code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def bounds(self): """ Return the axis aligned bounding box of the current path. Returns ---------- bounds: (2, dimension) float, (min, max) coordinates """ # get the exact bounds of each entity # some entities (aka 3- point Arc) have bounds that can't # be generated from just bound box of vertices points = np.array([e.bounds(self.vertices) for e in self.entities], dtype=np.float64) # flatten bound extrema into (n, dimension) array points = points.reshape((-1, self.vertices.shape[1])) # get the max and min of all bounds bounds = np.array([points.min(axis=0), points.max(axis=0)], dtype=np.float64) return bounds
Return the axis aligned bounding box of the current path. Returns ---------- bounds: (2, dimension) float, (min, max) coordinates
def weighted_minkowski(x, y, w=_mock_identity, p=2): """A weighted version of Minkowski distance. ..math:: D(x, y) = \left(\sum_i w_i |x_i - y_i|^p\right)^{\frac{1}{p}} If weights w_i are inverse standard deviations of data in each dimension then this represented a standardised Minkowski distance (and is equivalent to standardised Euclidean distance for p=1). """ result = 0.0 for i in range(x.shape[0]): result += (w[i] * np.abs(x[i] - y[i])) ** p return result ** (1.0 / p)
A weighted version of Minkowski distance. ..math:: D(x, y) = \left(\sum_i w_i |x_i - y_i|^p\right)^{\frac{1}{p}} If weights w_i are inverse standard deviations of data in each dimension then this represented a standardised Minkowski distance (and is equivalent to standardised Euclidean distance for p=1).
def dict_strict_update(base_dict, update_dict): """ This function updates base_dict with update_dict if and only if update_dict does not contain keys that are not already in base_dict. It is essentially a more strict interpretation of the term "updating" the dict. If update_dict contains keys that are not in base_dict, a RuntimeError is raised. :param base_dict: The dict that is to be updated. This dict is modified. :param update_dict: The dict containing the new values. """ additional_keys = set(update_dict.keys()) - set(base_dict.keys()) if len(additional_keys) > 0: raise RuntimeError( 'The update dictionary contains keys that are not part of ' 'the base dictionary: {}'.format(str(additional_keys)), additional_keys) base_dict.update(update_dict)
This function updates base_dict with update_dict if and only if update_dict does not contain keys that are not already in base_dict. It is essentially a more strict interpretation of the term "updating" the dict. If update_dict contains keys that are not in base_dict, a RuntimeError is raised. :param base_dict: The dict that is to be updated. This dict is modified. :param update_dict: The dict containing the new values.
def _lookup_enum_in_ns(namespace, value): """Return the attribute of namespace corresponding to value.""" for attribute in dir(namespace): if getattr(namespace, attribute) == value: return attribute
Return the attribute of namespace corresponding to value.
def iter_predict(self, X, include_init=False): """Returns the predictions for ``X`` at every stage of the boosting procedure. Args: X (array-like or sparse matrix of shape (n_samples, n_features): The input samples. Sparse matrices are accepted only if they are supported by the weak model. include_init (bool, default=False): If ``True`` then the prediction from ``init_estimator`` will also be returned. Returns: iterator of arrays of shape (n_samples,) containing the predicted values at each stage """ utils.validation.check_is_fitted(self, 'init_estimator_') X = utils.check_array(X, accept_sparse=['csr', 'csc'], dtype=None, force_all_finite=False) y_pred = self.init_estimator_.predict(X) # The user decides if the initial prediction should be included or not if include_init: yield y_pred for estimators, line_searchers, cols in itertools.zip_longest(self.estimators_, self.line_searchers_, self.columns_): for i, (estimator, line_searcher) in enumerate(itertools.zip_longest(estimators, line_searchers or [])): # If we used column sampling then we have to make sure the columns of X are arranged # in the correct order if cols is None: direction = estimator.predict(X) else: direction = estimator.predict(X[:, cols]) if line_searcher: direction = line_searcher.update(direction) y_pred[:, i] += self.learning_rate * direction yield y_pred
Returns the predictions for ``X`` at every stage of the boosting procedure. Args: X (array-like or sparse matrix of shape (n_samples, n_features): The input samples. Sparse matrices are accepted only if they are supported by the weak model. include_init (bool, default=False): If ``True`` then the prediction from ``init_estimator`` will also be returned. Returns: iterator of arrays of shape (n_samples,) containing the predicted values at each stage
async def deserialize(self, data: dict, silent=True): ''' Deserializes a Python ``dict`` into the model by assigning values to their respective fields. Ignores data attributes that do not match one of the Model's fields. Ignores data attributes who's matching fields are declared with the ``readonly`` attribute Validates the data after import. Override in sub classes to modify or add to deserialization behavior :param data: Python dictionary with data :type data: ``dict`` :param silent: Determines if an exception is thrown if illegal fields are passed. Such fields can be non existent or readonly. Default is True :type silent: ``bool`` ''' self.import_data(self. _deserialize(data)) self.validate()
Deserializes a Python ``dict`` into the model by assigning values to their respective fields. Ignores data attributes that do not match one of the Model's fields. Ignores data attributes who's matching fields are declared with the ``readonly`` attribute Validates the data after import. Override in sub classes to modify or add to deserialization behavior :param data: Python dictionary with data :type data: ``dict`` :param silent: Determines if an exception is thrown if illegal fields are passed. Such fields can be non existent or readonly. Default is True :type silent: ``bool``
def _parse_json(self, json, exactly_one=True): '''Returns location, (latitude, longitude) from json feed.''' features = json['features'] if features == []: return None def parse_feature(feature): location = feature['place_name'] place = feature['text'] longitude = feature['geometry']['coordinates'][0] latitude = feature['geometry']['coordinates'][1] return Location(location, (latitude, longitude), place) if exactly_one: return parse_feature(features[0]) else: return [parse_feature(feature) for feature in features]
Returns location, (latitude, longitude) from json feed.
def _ssl_agent(self): """ Get a Twisted Agent that performs Client SSL authentication for Koji. """ # Load "cert" into a PrivateCertificate. certfile = self.lookup(self.profile, 'cert') certfile = os.path.expanduser(certfile) with open(certfile) as certfp: pemdata = certfp.read() client_cert = PrivateCertificate.loadPEM(pemdata) trustRoot = None # Use Twisted's platformTrust(). # Optionally load "serverca" into a Certificate. servercafile = self.lookup(self.profile, 'serverca') if servercafile: servercafile = os.path.expanduser(servercafile) trustRoot = RootCATrustRoot(servercafile) policy = ClientCertPolicy(trustRoot=trustRoot, client_cert=client_cert) return Agent(reactor, policy)
Get a Twisted Agent that performs Client SSL authentication for Koji.
def get_fuzzed(self, indent=False, utf8=False): """ Return the fuzzed object """ try: if "array" in self.json: return self.fuzz_elements(dict(self.json))["array"] else: return self.fuzz_elements(dict(self.json)) except Exception as e: raise PJFBaseException(e.message if hasattr(e, "message") else str(e))
Return the fuzzed object
def encode_list(cls, value): """ Encodes a list *value* into a string via base64 encoding. """ encoded = base64.b64encode(six.b(" ".join(str(v) for v in value) or "-")) return encoded.decode("utf-8") if six.PY3 else encoded
Encodes a list *value* into a string via base64 encoding.
def _get_parameter_values(template_dict, parameter_overrides): """ Construct a final list of values for CloudFormation template parameters based on user-supplied values, default values provided in template, and sane defaults for pseudo-parameters. Parameters ---------- template_dict : dict SAM template dictionary parameter_overrides : dict User-supplied values for CloudFormation template parameters Returns ------- dict Values for template parameters to substitute in template with """ default_values = SamBaseProvider._get_default_parameter_values(template_dict) # NOTE: Ordering of following statements is important. It makes sure that any user-supplied values # override the defaults parameter_values = {} parameter_values.update(SamBaseProvider._DEFAULT_PSEUDO_PARAM_VALUES) parameter_values.update(default_values) parameter_values.update(parameter_overrides or {}) return parameter_values
Construct a final list of values for CloudFormation template parameters based on user-supplied values, default values provided in template, and sane defaults for pseudo-parameters. Parameters ---------- template_dict : dict SAM template dictionary parameter_overrides : dict User-supplied values for CloudFormation template parameters Returns ------- dict Values for template parameters to substitute in template with
def word_break(el, max_width=40, avoid_elements=_avoid_word_break_elements, avoid_classes=_avoid_word_break_classes, break_character=unichr(0x200b)): """ Breaks any long words found in the body of the text (not attributes). Doesn't effect any of the tags in avoid_elements, by default ``<textarea>`` and ``<pre>`` Breaks words by inserting &#8203;, which is a unicode character for Zero Width Space character. This generally takes up no space in rendering, but does copy as a space, and in monospace contexts usually takes up space. See http://www.cs.tut.fi/~jkorpela/html/nobr.html for a discussion """ # Character suggestion of &#8203 comes from: # http://www.cs.tut.fi/~jkorpela/html/nobr.html if el.tag in _avoid_word_break_elements: return class_name = el.get('class') if class_name: dont_break = False class_name = class_name.split() for avoid in avoid_classes: if avoid in class_name: dont_break = True break if dont_break: return if el.text: el.text = _break_text(el.text, max_width, break_character) for child in el: word_break(child, max_width=max_width, avoid_elements=avoid_elements, avoid_classes=avoid_classes, break_character=break_character) if child.tail: child.tail = _break_text(child.tail, max_width, break_character)
Breaks any long words found in the body of the text (not attributes). Doesn't effect any of the tags in avoid_elements, by default ``<textarea>`` and ``<pre>`` Breaks words by inserting &#8203;, which is a unicode character for Zero Width Space character. This generally takes up no space in rendering, but does copy as a space, and in monospace contexts usually takes up space. See http://www.cs.tut.fi/~jkorpela/html/nobr.html for a discussion
def _build_command_chain(self, command): """ Builds execution chain including all intercepters and the specified command. :param command: the command to build a chain. """ next = command for intercepter in reversed(self._intercepters): next = InterceptedCommand(intercepter, next) self._commands_by_name[next.get_name()] = next
Builds execution chain including all intercepters and the specified command. :param command: the command to build a chain.
def _create_binary_mathfunction(name, doc=""): """ Create a binary mathfunction by name""" def _(col1, col2): sc = SparkContext._active_spark_context # For legacy reasons, the arguments here can be implicitly converted into floats, # if they are not columns or strings. if isinstance(col1, Column): arg1 = col1._jc elif isinstance(col1, basestring): arg1 = _create_column_from_name(col1) else: arg1 = float(col1) if isinstance(col2, Column): arg2 = col2._jc elif isinstance(col2, basestring): arg2 = _create_column_from_name(col2) else: arg2 = float(col2) jc = getattr(sc._jvm.functions, name)(arg1, arg2) return Column(jc) _.__name__ = name _.__doc__ = doc return _
Create a binary mathfunction by name
def disk_check_size(ctx, param, value): """ Validation callback for disk size parameter.""" if value: # if we've got a prefix if isinstance(value, tuple): val = value[1] else: val = value if val % 1024: raise click.ClickException('Size must be a multiple of 1024.') return value
Validation callback for disk size parameter.
