code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def zoom(self, factor): """ Zoom the camera view by a factor. """ camera = self.ren.GetActiveCamera() camera.Zoom(factor) self.ren_win.Render()
Zoom the camera view by a factor.
Below is the the instruction that describes the task: ### Input: Zoom the camera view by a factor. ### Response: def zoom(self, factor): """ Zoom the camera view by a factor. """ camera = self.ren.GetActiveCamera() camera.Zoom(factor) self.ren_win.Render()
def parse_rna(rna, s2bins, min_rna): """ parse [16,23]SfromHMM.py output - rna_cov[scaffold] = [0, 0, []] # [bases, length, ranges] """ rna_cov = {} for seq in parse_fasta(rna): # check that length passes threshold length = len(seq[1]) if length < min_rna: continue # check if sequence is binnned s = seq[0].split('>')[1].split()[0] if s not in s2bins: continue if s not in rna_cov: rna_cov[s] = [0, 0, []] position = [int(i) for i in seq[0].rsplit('pos=', 1)[1].split()[0].split('-')] rna_cov[s][2].append(position) rna_cov[s][1] += length return rna_cov
parse [16,23]SfromHMM.py output - rna_cov[scaffold] = [0, 0, []] # [bases, length, ranges]
Below is the the instruction that describes the task: ### Input: parse [16,23]SfromHMM.py output - rna_cov[scaffold] = [0, 0, []] # [bases, length, ranges] ### Response: def parse_rna(rna, s2bins, min_rna): """ parse [16,23]SfromHMM.py output - rna_cov[scaffold] = [0, 0, []] # [bases, length, ranges] """ rna_cov = {} for seq in parse_fasta(rna): # check that length passes threshold length = len(seq[1]) if length < min_rna: continue # check if sequence is binnned s = seq[0].split('>')[1].split()[0] if s not in s2bins: continue if s not in rna_cov: rna_cov[s] = [0, 0, []] position = [int(i) for i in seq[0].rsplit('pos=', 1)[1].split()[0].split('-')] rna_cov[s][2].append(position) rna_cov[s][1] += length return rna_cov
def _get_callable_full_name(self, fob, fin, uobj): """Get full path [module, class (if applicable), function name] of callable.""" # Check if object is a class property name = self._property_search(fob) if name: del fob, fin, uobj return name if os.path.isfile(fin): lineno = fob.f_lineno ret = self._callables_obj.get_callable_from_line(fin, lineno) del fob, fin, uobj, name, lineno return ret # Code executed in doctests does not have an actual callable object # exec-based callables do not have a valid file name fname = uobj and _get_func_code(uobj).co_filename if (not fname) or (fname and (not os.path.isfile(fname))): del fob, fin, uobj, name, fname return "dynamic" code_id = ( inspect.getfile(uobj).replace(".pyc", "py"), inspect.getsourcelines(uobj)[1], ) self._callables_obj.trace([code_id[0]]) ret = self._callables_obj.reverse_callables_db[code_id] del fob, fin, uobj, name, fname, code_id return ret
Get full path [module, class (if applicable), function name] of callable.
Below is the the instruction that describes the task: ### Input: Get full path [module, class (if applicable), function name] of callable. ### Response: def _get_callable_full_name(self, fob, fin, uobj): """Get full path [module, class (if applicable), function name] of callable.""" # Check if object is a class property name = self._property_search(fob) if name: del fob, fin, uobj return name if os.path.isfile(fin): lineno = fob.f_lineno ret = self._callables_obj.get_callable_from_line(fin, lineno) del fob, fin, uobj, name, lineno return ret # Code executed in doctests does not have an actual callable object # exec-based callables do not have a valid file name fname = uobj and _get_func_code(uobj).co_filename if (not fname) or (fname and (not os.path.isfile(fname))): del fob, fin, uobj, name, fname return "dynamic" code_id = ( inspect.getfile(uobj).replace(".pyc", "py"), inspect.getsourcelines(uobj)[1], ) self._callables_obj.trace([code_id[0]]) ret = self._callables_obj.reverse_callables_db[code_id] del fob, fin, uobj, name, fname, code_id return ret
def run_timeit(self, stmt, setup): """ Create the function call statement as a string used for timeit. """ _timer = timeit.Timer(stmt=stmt, setup=setup) trials = _timer.repeat(self.timeit_repeat, self.timeit_number) self.time_average_seconds = sum(trials) / len(trials) / self.timeit_number # Convert into reasonable time units time_avg = convert_time_units(self.time_average_seconds) return time_avg
Create the function call statement as a string used for timeit.
Below is the the instruction that describes the task: ### Input: Create the function call statement as a string used for timeit. ### Response: def run_timeit(self, stmt, setup): """ Create the function call statement as a string used for timeit. """ _timer = timeit.Timer(stmt=stmt, setup=setup) trials = _timer.repeat(self.timeit_repeat, self.timeit_number) self.time_average_seconds = sum(trials) / len(trials) / self.timeit_number # Convert into reasonable time units time_avg = convert_time_units(self.time_average_seconds) return time_avg
def weekday(year_or_num, month=None, day=None, full=False): """Simple tag - returns the weekday of the given (year, month, day) or of given (weekday_number). Usage (in template): {% weekday 2014 3 3 %} Result: Mon Return abbreviation by default. To return full name: pass full=True {% weekday 2014 3 3 full=True %} Result: Monday When only number of weekday is given then 0 is considered as "Monday" {% weekday 0 full=True %} Result: Monday """ if any([month, day]) and not all([month, day]): raise TemplateSyntaxError("weekday accepts 1 or 3 arguments plus optional 'full' argument") try: if all([year_or_num, month, day]): weekday_num = date(*map(int, (year_or_num, month, day))).weekday() else: weekday_num = year_or_num if full: return WEEKDAYS[weekday_num] else: return WEEKDAYS_ABBR[weekday_num] except Exception: return
Simple tag - returns the weekday of the given (year, month, day) or of given (weekday_number). Usage (in template): {% weekday 2014 3 3 %} Result: Mon Return abbreviation by default. To return full name: pass full=True {% weekday 2014 3 3 full=True %} Result: Monday When only number of weekday is given then 0 is considered as "Monday" {% weekday 0 full=True %} Result: Monday
Below is the the instruction that describes the task: ### Input: Simple tag - returns the weekday of the given (year, month, day) or of given (weekday_number). Usage (in template): {% weekday 2014 3 3 %} Result: Mon Return abbreviation by default. To return full name: pass full=True {% weekday 2014 3 3 full=True %} Result: Monday When only number of weekday is given then 0 is considered as "Monday" {% weekday 0 full=True %} Result: Monday ### Response: def weekday(year_or_num, month=None, day=None, full=False): """Simple tag - returns the weekday of the given (year, month, day) or of given (weekday_number). Usage (in template): {% weekday 2014 3 3 %} Result: Mon Return abbreviation by default. To return full name: pass full=True {% weekday 2014 3 3 full=True %} Result: Monday When only number of weekday is given then 0 is considered as "Monday" {% weekday 0 full=True %} Result: Monday """ if any([month, day]) and not all([month, day]): raise TemplateSyntaxError("weekday accepts 1 or 3 arguments plus optional 'full' argument") try: if all([year_or_num, month, day]): weekday_num = date(*map(int, (year_or_num, month, day))).weekday() else: weekday_num = year_or_num if full: return WEEKDAYS[weekday_num] else: return WEEKDAYS_ABBR[weekday_num] except Exception: return
def thaw_decrypt(vault_client, src_file, tmp_dir, opt): """Decrypts the encrypted ice file""" if not os.path.isdir(opt.secrets): LOG.info("Creating secret directory %s", opt.secrets) os.mkdir(opt.secrets) zip_file = "%s/aomi.zip" % tmp_dir if opt.gpg_pass_path: gpg_path_bits = opt.gpg_pass_path.split('/') gpg_path = '/'.join(gpg_path_bits[0:len(gpg_path_bits) - 1]) gpg_field = gpg_path_bits[len(gpg_path_bits) - 1] resp = vault_client.read(gpg_path) gpg_pass = None if resp and 'data' in resp and gpg_field in resp['data']: gpg_pass = resp['data'][gpg_field] if not gpg_pass: raise aomi.exceptions.GPG("Unable to retrieve GPG password") LOG.debug("Retrieved GPG password from Vault") if not decrypt(src_file, zip_file, passphrase=gpg_pass): raise aomi.exceptions.GPG("Unable to gpg") else: raise aomi.exceptions.VaultData("Unable to retrieve GPG password") else: if not decrypt(src_file, zip_file): raise aomi.exceptions.GPG("Unable to gpg") return zip_file
Decrypts the encrypted ice file
Below is the the instruction that describes the task: ### Input: Decrypts the encrypted ice file ### Response: def thaw_decrypt(vault_client, src_file, tmp_dir, opt): """Decrypts the encrypted ice file""" if not os.path.isdir(opt.secrets): LOG.info("Creating secret directory %s", opt.secrets) os.mkdir(opt.secrets) zip_file = "%s/aomi.zip" % tmp_dir if opt.gpg_pass_path: gpg_path_bits = opt.gpg_pass_path.split('/') gpg_path = '/'.join(gpg_path_bits[0:len(gpg_path_bits) - 1]) gpg_field = gpg_path_bits[len(gpg_path_bits) - 1] resp = vault_client.read(gpg_path) gpg_pass = None if resp and 'data' in resp and gpg_field in resp['data']: gpg_pass = resp['data'][gpg_field] if not gpg_pass: raise aomi.exceptions.GPG("Unable to retrieve GPG password") LOG.debug("Retrieved GPG password from Vault") if not decrypt(src_file, zip_file, passphrase=gpg_pass): raise aomi.exceptions.GPG("Unable to gpg") else: raise aomi.exceptions.VaultData("Unable to retrieve GPG password") else: if not decrypt(src_file, zip_file): raise aomi.exceptions.GPG("Unable to gpg") return zip_file
def scantree(path: str) -> Generator: """Recursively yield DirEntry objects for given directory.""" for entry in os.scandir(path): if entry.is_dir(follow_symlinks=False): yield from scantree(entry.path) else: if entry.name.endswith('.py'): yield entry
Recursively yield DirEntry objects for given directory.
Below is the the instruction that describes the task: ### Input: Recursively yield DirEntry objects for given directory. ### Response: def scantree(path: str) -> Generator: """Recursively yield DirEntry objects for given directory.""" for entry in os.scandir(path): if entry.is_dir(follow_symlinks=False): yield from scantree(entry.path) else: if entry.name.endswith('.py'): yield entry
def traverse(self, predicate=lambda i, d: True, prune=lambda i, d: False, depth=-1, branch_first=True, visit_once=True, ignore_self=1, as_edge=False): """:return: iterator yielding of items found when traversing self :param predicate: f(i,d) returns False if item i at depth d should not be included in the result :param prune: f(i,d) return True if the search should stop at item i at depth d. Item i will not be returned. :param depth: define at which level the iteration should not go deeper if -1, there is no limit if 0, you would effectively only get self, the root of the iteration i.e. if 1, you would only get the first level of predecessors/successors :param branch_first: if True, items will be returned branch first, otherwise depth first :param visit_once: if True, items will only be returned once, although they might be encountered several times. Loops are prevented that way. :param ignore_self: if True, self will be ignored and automatically pruned from the result. Otherwise it will be the first item to be returned. If as_edge is True, the source of the first edge is None :param as_edge: if True, return a pair of items, first being the source, second the destination, i.e. tuple(src, dest) with the edge spanning from source to destination""" visited = set() stack = Deque() stack.append((0, self, None)) # self is always depth level 0 def addToStack(stack, item, branch_first, depth): lst = self._get_intermediate_items(item) if not lst: return if branch_first: stack.extendleft((depth, i, item) for i in lst) else: reviter = ((depth, lst[i], item) for i in range(len(lst) - 1, -1, -1)) stack.extend(reviter) # END addToStack local method while stack: d, item, src = stack.pop() # depth of item, item, item_source if visit_once and item in visited: continue if visit_once: visited.add(item) rval = (as_edge and (src, item)) or item if prune(rval, d): continue skipStartItem = ignore_self and (item is self) if not skipStartItem and predicate(rval, d): yield rval # only continue to next level if this is appropriate ! nd = d + 1 if depth > -1 and nd > depth: continue addToStack(stack, item, branch_first, nd)
:return: iterator yielding of items found when traversing self :param predicate: f(i,d) returns False if item i at depth d should not be included in the result :param prune: f(i,d) return True if the search should stop at item i at depth d. Item i will not be returned. :param depth: define at which level the iteration should not go deeper if -1, there is no limit if 0, you would effectively only get self, the root of the iteration i.e. if 1, you would only get the first level of predecessors/successors :param branch_first: if True, items will be returned branch first, otherwise depth first :param visit_once: if True, items will only be returned once, although they might be encountered several times. Loops are prevented that way. :param ignore_self: if True, self will be ignored and automatically pruned from the result. Otherwise it will be the first item to be returned. If as_edge is True, the source of the first edge is None :param as_edge: if True, return a pair of items, first being the source, second the destination, i.e. tuple(src, dest) with the edge spanning from source to destination
Below is the the instruction that describes the task: ### Input: :return: iterator yielding of items found when traversing self :param predicate: f(i,d) returns False if item i at depth d should not be included in the result :param prune: f(i,d) return True if the search should stop at item i at depth d. Item i will not be returned. :param depth: define at which level the iteration should not go deeper if -1, there is no limit if 0, you would effectively only get self, the root of the iteration i.e. if 1, you would only get the first level of predecessors/successors :param branch_first: if True, items will be returned branch first, otherwise depth first :param visit_once: if True, items will only be returned once, although they might be encountered several times. Loops are prevented that way. :param ignore_self: if True, self will be ignored and automatically pruned from the result. Otherwise it will be the first item to be returned. If as_edge is True, the source of the first edge is None :param as_edge: if True, return a pair of items, first being the source, second the destination, i.e. tuple(src, dest) with the edge spanning from source to destination ### Response: def traverse(self, predicate=lambda i, d: True, prune=lambda i, d: False, depth=-1, branch_first=True, visit_once=True, ignore_self=1, as_edge=False): """:return: iterator yielding of items found when traversing self :param predicate: f(i,d) returns False if item i at depth d should not be included in the result :param prune: f(i,d) return True if the search should stop at item i at depth d. Item i will not be returned. :param depth: define at which level the iteration should not go deeper if -1, there is no limit if 0, you would effectively only get self, the root of the iteration i.e. if 1, you would only get the first level of predecessors/successors :param branch_first: if True, items will be returned branch first, otherwise depth first :param visit_once: if True, items will only be returned once, although they might be encountered several times. Loops are prevented that way. :param ignore_self: if True, self will be ignored and automatically pruned from the result. Otherwise it will be the first item to be returned. If as_edge is True, the source of the first edge is None :param as_edge: if True, return a pair of items, first being the source, second the destination, i.e. tuple(src, dest) with the edge spanning from source to destination""" visited = set() stack = Deque() stack.append((0, self, None)) # self is always depth level 0 def addToStack(stack, item, branch_first, depth): lst = self._get_intermediate_items(item) if not lst: return if branch_first: stack.extendleft((depth, i, item) for i in lst) else: reviter = ((depth, lst[i], item) for i in range(len(lst) - 1, -1, -1)) stack.extend(reviter) # END addToStack local method while stack: d, item, src = stack.pop() # depth of item, item, item_source if visit_once and item in visited: continue if visit_once: visited.add(item) rval = (as_edge and (src, item)) or item if prune(rval, d): continue skipStartItem = ignore_self and (item is self) if not skipStartItem and predicate(rval, d): yield rval # only continue to next level if this is appropriate ! nd = d + 1 if depth > -1 and nd > depth: continue addToStack(stack, item, branch_first, nd)
def data_collate(batch:ItemsList)->Tensor: "Convert `batch` items to tensor data." return torch.utils.data.dataloader.default_collate(to_data(batch))
Convert `batch` items to tensor data.
Below is the the instruction that describes the task: ### Input: Convert `batch` items to tensor data. ### Response: def data_collate(batch:ItemsList)->Tensor: "Convert `batch` items to tensor data." return torch.utils.data.dataloader.default_collate(to_data(batch))
def _get_coarse_dataset(self, key, info): """Get the coarse dataset refered to by `key` from the XML data.""" angles = self.root.find('.//Tile_Angles') if key in ['solar_zenith_angle', 'solar_azimuth_angle']: elts = angles.findall(info['xml_tag'] + '/Values_List/VALUES') return np.array([[val for val in elt.text.split()] for elt in elts], dtype=np.float) elif key in ['satellite_zenith_angle', 'satellite_azimuth_angle']: arrays = [] elts = angles.findall(info['xml_tag'] + '[@bandId="1"]') for elt in elts: items = elt.findall(info['xml_item'] + '/Values_List/VALUES') arrays.append(np.array([[val for val in item.text.split()] for item in items], dtype=np.float)) return np.nanmean(np.dstack(arrays), -1) else: return
Get the coarse dataset refered to by `key` from the XML data.
Below is the the instruction that describes the task: ### Input: Get the coarse dataset refered to by `key` from the XML data. ### Response: def _get_coarse_dataset(self, key, info): """Get the coarse dataset refered to by `key` from the XML data.""" angles = self.root.find('.//Tile_Angles') if key in ['solar_zenith_angle', 'solar_azimuth_angle']: elts = angles.findall(info['xml_tag'] + '/Values_List/VALUES') return np.array([[val for val in elt.text.split()] for elt in elts], dtype=np.float) elif key in ['satellite_zenith_angle', 'satellite_azimuth_angle']: arrays = [] elts = angles.findall(info['xml_tag'] + '[@bandId="1"]') for elt in elts: items = elt.findall(info['xml_item'] + '/Values_List/VALUES') arrays.append(np.array([[val for val in item.text.split()] for item in items], dtype=np.float)) return np.nanmean(np.dstack(arrays), -1) else: return
def invalid_ipa_characters(unicode_string, indices=False): """ Return the list of Unicode characters in the given Unicode string that are not IPA valid. Return ``None`` if ``unicode_string`` is ``None``. :param str unicode_string: the Unicode string to be parsed :param bool indices: if ``True``, return a list of pairs (index, invalid character), instead of a list of str (characters). :rtype: list of str or list of (int, str) """ if unicode_string is None: return None if indices: return [(i, unicode_string[i]) for i in range(len(unicode_string)) if unicode_string[i] not in UNICODE_TO_IPA] return set([c for c in unicode_string if c not in UNICODE_TO_IPA])
Return the list of Unicode characters in the given Unicode string that are not IPA valid. Return ``None`` if ``unicode_string`` is ``None``. :param str unicode_string: the Unicode string to be parsed :param bool indices: if ``True``, return a list of pairs (index, invalid character), instead of a list of str (characters). :rtype: list of str or list of (int, str)
Below is the the instruction that describes the task: ### Input: Return the list of Unicode characters in the given Unicode string that are not IPA valid. Return ``None`` if ``unicode_string`` is ``None``. :param str unicode_string: the Unicode string to be parsed :param bool indices: if ``True``, return a list of pairs (index, invalid character), instead of a list of str (characters). :rtype: list of str or list of (int, str) ### Response: def invalid_ipa_characters(unicode_string, indices=False): """ Return the list of Unicode characters in the given Unicode string that are not IPA valid. Return ``None`` if ``unicode_string`` is ``None``. :param str unicode_string: the Unicode string to be parsed :param bool indices: if ``True``, return a list of pairs (index, invalid character), instead of a list of str (characters). :rtype: list of str or list of (int, str) """ if unicode_string is None: return None if indices: return [(i, unicode_string[i]) for i in range(len(unicode_string)) if unicode_string[i] not in UNICODE_TO_IPA] return set([c for c in unicode_string if c not in UNICODE_TO_IPA])
def fit(self, X, y, X_val=None, y_val=None): """Train a network with the quasi-Newton method. Args: X (np.array of float): feature matrix for training y (np.array of float): target values for training X_val (np.array of float): feature matrix for validation y_val (np.array of float): target values for validation """ y = y.reshape((len(y), 1)) if sparse.issparse(X): X = X.tocsr() if X_val is not None: n_val = len(y_val) y_val = y_val.reshape((n_val, 1)) # Set initial weights randomly. self.i = X.shape[1] self.l1 = self.l1 / self.i self.w = (np.random.rand((self.i + 2) * self.h + 1) - .5) * 1e-6 self.w_opt = self.w self.n_opt = 0 logger.info('training ...') n_obs = X.shape[0] batch = self.b n_epoch = self.n idx = range(n_obs) self.auc_opt = .5 start = time.time() print('\tEPOCH TRAIN VALID BEST TIME (m)') print('\t--------------------------------------------') # Before training p = self.predict_raw(X) auc = roc_auc_score(y, p) auc_val = auc if X_val is not None: p_val = self.predict_raw(X_val) auc_val = roc_auc_score(y_val, p_val) print('\t{:3d}: {:.6f} {:.6f} {:.6f} {:.2f}'.format( 0, auc, auc_val, self.auc_opt, (time.time() - start) / SEC_PER_MIN)) # Use 'while' instead of 'for' to increase n_epoch if the validation # error keeps improving at the end of n_epoch epoch = 1 while epoch <= n_epoch: # Shuffle inputs every epoch - it helps avoiding the local optimum # when batch < n_obs. np.random.shuffle(idx) # Find the optimal weights for batch input examples. # If batch == 1, it's the stochastic optimization, which is slow # but uses minimal memory. If batch == n_obs, it's the batch # optimization, which is fast but uses maximum memory. # Otherwise, it's the mini-batch optimization, which balances the # speed and space trade-offs. for i in range(int(n_obs / batch) + 1): if (i + 1) * batch > n_obs: sub_idx = idx[batch * i:n_obs] else: sub_idx = idx[batch * i:batch * (i + 1)] x = X[sub_idx] neg_idx = [n_idx for n_idx, n_y in enumerate(y[sub_idx]) if n_y == 0.] pos_idx = [p_idx for p_idx, p_y in enumerate(y[sub_idx]) if p_y == 1.] x0 = x[neg_idx] x1 = x[pos_idx] # Update weights to minimize the cost function using the # quasi-Newton method (L-BFGS-B), where: # func -- cost function # jac -- jacobian (derivative of the cost function) # maxiter -- number of iterations for L-BFGS-B ret = minimize(self.func, self.w, args=(x0, x1), method='L-BFGS-B', jac=self.fprime, options={'maxiter': 5}) self.w = ret.x p = self.predict_raw(X) auc = roc_auc_score(y, p) auc_val = auc if X_val is not None: p_val = self.predict_raw(X_val) auc_val = roc_auc_score(y_val, p_val) if auc_val > self.auc_opt: self.auc_opt = auc_val self.w_opt = self.w self.n_opt = epoch # If validation auc is still improving after n_epoch, # try 10 more epochs if epoch == n_epoch: n_epoch += 5 print('\t{:3d}: {:.6f} {:.6f} {:.6f} {:.2f}'.format( epoch, auc, auc_val, self.auc_opt, (time.time() - start) / SEC_PER_MIN)) epoch += 1 if X_val is not None: print('Optimal epoch is {0} ({1:.6f})'.format(self.n_opt, self.auc_opt)) self.w = self.w_opt logger.info('done training')
Train a network with the quasi-Newton method. Args: X (np.array of float): feature matrix for training y (np.array of float): target values for training X_val (np.array of float): feature matrix for validation y_val (np.array of float): target values for validation
Below is the the instruction that describes the task: ### Input: Train a network with the quasi-Newton method. Args: X (np.array of float): feature matrix for training y (np.array of float): target values for training X_val (np.array of float): feature matrix for validation y_val (np.array of float): target values for validation ### Response: def fit(self, X, y, X_val=None, y_val=None): """Train a network with the quasi-Newton method. Args: X (np.array of float): feature matrix for training y (np.array of float): target values for training X_val (np.array of float): feature matrix for validation y_val (np.array of float): target values for validation """ y = y.reshape((len(y), 1)) if sparse.issparse(X): X = X.tocsr() if X_val is not None: n_val = len(y_val) y_val = y_val.reshape((n_val, 1)) # Set initial weights randomly. self.i = X.shape[1] self.l1 = self.l1 / self.i self.w = (np.random.rand((self.i + 2) * self.h + 1) - .5) * 1e-6 self.w_opt = self.w self.n_opt = 0 logger.info('training ...') n_obs = X.shape[0] batch = self.b n_epoch = self.n idx = range(n_obs) self.auc_opt = .5 start = time.time() print('\tEPOCH TRAIN VALID BEST TIME (m)') print('\t--------------------------------------------') # Before training p = self.predict_raw(X) auc = roc_auc_score(y, p) auc_val = auc if X_val is not None: p_val = self.predict_raw(X_val) auc_val = roc_auc_score(y_val, p_val) print('\t{:3d}: {:.6f} {:.6f} {:.6f} {:.2f}'.format( 0, auc, auc_val, self.auc_opt, (time.time() - start) / SEC_PER_MIN)) # Use 'while' instead of 'for' to increase n_epoch if the validation # error keeps improving at the end of n_epoch epoch = 1 while epoch <= n_epoch: # Shuffle inputs every epoch - it helps avoiding the local optimum # when batch < n_obs. np.random.shuffle(idx) # Find the optimal weights for batch input examples. # If batch == 1, it's the stochastic optimization, which is slow # but uses minimal memory. If batch == n_obs, it's the batch # optimization, which is fast but uses maximum memory. # Otherwise, it's the mini-batch optimization, which balances the # speed and space trade-offs. for i in range(int(n_obs / batch) + 1): if (i + 1) * batch > n_obs: sub_idx = idx[batch * i:n_obs] else: sub_idx = idx[batch * i:batch * (i + 1)] x = X[sub_idx] neg_idx = [n_idx for n_idx, n_y in enumerate(y[sub_idx]) if n_y == 0.] pos_idx = [p_idx for p_idx, p_y in enumerate(y[sub_idx]) if p_y == 1.] x0 = x[neg_idx] x1 = x[pos_idx] # Update weights to minimize the cost function using the # quasi-Newton method (L-BFGS-B), where: # func -- cost function # jac -- jacobian (derivative of the cost function) # maxiter -- number of iterations for L-BFGS-B ret = minimize(self.func, self.w, args=(x0, x1), method='L-BFGS-B', jac=self.fprime, options={'maxiter': 5}) self.w = ret.x p = self.predict_raw(X) auc = roc_auc_score(y, p) auc_val = auc if X_val is not None: p_val = self.predict_raw(X_val) auc_val = roc_auc_score(y_val, p_val) if auc_val > self.auc_opt: self.auc_opt = auc_val self.w_opt = self.w self.n_opt = epoch # If validation auc is still improving after n_epoch, # try 10 more epochs if epoch == n_epoch: n_epoch += 5 print('\t{:3d}: {:.6f} {:.6f} {:.6f} {:.2f}'.format( epoch, auc, auc_val, self.auc_opt, (time.time() - start) / SEC_PER_MIN)) epoch += 1 if X_val is not None: print('Optimal epoch is {0} ({1:.6f})'.format(self.n_opt, self.auc_opt)) self.w = self.w_opt logger.info('done training')
def callable_name(callable_obj): """ Attempt to return a meaningful name identifying a callable or generator """ try: if (isinstance(callable_obj, type) and issubclass(callable_obj, param.ParameterizedFunction)): return callable_obj.__name__ elif (isinstance(callable_obj, param.Parameterized) and 'operation' in callable_obj.params()): return callable_obj.operation.__name__ elif isinstance(callable_obj, partial): return str(callable_obj) elif inspect.isfunction(callable_obj): # functions and staticmethods return callable_obj.__name__ elif inspect.ismethod(callable_obj): # instance and class methods meth = callable_obj if sys.version_info < (3,0): owner = meth.im_class if meth.im_self is None else meth.im_self else: owner = meth.__self__ if meth.__name__ == '__call__': return type(owner).__name__ return '.'.join([owner.__name__, meth.__name__]) elif isinstance(callable_obj, types.GeneratorType): return callable_obj.__name__ else: return type(callable_obj).__name__ except: return str(callable_obj)
Attempt to return a meaningful name identifying a callable or generator
Below is the the instruction that describes the task: ### Input: Attempt to return a meaningful name identifying a callable or generator ### Response: def callable_name(callable_obj): """ Attempt to return a meaningful name identifying a callable or generator """ try: if (isinstance(callable_obj, type) and issubclass(callable_obj, param.ParameterizedFunction)): return callable_obj.__name__ elif (isinstance(callable_obj, param.Parameterized) and 'operation' in callable_obj.params()): return callable_obj.operation.__name__ elif isinstance(callable_obj, partial): return str(callable_obj) elif inspect.isfunction(callable_obj): # functions and staticmethods return callable_obj.__name__ elif inspect.ismethod(callable_obj): # instance and class methods meth = callable_obj if sys.version_info < (3,0): owner = meth.im_class if meth.im_self is None else meth.im_self else: owner = meth.__self__ if meth.__name__ == '__call__': return type(owner).__name__ return '.'.join([owner.__name__, meth.__name__]) elif isinstance(callable_obj, types.GeneratorType): return callable_obj.__name__ else: return type(callable_obj).__name__ except: return str(callable_obj)
def get_booster_stats(ctx, currency): """Prints out price stats for booster packs available in Steam user inventory.""" username = ctx.obj['username'] inventory = User(username)._get_inventory_raw() boosters = {} for item in inventory['rgDescriptions'].values(): is_booster = False tags = item['tags'] for tag in tags: if tag['internal_name'] == TAG_ITEM_CLASS_BOOSTER: is_booster = True break if not is_booster: continue appid = item['market_fee_app'] title = item['name'] boosters[appid] = title if not boosters: click.secho('User `%s` has no booster packs' % username, fg='red', err=True) return for appid, title in boosters.items(): click.secho('Found booster: `%s`' % title, fg='blue') print_card_prices(appid, currency)
Prints out price stats for booster packs available in Steam user inventory.
