code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def create(att_name: str, parsed_att: S, attribute_type: Type[T], caught_exec: Dict[Converter[S, T], Exception]): """ Helper method provided because we actually can't put that in the constructor, it creates a bug in Nose tests https://github.com/nose-devs/nose/issues/725 :param att_name: :param parsed_att: :param attribute_type: :param caught_exec: :return: """ base_msg = "Error while trying to convert value for attribute '{a}' to type <{t}>:\n" \ " - parsed value is : '{v}' of type <{tv}>\n" \ "".format(a=str(att_name), t=get_pretty_type_str(attribute_type), v=parsed_att, tv=get_pretty_type_str(type(parsed_att))) msg = StringIO() if len(list(caught_exec.keys())) > 0: msg.writelines(' - converters tried are : \n * ') msg.writelines('\n * '.join([str(converter) for converter in caught_exec.keys()])) msg.writelines(' \n Caught the following exceptions: \n') for converter, err in caught_exec.items(): msg.writelines('--------------- From ' + str(converter) + ' caught: \n') print_error_to_io_stream(err, msg) msg.write('\n') return AttrConversionException(base_msg + msg.getvalue())
Helper method provided because we actually can't put that in the constructor, it creates a bug in Nose tests https://github.com/nose-devs/nose/issues/725 :param att_name: :param parsed_att: :param attribute_type: :param caught_exec: :return:
Below is the the instruction that describes the task: ### Input: Helper method provided because we actually can't put that in the constructor, it creates a bug in Nose tests https://github.com/nose-devs/nose/issues/725 :param att_name: :param parsed_att: :param attribute_type: :param caught_exec: :return: ### Response: def create(att_name: str, parsed_att: S, attribute_type: Type[T], caught_exec: Dict[Converter[S, T], Exception]): """ Helper method provided because we actually can't put that in the constructor, it creates a bug in Nose tests https://github.com/nose-devs/nose/issues/725 :param att_name: :param parsed_att: :param attribute_type: :param caught_exec: :return: """ base_msg = "Error while trying to convert value for attribute '{a}' to type <{t}>:\n" \ " - parsed value is : '{v}' of type <{tv}>\n" \ "".format(a=str(att_name), t=get_pretty_type_str(attribute_type), v=parsed_att, tv=get_pretty_type_str(type(parsed_att))) msg = StringIO() if len(list(caught_exec.keys())) > 0: msg.writelines(' - converters tried are : \n * ') msg.writelines('\n * '.join([str(converter) for converter in caught_exec.keys()])) msg.writelines(' \n Caught the following exceptions: \n') for converter, err in caught_exec.items(): msg.writelines('--------------- From ' + str(converter) + ' caught: \n') print_error_to_io_stream(err, msg) msg.write('\n') return AttrConversionException(base_msg + msg.getvalue())
def get_my_hostname(self, split_hostname_on_first_period=False): """ Returns a best guess for the hostname registered with OpenStack for this host """ hostname = self.init_config.get("os_host") or self.hostname if split_hostname_on_first_period: hostname = hostname.split('.')[0] return hostname
Returns a best guess for the hostname registered with OpenStack for this host
Below is the the instruction that describes the task: ### Input: Returns a best guess for the hostname registered with OpenStack for this host ### Response: def get_my_hostname(self, split_hostname_on_first_period=False): """ Returns a best guess for the hostname registered with OpenStack for this host """ hostname = self.init_config.get("os_host") or self.hostname if split_hostname_on_first_period: hostname = hostname.split('.')[0] return hostname
def get(self, event): """Get a stored configuration""" try: comp = event.data['uuid'] except KeyError: comp = None if not comp: self.log('Invalid get request without schema or component', lvl=error) return self.log("Config data get request for ", event.data, "from", event.user) component = model_factory(Schema).find_one({ 'uuid': comp }) response = { 'component': 'hfos.ui.configurator', 'action': 'get', 'data': component.serializablefields() } self.fireEvent(send(event.client.uuid, response))
Get a stored configuration
Below is the the instruction that describes the task: ### Input: Get a stored configuration ### Response: def get(self, event): """Get a stored configuration""" try: comp = event.data['uuid'] except KeyError: comp = None if not comp: self.log('Invalid get request without schema or component', lvl=error) return self.log("Config data get request for ", event.data, "from", event.user) component = model_factory(Schema).find_one({ 'uuid': comp }) response = { 'component': 'hfos.ui.configurator', 'action': 'get', 'data': component.serializablefields() } self.fireEvent(send(event.client.uuid, response))
def plotFCM(data, channel_names, kind='histogram', ax=None, autolabel=True, xlabel_kwargs={}, ylabel_kwargs={}, colorbar=False, grid=False, **kwargs): """ Plots the sample on the current axis. Follow with a call to matplotlibs show() in order to see the plot. Parameters ---------- data : DataFrame {graph_plotFCM_pars} {common_plot_ax} Returns ------- The output of the plot command used """ if ax == None: ax = pl.gca() xlabel_kwargs.setdefault('size', 16) ylabel_kwargs.setdefault('size', 16) channel_names = to_list(channel_names) if len(channel_names) == 1: # 1D so histogram plot kwargs.setdefault('color', 'gray') kwargs.setdefault('histtype', 'stepfilled') kwargs.setdefault('bins', 200) # Do not move above x = data[channel_names[0]].values if len(x) >= 1: if (len(x) == 1) and isinstance(kwargs['bins'], int): # Only needed for hist (not hist2d) due to hist function doing # excessive input checking warnings.warn("One of the data sets only has a single event. " "This event won't be plotted unless the bin locations" " are explicitly provided to the plotting function. ") return None plot_output = ax.hist(x, **kwargs) else: return None elif len(channel_names) == 2: x = data[channel_names[0]].values # value of first channel y = data[channel_names[1]].values # value of second channel if len(x) == 0: # Don't draw a plot if there's no data return None if kind == 'scatter': kwargs.setdefault('edgecolor', 'none') plot_output = ax.scatter(x, y, **kwargs) elif kind == 'histogram': kwargs.setdefault('bins', 200) # Do not move above kwargs.setdefault('cmin', 1) kwargs.setdefault('cmap', pl.cm.copper) kwargs.setdefault('norm', matplotlib.colors.LogNorm()) plot_output = ax.hist2d(x, y, **kwargs) mappable = plot_output[-1] if colorbar: pl.colorbar(mappable, ax=ax) else: raise ValueError("Not a valid plot type. Must be 'scatter', 'histogram'") else: raise ValueError('Received an unexpected number of channels: "{}"'.format(channel_names)) pl.grid(grid) if autolabel: y_label_text = 'Counts' if len(channel_names) == 1 else channel_names[1] ax.set_xlabel(channel_names[0], **xlabel_kwargs) ax.set_ylabel(y_label_text, **ylabel_kwargs) return plot_output
Plots the sample on the current axis. Follow with a call to matplotlibs show() in order to see the plot. Parameters ---------- data : DataFrame {graph_plotFCM_pars} {common_plot_ax} Returns ------- The output of the plot command used
Below is the the instruction that describes the task: ### Input: Plots the sample on the current axis. Follow with a call to matplotlibs show() in order to see the plot. Parameters ---------- data : DataFrame {graph_plotFCM_pars} {common_plot_ax} Returns ------- The output of the plot command used ### Response: def plotFCM(data, channel_names, kind='histogram', ax=None, autolabel=True, xlabel_kwargs={}, ylabel_kwargs={}, colorbar=False, grid=False, **kwargs): """ Plots the sample on the current axis. Follow with a call to matplotlibs show() in order to see the plot. Parameters ---------- data : DataFrame {graph_plotFCM_pars} {common_plot_ax} Returns ------- The output of the plot command used """ if ax == None: ax = pl.gca() xlabel_kwargs.setdefault('size', 16) ylabel_kwargs.setdefault('size', 16) channel_names = to_list(channel_names) if len(channel_names) == 1: # 1D so histogram plot kwargs.setdefault('color', 'gray') kwargs.setdefault('histtype', 'stepfilled') kwargs.setdefault('bins', 200) # Do not move above x = data[channel_names[0]].values if len(x) >= 1: if (len(x) == 1) and isinstance(kwargs['bins'], int): # Only needed for hist (not hist2d) due to hist function doing # excessive input checking warnings.warn("One of the data sets only has a single event. " "This event won't be plotted unless the bin locations" " are explicitly provided to the plotting function. ") return None plot_output = ax.hist(x, **kwargs) else: return None elif len(channel_names) == 2: x = data[channel_names[0]].values # value of first channel y = data[channel_names[1]].values # value of second channel if len(x) == 0: # Don't draw a plot if there's no data return None if kind == 'scatter': kwargs.setdefault('edgecolor', 'none') plot_output = ax.scatter(x, y, **kwargs) elif kind == 'histogram': kwargs.setdefault('bins', 200) # Do not move above kwargs.setdefault('cmin', 1) kwargs.setdefault('cmap', pl.cm.copper) kwargs.setdefault('norm', matplotlib.colors.LogNorm()) plot_output = ax.hist2d(x, y, **kwargs) mappable = plot_output[-1] if colorbar: pl.colorbar(mappable, ax=ax) else: raise ValueError("Not a valid plot type. Must be 'scatter', 'histogram'") else: raise ValueError('Received an unexpected number of channels: "{}"'.format(channel_names)) pl.grid(grid) if autolabel: y_label_text = 'Counts' if len(channel_names) == 1 else channel_names[1] ax.set_xlabel(channel_names[0], **xlabel_kwargs) ax.set_ylabel(y_label_text, **ylabel_kwargs) return plot_output
def print_png(o): """ A function to display sympy expression using inline style LaTeX in PNG. """ s = latex(o, mode='inline') # mathtext does not understand certain latex flags, so we try to replace # them with suitable subs. s = s.replace('\\operatorname','') s = s.replace('\\overline', '\\bar') png = latex_to_png(s) return png
A function to display sympy expression using inline style LaTeX in PNG.
Below is the the instruction that describes the task: ### Input: A function to display sympy expression using inline style LaTeX in PNG. ### Response: def print_png(o): """ A function to display sympy expression using inline style LaTeX in PNG. """ s = latex(o, mode='inline') # mathtext does not understand certain latex flags, so we try to replace # them with suitable subs. s = s.replace('\\operatorname','') s = s.replace('\\overline', '\\bar') png = latex_to_png(s) return png
def from_sky(cls, distancelimit=15, magnitudelimit=18): ''' Create a Constellation from a criteria search of the whole sky. Parameters ---------- distancelimit : float Maximum distance (parsecs). magnitudelimit : float Maximum magnitude (for Gaia G). ''' # define a query for cone search surrounding this center criteria = [] if distancelimit is not None: criteria.append('parallax >= {}'.format(1000.0/distancelimit)) if magnitudelimit is not None: criteria.append('phot_g_mean_mag <= {}'.format(magnitudelimit)) allskyquery = """{} WHERE {}""".format(cls.basequery, ' and '.join(criteria)) print(allskyquery) # run the query print('querying Gaia DR2, for distance<{} and G<{}'.format(distancelimit, magnitudelimit)) table = query(allskyquery) # store the search parameters in this object c = cls(cls.standardize_table(table)) c.standardized.meta['query'] = allskyquery c.standardized.meta['magnitudelimit'] = magnitudelimit c.standardized.meta['distancelimit'] = distancelimit #c.distancelimit = distancelimit #c.magnitudelimit = magnitudelimit or c.magnitudelimit return c
Create a Constellation from a criteria search of the whole sky. Parameters ---------- distancelimit : float Maximum distance (parsecs). magnitudelimit : float Maximum magnitude (for Gaia G).
Below is the the instruction that describes the task: ### Input: Create a Constellation from a criteria search of the whole sky. Parameters ---------- distancelimit : float Maximum distance (parsecs). magnitudelimit : float Maximum magnitude (for Gaia G). ### Response: def from_sky(cls, distancelimit=15, magnitudelimit=18): ''' Create a Constellation from a criteria search of the whole sky. Parameters ---------- distancelimit : float Maximum distance (parsecs). magnitudelimit : float Maximum magnitude (for Gaia G). ''' # define a query for cone search surrounding this center criteria = [] if distancelimit is not None: criteria.append('parallax >= {}'.format(1000.0/distancelimit)) if magnitudelimit is not None: criteria.append('phot_g_mean_mag <= {}'.format(magnitudelimit)) allskyquery = """{} WHERE {}""".format(cls.basequery, ' and '.join(criteria)) print(allskyquery) # run the query print('querying Gaia DR2, for distance<{} and G<{}'.format(distancelimit, magnitudelimit)) table = query(allskyquery) # store the search parameters in this object c = cls(cls.standardize_table(table)) c.standardized.meta['query'] = allskyquery c.standardized.meta['magnitudelimit'] = magnitudelimit c.standardized.meta['distancelimit'] = distancelimit #c.distancelimit = distancelimit #c.magnitudelimit = magnitudelimit or c.magnitudelimit return c
def analyzeParameters(expName, suite): """ Analyze the impact of each list parameter in this experiment """ print("\n================",expName,"=====================") try: expParams = suite.get_params(expName) pprint.pprint(expParams) for p in ["boost_strength", "k", "learning_rate", "weight_sparsity", "k_inference_factor", "boost_strength_factor", "c1_out_channels", "c1_k", "learning_rate_factor", "batches_in_epoch", ]: if p in expParams and type(expParams[p]) == list: print("\n",p) for v1 in expParams[p]: # Retrieve the last totalCorrect from each experiment # Print them sorted from best to worst values, params = suite.get_values_fix_params( expName, 0, "testerror", "last", **{p:v1}) v = np.array(values) try: print("Average/min/max for", p, v1, "=", v.mean(), v.min(), v.max()) # sortedIndices = v.argsort() # for i in sortedIndices[::-1]: # print(v[i],params[i]["name"]) except: print("Can't compute stats for",p) except: print("Couldn't load experiment",expName)
Analyze the impact of each list parameter in this experiment
Below is the the instruction that describes the task: ### Input: Analyze the impact of each list parameter in this experiment ### Response: def analyzeParameters(expName, suite): """ Analyze the impact of each list parameter in this experiment """ print("\n================",expName,"=====================") try: expParams = suite.get_params(expName) pprint.pprint(expParams) for p in ["boost_strength", "k", "learning_rate", "weight_sparsity", "k_inference_factor", "boost_strength_factor", "c1_out_channels", "c1_k", "learning_rate_factor", "batches_in_epoch", ]: if p in expParams and type(expParams[p]) == list: print("\n",p) for v1 in expParams[p]: # Retrieve the last totalCorrect from each experiment # Print them sorted from best to worst values, params = suite.get_values_fix_params( expName, 0, "testerror", "last", **{p:v1}) v = np.array(values) try: print("Average/min/max for", p, v1, "=", v.mean(), v.min(), v.max()) # sortedIndices = v.argsort() # for i in sortedIndices[::-1]: # print(v[i],params[i]["name"]) except: print("Can't compute stats for",p) except: print("Couldn't load experiment",expName)
def uuid_from_kronos_time(time, _type=UUIDType.RANDOM): """ Generate a UUID with the specified time. If `lowest` is true, return the lexicographically first UUID for the specified time. """ return timeuuid_from_time(int(time) + UUID_TIME_OFFSET, type=_type)
Generate a UUID with the specified time. If `lowest` is true, return the lexicographically first UUID for the specified time.
Below is the the instruction that describes the task: ### Input: Generate a UUID with the specified time. If `lowest` is true, return the lexicographically first UUID for the specified time. ### Response: def uuid_from_kronos_time(time, _type=UUIDType.RANDOM): """ Generate a UUID with the specified time. If `lowest` is true, return the lexicographically first UUID for the specified time. """ return timeuuid_from_time(int(time) + UUID_TIME_OFFSET, type=_type)
def show_firmware_version_output_show_firmware_version_node_info_firmware_version_info_application_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") show_firmware_version = ET.Element("show_firmware_version") config = show_firmware_version output = ET.SubElement(show_firmware_version, "output") show_firmware_version = ET.SubElement(output, "show-firmware-version") node_info = ET.SubElement(show_firmware_version, "node-info") firmware_version_info = ET.SubElement(node_info, "firmware-version-info") application_name = ET.SubElement(firmware_version_info, "application-name") application_name.text = kwargs.pop('application_name') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
Below is the the instruction that describes the task: ### Input: Auto Generated Code ### Response: def show_firmware_version_output_show_firmware_version_node_info_firmware_version_info_application_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") show_firmware_version = ET.Element("show_firmware_version") config = show_firmware_version output = ET.SubElement(show_firmware_version, "output") show_firmware_version = ET.SubElement(output, "show-firmware-version") node_info = ET.SubElement(show_firmware_version, "node-info") firmware_version_info = ET.SubElement(node_info, "firmware-version-info") application_name = ET.SubElement(firmware_version_info, "application-name") application_name.text = kwargs.pop('application_name') callback = kwargs.pop('callback', self._callback) return callback(config)
def send(self, test=None): ''' Send the email through the Postmark system. Pass test=True to just print out the resulting JSON message being sent to Postmark ''' self._check_values() # Set up message dictionary json_message = self.to_json_message() # if (self.__html_body and not self.__text_body) and self.__multipart: # # TODO: Set up regex to strip html # pass # If test is not specified, attempt to read the Django setting if test is None: try: from django.conf import settings as django_settings test = getattr(django_settings, "POSTMARK_TEST_MODE", None) except ImportError: pass # If this is a test, just print the message if test: print('JSON message is:\n%s' % json.dumps(json_message, cls=PMJSONEncoder)) return if self.__template_id: endpoint_url = __POSTMARK_URL__ + 'email/withTemplate/' else: endpoint_url = __POSTMARK_URL__ + 'email' # Set up the url Request req = Request( endpoint_url, json.dumps(json_message, cls=PMJSONEncoder).encode('utf8'), { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Postmark-Server-Token': self.__api_key, 'User-agent': self.__user_agent } ) # Attempt send try: # print 'sending request to postmark: %s' % json_message result = urlopen(req) jsontxt = result.read().decode('utf8') result.close() if result.code == 200: self.message_id = json.loads(jsontxt).get('MessageID', None) return True else: raise PMMailSendException('Return code %d: %s' % (result.code, result.msg)) except HTTPError as err: if err.code == 401: raise PMMailUnauthorizedException('Sending Unauthorized - incorrect API key.', err) elif err.code == 422: try: jsontxt = err.read().decode('utf8') jsonobj = json.loads(jsontxt) desc = jsonobj['Message'] error_code = jsonobj['ErrorCode'] except KeyError: raise PMMailUnprocessableEntityException('Unprocessable Entity: Description not given') if error_code == 406: raise PMMailInactiveRecipientException('You tried to send email to a recipient that has been marked as inactive.') raise PMMailUnprocessableEntityException('Unprocessable Entity: %s' % desc) elif err.code == 500: raise PMMailServerErrorException('Internal server error at Postmark. Admins have been alerted.', err) except URLError as err: if hasattr(err, 'reason'): raise PMMailURLException('URLError: Failed to reach the server: %s (See "inner_exception" for details)' % err.reason, err) elif hasattr(err, 'code'): raise PMMailURLException('URLError: %d: The server couldn\'t fufill the request. (See "inner_exception" for details)' % err.code, err) else: raise PMMailURLException('URLError: The server couldn\'t fufill the request. (See "inner_exception" for details)', err)
Send the email through the Postmark system. Pass test=True to just print out the resulting JSON message being sent to Postmark
Below is the the instruction that describes the task: ### Input: Send the email through the Postmark system. Pass test=True to just print out the resulting JSON message being sent to Postmark ### Response: def send(self, test=None): ''' Send the email through the Postmark system. Pass test=True to just print out the resulting JSON message being sent to Postmark ''' self._check_values() # Set up message dictionary json_message = self.to_json_message() # if (self.__html_body and not self.__text_body) and self.__multipart: # # TODO: Set up regex to strip html # pass # If test is not specified, attempt to read the Django setting if test is None: try: from django.conf import settings as django_settings test = getattr(django_settings, "POSTMARK_TEST_MODE", None) except ImportError: pass # If this is a test, just print the message if test: print('JSON message is:\n%s' % json.dumps(json_message, cls=PMJSONEncoder)) return if self.__template_id: endpoint_url = __POSTMARK_URL__ + 'email/withTemplate/' else: endpoint_url = __POSTMARK_URL__ + 'email' # Set up the url Request req = Request( endpoint_url, json.dumps(json_message, cls=PMJSONEncoder).encode('utf8'), { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Postmark-Server-Token': self.__api_key, 'User-agent': self.__user_agent } ) # Attempt send try: # print 'sending request to postmark: %s' % json_message result = urlopen(req) jsontxt = result.read().decode('utf8') result.close() if result.code == 200: self.message_id = json.loads(jsontxt).get('MessageID', None) return True else: raise PMMailSendException('Return code %d: %s' % (result.code, result.msg)) except HTTPError as err: if err.code == 401: raise PMMailUnauthorizedException('Sending Unauthorized - incorrect API key.', err) elif err.code == 422: try: jsontxt = err.read().decode('utf8') jsonobj = json.loads(jsontxt) desc = jsonobj['Message'] error_code = jsonobj['ErrorCode'] except KeyError: raise PMMailUnprocessableEntityException('Unprocessable Entity: Description not given') if error_code == 406: raise PMMailInactiveRecipientException('You tried to send email to a recipient that has been marked as inactive.') raise PMMailUnprocessableEntityException('Unprocessable Entity: %s' % desc) elif err.code == 500: raise PMMailServerErrorException('Internal server error at Postmark. Admins have been alerted.', err) except URLError as err: if hasattr(err, 'reason'): raise PMMailURLException('URLError: Failed to reach the server: %s (See "inner_exception" for details)' % err.reason, err) elif hasattr(err, 'code'): raise PMMailURLException('URLError: %d: The server couldn\'t fufill the request. (See "inner_exception" for details)' % err.code, err) else: raise PMMailURLException('URLError: The server couldn\'t fufill the request. (See "inner_exception" for details)', err)
def _list_files(self, args): ''' List files for an installed package ''' if len(args) < 2: raise SPMInvocationError('A package name must be specified') package = args[-1] files = self._pkgdb_fun('list_files', package, self.db_conn) if files is None: raise SPMPackageError('package {0} not installed'.format(package)) else: for file_ in files: if self.opts['verbose']: status_msg = ','.join(file_) else: status_msg = file_[0] self.ui.status(status_msg)
List files for an installed package
Below is the the instruction that describes the task: ### Input: List files for an installed package ### Response: def _list_files(self, args): ''' List files for an installed package ''' if len(args) < 2: raise SPMInvocationError('A package name must be specified') package = args[-1] files = self._pkgdb_fun('list_files', package, self.db_conn) if files is None: raise SPMPackageError('package {0} not installed'.format(package)) else: for file_ in files: if self.opts['verbose']: status_msg = ','.join(file_) else: status_msg = file_[0] self.ui.status(status_msg)
def to_json(df, x, y, timeseries=False): """Format output for json response.""" values = {k: [] for k in y} for i, row in df.iterrows(): for yy in y: values[yy].append({ "x": row[x], "y": row[yy] }) return {"result": [values[k] for k in y], "date": timeseries}
Format output for json response.