def vspec(data): """ Takes the vector mean of replicate measurements at a given step """ vdata, Dirdata, step_meth = [], [], [] tr0 = data[0][0] # set beginning treatment data.append("Stop") k, R = 1, 0 for i in range(k, len(data)): Dirdata = [] if data[i][0] != tr0: if i == k: # sample is unique vdata.append(data[i - 1]) step_meth.append(" ") else: # sample is not unique for l in range(k - 1, i): Dirdata.append([data[l][1], data[l][2], data[l][3]]) dir, R = vector_mean(Dirdata) vdata.append([data[i - 1][0], dir[0], dir[1], old_div(R, (i - k + 1)), '1', 'g']) step_meth.append("DE-VM") tr0 = data[i][0] k = i + 1 if tr0 == "stop": break del data[-1] return step_meth, vdata
Takes the vector mean of replicate measurements at a given step
def _start_connect(self, connect_type): """Starts the connection process, as called (internally) from the user context, either from auto_connect() or connect(). Never call this from the _comm() process context. """ if self._connect_state.value != self.CS_NOT_CONNECTED: # already done or in process, assume success return self._connected.value = 0 self._connect_state.value = self.CS_ATTEMPTING_CONNECT # tell comm process to attempt connection self._attempting_connect.value = connect_type # EXTREMELY IMPORTANT - for this to work at all in Windows, # where the above processes are spawned (vs forked in Unix), # the thread objects (as sattributes of this object) must be # assigned to this object AFTER we have spawned the processes. # That way, multiprocessing can pickle the freshroastsr700 # successfully. (It can't pickle thread-related stuff.) if self.update_data_func is not None: # Need to launch the thread that will listen to the event self._create_update_data_system( None, setFunc=False, createThread=True) self.update_data_thread.start() if self.state_transition_func is not None: # Need to launch the thread that will listen to the event self._create_state_transition_system( None, setFunc=False, createThread=True) self.state_transition_thread.start()
Starts the connection process, as called (internally) from the user context, either from auto_connect() or connect(). Never call this from the _comm() process context.
def validate_split_runs_file(split_runs_file): """Check if structure of file is as expected and return dictionary linking names to run_IDs.""" try: content = [l.strip() for l in split_runs_file.readlines()] if content[0].upper().split('\t') == ['NAME', 'RUN_ID']: return {c.split('\t')[1]: c.split('\t')[0] for c in content[1:] if c} else: sys.exit("ERROR: Mandatory header of --split_runs tsv file not found: 'NAME', 'RUN_ID'") logging.error("Mandatory header of --split_runs tsv file not found: 'NAME', 'RUN_ID'") except IndexError: sys.exit("ERROR: Format of --split_runs tab separated file not as expected") logging.error("ERROR: Format of --split_runs tab separated file not as expected")
Check if structure of file is as expected and return dictionary linking names to run_IDs.
def umi_transform(data): """ transform each read by identifying the barcode and UMI for each read and putting the information in the read name """ fqfiles = data["files"] fqfiles.extend(list(repeat("", 4-len(fqfiles)))) fq1, fq2, fq3, fq4 = fqfiles umi_dir = os.path.join(dd.get_work_dir(data), "umis") safe_makedir(umi_dir) transform = dd.get_umi_type(data) if not transform: logger.info("No UMI transform specified, assuming pre-transformed data.") if is_transformed(fq1): logger.info("%s detected as pre-transformed, passing it on unchanged." % fq1) data["files"] = [fq1] return [[data]] else: logger.error("No UMI transform was specified, but %s does not look " "pre-transformed." % fq1) sys.exit(1) if file_exists(transform): transform_file = transform else: transform_file = get_transform_file(transform) if not file_exists(transform_file): logger.error( "The UMI transform can be specified as either a file or a " "bcbio-supported transform. Either the file %s does not exist " "or the transform is not supported by bcbio. Supported " "transforms are %s." %(dd.get_umi_type(data), ", ".join(SUPPORTED_TRANSFORMS))) sys.exit(1) out_base = dd.get_sample_name(data) + ".umitransformed.fq.gz" out_file = os.path.join(umi_dir, out_base) if file_exists(out_file): data["files"] = [out_file] return [[data]] cellular_barcodes = get_cellular_barcodes(data) if len(cellular_barcodes) > 1: split_option = "--separate_cb" else: split_option = "" if dd.get_demultiplexed(data): demuxed_option = "--demuxed_cb %s" % dd.get_sample_name(data) split_option = "" else: demuxed_option = "" cores = dd.get_num_cores(data) # skip transformation if the file already looks transformed with open_fastq(fq1) as in_handle: read = next(in_handle) if "UMI_" in read: data["files"] = [out_file] return [[data]] locale_export = utils.locale_export() umis = _umis_cmd(data) cmd = ("{umis} fastqtransform {split_option} {transform_file} " "--cores {cores} {demuxed_option} " "{fq1} {fq2} {fq3} {fq4}" "| seqtk seq -L 20 - | gzip > {tx_out_file}") message = ("Inserting UMI and barcode information into the read name of %s" % fq1) with file_transaction(out_file) as tx_out_file: do.run(cmd.format(**locals()), message) data["files"] = [out_file] return [[data]]
transform each read by identifying the barcode and UMI for each read and putting the information in the read name
def execute(self, *args, **kwargs): """ See :py:func:`silverberg.client.CQLClient.execute` """ num_clients = len(self._seed_clients) start_client = (self._client_idx + 1) % num_clients def _client_error(failure, client_i): failure.trap(ConnectError) client_i = (client_i + 1) % num_clients if client_i == start_client: return failure else: return _try_execute(client_i) def _try_execute(client_i): self._client_idx = client_i d = self._seed_clients[client_i].execute(*args, **kwargs) return d.addErrback(_client_error, client_i) return _try_execute(start_client)
See :py:func:`silverberg.client.CQLClient.execute`
def __start_experiment(self, parameters): """ Start an experiment by capturing the state of the code :param parameters: a dictionary containing the parameters of the experiment :type parameters: dict :return: the tag representing this experiment :rtype: TagReference """ repository = Repo(self.__repository_directory, search_parent_directories=True) if len(repository.untracked_files) > 0: logging.warning("Untracked files will not be recorded: %s", repository.untracked_files) current_commit = repository.head.commit started_state_is_dirty = repository.is_dirty() if started_state_is_dirty: repository.index.add([p for p in self.__get_files_to_be_added(repository)]) commit_obj = repository.index.commit("Temporary commit for experiment " + self.__experiment_name) sha = commit_obj.hexsha else: sha = repository.head.object.hexsha data = {"parameters": parameters, "started": time.time(), "description": self.__description, "commit_sha": sha} tag_object = self.__tag_repo(data, repository) if started_state_is_dirty: repository.head.reset(current_commit, working_tree=False, index=True) return tag_object
Start an experiment by capturing the state of the code :param parameters: a dictionary containing the parameters of the experiment :type parameters: dict :return: the tag representing this experiment :rtype: TagReference
def save(state, filename=None, desc='', extra=None): """ Save the current state with extra information (for example samples and LL from the optimization procedure). Parameters ---------- state : peri.states.ImageState the state object which to save filename : string if provided, will override the default that is constructed based on the state's raw image file. If there is no filename and the state has a RawImage, the it is saved to RawImage.filename + "-peri-save.pkl" desc : string if provided, will augment the default filename to be RawImage.filename + '-peri-' + desc + '.pkl' extra : list of pickleable objects if provided, will be saved with the state """ if isinstance(state.image, util.RawImage): desc = desc or 'save' filename = filename or state.image.filename + '-peri-' + desc + '.pkl' else: if not filename: raise AttributeError("Must provide filename since RawImage is not used") if extra is None: save = state else: save = [state] + extra if os.path.exists(filename): ff = "{}-tmp-for-copy".format(filename) if os.path.exists(ff): os.remove(ff) os.rename(filename, ff) pickle.dump(save, open(filename, 'wb'), protocol=2)
Save the current state with extra information (for example samples and LL from the optimization procedure). Parameters ---------- state : peri.states.ImageState the state object which to save filename : string if provided, will override the default that is constructed based on the state's raw image file. If there is no filename and the state has a RawImage, the it is saved to RawImage.filename + "-peri-save.pkl" desc : string if provided, will augment the default filename to be RawImage.filename + '-peri-' + desc + '.pkl' extra : list of pickleable objects if provided, will be saved with the state
def clone(self, population): """ Copy the holder just enough to be able to run a new simulation without modifying the original simulation. """ new = empty_clone(self) new_dict = new.__dict__ for key, value in self.__dict__.items(): if key not in ('population', 'formula', 'simulation'): new_dict[key] = value new_dict['population'] = population new_dict['simulation'] = population.simulation return new
Copy the holder just enough to be able to run a new simulation without modifying the original simulation.
def align_rna(job, fastqs, univ_options, star_options): """ A wrapper for the entire rna alignment subgraph. :param list fastqs: The input fastqs for alignment :param dict univ_options: Dict of universal options used by almost all tools :param dict star_options: Options specific to star :return: Dict containing input bam and the generated index (.bam.bai) :rtype: dict """ star = job.wrapJobFn(run_star, fastqs, univ_options, star_options, cores=star_options['n'], memory=PromisedRequirement(lambda x: int(1.85 * x.size), star_options['index']), disk=PromisedRequirement(star_disk, fastqs, star_options['index'])) s_and_i = job.wrapJobFn(sort_and_index_star, star.rv(), univ_options, star_options).encapsulate() job.addChild(star) star.addChild(s_and_i) return s_and_i.rv()
A wrapper for the entire rna alignment subgraph. :param list fastqs: The input fastqs for alignment :param dict univ_options: Dict of universal options used by almost all tools :param dict star_options: Options specific to star :return: Dict containing input bam and the generated index (.bam.bai) :rtype: dict
def get_requirements(): """Parse a requirements.txt file and return as a list.""" with open(os.path.join(topdir, 'requirements.txt')) as fin: lines = fin.readlines() lines = [line.strip() for line in lines] return lines
Parse a requirements.txt file and return as a list.
def createTable(dbconn, pd): """Creates a database table for the given PacketDefinition.""" cols = ('%s %s' % (defn.name, getTypename(defn)) for defn in pd.fields) sql = 'CREATE TABLE IF NOT EXISTS %s (%s)' % (pd.name, ', '.join(cols)) dbconn.execute(sql) dbconn.commit()
Creates a database table for the given PacketDefinition.
def _set_base_path_env(): # type: () -> None """Sets the environment variable SAGEMAKER_BASE_DIR as ~/sagemaker_local/{timestamp}/opt/ml Returns: (bool): indicating whe """ local_config_dir = os.path.join(os.path.expanduser('~'), 'sagemaker_local', 'jobs', str(time.time()), 'opt', 'ml') logger.info('Setting environment variable SAGEMAKER_BASE_DIR as %s .' % local_config_dir) os.environ[BASE_PATH_ENV] = local_config_dir
Sets the environment variable SAGEMAKER_BASE_DIR as ~/sagemaker_local/{timestamp}/opt/ml Returns: (bool): indicating whe
def logging_set_filter(name, filter_def, ttl, **kwargs): """ Set local filter. """ ctx = Context(**kwargs) ctx.execute_action('logging:set_filter', **{ 'logging_service': ctx.repo.create_secure_service('logging'), 'logger_name': name, 'filter_def': filter_def, 'ttl': ttl, })
Set local filter.
def to_struct(model): """Cast instance of model to python structure. :param model: Model to be casted. :rtype: ``dict`` """ model.validate() resp = {} for _, name, field in model.iterate_with_name(): value = field.__get__(model) if value is None: continue value = field.to_struct(value) resp[name] = value return resp
Cast instance of model to python structure. :param model: Model to be casted. :rtype: ``dict``
def get_review_average(obj): """Returns the review average for an object.""" total = 0 reviews = get_reviews(obj) if not reviews: return False for review in reviews: average = review.get_average_rating() if average: total += review.get_average_rating() if total > 0: return total / reviews.count() return False
Returns the review average for an object.
