code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def visitValueSetValue(self, ctx: ShExDocParser.ValueSetValueContext): """ valueSetValue: iriRange | literalRange | languageRange | '.' (iriExclusion+ | literalExclusion+ | languageExclusion+) """ if ctx.iriRange() or ctx.literalRange() or ctx.languageRange(): self.visitChildren(ctx) else: # '.' branch - wild card with exclusions if ctx.iriExclusion(): vs_value = IriStemRange(Wildcard(), []) self._iri_exclusions(vs_value, ctx.iriExclusion()) elif ctx.literalExclusion(): vs_value = LiteralStemRange(Wildcard(), []) self._literal_exclusions(vs_value, ctx.literalExclusion()) else: vs_value = LanguageStemRange(Wildcard(), []) self._language_exclusions(vs_value, ctx.languageExclusion()) self.nodeconstraint.values.append(vs_value)
valueSetValue: iriRange | literalRange | languageRange | '.' (iriExclusion+ | literalExclusion+ | languageExclusion+)
Below is the the instruction that describes the task: ### Input: valueSetValue: iriRange | literalRange | languageRange | '.' (iriExclusion+ | literalExclusion+ | languageExclusion+) ### Response: def visitValueSetValue(self, ctx: ShExDocParser.ValueSetValueContext): """ valueSetValue: iriRange | literalRange | languageRange | '.' (iriExclusion+ | literalExclusion+ | languageExclusion+) """ if ctx.iriRange() or ctx.literalRange() or ctx.languageRange(): self.visitChildren(ctx) else: # '.' branch - wild card with exclusions if ctx.iriExclusion(): vs_value = IriStemRange(Wildcard(), []) self._iri_exclusions(vs_value, ctx.iriExclusion()) elif ctx.literalExclusion(): vs_value = LiteralStemRange(Wildcard(), []) self._literal_exclusions(vs_value, ctx.literalExclusion()) else: vs_value = LanguageStemRange(Wildcard(), []) self._language_exclusions(vs_value, ctx.languageExclusion()) self.nodeconstraint.values.append(vs_value)
def list_dir(root, prefix=False): """List all directories at a given root Args: root (str): Path to directory whose folders need to be listed prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the directories found """ root = os.path.expanduser(root) directories = list( filter( lambda p: os.path.isdir(os.path.join(root, p)), os.listdir(root) ) ) if prefix is True: directories = [os.path.join(root, d) for d in directories] return directories
List all directories at a given root Args: root (str): Path to directory whose folders need to be listed prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the directories found
Below is the the instruction that describes the task: ### Input: List all directories at a given root Args: root (str): Path to directory whose folders need to be listed prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the directories found ### Response: def list_dir(root, prefix=False): """List all directories at a given root Args: root (str): Path to directory whose folders need to be listed prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the directories found """ root = os.path.expanduser(root) directories = list( filter( lambda p: os.path.isdir(os.path.join(root, p)), os.listdir(root) ) ) if prefix is True: directories = [os.path.join(root, d) for d in directories] return directories
def get_alias(self): """ Gets the alias for the table or the auto_alias if one is set. If there isn't any kind of alias, None is returned. :returns: The table alias, auto_alias, or None :rtype: str or None """ alias = None if self.alias: alias = self.alias elif self.auto_alias: alias = self.auto_alias return alias
Gets the alias for the table or the auto_alias if one is set. If there isn't any kind of alias, None is returned. :returns: The table alias, auto_alias, or None :rtype: str or None
Below is the the instruction that describes the task: ### Input: Gets the alias for the table or the auto_alias if one is set. If there isn't any kind of alias, None is returned. :returns: The table alias, auto_alias, or None :rtype: str or None ### Response: def get_alias(self): """ Gets the alias for the table or the auto_alias if one is set. If there isn't any kind of alias, None is returned. :returns: The table alias, auto_alias, or None :rtype: str or None """ alias = None if self.alias: alias = self.alias elif self.auto_alias: alias = self.auto_alias return alias
def check_array(array, *args, **kwargs): """Validate inputs Parameters ---------- accept_dask_array : bool, default True accept_dask_dataframe : bool, default False accept_unknown_chunks : bool, default False For dask Arrays, whether to allow the `.chunks` attribute to contain any unknown values accept_multiple_blocks : bool, default False For dask Arrays, whether to allow multiple blocks along the second axis. *args, **kwargs : tuple, dict Passed through to scikit-learn Returns ------- array : obj Same type as the input Notes ----- For dask.array, a small numpy array emulating ``array`` is created and passed to scikit-learn's ``check_array`` with all the additional arguments. """ accept_dask_array = kwargs.pop("accept_dask_array", True) preserve_pandas_dataframe = kwargs.pop("preserve_pandas_dataframe", False) accept_dask_dataframe = kwargs.pop("accept_dask_dataframe", False) accept_unknown_chunks = kwargs.pop("accept_unknown_chunks", False) accept_multiple_blocks = kwargs.pop("accept_multiple_blocks", False) if isinstance(array, da.Array): if not accept_dask_array: raise TypeError if not accept_unknown_chunks: if np.isnan(array.shape[0]): raise TypeError( "Cannot operate on Dask array with unknown chunk sizes." ) if not accept_multiple_blocks and array.ndim > 1: if len(array.chunks[1]) > 1: msg = ( "Chunking is only allowed on the first axis. " "Use 'array.rechunk({1: array.shape[1]})' to " "rechunk to a single block along the second axis." ) raise TypeError(msg) # hmmm, we want to catch things like shape errors. # I'd like to make a small sample somehow shape = array.shape if len(shape) == 2: shape = (min(10, shape[0]), shape[1]) elif shape == 1: shape = min(10, shape[0]) sample = np.ones(shape=shape, dtype=array.dtype) sk_validation.check_array(sample, *args, **kwargs) return array elif isinstance(array, dd.DataFrame): if not accept_dask_dataframe: raise TypeError("This estimator does not support dask dataframes.") # TODO: sample? return array elif isinstance(array, pd.DataFrame) and preserve_pandas_dataframe: # TODO: validation? return array else: return sk_validation.check_array(array, *args, **kwargs)
Validate inputs Parameters ---------- accept_dask_array : bool, default True accept_dask_dataframe : bool, default False accept_unknown_chunks : bool, default False For dask Arrays, whether to allow the `.chunks` attribute to contain any unknown values accept_multiple_blocks : bool, default False For dask Arrays, whether to allow multiple blocks along the second axis. *args, **kwargs : tuple, dict Passed through to scikit-learn Returns ------- array : obj Same type as the input Notes ----- For dask.array, a small numpy array emulating ``array`` is created and passed to scikit-learn's ``check_array`` with all the additional arguments.
Below is the the instruction that describes the task: ### Input: Validate inputs Parameters ---------- accept_dask_array : bool, default True accept_dask_dataframe : bool, default False accept_unknown_chunks : bool, default False For dask Arrays, whether to allow the `.chunks` attribute to contain any unknown values accept_multiple_blocks : bool, default False For dask Arrays, whether to allow multiple blocks along the second axis. *args, **kwargs : tuple, dict Passed through to scikit-learn Returns ------- array : obj Same type as the input Notes ----- For dask.array, a small numpy array emulating ``array`` is created and passed to scikit-learn's ``check_array`` with all the additional arguments. ### Response: def check_array(array, *args, **kwargs): """Validate inputs Parameters ---------- accept_dask_array : bool, default True accept_dask_dataframe : bool, default False accept_unknown_chunks : bool, default False For dask Arrays, whether to allow the `.chunks` attribute to contain any unknown values accept_multiple_blocks : bool, default False For dask Arrays, whether to allow multiple blocks along the second axis. *args, **kwargs : tuple, dict Passed through to scikit-learn Returns ------- array : obj Same type as the input Notes ----- For dask.array, a small numpy array emulating ``array`` is created and passed to scikit-learn's ``check_array`` with all the additional arguments. """ accept_dask_array = kwargs.pop("accept_dask_array", True) preserve_pandas_dataframe = kwargs.pop("preserve_pandas_dataframe", False) accept_dask_dataframe = kwargs.pop("accept_dask_dataframe", False) accept_unknown_chunks = kwargs.pop("accept_unknown_chunks", False) accept_multiple_blocks = kwargs.pop("accept_multiple_blocks", False) if isinstance(array, da.Array): if not accept_dask_array: raise TypeError if not accept_unknown_chunks: if np.isnan(array.shape[0]): raise TypeError( "Cannot operate on Dask array with unknown chunk sizes." ) if not accept_multiple_blocks and array.ndim > 1: if len(array.chunks[1]) > 1: msg = ( "Chunking is only allowed on the first axis. " "Use 'array.rechunk({1: array.shape[1]})' to " "rechunk to a single block along the second axis." ) raise TypeError(msg) # hmmm, we want to catch things like shape errors. # I'd like to make a small sample somehow shape = array.shape if len(shape) == 2: shape = (min(10, shape[0]), shape[1]) elif shape == 1: shape = min(10, shape[0]) sample = np.ones(shape=shape, dtype=array.dtype) sk_validation.check_array(sample, *args, **kwargs) return array elif isinstance(array, dd.DataFrame): if not accept_dask_dataframe: raise TypeError("This estimator does not support dask dataframes.") # TODO: sample? return array elif isinstance(array, pd.DataFrame) and preserve_pandas_dataframe: # TODO: validation? return array else: return sk_validation.check_array(array, *args, **kwargs)
def get_icon(name, as_qicon=False): """Returns a `QPixmap` containing the given image, or a QIcon if `as_qicon` is True""" filename = name + ".png" icon = icons.get(filename) if not icon: path = os.path.dirname(__file__) path = os.path.join(path, "icons") filepath = os.path.join(path, filename) if not os.path.exists(filepath): filepath = os.path.join(path, "pink.png") icon = QtGui.QPixmap(filepath) icons[filename] = icon return QtGui.QIcon(icon) if as_qicon else icon
Returns a `QPixmap` containing the given image, or a QIcon if `as_qicon` is True
Below is the the instruction that describes the task: ### Input: Returns a `QPixmap` containing the given image, or a QIcon if `as_qicon` is True ### Response: def get_icon(name, as_qicon=False): """Returns a `QPixmap` containing the given image, or a QIcon if `as_qicon` is True""" filename = name + ".png" icon = icons.get(filename) if not icon: path = os.path.dirname(__file__) path = os.path.join(path, "icons") filepath = os.path.join(path, filename) if not os.path.exists(filepath): filepath = os.path.join(path, "pink.png") icon = QtGui.QPixmap(filepath) icons[filename] = icon return QtGui.QIcon(icon) if as_qicon else icon
def export(self, name, columns, points): """Write the points to the Prometheus exporter using Gauge.""" logger.debug("Export {} stats to Prometheus exporter".format(name)) # Remove non number stats and convert all to float (for Boolean) data = {k: float(v) for (k, v) in iteritems(dict(zip(columns, points))) if isinstance(v, Number)} # Write metrics to the Prometheus exporter for k, v in iteritems(data): # Prometheus metric name: prefix_<glances stats name> metric_name = self.prefix + self.METRIC_SEPARATOR + str(name) + self.METRIC_SEPARATOR + str(k) # Prometheus is very sensible to the metric name # See: https://prometheus.io/docs/practices/naming/ for c in ['.', '-', '/', ' ']: metric_name = metric_name.replace(c, self.METRIC_SEPARATOR) # Get the labels labels = self.parse_tags(self.labels) # Manage an internal dict between metric name and Gauge if metric_name not in self._metric_dict: self._metric_dict[metric_name] = Gauge(metric_name, k, labelnames=listkeys(labels)) # Write the value if hasattr(self._metric_dict[metric_name], 'labels'): # Add the labels (see issue #1255) self._metric_dict[metric_name].labels(**labels).set(v) else: self._metric_dict[metric_name].set(v)
Write the points to the Prometheus exporter using Gauge.
Below is the the instruction that describes the task: ### Input: Write the points to the Prometheus exporter using Gauge. ### Response: def export(self, name, columns, points): """Write the points to the Prometheus exporter using Gauge.""" logger.debug("Export {} stats to Prometheus exporter".format(name)) # Remove non number stats and convert all to float (for Boolean) data = {k: float(v) for (k, v) in iteritems(dict(zip(columns, points))) if isinstance(v, Number)} # Write metrics to the Prometheus exporter for k, v in iteritems(data): # Prometheus metric name: prefix_<glances stats name> metric_name = self.prefix + self.METRIC_SEPARATOR + str(name) + self.METRIC_SEPARATOR + str(k) # Prometheus is very sensible to the metric name # See: https://prometheus.io/docs/practices/naming/ for c in ['.', '-', '/', ' ']: metric_name = metric_name.replace(c, self.METRIC_SEPARATOR) # Get the labels labels = self.parse_tags(self.labels) # Manage an internal dict between metric name and Gauge if metric_name not in self._metric_dict: self._metric_dict[metric_name] = Gauge(metric_name, k, labelnames=listkeys(labels)) # Write the value if hasattr(self._metric_dict[metric_name], 'labels'): # Add the labels (see issue #1255) self._metric_dict[metric_name].labels(**labels).set(v) else: self._metric_dict[metric_name].set(v)
def dict_has_all_keys(self, keys): """ Create a boolean SArray by checking the keys of an SArray of dictionaries. An element of the output SArray is True if the corresponding input element's dictionary has all of the given keys. Fails on SArrays whose data type is not ``dict``. Parameters ---------- keys : list A list of key values to check each dictionary against. Returns ------- out : SArray A SArray of int type, where each element indicates whether the input SArray element contains all keys in the input list. See Also -------- dict_has_any_keys Examples -------- >>> sa = turicreate.SArray([{"this":1, "is":5, "dog":7}, {"this": 2, "are": 1, "cat": 5}]) >>> sa.dict_has_all_keys(["is", "this"]) dtype: int Rows: 2 [1, 0] """ if not _is_non_string_iterable(keys): keys = [keys] with cython_context(): return SArray(_proxy=self.__proxy__.dict_has_all_keys(keys))
Create a boolean SArray by checking the keys of an SArray of dictionaries. An element of the output SArray is True if the corresponding input element's dictionary has all of the given keys. Fails on SArrays whose data type is not ``dict``. Parameters ---------- keys : list A list of key values to check each dictionary against. Returns ------- out : SArray A SArray of int type, where each element indicates whether the input SArray element contains all keys in the input list. See Also -------- dict_has_any_keys Examples -------- >>> sa = turicreate.SArray([{"this":1, "is":5, "dog":7}, {"this": 2, "are": 1, "cat": 5}]) >>> sa.dict_has_all_keys(["is", "this"]) dtype: int Rows: 2 [1, 0]
Below is the the instruction that describes the task: ### Input: Create a boolean SArray by checking the keys of an SArray of dictionaries. An element of the output SArray is True if the corresponding input element's dictionary has all of the given keys. Fails on SArrays whose data type is not ``dict``. Parameters ---------- keys : list A list of key values to check each dictionary against. Returns ------- out : SArray A SArray of int type, where each element indicates whether the input SArray element contains all keys in the input list. See Also -------- dict_has_any_keys Examples -------- >>> sa = turicreate.SArray([{"this":1, "is":5, "dog":7}, {"this": 2, "are": 1, "cat": 5}]) >>> sa.dict_has_all_keys(["is", "this"]) dtype: int Rows: 2 [1, 0] ### Response: def dict_has_all_keys(self, keys): """ Create a boolean SArray by checking the keys of an SArray of dictionaries. An element of the output SArray is True if the corresponding input element's dictionary has all of the given keys. Fails on SArrays whose data type is not ``dict``. Parameters ---------- keys : list A list of key values to check each dictionary against. Returns ------- out : SArray A SArray of int type, where each element indicates whether the input SArray element contains all keys in the input list. See Also -------- dict_has_any_keys Examples -------- >>> sa = turicreate.SArray([{"this":1, "is":5, "dog":7}, {"this": 2, "are": 1, "cat": 5}]) >>> sa.dict_has_all_keys(["is", "this"]) dtype: int Rows: 2 [1, 0] """ if not _is_non_string_iterable(keys): keys = [keys] with cython_context(): return SArray(_proxy=self.__proxy__.dict_has_all_keys(keys))
def allVariantAnnotationSets(self): """ Return an iterator over all variant annotation sets in the data repo """ for dataset in self.getDatasets(): for variantSet in dataset.getVariantSets(): for vaSet in variantSet.getVariantAnnotationSets(): yield vaSet
Return an iterator over all variant annotation sets in the data repo
Below is the the instruction that describes the task: ### Input: Return an iterator over all variant annotation sets in the data repo ### Response: def allVariantAnnotationSets(self): """ Return an iterator over all variant annotation sets in the data repo """ for dataset in self.getDatasets(): for variantSet in dataset.getVariantSets(): for vaSet in variantSet.getVariantAnnotationSets(): yield vaSet
def lv_load_areas(self): """ #TODO: description """ for lv_load_area in self._grid._graph.nodes(): if isinstance(lv_load_area, LVLoadAreaDing0): if lv_load_area.ring == self: yield lv_load_area
#TODO: description
Below is the the instruction that describes the task: ### Input: #TODO: description ### Response: def lv_load_areas(self): """ #TODO: description """ for lv_load_area in self._grid._graph.nodes(): if isinstance(lv_load_area, LVLoadAreaDing0): if lv_load_area.ring == self: yield lv_load_area
def number(items): """Maps numbering onto given values""" n = len(items) if n == 0: return items places = str(int(math.log10(n) // 1 + 1)) format = '[{0[0]:' + str(int(places)) + 'd}] {0[1]}' return map( lambda x: format.format(x), enumerate(items) )
Maps numbering onto given values
Below is the the instruction that describes the task: ### Input: Maps numbering onto given values ### Response: def number(items): """Maps numbering onto given values""" n = len(items) if n == 0: return items places = str(int(math.log10(n) // 1 + 1)) format = '[{0[0]:' + str(int(places)) + 'd}] {0[1]}' return map( lambda x: format.format(x), enumerate(items) )
def get_entity(self, ilx_id: str) -> dict: """ Gets full meta data (expect their annotations and relationships) from is ILX ID """ ilx_id = self.fix_ilx(ilx_id) url = self.base_url + "ilx/search/identifier/{identifier}?key={api_key}".format( identifier = ilx_id, api_key = self.api_key, ) return self.get(url)
Gets full meta data (expect their annotations and relationships) from is ILX ID
Below is the the instruction that describes the task: ### Input: Gets full meta data (expect their annotations and relationships) from is ILX ID ### Response: def get_entity(self, ilx_id: str) -> dict: """ Gets full meta data (expect their annotations and relationships) from is ILX ID """ ilx_id = self.fix_ilx(ilx_id) url = self.base_url + "ilx/search/identifier/{identifier}?key={api_key}".format( identifier = ilx_id, api_key = self.api_key, ) return self.get(url)
def nfa_dot_importer(input_file: str) -> dict: """ Imports a NFA from a DOT file. Of .dot files are recognized the following attributes • nodeX shape=doublecircle -> accepting node; • nodeX root=true -> initial node; • edgeX label="a" -> action in alphabet; • fakeX style=invisible -> dummy invisible nodes pointing to initial state (it will be skipped); • fakeX->S [style=bold] -> dummy transitions to draw arrows pointing to initial states (they will be skipped). All invisible nodes are skipped. Forbidden names: • 'fake' used for graphical purpose to drawn the arrow of the initial state • 'sink' used as additional state when completing a NFA Forbidden characters: • " • ' • ( • ) • spaces :param str input_file: Path to input DOT file; :return: *(dict)* representing a NFA. """ # pyDot Object g = pydot.graph_from_dot_file(input_file)[0] states = set() initial_states = set() accepting_states = set() replacements = {'"': '', "'": '', '(': '', ')': '', ' ': ''} for node in g.get_nodes(): attributes = node.get_attributes() if node.get_name() == 'fake' \ or node.get_name() == 'None' \ or node.get_name() == 'graph' \ or node.get_name() == 'node': continue if 'style' in attributes \ and attributes['style'] == 'invisible': continue node_reference = __replace_all(replacements, node.get_name()).split(',') if len(node_reference) > 1: node_reference = tuple(node_reference) else: node_reference = node_reference[0] states.add(node_reference) for attribute in attributes: if attribute == 'root': initial_states.add(node_reference) if attribute == 'shape' \ and attributes['shape'] == 'doublecircle': accepting_states.add(node_reference) alphabet = set() transitions = {} for edge in g.get_edges(): source = __replace_all(replacements, edge.get_source()).split(',') if len(source) > 1: source = tuple(source) else: source = source[0] destination = __replace_all(replacements, edge.get_destination()).split(',') if len(destination) > 1: destination = tuple(destination) else: destination = destination[0] if source not in states or destination not in states: continue label = __replace_all(replacements, edge.get_label()) alphabet.add(label) transitions.setdefault((source, label), set()).add( destination) nfa = { 'alphabet': alphabet, 'states': states, 'initial_states': initial_states, 'accepting_states': accepting_states, 'transitions': transitions } return nfa
Imports a NFA from a DOT file. Of .dot files are recognized the following attributes • nodeX shape=doublecircle -> accepting node; • nodeX root=true -> initial node; • edgeX label="a" -> action in alphabet; • fakeX style=invisible -> dummy invisible nodes pointing to initial state (it will be skipped); • fakeX->S [style=bold] -> dummy transitions to draw arrows pointing to initial states (they will be skipped). All invisible nodes are skipped. Forbidden names: • 'fake' used for graphical purpose to drawn the arrow of the initial state • 'sink' used as additional state when completing a NFA Forbidden characters: • " • ' • ( • ) • spaces :param str input_file: Path to input DOT file; :return: *(dict)* representing a NFA.