Below is the the instruction that describes the task: ### Input: Format output for json response. ### Response: def to_json(df, x, y, timeseries=False): """Format output for json response.""" values = {k: [] for k in y} for i, row in df.iterrows(): for yy in y: values[yy].append({ "x": row[x], "y": row[yy] }) return {"result": [values[k] for k in y], "date": timeseries}
def heightmap_get_normal( hm: np.ndarray, x: float, y: float, waterLevel: float ) -> Tuple[float, float, float]: """Return the map normal at given coordinates. Args: hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions. x (float): The x coordinate. y (float): The y coordinate. waterLevel (float): The heightmap is considered flat below this value. Returns: Tuple[float, float, float]: An (x, y, z) vector normal. """ cn = ffi.new("float[3]") lib.TCOD_heightmap_get_normal(_heightmap_cdata(hm), x, y, cn, waterLevel) return tuple(cn)
Return the map normal at given coordinates. Args: hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions. x (float): The x coordinate. y (float): The y coordinate. waterLevel (float): The heightmap is considered flat below this value. Returns: Tuple[float, float, float]: An (x, y, z) vector normal.
Below is the the instruction that describes the task: ### Input: Return the map normal at given coordinates. Args: hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions. x (float): The x coordinate. y (float): The y coordinate. waterLevel (float): The heightmap is considered flat below this value. Returns: Tuple[float, float, float]: An (x, y, z) vector normal. ### Response: def heightmap_get_normal( hm: np.ndarray, x: float, y: float, waterLevel: float ) -> Tuple[float, float, float]: """Return the map normal at given coordinates. Args: hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions. x (float): The x coordinate. y (float): The y coordinate. waterLevel (float): The heightmap is considered flat below this value. Returns: Tuple[float, float, float]: An (x, y, z) vector normal. """ cn = ffi.new("float[3]") lib.TCOD_heightmap_get_normal(_heightmap_cdata(hm), x, y, cn, waterLevel) return tuple(cn)
def cipher(self): """ Generate AES-cipher :return: Crypto.Cipher.AES.AESCipher """ #cipher = pyAES.new(*self.mode().aes_args(), **self.mode().aes_kwargs()) cipher = Cipher(*self.mode().aes_args(), **self.mode().aes_kwargs()) return WAES.WAESCipher(cipher)
Generate AES-cipher :return: Crypto.Cipher.AES.AESCipher
Below is the the instruction that describes the task: ### Input: Generate AES-cipher :return: Crypto.Cipher.AES.AESCipher ### Response: def cipher(self): """ Generate AES-cipher :return: Crypto.Cipher.AES.AESCipher """ #cipher = pyAES.new(*self.mode().aes_args(), **self.mode().aes_kwargs()) cipher = Cipher(*self.mode().aes_args(), **self.mode().aes_kwargs()) return WAES.WAESCipher(cipher)
async def vcx_agent_provision(config: str) -> None: """ Provision an agent in the agency, populate configuration and wallet for this agent. Example: import json enterprise_config = { 'agency_url': 'http://localhost:8080', 'agency_did': 'VsKV7grR1BUE29mG2Fm2kX', 'agency_verkey': "Hezce2UWMZ3wUhVkh2LfKSs8nDzWwzs2Win7EzNN3YaR", 'wallet_name': 'LIBVCX_SDK_WALLET', 'agent_seed': '00000000000000000000000001234561', 'enterprise_seed': '000000000000000000000000Trustee1', 'wallet_key': '1234' } vcx_config = await vcx_agent_provision(json.dumps(enterprise_config)) :param config: JSON configuration :return: Configuration for vcx_init call. """ logger = logging.getLogger(__name__) if not hasattr(vcx_agent_provision, "cb"): logger.debug("vcx_agent_provision: Creating callback") vcx_agent_provision.cb = create_cb(CFUNCTYPE(None, c_uint32, c_uint32, c_char_p)) c_config = c_char_p(config.encode('utf-8')) result = await do_call('vcx_agent_provision_async', c_config, vcx_agent_provision.cb) logger.debug("vcx_agent_provision completed") return result.decode()
Provision an agent in the agency, populate configuration and wallet for this agent. Example: import json enterprise_config = { 'agency_url': 'http://localhost:8080', 'agency_did': 'VsKV7grR1BUE29mG2Fm2kX', 'agency_verkey': "Hezce2UWMZ3wUhVkh2LfKSs8nDzWwzs2Win7EzNN3YaR", 'wallet_name': 'LIBVCX_SDK_WALLET', 'agent_seed': '00000000000000000000000001234561', 'enterprise_seed': '000000000000000000000000Trustee1', 'wallet_key': '1234' } vcx_config = await vcx_agent_provision(json.dumps(enterprise_config)) :param config: JSON configuration :return: Configuration for vcx_init call.
Below is the the instruction that describes the task: ### Input: Provision an agent in the agency, populate configuration and wallet for this agent. Example: import json enterprise_config = { 'agency_url': 'http://localhost:8080', 'agency_did': 'VsKV7grR1BUE29mG2Fm2kX', 'agency_verkey': "Hezce2UWMZ3wUhVkh2LfKSs8nDzWwzs2Win7EzNN3YaR", 'wallet_name': 'LIBVCX_SDK_WALLET', 'agent_seed': '00000000000000000000000001234561', 'enterprise_seed': '000000000000000000000000Trustee1', 'wallet_key': '1234' } vcx_config = await vcx_agent_provision(json.dumps(enterprise_config)) :param config: JSON configuration :return: Configuration for vcx_init call. ### Response: async def vcx_agent_provision(config: str) -> None: """ Provision an agent in the agency, populate configuration and wallet for this agent. Example: import json enterprise_config = { 'agency_url': 'http://localhost:8080', 'agency_did': 'VsKV7grR1BUE29mG2Fm2kX', 'agency_verkey': "Hezce2UWMZ3wUhVkh2LfKSs8nDzWwzs2Win7EzNN3YaR", 'wallet_name': 'LIBVCX_SDK_WALLET', 'agent_seed': '00000000000000000000000001234561', 'enterprise_seed': '000000000000000000000000Trustee1', 'wallet_key': '1234' } vcx_config = await vcx_agent_provision(json.dumps(enterprise_config)) :param config: JSON configuration :return: Configuration for vcx_init call. """ logger = logging.getLogger(__name__) if not hasattr(vcx_agent_provision, "cb"): logger.debug("vcx_agent_provision: Creating callback") vcx_agent_provision.cb = create_cb(CFUNCTYPE(None, c_uint32, c_uint32, c_char_p)) c_config = c_char_p(config.encode('utf-8')) result = await do_call('vcx_agent_provision_async', c_config, vcx_agent_provision.cb) logger.debug("vcx_agent_provision completed") return result.decode()
def exists(hdfs_path, user=None): """ Return :obj:`True` if ``hdfs_path`` exists in the default HDFS. """ hostname, port, path = split(hdfs_path, user=user) fs = hdfs_fs.hdfs(hostname, port) retval = fs.exists(path) fs.close() return retval
Return :obj:`True` if ``hdfs_path`` exists in the default HDFS.
Below is the the instruction that describes the task: ### Input: Return :obj:`True` if ``hdfs_path`` exists in the default HDFS. ### Response: def exists(hdfs_path, user=None): """ Return :obj:`True` if ``hdfs_path`` exists in the default HDFS. """ hostname, port, path = split(hdfs_path, user=user) fs = hdfs_fs.hdfs(hostname, port) retval = fs.exists(path) fs.close() return retval
def parser_functions(self) -> List['ParserFunction']: """Return a list of parser function objects.""" _lststr = self._lststr _type_to_spans = self._type_to_spans return [ ParserFunction(_lststr, _type_to_spans, span, 'ParserFunction') for span in self._subspans('ParserFunction')]
Return a list of parser function objects.
Below is the the instruction that describes the task: ### Input: Return a list of parser function objects. ### Response: def parser_functions(self) -> List['ParserFunction']: """Return a list of parser function objects.""" _lststr = self._lststr _type_to_spans = self._type_to_spans return [ ParserFunction(_lststr, _type_to_spans, span, 'ParserFunction') for span in self._subspans('ParserFunction')]
def loudest_time(self, start=0, duration=0): """Find the loudest time in the window given by start and duration Returns frame number in context of entire track, not just the window. :param integer start: Start frame :param integer duration: Number of frames to consider from start :returns: Frame number of loudest frame :rtype: integer """ if duration == 0: duration = self.sound.nframes self.current_frame = start arr = self.read_frames(duration) # get the frame of the maximum amplitude # different names for the same thing... # max_amp_sample = a.argmax(axis=0)[a.max(axis=0).argmax()] max_amp_sample = int(np.floor(arr.argmax()/2)) + start return max_amp_sample
Find the loudest time in the window given by start and duration Returns frame number in context of entire track, not just the window. :param integer start: Start frame :param integer duration: Number of frames to consider from start :returns: Frame number of loudest frame :rtype: integer
Below is the the instruction that describes the task: ### Input: Find the loudest time in the window given by start and duration Returns frame number in context of entire track, not just the window. :param integer start: Start frame :param integer duration: Number of frames to consider from start :returns: Frame number of loudest frame :rtype: integer ### Response: def loudest_time(self, start=0, duration=0): """Find the loudest time in the window given by start and duration Returns frame number in context of entire track, not just the window. :param integer start: Start frame :param integer duration: Number of frames to consider from start :returns: Frame number of loudest frame :rtype: integer """ if duration == 0: duration = self.sound.nframes self.current_frame = start arr = self.read_frames(duration) # get the frame of the maximum amplitude # different names for the same thing... # max_amp_sample = a.argmax(axis=0)[a.max(axis=0).argmax()] max_amp_sample = int(np.floor(arr.argmax()/2)) + start return max_amp_sample
def parse(self, rrstr): # type: (bytes) -> int ''' Parse a Rock Ridge POSIX File Attributes record out of a string. Parameters: rrstr - The string to parse the record out of. Returns: A string representing the RR version, either 1.09 or 1.12. ''' if self._initialized: raise pycdlibexception.PyCdlibInternalError('PX record already initialized!') (su_len, su_entry_version_unused, posix_file_mode_le, posix_file_mode_be, posix_file_links_le, posix_file_links_be, posix_file_user_id_le, posix_file_user_id_be, posix_file_group_id_le, posix_file_group_id_be) = struct.unpack_from('=BBLLLLLLLL', rrstr[:38], 2) # We assume that the caller has already checked the su_entry_version, # so we don't bother. if posix_file_mode_le != utils.swab_32bit(posix_file_mode_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file mode do not agree') if posix_file_links_le != utils.swab_32bit(posix_file_links_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file links do not agree') if posix_file_user_id_le != utils.swab_32bit(posix_file_user_id_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file user ID do not agree') if posix_file_group_id_le != utils.swab_32bit(posix_file_group_id_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file group ID do not agree') # In Rock Ridge 1.09 and 1.10, there is no serial number so the su_len # is 36, while in Rock Ridge 1.12, there is an 8-byte serial number so # su_len is 44. if su_len == 36: posix_file_serial_number_le = 0 elif su_len == 44: (posix_file_serial_number_le, posix_file_serial_number_be) = struct.unpack_from('=LL', rrstr[:44], 36) if posix_file_serial_number_le != utils.swab_32bit(posix_file_serial_number_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file serial number do not agree') else: raise pycdlibexception.PyCdlibInvalidISO('Invalid length on Rock Ridge PX record') self.posix_file_mode = posix_file_mode_le self.posix_file_links = posix_file_links_le self.posix_user_id = posix_file_user_id_le self.posix_group_id = posix_file_group_id_le self.posix_serial_number = posix_file_serial_number_le self._initialized = True return su_len
Parse a Rock Ridge POSIX File Attributes record out of a string. Parameters: rrstr - The string to parse the record out of. Returns: A string representing the RR version, either 1.09 or 1.12.
Below is the the instruction that describes the task: ### Input: Parse a Rock Ridge POSIX File Attributes record out of a string. Parameters: rrstr - The string to parse the record out of. Returns: A string representing the RR version, either 1.09 or 1.12. ### Response: def parse(self, rrstr): # type: (bytes) -> int ''' Parse a Rock Ridge POSIX File Attributes record out of a string. Parameters: rrstr - The string to parse the record out of. Returns: A string representing the RR version, either 1.09 or 1.12. ''' if self._initialized: raise pycdlibexception.PyCdlibInternalError('PX record already initialized!') (su_len, su_entry_version_unused, posix_file_mode_le, posix_file_mode_be, posix_file_links_le, posix_file_links_be, posix_file_user_id_le, posix_file_user_id_be, posix_file_group_id_le, posix_file_group_id_be) = struct.unpack_from('=BBLLLLLLLL', rrstr[:38], 2) # We assume that the caller has already checked the su_entry_version, # so we don't bother. if posix_file_mode_le != utils.swab_32bit(posix_file_mode_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file mode do not agree') if posix_file_links_le != utils.swab_32bit(posix_file_links_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file links do not agree') if posix_file_user_id_le != utils.swab_32bit(posix_file_user_id_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file user ID do not agree') if posix_file_group_id_le != utils.swab_32bit(posix_file_group_id_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file group ID do not agree') # In Rock Ridge 1.09 and 1.10, there is no serial number so the su_len # is 36, while in Rock Ridge 1.12, there is an 8-byte serial number so # su_len is 44. if su_len == 36: posix_file_serial_number_le = 0 elif su_len == 44: (posix_file_serial_number_le, posix_file_serial_number_be) = struct.unpack_from('=LL', rrstr[:44], 36) if posix_file_serial_number_le != utils.swab_32bit(posix_file_serial_number_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file serial number do not agree') else: raise pycdlibexception.PyCdlibInvalidISO('Invalid length on Rock Ridge PX record') self.posix_file_mode = posix_file_mode_le self.posix_file_links = posix_file_links_le self.posix_user_id = posix_file_user_id_le self.posix_group_id = posix_file_group_id_le self.posix_serial_number = posix_file_serial_number_le self._initialized = True return su_len
def observe(self, event_name, func): """ event_name := {'created', 'modified', 'deleted'}, list, tuple Attaches a function to run to a particular event. The function must be unique to be removed cleanly. Alternatively, event_name can be an list/ tuple if any of the string possibilities to be added on multiple events """ if isinstance(event_name, list) or isinstance(event_name, tuple): for name in event_name: self.observe(name, func) return self.log(func.__name__, "attached to", event_name) self._modify_event(event_name, 'append', func)
event_name := {'created', 'modified', 'deleted'}, list, tuple Attaches a function to run to a particular event. The function must be unique to be removed cleanly. Alternatively, event_name can be an list/ tuple if any of the string possibilities to be added on multiple events
Below is the the instruction that describes the task: ### Input: event_name := {'created', 'modified', 'deleted'}, list, tuple Attaches a function to run to a particular event. The function must be unique to be removed cleanly. Alternatively, event_name can be an list/ tuple if any of the string possibilities to be added on multiple events ### Response: def observe(self, event_name, func): """ event_name := {'created', 'modified', 'deleted'}, list, tuple Attaches a function to run to a particular event. The function must be unique to be removed cleanly. Alternatively, event_name can be an list/ tuple if any of the string possibilities to be added on multiple events """ if isinstance(event_name, list) or isinstance(event_name, tuple): for name in event_name: self.observe(name, func) return self.log(func.__name__, "attached to", event_name) self._modify_event(event_name, 'append', func)
def is_longitudinal(self): """ Returns ------- boolean : longitudinal status of this project """ return len(self.events) > 0 and \ len(self.arm_nums) > 0 and \ len(self.arm_names) > 0
Returns ------- boolean : longitudinal status of this project
Below is the the instruction that describes the task: ### Input: Returns ------- boolean : longitudinal status of this project ### Response: def is_longitudinal(self): """ Returns ------- boolean : longitudinal status of this project """ return len(self.events) > 0 and \ len(self.arm_nums) > 0 and \ len(self.arm_names) > 0
def get_features(model_description_features): """Get features from a list of dictionaries Parameters ---------- model_description_features : list of dictionaries Examples -------- >>> l = [{'StrokeCount': None}, \ {'ConstantPointCoordinates': \ [{'strokes': 4}, \ {'points_per_stroke': 81}, \ {'fill_empty_with': 0}, \ {'pen_down': False}] \ } \ ] >>> get_features(l) [StrokeCount, ConstantPointCoordinates - strokes: 4 - points per stroke: 81 - fill empty with: 0 - pen down feature: False ] """ return utils.get_objectlist(model_description_features, config_key='features', module=sys.modules[__name__])
Get features from a list of dictionaries Parameters ---------- model_description_features : list of dictionaries Examples -------- >>> l = [{'StrokeCount': None}, \ {'ConstantPointCoordinates': \ [{'strokes': 4}, \ {'points_per_stroke': 81}, \ {'fill_empty_with': 0}, \ {'pen_down': False}] \ } \ ] >>> get_features(l) [StrokeCount, ConstantPointCoordinates - strokes: 4 - points per stroke: 81 - fill empty with: 0 - pen down feature: False ]
Below is the the instruction that describes the task: ### Input: Get features from a list of dictionaries Parameters ---------- model_description_features : list of dictionaries Examples -------- >>> l = [{'StrokeCount': None}, \ {'ConstantPointCoordinates': \ [{'strokes': 4}, \ {'points_per_stroke': 81}, \ {'fill_empty_with': 0}, \ {'pen_down': False}] \ } \ ] >>> get_features(l) [StrokeCount, ConstantPointCoordinates - strokes: 4 - points per stroke: 81 - fill empty with: 0 - pen down feature: False ] ### Response: def get_features(model_description_features): """Get features from a list of dictionaries Parameters ---------- model_description_features : list of dictionaries Examples -------- >>> l = [{'StrokeCount': None}, \ {'ConstantPointCoordinates': \ [{'strokes': 4}, \ {'points_per_stroke': 81}, \ {'fill_empty_with': 0}, \ {'pen_down': False}] \ } \ ] >>> get_features(l) [StrokeCount, ConstantPointCoordinates - strokes: 4 - points per stroke: 81 - fill empty with: 0 - pen down feature: False ] """ return utils.get_objectlist(model_description_features, config_key='features', module=sys.modules[__name__])
def _make_sampling_sequence(n): # type: (int) -> List[int] """ Return a list containing the proposed call event sampling sequence. Return events are paired with call events and not counted separately. This is 0, 1, 2, ..., 4 plus 50, 100, 150, 200, etc. The total list size is n. """ seq = list(range(5)) i = 50 while len(seq) < n: seq.append(i) i += 50 return seq
Return a list containing the proposed call event sampling sequence. Return events are paired with call events and not counted separately. This is 0, 1, 2, ..., 4 plus 50, 100, 150, 200, etc. The total list size is n.