def results(self, Snwp): r""" Returns the phase configuration at the specified non-wetting phase (invading phase) saturation. Parameters ---------- Snwp : scalar, between 0 and 1 The network saturation for which the phase configuration is desired. Returns ------- Two dictionary containing arrays that describe the pore and throat distribution at the given saturation. Specifically, these are: **'pore.occupancy'** : 1 indicates the pores is invaded and 0 otherwise. **'throat.occupancy'** : Same as described above but for throats. """ net = self.project.network P12 = net['throat.conns'] # Fetch void volume for pores and throats Vp = net[self.settings['pore_volume']] Vt = net[self.settings['throat_volume']] # Fetch the order of filling Np = self['pore.invasion_sequence'] Nt = self['throat.invasion_sequence'] # Create Nt-long mask of which pores were filled when throat was filled Pinv = (Np[P12].T == Nt).T # If a pore and throat filled together, find combined volume Vinv = sp.vstack(((Pinv*Vp[P12]).T, Vt)).T Vinv = sp.sum(Vinv, axis=1) # Convert to cumulative volume filled as each throat is invaded x = sp.argsort(Nt) # Find order throats were invaded Vinv_cum = np.cumsum(Vinv[x]) # Normalized cumulative volume filled into saturation S = Vinv_cum/(Vp.sum() + Vt.sum()) # Find throat invasion step where Snwp was reached try: N = sp.where(S < Snwp)[0][-1] except: N = -np.inf data = {'pore.occupancy': Np <= N, 'throat.occupancy': Nt <= N} return data
r""" Returns the phase configuration at the specified non-wetting phase (invading phase) saturation. Parameters ---------- Snwp : scalar, between 0 and 1 The network saturation for which the phase configuration is desired. Returns ------- Two dictionary containing arrays that describe the pore and throat distribution at the given saturation. Specifically, these are: **'pore.occupancy'** : 1 indicates the pores is invaded and 0 otherwise. **'throat.occupancy'** : Same as described above but for throats.
def post(action, params=None, version=6): """ For the documentation, see https://foosoft.net/projects/anki-connect/ :param str action: :param dict params: :param int version: :return: """ if params is None: params = dict() to_send = { 'action': action, 'version': version, 'params': params } r = requests.post(AnkiConnect.URL, json=to_send) return r.json()
For the documentation, see https://foosoft.net/projects/anki-connect/ :param str action: :param dict params: :param int version: :return:
def RecreateInstanceDisks(r, instance, disks=None, nodes=None): """Recreate an instance's disks. @type instance: string @param instance: Instance name @type disks: list of int @param disks: List of disk indexes @type nodes: list of string @param nodes: New instance nodes, if relocation is desired @rtype: string @return: job id """ body = {} if disks is not None: body["disks"] = disks if nodes is not None: body["nodes"] = nodes return r.request("post", "/2/instances/%s/recreate-disks" % instance, content=body)
Recreate an instance's disks. @type instance: string @param instance: Instance name @type disks: list of int @param disks: List of disk indexes @type nodes: list of string @param nodes: New instance nodes, if relocation is desired @rtype: string @return: job id
def heap_item(clock, record, shard): """Create a tuple of (ordering, (record, shard)) for use in a RecordBuffer.""" # Primary ordering is by event creation time. # However, creation time is *approximate* and has whole-second resolution. # This means two events in the same shard within one second can't be ordered. ordering = record["meta"]["created_at"] # From testing, SequenceNumber isn't a guaranteed ordering either. However, # it is guaranteed to be unique within a shard. This will be tie-breaker # for multiple records within the same shard, within the same second. second_ordering = int(record["meta"]["sequence_number"]) # It's possible though unlikely, that sequence numbers will collide across # multiple shards, within the same second. The final tie-breaker is # a monotonically increasing integer from the buffer. total_ordering = (ordering, second_ordering, clock()) return total_ordering, record, shard
Create a tuple of (ordering, (record, shard)) for use in a RecordBuffer.
def json(self): """ Return a JSON-serializeable object containing station metadata.""" return { "elevation": self.elevation, "latitude": self.latitude, "longitude": self.longitude, "icao_code": self.icao_code, "name": self.name, "quality": self.quality, "wban_ids": self.wban_ids, "recent_wban_id": self.recent_wban_id, "climate_zones": { "iecc_climate_zone": self.iecc_climate_zone, "iecc_moisture_regime": self.iecc_moisture_regime, "ba_climate_zone": self.ba_climate_zone, "ca_climate_zone": self.ca_climate_zone, }, }
Return a JSON-serializeable object containing station metadata.
def _wrap_key(function, args, kws): ''' get the key from the function input. ''' return hashlib.md5(pickle.dumps((_from_file(function) + function.__name__, args, kws))).hexdigest()
get the key from the function input.
def notify( self, method_name: str, *args: Any, trim_log_values: Optional[bool] = None, validate_against_schema: Optional[bool] = None, **kwargs: Any ) -> Response: """ Send a JSON-RPC request, without expecting a response. Args: method_name: The remote procedure's method name. args: Positional arguments passed to the remote procedure. kwargs: Keyword arguments passed to the remote procedure. trim_log_values: Abbreviate the log entries of requests and responses. validate_against_schema: Validate response against the JSON-RPC schema. """ return self.send( Notification(method_name, *args, **kwargs), trim_log_values=trim_log_values, validate_against_schema=validate_against_schema, )
Send a JSON-RPC request, without expecting a response. Args: method_name: The remote procedure's method name. args: Positional arguments passed to the remote procedure. kwargs: Keyword arguments passed to the remote procedure. trim_log_values: Abbreviate the log entries of requests and responses. validate_against_schema: Validate response against the JSON-RPC schema.
def enable_one_shot_process_breakpoints(self, dwProcessId): """ Enables for one shot all disabled breakpoints for the given process. @type dwProcessId: int @param dwProcessId: Process global ID. """ # enable code breakpoints for one shot for bp in self.get_process_code_breakpoints(dwProcessId): if bp.is_disabled(): self.enable_one_shot_code_breakpoint(dwProcessId, bp.get_address()) # enable page breakpoints for one shot for bp in self.get_process_page_breakpoints(dwProcessId): if bp.is_disabled(): self.enable_one_shot_page_breakpoint(dwProcessId, bp.get_address()) # enable hardware breakpoints for one shot if self.system.has_process(dwProcessId): aProcess = self.system.get_process(dwProcessId) else: aProcess = Process(dwProcessId) aProcess.scan_threads() for aThread in aProcess.iter_threads(): dwThreadId = aThread.get_tid() for bp in self.get_thread_hardware_breakpoints(dwThreadId): if bp.is_disabled(): self.enable_one_shot_hardware_breakpoint(dwThreadId, bp.get_address())
Enables for one shot all disabled breakpoints for the given process. @type dwProcessId: int @param dwProcessId: Process global ID.
def trim_wavs(org_wav_dir=ORG_WAV_DIR, tgt_wav_dir=TGT_WAV_DIR, org_xml_dir=ORG_XML_DIR): """ Extracts sentence-level transcriptions, translations and wavs from the Na Pangloss XML and WAV files. But otherwise doesn't preprocess them.""" logging.info("Trimming wavs...") if not os.path.exists(os.path.join(tgt_wav_dir, "TEXT")): os.makedirs(os.path.join(tgt_wav_dir, "TEXT")) if not os.path.exists(os.path.join(tgt_wav_dir, "WORDLIST")): os.makedirs(os.path.join(tgt_wav_dir, "WORDLIST")) for fn in os.listdir(org_xml_dir): path = os.path.join(org_xml_dir, fn) prefix, _ = os.path.splitext(fn) if os.path.isdir(path): continue if not path.endswith(".xml"): continue logging.info("Trimming wavs from {}".format(fn)) rec_type, _, times, _ = pangloss.get_sents_times_and_translations(path) # Extract the wavs given the times. for i, (start_time, end_time) in enumerate(times): if prefix.endswith("PLUSEGG"): in_wav_path = os.path.join(org_wav_dir, prefix.upper()[:-len("PLUSEGG")]) + ".wav" else: in_wav_path = os.path.join(org_wav_dir, prefix.upper()) + ".wav" headmic_path = os.path.join(org_wav_dir, prefix.upper()) + "_HEADMIC.wav" if os.path.isfile(headmic_path): in_wav_path = headmic_path out_wav_path = os.path.join(tgt_wav_dir, rec_type, "%s.%d.wav" % (prefix, i)) if not os.path.isfile(in_wav_path): raise PersephoneException("{} not a file.".format(in_wav_path)) start_time = start_time * ureg.seconds end_time = end_time * ureg.seconds wav.trim_wav_ms(Path(in_wav_path), Path(out_wav_path), start_time.to(ureg.milliseconds).magnitude, end_time.to(ureg.milliseconds).magnitude)
Extracts sentence-level transcriptions, translations and wavs from the Na Pangloss XML and WAV files. But otherwise doesn't preprocess them.
def concatenate(self, other): """ Concatenate this line string with another one. This will add a line segment between the end point of this line string and the start point of `other`. Parameters ---------- other : imgaug.augmentables.lines.LineString or ndarray \ or iterable of tuple of number The points to add to this line string. Returns ------- imgaug.augmentables.lines.LineString New line string with concatenated points. The `label` of this line string will be kept. """ if not isinstance(other, LineString): other = LineString(other) return self.deepcopy( coords=np.concatenate([self.coords, other.coords], axis=0))
Concatenate this line string with another one. This will add a line segment between the end point of this line string and the start point of `other`. Parameters ---------- other : imgaug.augmentables.lines.LineString or ndarray \ or iterable of tuple of number The points to add to this line string. Returns ------- imgaug.augmentables.lines.LineString New line string with concatenated points. The `label` of this line string will be kept.
def duplicate(self): """Return a copy of the current Data Collection.""" collection = self.__class__(self.header.duplicate(), self.values, self.datetimes) collection._validated_a_period = self._validated_a_period return collection
Return a copy of the current Data Collection.
def sg_get_context(): r"""Get current context information Returns: tf.sg_opt class object which contains all context information """ global _context # merge current context res = tf.sg_opt() for c in _context: res += c return res
r"""Get current context information Returns: tf.sg_opt class object which contains all context information
def parse_interface(iface): """ Returns a docco section for the given interface. :Parameters: iface Parsed IDL interface dict. Keys: 'comment', 'name', 'returns', 'params' """ sections = [ ] docs = iface['comment'] code = '<span class="k">interface</span> <span class="gs">%s</span> {\n' % iface['name'] for v in iface["functions"]: func_code = ' <span class="nf">%s</span>(' % v['name'] i = 0 for p in v["params"]: if i == 0: i = 1 else: func_code += ", " func_code += '<span class="na">%s</span> <span class="kt">%s</span>' % (p['name'], format_type(p)) func_code += ') <span class="kt">%s</span>\n' % format_type(v['returns']) if v.has_key('comment') and v['comment']: if code: sections.append(to_section(docs, code)) docs = v['comment'] code = func_code else: code += func_code code += "}" sections.append(to_section(docs, code)) return sections
Returns a docco section for the given interface. :Parameters: iface Parsed IDL interface dict. Keys: 'comment', 'name', 'returns', 'params'
def contains(self, time: datetime.datetime, inclusive: bool = True) -> bool: """ Does the interval contain a momentary time? Args: time: the ``datetime.datetime`` to check inclusive: use inclusive rather than exclusive range checks? """ if inclusive: return self.start <= time <= self.end else: return self.start < time < self.end
Does the interval contain a momentary time? Args: time: the ``datetime.datetime`` to check inclusive: use inclusive rather than exclusive range checks?
def write_msr(address, value): """ Set the contents of the specified MSR (Machine Specific Register). @type address: int @param address: MSR to write. @type value: int @param value: Contents to write on the MSR. @raise WindowsError: Raises an exception on error. @raise NotImplementedError: Current architecture is not C{i386} or C{amd64}. @warning: It could potentially brick your machine. It works on my machine, but your mileage may vary. """ if win32.arch not in (win32.ARCH_I386, win32.ARCH_AMD64): raise NotImplementedError( "MSR writing is only supported on i386 or amd64 processors.") msr = win32.SYSDBG_MSR() msr.Address = address msr.Data = value win32.NtSystemDebugControl(win32.SysDbgWriteMsr, InputBuffer = msr)
Set the contents of the specified MSR (Machine Specific Register). @type address: int @param address: MSR to write. @type value: int @param value: Contents to write on the MSR. @raise WindowsError: Raises an exception on error. @raise NotImplementedError: Current architecture is not C{i386} or C{amd64}. @warning: It could potentially brick your machine. It works on my machine, but your mileage may vary.