Below is the the instruction that describes the task: ### Input: Prints out price stats for booster packs available in Steam user inventory. ### Response: def get_booster_stats(ctx, currency): """Prints out price stats for booster packs available in Steam user inventory.""" username = ctx.obj['username'] inventory = User(username)._get_inventory_raw() boosters = {} for item in inventory['rgDescriptions'].values(): is_booster = False tags = item['tags'] for tag in tags: if tag['internal_name'] == TAG_ITEM_CLASS_BOOSTER: is_booster = True break if not is_booster: continue appid = item['market_fee_app'] title = item['name'] boosters[appid] = title if not boosters: click.secho('User `%s` has no booster packs' % username, fg='red', err=True) return for appid, title in boosters.items(): click.secho('Found booster: `%s`' % title, fg='blue') print_card_prices(appid, currency)
def get_supported_connections(self): """Returns the number of supported simultaneous BLE connections. The BLED112 is capable of supporting up to 8 simultaneous BLE connections. However, the default firmware image has a limit of just 3 devices, which is a lot easier to run up against. This method retrieves the current value of this setting. Returns: int. The number of supported simultaneous connections, or -1 on error """ if self.supported_connections != -1: return self.supported_connections if self.api is None: return -1 self._set_state(self._STATE_DONGLE_COMMAND) self.api.ble_cmd_system_get_connections() self._wait_for_state(self._STATE_DONGLE_COMMAND) return self.supported_connections
Returns the number of supported simultaneous BLE connections. The BLED112 is capable of supporting up to 8 simultaneous BLE connections. However, the default firmware image has a limit of just 3 devices, which is a lot easier to run up against. This method retrieves the current value of this setting. Returns: int. The number of supported simultaneous connections, or -1 on error
Below is the the instruction that describes the task: ### Input: Returns the number of supported simultaneous BLE connections. The BLED112 is capable of supporting up to 8 simultaneous BLE connections. However, the default firmware image has a limit of just 3 devices, which is a lot easier to run up against. This method retrieves the current value of this setting. Returns: int. The number of supported simultaneous connections, or -1 on error ### Response: def get_supported_connections(self): """Returns the number of supported simultaneous BLE connections. The BLED112 is capable of supporting up to 8 simultaneous BLE connections. However, the default firmware image has a limit of just 3 devices, which is a lot easier to run up against. This method retrieves the current value of this setting. Returns: int. The number of supported simultaneous connections, or -1 on error """ if self.supported_connections != -1: return self.supported_connections if self.api is None: return -1 self._set_state(self._STATE_DONGLE_COMMAND) self.api.ble_cmd_system_get_connections() self._wait_for_state(self._STATE_DONGLE_COMMAND) return self.supported_connections
def accounts(self): """ A list of structures describing apps and pages owned by this user. """ response = self.graph.get('%s/accounts' % self.id) accounts = [] for item in response['data']: account = Structure( page = Page( id = item['id'], name = item['name'], category = item['category'] ), access_token = item['access_token'], permissions = item['perms'] ) accounts.append(account) return accounts
A list of structures describing apps and pages owned by this user.
Below is the the instruction that describes the task: ### Input: A list of structures describing apps and pages owned by this user. ### Response: def accounts(self): """ A list of structures describing apps and pages owned by this user. """ response = self.graph.get('%s/accounts' % self.id) accounts = [] for item in response['data']: account = Structure( page = Page( id = item['id'], name = item['name'], category = item['category'] ), access_token = item['access_token'], permissions = item['perms'] ) accounts.append(account) return accounts
def _load_point(big_endian, type_bytes, data_bytes): """ Convert byte data for a Point to a GeoJSON `dict`. :param bool big_endian: If `True`, interpret the ``data_bytes`` in big endian order, else little endian. :param str type_bytes: 4-byte integer (as a binary string) indicating the geometry type (Point) and the dimensions (2D, Z, M or ZM). For consistency, these bytes are expected to always be in big endian order, regardless of the value of ``big_endian``. :param str data_bytes: Coordinate data in a binary string. :returns: GeoJSON `dict` representing the Point geometry. """ endian_token = '>' if big_endian else '<' if type_bytes == WKB_2D['Point']: coords = struct.unpack('%sdd' % endian_token, as_bin_str(take(16, data_bytes))) elif type_bytes == WKB_Z['Point']: coords = struct.unpack('%sddd' % endian_token, as_bin_str(take(24, data_bytes))) elif type_bytes == WKB_M['Point']: # NOTE: The use of XYM types geometries is quite rare. In the interest # of removing ambiguity, we will treat all XYM geometries as XYZM when # generate the GeoJSON. A default Z value of `0.0` will be given in # this case. coords = list(struct.unpack('%sddd' % endian_token, as_bin_str(take(24, data_bytes)))) coords.insert(2, 0.0) elif type_bytes == WKB_ZM['Point']: coords = struct.unpack('%sdddd' % endian_token, as_bin_str(take(32, data_bytes))) return dict(type='Point', coordinates=list(coords))
Convert byte data for a Point to a GeoJSON `dict`. :param bool big_endian: If `True`, interpret the ``data_bytes`` in big endian order, else little endian. :param str type_bytes: 4-byte integer (as a binary string) indicating the geometry type (Point) and the dimensions (2D, Z, M or ZM). For consistency, these bytes are expected to always be in big endian order, regardless of the value of ``big_endian``. :param str data_bytes: Coordinate data in a binary string. :returns: GeoJSON `dict` representing the Point geometry.
Below is the the instruction that describes the task: ### Input: Convert byte data for a Point to a GeoJSON `dict`. :param bool big_endian: If `True`, interpret the ``data_bytes`` in big endian order, else little endian. :param str type_bytes: 4-byte integer (as a binary string) indicating the geometry type (Point) and the dimensions (2D, Z, M or ZM). For consistency, these bytes are expected to always be in big endian order, regardless of the value of ``big_endian``. :param str data_bytes: Coordinate data in a binary string. :returns: GeoJSON `dict` representing the Point geometry. ### Response: def _load_point(big_endian, type_bytes, data_bytes): """ Convert byte data for a Point to a GeoJSON `dict`. :param bool big_endian: If `True`, interpret the ``data_bytes`` in big endian order, else little endian. :param str type_bytes: 4-byte integer (as a binary string) indicating the geometry type (Point) and the dimensions (2D, Z, M or ZM). For consistency, these bytes are expected to always be in big endian order, regardless of the value of ``big_endian``. :param str data_bytes: Coordinate data in a binary string. :returns: GeoJSON `dict` representing the Point geometry. """ endian_token = '>' if big_endian else '<' if type_bytes == WKB_2D['Point']: coords = struct.unpack('%sdd' % endian_token, as_bin_str(take(16, data_bytes))) elif type_bytes == WKB_Z['Point']: coords = struct.unpack('%sddd' % endian_token, as_bin_str(take(24, data_bytes))) elif type_bytes == WKB_M['Point']: # NOTE: The use of XYM types geometries is quite rare. In the interest # of removing ambiguity, we will treat all XYM geometries as XYZM when # generate the GeoJSON. A default Z value of `0.0` will be given in # this case. coords = list(struct.unpack('%sddd' % endian_token, as_bin_str(take(24, data_bytes)))) coords.insert(2, 0.0) elif type_bytes == WKB_ZM['Point']: coords = struct.unpack('%sdddd' % endian_token, as_bin_str(take(32, data_bytes))) return dict(type='Point', coordinates=list(coords))
def _assign_to_null(obj, path, value, force=True): """ value IS ASSIGNED TO obj[self.path][key] path IS AN ARRAY OF PROPERTY NAMES force=False IF YOU PREFER TO use setDefault() """ try: if obj is Null: return if _get(obj, CLASS) is NullType: d = _get(obj, "__dict__") o = d[OBJ] p = d["__key__"] s = [p]+path return _assign_to_null(o, s, value) path0 = path[0] if len(path) == 1: if force: obj[path0] = value else: _setdefault(obj, path0, value) return old_value = obj.get(path0) if old_value == None: if value == None: return else: obj[path0] = old_value = {} _assign_to_null(old_value, path[1:], value) except Exception as e: raise e
value IS ASSIGNED TO obj[self.path][key] path IS AN ARRAY OF PROPERTY NAMES force=False IF YOU PREFER TO use setDefault()
Below is the the instruction that describes the task: ### Input: value IS ASSIGNED TO obj[self.path][key] path IS AN ARRAY OF PROPERTY NAMES force=False IF YOU PREFER TO use setDefault() ### Response: def _assign_to_null(obj, path, value, force=True): """ value IS ASSIGNED TO obj[self.path][key] path IS AN ARRAY OF PROPERTY NAMES force=False IF YOU PREFER TO use setDefault() """ try: if obj is Null: return if _get(obj, CLASS) is NullType: d = _get(obj, "__dict__") o = d[OBJ] p = d["__key__"] s = [p]+path return _assign_to_null(o, s, value) path0 = path[0] if len(path) == 1: if force: obj[path0] = value else: _setdefault(obj, path0, value) return old_value = obj.get(path0) if old_value == None: if value == None: return else: obj[path0] = old_value = {} _assign_to_null(old_value, path[1:], value) except Exception as e: raise e
def auto_detect(self, args): """Check for already Slackware binary packages exist """ suffixes = [ ".tgz", ".txz", ".tbz", ".tlz" ] if (not args[0].startswith("-") and args[0] not in self.commands and args[0].endswith(tuple(suffixes))): packages, not_found = [], [] for pkg in args: if pkg.endswith(tuple(suffixes)): if os.path.isfile(pkg): packages.append(pkg) else: not_found.append(pkg) if packages: Auto(packages).select() if not_found: for ntf in not_found: self.msg.pkg_not_found("", ntf, "Not installed", "") raise SystemExit()
Check for already Slackware binary packages exist
Below is the the instruction that describes the task: ### Input: Check for already Slackware binary packages exist ### Response: def auto_detect(self, args): """Check for already Slackware binary packages exist """ suffixes = [ ".tgz", ".txz", ".tbz", ".tlz" ] if (not args[0].startswith("-") and args[0] not in self.commands and args[0].endswith(tuple(suffixes))): packages, not_found = [], [] for pkg in args: if pkg.endswith(tuple(suffixes)): if os.path.isfile(pkg): packages.append(pkg) else: not_found.append(pkg) if packages: Auto(packages).select() if not_found: for ntf in not_found: self.msg.pkg_not_found("", ntf, "Not installed", "") raise SystemExit()
def LMA(XY,ParIni): """ input: list of x and y values [[x_1, y_1], [x_2, y_2], ....], and a tuple containing an initial guess (a, b, r) which is acquired by using an algebraic circle fit (TaubinSVD) output: a, b, r. a and b are the center of the fitting circle, and r is the radius % Geometric circle fit (minimizing orthogonal distances) % based on the Levenberg-Marquardt scheme in the % "algebraic parameters" A,B,C,D with constraint B*B+C*C-4*A*D=1 % N. Chernov and C. Lesort, "Least squares fitting of circles", % J. Math. Imag. Vision, Vol. 23, 239-251 (2005) """ factorUp=10 factorDown=0.04 lambda0=0.01 epsilon=0.000001 IterMAX = 50 AdjustMax = 20 Xshift=0 Yshift=0 dX=1 dY=0; n = len(XY); # number of data points anew = ParIni[0] + Xshift bnew = ParIni[1] + Yshift Anew = old_div(1.,(2.*ParIni[2])) aabb = anew*anew + bnew*bnew Fnew = (aabb - ParIni[2]*ParIni[2])*Anew Tnew = numpy.arccos(old_div(-anew,numpy.sqrt(aabb))) if bnew > 0: Tnew = 2*numpy.pi - Tnew VarNew = VarCircle(XY,ParIni) VarLambda = lambda0; finish = 0; for it in range(0,IterMAX): Aold = Anew Fold = Fnew Told = Tnew VarOld = VarNew H = numpy.sqrt(1+4*Aold*Fold); aold = -H*numpy.cos(Told)/(Aold+Aold) - Xshift; bold = -H*numpy.sin(Told)/(Aold+Aold) - Yshift; Rold = old_div(1,abs(Aold+Aold)); DD = 1 + 4*Aold*Fold; D = numpy.sqrt(DD); CT = numpy.cos(Told); ST = numpy.sin(Told); H11=0; H12=0; H13=0; H22=0; H23=0; H33=0; F1=0; F2=0; F3=0; for i in range(0,n): Xi = XY[i,0] + Xshift; Yi = XY[i,1] + Yshift; Zi = Xi*Xi + Yi*Yi; Ui = Xi*CT + Yi*ST; Vi =-Xi*ST + Yi*CT; ADF = Aold*Zi + D*Ui + Fold; SQ = numpy.sqrt(4*Aold*ADF + 1); DEN = SQ + 1; Gi = 2*ADF/DEN; FACT = 2/DEN*(1 - Aold*Gi/SQ); DGDAi = FACT*(Zi + 2*Fold*Ui/D) - Gi*Gi/SQ; DGDFi = FACT*(2*Aold*Ui/D + 1); DGDTi = FACT*D*Vi; H11 = H11 + DGDAi*DGDAi; H12 = H12 + DGDAi*DGDFi; H13 = H13 + DGDAi*DGDTi; H22 = H22 + DGDFi*DGDFi; H23 = H23 + DGDFi*DGDTi; H33 = H33 + DGDTi*DGDTi; F1 = F1 + Gi*DGDAi; F2 = F2 + Gi*DGDFi; F3 = F3 + Gi*DGDTi; for adjust in range(1,AdjustMax): # Cholesly decomposition G11 = numpy.sqrt(H11 + VarLambda); G12 = old_div(H12,G11) G13 = old_div(H13,G11) G22 = numpy.sqrt(H22 + VarLambda - G12*G12); G23 = old_div((H23 - G12*G13),G22); G33 = numpy.sqrt(H33 + VarLambda - G13*G13 - G23*G23); D1 = old_div(F1,G11); D2 = old_div((F2 - G12*D1),G22); D3 = old_div((F3 - G13*D1 - G23*D2),G33); dT = old_div(D3,G33); dF = old_div((D2 - G23*dT),G22) dA = old_div((D1 - G12*dF - G13*dT),G11) # updating the parameters Anew = Aold - dA; Fnew = Fold - dF; Tnew = Told - dT; if 1+4*Anew*Fnew < epsilon and VarLambda>1: Xshift = Xshift + dX; Yshift = Yshift + dY; H = numpy.sqrt(1+4*Aold*Fold); aTemp = -H*numpy.cos(Told)/(Aold+Aold) + dX; bTemp = -H*numpy.sin(Told)/(Aold+Aold) + dY; rTemp = old_div(1,abs(Aold+Aold)); Anew = old_div(1,(rTemp + rTemp)); aabb = aTemp*aTemp + bTemp*bTemp; Fnew = (aabb - rTemp*rTemp)*Anew; Tnew = numpy.arccos(old_div(-aTemp,numpy.sqrt(aabb))); if bTemp > 0: Tnew = 2*numpy.pi - Tnew; VarNew = VarOld; break; if 1+4*Anew*Fnew < epsilon: VarLambda = VarLambda * factorUp; continue; DD = 1 + 4*Anew*Fnew; D = numpy.sqrt(DD); CT = numpy.cos(Tnew); ST = numpy.sin(Tnew); GG = 0; for i in range(0, n): Xi = XY[i,0] + Xshift; Yi = XY[i,1] + Yshift; Zi = Xi*Xi + Yi*Yi; Ui = Xi*CT + Yi*ST; ADF = Anew*Zi + D*Ui + Fnew; SQ = numpy.sqrt(4*Anew*ADF + 1); DEN = SQ + 1; Gi = 2*ADF/DEN; GG = GG + Gi*Gi; VarNew = old_div(GG,(n-3)); H = numpy.sqrt(1+4*Anew*Fnew); anew = -H*numpy.cos(Tnew)/(Anew+Anew) - Xshift; bnew = -H*numpy.sin(Tnew)/(Anew+Anew) - Yshift; Rnew = old_div(1,abs(Anew+Anew)); if VarNew <= VarOld: progress = old_div((abs(anew-aold) + abs(bnew-bold) + abs(Rnew-Rold)),(Rnew+Rold)); if progress < epsilon: Aold = Anew; Fold = Fnew; Told = Tnew; VarOld = VarNew # %#ok<NASGU> finish = 1; break; VarLambda = VarLambda * factorDown break else: # % no improvement VarLambda = VarLambda * factorUp; continue; if finish == 1: break H = numpy.sqrt(1+4*Aold*Fold); result_a = -H*numpy.cos(Told)/(Aold+Aold) - Xshift; result_b = -H*numpy.sin(Told)/(Aold+Aold) - Yshift; result_r = old_div(1,abs(Aold+Aold)); return result_a, result_b, result_r
input: list of x and y values [[x_1, y_1], [x_2, y_2], ....], and a tuple containing an initial guess (a, b, r) which is acquired by using an algebraic circle fit (TaubinSVD) output: a, b, r. a and b are the center of the fitting circle, and r is the radius % Geometric circle fit (minimizing orthogonal distances) % based on the Levenberg-Marquardt scheme in the % "algebraic parameters" A,B,C,D with constraint B*B+C*C-4*A*D=1 % N. Chernov and C. Lesort, "Least squares fitting of circles", % J. Math. Imag. Vision, Vol. 23, 239-251 (2005)
Below is the the instruction that describes the task: ### Input: input: list of x and y values [[x_1, y_1], [x_2, y_2], ....], and a tuple containing an initial guess (a, b, r) which is acquired by using an algebraic circle fit (TaubinSVD) output: a, b, r. a and b are the center of the fitting circle, and r is the radius % Geometric circle fit (minimizing orthogonal distances) % based on the Levenberg-Marquardt scheme in the % "algebraic parameters" A,B,C,D with constraint B*B+C*C-4*A*D=1 % N. Chernov and C. Lesort, "Least squares fitting of circles", % J. Math. Imag. Vision, Vol. 23, 239-251 (2005) ### Response: def LMA(XY,ParIni): """ input: list of x and y values [[x_1, y_1], [x_2, y_2], ....], and a tuple containing an initial guess (a, b, r) which is acquired by using an algebraic circle fit (TaubinSVD) output: a, b, r. a and b are the center of the fitting circle, and r is the radius % Geometric circle fit (minimizing orthogonal distances) % based on the Levenberg-Marquardt scheme in the % "algebraic parameters" A,B,C,D with constraint B*B+C*C-4*A*D=1 % N. Chernov and C. Lesort, "Least squares fitting of circles", % J. Math. Imag. Vision, Vol. 23, 239-251 (2005) """ factorUp=10 factorDown=0.04 lambda0=0.01 epsilon=0.000001 IterMAX = 50 AdjustMax = 20 Xshift=0 Yshift=0 dX=1 dY=0; n = len(XY); # number of data points anew = ParIni[0] + Xshift bnew = ParIni[1] + Yshift Anew = old_div(1.,(2.*ParIni[2])) aabb = anew*anew + bnew*bnew Fnew = (aabb - ParIni[2]*ParIni[2])*Anew Tnew = numpy.arccos(old_div(-anew,numpy.sqrt(aabb))) if bnew > 0: Tnew = 2*numpy.pi - Tnew VarNew = VarCircle(XY,ParIni) VarLambda = lambda0; finish = 0; for it in range(0,IterMAX): Aold = Anew Fold = Fnew Told = Tnew VarOld = VarNew H = numpy.sqrt(1+4*Aold*Fold); aold = -H*numpy.cos(Told)/(Aold+Aold) - Xshift; bold = -H*numpy.sin(Told)/(Aold+Aold) - Yshift; Rold = old_div(1,abs(Aold+Aold)); DD = 1 + 4*Aold*Fold; D = numpy.sqrt(DD); CT = numpy.cos(Told); ST = numpy.sin(Told); H11=0; H12=0; H13=0; H22=0; H23=0; H33=0; F1=0; F2=0; F3=0; for i in range(0,n): Xi = XY[i,0] + Xshift; Yi = XY[i,1] + Yshift; Zi = Xi*Xi + Yi*Yi; Ui = Xi*CT + Yi*ST; Vi =-Xi*ST + Yi*CT; ADF = Aold*Zi + D*Ui + Fold; SQ = numpy.sqrt(4*Aold*ADF + 1); DEN = SQ + 1; Gi = 2*ADF/DEN; FACT = 2/DEN*(1 - Aold*Gi/SQ); DGDAi = FACT*(Zi + 2*Fold*Ui/D) - Gi*Gi/SQ; DGDFi = FACT*(2*Aold*Ui/D + 1); DGDTi = FACT*D*Vi; H11 = H11 + DGDAi*DGDAi; H12 = H12 + DGDAi*DGDFi; H13 = H13 + DGDAi*DGDTi; H22 = H22 + DGDFi*DGDFi; H23 = H23 + DGDFi*DGDTi; H33 = H33 + DGDTi*DGDTi; F1 = F1 + Gi*DGDAi; F2 = F2 + Gi*DGDFi; F3 = F3 + Gi*DGDTi; for adjust in range(1,AdjustMax): # Cholesly decomposition G11 = numpy.sqrt(H11 + VarLambda); G12 = old_div(H12,G11) G13 = old_div(H13,G11) G22 = numpy.sqrt(H22 + VarLambda - G12*G12); G23 = old_div((H23 - G12*G13),G22); G33 = numpy.sqrt(H33 + VarLambda - G13*G13 - G23*G23); D1 = old_div(F1,G11); D2 = old_div((F2 - G12*D1),G22); D3 = old_div((F3 - G13*D1 - G23*D2),G33); dT = old_div(D3,G33); dF = old_div((D2 - G23*dT),G22) dA = old_div((D1 - G12*dF - G13*dT),G11) # updating the parameters Anew = Aold - dA; Fnew = Fold - dF; Tnew = Told - dT; if 1+4*Anew*Fnew < epsilon and VarLambda>1: Xshift = Xshift + dX; Yshift = Yshift + dY; H = numpy.sqrt(1+4*Aold*Fold); aTemp = -H*numpy.cos(Told)/(Aold+Aold) + dX; bTemp = -H*numpy.sin(Told)/(Aold+Aold) + dY; rTemp = old_div(1,abs(Aold+Aold)); Anew = old_div(1,(rTemp + rTemp)); aabb = aTemp*aTemp + bTemp*bTemp; Fnew = (aabb - rTemp*rTemp)*Anew; Tnew = numpy.arccos(old_div(-aTemp,numpy.sqrt(aabb))); if bTemp > 0: Tnew = 2*numpy.pi - Tnew; VarNew = VarOld; break; if 1+4*Anew*Fnew < epsilon: VarLambda = VarLambda * factorUp; continue; DD = 1 + 4*Anew*Fnew; D = numpy.sqrt(DD); CT = numpy.cos(Tnew); ST = numpy.sin(Tnew); GG = 0; for i in range(0, n): Xi = XY[i,0] + Xshift; Yi = XY[i,1] + Yshift; Zi = Xi*Xi + Yi*Yi; Ui = Xi*CT + Yi*ST; ADF = Anew*Zi + D*Ui + Fnew; SQ = numpy.sqrt(4*Anew*ADF + 1); DEN = SQ + 1; Gi = 2*ADF/DEN; GG = GG + Gi*Gi; VarNew = old_div(GG,(n-3)); H = numpy.sqrt(1+4*Anew*Fnew); anew = -H*numpy.cos(Tnew)/(Anew+Anew) - Xshift; bnew = -H*numpy.sin(Tnew)/(Anew+Anew) - Yshift; Rnew = old_div(1,abs(Anew+Anew)); if VarNew <= VarOld: progress = old_div((abs(anew-aold) + abs(bnew-bold) + abs(Rnew-Rold)),(Rnew+Rold)); if progress < epsilon: Aold = Anew; Fold = Fnew; Told = Tnew; VarOld = VarNew # %#ok<NASGU> finish = 1; break; VarLambda = VarLambda * factorDown break else: # % no improvement VarLambda = VarLambda * factorUp; continue; if finish == 1: break H = numpy.sqrt(1+4*Aold*Fold); result_a = -H*numpy.cos(Told)/(Aold+Aold) - Xshift; result_b = -H*numpy.sin(Told)/(Aold+Aold) - Yshift; result_r = old_div(1,abs(Aold+Aold)); return result_a, result_b, result_r
def process_cbn_jgif_file(file_name): """Return a PybelProcessor by processing a CBN JGIF JSON file. Parameters ---------- file_name : str The path to a CBN JGIF JSON file. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements. """ with open(file_name, 'r') as jgf: return process_pybel_graph(pybel.from_cbn_jgif(json.load(jgf)))
Return a PybelProcessor by processing a CBN JGIF JSON file. Parameters ---------- file_name : str The path to a CBN JGIF JSON file. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements.