Below is the the instruction that describes the task: ### Input: Return a list containing the proposed call event sampling sequence. Return events are paired with call events and not counted separately. This is 0, 1, 2, ..., 4 plus 50, 100, 150, 200, etc. The total list size is n. ### Response: def _make_sampling_sequence(n): # type: (int) -> List[int] """ Return a list containing the proposed call event sampling sequence. Return events are paired with call events and not counted separately. This is 0, 1, 2, ..., 4 plus 50, 100, 150, 200, etc. The total list size is n. """ seq = list(range(5)) i = 50 while len(seq) < n: seq.append(i) i += 50 return seq
def minute(self): '''set unit to minute''' self.magnification = 60 self._update(self.baseNumber, self.magnification) return self
set unit to minute
Below is the the instruction that describes the task: ### Input: set unit to minute ### Response: def minute(self): '''set unit to minute''' self.magnification = 60 self._update(self.baseNumber, self.magnification) return self
def run(self): """ updates the modules output. Currently only time and tztime need to do this """ if self.update_time_value(): self.i3status.py3_wrapper.notify_update(self.module_name) due_time = self.py3.time_in(sync_to=self.time_delta) self.i3status.py3_wrapper.timeout_queue_add(self, due_time)
updates the modules output. Currently only time and tztime need to do this
Below is the the instruction that describes the task: ### Input: updates the modules output. Currently only time and tztime need to do this ### Response: def run(self): """ updates the modules output. Currently only time and tztime need to do this """ if self.update_time_value(): self.i3status.py3_wrapper.notify_update(self.module_name) due_time = self.py3.time_in(sync_to=self.time_delta) self.i3status.py3_wrapper.timeout_queue_add(self, due_time)
def getObjectsInHouse(self, house): """ Returns a list with all objects in a house. """ res = [obj for obj in self if house.hasObject(obj)] return ObjectList(res)
Returns a list with all objects in a house.
Below is the the instruction that describes the task: ### Input: Returns a list with all objects in a house. ### Response: def getObjectsInHouse(self, house): """ Returns a list with all objects in a house. """ res = [obj for obj in self if house.hasObject(obj)] return ObjectList(res)
def result(self, s, a): '''Result of applying an action to a state.''' # result: boat on opposite side, and numbers of missioners and # cannibals updated according to the move if s[2] == 0: return (s[0] - a[1][0], s[1] - a[1][1], 1) else: return (s[0] + a[1][0], s[1] + a[1][1], 0)
Result of applying an action to a state.
Below is the the instruction that describes the task: ### Input: Result of applying an action to a state. ### Response: def result(self, s, a): '''Result of applying an action to a state.''' # result: boat on opposite side, and numbers of missioners and # cannibals updated according to the move if s[2] == 0: return (s[0] - a[1][0], s[1] - a[1][1], 1) else: return (s[0] + a[1][0], s[1] + a[1][1], 0)
def _check_inputs(self, operators, weights): """ Check Inputs This method cheks that the input operators and weights are correctly formatted Parameters ---------- operators : list, tuple or np.ndarray List of linear operator class instances weights : list, tuple or np.ndarray List of weights for combining the linear adjoint operator results Returns ------- tuple operators and weights Raises ------ ValueError If the number of weights does not match the number of operators TypeError If the individual weight values are not floats """ operators = self._check_type(operators) for operator in operators: if not hasattr(operator, 'op'): raise ValueError('Operators must contain "op" method.') if not hasattr(operator, 'adj_op'): raise ValueError('Operators must contain "adj_op" method.') operator.op = check_callable(operator.op) operator.cost = check_callable(operator.adj_op) if not isinstance(weights, type(None)): weights = self._check_type(weights) if weights.size != operators.size: raise ValueError('The number of weights must match the ' 'number of operators.') if not np.issubdtype(weights.dtype, np.floating): raise TypeError('The weights must be a list of float values.') return operators, weights
Check Inputs This method cheks that the input operators and weights are correctly formatted Parameters ---------- operators : list, tuple or np.ndarray List of linear operator class instances weights : list, tuple or np.ndarray List of weights for combining the linear adjoint operator results Returns ------- tuple operators and weights Raises ------ ValueError If the number of weights does not match the number of operators TypeError If the individual weight values are not floats
Below is the the instruction that describes the task: ### Input: Check Inputs This method cheks that the input operators and weights are correctly formatted Parameters ---------- operators : list, tuple or np.ndarray List of linear operator class instances weights : list, tuple or np.ndarray List of weights for combining the linear adjoint operator results Returns ------- tuple operators and weights Raises ------ ValueError If the number of weights does not match the number of operators TypeError If the individual weight values are not floats ### Response: def _check_inputs(self, operators, weights): """ Check Inputs This method cheks that the input operators and weights are correctly formatted Parameters ---------- operators : list, tuple or np.ndarray List of linear operator class instances weights : list, tuple or np.ndarray List of weights for combining the linear adjoint operator results Returns ------- tuple operators and weights Raises ------ ValueError If the number of weights does not match the number of operators TypeError If the individual weight values are not floats """ operators = self._check_type(operators) for operator in operators: if not hasattr(operator, 'op'): raise ValueError('Operators must contain "op" method.') if not hasattr(operator, 'adj_op'): raise ValueError('Operators must contain "adj_op" method.') operator.op = check_callable(operator.op) operator.cost = check_callable(operator.adj_op) if not isinstance(weights, type(None)): weights = self._check_type(weights) if weights.size != operators.size: raise ValueError('The number of weights must match the ' 'number of operators.') if not np.issubdtype(weights.dtype, np.floating): raise TypeError('The weights must be a list of float values.') return operators, weights
def create_dataset(self, name, x_img_size, y_img_size, z_img_size, x_vox_res, y_vox_res, z_vox_res, x_offset=0, y_offset=0, z_offset=0, scaling_levels=0, scaling_option=0, dataset_description="", is_public=0): """ Creates a dataset. Arguments: name (str): Name of dataset x_img_size (int): max x coordinate of image size y_img_size (int): max y coordinate of image size z_img_size (int): max z coordinate of image size x_vox_res (float): x voxel resolution y_vox_res (float): y voxel resolution z_vox_res (float): z voxel resolution x_offset (int): x offset amount y_offset (int): y offset amount z_offset (int): z offset amount scaling_levels (int): Level of resolution scaling scaling_option (int): Z slices is 0 or Isotropic is 1 dataset_description (str): Your description of the dataset is_public (int): 1 'true' or 0 'false' for viewability of data set in public Returns: bool: True if dataset created, False if not """ return self.resources.create_dataset(name, x_img_size, y_img_size, z_img_size, x_vox_res, y_vox_res, z_vox_res, x_offset, y_offset, z_offset, scaling_levels, scaling_option, dataset_description, is_public)
Creates a dataset. Arguments: name (str): Name of dataset x_img_size (int): max x coordinate of image size y_img_size (int): max y coordinate of image size z_img_size (int): max z coordinate of image size x_vox_res (float): x voxel resolution y_vox_res (float): y voxel resolution z_vox_res (float): z voxel resolution x_offset (int): x offset amount y_offset (int): y offset amount z_offset (int): z offset amount scaling_levels (int): Level of resolution scaling scaling_option (int): Z slices is 0 or Isotropic is 1 dataset_description (str): Your description of the dataset is_public (int): 1 'true' or 0 'false' for viewability of data set in public Returns: bool: True if dataset created, False if not
Below is the the instruction that describes the task: ### Input: Creates a dataset. Arguments: name (str): Name of dataset x_img_size (int): max x coordinate of image size y_img_size (int): max y coordinate of image size z_img_size (int): max z coordinate of image size x_vox_res (float): x voxel resolution y_vox_res (float): y voxel resolution z_vox_res (float): z voxel resolution x_offset (int): x offset amount y_offset (int): y offset amount z_offset (int): z offset amount scaling_levels (int): Level of resolution scaling scaling_option (int): Z slices is 0 or Isotropic is 1 dataset_description (str): Your description of the dataset is_public (int): 1 'true' or 0 'false' for viewability of data set in public Returns: bool: True if dataset created, False if not ### Response: def create_dataset(self, name, x_img_size, y_img_size, z_img_size, x_vox_res, y_vox_res, z_vox_res, x_offset=0, y_offset=0, z_offset=0, scaling_levels=0, scaling_option=0, dataset_description="", is_public=0): """ Creates a dataset. Arguments: name (str): Name of dataset x_img_size (int): max x coordinate of image size y_img_size (int): max y coordinate of image size z_img_size (int): max z coordinate of image size x_vox_res (float): x voxel resolution y_vox_res (float): y voxel resolution z_vox_res (float): z voxel resolution x_offset (int): x offset amount y_offset (int): y offset amount z_offset (int): z offset amount scaling_levels (int): Level of resolution scaling scaling_option (int): Z slices is 0 or Isotropic is 1 dataset_description (str): Your description of the dataset is_public (int): 1 'true' or 0 'false' for viewability of data set in public Returns: bool: True if dataset created, False if not """ return self.resources.create_dataset(name, x_img_size, y_img_size, z_img_size, x_vox_res, y_vox_res, z_vox_res, x_offset, y_offset, z_offset, scaling_levels, scaling_option, dataset_description, is_public)
def create_tags_with_concatenated_css_classes(tags): """Function that creates <mark> tags such that they are not overlapping. In order to do this, it concatenates the css classes and stores the concatenated result in new tags. """ current_classes = set() result = [] for pos, group in group_tags_at_same_position(tags): opening, closing = get_opening_closing_tags(group) # handle closing tags at current position closing_added = False if len(closing) > 0: closing_tag = Tag(pos, False, '') for tag in closing: current_classes.remove(tag.css_class) result.append(closing_tag) closing_added = True # handle opening tags at current position opening_added = False if len(opening) > 0: # handle the begin of an overlap if not closing_added and len(current_classes) > 0: result.append(Tag(pos, False, '')) for tag in opening: current_classes.add(tag.css_class) opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) opening_added = True # handle the end of an overlap if closing_added and not opening_added and len(current_classes) > 0: opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) return result
Function that creates <mark> tags such that they are not overlapping. In order to do this, it concatenates the css classes and stores the concatenated result in new tags.
Below is the the instruction that describes the task: ### Input: Function that creates <mark> tags such that they are not overlapping. In order to do this, it concatenates the css classes and stores the concatenated result in new tags. ### Response: def create_tags_with_concatenated_css_classes(tags): """Function that creates <mark> tags such that they are not overlapping. In order to do this, it concatenates the css classes and stores the concatenated result in new tags. """ current_classes = set() result = [] for pos, group in group_tags_at_same_position(tags): opening, closing = get_opening_closing_tags(group) # handle closing tags at current position closing_added = False if len(closing) > 0: closing_tag = Tag(pos, False, '') for tag in closing: current_classes.remove(tag.css_class) result.append(closing_tag) closing_added = True # handle opening tags at current position opening_added = False if len(opening) > 0: # handle the begin of an overlap if not closing_added and len(current_classes) > 0: result.append(Tag(pos, False, '')) for tag in opening: current_classes.add(tag.css_class) opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) opening_added = True # handle the end of an overlap if closing_added and not opening_added and len(current_classes) > 0: opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) return result
async def fetch_block(self, request): """Fetches a specific block from the validator, specified by id. Request: path: - block_id: The 128-character id of the block to be fetched Response: data: A JSON object with the data from the fully expanded Block link: The link to this exact query """ error_traps = [error_handlers.BlockNotFoundTrap] block_id = request.match_info.get('block_id', '') self._validate_id(block_id) response = await self._query_validator( Message.CLIENT_BLOCK_GET_BY_ID_REQUEST, client_block_pb2.ClientBlockGetResponse, client_block_pb2.ClientBlockGetByIdRequest(block_id=block_id), error_traps) return self._wrap_response( request, data=self._expand_block(response['block']), metadata=self._get_metadata(request, response))
Fetches a specific block from the validator, specified by id. Request: path: - block_id: The 128-character id of the block to be fetched Response: data: A JSON object with the data from the fully expanded Block link: The link to this exact query
Below is the the instruction that describes the task: ### Input: Fetches a specific block from the validator, specified by id. Request: path: - block_id: The 128-character id of the block to be fetched Response: data: A JSON object with the data from the fully expanded Block link: The link to this exact query ### Response: async def fetch_block(self, request): """Fetches a specific block from the validator, specified by id. Request: path: - block_id: The 128-character id of the block to be fetched Response: data: A JSON object with the data from the fully expanded Block link: The link to this exact query """ error_traps = [error_handlers.BlockNotFoundTrap] block_id = request.match_info.get('block_id', '') self._validate_id(block_id) response = await self._query_validator( Message.CLIENT_BLOCK_GET_BY_ID_REQUEST, client_block_pb2.ClientBlockGetResponse, client_block_pb2.ClientBlockGetByIdRequest(block_id=block_id), error_traps) return self._wrap_response( request, data=self._expand_block(response['block']), metadata=self._get_metadata(request, response))
def send(self, line): '''send some bytes''' line = line.strip() if line == ".": self.stop() return mav = self.master.mav if line != '+++': line += "\r\n" buf = [ord(x) for x in line] buf.extend([0]*(70-len(buf))) flags = mavutil.mavlink.SERIAL_CONTROL_FLAG_RESPOND flags |= mavutil.mavlink.SERIAL_CONTROL_FLAG_MULTI flags |= mavutil.mavlink.SERIAL_CONTROL_FLAG_EXCLUSIVE mav.serial_control_send(self.serial_settings.port, flags, 0, self.serial_settings.baudrate, len(line), buf)
send some bytes
Below is the the instruction that describes the task: ### Input: send some bytes ### Response: def send(self, line): '''send some bytes''' line = line.strip() if line == ".": self.stop() return mav = self.master.mav if line != '+++': line += "\r\n" buf = [ord(x) for x in line] buf.extend([0]*(70-len(buf))) flags = mavutil.mavlink.SERIAL_CONTROL_FLAG_RESPOND flags |= mavutil.mavlink.SERIAL_CONTROL_FLAG_MULTI flags |= mavutil.mavlink.SERIAL_CONTROL_FLAG_EXCLUSIVE mav.serial_control_send(self.serial_settings.port, flags, 0, self.serial_settings.baudrate, len(line), buf)
def filename(value): ''' Remove everything that would affect paths in the filename :param value: :return: ''' return re.sub('[^a-zA-Z0-9.-_ ]', '', os.path.basename(InputSanitizer.trim(value)))
Remove everything that would affect paths in the filename :param value: :return:
Below is the the instruction that describes the task: ### Input: Remove everything that would affect paths in the filename :param value: :return: ### Response: def filename(value): ''' Remove everything that would affect paths in the filename :param value: :return: ''' return re.sub('[^a-zA-Z0-9.-_ ]', '', os.path.basename(InputSanitizer.trim(value)))
def delete_table_rate_shipping_by_id(cls, table_rate_shipping_id, **kwargs): """Delete TableRateShipping Delete an instance of TableRateShipping by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_table_rate_shipping_by_id(table_rate_shipping_id, async=True) >>> result = thread.get() :param async bool :param str table_rate_shipping_id: ID of tableRateShipping to delete. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._delete_table_rate_shipping_by_id_with_http_info(table_rate_shipping_id, **kwargs) else: (data) = cls._delete_table_rate_shipping_by_id_with_http_info(table_rate_shipping_id, **kwargs) return data
Delete TableRateShipping Delete an instance of TableRateShipping by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_table_rate_shipping_by_id(table_rate_shipping_id, async=True) >>> result = thread.get() :param async bool :param str table_rate_shipping_id: ID of tableRateShipping to delete. (required) :return: None If the method is called asynchronously, returns the request thread.
Below is the the instruction that describes the task: ### Input: Delete TableRateShipping Delete an instance of TableRateShipping by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_table_rate_shipping_by_id(table_rate_shipping_id, async=True) >>> result = thread.get() :param async bool :param str table_rate_shipping_id: ID of tableRateShipping to delete. (required) :return: None If the method is called asynchronously, returns the request thread. ### Response: def delete_table_rate_shipping_by_id(cls, table_rate_shipping_id, **kwargs): """Delete TableRateShipping Delete an instance of TableRateShipping by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_table_rate_shipping_by_id(table_rate_shipping_id, async=True) >>> result = thread.get() :param async bool :param str table_rate_shipping_id: ID of tableRateShipping to delete. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._delete_table_rate_shipping_by_id_with_http_info(table_rate_shipping_id, **kwargs) else: (data) = cls._delete_table_rate_shipping_by_id_with_http_info(table_rate_shipping_id, **kwargs) return data
def to_header(self): """Converts the object back into an HTTP header.""" ranges = [] for begin, end in self.ranges: if end is None: ranges.append("%s-" % begin if begin >= 0 else str(begin)) else: ranges.append("%s-%s" % (begin, end - 1)) return "%s=%s" % (self.units, ",".join(ranges))
Converts the object back into an HTTP header.
Below is the the instruction that describes the task: ### Input: Converts the object back into an HTTP header. ### Response: def to_header(self): """Converts the object back into an HTTP header.""" ranges = [] for begin, end in self.ranges: if end is None: ranges.append("%s-" % begin if begin >= 0 else str(begin)) else: ranges.append("%s-%s" % (begin, end - 1)) return "%s=%s" % (self.units, ",".join(ranges))
def yum_install_from_url(pkg_name, url): """ installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package """ if is_package_installed(distribution='el', pkg=pkg_name) is False: log_green( "installing %s from %s" % (pkg_name, url)) with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=True, capture=True): result = sudo("rpm -i %s" % url) if result.return_code == 0: return True elif result.return_code == 1: return False else: # print error to user print(result) raise SystemExit()
installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package
Below is the the instruction that describes the task: ### Input: installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package ### Response: def yum_install_from_url(pkg_name, url): """ installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package """ if is_package_installed(distribution='el', pkg=pkg_name) is False: log_green( "installing %s from %s" % (pkg_name, url)) with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=True, capture=True): result = sudo("rpm -i %s" % url) if result.return_code == 0: return True elif result.return_code == 1: return False else: # print error to user print(result) raise SystemExit()
def islitlet_progress(islitlet, islitlet_max): """Auxiliary function to print out progress in loop of slitlets. Parameters ---------- islitlet : int Current slitlet number. islitlet_max : int Maximum slitlet number. """ if islitlet % 10 == 0: cout = str(islitlet // 10) else: cout = '.' sys.stdout.write(cout) if islitlet == islitlet_max: sys.stdout.write('\n') sys.stdout.flush()
Auxiliary function to print out progress in loop of slitlets. Parameters ---------- islitlet : int Current slitlet number. islitlet_max : int Maximum slitlet number.
Below is the the instruction that describes the task: ### Input: Auxiliary function to print out progress in loop of slitlets. Parameters ---------- islitlet : int Current slitlet number. islitlet_max : int Maximum slitlet number. ### Response: def islitlet_progress(islitlet, islitlet_max): """Auxiliary function to print out progress in loop of slitlets. Parameters ---------- islitlet : int Current slitlet number. islitlet_max : int Maximum slitlet number. """ if islitlet % 10 == 0: cout = str(islitlet // 10) else: cout = '.' sys.stdout.write(cout) if islitlet == islitlet_max: sys.stdout.write('\n') sys.stdout.flush()
def age(self, id): """ Returns the age of the cache entry, in days. """ path = self.hash(id) if os.path.exists(path): modified = datetime.datetime.fromtimestamp(os.stat(path)[8]) age = datetime.datetime.today() - modified return age.days else: return 0
Returns the age of the cache entry, in days.
Below is the the instruction that describes the task: ### Input: Returns the age of the cache entry, in days. ### Response: def age(self, id): """ Returns the age of the cache entry, in days. """ path = self.hash(id) if os.path.exists(path): modified = datetime.datetime.fromtimestamp(os.stat(path)[8]) age = datetime.datetime.today() - modified return age.days else: return 0
def gen_table(self, inner_widths, inner_heights, outer_widths): """Combine everything and yield every line of the entire table with borders. :param iter inner_widths: List of widths (no padding) for each column. :param iter inner_heights: List of heights (no padding) for each row. :param iter outer_widths: List of widths (with padding) for each column. :return: """ for i, row in enumerate(self.table_data): # Yield the row line by line (e.g. multi-line rows). for line in self.gen_row_lines(row, 'row', inner_widths, inner_heights[i]): yield line # Yield heading separator. if i == 0: yield self.horizontal_border(None, outer_widths)
Combine everything and yield every line of the entire table with borders. :param iter inner_widths: List of widths (no padding) for each column. :param iter inner_heights: List of heights (no padding) for each row. :param iter outer_widths: List of widths (with padding) for each column. :return:
Below is the the instruction that describes the task: ### Input: Combine everything and yield every line of the entire table with borders. :param iter inner_widths: List of widths (no padding) for each column. :param iter inner_heights: List of heights (no padding) for each row. :param iter outer_widths: List of widths (with padding) for each column. :return: ### Response: def gen_table(self, inner_widths, inner_heights, outer_widths): """Combine everything and yield every line of the entire table with borders. :param iter inner_widths: List of widths (no padding) for each column. :param iter inner_heights: List of heights (no padding) for each row. :param iter outer_widths: List of widths (with padding) for each column. :return: """ for i, row in enumerate(self.table_data): # Yield the row line by line (e.g. multi-line rows). for line in self.gen_row_lines(row, 'row', inner_widths, inner_heights[i]): yield line # Yield heading separator. if i == 0: yield self.horizontal_border(None, outer_widths)
def _subset(subset, superset): """True if subset is a subset of superset. :param dict subset: subset to compare. :param dict superset: superset to compare. :return: True iif all pairs (key, value) of subset are in superset. :rtype: bool """ result = True for k in subset: result = k in superset and subset[k] == superset[k] if not result: break return result
True if subset is a subset of superset. :param dict subset: subset to compare. :param dict superset: superset to compare. :return: True iif all pairs (key, value) of subset are in superset. :rtype: bool
Below is the the instruction that describes the task: ### Input: True if subset is a subset of superset. :param dict subset: subset to compare. :param dict superset: superset to compare. :return: True iif all pairs (key, value) of subset are in superset. :rtype: bool ### Response: def _subset(subset, superset): """True if subset is a subset of superset. :param dict subset: subset to compare. :param dict superset: superset to compare. :return: True iif all pairs (key, value) of subset are in superset. :rtype: bool """ result = True for k in subset: result = k in superset and subset[k] == superset[k] if not result: break return result
def forget_fact(term): """ Forgets a fact by removing it from the database """ logger.info('Removing fact %s', term) db.facts.remove({'term': term_regex(term)}) return random.choice(ACKS)
Forgets a fact by removing it from the database
Below is the the instruction that describes the task: ### Input: Forgets a fact by removing it from the database ### Response: def forget_fact(term): """ Forgets a fact by removing it from the database """ logger.info('Removing fact %s', term) db.facts.remove({'term': term_regex(term)}) return random.choice(ACKS)
def _render_content(self, content, **settings): """ Perform widget rendering, but do not print anything. """ result = [] columns = settings[self.SETTING_COLUMNS] # Format each table cell into string. (columns, content) = self.table_format(columns, content) # Enumerate each table row. if settings[self.SETTING_FLAG_ENUMERATE]: (columns, content) = self.table_enumerate(columns, content) # Calculate the dimensions of each table column. dimensions = self.table_measure(columns, content) # Display table header. sb = {k: settings[k] for k in (self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} result.append(self.fmt_border(dimensions, 't', **sb)) if settings[self.SETTING_FLAG_HEADER]: s = {k: settings[k] for k in (self.SETTING_FLAG_PLAIN, self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} s[self.SETTING_TEXT_FORMATING] = settings[self.SETTING_HEADER_FORMATING] result.append(self.fmt_row_header(columns, dimensions, **s)) result.append(self.fmt_border(dimensions, 'm', **sb)) # Display table body. for row in content: s = {k: settings[k] for k in (self.SETTING_FLAG_PLAIN, self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} s[self.SETTING_TEXT_FORMATING] = settings[self.SETTING_TEXT_FORMATING] result.append(self.fmt_row(columns, dimensions, row, **s)) # Display table footer result.append(self.fmt_border(dimensions, 'b', **sb)) return result
Perform widget rendering, but do not print anything.
