Datasets:
AI4M
/

text
stringlengths
0
3.34M
[GOAL] α : Type u_1 p : Set α → Prop s₀ : Set α hp : p s₀ t : Set α inst✝ : HasCountableSeparatingOn α p t ⊢ ∃ S, (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y [PROOFSTEP] rcases exists_nonempty_countable_separating α hp t with ⟨S, hSne, hSc, hS⟩ [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop s₀ : Set α hp : p s₀ t : Set α inst✝ : HasCountableSeparatingOn α p t S : Set (Set α) hSne : Set.Nonempty S hSc : Set.Countable S hS : (∀ (s : Set α), s ∈ S → p s) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ ∃ S, (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y [PROOFSTEP] rcases hSc.exists_eq_range hSne with ⟨S, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 p : Set α → Prop s₀ : Set α hp : p s₀ t : Set α inst✝ : HasCountableSeparatingOn α p t S : ℕ → Set α hSne : Set.Nonempty (range S) hSc : Set.Countable (range S) hS : (∀ (s : Set α), s ∈ range S → p s) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (s : Set α), s ∈ range S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ ∃ S, (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y [PROOFSTEP] use S [GOAL] case h α : Type u_1 p : Set α → Prop s₀ : Set α hp : p s₀ t : Set α inst✝ : HasCountableSeparatingOn α p t S : ℕ → Set α hSne : Set.Nonempty (range S) hSc : Set.Countable (range S) hS : (∀ (s : Set α), s ∈ range S → p s) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (s : Set α), s ∈ range S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ (∀ (n : ℕ), p (S n)) ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (∀ (n : ℕ), x ∈ S n ↔ y ∈ S n) → x = y [PROOFSTEP] simpa only [forall_range_iff] using hS [GOAL] α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U ⊢ HasCountableSeparatingOn α p t [PROOFSTEP] rcases h.1 with ⟨S, hSc, hSq, hS⟩ [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ HasCountableSeparatingOn α p t [PROOFSTEP] choose! V hpV hV using fun s hs ↦ hpq s (hSq s hs) [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y V : Set ↑t → Set α hpV : ∀ (s : Set ↑t), s ∈ S → p (V s) hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s ⊢ HasCountableSeparatingOn α p t [PROOFSTEP] refine ⟨⟨V '' S, hSc.image _, ball_image_iff.2 hpV, fun x hx y hy h ↦ ?_⟩⟩ [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h✝ : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y V : Set ↑t → Set α hpV : ∀ (s : Set ↑t), s ∈ S → p (V s) hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s x : α hx : x ∈ t y : α hy : y ∈ t h : ∀ (s : Set α), s ∈ V '' S → (x ∈ s ↔ y ∈ s) ⊢ x = y [PROOFSTEP] refine congr_arg Subtype.val (hS ⟨x, hx⟩ trivial ⟨y, hy⟩ trivial fun U hU ↦ ?_) [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h✝ : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y V : Set ↑t → Set α hpV : ∀ (s : Set ↑t), s ∈ S → p (V s) hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s x : α hx : x ∈ t y : α hy : y ∈ t h : ∀ (s : Set α), s ∈ V '' S → (x ∈ s ↔ y ∈ s) U : Set ↑t hU : U ∈ S ⊢ { val := x, property := hx } ∈ U ↔ { val := y, property := hy } ∈ U [PROOFSTEP] rw [← hV U hU] [GOAL] case intro.intro.intro α : Type u_1 p : Set α → Prop t : Set α q : Set ↑t → Prop h✝ : HasCountableSeparatingOn (↑t) q univ hpq : ∀ (U : Set ↑t), q U → ∃ V, p V ∧ Subtype.val ⁻¹' V = U S : Set (Set ↑t) hSc : Set.Countable S hSq : ∀ (s : Set ↑t), s ∈ S → q s hS : ∀ (x : ↑t), x ∈ univ → ∀ (y : ↑t), y ∈ univ → (∀ (s : Set ↑t), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y V : Set ↑t → Set α hpV : ∀ (s : Set ↑t), s ∈ S → p (V s) hV : ∀ (s : Set ↑t), s ∈ S → Subtype.val ⁻¹' V s = s x : α hx : x ∈ t y : α hy : y ∈ t h : ∀ (s : Set α), s ∈ V '' S → (x ∈ s ↔ y ∈ s) U : Set ↑t hU : U ∈ S ⊢ { val := x, property := hx } ∈ Subtype.val ⁻¹' V U ↔ { val := y, property := hy } ∈ Subtype.val ⁻¹' V U [PROOFSTEP] exact h _ (mem_image_of_mem _ hU) [GOAL] α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l ⊢ ∃ t, t ⊆ s ∧ Set.Subsingleton t ∧ t ∈ l [PROOFSTEP] rcases h.1 with ⟨S, hSc, hSp, hS⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ ∃ t, t ⊆ s ∧ Set.Subsingleton t ∧ t ∈ l [PROOFSTEP] refine ⟨s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U ∈ S) (_ : Uᶜ ∈ l), Uᶜ, ?_, ?_, ?_⟩ [GOAL] case intro.intro.intro.refine_1 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ ⊆ s [PROOFSTEP] exact fun _ h ↦ h.1.1 [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ Set.Subsingleton (s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ) [PROOFSTEP] intro x hx y hy [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x : α hx : x ∈ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ y : α hy : y ∈ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ ⊢ x = y [PROOFSTEP] simp only [mem_sInter, mem_inter_iff, mem_iInter, mem_compl_iff] at hx hy [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i ⊢ x = y [PROOFSTEP] refine hS x hx.1.1 y hy.1.1 (fun s hsS ↦ ?_) [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] cases hl s (hSp s hsS) with | inl hsl => simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩] | inr hsl => simp only [hx.2 s hsS hsl, hy.2 s hsS hsl] [GOAL] case intro.intro.intro.refine_2 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S x✝ : s ∈ l ∨ sᶜ ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] cases hl s (hSp s hsS) with | inl hsl => simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩] | inr hsl => simp only [hx.2 s hsS hsl, hy.2 s hsS hsl] [GOAL] case intro.intro.intro.refine_2.inl α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S hsl : s ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] | inl hsl => simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩] [GOAL] case intro.intro.intro.refine_2.inl α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S hsl : s ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] simp only [hx.1.2 s ⟨hsS, hsl⟩, hy.1.2 s ⟨hsS, hsl⟩] [GOAL] case intro.intro.intro.refine_2.inr α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S hsl : sᶜ ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] | inr hsl => simp only [hx.2 s hsS hsl, hy.2 s hsS hsl] [GOAL] case intro.intro.intro.refine_2.inr α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s✝ : Set α h : HasCountableSeparatingOn α p s✝ hs : s✝ ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s✝ → ∀ (y : α), y ∈ s✝ → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y x y : α hx : (x ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → x ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬x ∈ i hy : (y ∈ s✝ ∧ ∀ (t : Set α), t ∈ S ∧ t ∈ l.sets → y ∈ t) ∧ ∀ (i : Set α), i ∈ S → iᶜ ∈ l → ¬y ∈ i s : Set α hsS : s ∈ S hsl : sᶜ ∈ l ⊢ x ∈ s ↔ y ∈ s [PROOFSTEP] simp only [hx.2 s hsS hsl, hy.2 s hsS hsl] [GOAL] case intro.intro.intro.refine_3 α : Type u_1 β : Sort ?u.5043 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α h : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l S : Set (Set α) hSc : Set.Countable S hSp : ∀ (s : Set α), s ∈ S → p s hS : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → (∀ (s : Set α), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ s ∩ ⋂₀ (S ∩ l.sets) ∩ ⋂ (U : Set α) (_ : U ∈ S) (_ : Uᶜ ∈ l), Uᶜ ∈ l [PROOFSTEP] exact inter_mem (inter_mem hs ((countable_sInter_mem (hSc.mono (inter_subset_left _ _))).2 fun _ h ↦ h.2)) ((countable_bInter_mem hSc).2 fun U hU ↦ iInter_mem.2 id) [GOAL] α : Type u_1 β : Sort ?u.6801 l : Filter α inst✝¹ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hne : Set.Nonempty s hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l ⊢ ∃ a, a ∈ s ∧ {a} ∈ l [PROOFSTEP] rcases exists_subset_subsingleton_mem_of_forall_separating p hs hl with ⟨t, hts, ht, htl⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Sort ?u.6801 l : Filter α inst✝¹ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hne : Set.Nonempty s hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l t : Set α hts : t ⊆ s ht : Set.Subsingleton t htl : t ∈ l ⊢ ∃ a, a ∈ s ∧ {a} ∈ l [PROOFSTEP] rcases ht.eq_empty_or_singleton with rfl | ⟨x, rfl⟩ [GOAL] case intro.intro.intro.inl α : Type u_1 β : Sort ?u.6801 l : Filter α inst✝¹ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hne : Set.Nonempty s hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l hts : ∅ ⊆ s ht : Set.Subsingleton ∅ htl : ∅ ∈ l ⊢ ∃ a, a ∈ s ∧ {a} ∈ l [PROOFSTEP] exact hne.imp fun a ha ↦ ⟨ha, mem_of_superset htl (empty_subset _)⟩ [GOAL] case intro.intro.intro.inr.intro α : Type u_1 β : Sort ?u.6801 l : Filter α inst✝¹ : CountableInterFilter l f g : α → β p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hne : Set.Nonempty s hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l x : α hts : {x} ⊆ s ht : Set.Subsingleton {x} htl : {x} ∈ l ⊢ ∃ a, a ∈ s ∧ {a} ∈ l [PROOFSTEP] exact ⟨x, hts rfl, htl⟩ [GOAL] α : Type u_1 β : Sort ?u.7319 l : Filter α inst✝² : CountableInterFilter l f g : α → β inst✝¹ : Nonempty α p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l ⊢ ∃ a, {a} ∈ l [PROOFSTEP] rcases s.eq_empty_or_nonempty with rfl | hne [GOAL] case inl α : Type u_1 β : Sort ?u.7319 l : Filter α inst✝² : CountableInterFilter l f g : α → β inst✝¹ : Nonempty α p : Set α → Prop hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l inst✝ : HasCountableSeparatingOn α p ∅ hs : ∅ ∈ l ⊢ ∃ a, {a} ∈ l [PROOFSTEP] exact ‹Nonempty α›.elim fun a ↦ ⟨a, mem_of_superset hs (empty_subset _)⟩ [GOAL] case inr α : Type u_1 β : Sort ?u.7319 l : Filter α inst✝² : CountableInterFilter l f g : α → β inst✝¹ : Nonempty α p : Set α → Prop s : Set α inst✝ : HasCountableSeparatingOn α p s hs : s ∈ l hl : ∀ (U : Set α), p U → U ∈ l ∨ Uᶜ ∈ l hne : Set.Nonempty s ⊢ ∃ a, {a} ∈ l [PROOFSTEP] exact (exists_mem_singleton_mem_of_mem_of_nonempty_of_forall_separating p hs hne hl).imp fun _ ↦ And.right [GOAL] α : Type u_2 β : Type u_1 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set β → Prop s : Set β h' : HasCountableSeparatingOn β p s hf : ∀ᶠ (x : α) in l, f x ∈ s hg : ∀ᶠ (x : α) in l, g x ∈ s h : ∀ (U : Set β), p U → ∀ᶠ (x : α) in l, f x ∈ U ↔ g x ∈ U ⊢ f =ᶠ[l] g [PROOFSTEP] rcases h'.1 with ⟨S, hSc, hSp, hS⟩ [GOAL] case intro.intro.intro α : Type u_2 β : Type u_1 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set β → Prop s : Set β h' : HasCountableSeparatingOn β p s hf : ∀ᶠ (x : α) in l, f x ∈ s hg : ∀ᶠ (x : α) in l, g x ∈ s h : ∀ (U : Set β), p U → ∀ᶠ (x : α) in l, f x ∈ U ↔ g x ∈ U S : Set (Set β) hSc : Set.Countable S hSp : ∀ (s : Set β), s ∈ S → p s hS : ∀ (x : β), x ∈ s → ∀ (y : β), y ∈ s → (∀ (s : Set β), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y ⊢ f =ᶠ[l] g [PROOFSTEP] have H : ∀ᶠ x in l, ∀ s ∈ S, f x ∈ s ↔ g x ∈ s := (eventually_countable_ball hSc).2 fun s hs ↦ (h _ (hSp _ hs)) [GOAL] case intro.intro.intro α : Type u_2 β : Type u_1 l : Filter α inst✝ : CountableInterFilter l f g : α → β p : Set β → Prop s : Set β h' : HasCountableSeparatingOn β p s hf : ∀ᶠ (x : α) in l, f x ∈ s hg : ∀ᶠ (x : α) in l, g x ∈ s h : ∀ (U : Set β), p U → ∀ᶠ (x : α) in l, f x ∈ U ↔ g x ∈ U S : Set (Set β) hSc : Set.Countable S hSp : ∀ (s : Set β), s ∈ S → p s hS : ∀ (x : β), x ∈ s → ∀ (y : β), y ∈ s → (∀ (s : Set β), s ∈ S → (x ∈ s ↔ y ∈ s)) → x = y H : ∀ᶠ (x : α) in l, ∀ (s : Set β), s ∈ S → (f x ∈ s ↔ g x ∈ s) ⊢ f =ᶠ[l] g [PROOFSTEP] filter_upwards [H, hf, hg] with x hx hxf hxg using hS _ hxf _ hxg hx
// Copyright David Abrahams 2002. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #include <boost/python/numeric.hpp> #include <boost/python/tuple.hpp> #include <boost/python/module.hpp> #include <boost/python/def.hpp> using namespace boost::python; // See if we can invoke array() from C++ object new_array() { return numeric::array( make_tuple( make_tuple(1,2,3) , make_tuple(4,5,6) , make_tuple(7,8,9) ) ); } // test argument conversion void take_array(numeric::array x) { } // A separate function to invoke the info() member. Must happen // outside any doctests since this prints directly to stdout and the // result text includes the address of the 'self' array. void info(numeric::array const& z) { z.info(); } // Tests which work on both Numeric and numarray array objects. Of // course all of the operators "just work" since numeric::array // inherits that behavior from object. void exercise(numeric::array& y, object check) { y[make_tuple(2,1)] = 3; check(y); check(y.astype('D')); check(y.copy()); check(y.typecode()); } // numarray-specific tests. check is a callable object which we can // use to record intermediate results, which are later compared with // the results of corresponding python operations. void exercise_numarray(numeric::array& y, object check) { check(y.astype()); check(y.argmax()); check(y.argmax(0)); check(y.argmin()); check(y.argmin(0)); check(y.argsort()); check(y.argsort(1)); y.byteswap(); check(y); check(y.diagonal()); check(y.diagonal(1)); check(y.diagonal(0, 1)); check(y.diagonal(0, 1, 0)); check(y.is_c_array()); check(y.isbyteswapped()); check(y.trace()); check(y.trace(1)); check(y.trace(0, 1)); check(y.trace(0, 1, 0)); check(y.new_('D')); y.sort(); check(y); check(y.type()); check(y.factory(make_tuple(1.2, 3.4))); check(y.factory(make_tuple(1.2, 3.4), "Double")); check(y.factory(make_tuple(1.2, 3.4), "Double", make_tuple(1,2,1))); check(y.factory(make_tuple(1.2, 3.4), "Double", make_tuple(2,1,1), false)); check(y.factory(make_tuple(1.2, 3.4), "Double", make_tuple(2), true, true)); } BOOST_PYTHON_MODULE(numpy_ext) { def("new_array", new_array); def("take_array", take_array); def("exercise", exercise); def("exercise_numarray", exercise_numarray); def("set_module_and_type", &numeric::array::set_module_and_type); def("info", info); } #include "module_tail.cpp"
**EPAM Training Center Test Automation Project** - This project includes: 1. Calculator app 2. Tests for it
------------------------------------------------------------------------------ -- Alter: An unguarded co-recursive function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.UnguardedCorecursion.Alter.AlterSL where open import Codata.Musical.Notation open import Codata.Musical.Stream open import Data.Bool.Base ------------------------------------------------------------------------------ -- TODO (2019-01-04): Agda doesn't accept this definition which was -- accepted by a previous version. {-# TERMINATING #-} alter : Stream Bool alter = true ∷ ♯ (false ∷ ♯ alter) {-# TERMINATING #-} alter' : Stream Bool alter' = true ∷ ♯ (map not alter')
(* Copyright 2016 Luxembourg University Copyright 2017 Luxembourg University Copyright 2018 Luxembourg University This file is part of Velisarios. Velisarios is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Velisarios is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Velisarios. If not, see <http://www.gnu.org/licenses/>. Authors: Vincent Rahli Ivana Vukotic *) Require Export PBFT_A_1_4. Require Export PBFT_A_1_9. Section PBFT_A_1_10. Local Open Scope eo. Local Open Scope proc. Context { pbft_context : PBFTcontext }. Context { pbft_auth : PBFTauth }. Context { pbft_keys : PBFTinitial_keys }. Context { pbft_hash : PBFThash }. Context { pbft_hash_axioms : PBFThash_axioms }. Definition more_than_F_have_prepared_before (eo : EventOrdering) (e : Event) (R : list Rep) (v : View) (n : SeqNum) (d : PBFTdigest) := no_repeats R /\ F < length R /\ forall (k : Rep), In k R -> exists (e' : Event) (st' : PBFTstate), e' ≼ e /\ loc e' = PBFTreplica k /\ state_sm_on_event (PBFTreplicaSM k) e' = Some st' /\ prepared (request_data v n d) st' = true. Lemma more_than_F_have_prepared_before_implies : forall (eo : EventOrdering) (e : Event) R v n d, more_than_F_have_prepared_before eo e R v n d -> more_than_F_have_prepared eo R v n d. Proof. introv moreThanF. unfold more_than_F_have_prepared, more_than_F_have_prepared_before in *. repnd; dands; auto. introv i. applydup moreThanF in i; exrepnd. eexists; eexists; dands; eauto. Qed. Hint Resolve more_than_F_have_prepared_before_implies : pbft. Lemma A_1_10_lt : forall (eo : EventOrdering) (e1 e2 : Event) (R1 R2 : list Rep) (n : SeqNum) (v1 v2 : View) (d1 d2 : PBFTdigest), authenticated_messages_were_sent_or_byz_usys eo PBFTsys -> PBFTcorrect_keys eo -> v1 < v2 -> exists_at_most_f_faulty [e2] F -> nodes_have_correct_traces_before R1 [e2] -> more_than_F_have_prepared_before eo e1 R1 v1 n d1 -> more_than_F_have_prepared_before eo e2 R2 v2 n d2 -> d1 = d2. Proof. introv sendbyz corkeys ltv atmost ctraces moreThanF1 moreThanF2. unfold more_than_F_have_prepared in moreThanF2. destruct moreThanF2 as [norep2 [len2 moreThanF2]]. destruct (PBFTdigestdeq d1 d2); auto. assert False; tcsp;[]. pose proof (there_is_one_good_guy_before eo R2 [e2]) as h. repeat (autodimp h hyp); try omega;[]. exrepnd. pose proof (moreThanF2 good) as prep; autodimp prep hyp. exrepnd. pose proof (PBFT_A_1_9 eo) as q; repeat (autodimp q hyp). pose proof (q R1 v1 n d1) as q; autodimp q hyp; eauto 3 with pbft;[]. pose proof (q e' good st') as q. repeat (autodimp q hyp); eauto 3 with pbft eo;[]. unfold prepared in prep1. eapply prepared_implies2 in prep1;[|eauto 3 with pbft]. exrepnd. destruct pp, b; simpl in *; ginv; simpl in *. unfold pre_prepare2digest in *; simpl in *. fold (mk_pre_prepare v2 n d a) in *. hide_hyp prep1. pose proof (h0 e2) as h0; autodimp h0 hyp. pose proof (q v2 d a (requests2digest d)) as q. repeat (autodimp q hyp); eauto 3 with pbft eo. Qed. Lemma A_1_10 : forall (eo : EventOrdering) (e1 e2 : Event) (R1 R2 : list Rep) (n : SeqNum) (v1 v2 : View) (d1 d2 : PBFTdigest), authenticated_messages_were_sent_or_byz_usys eo PBFTsys -> PBFTcorrect_keys eo -> exists_at_most_f_faulty [e1,e2] F -> nodes_have_correct_traces_before R1 [e2] -> nodes_have_correct_traces_before R2 [e1] -> more_than_F_have_prepared_before eo e1 R1 v1 n d1 -> more_than_F_have_prepared_before eo e2 R2 v2 n d2 -> d1 = d2. Proof. introv sendbyz corkeys atmost ctraces1 ctraces2 moreThanF1 moreThanF2. destruct (lt_dec v1 v2) as [e|e]. { eapply A_1_10_lt; try exact moreThanF1; try exact moreThanF2; eauto 3 with pbft eo. } destruct (lt_dec v2 v1) as [f|f]. { symmetry; eapply A_1_10_lt; eauto; eauto 3 with pbft eo. } assert (v1 = v2) as xx by (apply equal_nats_implies_equal_views; omega). subst. clear e f. destruct moreThanF1 as [norep1 [len1 moreThanF1]]. destruct moreThanF2 as [norep2 [len2 moreThanF2]]. pose proof (there_is_one_good_guy_before eo R1 [e1,e2]) as h. pose proof (there_is_one_good_guy_before eo R2 [e1,e2]) as q. repeat (autodimp h hyp); try omega;[]. repeat (autodimp q hyp); try omega;[]. exrepnd. applydup moreThanF1 in h1; exrepnd. applydup moreThanF2 in q1; exrepnd. pose proof (h0 e1) as h0; simpl in h0; autodimp h0 hyp; auto. pose proof (q0 e2) as q0; simpl in q0; autodimp q0 hyp; auto. eapply A_1_4; try (exact h2); try (exact q2); try (exact h5); try (exact q5); auto; allrw; eauto 3 with pbft eo. Qed. End PBFT_A_1_10. Hint Resolve more_than_F_have_prepared_before_implies : pbft.
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.algebra.big_operators.basic import Mathlib.data.finset.intervals import Mathlib.PostPort universes u_1 v namespace Mathlib /-! # Results about big operators over intervals We prove results about big operators over intervals (mostly the `ℕ`-valued `Ico m n`). -/ namespace finset theorem sum_Ico_add {δ : Type u_1} [add_comm_monoid δ] (f : ℕ → δ) (m : ℕ) (n : ℕ) (k : ℕ) : (finset.sum (Ico m n) fun (l : ℕ) => f (k + l)) = finset.sum (Ico (m + k) (n + k)) fun (l : ℕ) => f l := Eq.subst (Ico.image_add m n k) Eq.symm (sum_image fun (x : ℕ) (hx : x ∈ Ico m n) (y : ℕ) (hy : y ∈ Ico m n) (h : k + x = k + y) => nat.add_left_cancel h) theorem prod_Ico_add {β : Type v} [comm_monoid β] (f : ℕ → β) (m : ℕ) (n : ℕ) (k : ℕ) : (finset.prod (Ico m n) fun (l : ℕ) => f (k + l)) = finset.prod (Ico (m + k) (n + k)) fun (l : ℕ) => f l := sum_Ico_add f m n k theorem sum_Ico_succ_top {δ : Type u_1} [add_comm_monoid δ] {a : ℕ} {b : ℕ} (hab : a ≤ b) (f : ℕ → δ) : (finset.sum (Ico a (b + 1)) fun (k : ℕ) => f k) = (finset.sum (Ico a b) fun (k : ℕ) => f k) + f b := sorry theorem prod_Ico_succ_top {β : Type v} [comm_monoid β] {a : ℕ} {b : ℕ} (hab : a ≤ b) (f : ℕ → β) : (finset.prod (Ico a (b + 1)) fun (k : ℕ) => f k) = (finset.prod (Ico a b) fun (k : ℕ) => f k) * f b := sum_Ico_succ_top hab fun (k : ℕ) => f k theorem sum_eq_sum_Ico_succ_bot {δ : Type u_1} [add_comm_monoid δ] {a : ℕ} {b : ℕ} (hab : a < b) (f : ℕ → δ) : (finset.sum (Ico a b) fun (k : ℕ) => f k) = f a + finset.sum (Ico (a + 1) b) fun (k : ℕ) => f k := sorry theorem prod_eq_prod_Ico_succ_bot {β : Type v} [comm_monoid β] {a : ℕ} {b : ℕ} (hab : a < b) (f : ℕ → β) : (finset.prod (Ico a b) fun (k : ℕ) => f k) = f a * finset.prod (Ico (a + 1) b) fun (k : ℕ) => f k := sum_eq_sum_Ico_succ_bot hab fun (k : ℕ) => f k theorem prod_Ico_consecutive {β : Type v} [comm_monoid β] (f : ℕ → β) {m : ℕ} {n : ℕ} {k : ℕ} (hmn : m ≤ n) (hnk : n ≤ k) : ((finset.prod (Ico m n) fun (i : ℕ) => f i) * finset.prod (Ico n k) fun (i : ℕ) => f i) = finset.prod (Ico m k) fun (i : ℕ) => f i := Eq.subst (Ico.union_consecutive hmn hnk) Eq.symm (prod_union (Ico.disjoint_consecutive m n k)) theorem sum_range_add_sum_Ico {β : Type v} [add_comm_monoid β] (f : ℕ → β) {m : ℕ} {n : ℕ} (h : m ≤ n) : ((finset.sum (range m) fun (k : ℕ) => f k) + finset.sum (Ico m n) fun (k : ℕ) => f k) = finset.sum (range n) fun (k : ℕ) => f k := Ico.zero_bot m ▸ Ico.zero_bot n ▸ sum_Ico_consecutive f (nat.zero_le m) h theorem sum_Ico_eq_add_neg {δ : Type u_1} [add_comm_group δ] (f : ℕ → δ) {m : ℕ} {n : ℕ} (h : m ≤ n) : (finset.sum (Ico m n) fun (k : ℕ) => f k) = (finset.sum (range n) fun (k : ℕ) => f k) + -finset.sum (range m) fun (k : ℕ) => f k := sorry theorem sum_Ico_eq_sub {δ : Type u_1} [add_comm_group δ] (f : ℕ → δ) {m : ℕ} {n : ℕ} (h : m ≤ n) : (finset.sum (Ico m n) fun (k : ℕ) => f k) = (finset.sum (range n) fun (k : ℕ) => f k) - finset.sum (range m) fun (k : ℕ) => f k := sorry theorem sum_Ico_eq_sum_range {β : Type v} [add_comm_monoid β] (f : ℕ → β) (m : ℕ) (n : ℕ) : (finset.sum (Ico m n) fun (k : ℕ) => f k) = finset.sum (range (n - m)) fun (k : ℕ) => f (m + k) := sorry theorem prod_Ico_reflect {β : Type v} [comm_monoid β] (f : ℕ → β) (k : ℕ) {m : ℕ} {n : ℕ} (h : m ≤ n + 1) : (finset.prod (Ico k m) fun (j : ℕ) => f (n - j)) = finset.prod (Ico (n + 1 - m) (n + 1 - k)) fun (j : ℕ) => f j := sorry theorem sum_Ico_reflect {δ : Type u_1} [add_comm_monoid δ] (f : ℕ → δ) (k : ℕ) {m : ℕ} {n : ℕ} (h : m ≤ n + 1) : (finset.sum (Ico k m) fun (j : ℕ) => f (n - j)) = finset.sum (Ico (n + 1 - m) (n + 1 - k)) fun (j : ℕ) => f j := prod_Ico_reflect f k h theorem prod_range_reflect {β : Type v} [comm_monoid β] (f : ℕ → β) (n : ℕ) : (finset.prod (range n) fun (j : ℕ) => f (n - 1 - j)) = finset.prod (range n) fun (j : ℕ) => f j := sorry theorem sum_range_reflect {δ : Type u_1} [add_comm_monoid δ] (f : ℕ → δ) (n : ℕ) : (finset.sum (range n) fun (j : ℕ) => f (n - 1 - j)) = finset.sum (range n) fun (j : ℕ) => f j := prod_range_reflect f n @[simp] theorem prod_Ico_id_eq_factorial (n : ℕ) : (finset.prod (Ico 1 (n + 1)) fun (x : ℕ) => x) = nat.factorial n := sorry @[simp] theorem prod_range_add_one_eq_factorial (n : ℕ) : (finset.prod (range n) fun (x : ℕ) => x + 1) = nat.factorial n := sorry /-- Gauss' summation formula -/ theorem sum_range_id_mul_two (n : ℕ) : (finset.sum (range n) fun (i : ℕ) => i) * bit0 1 = n * (n - 1) := sorry /-- Gauss' summation formula -/ theorem sum_range_id (n : ℕ) : (finset.sum (range n) fun (i : ℕ) => i) = n * (n - 1) / bit0 1 := sorry end Mathlib
double precision function ampsq_3gam1g(j1,j2,j3,j4,j5,j6,za,zb) c--- Matrix element squared for the process c--- 0 --> qb(j5) + q(j6) + g(j1) + gam(j2) + gam(j3) + gam(j4) c--- c--- Taken from "Multi-Photon Amplitudes for Next-to-Leading Order QCD" c--- V. Del Duca, W. Kilgore and F. Maltoni, hep-ph/9910253 c--- implicit none include 'constants.f' include 'zprods_decl.f' include 'ewcharge.f' include 'ewcouple.f' include 'qcdcouple.f' integer j1,j2,j3,j4,j5,j6,h1,h2,h3,h4,h5 double complex amp(2,2,2,2,2),amp_3gam1g_mppppm,amp_3gam1g_pmpppm, & amp_3gam1g_ppmppm,amp_3gam1g_pppmpm,amp_3gam1g_mmpppm c--- ordering of labels in amp is as follows: c--- (gluon j1, photon j2, photon j3, photon j4, antiquark j5) c--- for consistency with function names (and quark j6=3-j5) c--- trivial amplitude amp(2,2,2,2,2)=czip c--- basic MHV amplitudes amp(1,2,2,2,2)=amp_3gam1g_mppppm(j1,j2,j3,j4,j5,j6,za,zb) amp(2,1,2,2,2)=amp_3gam1g_pmpppm(j1,j2,j3,j4,j5,j6,za,zb) amp(2,2,1,2,2)=amp_3gam1g_ppmppm(j1,j2,j3,j4,j5,j6,za,zb) amp(2,2,2,1,2)=amp_3gam1g_pppmpm(j1,j2,j3,j4,j5,j6,za,zb) c--- non-MHV amplitude and permutations amp(1,1,2,2,2)=amp_3gam1g_mmpppm(j1,j2,j3,j4,j5,j6,za,zb) amp(1,2,1,2,2)=amp_3gam1g_mmpppm(j1,j3,j2,j4,j5,j6,za,zb) amp(1,2,2,1,2)=amp_3gam1g_mmpppm(j1,j4,j2,j3,j5,j6,za,zb) c--- parity and charge conjugation amp(1,1,1,1,2)=czip amp(2,1,1,1,2)=-amp_3gam1g_pppmpm(j4,j3,j2,j1,j6,j5,za,zb) amp(1,2,1,1,2)=-amp_3gam1g_ppmppm(j4,j3,j2,j1,j6,j5,za,zb) amp(1,1,2,1,2)=-amp_3gam1g_pmpppm(j4,j3,j2,j1,j6,j5,za,zb) amp(1,1,1,2,2)=-amp_3gam1g_mppppm(j4,j3,j2,j1,j6,j5,za,zb) amp(2,2,1,1,2)=-amp_3gam1g_mmpppm(j4,j3,j2,j1,j5,j6,za,zb) amp(2,1,2,1,2)=-amp_3gam1g_mmpppm(j2,j4,j1,j3,j5,j6,za,zb) amp(2,1,1,2,2)=-amp_3gam1g_mmpppm(j2,j3,j1,j4,j5,j6,za,zb) do h1=1,2 do h2=1,2 do h3=1,2 do h4=1,2 amp(h1,h2,h3,h4,1)=amp(3-h1,3-h2,3-h3,3-h4,2) enddo enddo enddo enddo c--- note: obvious redundancy in this routine, but might be c--- worth checking relations for use in virtual ampsq_3gam1g=0d0 do h1=1,2 do h2=1,2 do h3=1,2 do h4=1,2 do h5=1,2 c write(6,*) h1*10000+h2*1000+h3*100+h4*10+h5, c & cdabs(amp(h1,h2,h3,h4,h5))**2 c & *8d0*esq**3*gsq*xn*Cf/6d0*aveqq*Q(2)**6*8d0 ampsq_3gam1g=ampsq_3gam1g+cdabs(amp(h1,h2,h3,h4,h5))**2 enddo enddo enddo enddo enddo c pause return end