Below is the the instruction that describes the task: ### Input: Imports a NFA from a DOT file. Of .dot files are recognized the following attributes • nodeX shape=doublecircle -> accepting node; • nodeX root=true -> initial node; • edgeX label="a" -> action in alphabet; • fakeX style=invisible -> dummy invisible nodes pointing to initial state (it will be skipped); • fakeX->S [style=bold] -> dummy transitions to draw arrows pointing to initial states (they will be skipped). All invisible nodes are skipped. Forbidden names: • 'fake' used for graphical purpose to drawn the arrow of the initial state • 'sink' used as additional state when completing a NFA Forbidden characters: • " • ' • ( • ) • spaces :param str input_file: Path to input DOT file; :return: *(dict)* representing a NFA. ### Response: def nfa_dot_importer(input_file: str) -> dict: """ Imports a NFA from a DOT file. Of .dot files are recognized the following attributes • nodeX shape=doublecircle -> accepting node; • nodeX root=true -> initial node; • edgeX label="a" -> action in alphabet; • fakeX style=invisible -> dummy invisible nodes pointing to initial state (it will be skipped); • fakeX->S [style=bold] -> dummy transitions to draw arrows pointing to initial states (they will be skipped). All invisible nodes are skipped. Forbidden names: • 'fake' used for graphical purpose to drawn the arrow of the initial state • 'sink' used as additional state when completing a NFA Forbidden characters: • " • ' • ( • ) • spaces :param str input_file: Path to input DOT file; :return: *(dict)* representing a NFA. """ # pyDot Object g = pydot.graph_from_dot_file(input_file)[0] states = set() initial_states = set() accepting_states = set() replacements = {'"': '', "'": '', '(': '', ')': '', ' ': ''} for node in g.get_nodes(): attributes = node.get_attributes() if node.get_name() == 'fake' \ or node.get_name() == 'None' \ or node.get_name() == 'graph' \ or node.get_name() == 'node': continue if 'style' in attributes \ and attributes['style'] == 'invisible': continue node_reference = __replace_all(replacements, node.get_name()).split(',') if len(node_reference) > 1: node_reference = tuple(node_reference) else: node_reference = node_reference[0] states.add(node_reference) for attribute in attributes: if attribute == 'root': initial_states.add(node_reference) if attribute == 'shape' \ and attributes['shape'] == 'doublecircle': accepting_states.add(node_reference) alphabet = set() transitions = {} for edge in g.get_edges(): source = __replace_all(replacements, edge.get_source()).split(',') if len(source) > 1: source = tuple(source) else: source = source[0] destination = __replace_all(replacements, edge.get_destination()).split(',') if len(destination) > 1: destination = tuple(destination) else: destination = destination[0] if source not in states or destination not in states: continue label = __replace_all(replacements, edge.get_label()) alphabet.add(label) transitions.setdefault((source, label), set()).add( destination) nfa = { 'alphabet': alphabet, 'states': states, 'initial_states': initial_states, 'accepting_states': accepting_states, 'transitions': transitions } return nfa
def result(self, result): """ Query result post processing. @param result: A query result. @type result: L{sxbase.SchemaObject} """ if result is None: log.debug('%s, not-found', self.ref) return if self.resolved: result = result.resolve() log.debug('%s, found as: %s', self.ref, Repr(result)) self.history.append(result) return result
Query result post processing. @param result: A query result. @type result: L{sxbase.SchemaObject}
Below is the the instruction that describes the task: ### Input: Query result post processing. @param result: A query result. @type result: L{sxbase.SchemaObject} ### Response: def result(self, result): """ Query result post processing. @param result: A query result. @type result: L{sxbase.SchemaObject} """ if result is None: log.debug('%s, not-found', self.ref) return if self.resolved: result = result.resolve() log.debug('%s, found as: %s', self.ref, Repr(result)) self.history.append(result) return result
def schedule_to_proto_dicts(schedule: Schedule) -> Iterable[Dict]: """Convert a schedule into an iterable of proto dictionaries. Args: schedule: The schedule to convert to a proto dict. Must contain only gates that can be cast to xmon gates. Yields: A proto dictionary corresponding to an Operation proto. """ last_time_picos = None # type: Optional[int] for so in schedule.scheduled_operations: op = gate_to_proto_dict( cast(ops.GateOperation, so.operation).gate, so.operation.qubits) time_picos = so.time.raw_picos() if last_time_picos is None: op['incremental_delay_picoseconds'] = time_picos else: op['incremental_delay_picoseconds'] = time_picos - last_time_picos last_time_picos = time_picos yield op
Convert a schedule into an iterable of proto dictionaries. Args: schedule: The schedule to convert to a proto dict. Must contain only gates that can be cast to xmon gates. Yields: A proto dictionary corresponding to an Operation proto.
Below is the the instruction that describes the task: ### Input: Convert a schedule into an iterable of proto dictionaries. Args: schedule: The schedule to convert to a proto dict. Must contain only gates that can be cast to xmon gates. Yields: A proto dictionary corresponding to an Operation proto. ### Response: def schedule_to_proto_dicts(schedule: Schedule) -> Iterable[Dict]: """Convert a schedule into an iterable of proto dictionaries. Args: schedule: The schedule to convert to a proto dict. Must contain only gates that can be cast to xmon gates. Yields: A proto dictionary corresponding to an Operation proto. """ last_time_picos = None # type: Optional[int] for so in schedule.scheduled_operations: op = gate_to_proto_dict( cast(ops.GateOperation, so.operation).gate, so.operation.qubits) time_picos = so.time.raw_picos() if last_time_picos is None: op['incremental_delay_picoseconds'] = time_picos else: op['incremental_delay_picoseconds'] = time_picos - last_time_picos last_time_picos = time_picos yield op
def from_string(string): """ Construct an AdfKey object from the string. Parameters ---------- string : str A string. Returns ------- adfkey : AdfKey An AdfKey object recovered from the string. Raises ------ ValueError Currently nested subkeys are not supported. If ``subend`` was found a ValueError would be raised. Notes ----- Only the first block key will be returned. """ def is_float(s): if '.' in s or 'E' in s or 'e' in s: return True else: return False if string.find("\n") == -1: el = string.split() if len(el) > 1: if string.find("=") != -1: options = list(map(lambda s: s.split("="), el[1:])) else: options = el[1:] for i, op in enumerate(options): if isinstance(op, list) and is_numeric(op[1]): op[1] = float(op[1]) if is_float(op[1]) else int(op[1]) elif is_numeric(op): options[i] = float(op) if is_float(op) else int(op) else: options = None return AdfKey(el[0], options) if string.find('subend') != -1: raise ValueError("Nested subkeys are not supported!") key = None for line in iterlines(string): if line == "": continue el = line.strip().split() if len(el) == 0: continue if el[0].upper() in AdfKey.block_keys: if key is None: key = AdfKey.from_string(line) else: return key elif el[0].upper() == 'END': return key elif key is not None: key.add_subkey(AdfKey.from_string(line)) else: raise Exception("IncompleteKey: 'END' is missing!")
Construct an AdfKey object from the string. Parameters ---------- string : str A string. Returns ------- adfkey : AdfKey An AdfKey object recovered from the string. Raises ------ ValueError Currently nested subkeys are not supported. If ``subend`` was found a ValueError would be raised. Notes ----- Only the first block key will be returned.
Below is the the instruction that describes the task: ### Input: Construct an AdfKey object from the string. Parameters ---------- string : str A string. Returns ------- adfkey : AdfKey An AdfKey object recovered from the string. Raises ------ ValueError Currently nested subkeys are not supported. If ``subend`` was found a ValueError would be raised. Notes ----- Only the first block key will be returned. ### Response: def from_string(string): """ Construct an AdfKey object from the string. Parameters ---------- string : str A string. Returns ------- adfkey : AdfKey An AdfKey object recovered from the string. Raises ------ ValueError Currently nested subkeys are not supported. If ``subend`` was found a ValueError would be raised. Notes ----- Only the first block key will be returned. """ def is_float(s): if '.' in s or 'E' in s or 'e' in s: return True else: return False if string.find("\n") == -1: el = string.split() if len(el) > 1: if string.find("=") != -1: options = list(map(lambda s: s.split("="), el[1:])) else: options = el[1:] for i, op in enumerate(options): if isinstance(op, list) and is_numeric(op[1]): op[1] = float(op[1]) if is_float(op[1]) else int(op[1]) elif is_numeric(op): options[i] = float(op) if is_float(op) else int(op) else: options = None return AdfKey(el[0], options) if string.find('subend') != -1: raise ValueError("Nested subkeys are not supported!") key = None for line in iterlines(string): if line == "": continue el = line.strip().split() if len(el) == 0: continue if el[0].upper() in AdfKey.block_keys: if key is None: key = AdfKey.from_string(line) else: return key elif el[0].upper() == 'END': return key elif key is not None: key.add_subkey(AdfKey.from_string(line)) else: raise Exception("IncompleteKey: 'END' is missing!")
def inverted(self): """Return the inverse of the transform.""" # This is a bit of hackery so that we can put a single "inverse" # function here. If we just made "self._inverse_type" point to the class # in question, it wouldn't be defined yet. This way, it's done at # at runtime and we avoid the definition problem. Hackish, but better # than repeating code everywhere or making a relatively complex # metaclass. inverse_type = globals()[self._inverse_type] return inverse_type(self._center_longitude, self._center_latitude, self._resolution)
Return the inverse of the transform.
Below is the the instruction that describes the task: ### Input: Return the inverse of the transform. ### Response: def inverted(self): """Return the inverse of the transform.""" # This is a bit of hackery so that we can put a single "inverse" # function here. If we just made "self._inverse_type" point to the class # in question, it wouldn't be defined yet. This way, it's done at # at runtime and we avoid the definition problem. Hackish, but better # than repeating code everywhere or making a relatively complex # metaclass. inverse_type = globals()[self._inverse_type] return inverse_type(self._center_longitude, self._center_latitude, self._resolution)
def call_fan(tstat): """ Toggles the fan """ old_fan = tstat.fan tstat.write({ 'fan': not old_fan, }) def restore(): tstat.write({ 'fan': old_fan, }) return restore
Toggles the fan
Below is the the instruction that describes the task: ### Input: Toggles the fan ### Response: def call_fan(tstat): """ Toggles the fan """ old_fan = tstat.fan tstat.write({ 'fan': not old_fan, }) def restore(): tstat.write({ 'fan': old_fan, }) return restore
def get_field_type(field): """ Returns field type/possible values. """ if isinstance(field, core_filters.MappedMultipleChoiceFilter): return ' | '.join(['"%s"' % f for f in sorted(field.mapped_to_model)]) if isinstance(field, OrderingFilter) or isinstance(field, ChoiceFilter): return ' | '.join(['"%s"' % f[0] for f in field.extra['choices']]) if isinstance(field, ChoiceField): return ' | '.join(['"%s"' % f for f in sorted(field.choices)]) if isinstance(field, HyperlinkedRelatedField): if field.view_name.endswith('detail'): return 'link to %s' % reverse(field.view_name, kwargs={'%s' % field.lookup_field: "'%s'" % field.lookup_field}) return reverse(field.view_name) if isinstance(field, structure_filters.ServiceTypeFilter): return ' | '.join(['"%s"' % f for f in SupportedServices.get_filter_mapping().keys()]) if isinstance(field, ResourceTypeFilter): return ' | '.join(['"%s"' % f for f in SupportedServices.get_resource_models().keys()]) if isinstance(field, core_serializers.GenericRelatedField): links = [] for model in field.related_models: detail_view_name = core_utils.get_detail_view_name(model) for f in field.lookup_fields: try: link = reverse(detail_view_name, kwargs={'%s' % f: "'%s'" % f}) except NoReverseMatch: pass else: links.append(link) break path = ', '.join(links) if path: return 'link to any: %s' % path if isinstance(field, core_filters.ContentTypeFilter): return "string in form 'app_label'.'model_name'" if isinstance(field, ModelMultipleChoiceFilter): return get_field_type(field.field) if isinstance(field, ListSerializer): return 'list of [%s]' % get_field_type(field.child) if isinstance(field, ManyRelatedField): return 'list of [%s]' % get_field_type(field.child_relation) if isinstance(field, ModelField): return get_field_type(field.model_field) name = field.__class__.__name__ for w in ('Filter', 'Field', 'Serializer'): name = name.replace(w, '') return FIELDS.get(name, name)
Returns field type/possible values.
Below is the the instruction that describes the task: ### Input: Returns field type/possible values. ### Response: def get_field_type(field): """ Returns field type/possible values. """ if isinstance(field, core_filters.MappedMultipleChoiceFilter): return ' | '.join(['"%s"' % f for f in sorted(field.mapped_to_model)]) if isinstance(field, OrderingFilter) or isinstance(field, ChoiceFilter): return ' | '.join(['"%s"' % f[0] for f in field.extra['choices']]) if isinstance(field, ChoiceField): return ' | '.join(['"%s"' % f for f in sorted(field.choices)]) if isinstance(field, HyperlinkedRelatedField): if field.view_name.endswith('detail'): return 'link to %s' % reverse(field.view_name, kwargs={'%s' % field.lookup_field: "'%s'" % field.lookup_field}) return reverse(field.view_name) if isinstance(field, structure_filters.ServiceTypeFilter): return ' | '.join(['"%s"' % f for f in SupportedServices.get_filter_mapping().keys()]) if isinstance(field, ResourceTypeFilter): return ' | '.join(['"%s"' % f for f in SupportedServices.get_resource_models().keys()]) if isinstance(field, core_serializers.GenericRelatedField): links = [] for model in field.related_models: detail_view_name = core_utils.get_detail_view_name(model) for f in field.lookup_fields: try: link = reverse(detail_view_name, kwargs={'%s' % f: "'%s'" % f}) except NoReverseMatch: pass else: links.append(link) break path = ', '.join(links) if path: return 'link to any: %s' % path if isinstance(field, core_filters.ContentTypeFilter): return "string in form 'app_label'.'model_name'" if isinstance(field, ModelMultipleChoiceFilter): return get_field_type(field.field) if isinstance(field, ListSerializer): return 'list of [%s]' % get_field_type(field.child) if isinstance(field, ManyRelatedField): return 'list of [%s]' % get_field_type(field.child_relation) if isinstance(field, ModelField): return get_field_type(field.model_field) name = field.__class__.__name__ for w in ('Filter', 'Field', 'Serializer'): name = name.replace(w, '') return FIELDS.get(name, name)
def kl_divergence(self, logits_q, logits_p): """ Categorical distribution KL divergence calculation KL(Q || P) = sum Q_i log (Q_i / P_i) When talking about logits this is: sum exp(Q_i) * (Q_i - P_i) """ return (torch.exp(logits_q) * (logits_q - logits_p)).sum(1, keepdim=True)
Categorical distribution KL divergence calculation KL(Q || P) = sum Q_i log (Q_i / P_i) When talking about logits this is: sum exp(Q_i) * (Q_i - P_i)
Below is the the instruction that describes the task: ### Input: Categorical distribution KL divergence calculation KL(Q || P) = sum Q_i log (Q_i / P_i) When talking about logits this is: sum exp(Q_i) * (Q_i - P_i) ### Response: def kl_divergence(self, logits_q, logits_p): """ Categorical distribution KL divergence calculation KL(Q || P) = sum Q_i log (Q_i / P_i) When talking about logits this is: sum exp(Q_i) * (Q_i - P_i) """ return (torch.exp(logits_q) * (logits_q - logits_p)).sum(1, keepdim=True)
def delete_files_and_sync_sources(self, owner, id, name, **kwargs): """ Delete files Delete one or more files from a dataset by their name, including files added via URL. **Batching** Note that the `name` parameter can be include multiple times in the query string, once for each file that is to be deleted together in a single request. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_files_and_sync_sources(owner, id, name, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: User name and unique identifier of the creator of a dataset or project. For example, in the URL: [https://data.world/jonloyens/an-intro-to-dataworld-dataset](https://data.world/jonloyens/an-intro-to-dataworld-dataset), jonloyens is the unique identifier of the owner. (required) :param str id: Dataset unique identifier. For example, in the URL:[https://data.world/jonloyens/an-intro-to-dataworld-dataset](https://data.world/jonloyens/an-intro-to-dataworld-dataset), an-intro-to-dataworld-dataset is the unique identifier of the dataset. (required) :param list[str] name: Names of files to be deleted. Multiple can be provided in a single request by repeating the query string parameter name as many times as necessary. (required) :return: SuccessMessage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.delete_files_and_sync_sources_with_http_info(owner, id, name, **kwargs) else: (data) = self.delete_files_and_sync_sources_with_http_info(owner, id, name, **kwargs) return data
Delete files Delete one or more files from a dataset by their name, including files added via URL. **Batching** Note that the `name` parameter can be include multiple times in the query string, once for each file that is to be deleted together in a single request. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_files_and_sync_sources(owner, id, name, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: User name and unique identifier of the creator of a dataset or project. For example, in the URL: [https://data.world/jonloyens/an-intro-to-dataworld-dataset](https://data.world/jonloyens/an-intro-to-dataworld-dataset), jonloyens is the unique identifier of the owner. (required) :param str id: Dataset unique identifier. For example, in the URL:[https://data.world/jonloyens/an-intro-to-dataworld-dataset](https://data.world/jonloyens/an-intro-to-dataworld-dataset), an-intro-to-dataworld-dataset is the unique identifier of the dataset. (required) :param list[str] name: Names of files to be deleted. Multiple can be provided in a single request by repeating the query string parameter name as many times as necessary. (required) :return: SuccessMessage If the method is called asynchronously, returns the request thread.