Below is the the instruction that describes the task: ### Input: Perform widget rendering, but do not print anything. ### Response: def _render_content(self, content, **settings): """ Perform widget rendering, but do not print anything. """ result = [] columns = settings[self.SETTING_COLUMNS] # Format each table cell into string. (columns, content) = self.table_format(columns, content) # Enumerate each table row. if settings[self.SETTING_FLAG_ENUMERATE]: (columns, content) = self.table_enumerate(columns, content) # Calculate the dimensions of each table column. dimensions = self.table_measure(columns, content) # Display table header. sb = {k: settings[k] for k in (self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} result.append(self.fmt_border(dimensions, 't', **sb)) if settings[self.SETTING_FLAG_HEADER]: s = {k: settings[k] for k in (self.SETTING_FLAG_PLAIN, self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} s[self.SETTING_TEXT_FORMATING] = settings[self.SETTING_HEADER_FORMATING] result.append(self.fmt_row_header(columns, dimensions, **s)) result.append(self.fmt_border(dimensions, 'm', **sb)) # Display table body. for row in content: s = {k: settings[k] for k in (self.SETTING_FLAG_PLAIN, self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} s[self.SETTING_TEXT_FORMATING] = settings[self.SETTING_TEXT_FORMATING] result.append(self.fmt_row(columns, dimensions, row, **s)) # Display table footer result.append(self.fmt_border(dimensions, 'b', **sb)) return result
def get_arg_type_descriptors(self): """ The parameter type descriptor list for a method, or None for a field. Type descriptors are shorthand identifiers for the builtin java types. """ if not self.is_method: return tuple() tp = _typeseq(self.get_descriptor()) tp = _typeseq(tp[0][1:-1]) return tp
The parameter type descriptor list for a method, or None for a field. Type descriptors are shorthand identifiers for the builtin java types.
Below is the the instruction that describes the task: ### Input: The parameter type descriptor list for a method, or None for a field. Type descriptors are shorthand identifiers for the builtin java types. ### Response: def get_arg_type_descriptors(self): """ The parameter type descriptor list for a method, or None for a field. Type descriptors are shorthand identifiers for the builtin java types. """ if not self.is_method: return tuple() tp = _typeseq(self.get_descriptor()) tp = _typeseq(tp[0][1:-1]) return tp
def add_update_resources(self, resources, ignore_datasetid=False): # type: (List[Union[hdx.data.resource.Resource,Dict,str]], bool) -> None """Add new or update existing resources with new metadata to the dataset Args: resources (List[Union[hdx.data.resource.Resource,Dict,str]]): A list of either resource ids or resources metadata from either Resource objects or dictionaries ignore_datasetid (bool): Whether to ignore dataset id in the resource. Defaults to False. Returns: None """ if not isinstance(resources, list): raise HDXError('Resources should be a list!') for resource in resources: self.add_update_resource(resource, ignore_datasetid)
Add new or update existing resources with new metadata to the dataset Args: resources (List[Union[hdx.data.resource.Resource,Dict,str]]): A list of either resource ids or resources metadata from either Resource objects or dictionaries ignore_datasetid (bool): Whether to ignore dataset id in the resource. Defaults to False. Returns: None
Below is the the instruction that describes the task: ### Input: Add new or update existing resources with new metadata to the dataset Args: resources (List[Union[hdx.data.resource.Resource,Dict,str]]): A list of either resource ids or resources metadata from either Resource objects or dictionaries ignore_datasetid (bool): Whether to ignore dataset id in the resource. Defaults to False. Returns: None ### Response: def add_update_resources(self, resources, ignore_datasetid=False): # type: (List[Union[hdx.data.resource.Resource,Dict,str]], bool) -> None """Add new or update existing resources with new metadata to the dataset Args: resources (List[Union[hdx.data.resource.Resource,Dict,str]]): A list of either resource ids or resources metadata from either Resource objects or dictionaries ignore_datasetid (bool): Whether to ignore dataset id in the resource. Defaults to False. Returns: None """ if not isinstance(resources, list): raise HDXError('Resources should be a list!') for resource in resources: self.add_update_resource(resource, ignore_datasetid)
def bump_version(project, source, force_init): # type: (str, str, bool, bool) ->int """ Entry point :return: """ file_opener = FileOpener() # logger.debug("Starting version jiggler...") jiggler = JiggleVersion(project, source, file_opener, force_init) logger.debug( "Current, next : {0} -> {1} : {2}".format( jiggler.current_version, jiggler.version, jiggler.schema ) ) if not jiggler.version_finder.validate_current_versions(): logger.debug(unicode(jiggler.version_finder.all_current_versions())) logger.error("Versions not in sync, won't continue") die(-1, "Versions not in sync, won't continue") changed = jiggler.jiggle_all() logger.debug("Changed {0} files".format(changed)) return changed
Entry point :return:
Below is the the instruction that describes the task: ### Input: Entry point :return: ### Response: def bump_version(project, source, force_init): # type: (str, str, bool, bool) ->int """ Entry point :return: """ file_opener = FileOpener() # logger.debug("Starting version jiggler...") jiggler = JiggleVersion(project, source, file_opener, force_init) logger.debug( "Current, next : {0} -> {1} : {2}".format( jiggler.current_version, jiggler.version, jiggler.schema ) ) if not jiggler.version_finder.validate_current_versions(): logger.debug(unicode(jiggler.version_finder.all_current_versions())) logger.error("Versions not in sync, won't continue") die(-1, "Versions not in sync, won't continue") changed = jiggler.jiggle_all() logger.debug("Changed {0} files".format(changed)) return changed
def loadTargetsFromFile(self, filename, cols = None, everyNrows = 1, delim = ' ', checkEven = 1): """ Loads targets from file. """ self.targets = self.loadVectors(filename, cols, everyNrows, delim, checkEven)
Loads targets from file.
Below is the the instruction that describes the task: ### Input: Loads targets from file. ### Response: def loadTargetsFromFile(self, filename, cols = None, everyNrows = 1, delim = ' ', checkEven = 1): """ Loads targets from file. """ self.targets = self.loadVectors(filename, cols, everyNrows, delim, checkEven)
def get_time_delta(time_string: str) -> timedelta: """ Takes a time string (1 hours, 10 days, etc.) and returns a python timedelta object :param time_string: the time value to convert to a timedelta :type time_string: str :returns: datetime.timedelta for relative time :type datetime.timedelta """ rel_time: Pattern = re.compile( pattern=r"((?P<hours>\d+?)\s+hour)?((?P<minutes>\d+?)\s+minute)?((?P<seconds>\d+?)\s+second)?((?P<days>\d+?)\s+day)?", # noqa flags=re.IGNORECASE, ) parts: Optional[Match[AnyStr]] = rel_time.match(string=time_string) if not parts: raise Exception(f"Invalid relative time: {time_string}") # https://docs.python.org/3/library/re.html#re.Match.groupdict parts: Dict[str, str] = parts.groupdict() time_params = {} if all(value == None for value in parts.values()): raise Exception(f"Invalid relative time: {time_string}") for time_unit, magnitude in parts.items(): if magnitude: time_params[time_unit]: int = int(magnitude) return timedelta(**time_params)
Takes a time string (1 hours, 10 days, etc.) and returns a python timedelta object :param time_string: the time value to convert to a timedelta :type time_string: str :returns: datetime.timedelta for relative time :type datetime.timedelta
Below is the the instruction that describes the task: ### Input: Takes a time string (1 hours, 10 days, etc.) and returns a python timedelta object :param time_string: the time value to convert to a timedelta :type time_string: str :returns: datetime.timedelta for relative time :type datetime.timedelta ### Response: def get_time_delta(time_string: str) -> timedelta: """ Takes a time string (1 hours, 10 days, etc.) and returns a python timedelta object :param time_string: the time value to convert to a timedelta :type time_string: str :returns: datetime.timedelta for relative time :type datetime.timedelta """ rel_time: Pattern = re.compile( pattern=r"((?P<hours>\d+?)\s+hour)?((?P<minutes>\d+?)\s+minute)?((?P<seconds>\d+?)\s+second)?((?P<days>\d+?)\s+day)?", # noqa flags=re.IGNORECASE, ) parts: Optional[Match[AnyStr]] = rel_time.match(string=time_string) if not parts: raise Exception(f"Invalid relative time: {time_string}") # https://docs.python.org/3/library/re.html#re.Match.groupdict parts: Dict[str, str] = parts.groupdict() time_params = {} if all(value == None for value in parts.values()): raise Exception(f"Invalid relative time: {time_string}") for time_unit, magnitude in parts.items(): if magnitude: time_params[time_unit]: int = int(magnitude) return timedelta(**time_params)
def seriesshape(self): """Shape of the whole time series (time being the first dimension).""" seriesshape = [len(hydpy.pub.timegrids.init)] seriesshape.extend(self.shape) return tuple(seriesshape)
Shape of the whole time series (time being the first dimension).
Below is the the instruction that describes the task: ### Input: Shape of the whole time series (time being the first dimension). ### Response: def seriesshape(self): """Shape of the whole time series (time being the first dimension).""" seriesshape = [len(hydpy.pub.timegrids.init)] seriesshape.extend(self.shape) return tuple(seriesshape)
def _convert_to_dict(data): """ Convert `data` to dictionary. Tries to get sense in multidimensional arrays. Args: data: List/dict/tuple of variable dimension. Returns: dict: If the data can be converted to dictionary. Raises: MetaParsingException: When the data are unconvertible to dict. """ if isinstance(data, dict): return data if isinstance(data, list) or isinstance(data, tuple): if _all_correct_list(data): return dict(data) else: data = zip(data[::2], data[1::2]) return dict(data) else: raise MetaParsingException( "Can't decode provided metadata - unknown structure." )
Convert `data` to dictionary. Tries to get sense in multidimensional arrays. Args: data: List/dict/tuple of variable dimension. Returns: dict: If the data can be converted to dictionary. Raises: MetaParsingException: When the data are unconvertible to dict.
Below is the the instruction that describes the task: ### Input: Convert `data` to dictionary. Tries to get sense in multidimensional arrays. Args: data: List/dict/tuple of variable dimension. Returns: dict: If the data can be converted to dictionary. Raises: MetaParsingException: When the data are unconvertible to dict. ### Response: def _convert_to_dict(data): """ Convert `data` to dictionary. Tries to get sense in multidimensional arrays. Args: data: List/dict/tuple of variable dimension. Returns: dict: If the data can be converted to dictionary. Raises: MetaParsingException: When the data are unconvertible to dict. """ if isinstance(data, dict): return data if isinstance(data, list) or isinstance(data, tuple): if _all_correct_list(data): return dict(data) else: data = zip(data[::2], data[1::2]) return dict(data) else: raise MetaParsingException( "Can't decode provided metadata - unknown structure." )
def match(self, fsys_view): ''' Compare potentially partial criteria against built filesystems entry dictionary ''' evalue_dict = fsys_view[1] for key, value in six.viewitems(self.criteria): if key in evalue_dict: if evalue_dict[key] != value: return False else: return False return True
Compare potentially partial criteria against built filesystems entry dictionary
Below is the the instruction that describes the task: ### Input: Compare potentially partial criteria against built filesystems entry dictionary ### Response: def match(self, fsys_view): ''' Compare potentially partial criteria against built filesystems entry dictionary ''' evalue_dict = fsys_view[1] for key, value in six.viewitems(self.criteria): if key in evalue_dict: if evalue_dict[key] != value: return False else: return False return True
def doprinc(data): """ Gets principal components from data in form of a list of [dec,inc] data. Parameters ---------- data : nested list of dec, inc directions Returns ------- ppars : dictionary with the principal components dec : principal directiion declination inc : principal direction inclination V2dec : intermediate eigenvector declination V2inc : intermediate eigenvector inclination V3dec : minor eigenvector declination V3inc : minor eigenvector inclination tau1 : major eigenvalue tau2 : intermediate eigenvalue tau3 : minor eigenvalue N : number of points Edir : elongation direction [dec, inc, length] """ ppars = {} rad = old_div(np.pi, 180.) X = dir2cart(data) # for rec in data: # dir=[] # for c in rec: dir.append(c) # cart= (dir2cart(dir)) # X.append(cart) # put in T matrix # T = np.array(Tmatrix(X)) # # get sorted evals/evects # t, V = tauV(T) Pdir = cart2dir(V[0]) ppars['Edir'] = cart2dir(V[1]) # elongation direction dec, inc = doflip(Pdir[0], Pdir[1]) ppars['dec'] = dec ppars['inc'] = inc ppars['N'] = len(data) ppars['tau1'] = t[0] ppars['tau2'] = t[1] ppars['tau3'] = t[2] Pdir = cart2dir(V[1]) dec, inc = doflip(Pdir[0], Pdir[1]) ppars['V2dec'] = dec ppars['V2inc'] = inc Pdir = cart2dir(V[2]) dec, inc = doflip(Pdir[0], Pdir[1]) ppars['V3dec'] = dec ppars['V3inc'] = inc return ppars
Gets principal components from data in form of a list of [dec,inc] data. Parameters ---------- data : nested list of dec, inc directions Returns ------- ppars : dictionary with the principal components dec : principal directiion declination inc : principal direction inclination V2dec : intermediate eigenvector declination V2inc : intermediate eigenvector inclination V3dec : minor eigenvector declination V3inc : minor eigenvector inclination tau1 : major eigenvalue tau2 : intermediate eigenvalue tau3 : minor eigenvalue N : number of points Edir : elongation direction [dec, inc, length]
Below is the the instruction that describes the task: ### Input: Gets principal components from data in form of a list of [dec,inc] data. Parameters ---------- data : nested list of dec, inc directions Returns ------- ppars : dictionary with the principal components dec : principal directiion declination inc : principal direction inclination V2dec : intermediate eigenvector declination V2inc : intermediate eigenvector inclination V3dec : minor eigenvector declination V3inc : minor eigenvector inclination tau1 : major eigenvalue tau2 : intermediate eigenvalue tau3 : minor eigenvalue N : number of points Edir : elongation direction [dec, inc, length] ### Response: def doprinc(data): """ Gets principal components from data in form of a list of [dec,inc] data. Parameters ---------- data : nested list of dec, inc directions Returns ------- ppars : dictionary with the principal components dec : principal directiion declination inc : principal direction inclination V2dec : intermediate eigenvector declination V2inc : intermediate eigenvector inclination V3dec : minor eigenvector declination V3inc : minor eigenvector inclination tau1 : major eigenvalue tau2 : intermediate eigenvalue tau3 : minor eigenvalue N : number of points Edir : elongation direction [dec, inc, length] """ ppars = {} rad = old_div(np.pi, 180.) X = dir2cart(data) # for rec in data: # dir=[] # for c in rec: dir.append(c) # cart= (dir2cart(dir)) # X.append(cart) # put in T matrix # T = np.array(Tmatrix(X)) # # get sorted evals/evects # t, V = tauV(T) Pdir = cart2dir(V[0]) ppars['Edir'] = cart2dir(V[1]) # elongation direction dec, inc = doflip(Pdir[0], Pdir[1]) ppars['dec'] = dec ppars['inc'] = inc ppars['N'] = len(data) ppars['tau1'] = t[0] ppars['tau2'] = t[1] ppars['tau3'] = t[2] Pdir = cart2dir(V[1]) dec, inc = doflip(Pdir[0], Pdir[1]) ppars['V2dec'] = dec ppars['V2inc'] = inc Pdir = cart2dir(V[2]) dec, inc = doflip(Pdir[0], Pdir[1]) ppars['V3dec'] = dec ppars['V3inc'] = inc return ppars
def start(self) -> None: """ Start the internal control loop. Potentially blocking, depending on the value of `_run_control_loop` set by the initializer. """ self._setup() if self._run_control_loop: asyncio.set_event_loop(asyncio.new_event_loop()) self._heartbeat_reciever.start() self._logger.info(' Start Loop') return self.loop.start() else: self._logger.debug(' run_control_loop == False')
Start the internal control loop. Potentially blocking, depending on the value of `_run_control_loop` set by the initializer.
Below is the the instruction that describes the task: ### Input: Start the internal control loop. Potentially blocking, depending on the value of `_run_control_loop` set by the initializer. ### Response: def start(self) -> None: """ Start the internal control loop. Potentially blocking, depending on the value of `_run_control_loop` set by the initializer. """ self._setup() if self._run_control_loop: asyncio.set_event_loop(asyncio.new_event_loop()) self._heartbeat_reciever.start() self._logger.info(' Start Loop') return self.loop.start() else: self._logger.debug(' run_control_loop == False')
def change_option_default(self, opt_name, default_val): """ Change the default value of an option :param opt_name: option name :type opt_name: str :param value: new default option value """ if not self.has_option(opt_name): raise ValueError("Unknow option name (%s)" % opt_name) self._options[opt_name].default = default_val
Change the default value of an option :param opt_name: option name :type opt_name: str :param value: new default option value
Below is the the instruction that describes the task: ### Input: Change the default value of an option :param opt_name: option name :type opt_name: str :param value: new default option value ### Response: def change_option_default(self, opt_name, default_val): """ Change the default value of an option :param opt_name: option name :type opt_name: str :param value: new default option value """ if not self.has_option(opt_name): raise ValueError("Unknow option name (%s)" % opt_name) self._options[opt_name].default = default_val
def parse_sv_frequencies(variant): """Parsing of some custom sv frequencies These are very specific at the moment, this will hopefully get better over time when the field of structural variants is more developed. Args: variant(cyvcf2.Variant) Returns: sv_frequencies(dict) """ frequency_keys = [ 'clingen_cgh_benignAF', 'clingen_cgh_benign', 'clingen_cgh_pathogenicAF', 'clingen_cgh_pathogenic', 'clingen_ngi', 'clingen_ngiAF', 'swegen', 'swegenAF', 'decipherAF', 'decipher' ] sv_frequencies = {} for key in frequency_keys: value = variant.INFO.get(key, 0) if 'AF' in key: value = float(value) else: value = int(value) if value > 0: sv_frequencies[key] = value return sv_frequencies
Parsing of some custom sv frequencies These are very specific at the moment, this will hopefully get better over time when the field of structural variants is more developed. Args: variant(cyvcf2.Variant) Returns: sv_frequencies(dict)
Below is the the instruction that describes the task: ### Input: Parsing of some custom sv frequencies These are very specific at the moment, this will hopefully get better over time when the field of structural variants is more developed. Args: variant(cyvcf2.Variant) Returns: sv_frequencies(dict) ### Response: def parse_sv_frequencies(variant): """Parsing of some custom sv frequencies These are very specific at the moment, this will hopefully get better over time when the field of structural variants is more developed. Args: variant(cyvcf2.Variant) Returns: sv_frequencies(dict) """ frequency_keys = [ 'clingen_cgh_benignAF', 'clingen_cgh_benign', 'clingen_cgh_pathogenicAF', 'clingen_cgh_pathogenic', 'clingen_ngi', 'clingen_ngiAF', 'swegen', 'swegenAF', 'decipherAF', 'decipher' ] sv_frequencies = {} for key in frequency_keys: value = variant.INFO.get(key, 0) if 'AF' in key: value = float(value) else: value = int(value) if value > 0: sv_frequencies[key] = value return sv_frequencies
def read(self, size=None): """Read a length of bytes. Return empty on EOF. If 'size' is omitted, return whole file. """ if size is not None: return self.__sf.read(size) block_size = self.__class__.__block_size b = bytearray() received_bytes = 0 while 1: partial = self.__sf.read(block_size) # self.__log.debug("Reading (%d) bytes. (%d) bytes returned." % # (block_size, len(partial))) b.extend(partial) received_bytes += len(partial) if len(partial) < block_size: self.__log.debug("End of file.") break self.__log.debug("Read (%d) bytes for total-file." % (received_bytes)) return b
Read a length of bytes. Return empty on EOF. If 'size' is omitted, return whole file.