(* Title: HOL/Power.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1997 University of Cambridge *) section {* Exponentiation *} theory Power imports Num Equiv_Relations begin subsection {* Powers for Arbitrary Monoids *} class power = one + times begin primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" notation (latex output) power ("(_\<^bsup>_\<^esup>)" [1000] 1000) notation (HTML output) power ("(_\<^bsup>_\<^esup>)" [1000] 1000) text {* Special syntax for squares. *} abbreviation (xsymbols) power2 :: "'a \<Rightarrow> 'a" ("(_\<^sup>2)" [1000] 999) where "x\<^sup>2 \<equiv> x ^ 2" notation (latex output) power2 ("(_\<^sup>2)" [1000] 999) notation (HTML output) power2 ("(_\<^sup>2)" [1000] 999) end context monoid_mult begin subclass power . lemma power_one [simp]: "1 ^ n = 1" by (induct n) simp_all lemma power_one_right [simp]: "a ^ 1 = a" by simp lemma power_commutes: "a ^ n * a = a * a ^ n" by (induct n) (simp_all add: mult.assoc) lemma power_Suc2: "a ^ Suc n = a ^ n * a" by (simp add: power_commutes) lemma power_add: "a ^ (m + n) = a ^ m * a ^ n" by (induct m) (simp_all add: algebra_simps) lemma power_mult: "a ^ (m * n) = (a ^ m) ^ n" by (induct n) (simp_all add: power_add) lemma power2_eq_square: "a\<^sup>2 = a * a" by (simp add: numeral_2_eq_2) lemma power3_eq_cube: "a ^ 3 = a * a * a" by (simp add: numeral_3_eq_3 mult.assoc) lemma power_even_eq: "a ^ (2 * n) = (a ^ n)\<^sup>2" by (subst mult.commute) (simp add: power_mult) lemma power_odd_eq: "a ^ Suc (2*n) = a * (a ^ n)\<^sup>2" by (simp add: power_even_eq) lemma power_numeral_even: "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" unfolding numeral_Bit0 power_add Let_def .. lemma power_numeral_odd: "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" unfolding numeral_Bit1 One_nat_def add_Suc_right add_0_right unfolding power_Suc power_add Let_def mult.assoc .. lemma funpow_times_power: "(times x ^^ f x) = times (x ^ f x)" proof (induct "f x" arbitrary: f) case 0 then show ?case by (simp add: fun_eq_iff) next case (Suc n) def g \<equiv> "\<lambda>x. f x - 1" with Suc have "n = g x" by simp with Suc have "times x ^^ g x = times (x ^ g x)" by simp moreover from Suc g_def have "f x = g x + 1" by simp ultimately show ?case by (simp add: power_add funpow_add fun_eq_iff mult.assoc) qed lemma power_commuting_commutes: assumes "x * y = y * x" shows "x ^ n * y = y * x ^n" proof (induct n) case (Suc n) have "x ^ Suc n * y = x ^ n * y * x" by (subst power_Suc2) (simp add: assms ac_simps) also have "\<dots> = y * x ^ Suc n" unfolding Suc power_Suc2 by (simp add: ac_simps) finally show ?case . qed simp end context comm_monoid_mult begin lemma power_mult_distrib [field_simps]: "(a * b) ^ n = (a ^ n) * (b ^ n)" by (induct n) (simp_all add: ac_simps) end context semiring_numeral begin lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" by (simp only: sqr_conv_mult numeral_mult) lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" by (induct l, simp_all only: numeral_class.numeral.simps pow.simps numeral_sqr numeral_mult power_add power_one_right) lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" by (rule numeral_pow [symmetric]) end context semiring_1 begin lemma zero_power: "0 < n \<Longrightarrow> 0 ^ n = 0" by (cases n) simp_all lemma power_zero_numeral [simp]: "0 ^ numeral k = 0" by (simp add: numeral_eq_Suc) lemma zero_power2: "0\<^sup>2 = 0" (* delete? *) by (rule power_zero_numeral) lemma one_power2: "1\<^sup>2 = 1" (* delete? *) by (rule power_one) end context comm_semiring_1 begin text {* The divides relation *} lemma le_imp_power_dvd: assumes "m \<le> n" shows "a ^ m dvd a ^ n" proof have "a ^ n = a ^ (m + (n - m))" using `m \<le> n` by simp also have "\<dots> = a ^ m * a ^ (n - m)" by (rule power_add) finally show "a ^ n = a ^ m * a ^ (n - m)" . qed lemma power_le_dvd: "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" by (rule dvd_trans [OF le_imp_power_dvd]) lemma dvd_power_same: "x dvd y \<Longrightarrow> x ^ n dvd y ^ n" by (induct n) (auto simp add: mult_dvd_mono) lemma dvd_power_le: "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" by (rule power_le_dvd [OF dvd_power_same]) lemma dvd_power [simp]: assumes "n > (0::nat) \<or> x = 1" shows "x dvd (x ^ n)" using assms proof assume "0 < n" then have "x ^ n = x ^ Suc (n - 1)" by simp then show "x dvd (x ^ n)" by simp next assume "x = 1" then show "x dvd (x ^ n)" by simp qed end context ring_1 begin lemma power_minus: "(- a) ^ n = (- 1) ^ n * a ^ n" proof (induct n) case 0 show ?case by simp next case (Suc n) then show ?case by (simp del: power_Suc add: power_Suc2 mult.assoc) qed lemma power_minus_Bit0: "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" by (induct k, simp_all only: numeral_class.numeral.simps power_add power_one_right mult_minus_left mult_minus_right minus_minus) lemma power_minus_Bit1: "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) lemma power2_minus [simp]: "(- a)\<^sup>2 = a\<^sup>2" by (rule power_minus_Bit0) lemma power_minus1_even [simp]: "(- 1) ^ (2*n) = 1" proof (induct n) case 0 show ?case by simp next case (Suc n) then show ?case by (simp add: power_add power2_eq_square) qed lemma power_minus1_odd: "(- 1) ^ Suc (2*n) = -1" by simp lemma power_minus_even [simp]: "(-a) ^ (2*n) = a ^ (2*n)" by (simp add: power_minus [of a]) end lemma power_eq_0_nat_iff [simp]: fixes m n :: nat shows "m ^ n = 0 \<longleftrightarrow> m = 0 \<and> n > 0" by (induct n) auto context ring_1_no_zero_divisors begin lemma power_eq_0_iff [simp]: "a ^ n = 0 \<longleftrightarrow> a = 0 \<and> n > 0" by (induct n) auto lemma field_power_not_zero: "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" by (induct n) auto lemma zero_eq_power2 [simp]: "a\<^sup>2 = 0 \<longleftrightarrow> a = 0" unfolding power2_eq_square by simp lemma power2_eq_1_iff: "a\<^sup>2 = 1 \<longleftrightarrow> a = 1 \<or> a = - 1" unfolding power2_eq_square by (rule square_eq_1_iff) end context idom begin lemma power2_eq_iff: "x\<^sup>2 = y\<^sup>2 \<longleftrightarrow> x = y \<or> x = - y" unfolding power2_eq_square by (rule square_eq_iff) end context division_ring begin text {* FIXME reorient or rename to @{text nonzero_inverse_power} *} lemma nonzero_power_inverse: "a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n" by (induct n) (simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero) end context field begin lemma nonzero_power_divide: "b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n" by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse) end subsection {* Exponentiation on ordered types *} context linordered_ring (* TODO: move *) begin lemma sum_squares_ge_zero: "0 \<le> x * x + y * y" by (intro add_nonneg_nonneg zero_le_square) lemma not_sum_squares_lt_zero: "\<not> x * x + y * y < 0" by (simp add: not_less sum_squares_ge_zero) end context linordered_semidom begin lemma zero_less_power [simp]: "0 < a \<Longrightarrow> 0 < a ^ n" by (induct n) simp_all lemma zero_le_power [simp]: "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" by (induct n) simp_all lemma power_mono: "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) lemma one_le_power [simp]: "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" using power_mono [of 1 a n] by simp lemma power_le_one: "\<lbrakk>0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> a ^ n \<le> 1" using power_mono [of a 1 n] by simp lemma power_gt1_lemma: assumes gt1: "1 < a" shows "1 < a * a ^ n" proof - from gt1 have "0 \<le> a" by (fact order_trans [OF zero_le_one less_imp_le]) have "1 * 1 < a * 1" using gt1 by simp also have "\<dots> \<le> a * a ^ n" using gt1 by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le zero_le_one order_refl) finally show ?thesis by simp qed lemma power_gt1: "1 < a \<Longrightarrow> 1 < a ^ Suc n" by (simp add: power_gt1_lemma) lemma one_less_power [simp]: "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" by (cases n) (simp_all add: power_gt1_lemma) lemma power_le_imp_le_exp: assumes gt1: "1 < a" shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" proof (induct m arbitrary: n) case 0 show ?case by simp next case (Suc m) show ?case proof (cases n) case 0 with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp with gt1 show ?thesis by (force simp only: power_gt1_lemma not_less [symmetric]) next case (Suc n) with Suc.prems Suc.hyps show ?thesis by (force dest: mult_left_le_imp_le simp add: less_trans [OF zero_less_one gt1]) qed qed text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*} lemma power_inject_exp [simp]: "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" by (force simp add: order_antisym power_le_imp_le_exp) text{*Can relax the first premise to @{term "0<a"} in the case of the natural numbers.*} lemma power_less_imp_less_exp: "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] power_le_imp_le_exp) lemma power_strict_mono [rule_format]: "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" by (induct n) (auto simp add: mult_strict_mono le_less_trans [of 0 a b]) text{*Lemma for @{text power_strict_decreasing}*} lemma power_Suc_less: "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" by (induct n) (auto simp add: mult_strict_left_mono) lemma power_strict_decreasing [rule_format]: "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: power_Suc_less less_Suc_eq) apply (subgoal_tac "a * a^N < 1 * a^n") apply simp apply (rule mult_strict_mono) apply auto done qed text{*Proof resembles that of @{text power_strict_decreasing}*} lemma power_decreasing [rule_format]: "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: le_Suc_eq) apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp) apply (rule mult_mono) apply auto done qed lemma power_Suc_less_one: "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" using power_strict_decreasing [of 0 "Suc n" a] by simp text{*Proof again resembles that of @{text power_strict_decreasing}*} lemma power_increasing [rule_format]: "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: le_Suc_eq) apply (subgoal_tac "1 * a^n \<le> a * a^N", simp) apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) done qed text{*Lemma for @{text power_strict_increasing}*} lemma power_less_power_Suc: "1 < a \<Longrightarrow> a ^ n < a * a ^ n" by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) lemma power_strict_increasing [rule_format]: "n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: power_less_power_Suc less_Suc_eq) apply (subgoal_tac "1 * a^n < a * a^N", simp) apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) done qed lemma power_increasing_iff [simp]: "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) lemma power_strict_increasing_iff [simp]: "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" by (blast intro: power_less_imp_less_exp power_strict_increasing) lemma power_le_imp_le_base: assumes le: "a ^ Suc n \<le> b ^ Suc n" and ynonneg: "0 \<le> b" shows "a \<le> b" proof (rule ccontr) assume "~ a \<le> b" then have "b < a" by (simp only: linorder_not_le) then have "b ^ Suc n < a ^ Suc n" by (simp only: assms power_strict_mono) from le and this show False by (simp add: linorder_not_less [symmetric]) qed lemma power_less_imp_less_base: assumes less: "a ^ n < b ^ n" assumes nonneg: "0 \<le> b" shows "a < b" proof (rule contrapos_pp [OF less]) assume "~ a < b" hence "b \<le> a" by (simp only: linorder_not_less) hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono) thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) qed lemma power_inject_base: "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" by (blast intro: power_le_imp_le_base antisym eq_refl sym) lemma power_eq_imp_eq_base: "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" by (cases n) (simp_all del: power_Suc, rule power_inject_base) lemma power2_le_imp_le: "x\<^sup>2 \<le> y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y" unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) lemma power2_less_imp_less: "x\<^sup>2 < y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y" by (rule power_less_imp_less_base) lemma power2_eq_imp_eq: "x\<^sup>2 = y\<^sup>2 \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y" unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp end context linordered_ring_strict begin lemma sum_squares_eq_zero_iff: "x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" by (simp add: add_nonneg_eq_0_iff) lemma sum_squares_le_zero_iff: "x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) lemma sum_squares_gt_zero_iff: "0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" by (simp add: not_le [symmetric] sum_squares_le_zero_iff) end context linordered_idom begin lemma power_abs: "abs (a ^ n) = abs a ^ n" by (induct n) (auto simp add: abs_mult) lemma abs_power_minus [simp]: "abs ((-a) ^ n) = abs (a ^ n)" by (simp add: power_abs) lemma zero_less_power_abs_iff [simp]: "0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" proof (induct n) case 0 show ?case by simp next case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) qed lemma zero_le_power_abs [simp]: "0 \<le> abs a ^ n" by (rule zero_le_power [OF abs_ge_zero]) lemma zero_le_power2 [simp]: "0 \<le> a\<^sup>2" by (simp add: power2_eq_square) lemma zero_less_power2 [simp]: "0 < a\<^sup>2 \<longleftrightarrow> a \<noteq> 0" by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) lemma power2_less_0 [simp]: "\<not> a\<^sup>2 < 0" by (force simp add: power2_eq_square mult_less_0_iff) lemma power2_less_eq_zero_iff [simp]: "a\<^sup>2 \<le> 0 \<longleftrightarrow> a = 0" by (simp add: le_less) lemma abs_power2 [simp]: "abs (a\<^sup>2) = a\<^sup>2" by (simp add: power2_eq_square abs_mult abs_mult_self) lemma power2_abs [simp]: "(abs a)\<^sup>2 = a\<^sup>2" by (simp add: power2_eq_square abs_mult_self) lemma odd_power_less_zero: "a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0" proof (induct n) case 0 then show ?case by simp next case (Suc n) have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" by (simp add: ac_simps power_add power2_eq_square) thus ?case by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) qed lemma odd_0_le_power_imp_0_le: "0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a" using odd_power_less_zero [of a n] by (force simp add: linorder_not_less [symmetric]) lemma zero_le_even_power'[simp]: "0 \<le> a ^ (2*n)" proof (induct n) case 0 show ?case by simp next case (Suc n) have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" by (simp add: ac_simps power_add power2_eq_square) thus ?case by (simp add: Suc zero_le_mult_iff) qed lemma sum_power2_ge_zero: "0 \<le> x\<^sup>2 + y\<^sup>2" by (intro add_nonneg_nonneg zero_le_power2) lemma not_sum_power2_lt_zero: "\<not> x\<^sup>2 + y\<^sup>2 < 0" unfolding not_less by (rule sum_power2_ge_zero) lemma sum_power2_eq_zero_iff: "x\<^sup>2 + y\<^sup>2 = 0 \<longleftrightarrow> x = 0 \<and> y = 0" unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) lemma sum_power2_le_zero_iff: "x\<^sup>2 + y\<^sup>2 \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) lemma sum_power2_gt_zero_iff: "0 < x\<^sup>2 + y\<^sup>2 \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) end subsection {* Miscellaneous rules *} lemma self_le_power: fixes x::"'a::linordered_semidom" shows "1 \<le> x \<Longrightarrow> 0 < n \<Longrightarrow> x \<le> x ^ n" using power_increasing[of 1 n x] power_one_right[of x] by auto lemma power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" unfolding One_nat_def by (cases m) simp_all lemma (in comm_semiring_1) power2_sum: "(x + y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 + 2 * x * y" by (simp add: algebra_simps power2_eq_square mult_2_right) lemma (in comm_ring_1) power2_diff: "(x - y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 - 2 * x * y" by (simp add: algebra_simps power2_eq_square mult_2_right) lemma power_0_Suc [simp]: "(0::'a::{power, semiring_0}) ^ Suc n = 0" by simp text{*It looks plausible as a simprule, but its effect can be strange.*} lemma power_0_left: "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))" by (induct n) simp_all lemma (in field) power_diff: assumes nz: "a \<noteq> 0" shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n" by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero) text{*Perhaps these should be simprules.*} lemma power_inverse: fixes a :: "'a::division_ring_inverse_zero" shows "inverse (a ^ n) = inverse a ^ n" apply (cases "a = 0") apply (simp add: power_0_left) apply (simp add: nonzero_power_inverse) done (* TODO: reorient or rename to inverse_power *) lemma power_one_over: "1 / (a::'a::{field_inverse_zero, power}) ^ n = (1 / a) ^ n" by (simp add: divide_inverse) (rule power_inverse) lemma power_divide [field_simps, divide_simps]: "(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n" apply (cases "b = 0") apply (simp add: power_0_left) apply (rule nonzero_power_divide) apply assumption done text {* Simprules for comparisons where common factors can be cancelled. *} lemmas zero_compare_simps = add_strict_increasing add_strict_increasing2 add_increasing zero_le_mult_iff zero_le_divide_iff zero_less_mult_iff zero_less_divide_iff mult_le_0_iff divide_le_0_iff mult_less_0_iff divide_less_0_iff zero_le_power2 power2_less_0 subsection {* Exponentiation for the Natural Numbers *} lemma nat_one_le_power [simp]: "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" by (rule one_le_power [of i n, unfolded One_nat_def]) lemma nat_zero_less_power_iff [simp]: "x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0" by (induct n) auto lemma nat_power_eq_Suc_0_iff [simp]: "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" by (induct m) auto lemma power_Suc_0 [simp]: "Suc 0 ^ n = Suc 0" by simp text{*Valid for the naturals, but what if @{text"0<i<1"}? Premises cannot be weakened: consider the case where @{term "i=0"}, @{term "m=1"} and @{term "n=0"}.*} lemma nat_power_less_imp_less: assumes nonneg: "0 < (i\<Colon>nat)" assumes less: "i ^ m < i ^ n" shows "m < n" proof (cases "i = 1") case True with less power_one [where 'a = nat] show ?thesis by simp next case False with nonneg have "1 < i" by auto from power_strict_increasing_iff [OF this] less show ?thesis .. qed lemma power_dvd_imp_le: "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n" apply (rule power_le_imp_le_exp, assumption) apply (erule dvd_imp_le, simp) done lemma power2_nat_le_eq_le: fixes m n :: nat shows "m\<^sup>2 \<le> n\<^sup>2 \<longleftrightarrow> m \<le> n" by (auto intro: power2_le_imp_le power_mono) lemma power2_nat_le_imp_le: fixes m n :: nat assumes "m\<^sup>2 \<le> n" shows "m \<le> n" proof (cases m) case 0 then show ?thesis by simp next case (Suc k) show ?thesis proof (rule ccontr) assume "\<not> m \<le> n" then have "n < m" by simp with assms Suc show False by (auto simp add: algebra_simps) (simp add: power2_eq_square) qed qed subsubsection {* Cardinality of the Powerset *} lemma card_UNIV_bool [simp]: "card (UNIV :: bool set) = 2" unfolding UNIV_bool by simp lemma card_Pow: "finite A \<Longrightarrow> card (Pow A) = 2 ^ card A" proof (induct rule: finite_induct) case empty show ?case by auto next case (insert x A) then have "inj_on (insert x) (Pow A)" unfolding inj_on_def by (blast elim!: equalityE) then have "card (Pow A) + card (insert x ` Pow A) = 2 * 2 ^ card A" by (simp add: mult_2 card_image Pow_insert insert.hyps) then show ?case using insert apply (simp add: Pow_insert) apply (subst card_Un_disjoint, auto) done qed subsubsection {* Generalized sum over a set *} lemma setsum_zero_power [simp]: fixes c :: "nat \<Rightarrow> 'a::division_ring" shows "(\<Sum>i\<in>A. c i * 0^i) = (if finite A \<and> 0 \<in> A then c 0 else 0)" apply (cases "finite A") by (induction A rule: finite_induct) auto lemma setsum_zero_power' [simp]: fixes c :: "nat \<Rightarrow> 'a::field" shows "(\<Sum>i\<in>A. c i * 0^i / d i) = (if finite A \<and> 0 \<in> A then c 0 / d 0 else 0)" using setsum_zero_power [of "\<lambda>i. c i / d i" A] by auto subsubsection {* Generalized product over a set *} lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::{comm_monoid_mult})) = y^(card A)" apply (erule finite_induct) apply auto done lemma setprod_power_distrib: fixes f :: "'a \<Rightarrow> 'b::comm_semiring_1" shows "setprod f A ^ n = setprod (\<lambda>x. (f x) ^ n) A" proof (cases "finite A") case True then show ?thesis by (induct A rule: finite_induct) (auto simp add: power_mult_distrib) next case False then show ?thesis by simp qed lemma power_setsum: "c ^ (\<Sum>a\<in>A. f a) = (\<Prod>a\<in>A. c ^ f a)" by (induct A rule: infinite_finite_induct) (simp_all add: power_add) lemma setprod_gen_delta: assumes fS: "finite S" shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::comm_monoid_mult) * c^ (card S - 1) else c^ card S)" proof- let ?f = "(\<lambda>k. if k=a then b k else c)" {assume a: "a \<notin> S" hence "\<forall> k\<in> S. ?f k = c" by simp hence ?thesis using a setprod_constant[OF fS, of c] by simp } moreover {assume a: "a \<in> S" let ?A = "S - {a}" let ?B = "{a}" have eq: "S = ?A \<union> ?B" using a by blast have dj: "?A \<inter> ?B = {}" by simp from fS have fAB: "finite ?A" "finite ?B" by auto have fA0:"setprod ?f ?A = setprod (\<lambda>i. c) ?A" apply (rule setprod.cong) by auto have cA: "card ?A = card S - 1" using fS a by auto have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" using setprod.union_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] by simp then have ?thesis using a cA by (simp add: fA1 field_simps cong add: setprod.cong cong del: if_weak_cong)} ultimately show ?thesis by blast qed subsection {* Code generator tweak *} lemma power_power_power [code]: "power = power.power (1::'a::{power}) (op *)" unfolding power_def power.power_def .. declare power.power.simps [code] code_identifier code_module Power \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith end
\subsection{Sequential games} \subsubsection{Introduction} A game can have multiple rounds. For example an agent could offer a trade, and the other agent could choose to accept or reject the trade. As later agents know the other choices, and the earlier agents know their choices will be observed, the games can change. This doesn’t change games with pure strategies, but does affect those with mixed strategies. For example, even if prisoners could see earch other in the prisoners dilemma we would still get the same outcome. The last agent still prefers to “tell”, and earlier agents know this and have no reason to not also “tell”. But consider the football/opera game. Here the first mover is better off, and there is a pure strategy, while in the rock paper scissors game the first mover loses. We can solve more complex games backwards. As the actions in the last round of a game have no impact on others, they can be solved separately. Agents then know what the outcome will be if an outcome is arrived at, and can treat that “subgame” as a pay-off. This method is known as backwards induction. \subsubsection{One-round sequential games} \subsubsection{Backwards induction} \subsubsection{Zero-sum games} \subsubsection{Subgame perfect equilibrium} \subsubsection{Nash equilibrium}
// SPDX-License-Identifier: MIT // SPDX-FileCopyrightText: Copyright 2019-2021 Heal Research #ifndef OPERON_DISTANCE_HPP #define OPERON_DISTANCE_HPP #include "core/types.hpp" #include "vectorclass.h" #include <immintrin.h> #include <Eigen/Core> namespace Operon { namespace Distance { namespace { template<typename T, std::enable_if_t<std::is_integral_v<T> && sizeof(T) == 8, bool> = true> constexpr inline auto check(T const* lhs, T const* rhs) noexcept { auto a = Vec4uq().load(lhs); return a == rhs[0] | a == rhs[1] | a == rhs[2] | a == rhs[3]; } template<typename T, std::enable_if_t<std::is_integral_v<T> && sizeof(T) == 4, bool> = true> constexpr inline auto check(T const* lhs, T const* rhs) noexcept { auto a = Vec8ui().load(lhs); return a == rhs[0] | a == rhs[1] | a == rhs[2] | a == rhs[3] | a == rhs[4] | a == rhs[5] | a == rhs[6] | a == rhs[7]; } template<typename T, std::enable_if_t<std::is_integral_v<T> && (sizeof(T) == 4 || sizeof(T) == 8), bool> = true> constexpr inline bool Intersect(T const* lhs, T const* rhs) noexcept { return horizontal_add(check(lhs, rhs)); } // this method only works when the hash vectors are sorted template<typename T, size_t S = size_t{32} / sizeof(T)> inline size_t CountIntersect(Operon::Span<T> lhs, Operon::Span<T> rhs) noexcept { T const *p0 = lhs.data(), *pS = p0 + (lhs.size() & (-S)), *pN = p0 + lhs.size(); T const *q0 = rhs.data(), *qS = q0 + (rhs.size() & (-S)), *qN = q0 + rhs.size(); T const *p = p0, *q = q0; while(p < pS && q < qS) { if (Intersect(p, q)) { break; } auto const a = *(p + S - 1); auto const b = *(q + S - 1); if (a < b) p += S; if (a > b) q += S; } auto const aN = *(pN - 1); auto const bN = *(qN - 1); size_t count{0}; while(p < pN && q < qN) { auto const a = *p; auto const b = *q; if (a > bN || b > aN) { break; } count += a == b; p += a <= b; q += a >= b; } return count; } template<typename Container> inline size_t CountIntersect(Container const& lhs, Container const& rhs) noexcept { using T = typename Container::value_type; return CountIntersect(Operon::Span<T const>(lhs.data(), lhs.size()), Operon::Span<T const>(rhs.data(), rhs.size())); } } // namespace inline double Jaccard(Operon::Vector<Operon::Hash> const& lhs, Operon::Vector<Operon::Hash> const& rhs) noexcept { size_t c = CountIntersect(lhs, rhs); size_t n = lhs.size() + rhs.size(); return static_cast<double>(n - 2 * c) / static_cast<double>(n); } inline double SorensenDice(Operon::Vector<Operon::Hash> const& lhs, Operon::Vector<Operon::Hash> const& rhs) noexcept { size_t n = lhs.size() + rhs.size(); size_t c = CountIntersect(lhs, rhs); return 1.0 - 2.0 * static_cast<double>(c) / static_cast<double>(n); } } // namespace Distance } // namespace Operon #endif
function [u, V, exitflag, output] = snd_solveOptimalControlProblem (snd, varargin) %UNTITLED2 Summary of this function goes here % solves the optimal control problem of the % Set control and linear bounds A = []; b = []; Aeq = []; beq = []; lb = []; ub = []; for k=1:snd.horizon %Aggregation [Anew, bnew, Aeqnew, beqnew, lbnew, ubnew] = ... snd.l_constraints( k, snd.net_load, snd.battery, snd.u0_ref); A = blkdiag(A,Anew); b = [b, bnew]; Aeq = blkdiag(Aeq,Aeqnew); beq = [beq, beqnew]; lb = [lb, lbnew]; ub = [ub, ubnew]; end % Solve optimization problem [u, V, exitflag, output] = fmincon( @(u) snd.costfunction( snd, u ), ... snd.u0, A, b, Aeq, beq, lb, ub, ... @(u) snd.nonlinearconstraints(snd, u ), snd.option); end
lemma support_on_if_subset: "support_on A (\<lambda>x. if P x then a else 0) \<subseteq> {x \<in> A. P x}"
------------------------------------------------------------------------ -- The Agda standard library -- -- Alternative definition of divisibility without using modulus. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Integer.Divisibility.Signed where open import Function open import Data.Integer open import Data.Integer.Properties open import Data.Integer.Divisibility as Unsigned using (divides) renaming (_∣_ to _∣ᵤ_) import Data.Nat as ℕ import Data.Nat.Divisibility as ℕ import Data.Nat.Coprimality as ℕ import Data.Nat.Properties as ℕ import Data.Sign as S import Data.Sign.Properties as SProp open import Level open import Relation.Binary open import Relation.Binary.PropositionalEquality import Relation.Binary.Reasoning.Preorder as PreorderReasoning open import Relation.Nullary using (yes; no) import Relation.Nullary.Decidable as DEC ------------------------------------------------------------------------ -- Type infix 4 _∣_ record _∣_ (k z : ℤ) : Set where constructor divides field quotient : ℤ equality : z ≡ quotient * k open _∣_ using (quotient) public ------------------------------------------------------------------------ -- Conversion between signed and unsigned divisibility ∣ᵤ⇒∣ : ∀ {k i} → k ∣ᵤ i → k ∣ i ∣ᵤ⇒∣ {k} {i} (divides 0 eq) = divides (+ 0) (∣n∣≡0⇒n≡0 eq) ∣ᵤ⇒∣ {k} {i} (divides q@(ℕ.suc q') eq) with k ≟ + 0 ... | yes refl = divides (+ 0) (∣n∣≡0⇒n≡0 (trans eq (ℕ.*-zeroʳ q))) ... | no ¬k≠0 = divides ((S._*_ on sign) i k ◃ q) (◃-≡ sign-eq abs-eq) where k' = ℕ.suc (ℕ.pred ∣ k ∣) ikq' = sign i S.* sign k ◃ ℕ.suc q' sign-eq : sign i ≡ sign (((S._*_ on sign) i k ◃ q) * k) sign-eq = sym $ begin sign (((S._*_ on sign) i k ◃ ℕ.suc q') * k) ≡⟨ cong (λ m → sign (sign ikq' S.* sign k ◃ ∣ ikq' ∣ ℕ.* m)) (sym (ℕ.m≢0⇒suc[pred[m]]≡m (¬k≠0 ∘ ∣n∣≡0⇒n≡0))) ⟩ sign (sign ikq' S.* sign k ◃ ∣ ikq' ∣ ℕ.* k') ≡⟨ cong (λ m → sign (sign ikq' S.* sign k ◃ m ℕ.* k')) (abs-◃ (sign i S.* sign k) (ℕ.suc q')) ⟩ sign (sign ikq' S.* sign k ◃ _) ≡⟨ sign-◃ (sign ikq' S.* sign k) (ℕ.pred ∣ k ∣ ℕ.+ q' ℕ.* k') ⟩ sign ikq' S.* sign k ≡⟨ cong (S._* sign k) (sign-◃ (sign i S.* sign k) q') ⟩ sign i S.* sign k S.* sign k ≡⟨ SProp.*-assoc (sign i) (sign k) (sign k) ⟩ sign i S.* (sign k S.* sign k) ≡⟨ cong (sign i S.*_) (SProp.s*s≡+ (sign k)) ⟩ sign i S.* S.+ ≡⟨ SProp.*-identityʳ (sign i) ⟩ sign i ∎ where open ≡-Reasoning abs-eq : ∣ i ∣ ≡ ∣ ((S._*_ on sign) i k ◃ q) * k ∣ abs-eq = sym $ begin ∣ ((S._*_ on sign) i k ◃ ℕ.suc q') * k ∣ ≡⟨ abs-◃ (sign ikq' S.* sign k) (∣ ikq' ∣ ℕ.* ∣ k ∣) ⟩ ∣ ikq' ∣ ℕ.* ∣ k ∣ ≡⟨ cong (ℕ._* ∣ k ∣) (abs-◃ (sign i S.* sign k) (ℕ.suc q')) ⟩ ℕ.suc q' ℕ.* ∣ k ∣ ≡⟨ sym eq ⟩ ∣ i ∣ ∎ where open ≡-Reasoning ∣⇒∣ᵤ : ∀ {k i} → k ∣ i → k ∣ᵤ i ∣⇒∣ᵤ {k} {i} (divides q eq) = divides ∣ q ∣ $′ begin ∣ i ∣ ≡⟨ cong ∣_∣ eq ⟩ ∣ q * k ∣ ≡⟨ abs-*-commute q k ⟩ ∣ q ∣ ℕ.* ∣ k ∣ ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- _∣_ is a preorder ∣-refl : Reflexive _∣_ ∣-refl = ∣ᵤ⇒∣ ℕ.∣-refl ∣-reflexive : _≡_ ⇒ _∣_ ∣-reflexive refl = ∣-refl ∣-trans : Transitive _∣_ ∣-trans i∣j j∣k = ∣ᵤ⇒∣ (ℕ.∣-trans (∣⇒∣ᵤ i∣j) (∣⇒∣ᵤ j∣k)) ∣-isPreorder : IsPreorder _≡_ _∣_ ∣-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ∣-reflexive ; trans = ∣-trans } ∣-preorder : Preorder _ _ _ ∣-preorder = record { isPreorder = ∣-isPreorder } module ∣-Reasoning = PreorderReasoning ∣-preorder hiding (_≈⟨_⟩_) renaming (_∼⟨_⟩_ to _∣⟨_⟩_) ------------------------------------------------------------------------ -- Other properties of _∣_ _∣?_ : Decidable _∣_ k ∣? m = DEC.map′ ∣ᵤ⇒∣ ∣⇒∣ᵤ (∣ k ∣ ℕ.∣? ∣ m ∣) 0∣⇒≡0 : ∀ {m} → + 0 ∣ m → m ≡ + 0 0∣⇒≡0 0|m = ∣n∣≡0⇒n≡0 (ℕ.0∣⇒≡0 (∣⇒∣ᵤ 0|m)) m∣∣m∣ : ∀ {m} → m ∣ (+ ∣ m ∣) m∣∣m∣ = ∣ᵤ⇒∣ ℕ.∣-refl ∣m∣∣m : ∀ {m} → (+ ∣ m ∣) ∣ m ∣m∣∣m = ∣ᵤ⇒∣ ℕ.∣-refl ∣m∣n⇒∣m+n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m + n ∣m∣n⇒∣m+n (divides q refl) (divides p refl) = divides (q + p) (sym (*-distribʳ-+ _ q p)) ∣m⇒∣-m : ∀ {i m} → i ∣ m → i ∣ - m ∣m⇒∣-m {i} {m} i∣m = ∣ᵤ⇒∣ $′ begin ∣ i ∣ ∣⟨ ∣⇒∣ᵤ i∣m ⟩ ∣ m ∣ ≡⟨ sym (∣-n∣≡∣n∣ m) ⟩ ∣ - m ∣ ∎ where open ℕ.∣-Reasoning ∣m∣n⇒∣m-n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m - n ∣m∣n⇒∣m-n i∣m i∣n = ∣m∣n⇒∣m+n i∣m (∣m⇒∣-m i∣n) ∣m+n∣m⇒∣n : ∀ {i m n} → i ∣ m + n → i ∣ m → i ∣ n ∣m+n∣m⇒∣n {i} {m} {n} i∣m+n i∣m = begin i ∣⟨ ∣m∣n⇒∣m-n i∣m+n i∣m ⟩ m + n - m ≡⟨ +-comm (m + n) (- m) ⟩ - m + (m + n) ≡⟨ sym (+-assoc (- m) m n) ⟩ - m + m + n ≡⟨ cong (_+ n) (+-inverseˡ m) ⟩ + 0 + n ≡⟨ +-identityˡ n ⟩ n ∎ where open ∣-Reasoning ∣m+n∣n⇒∣m : ∀ {i m n} → i ∣ m + n → i ∣ n → i ∣ m ∣m+n∣n⇒∣m {i} {m} {n} i|m+n i|n rewrite +-comm m n = ∣m+n∣m⇒∣n i|m+n i|n ∣n⇒∣m*n : ∀ {i} m {n} → i ∣ n → i ∣ m * n ∣n⇒∣m*n {i} m {n} (divides q eq) = divides (m * q) $′ begin m * n ≡⟨ cong (m *_) eq ⟩ m * (q * i) ≡⟨ sym (*-assoc m q i) ⟩ m * q * i ∎ where open ≡-Reasoning ∣m⇒∣m*n : ∀ {i m} n → i ∣ m → i ∣ m * n ∣m⇒∣m*n {i} {m} n i|m rewrite *-comm m n = ∣n⇒∣m*n {i} n {m} i|m *-monoʳ-∣ : ∀ k → (k *_) Preserves _∣_ ⟶ _∣_ *-monoʳ-∣ k i∣j = ∣ᵤ⇒∣ (Unsigned.*-monoʳ-∣ k (∣⇒∣ᵤ i∣j)) *-monoˡ-∣ : ∀ k → (_* k) Preserves _∣_ ⟶ _∣_ *-monoˡ-∣ k {i} {j} i∣j = ∣ᵤ⇒∣ (Unsigned.*-monoˡ-∣ k {i} {j} (∣⇒∣ᵤ i∣j)) *-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j *-cancelˡ-∣ k k≢0 = ∣ᵤ⇒∣ ∘ Unsigned.*-cancelˡ-∣ k k≢0 ∘ ∣⇒∣ᵤ *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j *-cancelʳ-∣ k {i} {j} k≢0 = ∣ᵤ⇒∣ ∘′ Unsigned.*-cancelʳ-∣ k {i} {j} k≢0 ∘′ ∣⇒∣ᵤ
