code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def from_config(config): """ Generate a matrix from a configuration dictionary. """ matrix = {} variables = config.keys() for entries in product(*config.values()): combination = dict(zip(variables, entries)) include = True for value in combination.values(): for reducer in value.reducers: if reducer.pattern == '-': match = not combination[reducer.variable].value else: match = fnmatch(combination[reducer.variable].value, reducer.pattern) if match if reducer.is_exclude else not match: include = False if include: key = '-'.join(entry.alias for entry in entries if entry.alias) data = dict( zip(variables, (entry.value for entry in entries)) ) if key in matrix and data != matrix[key]: raise DuplicateEnvironment(key, data, matrix[key]) matrix[key] = data return matrix
Generate a matrix from a configuration dictionary.
Below is the the instruction that describes the task: ### Input: Generate a matrix from a configuration dictionary. ### Response: def from_config(config): """ Generate a matrix from a configuration dictionary. """ matrix = {} variables = config.keys() for entries in product(*config.values()): combination = dict(zip(variables, entries)) include = True for value in combination.values(): for reducer in value.reducers: if reducer.pattern == '-': match = not combination[reducer.variable].value else: match = fnmatch(combination[reducer.variable].value, reducer.pattern) if match if reducer.is_exclude else not match: include = False if include: key = '-'.join(entry.alias for entry in entries if entry.alias) data = dict( zip(variables, (entry.value for entry in entries)) ) if key in matrix and data != matrix[key]: raise DuplicateEnvironment(key, data, matrix[key]) matrix[key] = data return matrix
def path_dispatch_rename(rename_like_method): """ decorator for rename-like function, that need dispatch on 2 arguments """ def _wrapper_method(self, old_path, new_path): old_path, _old_path, old_sentinel = _split_path(old_path); new_path, _new_path, new_sentinel = _split_path(new_path); if old_sentinel != new_sentinel: raise ValueError('Does not know how to move things across contents manager mountpoints') else: sentinel = new_sentinel man = self.managers.get(sentinel, None) if man is not None: rename_meth = getattr(man, rename_like_method.__name__) sub = rename_meth('/'.join(_old_path), '/'.join(_new_path)) return sub else : return rename_meth(self, old_path, new_path) return _wrapper_method
decorator for rename-like function, that need dispatch on 2 arguments
Below is the the instruction that describes the task: ### Input: decorator for rename-like function, that need dispatch on 2 arguments ### Response: def path_dispatch_rename(rename_like_method): """ decorator for rename-like function, that need dispatch on 2 arguments """ def _wrapper_method(self, old_path, new_path): old_path, _old_path, old_sentinel = _split_path(old_path); new_path, _new_path, new_sentinel = _split_path(new_path); if old_sentinel != new_sentinel: raise ValueError('Does not know how to move things across contents manager mountpoints') else: sentinel = new_sentinel man = self.managers.get(sentinel, None) if man is not None: rename_meth = getattr(man, rename_like_method.__name__) sub = rename_meth('/'.join(_old_path), '/'.join(_new_path)) return sub else : return rename_meth(self, old_path, new_path) return _wrapper_method
def insert_rule(self, chain, src=None, dest=None, target=None): """Insert a new rule in the chain """ if not chain: raise ValueError("Invalid chain") if not target: raise ValueError("Invalid target") if not (src or dest): raise ValueError("Need src, dest, or both") args = ["-I", chain] if src: args += ["-s", src] if dest: args += ["-d", dest] args += ["-j", target] self.call(*args)
Insert a new rule in the chain
Below is the the instruction that describes the task: ### Input: Insert a new rule in the chain ### Response: def insert_rule(self, chain, src=None, dest=None, target=None): """Insert a new rule in the chain """ if not chain: raise ValueError("Invalid chain") if not target: raise ValueError("Invalid target") if not (src or dest): raise ValueError("Need src, dest, or both") args = ["-I", chain] if src: args += ["-s", src] if dest: args += ["-d", dest] args += ["-j", target] self.call(*args)
def _to_dict(self): """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'collections') and self.collections is not None: _dict['collections'] = [x._to_dict() for x in self.collections] return _dict
Return a json dictionary representing this model.
Below is the the instruction that describes the task: ### Input: Return a json dictionary representing this model. ### Response: def _to_dict(self): """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'collections') and self.collections is not None: _dict['collections'] = [x._to_dict() for x in self.collections] return _dict
def destroy(self, deal_id, contact_id) : """ Remove an associated contact Remove a deal's associated contact If a deal with the supplied unique identifier does not exist, it returns an error This operation cannot be undone :calls: ``delete /deals/{deal_id}/associated_contacts/{contact_id}`` :param int deal_id: Unique identifier of a Deal. :param int contact_id: Unique identifier of a Contact. :return: True if the operation succeeded. :rtype: bool """ status_code, _, _ = self.http_client.delete("/deals/{deal_id}/associated_contacts/{contact_id}".format(deal_id=deal_id, contact_id=contact_id)) return status_code == 204
Remove an associated contact Remove a deal's associated contact If a deal with the supplied unique identifier does not exist, it returns an error This operation cannot be undone :calls: ``delete /deals/{deal_id}/associated_contacts/{contact_id}`` :param int deal_id: Unique identifier of a Deal. :param int contact_id: Unique identifier of a Contact. :return: True if the operation succeeded. :rtype: bool
Below is the the instruction that describes the task: ### Input: Remove an associated contact Remove a deal's associated contact If a deal with the supplied unique identifier does not exist, it returns an error This operation cannot be undone :calls: ``delete /deals/{deal_id}/associated_contacts/{contact_id}`` :param int deal_id: Unique identifier of a Deal. :param int contact_id: Unique identifier of a Contact. :return: True if the operation succeeded. :rtype: bool ### Response: def destroy(self, deal_id, contact_id) : """ Remove an associated contact Remove a deal's associated contact If a deal with the supplied unique identifier does not exist, it returns an error This operation cannot be undone :calls: ``delete /deals/{deal_id}/associated_contacts/{contact_id}`` :param int deal_id: Unique identifier of a Deal. :param int contact_id: Unique identifier of a Contact. :return: True if the operation succeeded. :rtype: bool """ status_code, _, _ = self.http_client.delete("/deals/{deal_id}/associated_contacts/{contact_id}".format(deal_id=deal_id, contact_id=contact_id)) return status_code == 204
def main( output_file: str, entry_point: Optional[str], console_script: Optional[str], python: Optional[str], site_packages: Optional[str], compressed: bool, compile_pyc: bool, extend_pythonpath: bool, pip_args: List[str], ) -> None: """ Shiv is a command line utility for building fully self-contained Python zipapps as outlined in PEP 441, but with all their dependencies included! """ if not pip_args and not site_packages: sys.exit(NO_PIP_ARGS_OR_SITE_PACKAGES) if output_file is None: sys.exit(NO_OUTFILE) # check for disallowed pip arguments for disallowed in DISALLOWED_ARGS: for supplied_arg in pip_args: if supplied_arg in disallowed: sys.exit( DISALLOWED_PIP_ARGS.format( arg=supplied_arg, reason=DISALLOWED_ARGS[disallowed] ) ) with TemporaryDirectory() as working_path: tmp_site_packages = Path(working_path, "site-packages") if site_packages: shutil.copytree(site_packages, tmp_site_packages) if pip_args: # install deps into staged site-packages pip.install(["--target", str(tmp_site_packages)] + list(pip_args)) # if entry_point is a console script, get the callable if entry_point is None and console_script is not None: try: entry_point = find_entry_point(tmp_site_packages, console_script) except KeyError: if not Path(tmp_site_packages, "bin", console_script).exists(): sys.exit(NO_ENTRY_POINT.format(entry_point=console_script)) # create runtime environment metadata env = Environment( build_id=str(uuid.uuid4()), entry_point=entry_point, script=console_script, compile_pyc=compile_pyc, extend_pythonpath=extend_pythonpath, ) Path(working_path, "environment.json").write_text(env.to_json()) # create bootstrapping directory in working path bootstrap_target = Path(working_path, "_bootstrap") bootstrap_target.mkdir(parents=True, exist_ok=True) # copy bootstrap code copy_bootstrap(bootstrap_target) # create the zip builder.create_archive( Path(working_path), target=Path(output_file).expanduser(), interpreter=python or _interpreter_path(), main="_bootstrap:bootstrap", compressed=compressed, )
Shiv is a command line utility for building fully self-contained Python zipapps as outlined in PEP 441, but with all their dependencies included!
Below is the the instruction that describes the task: ### Input: Shiv is a command line utility for building fully self-contained Python zipapps as outlined in PEP 441, but with all their dependencies included! ### Response: def main( output_file: str, entry_point: Optional[str], console_script: Optional[str], python: Optional[str], site_packages: Optional[str], compressed: bool, compile_pyc: bool, extend_pythonpath: bool, pip_args: List[str], ) -> None: """ Shiv is a command line utility for building fully self-contained Python zipapps as outlined in PEP 441, but with all their dependencies included! """ if not pip_args and not site_packages: sys.exit(NO_PIP_ARGS_OR_SITE_PACKAGES) if output_file is None: sys.exit(NO_OUTFILE) # check for disallowed pip arguments for disallowed in DISALLOWED_ARGS: for supplied_arg in pip_args: if supplied_arg in disallowed: sys.exit( DISALLOWED_PIP_ARGS.format( arg=supplied_arg, reason=DISALLOWED_ARGS[disallowed] ) ) with TemporaryDirectory() as working_path: tmp_site_packages = Path(working_path, "site-packages") if site_packages: shutil.copytree(site_packages, tmp_site_packages) if pip_args: # install deps into staged site-packages pip.install(["--target", str(tmp_site_packages)] + list(pip_args)) # if entry_point is a console script, get the callable if entry_point is None and console_script is not None: try: entry_point = find_entry_point(tmp_site_packages, console_script) except KeyError: if not Path(tmp_site_packages, "bin", console_script).exists(): sys.exit(NO_ENTRY_POINT.format(entry_point=console_script)) # create runtime environment metadata env = Environment( build_id=str(uuid.uuid4()), entry_point=entry_point, script=console_script, compile_pyc=compile_pyc, extend_pythonpath=extend_pythonpath, ) Path(working_path, "environment.json").write_text(env.to_json()) # create bootstrapping directory in working path bootstrap_target = Path(working_path, "_bootstrap") bootstrap_target.mkdir(parents=True, exist_ok=True) # copy bootstrap code copy_bootstrap(bootstrap_target) # create the zip builder.create_archive( Path(working_path), target=Path(output_file).expanduser(), interpreter=python or _interpreter_path(), main="_bootstrap:bootstrap", compressed=compressed, )
def get_data(self): "Get the data for this blob" array = ctypes.POINTER(ctypes.c_char * len(self)) return ctypes.cast(self.data, array).contents.raw
Get the data for this blob
Below is the the instruction that describes the task: ### Input: Get the data for this blob ### Response: def get_data(self): "Get the data for this blob" array = ctypes.POINTER(ctypes.c_char * len(self)) return ctypes.cast(self.data, array).contents.raw
def get_default(self, *args, **kwargs): """Get the default parameters as defined in the Settings instance. This function proceeds to seamlessly retrieve the argument to pass through, depending on either it was overidden or not: If no argument was overridden in a function of the toolbox, the default argument will be set to ``None``, and this function will retrieve the default parameters as defined by the ``cdt.SETTINGS`` 's attributes. It has two modes of processing: 1. **kwargs for retrieving a single argument: ``get_default(argument_name=value)``. 2. *args through a list of tuples of the shape ``('argument_name', value)`` to retrieve multiple values at once. """ def retrieve_param(i): try: return self.__getattribute__(i) except AttributeError: if i == "device": return self.default_device else: return self.__getattribute__(i.upper()) if len(args) == 0: if len(kwargs) == 1 and kwargs[list(kwargs.keys())[0]] is not None: return kwargs[list(kwargs.keys())[0]] elif len(kwargs) == 1: return retrieve_param(list(kwargs.keys())[0]) else: raise TypeError("As dict is unordered, it is impossible to give" "the parameters in the correct order.") else: out = [] for i in args: if i[1] is None: out.append(retrieve_param(i[0])) else: out.append(i[1]) return out
Get the default parameters as defined in the Settings instance. This function proceeds to seamlessly retrieve the argument to pass through, depending on either it was overidden or not: If no argument was overridden in a function of the toolbox, the default argument will be set to ``None``, and this function will retrieve the default parameters as defined by the ``cdt.SETTINGS`` 's attributes. It has two modes of processing: 1. **kwargs for retrieving a single argument: ``get_default(argument_name=value)``. 2. *args through a list of tuples of the shape ``('argument_name', value)`` to retrieve multiple values at once.
Below is the the instruction that describes the task: ### Input: Get the default parameters as defined in the Settings instance. This function proceeds to seamlessly retrieve the argument to pass through, depending on either it was overidden or not: If no argument was overridden in a function of the toolbox, the default argument will be set to ``None``, and this function will retrieve the default parameters as defined by the ``cdt.SETTINGS`` 's attributes. It has two modes of processing: 1. **kwargs for retrieving a single argument: ``get_default(argument_name=value)``. 2. *args through a list of tuples of the shape ``('argument_name', value)`` to retrieve multiple values at once. ### Response: def get_default(self, *args, **kwargs): """Get the default parameters as defined in the Settings instance. This function proceeds to seamlessly retrieve the argument to pass through, depending on either it was overidden or not: If no argument was overridden in a function of the toolbox, the default argument will be set to ``None``, and this function will retrieve the default parameters as defined by the ``cdt.SETTINGS`` 's attributes. It has two modes of processing: 1. **kwargs for retrieving a single argument: ``get_default(argument_name=value)``. 2. *args through a list of tuples of the shape ``('argument_name', value)`` to retrieve multiple values at once. """ def retrieve_param(i): try: return self.__getattribute__(i) except AttributeError: if i == "device": return self.default_device else: return self.__getattribute__(i.upper()) if len(args) == 0: if len(kwargs) == 1 and kwargs[list(kwargs.keys())[0]] is not None: return kwargs[list(kwargs.keys())[0]] elif len(kwargs) == 1: return retrieve_param(list(kwargs.keys())[0]) else: raise TypeError("As dict is unordered, it is impossible to give" "the parameters in the correct order.") else: out = [] for i in args: if i[1] is None: out.append(retrieve_param(i[0])) else: out.append(i[1]) return out
def apply(self, func, keep_attrs=None, args=(), **kwargs): """Apply a function over the data variables in this dataset. Parameters ---------- func : function Function which can be called in the form `func(x, *args, **kwargs)` to transform each DataArray `x` in this dataset into another DataArray. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False, the new object will be returned without attributes. args : tuple, optional Positional arguments passed on to `func`. **kwargs : dict Keyword arguments passed on to `func`. Returns ------- applied : Dataset Resulting dataset from applying ``func`` over each data variable. Examples -------- >>> da = xr.DataArray(np.random.randn(2, 3)) >>> ds = xr.Dataset({'foo': da, 'bar': ('x', [-1, 2])}) >>> ds <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 -0.3751 -1.951 -1.945 0.2948 0.711 -0.3948 bar (x) int64 -1 2 >>> ds.apply(np.fabs) <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 0.3751 1.951 1.945 0.2948 0.711 0.3948 bar (x) float64 1.0 2.0 """ # noqa variables = OrderedDict( (k, maybe_wrap_array(v, func(v, *args, **kwargs))) for k, v in self.data_vars.items()) if keep_attrs is None: keep_attrs = _get_keep_attrs(default=False) attrs = self.attrs if keep_attrs else None return type(self)(variables, attrs=attrs)
Apply a function over the data variables in this dataset. Parameters ---------- func : function Function which can be called in the form `func(x, *args, **kwargs)` to transform each DataArray `x` in this dataset into another DataArray. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False, the new object will be returned without attributes. args : tuple, optional Positional arguments passed on to `func`. **kwargs : dict Keyword arguments passed on to `func`. Returns ------- applied : Dataset Resulting dataset from applying ``func`` over each data variable. Examples -------- >>> da = xr.DataArray(np.random.randn(2, 3)) >>> ds = xr.Dataset({'foo': da, 'bar': ('x', [-1, 2])}) >>> ds <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 -0.3751 -1.951 -1.945 0.2948 0.711 -0.3948 bar (x) int64 -1 2 >>> ds.apply(np.fabs) <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 0.3751 1.951 1.945 0.2948 0.711 0.3948 bar (x) float64 1.0 2.0
Below is the the instruction that describes the task: ### Input: Apply a function over the data variables in this dataset. Parameters ---------- func : function Function which can be called in the form `func(x, *args, **kwargs)` to transform each DataArray `x` in this dataset into another DataArray. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False, the new object will be returned without attributes. args : tuple, optional Positional arguments passed on to `func`. **kwargs : dict Keyword arguments passed on to `func`. Returns ------- applied : Dataset Resulting dataset from applying ``func`` over each data variable. Examples -------- >>> da = xr.DataArray(np.random.randn(2, 3)) >>> ds = xr.Dataset({'foo': da, 'bar': ('x', [-1, 2])}) >>> ds <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 -0.3751 -1.951 -1.945 0.2948 0.711 -0.3948 bar (x) int64 -1 2 >>> ds.apply(np.fabs) <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 0.3751 1.951 1.945 0.2948 0.711 0.3948 bar (x) float64 1.0 2.0 ### Response: def apply(self, func, keep_attrs=None, args=(), **kwargs): """Apply a function over the data variables in this dataset. Parameters ---------- func : function Function which can be called in the form `func(x, *args, **kwargs)` to transform each DataArray `x` in this dataset into another DataArray. keep_attrs : bool, optional If True, the dataset's attributes (`attrs`) will be copied from the original object to the new one. If False, the new object will be returned without attributes. args : tuple, optional Positional arguments passed on to `func`. **kwargs : dict Keyword arguments passed on to `func`. Returns ------- applied : Dataset Resulting dataset from applying ``func`` over each data variable. Examples -------- >>> da = xr.DataArray(np.random.randn(2, 3)) >>> ds = xr.Dataset({'foo': da, 'bar': ('x', [-1, 2])}) >>> ds <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 -0.3751 -1.951 -1.945 0.2948 0.711 -0.3948 bar (x) int64 -1 2 >>> ds.apply(np.fabs) <xarray.Dataset> Dimensions: (dim_0: 2, dim_1: 3, x: 2) Dimensions without coordinates: dim_0, dim_1, x Data variables: foo (dim_0, dim_1) float64 0.3751 1.951 1.945 0.2948 0.711 0.3948 bar (x) float64 1.0 2.0 """ # noqa variables = OrderedDict( (k, maybe_wrap_array(v, func(v, *args, **kwargs))) for k, v in self.data_vars.items()) if keep_attrs is None: keep_attrs = _get_keep_attrs(default=False) attrs = self.attrs if keep_attrs else None return type(self)(variables, attrs=attrs)
def get_manuelles(self, site, code_parametre, debut, fin, court=False): """ Recupération des mesures manuelles (labo) pour un site site: numéro du site (voir fonction liste_sites_prelevement) code_parametre: code ISO du paramètre à rechercher (C6H6=V4) debut: date de début du premier prélèvement fin: date de fin du dernier prélèvement court: Renvoie un tableau au format court ou long (colonnes) """ condition = "WHERE MESLA.NOPOL='%s' " % code_parametre condition += "AND SITMETH.NSIT=%s " % site condition += "AND PRELEV.DATE_DEB>=TO_DATE('%s', 'YYYY-MM-DD') " % debut condition += "AND PRELEV.DATE_FIN<=TO_DATE('%s', 'YYYY-MM-DD') " % fin if court == False: select = """SELECT MESLA.LIBELLE AS MESURE, METH.LIBELLE AS METHODE, ANA.VALEUR AS VALEUR, MESLA.UNITE AS UNITE, ANA.CODE_QUALITE AS CODE_QUALITE, ANA.DATE_ANA AS DATE_ANALYSE, ANA.ID_LABO AS LABO, PRELEV.DATE_DEB AS DEBUT, PRELEV.DATE_FIN AS FIN, ANA.COMMENTAIRE AS COMMENTAIRE, SITE.LIBELLE AS SITE, SITE.AXE AS ADRESSE, COM.NOM_COMMUNE AS COMMUNE""" else: select = """SELECT MESLA.LIBELLE AS MESURE, ANA.VALEUR AS VALEUR, MESLA.UNITE AS UNITE, ANA.CODE_QUALITE AS CODE_QUALITE, PRELEV.DATE_DEB AS DEBUT, PRELEV.DATE_FIN AS FIN, SITE.AXE AS ADRESSE, COM.NOM_COMMUNE AS COMMUNE""" _sql = """%s FROM ANALYSE ANA INNER JOIN PRELEVEMENT PRELEV ON (ANA.CODE_PRELEV=PRELEV.CODE_PRELEV AND ANA.CODE_SMP=PRELEV.CODE_SMP) INNER JOIN MESURE_LABO MESLA ON (ANA.CODE_MES_LABO=MESLA.CODE_MES_LABO AND ANA.CODE_SMP=MESLA.CODE_SMP) INNER JOIN SITE_METH_PRELEV SITMETH ON (ANA.CODE_SMP=SITMETH.CODE_SMP) INNER JOIN METH_PRELEVEMENT METH ON (SITMETH.CODE_METH_P=METH.CODE_METH_P) INNER JOIN SITE_PRELEVEMENT SITE ON (SITE.NSIT=SITMETH.NSIT) INNER JOIN COMMUNE COM ON (COM.NINSEE=SITE.NINSEE) %s ORDER BY MESLA.NOPOL,MESLA.LIBELLE,PRELEV.DATE_DEB""" % (select, condition) return psql.read_sql(_sql, self.conn)
Recupération des mesures manuelles (labo) pour un site site: numéro du site (voir fonction liste_sites_prelevement) code_parametre: code ISO du paramètre à rechercher (C6H6=V4) debut: date de début du premier prélèvement fin: date de fin du dernier prélèvement court: Renvoie un tableau au format court ou long (colonnes)
Below is the the instruction that describes the task: ### Input: Recupération des mesures manuelles (labo) pour un site site: numéro du site (voir fonction liste_sites_prelevement) code_parametre: code ISO du paramètre à rechercher (C6H6=V4) debut: date de début du premier prélèvement fin: date de fin du dernier prélèvement court: Renvoie un tableau au format court ou long (colonnes) ### Response: def get_manuelles(self, site, code_parametre, debut, fin, court=False): """ Recupération des mesures manuelles (labo) pour un site site: numéro du site (voir fonction liste_sites_prelevement) code_parametre: code ISO du paramètre à rechercher (C6H6=V4) debut: date de début du premier prélèvement fin: date de fin du dernier prélèvement court: Renvoie un tableau au format court ou long (colonnes) """ condition = "WHERE MESLA.NOPOL='%s' " % code_parametre condition += "AND SITMETH.NSIT=%s " % site condition += "AND PRELEV.DATE_DEB>=TO_DATE('%s', 'YYYY-MM-DD') " % debut condition += "AND PRELEV.DATE_FIN<=TO_DATE('%s', 'YYYY-MM-DD') " % fin if court == False: select = """SELECT MESLA.LIBELLE AS MESURE, METH.LIBELLE AS METHODE, ANA.VALEUR AS VALEUR, MESLA.UNITE AS UNITE, ANA.CODE_QUALITE AS CODE_QUALITE, ANA.DATE_ANA AS DATE_ANALYSE, ANA.ID_LABO AS LABO, PRELEV.DATE_DEB AS DEBUT, PRELEV.DATE_FIN AS FIN, ANA.COMMENTAIRE AS COMMENTAIRE, SITE.LIBELLE AS SITE, SITE.AXE AS ADRESSE, COM.NOM_COMMUNE AS COMMUNE""" else: select = """SELECT MESLA.LIBELLE AS MESURE, ANA.VALEUR AS VALEUR, MESLA.UNITE AS UNITE, ANA.CODE_QUALITE AS CODE_QUALITE, PRELEV.DATE_DEB AS DEBUT, PRELEV.DATE_FIN AS FIN, SITE.AXE AS ADRESSE, COM.NOM_COMMUNE AS COMMUNE""" _sql = """%s FROM ANALYSE ANA INNER JOIN PRELEVEMENT PRELEV ON (ANA.CODE_PRELEV=PRELEV.CODE_PRELEV AND ANA.CODE_SMP=PRELEV.CODE_SMP) INNER JOIN MESURE_LABO MESLA ON (ANA.CODE_MES_LABO=MESLA.CODE_MES_LABO AND ANA.CODE_SMP=MESLA.CODE_SMP) INNER JOIN SITE_METH_PRELEV SITMETH ON (ANA.CODE_SMP=SITMETH.CODE_SMP) INNER JOIN METH_PRELEVEMENT METH ON (SITMETH.CODE_METH_P=METH.CODE_METH_P) INNER JOIN SITE_PRELEVEMENT SITE ON (SITE.NSIT=SITMETH.NSIT) INNER JOIN COMMUNE COM ON (COM.NINSEE=SITE.NINSEE) %s ORDER BY MESLA.NOPOL,MESLA.LIBELLE,PRELEV.DATE_DEB""" % (select, condition) return psql.read_sql(_sql, self.conn)
def ExtractEvents(self, parser_mediator, registry_key, **kwargs): """Extracts events from a Windows Registry key. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. registry_key (dfwinreg.WinRegistryKey): Windows Registry key. """ dynamic_info_size_error_reported = False tasks_key = registry_key.GetSubkeyByName('Tasks') tree_key = registry_key.GetSubkeyByName('Tree') if not tasks_key or not tree_key: parser_mediator.ProduceExtractionWarning( 'Task Cache is missing a Tasks or Tree sub key.') return task_guids = {} for sub_key in tree_key.GetSubkeys(): for value_key, id_value in self._GetIdValue(sub_key): # TODO: improve this check to a regex. # The GUID is in the form {%GUID%} and stored an UTF-16 little-endian # string and should be 78 bytes in size. id_value_data_size = len(id_value.data) if id_value_data_size != 78: parser_mediator.ProduceExtractionWarning( 'unsupported Id value data size: {0:d}.'.format( id_value_data_size)) continue guid_string = id_value.GetDataAsObject() task_guids[guid_string] = value_key.name dynamic_info_map = self._GetDataTypeMap('dynamic_info_record') dynamic_info2_map = self._GetDataTypeMap('dynamic_info2_record') dynamic_info_size = dynamic_info_map.GetByteSize() dynamic_info2_size = dynamic_info2_map.GetByteSize() for sub_key in tasks_key.GetSubkeys(): dynamic_info_value = sub_key.GetValueByName('DynamicInfo') if not dynamic_info_value: continue dynamic_info_record_map = None dynamic_info_value_data_size = len(dynamic_info_value.data) if dynamic_info_value_data_size == dynamic_info_size: dynamic_info_record_map = dynamic_info_map elif dynamic_info_value_data_size == dynamic_info2_size: dynamic_info_record_map = dynamic_info2_map else: if not dynamic_info_size_error_reported: parser_mediator.ProduceExtractionWarning( 'unsupported DynamicInfo value data size: {0:d}.'.format( dynamic_info_value_data_size)) dynamic_info_size_error_reported = True continue try: dynamic_info_record = self._ReadStructureFromByteStream( dynamic_info_value.data, 0, dynamic_info_record_map) except (ValueError, errors.ParseError) as exception: parser_mediator.ProduceExtractionWarning( 'unable to parse DynamicInfo record with error: {0!s}.'.format( exception)) name = task_guids.get(sub_key.name, sub_key.name) values_dict = {} values_dict['Task: {0:s}'.format(name)] = '[ID: {0:s}]'.format( sub_key.name) event_data = windows_events.WindowsRegistryEventData() event_data.key_path = registry_key.path event_data.offset = registry_key.offset event_data.regvalue = values_dict event = time_events.DateTimeValuesEvent( registry_key.last_written_time, definitions.TIME_DESCRIPTION_WRITTEN) parser_mediator.ProduceEventWithEventData(event, event_data) event_data = TaskCacheEventData() event_data.task_name = name event_data.task_identifier = sub_key.name last_registered_time = dynamic_info_record.last_registered_time if last_registered_time: # Note this is likely either the last registered time or # the update time. date_time = dfdatetime_filetime.Filetime(timestamp=last_registered_time) event = time_events.DateTimeValuesEvent( date_time, 'Last registered time') parser_mediator.ProduceEventWithEventData(event, event_data) launch_time = dynamic_info_record.launch_time if launch_time: # Note this is likely the launch time. date_time = dfdatetime_filetime.Filetime(timestamp=launch_time) event = time_events.DateTimeValuesEvent( date_time, 'Launch time') parser_mediator.ProduceEventWithEventData(event, event_data) unknown_time = getattr(dynamic_info_record, 'unknown_time', None) if unknown_time: date_time = dfdatetime_filetime.Filetime(timestamp=unknown_time) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_UNKNOWN) parser_mediator.ProduceEventWithEventData(event, event_data)
Extracts events from a Windows Registry key. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. registry_key (dfwinreg.WinRegistryKey): Windows Registry key.