Below is the the instruction that describes the task: ### Input: Read a length of bytes. Return empty on EOF. If 'size' is omitted, return whole file. ### Response: def read(self, size=None): """Read a length of bytes. Return empty on EOF. If 'size' is omitted, return whole file. """ if size is not None: return self.__sf.read(size) block_size = self.__class__.__block_size b = bytearray() received_bytes = 0 while 1: partial = self.__sf.read(block_size) # self.__log.debug("Reading (%d) bytes. (%d) bytes returned." % # (block_size, len(partial))) b.extend(partial) received_bytes += len(partial) if len(partial) < block_size: self.__log.debug("End of file.") break self.__log.debug("Read (%d) bytes for total-file." % (received_bytes)) return b
def profile(self): """Measure of bandedness, also known as 'envelope size'.""" leftmost_idx = np.argmax(self.matrix('dense').astype(bool), axis=0) return (np.arange(self.num_vertices()) - leftmost_idx).sum()
Measure of bandedness, also known as 'envelope size'.
Below is the the instruction that describes the task: ### Input: Measure of bandedness, also known as 'envelope size'. ### Response: def profile(self): """Measure of bandedness, also known as 'envelope size'.""" leftmost_idx = np.argmax(self.matrix('dense').astype(bool), axis=0) return (np.arange(self.num_vertices()) - leftmost_idx).sum()
def transmit(self, bytes, protocol=None): """Transmit an apdu. Internally calls doTransmit() class method and notify observers upon command/response APDU events. Subclasses must override the doTransmit() class method. @param bytes: list of bytes to transmit @param protocol: the transmission protocol, from CardConnection.T0_protocol, CardConnection.T1_protocol, or CardConnection.RAW_protocol """ Observable.setChanged(self) Observable.notifyObservers(self, CardConnectionEvent( 'command', [bytes, protocol])) data, sw1, sw2 = self.doTransmit(bytes, protocol) Observable.setChanged(self) Observable.notifyObservers(self, CardConnectionEvent( 'response', [data, sw1, sw2])) if self.errorcheckingchain is not None: self.errorcheckingchain[0](data, sw1, sw2) return data, sw1, sw2
Transmit an apdu. Internally calls doTransmit() class method and notify observers upon command/response APDU events. Subclasses must override the doTransmit() class method. @param bytes: list of bytes to transmit @param protocol: the transmission protocol, from CardConnection.T0_protocol, CardConnection.T1_protocol, or CardConnection.RAW_protocol
Below is the the instruction that describes the task: ### Input: Transmit an apdu. Internally calls doTransmit() class method and notify observers upon command/response APDU events. Subclasses must override the doTransmit() class method. @param bytes: list of bytes to transmit @param protocol: the transmission protocol, from CardConnection.T0_protocol, CardConnection.T1_protocol, or CardConnection.RAW_protocol ### Response: def transmit(self, bytes, protocol=None): """Transmit an apdu. Internally calls doTransmit() class method and notify observers upon command/response APDU events. Subclasses must override the doTransmit() class method. @param bytes: list of bytes to transmit @param protocol: the transmission protocol, from CardConnection.T0_protocol, CardConnection.T1_protocol, or CardConnection.RAW_protocol """ Observable.setChanged(self) Observable.notifyObservers(self, CardConnectionEvent( 'command', [bytes, protocol])) data, sw1, sw2 = self.doTransmit(bytes, protocol) Observable.setChanged(self) Observable.notifyObservers(self, CardConnectionEvent( 'response', [data, sw1, sw2])) if self.errorcheckingchain is not None: self.errorcheckingchain[0](data, sw1, sw2) return data, sw1, sw2
def _dict_increment(self, dictionary, key): """Increments the value of the dictionary at the specified key.""" if key in dictionary: dictionary[key] += 1 else: dictionary[key] = 1
Increments the value of the dictionary at the specified key.
Below is the the instruction that describes the task: ### Input: Increments the value of the dictionary at the specified key. ### Response: def _dict_increment(self, dictionary, key): """Increments the value of the dictionary at the specified key.""" if key in dictionary: dictionary[key] += 1 else: dictionary[key] = 1
def setup_image_plane_pixelization_grid_from_galaxies_and_grid_stack(galaxies, grid_stack): """An image-plane pixelization is one where its pixel centres are computed by tracing a sparse grid of pixels from \ the image's regular grid to other planes (e.g. the source-plane). Provided a galaxy has an image-plane pixelization, this function returns a new *GridStack* instance where the \ image-plane pixelization's sparse grid is added to it as an attibute. Thus, when the *GridStack* are are passed to the *ray_tracing* module this sparse grid is also traced and the \ traced coordinates represent the centre of each pixelization pixel. Parameters ----------- galaxies : [model.galaxy.galaxy.Galaxy] A list of galaxies, which may contain pixelizations and an *ImagePlanePixelization*. grid_stacks : image.array.grid_stacks.GridStack The collection of grid_stacks (regular, sub, etc.) which the image-plane pixelization grid (referred to as pix) \ may be added to. """ if not isinstance(grid_stack.regular, grids.PaddedRegularGrid): for galaxy in galaxies: if hasattr(galaxy, 'pixelization'): if isinstance(galaxy.pixelization, ImagePlanePixelization): image_plane_pix_grid = galaxy.pixelization.image_plane_pix_grid_from_regular_grid( regular_grid=grid_stack.regular) return grid_stack.new_grid_stack_with_pix_grid_added(pix_grid=image_plane_pix_grid.sparse_grid, regular_to_nearest_pix=image_plane_pix_grid.regular_to_sparse) return grid_stack
An image-plane pixelization is one where its pixel centres are computed by tracing a sparse grid of pixels from \ the image's regular grid to other planes (e.g. the source-plane). Provided a galaxy has an image-plane pixelization, this function returns a new *GridStack* instance where the \ image-plane pixelization's sparse grid is added to it as an attibute. Thus, when the *GridStack* are are passed to the *ray_tracing* module this sparse grid is also traced and the \ traced coordinates represent the centre of each pixelization pixel. Parameters ----------- galaxies : [model.galaxy.galaxy.Galaxy] A list of galaxies, which may contain pixelizations and an *ImagePlanePixelization*. grid_stacks : image.array.grid_stacks.GridStack The collection of grid_stacks (regular, sub, etc.) which the image-plane pixelization grid (referred to as pix) \ may be added to.
Below is the the instruction that describes the task: ### Input: An image-plane pixelization is one where its pixel centres are computed by tracing a sparse grid of pixels from \ the image's regular grid to other planes (e.g. the source-plane). Provided a galaxy has an image-plane pixelization, this function returns a new *GridStack* instance where the \ image-plane pixelization's sparse grid is added to it as an attibute. Thus, when the *GridStack* are are passed to the *ray_tracing* module this sparse grid is also traced and the \ traced coordinates represent the centre of each pixelization pixel. Parameters ----------- galaxies : [model.galaxy.galaxy.Galaxy] A list of galaxies, which may contain pixelizations and an *ImagePlanePixelization*. grid_stacks : image.array.grid_stacks.GridStack The collection of grid_stacks (regular, sub, etc.) which the image-plane pixelization grid (referred to as pix) \ may be added to. ### Response: def setup_image_plane_pixelization_grid_from_galaxies_and_grid_stack(galaxies, grid_stack): """An image-plane pixelization is one where its pixel centres are computed by tracing a sparse grid of pixels from \ the image's regular grid to other planes (e.g. the source-plane). Provided a galaxy has an image-plane pixelization, this function returns a new *GridStack* instance where the \ image-plane pixelization's sparse grid is added to it as an attibute. Thus, when the *GridStack* are are passed to the *ray_tracing* module this sparse grid is also traced and the \ traced coordinates represent the centre of each pixelization pixel. Parameters ----------- galaxies : [model.galaxy.galaxy.Galaxy] A list of galaxies, which may contain pixelizations and an *ImagePlanePixelization*. grid_stacks : image.array.grid_stacks.GridStack The collection of grid_stacks (regular, sub, etc.) which the image-plane pixelization grid (referred to as pix) \ may be added to. """ if not isinstance(grid_stack.regular, grids.PaddedRegularGrid): for galaxy in galaxies: if hasattr(galaxy, 'pixelization'): if isinstance(galaxy.pixelization, ImagePlanePixelization): image_plane_pix_grid = galaxy.pixelization.image_plane_pix_grid_from_regular_grid( regular_grid=grid_stack.regular) return grid_stack.new_grid_stack_with_pix_grid_added(pix_grid=image_plane_pix_grid.sparse_grid, regular_to_nearest_pix=image_plane_pix_grid.regular_to_sparse) return grid_stack
def sbar(Ss): """ calculate average s,sigma from list of "s"s. """ if type(Ss) == list: Ss = np.array(Ss) npts = Ss.shape[0] Ss = Ss.transpose() avd, avs = [], [] # D=np.array([Ss[0],Ss[1],Ss[2],Ss[3]+0.5*(Ss[0]+Ss[1]),Ss[4]+0.5*(Ss[1]+Ss[2]),Ss[5]+0.5*(Ss[0]+Ss[2])]).transpose() D = np.array([Ss[0], Ss[1], Ss[2], Ss[3] + 0.5 * (Ss[0] + Ss[1]), Ss[4] + 0.5 * (Ss[1] + Ss[2]), Ss[5] + 0.5 * (Ss[0] + Ss[2])]) for j in range(6): avd.append(np.average(D[j])) avs.append(np.average(Ss[j])) D = D.transpose() # for s in Ss: # print 'from sbar: ',s # D.append(s[:]) # append a copy of s # D[-1][3]=D[-1][3]+0.5*(s[0]+s[1]) # D[-1][4]=D[-1][4]+0.5*(s[1]+s[2]) # D[-1][5]=D[-1][5]+0.5*(s[0]+s[2]) # for j in range(6): # avd[j]+=(D[-1][j])/float(npts) # avs[j]+=(s[j])/float(npts) # calculate sigma nf = (npts - 1) * 6 # number of degrees of freedom s0 = 0 Dels = (D - avd)**2 s0 = np.sum(Dels) sigma = np.sqrt(s0/float(nf)) return nf, sigma, avs
calculate average s,sigma from list of "s"s.
Below is the the instruction that describes the task: ### Input: calculate average s,sigma from list of "s"s. ### Response: def sbar(Ss): """ calculate average s,sigma from list of "s"s. """ if type(Ss) == list: Ss = np.array(Ss) npts = Ss.shape[0] Ss = Ss.transpose() avd, avs = [], [] # D=np.array([Ss[0],Ss[1],Ss[2],Ss[3]+0.5*(Ss[0]+Ss[1]),Ss[4]+0.5*(Ss[1]+Ss[2]),Ss[5]+0.5*(Ss[0]+Ss[2])]).transpose() D = np.array([Ss[0], Ss[1], Ss[2], Ss[3] + 0.5 * (Ss[0] + Ss[1]), Ss[4] + 0.5 * (Ss[1] + Ss[2]), Ss[5] + 0.5 * (Ss[0] + Ss[2])]) for j in range(6): avd.append(np.average(D[j])) avs.append(np.average(Ss[j])) D = D.transpose() # for s in Ss: # print 'from sbar: ',s # D.append(s[:]) # append a copy of s # D[-1][3]=D[-1][3]+0.5*(s[0]+s[1]) # D[-1][4]=D[-1][4]+0.5*(s[1]+s[2]) # D[-1][5]=D[-1][5]+0.5*(s[0]+s[2]) # for j in range(6): # avd[j]+=(D[-1][j])/float(npts) # avs[j]+=(s[j])/float(npts) # calculate sigma nf = (npts - 1) * 6 # number of degrees of freedom s0 = 0 Dels = (D - avd)**2 s0 = np.sum(Dels) sigma = np.sqrt(s0/float(nf)) return nf, sigma, avs
def next_string(min_size, max_size): """ Generates a random string, consisting of upper and lower case letters (of the English alphabet), digits (0-9), and symbols ("_,.:-/.[].{},#-!,$=%.+^.&*-() "). :param min_size: (optional) minimum string length. :param max_size: maximum string length. :return: a random string. """ result = '' max_size = max_size if max_size != None else min_size length = RandomInteger.next_integer(min_size, max_size) for i in range(length): result += random.choice(_chars) return result
Generates a random string, consisting of upper and lower case letters (of the English alphabet), digits (0-9), and symbols ("_,.:-/.[].{},#-!,$=%.+^.&*-() "). :param min_size: (optional) minimum string length. :param max_size: maximum string length. :return: a random string.
Below is the the instruction that describes the task: ### Input: Generates a random string, consisting of upper and lower case letters (of the English alphabet), digits (0-9), and symbols ("_,.:-/.[].{},#-!,$=%.+^.&*-() "). :param min_size: (optional) minimum string length. :param max_size: maximum string length. :return: a random string. ### Response: def next_string(min_size, max_size): """ Generates a random string, consisting of upper and lower case letters (of the English alphabet), digits (0-9), and symbols ("_,.:-/.[].{},#-!,$=%.+^.&*-() "). :param min_size: (optional) minimum string length. :param max_size: maximum string length. :return: a random string. """ result = '' max_size = max_size if max_size != None else min_size length = RandomInteger.next_integer(min_size, max_size) for i in range(length): result += random.choice(_chars) return result
def headloss_fric(FlowRate, Diam, Length, Nu, PipeRough): """Return the major head loss (due to wall shear) in a pipe. This equation applies to both laminar and turbulent flows. """ #Checking input validity - inputs not checked here are checked by #functions this function calls. ut.check_range([Length, ">0", "Length"]) return (fric(FlowRate, Diam, Nu, PipeRough) * 8 / (gravity.magnitude * np.pi**2) * (Length * FlowRate**2) / Diam**5 )
Return the major head loss (due to wall shear) in a pipe. This equation applies to both laminar and turbulent flows.
Below is the the instruction that describes the task: ### Input: Return the major head loss (due to wall shear) in a pipe. This equation applies to both laminar and turbulent flows. ### Response: def headloss_fric(FlowRate, Diam, Length, Nu, PipeRough): """Return the major head loss (due to wall shear) in a pipe. This equation applies to both laminar and turbulent flows. """ #Checking input validity - inputs not checked here are checked by #functions this function calls. ut.check_range([Length, ">0", "Length"]) return (fric(FlowRate, Diam, Nu, PipeRough) * 8 / (gravity.magnitude * np.pi**2) * (Length * FlowRate**2) / Diam**5 )
def ticket_satisfaction_rating_create(self, ticket_id, data, **kwargs): "https://developer.zendesk.com/rest_api/docs/core/satisfaction_ratings#create-a-satisfaction-rating" api_path = "/api/v2/tickets/{ticket_id}/satisfaction_rating.json" api_path = api_path.format(ticket_id=ticket_id) return self.call(api_path, method="POST", data=data, **kwargs)
https://developer.zendesk.com/rest_api/docs/core/satisfaction_ratings#create-a-satisfaction-rating
Below is the the instruction that describes the task: ### Input: https://developer.zendesk.com/rest_api/docs/core/satisfaction_ratings#create-a-satisfaction-rating ### Response: def ticket_satisfaction_rating_create(self, ticket_id, data, **kwargs): "https://developer.zendesk.com/rest_api/docs/core/satisfaction_ratings#create-a-satisfaction-rating" api_path = "/api/v2/tickets/{ticket_id}/satisfaction_rating.json" api_path = api_path.format(ticket_id=ticket_id) return self.call(api_path, method="POST", data=data, **kwargs)
def get_manifest_digests(image, registry, insecure=False, dockercfg_path=None, versions=('v1', 'v2', 'v2_list', 'oci', 'oci_index'), require_digest=True): """Return manifest digest for image. :param image: ImageName, the remote image to inspect :param registry: str, URI for registry, if URI schema is not provided, https:// will be used :param insecure: bool, when True registry's cert is not verified :param dockercfg_path: str, dirname of .dockercfg location :param versions: tuple, which manifest schema versions to fetch digest :param require_digest: bool, when True exception is thrown if no digest is set in the headers. :return: dict, versions mapped to their digest """ registry_session = RegistrySession(registry, insecure=insecure, dockercfg_path=dockercfg_path) digests = {} # If all of the media types return a 404 NOT_FOUND status, then we rethrow # an exception, if all of the media types fail for some other reason - like # bad headers - then we return a ManifestDigest object with no digests. # This is interesting for the Pulp "retry until the manifest shows up" case. all_not_found = True saved_not_found = None for version in versions: media_type = get_manifest_media_type(version) response, saved_not_found = get_manifest(image, registry_session, version) if saved_not_found is None: all_not_found = False if not response: continue # set it to truthy value so that koji_import would know pulp supports these digests digests[version] = True if not response.headers.get('Docker-Content-Digest'): logger.warning('Unable to fetch digest for %s, no Docker-Content-Digest header', media_type) continue digests[version] = response.headers['Docker-Content-Digest'] context = '/'.join([x for x in [image.namespace, image.repo] if x]) tag = image.tag logger.debug('Image %s:%s has %s manifest digest: %s', context, tag, version, digests[version]) if not digests: if all_not_found and len(versions) > 0: raise saved_not_found if require_digest: raise RuntimeError('No digests found for {}'.format(image)) return ManifestDigest(**digests)
Return manifest digest for image. :param image: ImageName, the remote image to inspect :param registry: str, URI for registry, if URI schema is not provided, https:// will be used :param insecure: bool, when True registry's cert is not verified :param dockercfg_path: str, dirname of .dockercfg location :param versions: tuple, which manifest schema versions to fetch digest :param require_digest: bool, when True exception is thrown if no digest is set in the headers. :return: dict, versions mapped to their digest
Below is the the instruction that describes the task: ### Input: Return manifest digest for image. :param image: ImageName, the remote image to inspect :param registry: str, URI for registry, if URI schema is not provided, https:// will be used :param insecure: bool, when True registry's cert is not verified :param dockercfg_path: str, dirname of .dockercfg location :param versions: tuple, which manifest schema versions to fetch digest :param require_digest: bool, when True exception is thrown if no digest is set in the headers. :return: dict, versions mapped to their digest ### Response: def get_manifest_digests(image, registry, insecure=False, dockercfg_path=None, versions=('v1', 'v2', 'v2_list', 'oci', 'oci_index'), require_digest=True): """Return manifest digest for image. :param image: ImageName, the remote image to inspect :param registry: str, URI for registry, if URI schema is not provided, https:// will be used :param insecure: bool, when True registry's cert is not verified :param dockercfg_path: str, dirname of .dockercfg location :param versions: tuple, which manifest schema versions to fetch digest :param require_digest: bool, when True exception is thrown if no digest is set in the headers. :return: dict, versions mapped to their digest """ registry_session = RegistrySession(registry, insecure=insecure, dockercfg_path=dockercfg_path) digests = {} # If all of the media types return a 404 NOT_FOUND status, then we rethrow # an exception, if all of the media types fail for some other reason - like # bad headers - then we return a ManifestDigest object with no digests. # This is interesting for the Pulp "retry until the manifest shows up" case. all_not_found = True saved_not_found = None for version in versions: media_type = get_manifest_media_type(version) response, saved_not_found = get_manifest(image, registry_session, version) if saved_not_found is None: all_not_found = False if not response: continue # set it to truthy value so that koji_import would know pulp supports these digests digests[version] = True if not response.headers.get('Docker-Content-Digest'): logger.warning('Unable to fetch digest for %s, no Docker-Content-Digest header', media_type) continue digests[version] = response.headers['Docker-Content-Digest'] context = '/'.join([x for x in [image.namespace, image.repo] if x]) tag = image.tag logger.debug('Image %s:%s has %s manifest digest: %s', context, tag, version, digests[version]) if not digests: if all_not_found and len(versions) > 0: raise saved_not_found if require_digest: raise RuntimeError('No digests found for {}'.format(image)) return ManifestDigest(**digests)
def post(method, hmc, uri, uri_parms, body, logon_required, wait_for_completion): """Operation: Update <resource> Properties.""" assert wait_for_completion is True # async not supported yet try: resource = hmc.lookup_by_uri(uri) except KeyError: raise InvalidResourceError(method, uri) resource.update(body)
Operation: Update <resource> Properties.
