code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def _add(self, ctx, table_name, record_id, column_values): """ :type column_values: list of (column, value_json) """ vsctl_table = self._get_table(table_name) ovsrec_row = ctx.must_get_row(vsctl_table, record_id) for column, value in column_values: ctx.add_column(ovsrec_row, column, value) ctx.invalidate_cache()
:type column_values: list of (column, value_json)
Below is the the instruction that describes the task: ### Input: :type column_values: list of (column, value_json) ### Response: def _add(self, ctx, table_name, record_id, column_values): """ :type column_values: list of (column, value_json) """ vsctl_table = self._get_table(table_name) ovsrec_row = ctx.must_get_row(vsctl_table, record_id) for column, value in column_values: ctx.add_column(ovsrec_row, column, value) ctx.invalidate_cache()
async def search_participant(self, name, force_update=False): """ search a participant by (display) name |methcoro| Args: name: display name of the participant force_update (dfault=False): True to force an update to the Challonge API Returns: Participant: None if not found Raises: APIException """ if force_update or self.participants is None: await self.get_participants() if self.participants is not None: for p in self.participants: if p.name == name: return p return None
search a participant by (display) name |methcoro| Args: name: display name of the participant force_update (dfault=False): True to force an update to the Challonge API Returns: Participant: None if not found Raises: APIException
Below is the the instruction that describes the task: ### Input: search a participant by (display) name |methcoro| Args: name: display name of the participant force_update (dfault=False): True to force an update to the Challonge API Returns: Participant: None if not found Raises: APIException ### Response: async def search_participant(self, name, force_update=False): """ search a participant by (display) name |methcoro| Args: name: display name of the participant force_update (dfault=False): True to force an update to the Challonge API Returns: Participant: None if not found Raises: APIException """ if force_update or self.participants is None: await self.get_participants() if self.participants is not None: for p in self.participants: if p.name == name: return p return None
def to_bytes(obj, encoding='utf-8', errors=None, nonstring='simplerepr'): """Make sure that a string is a byte string :arg obj: An object to make sure is a byte string. In most cases this will be either a text string or a byte string. However, with ``nonstring='simplerepr'``, this can be used as a traceback-free version of ``str(obj)``. :kwarg encoding: The encoding to use to transform from a text string to a byte string. Defaults to using 'utf-8'. :kwarg errors: The error handler to use if the text string is not encodable using the specified encoding. Any valid `codecs error handler <https://docs.python.org/2/library/codecs.html#codec-base-classes>`_ may be specified. There are three additional error strategies specifically aimed at helping people to port code. The first two are: :surrogate_or_strict: Will use ``surrogateescape`` if it is a valid handler, otherwise it will use ``strict`` :surrogate_or_replace: Will use ``surrogateescape`` if it is a valid handler, otherwise it will use ``replace``. Because ``surrogateescape`` was added in Python3 this usually means that Python3 will use ``surrogateescape`` and Python2 will use the fallback error handler. Note that the code checks for ``surrogateescape`` when the module is imported. If you have a backport of ``surrogateescape`` for Python2, be sure to register the error handler prior to importing this module. The last error handler is: :surrogate_then_replace: Will use ``surrogateescape`` if it is a valid handler. If encoding with ``surrogateescape`` would traceback, surrogates are first replaced with a replacement characters and then the string is encoded using ``replace`` (which replaces the rest of the nonencodable bytes). If ``surrogateescape`` is not present it will simply use ``replace``. (Added in Ansible 2.3) This strategy is designed to never traceback when it attempts to encode a string. The default until Ansible-2.2 was ``surrogate_or_replace`` From Ansible-2.3 onwards, the default is ``surrogate_then_replace``. :kwarg nonstring: The strategy to use if a nonstring is specified in ``obj``. Default is 'simplerepr'. Valid values are: :simplerepr: The default. This takes the ``str`` of the object and then returns the bytes version of that string. :empty: Return an empty byte string :passthru: Return the object passed in :strict: Raise a :exc:`TypeError` :returns: Typically this returns a byte string. If a nonstring object is passed in this may be a different type depending on the strategy specified by nonstring. This will never return a text string. .. note:: If passed a byte string, this function does not check that the string is valid in the specified encoding. If it's important that the byte string is in the specified encoding do:: encoded_string = to_bytes(to_text(input_string, 'latin-1'), 'utf-8') .. version_changed:: 2.3 Added the ``surrogate_then_replace`` error handler and made it the default error handler. """ if isinstance(obj, binary_type): return obj # We're given a text string # If it has surrogates, we know because it will decode original_errors = errors if errors in _COMPOSED_ERROR_HANDLERS: if HAS_SURROGATEESCAPE: errors = 'surrogateescape' elif errors == 'surrogate_or_strict': errors = 'strict' else: errors = 'replace' if isinstance(obj, text_type): try: # Try this first as it's the fastest return obj.encode(encoding, errors) except UnicodeEncodeError: if original_errors in (None, 'surrogate_then_replace'): # Slow but works return_string = obj.encode('utf-8', 'surrogateescape') return_string = return_string.decode('utf-8', 'replace') return return_string.encode(encoding, 'replace') raise # Note: We do these last even though we have to call to_bytes again on the # value because we're optimizing the common case if nonstring == 'simplerepr': try: value = str(obj) except UnicodeError: try: value = repr(obj) except UnicodeError: # Giving up return to_bytes('') elif nonstring == 'passthru': return obj elif nonstring == 'empty': # python2.4 doesn't have b'' return to_bytes('') elif nonstring == 'strict': raise TypeError('obj must be a string type') else: raise TypeError('Invalid value %s for to_bytes\' nonstring parameter' % nonstring) return to_bytes(value, encoding, errors)
Make sure that a string is a byte string :arg obj: An object to make sure is a byte string. In most cases this will be either a text string or a byte string. However, with ``nonstring='simplerepr'``, this can be used as a traceback-free version of ``str(obj)``. :kwarg encoding: The encoding to use to transform from a text string to a byte string. Defaults to using 'utf-8'. :kwarg errors: The error handler to use if the text string is not encodable using the specified encoding. Any valid `codecs error handler <https://docs.python.org/2/library/codecs.html#codec-base-classes>`_ may be specified. There are three additional error strategies specifically aimed at helping people to port code. The first two are: :surrogate_or_strict: Will use ``surrogateescape`` if it is a valid handler, otherwise it will use ``strict`` :surrogate_or_replace: Will use ``surrogateescape`` if it is a valid handler, otherwise it will use ``replace``. Because ``surrogateescape`` was added in Python3 this usually means that Python3 will use ``surrogateescape`` and Python2 will use the fallback error handler. Note that the code checks for ``surrogateescape`` when the module is imported. If you have a backport of ``surrogateescape`` for Python2, be sure to register the error handler prior to importing this module. The last error handler is: :surrogate_then_replace: Will use ``surrogateescape`` if it is a valid handler. If encoding with ``surrogateescape`` would traceback, surrogates are first replaced with a replacement characters and then the string is encoded using ``replace`` (which replaces the rest of the nonencodable bytes). If ``surrogateescape`` is not present it will simply use ``replace``. (Added in Ansible 2.3) This strategy is designed to never traceback when it attempts to encode a string. The default until Ansible-2.2 was ``surrogate_or_replace`` From Ansible-2.3 onwards, the default is ``surrogate_then_replace``. :kwarg nonstring: The strategy to use if a nonstring is specified in ``obj``. Default is 'simplerepr'. Valid values are: :simplerepr: The default. This takes the ``str`` of the object and then returns the bytes version of that string. :empty: Return an empty byte string :passthru: Return the object passed in :strict: Raise a :exc:`TypeError` :returns: Typically this returns a byte string. If a nonstring object is passed in this may be a different type depending on the strategy specified by nonstring. This will never return a text string. .. note:: If passed a byte string, this function does not check that the string is valid in the specified encoding. If it's important that the byte string is in the specified encoding do:: encoded_string = to_bytes(to_text(input_string, 'latin-1'), 'utf-8') .. version_changed:: 2.3 Added the ``surrogate_then_replace`` error handler and made it the default error handler.
Below is the the instruction that describes the task: ### Input: Make sure that a string is a byte string :arg obj: An object to make sure is a byte string. In most cases this will be either a text string or a byte string. However, with ``nonstring='simplerepr'``, this can be used as a traceback-free version of ``str(obj)``. :kwarg encoding: The encoding to use to transform from a text string to a byte string. Defaults to using 'utf-8'. :kwarg errors: The error handler to use if the text string is not encodable using the specified encoding. Any valid `codecs error handler <https://docs.python.org/2/library/codecs.html#codec-base-classes>`_ may be specified. There are three additional error strategies specifically aimed at helping people to port code. The first two are: :surrogate_or_strict: Will use ``surrogateescape`` if it is a valid handler, otherwise it will use ``strict`` :surrogate_or_replace: Will use ``surrogateescape`` if it is a valid handler, otherwise it will use ``replace``. Because ``surrogateescape`` was added in Python3 this usually means that Python3 will use ``surrogateescape`` and Python2 will use the fallback error handler. Note that the code checks for ``surrogateescape`` when the module is imported. If you have a backport of ``surrogateescape`` for Python2, be sure to register the error handler prior to importing this module. The last error handler is: :surrogate_then_replace: Will use ``surrogateescape`` if it is a valid handler. If encoding with ``surrogateescape`` would traceback, surrogates are first replaced with a replacement characters and then the string is encoded using ``replace`` (which replaces the rest of the nonencodable bytes). If ``surrogateescape`` is not present it will simply use ``replace``. (Added in Ansible 2.3) This strategy is designed to never traceback when it attempts to encode a string. The default until Ansible-2.2 was ``surrogate_or_replace`` From Ansible-2.3 onwards, the default is ``surrogate_then_replace``. :kwarg nonstring: The strategy to use if a nonstring is specified in ``obj``. Default is 'simplerepr'. Valid values are: :simplerepr: The default. This takes the ``str`` of the object and then returns the bytes version of that string. :empty: Return an empty byte string :passthru: Return the object passed in :strict: Raise a :exc:`TypeError` :returns: Typically this returns a byte string. If a nonstring object is passed in this may be a different type depending on the strategy specified by nonstring. This will never return a text string. .. note:: If passed a byte string, this function does not check that the string is valid in the specified encoding. If it's important that the byte string is in the specified encoding do:: encoded_string = to_bytes(to_text(input_string, 'latin-1'), 'utf-8') .. version_changed:: 2.3 Added the ``surrogate_then_replace`` error handler and made it the default error handler. ### Response: def to_bytes(obj, encoding='utf-8', errors=None, nonstring='simplerepr'): """Make sure that a string is a byte string :arg obj: An object to make sure is a byte string. In most cases this will be either a text string or a byte string. However, with ``nonstring='simplerepr'``, this can be used as a traceback-free version of ``str(obj)``. :kwarg encoding: The encoding to use to transform from a text string to a byte string. Defaults to using 'utf-8'. :kwarg errors: The error handler to use if the text string is not encodable using the specified encoding. Any valid `codecs error handler <https://docs.python.org/2/library/codecs.html#codec-base-classes>`_ may be specified. There are three additional error strategies specifically aimed at helping people to port code. The first two are: :surrogate_or_strict: Will use ``surrogateescape`` if it is a valid handler, otherwise it will use ``strict`` :surrogate_or_replace: Will use ``surrogateescape`` if it is a valid handler, otherwise it will use ``replace``. Because ``surrogateescape`` was added in Python3 this usually means that Python3 will use ``surrogateescape`` and Python2 will use the fallback error handler. Note that the code checks for ``surrogateescape`` when the module is imported. If you have a backport of ``surrogateescape`` for Python2, be sure to register the error handler prior to importing this module. The last error handler is: :surrogate_then_replace: Will use ``surrogateescape`` if it is a valid handler. If encoding with ``surrogateescape`` would traceback, surrogates are first replaced with a replacement characters and then the string is encoded using ``replace`` (which replaces the rest of the nonencodable bytes). If ``surrogateescape`` is not present it will simply use ``replace``. (Added in Ansible 2.3) This strategy is designed to never traceback when it attempts to encode a string. The default until Ansible-2.2 was ``surrogate_or_replace`` From Ansible-2.3 onwards, the default is ``surrogate_then_replace``. :kwarg nonstring: The strategy to use if a nonstring is specified in ``obj``. Default is 'simplerepr'. Valid values are: :simplerepr: The default. This takes the ``str`` of the object and then returns the bytes version of that string. :empty: Return an empty byte string :passthru: Return the object passed in :strict: Raise a :exc:`TypeError` :returns: Typically this returns a byte string. If a nonstring object is passed in this may be a different type depending on the strategy specified by nonstring. This will never return a text string. .. note:: If passed a byte string, this function does not check that the string is valid in the specified encoding. If it's important that the byte string is in the specified encoding do:: encoded_string = to_bytes(to_text(input_string, 'latin-1'), 'utf-8') .. version_changed:: 2.3 Added the ``surrogate_then_replace`` error handler and made it the default error handler. """ if isinstance(obj, binary_type): return obj # We're given a text string # If it has surrogates, we know because it will decode original_errors = errors if errors in _COMPOSED_ERROR_HANDLERS: if HAS_SURROGATEESCAPE: errors = 'surrogateescape' elif errors == 'surrogate_or_strict': errors = 'strict' else: errors = 'replace' if isinstance(obj, text_type): try: # Try this first as it's the fastest return obj.encode(encoding, errors) except UnicodeEncodeError: if original_errors in (None, 'surrogate_then_replace'): # Slow but works return_string = obj.encode('utf-8', 'surrogateescape') return_string = return_string.decode('utf-8', 'replace') return return_string.encode(encoding, 'replace') raise # Note: We do these last even though we have to call to_bytes again on the # value because we're optimizing the common case if nonstring == 'simplerepr': try: value = str(obj) except UnicodeError: try: value = repr(obj) except UnicodeError: # Giving up return to_bytes('') elif nonstring == 'passthru': return obj elif nonstring == 'empty': # python2.4 doesn't have b'' return to_bytes('') elif nonstring == 'strict': raise TypeError('obj must be a string type') else: raise TypeError('Invalid value %s for to_bytes\' nonstring parameter' % nonstring) return to_bytes(value, encoding, errors)
def _parse_contract_headers(self, table): """ Parse the years on the contract. The years are listed as the headers on the contract. The first header contains 'Team' which specifies the player's current team and should not be included in the years. Parameters ---------- table : PyQuery object A PyQuery object containing the contract table. Returns ------- list Returns a list where each element is a string denoting the season, such as '2017-18'. """ years = [i.text() for i in table('th').items()] years.remove('Team') return years
Parse the years on the contract. The years are listed as the headers on the contract. The first header contains 'Team' which specifies the player's current team and should not be included in the years. Parameters ---------- table : PyQuery object A PyQuery object containing the contract table. Returns ------- list Returns a list where each element is a string denoting the season, such as '2017-18'.
Below is the the instruction that describes the task: ### Input: Parse the years on the contract. The years are listed as the headers on the contract. The first header contains 'Team' which specifies the player's current team and should not be included in the years. Parameters ---------- table : PyQuery object A PyQuery object containing the contract table. Returns ------- list Returns a list where each element is a string denoting the season, such as '2017-18'. ### Response: def _parse_contract_headers(self, table): """ Parse the years on the contract. The years are listed as the headers on the contract. The first header contains 'Team' which specifies the player's current team and should not be included in the years. Parameters ---------- table : PyQuery object A PyQuery object containing the contract table. Returns ------- list Returns a list where each element is a string denoting the season, such as '2017-18'. """ years = [i.text() for i in table('th').items()] years.remove('Team') return years
def table_delete(self, table_name): """Issues a request to delete a table. Args: table_name: the name of the table as a tuple of components. Returns: A parsed result object. Raises: Exception if there is an error performing the operation. """ url = Api._ENDPOINT + (Api._TABLES_PATH % table_name) return datalab.utils.Http.request(url, method='DELETE', credentials=self._credentials, raw_response=True)
Issues a request to delete a table. Args: table_name: the name of the table as a tuple of components. Returns: A parsed result object. Raises: Exception if there is an error performing the operation.
Below is the the instruction that describes the task: ### Input: Issues a request to delete a table. Args: table_name: the name of the table as a tuple of components. Returns: A parsed result object. Raises: Exception if there is an error performing the operation. ### Response: def table_delete(self, table_name): """Issues a request to delete a table. Args: table_name: the name of the table as a tuple of components. Returns: A parsed result object. Raises: Exception if there is an error performing the operation. """ url = Api._ENDPOINT + (Api._TABLES_PATH % table_name) return datalab.utils.Http.request(url, method='DELETE', credentials=self._credentials, raw_response=True)
def enabled(self): """ Check whether we're enabled (or if parent is). """ # Cache into ._enabled if self._enabled is None: if self.parent is not None and self.parent.enabled(): self._enabled = True else: # Default to Enabled if not otherwise disabled self._enabled = getattr(self.options, self.dest, True) return self._enabled
Check whether we're enabled (or if parent is).
Below is the the instruction that describes the task: ### Input: Check whether we're enabled (or if parent is). ### Response: def enabled(self): """ Check whether we're enabled (or if parent is). """ # Cache into ._enabled if self._enabled is None: if self.parent is not None and self.parent.enabled(): self._enabled = True else: # Default to Enabled if not otherwise disabled self._enabled = getattr(self.options, self.dest, True) return self._enabled
def add(path=None, force=False, quiet=False): """Add that path to git's staging area (default current dir) so that it will be included in next commit """ option = '-f' if force else '' return run('add %s %s' % (option, path) or '.', quiet=quiet)
Add that path to git's staging area (default current dir) so that it will be included in next commit
Below is the the instruction that describes the task: ### Input: Add that path to git's staging area (default current dir) so that it will be included in next commit ### Response: def add(path=None, force=False, quiet=False): """Add that path to git's staging area (default current dir) so that it will be included in next commit """ option = '-f' if force else '' return run('add %s %s' % (option, path) or '.', quiet=quiet)
def write_worksheets(workbook, data_list, result_info_key, identifier_keys): """Writes rest of the worksheets to workbook. Args: workbook: workbook to write into data_list: Analytics API data as a list of dicts result_info_key: the key in api_data dicts that contains the data results identifier_keys: the list of keys used as requested identifiers (address, zipcode, block_id, etc) """ # we can use the first item to figure out the worksheet keys worksheet_keys = get_worksheet_keys(data_list[0], result_info_key) for key in worksheet_keys: title = key.split('/')[1] title = utilities.convert_snake_to_title_case(title) title = KEY_TO_WORKSHEET_MAP.get(title, title) if key == 'property/nod': # the property/nod endpoint needs to be split into two worksheets create_property_nod_worksheets(workbook, data_list, result_info_key, identifier_keys) else: # all other endpoints are written to a single worksheet # Maximum 31 characters allowed in sheet title worksheet = workbook.create_sheet(title=title[:31]) processed_data = process_data(key, data_list, result_info_key, identifier_keys) write_data(worksheet, processed_data) # remove the first, unused empty sheet workbook.remove_sheet(workbook.active)
Writes rest of the worksheets to workbook. Args: workbook: workbook to write into data_list: Analytics API data as a list of dicts result_info_key: the key in api_data dicts that contains the data results identifier_keys: the list of keys used as requested identifiers (address, zipcode, block_id, etc)
Below is the the instruction that describes the task: ### Input: Writes rest of the worksheets to workbook. Args: workbook: workbook to write into data_list: Analytics API data as a list of dicts result_info_key: the key in api_data dicts that contains the data results identifier_keys: the list of keys used as requested identifiers (address, zipcode, block_id, etc) ### Response: def write_worksheets(workbook, data_list, result_info_key, identifier_keys): """Writes rest of the worksheets to workbook. Args: workbook: workbook to write into data_list: Analytics API data as a list of dicts result_info_key: the key in api_data dicts that contains the data results identifier_keys: the list of keys used as requested identifiers (address, zipcode, block_id, etc) """ # we can use the first item to figure out the worksheet keys worksheet_keys = get_worksheet_keys(data_list[0], result_info_key) for key in worksheet_keys: title = key.split('/')[1] title = utilities.convert_snake_to_title_case(title) title = KEY_TO_WORKSHEET_MAP.get(title, title) if key == 'property/nod': # the property/nod endpoint needs to be split into two worksheets create_property_nod_worksheets(workbook, data_list, result_info_key, identifier_keys) else: # all other endpoints are written to a single worksheet # Maximum 31 characters allowed in sheet title worksheet = workbook.create_sheet(title=title[:31]) processed_data = process_data(key, data_list, result_info_key, identifier_keys) write_data(worksheet, processed_data) # remove the first, unused empty sheet workbook.remove_sheet(workbook.active)
def do_statement(source, start): """returns none if not found other functions that begin with 'do_' raise also this do_ type function passes white space""" start = pass_white(source, start) # start is the fist position after initial start that is not a white space or \n if not start < len(source): #if finished parsing return None return None, start if any(startswith_keyword(source[start:], e) for e in {'case', 'default'}): return None, start rest = source[start:] for key, meth in KEYWORD_METHODS.iteritems( ): # check for statements that are uniquely defined by their keywords if rest.startswith(key): # has to startwith this keyword and the next letter after keyword must be either EOF or not in IDENTIFIER_PART if len(key) == len(rest) or rest[len(key)] not in IDENTIFIER_PART: return meth(source, start) if rest[0] == '{': #Block return do_block(source, start) # Now only label and expression left cand = parse_identifier(source, start, False) if cand is not None: # it can mean that its a label label, cand_start = cand cand_start = pass_white(source, cand_start) if source[cand_start] == ':': return do_label(source, start) return do_expression(source, start)
returns none if not found other functions that begin with 'do_' raise also this do_ type function passes white space
Below is the the instruction that describes the task: ### Input: returns none if not found other functions that begin with 'do_' raise also this do_ type function passes white space ### Response: def do_statement(source, start): """returns none if not found other functions that begin with 'do_' raise also this do_ type function passes white space""" start = pass_white(source, start) # start is the fist position after initial start that is not a white space or \n if not start < len(source): #if finished parsing return None return None, start if any(startswith_keyword(source[start:], e) for e in {'case', 'default'}): return None, start rest = source[start:] for key, meth in KEYWORD_METHODS.iteritems( ): # check for statements that are uniquely defined by their keywords if rest.startswith(key): # has to startwith this keyword and the next letter after keyword must be either EOF or not in IDENTIFIER_PART if len(key) == len(rest) or rest[len(key)] not in IDENTIFIER_PART: return meth(source, start) if rest[0] == '{': #Block return do_block(source, start) # Now only label and expression left cand = parse_identifier(source, start, False) if cand is not None: # it can mean that its a label label, cand_start = cand cand_start = pass_white(source, cand_start) if source[cand_start] == ':': return do_label(source, start) return do_expression(source, start)
def _connectIfNecessarySingle(self, node): """ Connect to a node if necessary. :param node: node to connect to :type node: Node """ if node in self._connections and self._connections[node].state != CONNECTION_STATE.DISCONNECTED: return True if not self._shouldConnect(node): return False assert node in self._connections # Since we "should connect" to this node, there should always be a connection object already in place. if node in self._lastConnectAttempt and time.time() - self._lastConnectAttempt[node] < self._syncObj.conf.connectionRetryTime: return False self._lastConnectAttempt[node] = time.time() return self._connections[node].connect(node.ip, node.port)
Connect to a node if necessary. :param node: node to connect to :type node: Node
Below is the the instruction that describes the task: ### Input: Connect to a node if necessary. :param node: node to connect to :type node: Node ### Response: def _connectIfNecessarySingle(self, node): """ Connect to a node if necessary. :param node: node to connect to :type node: Node """ if node in self._connections and self._connections[node].state != CONNECTION_STATE.DISCONNECTED: return True if not self._shouldConnect(node): return False assert node in self._connections # Since we "should connect" to this node, there should always be a connection object already in place. if node in self._lastConnectAttempt and time.time() - self._lastConnectAttempt[node] < self._syncObj.conf.connectionRetryTime: return False self._lastConnectAttempt[node] = time.time() return self._connections[node].connect(node.ip, node.port)
def send(self, obj_id): """ Send email to the assigned lists :param obj_id: int :return: dict|str """ response = self._client.session.post( '{url}/{id}/send'.format( url=self.endpoint_url, id=obj_id ) ) return self.process_response(response)
Send email to the assigned lists :param obj_id: int :return: dict|str
Below is the the instruction that describes the task: ### Input: Send email to the assigned lists :param obj_id: int :return: dict|str ### Response: def send(self, obj_id): """ Send email to the assigned lists :param obj_id: int :return: dict|str """ response = self._client.session.post( '{url}/{id}/send'.format( url=self.endpoint_url, id=obj_id ) ) return self.process_response(response)
def seek(self, position, modifier=0): """move the cursor on the file descriptor to a different location :param position: an integer offset from the location indicated by the modifier :type position: int :param modifier: an indicator of how to find the seek location. - ``os.SEEK_SET`` means start from the beginning of the file - ``os.SEEK_CUR`` means start wherever the cursor already is - ``os.SEEK_END`` means start from the end of the file the default is ``os.SEEK_SET`` """ os.lseek(self._fileno, position, modifier) # clear out the buffer buf = self._rbuf buf.seek(0) buf.truncate()
move the cursor on the file descriptor to a different location :param position: an integer offset from the location indicated by the modifier :type position: int :param modifier: an indicator of how to find the seek location. - ``os.SEEK_SET`` means start from the beginning of the file - ``os.SEEK_CUR`` means start wherever the cursor already is - ``os.SEEK_END`` means start from the end of the file the default is ``os.SEEK_SET``
Below is the the instruction that describes the task: ### Input: move the cursor on the file descriptor to a different location :param position: an integer offset from the location indicated by the modifier :type position: int :param modifier: an indicator of how to find the seek location. - ``os.SEEK_SET`` means start from the beginning of the file - ``os.SEEK_CUR`` means start wherever the cursor already is - ``os.SEEK_END`` means start from the end of the file the default is ``os.SEEK_SET`` ### Response: def seek(self, position, modifier=0): """move the cursor on the file descriptor to a different location :param position: an integer offset from the location indicated by the modifier :type position: int :param modifier: an indicator of how to find the seek location. - ``os.SEEK_SET`` means start from the beginning of the file - ``os.SEEK_CUR`` means start wherever the cursor already is - ``os.SEEK_END`` means start from the end of the file the default is ``os.SEEK_SET`` """ os.lseek(self._fileno, position, modifier) # clear out the buffer buf = self._rbuf buf.seek(0) buf.truncate()
def superseeded_by(self, other_service): """Return True if input service has login id and this has not.""" if not other_service or \ other_service.__class__ != self.__class__ or \ other_service.protocol != self.protocol or \ other_service.port != self.port: return False # If this service does not have a login id but the other one does, then # we should return True here return not self.device_credentials and other_service.device_credentials
Return True if input service has login id and this has not.
Below is the the instruction that describes the task: ### Input: Return True if input service has login id and this has not. ### Response: def superseeded_by(self, other_service): """Return True if input service has login id and this has not.""" if not other_service or \ other_service.__class__ != self.__class__ or \ other_service.protocol != self.protocol or \ other_service.port != self.port: return False # If this service does not have a login id but the other one does, then # we should return True here return not self.device_credentials and other_service.device_credentials
def lines_of_content(content, width): """ 计算内容在特定输出宽度下实际显示的行数 calculate the actual rows with specific terminal width """ result = 0 if isinstance(content, list): for line in content: _line = preprocess(line) result += ceil(line_width(_line) / width) elif isinstance(content, dict): for k, v in content.items(): # 加2是算上行内冒号和空格的宽度 # adding 2 for the for the colon and space ": " _k, _v = map(preprocess, (k, v)) result += ceil((line_width(_k) + line_width(_v) + 2) / width) return int(result)
计算内容在特定输出宽度下实际显示的行数 calculate the actual rows with specific terminal width
Below is the the instruction that describes the task: ### Input: 计算内容在特定输出宽度下实际显示的行数 calculate the actual rows with specific terminal width ### Response: def lines_of_content(content, width): """ 计算内容在特定输出宽度下实际显示的行数 calculate the actual rows with specific terminal width """ result = 0 if isinstance(content, list): for line in content: _line = preprocess(line) result += ceil(line_width(_line) / width) elif isinstance(content, dict): for k, v in content.items(): # 加2是算上行内冒号和空格的宽度 # adding 2 for the for the colon and space ": " _k, _v = map(preprocess, (k, v)) result += ceil((line_width(_k) + line_width(_v) + 2) / width) return int(result)
def enable_yum_priority_obsoletes(path="/etc/yum/pluginconf.d/priorities.conf"): """Configure Yum priorities to include obsoletes""" config = configparser.ConfigParser() config.read(path) config.set('main', 'check_obsoletes', '1') with open(path, 'w') as fout: config.write(fout)
Configure Yum priorities to include obsoletes
Below is the the instruction that describes the task: ### Input: Configure Yum priorities to include obsoletes ### Response: def enable_yum_priority_obsoletes(path="/etc/yum/pluginconf.d/priorities.conf"): """Configure Yum priorities to include obsoletes""" config = configparser.ConfigParser() config.read(path) config.set('main', 'check_obsoletes', '1') with open(path, 'w') as fout: config.write(fout)
def on_change(self, attr, old, new): """ Process change events adding timeout to process multiple concerted value change at once rather than firing off multiple plot updates. """ self._queue.append((attr, old, new)) if not self._active and self.plot.document: self.plot.document.add_timeout_callback(self.process_on_change, 50) self._active = True
Process change events adding timeout to process multiple concerted value change at once rather than firing off multiple plot updates.
