code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def upload(self, payload=None, content_type=None): """ Upload the archive at `path` with content type `content_type` returns (int): upload status code """ # platform - prefer the value passed in to func over config payload = payload or self.config.payload content_type = content_type or self.config.content_type if payload is None: raise ValueError('Specify a file to upload.') if not os.path.exists(payload): raise IOError('Cannot upload %s: File does not exist.' % payload) upload_results = client.upload( self.config, self.connection, payload, content_type) # return api response return upload_results
Upload the archive at `path` with content type `content_type` returns (int): upload status code
Below is the the instruction that describes the task: ### Input: Upload the archive at `path` with content type `content_type` returns (int): upload status code ### Response: def upload(self, payload=None, content_type=None): """ Upload the archive at `path` with content type `content_type` returns (int): upload status code """ # platform - prefer the value passed in to func over config payload = payload or self.config.payload content_type = content_type or self.config.content_type if payload is None: raise ValueError('Specify a file to upload.') if not os.path.exists(payload): raise IOError('Cannot upload %s: File does not exist.' % payload) upload_results = client.upload( self.config, self.connection, payload, content_type) # return api response return upload_results
def normalizeInternalObjectType(value, cls, name): """ Normalizes an internal object type. * **value** must be a instance of **cls**. * Returned value is the same type as the input value. """ if not isinstance(value, cls): raise TypeError("%s must be a %s instance, not %s." % (name, name, type(value).__name__)) return value
Normalizes an internal object type. * **value** must be a instance of **cls**. * Returned value is the same type as the input value.
Below is the the instruction that describes the task: ### Input: Normalizes an internal object type. * **value** must be a instance of **cls**. * Returned value is the same type as the input value. ### Response: def normalizeInternalObjectType(value, cls, name): """ Normalizes an internal object type. * **value** must be a instance of **cls**. * Returned value is the same type as the input value. """ if not isinstance(value, cls): raise TypeError("%s must be a %s instance, not %s." % (name, name, type(value).__name__)) return value
def mergeNewMSBWT(mergedDir, inputBwtDirs, numProcs, logger): ''' This function will take a list of input BWTs (compressed or not) and merge them into a single BWT @param mergedFN - the destination for the final merged MSBWT @param inputBWTFN1 - the fn of the first BWT to merge @param inputBWTFN2 - the fn of the second BWT to merge @param numProcs - number of processes we're allowed to use @param logger - output goes here ''' st = time.time() iterst = time.time() vcLen = 6 #TODO: take advantage of these to skip an iteration or two perhaps numInputs = len(inputBwtDirs) msbwts = [None]*numInputs mergedLength = 0 for i, dirName in enumerate(inputBwtDirs): ''' NOTE: in practice, since we're allowing for multiprocessing, we construct the FM-index for each input BWT simply because in the long run, this allows us to figure out how to start processing chunks separately. Without this, we would need to track extra information that really just represent the FM-index. ''' msbwts[i] = MultiStringBWT.loadBWT(dirName, logger) mergedLength += msbwts[i].totalSize #binSize = 2**1#small bin debugging #binSize = 2**15#this one is just for test purposes, makes easy to debug things #binSize = 2**25#diff in 22-23 is not that much, 23-24 was 8 seconds of difference, so REALLY no diff binSize = 2**28 #allocate the mergedBWT space logger.info('Allocating space on disk...') mergedBWT = np.lib.format.open_memmap(mergedDir+'/msbwt.npy', 'w+', '<u1', (mergedLength,)) #this one will create the array using bits logger.info('Initializing iterations...') placeArray = np.lib.format.open_memmap(mergedDir+'/temp.0.npy', 'w+', '<u1', (mergedBWT.shape[0],)) copiedPlaceArray = np.lib.format.open_memmap(mergedDir+'/temp.1.npy', 'w+', '<u1', (mergedBWT.shape[0],)) start = msbwts[0].totalSize end = 0 #fill out the initial array with 0s, 1s, 2s, etc. as our initial condition for i, msbwt in enumerate(msbwts): end += msbwt.getTotalSize() placeArray[start:end].fill(i) copiedPlaceArray[start:end].fill(i) start = end #create something to track the offsets #TODO: x/binSize + 1 makes one too many bins if it's exactly divisible by binSize, ex: 4 length BWT with binSize 2 nextBinHasChanged = np.ones(dtype='b', shape=(mergedBWT.shape[0]/binSize+1,)) prevOffsetCounts = np.zeros(dtype='<u8', shape=(mergedBWT.shape[0]/binSize+1, numInputs)) currOffsetCounts = np.zeros(dtype='<u8', shape=(mergedBWT.shape[0]/binSize+1, numInputs)) nextOffsetCounts = np.zeros(dtype='<u8', shape=(mergedBWT.shape[0]/binSize+1, numInputs)) binUpdates = [{}]*(mergedBWT.shape[0]/binSize+1) bwtInd = 0 offsets = [0]*numInputs for x in xrange(0, currOffsetCounts.shape[0]): #set, then change for next iter nextOffsetCounts[x] = offsets remaining = binSize while remaining > 0 and bwtInd < numInputs: if remaining > msbwts[bwtInd].totalSize-offsets[bwtInd]: remaining -= msbwts[bwtInd].totalSize-offsets[bwtInd] offsets[bwtInd] = msbwts[bwtInd].totalSize bwtInd += 1 else: offsets[bwtInd] += remaining remaining = 0 ignored = 0 #original sys.stdout.write('\rcp ') sys.stdout.flush() del copiedPlaceArray needsMoreIterations = True i = 0 sameOffsetCount = 0 while needsMoreIterations: prevOffsetCounts = currOffsetCounts currOffsetCounts = nextOffsetCounts nextOffsetCounts = np.zeros(dtype='<u8', shape=(mergedBWT.shape[0]/binSize+1, numInputs)) needsMoreIterations = False sameOffsetCount = 0 #this method uses a condensed byte and will ignore regions that are already finished sys.stdout.write('\rld ') sys.stdout.flush() ignored = 0 iteret = time.time() sys.stdout.write('\r') logger.info('Finished iter '+str(i)+' in '+str(iteret-iterst)+'seconds') iterst = time.time() i += 1 sys.stdout.write('\rld') sys.stdout.flush() #track which bins are actually different binHasChanged = nextBinHasChanged nextBinHasChanged = np.zeros(dtype='b', shape=(mergedBWT.shape[0]/binSize+1)) tups = [] for x in xrange(0, mergedBWT.shape[0]/binSize + 1): #check if the current offset matches the previous iteration offset sameOffset = np.array_equal(currOffsetCounts[x], prevOffsetCounts[x]) if sameOffset: sameOffsetCount += 1 ''' TODO: the below False is there because this only works if you do a full file copy right now. It's because unless we copy, then the appropriate parts of the nextPlaceArray isn't properly updated. It's unclear whether one of these is better than the other in terms of performance. File copying is slow, but if only a couple sequences are similar then then skipping is good. I think in general, we only skip at the beginning for real data though, so I'm going with the no-skip, no-copy form until I can resolve the problem (if there's a resolution). ''' if False and not binHasChanged[x] and sameOffset: for key in binUpdates[x]: nextOffsetCounts[key] += binUpdates[x][key] ignored += 1 else: #note these are swapped depending on the iteration, saves time since there is no file copying if i % 2 == 0: tup = (x, binSize, vcLen, currOffsetCounts[x], mergedDir+'/temp.0.npy', mergedDir+'/temp.1.npy', inputBwtDirs) else: tup = (x, binSize, vcLen, currOffsetCounts[x], mergedDir+'/temp.1.npy', mergedDir+'/temp.0.npy', inputBwtDirs) tups.append(tup) if numProcs > 1: #TODO: tinker with chunksize, it might matter myPool = multiprocessing.Pool(numProcs) #myPool = multiprocessing.pool.ThreadPool(numProcs) rets = myPool.imap(mergeNewMSBWTPoolCall, tups, chunksize=10) else: rets = [] for tup in tups: rets.append(mergeNewMSBWTPoolCall(tup)) progressCounter = ignored sys.stdout.write('\r'+str(100*progressCounter*binSize/mergedBWT.shape[0])+'%') sys.stdout.flush() for ret in rets: #iterate through the returns so we can figure out information necessary for continuation (x, nBHC, nOC, nMI) = ret binUpdates[x] = nOC for k in nBHC: nextBinHasChanged[k] |= nBHC[k] for b in nOC: nextOffsetCounts[b] += nOC[b] needsMoreIterations |= nMI progressCounter += 1 sys.stdout.write('\r'+str(min(100*progressCounter*binSize/mergedBWT.shape[0], 100))+'%') sys.stdout.flush() nextOffsetCounts = np.cumsum(nextOffsetCounts, axis=0)-nextOffsetCounts if numProcs > 1: myPool.terminate() myPool.join() myPool = None sys.stdout.write('\r') sys.stdout.flush() logger.info('Order solved, saving final array...') #TODO: make this better offsets = np.zeros(dtype='<u8', shape=(numInputs,)) for i in xrange(0, mergedBWT.shape[0]/binSize+1): ind = placeArray[i*binSize:(i+1)*binSize] if i == mergedBWT.shape[0]/binSize: ind = ind[0:mergedBWT.shape[0]-i*binSize] bc = np.bincount(ind, minlength=numInputs) for x in xrange(0, numInputs): mergedBWT[np.add(i*binSize, np.where(ind == x))] = msbwts[x].getBWTRange(int(offsets[x]), int(offsets[x]+bc[x])) offsets += bc et = time.time() logger.info('Finished all merge iterations in '+str(et-st)+' seconds.')
This function will take a list of input BWTs (compressed or not) and merge them into a single BWT @param mergedFN - the destination for the final merged MSBWT @param inputBWTFN1 - the fn of the first BWT to merge @param inputBWTFN2 - the fn of the second BWT to merge @param numProcs - number of processes we're allowed to use @param logger - output goes here
Below is the the instruction that describes the task: ### Input: This function will take a list of input BWTs (compressed or not) and merge them into a single BWT @param mergedFN - the destination for the final merged MSBWT @param inputBWTFN1 - the fn of the first BWT to merge @param inputBWTFN2 - the fn of the second BWT to merge @param numProcs - number of processes we're allowed to use @param logger - output goes here ### Response: def mergeNewMSBWT(mergedDir, inputBwtDirs, numProcs, logger): ''' This function will take a list of input BWTs (compressed or not) and merge them into a single BWT @param mergedFN - the destination for the final merged MSBWT @param inputBWTFN1 - the fn of the first BWT to merge @param inputBWTFN2 - the fn of the second BWT to merge @param numProcs - number of processes we're allowed to use @param logger - output goes here ''' st = time.time() iterst = time.time() vcLen = 6 #TODO: take advantage of these to skip an iteration or two perhaps numInputs = len(inputBwtDirs) msbwts = [None]*numInputs mergedLength = 0 for i, dirName in enumerate(inputBwtDirs): ''' NOTE: in practice, since we're allowing for multiprocessing, we construct the FM-index for each input BWT simply because in the long run, this allows us to figure out how to start processing chunks separately. Without this, we would need to track extra information that really just represent the FM-index. ''' msbwts[i] = MultiStringBWT.loadBWT(dirName, logger) mergedLength += msbwts[i].totalSize #binSize = 2**1#small bin debugging #binSize = 2**15#this one is just for test purposes, makes easy to debug things #binSize = 2**25#diff in 22-23 is not that much, 23-24 was 8 seconds of difference, so REALLY no diff binSize = 2**28 #allocate the mergedBWT space logger.info('Allocating space on disk...') mergedBWT = np.lib.format.open_memmap(mergedDir+'/msbwt.npy', 'w+', '<u1', (mergedLength,)) #this one will create the array using bits logger.info('Initializing iterations...') placeArray = np.lib.format.open_memmap(mergedDir+'/temp.0.npy', 'w+', '<u1', (mergedBWT.shape[0],)) copiedPlaceArray = np.lib.format.open_memmap(mergedDir+'/temp.1.npy', 'w+', '<u1', (mergedBWT.shape[0],)) start = msbwts[0].totalSize end = 0 #fill out the initial array with 0s, 1s, 2s, etc. as our initial condition for i, msbwt in enumerate(msbwts): end += msbwt.getTotalSize() placeArray[start:end].fill(i) copiedPlaceArray[start:end].fill(i) start = end #create something to track the offsets #TODO: x/binSize + 1 makes one too many bins if it's exactly divisible by binSize, ex: 4 length BWT with binSize 2 nextBinHasChanged = np.ones(dtype='b', shape=(mergedBWT.shape[0]/binSize+1,)) prevOffsetCounts = np.zeros(dtype='<u8', shape=(mergedBWT.shape[0]/binSize+1, numInputs)) currOffsetCounts = np.zeros(dtype='<u8', shape=(mergedBWT.shape[0]/binSize+1, numInputs)) nextOffsetCounts = np.zeros(dtype='<u8', shape=(mergedBWT.shape[0]/binSize+1, numInputs)) binUpdates = [{}]*(mergedBWT.shape[0]/binSize+1) bwtInd = 0 offsets = [0]*numInputs for x in xrange(0, currOffsetCounts.shape[0]): #set, then change for next iter nextOffsetCounts[x] = offsets remaining = binSize while remaining > 0 and bwtInd < numInputs: if remaining > msbwts[bwtInd].totalSize-offsets[bwtInd]: remaining -= msbwts[bwtInd].totalSize-offsets[bwtInd] offsets[bwtInd] = msbwts[bwtInd].totalSize bwtInd += 1 else: offsets[bwtInd] += remaining remaining = 0 ignored = 0 #original sys.stdout.write('\rcp ') sys.stdout.flush() del copiedPlaceArray needsMoreIterations = True i = 0 sameOffsetCount = 0 while needsMoreIterations: prevOffsetCounts = currOffsetCounts currOffsetCounts = nextOffsetCounts nextOffsetCounts = np.zeros(dtype='<u8', shape=(mergedBWT.shape[0]/binSize+1, numInputs)) needsMoreIterations = False sameOffsetCount = 0 #this method uses a condensed byte and will ignore regions that are already finished sys.stdout.write('\rld ') sys.stdout.flush() ignored = 0 iteret = time.time() sys.stdout.write('\r') logger.info('Finished iter '+str(i)+' in '+str(iteret-iterst)+'seconds') iterst = time.time() i += 1 sys.stdout.write('\rld') sys.stdout.flush() #track which bins are actually different binHasChanged = nextBinHasChanged nextBinHasChanged = np.zeros(dtype='b', shape=(mergedBWT.shape[0]/binSize+1)) tups = [] for x in xrange(0, mergedBWT.shape[0]/binSize + 1): #check if the current offset matches the previous iteration offset sameOffset = np.array_equal(currOffsetCounts[x], prevOffsetCounts[x]) if sameOffset: sameOffsetCount += 1 ''' TODO: the below False is there because this only works if you do a full file copy right now. It's because unless we copy, then the appropriate parts of the nextPlaceArray isn't properly updated. It's unclear whether one of these is better than the other in terms of performance. File copying is slow, but if only a couple sequences are similar then then skipping is good. I think in general, we only skip at the beginning for real data though, so I'm going with the no-skip, no-copy form until I can resolve the problem (if there's a resolution). ''' if False and not binHasChanged[x] and sameOffset: for key in binUpdates[x]: nextOffsetCounts[key] += binUpdates[x][key] ignored += 1 else: #note these are swapped depending on the iteration, saves time since there is no file copying if i % 2 == 0: tup = (x, binSize, vcLen, currOffsetCounts[x], mergedDir+'/temp.0.npy', mergedDir+'/temp.1.npy', inputBwtDirs) else: tup = (x, binSize, vcLen, currOffsetCounts[x], mergedDir+'/temp.1.npy', mergedDir+'/temp.0.npy', inputBwtDirs) tups.append(tup) if numProcs > 1: #TODO: tinker with chunksize, it might matter myPool = multiprocessing.Pool(numProcs) #myPool = multiprocessing.pool.ThreadPool(numProcs) rets = myPool.imap(mergeNewMSBWTPoolCall, tups, chunksize=10) else: rets = [] for tup in tups: rets.append(mergeNewMSBWTPoolCall(tup)) progressCounter = ignored sys.stdout.write('\r'+str(100*progressCounter*binSize/mergedBWT.shape[0])+'%') sys.stdout.flush() for ret in rets: #iterate through the returns so we can figure out information necessary for continuation (x, nBHC, nOC, nMI) = ret binUpdates[x] = nOC for k in nBHC: nextBinHasChanged[k] |= nBHC[k] for b in nOC: nextOffsetCounts[b] += nOC[b] needsMoreIterations |= nMI progressCounter += 1 sys.stdout.write('\r'+str(min(100*progressCounter*binSize/mergedBWT.shape[0], 100))+'%') sys.stdout.flush() nextOffsetCounts = np.cumsum(nextOffsetCounts, axis=0)-nextOffsetCounts if numProcs > 1: myPool.terminate() myPool.join() myPool = None sys.stdout.write('\r') sys.stdout.flush() logger.info('Order solved, saving final array...') #TODO: make this better offsets = np.zeros(dtype='<u8', shape=(numInputs,)) for i in xrange(0, mergedBWT.shape[0]/binSize+1): ind = placeArray[i*binSize:(i+1)*binSize] if i == mergedBWT.shape[0]/binSize: ind = ind[0:mergedBWT.shape[0]-i*binSize] bc = np.bincount(ind, minlength=numInputs) for x in xrange(0, numInputs): mergedBWT[np.add(i*binSize, np.where(ind == x))] = msbwts[x].getBWTRange(int(offsets[x]), int(offsets[x]+bc[x])) offsets += bc et = time.time() logger.info('Finished all merge iterations in '+str(et-st)+' seconds.')
def long_description(*filenames): """Provide a long description.""" res = [''] for filename in filenames: with open(filename) as fp: for line in fp: res.append(' ' + line) res.append('') res.append('\n') return EMPTYSTRING.join(res)
Provide a long description.
Below is the the instruction that describes the task: ### Input: Provide a long description. ### Response: def long_description(*filenames): """Provide a long description.""" res = [''] for filename in filenames: with open(filename) as fp: for line in fp: res.append(' ' + line) res.append('') res.append('\n') return EMPTYSTRING.join(res)
def _StatusUpdateThreadMain(self): """Main function of the status update thread.""" while self._status_update_active: # Make a local copy of the PIDs in case the dict is changed by # the main thread. for pid in list(self._process_information_per_pid.keys()): self._CheckStatusAnalysisProcess(pid) self._UpdateForemanProcessStatus() if self._status_update_callback: self._status_update_callback(self._processing_status) time.sleep(self._STATUS_UPDATE_INTERVAL)
Main function of the status update thread.
Below is the the instruction that describes the task: ### Input: Main function of the status update thread. ### Response: def _StatusUpdateThreadMain(self): """Main function of the status update thread.""" while self._status_update_active: # Make a local copy of the PIDs in case the dict is changed by # the main thread. for pid in list(self._process_information_per_pid.keys()): self._CheckStatusAnalysisProcess(pid) self._UpdateForemanProcessStatus() if self._status_update_callback: self._status_update_callback(self._processing_status) time.sleep(self._STATUS_UPDATE_INTERVAL)
def transpose(self, name=None, activate_final=None): """Returns transposed `MLP`. Args: name: Optional string specifying the name of the transposed module. The default name is constructed by appending "_transpose" to `self.module_name`. activate_final: Optional boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. Returns: Matching transposed `MLP` module. """ if name is None: name = self.module_name + "_transpose" if activate_final is None: activate_final = self.activate_final output_sizes = [lambda l=layer: l.input_shape[1] for layer in self._layers] output_sizes.reverse() return MLP( name=name, output_sizes=output_sizes, activation=self.activation, activate_final=activate_final, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, use_bias=self.use_bias, use_dropout=self.use_dropout)
Returns transposed `MLP`. Args: name: Optional string specifying the name of the transposed module. The default name is constructed by appending "_transpose" to `self.module_name`. activate_final: Optional boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. Returns: Matching transposed `MLP` module.
Below is the the instruction that describes the task: ### Input: Returns transposed `MLP`. Args: name: Optional string specifying the name of the transposed module. The default name is constructed by appending "_transpose" to `self.module_name`. activate_final: Optional boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. Returns: Matching transposed `MLP` module. ### Response: def transpose(self, name=None, activate_final=None): """Returns transposed `MLP`. Args: name: Optional string specifying the name of the transposed module. The default name is constructed by appending "_transpose" to `self.module_name`. activate_final: Optional boolean determining if the activation and batch normalization, if turned on, are applied to the final layer. Returns: Matching transposed `MLP` module. """ if name is None: name = self.module_name + "_transpose" if activate_final is None: activate_final = self.activate_final output_sizes = [lambda l=layer: l.input_shape[1] for layer in self._layers] output_sizes.reverse() return MLP( name=name, output_sizes=output_sizes, activation=self.activation, activate_final=activate_final, initializers=self.initializers, partitioners=self.partitioners, regularizers=self.regularizers, use_bias=self.use_bias, use_dropout=self.use_dropout)
def oplog_thread_join(self): """Stops all the OplogThreads """ LOG.info("MongoConnector: Stopping all OplogThreads") for thread in self.shard_set.values(): thread.join()
Stops all the OplogThreads
Below is the the instruction that describes the task: ### Input: Stops all the OplogThreads ### Response: def oplog_thread_join(self): """Stops all the OplogThreads """ LOG.info("MongoConnector: Stopping all OplogThreads") for thread in self.shard_set.values(): thread.join()
def query(self, watch_key, time_indices=None, slicing=None, mapping=None): """Query tensor store for a given watch_key. Args: watch_key: The watch key to query. time_indices: A numpy-style slicing string for time indices. E.g., `-1`, `:-2`, `[::2]`. If not provided (`None`), will use -1. slicing: A numpy-style slicing string for individual time steps. mapping: An mapping string or a list of them. Supported mappings: `{None, 'image/png', 'health-pill'}`. Returns: The potentially sliced values as a nested list of values or its mapped format. A `list` of nested `list` of values. Raises: ValueError: If the shape of the sliced array is incompatible with mapping mode. Or if the mapping type is invalid. """ if watch_key not in self._tensor_data: raise KeyError("watch_key not found: %s" % watch_key) if time_indices is None: time_indices = '-1' time_slicing = tensor_helper.parse_time_indices(time_indices) all_time_indices = list(range(self._tensor_data[watch_key].num_total())) sliced_time_indices = all_time_indices[time_slicing] if not isinstance(sliced_time_indices, list): sliced_time_indices = [sliced_time_indices] recombine_and_map = False step_mapping = mapping if len(sliced_time_indices) > 1 and mapping not in (None, ): recombine_and_map = True step_mapping = None output = [] for index in sliced_time_indices: value = self._tensor_data[watch_key].query(index)[0] if (value is not None and not isinstance(value, debug_data.InconvertibleTensorProto)): output.append(tensor_helper.array_view( value, slicing=slicing, mapping=step_mapping)[2]) else: output.append(None) if recombine_and_map: if mapping == 'image/png': output = tensor_helper.array_to_base64_png(output) elif mapping and mapping != 'none': logger.warn( 'Unsupported mapping mode after recomining time steps: %s', mapping) return output
Query tensor store for a given watch_key. Args: watch_key: The watch key to query. time_indices: A numpy-style slicing string for time indices. E.g., `-1`, `:-2`, `[::2]`. If not provided (`None`), will use -1. slicing: A numpy-style slicing string for individual time steps. mapping: An mapping string or a list of them. Supported mappings: `{None, 'image/png', 'health-pill'}`. Returns: The potentially sliced values as a nested list of values or its mapped format. A `list` of nested `list` of values. Raises: ValueError: If the shape of the sliced array is incompatible with mapping mode. Or if the mapping type is invalid.
Below is the the instruction that describes the task: ### Input: Query tensor store for a given watch_key. Args: watch_key: The watch key to query. time_indices: A numpy-style slicing string for time indices. E.g., `-1`, `:-2`, `[::2]`. If not provided (`None`), will use -1. slicing: A numpy-style slicing string for individual time steps. mapping: An mapping string or a list of them. Supported mappings: `{None, 'image/png', 'health-pill'}`. Returns: The potentially sliced values as a nested list of values or its mapped format. A `list` of nested `list` of values. Raises: ValueError: If the shape of the sliced array is incompatible with mapping mode. Or if the mapping type is invalid. ### Response: def query(self, watch_key, time_indices=None, slicing=None, mapping=None): """Query tensor store for a given watch_key. Args: watch_key: The watch key to query. time_indices: A numpy-style slicing string for time indices. E.g., `-1`, `:-2`, `[::2]`. If not provided (`None`), will use -1. slicing: A numpy-style slicing string for individual time steps. mapping: An mapping string or a list of them. Supported mappings: `{None, 'image/png', 'health-pill'}`. Returns: The potentially sliced values as a nested list of values or its mapped format. A `list` of nested `list` of values. Raises: ValueError: If the shape of the sliced array is incompatible with mapping mode. Or if the mapping type is invalid. """ if watch_key not in self._tensor_data: raise KeyError("watch_key not found: %s" % watch_key) if time_indices is None: time_indices = '-1' time_slicing = tensor_helper.parse_time_indices(time_indices) all_time_indices = list(range(self._tensor_data[watch_key].num_total())) sliced_time_indices = all_time_indices[time_slicing] if not isinstance(sliced_time_indices, list): sliced_time_indices = [sliced_time_indices] recombine_and_map = False step_mapping = mapping if len(sliced_time_indices) > 1 and mapping not in (None, ): recombine_and_map = True step_mapping = None output = [] for index in sliced_time_indices: value = self._tensor_data[watch_key].query(index)[0] if (value is not None and not isinstance(value, debug_data.InconvertibleTensorProto)): output.append(tensor_helper.array_view( value, slicing=slicing, mapping=step_mapping)[2]) else: output.append(None) if recombine_and_map: if mapping == 'image/png': output = tensor_helper.array_to_base64_png(output) elif mapping and mapping != 'none': logger.warn( 'Unsupported mapping mode after recomining time steps: %s', mapping) return output
def stream_mapred(self, inputs, query, timeout): """ Streams a MapReduce query as (phase, data) pairs. This is a generator method which should be iterated over. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(mymapred.stream()) as results: for phase, result in results: do_something(phase, result) # Explicit close() stream = mymapred.stream() for phase, result in stream: do_something(phase, result) stream.close() :param inputs: the input list/structure :type inputs: list, dict :param query: the list of query phases :type query: list :param timeout: the query timeout :type timeout: integer, None :rtype: iterator """ _validate_timeout(timeout) def make_op(transport): return transport.stream_mapred(inputs, query, timeout) for phase, data in self._stream_with_retry(make_op): yield phase, data
Streams a MapReduce query as (phase, data) pairs. This is a generator method which should be iterated over. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(mymapred.stream()) as results: for phase, result in results: do_something(phase, result) # Explicit close() stream = mymapred.stream() for phase, result in stream: do_something(phase, result) stream.close() :param inputs: the input list/structure :type inputs: list, dict :param query: the list of query phases :type query: list :param timeout: the query timeout :type timeout: integer, None :rtype: iterator
Below is the the instruction that describes the task: ### Input: Streams a MapReduce query as (phase, data) pairs. This is a generator method which should be iterated over. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(mymapred.stream()) as results: for phase, result in results: do_something(phase, result) # Explicit close() stream = mymapred.stream() for phase, result in stream: do_something(phase, result) stream.close() :param inputs: the input list/structure :type inputs: list, dict :param query: the list of query phases :type query: list :param timeout: the query timeout :type timeout: integer, None :rtype: iterator ### Response: def stream_mapred(self, inputs, query, timeout): """ Streams a MapReduce query as (phase, data) pairs. This is a generator method which should be iterated over. The caller should explicitly close the returned iterator, either using :func:`contextlib.closing` or calling ``close()`` explicitly. Consuming the entire iterator will also close the stream. If it does not, the associated connection might not be returned to the pool. Example:: from contextlib import closing # Using contextlib.closing with closing(mymapred.stream()) as results: for phase, result in results: do_something(phase, result) # Explicit close() stream = mymapred.stream() for phase, result in stream: do_something(phase, result) stream.close() :param inputs: the input list/structure :type inputs: list, dict :param query: the list of query phases :type query: list :param timeout: the query timeout :type timeout: integer, None :rtype: iterator """ _validate_timeout(timeout) def make_op(transport): return transport.stream_mapred(inputs, query, timeout) for phase, data in self._stream_with_retry(make_op): yield phase, data
def get_vartype(data): """Infer the type of a variable (technically a Series). The types supported are split in standard types and special types. Standard types: * Categorical (`TYPE_CAT`): the default type if no other one can be determined * Numerical (`TYPE_NUM`): if it contains numbers * Boolean (`TYPE_BOOL`): at this time only detected if it contains boolean values, see todo * Date (`TYPE_DATE`): if it contains datetime Special types: * Constant (`S_TYPE_CONST`): if all values in the variable are equal * Unique (`S_TYPE_UNIQUE`): if all values in the variable are different * Unsupported (`S_TYPE_UNSUPPORTED`): if the variable is unsupported The result is cached by column name in a global variable to avoid recomputing. Parameters ---------- data : Series The data type of the Series. Returns ------- str The data type of the Series. Notes ---- * Should improve verification when a categorical or numeric field has 3 values, it could be a categorical field or just a boolean with NaN values * #72: Numeric with low Distinct count should be treated as "Categorical" """ if data.name is not None and data.name in _MEMO: return _MEMO[data.name] vartype = None try: distinct_count = get_groupby_statistic(data)[1] leng = len(data) if distinct_count <= 1: vartype = S_TYPE_CONST elif pd.api.types.is_bool_dtype(data) or (distinct_count == 2 and pd.api.types.is_numeric_dtype(data)): vartype = TYPE_BOOL elif pd.api.types.is_numeric_dtype(data): vartype = TYPE_NUM elif pd.api.types.is_datetime64_dtype(data): vartype = TYPE_DATE elif distinct_count == leng: vartype = S_TYPE_UNIQUE else: vartype = TYPE_CAT except: vartype = S_TYPE_UNSUPPORTED if data.name is not None: _MEMO[data.name] = vartype return vartype
Infer the type of a variable (technically a Series). The types supported are split in standard types and special types. Standard types: * Categorical (`TYPE_CAT`): the default type if no other one can be determined * Numerical (`TYPE_NUM`): if it contains numbers * Boolean (`TYPE_BOOL`): at this time only detected if it contains boolean values, see todo * Date (`TYPE_DATE`): if it contains datetime Special types: * Constant (`S_TYPE_CONST`): if all values in the variable are equal * Unique (`S_TYPE_UNIQUE`): if all values in the variable are different * Unsupported (`S_TYPE_UNSUPPORTED`): if the variable is unsupported The result is cached by column name in a global variable to avoid recomputing. Parameters ---------- data : Series The data type of the Series. Returns ------- str The data type of the Series. Notes ---- * Should improve verification when a categorical or numeric field has 3 values, it could be a categorical field or just a boolean with NaN values * #72: Numeric with low Distinct count should be treated as "Categorical"
Below is the the instruction that describes the task: ### Input: Infer the type of a variable (technically a Series). The types supported are split in standard types and special types. Standard types: * Categorical (`TYPE_CAT`): the default type if no other one can be determined * Numerical (`TYPE_NUM`): if it contains numbers * Boolean (`TYPE_BOOL`): at this time only detected if it contains boolean values, see todo * Date (`TYPE_DATE`): if it contains datetime Special types: * Constant (`S_TYPE_CONST`): if all values in the variable are equal * Unique (`S_TYPE_UNIQUE`): if all values in the variable are different * Unsupported (`S_TYPE_UNSUPPORTED`): if the variable is unsupported The result is cached by column name in a global variable to avoid recomputing. Parameters ---------- data : Series The data type of the Series. Returns ------- str The data type of the Series. Notes ---- * Should improve verification when a categorical or numeric field has 3 values, it could be a categorical field or just a boolean with NaN values * #72: Numeric with low Distinct count should be treated as "Categorical" ### Response: def get_vartype(data): """Infer the type of a variable (technically a Series). The types supported are split in standard types and special types. Standard types: * Categorical (`TYPE_CAT`): the default type if no other one can be determined * Numerical (`TYPE_NUM`): if it contains numbers * Boolean (`TYPE_BOOL`): at this time only detected if it contains boolean values, see todo * Date (`TYPE_DATE`): if it contains datetime Special types: * Constant (`S_TYPE_CONST`): if all values in the variable are equal * Unique (`S_TYPE_UNIQUE`): if all values in the variable are different * Unsupported (`S_TYPE_UNSUPPORTED`): if the variable is unsupported The result is cached by column name in a global variable to avoid recomputing. Parameters ---------- data : Series The data type of the Series. Returns ------- str The data type of the Series. Notes ---- * Should improve verification when a categorical or numeric field has 3 values, it could be a categorical field or just a boolean with NaN values * #72: Numeric with low Distinct count should be treated as "Categorical" """ if data.name is not None and data.name in _MEMO: return _MEMO[data.name] vartype = None try: distinct_count = get_groupby_statistic(data)[1] leng = len(data) if distinct_count <= 1: vartype = S_TYPE_CONST elif pd.api.types.is_bool_dtype(data) or (distinct_count == 2 and pd.api.types.is_numeric_dtype(data)): vartype = TYPE_BOOL elif pd.api.types.is_numeric_dtype(data): vartype = TYPE_NUM elif pd.api.types.is_datetime64_dtype(data): vartype = TYPE_DATE elif distinct_count == leng: vartype = S_TYPE_UNIQUE else: vartype = TYPE_CAT except: vartype = S_TYPE_UNSUPPORTED if data.name is not None: _MEMO[data.name] = vartype return vartype
def disconnect(self, device): """Disconnect using protocol specific method.""" # self.device.ctrl.sendcontrol(']') # self.device.ctrl.sendline('quit') self.log("TELNET disconnect") try: self.device.ctrl.send(chr(4)) except OSError: self.log("Protocol already disconnected")
Disconnect using protocol specific method.