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 src✝¹ : NormedAddCommGroup PUnit := normedAddCommGroup src✝ : CommRing PUnit := commRing x✝¹ x✝ : PUnit ⊢ ‖x✝¹ * x✝‖ ≤ ‖x✝¹‖ * ‖x✝‖ [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 α : Type u_5 inst✝² : SeminormedAddCommGroup α inst✝¹ : One α inst✝ : NormOneClass α ⊢ ‖0‖ ≠ ‖1‖ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : SeminormedAddCommGroup α inst✝¹ : One α inst✝ : NormOneClass α ⊢ ‖1‖ = 1 [PROOFSTEP] simp [ULift.norm_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝⁵ : SeminormedAddCommGroup α inst✝⁴ : One α inst✝³ : NormOneClass α inst✝² : SeminormedAddCommGroup β inst✝¹ : One β inst✝ : NormOneClass β ⊢ ‖1‖ = 1 [PROOFSTEP] simp [Prod.norm_def] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 ι : Type u_5 α : ι → Type u_6 inst✝⁴ : Nonempty ι inst✝³ : Fintype ι inst✝² : (i : ι) → SeminormedAddCommGroup (α i) inst✝¹ : (i : ι) → One (α i) inst✝ : ∀ (i : ι), NormOneClass (α i) ⊢ ‖1‖ = 1 [PROOFSTEP] simp [Pi.norm_def] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Type u_4 ι : Type u_5 α : ι → Type u_6 inst✝⁴ : Nonempty ι inst✝³ : Fintype ι inst✝² : (i : ι) → SeminormedAddCommGroup (α i) inst✝¹ : (i : ι) → One (α i) inst✝ : ∀ (i : ι), NormOneClass (α i) ⊢ (Finset.sup Finset.univ fun b => 1) = 1 [PROOFSTEP] exact Finset.sup_const Finset.univ_nonempty 1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α a b : α ⊢ ‖a * b‖₊ ≤ ‖a‖₊ * ‖b‖₊ [PROOFSTEP] simpa only [← norm_toNNReal, ← Real.toNNReal_mul (norm_nonneg _)] using Real.toNNReal_mono (norm_mul_le _ _) [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : NonUnitalSeminormedRing α β : Type u_5 inst✝¹ : NormedRing β inst✝ : Nontrivial β ⊢ ‖1‖ ≤ ‖1‖ * ‖1‖ [PROOFSTEP] simpa only [mul_one] using norm_mul_le (1 : β) 1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x y : α ⊢ ‖↑(AddMonoidHom.mulRight x) y‖ ≤ ‖x‖ * ‖y‖ [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x y : α ⊢ ‖↑(AddMonoidHom.mulRight x) y‖ ≤ ‖y‖ * ‖x‖ [PROOFSTEP] exact norm_mul_le y x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : NonUnitalSeminormedRing α inst✝ : NonUnitalSeminormedRing β src✝¹ : SeminormedAddCommGroup (α × β) := seminormedAddCommGroup src✝ : NonUnitalRing (α × β) := instNonUnitalRing x y : α × β ⊢ max (‖x.fst‖ * ‖y.fst‖) (‖x.snd‖ * ‖y.snd‖) = max (‖x.fst‖ * ‖y.fst‖) (‖y.snd‖ * ‖x.snd‖) [PROOFSTEP] simp [mul_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : NonUnitalSeminormedRing α inst✝ : NonUnitalSeminormedRing β src✝¹ : SeminormedAddCommGroup (α × β) := seminormedAddCommGroup src✝ : NonUnitalRing (α × β) := instNonUnitalRing x y : α × β ⊢ max (‖x.fst‖ * ‖y.fst‖) (‖y.snd‖ * ‖x.snd‖) ≤ max ‖x.fst‖ ‖x.snd‖ * max ‖y.snd‖ ‖y.fst‖ [PROOFSTEP] apply max_mul_mul_le_max_mul_max [GOAL] case ha α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : NonUnitalSeminormedRing α inst✝ : NonUnitalSeminormedRing β src✝¹ : SeminormedAddCommGroup (α × β) := seminormedAddCommGroup src✝ : NonUnitalRing (α × β) := instNonUnitalRing x y : α × β ⊢ 0 ≤ ‖x.fst‖ [PROOFSTEP] simp [norm_nonneg] [GOAL] case hd α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : NonUnitalSeminormedRing α inst✝ : NonUnitalSeminormedRing β src✝¹ : SeminormedAddCommGroup (α × β) := seminormedAddCommGroup src✝ : NonUnitalRing (α × β) := instNonUnitalRing x y : α × β ⊢ 0 ≤ ‖y.snd‖ [PROOFSTEP] simp [norm_nonneg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : NonUnitalSeminormedRing α inst✝ : NonUnitalSeminormedRing β src✝¹ : SeminormedAddCommGroup (α × β) := seminormedAddCommGroup src✝ : NonUnitalRing (α × β) := instNonUnitalRing x y : α × β ⊢ max ‖x.fst‖ ‖x.snd‖ * max ‖y.snd‖ ‖y.fst‖ = max ‖x.fst‖ ‖x.snd‖ * max ‖y.fst‖ ‖y.snd‖ [PROOFSTEP] simp [max_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α ⊢ ‖↑0‖ ≤ ↑0 * ‖1‖ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α n : ℕ ⊢ ‖↑(n + 1)‖ ≤ ↑(n + 1) * ‖1‖ [PROOFSTEP] rw [n.cast_succ, n.cast_succ, add_mul, one_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α n : ℕ ⊢ ‖↑n + 1‖ ≤ ↑n * ‖1‖ + ‖1‖ [PROOFSTEP] exact norm_add_le_of_le (Nat.norm_cast_le n) le_rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α a : α x✝ : [a] ≠ [] ⊢ ‖prod [a]‖ ≤ prod (map norm [a]) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α a b : α l : List α x✝ : a :: b :: l ≠ [] ⊢ ‖prod (a :: b :: l)‖ ≤ prod (map norm (a :: b :: l)) [PROOFSTEP] rw [List.map_cons, List.prod_cons, @List.prod_cons _ _ _ ‖a‖] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α a b : α l : List α x✝ : a :: b :: l ≠ [] ⊢ ‖a * prod (b :: l)‖ ≤ ‖a‖ * prod (map norm (b :: l)) [PROOFSTEP] refine' le_trans (norm_mul_le _ _) (mul_le_mul_of_nonneg_left _ (norm_nonneg _)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α a b : α l : List α x✝ : a :: b :: l ≠ [] ⊢ ‖prod (b :: l)‖ ≤ prod (map norm (b :: l)) [PROOFSTEP] exact List.norm_prod_le' (List.cons_ne_nil b l) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α l : List α hl : l ≠ [] ⊢ prod (map norm l) = (fun a => ↑a) (prod (map nnnorm l)) [PROOFSTEP] simp [NNReal.coe_list_prod, List.map_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : SeminormedRing α inst✝ : NormOneClass α ⊢ ‖prod []‖ ≤ prod (map norm []) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : SeminormedRing α inst✝ : NormOneClass α l : List α ⊢ prod (map norm l) = (fun a => ↑a) (prod (map nnnorm l)) [PROOFSTEP] simp [NNReal.coe_list_prod, List.map_map] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : SeminormedRing α✝ α : Type u_5 inst✝ : NormedCommRing α s : Finset ι hs : Finset.Nonempty s f : ι → α ⊢ ‖∏ i in s, f i‖ ≤ ∏ i in s, ‖f i‖ [PROOFSTEP] rcases s with ⟨⟨l⟩, hl⟩ [GOAL] case mk.mk α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : SeminormedRing α✝ α : Type u_5 inst✝ : NormedCommRing α f : ι → α val✝ : Multiset ι l : List ι hl : Multiset.Nodup (Quot.mk Setoid.r l) hs : Finset.Nonempty { val := Quot.mk Setoid.r l, nodup := hl } ⊢ ‖∏ i in { val := Quot.mk Setoid.r l, nodup := hl }, f i‖ ≤ ∏ i in { val := Quot.mk Setoid.r l, nodup := hl }, ‖f i‖ [PROOFSTEP] have : l.map f ≠ [] := by simpa using hs [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : SeminormedRing α✝ α : Type u_5 inst✝ : NormedCommRing α f : ι → α val✝ : Multiset ι l : List ι hl : Multiset.Nodup (Quot.mk Setoid.r l) hs : Finset.Nonempty { val := Quot.mk Setoid.r l, nodup := hl } ⊢ List.map f l ≠ [] [PROOFSTEP] simpa using hs [GOAL] case mk.mk α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : SeminormedRing α✝ α : Type u_5 inst✝ : NormedCommRing α f : ι → α val✝ : Multiset ι l : List ι hl : Multiset.Nodup (Quot.mk Setoid.r l) hs : Finset.Nonempty { val := Quot.mk Setoid.r l, nodup := hl } this : List.map f l ≠ [] ⊢ ‖∏ i in { val := Quot.mk Setoid.r l, nodup := hl }, f i‖ ≤ ∏ i in { val := Quot.mk Setoid.r l, nodup := hl }, ‖f i‖ [PROOFSTEP] simpa using List.norm_prod_le' this [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : SeminormedRing α✝ α : Type u_5 inst✝ : NormedCommRing α s : Finset ι hs : Finset.Nonempty s f : ι → α ⊢ ∏ i in s, ‖f i‖ = (fun a => ↑a) (∏ i in s, ‖f i‖₊) [PROOFSTEP] simp [NNReal.coe_prod] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : SeminormedRing α✝ α : Type u_5 inst✝¹ : NormedCommRing α inst✝ : NormOneClass α s : Finset ι f : ι → α ⊢ ‖∏ i in s, f i‖ ≤ ∏ i in s, ‖f i‖ [PROOFSTEP] rcases s with ⟨⟨l⟩, hl⟩ [GOAL] case mk.mk α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : SeminormedRing α✝ α : Type u_5 inst✝¹ : NormedCommRing α inst✝ : NormOneClass α f : ι → α val✝ : Multiset ι l : List ι hl : Multiset.Nodup (Quot.mk Setoid.r l) ⊢ ‖∏ i in { val := Quot.mk Setoid.r l, nodup := hl }, f i‖ ≤ ∏ i in { val := Quot.mk Setoid.r l, nodup := hl }, ‖f i‖ [PROOFSTEP] simpa using (l.map f).norm_prod_le [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : SeminormedRing α✝ α : Type u_5 inst✝¹ : NormedCommRing α inst✝ : NormOneClass α s : Finset ι f : ι → α ⊢ ∏ i in s, ‖f i‖ = (fun a => ↑a) (∏ i in s, ‖f i‖₊) [PROOFSTEP] simp [NNReal.coe_prod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α a : α x✝ : 0 < 1 ⊢ ‖a ^ 1‖₊ ≤ ‖a‖₊ ^ 1 [PROOFSTEP] simp only [pow_one, le_rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α a : α n : ℕ x✝ : 0 < n + 2 ⊢ ‖a ^ (n + 2)‖₊ ≤ ‖a‖₊ ^ (n + 2) [PROOFSTEP] simpa only [pow_succ _ (n + 1)] using le_trans (nnnorm_mul_le _ _) (mul_le_mul_left' (nnnorm_pow_le' a n.succ_pos) _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : SeminormedRing α inst✝ : NormOneClass α a : α n : ℕ ⊢ ‖a ^ Nat.zero‖₊ ≤ ‖a‖₊ ^ Nat.zero [PROOFSTEP] simp only [Nat.zero_eq, pow_zero, nnnorm_one, le_rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedRing α a : α n : ℕ h : 0 < n ⊢ ‖a ^ n‖ ≤ ‖a‖ ^ n [PROOFSTEP] simpa only [NNReal.coe_pow, coe_nnnorm] using NNReal.coe_mono (nnnorm_pow_le' a h) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : SeminormedRing α inst✝ : NormOneClass α a : α n : ℕ ⊢ ‖a ^ Nat.zero‖ ≤ ‖a‖ ^ Nat.zero [PROOFSTEP] simp only [Nat.zero_eq, pow_zero, norm_one, le_rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α ⊢ Tendsto (fun e => ‖e.fst * e.snd - (fun p => p.fst * p.snd) x‖) (𝓝 x) (𝓝 0) [PROOFSTEP] have : ∀ e : α × α, ‖e.1 * e.2 - x.1 * x.2‖ ≤ ‖e.1‖ * ‖e.2 - x.2‖ + ‖e.1 - x.1‖ * ‖x.2‖ := by intro e calc ‖e.1 * e.2 - x.1 * x.2‖ ≤ ‖e.1 * (e.2 - x.2) + (e.1 - x.1) * x.2‖ := by rw [_root_.mul_sub, _root_.sub_mul, sub_add_sub_cancel] -- porting note: `ENNReal.{mul_sub, sub_mul}` should be protected _ ≤ ‖e.1‖ * ‖e.2 - x.2‖ + ‖e.1 - x.1‖ * ‖x.2‖ := norm_add_le_of_le (norm_mul_le _ _) (norm_mul_le _ _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α ⊢ ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ [PROOFSTEP] intro e [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x e : α × α ⊢ ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ [PROOFSTEP] calc ‖e.1 * e.2 - x.1 * x.2‖ ≤ ‖e.1 * (e.2 - x.2) + (e.1 - x.1) * x.2‖ := by rw [_root_.mul_sub, _root_.sub_mul, sub_add_sub_cancel] -- porting note: `ENNReal.{mul_sub, sub_mul}` should be protected _ ≤ ‖e.1‖ * ‖e.2 - x.2‖ + ‖e.1 - x.1‖ * ‖x.2‖ := norm_add_le_of_le (norm_mul_le _ _) (norm_mul_le _ _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x e : α × α ⊢ ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst * (e.snd - x.snd) + (e.fst - x.fst) * x.snd‖ [PROOFSTEP] rw [_root_.mul_sub, _root_.sub_mul, sub_add_sub_cancel] -- porting note: `ENNReal.{mul_sub, sub_mul}` should be protected [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ Tendsto (fun e => ‖e.fst * e.snd - (fun p => p.fst * p.snd) x‖) (𝓝 x) (𝓝 0) [PROOFSTEP] refine squeeze_zero (fun e => norm_nonneg _) this ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ Tendsto (fun t => ‖t.fst‖ * ‖t.snd - x.snd‖ + ‖t.fst - x.fst‖ * ‖x.snd‖) (𝓝 x) (𝓝 0) [PROOFSTEP] convert ((continuous_fst.tendsto x).norm.mul ((continuous_snd.tendsto x).sub tendsto_const_nhds).norm).add (((continuous_fst.tendsto x).sub tendsto_const_nhds).norm.mul _) -- Porting note: `show` used to select a goal to work on [GOAL] case h.e'_5.h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ 0 = ‖x.fst‖ * ‖x.snd - x.snd‖ + ‖x.fst - x.fst‖ * ?convert_4 case convert_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ ℝ case convert_5 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ Tendsto (fun t => ‖x.snd‖) (𝓝 x) (𝓝 ?convert_4) [PROOFSTEP] rotate_right [GOAL] case convert_5 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ Tendsto (fun t => ‖x.snd‖) (𝓝 x) (𝓝 ?convert_4) case h.e'_5.h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ 0 = ‖x.fst‖ * ‖x.snd - x.snd‖ + ‖x.fst - x.fst‖ * ?convert_4 case convert_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ ℝ [PROOFSTEP] show Tendsto _ _ _ [GOAL] case convert_5 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ Tendsto (fun t => ‖x.snd‖) (𝓝 x) (𝓝 ?convert_4) case h.e'_5.h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ 0 = ‖x.fst‖ * ‖x.snd - x.snd‖ + ‖x.fst - x.fst‖ * ?convert_4 case convert_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ ℝ [PROOFSTEP] exact tendsto_const_nhds [GOAL] case h.e'_5.h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NonUnitalSeminormedRing α x : α × α this : ∀ (e : α × α), ‖e.fst * e.snd - x.fst * x.snd‖ ≤ ‖e.fst‖ * ‖e.snd - x.snd‖ + ‖e.fst - x.fst‖ * ‖x.snd‖ ⊢ 0 = ‖x.fst‖ * ‖x.snd - x.snd‖ + ‖x.fst - x.fst‖ * ‖x.snd‖ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α ⊢ ‖1‖ * ‖1‖ = ‖1‖ * 1 [PROOFSTEP] rw [← norm_mul, mul_one, mul_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α a : α ⊢ ↑‖a⁻¹‖₊ = ↑‖a‖₊⁻¹ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α z w : α hz : z ≠ 0 hw : w ≠ 0 ⊢ dist z⁻¹ w⁻¹ = dist z w / (‖z‖ * ‖w‖) [PROOFSTEP] rw [dist_eq_norm, inv_sub_inv' hz hw, norm_mul, norm_mul, norm_inv, norm_inv, mul_comm ‖z‖⁻¹, mul_assoc, dist_eq_norm', div_eq_mul_inv, mul_inv] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α z w : α hz : z ≠ 0 hw : w ≠ 0 ⊢ nndist z⁻¹ w⁻¹ = nndist z w / (‖z‖₊ * ‖w‖₊) [PROOFSTEP] rw [← NNReal.coe_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α z w : α hz : z ≠ 0 hw : w ≠ 0 ⊢ ↑(nndist z⁻¹ w⁻¹) = ↑(nndist z w / (‖z‖₊ * ‖w‖₊)) [PROOFSTEP] simp [-NNReal.coe_eq, dist_inv_inv₀ hz hw] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α a : α ha : a ≠ 0 ⊢ Tendsto ((fun x x_1 => x * x_1) a) (comap norm atTop) (comap norm atTop) [PROOFSTEP] simpa only [tendsto_comap_iff, (· ∘ ·), norm_mul] using tendsto_const_nhds.mul_atTop (norm_pos_iff.2 ha) tendsto_comap [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α a : α ha : a ≠ 0 ⊢ Tendsto (fun x => x * a) (comap norm atTop) (comap norm atTop) [PROOFSTEP] simpa only [tendsto_comap_iff, (· ∘ ·), norm_mul] using tendsto_comap.atTop_mul (norm_pos_iff.2 ha) tendsto_const_nhds [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α ⊢ HasContinuousInv₀ α [PROOFSTEP] refine' ⟨fun r r0 => tendsto_iff_norm_tendsto_zero.2 _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 ⊢ Tendsto (fun e => ‖e⁻¹ - r⁻¹‖) (𝓝 r) (𝓝 0) [PROOFSTEP] have r0' : 0 < ‖r‖ := norm_pos_iff.2 r0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ⊢ Tendsto (fun e => ‖e⁻¹ - r⁻¹‖) (𝓝 r) (𝓝 0) [PROOFSTEP] rcases exists_between r0' with ⟨ε, ε0, εr⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ ⊢ Tendsto (fun e => ‖e⁻¹ - r⁻¹‖) (𝓝 r) (𝓝 0) [PROOFSTEP] have : ∀ᶠ e in 𝓝 r, ‖e⁻¹ - r⁻¹‖ ≤ ‖r - e‖ / ‖r‖ / ε := by filter_upwards [(isOpen_lt continuous_const continuous_norm).eventually_mem εr] with e he have e0 : e ≠ 0 := norm_pos_iff.1 (ε0.trans he) calc ‖e⁻¹ - r⁻¹‖ = ‖r‖⁻¹ * ‖r - e‖ * ‖e‖⁻¹ := by rw [← norm_inv, ← norm_inv, ← norm_mul, ← norm_mul, _root_.mul_sub, _root_.sub_mul, mul_assoc _ e, inv_mul_cancel r0, mul_inv_cancel e0, one_mul, mul_one] -- porting note: `ENNReal.{mul_sub, sub_mul}` should be `protected` _ = ‖r - e‖ / ‖r‖ / ‖e‖ := by field_simp [mul_comm] _ ≤ ‖r - e‖ / ‖r‖ / ε := by gcongr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ ⊢ ∀ᶠ (e : α) in 𝓝 r, ‖e⁻¹ - r⁻¹‖ ≤ ‖r - e‖ / ‖r‖ / ε [PROOFSTEP] filter_upwards [(isOpen_lt continuous_const continuous_norm).eventually_mem εr] with e he [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ e : α he : ε < ‖e‖ ⊢ ‖e⁻¹ - r⁻¹‖ ≤ ‖r - e‖ / ‖r‖ / ε [PROOFSTEP] have e0 : e ≠ 0 := norm_pos_iff.1 (ε0.trans he) [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ e : α he : ε < ‖e‖ e0 : e ≠ 0 ⊢ ‖e⁻¹ - r⁻¹‖ ≤ ‖r - e‖ / ‖r‖ / ε [PROOFSTEP] calc ‖e⁻¹ - r⁻¹‖ = ‖r‖⁻¹ * ‖r - e‖ * ‖e‖⁻¹ := by rw [← norm_inv, ← norm_inv, ← norm_mul, ← norm_mul, _root_.mul_sub, _root_.sub_mul, mul_assoc _ e, inv_mul_cancel r0, mul_inv_cancel e0, one_mul, mul_one] -- porting note: `ENNReal.{mul_sub, sub_mul}` should be `protected` _ = ‖r - e‖ / ‖r‖ / ‖e‖ := by field_simp [mul_comm] _ ≤ ‖r - e‖ / ‖r‖ / ε := by gcongr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ e : α he : ε < ‖e‖ e0 : e ≠ 0 ⊢ ‖e⁻¹ - r⁻¹‖ = ‖r‖⁻¹ * ‖r - e‖ * ‖e‖⁻¹ [PROOFSTEP] rw [← norm_inv, ← norm_inv, ← norm_mul, ← norm_mul, _root_.mul_sub, _root_.sub_mul, mul_assoc _ e, inv_mul_cancel r0, mul_inv_cancel e0, one_mul, mul_one] -- porting note: `ENNReal.{mul_sub, sub_mul}` should be `protected` [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ e : α he : ε < ‖e‖ e0 : e ≠ 0 ⊢ ‖r‖⁻¹ * ‖r - e‖ * ‖e‖⁻¹ = ‖r - e‖ / ‖r‖ / ‖e‖ [PROOFSTEP] field_simp [mul_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ e : α he : ε < ‖e‖ e0 : e ≠ 0 ⊢ ‖r - e‖ / ‖r‖ / ‖e‖ ≤ ‖r - e‖ / ‖r‖ / ε [PROOFSTEP] gcongr [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ this : ∀ᶠ (e : α) in 𝓝 r, ‖e⁻¹ - r⁻¹‖ ≤ ‖r - e‖ / ‖r‖ / ε ⊢ Tendsto (fun e => ‖e⁻¹ - r⁻¹‖) (𝓝 r) (𝓝 0) [PROOFSTEP] refine' squeeze_zero' (eventually_of_forall fun _ => norm_nonneg _) this _ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ this : ∀ᶠ (e : α) in 𝓝 r, ‖e⁻¹ - r⁻¹‖ ≤ ‖r - e‖ / ‖r‖ / ε ⊢ Tendsto (fun t => ‖r - t‖ / ‖r‖ / ε) (𝓝 r) (𝓝 0) [PROOFSTEP] refine' (((continuous_const.sub continuous_id).norm.div_const _).div_const _).tendsto' _ _ _ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NormedDivisionRing α r : α r0 : r ≠ 0 r0' : 0 < ‖r‖ ε : ℝ ε0 : 0 < ε εr : ε < ‖r‖ this : ∀ᶠ (e : α) in 𝓝 r, ‖e⁻¹ - r⁻¹‖ ≤ ‖r - e‖ / ‖r‖ / ε ⊢ ‖r - id r‖ / ‖r‖ / ε = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : NormedDivisionRing α inst✝ : Monoid β φ : β →* α x : β k : ℕ+ h : x ^ ↑k = 1 ⊢ ‖↑φ x‖ = 1 [PROOFSTEP] rw [← pow_left_inj, ← norm_pow, ← map_pow, h, map_one, norm_one, one_pow] [GOAL] case Hxpos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : NormedDivisionRing α inst✝ : Monoid β φ : β →* α x : β k : ℕ+ h : x ^ ↑k = 1 ⊢ 0 ≤ ‖↑φ x‖ case Hypos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : NormedDivisionRing α inst✝ : Monoid β φ : β →* α x : β k : ℕ+ h : x ^ ↑k = 1 ⊢ 0 ≤ 1 case Hnpos α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : NormedDivisionRing α inst✝ : Monoid β φ : β →* α x : β k : ℕ+ h : x ^ ↑k = 1 ⊢ 0 < ↑k [PROOFSTEP] exacts [norm_nonneg _, zero_le_one, k.pos] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NontriviallyNormedField α r : ℝ w : α hw : 1 < ‖w‖ n : ℕ hn : r < ‖w‖ ^ n ⊢ r < ‖w ^ n‖ [PROOFSTEP] rwa [norm_pow] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NontriviallyNormedField α r : ℝ hr : 0 < r w : α hw : r⁻¹ < ‖w‖ ⊢ 0 < ‖w⁻¹‖ ∧ ‖w⁻¹‖ < r [PROOFSTEP] rwa [← Set.mem_Ioo, norm_inv, ← Set.mem_inv, Set.inv_Ioo_0_left hr] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NontriviallyNormedField α x : α ⊢ NeBot (𝓝[{x}ᶜ] x) [PROOFSTEP] rw [← mem_closure_iff_nhdsWithin_neBot, Metric.mem_closure_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NontriviallyNormedField α x : α ⊢ ∀ (ε : ℝ), ε > 0 → ∃ b, b ∈ {x}ᶜ ∧ dist x b < ε [PROOFSTEP] rintro ε ε0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NontriviallyNormedField α x : α ε : ℝ ε0 : ε > 0 ⊢ ∃ b, b ∈ {x}ᶜ ∧ dist x b < ε [PROOFSTEP] rcases exists_norm_lt α ε0 with ⟨b, hb0, hbε⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NontriviallyNormedField α x : α ε : ℝ ε0 : ε > 0 b : α hb0 : 0 < ‖b‖ hbε : ‖b‖ < ε ⊢ ∃ b, b ∈ {x}ᶜ ∧ dist x b < ε [PROOFSTEP] refine' ⟨x + b, mt (Set.mem_singleton_iff.trans add_right_eq_self).1 <| norm_pos_iff.1 hb0, _⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NontriviallyNormedField α x : α ε : ℝ ε0 : ε > 0 b : α hb0 : 0 < ‖b‖ hbε : ‖b‖ < ε ⊢ dist x (x + b) < ε [PROOFSTEP] rwa [dist_comm, dist_eq_norm, add_sub_cancel'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : NontriviallyNormedField α ⊢ NeBot (𝓝[{x | IsUnit x}] 0) [PROOFSTEP] simpa only [isUnit_iff_ne_zero] using punctured_nhds_neBot (0 : α) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : DenselyNormedField α r₁ r₂ : ℝ≥0 h : r₁ < r₂ ⊢ ∃ x, r₁ < ‖x‖₊ ∧ ‖x‖₊ < r₂ [PROOFSTEP] exact_mod_cast exists_lt_norm_lt α r₁.prop h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : DenselyNormedField α ⊢ ∀ (a₁ a₂ : ↑(Set.range norm)), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂ [PROOFSTEP] rintro ⟨-, x, rfl⟩ ⟨-, y, rfl⟩ hxy [GOAL] case mk.intro.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : DenselyNormedField α x y : α hxy : { val := ‖x‖, property := (_ : ∃ y, ‖y‖ = ‖x‖) } < { val := ‖y‖, property := (_ : ∃ y_1, ‖y_1‖ = ‖y‖) } ⊢ ∃ a, { val := ‖x‖, property := (_ : ∃ y, ‖y‖ = ‖x‖) } < a ∧ a < { val := ‖y‖, property := (_ : ∃ y_1, ‖y_1‖ = ‖y‖) } [PROOFSTEP] let ⟨z, h⟩ := exists_lt_norm_lt α (norm_nonneg _) hxy [GOAL] case mk.intro.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : DenselyNormedField α x y : α hxy : { val := ‖x‖, property := (_ : ∃ y, ‖y‖ = ‖x‖) } < { val := ‖y‖, property := (_ : ∃ y_1, ‖y_1‖ = ‖y‖) } z : α h : ‖x‖ < ‖z‖ ∧ ‖z‖ < ↑{ val := ‖y‖, property := (_ : ∃ y_1, ‖y_1‖ = ‖y‖) } ⊢ ∃ a, { val := ‖x‖, property := (_ : ∃ y, ‖y‖ = ‖x‖) } < a ∧ a < { val := ‖y‖, property := (_ : ∃ y_1, ‖y_1‖ = ‖y‖) } [PROOFSTEP] exact ⟨⟨‖z‖, z, rfl⟩, h⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : DenselyNormedField α ⊢ ∀ (a₁ a₂ : ↑(Set.range nnnorm)), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂ [PROOFSTEP] rintro ⟨-, x, rfl⟩ ⟨-, y, rfl⟩ hxy [GOAL] case mk.intro.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : DenselyNormedField α x y : α hxy : { val := ‖x‖₊, property := (_ : ∃ y, ‖y‖₊ = ‖x‖₊) } < { val := ‖y‖₊, property := (_ : ∃ y_1, ‖y_1‖₊ = ‖y‖₊) } ⊢ ∃ a, { val := ‖x‖₊, property := (_ : ∃ y, ‖y‖₊ = ‖x‖₊) } < a ∧ a < { val := ‖y‖₊, property := (_ : ∃ y_1, ‖y_1‖₊ = ‖y‖₊) } [PROOFSTEP] let ⟨z, h⟩ := exists_lt_nnnorm_lt α hxy [GOAL] case mk.intro.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : DenselyNormedField α x y : α hxy : { val := ‖x‖₊, property := (_ : ∃ y, ‖y‖₊ = ‖x‖₊) } < { val := ‖y‖₊, property := (_ : ∃ y_1, ‖y_1‖₊ = ‖y‖₊) } z : α h : ↑{ val := ‖x‖₊, property := (_ : ∃ y, ‖y‖₊ = ‖x‖₊) } < ‖z‖₊ ∧ ‖z‖₊ < ↑{ val := ‖y‖₊, property := (_ : ∃ y_1, ‖y_1‖₊ = ‖y‖₊) } ⊢ ∃ a, { val := ‖x‖₊, property := (_ : ∃ y, ‖y‖₊ = ‖x‖₊) } < a ∧ a < { val := ‖y‖₊, property := (_ : ∃ y_1, ‖y_1‖₊ = ‖y‖₊) } [PROOFSTEP] exact ⟨⟨‖z‖₊, z, rfl⟩, h⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 x✝¹ x✝ : ℝ h₀ : 0 ≤ x✝¹ hr : x✝¹ < x✝ x : ℝ h : x✝¹ < x ∧ x < x✝ ⊢ x✝¹ < ‖x‖ ∧ ‖x‖ < x✝ [PROOFSTEP] rwa [Real.norm_eq_abs, abs_of_nonneg (h₀.trans h.1.le)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 x y : ℝ hx : 0 ≤ x ⊢ toNNReal x * ‖y‖₊ = ‖x * y‖₊ [PROOFSTEP] ext [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 x y : ℝ hx : 0 ≤ x ⊢ ↑(toNNReal x * ‖y‖₊) = ↑‖x * y‖₊ [PROOFSTEP] simp only [NNReal.coe_mul, nnnorm_mul, coe_nnnorm, Real.toNNReal_of_nonneg, norm_of_nonneg, hx, coe_mk] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 x y : ℝ hy : 0 ≤ y ⊢ ‖x‖₊ * toNNReal y = ‖x * y‖₊ [PROOFSTEP] rw [mul_comm, mul_comm x, toNNReal_mul_nnnorm x hy] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 x : ℝ≥0 ⊢ ‖↑x‖ = ↑x [PROOFSTEP] rw [Real.norm_eq_abs, x.abs_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedAddCommGroup α a : α ⊢ ‖‖a‖‖₊ = ‖a‖₊ [PROOFSTEP] rw [Real.nnnorm_of_nonneg (norm_nonneg a)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝ : SeminormedAddCommGroup α a : α ⊢ { val := ‖a‖, property := (_ : 0 ≤ ‖a‖) } = ‖a‖₊ [PROOFSTEP] rfl [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : Nonempty α inst✝¹ : SemilatticeSup α β : Type u_5 inst✝ : SeminormedAddCommGroup β f : α → β b : β ⊢ (∀ (ib : ℝ), 0 < ib → ∃ ia, True ∧ ∀ (x : α), x ∈ Set.Ici ia → f x ∈ ball b ib) ↔ ∀ (ε : ℝ), 0 < ε → ∃ N, ∀ (n : α), N ≤ n → ‖f n - b‖ < ε [PROOFSTEP] simp [dist_eq_norm] [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 ι : Type u_4 inst✝³ : Nonempty α inst✝² : SemilatticeSup α inst✝¹ : NoMaxOrder α β : Type u_5 inst✝ : SeminormedAddCommGroup β f : α → β b : β ⊢ (∀ (ib : ℝ), 0 < ib → ∃ ia, True ∧ ∀ (x : α), x ∈ Set.Ioi ia → f x ∈ ball b ib) ↔ ∀ (ε : ℝ), 0 < ε → ∃ N, ∀ (n : α), N < n → ‖f n - b‖ < ε [PROOFSTEP] simp [dist_eq_norm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 src✝¹ : NormedAddCommGroup ℤ := normedAddCommGroup src✝ : Ring ℤ := instRingInt m n : ℤ ⊢ ‖m * n‖ = ‖m‖ * ‖n‖ [PROOFSTEP] simp only [norm, Int.cast_mul, abs_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ⊢ ‖1‖ = 1 [PROOFSTEP] simp [← Int.norm_cast_real] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 src✝¹ : NormedAddCommGroup ℚ := normedAddCommGroup src✝ : Field ℚ := field r₁ r₂ : ℚ ⊢ ‖r₁ * r₂‖ = ‖r₁‖ * ‖r₂‖ [PROOFSTEP] simp only [norm, Rat.cast_mul, abs_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 r₁ r₂ : ℝ h₀ : 0 ≤ r₁ hr : r₁ < r₂ q : ℚ h : r₁ < ↑q ∧ ↑q < r₂ ⊢ r₁ < ‖q‖ ∧ ‖q‖ < r₂ [PROOFSTEP] rwa [← Rat.norm_cast_real, Real.norm_eq_abs, abs_of_pos (h₀.trans_lt h.1)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 F : Type u_5 R : Type u_6 S : Type u_7 inst✝² : NonUnitalRing R inst✝¹ : NonUnitalSeminormedRing S inst✝ : NonUnitalRingHomClass F R S f : F src✝¹ : SeminormedAddCommGroup R := SeminormedAddCommGroup.induced R S f src✝ : NonUnitalRing R := inst✝² x y : R ⊢ ‖x * y‖ ≤ ‖x‖ * ‖y‖ [PROOFSTEP] show ‖f (x * y)‖ ≤ ‖f x‖ * ‖f y‖ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 F : Type u_5 R : Type u_6 S : Type u_7 inst✝² : NonUnitalRing R inst✝¹ : NonUnitalSeminormedRing S inst✝ : NonUnitalRingHomClass F R S f : F src✝¹ : SeminormedAddCommGroup R := SeminormedAddCommGroup.induced R S f src✝ : NonUnitalRing R := inst✝² x y : R ⊢ ‖↑f (x * y)‖ ≤ ‖↑f x‖ * ‖↑f y‖ [PROOFSTEP] exact (map_mul f x y).symm ▸ norm_mul_le (f x) (f y) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 F : Type u_5 R : Type u_6 S : Type u_7 inst✝² : DivisionRing R inst✝¹ : NormedDivisionRing S inst✝ : NonUnitalRingHomClass F R S f : F hf : Function.Injective ↑f src✝¹ : NormedAddCommGroup R := NormedAddCommGroup.induced R S f hf src✝ : DivisionRing R := inst✝² x y : R ⊢ ‖x * y‖ = ‖x‖ * ‖y‖ [PROOFSTEP] show ‖f (x * y)‖ = ‖f x‖ * ‖f y‖ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 F : Type u_5 R : Type u_6 S : Type u_7 inst✝² : DivisionRing R inst✝¹ : NormedDivisionRing S inst✝ : NonUnitalRingHomClass F R S f : F hf : Function.Injective ↑f src✝¹ : NormedAddCommGroup R := NormedAddCommGroup.induced R S f hf src✝ : DivisionRing R := inst✝² x y : R ⊢ ‖↑f (x * y)‖ = ‖↑f x‖ * ‖↑f y‖ [PROOFSTEP] exact (map_mul f x y).symm ▸ norm_mul (f x) (f y)
function [structOut, errors] = checkStructureDefaults(params, defaults) % Check params input parameter values against defaults put in structOut errors = cell(0); fNames = fieldnames(defaults); structOut = defaults; for k = 1:length(fNames) try nextValue = getStructureParameters(params, fNames{k}, ... defaults.(fNames{k}).value); validateattributes(nextValue, defaults.(fNames{k}).classes, ... defaults.(fNames{k}).attributes); structOut.(fNames{k}).value = nextValue; catch mex errors{end + 1} = [fNames{k} ' invalid: ' mex.message]; %#ok<AGROW> end end
= = = Minor Leagues = = =
# using Test, Distances, TransferEntropy # d1 = rand(50) # d2 = rand(50) # r = rand(50) # tol = 1e-8 # # Directly from time series # @test standard_te(d1, r, estimator = :tetogrid) >= 0 - tol # @test standard_te(d2, r, estimator = :tetogrid) >= 0 - tol # @test standard_te(d1, r, estimator = :tefreq) >= 0 - tol # @test standard_te(d2, r, estimator = :tefreq) >= 0 - tol # @test standard_te(d1, r, estimator = :tekNN) >= 0 - tol # @test standard_te(d2, r, estimator = :tekraskov) >= 0 - tol # ######################### # # Surrogates # ######################### # @test standard_te(d1, r, which_is_surr = :driver) >= 0 - tol # @test standard_te(d1, r, which_is_surr = :response) >= 0 - tol # @test standard_te(d1, r, which_is_surr = :none) >= 0 - tol # @test standard_te(d1, r, which_is_surr = :both, surr_func = aaft) >= 0 - tol # @test standard_te(d1, r, which_is_surr = :both, surr_func = iaaft) >= 0 - tol # @test standard_te(d1, r, which_is_surr = :both, surr_func = randomphases) >= 0 - tol # @test standard_te(d1, r, which_is_surr = :both, surr_func = randomamplitudes) >= 0 - tol # @test standard_te(d1, r, which_is_surr = :both, surr_func = randomshuffle) >= 0 - tol # ######################### # # Forward prediction lags # ######################### # @test standard_te(d1, r, ν = 1) >= 0 - tol # @test standard_te(d1, r, ν = 5) >= 0 - tol # ######################### # # Embedding lags and dimensions # ######################### # d1 = rand(100) # d2 = rand(100) # r = rand(100) # @test standard_te(d1, r, ν = 1, τ = 2, dim = 4) >= 0 - tol # @test standard_te(d1, r, ν = 3, τ = 3, dim = 5) >= 0 - tol # ######################### # # Tuning the bins # ######################### # @test standard_te(d1, r, n_ϵ = 10) >= 0 - tol # @test standard_te(d1, r, n_ϵ = 10, max_numbins = 5, min_numbins = 2) >= 0 - tol ########################## # Regular TE ########################## using Test, TransferEntropy, CausalityToolsBase k, l, m = 1, 1, 1 τ = 1 η = 1 n_subdivs = 3 te_res1 = te_reg(rand(1000), rand(1000), k, l, m, η = η, τ = τ, n_subdivs = n_subdivs) te_res2 = te_reg(rand(1000), rand(1000), k + 1, l, m + 1, η = η, τ = τ + 1, n_subdivs = n_subdivs) @test te_res1 isa Vector{<:Real} @test te_res2 isa Vector{<:Real} @test length(te_res1) == 4 @test te_reg(rand(100), rand(100), 1, 1, 1, RectangularBinning(4)) |> typeof <: Real @test te_reg(rand(100), rand(100), 1, 1, 1, [RectangularBinning(4), RectangularBinning(0.2)]) isa Vector{<:Real} ########################## # Conditional TE ########################## # Default discretization schemes using Test k, l, m, n = 1, 1, 1, 1 τ = 1 η = 1 n_subdivs = 3 te_res1 = te_cond(rand(1000), rand(1000), rand(1000), k, l, m, n, η = η, τ = τ, n_subdivs = n_subdivs) te_res2 = te_cond(rand(1000), rand(1000), rand(1000), k + 1, l, m + 1, n, η = η, τ = τ + 1, n_subdivs = n_subdivs) @test te_res1 isa Vector{<:Real} @test te_res2 isa Vector{<:Real} @test length(te_res1) == 4 # User-provided binning schemes using Test x, y, z = rand(100), rand(100), rand(100) @test te_cond(x, y, z, 1, 1, 1, 1, RectangularBinning(4)) |> typeof <: Real @test te_cond(x, y, z, 1, 1, 1, 1, [RectangularBinning(4), RectangularBinning(0.2)]) isa Vector{<:Real} @test te_cond(x, y, z, 1, 1, 1, 1, RectangularBinning(3), estimator = TransferOperatorGrid()) |> typeof <: Real
Formal statement is: lemma exp_two_pi_i' [simp]: "exp (\<i> * (of_real pi * 2)) = 1" Informal statement is: $e^{2\pi i} = 1$.