def users_with_birthday(self, month, day): """Return a list of user objects who have a birthday on a given date.""" users = User.objects.filter(properties___birthday__month=month, properties___birthday__day=day) results = [] for user in users: # TODO: permissions system results.append(user) return results
Return a list of user objects who have a birthday on a given date.
def _parse_posts(self, raw_posts): """Parse posts and returns in order.""" parsed_posts = self.parse_json(raw_posts) # Posts are not sorted. The order is provided by # 'order' key. for post_id in parsed_posts['order']: yield parsed_posts['posts'][post_id]
Parse posts and returns in order.
def dashed(requestContext, seriesList, dashLength=5): """ Takes one metric or a wildcard seriesList, followed by a float F. Draw the selected metrics with a dotted line with segments of length F If omitted, the default length of the segments is 5.0 Example:: &target=dashed(server01.instance01.memory.free,2.5) """ for series in seriesList: series.name = 'dashed(%s, %g)' % (series.name, dashLength) series.options['dashed'] = dashLength return seriesList
Takes one metric or a wildcard seriesList, followed by a float F. Draw the selected metrics with a dotted line with segments of length F If omitted, the default length of the segments is 5.0 Example:: &target=dashed(server01.instance01.memory.free,2.5)
def add_perfdata(self, *args, **kwargs): """ add a perfdata to the internal perfdata list arguments: the same arguments as for Perfdata() """ self._perfdata.append(Perfdata(*args, **kwargs))
add a perfdata to the internal perfdata list arguments: the same arguments as for Perfdata()
def _url_to_epub( self): """*generate the epub book from a URL* """ self.log.debug('starting the ``_url_to_epub`` method') from polyglot import htmlCleaner cleaner = htmlCleaner( log=self.log, settings=self.settings, url=self.urlOrPath, outputDirectory=self.outputDirectory, title=self.title, # SET TO FALSE TO USE WEBPAGE TITLE, style=False, # add simpdf's styling to the HTML document metadata=True, # include metadata in generated HTML (e.g. title), h1=False # include title as H1 at the top of the doc ) html = cleaner.clean() if not html: return None if self.footer: footer = self._tmp_html_file(self.footer) footer = '"%(footer)s"' % locals() else: footer = "" if self.header: header = self._tmp_html_file(self.header) header = '"%(header)s"' % locals() else: header = "" # HTML SOURCE FILE epub = html.replace(".html", ".epub") pandoc = self.settings["executables"]["pandoc"] cmd = """%(pandoc)s -S -s -f html -t epub3 %(header)s '%(html)s' %(footer)s -o '%(epub)s' """ % locals( ) p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) stdout, stderr = p.communicate() self.log.debug('output: %(stdout)s' % locals()) try: with open(epub): pass fileExists = True except IOError: fileExists = False raise IOError( "the epub %s does not exist on this machine, here is the failure message: %s" % (epub, stderr)) os.remove(html) self.log.debug('completed the ``_url_to_epub`` method') return epub
*generate the epub book from a URL*
def predict(self, predict_set ): """ This method accepts a list of Instances Eg: list_of_inputs = [ Instance([0.12, 0.54, 0.84]), Instance([0.15, 0.29, 0.49]) ] """ predict_data = np.array( [instance.features for instance in predict_set ] ) return self.update( predict_data )
This method accepts a list of Instances Eg: list_of_inputs = [ Instance([0.12, 0.54, 0.84]), Instance([0.15, 0.29, 0.49]) ]
def is_ancestor_of_family(self, id_, family_id): """Tests if an ``Id`` is an ancestor of a family. arg: id (osid.id.Id): an ``Id`` arg: family_id (osid.id.Id): the ``Id`` of a family return: (boolean) - ``true`` if this ``id`` is an ancestor of ``family_id,`` ``false`` otherwise raise: NotFound - ``family_id`` is not found raise: NullArgument - ``id`` or ``family_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* *implementation notes*: If ``id`` not found return ``false``. """ # Implemented from template for # osid.resource.BinHierarchySession.is_ancestor_of_bin if self._catalog_session is not None: return self._catalog_session.is_ancestor_of_catalog(id_=id_, catalog_id=family_id) return self._hierarchy_session.is_ancestor(id_=id_, ancestor_id=family_id)
Tests if an ``Id`` is an ancestor of a family. arg: id (osid.id.Id): an ``Id`` arg: family_id (osid.id.Id): the ``Id`` of a family return: (boolean) - ``true`` if this ``id`` is an ancestor of ``family_id,`` ``false`` otherwise raise: NotFound - ``family_id`` is not found raise: NullArgument - ``id`` or ``family_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* *implementation notes*: If ``id`` not found return ``false``.
def convert_iris(directory, output_directory, output_filename='iris.hdf5'): """Convert the Iris dataset to HDF5. Converts the Iris dataset to an HDF5 dataset compatible with :class:`fuel.datasets.Iris`. The converted dataset is saved as 'iris.hdf5'. This method assumes the existence of the file `iris.data`. Parameters ---------- directory : str Directory in which input files reside. output_directory : str Directory in which to save the converted dataset. output_filename : str, optional Name of the saved dataset. Defaults to `None`, in which case a name based on `dtype` will be used. Returns ------- output_paths : tuple of str Single-element tuple containing the path to the converted dataset. """ classes = {b'Iris-setosa': 0, b'Iris-versicolor': 1, b'Iris-virginica': 2} data = numpy.loadtxt( os.path.join(directory, 'iris.data'), converters={4: lambda x: classes[x]}, delimiter=',') features = data[:, :-1].astype('float32') targets = data[:, -1].astype('uint8').reshape((-1, 1)) data = (('all', 'features', features), ('all', 'targets', targets)) output_path = os.path.join(output_directory, output_filename) h5file = h5py.File(output_path, mode='w') fill_hdf5_file(h5file, data) h5file['features'].dims[0].label = 'batch' h5file['features'].dims[1].label = 'feature' h5file['targets'].dims[0].label = 'batch' h5file['targets'].dims[1].label = 'index' h5file.flush() h5file.close() return (output_path,)
Convert the Iris dataset to HDF5. Converts the Iris dataset to an HDF5 dataset compatible with :class:`fuel.datasets.Iris`. The converted dataset is saved as 'iris.hdf5'. This method assumes the existence of the file `iris.data`. Parameters ---------- directory : str Directory in which input files reside. output_directory : str Directory in which to save the converted dataset. output_filename : str, optional Name of the saved dataset. Defaults to `None`, in which case a name based on `dtype` will be used. Returns ------- output_paths : tuple of str Single-element tuple containing the path to the converted dataset.
def partial_ratio(s1, s2): """"Return the ratio of the most similar substring as a number between 0 and 100.""" s1, s2 = utils.make_type_consistent(s1, s2) if len(s1) <= len(s2): shorter = s1 longer = s2 else: shorter = s2 longer = s1 m = SequenceMatcher(None, shorter, longer) blocks = m.get_matching_blocks() # each block represents a sequence of matching characters in a string # of the form (idx_1, idx_2, len) # the best partial match will block align with at least one of those blocks # e.g. shorter = "abcd", longer = XXXbcdeEEE # block = (1,3,3) # best score === ratio("abcd", "Xbcd") scores = [] for block in blocks: long_start = block[1] - block[0] if (block[1] - block[0]) > 0 else 0 long_end = long_start + len(shorter) long_substr = longer[long_start:long_end] m2 = SequenceMatcher(None, shorter, long_substr) r = m2.ratio() if r > .995: return 100 else: scores.append(r) return utils.intr(100 * max(scores))
Return the ratio of the most similar substring as a number between 0 and 100.
def set_power_supplies(self, power_supplies): """ Sets the 2 power supplies with 0 = off, 1 = on. :param power_supplies: list of 2 power supplies. Example: [1, 0] = first power supply is on, second is off. """ power_supply_id = 0 for power_supply in power_supplies: yield from self._hypervisor.send('c7200 set_power_supply "{name}" {power_supply_id} {powered_on}'.format(name=self._name, power_supply_id=power_supply_id, powered_on=power_supply)) log.info('Router "{name}" [{id}]: power supply {power_supply_id} state updated to {powered_on}'.format(name=self._name, id=self._id, power_supply_id=power_supply_id, powered_on=power_supply)) power_supply_id += 1 self._power_supplies = power_supplies
Sets the 2 power supplies with 0 = off, 1 = on. :param power_supplies: list of 2 power supplies. Example: [1, 0] = first power supply is on, second is off.
def list_namespaces(self): ''' List the service bus namespaces defined on the account. ''' response = self._perform_get( self._get_path('services/serviceBus/Namespaces/', None), None) return _MinidomXmlToObject.convert_response_to_feeds( response, _ServiceBusManagementXmlSerializer.xml_to_namespace)
List the service bus namespaces defined on the account.
def on_backward_end(self, **kwargs): "Clip the gradient before the optimizer step." if self.clip: nn.utils.clip_grad_norm_(self.learn.model.parameters(), self.clip)
Clip the gradient before the optimizer step.
def getport(self, default=None): """Return the port subcomponent of the URI authority as an :class:`int`, or `default` if the original URI reference did not contain a port or if the port was empty. """ port = self.port if port: return int(port) else: return default
Return the port subcomponent of the URI authority as an :class:`int`, or `default` if the original URI reference did not contain a port or if the port was empty.
def entity_data(self, entity_type, entity_id, history_index): """Return the data dict for an entity at a specific index of its history. """ return self.entity_history(entity_type, entity_id)[history_index]
Return the data dict for an entity at a specific index of its history.
def add_petabencana_layer(self): """Add petabencana layer to the map. This uses the PetaBencana API to fetch the latest floods in JK. See https://data.petabencana.id/floods """ from safe.gui.tools.peta_bencana_dialog import PetaBencanaDialog dialog = PetaBencanaDialog(self.iface.mainWindow(), self.iface) dialog.show()
Add petabencana layer to the map. This uses the PetaBencana API to fetch the latest floods in JK. See https://data.petabencana.id/floods
def get_for_site(cls, site): """Return the 'main menu' instance for the provided site""" instance, created = cls.objects.get_or_create(site=site) return instance
Return the 'main menu' instance for the provided site
def auto_forward(auto=True): """ Context for dynamic graph execution mode. Args: auto (bool): Whether forward computation is executed during a computation graph construction. Returns: bool """ global __auto_forward_state prev = __auto_forward_state __auto_forward_state = auto yield __auto_forward_state = prev
Context for dynamic graph execution mode. Args: auto (bool): Whether forward computation is executed during a computation graph construction. Returns: bool
def next(self): """ Returns the next result. If no result is availble within the specified (during construction) "timeout" then a ``PiperError`` which wraps a ``TimeoutError`` is **returned**. If the result is a ``WorkerError`` it is also wrapped in a ``PiperError`` and is returned or raised if "debug" mode was specified at initialization. If the result is a ``PiperError`` it is propagated. """ try: next = self.outbox.next() except StopIteration, excp: self.log.debug('Piper %s has processed all jobs (finished)' % self) self.finished = True # We re-raise StopIteration as part of the iterator protocol. # And the outbox should do the same. raise excp except (AttributeError, RuntimeError), excp: # probably self.outbox.next() is self.None.next() self.log.error('Piper %s has not yet been started.' % self) raise PiperError('Piper %s has not yet been started.' % self, excp) except IndexError, excp: # probably started before connected self.log.error('Piper %s has been started before connect.' % self) raise PiperError('Piper %s has been started before connect.' % self, excp) except TimeoutError, excp: self.log.error('Piper %s timed out waited %ss.' % \ (self, self.timeout)) next = PiperError(excp) # we do not raise TimeoutErrors so they can be skipped. if isinstance(next, WorkerError): # return the WorkerError instance returned (not raised) by the # worker Process. self.log.error('Piper %s generated %s"%s" in func. %s on argument %s' % \ (self, type(next[0]), next[0], next[1], next[2])) if self.debug: # This makes only sense if you are debugging a piper as it will # most probably crash papy and python NuMap worker processes # threads will hang. raise PiperError('Piper %s generated %s"%s" in func %s on argument %s' % \ (self, type(next[0]), next[0], next[1], next[2])) next = PiperError(next) elif isinstance(next, PiperError): # Worker/PiperErrors are wrapped by workers if self.debug: raise next self.log.debug('Piper %s propagates %s' % (self, next[0])) return next
Returns the next result. If no result is availble within the specified (during construction) "timeout" then a ``PiperError`` which wraps a ``TimeoutError`` is **returned**. If the result is a ``WorkerError`` it is also wrapped in a ``PiperError`` and is returned or raised if "debug" mode was specified at initialization. If the result is a ``PiperError`` it is propagated.