Below is the the instruction that describes the task: ### Input: Disconnect using protocol specific method. ### Response: def disconnect(self, device): """Disconnect using protocol specific method.""" # self.device.ctrl.sendcontrol(']') # self.device.ctrl.sendline('quit') self.log("TELNET disconnect") try: self.device.ctrl.send(chr(4)) except OSError: self.log("Protocol already disconnected")
def kill(self): """ Send SIGKILL to the task's process. """ logger.info('Sending SIGKILL to task {0}'.format(self.name)) if hasattr(self, 'remote_client') and self.remote_client is not None: self.kill_sent = True self.remote_client.close() return if not self.process: raise DagobahError('task does not have a running process') self.kill_sent = True self.process.kill()
Send SIGKILL to the task's process.
Below is the the instruction that describes the task: ### Input: Send SIGKILL to the task's process. ### Response: def kill(self): """ Send SIGKILL to the task's process. """ logger.info('Sending SIGKILL to task {0}'.format(self.name)) if hasattr(self, 'remote_client') and self.remote_client is not None: self.kill_sent = True self.remote_client.close() return if not self.process: raise DagobahError('task does not have a running process') self.kill_sent = True self.process.kill()
def _wait_output(popen, is_slow): """Returns `True` if we can get output of the command in the `settings.wait_command` time. Command will be killed if it wasn't finished in the time. :type popen: Popen :rtype: bool """ proc = Process(popen.pid) try: proc.wait(settings.wait_slow_command if is_slow else settings.wait_command) return True except TimeoutExpired: for child in proc.children(recursive=True): _kill_process(child) _kill_process(proc) return False
Returns `True` if we can get output of the command in the `settings.wait_command` time. Command will be killed if it wasn't finished in the time. :type popen: Popen :rtype: bool
Below is the the instruction that describes the task: ### Input: Returns `True` if we can get output of the command in the `settings.wait_command` time. Command will be killed if it wasn't finished in the time. :type popen: Popen :rtype: bool ### Response: def _wait_output(popen, is_slow): """Returns `True` if we can get output of the command in the `settings.wait_command` time. Command will be killed if it wasn't finished in the time. :type popen: Popen :rtype: bool """ proc = Process(popen.pid) try: proc.wait(settings.wait_slow_command if is_slow else settings.wait_command) return True except TimeoutExpired: for child in proc.children(recursive=True): _kill_process(child) _kill_process(proc) return False
def create_switch(type, settings, pin): """Create a switch. Args: type: (str): type of the switch [A,B,C,D] settings (str): a comma separted list pin (int): wiringPi pin Returns: switch """ switch = None if type == "A": group, device = settings.split(",") switch = pi_switch.RCSwitchA(group, device) elif type == "B": addr, channel = settings.split(",") addr = int(addr) channel = int(channel) switch = pi_switch.RCSwitchB(addr, channel) elif type == "C": family, group, device = settings.split(",") group = int(group) device = int(device) switch = pi_switch.RCSwitchC(family, group, device) elif type == "D": group, device = settings.split(",") device = int(device) switch = pi_switch.RCSwitchD(group, device) else: print "Type %s is not supported!" % type sys.exit() switch.enableTransmit(pin) return switch
Create a switch. Args: type: (str): type of the switch [A,B,C,D] settings (str): a comma separted list pin (int): wiringPi pin Returns: switch
Below is the the instruction that describes the task: ### Input: Create a switch. Args: type: (str): type of the switch [A,B,C,D] settings (str): a comma separted list pin (int): wiringPi pin Returns: switch ### Response: def create_switch(type, settings, pin): """Create a switch. Args: type: (str): type of the switch [A,B,C,D] settings (str): a comma separted list pin (int): wiringPi pin Returns: switch """ switch = None if type == "A": group, device = settings.split(",") switch = pi_switch.RCSwitchA(group, device) elif type == "B": addr, channel = settings.split(",") addr = int(addr) channel = int(channel) switch = pi_switch.RCSwitchB(addr, channel) elif type == "C": family, group, device = settings.split(",") group = int(group) device = int(device) switch = pi_switch.RCSwitchC(family, group, device) elif type == "D": group, device = settings.split(",") device = int(device) switch = pi_switch.RCSwitchD(group, device) else: print "Type %s is not supported!" % type sys.exit() switch.enableTransmit(pin) return switch
def delete_collection_namespaced_replica_set(self, namespace, **kwargs): # noqa: E501 """delete_collection_namespaced_replica_set # noqa: E501 delete collection of ReplicaSet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_collection_namespaced_replica_set(namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str namespace: object name and auth scope, such as for teams and projects (required) :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1Status If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.delete_collection_namespaced_replica_set_with_http_info(namespace, **kwargs) # noqa: E501 else: (data) = self.delete_collection_namespaced_replica_set_with_http_info(namespace, **kwargs) # noqa: E501 return data
delete_collection_namespaced_replica_set # noqa: E501 delete collection of ReplicaSet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_collection_namespaced_replica_set(namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str namespace: object name and auth scope, such as for teams and projects (required) :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1Status If the method is called asynchronously, returns the request thread.
Below is the the instruction that describes the task: ### Input: delete_collection_namespaced_replica_set # noqa: E501 delete collection of ReplicaSet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_collection_namespaced_replica_set(namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str namespace: object name and auth scope, such as for teams and projects (required) :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1Status If the method is called asynchronously, returns the request thread. ### Response: def delete_collection_namespaced_replica_set(self, namespace, **kwargs): # noqa: E501 """delete_collection_namespaced_replica_set # noqa: E501 delete collection of ReplicaSet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_collection_namespaced_replica_set(namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str namespace: object name and auth scope, such as for teams and projects (required) :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1Status If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.delete_collection_namespaced_replica_set_with_http_info(namespace, **kwargs) # noqa: E501 else: (data) = self.delete_collection_namespaced_replica_set_with_http_info(namespace, **kwargs) # noqa: E501 return data
def parse_or_die(self, args=None): """Like :meth:`ParseKeywords.parse`, but calls :func:`pkwit.cli.die` if a :exc:`KwargvError` is raised, printing the exception text. Returns *self* for convenience. """ from .cli import die try: return self.parse(args) except KwargvError as e: die(e)
Like :meth:`ParseKeywords.parse`, but calls :func:`pkwit.cli.die` if a :exc:`KwargvError` is raised, printing the exception text. Returns *self* for convenience.
Below is the the instruction that describes the task: ### Input: Like :meth:`ParseKeywords.parse`, but calls :func:`pkwit.cli.die` if a :exc:`KwargvError` is raised, printing the exception text. Returns *self* for convenience. ### Response: def parse_or_die(self, args=None): """Like :meth:`ParseKeywords.parse`, but calls :func:`pkwit.cli.die` if a :exc:`KwargvError` is raised, printing the exception text. Returns *self* for convenience. """ from .cli import die try: return self.parse(args) except KwargvError as e: die(e)
def copy(input, **params): """ Copies input or input's selected fields :param input: :param params: :return: input """ PARAM_FIELDS = 'fields' def filter_fields(obj, fields): return {k:v for k,v in obj.items() if k in fields} if PARAM_FIELDS in params: fields = params.get(PARAM_FIELDS) if isinstance(input, list): res = [] for row in input: res.append(filter_fields(row, fields)) return res elif isinstance(input, dict): return filter_fields(input, fields) else: raise NotImplementedError('{} is not supported'.format(type(input))) else: return input
Copies input or input's selected fields :param input: :param params: :return: input
Below is the the instruction that describes the task: ### Input: Copies input or input's selected fields :param input: :param params: :return: input ### Response: def copy(input, **params): """ Copies input or input's selected fields :param input: :param params: :return: input """ PARAM_FIELDS = 'fields' def filter_fields(obj, fields): return {k:v for k,v in obj.items() if k in fields} if PARAM_FIELDS in params: fields = params.get(PARAM_FIELDS) if isinstance(input, list): res = [] for row in input: res.append(filter_fields(row, fields)) return res elif isinstance(input, dict): return filter_fields(input, fields) else: raise NotImplementedError('{} is not supported'.format(type(input))) else: return input
def fs_obj_query_info(self, path, follow_symlinks): """Queries information about a file system object (file, directory, etc) in the guest. in path of type str Path to the file system object to gather information about. Guest path style. in follow_symlinks of type bool Information about symbolic links is returned if @c false. Otherwise, symbolic links are followed and the returned information concerns itself with the symlink target if @c true. return info of type :class:`IGuestFsObjInfo` :py:class:`IGuestFsObjInfo` object containing the information. raises :class:`VBoxErrorObjectNotFound` The file system object was not found. raises :class:`VBoxErrorIprtError` Error while querying information. """ if not isinstance(path, basestring): raise TypeError("path can only be an instance of type basestring") if not isinstance(follow_symlinks, bool): raise TypeError("follow_symlinks can only be an instance of type bool") info = self._call("fsObjQueryInfo", in_p=[path, follow_symlinks]) info = IGuestFsObjInfo(info) return info
Queries information about a file system object (file, directory, etc) in the guest. in path of type str Path to the file system object to gather information about. Guest path style. in follow_symlinks of type bool Information about symbolic links is returned if @c false. Otherwise, symbolic links are followed and the returned information concerns itself with the symlink target if @c true. return info of type :class:`IGuestFsObjInfo` :py:class:`IGuestFsObjInfo` object containing the information. raises :class:`VBoxErrorObjectNotFound` The file system object was not found. raises :class:`VBoxErrorIprtError` Error while querying information.
Below is the the instruction that describes the task: ### Input: Queries information about a file system object (file, directory, etc) in the guest. in path of type str Path to the file system object to gather information about. Guest path style. in follow_symlinks of type bool Information about symbolic links is returned if @c false. Otherwise, symbolic links are followed and the returned information concerns itself with the symlink target if @c true. return info of type :class:`IGuestFsObjInfo` :py:class:`IGuestFsObjInfo` object containing the information. raises :class:`VBoxErrorObjectNotFound` The file system object was not found. raises :class:`VBoxErrorIprtError` Error while querying information. ### Response: def fs_obj_query_info(self, path, follow_symlinks): """Queries information about a file system object (file, directory, etc) in the guest. in path of type str Path to the file system object to gather information about. Guest path style. in follow_symlinks of type bool Information about symbolic links is returned if @c false. Otherwise, symbolic links are followed and the returned information concerns itself with the symlink target if @c true. return info of type :class:`IGuestFsObjInfo` :py:class:`IGuestFsObjInfo` object containing the information. raises :class:`VBoxErrorObjectNotFound` The file system object was not found. raises :class:`VBoxErrorIprtError` Error while querying information. """ if not isinstance(path, basestring): raise TypeError("path can only be an instance of type basestring") if not isinstance(follow_symlinks, bool): raise TypeError("follow_symlinks can only be an instance of type bool") info = self._call("fsObjQueryInfo", in_p=[path, follow_symlinks]) info = IGuestFsObjInfo(info) return info
def convert_values(args_list): """convert_value in bulk. :param args_list: list of value, source, target currency pairs :return: map of converted values """ rate_map = get_rates(map(itemgetter(1, 2), args_list)) value_map = {} for value, source, target in args_list: args = (value, source, target) if source == target: value_map[args] = value else: value_map[args] = value * rate_map[(source, target)] return value_map
convert_value in bulk. :param args_list: list of value, source, target currency pairs :return: map of converted values
Below is the the instruction that describes the task: ### Input: convert_value in bulk. :param args_list: list of value, source, target currency pairs :return: map of converted values ### Response: def convert_values(args_list): """convert_value in bulk. :param args_list: list of value, source, target currency pairs :return: map of converted values """ rate_map = get_rates(map(itemgetter(1, 2), args_list)) value_map = {} for value, source, target in args_list: args = (value, source, target) if source == target: value_map[args] = value else: value_map[args] = value * rate_map[(source, target)] return value_map
def explain_weights_dfs(estimator, **kwargs): # type: (...) -> Dict[str, pd.DataFrame] """ Explain weights and export them to a dict with ``pandas.DataFrame`` values (as :func:`eli5.formatters.as_dataframe.format_as_dataframes` does). All keyword arguments are passed to :func:`eli5.explain_weights`. Weights of all features are exported by default. """ kwargs = _set_defaults(kwargs) return format_as_dataframes( eli5.explain_weights(estimator, **kwargs))
Explain weights and export them to a dict with ``pandas.DataFrame`` values (as :func:`eli5.formatters.as_dataframe.format_as_dataframes` does). All keyword arguments are passed to :func:`eli5.explain_weights`. Weights of all features are exported by default.
Below is the the instruction that describes the task: ### Input: Explain weights and export them to a dict with ``pandas.DataFrame`` values (as :func:`eli5.formatters.as_dataframe.format_as_dataframes` does). All keyword arguments are passed to :func:`eli5.explain_weights`. Weights of all features are exported by default. ### Response: def explain_weights_dfs(estimator, **kwargs): # type: (...) -> Dict[str, pd.DataFrame] """ Explain weights and export them to a dict with ``pandas.DataFrame`` values (as :func:`eli5.formatters.as_dataframe.format_as_dataframes` does). All keyword arguments are passed to :func:`eli5.explain_weights`. Weights of all features are exported by default. """ kwargs = _set_defaults(kwargs) return format_as_dataframes( eli5.explain_weights(estimator, **kwargs))
def zeq_magic(meas_file='measurements.txt', spec_file='',crd='s',input_dir_path='.', angle=0, n_plots=5, save_plots=True, fmt="svg", interactive=False, specimen="", samp_file='samples.txt', contribution=None,fignum=1): """ zeq_magic makes zijderveld and equal area plots for magic formatted measurements files. Parameters ---------- meas_file : str input measurement file spec_file : str input specimen interpretation file samp_file : str input sample orientations file crd : str coordinate system [s,g,t] for specimen, geographic, tilt corrected g,t options require a sample file with specimen and bedding orientation input_dir_path : str input directory of meas_file, default "." angle : float angle of X direction with respect to specimen X n_plots : int, default 5 maximum number of plots to make if you want to make all possible plots, specify "all" save_plots : bool, default True if True, create and save all requested plots fmt : str, default "svg" format for figures, [svg, jpg, pdf, png] interactive : bool, default False interactively plot and display for each specimen (this is best used on the command line only) specimen : str, default "" specimen name to plot samp_file : str, default 'samples.txt' name of samples file contribution : cb.Contribution, default None if provided, use Contribution object instead of reading in data from files fignum : matplotlib figure number """ def plot_interpretations(ZED, spec_container, this_specimen, this_specimen_measurements, datablock): if cb.is_null(spec_container) or cb.is_null(this_specimen_measurements) or cb.is_null(datablock): return ZED if 'method_codes' not in spec_container.df.columns: return ZED prior_spec_data = spec_container.get_records_for_code( 'LP-DIR', strict_match=False) # look up all prior directional interpretations prior_specimen_interpretations=[] if not len(prior_spec_data): return ZED mpars = {"specimen_direction_type": "Error"} if len(prior_spec_data): prior_specimen_interpretations = prior_spec_data[prior_spec_data['specimen'].astype(str) == this_specimen] #.str.match(this_specimen) == True] if len(prior_specimen_interpretations): if len(prior_specimen_interpretations)>0: beg_pcas = pd.to_numeric( prior_specimen_interpretations.meas_step_min.values).tolist() end_pcas = pd.to_numeric( prior_specimen_interpretations.meas_step_max.values).tolist() spec_methods = prior_specimen_interpretations.method_codes.tolist() # step through all prior interpretations and plot them for ind in range(len(beg_pcas)): spec_meths = spec_methods[ind].split(':') for m in spec_meths: if 'DE-BFL' in m: calculation_type = 'DE-BFL' # best fit line if 'DE-BFP' in m: calculation_type = 'DE-BFP' # best fit plane if 'DE-FM' in m: calculation_type = 'DE-FM' # fisher mean if 'DE-BFL-A' in m: calculation_type = 'DE-BFL-A' # anchored best fit line treatments = pd.to_numeric(this_specimen_measurements.treatment).tolist() if len(beg_pcas)!=0: try: # getting the starting and ending points start, end = treatments.index(beg_pcas[ind]), treatments.index(end_pcas[ind]) mpars = pmag.domean( datablock, start, end, calculation_type) except ValueError as ex: mpars['specimen_direction_type'] = "Error" try: if beg_pcas[ind] == 0: start = 0 else: start = treatments.index(beg_pcas[ind]) if end_pcas[ind] == 0: end = 0 else: end = treatments.index(end_pcas[ind]) mpars = pmag.domean( datablock, start, end, calculation_type) except ValueError: mpars['specimen_direction_type'] = "Error" # calculate direction/plane if mpars["specimen_direction_type"] != "Error": # put it on the plot pmagplotlib.plot_dir(ZED, mpars, datablock, angle) #if interactive: # pmagplotlib.draw_figs(ZED) else: print('\n-W- Specimen {} record contains invalid start/stop bounds:'.format(this_specimen)) print(prior_spec_data.loc[this_specimen][['meas_step_min', 'meas_step_max']]) print('\n Measurement records:') cols = list(set(['treat_ac_field', 'treat_temp']).intersection(this_specimen_measurements.columns)) print(this_specimen_measurements[cols]) print('\n Data will be plotted without interpretations\n') return ZED def make_plots(spec, cnt, meas_df, spec_container, samp_container=None): # get sample data for orientation if spec_container: try: samps = spec_container.df.loc[spec, 'sample'] except KeyError: samps = "" samp_df = [] if isinstance(samps, int) or isinstance(samps, float) or isinstance(samps, np.int64): if np.isnan(samps): samp = "" samp_df = [] else: samp = str(samps) samp_container.df.index = samp_container.df.index.astype(str) samp_df = samp_container.df[samp_container.df.index == samp] elif isinstance(samps, type(None)): samp = "" samp_df = [] elif len(samps): if isinstance(samps, str): samp = samps else: samp = samps.iloc[0] samp_df = samp_container.df[samp_container.df.index == samp] else: samp_df = [] # we can make the figure dictionary that pmagplotlib likes: ZED = {'eqarea': cnt, 'zijd': cnt+1, 'demag': cnt+2} # make datablock # get the relevant data spec_df = meas_df[meas_df.specimen == s] # remove ARM data spec_df = spec_df[- spec_df.method_codes.str.contains( 'LP-*[\w]*-ARM')] # split data into NRM, thermal, and af dataframes spec_df_nrm = spec_df[spec_df.method_codes.str.contains( 'LT-NO')] # get the NRM data spec_df_th = spec_df[spec_df.method_codes.str.contains( 'LT-T-Z')] # zero field thermal demag steps try: cond = spec_df.method_codes.str.contains('(^|[\s\:])LT-PTRM') spec_df_th = spec_df_th[-cond] # get rid of some pTRM steps except ValueError: keep_inds = [] n = 0 for ind, row in spec_df_th.copy().iterrows(): if 'LT-PTRM' in row['method_codes'] and 'ALT-PTRM' not in row['method_codes']: keep_inds.append(n) else: pass n += 1 if len(keep_inds) < n: spec_df_th = spec_df_th.iloc[keep_inds] spec_df_af = spec_df[spec_df.method_codes.str.contains('LT-AF-Z')] this_spec_meas_df = None datablock = None if (not len(spec_df_th.index) > 1) and (not len(spec_df_af.index) > 1): return if len(spec_df_th.index) > 1: # this is a thermal run this_spec_meas_df = pd.concat([spec_df_nrm, spec_df_th]) # make sure all decs/incs are filled in n_rows = len(this_spec_meas_df) this_spec_meas_df = this_spec_meas_df.dropna(how='any', subset=['dir_dec', 'dir_inc', 'magn_moment']) if n_rows > len(this_spec_meas_df): print('-W- Some dec/inc/moment data were missing for specimen {}, so {} measurement row(s) were excluded'.format(s, n_rows - len(this_spec_meas_df))) # geographic transformation if coord != "-1" and len(samp_df): this_spec_meas_df = transform_to_geographic(this_spec_meas_df, samp_df, samp, coord) units = 'K' # units are kelvin try: this_spec_meas_df['magn_moment'] = this_spec_meas_df['magn_moment'].astype(float) this_spec_meas_df['treat_temp'] = this_spec_meas_df['treat_temp'].astype(float) except: print('-W- There are malformed or missing data for specimen {}, skipping'.format(spec)) return datablock = this_spec_meas_df[['treat_temp', 'dir_dec', 'dir_inc', 'magn_moment', 'blank', 'quality']].values.tolist() ZED = pmagplotlib.plot_zed(ZED, datablock, angle, s, units) if len(spec_df_af.index) > 1: # this is an af run this_spec_meas_df = pd.concat([spec_df_nrm, spec_df_af]) # make sure all decs/incs are filled in n_rows = len(this_spec_meas_df) this_spec_meas_df = this_spec_meas_df.dropna(how='any', subset=['dir_dec', 'dir_inc', 'magn_moment']) if n_rows > len(this_spec_meas_df): print('-W- Some dec/inc/moment data were missing for specimen {}, so {} measurement row(s) were excluded'.format(s, n_rows - len(this_spec_meas_df))) # geographic transformation if coord != "-1" and len(samp_df): this_spec_meas_df = transform_to_geographic(this_spec_meas_df, samp_df, samp, coord) units = 'T' # these are AF data try: this_spec_meas_df['magn_moment'] = this_spec_meas_df['magn_moment'].astype(float) this_spec_meas_df['treat_ac_field'] = this_spec_meas_df['treat_ac_field'].astype(float) except: print('-W- There are malformed or missing data for specimen {}, skipping'.format(spec)) return datablock = this_spec_meas_df[['treat_ac_field', 'dir_dec', 'dir_inc', 'magn_moment', 'blank', 'quality']].values.tolist() ZED = pmagplotlib.plot_zed(ZED, datablock, angle, s, units) return plot_interpretations(ZED, spec_container, s, this_spec_meas_df, datablock) if interactive: save_plots = False # read in MagIC formatted data if contribution object not provided if not isinstance(contribution, cb.Contribution): input_dir_path = os.path.realpath(input_dir_path) file_path = pmag.resolve_file_name(meas_file, input_dir_path) # read in magic formatted data if not os.path.exists(file_path): print('No such file:', file_path) return False, [] custom_filenames = {'measurements': file_path, 'specimens': spec_file, 'samples': samp_file} contribution = cb.Contribution(input_dir_path, custom_filenames=custom_filenames, read_tables=['measurements', 'specimens', 'contribution', 'samples']) if pmagplotlib.isServer: try: contribution.propagate_location_to_samples() contribution.propagate_location_to_specimens() contribution.propagate_location_to_measurements() except KeyError as ex: pass meas_container = contribution.tables['measurements'] meas_df = contribution.tables['measurements'].df # #meas_df=pd.read_csv(file_path, sep='\t', header=1) spec_container = contribution.tables.get('specimens', None) samp_container = contribution.tables.get('samples', None) #if not spec_file: # spec_file = os.path.join(os.path.split(file_path)[0], "specimens.txt") #if os.path.exists(spec_file): # spec_container = cb.MagicDataFrame(spec_file, dtype="specimens") #else: # spec_container = None meas_df['blank'] = "" # this is a dummy variable expected by plotZED if 'treat_ac_field' in meas_df.columns: # create 'treatment' column. # uses treat_temp if treat_ac_field is missing OR zero. # (have to take this into account for plotting later) if 'treat_temp' in meas_df.columns: meas_df['treatment'] = meas_df['treat_ac_field'].where( cond=meas_df['treat_ac_field'].astype(bool), other=meas_df['treat_temp']) else: meas_df['treatment'] = meas_df['treat_ac_field'] else: meas_df['treatment'] = meas_df['treat_temp'] if crd == "s": coord = "-1" elif crd == "t": coord = "100" else: coord = "0" specimens = meas_df.specimen.unique() # list of specimen names if len(specimens) == 0: print('there are no data for plotting') return False, [] # check measurement table for req'd fields missing = [] reqd_cols_present = meas_df.columns.intersection(['dir_dec', 'dir_inc', 'magn_moment']) for col in ['dir_dec', 'dir_inc', 'magn_moment']: if col not in reqd_cols_present: missing.append(col) if missing: print('-W- Missing required column(s) {}, cannot run zeq_magic'.format(', '.join(missing))) return False, [] cnt = fignum if n_plots != "all": if len(specimens) > n_plots: specimens = specimens[:n_plots] saved = [] if specimen: specimens = [specimen] for s in specimens: ZED = make_plots(s, cnt, meas_df, spec_container, samp_container) if not ZED: if pmagplotlib.verbose: print('No plots could be created for specimen:', s) continue titles = {key: s + "_" + key + "." + fmt for key in ZED} if pmagplotlib.isServer: titles = {} titles['eqarea'] = 'Equal Area Plot' titles['zijd'] = 'Zijderveld Plot' titles['demag'] = 'Demagnetization Plot' con_id = "" if 'contribution' in contribution.tables: if 'id' in contribution.tables['contribution'].df.columns: con_id = contribution.tables['contribution'].df['id'].values[0] pmagplotlib.add_borders(ZED, titles, con_id=con_id) for title in titles: # try to get the full hierarchy for plot names df_slice = meas_container.df[meas_container.df['specimen'] == s] location = str(meas_container.get_name('location', df_slice)) site = str(meas_container.get_name('site', df_slice)) sample = str(meas_container.get_name('sample', df_slice)) # add coord here! filename = 'LO:_'+location+'_SI:_'+site+'_SA:_'+sample + \ '_SP:_'+str(s)+'_CO:_' + '_TY:_'+title+'_.png' titles[title] = filename if save_plots: saved.extend(pmagplotlib.save_plots(ZED, titles)) elif interactive: pmagplotlib.draw_figs(ZED) ans = pmagplotlib.save_or_quit() if ans == 'a': saved.extend(pmagplotlib.save_plots(ZED, titles)) else: continue else: cnt += 3 return True, saved
zeq_magic makes zijderveld and equal area plots for magic formatted measurements files. Parameters ---------- meas_file : str input measurement file spec_file : str input specimen interpretation file samp_file : str input sample orientations file crd : str coordinate system [s,g,t] for specimen, geographic, tilt corrected g,t options require a sample file with specimen and bedding orientation input_dir_path : str input directory of meas_file, default "." angle : float angle of X direction with respect to specimen X n_plots : int, default 5 maximum number of plots to make if you want to make all possible plots, specify "all" save_plots : bool, default True if True, create and save all requested plots fmt : str, default "svg" format for figures, [svg, jpg, pdf, png] interactive : bool, default False interactively plot and display for each specimen (this is best used on the command line only) specimen : str, default "" specimen name to plot samp_file : str, default 'samples.txt' name of samples file contribution : cb.Contribution, default None if provided, use Contribution object instead of reading in data from files fignum : matplotlib figure number