Below is the the instruction that describes the task: ### Input: Operation: Update <resource> Properties. ### Response: def post(method, hmc, uri, uri_parms, body, logon_required, wait_for_completion): """Operation: Update <resource> Properties.""" assert wait_for_completion is True # async not supported yet try: resource = hmc.lookup_by_uri(uri) except KeyError: raise InvalidResourceError(method, uri) resource.update(body)
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format="channels_first", use_td=False, targeting_rate=None, keep_prob=None, is_training=None): """Strided 2-D convolution with explicit padding. The padding is consistent and is based only on `kernel_size`, not on the dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). Args: inputs: `Tensor` of size `[batch, channels, height_in, width_in]`. filters: `int` number of filters in the convolution. kernel_size: `int` size of the kernel to be used in the convolution. strides: `int` strides of the convolution. data_format: `str` either "channels_first" for `[batch, channels, height, width]` or "channels_last for `[batch, height, width, channels]`. use_td: `str` one of "weight" or "unit". Set to False or "" to disable targeted dropout. targeting_rate: `float` proportion of weights to target with targeted dropout. keep_prob: `float` keep probability for targeted dropout. is_training: `bool` for whether the model is in training. Returns: A `Tensor` of shape `[batch, filters, height_out, width_out]`. Raises: Exception: if use_td is not valid. """ if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format=data_format) if use_td: inputs_shape = common_layers.shape_list(inputs) if use_td == "weight": if data_format == "channels_last": size = kernel_size * kernel_size * inputs_shape[-1] else: size = kernel_size * kernel_size * inputs_shape[1] targeting_count = targeting_rate * tf.to_float(size) targeting_fn = common_layers.weight_targeting elif use_td == "unit": targeting_count = targeting_rate * filters targeting_fn = common_layers.unit_targeting else: raise Exception("Unrecognized targeted dropout type: %s" % use_td) y = common_layers.td_conv( inputs, filters, kernel_size, targeting_count, targeting_fn, keep_prob, is_training, do_prune=True, strides=strides, padding=("SAME" if strides == 1 else "VALID"), data_format=data_format, use_bias=False, kernel_initializer=tf.variance_scaling_initializer()) else: y = layers().Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=("SAME" if strides == 1 else "VALID"), use_bias=False, kernel_initializer=tf.variance_scaling_initializer(), data_format=data_format)(inputs) return y
Strided 2-D convolution with explicit padding. The padding is consistent and is based only on `kernel_size`, not on the dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). Args: inputs: `Tensor` of size `[batch, channels, height_in, width_in]`. filters: `int` number of filters in the convolution. kernel_size: `int` size of the kernel to be used in the convolution. strides: `int` strides of the convolution. data_format: `str` either "channels_first" for `[batch, channels, height, width]` or "channels_last for `[batch, height, width, channels]`. use_td: `str` one of "weight" or "unit". Set to False or "" to disable targeted dropout. targeting_rate: `float` proportion of weights to target with targeted dropout. keep_prob: `float` keep probability for targeted dropout. is_training: `bool` for whether the model is in training. Returns: A `Tensor` of shape `[batch, filters, height_out, width_out]`. Raises: Exception: if use_td is not valid.
Below is the the instruction that describes the task: ### Input: Strided 2-D convolution with explicit padding. The padding is consistent and is based only on `kernel_size`, not on the dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). Args: inputs: `Tensor` of size `[batch, channels, height_in, width_in]`. filters: `int` number of filters in the convolution. kernel_size: `int` size of the kernel to be used in the convolution. strides: `int` strides of the convolution. data_format: `str` either "channels_first" for `[batch, channels, height, width]` or "channels_last for `[batch, height, width, channels]`. use_td: `str` one of "weight" or "unit". Set to False or "" to disable targeted dropout. targeting_rate: `float` proportion of weights to target with targeted dropout. keep_prob: `float` keep probability for targeted dropout. is_training: `bool` for whether the model is in training. Returns: A `Tensor` of shape `[batch, filters, height_out, width_out]`. Raises: Exception: if use_td is not valid. ### Response: def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format="channels_first", use_td=False, targeting_rate=None, keep_prob=None, is_training=None): """Strided 2-D convolution with explicit padding. The padding is consistent and is based only on `kernel_size`, not on the dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). Args: inputs: `Tensor` of size `[batch, channels, height_in, width_in]`. filters: `int` number of filters in the convolution. kernel_size: `int` size of the kernel to be used in the convolution. strides: `int` strides of the convolution. data_format: `str` either "channels_first" for `[batch, channels, height, width]` or "channels_last for `[batch, height, width, channels]`. use_td: `str` one of "weight" or "unit". Set to False or "" to disable targeted dropout. targeting_rate: `float` proportion of weights to target with targeted dropout. keep_prob: `float` keep probability for targeted dropout. is_training: `bool` for whether the model is in training. Returns: A `Tensor` of shape `[batch, filters, height_out, width_out]`. Raises: Exception: if use_td is not valid. """ if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format=data_format) if use_td: inputs_shape = common_layers.shape_list(inputs) if use_td == "weight": if data_format == "channels_last": size = kernel_size * kernel_size * inputs_shape[-1] else: size = kernel_size * kernel_size * inputs_shape[1] targeting_count = targeting_rate * tf.to_float(size) targeting_fn = common_layers.weight_targeting elif use_td == "unit": targeting_count = targeting_rate * filters targeting_fn = common_layers.unit_targeting else: raise Exception("Unrecognized targeted dropout type: %s" % use_td) y = common_layers.td_conv( inputs, filters, kernel_size, targeting_count, targeting_fn, keep_prob, is_training, do_prune=True, strides=strides, padding=("SAME" if strides == 1 else "VALID"), data_format=data_format, use_bias=False, kernel_initializer=tf.variance_scaling_initializer()) else: y = layers().Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=("SAME" if strides == 1 else "VALID"), use_bias=False, kernel_initializer=tf.variance_scaling_initializer(), data_format=data_format)(inputs) return y
def _parse_part(client, command, actor, args): """Parse a PART and update channel states, then dispatch events. Note that two events are dispatched here: - PART, because a user parted the channel - MEMBERS, because the channel's members changed """ actor = User(actor) channel, _, message = args.partition(' :') channel = client.server.get_channel(channel) channel.remove_user(actor) if actor.nick == client.user.nick: client.server.remove_channel(channel) client.dispatch_event("PART", actor, channel, message) if actor.nick != client.user.nick: client.dispatch_event("MEMBERS", channel)
Parse a PART and update channel states, then dispatch events. Note that two events are dispatched here: - PART, because a user parted the channel - MEMBERS, because the channel's members changed
Below is the the instruction that describes the task: ### Input: Parse a PART and update channel states, then dispatch events. Note that two events are dispatched here: - PART, because a user parted the channel - MEMBERS, because the channel's members changed ### Response: def _parse_part(client, command, actor, args): """Parse a PART and update channel states, then dispatch events. Note that two events are dispatched here: - PART, because a user parted the channel - MEMBERS, because the channel's members changed """ actor = User(actor) channel, _, message = args.partition(' :') channel = client.server.get_channel(channel) channel.remove_user(actor) if actor.nick == client.user.nick: client.server.remove_channel(channel) client.dispatch_event("PART", actor, channel, message) if actor.nick != client.user.nick: client.dispatch_event("MEMBERS", channel)
def next(self): """Returns the next batch of data.""" if self.curr_idx == len(self.idx): raise StopIteration i, j = self.idx[self.curr_idx] self.curr_idx += 1 audio_paths = [] texts = [] for duration, audio_path, text in self.data[i][j:j+self.batch_size]: audio_paths.append(audio_path) texts.append(text) if self.is_first_epoch: data_set = self.datagen.prepare_minibatch(audio_paths, texts, overwrite=True, is_bi_graphemes=self.is_bi_graphemes, seq_length=self.buckets[i], save_feature_as_csvfile=self.save_feature_as_csvfile) else: data_set = self.datagen.prepare_minibatch(audio_paths, texts, overwrite=False, is_bi_graphemes=self.is_bi_graphemes, seq_length=self.buckets[i], save_feature_as_csvfile=self.save_feature_as_csvfile) data_all = [mx.nd.array(data_set['x'])] + self.init_state_arrays label_all = [mx.nd.array(data_set['y'])] self.label = label_all provide_data = [('data', (self.batch_size, self.buckets[i], self.width * self.height))] + self.init_states return mx.io.DataBatch(data_all, label_all, pad=0, bucket_key=self.buckets[i], provide_data=provide_data, provide_label=self.provide_label)
Returns the next batch of data.
Below is the the instruction that describes the task: ### Input: Returns the next batch of data. ### Response: def next(self): """Returns the next batch of data.""" if self.curr_idx == len(self.idx): raise StopIteration i, j = self.idx[self.curr_idx] self.curr_idx += 1 audio_paths = [] texts = [] for duration, audio_path, text in self.data[i][j:j+self.batch_size]: audio_paths.append(audio_path) texts.append(text) if self.is_first_epoch: data_set = self.datagen.prepare_minibatch(audio_paths, texts, overwrite=True, is_bi_graphemes=self.is_bi_graphemes, seq_length=self.buckets[i], save_feature_as_csvfile=self.save_feature_as_csvfile) else: data_set = self.datagen.prepare_minibatch(audio_paths, texts, overwrite=False, is_bi_graphemes=self.is_bi_graphemes, seq_length=self.buckets[i], save_feature_as_csvfile=self.save_feature_as_csvfile) data_all = [mx.nd.array(data_set['x'])] + self.init_state_arrays label_all = [mx.nd.array(data_set['y'])] self.label = label_all provide_data = [('data', (self.batch_size, self.buckets[i], self.width * self.height))] + self.init_states return mx.io.DataBatch(data_all, label_all, pad=0, bucket_key=self.buckets[i], provide_data=provide_data, provide_label=self.provide_label)
def process_needlist(app, doctree, fromdocname): """ Replace all needlist nodes with a list of the collected needs. Augment each need with a backlink to the original location. """ env = app.builder.env for node in doctree.traverse(Needlist): if not app.config.needs_include_needs: # Ok, this is really dirty. # If we replace a node, docutils checks, if it will not lose any attributes. # But this is here the case, because we are using the attribute "ids" of a node. # However, I do not understand, why losing an attribute is such a big deal, so we delete everything # before docutils claims about it. for att in ('ids', 'names', 'classes', 'dupnames'): node[att] = [] node.replace_self([]) continue id = node.attributes["ids"][0] current_needfilter = env.need_all_needlists[id] all_needs = env.needs_all_needs content = [] all_needs = list(all_needs.values()) if current_needfilter["sort_by"] is not None: if current_needfilter["sort_by"] == "id": all_needs = sorted(all_needs, key=lambda node: node["id"]) elif current_needfilter["sort_by"] == "status": all_needs = sorted(all_needs, key=status_sorter) found_needs = procces_filters(all_needs, current_needfilter) line_block = nodes.line_block() for need_info in found_needs: para = nodes.line() description = "%s: %s" % (need_info["id"], need_info["title"]) if current_needfilter["show_status"] and need_info["status"] is not None: description += " (%s)" % need_info["status"] if current_needfilter["show_tags"] and need_info["tags"] is not None: description += " [%s]" % "; ".join(need_info["tags"]) title = nodes.Text(description, description) # Create a reference if not need_info["hide"]: ref = nodes.reference('', '') ref['refdocname'] = need_info['docname'] ref['refuri'] = app.builder.get_relative_uri( fromdocname, need_info['docname']) ref['refuri'] += '#' + need_info['target_node']['refid'] ref.append(title) para += ref else: para += title line_block.append(para) content.append(line_block) if len(content) == 0: content.append(no_needs_found_paragraph()) if current_needfilter["show_filters"]: content.append(used_filter_paragraph(current_needfilter)) node.replace_self(content)
Replace all needlist nodes with a list of the collected needs. Augment each need with a backlink to the original location.
Below is the the instruction that describes the task: ### Input: Replace all needlist nodes with a list of the collected needs. Augment each need with a backlink to the original location. ### Response: def process_needlist(app, doctree, fromdocname): """ Replace all needlist nodes with a list of the collected needs. Augment each need with a backlink to the original location. """ env = app.builder.env for node in doctree.traverse(Needlist): if not app.config.needs_include_needs: # Ok, this is really dirty. # If we replace a node, docutils checks, if it will not lose any attributes. # But this is here the case, because we are using the attribute "ids" of a node. # However, I do not understand, why losing an attribute is such a big deal, so we delete everything # before docutils claims about it. for att in ('ids', 'names', 'classes', 'dupnames'): node[att] = [] node.replace_self([]) continue id = node.attributes["ids"][0] current_needfilter = env.need_all_needlists[id] all_needs = env.needs_all_needs content = [] all_needs = list(all_needs.values()) if current_needfilter["sort_by"] is not None: if current_needfilter["sort_by"] == "id": all_needs = sorted(all_needs, key=lambda node: node["id"]) elif current_needfilter["sort_by"] == "status": all_needs = sorted(all_needs, key=status_sorter) found_needs = procces_filters(all_needs, current_needfilter) line_block = nodes.line_block() for need_info in found_needs: para = nodes.line() description = "%s: %s" % (need_info["id"], need_info["title"]) if current_needfilter["show_status"] and need_info["status"] is not None: description += " (%s)" % need_info["status"] if current_needfilter["show_tags"] and need_info["tags"] is not None: description += " [%s]" % "; ".join(need_info["tags"]) title = nodes.Text(description, description) # Create a reference if not need_info["hide"]: ref = nodes.reference('', '') ref['refdocname'] = need_info['docname'] ref['refuri'] = app.builder.get_relative_uri( fromdocname, need_info['docname']) ref['refuri'] += '#' + need_info['target_node']['refid'] ref.append(title) para += ref else: para += title line_block.append(para) content.append(line_block) if len(content) == 0: content.append(no_needs_found_paragraph()) if current_needfilter["show_filters"]: content.append(used_filter_paragraph(current_needfilter)) node.replace_self(content)
def get_movielens_iter(filename, batch_size): """Not particularly fast code to parse the text file and load into NDArrays. return two data iters, one for train, the other for validation. """ logging.info("Preparing data iterators for " + filename + " ... ") user = [] item = [] score = [] with open(filename, 'r') as f: num_samples = 0 for line in f: tks = line.strip().split('::') if len(tks) != 4: continue num_samples += 1 user.append((tks[0])) item.append((tks[1])) score.append((tks[2])) # convert to ndarrays user = mx.nd.array(user, dtype='int32') item = mx.nd.array(item) score = mx.nd.array(score) # prepare data iters data_train = {'user': user, 'item': item} label_train = {'score': score} iter_train = mx.io.NDArrayIter(data=data_train,label=label_train, batch_size=batch_size, shuffle=True) return mx.io.PrefetchingIter(iter_train)
Not particularly fast code to parse the text file and load into NDArrays. return two data iters, one for train, the other for validation.
Below is the the instruction that describes the task: ### Input: Not particularly fast code to parse the text file and load into NDArrays. return two data iters, one for train, the other for validation. ### Response: def get_movielens_iter(filename, batch_size): """Not particularly fast code to parse the text file and load into NDArrays. return two data iters, one for train, the other for validation. """ logging.info("Preparing data iterators for " + filename + " ... ") user = [] item = [] score = [] with open(filename, 'r') as f: num_samples = 0 for line in f: tks = line.strip().split('::') if len(tks) != 4: continue num_samples += 1 user.append((tks[0])) item.append((tks[1])) score.append((tks[2])) # convert to ndarrays user = mx.nd.array(user, dtype='int32') item = mx.nd.array(item) score = mx.nd.array(score) # prepare data iters data_train = {'user': user, 'item': item} label_train = {'score': score} iter_train = mx.io.NDArrayIter(data=data_train,label=label_train, batch_size=batch_size, shuffle=True) return mx.io.PrefetchingIter(iter_train)
def _speak_normal_inherit(self, element): """ Speak the content of element and descendants. :param element: The element. :type element: hatemile.util.html.htmldomelement.HTMLDOMElement """ self._visit(element, self._speak_normal) element.normalize()
Speak the content of element and descendants. :param element: The element. :type element: hatemile.util.html.htmldomelement.HTMLDOMElement
Below is the the instruction that describes the task: ### Input: Speak the content of element and descendants. :param element: The element. :type element: hatemile.util.html.htmldomelement.HTMLDOMElement ### Response: def _speak_normal_inherit(self, element): """ Speak the content of element and descendants. :param element: The element. :type element: hatemile.util.html.htmldomelement.HTMLDOMElement """ self._visit(element, self._speak_normal) element.normalize()
def init(self, formula, incr=False): """ Initialize the internal SAT oracle. The oracle is used incrementally and so it is initialized only once when constructing an object of class :class:`RC2`. Given an input :class:`.WCNF` formula, the method bootstraps the oracle with its hard clauses. It also augments the soft clauses with "fresh" selectors and adds them to the oracle afterwards. Optional input parameter ``incr`` (``False`` by default) regulates whether or not Glucose's incremental mode [6]_ is turned on. :param formula: input formula :param incr: apply incremental mode of Glucose :type formula: :class:`.WCNF` :type incr: bool """ # creating a solver object self.oracle = Solver(name=self.solver, bootstrap_with=formula.hard, incr=incr, use_timer=True) # adding soft clauses to oracle for i, cl in enumerate(formula.soft): selv = cl[0] # if clause is unit, selector variable is its literal if len(cl) > 1: self.topv += 1 selv = self.topv cl.append(-self.topv) self.oracle.add_clause(cl) if selv not in self.wght: # record selector and its weight self.sels.append(selv) self.wght[selv] = formula.wght[i] self.smap[selv] = i else: # selector is not new; increment its weight self.wght[selv] += formula.wght[i] # storing the set of selectors self.sels_set = set(self.sels) # at this point internal and external variables are the same for v in range(1, formula.nv + 1): self.vmap.e2i[v] = v self.vmap.i2e[v] = v if self.verbose > 1: print('c formula: {0} vars, {1} hard, {2} soft'.format(formula.nv, len(formula.hard), len(formula.soft)))
Initialize the internal SAT oracle. The oracle is used incrementally and so it is initialized only once when constructing an object of class :class:`RC2`. Given an input :class:`.WCNF` formula, the method bootstraps the oracle with its hard clauses. It also augments the soft clauses with "fresh" selectors and adds them to the oracle afterwards. Optional input parameter ``incr`` (``False`` by default) regulates whether or not Glucose's incremental mode [6]_ is turned on. :param formula: input formula :param incr: apply incremental mode of Glucose :type formula: :class:`.WCNF` :type incr: bool
Below is the the instruction that describes the task: ### Input: Initialize the internal SAT oracle. The oracle is used incrementally and so it is initialized only once when constructing an object of class :class:`RC2`. Given an input :class:`.WCNF` formula, the method bootstraps the oracle with its hard clauses. It also augments the soft clauses with "fresh" selectors and adds them to the oracle afterwards. Optional input parameter ``incr`` (``False`` by default) regulates whether or not Glucose's incremental mode [6]_ is turned on. :param formula: input formula :param incr: apply incremental mode of Glucose :type formula: :class:`.WCNF` :type incr: bool ### Response: def init(self, formula, incr=False): """ Initialize the internal SAT oracle. The oracle is used incrementally and so it is initialized only once when constructing an object of class :class:`RC2`. Given an input :class:`.WCNF` formula, the method bootstraps the oracle with its hard clauses. It also augments the soft clauses with "fresh" selectors and adds them to the oracle afterwards. Optional input parameter ``incr`` (``False`` by default) regulates whether or not Glucose's incremental mode [6]_ is turned on. :param formula: input formula :param incr: apply incremental mode of Glucose :type formula: :class:`.WCNF` :type incr: bool """ # creating a solver object self.oracle = Solver(name=self.solver, bootstrap_with=formula.hard, incr=incr, use_timer=True) # adding soft clauses to oracle for i, cl in enumerate(formula.soft): selv = cl[0] # if clause is unit, selector variable is its literal if len(cl) > 1: self.topv += 1 selv = self.topv cl.append(-self.topv) self.oracle.add_clause(cl) if selv not in self.wght: # record selector and its weight self.sels.append(selv) self.wght[selv] = formula.wght[i] self.smap[selv] = i else: # selector is not new; increment its weight self.wght[selv] += formula.wght[i] # storing the set of selectors self.sels_set = set(self.sels) # at this point internal and external variables are the same for v in range(1, formula.nv + 1): self.vmap.e2i[v] = v self.vmap.i2e[v] = v if self.verbose > 1: print('c formula: {0} vars, {1} hard, {2} soft'.format(formula.nv, len(formula.hard), len(formula.soft)))
def get_list(file,fmt): '''makes a list out of the fmt from the LspOutput f using the format i for int f for float d for double s for string''' out=[] for i in fmt: if i == 'i': out.append(get_int(file)); elif i == 'f' or i == 'd': out.append(get_float(file)); elif i == 's': out.append(get_str(file)); else: raise ValueError("Unexpected flag '{}'".format(i)); return out;
makes a list out of the fmt from the LspOutput f using the format i for int f for float d for double s for string
Below is the the instruction that describes the task: ### Input: makes a list out of the fmt from the LspOutput f using the format i for int f for float d for double s for string ### Response: def get_list(file,fmt): '''makes a list out of the fmt from the LspOutput f using the format i for int f for float d for double s for string''' out=[] for i in fmt: if i == 'i': out.append(get_int(file)); elif i == 'f' or i == 'd': out.append(get_float(file)); elif i == 's': out.append(get_str(file)); else: raise ValueError("Unexpected flag '{}'".format(i)); return out;
def import_class(classpath): """Import the class referred to by the fully qualified class path. Args: classpath: A full "foo.bar.MyClass" path to a class definition. Returns: The class referred to by the classpath. Raises: ImportError: If an error occurs while importing the module. AttributeError: IF the class does not exist in the imported module. """ modname, classname = classpath.rsplit(".", 1) module = importlib.import_module(modname) klass = getattr(module, classname) return klass
Import the class referred to by the fully qualified class path. Args: classpath: A full "foo.bar.MyClass" path to a class definition. Returns: The class referred to by the classpath. Raises: ImportError: If an error occurs while importing the module. AttributeError: IF the class does not exist in the imported module.