def create(dataset, target, feature=None, model = 'resnet-50', l2_penalty=0.01, l1_penalty=0.0, solver='auto', feature_rescaling=True, convergence_threshold = _DEFAULT_SOLVER_OPTIONS['convergence_threshold'], step_size = _DEFAULT_SOLVER_OPTIONS['step_size'], lbfgs_memory_level = _DEFAULT_SOLVER_OPTIONS['lbfgs_memory_level'], max_iterations = _DEFAULT_SOLVER_OPTIONS['max_iterations'], class_weights = None, validation_set = 'auto', verbose=True, seed=None, batch_size=64): """ Create a :class:`ImageClassifier` model. Parameters ---------- dataset : SFrame Input data. The column named by the 'feature' parameter will be extracted for modeling. target : string, or int Name of the column containing the target variable. The values in this column must be of string or integer type. String target variables are automatically mapped to integers in the order in which they are provided. For example, a target variable with 'cat' and 'dog' as possible values is mapped to 0 and 1 respectively with 0 being the base class and 1 being the reference class. Use `model.classes` to retrieve the order in which the classes are mapped. feature : string, optional indicates that the SFrame has only column of Image type and that will Name of the column containing the input images. 'None' (the default) indicates the only image column in `dataset` should be used as the feature. l2_penalty : float, optional Weight on l2 regularization of the model. The larger this weight, the more the model coefficients shrink toward 0. This introduces bias into the model but decreases variance, potentially leading to better predictions. The default value is 0.01; setting this parameter to 0 corresponds to unregularized logistic regression. See the ridge regression reference for more detail. l1_penalty : float, optional Weight on l1 regularization of the model. Like the l2 penalty, the higher the l1 penalty, the more the estimated coefficients shrink toward 0. The l1 penalty, however, completely zeros out sufficiently small coefficients, automatically indicating features that are not useful for the model. The default weight of 0 prevents any features from being discarded. See the LASSO regression reference for more detail. solver : string, optional Name of the solver to be used to solve the regression. See the references for more detail on each solver. Available solvers are: - *auto (default)*: automatically chooses the best solver for the data and model parameters. - *newton*: Newton-Raphson - *lbfgs*: limited memory BFGS - *fista*: accelerated gradient descent For this model, the Newton-Raphson method is equivalent to the iteratively re-weighted least squares algorithm. If the l1_penalty is greater than 0, use the 'fista' solver. The model is trained using a carefully engineered collection of methods that are automatically picked based on the input data. The ``newton`` method works best for datasets with plenty of examples and few features (long datasets). Limited memory BFGS (``lbfgs``) is a robust solver for wide datasets (i.e datasets with many coefficients). ``fista`` is the default solver for l1-regularized linear regression. The solvers are all automatically tuned and the default options should function well. See the solver options guide for setting additional parameters for each of the solvers. See the user guide for additional details on how the solver is chosen. (see `here <https://apple.github.io/turicreate/docs/userguide/supervised-learning/linear-regression.html>`_) feature_rescaling : boolean, optional Feature rescaling is an important pre-processing step that ensures that all features are on the same scale. An l2-norm rescaling is performed to make sure that all features are of the same norm. Categorical features are also rescaled by rescaling the dummy variables that are used to represent them. The coefficients are returned in original scale of the problem. This process is particularly useful when features vary widely in their ranges. convergence_threshold : float, optional Convergence is tested using variation in the training objective. The variation in the training objective is calculated using the difference between the objective values between two steps. Consider reducing this below the default value (0.01) for a more accurately trained model. Beware of overfitting (i.e a model that works well only on the training data) if this parameter is set to a very low value. lbfgs_memory_level : float, optional The L-BFGS algorithm keeps track of gradient information from the previous ``lbfgs_memory_level`` iterations. The storage requirement for each of these gradients is the ``num_coefficients`` in the problem. Increasing the ``lbfgs_memory_level ``can help improve the quality of the model trained. Setting this to more than ``max_iterations`` has the same effect as setting it to ``max_iterations``. model : string optional Uses a pretrained model to bootstrap an image classifier: - "resnet-50" : Uses a pretrained resnet model. Exported Core ML model will be ~90M. - "squeezenet_v1.1" : Uses a pretrained squeezenet model. Exported Core ML model will be ~4.7M. - "VisionFeaturePrint_Scene": Uses an OS internal feature extractor. Only on available on iOS 12.0+, macOS 10.14+ and tvOS 12.0+. Exported Core ML model will be ~41K. Models are downloaded from the internet if not available locally. Once downloaded, the models are cached for future use. step_size : float, optional The starting step size to use for the ``fista`` solver. The default is set to 1.0, this is an aggressive setting. If the first iteration takes a considerable amount of time, reducing this parameter may speed up model training. class_weights : {dict, `auto`}, optional Weights the examples in the training data according to the given class weights. If set to `None`, all classes are supposed to have weight one. The `auto` mode set the class weight to be inversely proportional to number of examples in the training data with the given class. validation_set : SFrame, optional A dataset for monitoring the model's generalization performance. The format of this SFrame must be the same as the training set. By default this argument is set to 'auto' and a validation set is automatically sampled and used for progress printing. If validation_set is set to None, then no additional metrics are computed. The default value is 'auto'. max_iterations : int, optional The maximum number of allowed passes through the data. More passes over the data can result in a more accurately trained model. Consider increasing this (the default value is 10) if the training accuracy is low and the *Grad-Norm* in the display is large. verbose : bool, optional If True, prints progress updates and model details. seed : int, optional Seed for random number generation. Set this value to ensure that the same model is created every time. batch_size : int, optional If you are getting memory errors, try decreasing this value. If you have a powerful computer, increasing this value may improve performance. Returns ------- out : ImageClassifier A trained :class:`ImageClassifier` model. Examples -------- .. sourcecode:: python >>> model = turicreate.image_classifier.create(data, target='is_expensive') # Make predictions (in various forms) >>> predictions = model.predict(data) # predictions >>> predictions = model.classify(data) # predictions with confidence >>> predictions = model.predict_topk(data) # Top-5 predictions (multiclass) # Evaluate the model with ground truth data >>> results = model.evaluate(data) See Also -------- ImageClassifier """ start_time = _time.time() # Check model parameter allowed_models = list(_pre_trained_models.MODELS.keys()) if _mac_ver() >= (10,14): allowed_models.append('VisionFeaturePrint_Scene') # Also, to make sure existing code doesn't break, replace incorrect name # with the correct name version if model == "VisionFeaturePrint_Screen": print("WARNING: Correct spelling of model name is VisionFeaturePrint_Scene; VisionFeaturePrint_Screen will be removed in subsequent versions.") model = "VisionFeaturePrint_Scene" _tkutl._check_categorical_option_type('model', model, allowed_models) # Check dataset parameter if len(dataset) == 0: raise _ToolkitError('Unable to train on empty dataset') if (feature is not None) and (feature not in dataset.column_names()): raise _ToolkitError("Image feature column '%s' does not exist" % feature) if target not in dataset.column_names(): raise _ToolkitError("Target column '%s' does not exist" % target) if(batch_size < 1): raise ValueError("'batch_size' must be greater than or equal to 1") if not (isinstance(validation_set, _tc.SFrame) or validation_set == 'auto' or validation_set is None): raise TypeError("Unrecognized value for 'validation_set'.") if feature is None: feature = _tkutl._find_only_image_column(dataset) feature_extractor = _image_feature_extractor._create_feature_extractor(model) # Extract features extracted_features = _tc.SFrame({ target: dataset[target], '__image_features__': feature_extractor.extract_features(dataset, feature, verbose=verbose, batch_size=batch_size), }) if isinstance(validation_set, _tc.SFrame): extracted_features_validation = _tc.SFrame({ target: validation_set[target], '__image_features__': feature_extractor.extract_features(validation_set, feature, verbose=verbose, batch_size=batch_size), }) else: extracted_features_validation = validation_set # Train a classifier using the extracted features extracted_features[target] = dataset[target] lr_model = _tc.logistic_classifier.create(extracted_features, features=['__image_features__'], target=target, max_iterations=max_iterations, validation_set=extracted_features_validation, seed=seed, verbose=verbose, l2_penalty=l2_penalty, l1_penalty=l1_penalty, solver=solver, feature_rescaling=feature_rescaling, convergence_threshold=convergence_threshold, step_size=step_size, lbfgs_memory_level=lbfgs_memory_level, class_weights=class_weights) # set input image shape if model in _pre_trained_models.MODELS: input_image_shape = _pre_trained_models.MODELS[model].input_image_shape else: # model == VisionFeaturePrint_Scene input_image_shape = (3, 299, 299) # Save the model state = { 'classifier': lr_model, 'model': model, 'max_iterations': max_iterations, 'feature_extractor': feature_extractor, 'input_image_shape': input_image_shape, 'target': target, 'feature': feature, 'num_features': 1, 'num_classes': lr_model.num_classes, 'classes': lr_model.classes, 'num_examples': lr_model.num_examples, 'training_time': _time.time() - start_time, 'training_loss': lr_model.training_loss, } return ImageClassifier(state)
Create a :class:`ImageClassifier` model. Parameters ---------- dataset : SFrame Input data. The column named by the 'feature' parameter will be extracted for modeling. target : string, or int Name of the column containing the target variable. The values in this column must be of string or integer type. String target variables are automatically mapped to integers in the order in which they are provided. For example, a target variable with 'cat' and 'dog' as possible values is mapped to 0 and 1 respectively with 0 being the base class and 1 being the reference class. Use `model.classes` to retrieve the order in which the classes are mapped. feature : string, optional indicates that the SFrame has only column of Image type and that will Name of the column containing the input images. 