Below is the the instruction that describes the task: ### Input: zeq_magic makes zijderveld and equal area plots for magic formatted measurements files. Parameters ---------- meas_file : str input measurement file spec_file : str input specimen interpretation file samp_file : str input sample orientations file crd : str coordinate system [s,g,t] for specimen, geographic, tilt corrected g,t options require a sample file with specimen and bedding orientation input_dir_path : str input directory of meas_file, default "." angle : float angle of X direction with respect to specimen X n_plots : int, default 5 maximum number of plots to make if you want to make all possible plots, specify "all" save_plots : bool, default True if True, create and save all requested plots fmt : str, default "svg" format for figures, [svg, jpg, pdf, png] interactive : bool, default False interactively plot and display for each specimen (this is best used on the command line only) specimen : str, default "" specimen name to plot samp_file : str, default 'samples.txt' name of samples file contribution : cb.Contribution, default None if provided, use Contribution object instead of reading in data from files fignum : matplotlib figure number ### Response: def zeq_magic(meas_file='measurements.txt', spec_file='',crd='s',input_dir_path='.', angle=0, n_plots=5, save_plots=True, fmt="svg", interactive=False, specimen="", samp_file='samples.txt', contribution=None,fignum=1): """ zeq_magic makes zijderveld and equal area plots for magic formatted measurements files. Parameters ---------- meas_file : str input measurement file spec_file : str input specimen interpretation file samp_file : str input sample orientations file crd : str coordinate system [s,g,t] for specimen, geographic, tilt corrected g,t options require a sample file with specimen and bedding orientation input_dir_path : str input directory of meas_file, default "." angle : float angle of X direction with respect to specimen X n_plots : int, default 5 maximum number of plots to make if you want to make all possible plots, specify "all" save_plots : bool, default True if True, create and save all requested plots fmt : str, default "svg" format for figures, [svg, jpg, pdf, png] interactive : bool, default False interactively plot and display for each specimen (this is best used on the command line only) specimen : str, default "" specimen name to plot samp_file : str, default 'samples.txt' name of samples file contribution : cb.Contribution, default None if provided, use Contribution object instead of reading in data from files fignum : matplotlib figure number """ def plot_interpretations(ZED, spec_container, this_specimen, this_specimen_measurements, datablock): if cb.is_null(spec_container) or cb.is_null(this_specimen_measurements) or cb.is_null(datablock): return ZED if 'method_codes' not in spec_container.df.columns: return ZED prior_spec_data = spec_container.get_records_for_code( 'LP-DIR', strict_match=False) # look up all prior directional interpretations prior_specimen_interpretations=[] if not len(prior_spec_data): return ZED mpars = {"specimen_direction_type": "Error"} if len(prior_spec_data): prior_specimen_interpretations = prior_spec_data[prior_spec_data['specimen'].astype(str) == this_specimen] #.str.match(this_specimen) == True] if len(prior_specimen_interpretations): if len(prior_specimen_interpretations)>0: beg_pcas = pd.to_numeric( prior_specimen_interpretations.meas_step_min.values).tolist() end_pcas = pd.to_numeric( prior_specimen_interpretations.meas_step_max.values).tolist() spec_methods = prior_specimen_interpretations.method_codes.tolist() # step through all prior interpretations and plot them for ind in range(len(beg_pcas)): spec_meths = spec_methods[ind].split(':') for m in spec_meths: if 'DE-BFL' in m: calculation_type = 'DE-BFL' # best fit line if 'DE-BFP' in m: calculation_type = 'DE-BFP' # best fit plane if 'DE-FM' in m: calculation_type = 'DE-FM' # fisher mean if 'DE-BFL-A' in m: calculation_type = 'DE-BFL-A' # anchored best fit line treatments = pd.to_numeric(this_specimen_measurements.treatment).tolist() if len(beg_pcas)!=0: try: # getting the starting and ending points start, end = treatments.index(beg_pcas[ind]), treatments.index(end_pcas[ind]) mpars = pmag.domean( datablock, start, end, calculation_type) except ValueError as ex: mpars['specimen_direction_type'] = "Error" try: if beg_pcas[ind] == 0: start = 0 else: start = treatments.index(beg_pcas[ind]) if end_pcas[ind] == 0: end = 0 else: end = treatments.index(end_pcas[ind]) mpars = pmag.domean( datablock, start, end, calculation_type) except ValueError: mpars['specimen_direction_type'] = "Error" # calculate direction/plane if mpars["specimen_direction_type"] != "Error": # put it on the plot pmagplotlib.plot_dir(ZED, mpars, datablock, angle) #if interactive: # pmagplotlib.draw_figs(ZED) else: print('\n-W- Specimen {} record contains invalid start/stop bounds:'.format(this_specimen)) print(prior_spec_data.loc[this_specimen][['meas_step_min', 'meas_step_max']]) print('\n Measurement records:') cols = list(set(['treat_ac_field', 'treat_temp']).intersection(this_specimen_measurements.columns)) print(this_specimen_measurements[cols]) print('\n Data will be plotted without interpretations\n') return ZED def make_plots(spec, cnt, meas_df, spec_container, samp_container=None): # get sample data for orientation if spec_container: try: samps = spec_container.df.loc[spec, 'sample'] except KeyError: samps = "" samp_df = [] if isinstance(samps, int) or isinstance(samps, float) or isinstance(samps, np.int64): if np.isnan(samps): samp = "" samp_df = [] else: samp = str(samps) samp_container.df.index = samp_container.df.index.astype(str) samp_df = samp_container.df[samp_container.df.index == samp] elif isinstance(samps, type(None)): samp = "" samp_df = [] elif len(samps): if isinstance(samps, str): samp = samps else: samp = samps.iloc[0] samp_df = samp_container.df[samp_container.df.index == samp] else: samp_df = [] # we can make the figure dictionary that pmagplotlib likes: ZED = {'eqarea': cnt, 'zijd': cnt+1, 'demag': cnt+2} # make datablock # get the relevant data spec_df = meas_df[meas_df.specimen == s] # remove ARM data spec_df = spec_df[- spec_df.method_codes.str.contains( 'LP-*[\w]*-ARM')] # split data into NRM, thermal, and af dataframes spec_df_nrm = spec_df[spec_df.method_codes.str.contains( 'LT-NO')] # get the NRM data spec_df_th = spec_df[spec_df.method_codes.str.contains( 'LT-T-Z')] # zero field thermal demag steps try: cond = spec_df.method_codes.str.contains('(^|[\s\:])LT-PTRM') spec_df_th = spec_df_th[-cond] # get rid of some pTRM steps except ValueError: keep_inds = [] n = 0 for ind, row in spec_df_th.copy().iterrows(): if 'LT-PTRM' in row['method_codes'] and 'ALT-PTRM' not in row['method_codes']: keep_inds.append(n) else: pass n += 1 if len(keep_inds) < n: spec_df_th = spec_df_th.iloc[keep_inds] spec_df_af = spec_df[spec_df.method_codes.str.contains('LT-AF-Z')] this_spec_meas_df = None datablock = None if (not len(spec_df_th.index) > 1) and (not len(spec_df_af.index) > 1): return if len(spec_df_th.index) > 1: # this is a thermal run this_spec_meas_df = pd.concat([spec_df_nrm, spec_df_th]) # make sure all decs/incs are filled in n_rows = len(this_spec_meas_df) this_spec_meas_df = this_spec_meas_df.dropna(how='any', subset=['dir_dec', 'dir_inc', 'magn_moment']) if n_rows > len(this_spec_meas_df): print('-W- Some dec/inc/moment data were missing for specimen {}, so {} measurement row(s) were excluded'.format(s, n_rows - len(this_spec_meas_df))) # geographic transformation if coord != "-1" and len(samp_df): this_spec_meas_df = transform_to_geographic(this_spec_meas_df, samp_df, samp, coord) units = 'K' # units are kelvin try: this_spec_meas_df['magn_moment'] = this_spec_meas_df['magn_moment'].astype(float) this_spec_meas_df['treat_temp'] = this_spec_meas_df['treat_temp'].astype(float) except: print('-W- There are malformed or missing data for specimen {}, skipping'.format(spec)) return datablock = this_spec_meas_df[['treat_temp', 'dir_dec', 'dir_inc', 'magn_moment', 'blank', 'quality']].values.tolist() ZED = pmagplotlib.plot_zed(ZED, datablock, angle, s, units) if len(spec_df_af.index) > 1: # this is an af run this_spec_meas_df = pd.concat([spec_df_nrm, spec_df_af]) # make sure all decs/incs are filled in n_rows = len(this_spec_meas_df) this_spec_meas_df = this_spec_meas_df.dropna(how='any', subset=['dir_dec', 'dir_inc', 'magn_moment']) if n_rows > len(this_spec_meas_df): print('-W- Some dec/inc/moment data were missing for specimen {}, so {} measurement row(s) were excluded'.format(s, n_rows - len(this_spec_meas_df))) # geographic transformation if coord != "-1" and len(samp_df): this_spec_meas_df = transform_to_geographic(this_spec_meas_df, samp_df, samp, coord) units = 'T' # these are AF data try: this_spec_meas_df['magn_moment'] = this_spec_meas_df['magn_moment'].astype(float) this_spec_meas_df['treat_ac_field'] = this_spec_meas_df['treat_ac_field'].astype(float) except: print('-W- There are malformed or missing data for specimen {}, skipping'.format(spec)) return datablock = this_spec_meas_df[['treat_ac_field', 'dir_dec', 'dir_inc', 'magn_moment', 'blank', 'quality']].values.tolist() ZED = pmagplotlib.plot_zed(ZED, datablock, angle, s, units) return plot_interpretations(ZED, spec_container, s, this_spec_meas_df, datablock) if interactive: save_plots = False # read in MagIC formatted data if contribution object not provided if not isinstance(contribution, cb.Contribution): input_dir_path = os.path.realpath(input_dir_path) file_path = pmag.resolve_file_name(meas_file, input_dir_path) # read in magic formatted data if not os.path.exists(file_path): print('No such file:', file_path) return False, [] custom_filenames = {'measurements': file_path, 'specimens': spec_file, 'samples': samp_file} contribution = cb.Contribution(input_dir_path, custom_filenames=custom_filenames, read_tables=['measurements', 'specimens', 'contribution', 'samples']) if pmagplotlib.isServer: try: contribution.propagate_location_to_samples() contribution.propagate_location_to_specimens() contribution.propagate_location_to_measurements() except KeyError as ex: pass meas_container = contribution.tables['measurements'] meas_df = contribution.tables['measurements'].df # #meas_df=pd.read_csv(file_path, sep='\t', header=1) spec_container = contribution.tables.get('specimens', None) samp_container = contribution.tables.get('samples', None) #if not spec_file: # spec_file = os.path.join(os.path.split(file_path)[0], "specimens.txt") #if os.path.exists(spec_file): # spec_container = cb.MagicDataFrame(spec_file, dtype="specimens") #else: # spec_container = None meas_df['blank'] = "" # this is a dummy variable expected by plotZED if 'treat_ac_field' in meas_df.columns: # create 'treatment' column. # uses treat_temp if treat_ac_field is missing OR zero. # (have to take this into account for plotting later) if 'treat_temp' in meas_df.columns: meas_df['treatment'] = meas_df['treat_ac_field'].where( cond=meas_df['treat_ac_field'].astype(bool), other=meas_df['treat_temp']) else: meas_df['treatment'] = meas_df['treat_ac_field'] else: meas_df['treatment'] = meas_df['treat_temp'] if crd == "s": coord = "-1" elif crd == "t": coord = "100" else: coord = "0" specimens = meas_df.specimen.unique() # list of specimen names if len(specimens) == 0: print('there are no data for plotting') return False, [] # check measurement table for req'd fields missing = [] reqd_cols_present = meas_df.columns.intersection(['dir_dec', 'dir_inc', 'magn_moment']) for col in ['dir_dec', 'dir_inc', 'magn_moment']: if col not in reqd_cols_present: missing.append(col) if missing: print('-W- Missing required column(s) {}, cannot run zeq_magic'.format(', '.join(missing))) return False, [] cnt = fignum if n_plots != "all": if len(specimens) > n_plots: specimens = specimens[:n_plots] saved = [] if specimen: specimens = [specimen] for s in specimens: ZED = make_plots(s, cnt, meas_df, spec_container, samp_container) if not ZED: if pmagplotlib.verbose: print('No plots could be created for specimen:', s) continue titles = {key: s + "_" + key + "." + fmt for key in ZED} if pmagplotlib.isServer: titles = {} titles['eqarea'] = 'Equal Area Plot' titles['zijd'] = 'Zijderveld Plot' titles['demag'] = 'Demagnetization Plot' con_id = "" if 'contribution' in contribution.tables: if 'id' in contribution.tables['contribution'].df.columns: con_id = contribution.tables['contribution'].df['id'].values[0] pmagplotlib.add_borders(ZED, titles, con_id=con_id) for title in titles: # try to get the full hierarchy for plot names df_slice = meas_container.df[meas_container.df['specimen'] == s] location = str(meas_container.get_name('location', df_slice)) site = str(meas_container.get_name('site', df_slice)) sample = str(meas_container.get_name('sample', df_slice)) # add coord here! filename = 'LO:_'+location+'_SI:_'+site+'_SA:_'+sample + \ '_SP:_'+str(s)+'_CO:_' + '_TY:_'+title+'_.png' titles[title] = filename if save_plots: saved.extend(pmagplotlib.save_plots(ZED, titles)) elif interactive: pmagplotlib.draw_figs(ZED) ans = pmagplotlib.save_or_quit() if ans == 'a': saved.extend(pmagplotlib.save_plots(ZED, titles)) else: continue else: cnt += 3 return True, saved
def update(self, dist): """ Adds the given distribution's counts to the current distribution. """ assert isinstance(dist, DDist) for k, c in iteritems(dist.counts): self.counts[k] += c self.total += dist.total
Adds the given distribution's counts to the current distribution.
Below is the the instruction that describes the task: ### Input: Adds the given distribution's counts to the current distribution. ### Response: def update(self, dist): """ Adds the given distribution's counts to the current distribution. """ assert isinstance(dist, DDist) for k, c in iteritems(dist.counts): self.counts[k] += c self.total += dist.total
def reftag_to_cls(fn): """ decorator that checks function arguments for `concrete` and `resource` and will properly set them to class references if a string (reftag) is passed as the value """ names, _, _, values = inspect.getargspec(fn) @wraps(fn) def wrapped(*args, **kwargs): i = 0 backend = args[0] for name in names[1:]: value = args[i] if name == "concrete" and isinstance(value, six.string_types): args[i] = backend.REFTAG_CONCRETE[value] elif name == "resource" and isinstance(value, six.string_types): args[i] = backend.REFTAG_RESOURCE[value] i += 1 return fn(*args, **kwargs) return wrapped
decorator that checks function arguments for `concrete` and `resource` and will properly set them to class references if a string (reftag) is passed as the value
Below is the the instruction that describes the task: ### Input: decorator that checks function arguments for `concrete` and `resource` and will properly set them to class references if a string (reftag) is passed as the value ### Response: def reftag_to_cls(fn): """ decorator that checks function arguments for `concrete` and `resource` and will properly set them to class references if a string (reftag) is passed as the value """ names, _, _, values = inspect.getargspec(fn) @wraps(fn) def wrapped(*args, **kwargs): i = 0 backend = args[0] for name in names[1:]: value = args[i] if name == "concrete" and isinstance(value, six.string_types): args[i] = backend.REFTAG_CONCRETE[value] elif name == "resource" and isinstance(value, six.string_types): args[i] = backend.REFTAG_RESOURCE[value] i += 1 return fn(*args, **kwargs) return wrapped
def predict_proba(self, p): """ Calculate the calibrated probabilities Parameters ---------- y_prob : array-like of shape = [n_samples, 2] Predicted probabilities to be calibrated using calibration map Returns ------- y_prob_cal : array-like of shape = [n_samples, 1] Predicted calibrated probabilities """ # TODO: Check input if p.size != p.shape[0]: p = p[:, 1] calibrated_proba = np.zeros(p.shape[0]) for i in range(self.calibration_map.shape[0]): calibrated_proba[np.logical_and(self.calibration_map[i, 1] <= p, self.calibration_map[i, 0] > p)] = \ self.calibration_map[i, 2] # TODO: return 2D and refactor return calibrated_proba
Calculate the calibrated probabilities Parameters ---------- y_prob : array-like of shape = [n_samples, 2] Predicted probabilities to be calibrated using calibration map Returns ------- y_prob_cal : array-like of shape = [n_samples, 1] Predicted calibrated probabilities
Below is the the instruction that describes the task: ### Input: Calculate the calibrated probabilities Parameters ---------- y_prob : array-like of shape = [n_samples, 2] Predicted probabilities to be calibrated using calibration map Returns ------- y_prob_cal : array-like of shape = [n_samples, 1] Predicted calibrated probabilities ### Response: def predict_proba(self, p): """ Calculate the calibrated probabilities Parameters ---------- y_prob : array-like of shape = [n_samples, 2] Predicted probabilities to be calibrated using calibration map Returns ------- y_prob_cal : array-like of shape = [n_samples, 1] Predicted calibrated probabilities """ # TODO: Check input if p.size != p.shape[0]: p = p[:, 1] calibrated_proba = np.zeros(p.shape[0]) for i in range(self.calibration_map.shape[0]): calibrated_proba[np.logical_and(self.calibration_map[i, 1] <= p, self.calibration_map[i, 0] > p)] = \ self.calibration_map[i, 2] # TODO: return 2D and refactor return calibrated_proba
def setup_scrollarea(self): """Setup the scrollarea that will contain the FigureThumbnails.""" self.view = QWidget() self.scene = QGridLayout(self.view) self.scene.setColumnStretch(0, 100) self.scene.setColumnStretch(2, 100) self.scrollarea = QScrollArea() self.scrollarea.setWidget(self.view) self.scrollarea.setWidgetResizable(True) self.scrollarea.setFrameStyle(0) self.scrollarea.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scrollarea.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scrollarea.setSizePolicy(QSizePolicy(QSizePolicy.Ignored, QSizePolicy.Preferred)) # Set the vertical scrollbar explicitely : # This is required to avoid a "RuntimeError: no access to protected # functions or signals for objects not created from Python" in Linux. self.scrollarea.setVerticalScrollBar(QScrollBar()) return self.scrollarea
Setup the scrollarea that will contain the FigureThumbnails.
Below is the the instruction that describes the task: ### Input: Setup the scrollarea that will contain the FigureThumbnails. ### Response: def setup_scrollarea(self): """Setup the scrollarea that will contain the FigureThumbnails.""" self.view = QWidget() self.scene = QGridLayout(self.view) self.scene.setColumnStretch(0, 100) self.scene.setColumnStretch(2, 100) self.scrollarea = QScrollArea() self.scrollarea.setWidget(self.view) self.scrollarea.setWidgetResizable(True) self.scrollarea.setFrameStyle(0) self.scrollarea.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scrollarea.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scrollarea.setSizePolicy(QSizePolicy(QSizePolicy.Ignored, QSizePolicy.Preferred)) # Set the vertical scrollbar explicitely : # This is required to avoid a "RuntimeError: no access to protected # functions or signals for objects not created from Python" in Linux. self.scrollarea.setVerticalScrollBar(QScrollBar()) return self.scrollarea
def handle(self, *args, **options): """ Making it happen. """ logger.info("Build started") # Set options self.set_options(*args, **options) # Get the build directory ready if not options.get("keep_build_dir"): self.init_build_dir() # Build up static files if not options.get("skip_static"): self.build_static() # Build the media directory if not options.get("skip_media"): self.build_media() # Build views self.build_views() # Close out logger.info("Build finished")
Making it happen.
Below is the the instruction that describes the task: ### Input: Making it happen. ### Response: def handle(self, *args, **options): """ Making it happen. """ logger.info("Build started") # Set options self.set_options(*args, **options) # Get the build directory ready if not options.get("keep_build_dir"): self.init_build_dir() # Build up static files if not options.get("skip_static"): self.build_static() # Build the media directory if not options.get("skip_media"): self.build_media() # Build views self.build_views() # Close out logger.info("Build finished")
def read_data(archive, arc_type, day, stachans, length=86400): """ Function to read the appropriate data from an archive for a day. :type archive: str :param archive: The archive source - if arc_type is seishub, this should be a url, if the arc_type is FDSN then this can be either a url or a known obspy client. If arc_type is day_vols, then this is the path to the top directory. :type arc_type: str :param arc_type: The type of archive, can be: seishub, FDSN, day_volumes :type day: datetime.date :param day: Date to retrieve data for :type stachans: list :param stachans: List of tuples of Stations and channels to try and get, will not fail if stations are not available, but will warn. :type length: float :param length: Data length to extract in seconds, defaults to 1 day. :returns: Stream of data :rtype: obspy.core.stream.Stream .. note:: A note on arc_types, if arc_type is day_vols, then this will \ look for directories labelled in the IRIS DMC conventions of \ Yyyyy/Rjjj.01/... where yyyy is the year and jjj is the julian day. \ Data within these files directories should be stored as day-long, \ single-channel files. This is not implemented in the fasted way \ possible to allow for a more general situation. If you require more \ speed you will need to re-write this. .. rubric:: Example >>> from obspy import UTCDateTime >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('JCNB', 'SP1')] >>> st = read_data('NCEDC', 'FDSN', t1, stachans) >>> print(st) 1 Trace(s) in Stream: BP.JCNB.40.SP1 | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.\ 950000Z | 20.0 Hz, 1728000 samples .. rubric:: Example, missing data >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('JCNB', 'SP1'), ('GCSZ', 'HHZ')] >>> st = read_data('NCEDC', 'FDSN', t1, stachans) >>> print(st) 1 Trace(s) in Stream: BP.JCNB.40.SP1 | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.\ 950000Z | 20.0 Hz, 1728000 samples .. rubric:: Example, local day-volumes >>> # Get the path to the test data >>> import eqcorrscan >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('WHYM', 'SHZ'), ('EORO', 'SHZ')] >>> st = read_data(TEST_PATH + '/day_vols', 'day_vols', ... t1, stachans) >>> print(st) 2 Trace(s) in Stream: AF.WHYM..SHZ | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.000000Z \ | 1.0 Hz, 86400 samples AF.EORO..SHZ | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.000000Z \ | 1.0 Hz, 86400 samples """ st = [] available_stations = _check_available_data(archive, arc_type, day) for station in stachans: if len(station[1]) == 2: # Cope with two char channel naming in seisan station_map = (station[0], station[1][0] + '*' + station[1][1]) available_stations_map = [(sta[0], sta[1][0] + '*' + sta[1][-1]) for sta in available_stations] else: station_map = station available_stations_map = available_stations if station_map not in available_stations_map: msg = ' '.join([station[0], station_map[1], 'is not available for', day.strftime('%Y/%m/%d')]) warnings.warn(msg) continue if arc_type.lower() == 'seishub': client = SeishubClient(archive) st += client.get_waveforms( network='*', station=station_map[0], location='*', channel=station_map[1], starttime=UTCDateTime(day), endtime=UTCDateTime(day) + length) elif arc_type.upper() == "FDSN": client = FDSNClient(archive) try: st += client.get_waveforms( network='*', station=station_map[0], location='*', channel=station_map[1], starttime=UTCDateTime(day), endtime=UTCDateTime(day) + length) except FDSNException: warnings.warn('No data on server despite station being ' + 'available...') continue elif arc_type.lower() == 'day_vols': wavfiles = _get_station_file(os.path.join( archive, day.strftime('Y%Y' + os.sep + 'R%j.01')), station_map[0], station_map[1]) for wavfile in wavfiles: st += read(wavfile, starttime=day, endtime=day + length) st = Stream(st) return st
Function to read the appropriate data from an archive for a day. :type archive: str :param archive: The archive source - if arc_type is seishub, this should be a url, if the arc_type is FDSN then this can be either a url or a known obspy client. If arc_type is day_vols, then this is the path to the top directory. :type arc_type: str :param arc_type: The type of archive, can be: seishub, FDSN, day_volumes :type day: datetime.date :param day: Date to retrieve data for :type stachans: list :param stachans: List of tuples of Stations and channels to try and get, will not fail if stations are not available, but will warn. :type length: float :param length: Data length to extract in seconds, defaults to 1 day. :returns: Stream of data :rtype: obspy.core.stream.Stream .. note:: A note on arc_types, if arc_type is day_vols, then this will \ look for directories labelled in the IRIS DMC conventions of \ Yyyyy/Rjjj.01/... where yyyy is the year and jjj is the julian day. \ Data within these files directories should be stored as day-long, \ single-channel files. This is not implemented in the fasted way \ possible to allow for a more general situation. If you require more \ speed you will need to re-write this. .. rubric:: Example >>> from obspy import UTCDateTime >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('JCNB', 'SP1')] >>> st = read_data('NCEDC', 'FDSN', t1, stachans) >>> print(st) 1 Trace(s) in Stream: BP.JCNB.40.SP1 | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.\ 950000Z | 20.0 Hz, 1728000 samples .. rubric:: Example, missing data >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('JCNB', 'SP1'), ('GCSZ', 'HHZ')] >>> st = read_data('NCEDC', 'FDSN', t1, stachans) >>> print(st) 1 Trace(s) in Stream: BP.JCNB.40.SP1 | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.\ 950000Z | 20.0 Hz, 1728000 samples .. rubric:: Example, local day-volumes >>> # Get the path to the test data >>> import eqcorrscan >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('WHYM', 'SHZ'), ('EORO', 'SHZ')] >>> st = read_data(TEST_PATH + '/day_vols', 'day_vols', ... t1, stachans) >>> print(st) 2 Trace(s) in Stream: AF.WHYM..SHZ | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.000000Z \ | 1.0 Hz, 86400 samples AF.EORO..SHZ | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.000000Z \ | 1.0 Hz, 86400 samples
Below is the the instruction that describes the task: ### Input: Function to read the appropriate data from an archive for a day. :type archive: str :param archive: The archive source - if arc_type is seishub, this should be a url, if the arc_type is FDSN then this can be either a url or a known obspy client. If arc_type is day_vols, then this is the path to the top directory. :type arc_type: str :param arc_type: The type of archive, can be: seishub, FDSN, day_volumes :type day: datetime.date :param day: Date to retrieve data for :type stachans: list :param stachans: List of tuples of Stations and channels to try and get, will not fail if stations are not available, but will warn. :type length: float :param length: Data length to extract in seconds, defaults to 1 day. :returns: Stream of data :rtype: obspy.core.stream.Stream .. note:: A note on arc_types, if arc_type is day_vols, then this will \ look for directories labelled in the IRIS DMC conventions of \ Yyyyy/Rjjj.01/... where yyyy is the year and jjj is the julian day. \ Data within these files directories should be stored as day-long, \ single-channel files. This is not implemented in the fasted way \ possible to allow for a more general situation. If you require more \ speed you will need to re-write this. .. rubric:: Example >>> from obspy import UTCDateTime >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('JCNB', 'SP1')] >>> st = read_data('NCEDC', 'FDSN', t1, stachans) >>> print(st) 1 Trace(s) in Stream: BP.JCNB.40.SP1 | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.\ 950000Z | 20.0 Hz, 1728000 samples .. rubric:: Example, missing data >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('JCNB', 'SP1'), ('GCSZ', 'HHZ')] >>> st = read_data('NCEDC', 'FDSN', t1, stachans) >>> print(st) 1 Trace(s) in Stream: BP.JCNB.40.SP1 | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.\ 950000Z | 20.0 Hz, 1728000 samples .. rubric:: Example, local day-volumes >>> # Get the path to the test data >>> import eqcorrscan >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('WHYM', 'SHZ'), ('EORO', 'SHZ')] >>> st = read_data(TEST_PATH + '/day_vols', 'day_vols', ... t1, stachans) >>> print(st) 2 Trace(s) in Stream: AF.WHYM..SHZ | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.000000Z \ | 1.0 Hz, 86400 samples AF.EORO..SHZ | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.000000Z \ | 1.0 Hz, 86400 samples ### Response: def read_data(archive, arc_type, day, stachans, length=86400): """ Function to read the appropriate data from an archive for a day. :type archive: str :param archive: The archive source - if arc_type is seishub, this should be a url, if the arc_type is FDSN then this can be either a url or a known obspy client. If arc_type is day_vols, then this is the path to the top directory. :type arc_type: str :param arc_type: The type of archive, can be: seishub, FDSN, day_volumes :type day: datetime.date :param day: Date to retrieve data for :type stachans: list :param stachans: List of tuples of Stations and channels to try and get, will not fail if stations are not available, but will warn. :type length: float :param length: Data length to extract in seconds, defaults to 1 day. :returns: Stream of data :rtype: obspy.core.stream.Stream .. note:: A note on arc_types, if arc_type is day_vols, then this will \ look for directories labelled in the IRIS DMC conventions of \ Yyyyy/Rjjj.01/... where yyyy is the year and jjj is the julian day. \ Data within these files directories should be stored as day-long, \ single-channel files. This is not implemented in the fasted way \ possible to allow for a more general situation. If you require more \ speed you will need to re-write this. .. rubric:: Example >>> from obspy import UTCDateTime >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('JCNB', 'SP1')] >>> st = read_data('NCEDC', 'FDSN', t1, stachans) >>> print(st) 1 Trace(s) in Stream: BP.JCNB.40.SP1 | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.\ 950000Z | 20.0 Hz, 1728000 samples .. rubric:: Example, missing data >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('JCNB', 'SP1'), ('GCSZ', 'HHZ')] >>> st = read_data('NCEDC', 'FDSN', t1, stachans) >>> print(st) 1 Trace(s) in Stream: BP.JCNB.40.SP1 | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.\ 950000Z | 20.0 Hz, 1728000 samples .. rubric:: Example, local day-volumes >>> # Get the path to the test data >>> import eqcorrscan >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> t1 = UTCDateTime(2012, 3, 26) >>> stachans = [('WHYM', 'SHZ'), ('EORO', 'SHZ')] >>> st = read_data(TEST_PATH + '/day_vols', 'day_vols', ... t1, stachans) >>> print(st) 2 Trace(s) in Stream: AF.WHYM..SHZ | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.000000Z \ | 1.0 Hz, 86400 samples AF.EORO..SHZ | 2012-03-26T00:00:00.000000Z - 2012-03-26T23:59:59.000000Z \ | 1.0 Hz, 86400 samples """ st = [] available_stations = _check_available_data(archive, arc_type, day) for station in stachans: if len(station[1]) == 2: # Cope with two char channel naming in seisan station_map = (station[0], station[1][0] + '*' + station[1][1]) available_stations_map = [(sta[0], sta[1][0] + '*' + sta[1][-1]) for sta in available_stations] else: station_map = station available_stations_map = available_stations if station_map not in available_stations_map: msg = ' '.join([station[0], station_map[1], 'is not available for', day.strftime('%Y/%m/%d')]) warnings.warn(msg) continue if arc_type.lower() == 'seishub': client = SeishubClient(archive) st += client.get_waveforms( network='*', station=station_map[0], location='*', channel=station_map[1], starttime=UTCDateTime(day), endtime=UTCDateTime(day) + length) elif arc_type.upper() == "FDSN": client = FDSNClient(archive) try: st += client.get_waveforms( network='*', station=station_map[0], location='*', channel=station_map[1], starttime=UTCDateTime(day), endtime=UTCDateTime(day) + length) except FDSNException: warnings.warn('No data on server despite station being ' + 'available...') continue elif arc_type.lower() == 'day_vols': wavfiles = _get_station_file(os.path.join( archive, day.strftime('Y%Y' + os.sep + 'R%j.01')), station_map[0], station_map[1]) for wavfile in wavfiles: st += read(wavfile, starttime=day, endtime=day + length) st = Stream(st) return st
def append(self, tweet): """Add a tweet to the end of the list.""" c = self.connection.cursor() last_tweet = c.execute("SELECT tweet from tweetlist where label='last_tweet'").next()[0] c.execute("INSERT INTO tweets(message, previous_tweet, next_tweet) VALUES (?,?,NULL)", (tweet, last_tweet)) tweet_id = c.lastrowid # Set the current tweet as the last tweet c.execute("UPDATE tweetlist SET tweet=? WHERE label='last_tweet'", (tweet_id,)) # If there was no last_tweet, there was no first_tweet # so make this the first tweet if last_tweet is None: c.execute("UPDATE tweetlist SET tweet=? WHERE label='first_tweet'", (tweet_id,)) else: # Update the last tweets reference to this one c.execute("UPDATE tweets SET next_tweet = ? WHERE id= ? ", (tweet_id, last_tweet)) self.connection.commit() c.close()
Add a tweet to the end of the list.