Below is the the instruction that describes the task: ### Input: Return a PybelProcessor by processing a CBN JGIF JSON file. Parameters ---------- file_name : str The path to a CBN JGIF JSON file. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements. ### Response: def process_cbn_jgif_file(file_name): """Return a PybelProcessor by processing a CBN JGIF JSON file. Parameters ---------- file_name : str The path to a CBN JGIF JSON file. Returns ------- bp : PybelProcessor A PybelProcessor object which contains INDRA Statements in bp.statements. """ with open(file_name, 'r') as jgf: return process_pybel_graph(pybel.from_cbn_jgif(json.load(jgf)))
def dict_match(d, key, default=None): """Like __getitem__ but works as if the keys() are all filename patterns. Returns the value of any dict key that matches the passed key. Args: d (dict): A dict with filename patterns as keys key (str): A key potentially matching any of the keys default (object): The object to return if no pattern matched the passed in key Returns: object: The dict value where the dict key matched the passed in key. Or default if there was no match. """ if key in d and "[" not in key: return d[key] else: for pattern, value in iteritems(d): if fnmatchcase(key, pattern): return value return default
Like __getitem__ but works as if the keys() are all filename patterns. Returns the value of any dict key that matches the passed key. Args: d (dict): A dict with filename patterns as keys key (str): A key potentially matching any of the keys default (object): The object to return if no pattern matched the passed in key Returns: object: The dict value where the dict key matched the passed in key. Or default if there was no match.
Below is the the instruction that describes the task: ### Input: Like __getitem__ but works as if the keys() are all filename patterns. Returns the value of any dict key that matches the passed key. Args: d (dict): A dict with filename patterns as keys key (str): A key potentially matching any of the keys default (object): The object to return if no pattern matched the passed in key Returns: object: The dict value where the dict key matched the passed in key. Or default if there was no match. ### Response: def dict_match(d, key, default=None): """Like __getitem__ but works as if the keys() are all filename patterns. Returns the value of any dict key that matches the passed key. Args: d (dict): A dict with filename patterns as keys key (str): A key potentially matching any of the keys default (object): The object to return if no pattern matched the passed in key Returns: object: The dict value where the dict key matched the passed in key. Or default if there was no match. """ if key in d and "[" not in key: return d[key] else: for pattern, value in iteritems(d): if fnmatchcase(key, pattern): return value return default
def set(self, value: dict): """ Set the state, completely over-writing the previous value. .. caution:: This kind of operation usually leads to a data race. Please take good care while using this. Use the :py:func:`atomic` deocrator if you're feeling anxious. """ self._s_request_reply({Msgs.cmd: Cmds.set_state, Msgs.info: value})
Set the state, completely over-writing the previous value. .. caution:: This kind of operation usually leads to a data race. Please take good care while using this. Use the :py:func:`atomic` deocrator if you're feeling anxious.
Below is the the instruction that describes the task: ### Input: Set the state, completely over-writing the previous value. .. caution:: This kind of operation usually leads to a data race. Please take good care while using this. Use the :py:func:`atomic` deocrator if you're feeling anxious. ### Response: def set(self, value: dict): """ Set the state, completely over-writing the previous value. .. caution:: This kind of operation usually leads to a data race. Please take good care while using this. Use the :py:func:`atomic` deocrator if you're feeling anxious. """ self._s_request_reply({Msgs.cmd: Cmds.set_state, Msgs.info: value})
def generate_schema_mapping(resolver, schema_uri, depth=1): """ Try and recursively iterate a JSON schema and to generate an ES mapping that encasulates it. """ visitor = SchemaVisitor({'$ref': schema_uri}, resolver) return _generate_schema_mapping(visitor, set(), depth)
Try and recursively iterate a JSON schema and to generate an ES mapping that encasulates it.
Below is the the instruction that describes the task: ### Input: Try and recursively iterate a JSON schema and to generate an ES mapping that encasulates it. ### Response: def generate_schema_mapping(resolver, schema_uri, depth=1): """ Try and recursively iterate a JSON schema and to generate an ES mapping that encasulates it. """ visitor = SchemaVisitor({'$ref': schema_uri}, resolver) return _generate_schema_mapping(visitor, set(), depth)
def manage_service_check_result_brok(self, b): # pylint: disable=too-many-branches """A service check result brok has just arrived ...""" host_name = b.data.get('host_name', None) service_description = b.data.get('service_description', None) if not host_name or not service_description: return service_id = host_name+"/"+service_description logger.debug("service check result: %s", service_id) # If host and service initial status broks have not been received, ignore ... if not self.ignore_unknown and host_name not in self.hosts_cache: logger.warning("received service check result for an unknown host: %s", service_id) return if service_id not in self.services_cache and not self.ignore_unknown: logger.warning("received service check result for an unknown service: %s", service_id) return # Decode received metrics metrics = self.get_metrics_from_perfdata(service_description, b.data['perf_data']) if not metrics: logger.debug("no metrics to send ...") return # If checks latency is ignored if self.ignore_latency_limit >= b.data['latency'] > 0: check_time = int(b.data['last_chk']) - int(b.data['latency']) else: check_time = int(b.data['last_chk']) # Custom hosts variables hname = sanitize_name(host_name) if host_name in self.hosts_cache: if self.hosts_cache[host_name].get('_GRAPHITE_GROUP', None): hname = ".".join((self.hosts_cache[host_name].get('_GRAPHITE_GROUP'), hname)) if self.hosts_cache[host_name].get('_GRAPHITE_PRE', None): hname = ".".join((self.hosts_cache[host_name].get('_GRAPHITE_PRE'), hname)) # Custom services variables desc = sanitize_name(service_description) if service_id in self.services_cache: if self.services_cache[service_id].get('_GRAPHITE_POST', None): desc = ".".join((desc, self.services_cache[service_id].get('_GRAPHITE_POST', None))) # Graphite data source if self.graphite_data_source: path = '.'.join((hname, self.graphite_data_source, desc)) else: path = '.'.join((hname, desc)) # Realm as a prefix if self.realms_prefix and self.hosts_cache[host_name].get('realm_name', None): path = '.'.join((self.hosts_cache[host_name].get('realm_name'), path)) realm_name = None if host_name in self.hosts_cache: realm_name = self.hosts_cache[host_name].get('realm_name', None) # Send metrics self.send_to_tsdb(realm_name, host_name, service_description, metrics, check_time, path)
A service check result brok has just arrived ...
Below is the the instruction that describes the task: ### Input: A service check result brok has just arrived ... ### Response: def manage_service_check_result_brok(self, b): # pylint: disable=too-many-branches """A service check result brok has just arrived ...""" host_name = b.data.get('host_name', None) service_description = b.data.get('service_description', None) if not host_name or not service_description: return service_id = host_name+"/"+service_description logger.debug("service check result: %s", service_id) # If host and service initial status broks have not been received, ignore ... if not self.ignore_unknown and host_name not in self.hosts_cache: logger.warning("received service check result for an unknown host: %s", service_id) return if service_id not in self.services_cache and not self.ignore_unknown: logger.warning("received service check result for an unknown service: %s", service_id) return # Decode received metrics metrics = self.get_metrics_from_perfdata(service_description, b.data['perf_data']) if not metrics: logger.debug("no metrics to send ...") return # If checks latency is ignored if self.ignore_latency_limit >= b.data['latency'] > 0: check_time = int(b.data['last_chk']) - int(b.data['latency']) else: check_time = int(b.data['last_chk']) # Custom hosts variables hname = sanitize_name(host_name) if host_name in self.hosts_cache: if self.hosts_cache[host_name].get('_GRAPHITE_GROUP', None): hname = ".".join((self.hosts_cache[host_name].get('_GRAPHITE_GROUP'), hname)) if self.hosts_cache[host_name].get('_GRAPHITE_PRE', None): hname = ".".join((self.hosts_cache[host_name].get('_GRAPHITE_PRE'), hname)) # Custom services variables desc = sanitize_name(service_description) if service_id in self.services_cache: if self.services_cache[service_id].get('_GRAPHITE_POST', None): desc = ".".join((desc, self.services_cache[service_id].get('_GRAPHITE_POST', None))) # Graphite data source if self.graphite_data_source: path = '.'.join((hname, self.graphite_data_source, desc)) else: path = '.'.join((hname, desc)) # Realm as a prefix if self.realms_prefix and self.hosts_cache[host_name].get('realm_name', None): path = '.'.join((self.hosts_cache[host_name].get('realm_name'), path)) realm_name = None if host_name in self.hosts_cache: realm_name = self.hosts_cache[host_name].get('realm_name', None) # Send metrics self.send_to_tsdb(realm_name, host_name, service_description, metrics, check_time, path)
def get_passenger_cpu_usage(self, dict_stats): """ Execute % top; and return STDOUT. """ try: proc1 = subprocess.Popen( ["top", "-b", "-n", "2"], stdout=subprocess.PIPE) (std_out, std_err) = proc1.communicate() except OSError: return (-1) re_lspaces = re.compile("^\s*") re_digit = re.compile("^\d") overall_cpu = 0 for raw_line in std_out.splitlines(): line = re_lspaces.sub("", raw_line) if not re_digit.match(line): continue line_splitted = line.split() if line_splitted[0] in dict_stats["apache_procs"]: overall_cpu += float(line_splitted[8]) elif line_splitted[0] in dict_stats["nginx_procs"]: overall_cpu += float(line_splitted[8]) elif line_splitted[0] in dict_stats["passenger_procs"]: overall_cpu += float(line_splitted[8]) return overall_cpu
Execute % top; and return STDOUT.
Below is the the instruction that describes the task: ### Input: Execute % top; and return STDOUT. ### Response: def get_passenger_cpu_usage(self, dict_stats): """ Execute % top; and return STDOUT. """ try: proc1 = subprocess.Popen( ["top", "-b", "-n", "2"], stdout=subprocess.PIPE) (std_out, std_err) = proc1.communicate() except OSError: return (-1) re_lspaces = re.compile("^\s*") re_digit = re.compile("^\d") overall_cpu = 0 for raw_line in std_out.splitlines(): line = re_lspaces.sub("", raw_line) if not re_digit.match(line): continue line_splitted = line.split() if line_splitted[0] in dict_stats["apache_procs"]: overall_cpu += float(line_splitted[8]) elif line_splitted[0] in dict_stats["nginx_procs"]: overall_cpu += float(line_splitted[8]) elif line_splitted[0] in dict_stats["passenger_procs"]: overall_cpu += float(line_splitted[8]) return overall_cpu
def _protocolObjectGenerator(self, request, numObjects, getByIndexMethod): """ Returns a generator over the results for the specified request, from a set of protocol objects of the specified size. The objects are returned by call to the specified method, which must take a single integer as an argument. The returned generator yields a sequence of (object, nextPageToken) pairs, which allows this iteration to be picked up at any point. """ currentIndex = 0 if request.page_token: currentIndex, = paging._parsePageToken( request.page_token, 1) while currentIndex < numObjects: object_ = getByIndexMethod(currentIndex) currentIndex += 1 nextPageToken = None if currentIndex < numObjects: nextPageToken = str(currentIndex) yield object_, nextPageToken
Returns a generator over the results for the specified request, from a set of protocol objects of the specified size. The objects are returned by call to the specified method, which must take a single integer as an argument. The returned generator yields a sequence of (object, nextPageToken) pairs, which allows this iteration to be picked up at any point.
Below is the the instruction that describes the task: ### Input: Returns a generator over the results for the specified request, from a set of protocol objects of the specified size. The objects are returned by call to the specified method, which must take a single integer as an argument. The returned generator yields a sequence of (object, nextPageToken) pairs, which allows this iteration to be picked up at any point. ### Response: def _protocolObjectGenerator(self, request, numObjects, getByIndexMethod): """ Returns a generator over the results for the specified request, from a set of protocol objects of the specified size. The objects are returned by call to the specified method, which must take a single integer as an argument. The returned generator yields a sequence of (object, nextPageToken) pairs, which allows this iteration to be picked up at any point. """ currentIndex = 0 if request.page_token: currentIndex, = paging._parsePageToken( request.page_token, 1) while currentIndex < numObjects: object_ = getByIndexMethod(currentIndex) currentIndex += 1 nextPageToken = None if currentIndex < numObjects: nextPageToken = str(currentIndex) yield object_, nextPageToken
def get_import_prefixes_from_env(env): """ Obtain current Python import prefixes (for `import_by_name`) from ``document.env`` """ prefixes = [None] currmodule = env.temp_data.get('py:module') if currmodule: prefixes.insert(0, currmodule) currclass = env.temp_data.get('py:class') if currclass: if currmodule: prefixes.insert(0, currmodule + "." + currclass) else: prefixes.insert(0, currclass) return prefixes
Obtain current Python import prefixes (for `import_by_name`) from ``document.env``
Below is the the instruction that describes the task: ### Input: Obtain current Python import prefixes (for `import_by_name`) from ``document.env`` ### Response: def get_import_prefixes_from_env(env): """ Obtain current Python import prefixes (for `import_by_name`) from ``document.env`` """ prefixes = [None] currmodule = env.temp_data.get('py:module') if currmodule: prefixes.insert(0, currmodule) currclass = env.temp_data.get('py:class') if currclass: if currmodule: prefixes.insert(0, currmodule + "." + currclass) else: prefixes.insert(0, currclass) return prefixes
def _getSyntaxByLanguageName(self, syntaxName): """Get syntax by its name. Name is defined in the xml file """ xmlFileName = self._syntaxNameToXmlFileName[syntaxName] return self._getSyntaxByXmlFileName(xmlFileName)
Get syntax by its name. Name is defined in the xml file
Below is the the instruction that describes the task: ### Input: Get syntax by its name. Name is defined in the xml file ### Response: def _getSyntaxByLanguageName(self, syntaxName): """Get syntax by its name. Name is defined in the xml file """ xmlFileName = self._syntaxNameToXmlFileName[syntaxName] return self._getSyntaxByXmlFileName(xmlFileName)
def shell(self): """ Opens a Django focussed Python shell. Essentially the equivalent of running `manage.py shell`. """ r = self.local_renderer if '@' in self.genv.host_string: r.env.shell_host_string = self.genv.host_string else: r.env.shell_host_string = '{user}@{host_string}' r.env.shell_default_dir = self.genv.shell_default_dir_template r.env.shell_interactive_djshell_str = self.genv.interactive_shell_template r.run_or_local('ssh -t -i {key_filename} {shell_host_string} "{shell_interactive_djshell_str}"')
Opens a Django focussed Python shell. Essentially the equivalent of running `manage.py shell`.
Below is the the instruction that describes the task: ### Input: Opens a Django focussed Python shell. Essentially the equivalent of running `manage.py shell`. ### Response: def shell(self): """ Opens a Django focussed Python shell. Essentially the equivalent of running `manage.py shell`. """ r = self.local_renderer if '@' in self.genv.host_string: r.env.shell_host_string = self.genv.host_string else: r.env.shell_host_string = '{user}@{host_string}' r.env.shell_default_dir = self.genv.shell_default_dir_template r.env.shell_interactive_djshell_str = self.genv.interactive_shell_template r.run_or_local('ssh -t -i {key_filename} {shell_host_string} "{shell_interactive_djshell_str}"')
def do_request(self, method, url, data=None, headers=None, params=None): """ Handle API requests / responses transport :param method: HTTP method to use as string :param data: Any data as PyDict (will be converted to XML string) :param headers: Any data as PyDict :return: If response is XML then an xml.etree.ElementTree else the raw content :raise: Any unsuccessful HTTP response code if fail_mode=raise """ response_content = None if data: if headers: headers.update({'Content-Type': 'application/xml'}) else: headers = {'Content-Type': 'application/xml'} if self._debug: print md.parseString(data).toprettyxml() response = self._session.request(method, url, headers=headers, params=params, data=data) if 'content-type' in response.headers: if response.headers['content-type'].find('application/xml') != -1: response_content = xmloperations.xml_to_dict(et.fromstring(response.content)) elif response.headers['content-type'].find('application/json') != -1: response_content = json.loads(response.content) else: response_content = response.content response_odict = OrderedDict([('status', response.status_code), ('body', response_content), ('location', None), ('objectId', None), ('Etag', None)]) if 'location' in response.headers: response_odict['location'] = response.headers['location'] response_odict['objectId'] = response.headers['location'].split('/')[-1] if 'Etag' in response.headers: response_odict['Etag'] = response.headers['Etag'] if response.status_code not in [200, 201, 202, 204]: if self.fail_mode == 'exit': sys.exit('receive bad status code {}\n{}'.format(response.status_code, response_content)) elif self.fail_mode == 'raise': raise NsxError(response.status_code, response_content) elif self.fail_mode == 'continue': pass return response_odict
Handle API requests / responses transport :param method: HTTP method to use as string :param data: Any data as PyDict (will be converted to XML string) :param headers: Any data as PyDict :return: If response is XML then an xml.etree.ElementTree else the raw content :raise: Any unsuccessful HTTP response code if fail_mode=raise
Below is the the instruction that describes the task: ### Input: Handle API requests / responses transport :param method: HTTP method to use as string :param data: Any data as PyDict (will be converted to XML string) :param headers: Any data as PyDict :return: If response is XML then an xml.etree.ElementTree else the raw content :raise: Any unsuccessful HTTP response code if fail_mode=raise ### Response: def do_request(self, method, url, data=None, headers=None, params=None): """ Handle API requests / responses transport :param method: HTTP method to use as string :param data: Any data as PyDict (will be converted to XML string) :param headers: Any data as PyDict :return: If response is XML then an xml.etree.ElementTree else the raw content :raise: Any unsuccessful HTTP response code if fail_mode=raise """ response_content = None if data: if headers: headers.update({'Content-Type': 'application/xml'}) else: headers = {'Content-Type': 'application/xml'} if self._debug: print md.parseString(data).toprettyxml() response = self._session.request(method, url, headers=headers, params=params, data=data) if 'content-type' in response.headers: if response.headers['content-type'].find('application/xml') != -1: response_content = xmloperations.xml_to_dict(et.fromstring(response.content)) elif response.headers['content-type'].find('application/json') != -1: response_content = json.loads(response.content) else: response_content = response.content response_odict = OrderedDict([('status', response.status_code), ('body', response_content), ('location', None), ('objectId', None), ('Etag', None)]) if 'location' in response.headers: response_odict['location'] = response.headers['location'] response_odict['objectId'] = response.headers['location'].split('/')[-1] if 'Etag' in response.headers: response_odict['Etag'] = response.headers['Etag'] if response.status_code not in [200, 201, 202, 204]: if self.fail_mode == 'exit': sys.exit('receive bad status code {}\n{}'.format(response.status_code, response_content)) elif self.fail_mode == 'raise': raise NsxError(response.status_code, response_content) elif self.fail_mode == 'continue': pass return response_odict
def can_manage(user, semester=None, pool=None, any_pool=False): """ Whether a user is allowed to manage a workshift semester. This includes the current workshift managers, that semester's workshift managers, and site superusers. """ if semester and user in semester.workshift_managers.all(): return True if Manager and Manager.objects.filter( incumbent__user=user, workshift_manager=True, ).count() > 0: return True if pool and pool.managers.filter(incumbent__user=user).count() > 0: return True if any_pool and WorkshiftPool.objects.filter( managers__incumbent__user=user, ): return True return user.is_superuser or user.is_staff
Whether a user is allowed to manage a workshift semester. This includes the current workshift managers, that semester's workshift managers, and site superusers.
Below is the the instruction that describes the task: ### Input: Whether a user is allowed to manage a workshift semester. This includes the current workshift managers, that semester's workshift managers, and site superusers. ### Response: def can_manage(user, semester=None, pool=None, any_pool=False): """ Whether a user is allowed to manage a workshift semester. This includes the current workshift managers, that semester's workshift managers, and site superusers. """ if semester and user in semester.workshift_managers.all(): return True if Manager and Manager.objects.filter( incumbent__user=user, workshift_manager=True, ).count() > 0: return True if pool and pool.managers.filter(incumbent__user=user).count() > 0: return True if any_pool and WorkshiftPool.objects.filter( managers__incumbent__user=user, ): return True return user.is_superuser or user.is_staff
def _set_upload_status(self, file_data_object, upload_status): """ Set file_data_object.file_resource.upload_status """ uuid = file_data_object['uuid'] return self.connection.update_data_object( uuid, {'uuid': uuid, 'value': { 'upload_status': upload_status}} )
Set file_data_object.file_resource.upload_status
Below is the the instruction that describes the task: ### Input: Set file_data_object.file_resource.upload_status ### Response: def _set_upload_status(self, file_data_object, upload_status): """ Set file_data_object.file_resource.upload_status """ uuid = file_data_object['uuid'] return self.connection.update_data_object( uuid, {'uuid': uuid, 'value': { 'upload_status': upload_status}} )
def need_completion_refresh(queries): """Determines if the completion needs a refresh by checking if the sql statement is an alter, create, drop or change db.""" tokens = { 'use', '\\u', 'create', 'drop' } for query in sqlparse.split(queries): try: first_token = query.split()[0] if first_token.lower() in tokens: return True except Exception: return False
Determines if the completion needs a refresh by checking if the sql statement is an alter, create, drop or change db.