Below is the the instruction that describes the task: ### Input: Extracts events from a Windows Registry key. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. registry_key (dfwinreg.WinRegistryKey): Windows Registry key. ### Response: def ExtractEvents(self, parser_mediator, registry_key, **kwargs): """Extracts events from a Windows Registry key. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. registry_key (dfwinreg.WinRegistryKey): Windows Registry key. """ dynamic_info_size_error_reported = False tasks_key = registry_key.GetSubkeyByName('Tasks') tree_key = registry_key.GetSubkeyByName('Tree') if not tasks_key or not tree_key: parser_mediator.ProduceExtractionWarning( 'Task Cache is missing a Tasks or Tree sub key.') return task_guids = {} for sub_key in tree_key.GetSubkeys(): for value_key, id_value in self._GetIdValue(sub_key): # TODO: improve this check to a regex. # The GUID is in the form {%GUID%} and stored an UTF-16 little-endian # string and should be 78 bytes in size. id_value_data_size = len(id_value.data) if id_value_data_size != 78: parser_mediator.ProduceExtractionWarning( 'unsupported Id value data size: {0:d}.'.format( id_value_data_size)) continue guid_string = id_value.GetDataAsObject() task_guids[guid_string] = value_key.name dynamic_info_map = self._GetDataTypeMap('dynamic_info_record') dynamic_info2_map = self._GetDataTypeMap('dynamic_info2_record') dynamic_info_size = dynamic_info_map.GetByteSize() dynamic_info2_size = dynamic_info2_map.GetByteSize() for sub_key in tasks_key.GetSubkeys(): dynamic_info_value = sub_key.GetValueByName('DynamicInfo') if not dynamic_info_value: continue dynamic_info_record_map = None dynamic_info_value_data_size = len(dynamic_info_value.data) if dynamic_info_value_data_size == dynamic_info_size: dynamic_info_record_map = dynamic_info_map elif dynamic_info_value_data_size == dynamic_info2_size: dynamic_info_record_map = dynamic_info2_map else: if not dynamic_info_size_error_reported: parser_mediator.ProduceExtractionWarning( 'unsupported DynamicInfo value data size: {0:d}.'.format( dynamic_info_value_data_size)) dynamic_info_size_error_reported = True continue try: dynamic_info_record = self._ReadStructureFromByteStream( dynamic_info_value.data, 0, dynamic_info_record_map) except (ValueError, errors.ParseError) as exception: parser_mediator.ProduceExtractionWarning( 'unable to parse DynamicInfo record with error: {0!s}.'.format( exception)) name = task_guids.get(sub_key.name, sub_key.name) values_dict = {} values_dict['Task: {0:s}'.format(name)] = '[ID: {0:s}]'.format( sub_key.name) event_data = windows_events.WindowsRegistryEventData() event_data.key_path = registry_key.path event_data.offset = registry_key.offset event_data.regvalue = values_dict event = time_events.DateTimeValuesEvent( registry_key.last_written_time, definitions.TIME_DESCRIPTION_WRITTEN) parser_mediator.ProduceEventWithEventData(event, event_data) event_data = TaskCacheEventData() event_data.task_name = name event_data.task_identifier = sub_key.name last_registered_time = dynamic_info_record.last_registered_time if last_registered_time: # Note this is likely either the last registered time or # the update time. date_time = dfdatetime_filetime.Filetime(timestamp=last_registered_time) event = time_events.DateTimeValuesEvent( date_time, 'Last registered time') parser_mediator.ProduceEventWithEventData(event, event_data) launch_time = dynamic_info_record.launch_time if launch_time: # Note this is likely the launch time. date_time = dfdatetime_filetime.Filetime(timestamp=launch_time) event = time_events.DateTimeValuesEvent( date_time, 'Launch time') parser_mediator.ProduceEventWithEventData(event, event_data) unknown_time = getattr(dynamic_info_record, 'unknown_time', None) if unknown_time: date_time = dfdatetime_filetime.Filetime(timestamp=unknown_time) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_UNKNOWN) parser_mediator.ProduceEventWithEventData(event, event_data)
def main(global_config, **settings): """ This function returns a Pyramid WSGI application. """ from pyramid.config import Configurator config = Configurator(settings=settings) # include twitcher components config.include('twitcher.config') config.include('twitcher.frontpage') config.include('twitcher.rpcinterface') config.include('twitcher.owsproxy') # tweens/middleware # TODO: maybe add tween for exception handling or use unknown_failure view config.include('twitcher.tweens') config.scan() return config.make_wsgi_app()
This function returns a Pyramid WSGI application.
Below is the the instruction that describes the task: ### Input: This function returns a Pyramid WSGI application. ### Response: def main(global_config, **settings): """ This function returns a Pyramid WSGI application. """ from pyramid.config import Configurator config = Configurator(settings=settings) # include twitcher components config.include('twitcher.config') config.include('twitcher.frontpage') config.include('twitcher.rpcinterface') config.include('twitcher.owsproxy') # tweens/middleware # TODO: maybe add tween for exception handling or use unknown_failure view config.include('twitcher.tweens') config.scan() return config.make_wsgi_app()
def post(self, text, attachments=None): """Post a message as the bot. :param str text: the text of the message :param attachments: a list of attachments :type attachments: :class:`list` :return: ``True`` if successful :rtype: bool """ return self.manager.post(self.bot_id, text, attachments)
Post a message as the bot. :param str text: the text of the message :param attachments: a list of attachments :type attachments: :class:`list` :return: ``True`` if successful :rtype: bool
Below is the the instruction that describes the task: ### Input: Post a message as the bot. :param str text: the text of the message :param attachments: a list of attachments :type attachments: :class:`list` :return: ``True`` if successful :rtype: bool ### Response: def post(self, text, attachments=None): """Post a message as the bot. :param str text: the text of the message :param attachments: a list of attachments :type attachments: :class:`list` :return: ``True`` if successful :rtype: bool """ return self.manager.post(self.bot_id, text, attachments)
def main(): """Open B6/M8 file, filter entries by E-Value, and write said entries""" for entry in b6_evalue_filter(args.b6, args.e_value): args.output.write(entry.write())
Open B6/M8 file, filter entries by E-Value, and write said entries
Below is the the instruction that describes the task: ### Input: Open B6/M8 file, filter entries by E-Value, and write said entries ### Response: def main(): """Open B6/M8 file, filter entries by E-Value, and write said entries""" for entry in b6_evalue_filter(args.b6, args.e_value): args.output.write(entry.write())
def is_installed(self, pkgname): """Given a package name, returns whether it is installed in the environment :param str pkgname: The name of a package :return: Whether the supplied package is installed in the environment :rtype: bool """ return any(d for d in self.get_distributions() if d.project_name == pkgname)
Given a package name, returns whether it is installed in the environment :param str pkgname: The name of a package :return: Whether the supplied package is installed in the environment :rtype: bool
Below is the the instruction that describes the task: ### Input: Given a package name, returns whether it is installed in the environment :param str pkgname: The name of a package :return: Whether the supplied package is installed in the environment :rtype: bool ### Response: def is_installed(self, pkgname): """Given a package name, returns whether it is installed in the environment :param str pkgname: The name of a package :return: Whether the supplied package is installed in the environment :rtype: bool """ return any(d for d in self.get_distributions() if d.project_name == pkgname)
def normalize(self, mode="max", value=1): """ Normalize the spectrum with respect to the sum of intensity Args: mode (str): Normalization mode. Supported modes are "max" (set the max y value to value, e.g., in XRD patterns), "sum" (set the sum of y to a value, i.e., like a probability density). value (float): Value to normalize to. Defaults to 1. """ if mode.lower() == "sum": factor = np.sum(self.y, axis=0) elif mode.lower() == "max": factor = np.max(self.y, axis=0) else: raise ValueError("Unsupported normalization mode %s!" % mode) self.y /= factor / value
Normalize the spectrum with respect to the sum of intensity Args: mode (str): Normalization mode. Supported modes are "max" (set the max y value to value, e.g., in XRD patterns), "sum" (set the sum of y to a value, i.e., like a probability density). value (float): Value to normalize to. Defaults to 1.
Below is the the instruction that describes the task: ### Input: Normalize the spectrum with respect to the sum of intensity Args: mode (str): Normalization mode. Supported modes are "max" (set the max y value to value, e.g., in XRD patterns), "sum" (set the sum of y to a value, i.e., like a probability density). value (float): Value to normalize to. Defaults to 1. ### Response: def normalize(self, mode="max", value=1): """ Normalize the spectrum with respect to the sum of intensity Args: mode (str): Normalization mode. Supported modes are "max" (set the max y value to value, e.g., in XRD patterns), "sum" (set the sum of y to a value, i.e., like a probability density). value (float): Value to normalize to. Defaults to 1. """ if mode.lower() == "sum": factor = np.sum(self.y, axis=0) elif mode.lower() == "max": factor = np.max(self.y, axis=0) else: raise ValueError("Unsupported normalization mode %s!" % mode) self.y /= factor / value
def simxCopyPasteObjects(clientID, objectHandles, operationMode): ''' Please have a look at the function description/documentation in the V-REP user manual ''' c_objectHandles = (ct.c_int*len(objectHandles))(*objectHandles) c_objectHandles = ct.cast(c_objectHandles,ct.POINTER(ct.c_int)) # IronPython needs this newObjectCount = ct.c_int() newObjectHandles = ct.POINTER(ct.c_int)() ret = c_CopyPasteObjects(clientID, c_objectHandles, len(objectHandles), ct.byref(newObjectHandles), ct.byref(newObjectCount), operationMode) newobj = [] if ret == 0: for i in range(newObjectCount.value): newobj.append(newObjectHandles[i]) return ret, newobj
Please have a look at the function description/documentation in the V-REP user manual
Below is the the instruction that describes the task: ### Input: Please have a look at the function description/documentation in the V-REP user manual ### Response: def simxCopyPasteObjects(clientID, objectHandles, operationMode): ''' Please have a look at the function description/documentation in the V-REP user manual ''' c_objectHandles = (ct.c_int*len(objectHandles))(*objectHandles) c_objectHandles = ct.cast(c_objectHandles,ct.POINTER(ct.c_int)) # IronPython needs this newObjectCount = ct.c_int() newObjectHandles = ct.POINTER(ct.c_int)() ret = c_CopyPasteObjects(clientID, c_objectHandles, len(objectHandles), ct.byref(newObjectHandles), ct.byref(newObjectCount), operationMode) newobj = [] if ret == 0: for i in range(newObjectCount.value): newobj.append(newObjectHandles[i]) return ret, newobj
def list_subdomains(self, domain, limit=None, offset=None): """ Returns a list of all subdomains for the specified domain. """ return domain.list_subdomains(limit=limit, offset=offset)
Returns a list of all subdomains for the specified domain.
Below is the the instruction that describes the task: ### Input: Returns a list of all subdomains for the specified domain. ### Response: def list_subdomains(self, domain, limit=None, offset=None): """ Returns a list of all subdomains for the specified domain. """ return domain.list_subdomains(limit=limit, offset=offset)
def dump_dataflow_images(df, index=0, batched=True, number=1000, output_dir=None, scale=1, resize=None, viz=None, flipRGB=False): """ Dump or visualize images of a :class:`DataFlow`. Args: df (DataFlow): the DataFlow. index (int): the index of the image component. batched (bool): whether the component contains batched images (NHW or NHWC) or not (HW or HWC). number (int): how many datapoint to take from the DataFlow. output_dir (str): output directory to save images, default to not save. scale (float): scale the value, usually either 1 or 255. resize (tuple or None): tuple of (h, w) to resize the images to. viz (tuple or None): tuple of (h, w) determining the grid size to use with :func:`gen_stack_patches` for visualization. No visualization will happen by default. flipRGB (bool): apply a RGB<->BGR conversion or not. """ if output_dir: mkdir_p(output_dir) if viz is not None: viz = shape2d(viz) vizsize = viz[0] * viz[1] if resize is not None: resize = tuple(shape2d(resize)) vizlist = [] df.reset_state() cnt = 0 while True: for dp in df: if not batched: imgbatch = [dp[index]] else: imgbatch = dp[index] for img in imgbatch: cnt += 1 if cnt == number: return if scale != 1: img = img * scale if resize is not None: img = cv2.resize(img, resize) if flipRGB: img = img[:, :, ::-1] if output_dir: fname = os.path.join(output_dir, '{:03d}.jpg'.format(cnt)) cv2.imwrite(fname, img) if viz is not None: vizlist.append(img) if viz is not None and len(vizlist) >= vizsize: stack_patches( vizlist[:vizsize], nr_row=viz[0], nr_col=viz[1], viz=True) vizlist = vizlist[vizsize:]
Dump or visualize images of a :class:`DataFlow`. Args: df (DataFlow): the DataFlow. index (int): the index of the image component. batched (bool): whether the component contains batched images (NHW or NHWC) or not (HW or HWC). number (int): how many datapoint to take from the DataFlow. output_dir (str): output directory to save images, default to not save. scale (float): scale the value, usually either 1 or 255. resize (tuple or None): tuple of (h, w) to resize the images to. viz (tuple or None): tuple of (h, w) determining the grid size to use with :func:`gen_stack_patches` for visualization. No visualization will happen by default. flipRGB (bool): apply a RGB<->BGR conversion or not.
Below is the the instruction that describes the task: ### Input: Dump or visualize images of a :class:`DataFlow`. Args: df (DataFlow): the DataFlow. index (int): the index of the image component. batched (bool): whether the component contains batched images (NHW or NHWC) or not (HW or HWC). number (int): how many datapoint to take from the DataFlow. output_dir (str): output directory to save images, default to not save. scale (float): scale the value, usually either 1 or 255. resize (tuple or None): tuple of (h, w) to resize the images to. viz (tuple or None): tuple of (h, w) determining the grid size to use with :func:`gen_stack_patches` for visualization. No visualization will happen by default. flipRGB (bool): apply a RGB<->BGR conversion or not. ### Response: def dump_dataflow_images(df, index=0, batched=True, number=1000, output_dir=None, scale=1, resize=None, viz=None, flipRGB=False): """ Dump or visualize images of a :class:`DataFlow`. Args: df (DataFlow): the DataFlow. index (int): the index of the image component. batched (bool): whether the component contains batched images (NHW or NHWC) or not (HW or HWC). number (int): how many datapoint to take from the DataFlow. output_dir (str): output directory to save images, default to not save. scale (float): scale the value, usually either 1 or 255. resize (tuple or None): tuple of (h, w) to resize the images to. viz (tuple or None): tuple of (h, w) determining the grid size to use with :func:`gen_stack_patches` for visualization. No visualization will happen by default. flipRGB (bool): apply a RGB<->BGR conversion or not. """ if output_dir: mkdir_p(output_dir) if viz is not None: viz = shape2d(viz) vizsize = viz[0] * viz[1] if resize is not None: resize = tuple(shape2d(resize)) vizlist = [] df.reset_state() cnt = 0 while True: for dp in df: if not batched: imgbatch = [dp[index]] else: imgbatch = dp[index] for img in imgbatch: cnt += 1 if cnt == number: return if scale != 1: img = img * scale if resize is not None: img = cv2.resize(img, resize) if flipRGB: img = img[:, :, ::-1] if output_dir: fname = os.path.join(output_dir, '{:03d}.jpg'.format(cnt)) cv2.imwrite(fname, img) if viz is not None: vizlist.append(img) if viz is not None and len(vizlist) >= vizsize: stack_patches( vizlist[:vizsize], nr_row=viz[0], nr_col=viz[1], viz=True) vizlist = vizlist[vizsize:]
def to_rst(cls) -> str: """Output the registry as reStructuredText, for documentation.""" sep_line = '+' + 6 * '-' + '+' + '-' * 71 + '+\n' blank_line = '|' + 78 * ' ' + '|\n' table = '' for group in cls.groups: table += sep_line table += blank_line table += '|' + '**{}**'.format(group.name).center(78) + '|\n' table += blank_line for error in group.errors: table += sep_line table += ('|' + error.code.center(6) + '| ' + error.short_desc.ljust(70) + '|\n') table += sep_line return table
Output the registry as reStructuredText, for documentation.
Below is the the instruction that describes the task: ### Input: Output the registry as reStructuredText, for documentation. ### Response: def to_rst(cls) -> str: """Output the registry as reStructuredText, for documentation.""" sep_line = '+' + 6 * '-' + '+' + '-' * 71 + '+\n' blank_line = '|' + 78 * ' ' + '|\n' table = '' for group in cls.groups: table += sep_line table += blank_line table += '|' + '**{}**'.format(group.name).center(78) + '|\n' table += blank_line for error in group.errors: table += sep_line table += ('|' + error.code.center(6) + '| ' + error.short_desc.ljust(70) + '|\n') table += sep_line return table
def _run_check(self): """Execute a check command. Returns: True if the exit code of the command is 0 otherwise False. """ cmd = shlex.split(self.config['check_cmd']) self.log.info("running %s", ' '.join(cmd)) proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) start_time = time.time() try: outs, errs = proc.communicate(timeout=self.config['check_timeout']) except subprocess.TimeoutExpired: self.log.error("check timed out") if proc.poll() is None: try: proc.kill() except PermissionError: self.log.warning("failed to kill check due to adequate " "access rights, check could be running " "under another user(root) via sudo") return False else: msg = "check duration {t:.3f}ms".format( t=(time.time() - start_time) * 1000) self.log.info(msg) if proc.returncode != 0: self.log.info("stderr from the check %s", errs) self.log.info("stdout from the check %s", outs) return proc.returncode == 0
Execute a check command. Returns: True if the exit code of the command is 0 otherwise False.
Below is the the instruction that describes the task: ### Input: Execute a check command. Returns: True if the exit code of the command is 0 otherwise False. ### Response: def _run_check(self): """Execute a check command. Returns: True if the exit code of the command is 0 otherwise False. """ cmd = shlex.split(self.config['check_cmd']) self.log.info("running %s", ' '.join(cmd)) proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) start_time = time.time() try: outs, errs = proc.communicate(timeout=self.config['check_timeout']) except subprocess.TimeoutExpired: self.log.error("check timed out") if proc.poll() is None: try: proc.kill() except PermissionError: self.log.warning("failed to kill check due to adequate " "access rights, check could be running " "under another user(root) via sudo") return False else: msg = "check duration {t:.3f}ms".format( t=(time.time() - start_time) * 1000) self.log.info(msg) if proc.returncode != 0: self.log.info("stderr from the check %s", errs) self.log.info("stdout from the check %s", outs) return proc.returncode == 0
def is_unlocked(self): """``False`` if this is a private key that is protected with a passphrase and has not yet been unlocked, otherwise ``True``""" if self.is_public: return True if not self.is_protected: return True return self._key.unlocked
``False`` if this is a private key that is protected with a passphrase and has not yet been unlocked, otherwise ``True``
Below is the the instruction that describes the task: ### Input: ``False`` if this is a private key that is protected with a passphrase and has not yet been unlocked, otherwise ``True`` ### Response: def is_unlocked(self): """``False`` if this is a private key that is protected with a passphrase and has not yet been unlocked, otherwise ``True``""" if self.is_public: return True if not self.is_protected: return True return self._key.unlocked
def members(self): """Gets members of current team Returns: list of User Throws: RTMServiceError when request failed """ resp = self._rtm_client.get('v1/current_team.members?all=true') if resp.is_fail(): raise RTMServiceError( 'Failed to get members of current team', resp ) return resp.data['result']
Gets members of current team Returns: list of User Throws: RTMServiceError when request failed
Below is the the instruction that describes the task: ### Input: Gets members of current team Returns: list of User Throws: RTMServiceError when request failed ### Response: def members(self): """Gets members of current team Returns: list of User Throws: RTMServiceError when request failed """ resp = self._rtm_client.get('v1/current_team.members?all=true') if resp.is_fail(): raise RTMServiceError( 'Failed to get members of current team', resp ) return resp.data['result']
def _encrypt(cipher, key, data, iv, padding): """ Encrypts plaintext :param cipher: A unicode string of "aes", "des", "tripledes_2key", "tripledes_3key", "rc2", "rc4" :param key: The encryption key - a byte string 5-16 bytes long :param data: The plaintext - a byte string :param iv: The initialization vector - a byte string - unused for RC4 :param padding: Boolean, if padding should be used - unused for RC4 :raises: ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by the OS crypto library :return: A byte string of the ciphertext """ if not isinstance(key, byte_cls): raise TypeError(pretty_message( ''' key must be a byte string, not %s ''', type_name(key) )) if not isinstance(data, byte_cls): raise TypeError(pretty_message( ''' data must be a byte string, not %s ''', type_name(data) )) if cipher != 'rc4' and not isinstance(iv, byte_cls): raise TypeError(pretty_message( ''' iv must be a byte string, not %s ''', type_name(iv) )) if cipher != 'rc4' and not padding: raise ValueError('padding must be specified') if _backend == 'winlegacy': return _advapi32_encrypt(cipher, key, data, iv, padding) return _bcrypt_encrypt(cipher, key, data, iv, padding)
Encrypts plaintext :param cipher: A unicode string of "aes", "des", "tripledes_2key", "tripledes_3key", "rc2", "rc4" :param key: The encryption key - a byte string 5-16 bytes long :param data: The plaintext - a byte string :param iv: The initialization vector - a byte string - unused for RC4 :param padding: Boolean, if padding should be used - unused for RC4 :raises: ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by the OS crypto library :return: A byte string of the ciphertext
Below is the the instruction that describes the task: ### Input: Encrypts plaintext :param cipher: A unicode string of "aes", "des", "tripledes_2key", "tripledes_3key", "rc2", "rc4" :param key: The encryption key - a byte string 5-16 bytes long :param data: The plaintext - a byte string :param iv: The initialization vector - a byte string - unused for RC4 :param padding: Boolean, if padding should be used - unused for RC4 :raises: ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by the OS crypto library :return: A byte string of the ciphertext ### Response: def _encrypt(cipher, key, data, iv, padding): """ Encrypts plaintext :param cipher: A unicode string of "aes", "des", "tripledes_2key", "tripledes_3key", "rc2", "rc4" :param key: The encryption key - a byte string 5-16 bytes long :param data: The plaintext - a byte string :param iv: The initialization vector - a byte string - unused for RC4 :param padding: Boolean, if padding should be used - unused for RC4 :raises: ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by the OS crypto library :return: A byte string of the ciphertext """ if not isinstance(key, byte_cls): raise TypeError(pretty_message( ''' key must be a byte string, not %s ''', type_name(key) )) if not isinstance(data, byte_cls): raise TypeError(pretty_message( ''' data must be a byte string, not %s ''', type_name(data) )) if cipher != 'rc4' and not isinstance(iv, byte_cls): raise TypeError(pretty_message( ''' iv must be a byte string, not %s ''', type_name(iv) )) if cipher != 'rc4' and not padding: raise ValueError('padding must be specified') if _backend == 'winlegacy': return _advapi32_encrypt(cipher, key, data, iv, padding) return _bcrypt_encrypt(cipher, key, data, iv, padding)
def SetConsoleTextAttribute(stream_id, attrs): """Set a console text attribute.""" handle = handles[stream_id] return windll.kernel32.SetConsoleTextAttribute(handle, attrs)
Set a console text attribute.
Below is the the instruction that describes the task: ### Input: Set a console text attribute. ### Response: def SetConsoleTextAttribute(stream_id, attrs): """Set a console text attribute.""" handle = handles[stream_id] return windll.kernel32.SetConsoleTextAttribute(handle, attrs)
def system(self, cmd): """Execute a command in a subshell. Parameters ---------- cmd : str A command to be executed in the system shell. Returns ------- int : child's exitstatus """ # Get likely encoding for the output. enc = DEFAULT_ENCODING # Patterns to match on the output, for pexpect. We read input and # allow either a short timeout or EOF patterns = [pexpect.TIMEOUT, pexpect.EOF] # the index of the EOF pattern in the list. # even though we know it's 1, this call means we don't have to worry if # we change the above list, and forget to change this value: EOF_index = patterns.index(pexpect.EOF) # The size of the output stored so far in the process output buffer. # Since pexpect only appends to this buffer, each time we print we # record how far we've printed, so that next time we only print *new* # content from the buffer. out_size = 0 try: # Since we're not really searching the buffer for text patterns, we # can set pexpect's search window to be tiny and it won't matter. # We only search for the 'patterns' timeout or EOF, which aren't in # the text itself. #child = pexpect.spawn(pcmd, searchwindowsize=1) if hasattr(pexpect, 'spawnb'): child = pexpect.spawnb(self.sh, args=['-c', cmd]) # Pexpect-U else: child = pexpect.spawn(self.sh, args=['-c', cmd]) # Vanilla Pexpect flush = sys.stdout.flush while True: # res is the index of the pattern that caused the match, so we # know whether we've finished (if we matched EOF) or not res_idx = child.expect_list(patterns, self.read_timeout) print(child.before[out_size:].decode(enc, 'replace'), end='') flush() if res_idx==EOF_index: break # Update the pointer to what we've already printed out_size = len(child.before) except KeyboardInterrupt: # We need to send ^C to the process. The ascii code for '^C' is 3 # (the character is known as ETX for 'End of Text', see # curses.ascii.ETX). child.sendline(chr(3)) # Read and print any more output the program might produce on its # way out. try: out_size = len(child.before) child.expect_list(patterns, self.terminate_timeout) print(child.before[out_size:].decode(enc, 'replace'), end='') sys.stdout.flush() except KeyboardInterrupt: # Impatient users tend to type it multiple times pass finally: # Ensure the subprocess really is terminated child.terminate(force=True) # add isalive check, to ensure exitstatus is set: child.isalive() return child.exitstatus
Execute a command in a subshell. Parameters ---------- cmd : str A command to be executed in the system shell. Returns ------- int : child's exitstatus
Below is the the instruction that describes the task: ### Input: Execute a command in a subshell. Parameters ---------- cmd : str A command to be executed in the system shell. Returns ------- int : child's exitstatus ### Response: def system(self, cmd): """Execute a command in a subshell. Parameters ---------- cmd : str A command to be executed in the system shell. Returns ------- int : child's exitstatus """ # Get likely encoding for the output. enc = DEFAULT_ENCODING # Patterns to match on the output, for pexpect. We read input and # allow either a short timeout or EOF patterns = [pexpect.TIMEOUT, pexpect.EOF] # the index of the EOF pattern in the list. # even though we know it's 1, this call means we don't have to worry if # we change the above list, and forget to change this value: EOF_index = patterns.index(pexpect.EOF) # The size of the output stored so far in the process output buffer. # Since pexpect only appends to this buffer, each time we print we # record how far we've printed, so that next time we only print *new* # content from the buffer. out_size = 0 try: # Since we're not really searching the buffer for text patterns, we # can set pexpect's search window to be tiny and it won't matter. # We only search for the 'patterns' timeout or EOF, which aren't in # the text itself. #child = pexpect.spawn(pcmd, searchwindowsize=1) if hasattr(pexpect, 'spawnb'): child = pexpect.spawnb(self.sh, args=['-c', cmd]) # Pexpect-U else: child = pexpect.spawn(self.sh, args=['-c', cmd]) # Vanilla Pexpect flush = sys.stdout.flush while True: # res is the index of the pattern that caused the match, so we # know whether we've finished (if we matched EOF) or not res_idx = child.expect_list(patterns, self.read_timeout) print(child.before[out_size:].decode(enc, 'replace'), end='') flush() if res_idx==EOF_index: break # Update the pointer to what we've already printed out_size = len(child.before) except KeyboardInterrupt: # We need to send ^C to the process. The ascii code for '^C' is 3 # (the character is known as ETX for 'End of Text', see # curses.ascii.ETX). child.sendline(chr(3)) # Read and print any more output the program might produce on its # way out. try: out_size = len(child.before) child.expect_list(patterns, self.terminate_timeout) print(child.before[out_size:].decode(enc, 'replace'), end='') sys.stdout.flush() except KeyboardInterrupt: # Impatient users tend to type it multiple times pass finally: # Ensure the subprocess really is terminated child.terminate(force=True) # add isalive check, to ensure exitstatus is set: child.isalive() return child.exitstatus
def _handle_login(self, event): """Manual password based login""" # TODO: Refactor to simplify self.log("Auth request for ", event.username, 'client:', event.clientuuid) # TODO: Define the requirements for secure passwords etc. # They're also required in the Enrol module..! if (len(event.username) < 1) or (len(event.password) < 5): self.log("Illegal username or password received, login cancelled", lvl=warn) self._fail(event, 'Password or username too short') return client_config = None try: user_account = objectmodels['user'].find_one({ 'name': event.username }) # self.log("Account: %s" % user_account._fields, lvl=debug) if user_account is None: raise AuthenticationError except Exception as e: self.log("No userobject due to error: ", e, type(e), lvl=error) self._fail(event) return self.log("User found.", lvl=debug) if user_account.active is False: self.log("Account deactivated.") self._fail(event, 'Account deactivated.') return if not std_hash(event.password, self.salt) == user_account.passhash: self.log("Password was wrong!", lvl=warn) self._fail(event) return self.log("Passhash matches, checking client and profile.", lvl=debug) requested_client_uuid = event.requestedclientuuid if requested_client_uuid is not None: client_config = objectmodels['client'].find_one({ 'uuid': requested_client_uuid }) if client_config: self.log("Checking client configuration permissions", lvl=debug) # TODO: Shareable client configurations? if client_config.owner != user_account.uuid: client_config = None self.log("Unauthorized client configuration " "requested", lvl=warn) else: self.log("Unknown client configuration requested: ", requested_client_uuid, event.__dict__, lvl=warn) if not client_config: self.log("Creating new default client configuration") # Either no configuration was found or not requested # -> Create a new client configuration uuid = event.clientuuid if event.clientuuid is not None else str(uuid4()) client_config = objectmodels['client']({'uuid': uuid}) client_config.name = std_human_uid(kind='place') client_config.description = "New client configuration from " + user_account.name client_config.owner = user_account.uuid # TODO: Get client configuration storage done right, this one is too simple client_config.save() user_profile = self._get_profile(user_account) self._login(event, user_account, user_profile, client_config) self.log("Done with Login request", lvl=debug)
Manual password based login
Below is the the instruction that describes the task: ### Input: Manual password based login ### Response: def _handle_login(self, event): """Manual password based login""" # TODO: Refactor to simplify self.log("Auth request for ", event.username, 'client:', event.clientuuid) # TODO: Define the requirements for secure passwords etc. # They're also required in the Enrol module..! if (len(event.username) < 1) or (len(event.password) < 5): self.log("Illegal username or password received, login cancelled", lvl=warn) self._fail(event, 'Password or username too short') return client_config = None try: user_account = objectmodels['user'].find_one({ 'name': event.username }) # self.log("Account: %s" % user_account._fields, lvl=debug) if user_account is None: raise AuthenticationError except Exception as e: self.log("No userobject due to error: ", e, type(e), lvl=error) self._fail(event) return self.log("User found.", lvl=debug) if user_account.active is False: self.log("Account deactivated.") self._fail(event, 'Account deactivated.') return if not std_hash(event.password, self.salt) == user_account.passhash: self.log("Password was wrong!", lvl=warn) self._fail(event) return self.log("Passhash matches, checking client and profile.", lvl=debug) requested_client_uuid = event.requestedclientuuid if requested_client_uuid is not None: client_config = objectmodels['client'].find_one({ 'uuid': requested_client_uuid }) if client_config: self.log("Checking client configuration permissions", lvl=debug) # TODO: Shareable client configurations? if client_config.owner != user_account.uuid: client_config = None self.log("Unauthorized client configuration " "requested", lvl=warn) else: self.log("Unknown client configuration requested: ", requested_client_uuid, event.__dict__, lvl=warn) if not client_config: self.log("Creating new default client configuration") # Either no configuration was found or not requested # -> Create a new client configuration uuid = event.clientuuid if event.clientuuid is not None else str(uuid4()) client_config = objectmodels['client']({'uuid': uuid}) client_config.name = std_human_uid(kind='place') client_config.description = "New client configuration from " + user_account.name client_config.owner = user_account.uuid # TODO: Get client configuration storage done right, this one is too simple client_config.save() user_profile = self._get_profile(user_account) self._login(event, user_account, user_profile, client_config) self.log("Done with Login request", lvl=debug)
def add(self, host_value): """Add the given value to the collection. :param host: an ip address or a hostname :raises InvalidHostError: raised when the given value is not a valid ip address nor a hostname """ host_obj = self._host_factory(host_value) if self._get_match(host_obj) is not None: return self._add_new(host_obj)
Add the given value to the collection. :param host: an ip address or a hostname :raises InvalidHostError: raised when the given value is not a valid ip address nor a hostname
Below is the the instruction that describes the task: ### Input: Add the given value to the collection. :param host: an ip address or a hostname :raises InvalidHostError: raised when the given value is not a valid ip address nor a hostname ### Response: def add(self, host_value): """Add the given value to the collection. :param host: an ip address or a hostname :raises InvalidHostError: raised when the given value is not a valid ip address nor a hostname """ host_obj = self._host_factory(host_value) if self._get_match(host_obj) is not None: return self._add_new(host_obj)
def instance_class(self): """Instance class.""" return Class(self._env, lib.EnvGetInstanceClass(self._env, self._ist))
Instance class.