Below is the the instruction that describes the task: ### Input: Add a tweet to the end of the list. ### Response: def append(self, tweet): """Add a tweet to the end of the list.""" c = self.connection.cursor() last_tweet = c.execute("SELECT tweet from tweetlist where label='last_tweet'").next()[0] c.execute("INSERT INTO tweets(message, previous_tweet, next_tweet) VALUES (?,?,NULL)", (tweet, last_tweet)) tweet_id = c.lastrowid # Set the current tweet as the last tweet c.execute("UPDATE tweetlist SET tweet=? WHERE label='last_tweet'", (tweet_id,)) # If there was no last_tweet, there was no first_tweet # so make this the first tweet if last_tweet is None: c.execute("UPDATE tweetlist SET tweet=? WHERE label='first_tweet'", (tweet_id,)) else: # Update the last tweets reference to this one c.execute("UPDATE tweets SET next_tweet = ? WHERE id= ? ", (tweet_id, last_tweet)) self.connection.commit() c.close()
def verify(self, message, pubkey, rnum, snum): """ Verify the signature for message m, pubkey Y, signature (r,s) r = xcoord(R) verify that : G*m+Y*r=R*s this is true because: { Y=G*x, and R=G*k, s=(m+x*r)/k } G*m+G*x*r = G*k*(m+x*r)/k -> G*(m+x*r) = G*(m+x*r) several ways to do the verification: r == xcoord[ G*(m/s) + Y*(r/s) ] <<< the standard way R * s == G*m + Y*r r == xcoord[ (G*m + Y*r)/s) ] """ m = self.GFn.value(message) r = self.GFn.value(rnum) s = self.GFn.value(snum) R = self.G * (m / s) + pubkey * (r / s) # alternative methods of verifying # RORG= self.ec.decompress(r, 0) # RR = self.G * m + pubkey * r # print "#1: %s .. %s" % (RR, RORG*s) # print "#2: %s .. %s" % (RR*(1/s), r) # print "#3: %s .. %s" % (R, r) return R.x == r
Verify the signature for message m, pubkey Y, signature (r,s) r = xcoord(R) verify that : G*m+Y*r=R*s this is true because: { Y=G*x, and R=G*k, s=(m+x*r)/k } G*m+G*x*r = G*k*(m+x*r)/k -> G*(m+x*r) = G*(m+x*r) several ways to do the verification: r == xcoord[ G*(m/s) + Y*(r/s) ] <<< the standard way R * s == G*m + Y*r r == xcoord[ (G*m + Y*r)/s) ]
Below is the the instruction that describes the task: ### Input: Verify the signature for message m, pubkey Y, signature (r,s) r = xcoord(R) verify that : G*m+Y*r=R*s this is true because: { Y=G*x, and R=G*k, s=(m+x*r)/k } G*m+G*x*r = G*k*(m+x*r)/k -> G*(m+x*r) = G*(m+x*r) several ways to do the verification: r == xcoord[ G*(m/s) + Y*(r/s) ] <<< the standard way R * s == G*m + Y*r r == xcoord[ (G*m + Y*r)/s) ] ### Response: def verify(self, message, pubkey, rnum, snum): """ Verify the signature for message m, pubkey Y, signature (r,s) r = xcoord(R) verify that : G*m+Y*r=R*s this is true because: { Y=G*x, and R=G*k, s=(m+x*r)/k } G*m+G*x*r = G*k*(m+x*r)/k -> G*(m+x*r) = G*(m+x*r) several ways to do the verification: r == xcoord[ G*(m/s) + Y*(r/s) ] <<< the standard way R * s == G*m + Y*r r == xcoord[ (G*m + Y*r)/s) ] """ m = self.GFn.value(message) r = self.GFn.value(rnum) s = self.GFn.value(snum) R = self.G * (m / s) + pubkey * (r / s) # alternative methods of verifying # RORG= self.ec.decompress(r, 0) # RR = self.G * m + pubkey * r # print "#1: %s .. %s" % (RR, RORG*s) # print "#2: %s .. %s" % (RR*(1/s), r) # print "#3: %s .. %s" % (R, r) return R.x == r
def bound_bboxes(bboxes): """ Finds the minimal bbox that contains all given bboxes """ group_x0 = min(map(lambda l: l[x0], bboxes)) group_y0 = min(map(lambda l: l[y0], bboxes)) group_x1 = max(map(lambda l: l[x1], bboxes)) group_y1 = max(map(lambda l: l[y1], bboxes)) return (group_x0, group_y0, group_x1, group_y1)
Finds the minimal bbox that contains all given bboxes
Below is the the instruction that describes the task: ### Input: Finds the minimal bbox that contains all given bboxes ### Response: def bound_bboxes(bboxes): """ Finds the minimal bbox that contains all given bboxes """ group_x0 = min(map(lambda l: l[x0], bboxes)) group_y0 = min(map(lambda l: l[y0], bboxes)) group_x1 = max(map(lambda l: l[x1], bboxes)) group_y1 = max(map(lambda l: l[y1], bboxes)) return (group_x0, group_y0, group_x1, group_y1)
def SegmentMax(a, ids): """ Segmented max op. """ func = lambda idxs: np.amax(a[idxs], axis=0) return seg_map(func, a, ids),
Segmented max op.
Below is the the instruction that describes the task: ### Input: Segmented max op. ### Response: def SegmentMax(a, ids): """ Segmented max op. """ func = lambda idxs: np.amax(a[idxs], axis=0) return seg_map(func, a, ids),
def load_data(self, grid_method="gamma", num_samples=1000, condition_threshold=0.5, zero_inflate=False, percentile=None): """ Reads the track forecasts and converts them to grid point values based on random sampling. Args: grid_method: "gamma" by default num_samples: Number of samples drawn from predicted pdf condition_threshold: Objects are not written to the grid if condition model probability is below this threshold. zero_inflate: Whether to sample zeros from a Bernoulli sampler based on the condition model probability percentile: If None, outputs the mean of the samples at each grid point, otherwise outputs the specified percentile from 0 to 100. Returns: 0 if tracks are successfully sampled on to grid. If no tracks are found, returns -1. """ self.percentile = percentile if self.track_forecasts == {}: self.load_track_forecasts() if self.track_forecasts == {}: return -1 if self.data is None: self.data = np.zeros((len(self.members), self.times.size, self.grid_shape[0], self.grid_shape[1]), dtype=np.float32) else: self.data[:] = 0 if grid_method in ["mean", "median", "samples"]: for m, member in enumerate(self.members): print("Sampling " + member) for track_forecast in self.track_forecasts[member]: times = track_forecast["properties"]["times"] for s, step in enumerate(track_forecast["features"]): forecast_pdf = np.array(step['properties'][self.variable + "_" + self.ensemble_name.replace(" ", "-")]) forecast_time = self.run_date + timedelta(hours=times[s]) t = np.where(self.times == forecast_time)[0][0] mask = np.array(step['properties']["masks"], dtype=int) i = np.array(step['properties']["i"], dtype=int) i = i[mask == 1] j = np.array(step['properties']["j"], dtype=int) j = j[mask == 1] if grid_method == "samples": intensities = np.array(step["properties"]["timesteps"], dtype=float)[mask == 1] rankings = np.argsort(intensities) samples = np.random.choice(self.forecast_bins, size=intensities.size, replace=True, p=forecast_pdf) self.data[m, t, i[rankings], j[rankings]] = samples else: if grid_method == "mean": forecast_value = np.sum(forecast_pdf * self.forecast_bins) elif grid_method == "median": forecast_cdf = np.cumsum(forecast_pdf) forecast_value = self.forecast_bins[np.argmin(np.abs(forecast_cdf - 0.5))] else: forecast_value = 0 self.data[m, t, i, j] = forecast_value if grid_method in ["gamma"]: full_condition_name = "condition_" + self.condition_model_name.replace(" ", "-") dist_model_name = self.variable + "_" + self.ensemble_name.replace(" ", "-") for m, member in enumerate(self.members): for track_forecast in self.track_forecasts[member]: times = track_forecast["properties"]["times"] for s, step in enumerate(track_forecast["features"]): forecast_params = step["properties"][dist_model_name] if self.condition_model_name is not None: condition = step["properties"][full_condition_name] else: condition = None forecast_time = self.run_date + timedelta(hours=times[s]) if forecast_time in self.times: t = np.where(self.times == forecast_time)[0][0] mask = np.array(step["properties"]["masks"], dtype=int) rankings = np.argsort(step["properties"]["timesteps"])[mask == 1] i = np.array(step["properties"]["i"], dtype=int)[mask == 1][rankings] j = np.array(step["properties"]["j"], dtype=int)[mask == 1][rankings] if rankings.size > 0: raw_samples = np.sort(gamma.rvs(forecast_params[0], loc=forecast_params[1], scale=forecast_params[2], size=(num_samples, rankings.size)), axis=1) if zero_inflate: raw_samples *= bernoulli.rvs(condition, size=(num_samples, rankings.size)) if percentile is None: samples = raw_samples.mean(axis=0) else: samples = np.percentile(raw_samples, percentile, axis=0) if condition is None or condition >= condition_threshold: self.data[m, t, i, j] = samples return 0
Reads the track forecasts and converts them to grid point values based on random sampling. Args: grid_method: "gamma" by default num_samples: Number of samples drawn from predicted pdf condition_threshold: Objects are not written to the grid if condition model probability is below this threshold. zero_inflate: Whether to sample zeros from a Bernoulli sampler based on the condition model probability percentile: If None, outputs the mean of the samples at each grid point, otherwise outputs the specified percentile from 0 to 100. Returns: 0 if tracks are successfully sampled on to grid. If no tracks are found, returns -1.
Below is the the instruction that describes the task: ### Input: Reads the track forecasts and converts them to grid point values based on random sampling. Args: grid_method: "gamma" by default num_samples: Number of samples drawn from predicted pdf condition_threshold: Objects are not written to the grid if condition model probability is below this threshold. zero_inflate: Whether to sample zeros from a Bernoulli sampler based on the condition model probability percentile: If None, outputs the mean of the samples at each grid point, otherwise outputs the specified percentile from 0 to 100. Returns: 0 if tracks are successfully sampled on to grid. If no tracks are found, returns -1. ### Response: def load_data(self, grid_method="gamma", num_samples=1000, condition_threshold=0.5, zero_inflate=False, percentile=None): """ Reads the track forecasts and converts them to grid point values based on random sampling. Args: grid_method: "gamma" by default num_samples: Number of samples drawn from predicted pdf condition_threshold: Objects are not written to the grid if condition model probability is below this threshold. zero_inflate: Whether to sample zeros from a Bernoulli sampler based on the condition model probability percentile: If None, outputs the mean of the samples at each grid point, otherwise outputs the specified percentile from 0 to 100. Returns: 0 if tracks are successfully sampled on to grid. If no tracks are found, returns -1. """ self.percentile = percentile if self.track_forecasts == {}: self.load_track_forecasts() if self.track_forecasts == {}: return -1 if self.data is None: self.data = np.zeros((len(self.members), self.times.size, self.grid_shape[0], self.grid_shape[1]), dtype=np.float32) else: self.data[:] = 0 if grid_method in ["mean", "median", "samples"]: for m, member in enumerate(self.members): print("Sampling " + member) for track_forecast in self.track_forecasts[member]: times = track_forecast["properties"]["times"] for s, step in enumerate(track_forecast["features"]): forecast_pdf = np.array(step['properties'][self.variable + "_" + self.ensemble_name.replace(" ", "-")]) forecast_time = self.run_date + timedelta(hours=times[s]) t = np.where(self.times == forecast_time)[0][0] mask = np.array(step['properties']["masks"], dtype=int) i = np.array(step['properties']["i"], dtype=int) i = i[mask == 1] j = np.array(step['properties']["j"], dtype=int) j = j[mask == 1] if grid_method == "samples": intensities = np.array(step["properties"]["timesteps"], dtype=float)[mask == 1] rankings = np.argsort(intensities) samples = np.random.choice(self.forecast_bins, size=intensities.size, replace=True, p=forecast_pdf) self.data[m, t, i[rankings], j[rankings]] = samples else: if grid_method == "mean": forecast_value = np.sum(forecast_pdf * self.forecast_bins) elif grid_method == "median": forecast_cdf = np.cumsum(forecast_pdf) forecast_value = self.forecast_bins[np.argmin(np.abs(forecast_cdf - 0.5))] else: forecast_value = 0 self.data[m, t, i, j] = forecast_value if grid_method in ["gamma"]: full_condition_name = "condition_" + self.condition_model_name.replace(" ", "-") dist_model_name = self.variable + "_" + self.ensemble_name.replace(" ", "-") for m, member in enumerate(self.members): for track_forecast in self.track_forecasts[member]: times = track_forecast["properties"]["times"] for s, step in enumerate(track_forecast["features"]): forecast_params = step["properties"][dist_model_name] if self.condition_model_name is not None: condition = step["properties"][full_condition_name] else: condition = None forecast_time = self.run_date + timedelta(hours=times[s]) if forecast_time in self.times: t = np.where(self.times == forecast_time)[0][0] mask = np.array(step["properties"]["masks"], dtype=int) rankings = np.argsort(step["properties"]["timesteps"])[mask == 1] i = np.array(step["properties"]["i"], dtype=int)[mask == 1][rankings] j = np.array(step["properties"]["j"], dtype=int)[mask == 1][rankings] if rankings.size > 0: raw_samples = np.sort(gamma.rvs(forecast_params[0], loc=forecast_params[1], scale=forecast_params[2], size=(num_samples, rankings.size)), axis=1) if zero_inflate: raw_samples *= bernoulli.rvs(condition, size=(num_samples, rankings.size)) if percentile is None: samples = raw_samples.mean(axis=0) else: samples = np.percentile(raw_samples, percentile, axis=0) if condition is None or condition >= condition_threshold: self.data[m, t, i, j] = samples return 0
def hex_2_rgb(self, color): """ convert a hex color to rgb """ if not self.RE_HEX.match(color): color = "#FFF" if len(color) == 7: return (int(color[i : i + 2], 16) / 255 for i in [1, 3, 5]) return (int(c, 16) / 15 for c in color)
convert a hex color to rgb
Below is the the instruction that describes the task: ### Input: convert a hex color to rgb ### Response: def hex_2_rgb(self, color): """ convert a hex color to rgb """ if not self.RE_HEX.match(color): color = "#FFF" if len(color) == 7: return (int(color[i : i + 2], 16) / 255 for i in [1, 3, 5]) return (int(c, 16) / 15 for c in color)
def apply_activation( books, x, activation, activation_args=(), activation_kwargs=None): """Returns activation(x, *activation_args, **activation_kwargs). This applies the given activation and adds useful summaries specific to the activation. Args: books: The bookkeeper. x: The tensor to apply activation to. activation: An activation function. activation_args: Optional additional arguments for the activation. activation_kwargs: Optional keyword args for activation. Returns: A tensor with activation applied to x. """ if activation is None: return x if activation_kwargs is None: activation_kwargs = {} y = activation(x, *activation_args, **activation_kwargs) if activation in (tf.nn.relu, functions.leaky_relu, functions.softplus): books.add_scalar_summary( tf.reduce_mean(tf.cast(tf.less(x, 0.0), tf.float32)), '%s/zeros' % y.op.name) elif activation is tf.nn.relu6: books.add_scalar_summary( tf.reduce_mean(tf.cast(tf.less(x, 0.0), tf.float32)), '%s/zeros' % y.op.name) books.add_scalar_summary( tf.reduce_mean(tf.cast(tf.greater(x, 6.0), tf.float32)), '%s/sixes' % y.op.name) elif activation in (functions.l2_normalize, tf.nn.l2_normalize, functions.l1_normalize): books.add_scalar_summary( tf.reduce_mean(tf.sqrt(tf.reduce_sum( tf.square(x), 1))), '%s/length' % y.op.name) return y
Returns activation(x, *activation_args, **activation_kwargs). This applies the given activation and adds useful summaries specific to the activation. Args: books: The bookkeeper. x: The tensor to apply activation to. activation: An activation function. activation_args: Optional additional arguments for the activation. activation_kwargs: Optional keyword args for activation. Returns: A tensor with activation applied to x.
Below is the the instruction that describes the task: ### Input: Returns activation(x, *activation_args, **activation_kwargs). This applies the given activation and adds useful summaries specific to the activation. Args: books: The bookkeeper. x: The tensor to apply activation to. activation: An activation function. activation_args: Optional additional arguments for the activation. activation_kwargs: Optional keyword args for activation. Returns: A tensor with activation applied to x. ### Response: def apply_activation( books, x, activation, activation_args=(), activation_kwargs=None): """Returns activation(x, *activation_args, **activation_kwargs). This applies the given activation and adds useful summaries specific to the activation. Args: books: The bookkeeper. x: The tensor to apply activation to. activation: An activation function. activation_args: Optional additional arguments for the activation. activation_kwargs: Optional keyword args for activation. Returns: A tensor with activation applied to x. """ if activation is None: return x if activation_kwargs is None: activation_kwargs = {} y = activation(x, *activation_args, **activation_kwargs) if activation in (tf.nn.relu, functions.leaky_relu, functions.softplus): books.add_scalar_summary( tf.reduce_mean(tf.cast(tf.less(x, 0.0), tf.float32)), '%s/zeros' % y.op.name) elif activation is tf.nn.relu6: books.add_scalar_summary( tf.reduce_mean(tf.cast(tf.less(x, 0.0), tf.float32)), '%s/zeros' % y.op.name) books.add_scalar_summary( tf.reduce_mean(tf.cast(tf.greater(x, 6.0), tf.float32)), '%s/sixes' % y.op.name) elif activation in (functions.l2_normalize, tf.nn.l2_normalize, functions.l1_normalize): books.add_scalar_summary( tf.reduce_mean(tf.sqrt(tf.reduce_sum( tf.square(x), 1))), '%s/length' % y.op.name) return y
def create_array(self, json): """Create :class:`.resources.Array` from JSON. :param json: JSON dict. :return: Array instance. """ result = Array(json['sys']) result.total = json['total'] result.skip = json['skip'] result.limit = json['limit'] result.items = [] result.items_mapped = {'Asset': {}, 'Entry': {}} self.process_array_items(result, json) self.process_array_includes(result, json) return result
Create :class:`.resources.Array` from JSON. :param json: JSON dict. :return: Array instance.
Below is the the instruction that describes the task: ### Input: Create :class:`.resources.Array` from JSON. :param json: JSON dict. :return: Array instance. ### Response: def create_array(self, json): """Create :class:`.resources.Array` from JSON. :param json: JSON dict. :return: Array instance. """ result = Array(json['sys']) result.total = json['total'] result.skip = json['skip'] result.limit = json['limit'] result.items = [] result.items_mapped = {'Asset': {}, 'Entry': {}} self.process_array_items(result, json) self.process_array_includes(result, json) return result
def _get_erase_command(self, drive, pattern): """Return the command arguments based on the pattern. Erase command examples: 1) Sanitize: "ssacli ctrl slot=0 pd 1I:1:1 modify erase erasepattern=overwrite unrestricted=off forced" 2) Zeros: "ssacli ctrl slot=0 pd 1I:1:1 modify erase erasepattern=zero forced" :param drive: A string with comma separated list of drives. :param pattern: A string which defines the type of erase. :returns: A list of ssacli command arguments. """ cmd_args = [] cmd_args.append("pd %s" % drive) cmd_args.extend(['modify', 'erase', pattern]) if pattern != 'erasepattern=zero': cmd_args.append('unrestricted=off') cmd_args.append('forced') return cmd_args
Return the command arguments based on the pattern. Erase command examples: 1) Sanitize: "ssacli ctrl slot=0 pd 1I:1:1 modify erase erasepattern=overwrite unrestricted=off forced" 2) Zeros: "ssacli ctrl slot=0 pd 1I:1:1 modify erase erasepattern=zero forced" :param drive: A string with comma separated list of drives. :param pattern: A string which defines the type of erase. :returns: A list of ssacli command arguments.
Below is the the instruction that describes the task: ### Input: Return the command arguments based on the pattern. Erase command examples: 1) Sanitize: "ssacli ctrl slot=0 pd 1I:1:1 modify erase erasepattern=overwrite unrestricted=off forced" 2) Zeros: "ssacli ctrl slot=0 pd 1I:1:1 modify erase erasepattern=zero forced" :param drive: A string with comma separated list of drives. :param pattern: A string which defines the type of erase. :returns: A list of ssacli command arguments. ### Response: def _get_erase_command(self, drive, pattern): """Return the command arguments based on the pattern. Erase command examples: 1) Sanitize: "ssacli ctrl slot=0 pd 1I:1:1 modify erase erasepattern=overwrite unrestricted=off forced" 2) Zeros: "ssacli ctrl slot=0 pd 1I:1:1 modify erase erasepattern=zero forced" :param drive: A string with comma separated list of drives. :param pattern: A string which defines the type of erase. :returns: A list of ssacli command arguments. """ cmd_args = [] cmd_args.append("pd %s" % drive) cmd_args.extend(['modify', 'erase', pattern]) if pattern != 'erasepattern=zero': cmd_args.append('unrestricted=off') cmd_args.append('forced') return cmd_args
def _GetIdentifierFromPath(self, parser_mediator): """Extracts a container or a graph ID from a JSON file's path. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. Returns: str: container or graph identifier. """ file_entry = parser_mediator.GetFileEntry() path = file_entry.path_spec.location file_system = file_entry.GetFileSystem() path_segments = file_system.SplitPath(path) return path_segments[-2]
Extracts a container or a graph ID from a JSON file's path. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. Returns: str: container or graph identifier.
Below is the the instruction that describes the task: ### Input: Extracts a container or a graph ID from a JSON file's path. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. Returns: str: container or graph identifier. ### Response: def _GetIdentifierFromPath(self, parser_mediator): """Extracts a container or a graph ID from a JSON file's path. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. Returns: str: container or graph identifier. """ file_entry = parser_mediator.GetFileEntry() path = file_entry.path_spec.location file_system = file_entry.GetFileSystem() path_segments = file_system.SplitPath(path) return path_segments[-2]
def exists_locked(filepath: str) -> Tuple[bool, bool]: """ Checks if a file is locked by opening it in append mode. (If no exception is thrown in that situation, then the file is not locked.) Args: filepath: file to check Returns: tuple: ``(exists, locked)`` See https://www.calazan.com/how-to-check-if-a-file-is-locked-in-python/. """ exists = False locked = None file_object = None if os.path.exists(filepath): exists = True locked = True try: buffer_size = 8 # Opening file in append mode and read the first 8 characters. file_object = open(filepath, 'a', buffer_size) if file_object: locked = False # exists and not locked except IOError: pass finally: if file_object: file_object.close() return exists, locked
Checks if a file is locked by opening it in append mode. (If no exception is thrown in that situation, then the file is not locked.) Args: filepath: file to check Returns: tuple: ``(exists, locked)`` See https://www.calazan.com/how-to-check-if-a-file-is-locked-in-python/.
Below is the the instruction that describes the task: ### Input: Checks if a file is locked by opening it in append mode. (If no exception is thrown in that situation, then the file is not locked.) Args: filepath: file to check Returns: tuple: ``(exists, locked)`` See https://www.calazan.com/how-to-check-if-a-file-is-locked-in-python/. ### Response: def exists_locked(filepath: str) -> Tuple[bool, bool]: """ Checks if a file is locked by opening it in append mode. (If no exception is thrown in that situation, then the file is not locked.) Args: filepath: file to check Returns: tuple: ``(exists, locked)`` See https://www.calazan.com/how-to-check-if-a-file-is-locked-in-python/. """ exists = False locked = None file_object = None if os.path.exists(filepath): exists = True locked = True try: buffer_size = 8 # Opening file in append mode and read the first 8 characters. file_object = open(filepath, 'a', buffer_size) if file_object: locked = False # exists and not locked except IOError: pass finally: if file_object: file_object.close() return exists, locked
def __calculate_dataset_difference(self, amount_clusters): """! @brief Calculate distance from each point to each cluster center. """ dataset_differences = numpy.zeros((amount_clusters, len(self.__pointer_data))) for index_center in range(amount_clusters): if self.__metric.get_type() != type_metric.USER_DEFINED: dataset_differences[index_center] = self.__metric(self.__pointer_data, self.__centers[index_center]) else: dataset_differences[index_center] = [ self.__metric(point, self.__centers[index_center]) for point in self.__pointer_data ] return dataset_differences
! @brief Calculate distance from each point to each cluster center.