Below is the the instruction that describes the task: ### Input: Determines if the completion needs a refresh by checking if the sql statement is an alter, create, drop or change db. ### Response: def need_completion_refresh(queries): """Determines if the completion needs a refresh by checking if the sql statement is an alter, create, drop or change db.""" tokens = { 'use', '\\u', 'create', 'drop' } for query in sqlparse.split(queries): try: first_token = query.split()[0] if first_token.lower() in tokens: return True except Exception: return False
def _set_mixed_moments_to_zero(self, closed_central_moments, n_counter): r""" In univariate case, set the cross-terms to 0. :param closed_central_moments: matrix of closed central moment :param n_counter: a list of :class:`~means.core.descriptors.Moment`\s representing central moments :type n_counter: list[:class:`~means.core.descriptors.Moment`] :return: a matrix of new closed central moments with cross-terms equal to 0 """ positive_n_counter = [n for n in n_counter if n.order > 1] if self.is_multivariate: return closed_central_moments else: return [0 if n.is_mixed else ccm for n,ccm in zip(positive_n_counter, closed_central_moments)]
r""" In univariate case, set the cross-terms to 0. :param closed_central_moments: matrix of closed central moment :param n_counter: a list of :class:`~means.core.descriptors.Moment`\s representing central moments :type n_counter: list[:class:`~means.core.descriptors.Moment`] :return: a matrix of new closed central moments with cross-terms equal to 0
Below is the the instruction that describes the task: ### Input: r""" In univariate case, set the cross-terms to 0. :param closed_central_moments: matrix of closed central moment :param n_counter: a list of :class:`~means.core.descriptors.Moment`\s representing central moments :type n_counter: list[:class:`~means.core.descriptors.Moment`] :return: a matrix of new closed central moments with cross-terms equal to 0 ### Response: def _set_mixed_moments_to_zero(self, closed_central_moments, n_counter): r""" In univariate case, set the cross-terms to 0. :param closed_central_moments: matrix of closed central moment :param n_counter: a list of :class:`~means.core.descriptors.Moment`\s representing central moments :type n_counter: list[:class:`~means.core.descriptors.Moment`] :return: a matrix of new closed central moments with cross-terms equal to 0 """ positive_n_counter = [n for n in n_counter if n.order > 1] if self.is_multivariate: return closed_central_moments else: return [0 if n.is_mixed else ccm for n,ccm in zip(positive_n_counter, closed_central_moments)]
def update(self): """Update the status of the range setting.""" self._controller.update(self._id, wake_if_asleep=False) data = self._controller.get_charging_params(self._id) if data and (time.time() - self.__manual_update_time > 60): self.__maxrange_state = data['charge_to_max_range']
Update the status of the range setting.
Below is the the instruction that describes the task: ### Input: Update the status of the range setting. ### Response: def update(self): """Update the status of the range setting.""" self._controller.update(self._id, wake_if_asleep=False) data = self._controller.get_charging_params(self._id) if data and (time.time() - self.__manual_update_time > 60): self.__maxrange_state = data['charge_to_max_range']
def _all_resources(self): """Return the complete collection of resources as a list of dictionaries. :rtype: :class:`sandman2.model.Model` """ queryset = self.__model__.query args = {k: v for (k, v) in request.args.items() if k not in ('page', 'export')} limit = None if args: filters = [] order = [] for key, value in args.items(): if value.startswith('%'): filters.append(getattr(self.__model__, key).like(str(value), escape='/')) elif key == 'sort': direction = desc if value.startswith('-') else asc order.append(direction(getattr(self.__model__, value.lstrip('-')))) elif key == 'limit': limit = int(value) elif hasattr(self.__model__, key): filters.append(getattr(self.__model__, key) == value) else: raise BadRequestException('Invalid field [{}]'.format(key)) queryset = queryset.filter(*filters).order_by(*order) if 'page' in request.args: resources = queryset.paginate(page=int(request.args['page']), per_page=limit).items else: queryset = queryset.limit(limit) resources = queryset.all() return [r.to_dict() for r in resources]
Return the complete collection of resources as a list of dictionaries. :rtype: :class:`sandman2.model.Model`
Below is the the instruction that describes the task: ### Input: Return the complete collection of resources as a list of dictionaries. :rtype: :class:`sandman2.model.Model` ### Response: def _all_resources(self): """Return the complete collection of resources as a list of dictionaries. :rtype: :class:`sandman2.model.Model` """ queryset = self.__model__.query args = {k: v for (k, v) in request.args.items() if k not in ('page', 'export')} limit = None if args: filters = [] order = [] for key, value in args.items(): if value.startswith('%'): filters.append(getattr(self.__model__, key).like(str(value), escape='/')) elif key == 'sort': direction = desc if value.startswith('-') else asc order.append(direction(getattr(self.__model__, value.lstrip('-')))) elif key == 'limit': limit = int(value) elif hasattr(self.__model__, key): filters.append(getattr(self.__model__, key) == value) else: raise BadRequestException('Invalid field [{}]'.format(key)) queryset = queryset.filter(*filters).order_by(*order) if 'page' in request.args: resources = queryset.paginate(page=int(request.args['page']), per_page=limit).items else: queryset = queryset.limit(limit) resources = queryset.all() return [r.to_dict() for r in resources]
def qualifier_encoded(self): """Union[str, bytes]: The qualifier encoded in binary. The type is ``str`` (Python 2.x) or ``bytes`` (Python 3.x). The module will handle base64 encoding for you. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.%28key%29.bigtableOptions.columnFamilies.columns.qualifierEncoded https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#externalDataConfiguration.bigtableOptions.columnFamilies.columns.qualifierEncoded """ prop = self._properties.get("qualifierEncoded") if prop is None: return None return base64.standard_b64decode(_to_bytes(prop))
Union[str, bytes]: The qualifier encoded in binary. The type is ``str`` (Python 2.x) or ``bytes`` (Python 3.x). The module will handle base64 encoding for you. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.%28key%29.bigtableOptions.columnFamilies.columns.qualifierEncoded https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#externalDataConfiguration.bigtableOptions.columnFamilies.columns.qualifierEncoded
Below is the the instruction that describes the task: ### Input: Union[str, bytes]: The qualifier encoded in binary. The type is ``str`` (Python 2.x) or ``bytes`` (Python 3.x). The module will handle base64 encoding for you. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.%28key%29.bigtableOptions.columnFamilies.columns.qualifierEncoded https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#externalDataConfiguration.bigtableOptions.columnFamilies.columns.qualifierEncoded ### Response: def qualifier_encoded(self): """Union[str, bytes]: The qualifier encoded in binary. The type is ``str`` (Python 2.x) or ``bytes`` (Python 3.x). The module will handle base64 encoding for you. See https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.%28key%29.bigtableOptions.columnFamilies.columns.qualifierEncoded https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#externalDataConfiguration.bigtableOptions.columnFamilies.columns.qualifierEncoded """ prop = self._properties.get("qualifierEncoded") if prop is None: return None return base64.standard_b64decode(_to_bytes(prop))
def list(self, path=None, with_metadata=False, include_partitions=False): '''get a list of all of the files in the repository''' return self.upstream.list( path, with_metadata=with_metadata, include_partitions=include_partitions)
get a list of all of the files in the repository
Below is the the instruction that describes the task: ### Input: get a list of all of the files in the repository ### Response: def list(self, path=None, with_metadata=False, include_partitions=False): '''get a list of all of the files in the repository''' return self.upstream.list( path, with_metadata=with_metadata, include_partitions=include_partitions)
def showEvent(self, event): """ Overrides showEvent to update the viewport margins """ super(CodeEdit, self).showEvent(event) self.panels.refresh()
Overrides showEvent to update the viewport margins
Below is the the instruction that describes the task: ### Input: Overrides showEvent to update the viewport margins ### Response: def showEvent(self, event): """ Overrides showEvent to update the viewport margins """ super(CodeEdit, self).showEvent(event) self.panels.refresh()
def _GetISO8601String(self, structure): """Normalize date time parsed format to an ISO 8601 date time string. The date and time values in Apache access log files are formatted as: "[18/Sep/2011:19:18:28 -0400]". Args: structure (pyparsing.ParseResults): structure of tokens derived from a line of a text file. Returns: str: ISO 8601 date time string. Raises: ValueError: if the structure cannot be converted into a date time string. """ time_offset = structure.time_offset month = timelib.MONTH_DICT.get(structure.month.lower(), 0) try: time_offset_hours = int(time_offset[1:3], 10) time_offset_minutes = int(time_offset[3:5], 10) except (IndexError, TypeError, ValueError) as exception: raise ValueError( 'unable to parse time zone offset with error: {0!s}.'.format( exception)) try: date_time_string = ( '{0:04d}-{1:02d}-{2:02d}T{3:02d}:{4:02d}:{5:02d}.000000' '{6:s}{7:02d}:{8:02d}').format( structure.year, month, structure.day, structure.hours, structure.minutes, structure.seconds, time_offset[0], time_offset_hours, time_offset_minutes) except ValueError as exception: raise ValueError( 'unable to format date time string with error: {0!s}.'.format( exception)) return date_time_string
Normalize date time parsed format to an ISO 8601 date time string. The date and time values in Apache access log files are formatted as: "[18/Sep/2011:19:18:28 -0400]". Args: structure (pyparsing.ParseResults): structure of tokens derived from a line of a text file. Returns: str: ISO 8601 date time string. Raises: ValueError: if the structure cannot be converted into a date time string.
Below is the the instruction that describes the task: ### Input: Normalize date time parsed format to an ISO 8601 date time string. The date and time values in Apache access log files are formatted as: "[18/Sep/2011:19:18:28 -0400]". Args: structure (pyparsing.ParseResults): structure of tokens derived from a line of a text file. Returns: str: ISO 8601 date time string. Raises: ValueError: if the structure cannot be converted into a date time string. ### Response: def _GetISO8601String(self, structure): """Normalize date time parsed format to an ISO 8601 date time string. The date and time values in Apache access log files are formatted as: "[18/Sep/2011:19:18:28 -0400]". Args: structure (pyparsing.ParseResults): structure of tokens derived from a line of a text file. Returns: str: ISO 8601 date time string. Raises: ValueError: if the structure cannot be converted into a date time string. """ time_offset = structure.time_offset month = timelib.MONTH_DICT.get(structure.month.lower(), 0) try: time_offset_hours = int(time_offset[1:3], 10) time_offset_minutes = int(time_offset[3:5], 10) except (IndexError, TypeError, ValueError) as exception: raise ValueError( 'unable to parse time zone offset with error: {0!s}.'.format( exception)) try: date_time_string = ( '{0:04d}-{1:02d}-{2:02d}T{3:02d}:{4:02d}:{5:02d}.000000' '{6:s}{7:02d}:{8:02d}').format( structure.year, month, structure.day, structure.hours, structure.minutes, structure.seconds, time_offset[0], time_offset_hours, time_offset_minutes) except ValueError as exception: raise ValueError( 'unable to format date time string with error: {0!s}.'.format( exception)) return date_time_string
def snake_case(a_string): """Returns a snake cased version of a string. :param a_string: any :class:`str` object. Usage: >>> snake_case('FooBar') "foo_bar" """ partial = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', a_string) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', partial).lower()
Returns a snake cased version of a string. :param a_string: any :class:`str` object. Usage: >>> snake_case('FooBar') "foo_bar"
Below is the the instruction that describes the task: ### Input: Returns a snake cased version of a string. :param a_string: any :class:`str` object. Usage: >>> snake_case('FooBar') "foo_bar" ### Response: def snake_case(a_string): """Returns a snake cased version of a string. :param a_string: any :class:`str` object. Usage: >>> snake_case('FooBar') "foo_bar" """ partial = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', a_string) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', partial).lower()
def desaturate(self): """Desaturates the layer, making it grayscale. Instantly removes all color information from the layer, while maintaing its alpha channel. """ alpha = self.img.split()[3] self.img = self.img.convert("L") self.img = self.img.convert("RGBA") self.img.putalpha(alpha)
Desaturates the layer, making it grayscale. Instantly removes all color information from the layer, while maintaing its alpha channel.
Below is the the instruction that describes the task: ### Input: Desaturates the layer, making it grayscale. Instantly removes all color information from the layer, while maintaing its alpha channel. ### Response: def desaturate(self): """Desaturates the layer, making it grayscale. Instantly removes all color information from the layer, while maintaing its alpha channel. """ alpha = self.img.split()[3] self.img = self.img.convert("L") self.img = self.img.convert("RGBA") self.img.putalpha(alpha)
def step1ab(self): """step1ab() gets rid of plurals and -ed or -ing. e.g. caresses -> caress ponies -> poni ties -> ti caress -> caress cats -> cat feed -> feed agreed -> agree disabled -> disable matting -> mat mating -> mate meeting -> meet milling -> mill messing -> mess meetings -> meet """ if self.b[self.k] == "s": if self.ends("sses"): self.k = self.k - 2 elif self.ends("ies"): self.setto("i") elif self.b[self.k - 1] != "s": self.k = self.k - 1 if self.ends("eed"): if self.m() > 0: self.k = self.k - 1 elif (self.ends("ed") or self.ends("ing")) and self.vowelinstem(): self.k = self.j if self.ends("at"): self.setto("ate") elif self.ends("bl"): self.setto("ble") elif self.ends("iz"): self.setto("ize") elif self.doublec(self.k): self.k = self.k - 1 ch = self.b[self.k] if ch == "l" or ch == "s" or ch == "z": self.k = self.k + 1 elif self.m() == 1 and self.cvc(self.k): self.setto("e")
step1ab() gets rid of plurals and -ed or -ing. e.g. caresses -> caress ponies -> poni ties -> ti caress -> caress cats -> cat feed -> feed agreed -> agree disabled -> disable matting -> mat mating -> mate meeting -> meet milling -> mill messing -> mess meetings -> meet
Below is the the instruction that describes the task: ### Input: step1ab() gets rid of plurals and -ed or -ing. e.g. caresses -> caress ponies -> poni ties -> ti caress -> caress cats -> cat feed -> feed agreed -> agree disabled -> disable matting -> mat mating -> mate meeting -> meet milling -> mill messing -> mess meetings -> meet ### Response: def step1ab(self): """step1ab() gets rid of plurals and -ed or -ing. e.g. caresses -> caress ponies -> poni ties -> ti caress -> caress cats -> cat feed -> feed agreed -> agree disabled -> disable matting -> mat mating -> mate meeting -> meet milling -> mill messing -> mess meetings -> meet """ if self.b[self.k] == "s": if self.ends("sses"): self.k = self.k - 2 elif self.ends("ies"): self.setto("i") elif self.b[self.k - 1] != "s": self.k = self.k - 1 if self.ends("eed"): if self.m() > 0: self.k = self.k - 1 elif (self.ends("ed") or self.ends("ing")) and self.vowelinstem(): self.k = self.j if self.ends("at"): self.setto("ate") elif self.ends("bl"): self.setto("ble") elif self.ends("iz"): self.setto("ize") elif self.doublec(self.k): self.k = self.k - 1 ch = self.b[self.k] if ch == "l" or ch == "s" or ch == "z": self.k = self.k + 1 elif self.m() == 1 and self.cvc(self.k): self.setto("e")
def _MakeCacheInvariant(self, urn, age): """Returns an invariant key for an AFF4 object. The object will be cached based on this key. This function is specifically extracted to ensure that we encapsulate all security critical aspects of the AFF4 object so that objects do not leak across security boundaries. Args: urn: The urn of the object. age: The age policy used to build this object. Should be one of ALL_TIMES, NEWEST_TIME or a range. Returns: A key into the cache. """ precondition.AssertType(urn, Text) return "%s:%s" % (urn, self.ParseAgeSpecification(age))
Returns an invariant key for an AFF4 object. The object will be cached based on this key. This function is specifically extracted to ensure that we encapsulate all security critical aspects of the AFF4 object so that objects do not leak across security boundaries. Args: urn: The urn of the object. age: The age policy used to build this object. Should be one of ALL_TIMES, NEWEST_TIME or a range. Returns: A key into the cache.
Below is the the instruction that describes the task: ### Input: Returns an invariant key for an AFF4 object. The object will be cached based on this key. This function is specifically extracted to ensure that we encapsulate all security critical aspects of the AFF4 object so that objects do not leak across security boundaries. Args: urn: The urn of the object. age: The age policy used to build this object. Should be one of ALL_TIMES, NEWEST_TIME or a range. Returns: A key into the cache. ### Response: def _MakeCacheInvariant(self, urn, age): """Returns an invariant key for an AFF4 object. The object will be cached based on this key. This function is specifically extracted to ensure that we encapsulate all security critical aspects of the AFF4 object so that objects do not leak across security boundaries. Args: urn: The urn of the object. age: The age policy used to build this object. Should be one of ALL_TIMES, NEWEST_TIME or a range. Returns: A key into the cache. """ precondition.AssertType(urn, Text) return "%s:%s" % (urn, self.ParseAgeSpecification(age))
def execute(self, input_data): ''' Execute method ''' my_ssdeep = input_data['meta_deep']['ssdeep'] my_md5 = input_data['meta_deep']['md5'] # For every PE sample in the database compute my ssdeep fuzzy match sample_set = self.workbench.generate_sample_set('exe') results = self.workbench.set_work_request('meta_deep', sample_set, ['md5','ssdeep']) sim_list = [] for result in results: if result['md5'] != my_md5: sim_list.append({'md5':result['md5'], 'sim':ssd.compare(my_ssdeep, result['ssdeep'])}) # Sort and return the sim_list (with some logic for threshold) sim_list.sort(key=itemgetter('sim'), reverse=True) output_list = [sim for sim in sim_list if sim['sim'] > 0] return {'md5': my_md5, 'sim_list':output_list}
Execute method
Below is the the instruction that describes the task: ### Input: Execute method ### Response: def execute(self, input_data): ''' Execute method ''' my_ssdeep = input_data['meta_deep']['ssdeep'] my_md5 = input_data['meta_deep']['md5'] # For every PE sample in the database compute my ssdeep fuzzy match sample_set = self.workbench.generate_sample_set('exe') results = self.workbench.set_work_request('meta_deep', sample_set, ['md5','ssdeep']) sim_list = [] for result in results: if result['md5'] != my_md5: sim_list.append({'md5':result['md5'], 'sim':ssd.compare(my_ssdeep, result['ssdeep'])}) # Sort and return the sim_list (with some logic for threshold) sim_list.sort(key=itemgetter('sim'), reverse=True) output_list = [sim for sim in sim_list if sim['sim'] > 0] return {'md5': my_md5, 'sim_list':output_list}
def parse_xml_node(self, node): '''Parse an xml.dom Node object representing a wait_time condition into this object. ''' super(WaitTime, self).parse_xml_node(node) wait_time_nodes = node.getElementsByTagNameNS(RTS_NS, 'WaitTime') if wait_time_nodes.length != 1: raise InvalidParticipantNodeError self.wait_time = int(wait_time_nodes[0].getAttributeNS(RTS_NS, 'waitTime')) return self
Parse an xml.dom Node object representing a wait_time condition into this object.
Below is the the instruction that describes the task: ### Input: Parse an xml.dom Node object representing a wait_time condition into this object. ### Response: def parse_xml_node(self, node): '''Parse an xml.dom Node object representing a wait_time condition into this object. ''' super(WaitTime, self).parse_xml_node(node) wait_time_nodes = node.getElementsByTagNameNS(RTS_NS, 'WaitTime') if wait_time_nodes.length != 1: raise InvalidParticipantNodeError self.wait_time = int(wait_time_nodes[0].getAttributeNS(RTS_NS, 'waitTime')) return self
def toggle_value(request, name): """ For manual shortcut links to perform toggle actions """ obj = service.system.namespace.get(name, None) if not obj or service.read_only: raise Http404 new_status = obj.status = not obj.status if service.redirect_from_setters: return HttpResponseRedirect(reverse('set_ready', args=(name, new_status))) else: return set_ready(request, name, new_status)
For manual shortcut links to perform toggle actions
Below is the the instruction that describes the task: ### Input: For manual shortcut links to perform toggle actions ### Response: def toggle_value(request, name): """ For manual shortcut links to perform toggle actions """ obj = service.system.namespace.get(name, None) if not obj or service.read_only: raise Http404 new_status = obj.status = not obj.status if service.redirect_from_setters: return HttpResponseRedirect(reverse('set_ready', args=(name, new_status))) else: return set_ready(request, name, new_status)
def lowdata_fmt(): ''' Validate and format lowdata from incoming unserialized request data This tool requires that the hypermedia_in tool has already been run. ''' if cherrypy.request.method.upper() != 'POST': return data = cherrypy.request.unserialized_data # if the data was sent as urlencoded, we need to make it a list. # this is a very forgiving implementation as different clients set different # headers for form encoded data (including charset or something similar) if data and isinstance(data, collections.Mapping): # Make the 'arg' param a list if not already if 'arg' in data and not isinstance(data['arg'], list): data['arg'] = [data['arg']] # Finally, make a Low State and put it in request cherrypy.request.lowstate = [data] else: cherrypy.serving.request.lowstate = data
Validate and format lowdata from incoming unserialized request data This tool requires that the hypermedia_in tool has already been run.
Below is the the instruction that describes the task: ### Input: Validate and format lowdata from incoming unserialized request data This tool requires that the hypermedia_in tool has already been run. ### Response: def lowdata_fmt(): ''' Validate and format lowdata from incoming unserialized request data This tool requires that the hypermedia_in tool has already been run. ''' if cherrypy.request.method.upper() != 'POST': return data = cherrypy.request.unserialized_data # if the data was sent as urlencoded, we need to make it a list. # this is a very forgiving implementation as different clients set different # headers for form encoded data (including charset or something similar) if data and isinstance(data, collections.Mapping): # Make the 'arg' param a list if not already if 'arg' in data and not isinstance(data['arg'], list): data['arg'] = [data['arg']] # Finally, make a Low State and put it in request cherrypy.request.lowstate = [data] else: cherrypy.serving.request.lowstate = data
def generate_request_header(self, response, host, is_preemptive=False): """ Generates the GSSAPI authentication token with kerberos. If any GSSAPI step fails, raise KerberosExchangeError with failure detail. """ # Flags used by kerberos module. gssflags = kerberos.GSS_C_MUTUAL_FLAG | kerberos.GSS_C_SEQUENCE_FLAG if self.delegate: gssflags |= kerberos.GSS_C_DELEG_FLAG try: kerb_stage = "authGSSClientInit()" # contexts still need to be stored by host, but hostname_override # allows use of an arbitrary hostname for the kerberos exchange # (eg, in cases of aliased hosts, internal vs external, CNAMEs # w/ name-based HTTP hosting) kerb_host = self.hostname_override if self.hostname_override is not None else host kerb_spn = "{0}@{1}".format(self.service, kerb_host) result, self.context[host] = kerberos.authGSSClientInit(kerb_spn, gssflags=gssflags, principal=self.principal) if result < 1: raise EnvironmentError(result, kerb_stage) # if we have a previous response from the server, use it to continue # the auth process, otherwise use an empty value negotiate_resp_value = '' if is_preemptive else _negotiate_value(response) kerb_stage = "authGSSClientStep()" # If this is set pass along the struct to Kerberos if self.cbt_struct: result = kerberos.authGSSClientStep(self.context[host], negotiate_resp_value, channel_bindings=self.cbt_struct) else: result = kerberos.authGSSClientStep(self.context[host], negotiate_resp_value) if result < 0: raise EnvironmentError(result, kerb_stage) kerb_stage = "authGSSClientResponse()" gss_response = kerberos.authGSSClientResponse(self.context[host]) return "Negotiate {0}".format(gss_response) except kerberos.GSSError as error: log.exception( "generate_request_header(): {0} failed:".format(kerb_stage)) log.exception(error) raise KerberosExchangeError("%s failed: %s" % (kerb_stage, str(error.args))) except EnvironmentError as error: # ensure we raised this for translation to KerberosExchangeError # by comparing errno to result, re-raise if not if error.errno != result: raise message = "{0} failed, result: {1}".format(kerb_stage, result) log.error("generate_request_header(): {0}".format(message)) raise KerberosExchangeError(message)
Generates the GSSAPI authentication token with kerberos. If any GSSAPI step fails, raise KerberosExchangeError with failure detail.
Below is the the instruction that describes the task: ### Input: Generates the GSSAPI authentication token with kerberos. If any GSSAPI step fails, raise KerberosExchangeError with failure detail. ### Response: def generate_request_header(self, response, host, is_preemptive=False): """ Generates the GSSAPI authentication token with kerberos. If any GSSAPI step fails, raise KerberosExchangeError with failure detail. """ # Flags used by kerberos module. gssflags = kerberos.GSS_C_MUTUAL_FLAG | kerberos.GSS_C_SEQUENCE_FLAG if self.delegate: gssflags |= kerberos.GSS_C_DELEG_FLAG try: kerb_stage = "authGSSClientInit()" # contexts still need to be stored by host, but hostname_override # allows use of an arbitrary hostname for the kerberos exchange # (eg, in cases of aliased hosts, internal vs external, CNAMEs # w/ name-based HTTP hosting) kerb_host = self.hostname_override if self.hostname_override is not None else host kerb_spn = "{0}@{1}".format(self.service, kerb_host) result, self.context[host] = kerberos.authGSSClientInit(kerb_spn, gssflags=gssflags, principal=self.principal) if result < 1: raise EnvironmentError(result, kerb_stage) # if we have a previous response from the server, use it to continue # the auth process, otherwise use an empty value negotiate_resp_value = '' if is_preemptive else _negotiate_value(response) kerb_stage = "authGSSClientStep()" # If this is set pass along the struct to Kerberos if self.cbt_struct: result = kerberos.authGSSClientStep(self.context[host], negotiate_resp_value, channel_bindings=self.cbt_struct) else: result = kerberos.authGSSClientStep(self.context[host], negotiate_resp_value) if result < 0: raise EnvironmentError(result, kerb_stage) kerb_stage = "authGSSClientResponse()" gss_response = kerberos.authGSSClientResponse(self.context[host]) return "Negotiate {0}".format(gss_response) except kerberos.GSSError as error: log.exception( "generate_request_header(): {0} failed:".format(kerb_stage)) log.exception(error) raise KerberosExchangeError("%s failed: %s" % (kerb_stage, str(error.args))) except EnvironmentError as error: # ensure we raised this for translation to KerberosExchangeError # by comparing errno to result, re-raise if not if error.errno != result: raise message = "{0} failed, result: {1}".format(kerb_stage, result) log.error("generate_request_header(): {0}".format(message)) raise KerberosExchangeError(message)
def bbox(self): """ The bounding box ``(ymin, xmin, ymax, xmax)`` of the minimal rectangular region containing the source segment. """ # (stop - 1) to return the max pixel location, not the slice index return (self._slice[0].start, self._slice[1].start, self._slice[0].stop - 1, self._slice[1].stop - 1) * u.pix
The bounding box ``(ymin, xmin, ymax, xmax)`` of the minimal rectangular region containing the source segment.