Below is the the instruction that describes the task: ### Input: Import the class referred to by the fully qualified class path. Args: classpath: A full "foo.bar.MyClass" path to a class definition. Returns: The class referred to by the classpath. Raises: ImportError: If an error occurs while importing the module. AttributeError: IF the class does not exist in the imported module. ### Response: def import_class(classpath): """Import the class referred to by the fully qualified class path. Args: classpath: A full "foo.bar.MyClass" path to a class definition. Returns: The class referred to by the classpath. Raises: ImportError: If an error occurs while importing the module. AttributeError: IF the class does not exist in the imported module. """ modname, classname = classpath.rsplit(".", 1) module = importlib.import_module(modname) klass = getattr(module, classname) return klass
def snr_ratio(in1, in2): """ The following function simply calculates the signal to noise ratio between two signals. INPUTS: in1 (no default): Array containing values for signal 1. in2 (no default): Array containing values for signal 2. OUTPUTS: out1 The ratio of the signal to noise ratios of two signals. """ out1 = 20*(np.log10(np.linalg.norm(in1)/np.linalg.norm(in1-in2))) return out1
The following function simply calculates the signal to noise ratio between two signals. INPUTS: in1 (no default): Array containing values for signal 1. in2 (no default): Array containing values for signal 2. OUTPUTS: out1 The ratio of the signal to noise ratios of two signals.
Below is the the instruction that describes the task: ### Input: The following function simply calculates the signal to noise ratio between two signals. INPUTS: in1 (no default): Array containing values for signal 1. in2 (no default): Array containing values for signal 2. OUTPUTS: out1 The ratio of the signal to noise ratios of two signals. ### Response: def snr_ratio(in1, in2): """ The following function simply calculates the signal to noise ratio between two signals. INPUTS: in1 (no default): Array containing values for signal 1. in2 (no default): Array containing values for signal 2. OUTPUTS: out1 The ratio of the signal to noise ratios of two signals. """ out1 = 20*(np.log10(np.linalg.norm(in1)/np.linalg.norm(in1-in2))) return out1
def _connect(host=DEFAULT_HOST, port=DEFAULT_PORT): ''' Returns a tuple of (user, host, port) with config, pillar, or default values assigned to missing values. ''' if six.text_type(port).isdigit(): return memcache.Client(['{0}:{1}'.format(host, port)], debug=0) raise SaltInvocationError('port must be an integer')
Returns a tuple of (user, host, port) with config, pillar, or default values assigned to missing values.
Below is the the instruction that describes the task: ### Input: Returns a tuple of (user, host, port) with config, pillar, or default values assigned to missing values. ### Response: def _connect(host=DEFAULT_HOST, port=DEFAULT_PORT): ''' Returns a tuple of (user, host, port) with config, pillar, or default values assigned to missing values. ''' if six.text_type(port).isdigit(): return memcache.Client(['{0}:{1}'.format(host, port)], debug=0) raise SaltInvocationError('port must be an integer')
def schema_columns(self): """Return column informatino only from this schema""" t = self.schema_term columns = [] if t: for i, c in enumerate(t.children): if c.term_is("Table.Column"): p = c.all_props p['pos'] = i p['name'] = c.value p['header'] = self._name_for_col_term(c, i) columns.append(p) return columns
Return column informatino only from this schema
Below is the the instruction that describes the task: ### Input: Return column informatino only from this schema ### Response: def schema_columns(self): """Return column informatino only from this schema""" t = self.schema_term columns = [] if t: for i, c in enumerate(t.children): if c.term_is("Table.Column"): p = c.all_props p['pos'] = i p['name'] = c.value p['header'] = self._name_for_col_term(c, i) columns.append(p) return columns
def _prepare(constituents, t0, t = None, radians = True): """ Return constituent speed and equilibrium argument at a given time, and constituent node factors at given times. Arguments: constituents -- list of constituents to prepare t0 -- time at which to evaluate speed and equilibrium argument for each constituent t -- list of times at which to evaluate node factors for each constituent (default: t0) radians -- whether to return the angular arguments in radians or degrees (default: True) """ #The equilibrium argument is constant and taken at the beginning of the #time series (t0). The speed of the equilibrium argument changes very #slowly, so again we take it to be constant over any length of data. The #node factors change more rapidly. if isinstance(t0, Iterable): t0 = t0[0] if t is None: t = [t0] if not isinstance(t, Iterable): t = [t] a0 = astro(t0) a = [astro(t_i) for t_i in t] #For convenience give u, V0 (but not speed!) in [0, 360) V0 = np.array([c.V(a0) for c in constituents])[:, np.newaxis] speed = np.array([c.speed(a0) for c in constituents])[:, np.newaxis] u = [np.mod(np.array([c.u(a_i) for c in constituents])[:, np.newaxis], 360.0) for a_i in a] f = [np.mod(np.array([c.f(a_i) for c in constituents])[:, np.newaxis], 360.0) for a_i in a] if radians: speed = d2r*speed V0 = d2r*V0 u = [d2r*each for each in u] return speed, u, f, V0
Return constituent speed and equilibrium argument at a given time, and constituent node factors at given times. Arguments: constituents -- list of constituents to prepare t0 -- time at which to evaluate speed and equilibrium argument for each constituent t -- list of times at which to evaluate node factors for each constituent (default: t0) radians -- whether to return the angular arguments in radians or degrees (default: True)
Below is the the instruction that describes the task: ### Input: Return constituent speed and equilibrium argument at a given time, and constituent node factors at given times. Arguments: constituents -- list of constituents to prepare t0 -- time at which to evaluate speed and equilibrium argument for each constituent t -- list of times at which to evaluate node factors for each constituent (default: t0) radians -- whether to return the angular arguments in radians or degrees (default: True) ### Response: def _prepare(constituents, t0, t = None, radians = True): """ Return constituent speed and equilibrium argument at a given time, and constituent node factors at given times. Arguments: constituents -- list of constituents to prepare t0 -- time at which to evaluate speed and equilibrium argument for each constituent t -- list of times at which to evaluate node factors for each constituent (default: t0) radians -- whether to return the angular arguments in radians or degrees (default: True) """ #The equilibrium argument is constant and taken at the beginning of the #time series (t0). The speed of the equilibrium argument changes very #slowly, so again we take it to be constant over any length of data. The #node factors change more rapidly. if isinstance(t0, Iterable): t0 = t0[0] if t is None: t = [t0] if not isinstance(t, Iterable): t = [t] a0 = astro(t0) a = [astro(t_i) for t_i in t] #For convenience give u, V0 (but not speed!) in [0, 360) V0 = np.array([c.V(a0) for c in constituents])[:, np.newaxis] speed = np.array([c.speed(a0) for c in constituents])[:, np.newaxis] u = [np.mod(np.array([c.u(a_i) for c in constituents])[:, np.newaxis], 360.0) for a_i in a] f = [np.mod(np.array([c.f(a_i) for c in constituents])[:, np.newaxis], 360.0) for a_i in a] if radians: speed = d2r*speed V0 = d2r*V0 u = [d2r*each for each in u] return speed, u, f, V0
def prepare(self, hash, start, end, name, sources, sample=None): """ Prepare a historics query which can later be started. Uses API documented at http://dev.datasift.com/docs/api/rest-api/endpoints/historicsprepare :param hash: The hash of a CSDL create the query for :type hash: str :param start: when to start querying data from - unix timestamp :type start: int :param end: when the query should end - unix timestamp :type end: int :param name: the name of the query :type name: str :param sources: list of sources e.g. ['facebook','bitly','tumblr'] :type sources: list :param sample: percentage to sample, either 10 or 100 :type sample: int :return: dict of REST API output with headers attached :rtype: :class:`~datasift.request.DictResponse` :raises: :class:`~datasift.exceptions.HistoricSourcesRequired`, :class:`~datasift.exceptions.DataSiftApiException`, :class:`requests.exceptions.HTTPError` """ if len(sources) == 0: raise HistoricSourcesRequired() if not isinstance(sources, list): sources = [sources] params = {'hash': hash, 'start': start, 'end': end, 'name': name, 'sources': ','.join(sources)} if sample: params['sample'] = sample return self.request.post('prepare', params)
Prepare a historics query which can later be started. Uses API documented at http://dev.datasift.com/docs/api/rest-api/endpoints/historicsprepare :param hash: The hash of a CSDL create the query for :type hash: str :param start: when to start querying data from - unix timestamp :type start: int :param end: when the query should end - unix timestamp :type end: int :param name: the name of the query :type name: str :param sources: list of sources e.g. ['facebook','bitly','tumblr'] :type sources: list :param sample: percentage to sample, either 10 or 100 :type sample: int :return: dict of REST API output with headers attached :rtype: :class:`~datasift.request.DictResponse` :raises: :class:`~datasift.exceptions.HistoricSourcesRequired`, :class:`~datasift.exceptions.DataSiftApiException`, :class:`requests.exceptions.HTTPError`
Below is the the instruction that describes the task: ### Input: Prepare a historics query which can later be started. Uses API documented at http://dev.datasift.com/docs/api/rest-api/endpoints/historicsprepare :param hash: The hash of a CSDL create the query for :type hash: str :param start: when to start querying data from - unix timestamp :type start: int :param end: when the query should end - unix timestamp :type end: int :param name: the name of the query :type name: str :param sources: list of sources e.g. ['facebook','bitly','tumblr'] :type sources: list :param sample: percentage to sample, either 10 or 100 :type sample: int :return: dict of REST API output with headers attached :rtype: :class:`~datasift.request.DictResponse` :raises: :class:`~datasift.exceptions.HistoricSourcesRequired`, :class:`~datasift.exceptions.DataSiftApiException`, :class:`requests.exceptions.HTTPError` ### Response: def prepare(self, hash, start, end, name, sources, sample=None): """ Prepare a historics query which can later be started. Uses API documented at http://dev.datasift.com/docs/api/rest-api/endpoints/historicsprepare :param hash: The hash of a CSDL create the query for :type hash: str :param start: when to start querying data from - unix timestamp :type start: int :param end: when the query should end - unix timestamp :type end: int :param name: the name of the query :type name: str :param sources: list of sources e.g. ['facebook','bitly','tumblr'] :type sources: list :param sample: percentage to sample, either 10 or 100 :type sample: int :return: dict of REST API output with headers attached :rtype: :class:`~datasift.request.DictResponse` :raises: :class:`~datasift.exceptions.HistoricSourcesRequired`, :class:`~datasift.exceptions.DataSiftApiException`, :class:`requests.exceptions.HTTPError` """ if len(sources) == 0: raise HistoricSourcesRequired() if not isinstance(sources, list): sources = [sources] params = {'hash': hash, 'start': start, 'end': end, 'name': name, 'sources': ','.join(sources)} if sample: params['sample'] = sample return self.request.post('prepare', params)
def clear(self): "Remove all rows and reset internal structures" ## list has no clear ... remove items in reverse order for i in range(len(self)-1, -1, -1): del self[i] self._key = 0 if hasattr(self._grid_view, "wx_obj"): self._grid_view.wx_obj.ClearGrid()
Remove all rows and reset internal structures
Below is the the instruction that describes the task: ### Input: Remove all rows and reset internal structures ### Response: def clear(self): "Remove all rows and reset internal structures" ## list has no clear ... remove items in reverse order for i in range(len(self)-1, -1, -1): del self[i] self._key = 0 if hasattr(self._grid_view, "wx_obj"): self._grid_view.wx_obj.ClearGrid()
def mock_cmd(self, release, *cmd, **kwargs): """Run a mock command in the chroot for a given release""" fmt = '{mock_cmd}' if kwargs.get('new_chroot') is True: fmt +=' --new-chroot' fmt += ' --configdir={mock_dir}' return self.call(fmt.format(**release).split() + list(cmd))
Run a mock command in the chroot for a given release
Below is the the instruction that describes the task: ### Input: Run a mock command in the chroot for a given release ### Response: def mock_cmd(self, release, *cmd, **kwargs): """Run a mock command in the chroot for a given release""" fmt = '{mock_cmd}' if kwargs.get('new_chroot') is True: fmt +=' --new-chroot' fmt += ' --configdir={mock_dir}' return self.call(fmt.format(**release).split() + list(cmd))
def from_stmt(stmt, engine, **kwargs): """ Execute a query in form of texture clause, return the result in form of :class:`PrettyTable`. :type stmt: TextClause :param stmt: :type engine: Engine :param engine: :rtype: PrettyTable """ result_proxy = engine.execute(stmt, **kwargs) return from_db_cursor(result_proxy.cursor)
Execute a query in form of texture clause, return the result in form of :class:`PrettyTable`. :type stmt: TextClause :param stmt: :type engine: Engine :param engine: :rtype: PrettyTable
Below is the the instruction that describes the task: ### Input: Execute a query in form of texture clause, return the result in form of :class:`PrettyTable`. :type stmt: TextClause :param stmt: :type engine: Engine :param engine: :rtype: PrettyTable ### Response: def from_stmt(stmt, engine, **kwargs): """ Execute a query in form of texture clause, return the result in form of :class:`PrettyTable`. :type stmt: TextClause :param stmt: :type engine: Engine :param engine: :rtype: PrettyTable """ result_proxy = engine.execute(stmt, **kwargs) return from_db_cursor(result_proxy.cursor)
def get_user_lists(self, course, aggregationid=''): """ Get the available student and tutor lists for aggregation edition""" tutor_list = course.get_staff() # Determine student list and if they are grouped student_list = list(self.database.aggregations.aggregate([ {"$match": {"courseid": course.get_id()}}, {"$unwind": "$students"}, {"$project": { "classroom": "$_id", "students": 1, "grouped": { "$anyElementTrue": { "$map": { "input": "$groups.students", "as": "group", "in": { "$anyElementTrue": { "$map": { "input": "$$group", "as": "groupmember", "in": {"$eq": ["$$groupmember", "$students"]} } } } } } } }} ])) student_list = dict([(student["students"], student) for student in student_list]) users_info = self.user_manager.get_users_info(list(student_list.keys()) + tutor_list) if aggregationid: # Order the non-registered students other_students = [student_list[entry]['students'] for entry in student_list.keys() if not student_list[entry]['classroom'] == ObjectId(aggregationid)] other_students = sorted(other_students, key=lambda val: (("0"+users_info[val][0]) if users_info[val] else ("1"+val))) return student_list, tutor_list, other_students, users_info else: return student_list, tutor_list, users_info
Get the available student and tutor lists for aggregation edition
Below is the the instruction that describes the task: ### Input: Get the available student and tutor lists for aggregation edition ### Response: def get_user_lists(self, course, aggregationid=''): """ Get the available student and tutor lists for aggregation edition""" tutor_list = course.get_staff() # Determine student list and if they are grouped student_list = list(self.database.aggregations.aggregate([ {"$match": {"courseid": course.get_id()}}, {"$unwind": "$students"}, {"$project": { "classroom": "$_id", "students": 1, "grouped": { "$anyElementTrue": { "$map": { "input": "$groups.students", "as": "group", "in": { "$anyElementTrue": { "$map": { "input": "$$group", "as": "groupmember", "in": {"$eq": ["$$groupmember", "$students"]} } } } } } } }} ])) student_list = dict([(student["students"], student) for student in student_list]) users_info = self.user_manager.get_users_info(list(student_list.keys()) + tutor_list) if aggregationid: # Order the non-registered students other_students = [student_list[entry]['students'] for entry in student_list.keys() if not student_list[entry]['classroom'] == ObjectId(aggregationid)] other_students = sorted(other_students, key=lambda val: (("0"+users_info[val][0]) if users_info[val] else ("1"+val))) return student_list, tutor_list, other_students, users_info else: return student_list, tutor_list, users_info
def getPageSizeByName(self, pageSizeName): """ Returns a validated PageSize instance corresponding to the given name. Returns None if the name is not a valid PageSize. """ pageSize = None lowerCaseNames = {pageSize.lower(): pageSize for pageSize in self.availablePageSizes()} if pageSizeName.lower() in lowerCaseNames: pageSize = getattr(QPagedPaintDevice, lowerCaseNames[pageSizeName.lower()]) return pageSize
Returns a validated PageSize instance corresponding to the given name. Returns None if the name is not a valid PageSize.
Below is the the instruction that describes the task: ### Input: Returns a validated PageSize instance corresponding to the given name. Returns None if the name is not a valid PageSize. ### Response: def getPageSizeByName(self, pageSizeName): """ Returns a validated PageSize instance corresponding to the given name. Returns None if the name is not a valid PageSize. """ pageSize = None lowerCaseNames = {pageSize.lower(): pageSize for pageSize in self.availablePageSizes()} if pageSizeName.lower() in lowerCaseNames: pageSize = getattr(QPagedPaintDevice, lowerCaseNames[pageSizeName.lower()]) return pageSize
def create_ip_arp_request(srchw, srcip, targetip): ''' Create and return a packet containing an Ethernet header and ARP header. ''' ether = Ethernet() ether.src = srchw ether.dst = SpecialEthAddr.ETHER_BROADCAST.value ether.ethertype = EtherType.ARP arp = Arp() arp.operation = ArpOperation.Request arp.senderhwaddr = srchw arp.senderprotoaddr = srcip arp.targethwaddr = SpecialEthAddr.ETHER_BROADCAST.value arp.targetprotoaddr = targetip return ether + arp
Create and return a packet containing an Ethernet header and ARP header.
Below is the the instruction that describes the task: ### Input: Create and return a packet containing an Ethernet header and ARP header. ### Response: def create_ip_arp_request(srchw, srcip, targetip): ''' Create and return a packet containing an Ethernet header and ARP header. ''' ether = Ethernet() ether.src = srchw ether.dst = SpecialEthAddr.ETHER_BROADCAST.value ether.ethertype = EtherType.ARP arp = Arp() arp.operation = ArpOperation.Request arp.senderhwaddr = srchw arp.senderprotoaddr = srcip arp.targethwaddr = SpecialEthAddr.ETHER_BROADCAST.value arp.targetprotoaddr = targetip return ether + arp
def download_data(identifier, outdir): """Download data from a separate data repository for testing. Parameters ---------- identifier: string The identifier used to find the data set outdir: string unzip the data in this directory """ # determine target if use_local_data_repository is not None: url_base = 'file:' + request.pathname2url( use_local_data_repository + os.sep) else: url_base = repository_url print('url_base: {}'.format(url_base)) url = url_base + inventory_filename # download inventory file filename, headers =request.urlretrieve(url) df = pd.read_csv( filename, delim_whitespace=True, comment='#', header=None, names=['identifier', 'rel_path'], ) # find relative path to data file rel_path_query = df.query('identifier == "{}"'.format(identifier)) if rel_path_query.shape[0] == 0: raise Exception('identifier not found') rel_path = rel_path_query['rel_path'].values[0] # download the file url = url_base + rel_path print('data url: {}'.format(url)) filename, headers =request.urlretrieve(url) if not os.path.isdir(outdir): os.makedirs(outdir) zip_obj = zipfile.ZipFile(filename) zip_obj.extractall(outdir)
Download data from a separate data repository for testing. Parameters ---------- identifier: string The identifier used to find the data set outdir: string unzip the data in this directory
Below is the the instruction that describes the task: ### Input: Download data from a separate data repository for testing. Parameters ---------- identifier: string The identifier used to find the data set outdir: string unzip the data in this directory ### Response: def download_data(identifier, outdir): """Download data from a separate data repository for testing. Parameters ---------- identifier: string The identifier used to find the data set outdir: string unzip the data in this directory """ # determine target if use_local_data_repository is not None: url_base = 'file:' + request.pathname2url( use_local_data_repository + os.sep) else: url_base = repository_url print('url_base: {}'.format(url_base)) url = url_base + inventory_filename # download inventory file filename, headers =request.urlretrieve(url) df = pd.read_csv( filename, delim_whitespace=True, comment='#', header=None, names=['identifier', 'rel_path'], ) # find relative path to data file rel_path_query = df.query('identifier == "{}"'.format(identifier)) if rel_path_query.shape[0] == 0: raise Exception('identifier not found') rel_path = rel_path_query['rel_path'].values[0] # download the file url = url_base + rel_path print('data url: {}'.format(url)) filename, headers =request.urlretrieve(url) if not os.path.isdir(outdir): os.makedirs(outdir) zip_obj = zipfile.ZipFile(filename) zip_obj.extractall(outdir)
def paint(self): """ Renders a javascript snippet suitable for use as a mapbox-gl fill-extrusion paint entry Returns: A dict that can be converted to a mapbox-gl javascript paint snippet """ snippet = { 'fill-extrusion-opacity': VectorStyle.get_style_value(self.opacity), 'fill-extrusion-color': VectorStyle.get_style_value(self.color), 'fill-extrusion-base': VectorStyle.get_style_value(self.base), 'fill-extrusion-height': VectorStyle.get_style_value(self.height) } if self.translate: snippet['fill-extrusion-translate'] = self.translate return snippet
Renders a javascript snippet suitable for use as a mapbox-gl fill-extrusion paint entry Returns: A dict that can be converted to a mapbox-gl javascript paint snippet
Below is the the instruction that describes the task: ### Input: Renders a javascript snippet suitable for use as a mapbox-gl fill-extrusion paint entry Returns: A dict that can be converted to a mapbox-gl javascript paint snippet ### Response: def paint(self): """ Renders a javascript snippet suitable for use as a mapbox-gl fill-extrusion paint entry Returns: A dict that can be converted to a mapbox-gl javascript paint snippet """ snippet = { 'fill-extrusion-opacity': VectorStyle.get_style_value(self.opacity), 'fill-extrusion-color': VectorStyle.get_style_value(self.color), 'fill-extrusion-base': VectorStyle.get_style_value(self.base), 'fill-extrusion-height': VectorStyle.get_style_value(self.height) } if self.translate: snippet['fill-extrusion-translate'] = self.translate return snippet
def set_attributes(obj, additional_data): """ Given an object and a dictionary, give the object new attributes from that dictionary. Uses _strip_column_name to git rid of whitespace/uppercase/special characters. """ for key, value in additional_data.items(): if hasattr(obj, key): raise ValueError("Key %s in additional_data already exists in this object" % key) setattr(obj, _strip_column_name(key), value)
Given an object and a dictionary, give the object new attributes from that dictionary. Uses _strip_column_name to git rid of whitespace/uppercase/special characters.