Below is the the instruction that describes the task: ### Input: ! @brief Calculate distance from each point to each cluster center. ### Response: def __calculate_dataset_difference(self, amount_clusters): """! @brief Calculate distance from each point to each cluster center. """ dataset_differences = numpy.zeros((amount_clusters, len(self.__pointer_data))) for index_center in range(amount_clusters): if self.__metric.get_type() != type_metric.USER_DEFINED: dataset_differences[index_center] = self.__metric(self.__pointer_data, self.__centers[index_center]) else: dataset_differences[index_center] = [ self.__metric(point, self.__centers[index_center]) for point in self.__pointer_data ] return dataset_differences
def analysis_provenance_details_simplified_extractor( impact_report, component_metadata): """Extracting simplified version of provenance details of layers. This extractor will produce provenance details which will be displayed in the main report. :param impact_report: the impact report that acts as a proxy to fetch all the data that extractor needed :type impact_report: safe.report.impact_report.ImpactReport :param component_metadata: the component metadata. Used to obtain information about the component we want to render :type component_metadata: safe.report.report_metadata. ReportComponentsMetadata :return: context for rendering phase :rtype: dict .. versionadded:: 4.0 """ context = {} extra_args = component_metadata.extra_args default_source = resolve_from_dictionary( extra_args, ['defaults', 'source']) default_reference = resolve_from_dictionary( extra_args, ['defaults', 'reference']) provenance_format_args = resolve_from_dictionary( extra_args, 'provenance_format') hazard_keywords = impact_report.impact_function.provenance[ 'hazard_keywords'] header = resolve_from_dictionary( provenance_format_args, 'hazard_header') provenance_format = resolve_from_dictionary( provenance_format_args, 'hazard_format') hazard_provenance = { 'header': header, 'provenance': provenance_format.format( layer_name=hazard_keywords.get('title'), source=QgsDataSourceUri.removePassword( decode_full_layer_uri(hazard_keywords.get('source'))[0] or default_source)) } exposure_keywords = impact_report.impact_function.provenance[ 'exposure_keywords'] header = resolve_from_dictionary( provenance_format_args, 'exposure_header') provenance_format = resolve_from_dictionary( provenance_format_args, 'exposure_format') exposure_provenance = { 'header': header, 'provenance': provenance_format.format( layer_name=exposure_keywords.get('title'), source=QgsDataSourceUri.removePassword( decode_full_layer_uri(exposure_keywords.get('source'))[0] or default_source)) } aggregation_keywords = impact_report.impact_function.provenance[ 'aggregation_keywords'] header = resolve_from_dictionary( provenance_format_args, 'aggregation_header') provenance_format = resolve_from_dictionary( provenance_format_args, 'aggregation_format') # only if aggregation layer used if aggregation_keywords: provenance_string = provenance_format.format( layer_name=aggregation_keywords.get('title'), source=QgsDataSourceUri.removePassword( decode_full_layer_uri(aggregation_keywords.get('source'))[0] or default_source)) else: aggregation_not_used = resolve_from_dictionary( extra_args, ['defaults', 'aggregation_not_used']) provenance_string = aggregation_not_used aggregation_provenance = { 'header': header, 'provenance': provenance_string } impact_function_name = impact_report.impact_function.name header = resolve_from_dictionary( provenance_format_args, 'impact_function_header') provenance_format = resolve_from_dictionary( provenance_format_args, 'impact_function_format') impact_function_provenance = { 'header': header, 'provenance': provenance_format.format( impact_function_name=impact_function_name, reference=default_reference) } provenance_detail = OrderedDict() provenance_detail['hazard'] = hazard_provenance provenance_detail['exposure'] = exposure_provenance provenance_detail['aggregation'] = aggregation_provenance provenance_detail['impact_function'] = impact_function_provenance analysis_details_header = resolve_from_dictionary( extra_args, ['header', 'analysis_detail']) context['component_key'] = component_metadata.key context.update({ 'header': analysis_details_header, 'details': provenance_detail }) return context
Extracting simplified version of provenance details of layers. This extractor will produce provenance details which will be displayed in the main report. :param impact_report: the impact report that acts as a proxy to fetch all the data that extractor needed :type impact_report: safe.report.impact_report.ImpactReport :param component_metadata: the component metadata. Used to obtain information about the component we want to render :type component_metadata: safe.report.report_metadata. ReportComponentsMetadata :return: context for rendering phase :rtype: dict .. versionadded:: 4.0
Below is the the instruction that describes the task: ### Input: Extracting simplified version of provenance details of layers. This extractor will produce provenance details which will be displayed in the main report. :param impact_report: the impact report that acts as a proxy to fetch all the data that extractor needed :type impact_report: safe.report.impact_report.ImpactReport :param component_metadata: the component metadata. Used to obtain information about the component we want to render :type component_metadata: safe.report.report_metadata. ReportComponentsMetadata :return: context for rendering phase :rtype: dict .. versionadded:: 4.0 ### Response: def analysis_provenance_details_simplified_extractor( impact_report, component_metadata): """Extracting simplified version of provenance details of layers. This extractor will produce provenance details which will be displayed in the main report. :param impact_report: the impact report that acts as a proxy to fetch all the data that extractor needed :type impact_report: safe.report.impact_report.ImpactReport :param component_metadata: the component metadata. Used to obtain information about the component we want to render :type component_metadata: safe.report.report_metadata. ReportComponentsMetadata :return: context for rendering phase :rtype: dict .. versionadded:: 4.0 """ context = {} extra_args = component_metadata.extra_args default_source = resolve_from_dictionary( extra_args, ['defaults', 'source']) default_reference = resolve_from_dictionary( extra_args, ['defaults', 'reference']) provenance_format_args = resolve_from_dictionary( extra_args, 'provenance_format') hazard_keywords = impact_report.impact_function.provenance[ 'hazard_keywords'] header = resolve_from_dictionary( provenance_format_args, 'hazard_header') provenance_format = resolve_from_dictionary( provenance_format_args, 'hazard_format') hazard_provenance = { 'header': header, 'provenance': provenance_format.format( layer_name=hazard_keywords.get('title'), source=QgsDataSourceUri.removePassword( decode_full_layer_uri(hazard_keywords.get('source'))[0] or default_source)) } exposure_keywords = impact_report.impact_function.provenance[ 'exposure_keywords'] header = resolve_from_dictionary( provenance_format_args, 'exposure_header') provenance_format = resolve_from_dictionary( provenance_format_args, 'exposure_format') exposure_provenance = { 'header': header, 'provenance': provenance_format.format( layer_name=exposure_keywords.get('title'), source=QgsDataSourceUri.removePassword( decode_full_layer_uri(exposure_keywords.get('source'))[0] or default_source)) } aggregation_keywords = impact_report.impact_function.provenance[ 'aggregation_keywords'] header = resolve_from_dictionary( provenance_format_args, 'aggregation_header') provenance_format = resolve_from_dictionary( provenance_format_args, 'aggregation_format') # only if aggregation layer used if aggregation_keywords: provenance_string = provenance_format.format( layer_name=aggregation_keywords.get('title'), source=QgsDataSourceUri.removePassword( decode_full_layer_uri(aggregation_keywords.get('source'))[0] or default_source)) else: aggregation_not_used = resolve_from_dictionary( extra_args, ['defaults', 'aggregation_not_used']) provenance_string = aggregation_not_used aggregation_provenance = { 'header': header, 'provenance': provenance_string } impact_function_name = impact_report.impact_function.name header = resolve_from_dictionary( provenance_format_args, 'impact_function_header') provenance_format = resolve_from_dictionary( provenance_format_args, 'impact_function_format') impact_function_provenance = { 'header': header, 'provenance': provenance_format.format( impact_function_name=impact_function_name, reference=default_reference) } provenance_detail = OrderedDict() provenance_detail['hazard'] = hazard_provenance provenance_detail['exposure'] = exposure_provenance provenance_detail['aggregation'] = aggregation_provenance provenance_detail['impact_function'] = impact_function_provenance analysis_details_header = resolve_from_dictionary( extra_args, ['header', 'analysis_detail']) context['component_key'] = component_metadata.key context.update({ 'header': analysis_details_header, 'details': provenance_detail }) return context
def decode_response(content: bytes) -> set: """ adb response text -> device set """ content = content[4:].decode(config.ENCODING) if '\t' not in content and '\n' not in content: return set() connected_devices = set() device_list = [i for i in content.split('\n') if i] for each_device in device_list: device_id, device_status = each_device.split('\t') if device_status == 'device': connected_devices.add(device_id) return connected_devices
adb response text -> device set
Below is the the instruction that describes the task: ### Input: adb response text -> device set ### Response: def decode_response(content: bytes) -> set: """ adb response text -> device set """ content = content[4:].decode(config.ENCODING) if '\t' not in content and '\n' not in content: return set() connected_devices = set() device_list = [i for i in content.split('\n') if i] for each_device in device_list: device_id, device_status = each_device.split('\t') if device_status == 'device': connected_devices.add(device_id) return connected_devices
def get_files(client, bucket, prefix=''): """Lists files/objects on a bucket. TODO: docstring""" bucket = client.get_bucket(bucket) files = list(bucket.list_blobs(prefix=prefix)) return files
Lists files/objects on a bucket. TODO: docstring
Below is the the instruction that describes the task: ### Input: Lists files/objects on a bucket. TODO: docstring ### Response: def get_files(client, bucket, prefix=''): """Lists files/objects on a bucket. TODO: docstring""" bucket = client.get_bucket(bucket) files = list(bucket.list_blobs(prefix=prefix)) return files
def build_config(config_file=get_system_config_directory()): """ Construct the config object from necessary elements. """ config = Config(config_file, allow_no_value=True) application_versions = find_applications_on_system() # Add found versions to config if they don't exist. Versions found # in the config file takes precedence over versions found in PATH. for item in application_versions.iteritems(): if not config.has_option(Config.EXECUTABLES, item[0]): config.set(Config.EXECUTABLES, item[0], item[1]) return config
Construct the config object from necessary elements.
Below is the the instruction that describes the task: ### Input: Construct the config object from necessary elements. ### Response: def build_config(config_file=get_system_config_directory()): """ Construct the config object from necessary elements. """ config = Config(config_file, allow_no_value=True) application_versions = find_applications_on_system() # Add found versions to config if they don't exist. Versions found # in the config file takes precedence over versions found in PATH. for item in application_versions.iteritems(): if not config.has_option(Config.EXECUTABLES, item[0]): config.set(Config.EXECUTABLES, item[0], item[1]) return config
def commit(self, offset=None, limit=None, dryrun=False): """ Start the rsync download """ self.stream.command = "rsync -avRK --files-from={path} {source} {destination}" self.stream.append_tasks_to_streamlets(offset=offset, limit=limit) self.stream.commit_streamlets() self.stream.run_streamlets() self.stream.reset_streamlet()
Start the rsync download
Below is the the instruction that describes the task: ### Input: Start the rsync download ### Response: def commit(self, offset=None, limit=None, dryrun=False): """ Start the rsync download """ self.stream.command = "rsync -avRK --files-from={path} {source} {destination}" self.stream.append_tasks_to_streamlets(offset=offset, limit=limit) self.stream.commit_streamlets() self.stream.run_streamlets() self.stream.reset_streamlet()
def _record_sort_by_indicators(record): """Sort the fields inside the record by indicators.""" for tag, fields in record.items(): record[tag] = _fields_sort_by_indicators(fields)
Sort the fields inside the record by indicators.
Below is the the instruction that describes the task: ### Input: Sort the fields inside the record by indicators. ### Response: def _record_sort_by_indicators(record): """Sort the fields inside the record by indicators.""" for tag, fields in record.items(): record[tag] = _fields_sort_by_indicators(fields)
def main(): "Process CLI arguments and call appropriate functions." try: args = docopt.docopt(__doc__, version=__about__.__version__) except docopt.DocoptExit: if len(sys.argv) > 1: print(f"{Fore.RED}Invalid command syntax, " f"check help:{Fore.RESET}\n") print(__doc__) sys.exit(1) print_all = False if not (args["--int-width"] or args["--int-height"] or args["--decimal"]): print_all = True width = float(args["WIDTH"]) height = float(args["HEIGHT"]) as_int_ = as_int(width, height) as_float_ = as_float(width, height) if args["--ndigits"]: as_float_ = round(as_float_, int(args["--ndigits"])) to_print = [] if args["--int-width"] or print_all: to_print.append(f"{Fore.BLUE}{as_int_[0]!s}") if args["--int-height"] or print_all: to_print.append(f"{Fore.BLUE}{as_int_[1]!s}") if args["--decimal"] or print_all: to_print.append(f"{Fore.MAGENTA}{as_float_!s}") print(" ".join(to_print))
Process CLI arguments and call appropriate functions.
Below is the the instruction that describes the task: ### Input: Process CLI arguments and call appropriate functions. ### Response: def main(): "Process CLI arguments and call appropriate functions." try: args = docopt.docopt(__doc__, version=__about__.__version__) except docopt.DocoptExit: if len(sys.argv) > 1: print(f"{Fore.RED}Invalid command syntax, " f"check help:{Fore.RESET}\n") print(__doc__) sys.exit(1) print_all = False if not (args["--int-width"] or args["--int-height"] or args["--decimal"]): print_all = True width = float(args["WIDTH"]) height = float(args["HEIGHT"]) as_int_ = as_int(width, height) as_float_ = as_float(width, height) if args["--ndigits"]: as_float_ = round(as_float_, int(args["--ndigits"])) to_print = [] if args["--int-width"] or print_all: to_print.append(f"{Fore.BLUE}{as_int_[0]!s}") if args["--int-height"] or print_all: to_print.append(f"{Fore.BLUE}{as_int_[1]!s}") if args["--decimal"] or print_all: to_print.append(f"{Fore.MAGENTA}{as_float_!s}") print(" ".join(to_print))
def findSector(self,x,y): ''' Finds the quadrilateral "sector" for each (x,y) point in the input. Only called as a subroutine of _evaluate(). Parameters ---------- x : np.array Values whose sector should be found. y : np.array Values whose sector should be found. Should be same size as x. Returns ------- x_pos : np.array Sector x-coordinates for each point of the input, of the same size. y_pos : np.array Sector y-coordinates for each point of the input, of the same size. ''' # Initialize the sector guess m = x.size x_pos_guess = (np.ones(m)*self.x_n/2).astype(int) y_pos_guess = (np.ones(m)*self.y_n/2).astype(int) # Define a function that checks whether a set of points violates a linear # boundary defined by (x_bound_1,y_bound_1) and (x_bound_2,y_bound_2), # where the latter is *COUNTER CLOCKWISE* from the former. Returns # 1 if the point is outside the boundary and 0 otherwise. violationCheck = lambda x_check,y_check,x_bound_1,y_bound_1,x_bound_2,y_bound_2 : ( (y_bound_2 - y_bound_1)*x_check - (x_bound_2 - x_bound_1)*y_check > x_bound_1*y_bound_2 - y_bound_1*x_bound_2 ) + 0 # Identify the correct sector for each point to be evaluated these = np.ones(m,dtype=bool) max_loops = self.x_n + self.y_n loops = 0 while np.any(these) and loops < max_loops: # Get coordinates for the four vertices: (xA,yA),...,(xD,yD) x_temp = x[these] y_temp = y[these] xA = self.x_values[x_pos_guess[these],y_pos_guess[these]] xB = self.x_values[x_pos_guess[these]+1,y_pos_guess[these]] xC = self.x_values[x_pos_guess[these],y_pos_guess[these]+1] xD = self.x_values[x_pos_guess[these]+1,y_pos_guess[these]+1] yA = self.y_values[x_pos_guess[these],y_pos_guess[these]] yB = self.y_values[x_pos_guess[these]+1,y_pos_guess[these]] yC = self.y_values[x_pos_guess[these],y_pos_guess[these]+1] yD = self.y_values[x_pos_guess[these]+1,y_pos_guess[these]+1] # Check the "bounding box" for the sector: is this guess plausible? move_down = (y_temp < np.minimum(yA,yB)) + 0 move_right = (x_temp > np.maximum(xB,xD)) + 0 move_up = (y_temp > np.maximum(yC,yD)) + 0 move_left = (x_temp < np.minimum(xA,xC)) + 0 # Check which boundaries are violated (and thus where to look next) c = (move_down + move_right + move_up + move_left) == 0 move_down[c] = violationCheck(x_temp[c],y_temp[c],xA[c],yA[c],xB[c],yB[c]) move_right[c] = violationCheck(x_temp[c],y_temp[c],xB[c],yB[c],xD[c],yD[c]) move_up[c] = violationCheck(x_temp[c],y_temp[c],xD[c],yD[c],xC[c],yC[c]) move_left[c] = violationCheck(x_temp[c],y_temp[c],xC[c],yC[c],xA[c],yA[c]) # Update the sector guess based on the violations x_pos_next = x_pos_guess[these] - move_left + move_right x_pos_next[x_pos_next < 0] = 0 x_pos_next[x_pos_next > (self.x_n-2)] = self.x_n-2 y_pos_next = y_pos_guess[these] - move_down + move_up y_pos_next[y_pos_next < 0] = 0 y_pos_next[y_pos_next > (self.y_n-2)] = self.y_n-2 # Check which sectors have not changed, and mark them as complete no_move = np.array(np.logical_and(x_pos_guess[these] == x_pos_next, y_pos_guess[these] == y_pos_next)) x_pos_guess[these] = x_pos_next y_pos_guess[these] = y_pos_next temp = these.nonzero() these[temp[0][no_move]] = False # Move to the next iteration of the search loops += 1 # Return the output x_pos = x_pos_guess y_pos = y_pos_guess return x_pos, y_pos
Finds the quadrilateral "sector" for each (x,y) point in the input. Only called as a subroutine of _evaluate(). Parameters ---------- x : np.array Values whose sector should be found. y : np.array Values whose sector should be found. Should be same size as x. Returns ------- x_pos : np.array Sector x-coordinates for each point of the input, of the same size. y_pos : np.array Sector y-coordinates for each point of the input, of the same size.
Below is the the instruction that describes the task: ### Input: Finds the quadrilateral "sector" for each (x,y) point in the input. Only called as a subroutine of _evaluate(). Parameters ---------- x : np.array Values whose sector should be found. y : np.array Values whose sector should be found. Should be same size as x. Returns ------- x_pos : np.array Sector x-coordinates for each point of the input, of the same size. y_pos : np.array Sector y-coordinates for each point of the input, of the same size. ### Response: def findSector(self,x,y): ''' Finds the quadrilateral "sector" for each (x,y) point in the input. Only called as a subroutine of _evaluate(). Parameters ---------- x : np.array Values whose sector should be found. y : np.array Values whose sector should be found. Should be same size as x. Returns ------- x_pos : np.array Sector x-coordinates for each point of the input, of the same size. y_pos : np.array Sector y-coordinates for each point of the input, of the same size. ''' # Initialize the sector guess m = x.size x_pos_guess = (np.ones(m)*self.x_n/2).astype(int) y_pos_guess = (np.ones(m)*self.y_n/2).astype(int) # Define a function that checks whether a set of points violates a linear # boundary defined by (x_bound_1,y_bound_1) and (x_bound_2,y_bound_2), # where the latter is *COUNTER CLOCKWISE* from the former. Returns # 1 if the point is outside the boundary and 0 otherwise. violationCheck = lambda x_check,y_check,x_bound_1,y_bound_1,x_bound_2,y_bound_2 : ( (y_bound_2 - y_bound_1)*x_check - (x_bound_2 - x_bound_1)*y_check > x_bound_1*y_bound_2 - y_bound_1*x_bound_2 ) + 0 # Identify the correct sector for each point to be evaluated these = np.ones(m,dtype=bool) max_loops = self.x_n + self.y_n loops = 0 while np.any(these) and loops < max_loops: # Get coordinates for the four vertices: (xA,yA),...,(xD,yD) x_temp = x[these] y_temp = y[these] xA = self.x_values[x_pos_guess[these],y_pos_guess[these]] xB = self.x_values[x_pos_guess[these]+1,y_pos_guess[these]] xC = self.x_values[x_pos_guess[these],y_pos_guess[these]+1] xD = self.x_values[x_pos_guess[these]+1,y_pos_guess[these]+1] yA = self.y_values[x_pos_guess[these],y_pos_guess[these]] yB = self.y_values[x_pos_guess[these]+1,y_pos_guess[these]] yC = self.y_values[x_pos_guess[these],y_pos_guess[these]+1] yD = self.y_values[x_pos_guess[these]+1,y_pos_guess[these]+1] # Check the "bounding box" for the sector: is this guess plausible? move_down = (y_temp < np.minimum(yA,yB)) + 0 move_right = (x_temp > np.maximum(xB,xD)) + 0 move_up = (y_temp > np.maximum(yC,yD)) + 0 move_left = (x_temp < np.minimum(xA,xC)) + 0 # Check which boundaries are violated (and thus where to look next) c = (move_down + move_right + move_up + move_left) == 0 move_down[c] = violationCheck(x_temp[c],y_temp[c],xA[c],yA[c],xB[c],yB[c]) move_right[c] = violationCheck(x_temp[c],y_temp[c],xB[c],yB[c],xD[c],yD[c]) move_up[c] = violationCheck(x_temp[c],y_temp[c],xD[c],yD[c],xC[c],yC[c]) move_left[c] = violationCheck(x_temp[c],y_temp[c],xC[c],yC[c],xA[c],yA[c]) # Update the sector guess based on the violations x_pos_next = x_pos_guess[these] - move_left + move_right x_pos_next[x_pos_next < 0] = 0 x_pos_next[x_pos_next > (self.x_n-2)] = self.x_n-2 y_pos_next = y_pos_guess[these] - move_down + move_up y_pos_next[y_pos_next < 0] = 0 y_pos_next[y_pos_next > (self.y_n-2)] = self.y_n-2 # Check which sectors have not changed, and mark them as complete no_move = np.array(np.logical_and(x_pos_guess[these] == x_pos_next, y_pos_guess[these] == y_pos_next)) x_pos_guess[these] = x_pos_next y_pos_guess[these] = y_pos_next temp = these.nonzero() these[temp[0][no_move]] = False # Move to the next iteration of the search loops += 1 # Return the output x_pos = x_pos_guess y_pos = y_pos_guess return x_pos, y_pos
def fo_pct_by_zone(self): """ Get the by team face-off win % by zone. Format is :returns: dict ``{ 'home/away': { 'off/def/neut': % } }`` """ bz = self.by_zone return { t: { z: bz[t][z]['won']/(1.0*bz[t][z]['total']) if bz[t][z]['total'] else 0.0 for z in self.__zones if z != 'all' } for t in [ 'home', 'away' ] }
Get the by team face-off win % by zone. Format is :returns: dict ``{ 'home/away': { 'off/def/neut': % } }``
Below is the the instruction that describes the task: ### Input: Get the by team face-off win % by zone. Format is :returns: dict ``{ 'home/away': { 'off/def/neut': % } }`` ### Response: def fo_pct_by_zone(self): """ Get the by team face-off win % by zone. Format is :returns: dict ``{ 'home/away': { 'off/def/neut': % } }`` """ bz = self.by_zone return { t: { z: bz[t][z]['won']/(1.0*bz[t][z]['total']) if bz[t][z]['total'] else 0.0 for z in self.__zones if z != 'all' } for t in [ 'home', 'away' ] }
def sub_path(self, path): """ If this redirect is a regular expression, it will return a rewritten version of `path`; otherwise returns the `new_path`. """ if not self.regular_expression: return self.new_path return re.sub(self.old_path, self.new_path, path)
If this redirect is a regular expression, it will return a rewritten version of `path`; otherwise returns the `new_path`.
Below is the the instruction that describes the task: ### Input: If this redirect is a regular expression, it will return a rewritten version of `path`; otherwise returns the `new_path`. ### Response: def sub_path(self, path): """ If this redirect is a regular expression, it will return a rewritten version of `path`; otherwise returns the `new_path`. """ if not self.regular_expression: return self.new_path return re.sub(self.old_path, self.new_path, path)
def check_terminate(self): """ Returns a Bool of whether to terminate. Checks whether a satisfactory minimum has been found or whether too many iterations have occurred. """ if not self._has_run: return False else: #1-3. errtol, paramtol, model cosine low enough? terminate = self.check_completion() #4. too many iterations?? terminate |= (self._num_iter >= self.max_iter) return terminate
Returns a Bool of whether to terminate. Checks whether a satisfactory minimum has been found or whether too many iterations have occurred.
Below is the the instruction that describes the task: ### Input: Returns a Bool of whether to terminate. Checks whether a satisfactory minimum has been found or whether too many iterations have occurred. ### Response: def check_terminate(self): """ Returns a Bool of whether to terminate. Checks whether a satisfactory minimum has been found or whether too many iterations have occurred. """ if not self._has_run: return False else: #1-3. errtol, paramtol, model cosine low enough? terminate = self.check_completion() #4. too many iterations?? terminate |= (self._num_iter >= self.max_iter) return terminate
def add(self,dist): """Add `dist` if we ``can_add()`` it and it isn't already added""" if self.can_add(dist) and dist.has_version(): dists = self._distmap.setdefault(dist.key,[]) if dist not in dists: dists.append(dist) if dist.key in self._cache: _sort_dists(self._cache[dist.key])
Add `dist` if we ``can_add()`` it and it isn't already added
Below is the the instruction that describes the task: ### Input: Add `dist` if we ``can_add()`` it and it isn't already added ### Response: def add(self,dist): """Add `dist` if we ``can_add()`` it and it isn't already added""" if self.can_add(dist) and dist.has_version(): dists = self._distmap.setdefault(dist.key,[]) if dist not in dists: dists.append(dist) if dist.key in self._cache: _sort_dists(self._cache[dist.key])
def override_temp(replacement): """ Monkey-patch tempfile.tempdir with replacement, ensuring it exists """ if not os.path.isdir(replacement): os.makedirs(replacement) saved = tempfile.tempdir tempfile.tempdir = replacement try: yield finally: tempfile.tempdir = saved
Monkey-patch tempfile.tempdir with replacement, ensuring it exists
Below is the the instruction that describes the task: ### Input: Monkey-patch tempfile.tempdir with replacement, ensuring it exists ### Response: def override_temp(replacement): """ Monkey-patch tempfile.tempdir with replacement, ensuring it exists """ if not os.path.isdir(replacement): os.makedirs(replacement) saved = tempfile.tempdir tempfile.tempdir = replacement try: yield finally: tempfile.tempdir = saved
def get_tracks(self, catalog, cache=True): """Get the tracks for a song given a catalog. Args: catalog (str): a string representing the catalog whose track you want to retrieve. Returns: A list of Track dicts. Example: >>> s = song.Song('SOWDASQ12A6310F24F') >>> s.get_tracks('7digital')[0] {u'catalog': u'7digital', u'foreign_id': u'7digital:track:8445818', u'id': u'TRJGNNY12903CC625C', u'preview_url': u'http://previews.7digital.com/clips/34/8445818.clip.mp3', u'release_image': u'http://cdn.7static.com/static/img/sleeveart/00/007/628/0000762838_200.jpg'} >>> """ if not (cache and ('tracks' in self.cache) and (catalog in [td['catalog'] for td in self.cache['tracks']])): kwargs = { 'bucket':['tracks', 'id:%s' % catalog], } response = self.get_attribute('profile', **kwargs) if not 'tracks' in self.cache: self.cache['tracks'] = [] # don't blow away the cache for other catalogs potential_tracks = response['songs'][0].get('tracks', []) existing_track_ids = [tr['foreign_id'] for tr in self.cache['tracks']] new_tds = filter(lambda tr: tr['foreign_id'] not in existing_track_ids, potential_tracks) self.cache['tracks'].extend(new_tds) return filter(lambda tr: tr['catalog']==util.map_idspace(catalog), self.cache['tracks'])
Get the tracks for a song given a catalog. Args: catalog (str): a string representing the catalog whose track you want to retrieve. Returns: A list of Track dicts. Example: >>> s = song.Song('SOWDASQ12A6310F24F') >>> s.get_tracks('7digital')[0] {u'catalog': u'7digital', u'foreign_id': u'7digital:track:8445818', u'id': u'TRJGNNY12903CC625C', u'preview_url': u'http://previews.7digital.com/clips/34/8445818.clip.mp3', u'release_image': u'http://cdn.7static.com/static/img/sleeveart/00/007/628/0000762838_200.jpg'} >>>
Below is the the instruction that describes the task: ### Input: Get the tracks for a song given a catalog. Args: catalog (str): a string representing the catalog whose track you want to retrieve. Returns: A list of Track dicts. Example: >>> s = song.Song('SOWDASQ12A6310F24F') >>> s.get_tracks('7digital')[0] {u'catalog': u'7digital', u'foreign_id': u'7digital:track:8445818', u'id': u'TRJGNNY12903CC625C', u'preview_url': u'http://previews.7digital.com/clips/34/8445818.clip.mp3', u'release_image': u'http://cdn.7static.com/static/img/sleeveart/00/007/628/0000762838_200.jpg'} >>> ### Response: def get_tracks(self, catalog, cache=True): """Get the tracks for a song given a catalog. Args: catalog (str): a string representing the catalog whose track you want to retrieve. Returns: A list of Track dicts. Example: >>> s = song.Song('SOWDASQ12A6310F24F') >>> s.get_tracks('7digital')[0] {u'catalog': u'7digital', u'foreign_id': u'7digital:track:8445818', u'id': u'TRJGNNY12903CC625C', u'preview_url': u'http://previews.7digital.com/clips/34/8445818.clip.mp3', u'release_image': u'http://cdn.7static.com/static/img/sleeveart/00/007/628/0000762838_200.jpg'} >>> """ if not (cache and ('tracks' in self.cache) and (catalog in [td['catalog'] for td in self.cache['tracks']])): kwargs = { 'bucket':['tracks', 'id:%s' % catalog], } response = self.get_attribute('profile', **kwargs) if not 'tracks' in self.cache: self.cache['tracks'] = [] # don't blow away the cache for other catalogs potential_tracks = response['songs'][0].get('tracks', []) existing_track_ids = [tr['foreign_id'] for tr in self.cache['tracks']] new_tds = filter(lambda tr: tr['foreign_id'] not in existing_track_ids, potential_tracks) self.cache['tracks'].extend(new_tds) return filter(lambda tr: tr['catalog']==util.map_idspace(catalog), self.cache['tracks'])
def collect(self, name, arr): """Callback function for collecting layer output NDArrays.""" name = py_str(name) if self.include_layer is not None and not self.include_layer(name): return handle = ctypes.cast(arr, NDArrayHandle) arr = NDArray(handle, writable=False).copyto(cpu()) if self.logger is not None: self.logger.info("Collecting layer %s output of shape %s" % (name, arr.shape)) if name in self.nd_dict: self.nd_dict[name].append(arr) else: self.nd_dict[name] = [arr]
Callback function for collecting layer output NDArrays.