Below is the the instruction that describes the task: ### Input: Process change events adding timeout to process multiple concerted value change at once rather than firing off multiple plot updates. ### Response: def on_change(self, attr, old, new): """ Process change events adding timeout to process multiple concerted value change at once rather than firing off multiple plot updates. """ self._queue.append((attr, old, new)) if not self._active and self.plot.document: self.plot.document.add_timeout_callback(self.process_on_change, 50) self._active = True
def create_pre_execute(task_params, parameter_map): """ Builds the code block for the GPTool Execute method before the job is submitted based on the input task_params. :param task_params: A list of task parameters from the task info structure. :return: A string representing the code block to the GPTool Execute method. """ gp_params = [_PRE_EXECUTE_INIT_TEMPLATE] for task_param in task_params: if task_param['direction'].upper() == 'OUTPUT': continue # Convert DataType data_type = task_param['type'].upper() if 'dimensions' in task_param: data_type += 'ARRAY' if data_type in parameter_map: gp_params.append(parameter_map[data_type].pre_execute().substitute(task_param)) gp_params.append(_PRE_EXECUTE_CLEANUP_TEMPLATE) return ''.join(gp_params)
Builds the code block for the GPTool Execute method before the job is submitted based on the input task_params. :param task_params: A list of task parameters from the task info structure. :return: A string representing the code block to the GPTool Execute method.
Below is the the instruction that describes the task: ### Input: Builds the code block for the GPTool Execute method before the job is submitted based on the input task_params. :param task_params: A list of task parameters from the task info structure. :return: A string representing the code block to the GPTool Execute method. ### Response: def create_pre_execute(task_params, parameter_map): """ Builds the code block for the GPTool Execute method before the job is submitted based on the input task_params. :param task_params: A list of task parameters from the task info structure. :return: A string representing the code block to the GPTool Execute method. """ gp_params = [_PRE_EXECUTE_INIT_TEMPLATE] for task_param in task_params: if task_param['direction'].upper() == 'OUTPUT': continue # Convert DataType data_type = task_param['type'].upper() if 'dimensions' in task_param: data_type += 'ARRAY' if data_type in parameter_map: gp_params.append(parameter_map[data_type].pre_execute().substitute(task_param)) gp_params.append(_PRE_EXECUTE_CLEANUP_TEMPLATE) return ''.join(gp_params)
def ExportModelOperationsMixin(model_name): """Returns a mixin for models to export counters for lifecycle operations. Usage: class User(ExportModelOperationsMixin('user'), Model): ... """ # Force create the labels for this model in the counters. This # is not necessary but it avoids gaps in the aggregated data. model_inserts.labels(model_name) model_updates.labels(model_name) model_deletes.labels(model_name) class Mixin(object): def _do_insert(self, *args, **kwargs): model_inserts.labels(model_name).inc() return super(Mixin, self)._do_insert(*args, **kwargs) def _do_update(self, *args, **kwargs): model_updates.labels(model_name).inc() return super(Mixin, self)._do_update(*args, **kwargs) def delete(self, *args, **kwargs): model_deletes.labels(model_name).inc() return super(Mixin, self).delete(*args, **kwargs) return Mixin
Returns a mixin for models to export counters for lifecycle operations. Usage: class User(ExportModelOperationsMixin('user'), Model): ...
Below is the the instruction that describes the task: ### Input: Returns a mixin for models to export counters for lifecycle operations. Usage: class User(ExportModelOperationsMixin('user'), Model): ... ### Response: def ExportModelOperationsMixin(model_name): """Returns a mixin for models to export counters for lifecycle operations. Usage: class User(ExportModelOperationsMixin('user'), Model): ... """ # Force create the labels for this model in the counters. This # is not necessary but it avoids gaps in the aggregated data. model_inserts.labels(model_name) model_updates.labels(model_name) model_deletes.labels(model_name) class Mixin(object): def _do_insert(self, *args, **kwargs): model_inserts.labels(model_name).inc() return super(Mixin, self)._do_insert(*args, **kwargs) def _do_update(self, *args, **kwargs): model_updates.labels(model_name).inc() return super(Mixin, self)._do_update(*args, **kwargs) def delete(self, *args, **kwargs): model_deletes.labels(model_name).inc() return super(Mixin, self).delete(*args, **kwargs) return Mixin
def lastz_to_blast(row): """ Convert the lastz tabular to the blast tabular, see headers above Obsolete after LASTZ version 1.02.40 """ atoms = row.strip().split("\t") name1, name2, coverage, identity, nmismatch, ngap, \ start1, end1, strand1, start2, end2, strand2, score = atoms identity = identity.replace("%", "") hitlen = coverage.split("/")[1] score = float(score) same_strand = (strand1 == strand2) if not same_strand: start2, end2 = end2, start2 evalue = blastz_score_to_ncbi_expectation(score) score = blastz_score_to_ncbi_bits(score) evalue, score = "%.2g" % evalue, "%.1f" % score return "\t".join((name1, name2, identity, hitlen, nmismatch, ngap, \ start1, end1, start2, end2, evalue, score))
Convert the lastz tabular to the blast tabular, see headers above Obsolete after LASTZ version 1.02.40
Below is the the instruction that describes the task: ### Input: Convert the lastz tabular to the blast tabular, see headers above Obsolete after LASTZ version 1.02.40 ### Response: def lastz_to_blast(row): """ Convert the lastz tabular to the blast tabular, see headers above Obsolete after LASTZ version 1.02.40 """ atoms = row.strip().split("\t") name1, name2, coverage, identity, nmismatch, ngap, \ start1, end1, strand1, start2, end2, strand2, score = atoms identity = identity.replace("%", "") hitlen = coverage.split("/")[1] score = float(score) same_strand = (strand1 == strand2) if not same_strand: start2, end2 = end2, start2 evalue = blastz_score_to_ncbi_expectation(score) score = blastz_score_to_ncbi_bits(score) evalue, score = "%.2g" % evalue, "%.1f" % score return "\t".join((name1, name2, identity, hitlen, nmismatch, ngap, \ start1, end1, start2, end2, evalue, score))
def shadows(self, data=None, t=None, dt=None, latitude=None, init='empty', resolution='mid'): ''' Initializes a ShadowManager object for this ``pyny.Space`` instance. The 'empty' initialization accepts ``data`` and ``t`` and ``dt`` but the ShadowsManager will not start the calculations. It will wait the user to manually insert the rest of the parameters. Call ``ShadowsManager.run()`` to start the shadowing computations. The 'auto' initialization pre-sets all the required parameters to run the computations\*. The available resolutions are: * 'low' * 'mid' * 'high' The 'auto' mode will use all the arguments different than ``None`` and the ``set_of_points`` of this ``pyny.Space`` if any. :param data: Data timeseries to project on the 3D model (radiation, for example). :type data: ndarray (shape=N), None :param t: Time vector in absolute minutes or datetime objects :type t: ndarray or list, None :param dt: Interval time to generate t vector. :type dt: int, None :param latitude: Local latitude. :type latitude: float (radians) :param init: Initialization mode :type init: str :param init: Resolution for the time vector generation (if ``None``), for setting the sensible points and for the Voronoi diagram. :type init: str :returns: ``ShadowsManager`` object ''' from pyny3d.shadows import ShadowsManager if init == 'auto': # Resolution if resolution == 'low': factor = 20 elif resolution == 'mid': factor = 40 elif resolution == 'high': factor = 70 if dt is None: dt = 6e4/factor if latitude is None: latitude = 0.65 # Autofill ShadowsManager Object sm = ShadowsManager(self, data=data, t=t, dt=dt, latitude=latitude) if self.get_sets_of_points().shape[0] == 0: max_bound = np.diff(self.get_domain(), axis=0).max() sm.space.mesh(mesh_size=max_bound/factor, edge=True) ## General parameters sm.arg_vor_size = 3.5/factor sm.run() return sm elif init == 'empty': return ShadowsManager(self, data=data, t=t, dt=dt, latitude=latitude)
Initializes a ShadowManager object for this ``pyny.Space`` instance. The 'empty' initialization accepts ``data`` and ``t`` and ``dt`` but the ShadowsManager will not start the calculations. It will wait the user to manually insert the rest of the parameters. Call ``ShadowsManager.run()`` to start the shadowing computations. The 'auto' initialization pre-sets all the required parameters to run the computations\*. The available resolutions are: * 'low' * 'mid' * 'high' The 'auto' mode will use all the arguments different than ``None`` and the ``set_of_points`` of this ``pyny.Space`` if any. :param data: Data timeseries to project on the 3D model (radiation, for example). :type data: ndarray (shape=N), None :param t: Time vector in absolute minutes or datetime objects :type t: ndarray or list, None :param dt: Interval time to generate t vector. :type dt: int, None :param latitude: Local latitude. :type latitude: float (radians) :param init: Initialization mode :type init: str :param init: Resolution for the time vector generation (if ``None``), for setting the sensible points and for the Voronoi diagram. :type init: str :returns: ``ShadowsManager`` object
Below is the the instruction that describes the task: ### Input: Initializes a ShadowManager object for this ``pyny.Space`` instance. The 'empty' initialization accepts ``data`` and ``t`` and ``dt`` but the ShadowsManager will not start the calculations. It will wait the user to manually insert the rest of the parameters. Call ``ShadowsManager.run()`` to start the shadowing computations. The 'auto' initialization pre-sets all the required parameters to run the computations\*. The available resolutions are: * 'low' * 'mid' * 'high' The 'auto' mode will use all the arguments different than ``None`` and the ``set_of_points`` of this ``pyny.Space`` if any. :param data: Data timeseries to project on the 3D model (radiation, for example). :type data: ndarray (shape=N), None :param t: Time vector in absolute minutes or datetime objects :type t: ndarray or list, None :param dt: Interval time to generate t vector. :type dt: int, None :param latitude: Local latitude. :type latitude: float (radians) :param init: Initialization mode :type init: str :param init: Resolution for the time vector generation (if ``None``), for setting the sensible points and for the Voronoi diagram. :type init: str :returns: ``ShadowsManager`` object ### Response: def shadows(self, data=None, t=None, dt=None, latitude=None, init='empty', resolution='mid'): ''' Initializes a ShadowManager object for this ``pyny.Space`` instance. The 'empty' initialization accepts ``data`` and ``t`` and ``dt`` but the ShadowsManager will not start the calculations. It will wait the user to manually insert the rest of the parameters. Call ``ShadowsManager.run()`` to start the shadowing computations. The 'auto' initialization pre-sets all the required parameters to run the computations\*. The available resolutions are: * 'low' * 'mid' * 'high' The 'auto' mode will use all the arguments different than ``None`` and the ``set_of_points`` of this ``pyny.Space`` if any. :param data: Data timeseries to project on the 3D model (radiation, for example). :type data: ndarray (shape=N), None :param t: Time vector in absolute minutes or datetime objects :type t: ndarray or list, None :param dt: Interval time to generate t vector. :type dt: int, None :param latitude: Local latitude. :type latitude: float (radians) :param init: Initialization mode :type init: str :param init: Resolution for the time vector generation (if ``None``), for setting the sensible points and for the Voronoi diagram. :type init: str :returns: ``ShadowsManager`` object ''' from pyny3d.shadows import ShadowsManager if init == 'auto': # Resolution if resolution == 'low': factor = 20 elif resolution == 'mid': factor = 40 elif resolution == 'high': factor = 70 if dt is None: dt = 6e4/factor if latitude is None: latitude = 0.65 # Autofill ShadowsManager Object sm = ShadowsManager(self, data=data, t=t, dt=dt, latitude=latitude) if self.get_sets_of_points().shape[0] == 0: max_bound = np.diff(self.get_domain(), axis=0).max() sm.space.mesh(mesh_size=max_bound/factor, edge=True) ## General parameters sm.arg_vor_size = 3.5/factor sm.run() return sm elif init == 'empty': return ShadowsManager(self, data=data, t=t, dt=dt, latitude=latitude)
def search_requests(self, query=None, params=None, callback=None, mine_ids=None): """Mine Archive.org search results. :param query: The Archive.org search query to yield results for. Refer to https://archive.org/advancedsearch.php#raw for help formatting your query. :type query: str :param params: The URL parameters to send with each request sent to the Archive.org Advancedsearch Api. :type params: dict """ # If mining ids, devote half the workers to search and half to item mining. if mine_ids: self.max_tasks = self.max_tasks/2 # When mining id's, the only field we need returned is "identifier". if mine_ids and params: params = dict((k, v) for k, v in params.items() if 'fl' not in k) params['fl[]'] = 'identifier' # Make sure "identifier" is always returned in search results. fields = [k for k in params if 'fl' in k] if (len(fields) == 1) and (not any('identifier' == params[k] for k in params)): # Make sure to not overwrite the existing fl[] key. i = 0 while params.get('fl[{}]'.format(i)): i += 1 params['fl[{}]'.format(i)] = 'identifier' search_params = self.get_search_params(query, params) url = make_url('/advancedsearch.php', self.protocol, self.hosts) search_info = self.get_search_info(search_params) total_results = search_info.get('response', {}).get('numFound', 0) total_pages = (int(total_results/search_params['rows']) + 1) for page in range(1, (total_pages + 1)): params = deepcopy(search_params) params['page'] = page if not callback and mine_ids: callback = self._handle_search_results req = MineRequest('GET', url, self.access, callback=callback, max_retries=self.max_retries, debug=self.debug, params=params, connector=self.connector) yield req
Mine Archive.org search results. :param query: The Archive.org search query to yield results for. Refer to https://archive.org/advancedsearch.php#raw for help formatting your query. :type query: str :param params: The URL parameters to send with each request sent to the Archive.org Advancedsearch Api. :type params: dict
Below is the the instruction that describes the task: ### Input: Mine Archive.org search results. :param query: The Archive.org search query to yield results for. Refer to https://archive.org/advancedsearch.php#raw for help formatting your query. :type query: str :param params: The URL parameters to send with each request sent to the Archive.org Advancedsearch Api. :type params: dict ### Response: def search_requests(self, query=None, params=None, callback=None, mine_ids=None): """Mine Archive.org search results. :param query: The Archive.org search query to yield results for. Refer to https://archive.org/advancedsearch.php#raw for help formatting your query. :type query: str :param params: The URL parameters to send with each request sent to the Archive.org Advancedsearch Api. :type params: dict """ # If mining ids, devote half the workers to search and half to item mining. if mine_ids: self.max_tasks = self.max_tasks/2 # When mining id's, the only field we need returned is "identifier". if mine_ids and params: params = dict((k, v) for k, v in params.items() if 'fl' not in k) params['fl[]'] = 'identifier' # Make sure "identifier" is always returned in search results. fields = [k for k in params if 'fl' in k] if (len(fields) == 1) and (not any('identifier' == params[k] for k in params)): # Make sure to not overwrite the existing fl[] key. i = 0 while params.get('fl[{}]'.format(i)): i += 1 params['fl[{}]'.format(i)] = 'identifier' search_params = self.get_search_params(query, params) url = make_url('/advancedsearch.php', self.protocol, self.hosts) search_info = self.get_search_info(search_params) total_results = search_info.get('response', {}).get('numFound', 0) total_pages = (int(total_results/search_params['rows']) + 1) for page in range(1, (total_pages + 1)): params = deepcopy(search_params) params['page'] = page if not callback and mine_ids: callback = self._handle_search_results req = MineRequest('GET', url, self.access, callback=callback, max_retries=self.max_retries, debug=self.debug, params=params, connector=self.connector) yield req
def convert_to_gt( text, layer_name=GT_WORDS ): ''' Converts all words in a morphologically analysed Text from FS format to giellatekno (GT) format, and stores in a new layer named GT_WORDS. If the keyword argument *layer_name=='words'* , overwrites the old 'words' layer with the new layer containing GT format annotations. Parameters ----------- text : estnltk.text.Text Morphologically annotated text that needs to be converted from FS format to GT format; layer_name : str Name of the Text's layer in which GT format morphological annotations are stored; Defaults to GT_WORDS; ''' assert WORDS in text, \ '(!) The input text should contain "'+str(WORDS)+'" layer.' assert len(text[WORDS])==0 or (len(text[WORDS])>0 and ANALYSIS in text[WORDS][0]), \ '(!) Words in the input text should contain "'+str(ANALYSIS)+'" layer.' new_words_layer = [] # 1) Perform the conversion for word in text[WORDS]: new_analysis = [] new_analysis.extend( convert_analysis( word[ANALYSIS] ) ) new_words_layer.append( {TEXT:word[TEXT], ANALYSIS:new_analysis, START:word[START], END:word[END]} ) # 2) Perform some context-specific disambiguation _disambiguate_neg( new_words_layer ) _disambiguate_sid_ksid( new_words_layer, text, scope=CLAUSES ) _disambiguate_sid_ksid( new_words_layer, text, scope=SENTENCES ) _make_postfixes_2( new_words_layer ) # 3) Attach the layer if layer_name != WORDS: # Simply attach the new layer text[layer_name] = new_words_layer else: # Perform word-by-word replacements # (because simple attaching won't work here) for wid, new_word in enumerate( new_words_layer ): text[WORDS][wid] = new_word return text
Converts all words in a morphologically analysed Text from FS format to giellatekno (GT) format, and stores in a new layer named GT_WORDS. If the keyword argument *layer_name=='words'* , overwrites the old 'words' layer with the new layer containing GT format annotations. Parameters ----------- text : estnltk.text.Text Morphologically annotated text that needs to be converted from FS format to GT format; layer_name : str Name of the Text's layer in which GT format morphological annotations are stored; Defaults to GT_WORDS;
Below is the the instruction that describes the task: ### Input: Converts all words in a morphologically analysed Text from FS format to giellatekno (GT) format, and stores in a new layer named GT_WORDS. If the keyword argument *layer_name=='words'* , overwrites the old 'words' layer with the new layer containing GT format annotations. Parameters ----------- text : estnltk.text.Text Morphologically annotated text that needs to be converted from FS format to GT format; layer_name : str Name of the Text's layer in which GT format morphological annotations are stored; Defaults to GT_WORDS; ### Response: def convert_to_gt( text, layer_name=GT_WORDS ): ''' Converts all words in a morphologically analysed Text from FS format to giellatekno (GT) format, and stores in a new layer named GT_WORDS. If the keyword argument *layer_name=='words'* , overwrites the old 'words' layer with the new layer containing GT format annotations. Parameters ----------- text : estnltk.text.Text Morphologically annotated text that needs to be converted from FS format to GT format; layer_name : str Name of the Text's layer in which GT format morphological annotations are stored; Defaults to GT_WORDS; ''' assert WORDS in text, \ '(!) The input text should contain "'+str(WORDS)+'" layer.' assert len(text[WORDS])==0 or (len(text[WORDS])>0 and ANALYSIS in text[WORDS][0]), \ '(!) Words in the input text should contain "'+str(ANALYSIS)+'" layer.' new_words_layer = [] # 1) Perform the conversion for word in text[WORDS]: new_analysis = [] new_analysis.extend( convert_analysis( word[ANALYSIS] ) ) new_words_layer.append( {TEXT:word[TEXT], ANALYSIS:new_analysis, START:word[START], END:word[END]} ) # 2) Perform some context-specific disambiguation _disambiguate_neg( new_words_layer ) _disambiguate_sid_ksid( new_words_layer, text, scope=CLAUSES ) _disambiguate_sid_ksid( new_words_layer, text, scope=SENTENCES ) _make_postfixes_2( new_words_layer ) # 3) Attach the layer if layer_name != WORDS: # Simply attach the new layer text[layer_name] = new_words_layer else: # Perform word-by-word replacements # (because simple attaching won't work here) for wid, new_word in enumerate( new_words_layer ): text[WORDS][wid] = new_word return text
def nmf_init(data, clusters, k, init='enhanced'): """ Generates initial M and W given a data set and an array of cluster labels. There are 3 options for init: enhanced - uses EIn-NMF from Gong 2013 basic - uses means for M, assigns W such that the chosen cluster for a given cell has value 0.75 and all others have 0.25/(k-1). nmf - uses means for M, and assigns W using the NMF objective while holding M constant. """ init_m = np.zeros((data.shape[0], k)) if sparse.issparse(data): for i in range(k): if data[:,clusters==i].shape[1]==0: point = np.random.randint(0, data.shape[1]) init_m[:,i] = data[:,point].toarray().flatten() else: init_m[:,i] = np.array(data[:,clusters==i].mean(1)).flatten() else: for i in range(k): if data[:,clusters==i].shape[1]==0: point = np.random.randint(0, data.shape[1]) init_m[:,i] = data[:,point].flatten() else: init_m[:,i] = data[:,clusters==i].mean(1) init_w = np.zeros((k, data.shape[1])) if init == 'enhanced': distances = np.zeros((k, data.shape[1])) for i in range(k): for j in range(data.shape[1]): distances[i,j] = np.sqrt(((data[:,j] - init_m[:,i])**2).sum()) for i in range(k): for j in range(data.shape[1]): init_w[i,j] = 1/((distances[:,j]/distances[i,j])**(-2)).sum() elif init == 'basic': init_w = initialize_from_assignments(clusters, k) elif init == 'nmf': init_w_, _, n_iter = non_negative_factorization(data.T, n_components=k, init='custom', update_W=False, W=init_m.T) init_w = init_w_.T return init_m, init_w
Generates initial M and W given a data set and an array of cluster labels. There are 3 options for init: enhanced - uses EIn-NMF from Gong 2013 basic - uses means for M, assigns W such that the chosen cluster for a given cell has value 0.75 and all others have 0.25/(k-1). nmf - uses means for M, and assigns W using the NMF objective while holding M constant.