Below is the the instruction that describes the task: ### Input: Delete files Delete one or more files from a dataset by their name, including files added via URL. **Batching** Note that the `name` parameter can be include multiple times in the query string, once for each file that is to be deleted together in a single request. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_files_and_sync_sources(owner, id, name, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: User name and unique identifier of the creator of a dataset or project. For example, in the URL: [https://data.world/jonloyens/an-intro-to-dataworld-dataset](https://data.world/jonloyens/an-intro-to-dataworld-dataset), jonloyens is the unique identifier of the owner. (required) :param str id: Dataset unique identifier. For example, in the URL:[https://data.world/jonloyens/an-intro-to-dataworld-dataset](https://data.world/jonloyens/an-intro-to-dataworld-dataset), an-intro-to-dataworld-dataset is the unique identifier of the dataset. (required) :param list[str] name: Names of files to be deleted. Multiple can be provided in a single request by repeating the query string parameter name as many times as necessary. (required) :return: SuccessMessage If the method is called asynchronously, returns the request thread. ### Response: def delete_files_and_sync_sources(self, owner, id, name, **kwargs): """ Delete files Delete one or more files from a dataset by their name, including files added via URL. **Batching** Note that the `name` parameter can be include multiple times in the query string, once for each file that is to be deleted together in a single request. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_files_and_sync_sources(owner, id, name, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: User name and unique identifier of the creator of a dataset or project. For example, in the URL: [https://data.world/jonloyens/an-intro-to-dataworld-dataset](https://data.world/jonloyens/an-intro-to-dataworld-dataset), jonloyens is the unique identifier of the owner. (required) :param str id: Dataset unique identifier. For example, in the URL:[https://data.world/jonloyens/an-intro-to-dataworld-dataset](https://data.world/jonloyens/an-intro-to-dataworld-dataset), an-intro-to-dataworld-dataset is the unique identifier of the dataset. (required) :param list[str] name: Names of files to be deleted. Multiple can be provided in a single request by repeating the query string parameter name as many times as necessary. (required) :return: SuccessMessage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.delete_files_and_sync_sources_with_http_info(owner, id, name, **kwargs) else: (data) = self.delete_files_and_sync_sources_with_http_info(owner, id, name, **kwargs) return data
def get_form_context(self, obj, ns=None): """Return a dict: form instance, action button, submit url... Used by macro m_tags_form(entity) """ return { "url": url_for("entity_tags.edit", object_id=obj.id), "form": self.entity_tags_form(obj)(obj=obj, ns=ns), "buttons": [EDIT_BUTTON], }
Return a dict: form instance, action button, submit url... Used by macro m_tags_form(entity)
Below is the the instruction that describes the task: ### Input: Return a dict: form instance, action button, submit url... Used by macro m_tags_form(entity) ### Response: def get_form_context(self, obj, ns=None): """Return a dict: form instance, action button, submit url... Used by macro m_tags_form(entity) """ return { "url": url_for("entity_tags.edit", object_id=obj.id), "form": self.entity_tags_form(obj)(obj=obj, ns=ns), "buttons": [EDIT_BUTTON], }
def _drag_col(self, event): """Continue dragging a column""" x = self._dx + event.x # get dragged column new left x coordinate self._visual_drag.place_configure(x=x) # update column preview position # if one border of the dragged column is beyon the middle of the # neighboring column, swap them if (self._dragged_col_neighbor_widths[0] is not None and x < self._dragged_col_x - self._dragged_col_neighbor_widths[0] / 2): self._swap_columns('left') elif (self._dragged_col_neighbor_widths[1] is not None and x > self._dragged_col_x + self._dragged_col_neighbor_widths[1] / 2): self._swap_columns('right') # horizontal scrolling if the cursor reaches the side of the table if x < 0 and self.xview()[0] > 0: # scroll left and update dragged column x coordinate self.xview_scroll(-10, 'units') self._dragged_col_x += 10 elif x + self._dragged_col_width / 2 > self.winfo_width() and self.xview()[1] < 1: # scroll right and update dragged column x coordinate self.xview_scroll(10, 'units') self._dragged_col_x -= 10
Continue dragging a column
Below is the the instruction that describes the task: ### Input: Continue dragging a column ### Response: def _drag_col(self, event): """Continue dragging a column""" x = self._dx + event.x # get dragged column new left x coordinate self._visual_drag.place_configure(x=x) # update column preview position # if one border of the dragged column is beyon the middle of the # neighboring column, swap them if (self._dragged_col_neighbor_widths[0] is not None and x < self._dragged_col_x - self._dragged_col_neighbor_widths[0] / 2): self._swap_columns('left') elif (self._dragged_col_neighbor_widths[1] is not None and x > self._dragged_col_x + self._dragged_col_neighbor_widths[1] / 2): self._swap_columns('right') # horizontal scrolling if the cursor reaches the side of the table if x < 0 and self.xview()[0] > 0: # scroll left and update dragged column x coordinate self.xview_scroll(-10, 'units') self._dragged_col_x += 10 elif x + self._dragged_col_width / 2 > self.winfo_width() and self.xview()[1] < 1: # scroll right and update dragged column x coordinate self.xview_scroll(10, 'units') self._dragged_col_x -= 10
def _generate_cfgnode(self, cfg_job, current_function_addr): """ Generate a CFGNode that starts at `cfg_job.addr`. Since lifting machine code to IRSBs is slow, self._nodes is used as a cache of CFGNodes. If the current architecture is ARM, this method will try to lift the block in the mode specified by the address (determined by the parity of the address: even for ARM, odd for THUMB), and in case of decoding failures, try the other mode. If the basic block is successfully decoded in the other mode (different from the initial one), `addr` and `current_function_addr` are updated. :param CFGJob cfg_job: The CFGJob instance. :param int current_function_addr: Address of the current function. :return: A 4-tuple of (new address, new function address, CFGNode instance, IRSB object) :rtype: tuple """ addr = cfg_job.addr try: if addr in self._nodes: cfg_node = self._nodes[addr] irsb = cfg_node.irsb if cfg_node.function_address != current_function_addr: # the node has been assigned to another function before. # we should update the function address. current_function_addr = cfg_node.function_address return addr, current_function_addr, cfg_node, irsb is_x86_x64_arch = self.project.arch.name in ('X86', 'AMD64') if is_arm_arch(self.project.arch): real_addr = addr & (~1) else: real_addr = addr # if possible, check the distance between `addr` and the end of this section distance = VEX_IRSB_MAX_SIZE obj = self.project.loader.find_object_containing(addr, membership_check=False) if obj: # is there a section? has_executable_section = len([ sec for sec in obj.sections if sec.is_executable ]) > 0 # pylint:disable=len-as-condition section = self.project.loader.find_section_containing(addr) if has_executable_section and section is None: # the basic block should not exist here... return None, None, None, None if section is not None: if not section.is_executable: # the section is not executable... return None, None, None, None distance = section.vaddr + section.memsize - real_addr distance = min(distance, VEX_IRSB_MAX_SIZE) # TODO: handle segment information as well # also check the distance between `addr` and the closest function. # we don't want to have a basic block that spans across function boundaries next_func = self.functions.ceiling_func(addr + 1) if next_func is not None: distance_to_func = (next_func.addr & (~1) if is_arm_arch(self.project.arch) else next_func.addr) - real_addr if distance_to_func != 0: if distance is None: distance = distance_to_func else: distance = min(distance, distance_to_func) # in the end, check the distance between `addr` and the closest occupied region in segment list next_noncode_addr = self._seg_list.next_pos_with_sort_not_in(addr, { "code" }, max_distance=distance) if next_noncode_addr is not None: distance_to_noncode_addr = next_noncode_addr - addr distance = min(distance, distance_to_noncode_addr) # Let's try to create the pyvex IRSB directly, since it's much faster nodecode = False irsb = None irsb_string = None try: lifted_block = self._lift(addr, size=distance, opt_level=self._iropt_level, collect_data_refs=True) irsb = lifted_block.vex_nostmt irsb_string = lifted_block.bytes[:irsb.size] except SimTranslationError: nodecode = True if (nodecode or irsb.size == 0 or irsb.jumpkind == 'Ijk_NoDecode') and \ is_arm_arch(self.project.arch) and \ self._arch_options.switch_mode_on_nodecode: # maybe the current mode is wrong? nodecode = False if addr % 2 == 0: addr_0 = addr + 1 else: addr_0 = addr - 1 if addr_0 in self._nodes: # it has been analyzed before cfg_node = self._nodes[addr_0] irsb = cfg_node.irsb return addr_0, cfg_node.function_address, cfg_node, irsb try: lifted_block = self._lift(addr_0, size=distance, opt_level=self._iropt_level, collect_data_refs=True) irsb = lifted_block.vex_nostmt irsb_string = lifted_block.bytes[:irsb.size] except SimTranslationError: nodecode = True if not (nodecode or irsb.size == 0 or irsb.jumpkind == 'Ijk_NoDecode'): # it is decodeable if current_function_addr == addr: current_function_addr = addr_0 addr = addr_0 if nodecode or irsb.size == 0 or irsb.jumpkind == 'Ijk_NoDecode': # decoding error # we still occupy that location since it cannot be decoded anyways if irsb is None: irsb_size = 0 else: irsb_size = irsb.size # special handling for ud, ud1, and ud2 on x86 and x86-64 if is_x86_x64_arch \ and len(irsb_string) >= 2 \ and irsb_string[-2:] in { b'\x0f\xff', # ud0 b'\x0f\xb9', # ud1 b'\x0f\x0b', # ud2 }: # ud0, ud1, and ud2 are actually valid instructions. valid_ins = True nodecode_size = 2 else: valid_ins = False nodecode_size = 1 self._seg_list.occupy(addr, irsb_size, 'code') self._seg_list.occupy(addr + irsb_size, nodecode_size, 'nodecode') if not valid_ins: l.error("Decoding error occurred at address %#x of function %#x.", addr + irsb_size, current_function_addr ) return None, None, None, None is_thumb = False # Occupy the block in segment list if irsb.size > 0: if is_arm_arch(self.project.arch) and addr % 2 == 1: # thumb mode is_thumb=True self._seg_list.occupy(real_addr, irsb.size, "code") # Create a CFG node, and add it to the graph cfg_node = CFGNode(addr, irsb.size, self.model, function_address=current_function_addr, block_id=addr, irsb=irsb, thumb=is_thumb, byte_string=irsb_string, ) if self._cfb is not None: self._cfb.add_obj(addr, lifted_block) self._nodes[addr] = cfg_node self._nodes_by_addr[addr].append(cfg_node) return addr, current_function_addr, cfg_node, irsb except (SimMemoryError, SimEngineError): return None, None, None, None
Generate a CFGNode that starts at `cfg_job.addr`. Since lifting machine code to IRSBs is slow, self._nodes is used as a cache of CFGNodes. If the current architecture is ARM, this method will try to lift the block in the mode specified by the address (determined by the parity of the address: even for ARM, odd for THUMB), and in case of decoding failures, try the other mode. If the basic block is successfully decoded in the other mode (different from the initial one), `addr` and `current_function_addr` are updated. :param CFGJob cfg_job: The CFGJob instance. :param int current_function_addr: Address of the current function. :return: A 4-tuple of (new address, new function address, CFGNode instance, IRSB object) :rtype: tuple
Below is the the instruction that describes the task: ### Input: Generate a CFGNode that starts at `cfg_job.addr`. Since lifting machine code to IRSBs is slow, self._nodes is used as a cache of CFGNodes. If the current architecture is ARM, this method will try to lift the block in the mode specified by the address (determined by the parity of the address: even for ARM, odd for THUMB), and in case of decoding failures, try the other mode. If the basic block is successfully decoded in the other mode (different from the initial one), `addr` and `current_function_addr` are updated. :param CFGJob cfg_job: The CFGJob instance. :param int current_function_addr: Address of the current function. :return: A 4-tuple of (new address, new function address, CFGNode instance, IRSB object) :rtype: tuple ### Response: def _generate_cfgnode(self, cfg_job, current_function_addr): """ Generate a CFGNode that starts at `cfg_job.addr`. Since lifting machine code to IRSBs is slow, self._nodes is used as a cache of CFGNodes. If the current architecture is ARM, this method will try to lift the block in the mode specified by the address (determined by the parity of the address: even for ARM, odd for THUMB), and in case of decoding failures, try the other mode. If the basic block is successfully decoded in the other mode (different from the initial one), `addr` and `current_function_addr` are updated. :param CFGJob cfg_job: The CFGJob instance. :param int current_function_addr: Address of the current function. :return: A 4-tuple of (new address, new function address, CFGNode instance, IRSB object) :rtype: tuple """ addr = cfg_job.addr try: if addr in self._nodes: cfg_node = self._nodes[addr] irsb = cfg_node.irsb if cfg_node.function_address != current_function_addr: # the node has been assigned to another function before. # we should update the function address. current_function_addr = cfg_node.function_address return addr, current_function_addr, cfg_node, irsb is_x86_x64_arch = self.project.arch.name in ('X86', 'AMD64') if is_arm_arch(self.project.arch): real_addr = addr & (~1) else: real_addr = addr # if possible, check the distance between `addr` and the end of this section distance = VEX_IRSB_MAX_SIZE obj = self.project.loader.find_object_containing(addr, membership_check=False) if obj: # is there a section? has_executable_section = len([ sec for sec in obj.sections if sec.is_executable ]) > 0 # pylint:disable=len-as-condition section = self.project.loader.find_section_containing(addr) if has_executable_section and section is None: # the basic block should not exist here... return None, None, None, None if section is not None: if not section.is_executable: # the section is not executable... return None, None, None, None distance = section.vaddr + section.memsize - real_addr distance = min(distance, VEX_IRSB_MAX_SIZE) # TODO: handle segment information as well # also check the distance between `addr` and the closest function. # we don't want to have a basic block that spans across function boundaries next_func = self.functions.ceiling_func(addr + 1) if next_func is not None: distance_to_func = (next_func.addr & (~1) if is_arm_arch(self.project.arch) else next_func.addr) - real_addr if distance_to_func != 0: if distance is None: distance = distance_to_func else: distance = min(distance, distance_to_func) # in the end, check the distance between `addr` and the closest occupied region in segment list next_noncode_addr = self._seg_list.next_pos_with_sort_not_in(addr, { "code" }, max_distance=distance) if next_noncode_addr is not None: distance_to_noncode_addr = next_noncode_addr - addr distance = min(distance, distance_to_noncode_addr) # Let's try to create the pyvex IRSB directly, since it's much faster nodecode = False irsb = None irsb_string = None try: lifted_block = self._lift(addr, size=distance, opt_level=self._iropt_level, collect_data_refs=True) irsb = lifted_block.vex_nostmt irsb_string = lifted_block.bytes[:irsb.size] except SimTranslationError: nodecode = True if (nodecode or irsb.size == 0 or irsb.jumpkind == 'Ijk_NoDecode') and \ is_arm_arch(self.project.arch) and \ self._arch_options.switch_mode_on_nodecode: # maybe the current mode is wrong? nodecode = False if addr % 2 == 0: addr_0 = addr + 1 else: addr_0 = addr - 1 if addr_0 in self._nodes: # it has been analyzed before cfg_node = self._nodes[addr_0] irsb = cfg_node.irsb return addr_0, cfg_node.function_address, cfg_node, irsb try: lifted_block = self._lift(addr_0, size=distance, opt_level=self._iropt_level, collect_data_refs=True) irsb = lifted_block.vex_nostmt irsb_string = lifted_block.bytes[:irsb.size] except SimTranslationError: nodecode = True if not (nodecode or irsb.size == 0 or irsb.jumpkind == 'Ijk_NoDecode'): # it is decodeable if current_function_addr == addr: current_function_addr = addr_0 addr = addr_0 if nodecode or irsb.size == 0 or irsb.jumpkind == 'Ijk_NoDecode': # decoding error # we still occupy that location since it cannot be decoded anyways if irsb is None: irsb_size = 0 else: irsb_size = irsb.size # special handling for ud, ud1, and ud2 on x86 and x86-64 if is_x86_x64_arch \ and len(irsb_string) >= 2 \ and irsb_string[-2:] in { b'\x0f\xff', # ud0 b'\x0f\xb9', # ud1 b'\x0f\x0b', # ud2 }: # ud0, ud1, and ud2 are actually valid instructions. valid_ins = True nodecode_size = 2 else: valid_ins = False nodecode_size = 1 self._seg_list.occupy(addr, irsb_size, 'code') self._seg_list.occupy(addr + irsb_size, nodecode_size, 'nodecode') if not valid_ins: l.error("Decoding error occurred at address %#x of function %#x.", addr + irsb_size, current_function_addr ) return None, None, None, None is_thumb = False # Occupy the block in segment list if irsb.size > 0: if is_arm_arch(self.project.arch) and addr % 2 == 1: # thumb mode is_thumb=True self._seg_list.occupy(real_addr, irsb.size, "code") # Create a CFG node, and add it to the graph cfg_node = CFGNode(addr, irsb.size, self.model, function_address=current_function_addr, block_id=addr, irsb=irsb, thumb=is_thumb, byte_string=irsb_string, ) if self._cfb is not None: self._cfb.add_obj(addr, lifted_block) self._nodes[addr] = cfg_node self._nodes_by_addr[addr].append(cfg_node) return addr, current_function_addr, cfg_node, irsb except (SimMemoryError, SimEngineError): return None, None, None, None
def payload_element_name(element_name): """Class decorator generator for decorationg `StanzaPayload` subclasses. :Parameters: - `element_name`: XML element qname handled by the class :Types: - `element_name`: `unicode` """ def decorator(klass): """The payload_element_name decorator.""" # pylint: disable-msg=W0212,W0404 from .stanzapayload import STANZA_PAYLOAD_CLASSES from .stanzapayload import STANZA_PAYLOAD_ELEMENTS if hasattr(klass, "_pyxmpp_payload_element_name"): klass._pyxmpp_payload_element_name.append(element_name) else: klass._pyxmpp_payload_element_name = [element_name] if element_name in STANZA_PAYLOAD_CLASSES: logger = logging.getLogger('pyxmpp.payload_element_name') logger.warning("Overriding payload class for {0!r}".format( element_name)) STANZA_PAYLOAD_CLASSES[element_name] = klass STANZA_PAYLOAD_ELEMENTS[klass].append(element_name) return klass return decorator
Class decorator generator for decorationg `StanzaPayload` subclasses. :Parameters: - `element_name`: XML element qname handled by the class :Types: - `element_name`: `unicode`
Below is the the instruction that describes the task: ### Input: Class decorator generator for decorationg `StanzaPayload` subclasses. :Parameters: - `element_name`: XML element qname handled by the class :Types: - `element_name`: `unicode` ### Response: def payload_element_name(element_name): """Class decorator generator for decorationg `StanzaPayload` subclasses. :Parameters: - `element_name`: XML element qname handled by the class :Types: - `element_name`: `unicode` """ def decorator(klass): """The payload_element_name decorator.""" # pylint: disable-msg=W0212,W0404 from .stanzapayload import STANZA_PAYLOAD_CLASSES from .stanzapayload import STANZA_PAYLOAD_ELEMENTS if hasattr(klass, "_pyxmpp_payload_element_name"): klass._pyxmpp_payload_element_name.append(element_name) else: klass._pyxmpp_payload_element_name = [element_name] if element_name in STANZA_PAYLOAD_CLASSES: logger = logging.getLogger('pyxmpp.payload_element_name') logger.warning("Overriding payload class for {0!r}".format( element_name)) STANZA_PAYLOAD_CLASSES[element_name] = klass STANZA_PAYLOAD_ELEMENTS[klass].append(element_name) return klass return decorator
def _chi_lr(self,r, phi, nl,nr,beta): """ computes the generalized polar basis function in the convention of Massey&Refregier eqn 8 :param nl: left basis :type nl: int :param nr: right basis :type nr: int :param beta: beta --the characteristic scale typically choosen to be close to the size of the object. :type beta: float. :param coord: coordinates [r,phi] :type coord: array(n,2) :returns: values at positions of coordinates. :raises: AttributeError, KeyError """ m=int((nr-nl).real) n=int((nr+nl).real) p=int((n-abs(m))/2) p2=int((n+abs(m))/2) q=int(abs(m)) if p % 2==0: #if p is even prefac=1 else: prefac=-1 prefactor=prefac/beta**(abs(m)+1)*np.sqrt(math.factorial(p)/(np.pi*math.factorial(p2))) poly=self.poly[p][q] return prefactor*r**q*poly((r/beta)**2)*np.exp(-(r/beta)**2/2)*np.exp(-1j*m*phi)
computes the generalized polar basis function in the convention of Massey&Refregier eqn 8 :param nl: left basis :type nl: int :param nr: right basis :type nr: int :param beta: beta --the characteristic scale typically choosen to be close to the size of the object. :type beta: float. :param coord: coordinates [r,phi] :type coord: array(n,2) :returns: values at positions of coordinates. :raises: AttributeError, KeyError
Below is the the instruction that describes the task: ### Input: computes the generalized polar basis function in the convention of Massey&Refregier eqn 8 :param nl: left basis :type nl: int :param nr: right basis :type nr: int :param beta: beta --the characteristic scale typically choosen to be close to the size of the object. :type beta: float. :param coord: coordinates [r,phi] :type coord: array(n,2) :returns: values at positions of coordinates. :raises: AttributeError, KeyError ### Response: def _chi_lr(self,r, phi, nl,nr,beta): """ computes the generalized polar basis function in the convention of Massey&Refregier eqn 8 :param nl: left basis :type nl: int :param nr: right basis :type nr: int :param beta: beta --the characteristic scale typically choosen to be close to the size of the object. :type beta: float. :param coord: coordinates [r,phi] :type coord: array(n,2) :returns: values at positions of coordinates. :raises: AttributeError, KeyError """ m=int((nr-nl).real) n=int((nr+nl).real) p=int((n-abs(m))/2) p2=int((n+abs(m))/2) q=int(abs(m)) if p % 2==0: #if p is even prefac=1 else: prefac=-1 prefactor=prefac/beta**(abs(m)+1)*np.sqrt(math.factorial(p)/(np.pi*math.factorial(p2))) poly=self.poly[p][q] return prefactor*r**q*poly((r/beta)**2)*np.exp(-(r/beta)**2/2)*np.exp(-1j*m*phi)
def set_widgets(self): """Set widgets on the LayerMode tab.""" self.clear_further_steps() # Set widgets self.lblBandSelector.setText(tr( 'Please select which band that contains the data that you want to ' 'use for this layer.')) self.lstBands.clear() band_num = self.parent.layer.bandCount() for i in range(band_num): item = QListWidgetItem( self.parent.layer.bandName(i + 1), self.lstBands) item.setData(QtCore.Qt.UserRole, i + 1) self.lstBands.addItem(item) existing_band = self.parent.get_existing_keyword('active_band') if existing_band: self.lstBands.setCurrentRow(existing_band - 1) else: # Set to Band 1 / index 0 self.lstBands.setCurrentRow(0)
Set widgets on the LayerMode tab.
Below is the the instruction that describes the task: ### Input: Set widgets on the LayerMode tab. ### Response: def set_widgets(self): """Set widgets on the LayerMode tab.""" self.clear_further_steps() # Set widgets self.lblBandSelector.setText(tr( 'Please select which band that contains the data that you want to ' 'use for this layer.')) self.lstBands.clear() band_num = self.parent.layer.bandCount() for i in range(band_num): item = QListWidgetItem( self.parent.layer.bandName(i + 1), self.lstBands) item.setData(QtCore.Qt.UserRole, i + 1) self.lstBands.addItem(item) existing_band = self.parent.get_existing_keyword('active_band') if existing_band: self.lstBands.setCurrentRow(existing_band - 1) else: # Set to Band 1 / index 0 self.lstBands.setCurrentRow(0)
def get_instance(self, payload): """ Build an instance of EngagementInstance :param dict payload: Payload response from the API :returns: twilio.rest.studio.v1.flow.engagement.EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementInstance """ return EngagementInstance(self._version, payload, flow_sid=self._solution['flow_sid'], )
Build an instance of EngagementInstance :param dict payload: Payload response from the API :returns: twilio.rest.studio.v1.flow.engagement.EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementInstance
Below is the the instruction that describes the task: ### Input: Build an instance of EngagementInstance :param dict payload: Payload response from the API :returns: twilio.rest.studio.v1.flow.engagement.EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementInstance ### Response: def get_instance(self, payload): """ Build an instance of EngagementInstance :param dict payload: Payload response from the API :returns: twilio.rest.studio.v1.flow.engagement.EngagementInstance :rtype: twilio.rest.studio.v1.flow.engagement.EngagementInstance """ return EngagementInstance(self._version, payload, flow_sid=self._solution['flow_sid'], )
def process_values(self): """Takes a set of angles and converts them to the x,y,z coordinates in the internal prepresentation of the class, ready for plotting. :param vals: the values that are being modelled.""" if self.padding>0: channels = np.zeros((self.vals.shape[0], self.vals.shape[1]+self.padding)) channels[:, 0:self.vals.shape[0]] = self.vals else: channels = self.vals vals_mat = self.skel.to_xyz(channels.flatten()) self.vals = np.zeros_like(vals_mat) # Flip the Y and Z axes self.vals[:, 0] = vals_mat[:, 0].copy() self.vals[:, 1] = vals_mat[:, 2].copy() self.vals[:, 2] = vals_mat[:, 1].copy()
Takes a set of angles and converts them to the x,y,z coordinates in the internal prepresentation of the class, ready for plotting. :param vals: the values that are being modelled.
Below is the the instruction that describes the task: ### Input: Takes a set of angles and converts them to the x,y,z coordinates in the internal prepresentation of the class, ready for plotting. :param vals: the values that are being modelled. ### Response: def process_values(self): """Takes a set of angles and converts them to the x,y,z coordinates in the internal prepresentation of the class, ready for plotting. :param vals: the values that are being modelled.""" if self.padding>0: channels = np.zeros((self.vals.shape[0], self.vals.shape[1]+self.padding)) channels[:, 0:self.vals.shape[0]] = self.vals else: channels = self.vals vals_mat = self.skel.to_xyz(channels.flatten()) self.vals = np.zeros_like(vals_mat) # Flip the Y and Z axes self.vals[:, 0] = vals_mat[:, 0].copy() self.vals[:, 1] = vals_mat[:, 2].copy() self.vals[:, 2] = vals_mat[:, 1].copy()
def import_styles(self, subs, overwrite=True): """ Merge in styles from other SSAFile. Arguments: subs (SSAFile): Subtitle file imported from. overwrite (bool): On name conflict, use style from the other file (default: True). """ if not isinstance(subs, SSAFile): raise TypeError("Must supply an SSAFile.") for name, style in subs.styles.items(): if name not in self.styles or overwrite: self.styles[name] = style
Merge in styles from other SSAFile. Arguments: subs (SSAFile): Subtitle file imported from. overwrite (bool): On name conflict, use style from the other file (default: True).
Below is the the instruction that describes the task: ### Input: Merge in styles from other SSAFile. Arguments: subs (SSAFile): Subtitle file imported from. overwrite (bool): On name conflict, use style from the other file (default: True). ### Response: def import_styles(self, subs, overwrite=True): """ Merge in styles from other SSAFile. Arguments: subs (SSAFile): Subtitle file imported from. overwrite (bool): On name conflict, use style from the other file (default: True). """ if not isinstance(subs, SSAFile): raise TypeError("Must supply an SSAFile.") for name, style in subs.styles.items(): if name not in self.styles or overwrite: self.styles[name] = style
def bytes(self, count): """Returns a bytearray of length `count`. Works unaligned.""" if count < 0: raise ValueError # fast path if self._bits == 0: data = self._fileobj.read(count) if len(data) != count: raise BitReaderError("not enough data") return data return bytes(bytearray(self.bits(8) for _ in xrange(count)))
Returns a bytearray of length `count`. Works unaligned.
Below is the the instruction that describes the task: ### Input: Returns a bytearray of length `count`. Works unaligned. ### Response: def bytes(self, count): """Returns a bytearray of length `count`. Works unaligned.""" if count < 0: raise ValueError # fast path if self._bits == 0: data = self._fileobj.read(count) if len(data) != count: raise BitReaderError("not enough data") return data return bytes(bytearray(self.bits(8) for _ in xrange(count)))
def obfn_cns(self): r"""Compute constraint violation measure :math:`\| P(\mathbf{y}) - \mathbf{y}\|_2`. """ Y = self.obfn_gvar() return np.linalg.norm((self.Pcn(Y) - Y))
r"""Compute constraint violation measure :math:`\| P(\mathbf{y}) - \mathbf{y}\|_2`.