Below is the the instruction that describes the task: ### Input: Instance class. ### Response: def instance_class(self): """Instance class.""" return Class(self._env, lib.EnvGetInstanceClass(self._env, self._ist))
def as_completed(fs, timeout=None): """An iterator over the given futures that yields each as it completes. Args: fs: The sequence of Futures (possibly created by different Executors) to iterate over. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. Returns: An iterator that yields the given Futures as they complete (finished or cancelled). Raises: TimeoutError: If the entire result iterator could not be generated before the given timeout. """ with _AcquireFutures(fs): finished = set(f for f in fs if f._state in [CANCELLED_AND_NOTIFIED, FINISHED]) pending = set(fs) - finished waiter = _create_and_install_waiters(fs, _AS_COMPLETED) timer = Timeout(timeout) timer.start() try: for future in finished: yield future while pending: waiter.event.wait() with waiter.lock: finished = waiter.finished_futures waiter.finished_futures = [] waiter.event.clear() for future in finished: yield future pending.remove(future) except Timeout as e: if timer is not e: raise raise TimeoutError('%d (of %d) futures unfinished' % (len(pending), len(fs))) finally: timer.cancel() for f in fs: f._waiters.remove(waiter)
An iterator over the given futures that yields each as it completes. Args: fs: The sequence of Futures (possibly created by different Executors) to iterate over. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. Returns: An iterator that yields the given Futures as they complete (finished or cancelled). Raises: TimeoutError: If the entire result iterator could not be generated before the given timeout.
Below is the the instruction that describes the task: ### Input: An iterator over the given futures that yields each as it completes. Args: fs: The sequence of Futures (possibly created by different Executors) to iterate over. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. Returns: An iterator that yields the given Futures as they complete (finished or cancelled). Raises: TimeoutError: If the entire result iterator could not be generated before the given timeout. ### Response: def as_completed(fs, timeout=None): """An iterator over the given futures that yields each as it completes. Args: fs: The sequence of Futures (possibly created by different Executors) to iterate over. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. Returns: An iterator that yields the given Futures as they complete (finished or cancelled). Raises: TimeoutError: If the entire result iterator could not be generated before the given timeout. """ with _AcquireFutures(fs): finished = set(f for f in fs if f._state in [CANCELLED_AND_NOTIFIED, FINISHED]) pending = set(fs) - finished waiter = _create_and_install_waiters(fs, _AS_COMPLETED) timer = Timeout(timeout) timer.start() try: for future in finished: yield future while pending: waiter.event.wait() with waiter.lock: finished = waiter.finished_futures waiter.finished_futures = [] waiter.event.clear() for future in finished: yield future pending.remove(future) except Timeout as e: if timer is not e: raise raise TimeoutError('%d (of %d) futures unfinished' % (len(pending), len(fs))) finally: timer.cancel() for f in fs: f._waiters.remove(waiter)
def warp_multi(src_ds_list, res='first', extent='intersection', t_srs='first', r='cubic', warptype=memwarp, outdir=None, dst_ndv=None, verbose=True, debug=False): """This parses and checks inputs, then calls desired warp function with appropriate arguments for each input ds Parameters ---------- src_ds_list : list of gdal.Dataset objects List of original datasets to be warped res : arbitrary type Desired output resolution extent : arbitrary type Desired output extent t_srs : arbitrary type Desired output spatial reference r : str Desired resampling algorithm warptype : function Desired warp type (write to memory or disk) outdir : str Desired output directory (for disk warp) dst_ndv : float Desired output NoData Value verbose : bool Print warp parameters debug : bool Print extra information for debugging purposes Returns ------- out_ds_list : list of gdal.Dataset objects List of warped datasets (either in memory or on disk) """ #Type cast arguments as str for evaluation #Avoid path errors #res = str(res) #extent = str(extent) #t_srs = str(t_srs) #Parse the input t_srs = parse_srs(t_srs, src_ds_list) res = parse_res(res, src_ds_list, t_srs) extent = parse_extent(extent, src_ds_list, t_srs) if verbose: print("\nWarping all inputs to the following:") print("Resolution: %s" % res) print("Extent: %s" % str(extent)) print("Projection: '%s'" % t_srs.ExportToProj4()) print("Resampling alg: %s\n" % r) out_ds_list = [] for i, ds in enumerate(src_ds_list): fn_list = ds.GetFileList() fn = '[memory]' if fn_list is not None: fn = fn_list[0] if verbose: print("%i of %i: %s" % (i+1, len(src_ds_list), fn)) #If input srs are different, must warp ds_t_srs = geolib.get_ds_srs(ds) srscheck = bool(t_srs.IsSame(ds_t_srs)) if debug: print('\n%s' % ds_t_srs.ExportToWkt()) print('%s\n' % t_srs.ExportToWkt()) print('srscheck: %s\n' % srscheck) rescheck = False extentcheck = False #if srscheck: #Extract info from ds to see if warp is necessary ds_res = geolib.get_res(ds, square=True)[0] ds_extent = geolib.ds_extent(ds) #Note: these checks necessary to handle rounding and precision issues #Round extent and res to nearest mm precision = 1E-3 #Or if t_srs has units of degrees if ds_t_srs.IsGeographic(): precision = 1E-8 rescheck = (res is None) or geolib.res_compare(res, ds_res, precision=precision) extentcheck = (extent is None) or geolib.extent_compare(extent, ds_extent, precision=precision) if debug: print('\n%s, %s\n' % (ds_res, res)) print('%s' % ds_extent) print('%s\n' % extent) print('rescheck: %s' % rescheck) print('extentcheck: %s\n' % extentcheck) #If the ds passes all three, it is identical to desired output, short circuit if rescheck and extentcheck and srscheck: out_ds_list.append(ds) else: dst_ds = warptype(ds, res, extent, t_srs, r, outdir, dst_ndv=dst_ndv, verbose=verbose) out_ds_list.append(dst_ds) return out_ds_list
This parses and checks inputs, then calls desired warp function with appropriate arguments for each input ds Parameters ---------- src_ds_list : list of gdal.Dataset objects List of original datasets to be warped res : arbitrary type Desired output resolution extent : arbitrary type Desired output extent t_srs : arbitrary type Desired output spatial reference r : str Desired resampling algorithm warptype : function Desired warp type (write to memory or disk) outdir : str Desired output directory (for disk warp) dst_ndv : float Desired output NoData Value verbose : bool Print warp parameters debug : bool Print extra information for debugging purposes Returns ------- out_ds_list : list of gdal.Dataset objects List of warped datasets (either in memory or on disk)
Below is the the instruction that describes the task: ### Input: This parses and checks inputs, then calls desired warp function with appropriate arguments for each input ds Parameters ---------- src_ds_list : list of gdal.Dataset objects List of original datasets to be warped res : arbitrary type Desired output resolution extent : arbitrary type Desired output extent t_srs : arbitrary type Desired output spatial reference r : str Desired resampling algorithm warptype : function Desired warp type (write to memory or disk) outdir : str Desired output directory (for disk warp) dst_ndv : float Desired output NoData Value verbose : bool Print warp parameters debug : bool Print extra information for debugging purposes Returns ------- out_ds_list : list of gdal.Dataset objects List of warped datasets (either in memory or on disk) ### Response: def warp_multi(src_ds_list, res='first', extent='intersection', t_srs='first', r='cubic', warptype=memwarp, outdir=None, dst_ndv=None, verbose=True, debug=False): """This parses and checks inputs, then calls desired warp function with appropriate arguments for each input ds Parameters ---------- src_ds_list : list of gdal.Dataset objects List of original datasets to be warped res : arbitrary type Desired output resolution extent : arbitrary type Desired output extent t_srs : arbitrary type Desired output spatial reference r : str Desired resampling algorithm warptype : function Desired warp type (write to memory or disk) outdir : str Desired output directory (for disk warp) dst_ndv : float Desired output NoData Value verbose : bool Print warp parameters debug : bool Print extra information for debugging purposes Returns ------- out_ds_list : list of gdal.Dataset objects List of warped datasets (either in memory or on disk) """ #Type cast arguments as str for evaluation #Avoid path errors #res = str(res) #extent = str(extent) #t_srs = str(t_srs) #Parse the input t_srs = parse_srs(t_srs, src_ds_list) res = parse_res(res, src_ds_list, t_srs) extent = parse_extent(extent, src_ds_list, t_srs) if verbose: print("\nWarping all inputs to the following:") print("Resolution: %s" % res) print("Extent: %s" % str(extent)) print("Projection: '%s'" % t_srs.ExportToProj4()) print("Resampling alg: %s\n" % r) out_ds_list = [] for i, ds in enumerate(src_ds_list): fn_list = ds.GetFileList() fn = '[memory]' if fn_list is not None: fn = fn_list[0] if verbose: print("%i of %i: %s" % (i+1, len(src_ds_list), fn)) #If input srs are different, must warp ds_t_srs = geolib.get_ds_srs(ds) srscheck = bool(t_srs.IsSame(ds_t_srs)) if debug: print('\n%s' % ds_t_srs.ExportToWkt()) print('%s\n' % t_srs.ExportToWkt()) print('srscheck: %s\n' % srscheck) rescheck = False extentcheck = False #if srscheck: #Extract info from ds to see if warp is necessary ds_res = geolib.get_res(ds, square=True)[0] ds_extent = geolib.ds_extent(ds) #Note: these checks necessary to handle rounding and precision issues #Round extent and res to nearest mm precision = 1E-3 #Or if t_srs has units of degrees if ds_t_srs.IsGeographic(): precision = 1E-8 rescheck = (res is None) or geolib.res_compare(res, ds_res, precision=precision) extentcheck = (extent is None) or geolib.extent_compare(extent, ds_extent, precision=precision) if debug: print('\n%s, %s\n' % (ds_res, res)) print('%s' % ds_extent) print('%s\n' % extent) print('rescheck: %s' % rescheck) print('extentcheck: %s\n' % extentcheck) #If the ds passes all three, it is identical to desired output, short circuit if rescheck and extentcheck and srscheck: out_ds_list.append(ds) else: dst_ds = warptype(ds, res, extent, t_srs, r, outdir, dst_ndv=dst_ndv, verbose=verbose) out_ds_list.append(dst_ds) return out_ds_list
def create_unclaimed_draft(self, test_mode=False, files=None, file_urls=None, draft_type=None, subject=None, message=None, signers=None, cc_email_addresses=None, signing_redirect_url=None, form_fields_per_document=None, metadata=None, use_preexisting_fields=False, allow_decline=False): ''' Creates a new Draft that can be claimed using the claim URL Creates a new Draft that can be claimed using the claim URL. The first authenticated user to access the URL will claim the Draft and will be shown either the "Sign and send" or the "Request signature" page with the Draft loaded. Subsequent access to the claim URL will result in a 404. If the type is "send_document" then only the file parameter is required. If the type is "request_signature", then the identities of the signers and optionally the location of signing elements on the page are also required. Args: test_mode (bool, optional): Whether this is a test, the signature request created from this draft will not be legally binding if set to True. Defaults to False. files (list of str): The uploaded file(s) to send for signature file_urls (list of str): URLs of the file for HelloSign to download to send for signature. Use either `files` or `file_urls` draft_type (str): The type of unclaimed draft to create. Use "send_document" to create a claimable file, and "request_signature" for a claimable signature request. If the type is "request_signature" then signers name and email_address are not optional. subject (str, optional): The subject in the email that will be sent to the signers message (str, optional): The custom message in the email that will be sent to the signers signers (list of dict): A list of signers, which each has the following attributes: name (str): The name of the signer email_address (str): Email address of the signer order (str, optional): The order the signer is required to sign in cc_email_addresses (list of str, optional): A list of email addresses that should be CC'd signing_redirect_url (str, optional): The URL you want the signer redirected to after they successfully sign. form_fields_per_document (str, optional): The fields that should appear on the document, expressed as a serialized JSON data structure which is a list of lists of the form fields. Please refer to the API reference of HelloSign for more details (https://www.hellosign.com/api/reference#SignatureRequest) metadata (dict, optional): Metadata to associate with the draft use_preexisting_fields (bool): Whether to use preexisting PDF fields allow_decline (bool, optional): Allows signers to decline to sign a document if set to 1. Defaults to 0. Returns: An UnclaimedDraft object ''' self._check_required_fields({ 'draft_type': draft_type }, [{ "files": files, "file_urls": file_urls }] ) params = { 'test_mode': test_mode, 'files': files, 'file_urls': file_urls, 'draft_type': draft_type, 'subject': subject, 'message': message, 'signing_redirect_url': signing_redirect_url, 'signers': signers, 'cc_email_addresses': cc_email_addresses, 'form_fields_per_document': form_fields_per_document, 'metadata': metadata, 'use_preexisting_fields': use_preexisting_fields, 'allow_decline': allow_decline } return self._create_unclaimed_draft(**params)
Creates a new Draft that can be claimed using the claim URL Creates a new Draft that can be claimed using the claim URL. The first authenticated user to access the URL will claim the Draft and will be shown either the "Sign and send" or the "Request signature" page with the Draft loaded. Subsequent access to the claim URL will result in a 404. If the type is "send_document" then only the file parameter is required. If the type is "request_signature", then the identities of the signers and optionally the location of signing elements on the page are also required. Args: test_mode (bool, optional): Whether this is a test, the signature request created from this draft will not be legally binding if set to True. Defaults to False. files (list of str): The uploaded file(s) to send for signature file_urls (list of str): URLs of the file for HelloSign to download to send for signature. Use either `files` or `file_urls` draft_type (str): The type of unclaimed draft to create. Use "send_document" to create a claimable file, and "request_signature" for a claimable signature request. If the type is "request_signature" then signers name and email_address are not optional. subject (str, optional): The subject in the email that will be sent to the signers message (str, optional): The custom message in the email that will be sent to the signers signers (list of dict): A list of signers, which each has the following attributes: name (str): The name of the signer email_address (str): Email address of the signer order (str, optional): The order the signer is required to sign in cc_email_addresses (list of str, optional): A list of email addresses that should be CC'd signing_redirect_url (str, optional): The URL you want the signer redirected to after they successfully sign. form_fields_per_document (str, optional): The fields that should appear on the document, expressed as a serialized JSON data structure which is a list of lists of the form fields. Please refer to the API reference of HelloSign for more details (https://www.hellosign.com/api/reference#SignatureRequest) metadata (dict, optional): Metadata to associate with the draft use_preexisting_fields (bool): Whether to use preexisting PDF fields allow_decline (bool, optional): Allows signers to decline to sign a document if set to 1. Defaults to 0. Returns: An UnclaimedDraft object
Below is the the instruction that describes the task: ### Input: Creates a new Draft that can be claimed using the claim URL Creates a new Draft that can be claimed using the claim URL. The first authenticated user to access the URL will claim the Draft and will be shown either the "Sign and send" or the "Request signature" page with the Draft loaded. Subsequent access to the claim URL will result in a 404. If the type is "send_document" then only the file parameter is required. If the type is "request_signature", then the identities of the signers and optionally the location of signing elements on the page are also required. Args: test_mode (bool, optional): Whether this is a test, the signature request created from this draft will not be legally binding if set to True. Defaults to False. files (list of str): The uploaded file(s) to send for signature file_urls (list of str): URLs of the file for HelloSign to download to send for signature. Use either `files` or `file_urls` draft_type (str): The type of unclaimed draft to create. Use "send_document" to create a claimable file, and "request_signature" for a claimable signature request. If the type is "request_signature" then signers name and email_address are not optional. subject (str, optional): The subject in the email that will be sent to the signers message (str, optional): The custom message in the email that will be sent to the signers signers (list of dict): A list of signers, which each has the following attributes: name (str): The name of the signer email_address (str): Email address of the signer order (str, optional): The order the signer is required to sign in cc_email_addresses (list of str, optional): A list of email addresses that should be CC'd signing_redirect_url (str, optional): The URL you want the signer redirected to after they successfully sign. form_fields_per_document (str, optional): The fields that should appear on the document, expressed as a serialized JSON data structure which is a list of lists of the form fields. Please refer to the API reference of HelloSign for more details (https://www.hellosign.com/api/reference#SignatureRequest) metadata (dict, optional): Metadata to associate with the draft use_preexisting_fields (bool): Whether to use preexisting PDF fields allow_decline (bool, optional): Allows signers to decline to sign a document if set to 1. Defaults to 0. Returns: An UnclaimedDraft object ### Response: def create_unclaimed_draft(self, test_mode=False, files=None, file_urls=None, draft_type=None, subject=None, message=None, signers=None, cc_email_addresses=None, signing_redirect_url=None, form_fields_per_document=None, metadata=None, use_preexisting_fields=False, allow_decline=False): ''' Creates a new Draft that can be claimed using the claim URL Creates a new Draft that can be claimed using the claim URL. The first authenticated user to access the URL will claim the Draft and will be shown either the "Sign and send" or the "Request signature" page with the Draft loaded. Subsequent access to the claim URL will result in a 404. If the type is "send_document" then only the file parameter is required. If the type is "request_signature", then the identities of the signers and optionally the location of signing elements on the page are also required. Args: test_mode (bool, optional): Whether this is a test, the signature request created from this draft will not be legally binding if set to True. Defaults to False. files (list of str): The uploaded file(s) to send for signature file_urls (list of str): URLs of the file for HelloSign to download to send for signature. Use either `files` or `file_urls` draft_type (str): The type of unclaimed draft to create. Use "send_document" to create a claimable file, and "request_signature" for a claimable signature request. If the type is "request_signature" then signers name and email_address are not optional. subject (str, optional): The subject in the email that will be sent to the signers message (str, optional): The custom message in the email that will be sent to the signers signers (list of dict): A list of signers, which each has the following attributes: name (str): The name of the signer email_address (str): Email address of the signer order (str, optional): The order the signer is required to sign in cc_email_addresses (list of str, optional): A list of email addresses that should be CC'd signing_redirect_url (str, optional): The URL you want the signer redirected to after they successfully sign. form_fields_per_document (str, optional): The fields that should appear on the document, expressed as a serialized JSON data structure which is a list of lists of the form fields. Please refer to the API reference of HelloSign for more details (https://www.hellosign.com/api/reference#SignatureRequest) metadata (dict, optional): Metadata to associate with the draft use_preexisting_fields (bool): Whether to use preexisting PDF fields allow_decline (bool, optional): Allows signers to decline to sign a document if set to 1. Defaults to 0. Returns: An UnclaimedDraft object ''' self._check_required_fields({ 'draft_type': draft_type }, [{ "files": files, "file_urls": file_urls }] ) params = { 'test_mode': test_mode, 'files': files, 'file_urls': file_urls, 'draft_type': draft_type, 'subject': subject, 'message': message, 'signing_redirect_url': signing_redirect_url, 'signers': signers, 'cc_email_addresses': cc_email_addresses, 'form_fields_per_document': form_fields_per_document, 'metadata': metadata, 'use_preexisting_fields': use_preexisting_fields, 'allow_decline': allow_decline } return self._create_unclaimed_draft(**params)
def update_ext(self, path, id, body=None): """Client extension hook for update.""" return self.put(path % id, body=body)
Client extension hook for update.
Below is the the instruction that describes the task: ### Input: Client extension hook for update. ### Response: def update_ext(self, path, id, body=None): """Client extension hook for update.""" return self.put(path % id, body=body)
async def _multipart(self, files_dict): ''' Forms multipart requests from a dict with name, path k/vs. Name does not have to be the actual file name. Args: files_dict (dict): A dict of `filename:filepath`s, to be sent as multipart files. Returns: multip_pkg (str): The strings representation of the content body, multipart formatted. ''' boundary = bytes(_BOUNDARY, self.encoding) hder_format = 'Content-Disposition: form-data; name="{}"' hder_format_io = '; filename="{}"' multip_pkg = b'' num_of_parts = len(files_dict) for index, kv in enumerate(files_dict.items(), start=1): multip_pkg += (b'--' + boundary + b'\r\n') k, v = kv try: pkg_body = await self._file_manager(v) multip_pkg += bytes(hder_format.format(k) + hder_format_io.format(basename(v)), self.encoding) mime_type = mimetypes.guess_type(basename(v)) if not mime_type[1]: mime_type = 'application/octet-stream' else: mime_type = '/'.join(mime_type) multip_pkg += bytes('; Content-Type: ' + mime_type, self.encoding) multip_pkg += b'\r\n'*2 + pkg_body except (TypeError, FileNotFoundError): pkg_body = bytes(v, self.encoding) + b'\r\n' multip_pkg += bytes(hder_format.format(k) + '\r\n'*2, self.encoding) multip_pkg += pkg_body if index == num_of_parts: multip_pkg += b'--' + boundary + b'--\r\n' return multip_pkg
Forms multipart requests from a dict with name, path k/vs. Name does not have to be the actual file name. Args: files_dict (dict): A dict of `filename:filepath`s, to be sent as multipart files. Returns: multip_pkg (str): The strings representation of the content body, multipart formatted.
Below is the the instruction that describes the task: ### Input: Forms multipart requests from a dict with name, path k/vs. Name does not have to be the actual file name. Args: files_dict (dict): A dict of `filename:filepath`s, to be sent as multipart files. Returns: multip_pkg (str): The strings representation of the content body, multipart formatted. ### Response: async def _multipart(self, files_dict): ''' Forms multipart requests from a dict with name, path k/vs. Name does not have to be the actual file name. Args: files_dict (dict): A dict of `filename:filepath`s, to be sent as multipart files. Returns: multip_pkg (str): The strings representation of the content body, multipart formatted. ''' boundary = bytes(_BOUNDARY, self.encoding) hder_format = 'Content-Disposition: form-data; name="{}"' hder_format_io = '; filename="{}"' multip_pkg = b'' num_of_parts = len(files_dict) for index, kv in enumerate(files_dict.items(), start=1): multip_pkg += (b'--' + boundary + b'\r\n') k, v = kv try: pkg_body = await self._file_manager(v) multip_pkg += bytes(hder_format.format(k) + hder_format_io.format(basename(v)), self.encoding) mime_type = mimetypes.guess_type(basename(v)) if not mime_type[1]: mime_type = 'application/octet-stream' else: mime_type = '/'.join(mime_type) multip_pkg += bytes('; Content-Type: ' + mime_type, self.encoding) multip_pkg += b'\r\n'*2 + pkg_body except (TypeError, FileNotFoundError): pkg_body = bytes(v, self.encoding) + b'\r\n' multip_pkg += bytes(hder_format.format(k) + '\r\n'*2, self.encoding) multip_pkg += pkg_body if index == num_of_parts: multip_pkg += b'--' + boundary + b'--\r\n' return multip_pkg
def create_dcnm_out_part(self, tenant_id, fw_dict, is_fw_virt=False): """Create the DCNM OUT partition and update the result. """ res = fw_const.DCNM_OUT_PART_CREATE_SUCCESS tenant_name = fw_dict.get('tenant_name') ret = True try: self._create_out_partition(tenant_id, tenant_name) except Exception as exc: LOG.error("Create of Out Partition failed for tenant " "%(tenant)s ,Exception %(exc)s", {'tenant': tenant_id, 'exc': str(exc)}) res = fw_const.DCNM_OUT_PART_CREATE_FAIL ret = False self.update_fw_db_result(tenant_id, dcnm_status=res) LOG.info("Out partition created") return ret
Create the DCNM OUT partition and update the result.