Below is the the instruction that describes the task: ### Input: The bounding box ``(ymin, xmin, ymax, xmax)`` of the minimal rectangular region containing the source segment. ### Response: def bbox(self): """ The bounding box ``(ymin, xmin, ymax, xmax)`` of the minimal rectangular region containing the source segment. """ # (stop - 1) to return the max pixel location, not the slice index return (self._slice[0].start, self._slice[1].start, self._slice[0].stop - 1, self._slice[1].stop - 1) * u.pix
def context_list2dict(context_list: typing.Sequence[typing.Any]) -> Context: """Converts a list of objects (functions, classes, or modules) to a dictionary mapping the object names to the objects. """ return {obj.__name__.split(".")[-1]: obj for obj in context_list}
Converts a list of objects (functions, classes, or modules) to a dictionary mapping the object names to the objects.
Below is the the instruction that describes the task: ### Input: Converts a list of objects (functions, classes, or modules) to a dictionary mapping the object names to the objects. ### Response: def context_list2dict(context_list: typing.Sequence[typing.Any]) -> Context: """Converts a list of objects (functions, classes, or modules) to a dictionary mapping the object names to the objects. """ return {obj.__name__.split(".")[-1]: obj for obj in context_list}
def tabLayout(self): ''' For all tabs, specify the number of buttons in a row ''' self.childWindow.column += 1 if self.childWindow.column > Layout.BUTTONS_NUMBER: self.childWindow.column = 0 self.childWindow.row += 1
For all tabs, specify the number of buttons in a row
Below is the the instruction that describes the task: ### Input: For all tabs, specify the number of buttons in a row ### Response: def tabLayout(self): ''' For all tabs, specify the number of buttons in a row ''' self.childWindow.column += 1 if self.childWindow.column > Layout.BUTTONS_NUMBER: self.childWindow.column = 0 self.childWindow.row += 1
def save(glob_str, base_path=None, policy="live"): """ Ensure all files matching *glob_str* are synced to wandb with the policy specified. base_path: the base path to run the glob relative to policy: live: upload the file as it changes, overwriting the previous version end: only upload file when the run ends """ global _saved_files if run is None: raise ValueError( "You must call `wandb.init` before calling save") if policy not in ("live", "end"): raise ValueError( 'Only "live" and "end" policies are currently supported.') if base_path is None: base_path = os.path.dirname(glob_str) if isinstance(glob_str, bytes): glob_str = glob_str.decode('utf-8') wandb_glob_str = os.path.relpath(glob_str, base_path) if "../" in wandb_glob_str: raise ValueError( "globs can't walk above base_path") if (glob_str, base_path, policy) in _saved_files: return [] if glob_str.startswith("gs://") or glob_str.startswith("s3://"): termlog( "%s is a cloud storage url, can't save file to wandb." % glob_str) run.send_message( {"save_policy": {"glob": wandb_glob_str, "policy": policy}}) files = [] for path in glob.glob(glob_str): file_name = os.path.relpath(path, base_path) abs_path = os.path.abspath(path) wandb_path = os.path.join(run.dir, file_name) util.mkdir_exists_ok(os.path.dirname(wandb_path)) # We overwrite existing symlinks because namespaces can change in Tensorboard if os.path.islink(wandb_path) and abs_path != os.readlink(wandb_path): os.remove(wandb_path) os.symlink(abs_path, wandb_path) elif not os.path.exists(wandb_path): os.symlink(abs_path, wandb_path) files.append(wandb_path) _saved_files.add((glob_str, base_path, policy)) return files
Ensure all files matching *glob_str* are synced to wandb with the policy specified. base_path: the base path to run the glob relative to policy: live: upload the file as it changes, overwriting the previous version end: only upload file when the run ends
Below is the the instruction that describes the task: ### Input: Ensure all files matching *glob_str* are synced to wandb with the policy specified. base_path: the base path to run the glob relative to policy: live: upload the file as it changes, overwriting the previous version end: only upload file when the run ends ### Response: def save(glob_str, base_path=None, policy="live"): """ Ensure all files matching *glob_str* are synced to wandb with the policy specified. base_path: the base path to run the glob relative to policy: live: upload the file as it changes, overwriting the previous version end: only upload file when the run ends """ global _saved_files if run is None: raise ValueError( "You must call `wandb.init` before calling save") if policy not in ("live", "end"): raise ValueError( 'Only "live" and "end" policies are currently supported.') if base_path is None: base_path = os.path.dirname(glob_str) if isinstance(glob_str, bytes): glob_str = glob_str.decode('utf-8') wandb_glob_str = os.path.relpath(glob_str, base_path) if "../" in wandb_glob_str: raise ValueError( "globs can't walk above base_path") if (glob_str, base_path, policy) in _saved_files: return [] if glob_str.startswith("gs://") or glob_str.startswith("s3://"): termlog( "%s is a cloud storage url, can't save file to wandb." % glob_str) run.send_message( {"save_policy": {"glob": wandb_glob_str, "policy": policy}}) files = [] for path in glob.glob(glob_str): file_name = os.path.relpath(path, base_path) abs_path = os.path.abspath(path) wandb_path = os.path.join(run.dir, file_name) util.mkdir_exists_ok(os.path.dirname(wandb_path)) # We overwrite existing symlinks because namespaces can change in Tensorboard if os.path.islink(wandb_path) and abs_path != os.readlink(wandb_path): os.remove(wandb_path) os.symlink(abs_path, wandb_path) elif not os.path.exists(wandb_path): os.symlink(abs_path, wandb_path) files.append(wandb_path) _saved_files.add((glob_str, base_path, policy)) return files
def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent return spaces + ', '.join(v.pretty_str() for v in self.variables)
Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation.
Below is the the instruction that describes the task: ### Input: Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. ### Response: def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent return spaces + ', '.join(v.pretty_str() for v in self.variables)
def time_since(self, mtype): '''return the time since the last message of type mtype was received''' if not mtype in self.messages: return time.time() - self.start_time return time.time() - self.messages[mtype]._timestamp
return the time since the last message of type mtype was received
Below is the the instruction that describes the task: ### Input: return the time since the last message of type mtype was received ### Response: def time_since(self, mtype): '''return the time since the last message of type mtype was received''' if not mtype in self.messages: return time.time() - self.start_time return time.time() - self.messages[mtype]._timestamp
def compute_total(self, precision=None): ''' Gets the total of the invoice with a defined decimal precision @param precision: int Number of decimal places @return: Decimal ''' return quantize(sum([group.compute_total(precision) for group in self.__groups]), places=precision) or ZERO
Gets the total of the invoice with a defined decimal precision @param precision: int Number of decimal places @return: Decimal
Below is the the instruction that describes the task: ### Input: Gets the total of the invoice with a defined decimal precision @param precision: int Number of decimal places @return: Decimal ### Response: def compute_total(self, precision=None): ''' Gets the total of the invoice with a defined decimal precision @param precision: int Number of decimal places @return: Decimal ''' return quantize(sum([group.compute_total(precision) for group in self.__groups]), places=precision) or ZERO
def update_status(self, helper, status): """ update the helper """ if status: self.status(status[0]) # if the status is ok, add it to the long output if status[0] == 0: self.add_long_output(status[1]) # if the status is not ok, add it to the summary else: self.add_summary(status[1])
update the helper
Below is the the instruction that describes the task: ### Input: update the helper ### Response: def update_status(self, helper, status): """ update the helper """ if status: self.status(status[0]) # if the status is ok, add it to the long output if status[0] == 0: self.add_long_output(status[1]) # if the status is not ok, add it to the summary else: self.add_summary(status[1])
def get_classification_node(self, project, structure_group, path=None, depth=None): """GetClassificationNode. Gets the classification node for a given node path. :param str project: Project ID or project name :param TreeStructureGroup structure_group: Structure group of the classification node, area or iteration. :param str path: Path of the classification node. :param int depth: Depth of children to fetch. :rtype: :class:`<WorkItemClassificationNode> <azure.devops.v5_0.work_item_tracking.models.WorkItemClassificationNode>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if structure_group is not None: route_values['structureGroup'] = self._serialize.url('structure_group', structure_group, 'TreeStructureGroup') if path is not None: route_values['path'] = self._serialize.url('path', path, 'str') query_parameters = {} if depth is not None: query_parameters['$depth'] = self._serialize.query('depth', depth, 'int') response = self._send(http_method='GET', location_id='5a172953-1b41-49d3-840a-33f79c3ce89f', version='5.0', route_values=route_values, query_parameters=query_parameters) return self._deserialize('WorkItemClassificationNode', response)
GetClassificationNode. Gets the classification node for a given node path. :param str project: Project ID or project name :param TreeStructureGroup structure_group: Structure group of the classification node, area or iteration. :param str path: Path of the classification node. :param int depth: Depth of children to fetch. :rtype: :class:`<WorkItemClassificationNode> <azure.devops.v5_0.work_item_tracking.models.WorkItemClassificationNode>`
Below is the the instruction that describes the task: ### Input: GetClassificationNode. Gets the classification node for a given node path. :param str project: Project ID or project name :param TreeStructureGroup structure_group: Structure group of the classification node, area or iteration. :param str path: Path of the classification node. :param int depth: Depth of children to fetch. :rtype: :class:`<WorkItemClassificationNode> <azure.devops.v5_0.work_item_tracking.models.WorkItemClassificationNode>` ### Response: def get_classification_node(self, project, structure_group, path=None, depth=None): """GetClassificationNode. Gets the classification node for a given node path. :param str project: Project ID or project name :param TreeStructureGroup structure_group: Structure group of the classification node, area or iteration. :param str path: Path of the classification node. :param int depth: Depth of children to fetch. :rtype: :class:`<WorkItemClassificationNode> <azure.devops.v5_0.work_item_tracking.models.WorkItemClassificationNode>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if structure_group is not None: route_values['structureGroup'] = self._serialize.url('structure_group', structure_group, 'TreeStructureGroup') if path is not None: route_values['path'] = self._serialize.url('path', path, 'str') query_parameters = {} if depth is not None: query_parameters['$depth'] = self._serialize.query('depth', depth, 'int') response = self._send(http_method='GET', location_id='5a172953-1b41-49d3-840a-33f79c3ce89f', version='5.0', route_values=route_values, query_parameters=query_parameters) return self._deserialize('WorkItemClassificationNode', response)
def angle2d(self): """determine the angle of this point on a circle, measured in radians (presume values represent a Vector)""" if self.x==0: if self.y<0: return math.pi/2.0*3 elif self.y>0: return math.pi/2.0 else: return 0 elif self.y==0: if self.x<0: return math.pi #elif self.x>0: return 0 else: return 0 ans = math.atan( self.y / self.x ) if self.x > 0: if self.y>0: return ans else: return ans + math.pi*2.0 else: return ans + math.pi
determine the angle of this point on a circle, measured in radians (presume values represent a Vector)
Below is the the instruction that describes the task: ### Input: determine the angle of this point on a circle, measured in radians (presume values represent a Vector) ### Response: def angle2d(self): """determine the angle of this point on a circle, measured in radians (presume values represent a Vector)""" if self.x==0: if self.y<0: return math.pi/2.0*3 elif self.y>0: return math.pi/2.0 else: return 0 elif self.y==0: if self.x<0: return math.pi #elif self.x>0: return 0 else: return 0 ans = math.atan( self.y / self.x ) if self.x > 0: if self.y>0: return ans else: return ans + math.pi*2.0 else: return ans + math.pi
def d2BinaryRochedx2(r, D, q, F): """ Computes second derivative of the potential with respect to x. @param r: relative radius vector (3 components) @param D: instantaneous separation @param q: mass ratio @param F: synchronicity parameter """ return (2*r[0]*r[0]-r[1]*r[1]-r[2]*r[2])/(r[0]*r[0]+r[1]*r[1]+r[2]*r[2])**2.5 +\ q*(2*(r[0]-D)*(r[0]-D)-r[1]*r[1]-r[2]*r[2])/((r[0]-D)*(r[0]-D)+r[1]*r[1]+r[2]*r[2])**2.5 +\ F*F*(1+q)
Computes second derivative of the potential with respect to x. @param r: relative radius vector (3 components) @param D: instantaneous separation @param q: mass ratio @param F: synchronicity parameter
Below is the the instruction that describes the task: ### Input: Computes second derivative of the potential with respect to x. @param r: relative radius vector (3 components) @param D: instantaneous separation @param q: mass ratio @param F: synchronicity parameter ### Response: def d2BinaryRochedx2(r, D, q, F): """ Computes second derivative of the potential with respect to x. @param r: relative radius vector (3 components) @param D: instantaneous separation @param q: mass ratio @param F: synchronicity parameter """ return (2*r[0]*r[0]-r[1]*r[1]-r[2]*r[2])/(r[0]*r[0]+r[1]*r[1]+r[2]*r[2])**2.5 +\ q*(2*(r[0]-D)*(r[0]-D)-r[1]*r[1]-r[2]*r[2])/((r[0]-D)*(r[0]-D)+r[1]*r[1]+r[2]*r[2])**2.5 +\ F*F*(1+q)
def createCertRequest(pkey, digest="sha256"): """ Create a certificate request. Arguments: pkey - The key to associate with the request digest - Digestion method to use for signing, default is sha256 **name - The name of the subject of the request, possible arguments are: C - Country name ST - State or province name L - Locality name O - Organization name OU - Organizational unit name CN - Common name emailAddress - E-mail address Returns: The certificate request in an X509Req object """ req = crypto.X509Req() req.get_subject().C = "FR" req.get_subject().ST = "IDF" req.get_subject().L = "Paris" req.get_subject().O = "RedHat" # noqa req.get_subject().OU = "DCI" req.get_subject().CN = "DCI-remoteCI" req.set_pubkey(pkey) req.sign(pkey, digest) return req
Create a certificate request. Arguments: pkey - The key to associate with the request digest - Digestion method to use for signing, default is sha256 **name - The name of the subject of the request, possible arguments are: C - Country name ST - State or province name L - Locality name O - Organization name OU - Organizational unit name CN - Common name emailAddress - E-mail address Returns: The certificate request in an X509Req object
Below is the the instruction that describes the task: ### Input: Create a certificate request. Arguments: pkey - The key to associate with the request digest - Digestion method to use for signing, default is sha256 **name - The name of the subject of the request, possible arguments are: C - Country name ST - State or province name L - Locality name O - Organization name OU - Organizational unit name CN - Common name emailAddress - E-mail address Returns: The certificate request in an X509Req object ### Response: def createCertRequest(pkey, digest="sha256"): """ Create a certificate request. Arguments: pkey - The key to associate with the request digest - Digestion method to use for signing, default is sha256 **name - The name of the subject of the request, possible arguments are: C - Country name ST - State or province name L - Locality name O - Organization name OU - Organizational unit name CN - Common name emailAddress - E-mail address Returns: The certificate request in an X509Req object """ req = crypto.X509Req() req.get_subject().C = "FR" req.get_subject().ST = "IDF" req.get_subject().L = "Paris" req.get_subject().O = "RedHat" # noqa req.get_subject().OU = "DCI" req.get_subject().CN = "DCI-remoteCI" req.set_pubkey(pkey) req.sign(pkey, digest) return req
def get_int(byte_array, signed=True): """ Gets the specified integer from its byte array. This should be used by this module alone, as it works with big endian. :param byte_array: the byte array representing th integer. :param signed: whether the number is signed or not. :return: the integer representing the given byte array. """ return int.from_bytes(byte_array, byteorder='big', signed=signed)
Gets the specified integer from its byte array. This should be used by this module alone, as it works with big endian. :param byte_array: the byte array representing th integer. :param signed: whether the number is signed or not. :return: the integer representing the given byte array.
Below is the the instruction that describes the task: ### Input: Gets the specified integer from its byte array. This should be used by this module alone, as it works with big endian. :param byte_array: the byte array representing th integer. :param signed: whether the number is signed or not. :return: the integer representing the given byte array. ### Response: def get_int(byte_array, signed=True): """ Gets the specified integer from its byte array. This should be used by this module alone, as it works with big endian. :param byte_array: the byte array representing th integer. :param signed: whether the number is signed or not. :return: the integer representing the given byte array. """ return int.from_bytes(byte_array, byteorder='big', signed=signed)
def make_elb_json(self): """Render the JSON template with arguments. Returns: str: Rendered ELB template. """ env = self.env region = self.region elb_settings = self.properties['elb'] LOG.debug('Block ELB Settings:\n%s', pformat(elb_settings)) health_settings = elb_settings['health'] elb_subnet_purpose = elb_settings.get('subnet_purpose', 'internal') region_subnets = get_subnets(target='elb', purpose=elb_subnet_purpose, env=env, region=region) region_subnets.pop("subnet_ids", None) # CAVEAT: Setting the ELB to public, you must use a public subnet, # otherwise AWS complains about missing IGW on subnet. if elb_subnet_purpose == 'internal': is_internal = 'true' else: is_internal = 'false' target = elb_settings.get('target', 'HTTP:80/health') health = splay_health(target) listeners = format_listeners(elb_settings=elb_settings, env=self.env, region=region) idle_timeout = elb_settings.get('idle_timeout', None) access_log = elb_settings.get('access_log', {}) connection_draining_timeout = elb_settings.get('connection_draining_timeout', None) security_groups = DEFAULT_ELB_SECURITYGROUPS[env] security_groups.append(self.app) security_groups.extend(self.properties['security_group']['elb_extras']) security_groups = remove_duplicate_sg(security_groups) template_kwargs = { 'access_log': json.dumps(access_log), 'app_name': self.app, 'availability_zones': json.dumps(region_subnets), 'connection_draining_timeout': json.dumps(connection_draining_timeout), 'env': env, 'hc_string': target, 'health_interval': health_settings['interval'], 'health_path': health.path, 'health_port': health.port, 'health_protocol': health.proto, 'health_timeout': health_settings['timeout'], 'healthy_threshold': health_settings['threshold'], 'idle_timeout': json.dumps(idle_timeout), 'isInternal': is_internal, 'listeners': json.dumps(listeners), 'region_zones': json.dumps(region_subnets[region]), 'region': region, 'security_groups': json.dumps(security_groups), 'subnet_type': elb_subnet_purpose, 'unhealthy_threshold': health_settings['unhealthy_threshold'], 'vpc_id': get_vpc_id(env, region), } rendered_template = get_template(template_file='infrastructure/elb_data.json.j2', **template_kwargs) return rendered_template
Render the JSON template with arguments. Returns: str: Rendered ELB template.
Below is the the instruction that describes the task: ### Input: Render the JSON template with arguments. Returns: str: Rendered ELB template. ### Response: def make_elb_json(self): """Render the JSON template with arguments. Returns: str: Rendered ELB template. """ env = self.env region = self.region elb_settings = self.properties['elb'] LOG.debug('Block ELB Settings:\n%s', pformat(elb_settings)) health_settings = elb_settings['health'] elb_subnet_purpose = elb_settings.get('subnet_purpose', 'internal') region_subnets = get_subnets(target='elb', purpose=elb_subnet_purpose, env=env, region=region) region_subnets.pop("subnet_ids", None) # CAVEAT: Setting the ELB to public, you must use a public subnet, # otherwise AWS complains about missing IGW on subnet. if elb_subnet_purpose == 'internal': is_internal = 'true' else: is_internal = 'false' target = elb_settings.get('target', 'HTTP:80/health') health = splay_health(target) listeners = format_listeners(elb_settings=elb_settings, env=self.env, region=region) idle_timeout = elb_settings.get('idle_timeout', None) access_log = elb_settings.get('access_log', {}) connection_draining_timeout = elb_settings.get('connection_draining_timeout', None) security_groups = DEFAULT_ELB_SECURITYGROUPS[env] security_groups.append(self.app) security_groups.extend(self.properties['security_group']['elb_extras']) security_groups = remove_duplicate_sg(security_groups) template_kwargs = { 'access_log': json.dumps(access_log), 'app_name': self.app, 'availability_zones': json.dumps(region_subnets), 'connection_draining_timeout': json.dumps(connection_draining_timeout), 'env': env, 'hc_string': target, 'health_interval': health_settings['interval'], 'health_path': health.path, 'health_port': health.port, 'health_protocol': health.proto, 'health_timeout': health_settings['timeout'], 'healthy_threshold': health_settings['threshold'], 'idle_timeout': json.dumps(idle_timeout), 'isInternal': is_internal, 'listeners': json.dumps(listeners), 'region_zones': json.dumps(region_subnets[region]), 'region': region, 'security_groups': json.dumps(security_groups), 'subnet_type': elb_subnet_purpose, 'unhealthy_threshold': health_settings['unhealthy_threshold'], 'vpc_id': get_vpc_id(env, region), } rendered_template = get_template(template_file='infrastructure/elb_data.json.j2', **template_kwargs) return rendered_template
def serve(project, port, no_watch): """ Serve application in development mode """ header("Serving application in development mode ... ") print("- Project: %s " % project) print("") print("- Port: %s" % port) print("") module = import_module(project, True) extra_files = [] if not no_watch: extra_dirs = [CWD,] extra_files = extra_dirs[:] for extra_dir in extra_dirs: for dirname, dirs, files in os.walk(extra_dir): for filename in files: filename = os.path.join(dirname, filename) if os.path.isfile(filename): extra_files.append(filename) module.app.run(debug=True, host='0.0.0.0', port=port, extra_files=extra_files)
Serve application in development mode
Below is the the instruction that describes the task: ### Input: Serve application in development mode ### Response: def serve(project, port, no_watch): """ Serve application in development mode """ header("Serving application in development mode ... ") print("- Project: %s " % project) print("") print("- Port: %s" % port) print("") module = import_module(project, True) extra_files = [] if not no_watch: extra_dirs = [CWD,] extra_files = extra_dirs[:] for extra_dir in extra_dirs: for dirname, dirs, files in os.walk(extra_dir): for filename in files: filename = os.path.join(dirname, filename) if os.path.isfile(filename): extra_files.append(filename) module.app.run(debug=True, host='0.0.0.0', port=port, extra_files=extra_files)
def init(options): """ Initialize some defaults """ # Set matlplotlib's backend so LIVVkit can plot to files. import matplotlib matplotlib.use('agg') livvkit.output_dir = os.path.abspath(options.out_dir) livvkit.index_dir = livvkit.output_dir livvkit.verify = True if options.verify is not None else False livvkit.validate = True if options.validate is not None else False livvkit.publish = options.publish # Get a list of bundles that provide model specific implementations available_bundles = [mod for imp, mod, ispkg in pkgutil.iter_modules(bundles.__path__)] if options.verify is not None: livvkit.model_dir = os.path.normpath(options.verify[0]) livvkit.bench_dir = os.path.normpath(options.verify[1]) if not os.path.isdir(livvkit.model_dir): print("") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" UH OH!") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" Your comparison directory does not exist; please check") print(" the path:") print("\n"+livvkit.model_dir+"\n\n") sys.exit(1) if not os.path.isdir(livvkit.bench_dir): print("") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" UH OH!") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" Your benchmark directory does not exist; please check") print(" the path:") print("\n"+livvkit.bench_dir+"\n\n") sys.exit(1) livvkit.model_bundle = os.path.basename(livvkit.model_dir) livvkit.bench_bundle = os.path.basename(livvkit.bench_dir) if livvkit.model_bundle in available_bundles: livvkit.numerics_model_config = os.path.join( livvkit.bundle_dir, livvkit.model_bundle, "numerics.json") livvkit.numerics_model_module = importlib.import_module( ".".join(["livvkit.bundles", livvkit.model_bundle, "numerics"])) livvkit.verification_model_config = os.path.join( livvkit.bundle_dir, livvkit.model_bundle, "verification.json") livvkit.verification_model_module = importlib.import_module( ".".join(["livvkit.bundles", livvkit.model_bundle, "verification"])) livvkit.performance_model_config = os.path.join( livvkit.bundle_dir, livvkit.model_bundle, "performance.json") # NOTE: This isn't used right now... # livvkit.performance_model_module = importlib.import_module( # ".".join(["livvkit.bundles", livvkit.model_bundle, "performance"])) else: # TODO: Should implement some error checking here... livvkit.verify = False if options.validate is not None: livvkit.validation_model_configs = options.validate if not (livvkit.verify or livvkit.validate) and not options.serve: print("") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" UH OH!") print("----------------------------------------------------------") print(" No verification or validation tests found/submitted!") print("") print(" Use either one or both of the --verify and") print(" --validate options to run tests. For more ") print(" information use the --help option, view the README") print(" or check https://livvkit.github.io/Docs/") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print("") sys.exit(1) return options
Initialize some defaults
Below is the the instruction that describes the task: ### Input: Initialize some defaults ### Response: def init(options): """ Initialize some defaults """ # Set matlplotlib's backend so LIVVkit can plot to files. import matplotlib matplotlib.use('agg') livvkit.output_dir = os.path.abspath(options.out_dir) livvkit.index_dir = livvkit.output_dir livvkit.verify = True if options.verify is not None else False livvkit.validate = True if options.validate is not None else False livvkit.publish = options.publish # Get a list of bundles that provide model specific implementations available_bundles = [mod for imp, mod, ispkg in pkgutil.iter_modules(bundles.__path__)] if options.verify is not None: livvkit.model_dir = os.path.normpath(options.verify[0]) livvkit.bench_dir = os.path.normpath(options.verify[1]) if not os.path.isdir(livvkit.model_dir): print("") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" UH OH!") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" Your comparison directory does not exist; please check") print(" the path:") print("\n"+livvkit.model_dir+"\n\n") sys.exit(1) if not os.path.isdir(livvkit.bench_dir): print("") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" UH OH!") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" Your benchmark directory does not exist; please check") print(" the path:") print("\n"+livvkit.bench_dir+"\n\n") sys.exit(1) livvkit.model_bundle = os.path.basename(livvkit.model_dir) livvkit.bench_bundle = os.path.basename(livvkit.bench_dir) if livvkit.model_bundle in available_bundles: livvkit.numerics_model_config = os.path.join( livvkit.bundle_dir, livvkit.model_bundle, "numerics.json") livvkit.numerics_model_module = importlib.import_module( ".".join(["livvkit.bundles", livvkit.model_bundle, "numerics"])) livvkit.verification_model_config = os.path.join( livvkit.bundle_dir, livvkit.model_bundle, "verification.json") livvkit.verification_model_module = importlib.import_module( ".".join(["livvkit.bundles", livvkit.model_bundle, "verification"])) livvkit.performance_model_config = os.path.join( livvkit.bundle_dir, livvkit.model_bundle, "performance.json") # NOTE: This isn't used right now... # livvkit.performance_model_module = importlib.import_module( # ".".join(["livvkit.bundles", livvkit.model_bundle, "performance"])) else: # TODO: Should implement some error checking here... livvkit.verify = False if options.validate is not None: livvkit.validation_model_configs = options.validate if not (livvkit.verify or livvkit.validate) and not options.serve: print("") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(" UH OH!") print("----------------------------------------------------------") print(" No verification or validation tests found/submitted!") print("") print(" Use either one or both of the --verify and") print(" --validate options to run tests. For more ") print(" information use the --help option, view the README") print(" or check https://livvkit.github.io/Docs/") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print("") sys.exit(1) return options
def update_shortlink(self, shortlink_id, callback_uri=None, description=None): """Update existing shortlink registration Arguments: shortlink_id: Shortlink id assigned by mCASH """ arguments = {'callback_uri': callback_uri, 'description': description} return self.do_req('PUT', self.merchant_api_base_url + '/shortlink/' + shortlink_id + '/', arguments)
Update existing shortlink registration Arguments: shortlink_id: Shortlink id assigned by mCASH
Below is the the instruction that describes the task: ### Input: Update existing shortlink registration Arguments: shortlink_id: Shortlink id assigned by mCASH ### Response: def update_shortlink(self, shortlink_id, callback_uri=None, description=None): """Update existing shortlink registration Arguments: shortlink_id: Shortlink id assigned by mCASH """ arguments = {'callback_uri': callback_uri, 'description': description} return self.do_req('PUT', self.merchant_api_base_url + '/shortlink/' + shortlink_id + '/', arguments)
def create_participant(worker_id, hit_id, assignment_id, mode): """Create a participant. This route will be hit very early on as any nodes the participant creates will be defined in reference to the participant object. You must specify the worker_id, hit_id, assignment_id and mode in the url. """ # check this worker hasn't already taken part parts = models.Participant.query.filter_by(worker_id=worker_id).all() if parts: print "participant already exists!" return Response(status=200) # make the participant participant = models.Participant(worker_id=worker_id, assignment_id=assignment_id, hit_id=hit_id, mode=mode) session.add(participant) session.commit() # make a psiturk participant too, for now from psiturk.models import Participant as PsiturkParticipant psiturk_participant = PsiturkParticipant(workerid=worker_id, assignmentid=assignment_id, hitid=hit_id) session_psiturk.add(psiturk_participant) session_psiturk.commit() # return the data return success_response(field="participant", data=participant.__json__(), request_type="participant post")
Create a participant. This route will be hit very early on as any nodes the participant creates will be defined in reference to the participant object. You must specify the worker_id, hit_id, assignment_id and mode in the url.