Below is the the instruction that describes the task: ### Input: Generates initial M and W given a data set and an array of cluster labels. There are 3 options for init: enhanced - uses EIn-NMF from Gong 2013 basic - uses means for M, assigns W such that the chosen cluster for a given cell has value 0.75 and all others have 0.25/(k-1). nmf - uses means for M, and assigns W using the NMF objective while holding M constant. ### Response: def nmf_init(data, clusters, k, init='enhanced'): """ Generates initial M and W given a data set and an array of cluster labels. There are 3 options for init: enhanced - uses EIn-NMF from Gong 2013 basic - uses means for M, assigns W such that the chosen cluster for a given cell has value 0.75 and all others have 0.25/(k-1). nmf - uses means for M, and assigns W using the NMF objective while holding M constant. """ init_m = np.zeros((data.shape[0], k)) if sparse.issparse(data): for i in range(k): if data[:,clusters==i].shape[1]==0: point = np.random.randint(0, data.shape[1]) init_m[:,i] = data[:,point].toarray().flatten() else: init_m[:,i] = np.array(data[:,clusters==i].mean(1)).flatten() else: for i in range(k): if data[:,clusters==i].shape[1]==0: point = np.random.randint(0, data.shape[1]) init_m[:,i] = data[:,point].flatten() else: init_m[:,i] = data[:,clusters==i].mean(1) init_w = np.zeros((k, data.shape[1])) if init == 'enhanced': distances = np.zeros((k, data.shape[1])) for i in range(k): for j in range(data.shape[1]): distances[i,j] = np.sqrt(((data[:,j] - init_m[:,i])**2).sum()) for i in range(k): for j in range(data.shape[1]): init_w[i,j] = 1/((distances[:,j]/distances[i,j])**(-2)).sum() elif init == 'basic': init_w = initialize_from_assignments(clusters, k) elif init == 'nmf': init_w_, _, n_iter = non_negative_factorization(data.T, n_components=k, init='custom', update_W=False, W=init_m.T) init_w = init_w_.T return init_m, init_w
def parse_sidebar(self, manga_page): """Parses the DOM and returns manga attributes in the sidebar. :type manga_page: :class:`bs4.BeautifulSoup` :param manga_page: MAL manga page's DOM :rtype: dict :return: manga attributes :raises: :class:`.InvalidMangaError`, :class:`.MalformedMangaPageError` """ # if MAL says the series doesn't exist, raise an InvalidMangaError. error_tag = manga_page.find(u'div', {'class': 'badresult'}) if error_tag: raise InvalidMangaError(self.id) try: title_tag = manga_page.find(u'div', {'id': 'contentWrapper'}).find(u'h1') if not title_tag.find(u'div'): # otherwise, raise a MalformedMangaPageError. raise MalformedMangaPageError(self.id, manga_page, message="Could not find title div") except: if not self.session.suppress_parse_exceptions: raise # otherwise, begin parsing. manga_info = super(Manga, self).parse_sidebar(manga_page) info_panel_first = manga_page.find(u'div', {'id': 'content'}).find(u'table').find(u'td') try: volumes_tag = info_panel_first.find(text=u'Volumes:').parent.parent utilities.extract_tags(volumes_tag.find_all(u'span', {'class': 'dark_text'})) manga_info[u'volumes'] = int(volumes_tag.text.strip()) if volumes_tag.text.strip() != 'Unknown' else None except: if not self.session.suppress_parse_exceptions: raise try: chapters_tag = info_panel_first.find(text=u'Chapters:').parent.parent utilities.extract_tags(chapters_tag.find_all(u'span', {'class': 'dark_text'})) manga_info[u'chapters'] = int(chapters_tag.text.strip()) if chapters_tag.text.strip() != 'Unknown' else None except: if not self.session.suppress_parse_exceptions: raise try: published_tag = info_panel_first.find(text=u'Published:').parent.parent utilities.extract_tags(published_tag.find_all(u'span', {'class': 'dark_text'})) published_parts = published_tag.text.strip().split(u' to ') if len(published_parts) == 1: # this published once. try: published_date = utilities.parse_profile_date(published_parts[0]) except ValueError: raise MalformedMangaPageError(self.id, published_parts[0], message="Could not parse single publish date") manga_info[u'published'] = (published_date,) else: # two publishing dates. try: publish_start = utilities.parse_profile_date(published_parts[0]) except ValueError: raise MalformedMangaPageError(self.id, published_parts[0], message="Could not parse first of two publish dates") if published_parts == u'?': # this is still publishing. publish_end = None else: try: publish_end = utilities.parse_profile_date(published_parts[1]) except ValueError: raise MalformedMangaPageError(self.id, published_parts[1], message="Could not parse second of two publish dates") manga_info[u'published'] = (publish_start, publish_end) except: if not self.session.suppress_parse_exceptions: raise try: authors_tag = info_panel_first.find(text=u'Authors:').parent.parent utilities.extract_tags(authors_tag.find_all(u'span', {'class': 'dark_text'})) manga_info[u'authors'] = {} for author_link in authors_tag.find_all('a'): link_parts = author_link.get('href').split('/') # of the form /people/1867/Naoki_Urasawa person = self.session.person(int(link_parts[2])).set({'name': author_link.text}) role = author_link.nextSibling.replace(' (', '').replace(')', '') manga_info[u'authors'][person] = role except: if not self.session.suppress_parse_exceptions: raise try: serialization_tag = info_panel_first.find(text=u'Serialization:').parent.parent publication_link = serialization_tag.find('a') manga_info[u'serialization'] = None if publication_link: link_parts = publication_link.get('href').split('mid=') # of the form /manga.php?mid=1 manga_info[u'serialization'] = self.session.publication(int(link_parts[1])).set({'name': publication_link.text}) except: if not self.session.suppress_parse_exceptions: raise return manga_info
Parses the DOM and returns manga attributes in the sidebar. :type manga_page: :class:`bs4.BeautifulSoup` :param manga_page: MAL manga page's DOM :rtype: dict :return: manga attributes :raises: :class:`.InvalidMangaError`, :class:`.MalformedMangaPageError`
Below is the the instruction that describes the task: ### Input: Parses the DOM and returns manga attributes in the sidebar. :type manga_page: :class:`bs4.BeautifulSoup` :param manga_page: MAL manga page's DOM :rtype: dict :return: manga attributes :raises: :class:`.InvalidMangaError`, :class:`.MalformedMangaPageError` ### Response: def parse_sidebar(self, manga_page): """Parses the DOM and returns manga attributes in the sidebar. :type manga_page: :class:`bs4.BeautifulSoup` :param manga_page: MAL manga page's DOM :rtype: dict :return: manga attributes :raises: :class:`.InvalidMangaError`, :class:`.MalformedMangaPageError` """ # if MAL says the series doesn't exist, raise an InvalidMangaError. error_tag = manga_page.find(u'div', {'class': 'badresult'}) if error_tag: raise InvalidMangaError(self.id) try: title_tag = manga_page.find(u'div', {'id': 'contentWrapper'}).find(u'h1') if not title_tag.find(u'div'): # otherwise, raise a MalformedMangaPageError. raise MalformedMangaPageError(self.id, manga_page, message="Could not find title div") except: if not self.session.suppress_parse_exceptions: raise # otherwise, begin parsing. manga_info = super(Manga, self).parse_sidebar(manga_page) info_panel_first = manga_page.find(u'div', {'id': 'content'}).find(u'table').find(u'td') try: volumes_tag = info_panel_first.find(text=u'Volumes:').parent.parent utilities.extract_tags(volumes_tag.find_all(u'span', {'class': 'dark_text'})) manga_info[u'volumes'] = int(volumes_tag.text.strip()) if volumes_tag.text.strip() != 'Unknown' else None except: if not self.session.suppress_parse_exceptions: raise try: chapters_tag = info_panel_first.find(text=u'Chapters:').parent.parent utilities.extract_tags(chapters_tag.find_all(u'span', {'class': 'dark_text'})) manga_info[u'chapters'] = int(chapters_tag.text.strip()) if chapters_tag.text.strip() != 'Unknown' else None except: if not self.session.suppress_parse_exceptions: raise try: published_tag = info_panel_first.find(text=u'Published:').parent.parent utilities.extract_tags(published_tag.find_all(u'span', {'class': 'dark_text'})) published_parts = published_tag.text.strip().split(u' to ') if len(published_parts) == 1: # this published once. try: published_date = utilities.parse_profile_date(published_parts[0]) except ValueError: raise MalformedMangaPageError(self.id, published_parts[0], message="Could not parse single publish date") manga_info[u'published'] = (published_date,) else: # two publishing dates. try: publish_start = utilities.parse_profile_date(published_parts[0]) except ValueError: raise MalformedMangaPageError(self.id, published_parts[0], message="Could not parse first of two publish dates") if published_parts == u'?': # this is still publishing. publish_end = None else: try: publish_end = utilities.parse_profile_date(published_parts[1]) except ValueError: raise MalformedMangaPageError(self.id, published_parts[1], message="Could not parse second of two publish dates") manga_info[u'published'] = (publish_start, publish_end) except: if not self.session.suppress_parse_exceptions: raise try: authors_tag = info_panel_first.find(text=u'Authors:').parent.parent utilities.extract_tags(authors_tag.find_all(u'span', {'class': 'dark_text'})) manga_info[u'authors'] = {} for author_link in authors_tag.find_all('a'): link_parts = author_link.get('href').split('/') # of the form /people/1867/Naoki_Urasawa person = self.session.person(int(link_parts[2])).set({'name': author_link.text}) role = author_link.nextSibling.replace(' (', '').replace(')', '') manga_info[u'authors'][person] = role except: if not self.session.suppress_parse_exceptions: raise try: serialization_tag = info_panel_first.find(text=u'Serialization:').parent.parent publication_link = serialization_tag.find('a') manga_info[u'serialization'] = None if publication_link: link_parts = publication_link.get('href').split('mid=') # of the form /manga.php?mid=1 manga_info[u'serialization'] = self.session.publication(int(link_parts[1])).set({'name': publication_link.text}) except: if not self.session.suppress_parse_exceptions: raise return manga_info
def extent_to_array(extent, source_crs, dest_crs=None): """Convert the supplied extent to geographic and return as an array. :param extent: Rectangle defining a spatial extent in any CRS. :type extent: QgsRectangle :param source_crs: Coordinate system used for input extent. :type source_crs: QgsCoordinateReferenceSystem :param dest_crs: Coordinate system used for output extent. Defaults to EPSG:4326 if not specified. :type dest_crs: QgsCoordinateReferenceSystem :returns: a list in the form [xmin, ymin, xmax, ymax] where all coordinates provided are in Geographic / EPSG:4326. :rtype: list """ if dest_crs is None: geo_crs = QgsCoordinateReferenceSystem() geo_crs.createFromSrid(4326) else: geo_crs = dest_crs transform = QgsCoordinateTransform(source_crs, geo_crs, QgsProject.instance()) # Get the clip area in the layer's crs transformed_extent = transform.transformBoundingBox(extent) geo_extent = [ transformed_extent.xMinimum(), transformed_extent.yMinimum(), transformed_extent.xMaximum(), transformed_extent.yMaximum()] return geo_extent
Convert the supplied extent to geographic and return as an array. :param extent: Rectangle defining a spatial extent in any CRS. :type extent: QgsRectangle :param source_crs: Coordinate system used for input extent. :type source_crs: QgsCoordinateReferenceSystem :param dest_crs: Coordinate system used for output extent. Defaults to EPSG:4326 if not specified. :type dest_crs: QgsCoordinateReferenceSystem :returns: a list in the form [xmin, ymin, xmax, ymax] where all coordinates provided are in Geographic / EPSG:4326. :rtype: list
Below is the the instruction that describes the task: ### Input: Convert the supplied extent to geographic and return as an array. :param extent: Rectangle defining a spatial extent in any CRS. :type extent: QgsRectangle :param source_crs: Coordinate system used for input extent. :type source_crs: QgsCoordinateReferenceSystem :param dest_crs: Coordinate system used for output extent. Defaults to EPSG:4326 if not specified. :type dest_crs: QgsCoordinateReferenceSystem :returns: a list in the form [xmin, ymin, xmax, ymax] where all coordinates provided are in Geographic / EPSG:4326. :rtype: list ### Response: def extent_to_array(extent, source_crs, dest_crs=None): """Convert the supplied extent to geographic and return as an array. :param extent: Rectangle defining a spatial extent in any CRS. :type extent: QgsRectangle :param source_crs: Coordinate system used for input extent. :type source_crs: QgsCoordinateReferenceSystem :param dest_crs: Coordinate system used for output extent. Defaults to EPSG:4326 if not specified. :type dest_crs: QgsCoordinateReferenceSystem :returns: a list in the form [xmin, ymin, xmax, ymax] where all coordinates provided are in Geographic / EPSG:4326. :rtype: list """ if dest_crs is None: geo_crs = QgsCoordinateReferenceSystem() geo_crs.createFromSrid(4326) else: geo_crs = dest_crs transform = QgsCoordinateTransform(source_crs, geo_crs, QgsProject.instance()) # Get the clip area in the layer's crs transformed_extent = transform.transformBoundingBox(extent) geo_extent = [ transformed_extent.xMinimum(), transformed_extent.yMinimum(), transformed_extent.xMaximum(), transformed_extent.yMaximum()] return geo_extent
def __initialize_menu_bar(self): """ Initializes Component menu_bar. """ self.__file_menu = QMenu("&File", parent=self.__menu_bar) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|&New", shortcut=QKeySequence.New, slot=self.__new_file_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|&Load ...", shortcut=QKeySequence.Open, slot=self.__load_file_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Source ...", slot=self.__source_file_action__triggered)) self.__file_menu.addSeparator() self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Add Project ...", slot=self.__add_project_action__triggered)) self.__file_menu.addSeparator() self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|&Save", shortcut=QKeySequence.Save, slot=self.__save_file_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Save As ...", shortcut=QKeySequence.SaveAs, slot=self.__save_file_as_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Save All", slot=self.__save_all_files_action__triggered)) self.__file_menu.addSeparator() self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Revert", slot=self.__revert_file_action__triggered)) self.__file_menu.addSeparator() self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Close ...", shortcut=QKeySequence.Close, slot=self.__close_file_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Close All ...", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.Key_W, slot=self.__close_all_files_action__triggered)) self.__file_menu.addSeparator() for action in self.__recent_files_actions: self.__file_menu.addAction(action) self.__set_recent_files_actions() self.__menu_bar.addMenu(self.__file_menu) self.__edit_menu = QMenu("&Edit", parent=self.__menu_bar) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|&Undo", shortcut=QKeySequence.Undo, slot=self.__undo_action__triggered)) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|&Redo", shortcut=QKeySequence.Redo, slot=self.__redo_action__triggered)) self.__edit_menu.addSeparator() self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|Cu&t", shortcut=QKeySequence.Cut, slot=self.__cut_action__triggered)) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|&Copy", shortcut=QKeySequence.Copy, slot=self.__copy_action__triggered)) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|&Paste", shortcut=QKeySequence.Paste, slot=self.__paste_action__triggered)) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|Delete", slot=self.__delete_action__triggered)) self.__edit_menu.addSeparator() self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|Select All", shortcut=QKeySequence.SelectAll, slot=self.__select_all_action__triggered)) self.__menu_bar.addMenu(self.__edit_menu) self.__source_menu = QMenu("&Source", parent=self.__menu_bar) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Delete Line(s)", shortcut=Qt.ControlModifier + Qt.Key_D, slot=self.__delete_lines_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Duplicate Line(s)", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.Key_D, slot=self.__duplicate_lines_action__triggered)) self.__source_menu.addSeparator() self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Move Up", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.ALT + Qt.Key_Up, slot=self.__move_up_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Move Down", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.ALT + Qt.Key_Down, slot=self.__move_down_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Indent Selection", shortcut=Qt.Key_Tab, slot=self.__indent_selection_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Unindent Selection", shortcut=Qt.Key_Backtab, slot=self.__unindent_selection_action__triggered)) self.__source_menu.addSeparator() self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Convert Indentation To Tabs", slot=self.__convert_indentation_to_tabs_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Convert Indentation To Spaces", slot=self.__convert_indentation_to_spaces_action__triggered)) self.__source_menu.addSeparator() self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Remove Trailing WhiteSpaces", slot=self.__remove_trailing_white_spaces_action__triggered)) self.__source_menu.addSeparator() self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Toggle Comments", shortcut=Qt.ControlModifier + Qt.Key_Slash, slot=self.__toggle_comments_action__triggered)) self.__menu_bar.addMenu(self.__source_menu) self.__navigate_menu = QMenu("&Navigate", parent=self.__menu_bar) self.__navigate_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Navigate|Goto Line ...", shortcut=Qt.ControlModifier + Qt.Key_L, slot=self.__go_to_line_action__triggered)) self.__navigate_menu.addSeparator() self.__menu_bar.addMenu(self.__navigate_menu) self.__search_menu = QMenu("&Search", parent=self.__menu_bar) self.__search_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Search|Search And Replace ...", shortcut=Qt.ControlModifier + Qt.Key_F, slot=self.__search_and_replace_action__triggered)) self.__search_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Search|Search In Files ...", shortcut=Qt.ALT + Qt.ControlModifier + Qt.Key_F, slot=self.__search_in_files_action__triggered)) self.__search_menu.addSeparator() self.__search_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Search|Search Next", shortcut=Qt.ControlModifier + Qt.Key_K, slot=self.__search_next_action__triggered)) self.__search_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Search|Search Previous", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.Key_K, slot=self.__search_previous_action__triggered)) self.__menu_bar.addMenu(self.__search_menu) self.__command_menu = QMenu("&Command", parent=self.__menu_bar) self.__command_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Command|&Evaluate Selection", shortcut=Qt.ControlModifier + Qt.Key_Return, slot=self.__evaluate_selection_action__triggered)) self.__command_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Command|Evaluate &Script", shortcut=Qt.SHIFT + Qt.CTRL + Qt.Key_Return, slot=self.__evaluate_script_action__triggered)) self.__menu_bar.addMenu(self.__command_menu) self.__view_menu = QMenu("&View", parent=self.__menu_bar) self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Increase Font Size", shortcut=Qt.ControlModifier + Qt.Key_Plus, slot=self.__increase_font_size_action__triggered)) self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Decrease Font Size", shortcut=Qt.ControlModifier + Qt.Key_Minus, slot=self.__decrease_font_size_action__triggered)) self.__view_menu.addSeparator() self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Toggle Word Wrap", slot=self.__toggle_word_wrap_action__triggered)) self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Toggle White Spaces", slot=self.__toggle_white_spaces_action__triggered)) self.__view_menu.addSeparator() self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Loop Through Editors", shortcut=Qt.AltModifier + Qt.SHIFT + Qt.Key_Tab, slot=self.__loop_through_editors_action__triggered)) self.__menu_bar.addMenu(self.__view_menu)
Initializes Component menu_bar.
Below is the the instruction that describes the task: ### Input: Initializes Component menu_bar. ### Response: def __initialize_menu_bar(self): """ Initializes Component menu_bar. """ self.__file_menu = QMenu("&File", parent=self.__menu_bar) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|&New", shortcut=QKeySequence.New, slot=self.__new_file_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|&Load ...", shortcut=QKeySequence.Open, slot=self.__load_file_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Source ...", slot=self.__source_file_action__triggered)) self.__file_menu.addSeparator() self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Add Project ...", slot=self.__add_project_action__triggered)) self.__file_menu.addSeparator() self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|&Save", shortcut=QKeySequence.Save, slot=self.__save_file_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Save As ...", shortcut=QKeySequence.SaveAs, slot=self.__save_file_as_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Save All", slot=self.__save_all_files_action__triggered)) self.__file_menu.addSeparator() self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Revert", slot=self.__revert_file_action__triggered)) self.__file_menu.addSeparator() self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Close ...", shortcut=QKeySequence.Close, slot=self.__close_file_action__triggered)) self.__file_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&File|Close All ...", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.Key_W, slot=self.__close_all_files_action__triggered)) self.__file_menu.addSeparator() for action in self.__recent_files_actions: self.__file_menu.addAction(action) self.__set_recent_files_actions() self.__menu_bar.addMenu(self.__file_menu) self.__edit_menu = QMenu("&Edit", parent=self.__menu_bar) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|&Undo", shortcut=QKeySequence.Undo, slot=self.__undo_action__triggered)) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|&Redo", shortcut=QKeySequence.Redo, slot=self.__redo_action__triggered)) self.__edit_menu.addSeparator() self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|Cu&t", shortcut=QKeySequence.Cut, slot=self.__cut_action__triggered)) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|&Copy", shortcut=QKeySequence.Copy, slot=self.__copy_action__triggered)) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|&Paste", shortcut=QKeySequence.Paste, slot=self.__paste_action__triggered)) self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|Delete", slot=self.__delete_action__triggered)) self.__edit_menu.addSeparator() self.__edit_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Edit|Select All", shortcut=QKeySequence.SelectAll, slot=self.__select_all_action__triggered)) self.__menu_bar.addMenu(self.__edit_menu) self.__source_menu = QMenu("&Source", parent=self.__menu_bar) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Delete Line(s)", shortcut=Qt.ControlModifier + Qt.Key_D, slot=self.__delete_lines_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Duplicate Line(s)", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.Key_D, slot=self.__duplicate_lines_action__triggered)) self.__source_menu.addSeparator() self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Move Up", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.ALT + Qt.Key_Up, slot=self.__move_up_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Move Down", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.ALT + Qt.Key_Down, slot=self.__move_down_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Indent Selection", shortcut=Qt.Key_Tab, slot=self.__indent_selection_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Unindent Selection", shortcut=Qt.Key_Backtab, slot=self.__unindent_selection_action__triggered)) self.__source_menu.addSeparator() self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Convert Indentation To Tabs", slot=self.__convert_indentation_to_tabs_action__triggered)) self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Convert Indentation To Spaces", slot=self.__convert_indentation_to_spaces_action__triggered)) self.__source_menu.addSeparator() self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Remove Trailing WhiteSpaces", slot=self.__remove_trailing_white_spaces_action__triggered)) self.__source_menu.addSeparator() self.__source_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Source|Toggle Comments", shortcut=Qt.ControlModifier + Qt.Key_Slash, slot=self.__toggle_comments_action__triggered)) self.__menu_bar.addMenu(self.__source_menu) self.__navigate_menu = QMenu("&Navigate", parent=self.__menu_bar) self.__navigate_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Navigate|Goto Line ...", shortcut=Qt.ControlModifier + Qt.Key_L, slot=self.__go_to_line_action__triggered)) self.__navigate_menu.addSeparator() self.__menu_bar.addMenu(self.__navigate_menu) self.__search_menu = QMenu("&Search", parent=self.__menu_bar) self.__search_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Search|Search And Replace ...", shortcut=Qt.ControlModifier + Qt.Key_F, slot=self.__search_and_replace_action__triggered)) self.__search_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Search|Search In Files ...", shortcut=Qt.ALT + Qt.ControlModifier + Qt.Key_F, slot=self.__search_in_files_action__triggered)) self.__search_menu.addSeparator() self.__search_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Search|Search Next", shortcut=Qt.ControlModifier + Qt.Key_K, slot=self.__search_next_action__triggered)) self.__search_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Search|Search Previous", shortcut=Qt.SHIFT + Qt.ControlModifier + Qt.Key_K, slot=self.__search_previous_action__triggered)) self.__menu_bar.addMenu(self.__search_menu) self.__command_menu = QMenu("&Command", parent=self.__menu_bar) self.__command_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Command|&Evaluate Selection", shortcut=Qt.ControlModifier + Qt.Key_Return, slot=self.__evaluate_selection_action__triggered)) self.__command_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&Command|Evaluate &Script", shortcut=Qt.SHIFT + Qt.CTRL + Qt.Key_Return, slot=self.__evaluate_script_action__triggered)) self.__menu_bar.addMenu(self.__command_menu) self.__view_menu = QMenu("&View", parent=self.__menu_bar) self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Increase Font Size", shortcut=Qt.ControlModifier + Qt.Key_Plus, slot=self.__increase_font_size_action__triggered)) self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Decrease Font Size", shortcut=Qt.ControlModifier + Qt.Key_Minus, slot=self.__decrease_font_size_action__triggered)) self.__view_menu.addSeparator() self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Toggle Word Wrap", slot=self.__toggle_word_wrap_action__triggered)) self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Toggle White Spaces", slot=self.__toggle_white_spaces_action__triggered)) self.__view_menu.addSeparator() self.__view_menu.addAction(self.__engine.actions_manager.register_action( "Actions|Umbra|Components|factory.script_editor|&View|Loop Through Editors", shortcut=Qt.AltModifier + Qt.SHIFT + Qt.Key_Tab, slot=self.__loop_through_editors_action__triggered)) self.__menu_bar.addMenu(self.__view_menu)
def proc_state(self, state_data, state_id): """Processes a state into an `Assembly`. Parameters ---------- state_data : dict Contains information about the state, including all the per line structural data. state_id : str ID given to `Assembly` that represents the state. """ assembly = Assembly(assembly_id=state_id) for k, chain in sorted(state_data.items()): assembly._molecules.append(self.proc_chain(chain, assembly)) return assembly
Processes a state into an `Assembly`. Parameters ---------- state_data : dict Contains information about the state, including all the per line structural data. state_id : str ID given to `Assembly` that represents the state.
Below is the the instruction that describes the task: ### Input: Processes a state into an `Assembly`. Parameters ---------- state_data : dict Contains information about the state, including all the per line structural data. state_id : str ID given to `Assembly` that represents the state. ### Response: def proc_state(self, state_data, state_id): """Processes a state into an `Assembly`. Parameters ---------- state_data : dict Contains information about the state, including all the per line structural data. state_id : str ID given to `Assembly` that represents the state. """ assembly = Assembly(assembly_id=state_id) for k, chain in sorted(state_data.items()): assembly._molecules.append(self.proc_chain(chain, assembly)) return assembly
def set_element_attributes(elem_to_parse, **attrib_kwargs): """ Adds the specified key/value pairs to the element's attributes, and returns the updated set of attributes. If the element already contains any of the attributes specified in attrib_kwargs, they are updated accordingly. """ element = get_element(elem_to_parse) if element is None: return element if len(attrib_kwargs): element.attrib.update(attrib_kwargs) return element.attrib
Adds the specified key/value pairs to the element's attributes, and returns the updated set of attributes. If the element already contains any of the attributes specified in attrib_kwargs, they are updated accordingly.
Below is the the instruction that describes the task: ### Input: Adds the specified key/value pairs to the element's attributes, and returns the updated set of attributes. If the element already contains any of the attributes specified in attrib_kwargs, they are updated accordingly. ### Response: def set_element_attributes(elem_to_parse, **attrib_kwargs): """ Adds the specified key/value pairs to the element's attributes, and returns the updated set of attributes. If the element already contains any of the attributes specified in attrib_kwargs, they are updated accordingly. """ element = get_element(elem_to_parse) if element is None: return element if len(attrib_kwargs): element.attrib.update(attrib_kwargs) return element.attrib
def list_conversations(self, filter=None, filter_mode=None, include=None, include_all_conversation_ids=None, interleave_submissions=None, scope=None): """ List conversations. Returns the list of conversations for the current user, most recent ones first. """ path = {} data = {} params = {} # OPTIONAL - scope """When set, only return conversations of the specified type. For example, set to "unread" to return only conversations that haven't been read. The default behavior is to return all non-archived conversations (i.e. read and unread).""" if scope is not None: self._validate_enum(scope, ["unread", "starred", "archived"]) params["scope"] = scope # OPTIONAL - filter """When set, only return conversations for the specified courses, groups or users. The id should be prefixed with its type, e.g. "user_123" or "course_456". Can be an array (by setting "filter[]") or single value (by setting "filter")""" if filter is not None: params["filter"] = filter # OPTIONAL - filter_mode """When filter[] contains multiple filters, combine them with this mode, filtering conversations that at have at least all of the contexts ("and") or at least one of the contexts ("or")""" if filter_mode is not None: self._validate_enum(filter_mode, ["and", "or", "default or"]) params["filter_mode"] = filter_mode # OPTIONAL - interleave_submissions """(Obsolete) Submissions are no longer linked to conversations. This parameter is ignored.""" if interleave_submissions is not None: params["interleave_submissions"] = interleave_submissions # OPTIONAL - include_all_conversation_ids """Default is false. If true, the top-level element of the response will be an object rather than an array, and will have the keys "conversations" which will contain the paged conversation data, and "conversation_ids" which will contain the ids of all conversations under this scope/filter in the same order.""" if include_all_conversation_ids is not None: params["include_all_conversation_ids"] = include_all_conversation_ids # OPTIONAL - include """"participant_avatars":: Optionally include an "avatar_url" key for each user participanting in the conversation""" if include is not None: self._validate_enum(include, ["participant_avatars"]) params["include"] = include self.logger.debug("GET /api/v1/conversations with query params: {params} and form data: {data}".format(params=params, data=data, **path)) return self.generic_request("GET", "/api/v1/conversations".format(**path), data=data, params=params, all_pages=True)
List conversations. Returns the list of conversations for the current user, most recent ones first.