theory mapp imports Function_Model_Base begin context Function_Model begin subsection \<open>Application relation on model Functions\<close> lemma mapp_iff : assumes "f : mFunc" shows "mapp f b c \<longleftrightarrow> app (snd f) b c" unfolding mapp_def using assms by auto lemma mapp_iff_pair : assumes "<func, f'> : mFunc" shows "mapp <func, f'> b c \<longleftrightarrow> app f' b c" unfolding mapp_iff[OF assms] mfunc_snd_eq[OF assms] .. lemmas mappI = iffD2[OF mapp_iff] and mappI_pair = iffD2[OF mapp_iff_pair] lemmas mappD = iffD1[OF mapp_iff] and mappD_pair = iffD1[OF mapp_iff_pair] lemma mappE : assumes f:"f : mFunc" and bc:"mapp f b c" obtains f' where "f' : Function" "f = <func, f'>" "app f' b c" proof (rule mfuncE1[OF f]) thm mfunc_pair_snd_func mappD assms fix f' assume f_eq : "f = <func, f'>" moreover hence f':"f' : Function" using mfunc_pair_snd_func f by auto have app: "app f' b c" using mappD_pair f_eq f bc by auto from f' f_eq app show ?thesis .. qed lemma mapp_m : assumes f:"f : mFunc" and bc:"mapp f b c" shows "b : M \<and> c : M" proof (rule mappE[OF f bc]) fix f' assume f' : "f' : Function" and f_eq : "f = <func, f'>" then obtain j where j : "j : Ord" and "f' \<in> (Tier j \<ominus> func) \<midarrow>p\<rightarrow> (Tier j \<ominus> func)" using mE_mfunc_pair mfunc_m[OF f] by metis hence "dom f' \<subseteq> Tier j \<ominus> func" "ran f' \<subseteq> Tier j \<ominus> func" using fspaceD[OF tier_ex_set tier_ex_set, OF j j] by auto moreover have "app f' b c" using mappD_pair f bc unfolding f_eq by auto ultimately have "b \<in> Tier j \<ominus> func" "c \<in> Tier j \<ominus> func" using domI[OF f'] ranI[OF f'] by auto thus "b : M \<and> c : M" using mI[OF j exsetD1[OF tier_set[OF j]]] by auto qed text \<open>Model application is functional:\<close> lemma mapp_functional : assumes f : "f : mFunc" and bc : "mapp f b c" and bd : "mapp f b d" shows "c = d" using bc bd app_eqI[OF mfunc_snd_func[OF f]] unfolding mapp_iff[OF f] by auto lemma mapp_functional_ax : "m\<forall>f : mFunc. m\<forall>x y z. mapp f x y \<and> mapp f x z \<longrightarrow> y = z" unfolding mtall_def mall_def tall_def using mapp_functional by auto text \<open>Model functions are extensional:\<close> lemma mfunc_ext : assumes f : "f : mFunc" and g : "g : mFunc" and bc:"\<And>b c. mapp f b c \<longleftrightarrow> mapp g b c" shows "f = g" proof (rule mfuncE1[OF f], rule mfuncE1[OF g]) fix f' g' assume f' : "f = <func, f'>" and g' : "g = <func, g'>" have "snd f = snd g" using bc fun_eqI[OF mfunc_snd_func mfunc_snd_func, OF f g] unfolding mapp_def by auto thus "f = g" using mfunc_snd_eq f g unfolding f' g' by metis qed lemma mfunc_ext_ax : "m\<forall>f : mFunc. m\<forall>g : mFunc. (m\<forall>x y. mapp f x y = mapp g x y) \<longrightarrow> f = g" unfolding mtall_def mall_def tall_def using mfunc_ext mapp_m by meson end end
module Leap export isLeap : Int -> Bool isLeap year = ?isLeap_rhs export version : String version = "1.0.0"
The university reopened their Level I Trauma Center on August 1 , 2009 which had been closed for eleven months after the hurricane and , as of September 2009 , had reopened 370 hospital beds .
Formal statement is: lemma measurable_vimage_algebra2: assumes g: "g \<in> space N \<rightarrow> X" and f: "(\<lambda>x. f (g x)) \<in> measurable N M" shows "g \<in> measurable N (vimage_algebra X f M)" Informal statement is: If $g$ is a function from a measurable space $N$ to a measurable space $X$ and $f$ is a function from $X$ to a measurable space $M$, then $g$ is measurable with respect to the algebra generated by $f$.
Classic is a term that gets thrown around too much sometimes. Whether it’s cars, movies, or songs, there are a certain number of oldies that get labeled with such a prestigious rank. But what makes it a classic? While many may debate this, what we can agree on is one main reason: a seemingly endless majesty that stands the test of time. Today we’re talking about one special classic Arabic movie, Chitchat on the Nile (Tharthara Fawq Al-Nile). Starring Emad Hamdy, Mirvat Amin, Ahmed Ramzy, Adel Adham, Soheir Ramzy, and more immensely talented stars, it was first released on the 15th of November, 1971, but if you watch it today, 47 years later, it is still as relevant as it was years ago. First released as a novel written by the genius author, Naguib Mahfouz, scripted into a movie by Mahmoud El-Laithy, and directed by Hussein Kamal, it tells the story of how frustrated, depressed, or utterly apathetic Egyptians were after the huge setback of the 1967 War. The story is full of imagery and symbolism, depicting history through the lives of seemingly irrelevant people in the Egyptian population. ADEF DECA, a cultural hub that aims to create a space for freedom of expression through technology, and strives to build an intellectual environment of mutual respect, is hosting a special screening of the movie, Chitchat on the Nile, tonight. The movie starts at 7 pm, and will be followed by an open discussion where viewers can share their opinions and feelings of the film. It’s an excellent opportunity for fans of this movie as well as for people who’ve never seen it before. You can find ADEF DECA on 143 Street 8, Mokattam. Check out their Facebook Page for more details, or call 01121147008 for more information.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. (** * Subtyping *) (** A subtype extends another type by adding a property. The new type has a richer theory. The new type should inherit all the original theory. *) (* Let's define the type of homogeneous tuples *) (** ** Standard [sig] type *) Print sig. (** Inductive sig (A : Type) (P : A -> Prop) : Type := | exist : forall x:A, P x -> sig P. Notation "{ x : A | P }" := (sig (A:=A) (fun x => P)) : type_scope. *) (** [sig] type is almost the same as the [ex] type encoding existential quantifier *) Print ex. (** Inductive ex (A : Type) (P : A -> Prop) : Prop := | ex_intro : forall x:A, P x -> ex P. *) (** simple definition relying on the existing [pred] function *) Definition predecessor (x : {n | 0 < n}) : nat := let: (exist m prf_m_gt_0) := x in m.-1. (** The _convoy pattern_ : *) Definition pred_dep (x : {n | 0 < n}) : nat := let: (exist n prf_n_gt_0) := x in match n as n return (0 < n -> nat) with | 0 => fun prf : 0 < 0 => False_rect _ (notF prf) | n'.+1 => fun _ => n' end prf_n_gt_0. (** ** Some issues *) (** Proof irrelevance *) Lemma eq_sig T (P : T -> Prop) x (px : P x) (px' : P x) : (exist P x px) = (exist P x px'). Proof. Fail by done. (** we are stuck: we need proof irrelevance here *) Abort. Axiom proof_irrelevance : forall (P : Prop) (pf1 pf2 : P), pf1 = pf2. Lemma eq_sig T (P : T -> Prop) x (px : P x) (px' : P x) : (exist P x px) = (exist P x px'). Proof. rewrite [px]proof_irrelevance. done. Qed. (** Decidable propositions _are_ proof irrelevant *) Check eq_irrelevance. (** eq_irrelevance : forall (T : eqType) (x y : T) (e1 e2 : x = y), e1 = e2 This special case of proof irrelevance is called _Unicity of Identity Proofs_ principle (UIP). *) (** [sval] projection is injective for decidable propositions : *) Lemma eq_n_gt0 (m n : {n | 0 < n}) : sval m = sval n -> m = n. Proof. case: m=> [m pfm]; case: n=> [n pfn] /=. Fail move=> ->. (* because of the dependencies *) move=> eq_mn; move: eq_mn pfm pfn. move=> -> *. congr exist. exact: eq_irrelevance. Qed. (** We cannot define [sval] (aka [proj1_sig]) as a coercion *) (** This is because we cannot specify the target class of this tentative coercion: Coercion proj1_sig : sig >-> ???. *) (** ** Mathcomp's [subType] (defined in [eqtype] library) *) Print subType. (** Structure subType (T : Type) (P : pred T) : Type := SubType { (* new type *) sub_sort : Type; (* projection, like proj_sig1 *) val : sub_sort -> T; (* constructor *) Sub : forall x : T, P x -> sub_sort; (* elimination principle *) _ : forall K : sub_sort -> Type, (forall (x : T) (Px : P x), K (Sub x Px)) -> forall u : sub_sort, K u; (* projection is injective *) _ : forall (x : T) (Px : P x), val (Sub x Px) = x }. *) (** An example of a [subType] *) Section PosSubtype. Inductive pos := Positive m of 0 < m. Coercion nat_of_pos p := let: Positive n _ := p in n. Variables p1 p2 : pos. (** This is something not possible with {n | 0 < n} type *) Check p1.-1 + p2. Set Printing Coercions. Check p1.-1 + p2. Unset Printing Coercions. (** Register [pos] as a [subType] *) Canonical pos_subType := [subType for nat_of_pos]. (** Given that propositions are expressed as booleans, we can use the fact that proofs of these properties are irrelevant. *) (** Hence we can build subtypes and prove that the projection to the supertype is injective, which lets us inherit all of the theory of the supertype. *) (** E.g. we can make [pos] inherit [eqType] from [nat] type with a bit of boilerplate *) Definition pos_eqMixin := Eval hnf in [eqMixin of pos by <:]. Canonical pos_eqType := Eval hnf in EqType pos pos_eqMixin. Check p1 == p2. End PosSubtype. (** * Some standard [subType]s *) (** ** [ordinal]: type of finite ordinals *) (** [ordinal n] = {0, 1, ... , n-1} Inductive ordinal : predArgType := | Ordinal m of m < n. Notation "''I_' n" := (ordinal n) *) From mathcomp Require Import fintype. Definition i1 : 'I_2 := Ordinal (erefl : 0 < 2). Definition i2 : 'I_2 := Ordinal (erefl : 1 < 2). Compute i1 == i2. (** Note: [ordinal] is also a [finType] *) (** ** [tuple] type *) From mathcomp Require Import tuple. Definition t : 3.-tuple nat := [tuple 5; 6; 7]. (** It's not possible to take an out-of-bounds element of a tuple, so there is no need of a default element as for [nth] on [seq]s *) About tnth. Compute [tnth t 0]. Compute [tnth t 1]. Compute [tnth t 2]. Fail Compute [tnth t 3]. About thead. (** thead : forall (n : nat) (T : Type), (n.+1).-tuple T -> T *) Compute thead t. (** = 5 *) (** [thead] of empty tuple does not even typecheck *) Fail Check thead [tuple]. (** Structure tuple_of (n : nat) (T : Type) : Type := Tuple { (* [:>] means "is a coercion" *) tval :> seq T; _ : size tval == n; }. *) Section TupleExample. Variables (m n : nat) (T : Type). Variable t1 : m.-tuple T. Variable t2 : n.-tuple T. Check [tuple of t1 ++ t2] : (m + n).-tuple T. Fail Check [tuple of t1 ++ t2] : (n + m).-tuple T. End TupleExample. Example seq_on_tuple (n : nat) (t : n .-tuple nat) : size (rev [seq 2 * x | x <- rev t]) = size t. Proof. Set Printing Coercions. by rewrite map_rev revK size_map. Unset Printing Coercions. Restart. rewrite size_tuple. (** this should work *) Check size_tuple. (** size_tuple : forall (n : nat) (T : Type) (t : n.-tuple T), size t = n *) (** Why does this not fail? *) (** rev [seq 2 * x | x <- rev t] is a list, not a tuple *) rewrite size_tuple. Abort. Print Canonical Projections. (** ... map <- tval ( map_tuple ) ... rev <- tval ( rev_tuple ) ... *) (** This works because Coq is instrumented to automatically promote sequences to tuples using the mechanism of Canonical Structures. Lemma rev_tupleP n A (t : n .-tuple A) : size (rev t) == n. Proof. by rewrite size_rev size_tuple. Qed. Canonical rev_tuple n A (t : n .-tuple A) := Tuple (rev_tupleP t). Lemma map_tupleP n A B (f:A -> B) (t: n.-tuple A) : size (map f t) == n. Proof. by rewrite size_map size_tuple. Qed. Canonical map_tuple n A B (f:A -> B) (t: n.-tuple A) := Tuple (map_tupleP f t). *) (** Exercise: show in detail how [rewrite size_tuple] from above works *) (** Since tuples are a subtype of lists, we can reuse the theory of lists over equality types. *) Example test_eqtype (x y : 3.-tuple nat) : x == y -> True. Proof. move=> /eqP. Abort. (** * Finite types *) From mathcomp Require Import choice fintype finfun. (** Fig. 3 of "Packaging Mathematical Structures" by F. Garillot, G. Gonthier, A. Mahboubi, L. Rideau(2009) *) (** A [finType] structure is composed of a list of elements of an [eqType] structure, each element of the type being uniquely represented in the list: (* simplified definition of [finType] *) Structure finType : Type := FinType { sort :> countType; enum : seq sort; enumP : forall x, count (pred1 x) enum = 1; }. *) (** Finite sets are then sets taken in a [finType] domain. In the library, the basic operations are provided. For example, given [A] a finite set, [card A] (or #|A|) represents the cardinality of A. All these operations come with their basic properties. For example, we have: Lemma cardUI : ∀ (d: finType) (A B: {pred T}), #|A ∪ B| + #|A ∩ B| = #|A| + #|B|. Lemma card_image : ∀ (T T': finType) (f : T -> T') injective f -> forall A : {pred T}, #|image f A| = #|A|. *) (** ** How [finType] is actually organized *) Print Finite.type. (** Structure type : Type := Pack { sort : Type; _ : Finite.class_of sort }. *) (** [finType] extends [choiceType] with a mixin *) Print Finite.class_of. (** Structure class_of (T : Type) : Type := Class { base : Choice.class_of T; mixin : Finite.mixin_of (EqType T base) } *) Print Finite.mixin_of. (** we mix in countable and two specific fields: an enumeration and an axiom Structure mixin_of (T : eqType) : Type := Mixin { mixin_base : Countable.mixin_of T; mixin_enum : seq T; _ : Finite.axiom mixin_enum }. *) Print Finite.axiom. (** Finite.axiom = fun (T : eqType) (e : seq T) => forall x : T, count_mem x e = 1 where Notation count_mem x := (count (pred1 x)). *) Eval cbv in count_mem 5 [:: 1; 5; 2; 5; 3; 5; 4]. Section FinTypeExample. Variable T : finType. (** Cardinality of a finite type *) Check #| T |. (** "bounded" quantification *) Check [forall x : T, x == x] && false. Fail Check (forall x : T, x == x) && false. (** We recover classical reasoning for the bounded quantifiers: *) Check negb_forall: forall (T : finType) (P : pred T), ~~ [forall x, P x] = [exists x, ~~ P x]. Check negb_exists: forall (T : finType) (P : pred T), ~~ [exists x, P x] = [forall x, ~~ P x]. (** [negb_forall] does not hold in intuitionistic setting *) End FinTypeExample. (** * Examples of interfaces *) From mathcomp Require Import finset. Section Interfaces. Variable chT : choiceType. Check (@sigW chT). Check [eqType of chT]. Variable coT : countType. Check [countType of nat]. Check [choiceType of coT]. Check [choiceType of nat * nat]. Check [choiceType of seq coT]. Variable fT : finType. Check [finType of bool]. Check [finType of 'I_10]. Check [finType of {ffun 'I_10 -> fT}]. Check [finType of bool * bool]. Check [finType of 3.-tuple bool]. Fail Check [finType of 3.-tuple nat]. Check {set 'I_4} : Type. Check forall a : {set 'I_4}, (a == set0) || (1 < #|a| < 4). Print set_type. Check {ffun 'I_4 -> bool} : Type. Print finfun_eqType. Check [eqType of #| 'I_4 |.-tuple bool]. Check [finType of #| 'I_4 |.-tuple bool]. Check {ffun 'I_4 * 'I_6 -> nat} : Type. Check [eqType of {ffun 'I_4 * 'I_6 -> nat}] : Type. End Interfaces. (** * Bonus *) (* The following requires the coq-mathcomp-algebra package from opam package manager *) From mathcomp Require Import all_algebra. Open Scope ring_scope. Print matrix. Section Rings. Variable R : ringType. Check forall x : R, x * 1 == x. (** Matrices of size 4x4 over an arbitrary ring [R] *) Check forall m : 'M[R]_(4,4), m == m * m. End Rings.
! RUN: %f18 -funparse-with-symbols %s 2>&1 | FileCheck %s ! CHECK-NOT: exit from DO CONCURRENT construct subroutine do_concurrent_test1(n) implicit none integer :: j,k,l,n mytest: if (n>0) then mydoc: do concurrent(j=1:n) mydo: do k=1,n if (k==5) exit if (k==6) exit mydo end do mydo do concurrent(l=1:n) if (l==5) print *, "test" end do end do mydoc do k=1,n if (k==5) exit mytest end do end if mytest end subroutine do_concurrent_test1 subroutine do_concurrent_test2(n) implicit none integer :: i1,i2,i3,i4,i5,i6,n mytest2: if (n>0) then nc1: do concurrent(i1=1:n) nc2: do i2=1,n nc3: do concurrent(i3=1:n) nc4: do i4=1,n if (i3==4) exit nc4 nc5: do concurrent(i5=1:n) nc6: do i6=1,n if (i6==10) print *, "hello" end do nc6 end do nc5 end do nc4 end do nc3 end do nc2 end do nc1 end if mytest2 end subroutine do_concurrent_test2
The Land Forces represent the most important component of the Romanian Armed Forces and they are <unk> for execution of various military actions , with terrestrial or <unk> character , in any zone or direction .
The Catechism classifies scandal under the fifth commandment and defines it as " an attitude or behavior which leads another to do evil " . In the Gospel of Matthew , Jesus stated , " Whoever causes one of these little ones who believe in me to sin , it would be better for him to have a great millstone fastened round his neck and to be drowned in the depth of the sea . " The Church considers it a serious crime to cause another 's faith , hope and love to be weakened , especially if it is done to young people and the perpetrator is a person of authority such as a parent , teacher or priest .