Below is the the instruction that describes the task: ### Input: Create a participant. This route will be hit very early on as any nodes the participant creates will be defined in reference to the participant object. You must specify the worker_id, hit_id, assignment_id and mode in the url. ### Response: def create_participant(worker_id, hit_id, assignment_id, mode): """Create a participant. This route will be hit very early on as any nodes the participant creates will be defined in reference to the participant object. You must specify the worker_id, hit_id, assignment_id and mode in the url. """ # check this worker hasn't already taken part parts = models.Participant.query.filter_by(worker_id=worker_id).all() if parts: print "participant already exists!" return Response(status=200) # make the participant participant = models.Participant(worker_id=worker_id, assignment_id=assignment_id, hit_id=hit_id, mode=mode) session.add(participant) session.commit() # make a psiturk participant too, for now from psiturk.models import Participant as PsiturkParticipant psiturk_participant = PsiturkParticipant(workerid=worker_id, assignmentid=assignment_id, hitid=hit_id) session_psiturk.add(psiturk_participant) session_psiturk.commit() # return the data return success_response(field="participant", data=participant.__json__(), request_type="participant post")
def _init_items(self): """ .---------------. | Ctrl | Screen | |------| | | Code | | | | | """ root = self._root root.resizable(0, 0) frm_control = tk.Frame(root, bg='#bbb') frm_control.grid(column=0, row=0, padx=5, sticky=tk.NW) frm_screen = tk.Frame(root, bg='#aaa') frm_screen.grid(column=1, row=0) frm_screenshot = tk.Frame(frm_control) frm_screenshot.grid(column=0, row=0, sticky=tk.W) tk.Label(frm_control, text='-'*30).grid(column=0, row=1, sticky=tk.EW) frm_code = tk.Frame(frm_control) frm_code.grid(column=0, row=2, sticky=tk.EW) self._btn_refresh = tk.Button(frm_screenshot, textvariable=self._refresh_text, command=self._refresh_screen) self._btn_refresh.grid(column=0, row=0, sticky=tk.W) # tk.Button(frm_screenshot, text="Wakeup", command=self._device.wakeup).grid(column=0, row=1, sticky=tk.W) tk.Button(frm_screenshot, text=u"保存选中区域", command=self._save_crop).grid(column=0, row=1, sticky=tk.W) # tk.Button(frm_screenshot, text="保存截屏", command=self._save_screenshot).grid(column=0, row=2, sticky=tk.W) frm_checkbtns = tk.Frame(frm_screenshot) frm_checkbtns.grid(column=0, row=3, sticky=(tk.W, tk.E)) tk.Checkbutton(frm_checkbtns, text="Auto refresh", variable=self._auto_refresh_var, command=self._run_check_refresh).grid(column=0, row=0, sticky=tk.W) tk.Checkbutton(frm_checkbtns, text="UI detect", variable=self._uiauto_detect_var).grid(column=1, row=0, sticky=tk.W) frm_code_editor = tk.Frame(frm_code) frm_code_editor.grid(column=0, row=0, sticky=(tk.W, tk.E)) tk.Label(frm_code_editor, text='Generated code').grid(column=0, row=0, sticky=tk.W) tk.Entry(frm_code_editor, textvariable=self._gencode_text, width=30).grid(column=0, row=1, sticky=tk.W) tk.Label(frm_code_editor, text='Save file name').grid(column=0, row=2, sticky=tk.W) tk.Entry(frm_code_editor, textvariable=self._genfile_name, width=30).grid(column=0, row=3, sticky=tk.W) tk.Label(frm_code_editor, text='Extention name').grid(column=0, row=4, sticky=tk.W) tk.Entry(frm_code_editor, textvariable=self._fileext_text, width=30).grid(column=0, row=5, sticky=tk.W) frm_code_btns = tk.Frame(frm_code) frm_code_btns.grid(column=0, row=2, sticky=(tk.W, tk.E)) tk.Button(frm_code_btns, text='Run', command=self._run_code).grid(column=0, row=0, sticky=tk.W) self._btn_runedit = tk.Button(frm_code_btns, state=tk.DISABLED, text='Insert and Run', command=self._run_and_insert) self._btn_runedit.grid(column=1, row=0, sticky=tk.W) tk.Button(frm_code, text='Select File', command=self._run_selectfile).grid(column=0, row=4, sticky=tk.W) tk.Label(frm_code, textvariable=self._attachfile_text).grid(column=0, row=5, sticky=tk.W) tk.Button(frm_code, text='Reset', command=self._reset).grid(column=0, row=6, sticky=tk.W) self.canvas = tk.Canvas(frm_screen, bg="blue", bd=0, highlightthickness=0, relief='ridge') self.canvas.grid(column=0, row=0, padx=10, pady=10) self.canvas.bind("<Button-1>", self._stroke_start) self.canvas.bind("<B1-Motion>", self._stroke_move) self.canvas.bind("<B1-ButtonRelease>", self._stroke_done) self.canvas.bind("<Motion>", self._mouse_move)
.---------------. | Ctrl | Screen | |------| | | Code | | | | |
Below is the the instruction that describes the task: ### Input: .---------------. | Ctrl | Screen | |------| | | Code | | | | | ### Response: def _init_items(self): """ .---------------. | Ctrl | Screen | |------| | | Code | | | | | """ root = self._root root.resizable(0, 0) frm_control = tk.Frame(root, bg='#bbb') frm_control.grid(column=0, row=0, padx=5, sticky=tk.NW) frm_screen = tk.Frame(root, bg='#aaa') frm_screen.grid(column=1, row=0) frm_screenshot = tk.Frame(frm_control) frm_screenshot.grid(column=0, row=0, sticky=tk.W) tk.Label(frm_control, text='-'*30).grid(column=0, row=1, sticky=tk.EW) frm_code = tk.Frame(frm_control) frm_code.grid(column=0, row=2, sticky=tk.EW) self._btn_refresh = tk.Button(frm_screenshot, textvariable=self._refresh_text, command=self._refresh_screen) self._btn_refresh.grid(column=0, row=0, sticky=tk.W) # tk.Button(frm_screenshot, text="Wakeup", command=self._device.wakeup).grid(column=0, row=1, sticky=tk.W) tk.Button(frm_screenshot, text=u"保存选中区域", command=self._save_crop).grid(column=0, row=1, sticky=tk.W) # tk.Button(frm_screenshot, text="保存截屏", command=self._save_screenshot).grid(column=0, row=2, sticky=tk.W) frm_checkbtns = tk.Frame(frm_screenshot) frm_checkbtns.grid(column=0, row=3, sticky=(tk.W, tk.E)) tk.Checkbutton(frm_checkbtns, text="Auto refresh", variable=self._auto_refresh_var, command=self._run_check_refresh).grid(column=0, row=0, sticky=tk.W) tk.Checkbutton(frm_checkbtns, text="UI detect", variable=self._uiauto_detect_var).grid(column=1, row=0, sticky=tk.W) frm_code_editor = tk.Frame(frm_code) frm_code_editor.grid(column=0, row=0, sticky=(tk.W, tk.E)) tk.Label(frm_code_editor, text='Generated code').grid(column=0, row=0, sticky=tk.W) tk.Entry(frm_code_editor, textvariable=self._gencode_text, width=30).grid(column=0, row=1, sticky=tk.W) tk.Label(frm_code_editor, text='Save file name').grid(column=0, row=2, sticky=tk.W) tk.Entry(frm_code_editor, textvariable=self._genfile_name, width=30).grid(column=0, row=3, sticky=tk.W) tk.Label(frm_code_editor, text='Extention name').grid(column=0, row=4, sticky=tk.W) tk.Entry(frm_code_editor, textvariable=self._fileext_text, width=30).grid(column=0, row=5, sticky=tk.W) frm_code_btns = tk.Frame(frm_code) frm_code_btns.grid(column=0, row=2, sticky=(tk.W, tk.E)) tk.Button(frm_code_btns, text='Run', command=self._run_code).grid(column=0, row=0, sticky=tk.W) self._btn_runedit = tk.Button(frm_code_btns, state=tk.DISABLED, text='Insert and Run', command=self._run_and_insert) self._btn_runedit.grid(column=1, row=0, sticky=tk.W) tk.Button(frm_code, text='Select File', command=self._run_selectfile).grid(column=0, row=4, sticky=tk.W) tk.Label(frm_code, textvariable=self._attachfile_text).grid(column=0, row=5, sticky=tk.W) tk.Button(frm_code, text='Reset', command=self._reset).grid(column=0, row=6, sticky=tk.W) self.canvas = tk.Canvas(frm_screen, bg="blue", bd=0, highlightthickness=0, relief='ridge') self.canvas.grid(column=0, row=0, padx=10, pady=10) self.canvas.bind("<Button-1>", self._stroke_start) self.canvas.bind("<B1-Motion>", self._stroke_move) self.canvas.bind("<B1-ButtonRelease>", self._stroke_done) self.canvas.bind("<Motion>", self._mouse_move)
def cumulative_blame(self, branch='master', limit=None, skip=None, num_datapoints=None, committer=True, ignore_globs=None, include_globs=None): """ Returns the blame at every revision of interest. Index is a datetime, column per committer, with number of lines blamed to each committer at each timestamp as data. :param branch: (optional, default 'master') the branch to work in :param limit: (optional, default None), the maximum number of revisions to return, None for no limit :param skip: (optional, default None), the number of revisions to skip. Ex: skip=2 returns every other revision, None for no skipping. :param num_datapoints: (optional, default=None) if limit and skip are none, and this isn't, then num_datapoints evenly spaced revs will be used :param committer: (optional, defualt=True) true if committer should be reported, false if author :param ignore_globs: (optional, default=None) a list of globs to ignore, default none excludes nothing :param include_globs: (optinal, default=None) a list of globs to include, default of None includes everything. :return: DataFrame """ revs = self.revs(branch=branch, limit=limit, skip=skip, num_datapoints=num_datapoints) # get the commit history to stub out committers (hacky and slow) if sys.version_info.major == 2: committers = set([x.committer.name for x in self.repo.iter_commits(branch, max_count=sys.maxsize)]) else: committers = {x.committer.name for x in self.repo.iter_commits(branch, max_count=sys.maxsize)} for y in committers: revs[y] = 0 if self.verbose: print('Beginning processing for cumulative blame:') # now populate that table with some actual values for idx, row in revs.iterrows(): if self.verbose: print('%s. [%s] getting blame for rev: %s' % ( str(idx), datetime.datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S'), row.rev,)) blame = self.blame(rev=row.rev, committer=committer, ignore_globs=ignore_globs, include_globs=include_globs) for y in committers: try: loc = blame.loc[y, 'loc'] revs.set_value(idx, y, loc) except KeyError: pass del revs['rev'] revs['date'] = to_datetime(revs['date'].map(datetime.datetime.fromtimestamp)) revs.set_index(keys=['date'], drop=True, inplace=True) revs = revs.fillna(0.0) # drop 0 cols for col in revs.columns.values: if col != 'col': if revs[col].sum() == 0: del revs[col] # drop 0 rows keep_idx = [] committers = [x for x in revs.columns.values if x != 'date'] for idx, row in revs.iterrows(): if sum([row[x] for x in committers]) > 0: keep_idx.append(idx) revs = revs.ix[keep_idx] return revs
Returns the blame at every revision of interest. Index is a datetime, column per committer, with number of lines blamed to each committer at each timestamp as data. :param branch: (optional, default 'master') the branch to work in :param limit: (optional, default None), the maximum number of revisions to return, None for no limit :param skip: (optional, default None), the number of revisions to skip. Ex: skip=2 returns every other revision, None for no skipping. :param num_datapoints: (optional, default=None) if limit and skip are none, and this isn't, then num_datapoints evenly spaced revs will be used :param committer: (optional, defualt=True) true if committer should be reported, false if author :param ignore_globs: (optional, default=None) a list of globs to ignore, default none excludes nothing :param include_globs: (optinal, default=None) a list of globs to include, default of None includes everything. :return: DataFrame
Below is the the instruction that describes the task: ### Input: Returns the blame at every revision of interest. Index is a datetime, column per committer, with number of lines blamed to each committer at each timestamp as data. :param branch: (optional, default 'master') the branch to work in :param limit: (optional, default None), the maximum number of revisions to return, None for no limit :param skip: (optional, default None), the number of revisions to skip. Ex: skip=2 returns every other revision, None for no skipping. :param num_datapoints: (optional, default=None) if limit and skip are none, and this isn't, then num_datapoints evenly spaced revs will be used :param committer: (optional, defualt=True) true if committer should be reported, false if author :param ignore_globs: (optional, default=None) a list of globs to ignore, default none excludes nothing :param include_globs: (optinal, default=None) a list of globs to include, default of None includes everything. :return: DataFrame ### Response: def cumulative_blame(self, branch='master', limit=None, skip=None, num_datapoints=None, committer=True, ignore_globs=None, include_globs=None): """ Returns the blame at every revision of interest. Index is a datetime, column per committer, with number of lines blamed to each committer at each timestamp as data. :param branch: (optional, default 'master') the branch to work in :param limit: (optional, default None), the maximum number of revisions to return, None for no limit :param skip: (optional, default None), the number of revisions to skip. Ex: skip=2 returns every other revision, None for no skipping. :param num_datapoints: (optional, default=None) if limit and skip are none, and this isn't, then num_datapoints evenly spaced revs will be used :param committer: (optional, defualt=True) true if committer should be reported, false if author :param ignore_globs: (optional, default=None) a list of globs to ignore, default none excludes nothing :param include_globs: (optinal, default=None) a list of globs to include, default of None includes everything. :return: DataFrame """ revs = self.revs(branch=branch, limit=limit, skip=skip, num_datapoints=num_datapoints) # get the commit history to stub out committers (hacky and slow) if sys.version_info.major == 2: committers = set([x.committer.name for x in self.repo.iter_commits(branch, max_count=sys.maxsize)]) else: committers = {x.committer.name for x in self.repo.iter_commits(branch, max_count=sys.maxsize)} for y in committers: revs[y] = 0 if self.verbose: print('Beginning processing for cumulative blame:') # now populate that table with some actual values for idx, row in revs.iterrows(): if self.verbose: print('%s. [%s] getting blame for rev: %s' % ( str(idx), datetime.datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S'), row.rev,)) blame = self.blame(rev=row.rev, committer=committer, ignore_globs=ignore_globs, include_globs=include_globs) for y in committers: try: loc = blame.loc[y, 'loc'] revs.set_value(idx, y, loc) except KeyError: pass del revs['rev'] revs['date'] = to_datetime(revs['date'].map(datetime.datetime.fromtimestamp)) revs.set_index(keys=['date'], drop=True, inplace=True) revs = revs.fillna(0.0) # drop 0 cols for col in revs.columns.values: if col != 'col': if revs[col].sum() == 0: del revs[col] # drop 0 rows keep_idx = [] committers = [x for x in revs.columns.values if x != 'date'] for idx, row in revs.iterrows(): if sum([row[x] for x in committers]) > 0: keep_idx.append(idx) revs = revs.ix[keep_idx] return revs
def targets_for_class(self, target, classname): """Search which targets from `target`'s transitive dependencies contain `classname`.""" targets_with_class = set() for target in target.closure(): for one_class in self._target_classes(target): if classname in one_class: targets_with_class.add(target) break return targets_with_class
Search which targets from `target`'s transitive dependencies contain `classname`.
Below is the the instruction that describes the task: ### Input: Search which targets from `target`'s transitive dependencies contain `classname`. ### Response: def targets_for_class(self, target, classname): """Search which targets from `target`'s transitive dependencies contain `classname`.""" targets_with_class = set() for target in target.closure(): for one_class in self._target_classes(target): if classname in one_class: targets_with_class.add(target) break return targets_with_class
def _read(self, directory, filename, session, path, name, extension, spatial, spatialReferenceID, maskMap): """ WMS Dataset File Read from File Method """ # Assign file extension attribute to file object self.fileExtension = extension if isinstance(maskMap, RasterMapFile) and maskMap.fileExtension == 'msk': # Vars from mask map columns = maskMap.columns rows = maskMap.rows upperLeftX = maskMap.west upperLeftY = maskMap.north # Derive the cell size (GSSHA cells are square, so it is the same in both directions) cellSizeX = int(abs(maskMap.west - maskMap.east) / columns) cellSizeY = -1 * cellSizeX # Dictionary of keywords/cards and parse function names KEYWORDS = {'DATASET': wdc.datasetHeaderChunk, 'TS': wdc.datasetScalarTimeStepChunk} # Open file and read plain text into text field with open(path, 'r') as f: chunks = pt.chunk(KEYWORDS, f) # Parse header chunk first header = wdc.datasetHeaderChunk('DATASET', chunks['DATASET'][0]) # Parse each time step chunk and aggregate timeStepRasters = [] for chunk in chunks['TS']: timeStepRasters.append(wdc.datasetScalarTimeStepChunk(chunk, columns, header['numberCells'])) # Set WMS dataset file properties self.name = header['name'] self.numberCells = header['numberCells'] self.numberData = header['numberData'] self.objectID = header['objectID'] if header['type'] == 'BEGSCL': self.objectType = header['objectType'] self.type = self.SCALAR_TYPE elif header['type'] == 'BEGVEC': self.vectorType = header['objectType'] self.type = self.VECTOR_TYPE # Create WMS raster dataset files for each raster for timeStep, timeStepRaster in enumerate(timeStepRasters): # Create new WMS raster dataset file object wmsRasterDatasetFile = WMSDatasetRaster() # Set the wms dataset for this WMS raster dataset file wmsRasterDatasetFile.wmsDataset = self # Set the time step and timestamp and other properties wmsRasterDatasetFile.iStatus = timeStepRaster['iStatus'] wmsRasterDatasetFile.timestamp = timeStepRaster['timestamp'] wmsRasterDatasetFile.timeStep = timeStep + 1 # If spatial is enabled create PostGIS rasters if spatial: # Process the values/cell array wmsRasterDatasetFile.raster = RasterLoader.makeSingleBandWKBRaster(session, columns, rows, upperLeftX, upperLeftY, cellSizeX, cellSizeY, 0, 0, spatialReferenceID, timeStepRaster['cellArray']) # Otherwise, set the raster text properties else: wmsRasterDatasetFile.rasterText = timeStepRaster['rasterText'] # Add current file object to the session session.add(self) else: log.warning("Could not read {0}. Mask Map must be supplied " "to read WMS Datasets.".format(filename))
WMS Dataset File Read from File Method
Below is the the instruction that describes the task: ### Input: WMS Dataset File Read from File Method ### Response: def _read(self, directory, filename, session, path, name, extension, spatial, spatialReferenceID, maskMap): """ WMS Dataset File Read from File Method """ # Assign file extension attribute to file object self.fileExtension = extension if isinstance(maskMap, RasterMapFile) and maskMap.fileExtension == 'msk': # Vars from mask map columns = maskMap.columns rows = maskMap.rows upperLeftX = maskMap.west upperLeftY = maskMap.north # Derive the cell size (GSSHA cells are square, so it is the same in both directions) cellSizeX = int(abs(maskMap.west - maskMap.east) / columns) cellSizeY = -1 * cellSizeX # Dictionary of keywords/cards and parse function names KEYWORDS = {'DATASET': wdc.datasetHeaderChunk, 'TS': wdc.datasetScalarTimeStepChunk} # Open file and read plain text into text field with open(path, 'r') as f: chunks = pt.chunk(KEYWORDS, f) # Parse header chunk first header = wdc.datasetHeaderChunk('DATASET', chunks['DATASET'][0]) # Parse each time step chunk and aggregate timeStepRasters = [] for chunk in chunks['TS']: timeStepRasters.append(wdc.datasetScalarTimeStepChunk(chunk, columns, header['numberCells'])) # Set WMS dataset file properties self.name = header['name'] self.numberCells = header['numberCells'] self.numberData = header['numberData'] self.objectID = header['objectID'] if header['type'] == 'BEGSCL': self.objectType = header['objectType'] self.type = self.SCALAR_TYPE elif header['type'] == 'BEGVEC': self.vectorType = header['objectType'] self.type = self.VECTOR_TYPE # Create WMS raster dataset files for each raster for timeStep, timeStepRaster in enumerate(timeStepRasters): # Create new WMS raster dataset file object wmsRasterDatasetFile = WMSDatasetRaster() # Set the wms dataset for this WMS raster dataset file wmsRasterDatasetFile.wmsDataset = self # Set the time step and timestamp and other properties wmsRasterDatasetFile.iStatus = timeStepRaster['iStatus'] wmsRasterDatasetFile.timestamp = timeStepRaster['timestamp'] wmsRasterDatasetFile.timeStep = timeStep + 1 # If spatial is enabled create PostGIS rasters if spatial: # Process the values/cell array wmsRasterDatasetFile.raster = RasterLoader.makeSingleBandWKBRaster(session, columns, rows, upperLeftX, upperLeftY, cellSizeX, cellSizeY, 0, 0, spatialReferenceID, timeStepRaster['cellArray']) # Otherwise, set the raster text properties else: wmsRasterDatasetFile.rasterText = timeStepRaster['rasterText'] # Add current file object to the session session.add(self) else: log.warning("Could not read {0}. Mask Map must be supplied " "to read WMS Datasets.".format(filename))
def get_valid_har(har_data): """ Return list of valid HAR entries. :rtype: list """ new_entries = [] entries = har_data.get('log', {}).get('entries', []) logger.debug('[+] Detected %(n)d entries in HAR', {'n': len(entries)}) for entry in entries: url = entry['request']['url'] if not is_url_allowed(url): continue response = entry['response']['content'] if not is_valid_mimetype(response): continue if response.get('text'): charset = get_charset(response) response['text'] = base64.b64decode(response['text']).decode(charset) else: response['text'] = '' new_entries.append(entry) logger.debug('[+] Added URL: %(url)s ...', {'url': url[:100]}) return new_entries
Return list of valid HAR entries. :rtype: list
Below is the the instruction that describes the task: ### Input: Return list of valid HAR entries. :rtype: list ### Response: def get_valid_har(har_data): """ Return list of valid HAR entries. :rtype: list """ new_entries = [] entries = har_data.get('log', {}).get('entries', []) logger.debug('[+] Detected %(n)d entries in HAR', {'n': len(entries)}) for entry in entries: url = entry['request']['url'] if not is_url_allowed(url): continue response = entry['response']['content'] if not is_valid_mimetype(response): continue if response.get('text'): charset = get_charset(response) response['text'] = base64.b64decode(response['text']).decode(charset) else: response['text'] = '' new_entries.append(entry) logger.debug('[+] Added URL: %(url)s ...', {'url': url[:100]}) return new_entries
def warm(self): """ Returns a 2-tuple: [0]: Number of images successfully pre-warmed [1]: A list of paths on the storage class associated with the VersatileImageField field being processed by `self` of files that could not be successfully seeded. """ num_images_pre_warmed = 0 failed_to_create_image_path_list = [] total = self.queryset.count() * len(self.size_key_list) for a, instance in enumerate(self.queryset, start=1): for b, size_key in enumerate(self.size_key_list, start=1): success, url_or_filepath = self._prewarm_versatileimagefield( size_key, reduce(getattr, self.image_attr.split("."), instance) ) if success is True: num_images_pre_warmed += 1 if self.verbose: cli_progress_bar(num_images_pre_warmed, total) else: failed_to_create_image_path_list.append(url_or_filepath) if a * b == total: stdout.write('\n') stdout.flush() return (num_images_pre_warmed, failed_to_create_image_path_list)
Returns a 2-tuple: [0]: Number of images successfully pre-warmed [1]: A list of paths on the storage class associated with the VersatileImageField field being processed by `self` of files that could not be successfully seeded.