Below is the the instruction that describes the task: ### Input: r"""Compute constraint violation measure :math:`\| P(\mathbf{y}) - \mathbf{y}\|_2`. ### Response: def obfn_cns(self): r"""Compute constraint violation measure :math:`\| P(\mathbf{y}) - \mathbf{y}\|_2`. """ Y = self.obfn_gvar() return np.linalg.norm((self.Pcn(Y) - Y))
def add_module(self, ref, text, format=None, expect_modulename=None, expect_revision=None, expect_failure_error=True): """Parse a module text and add the module data to the context `ref` is a string which is used to identify the source of the text for the user. used in error messages `text` is the raw text data `format` is one of 'yang' or 'yin'. Returns the parsed and validated module on success, and None on error. """ if format == None: format = util.guess_format(text) if format == 'yin': p = yin_parser.YinParser() else: p = yang_parser.YangParser() module = p.parse(self, ref, text) if module is None: return None if expect_modulename is not None: if not re.match(syntax.re_identifier, expect_modulename): error.err_add(self.errors, module.pos, 'FILENAME_BAD_MODULE_NAME', (ref, expect_modulename, syntax.identifier)) elif expect_modulename != module.arg: if expect_failure_error: error.err_add(self.errors, module.pos, 'BAD_MODULE_NAME', (module.arg, ref, expect_modulename)) return None else: error.err_add(self.errors, module.pos, 'WBAD_MODULE_NAME', (module.arg, ref, expect_modulename)) latest_rev = util.get_latest_revision(module) if expect_revision is not None: if not re.match(syntax.re_date, expect_revision): error.err_add(self.errors, module.pos, 'FILENAME_BAD_REVISION', (ref, expect_revision, 'YYYY-MM-DD')) elif expect_revision != latest_rev: if expect_failure_error: error.err_add(self.errors, module.pos, 'BAD_REVISION', (latest_rev, ref, expect_revision)) return None else: error.err_add(self.errors, module.pos, 'WBAD_REVISION', (latest_rev, ref, expect_revision)) if module.arg not in self.revs: self.revs[module.arg] = [] revs = self.revs[module.arg] revs.append((latest_rev, None)) return self.add_parsed_module(module)
Parse a module text and add the module data to the context `ref` is a string which is used to identify the source of the text for the user. used in error messages `text` is the raw text data `format` is one of 'yang' or 'yin'. Returns the parsed and validated module on success, and None on error.
Below is the the instruction that describes the task: ### Input: Parse a module text and add the module data to the context `ref` is a string which is used to identify the source of the text for the user. used in error messages `text` is the raw text data `format` is one of 'yang' or 'yin'. Returns the parsed and validated module on success, and None on error. ### Response: def add_module(self, ref, text, format=None, expect_modulename=None, expect_revision=None, expect_failure_error=True): """Parse a module text and add the module data to the context `ref` is a string which is used to identify the source of the text for the user. used in error messages `text` is the raw text data `format` is one of 'yang' or 'yin'. Returns the parsed and validated module on success, and None on error. """ if format == None: format = util.guess_format(text) if format == 'yin': p = yin_parser.YinParser() else: p = yang_parser.YangParser() module = p.parse(self, ref, text) if module is None: return None if expect_modulename is not None: if not re.match(syntax.re_identifier, expect_modulename): error.err_add(self.errors, module.pos, 'FILENAME_BAD_MODULE_NAME', (ref, expect_modulename, syntax.identifier)) elif expect_modulename != module.arg: if expect_failure_error: error.err_add(self.errors, module.pos, 'BAD_MODULE_NAME', (module.arg, ref, expect_modulename)) return None else: error.err_add(self.errors, module.pos, 'WBAD_MODULE_NAME', (module.arg, ref, expect_modulename)) latest_rev = util.get_latest_revision(module) if expect_revision is not None: if not re.match(syntax.re_date, expect_revision): error.err_add(self.errors, module.pos, 'FILENAME_BAD_REVISION', (ref, expect_revision, 'YYYY-MM-DD')) elif expect_revision != latest_rev: if expect_failure_error: error.err_add(self.errors, module.pos, 'BAD_REVISION', (latest_rev, ref, expect_revision)) return None else: error.err_add(self.errors, module.pos, 'WBAD_REVISION', (latest_rev, ref, expect_revision)) if module.arg not in self.revs: self.revs[module.arg] = [] revs = self.revs[module.arg] revs.append((latest_rev, None)) return self.add_parsed_module(module)
def _strip_tag(tree, tag): """ Remove all tags that have the tag name ``tag`` """ for el in tree.iter(): if el.tag == tag: el.getparent().remove(el)
Remove all tags that have the tag name ``tag``
Below is the the instruction that describes the task: ### Input: Remove all tags that have the tag name ``tag`` ### Response: def _strip_tag(tree, tag): """ Remove all tags that have the tag name ``tag`` """ for el in tree.iter(): if el.tag == tag: el.getparent().remove(el)
def writeProxy(self, obj): """ Encodes a proxied object to the stream. @since: 0.6 """ proxy = self.context.getProxyForObject(obj) self.writeObject(proxy, is_proxy=True)
Encodes a proxied object to the stream. @since: 0.6
Below is the the instruction that describes the task: ### Input: Encodes a proxied object to the stream. @since: 0.6 ### Response: def writeProxy(self, obj): """ Encodes a proxied object to the stream. @since: 0.6 """ proxy = self.context.getProxyForObject(obj) self.writeObject(proxy, is_proxy=True)
def add_option(self, parser): """ Add option group and all children options. """ group = parser.add_argument_group(self.name) for stat in self.stats: stat.add_option(group) group.add_argument( "--{0}".format(self.option), action="store_true", help="All above")
Add option group and all children options.
Below is the the instruction that describes the task: ### Input: Add option group and all children options. ### Response: def add_option(self, parser): """ Add option group and all children options. """ group = parser.add_argument_group(self.name) for stat in self.stats: stat.add_option(group) group.add_argument( "--{0}".format(self.option), action="store_true", help="All above")
def add_wikilink(self, title, href, **attrs): """ Add a Wiki link to the project and returns a :class:`WikiLink` object. :param title: title of the :class:`WikiLink` :param href: href of the :class:`WikiLink` :param attrs: optional attributes for :class:`WikiLink` """ return WikiLinks(self.requester).create(self.id, title, href, **attrs)
Add a Wiki link to the project and returns a :class:`WikiLink` object. :param title: title of the :class:`WikiLink` :param href: href of the :class:`WikiLink` :param attrs: optional attributes for :class:`WikiLink`
Below is the the instruction that describes the task: ### Input: Add a Wiki link to the project and returns a :class:`WikiLink` object. :param title: title of the :class:`WikiLink` :param href: href of the :class:`WikiLink` :param attrs: optional attributes for :class:`WikiLink` ### Response: def add_wikilink(self, title, href, **attrs): """ Add a Wiki link to the project and returns a :class:`WikiLink` object. :param title: title of the :class:`WikiLink` :param href: href of the :class:`WikiLink` :param attrs: optional attributes for :class:`WikiLink` """ return WikiLinks(self.requester).create(self.id, title, href, **attrs)
def get_historical_klines(symbol, interval, start_str, end_str=None): """Get Historical Klines from Binance See dateparse docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/ If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC" :param symbol: Name of symbol pair e.g BNBBTC :type symbol: str :param interval: Biannce Kline interval :type interval: str :param start_str: Start date string in UTC format :type start_str: str :param end_str: optional - end date string in UTC format :type end_str: str :return: list of OHLCV values """ # create the Binance client, no need for api key client = Client("", "") # init our list output_data = [] # setup the max limit limit = 500 # convert interval to useful value in seconds timeframe = interval_to_milliseconds(interval) # convert our date strings to milliseconds start_ts = date_to_milliseconds(start_str) # if an end time was passed convert it end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) idx = 0 # it can be difficult to know when a symbol was listed on Binance so allow start time to be before list date symbol_existed = False while True: # fetch the klines from start_ts up to max 500 entries or the end_ts if set temp_data = client.get_klines( symbol=symbol, interval=interval, limit=limit, startTime=start_ts, endTime=end_ts ) # handle the case where our start date is before the symbol pair listed on Binance if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: # append this loops data to our output data output_data += temp_data # update our start timestamp using the last value in the array and add the interval timeframe start_ts = temp_data[len(temp_data) - 1][0] + timeframe else: # it wasn't listed yet, increment our start date start_ts += timeframe idx += 1 # check if we received less than the required limit and exit the loop if len(temp_data) < limit: # exit the while loop break # sleep after every 3rd call to be kind to the API if idx % 3 == 0: time.sleep(1) return output_data
Get Historical Klines from Binance See dateparse docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/ If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC" :param symbol: Name of symbol pair e.g BNBBTC :type symbol: str :param interval: Biannce Kline interval :type interval: str :param start_str: Start date string in UTC format :type start_str: str :param end_str: optional - end date string in UTC format :type end_str: str :return: list of OHLCV values
Below is the the instruction that describes the task: ### Input: Get Historical Klines from Binance See dateparse docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/ If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC" :param symbol: Name of symbol pair e.g BNBBTC :type symbol: str :param interval: Biannce Kline interval :type interval: str :param start_str: Start date string in UTC format :type start_str: str :param end_str: optional - end date string in UTC format :type end_str: str :return: list of OHLCV values ### Response: def get_historical_klines(symbol, interval, start_str, end_str=None): """Get Historical Klines from Binance See dateparse docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/ If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC" :param symbol: Name of symbol pair e.g BNBBTC :type symbol: str :param interval: Biannce Kline interval :type interval: str :param start_str: Start date string in UTC format :type start_str: str :param end_str: optional - end date string in UTC format :type end_str: str :return: list of OHLCV values """ # create the Binance client, no need for api key client = Client("", "") # init our list output_data = [] # setup the max limit limit = 500 # convert interval to useful value in seconds timeframe = interval_to_milliseconds(interval) # convert our date strings to milliseconds start_ts = date_to_milliseconds(start_str) # if an end time was passed convert it end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) idx = 0 # it can be difficult to know when a symbol was listed on Binance so allow start time to be before list date symbol_existed = False while True: # fetch the klines from start_ts up to max 500 entries or the end_ts if set temp_data = client.get_klines( symbol=symbol, interval=interval, limit=limit, startTime=start_ts, endTime=end_ts ) # handle the case where our start date is before the symbol pair listed on Binance if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: # append this loops data to our output data output_data += temp_data # update our start timestamp using the last value in the array and add the interval timeframe start_ts = temp_data[len(temp_data) - 1][0] + timeframe else: # it wasn't listed yet, increment our start date start_ts += timeframe idx += 1 # check if we received less than the required limit and exit the loop if len(temp_data) < limit: # exit the while loop break # sleep after every 3rd call to be kind to the API if idx % 3 == 0: time.sleep(1) return output_data
def ReadHuntLogEntries(self, hunt_id, offset, count, with_substring=None, cursor=None): """Reads hunt log entries of a given hunt using given query options.""" hunt_id_int = db_utils.HuntIDToInt(hunt_id) query = ("SELECT client_id, flow_id, message, UNIX_TIMESTAMP(timestamp) " "FROM flow_log_entries " "FORCE INDEX(flow_log_entries_by_hunt) " "WHERE hunt_id = %s AND flow_id = hunt_id ") args = [hunt_id_int] if with_substring is not None: query += "AND message LIKE %s " args.append("%" + db_utils.EscapeWildcards(with_substring) + "%") query += "ORDER BY timestamp ASC LIMIT %s OFFSET %s" args.append(count) args.append(offset) cursor.execute(query, args) flow_log_entries = [] for client_id_int, flow_id_int, message, timestamp in cursor.fetchall(): flow_log_entries.append( rdf_flow_objects.FlowLogEntry( client_id=db_utils.IntToClientID(client_id_int), flow_id=db_utils.IntToFlowID(flow_id_int), hunt_id=hunt_id, message=message, timestamp=mysql_utils.TimestampToRDFDatetime(timestamp))) return flow_log_entries
Reads hunt log entries of a given hunt using given query options.
Below is the the instruction that describes the task: ### Input: Reads hunt log entries of a given hunt using given query options. ### Response: def ReadHuntLogEntries(self, hunt_id, offset, count, with_substring=None, cursor=None): """Reads hunt log entries of a given hunt using given query options.""" hunt_id_int = db_utils.HuntIDToInt(hunt_id) query = ("SELECT client_id, flow_id, message, UNIX_TIMESTAMP(timestamp) " "FROM flow_log_entries " "FORCE INDEX(flow_log_entries_by_hunt) " "WHERE hunt_id = %s AND flow_id = hunt_id ") args = [hunt_id_int] if with_substring is not None: query += "AND message LIKE %s " args.append("%" + db_utils.EscapeWildcards(with_substring) + "%") query += "ORDER BY timestamp ASC LIMIT %s OFFSET %s" args.append(count) args.append(offset) cursor.execute(query, args) flow_log_entries = [] for client_id_int, flow_id_int, message, timestamp in cursor.fetchall(): flow_log_entries.append( rdf_flow_objects.FlowLogEntry( client_id=db_utils.IntToClientID(client_id_int), flow_id=db_utils.IntToFlowID(flow_id_int), hunt_id=hunt_id, message=message, timestamp=mysql_utils.TimestampToRDFDatetime(timestamp))) return flow_log_entries
def _list_dir(self, path): """returns absolute paths for all entries in a directory""" try: elements = [ os.path.join(path, x) for x in os.listdir(path) ] if os.path.isdir(path) else [] elements.sort() except OSError: elements = None return elements
returns absolute paths for all entries in a directory
Below is the the instruction that describes the task: ### Input: returns absolute paths for all entries in a directory ### Response: def _list_dir(self, path): """returns absolute paths for all entries in a directory""" try: elements = [ os.path.join(path, x) for x in os.listdir(path) ] if os.path.isdir(path) else [] elements.sort() except OSError: elements = None return elements
def clone(self, _, scene): """ Create a clone of this Frame into a new Screen. :param _: ignored. :param scene: The new Scene object to clone into. """ # Assume that the application creates a new set of Frames and so we need to match up the # data from the old object to the new (using the name). if self._name is not None: for effect in scene.effects: if isinstance(effect, Frame): if effect._name == self._name: effect.data = self.data for layout in self._layouts: layout.update_widgets(new_frame=effect)
Create a clone of this Frame into a new Screen. :param _: ignored. :param scene: The new Scene object to clone into.
Below is the the instruction that describes the task: ### Input: Create a clone of this Frame into a new Screen. :param _: ignored. :param scene: The new Scene object to clone into. ### Response: def clone(self, _, scene): """ Create a clone of this Frame into a new Screen. :param _: ignored. :param scene: The new Scene object to clone into. """ # Assume that the application creates a new set of Frames and so we need to match up the # data from the old object to the new (using the name). if self._name is not None: for effect in scene.effects: if isinstance(effect, Frame): if effect._name == self._name: effect.data = self.data for layout in self._layouts: layout.update_widgets(new_frame=effect)
def update_plan(self, updated_plan, project, id): """UpdatePlan. Update the information for the specified plan :param :class:`<UpdatePlan> <azure.devops.v5_0.work.models.UpdatePlan>` updated_plan: Plan definition to be updated :param str project: Project ID or project name :param str id: Identifier of the plan :rtype: :class:`<Plan> <azure.devops.v5_0.work.models.Plan>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if id is not None: route_values['id'] = self._serialize.url('id', id, 'str') content = self._serialize.body(updated_plan, 'UpdatePlan') response = self._send(http_method='PUT', location_id='0b42cb47-cd73-4810-ac90-19c9ba147453', version='5.0', route_values=route_values, content=content) return self._deserialize('Plan', response)
UpdatePlan. Update the information for the specified plan :param :class:`<UpdatePlan> <azure.devops.v5_0.work.models.UpdatePlan>` updated_plan: Plan definition to be updated :param str project: Project ID or project name :param str id: Identifier of the plan :rtype: :class:`<Plan> <azure.devops.v5_0.work.models.Plan>`
Below is the the instruction that describes the task: ### Input: UpdatePlan. Update the information for the specified plan :param :class:`<UpdatePlan> <azure.devops.v5_0.work.models.UpdatePlan>` updated_plan: Plan definition to be updated :param str project: Project ID or project name :param str id: Identifier of the plan :rtype: :class:`<Plan> <azure.devops.v5_0.work.models.Plan>` ### Response: def update_plan(self, updated_plan, project, id): """UpdatePlan. Update the information for the specified plan :param :class:`<UpdatePlan> <azure.devops.v5_0.work.models.UpdatePlan>` updated_plan: Plan definition to be updated :param str project: Project ID or project name :param str id: Identifier of the plan :rtype: :class:`<Plan> <azure.devops.v5_0.work.models.Plan>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if id is not None: route_values['id'] = self._serialize.url('id', id, 'str') content = self._serialize.body(updated_plan, 'UpdatePlan') response = self._send(http_method='PUT', location_id='0b42cb47-cd73-4810-ac90-19c9ba147453', version='5.0', route_values=route_values, content=content) return self._deserialize('Plan', response)
def save_and_validate_logo(logo_stream, logo_filename, community_id): """Validate if communities logo is in limit size and save it.""" cfg = current_app.config logos_bucket_id = cfg['COMMUNITIES_BUCKET_UUID'] logo_max_size = cfg['COMMUNITIES_LOGO_MAX_SIZE'] logos_bucket = Bucket.query.get(logos_bucket_id) ext = os.path.splitext(logo_filename)[1] ext = ext[1:] if ext.startswith('.') else ext logo_stream.seek(SEEK_SET, SEEK_END) # Seek from beginning to end logo_size = logo_stream.tell() if logo_size > logo_max_size: return None if ext in cfg['COMMUNITIES_LOGO_EXTENSIONS']: key = "{0}/logo.{1}".format(community_id, ext) logo_stream.seek(0) # Rewind the stream to the beginning ObjectVersion.create(logos_bucket, key, stream=logo_stream, size=logo_size) return ext else: return None
Validate if communities logo is in limit size and save it.
Below is the the instruction that describes the task: ### Input: Validate if communities logo is in limit size and save it. ### Response: def save_and_validate_logo(logo_stream, logo_filename, community_id): """Validate if communities logo is in limit size and save it.""" cfg = current_app.config logos_bucket_id = cfg['COMMUNITIES_BUCKET_UUID'] logo_max_size = cfg['COMMUNITIES_LOGO_MAX_SIZE'] logos_bucket = Bucket.query.get(logos_bucket_id) ext = os.path.splitext(logo_filename)[1] ext = ext[1:] if ext.startswith('.') else ext logo_stream.seek(SEEK_SET, SEEK_END) # Seek from beginning to end logo_size = logo_stream.tell() if logo_size > logo_max_size: return None if ext in cfg['COMMUNITIES_LOGO_EXTENSIONS']: key = "{0}/logo.{1}".format(community_id, ext) logo_stream.seek(0) # Rewind the stream to the beginning ObjectVersion.create(logos_bucket, key, stream=logo_stream, size=logo_size) return ext else: return None
def Reset(self): """Resets the internal state of the analyzer.""" hasher_names = hashers_manager.HashersManager.GetHasherNamesFromString( self._hasher_names_string) self._hashers = hashers_manager.HashersManager.GetHashers(hasher_names)
Resets the internal state of the analyzer.
Below is the the instruction that describes the task: ### Input: Resets the internal state of the analyzer. ### Response: def Reset(self): """Resets the internal state of the analyzer.""" hasher_names = hashers_manager.HashersManager.GetHasherNamesFromString( self._hasher_names_string) self._hashers = hashers_manager.HashersManager.GetHashers(hasher_names)
def fetch(url, dest, force=False): """Retrieve data from an url and store it into dest. Parameters ---------- url: str Link to the remote data dest: str Path where the file must be stored force: bool (default=False) Overwrite if the file exists Returns ------- cached: bool True if the file already exists dest: str The same string of the parameter """ cached = True if force or not os.path.exists(dest): cached = False r = requests.get(url, stream=True) if r.status_code == 200: with open(dest, 'wb') as f: for chunk in r.iter_content(1024): f.write(chunk) return cached, dest
Retrieve data from an url and store it into dest. Parameters ---------- url: str Link to the remote data dest: str Path where the file must be stored force: bool (default=False) Overwrite if the file exists Returns ------- cached: bool True if the file already exists dest: str The same string of the parameter
Below is the the instruction that describes the task: ### Input: Retrieve data from an url and store it into dest. Parameters ---------- url: str Link to the remote data dest: str Path where the file must be stored force: bool (default=False) Overwrite if the file exists Returns ------- cached: bool True if the file already exists dest: str The same string of the parameter ### Response: def fetch(url, dest, force=False): """Retrieve data from an url and store it into dest. Parameters ---------- url: str Link to the remote data dest: str Path where the file must be stored force: bool (default=False) Overwrite if the file exists Returns ------- cached: bool True if the file already exists dest: str The same string of the parameter """ cached = True if force or not os.path.exists(dest): cached = False r = requests.get(url, stream=True) if r.status_code == 200: with open(dest, 'wb') as f: for chunk in r.iter_content(1024): f.write(chunk) return cached, dest
def blocks2numList(blocks, n): """inverse function of numList2blocks.""" toProcess = copy.copy(blocks) returnList = [] for numBlock in toProcess: inner = [] for i in range(0, n): inner.append(numBlock % 256) numBlock >>= 8 inner.reverse() returnList.extend(inner) return returnList
inverse function of numList2blocks.
Below is the the instruction that describes the task: ### Input: inverse function of numList2blocks. ### Response: def blocks2numList(blocks, n): """inverse function of numList2blocks.""" toProcess = copy.copy(blocks) returnList = [] for numBlock in toProcess: inner = [] for i in range(0, n): inner.append(numBlock % 256) numBlock >>= 8 inner.reverse() returnList.extend(inner) return returnList
def move_datetime_week(dt, direction, num_shifts): """ Move datetime 1 week in the chosen direction. unit is a no-op, to keep the API the same as the day case """ delta = relativedelta(weeks=+num_shifts) return _move_datetime(dt, direction, delta)
Move datetime 1 week in the chosen direction. unit is a no-op, to keep the API the same as the day case
Below is the the instruction that describes the task: ### Input: Move datetime 1 week in the chosen direction. unit is a no-op, to keep the API the same as the day case ### Response: def move_datetime_week(dt, direction, num_shifts): """ Move datetime 1 week in the chosen direction. unit is a no-op, to keep the API the same as the day case """ delta = relativedelta(weeks=+num_shifts) return _move_datetime(dt, direction, delta)
def validate_response_type(self, client_id, response_type, client, request, *args, **kwargs): """Ensure client is authorized to use the response type requested. It will allow any of the two (`code`, `token`) response types by default. Implemented `allowed_response_types` for client object to authorize the request. """ if response_type not in ('code', 'token'): return False if hasattr(client, 'allowed_response_types'): return response_type in client.allowed_response_types return True
Ensure client is authorized to use the response type requested. It will allow any of the two (`code`, `token`) response types by default. Implemented `allowed_response_types` for client object to authorize the request.