Below is the the instruction that describes the task: ### Input: List conversations. Returns the list of conversations for the current user, most recent ones first. ### Response: def list_conversations(self, filter=None, filter_mode=None, include=None, include_all_conversation_ids=None, interleave_submissions=None, scope=None): """ List conversations. Returns the list of conversations for the current user, most recent ones first. """ path = {} data = {} params = {} # OPTIONAL - scope """When set, only return conversations of the specified type. For example, set to "unread" to return only conversations that haven't been read. The default behavior is to return all non-archived conversations (i.e. read and unread).""" if scope is not None: self._validate_enum(scope, ["unread", "starred", "archived"]) params["scope"] = scope # OPTIONAL - filter """When set, only return conversations for the specified courses, groups or users. The id should be prefixed with its type, e.g. "user_123" or "course_456". Can be an array (by setting "filter[]") or single value (by setting "filter")""" if filter is not None: params["filter"] = filter # OPTIONAL - filter_mode """When filter[] contains multiple filters, combine them with this mode, filtering conversations that at have at least all of the contexts ("and") or at least one of the contexts ("or")""" if filter_mode is not None: self._validate_enum(filter_mode, ["and", "or", "default or"]) params["filter_mode"] = filter_mode # OPTIONAL - interleave_submissions """(Obsolete) Submissions are no longer linked to conversations. This parameter is ignored.""" if interleave_submissions is not None: params["interleave_submissions"] = interleave_submissions # OPTIONAL - include_all_conversation_ids """Default is false. If true, the top-level element of the response will be an object rather than an array, and will have the keys "conversations" which will contain the paged conversation data, and "conversation_ids" which will contain the ids of all conversations under this scope/filter in the same order.""" if include_all_conversation_ids is not None: params["include_all_conversation_ids"] = include_all_conversation_ids # OPTIONAL - include """"participant_avatars":: Optionally include an "avatar_url" key for each user participanting in the conversation""" if include is not None: self._validate_enum(include, ["participant_avatars"]) params["include"] = include self.logger.debug("GET /api/v1/conversations with query params: {params} and form data: {data}".format(params=params, data=data, **path)) return self.generic_request("GET", "/api/v1/conversations".format(**path), data=data, params=params, all_pages=True)
def is_ancestor_name( frame: astroid.node_classes.NodeNG, node: astroid.node_classes.NodeNG ) -> bool: """return True if `frame` is an astroid.Class node with `node` in the subtree of its bases attribute """ try: bases = frame.bases except AttributeError: return False for base in bases: if node in base.nodes_of_class(astroid.Name): return True return False
return True if `frame` is an astroid.Class node with `node` in the subtree of its bases attribute
Below is the the instruction that describes the task: ### Input: return True if `frame` is an astroid.Class node with `node` in the subtree of its bases attribute ### Response: def is_ancestor_name( frame: astroid.node_classes.NodeNG, node: astroid.node_classes.NodeNG ) -> bool: """return True if `frame` is an astroid.Class node with `node` in the subtree of its bases attribute """ try: bases = frame.bases except AttributeError: return False for base in bases: if node in base.nodes_of_class(astroid.Name): return True return False
async def prover_create_proof(wallet_handle: int, proof_req_json: str, requested_credentials_json: str, master_secret_name: str, schemas_json: str, credential_defs_json: str, rev_states_json: str) -> str: """ Creates a proof according to the given proof request Either a corresponding credential with optionally revealed attributes or self-attested attribute must be provided for each requested attribute (see indy_prover_get_credentials_for_pool_req). A proof request may request multiple credentials from different schemas and different issuers. All required schemas, public keys and revocation registries must be provided. The proof request also contains nonce. The proof contains either proof or self-attested attribute value for each requested attribute. :param wallet_handle: wallet handler (created by open_wallet). :param proof_req_json: proof request json { "name": string, "version": string, "nonce": string, "requested_attributes": { // set of requested attributes "<attr_referent>": <attr_info>, // see below ..., }, "requested_predicates": { // set of requested predicates "<predicate_referent>": <predicate_info>, // see below ..., }, "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval for each attribute // (can be overridden on attribute level) } :param requested_credentials_json: either a credential or self-attested attribute for each requested attribute { "self_attested_attributes": { "self_attested_attribute_referent": string }, "requested_attributes": { "requested_attribute_referent_1": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }}, "requested_attribute_referent_2": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }} }, "requested_predicates": { "requested_predicates_referent_1": {"cred_id": string, "timestamp": Optional<number> }}, } } :param master_secret_name: the id of the master secret stored in the wallet :param schemas_json: all schemas json participating in the proof request { <schema1_id>: <schema1_json>, <schema2_id>: <schema2_json>, <schema3_id>: <schema3_json>, } :param credential_defs_json: all credential definitions json participating in the proof request { "cred_def1_id": <credential_def1_json>, "cred_def2_id": <credential_def2_json>, "cred_def3_id": <credential_def3_json>, } :param rev_states_json: all revocation states json participating in the proof request { "rev_reg_def1_id": { "timestamp1": <rev_state1>, "timestamp2": <rev_state2>, }, "rev_reg_def2_id": { "timestamp3": <rev_state3> }, "rev_reg_def3_id": { "timestamp4": <rev_state4> }, } where wql query: indy-sdk/docs/design/011-wallet-query-language/README.md attr_referent: Proof-request local identifier of requested attribute attr_info: Describes requested attribute { "name": string, // attribute name, (case insensitive and ignore spaces) "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } predicate_referent: Proof-request local identifier of requested attribute predicate predicate_info: Describes requested attribute predicate { "name": attribute name, (case insensitive and ignore spaces) "p_type": predicate type (Currently >= only) "p_value": predicate value "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } non_revoc_interval: Defines non-revocation interval { "from": Optional<int>, // timestamp of interval beginning "to": Optional<int>, // timestamp of interval ending } :return: Proof json For each requested attribute either a proof (with optionally revealed attribute value) or self-attested attribute value is provided. Each proof is associated with a credential and corresponding schema_id, cred_def_id, rev_reg_id and timestamp. There is also aggregated proof part common for all credential proofs. { "requested_proof": { "revealed_attrs": { "requested_attr1_id": {sub_proof_index: number, raw: string, encoded: string}, "requested_attr4_id": {sub_proof_index: number: string, encoded: string}, }, "unrevealed_attrs": { "requested_attr3_id": {sub_proof_index: number} }, "self_attested_attrs": { "requested_attr2_id": self_attested_value, }, "requested_predicates": { "requested_predicate_1_referent": {sub_proof_index: int}, "requested_predicate_2_referent": {sub_proof_index: int}, } } "proof": { "proofs": [ <credential_proof>, <credential_proof>, <credential_proof> ], "aggregated_proof": <aggregated_proof> } "identifiers": [{schema_id, cred_def_id, Optional<rev_reg_id>, Optional<timestamp>}] } """ logger = logging.getLogger(__name__) logger.debug("prover_create_proof: >>> wallet_handle: %r, proof_req_json: %r, requested_credentials_json: %r, " "schemas_json: %r, master_secret_name: %r, credential_defs_json: %r, rev_infos_json: %r", wallet_handle, proof_req_json, requested_credentials_json, schemas_json, master_secret_name, credential_defs_json, rev_states_json) if not hasattr(prover_create_proof, "cb"): logger.debug("prover_create_proof: Creating callback") prover_create_proof.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_proof_req_json = c_char_p(proof_req_json.encode('utf-8')) c_requested_credentials_json = c_char_p(requested_credentials_json.encode('utf-8')) c_schemas_json = c_char_p(schemas_json.encode('utf-8')) c_master_secret_name = c_char_p(master_secret_name.encode('utf-8')) c_credential_defs_json = c_char_p(credential_defs_json.encode('utf-8')) c_rev_infos_json = c_char_p(rev_states_json.encode('utf-8')) proof_json = await do_call('indy_prover_create_proof', c_wallet_handle, c_proof_req_json, c_requested_credentials_json, c_master_secret_name, c_schemas_json, c_credential_defs_json, c_rev_infos_json, prover_create_proof.cb) res = proof_json.decode() logger.debug("prover_create_proof: <<< res: %r", res) return res
Creates a proof according to the given proof request Either a corresponding credential with optionally revealed attributes or self-attested attribute must be provided for each requested attribute (see indy_prover_get_credentials_for_pool_req). A proof request may request multiple credentials from different schemas and different issuers. All required schemas, public keys and revocation registries must be provided. The proof request also contains nonce. The proof contains either proof or self-attested attribute value for each requested attribute. :param wallet_handle: wallet handler (created by open_wallet). :param proof_req_json: proof request json { "name": string, "version": string, "nonce": string, "requested_attributes": { // set of requested attributes "<attr_referent>": <attr_info>, // see below ..., }, "requested_predicates": { // set of requested predicates "<predicate_referent>": <predicate_info>, // see below ..., }, "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval for each attribute // (can be overridden on attribute level) } :param requested_credentials_json: either a credential or self-attested attribute for each requested attribute { "self_attested_attributes": { "self_attested_attribute_referent": string }, "requested_attributes": { "requested_attribute_referent_1": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }}, "requested_attribute_referent_2": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }} }, "requested_predicates": { "requested_predicates_referent_1": {"cred_id": string, "timestamp": Optional<number> }}, } } :param master_secret_name: the id of the master secret stored in the wallet :param schemas_json: all schemas json participating in the proof request { <schema1_id>: <schema1_json>, <schema2_id>: <schema2_json>, <schema3_id>: <schema3_json>, } :param credential_defs_json: all credential definitions json participating in the proof request { "cred_def1_id": <credential_def1_json>, "cred_def2_id": <credential_def2_json>, "cred_def3_id": <credential_def3_json>, } :param rev_states_json: all revocation states json participating in the proof request { "rev_reg_def1_id": { "timestamp1": <rev_state1>, "timestamp2": <rev_state2>, }, "rev_reg_def2_id": { "timestamp3": <rev_state3> }, "rev_reg_def3_id": { "timestamp4": <rev_state4> }, } where wql query: indy-sdk/docs/design/011-wallet-query-language/README.md attr_referent: Proof-request local identifier of requested attribute attr_info: Describes requested attribute { "name": string, // attribute name, (case insensitive and ignore spaces) "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } predicate_referent: Proof-request local identifier of requested attribute predicate predicate_info: Describes requested attribute predicate { "name": attribute name, (case insensitive and ignore spaces) "p_type": predicate type (Currently >= only) "p_value": predicate value "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } non_revoc_interval: Defines non-revocation interval { "from": Optional<int>, // timestamp of interval beginning "to": Optional<int>, // timestamp of interval ending } :return: Proof json For each requested attribute either a proof (with optionally revealed attribute value) or self-attested attribute value is provided. Each proof is associated with a credential and corresponding schema_id, cred_def_id, rev_reg_id and timestamp. There is also aggregated proof part common for all credential proofs. { "requested_proof": { "revealed_attrs": { "requested_attr1_id": {sub_proof_index: number, raw: string, encoded: string}, "requested_attr4_id": {sub_proof_index: number: string, encoded: string}, }, "unrevealed_attrs": { "requested_attr3_id": {sub_proof_index: number} }, "self_attested_attrs": { "requested_attr2_id": self_attested_value, }, "requested_predicates": { "requested_predicate_1_referent": {sub_proof_index: int}, "requested_predicate_2_referent": {sub_proof_index: int}, } } "proof": { "proofs": [ <credential_proof>, <credential_proof>, <credential_proof> ], "aggregated_proof": <aggregated_proof> } "identifiers": [{schema_id, cred_def_id, Optional<rev_reg_id>, Optional<timestamp>}] }
Below is the the instruction that describes the task: ### Input: Creates a proof according to the given proof request Either a corresponding credential with optionally revealed attributes or self-attested attribute must be provided for each requested attribute (see indy_prover_get_credentials_for_pool_req). A proof request may request multiple credentials from different schemas and different issuers. All required schemas, public keys and revocation registries must be provided. The proof request also contains nonce. The proof contains either proof or self-attested attribute value for each requested attribute. :param wallet_handle: wallet handler (created by open_wallet). :param proof_req_json: proof request json { "name": string, "version": string, "nonce": string, "requested_attributes": { // set of requested attributes "<attr_referent>": <attr_info>, // see below ..., }, "requested_predicates": { // set of requested predicates "<predicate_referent>": <predicate_info>, // see below ..., }, "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval for each attribute // (can be overridden on attribute level) } :param requested_credentials_json: either a credential or self-attested attribute for each requested attribute { "self_attested_attributes": { "self_attested_attribute_referent": string }, "requested_attributes": { "requested_attribute_referent_1": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }}, "requested_attribute_referent_2": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }} }, "requested_predicates": { "requested_predicates_referent_1": {"cred_id": string, "timestamp": Optional<number> }}, } } :param master_secret_name: the id of the master secret stored in the wallet :param schemas_json: all schemas json participating in the proof request { <schema1_id>: <schema1_json>, <schema2_id>: <schema2_json>, <schema3_id>: <schema3_json>, } :param credential_defs_json: all credential definitions json participating in the proof request { "cred_def1_id": <credential_def1_json>, "cred_def2_id": <credential_def2_json>, "cred_def3_id": <credential_def3_json>, } :param rev_states_json: all revocation states json participating in the proof request { "rev_reg_def1_id": { "timestamp1": <rev_state1>, "timestamp2": <rev_state2>, }, "rev_reg_def2_id": { "timestamp3": <rev_state3> }, "rev_reg_def3_id": { "timestamp4": <rev_state4> }, } where wql query: indy-sdk/docs/design/011-wallet-query-language/README.md attr_referent: Proof-request local identifier of requested attribute attr_info: Describes requested attribute { "name": string, // attribute name, (case insensitive and ignore spaces) "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } predicate_referent: Proof-request local identifier of requested attribute predicate predicate_info: Describes requested attribute predicate { "name": attribute name, (case insensitive and ignore spaces) "p_type": predicate type (Currently >= only) "p_value": predicate value "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } non_revoc_interval: Defines non-revocation interval { "from": Optional<int>, // timestamp of interval beginning "to": Optional<int>, // timestamp of interval ending } :return: Proof json For each requested attribute either a proof (with optionally revealed attribute value) or self-attested attribute value is provided. Each proof is associated with a credential and corresponding schema_id, cred_def_id, rev_reg_id and timestamp. There is also aggregated proof part common for all credential proofs. { "requested_proof": { "revealed_attrs": { "requested_attr1_id": {sub_proof_index: number, raw: string, encoded: string}, "requested_attr4_id": {sub_proof_index: number: string, encoded: string}, }, "unrevealed_attrs": { "requested_attr3_id": {sub_proof_index: number} }, "self_attested_attrs": { "requested_attr2_id": self_attested_value, }, "requested_predicates": { "requested_predicate_1_referent": {sub_proof_index: int}, "requested_predicate_2_referent": {sub_proof_index: int}, } } "proof": { "proofs": [ <credential_proof>, <credential_proof>, <credential_proof> ], "aggregated_proof": <aggregated_proof> } "identifiers": [{schema_id, cred_def_id, Optional<rev_reg_id>, Optional<timestamp>}] } ### Response: async def prover_create_proof(wallet_handle: int, proof_req_json: str, requested_credentials_json: str, master_secret_name: str, schemas_json: str, credential_defs_json: str, rev_states_json: str) -> str: """ Creates a proof according to the given proof request Either a corresponding credential with optionally revealed attributes or self-attested attribute must be provided for each requested attribute (see indy_prover_get_credentials_for_pool_req). A proof request may request multiple credentials from different schemas and different issuers. All required schemas, public keys and revocation registries must be provided. The proof request also contains nonce. The proof contains either proof or self-attested attribute value for each requested attribute. :param wallet_handle: wallet handler (created by open_wallet). :param proof_req_json: proof request json { "name": string, "version": string, "nonce": string, "requested_attributes": { // set of requested attributes "<attr_referent>": <attr_info>, // see below ..., }, "requested_predicates": { // set of requested predicates "<predicate_referent>": <predicate_info>, // see below ..., }, "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval for each attribute // (can be overridden on attribute level) } :param requested_credentials_json: either a credential or self-attested attribute for each requested attribute { "self_attested_attributes": { "self_attested_attribute_referent": string }, "requested_attributes": { "requested_attribute_referent_1": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }}, "requested_attribute_referent_2": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }} }, "requested_predicates": { "requested_predicates_referent_1": {"cred_id": string, "timestamp": Optional<number> }}, } } :param master_secret_name: the id of the master secret stored in the wallet :param schemas_json: all schemas json participating in the proof request { <schema1_id>: <schema1_json>, <schema2_id>: <schema2_json>, <schema3_id>: <schema3_json>, } :param credential_defs_json: all credential definitions json participating in the proof request { "cred_def1_id": <credential_def1_json>, "cred_def2_id": <credential_def2_json>, "cred_def3_id": <credential_def3_json>, } :param rev_states_json: all revocation states json participating in the proof request { "rev_reg_def1_id": { "timestamp1": <rev_state1>, "timestamp2": <rev_state2>, }, "rev_reg_def2_id": { "timestamp3": <rev_state3> }, "rev_reg_def3_id": { "timestamp4": <rev_state4> }, } where wql query: indy-sdk/docs/design/011-wallet-query-language/README.md attr_referent: Proof-request local identifier of requested attribute attr_info: Describes requested attribute { "name": string, // attribute name, (case insensitive and ignore spaces) "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } predicate_referent: Proof-request local identifier of requested attribute predicate predicate_info: Describes requested attribute predicate { "name": attribute name, (case insensitive and ignore spaces) "p_type": predicate type (Currently >= only) "p_value": predicate value "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } non_revoc_interval: Defines non-revocation interval { "from": Optional<int>, // timestamp of interval beginning "to": Optional<int>, // timestamp of interval ending } :return: Proof json For each requested attribute either a proof (with optionally revealed attribute value) or self-attested attribute value is provided. Each proof is associated with a credential and corresponding schema_id, cred_def_id, rev_reg_id and timestamp. There is also aggregated proof part common for all credential proofs. { "requested_proof": { "revealed_attrs": { "requested_attr1_id": {sub_proof_index: number, raw: string, encoded: string}, "requested_attr4_id": {sub_proof_index: number: string, encoded: string}, }, "unrevealed_attrs": { "requested_attr3_id": {sub_proof_index: number} }, "self_attested_attrs": { "requested_attr2_id": self_attested_value, }, "requested_predicates": { "requested_predicate_1_referent": {sub_proof_index: int}, "requested_predicate_2_referent": {sub_proof_index: int}, } } "proof": { "proofs": [ <credential_proof>, <credential_proof>, <credential_proof> ], "aggregated_proof": <aggregated_proof> } "identifiers": [{schema_id, cred_def_id, Optional<rev_reg_id>, Optional<timestamp>}] } """ logger = logging.getLogger(__name__) logger.debug("prover_create_proof: >>> wallet_handle: %r, proof_req_json: %r, requested_credentials_json: %r, " "schemas_json: %r, master_secret_name: %r, credential_defs_json: %r, rev_infos_json: %r", wallet_handle, proof_req_json, requested_credentials_json, schemas_json, master_secret_name, credential_defs_json, rev_states_json) if not hasattr(prover_create_proof, "cb"): logger.debug("prover_create_proof: Creating callback") prover_create_proof.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_proof_req_json = c_char_p(proof_req_json.encode('utf-8')) c_requested_credentials_json = c_char_p(requested_credentials_json.encode('utf-8')) c_schemas_json = c_char_p(schemas_json.encode('utf-8')) c_master_secret_name = c_char_p(master_secret_name.encode('utf-8')) c_credential_defs_json = c_char_p(credential_defs_json.encode('utf-8')) c_rev_infos_json = c_char_p(rev_states_json.encode('utf-8')) proof_json = await do_call('indy_prover_create_proof', c_wallet_handle, c_proof_req_json, c_requested_credentials_json, c_master_secret_name, c_schemas_json, c_credential_defs_json, c_rev_infos_json, prover_create_proof.cb) res = proof_json.decode() logger.debug("prover_create_proof: <<< res: %r", res) return res
def messages(path, thread, fmt, nocolor, timezones, utc, noprogress, resolve, directory): """ Conversion of Facebook chat history. """ with colorize_output(nocolor): try: chat_history = _process_history( path=path, thread=thread, timezones=timezones, utc=utc, noprogress=noprogress, resolve=resolve) except ProcessingFailure: return if directory: set_all_color(enabled=False) write(fmt, chat_history, directory or sys.stdout)
Conversion of Facebook chat history.
Below is the the instruction that describes the task: ### Input: Conversion of Facebook chat history. ### Response: def messages(path, thread, fmt, nocolor, timezones, utc, noprogress, resolve, directory): """ Conversion of Facebook chat history. """ with colorize_output(nocolor): try: chat_history = _process_history( path=path, thread=thread, timezones=timezones, utc=utc, noprogress=noprogress, resolve=resolve) except ProcessingFailure: return if directory: set_all_color(enabled=False) write(fmt, chat_history, directory or sys.stdout)
def read_string(buff, byteorder='big'): """Read a string from a file-like object.""" length = read_numeric(USHORT, buff, byteorder) return buff.read(length).decode('utf-8')
Read a string from a file-like object.
Below is the the instruction that describes the task: ### Input: Read a string from a file-like object. ### Response: def read_string(buff, byteorder='big'): """Read a string from a file-like object.""" length = read_numeric(USHORT, buff, byteorder) return buff.read(length).decode('utf-8')
def all_faces_with_verts(self, v_indices, as_boolean=False): ''' returns all of the faces that contain at least one of the vertices in v_indices ''' import numpy as np included_vertices = np.zeros(self.v.shape[0], dtype=bool) included_vertices[np.array(v_indices, dtype=np.uint32)] = True faces_with_verts = included_vertices[self.f].all(axis=1) if as_boolean: return faces_with_verts return np.nonzero(faces_with_verts)[0]
returns all of the faces that contain at least one of the vertices in v_indices
Below is the the instruction that describes the task: ### Input: returns all of the faces that contain at least one of the vertices in v_indices ### Response: def all_faces_with_verts(self, v_indices, as_boolean=False): ''' returns all of the faces that contain at least one of the vertices in v_indices ''' import numpy as np included_vertices = np.zeros(self.v.shape[0], dtype=bool) included_vertices[np.array(v_indices, dtype=np.uint32)] = True faces_with_verts = included_vertices[self.f].all(axis=1) if as_boolean: return faces_with_verts return np.nonzero(faces_with_verts)[0]
def interpolate2dStructuredPointSpreadIDW(grid, mask, kernel=15, power=2, maxIter=1e5, copy=True): ''' same as interpolate2dStructuredIDW but using the point spread method this is faster if there are bigger connected masked areas and the border length is smaller replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [copy] -> False: a bit faster, but modifies 'grid' and 'mask' ''' assert grid.shape == mask.shape, 'grid and mask shape are different' border = np.zeros(shape=mask.shape, dtype=np.bool) if copy: # copy mask as well because if will be modified later: mask = mask.copy() grid = grid.copy() return _calc(grid, mask, border, kernel, power, maxIter)
same as interpolate2dStructuredIDW but using the point spread method this is faster if there are bigger connected masked areas and the border length is smaller replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [copy] -> False: a bit faster, but modifies 'grid' and 'mask'
Below is the the instruction that describes the task: ### Input: same as interpolate2dStructuredIDW but using the point spread method this is faster if there are bigger connected masked areas and the border length is smaller replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [copy] -> False: a bit faster, but modifies 'grid' and 'mask' ### Response: def interpolate2dStructuredPointSpreadIDW(grid, mask, kernel=15, power=2, maxIter=1e5, copy=True): ''' same as interpolate2dStructuredIDW but using the point spread method this is faster if there are bigger connected masked areas and the border length is smaller replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [copy] -> False: a bit faster, but modifies 'grid' and 'mask' ''' assert grid.shape == mask.shape, 'grid and mask shape are different' border = np.zeros(shape=mask.shape, dtype=np.bool) if copy: # copy mask as well because if will be modified later: mask = mask.copy() grid = grid.copy() return _calc(grid, mask, border, kernel, power, maxIter)
def set_renamed_input_fields(self, renamed_input_fields): """This method expects a scalar string or a list of input_fields to """ if not (isinstance(renamed_input_fields, basestring) or isinstance(renamed_input_fields, ListType)): raise ValueError("renamed_input_fields must be a string or a list") self.renamed_input_fields = renamed_input_fields return self
This method expects a scalar string or a list of input_fields to
Below is the the instruction that describes the task: ### Input: This method expects a scalar string or a list of input_fields to ### Response: def set_renamed_input_fields(self, renamed_input_fields): """This method expects a scalar string or a list of input_fields to """ if not (isinstance(renamed_input_fields, basestring) or isinstance(renamed_input_fields, ListType)): raise ValueError("renamed_input_fields must be a string or a list") self.renamed_input_fields = renamed_input_fields return self
async def list(source): """Generate a single list from an asynchronous sequence.""" result = [] async with streamcontext(source) as streamer: async for item in streamer: result.append(item) yield result
Generate a single list from an asynchronous sequence.
Below is the the instruction that describes the task: ### Input: Generate a single list from an asynchronous sequence. ### Response: async def list(source): """Generate a single list from an asynchronous sequence.""" result = [] async with streamcontext(source) as streamer: async for item in streamer: result.append(item) yield result
def modified_data_decorator(function): """ Decorator to initialise the modified_data if necessary. To be used in list functions to modify the list """ @wraps(function) def func(self, *args, **kwargs): """Decorator function""" if not self.get_read_only() or not self.is_locked(): self.initialise_modified_data() return function(self, *args, **kwargs) return lambda: None return func
Decorator to initialise the modified_data if necessary. To be used in list functions to modify the list
Below is the the instruction that describes the task: ### Input: Decorator to initialise the modified_data if necessary. To be used in list functions to modify the list ### Response: def modified_data_decorator(function): """ Decorator to initialise the modified_data if necessary. To be used in list functions to modify the list """ @wraps(function) def func(self, *args, **kwargs): """Decorator function""" if not self.get_read_only() or not self.is_locked(): self.initialise_modified_data() return function(self, *args, **kwargs) return lambda: None return func
def custom_properties(self, props): """ Sets the custom properties file to use. :param props: the props file :type props: str """ fprops = javabridge.make_instance("java/io/File", "(Ljava/lang/String;)V", props) javabridge.call(self.jobject, "setCustomPropsFile", "(Ljava/io/File;)V", fprops)
Sets the custom properties file to use. :param props: the props file :type props: str
Below is the the instruction that describes the task: ### Input: Sets the custom properties file to use. :param props: the props file :type props: str ### Response: def custom_properties(self, props): """ Sets the custom properties file to use. :param props: the props file :type props: str """ fprops = javabridge.make_instance("java/io/File", "(Ljava/lang/String;)V", props) javabridge.call(self.jobject, "setCustomPropsFile", "(Ljava/io/File;)V", fprops)
def interp_value(mass, age, feh, icol, grid, mass_col, ages, fehs, grid_Ns): # return_box): """mass, age, feh are *single values* at which values are desired icol is the column index of desired value grid is nfeh x nage x max(nmass) x ncols array mass_col is the column index of mass ages is grid of ages fehs is grid of fehs grid_Ns keeps track of nmass in each slice (beyond this are nans) """ Nage = len(ages) Nfeh = len(fehs) ifeh = searchsorted(fehs, Nfeh, feh) iage = searchsorted(ages, Nage, age) pts = np.zeros((8,3)) vals = np.zeros(8) i_f = ifeh - 1 i_a = iage - 1 Nmass = grid_Ns[i_f, i_a] imass = searchsorted(grid[i_f, i_a, :, mass_col], Nmass, mass) pts[0, 0] = grid[i_f, i_a, imass, mass_col] pts[0, 1] = ages[i_a] pts[0, 2] = fehs[i_f] vals[0] = grid[i_f, i_a, imass, icol] pts[1, 0] = grid[i_f, i_a, imass-1, mass_col] pts[1, 1] = ages[i_a] pts[1, 2] = fehs[i_f] vals[1] = grid[i_f, i_a, imass-1, icol] i_f = ifeh - 1 i_a = iage Nmass = grid_Ns[i_f, i_a] imass = searchsorted(grid[i_f, i_a, :, mass_col], Nmass, mass) pts[2, 0] = grid[i_f, i_a, imass, mass_col] pts[2, 1] = ages[i_a] pts[2, 2] = fehs[i_f] vals[2] = grid[i_f, i_a, imass, icol] pts[3, 0] = grid[i_f, i_a, imass-1, mass_col] pts[3, 1] = ages[i_a] pts[3, 2] = fehs[i_f] vals[3] = grid[i_f, i_a, imass-1, icol] i_f = ifeh i_a = iage - 1 Nmass = grid_Ns[i_f, i_a] imass = searchsorted(grid[i_f, i_a, :, mass_col], Nmass, mass) pts[4, 0] = grid[i_f, i_a, imass, mass_col] pts[4, 1] = ages[i_a] pts[4, 2] = fehs[i_f] vals[4] = grid[i_f, i_a, imass, icol] pts[5, 0] = grid[i_f, i_a, imass-1, mass_col] pts[5, 1] = ages[i_a] pts[5, 2] = fehs[i_f] vals[5] = grid[i_f, i_a, imass-1, icol] i_f = ifeh i_a = iage Nmass = grid_Ns[i_f, i_a] imass = searchsorted(grid[i_f, i_a, :, mass_col], Nmass, mass) pts[6, 0] = grid[i_f, i_a, imass, mass_col] pts[6, 1] = ages[i_a] pts[6, 2] = fehs[i_f] vals[6] = grid[i_f, i_a, imass, icol] pts[7, 0] = grid[i_f, i_a, imass-1, mass_col] pts[7, 1] = ages[i_a] pts[7, 2] = fehs[i_f] vals[7] = grid[i_f, i_a, imass-1, icol] # if return_box: # return pts, vals # else: return interp_box(mass, age, feh, pts, vals)
mass, age, feh are *single values* at which values are desired icol is the column index of desired value grid is nfeh x nage x max(nmass) x ncols array mass_col is the column index of mass ages is grid of ages fehs is grid of fehs grid_Ns keeps track of nmass in each slice (beyond this are nans)
Below is the the instruction that describes the task: ### Input: mass, age, feh are *single values* at which values are desired icol is the column index of desired value grid is nfeh x nage x max(nmass) x ncols array mass_col is the column index of mass ages is grid of ages fehs is grid of fehs grid_Ns keeps track of nmass in each slice (beyond this are nans) ### Response: def interp_value(mass, age, feh, icol, grid, mass_col, ages, fehs, grid_Ns): # return_box): """mass, age, feh are *single values* at which values are desired icol is the column index of desired value grid is nfeh x nage x max(nmass) x ncols array mass_col is the column index of mass ages is grid of ages fehs is grid of fehs grid_Ns keeps track of nmass in each slice (beyond this are nans) """ Nage = len(ages) Nfeh = len(fehs) ifeh = searchsorted(fehs, Nfeh, feh) iage = searchsorted(ages, Nage, age) pts = np.zeros((8,3)) vals = np.zeros(8) i_f = ifeh - 1 i_a = iage - 1 Nmass = grid_Ns[i_f, i_a] imass = searchsorted(grid[i_f, i_a, :, mass_col], Nmass, mass) pts[0, 0] = grid[i_f, i_a, imass, mass_col] pts[0, 1] = ages[i_a] pts[0, 2] = fehs[i_f] vals[0] = grid[i_f, i_a, imass, icol] pts[1, 0] = grid[i_f, i_a, imass-1, mass_col] pts[1, 1] = ages[i_a] pts[1, 2] = fehs[i_f] vals[1] = grid[i_f, i_a, imass-1, icol] i_f = ifeh - 1 i_a = iage Nmass = grid_Ns[i_f, i_a] imass = searchsorted(grid[i_f, i_a, :, mass_col], Nmass, mass) pts[2, 0] = grid[i_f, i_a, imass, mass_col] pts[2, 1] = ages[i_a] pts[2, 2] = fehs[i_f] vals[2] = grid[i_f, i_a, imass, icol] pts[3, 0] = grid[i_f, i_a, imass-1, mass_col] pts[3, 1] = ages[i_a] pts[3, 2] = fehs[i_f] vals[3] = grid[i_f, i_a, imass-1, icol] i_f = ifeh i_a = iage - 1 Nmass = grid_Ns[i_f, i_a] imass = searchsorted(grid[i_f, i_a, :, mass_col], Nmass, mass) pts[4, 0] = grid[i_f, i_a, imass, mass_col] pts[4, 1] = ages[i_a] pts[4, 2] = fehs[i_f] vals[4] = grid[i_f, i_a, imass, icol] pts[5, 0] = grid[i_f, i_a, imass-1, mass_col] pts[5, 1] = ages[i_a] pts[5, 2] = fehs[i_f] vals[5] = grid[i_f, i_a, imass-1, icol] i_f = ifeh i_a = iage Nmass = grid_Ns[i_f, i_a] imass = searchsorted(grid[i_f, i_a, :, mass_col], Nmass, mass) pts[6, 0] = grid[i_f, i_a, imass, mass_col] pts[6, 1] = ages[i_a] pts[6, 2] = fehs[i_f] vals[6] = grid[i_f, i_a, imass, icol] pts[7, 0] = grid[i_f, i_a, imass-1, mass_col] pts[7, 1] = ages[i_a] pts[7, 2] = fehs[i_f] vals[7] = grid[i_f, i_a, imass-1, icol] # if return_box: # return pts, vals # else: return interp_box(mass, age, feh, pts, vals)
def rendered(self): """The rendered wire format for all conditions that have been rendered. Rendered conditions are never cleared. A new :class:`~bloop.conditions.ConditionRenderer` should be used for each operation.""" expressions = {k: v for (k, v) in self.expressions.items() if v is not None} if self.refs.attr_names: expressions["ExpressionAttributeNames"] = self.refs.attr_names if self.refs.attr_values: expressions["ExpressionAttributeValues"] = self.refs.attr_values return expressions
The rendered wire format for all conditions that have been rendered. Rendered conditions are never cleared. A new :class:`~bloop.conditions.ConditionRenderer` should be used for each operation.