Below is the the instruction that describes the task: ### Input: Returns a 2-tuple: [0]: Number of images successfully pre-warmed [1]: A list of paths on the storage class associated with the VersatileImageField field being processed by `self` of files that could not be successfully seeded. ### Response: def warm(self): """ Returns a 2-tuple: [0]: Number of images successfully pre-warmed [1]: A list of paths on the storage class associated with the VersatileImageField field being processed by `self` of files that could not be successfully seeded. """ num_images_pre_warmed = 0 failed_to_create_image_path_list = [] total = self.queryset.count() * len(self.size_key_list) for a, instance in enumerate(self.queryset, start=1): for b, size_key in enumerate(self.size_key_list, start=1): success, url_or_filepath = self._prewarm_versatileimagefield( size_key, reduce(getattr, self.image_attr.split("."), instance) ) if success is True: num_images_pre_warmed += 1 if self.verbose: cli_progress_bar(num_images_pre_warmed, total) else: failed_to_create_image_path_list.append(url_or_filepath) if a * b == total: stdout.write('\n') stdout.flush() return (num_images_pre_warmed, failed_to_create_image_path_list)
def not_all(*validation_func, # type: ValidationFuncs **kwargs ): # type: (...) -> Callable """ An alias for not_(and_(validators)). :param validation_func: the base validation function or list of base validation functions to use. A callable, a tuple(callable, help_msg_str), a tuple(callable, failure_type), or a list of several such elements. Nested lists are supported and indicate an implicit `and_` (such as the main list). Tuples indicate an implicit `_failure_raiser`. [mini_lambda](https://smarie.github.io/python-mini-lambda/) expressions can be used instead of callables, they will be transformed to functions automatically. :param catch_all: an optional boolean flag. By default, only Failure are silently caught and turned into a 'ok' result. Turning this flag to True will assume that all exceptions should be caught and turned to a 'ok' result :return: """ catch_all = pop_kwargs(kwargs, [('catch_all', False)]) # in case this is a list, create a 'and_' around it (otherwise and_ will return the validation function without # wrapping it) main_validator = and_(*validation_func) return not_(main_validator, catch_all=catch_all)
An alias for not_(and_(validators)). :param validation_func: the base validation function or list of base validation functions to use. A callable, a tuple(callable, help_msg_str), a tuple(callable, failure_type), or a list of several such elements. Nested lists are supported and indicate an implicit `and_` (such as the main list). Tuples indicate an implicit `_failure_raiser`. [mini_lambda](https://smarie.github.io/python-mini-lambda/) expressions can be used instead of callables, they will be transformed to functions automatically. :param catch_all: an optional boolean flag. By default, only Failure are silently caught and turned into a 'ok' result. Turning this flag to True will assume that all exceptions should be caught and turned to a 'ok' result :return:
Below is the the instruction that describes the task: ### Input: An alias for not_(and_(validators)). :param validation_func: the base validation function or list of base validation functions to use. A callable, a tuple(callable, help_msg_str), a tuple(callable, failure_type), or a list of several such elements. Nested lists are supported and indicate an implicit `and_` (such as the main list). Tuples indicate an implicit `_failure_raiser`. [mini_lambda](https://smarie.github.io/python-mini-lambda/) expressions can be used instead of callables, they will be transformed to functions automatically. :param catch_all: an optional boolean flag. By default, only Failure are silently caught and turned into a 'ok' result. Turning this flag to True will assume that all exceptions should be caught and turned to a 'ok' result :return: ### Response: def not_all(*validation_func, # type: ValidationFuncs **kwargs ): # type: (...) -> Callable """ An alias for not_(and_(validators)). :param validation_func: the base validation function or list of base validation functions to use. A callable, a tuple(callable, help_msg_str), a tuple(callable, failure_type), or a list of several such elements. Nested lists are supported and indicate an implicit `and_` (such as the main list). Tuples indicate an implicit `_failure_raiser`. [mini_lambda](https://smarie.github.io/python-mini-lambda/) expressions can be used instead of callables, they will be transformed to functions automatically. :param catch_all: an optional boolean flag. By default, only Failure are silently caught and turned into a 'ok' result. Turning this flag to True will assume that all exceptions should be caught and turned to a 'ok' result :return: """ catch_all = pop_kwargs(kwargs, [('catch_all', False)]) # in case this is a list, create a 'and_' around it (otherwise and_ will return the validation function without # wrapping it) main_validator = and_(*validation_func) return not_(main_validator, catch_all=catch_all)
def escape_keywords(arr): """append _ to all python keywords""" for i in arr: i = i if i not in kwlist else i + '_' i = i if '-' not in i else i.replace('-', '_') yield i
append _ to all python keywords
Below is the the instruction that describes the task: ### Input: append _ to all python keywords ### Response: def escape_keywords(arr): """append _ to all python keywords""" for i in arr: i = i if i not in kwlist else i + '_' i = i if '-' not in i else i.replace('-', '_') yield i
def print_flush(*args, **kwargs): """ Like `print()`, except the file is `.flush()`ed afterwards. """ kwargs.setdefault('file', sys.stdout) print(*args, **kwargs) kwargs['file'].flush()
Like `print()`, except the file is `.flush()`ed afterwards.
Below is the the instruction that describes the task: ### Input: Like `print()`, except the file is `.flush()`ed afterwards. ### Response: def print_flush(*args, **kwargs): """ Like `print()`, except the file is `.flush()`ed afterwards. """ kwargs.setdefault('file', sys.stdout) print(*args, **kwargs) kwargs['file'].flush()
def format_output(data, fmt='table'): # pylint: disable=R0911,R0912 """Given some data, will format it for console output. :param data: One of: String, Table, FormattedItem, List, Tuple, SequentialOutput :param string fmt (optional): One of: table, raw, json, python """ if isinstance(data, utils.string_types): if fmt in ('json', 'jsonraw'): return json.dumps(data) return data # responds to .prettytable() if hasattr(data, 'prettytable'): if fmt == 'table': return str(format_prettytable(data)) elif fmt == 'raw': return str(format_no_tty(data)) # responds to .to_python() if hasattr(data, 'to_python'): if fmt == 'json': return json.dumps( format_output(data, fmt='python'), indent=4, cls=CLIJSONEncoder) elif fmt == 'jsonraw': return json.dumps(format_output(data, fmt='python'), cls=CLIJSONEncoder) elif fmt == 'python': return data.to_python() # responds to .formatted if hasattr(data, 'formatted'): if fmt == 'table': return data.formatted # responds to .separator if hasattr(data, 'separator'): output = [format_output(d, fmt=fmt) for d in data if d] return str(SequentialOutput(data.separator, output)) # is iterable if isinstance(data, list) or isinstance(data, tuple): output = [format_output(d, fmt=fmt) for d in data] if fmt == 'python': return output return format_output(listing(output, separator=os.linesep)) # fallback, convert this odd object to a string return data
Given some data, will format it for console output. :param data: One of: String, Table, FormattedItem, List, Tuple, SequentialOutput :param string fmt (optional): One of: table, raw, json, python
Below is the the instruction that describes the task: ### Input: Given some data, will format it for console output. :param data: One of: String, Table, FormattedItem, List, Tuple, SequentialOutput :param string fmt (optional): One of: table, raw, json, python ### Response: def format_output(data, fmt='table'): # pylint: disable=R0911,R0912 """Given some data, will format it for console output. :param data: One of: String, Table, FormattedItem, List, Tuple, SequentialOutput :param string fmt (optional): One of: table, raw, json, python """ if isinstance(data, utils.string_types): if fmt in ('json', 'jsonraw'): return json.dumps(data) return data # responds to .prettytable() if hasattr(data, 'prettytable'): if fmt == 'table': return str(format_prettytable(data)) elif fmt == 'raw': return str(format_no_tty(data)) # responds to .to_python() if hasattr(data, 'to_python'): if fmt == 'json': return json.dumps( format_output(data, fmt='python'), indent=4, cls=CLIJSONEncoder) elif fmt == 'jsonraw': return json.dumps(format_output(data, fmt='python'), cls=CLIJSONEncoder) elif fmt == 'python': return data.to_python() # responds to .formatted if hasattr(data, 'formatted'): if fmt == 'table': return data.formatted # responds to .separator if hasattr(data, 'separator'): output = [format_output(d, fmt=fmt) for d in data if d] return str(SequentialOutput(data.separator, output)) # is iterable if isinstance(data, list) or isinstance(data, tuple): output = [format_output(d, fmt=fmt) for d in data] if fmt == 'python': return output return format_output(listing(output, separator=os.linesep)) # fallback, convert this odd object to a string return data
def headers_to_use(self): ''' Defines features of columns to be used in multiqc table ''' headers = OrderedDict() headers['total.reads'] = { 'title': 'Total reads', 'description': 'Total number of reads', 'format': '{:,.0f}', 'scale': 'Greys' } headers['total.gigabases'] = { 'title': 'Total bases (GB)', 'description': 'Total bases', 'format': '{:,.2f}', 'scale': 'Blues' } headers['N50.length'] = { 'title': 'Reads N50', 'description': 'Minimum read length needed to cover 50% of all reads', 'format': '{:,.0f}', 'scale': 'Purples', } headers['mean.q'] = { 'title': 'Mean Q score', 'description': 'Mean quality of reads', 'min': 0, 'max': 15, 'format': '{:,.1f}', 'hidden': True, 'scale': 'Greens', } headers['median.q'] = { 'title': 'Median Q score', 'description': 'Median quality of reads', 'min': 0, 'max': 15, 'format': '{:,.1f}', 'scale': 'Greens', } headers['mean.length'] = { 'title': 'Mean length (bp)', 'description': 'Mean read length', 'format': '{:,.0f}', 'hidden': True, 'scale': 'Blues', } headers['median.length'] = { 'title': 'Median length (bp)', 'description': 'Median read length', 'format': '{:,.0f}', 'scale': 'Blues', } # Add row ID to avoid duplicates for k in headers: h_id = re.sub('[^0-9a-zA-Z]+', '_', headers[k]['title']) headers[k]['rid'] = "rid_{}".format(h_id) return headers
Defines features of columns to be used in multiqc table
Below is the the instruction that describes the task: ### Input: Defines features of columns to be used in multiqc table ### Response: def headers_to_use(self): ''' Defines features of columns to be used in multiqc table ''' headers = OrderedDict() headers['total.reads'] = { 'title': 'Total reads', 'description': 'Total number of reads', 'format': '{:,.0f}', 'scale': 'Greys' } headers['total.gigabases'] = { 'title': 'Total bases (GB)', 'description': 'Total bases', 'format': '{:,.2f}', 'scale': 'Blues' } headers['N50.length'] = { 'title': 'Reads N50', 'description': 'Minimum read length needed to cover 50% of all reads', 'format': '{:,.0f}', 'scale': 'Purples', } headers['mean.q'] = { 'title': 'Mean Q score', 'description': 'Mean quality of reads', 'min': 0, 'max': 15, 'format': '{:,.1f}', 'hidden': True, 'scale': 'Greens', } headers['median.q'] = { 'title': 'Median Q score', 'description': 'Median quality of reads', 'min': 0, 'max': 15, 'format': '{:,.1f}', 'scale': 'Greens', } headers['mean.length'] = { 'title': 'Mean length (bp)', 'description': 'Mean read length', 'format': '{:,.0f}', 'hidden': True, 'scale': 'Blues', } headers['median.length'] = { 'title': 'Median length (bp)', 'description': 'Median read length', 'format': '{:,.0f}', 'scale': 'Blues', } # Add row ID to avoid duplicates for k in headers: h_id = re.sub('[^0-9a-zA-Z]+', '_', headers[k]['title']) headers[k]['rid'] = "rid_{}".format(h_id) return headers
def is_iterable(obj): """ Are we being asked to look up a list of things, instead of a single thing? We check for the `__iter__` attribute so that this can cover types that don't have to be known by this module, such as NumPy arrays. Strings, however, should be considered as atomic values to look up, not iterables. The same goes for tuples, since they are immutable and therefore valid entries. We don't need to check for the Python 2 `unicode` type, because it doesn't have an `__iter__` attribute anyway. """ return ( hasattr(obj, "__iter__") and not isinstance(obj, str) and not isinstance(obj, tuple) )
Are we being asked to look up a list of things, instead of a single thing? We check for the `__iter__` attribute so that this can cover types that don't have to be known by this module, such as NumPy arrays. Strings, however, should be considered as atomic values to look up, not iterables. The same goes for tuples, since they are immutable and therefore valid entries. We don't need to check for the Python 2 `unicode` type, because it doesn't have an `__iter__` attribute anyway.
Below is the the instruction that describes the task: ### Input: Are we being asked to look up a list of things, instead of a single thing? We check for the `__iter__` attribute so that this can cover types that don't have to be known by this module, such as NumPy arrays. Strings, however, should be considered as atomic values to look up, not iterables. The same goes for tuples, since they are immutable and therefore valid entries. We don't need to check for the Python 2 `unicode` type, because it doesn't have an `__iter__` attribute anyway. ### Response: def is_iterable(obj): """ Are we being asked to look up a list of things, instead of a single thing? We check for the `__iter__` attribute so that this can cover types that don't have to be known by this module, such as NumPy arrays. Strings, however, should be considered as atomic values to look up, not iterables. The same goes for tuples, since they are immutable and therefore valid entries. We don't need to check for the Python 2 `unicode` type, because it doesn't have an `__iter__` attribute anyway. """ return ( hasattr(obj, "__iter__") and not isinstance(obj, str) and not isinstance(obj, tuple) )
def p_color(self, p): """ color : css_color | css_color t_ws """ try: p[0] = Color().fmt(p[1]) if len(p) > 2: p[0] = [p[0], p[2]] except ValueError: self.handle_error('Illegal color value `%s`' % p[1], p.lineno(1), 'W') p[0] = p[1]
color : css_color | css_color t_ws
Below is the the instruction that describes the task: ### Input: color : css_color | css_color t_ws ### Response: def p_color(self, p): """ color : css_color | css_color t_ws """ try: p[0] = Color().fmt(p[1]) if len(p) > 2: p[0] = [p[0], p[2]] except ValueError: self.handle_error('Illegal color value `%s`' % p[1], p.lineno(1), 'W') p[0] = p[1]
def make_node(cls, lineno, s, lower, upper): """ Creates a node for a string slice. S is the string expression Tree. Lower and upper are the bounds, if lower & upper are constants, and s is also constant, then a string constant is returned. If lower > upper, an empty string is returned. """ if lower is None or upper is None or s is None: return None if not check_type(lineno, Type.string, s): return None lo = up = None base = NUMBER(api.config.OPTIONS.string_base.value, lineno=lineno) lower = TYPECAST.make_node(gl.SYMBOL_TABLE.basic_types[gl.STR_INDEX_TYPE], BINARY.make_node('MINUS', lower, base, lineno=lineno, func=lambda x, y: x - y), lineno) upper = TYPECAST.make_node(gl.SYMBOL_TABLE.basic_types[gl.STR_INDEX_TYPE], BINARY.make_node('MINUS', upper, base, lineno=lineno, func=lambda x, y: x - y), lineno) if lower is None or upper is None: return None if is_number(lower): lo = lower.value if lo < gl.MIN_STRSLICE_IDX: lower.value = lo = gl.MIN_STRSLICE_IDX if is_number(upper): up = upper.value if up > gl.MAX_STRSLICE_IDX: upper.value = up = gl.MAX_STRSLICE_IDX if is_number(lower, upper): if lo > up: return STRING('', lineno) if s.token == 'STRING': # A constant string? Recalculate it now up += 1 st = s.value.ljust(up) # Procrustean filled (right) return STRING(st[lo:up], lineno) # a$(0 TO INF.) = a$ if lo == gl.MIN_STRSLICE_IDX and up == gl.MAX_STRSLICE_IDX: return s return cls(s, lower, upper, lineno)
Creates a node for a string slice. S is the string expression Tree. Lower and upper are the bounds, if lower & upper are constants, and s is also constant, then a string constant is returned. If lower > upper, an empty string is returned.
Below is the the instruction that describes the task: ### Input: Creates a node for a string slice. S is the string expression Tree. Lower and upper are the bounds, if lower & upper are constants, and s is also constant, then a string constant is returned. If lower > upper, an empty string is returned. ### Response: def make_node(cls, lineno, s, lower, upper): """ Creates a node for a string slice. S is the string expression Tree. Lower and upper are the bounds, if lower & upper are constants, and s is also constant, then a string constant is returned. If lower > upper, an empty string is returned. """ if lower is None or upper is None or s is None: return None if not check_type(lineno, Type.string, s): return None lo = up = None base = NUMBER(api.config.OPTIONS.string_base.value, lineno=lineno) lower = TYPECAST.make_node(gl.SYMBOL_TABLE.basic_types[gl.STR_INDEX_TYPE], BINARY.make_node('MINUS', lower, base, lineno=lineno, func=lambda x, y: x - y), lineno) upper = TYPECAST.make_node(gl.SYMBOL_TABLE.basic_types[gl.STR_INDEX_TYPE], BINARY.make_node('MINUS', upper, base, lineno=lineno, func=lambda x, y: x - y), lineno) if lower is None or upper is None: return None if is_number(lower): lo = lower.value if lo < gl.MIN_STRSLICE_IDX: lower.value = lo = gl.MIN_STRSLICE_IDX if is_number(upper): up = upper.value if up > gl.MAX_STRSLICE_IDX: upper.value = up = gl.MAX_STRSLICE_IDX if is_number(lower, upper): if lo > up: return STRING('', lineno) if s.token == 'STRING': # A constant string? Recalculate it now up += 1 st = s.value.ljust(up) # Procrustean filled (right) return STRING(st[lo:up], lineno) # a$(0 TO INF.) = a$ if lo == gl.MIN_STRSLICE_IDX and up == gl.MAX_STRSLICE_IDX: return s return cls(s, lower, upper, lineno)
def _run_cromwell(args): """Run CWL with Cromwell. """ main_file, json_file, project_name = _get_main_and_json(args.directory) work_dir = utils.safe_makedir(os.path.join(os.getcwd(), "cromwell_work")) final_dir = utils.safe_makedir(os.path.join(work_dir, "final")) if args.no_container: _remove_bcbiovm_path() log_file = os.path.join(work_dir, "%s-cromwell.log" % project_name) metadata_file = os.path.join(work_dir, "%s-metadata.json" % project_name) option_file = os.path.join(work_dir, "%s-options.json" % project_name) cromwell_opts = {"final_workflow_outputs_dir": final_dir, "default_runtime_attributes": {"bootDiskSizeGb": 20}} with open(option_file, "w") as out_handle: json.dump(cromwell_opts, out_handle) cmd = ["cromwell", "-Xms1g", "-Xmx%s" % _estimate_runner_memory(json_file), "run", "--type", "CWL", "-Dconfig.file=%s" % hpc.create_cromwell_config(args, work_dir, json_file)] cmd += hpc.args_to_cromwell_cl(args) cmd += ["--metadata-output", metadata_file, "--options", option_file, "--inputs", json_file, main_file] with utils.chdir(work_dir): _run_tool(cmd, not args.no_container, work_dir, log_file) if metadata_file and utils.file_exists(metadata_file): with open(metadata_file) as in_handle: metadata = json.load(in_handle) if metadata["status"] == "Failed": _cromwell_debug(metadata) sys.exit(1) else: _cromwell_move_outputs(metadata, final_dir)
Run CWL with Cromwell.
Below is the the instruction that describes the task: ### Input: Run CWL with Cromwell. ### Response: def _run_cromwell(args): """Run CWL with Cromwell. """ main_file, json_file, project_name = _get_main_and_json(args.directory) work_dir = utils.safe_makedir(os.path.join(os.getcwd(), "cromwell_work")) final_dir = utils.safe_makedir(os.path.join(work_dir, "final")) if args.no_container: _remove_bcbiovm_path() log_file = os.path.join(work_dir, "%s-cromwell.log" % project_name) metadata_file = os.path.join(work_dir, "%s-metadata.json" % project_name) option_file = os.path.join(work_dir, "%s-options.json" % project_name) cromwell_opts = {"final_workflow_outputs_dir": final_dir, "default_runtime_attributes": {"bootDiskSizeGb": 20}} with open(option_file, "w") as out_handle: json.dump(cromwell_opts, out_handle) cmd = ["cromwell", "-Xms1g", "-Xmx%s" % _estimate_runner_memory(json_file), "run", "--type", "CWL", "-Dconfig.file=%s" % hpc.create_cromwell_config(args, work_dir, json_file)] cmd += hpc.args_to_cromwell_cl(args) cmd += ["--metadata-output", metadata_file, "--options", option_file, "--inputs", json_file, main_file] with utils.chdir(work_dir): _run_tool(cmd, not args.no_container, work_dir, log_file) if metadata_file and utils.file_exists(metadata_file): with open(metadata_file) as in_handle: metadata = json.load(in_handle) if metadata["status"] == "Failed": _cromwell_debug(metadata) sys.exit(1) else: _cromwell_move_outputs(metadata, final_dir)
def conversations(self, getsrcdst=None, draw = True, **kargs): """Graphes a conversations between sources and destinations and display it (using graphviz) getsrcdst: a function that takes an element of the list and return the source and dest by defaults, return source and destination IP if networkx library is available returns a DiGraph, or draws it if draw = True otherwise graphviz is used format: output type (svg, ps, gif, jpg, etc.), passed to dot's "-T" option target: output filename. If None, matplotlib is used to display prog: which graphviz program to use""" if getsrcdst is None: getsrcdst = lambda x:(x['IP'].src, x['IP'].dst) conv = {} for p in self.res: p = self._elt2pkt(p) try: c = getsrcdst(p) except: #XXX warning() continue conv[c] = conv.get(c,0)+1 if NETWORKX: # networkx is available gr = nx.DiGraph() for s,d in conv: if s not in gr: gr.add_node(s) if d not in gr: gr.add_node(d) gr.add_edge(s, d) if draw: return do_graph(gr, **kargs) else: return gr else: gr = 'digraph "conv" {\n' for s,d in conv: gr += '\t "%s" -> "%s"\n' % (s,d) gr += "}\n" return do_graph(gr, **kargs)
Graphes a conversations between sources and destinations and display it (using graphviz) getsrcdst: a function that takes an element of the list and return the source and dest by defaults, return source and destination IP if networkx library is available returns a DiGraph, or draws it if draw = True otherwise graphviz is used format: output type (svg, ps, gif, jpg, etc.), passed to dot's "-T" option target: output filename. If None, matplotlib is used to display prog: which graphviz program to use
Below is the the instruction that describes the task: ### Input: Graphes a conversations between sources and destinations and display it (using graphviz) getsrcdst: a function that takes an element of the list and return the source and dest by defaults, return source and destination IP if networkx library is available returns a DiGraph, or draws it if draw = True otherwise graphviz is used format: output type (svg, ps, gif, jpg, etc.), passed to dot's "-T" option target: output filename. If None, matplotlib is used to display prog: which graphviz program to use ### Response: def conversations(self, getsrcdst=None, draw = True, **kargs): """Graphes a conversations between sources and destinations and display it (using graphviz) getsrcdst: a function that takes an element of the list and return the source and dest by defaults, return source and destination IP if networkx library is available returns a DiGraph, or draws it if draw = True otherwise graphviz is used format: output type (svg, ps, gif, jpg, etc.), passed to dot's "-T" option target: output filename. If None, matplotlib is used to display prog: which graphviz program to use""" if getsrcdst is None: getsrcdst = lambda x:(x['IP'].src, x['IP'].dst) conv = {} for p in self.res: p = self._elt2pkt(p) try: c = getsrcdst(p) except: #XXX warning() continue conv[c] = conv.get(c,0)+1 if NETWORKX: # networkx is available gr = nx.DiGraph() for s,d in conv: if s not in gr: gr.add_node(s) if d not in gr: gr.add_node(d) gr.add_edge(s, d) if draw: return do_graph(gr, **kargs) else: return gr else: gr = 'digraph "conv" {\n' for s,d in conv: gr += '\t "%s" -> "%s"\n' % (s,d) gr += "}\n" return do_graph(gr, **kargs)
def post_event_unpublish(self, id, **data): """ POST /events/:id/unpublish/ Unpublishes an event. In order for a free event to be unpublished, it must not have any pending or completed orders, even if the event is in the past. In order for a paid event to be unpublished, it must not have any pending or completed orders, unless the event has been completed and paid out. Returns a boolean indicating success or failure of the unpublish. """ return self.post("/events/{0}/unpublish/".format(id), data=data)
POST /events/:id/unpublish/ Unpublishes an event. In order for a free event to be unpublished, it must not have any pending or completed orders, even if the event is in the past. In order for a paid event to be unpublished, it must not have any pending or completed orders, unless the event has been completed and paid out. Returns a boolean indicating success or failure of the unpublish.