Below is the the instruction that describes the task: ### Input: Ensure client is authorized to use the response type requested. It will allow any of the two (`code`, `token`) response types by default. Implemented `allowed_response_types` for client object to authorize the request. ### Response: def validate_response_type(self, client_id, response_type, client, request, *args, **kwargs): """Ensure client is authorized to use the response type requested. It will allow any of the two (`code`, `token`) response types by default. Implemented `allowed_response_types` for client object to authorize the request. """ if response_type not in ('code', 'token'): return False if hasattr(client, 'allowed_response_types'): return response_type in client.allowed_response_types return True
def get_deployment_by_slot(self, service_name, deployment_slot): ''' Returns configuration information, status, and system properties for a deployment. service_name: Name of the hosted service. deployment_slot: The environment to which the hosted service is deployed. Valid values are: staging, production ''' _validate_not_none('service_name', service_name) _validate_not_none('deployment_slot', deployment_slot) return self._perform_get( self._get_deployment_path_using_slot( service_name, deployment_slot), Deployment)
Returns configuration information, status, and system properties for a deployment. service_name: Name of the hosted service. deployment_slot: The environment to which the hosted service is deployed. Valid values are: staging, production
Below is the the instruction that describes the task: ### Input: Returns configuration information, status, and system properties for a deployment. service_name: Name of the hosted service. deployment_slot: The environment to which the hosted service is deployed. Valid values are: staging, production ### Response: def get_deployment_by_slot(self, service_name, deployment_slot): ''' Returns configuration information, status, and system properties for a deployment. service_name: Name of the hosted service. deployment_slot: The environment to which the hosted service is deployed. Valid values are: staging, production ''' _validate_not_none('service_name', service_name) _validate_not_none('deployment_slot', deployment_slot) return self._perform_get( self._get_deployment_path_using_slot( service_name, deployment_slot), Deployment)
def wheel_delta_discrete(self): """The delta for the wheel in discrete steps (e.g. wheel clicks) and whether it has changed in this event. Returns: (int, bool): The delta of the wheel, in discrete steps, compared to the last event and whether it has changed. """ delta = self._libinput. \ libinput_event_tablet_tool_get_wheel_delta_discrete(self._handle) changed = self._libinput.libinput_event_tablet_tool_wheel_has_changed( self._handle) return delta, changed
The delta for the wheel in discrete steps (e.g. wheel clicks) and whether it has changed in this event. Returns: (int, bool): The delta of the wheel, in discrete steps, compared to the last event and whether it has changed.
Below is the the instruction that describes the task: ### Input: The delta for the wheel in discrete steps (e.g. wheel clicks) and whether it has changed in this event. Returns: (int, bool): The delta of the wheel, in discrete steps, compared to the last event and whether it has changed. ### Response: def wheel_delta_discrete(self): """The delta for the wheel in discrete steps (e.g. wheel clicks) and whether it has changed in this event. Returns: (int, bool): The delta of the wheel, in discrete steps, compared to the last event and whether it has changed. """ delta = self._libinput. \ libinput_event_tablet_tool_get_wheel_delta_discrete(self._handle) changed = self._libinput.libinput_event_tablet_tool_wheel_has_changed( self._handle) return delta, changed
def set_nodes_vlan(site, nodes, interface, vlan_id): """Set the interface of the nodes in a specific vlan. It is assumed that the same interface name is available on the node. Args: site(str): site to consider nodes(list): nodes to consider interface(str): the network interface to put in the vlan vlan_id(str): the id of the vlan """ def _to_network_address(host): """Translate a host to a network address e.g: paranoia-20.rennes.grid5000.fr -> paranoia-20-eth2.rennes.grid5000.fr """ splitted = host.split('.') splitted[0] = splitted[0] + "-" + interface return ".".join(splitted) gk = get_api_client() network_addresses = [_to_network_address(n) for n in nodes] gk.sites[site].vlans[str(vlan_id)].submit({"nodes": network_addresses})
Set the interface of the nodes in a specific vlan. It is assumed that the same interface name is available on the node. Args: site(str): site to consider nodes(list): nodes to consider interface(str): the network interface to put in the vlan vlan_id(str): the id of the vlan
Below is the the instruction that describes the task: ### Input: Set the interface of the nodes in a specific vlan. It is assumed that the same interface name is available on the node. Args: site(str): site to consider nodes(list): nodes to consider interface(str): the network interface to put in the vlan vlan_id(str): the id of the vlan ### Response: def set_nodes_vlan(site, nodes, interface, vlan_id): """Set the interface of the nodes in a specific vlan. It is assumed that the same interface name is available on the node. Args: site(str): site to consider nodes(list): nodes to consider interface(str): the network interface to put in the vlan vlan_id(str): the id of the vlan """ def _to_network_address(host): """Translate a host to a network address e.g: paranoia-20.rennes.grid5000.fr -> paranoia-20-eth2.rennes.grid5000.fr """ splitted = host.split('.') splitted[0] = splitted[0] + "-" + interface return ".".join(splitted) gk = get_api_client() network_addresses = [_to_network_address(n) for n in nodes] gk.sites[site].vlans[str(vlan_id)].submit({"nodes": network_addresses})
def connection_made(self, transport: asyncio.BaseTransport) -> None: """ Configure write buffer limits. The high-water limit is defined by ``self.write_limit``. The low-water limit currently defaults to ``self.write_limit // 4`` in :meth:`~asyncio.WriteTransport.set_write_buffer_limits`, which should be all right for reasonable use cases of this library. This is the earliest point where we can get hold of the transport, which means it's the best point for configuring it. """ logger.debug("%s - event = connection_made(%s)", self.side, transport) # mypy thinks transport is a BaseTransport, not a Transport. transport.set_write_buffer_limits(self.write_limit) # type: ignore super().connection_made(transport)
Configure write buffer limits. The high-water limit is defined by ``self.write_limit``. The low-water limit currently defaults to ``self.write_limit // 4`` in :meth:`~asyncio.WriteTransport.set_write_buffer_limits`, which should be all right for reasonable use cases of this library. This is the earliest point where we can get hold of the transport, which means it's the best point for configuring it.
Below is the the instruction that describes the task: ### Input: Configure write buffer limits. The high-water limit is defined by ``self.write_limit``. The low-water limit currently defaults to ``self.write_limit // 4`` in :meth:`~asyncio.WriteTransport.set_write_buffer_limits`, which should be all right for reasonable use cases of this library. This is the earliest point where we can get hold of the transport, which means it's the best point for configuring it. ### Response: def connection_made(self, transport: asyncio.BaseTransport) -> None: """ Configure write buffer limits. The high-water limit is defined by ``self.write_limit``. The low-water limit currently defaults to ``self.write_limit // 4`` in :meth:`~asyncio.WriteTransport.set_write_buffer_limits`, which should be all right for reasonable use cases of this library. This is the earliest point where we can get hold of the transport, which means it's the best point for configuring it. """ logger.debug("%s - event = connection_made(%s)", self.side, transport) # mypy thinks transport is a BaseTransport, not a Transport. transport.set_write_buffer_limits(self.write_limit) # type: ignore super().connection_made(transport)
def superreload(module, reload=reload, old_objects={}): """Enhanced version of the builtin reload function. superreload remembers objects previously in the module, and - upgrades the class dictionary of every old class in the module - upgrades the code object of every old function and method - clears the module's namespace before reloading """ # collect old objects in the module for name, obj in list(module.__dict__.items()): if not hasattr(obj, '__module__') or obj.__module__ != module.__name__: continue key = (module.__name__, name) try: old_objects.setdefault(key, []).append(weakref.ref(obj)) except TypeError: pass # reload module try: # clear namespace first from old cruft old_dict = module.__dict__.copy() old_name = module.__name__ module.__dict__.clear() module.__dict__['__name__'] = old_name module.__dict__['__loader__'] = old_dict['__loader__'] except (TypeError, AttributeError, KeyError): pass try: module = reload(module) except: # restore module dictionary on failed reload module.__dict__.update(old_dict) raise # iterate over all objects and update functions & classes for name, new_obj in list(module.__dict__.items()): key = (module.__name__, name) if key not in old_objects: continue new_refs = [] for old_ref in old_objects[key]: old_obj = old_ref() if old_obj is None: continue new_refs.append(old_ref) update_generic(old_obj, new_obj) if new_refs: old_objects[key] = new_refs else: del old_objects[key] return module
Enhanced version of the builtin reload function. superreload remembers objects previously in the module, and - upgrades the class dictionary of every old class in the module - upgrades the code object of every old function and method - clears the module's namespace before reloading
Below is the the instruction that describes the task: ### Input: Enhanced version of the builtin reload function. superreload remembers objects previously in the module, and - upgrades the class dictionary of every old class in the module - upgrades the code object of every old function and method - clears the module's namespace before reloading ### Response: def superreload(module, reload=reload, old_objects={}): """Enhanced version of the builtin reload function. superreload remembers objects previously in the module, and - upgrades the class dictionary of every old class in the module - upgrades the code object of every old function and method - clears the module's namespace before reloading """ # collect old objects in the module for name, obj in list(module.__dict__.items()): if not hasattr(obj, '__module__') or obj.__module__ != module.__name__: continue key = (module.__name__, name) try: old_objects.setdefault(key, []).append(weakref.ref(obj)) except TypeError: pass # reload module try: # clear namespace first from old cruft old_dict = module.__dict__.copy() old_name = module.__name__ module.__dict__.clear() module.__dict__['__name__'] = old_name module.__dict__['__loader__'] = old_dict['__loader__'] except (TypeError, AttributeError, KeyError): pass try: module = reload(module) except: # restore module dictionary on failed reload module.__dict__.update(old_dict) raise # iterate over all objects and update functions & classes for name, new_obj in list(module.__dict__.items()): key = (module.__name__, name) if key not in old_objects: continue new_refs = [] for old_ref in old_objects[key]: old_obj = old_ref() if old_obj is None: continue new_refs.append(old_ref) update_generic(old_obj, new_obj) if new_refs: old_objects[key] = new_refs else: del old_objects[key] return module
def _run_cell_text(self, text, line): """Run cell code in the console. Cell code is run in the console by copying it to the console if `self.run_cell_copy` is ``True`` otherwise by using the `run_cell` function. Parameters ---------- text : str The code in the cell as a string. line : int The starting line number of the cell in the file. """ finfo = self.get_current_finfo() editor = self.get_current_editor() oe_data = editor.highlighter.get_outlineexplorer_data() try: cell_name = oe_data.get(line-1).def_name except AttributeError: cell_name = '' if finfo.editor.is_python() and text: self.run_cell_in_ipyclient.emit(text, cell_name, finfo.filename, self.run_cell_copy) editor.setFocus()
Run cell code in the console. Cell code is run in the console by copying it to the console if `self.run_cell_copy` is ``True`` otherwise by using the `run_cell` function. Parameters ---------- text : str The code in the cell as a string. line : int The starting line number of the cell in the file.
Below is the the instruction that describes the task: ### Input: Run cell code in the console. Cell code is run in the console by copying it to the console if `self.run_cell_copy` is ``True`` otherwise by using the `run_cell` function. Parameters ---------- text : str The code in the cell as a string. line : int The starting line number of the cell in the file. ### Response: def _run_cell_text(self, text, line): """Run cell code in the console. Cell code is run in the console by copying it to the console if `self.run_cell_copy` is ``True`` otherwise by using the `run_cell` function. Parameters ---------- text : str The code in the cell as a string. line : int The starting line number of the cell in the file. """ finfo = self.get_current_finfo() editor = self.get_current_editor() oe_data = editor.highlighter.get_outlineexplorer_data() try: cell_name = oe_data.get(line-1).def_name except AttributeError: cell_name = '' if finfo.editor.is_python() and text: self.run_cell_in_ipyclient.emit(text, cell_name, finfo.filename, self.run_cell_copy) editor.setFocus()
def select_neighbors_by_layer(docgraph, node, layer, data=False): """ Get all neighboring nodes belonging to (any of) the given layer(s), A neighboring node is a node that the given node connects to with an outgoing edge. Parameters ---------- docgraph : DiscourseDocumentGraph document graph from which the nodes will be extracted layer : str or collection of str name(s) of the layer(s) data : bool If True, results will include node attributes. Yields ------ nodes : generator of str or generator of (str, dict) tuple If data is False (default), a generator of neighbor node IDs that are present in the given layer. If data is True, a generator of (node ID, node attrib dict) tuples. """ for node_id in docgraph.neighbors_iter(node): node_layers = docgraph.node[node_id]['layers'] if isinstance(layer, (str, unicode)): condition = layer in node_layers else: # ``layer`` is a list/set/dict of layers condition = any(l in node_layers for l in layer) if condition: yield (node_id, docgraph.node[node_id]) if data else (node_id)
Get all neighboring nodes belonging to (any of) the given layer(s), A neighboring node is a node that the given node connects to with an outgoing edge. Parameters ---------- docgraph : DiscourseDocumentGraph document graph from which the nodes will be extracted layer : str or collection of str name(s) of the layer(s) data : bool If True, results will include node attributes. Yields ------ nodes : generator of str or generator of (str, dict) tuple If data is False (default), a generator of neighbor node IDs that are present in the given layer. If data is True, a generator of (node ID, node attrib dict) tuples.
Below is the the instruction that describes the task: ### Input: Get all neighboring nodes belonging to (any of) the given layer(s), A neighboring node is a node that the given node connects to with an outgoing edge. Parameters ---------- docgraph : DiscourseDocumentGraph document graph from which the nodes will be extracted layer : str or collection of str name(s) of the layer(s) data : bool If True, results will include node attributes. Yields ------ nodes : generator of str or generator of (str, dict) tuple If data is False (default), a generator of neighbor node IDs that are present in the given layer. If data is True, a generator of (node ID, node attrib dict) tuples. ### Response: def select_neighbors_by_layer(docgraph, node, layer, data=False): """ Get all neighboring nodes belonging to (any of) the given layer(s), A neighboring node is a node that the given node connects to with an outgoing edge. Parameters ---------- docgraph : DiscourseDocumentGraph document graph from which the nodes will be extracted layer : str or collection of str name(s) of the layer(s) data : bool If True, results will include node attributes. Yields ------ nodes : generator of str or generator of (str, dict) tuple If data is False (default), a generator of neighbor node IDs that are present in the given layer. If data is True, a generator of (node ID, node attrib dict) tuples. """ for node_id in docgraph.neighbors_iter(node): node_layers = docgraph.node[node_id]['layers'] if isinstance(layer, (str, unicode)): condition = layer in node_layers else: # ``layer`` is a list/set/dict of layers condition = any(l in node_layers for l in layer) if condition: yield (node_id, docgraph.node[node_id]) if data else (node_id)
def analytics(account=None, *args, **kwargs): """ Simple Google Analytics integration. First looks for an ``account`` parameter. If not supplied, uses Django ``GOOGLE_ANALYTICS_ACCOUNT`` setting. If account not set, raises ``TemplateSyntaxError``. :param account: Google Analytics account id to be used. """ if not account: try: account = settings.GOOGLE_ANALYTICS_ACCOUNT except: raise template.TemplateSyntaxError( "Analytics account could not found either " "in tag parameters or settings") return {'account': account, 'params':kwargs }
Simple Google Analytics integration. First looks for an ``account`` parameter. If not supplied, uses Django ``GOOGLE_ANALYTICS_ACCOUNT`` setting. If account not set, raises ``TemplateSyntaxError``. :param account: Google Analytics account id to be used.
Below is the the instruction that describes the task: ### Input: Simple Google Analytics integration. First looks for an ``account`` parameter. If not supplied, uses Django ``GOOGLE_ANALYTICS_ACCOUNT`` setting. If account not set, raises ``TemplateSyntaxError``. :param account: Google Analytics account id to be used. ### Response: def analytics(account=None, *args, **kwargs): """ Simple Google Analytics integration. First looks for an ``account`` parameter. If not supplied, uses Django ``GOOGLE_ANALYTICS_ACCOUNT`` setting. If account not set, raises ``TemplateSyntaxError``. :param account: Google Analytics account id to be used. """ if not account: try: account = settings.GOOGLE_ANALYTICS_ACCOUNT except: raise template.TemplateSyntaxError( "Analytics account could not found either " "in tag parameters or settings") return {'account': account, 'params':kwargs }
def vol_tetra(vt1, vt2, vt3, vt4): """ Calculate the volume of a tetrahedron, given the four vertices of vt1, vt2, vt3 and vt4. Args: vt1 (array-like): coordinates of vertex 1. vt2 (array-like): coordinates of vertex 2. vt3 (array-like): coordinates of vertex 3. vt4 (array-like): coordinates of vertex 4. Returns: (float): volume of the tetrahedron. """ vol_tetra = np.abs(np.dot((vt1 - vt4), np.cross((vt2 - vt4), (vt3 - vt4)))) / 6 return vol_tetra
Calculate the volume of a tetrahedron, given the four vertices of vt1, vt2, vt3 and vt4. Args: vt1 (array-like): coordinates of vertex 1. vt2 (array-like): coordinates of vertex 2. vt3 (array-like): coordinates of vertex 3. vt4 (array-like): coordinates of vertex 4. Returns: (float): volume of the tetrahedron.
Below is the the instruction that describes the task: ### Input: Calculate the volume of a tetrahedron, given the four vertices of vt1, vt2, vt3 and vt4. Args: vt1 (array-like): coordinates of vertex 1. vt2 (array-like): coordinates of vertex 2. vt3 (array-like): coordinates of vertex 3. vt4 (array-like): coordinates of vertex 4. Returns: (float): volume of the tetrahedron. ### Response: def vol_tetra(vt1, vt2, vt3, vt4): """ Calculate the volume of a tetrahedron, given the four vertices of vt1, vt2, vt3 and vt4. Args: vt1 (array-like): coordinates of vertex 1. vt2 (array-like): coordinates of vertex 2. vt3 (array-like): coordinates of vertex 3. vt4 (array-like): coordinates of vertex 4. Returns: (float): volume of the tetrahedron. """ vol_tetra = np.abs(np.dot((vt1 - vt4), np.cross((vt2 - vt4), (vt3 - vt4)))) / 6 return vol_tetra
def set_extra_info(self, username, extra_info): """Set extra info for the given user. Raise a ServerError if an error occurs in the request process. @param username The username for the user to update. @param info The extra info as a JSON encoded string, or as a Python dictionary like object. """ url = self._get_extra_info_url(username) make_request(url, method='PUT', body=extra_info, timeout=self.timeout)
Set extra info for the given user. Raise a ServerError if an error occurs in the request process. @param username The username for the user to update. @param info The extra info as a JSON encoded string, or as a Python dictionary like object.
Below is the the instruction that describes the task: ### Input: Set extra info for the given user. Raise a ServerError if an error occurs in the request process. @param username The username for the user to update. @param info The extra info as a JSON encoded string, or as a Python dictionary like object. ### Response: def set_extra_info(self, username, extra_info): """Set extra info for the given user. Raise a ServerError if an error occurs in the request process. @param username The username for the user to update. @param info The extra info as a JSON encoded string, or as a Python dictionary like object. """ url = self._get_extra_info_url(username) make_request(url, method='PUT', body=extra_info, timeout=self.timeout)
def multiple_sources(stmt): '''Return True if statement is supported by multiple sources. Note: this is currently not used and replaced by BeliefEngine score cutoff ''' sources = list(set([e.source_api for e in stmt.evidence])) if len(sources) > 1: return True return False
Return True if statement is supported by multiple sources. Note: this is currently not used and replaced by BeliefEngine score cutoff
Below is the the instruction that describes the task: ### Input: Return True if statement is supported by multiple sources. Note: this is currently not used and replaced by BeliefEngine score cutoff ### Response: def multiple_sources(stmt): '''Return True if statement is supported by multiple sources. Note: this is currently not used and replaced by BeliefEngine score cutoff ''' sources = list(set([e.source_api for e in stmt.evidence])) if len(sources) > 1: return True return False
def add_javascripts(self, *js_files): """add javascripts files in HTML body""" # create the script tag if don't exists if self.main_soup.script is None: script_tag = self.main_soup.new_tag('script') self.main_soup.body.append(script_tag) for js_file in js_files: self.main_soup.script.append(self._text_file(js_file))
add javascripts files in HTML body
Below is the the instruction that describes the task: ### Input: add javascripts files in HTML body ### Response: def add_javascripts(self, *js_files): """add javascripts files in HTML body""" # create the script tag if don't exists if self.main_soup.script is None: script_tag = self.main_soup.new_tag('script') self.main_soup.body.append(script_tag) for js_file in js_files: self.main_soup.script.append(self._text_file(js_file))
def write_sequences_to_fasta(path, seqs): """ Create a FASTA file listing the given sequences. Arguments ========= path: str or pathlib.Path The name of the file to create. seqs: dict A mapping of names to sequences, which can be either protein or DNA. """ from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord path = Path(path) records = [] for id, seq in seqs.items(): record = SeqRecord(Seq(seq), id=id, description='') records.append(record) SeqIO.write(records, str(path), 'fasta')
Create a FASTA file listing the given sequences. Arguments ========= path: str or pathlib.Path The name of the file to create. seqs: dict A mapping of names to sequences, which can be either protein or DNA.