Below is the the instruction that describes the task: ### Input: Create the DCNM OUT partition and update the result. ### Response: def create_dcnm_out_part(self, tenant_id, fw_dict, is_fw_virt=False): """Create the DCNM OUT partition and update the result. """ res = fw_const.DCNM_OUT_PART_CREATE_SUCCESS tenant_name = fw_dict.get('tenant_name') ret = True try: self._create_out_partition(tenant_id, tenant_name) except Exception as exc: LOG.error("Create of Out Partition failed for tenant " "%(tenant)s ,Exception %(exc)s", {'tenant': tenant_id, 'exc': str(exc)}) res = fw_const.DCNM_OUT_PART_CREATE_FAIL ret = False self.update_fw_db_result(tenant_id, dcnm_status=res) LOG.info("Out partition created") return ret
def symmetrically_add_atom(self, specie, point, coords_are_cartesian=False): """ Class method for adding a site at a specified point in a slab. Will add the corresponding site on the other side of the slab to maintain equivalent surfaces. Arg: specie (str): The specie to add point (coords): The coordinate of the site in the slab to add. coords_are_cartesian (bool): Is the point in cartesian coordinates Returns: (Slab): The modified slab """ # For now just use the species of the # surface atom as the element to add # Get the index of the corresponding site at the bottom point2 = self.get_symmetric_site(point, cartesian=coords_are_cartesian) self.append(specie, point, coords_are_cartesian=coords_are_cartesian) self.append(specie, point2, coords_are_cartesian=coords_are_cartesian)
Class method for adding a site at a specified point in a slab. Will add the corresponding site on the other side of the slab to maintain equivalent surfaces. Arg: specie (str): The specie to add point (coords): The coordinate of the site in the slab to add. coords_are_cartesian (bool): Is the point in cartesian coordinates Returns: (Slab): The modified slab
Below is the the instruction that describes the task: ### Input: Class method for adding a site at a specified point in a slab. Will add the corresponding site on the other side of the slab to maintain equivalent surfaces. Arg: specie (str): The specie to add point (coords): The coordinate of the site in the slab to add. coords_are_cartesian (bool): Is the point in cartesian coordinates Returns: (Slab): The modified slab ### Response: def symmetrically_add_atom(self, specie, point, coords_are_cartesian=False): """ Class method for adding a site at a specified point in a slab. Will add the corresponding site on the other side of the slab to maintain equivalent surfaces. Arg: specie (str): The specie to add point (coords): The coordinate of the site in the slab to add. coords_are_cartesian (bool): Is the point in cartesian coordinates Returns: (Slab): The modified slab """ # For now just use the species of the # surface atom as the element to add # Get the index of the corresponding site at the bottom point2 = self.get_symmetric_site(point, cartesian=coords_are_cartesian) self.append(specie, point, coords_are_cartesian=coords_are_cartesian) self.append(specie, point2, coords_are_cartesian=coords_are_cartesian)
def _read_para_r1_counter(self, code, cbit, clen, *, desc, length, version): """Read HIP R1_COUNTER parameter. Structure of HIP R1_COUNTER parameter [RFC 5201][RFC 7401]: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved, 4 bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | R1 generation counter, 8 bytes | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Octets Bits Name Description 0 0 ri_counter.type Parameter Type 1 15 ri_counter.critical Critical Bit 2 16 ri_counter.length Length of Contents 4 32 - Reserved 8 64 ri_counter.count Generation of Valid Puzzles """ if clen != 12: raise ProtocolError(f'HIPv{version}: [Parano {code}] invalid format') if code == 128 and version != 1: raise ProtocolError(f'HIPv{version}: [Parano {code}] invalid parameter') _resv = self._read_fileng(4) _genc = self._read_unpack(8) r1_counter = dict( type=desc, critical=cbit, length=clen, count=_genc, ) return r1_counter
Read HIP R1_COUNTER parameter. Structure of HIP R1_COUNTER parameter [RFC 5201][RFC 7401]: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved, 4 bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | R1 generation counter, 8 bytes | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Octets Bits Name Description 0 0 ri_counter.type Parameter Type 1 15 ri_counter.critical Critical Bit 2 16 ri_counter.length Length of Contents 4 32 - Reserved 8 64 ri_counter.count Generation of Valid Puzzles
Below is the the instruction that describes the task: ### Input: Read HIP R1_COUNTER parameter. Structure of HIP R1_COUNTER parameter [RFC 5201][RFC 7401]: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved, 4 bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | R1 generation counter, 8 bytes | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Octets Bits Name Description 0 0 ri_counter.type Parameter Type 1 15 ri_counter.critical Critical Bit 2 16 ri_counter.length Length of Contents 4 32 - Reserved 8 64 ri_counter.count Generation of Valid Puzzles ### Response: def _read_para_r1_counter(self, code, cbit, clen, *, desc, length, version): """Read HIP R1_COUNTER parameter. Structure of HIP R1_COUNTER parameter [RFC 5201][RFC 7401]: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved, 4 bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | R1 generation counter, 8 bytes | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Octets Bits Name Description 0 0 ri_counter.type Parameter Type 1 15 ri_counter.critical Critical Bit 2 16 ri_counter.length Length of Contents 4 32 - Reserved 8 64 ri_counter.count Generation of Valid Puzzles """ if clen != 12: raise ProtocolError(f'HIPv{version}: [Parano {code}] invalid format') if code == 128 and version != 1: raise ProtocolError(f'HIPv{version}: [Parano {code}] invalid parameter') _resv = self._read_fileng(4) _genc = self._read_unpack(8) r1_counter = dict( type=desc, critical=cbit, length=clen, count=_genc, ) return r1_counter
def _parse_vswitch_inspect_data(self, rd_list): """ Parse the Virtual_Network_Vswitch_Query_Byte_Stats data to get inspect data. """ def _parse_value(data_list, idx, keyword, offset): return idx + offset, data_list[idx].rpartition(keyword)[2].strip() vsw_dict = {} with zvmutils.expect_invalid_resp_data(): # vswitch count idx = 0 idx, vsw_count = _parse_value(rd_list, idx, 'vswitch count:', 2) vsw_dict['vswitch_count'] = int(vsw_count) # deal with each vswitch data vsw_dict['vswitches'] = [] for i in range(vsw_dict['vswitch_count']): vsw_data = {} # skip vswitch number idx += 1 # vswitch name idx, vsw_name = _parse_value(rd_list, idx, 'vswitch name:', 1) vsw_data['vswitch_name'] = vsw_name # uplink count idx, up_count = _parse_value(rd_list, idx, 'uplink count:', 1) # skip uplink data idx += int(up_count) * 9 # skip bridge data idx += 8 # nic count vsw_data['nics'] = [] idx, nic_count = _parse_value(rd_list, idx, 'nic count:', 1) nic_count = int(nic_count) for j in range(nic_count): nic_data = {} idx, nic_id = _parse_value(rd_list, idx, 'nic_id:', 1) userid, toss, vdev = nic_id.partition(' ') nic_data['userid'] = userid nic_data['vdev'] = vdev idx, nic_data['nic_fr_rx'] = _parse_value(rd_list, idx, 'nic_fr_rx:', 1 ) idx, nic_data['nic_fr_rx_dsc'] = _parse_value(rd_list, idx, 'nic_fr_rx_dsc:', 1 ) idx, nic_data['nic_fr_rx_err'] = _parse_value(rd_list, idx, 'nic_fr_rx_err:', 1 ) idx, nic_data['nic_fr_tx'] = _parse_value(rd_list, idx, 'nic_fr_tx:', 1 ) idx, nic_data['nic_fr_tx_dsc'] = _parse_value(rd_list, idx, 'nic_fr_tx_dsc:', 1 ) idx, nic_data['nic_fr_tx_err'] = _parse_value(rd_list, idx, 'nic_fr_tx_err:', 1 ) idx, nic_data['nic_rx'] = _parse_value(rd_list, idx, 'nic_rx:', 1 ) idx, nic_data['nic_tx'] = _parse_value(rd_list, idx, 'nic_tx:', 1 ) vsw_data['nics'].append(nic_data) # vlan count idx, vlan_count = _parse_value(rd_list, idx, 'vlan count:', 1) # skip vlan data idx += int(vlan_count) * 3 # skip the blank line idx += 1 vsw_dict['vswitches'].append(vsw_data) return vsw_dict
Parse the Virtual_Network_Vswitch_Query_Byte_Stats data to get inspect data.
Below is the the instruction that describes the task: ### Input: Parse the Virtual_Network_Vswitch_Query_Byte_Stats data to get inspect data. ### Response: def _parse_vswitch_inspect_data(self, rd_list): """ Parse the Virtual_Network_Vswitch_Query_Byte_Stats data to get inspect data. """ def _parse_value(data_list, idx, keyword, offset): return idx + offset, data_list[idx].rpartition(keyword)[2].strip() vsw_dict = {} with zvmutils.expect_invalid_resp_data(): # vswitch count idx = 0 idx, vsw_count = _parse_value(rd_list, idx, 'vswitch count:', 2) vsw_dict['vswitch_count'] = int(vsw_count) # deal with each vswitch data vsw_dict['vswitches'] = [] for i in range(vsw_dict['vswitch_count']): vsw_data = {} # skip vswitch number idx += 1 # vswitch name idx, vsw_name = _parse_value(rd_list, idx, 'vswitch name:', 1) vsw_data['vswitch_name'] = vsw_name # uplink count idx, up_count = _parse_value(rd_list, idx, 'uplink count:', 1) # skip uplink data idx += int(up_count) * 9 # skip bridge data idx += 8 # nic count vsw_data['nics'] = [] idx, nic_count = _parse_value(rd_list, idx, 'nic count:', 1) nic_count = int(nic_count) for j in range(nic_count): nic_data = {} idx, nic_id = _parse_value(rd_list, idx, 'nic_id:', 1) userid, toss, vdev = nic_id.partition(' ') nic_data['userid'] = userid nic_data['vdev'] = vdev idx, nic_data['nic_fr_rx'] = _parse_value(rd_list, idx, 'nic_fr_rx:', 1 ) idx, nic_data['nic_fr_rx_dsc'] = _parse_value(rd_list, idx, 'nic_fr_rx_dsc:', 1 ) idx, nic_data['nic_fr_rx_err'] = _parse_value(rd_list, idx, 'nic_fr_rx_err:', 1 ) idx, nic_data['nic_fr_tx'] = _parse_value(rd_list, idx, 'nic_fr_tx:', 1 ) idx, nic_data['nic_fr_tx_dsc'] = _parse_value(rd_list, idx, 'nic_fr_tx_dsc:', 1 ) idx, nic_data['nic_fr_tx_err'] = _parse_value(rd_list, idx, 'nic_fr_tx_err:', 1 ) idx, nic_data['nic_rx'] = _parse_value(rd_list, idx, 'nic_rx:', 1 ) idx, nic_data['nic_tx'] = _parse_value(rd_list, idx, 'nic_tx:', 1 ) vsw_data['nics'].append(nic_data) # vlan count idx, vlan_count = _parse_value(rd_list, idx, 'vlan count:', 1) # skip vlan data idx += int(vlan_count) * 3 # skip the blank line idx += 1 vsw_dict['vswitches'].append(vsw_data) return vsw_dict
def _get_document_data(f, image_handler=None): ''' ``f`` is a ``ZipFile`` that is open Extract out the document data, numbering data and the relationship data. ''' if image_handler is None: def image_handler(image_id, relationship_dict): return relationship_dict.get(image_id) document_xml = None numbering_xml = None relationship_xml = None styles_xml = None parser = etree.XMLParser(strip_cdata=False) path, _ = os.path.split(f.filename) media = {} image_sizes = {} # Loop through the files in the zip file. for item in f.infolist(): # This file holds all the content of the document. if item.filename == 'word/document.xml': xml = f.read(item.filename) document_xml = etree.fromstring(xml, parser) # This file tells document.xml how lists should look. elif item.filename == 'word/numbering.xml': xml = f.read(item.filename) numbering_xml = etree.fromstring(xml, parser) elif item.filename == 'word/styles.xml': xml = f.read(item.filename) styles_xml = etree.fromstring(xml, parser) # This file holds the targets for hyperlinks and images. elif item.filename == 'word/_rels/document.xml.rels': xml = f.read(item.filename) try: relationship_xml = etree.fromstring(xml, parser) except XMLSyntaxError: relationship_xml = etree.fromstring('<xml></xml>', parser) if item.filename.startswith('word/media/'): # Strip off the leading word/ media[item.filename[len('word/'):]] = f.extract( item.filename, path, ) # Close the file pointer. f.close() # Get dictionaries for the numbering and the relationships. numbering_dict = get_numbering_info(numbering_xml) image_sizes = get_image_sizes(document_xml) relationship_dict = get_relationship_info( relationship_xml, media, image_sizes ) styles_dict = get_style_dict(styles_xml) font_sizes_dict = defaultdict(int) if DETECT_FONT_SIZE: font_sizes_dict = get_font_sizes_dict(document_xml, styles_dict) meta_data = MetaData( numbering_dict=numbering_dict, relationship_dict=relationship_dict, styles_dict=styles_dict, font_sizes_dict=font_sizes_dict, image_handler=image_handler, image_sizes=image_sizes, ) return document_xml, meta_data
``f`` is a ``ZipFile`` that is open Extract out the document data, numbering data and the relationship data.
Below is the the instruction that describes the task: ### Input: ``f`` is a ``ZipFile`` that is open Extract out the document data, numbering data and the relationship data. ### Response: def _get_document_data(f, image_handler=None): ''' ``f`` is a ``ZipFile`` that is open Extract out the document data, numbering data and the relationship data. ''' if image_handler is None: def image_handler(image_id, relationship_dict): return relationship_dict.get(image_id) document_xml = None numbering_xml = None relationship_xml = None styles_xml = None parser = etree.XMLParser(strip_cdata=False) path, _ = os.path.split(f.filename) media = {} image_sizes = {} # Loop through the files in the zip file. for item in f.infolist(): # This file holds all the content of the document. if item.filename == 'word/document.xml': xml = f.read(item.filename) document_xml = etree.fromstring(xml, parser) # This file tells document.xml how lists should look. elif item.filename == 'word/numbering.xml': xml = f.read(item.filename) numbering_xml = etree.fromstring(xml, parser) elif item.filename == 'word/styles.xml': xml = f.read(item.filename) styles_xml = etree.fromstring(xml, parser) # This file holds the targets for hyperlinks and images. elif item.filename == 'word/_rels/document.xml.rels': xml = f.read(item.filename) try: relationship_xml = etree.fromstring(xml, parser) except XMLSyntaxError: relationship_xml = etree.fromstring('<xml></xml>', parser) if item.filename.startswith('word/media/'): # Strip off the leading word/ media[item.filename[len('word/'):]] = f.extract( item.filename, path, ) # Close the file pointer. f.close() # Get dictionaries for the numbering and the relationships. numbering_dict = get_numbering_info(numbering_xml) image_sizes = get_image_sizes(document_xml) relationship_dict = get_relationship_info( relationship_xml, media, image_sizes ) styles_dict = get_style_dict(styles_xml) font_sizes_dict = defaultdict(int) if DETECT_FONT_SIZE: font_sizes_dict = get_font_sizes_dict(document_xml, styles_dict) meta_data = MetaData( numbering_dict=numbering_dict, relationship_dict=relationship_dict, styles_dict=styles_dict, font_sizes_dict=font_sizes_dict, image_handler=image_handler, image_sizes=image_sizes, ) return document_xml, meta_data
def refraction(alt_degrees, temperature_C, pressure_mbar): """Given an observed altitude, return how much the image is refracted. Zero refraction is returned both for objects very near the zenith, as well as for objects more than one degree below the horizon. """ r = 0.016667 / tan((alt_degrees + 7.31 / (alt_degrees + 4.4)) * DEG2RAD) d = r * (0.28 * pressure_mbar / (temperature_C + 273.0)) return where((-1.0 <= alt_degrees) & (alt_degrees <= 89.9), d, 0.0)
Given an observed altitude, return how much the image is refracted. Zero refraction is returned both for objects very near the zenith, as well as for objects more than one degree below the horizon.
Below is the the instruction that describes the task: ### Input: Given an observed altitude, return how much the image is refracted. Zero refraction is returned both for objects very near the zenith, as well as for objects more than one degree below the horizon. ### Response: def refraction(alt_degrees, temperature_C, pressure_mbar): """Given an observed altitude, return how much the image is refracted. Zero refraction is returned both for objects very near the zenith, as well as for objects more than one degree below the horizon. """ r = 0.016667 / tan((alt_degrees + 7.31 / (alt_degrees + 4.4)) * DEG2RAD) d = r * (0.28 * pressure_mbar / (temperature_C + 273.0)) return where((-1.0 <= alt_degrees) & (alt_degrees <= 89.9), d, 0.0)
def utc_datetime(dt=None, local_value=True): """ Convert local datetime and/or datetime without timezone information to UTC datetime with timezone information. :param dt: local datetime to convert. If is None, then system datetime value is used :param local_value: whether dt is a datetime in system timezone or UTC datetime without timezone information :return: datetime in UTC with tz set """ # TODO: rename local_value to local_tz or in_local_tz if dt is None: return datetime.now(tz=timezone.utc) result = dt if result.utcoffset() is None: if local_value is False: return result.replace(tzinfo=timezone.utc) else: result = result.replace(tzinfo=local_tz()) return result.astimezone(timezone.utc)
Convert local datetime and/or datetime without timezone information to UTC datetime with timezone information. :param dt: local datetime to convert. If is None, then system datetime value is used :param local_value: whether dt is a datetime in system timezone or UTC datetime without timezone information :return: datetime in UTC with tz set
Below is the the instruction that describes the task: ### Input: Convert local datetime and/or datetime without timezone information to UTC datetime with timezone information. :param dt: local datetime to convert. If is None, then system datetime value is used :param local_value: whether dt is a datetime in system timezone or UTC datetime without timezone information :return: datetime in UTC with tz set ### Response: def utc_datetime(dt=None, local_value=True): """ Convert local datetime and/or datetime without timezone information to UTC datetime with timezone information. :param dt: local datetime to convert. If is None, then system datetime value is used :param local_value: whether dt is a datetime in system timezone or UTC datetime without timezone information :return: datetime in UTC with tz set """ # TODO: rename local_value to local_tz or in_local_tz if dt is None: return datetime.now(tz=timezone.utc) result = dt if result.utcoffset() is None: if local_value is False: return result.replace(tzinfo=timezone.utc) else: result = result.replace(tzinfo=local_tz()) return result.astimezone(timezone.utc)
def _guess_delimiter(self, data, delimiters): """ The delimiter /should/ occur the same number of times on each row. However, due to malformed data, it may not. We don't want an all or nothing approach, so we allow for small variations in this number. 1) build a table of the frequency of each character on every line. 2) build a table of frequencies of this frequency (meta-frequency?), e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, 7 times in 2 rows' 3) use the mode of the meta-frequency to determine the /expected/ frequency for that character 4) find out how often the character actually meets that goal 5) the character that best meets its goal is the delimiter For performance reasons, the data is evaluated in chunks, so it can try and evaluate the smallest portion of the data possible, evaluating additional chunks as necessary. """ data = filter(None, data.split('\n')) ascii = [chr(c) for c in range(127)] # 7-bit ASCII # build frequency tables chunkLength = min(10, len(data)) iteration = 0 charFrequency = {} modes = {} delims = {} start, end = 0, min(chunkLength, len(data)) while start < len(data): iteration += 1 for line in data[start:end]: for char in ascii: metaFrequency = charFrequency.get(char, {}) # must count even if frequency is 0 freq = line.count(char) # value is the mode metaFrequency[freq] = metaFrequency.get(freq, 0) + 1 charFrequency[char] = metaFrequency for char in charFrequency.keys(): items = charFrequency[char].items() if len(items) == 1 and items[0][0] == 0: continue # get the mode of the frequencies if len(items) > 1: modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b, items) # adjust the mode - subtract the sum of all # other frequencies items.remove(modes[char]) modes[char] = (modes[char][0], modes[char][1] - reduce(lambda a, b: (0, a[1] + b[1]), items)[1]) else: modes[char] = items[0] # build a list of possible delimiters modeList = modes.items() total = float(chunkLength * iteration) # (rows of consistent data) / (number of rows) = 100% consistency = 1.0 # minimum consistency threshold threshold = 0.9 while len(delims) == 0 and consistency >= threshold: for k, v in modeList: if v[0] > 0 and v[1] > 0: if ((v[1]/total) >= consistency and (delimiters is None or k in delimiters)): delims[k] = v consistency -= 0.01 if len(delims) == 1: delim = delims.keys()[0] skipinitialspace = (data[0].count(delim) == data[0].count("%c " % delim)) return (delim, skipinitialspace) # analyze another chunkLength lines start = end end += chunkLength if not delims: return ('', 0) # if there's more than one, fall back to a 'preferred' list if len(delims) > 1: for d in self.preferred: if d in delims.keys(): skipinitialspace = (data[0].count(d) == data[0].count("%c " % d)) return (d, skipinitialspace) # nothing else indicates a preference, pick the character that # dominates(?) items = [(v,k) for (k,v) in delims.items()] items.sort() delim = items[-1][1] skipinitialspace = (data[0].count(delim) == data[0].count("%c " % delim)) return (delim, skipinitialspace)
The delimiter /should/ occur the same number of times on each row. However, due to malformed data, it may not. We don't want an all or nothing approach, so we allow for small variations in this number. 1) build a table of the frequency of each character on every line. 2) build a table of frequencies of this frequency (meta-frequency?), e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, 7 times in 2 rows' 3) use the mode of the meta-frequency to determine the /expected/ frequency for that character 4) find out how often the character actually meets that goal 5) the character that best meets its goal is the delimiter For performance reasons, the data is evaluated in chunks, so it can try and evaluate the smallest portion of the data possible, evaluating additional chunks as necessary.
Below is the the instruction that describes the task: ### Input: The delimiter /should/ occur the same number of times on each row. However, due to malformed data, it may not. We don't want an all or nothing approach, so we allow for small variations in this number. 1) build a table of the frequency of each character on every line. 2) build a table of frequencies of this frequency (meta-frequency?), e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, 7 times in 2 rows' 3) use the mode of the meta-frequency to determine the /expected/ frequency for that character 4) find out how often the character actually meets that goal 5) the character that best meets its goal is the delimiter For performance reasons, the data is evaluated in chunks, so it can try and evaluate the smallest portion of the data possible, evaluating additional chunks as necessary. ### Response: def _guess_delimiter(self, data, delimiters): """ The delimiter /should/ occur the same number of times on each row. However, due to malformed data, it may not. We don't want an all or nothing approach, so we allow for small variations in this number. 1) build a table of the frequency of each character on every line. 2) build a table of frequencies of this frequency (meta-frequency?), e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, 7 times in 2 rows' 3) use the mode of the meta-frequency to determine the /expected/ frequency for that character 4) find out how often the character actually meets that goal 5) the character that best meets its goal is the delimiter For performance reasons, the data is evaluated in chunks, so it can try and evaluate the smallest portion of the data possible, evaluating additional chunks as necessary. """ data = filter(None, data.split('\n')) ascii = [chr(c) for c in range(127)] # 7-bit ASCII # build frequency tables chunkLength = min(10, len(data)) iteration = 0 charFrequency = {} modes = {} delims = {} start, end = 0, min(chunkLength, len(data)) while start < len(data): iteration += 1 for line in data[start:end]: for char in ascii: metaFrequency = charFrequency.get(char, {}) # must count even if frequency is 0 freq = line.count(char) # value is the mode metaFrequency[freq] = metaFrequency.get(freq, 0) + 1 charFrequency[char] = metaFrequency for char in charFrequency.keys(): items = charFrequency[char].items() if len(items) == 1 and items[0][0] == 0: continue # get the mode of the frequencies if len(items) > 1: modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b, items) # adjust the mode - subtract the sum of all # other frequencies items.remove(modes[char]) modes[char] = (modes[char][0], modes[char][1] - reduce(lambda a, b: (0, a[1] + b[1]), items)[1]) else: modes[char] = items[0] # build a list of possible delimiters modeList = modes.items() total = float(chunkLength * iteration) # (rows of consistent data) / (number of rows) = 100% consistency = 1.0 # minimum consistency threshold threshold = 0.9 while len(delims) == 0 and consistency >= threshold: for k, v in modeList: if v[0] > 0 and v[1] > 0: if ((v[1]/total) >= consistency and (delimiters is None or k in delimiters)): delims[k] = v consistency -= 0.01 if len(delims) == 1: delim = delims.keys()[0] skipinitialspace = (data[0].count(delim) == data[0].count("%c " % delim)) return (delim, skipinitialspace) # analyze another chunkLength lines start = end end += chunkLength if not delims: return ('', 0) # if there's more than one, fall back to a 'preferred' list if len(delims) > 1: for d in self.preferred: if d in delims.keys(): skipinitialspace = (data[0].count(d) == data[0].count("%c " % d)) return (d, skipinitialspace) # nothing else indicates a preference, pick the character that # dominates(?) items = [(v,k) for (k,v) in delims.items()] items.sort() delim = items[-1][1] skipinitialspace = (data[0].count(delim) == data[0].count("%c " % delim)) return (delim, skipinitialspace)
def sort_batch_by_length(tensor: torch.Tensor, sequence_lengths: torch.Tensor): """ Sort a batch first tensor by some specified lengths. Parameters ---------- tensor : torch.FloatTensor, required. A batch first Pytorch tensor. sequence_lengths : torch.LongTensor, required. A tensor representing the lengths of some dimension of the tensor which we want to sort by. Returns ------- sorted_tensor : torch.FloatTensor The original tensor sorted along the batch dimension with respect to sequence_lengths. sorted_sequence_lengths : torch.LongTensor The original sequence_lengths sorted by decreasing size. restoration_indices : torch.LongTensor Indices into the sorted_tensor such that ``sorted_tensor.index_select(0, restoration_indices) == original_tensor`` permutation_index : torch.LongTensor The indices used to sort the tensor. This is useful if you want to sort many tensors using the same ordering. """ if not isinstance(tensor, torch.Tensor) or not isinstance(sequence_lengths, torch.Tensor): raise ConfigurationError("Both the tensor and sequence lengths must be torch.Tensors.") sorted_sequence_lengths, permutation_index = sequence_lengths.sort(0, descending=True) sorted_tensor = tensor.index_select(0, permutation_index) index_range = torch.arange(0, len(sequence_lengths), device=sequence_lengths.device) # This is the equivalent of zipping with index, sorting by the original # sequence lengths and returning the now sorted indices. _, reverse_mapping = permutation_index.sort(0, descending=False) restoration_indices = index_range.index_select(0, reverse_mapping) return sorted_tensor, sorted_sequence_lengths, restoration_indices, permutation_index
Sort a batch first tensor by some specified lengths. Parameters ---------- tensor : torch.FloatTensor, required. A batch first Pytorch tensor. sequence_lengths : torch.LongTensor, required. A tensor representing the lengths of some dimension of the tensor which we want to sort by. Returns ------- sorted_tensor : torch.FloatTensor The original tensor sorted along the batch dimension with respect to sequence_lengths. sorted_sequence_lengths : torch.LongTensor The original sequence_lengths sorted by decreasing size. restoration_indices : torch.LongTensor Indices into the sorted_tensor such that ``sorted_tensor.index_select(0, restoration_indices) == original_tensor`` permutation_index : torch.LongTensor The indices used to sort the tensor. This is useful if you want to sort many tensors using the same ordering.
Below is the the instruction that describes the task: ### Input: Sort a batch first tensor by some specified lengths. Parameters ---------- tensor : torch.FloatTensor, required. A batch first Pytorch tensor. sequence_lengths : torch.LongTensor, required. A tensor representing the lengths of some dimension of the tensor which we want to sort by. Returns ------- sorted_tensor : torch.FloatTensor The original tensor sorted along the batch dimension with respect to sequence_lengths. sorted_sequence_lengths : torch.LongTensor The original sequence_lengths sorted by decreasing size. restoration_indices : torch.LongTensor Indices into the sorted_tensor such that ``sorted_tensor.index_select(0, restoration_indices) == original_tensor`` permutation_index : torch.LongTensor The indices used to sort the tensor. This is useful if you want to sort many tensors using the same ordering. ### Response: def sort_batch_by_length(tensor: torch.Tensor, sequence_lengths: torch.Tensor): """ Sort a batch first tensor by some specified lengths. Parameters ---------- tensor : torch.FloatTensor, required. A batch first Pytorch tensor. sequence_lengths : torch.LongTensor, required. A tensor representing the lengths of some dimension of the tensor which we want to sort by. Returns ------- sorted_tensor : torch.FloatTensor The original tensor sorted along the batch dimension with respect to sequence_lengths. sorted_sequence_lengths : torch.LongTensor The original sequence_lengths sorted by decreasing size. restoration_indices : torch.LongTensor Indices into the sorted_tensor such that ``sorted_tensor.index_select(0, restoration_indices) == original_tensor`` permutation_index : torch.LongTensor The indices used to sort the tensor. This is useful if you want to sort many tensors using the same ordering. """ if not isinstance(tensor, torch.Tensor) or not isinstance(sequence_lengths, torch.Tensor): raise ConfigurationError("Both the tensor and sequence lengths must be torch.Tensors.") sorted_sequence_lengths, permutation_index = sequence_lengths.sort(0, descending=True) sorted_tensor = tensor.index_select(0, permutation_index) index_range = torch.arange(0, len(sequence_lengths), device=sequence_lengths.device) # This is the equivalent of zipping with index, sorting by the original # sequence lengths and returning the now sorted indices. _, reverse_mapping = permutation_index.sort(0, descending=False) restoration_indices = index_range.index_select(0, reverse_mapping) return sorted_tensor, sorted_sequence_lengths, restoration_indices, permutation_index
def prep(self, wait, args, env=None): """ Given the return value of a preparefunc, prepare this CompatStarter. """ self.pattern = wait self.env = env self.args = args # wait is a function, supersedes the default behavior if callable(wait): self.wait = lambda lines: wait()
Given the return value of a preparefunc, prepare this CompatStarter.