# Description of the problem and solution The task1 was to predict a person's age from the brain image data: a standard regression problem. The original dataset included 832 features as well as a lot of NaN values and a few outliers. A good preprocessing stage was necessary in order to have a well defined dataset that could be used in our regression model. First step was the imputation of the dataset. Filling each NaN value with the median of each feature column. The use of the median instead of other value (e.g. mean) is justified since a lot of outliers are included in the dataset. (e.g. 1 2 _ 5 20 median: 3 mean: 7). Next step was the feature extraction. By using the "autofeat" library (paper: https://arxiv.org/pdf/1901.07329.pdf), we extracted the 21 most important features. The way the algorithm works is going through a loop of correlation of features with target, select promising features, train Lasso regression model with promising features, filter the good features keeping the ones with non-zero regression weights. We updated the datasets by keeping only the 21 most important features. Finally, we used these updated datasets for the training of our final regression model. A lot of outlier detection techniques were used but we decided to keep the outliers and use a tree-based method for our final model. Tree-methods have been proved to be robust to outliers and we avoid risking excluded important features / points from the dataset. The "ExtraTreesRegressor" model from the "sklearn" package was used and fine tuned based on the R2 score performance in our validation set. The final model had a score >0.6 in the validation sets using cross-validation and in the submission leaderboard of ETH scored 0.6812 while the hard baseline was set to 0.65 by the Advanced Machine Learning Task1 team. # Include all the necessary packages ```python !pip install autofeat from sklearn.metrics import r2_score try: %tensorflow_version 2.x except Exception: pass import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import pandas as pd from autofeat import FeatureSelector from sklearn.model_selection import train_test_split from sklearn.ensemble import ExtraTreesRegressor ``` Requirement already satisfied: autofeat in /usr/local/lib/python3.6/dist-packages (0.2.5) Requirement already satisfied: pint in /usr/local/lib/python3.6/dist-packages (from autofeat) (0.9) Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.6/dist-packages (from autofeat) (0.25.2) Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from autofeat) (0.21.3) Requirement already satisfied: sympy in /usr/local/lib/python3.6/dist-packages (from autofeat) (1.1.1) Requirement already satisfied: joblib in /usr/local/lib/python3.6/dist-packages (from autofeat) (0.14.0) Requirement already satisfied: numpy in /tensorflow-2.0.0/python3.6 (from autofeat) (1.17.3) Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from autofeat) (0.16.0) Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.24.0->autofeat) (2018.9) Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.24.0->autofeat) (2.6.1) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->autofeat) (1.3.1) Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.6/dist-packages (from sympy->autofeat) (1.1.0) Requirement already satisfied: six>=1.5 in /tensorflow-2.0.0/python3.6 (from python-dateutil>=2.6.1->pandas>=0.24.0->autofeat) (1.12.0) # Load the data from the CSV files ```python column_names_x = ['id'] for i in range(832): column_names_x.append('x'+str(i)) raw_dataset_x = pd.read_csv('/content/X_train.csv', names=column_names_x, na_values = "?", comment='\t', sep=",", skipinitialspace=True, skiprows=True) dataset_x = raw_dataset_x.copy() dataset_x.tail() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>id</th> <th>x0</th> <th>x1</th> <th>x2</th> <th>x3</th> <th>x4</th> <th>x5</th> <th>x6</th> <th>x7</th> <th>x8</th> <th>x9</th> <th>x10</th> <th>x11</th> <th>x12</th> <th>x13</th> <th>x14</th> <th>x15</th> <th>x16</th> <th>x17</th> <th>x18</th> <th>x19</th> <th>x20</th> <th>x21</th> <th>x22</th> <th>x23</th> <th>x24</th> <th>x25</th> <th>x26</th> <th>x27</th> <th>x28</th> <th>x29</th> <th>x30</th> <th>x31</th> <th>x32</th> <th>x33</th> <th>x34</th> <th>x35</th> <th>x36</th> <th>x37</th> <th>x38</th> <th>...</th> <th>x792</th> <th>x793</th> <th>x794</th> <th>x795</th> <th>x796</th> <th>x797</th> <th>x798</th> <th>x799</th> <th>x800</th> <th>x801</th> <th>x802</th> <th>x803</th> <th>x804</th> <th>x805</th> <th>x806</th> <th>x807</th> <th>x808</th> <th>x809</th> <th>x810</th> <th>x811</th> <th>x812</th> <th>x813</th> <th>x814</th> <th>x815</th> <th>x816</th> <th>x817</th> <th>x818</th> <th>x819</th> <th>x820</th> <th>x821</th> <th>x822</th> <th>x823</th> <th>x824</th> <th>x825</th> <th>x826</th> <th>x827</th> <th>x828</th> <th>x829</th> <th>x830</th> <th>x831</th> </tr> </thead> <tbody> <tr> <th>1207</th> <td>1207.0</td> <td>NaN</td> <td>5395.719279</td> <td>95668.548818</td> <td>1125.414599</td> <td>10341.757613</td> <td>10.547165</td> <td>108249.187400</td> <td>1.073291e+06</td> <td>108672.758838</td> <td>2.365013</td> <td>1.042126e+06</td> <td>21031.538201</td> <td>1059.704248</td> <td>103860.409465</td> <td>107.805931</td> <td>100.350289</td> <td>14040.029112</td> <td>NaN</td> <td>90414.095308</td> <td>10.108470</td> <td>3.215609</td> <td>102144.219482</td> <td>10.087478</td> <td>3825.046407</td> <td>89.538601</td> <td>4550.239929</td> <td>3542.470382</td> <td>206892.186644</td> <td>1.011027e+06</td> <td>11432.036864</td> <td>10.957698</td> <td>976.093967</td> <td>84.689946</td> <td>2500.095879</td> <td>1068.544855</td> <td>8.868114</td> <td>3.695648</td> <td>10381.626637</td> <td>8.641068e+05</td> <td>...</td> <td>6.934015</td> <td>2.05604</td> <td>9.362337</td> <td>908.498493</td> <td>94.234452</td> <td>10.319140</td> <td>4155.345879</td> <td>8.498432e+16</td> <td>10977.013897</td> <td>93.766125</td> <td>8.120353</td> <td>10595.018829</td> <td>9.594486e+05</td> <td>10.485803</td> <td>10.601033</td> <td>101328.492269</td> <td>2.417968</td> <td>48.359296</td> <td>9486.144826</td> <td>2.185578</td> <td>966.094287</td> <td>9.039254e+05</td> <td>10.510759</td> <td>1049.753163</td> <td>10856.049561</td> <td>9109.098919</td> <td>10320.748617</td> <td>10892.743222</td> <td>106528.008864</td> <td>294.801642</td> <td>10.519831</td> <td>10.234396</td> <td>987.456317</td> <td>978.661701</td> <td>109520.061346</td> <td>102914.439553</td> <td>8144.701025</td> <td>10.442410</td> <td>102380.867791</td> <td>2.236101</td> </tr> <tr> <th>1208</th> <td>1208.0</td> <td>93669.580198</td> <td>3564.454295</td> <td>96937.341346</td> <td>1040.828378</td> <td>8415.112792</td> <td>10.721800</td> <td>100628.318687</td> <td>1.027671e+06</td> <td>102269.472299</td> <td>2.398768</td> <td>1.015631e+06</td> <td>10073.888339</td> <td>1005.671797</td> <td>106924.048275</td> <td>98.512805</td> <td>104.366843</td> <td>11719.094168</td> <td>115055.546469</td> <td>95750.178334</td> <td>NaN</td> <td>3.446025</td> <td>100455.697718</td> <td>10.303138</td> <td>3502.012112</td> <td>84.167435</td> <td>3462.164372</td> <td>3411.771480</td> <td>206892.234016</td> <td>1.082826e+06</td> <td>9957.026155</td> <td>11.155088</td> <td>1127.806594</td> <td>107.745872</td> <td>2298.057201</td> <td>1031.637383</td> <td>8.778034</td> <td>3.477553</td> <td>10627.490011</td> <td>1.007256e+06</td> <td>...</td> <td>10.732723</td> <td>2.14034</td> <td>10.930583</td> <td>956.306694</td> <td>117.419062</td> <td>10.361670</td> <td>3436.194754</td> <td>6.249342e+16</td> <td>9866.685225</td> <td>104.420975</td> <td>9.171168</td> <td>10762.025617</td> <td>9.205254e+05</td> <td>10.627956</td> <td>10.101622</td> <td>105133.566646</td> <td>2.740250</td> <td>55.449159</td> <td>10959.655054</td> <td>2.160671</td> <td>1111.015635</td> <td>1.118527e+06</td> <td>10.342601</td> <td>1030.540259</td> <td>10097.006670</td> <td>9039.074820</td> <td>10895.768148</td> <td>10315.088493</td> <td>106898.299599</td> <td>195.245438</td> <td>10.618901</td> <td>10.456550</td> <td>1112.699713</td> <td>NaN</td> <td>NaN</td> <td>106685.647900</td> <td>7428.338174</td> <td>10.405107</td> <td>107051.806312</td> <td>2.297040</td> </tr> <tr> <th>1209</th> <td>1209.0</td> <td>94119.048262</td> <td>NaN</td> <td>88398.586879</td> <td>1298.024079</td> <td>8905.109893</td> <td>10.294486</td> <td>103347.543915</td> <td>1.087571e+06</td> <td>106082.959731</td> <td>2.345450</td> <td>1.074165e+06</td> <td>49595.639929</td> <td>1057.051949</td> <td>103147.267707</td> <td>NaN</td> <td>104.099172</td> <td>11275.080883</td> <td>115055.523086</td> <td>105201.547958</td> <td>10.358605</td> <td>2.872759</td> <td>107834.745605</td> <td>10.070086</td> <td>2708.039945</td> <td>90.315251</td> <td>4502.083820</td> <td>2267.035496</td> <td>206892.199058</td> <td>1.016735e+06</td> <td>8545.036877</td> <td>NaN</td> <td>818.975938</td> <td>95.255808</td> <td>2614.046035</td> <td>1002.028549</td> <td>11.262573</td> <td>3.016052</td> <td>10912.480045</td> <td>1.016656e+06</td> <td>...</td> <td>10.447547</td> <td>NaN</td> <td>10.502198</td> <td>967.481047</td> <td>88.216016</td> <td>10.535296</td> <td>3548.968573</td> <td>3.358649e+16</td> <td>8140.800029</td> <td>98.172030</td> <td>11.651412</td> <td>8779.078077</td> <td>7.920442e+05</td> <td>10.525088</td> <td>10.468168</td> <td>104071.834129</td> <td>2.615953</td> <td>130.309663</td> <td>10513.170240</td> <td>2.228708</td> <td>728.052692</td> <td>1.147362e+06</td> <td>9.968195</td> <td>1077.035231</td> <td>7580.079750</td> <td>8509.033486</td> <td>10228.351982</td> <td>10327.801413</td> <td>100144.263391</td> <td>310.183226</td> <td>10.887052</td> <td>10.836007</td> <td>1124.755976</td> <td>988.193910</td> <td>102076.305244</td> <td>101964.413583</td> <td>6470.242459</td> <td>9.786964</td> <td>NaN</td> <td>2.222794</td> </tr> <tr> <th>1210</th> <td>1210.0</td> <td>NaN</td> <td>3356.949591</td> <td>97081.843123</td> <td>1002.778571</td> <td>10864.284014</td> <td>10.797471</td> <td>102894.681201</td> <td>NaN</td> <td>100102.393811</td> <td>2.436208</td> <td>1.072574e+06</td> <td>37587.588730</td> <td>1047.896435</td> <td>105241.465707</td> <td>93.329187</td> <td>102.255382</td> <td>11668.076593</td> <td>115055.525882</td> <td>85619.926316</td> <td>10.732048</td> <td>2.422995</td> <td>104044.942484</td> <td>NaN</td> <td>2945.014802</td> <td>112.182044</td> <td>3202.074919</td> <td>4883.134639</td> <td>206892.208501</td> <td>1.095387e+06</td> <td>7036.096752</td> <td>8.290676</td> <td>878.350888</td> <td>93.612258</td> <td>2560.094596</td> <td>1011.331590</td> <td>10.580875</td> <td>2.822595</td> <td>NaN</td> <td>1.085728e+06</td> <td>...</td> <td>10.115872</td> <td>2.15810</td> <td>9.868292</td> <td>1004.134878</td> <td>110.999990</td> <td>10.713020</td> <td>3394.243287</td> <td>1.335970e+17</td> <td>8371.821670</td> <td>89.703650</td> <td>9.220535</td> <td>8998.055593</td> <td>1.113826e+06</td> <td>10.302250</td> <td>10.883418</td> <td>101283.417629</td> <td>2.186525</td> <td>366.750195</td> <td>11376.166095</td> <td>2.186734</td> <td>1120.066965</td> <td>1.013800e+06</td> <td>11.734373</td> <td>1046.939030</td> <td>9132.087999</td> <td>5896.007658</td> <td>10706.113864</td> <td>10369.803817</td> <td>102404.821085</td> <td>NaN</td> <td>10.661966</td> <td>10.569144</td> <td>1010.143125</td> <td>1064.316139</td> <td>101477.589227</td> <td>104517.364548</td> <td>4922.920835</td> <td>8.566389</td> <td>103968.235402</td> <td>2.071553</td> </tr> <tr> <th>1211</th> <td>1211.0</td> <td>101744.439395</td> <td>3416.474452</td> <td>111000.425491</td> <td>893.080460</td> <td>9250.598106</td> <td>10.935695</td> <td>102906.878188</td> <td>NaN</td> <td>107003.164135</td> <td>2.547171</td> <td>1.087477e+06</td> <td>32084.633800</td> <td>1075.700568</td> <td>104998.478525</td> <td>118.678047</td> <td>106.993698</td> <td>13226.038641</td> <td>115055.543174</td> <td>97282.156471</td> <td>10.208538</td> <td>3.710694</td> <td>107439.936587</td> <td>10.753281</td> <td>4719.085520</td> <td>96.505582</td> <td>3419.271979</td> <td>3796.393911</td> <td>206892.165049</td> <td>1.006348e+06</td> <td>11518.011808</td> <td>10.803776</td> <td>1103.388499</td> <td>106.356520</td> <td>2583.097413</td> <td>1081.964569</td> <td>11.453524</td> <td>3.203942</td> <td>10257.152912</td> <td>9.292065e+05</td> <td>...</td> <td>8.157006</td> <td>2.16880</td> <td>8.844200</td> <td>1005.897320</td> <td>96.253172</td> <td>NaN</td> <td>3289.749206</td> <td>9.364744e+16</td> <td>9170.136304</td> <td>97.067706</td> <td>NaN</td> <td>NaN</td> <td>1.148141e+06</td> <td>10.989940</td> <td>10.204516</td> <td>100896.544241</td> <td>2.720932</td> <td>49.567830</td> <td>8013.156899</td> <td>2.550404</td> <td>916.073375</td> <td>1.080536e+06</td> <td>9.101128</td> <td>1013.211838</td> <td>12517.066013</td> <td>10990.064488</td> <td>10349.678752</td> <td>10096.876996</td> <td>NaN</td> <td>322.445715</td> <td>10.599132</td> <td>10.350638</td> <td>962.755003</td> <td>1093.734877</td> <td>105353.550546</td> <td>106061.798352</td> <td>9302.374002</td> <td>10.949418</td> <td>109317.619776</td> <td>2.496408</td> </tr> </tbody> </table> <p>5 rows × 833 columns</p> </div> ```python column_names_y = ['id','y'] raw_dataset_y = pd.read_csv('/content/y_train.csv', names=column_names_y, na_values = "?", comment='\t', sep=",", skipinitialspace=True, skiprows=True) dataset_y = raw_dataset_y.copy() dataset_y.tail() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>id</th> <th>y</th> </tr> </thead> <tbody> <tr> <th>1207</th> <td>1207.0</td> <td>66.0</td> </tr> <tr> <th>1208</th> <td>1208.0</td> <td>73.0</td> </tr> <tr> <th>1209</th> <td>1209.0</td> <td>74.0</td> </tr> <tr> <th>1210</th> <td>1210.0</td> <td>78.0</td> </tr> <tr> <th>1211</th> <td>1211.0</td> <td>64.0</td> </tr> </tbody> </table> </div> # Print the missing values ```python missing_values = dataset_x.isna().sum() print (missing_values) ``` id 0 x0 81 x1 103 x2 92 x3 91 ... x827 83 x828 78 x829 98 x830 84 x831 92 Length: 833, dtype: int64 # Split the data into training and test data ```python # Split using sklearn.model_selection x_train, x_test, y_train, y_test = train_test_split(dataset_x, dataset_y, test_size=0.2, random_state = 100) ``` ```python train_stats = x_train.describe() train_stats.pop("id") train_stats = train_stats.transpose() train_stats ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>count</th> <th>mean</th> <th>std</th> <th>min</th> <th>25%</th> <th>50%</th> <th>75%</th> <th>max</th> </tr> </thead> <tbody> <tr> <th>x0</th> <td>909.0</td> <td>99849.359545</td> <td>9534.020258</td> <td>65533.368423</td> <td>93818.485147</td> <td>100183.062423</td> <td>105994.290528</td> <td>130226.576502</td> </tr> <tr> <th>x1</th> <td>885.0</td> <td>3698.730375</td> <td>943.683864</td> <td>180.312021</td> <td>3076.550570</td> <td>3651.110055</td> <td>4303.892503</td> <td>7265.213902</td> </tr> <tr> <th>x2</th> <td>891.0</td> <td>99975.389109</td> <td>9540.065988</td> <td>68544.573581</td> <td>93937.346571</td> <td>99386.035114</td> <td>106102.200889</td> <td>132221.045067</td> </tr> <tr> <th>x3</th> <td>898.0</td> <td>999.944996</td> <td>100.903669</td> <td>694.745271</td> <td>935.303439</td> <td>999.571797</td> <td>1068.606823</td> <td>1434.200505</td> </tr> <tr> <th>x4</th> <td>890.0</td> <td>10001.743350</td> <td>1001.473353</td> <td>6681.561828</td> <td>9339.312428</td> <td>10021.924636</td> <td>10646.003276</td> <td>13560.223285</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <th>x827</th> <td>906.0</td> <td>104990.967566</td> <td>2761.209013</td> <td>100015.768596</td> <td>102783.100024</td> <td>104986.305216</td> <td>107352.370223</td> <td>109999.847537</td> </tr> <tr> <th>x828</th> <td>907.0</td> <td>6827.704539</td> <td>1387.835714</td> <td>1696.036569</td> <td>6002.316474</td> <td>6835.947954</td> <td>7652.607118</td> <td>11276.075121</td> </tr> <tr> <th>x829</th> <td>884.0</td> <td>10.021817</td> <td>0.982265</td> <td>6.899008</td> <td>9.378562</td> <td>9.977236</td> <td>10.676450</td> <td>13.188278</td> </tr> <tr> <th>x830</th> <td>902.0</td> <td>104960.353706</td> <td>2845.423469</td> <td>100003.049706</td> <td>102653.373914</td> <td>104838.184005</td> <td>107428.898901</td> <td>109993.046071</td> </tr> <tr> <th>x831</th> <td>893.0</td> <td>2.269127</td> <td>0.169559</td> <td>1.589261</td> <td>2.173057</td> <td>2.291077</td> <td>2.374205</td> <td>2.846222</td> </tr> </tbody> </table> <p>832 rows × 8 columns</p> </div> # Fill the NaN in the training data set with the median values of each column ```python x_train = x_train.fillna(x_train.median()) x_test = x_test.fillna(x_test.median()) missing_values = x_train.isna().sum() print (missing_values) ``` id 0 x0 0 x1 0 x2 0 x3 0 .. x827 0 x828 0 x829 0 x830 0 x831 0 Length: 833, dtype: int64 # Remove the unnecessary "id" label ```python y_train.pop("id") y_test.pop("id") ``` 1143 1143.0 941 941.0 365 365.0 467 467.0 615 615.0 ... 156 156.0 689 689.0 28 28.0 69 69.0 1198 1198.0 Name: id, Length: 243, dtype: float64 # Feature Extraction using autofeat ```python fsel = FeatureSelector(featsel_runs=4, max_it=150, w_thr=1e-6, keep=None, n_jobs=1, verbose=1) new_X = fsel.fit_transform(pd.DataFrame(x_train, columns=column_names_x), y_train) print(new_X.columns) df_train = pd.DataFrame(x_train, columns=column_names_x) df_test = pd.DataFrame(x_test, columns=column_names_x) ``` /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:724: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). y = column_or_1d(y, warn=True) [featsel] Scaling data...done. [featsel] 220/833 features after univariate filtering [featsel] Feature selection run 1/4 [featsel] Feature selection run 2/4 [featsel] Feature selection run 3/4 [featsel] Feature selection run 4/4 [featsel] 28 features after 4 feature selection runs [featsel] 28 features after correlation filtering [featsel] 21 features after noise filtering [featsel] 21 final features selected (including 0 original keep features). Index(['x400', 'x635', 'x757', 'x516', 'x809', 'x214', 'x556', 'x617', 'x93', 'x346', 'x596', 'x255', 'x309', 'x252', 'x292', 'x738', 'x537', 'x593', 'x474', 'x614', 'x502'], dtype='object') # Keep only the necessary features ```python dataset_selected_x = x_train.copy() x_test_selected= x_test.copy() #accepted=[400, 757, 635, 516, 132, 15, 809, 116, 214, #556, 617, 93, 346, 596, 309, 252, 292, 474, #593, 614] accepted=[400, 635, 757, 516, 809, 214, 556, 617, 93, 346, 596, 255, 309, 252, 292, 738, 537, 593, 474, 614, 502] for j in range(832): if (j in accepted): print (j) else: del dataset_selected_x['x'+str(j)] del x_test_selected['x'+str(j)] train_stats = dataset_selected_x.describe() train_stats.pop("id") train_stats = train_stats.transpose() train_stats ``` 93 214 252 255 292 309 346 400 474 502 516 537 556 593 596 614 617 635 738 757 809 <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>count</th> <th>mean</th> <th>std</th> <th>min</th> <th>25%</th> <th>50%</th> <th>75%</th> <th>max</th> </tr> </thead> <tbody> <tr> <th>x93</th> <td>969.0</td> <td>3.519955e+03</td> <td>6.123839e+02</td> <td>1.789851e+03</td> <td>3.122307e+03</td> <td>3.492040e+03</td> <td>3.882096e+03</td> <td>5.902057e+03</td> </tr> <tr> <th>x214</th> <td>969.0</td> <td>1.686814e+03</td> <td>4.246669e+02</td> <td>3.857756e+02</td> <td>1.438003e+03</td> <td>1.657997e+03</td> <td>1.929010e+03</td> <td>3.719025e+03</td> </tr> <tr> <th>x252</th> <td>969.0</td> <td>5.153136e+03</td> <td>6.443209e+03</td> <td>-1.066389e+04</td> <td>2.036529e+03</td> <td>3.051817e+03</td> <td>5.396992e+03</td> <td>5.218476e+04</td> </tr> <tr> <th>x255</th> <td>969.0</td> <td>1.063172e+04</td> <td>1.847941e+03</td> <td>3.258064e+03</td> <td>9.580092e+03</td> <td>1.053304e+04</td> <td>1.170004e+04</td> <td>1.742768e+04</td> </tr> <tr> <th>x292</th> <td>969.0</td> <td>1.289525e+05</td> <td>1.561997e+04</td> <td>7.115248e+04</td> <td>1.201669e+05</td> <td>1.282218e+05</td> <td>1.377145e+05</td> <td>1.982293e+05</td> </tr> <tr> <th>x309</th> <td>969.0</td> <td>1.360934e+04</td> <td>2.104294e+03</td> <td>1.787475e+03</td> <td>1.241801e+04</td> <td>1.355888e+04</td> <td>1.480791e+04</td> <td>2.142239e+04</td> </tr> <tr> <th>x346</th> <td>969.0</td> <td>7.264234e+03</td> <td>1.238998e+03</td> <td>2.195927e+03</td> <td>6.577637e+03</td> <td>7.355575e+03</td> <td>8.085946e+03</td> <td>1.121581e+04</td> </tr> <tr> <th>x400</th> <td>969.0</td> <td>2.419177e+00</td> <td>1.566607e-01</td> <td>1.441218e+00</td> <td>2.325897e+00</td> <td>2.416256e+00</td> <td>2.507563e+00</td> <td>3.029658e+00</td> </tr> <tr> <th>x474</th> <td>969.0</td> <td>2.138704e+05</td> <td>3.363320e+04</td> <td>6.580233e+04</td> <td>1.951336e+05</td> <td>2.113702e+05</td> <td>2.311579e+05</td> <td>4.824998e+05</td> </tr> <tr> <th>x502</th> <td>969.0</td> <td>7.341196e+13</td> <td>5.051213e+13</td> <td>-8.384285e+13</td> <td>4.129257e+13</td> <td>6.245895e+13</td> <td>9.198935e+13</td> <td>3.816907e+14</td> </tr> <tr> <th>x516</th> <td>969.0</td> <td>2.633410e+00</td> <td>2.851324e-01</td> <td>1.586758e+00</td> <td>2.461447e+00</td> <td>2.632617e+00</td> <td>2.810227e+00</td> <td>3.709460e+00</td> </tr> <tr> <th>x537</th> <td>969.0</td> <td>2.131250e+05</td> <td>3.401347e+04</td> <td>6.499225e+04</td> <td>1.936266e+05</td> <td>2.105931e+05</td> <td>2.305157e+05</td> <td>4.810740e+05</td> </tr> <tr> <th>x556</th> <td>969.0</td> <td>6.058210e+03</td> <td>7.982839e+02</td> <td>3.040824e+03</td> <td>5.588225e+03</td> <td>5.998493e+03</td> <td>6.472923e+03</td> <td>9.103862e+03</td> </tr> <tr> <th>x593</th> <td>969.0</td> <td>6.306444e+04</td> <td>3.517018e+04</td> <td>2.381309e+04</td> <td>4.825502e+04</td> <td>5.195309e+04</td> <td>5.625009e+04</td> <td>2.232860e+05</td> </tr> <tr> <th>x596</th> <td>969.0</td> <td>1.994849e+04</td> <td>2.631193e+03</td> <td>9.693873e+03</td> <td>1.845468e+04</td> <td>1.980071e+04</td> <td>2.136755e+04</td> <td>3.037075e+04</td> </tr> <tr> <th>x614</th> <td>969.0</td> <td>1.219718e+06</td> <td>1.863793e+05</td> <td>4.090431e+05</td> <td>1.112420e+06</td> <td>1.220616e+06</td> <td>1.319038e+06</td> <td>1.976749e+06</td> </tr> <tr> <th>x617</th> <td>969.0</td> <td>1.528155e+03</td> <td>6.897489e+02</td> <td>-6.478282e+02</td> <td>1.039647e+03</td> <td>1.425202e+03</td> <td>1.899843e+03</td> <td>5.028253e+03</td> </tr> <tr> <th>x635</th> <td>969.0</td> <td>2.552238e+00</td> <td>2.211141e-01</td> <td>1.536237e+00</td> <td>2.441985e+00</td> <td>2.571545e+00</td> <td>2.685138e+00</td> <td>3.319348e+00</td> </tr> <tr> <th>x738</th> <td>969.0</td> <td>4.070505e+05</td> <td>5.419321e+04</td> <td>1.500802e+05</td> <td>3.777463e+05</td> <td>4.051612e+05</td> <td>4.389639e+05</td> <td>6.508670e+05</td> </tr> <tr> <th>x757</th> <td>969.0</td> <td>2.556026e+00</td> <td>2.138400e-01</td> <td>1.513769e+00</td> <td>2.448038e+00</td> <td>2.577740e+00</td> <td>2.684761e+00</td> <td>3.292584e+00</td> </tr> <tr> <th>x809</th> <td>969.0</td> <td>8.301919e+01</td> <td>1.026332e+02</td> <td>-1.034091e+02</td> <td>3.267047e+01</td> <td>5.403747e+01</td> <td>9.901100e+01</td> <td>1.245880e+03</td> </tr> </tbody> </table> </div> # Regression model ```python rfr = ExtraTreesRegressor(n_jobs=1, max_depth=None, n_estimators=180, random_state=0, min_samples_split=3, max_features=None) rfr.fit(dataset_selected_x, np.ravel(y_train)) y_pred = rfr.predict(x_test_selected) score = r2_score(y_test, y_pred) print(score) ``` 0.6037280104368132 # Export the file with our predictions for submission ```python #accepted=[400, 757, 635, 516, 132, 15, 809, 116, 214, #556, 617, 93, 346, 596, 309, 252, 292, 474, #593, 614] accepted=[400, 635, 757, 516, 809, 214, 556, 617, 93, 346, 596, 255, 309, 252, 292, 738, 537, 593, 474, 614, 502] column_names_x = ['id'] for i in range(832): column_names_x.append('x'+str(i)) raw_dataset_x_test = pd.read_csv('/content/X_test.csv', names=column_names_x, na_values = "?", comment='\t', sep=",", skipinitialspace=True, skiprows=True) dataset_x_test = raw_dataset_x_test.copy() dataset_x_test.tail() dataset_x_test = dataset_x_test.fillna(dataset_x_test.median()) dataset_selected_x_test = dataset_x_test.copy() for j in range(832): if (j in accepted): print (j) else: del dataset_selected_x_test['x'+str(j)] predictions = rfr.predict(dataset_selected_x_test) index = 0.0 with open('predictions.txt', 'w') as f: f.write("%s\n" % "id,y") for predict in predictions: writing_str = str(index)+','+str(predict.item(0)) f.write("%s\n" % writing_str) index = index + 1 ``` 93 214 252 255 292 309 346 400 474 502 516 537 556 593 596 614 617 635 738 757 809
Inductive subseq : list nat -> list nat -> Prop := | first_case: forall (l2: list nat), subseq [] l2 | second_case: forall (l1 l2: list nat) (x: nat), subseq l1 l2 -> subseq (x :: l1) (x :: l2) | third_case: forall (l1 l2: list nat) (x: nat), subseq l1 l2 -> subseq l1 (x :: l2). Theorem subseq_refl : forall (l: list nat), subseq l l. Proof. intros. induction l as [| h t IH]. - apply first_case. - apply second_case. apply IH. Qed. Theorem subseq_app : forall (l1 l2 l3: list nat), subseq l1 l2 -> subseq l1 (l2 ++ l3). Proof. intros. induction H. - apply first_case. - simpl. apply second_case. apply IHsubseq. - simpl. apply third_case. apply IHsubseq. Qed.
# install.packages("httr") library("httr") print("Calling R Functions ~~~") r <- GET("http://localhost:8000/echo", query = list(msg = "hello")) print(content(r)$msg) r <- POST("http://localhost:8000/sum", body = list(a='2',b='3'), encode = "json") print(content(r)) print("Calling Python Functions ~~~") r <- GET("http://localhost:5000/echo", query = list(msg = "hello")) print(content(r)$msg) r <- POST("http://localhost:5000/sum", body = list(a='2',b='3'), encode = "json") print(content(r))
lemmas sums_Re = bounded_linear.sums [OF bounded_linear_Re]