Below is the the instruction that describes the task: ### Input: Create a FASTA file listing the given sequences. Arguments ========= path: str or pathlib.Path The name of the file to create. seqs: dict A mapping of names to sequences, which can be either protein or DNA. ### Response: def write_sequences_to_fasta(path, seqs): """ Create a FASTA file listing the given sequences. Arguments ========= path: str or pathlib.Path The name of the file to create. seqs: dict A mapping of names to sequences, which can be either protein or DNA. """ from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord path = Path(path) records = [] for id, seq in seqs.items(): record = SeqRecord(Seq(seq), id=id, description='') records.append(record) SeqIO.write(records, str(path), 'fasta')
def patch(self, request, format=None): """ Update an existing Channel """ data = request.data.copy() # Get chat type record try: ct = ChatType.objects.get(id=data.pop("chat_type")) data["chat_type"] = ct except ChatType.DoesNotExist: return typeNotFound404 if not self.is_path_unique( data["id"], data["publish_path"], ct.publish_path ): return notUnique400 # Get channel record try: c = Channel.objects.get(id=data.pop("id")) except Channel.DoesNotExist: return channelNotFound404 # Save new data for key, value in data.items(): setattr(c, key, value) c.save() self.handle_webhook(c) return Response( { "text": "Channel saved.", "method": "PATCH", "saved": ChannelCMSSerializer(c).data, }, 200, )
Update an existing Channel
Below is the the instruction that describes the task: ### Input: Update an existing Channel ### Response: def patch(self, request, format=None): """ Update an existing Channel """ data = request.data.copy() # Get chat type record try: ct = ChatType.objects.get(id=data.pop("chat_type")) data["chat_type"] = ct except ChatType.DoesNotExist: return typeNotFound404 if not self.is_path_unique( data["id"], data["publish_path"], ct.publish_path ): return notUnique400 # Get channel record try: c = Channel.objects.get(id=data.pop("id")) except Channel.DoesNotExist: return channelNotFound404 # Save new data for key, value in data.items(): setattr(c, key, value) c.save() self.handle_webhook(c) return Response( { "text": "Channel saved.", "method": "PATCH", "saved": ChannelCMSSerializer(c).data, }, 200, )
def business_hours_schedule_create(self, data, **kwargs): "https://developer.zendesk.com/rest_api/docs/core/schedules#create-a-schedule" api_path = "/api/v2/business_hours/schedules.json" return self.call(api_path, method="POST", data=data, **kwargs)
https://developer.zendesk.com/rest_api/docs/core/schedules#create-a-schedule
Below is the the instruction that describes the task: ### Input: https://developer.zendesk.com/rest_api/docs/core/schedules#create-a-schedule ### Response: def business_hours_schedule_create(self, data, **kwargs): "https://developer.zendesk.com/rest_api/docs/core/schedules#create-a-schedule" api_path = "/api/v2/business_hours/schedules.json" return self.call(api_path, method="POST", data=data, **kwargs)
def filesavebox(msg=None, title=None, argInitialFile=None): """Original doc: A file to get the name of a file to save. Returns the name of a file, or None if user chose to cancel. if argInitialFile contains a valid filename, the dialog will be positioned at that file when it appears. """ return psidialogs.ask_file(message=msg, title=title, default=argInitialFile, save=True)
Original doc: A file to get the name of a file to save. Returns the name of a file, or None if user chose to cancel. if argInitialFile contains a valid filename, the dialog will be positioned at that file when it appears.
Below is the the instruction that describes the task: ### Input: Original doc: A file to get the name of a file to save. Returns the name of a file, or None if user chose to cancel. if argInitialFile contains a valid filename, the dialog will be positioned at that file when it appears. ### Response: def filesavebox(msg=None, title=None, argInitialFile=None): """Original doc: A file to get the name of a file to save. Returns the name of a file, or None if user chose to cancel. if argInitialFile contains a valid filename, the dialog will be positioned at that file when it appears. """ return psidialogs.ask_file(message=msg, title=title, default=argInitialFile, save=True)
def badge_label(self, badge): '''Display the badge label for a given kind''' kind = badge.kind if isinstance(badge, Badge) else badge return self.__badges__[kind]
Display the badge label for a given kind
Below is the the instruction that describes the task: ### Input: Display the badge label for a given kind ### Response: def badge_label(self, badge): '''Display the badge label for a given kind''' kind = badge.kind if isinstance(badge, Badge) else badge return self.__badges__[kind]
def verify_param(self, param, must=[], r=None): '''return Code.ARGUMENT_MISSING if every key in must not found in param''' if APIKEY not in param: param[APIKEY] = self.apikey() r = Result() if r is None else r for p in must: if p not in param: r.code(Code.ARGUMENT_MISSING).detail('missing-' + p) break return r
return Code.ARGUMENT_MISSING if every key in must not found in param
Below is the the instruction that describes the task: ### Input: return Code.ARGUMENT_MISSING if every key in must not found in param ### Response: def verify_param(self, param, must=[], r=None): '''return Code.ARGUMENT_MISSING if every key in must not found in param''' if APIKEY not in param: param[APIKEY] = self.apikey() r = Result() if r is None else r for p in must: if p not in param: r.code(Code.ARGUMENT_MISSING).detail('missing-' + p) break return r
def parents(self, lhs, rhs): """Find nodes in rhs which have parents in lhs.""" return [node for node in rhs if node.parent in lhs]
Find nodes in rhs which have parents in lhs.
Below is the the instruction that describes the task: ### Input: Find nodes in rhs which have parents in lhs. ### Response: def parents(self, lhs, rhs): """Find nodes in rhs which have parents in lhs.""" return [node for node in rhs if node.parent in lhs]
def _extract_hemispheric_difference(image, mask = slice(None), sigma_active = 7, sigma_reference = 7, cut_plane = 0, voxelspacing = None): """ Internal, single-image version of `hemispheric_difference`. """ # constants INTERPOLATION_RANGE = int(10) # how many neighbouring values to take into account when interpolating the medial longitudinal fissure slice # check arguments if cut_plane >= image.ndim: raise ArgumentError('The suppliedc cut-plane ({}) is invalid, the image has only {} dimensions.'.format(cut_plane, image.ndim)) # set voxel spacing if voxelspacing is None: voxelspacing = [1.] * image.ndim # compute the (presumed) location of the medial longitudinal fissure, treating also the special of an odd number of slices, in which case a cut into two equal halves is not possible medial_longitudinal_fissure = int(image.shape[cut_plane] / 2) medial_longitudinal_fissure_excluded = image.shape[cut_plane] % 2 # split the head into a dexter and sinister half along the saggital plane # this is assumed to be consistent with a cut of the brain along the medial longitudinal fissure, thus separating it into its hemispheres slicer = [slice(None)] * image.ndim slicer[cut_plane] = slice(None, medial_longitudinal_fissure) left_hemisphere = image[slicer] slicer[cut_plane] = slice(medial_longitudinal_fissure + medial_longitudinal_fissure_excluded, None) right_hemisphere = image[slicer] # flip right hemisphere image along cut plane slicer[cut_plane] = slice(None, None, -1) right_hemisphere = right_hemisphere[slicer] # substract once left from right and once right from left hemisphere, including smoothing steps right_hemisphere_difference = _substract_hemispheres(right_hemisphere, left_hemisphere, sigma_active, sigma_reference, voxelspacing) left_hemisphere_difference = _substract_hemispheres(left_hemisphere, right_hemisphere, sigma_active, sigma_reference, voxelspacing) # re-flip right hemisphere image to original orientation right_hemisphere_difference = right_hemisphere_difference[slicer] # estimate the medial longitudinal fissure if required if 1 == medial_longitudinal_fissure_excluded: left_slicer = [slice(None)] * image.ndim right_slicer = [slice(None)] * image.ndim left_slicer[cut_plane] = slice(-1 * INTERPOLATION_RANGE, None) right_slicer[cut_plane] = slice(None, INTERPOLATION_RANGE) interp_data_left = left_hemisphere_difference[left_slicer] interp_data_right = right_hemisphere_difference[right_slicer] interp_indices_left = list(range(-1 * interp_data_left.shape[cut_plane], 0)) interp_indices_right = list(range(1, interp_data_right.shape[cut_plane] + 1)) interp_data = numpy.concatenate((left_hemisphere_difference[left_slicer], right_hemisphere_difference[right_slicer]), cut_plane) interp_indices = numpy.concatenate((interp_indices_left, interp_indices_right), 0) medial_longitudinal_fissure_estimated = interp1d(interp_indices, interp_data, kind='cubic', axis=cut_plane)(0) # add singleton dimension slicer[cut_plane] = numpy.newaxis medial_longitudinal_fissure_estimated = medial_longitudinal_fissure_estimated[slicer] # stich images back together if 1 == medial_longitudinal_fissure_excluded: hemisphere_difference = numpy.concatenate((left_hemisphere_difference, medial_longitudinal_fissure_estimated, right_hemisphere_difference), cut_plane) else: hemisphere_difference = numpy.concatenate((left_hemisphere_difference, right_hemisphere_difference), cut_plane) # extract intensities and return return _extract_intensities(hemisphere_difference, mask)
Internal, single-image version of `hemispheric_difference`.
Below is the the instruction that describes the task: ### Input: Internal, single-image version of `hemispheric_difference`. ### Response: def _extract_hemispheric_difference(image, mask = slice(None), sigma_active = 7, sigma_reference = 7, cut_plane = 0, voxelspacing = None): """ Internal, single-image version of `hemispheric_difference`. """ # constants INTERPOLATION_RANGE = int(10) # how many neighbouring values to take into account when interpolating the medial longitudinal fissure slice # check arguments if cut_plane >= image.ndim: raise ArgumentError('The suppliedc cut-plane ({}) is invalid, the image has only {} dimensions.'.format(cut_plane, image.ndim)) # set voxel spacing if voxelspacing is None: voxelspacing = [1.] * image.ndim # compute the (presumed) location of the medial longitudinal fissure, treating also the special of an odd number of slices, in which case a cut into two equal halves is not possible medial_longitudinal_fissure = int(image.shape[cut_plane] / 2) medial_longitudinal_fissure_excluded = image.shape[cut_plane] % 2 # split the head into a dexter and sinister half along the saggital plane # this is assumed to be consistent with a cut of the brain along the medial longitudinal fissure, thus separating it into its hemispheres slicer = [slice(None)] * image.ndim slicer[cut_plane] = slice(None, medial_longitudinal_fissure) left_hemisphere = image[slicer] slicer[cut_plane] = slice(medial_longitudinal_fissure + medial_longitudinal_fissure_excluded, None) right_hemisphere = image[slicer] # flip right hemisphere image along cut plane slicer[cut_plane] = slice(None, None, -1) right_hemisphere = right_hemisphere[slicer] # substract once left from right and once right from left hemisphere, including smoothing steps right_hemisphere_difference = _substract_hemispheres(right_hemisphere, left_hemisphere, sigma_active, sigma_reference, voxelspacing) left_hemisphere_difference = _substract_hemispheres(left_hemisphere, right_hemisphere, sigma_active, sigma_reference, voxelspacing) # re-flip right hemisphere image to original orientation right_hemisphere_difference = right_hemisphere_difference[slicer] # estimate the medial longitudinal fissure if required if 1 == medial_longitudinal_fissure_excluded: left_slicer = [slice(None)] * image.ndim right_slicer = [slice(None)] * image.ndim left_slicer[cut_plane] = slice(-1 * INTERPOLATION_RANGE, None) right_slicer[cut_plane] = slice(None, INTERPOLATION_RANGE) interp_data_left = left_hemisphere_difference[left_slicer] interp_data_right = right_hemisphere_difference[right_slicer] interp_indices_left = list(range(-1 * interp_data_left.shape[cut_plane], 0)) interp_indices_right = list(range(1, interp_data_right.shape[cut_plane] + 1)) interp_data = numpy.concatenate((left_hemisphere_difference[left_slicer], right_hemisphere_difference[right_slicer]), cut_plane) interp_indices = numpy.concatenate((interp_indices_left, interp_indices_right), 0) medial_longitudinal_fissure_estimated = interp1d(interp_indices, interp_data, kind='cubic', axis=cut_plane)(0) # add singleton dimension slicer[cut_plane] = numpy.newaxis medial_longitudinal_fissure_estimated = medial_longitudinal_fissure_estimated[slicer] # stich images back together if 1 == medial_longitudinal_fissure_excluded: hemisphere_difference = numpy.concatenate((left_hemisphere_difference, medial_longitudinal_fissure_estimated, right_hemisphere_difference), cut_plane) else: hemisphere_difference = numpy.concatenate((left_hemisphere_difference, right_hemisphere_difference), cut_plane) # extract intensities and return return _extract_intensities(hemisphere_difference, mask)
def get_table_location(self, database_name, table_name): """ Get the physical location of the table :param database_name: Name of hive database (schema) @table belongs to :type database_name: str :param table_name: Name of hive table :type table_name: str :return: str """ table = self.get_table(database_name, table_name) return table['StorageDescriptor']['Location']
Get the physical location of the table :param database_name: Name of hive database (schema) @table belongs to :type database_name: str :param table_name: Name of hive table :type table_name: str :return: str
Below is the the instruction that describes the task: ### Input: Get the physical location of the table :param database_name: Name of hive database (schema) @table belongs to :type database_name: str :param table_name: Name of hive table :type table_name: str :return: str ### Response: def get_table_location(self, database_name, table_name): """ Get the physical location of the table :param database_name: Name of hive database (schema) @table belongs to :type database_name: str :param table_name: Name of hive table :type table_name: str :return: str """ table = self.get_table(database_name, table_name) return table['StorageDescriptor']['Location']
def as_dict(self): """ Bson-serializable dict representation of the MultiWeightsChemenvStrategy object. :return: Bson-serializable dict representation of the MultiWeightsChemenvStrategy object. """ return {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "additional_condition": self._additional_condition, "symmetry_measure_type": self.symmetry_measure_type, "dist_ang_area_weight": self.dist_ang_area_weight.as_dict() if self.dist_ang_area_weight is not None else None, "self_csm_weight": self.self_csm_weight.as_dict() if self.self_csm_weight is not None else None, "delta_csm_weight": self.delta_csm_weight.as_dict() if self.delta_csm_weight is not None else None, "cn_bias_weight": self.cn_bias_weight.as_dict() if self.cn_bias_weight is not None else None, "angle_weight": self.angle_weight.as_dict() if self.angle_weight is not None else None, "normalized_angle_distance_weight": self.normalized_angle_distance_weight.as_dict() if self.normalized_angle_distance_weight is not None else None, "ce_estimator": self.ce_estimator, }
Bson-serializable dict representation of the MultiWeightsChemenvStrategy object. :return: Bson-serializable dict representation of the MultiWeightsChemenvStrategy object.
Below is the the instruction that describes the task: ### Input: Bson-serializable dict representation of the MultiWeightsChemenvStrategy object. :return: Bson-serializable dict representation of the MultiWeightsChemenvStrategy object. ### Response: def as_dict(self): """ Bson-serializable dict representation of the MultiWeightsChemenvStrategy object. :return: Bson-serializable dict representation of the MultiWeightsChemenvStrategy object. """ return {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "additional_condition": self._additional_condition, "symmetry_measure_type": self.symmetry_measure_type, "dist_ang_area_weight": self.dist_ang_area_weight.as_dict() if self.dist_ang_area_weight is not None else None, "self_csm_weight": self.self_csm_weight.as_dict() if self.self_csm_weight is not None else None, "delta_csm_weight": self.delta_csm_weight.as_dict() if self.delta_csm_weight is not None else None, "cn_bias_weight": self.cn_bias_weight.as_dict() if self.cn_bias_weight is not None else None, "angle_weight": self.angle_weight.as_dict() if self.angle_weight is not None else None, "normalized_angle_distance_weight": self.normalized_angle_distance_weight.as_dict() if self.normalized_angle_distance_weight is not None else None, "ce_estimator": self.ce_estimator, }
def execute(self, input_data): ''' Execute the PEIndicators worker ''' raw_bytes = input_data['sample']['raw_bytes'] # Analyze the output of pefile for any anomalous conditions. # Have the PE File module process the file try: self.pefile_handle = pefile.PE(data=raw_bytes, fast_load=False) except (AttributeError, pefile.PEFormatError), error: return {'error': str(error), 'indicator_list': [{'Error': 'PE module failed!'}]} indicators = [] indicators += [{'description': warn, 'severity': 2, 'category': 'PE_WARN'} for warn in self.pefile_handle.get_warnings()] # Automatically invoke any method of this class that starts with 'check' check_methods = self._get_check_methods() for check_method in check_methods: hit_data = check_method() if hit_data: indicators.append(hit_data) return {'indicator_list': indicators}
Execute the PEIndicators worker
Below is the the instruction that describes the task: ### Input: Execute the PEIndicators worker ### Response: def execute(self, input_data): ''' Execute the PEIndicators worker ''' raw_bytes = input_data['sample']['raw_bytes'] # Analyze the output of pefile for any anomalous conditions. # Have the PE File module process the file try: self.pefile_handle = pefile.PE(data=raw_bytes, fast_load=False) except (AttributeError, pefile.PEFormatError), error: return {'error': str(error), 'indicator_list': [{'Error': 'PE module failed!'}]} indicators = [] indicators += [{'description': warn, 'severity': 2, 'category': 'PE_WARN'} for warn in self.pefile_handle.get_warnings()] # Automatically invoke any method of this class that starts with 'check' check_methods = self._get_check_methods() for check_method in check_methods: hit_data = check_method() if hit_data: indicators.append(hit_data) return {'indicator_list': indicators}
def preemptable(self): """ Whether the job can be run on a preemptable node. """ if self._preemptable is not None: return self._preemptable elif self._config is not None: return self._config.defaultPreemptable else: raise AttributeError("Default value for 'preemptable' cannot be determined")
Whether the job can be run on a preemptable node.
Below is the the instruction that describes the task: ### Input: Whether the job can be run on a preemptable node. ### Response: def preemptable(self): """ Whether the job can be run on a preemptable node. """ if self._preemptable is not None: return self._preemptable elif self._config is not None: return self._config.defaultPreemptable else: raise AttributeError("Default value for 'preemptable' cannot be determined")
def addSubprocess(self, fds, name, factory): """ Public method for _addSubprocess. Wraps reactor.adoptStreamConnection in a simple DeferredLock to guarantee workers play well together. """ self._lock.run(self._addSubprocess, self, fds, name, factory)
Public method for _addSubprocess. Wraps reactor.adoptStreamConnection in a simple DeferredLock to guarantee workers play well together.
Below is the the instruction that describes the task: ### Input: Public method for _addSubprocess. Wraps reactor.adoptStreamConnection in a simple DeferredLock to guarantee workers play well together. ### Response: def addSubprocess(self, fds, name, factory): """ Public method for _addSubprocess. Wraps reactor.adoptStreamConnection in a simple DeferredLock to guarantee workers play well together. """ self._lock.run(self._addSubprocess, self, fds, name, factory)
def after_log(logger, log_level, sec_format="%0.3f"): """After call strategy that logs to some logger the finished attempt.""" log_tpl = ("Finished call to '%s' after " + str(sec_format) + "(s), " "this was the %s time calling it.") def log_it(retry_state): logger.log(log_level, log_tpl, _utils.get_callback_name(retry_state.fn), retry_state.seconds_since_start, _utils.to_ordinal(retry_state.attempt_number)) return log_it
After call strategy that logs to some logger the finished attempt.
Below is the the instruction that describes the task: ### Input: After call strategy that logs to some logger the finished attempt. ### Response: def after_log(logger, log_level, sec_format="%0.3f"): """After call strategy that logs to some logger the finished attempt.""" log_tpl = ("Finished call to '%s' after " + str(sec_format) + "(s), " "this was the %s time calling it.") def log_it(retry_state): logger.log(log_level, log_tpl, _utils.get_callback_name(retry_state.fn), retry_state.seconds_since_start, _utils.to_ordinal(retry_state.attempt_number)) return log_it
def read_follower_file(fname, min_followers=0, max_followers=1e10, blacklist=set()): """ Read a file of follower information and return a dictionary mapping screen_name to a set of follower ids. """ result = {} with open(fname, 'rt') as f: for line in f: parts = line.split() if len(parts) > 3: if parts[1].lower() not in blacklist: followers = set(int(x) for x in parts[2:]) if len(followers) > min_followers and len(followers) <= max_followers: result[parts[1].lower()] = followers else: print('skipping exemplar', parts[1].lower()) return result
Read a file of follower information and return a dictionary mapping screen_name to a set of follower ids.
Below is the the instruction that describes the task: ### Input: Read a file of follower information and return a dictionary mapping screen_name to a set of follower ids. ### Response: def read_follower_file(fname, min_followers=0, max_followers=1e10, blacklist=set()): """ Read a file of follower information and return a dictionary mapping screen_name to a set of follower ids. """ result = {} with open(fname, 'rt') as f: for line in f: parts = line.split() if len(parts) > 3: if parts[1].lower() not in blacklist: followers = set(int(x) for x in parts[2:]) if len(followers) > min_followers and len(followers) <= max_followers: result[parts[1].lower()] = followers else: print('skipping exemplar', parts[1].lower()) return result
def _add_to_batch_list(self, TX, payment): """ Method to add a transaction to the batch list. The correct batch will be determined by the payment dict and the batch will be created if not existant. This will also add the payment amount to the respective batch total. """ batch_key = payment.get('execution_date', None) if batch_key in self._batches.keys(): self._batches[batch_key].append(TX['CdtTrfTxInfNode']) else: self._batches[batch_key] = [] self._batches[batch_key].append(TX['CdtTrfTxInfNode']) if batch_key in self._batch_totals: self._batch_totals[batch_key] += payment['amount'] else: self._batch_totals[batch_key] = payment['amount']
Method to add a transaction to the batch list. The correct batch will be determined by the payment dict and the batch will be created if not existant. This will also add the payment amount to the respective batch total.
Below is the the instruction that describes the task: ### Input: Method to add a transaction to the batch list. The correct batch will be determined by the payment dict and the batch will be created if not existant. This will also add the payment amount to the respective batch total. ### Response: def _add_to_batch_list(self, TX, payment): """ Method to add a transaction to the batch list. The correct batch will be determined by the payment dict and the batch will be created if not existant. This will also add the payment amount to the respective batch total. """ batch_key = payment.get('execution_date', None) if batch_key in self._batches.keys(): self._batches[batch_key].append(TX['CdtTrfTxInfNode']) else: self._batches[batch_key] = [] self._batches[batch_key].append(TX['CdtTrfTxInfNode']) if batch_key in self._batch_totals: self._batch_totals[batch_key] += payment['amount'] else: self._batch_totals[batch_key] = payment['amount']
def _deserialize_audience(audience_map): """ Helper method to de-serialize and populate audience map with the condition list and structure. Args: audience_map: Dict mapping audience ID to audience object. Returns: Dict additionally consisting of condition list and structure on every audience object. """ for audience in audience_map.values(): condition_structure, condition_list = condition_helper.loads(audience.conditions) audience.__dict__.update({ 'conditionStructure': condition_structure, 'conditionList': condition_list }) return audience_map
Helper method to de-serialize and populate audience map with the condition list and structure. Args: audience_map: Dict mapping audience ID to audience object. Returns: Dict additionally consisting of condition list and structure on every audience object.