Below is the the instruction that describes the task: ### Input: Callback function for collecting layer output NDArrays. ### Response: def collect(self, name, arr): """Callback function for collecting layer output NDArrays.""" name = py_str(name) if self.include_layer is not None and not self.include_layer(name): return handle = ctypes.cast(arr, NDArrayHandle) arr = NDArray(handle, writable=False).copyto(cpu()) if self.logger is not None: self.logger.info("Collecting layer %s output of shape %s" % (name, arr.shape)) if name in self.nd_dict: self.nd_dict[name].append(arr) else: self.nd_dict[name] = [arr]
def mergecn(args): """ %prog mergecn FACE.csv Compile matrix of GC-corrected copy numbers. Place a bunch of folders in csv file. Each folder will be scanned, one chromosomes after another. """ p = OptionParser(mergecn.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) csvfile, = args samples = [x.replace("-cn", "").strip().strip("/") for x in open(csvfile)] betadir = "beta" mkdir(betadir) for seqid in allsomes: names = [op.join(s + "-cn", "{}.{}.cn". format(op.basename(s), seqid)) for s in samples] arrays = [np.fromfile(name, dtype=np.float) for name in names] shapes = [x.shape[0] for x in arrays] med_shape = np.median(shapes) arrays = [x for x in arrays if x.shape[0] == med_shape] ploidy = 2 if seqid not in ("chrY", "chrM") else 1 if seqid in sexsomes: chr_med = [np.median([x for x in a if x > 0]) for a in arrays] chr_med = np.array(chr_med) idx = get_kmeans(chr_med, k=2) zero_med = np.median(chr_med[idx == 0]) one_med = np.median(chr_med[idx == 1]) logging.debug("K-means with {} c0:{} c1:{}" .format(seqid, zero_med, one_med)) higher_idx = 1 if one_med > zero_med else 0 # Use the higher mean coverage componen arrays = np.array(arrays)[idx == higher_idx] arrays = [[x] for x in arrays] ar = np.concatenate(arrays) print(seqid, ar.shape) rows, columns = ar.shape beta = [] std = [] for j in xrange(columns): a = ar[:, j] beta.append(np.median(a)) std.append(np.std(a) / np.mean(a)) beta = np.array(beta) / ploidy betafile = op.join(betadir, "{}.beta".format(seqid)) beta.tofile(betafile) stdfile = op.join(betadir, "{}.std".format(seqid)) std = np.array(std) std.tofile(stdfile) logging.debug("Written to `{}`".format(betafile)) ar.tofile("{}.bin".format(seqid))
%prog mergecn FACE.csv Compile matrix of GC-corrected copy numbers. Place a bunch of folders in csv file. Each folder will be scanned, one chromosomes after another.
Below is the the instruction that describes the task: ### Input: %prog mergecn FACE.csv Compile matrix of GC-corrected copy numbers. Place a bunch of folders in csv file. Each folder will be scanned, one chromosomes after another. ### Response: def mergecn(args): """ %prog mergecn FACE.csv Compile matrix of GC-corrected copy numbers. Place a bunch of folders in csv file. Each folder will be scanned, one chromosomes after another. """ p = OptionParser(mergecn.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) csvfile, = args samples = [x.replace("-cn", "").strip().strip("/") for x in open(csvfile)] betadir = "beta" mkdir(betadir) for seqid in allsomes: names = [op.join(s + "-cn", "{}.{}.cn". format(op.basename(s), seqid)) for s in samples] arrays = [np.fromfile(name, dtype=np.float) for name in names] shapes = [x.shape[0] for x in arrays] med_shape = np.median(shapes) arrays = [x for x in arrays if x.shape[0] == med_shape] ploidy = 2 if seqid not in ("chrY", "chrM") else 1 if seqid in sexsomes: chr_med = [np.median([x for x in a if x > 0]) for a in arrays] chr_med = np.array(chr_med) idx = get_kmeans(chr_med, k=2) zero_med = np.median(chr_med[idx == 0]) one_med = np.median(chr_med[idx == 1]) logging.debug("K-means with {} c0:{} c1:{}" .format(seqid, zero_med, one_med)) higher_idx = 1 if one_med > zero_med else 0 # Use the higher mean coverage componen arrays = np.array(arrays)[idx == higher_idx] arrays = [[x] for x in arrays] ar = np.concatenate(arrays) print(seqid, ar.shape) rows, columns = ar.shape beta = [] std = [] for j in xrange(columns): a = ar[:, j] beta.append(np.median(a)) std.append(np.std(a) / np.mean(a)) beta = np.array(beta) / ploidy betafile = op.join(betadir, "{}.beta".format(seqid)) beta.tofile(betafile) stdfile = op.join(betadir, "{}.std".format(seqid)) std = np.array(std) std.tofile(stdfile) logging.debug("Written to `{}`".format(betafile)) ar.tofile("{}.bin".format(seqid))
def add_event(self, event): """ Adds an IEvent event to this command set. :param event: an event instance to be added """ self._events.append(event) self._events_by_name[event.get_name] = event
Adds an IEvent event to this command set. :param event: an event instance to be added
Below is the the instruction that describes the task: ### Input: Adds an IEvent event to this command set. :param event: an event instance to be added ### Response: def add_event(self, event): """ Adds an IEvent event to this command set. :param event: an event instance to be added """ self._events.append(event) self._events_by_name[event.get_name] = event
def declare_func(self, id_, lineno, type_=None): """ Declares a function in the current scope. Checks whether the id exist or not (error if exists). And creates the entry at the symbol table. """ if not self.check_class(id_, 'function', lineno): entry = self.get_entry(id_) # Must not exist or have _class = None or Function and declared = False an = 'an' if entry.class_.lower()[0] in 'aeio' else 'a' syntax_error(lineno, "'%s' already declared as %s %s at %i" % (id_, an, entry.class_, entry.lineno)) return None entry = self.get_entry(id_) # Must not exist or have _class = None or Function and declared = False if entry is not None: if entry.declared and not entry.forwarded: syntax_error(lineno, "Duplicate function name '%s', previously defined at %i" % (id_, entry.lineno)) return None if entry.class_ != CLASS.unknown and entry.callable is False: # HINT: Must use is False here. syntax_error_not_array_nor_func(lineno, id_) return None if id_[-1] in DEPRECATED_SUFFIXES and entry.type_ != self.basic_types[SUFFIX_TYPE[id_[-1]]]: syntax_error_func_type_mismatch(lineno, entry) if entry.token == 'VAR': # This was a function used in advance symbols.VAR.to_function(entry, lineno=lineno) entry.mangled = '%s_%s' % (self.mangle, entry.name) # HINT: mangle for nexted scopes else: entry = self.declare(id_, lineno, symbols.FUNCTION(id_, lineno, type_=type_)) if entry.forwarded: entry.forwared = False # No longer forwarded old_type = entry.type_ # Remembers the old type if entry.type_ is not None: if entry.type_ != old_type: syntax_error_func_type_mismatch(lineno, entry) else: entry.type_ = old_type else: entry.params_size = 0 # Size of parameters entry.locals_size = 0 # Size of local variables return entry
Declares a function in the current scope. Checks whether the id exist or not (error if exists). And creates the entry at the symbol table.
Below is the the instruction that describes the task: ### Input: Declares a function in the current scope. Checks whether the id exist or not (error if exists). And creates the entry at the symbol table. ### Response: def declare_func(self, id_, lineno, type_=None): """ Declares a function in the current scope. Checks whether the id exist or not (error if exists). And creates the entry at the symbol table. """ if not self.check_class(id_, 'function', lineno): entry = self.get_entry(id_) # Must not exist or have _class = None or Function and declared = False an = 'an' if entry.class_.lower()[0] in 'aeio' else 'a' syntax_error(lineno, "'%s' already declared as %s %s at %i" % (id_, an, entry.class_, entry.lineno)) return None entry = self.get_entry(id_) # Must not exist or have _class = None or Function and declared = False if entry is not None: if entry.declared and not entry.forwarded: syntax_error(lineno, "Duplicate function name '%s', previously defined at %i" % (id_, entry.lineno)) return None if entry.class_ != CLASS.unknown and entry.callable is False: # HINT: Must use is False here. syntax_error_not_array_nor_func(lineno, id_) return None if id_[-1] in DEPRECATED_SUFFIXES and entry.type_ != self.basic_types[SUFFIX_TYPE[id_[-1]]]: syntax_error_func_type_mismatch(lineno, entry) if entry.token == 'VAR': # This was a function used in advance symbols.VAR.to_function(entry, lineno=lineno) entry.mangled = '%s_%s' % (self.mangle, entry.name) # HINT: mangle for nexted scopes else: entry = self.declare(id_, lineno, symbols.FUNCTION(id_, lineno, type_=type_)) if entry.forwarded: entry.forwared = False # No longer forwarded old_type = entry.type_ # Remembers the old type if entry.type_ is not None: if entry.type_ != old_type: syntax_error_func_type_mismatch(lineno, entry) else: entry.type_ = old_type else: entry.params_size = 0 # Size of parameters entry.locals_size = 0 # Size of local variables return entry
def with_tz(request): """ Get the time with TZ enabled """ dt = datetime.now() t = Template('{% load tz %}{% localtime on %}{% get_current_timezone as TIME_ZONE %}{{ TIME_ZONE }}{% endlocaltime %}') c = RequestContext(request) response = t.render(c) return HttpResponse(response)
Get the time with TZ enabled
Below is the the instruction that describes the task: ### Input: Get the time with TZ enabled ### Response: def with_tz(request): """ Get the time with TZ enabled """ dt = datetime.now() t = Template('{% load tz %}{% localtime on %}{% get_current_timezone as TIME_ZONE %}{{ TIME_ZONE }}{% endlocaltime %}') c = RequestContext(request) response = t.render(c) return HttpResponse(response)
def place_new_order(self, stock, price, qty, direction, order_type): """Place an order for a stock. https://starfighter.readme.io/docs/place-new-order """ url_fragment = 'venues/{venue}/stocks/{stock}/orders'.format( venue=self.venue, stock=stock, ) data = { "stock": stock, "price": price, "venue": self.venue, "account": self.account, "qty": qty, "direction": direction, "orderType": order_type, } url = urljoin(self.base_url, url_fragment) resp = self.session.post(url, json=data) return resp.json()
Place an order for a stock. https://starfighter.readme.io/docs/place-new-order
Below is the the instruction that describes the task: ### Input: Place an order for a stock. https://starfighter.readme.io/docs/place-new-order ### Response: def place_new_order(self, stock, price, qty, direction, order_type): """Place an order for a stock. https://starfighter.readme.io/docs/place-new-order """ url_fragment = 'venues/{venue}/stocks/{stock}/orders'.format( venue=self.venue, stock=stock, ) data = { "stock": stock, "price": price, "venue": self.venue, "account": self.account, "qty": qty, "direction": direction, "orderType": order_type, } url = urljoin(self.base_url, url_fragment) resp = self.session.post(url, json=data) return resp.json()
def pretty(price, currency, *, abbrev=True, trim=True): """ return format price with symbol. Example format(100, 'USD') return '$100' pretty(price, currency, abbrev=True, trim=False) abbrev: True: print value + symbol. Symbol can either be placed before or after value False: print value + currency code. currency code is placed behind value trim: True: trim float value to the maximum digit numbers of that currency False: keep number of decimal in initial argument """ currency = validate_currency(currency) price = validate_price(price) space = '' if nospace(currency) else ' ' fmtstr = '' if trim: fmtstr = '{:0,.{x}f}'.format(price, x=decimals(currency)).rstrip('0').rstrip('.') else: fmtstr = '{:0,}'.format(price).rstrip('0').rstrip('.') if abbrev: # use currency symbol if issuffix(currency): return fmtstr + space + symbol(currency) return symbol(currency, native=False) + space + fmtstr return fmtstr + ' ' + code(currency)
return format price with symbol. Example format(100, 'USD') return '$100' pretty(price, currency, abbrev=True, trim=False) abbrev: True: print value + symbol. Symbol can either be placed before or after value False: print value + currency code. currency code is placed behind value trim: True: trim float value to the maximum digit numbers of that currency False: keep number of decimal in initial argument
Below is the the instruction that describes the task: ### Input: return format price with symbol. Example format(100, 'USD') return '$100' pretty(price, currency, abbrev=True, trim=False) abbrev: True: print value + symbol. Symbol can either be placed before or after value False: print value + currency code. currency code is placed behind value trim: True: trim float value to the maximum digit numbers of that currency False: keep number of decimal in initial argument ### Response: def pretty(price, currency, *, abbrev=True, trim=True): """ return format price with symbol. Example format(100, 'USD') return '$100' pretty(price, currency, abbrev=True, trim=False) abbrev: True: print value + symbol. Symbol can either be placed before or after value False: print value + currency code. currency code is placed behind value trim: True: trim float value to the maximum digit numbers of that currency False: keep number of decimal in initial argument """ currency = validate_currency(currency) price = validate_price(price) space = '' if nospace(currency) else ' ' fmtstr = '' if trim: fmtstr = '{:0,.{x}f}'.format(price, x=decimals(currency)).rstrip('0').rstrip('.') else: fmtstr = '{:0,}'.format(price).rstrip('0').rstrip('.') if abbrev: # use currency symbol if issuffix(currency): return fmtstr + space + symbol(currency) return symbol(currency, native=False) + space + fmtstr return fmtstr + ' ' + code(currency)
def _recv_ack(self, method_frame): '''Receive an ack from the broker.''' if self._ack_listener: delivery_tag = method_frame.args.read_longlong() multiple = method_frame.args.read_bit() if multiple: while self._last_ack_id < delivery_tag: self._last_ack_id += 1 self._ack_listener(self._last_ack_id) else: self._last_ack_id = delivery_tag self._ack_listener(self._last_ack_id)
Receive an ack from the broker.
Below is the the instruction that describes the task: ### Input: Receive an ack from the broker. ### Response: def _recv_ack(self, method_frame): '''Receive an ack from the broker.''' if self._ack_listener: delivery_tag = method_frame.args.read_longlong() multiple = method_frame.args.read_bit() if multiple: while self._last_ack_id < delivery_tag: self._last_ack_id += 1 self._ack_listener(self._last_ack_id) else: self._last_ack_id = delivery_tag self._ack_listener(self._last_ack_id)
def bbox(self): """BBox""" return self.left, self.top, self.right, self.bottom
BBox
Below is the the instruction that describes the task: ### Input: BBox ### Response: def bbox(self): """BBox""" return self.left, self.top, self.right, self.bottom
def inverse(d): """ reverse the k:v pairs """ output = {} for k, v in unwrap(d).items(): output[v] = output.get(v, []) output[v].append(k) return output
reverse the k:v pairs
Below is the the instruction that describes the task: ### Input: reverse the k:v pairs ### Response: def inverse(d): """ reverse the k:v pairs """ output = {} for k, v in unwrap(d).items(): output[v] = output.get(v, []) output[v].append(k) return output
def del_object_from_parent(self): """ Delete object from parent object. """ if self.parent: self.parent.objects.pop(self.ref)
Delete object from parent object.
Below is the the instruction that describes the task: ### Input: Delete object from parent object. ### Response: def del_object_from_parent(self): """ Delete object from parent object. """ if self.parent: self.parent.objects.pop(self.ref)
def parse_post(self, response): ''' 根据 :meth:`.ZhihuDailySpider.parse` 中生成的具体文章地址,获取到文章内容, 并对其进行格式化处理,结果填充到对象属性 ``item_list`` 中 :param Response response: 由 ``Scrapy`` 调用并传入的请求响应对象 ''' content = json.loads(response.body.decode(), encoding='UTF-8') post = response.meta['post'] post['origin_url'] = content.get('share_url', '') if not all([post['origin_url']]): raise ValueError('原文地址为空') post['title'] = html.escape(content.get('title', '')) if not all([post['title']]): raise ValueError('文章标题为空 - {}'.format(post.get('origin_url'))) # 单独处理type字段为1的情况,即该文章为站外转发文章 if content.get('type') == 1: self.logger.warn('遇到站外文章,单独处理 - {}'.format(post['title'])) return post soup = BeautifulSoup(content.get('body', ''), 'lxml') author_obj = soup.select('span.author') self.logger.debug(author_obj) if author_obj: author_list = [] for author in author_obj: author_list.append( author.string.rstrip(',, ').replace(',', ',')) author_list = list(set(author_list)) post['author'] = html.escape(','.join(author_list)) post['content'] = str(soup.div) # 继续填充post数据 image_back = content.get('images', [None])[0] if image_back: post['meta']['moear.cover_image_slug'] = \ content.get('image', image_back) self.logger.debug(post)
根据 :meth:`.ZhihuDailySpider.parse` 中生成的具体文章地址,获取到文章内容, 并对其进行格式化处理,结果填充到对象属性 ``item_list`` 中 :param Response response: 由 ``Scrapy`` 调用并传入的请求响应对象
Below is the the instruction that describes the task: ### Input: 根据 :meth:`.ZhihuDailySpider.parse` 中生成的具体文章地址,获取到文章内容, 并对其进行格式化处理,结果填充到对象属性 ``item_list`` 中 :param Response response: 由 ``Scrapy`` 调用并传入的请求响应对象 ### Response: def parse_post(self, response): ''' 根据 :meth:`.ZhihuDailySpider.parse` 中生成的具体文章地址,获取到文章内容, 并对其进行格式化处理,结果填充到对象属性 ``item_list`` 中 :param Response response: 由 ``Scrapy`` 调用并传入的请求响应对象 ''' content = json.loads(response.body.decode(), encoding='UTF-8') post = response.meta['post'] post['origin_url'] = content.get('share_url', '') if not all([post['origin_url']]): raise ValueError('原文地址为空') post['title'] = html.escape(content.get('title', '')) if not all([post['title']]): raise ValueError('文章标题为空 - {}'.format(post.get('origin_url'))) # 单独处理type字段为1的情况,即该文章为站外转发文章 if content.get('type') == 1: self.logger.warn('遇到站外文章,单独处理 - {}'.format(post['title'])) return post soup = BeautifulSoup(content.get('body', ''), 'lxml') author_obj = soup.select('span.author') self.logger.debug(author_obj) if author_obj: author_list = [] for author in author_obj: author_list.append( author.string.rstrip(',, ').replace(',', ',')) author_list = list(set(author_list)) post['author'] = html.escape(','.join(author_list)) post['content'] = str(soup.div) # 继续填充post数据 image_back = content.get('images', [None])[0] if image_back: post['meta']['moear.cover_image_slug'] = \ content.get('image', image_back) self.logger.debug(post)
def _call_and_store(getter_func, data, field_name, error_store, index=None): """Call ``getter_func`` with ``data`` as its argument, and store any `ValidationErrors`. :param callable getter_func: Function for getting the serialized/deserialized value from ``data``. :param data: The data passed to ``getter_func``. :param str field_name: Field name. :param int index: Index of the item being validated, if validating a collection, otherwise `None`. """ try: value = getter_func(data) except ValidationError as err: error_store.store_error(err.messages, field_name, index=index) # When a Nested field fails validation, the marshalled data is stored # on the ValidationError's valid_data attribute return err.valid_data or missing return value
Call ``getter_func`` with ``data`` as its argument, and store any `ValidationErrors`. :param callable getter_func: Function for getting the serialized/deserialized value from ``data``. :param data: The data passed to ``getter_func``. :param str field_name: Field name. :param int index: Index of the item being validated, if validating a collection, otherwise `None`.
Below is the the instruction that describes the task: ### Input: Call ``getter_func`` with ``data`` as its argument, and store any `ValidationErrors`. :param callable getter_func: Function for getting the serialized/deserialized value from ``data``. :param data: The data passed to ``getter_func``. :param str field_name: Field name. :param int index: Index of the item being validated, if validating a collection, otherwise `None`. ### Response: def _call_and_store(getter_func, data, field_name, error_store, index=None): """Call ``getter_func`` with ``data`` as its argument, and store any `ValidationErrors`. :param callable getter_func: Function for getting the serialized/deserialized value from ``data``. :param data: The data passed to ``getter_func``. :param str field_name: Field name. :param int index: Index of the item being validated, if validating a collection, otherwise `None`. """ try: value = getter_func(data) except ValidationError as err: error_store.store_error(err.messages, field_name, index=index) # When a Nested field fails validation, the marshalled data is stored # on the ValidationError's valid_data attribute return err.valid_data or missing return value
def fetchall(self): """Fetch all rows.""" result = self.query.result() return [row.values() for row in result]
Fetch all rows.
Below is the the instruction that describes the task: ### Input: Fetch all rows. ### Response: def fetchall(self): """Fetch all rows.""" result = self.query.result() return [row.values() for row in result]
async def start(request): """ Begins the session manager for factory calibration, if a session is not already in progress, or if the "force" key is specified in the request. To force, use the following body: { "force": true } :return: The current session ID token or an error message """ global session try: body = await request.json() except json.decoder.JSONDecodeError: # Body will be null for requests without parameters (normal operation) log.debug("No body in {}".format(request)) body = {} if not session or body.get('force'): hardware = hw_from_req(request) if body.get('force') and session: await release(data={}) session = SessionManager(hardware) res = init_pipette() if res: status = 201 data = {'token': session.id, 'pipette': res} else: session = None status = 403 data = {'message': 'Error, pipette not recognized'} else: data = {'message': 'Error, session in progress. Use "force" key in' ' request body to override'} status = 409 return web.json_response(data, status=status)
Begins the session manager for factory calibration, if a session is not already in progress, or if the "force" key is specified in the request. To force, use the following body: { "force": true } :return: The current session ID token or an error message
Below is the the instruction that describes the task: ### Input: Begins the session manager for factory calibration, if a session is not already in progress, or if the "force" key is specified in the request. To force, use the following body: { "force": true } :return: The current session ID token or an error message ### Response: async def start(request): """ Begins the session manager for factory calibration, if a session is not already in progress, or if the "force" key is specified in the request. To force, use the following body: { "force": true } :return: The current session ID token or an error message """ global session try: body = await request.json() except json.decoder.JSONDecodeError: # Body will be null for requests without parameters (normal operation) log.debug("No body in {}".format(request)) body = {} if not session or body.get('force'): hardware = hw_from_req(request) if body.get('force') and session: await release(data={}) session = SessionManager(hardware) res = init_pipette() if res: status = 201 data = {'token': session.id, 'pipette': res} else: session = None status = 403 data = {'message': 'Error, pipette not recognized'} else: data = {'message': 'Error, session in progress. Use "force" key in' ' request body to override'} status = 409 return web.json_response(data, status=status)
def parse(self, data): """Returns a list of path template segments parsed from data. Args: data: A path template string. Returns: A list of _Segment. """ self.binding_var_count = 0 self.segment_count = 0 segments = self.parser.parse(data) # Validation step: checks that there are no nested bindings. path_wildcard = False for segment in segments: if segment.kind == _TERMINAL and segment.literal == '**': if path_wildcard: raise ValidationException( 'validation error: path template cannot contain more ' 'than one path wildcard') path_wildcard = True return segments
Returns a list of path template segments parsed from data. Args: data: A path template string. Returns: A list of _Segment.
Below is the the instruction that describes the task: ### Input: Returns a list of path template segments parsed from data. Args: data: A path template string. Returns: A list of _Segment. ### Response: def parse(self, data): """Returns a list of path template segments parsed from data. Args: data: A path template string. Returns: A list of _Segment. """ self.binding_var_count = 0 self.segment_count = 0 segments = self.parser.parse(data) # Validation step: checks that there are no nested bindings. path_wildcard = False for segment in segments: if segment.kind == _TERMINAL and segment.literal == '**': if path_wildcard: raise ValidationException( 'validation error: path template cannot contain more ' 'than one path wildcard') path_wildcard = True return segments
def get_client(client_id): """Load the client. Needed for grant_type client_credentials. Add support for OAuth client_credentials access type, with user inactivation support. :param client_id: The client ID. :returns: The client instance or ``None``. """ client = Client.query.get(client_id) if client and client.user.active: return client
Load the client. Needed for grant_type client_credentials. Add support for OAuth client_credentials access type, with user inactivation support. :param client_id: The client ID. :returns: The client instance or ``None``.
Below is the the instruction that describes the task: ### Input: Load the client. Needed for grant_type client_credentials. Add support for OAuth client_credentials access type, with user inactivation support. :param client_id: The client ID. :returns: The client instance or ``None``. ### Response: def get_client(client_id): """Load the client. Needed for grant_type client_credentials. Add support for OAuth client_credentials access type, with user inactivation support. :param client_id: The client ID. :returns: The client instance or ``None``. """ client = Client.query.get(client_id) if client and client.user.active: return client
def getMechanismName(self): """Return the authentication mechanism name.""" if self._server_side: mech = self._authenticator.current_mech return mech.getMechanismName() if mech else None else: return getattr(self._authenticator, 'authMech', None)
Return the authentication mechanism name.
Below is the the instruction that describes the task: ### Input: Return the authentication mechanism name. ### Response: def getMechanismName(self): """Return the authentication mechanism name.""" if self._server_side: mech = self._authenticator.current_mech return mech.getMechanismName() if mech else None else: return getattr(self._authenticator, 'authMech', None)
def write_object_array(f, data, options): """ Writes an array of objects recursively. Writes the elements of the given object array recursively in the HDF5 Group ``options.group_for_references`` and returns an ``h5py.Reference`` array to all the elements. Parameters ---------- f : h5py.File The HDF5 file handle that is open. data : numpy.ndarray of objects Numpy object array to write the elements of. options : hdf5storage.core.Options hdf5storage options object. Returns ------- obj_array : numpy.ndarray of h5py.Reference A reference array pointing to all the elements written to the HDF5 file. For those that couldn't be written, the respective element points to the canonical empty. Raises ------ TypeNotMatlabCompatibleError If writing a type not compatible with MATLAB and `options.action_for_matlab_incompatible` is set to ``'error'``. See Also -------- read_object_array hdf5storage.Options.group_for_references h5py.Reference """ # We need to grab the special reference dtype and make an empty # array to store all the references in. ref_dtype = h5py.special_dtype(ref=h5py.Reference) data_refs = np.zeros(shape=data.shape, dtype='object') # We need to make sure that the group to hold references is present, # and create it if it isn't. if options.group_for_references not in f: f.create_group(options.group_for_references) grp2 = f[options.group_for_references] if not isinstance(grp2, h5py.Group): del f[options.group_for_references] f.create_group(options.group_for_references) grp2 = f[options.group_for_references] # The Dataset 'a' needs to be present as the canonical empty. It is # just and np.uint32/64([0, 0]) with its a MATLAB_class of # 'canonical empty' and the 'MATLAB_empty' attribute set. If it # isn't present or is incorrectly formatted, it is created # truncating anything previously there. try: dset_a = grp2['a'] if dset_a.shape != (2,) \ or not dset_a.dtype.name.startswith('uint') \ or np.any(dset_a[...] != np.uint64([0, 0])) \ or get_attribute_string(dset_a, 'MATLAB_class') != \ 'canonical empty' \ or get_attribute(dset_a, 'MATLAB_empty') != 1: del grp2['a'] dset_a = grp2.create_dataset('a', data=np.uint64([0, 0])) set_attribute_string(dset_a, 'MATLAB_class', 'canonical empty') set_attribute(dset_a, 'MATLAB_empty', np.uint8(1)) except: dset_a = grp2.create_dataset('a', data=np.uint64([0, 0])) set_attribute_string(dset_a, 'MATLAB_class', 'canonical empty') set_attribute(dset_a, 'MATLAB_empty', np.uint8(1)) # Go through all the elements of data and write them, gabbing their # references and putting them in data_refs. They will be put in # group_for_references, which is also what the H5PATH needs to be # set to if we are doing MATLAB compatibility (otherwise, the # attribute needs to be deleted). If an element can't be written # (doing matlab compatibility, but it isn't compatible with matlab # and action_for_matlab_incompatible option is True), the reference # to the canonical empty will be used for the reference array to # point to. grp2name = grp2.name for index, x in np.ndenumerate(data): name_for_ref = next_unused_name_in_group(grp2, 16) write_data(f, grp2, name_for_ref, x, None, options) try: dset = grp2[name_for_ref] data_refs[index] = dset.ref if options.matlab_compatible: set_attribute_string(dset, 'H5PATH', grp2name) else: del_attribute(dset, 'H5PATH') except: data_refs[index] = dset_a.ref # Now, the dtype needs to be changed to the reference type and the # whole thing copied over to data_to_store. return data_refs.astype(ref_dtype).copy()
Writes an array of objects recursively. Writes the elements of the given object array recursively in the HDF5 Group ``options.group_for_references`` and returns an ``h5py.Reference`` array to all the elements. Parameters ---------- f : h5py.File The HDF5 file handle that is open. data : numpy.ndarray of objects Numpy object array to write the elements of. options : hdf5storage.core.Options hdf5storage options object. Returns ------- obj_array : numpy.ndarray of h5py.Reference A reference array pointing to all the elements written to the HDF5 file. For those that couldn't be written, the respective element points to the canonical empty. Raises ------ TypeNotMatlabCompatibleError If writing a type not compatible with MATLAB and `options.action_for_matlab_incompatible` is set to ``'error'``. See Also -------- read_object_array hdf5storage.Options.group_for_references h5py.Reference
Below is the the instruction that describes the task: ### Input: Writes an array of objects recursively. Writes the elements of the given object array recursively in the HDF5 Group ``options.group_for_references`` and returns an ``h5py.Reference`` array to all the elements. Parameters ---------- f : h5py.File The HDF5 file handle that is open. data : numpy.ndarray of objects Numpy object array to write the elements of. options : hdf5storage.core.Options hdf5storage options object. Returns ------- obj_array : numpy.ndarray of h5py.Reference A reference array pointing to all the elements written to the HDF5 file. For those that couldn't be written, the respective element points to the canonical empty. Raises ------ TypeNotMatlabCompatibleError If writing a type not compatible with MATLAB and `options.action_for_matlab_incompatible` is set to ``'error'``. See Also -------- read_object_array hdf5storage.Options.group_for_references h5py.Reference ### Response: def write_object_array(f, data, options): """ Writes an array of objects recursively. Writes the elements of the given object array recursively in the HDF5 Group ``options.group_for_references`` and returns an ``h5py.Reference`` array to all the elements. Parameters ---------- f : h5py.File The HDF5 file handle that is open. data : numpy.ndarray of objects Numpy object array to write the elements of. options : hdf5storage.core.Options hdf5storage options object. Returns ------- obj_array : numpy.ndarray of h5py.Reference A reference array pointing to all the elements written to the HDF5 file. For those that couldn't be written, the respective element points to the canonical empty. Raises ------ TypeNotMatlabCompatibleError If writing a type not compatible with MATLAB and `options.action_for_matlab_incompatible` is set to ``'error'``. See Also -------- read_object_array hdf5storage.Options.group_for_references h5py.Reference """ # We need to grab the special reference dtype and make an empty # array to store all the references in. ref_dtype = h5py.special_dtype(ref=h5py.Reference) data_refs = np.zeros(shape=data.shape, dtype='object') # We need to make sure that the group to hold references is present, # and create it if it isn't. if options.group_for_references not in f: f.create_group(options.group_for_references) grp2 = f[options.group_for_references] if not isinstance(grp2, h5py.Group): del f[options.group_for_references] f.create_group(options.group_for_references) grp2 = f[options.group_for_references] # The Dataset 'a' needs to be present as the canonical empty. It is # just and np.uint32/64([0, 0]) with its a MATLAB_class of # 'canonical empty' and the 'MATLAB_empty' attribute set. If it # isn't present or is incorrectly formatted, it is created # truncating anything previously there. try: dset_a = grp2['a'] if dset_a.shape != (2,) \ or not dset_a.dtype.name.startswith('uint') \ or np.any(dset_a[...] != np.uint64([0, 0])) \ or get_attribute_string(dset_a, 'MATLAB_class') != \ 'canonical empty' \ or get_attribute(dset_a, 'MATLAB_empty') != 1: del grp2['a'] dset_a = grp2.create_dataset('a', data=np.uint64([0, 0])) set_attribute_string(dset_a, 'MATLAB_class', 'canonical empty') set_attribute(dset_a, 'MATLAB_empty', np.uint8(1)) except: dset_a = grp2.create_dataset('a', data=np.uint64([0, 0])) set_attribute_string(dset_a, 'MATLAB_class', 'canonical empty') set_attribute(dset_a, 'MATLAB_empty', np.uint8(1)) # Go through all the elements of data and write them, gabbing their # references and putting them in data_refs. They will be put in # group_for_references, which is also what the H5PATH needs to be # set to if we are doing MATLAB compatibility (otherwise, the # attribute needs to be deleted). If an element can't be written # (doing matlab compatibility, but it isn't compatible with matlab # and action_for_matlab_incompatible option is True), the reference # to the canonical empty will be used for the reference array to # point to. grp2name = grp2.name for index, x in np.ndenumerate(data): name_for_ref = next_unused_name_in_group(grp2, 16) write_data(f, grp2, name_for_ref, x, None, options) try: dset = grp2[name_for_ref] data_refs[index] = dset.ref if options.matlab_compatible: set_attribute_string(dset, 'H5PATH', grp2name) else: del_attribute(dset, 'H5PATH') except: data_refs[index] = dset_a.ref # Now, the dtype needs to be changed to the reference type and the # whole thing copied over to data_to_store. return data_refs.astype(ref_dtype).copy()
def train(input_dir, batch_size, max_steps, output_dir, checkpoint=None, cloud=None): """Blocking version of train_async(). The only difference is that it blocks the caller until the job finishes, and it does not have a return value. """ with warnings.catch_warnings(): warnings.simplefilter("ignore") job = train_async(input_dir, batch_size, max_steps, output_dir, checkpoint, cloud) job.wait() print(job.state)
Blocking version of train_async(). The only difference is that it blocks the caller until the job finishes, and it does not have a return value.