Below is the the instruction that describes the task: ### Input: The rendered wire format for all conditions that have been rendered. Rendered conditions are never cleared. A new :class:`~bloop.conditions.ConditionRenderer` should be used for each operation. ### Response: def rendered(self): """The rendered wire format for all conditions that have been rendered. Rendered conditions are never cleared. A new :class:`~bloop.conditions.ConditionRenderer` should be used for each operation.""" expressions = {k: v for (k, v) in self.expressions.items() if v is not None} if self.refs.attr_names: expressions["ExpressionAttributeNames"] = self.refs.attr_names if self.refs.attr_values: expressions["ExpressionAttributeValues"] = self.refs.attr_values return expressions
def wvcal_spectrum(sp, fxpeaks, poly_degree_wfit, wv_master, wv_ini_search=None, wv_end_search=None, wvmin_useful=None, wvmax_useful=None, geometry=None, debugplot=0): """Execute wavelength calibration of a spectrum using fixed line peaks. Parameters ---------- sp : 1d numpy array Spectrum to be wavelength calibrated. fxpeaks : 1d numpy array Refined location of peaks in array index scale, i.e, from 0 to naxis1 - 1. The wavelength calibration is performed using these line locations. poly_degree_wfit : int Degree for wavelength calibration polynomial. wv_master : 1d numpy array Array with arc line wavelengths. wv_ini_search : float or None Minimum expected wavelength in spectrum. wv_end_search : float or None Maximum expected wavelength in spectrum. wvmin_useful : float or None If not None, this value is used to clip detected lines below it. wvmax_useful : float or None If not None, this value is used to clip detected lines above it. geometry : tuple (4 integers) or None x, y, dx, dy values employed to set the Qt backend geometry. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- solution_wv : instance of SolutionArcCalibration Wavelength calibration solution. """ # check there are enough lines for fit if len(fxpeaks) <= poly_degree_wfit: print(">>> Warning: not enough lines to fit spectrum") return None # spectrum dimension naxis1 = sp.shape[0] wv_master_range = wv_master[-1] - wv_master[0] delta_wv_master_range = 0.20 * wv_master_range if wv_ini_search is None: wv_ini_search = wv_master[0] - delta_wv_master_range if wv_end_search is None: wv_end_search = wv_master[-1] + delta_wv_master_range # use channels (pixels from 1 to naxis1) xchannel = fxpeaks + 1.0 # wavelength calibration list_of_wvfeatures = arccalibration( wv_master=wv_master, xpos_arc=xchannel, naxis1_arc=naxis1, crpix1=1.0, wv_ini_search=wv_ini_search, wv_end_search=wv_end_search, wvmin_useful=wvmin_useful, wvmax_useful=wvmax_useful, error_xpos_arc=3, times_sigma_r=3.0, frac_triplets_for_sum=0.50, times_sigma_theil_sen=10.0, poly_degree_wfit=poly_degree_wfit, times_sigma_polfilt=10.0, times_sigma_cook=10.0, times_sigma_inclusion=10.0, geometry=geometry, debugplot=debugplot ) title = "Wavelength calibration" solution_wv = fit_list_of_wvfeatures( list_of_wvfeatures=list_of_wvfeatures, naxis1_arc=naxis1, crpix1=1.0, poly_degree_wfit=poly_degree_wfit, weighted=False, plot_title=title, geometry=geometry, debugplot=debugplot ) if abs(debugplot) % 10 != 0: # final plot with identified lines xplot = np.arange(1, naxis1 + 1, dtype=float) ax = ximplotxy(xplot, sp, title=title, show=False, xlabel='pixel (from 1 to NAXIS1)', ylabel='number of counts', geometry=geometry) ymin = sp.min() ymax = sp.max() dy = ymax-ymin ymin -= dy/20. ymax += dy/20. ax.set_ylim([ymin, ymax]) # plot wavelength of each identified line for feature in solution_wv.features: xpos = feature.xpos reference = feature.reference ax.text(xpos, sp[int(xpos+0.5)-1], str(reference), fontsize=8, horizontalalignment='center') # show plot print('Plot with identified lines') pause_debugplot(12, pltshow=True) # return the wavelength calibration solution return solution_wv
Execute wavelength calibration of a spectrum using fixed line peaks. Parameters ---------- sp : 1d numpy array Spectrum to be wavelength calibrated. fxpeaks : 1d numpy array Refined location of peaks in array index scale, i.e, from 0 to naxis1 - 1. The wavelength calibration is performed using these line locations. poly_degree_wfit : int Degree for wavelength calibration polynomial. wv_master : 1d numpy array Array with arc line wavelengths. wv_ini_search : float or None Minimum expected wavelength in spectrum. wv_end_search : float or None Maximum expected wavelength in spectrum. wvmin_useful : float or None If not None, this value is used to clip detected lines below it. wvmax_useful : float or None If not None, this value is used to clip detected lines above it. geometry : tuple (4 integers) or None x, y, dx, dy values employed to set the Qt backend geometry. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- solution_wv : instance of SolutionArcCalibration Wavelength calibration solution.
Below is the the instruction that describes the task: ### Input: Execute wavelength calibration of a spectrum using fixed line peaks. Parameters ---------- sp : 1d numpy array Spectrum to be wavelength calibrated. fxpeaks : 1d numpy array Refined location of peaks in array index scale, i.e, from 0 to naxis1 - 1. The wavelength calibration is performed using these line locations. poly_degree_wfit : int Degree for wavelength calibration polynomial. wv_master : 1d numpy array Array with arc line wavelengths. wv_ini_search : float or None Minimum expected wavelength in spectrum. wv_end_search : float or None Maximum expected wavelength in spectrum. wvmin_useful : float or None If not None, this value is used to clip detected lines below it. wvmax_useful : float or None If not None, this value is used to clip detected lines above it. geometry : tuple (4 integers) or None x, y, dx, dy values employed to set the Qt backend geometry. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- solution_wv : instance of SolutionArcCalibration Wavelength calibration solution. ### Response: def wvcal_spectrum(sp, fxpeaks, poly_degree_wfit, wv_master, wv_ini_search=None, wv_end_search=None, wvmin_useful=None, wvmax_useful=None, geometry=None, debugplot=0): """Execute wavelength calibration of a spectrum using fixed line peaks. Parameters ---------- sp : 1d numpy array Spectrum to be wavelength calibrated. fxpeaks : 1d numpy array Refined location of peaks in array index scale, i.e, from 0 to naxis1 - 1. The wavelength calibration is performed using these line locations. poly_degree_wfit : int Degree for wavelength calibration polynomial. wv_master : 1d numpy array Array with arc line wavelengths. wv_ini_search : float or None Minimum expected wavelength in spectrum. wv_end_search : float or None Maximum expected wavelength in spectrum. wvmin_useful : float or None If not None, this value is used to clip detected lines below it. wvmax_useful : float or None If not None, this value is used to clip detected lines above it. geometry : tuple (4 integers) or None x, y, dx, dy values employed to set the Qt backend geometry. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- solution_wv : instance of SolutionArcCalibration Wavelength calibration solution. """ # check there are enough lines for fit if len(fxpeaks) <= poly_degree_wfit: print(">>> Warning: not enough lines to fit spectrum") return None # spectrum dimension naxis1 = sp.shape[0] wv_master_range = wv_master[-1] - wv_master[0] delta_wv_master_range = 0.20 * wv_master_range if wv_ini_search is None: wv_ini_search = wv_master[0] - delta_wv_master_range if wv_end_search is None: wv_end_search = wv_master[-1] + delta_wv_master_range # use channels (pixels from 1 to naxis1) xchannel = fxpeaks + 1.0 # wavelength calibration list_of_wvfeatures = arccalibration( wv_master=wv_master, xpos_arc=xchannel, naxis1_arc=naxis1, crpix1=1.0, wv_ini_search=wv_ini_search, wv_end_search=wv_end_search, wvmin_useful=wvmin_useful, wvmax_useful=wvmax_useful, error_xpos_arc=3, times_sigma_r=3.0, frac_triplets_for_sum=0.50, times_sigma_theil_sen=10.0, poly_degree_wfit=poly_degree_wfit, times_sigma_polfilt=10.0, times_sigma_cook=10.0, times_sigma_inclusion=10.0, geometry=geometry, debugplot=debugplot ) title = "Wavelength calibration" solution_wv = fit_list_of_wvfeatures( list_of_wvfeatures=list_of_wvfeatures, naxis1_arc=naxis1, crpix1=1.0, poly_degree_wfit=poly_degree_wfit, weighted=False, plot_title=title, geometry=geometry, debugplot=debugplot ) if abs(debugplot) % 10 != 0: # final plot with identified lines xplot = np.arange(1, naxis1 + 1, dtype=float) ax = ximplotxy(xplot, sp, title=title, show=False, xlabel='pixel (from 1 to NAXIS1)', ylabel='number of counts', geometry=geometry) ymin = sp.min() ymax = sp.max() dy = ymax-ymin ymin -= dy/20. ymax += dy/20. ax.set_ylim([ymin, ymax]) # plot wavelength of each identified line for feature in solution_wv.features: xpos = feature.xpos reference = feature.reference ax.text(xpos, sp[int(xpos+0.5)-1], str(reference), fontsize=8, horizontalalignment='center') # show plot print('Plot with identified lines') pause_debugplot(12, pltshow=True) # return the wavelength calibration solution return solution_wv
def iter_size_changes(self, issue): """Yield an IssueSnapshot for each time the issue size changed """ # Find the first size change, if any try: size_changes = list(filter(lambda h: h.field == 'Story Points', itertools.chain.from_iterable([c.items for c in issue.changelog.histories]))) except AttributeError: return # If we have no size changes and the issue has a current size then a size must have ben specified at issue creation time. # Return the size at creation time try: current_size = issue.fields.__dict__[self.fields['StoryPoints']] except: current_size = None size = (size_changes[0].fromString) if len(size_changes) else current_size # Issue was created yield IssueSizeSnapshot( change=None, key=issue.key, date=dateutil.parser.parse(issue.fields.created), size=size ) for change in issue.changelog.histories: change_date = dateutil.parser.parse(change.created) #sizes = list(filter(lambda i: i.field == 'Story Points', change.items)) #is_resolved = (sizes[-1].to is not None) if len(sizes) > 0 else is_resolved for item in change.items: if item.field == 'Story Points': # StoryPoints value was changed size = item.toString yield IssueSizeSnapshot( change=item.field, key=issue.key, date=change_date, size=size )
Yield an IssueSnapshot for each time the issue size changed
Below is the the instruction that describes the task: ### Input: Yield an IssueSnapshot for each time the issue size changed ### Response: def iter_size_changes(self, issue): """Yield an IssueSnapshot for each time the issue size changed """ # Find the first size change, if any try: size_changes = list(filter(lambda h: h.field == 'Story Points', itertools.chain.from_iterable([c.items for c in issue.changelog.histories]))) except AttributeError: return # If we have no size changes and the issue has a current size then a size must have ben specified at issue creation time. # Return the size at creation time try: current_size = issue.fields.__dict__[self.fields['StoryPoints']] except: current_size = None size = (size_changes[0].fromString) if len(size_changes) else current_size # Issue was created yield IssueSizeSnapshot( change=None, key=issue.key, date=dateutil.parser.parse(issue.fields.created), size=size ) for change in issue.changelog.histories: change_date = dateutil.parser.parse(change.created) #sizes = list(filter(lambda i: i.field == 'Story Points', change.items)) #is_resolved = (sizes[-1].to is not None) if len(sizes) > 0 else is_resolved for item in change.items: if item.field == 'Story Points': # StoryPoints value was changed size = item.toString yield IssueSizeSnapshot( change=item.field, key=issue.key, date=change_date, size=size )
def data_to_elem_base(self): """Custom system base unconversion function""" if not self.n or self._flags['sysbase'] is False: return self.R = mul(self.R, self.Sn) / self.system.mva super(GovernorBase, self).data_to_elem_base()
Custom system base unconversion function
Below is the the instruction that describes the task: ### Input: Custom system base unconversion function ### Response: def data_to_elem_base(self): """Custom system base unconversion function""" if not self.n or self._flags['sysbase'] is False: return self.R = mul(self.R, self.Sn) / self.system.mva super(GovernorBase, self).data_to_elem_base()
def provider_image(self): """Image path getter. This method uses a pluggable image provider to retrieve an image's path. """ if self._image is None: if isinstance(self.configuration['disk']['image'], dict): ProviderClass = lookup_provider_class( self.configuration['disk']['image']['provider']) self._image = ProviderClass( self.configuration['disk']['image']).image else: # If image is not a dictionary, return it as is for backwards # compatibility self._image = self.configuration['disk']['image'] return self._image
Image path getter. This method uses a pluggable image provider to retrieve an image's path.
Below is the the instruction that describes the task: ### Input: Image path getter. This method uses a pluggable image provider to retrieve an image's path. ### Response: def provider_image(self): """Image path getter. This method uses a pluggable image provider to retrieve an image's path. """ if self._image is None: if isinstance(self.configuration['disk']['image'], dict): ProviderClass = lookup_provider_class( self.configuration['disk']['image']['provider']) self._image = ProviderClass( self.configuration['disk']['image']).image else: # If image is not a dictionary, return it as is for backwards # compatibility self._image = self.configuration['disk']['image'] return self._image
def histograms(dat, keys=None, bins=25, logy=False, cmap=None, ncol=4): """ Plot histograms of all items in dat. Parameters ---------- dat : dict Data in {key: array} pairs. keys : arra-like The keys in dat that you want to plot. If None, all are plotted. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. cmap : dict The colours that the different items should be. If None, all are grey. Returns ------- fig, axes """ if keys is None: keys = dat.keys() ncol = int(ncol) nrow = calc_nrow(len(keys), ncol) fig, axs = plt.subplots(nrow, 4, figsize=[ncol * 2, nrow * 2]) pn = 0 for k, ax in zip(keys, axs.flat): tmp = nominal_values(dat[k]) x = tmp[~np.isnan(tmp)] if cmap is not None: c = cmap[k] else: c = (0, 0, 0, 0.5) ax.hist(x, bins=bins, color=c) if logy: ax.set_yscale('log') ylab = '$log_{10}(n)$' else: ylab = 'n' ax.set_ylim(1, ax.get_ylim()[1]) if ax.is_first_col(): ax.set_ylabel(ylab) ax.set_yticklabels([]) ax.text(.95, .95, k, ha='right', va='top', transform=ax.transAxes) pn += 1 for ax in axs.flat[pn:]: ax.set_visible(False) fig.tight_layout() return fig, axs
Plot histograms of all items in dat. Parameters ---------- dat : dict Data in {key: array} pairs. keys : arra-like The keys in dat that you want to plot. If None, all are plotted. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. cmap : dict The colours that the different items should be. If None, all are grey. Returns ------- fig, axes
Below is the the instruction that describes the task: ### Input: Plot histograms of all items in dat. Parameters ---------- dat : dict Data in {key: array} pairs. keys : arra-like The keys in dat that you want to plot. If None, all are plotted. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. cmap : dict The colours that the different items should be. If None, all are grey. Returns ------- fig, axes ### Response: def histograms(dat, keys=None, bins=25, logy=False, cmap=None, ncol=4): """ Plot histograms of all items in dat. Parameters ---------- dat : dict Data in {key: array} pairs. keys : arra-like The keys in dat that you want to plot. If None, all are plotted. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. cmap : dict The colours that the different items should be. If None, all are grey. Returns ------- fig, axes """ if keys is None: keys = dat.keys() ncol = int(ncol) nrow = calc_nrow(len(keys), ncol) fig, axs = plt.subplots(nrow, 4, figsize=[ncol * 2, nrow * 2]) pn = 0 for k, ax in zip(keys, axs.flat): tmp = nominal_values(dat[k]) x = tmp[~np.isnan(tmp)] if cmap is not None: c = cmap[k] else: c = (0, 0, 0, 0.5) ax.hist(x, bins=bins, color=c) if logy: ax.set_yscale('log') ylab = '$log_{10}(n)$' else: ylab = 'n' ax.set_ylim(1, ax.get_ylim()[1]) if ax.is_first_col(): ax.set_ylabel(ylab) ax.set_yticklabels([]) ax.text(.95, .95, k, ha='right', va='top', transform=ax.transAxes) pn += 1 for ax in axs.flat[pn:]: ax.set_visible(False) fig.tight_layout() return fig, axs
def html_factory(tag, **defaults): '''Returns an :class:`Html` factory function for ``tag`` and a given dictionary of ``defaults`` parameters. For example:: >>> input_factory = html_factory('input', type='text') >>> html = input_factory(value='bla') ''' def html_input(*children, **params): p = defaults.copy() p.update(params) return Html(tag, *children, **p) return html_input
Returns an :class:`Html` factory function for ``tag`` and a given dictionary of ``defaults`` parameters. For example:: >>> input_factory = html_factory('input', type='text') >>> html = input_factory(value='bla')
Below is the the instruction that describes the task: ### Input: Returns an :class:`Html` factory function for ``tag`` and a given dictionary of ``defaults`` parameters. For example:: >>> input_factory = html_factory('input', type='text') >>> html = input_factory(value='bla') ### Response: def html_factory(tag, **defaults): '''Returns an :class:`Html` factory function for ``tag`` and a given dictionary of ``defaults`` parameters. For example:: >>> input_factory = html_factory('input', type='text') >>> html = input_factory(value='bla') ''' def html_input(*children, **params): p = defaults.copy() p.update(params) return Html(tag, *children, **p) return html_input
def _process_cmap(cmap): ''' Returns a kwarg dict suitable for a ColorScale ''' option = {} if isinstance(cmap, str): option['scheme'] = cmap elif isinstance(cmap, list): option['colors'] = cmap else: raise ValueError('''`cmap` must be a string (name of a color scheme) or a list of colors, but a value of {} was given '''.format(cmap)) return option
Returns a kwarg dict suitable for a ColorScale
Below is the the instruction that describes the task: ### Input: Returns a kwarg dict suitable for a ColorScale ### Response: def _process_cmap(cmap): ''' Returns a kwarg dict suitable for a ColorScale ''' option = {} if isinstance(cmap, str): option['scheme'] = cmap elif isinstance(cmap, list): option['colors'] = cmap else: raise ValueError('''`cmap` must be a string (name of a color scheme) or a list of colors, but a value of {} was given '''.format(cmap)) return option
def write(self, data): """ Writes data to the TLS-wrapped socket :param data: A byte string to write to the socket :raises: socket.socket - when a non-TLS socket error occurs oscrypto.errors.TLSError - when a TLS-related error occurs ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by the OS crypto library """ data_len = len(data) while data_len: if self._ssl is None: self._raise_closed() result = libssl.SSL_write(self._ssl, data, data_len) self._raw_write() if result <= 0: error = libssl.SSL_get_error(self._ssl, result) if error == LibsslConst.SSL_ERROR_WANT_READ: if self._raw_read() != b'': continue raise_disconnection() elif error == LibsslConst.SSL_ERROR_WANT_WRITE: self._raw_write() continue elif error == LibsslConst.SSL_ERROR_ZERO_RETURN: self._gracefully_closed = True self._shutdown(False) self._raise_closed() else: handle_openssl_error(0, TLSError) data = data[result:] data_len = len(data)
Writes data to the TLS-wrapped socket :param data: A byte string to write to the socket :raises: socket.socket - when a non-TLS socket error occurs oscrypto.errors.TLSError - when a TLS-related error occurs ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by the OS crypto library
Below is the the instruction that describes the task: ### Input: Writes data to the TLS-wrapped socket :param data: A byte string to write to the socket :raises: socket.socket - when a non-TLS socket error occurs oscrypto.errors.TLSError - when a TLS-related error occurs ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by the OS crypto library ### Response: def write(self, data): """ Writes data to the TLS-wrapped socket :param data: A byte string to write to the socket :raises: socket.socket - when a non-TLS socket error occurs oscrypto.errors.TLSError - when a TLS-related error occurs ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by the OS crypto library """ data_len = len(data) while data_len: if self._ssl is None: self._raise_closed() result = libssl.SSL_write(self._ssl, data, data_len) self._raw_write() if result <= 0: error = libssl.SSL_get_error(self._ssl, result) if error == LibsslConst.SSL_ERROR_WANT_READ: if self._raw_read() != b'': continue raise_disconnection() elif error == LibsslConst.SSL_ERROR_WANT_WRITE: self._raw_write() continue elif error == LibsslConst.SSL_ERROR_ZERO_RETURN: self._gracefully_closed = True self._shutdown(False) self._raise_closed() else: handle_openssl_error(0, TLSError) data = data[result:] data_len = len(data)
def _adjustFileAlignment(self, value, fileAlignment): """ Align a value to C{FileAligment}. @type value: int @param value: The value to align. @type fileAlignment: int @param fileAlignment: The value to be used to align the C{value} parameter. @rtype: int @return: The aligned value. """ if fileAlignment > consts.DEFAULT_FILE_ALIGNMENT: if not utils.powerOfTwo(fileAlignment): print "Warning: FileAlignment is greater than DEFAULT_FILE_ALIGNMENT (0x200) and is not power of two." if fileAlignment < consts.DEFAULT_FILE_ALIGNMENT: return value if fileAlignment and value % fileAlignment: return ((value / fileAlignment) + 1) * fileAlignment return value
Align a value to C{FileAligment}. @type value: int @param value: The value to align. @type fileAlignment: int @param fileAlignment: The value to be used to align the C{value} parameter. @rtype: int @return: The aligned value.
Below is the the instruction that describes the task: ### Input: Align a value to C{FileAligment}. @type value: int @param value: The value to align. @type fileAlignment: int @param fileAlignment: The value to be used to align the C{value} parameter. @rtype: int @return: The aligned value. ### Response: def _adjustFileAlignment(self, value, fileAlignment): """ Align a value to C{FileAligment}. @type value: int @param value: The value to align. @type fileAlignment: int @param fileAlignment: The value to be used to align the C{value} parameter. @rtype: int @return: The aligned value. """ if fileAlignment > consts.DEFAULT_FILE_ALIGNMENT: if not utils.powerOfTwo(fileAlignment): print "Warning: FileAlignment is greater than DEFAULT_FILE_ALIGNMENT (0x200) and is not power of two." if fileAlignment < consts.DEFAULT_FILE_ALIGNMENT: return value if fileAlignment and value % fileAlignment: return ((value / fileAlignment) + 1) * fileAlignment return value
def _sign_threshold_signature_fulfillment(cls, input_, message, key_pairs): """Signs a ThresholdSha256. Args: input_ (:class:`~bigchaindb.common.transaction. Input`) The Input to be signed. message (str): The message to be signed key_pairs (dict): The keys to sign the Transaction with. """ input_ = deepcopy(input_) message = sha3_256(message.encode()) if input_.fulfills: message.update('{}{}'.format( input_.fulfills.txid, input_.fulfills.output).encode()) for owner_before in set(input_.owners_before): # TODO: CC should throw a KeypairMismatchException, instead of # our manual mapping here # TODO FOR CC: Naming wise this is not so smart, # `get_subcondition` in fact doesn't return a # condition but a fulfillment # TODO FOR CC: `get_subcondition` is singular. One would not # expect to get a list back. ccffill = input_.fulfillment subffills = ccffill.get_subcondition_from_vk( base58.b58decode(owner_before)) if not subffills: raise KeypairMismatchException('Public key {} cannot be found ' 'in the fulfillment' .format(owner_before)) try: private_key = key_pairs[owner_before] except KeyError: raise KeypairMismatchException('Public key {} is not a pair ' 'to any of the private keys' .format(owner_before)) # cryptoconditions makes no assumptions of the encoding of the # message to sign or verify. It only accepts bytestrings for subffill in subffills: subffill.sign( message.digest(), base58.b58decode(private_key.encode())) return input_
Signs a ThresholdSha256. Args: input_ (:class:`~bigchaindb.common.transaction. Input`) The Input to be signed. message (str): The message to be signed key_pairs (dict): The keys to sign the Transaction with.
Below is the the instruction that describes the task: ### Input: Signs a ThresholdSha256. Args: input_ (:class:`~bigchaindb.common.transaction. Input`) The Input to be signed. message (str): The message to be signed key_pairs (dict): The keys to sign the Transaction with. ### Response: def _sign_threshold_signature_fulfillment(cls, input_, message, key_pairs): """Signs a ThresholdSha256. Args: input_ (:class:`~bigchaindb.common.transaction. Input`) The Input to be signed. message (str): The message to be signed key_pairs (dict): The keys to sign the Transaction with. """ input_ = deepcopy(input_) message = sha3_256(message.encode()) if input_.fulfills: message.update('{}{}'.format( input_.fulfills.txid, input_.fulfills.output).encode()) for owner_before in set(input_.owners_before): # TODO: CC should throw a KeypairMismatchException, instead of # our manual mapping here # TODO FOR CC: Naming wise this is not so smart, # `get_subcondition` in fact doesn't return a # condition but a fulfillment # TODO FOR CC: `get_subcondition` is singular. One would not # expect to get a list back. ccffill = input_.fulfillment subffills = ccffill.get_subcondition_from_vk( base58.b58decode(owner_before)) if not subffills: raise KeypairMismatchException('Public key {} cannot be found ' 'in the fulfillment' .format(owner_before)) try: private_key = key_pairs[owner_before] except KeyError: raise KeypairMismatchException('Public key {} is not a pair ' 'to any of the private keys' .format(owner_before)) # cryptoconditions makes no assumptions of the encoding of the # message to sign or verify. It only accepts bytestrings for subffill in subffills: subffill.sign( message.digest(), base58.b58decode(private_key.encode())) return input_
def find_omega_min(omega, Nl, detuningsij, i_d, I_nd): r"""This function returns a list of length Nl containing the mininmal frequency that each laser excites. """ omega_min = [] omega_min_indices = [] for l in range(Nl): omegas = sorted([(omega[i_d(p[0]+1)-1][i_d(p[1]+1)-1], p) for p in detuningsij[l]]) omega_min += [omegas[0][0]] omega_min_indices += [omegas[0][1]] return omega_min, omega_min_indices
r"""This function returns a list of length Nl containing the mininmal frequency that each laser excites.
Below is the the instruction that describes the task: ### Input: r"""This function returns a list of length Nl containing the mininmal frequency that each laser excites. ### Response: def find_omega_min(omega, Nl, detuningsij, i_d, I_nd): r"""This function returns a list of length Nl containing the mininmal frequency that each laser excites. """ omega_min = [] omega_min_indices = [] for l in range(Nl): omegas = sorted([(omega[i_d(p[0]+1)-1][i_d(p[1]+1)-1], p) for p in detuningsij[l]]) omega_min += [omegas[0][0]] omega_min_indices += [omegas[0][1]] return omega_min, omega_min_indices
def post(self, url, body=None): """Sends this `Resource` instance to the service with a ``POST`` request to the given URL. Takes an optional body""" response = self.http_request(url, 'POST', body or self, {'Content-Type': 'application/xml; charset=utf-8'}) if response.status not in (200, 201, 204): self.raise_http_error(response) self._url = response.getheader('Location') if response.status in (200, 201): response_xml = response.read() logging.getLogger('recurly.http.response').debug(response_xml) self.update_from_element(ElementTree.fromstring(response_xml))
Sends this `Resource` instance to the service with a ``POST`` request to the given URL. Takes an optional body
Below is the the instruction that describes the task: ### Input: Sends this `Resource` instance to the service with a ``POST`` request to the given URL. Takes an optional body ### Response: def post(self, url, body=None): """Sends this `Resource` instance to the service with a ``POST`` request to the given URL. Takes an optional body""" response = self.http_request(url, 'POST', body or self, {'Content-Type': 'application/xml; charset=utf-8'}) if response.status not in (200, 201, 204): self.raise_http_error(response) self._url = response.getheader('Location') if response.status in (200, 201): response_xml = response.read() logging.getLogger('recurly.http.response').debug(response_xml) self.update_from_element(ElementTree.fromstring(response_xml))
def references(self): """Return EIDs of references of an article. Note: Requires the FULL view of the article. """ refs = self.items.find('bibrecord/tail/bibliography', ns) if refs is not None: eids = [r.find("ref-info/refd-itemidlist/itemid", ns).text for r in refs.findall("reference", ns)] return ["2-s2.0-" + eid for eid in eids] else: return None
Return EIDs of references of an article. Note: Requires the FULL view of the article.
Below is the the instruction that describes the task: ### Input: Return EIDs of references of an article. Note: Requires the FULL view of the article. ### Response: def references(self): """Return EIDs of references of an article. Note: Requires the FULL view of the article. """ refs = self.items.find('bibrecord/tail/bibliography', ns) if refs is not None: eids = [r.find("ref-info/refd-itemidlist/itemid", ns).text for r in refs.findall("reference", ns)] return ["2-s2.0-" + eid for eid in eids] else: return None
def _run(self, peer): """Sends open message to peer and handles received messages. Parameters: - `peer`: the peer to which this protocol instance is connected to. """ # We know the peer we are connected to, we send open message. self._peer = peer self.connection_made() # We wait for peer to send messages. self._recv_loop()
Sends open message to peer and handles received messages. Parameters: - `peer`: the peer to which this protocol instance is connected to.