Below is the the instruction that describes the task: ### Input: Helper method to de-serialize and populate audience map with the condition list and structure. Args: audience_map: Dict mapping audience ID to audience object. Returns: Dict additionally consisting of condition list and structure on every audience object. ### Response: def _deserialize_audience(audience_map): """ Helper method to de-serialize and populate audience map with the condition list and structure. Args: audience_map: Dict mapping audience ID to audience object. Returns: Dict additionally consisting of condition list and structure on every audience object. """ for audience in audience_map.values(): condition_structure, condition_list = condition_helper.loads(audience.conditions) audience.__dict__.update({ 'conditionStructure': condition_structure, 'conditionList': condition_list }) return audience_map
def get_context_from_cmdln(args, desc="Run scriptworker"): """Create a Context object from args. Args: args (list): the commandline args. Generally sys.argv Returns: tuple: ``scriptworker.context.Context`` with populated config, and credentials frozendict """ context = Context() parser = argparse.ArgumentParser(description=desc) parser.add_argument( "config_path", type=str, nargs="?", default="scriptworker.yaml", help="the path to the config file" ) parsed_args = parser.parse_args(args) context.config, credentials = create_config(config_path=parsed_args.config_path) update_logging_config(context) return context, credentials
Create a Context object from args. Args: args (list): the commandline args. Generally sys.argv Returns: tuple: ``scriptworker.context.Context`` with populated config, and credentials frozendict
Below is the the instruction that describes the task: ### Input: Create a Context object from args. Args: args (list): the commandline args. Generally sys.argv Returns: tuple: ``scriptworker.context.Context`` with populated config, and credentials frozendict ### Response: def get_context_from_cmdln(args, desc="Run scriptworker"): """Create a Context object from args. Args: args (list): the commandline args. Generally sys.argv Returns: tuple: ``scriptworker.context.Context`` with populated config, and credentials frozendict """ context = Context() parser = argparse.ArgumentParser(description=desc) parser.add_argument( "config_path", type=str, nargs="?", default="scriptworker.yaml", help="the path to the config file" ) parsed_args = parser.parse_args(args) context.config, credentials = create_config(config_path=parsed_args.config_path) update_logging_config(context) return context, credentials
def infos(self, type=None, failed=False): """Get infos that originate from this node. Type must be a subclass of :class:`~dallinger.models.Info`, the default is ``Info``. Failed can be True, False or "all". """ if type is None: type = Info if not issubclass(type, Info): raise TypeError( "Cannot get infos of type {} " "as it is not a valid type.".format(type) ) if failed not in ["all", False, True]: raise ValueError("{} is not a valid vector failed".format(failed)) if failed == "all": return type.query.filter_by(origin_id=self.id).all() else: return type.query.filter_by(origin_id=self.id, failed=failed).all()
Get infos that originate from this node. Type must be a subclass of :class:`~dallinger.models.Info`, the default is ``Info``. Failed can be True, False or "all".
Below is the the instruction that describes the task: ### Input: Get infos that originate from this node. Type must be a subclass of :class:`~dallinger.models.Info`, the default is ``Info``. Failed can be True, False or "all". ### Response: def infos(self, type=None, failed=False): """Get infos that originate from this node. Type must be a subclass of :class:`~dallinger.models.Info`, the default is ``Info``. Failed can be True, False or "all". """ if type is None: type = Info if not issubclass(type, Info): raise TypeError( "Cannot get infos of type {} " "as it is not a valid type.".format(type) ) if failed not in ["all", False, True]: raise ValueError("{} is not a valid vector failed".format(failed)) if failed == "all": return type.query.filter_by(origin_id=self.id).all() else: return type.query.filter_by(origin_id=self.id, failed=failed).all()
def _verify_shape_bounds(shape, bounds): """Verify that shape corresponds to bounds apect ratio.""" if not isinstance(shape, (tuple, list)) or len(shape) != 2: raise TypeError( "shape must be a tuple or list with two elements: %s" % str(shape) ) if not isinstance(bounds, (tuple, list)) or len(bounds) != 4: raise TypeError( "bounds must be a tuple or list with four elements: %s" % str(bounds) ) shape = Shape(*shape) bounds = Bounds(*bounds) shape_ratio = shape.width / shape.height bounds_ratio = (bounds.right - bounds.left) / (bounds.top - bounds.bottom) if abs(shape_ratio - bounds_ratio) > DELTA: min_length = min([ (bounds.right - bounds.left) / shape.width, (bounds.top - bounds.bottom) / shape.height ]) proposed_bounds = Bounds( bounds.left, bounds.bottom, bounds.left + shape.width * min_length, bounds.bottom + shape.height * min_length ) raise ValueError( "shape ratio (%s) must equal bounds ratio (%s); try %s" % ( shape_ratio, bounds_ratio, proposed_bounds ) )
Verify that shape corresponds to bounds apect ratio.
Below is the the instruction that describes the task: ### Input: Verify that shape corresponds to bounds apect ratio. ### Response: def _verify_shape_bounds(shape, bounds): """Verify that shape corresponds to bounds apect ratio.""" if not isinstance(shape, (tuple, list)) or len(shape) != 2: raise TypeError( "shape must be a tuple or list with two elements: %s" % str(shape) ) if not isinstance(bounds, (tuple, list)) or len(bounds) != 4: raise TypeError( "bounds must be a tuple or list with four elements: %s" % str(bounds) ) shape = Shape(*shape) bounds = Bounds(*bounds) shape_ratio = shape.width / shape.height bounds_ratio = (bounds.right - bounds.left) / (bounds.top - bounds.bottom) if abs(shape_ratio - bounds_ratio) > DELTA: min_length = min([ (bounds.right - bounds.left) / shape.width, (bounds.top - bounds.bottom) / shape.height ]) proposed_bounds = Bounds( bounds.left, bounds.bottom, bounds.left + shape.width * min_length, bounds.bottom + shape.height * min_length ) raise ValueError( "shape ratio (%s) must equal bounds ratio (%s); try %s" % ( shape_ratio, bounds_ratio, proposed_bounds ) )
def client_pause(self, timeout): """Stop processing commands from clients for *timeout* milliseconds. :raises TypeError: if timeout is not int :raises ValueError: if timeout is less than 0 """ if not isinstance(timeout, int): raise TypeError("timeout argument must be int") if timeout < 0: raise ValueError("timeout must be greater equal 0") fut = self.execute(b'CLIENT', b'PAUSE', timeout) return wait_ok(fut)
Stop processing commands from clients for *timeout* milliseconds. :raises TypeError: if timeout is not int :raises ValueError: if timeout is less than 0
Below is the the instruction that describes the task: ### Input: Stop processing commands from clients for *timeout* milliseconds. :raises TypeError: if timeout is not int :raises ValueError: if timeout is less than 0 ### Response: def client_pause(self, timeout): """Stop processing commands from clients for *timeout* milliseconds. :raises TypeError: if timeout is not int :raises ValueError: if timeout is less than 0 """ if not isinstance(timeout, int): raise TypeError("timeout argument must be int") if timeout < 0: raise ValueError("timeout must be greater equal 0") fut = self.execute(b'CLIENT', b'PAUSE', timeout) return wait_ok(fut)
def is_reversible(T, mu=None, tol=1e-12): r"""Check reversibility of the given transition matrix. Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix mu : (M,) ndarray (optional) Test reversibility with respect to this vector tol : float (optional) Floating point tolerance to check with Returns ------- is_reversible : bool True, if T is reversible, False otherwise Notes ----- A transition matrix :math:`T=(t_{ij})` is reversible with respect to a probability vector :math:`\mu=(\mu_i)` if the follwing holds, .. math:: \mu_i \, t_{ij}= \mu_j \, t_{ji}. In this case :math:`\mu` is the stationary vector for :math:`T`, so that :math:`\mu^T T = \mu^T`. If the stationary vector is unknown it is computed from :math:`T` before reversibility is checked. A reversible transition matrix has purely real eigenvalues. The left eigenvectors :math:`(l_i)` can be computed from right eigenvectors :math:`(r_i)` via :math:`l_i=\mu_i r_i`. Examples -------- >>> import numpy as np >>> from msmtools.analysis import is_reversible >>> P = np.array([[0.8, 0.1, 0.1], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> is_reversible(P) False >>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> is_reversible(T) True """ # check input T = _types.ensure_ndarray_or_sparse(T, ndim=2, uniform=True, kind='numeric') mu = _types.ensure_float_vector_or_None(mu, require_order=True) # go if _issparse(T): return sparse.assessment.is_reversible(T, mu, tol) else: return dense.assessment.is_reversible(T, mu, tol)
r"""Check reversibility of the given transition matrix. Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix mu : (M,) ndarray (optional) Test reversibility with respect to this vector tol : float (optional) Floating point tolerance to check with Returns ------- is_reversible : bool True, if T is reversible, False otherwise Notes ----- A transition matrix :math:`T=(t_{ij})` is reversible with respect to a probability vector :math:`\mu=(\mu_i)` if the follwing holds, .. math:: \mu_i \, t_{ij}= \mu_j \, t_{ji}. In this case :math:`\mu` is the stationary vector for :math:`T`, so that :math:`\mu^T T = \mu^T`. If the stationary vector is unknown it is computed from :math:`T` before reversibility is checked. A reversible transition matrix has purely real eigenvalues. The left eigenvectors :math:`(l_i)` can be computed from right eigenvectors :math:`(r_i)` via :math:`l_i=\mu_i r_i`. Examples -------- >>> import numpy as np >>> from msmtools.analysis import is_reversible >>> P = np.array([[0.8, 0.1, 0.1], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> is_reversible(P) False >>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> is_reversible(T) True
Below is the the instruction that describes the task: ### Input: r"""Check reversibility of the given transition matrix. Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix mu : (M,) ndarray (optional) Test reversibility with respect to this vector tol : float (optional) Floating point tolerance to check with Returns ------- is_reversible : bool True, if T is reversible, False otherwise Notes ----- A transition matrix :math:`T=(t_{ij})` is reversible with respect to a probability vector :math:`\mu=(\mu_i)` if the follwing holds, .. math:: \mu_i \, t_{ij}= \mu_j \, t_{ji}. In this case :math:`\mu` is the stationary vector for :math:`T`, so that :math:`\mu^T T = \mu^T`. If the stationary vector is unknown it is computed from :math:`T` before reversibility is checked. A reversible transition matrix has purely real eigenvalues. The left eigenvectors :math:`(l_i)` can be computed from right eigenvectors :math:`(r_i)` via :math:`l_i=\mu_i r_i`. Examples -------- >>> import numpy as np >>> from msmtools.analysis import is_reversible >>> P = np.array([[0.8, 0.1, 0.1], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> is_reversible(P) False >>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> is_reversible(T) True ### Response: def is_reversible(T, mu=None, tol=1e-12): r"""Check reversibility of the given transition matrix. Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix mu : (M,) ndarray (optional) Test reversibility with respect to this vector tol : float (optional) Floating point tolerance to check with Returns ------- is_reversible : bool True, if T is reversible, False otherwise Notes ----- A transition matrix :math:`T=(t_{ij})` is reversible with respect to a probability vector :math:`\mu=(\mu_i)` if the follwing holds, .. math:: \mu_i \, t_{ij}= \mu_j \, t_{ji}. In this case :math:`\mu` is the stationary vector for :math:`T`, so that :math:`\mu^T T = \mu^T`. If the stationary vector is unknown it is computed from :math:`T` before reversibility is checked. A reversible transition matrix has purely real eigenvalues. The left eigenvectors :math:`(l_i)` can be computed from right eigenvectors :math:`(r_i)` via :math:`l_i=\mu_i r_i`. Examples -------- >>> import numpy as np >>> from msmtools.analysis import is_reversible >>> P = np.array([[0.8, 0.1, 0.1], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> is_reversible(P) False >>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> is_reversible(T) True """ # check input T = _types.ensure_ndarray_or_sparse(T, ndim=2, uniform=True, kind='numeric') mu = _types.ensure_float_vector_or_None(mu, require_order=True) # go if _issparse(T): return sparse.assessment.is_reversible(T, mu, tol) else: return dense.assessment.is_reversible(T, mu, tol)
def _record(self, value, rank, delta, successor): """Catalogs a sample.""" self._observations += 1 self._items += 1 return _Sample(value, rank, delta, successor)
Catalogs a sample.
Below is the the instruction that describes the task: ### Input: Catalogs a sample. ### Response: def _record(self, value, rank, delta, successor): """Catalogs a sample.""" self._observations += 1 self._items += 1 return _Sample(value, rank, delta, successor)
def location_once_scrolled_into_view(self): """THIS PROPERTY MAY CHANGE WITHOUT WARNING. Use this to discover where on the screen an element is so that we can click it. This method should cause the element to be scrolled into view. Returns the top lefthand corner location on the screen, or ``None`` if the element is not visible. """ if self._w3c: old_loc = self._execute(Command.W3C_EXECUTE_SCRIPT, { 'script': "arguments[0].scrollIntoView(true); return arguments[0].getBoundingClientRect()", 'args': [self]})['value'] return {"x": round(old_loc['x']), "y": round(old_loc['y'])} else: return self._execute(Command.GET_ELEMENT_LOCATION_ONCE_SCROLLED_INTO_VIEW)['value']
THIS PROPERTY MAY CHANGE WITHOUT WARNING. Use this to discover where on the screen an element is so that we can click it. This method should cause the element to be scrolled into view. Returns the top lefthand corner location on the screen, or ``None`` if the element is not visible.
Below is the the instruction that describes the task: ### Input: THIS PROPERTY MAY CHANGE WITHOUT WARNING. Use this to discover where on the screen an element is so that we can click it. This method should cause the element to be scrolled into view. Returns the top lefthand corner location on the screen, or ``None`` if the element is not visible. ### Response: def location_once_scrolled_into_view(self): """THIS PROPERTY MAY CHANGE WITHOUT WARNING. Use this to discover where on the screen an element is so that we can click it. This method should cause the element to be scrolled into view. Returns the top lefthand corner location on the screen, or ``None`` if the element is not visible. """ if self._w3c: old_loc = self._execute(Command.W3C_EXECUTE_SCRIPT, { 'script': "arguments[0].scrollIntoView(true); return arguments[0].getBoundingClientRect()", 'args': [self]})['value'] return {"x": round(old_loc['x']), "y": round(old_loc['y'])} else: return self._execute(Command.GET_ELEMENT_LOCATION_ONCE_SCROLLED_INTO_VIEW)['value']
def maximum_vline_bundle(self, x0, y0, y1): """Compute a maximum set of vertical lines in the unit cells ``(x0,y)`` for :math:`y0 \leq y \leq y1`. INPUTS: y0,x0,x1: int OUTPUT: list of lists of qubits """ y_range = range(y1, y0 - 1, -1) if y0 < y1 else range(y1, y0 + 1) vlines = [[(x0, y, 1, k) for y in y_range] for k in range(self.L)] return list(filter(self._contains_line, vlines))
Compute a maximum set of vertical lines in the unit cells ``(x0,y)`` for :math:`y0 \leq y \leq y1`. INPUTS: y0,x0,x1: int OUTPUT: list of lists of qubits
Below is the the instruction that describes the task: ### Input: Compute a maximum set of vertical lines in the unit cells ``(x0,y)`` for :math:`y0 \leq y \leq y1`. INPUTS: y0,x0,x1: int OUTPUT: list of lists of qubits ### Response: def maximum_vline_bundle(self, x0, y0, y1): """Compute a maximum set of vertical lines in the unit cells ``(x0,y)`` for :math:`y0 \leq y \leq y1`. INPUTS: y0,x0,x1: int OUTPUT: list of lists of qubits """ y_range = range(y1, y0 - 1, -1) if y0 < y1 else range(y1, y0 + 1) vlines = [[(x0, y, 1, k) for y in y_range] for k in range(self.L)] return list(filter(self._contains_line, vlines))
def create(self, name, *args, **kwargs): """ Create an instance of this resource type. """ resource_name = self._resource_name(name) log.info( "Creating {} '{}'...".format(self._model_name, resource_name)) resource = self.collection.create(*args, name=resource_name, **kwargs) self._ids.add(resource.id) return resource
Create an instance of this resource type.
Below is the the instruction that describes the task: ### Input: Create an instance of this resource type. ### Response: def create(self, name, *args, **kwargs): """ Create an instance of this resource type. """ resource_name = self._resource_name(name) log.info( "Creating {} '{}'...".format(self._model_name, resource_name)) resource = self.collection.create(*args, name=resource_name, **kwargs) self._ids.add(resource.id) return resource
def _parse_protocol_port(name, protocol, port): ''' .. versionadded:: 2019.2.0 Validates and parses the protocol and port/port range from the name if both protocol and port are not provided. If the name is in a valid format, the protocol and port are ignored if provided Examples: tcp/8080 or udp/20-21 ''' protocol_port_pattern = r'^(tcp|udp)\/(([\d]+)\-?[\d]+)$' name_parts = re.match(protocol_port_pattern, name) if not name_parts: name_parts = re.match(protocol_port_pattern, '{0}/{1}'.format(protocol, port)) if not name_parts: raise SaltInvocationError( 'Invalid name "{0}" format and protocol and port not provided or invalid: "{1}" "{2}".'.format( name, protocol, port)) return name_parts.group(1), name_parts.group(2)
.. versionadded:: 2019.2.0 Validates and parses the protocol and port/port range from the name if both protocol and port are not provided. If the name is in a valid format, the protocol and port are ignored if provided Examples: tcp/8080 or udp/20-21
Below is the the instruction that describes the task: ### Input: .. versionadded:: 2019.2.0 Validates and parses the protocol and port/port range from the name if both protocol and port are not provided. If the name is in a valid format, the protocol and port are ignored if provided Examples: tcp/8080 or udp/20-21 ### Response: def _parse_protocol_port(name, protocol, port): ''' .. versionadded:: 2019.2.0 Validates and parses the protocol and port/port range from the name if both protocol and port are not provided. If the name is in a valid format, the protocol and port are ignored if provided Examples: tcp/8080 or udp/20-21 ''' protocol_port_pattern = r'^(tcp|udp)\/(([\d]+)\-?[\d]+)$' name_parts = re.match(protocol_port_pattern, name) if not name_parts: name_parts = re.match(protocol_port_pattern, '{0}/{1}'.format(protocol, port)) if not name_parts: raise SaltInvocationError( 'Invalid name "{0}" format and protocol and port not provided or invalid: "{1}" "{2}".'.format( name, protocol, port)) return name_parts.group(1), name_parts.group(2)
def _is_active_model(cls, model): """ Check is model app name is in list of INSTALLED_APPS """ # We need to use such tricky way to check because of inconsistent apps names: # some apps are included in format "<module_name>.<app_name>" like "waldur_core.openstack" # other apps are included in format "<app_name>" like "nodecondcutor_sugarcrm" return ('.'.join(model.__module__.split('.')[:2]) in settings.INSTALLED_APPS or '.'.join(model.__module__.split('.')[:1]) in settings.INSTALLED_APPS)
Check is model app name is in list of INSTALLED_APPS
Below is the the instruction that describes the task: ### Input: Check is model app name is in list of INSTALLED_APPS ### Response: def _is_active_model(cls, model): """ Check is model app name is in list of INSTALLED_APPS """ # We need to use such tricky way to check because of inconsistent apps names: # some apps are included in format "<module_name>.<app_name>" like "waldur_core.openstack" # other apps are included in format "<app_name>" like "nodecondcutor_sugarcrm" return ('.'.join(model.__module__.split('.')[:2]) in settings.INSTALLED_APPS or '.'.join(model.__module__.split('.')[:1]) in settings.INSTALLED_APPS)
def read_text(self, name): """Read text string from cur_dir/name using open_readable().""" with self.open_readable(name) as fp: res = fp.read() # StringIO or file object # try: # res = fp.getvalue() # StringIO returned by FtpTarget # except AttributeError: # res = fp.read() # file object returned by FsTarget res = res.decode("utf-8") return res
Read text string from cur_dir/name using open_readable().
Below is the the instruction that describes the task: ### Input: Read text string from cur_dir/name using open_readable(). ### Response: def read_text(self, name): """Read text string from cur_dir/name using open_readable().""" with self.open_readable(name) as fp: res = fp.read() # StringIO or file object # try: # res = fp.getvalue() # StringIO returned by FtpTarget # except AttributeError: # res = fp.read() # file object returned by FsTarget res = res.decode("utf-8") return res
def show_help(command_name: str = None, raw_args: str = '') -> Response: """ Prints the basic command help to the console """ response = Response() cmds = fetch() if command_name and command_name in cmds: parser, result = parse.get_parser( cmds[command_name], parse.explode_line(raw_args), dict() ) if parser is not None: out = parser.format_help() return response.notify( kind='INFO', code='COMMAND_DESCRIPTION' ).kernel( commands=out ).console( out, whitespace=1 ).response environ.log_header('Available Commands') response.consume(print_module_help()) return response.fail( code='NO_SUCH_COMMAND', message='Failed to show command help for "{}"'.format(command_name) ).console( """ For more information on the various commands, enter help on the specific command: help [COMMAND] """, whitespace_bottom=1 ).response
Prints the basic command help to the console
Below is the the instruction that describes the task: ### Input: Prints the basic command help to the console ### Response: def show_help(command_name: str = None, raw_args: str = '') -> Response: """ Prints the basic command help to the console """ response = Response() cmds = fetch() if command_name and command_name in cmds: parser, result = parse.get_parser( cmds[command_name], parse.explode_line(raw_args), dict() ) if parser is not None: out = parser.format_help() return response.notify( kind='INFO', code='COMMAND_DESCRIPTION' ).kernel( commands=out ).console( out, whitespace=1 ).response environ.log_header('Available Commands') response.consume(print_module_help()) return response.fail( code='NO_SUCH_COMMAND', message='Failed to show command help for "{}"'.format(command_name) ).console( """ For more information on the various commands, enter help on the specific command: help [COMMAND] """, whitespace_bottom=1 ).response
def create_setter(func, attrs): """Create the __set__ method for the descriptor.""" def _set(self, instance, value, name=None): args = [getattr(self, attr) for attr in attrs] if not func(value, *args): raise ValueError(self.err_msg(instance, value)) return _set
Create the __set__ method for the descriptor.