Below is the the instruction that describes the task: ### Input: Given the return value of a preparefunc, prepare this CompatStarter. ### Response: def prep(self, wait, args, env=None): """ Given the return value of a preparefunc, prepare this CompatStarter. """ self.pattern = wait self.env = env self.args = args # wait is a function, supersedes the default behavior if callable(wait): self.wait = lambda lines: wait()
def _load_custom_config(run_config): """Load custom configuration input HOCON file for cromwell. """ from pyhocon import ConfigFactory, HOCONConverter, ConfigTree conf = ConfigFactory.parse_file(run_config) out = {} if "database" in conf: out["database"] = HOCONConverter.to_hocon(ConfigTree({"database": conf.get_config("database")})) return out
Load custom configuration input HOCON file for cromwell.
Below is the the instruction that describes the task: ### Input: Load custom configuration input HOCON file for cromwell. ### Response: def _load_custom_config(run_config): """Load custom configuration input HOCON file for cromwell. """ from pyhocon import ConfigFactory, HOCONConverter, ConfigTree conf = ConfigFactory.parse_file(run_config) out = {} if "database" in conf: out["database"] = HOCONConverter.to_hocon(ConfigTree({"database": conf.get_config("database")})) return out
def html2data(html_string): """ Convert an html table to a data table and spans. Parameters ---------- html_string : str The string containing the html table Returns ------- table : list of lists of str spans : list of lists of lists of int A span is a list of [row, column] pairs that define what cells are merged in a table. use_headers : bool """ spans = extract_spans(html_string) column_count = get_html_column_count(html_string) row_count = get_html_row_count(spans) count = 0 while count < len(spans): if len(spans[count]) == 1: spans.pop(count) else: count += 1 table = extract_table(html_string, row_count, column_count) use_headers = headers_present(html_string) return table, spans, use_headers
Convert an html table to a data table and spans. Parameters ---------- html_string : str The string containing the html table Returns ------- table : list of lists of str spans : list of lists of lists of int A span is a list of [row, column] pairs that define what cells are merged in a table. use_headers : bool
Below is the the instruction that describes the task: ### Input: Convert an html table to a data table and spans. Parameters ---------- html_string : str The string containing the html table Returns ------- table : list of lists of str spans : list of lists of lists of int A span is a list of [row, column] pairs that define what cells are merged in a table. use_headers : bool ### Response: def html2data(html_string): """ Convert an html table to a data table and spans. Parameters ---------- html_string : str The string containing the html table Returns ------- table : list of lists of str spans : list of lists of lists of int A span is a list of [row, column] pairs that define what cells are merged in a table. use_headers : bool """ spans = extract_spans(html_string) column_count = get_html_column_count(html_string) row_count = get_html_row_count(spans) count = 0 while count < len(spans): if len(spans[count]) == 1: spans.pop(count) else: count += 1 table = extract_table(html_string, row_count, column_count) use_headers = headers_present(html_string) return table, spans, use_headers
def _parse_keyvals(self, line_iter): """Generate dictionary from key/value pairs. """ out = None line = None for line in line_iter: if len(line) == 1 and line[0].upper() == line[0]: break else: # setup output dictionaries, trimming off blank columns if out is None: while not line[-1]: line = line[:-1] out = [{} for _ in line[1:]] # add blank values if the line is stripped while len(line) < len(out) + 1: line.append("") for i in range(len(out)): out[i][line[0]] = line[i+1].strip() line = None return out, line
Generate dictionary from key/value pairs.
Below is the the instruction that describes the task: ### Input: Generate dictionary from key/value pairs. ### Response: def _parse_keyvals(self, line_iter): """Generate dictionary from key/value pairs. """ out = None line = None for line in line_iter: if len(line) == 1 and line[0].upper() == line[0]: break else: # setup output dictionaries, trimming off blank columns if out is None: while not line[-1]: line = line[:-1] out = [{} for _ in line[1:]] # add blank values if the line is stripped while len(line) < len(out) + 1: line.append("") for i in range(len(out)): out[i][line[0]] = line[i+1].strip() line = None return out, line
def invoke( src, event_file='event.json', config_file='config.yaml', profile_name=None, verbose=False, ): """Simulates a call to your function. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str alt_event: An optional argument to override which event file to use. :param bool verbose: Whether to print out verbose details. """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Set AWS_PROFILE environment variable based on `--profile` option. if profile_name: os.environ['AWS_PROFILE'] = profile_name # Load environment variables from the config file into the actual # environment. env_vars = cfg.get('environment_variables') if env_vars: for key, value in env_vars.items(): os.environ[key] = get_environment_variable_value(value) # Load and parse event file. path_to_event_file = os.path.join(src, event_file) event = read(path_to_event_file, loader=json.loads) # Tweak to allow module to import local modules try: sys.path.index(src) except ValueError: sys.path.append(src) handler = cfg.get('handler') # Inspect the handler string (<module>.<function name>) and translate it # into a function we can execute. fn = get_callable_handler_function(src, handler) timeout = cfg.get('timeout') if timeout: context = LambdaContext(cfg.get('function_name'),timeout) else: context = LambdaContext(cfg.get('function_name')) start = time.time() results = fn(event, context) end = time.time() print('{0}'.format(results)) if verbose: print('\nexecution time: {:.8f}s\nfunction execution ' 'timeout: {:2}s'.format(end - start, cfg.get('timeout', 15)))
Simulates a call to your function. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str alt_event: An optional argument to override which event file to use. :param bool verbose: Whether to print out verbose details.
Below is the the instruction that describes the task: ### Input: Simulates a call to your function. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str alt_event: An optional argument to override which event file to use. :param bool verbose: Whether to print out verbose details. ### Response: def invoke( src, event_file='event.json', config_file='config.yaml', profile_name=None, verbose=False, ): """Simulates a call to your function. :param str src: The path to your Lambda ready project (folder must contain a valid config.yaml and handler module (e.g.: service.py). :param str alt_event: An optional argument to override which event file to use. :param bool verbose: Whether to print out verbose details. """ # Load and parse the config file. path_to_config_file = os.path.join(src, config_file) cfg = read_cfg(path_to_config_file, profile_name) # Set AWS_PROFILE environment variable based on `--profile` option. if profile_name: os.environ['AWS_PROFILE'] = profile_name # Load environment variables from the config file into the actual # environment. env_vars = cfg.get('environment_variables') if env_vars: for key, value in env_vars.items(): os.environ[key] = get_environment_variable_value(value) # Load and parse event file. path_to_event_file = os.path.join(src, event_file) event = read(path_to_event_file, loader=json.loads) # Tweak to allow module to import local modules try: sys.path.index(src) except ValueError: sys.path.append(src) handler = cfg.get('handler') # Inspect the handler string (<module>.<function name>) and translate it # into a function we can execute. fn = get_callable_handler_function(src, handler) timeout = cfg.get('timeout') if timeout: context = LambdaContext(cfg.get('function_name'),timeout) else: context = LambdaContext(cfg.get('function_name')) start = time.time() results = fn(event, context) end = time.time() print('{0}'.format(results)) if verbose: print('\nexecution time: {:.8f}s\nfunction execution ' 'timeout: {:2}s'.format(end - start, cfg.get('timeout', 15)))
def add_example(self, example): "Add an example to the list of examples, checking it first." self.check_example(example) self.examples.append(example)
Add an example to the list of examples, checking it first.
Below is the the instruction that describes the task: ### Input: Add an example to the list of examples, checking it first. ### Response: def add_example(self, example): "Add an example to the list of examples, checking it first." self.check_example(example) self.examples.append(example)
def verification_start(self, phone_number, country_code, via='sms', locale=None, code_length=4): """ :param string phone_number: stored in your databse or you provided while creating new user. :param string country_code: stored in your databse or you provided while creating new user. :param string via: verification method either sms or call :param string locale: optional default none :param number code_length: optional default 4 :return: """ if via != 'sms' and via != 'call': raise AuthyFormatException("Invalid Via. Expected 'sms' or 'call'.") options = { 'phone_number': phone_number, 'country_code': country_code, 'via': via } if locale: options['locale'] = locale try: cl = int(code_length) if cl < 4 or cl > 10: raise ValueError options['code_length'] = cl except ValueError: raise AuthyFormatException( "Invalid code_length. Expected numeric value from 4-10.") resp = self.post("/protected/json/phones/verification/start", options) return Phone(self, resp)
:param string phone_number: stored in your databse or you provided while creating new user. :param string country_code: stored in your databse or you provided while creating new user. :param string via: verification method either sms or call :param string locale: optional default none :param number code_length: optional default 4 :return:
Below is the the instruction that describes the task: ### Input: :param string phone_number: stored in your databse or you provided while creating new user. :param string country_code: stored in your databse or you provided while creating new user. :param string via: verification method either sms or call :param string locale: optional default none :param number code_length: optional default 4 :return: ### Response: def verification_start(self, phone_number, country_code, via='sms', locale=None, code_length=4): """ :param string phone_number: stored in your databse or you provided while creating new user. :param string country_code: stored in your databse or you provided while creating new user. :param string via: verification method either sms or call :param string locale: optional default none :param number code_length: optional default 4 :return: """ if via != 'sms' and via != 'call': raise AuthyFormatException("Invalid Via. Expected 'sms' or 'call'.") options = { 'phone_number': phone_number, 'country_code': country_code, 'via': via } if locale: options['locale'] = locale try: cl = int(code_length) if cl < 4 or cl > 10: raise ValueError options['code_length'] = cl except ValueError: raise AuthyFormatException( "Invalid code_length. Expected numeric value from 4-10.") resp = self.post("/protected/json/phones/verification/start", options) return Phone(self, resp)
def gatk_filter_rnaseq(vrn_file, data): """ this incorporates filters listed here, dropping clusters of variants within a 35 nucleotide window, high fischer strand values and low quality by depth https://software.broadinstitute.org/gatk/guide/article?id=3891 java -jar GenomeAnalysisTK.jar -T VariantFiltration -R hg_19.fasta -V input.vcf -window 35 -cluster 3 -filterName FS -filter "FS > 30.0" -filterName QD -filter "QD < 2.0" -o output.vcf """ out_file = "%s-filter%s" % utils.splitext_plus(vrn_file) if not file_exists(out_file): ref_file = dd.get_ref_file(data) with file_transaction(data, out_file) as tx_out_file: params = ["VariantFiltration", "-R", ref_file, "-V", vrn_file, "--cluster-window-size", "35", "--cluster-size", "3", "--filter-expression", "'FS > 30.0'", "--filter-name", "FS", "--filter-expression", "'QD < 2.0'", "--filter-name", "QD", "--output", tx_out_file] # Use GATK4 for filtering, tools_off is for variant calling config = utils.deepish_copy(dd.get_config(data)) if "gatk4" in dd.get_tools_off({"config": config}): config["algorithm"]["tools_off"].remove("gatk4") jvm_opts = broad.get_gatk_opts(config, os.path.dirname(tx_out_file)) do.run(broad.gatk_cmd("gatk", jvm_opts, params, config), "Filter RNA-seq variants.") return out_file
this incorporates filters listed here, dropping clusters of variants within a 35 nucleotide window, high fischer strand values and low quality by depth https://software.broadinstitute.org/gatk/guide/article?id=3891 java -jar GenomeAnalysisTK.jar -T VariantFiltration -R hg_19.fasta -V input.vcf -window 35 -cluster 3 -filterName FS -filter "FS > 30.0" -filterName QD -filter "QD < 2.0" -o output.vcf
Below is the the instruction that describes the task: ### Input: this incorporates filters listed here, dropping clusters of variants within a 35 nucleotide window, high fischer strand values and low quality by depth https://software.broadinstitute.org/gatk/guide/article?id=3891 java -jar GenomeAnalysisTK.jar -T VariantFiltration -R hg_19.fasta -V input.vcf -window 35 -cluster 3 -filterName FS -filter "FS > 30.0" -filterName QD -filter "QD < 2.0" -o output.vcf ### Response: def gatk_filter_rnaseq(vrn_file, data): """ this incorporates filters listed here, dropping clusters of variants within a 35 nucleotide window, high fischer strand values and low quality by depth https://software.broadinstitute.org/gatk/guide/article?id=3891 java -jar GenomeAnalysisTK.jar -T VariantFiltration -R hg_19.fasta -V input.vcf -window 35 -cluster 3 -filterName FS -filter "FS > 30.0" -filterName QD -filter "QD < 2.0" -o output.vcf """ out_file = "%s-filter%s" % utils.splitext_plus(vrn_file) if not file_exists(out_file): ref_file = dd.get_ref_file(data) with file_transaction(data, out_file) as tx_out_file: params = ["VariantFiltration", "-R", ref_file, "-V", vrn_file, "--cluster-window-size", "35", "--cluster-size", "3", "--filter-expression", "'FS > 30.0'", "--filter-name", "FS", "--filter-expression", "'QD < 2.0'", "--filter-name", "QD", "--output", tx_out_file] # Use GATK4 for filtering, tools_off is for variant calling config = utils.deepish_copy(dd.get_config(data)) if "gatk4" in dd.get_tools_off({"config": config}): config["algorithm"]["tools_off"].remove("gatk4") jvm_opts = broad.get_gatk_opts(config, os.path.dirname(tx_out_file)) do.run(broad.gatk_cmd("gatk", jvm_opts, params, config), "Filter RNA-seq variants.") return out_file
def find_single_file_project(self): # type: () -> List[str] """ Find well formed singler file project :return: """ files = [f for f in os.listdir(".") if os.path.isfile(f)] candidates = [] setup_source = self.setup_py_source() for file in files: if file.endswith("setup.py") or not file.endswith(".py"): continue # duh if setup_source: if file.replace(".py", "") in setup_source: candidate = file.replace(".py", "") if candidate != "setup": candidates.append(candidate) return candidates
Find well formed singler file project :return:
Below is the the instruction that describes the task: ### Input: Find well formed singler file project :return: ### Response: def find_single_file_project(self): # type: () -> List[str] """ Find well formed singler file project :return: """ files = [f for f in os.listdir(".") if os.path.isfile(f)] candidates = [] setup_source = self.setup_py_source() for file in files: if file.endswith("setup.py") or not file.endswith(".py"): continue # duh if setup_source: if file.replace(".py", "") in setup_source: candidate = file.replace(".py", "") if candidate != "setup": candidates.append(candidate) return candidates
def apply(diff, recs, strict=True): """ Transform the records with the patch. May fail if the records do not match those expected in the patch. """ index_columns = diff['_index'] indexed = records.index(copy.deepcopy(list(recs)), index_columns) _add_records(indexed, diff['added'], index_columns, strict=strict) _remove_records(indexed, diff['removed'], index_columns, strict=strict) _update_records(indexed, diff['changed'], strict=strict) return records.sort(indexed.values())
Transform the records with the patch. May fail if the records do not match those expected in the patch.
Below is the the instruction that describes the task: ### Input: Transform the records with the patch. May fail if the records do not match those expected in the patch. ### Response: def apply(diff, recs, strict=True): """ Transform the records with the patch. May fail if the records do not match those expected in the patch. """ index_columns = diff['_index'] indexed = records.index(copy.deepcopy(list(recs)), index_columns) _add_records(indexed, diff['added'], index_columns, strict=strict) _remove_records(indexed, diff['removed'], index_columns, strict=strict) _update_records(indexed, diff['changed'], strict=strict) return records.sort(indexed.values())
def create_endpoint_folder(self, endpoint_id, folder): '''create an endpoint folder, catching the error if it exists. Parameters ========== endpoint_id: the endpoint id parameters folder: the relative path of the folder to create ''' try: res = self.transfer_client.operation_mkdir(endpoint_id, folder) bot.info("%s --> %s" %(res['message'], folder)) except TransferAPIError: bot.info('%s already exists at endpoint' %folder)
create an endpoint folder, catching the error if it exists. Parameters ========== endpoint_id: the endpoint id parameters folder: the relative path of the folder to create
Below is the the instruction that describes the task: ### Input: create an endpoint folder, catching the error if it exists. Parameters ========== endpoint_id: the endpoint id parameters folder: the relative path of the folder to create ### Response: def create_endpoint_folder(self, endpoint_id, folder): '''create an endpoint folder, catching the error if it exists. Parameters ========== endpoint_id: the endpoint id parameters folder: the relative path of the folder to create ''' try: res = self.transfer_client.operation_mkdir(endpoint_id, folder) bot.info("%s --> %s" %(res['message'], folder)) except TransferAPIError: bot.info('%s already exists at endpoint' %folder)
def set_join_rule(self, room_id, join_rule): """Set the rule for users wishing to join the room. Args: room_id(str): The room to set the rules for. join_rule(str): The chosen rule. One of: ["public", "knock", "invite", "private"] """ content = { "join_rule": join_rule } return self.send_state_event(room_id, "m.room.join_rules", content)
Set the rule for users wishing to join the room. Args: room_id(str): The room to set the rules for. join_rule(str): The chosen rule. One of: ["public", "knock", "invite", "private"]
Below is the the instruction that describes the task: ### Input: Set the rule for users wishing to join the room. Args: room_id(str): The room to set the rules for. join_rule(str): The chosen rule. One of: ["public", "knock", "invite", "private"] ### Response: def set_join_rule(self, room_id, join_rule): """Set the rule for users wishing to join the room. Args: room_id(str): The room to set the rules for. join_rule(str): The chosen rule. One of: ["public", "knock", "invite", "private"] """ content = { "join_rule": join_rule } return self.send_state_event(room_id, "m.room.join_rules", content)
def parse_fields_http(self, response, extra_org_map=None): """ The function for parsing ASN fields from a http response. Args: response (:obj:`str`): The response from the ASN http server. extra_org_map (:obj:`dict`): Dictionary mapping org handles to RIRs. This is for limited cases where ARIN REST (ASN fallback HTTP lookup) does not show an RIR as the org handle e.g., DNIC (which is now the built in ORG_MAP) e.g., {'DNIC': 'arin'}. Valid RIR values are (note the case-sensitive - this is meant to match the REST result): 'ARIN', 'RIPE', 'apnic', 'lacnic', 'afrinic'. Defaults to None. Returns: dict: The ASN lookup results :: { 'asn' (None) - Cannot retrieve with this method. 'asn_date' (None) - Cannot retrieve with this method. 'asn_registry' (str) - The assigned ASN registry 'asn_cidr' (None) - Cannot retrieve with this method. 'asn_country_code' (None) - Cannot retrieve with this method. 'asn_description' (None) - Cannot retrieve with this method. } Raises: ASNRegistryError: The ASN registry is not known. ASNParseError: ASN parsing failed. """ # Set the org_map. Map the orgRef handle to an RIR. org_map = self.org_map.copy() try: org_map.update(extra_org_map) except (TypeError, ValueError, IndexError, KeyError): pass try: asn_data = { 'asn_registry': None, 'asn': None, 'asn_cidr': None, 'asn_country_code': None, 'asn_date': None, 'asn_description': None } try: net_list = response['nets']['net'] if not isinstance(net_list, list): net_list = [net_list] except (KeyError, TypeError): log.debug('No networks found') net_list = [] for n in reversed(net_list): try: asn_data['asn_registry'] = ( org_map[n['orgRef']['@handle'].upper()] ) except KeyError as e: log.debug('Could not parse ASN registry via HTTP: ' '{0}'.format(str(e))) continue break if not asn_data['asn_registry']: log.debug('Could not parse ASN registry via HTTP') raise ASNRegistryError('ASN registry lookup failed.') except ASNRegistryError: raise except Exception as e: # pragma: no cover raise ASNParseError('Parsing failed for "{0}" with exception: {1}.' ''.format(response, e)[:100]) return asn_data
The function for parsing ASN fields from a http response. Args: response (:obj:`str`): The response from the ASN http server. extra_org_map (:obj:`dict`): Dictionary mapping org handles to RIRs. This is for limited cases where ARIN REST (ASN fallback HTTP lookup) does not show an RIR as the org handle e.g., DNIC (which is now the built in ORG_MAP) e.g., {'DNIC': 'arin'}. Valid RIR values are (note the case-sensitive - this is meant to match the REST result): 'ARIN', 'RIPE', 'apnic', 'lacnic', 'afrinic'. Defaults to None. Returns: dict: The ASN lookup results :: { 'asn' (None) - Cannot retrieve with this method. 'asn_date' (None) - Cannot retrieve with this method. 'asn_registry' (str) - The assigned ASN registry 'asn_cidr' (None) - Cannot retrieve with this method. 'asn_country_code' (None) - Cannot retrieve with this method. 'asn_description' (None) - Cannot retrieve with this method. } Raises: ASNRegistryError: The ASN registry is not known. ASNParseError: ASN parsing failed.
Below is the the instruction that describes the task: ### Input: The function for parsing ASN fields from a http response. Args: response (:obj:`str`): The response from the ASN http server. extra_org_map (:obj:`dict`): Dictionary mapping org handles to RIRs. This is for limited cases where ARIN REST (ASN fallback HTTP lookup) does not show an RIR as the org handle e.g., DNIC (which is now the built in ORG_MAP) e.g., {'DNIC': 'arin'}. Valid RIR values are (note the case-sensitive - this is meant to match the REST result): 'ARIN', 'RIPE', 'apnic', 'lacnic', 'afrinic'. Defaults to None. Returns: dict: The ASN lookup results :: { 'asn' (None) - Cannot retrieve with this method. 'asn_date' (None) - Cannot retrieve with this method. 'asn_registry' (str) - The assigned ASN registry 'asn_cidr' (None) - Cannot retrieve with this method. 'asn_country_code' (None) - Cannot retrieve with this method. 'asn_description' (None) - Cannot retrieve with this method. } Raises: ASNRegistryError: The ASN registry is not known. ASNParseError: ASN parsing failed. ### Response: def parse_fields_http(self, response, extra_org_map=None): """ The function for parsing ASN fields from a http response. Args: response (:obj:`str`): The response from the ASN http server. extra_org_map (:obj:`dict`): Dictionary mapping org handles to RIRs. This is for limited cases where ARIN REST (ASN fallback HTTP lookup) does not show an RIR as the org handle e.g., DNIC (which is now the built in ORG_MAP) e.g., {'DNIC': 'arin'}. Valid RIR values are (note the case-sensitive - this is meant to match the REST result): 'ARIN', 'RIPE', 'apnic', 'lacnic', 'afrinic'. Defaults to None. Returns: dict: The ASN lookup results :: { 'asn' (None) - Cannot retrieve with this method. 'asn_date' (None) - Cannot retrieve with this method. 'asn_registry' (str) - The assigned ASN registry 'asn_cidr' (None) - Cannot retrieve with this method. 'asn_country_code' (None) - Cannot retrieve with this method. 'asn_description' (None) - Cannot retrieve with this method. } Raises: ASNRegistryError: The ASN registry is not known. ASNParseError: ASN parsing failed. """ # Set the org_map. Map the orgRef handle to an RIR. org_map = self.org_map.copy() try: org_map.update(extra_org_map) except (TypeError, ValueError, IndexError, KeyError): pass try: asn_data = { 'asn_registry': None, 'asn': None, 'asn_cidr': None, 'asn_country_code': None, 'asn_date': None, 'asn_description': None } try: net_list = response['nets']['net'] if not isinstance(net_list, list): net_list = [net_list] except (KeyError, TypeError): log.debug('No networks found') net_list = [] for n in reversed(net_list): try: asn_data['asn_registry'] = ( org_map[n['orgRef']['@handle'].upper()] ) except KeyError as e: log.debug('Could not parse ASN registry via HTTP: ' '{0}'.format(str(e))) continue break if not asn_data['asn_registry']: log.debug('Could not parse ASN registry via HTTP') raise ASNRegistryError('ASN registry lookup failed.') except ASNRegistryError: raise except Exception as e: # pragma: no cover raise ASNParseError('Parsing failed for "{0}" with exception: {1}.' ''.format(response, e)[:100]) return asn_data
def get_xy_steps(bbox, h_dim): r"""Return meshgrid spacing based on bounding box. bbox: dictionary Dictionary containing coordinates for corners of study area. h_dim: integer Horizontal resolution in meters. Returns ------- x_steps, (X, ) ndarray Number of grids in x dimension. y_steps: (Y, ) ndarray Number of grids in y dimension. """ x_range, y_range = get_xy_range(bbox) x_steps = np.ceil(x_range / h_dim) y_steps = np.ceil(y_range / h_dim) return int(x_steps), int(y_steps)
r"""Return meshgrid spacing based on bounding box. bbox: dictionary Dictionary containing coordinates for corners of study area. h_dim: integer Horizontal resolution in meters. Returns ------- x_steps, (X, ) ndarray Number of grids in x dimension. y_steps: (Y, ) ndarray Number of grids in y dimension.
Below is the the instruction that describes the task: ### Input: r"""Return meshgrid spacing based on bounding box. bbox: dictionary Dictionary containing coordinates for corners of study area. h_dim: integer Horizontal resolution in meters. Returns ------- x_steps, (X, ) ndarray Number of grids in x dimension. y_steps: (Y, ) ndarray Number of grids in y dimension. ### Response: def get_xy_steps(bbox, h_dim): r"""Return meshgrid spacing based on bounding box. bbox: dictionary Dictionary containing coordinates for corners of study area. h_dim: integer Horizontal resolution in meters. Returns ------- x_steps, (X, ) ndarray Number of grids in x dimension. y_steps: (Y, ) ndarray Number of grids in y dimension. """ x_range, y_range = get_xy_range(bbox) x_steps = np.ceil(x_range / h_dim) y_steps = np.ceil(y_range / h_dim) return int(x_steps), int(y_steps)
def sndwrite(samples:np.ndarray, sr:int, outfile:str, encoding:str='auto') -> None: """ samples --> Array-like. the actual samples, shape=(nframes, channels) sr --> Sampling-rate outfile --> The name of the outfile. the extension will determine the file-format. The formats supported depend on the available backends Without additional backends, only uncompressed formats are supported (wav, aif) encoding --> one of: - 'auto' or None: the encoding is determined from the format given by the extension of outfile, and from the data - 'pcm16' - 'pcm24' - 'pcm32' - 'flt32' NB: not all file formats support all encodings. Throws a SndfileError if the format does not support the given encoding If set to 'auto', an encoding will be selected based on the file-format and on the data. The bitdepth of the data is measured, and if the file-format supports it, it will be used. For bitdepths of 8, 16 and 24 bits, a PCM encoding will be used. For a bitdepth of 32 bits, a FLOAT encoding will be used, or the next lower supported encoding """ if encoding in ('auto', None): encoding = _guessEncoding(samples, outfile) # normalize in the case where there would be clipping clipping = ((samples > 1).any() or (samples < -1).any()) if encoding.startswith('pcm') and clipping: maxvalue = max(samples.max(), abs(samples.min())) samples = samples / maxvalue backend = _getWriteBackend(outfile, encoding) if not backend: raise SndfileError("No backend found to support the given format") logger.debug(f"sndwrite: using backend {backend.name}") return backend.write(samples, sr, outfile, encoding)
samples --> Array-like. the actual samples, shape=(nframes, channels) sr --> Sampling-rate outfile --> The name of the outfile. the extension will determine the file-format. The formats supported depend on the available backends Without additional backends, only uncompressed formats are supported (wav, aif) encoding --> one of: - 'auto' or None: the encoding is determined from the format given by the extension of outfile, and from the data - 'pcm16' - 'pcm24' - 'pcm32' - 'flt32' NB: not all file formats support all encodings. Throws a SndfileError if the format does not support the given encoding If set to 'auto', an encoding will be selected based on the file-format and on the data. The bitdepth of the data is measured, and if the file-format supports it, it will be used. For bitdepths of 8, 16 and 24 bits, a PCM encoding will be used. For a bitdepth of 32 bits, a FLOAT encoding will be used, or the next lower supported encoding
Below is the the instruction that describes the task: ### Input: samples --> Array-like. the actual samples, shape=(nframes, channels) sr --> Sampling-rate outfile --> The name of the outfile. the extension will determine the file-format. The formats supported depend on the available backends Without additional backends, only uncompressed formats are supported (wav, aif) encoding --> one of: - 'auto' or None: the encoding is determined from the format given by the extension of outfile, and from the data - 'pcm16' - 'pcm24' - 'pcm32' - 'flt32' NB: not all file formats support all encodings. Throws a SndfileError if the format does not support the given encoding If set to 'auto', an encoding will be selected based on the file-format and on the data. The bitdepth of the data is measured, and if the file-format supports it, it will be used. For bitdepths of 8, 16 and 24 bits, a PCM encoding will be used. For a bitdepth of 32 bits, a FLOAT encoding will be used, or the next lower supported encoding ### Response: def sndwrite(samples:np.ndarray, sr:int, outfile:str, encoding:str='auto') -> None: """ samples --> Array-like. the actual samples, shape=(nframes, channels) sr --> Sampling-rate outfile --> The name of the outfile. the extension will determine the file-format. The formats supported depend on the available backends Without additional backends, only uncompressed formats are supported (wav, aif) encoding --> one of: - 'auto' or None: the encoding is determined from the format given by the extension of outfile, and from the data - 'pcm16' - 'pcm24' - 'pcm32' - 'flt32' NB: not all file formats support all encodings. Throws a SndfileError if the format does not support the given encoding If set to 'auto', an encoding will be selected based on the file-format and on the data. The bitdepth of the data is measured, and if the file-format supports it, it will be used. For bitdepths of 8, 16 and 24 bits, a PCM encoding will be used. For a bitdepth of 32 bits, a FLOAT encoding will be used, or the next lower supported encoding """ if encoding in ('auto', None): encoding = _guessEncoding(samples, outfile) # normalize in the case where there would be clipping clipping = ((samples > 1).any() or (samples < -1).any()) if encoding.startswith('pcm') and clipping: maxvalue = max(samples.max(), abs(samples.min())) samples = samples / maxvalue backend = _getWriteBackend(outfile, encoding) if not backend: raise SndfileError("No backend found to support the given format") logger.debug(f"sndwrite: using backend {backend.name}") return backend.write(samples, sr, outfile, encoding)
def cons(o, seq) -> ISeq: """Creates a new sequence where o is the first element and seq is the rest. If seq is None, return a list containing o. If seq is not a ISeq, attempt to coerce it to a ISeq and then cons o onto the resulting sequence.""" if seq is None: return llist.l(o) if isinstance(seq, ISeq): return seq.cons(o) return Maybe(to_seq(seq)).map(lambda s: s.cons(o)).or_else(lambda: llist.l(o))
Creates a new sequence where o is the first element and seq is the rest. If seq is None, return a list containing o. If seq is not a ISeq, attempt to coerce it to a ISeq and then cons o onto the resulting sequence.