Below is the the instruction that describes the task: ### Input: POST /events/:id/unpublish/ Unpublishes an event. In order for a free event to be unpublished, it must not have any pending or completed orders, even if the event is in the past. In order for a paid event to be unpublished, it must not have any pending or completed orders, unless the event has been completed and paid out. Returns a boolean indicating success or failure of the unpublish. ### Response: def post_event_unpublish(self, id, **data): """ POST /events/:id/unpublish/ Unpublishes an event. In order for a free event to be unpublished, it must not have any pending or completed orders, even if the event is in the past. In order for a paid event to be unpublished, it must not have any pending or completed orders, unless the event has been completed and paid out. Returns a boolean indicating success or failure of the unpublish. """ return self.post("/events/{0}/unpublish/".format(id), data=data)
def save_raw(self): """ Save the model to a in memory buffer represetation Returns ------- a in memory buffer represetation of the model """ length = ctypes.c_ulong() cptr = ctypes.POINTER(ctypes.c_char)() _check_call(_LIB.XGBoosterGetModelRaw(self.handle, ctypes.byref(length), ctypes.byref(cptr))) return ctypes2buffer(cptr, length.value)
Save the model to a in memory buffer represetation Returns ------- a in memory buffer represetation of the model
Below is the the instruction that describes the task: ### Input: Save the model to a in memory buffer represetation Returns ------- a in memory buffer represetation of the model ### Response: def save_raw(self): """ Save the model to a in memory buffer represetation Returns ------- a in memory buffer represetation of the model """ length = ctypes.c_ulong() cptr = ctypes.POINTER(ctypes.c_char)() _check_call(_LIB.XGBoosterGetModelRaw(self.handle, ctypes.byref(length), ctypes.byref(cptr))) return ctypes2buffer(cptr, length.value)
def _acceptpeak(peak, amp, definitive_peaks, spk1, rr_buffer): """ Private function intended to insert a new RR interval in the buffer. ---------- Parameters ---------- peak : int Sample where the peak under analysis is located. amp : int Amplitude of the peak under analysis. definitive_peaks : list List with the definitive_peaks stored until the present instant. spk1 : float Actual value of SPK1 parameter defined in Pan-Tompkins real-time R peak detection algorithm (named signal peak). rr_buffer : list Data structure that stores the duration of the last eight RR intervals. Returns ------- definitive_peaks_out : list Definitive peaks list. spk1 : float Updated value of SPK1 parameter. rr_buffer : list Buffer after appending a new RR interval and excluding the oldest one. """ definitive_peaks_out = definitive_peaks definitive_peaks_out = numpy.append(definitive_peaks_out, peak) spk1 = 0.125 * amp + 0.875 * spk1 # spk1 is the running estimate of the signal peak if len(definitive_peaks_out) > 1: rr_buffer.pop(0) rr_buffer += [definitive_peaks_out[-1] - definitive_peaks_out[-2]] return numpy.array(definitive_peaks_out), spk1, rr_buffer
Private function intended to insert a new RR interval in the buffer. ---------- Parameters ---------- peak : int Sample where the peak under analysis is located. amp : int Amplitude of the peak under analysis. definitive_peaks : list List with the definitive_peaks stored until the present instant. spk1 : float Actual value of SPK1 parameter defined in Pan-Tompkins real-time R peak detection algorithm (named signal peak). rr_buffer : list Data structure that stores the duration of the last eight RR intervals. Returns ------- definitive_peaks_out : list Definitive peaks list. spk1 : float Updated value of SPK1 parameter. rr_buffer : list Buffer after appending a new RR interval and excluding the oldest one.
Below is the the instruction that describes the task: ### Input: Private function intended to insert a new RR interval in the buffer. ---------- Parameters ---------- peak : int Sample where the peak under analysis is located. amp : int Amplitude of the peak under analysis. definitive_peaks : list List with the definitive_peaks stored until the present instant. spk1 : float Actual value of SPK1 parameter defined in Pan-Tompkins real-time R peak detection algorithm (named signal peak). rr_buffer : list Data structure that stores the duration of the last eight RR intervals. Returns ------- definitive_peaks_out : list Definitive peaks list. spk1 : float Updated value of SPK1 parameter. rr_buffer : list Buffer after appending a new RR interval and excluding the oldest one. ### Response: def _acceptpeak(peak, amp, definitive_peaks, spk1, rr_buffer): """ Private function intended to insert a new RR interval in the buffer. ---------- Parameters ---------- peak : int Sample where the peak under analysis is located. amp : int Amplitude of the peak under analysis. definitive_peaks : list List with the definitive_peaks stored until the present instant. spk1 : float Actual value of SPK1 parameter defined in Pan-Tompkins real-time R peak detection algorithm (named signal peak). rr_buffer : list Data structure that stores the duration of the last eight RR intervals. Returns ------- definitive_peaks_out : list Definitive peaks list. spk1 : float Updated value of SPK1 parameter. rr_buffer : list Buffer after appending a new RR interval and excluding the oldest one. """ definitive_peaks_out = definitive_peaks definitive_peaks_out = numpy.append(definitive_peaks_out, peak) spk1 = 0.125 * amp + 0.875 * spk1 # spk1 is the running estimate of the signal peak if len(definitive_peaks_out) > 1: rr_buffer.pop(0) rr_buffer += [definitive_peaks_out[-1] - definitive_peaks_out[-2]] return numpy.array(definitive_peaks_out), spk1, rr_buffer
def get_notebook_object(self, notebook_id): """Get the NotebookNode representation of a notebook by notebook_id.""" path = self.find_path(notebook_id) if not os.path.isfile(path): raise web.HTTPError(404, u'Notebook does not exist: %s' % notebook_id) info = os.stat(path) last_modified = datetime.datetime.utcfromtimestamp(info.st_mtime) with open(path,'r') as f: s = f.read() try: # v1 and v2 and json in the .ipynb files. nb = current.reads(s, u'json') except: raise web.HTTPError(500, u'Unreadable JSON notebook.') # Always use the filename as the notebook name. nb.metadata.name = os.path.splitext(os.path.basename(path))[0] return last_modified, nb
Get the NotebookNode representation of a notebook by notebook_id.
Below is the the instruction that describes the task: ### Input: Get the NotebookNode representation of a notebook by notebook_id. ### Response: def get_notebook_object(self, notebook_id): """Get the NotebookNode representation of a notebook by notebook_id.""" path = self.find_path(notebook_id) if not os.path.isfile(path): raise web.HTTPError(404, u'Notebook does not exist: %s' % notebook_id) info = os.stat(path) last_modified = datetime.datetime.utcfromtimestamp(info.st_mtime) with open(path,'r') as f: s = f.read() try: # v1 and v2 and json in the .ipynb files. nb = current.reads(s, u'json') except: raise web.HTTPError(500, u'Unreadable JSON notebook.') # Always use the filename as the notebook name. nb.metadata.name = os.path.splitext(os.path.basename(path))[0] return last_modified, nb
def visit_Capture(self, node: parsing.Capture) -> [ast.stmt] or ast.expr: """Generates python code to capture text consumed by a clause. #If all clauses can be inlined self.beginTag('tagname') and clause and self.endTag('tagname') if not self.beginTag('tagname'): return False <code for the clause> if not self.endTag('tagname'): return False """ begintag = ast.Attribute( ast.Name('self', ast.Load()), 'beginTag', ast.Load()) endtag = ast.Attribute( ast.Name('self', ast.Load()), 'endTag', ast.Load()) begin = ast.Call(begintag, [ast.Str(node.tagname)], [], None, None) end = ast.Call(endtag, [ast.Str(node.tagname)], [], None, None) result = [begin, self.visit(node.pt), end] for clause in result: if not isinstance(clause, ast.expr): break else: return ast.BoolOp(ast.And(), result) res = [] for stmt in map(self._clause, result): res.extend(stmt) return res
Generates python code to capture text consumed by a clause. #If all clauses can be inlined self.beginTag('tagname') and clause and self.endTag('tagname') if not self.beginTag('tagname'): return False <code for the clause> if not self.endTag('tagname'): return False
Below is the the instruction that describes the task: ### Input: Generates python code to capture text consumed by a clause. #If all clauses can be inlined self.beginTag('tagname') and clause and self.endTag('tagname') if not self.beginTag('tagname'): return False <code for the clause> if not self.endTag('tagname'): return False ### Response: def visit_Capture(self, node: parsing.Capture) -> [ast.stmt] or ast.expr: """Generates python code to capture text consumed by a clause. #If all clauses can be inlined self.beginTag('tagname') and clause and self.endTag('tagname') if not self.beginTag('tagname'): return False <code for the clause> if not self.endTag('tagname'): return False """ begintag = ast.Attribute( ast.Name('self', ast.Load()), 'beginTag', ast.Load()) endtag = ast.Attribute( ast.Name('self', ast.Load()), 'endTag', ast.Load()) begin = ast.Call(begintag, [ast.Str(node.tagname)], [], None, None) end = ast.Call(endtag, [ast.Str(node.tagname)], [], None, None) result = [begin, self.visit(node.pt), end] for clause in result: if not isinstance(clause, ast.expr): break else: return ast.BoolOp(ast.And(), result) res = [] for stmt in map(self._clause, result): res.extend(stmt) return res
def notify(self, n: int = 1) -> None: """Wake ``n`` waiters.""" waiters = [] # Waiters we plan to run right now. while n and self._waiters: waiter = self._waiters.popleft() if not waiter.done(): # Might have timed out. n -= 1 waiters.append(waiter) for waiter in waiters: future_set_result_unless_cancelled(waiter, True)
Wake ``n`` waiters.
Below is the the instruction that describes the task: ### Input: Wake ``n`` waiters. ### Response: def notify(self, n: int = 1) -> None: """Wake ``n`` waiters.""" waiters = [] # Waiters we plan to run right now. while n and self._waiters: waiter = self._waiters.popleft() if not waiter.done(): # Might have timed out. n -= 1 waiters.append(waiter) for waiter in waiters: future_set_result_unless_cancelled(waiter, True)
def parse_from_file(filename, nodata=False): """Parse df message from file. @filename - path to file @nodata - do not load data @return - [binary header, metadata, binary data] """ header = None with open(filename, "rb") as file: header = read_machine_header(file) meta_raw = file.read(header['meta_len']) meta = __parse_meta(meta_raw, header) data = b'' if not nodata: data = __decompress(meta, file.read(header['data_len'])) return header, meta, data
Parse df message from file. @filename - path to file @nodata - do not load data @return - [binary header, metadata, binary data]
Below is the the instruction that describes the task: ### Input: Parse df message from file. @filename - path to file @nodata - do not load data @return - [binary header, metadata, binary data] ### Response: def parse_from_file(filename, nodata=False): """Parse df message from file. @filename - path to file @nodata - do not load data @return - [binary header, metadata, binary data] """ header = None with open(filename, "rb") as file: header = read_machine_header(file) meta_raw = file.read(header['meta_len']) meta = __parse_meta(meta_raw, header) data = b'' if not nodata: data = __decompress(meta, file.read(header['data_len'])) return header, meta, data
def back_propagation(self, delta_arr): ''' Back propagation. Args: delta_output_arr: Delta. Returns: Tuple data. - decoder's `list` of gradations, - encoder's `np.ndarray` of Delta, - encoder's `list` of gradations. ''' re_encoder_delta_arr, delta_hidden_arr, re_encoder_grads_list = self.__retrospective_encoder.hidden_back_propagate( delta_arr[:, -1] ) re_encoder_grads_list.insert(0, None) re_encoder_grads_list.insert(0, None) observed_arr, encoded_arr, decoded_arr, re_encoded_arr = self.__inferenced_tuple delta_arr = self.__encoder_decoder_controller.computable_loss.compute_delta( decoded_arr, observed_arr ) delta_arr[:, -1] += re_encoder_delta_arr[:, -1] decoder_grads_list, encoder_delta_arr, encoder_grads_list = self.__encoder_decoder_controller.back_propagation( delta_arr ) return re_encoder_grads_list, decoder_grads_list, encoder_delta_arr, encoder_grads_list
Back propagation. Args: delta_output_arr: Delta. Returns: Tuple data. - decoder's `list` of gradations, - encoder's `np.ndarray` of Delta, - encoder's `list` of gradations.
Below is the the instruction that describes the task: ### Input: Back propagation. Args: delta_output_arr: Delta. Returns: Tuple data. - decoder's `list` of gradations, - encoder's `np.ndarray` of Delta, - encoder's `list` of gradations. ### Response: def back_propagation(self, delta_arr): ''' Back propagation. Args: delta_output_arr: Delta. Returns: Tuple data. - decoder's `list` of gradations, - encoder's `np.ndarray` of Delta, - encoder's `list` of gradations. ''' re_encoder_delta_arr, delta_hidden_arr, re_encoder_grads_list = self.__retrospective_encoder.hidden_back_propagate( delta_arr[:, -1] ) re_encoder_grads_list.insert(0, None) re_encoder_grads_list.insert(0, None) observed_arr, encoded_arr, decoded_arr, re_encoded_arr = self.__inferenced_tuple delta_arr = self.__encoder_decoder_controller.computable_loss.compute_delta( decoded_arr, observed_arr ) delta_arr[:, -1] += re_encoder_delta_arr[:, -1] decoder_grads_list, encoder_delta_arr, encoder_grads_list = self.__encoder_decoder_controller.back_propagation( delta_arr ) return re_encoder_grads_list, decoder_grads_list, encoder_delta_arr, encoder_grads_list
def chunk(self, maxSize): """Splits the `Collection` into _maxSize_ size or smaller `Collections` # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original """ chunks = [] currentSize = maxSize + 1 for i in self: if currentSize >= maxSize: currentSize = 0 chunks.append(type(self)({i}, name = 'Chunk-{}-of-{}'.format(len(chunks), self.name), quietStart = True)) else: chunks[-1].add(i) currentSize += 1 return chunks
Splits the `Collection` into _maxSize_ size or smaller `Collections` # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original
Below is the the instruction that describes the task: ### Input: Splits the `Collection` into _maxSize_ size or smaller `Collections` # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original ### Response: def chunk(self, maxSize): """Splits the `Collection` into _maxSize_ size or smaller `Collections` # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original """ chunks = [] currentSize = maxSize + 1 for i in self: if currentSize >= maxSize: currentSize = 0 chunks.append(type(self)({i}, name = 'Chunk-{}-of-{}'.format(len(chunks), self.name), quietStart = True)) else: chunks[-1].add(i) currentSize += 1 return chunks
def csrf(request): """ Context processor that provides a CSRF token, or the string 'NOTPROVIDED' if it has not been provided by either a view decorator or the middleware """ def _get_val(): token = get_token(request) if token is None: # In order to be able to provide debugging info in the # case of misconfiguration, we use a sentinel value # instead of returning an empty dict. return 'NOTPROVIDED' else: token = force_bytes(token, encoding='latin-1') key = force_bytes( get_random_string(len(token)), encoding='latin-1' ) value = b64_encode(xor(token, key)) return force_text(b'$'.join((key, value)), encoding='latin-1') _get_val = lazy(_get_val, text_type) return {'csrf_token': _get_val()}
Context processor that provides a CSRF token, or the string 'NOTPROVIDED' if it has not been provided by either a view decorator or the middleware
Below is the the instruction that describes the task: ### Input: Context processor that provides a CSRF token, or the string 'NOTPROVIDED' if it has not been provided by either a view decorator or the middleware ### Response: def csrf(request): """ Context processor that provides a CSRF token, or the string 'NOTPROVIDED' if it has not been provided by either a view decorator or the middleware """ def _get_val(): token = get_token(request) if token is None: # In order to be able to provide debugging info in the # case of misconfiguration, we use a sentinel value # instead of returning an empty dict. return 'NOTPROVIDED' else: token = force_bytes(token, encoding='latin-1') key = force_bytes( get_random_string(len(token)), encoding='latin-1' ) value = b64_encode(xor(token, key)) return force_text(b'$'.join((key, value)), encoding='latin-1') _get_val = lazy(_get_val, text_type) return {'csrf_token': _get_val()}
def _codec_can_decode_with_surrogatepass(codec, _cache={}): """Returns if a codec supports the surrogatepass error handler when decoding. Some codecs were broken in Python <3.4 """ try: return _cache[codec] except KeyError: try: u"\ud83d".encode( codec, _surrogatepass).decode(codec, _surrogatepass) except UnicodeDecodeError: _cache[codec] = False else: _cache[codec] = True return _cache[codec]
Returns if a codec supports the surrogatepass error handler when decoding. Some codecs were broken in Python <3.4
Below is the the instruction that describes the task: ### Input: Returns if a codec supports the surrogatepass error handler when decoding. Some codecs were broken in Python <3.4 ### Response: def _codec_can_decode_with_surrogatepass(codec, _cache={}): """Returns if a codec supports the surrogatepass error handler when decoding. Some codecs were broken in Python <3.4 """ try: return _cache[codec] except KeyError: try: u"\ud83d".encode( codec, _surrogatepass).decode(codec, _surrogatepass) except UnicodeDecodeError: _cache[codec] = False else: _cache[codec] = True return _cache[codec]
def intersect(d1, d2): """Intersect dictionaries d1 and d2 by key *and* value.""" return dict((k, d1[k]) for k in d1 if k in d2 and d1[k] == d2[k])
Intersect dictionaries d1 and d2 by key *and* value.
Below is the the instruction that describes the task: ### Input: Intersect dictionaries d1 and d2 by key *and* value. ### Response: def intersect(d1, d2): """Intersect dictionaries d1 and d2 by key *and* value.""" return dict((k, d1[k]) for k in d1 if k in d2 and d1[k] == d2[k])
def _recursive_get(self, key, dic=None): """ Gets contents of requirement key recursively so users can search for specific keys inside nested requirement dicts. :param key: key or dot separated string of keys to look for. :param dic: Optional dictionary to use in the search. If not provided, self._requirements is used. :return: results of search or None """ return recursive_search(key, dic) if dic else recursive_search(key, self._requirements)
Gets contents of requirement key recursively so users can search for specific keys inside nested requirement dicts. :param key: key or dot separated string of keys to look for. :param dic: Optional dictionary to use in the search. If not provided, self._requirements is used. :return: results of search or None
Below is the the instruction that describes the task: ### Input: Gets contents of requirement key recursively so users can search for specific keys inside nested requirement dicts. :param key: key or dot separated string of keys to look for. :param dic: Optional dictionary to use in the search. If not provided, self._requirements is used. :return: results of search or None ### Response: def _recursive_get(self, key, dic=None): """ Gets contents of requirement key recursively so users can search for specific keys inside nested requirement dicts. :param key: key or dot separated string of keys to look for. :param dic: Optional dictionary to use in the search. If not provided, self._requirements is used. :return: results of search or None """ return recursive_search(key, dic) if dic else recursive_search(key, self._requirements)
def _fill(self, direction, limit=None): """ Shared function for `pad` and `backfill` to call Cython method. Parameters ---------- direction : {'ffill', 'bfill'} Direction passed to underlying Cython function. `bfill` will cause values to be filled backwards. `ffill` and any other values will default to a forward fill limit : int, default None Maximum number of consecutive values to fill. If `None`, this method will convert to -1 prior to passing to Cython Returns ------- `Series` or `DataFrame` with filled values See Also -------- pad backfill """ # Need int value for Cython if limit is None: limit = -1 return self._get_cythonized_result('group_fillna_indexer', self.grouper, needs_mask=True, cython_dtype=np.int64, result_is_index=True, direction=direction, limit=limit)
Shared function for `pad` and `backfill` to call Cython method. Parameters ---------- direction : {'ffill', 'bfill'} Direction passed to underlying Cython function. `bfill` will cause values to be filled backwards. `ffill` and any other values will default to a forward fill limit : int, default None Maximum number of consecutive values to fill. If `None`, this method will convert to -1 prior to passing to Cython Returns ------- `Series` or `DataFrame` with filled values See Also -------- pad backfill
Below is the the instruction that describes the task: ### Input: Shared function for `pad` and `backfill` to call Cython method. Parameters ---------- direction : {'ffill', 'bfill'} Direction passed to underlying Cython function. `bfill` will cause values to be filled backwards. `ffill` and any other values will default to a forward fill limit : int, default None Maximum number of consecutive values to fill. If `None`, this method will convert to -1 prior to passing to Cython Returns ------- `Series` or `DataFrame` with filled values See Also -------- pad backfill ### Response: def _fill(self, direction, limit=None): """ Shared function for `pad` and `backfill` to call Cython method. Parameters ---------- direction : {'ffill', 'bfill'} Direction passed to underlying Cython function. `bfill` will cause values to be filled backwards. `ffill` and any other values will default to a forward fill limit : int, default None Maximum number of consecutive values to fill. If `None`, this method will convert to -1 prior to passing to Cython Returns ------- `Series` or `DataFrame` with filled values See Also -------- pad backfill """ # Need int value for Cython if limit is None: limit = -1 return self._get_cythonized_result('group_fillna_indexer', self.grouper, needs_mask=True, cython_dtype=np.int64, result_is_index=True, direction=direction, limit=limit)
def defaults(self): """ component default component .. Note:: default components is just an indication for user and the views, except if the Block is required. If required then default is selected if nothing explisitely selected. """ default = self._defaults # if require and no default, the first component as default if not len(default) and self.required and len(self._components): default = [six.next(six.itervalues(self._components)).name] return default
component default component .. Note:: default components is just an indication for user and the views, except if the Block is required. If required then default is selected if nothing explisitely selected.
Below is the the instruction that describes the task: ### Input: component default component .. Note:: default components is just an indication for user and the views, except if the Block is required. If required then default is selected if nothing explisitely selected. ### Response: def defaults(self): """ component default component .. Note:: default components is just an indication for user and the views, except if the Block is required. If required then default is selected if nothing explisitely selected. """ default = self._defaults # if require and no default, the first component as default if not len(default) and self.required and len(self._components): default = [six.next(six.itervalues(self._components)).name] return default
def MapFields(function, key=True): """ Transformation factory that maps `function` on the values of a row. It can be applied either to 1. all columns (`key=True`), 2. no column (`key=False`), or 3. a subset of columns by passing a callable, which takes column name and returns `bool` (same as the parameter `function` in `filter`). :param function: callable :param key: bool or callable :return: callable """ @use_raw_input def _MapFields(bag): try: factory = type(bag)._make except AttributeError: factory = type(bag) if callable(key): try: fields = bag._fields except AttributeError as e: raise UnrecoverableAttributeError( 'This transformation works only on objects with named' ' fields (namedtuple, BagType, ...).') from e return factory( function(value) if key(key_) else value for key_, value in zip(fields, bag) ) elif key: return factory(function(value) for value in bag) else: return NOT_MODIFIED return _MapFields
Transformation factory that maps `function` on the values of a row. It can be applied either to 1. all columns (`key=True`), 2. no column (`key=False`), or 3. a subset of columns by passing a callable, which takes column name and returns `bool` (same as the parameter `function` in `filter`). :param function: callable :param key: bool or callable :return: callable
Below is the the instruction that describes the task: ### Input: Transformation factory that maps `function` on the values of a row. It can be applied either to 1. all columns (`key=True`), 2. no column (`key=False`), or 3. a subset of columns by passing a callable, which takes column name and returns `bool` (same as the parameter `function` in `filter`). :param function: callable :param key: bool or callable :return: callable ### Response: def MapFields(function, key=True): """ Transformation factory that maps `function` on the values of a row. It can be applied either to 1. all columns (`key=True`), 2. no column (`key=False`), or 3. a subset of columns by passing a callable, which takes column name and returns `bool` (same as the parameter `function` in `filter`). :param function: callable :param key: bool or callable :return: callable """ @use_raw_input def _MapFields(bag): try: factory = type(bag)._make except AttributeError: factory = type(bag) if callable(key): try: fields = bag._fields except AttributeError as e: raise UnrecoverableAttributeError( 'This transformation works only on objects with named' ' fields (namedtuple, BagType, ...).') from e return factory( function(value) if key(key_) else value for key_, value in zip(fields, bag) ) elif key: return factory(function(value) for value in bag) else: return NOT_MODIFIED return _MapFields