Below is the the instruction that describes the task: ### Input: Create the __set__ method for the descriptor. ### Response: def create_setter(func, attrs): """Create the __set__ method for the descriptor.""" def _set(self, instance, value, name=None): args = [getattr(self, attr) for attr in attrs] if not func(value, *args): raise ValueError(self.err_msg(instance, value)) return _set
def experimentVaryingSynapseSampling(expParams, sampleSizeDistalList, sampleSizeProximalList): """ Test multi-column convergence with varying amount of proximal/distal sampling :return: """ numRpts = 20 df = None args = [] for sampleSizeProximal in sampleSizeProximalList: for sampleSizeDistal in sampleSizeDistalList: for rpt in range(numRpts): l4Params = getL4Params() l2Params = getL2Params() l2Params["sampleSizeProximal"] = sampleSizeProximal l2Params["minThresholdProximal"] = sampleSizeProximal l2Params["sampleSizeDistal"] = sampleSizeDistal l2Params["activationThresholdDistal"] = sampleSizeDistal args.append( { "numObjects": expParams['numObjects'], "numLocations": expParams['numLocations'], "numFeatures": expParams['numFeatures'], "numColumns": expParams['numColumns'], "trialNum": rpt, "l4Params": l4Params, "l2Params": l2Params, "profile": True, "objectSeed": rpt, } ) pool = Pool(processes=expParams['numWorkers']) result = pool.map(runExperiment, args) # # if df is None: # df = pd.DataFrame.from_dict(result, orient='index') # else: # df = pd.concat([df, pd.DataFrame.from_dict(result, orient='index')], axis=1) # # df = df.transpose() return result
Test multi-column convergence with varying amount of proximal/distal sampling :return:
Below is the the instruction that describes the task: ### Input: Test multi-column convergence with varying amount of proximal/distal sampling :return: ### Response: def experimentVaryingSynapseSampling(expParams, sampleSizeDistalList, sampleSizeProximalList): """ Test multi-column convergence with varying amount of proximal/distal sampling :return: """ numRpts = 20 df = None args = [] for sampleSizeProximal in sampleSizeProximalList: for sampleSizeDistal in sampleSizeDistalList: for rpt in range(numRpts): l4Params = getL4Params() l2Params = getL2Params() l2Params["sampleSizeProximal"] = sampleSizeProximal l2Params["minThresholdProximal"] = sampleSizeProximal l2Params["sampleSizeDistal"] = sampleSizeDistal l2Params["activationThresholdDistal"] = sampleSizeDistal args.append( { "numObjects": expParams['numObjects'], "numLocations": expParams['numLocations'], "numFeatures": expParams['numFeatures'], "numColumns": expParams['numColumns'], "trialNum": rpt, "l4Params": l4Params, "l2Params": l2Params, "profile": True, "objectSeed": rpt, } ) pool = Pool(processes=expParams['numWorkers']) result = pool.map(runExperiment, args) # # if df is None: # df = pd.DataFrame.from_dict(result, orient='index') # else: # df = pd.concat([df, pd.DataFrame.from_dict(result, orient='index')], axis=1) # # df = df.transpose() return result
def standardize_cell(cell, to_primitive=False, no_idealize=False, symprec=1e-5, angle_tolerance=-1.0): """Return standardized cell. Args: cell, symprec, angle_tolerance: See the docstring of get_symmetry. to_primitive: bool: If True, the standardized primitive cell is created. no_idealize: bool: If True, it is disabled to idealize lengths and angles of basis vectors and positions of atoms according to crystal symmetry. Return: The standardized unit cell or primitive cell is returned by a tuple of (lattice, positions, numbers). If it fails, None is returned. """ _set_no_error() lattice, _positions, _numbers, _ = _expand_cell(cell) if lattice is None: return None # Atomic positions have to be specified by scaled positions for spglib. num_atom = len(_positions) positions = np.zeros((num_atom * 4, 3), dtype='double', order='C') positions[:num_atom] = _positions numbers = np.zeros(num_atom * 4, dtype='intc') numbers[:num_atom] = _numbers num_atom_std = spg.standardize_cell(lattice, positions, numbers, num_atom, to_primitive * 1, no_idealize * 1, symprec, angle_tolerance) _set_error_message() if num_atom_std > 0: return (np.array(lattice.T, dtype='double', order='C'), np.array(positions[:num_atom_std], dtype='double', order='C'), np.array(numbers[:num_atom_std], dtype='intc')) else: return None
Return standardized cell. Args: cell, symprec, angle_tolerance: See the docstring of get_symmetry. to_primitive: bool: If True, the standardized primitive cell is created. no_idealize: bool: If True, it is disabled to idealize lengths and angles of basis vectors and positions of atoms according to crystal symmetry. Return: The standardized unit cell or primitive cell is returned by a tuple of (lattice, positions, numbers). If it fails, None is returned.
Below is the the instruction that describes the task: ### Input: Return standardized cell. Args: cell, symprec, angle_tolerance: See the docstring of get_symmetry. to_primitive: bool: If True, the standardized primitive cell is created. no_idealize: bool: If True, it is disabled to idealize lengths and angles of basis vectors and positions of atoms according to crystal symmetry. Return: The standardized unit cell or primitive cell is returned by a tuple of (lattice, positions, numbers). If it fails, None is returned. ### Response: def standardize_cell(cell, to_primitive=False, no_idealize=False, symprec=1e-5, angle_tolerance=-1.0): """Return standardized cell. Args: cell, symprec, angle_tolerance: See the docstring of get_symmetry. to_primitive: bool: If True, the standardized primitive cell is created. no_idealize: bool: If True, it is disabled to idealize lengths and angles of basis vectors and positions of atoms according to crystal symmetry. Return: The standardized unit cell or primitive cell is returned by a tuple of (lattice, positions, numbers). If it fails, None is returned. """ _set_no_error() lattice, _positions, _numbers, _ = _expand_cell(cell) if lattice is None: return None # Atomic positions have to be specified by scaled positions for spglib. num_atom = len(_positions) positions = np.zeros((num_atom * 4, 3), dtype='double', order='C') positions[:num_atom] = _positions numbers = np.zeros(num_atom * 4, dtype='intc') numbers[:num_atom] = _numbers num_atom_std = spg.standardize_cell(lattice, positions, numbers, num_atom, to_primitive * 1, no_idealize * 1, symprec, angle_tolerance) _set_error_message() if num_atom_std > 0: return (np.array(lattice.T, dtype='double', order='C'), np.array(positions[:num_atom_std], dtype='double', order='C'), np.array(numbers[:num_atom_std], dtype='intc')) else: return None
def generate_defect_structure(self, supercell=(1, 1, 1)): """ Returns Defective Vacancy structure, decorated with charge Args: supercell (int, [3x1], or [[]] (3x3)): supercell integer, vector, or scaling matrix """ defect_structure = self.bulk_structure.copy() defect_structure.make_supercell(supercell) #create a trivial defect structure to find where supercell transformation moves the lattice struct_for_defect_site = Structure( self.bulk_structure.copy().lattice, [self.site.specie], [self.site.frac_coords], to_unit_cell=True) struct_for_defect_site.make_supercell(supercell) defect_site = struct_for_defect_site[0] poss_deflist = sorted( defect_structure.get_sites_in_sphere(defect_site.coords, 2, include_index=True), key=lambda x: x[1]) defindex = poss_deflist[0][2] defect_structure.remove_sites([defindex]) defect_structure.set_charge(self.charge) return defect_structure
Returns Defective Vacancy structure, decorated with charge Args: supercell (int, [3x1], or [[]] (3x3)): supercell integer, vector, or scaling matrix
Below is the the instruction that describes the task: ### Input: Returns Defective Vacancy structure, decorated with charge Args: supercell (int, [3x1], or [[]] (3x3)): supercell integer, vector, or scaling matrix ### Response: def generate_defect_structure(self, supercell=(1, 1, 1)): """ Returns Defective Vacancy structure, decorated with charge Args: supercell (int, [3x1], or [[]] (3x3)): supercell integer, vector, or scaling matrix """ defect_structure = self.bulk_structure.copy() defect_structure.make_supercell(supercell) #create a trivial defect structure to find where supercell transformation moves the lattice struct_for_defect_site = Structure( self.bulk_structure.copy().lattice, [self.site.specie], [self.site.frac_coords], to_unit_cell=True) struct_for_defect_site.make_supercell(supercell) defect_site = struct_for_defect_site[0] poss_deflist = sorted( defect_structure.get_sites_in_sphere(defect_site.coords, 2, include_index=True), key=lambda x: x[1]) defindex = poss_deflist[0][2] defect_structure.remove_sites([defindex]) defect_structure.set_charge(self.charge) return defect_structure
def get_property(elt, key, ctx=None): """Get elt key property. :param elt: property elt. Not None methods. :param key: property key to get from elt. :param ctx: elt ctx from where get properties. Equals elt if None. It allows to get function properties related to a class or instance if related function is defined in base class. :return: list of property values by elt. :rtype: list """ result = [] properties = get_properties(elt=elt, ctx=ctx, keys=key) if key in properties: result = properties[key] return result
Get elt key property. :param elt: property elt. Not None methods. :param key: property key to get from elt. :param ctx: elt ctx from where get properties. Equals elt if None. It allows to get function properties related to a class or instance if related function is defined in base class. :return: list of property values by elt. :rtype: list
Below is the the instruction that describes the task: ### Input: Get elt key property. :param elt: property elt. Not None methods. :param key: property key to get from elt. :param ctx: elt ctx from where get properties. Equals elt if None. It allows to get function properties related to a class or instance if related function is defined in base class. :return: list of property values by elt. :rtype: list ### Response: def get_property(elt, key, ctx=None): """Get elt key property. :param elt: property elt. Not None methods. :param key: property key to get from elt. :param ctx: elt ctx from where get properties. Equals elt if None. It allows to get function properties related to a class or instance if related function is defined in base class. :return: list of property values by elt. :rtype: list """ result = [] properties = get_properties(elt=elt, ctx=ctx, keys=key) if key in properties: result = properties[key] return result
def max_projection(self, axis=2): """ Compute maximum projections of images along a dimension. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along. """ if axis >= size(self.value_shape): raise Exception('Axis for projection (%s) exceeds ' 'image dimensions (%s-%s)' % (axis, 0, size(self.value_shape)-1)) new_value_shape = list(self.value_shape) del new_value_shape[axis] return self.map(lambda x: amax(x, axis), value_shape=new_value_shape)
Compute maximum projections of images along a dimension. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along.
Below is the the instruction that describes the task: ### Input: Compute maximum projections of images along a dimension. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along. ### Response: def max_projection(self, axis=2): """ Compute maximum projections of images along a dimension. Parameters ---------- axis : int, optional, default = 2 Which axis to compute projection along. """ if axis >= size(self.value_shape): raise Exception('Axis for projection (%s) exceeds ' 'image dimensions (%s-%s)' % (axis, 0, size(self.value_shape)-1)) new_value_shape = list(self.value_shape) del new_value_shape[axis] return self.map(lambda x: amax(x, axis), value_shape=new_value_shape)
def discombobulate(self, filehash): """ prepare napiprojekt scrambled hash """ idx = [0xe, 0x3, 0x6, 0x8, 0x2] mul = [2, 2, 5, 4, 3] add = [0, 0xd, 0x10, 0xb, 0x5] b = [] for i in xrange(len(idx)): a = add[i] m = mul[i] i = idx[i] t = a + int(filehash[i], 16) v = int(filehash[t:t + 2], 16) b.append(("%x" % (v * m))[-1]) return ''.join(b)
prepare napiprojekt scrambled hash
Below is the the instruction that describes the task: ### Input: prepare napiprojekt scrambled hash ### Response: def discombobulate(self, filehash): """ prepare napiprojekt scrambled hash """ idx = [0xe, 0x3, 0x6, 0x8, 0x2] mul = [2, 2, 5, 4, 3] add = [0, 0xd, 0x10, 0xb, 0x5] b = [] for i in xrange(len(idx)): a = add[i] m = mul[i] i = idx[i] t = a + int(filehash[i], 16) v = int(filehash[t:t + 2], 16) b.append(("%x" % (v * m))[-1]) return ''.join(b)
def _labeledInput(activeInputs, cellsPerCol=32): """Print the list of [column, cellIdx] indices for each of the active cells in activeInputs. """ if cellsPerCol == 0: cellsPerCol = 1 cols = activeInputs.size / cellsPerCol activeInputs = activeInputs.reshape(cols, cellsPerCol) (cols, cellIdxs) = activeInputs.nonzero() if len(cols) == 0: return "NONE" items = ["(%d): " % (len(cols))] prevCol = -1 for (col,cellIdx) in zip(cols, cellIdxs): if col != prevCol: if prevCol != -1: items.append("] ") items.append("Col %d: [" % col) prevCol = col items.append("%d," % cellIdx) items.append("]") return " ".join(items)
Print the list of [column, cellIdx] indices for each of the active cells in activeInputs.
Below is the the instruction that describes the task: ### Input: Print the list of [column, cellIdx] indices for each of the active cells in activeInputs. ### Response: def _labeledInput(activeInputs, cellsPerCol=32): """Print the list of [column, cellIdx] indices for each of the active cells in activeInputs. """ if cellsPerCol == 0: cellsPerCol = 1 cols = activeInputs.size / cellsPerCol activeInputs = activeInputs.reshape(cols, cellsPerCol) (cols, cellIdxs) = activeInputs.nonzero() if len(cols) == 0: return "NONE" items = ["(%d): " % (len(cols))] prevCol = -1 for (col,cellIdx) in zip(cols, cellIdxs): if col != prevCol: if prevCol != -1: items.append("] ") items.append("Col %d: [" % col) prevCol = col items.append("%d," % cellIdx) items.append("]") return " ".join(items)
def get_whois(self, asn_registry='arin', retry_count=3, server=None, port=43, extra_blacklist=None): """ The function for retrieving whois or rwhois information for an IP address via any port. Defaults to port 43/tcp (WHOIS). Args: asn_registry (:obj:`str`): The NIC to run the query against. Defaults to 'arin'. retry_count (:obj:`int`): The number of times to retry in case socket errors, timeouts, connection resets, etc. are encountered. Defaults to 3. server (:obj:`str`): An optional server to connect to. If provided, asn_registry will be ignored. port (:obj:`int`): The network port to connect on. Defaults to 43. extra_blacklist (:obj:`list` of :obj:`str`): Blacklisted whois servers in addition to the global BLACKLIST. Defaults to None. Returns: str: The raw whois data. Raises: BlacklistError: Raised if the whois server provided is in the global BLACKLIST or extra_blacklist. WhoisLookupError: The whois lookup failed. WhoisRateLimitError: The Whois request rate limited and retries were exhausted. """ try: extra_bl = extra_blacklist if extra_blacklist else [] if any(server in srv for srv in (BLACKLIST, extra_bl)): raise BlacklistError( 'The server {0} is blacklisted.'.format(server) ) if server is None: server = RIR_WHOIS[asn_registry]['server'] # Create the connection for the whois query. conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) conn.settimeout(self.timeout) log.debug('WHOIS query for {0} at {1}:{2}'.format( self.address_str, server, port)) conn.connect((server, port)) # Prep the query. query = self.address_str + '\r\n' if asn_registry == 'arin': query = 'n + {0}'.format(query) # Query the whois server, and store the results. conn.send(query.encode()) response = '' while True: d = conn.recv(4096).decode('ascii', 'ignore') response += d if not d: break conn.close() if 'Query rate limit exceeded' in response: # pragma: no cover if retry_count > 0: log.debug('WHOIS query rate limit exceeded. Waiting...') sleep(1) return self.get_whois( asn_registry=asn_registry, retry_count=retry_count-1, server=server, port=port, extra_blacklist=extra_blacklist ) else: raise WhoisRateLimitError( 'Whois lookup failed for {0}. Rate limit ' 'exceeded, wait and try again (possibly a ' 'temporary block).'.format(self.address_str)) elif ('error 501' in response or 'error 230' in response ): # pragma: no cover log.debug('WHOIS query error: {0}'.format(response)) raise ValueError return str(response) except (socket.timeout, socket.error) as e: log.debug('WHOIS query socket error: {0}'.format(e)) if retry_count > 0: log.debug('WHOIS query retrying (count: {0})'.format( str(retry_count))) return self.get_whois( asn_registry=asn_registry, retry_count=retry_count-1, server=server, port=port, extra_blacklist=extra_blacklist ) else: raise WhoisLookupError( 'WHOIS lookup failed for {0}.'.format(self.address_str) ) except WhoisRateLimitError: # pragma: no cover raise except BlacklistError: raise except: # pragma: no cover raise WhoisLookupError( 'WHOIS lookup failed for {0}.'.format(self.address_str) )
The function for retrieving whois or rwhois information for an IP address via any port. Defaults to port 43/tcp (WHOIS). Args: asn_registry (:obj:`str`): The NIC to run the query against. Defaults to 'arin'. retry_count (:obj:`int`): The number of times to retry in case socket errors, timeouts, connection resets, etc. are encountered. Defaults to 3. server (:obj:`str`): An optional server to connect to. If provided, asn_registry will be ignored. port (:obj:`int`): The network port to connect on. Defaults to 43. extra_blacklist (:obj:`list` of :obj:`str`): Blacklisted whois servers in addition to the global BLACKLIST. Defaults to None. Returns: str: The raw whois data. Raises: BlacklistError: Raised if the whois server provided is in the global BLACKLIST or extra_blacklist. WhoisLookupError: The whois lookup failed. WhoisRateLimitError: The Whois request rate limited and retries were exhausted.
Below is the the instruction that describes the task: ### Input: The function for retrieving whois or rwhois information for an IP address via any port. Defaults to port 43/tcp (WHOIS). Args: asn_registry (:obj:`str`): The NIC to run the query against. Defaults to 'arin'. retry_count (:obj:`int`): The number of times to retry in case socket errors, timeouts, connection resets, etc. are encountered. Defaults to 3. server (:obj:`str`): An optional server to connect to. If provided, asn_registry will be ignored. port (:obj:`int`): The network port to connect on. Defaults to 43. extra_blacklist (:obj:`list` of :obj:`str`): Blacklisted whois servers in addition to the global BLACKLIST. Defaults to None. Returns: str: The raw whois data. Raises: BlacklistError: Raised if the whois server provided is in the global BLACKLIST or extra_blacklist. WhoisLookupError: The whois lookup failed. WhoisRateLimitError: The Whois request rate limited and retries were exhausted. ### Response: def get_whois(self, asn_registry='arin', retry_count=3, server=None, port=43, extra_blacklist=None): """ The function for retrieving whois or rwhois information for an IP address via any port. Defaults to port 43/tcp (WHOIS). Args: asn_registry (:obj:`str`): The NIC to run the query against. Defaults to 'arin'. retry_count (:obj:`int`): The number of times to retry in case socket errors, timeouts, connection resets, etc. are encountered. Defaults to 3. server (:obj:`str`): An optional server to connect to. If provided, asn_registry will be ignored. port (:obj:`int`): The network port to connect on. Defaults to 43. extra_blacklist (:obj:`list` of :obj:`str`): Blacklisted whois servers in addition to the global BLACKLIST. Defaults to None. Returns: str: The raw whois data. Raises: BlacklistError: Raised if the whois server provided is in the global BLACKLIST or extra_blacklist. WhoisLookupError: The whois lookup failed. WhoisRateLimitError: The Whois request rate limited and retries were exhausted. """ try: extra_bl = extra_blacklist if extra_blacklist else [] if any(server in srv for srv in (BLACKLIST, extra_bl)): raise BlacklistError( 'The server {0} is blacklisted.'.format(server) ) if server is None: server = RIR_WHOIS[asn_registry]['server'] # Create the connection for the whois query. conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) conn.settimeout(self.timeout) log.debug('WHOIS query for {0} at {1}:{2}'.format( self.address_str, server, port)) conn.connect((server, port)) # Prep the query. query = self.address_str + '\r\n' if asn_registry == 'arin': query = 'n + {0}'.format(query) # Query the whois server, and store the results. conn.send(query.encode()) response = '' while True: d = conn.recv(4096).decode('ascii', 'ignore') response += d if not d: break conn.close() if 'Query rate limit exceeded' in response: # pragma: no cover if retry_count > 0: log.debug('WHOIS query rate limit exceeded. Waiting...') sleep(1) return self.get_whois( asn_registry=asn_registry, retry_count=retry_count-1, server=server, port=port, extra_blacklist=extra_blacklist ) else: raise WhoisRateLimitError( 'Whois lookup failed for {0}. Rate limit ' 'exceeded, wait and try again (possibly a ' 'temporary block).'.format(self.address_str)) elif ('error 501' in response or 'error 230' in response ): # pragma: no cover log.debug('WHOIS query error: {0}'.format(response)) raise ValueError return str(response) except (socket.timeout, socket.error) as e: log.debug('WHOIS query socket error: {0}'.format(e)) if retry_count > 0: log.debug('WHOIS query retrying (count: {0})'.format( str(retry_count))) return self.get_whois( asn_registry=asn_registry, retry_count=retry_count-1, server=server, port=port, extra_blacklist=extra_blacklist ) else: raise WhoisLookupError( 'WHOIS lookup failed for {0}.'.format(self.address_str) ) except WhoisRateLimitError: # pragma: no cover raise except BlacklistError: raise except: # pragma: no cover raise WhoisLookupError( 'WHOIS lookup failed for {0}.'.format(self.address_str) )
def user_type_registered(self, keyspace, user_type, klass): """ Called by the parent Cluster instance when the user registers a new mapping from a user-defined type to a class. Intended for internal use only. """ try: ks_meta = self.cluster.metadata.keyspaces[keyspace] except KeyError: raise UserTypeDoesNotExist( 'Keyspace %s does not exist or has not been discovered by the driver' % (keyspace,)) try: type_meta = ks_meta.user_types[user_type] except KeyError: raise UserTypeDoesNotExist( 'User type %s does not exist in keyspace %s' % (user_type, keyspace)) field_names = type_meta.field_names if six.PY2: # go from unicode to string to avoid decode errors from implicit # decode when formatting non-ascii values field_names = [fn.encode('utf-8') for fn in field_names] def encode(val): return '{ %s }' % ' , '.join('%s : %s' % ( field_name, self.encoder.cql_encode_all_types(getattr(val, field_name, None)) ) for field_name in field_names) self.encoder.mapping[klass] = encode
Called by the parent Cluster instance when the user registers a new mapping from a user-defined type to a class. Intended for internal use only.
Below is the the instruction that describes the task: ### Input: Called by the parent Cluster instance when the user registers a new mapping from a user-defined type to a class. Intended for internal use only. ### Response: def user_type_registered(self, keyspace, user_type, klass): """ Called by the parent Cluster instance when the user registers a new mapping from a user-defined type to a class. Intended for internal use only. """ try: ks_meta = self.cluster.metadata.keyspaces[keyspace] except KeyError: raise UserTypeDoesNotExist( 'Keyspace %s does not exist or has not been discovered by the driver' % (keyspace,)) try: type_meta = ks_meta.user_types[user_type] except KeyError: raise UserTypeDoesNotExist( 'User type %s does not exist in keyspace %s' % (user_type, keyspace)) field_names = type_meta.field_names if six.PY2: # go from unicode to string to avoid decode errors from implicit # decode when formatting non-ascii values field_names = [fn.encode('utf-8') for fn in field_names] def encode(val): return '{ %s }' % ' , '.join('%s : %s' % ( field_name, self.encoder.cql_encode_all_types(getattr(val, field_name, None)) ) for field_name in field_names) self.encoder.mapping[klass] = encode
def _inserts(self): """thwe""" return {concat(a, c, b) for a, b in self.slices for c in ALPHABET}
thwe
Below is the the instruction that describes the task: ### Input: thwe ### Response: def _inserts(self): """thwe""" return {concat(a, c, b) for a, b in self.slices for c in ALPHABET}