Below is the the instruction that describes the task: ### Input: Sends open message to peer and handles received messages. Parameters: - `peer`: the peer to which this protocol instance is connected to. ### Response: def _run(self, peer): """Sends open message to peer and handles received messages. Parameters: - `peer`: the peer to which this protocol instance is connected to. """ # We know the peer we are connected to, we send open message. self._peer = peer self.connection_made() # We wait for peer to send messages. self._recv_loop()
def get(self, pk=None, **kwargs): """Return one and exactly one notification template. Note here configuration-related fields like 'notification_configuration' and 'channels' will not be used even provided. Lookups may be through a primary key, specified as a positional argument, and/or through filters specified through keyword arguments. If the number of results does not equal one, raise an exception. =====API DOCS===== Retrieve one and exactly one object. :param pk: Primary key of the resource to be read. Tower CLI will only attempt to read *that* object if ``pk`` is provided (not ``None``). :type pk: int :param `**kwargs`: Keyword arguments used to look up resource object to retrieve if ``pk`` is not provided. :returns: loaded JSON of the retrieved resource object. :rtype: dict =====API DOCS===== """ self._separate(kwargs) return super(Resource, self).get(pk=pk, **kwargs)
Return one and exactly one notification template. Note here configuration-related fields like 'notification_configuration' and 'channels' will not be used even provided. Lookups may be through a primary key, specified as a positional argument, and/or through filters specified through keyword arguments. If the number of results does not equal one, raise an exception. =====API DOCS===== Retrieve one and exactly one object. :param pk: Primary key of the resource to be read. Tower CLI will only attempt to read *that* object if ``pk`` is provided (not ``None``). :type pk: int :param `**kwargs`: Keyword arguments used to look up resource object to retrieve if ``pk`` is not provided. :returns: loaded JSON of the retrieved resource object. :rtype: dict =====API DOCS=====
Below is the the instruction that describes the task: ### Input: Return one and exactly one notification template. Note here configuration-related fields like 'notification_configuration' and 'channels' will not be used even provided. Lookups may be through a primary key, specified as a positional argument, and/or through filters specified through keyword arguments. If the number of results does not equal one, raise an exception. =====API DOCS===== Retrieve one and exactly one object. :param pk: Primary key of the resource to be read. Tower CLI will only attempt to read *that* object if ``pk`` is provided (not ``None``). :type pk: int :param `**kwargs`: Keyword arguments used to look up resource object to retrieve if ``pk`` is not provided. :returns: loaded JSON of the retrieved resource object. :rtype: dict =====API DOCS===== ### Response: def get(self, pk=None, **kwargs): """Return one and exactly one notification template. Note here configuration-related fields like 'notification_configuration' and 'channels' will not be used even provided. Lookups may be through a primary key, specified as a positional argument, and/or through filters specified through keyword arguments. If the number of results does not equal one, raise an exception. =====API DOCS===== Retrieve one and exactly one object. :param pk: Primary key of the resource to be read. Tower CLI will only attempt to read *that* object if ``pk`` is provided (not ``None``). :type pk: int :param `**kwargs`: Keyword arguments used to look up resource object to retrieve if ``pk`` is not provided. :returns: loaded JSON of the retrieved resource object. :rtype: dict =====API DOCS===== """ self._separate(kwargs) return super(Resource, self).get(pk=pk, **kwargs)
def _joinOnAsPriv(self, model, onIndex, whatAs): """ Private method for handling joins. """ if self._join: raise Exception("Already joined with a table!") self._join = model self._joinedField = whatAs table = model.table self._query = self._query.eq_join(onIndex, r.table(table)) return self
Private method for handling joins.
Below is the the instruction that describes the task: ### Input: Private method for handling joins. ### Response: def _joinOnAsPriv(self, model, onIndex, whatAs): """ Private method for handling joins. """ if self._join: raise Exception("Already joined with a table!") self._join = model self._joinedField = whatAs table = model.table self._query = self._query.eq_join(onIndex, r.table(table)) return self
def get_system_root_directory(): """ Get system root directory (application installed root directory) Returns ------- string A full path """ root = os.path.dirname(__file__) root = os.path.dirname(root) root = os.path.abspath(root) return root
Get system root directory (application installed root directory) Returns ------- string A full path
Below is the the instruction that describes the task: ### Input: Get system root directory (application installed root directory) Returns ------- string A full path ### Response: def get_system_root_directory(): """ Get system root directory (application installed root directory) Returns ------- string A full path """ root = os.path.dirname(__file__) root = os.path.dirname(root) root = os.path.abspath(root) return root
def reset_all(): """ Clear relevant globals to start fresh :return: """ global _username global _password global _active_config global _active_tests global _machine_names global _deployers reset_deployers() reset_collector() _username = None _password = None _active_config = None _active_tests = {} _machine_names = defaultdict()
Clear relevant globals to start fresh :return:
Below is the the instruction that describes the task: ### Input: Clear relevant globals to start fresh :return: ### Response: def reset_all(): """ Clear relevant globals to start fresh :return: """ global _username global _password global _active_config global _active_tests global _machine_names global _deployers reset_deployers() reset_collector() _username = None _password = None _active_config = None _active_tests = {} _machine_names = defaultdict()
def map_qubits(self: TSelf_PauliStringGateOperation, qubit_map: Dict[raw_types.Qid, raw_types.Qid] ) -> TSelf_PauliStringGateOperation: """Return an equivalent operation on new qubits with its Pauli string mapped to new qubits. new_pauli_string = self.pauli_string.map_qubits(qubit_map) """
Return an equivalent operation on new qubits with its Pauli string mapped to new qubits. new_pauli_string = self.pauli_string.map_qubits(qubit_map)
Below is the the instruction that describes the task: ### Input: Return an equivalent operation on new qubits with its Pauli string mapped to new qubits. new_pauli_string = self.pauli_string.map_qubits(qubit_map) ### Response: def map_qubits(self: TSelf_PauliStringGateOperation, qubit_map: Dict[raw_types.Qid, raw_types.Qid] ) -> TSelf_PauliStringGateOperation: """Return an equivalent operation on new qubits with its Pauli string mapped to new qubits. new_pauli_string = self.pauli_string.map_qubits(qubit_map) """
def _compile_params(params, im1): """ Compile the params dictionary: * Combine parameters from different sources * Perform checks to prevent non-compatible parameters * Extend parameters that need a list with one element per dimension """ # Compile parameters p = _get_fixed_params(im1) + get_advanced_params() p = p + params params = p.as_dict() # Check parameter dimensions if isinstance(im1, np.ndarray): lt = (list, tuple) for key in [ 'FinalGridSpacingInPhysicalUnits', 'FinalGridSpacingInVoxels' ]: if key in params.keys() and not isinstance(params[key], lt): params[key] = [params[key]] * im1.ndim # Check parameter removal if 'FinalGridSpacingInVoxels' in params: if 'FinalGridSpacingInPhysicalUnits' in params: params.pop('FinalGridSpacingInPhysicalUnits') # Done return params
Compile the params dictionary: * Combine parameters from different sources * Perform checks to prevent non-compatible parameters * Extend parameters that need a list with one element per dimension
Below is the the instruction that describes the task: ### Input: Compile the params dictionary: * Combine parameters from different sources * Perform checks to prevent non-compatible parameters * Extend parameters that need a list with one element per dimension ### Response: def _compile_params(params, im1): """ Compile the params dictionary: * Combine parameters from different sources * Perform checks to prevent non-compatible parameters * Extend parameters that need a list with one element per dimension """ # Compile parameters p = _get_fixed_params(im1) + get_advanced_params() p = p + params params = p.as_dict() # Check parameter dimensions if isinstance(im1, np.ndarray): lt = (list, tuple) for key in [ 'FinalGridSpacingInPhysicalUnits', 'FinalGridSpacingInVoxels' ]: if key in params.keys() and not isinstance(params[key], lt): params[key] = [params[key]] * im1.ndim # Check parameter removal if 'FinalGridSpacingInVoxels' in params: if 'FinalGridSpacingInPhysicalUnits' in params: params.pop('FinalGridSpacingInPhysicalUnits') # Done return params
def _prepare_persistence_engine(self): """Load the specified persistence engine, or the default if none is set. """ if self._persistence_engine: return persistence_engine = self._options.get('persistence_engine') if persistence_engine: self._persistence_engine = path_to_reference(persistence_engine) return from furious.config import get_default_persistence_engine self._persistence_engine = get_default_persistence_engine()
Load the specified persistence engine, or the default if none is set.
Below is the the instruction that describes the task: ### Input: Load the specified persistence engine, or the default if none is set. ### Response: def _prepare_persistence_engine(self): """Load the specified persistence engine, or the default if none is set. """ if self._persistence_engine: return persistence_engine = self._options.get('persistence_engine') if persistence_engine: self._persistence_engine = path_to_reference(persistence_engine) return from furious.config import get_default_persistence_engine self._persistence_engine = get_default_persistence_engine()
def dist(self, x1, x2): """Return the distance between ``x1`` and ``x2``. Parameters ---------- x1, x2 : `LinearSpaceElement` Elements whose distance to compute. Returns ------- dist : float Distance between ``x1`` and ``x2``. """ if x1 not in self: raise LinearSpaceTypeError('`x1` {!r} is not an element of ' '{!r}'.format(x1, self)) if x2 not in self: raise LinearSpaceTypeError('`x2` {!r} is not an element of ' '{!r}'.format(x2, self)) return float(self._dist(x1, x2))
Return the distance between ``x1`` and ``x2``. Parameters ---------- x1, x2 : `LinearSpaceElement` Elements whose distance to compute. Returns ------- dist : float Distance between ``x1`` and ``x2``.
Below is the the instruction that describes the task: ### Input: Return the distance between ``x1`` and ``x2``. Parameters ---------- x1, x2 : `LinearSpaceElement` Elements whose distance to compute. Returns ------- dist : float Distance between ``x1`` and ``x2``. ### Response: def dist(self, x1, x2): """Return the distance between ``x1`` and ``x2``. Parameters ---------- x1, x2 : `LinearSpaceElement` Elements whose distance to compute. Returns ------- dist : float Distance between ``x1`` and ``x2``. """ if x1 not in self: raise LinearSpaceTypeError('`x1` {!r} is not an element of ' '{!r}'.format(x1, self)) if x2 not in self: raise LinearSpaceTypeError('`x2` {!r} is not an element of ' '{!r}'.format(x2, self)) return float(self._dist(x1, x2))
def rparents(self, level=-1, intermediate=True): """Create a recursive list of children. Note that the :param:`intermediate` can be used to include every parents to the returned list, not only the most nested ones. Parameters: level (int): The depth level to continue fetching parents from (default is -1, to get parents to the utter depths) intermediate (bool): Also include the intermediate parents (default is True) Returns: :obj:`pronto.TermList`: The recursive children of the Term following the parameters """ try: return self._rparents[(level, intermediate)] except KeyError: rparents = [] if self.parents and level: if intermediate or level==1: rparents.extend(self.parents) for parent in self.parents: rparents.extend(parent.rparents(level=level-1, intermediate=intermediate)) rparents = TermList(unique_everseen(rparents)) self._rparents[(level, intermediate)] = rparents return rparents
Create a recursive list of children. Note that the :param:`intermediate` can be used to include every parents to the returned list, not only the most nested ones. Parameters: level (int): The depth level to continue fetching parents from (default is -1, to get parents to the utter depths) intermediate (bool): Also include the intermediate parents (default is True) Returns: :obj:`pronto.TermList`: The recursive children of the Term following the parameters
Below is the the instruction that describes the task: ### Input: Create a recursive list of children. Note that the :param:`intermediate` can be used to include every parents to the returned list, not only the most nested ones. Parameters: level (int): The depth level to continue fetching parents from (default is -1, to get parents to the utter depths) intermediate (bool): Also include the intermediate parents (default is True) Returns: :obj:`pronto.TermList`: The recursive children of the Term following the parameters ### Response: def rparents(self, level=-1, intermediate=True): """Create a recursive list of children. Note that the :param:`intermediate` can be used to include every parents to the returned list, not only the most nested ones. Parameters: level (int): The depth level to continue fetching parents from (default is -1, to get parents to the utter depths) intermediate (bool): Also include the intermediate parents (default is True) Returns: :obj:`pronto.TermList`: The recursive children of the Term following the parameters """ try: return self._rparents[(level, intermediate)] except KeyError: rparents = [] if self.parents and level: if intermediate or level==1: rparents.extend(self.parents) for parent in self.parents: rparents.extend(parent.rparents(level=level-1, intermediate=intermediate)) rparents = TermList(unique_everseen(rparents)) self._rparents[(level, intermediate)] = rparents return rparents
def poll(self): """ Perform a non-blocking scan of recv and send states on the server and client connection sockets. Process new connection requests, read incomming data, and send outgoing data. Sends and receives may be partial. """ #print len(self.connections) ## Build a list of connections to test for receive data pending recv_list = [self.server_fileno] # always add the server for client in self.clients.values(): if client.active: recv_list.append(client.fileno) ## Delete inactive connections from the dictionary else: #print "-- Lost connection to %s" % client.addrport() #client.sock.close() self.on_disconnect(client) del self.clients[client.fileno] ## Build a list of connections that need to send data send_list = [] for client in self.clients.values(): if client.send_pending: send_list.append(client.fileno) ## Get active socket file descriptors from select.select() try: rlist, slist, elist = select.select(recv_list, send_list, [], self.timeout) except select.error, err: ## If we can't even use select(), game over man, game over print >> sys.stderr, ("!! FATAL SELECT error '%d:%s'!" % (err[0], err[1])) sys.exit(1) ## Process socket file descriptors with data to recieve for sock_fileno in rlist: ## If it's coming from the server's socket then this is a new ## connection request. if sock_fileno == self.server_fileno: try: sock, addr_tup = self.server_socket.accept() except socket.error, err: print >> sys.stderr, ("!! ACCEPT error '%d:%s'." % (err[0], err[1])) continue ## Check for maximum connections if self.client_count() >= MAX_CONNECTIONS: print '?? Refusing new connection; maximum in use.' sock.close() continue new_client = TelnetClient(sock, addr_tup) #print "++ Opened connection to %s" % new_client.addrport() ## Add the connection to our dictionary and call handler self.clients[new_client.fileno] = new_client self.on_connect(new_client) else: ## Call the connection's recieve method try: self.clients[sock_fileno].socket_recv() except BogConnectionLost: self.clients[sock_fileno].deactivate() ## Process sockets with data to send for sock_fileno in slist: ## Call the connection's send method self.clients[sock_fileno].socket_send()
Perform a non-blocking scan of recv and send states on the server and client connection sockets. Process new connection requests, read incomming data, and send outgoing data. Sends and receives may be partial.
Below is the the instruction that describes the task: ### Input: Perform a non-blocking scan of recv and send states on the server and client connection sockets. Process new connection requests, read incomming data, and send outgoing data. Sends and receives may be partial. ### Response: def poll(self): """ Perform a non-blocking scan of recv and send states on the server and client connection sockets. Process new connection requests, read incomming data, and send outgoing data. Sends and receives may be partial. """ #print len(self.connections) ## Build a list of connections to test for receive data pending recv_list = [self.server_fileno] # always add the server for client in self.clients.values(): if client.active: recv_list.append(client.fileno) ## Delete inactive connections from the dictionary else: #print "-- Lost connection to %s" % client.addrport() #client.sock.close() self.on_disconnect(client) del self.clients[client.fileno] ## Build a list of connections that need to send data send_list = [] for client in self.clients.values(): if client.send_pending: send_list.append(client.fileno) ## Get active socket file descriptors from select.select() try: rlist, slist, elist = select.select(recv_list, send_list, [], self.timeout) except select.error, err: ## If we can't even use select(), game over man, game over print >> sys.stderr, ("!! FATAL SELECT error '%d:%s'!" % (err[0], err[1])) sys.exit(1) ## Process socket file descriptors with data to recieve for sock_fileno in rlist: ## If it's coming from the server's socket then this is a new ## connection request. if sock_fileno == self.server_fileno: try: sock, addr_tup = self.server_socket.accept() except socket.error, err: print >> sys.stderr, ("!! ACCEPT error '%d:%s'." % (err[0], err[1])) continue ## Check for maximum connections if self.client_count() >= MAX_CONNECTIONS: print '?? Refusing new connection; maximum in use.' sock.close() continue new_client = TelnetClient(sock, addr_tup) #print "++ Opened connection to %s" % new_client.addrport() ## Add the connection to our dictionary and call handler self.clients[new_client.fileno] = new_client self.on_connect(new_client) else: ## Call the connection's recieve method try: self.clients[sock_fileno].socket_recv() except BogConnectionLost: self.clients[sock_fileno].deactivate() ## Process sockets with data to send for sock_fileno in slist: ## Call the connection's send method self.clients[sock_fileno].socket_send()
def sanitize_http_headers(client, event): """ Sanitizes http request/response headers :param client: an ElasticAPM client :param event: a transaction or error event :return: The modified event """ # request headers try: headers = event["context"]["request"]["headers"] event["context"]["request"]["headers"] = varmap(_sanitize, headers) except (KeyError, TypeError): pass # response headers try: headers = event["context"]["response"]["headers"] event["context"]["response"]["headers"] = varmap(_sanitize, headers) except (KeyError, TypeError): pass return event
Sanitizes http request/response headers :param client: an ElasticAPM client :param event: a transaction or error event :return: The modified event
Below is the the instruction that describes the task: ### Input: Sanitizes http request/response headers :param client: an ElasticAPM client :param event: a transaction or error event :return: The modified event ### Response: def sanitize_http_headers(client, event): """ Sanitizes http request/response headers :param client: an ElasticAPM client :param event: a transaction or error event :return: The modified event """ # request headers try: headers = event["context"]["request"]["headers"] event["context"]["request"]["headers"] = varmap(_sanitize, headers) except (KeyError, TypeError): pass # response headers try: headers = event["context"]["response"]["headers"] event["context"]["response"]["headers"] = varmap(_sanitize, headers) except (KeyError, TypeError): pass return event
def CLASSDEF(self, node): """ Check names used in a class definition, including its decorators, base classes, and the body of its definition. Additionally, add its name to the current scope. """ for deco in node.decorator_list: self.handleNode(deco, node) for baseNode in node.bases: self.handleNode(baseNode, node) if not PY2: for keywordNode in node.keywords: self.handleNode(keywordNode, node) self.pushScope(ClassScope) # doctest does not process doctest within a doctest # classes within classes are processed. if (self.withDoctest and not self._in_doctest() and not isinstance(self.scope, FunctionScope)): self.deferFunction(lambda: self.handleDoctests(node)) for stmt in node.body: self.handleNode(stmt, node) self.popScope() self.addBinding(node, ClassDefinition(node.name, node))
Check names used in a class definition, including its decorators, base classes, and the body of its definition. Additionally, add its name to the current scope.
Below is the the instruction that describes the task: ### Input: Check names used in a class definition, including its decorators, base classes, and the body of its definition. Additionally, add its name to the current scope. ### Response: def CLASSDEF(self, node): """ Check names used in a class definition, including its decorators, base classes, and the body of its definition. Additionally, add its name to the current scope. """ for deco in node.decorator_list: self.handleNode(deco, node) for baseNode in node.bases: self.handleNode(baseNode, node) if not PY2: for keywordNode in node.keywords: self.handleNode(keywordNode, node) self.pushScope(ClassScope) # doctest does not process doctest within a doctest # classes within classes are processed. if (self.withDoctest and not self._in_doctest() and not isinstance(self.scope, FunctionScope)): self.deferFunction(lambda: self.handleDoctests(node)) for stmt in node.body: self.handleNode(stmt, node) self.popScope() self.addBinding(node, ClassDefinition(node.name, node))
def _set_fabric_virtual_gateway(self, v, load=False): """ Setter method for fabric_virtual_gateway, mapped from YANG variable /router/fabric_virtual_gateway (container) If this variable is read-only (config: false) in the source YANG file, then _set_fabric_virtual_gateway is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_fabric_virtual_gateway() directly. YANG Description: Fabric virtual gateway """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=fabric_virtual_gateway.fabric_virtual_gateway, is_container='container', presence=True, yang_name="fabric-virtual-gateway", rest_name="fabric-virtual-gateway", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Fabric virtual gateway', u'callpoint': u'AnycastGatewayGlobalConfig', u'cli-full-command': None, u'cli-add-mode': None, u'cli-full-no': None, u'cli-mode-name': u'conf-router-fabric-virtual-gateway'}}, namespace='urn:brocade.com:mgmt:brocade-anycast-gateway', defining_module='brocade-anycast-gateway', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """fabric_virtual_gateway must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=fabric_virtual_gateway.fabric_virtual_gateway, is_container='container', presence=True, yang_name="fabric-virtual-gateway", rest_name="fabric-virtual-gateway", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Fabric virtual gateway', u'callpoint': u'AnycastGatewayGlobalConfig', u'cli-full-command': None, u'cli-add-mode': None, u'cli-full-no': None, u'cli-mode-name': u'conf-router-fabric-virtual-gateway'}}, namespace='urn:brocade.com:mgmt:brocade-anycast-gateway', defining_module='brocade-anycast-gateway', yang_type='container', is_config=True)""", }) self.__fabric_virtual_gateway = t if hasattr(self, '_set'): self._set()
Setter method for fabric_virtual_gateway, mapped from YANG variable /router/fabric_virtual_gateway (container) If this variable is read-only (config: false) in the source YANG file, then _set_fabric_virtual_gateway is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_fabric_virtual_gateway() directly. YANG Description: Fabric virtual gateway
Below is the the instruction that describes the task: ### Input: Setter method for fabric_virtual_gateway, mapped from YANG variable /router/fabric_virtual_gateway (container) If this variable is read-only (config: false) in the source YANG file, then _set_fabric_virtual_gateway is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_fabric_virtual_gateway() directly. YANG Description: Fabric virtual gateway ### Response: def _set_fabric_virtual_gateway(self, v, load=False): """ Setter method for fabric_virtual_gateway, mapped from YANG variable /router/fabric_virtual_gateway (container) If this variable is read-only (config: false) in the source YANG file, then _set_fabric_virtual_gateway is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_fabric_virtual_gateway() directly. YANG Description: Fabric virtual gateway """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=fabric_virtual_gateway.fabric_virtual_gateway, is_container='container', presence=True, yang_name="fabric-virtual-gateway", rest_name="fabric-virtual-gateway", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Fabric virtual gateway', u'callpoint': u'AnycastGatewayGlobalConfig', u'cli-full-command': None, u'cli-add-mode': None, u'cli-full-no': None, u'cli-mode-name': u'conf-router-fabric-virtual-gateway'}}, namespace='urn:brocade.com:mgmt:brocade-anycast-gateway', defining_module='brocade-anycast-gateway', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """fabric_virtual_gateway must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=fabric_virtual_gateway.fabric_virtual_gateway, is_container='container', presence=True, yang_name="fabric-virtual-gateway", rest_name="fabric-virtual-gateway", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Fabric virtual gateway', u'callpoint': u'AnycastGatewayGlobalConfig', u'cli-full-command': None, u'cli-add-mode': None, u'cli-full-no': None, u'cli-mode-name': u'conf-router-fabric-virtual-gateway'}}, namespace='urn:brocade.com:mgmt:brocade-anycast-gateway', defining_module='brocade-anycast-gateway', yang_type='container', is_config=True)""", }) self.__fabric_virtual_gateway = t if hasattr(self, '_set'): self._set()
def analyze_traceback(tb, inspection_level=None, limit=None): """ Extract trace back information into a list of dictionaries. :param tb: traceback :return: list of dicts containing filepath, line, module, code, traceback level and source code for tracebacks """ info = [] tb_level = tb extracted_tb = traceback.extract_tb(tb, limit=limit) for ii, (filepath, line, module, code) in enumerate(extracted_tb): func_source, func_lineno = inspect.getsourcelines(tb_level.tb_frame) d = {"File": filepath, "Error Line Number": line, "Module": module, "Error Line": code, "Module Line Number": func_lineno, "Custom Inspection": {}, "Source Code": ''} if inspection_level is None or len(extracted_tb) - ii <= inspection_level: # Perform advanced inspection on the last `inspection_level` tracebacks. d['Source Code'] = ''.join(func_source) d['Local Variables'] = get_local_references(tb_level) d['Object Variables'] = get_object_references(tb_level, d['Source Code']) tb_level = getattr(tb_level, 'tb_next', None) info.append(d) return info
Extract trace back information into a list of dictionaries. :param tb: traceback :return: list of dicts containing filepath, line, module, code, traceback level and source code for tracebacks
Below is the the instruction that describes the task: ### Input: Extract trace back information into a list of dictionaries. :param tb: traceback :return: list of dicts containing filepath, line, module, code, traceback level and source code for tracebacks ### Response: def analyze_traceback(tb, inspection_level=None, limit=None): """ Extract trace back information into a list of dictionaries. :param tb: traceback :return: list of dicts containing filepath, line, module, code, traceback level and source code for tracebacks """ info = [] tb_level = tb extracted_tb = traceback.extract_tb(tb, limit=limit) for ii, (filepath, line, module, code) in enumerate(extracted_tb): func_source, func_lineno = inspect.getsourcelines(tb_level.tb_frame) d = {"File": filepath, "Error Line Number": line, "Module": module, "Error Line": code, "Module Line Number": func_lineno, "Custom Inspection": {}, "Source Code": ''} if inspection_level is None or len(extracted_tb) - ii <= inspection_level: # Perform advanced inspection on the last `inspection_level` tracebacks. d['Source Code'] = ''.join(func_source) d['Local Variables'] = get_local_references(tb_level) d['Object Variables'] = get_object_references(tb_level, d['Source Code']) tb_level = getattr(tb_level, 'tb_next', None) info.append(d) return info
def set_params(self, arg_params, aux_params): """Set parameter and aux values. Parameters ---------- arg_params : list of NDArray Source parameter arrays aux_params : list of NDArray Source aux arrays. """ for texec in self.execgrp.train_execs: texec.copy_params_from(arg_params, aux_params)
Set parameter and aux values. Parameters ---------- arg_params : list of NDArray Source parameter arrays aux_params : list of NDArray Source aux arrays.
Below is the the instruction that describes the task: ### Input: Set parameter and aux values. Parameters ---------- arg_params : list of NDArray Source parameter arrays aux_params : list of NDArray Source aux arrays. ### Response: def set_params(self, arg_params, aux_params): """Set parameter and aux values. Parameters ---------- arg_params : list of NDArray Source parameter arrays aux_params : list of NDArray Source aux arrays. """ for texec in self.execgrp.train_execs: texec.copy_params_from(arg_params, aux_params)
def peukerdouglas(np, fel, streamSkeleton, workingdir=None, mpiexedir=None, exedir=None, log_file=None, runtime_file=None, hostfile=None): """Run peuker-douglas function""" fname = TauDEM.func_name('peukerdouglas') return TauDEM.run(FileClass.get_executable_fullpath(fname, exedir), {'-fel': fel}, workingdir, None, {'-ss': streamSkeleton}, {'mpipath': mpiexedir, 'hostfile': hostfile, 'n': np}, {'logfile': log_file, 'runtimefile': runtime_file})
Run peuker-douglas function
Below is the the instruction that describes the task: ### Input: Run peuker-douglas function ### Response: def peukerdouglas(np, fel, streamSkeleton, workingdir=None, mpiexedir=None, exedir=None, log_file=None, runtime_file=None, hostfile=None): """Run peuker-douglas function""" fname = TauDEM.func_name('peukerdouglas') return TauDEM.run(FileClass.get_executable_fullpath(fname, exedir), {'-fel': fel}, workingdir, None, {'-ss': streamSkeleton}, {'mpipath': mpiexedir, 'hostfile': hostfile, 'n': np}, {'logfile': log_file, 'runtimefile': runtime_file})
def _check_holiday_structure(self, times): """ To check the structure of the HolidayClass :param list times: years or months or days or number week :rtype: None or Exception :return: in the case of exception returns the exception """ if not isinstance(times, list): raise TypeError("an list is required") for time in times: if not isinstance(time, tuple): raise TypeError("a tuple is required") if len(time) > 5: raise TypeError("Target time takes at most 5 arguments" " ('%d' given)" % len(time)) if len(time) < 5: raise TypeError("Required argument '%s' (pos '%d')" " not found" % (TIME_LABEL[len(time)], len(time))) self._check_time_format(TIME_LABEL, time)
To check the structure of the HolidayClass :param list times: years or months or days or number week :rtype: None or Exception :return: in the case of exception returns the exception
Below is the the instruction that describes the task: ### Input: To check the structure of the HolidayClass :param list times: years or months or days or number week :rtype: None or Exception :return: in the case of exception returns the exception ### Response: def _check_holiday_structure(self, times): """ To check the structure of the HolidayClass :param list times: years or months or days or number week :rtype: None or Exception :return: in the case of exception returns the exception """ if not isinstance(times, list): raise TypeError("an list is required") for time in times: if not isinstance(time, tuple): raise TypeError("a tuple is required") if len(time) > 5: raise TypeError("Target time takes at most 5 arguments" " ('%d' given)" % len(time)) if len(time) < 5: raise TypeError("Required argument '%s' (pos '%d')" " not found" % (TIME_LABEL[len(time)], len(time))) self._check_time_format(TIME_LABEL, time)
def uncache_zipdir(path): """Ensure that the importer caches dont have stale info for `path`""" from zipimport import _zip_directory_cache as zdc _uncache(path, zdc) _uncache(path, sys.path_importer_cache)
Ensure that the importer caches dont have stale info for `path`
Below is the the instruction that describes the task: ### Input: Ensure that the importer caches dont have stale info for `path` ### Response: def uncache_zipdir(path): """Ensure that the importer caches dont have stale info for `path`""" from zipimport import _zip_directory_cache as zdc _uncache(path, zdc) _uncache(path, sys.path_importer_cache)
def flatten_container(self, container): """ Accepts a kubernetes container and pulls out the nested values into the top level """ for names in ARG_MAP.values(): if names[TransformationTypes.KUBERNETES.value]['name'] and \ '.' in names[TransformationTypes.KUBERNETES.value]['name']: kubernetes_dotted_name = names[TransformationTypes.KUBERNETES.value]['name'] parts = kubernetes_dotted_name.split('.') result = lookup_nested_dict(container, *parts) if result: container[kubernetes_dotted_name] = result return container
Accepts a kubernetes container and pulls out the nested values into the top level
Below is the the instruction that describes the task: ### Input: Accepts a kubernetes container and pulls out the nested values into the top level ### Response: def flatten_container(self, container): """ Accepts a kubernetes container and pulls out the nested values into the top level """ for names in ARG_MAP.values(): if names[TransformationTypes.KUBERNETES.value]['name'] and \ '.' in names[TransformationTypes.KUBERNETES.value]['name']: kubernetes_dotted_name = names[TransformationTypes.KUBERNETES.value]['name'] parts = kubernetes_dotted_name.split('.') result = lookup_nested_dict(container, *parts) if result: container[kubernetes_dotted_name] = result return container
def calc_time(self) -> None: """ Prints statistics about the the total duration of recordings in the corpus. """ def get_number_of_frames(feat_fns): """ fns: A list of numpy files which contain a number of feature frames. """ total = 0 for feat_fn in feat_fns: num_frames = len(np.load(feat_fn)) total += num_frames return total def numframes_to_minutes(num_frames): # TODO Assumes 10ms strides for the frames. This should generalize to # different frame stride widths, as should feature preparation. minutes = ((num_frames*10)/1000)/60 return minutes total_frames = 0 train_fns = [train_fn[0] for train_fn in self.train_fns] num_train_frames = get_number_of_frames(train_fns) total_frames += num_train_frames num_valid_frames = get_number_of_frames(self.corpus.get_valid_fns()[0]) total_frames += num_valid_frames num_test_frames = get_number_of_frames(self.corpus.get_test_fns()[0]) total_frames += num_test_frames print("Train duration: %0.3f" % numframes_to_minutes(num_train_frames)) print("Validation duration: %0.3f" % numframes_to_minutes(num_valid_frames)) print("Test duration: %0.3f" % numframes_to_minutes(num_test_frames)) print("Total duration: %0.3f" % numframes_to_minutes(total_frames))
Prints statistics about the the total duration of recordings in the corpus.
