1}'.format(self.domain, login) else: url = '{0}/packages'.format(self.domain) arguments = collections.OrderedDict() if platform: arguments['platform'] = platform if package_type: arguments['package_type'] = package_type if type_: arguments['type'] = type_ if access: arguments['access'] = access res = self.session.get(url, params=arguments) self._check_response(res) return res.json()
def timer(self, stat, tags=None): """Contextmanager for easily computing timings. :arg string stat: A period delimited alphanumeric key. :arg list-of-strings tags: Each string in the tag consists of a key and a value separated by a colon. Tags can make it easier to break down metrics for analysis. For example ``['env:stage', 'compressed:yes']``. For example: >>> mymetrics = get_metrics(__name__) >>> def long_function(): ... with mymetrics.timer('long_function'): ... # perform some thing we want to keep metrics on ... pass .. Note:: All timings generated with this are in milliseconds. """ if six.PY3: start_time = time.perf_counter() else: start_time = time.time() yield if six.PY3: end_time = time.perf_counter() else: end_time = time.time() delta = end_time - start_time self.timing(stat, value=delta * 1000.0, tags=tags)
Contextmanager for easily computing timings. :arg string stat: A period delimited alphanumeric key. :arg list-of-strings tags: Each string in the tag consists of a key and a value separated by a colon. Tags can make it easier to break down metrics for analysis. For example ``['env:stage', 'compressed:yes']``. For example: >>> mymetrics = get_metrics(__name__) >>> def long_function(): ... with mymetrics.timer('long_function'): ... # perform some thing we want to keep metrics on ... pass .. Note:: All timings generated with this are in milliseconds.
Below is the the instruction that describes the task: ### Input: Contextmanager for easily computing timings. :arg string stat: A period delimited alphanumeric key. :arg list-of-strings tags: Each string in the tag consists of a key and a value separated by a colon. Tags can make it easier to break down metrics for analysis. For example ``['env:stage', 'compressed:yes']``. For example: >>> mymetrics = get_metrics(__name__) >>> def long_function(): ... with mymetrics.timer('long_function'): ... # perform some thing we want to keep metrics on ... pass .. Note:: All timings generated with this are in milliseconds. ### Response: def timer(self, stat, tags=None): """Contextmanager for easily computing timings. :arg string stat: A period delimited alphanumeric key. :arg list-of-strings tags: Each string in the tag consists of a key and a value separated by a colon. Tags can make it easier to break down metrics for analysis. For example ``['env:stage', 'compressed:yes']``. For example: >>> mymetrics = get_metrics(__name__) >>> def long_function(): ... with mymetrics.timer('long_function'): ... # perform some thing we want to keep metrics on ... pass .. Note:: All timings generated with this are in milliseconds. """ if six.PY3: start_time = time.perf_counter() else: start_time = time.time() yield if six.PY3: end_time = time.perf_counter() else: end_time = time.time() delta = end_time - start_time self.timing(stat, value=delta * 1000.0, tags=tags)