'None' (the default) indicates the only image column in `dataset` should be used as the feature. l2_penalty : float, optional Weight on l2 regularization of the model. The larger this weight, the more the model coefficients shrink toward 0. This introduces bias into the model but decreases variance, potentially leading to better predictions. The default value is 0.01; setting this parameter to 0 corresponds to unregularized logistic regression. See the ridge regression reference for more detail. l1_penalty : float, optional Weight on l1 regularization of the model. Like the l2 penalty, the higher the l1 penalty, the more the estimated coefficients shrink toward 0. The l1 penalty, however, completely zeros out sufficiently small coefficients, automatically indicating features that are not useful for the model. The default weight of 0 prevents any features from being discarded. See the LASSO regression reference for more detail. solver : string, optional Name of the solver to be used to solve the regression. See the references for more detail on each solver. Available solvers are: - *auto (default)*: automatically chooses the best solver for the data and model parameters. - *newton*: Newton-Raphson - *lbfgs*: limited memory BFGS - *fista*: accelerated gradient descent For this model, the Newton-Raphson method is equivalent to the iteratively re-weighted least squares algorithm. If the l1_penalty is greater than 0, use the 'fista' solver. The model is trained using a carefully engineered collection of methods that are automatically picked based on the input data. The ``newton`` method works best for datasets with plenty of examples and few features (long datasets). Limited memory BFGS (``lbfgs``) is a robust solver for wide datasets (i.e datasets with many coefficients). ``fista`` is the default solver for l1-regularized linear regression. The solvers are all automatically tuned and the default options should function well. See the solver options guide for setting additional parameters for each of the solvers. See the user guide for additional details on how the solver is chosen. (see `here <https://apple.github.io/turicreate/docs/userguide/supervised-learning/linear-regression.html>`_) feature_rescaling : boolean, optional Feature rescaling is an important pre-processing step that ensures that all features are on the same scale. An l2-norm rescaling is performed to make sure that all features are of the same norm. Categorical features are also rescaled by rescaling the dummy variables that are used to represent them. The coefficients are returned in original scale of the problem. This process is particularly useful when features vary widely in their ranges. convergence_threshold : float, optional Convergence is tested using variation in the training objective. The variation in the training objective is calculated using the difference between the objective values between two steps. Consider reducing this below the default value (0.01) for a more accurately trained model. Beware of overfitting (i.e a model that works well only on the training data) if this parameter is set to a very low value. lbfgs_memory_level : float, optional The L-BFGS algorithm keeps track of gradient information from the previous ``lbfgs_memory_level`` iterations. The storage requirement for each of these gradients is the ``num_coefficients`` in the problem. Increasing the ``lbfgs_memory_level ``can help improve the quality of the model trained. Setting this to more than ``max_iterations`` has the same effect as setting it to ``max_iterations``. model : string optional Uses a pretrained model to bootstrap an image classifier: - "resnet-50" : Uses a pretrained resnet model. Exported Core ML model will be ~90M. - "squeezenet_v1.1" : Uses a pretrained squeezenet model. Exported Core ML model will be ~4.7M. - "VisionFeaturePrint_Scene": Uses an OS internal feature extractor. Only on available on iOS 12.0+, macOS 10.14+ and tvOS 12.0+. Exported Core ML model will be ~41K. Models are downloaded from the internet if not available locally. Once downloaded, the models are cached for future use. step_size : float, optional The starting step size to use for the ``fista`` solver. The default is set to 1.0, this is an aggressive setting. If the first iteration takes a considerable amount of time, reducing this parameter may speed up model training. class_weights : {dict, `auto`}, optional Weights the examples in the training data according to the given class weights. If set to `None`, all classes are supposed to have weight one. The `auto` mode set the class weight to be inversely proportional to number of examples in the training data with the given class. validation_set : SFrame, optional A dataset for monitoring the model's generalization performance. The format of this SFrame must be the same as the training set. By default this argument is set to 'auto' and a validation set is automatically sampled and used for progress printing. If validation_set is set to None, then no additional metrics are computed. The default value is 'auto'. max_iterations : int, optional The maximum number of allowed passes through the data. More passes over the data can result in a more accurately trained model. Consider increasing this (the default value is 10) if the training accuracy is low and the *Grad-Norm* in the display is large. verbose : bool, optional If True, prints progress updates and model details. seed : int, optional Seed for random number generation. Set this value to ensure that the same model is created every time. batch_size : int, optional If you are getting memory errors, try decreasing this value. If you have a powerful computer, increasing this value may improve performance. Returns ------- out : ImageClassifier A trained :class:`ImageClassifier` model. Examples -------- .. sourcecode:: python >>> model = turicreate.image_classifier.create(data, target='is_expensive') # Make predictions (in various forms) >>> predictions = model.predict(data) # predictions >>> predictions = model.classify(data) # predictions with confidence >>> predictions = model.predict_topk(data) # Top-5 predictions (multiclass) # Evaluate the model with ground truth data >>> results = model.evaluate(data) See Also -------- ImageClassifier
def force_leave(self, node): """Force a failed gossip member into the left state. https://www.nomadproject.io/docs/http/agent-force-leave.html returns: 200 status code raises: - nomad.api.exceptions.BaseNomadException - nomad.api.exceptions.URLNotFoundNomadException """ params = {"node": node} return self.request("force-leave", params=params, method="post").status_code
Force a failed gossip member into the left state. https://www.nomadproject.io/docs/http/agent-force-leave.html returns: 200 status code raises: - nomad.api.exceptions.BaseNomadException - nomad.api.exceptions.URLNotFoundNomadException
def feature_path(self, gff_path): """Load a GFF file with information on a single sequence and store features in the ``features`` attribute Args: gff_path: Path to GFF file. """ if not gff_path: self.feature_dir = None self.feature_file = None else: if not op.exists(gff_path): raise OSError('{}: file does not exist!'.format(gff_path)) if not op.dirname(gff_path): self.feature_dir = '.' else: self.feature_dir = op.dirname(gff_path) self.feature_file = op.basename(gff_path)
Load a GFF file with information on a single sequence and store features in the ``features`` attribute Args: gff_path: Path to GFF file.
def post(self, route: str(), callback: object()): """ Binds a POST route with the given callback :rtype: object """ self.__set_route('post', {route: callback}) return RouteMapping
Binds a POST route with the given callback :rtype: object
def getWorksheet(self): """Returns the Worksheet to which this analysis belongs to, or None """ worksheet = self.getBackReferences('WorksheetAnalysis') if not worksheet: return None if len(worksheet) > 1: logger.error( "Analysis %s is assigned to more than one worksheet." % self.getId()) return worksheet[0]
Returns the Worksheet to which this analysis belongs to, or None
def get_frequency_dict(lang, wordlist='best', match_cutoff=30): """ Get a word frequency list as a dictionary, mapping tokens to frequencies as floating-point probabilities. """ freqs = {} pack = get_frequency_list(lang, wordlist, match_cutoff) for index, bucket in enumerate(pack): freq = cB_to_freq(-index) for word in bucket: freqs[word] = freq return freqs
Get a word frequency list as a dictionary, mapping tokens to frequencies as floating-point probabilities.
def create(self, instance, parameters, existing=True): """Create an instance Args: instance (AtlasServiceInstance.Instance): Existing or New instance parameters (dict): Parameters for the instance Keyword Arguments: existing (bool): True (use an existing cluster), False (create a new cluster) Returns: ProvisionedServiceSpec: Status """ return self.service_instance.create(instance, parameters, existing)
Create an instance Args: instance (AtlasServiceInstance.Instance): Existing or New instance parameters (dict): Parameters for the instance Keyword Arguments: existing (bool): True (use an existing cluster), False (create a new cluster) Returns: ProvisionedServiceSpec: Status
def select_by_visible_text(self, text): """ Performs search of selected item from Web List @params text - string visible text """ xpath = './/option[normalize-space(.) = {0}]'.format(self._escape_string(text)) opts = self.find_elements_by_xpath(xpath) matched = False for opt in opts: self._set_selected(opt) if not self.is_multiple: return matched = True # in case the target option isn't found by xpath # attempt to find it by direct comparison among options which contain at least the longest token from the text if len(opts) == 0 and ' ' in text: sub_string_without_space = self._get_longest_token(text) if sub_string_without_space == "": candidates = self.get_options() else: xpath = ".//option[contains(.,{0})]".format(self._escape_string(sub_string_without_space)) candidates = self.find_elements_by_xpath(xpath) for candidate in candidates: if text == candidate.text: self._set_selected(candidate) if not self.is_multiple: return matched = True if not matched: raise NoSuchElementException("Could not locate element with visible text: " + str(text))
Performs search of selected item from Web List @params text - string visible text
def get_under_hollow(self): """ Return HCP if an atom is present below the adsorbate in the subsurface layer and FCC if not""" C0 = self.B[-1:] * (3, 3, 1) ads_pos = C0.positions[4] C = self.get_subsurface_layer() * (3, 3, 1) ret = 'FCC' if np.any([np.linalg.norm(ads_pos[:2] - ele.position[:2]) < 0.5 * cradii[ele.number] for ele in C]): ret = 'HCP' return ret
Return HCP if an atom is present below the adsorbate in the subsurface layer and FCC if not
def cross_signal(s1, s2, continuous=0): """ return a signal with the following 1 : when all values of s1 cross all values of s2 -1 : when all values of s2 cross below all values of s2 0 : if s1 < max(s2) and s1 > min(s2) np.nan : if s1 or s2 contains np.nan at position s1: Series, DataFrame, float, int, or tuple(float|int) s2: Series, DataFrame, float, int, or tuple(float|int) continous: bool, if true then once the signal starts it is always 1 or -1 """ def _convert(src, other): if isinstance(src, pd.DataFrame): return src.min(axis=1, skipna=0), src.max(axis=1, skipna=0) elif isinstance(src, pd.Series): return src, src elif isinstance(src, (int, float)): s = pd.Series(src, index=other.index) return s, s elif isinstance(src, (tuple, list)): l, u = min(src), max(src) assert l <= u, 'lower bound must be less than upper bound' lower, upper = pd.Series(l, index=other.index), pd.Series(u, index=other.index) return lower, upper else: raise Exception('unable to handle type %s' % type(src)) lower1, upper1 = _convert(s1, s2) lower2, upper2 = _convert(s2, s1) df = pd.DataFrame({'upper1': upper1, 'lower1': lower1, 'upper2': upper2, 'lower2': lower2}) df.ffill(inplace=True) signal = pd.Series(np.nan, index=df.index) signal[df.upper1 > df.upper2] = 1 signal[df.lower1 < df.lower2] = -1 if continuous: # Just roll with 1, -1 signal = signal.fillna(method='ffill') m1, m2 = df.upper1.first_valid_index(), df.upper2.first_valid_index() if m1 is not None or m2 is not None: m1 = m2 if m1 is None else m1 m2 = m1 if m2 is None else m2 fv = max(m1, m2) if np.isnan(signal[fv]): signal[fv] = 0 signal.ffill(inplace=1) else: signal[(df.upper1 < df.upper2) & (df.lower1 > df.lower2)] = 0 # special handling when equal, determine where it previously was eq = (df.upper1 == df.upper2) if eq.any(): # Set to prior value tmp = signal[eq] for i in tmp.index: loc = signal.index.get_loc(i) if loc != 0: u, l = df.upper2.iloc[loc], df.lower2.iloc[loc] ps = signal.iloc[loc - 1] if u == l or ps == 1.: # Line coming from above upper bound if ps == 1 signal[i] = ps else: signal[i] = 0 eq = (df.lower1 == df.lower2) if eq.any(): # Set to prior value tmp = signal[eq] for i in tmp.index: loc = signal.index.get_loc(i) if loc != 0: u, l = df.upper2.iloc[loc], df.lower2.iloc[loc] ps = signal.iloc[loc - 1] if u == l or ps == -1.: # Line coming from below lower bound if ps == -1 signal[i] = ps else: signal[i] = 0 return signal
return a signal with the following 1 : when all values of s1 cross all values of s2 -1 : when all values of s2 cross below all values of s2 0 : if s1 < max(s2) and s1 > min(s2) np.nan : if s1 or s2 contains np.nan at position s1: Series, DataFrame, float, int, or tuple(float|int) s2: Series, DataFrame, float, int, or tuple(float|int) continous: bool, if true then once the signal starts it is always 1 or -1
def _plot_simple_fault(self, source, border='k-', border_width=1.0): """ Plots the simple fault source as a composite of the fault trace and the surface projection of the fault. :param source: Fault source as instance of :class: mtkSimpleFaultSource :param str border: Line properties of border (see matplotlib documentation for detail) :param float border_width: Line width of border (see matplotlib documentation for detail) """ # Get the trace trace_lons = np.array([pnt.longitude for pnt in source.fault_trace.points]) trace_lats = np.array([pnt.latitude for pnt in source.fault_trace.points]) surface_projection = _fault_polygon_from_mesh(source) # Plot surface projection first x, y = self.m(surface_projection[:, 0], surface_projection[:, 1]) self.m.plot(x, y, border, linewidth=border_width) # Plot fault trace x, y = self.m(trace_lons, trace_lats) self.m.plot(x, y, border, linewidth=1.3 * border_width)
Plots the simple fault source as a composite of the fault trace and the surface projection of the fault. :param source: Fault source as instance of :class: mtkSimpleFaultSource :param str border: Line properties of border (see matplotlib documentation for detail) :param float border_width: Line width of border (see matplotlib documentation for detail)
def textFromHTML(html): """ Cleans and parses text from the given HTML. """ cleaner = lxml.html.clean.Cleaner(scripts=True) cleaned = cleaner.clean_html(html) return lxml.html.fromstring(cleaned).text_content()
Cleans and parses text from the given HTML.