Below is the the instruction that describes the task: ### Input: Creates a new sequence where o is the first element and seq is the rest. If seq is None, return a list containing o. If seq is not a ISeq, attempt to coerce it to a ISeq and then cons o onto the resulting sequence. ### Response: def cons(o, seq) -> ISeq: """Creates a new sequence where o is the first element and seq is the rest. If seq is None, return a list containing o. If seq is not a ISeq, attempt to coerce it to a ISeq and then cons o onto the resulting sequence.""" if seq is None: return llist.l(o) if isinstance(seq, ISeq): return seq.cons(o) return Maybe(to_seq(seq)).map(lambda s: s.cons(o)).or_else(lambda: llist.l(o))
def freeze_subjects(self): """Converts variable data into numpy arrays. This is required after all subjects have been added via the add_subject function, since we don't know ahead of time who is participating in the analysis due to various filtering possibilities. """ self.phenotype_data = numpy.array(self.phenotype_data) self.covariate_data = numpy.array(self.covariate_data)
Converts variable data into numpy arrays. This is required after all subjects have been added via the add_subject function, since we don't know ahead of time who is participating in the analysis due to various filtering possibilities.
Below is the the instruction that describes the task: ### Input: Converts variable data into numpy arrays. This is required after all subjects have been added via the add_subject function, since we don't know ahead of time who is participating in the analysis due to various filtering possibilities. ### Response: def freeze_subjects(self): """Converts variable data into numpy arrays. This is required after all subjects have been added via the add_subject function, since we don't know ahead of time who is participating in the analysis due to various filtering possibilities. """ self.phenotype_data = numpy.array(self.phenotype_data) self.covariate_data = numpy.array(self.covariate_data)
def AddDir(self, dirpath): """Adds a directory path as a source. Args: dirpath: a string representing a path to the directory. Returns: True if the directory is not an already existing source. """ if dirpath not in self._dirs: self._dirs.add(dirpath) return True return False
Adds a directory path as a source. Args: dirpath: a string representing a path to the directory. Returns: True if the directory is not an already existing source.
Below is the the instruction that describes the task: ### Input: Adds a directory path as a source. Args: dirpath: a string representing a path to the directory. Returns: True if the directory is not an already existing source. ### Response: def AddDir(self, dirpath): """Adds a directory path as a source. Args: dirpath: a string representing a path to the directory. Returns: True if the directory is not an already existing source. """ if dirpath not in self._dirs: self._dirs.add(dirpath) return True return False
def hash_codeblocks(text, hashes): """Hashes codeblocks (<pre> elements). Codeblocks are strictly defined to be (non-list) lines that are indented at least 4 spaces from the newline. Exactly 4 spaces will be stripped from the beginning of the line -- any leading whitespace after that is preserved. Codeblock lines that are separated only by blank lines will be included in the same codeblock (as will the intermediate newlines). Certain HTML entities (&, <, >, ", ') will always be escaped inside code blocks. Markdown defines code blocks to be <pre><code>, not just <pre>. Certain highlighting packages (like highlight.js) are designed to accomodate (and even look) for this type of conversion. """ def sub(match): block = match.group(1).rstrip('\n') block = re.sub(r'(?:(?<=\n)|(?<=\A)) {4}', '', block) block = escape(block) block = '<pre><code>{}</code></pre>'.format(block) hashed = hash_text(block, 'pre') hashes[hashed] = block return '\n\n' + hashed + '\n\n' return re_codeblock.sub(sub, text)
Hashes codeblocks (<pre> elements). Codeblocks are strictly defined to be (non-list) lines that are indented at least 4 spaces from the newline. Exactly 4 spaces will be stripped from the beginning of the line -- any leading whitespace after that is preserved. Codeblock lines that are separated only by blank lines will be included in the same codeblock (as will the intermediate newlines). Certain HTML entities (&, <, >, ", ') will always be escaped inside code blocks. Markdown defines code blocks to be <pre><code>, not just <pre>. Certain highlighting packages (like highlight.js) are designed to accomodate (and even look) for this type of conversion.
Below is the the instruction that describes the task: ### Input: Hashes codeblocks (<pre> elements). Codeblocks are strictly defined to be (non-list) lines that are indented at least 4 spaces from the newline. Exactly 4 spaces will be stripped from the beginning of the line -- any leading whitespace after that is preserved. Codeblock lines that are separated only by blank lines will be included in the same codeblock (as will the intermediate newlines). Certain HTML entities (&, <, >, ", ') will always be escaped inside code blocks. Markdown defines code blocks to be <pre><code>, not just <pre>. Certain highlighting packages (like highlight.js) are designed to accomodate (and even look) for this type of conversion. ### Response: def hash_codeblocks(text, hashes): """Hashes codeblocks (<pre> elements). Codeblocks are strictly defined to be (non-list) lines that are indented at least 4 spaces from the newline. Exactly 4 spaces will be stripped from the beginning of the line -- any leading whitespace after that is preserved. Codeblock lines that are separated only by blank lines will be included in the same codeblock (as will the intermediate newlines). Certain HTML entities (&, <, >, ", ') will always be escaped inside code blocks. Markdown defines code blocks to be <pre><code>, not just <pre>. Certain highlighting packages (like highlight.js) are designed to accomodate (and even look) for this type of conversion. """ def sub(match): block = match.group(1).rstrip('\n') block = re.sub(r'(?:(?<=\n)|(?<=\A)) {4}', '', block) block = escape(block) block = '<pre><code>{}</code></pre>'.format(block) hashed = hash_text(block, 'pre') hashes[hashed] = block return '\n\n' + hashed + '\n\n' return re_codeblock.sub(sub, text)
def close(self): """Close this adapter stream. This method may only be called once in the lifetime of an AdapterStream and it will shutdown the underlying device adapter, disconnect all devices and stop all background activity. If this stream is configured to save a record of all RPCs, the RPCs will be logged to a file at this point. """ try: self._loop.run_coroutine(self.adapter.stop()) finally: self._save_recording()
Close this adapter stream. This method may only be called once in the lifetime of an AdapterStream and it will shutdown the underlying device adapter, disconnect all devices and stop all background activity. If this stream is configured to save a record of all RPCs, the RPCs will be logged to a file at this point.
Below is the the instruction that describes the task: ### Input: Close this adapter stream. This method may only be called once in the lifetime of an AdapterStream and it will shutdown the underlying device adapter, disconnect all devices and stop all background activity. If this stream is configured to save a record of all RPCs, the RPCs will be logged to a file at this point. ### Response: def close(self): """Close this adapter stream. This method may only be called once in the lifetime of an AdapterStream and it will shutdown the underlying device adapter, disconnect all devices and stop all background activity. If this stream is configured to save a record of all RPCs, the RPCs will be logged to a file at this point. """ try: self._loop.run_coroutine(self.adapter.stop()) finally: self._save_recording()
def get_inventory_by_name(nme, character): """ returns the inventory index by name """ for ndx, sk in enumerate(character["inventory"]): #print("sk = ", sk, " , nme = ", nme) if sk["name"] == nme: return ndx return 0
returns the inventory index by name
Below is the the instruction that describes the task: ### Input: returns the inventory index by name ### Response: def get_inventory_by_name(nme, character): """ returns the inventory index by name """ for ndx, sk in enumerate(character["inventory"]): #print("sk = ", sk, " , nme = ", nme) if sk["name"] == nme: return ndx return 0
def cmd_nc(host, port, family, ssl_enable, crlf, source_ip, source_port, protocol): """Some kind of netcat/ncat replacement. The execution emulates the feeling of this popular tools. Example: \b $ habu.nc --crlf www.portantier.com 80 Connected to 45.77.113.133 80 HEAD / HTTP/1.0 \b HTTP/1.0 301 Moved Permanently Date: Thu, 26 Jul 2018 21:10:51 GMT Server: OpenBSD httpd Connection: close Content-Type: text/html Content-Length: 443 Location: https://www.portantier.com/ """ resolved = socket.getaddrinfo(host, port) families = { '4' : [ socket.AF_INET ], '6' : [ socket.AF_INET6 ], '46': [ socket.AF_INET, socket.AF_INET6] } address = None for r in resolved: if r[0] in families[family]: address = r # (<AddressFamily.AF_INET6: 10>, <SocketType.SOCK_STREAM: 1>, 6, '', ('2606:2800:220:1:248:1893:25c8:1946', 80, 0, 0)) if not address: print('Could not resolve {} to the ip address family selected ({})'.format(host, family), file=sys.stderr) sys.exit(1) to_send = b'' if not source_ip: source_ip = which_source_for(address[4][0]) if protocol == 'tcp': s = socket.socket(address[0], socket.SOCK_STREAM) else: s = socket.socket(address[0], socket.SOCK_DGRAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((source_ip, source_port)) if ssl_enable: ssl_context = ssl.SSLContext() s = ssl_context.wrap_socket(s, server_side=False) try: s.connect((address[4][0], port)) print('Connected to', address[4][0], port, file=sys.stderr) except Exception as e: print(e, file=sys.stderr) sys.exit(1) while True: iready, oready, eready = select.select([sys.stdin, s], [], [s]) for i in iready: if i == sys.stdin: if crlf: to_send += i.readline().replace('\n', '\r\n').encode() else: to_send += i.readline().encode() else: received = s.recv(4096) if not received: sys.exit(1) os.write(sys.stdout.fileno(), received) iready, oready, eready = select.select([], [s], [s]) for o in oready: if to_send: o.send(to_send) to_send = b'' s.close()
Some kind of netcat/ncat replacement. The execution emulates the feeling of this popular tools. Example: \b $ habu.nc --crlf www.portantier.com 80 Connected to 45.77.113.133 80 HEAD / HTTP/1.0 \b HTTP/1.0 301 Moved Permanently Date: Thu, 26 Jul 2018 21:10:51 GMT Server: OpenBSD httpd Connection: close Content-Type: text/html Content-Length: 443 Location: https://www.portantier.com/
Below is the the instruction that describes the task: ### Input: Some kind of netcat/ncat replacement. The execution emulates the feeling of this popular tools. Example: \b $ habu.nc --crlf www.portantier.com 80 Connected to 45.77.113.133 80 HEAD / HTTP/1.0 \b HTTP/1.0 301 Moved Permanently Date: Thu, 26 Jul 2018 21:10:51 GMT Server: OpenBSD httpd Connection: close Content-Type: text/html Content-Length: 443 Location: https://www.portantier.com/ ### Response: def cmd_nc(host, port, family, ssl_enable, crlf, source_ip, source_port, protocol): """Some kind of netcat/ncat replacement. The execution emulates the feeling of this popular tools. Example: \b $ habu.nc --crlf www.portantier.com 80 Connected to 45.77.113.133 80 HEAD / HTTP/1.0 \b HTTP/1.0 301 Moved Permanently Date: Thu, 26 Jul 2018 21:10:51 GMT Server: OpenBSD httpd Connection: close Content-Type: text/html Content-Length: 443 Location: https://www.portantier.com/ """ resolved = socket.getaddrinfo(host, port) families = { '4' : [ socket.AF_INET ], '6' : [ socket.AF_INET6 ], '46': [ socket.AF_INET, socket.AF_INET6] } address = None for r in resolved: if r[0] in families[family]: address = r # (<AddressFamily.AF_INET6: 10>, <SocketType.SOCK_STREAM: 1>, 6, '', ('2606:2800:220:1:248:1893:25c8:1946', 80, 0, 0)) if not address: print('Could not resolve {} to the ip address family selected ({})'.format(host, family), file=sys.stderr) sys.exit(1) to_send = b'' if not source_ip: source_ip = which_source_for(address[4][0]) if protocol == 'tcp': s = socket.socket(address[0], socket.SOCK_STREAM) else: s = socket.socket(address[0], socket.SOCK_DGRAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((source_ip, source_port)) if ssl_enable: ssl_context = ssl.SSLContext() s = ssl_context.wrap_socket(s, server_side=False) try: s.connect((address[4][0], port)) print('Connected to', address[4][0], port, file=sys.stderr) except Exception as e: print(e, file=sys.stderr) sys.exit(1) while True: iready, oready, eready = select.select([sys.stdin, s], [], [s]) for i in iready: if i == sys.stdin: if crlf: to_send += i.readline().replace('\n', '\r\n').encode() else: to_send += i.readline().encode() else: received = s.recv(4096) if not received: sys.exit(1) os.write(sys.stdout.fileno(), received) iready, oready, eready = select.select([], [s], [s]) for o in oready: if to_send: o.send(to_send) to_send = b'' s.close()
def _truncate(self, x, k): ''' given a vector x, leave its top-k absolute-value entries alone, and set the rest to 0 ''' not_F = np.argsort(np.abs(x))[:-k] x[not_F] = 0 return x
given a vector x, leave its top-k absolute-value entries alone, and set the rest to 0
Below is the the instruction that describes the task: ### Input: given a vector x, leave its top-k absolute-value entries alone, and set the rest to 0 ### Response: def _truncate(self, x, k): ''' given a vector x, leave its top-k absolute-value entries alone, and set the rest to 0 ''' not_F = np.argsort(np.abs(x))[:-k] x[not_F] = 0 return x
def strip_spaces(x): """ Strips spaces :param x: :return: """ x = x.replace(b' ', b'') x = x.replace(b'\t', b'') return x
Strips spaces :param x: :return:
Below is the the instruction that describes the task: ### Input: Strips spaces :param x: :return: ### Response: def strip_spaces(x): """ Strips spaces :param x: :return: """ x = x.replace(b' ', b'') x = x.replace(b'\t', b'') return x
def stop(self, wait=False): """ Terminate the VM instance launched on the cloud for this specific node. """ if self.instance_id is not None: log.info("Shutting down node `%s` (VM instance `%s`) ...", self.name, self.instance_id) self._cloud_provider.stop_instance(self.instance_id) if wait: while self.is_alive(): time.sleep(1) # When an instance is terminated, the EC2 cloud provider will # basically return it as "running" state. Setting the # `instance_id` attribute to None will force `is_alive()` # method not to check with the cloud provider, and forever # forgetting about the instance id. self.instance_id = None
Terminate the VM instance launched on the cloud for this specific node.
Below is the the instruction that describes the task: ### Input: Terminate the VM instance launched on the cloud for this specific node. ### Response: def stop(self, wait=False): """ Terminate the VM instance launched on the cloud for this specific node. """ if self.instance_id is not None: log.info("Shutting down node `%s` (VM instance `%s`) ...", self.name, self.instance_id) self._cloud_provider.stop_instance(self.instance_id) if wait: while self.is_alive(): time.sleep(1) # When an instance is terminated, the EC2 cloud provider will # basically return it as "running" state. Setting the # `instance_id` attribute to None will force `is_alive()` # method not to check with the cloud provider, and forever # forgetting about the instance id. self.instance_id = None
def chemical_formula(self): """the chemical formula of the molecule""" counts = {} for number in self.numbers: counts[number] = counts.get(number, 0)+1 items = [] for number, count in sorted(counts.items(), reverse=True): if count == 1: items.append(periodic[number].symbol) else: items.append("%s%i" % (periodic[number].symbol, count)) return "".join(items)
the chemical formula of the molecule
Below is the the instruction that describes the task: ### Input: the chemical formula of the molecule ### Response: def chemical_formula(self): """the chemical formula of the molecule""" counts = {} for number in self.numbers: counts[number] = counts.get(number, 0)+1 items = [] for number, count in sorted(counts.items(), reverse=True): if count == 1: items.append(periodic[number].symbol) else: items.append("%s%i" % (periodic[number].symbol, count)) return "".join(items)
def setup(self): """Setup.""" self.blocks = self.config['block_comments'] self.lines = self.config['line_comments'] self.group_comments = self.config['group_comments'] # If the style isn't found, just go with CSS, then use the appropriate prefix. self.stylesheets = STYLESHEET_TYPE.get(self.config['stylesheets'].lower(), CSS) self.prefix = [k for k, v in STYLESHEET_TYPE.items() if v == SASS][0] self.pattern = RE_CSS if self.stylesheets == CSS else RE_SCSS
Setup.
Below is the the instruction that describes the task: ### Input: Setup. ### Response: def setup(self): """Setup.""" self.blocks = self.config['block_comments'] self.lines = self.config['line_comments'] self.group_comments = self.config['group_comments'] # If the style isn't found, just go with CSS, then use the appropriate prefix. self.stylesheets = STYLESHEET_TYPE.get(self.config['stylesheets'].lower(), CSS) self.prefix = [k for k, v in STYLESHEET_TYPE.items() if v == SASS][0] self.pattern = RE_CSS if self.stylesheets == CSS else RE_SCSS
async def update_firmware(port: str, firmware_file_path: str, loop: Optional[asyncio.AbstractEventLoop])\ -> Tuple[str, Tuple[bool, str]]: """ Run avrdude firmware upload command. Switch back to normal module port Note: For modules with old bootloader, the kernel could assign the module a new port after the update (since the board is automatically reset). Scan for such a port change and use the appropriate port. Returns a tuple of the new port to communicate on (or None if it was not found) and a tuple of success and message from avrdude. """ ports_before_update = await _discover_ports() config_file_path = os.path.join(package_root, 'config', 'modules', 'avrdude.conf') kwargs: Dict[str, Any] = { 'stdout': asyncio.subprocess.PIPE, 'stderr': asyncio.subprocess.PIPE } if loop: kwargs['loop'] = loop proc = await asyncio.create_subprocess_exec( 'avrdude', '-C{}'.format(config_file_path), '-v', '-p{}'.format(PART_NO), '-c{}'.format(PROGRAMMER_ID), '-P{}'.format(port), '-b{}'.format(BAUDRATE), '-D', '-Uflash:w:{}:i'.format(firmware_file_path), **kwargs) await proc.wait() _result = await proc.communicate() result = _result[1].decode() avrdude_res = _format_avrdude_response(result) if avrdude_res[0]: log.debug(result) else: log.error("Failed to update module firmware for {}: {}" .format(port, avrdude_res[1])) new_port = await _port_on_mode_switch(ports_before_update) log.info("New port: {}".format(new_port)) return new_port, avrdude_res
Run avrdude firmware upload command. Switch back to normal module port Note: For modules with old bootloader, the kernel could assign the module a new port after the update (since the board is automatically reset). Scan for such a port change and use the appropriate port. Returns a tuple of the new port to communicate on (or None if it was not found) and a tuple of success and message from avrdude.
Below is the the instruction that describes the task: ### Input: Run avrdude firmware upload command. Switch back to normal module port Note: For modules with old bootloader, the kernel could assign the module a new port after the update (since the board is automatically reset). Scan for such a port change and use the appropriate port. Returns a tuple of the new port to communicate on (or None if it was not found) and a tuple of success and message from avrdude. ### Response: async def update_firmware(port: str, firmware_file_path: str, loop: Optional[asyncio.AbstractEventLoop])\ -> Tuple[str, Tuple[bool, str]]: """ Run avrdude firmware upload command. Switch back to normal module port Note: For modules with old bootloader, the kernel could assign the module a new port after the update (since the board is automatically reset). Scan for such a port change and use the appropriate port. Returns a tuple of the new port to communicate on (or None if it was not found) and a tuple of success and message from avrdude. """ ports_before_update = await _discover_ports() config_file_path = os.path.join(package_root, 'config', 'modules', 'avrdude.conf') kwargs: Dict[str, Any] = { 'stdout': asyncio.subprocess.PIPE, 'stderr': asyncio.subprocess.PIPE } if loop: kwargs['loop'] = loop proc = await asyncio.create_subprocess_exec( 'avrdude', '-C{}'.format(config_file_path), '-v', '-p{}'.format(PART_NO), '-c{}'.format(PROGRAMMER_ID), '-P{}'.format(port), '-b{}'.format(BAUDRATE), '-D', '-Uflash:w:{}:i'.format(firmware_file_path), **kwargs) await proc.wait() _result = await proc.communicate() result = _result[1].decode() avrdude_res = _format_avrdude_response(result) if avrdude_res[0]: log.debug(result) else: log.error("Failed to update module firmware for {}: {}" .format(port, avrdude_res[1])) new_port = await _port_on_mode_switch(ports_before_update) log.info("New port: {}".format(new_port)) return new_port, avrdude_res
def deletion(args): """ %prog deletion [mac.mic.bam|mac.mic.bed] mic.gaps.bed Find IES based on mapping MAC reads to MIC genome. """ p = OptionParser(deletion.__doc__) p.add_option("--mindepth", default=3, type="int", help="Minimum depth to call a deletion") p.add_option("--minspan", default=30, type="int", help="Minimum span to call a deletion") p.add_option("--split", default=False, action="store_true", help="Break at cigar N into separate parts") p.set_tmpdir() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) bedfile, gapsbedfile = args if bedfile.endswith(".bam"): bamfile = bedfile bedfile = bamfile.replace(".sorted.", ".").replace(".bam", ".bed") if need_update(bamfile, bedfile): cmd = "bamToBed -i {0}".format(bamfile) if opts.split: cmd += " -split" cmd += " | cut -f1-4" sh(cmd, outfile=bedfile) sort_tmpdir = "--tmpdir={0}".format(opts.tmpdir) if bedfile.endswith(".sorted.bed"): pf = bedfile.rsplit(".", 2)[0] sortedbedfile = bedfile else: pf = bedfile.rsplit(".", 1)[0] sortedbedfile = pf + ".sorted.bed" if need_update(bedfile, sortedbedfile): sort([bedfile, "-u", "--accn", sort_tmpdir]) # Find reads that contain multiple matches ibedfile = pf + ".d.bed" if need_update(sortedbedfile, ibedfile): bed = Bed(sortedbedfile, sorted=False) fw = open(ibedfile, "w") logging.debug("Write deletions to `{0}`.".format(ibedfile)) for accn, bb in groupby(bed, key=lambda x: x.accn): bb = list(bb) branges = [(x.seqid, x.start, x.end) for x in bb] iranges = range_interleave(branges) for seqid, start, end in iranges: if end - start + 1 < opts.minspan: continue print("\t".join(str(x) for x in \ (seqid, start - 1, end, accn + '-d')), file=fw) fw.close() # Uniqify the insertions and count occurrences countbedfile = pf + ".uniq.bed" if need_update(ibedfile, countbedfile): bed = Bed(ibedfile) fw = open(countbedfile, "w") logging.debug("Write counts to `{0}`.".format(countbedfile)) registry = Counter((x.seqid, x.start, x.end) for x in bed) ies_id = 1 for (seqid, start, end), count in registry.items(): ies_name = "{0:05d}-r{1}".format(ies_id, count) if count < opts.mindepth: continue print("\t".join(str(x) for x in \ (seqid, start - 1, end, ies_name)), file=fw) ies_id += 1 fw.close() sort([countbedfile, "-i", sort_tmpdir]) # Remove deletions that contain some read depth depthbedfile = pf + ".depth.bed" if need_update((sortedbedfile, countbedfile), depthbedfile): depth([sortedbedfile, countbedfile, "--outfile={0}".format(depthbedfile)]) validbedfile = pf + ".valid.bed" if need_update(depthbedfile, validbedfile): fw = open(validbedfile, "w") logging.debug("Filter valid deletions to `{0}`.".format(validbedfile)) bed = Bed(depthbedfile) all_scores = [float(b.score) for b in bed] lb, ub = outlier_cutoff(all_scores) logging.debug("Bounds for depths: LB={0:.2f} (ignored) UB={1:.2f}".format(lb, ub)) for b in bed: if float(b.score) > ub: continue print(b, file=fw) fw.close() # Remove deletions that contain sequencing gaps on its flanks selectedbedfile = pf + ".selected.bed" if need_update(validbedfile, selectedbedfile): flanksbedfile = pf + ".flanks.bed" fw = open(flanksbedfile, "w") bed = Bed(validbedfile) flank = 100 logging.debug("Write deletion flanks to `{0}`.".format(flanksbedfile)) for b in bed: start, end = b.start, b.end b.start, b.end = start, min(start + flank - 1, end) print(b, file=fw) b.start, b.end = max(start, end - flank + 1), end print(b, file=fw) fw.close() intersectidsfile = pf + ".intersect.ids" cmd = "intersectBed -a {0} -b {1}".format(flanksbedfile, gapsbedfile) cmd += " | cut -f4 | sort -u" sh(cmd, outfile=intersectidsfile) some([validbedfile, intersectidsfile, "-v", "--outfile={0}".format(selectedbedfile)]) # Find best-scoring non-overlapping set iesbedfile = pf + ".ies.bed" if need_update(selectedbedfile, iesbedfile): bed = Bed(selectedbedfile) fw = open(iesbedfile, "w") logging.debug("Write IES to `{0}`.".format(iesbedfile)) branges = [Range(x.seqid, x.start, x.end, int(x.accn.rsplit("r")[-1]), i) \ for i, x in enumerate(bed)] iranges, iscore = range_chain(branges) logging.debug("Best chain score: {0} ({1} IES)".\ format(iscore, len(iranges))) ies_id = 1 for seqid, start, end, score, id in iranges: ies_name = "IES-{0:05d}-r{1}".format(ies_id, score) span = end - start + 1 print("\t".join(str(x) for x in \ (seqid, start - 1, end, ies_name, span)), file=fw) ies_id += 1 fw.close()
%prog deletion [mac.mic.bam|mac.mic.bed] mic.gaps.bed Find IES based on mapping MAC reads to MIC genome.