Below is the the instruction that describes the task: ### Input: Prints statistics about the the total duration of recordings in the corpus. ### Response: def calc_time(self) -> None: """ Prints statistics about the the total duration of recordings in the corpus. """ def get_number_of_frames(feat_fns): """ fns: A list of numpy files which contain a number of feature frames. """ total = 0 for feat_fn in feat_fns: num_frames = len(np.load(feat_fn)) total += num_frames return total def numframes_to_minutes(num_frames): # TODO Assumes 10ms strides for the frames. This should generalize to # different frame stride widths, as should feature preparation. minutes = ((num_frames*10)/1000)/60 return minutes total_frames = 0 train_fns = [train_fn[0] for train_fn in self.train_fns] num_train_frames = get_number_of_frames(train_fns) total_frames += num_train_frames num_valid_frames = get_number_of_frames(self.corpus.get_valid_fns()[0]) total_frames += num_valid_frames num_test_frames = get_number_of_frames(self.corpus.get_test_fns()[0]) total_frames += num_test_frames print("Train duration: %0.3f" % numframes_to_minutes(num_train_frames)) print("Validation duration: %0.3f" % numframes_to_minutes(num_valid_frames)) print("Test duration: %0.3f" % numframes_to_minutes(num_test_frames)) print("Total duration: %0.3f" % numframes_to_minutes(total_frames))
def get_suggested_saxis(magmoms): """ This method returns a suggested spin axis for a set of magmoms, taking the largest magnetic moment as the reference. For calculations with collinear spins, this would give a sensible saxis for a ncl calculation. :param magmoms: list of magmoms (Magmoms, scalars or vectors) :return: np.ndarray of length 3 """ # heuristic, will pick largest magmom as reference # useful for creating collinear approximations of # e.g. slightly canted magnetic structures # for fully collinear structures, will return expected # result magmoms = [Magmom(magmom) for magmom in magmoms] # filter only non-zero magmoms magmoms = [magmom for magmom in magmoms if abs(magmom)] magmoms.sort(reverse=True) if len(magmoms) > 0: return magmoms[0].get_00t_magmom_with_xyz_saxis().saxis else: return np.array([0, 0, 1], dtype="d")
This method returns a suggested spin axis for a set of magmoms, taking the largest magnetic moment as the reference. For calculations with collinear spins, this would give a sensible saxis for a ncl calculation. :param magmoms: list of magmoms (Magmoms, scalars or vectors) :return: np.ndarray of length 3
Below is the the instruction that describes the task: ### Input: This method returns a suggested spin axis for a set of magmoms, taking the largest magnetic moment as the reference. For calculations with collinear spins, this would give a sensible saxis for a ncl calculation. :param magmoms: list of magmoms (Magmoms, scalars or vectors) :return: np.ndarray of length 3 ### Response: def get_suggested_saxis(magmoms): """ This method returns a suggested spin axis for a set of magmoms, taking the largest magnetic moment as the reference. For calculations with collinear spins, this would give a sensible saxis for a ncl calculation. :param magmoms: list of magmoms (Magmoms, scalars or vectors) :return: np.ndarray of length 3 """ # heuristic, will pick largest magmom as reference # useful for creating collinear approximations of # e.g. slightly canted magnetic structures # for fully collinear structures, will return expected # result magmoms = [Magmom(magmom) for magmom in magmoms] # filter only non-zero magmoms magmoms = [magmom for magmom in magmoms if abs(magmom)] magmoms.sort(reverse=True) if len(magmoms) > 0: return magmoms[0].get_00t_magmom_with_xyz_saxis().saxis else: return np.array([0, 0, 1], dtype="d")
def _send_ping(self, dest_addr, payload): """ Send a single ICMPecho (ping) packet to the specified address. The payload must be specified as a packed byte string. Note that its length has to be divisible by 2 for this to work correctly. """ pkt_id = self._last_used_id is_ipv6 = ':' in dest_addr if is_ipv6: self._ipv6_address_present = True icmp_echo_request = _ICMPV6_ECHO_REQUEST else: icmp_echo_request = _ICMP_ECHO_REQUEST # For checksum calculation we require a dummy header, with the checksum # field set to zero. This header consists of: # - ICMP type = 8 (v4) / 128 (v6) (unsigned byte) # - ICMP code = 0 (unsigned byte) # - checksum = 0 (unsigned short) # - packet id (unsigned short) # - sequence = 0 (unsigned short) This doesn't have to be 0. dummy_header = bytearray( struct.pack(_ICMP_HDR_PACK_FORMAT, icmp_echo_request, 0, 0, pkt_id, self.ident)) # Calculate the checksum over the combined dummy header and payload checksum = self._checksum(dummy_header + payload) # We can now create the real header, which contains the correct # checksum. Need to make sure to convert checksum to network byte # order. real_header = bytearray( struct.pack(_ICMP_HDR_PACK_FORMAT, icmp_echo_request, 0, checksum, pkt_id, self.ident)) # Full packet consists of header plus payload full_pkt = real_header + payload # The full address for a sendto operation consists of the IP address # and a port. We don't really need a port for ICMP, so we just use 0 # for that. full_dest_addr = (dest_addr, 0) if is_ipv6: socket.inet_pton(socket.AF_INET6, dest_addr) try: self._sock6.sendto(full_pkt, full_dest_addr) except Exception: # on systems without IPv6 connectivity, sendto will fail with # 'No route to host' pass else: self._sock.sendto(full_pkt, full_dest_addr)
Send a single ICMPecho (ping) packet to the specified address. The payload must be specified as a packed byte string. Note that its length has to be divisible by 2 for this to work correctly.
Below is the the instruction that describes the task: ### Input: Send a single ICMPecho (ping) packet to the specified address. The payload must be specified as a packed byte string. Note that its length has to be divisible by 2 for this to work correctly. ### Response: def _send_ping(self, dest_addr, payload): """ Send a single ICMPecho (ping) packet to the specified address. The payload must be specified as a packed byte string. Note that its length has to be divisible by 2 for this to work correctly. """ pkt_id = self._last_used_id is_ipv6 = ':' in dest_addr if is_ipv6: self._ipv6_address_present = True icmp_echo_request = _ICMPV6_ECHO_REQUEST else: icmp_echo_request = _ICMP_ECHO_REQUEST # For checksum calculation we require a dummy header, with the checksum # field set to zero. This header consists of: # - ICMP type = 8 (v4) / 128 (v6) (unsigned byte) # - ICMP code = 0 (unsigned byte) # - checksum = 0 (unsigned short) # - packet id (unsigned short) # - sequence = 0 (unsigned short) This doesn't have to be 0. dummy_header = bytearray( struct.pack(_ICMP_HDR_PACK_FORMAT, icmp_echo_request, 0, 0, pkt_id, self.ident)) # Calculate the checksum over the combined dummy header and payload checksum = self._checksum(dummy_header + payload) # We can now create the real header, which contains the correct # checksum. Need to make sure to convert checksum to network byte # order. real_header = bytearray( struct.pack(_ICMP_HDR_PACK_FORMAT, icmp_echo_request, 0, checksum, pkt_id, self.ident)) # Full packet consists of header plus payload full_pkt = real_header + payload # The full address for a sendto operation consists of the IP address # and a port. We don't really need a port for ICMP, so we just use 0 # for that. full_dest_addr = (dest_addr, 0) if is_ipv6: socket.inet_pton(socket.AF_INET6, dest_addr) try: self._sock6.sendto(full_pkt, full_dest_addr) except Exception: # on systems without IPv6 connectivity, sendto will fail with # 'No route to host' pass else: self._sock.sendto(full_pkt, full_dest_addr)
async def get_version(self, timeout: int = 15) -> Optional[str]: """Execute FFmpeg process and parse the version information. Return full FFmpeg version string. Such as 3.4.2-tessus """ command = ["-version"] # open input for capture 1 frame is_open = await self.open(cmd=command, input_source=None, output="") # error after open? if not is_open: _LOGGER.warning("Error starting FFmpeg.") return # read output try: proc_func = functools.partial(self._proc.communicate, timeout=timeout) output, _ = await self._loop.run_in_executor(None, proc_func) result = re.search(r"ffmpeg version (\S*)", output.decode()) if result is not None: return result.group(1) except (subprocess.TimeoutExpired, ValueError): _LOGGER.warning("Timeout reading stdout.") self.kill() return None
Execute FFmpeg process and parse the version information. Return full FFmpeg version string. Such as 3.4.2-tessus
Below is the the instruction that describes the task: ### Input: Execute FFmpeg process and parse the version information. Return full FFmpeg version string. Such as 3.4.2-tessus ### Response: async def get_version(self, timeout: int = 15) -> Optional[str]: """Execute FFmpeg process and parse the version information. Return full FFmpeg version string. Such as 3.4.2-tessus """ command = ["-version"] # open input for capture 1 frame is_open = await self.open(cmd=command, input_source=None, output="") # error after open? if not is_open: _LOGGER.warning("Error starting FFmpeg.") return # read output try: proc_func = functools.partial(self._proc.communicate, timeout=timeout) output, _ = await self._loop.run_in_executor(None, proc_func) result = re.search(r"ffmpeg version (\S*)", output.decode()) if result is not None: return result.group(1) except (subprocess.TimeoutExpired, ValueError): _LOGGER.warning("Timeout reading stdout.") self.kill() return None
def get_path(): """ Shortcut for users whose theme is next to their conf.py. """ # Theme directory is defined as our parent directory return os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
Shortcut for users whose theme is next to their conf.py.
Below is the the instruction that describes the task: ### Input: Shortcut for users whose theme is next to their conf.py. ### Response: def get_path(): """ Shortcut for users whose theme is next to their conf.py. """ # Theme directory is defined as our parent directory return os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
def read_sis_ini(fh, byteorder, dtype, count, offsetsize): """Read OlympusSIS INI string and return as dict.""" inistr = fh.read(count) inistr = bytes2str(stripnull(inistr)) try: return olympusini_metadata(inistr) except Exception as exc: log.warning('olympusini_metadata: %s: %s', exc.__class__.__name__, exc) return {}
Read OlympusSIS INI string and return as dict.
Below is the the instruction that describes the task: ### Input: Read OlympusSIS INI string and return as dict. ### Response: def read_sis_ini(fh, byteorder, dtype, count, offsetsize): """Read OlympusSIS INI string and return as dict.""" inistr = fh.read(count) inistr = bytes2str(stripnull(inistr)) try: return olympusini_metadata(inistr) except Exception as exc: log.warning('olympusini_metadata: %s: %s', exc.__class__.__name__, exc) return {}
def clear_product(self, standard, key): """ 清除商品信息 详情请参考 http://mp.weixin.qq.com/wiki/15/7fa787701295b884410b5163e13313af.html :param standard: 商品编码标准 :param key: 商品编码内容 :return: 返回的 JSON 数据包 """ data = { 'keystandard': standard, 'keystr': key, } return self._post('product/clear', data=data)
清除商品信息 详情请参考 http://mp.weixin.qq.com/wiki/15/7fa787701295b884410b5163e13313af.html :param standard: 商品编码标准 :param key: 商品编码内容 :return: 返回的 JSON 数据包
Below is the the instruction that describes the task: ### Input: 清除商品信息 详情请参考 http://mp.weixin.qq.com/wiki/15/7fa787701295b884410b5163e13313af.html :param standard: 商品编码标准 :param key: 商品编码内容 :return: 返回的 JSON 数据包 ### Response: def clear_product(self, standard, key): """ 清除商品信息 详情请参考 http://mp.weixin.qq.com/wiki/15/7fa787701295b884410b5163e13313af.html :param standard: 商品编码标准 :param key: 商品编码内容 :return: 返回的 JSON 数据包 """ data = { 'keystandard': standard, 'keystr': key, } return self._post('product/clear', data=data)
def add_listener(self, callback, event_type=None): """Add a callback handler for events going to this room. Args: callback (func(room, event)): Callback called when an event arrives. event_type (str): The event_type to filter for. Returns: uuid.UUID: Unique id of the listener, can be used to identify the listener. """ listener_id = uuid4() self.listeners.append( { 'uid': listener_id, 'callback': callback, 'event_type': event_type } ) return listener_id
Add a callback handler for events going to this room. Args: callback (func(room, event)): Callback called when an event arrives. event_type (str): The event_type to filter for. Returns: uuid.UUID: Unique id of the listener, can be used to identify the listener.
Below is the the instruction that describes the task: ### Input: Add a callback handler for events going to this room. Args: callback (func(room, event)): Callback called when an event arrives. event_type (str): The event_type to filter for. Returns: uuid.UUID: Unique id of the listener, can be used to identify the listener. ### Response: def add_listener(self, callback, event_type=None): """Add a callback handler for events going to this room. Args: callback (func(room, event)): Callback called when an event arrives. event_type (str): The event_type to filter for. Returns: uuid.UUID: Unique id of the listener, can be used to identify the listener. """ listener_id = uuid4() self.listeners.append( { 'uid': listener_id, 'callback': callback, 'event_type': event_type } ) return listener_id
def H_acceptor_count(mol): """Hydrogen bond acceptor count """ mol.require("Valence") return sum(1 for _, a in mol.atoms_iter() if a.H_acceptor)
Hydrogen bond acceptor count
Below is the the instruction that describes the task: ### Input: Hydrogen bond acceptor count ### Response: def H_acceptor_count(mol): """Hydrogen bond acceptor count """ mol.require("Valence") return sum(1 for _, a in mol.atoms_iter() if a.H_acceptor)
def listBlocksParents(self): """ API to list block parents of multiple blocks. To be called by blockparents url with post call. :param block_names: list of block names [block_name1, block_name2, ...] (Required). Mwx length 1000. :type block_names: list """ try : body = request.body.read() data = cjson.decode(body) data = validateJSONInputNoCopy("block", data, read=True) #Because CMSWEB has a 300 seconds responding time. We have to limit the array siz to make sure that #the API can be finished in 300 second. # YG Nov-05-2015 max_array_size = 1000 if ( 'block_names' in data.keys() and isinstance(data['block_names'], list) and len(data['block_names'])>max_array_size): dbsExceptionHandler("dbsException-invalid-input", "The Max list length supported in listBlocksParents is %s." %max_array_size, self.logger.exception) return self.dbsBlock.listBlockParents(data["block_name"]) except dbsException as de: dbsExceptionHandler(de.eCode, de.message, self.logger.exception, de.serverError) except cjson.DecodeError as de: sError = "DBSReaderModel/listBlockParents. %s\n. Exception trace: \n %s" \ % (de, traceback.format_exc()) msg = "DBSReaderModel/listBlockParents. %s" % de dbsExceptionHandler('dbsException-invalid-input2', msg, self.logger.exception, sError) except HTTPError as he: raise he except Exception as ex: sError = "DBSReaderModel/listBlockParents. %s\n. Exception trace: \n %s" \ % (ex, traceback.format_exc()) dbsExceptionHandler('dbsException-server-error', dbsExceptionCode['dbsException-server-error'], self.logger.exception, sError)
API to list block parents of multiple blocks. To be called by blockparents url with post call. :param block_names: list of block names [block_name1, block_name2, ...] (Required). Mwx length 1000. :type block_names: list
Below is the the instruction that describes the task: ### Input: API to list block parents of multiple blocks. To be called by blockparents url with post call. :param block_names: list of block names [block_name1, block_name2, ...] (Required). Mwx length 1000. :type block_names: list ### Response: def listBlocksParents(self): """ API to list block parents of multiple blocks. To be called by blockparents url with post call. :param block_names: list of block names [block_name1, block_name2, ...] (Required). Mwx length 1000. :type block_names: list """ try : body = request.body.read() data = cjson.decode(body) data = validateJSONInputNoCopy("block", data, read=True) #Because CMSWEB has a 300 seconds responding time. We have to limit the array siz to make sure that #the API can be finished in 300 second. # YG Nov-05-2015 max_array_size = 1000 if ( 'block_names' in data.keys() and isinstance(data['block_names'], list) and len(data['block_names'])>max_array_size): dbsExceptionHandler("dbsException-invalid-input", "The Max list length supported in listBlocksParents is %s." %max_array_size, self.logger.exception) return self.dbsBlock.listBlockParents(data["block_name"]) except dbsException as de: dbsExceptionHandler(de.eCode, de.message, self.logger.exception, de.serverError) except cjson.DecodeError as de: sError = "DBSReaderModel/listBlockParents. %s\n. Exception trace: \n %s" \ % (de, traceback.format_exc()) msg = "DBSReaderModel/listBlockParents. %s" % de dbsExceptionHandler('dbsException-invalid-input2', msg, self.logger.exception, sError) except HTTPError as he: raise he except Exception as ex: sError = "DBSReaderModel/listBlockParents. %s\n. Exception trace: \n %s" \ % (ex, traceback.format_exc()) dbsExceptionHandler('dbsException-server-error', dbsExceptionCode['dbsException-server-error'], self.logger.exception, sError)
def color(self): """ The |ColorFormat| instance that provides access to the color settings for this line. Essentially a shortcut for ``line.fill.fore_color``. As a side-effect, accessing this property causes the line fill type to be set to ``MSO_FILL.SOLID``. If this sounds risky for your use case, use ``line.fill.type`` to non-destructively discover the existing fill type. """ if self.fill.type != MSO_FILL.SOLID: self.fill.solid() return self.fill.fore_color
The |ColorFormat| instance that provides access to the color settings for this line. Essentially a shortcut for ``line.fill.fore_color``. As a side-effect, accessing this property causes the line fill type to be set to ``MSO_FILL.SOLID``. If this sounds risky for your use case, use ``line.fill.type`` to non-destructively discover the existing fill type.
Below is the the instruction that describes the task: ### Input: The |ColorFormat| instance that provides access to the color settings for this line. Essentially a shortcut for ``line.fill.fore_color``. As a side-effect, accessing this property causes the line fill type to be set to ``MSO_FILL.SOLID``. If this sounds risky for your use case, use ``line.fill.type`` to non-destructively discover the existing fill type. ### Response: def color(self): """ The |ColorFormat| instance that provides access to the color settings for this line. Essentially a shortcut for ``line.fill.fore_color``. As a side-effect, accessing this property causes the line fill type to be set to ``MSO_FILL.SOLID``. If this sounds risky for your use case, use ``line.fill.type`` to non-destructively discover the existing fill type. """ if self.fill.type != MSO_FILL.SOLID: self.fill.solid() return self.fill.fore_color
def score(infile, outfile, classifier, xgb_autotune, apply_weights, xeval_fraction, xeval_num_iter, ss_initial_fdr, ss_iteration_fdr, ss_num_iter, ss_main_score, group_id, parametric, pfdr, pi0_lambda, pi0_method, pi0_smooth_df, pi0_smooth_log_pi0, lfdr_truncate, lfdr_monotone, lfdr_transformation, lfdr_adj, lfdr_eps, level, ipf_max_peakgroup_rank, ipf_max_peakgroup_pep, ipf_max_transition_isotope_overlap, ipf_min_transition_sn, tric_chromprob, threads, test): """ Conduct semi-supervised learning and error-rate estimation for MS1, MS2 and transition-level data. """ if outfile is None: outfile = infile else: outfile = outfile # Prepare XGBoost-specific parameters xgb_hyperparams = {'autotune': xgb_autotune, 'autotune_num_rounds': 10, 'num_boost_round': 100, 'early_stopping_rounds': 10, 'test_size': 0.33} xgb_params = {'eta': 0.3, 'gamma': 0, 'max_depth': 6, 'min_child_weight': 1, 'subsample': 1, 'colsample_bytree': 1, 'colsample_bylevel': 1, 'colsample_bynode': 1, 'lambda': 1, 'alpha': 0, 'scale_pos_weight': 1, 'silent': 1, 'objective': 'binary:logitraw', 'nthread': 1, 'eval_metric': 'auc'} xgb_params_space = {'eta': hp.uniform('eta', 0.0, 0.3), 'gamma': hp.uniform('gamma', 0.0, 0.5), 'max_depth': hp.quniform('max_depth', 2, 8, 1), 'min_child_weight': hp.quniform('min_child_weight', 1, 5, 1), 'subsample': 1, 'colsample_bytree': 1, 'colsample_bylevel': 1, 'colsample_bynode': 1, 'lambda': hp.uniform('lambda', 0.0, 1.0), 'alpha': hp.uniform('alpha', 0.0, 1.0), 'scale_pos_weight': 1.0, 'silent': 1, 'objective': 'binary:logitraw', 'nthread': 1, 'eval_metric': 'auc'} if not apply_weights: PyProphetLearner(infile, outfile, classifier, xgb_hyperparams, xgb_params, xgb_params_space, xeval_fraction, xeval_num_iter, ss_initial_fdr, ss_iteration_fdr, ss_num_iter, ss_main_score, group_id, parametric, pfdr, pi0_lambda, pi0_method, pi0_smooth_df, pi0_smooth_log_pi0, lfdr_truncate, lfdr_monotone, lfdr_transformation, lfdr_adj, lfdr_eps, level, ipf_max_peakgroup_rank, ipf_max_peakgroup_pep, ipf_max_transition_isotope_overlap, ipf_min_transition_sn, tric_chromprob, threads, test).run() else: PyProphetWeightApplier(infile, outfile, classifier, xgb_hyperparams, xgb_params, xgb_params_space, xeval_fraction, xeval_num_iter, ss_initial_fdr, ss_iteration_fdr, ss_num_iter, ss_main_score, group_id, parametric, pfdr, pi0_lambda, pi0_method, pi0_smooth_df, pi0_smooth_log_pi0, lfdr_truncate, lfdr_monotone, lfdr_transformation, lfdr_adj, lfdr_eps, level, ipf_max_peakgroup_rank, ipf_max_peakgroup_pep, ipf_max_transition_isotope_overlap, ipf_min_transition_sn, tric_chromprob, threads, test, apply_weights).run()
Conduct semi-supervised learning and error-rate estimation for MS1, MS2 and transition-level data.
Below is the the instruction that describes the task: ### Input: Conduct semi-supervised learning and error-rate estimation for MS1, MS2 and transition-level data. ### Response: def score(infile, outfile, classifier, xgb_autotune, apply_weights, xeval_fraction, xeval_num_iter, ss_initial_fdr, ss_iteration_fdr, ss_num_iter, ss_main_score, group_id, parametric, pfdr, pi0_lambda, pi0_method, pi0_smooth_df, pi0_smooth_log_pi0, lfdr_truncate, lfdr_monotone, lfdr_transformation, lfdr_adj, lfdr_eps, level, ipf_max_peakgroup_rank, ipf_max_peakgroup_pep, ipf_max_transition_isotope_overlap, ipf_min_transition_sn, tric_chromprob, threads, test): """ Conduct semi-supervised learning and error-rate estimation for MS1, MS2 and transition-level data. """ if outfile is None: outfile = infile else: outfile = outfile # Prepare XGBoost-specific parameters xgb_hyperparams = {'autotune': xgb_autotune, 'autotune_num_rounds': 10, 'num_boost_round': 100, 'early_stopping_rounds': 10, 'test_size': 0.33} xgb_params = {'eta': 0.3, 'gamma': 0, 'max_depth': 6, 'min_child_weight': 1, 'subsample': 1, 'colsample_bytree': 1, 'colsample_bylevel': 1, 'colsample_bynode': 1, 'lambda': 1, 'alpha': 0, 'scale_pos_weight': 1, 'silent': 1, 'objective': 'binary:logitraw', 'nthread': 1, 'eval_metric': 'auc'} xgb_params_space = {'eta': hp.uniform('eta', 0.0, 0.3), 'gamma': hp.uniform('gamma', 0.0, 0.5), 'max_depth': hp.quniform('max_depth', 2, 8, 1), 'min_child_weight': hp.quniform('min_child_weight', 1, 5, 1), 'subsample': 1, 'colsample_bytree': 1, 'colsample_bylevel': 1, 'colsample_bynode': 1, 'lambda': hp.uniform('lambda', 0.0, 1.0), 'alpha': hp.uniform('alpha', 0.0, 1.0), 'scale_pos_weight': 1.0, 'silent': 1, 'objective': 'binary:logitraw', 'nthread': 1, 'eval_metric': 'auc'} if not apply_weights: PyProphetLearner(infile, outfile, classifier, xgb_hyperparams, xgb_params, xgb_params_space, xeval_fraction, xeval_num_iter, ss_initial_fdr, ss_iteration_fdr, ss_num_iter, ss_main_score, group_id, parametric, pfdr, pi0_lambda, pi0_method, pi0_smooth_df, pi0_smooth_log_pi0, lfdr_truncate, lfdr_monotone, lfdr_transformation, lfdr_adj, lfdr_eps, level, ipf_max_peakgroup_rank, ipf_max_peakgroup_pep, ipf_max_transition_isotope_overlap, ipf_min_transition_sn, tric_chromprob, threads, test).run() else: PyProphetWeightApplier(infile, outfile, classifier, xgb_hyperparams, xgb_params, xgb_params_space, xeval_fraction, xeval_num_iter, ss_initial_fdr, ss_iteration_fdr, ss_num_iter, ss_main_score, group_id, parametric, pfdr, pi0_lambda, pi0_method, pi0_smooth_df, pi0_smooth_log_pi0, lfdr_truncate, lfdr_monotone, lfdr_transformation, lfdr_adj, lfdr_eps, level, ipf_max_peakgroup_rank, ipf_max_peakgroup_pep, ipf_max_transition_isotope_overlap, ipf_min_transition_sn, tric_chromprob, threads, test, apply_weights).run()
def _create_w_objective(m, X, R): """ Creates an objective function and its derivative for W, given M and X (data) Args: m (array): genes x clusters X (array): genes x cells R (array): 1 x genes """ genes, clusters = m.shape cells = X.shape[1] R1 = R.reshape((genes, 1)).dot(np.ones((1, cells))) def objective(w): # convert w into a matrix first... because it's a vector for # optimization purposes w = w.reshape((m.shape[1], X.shape[1])) d = m.dot(w)+eps return np.sum((X + R1)*np.log(d + R1) - X*np.log(d))/genes def deriv(w): # derivative of objective wrt all elements of w # for w_{ij}, the derivative is... m_j1+...+m_jn sum over genes minus # x_ij w2 = w.reshape((m.shape[1], X.shape[1])) d = m.dot(w2)+eps temp = X/d temp2 = (X+R1)/(d+R1) m1 = m.T.dot(temp2) m2 = m.T.dot(temp) deriv = m1 - m2 return deriv.flatten()/genes return objective, deriv
Creates an objective function and its derivative for W, given M and X (data) Args: m (array): genes x clusters X (array): genes x cells R (array): 1 x genes
Below is the the instruction that describes the task: ### Input: Creates an objective function and its derivative for W, given M and X (data) Args: m (array): genes x clusters X (array): genes x cells R (array): 1 x genes ### Response: def _create_w_objective(m, X, R): """ Creates an objective function and its derivative for W, given M and X (data) Args: m (array): genes x clusters X (array): genes x cells R (array): 1 x genes """ genes, clusters = m.shape cells = X.shape[1] R1 = R.reshape((genes, 1)).dot(np.ones((1, cells))) def objective(w): # convert w into a matrix first... because it's a vector for # optimization purposes w = w.reshape((m.shape[1], X.shape[1])) d = m.dot(w)+eps return np.sum((X + R1)*np.log(d + R1) - X*np.log(d))/genes def deriv(w): # derivative of objective wrt all elements of w # for w_{ij}, the derivative is... m_j1+...+m_jn sum over genes minus # x_ij w2 = w.reshape((m.shape[1], X.shape[1])) d = m.dot(w2)+eps temp = X/d temp2 = (X+R1)/(d+R1) m1 = m.T.dot(temp2) m2 = m.T.dot(temp) deriv = m1 - m2 return deriv.flatten()/genes return objective, deriv
def get_cache(self, decorated_function, *args, **kwargs): """ :meth:`WCacheStorage.get_cache` method implementation """ self.__check(decorated_function, *args, **kwargs) if decorated_function in self._storage: for i in self._storage[decorated_function]: if i['instance']() == args[0]: result = i['result'].cache_entry(*args, **kwargs) if self.__statistic is True: if result.has_value is True: self.__cache_hit += 1 else: self.__cache_missed += 1 return result if self.__statistic is True: self.__cache_missed += 1 return WCacheStorage.CacheEntry()
:meth:`WCacheStorage.get_cache` method implementation
Below is the the instruction that describes the task: ### Input: :meth:`WCacheStorage.get_cache` method implementation ### Response: def get_cache(self, decorated_function, *args, **kwargs): """ :meth:`WCacheStorage.get_cache` method implementation """ self.__check(decorated_function, *args, **kwargs) if decorated_function in self._storage: for i in self._storage[decorated_function]: if i['instance']() == args[0]: result = i['result'].cache_entry(*args, **kwargs) if self.__statistic is True: if result.has_value is True: self.__cache_hit += 1 else: self.__cache_missed += 1 return result if self.__statistic is True: self.__cache_missed += 1 return WCacheStorage.CacheEntry()
def sync(self, graph_commons): """Synchronize local and remote representations.""" if self['id'] is None: return remote_graph = graph_commons.graphs(self['id']) # TODO: less forceful, more elegant self.edges = remote_graph.edges self.nodes = remote_graph.nodes self.node_types = remote_graph.node_types self.edge_types = remote_graph.edge_types self._edges = dict((edge['id'], edge) for edge in self.edges) self._nodes = dict((node['id'], node) for node in self.nodes) self._node_types = dict((t['id'], t) for t in self.node_types) self._edge_types = dict((t['id'], t) for t in self.edge_types)
Synchronize local and remote representations.