def get(self, key, value=None): "x.get(k[,d]) -> x[k] if k in x, else d. d defaults to None." _key = self._prepare_key(key) prefix, node = self._get_node_by_key(_key) if prefix==_key and node.value is not None: return self._unpickle_value(node.value) else: return value
x.get(k[,d]) -> x[k] if k in x, else d. d defaults to None.
def _gser(a,x): "Series representation of Gamma. NumRec sect 6.1." ITMAX=100 EPS=3.e-7 gln=lgamma(a) assert(x>=0),'x < 0 in gser' if x == 0 : return 0,gln ap = a delt = sum = 1./a for i in range(ITMAX): ap=ap+1. delt=delt*x/ap sum=sum+delt if abs(delt) < abs(sum)*EPS: break else: print('a too large, ITMAX too small in gser') gamser=sum*np.exp(-x+a*np.log(x)-gln) return gamser,gln
Series representation of Gamma. NumRec sect 6.1.
def initialize(self, argv=None): """initialize the app""" super(BaseParallelApplication, self).initialize(argv) self.to_work_dir() self.reinit_logging()
initialize the app
def attach(self, lun_or_snap, skip_hlu_0=False): """ Attaches lun, snap or member snap of cg snap to host. Don't pass cg snapshot in as `lun_or_snap`. :param lun_or_snap: the lun, snap, or a member snap of cg snap :param skip_hlu_0: whether to skip hlu 0 :return: the hlu number """ # `UnityResourceAlreadyAttachedError` check was removed due to there # is a host cache existing in Cinder driver. If the lun was attached to # the host and the info was stored in the cache, wrong hlu would be # returned. # And attaching a lun to a host twice would success, if Cinder retry # triggers another attachment of same lun to the host, the cost would # be one more rest request of `modifyLun` and one for host instance # query. try: return self._attach_with_retry(lun_or_snap, skip_hlu_0) except ex.SystemAPINotSupported: # Attaching snap to host not support before 4.1. raise except ex.UnityAttachExceedLimitError: # The number of luns exceeds system limit raise except: # noqa # other attach error, remove this lun if already attached self.detach(lun_or_snap) raise
Attaches lun, snap or member snap of cg snap to host. Don't pass cg snapshot in as `lun_or_snap`. :param lun_or_snap: the lun, snap, or a member snap of cg snap :param skip_hlu_0: whether to skip hlu 0 :return: the hlu number
def image_props(event): """ Get information for a pick event on an ``AxesImage`` artist. Returns a dict of "i" & "j" index values of the image for the point clicked, and "z": the (uninterpolated) value of the image at i,j. Parameters ----------- event : PickEvent The pick event to process Returns -------- props : dict A dict with keys: z, i, j """ x, y = event.mouseevent.xdata, event.mouseevent.ydata i, j = _coords2index(event.artist, x, y) z = event.artist.get_array()[i,j] if z.size > 1: # Override default numpy formatting for this specific case. Bad idea? z = ', '.join('{:0.3g}'.format(item) for item in z) return dict(z=z, i=i, j=j)
Get information for a pick event on an ``AxesImage`` artist. Returns a dict of "i" & "j" index values of the image for the point clicked, and "z": the (uninterpolated) value of the image at i,j. Parameters ----------- event : PickEvent The pick event to process Returns -------- props : dict A dict with keys: z, i, j
async def find( self, *, types=None, data=None, countries=None, post=False, strict=False, dnsbl=None, limit=0, **kwargs ): """Gather and check proxies from providers or from a passed data. :ref:`Example of usage <proxybroker-examples-find>`. :param list types: Types (protocols) that need to be check on support by proxy. Supported: HTTP, HTTPS, SOCKS4, SOCKS5, CONNECT:80, CONNECT:25 And levels of anonymity (HTTP only): Transparent, Anonymous, High :param data: (optional) String or list with proxies. Also can be a file-like object supports `read()` method. Used instead of providers :param list countries: (optional) List of ISO country codes where should be located proxies :param bool post: (optional) Flag indicating use POST instead of GET for requests when checking proxies :param bool strict: (optional) Flag indicating that anonymity levels of types (protocols) supported by a proxy must be equal to the requested types and levels of anonymity. By default, strict mode is off and for a successful check is enough to satisfy any one of the requested types :param list dnsbl: (optional) Spam databases for proxy checking. `Wiki <https://en.wikipedia.org/wiki/DNSBL>`_ :param int limit: (optional) The maximum number of proxies :raises ValueError: If :attr:`types` not given. .. versionchanged:: 0.2.0 Added: :attr:`post`, :attr:`strict`, :attr:`dnsbl`. Changed: :attr:`types` is required. """ ip = await self._resolver.get_real_ext_ip() types = _update_types(types) if not types: raise ValueError('`types` is required') self._checker = Checker( judges=self._judges, timeout=self._timeout, verify_ssl=self._verify_ssl, max_tries=self._max_tries, real_ext_ip=ip, types=types, post=post, strict=strict, dnsbl=dnsbl, loop=self._loop, ) self._countries = countries self._limit = limit tasks = [asyncio.ensure_future(self._checker.check_judges())] if data: task = asyncio.ensure_future(self._load(data, check=True)) else: task = asyncio.ensure_future(self._grab(types, check=True)) tasks.append(task) self._all_tasks.extend(tasks)
Gather and check proxies from providers or from a passed data. :ref:`Example of usage <proxybroker-examples-find>`. :param list types: Types (protocols) that need to be check on support by proxy. Supported: HTTP, HTTPS, SOCKS4, SOCKS5, CONNECT:80, CONNECT:25 And levels of anonymity (HTTP only): Transparent, Anonymous, High :param data: (optional) String or list with proxies. Also can be a file-like object supports `read()` method. Used instead of providers :param list countries: (optional) List of ISO country codes where should be located proxies :param bool post: (optional) Flag indicating use POST instead of GET for requests when checking proxies :param bool strict: (optional) Flag indicating that anonymity levels of types (protocols) supported by a proxy must be equal to the requested types and levels of anonymity. By default, strict mode is off and for a successful check is enough to satisfy any one of the requested types :param list dnsbl: (optional) Spam databases for proxy checking. `Wiki <https://en.wikipedia.org/wiki/DNSBL>`_ :param int limit: (optional) The maximum number of proxies :raises ValueError: If :attr:`types` not given. .. versionchanged:: 0.2.0 Added: :attr:`post`, :attr:`strict`, :attr:`dnsbl`. Changed: :attr:`types` is required.
def whoami(ctx, opts): """Retrieve your current authentication status.""" click.echo("Retrieving your authentication status from the API ... ", nl=False) context_msg = "Failed to retrieve your authentication status!" with handle_api_exceptions(ctx, opts=opts, context_msg=context_msg): with maybe_spinner(opts): is_auth, username, email, name = get_user_brief() click.secho("OK", fg="green") click.echo("You are authenticated as:") if not is_auth: click.secho("Nobody (i.e. anonymous user)", fg="yellow") else: click.secho( "%(name)s (slug: %(username)s, email: %(email)s)" % { "name": click.style(name, fg="cyan"), "username": click.style(username, fg="magenta"), "email": click.style(email, fg="green"), } )
Retrieve your current authentication status.
def apply_parallel(func: Callable, data: List[Any], cpu_cores: int = None) -> List[Any]: """ Apply function to list of elements. Automatically determines the chunk size. """ if not cpu_cores: cpu_cores = cpu_count() try: chunk_size = ceil(len(data) / cpu_cores) pool = Pool(cpu_cores) transformed_data = pool.map(func, chunked(data, chunk_size), chunksize=1) finally: pool.close() pool.join() return transformed_data
Apply function to list of elements. Automatically determines the chunk size.
def check_classes(self, scope=-1): """ Check if pending identifiers are defined or not. If not, returns a syntax error. If no scope is given, the current one is checked. """ for entry in self[scope].values(): if entry.class_ is None: syntax_error(entry.lineno, "Unknown identifier '%s'" % entry.name)
Check if pending identifiers are defined or not. If not, returns a syntax error. If no scope is given, the current one is checked.
def make_default_options_response(self): """This method is called to create the default `OPTIONS` response. This can be changed through subclassing to change the default behavior of `OPTIONS` responses. .. versionadded:: 0.7 """ adapter = _request_ctx_stack.top.url_adapter if hasattr(adapter, 'allowed_methods'): methods = adapter.allowed_methods() else: # fallback for Werkzeug < 0.7 methods = [] try: adapter.match(method='--') except MethodNotAllowed as e: methods = e.valid_methods except HTTPException as e: pass rv = self.response_class() rv.allow.update(methods) return rv
This method is called to create the default `OPTIONS` response. This can be changed through subclassing to change the default behavior of `OPTIONS` responses. .. versionadded:: 0.7
def reindex_repo_dev_panel(self, project, repository): """ Reindex all of the Jira issues related to this repository, including branches and pull requests. This automatically happens as part of an upgrade, and calling this manually should only be required if something unforeseen happens and the index becomes out of sync. The authenticated user must have REPO_ADMIN permission for the specified repository to call this resource. :param project: :param repository: :return: """ url = 'rest/jira-dev/1.0/projects/{projectKey}/repos/{repositorySlug}/reindex'.format(projectKey=project, repositorySlug=repository) return self.post(url)
Reindex all of the Jira issues related to this repository, including branches and pull requests. This automatically happens as part of an upgrade, and calling this manually should only be required if something unforeseen happens and the index becomes out of sync. The authenticated user must have REPO_ADMIN permission for the specified repository to call this resource. :param project: :param repository: :return:
def get(self, name, **kwargs): """Retrieves a :py:class:`Parameter` with name ``self.prefix+name``. If not found, :py:func:`get` will first try to retrieve it from "shared" dict. If still not found, :py:func:`get` will create a new :py:class:`Parameter` with key-word arguments and insert it to self. Parameters ---------- name : str Name of the desired Parameter. It will be prepended with this dictionary's prefix. **kwargs : dict The rest of key-word arguments for the created :py:class:`Parameter`. Returns ------- Parameter The created or retrieved :py:class:`Parameter`. """ name = self.prefix + name param = self._get_impl(name) if param is None: # pylint: disable=too-many-nested-blocks param = Parameter(name, **kwargs) self._params[name] = param else: for k, v in kwargs.items(): if hasattr(param, k) and getattr(param, k) is not None: existing = getattr(param, k) if k == 'shape' and len(v) == len(existing): inferred_shape = [] matched = True for dim1, dim2 in zip(v, existing): if dim1 != dim2 and dim1 * dim2 != 0: matched = False break elif dim1 == dim2: inferred_shape.append(dim1) elif dim1 == 0: inferred_shape.append(dim2) else: inferred_shape.append(dim1) if matched: param._shape = tuple(inferred_shape) continue elif k == 'dtype' and np.dtype(v) == np.dtype(existing): continue assert v is None or v == existing, \ "Cannot retrieve Parameter '%s' because desired attribute " \ "does not match with stored for attribute '%s': " \ "desired '%s' vs stored '%s'."%( name, k, str(v), str(getattr(param, k))) else: setattr(param, k, v) return param
Retrieves a :py:class:`Parameter` with name ``self.prefix+name``. If not found, :py:func:`get` will first try to retrieve it from "shared" dict. If still not found, :py:func:`get` will create a new :py:class:`Parameter` with key-word arguments and insert it to self. Parameters ---------- name : str Name of the desired Parameter. It will be prepended with this dictionary's prefix. **kwargs : dict The rest of key-word arguments for the created :py:class:`Parameter`. Returns ------- Parameter The created or retrieved :py:class:`Parameter`.