Below is the the instruction that describes the task: ### Input: Given an object and a dictionary, give the object new attributes from that dictionary. Uses _strip_column_name to git rid of whitespace/uppercase/special characters. ### Response: def set_attributes(obj, additional_data): """ Given an object and a dictionary, give the object new attributes from that dictionary. Uses _strip_column_name to git rid of whitespace/uppercase/special characters. """ for key, value in additional_data.items(): if hasattr(obj, key): raise ValueError("Key %s in additional_data already exists in this object" % key) setattr(obj, _strip_column_name(key), value)
def xlim(min, max): """ This function will set the x axis range for all time series plots Parameters: min : flt The time to start all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" max : flt The time to end all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" Returns: None Examples: >>> # Set the timespan to be 2017-07-17 00:00:00 plus 1 day >>> import pytplot >>> pytplot.xlim(1500249600, 1500249600 + 86400) >>> # The same as above, but using different inputs >>> pytplot.xlim("2017-07-17 00:00:00", "2017-07-18 00:00:00") """ if not isinstance(min, (int, float, complex)): min = tplot_utilities.str_to_int(min) if not isinstance(max, (int, float, complex)): max = tplot_utilities.str_to_int(max) if 'x_range' in tplot_opt_glob: lim_info['xlast'] = tplot_opt_glob['x_range'] else: lim_info['xfull'] = Range1d(min, max) lim_info['xlast'] = Range1d(min, max) tplot_opt_glob['x_range'] = [min, max] return
This function will set the x axis range for all time series plots Parameters: min : flt The time to start all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" max : flt The time to end all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" Returns: None Examples: >>> # Set the timespan to be 2017-07-17 00:00:00 plus 1 day >>> import pytplot >>> pytplot.xlim(1500249600, 1500249600 + 86400) >>> # The same as above, but using different inputs >>> pytplot.xlim("2017-07-17 00:00:00", "2017-07-18 00:00:00")
Below is the the instruction that describes the task: ### Input: This function will set the x axis range for all time series plots Parameters: min : flt The time to start all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" max : flt The time to end all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" Returns: None Examples: >>> # Set the timespan to be 2017-07-17 00:00:00 plus 1 day >>> import pytplot >>> pytplot.xlim(1500249600, 1500249600 + 86400) >>> # The same as above, but using different inputs >>> pytplot.xlim("2017-07-17 00:00:00", "2017-07-18 00:00:00") ### Response: def xlim(min, max): """ This function will set the x axis range for all time series plots Parameters: min : flt The time to start all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" max : flt The time to end all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" Returns: None Examples: >>> # Set the timespan to be 2017-07-17 00:00:00 plus 1 day >>> import pytplot >>> pytplot.xlim(1500249600, 1500249600 + 86400) >>> # The same as above, but using different inputs >>> pytplot.xlim("2017-07-17 00:00:00", "2017-07-18 00:00:00") """ if not isinstance(min, (int, float, complex)): min = tplot_utilities.str_to_int(min) if not isinstance(max, (int, float, complex)): max = tplot_utilities.str_to_int(max) if 'x_range' in tplot_opt_glob: lim_info['xlast'] = tplot_opt_glob['x_range'] else: lim_info['xfull'] = Range1d(min, max) lim_info['xlast'] = Range1d(min, max) tplot_opt_glob['x_range'] = [min, max] return
def _get_log_lines(self, n=300): """Returns a list with the last ``n`` lines of the nextflow log file Parameters ---------- n : int Number of last lines from the log file Returns ------- list List of strings with the nextflow log """ with open(self.log_file) as fh: last_lines = fh.readlines()[-n:] return last_lines
Returns a list with the last ``n`` lines of the nextflow log file Parameters ---------- n : int Number of last lines from the log file Returns ------- list List of strings with the nextflow log
Below is the the instruction that describes the task: ### Input: Returns a list with the last ``n`` lines of the nextflow log file Parameters ---------- n : int Number of last lines from the log file Returns ------- list List of strings with the nextflow log ### Response: def _get_log_lines(self, n=300): """Returns a list with the last ``n`` lines of the nextflow log file Parameters ---------- n : int Number of last lines from the log file Returns ------- list List of strings with the nextflow log """ with open(self.log_file) as fh: last_lines = fh.readlines()[-n:] return last_lines
def _check_choices_attribute(self): # pragma: no cover """Checks to make sure that choices contains valid timezone choices.""" if self.choices: warning_params = { 'msg': ( "'choices' contains an invalid time zone value '{value}' " "which was not found as a supported time zone by pytz " "{version}." ), 'hint': "Values must be found in pytz.all_timezones.", 'obj': self, } for option_key, option_value in self.choices: if isinstance(option_value, (list, tuple)): # This is an optgroup, so look inside the group for # options. for optgroup_key in map(lambda x: x[0], option_value): if optgroup_key not in pytz.all_timezones: # Make sure we don't raise this error on empty # values if optgroup_key not in self.empty_values: # Update the error message by adding the value warning_params.update({ 'msg': warning_params['msg'].format( value=optgroup_key, version=pytz.VERSION ) }) # Return the warning return [ checks.Warning(**warning_params) ] elif option_key not in pytz.all_timezones: # Make sure we don't raise this error on empty # values if option_key not in self.empty_values: # Update the error message by adding the value warning_params.update({ 'msg': warning_params['msg'].format( value=option_key, version=pytz.VERSION ) }) # Return the warning return [ checks.Warning(**warning_params) ] # When no error, return an empty list return []
Checks to make sure that choices contains valid timezone choices.
Below is the the instruction that describes the task: ### Input: Checks to make sure that choices contains valid timezone choices. ### Response: def _check_choices_attribute(self): # pragma: no cover """Checks to make sure that choices contains valid timezone choices.""" if self.choices: warning_params = { 'msg': ( "'choices' contains an invalid time zone value '{value}' " "which was not found as a supported time zone by pytz " "{version}." ), 'hint': "Values must be found in pytz.all_timezones.", 'obj': self, } for option_key, option_value in self.choices: if isinstance(option_value, (list, tuple)): # This is an optgroup, so look inside the group for # options. for optgroup_key in map(lambda x: x[0], option_value): if optgroup_key not in pytz.all_timezones: # Make sure we don't raise this error on empty # values if optgroup_key not in self.empty_values: # Update the error message by adding the value warning_params.update({ 'msg': warning_params['msg'].format( value=optgroup_key, version=pytz.VERSION ) }) # Return the warning return [ checks.Warning(**warning_params) ] elif option_key not in pytz.all_timezones: # Make sure we don't raise this error on empty # values if option_key not in self.empty_values: # Update the error message by adding the value warning_params.update({ 'msg': warning_params['msg'].format( value=option_key, version=pytz.VERSION ) }) # Return the warning return [ checks.Warning(**warning_params) ] # When no error, return an empty list return []
def items_sharing_ngrams(self, query): """Retrieve the subset of items that share n-grams the query string. :param query: look up items that share N-grams with this string. :return: mapping from matched string to the number of shared N-grams. >>> from ngram import NGram >>> n = NGram(["ham","spam","eggs"]) >>> sorted(n.items_sharing_ngrams("mam").items()) [('ham', 2), ('spam', 2)] """ # From matched string to number of N-grams shared with query string shared = {} # Dictionary mapping n-gram to string to number of occurrences of that # ngram in the string that remain to be matched. remaining = {} for ngram in self.split(query): try: for match, count in self._grams[ngram].items(): remaining.setdefault(ngram, {}).setdefault(match, count) # match as many occurrences as exist in matched string if remaining[ngram][match] > 0: remaining[ngram][match] -= 1 shared.setdefault(match, 0) shared[match] += 1 except KeyError: pass return shared
Retrieve the subset of items that share n-grams the query string. :param query: look up items that share N-grams with this string. :return: mapping from matched string to the number of shared N-grams. >>> from ngram import NGram >>> n = NGram(["ham","spam","eggs"]) >>> sorted(n.items_sharing_ngrams("mam").items()) [('ham', 2), ('spam', 2)]
Below is the the instruction that describes the task: ### Input: Retrieve the subset of items that share n-grams the query string. :param query: look up items that share N-grams with this string. :return: mapping from matched string to the number of shared N-grams. >>> from ngram import NGram >>> n = NGram(["ham","spam","eggs"]) >>> sorted(n.items_sharing_ngrams("mam").items()) [('ham', 2), ('spam', 2)] ### Response: def items_sharing_ngrams(self, query): """Retrieve the subset of items that share n-grams the query string. :param query: look up items that share N-grams with this string. :return: mapping from matched string to the number of shared N-grams. >>> from ngram import NGram >>> n = NGram(["ham","spam","eggs"]) >>> sorted(n.items_sharing_ngrams("mam").items()) [('ham', 2), ('spam', 2)] """ # From matched string to number of N-grams shared with query string shared = {} # Dictionary mapping n-gram to string to number of occurrences of that # ngram in the string that remain to be matched. remaining = {} for ngram in self.split(query): try: for match, count in self._grams[ngram].items(): remaining.setdefault(ngram, {}).setdefault(match, count) # match as many occurrences as exist in matched string if remaining[ngram][match] > 0: remaining[ngram][match] -= 1 shared.setdefault(match, 0) shared[match] += 1 except KeyError: pass return shared
def create_dialog(self): """Create the dialog.""" bbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) self.idx_ok = bbox.button(QDialogButtonBox.Ok) self.idx_cancel = bbox.button(QDialogButtonBox.Cancel) filebutton = QPushButton() filebutton.setText('Choose') self.idx_filename = filebutton self.xp_format = FormMenu(['CSV', 'Brain Vision']) self.all_types = FormBool('All event types') self.idx_evt_type = QListWidget() self.idx_evt_type.setSelectionMode(QAbstractItemView.ExtendedSelection) filebutton.clicked.connect(self.save_as) self.all_types.connect(self.toggle_buttons) bbox.clicked.connect(self.button_clicked) form = QFormLayout() form.addRow('Filename', self.idx_filename) form.addRow('Format', self.xp_format) form.addRow(self.all_types) form.addRow('Event type(s)', self.idx_evt_type) btnlayout = QHBoxLayout() btnlayout.addStretch(1) btnlayout.addWidget(bbox) vlayout = QVBoxLayout() vlayout.addLayout(form) vlayout.addStretch(1) vlayout.addLayout(btnlayout) self.setLayout(vlayout)
Create the dialog.
Below is the the instruction that describes the task: ### Input: Create the dialog. ### Response: def create_dialog(self): """Create the dialog.""" bbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) self.idx_ok = bbox.button(QDialogButtonBox.Ok) self.idx_cancel = bbox.button(QDialogButtonBox.Cancel) filebutton = QPushButton() filebutton.setText('Choose') self.idx_filename = filebutton self.xp_format = FormMenu(['CSV', 'Brain Vision']) self.all_types = FormBool('All event types') self.idx_evt_type = QListWidget() self.idx_evt_type.setSelectionMode(QAbstractItemView.ExtendedSelection) filebutton.clicked.connect(self.save_as) self.all_types.connect(self.toggle_buttons) bbox.clicked.connect(self.button_clicked) form = QFormLayout() form.addRow('Filename', self.idx_filename) form.addRow('Format', self.xp_format) form.addRow(self.all_types) form.addRow('Event type(s)', self.idx_evt_type) btnlayout = QHBoxLayout() btnlayout.addStretch(1) btnlayout.addWidget(bbox) vlayout = QVBoxLayout() vlayout.addLayout(form) vlayout.addStretch(1) vlayout.addLayout(btnlayout) self.setLayout(vlayout)
def centroid_2dg(data, error=None, mask=None): """ Calculate the centroid of a 2D array by fitting a 2D Gaussian (plus a constant) to the array. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D data array. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid. """ gfit = fit_2dgaussian(data, error=error, mask=mask) return np.array([gfit.x_mean.value, gfit.y_mean.value])
Calculate the centroid of a 2D array by fitting a 2D Gaussian (plus a constant) to the array. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D data array. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid.
Below is the the instruction that describes the task: ### Input: Calculate the centroid of a 2D array by fitting a 2D Gaussian (plus a constant) to the array. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D data array. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid. ### Response: def centroid_2dg(data, error=None, mask=None): """ Calculate the centroid of a 2D array by fitting a 2D Gaussian (plus a constant) to the array. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D data array. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid. """ gfit = fit_2dgaussian(data, error=error, mask=mask) return np.array([gfit.x_mean.value, gfit.y_mean.value])
def project_closing(self, project): """ Called when a project is about to be closed. :param project: Project instance """ yield from super().project_closing(project) # delete the Dynamips devices corresponding to the project tasks = [] for device in self._devices.values(): if device.project.id == project.id: tasks.append(asyncio.async(device.delete())) if tasks: done, _ = yield from asyncio.wait(tasks) for future in done: try: future.result() except (Exception, GeneratorExit) as e: log.error("Could not delete device {}".format(e), exc_info=1)
Called when a project is about to be closed. :param project: Project instance
Below is the the instruction that describes the task: ### Input: Called when a project is about to be closed. :param project: Project instance ### Response: def project_closing(self, project): """ Called when a project is about to be closed. :param project: Project instance """ yield from super().project_closing(project) # delete the Dynamips devices corresponding to the project tasks = [] for device in self._devices.values(): if device.project.id == project.id: tasks.append(asyncio.async(device.delete())) if tasks: done, _ = yield from asyncio.wait(tasks) for future in done: try: future.result() except (Exception, GeneratorExit) as e: log.error("Could not delete device {}".format(e), exc_info=1)
def parse_dict_header(value): """Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` :rtype: dict """ result = {} for item in _parse_list_header(value): if '=' not in item: result[item] = None continue name, value = item.split('=', 1) if value[:1] == value[-1:] == '"': value = unquote_header_value(value[1:-1]) result[name] = value return result
Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` :rtype: dict
Below is the the instruction that describes the task: ### Input: Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` :rtype: dict ### Response: def parse_dict_header(value): """Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` :rtype: dict """ result = {} for item in _parse_list_header(value): if '=' not in item: result[item] = None continue name, value = item.split('=', 1) if value[:1] == value[-1:] == '"': value = unquote_header_value(value[1:-1]) result[name] = value return result
def get_vprof_version(filename): """Returns actual version specified in filename.""" with open(filename) as src_file: version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", src_file.read(), re.M) if version_match: return version_match.group(1) raise RuntimeError('Unable to find version info.')
Returns actual version specified in filename.
Below is the the instruction that describes the task: ### Input: Returns actual version specified in filename. ### Response: def get_vprof_version(filename): """Returns actual version specified in filename.""" with open(filename) as src_file: version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", src_file.read(), re.M) if version_match: return version_match.group(1) raise RuntimeError('Unable to find version info.')
def handle_starting_instance(self): """Starting up PostgreSQL may take a long time. In case we are the leader we may want to fail over to.""" # Check if we are in startup, when paused defer to main loop for manual failovers. if not self.state_handler.check_for_startup() or self.is_paused(): self.set_start_timeout(None) if self.is_paused(): self.state_handler.set_state(self.state_handler.is_running() and 'running' or 'stopped') return None # state_handler.state == 'starting' here if self.has_lock(): if not self.update_lock(): logger.info("Lost lock while starting up. Demoting self.") self.demote('immediate-nolock') return 'stopped PostgreSQL while starting up because leader key was lost' timeout = self._start_timeout or self.patroni.config['master_start_timeout'] time_left = timeout - self.state_handler.time_in_state() if time_left <= 0: if self.is_failover_possible(self.cluster.members): logger.info("Demoting self because master startup is taking too long") self.demote('immediate') return 'stopped PostgreSQL because of startup timeout' else: return 'master start has timed out, but continuing to wait because failover is not possible' else: msg = self.process_manual_failover_from_leader() if msg is not None: return msg return 'PostgreSQL is still starting up, {0:.0f} seconds until timeout'.format(time_left) else: # Use normal processing for standbys logger.info("Still starting up as a standby.") return None
Starting up PostgreSQL may take a long time. In case we are the leader we may want to fail over to.
Below is the the instruction that describes the task: ### Input: Starting up PostgreSQL may take a long time. In case we are the leader we may want to fail over to. ### Response: def handle_starting_instance(self): """Starting up PostgreSQL may take a long time. In case we are the leader we may want to fail over to.""" # Check if we are in startup, when paused defer to main loop for manual failovers. if not self.state_handler.check_for_startup() or self.is_paused(): self.set_start_timeout(None) if self.is_paused(): self.state_handler.set_state(self.state_handler.is_running() and 'running' or 'stopped') return None # state_handler.state == 'starting' here if self.has_lock(): if not self.update_lock(): logger.info("Lost lock while starting up. Demoting self.") self.demote('immediate-nolock') return 'stopped PostgreSQL while starting up because leader key was lost' timeout = self._start_timeout or self.patroni.config['master_start_timeout'] time_left = timeout - self.state_handler.time_in_state() if time_left <= 0: if self.is_failover_possible(self.cluster.members): logger.info("Demoting self because master startup is taking too long") self.demote('immediate') return 'stopped PostgreSQL because of startup timeout' else: return 'master start has timed out, but continuing to wait because failover is not possible' else: msg = self.process_manual_failover_from_leader() if msg is not None: return msg return 'PostgreSQL is still starting up, {0:.0f} seconds until timeout'.format(time_left) else: # Use normal processing for standbys logger.info("Still starting up as a standby.") return None
def get_next_iteration(self, iteration, iteration_kwargs={}): """ BO-HB uses (just like Hyperband) SuccessiveHalving for each iteration. See Li et al. (2016) for reference. Parameters ---------- iteration: int the index of the iteration to be instantiated Returns ------- SuccessiveHalving: the SuccessiveHalving iteration with the corresponding number of configurations """ # number of 'SH rungs' s = self.max_SH_iter - 1 - (iteration%self.max_SH_iter) # number of configurations in that bracket n0 = int(np.floor((self.max_SH_iter)/(s+1)) * self.eta**s) ns = [max(int(n0*(self.eta**(-i))), 1) for i in range(s+1)] return(SuccessiveHalving(HPB_iter=iteration, num_configs=ns, budgets=self.budgets[(-s-1):], config_sampler=self.config_generator.get_config, **iteration_kwargs))
BO-HB uses (just like Hyperband) SuccessiveHalving for each iteration. See Li et al. (2016) for reference. Parameters ---------- iteration: int the index of the iteration to be instantiated Returns ------- SuccessiveHalving: the SuccessiveHalving iteration with the corresponding number of configurations
Below is the the instruction that describes the task: ### Input: BO-HB uses (just like Hyperband) SuccessiveHalving for each iteration. See Li et al. (2016) for reference. Parameters ---------- iteration: int the index of the iteration to be instantiated Returns ------- SuccessiveHalving: the SuccessiveHalving iteration with the corresponding number of configurations ### Response: def get_next_iteration(self, iteration, iteration_kwargs={}): """ BO-HB uses (just like Hyperband) SuccessiveHalving for each iteration. See Li et al. (2016) for reference. Parameters ---------- iteration: int the index of the iteration to be instantiated Returns ------- SuccessiveHalving: the SuccessiveHalving iteration with the corresponding number of configurations """ # number of 'SH rungs' s = self.max_SH_iter - 1 - (iteration%self.max_SH_iter) # number of configurations in that bracket n0 = int(np.floor((self.max_SH_iter)/(s+1)) * self.eta**s) ns = [max(int(n0*(self.eta**(-i))), 1) for i in range(s+1)] return(SuccessiveHalving(HPB_iter=iteration, num_configs=ns, budgets=self.budgets[(-s-1):], config_sampler=self.config_generator.get_config, **iteration_kwargs))
def __related_categories(self, category_id): """ Get all related categories to a given one """ related = [] for cat in self.categories_tree: if category_id in self.categories_tree[cat]: related.append(self.categories[cat]) return related
Get all related categories to a given one
Below is the the instruction that describes the task: ### Input: Get all related categories to a given one ### Response: def __related_categories(self, category_id): """ Get all related categories to a given one """ related = [] for cat in self.categories_tree: if category_id in self.categories_tree[cat]: related.append(self.categories[cat]) return related