%!TEX root = main.tex \appendix \onecolumn \section*{Overview} \begin{table}[H] \centering \hspace*{-1cm}\begin{tabular}{lllll} \toprule Name & Function $\varphi(x)$ & Range of Values & $\varphi'(x)$ & Used by \\\midrule % Sign function$^\dagger$ & $\begin{cases}+1 &\text{if } x \geq 0\\-1 &\text{if } x < 0\end{cases}$ & $\Set{-1,1}$ & $0$ & \cite{971754} \\ \parbox[t]{2.6cm}{Heaviside\\step function$^\dagger$} & $\begin{cases}+1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ & $\Set{0, 1}$ & $0$ & \cite{mcculloch1943logical}\\ Logistic function & $\frac{1}{1+e^{-x}}$ & $[0, 1]$ & $\frac{e^x}{(e^x +1)^2}$ & \cite{duch1999survey} \\ Tanh & $\frac{e^x - e^{-x}}{e^x + e^{-x}} = \tanh(x)$ & $[-1, 1]$ & $\sech^2(x)$ & \cite{LeNet-5,Thoma:2014}\\ \gls{ReLU}$^\dagger$ & $\max(0, x)$ & $[0, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ & \cite{AlexNet-2012}\\ \parbox[t]{2.6cm}{\gls{LReLU}$^\dagger$\footnotemark\\(\gls{PReLU})} & $\varphi(x) = \max(\alpha x, x)$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha &\text{if } x < 0\end{cases}$ & \cite{maas2013rectifier,he2015delving} \\ Softplus & $\log(e^x + 1)$ & $(0, +\infty)$ & $\frac{e^x}{e^x + 1}$ & \cite{dugas2001incorporating,glorot2011deep} \\ \gls{ELU} & $\begin{cases}x &\text{if } x > 0\\\alpha (e^x - 1) &\text{if } x \leq 0\end{cases}$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha e^x &\text{otherwise}\end{cases}$ & \cite{clevert2015fast} \\ Softmax$^\ddagger$ & $o(\mathbf{x})_j = \frac{e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ & $[0, 1]^K$ & $o(\mathbf{x})_j \cdot \frac{\sum_{k=1}^K e^{x_k} - e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ & \cite{AlexNet-2012,Thoma:2014}\\ Maxout$^\ddagger$ & $o(\mathbf{x}) = \max_{x \in \mathbf{x}} x$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x_i = \max \mathbf{x}\\0 &\text{otherwise}\end{cases}$ & \cite{goodfellow2013maxout} \\ \bottomrule \end{tabular} \caption[Activation functions]{Overview of activation functions. Functions marked with $\dagger$ are not differentiable at 0 and functions marked with $\ddagger$ operate on all elements of a layer simultaneously. The hyperparameters $\alpha \in (0, 1)$ of Leaky ReLU and ELU are typically $\alpha = 0.01$. Other activation function like randomized leaky ReLUs exist~\cite{xu2015empirical}, but are far less commonly used.\\ Some functions are smoothed versions of others, like the logistic function for the Heaviside step function, tanh for the sign function, softplus for ReLU.\\ Softmax is the standard activation function for the last layer of a classification network as it produces a probability distribution. See \Cref{fig:activation-functions-plot} for a plot of some of them.} \label{table:activation-functions-overview} \end{table} \footnotetext{$\alpha$ is a hyperparameter in leaky ReLU, but a learnable parameter in the parametric ReLU function.} \section*{Evaluation Results} \glsunset{LReLU} \begin{table}[H] \centering \begin{tabular}{@{\extracolsep{4pt}}lcccccc@{}} \toprule \multirow{2}{*}{Function} & \multicolumn{4}{c}{Single model} & \multicolumn{2}{c}{Ensemble of 10} \\\cline{2-3}\cline{4-5}\cline{6-7} & \multicolumn{2}{c}{Training set} &\multicolumn{2}{c}{Test set} & Training set & Test set \\\midrule Identity & \SI{66.25}{\percent} & $\boldsymbol{\sigma=0.77}$ &\SI{56.74}{\percent} & \textbf{$\sigma=0.51$} & \SI{68.77}{\percent} & \SI{58.78}{\percent}\\ Logistic & \SI{51.87}{\percent} & $\sigma=3.64$ &\SI{46.54}{\percent} & $\sigma=3.22$ & \SI{61.19}{\percent} & \SI{54.58}{\percent}\\ Logistic$^-$ & \SI{66.49}{\percent} & $\sigma=1.99$ &\SI{57.84}{\percent} & $\sigma=1.15$ & \SI{69.04}{\percent} & \SI{60.10}{\percent}\\ Softmax & \SI{75.22}{\percent} & $\sigma=2.41$ &\SI{59.49}{\percent} & $\sigma=1.25$ & \SI{78.87}{\percent} & \SI{63.06}{\percent}\\ Tanh & \SI{67.27}{\percent} & $\sigma=2.38$ &\SI{55.70}{\percent} & $\sigma=1.44$ & \SI{70.21}{\percent} & \SI{58.10}{\percent}\\ Softsign & \SI{66.43}{\percent} & $\sigma=1.74$ &\SI{55.75}{\percent} & $\sigma=0.93$ & \SI{69.78}{\percent} & \SI{58.40}{\percent}\\ \gls{ReLU} & \SI{78.62}{\percent} & $\sigma=2.15$ &\SI{62.18}{\percent} & $\sigma=0.99$ & \SI{81.81}{\percent} & \SI{64.57}{\percent}\\ \gls{ReLU}$^-$ & \SI{76.01}{\percent} & $\sigma=2.31$ &\SI{62.87}{\percent} & $\sigma=1.08$ & \SI{78.18}{\percent} & \SI{64.81}{\percent}\\ Softplus & \SI{66.75}{\percent} & $\sigma=2.45$ &\SI{56.68}{\percent} & $\sigma=1.32$ & \SI{71.27}{\percent} & \SI{60.26}{\percent}\\ S2ReLU & \SI{63.32}{\percent} & $\sigma=1.69$ &\SI{56.99}{\percent} & $\sigma=1.14$ & \SI{65.80}{\percent} & \SI{59.20}{\percent}\\ \gls{LReLU} & \SI{74.92}{\percent} & $\sigma=2.49$ &\SI{61.86}{\percent} & $\sigma=1.23$ & \SI{77.67}{\percent} & \SI{64.01}{\percent}\\ \gls{PReLU} & \textbf{\SI{80.01}{\percent}} & $\sigma=2.03$ &\SI{62.16}{\percent} & $\sigma=0.73$ & \textbf{\SI{83.50}{\percent}} & \textbf{\SI{64.79}{\percent}}\\ \gls{ELU} & \SI{76.64}{\percent} & $\sigma=1.48$ &\textbf{\SI{63.38}{\percent}} & $\sigma=0.55$ & \SI{78.30}{\percent} & \SI{64.70}{\percent}\\ \bottomrule \end{tabular} \caption[Activation function evaluation results on CIFAR-100]{Training and test accuracy of adjusted baseline models trained with different activation functions on CIFAR-100. For \gls{LReLU}, $\alpha = 0.3$ was chosen.} \label{table:CIFAR-100-accuracies-activation-functions} \end{table} \begin{table}[H] \centering \setlength\tabcolsep{1.5pt} \begin{tabular}{@{\extracolsep{4pt}}lcccccccr@{}} \toprule \multirow{2}{*}{Function} & \multicolumn{4}{c}{Single model} & \multicolumn{2}{c}{Ensemble of 10} & \multicolumn{2}{c}{Epochs}\\\cline{2-5}\cline{6-7}\cline{8-9} & \multicolumn{2}{c}{Training set} &\multicolumn{2}{c}{Test set} & Train & Test & Range & \multicolumn{1}{c}{Mean} \\\midrule Identity & \SI{87.92}{\percent} & $\sigma=0.40$ & \SI{84.69}{\percent} & $\sigma=0.08$ & \SI{88.59}{\percent} & \SI{85.43}{\percent} & \hphantom{0}92 -- 140 & 114.5\\%TODO: Really? Logistic & \SI{81.46}{\percent} & $\sigma=5.08$ & \SI{79.67}{\percent} & $\sigma=4.85$ & \SI{86.38}{\percent} & \SI{84.60}{\percent} & \hphantom{0}\textbf{58} -- \hphantom{0}\textbf{91} & \textbf{77.3}\\ Softmax & \SI{88.19}{\percent} & $\sigma=0.31$ & \SI{84.70}{\percent} & $\sigma=0.15$ & \SI{88.69}{\percent} & \SI{85.43}{\percent} & 124 -- 171& 145.8\\ Tanh & \SI{88.41}{\percent} & $\sigma=0.36$ & \SI{84.46}{\percent} & $\sigma=0.27$ & \SI{89.24}{\percent} & \SI{85.45}{\percent} & \hphantom{0}89 -- 123 & 108.7\\ Softsign & \SI{88.00}{\percent} & $\sigma=0.47$ & \SI{84.46}{\percent} & $\sigma=0.23$ & \SI{88.77}{\percent} & \SI{85.33}{\percent} & \hphantom{0}77 -- 119 & 104.1\\ \gls{ReLU} & \SI{88.93}{\percent} & $\sigma=0.46$ & \textbf{\SI{85.35}{\percent}} & $\sigma=0.21$ & \SI{89.35}{\percent} & \SI{85.95}{\percent} & \hphantom{0}96 -- 132 & 102.8\\ Softplus & \SI{88.42}{\percent} & $\boldsymbol{\sigma=0.29}$ & \SI{85.16}{\percent} & $\sigma=0.15$ & \SI{88.90}{\percent} & \SI{85.73}{\percent} & 108 -- 143 & 121.0\\ \gls{LReLU} & \SI{88.61}{\percent} & $\sigma=0.41$ & \SI{85.21}{\percent} & $\boldsymbol{\sigma=0.05}$ & \SI{89.07}{\percent} & \SI{85.83}{\percent} & \hphantom{0}87 -- 117 & 104.5\\ \gls{PReLU} & \textbf{\SI{89.62}{\percent}} & $\sigma=0.41$ & \textbf{\SI{85.35}{\percent}} & $\sigma=0.17$& \textbf{\SI{90.10}{\percent}} & \SI{86.01}{\percent} & \hphantom{0}85 -- 111 & 100.5\\ \gls{ELU} & \SI{89.49}{\percent} & $\sigma=0.42$ & \textbf{\SI{85.35}{\percent}} & $\sigma=0.10$ & \SI{89.94}{\percent} & \textbf{\SI{86.03}{\percent}} & \hphantom{0}73 -- 113 & 92.4\\ \bottomrule \end{tabular} \caption[Activation function evaluation results on HASYv2]{Test accuracy of adjusted baseline models trained with different activation functions on HASYv2. For \gls{LReLU}, $\alpha = 0.3$ was chosen.} \label{table:HASYv2-accuracies-activation-functions} \end{table} \begin{table}[H] \centering \setlength\tabcolsep{1.5pt} \begin{tabular}{@{\extracolsep{4pt}}lcccccccr@{}} \toprule \multirow{2}{*}{Function} & \multicolumn{4}{c}{Single model} & \multicolumn{2}{c}{Ensemble of 10} & \multicolumn{2}{c}{Epochs}\\\cline{2-5}\cline{6-7}\cline{8-9} & \multicolumn{2}{c}{Training set} &\multicolumn{2}{c}{Test set} & Train & Test & Range & \multicolumn{1}{c}{Mean} \\\midrule Identity & \SI{87.49}{\percent} & $\sigma=2.50$ & \SI{69.86}{\percent} & $\sigma=1.41$ & \SI{89.78}{\percent} & \SI{71.90}{\percent} & \hphantom{0}51 -- \hphantom{0}65 & 53.4\\ Logistic & \SI{45.32}{\percent} & $\sigma=14.88$& \SI{40.85}{\percent} & $\sigma=12.56$ & \SI{51.06}{\percent} & \SI{45.49}{\percent} & \hphantom{0}38 -- \hphantom{0}93 & 74.6\\ Softmax & \SI{87.90}{\percent} & $\sigma=3.58$ & \SI{67.91}{\percent} & $\sigma=2.32$ & \SI{91.51}{\percent} & \SI{70.96}{\percent} & 108 -- 150 & 127.5\\ Tanh & \SI{85.38}{\percent} & $\sigma=4.04$ & \SI{67.65}{\percent} & $\sigma=2.01$ & \SI{90.47}{\percent} & \SI{71.29}{\percent} & 48 -- \hphantom{0}92 & 65.2\\ Softsign & \SI{88.57}{\percent} & $\sigma=4.00$ & \SI{69.32}{\percent} & $\sigma=1.68$ & \SI{93.04}{\percent} & \SI{72.40}{\percent} & 55 -- 117 & 83.2\\ \gls{ReLU} & \SI{94.35}{\percent} & $\sigma=3.38$ & \SI{71.01}{\percent} & $\sigma=1.63$ & \SI{98.20}{\percent} & \SI{74.85}{\percent} & 52 -- \hphantom{0}98 & 75.5\\ Softplus & \SI{83.03}{\percent} & $\sigma=2.07$ & \SI{68.28}{\percent} & $\sigma=1.74$ & \SI{93.04}{\percent} & \SI{75.99}{\percent} & 56 -- \hphantom{0}89 & 68.9\\ \gls{LReLU} & \SI{93.83}{\percent} & $\sigma=3.89$ & \SI{74.66}{\percent} & $\sigma=2.11$ & \SI{97.56}{\percent} & \SI{78.08}{\percent} & 52 -- 120 & 80.1\\ \gls{PReLU} & \SI{95.53}{\percent} & $\sigma=1.92$ & \SI{71.69}{\percent} & $\sigma=1.37$ & \SI{98.17}{\percent} & \SI{74.69}{\percent} & 59 -- 101 & 78.8\\ \gls{ELU} & \SI{95.42}{\percent} & $\sigma=3.57$ & \SI{75.09}{\percent} & $\sigma=2.39$ & \SI{98.54}{\percent} & \SI{78.66}{\percent} & 66 -- \hphantom{0}72 & 67.2\\ \bottomrule \end{tabular} \caption[Activation function evaluation results on STL-10]{Test accuracy of adjusted baseline models trained with different activation functions on STL-10. For \gls{LReLU}, $\alpha = 0.3$ was chosen.} \label{table:STL-10-accuracies-activation-functions} \end{table} \begin{table}[H] \centering \hspace*{-1cm}\begin{tabular}{lllll} \toprule Name & Function $\varphi(x)$ & Range of Values & $\varphi'(x)$ \\\midrule % & Used by Sign function$^\dagger$ & $\begin{cases}+1 &\text{if } x \geq 0\\-1 &\text{if } x < 0\end{cases}$ & $\Set{-1,1}$ & $0$ \\%& \cite{971754} \\ \parbox[t]{2.6cm}{Heaviside\\step function$^\dagger$} & $\begin{cases}+1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ & $\Set{0, 1}$ & $0$ \\%& \cite{mcculloch1943logical}\\ Logistic function & $\frac{1}{1+e^{-x}}$ & $[0, 1]$ & $\frac{e^x}{(e^x +1)^2}$ \\%& \cite{duch1999survey} \\ Tanh & $\frac{e^x - e^{-x}}{e^x + e^{-x}} = \tanh(x)$ & $[-1, 1]$ & $\sech^2(x)$ \\%& \cite{LeNet-5,Thoma:2014}\\ \gls{ReLU}$^\dagger$ & $\max(0, x)$ & $[0, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ \\%& \cite{AlexNet-2012}\\ \parbox[t]{2.6cm}{\gls{LReLU}$^\dagger$\footnotemark\\(\gls{PReLU})} & $\varphi(x) = \max(\alpha x, x)$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha &\text{if } x < 0\end{cases}$ \\%& \cite{maas2013rectifier,he2015delving} \\ Softplus & $\log(e^x + 1)$ & $(0, +\infty)$ & $\frac{e^x}{e^x + 1}$ \\%& \cite{dugas2001incorporating,glorot2011deep} \\ \gls{ELU} & $\begin{cases}x &\text{if } x > 0\\\alpha (e^x - 1) &\text{if } x \leq 0\end{cases}$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha e^x &\text{otherwise}\end{cases}$ \\%& \cite{clevert2015fast} \\ Softmax$^\ddagger$ & $o(\mathbf{x})_j = \frac{e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ & $[0, 1]^K$ & $o(\mathbf{x})_j \cdot \frac{\sum_{k=1}^K e^{x_k} - e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ \\%& \cite{AlexNet-2012,Thoma:2014}\\ Maxout$^\ddagger$ & $o(\mathbf{x}) = \max_{x \in \mathbf{x}} x$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x_i = \max \mathbf{x}\\0 &\text{otherwise}\end{cases}$ \\%& \cite{goodfellow2013maxout} \\ \bottomrule \end{tabular} \caption[Activation functions]{Overview of activation functions. Functions marked with $\dagger$ are not differentiable at 0 and functions marked with $\ddagger$ operate on all elements of a layer simultaneously. The hyperparameters $\alpha \in (0, 1)$ of Leaky ReLU and ELU are typically $\alpha = 0.01$. Other activation function like randomized leaky ReLUs exist~\cite{xu2015empirical}, but are far less commonly used.\\ Some functions are smoothed versions of others, like the logistic function for the Heaviside step function, tanh for the sign function, softplus for ReLU.\\ Softmax is the standard activation function for the last layer of a classification network as it produces a probability distribution. See \Cref{fig:activation-functions-plot} for a plot of some of them.} \label{table:activation-functions-overview} \end{table} \footnotetext{$\alpha$ is a hyperparameter in leaky ReLU, but a learnable parameter in the parametric ReLU function.} \begin{figure}[ht] \centering \begin{tikzpicture} \definecolor{color1}{HTML}{E66101} \definecolor{color2}{HTML}{FDB863} \definecolor{color3}{HTML}{B2ABD2} \definecolor{color4}{HTML}{5E3C99} \begin{axis}[ legend pos=north west, legend cell align={left}, axis x line=middle, axis y line=middle, x tick label style={/pgf/number format/fixed, /pgf/number format/fixed zerofill, /pgf/number format/precision=1}, y tick label style={/pgf/number format/fixed, /pgf/number format/fixed zerofill, /pgf/number format/precision=1}, grid = major, width=16cm, height=8cm, grid style={dashed, gray!30}, xmin=-2, % start the diagram at this x-coordinate xmax= 2, % end the diagram at this x-coordinate ymin=-1, % start the diagram at this y-coordinate ymax= 2, % end the diagram at this y-coordinate xlabel=x, ylabel=y, tick align=outside, enlargelimits=false] \addplot[domain=-2:2, color1, ultra thick,samples=500] {1/(1+exp(-x))}; \addplot[domain=-2:2, color2, ultra thick,samples=500] {tanh(x)}; \addplot[domain=-2:2, color4, ultra thick,samples=500] {max(0, x)}; \addplot[domain=-2:2, color4, ultra thick,samples=500, dashed] {ln(exp(x) + 1)}; \addplot[domain=-2:2, color3, ultra thick,samples=500, dotted] {max(x, exp(x) - 1)}; \addlegendentry{$\varphi_1(x)=\frac{1}{1+e^{-x}}$} \addlegendentry{$\varphi_2(x)=\tanh(x)$} \addlegendentry{$\varphi_3(x)=\max(0, x)$} \addlegendentry{$\varphi_4(x)=\log(e^x + 1)$} \addlegendentry{$\varphi_5(x)=\max(x, e^x - 1)$} \end{axis} \end{tikzpicture} \caption[Activation functions]{Activation functions plotted in $[-2, +2]$. $\tanh$ and ELU are able to produce negative numbers. The image of ELU, ReLU and Softplus is not bound on the positive side, whereas $\tanh$ and the logistic function are always below~1.} \label{fig:activation-functions-plot} \end{figure} \glsreset{LReLU} \twocolumn
function [signal, state] = flt_dynamicloreta(varargin) % Return the current source density for a given head model and data using % the cortically-constrained LORETA (low resolution electrical % tomographic analysis) with a Bayesian update scheme for hyperparameters. % The reconstructed CSD time-series (or source potential maps) will be % stored in signal.srcpot. This matrix has dimension [num_voxels x num_samples]. % % Author: Tim Mullen, Jan 2013, SCCN/INC/UCSD % Alejandro Ojeda, Jan 2013, SCCN/INC/UCSD % Christian Kothe, Jan 2013, SCCN/INC/UCSD if ~exp_beginfun('filter'), return; end declare_properties('name','Dynamic LORETA', 'experimental',true, 'independent_channels',false, 'independent_trials',false); arg_define(varargin, ... arg_norep({'signal','Signal'}), ... arg_nogui({'K','ForwardModel'},[],[],'Forward model (matrix)','shape','matrix'), ... arg_nogui({'L','LaplacianOperator'},[],[],'Laplacian operator. Sparse matrix of N sources x N sources, this is matrix is used as the square root of the precision matrix of the sources.'), ... arg_sub({'options','LoretaOptions'},{},... { ... arg({'maxTol','MaxTolerance'},1e-12,[0 Inf],'Tolerance for hyperparameter update loop','cat','Loreta Options'), ... arg({'maxIter','MaxIterations'},100,[1 Inf],'Maximum iterations for hyperparameter update loop','cat','Loreta Options'), ... arg({'gridSize','GridSize'},100,[1 Inf],'Lambda grid size.'), ... arg({'history','TrackHistory'},false,[],'Track history for hyperparameters'), ... arg({'verbose','VerboseOutput'},false,[],'Verbosity','cat','Loreta Options'), ... arg({'initNoiseFactor','InitialNoiseFactor'},0.001,[0 Inf],'Fraction of noise level. Used for initializing alpha parameter','cat','Loreta Options') ... arg({'block_size','BlockSize'},5, [], 'Block granularity for processing. The inverse operator will be updated using blocks of this many samples. This assumes that the inverse solution is spatially stationary over this many samples.'), ... arg({'skipFactor','SkipFactor'},0,[0 Inf],'Number of blocks to skip'), ... arg({'maxblocks','MaxBlocks'},Inf,[0 Inf],'Maximum number of blocks'), ... arg({'standardize','Standardize'},'all',{'none','channels','all'},'Rescale data to unit variance. If ''channels'', standardization is carried out across channels for each time point. If ''all'' each data sample is normalized by the standard deviation taken over all data.'), ... arg({'useGPU','UseGPU'},false,[],'Use GPU to accelerate computation.'), ... },'Additional options for Loreta function'), ... arg({'verb','Verbosity'},false,[],'Verbose output'), ... arg_nogui({'state','State'},[],[],'State object. When provided, hyperparameters will be estimated adaptively from prior state')); if verb fprintf('Estimating current source density using cLORETA (%s)\n',mfilename); end [nchs, npnts, ntrs] = size(signal.data); if isempty(block_size) || block_size > npnts block_size = npnts; end numsplits = floor(npnts/block_size); % if necessary, cast to double-precision if ~strcmpi(class(signal.data),'double') signal.data = double(signal.data); end % normData the data if ~strcmpi(normData,'none') switch normData case 'channels' scale = std(signal.data,[],1); case 'time' scale = std(signal.data,[],2); case 'all' scale = std(signal.data(:)); end signal.data = bsxfun(@rdivide,signal.data,scale); % scale = std(signal.data(:)); % signal.data = signal.data./scale; end if isempty(state) || ~isfield(state,'iLV') || isempty(state.iLV) if verb fprintf('...computing SVD of LFM.\n'); end % mode is offline or we are initializing online filter % perform one-time SVD for faster computation. [U,S,V] = svd(K/L,'econ'); state.iLV = L\V; state.s2 = diag(S).^2; %s^2 state.Ut = U'; state.sigma2 = repmat({options.sigma2},1,ntrs); state.tau2 = repmat({options.tau2},1,ntrs); end if npnts == 0 % no data signal.srcpot = []; state.srcweights = []; exp_endfun; return; end signal.srcpot = zeros([size(K,2), npnts, ntrs]); state.srcweights = zeros(size(L,1),nchs); sum_srcweights = zeros(size(L,1),nchs); signal.loretaHistory = struct([]); if verb fprintf('...assuming %d stationary blocks of length %d\n',numsplits,block_size); end % loop over all trials for tr=1:ntrs if verb fprintf('\nTrial (%d\%d).',tr,ntrs); end k = 0; % loop over sub-blocks and estimate CSD for each block for i=0:skipFactor+1:numsplits-1 if verb if i+1 >= floor(numsplits*(k+1)/10) k = k + 1; fprintf('%0.3g%%...',round((i/numsplits)*100)); end end range = 1+floor(i*npnts/numsplits) : min(npnts,floor((i+1)*npnts/numsplits)); % call (dynamic bayesian) loreta estimator [signal.srcpot(:,range,tr), state.sigma2{tr}, state.tau2{tr}, state.srcweights, tmpHist] ... = dynamicLoreta( signal.data(:,range,tr), state.Ut, state.s2, state.iLV,... state.sigma2{tr}, state.tau2{tr}, options); if ~isempty(tmpHist) signal.loretaHistory{tr} = [signal.loretaHistory{tr},tmpHist]; end if skipFactor > 0 % estimate CSD for samples between blocks using current inverse operator range = 1+floor((i+1)*npnts/numsplits) : min(npnts,floor((i+skipFactor+1)*npnts/numsplits)); signal.srcpot(:,range,tr) = state.srcweights*signal.data(:,range,tr); end % running sum sum_srcweights = sum_srcweights + state.srcweights; end end if numsplits > 1 % store the mean inverse operator over all splits state.srcweights = sum_srcweights/(numsplits*ntrs); end if ~strcmpi(normData,'none') % recale data to original units % signal.srcpot = signal.srcpot*scale; % state.srcweights = state.srcweights/scale; signal.srcpot = bsxfun(@times,signal.srcpot,scale); % signal.srcpot = bsxfun(@rdivide,signal.srcpot,std(signal.srcpot,[],1)); % state.srcweights = bsxfun(@times,state.srcweights,scale'); %state.srcweights/mean(scale); end if verb fprintf('done.\n'); end exp_endfun;
"""Tunes `param` until `expr` evaluates to zero within δ. `expr` must be monotonically increasing in terms of `param`.""" macro binary_opt(expr, param, min, max, δ) :(m = $min;M = $max;z=zero($δ); while(true) $(esc(param)) = (m+M)/2 println("$((m+M)/2)") e = $(esc(expr)) if norm(e) < $δ break elseif e < z m = $(esc(param)) else M = $(esc(param)) end end) end """Returns the location and values of local maxima in `sig`.""" function local_maxima(sig) l = length(sig) res = Tuple{Int, T}[] if l < 3 return res end @inbounds for i = 2:l-1 if sig[i-1] < sig[i] && sig[i+1] < sig[i] append!(res, (i, sig[i])) end end res end
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Morphisms BinInt ZDivEucl. Local Open Scope Z_scope. (** * Definitions of division for binary integers, Euclid convention. *) (** In this convention, the remainder is always positive. For other conventions, see [Z.div] and [Z.quot] in file [BinIntDef]. To avoid collision with the other divisions, we place this one under a module. *) Module ZEuclid. Definition modulo a b := Z.modulo a (Z.abs b). Definition div a b := (Z.sgn b) * (Z.div a (Z.abs b)). Instance mod_wd : Proper (eq==>eq==>eq) modulo. Proof. congruence. Qed. Instance div_wd : Proper (eq==>eq==>eq) div. Proof. congruence. Qed. Theorem div_mod a b : b<>0 -> a = b*(div a b) + modulo a b. Proof. intros Hb. unfold div, modulo. rewrite Z.mul_assoc. rewrite Z.sgn_abs. apply Z.div_mod. now destruct b. Qed. Lemma mod_always_pos a b : b<>0 -> 0 <= modulo a b < Z.abs b. Proof. intros Hb. unfold modulo. apply Z.mod_pos_bound. destruct b; compute; trivial. now destruct Hb. Qed. Lemma mod_bound_pos a b : 0<=a -> 0<b -> 0 <= modulo a b < b. Proof. intros _ Hb. rewrite <- (Z.abs_eq b) at 3 by Z.order. apply mod_always_pos. Z.order. Qed. Include ZEuclidProp Z Z Z. End ZEuclid.
# Common functions compatible for use with physical vectors function dot_product(A::AbstractArray{T1,N},B::AbstractArray{T2,N}) where {T1<:Number,T2<:Number,N} size(A) === size(B) || throw(ArgumentError("Vectors must have the same shape")) u = zeros(promote_type(T1,T2),size(A)[1:end-1]...) dot_product!(u,A,B) return u end function dot_product!(u::AbstractArray{T1,N}, A::AbstractArray{T2,N2},B::AbstractArray{T3,N2}) where {T1<:Number,T2<:Number,T3<:Number,N,N2} (size(A) === size(B)) || throw(ArgumentError("Vectors must have the same shape")) (N === N2-1) || throw(ArgumentError("Output should be scalar matrix, one dimension less than input")) T = promote_type(T1,T2,T3) @turbo for I in CartesianIndices(u) x_temp = zero(T) for i in 1:N x_temp += A[I,i]*B[I,i] end u[I] = x_temp end return u end function cross_product(A::AbstractArray{T1,4},B::AbstractArray{T2,4}) where {T1<:Number,T2<:Number} size(A) === size(B) || throw(ArgumentError("Vectors must have the same shape")) s = size(A) u = zeros(promote_type(T1,T2),s...) cross_product!(u,A,B) return u end function cross_product!(u::AbstractArray{T1,4},A::AbstractArray{T2,4},B::AbstractArray{T3,4}) where {T1<:Number,T2<:Number,T3<:Number} (size(A) === size(B) && size(A) === size(u))|| throw(ArgumentError("Vectors must have the same shape")) s = size(u) @turbo for r in 1:s[3], q in 1:s[2], p in 1:s[1] u[p,q,r,1] = A[p,q,r,2]*B[p,q,r,3] - A[p,q,r,3]*B[p,q,r,2] u[p,q,r,2] = A[p,q,r,3]*B[p,q,r,1] - A[p,q,r,1]*B[p,q,r,3] u[p,q,r,3] = A[p,q,r,1]*B[p,q,r,2] - A[p,q,r,2]*B[p,q,r,1] end end function square_norm(A::AbstractArray{T,N}) where {T<:Number,N} u = zeros(T,size(A)[1:end-1]...) square_norm!(u,A) return u end function square_norm!(u::AbstractArray{T1,N1},A::AbstractArray{T2,N2}) where {T1<:Number,T2<:Number,N1,N2} dot_product!(u,A,A) @. u = u^0.5 end
/*solver/fixed_point.c * Solves a fixed point equation using * sequence acceleration. * * Author: Benjamin Vatter j. * email : [email protected] * date: 15 August 2015 */ #include <math.h> #include <stdlib.h> #include <gsl/gsl_math.h> #include "fixed_point.h" /* * Finds the fixed point of a function f * Translated from SciPy's fixed_point function */ void fixed_point(int n, ff_function *f, double *x0, double xtol, int maxiter, double *out) { //out = malloc(sizeof(double)*n); double *p = malloc(sizeof(double)*n); double *p1, *p2; double d; int pass; int i, j; for (i=0; i<n; i++) out[i] = x0[i]; for (i=0; i<maxiter; i++) { p1 = malloc(sizeof(double)*n); p2 = malloc(sizeof(double)*n); f->function(out, f->params, p1); f->function(p1, f->params, p2); pass = 1; for (j=0; j<n; j++) { d = p2[j] - 2.0*p1[j] + out[j]; if (d==0) { p[j] = p2[j]; } else { p[j] = out[j] - pow(p1[j] - out[j], 2.0) / d; } if (out[j] == 0 && fabs(p[j]) > xtol){ pass = 0; } if (out[j] != 0 && (p[j] - out[j])/out[j] > xtol){ pass = 0; } out[j] = p[j]; } if (pass == 1) { free(p1); free(p2); break; } if(i+1 >= maxiter){ free(p1); free(p2); pass = -1; break; } free(p1); free(p2); } free(p); // Free garbage result in case of no convergence if (pass == -1) { free(out); } }
(** This file provides an efficient proof search strategy for our derivation system defined in [Sat]. *) Require Import Containers.Sets. Require Import Env Sat. Require Import SetoidList. Require Import Arith. Require Import FoldProps. Fact belim : forall b, b = false -> b = true -> False. Proof. congruence. Qed. (** * The functor [SATSTRATEGY] *) Module SATCAML (Import CNF : Cnf.CNF) (Import E : ENV_INTERFACE CNF). (** We start by importing some efinitions from the SAT functor. *) Module Import S := SAT CNF E. Module SemF := S.SemF. Definition submodel_e G (M : Sem.model) := forall l, G |= l -> M l. Definition compatible_e G (D : cset) := forall (M : Sem.model), submodel_e G M -> Sem.sat_goal M D. Notation "G |- D" := (mk_sequent G D) (at level 80). (** Relating lists of literals to clauses, and lists of lists of literals to sets of clauses (the reverse of [elements]). *) Fixpoint l2s (l : list L.t) : clause := match l with | nil => {} | a::q => {a; l2s q} end. Fixpoint ll2s (l : list (list L.t)) : cset := match l with | nil => {} | a::q => {l2s a; ll2s q} end. Property l2s_iff : forall l C, l \In l2s C <-> InA _eq l C. Proof. intros; induction C; simpl. intuition. split; simpl; intro H. rewrite add_iff in H; destruct H; intuition. rewrite add_iff; inversion H; intuition. Qed. Property ll2s_app : forall l l', ll2s (app l l') [=] ll2s l ++ ll2s l'. Proof. induction l; intros l'; simpl. intro k; set_iff; intuition. rewrite IHl, Props.union_add; reflexivity. Qed. Property ll2s_cfl : forall ll, cfl ll [=] ll2s ll. Proof. induction ll; rewrite cfl_1; simpl. reflexivity. apply add_m; auto. rewrite cfl_1 in IHll; exact IHll. Qed. Property l2s_Subset : forall C C', (forall l, InA _eq l C -> InA _eq l C') <-> l2s C [<=] l2s C'. Proof. intros C C'; split; intros H k. rewrite !l2s_iff; auto. rewrite <- !l2s_iff; auto. Qed. Lemma ll2s_expand : forall (M : Sem.model) l, M l -> forall C, C \In ll2s (L.expand l) -> Sem.sat_clause M C. Proof. intros M l Hl C HC. assert (HM := Sem.wf_expand M l Hl). set (L := L.expand l) in *; clearbody L; clear l Hl. revert L HC HM; induction L; intros; simpl in *. contradiction (empty_1 HC). rewrite add_iff in HC; destruct HC as [HC|HC]. destruct (HM a (or_introl _ (refl_equal _))) as [k [Hk1 Hk2]]. clear HM; exists k; split; auto. assert (Hk := ListIn_In Hk1); rewrite <- l2s_iff, HC in Hk; auto. apply (IHL HC); intuition. Qed. (** Facts about measures of lists of (lists of) literals *) Property lsize_pos : forall l, l <> nil -> L.lsize l > 0. Proof. induction l; intros; simpl; auto. congruence. generalize (L.size_pos a); omega. Qed. Property llsize_app : forall l l', L.llsize (app l l') = L.llsize l + L.llsize l'. Proof. induction l; simpl; intros; intuition. generalize (IHl l'); omega. Qed. (** ** Functions computing the BCP The following functions compute the proof search in a way that is similar to the OCaml procedure in [JFLA08]. We perform all possible binary constraint propagation (BCP) before we start splitting on literals. *) (** The first function reduces a clause with respect to a partial assignment. It returns [redNone] if the clause contains a literal that is true in the assignment, and the reduced clause in the other case (with a flag telling if the function has changed anything). *) Section Reduce. Variable G : E.t. Variable D : cset. Inductive redRes : Type := | redSome : list L.t -> bool -> redRes | redNone : redRes. Fixpoint reduce (C : list L.t) : redRes := match C with | nil => redSome nil false | l::C' => if query l G then redNone else match reduce C' with | redNone => redNone | redSome Cred b => if query (L.mk_not l) G then redSome Cred true else redSome (l::Cred) b end end. Inductive reduce_spec_ (C : list L.t) : redRes -> Type := | reduce_redSome : forall Cred (bred : bool) (HCred : Cred = List.filter (fun l => negb (query (L.mk_not l) G)) C) (Hsub : forall l, List.In l Cred -> query l G = false) (Hbred : if bred then L.lsize Cred < L.lsize C else C = Cred), reduce_spec_ C (redSome Cred bred) | reduce_redNone : forall l (Hl : query l G = true) (Hin : List.In l C), reduce_spec_ C redNone. Theorem reduce_spec : forall C, reduce_spec_ C (reduce C). Proof. induction C; simpl. constructor; auto; intros; contradiction. case_eq (query a G); intro Hq. constructor 2 with a; intuition. destruct IHC; simpl. case_eq (query (L.mk_not a) G); intro Hnq. constructor; auto; simpl. rewrite Hnq; simpl; auto. generalize (L.size_pos a); destruct bred; try rewrite Hbred; omega. constructor. simpl; rewrite Hnq; simpl; congruence. intros l Hl; inversion Hl; subst; eauto. destruct bred; try congruence; simpl; omega. constructor 2 with l; intuition. Qed. Unset Regular Subst Tactic. Corollary reduce_correct : forall C Cred bred, reduce C = redSome Cred bred -> derivable (G |- {l2s Cred; D}) -> derivable (G |- {l2s C; D}). Proof. intros C Cred bred Hred Hder; destruct (reduce_spec C); inversion Hred; subst. set (reds := filter (fun l : L.t => query (L.mk_not l) G) (l2s C)). assert (M : Proper (_eq ==> @eq bool) (fun l => query (L.mk_not l) G)) by (eauto with typeclass_instances). apply ARed with reds (l2s C). unfold reds; intros k Hk; apply (filter_2 Hk). unfold reds; intros k Hk; apply (filter_1 Hk). apply add_1; auto. assert (E : l2s Cred [=] l2s C \ reds). rewrite <- H0; unfold reds; revert M; clear; intro M; induction C; simpl. intuition. case_eq (query (L.mk_not a) G); intro Ha; simpl. rewrite IHC, EProps.filter_add_1; auto. intro k; set_iff; intuition. apply H1; apply filter_3; auto; rewrite <- H2; assumption. rewrite IHC, EProps.filter_add_2; auto. intro k; set_iff; intuition. rewrite H0 in Ha; rewrite (filter_2 H) in Ha; discriminate. rewrite <- E; refine (weakening _ Hder _ _); split; simpl; intuition. Qed. (* Corollary reduce_complete : forall C Cred bred M, *) (* reduce C = redSome Cred bred -> *) (* submodel_e G M -> Sem.sat_clause M (l2s C) -> Sem.sat_clause M (l2s Cred). *) (* Proof. *) (* intros C Cred bred M Hred Hsub; *) (* destruct (reduce_spec C); inversion Hred; subst. *) (* intros [l Hsatl]; exists