Below is the the instruction that describes the task: ### Input: Synchronize local and remote representations. ### Response: def sync(self, graph_commons): """Synchronize local and remote representations.""" if self['id'] is None: return remote_graph = graph_commons.graphs(self['id']) # TODO: less forceful, more elegant self.edges = remote_graph.edges self.nodes = remote_graph.nodes self.node_types = remote_graph.node_types self.edge_types = remote_graph.edge_types self._edges = dict((edge['id'], edge) for edge in self.edges) self._nodes = dict((node['id'], node) for node in self.nodes) self._node_types = dict((t['id'], t) for t in self.node_types) self._edge_types = dict((t['id'], t) for t in self.edge_types)
def get_stanza(self, peer_jid): """ Return the last presence recieved for the given bare or full `peer_jid`. If the last presence was unavailable, the return value is :data:`None`, as if no presence was ever received. If no presence was ever received for the given bare JID, :data:`None` is returned. """ try: return self._presences[peer_jid.bare()][peer_jid.resource] except KeyError: pass try: return self._presences[peer_jid.bare()][None] except KeyError: pass
Return the last presence recieved for the given bare or full `peer_jid`. If the last presence was unavailable, the return value is :data:`None`, as if no presence was ever received. If no presence was ever received for the given bare JID, :data:`None` is returned.
Below is the the instruction that describes the task: ### Input: Return the last presence recieved for the given bare or full `peer_jid`. If the last presence was unavailable, the return value is :data:`None`, as if no presence was ever received. If no presence was ever received for the given bare JID, :data:`None` is returned. ### Response: def get_stanza(self, peer_jid): """ Return the last presence recieved for the given bare or full `peer_jid`. If the last presence was unavailable, the return value is :data:`None`, as if no presence was ever received. If no presence was ever received for the given bare JID, :data:`None` is returned. """ try: return self._presences[peer_jid.bare()][peer_jid.resource] except KeyError: pass try: return self._presences[peer_jid.bare()][None] except KeyError: pass
def wrap_iter_with_message_events( request_or_response_iter, span, message_event_type ): """Wraps a request or response iterator to add message events to the span for each proto message sent or received """ for message_id, message in enumerate(request_or_response_iter, start=1): add_message_event( proto_message=message, span=span, message_event_type=message_event_type, message_id=message_id ) yield message
Wraps a request or response iterator to add message events to the span for each proto message sent or received
Below is the the instruction that describes the task: ### Input: Wraps a request or response iterator to add message events to the span for each proto message sent or received ### Response: def wrap_iter_with_message_events( request_or_response_iter, span, message_event_type ): """Wraps a request or response iterator to add message events to the span for each proto message sent or received """ for message_id, message in enumerate(request_or_response_iter, start=1): add_message_event( proto_message=message, span=span, message_event_type=message_event_type, message_id=message_id ) yield message
def idmap_get_max_id(connection, id_class): """ Given an ilwd:char ID class, return the highest ID from the table for whose IDs that is the class. Example: >>> event_id = ilwd.ilwdchar("sngl_burst:event_id:0") >>> print event_id sngl_inspiral:event_id:0 >>> max_id = get_max_id(connection, type(event_id)) >>> print max_id sngl_inspiral:event_id:1054 """ cursor = connection.cursor() cursor.execute("SELECT MAX(CAST(SUBSTR(%s, %d, 10) AS INTEGER)) FROM %s" % (id_class.column_name, id_class.index_offset + 1, id_class.table_name)) maxid = cursor.fetchone()[0] cursor.close() if maxid is None: return None return id_class(maxid)
Given an ilwd:char ID class, return the highest ID from the table for whose IDs that is the class. Example: >>> event_id = ilwd.ilwdchar("sngl_burst:event_id:0") >>> print event_id sngl_inspiral:event_id:0 >>> max_id = get_max_id(connection, type(event_id)) >>> print max_id sngl_inspiral:event_id:1054
Below is the the instruction that describes the task: ### Input: Given an ilwd:char ID class, return the highest ID from the table for whose IDs that is the class. Example: >>> event_id = ilwd.ilwdchar("sngl_burst:event_id:0") >>> print event_id sngl_inspiral:event_id:0 >>> max_id = get_max_id(connection, type(event_id)) >>> print max_id sngl_inspiral:event_id:1054 ### Response: def idmap_get_max_id(connection, id_class): """ Given an ilwd:char ID class, return the highest ID from the table for whose IDs that is the class. Example: >>> event_id = ilwd.ilwdchar("sngl_burst:event_id:0") >>> print event_id sngl_inspiral:event_id:0 >>> max_id = get_max_id(connection, type(event_id)) >>> print max_id sngl_inspiral:event_id:1054 """ cursor = connection.cursor() cursor.execute("SELECT MAX(CAST(SUBSTR(%s, %d, 10) AS INTEGER)) FROM %s" % (id_class.column_name, id_class.index_offset + 1, id_class.table_name)) maxid = cursor.fetchone()[0] cursor.close() if maxid is None: return None return id_class(maxid)
def encode(self, name, as_map_key=False): """Returns the name the first time and the key after that""" if name in self.key_to_value: return self.key_to_value[name] return self.encache(name) if is_cacheable(name, as_map_key) else name
Returns the name the first time and the key after that
Below is the the instruction that describes the task: ### Input: Returns the name the first time and the key after that ### Response: def encode(self, name, as_map_key=False): """Returns the name the first time and the key after that""" if name in self.key_to_value: return self.key_to_value[name] return self.encache(name) if is_cacheable(name, as_map_key) else name
def import_tree_corpus(labels_path, parents_path, texts_path): """ Import dataset from the TreeLSTM data generation scrips. Arguments: ---------- labels_path : str, where are labels are stored (should be in data/sst/labels.txt). parents_path : str, where the parent relationships are stored (should be in data/sst/parents.txt). texts_path : str, where are strings for each tree are stored (should be in data/sst/sents.txt). Returns: -------- list<LabeledTree> : loaded example trees. """ with codecs.open(labels_path, "r", "UTF-8") as f: label_lines = f.readlines() with codecs.open(parents_path, "r", "UTF-8") as f: parent_lines = f.readlines() with codecs.open(texts_path, "r", "UTF-8") as f: word_lines = f.readlines() assert len(label_lines) == len(parent_lines) assert len(label_lines) == len(word_lines) trees = [] for labels, parents, words in zip(label_lines, parent_lines, word_lines): labels = [int(l) + 2 for l in labels.strip().split(" ")] parents = [int(l) for l in parents.strip().split(" ")] words = words.strip().split(" ") assert len(labels) == len(parents) trees.append(read_tree(parents, labels, words)) return trees
Import dataset from the TreeLSTM data generation scrips. Arguments: ---------- labels_path : str, where are labels are stored (should be in data/sst/labels.txt). parents_path : str, where the parent relationships are stored (should be in data/sst/parents.txt). texts_path : str, where are strings for each tree are stored (should be in data/sst/sents.txt). Returns: -------- list<LabeledTree> : loaded example trees.
Below is the the instruction that describes the task: ### Input: Import dataset from the TreeLSTM data generation scrips. Arguments: ---------- labels_path : str, where are labels are stored (should be in data/sst/labels.txt). parents_path : str, where the parent relationships are stored (should be in data/sst/parents.txt). texts_path : str, where are strings for each tree are stored (should be in data/sst/sents.txt). Returns: -------- list<LabeledTree> : loaded example trees. ### Response: def import_tree_corpus(labels_path, parents_path, texts_path): """ Import dataset from the TreeLSTM data generation scrips. Arguments: ---------- labels_path : str, where are labels are stored (should be in data/sst/labels.txt). parents_path : str, where the parent relationships are stored (should be in data/sst/parents.txt). texts_path : str, where are strings for each tree are stored (should be in data/sst/sents.txt). Returns: -------- list<LabeledTree> : loaded example trees. """ with codecs.open(labels_path, "r", "UTF-8") as f: label_lines = f.readlines() with codecs.open(parents_path, "r", "UTF-8") as f: parent_lines = f.readlines() with codecs.open(texts_path, "r", "UTF-8") as f: word_lines = f.readlines() assert len(label_lines) == len(parent_lines) assert len(label_lines) == len(word_lines) trees = [] for labels, parents, words in zip(label_lines, parent_lines, word_lines): labels = [int(l) + 2 for l in labels.strip().split(" ")] parents = [int(l) for l in parents.strip().split(" ")] words = words.strip().split(" ") assert len(labels) == len(parents) trees.append(read_tree(parents, labels, words)) return trees
def offsets(self): """A generator producing a (path, offset) tuple for all tailed files.""" for path, tailedfile in self._tailedfiles.iteritems(): yield path, tailedfile._offset
A generator producing a (path, offset) tuple for all tailed files.
Below is the the instruction that describes the task: ### Input: A generator producing a (path, offset) tuple for all tailed files. ### Response: def offsets(self): """A generator producing a (path, offset) tuple for all tailed files.""" for path, tailedfile in self._tailedfiles.iteritems(): yield path, tailedfile._offset
def transform(data, target_wd, target_ht, is_train, box): """Crop and normnalize an image nd array.""" if box is not None: x, y, w, h = box data = data[y:min(y+h, data.shape[0]), x:min(x+w, data.shape[1])] # Resize to target_wd * target_ht. data = mx.image.imresize(data, target_wd, target_ht) # Normalize in the same way as the pre-trained model. data = data.astype(np.float32) / 255.0 data = (data - mx.nd.array([0.485, 0.456, 0.406])) / mx.nd.array([0.229, 0.224, 0.225]) if is_train: if random.random() < 0.5: data = nd.flip(data, axis=1) data, _ = mx.image.random_crop(data, (224, 224)) else: data, _ = mx.image.center_crop(data, (224, 224)) # Transpose from (target_wd, target_ht, 3) # to (3, target_wd, target_ht). data = nd.transpose(data, (2, 0, 1)) # If image is greyscale, repeat 3 times to get RGB image. if data.shape[0] == 1: data = nd.tile(data, (3, 1, 1)) return data.reshape((1,) + data.shape)
Crop and normnalize an image nd array.
Below is the the instruction that describes the task: ### Input: Crop and normnalize an image nd array. ### Response: def transform(data, target_wd, target_ht, is_train, box): """Crop and normnalize an image nd array.""" if box is not None: x, y, w, h = box data = data[y:min(y+h, data.shape[0]), x:min(x+w, data.shape[1])] # Resize to target_wd * target_ht. data = mx.image.imresize(data, target_wd, target_ht) # Normalize in the same way as the pre-trained model. data = data.astype(np.float32) / 255.0 data = (data - mx.nd.array([0.485, 0.456, 0.406])) / mx.nd.array([0.229, 0.224, 0.225]) if is_train: if random.random() < 0.5: data = nd.flip(data, axis=1) data, _ = mx.image.random_crop(data, (224, 224)) else: data, _ = mx.image.center_crop(data, (224, 224)) # Transpose from (target_wd, target_ht, 3) # to (3, target_wd, target_ht). data = nd.transpose(data, (2, 0, 1)) # If image is greyscale, repeat 3 times to get RGB image. if data.shape[0] == 1: data = nd.tile(data, (3, 1, 1)) return data.reshape((1,) + data.shape)
def create_network(self): """Get an instance of vlan services facade.""" return Network( self.networkapi_url, self.user, self.password, self.user_ldap)
Get an instance of vlan services facade.
Below is the the instruction that describes the task: ### Input: Get an instance of vlan services facade. ### Response: def create_network(self): """Get an instance of vlan services facade.""" return Network( self.networkapi_url, self.user, self.password, self.user_ldap)
def createDenseCNNModel(self): """ Create a standard network composed of two CNN / MaxPool layers followed by a linear layer with using ReLU activation between the layers """ # Create denseCNN2 model model = nn.Sequential( nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels[0], kernel_size=self.kernel_size[0], stride=self.stride[0], padding=self.padding[0]), nn.MaxPool2d(kernel_size=2), nn.ReLU(), nn.Conv2d(in_channels=self.out_channels[0], out_channels=self.out_channels[1], kernel_size=self.kernel_size[1], stride=self.stride[1], padding=self.padding[1]), nn.MaxPool2d(kernel_size=2), nn.ReLU(), Flatten(), nn.Linear(self.cnn_output_len[1], self.n), nn.ReLU(), nn.Linear(self.n, self.output_size), nn.LogSoftmax(dim=1) ) model.to(self.device) if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) return model
Create a standard network composed of two CNN / MaxPool layers followed by a linear layer with using ReLU activation between the layers
Below is the the instruction that describes the task: ### Input: Create a standard network composed of two CNN / MaxPool layers followed by a linear layer with using ReLU activation between the layers ### Response: def createDenseCNNModel(self): """ Create a standard network composed of two CNN / MaxPool layers followed by a linear layer with using ReLU activation between the layers """ # Create denseCNN2 model model = nn.Sequential( nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels[0], kernel_size=self.kernel_size[0], stride=self.stride[0], padding=self.padding[0]), nn.MaxPool2d(kernel_size=2), nn.ReLU(), nn.Conv2d(in_channels=self.out_channels[0], out_channels=self.out_channels[1], kernel_size=self.kernel_size[1], stride=self.stride[1], padding=self.padding[1]), nn.MaxPool2d(kernel_size=2), nn.ReLU(), Flatten(), nn.Linear(self.cnn_output_len[1], self.n), nn.ReLU(), nn.Linear(self.n, self.output_size), nn.LogSoftmax(dim=1) ) model.to(self.device) if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) return model
def _iparam_instancename(instancename): """ Convert an instance name specified in an operation method into a CIM object that can be passed to imethodcall(). """ if isinstance(instancename, CIMInstanceName): instancename = instancename.copy() instancename.host = None instancename.namespace = None elif instancename is None: pass else: raise TypeError( _format("The 'InstanceName' argument of the WBEMConnection " "operation has invalid type {0} (must be None, a " "string, or a CIMInstanceName)", type(instancename))) return instancename
Convert an instance name specified in an operation method into a CIM object that can be passed to imethodcall().
Below is the the instruction that describes the task: ### Input: Convert an instance name specified in an operation method into a CIM object that can be passed to imethodcall(). ### Response: def _iparam_instancename(instancename): """ Convert an instance name specified in an operation method into a CIM object that can be passed to imethodcall(). """ if isinstance(instancename, CIMInstanceName): instancename = instancename.copy() instancename.host = None instancename.namespace = None elif instancename is None: pass else: raise TypeError( _format("The 'InstanceName' argument of the WBEMConnection " "operation has invalid type {0} (must be None, a " "string, or a CIMInstanceName)", type(instancename))) return instancename
def energy_based_strength_of_connection(A, theta=0.0, k=2): """Energy Strength Measure. Compute a strength of connection matrix using an energy-based measure. Parameters ---------- A : sparse-matrix matrix from which to generate strength of connection information theta : float Threshold parameter in [0,1] k : int Number of relaxation steps used to generate strength information Returns ------- S : csr_matrix Matrix graph defining strong connections. The sparsity pattern of S matches that of A. For BSR matrices, S is a reduced strength of connection matrix that describes connections between supernodes. Notes ----- This method relaxes with weighted-Jacobi in order to approximate the matrix inverse. A normalized change of energy is then used to define point-wise strength of connection values. Specifically, let v be the approximation to the i-th column of the inverse, then (S_ij)^2 = <v_j, v_j>_A / <v, v>_A, where v_j = v, such that entry j in v has been zeroed out. As is common, larger values imply a stronger connection. Current implementation is a very slow pure-python implementation for experimental purposes, only. See [2006BrBrMaMaMc]_ for more details. References ---------- .. [2006BrBrMaMaMc] Brannick, Brezina, MacLachlan, Manteuffel, McCormick. "An Energy-Based AMG Coarsening Strategy", Numerical Linear Algebra with Applications, vol. 13, pp. 133-148, 2006. Examples -------- >>> import numpy as np >>> from pyamg.gallery import stencil_grid >>> from pyamg.strength import energy_based_strength_of_connection >>> n=3 >>> stencil = np.array([[-1.0,-1.0,-1.0], ... [-1.0, 8.0,-1.0], ... [-1.0,-1.0,-1.0]]) >>> A = stencil_grid(stencil, (n,n), format='csr') >>> S = energy_based_strength_of_connection(A, 0.0) """ if (theta < 0): raise ValueError('expected a positive theta') if not sparse.isspmatrix(A): raise ValueError('expected sparse matrix') if (k < 0): raise ValueError('expected positive number of steps') if not isinstance(k, int): raise ValueError('expected integer') if sparse.isspmatrix_bsr(A): bsr_flag = True numPDEs = A.blocksize[0] if A.blocksize[0] != A.blocksize[1]: raise ValueError('expected square blocks in BSR matrix A') else: bsr_flag = False # Convert A to csc and Atilde to csr if sparse.isspmatrix_csr(A): Atilde = A.copy() A = A.tocsc() else: A = A.tocsc() Atilde = A.copy() Atilde = Atilde.tocsr() # Calculate the weighted-Jacobi parameter from pyamg.util.linalg import approximate_spectral_radius D = A.diagonal() Dinv = 1.0 / D Dinv[D == 0] = 0.0 Dinv = sparse.csc_matrix((Dinv, (np.arange(A.shape[0]), np.arange(A.shape[1]))), shape=A.shape) DinvA = Dinv * A omega = 1.0 / approximate_spectral_radius(DinvA) del DinvA # Approximate A-inverse with k steps of w-Jacobi and a zero initial guess S = sparse.csc_matrix(A.shape, dtype=A.dtype) # empty matrix Id = sparse.eye(A.shape[0], A.shape[1], format='csc') for i in range(k + 1): S = S + omega * (Dinv * (Id - A * S)) # Calculate the strength entries in S column-wise, but only strength # values at the sparsity pattern of A for i in range(Atilde.shape[0]): v = np.mat(S[:, i].todense()) Av = np.mat(A * v) denom = np.sqrt(np.conjugate(v).T * Av) # replace entries in row i with strength values for j in range(Atilde.indptr[i], Atilde.indptr[i + 1]): col = Atilde.indices[j] vj = v[col].copy() v[col] = 0.0 # = (||v_j||_A - ||v||_A) / ||v||_A val = np.sqrt(np.conjugate(v).T * A * v) / denom - 1.0 # Negative values generally imply a weak connection if val > -0.01: Atilde.data[j] = abs(val) else: Atilde.data[j] = 0.0 v[col] = vj # Apply drop tolerance Atilde = classical_strength_of_connection(Atilde, theta=theta) Atilde.eliminate_zeros() # Put ones on the diagonal Atilde = Atilde + Id.tocsr() Atilde.sort_indices() # Amalgamate Atilde for the BSR case, using ones for all strong connections if bsr_flag: Atilde = Atilde.tobsr(blocksize=(numPDEs, numPDEs)) nblocks = Atilde.indices.shape[0] uone = np.ones((nblocks,)) Atilde = sparse.csr_matrix((uone, Atilde.indices, Atilde.indptr), shape=( int(Atilde.shape[0] / numPDEs), int(Atilde.shape[1] / numPDEs))) # Scale C by the largest magnitude entry in each row Atilde = scale_rows_by_largest_entry(Atilde) return Atilde
Energy Strength Measure. Compute a strength of connection matrix using an energy-based measure. Parameters ---------- A : sparse-matrix matrix from which to generate strength of connection information theta : float Threshold parameter in [0,1] k : int Number of relaxation steps used to generate strength information Returns ------- S : csr_matrix Matrix graph defining strong connections. The sparsity pattern of S matches that of A. For BSR matrices, S is a reduced strength of connection matrix that describes connections between supernodes. Notes ----- This method relaxes with weighted-Jacobi in order to approximate the matrix inverse. A normalized change of energy is then used to define point-wise strength of connection values. Specifically, let v be the approximation to the i-th column of the inverse, then (S_ij)^2 = <v_j, v_j>_A / <v, v>_A, where v_j = v, such that entry j in v has been zeroed out. As is common, larger values imply a stronger connection. Current implementation is a very slow pure-python implementation for experimental purposes, only. See [2006BrBrMaMaMc]_ for more details. References ---------- .. [2006BrBrMaMaMc] Brannick, Brezina, MacLachlan, Manteuffel, McCormick. "An Energy-Based AMG Coarsening Strategy", Numerical Linear Algebra with Applications, vol. 13, pp. 133-148, 2006. Examples -------- >>> import numpy as np >>> from pyamg.gallery import stencil_grid >>> from pyamg.strength import energy_based_strength_of_connection >>> n=3 >>> stencil = np.array([[-1.0,-1.0,-1.0], ... [-1.0, 8.0,-1.0], ... [-1.0,-1.0,-1.0]]) >>> A = stencil_grid(stencil, (n,n), format='csr') >>> S = energy_based_strength_of_connection(A, 0.0)
Below is the the instruction that describes the task: ### Input: Energy Strength Measure. Compute a strength of connection matrix using an energy-based measure. Parameters ---------- A : sparse-matrix matrix from which to generate strength of connection information theta : float Threshold parameter in [0,1] k : int Number of relaxation steps used to generate strength information Returns ------- S : csr_matrix Matrix graph defining strong connections. The sparsity pattern of S matches that of A. For BSR matrices, S is a reduced strength of connection matrix that describes connections between supernodes. Notes ----- This method relaxes with weighted-Jacobi in order to approximate the matrix inverse. A normalized change of energy is then used to define point-wise strength of connection values. Specifically, let v be the approximation to the i-th column of the inverse, then (S_ij)^2 = <v_j, v_j>_A / <v, v>_A, where v_j = v, such that entry j in v has been zeroed out. As is common, larger values imply a stronger connection. Current implementation is a very slow pure-python implementation for experimental purposes, only. See [2006BrBrMaMaMc]_ for more details. References ---------- .. [2006BrBrMaMaMc] Brannick, Brezina, MacLachlan, Manteuffel, McCormick. "An Energy-Based AMG Coarsening Strategy", Numerical Linear Algebra with Applications, vol. 13, pp. 133-148, 2006. Examples -------- >>> import numpy as np >>> from pyamg.gallery import stencil_grid >>> from pyamg.strength import energy_based_strength_of_connection >>> n=3 >>> stencil = np.array([[-1.0,-1.0,-1.0], ... [-1.0, 8.0,-1.0], ... [-1.0,-1.0,-1.0]]) >>> A = stencil_grid(stencil, (n,n), format='csr') >>> S = energy_based_strength_of_connection(A, 0.0) ### Response: def energy_based_strength_of_connection(A, theta=0.0, k=2): """Energy Strength Measure. Compute a strength of connection matrix using an energy-based measure. Parameters ---------- A : sparse-matrix matrix from which to generate strength of connection information theta : float Threshold parameter in [0,1] k : int Number of relaxation steps used to generate strength information Returns ------- S : csr_matrix Matrix graph defining strong connections. The sparsity pattern of S matches that of A. For BSR matrices, S is a reduced strength of connection matrix that describes connections between supernodes. Notes ----- This method relaxes with weighted-Jacobi in order to approximate the matrix inverse. A normalized change of energy is then used to define point-wise strength of connection values. Specifically, let v be the approximation to the i-th column of the inverse, then (S_ij)^2 = <v_j, v_j>_A / <v, v>_A, where v_j = v, such that entry j in v has been zeroed out. As is common, larger values imply a stronger connection. Current implementation is a very slow pure-python implementation for experimental purposes, only. See [2006BrBrMaMaMc]_ for more details. References ---------- .. [2006BrBrMaMaMc] Brannick, Brezina, MacLachlan, Manteuffel, McCormick. "An Energy-Based AMG Coarsening Strategy", Numerical Linear Algebra with Applications, vol. 13, pp. 133-148, 2006. Examples -------- >>> import numpy as np >>> from pyamg.gallery import stencil_grid >>> from pyamg.strength import energy_based_strength_of_connection >>> n=3 >>> stencil = np.array([[-1.0,-1.0,-1.0], ... [-1.0, 8.0,-1.0], ... [-1.0,-1.0,-1.0]]) >>> A = stencil_grid(stencil, (n,n), format='csr') >>> S = energy_based_strength_of_connection(A, 0.0) """ if (theta < 0): raise ValueError('expected a positive theta') if not sparse.isspmatrix(A): raise ValueError('expected sparse matrix') if (k < 0): raise ValueError('expected positive number of steps') if not isinstance(k, int): raise ValueError('expected integer') if sparse.isspmatrix_bsr(A): bsr_flag = True numPDEs = A.blocksize[0] if A.blocksize[0] != A.blocksize[1]: raise ValueError('expected square blocks in BSR matrix A') else: bsr_flag = False # Convert A to csc and Atilde to csr if sparse.isspmatrix_csr(A): Atilde = A.copy() A = A.tocsc() else: A = A.tocsc() Atilde = A.copy() Atilde = Atilde.tocsr() # Calculate the weighted-Jacobi parameter from pyamg.util.linalg import approximate_spectral_radius D = A.diagonal() Dinv = 1.0 / D Dinv[D == 0] = 0.0 Dinv = sparse.csc_matrix((Dinv, (np.arange(A.shape[0]), np.arange(A.shape[1]))), shape=A.shape) DinvA = Dinv * A omega = 1.0 / approximate_spectral_radius(DinvA) del DinvA # Approximate A-inverse with k steps of w-Jacobi and a zero initial guess S = sparse.csc_matrix(A.shape, dtype=A.dtype) # empty matrix Id = sparse.eye(A.shape[0], A.shape[1], format='csc') for i in range(k + 1): S = S + omega * (Dinv * (Id - A * S)) # Calculate the strength entries in S column-wise, but only strength # values at the sparsity pattern of A for i in range(Atilde.shape[0]): v = np.mat(S[:, i].todense()) Av = np.mat(A * v) denom = np.sqrt(np.conjugate(v).T * Av) # replace entries in row i with strength values for j in range(Atilde.indptr[i], Atilde.indptr[i + 1]): col = Atilde.indices[j] vj = v[col].copy() v[col] = 0.0 # = (||v_j||_A - ||v||_A) / ||v||_A val = np.sqrt(np.conjugate(v).T * A * v) / denom - 1.0 # Negative values generally imply a weak connection if val > -0.01: Atilde.data[j] = abs(val) else: Atilde.data[j] = 0.0 v[col] = vj # Apply drop tolerance Atilde = classical_strength_of_connection(Atilde, theta=theta) Atilde.eliminate_zeros() # Put ones on the diagonal Atilde = Atilde + Id.tocsr() Atilde.sort_indices() # Amalgamate Atilde for the BSR case, using ones for all strong connections if bsr_flag: Atilde = Atilde.tobsr(blocksize=(numPDEs, numPDEs)) nblocks = Atilde.indices.shape[0] uone = np.ones((nblocks,)) Atilde = sparse.csr_matrix((uone, Atilde.indices, Atilde.indptr), shape=( int(Atilde.shape[0] / numPDEs), int(Atilde.shape[1] / numPDEs))) # Scale C by the largest magnitude entry in each row Atilde = scale_rows_by_largest_entry(Atilde) return Atilde