def preprocess(S, coloring_method=None): """Preprocess splitting functions. Parameters ---------- S : csr_matrix Strength of connection matrix method : string Algorithm used to compute the vertex coloring: * 'MIS' - Maximal Independent Set * 'JP' - Jones-Plassmann (parallel) * 'LDF' - Largest-Degree-First (parallel) Returns ------- weights: ndarray Weights from a graph coloring of G S : csr_matrix Strength matrix with ones T : csr_matrix transpose of S G : csr_matrix union of S and T Notes ----- Performs the following operations: - Checks input strength of connection matrix S - Replaces S.data with ones - Creates T = S.T in CSR format - Creates G = S union T in CSR format - Creates random weights - Augments weights with graph coloring (if use_color == True) """ if not isspmatrix_csr(S): raise TypeError('expected csr_matrix') if S.shape[0] != S.shape[1]: raise ValueError('expected square matrix, shape=%s' % (S.shape,)) N = S.shape[0] S = csr_matrix((np.ones(S.nnz, dtype='int8'), S.indices, S.indptr), shape=(N, N)) T = S.T.tocsr() # transpose S for efficient column access G = S + T # form graph (must be symmetric) G.data[:] = 1 weights = np.ravel(T.sum(axis=1)) # initial weights # weights -= T.diagonal() # discount self loops if coloring_method is None: weights = weights + sp.rand(len(weights)) else: coloring = vertex_coloring(G, coloring_method) num_colors = coloring.max() + 1 weights = weights + (sp.rand(len(weights)) + coloring)/num_colors return (weights, G, S, T)
Preprocess splitting functions. Parameters ---------- S : csr_matrix Strength of connection matrix method : string Algorithm used to compute the vertex coloring: * 'MIS' - Maximal Independent Set * 'JP' - Jones-Plassmann (parallel) * 'LDF' - Largest-Degree-First (parallel) Returns ------- weights: ndarray Weights from a graph coloring of G S : csr_matrix Strength matrix with ones T : csr_matrix transpose of S G : csr_matrix union of S and T Notes ----- Performs the following operations: - Checks input strength of connection matrix S - Replaces S.data with ones - Creates T = S.T in CSR format - Creates G = S union T in CSR format - Creates random weights - Augments weights with graph coloring (if use_color == True)
def get_thread(self, thread_id, update_if_cached=True, raise_404=False): """Get a thread from 4chan via 4chan API. Args: thread_id (int): Thread ID update_if_cached (bool): Whether the thread should be updated if it's already in our cache raise_404 (bool): Raise an Exception if thread has 404'd Returns: :class:`basc_py4chan.Thread`: Thread object """ # see if already cached cached_thread = self._thread_cache.get(thread_id) if cached_thread: if update_if_cached: cached_thread.update() return cached_thread res = self._requests_session.get( self._url.thread_api_url( thread_id = thread_id ) ) # check if thread exists if raise_404: res.raise_for_status() elif not res.ok: return None thread = Thread._from_request(self, res, thread_id) self._thread_cache[thread_id] = thread return thread
Get a thread from 4chan via 4chan API. Args: thread_id (int): Thread ID update_if_cached (bool): Whether the thread should be updated if it's already in our cache raise_404 (bool): Raise an Exception if thread has 404'd Returns: :class:`basc_py4chan.Thread`: Thread object
def smooth(polylines): """ smooth every polyline using spline interpolation """ for c in polylines: if len(c) < 9: # smoothing wouldn't make sense here continue x = c[:, 0] y = c[:, 1] t = np.arange(x.shape[0], dtype=float) t /= t[-1] x = UnivariateSpline(t, x)(t) y = UnivariateSpline(t, y)(t) c[:, 0] = x c[:, 1] = y
smooth every polyline using spline interpolation
def map_concepts_to_indicators( self, n: int = 1, min_temporal_res: Optional[str] = None ): """ Map each concept node in the AnalysisGraph instance to one or more tangible quantities, known as 'indicators'. Args: n: Number of matches to keep min_temporal_res: Minimum temporal resolution that the indicators must have data for. """ for node in self.nodes(data=True): query_parts = [ "select Indicator from concept_to_indicator_mapping", f"where `Concept` like '{node[0]}'", ] # TODO May need to delve into SQL/database stuff a bit more deeply # for this. Foreign keys perhaps? query = " ".join(query_parts) results = engine.execute(query) if min_temporal_res is not None: if min_temporal_res not in ["month"]: raise ValueError("min_temporal_res must be 'month'") vars_with_required_temporal_resolution = [ r[0] for r in engine.execute( "select distinct `Variable` from indicator where " f"`{min_temporal_res.capitalize()}` is not null" ) ] results = [ r for r in results if r[0] in vars_with_required_temporal_resolution ] node[1]["indicators"] = { x: Indicator(x, "MITRE12") for x in [r[0] for r in take(n, results)] }
Map each concept node in the AnalysisGraph instance to one or more tangible quantities, known as 'indicators'. Args: n: Number of matches to keep min_temporal_res: Minimum temporal resolution that the indicators must have data for.
def send_stream_tail(self): """ Send stream tail via the transport. """ with self.lock: if not self._socket or self._hup: logger.debug(u"Cannot send stream closing tag: already closed") return data = self._serializer.emit_tail() try: self._write(data.encode("utf-8")) except (IOError, SystemError, socket.error), err: logger.debug(u"Sending stream closing tag failed: {0}" .format(err)) self._serializer = None self._hup = True if self._tls_state is None: try: self._socket.shutdown(socket.SHUT_WR) except socket.error: pass self._set_state("closing") self._write_queue.clear() self._write_queue_cond.notify()
Send stream tail via the transport.
def pack(self, value=None): """Pack the message into a binary data. One of the basic operations on a Message is the pack operation. During the packing process, we convert all message attributes to binary format. Since that this is usually used before sending the message to a switch, here we also call :meth:`update_header_length`. .. seealso:: This method call its parent's :meth:`GenericStruct.pack` after :meth:`update_header_length`. Returns: bytes: A binary data thats represents the Message. Raises: Exception: If there are validation errors. """ if value is None: self.update_header_length() return super().pack() elif isinstance(value, type(self)): return value.pack() else: msg = "{} is not an instance of {}".format(value, type(self).__name__) raise PackException(msg)
Pack the message into a binary data. One of the basic operations on a Message is the pack operation. During the packing process, we convert all message attributes to binary format. Since that this is usually used before sending the message to a switch, here we also call :meth:`update_header_length`. .. seealso:: This method call its parent's :meth:`GenericStruct.pack` after :meth:`update_header_length`. Returns: bytes: A binary data thats represents the Message. Raises: Exception: If there are validation errors.
def register_metrics(self, metrics_collector, interval): """Registers its metrics to a given metrics collector with a given interval""" for field, metrics in self.metrics.items(): metrics_collector.register_metric(field, metrics, interval)
Registers its metrics to a given metrics collector with a given interval
def transform(self, Y): r"""Compute all pairwise distances between `self.X_fit_` and `Y`. Parameters ---------- y : array-like, shape = (n_samples_y, n_features) Returns ------- kernel : ndarray, shape = (n_samples_y, n_samples_X_fit\_) Kernel matrix. Values are normalized to lie within [0, 1]. """ check_is_fitted(self, 'X_fit_') n_samples_x, n_features = self.X_fit_.shape Y = numpy.asarray(Y) if Y.shape[1] != n_features: raise ValueError('expected array with %d features, but got %d' % (n_features, Y.shape[1])) n_samples_y = Y.shape[0] mat = numpy.zeros((n_samples_y, n_samples_x), dtype=float) continuous_ordinal_kernel_with_ranges(Y[:, self._numeric_columns].astype(numpy.float64), self.X_fit_[:, self._numeric_columns].astype(numpy.float64), self._numeric_ranges, mat) if len(self._nominal_columns) > 0: _nominal_kernel(Y[:, self._nominal_columns], self.X_fit_[:, self._nominal_columns], mat) mat /= n_features return mat
r"""Compute all pairwise distances between `self.X_fit_` and `Y`. Parameters ---------- y : array-like, shape = (n_samples_y, n_features) Returns ------- kernel : ndarray, shape = (n_samples_y, n_samples_X_fit\_) Kernel matrix. Values are normalized to lie within [0, 1].
def run_recipe_timed(task, recipe, rinput): """Run the recipe and count the time it takes.""" _logger.info('running recipe') now1 = datetime.datetime.now() task.state = 1 task.time_start = now1 # result = recipe(rinput) _logger.info('result: %r', result) task.result = result # now2 = datetime.datetime.now() task.state = 2 task.time_end = now2 return task
Run the recipe and count the time it takes.
def __fade_in(self): """ Starts the Widget fade in. """ self.__timer.stop() self.__vector = self.__fade_speed self.__timer.start()
Starts the Widget fade in.
def __replace_capall(sentence): """here we replace all instances of #CAPALL and cap the entire sentence. Don't believe that CAPALL is buggy anymore as it forces all uppercase OK? :param _sentence: """ # print "\nReplacing CAPITALISE: " if sentence is not None: while sentence.find('#CAPALL') != -1: # _cap_index = _sentence.find('#CAPALL') sentence = sentence.upper() sentence = sentence.replace('#CAPALL ', '', 1) if sentence.find('#CAPALL') == -1: return sentence else: return sentence
here we replace all instances of #CAPALL and cap the entire sentence. Don't believe that CAPALL is buggy anymore as it forces all uppercase OK? :param _sentence:
def decorate_set_on_listener(prototype): """ Private decorator for use in the editor. Allows the Editor to create listener methods. Args: params (str): The list of parameters for the listener method (es. "(self, new_value)") """ # noinspection PyDictCreation,PyProtectedMember def add_annotation(method): method._event_info = {} method._event_info['name'] = method.__name__ method._event_info['prototype'] = prototype return method return add_annotation
Private decorator for use in the editor. Allows the Editor to create listener methods. Args: params (str): The list of parameters for the listener method (es. "(self, new_value)")
def list_members(self, list_id=None, slug=None, owner_screen_name=None, owner_id=None): """ Returns the members of a list. List id or (slug and (owner_screen_name or owner_id)) are required """ assert list_id or (slug and (owner_screen_name or owner_id)) url = 'https://api.twitter.com/1.1/lists/members.json' params = {'cursor': -1} if list_id: params['list_id'] = list_id else: params['slug'] = slug if owner_screen_name: params['owner_screen_name'] = owner_screen_name else: params['owner_id'] = owner_id while params['cursor'] != 0: try: resp = self.get(url, params=params, allow_404=True) except requests.exceptions.HTTPError as e: if e.response.status_code == 404: log.error("no matching list") raise e users = resp.json() for user in users['users']: yield user params['cursor'] = users['next_cursor']
Returns the members of a list. List id or (slug and (owner_screen_name or owner_id)) are required