Below is the the instruction that describes the task: ### Input: %prog deletion [mac.mic.bam|mac.mic.bed] mic.gaps.bed Find IES based on mapping MAC reads to MIC genome. ### Response: def deletion(args): """ %prog deletion [mac.mic.bam|mac.mic.bed] mic.gaps.bed Find IES based on mapping MAC reads to MIC genome. """ p = OptionParser(deletion.__doc__) p.add_option("--mindepth", default=3, type="int", help="Minimum depth to call a deletion") p.add_option("--minspan", default=30, type="int", help="Minimum span to call a deletion") p.add_option("--split", default=False, action="store_true", help="Break at cigar N into separate parts") p.set_tmpdir() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) bedfile, gapsbedfile = args if bedfile.endswith(".bam"): bamfile = bedfile bedfile = bamfile.replace(".sorted.", ".").replace(".bam", ".bed") if need_update(bamfile, bedfile): cmd = "bamToBed -i {0}".format(bamfile) if opts.split: cmd += " -split" cmd += " | cut -f1-4" sh(cmd, outfile=bedfile) sort_tmpdir = "--tmpdir={0}".format(opts.tmpdir) if bedfile.endswith(".sorted.bed"): pf = bedfile.rsplit(".", 2)[0] sortedbedfile = bedfile else: pf = bedfile.rsplit(".", 1)[0] sortedbedfile = pf + ".sorted.bed" if need_update(bedfile, sortedbedfile): sort([bedfile, "-u", "--accn", sort_tmpdir]) # Find reads that contain multiple matches ibedfile = pf + ".d.bed" if need_update(sortedbedfile, ibedfile): bed = Bed(sortedbedfile, sorted=False) fw = open(ibedfile, "w") logging.debug("Write deletions to `{0}`.".format(ibedfile)) for accn, bb in groupby(bed, key=lambda x: x.accn): bb = list(bb) branges = [(x.seqid, x.start, x.end) for x in bb] iranges = range_interleave(branges) for seqid, start, end in iranges: if end - start + 1 < opts.minspan: continue print("\t".join(str(x) for x in \ (seqid, start - 1, end, accn + '-d')), file=fw) fw.close() # Uniqify the insertions and count occurrences countbedfile = pf + ".uniq.bed" if need_update(ibedfile, countbedfile): bed = Bed(ibedfile) fw = open(countbedfile, "w") logging.debug("Write counts to `{0}`.".format(countbedfile)) registry = Counter((x.seqid, x.start, x.end) for x in bed) ies_id = 1 for (seqid, start, end), count in registry.items(): ies_name = "{0:05d}-r{1}".format(ies_id, count) if count < opts.mindepth: continue print("\t".join(str(x) for x in \ (seqid, start - 1, end, ies_name)), file=fw) ies_id += 1 fw.close() sort([countbedfile, "-i", sort_tmpdir]) # Remove deletions that contain some read depth depthbedfile = pf + ".depth.bed" if need_update((sortedbedfile, countbedfile), depthbedfile): depth([sortedbedfile, countbedfile, "--outfile={0}".format(depthbedfile)]) validbedfile = pf + ".valid.bed" if need_update(depthbedfile, validbedfile): fw = open(validbedfile, "w") logging.debug("Filter valid deletions to `{0}`.".format(validbedfile)) bed = Bed(depthbedfile) all_scores = [float(b.score) for b in bed] lb, ub = outlier_cutoff(all_scores) logging.debug("Bounds for depths: LB={0:.2f} (ignored) UB={1:.2f}".format(lb, ub)) for b in bed: if float(b.score) > ub: continue print(b, file=fw) fw.close() # Remove deletions that contain sequencing gaps on its flanks selectedbedfile = pf + ".selected.bed" if need_update(validbedfile, selectedbedfile): flanksbedfile = pf + ".flanks.bed" fw = open(flanksbedfile, "w") bed = Bed(validbedfile) flank = 100 logging.debug("Write deletion flanks to `{0}`.".format(flanksbedfile)) for b in bed: start, end = b.start, b.end b.start, b.end = start, min(start + flank - 1, end) print(b, file=fw) b.start, b.end = max(start, end - flank + 1), end print(b, file=fw) fw.close() intersectidsfile = pf + ".intersect.ids" cmd = "intersectBed -a {0} -b {1}".format(flanksbedfile, gapsbedfile) cmd += " | cut -f4 | sort -u" sh(cmd, outfile=intersectidsfile) some([validbedfile, intersectidsfile, "-v", "--outfile={0}".format(selectedbedfile)]) # Find best-scoring non-overlapping set iesbedfile = pf + ".ies.bed" if need_update(selectedbedfile, iesbedfile): bed = Bed(selectedbedfile) fw = open(iesbedfile, "w") logging.debug("Write IES to `{0}`.".format(iesbedfile)) branges = [Range(x.seqid, x.start, x.end, int(x.accn.rsplit("r")[-1]), i) \ for i, x in enumerate(bed)] iranges, iscore = range_chain(branges) logging.debug("Best chain score: {0} ({1} IES)".\ format(iscore, len(iranges))) ies_id = 1 for seqid, start, end, score, id in iranges: ies_name = "IES-{0:05d}-r{1}".format(ies_id, score) span = end - start + 1 print("\t".join(str(x) for x in \ (seqid, start - 1, end, ies_name, span)), file=fw) ies_id += 1 fw.close()
def _get_ann_labels_data(self, order_ann, bins_ann): """Generate ColumnDataSource dictionary for annular labels. """ if self.yticks is None: return dict(x=[], y=[], text=[], angle=[]) mapping = self._compute_tick_mapping("radius", order_ann, bins_ann) values = [(label, radius[0]) for label, radius in mapping.items()] labels, radius = zip(*values) radius = np.array(radius) y_coord = np.sin(np.deg2rad(self.yrotation)) * radius + self.max_radius x_coord = np.cos(np.deg2rad(self.yrotation)) * radius + self.max_radius return dict(x=x_coord, y=y_coord, text=labels, angle=[0]*len(labels))
Generate ColumnDataSource dictionary for annular labels.
Below is the the instruction that describes the task: ### Input: Generate ColumnDataSource dictionary for annular labels. ### Response: def _get_ann_labels_data(self, order_ann, bins_ann): """Generate ColumnDataSource dictionary for annular labels. """ if self.yticks is None: return dict(x=[], y=[], text=[], angle=[]) mapping = self._compute_tick_mapping("radius", order_ann, bins_ann) values = [(label, radius[0]) for label, radius in mapping.items()] labels, radius = zip(*values) radius = np.array(radius) y_coord = np.sin(np.deg2rad(self.yrotation)) * radius + self.max_radius x_coord = np.cos(np.deg2rad(self.yrotation)) * radius + self.max_radius return dict(x=x_coord, y=y_coord, text=labels, angle=[0]*len(labels))
def tprint(text, font=DEFAULT_FONT, chr_ignore=True): r""" Print art text (support \n). :param text: input text :type text:str :param font: input font :type font:str :param chr_ignore: ignore not supported character :type chr_ignore:bool :return: None """ result = text2art(text, font=font, chr_ignore=chr_ignore) print(result)
r""" Print art text (support \n). :param text: input text :type text:str :param font: input font :type font:str :param chr_ignore: ignore not supported character :type chr_ignore:bool :return: None
Below is the the instruction that describes the task: ### Input: r""" Print art text (support \n). :param text: input text :type text:str :param font: input font :type font:str :param chr_ignore: ignore not supported character :type chr_ignore:bool :return: None ### Response: def tprint(text, font=DEFAULT_FONT, chr_ignore=True): r""" Print art text (support \n). :param text: input text :type text:str :param font: input font :type font:str :param chr_ignore: ignore not supported character :type chr_ignore:bool :return: None """ result = text2art(text, font=font, chr_ignore=chr_ignore) print(result)
def request(self, method, params): """Send a JSONRPC request.""" identifier = random.randint(1, 1000) self._transport.write(jsonrpc_request(method, identifier, params)) self._buffer[identifier] = {'flag': asyncio.Event()} yield from self._buffer[identifier]['flag'].wait() result = self._buffer[identifier]['data'] del self._buffer[identifier]['data'] return result
Send a JSONRPC request.
Below is the the instruction that describes the task: ### Input: Send a JSONRPC request. ### Response: def request(self, method, params): """Send a JSONRPC request.""" identifier = random.randint(1, 1000) self._transport.write(jsonrpc_request(method, identifier, params)) self._buffer[identifier] = {'flag': asyncio.Event()} yield from self._buffer[identifier]['flag'].wait() result = self._buffer[identifier]['data'] del self._buffer[identifier]['data'] return result
def import_ecdsa_privatekey_from_file(filepath, password=None): """ <Purpose> Import the encrypted ECDSA key file in 'filepath', decrypt it, and return the key object in 'securesystemslib.formats.ECDSAKEY_SCHEMA' format. The 'cryptography' library is currently supported and performs the actual cryptographic routine. <Arguments> filepath: <filepath> file, an ECDSA encrypted key file. password: The password, or passphrase, to import the private key (i.e., the encrypted key file 'filepath' must be decrypted before the ECDSA key object can be returned. <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted or the imported key object contains an invalid key type (i.e., not 'ecdsa-sha2-nistp256'). securesystemslib.exceptions.CryptoError, if 'filepath' cannot be decrypted. <Side Effects> 'password' is used to decrypt the 'filepath' key file. <Returns> An ECDSA key object of the form: 'securesystemslib.formats.ECDSAKEY_SCHEMA'. """ # Does 'filepath' have the correct format? # Ensure the arguments have the appropriate number of objects and object # types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # If the caller does not provide a password argument, prompt for one. # Password confirmation disabled here, which should ideally happen only # when creating encrypted key files (i.e., improve usability). if password is None: # pragma: no cover # It is safe to specify the full path of 'filepath' in the prompt and not # worry about leaking sensitive information about the key's location. # However, care should be taken when including the full path in exceptions # and log files. password = get_password('Enter a password for the encrypted ECDSA' ' key (' + Fore.RED + filepath + Fore.RESET + '): ', confirm=False) # Does 'password' have the correct format? securesystemslib.formats.PASSWORD_SCHEMA.check_match(password) # Store the encrypted contents of 'filepath' prior to calling the decryption # routine. encrypted_key = None with open(filepath, 'rb') as file_object: encrypted_key = file_object.read() # Decrypt the loaded key file, calling the 'cryptography' library to generate # the derived encryption key from 'password'. Raise # 'securesystemslib.exceptions.CryptoError' if the decryption fails. key_object = securesystemslib.keys.decrypt_key(encrypted_key.decode('utf-8'), password) # Raise an exception if an unexpected key type is imported. if key_object['keytype'] != 'ecdsa-sha2-nistp256': message = 'Invalid key type loaded: ' + repr(key_object['keytype']) raise securesystemslib.exceptions.FormatError(message) # Add "keyid_hash_algorithms" so that equal ecdsa keys with different keyids # can be associated using supported keyid_hash_algorithms. key_object['keyid_hash_algorithms'] = \ securesystemslib.settings.HASH_ALGORITHMS return key_object
<Purpose> Import the encrypted ECDSA key file in 'filepath', decrypt it, and return the key object in 'securesystemslib.formats.ECDSAKEY_SCHEMA' format. The 'cryptography' library is currently supported and performs the actual cryptographic routine. <Arguments> filepath: <filepath> file, an ECDSA encrypted key file. password: The password, or passphrase, to import the private key (i.e., the encrypted key file 'filepath' must be decrypted before the ECDSA key object can be returned. <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted or the imported key object contains an invalid key type (i.e., not 'ecdsa-sha2-nistp256'). securesystemslib.exceptions.CryptoError, if 'filepath' cannot be decrypted. <Side Effects> 'password' is used to decrypt the 'filepath' key file. <Returns> An ECDSA key object of the form: 'securesystemslib.formats.ECDSAKEY_SCHEMA'.
Below is the the instruction that describes the task: ### Input: <Purpose> Import the encrypted ECDSA key file in 'filepath', decrypt it, and return the key object in 'securesystemslib.formats.ECDSAKEY_SCHEMA' format. The 'cryptography' library is currently supported and performs the actual cryptographic routine. <Arguments> filepath: <filepath> file, an ECDSA encrypted key file. password: The password, or passphrase, to import the private key (i.e., the encrypted key file 'filepath' must be decrypted before the ECDSA key object can be returned. <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted or the imported key object contains an invalid key type (i.e., not 'ecdsa-sha2-nistp256'). securesystemslib.exceptions.CryptoError, if 'filepath' cannot be decrypted. <Side Effects> 'password' is used to decrypt the 'filepath' key file. <Returns> An ECDSA key object of the form: 'securesystemslib.formats.ECDSAKEY_SCHEMA'. ### Response: def import_ecdsa_privatekey_from_file(filepath, password=None): """ <Purpose> Import the encrypted ECDSA key file in 'filepath', decrypt it, and return the key object in 'securesystemslib.formats.ECDSAKEY_SCHEMA' format. The 'cryptography' library is currently supported and performs the actual cryptographic routine. <Arguments> filepath: <filepath> file, an ECDSA encrypted key file. password: The password, or passphrase, to import the private key (i.e., the encrypted key file 'filepath' must be decrypted before the ECDSA key object can be returned. <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted or the imported key object contains an invalid key type (i.e., not 'ecdsa-sha2-nistp256'). securesystemslib.exceptions.CryptoError, if 'filepath' cannot be decrypted. <Side Effects> 'password' is used to decrypt the 'filepath' key file. <Returns> An ECDSA key object of the form: 'securesystemslib.formats.ECDSAKEY_SCHEMA'. """ # Does 'filepath' have the correct format? # Ensure the arguments have the appropriate number of objects and object # types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # If the caller does not provide a password argument, prompt for one. # Password confirmation disabled here, which should ideally happen only # when creating encrypted key files (i.e., improve usability). if password is None: # pragma: no cover # It is safe to specify the full path of 'filepath' in the prompt and not # worry about leaking sensitive information about the key's location. # However, care should be taken when including the full path in exceptions # and log files. password = get_password('Enter a password for the encrypted ECDSA' ' key (' + Fore.RED + filepath + Fore.RESET + '): ', confirm=False) # Does 'password' have the correct format? securesystemslib.formats.PASSWORD_SCHEMA.check_match(password) # Store the encrypted contents of 'filepath' prior to calling the decryption # routine. encrypted_key = None with open(filepath, 'rb') as file_object: encrypted_key = file_object.read() # Decrypt the loaded key file, calling the 'cryptography' library to generate # the derived encryption key from 'password'. Raise # 'securesystemslib.exceptions.CryptoError' if the decryption fails. key_object = securesystemslib.keys.decrypt_key(encrypted_key.decode('utf-8'), password) # Raise an exception if an unexpected key type is imported. if key_object['keytype'] != 'ecdsa-sha2-nistp256': message = 'Invalid key type loaded: ' + repr(key_object['keytype']) raise securesystemslib.exceptions.FormatError(message) # Add "keyid_hash_algorithms" so that equal ecdsa keys with different keyids # can be associated using supported keyid_hash_algorithms. key_object['keyid_hash_algorithms'] = \ securesystemslib.settings.HASH_ALGORITHMS return key_object
def calculate_P(self, T, P, method): r'''Method to calculate pressure-dependent liquid viscosity at temperature `T` and pressure `P` with a given method. This method has no exception handling; see `TP_dependent_property` for that. Parameters ---------- T : float Temperature at which to calculate viscosity, [K] P : float Pressure at which to calculate viscosity, [K] method : str Name of the method to use Returns ------- mu : float Viscosity of the liquid at T and P, [Pa*S] ''' if method == LUCAS: mu = self.T_dependent_property(T) Psat = self.Psat(T) if hasattr(self.Psat, '__call__') else self.Psat mu = Lucas(T, P, self.Tc, self.Pc, self.omega, Psat, mu) elif method == COOLPROP: mu = PropsSI('V', 'T', T, 'P', P, self.CASRN) elif method in self.tabular_data: mu = self.interpolate_P(T, P, method) return mu
r'''Method to calculate pressure-dependent liquid viscosity at temperature `T` and pressure `P` with a given method. This method has no exception handling; see `TP_dependent_property` for that. Parameters ---------- T : float Temperature at which to calculate viscosity, [K] P : float Pressure at which to calculate viscosity, [K] method : str Name of the method to use Returns ------- mu : float Viscosity of the liquid at T and P, [Pa*S]
Below is the the instruction that describes the task: ### Input: r'''Method to calculate pressure-dependent liquid viscosity at temperature `T` and pressure `P` with a given method. This method has no exception handling; see `TP_dependent_property` for that. Parameters ---------- T : float Temperature at which to calculate viscosity, [K] P : float Pressure at which to calculate viscosity, [K] method : str Name of the method to use Returns ------- mu : float Viscosity of the liquid at T and P, [Pa*S] ### Response: def calculate_P(self, T, P, method): r'''Method to calculate pressure-dependent liquid viscosity at temperature `T` and pressure `P` with a given method. This method has no exception handling; see `TP_dependent_property` for that. Parameters ---------- T : float Temperature at which to calculate viscosity, [K] P : float Pressure at which to calculate viscosity, [K] method : str Name of the method to use Returns ------- mu : float Viscosity of the liquid at T and P, [Pa*S] ''' if method == LUCAS: mu = self.T_dependent_property(T) Psat = self.Psat(T) if hasattr(self.Psat, '__call__') else self.Psat mu = Lucas(T, P, self.Tc, self.Pc, self.omega, Psat, mu) elif method == COOLPROP: mu = PropsSI('V', 'T', T, 'P', P, self.CASRN) elif method in self.tabular_data: mu = self.interpolate_P(T, P, method) return mu
def autolink(self, link, is_email=False): """Rendering a given link or email address. :param link: link content or email address. :param is_email: whether this is an email or not. """ text = link = escape(link) if is_email: link = 'mailto:%s' % link return '<a href="%s">%s</a>' % (link, text)
Rendering a given link or email address. :param link: link content or email address. :param is_email: whether this is an email or not.
Below is the the instruction that describes the task: ### Input: Rendering a given link or email address. :param link: link content or email address. :param is_email: whether this is an email or not. ### Response: def autolink(self, link, is_email=False): """Rendering a given link or email address. :param link: link content or email address. :param is_email: whether this is an email or not. """ text = link = escape(link) if is_email: link = 'mailto:%s' % link return '<a href="%s">%s</a>' % (link, text)
def press_button(self, value): """ Click the button with the given label. """ button = find_button(world.browser, value) if not button: raise AssertionError( "Cannot find a button named '{}'.".format(value)) button.click()
Click the button with the given label.
Below is the the instruction that describes the task: ### Input: Click the button with the given label. ### Response: def press_button(self, value): """ Click the button with the given label. """ button = find_button(world.browser, value) if not button: raise AssertionError( "Cannot find a button named '{}'.".format(value)) button.click()
def _on_timeline_update(self, event): """Timeline update broadcast from Abode SocketIO server.""" if isinstance(event, (tuple, list)): event = event[0] event_type = event.get('event_type') event_code = event.get('event_code') if not event_type or not event_code: _LOGGER.warning("Invalid timeline update event: %s", event) return _LOGGER.debug("Timeline event received: %s - %s (%s)", event.get('event_name'), event_type, event_code) # Compress our callbacks into those that match this event_code # or ones registered to get callbacks for all events codes = (event_code, TIMELINE.ALL['event_code']) all_callbacks = [self._timeline_callbacks[code] for code in codes] for callbacks in all_callbacks: for callback in callbacks: _execute_callback(callback, event) # Attempt to map the event code to a group and callback event_group = TIMELINE.map_event_code(event_code) if event_group: for callback in self._event_callbacks.get(event_group, ()): _execute_callback(callback, event)
Timeline update broadcast from Abode SocketIO server.
Below is the the instruction that describes the task: ### Input: Timeline update broadcast from Abode SocketIO server. ### Response: def _on_timeline_update(self, event): """Timeline update broadcast from Abode SocketIO server.""" if isinstance(event, (tuple, list)): event = event[0] event_type = event.get('event_type') event_code = event.get('event_code') if not event_type or not event_code: _LOGGER.warning("Invalid timeline update event: %s", event) return _LOGGER.debug("Timeline event received: %s - %s (%s)", event.get('event_name'), event_type, event_code) # Compress our callbacks into those that match this event_code # or ones registered to get callbacks for all events codes = (event_code, TIMELINE.ALL['event_code']) all_callbacks = [self._timeline_callbacks[code] for code in codes] for callbacks in all_callbacks: for callback in callbacks: _execute_callback(callback, event) # Attempt to map the event code to a group and callback event_group = TIMELINE.map_event_code(event_code) if event_group: for callback in self._event_callbacks.get(event_group, ()): _execute_callback(callback, event)
def _limit_and_df(self, query, limit, as_df=False): """adds a limit (limit==None := no limit) to any query and allow a return as pandas.DataFrame :param bool as_df: if is set to True results return as pandas.DataFrame :param `sqlalchemy.orm.query.Query` query: SQL Alchemy query :param int limit: maximum number of results :return: query result of pyctd.manager.models.XY objects """ if limit: query = query.limit(limit) if as_df: results = read_sql(query.statement, self.engine) else: results = query.all() return results
adds a limit (limit==None := no limit) to any query and allow a return as pandas.DataFrame :param bool as_df: if is set to True results return as pandas.DataFrame :param `sqlalchemy.orm.query.Query` query: SQL Alchemy query :param int limit: maximum number of results :return: query result of pyctd.manager.models.XY objects
Below is the the instruction that describes the task: ### Input: adds a limit (limit==None := no limit) to any query and allow a return as pandas.DataFrame :param bool as_df: if is set to True results return as pandas.DataFrame :param `sqlalchemy.orm.query.Query` query: SQL Alchemy query :param int limit: maximum number of results :return: query result of pyctd.manager.models.XY objects ### Response: def _limit_and_df(self, query, limit, as_df=False): """adds a limit (limit==None := no limit) to any query and allow a return as pandas.DataFrame :param bool as_df: if is set to True results return as pandas.DataFrame :param `sqlalchemy.orm.query.Query` query: SQL Alchemy query :param int limit: maximum number of results :return: query result of pyctd.manager.models.XY objects """ if limit: query = query.limit(limit) if as_df: results = read_sql(query.statement, self.engine) else: results = query.all() return results
def All(*validators): """ Combines all the given validator callables into one, running all the validators in sequence on the given value. """ @wraps(All) def built(value): for validator in validators: value = validator(value) return value return built
Combines all the given validator callables into one, running all the validators in sequence on the given value.