l; intuition. *) (* rewrite <- H0; revert H H1 Hsub; clear; induction C; simpl; auto; intros. *) (* rewrite add_iff in H1; destruct H1. *) (* case_eq (query (L.mk_not a) G); intro Hq; simpl. *) (* contradiction (SemF.model_em M l H). *) (* apply Hsub; rewrite <- H0; auto. *) (* apply add_1; auto. *) (* destruct (negb (query (L.mk_not a) G)); [apply add_2 |]; *) (* exact (IHC H H0 Hsub). *) (* Qed. *) Corollary reduce_complete : forall C Cred bred M, reduce C = redSome Cred bred -> submodel_e G M -> Sem.sat_clause M (l2s Cred) -> Sem.sat_clause M (l2s C). Proof. intros C Cred bred M Hred Hsub; destruct (reduce_spec C); inversion Hred; subst. intros [l Hsatl]; exists l; intuition. rewrite <- H0 in H1; revert H H1 Hsub; clear; induction C; simpl; auto; intros. destruct (query (L.mk_not a) G); simpl in *. apply add_2; apply IHC; auto. rewrite add_iff in H1; destruct H1; [apply add_1 | apply add_2]; auto. Qed. End Reduce. (** The second function simplifies a set of clauses with respect to a partial assignment. It returns [bcpNone] if one of the clauses reduced to the empty clause. Otherwise, it returns the set of simplified clauses along with a new partial assignment. Indeed, if simplification yields a unitary clause, [AAssume] is immediately applied and the literal is added to the partial assignment for the rest of the simplification. Again, we return a flag saying if the function has simplified anything or not. *) Section BCP. Inductive bcpRes : Type := | bcpSome : E.t -> list (list L.t) -> bool -> bcpRes | bcpNone : bcpRes. Definition extend l s := app (L.expand l) s. Fixpoint bcp (G : E.t) (D : list (list L.t)) : bcpRes := match D with | nil => bcpSome G nil false | C::D' => match reduce G C with | redNone => match bcp G D' with | bcpNone => bcpNone | bcpSome G' D' _ => bcpSome G' D' true end | redSome nil bred => bcpNone | redSome (l::nil) _ => match assume l G with | Normal newG => match bcp newG D' with | bcpNone => bcpNone | bcpSome G' D' _ => bcpSome G' (extend l D') true end | Inconsistent => bcpNone end | redSome Cred bred => match bcp G D' with | bcpNone => bcpNone | bcpSome G' D' b => bcpSome G' (Cred::D') (bred || b) end end end. Lemma weak_assume : forall (G : t) (D : cset) (l : L.t), singleton l \In D -> ~ G |= l -> forall newG, assume l G = Normal newG -> derivable (newG |- cfl (L.expand l) ++ D) -> derivable (G |- D). Proof. intros G0 D0 l Hl HGl G1 Hass1 Hder. case_eq (query (L.mk_not l) G0); intro Hquery. (* - if [L.mk_not l] is entailed by [G0] then we can reduce [{l}] and apply [AConflict]. *) apply ARed with (reds:={l}) (C:={l}); intuition. rewrite <- (singleton_1 H); assumption. apply AConflict; apply add_1; intro k; set_iff; intuition. (* - otherwise, we first [AUnsat] with [l], the left branch is our hypothesis and we reduce and apply [AConflict] on the right. *) case_eq (assume (L.mk_not l) G0); [intros G2 Hass2 | intros Hass2]. apply (AUnsat G0 D0 l G1 G2 Hass1 Hass2 Hder). apply ARed with (reds:={l}) (C:={l}). intro k; set_iff; intro Hk; apply query_assumed; rewrite (assumed_assume Hass2); apply add_1; rewrite Hk; auto. reflexivity. apply union_3; auto. apply AConflict; apply add_1; intro k; set_iff; intuition. contradiction HGl; rewrite <- (L.mk_not_invol l); apply assumed_inconsistent; assumption. Qed. Theorem bcp_correct : forall D Dbasis G Gext Dred b, bcp G D = bcpSome Gext Dred b -> derivable (Gext |- ll2s Dred ++ Dbasis) -> derivable (G |- ll2s D ++ Dbasis). Proof with (eauto with typeclass_instances). intro D0; induction D0; intros Dbasis G0 Gext Dred b Hbcp Hder; simpl in Hbcp. inversion Hbcp; subst; simpl in Hder; inversion Hder; eauto with set. assert (Hred := reduce_correct G0 (ll2s D0 ++ Dbasis) a). assert (Hred' := reduce_spec G0 a). destruct (reduce G0 a) as [ared bred|]. (* - if the reduction returned a clause (it can't be empty) *) destruct ared as [|l ared]; try discriminate. inversion Hred'; subst; destruct ared. (* - if it is a singleton [{l}], [l] is consistent with [G0] and we can apply [AAssume] *) assert (Hl' : ~ (G0 |= l)) by (intro abs; rewrite (Hsub l (or_introl _ (refl_equal _))) in abs; discriminate). case_eq (assume l G0); [intros newG Hass | intros Hass]; rewrite Hass in Hbcp. simpl; rewrite Props.union_add. apply (Hred (l::nil) bred (refl_equal _)); clear Hred. assert (IH := IHD0 (cfl (L.expand l) ++ Dbasis) newG); clear IHD0. destruct (bcp newG D0) as [Gext' Dred' b'|]; try discriminate; inversion Hbcp. assert (IH' := IH Gext' Dred' b' (refl_equal _)); clear IH; subst. assert (Hl : Equal (l2s (l::nil)) {l}) by (simpl; symmetry; apply Props.singleton_equal_add). destruct (In_dec (ll2s D0 ++ Dbasis) {l}). refine (weak_assume G0 _ l (add_1 _ _) Hl' _ Hass _)... rewrite Props.add_equal. 2:(simpl; rewrite <- Props.singleton_equal_add; exact Htrue). rewrite <- Props.union_assoc. rewrite (Props.union_sym (cfl (L.expand l)) (ll2s D0)). rewrite Props.union_assoc; apply IH'. unfold extend in Hder; rewrite ll2s_app in Hder. rewrite ll2s_cfl, <- Props.union_assoc, (Props.union_sym (ll2s Dred')); exact Hder. refine (AAssume G0 _ l (add_1 _ _) _ Hass _)... rewrite Hl, Props.remove_add; auto. rewrite <- Props.union_assoc. rewrite (Props.union_sym (cfl (L.expand l)) (ll2s D0)). rewrite Props.union_assoc; apply IH'. unfold extend in Hder; rewrite ll2s_app in Hder. rewrite ll2s_cfl, <- Props.union_assoc, (Props.union_sym (ll2s Dred')); exact Hder. assert (Z : List.In l (l::nil)) by (left; auto). assert (Hnotl : ~ (G0 |= L.mk_not l)). rewrite HCred, filter_In in Z; destruct (query (L.mk_not l) G0); auto; destruct Z; discriminate. contradiction (Hnotl (assumed_inconsistent Hass)). (* - if the reduced clause is not unitary *) simpl; rewrite Props.union_add. apply (Hred _ _ (refl_equal _)). set (Cred := l::t0::ared) in *; clearbody Cred. assert (IH := IHD0 {l2s Cred; Dbasis} G0); clear IHD0. destruct (bcp G0 D0) as [Gext' Dred' b'|]; try discriminate; inversion Hbcp. assert (IH' := IH Gext' Dred' b' (refl_equal _)); clear IH; subst. rewrite Props.union_sym, <- Props.union_add, Props.union_sym. apply IH'. rewrite Props.union_sym, Props.union_add, Props.union_sym, <- Props.union_add; exact Hder. (* - if the clause was eliminated *) assert (IH := fun D => IHD0 D G0). destruct (bcp G0 D0); inversion Hbcp; subst. refine (weakening _ (IH _ _ _ _ (refl_equal _) Hder) _ _). split; simpl; try rewrite Props.union_add; intuition. Qed. Theorem bcp_unsat : forall D Dbasis G, bcp G D = bcpNone -> derivable (G |- ll2s D ++ Dbasis). Proof with (eauto with typeclass_instances). intro D0; induction D0; intros Dbasis G0 Hbcp; simpl in Hbcp. discriminate. assert (Hred := reduce_correct G0 (ll2s D0 ++ Dbasis) a). destruct (reduce_spec G0 a). (* - if the clause reduced to the empty clause, we apply [AConflict] *) simpl; rewrite Props.union_add. destruct Cred as [|l Cred]. apply (Hred nil bred (refl_equal _)). apply AConflict; apply add_1; reflexivity. destruct Cred. (* - if the clause is a singleton [{l}], [G0] must be consistent with [l] *) assert (Z : List.In l (l::nil)) by (left; auto). assert (Hnotl : ~ (G0 |= L.mk_not l)). rewrite HCred, filter_In in Z; destruct (query (L.mk_not l) G0); auto; destruct Z; discriminate. assert (Hl' : ~ (G0 |= l)) by (intro abs; rewrite (Hsub l (or_introl _ (refl_equal _))) in abs; discriminate). clear Z; apply (Hred (l::nil) bred (refl_equal _)). case_eq (assume l G0); [intros newG Hass | intros Hass]; rewrite Hass in Hbcp. 2:(contradiction (Hnotl (assumed_inconsistent Hass))). assert (IH := IHD0 (ll2s (L.expand l) ++ Dbasis) newG); clear IHD0. destruct (bcp newG D0); try discriminate. simpl; rewrite <- Props.singleton_equal_add. assert (Hl : Equal (l2s (l::nil)) {l}) by (simpl; symmetry; apply Props.singleton_equal_add). destruct (In_dec (ll2s D0 ++ Dbasis) {l}). refine (weak_assume G0 _ l (add_1 _ _) Hl' _ Hass _)... rewrite Props.add_equal; auto. rewrite <- Props.union_assoc. rewrite (Props.union_sym (cfl (L.expand l)) (ll2s D0)). rewrite Props.union_assoc, ll2s_cfl; exact (IH (refl_equal _)). refine (AAssume G0 _ l (add_1 _ _) _ Hass _)... rewrite Props.remove_add; auto. rewrite <- Props.union_assoc. rewrite (Props.union_sym (cfl (L.expand l)) (ll2s D0)). rewrite Props.union_assoc, ll2s_cfl; exact (IH (refl_equal _)). (* if the clause is not unitary after reduction *) assert (IH := IHD0 Dbasis G0); clear IHD0. destruct (bcp G0 D0); try discriminate. apply (Hred _ _ (refl_equal _)). refine (weakening _ (IH (refl_equal _)) _ _). split; simpl; intuition. (* if the clause was eliminated *) assert (IH := IHD0 Dbasis G0); clear IHD0. destruct (bcp G0 D0); try discriminate. refine (weakening _ (IH (refl_equal _)) _ _). split; simpl; intuition; rewrite Props.union_add; intuition. Qed. Theorem bcp_progress : forall D G Gext Dred b, bcp G D = bcpSome Gext Dred b -> if b then L.llsize Dred < L.llsize D else Gext = G /\ Dred = D. Proof. intro D0; induction D0; intros G0 Gext Dred b Hbcp; simpl in Hbcp. inversion Hbcp; subst; split; reflexivity. destruct (reduce_spec G0 a). destruct Cred; try discriminate. destruct Cred. case_eq (assume t0 G0); [intros newG Hass | intros Hass]; rewrite Hass in Hbcp; try discriminate. assert (IH := IHD0 newG). destruct (bcp newG D0); inversion Hbcp; subst. assert (IH' := IH _ _ _ (refl_equal _)); destruct b0. unfold extend; simpl; rewrite llsize_app. destruct bred; subst; simpl in *; generalize (L.size_expand t0); omega. destruct IH'; subst; unfold extend; simpl; rewrite llsize_app. destruct bred; subst; simpl in *; generalize (L.size_expand t0); omega. assert (IH := IHD0 G0). destruct (bcp G0 D0); inversion Hbcp; subst. destruct bred; simpl. assert (IH' := IH _ _ _ (refl_equal _)); destruct b0; simpl in *. omega. rewrite (proj2 IH'); omega. assert (IH' := IH _ _ _ (refl_equal _)); destruct b0; simpl in *. rewrite Hbred; simpl; omega. destruct IH'; split; congruence. assert (IH := IHD0 G0). destruct (bcp G0 D0); inversion Hbcp; subst. assert (IH' := IH _ _ _ (refl_equal _)); destruct b0; simpl. omega. rewrite (proj2 IH'); revert Hin; clear; induction a; simpl. contradiction. generalize (L.size_pos a); intuition. Qed. Theorem bcp_consistent : forall D G Gext Dred, bcp G D = bcpSome Gext Dred false -> forall l C, C \In ll2s Dred -> l \In C -> ~ Gext |= l /\ ~ Gext |= L.mk_not l. Proof. intros D0 G0 Gext Dred Hbcp l C HC Hl. assert (Hprog := bcp_progress D0 G0 _ _ _ Hbcp). destruct Hprog; subst. revert G0 l C Hl HC Hbcp; induction D0; intros; simpl in Hbcp. simpl in HC; contradiction (empty_1 HC). destruct (reduce_spec G0 a). destruct Cred; try discriminate. destruct Cred. case_eq (assume t0 G0); [intros newG Hass | intros Hass]; rewrite Hass in Hbcp; try discriminate. destruct (bcp newG D0); discriminate. assert (IH := IHD0 G0 l); clear IHD0. destruct (bcp G0 D0); inversion Hbcp; subst. destruct bred; simpl in H3; try discriminate. set (Z := t0 :: t1 :: Cred) in *; clearbody Z. simpl in HC; rewrite add_iff in HC; destruct HC. rewrite <- H in Hl; rewrite l2s_iff in Hl. rewrite InA_alt in Hl; destruct Hl as [k [Hk1 Hk2]]. split; intro abs. assert (Hk := Hsub k Hk2); rewrite <- Hk1 in Hk; congruence. rewrite HCred in Hk2; rewrite filter_In in Hk2. rewrite Hk1 in abs; destruct (query (L.mk_not k) G0); destruct Hk2; discriminate. clear HCred; subst; eauto. destruct (bcp G0 D0); inversion Hbcp; subst. Qed. Lemma bcp_monotonic_env : forall D G Gext Dred b, bcp G D = bcpSome Gext Dred b -> dom G [<=] dom Gext. Proof. intro D0; induction D0; intros G0 Gext Dred b Hbcp; simpl in Hbcp. inversion Hbcp; subst; simpl; reflexivity. destruct (reduce G0 a) as [Cred bred|]. destruct Cred as [|l Cred]; try discriminate. destruct Cred. case_eq (assume l G0); [intros newG Hass | intros Hass]; rewrite Hass in Hbcp; try discriminate. assert (IH := IHD0 newG). destruct (bcp newG D0); inversion Hbcp; subst. transitivity (dom newG). rewrite (assumed_assume Hass); intuition. exact (IH _ _ _ (refl_equal _)). assert (IH := IHD0 G0). destruct (bcp G0 D0); inversion Hbcp; subst. exact (IH _ _ _ (refl_equal _)). assert (IH := IHD0 G0). destruct (bcp G0 D0); inversion Hbcp; subst. exact (IH _ _ _ (refl_equal _)). Qed. (* Theorem bcp_complete : *) (* forall D Dbasis G Gext Dred b, *) (* bcp G D = bcpSome Gext Dred b -> *) (* compatible_e G (ll2s D ++ Dbasis) -> *) (* compatible_e Gext (ll2s Dred ++ Dbasis). *) (* Proof. *) (* intro D0; induction D0; intros Dbasis G0 Gext Dred b Hbcp Hsat; *) (* simpl in Hbcp. *) (* inversion Hbcp; subst; simpl; exact Hsat. *) (* assert (Hred := reduce_complete G0 a). *) (* destruct (reduce G0 a) as [Cred bred|]. *) (* destruct Cred as [|l Cred]; try discriminate. *) (* destruct Cred. *) (* assert (Hmon := bcp_monotonic_env D0 (assume l G0)). *) (* assert (IH := IHD0 (ll2s (L.expand l) ++ Dbasis) (assume l G0)); *) (* clear IHD0; destruct (bcp (assume l G0) D0); inversion Hbcp; subst. *) (* assert (IH' := IH _ _ _ (refl_equal _)); clear IH. *) (* intros M HM C HC; unfold extend in HC; *) (* simpl in HC; rewrite ll2s_app in HC. *) (* rewrite (Props.union_sym _ (ll2s l0)), Props.union_assoc in HC. *) (* revert M HM C HC; apply IH'. *) (* intros M HM C HC; unfold extend in HC; simpl in HC; *) (* rewrite (Props.union_sym (ll2s D0)), Props.union_assoc in HC. *) (* rewrite union_iff in HC; destruct HC. *) (* apply ll2s_expand with l; auto; apply HM; apply EnvF.query_assume; auto. *) (* apply Hsat; auto. *) (* intros k Hk; apply HM; apply query_monotonic with G0; auto. *) (* rewrite assumed_assume; intuition. *) (* simpl; rewrite Props.union_add, Props.union_sym; apply add_2; auto. *) (* assert (Hmon := bcp_monotonic_env D0 G0). *) (* assert (IH := IHD0 Dbasis G0); *) (* clear IHD0; destruct (bcp G0 D0); inversion Hbcp; subst. *) (* assert (IH' := IH _ _ _ (refl_equal _)); clear IH. *) (* intros M HM C HC; simpl in HC; rewrite Props.union_add in HC. *) (* rewrite add_iff in HC; destruct HC. *) (* destruct (Hred _ _ M (refl_equal _)). *) (* intros k Hk; apply HM; apply query_monotonic with G0; auto; *) (* exact (Hmon _ _ _ (refl_equal _)). *) (* apply Hsat; [|simpl; apply union_2; apply add_1; auto]. *) (* intros k Hk; apply HM; apply query_monotonic with G0; auto; *) (* exact (Hmon _ _ _ (refl_equal _)). *) (* exists x; rewrite <- H; exact H0. *) (* apply IH'; auto; intros M' HM' C' HC'; apply Hsat; auto; *) (* simpl; rewrite Props.union_add; apply add_2; auto. *) (* assert (IH := IHD0 Dbasis G0); clear IHD0; destruct (bcp G0 D0); *) (* inversion Hbcp; subst. *) (* apply (IH Gext Dred b0 (refl_equal _)). *) (* intros M HM C HC; apply Hsat; auto. *) (* simpl; rewrite Props.union_add; apply add_2; exact HC. *) (* Qed. *) Theorem bcp_complete : forall D Dbasis G Gext Dred b M, bcp G D = bcpSome Gext Dred b -> submodel_e Gext M -> Sem.sat_goal M (ll2s Dred ++ Dbasis) -> submodel_e G M /\ Sem.sat_goal M (ll2s D ++ Dbasis). Proof. intro D0; induction D0; intros Dbasis G0 Gext Dred b M Hbcp Hsub Hsat; simpl in Hbcp. inversion Hbcp; subst; simpl; tauto. assert (Hred := reduce_spec G0 a). assert (Hred' := reduce_complete G0 a). destruct (reduce G0 a) as [Cred bred|]. destruct Cred as [|l Cred]; try discriminate. destruct Cred. case_eq (assume l G0); [intros newG Hass | intros Hass]; rewrite Hass in Hbcp; try discriminate. assert (IH := IHD0 (ll2s (L.expand l) ++ Dbasis) newG); clear IHD0. destruct (bcp newG D0) as [Gext' Dred' b'|]; inversion Hbcp; subst. destruct (IH Gext Dred' b' M) as [IH1 IH2]; auto. intros C HC; apply Hsat; simpl; unfold extend; rewrite ll2s_app, (Props.union_sym _ (ll2s Dred')), Props.union_assoc; exact HC. split. intros k Hk; apply IH1; apply query_monotonic with G0; auto. rewrite (assumed_assume Hass); intuition. intros C HC; simpl in HC; rewrite Props.union_add, add_iff in HC; destruct HC as [HC|HC]. destruct (Hred' _ _ M (refl_equal _)) as [k [Hk1 Hk2]]. intros k Hk; apply IH1; apply query_monotonic with G0; auto. rewrite (assumed_assume Hass); intuition. simpl; exists l; simpl; split; intuition. apply IH1; apply (EnvF.query_assume Hass); auto. exists k; rewrite <- HC; tauto. apply IH2; revert HC; set_iff; clear; tauto. assert (IH := IHD0 Dbasis G0); clear IHD0. destruct (bcp G0 D0) as [Gext' Dred' b'|]; inversion Hbcp; subst. destruct (IH Gext Dred' b' M) as [IH1 IH2]; auto. intros C HC; apply Hsat; simpl; rewrite Props.union_add; apply add_2; auto. split; auto; intros C HC; simpl in HC; rewrite Props.union_add, add_iff in HC; destruct HC as [HC|HC]. destruct (Hred' _ _ _ (refl_equal _) IH1) as [k [Hk1 Hk2]]. apply Hsat; simpl; apply union_2; apply add_1; auto. exists k; rewrite <- HC; tauto. auto. assert (IH := IHD0 Dbasis G0); clear IHD0. destruct (bcp G0 D0); inversion Hbcp; subst. destruct (IH Gext Dred b0 M) as [IH1 IH2]; auto. split; auto; intros C HC; simpl in HC; rewrite Props.union_add, add_iff in HC; destruct HC as [HC|HC]. inversion Hred; exists l; split. apply IH1; auto. rewrite <- HC, l2s_iff; exact (ListIn_In Hin). apply IH2; auto. Qed. End BCP. (** ** The main [proof_search] function *) (** The [proof_search] function applies [bcp] repeatedly as long as progress has been made, and otherwise just picks a literal to split on. *) Inductive Res : Type := | Sat : E.t -> Res | Unsat. Fixpoint proof_search (G : E.t) (D : list (list L.t)) (n : nat) {struct n} : Res := match n with | O => Sat empty (* assert false *) | S n0 => match bcp G D with | bcpNone => Unsat | bcpSome newG newD b => match newD with | nil => Sat newG | cons nil newD' => Unsat (* assert false *) | cons (cons l C) newD' => (* tant qu'on a progressé avec bcp, on reessaye *) (* (si bcp etait recursive on n'aurait pas besoin de ça *) (* mais ca ne change rien en terme de performance ici) *) if b then proof_search newG newD n0 else (* from that point on, G = newG, D = newD *) match assume l G with | Normal G1 => match proof_search G1 (extend l newD') n0 with | Sat M => Sat M | Unsat => let lbar := L.mk_not l in match assume lbar G with | Normal G2 => proof_search G2 (extend lbar (cons C newD')) n0 | Inconsistent => Unsat end end | Inconsistent => Unsat end end end end. Lemma expand_nonrec : forall l C, C \In (cfl (L.expand l)) -> l \In C -> False. Proof. intros l C; rewrite cfl_1. assert (Hsize := L.size_expand l). revert Hsize; generalize (L.expand l); intro L; induction L; intros Hsize H Hl; simpl in *. contradiction (empty_1 H). rewrite add_iff in H; destruct H. set (N := L.llsize L) in *; clearbody N; clear L IHL. rewrite <- H in Hl; clear H C; induction a. simpl in Hl; contradiction (empty_1 Hl). simpl in Hl; rewrite add_iff in Hl; destruct Hl. simpl in Hsize; rewrite H in Hsize; omega. simpl in Hsize; apply IHa; auto; omega. apply IHL; auto. revert Hsize; clear; induction a; simpl; auto. intro; omega. Qed. Lemma expand_nonrec_2 : forall l C, C \In (cfl (L.expand l)) -> L.mk_not l \In C -> False. Proof. intros l C; rewrite cfl_1. assert (Hsize := L.size_expand l). revert Hsize; generalize (L.expand l); intro L; induction L; intros Hsize H Hl; simpl in *. contradiction (empty_1 H). rewrite add_iff in H; destruct H. set (N := L.llsize L) in *; clearbody N; clear L IHL. rewrite <- H in Hl; clear H C; induction a. simpl in Hl; contradiction (empty_1 Hl). simpl in Hl; rewrite add_iff in Hl; destruct Hl. simpl in Hsize; rewrite H in Hsize; assert (Z := L.size_mk_not l); omega. simpl in Hsize; apply IHa; auto; omega. apply IHL; auto. revert Hsize; clear; induction a; simpl; auto. intro; omega. Qed. Property remove_transpose : forall (D : cset) (C C' : clause), {{D ~ C'} ~ C} [=] {{D ~ C} ~ C'}. Proof. intros; intro k; set_iff; intuition. Qed. Lemma remove_union : forall (D D' : cset) (C : clause), ~C \In D -> {(D ++ D') ~ C} [=] D ++ {D' ~ C}. Proof. intros; intro k; set_iff; intuition. intro abs; rewrite abs in H; tauto. Qed. Lemma union_remove : forall (D D' : cset) (C : clause), C \In D -> D ++ D' [=] D ++ {D' ~ C}. Proof. intros; intro k; set_iff; intuition. destruct (eq_dec C k); auto. rewrite H0 in H; left; auto. Qed. (* Lemma remove_singleton : forall l (A : clause), *) (* singleton l \ A =/= singleton l -> singleton l \ A === {}. *) (* Proof. *) (* intros; intro k; split; set_iff; intuition. *) (* apply H; intro z; set_iff; intuition. *) (* rewrite <- H1 in H2; rewrite H0 in H2; tauto. *) (* Qed. *) (* Lemma diff_union : forall (A B C : clause), C \ (A ++ B) [=] C \ A \ B. *) (* Proof. *) (* intros; intro k; set_iff; intuition. *) (* Qed. *) Theorem proof_search_unsat : forall n G D, proof_search G D n = Unsat -> derivable (G |- ll2s D). Proof with (eauto with typeclass_instances). induction n; intros G0 D0; unfold proof_search. (* - if [D0] is empty, it is satisfiable *) intro abs; discriminate abs. (* - otherwise, we do a step of BCP *) fold proof_search; intro Hunsat. assert (Hbcp := bcp_correct D0 {} G0). assert (Hbcp2 := bcp_unsat D0 {} G0). assert (Hprogress := bcp_progress D0 G0). assert (Hcons := bcp_consistent D0 G0). destruct (bcp G0 D0) as [Gext Dred b|]. (* -- if BCP returns a sequent, it can't be empty *) assert (Hbcp' := Hbcp Gext _ _ (refl_equal _)); clear Hbcp. rewrite !Props.empty_union_2 in Hbcp'; intuition. rewrite !Props.empty_union_2 in Hbcp2; intuition. (* -- if BCP returns a sequent, it can't be empty *) destruct Dred as [|C Dred]; try discriminate. destruct C as [|l C]. (* -- if BCP returned a sequent with the empty clause, [AConflict] *) apply Hbcp'; simpl; apply AConflict; apply add_1; auto. destruct b; auto. (* -- if BCP didnt change anything... *) assert (Hcons' := Hcons Gext _ (refl_equal _)); clear Hcons. destruct (Hprogress _ _ _ (refl_equal _)); subst. simpl in Hcons'; destruct (Hcons' l {l; l2s C}) as [Hl Hnotl]; try (simpl; apply add_1; reflexivity). case_eq (assume l G0); [intros G1 Hass1 | intros Hass1]; rewrite Hass1 in Hunsat. 2:(contradiction (Hnotl (assumed_inconsistent Hass1))). assert (IH1 := IHn G1 (extend l Dred)). (* -- the first recursive call must have return Unsat *) destruct (proof_search G1 (extend l Dred)); try discriminate. case_eq (assume (L.mk_not l) G0); [intros G2 Hass2 | intros Hass2]; rewrite Hass2 in Hunsat. 2:(rewrite <- (L.mk_not_invol l) in Hl; contradiction (Hl (assumed_inconsistent Hass2))). destruct (In_dec (ll2s Dred) (l2s (l :: C))). simpl; rewrite Props.add_equal; auto. apply AUnsat with l G1 G2; auto. unfold extend in IH1; rewrite ll2s_app in IH1. rewrite ll2s_cfl; exact (IH1 (refl_equal _)). destruct (In_dec (l2s C) l). simpl in Htrue; rewrite (Props.add_equal Htrue0) in Htrue. assert (IH2 := IHn _ _ Hunsat); unfold extend in IH2. rewrite ll2s_app in IH2; rewrite ll2s_cfl. simpl in IH2; rewrite (Props.add_equal Htrue) in IH2. exact IH2. apply ARed with {l} {l; l2s C}. intro k; set_iff; intro Hk; apply (EnvF.query_assume Hass2); rewrite Hk; auto. intro k; set_iff; intuition. apply union_3; auto. assert (IH2 := IHn _ _ Hunsat); unfold extend in IH2. rewrite ll2s_app in IH2; rewrite ll2s_cfl. rewrite Props.union_sym, <- Props.union_add, Props.union_sym. rewrite <- Props.remove_diff_singleton, (Props.remove_add Hfalse). exact IH2. apply AUnsat with l G1 G2; auto. apply AElim with l (l2s (l::C)). apply query_assumed; rewrite (assumed_assume Hass1); apply add_1; auto. simpl; apply add_1; auto. apply union_3; simpl; apply add_1; auto. rewrite remove_union. 2:(intro abs; apply expand_nonrec with l {l; l2s C}; intuition). simpl in Hfalse |- *; rewrite (Props.remove_add Hfalse). rewrite ll2s_cfl; unfold extend in IH1. rewrite ll2s_app in IH1; exact (IH1 (refl_equal _)). assert (IH2 := IHn _ _ Hunsat). unfold extend in IH2; rewrite ll2s_app, <- ll2s_cfl in IH2; simpl in *. destruct (In_dec (l2s C) l). simpl in *; rewrite (Props.add_equal Htrue). exact IH2. apply AStrongRed with (C:=l2s (l::C))(reds := {l}). intro k; set_iff; intro Hk; apply (EnvF.query_assume Hass2); rewrite Hk; auto. intro k; simpl; set_iff; intuition. apply union_3; simpl; apply add_1; auto. rewrite remove_union. 2:(intro abs; apply expand_nonrec_2 with (L.mk_not l) {l; l2s C}; try rewrite L.mk_not_invol; intuition). simpl in Hfalse; rewrite (Props.remove_add Hfalse). rewrite Props.union_sym, <- Props.union_add, Props.union_sym. rewrite <- Props.remove_diff_singleton. rewrite (Props.remove_add Hfalse0). exact IH2. (* -- if BCP did not return a sequent, we apply the correctness of [bcp] *) rewrite Props.empty_union_2 in Hbcp2. exact (Hbcp2 (refl_equal _)). intuition. Qed. Theorem proof_search_sat : forall n G D M, L.llsize D < n -> proof_search G D n = Sat M -> dom G [<=] dom M /\ compatible_e M (ll2s D). Proof. induction n; intros G0 D0 M Hlt; unfold proof_search. apply False_rec; omega. fold proof_search; intros Hsat. assert (Hbcp := bcp_complete D0 {} G0). assert (Hmon := bcp_monotonic_env D0 G0). assert (Hprogress := bcp_progress D0 G0). destruct (bcp G0 D0) as [Gext Dred b|]; try discriminate. destruct Dred as [|C Dred]. inversion Hsat; subst; split. exact (Hmon _ _ _ (refl_equal _)). intros Model Hsub; destruct (Hbcp _ _ _ _ (refl_equal _) Hsub). intros k Hk; simpl in Hk. rewrite !Props.empty_union_2 in Hk; try solve [intuition]. contradiction (empty_1 Hk). intros C HC; apply H0; apply union_2; auto. destruct C as [|l C]; try discriminate. assert (Hbcp' := fun Model => Hbcp _ _ _ Model (refl_equal _)); clear Hbcp. assert (Hprogress' := Hprogress _ _ _ (refl_equal _)); clear Hprogress. assert (Hmon' := Hmon _ _ _ (refl_equal _)); clear Hmon. destruct b; auto. destruct (IHn Gext ((l::C)::Dred) M) as [IH1 IH2]; auto; try omega. split. transitivity (dom (Gext)); auto. intros Model Hsub; destruct (Hbcp' Model) as [Hbcp1 Hbcp2]. intros k Hk; apply Hsub; apply query_monotonic with Gext; auto. intros B HB; rewrite !Props.empty_union_2 in HB; try solve [intuition]. apply IH2; auto. intros B HB; apply Hbcp2; apply union_2; auto. destruct Hprogress'; subst; clear Hmon' Hbcp'. case_eq (assume l G0) ; [intros G1 Hass1 | intros Hass1]; rewrite Hass1 in Hsat; try discriminate. case_eq (proof_search G1 (extend l Dred) n); [intros M' Heq | intros Heq]; rewrite Heq in Hsat; simpl in Hsat. inversion Hsat; subst. destruct (IHn G1 (extend l Dred) M) as [IH1 IH2]; auto. unfold extend; simpl in *; rewrite llsize_app. generalize (L.size_expand l); omega. split. transitivity (dom G1); auto. rewrite (assumed_assume Hass1); intuition. simpl; intros Model Hsub B HB; rewrite add_iff in HB; destruct HB. exists l; split; [|rewrite <- H; apply add_1; auto]. apply Hsub; apply query_monotonic with G1; auto. apply (EnvF.query_assume Hass1); auto. apply IH2; auto; unfold extend; rewrite ll2s_app; apply union_3; auto. case_eq (assume (L.mk_not l) G0); [intros G2 Hass2 | intros Hass2]; rewrite Hass2 in Hsat; try discriminate. destruct (IHn G2 (extend (L.mk_not l) (C::Dred)) M) as [IH1 IH2]; auto. unfold extend; simpl in *; rewrite llsize_app; simpl. generalize (L.size_mk_not l) (L.size_expand (L.mk_not l)); omega. split. transitivity (dom G2); auto. rewrite (assumed_assume Hass2); intuition. simpl; intros Model Hsub B HB; rewrite add_iff in HB; destruct HB. destruct (IH2 _ Hsub (l2s C)) as [k [Hk1 Hk2]]. unfold extend; rewrite ll2s_app; apply union_3; apply add_1; auto. exists k; split; auto; rewrite <- H; apply add_2; auto. apply IH2; auto; unfold extend; rewrite ll2s_app; apply union_3; apply add_2; auto. Qed. (** ** The main entry point to the SAT-solver *) Definition dpll (Pb : formula) := let D0 := make Pb in let D0_as_list := List.map elements (elements D0) in let mu := (Datatypes.S (L.llsize D0_as_list)) in proof_search empty D0_as_list mu. Remark l2s_elements : forall C, l2s (elements C) [=] C. Proof. intros C k; rewrite (elements_iff C). remember (elements C) as L; clear C HeqL; revert k; induction L. simpl; split; intuition. intros k; split; intuition. simpl in H; rewrite add_iff in H; destruct H. constructor 1; auto. constructor 2; exact ((proj1 (IHL k)) H). inversion H; subst. apply add_1; auto. apply add_2; exact ((proj2 (IHL k)) H1). Qed. Remark ll2s_map_elements : forall D, ll2s (List.map elements (elements D)) [=] D. Proof. intros D0 k; rewrite (elements_iff D0). remember (elements D0) as L; clear HeqL; revert D0 k; induction L. simpl; split; intuition. intros D0 k; split; intuition. simpl in H; rewrite add_iff in H; destruct H. constructor 1. rewrite l2s_elements in H; symmetry; auto. constructor 2; exact ((proj1 (H0 k)) H). simpl; inversion H; subst. apply add_1; rewrite l2s_elements; symmetry; auto. apply add_2; exact ((proj2 (H0 k)) H2). Qed. Theorem dpll_correct : forall Pb, dpll Pb = Unsat -> Sem.incompatible {} (make Pb). Proof. intros Pb Hunsat; unfold dpll in Hunsat. intros M HM; apply (soundness (empty |- make Pb)). assert (H := proof_search_unsat _ _ _ Hunsat). rewrite ll2s_map_elements in H; assumption. simpl; intros l; rewrite assumed_empty; set_iff; intro Hl. rewrite <- (Sem.morphism _ _ _ Hl); apply Sem.wf_true. Qed. End SATCAML.