Below is the the instruction that describes the task: ### Input: Blocking version of train_async(). The only difference is that it blocks the caller until the job finishes, and it does not have a return value. ### Response: def train(input_dir, batch_size, max_steps, output_dir, checkpoint=None, cloud=None): """Blocking version of train_async(). The only difference is that it blocks the caller until the job finishes, and it does not have a return value. """ with warnings.catch_warnings(): warnings.simplefilter("ignore") job = train_async(input_dir, batch_size, max_steps, output_dir, checkpoint, cloud) job.wait() print(job.state)
def validate_arg_values(ast, bo): """Recursively validate arg (NSArg and StrArg) values Check that NSArgs are found in BELbio API and match appropriate entity_type. Check that StrArgs match their value - either default namespace or regex string Generate a WARNING if not. Args: bo: bel object Returns: bel object """ if not bo.api_url: log.info("No API endpoint defined") return bo log.debug(f"AST: {ast}") # Test NSArg terms if isinstance(ast, NSArg): term_id = "{}:{}".format(ast.namespace, ast.value) value_types = ast.value_types log.debug(f"Value types: {value_types} AST value: {ast.value}") # Default namespaces are defined in the bel_specification file if ast.namespace == "DEFAULT": # may use the DEFAULT namespace or not for value_type in value_types: default_namespace = [ ns["name"] for ns in bo.spec["namespaces"][value_type]["info"] ] + [ ns["abbreviation"] for ns in bo.spec["namespaces"][value_type]["info"] ] if ast.value in default_namespace: log.debug("Default namespace valid term: {}".format(term_id)) break else: # if for loop doesn't hit the break, run this else log.debug("Default namespace invalid term: {}".format(term_id)) bo.validation_messages.append( ("WARNING", f"Default Term: {term_id} not found") ) # Process normal, non-default-namespace terms else: request_url = bo.api_url + "/terms/{}".format( url_path_param_quoting(term_id) ) log.info(f"Validate Arg Values url {request_url}") r = get_url(request_url) if r and r.status_code == 200: result = r.json() # function signature term value_types doesn't match up with API term entity_types log.debug( f'AST.value_types {ast.value_types} Entity types {result.get("entity_types", [])}' ) # Check that entity types match if ( len( set(ast.value_types).intersection( result.get("entity_types", []) ) ) == 0 ): log.debug( "Invalid Term - statement term {} allowable entity types: {} do not match API term entity types: {}".format( term_id, ast.value_types, result.get("entity_types", []) ) ) bo.validation_messages.append( ( "WARNING", "Invalid Term - statement term {} allowable entity types: {} do not match API term entity types: {}".format( term_id, ast.value_types, result.get("entity_types", []) ), ) ) if term_id in result.get("obsolete_ids", []): bo.validation_messages.append( ( "WARNING", f'Obsolete term: {term_id} Current term: {result["id"]}', ) ) elif r.status_code == 404: bo.validation_messages.append( ("WARNING", f"Term: {term_id} not found in namespace") ) else: log.error(f"Status {r.status_code} - Bad URL: {request_url}") # Process StrArgs if isinstance(ast, StrArg): log.debug(f" Check String Arg: {ast.value} {ast.value_types}") for value_type in ast.value_types: # Is this a regex to match against if re.match("/", value_type): value_type = re.sub("^/", "", value_type) value_type = re.sub("/$", "", value_type) match = re.match(value_type, ast.value) if match: break if value_type in bo.spec["namespaces"]: default_namespace = [ ns["name"] for ns in bo.spec["namespaces"][value_type]["info"] ] + [ ns["abbreviation"] for ns in bo.spec["namespaces"][value_type]["info"] ] if ast.value in default_namespace: break else: # If for loop doesn't hit the break, no matches found, therefore for StrArg value is bad bo.validation_messages.append( ( "WARNING", f"String value {ast.value} does not match default namespace value or regex pattern: {ast.value_types}", ) ) # Recursively process every NSArg by processing BELAst and Functions if hasattr(ast, "args"): for arg in ast.args: validate_arg_values(arg, bo) return bo
Recursively validate arg (NSArg and StrArg) values Check that NSArgs are found in BELbio API and match appropriate entity_type. Check that StrArgs match their value - either default namespace or regex string Generate a WARNING if not. Args: bo: bel object Returns: bel object
Below is the the instruction that describes the task: ### Input: Recursively validate arg (NSArg and StrArg) values Check that NSArgs are found in BELbio API and match appropriate entity_type. Check that StrArgs match their value - either default namespace or regex string Generate a WARNING if not. Args: bo: bel object Returns: bel object ### Response: def validate_arg_values(ast, bo): """Recursively validate arg (NSArg and StrArg) values Check that NSArgs are found in BELbio API and match appropriate entity_type. Check that StrArgs match their value - either default namespace or regex string Generate a WARNING if not. Args: bo: bel object Returns: bel object """ if not bo.api_url: log.info("No API endpoint defined") return bo log.debug(f"AST: {ast}") # Test NSArg terms if isinstance(ast, NSArg): term_id = "{}:{}".format(ast.namespace, ast.value) value_types = ast.value_types log.debug(f"Value types: {value_types} AST value: {ast.value}") # Default namespaces are defined in the bel_specification file if ast.namespace == "DEFAULT": # may use the DEFAULT namespace or not for value_type in value_types: default_namespace = [ ns["name"] for ns in bo.spec["namespaces"][value_type]["info"] ] + [ ns["abbreviation"] for ns in bo.spec["namespaces"][value_type]["info"] ] if ast.value in default_namespace: log.debug("Default namespace valid term: {}".format(term_id)) break else: # if for loop doesn't hit the break, run this else log.debug("Default namespace invalid term: {}".format(term_id)) bo.validation_messages.append( ("WARNING", f"Default Term: {term_id} not found") ) # Process normal, non-default-namespace terms else: request_url = bo.api_url + "/terms/{}".format( url_path_param_quoting(term_id) ) log.info(f"Validate Arg Values url {request_url}") r = get_url(request_url) if r and r.status_code == 200: result = r.json() # function signature term value_types doesn't match up with API term entity_types log.debug( f'AST.value_types {ast.value_types} Entity types {result.get("entity_types", [])}' ) # Check that entity types match if ( len( set(ast.value_types).intersection( result.get("entity_types", []) ) ) == 0 ): log.debug( "Invalid Term - statement term {} allowable entity types: {} do not match API term entity types: {}".format( term_id, ast.value_types, result.get("entity_types", []) ) ) bo.validation_messages.append( ( "WARNING", "Invalid Term - statement term {} allowable entity types: {} do not match API term entity types: {}".format( term_id, ast.value_types, result.get("entity_types", []) ), ) ) if term_id in result.get("obsolete_ids", []): bo.validation_messages.append( ( "WARNING", f'Obsolete term: {term_id} Current term: {result["id"]}', ) ) elif r.status_code == 404: bo.validation_messages.append( ("WARNING", f"Term: {term_id} not found in namespace") ) else: log.error(f"Status {r.status_code} - Bad URL: {request_url}") # Process StrArgs if isinstance(ast, StrArg): log.debug(f" Check String Arg: {ast.value} {ast.value_types}") for value_type in ast.value_types: # Is this a regex to match against if re.match("/", value_type): value_type = re.sub("^/", "", value_type) value_type = re.sub("/$", "", value_type) match = re.match(value_type, ast.value) if match: break if value_type in bo.spec["namespaces"]: default_namespace = [ ns["name"] for ns in bo.spec["namespaces"][value_type]["info"] ] + [ ns["abbreviation"] for ns in bo.spec["namespaces"][value_type]["info"] ] if ast.value in default_namespace: break else: # If for loop doesn't hit the break, no matches found, therefore for StrArg value is bad bo.validation_messages.append( ( "WARNING", f"String value {ast.value} does not match default namespace value or regex pattern: {ast.value_types}", ) ) # Recursively process every NSArg by processing BELAst and Functions if hasattr(ast, "args"): for arg in ast.args: validate_arg_values(arg, bo) return bo
def get_num_sig(self, alpha=0.05): """Print the number of significant results using various metrics.""" # Get the number of significant GO terms ctr = cx.Counter() flds = set(['FDR', 'Bonferroni', 'Benjamini', 'PValue']) for ntd in self.nts: for fld in flds: if getattr(ntd, fld) < alpha: ctr[fld] += 1 return ctr
Print the number of significant results using various metrics.
Below is the the instruction that describes the task: ### Input: Print the number of significant results using various metrics. ### Response: def get_num_sig(self, alpha=0.05): """Print the number of significant results using various metrics.""" # Get the number of significant GO terms ctr = cx.Counter() flds = set(['FDR', 'Bonferroni', 'Benjamini', 'PValue']) for ntd in self.nts: for fld in flds: if getattr(ntd, fld) < alpha: ctr[fld] += 1 return ctr
def limit(self, limit): """ Set absolute limit on number of images to return, or set to None to return as many results as needed; default 50 posts. """ params = join_params(self.parameters, {"limit": limit}) return self.__class__(**params)
Set absolute limit on number of images to return, or set to None to return as many results as needed; default 50 posts.
Below is the the instruction that describes the task: ### Input: Set absolute limit on number of images to return, or set to None to return as many results as needed; default 50 posts. ### Response: def limit(self, limit): """ Set absolute limit on number of images to return, or set to None to return as many results as needed; default 50 posts. """ params = join_params(self.parameters, {"limit": limit}) return self.__class__(**params)
def _gettype(self): ''' Return current type of this struct :returns: a typedef object (e.g. nstruct) ''' current = self lastname = getattr(current._parser, 'typedef', None) while hasattr(current, '_sub'): current = current._sub tn = getattr(current._parser, 'typedef', None) if tn is not None: lastname = tn return lastname
Return current type of this struct :returns: a typedef object (e.g. nstruct)
Below is the the instruction that describes the task: ### Input: Return current type of this struct :returns: a typedef object (e.g. nstruct) ### Response: def _gettype(self): ''' Return current type of this struct :returns: a typedef object (e.g. nstruct) ''' current = self lastname = getattr(current._parser, 'typedef', None) while hasattr(current, '_sub'): current = current._sub tn = getattr(current._parser, 'typedef', None) if tn is not None: lastname = tn return lastname
def wo_resp(self, resp): """ can override for other style """ if self._data is not None: resp['res'] = self.to_str(self._data) return self.wo_json(resp)
can override for other style
Below is the the instruction that describes the task: ### Input: can override for other style ### Response: def wo_resp(self, resp): """ can override for other style """ if self._data is not None: resp['res'] = self.to_str(self._data) return self.wo_json(resp)
def set_attrs(self, username, attrs): """ set user attributes""" ldap_client = self._bind() tmp = self._get_user(self._byte_p2(username), ALL_ATTRS) if tmp is None: raise UserDoesntExist(username, self.backend_name) dn = self._byte_p2(tmp[0]) old_attrs = tmp[1] for attr in attrs: bcontent = self._byte_p2(attrs[attr]) battr = self._byte_p2(attr) new = {battr: self._modlist(self._byte_p3(bcontent))} # if attr is dn entry, use rename if attr.lower() == self.dn_user_attr.lower(): ldap_client.rename_s( dn, ldap.dn.dn2str([[(battr, bcontent, 1)]]) ) dn = ldap.dn.dn2str( [[(battr, bcontent, 1)]] + ldap.dn.str2dn(dn)[1:] ) else: # if attr is already set, replace the value # (see dict old passed to modifyModlist) if attr in old_attrs: if type(old_attrs[attr]) is list: tmp = [] for value in old_attrs[attr]: tmp.append(self._byte_p2(value)) bold_value = tmp else: bold_value = self._modlist( self._byte_p3(old_attrs[attr]) ) old = {battr: bold_value} # attribute is not set, just add it else: old = {} ldif = modlist.modifyModlist(old, new) if ldif: try: ldap_client.modify_s(dn, ldif) except Exception as e: ldap_client.unbind_s() self._exception_handler(e) ldap_client.unbind_s()
set user attributes
Below is the the instruction that describes the task: ### Input: set user attributes ### Response: def set_attrs(self, username, attrs): """ set user attributes""" ldap_client = self._bind() tmp = self._get_user(self._byte_p2(username), ALL_ATTRS) if tmp is None: raise UserDoesntExist(username, self.backend_name) dn = self._byte_p2(tmp[0]) old_attrs = tmp[1] for attr in attrs: bcontent = self._byte_p2(attrs[attr]) battr = self._byte_p2(attr) new = {battr: self._modlist(self._byte_p3(bcontent))} # if attr is dn entry, use rename if attr.lower() == self.dn_user_attr.lower(): ldap_client.rename_s( dn, ldap.dn.dn2str([[(battr, bcontent, 1)]]) ) dn = ldap.dn.dn2str( [[(battr, bcontent, 1)]] + ldap.dn.str2dn(dn)[1:] ) else: # if attr is already set, replace the value # (see dict old passed to modifyModlist) if attr in old_attrs: if type(old_attrs[attr]) is list: tmp = [] for value in old_attrs[attr]: tmp.append(self._byte_p2(value)) bold_value = tmp else: bold_value = self._modlist( self._byte_p3(old_attrs[attr]) ) old = {battr: bold_value} # attribute is not set, just add it else: old = {} ldif = modlist.modifyModlist(old, new) if ldif: try: ldap_client.modify_s(dn, ldif) except Exception as e: ldap_client.unbind_s() self._exception_handler(e) ldap_client.unbind_s()
def to_graph_tool(self): '''Converts this Graph object to a graph_tool-compatible object. Requires the graph_tool library. Note that the internal ordering of graph_tool seems to be column-major.''' # Import here to avoid ImportErrors when graph_tool isn't available. import graph_tool gt = graph_tool.Graph(directed=self.is_directed()) gt.add_edge_list(self.pairs()) if self.is_weighted(): weights = gt.new_edge_property('double') for e,w in zip(gt.edges(), self.edge_weights()): weights[e] = w gt.edge_properties['weight'] = weights return gt
Converts this Graph object to a graph_tool-compatible object. Requires the graph_tool library. Note that the internal ordering of graph_tool seems to be column-major.
Below is the the instruction that describes the task: ### Input: Converts this Graph object to a graph_tool-compatible object. Requires the graph_tool library. Note that the internal ordering of graph_tool seems to be column-major. ### Response: def to_graph_tool(self): '''Converts this Graph object to a graph_tool-compatible object. Requires the graph_tool library. Note that the internal ordering of graph_tool seems to be column-major.''' # Import here to avoid ImportErrors when graph_tool isn't available. import graph_tool gt = graph_tool.Graph(directed=self.is_directed()) gt.add_edge_list(self.pairs()) if self.is_weighted(): weights = gt.new_edge_property('double') for e,w in zip(gt.edges(), self.edge_weights()): weights[e] = w gt.edge_properties['weight'] = weights return gt
def rfdist_task(newick_string_a, newick_string_b, normalise, min_overlap=4, overlap_fail_value=0): """ Distributed version of tree_distance.rfdist Parameters: two valid newick strings and a boolean """ tree_a = Tree(newick_string_a) tree_b = Tree(newick_string_b) return treedist.rfdist(tree_a, tree_b, normalise, min_overlap, overlap_fail_value)
Distributed version of tree_distance.rfdist Parameters: two valid newick strings and a boolean
Below is the the instruction that describes the task: ### Input: Distributed version of tree_distance.rfdist Parameters: two valid newick strings and a boolean ### Response: def rfdist_task(newick_string_a, newick_string_b, normalise, min_overlap=4, overlap_fail_value=0): """ Distributed version of tree_distance.rfdist Parameters: two valid newick strings and a boolean """ tree_a = Tree(newick_string_a) tree_b = Tree(newick_string_b) return treedist.rfdist(tree_a, tree_b, normalise, min_overlap, overlap_fail_value)
def sanitize(s, strict=True): """ Sanitize a string. Spaces are converted to underscore; if strict=True they are then removed. Parameters ---------- s : str String to sanitize strict : bool If True, only alphanumeric characters are allowed. If False, a limited set of additional characters (-._) will be allowed. """ allowed = ''.join( [ 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz', '0123456789', ] ) if not strict: allowed += '-_.' s = str(s).replace(' ', '_') return ''.join([i for i in s if i in allowed])
Sanitize a string. Spaces are converted to underscore; if strict=True they are then removed. Parameters ---------- s : str String to sanitize strict : bool If True, only alphanumeric characters are allowed. If False, a limited set of additional characters (-._) will be allowed.
Below is the the instruction that describes the task: ### Input: Sanitize a string. Spaces are converted to underscore; if strict=True they are then removed. Parameters ---------- s : str String to sanitize strict : bool If True, only alphanumeric characters are allowed. If False, a limited set of additional characters (-._) will be allowed. ### Response: def sanitize(s, strict=True): """ Sanitize a string. Spaces are converted to underscore; if strict=True they are then removed. Parameters ---------- s : str String to sanitize strict : bool If True, only alphanumeric characters are allowed. If False, a limited set of additional characters (-._) will be allowed. """ allowed = ''.join( [ 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz', '0123456789', ] ) if not strict: allowed += '-_.' s = str(s).replace(' ', '_') return ''.join([i for i in s if i in allowed])
def permutation_entropy(x, n, tau): """Compute Permutation Entropy of a given time series x, specified by permutation order n and embedding lag tau. Parameters ---------- x list a time series n integer Permutation order tau integer Embedding lag Returns ---------- PE float permutation entropy Notes ---------- Suppose the given time series is X =[x(1),x(2),x(3),...,x(N)]. We first build embedding matrix Em, of dimension(n*N-n+1), such that the ith row of Em is x(i),x(i+1),..x(i+n-1). Hence the embedding lag and the embedding dimension are 1 and n respectively. We build this matrix from a given time series, X, by calling pyEEg function embed_seq(x,1,n). We then transform each row of the embedding matrix into a new sequence, comprising a set of integers in range of 0,..,n-1. The order in which the integers are placed within a row is the same as those of the original elements:0 is placed where the smallest element of the row was and n-1 replaces the largest element of the row. To calculate the Permutation entropy, we calculate the entropy of PeSeq. In doing so, we count the number of occurrences of each permutation in PeSeq and write it in a sequence, RankMat. We then use this sequence to calculate entropy by using Shannon's entropy formula. Permutation entropy is usually calculated with n in range of 3 and 7. References ---------- Bandt, Christoph, and Bernd Pompe. "Permutation entropy: a natural complexity measure for time series." Physical Review Letters 88.17 (2002): 174102. Examples ---------- >>> import pyeeg >>> x = [1,2,4,5,12,3,4,5] >>> pyeeg.permutation_entropy(x,5,1) 2.0 """ PeSeq = [] Em = embed_seq(x, tau, n) for i in range(0, len(Em)): r = [] z = [] for j in range(0, len(Em[i])): z.append(Em[i][j]) for j in range(0, len(Em[i])): z.sort() r.append(z.index(Em[i][j])) z[z.index(Em[i][j])] = -1 PeSeq.append(r) RankMat = [] while len(PeSeq) > 0: RankMat.append(PeSeq.count(PeSeq[0])) x = PeSeq[0] for j in range(0, PeSeq.count(PeSeq[0])): PeSeq.pop(PeSeq.index(x)) RankMat = numpy.array(RankMat) RankMat = numpy.true_divide(RankMat, RankMat.sum()) EntropyMat = numpy.multiply(numpy.log2(RankMat), RankMat) PE = -1 * EntropyMat.sum() return PE
Compute Permutation Entropy of a given time series x, specified by permutation order n and embedding lag tau. Parameters ---------- x list a time series n integer Permutation order tau integer Embedding lag Returns ---------- PE float permutation entropy Notes ---------- Suppose the given time series is X =[x(1),x(2),x(3),...,x(N)]. We first build embedding matrix Em, of dimension(n*N-n+1), such that the ith row of Em is x(i),x(i+1),..x(i+n-1). Hence the embedding lag and the embedding dimension are 1 and n respectively. We build this matrix from a given time series, X, by calling pyEEg function embed_seq(x,1,n). We then transform each row of the embedding matrix into a new sequence, comprising a set of integers in range of 0,..,n-1. The order in which the integers are placed within a row is the same as those of the original elements:0 is placed where the smallest element of the row was and n-1 replaces the largest element of the row. To calculate the Permutation entropy, we calculate the entropy of PeSeq. In doing so, we count the number of occurrences of each permutation in PeSeq and write it in a sequence, RankMat. We then use this sequence to calculate entropy by using Shannon's entropy formula. Permutation entropy is usually calculated with n in range of 3 and 7. References ---------- Bandt, Christoph, and Bernd Pompe. "Permutation entropy: a natural complexity measure for time series." Physical Review Letters 88.17 (2002): 174102. Examples ---------- >>> import pyeeg >>> x = [1,2,4,5,12,3,4,5] >>> pyeeg.permutation_entropy(x,5,1) 2.0
Below is the the instruction that describes the task: ### Input: Compute Permutation Entropy of a given time series x, specified by permutation order n and embedding lag tau. Parameters ---------- x list a time series n integer Permutation order tau integer Embedding lag Returns ---------- PE float permutation entropy Notes ---------- Suppose the given time series is X =[x(1),x(2),x(3),...,x(N)]. We first build embedding matrix Em, of dimension(n*N-n+1), such that the ith row of Em is x(i),x(i+1),..x(i+n-1). Hence the embedding lag and the embedding dimension are 1 and n respectively. We build this matrix from a given time series, X, by calling pyEEg function embed_seq(x,1,n). We then transform each row of the embedding matrix into a new sequence, comprising a set of integers in range of 0,..,n-1. The order in which the integers are placed within a row is the same as those of the original elements:0 is placed where the smallest element of the row was and n-1 replaces the largest element of the row. To calculate the Permutation entropy, we calculate the entropy of PeSeq. In doing so, we count the number of occurrences of each permutation in PeSeq and write it in a sequence, RankMat. We then use this sequence to calculate entropy by using Shannon's entropy formula. Permutation entropy is usually calculated with n in range of 3 and 7. References ---------- Bandt, Christoph, and Bernd Pompe. "Permutation entropy: a natural complexity measure for time series." Physical Review Letters 88.17 (2002): 174102. Examples ---------- >>> import pyeeg >>> x = [1,2,4,5,12,3,4,5] >>> pyeeg.permutation_entropy(x,5,1) 2.0 ### Response: def permutation_entropy(x, n, tau): """Compute Permutation Entropy of a given time series x, specified by permutation order n and embedding lag tau. Parameters ---------- x list a time series n integer Permutation order tau integer Embedding lag Returns ---------- PE float permutation entropy Notes ---------- Suppose the given time series is X =[x(1),x(2),x(3),...,x(N)]. We first build embedding matrix Em, of dimension(n*N-n+1), such that the ith row of Em is x(i),x(i+1),..x(i+n-1). Hence the embedding lag and the embedding dimension are 1 and n respectively. We build this matrix from a given time series, X, by calling pyEEg function embed_seq(x,1,n). We then transform each row of the embedding matrix into a new sequence, comprising a set of integers in range of 0,..,n-1. The order in which the integers are placed within a row is the same as those of the original elements:0 is placed where the smallest element of the row was and n-1 replaces the largest element of the row. To calculate the Permutation entropy, we calculate the entropy of PeSeq. In doing so, we count the number of occurrences of each permutation in PeSeq and write it in a sequence, RankMat. We then use this sequence to calculate entropy by using Shannon's entropy formula. Permutation entropy is usually calculated with n in range of 3 and 7. References ---------- Bandt, Christoph, and Bernd Pompe. "Permutation entropy: a natural complexity measure for time series." Physical Review Letters 88.17 (2002): 174102. Examples ---------- >>> import pyeeg >>> x = [1,2,4,5,12,3,4,5] >>> pyeeg.permutation_entropy(x,5,1) 2.0 """ PeSeq = [] Em = embed_seq(x, tau, n) for i in range(0, len(Em)): r = [] z = [] for j in range(0, len(Em[i])): z.append(Em[i][j]) for j in range(0, len(Em[i])): z.sort() r.append(z.index(Em[i][j])) z[z.index(Em[i][j])] = -1 PeSeq.append(r) RankMat = [] while len(PeSeq) > 0: RankMat.append(PeSeq.count(PeSeq[0])) x = PeSeq[0] for j in range(0, PeSeq.count(PeSeq[0])): PeSeq.pop(PeSeq.index(x)) RankMat = numpy.array(RankMat) RankMat = numpy.true_divide(RankMat, RankMat.sum()) EntropyMat = numpy.multiply(numpy.log2(RankMat), RankMat) PE = -1 * EntropyMat.sum() return PE
def load_sampleset(self, f, name): '''Read the sampleset from using the HDF5 format. Name is usually in {train, test}.''' self.encoder_x = np.array(f[name + '_encoder_x']) self.decoder_x = np.array(f[name + '_decoder_x']) self.decoder_y = np.array(f[name + '_decoder_y'])
Read the sampleset from using the HDF5 format. Name is usually in {train, test}.