Below is the the instruction that describes the task: ### Input: Combines all the given validator callables into one, running all the validators in sequence on the given value. ### Response: def All(*validators): """ Combines all the given validator callables into one, running all the validators in sequence on the given value. """ @wraps(All) def built(value): for validator in validators: value = validator(value) return value return built
def add(self, name, mech, usage='both', init_lifetime=None, accept_lifetime=None, impersonator=None, store=None): """Acquire more credentials to add to the current set This method works like :meth:`acquire`, except that it adds the acquired credentials for a single mechanism to a copy of the current set, instead of creating a new set for multiple mechanisms. Unlike :meth:`acquire`, you cannot pass None desired name or mechanism. If the `impersonator` argument is used, the credentials will impersonate the given name using the impersonator credentials (:requires-ext:`s4u`). If the `store` argument is used, the credentials will be acquired from the given credential store (:requires-ext:`cred_store`). Otherwise, the credentials are acquired from the default store. The credential store information is a dictionary containing mechanisms-specific keys and values pointing to a credential store or stores. Note that the `store` argument is not compatible with the `impersonator` argument. Args: name (Name): the name associated with the credentials mech (OID): the desired :class:`MechType` to be used with the credentials usage (str): the usage for the credentials -- either 'both', 'initiate', or 'accept' init_lifetime (int): the desired initiate lifetime of the credentials, or None for indefinite accept_lifetime (int): the desired accept lifetime of the credentials, or None for indefinite impersonator (Credentials): the credentials to use to impersonate the given name, or None to not acquire normally (:requires-ext:`s4u`) store (dict): the credential store information pointing to the credential store from which to acquire the credentials, or None for the default store (:requires-ext:`cred_store`) Returns: Credentials: the credentials set containing the current credentials and the newly acquired ones. Raises: BadMechanismError BadNameTypeError BadNameError DuplicateCredentialsElementError ExpiredCredentialsError MissingCredentialsError """ if store is not None and impersonator is not None: raise ValueError('You cannot use both the `impersonator` and ' '`store` arguments at the same time') if store is not None: if rcred_cred_store is None: raise NotImplementedError("Your GSSAPI implementation does " "not have support for manipulating " "credential stores") store = _encode_dict(store) res = rcred_cred_store.add_cred_from(store, self, name, mech, usage, init_lifetime, accept_lifetime) elif impersonator is not None: if rcred_s4u is None: raise NotImplementedError("Your GSSAPI implementation does " "not have support for S4U") res = rcred_s4u.add_cred_impersonate_name(self, impersonator, name, mech, usage, init_lifetime, accept_lifetime) else: res = rcreds.add_cred(self, name, mech, usage, init_lifetime, accept_lifetime) return Credentials(res.creds)
Acquire more credentials to add to the current set This method works like :meth:`acquire`, except that it adds the acquired credentials for a single mechanism to a copy of the current set, instead of creating a new set for multiple mechanisms. Unlike :meth:`acquire`, you cannot pass None desired name or mechanism. If the `impersonator` argument is used, the credentials will impersonate the given name using the impersonator credentials (:requires-ext:`s4u`). If the `store` argument is used, the credentials will be acquired from the given credential store (:requires-ext:`cred_store`). Otherwise, the credentials are acquired from the default store. The credential store information is a dictionary containing mechanisms-specific keys and values pointing to a credential store or stores. Note that the `store` argument is not compatible with the `impersonator` argument. Args: name (Name): the name associated with the credentials mech (OID): the desired :class:`MechType` to be used with the credentials usage (str): the usage for the credentials -- either 'both', 'initiate', or 'accept' init_lifetime (int): the desired initiate lifetime of the credentials, or None for indefinite accept_lifetime (int): the desired accept lifetime of the credentials, or None for indefinite impersonator (Credentials): the credentials to use to impersonate the given name, or None to not acquire normally (:requires-ext:`s4u`) store (dict): the credential store information pointing to the credential store from which to acquire the credentials, or None for the default store (:requires-ext:`cred_store`) Returns: Credentials: the credentials set containing the current credentials and the newly acquired ones. Raises: BadMechanismError BadNameTypeError BadNameError DuplicateCredentialsElementError ExpiredCredentialsError MissingCredentialsError
Below is the the instruction that describes the task: ### Input: Acquire more credentials to add to the current set This method works like :meth:`acquire`, except that it adds the acquired credentials for a single mechanism to a copy of the current set, instead of creating a new set for multiple mechanisms. Unlike :meth:`acquire`, you cannot pass None desired name or mechanism. If the `impersonator` argument is used, the credentials will impersonate the given name using the impersonator credentials (:requires-ext:`s4u`). If the `store` argument is used, the credentials will be acquired from the given credential store (:requires-ext:`cred_store`). Otherwise, the credentials are acquired from the default store. The credential store information is a dictionary containing mechanisms-specific keys and values pointing to a credential store or stores. Note that the `store` argument is not compatible with the `impersonator` argument. Args: name (Name): the name associated with the credentials mech (OID): the desired :class:`MechType` to be used with the credentials usage (str): the usage for the credentials -- either 'both', 'initiate', or 'accept' init_lifetime (int): the desired initiate lifetime of the credentials, or None for indefinite accept_lifetime (int): the desired accept lifetime of the credentials, or None for indefinite impersonator (Credentials): the credentials to use to impersonate the given name, or None to not acquire normally (:requires-ext:`s4u`) store (dict): the credential store information pointing to the credential store from which to acquire the credentials, or None for the default store (:requires-ext:`cred_store`) Returns: Credentials: the credentials set containing the current credentials and the newly acquired ones. Raises: BadMechanismError BadNameTypeError BadNameError DuplicateCredentialsElementError ExpiredCredentialsError MissingCredentialsError ### Response: def add(self, name, mech, usage='both', init_lifetime=None, accept_lifetime=None, impersonator=None, store=None): """Acquire more credentials to add to the current set This method works like :meth:`acquire`, except that it adds the acquired credentials for a single mechanism to a copy of the current set, instead of creating a new set for multiple mechanisms. Unlike :meth:`acquire`, you cannot pass None desired name or mechanism. If the `impersonator` argument is used, the credentials will impersonate the given name using the impersonator credentials (:requires-ext:`s4u`). If the `store` argument is used, the credentials will be acquired from the given credential store (:requires-ext:`cred_store`). Otherwise, the credentials are acquired from the default store. The credential store information is a dictionary containing mechanisms-specific keys and values pointing to a credential store or stores. Note that the `store` argument is not compatible with the `impersonator` argument. Args: name (Name): the name associated with the credentials mech (OID): the desired :class:`MechType` to be used with the credentials usage (str): the usage for the credentials -- either 'both', 'initiate', or 'accept' init_lifetime (int): the desired initiate lifetime of the credentials, or None for indefinite accept_lifetime (int): the desired accept lifetime of the credentials, or None for indefinite impersonator (Credentials): the credentials to use to impersonate the given name, or None to not acquire normally (:requires-ext:`s4u`) store (dict): the credential store information pointing to the credential store from which to acquire the credentials, or None for the default store (:requires-ext:`cred_store`) Returns: Credentials: the credentials set containing the current credentials and the newly acquired ones. Raises: BadMechanismError BadNameTypeError BadNameError DuplicateCredentialsElementError ExpiredCredentialsError MissingCredentialsError """ if store is not None and impersonator is not None: raise ValueError('You cannot use both the `impersonator` and ' '`store` arguments at the same time') if store is not None: if rcred_cred_store is None: raise NotImplementedError("Your GSSAPI implementation does " "not have support for manipulating " "credential stores") store = _encode_dict(store) res = rcred_cred_store.add_cred_from(store, self, name, mech, usage, init_lifetime, accept_lifetime) elif impersonator is not None: if rcred_s4u is None: raise NotImplementedError("Your GSSAPI implementation does " "not have support for S4U") res = rcred_s4u.add_cred_impersonate_name(self, impersonator, name, mech, usage, init_lifetime, accept_lifetime) else: res = rcreds.add_cred(self, name, mech, usage, init_lifetime, accept_lifetime) return Credentials(res.creds)
def nurbs_to_bspline(obj, **kwargs): """ Extracts the non-rational components from rational parametric shapes, if possible. The possibility of converting a rational shape to a non-rational one depends on the weights vector. :param obj: NURBS shape :type obj: NURBS.Curve, NURBS.Surface or NURBS.Volume :return: B-Spline shape :rtype: BSpline.Curve, BSpline.Surface or BSpline.Volume :raises: TypeError """ if not obj.rational: raise TypeError("The input must be a rational shape") # Get keyword arguments tol = kwargs.get('tol', 10e-8) # Test for non-rational component extraction for w in obj.weights: if abs(w - 1.0) > tol: print("Cannot extract non-rational components") return obj # NURBS -> B-Spline if isinstance(obj, NURBS.Curve): return _convert.convert_curve(obj, BSpline) elif isinstance(obj, NURBS.Surface): return _convert.convert_surface(obj, BSpline) elif isinstance(obj, NURBS.Volume): return _convert.convert_volume(obj, BSpline) else: raise TypeError("Input must be an instance of NURBS curve, surface or volume")
Extracts the non-rational components from rational parametric shapes, if possible. The possibility of converting a rational shape to a non-rational one depends on the weights vector. :param obj: NURBS shape :type obj: NURBS.Curve, NURBS.Surface or NURBS.Volume :return: B-Spline shape :rtype: BSpline.Curve, BSpline.Surface or BSpline.Volume :raises: TypeError
Below is the the instruction that describes the task: ### Input: Extracts the non-rational components from rational parametric shapes, if possible. The possibility of converting a rational shape to a non-rational one depends on the weights vector. :param obj: NURBS shape :type obj: NURBS.Curve, NURBS.Surface or NURBS.Volume :return: B-Spline shape :rtype: BSpline.Curve, BSpline.Surface or BSpline.Volume :raises: TypeError ### Response: def nurbs_to_bspline(obj, **kwargs): """ Extracts the non-rational components from rational parametric shapes, if possible. The possibility of converting a rational shape to a non-rational one depends on the weights vector. :param obj: NURBS shape :type obj: NURBS.Curve, NURBS.Surface or NURBS.Volume :return: B-Spline shape :rtype: BSpline.Curve, BSpline.Surface or BSpline.Volume :raises: TypeError """ if not obj.rational: raise TypeError("The input must be a rational shape") # Get keyword arguments tol = kwargs.get('tol', 10e-8) # Test for non-rational component extraction for w in obj.weights: if abs(w - 1.0) > tol: print("Cannot extract non-rational components") return obj # NURBS -> B-Spline if isinstance(obj, NURBS.Curve): return _convert.convert_curve(obj, BSpline) elif isinstance(obj, NURBS.Surface): return _convert.convert_surface(obj, BSpline) elif isinstance(obj, NURBS.Volume): return _convert.convert_volume(obj, BSpline) else: raise TypeError("Input must be an instance of NURBS curve, surface or volume")
def debug_shell(user_ns, user_global_ns, traceback=None, execWrapper=None): """ Spawns some interactive shell. Tries to use IPython if available. Falls back to :func:`pdb.post_mortem` or :func:`simple_debug_shell`. :param dict[str] user_ns: :param dict[str] user_global_ns: :param traceback: :param execWrapper: :return: nothing """ ipshell = None try: # noinspection PyPackageRequirements import IPython have_ipython = True except ImportError: have_ipython = False if not ipshell and traceback and have_ipython: # noinspection PyBroadException try: # noinspection PyPackageRequirements,PyUnresolvedReferences from IPython.core.debugger import Pdb # noinspection PyPackageRequirements,PyUnresolvedReferences from IPython.terminal.debugger import TerminalPdb # noinspection PyPackageRequirements,PyUnresolvedReferences from IPython.terminal.ipapp import TerminalIPythonApp ipapp = TerminalIPythonApp.instance() ipapp.interact = False # Avoid output (banner, prints) ipapp.initialize(argv=[]) def_colors = ipapp.shell.colors pdb_obj = TerminalPdb(def_colors) pdb_obj.botframe = None # not sure. exception otherwise at quit def ipshell(): """ Run the IPython shell. """ pdb_obj.interaction(None, traceback=traceback) except Exception: print("IPython Pdb exception:") better_exchook(*sys.exc_info(), autodebugshell=False) if not ipshell and have_ipython: # noinspection PyBroadException try: # noinspection PyPackageRequirements,PyUnresolvedReferences import IPython # noinspection PyPackageRequirements,PyUnresolvedReferences import IPython.terminal.embed class DummyMod(object): """Dummy module""" module = DummyMod() module.__dict__ = user_global_ns module.__name__ = "_DummyMod" if "__name__" not in user_ns: user_ns = user_ns.copy() user_ns["__name__"] = "_DummyUserNsMod" ipshell = IPython.terminal.embed.InteractiveShellEmbed.instance( user_ns=user_ns, user_module=module) except Exception: print("IPython not available:") better_exchook(*sys.exc_info(), autodebugshell=False) else: if execWrapper: old = ipshell.run_code ipshell.run_code = lambda code: execWrapper(lambda: old(code)) if ipshell: ipshell() else: print("Use simple debug shell:") if traceback: import pdb pdb.post_mortem(traceback) else: simple_debug_shell(user_global_ns, user_ns)
Spawns some interactive shell. Tries to use IPython if available. Falls back to :func:`pdb.post_mortem` or :func:`simple_debug_shell`. :param dict[str] user_ns: :param dict[str] user_global_ns: :param traceback: :param execWrapper: :return: nothing
Below is the the instruction that describes the task: ### Input: Spawns some interactive shell. Tries to use IPython if available. Falls back to :func:`pdb.post_mortem` or :func:`simple_debug_shell`. :param dict[str] user_ns: :param dict[str] user_global_ns: :param traceback: :param execWrapper: :return: nothing ### Response: def debug_shell(user_ns, user_global_ns, traceback=None, execWrapper=None): """ Spawns some interactive shell. Tries to use IPython if available. Falls back to :func:`pdb.post_mortem` or :func:`simple_debug_shell`. :param dict[str] user_ns: :param dict[str] user_global_ns: :param traceback: :param execWrapper: :return: nothing """ ipshell = None try: # noinspection PyPackageRequirements import IPython have_ipython = True except ImportError: have_ipython = False if not ipshell and traceback and have_ipython: # noinspection PyBroadException try: # noinspection PyPackageRequirements,PyUnresolvedReferences from IPython.core.debugger import Pdb # noinspection PyPackageRequirements,PyUnresolvedReferences from IPython.terminal.debugger import TerminalPdb # noinspection PyPackageRequirements,PyUnresolvedReferences from IPython.terminal.ipapp import TerminalIPythonApp ipapp = TerminalIPythonApp.instance() ipapp.interact = False # Avoid output (banner, prints) ipapp.initialize(argv=[]) def_colors = ipapp.shell.colors pdb_obj = TerminalPdb(def_colors) pdb_obj.botframe = None # not sure. exception otherwise at quit def ipshell(): """ Run the IPython shell. """ pdb_obj.interaction(None, traceback=traceback) except Exception: print("IPython Pdb exception:") better_exchook(*sys.exc_info(), autodebugshell=False) if not ipshell and have_ipython: # noinspection PyBroadException try: # noinspection PyPackageRequirements,PyUnresolvedReferences import IPython # noinspection PyPackageRequirements,PyUnresolvedReferences import IPython.terminal.embed class DummyMod(object): """Dummy module""" module = DummyMod() module.__dict__ = user_global_ns module.__name__ = "_DummyMod" if "__name__" not in user_ns: user_ns = user_ns.copy() user_ns["__name__"] = "_DummyUserNsMod" ipshell = IPython.terminal.embed.InteractiveShellEmbed.instance( user_ns=user_ns, user_module=module) except Exception: print("IPython not available:") better_exchook(*sys.exc_info(), autodebugshell=False) else: if execWrapper: old = ipshell.run_code ipshell.run_code = lambda code: execWrapper(lambda: old(code)) if ipshell: ipshell() else: print("Use simple debug shell:") if traceback: import pdb pdb.post_mortem(traceback) else: simple_debug_shell(user_global_ns, user_ns)
def teardown(self): """ Clean up all resources when we're done with them. """ self.containers._teardown() self.networks._teardown() self.volumes._teardown() # We need to close the underlying APIClient explicitly to avoid # ResourceWarnings from unclosed HTTP connections. self._client.api.close()
Clean up all resources when we're done with them.
Below is the the instruction that describes the task: ### Input: Clean up all resources when we're done with them. ### Response: def teardown(self): """ Clean up all resources when we're done with them. """ self.containers._teardown() self.networks._teardown() self.volumes._teardown() # We need to close the underlying APIClient explicitly to avoid # ResourceWarnings from unclosed HTTP connections. self._client.api.close()
def plotwrapper(f): """ This decorator allows for PyMC arguments of various types to be passed to the plotting functions. It identifies the type of object and locates its trace(s), then passes the data to the wrapped plotting function. """ def wrapper(pymc_obj, *args, **kwargs): start = 0 if 'start' in kwargs: start = kwargs.pop('start') # Figure out what type of object it is try: # First try Model type for variable in pymc_obj._variables_to_tally: # Plot object if variable._plot is not False: data = pymc_obj.trace(variable.__name__)[start:] if size(data[-1]) >= 10 and variable._plot != True: continue elif variable.dtype is dtype('object'): continue name = variable.__name__ if args: name = '%s_%s' % (args[0], variable.__name__) f(data, name, *args, **kwargs) return except AttributeError: pass try: # Then try Trace type data = pymc_obj()[:] name = pymc_obj.name f(data, name, *args, **kwargs) return except (AttributeError, TypeError): pass try: # Then try Node type if pymc_obj._plot is not False: data = pymc_obj.trace()[start:] # This is deprecated. DH name = pymc_obj.__name__ f(data, name, *args, **kwargs) return except AttributeError: pass if isinstance(pymc_obj, dict): # Then try dictionary for i in pymc_obj: data = pymc_obj[i][start:] if args: i = '%s_%s' % (args[0], i) elif 'name' in kwargs: i = '%s_%s' % (kwargs.pop('name'), i) f(data, i, *args, **kwargs) return # If others fail, assume that raw data is passed f(pymc_obj, *args, **kwargs) wrapper.__doc__ = f.__doc__ wrapper.__name__ = f.__name__ return wrapper
This decorator allows for PyMC arguments of various types to be passed to the plotting functions. It identifies the type of object and locates its trace(s), then passes the data to the wrapped plotting function.
Below is the the instruction that describes the task: ### Input: This decorator allows for PyMC arguments of various types to be passed to the plotting functions. It identifies the type of object and locates its trace(s), then passes the data to the wrapped plotting function. ### Response: def plotwrapper(f): """ This decorator allows for PyMC arguments of various types to be passed to the plotting functions. It identifies the type of object and locates its trace(s), then passes the data to the wrapped plotting function. """ def wrapper(pymc_obj, *args, **kwargs): start = 0 if 'start' in kwargs: start = kwargs.pop('start') # Figure out what type of object it is try: # First try Model type for variable in pymc_obj._variables_to_tally: # Plot object if variable._plot is not False: data = pymc_obj.trace(variable.__name__)[start:] if size(data[-1]) >= 10 and variable._plot != True: continue elif variable.dtype is dtype('object'): continue name = variable.__name__ if args: name = '%s_%s' % (args[0], variable.__name__) f(data, name, *args, **kwargs) return except AttributeError: pass try: # Then try Trace type data = pymc_obj()[:] name = pymc_obj.name f(data, name, *args, **kwargs) return except (AttributeError, TypeError): pass try: # Then try Node type if pymc_obj._plot is not False: data = pymc_obj.trace()[start:] # This is deprecated. DH name = pymc_obj.__name__ f(data, name, *args, **kwargs) return except AttributeError: pass if isinstance(pymc_obj, dict): # Then try dictionary for i in pymc_obj: data = pymc_obj[i][start:] if args: i = '%s_%s' % (args[0], i) elif 'name' in kwargs: i = '%s_%s' % (kwargs.pop('name'), i) f(data, i, *args, **kwargs) return # If others fail, assume that raw data is passed f(pymc_obj, *args, **kwargs) wrapper.__doc__ = f.__doc__ wrapper.__name__ = f.__name__ return wrapper
def execute(self): """ Execute the actions necessary to perform a `molecule init role` and returns None. :return: None """ role_name = self._command_args['role_name'] role_directory = os.getcwd() msg = 'Initializing new role {}...'.format(role_name) LOG.info(msg) if os.path.isdir(role_name): msg = ('The directory {} exists. ' 'Cannot create new role.').format(role_name) util.sysexit_with_message(msg) template_directory = '' if 'template' in self._command_args.keys(): template_directory = self._command_args['template'] else: template_directory = 'role' self._process_templates(template_directory, self._command_args, role_directory) scenario_base_directory = os.path.join(role_directory, role_name) templates = [ 'scenario/driver/{driver_name}'.format(**self._command_args), 'scenario/verifier/{verifier_name}'.format(**self._command_args), ] for template in templates: self._process_templates(template, self._command_args, scenario_base_directory) self._process_templates('molecule', self._command_args, role_directory) role_directory = os.path.join(role_directory, role_name) msg = 'Initialized role in {} successfully.'.format(role_directory) LOG.success(msg)
Execute the actions necessary to perform a `molecule init role` and returns None. :return: None
Below is the the instruction that describes the task: ### Input: Execute the actions necessary to perform a `molecule init role` and returns None. :return: None ### Response: def execute(self): """ Execute the actions necessary to perform a `molecule init role` and returns None. :return: None """ role_name = self._command_args['role_name'] role_directory = os.getcwd() msg = 'Initializing new role {}...'.format(role_name) LOG.info(msg) if os.path.isdir(role_name): msg = ('The directory {} exists. ' 'Cannot create new role.').format(role_name) util.sysexit_with_message(msg) template_directory = '' if 'template' in self._command_args.keys(): template_directory = self._command_args['template'] else: template_directory = 'role' self._process_templates(template_directory, self._command_args, role_directory) scenario_base_directory = os.path.join(role_directory, role_name) templates = [ 'scenario/driver/{driver_name}'.format(**self._command_args), 'scenario/verifier/{verifier_name}'.format(**self._command_args), ] for template in templates: self._process_templates(template, self._command_args, scenario_base_directory) self._process_templates('molecule', self._command_args, role_directory) role_directory = os.path.join(role_directory, role_name) msg = 'Initialized role in {} successfully.'.format(role_directory) LOG.success(msg)
def get_vpnv4fs_table(self): """Returns global VPNv4 Flow Specification table. Creates the table if it does not exist. """ vpnv4fs_table = self._global_tables.get(RF_VPNv4_FLOWSPEC) # Lazy initialization of the table. if not vpnv4fs_table: vpnv4fs_table = VPNv4FlowSpecTable(self._core_service, self._signal_bus) self._global_tables[RF_VPNv4_FLOWSPEC] = vpnv4fs_table self._tables[(None, RF_VPNv4_FLOWSPEC)] = vpnv4fs_table return vpnv4fs_table
Returns global VPNv4 Flow Specification table. Creates the table if it does not exist.
Below is the the instruction that describes the task: ### Input: Returns global VPNv4 Flow Specification table. Creates the table if it does not exist. ### Response: def get_vpnv4fs_table(self): """Returns global VPNv4 Flow Specification table. Creates the table if it does not exist. """ vpnv4fs_table = self._global_tables.get(RF_VPNv4_FLOWSPEC) # Lazy initialization of the table. if not vpnv4fs_table: vpnv4fs_table = VPNv4FlowSpecTable(self._core_service, self._signal_bus) self._global_tables[RF_VPNv4_FLOWSPEC] = vpnv4fs_table self._tables[(None, RF_VPNv4_FLOWSPEC)] = vpnv4fs_table return vpnv4fs_table
def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader. """ return {self.BLOB_KEY_PARAM: self._blob_key, self.START_FILE_INDEX_PARAM: self._start_file_index, self.END_FILE_INDEX_PARAM: self._end_file_index, self.OFFSET_PARAM: self._next_offset()}
Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader.
Below is the the instruction that describes the task: ### Input: Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader. ### Response: def to_json(self): """Returns an input shard state for the remaining inputs. Returns: A json-izable version of the remaining InputReader. """ return {self.BLOB_KEY_PARAM: self._blob_key, self.START_FILE_INDEX_PARAM: self._start_file_index, self.END_FILE_INDEX_PARAM: self._end_file_index, self.OFFSET_PARAM: self._next_offset()}
def connect_post_namespaced_pod_proxy_with_path(self, name, namespace, path, **kwargs): # noqa: E501 """connect_post_namespaced_pod_proxy_with_path # noqa: E501 connect POST requests to proxy of Pod # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_post_namespaced_pod_proxy_with_path(name, namespace, path, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PodProxyOptions (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str path: path to the resource (required) :param str path2: Path is the URL path to use for the current proxy request to pod. :return: str If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.connect_post_namespaced_pod_proxy_with_path_with_http_info(name, namespace, path, **kwargs) # noqa: E501 else: (data) = self.connect_post_namespaced_pod_proxy_with_path_with_http_info(name, namespace, path, **kwargs) # noqa: E501 return data
connect_post_namespaced_pod_proxy_with_path # noqa: E501 connect POST requests to proxy of Pod # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_post_namespaced_pod_proxy_with_path(name, namespace, path, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PodProxyOptions (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str path: path to the resource (required) :param str path2: Path is the URL path to use for the current proxy request to pod. :return: str If the method is called asynchronously, returns the request thread.
Below is the the instruction that describes the task: ### Input: connect_post_namespaced_pod_proxy_with_path # noqa: E501 connect POST requests to proxy of Pod # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_post_namespaced_pod_proxy_with_path(name, namespace, path, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PodProxyOptions (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str path: path to the resource (required) :param str path2: Path is the URL path to use for the current proxy request to pod. :return: str If the method is called asynchronously, returns the request thread. ### Response: def connect_post_namespaced_pod_proxy_with_path(self, name, namespace, path, **kwargs): # noqa: E501 """connect_post_namespaced_pod_proxy_with_path # noqa: E501 connect POST requests to proxy of Pod # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_post_namespaced_pod_proxy_with_path(name, namespace, path, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PodProxyOptions (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str path: path to the resource (required) :param str path2: Path is the URL path to use for the current proxy request to pod. :return: str If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.connect_post_namespaced_pod_proxy_with_path_with_http_info(name, namespace, path, **kwargs) # noqa: E501 else: (data) = self.connect_post_namespaced_pod_proxy_with_path_with_http_info(name, namespace, path, **kwargs) # noqa: E501 return data
def join(*vectors): r""" Takes an arbitrary number of aligned vectors of the same length and combines them into a single vector (vertically). E.g. taking two 100-sample feature vectors of once 5 and once 7 features, a 100x12 feature vector is created and returned. The feature vectors are expected to have the form samples*features i.e.:: s1 s2 s3 [...] f1 f2 [...] Parameters ---------- *vectors : sequences A number of vectors with the same number of samples. Returns ------- vector : ndarray The combined vectors. """ # check supplied arguments if len(vectors) < 2: return vectors[0] # process supplied arguments vectors = list(vectors) for i in range(len(vectors)): vectors[i] = numpy.array(vectors[i], copy=False) if vectors[i].ndim == 1: vectors[i] = numpy.array([vectors[i]], copy=False).T # treat single-value cases special (no squeezing) if 1 == len(vectors[0]): return numpy.concatenate(vectors, 1) return numpy.squeeze(numpy.concatenate(vectors, 1))
r""" Takes an arbitrary number of aligned vectors of the same length and combines them into a single vector (vertically). E.g. taking two 100-sample feature vectors of once 5 and once 7 features, a 100x12 feature vector is created and returned. The feature vectors are expected to have the form samples*features i.e.:: s1 s2 s3 [...] f1 f2 [...] Parameters ---------- *vectors : sequences A number of vectors with the same number of samples. Returns ------- vector : ndarray The combined vectors.
Below is the the instruction that describes the task: ### Input: r""" Takes an arbitrary number of aligned vectors of the same length and combines them into a single vector (vertically). E.g. taking two 100-sample feature vectors of once 5 and once 7 features, a 100x12 feature vector is created and returned. The feature vectors are expected to have the form samples*features i.e.:: s1 s2 s3 [...] f1 f2 [...] Parameters ---------- *vectors : sequences A number of vectors with the same number of samples. Returns ------- vector : ndarray The combined vectors. ### Response: def join(*vectors): r""" Takes an arbitrary number of aligned vectors of the same length and combines them into a single vector (vertically). E.g. taking two 100-sample feature vectors of once 5 and once 7 features, a 100x12 feature vector is created and returned. The feature vectors are expected to have the form samples*features i.e.:: s1 s2 s3 [...] f1 f2 [...] Parameters ---------- *vectors : sequences A number of vectors with the same number of samples. Returns ------- vector : ndarray The combined vectors. """ # check supplied arguments if len(vectors) < 2: return vectors[0] # process supplied arguments vectors = list(vectors) for i in range(len(vectors)): vectors[i] = numpy.array(vectors[i], copy=False) if vectors[i].ndim == 1: vectors[i] = numpy.array([vectors[i]], copy=False).T # treat single-value cases special (no squeezing) if 1 == len(vectors[0]): return numpy.concatenate(vectors, 1) return numpy.squeeze(numpy.concatenate(vectors, 1))
def parse_pdb_ligand_info(self, pdb_ligand_info): '''This only parses the ligand type as all the other information should be in the .cif file. The XML file has proper capitalization whereas the .cif file uses all caps for the ligand type.''' mtchs = re.findall('(<ligand.*?</ligand>)', pdb_ligand_info, re.DOTALL) for m in mtchs: if m.upper().find('CHEMICALID="{0}"'.format(self.PDBCode.upper())) != -1: ligand_type = re.match('<ligand.*?\stype="(.*?)".*?>', m, re.DOTALL) if ligand_type: self.LigandType = ligand_type.group(1)
This only parses the ligand type as all the other information should be in the .cif file. The XML file has proper capitalization whereas the .cif file uses all caps for the ligand type.
Below is the the instruction that describes the task: ### Input: This only parses the ligand type as all the other information should be in the .cif file. The XML file has proper capitalization whereas the .cif file uses all caps for the ligand type. ### Response: def parse_pdb_ligand_info(self, pdb_ligand_info): '''This only parses the ligand type as all the other information should be in the .cif file. The XML file has proper capitalization whereas the .cif file uses all caps for the ligand type.''' mtchs = re.findall('(<ligand.*?</ligand>)', pdb_ligand_info, re.DOTALL) for m in mtchs: if m.upper().find('CHEMICALID="{0}"'.format(self.PDBCode.upper())) != -1: ligand_type = re.match('<ligand.*?\stype="(.*?)".*?>', m, re.DOTALL) if ligand_type: self.LigandType = ligand_type.group(1)
def unregister(self, label: str) -> None: """ Unregisters the entries in the encoder and decoder registries which have the label ``label``. """ self.unregister_encoder(label) self.unregister_decoder(label)
Unregisters the entries in the encoder and decoder registries which have the label ``label``.
Below is the the instruction that describes the task: ### Input: Unregisters the entries in the encoder and decoder registries which have the label ``label``. ### Response: def unregister(self, label: str) -> None: """ Unregisters the entries in the encoder and decoder registries which have the label ``label``. """ self.unregister_encoder(label) self.unregister_decoder(label)
def option(self, section, option): """ Returns the value of the option """ if self.config.has_section(section): if self.config.has_option(section, option): return (True, self.config.get(section, option)) return (False, 'Option: ' + option + ' does not exist') return (False, 'Section: ' + section + ' does not exist')
Returns the value of the option
Below is the the instruction that describes the task: ### Input: Returns the value of the option ### Response: def option(self, section, option): """ Returns the value of the option """ if self.config.has_section(section): if self.config.has_option(section, option): return (True, self.config.get(section, option)) return (False, 'Option: ' + option + ' does not exist') return (False, 'Section: ' + section + ' does not exist')
def get(self, key, default=_sentinel): """ Gets the value from the key. If the key doesn't exist, the default value is returned, otherwise None. :param key: The key :param default: The default value :return: The value """ tup = self._data.get(key.lower()) if tup is not None: return tup[1] elif default is not _sentinel: return default else: return None
Gets the value from the key. If the key doesn't exist, the default value is returned, otherwise None. :param key: The key :param default: The default value :return: The value
Below is the the instruction that describes the task: ### Input: Gets the value from the key. If the key doesn't exist, the default value is returned, otherwise None. :param key: The key :param default: The default value :return: The value ### Response: def get(self, key, default=_sentinel): """ Gets the value from the key. If the key doesn't exist, the default value is returned, otherwise None. :param key: The key :param default: The default value :return: The value """ tup = self._data.get(key.lower()) if tup is not None: return tup[1] elif default is not _sentinel: return default else: return None
def get_next_input(self): """ Returns the next line of input :return: string of input """ # TODO: could override input if we get input coming in at the same time all_input = Deployment.objects.get(pk=self.id).input or '' lines = all_input.splitlines() first_line = lines[0] if len(lines) else None lines = lines[1:] if len(lines) > 1 else [] Deployment.objects.filter(pk=self.id).update(input='\n'.join(lines)) return first_line
Returns the next line of input :return: string of input
Below is the the instruction that describes the task: ### Input: Returns the next line of input :return: string of input ### Response: def get_next_input(self): """ Returns the next line of input :return: string of input """ # TODO: could override input if we get input coming in at the same time all_input = Deployment.objects.get(pk=self.id).input or '' lines = all_input.splitlines() first_line = lines[0] if len(lines) else None lines = lines[1:] if len(lines) > 1 else [] Deployment.objects.filter(pk=self.id).update(input='\n'.join(lines)) return first_line
def child(self,index): "helper for __getitem__/__setitem__" if isinstance(index,tuple): attr,i = index return getattr(self,attr)[i] else: return getattr(self,index)
helper for __getitem__/__setitem__
Below is the the instruction that describes the task: ### Input: helper for __getitem__/__setitem__ ### Response: def child(self,index): "helper for __getitem__/__setitem__" if isinstance(index,tuple): attr,i = index return getattr(self,attr)[i] else: return getattr(self,index)
def _get_layer_converter_fn(layer, add_custom_layers = False): """Get the right converter function for Keras """ layer_type = type(layer) if layer_type in _KERAS_LAYER_REGISTRY: convert_func = _KERAS_LAYER_REGISTRY[layer_type] if convert_func is _layers2.convert_activation: act_name = _layers2._get_activation_name_from_keras_layer(layer) if act_name == 'CUSTOM': return None return convert_func elif add_custom_layers: return None else: raise TypeError("Keras layer of type %s is not supported." % type(layer))
Get the right converter function for Keras
Below is the the instruction that describes the task: ### Input: Get the right converter function for Keras ### Response: def _get_layer_converter_fn(layer, add_custom_layers = False): """Get the right converter function for Keras """ layer_type = type(layer) if layer_type in _KERAS_LAYER_REGISTRY: convert_func = _KERAS_LAYER_REGISTRY[layer_type] if convert_func is _layers2.convert_activation: act_name = _layers2._get_activation_name_from_keras_layer(layer) if act_name == 'CUSTOM': return None return convert_func elif add_custom_layers: return None else: raise TypeError("Keras layer of type %s is not supported." % type(layer))
async def update(self, fields=''): '''reload object info from emby |coro| Parameters ---------- fields : str additional fields to request when updating See Also -------- refresh : same thing send : post : ''' path = 'Users/{{UserId}}/Items/{}'.format(self.id) info = await self.connector.getJson(path, remote=False, Fields='Path,Overview,'+fields ) self.object_dict.update(info) self.extras = {} return self
reload object info from emby |coro| Parameters ---------- fields : str additional fields to request when updating See Also -------- refresh : same thing send : post :
Below is the the instruction that describes the task: ### Input: reload object info from emby |coro| Parameters ---------- fields : str additional fields to request when updating See Also -------- refresh : same thing send : post : ### Response: async def update(self, fields=''): '''reload object info from emby |coro| Parameters ---------- fields : str additional fields to request when updating See Also -------- refresh : same thing send : post : ''' path = 'Users/{{UserId}}/Items/{}'.format(self.id) info = await self.connector.getJson(path, remote=False, Fields='Path,Overview,'+fields ) self.object_dict.update(info) self.extras = {} return self