Below is the the instruction that describes the task: ### Input: Read the sampleset from using the HDF5 format. Name is usually in {train, test}. ### Response: def load_sampleset(self, f, name): '''Read the sampleset from using the HDF5 format. Name is usually in {train, test}.''' self.encoder_x = np.array(f[name + '_encoder_x']) self.decoder_x = np.array(f[name + '_decoder_x']) self.decoder_y = np.array(f[name + '_decoder_y'])
def setParentAnalysisRequest(self, value): """Sets a parent analysis request, making the current a partition """ self.Schema().getField("ParentAnalysisRequest").set(self, value) if not value: noLongerProvides(self, IAnalysisRequestPartition) else: alsoProvides(self, IAnalysisRequestPartition)
Sets a parent analysis request, making the current a partition
Below is the the instruction that describes the task: ### Input: Sets a parent analysis request, making the current a partition ### Response: def setParentAnalysisRequest(self, value): """Sets a parent analysis request, making the current a partition """ self.Schema().getField("ParentAnalysisRequest").set(self, value) if not value: noLongerProvides(self, IAnalysisRequestPartition) else: alsoProvides(self, IAnalysisRequestPartition)
def fill(self, *args): """ Apply a solid fill to your chart args are of the form <fill type>,<fill style>,... fill type must be one of c,bg,a fill style must be one of s,lg,ls the rest of the args refer to the particular style APIPARAM: chf """ a,b = args[:2] assert a in ('c','bg','a'), 'Fill type must be bg/c/a not %s'%a assert b in ('s','lg','ls'), 'Fill style must be s/lg/ls not %s'%b if len(args) == 3: args = color_args(args, 2) else: args = color_args(args, 3,5) self.fills.append(','.join(map(str,args))) return self
Apply a solid fill to your chart args are of the form <fill type>,<fill style>,... fill type must be one of c,bg,a fill style must be one of s,lg,ls the rest of the args refer to the particular style APIPARAM: chf
Below is the the instruction that describes the task: ### Input: Apply a solid fill to your chart args are of the form <fill type>,<fill style>,... fill type must be one of c,bg,a fill style must be one of s,lg,ls the rest of the args refer to the particular style APIPARAM: chf ### Response: def fill(self, *args): """ Apply a solid fill to your chart args are of the form <fill type>,<fill style>,... fill type must be one of c,bg,a fill style must be one of s,lg,ls the rest of the args refer to the particular style APIPARAM: chf """ a,b = args[:2] assert a in ('c','bg','a'), 'Fill type must be bg/c/a not %s'%a assert b in ('s','lg','ls'), 'Fill style must be s/lg/ls not %s'%b if len(args) == 3: args = color_args(args, 2) else: args = color_args(args, 3,5) self.fills.append(','.join(map(str,args))) return self
def get_img_attrs(self, style=None, **kwargs): """ Get an attribute list (src, srcset, style, et al) for the image. style -- an optional list of CSS style fragments Returns: a dict of attributes e.g. {'src':'foo.jpg','srcset':'foo.jpg 1x, bar.jpg 2x'] """ add = {} if 'prefix' in kwargs: attr_prefixes = kwargs.get('prefix') if isinstance(kwargs['prefix'], str): attr_prefixes = [attr_prefixes] for prefix in attr_prefixes: for k, val in kwargs.items(): if k.startswith(prefix): add[k[len(prefix):]] = val return self._get_img_attrs(style, {**kwargs, **add})
Get an attribute list (src, srcset, style, et al) for the image. style -- an optional list of CSS style fragments Returns: a dict of attributes e.g. {'src':'foo.jpg','srcset':'foo.jpg 1x, bar.jpg 2x']
Below is the the instruction that describes the task: ### Input: Get an attribute list (src, srcset, style, et al) for the image. style -- an optional list of CSS style fragments Returns: a dict of attributes e.g. {'src':'foo.jpg','srcset':'foo.jpg 1x, bar.jpg 2x'] ### Response: def get_img_attrs(self, style=None, **kwargs): """ Get an attribute list (src, srcset, style, et al) for the image. style -- an optional list of CSS style fragments Returns: a dict of attributes e.g. {'src':'foo.jpg','srcset':'foo.jpg 1x, bar.jpg 2x'] """ add = {} if 'prefix' in kwargs: attr_prefixes = kwargs.get('prefix') if isinstance(kwargs['prefix'], str): attr_prefixes = [attr_prefixes] for prefix in attr_prefixes: for k, val in kwargs.items(): if k.startswith(prefix): add[k[len(prefix):]] = val return self._get_img_attrs(style, {**kwargs, **add})
def get_by_index(self, i): """Look up a gene set by its index. Parameters ---------- i: int The index of the gene set. Returns ------- GeneSet The gene set. Raises ------ ValueError If the given index is out of bounds. """ if i >= self.n: raise ValueError('Index %d out of bounds ' % i + 'for database with %d gene sets.' % self.n) return self._gene_sets[self._gene_set_ids[i]]
Look up a gene set by its index. Parameters ---------- i: int The index of the gene set. Returns ------- GeneSet The gene set. Raises ------ ValueError If the given index is out of bounds.
Below is the the instruction that describes the task: ### Input: Look up a gene set by its index. Parameters ---------- i: int The index of the gene set. Returns ------- GeneSet The gene set. Raises ------ ValueError If the given index is out of bounds. ### Response: def get_by_index(self, i): """Look up a gene set by its index. Parameters ---------- i: int The index of the gene set. Returns ------- GeneSet The gene set. Raises ------ ValueError If the given index is out of bounds. """ if i >= self.n: raise ValueError('Index %d out of bounds ' % i + 'for database with %d gene sets.' % self.n) return self._gene_sets[self._gene_set_ids[i]]
def getLabel(self): """Returns symbolic path to this MIB variable. Meaning a sequence of symbolic identifications for each of parent MIB objects in MIB tree. Returns ------- tuple sequence of names of nodes in a MIB tree from the top of the tree towards this MIB variable. Raises ------ SmiError If MIB variable conversion has not been performed. Notes ----- Returned sequence may not contain full path to this MIB variable if some symbols are now known at the moment of MIB look up. Examples -------- >>> objectIdentity = ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0) >>> objectIdentity.resolveWithMib(mibViewController) >>> objectIdentity.getOid() ('iso', 'org', 'dod', 'internet', 'mgmt', 'mib-2', 'system', 'sysDescr') >>> """ if self._state & self.ST_CLEAN: return self._label else: raise SmiError( '%s object not fully initialized' % self.__class__.__name__)
Returns symbolic path to this MIB variable. Meaning a sequence of symbolic identifications for each of parent MIB objects in MIB tree. Returns ------- tuple sequence of names of nodes in a MIB tree from the top of the tree towards this MIB variable. Raises ------ SmiError If MIB variable conversion has not been performed. Notes ----- Returned sequence may not contain full path to this MIB variable if some symbols are now known at the moment of MIB look up. Examples -------- >>> objectIdentity = ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0) >>> objectIdentity.resolveWithMib(mibViewController) >>> objectIdentity.getOid() ('iso', 'org', 'dod', 'internet', 'mgmt', 'mib-2', 'system', 'sysDescr') >>>
Below is the the instruction that describes the task: ### Input: Returns symbolic path to this MIB variable. Meaning a sequence of symbolic identifications for each of parent MIB objects in MIB tree. Returns ------- tuple sequence of names of nodes in a MIB tree from the top of the tree towards this MIB variable. Raises ------ SmiError If MIB variable conversion has not been performed. Notes ----- Returned sequence may not contain full path to this MIB variable if some symbols are now known at the moment of MIB look up. Examples -------- >>> objectIdentity = ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0) >>> objectIdentity.resolveWithMib(mibViewController) >>> objectIdentity.getOid() ('iso', 'org', 'dod', 'internet', 'mgmt', 'mib-2', 'system', 'sysDescr') >>> ### Response: def getLabel(self): """Returns symbolic path to this MIB variable. Meaning a sequence of symbolic identifications for each of parent MIB objects in MIB tree. Returns ------- tuple sequence of names of nodes in a MIB tree from the top of the tree towards this MIB variable. Raises ------ SmiError If MIB variable conversion has not been performed. Notes ----- Returned sequence may not contain full path to this MIB variable if some symbols are now known at the moment of MIB look up. Examples -------- >>> objectIdentity = ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0) >>> objectIdentity.resolveWithMib(mibViewController) >>> objectIdentity.getOid() ('iso', 'org', 'dod', 'internet', 'mgmt', 'mib-2', 'system', 'sysDescr') >>> """ if self._state & self.ST_CLEAN: return self._label else: raise SmiError( '%s object not fully initialized' % self.__class__.__name__)
def open(self): """initialize visit variables and statistics """ self._tryfinallys = [] self.stats = self.linter.add_stats(module=0, function=0, method=0, class_=0)
initialize visit variables and statistics
Below is the the instruction that describes the task: ### Input: initialize visit variables and statistics ### Response: def open(self): """initialize visit variables and statistics """ self._tryfinallys = [] self.stats = self.linter.add_stats(module=0, function=0, method=0, class_=0)
def _check_for_fail_message(self, transport, exc_info, timeout): # pylint: disable=no-self-use """Check for a 'FAIL' message from transport. This method always raises, if 'FAIL' was read, it will raise an AdbRemoteError with the message, otherwise it will raise based on exc_info, which should be a tuple as per sys.exc_info(). Args: transport: Transport from which to read for a 'FAIL' message. exc_info: Exception info to raise if no 'FAIL' is read. timeout: Timeout to use for the read operation. Raises: AdbRemoteError: If a 'FAIL' is read, otherwise raises exc_info. """ try: transport.read_message(timeout) except usb_exceptions.CommonUsbError: # If we got a remote error, raise that exception. if sys.exc_info()[0] is usb_exceptions.AdbRemoteError: raise # Otherwise reraise the original exception. raise_with_traceback(exc_info[0](exc_info[1]), traceback=exc_info[2])
Check for a 'FAIL' message from transport. This method always raises, if 'FAIL' was read, it will raise an AdbRemoteError with the message, otherwise it will raise based on exc_info, which should be a tuple as per sys.exc_info(). Args: transport: Transport from which to read for a 'FAIL' message. exc_info: Exception info to raise if no 'FAIL' is read. timeout: Timeout to use for the read operation. Raises: AdbRemoteError: If a 'FAIL' is read, otherwise raises exc_info.
Below is the the instruction that describes the task: ### Input: Check for a 'FAIL' message from transport. This method always raises, if 'FAIL' was read, it will raise an AdbRemoteError with the message, otherwise it will raise based on exc_info, which should be a tuple as per sys.exc_info(). Args: transport: Transport from which to read for a 'FAIL' message. exc_info: Exception info to raise if no 'FAIL' is read. timeout: Timeout to use for the read operation. Raises: AdbRemoteError: If a 'FAIL' is read, otherwise raises exc_info. ### Response: def _check_for_fail_message(self, transport, exc_info, timeout): # pylint: disable=no-self-use """Check for a 'FAIL' message from transport. This method always raises, if 'FAIL' was read, it will raise an AdbRemoteError with the message, otherwise it will raise based on exc_info, which should be a tuple as per sys.exc_info(). Args: transport: Transport from which to read for a 'FAIL' message. exc_info: Exception info to raise if no 'FAIL' is read. timeout: Timeout to use for the read operation. Raises: AdbRemoteError: If a 'FAIL' is read, otherwise raises exc_info. """ try: transport.read_message(timeout) except usb_exceptions.CommonUsbError: # If we got a remote error, raise that exception. if sys.exc_info()[0] is usb_exceptions.AdbRemoteError: raise # Otherwise reraise the original exception. raise_with_traceback(exc_info[0](exc_info[1]), traceback=exc_info[2])
def config_parse(files=None, config=None, config_profile=".fissconfig", **kwargs): ''' Read initial configuration state, from named config files; store this state within a config dictionary (which may be nested) whose keys may also be referenced as attributes (safely, defaulting to None if unset). A config object may be passed in, as a way of accumulating or overwriting configuration state; if one is NOT passed, the default config obj is used ''' local_config = config config = __fcconfig cfgparser = configparser.SafeConfigParser() filenames = list() # Give personal/user followed by current working directory configuration the first say filenames.append(os.path.join(os.path.expanduser('~'), config_profile)) filenames.append(os.path.join(os.getcwd(), config_profile)) if files: if isinstance(files, string_types): filenames.append(files) elif isinstance(files, Iterable): for f in files: if isinstance(f, IOBase): f = f.name filenames.append(f) cfgparser.read(filenames) # [DEFAULT] defines common variables for interpolation/substitution in # other sections, and are stored at the root level of the config object for keyval in cfgparser.items('DEFAULT'): #print("config_parse: adding config variable %s=%s" % (keyval[0], str(keyval[1]))) __fcconfig[keyval[0]] = keyval[1] for section in cfgparser.sections(): config[section] = attrdict() for option in cfgparser.options(section): # DEFAULT vars ALSO behave as though they were defined in every # section, but we purposely skip them here so that each section # reflects only the options explicitly defined in that section if not config[option]: config[section][option] = cfgparser.get(section, option) config.verbosity = int(config.verbosity) if not config.root_url.endswith('/'): config.root_url += '/' if os.path.isfile(config.credentials): os.environ[environment_vars.CREDENTIALS] = config.credentials # if local_config override options with passed options if local_config is not None: for key, value in local_config.items(): config[key] = value # if any explict config options are passed override. for key, value in kwargs.items(): config[key] = value return config
Read initial configuration state, from named config files; store this state within a config dictionary (which may be nested) whose keys may also be referenced as attributes (safely, defaulting to None if unset). A config object may be passed in, as a way of accumulating or overwriting configuration state; if one is NOT passed, the default config obj is used
Below is the the instruction that describes the task: ### Input: Read initial configuration state, from named config files; store this state within a config dictionary (which may be nested) whose keys may also be referenced as attributes (safely, defaulting to None if unset). A config object may be passed in, as a way of accumulating or overwriting configuration state; if one is NOT passed, the default config obj is used ### Response: def config_parse(files=None, config=None, config_profile=".fissconfig", **kwargs): ''' Read initial configuration state, from named config files; store this state within a config dictionary (which may be nested) whose keys may also be referenced as attributes (safely, defaulting to None if unset). A config object may be passed in, as a way of accumulating or overwriting configuration state; if one is NOT passed, the default config obj is used ''' local_config = config config = __fcconfig cfgparser = configparser.SafeConfigParser() filenames = list() # Give personal/user followed by current working directory configuration the first say filenames.append(os.path.join(os.path.expanduser('~'), config_profile)) filenames.append(os.path.join(os.getcwd(), config_profile)) if files: if isinstance(files, string_types): filenames.append(files) elif isinstance(files, Iterable): for f in files: if isinstance(f, IOBase): f = f.name filenames.append(f) cfgparser.read(filenames) # [DEFAULT] defines common variables for interpolation/substitution in # other sections, and are stored at the root level of the config object for keyval in cfgparser.items('DEFAULT'): #print("config_parse: adding config variable %s=%s" % (keyval[0], str(keyval[1]))) __fcconfig[keyval[0]] = keyval[1] for section in cfgparser.sections(): config[section] = attrdict() for option in cfgparser.options(section): # DEFAULT vars ALSO behave as though they were defined in every # section, but we purposely skip them here so that each section # reflects only the options explicitly defined in that section if not config[option]: config[section][option] = cfgparser.get(section, option) config.verbosity = int(config.verbosity) if not config.root_url.endswith('/'): config.root_url += '/' if os.path.isfile(config.credentials): os.environ[environment_vars.CREDENTIALS] = config.credentials # if local_config override options with passed options if local_config is not None: for key, value in local_config.items(): config[key] = value # if any explict config options are passed override. for key, value in kwargs.items(): config[key] = value return config
def get_design_document(self, ddoc_id): """ Retrieves a design document. If a design document exists remotely then that content is wrapped in a DesignDocument object and returned to the caller. Otherwise a "shell" DesignDocument object is returned. :param str ddoc_id: Design document id :returns: A DesignDocument instance, if exists remotely then it will be populated accordingly """ ddoc = DesignDocument(self, ddoc_id) try: ddoc.fetch() except HTTPError as error: if error.response.status_code != 404: raise return ddoc
Retrieves a design document. If a design document exists remotely then that content is wrapped in a DesignDocument object and returned to the caller. Otherwise a "shell" DesignDocument object is returned. :param str ddoc_id: Design document id :returns: A DesignDocument instance, if exists remotely then it will be populated accordingly
Below is the the instruction that describes the task: ### Input: Retrieves a design document. If a design document exists remotely then that content is wrapped in a DesignDocument object and returned to the caller. Otherwise a "shell" DesignDocument object is returned. :param str ddoc_id: Design document id :returns: A DesignDocument instance, if exists remotely then it will be populated accordingly ### Response: def get_design_document(self, ddoc_id): """ Retrieves a design document. If a design document exists remotely then that content is wrapped in a DesignDocument object and returned to the caller. Otherwise a "shell" DesignDocument object is returned. :param str ddoc_id: Design document id :returns: A DesignDocument instance, if exists remotely then it will be populated accordingly """ ddoc = DesignDocument(self, ddoc_id) try: ddoc.fetch() except HTTPError as error: if error.response.status_code != 404: raise return ddoc
def profiling(self): """A generator which profiles then broadcasts the result. Implement sleeping loop using this:: def profile_periodically(self): for __ in self.profiling(): time.sleep(self.interval) """ self._log_profiler_started() while self.clients: try: self.profiler.start() except RuntimeError: pass # should sleep. yield self.profiler.stop() result = self.profiler.result() data = pack_msg(RESULT, result, pickle_protocol=self.pickle_protocol) self._latest_result_data = data # broadcast. closed_clients = [] for client in self.clients: try: self._send(client, data) except socket.error as exc: if exc.errno == EPIPE: closed_clients.append(client) del data # handle disconnections. for client in closed_clients: self.disconnected(client) self._log_profiler_stopped()
A generator which profiles then broadcasts the result. Implement sleeping loop using this:: def profile_periodically(self): for __ in self.profiling(): time.sleep(self.interval)
Below is the the instruction that describes the task: ### Input: A generator which profiles then broadcasts the result. Implement sleeping loop using this:: def profile_periodically(self): for __ in self.profiling(): time.sleep(self.interval) ### Response: def profiling(self): """A generator which profiles then broadcasts the result. Implement sleeping loop using this:: def profile_periodically(self): for __ in self.profiling(): time.sleep(self.interval) """ self._log_profiler_started() while self.clients: try: self.profiler.start() except RuntimeError: pass # should sleep. yield self.profiler.stop() result = self.profiler.result() data = pack_msg(RESULT, result, pickle_protocol=self.pickle_protocol) self._latest_result_data = data # broadcast. closed_clients = [] for client in self.clients: try: self._send(client, data) except socket.error as exc: if exc.errno == EPIPE: closed_clients.append(client) del data # handle disconnections. for client in closed_clients: self.disconnected(client) self._log_profiler_stopped()
def get_plan(self, nodes=None): """ Retrieve a plan, e.g. a list of fixtures to be loaded sorted on dependency. :param list nodes: list of nodes to be loaded. :return: """ if nodes: plan = self.graph.resolve_nodes(nodes) else: plan = self.graph.resolve_node() return plan
Retrieve a plan, e.g. a list of fixtures to be loaded sorted on dependency. :param list nodes: list of nodes to be loaded. :return:
Below is the the instruction that describes the task: ### Input: Retrieve a plan, e.g. a list of fixtures to be loaded sorted on dependency. :param list nodes: list of nodes to be loaded. :return: ### Response: def get_plan(self, nodes=None): """ Retrieve a plan, e.g. a list of fixtures to be loaded sorted on dependency. :param list nodes: list of nodes to be loaded. :return: """ if nodes: plan = self.graph.resolve_nodes(nodes) else: plan = self.graph.resolve_node() return plan
def to_ufo_paths(self, ufo_glyph, layer): """Draw .glyphs paths onto a pen.""" pen = ufo_glyph.getPointPen() for path in layer.paths: # the list is changed below, otherwise you can't draw more than once # per session. nodes = list(path.nodes) for node in nodes: self.to_ufo_node_user_data(ufo_glyph, node) pen.beginPath() if not nodes: pen.endPath() continue if not path.closed: node = nodes.pop(0) assert node.type == "line", "Open path starts with off-curve points" pen.addPoint(tuple(node.position), segmentType="move") else: # In Glyphs.app, the starting node of a closed contour is always # stored at the end of the nodes list. nodes.insert(0, nodes.pop()) for node in nodes: node_type = _to_ufo_node_type(node.type) pen.addPoint( tuple(node.position), segmentType=node_type, smooth=node.smooth ) pen.endPath()
Draw .glyphs paths onto a pen.
Below is the the instruction that describes the task: ### Input: Draw .glyphs paths onto a pen. ### Response: def to_ufo_paths(self, ufo_glyph, layer): """Draw .glyphs paths onto a pen.""" pen = ufo_glyph.getPointPen() for path in layer.paths: # the list is changed below, otherwise you can't draw more than once # per session. nodes = list(path.nodes) for node in nodes: self.to_ufo_node_user_data(ufo_glyph, node) pen.beginPath() if not nodes: pen.endPath() continue if not path.closed: node = nodes.pop(0) assert node.type == "line", "Open path starts with off-curve points" pen.addPoint(tuple(node.position), segmentType="move") else: # In Glyphs.app, the starting node of a closed contour is always # stored at the end of the nodes list. nodes.insert(0, nodes.pop()) for node in nodes: node_type = _to_ufo_node_type(node.type) pen.addPoint( tuple(node.position), segmentType=node_type, smooth=node.smooth ) pen.endPath()
def get(self,path): """ permet de récupérer une config Args: path (String): Nom d'une config Returns: type: String la valeur de la config ou None """ path = path.upper() if path in self._configCache: return self._configCache[path] else : return self._findConfig(path)
permet de récupérer une config Args: path (String): Nom d'une config Returns: type: String la valeur de la config ou None
Below is the the instruction that describes the task: ### Input: permet de récupérer une config Args: path (String): Nom d'une config Returns: type: String la valeur de la config ou None ### Response: def get(self,path): """ permet de récupérer une config Args: path (String): Nom d'une config Returns: type: String la valeur de la config ou None """ path = path.upper() if path in self._configCache: return self._configCache[path] else : return self._findConfig(path)
def work_cancel(self, hash): """ Stop generating **work** for block .. enable_control required :param hash: Hash to stop generating work for :type hash: str :raises: :py:exc:`nano.rpc.RPCException` >>> rpc.work_cancel( ... hash="718CC2121C3E641059BC1C2CFC45666C99E8AE922F7A807B7D07B62C995D79E2" ... ) True """ hash = self._process_value(hash, 'block') payload = {"hash": hash} resp = self.call('work_cancel', payload) return resp == {}
Stop generating **work** for block .. enable_control required :param hash: Hash to stop generating work for :type hash: str :raises: :py:exc:`nano.rpc.RPCException` >>> rpc.work_cancel( ... hash="718CC2121C3E641059BC1C2CFC45666C99E8AE922F7A807B7D07B62C995D79E2" ... ) True
Below is the the instruction that describes the task: ### Input: Stop generating **work** for block .. enable_control required :param hash: Hash to stop generating work for :type hash: str :raises: :py:exc:`nano.rpc.RPCException` >>> rpc.work_cancel( ... hash="718CC2121C3E641059BC1C2CFC45666C99E8AE922F7A807B7D07B62C995D79E2" ... ) True ### Response: def work_cancel(self, hash): """ Stop generating **work** for block .. enable_control required :param hash: Hash to stop generating work for :type hash: str :raises: :py:exc:`nano.rpc.RPCException` >>> rpc.work_cancel( ... hash="718CC2121C3E641059BC1C2CFC45666C99E8AE922F7A807B7D07B62C995D79E2" ... ) True """ hash = self._process_value(hash, 'block') payload = {"hash": hash} resp = self.call('work_cancel', payload) return resp == {}
def new(self): """ The new value present in the event. """ ori = self.original.action if isinstance(ori, ( types.ChannelAdminLogEventActionChangeAbout, types.ChannelAdminLogEventActionChangeTitle, types.ChannelAdminLogEventActionChangeUsername, types.ChannelAdminLogEventActionToggleInvites, types.ChannelAdminLogEventActionTogglePreHistoryHidden, types.ChannelAdminLogEventActionToggleSignatures )): return ori.new_value elif isinstance(ori, types.ChannelAdminLogEventActionChangePhoto): return ori.new_photo elif isinstance(ori, types.ChannelAdminLogEventActionChangeStickerSet): return ori.new_stickerset elif isinstance(ori, types.ChannelAdminLogEventActionEditMessage): return ori.new_message elif isinstance(ori, ( types.ChannelAdminLogEventActionParticipantToggleAdmin, types.ChannelAdminLogEventActionParticipantToggleBan )): return ori.new_participant elif isinstance(ori, types.ChannelAdminLogEventActionParticipantInvite): return ori.participant elif isinstance(ori, types.ChannelAdminLogEventActionDefaultBannedRights): return ori.new_banned_rights elif isinstance(ori, types.ChannelAdminLogEventActionStopPoll): return ori.message
The new value present in the event.
Below is the the instruction that describes the task: ### Input: The new value present in the event. ### Response: def new(self): """ The new value present in the event. """ ori = self.original.action if isinstance(ori, ( types.ChannelAdminLogEventActionChangeAbout, types.ChannelAdminLogEventActionChangeTitle, types.ChannelAdminLogEventActionChangeUsername, types.ChannelAdminLogEventActionToggleInvites, types.ChannelAdminLogEventActionTogglePreHistoryHidden, types.ChannelAdminLogEventActionToggleSignatures )): return ori.new_value elif isinstance(ori, types.ChannelAdminLogEventActionChangePhoto): return ori.new_photo elif isinstance(ori, types.ChannelAdminLogEventActionChangeStickerSet): return ori.new_stickerset elif isinstance(ori, types.ChannelAdminLogEventActionEditMessage): return ori.new_message elif isinstance(ori, ( types.ChannelAdminLogEventActionParticipantToggleAdmin, types.ChannelAdminLogEventActionParticipantToggleBan )): return ori.new_participant elif isinstance(ori, types.ChannelAdminLogEventActionParticipantInvite): return ori.participant elif isinstance(ori, types.ChannelAdminLogEventActionDefaultBannedRights): return ori.new_banned_rights elif isinstance(ori, types.ChannelAdminLogEventActionStopPoll): return ori.message
def add_namespace_uri(self, ns_uri, prefix=None, schema_location=None): """Adds a new namespace to this set, optionally with a prefix and schema location URI. If the namespace already exists, the given prefix and schema location are merged with the existing entry: * If non-None, ``prefix`` is added to the set. The preferred prefix is not modified. * If a schema location is not already associated with the namespace, it is set to ``schema_location`` (if given). If the namespace doesn't already exist in this set (so a new one is being created) and a prefix is given, that prefix becomes preferred. If not given, a preference as a default namespace is used. Args: ns_uri (str): The URI of the new namespace prefix (str): The desired prefix for the new namespace (optional) schema_location (str): The desired schema location for the new namespace (optional). Raises: DuplicatePrefixError: If a prefix is given which already maps to a different namespace ConflictingSchemaLocationError: If a schema location is given and the namespace already exists in this set with a different schema location. """ assert ns_uri if ns_uri in self.__ns_uri_map: # We have a _NamespaceInfo object for this URI already. So this # is a merge operation. # # We modify a copy of the real _NamespaceInfo so that we are # exception-safe: if something goes wrong, we don't end up with a # half-changed NamespaceSet. ni = self.__lookup_uri(ns_uri) new_ni = copy.deepcopy(ni) # Reconcile prefixes if prefix: self.__check_prefix_conflict(ni, prefix) new_ni.prefixes.add(prefix) self.__merge_schema_locations(new_ni, schema_location) # At this point, we have a legit new_ni object. Now we update # the set, ensuring our invariants. This should replace # all instances of the old ni in this set. for p in new_ni.prefixes: self.__prefix_map[p] = new_ni self.__ns_uri_map[new_ni.uri] = new_ni else: # A brand new namespace. The incoming prefix should not exist at # all in the prefix map. if prefix: self.__check_prefix_conflict(ns_uri, prefix) ni = _NamespaceInfo(ns_uri, prefix, schema_location) self.__add_namespaceinfo(ni)
Adds a new namespace to this set, optionally with a prefix and schema location URI. If the namespace already exists, the given prefix and schema location are merged with the existing entry: * If non-None, ``prefix`` is added to the set. The preferred prefix is not modified. * If a schema location is not already associated with the namespace, it is set to ``schema_location`` (if given). If the namespace doesn't already exist in this set (so a new one is being created) and a prefix is given, that prefix becomes preferred. If not given, a preference as a default namespace is used. Args: ns_uri (str): The URI of the new namespace prefix (str): The desired prefix for the new namespace (optional) schema_location (str): The desired schema location for the new namespace (optional). Raises: DuplicatePrefixError: If a prefix is given which already maps to a different namespace ConflictingSchemaLocationError: If a schema location is given and the namespace already exists in this set with a different schema location.
Below is the the instruction that describes the task: ### Input: Adds a new namespace to this set, optionally with a prefix and schema location URI. If the namespace already exists, the given prefix and schema location are merged with the existing entry: * If non-None, ``prefix`` is added to the set. The preferred prefix is not modified. * If a schema location is not already associated with the namespace, it is set to ``schema_location`` (if given). If the namespace doesn't already exist in this set (so a new one is being created) and a prefix is given, that prefix becomes preferred. If not given, a preference as a default namespace is used. Args: ns_uri (str): The URI of the new namespace prefix (str): The desired prefix for the new namespace (optional) schema_location (str): The desired schema location for the new namespace (optional). Raises: DuplicatePrefixError: If a prefix is given which already maps to a different namespace ConflictingSchemaLocationError: If a schema location is given and the namespace already exists in this set with a different schema location. ### Response: def add_namespace_uri(self, ns_uri, prefix=None, schema_location=None): """Adds a new namespace to this set, optionally with a prefix and schema location URI. If the namespace already exists, the given prefix and schema location are merged with the existing entry: * If non-None, ``prefix`` is added to the set. The preferred prefix is not modified. * If a schema location is not already associated with the namespace, it is set to ``schema_location`` (if given). If the namespace doesn't already exist in this set (so a new one is being created) and a prefix is given, that prefix becomes preferred. If not given, a preference as a default namespace is used. Args: ns_uri (str): The URI of the new namespace prefix (str): The desired prefix for the new namespace (optional) schema_location (str): The desired schema location for the new namespace (optional). Raises: DuplicatePrefixError: If a prefix is given which already maps to a different namespace ConflictingSchemaLocationError: If a schema location is given and the namespace already exists in this set with a different schema location. """ assert ns_uri if ns_uri in self.__ns_uri_map: # We have a _NamespaceInfo object for this URI already. So this # is a merge operation. # # We modify a copy of the real _NamespaceInfo so that we are # exception-safe: if something goes wrong, we don't end up with a # half-changed NamespaceSet. ni = self.__lookup_uri(ns_uri) new_ni = copy.deepcopy(ni) # Reconcile prefixes if prefix: self.__check_prefix_conflict(ni, prefix) new_ni.prefixes.add(prefix) self.__merge_schema_locations(new_ni, schema_location) # At this point, we have a legit new_ni object. Now we update # the set, ensuring our invariants. This should replace # all instances of the old ni in this set. for p in new_ni.prefixes: self.__prefix_map[p] = new_ni self.__ns_uri_map[new_ni.uri] = new_ni else: # A brand new namespace. The incoming prefix should not exist at # all in the prefix map. if prefix: self.__check_prefix_conflict(ns_uri, prefix) ni = _NamespaceInfo(ns_uri, prefix, schema_location) self.__add_namespaceinfo(ni)