(* * Copyright 2014, General Dynamics C4 Systems * * This software may be distributed and modified according to the terms of * the GNU General Public License version 2. Note that NO WARRANTY is provided. * See "LICENSE_GPLv2.txt" for details. * * @TAG(GD_GPL) *) (* Author: Gerwin Klein Assumptions and lemmas on machine operations. *) theory Machine_C imports "../../lib/clib/Ctac" begin locale kernel_m = kernel + assumes resetTimer_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp resetTimer) (Call resetTimer_'proc)" assumes writeTTBR0_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>addr = pd\<rbrace>) [] (doMachineOp (writeTTBR0 pd)) (Call writeTTBR0_'proc)" assumes setHardwareASID_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>hw_asid = hw_asid\<rbrace>) [] (doMachineOp (setHardwareASID hw_asid)) (Call setHardwareASID_'proc)" assumes isb_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp isb) (Call isb_'proc)" assumes dsb_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp dsb) (Call dsb_'proc)" assumes dmb_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp dmb) (Call dmb_'proc)" assumes invalidateTLB_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp invalidateTLB) (Call invalidateTLB_'proc)" assumes invalidateTLB_ASID_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>hw_asid = hw_asid \<rbrace>) [] (doMachineOp (invalidateTLB_ASID hw_asid)) (Call invalidateTLB_ASID_'proc)" assumes invalidateTLB_VAASID_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>mva_plus_asid = w\<rbrace>) [] (doMachineOp (invalidateTLB_VAASID w)) (Call invalidateTLB_VAASID_'proc)" assumes cleanByVA_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>vaddr = w1\<rbrace> \<inter> \<lbrace>\<acute>paddr = w2\<rbrace>) [] (doMachineOp (cleanByVA w1 w2)) (Call cleanByVA_'proc)" assumes cleanByVA_PoU_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>vaddr = w1\<rbrace> \<inter> \<lbrace>\<acute>paddr = w2\<rbrace>) [] (doMachineOp (cleanByVA_PoU w1 w2)) (Call cleanByVA_PoU_'proc)" assumes cleanByVA_PoU_preserves_kernel_bytes: "\<forall>s. \<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> {s} Call cleanByVA_PoU_'proc {t. hrs_htd (t_hrs_' (globals t)) = hrs_htd (t_hrs_' (globals s)) \<and> (\<forall>x. snd (hrs_htd (t_hrs_' (globals s)) x) 0 \<noteq> None \<longrightarrow> hrs_mem (t_hrs_' (globals t)) x = hrs_mem (t_hrs_' (globals s)) x)}" assumes invalidateByVA_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>vaddr = w1\<rbrace> \<inter> \<lbrace>\<acute>paddr = w2\<rbrace>) [] (doMachineOp (invalidateByVA w1 w2)) (Call invalidateByVA_'proc)" assumes invalidateByVA_I_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>vaddr = w1\<rbrace> \<inter> \<lbrace>\<acute>paddr = w2\<rbrace>) [] (doMachineOp (invalidateByVA_I w1 w2)) (Call invalidateByVA_I_'proc)" assumes invalidate_I_PoU_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp invalidate_I_PoU) (Call invalidate_I_PoU_'proc)" assumes cleanInvalByVA_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>vaddr = w1\<rbrace> \<inter> \<lbrace>\<acute>paddr = w2\<rbrace>) [] (doMachineOp (cleanInvalByVA w1 w2)) (Call cleanInvalByVA_'proc)" assumes branchFlush_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>vaddr = w1\<rbrace> \<inter> \<lbrace>\<acute>paddr = w2\<rbrace>) [] (doMachineOp (branchFlush w1 w2)) (Call branchFlush_'proc)" assumes clean_D_PoU_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp clean_D_PoU) (Call clean_D_PoU_'proc)" assumes cleanInvalidate_D_PoC_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp cleanInvalidate_D_PoC) (Call cleanInvalidate_D_PoC_'proc)" assumes cleanInvalidateL2Range_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace>) [] (doMachineOp (cleanInvalidateL2Range w1 w2)) (Call cleanInvalidateL2Range_'proc)" assumes invalidateL2Range_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace>) [] (doMachineOp (invalidateL2Range w1 w2)) (Call invalidateL2Range_'proc)" assumes cleanL2Range_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace>) [] (doMachineOp (cleanL2Range w1 w2)) (Call plat_cleanL2Range_'proc)" assumes clearExMonitor_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp ARM.clearExMonitor) (Call clearExMonitor_'proc)" assumes getIFSR_ccorres: "ccorres (op =) ret__unsigned_long_' \<top> UNIV [] (doMachineOp getIFSR) (Call getIFSR_'proc)" assumes getDFSR_ccorres: "ccorres (op =) ret__unsigned_long_' \<top> UNIV [] (doMachineOp getDFSR) (Call getDFSR_'proc)" assumes getFAR_ccorres: "ccorres (op =) ret__unsigned_long_' \<top> UNIV [] (doMachineOp getFAR) (Call getFAR_'proc)" assumes getActiveIRQ_ccorres: "ccorres (\<lambda>(a::10 word option) c::16 word. case a of None \<Rightarrow> c = (0xFFFF::16 word) | Some (x::10 word) \<Rightarrow> c = ucast x \<and> c \<noteq> (0xFFFF::16 word)) (\<lambda>t. irq_' (s\<lparr>globals := globals t, irq_' := ret__unsigned_short_' t\<rparr> )) \<top> UNIV hs (doMachineOp getActiveIRQ) (Call getActiveIRQ_'proc)" (* This is not very correct, however our current implementation of Hardware in haskell is stateless *) assumes isIRQPending_ccorres: "ccorres (\<lambda>rv rv'. rv' = from_bool (rv \<noteq> None)) ret__unsigned_long_' \<top> UNIV [] (doMachineOp getActiveIRQ) (Call isIRQPending_'proc)" assumes armv_contextSwitch_HWASID_ccorres: "ccorres dc xfdc \<top> (UNIV \<inter> {s. cap_pd_' s = pde_Ptr pd} \<inter> {s. hw_asid_' s = hwasid}) [] (doMachineOp (armv_contextSwitch_HWASID pd hwasid)) (Call armv_contextSwitch_HWASID_'proc)" assumes getActiveIRQ_Normal: "\<Gamma> \<turnstile> \<langle>Call getActiveIRQ_'proc, Normal s\<rangle> \<Rightarrow> s' \<Longrightarrow> isNormal s'" assumes maskInterrupt_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>disable = from_bool m\<rbrace> \<inter> \<lbrace>\<acute>irq = ucast irq\<rbrace>) [] (doMachineOp (maskInterrupt m irq)) (Call maskInterrupt_'proc)" assumes invalidateTLB_VAASID_spec: "\<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> UNIV (Call invalidateMVA_'proc) UNIV" assumes cleanCacheRange_PoU_spec: "\<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> UNIV (Call cleanCacheRange_PoU_'proc) UNIV" (* The following are fastpath specific assumptions. We might want to move them somewhere else. *) (* clearExMonitor_fp is an inline-friendly version of clearExMonitor *) assumes clearExMonitor_fp_ccorres: "ccorres dc xfdc (\<lambda>_. True) UNIV [] (doMachineOp ARM.clearExMonitor) (Call clearExMonitor_fp_'proc)" (* @{text slowpath} is an assembly stub that switches execution from the fastpath to the slowpath. Its contract is equivalence to the toplevel slowpath function @{term callKernel} for the @{text SyscallEvent} case. *) assumes slowpath_ccorres: "ccorres dc xfdc (\<lambda>s. invs' s \<and> ct_in_state' (op = Running) s) ({s. syscall_' s = syscall_from_H ev}) [SKIP] (callKernel (SyscallEvent ev)) (Call slowpath_'proc)" (* @{text slowpath} does not return, but uses the regular slowpath kernel exit instead. *) assumes slowpath_noreturn_spec: "\<Gamma> \<turnstile> UNIV Call slowpath_'proc {},UNIV" (* @{text fastpath_restore} updates badge and msgInfo registers and returns to the user. *) assumes fastpath_restore_ccorres: "ccorres dc xfdc (\<lambda>s. t = ksCurThread s) ({s. badge_' s = bdg} \<inter> {s. msgInfo_' s = msginfo} \<inter> {s. cur_thread_' s = tcb_ptr_to_ctcb_ptr t}) [SKIP] (asUser t (zipWithM_x setRegister [ARM_H.badgeRegister, ARM_H.msgInfoRegister] [bdg, msginfo])) (Call fastpath_restore_'proc)" assumes ackInterrupt_ccorres: "ccorres dc xfdc \<top> UNIV hs (doMachineOp (ackInterrupt irq)) (Call ackInterrupt_'proc)" context kernel_m begin lemma index_xf_for_sequence: "\<forall>s f. index_' (index_'_update f s) = f (index_' s) \<and> globals (index_'_update f s) = globals s" by simp lemma upto_enum_word_nth: "\<lbrakk>i \<le> j; k \<le> unat (j - i)\<rbrakk> \<Longrightarrow> [i .e. j] ! k = i + of_nat k" apply (clarsimp simp: upto_enum_def nth_upt nth_append) apply (clarsimp simp: toEnum_of_nat word_le_nat_alt[symmetric]) apply (rule conjI, clarsimp) apply (subst toEnum_of_nat, unat_arith) apply unat_arith apply (clarsimp simp: not_less unat_sub[symmetric]) apply unat_arith done lemma upto_enum_step_nth: "\<lbrakk>a \<le> c; n \<le> unat ((c - a) div (b - a))\<rbrakk> \<Longrightarrow> [a, b .e. c] ! n = a + of_nat n * (b - a)" apply (clarsimp simp: upto_enum_step_def not_less[symmetric]) apply (subst upto_enum_word_nth) apply (auto simp: not_less word_of_nat_le) done lemma lineStart_le_mono: "x \<le> y \<Longrightarrow> lineStart x \<le> lineStart y" by (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1 neg_mask_mono_le) lemma neg_mask_add: "y && mask n = 0 \<Longrightarrow> x + y && ~~ mask n = (x && ~~ mask n) + y" by (clarsimp simp: mask_out_sub_mask mask_eqs(7)[symmetric] mask_twice) lemma lineStart_sub: "\<lbrakk> x && mask 5 = y && mask 5\<rbrakk> \<Longrightarrow> lineStart (x - y) = lineStart x - lineStart y" apply (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1) apply (clarsimp simp: mask_out_sub_mask) apply (clarsimp simp: mask_eqs(8)[symmetric]) done lemma minus_minus_swap: "\<lbrakk> a \<le> c; b \<le> d; b \<le> a; d \<le> c\<rbrakk> \<Longrightarrow> (d :: nat) - b = c - a \<Longrightarrow> a - b = c - d" by arith lemma minus_minus_swap': "\<lbrakk> c \<le> a; d \<le> b; b \<le> a; d \<le> c\<rbrakk> \<Longrightarrow> (b :: nat) - d = a - c \<Longrightarrow> a - b = c - d" by arith lemma lineStart_mask: "lineStart x && mask 5 = 0" by (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1 mask_AND_NOT_mask) lemma cachRangeOp_corres_helper: "\<lbrakk>w1 \<le> w2; w3 \<le> w3 + (w2 - w1); w1 && mask 5 = w3 && mask 5\<rbrakk> \<Longrightarrow> unat (lineStart w2 - lineStart w1) div 32 = unat (lineStart (w3 + (w2 - w1)) - lineStart w3) div 32" apply (subst dvd_div_div_eq_mult, simp) apply (clarsimp simp: and_mask_dvd_nat[where n=5, simplified]) apply (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1) apply (subst mask_eqs(8)[symmetric]) apply (clarsimp simp: mask_AND_NOT_mask) apply (clarsimp simp: and_mask_dvd_nat[where n=5, simplified]) apply (subst mask_eqs(8)[symmetric]) apply (clarsimp simp: lineStart_mask) apply (subgoal_tac "w3 + (w2 - w1) && mask 5 = w2 && mask 5") apply clarsimp apply (rule_tac x=w1 and y=w3 in linorder_le_cases) apply (subgoal_tac "lineStart (w3 + (w2 - w1)) - lineStart w2 = lineStart w3 - lineStart w1") apply (rule word_unat.Rep_eqD) apply (subst unat_sub, clarsimp simp: lineStart_le_mono)+ apply (rule minus_minus_swap) apply (clarsimp simp: word_le_nat_alt[symmetric] intro!: lineStart_le_mono) apply (clarsimp simp: word_le_nat_alt unat_plus_simple[THEN iffD1] unat_sub) apply arith apply (clarsimp simp: word_le_nat_alt[symmetric] lineStart_le_mono) apply (clarsimp simp: word_le_nat_alt[symmetric] lineStart_le_mono) apply (clarsimp simp: word_le_nat_alt[symmetric] lineStart_le_mono) apply (subst unat_sub[symmetric], clarsimp simp: intro!: lineStart_le_mono)+ apply (clarsimp simp: word_le_nat_alt unat_plus_simple[THEN iffD1] unat_sub) apply arith apply clarsimp apply (clarsimp simp: lineStart_sub[symmetric] field_simps) apply (subgoal_tac "lineStart w2 - lineStart (w3 + (w2 - w1)) = lineStart w1 - lineStart w3") apply (rule word_unat.Rep_eqD) apply (subst unat_sub, clarsimp simp: lineStart_le_mono)+ apply (rule minus_minus_swap') apply (clarsimp simp: word_le_nat_alt[symmetric] intro!: lineStart_le_mono) apply (clarsimp simp: word_le_nat_alt unat_plus_simple[THEN iffD1] unat_sub) apply arith apply (clarsimp simp: word_le_nat_alt[symmetric] lineStart_le_mono) apply (clarsimp simp: word_le_nat_alt[symmetric] lineStart_le_mono) apply (clarsimp simp: word_le_nat_alt[symmetric] lineStart_le_mono) apply (subst unat_sub[symmetric], clarsimp simp: intro!: lineStart_le_mono)+ apply (clarsimp simp: word_le_nat_alt unat_plus_simple[THEN iffD1] unat_sub) apply arith apply clarsimp apply (clarsimp simp: lineStart_sub[symmetric] field_simps) apply (subst mask_eqs(7)[symmetric]) apply (subst mask_eqs(8)[symmetric]) apply (clarsimp simp: mask_eqs) done definition "lineIndex x \<equiv> lineStart x >> cacheLineBits" lemma shiftr_shiftl_shiftr[simp]: "x >> a << a >> a = (x :: ('a :: len) word) >> a" apply (rule word_eqI) apply (simp add: word_size nth_shiftr nth_shiftl) apply safe apply (drule test_bit_size) apply (simp add: word_size) done lemma lineIndex_def2: "lineIndex x = x >> cacheLineBits" by (simp add: lineIndex_def lineStart_def) lemma lineIndex_le_mono: "x \<le> y \<Longrightarrow> lineIndex x \<le> lineIndex y" by (clarsimp simp: lineIndex_def2 cacheLineBits_def le_shiftr) lemma add_right_shift: "\<lbrakk>x && mask n = 0; y && mask n = 0; x \<le> x + y \<rbrakk> \<Longrightarrow> (x + y :: ('a :: len) word) >> n = (x >> n) + (y >> n)" apply (simp add: no_olen_add_nat is_aligned_mask[symmetric]) apply (simp add: unat_arith_simps shiftr_div_2n' split del: if_split) apply (subst if_P) apply (erule order_le_less_trans[rotated]) apply (simp add: add_mono) apply (simp add: shiftr_div_2n' is_aligned_def) done lemma sub_right_shift: "\<lbrakk>x && mask n = 0; y && mask n = 0; y \<le> x \<rbrakk> \<Longrightarrow> (x - y) >> n = (x >> n :: ('a :: len) word) - (y >> n)" using add_right_shift[where x="x - y" and y=y and n=n] by (simp add: aligned_sub_aligned is_aligned_mask[symmetric] word_sub_le) lemma lineIndex_lineStart_diff: "w1 \<le> w2 \<Longrightarrow> (unat (lineStart w2 - lineStart w1) div 32) = unat (lineIndex w2 - lineIndex w1)" apply (subst shiftr_div_2n'[symmetric, where n=5, simplified]) apply (drule lineStart_le_mono) apply (drule sub_right_shift[OF lineStart_mask lineStart_mask]) apply (simp add: lineIndex_def cacheLineBits_def) done lemma cacheRangeOp_ccorres: "\<lbrakk>\<And>x y. empty_fail (oper x y); \<forall>n. ccorres dc xfdc \<top> (\<lbrace>\<acute>index = lineIndex w1 + of_nat n\<rbrace>) hs (doMachineOp (oper (lineStart w1 + of_nat n * 0x20) (lineStart w3 + of_nat n * 0x20))) f; \<forall>s. \<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> {s} f ({t. index_' t = index_' s}) \<rbrakk> \<Longrightarrow> ccorres dc xfdc (\<lambda>_. w1 \<le> w2 \<and> w3 \<le> w3 + (w2 - w1) \<and> w1 && mask 5 = w3 && mask 5) (\<lbrace>\<acute>index = w1 >> 5\<rbrace>) hs (doMachineOp (cacheRangeOp oper w1 w2 w3)) (While \<lbrace>\<acute>index < (w2 >> 5) + 1\<rbrace> (f;; \<acute>index :== \<acute>index + 1))" apply (clarsimp simp: cacheRangeOp_def doMachineOp_mapM_x split_def cacheLine_def cacheLineBits_def) apply (rule ccorres_gen_asm[where G=\<top>, simplified]) apply (rule ccorres_guard_imp) apply (rule ccorres_rel_imp) apply (rule_tac i="unat (lineIndex w1)" and F="\<lambda>_. \<top>" in ccorres_mapM_x_while_gen'[OF _ _ _ _ _ index_xf_for_sequence, where j=1, simplified], simp_all) apply clarsimp apply (clarsimp simp: length_upto_enum_step lineStart_le_mono) apply (clarsimp simp: upto_enum_step_nth lineStart_le_mono) apply (clarsimp simp: length_upto_enum_step lineStart_le_mono unat_div) apply (subst min_absorb1[OF order_eq_refl]) apply (erule (2) cachRangeOp_corres_helper) apply (simp add: lineIndex_lineStart_diff) apply (simp add: lineIndex_def2 cacheLineBits_def) apply unat_arith apply wp apply (clarsimp simp: length_upto_enum_step lineStart_le_mono unat_div) apply (subst min_absorb1[OF order_eq_refl]) apply (erule (2) cachRangeOp_corres_helper) apply (simp add: lineIndex_lineStart_diff unat_sub[OF lineIndex_le_mono]) apply (subst le_add_diff_inverse) apply (simp add: lineIndex_le_mono word_le_nat_alt[symmetric]) apply (simp add: lineIndex_def2 cacheLineBits_def) apply (rule unat_mono[where 'a=32 and b="0xFFFFFFFF", simplified]) apply word_bitwise apply (simp add: lineIndex_def cacheLineBits_def lineStart_def) done lemma lineStart_eq_minus_mask: "lineStart w1 = w1 - (w1 && mask 5)" by (simp add: lineStart_def cacheLineBits_def mask_out_sub_mask[symmetric] and_not_mask) lemma lineStart_idem[simp]: "lineStart (lineStart x) = lineStart x" by (simp add: lineStart_def cacheLineBits_def) lemma cache_range_lineIndex_helper: "lineIndex w1 + of_nat n << 5 = w1 - (w1 && mask 5) + of_nat n * 0x20" apply (clarsimp simp: lineIndex_def cacheLineBits_def word_shiftl_add_distrib lineStart_def[symmetric, unfolded cacheLineBits_def] lineStart_eq_minus_mask[symmetric]) apply (simp add: shiftl_t2n) done lemma cleanCacheRange_PoC_ccorres: "ccorres dc xfdc (\<lambda>_. w1 \<le> w2 \<and> w3 \<le> w3 + (w2 - w1) \<and> w1 && mask 5 = w3 && mask 5) (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace> \<inter> \<lbrace>\<acute>pstart = w3\<rbrace>) [] (doMachineOp (cleanCacheRange_PoC w1 w2 w3)) (Call cleanCacheRange_PoC_'proc)" apply (rule ccorres_gen_asm[where G=\<top>, simplified]) apply (cinit' lift: start_' end_' pstart_') apply (clarsimp simp: cleanCacheRange_PoC_def word_sle_def whileAnno_def) apply (ccorres_remove_UNIV_guard) apply csymbr apply (rule cacheRangeOp_ccorres[simplified dc_def]) apply (rule empty_fail_cleanByVA) apply clarsimp apply (cinitlift index_') apply (rule ccorres_guard_imp2) apply csymbr apply (ctac add: cleanByVA_ccorres[unfolded dc_def]) apply (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1 mask_out_sub_mask) apply (drule_tac s="w1 && mask 5" in sym, simp add: cache_range_lineIndex_helper) apply (vcg exspec=cleanByVA_modifies) apply clarsimp done lemma cleanInvalidateCacheRange_RAM_ccorres: "ccorres dc xfdc ((\<lambda>s. unat (w2 - w1) \<le> gsMaxObjectSize s) and (\<lambda>_. w1 \<le> w2 \<and> w3 \<le> w3 + (w2 - w1) \<and> w1 && mask 5 = w3 && mask 5 \<and> unat (w2 - w2) \<le> gsMaxObjectSize s)) (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace> \<inter> \<lbrace>\<acute>pstart = w3\<rbrace>) [] (doMachineOp (cleanInvalidateCacheRange_RAM w1 w2 w3)) (Call cleanInvalidateCacheRange_RAM_'proc)" apply (rule ccorres_gen_asm) apply (cinit' lift: start_' end_' pstart_') apply (clarsimp simp: word_sle_def whileAnno_def) apply (ccorres_remove_UNIV_guard) apply (rule ccorres_Guard_Seq) apply (rule ccorres_basic_srnoop) apply (simp add: cleanInvalidateCacheRange_RAM_def doMachineOp_bind empty_fail_dsb empty_fail_cleanCacheRange_PoC empty_fail_cleanInvalidateL2Range empty_fail_cacheRangeOp empty_fail_cleanInvalByVA) apply (ctac (no_vcg) add: cleanCacheRange_PoC_ccorres) apply (ctac (no_vcg) add: dsb_ccorres) apply (ctac (no_vcg) add: cleanInvalidateL2Range_ccorres) apply csymbr apply (rule ccorres_split_nothrow_novcg) apply (rule cacheRangeOp_ccorres) apply (rule empty_fail_cleanInvalByVA) apply clarsimp apply (cinitlift index_') apply (rule ccorres_guard_imp2) apply csymbr apply (ctac add: cleanInvalByVA_ccorres) apply (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1 mask_out_sub_mask) apply (drule_tac s="w1 && mask 5" in sym, simp add: cache_range_lineIndex_helper) apply (vcg exspec=cleanInvalByVA_modifies) apply (rule ceqv_refl) apply (ctac (no_vcg) add: dsb_ccorres[simplified dc_def]) apply (wp | clarsimp simp: guard_is_UNIVI o_def)+ apply (frule(1) ghost_assertion_size_logic) apply (clarsimp simp: o_def) done lemma cleanCacheRange_RAM_ccorres: "ccorres dc xfdc (\<lambda>s. w1 \<le> w2 \<and> w3 \<le> w3 + (w2 - w1) \<and> w1 && mask 5 = w3 && mask 5 \<and> unat (w2 - w1) \<le> gsMaxObjectSize s) (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace> \<inter> \<lbrace>\<acute>pstart = w3\<rbrace>) [] (doMachineOp (cleanCacheRange_RAM w1 w2 w3)) (Call cleanCacheRange_RAM_'proc)" apply (cinit' lift: start_' end_' pstart_') apply (simp add: cleanCacheRange_RAM_def doMachineOp_bind empty_fail_dsb empty_fail_cleanCacheRange_PoC empty_fail_cleanL2Range) apply (rule ccorres_Guard_Seq) apply (rule ccorres_basic_srnoop2, simp) apply (ctac (no_vcg) add: cleanCacheRange_PoC_ccorres) apply (ctac (no_vcg) add: dsb_ccorres) apply (rule_tac P="\<lambda>s. unat (w2 - w1) \<le> gsMaxObjectSize s" in ccorres_cross_over_guard) apply (rule ccorres_Guard_Seq) apply (rule ccorres_basic_srnoop2, simp) apply (ctac (no_vcg) add: cleanL2Range_ccorres[unfolded dc_def]) apply wp+ apply clarsimp apply (auto dest: ghost_assertion_size_logic simp: o_def) done lemma cleanCacheRange_PoU_ccorres: "ccorres dc xfdc ((\<lambda>s. unat (w2 - w1) \<le> gsMaxObjectSize s) and (\<lambda>_. w1 \<le> w2 \<and> w3 \<le> w3 + (w2 - w1) \<and> w1 && mask 5 = w3 && mask 5)) (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace> \<inter> \<lbrace>\<acute>pstart = w3\<rbrace>) [] (doMachineOp (cleanCacheRange_PoU w1 w2 w3)) (Call cleanCacheRange_PoU_'proc)" apply (rule ccorres_gen_asm) apply (cinit' lift: start_' end_' pstart_') apply (clarsimp simp: word_sle_def whileAnno_def) apply (ccorres_remove_UNIV_guard) apply (rule ccorres_Guard_Seq) apply (rule ccorres_basic_srnoop2, simp) apply (simp add: cleanCacheRange_PoU_def) apply csymbr apply (rule cacheRangeOp_ccorres[simplified dc_def]) apply (rule empty_fail_cleanByVA_PoU) apply clarsimp apply (cinitlift index_') apply (rule ccorres_guard_imp2) apply csymbr apply (ctac add: cleanByVA_PoU_ccorres[unfolded dc_def]) apply (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1 mask_out_sub_mask) apply (drule_tac s="w1 && mask 5" in sym, simp add: cache_range_lineIndex_helper) apply (vcg exspec=cleanByVA_PoU_modifies) apply clarsimp apply (frule(1) ghost_assertion_size_logic) apply (clarsimp simp: o_def) done lemma dmo_if: "(doMachineOp (if a then b else c)) = (if a then (doMachineOp b) else (doMachineOp c))" by (simp split: if_split) lemma invalidateCacheRange_RAM_ccorres: "ccorres dc xfdc ((\<lambda>s. unat (w2 - w1) \<le> gsMaxObjectSize s) and (\<lambda>_. w1 \<le> w2 \<and> w3 \<le> w3 + (w2 - w1) \<and> w1 && mask 5 = w3 && mask 5)) (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace> \<inter> \<lbrace>\<acute>pstart = w3\<rbrace>) [] (doMachineOp (invalidateCacheRange_RAM w1 w2 w3)) (Call invalidateCacheRange_RAM_'proc)" apply (rule ccorres_gen_asm) apply (cinit' lift: start_' end_' pstart_') apply (clarsimp simp: word_sle_def whileAnno_def split del: if_split) apply (ccorres_remove_UNIV_guard) apply (simp add: invalidateCacheRange_RAM_def doMachineOp_bind when_def split_if_empty_fail empty_fail_cleanCacheRange_RAM empty_fail_invalidateL2Range empty_fail_cacheRangeOp empty_fail_invalidateByVA empty_fail_dsb dmo_if split del: if_split) apply (rule ccorres_split_nothrow_novcg) apply (rule ccorres_cond[where R=\<top>]) apply (clarsimp simp: lineStart_def cacheLineBits_def) apply (rule ccorres_call[OF cleanCacheRange_RAM_ccorres, where xf'=xfdc], (clarsimp)+) apply (rule ccorres_return_Skip[unfolded dc_def]) apply ceqv apply (rule ccorres_split_nothrow_novcg) apply (rule ccorres_cond[where R=\<top>]) apply (clarsimp simp: lineStart_def cacheLineBits_def) apply csymbr apply (rule ccorres_call[OF cleanCacheRange_RAM_ccorres, where xf'=xfdc], (clarsimp)+) apply (rule ccorres_return_Skip[unfolded dc_def]) apply ceqv apply (rule_tac P="\<lambda>s. unat (w2 - w1) \<le> gsMaxObjectSize s" in ccorres_cross_over_guard) apply (rule ccorres_Guard_Seq) apply (rule ccorres_basic_srnoop2, simp) apply (ctac add: invalidateL2Range_ccorres) apply (rule ccorres_Guard_Seq) apply (rule ccorres_basic_srnoop2, simp) apply (csymbr) apply (rule ccorres_split_nothrow_novcg) apply (rule cacheRangeOp_ccorres) apply (simp add: empty_fail_invalidateByVA) apply clarsimp apply (cinitlift index_') apply (rule ccorres_guard_imp2) apply csymbr apply (ctac add: invalidateByVA_ccorres) apply (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1 mask_out_sub_mask) apply (drule_tac s="w1 && mask 5" in sym, simp add: cache_range_lineIndex_helper) apply (vcg exspec=invalidateByVA_modifies) apply ceqv apply (ctac add: dsb_ccorres[unfolded dc_def]) apply wp apply (simp add: guard_is_UNIV_def) apply wp apply (vcg exspec=plat_invalidateL2Range_modifies) apply wp apply (simp add: guard_is_UNIV_def) apply (auto dest: ghost_assertion_size_logic simp: o_def)[1] apply (wp | clarsimp split: if_split)+ apply (clarsimp simp: lineStart_def cacheLineBits_def guard_is_UNIV_def) apply (clarsimp simp: lineStart_mask) apply (subst mask_eqs(7)[symmetric]) apply (subst mask_eqs(8)[symmetric]) apply (simp add: lineStart_mask mask_eqs) done lemma invalidateCacheRange_I_ccorres: "ccorres dc xfdc (\<lambda>_. w1 \<le> w2 \<and> w3 \<le> w3 + (w2 - w1) \<and> w1 && mask 5 = w3 && mask 5) (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace> \<inter> \<lbrace>\<acute>pstart = w3\<rbrace>) [] (doMachineOp (invalidateCacheRange_I w1 w2 w3)) (Call invalidateCacheRange_I_'proc)" apply (rule ccorres_gen_asm[where G=\<top>, simplified]) apply (cinit' lift: start_' end_' pstart_') apply (clarsimp simp: word_sle_def whileAnno_def) apply (ccorres_remove_UNIV_guard) apply (simp add: invalidateCacheRange_I_def) apply csymbr apply (rule cacheRangeOp_ccorres[simplified dc_def]) apply (rule empty_fail_invalidateByVA_I) apply clarsimp apply (cinitlift index_') apply (rule ccorres_guard_imp2) apply csymbr apply (ctac add: invalidateByVA_I_ccorres[unfolded dc_def]) apply (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1 mask_out_sub_mask) apply (drule_tac s="w1 && mask 5" in sym, simp add: cache_range_lineIndex_helper) apply (vcg exspec=invalidateByVA_I_modifies) apply clarsimp done lemma branchFlushRange_ccorres: "ccorres dc xfdc (\<lambda>_. w1 \<le> w2 \<and> w3 \<le> w3 + (w2 - w1) \<and> w1 && mask 5 = w3 && mask 5) (\<lbrace>\<acute>start = w1\<rbrace> \<inter> \<lbrace>\<acute>end = w2\<rbrace> \<inter> \<lbrace>\<acute>pstart = w3\<rbrace>) [] (doMachineOp (branchFlushRange w1 w2 w3)) (Call branchFlushRange_'proc)" apply (rule ccorres_gen_asm[where G=\<top>, simplified]) apply (cinit' lift: start_' end_' pstart_') apply (clarsimp simp: word_sle_def whileAnno_def) apply (ccorres_remove_UNIV_guard) apply (simp add: branchFlushRange_def) apply csymbr apply (rule cacheRangeOp_ccorres[simplified dc_def]) apply (rule empty_fail_branchFlush) apply clarsimp apply (cinitlift index_') apply (rule ccorres_guard_imp2) apply csymbr apply (ctac add: branchFlush_ccorres[unfolded dc_def]) apply (clarsimp simp: lineStart_def cacheLineBits_def shiftr_shiftl1 mask_out_sub_mask) apply (drule_tac s="w1 && mask 5" in sym, simp add: cache_range_lineIndex_helper) apply (vcg exspec=branchFlush_modifies) apply clarsimp done lemma cleanCaches_PoU_ccorres: "ccorres dc xfdc \<top> UNIV [] (doMachineOp cleanCaches_PoU) (Call cleanCaches_PoU_'proc)" apply cinit' apply (simp add: cleanCaches_PoU_def doMachineOp_bind empty_fail_dsb empty_fail_clean_D_PoU empty_fail_invalidate_I_PoU) apply (ctac (no_vcg) add: dsb_ccorres) apply (ctac (no_vcg) add: clean_D_PoU_ccorres) apply (ctac (no_vcg) add: dsb_ccorres) apply (ctac (no_vcg) add: invalidate_I_PoU_ccorres) apply (ctac (no_vcg) add: dsb_ccorres) apply wp+ apply clarsimp done lemma setCurrentPD_ccorres: "ccorres dc xfdc \<top> (\<lbrace>\<acute>addr = pd\<rbrace>) [] (doMachineOp (setCurrentPD pd)) (Call setCurrentPD_'proc)" apply cinit' apply (clarsimp simp: setCurrentPD_def doMachineOp_bind empty_fail_dsb empty_fail_isb writeTTBR0_empty_fail intro!: ccorres_cond_empty) apply (rule ccorres_rhs_assoc) apply (ctac (no_vcg) add: dsb_ccorres) apply (ctac (no_vcg) add: writeTTBR0_ccorres) apply (ctac (no_vcg) add: isb_ccorres) apply wp+ apply clarsimp done end end
\chapter{Introduction} The {\libraryname} ({\libraryshort}) is a general-purpose framework for implementing {\em functional encryption} schemes. Functional encryption is a generalization that encompasses a number of novel encryption technologies, including Attribute-Based Encryption (ABE), Identity-Based Encryption (IBE) and several other new primitives. %\medskip \noindent %{\bf Functional Encryption.} \section{Background: Functional Encryption} %One of the foremost uses of cryptography is to control access to data. Encryption is an excellent tool for this purpose. In a public key encryption scheme, users encrypt data for a specific user under her {\em public key}. The user then decrypts this information using her corresponding secret key. This approach is limited in that the encryptor must $(1)$ know the precise identity of the user he is encrypting for, and $(2)$ must first obtain the user's public key. %One approach to simplifying this problem is to use Identity-Based Encryption (IBE). In an IBE scheme the encryptor need not obtain the user's public key prior to encrypting: instead, he encrypts under the user's identity (name, email address, etc.) along with some set of master public parameters that are shared by all users. The user obtains a corresponding decryption key from a trusted authority known as the Private Key Generator. %While IBE simplifies problem $(2)$ above, it does not answer the first problem: what if the encryptor doesn't know the precise identity of the user to whom he is encrypting? What if, instead, he simply wishes to encrypt to some specific set of users? In a functional encryption scheme, encryptors associate ciphertext values with some value $X$. Decryptors may request a decryption key associated with a value $Y$; these are produced by a trusted authority known as the Private Key Generator (PKG). For some function $F: a \times b \rightarrow \{0,1\}$ associated with the encryption scheme, cecryption is permitted if and only if the following relationship is satisfied: $$F(X, Y) = 1$$ The choice of encryption scheme typically defines the function $F$ as well as the form of the inputs $X, Y$. This formulation encompasses the following encryption types: \begin{enumerate} \item {\em Identity Based Encryption.} In an IBE scheme \cite{shamir84,bf01}, both $X$ and $Y$ are identities (arbitrary bitstrings $\{0,1\}^*$) and $F$ outputs $1$ iff $X = Y$. \item {\em Key-Policy Attribute Based Encryption.} In a KP-ABE \cite{sw05} scheme, the value $X$ is a list of attributes associated with the ciphertext, while the key-assocated value $Y$ contains a complex ``policy'', which is typically represented by an access tree. The function $F$ outputs 1 iff the ciphertext's attributes satisfy the policy. \item {\em Ciphertext-Policy Attribute Based Encryption.} In a CP-ABE \cite{} scheme, the value $X$ is an attribute policy that will be associated with the ciphertext, while $Y$ is an attribute list associated with the key. \end{enumerate} \section{Overview of the {\libraryname}} \subsection{Supported encryption schemes} \label{sec:supportedschemes} The {\libraryname} currently implements the following encryption schemes. This list is expected to grow in later releases. \begin{enumerate} \item {\bf Lewko-Sahai-Waters KP-ABE \cite{lsw09}.} An efficient ABE scheme supporting non-monotonic access structures. Secure under the $q$-MEBDH assumption in prime-order bilinear groups. \end{enumerate} \subsection{What {\libraryshort} doesn't do} \subsection{Dependencies} \section{Outline of this Manual} The remainder of this manual is broken into several sections. Chapter~\ref{chap:usage} gives a basic overview of the library's usage, from the point of view of an application writer. Chapter~\ref{chap:api} provides a canonical description of the library API. Finally, Chapter~\ref{chap:schemes} provides an detailed description of the schemes that are currently supported by {\libraryshort}, with some details on their internal workings.
section \<open>Verification Condition Testing\<close> theory control_flow_partial_examples imports "../../hoare/HoareLogic/PartialCorrectness/utp_hoare" begin section "Examples" text{*In this section we provide a set of examples on the verification of programs that uses control flow statements with Hoare logic for partial correctness. The combination of relational algebra, ie. UTP, and lens algebra allows for a semantic based framework for the specification of programming languages and their features. It also allows a powerful proof tactics for the framework such as @{method rel_auto}, @{method pred_auto}, etc.*} text{* In the following examples: \begin{itemize} \<^item> The formal notation @{term "\<lbrace>Pre\<rbrace>prog\<lbrace>Post\<rbrace>\<^sub>u"} represent a hoare triple for partial correctness. \<^item> All variables are represented by lenses and have the type @{typ "'v \<Longrightarrow> 's"}: where @{typ "'v"} is the view type of the lens and @{typ "'s"} is the type of the state. \<^item> Lens properties such as @{term "weak_lens"}, @{term "mwb_lens"}, @{term "wb_lens"}, @{term "vwb_lens"}, @{term "ief_lens"}, @{term "bij_lens"} are used to semantically express what does not change in the state space. For example applying the property @{term "bij_lens"} of variable @{term "x"} gives the term @{term "bij_lens x"}. Informally this means that any change on x will appear on all other variables in the state space.The property @{term "ief_lens"} is just the opposite of @{term "bij_lens"}. \<^item> The formal notation @{term "x \<sharp>\<sharp> P"} is a syntactic sugar for @{term "unrest_relation x P"}: informally it is used to semantically express that the variable x does not occur in the program P. \<^item> The formal notation @{term "x :== v"} is a syntactic sugar for @{term "assigns_r [x \<mapsto>\<^sub>s v]"}: informally it represent an assignment of a value v to a variable x. \<^item> The formal notation @{term "&x"} is a syntactic sugar for @{term "\<langle>id\<rangle>\<^sub>s x"}: informally it represent the content of a variable x. \<^item> The formal notation @{term "\<guillemotleft>l\<guillemotright>"} is a syntactic sugar for @{term "lit l"}: informally it represent a lifting of an HOL literal l to utp expression. \<^item> The formal notation @{term "x \<bowtie> y"} is a syntactic sugar for @{term "lens_indep x y"}: informally it is a semantic representation that uses two variables to characterise independence between two state space regions. \<^item> The tactics @{method rel_auto}, @{method pred_auto}, @{method rel_simp}, @{method pred_simp}, @{method rel_blast}, @{method pred_blast} are used to discharge proofs related to UTP-relations and UTP-predicates. \end{itemize} *} subsection {*block feature*} text {*block_test1 is a scenario. The scenario represent a program where i is name of the variable in the scope of the initial state s. In the scenario, and using the command block, we create a new variable with the same name inside the block ie., inside the new scope. Now i is a local var for the scope t. In that case we can use a restore function on the state s to set the variable to its previous value ie.,its value in the scope s, and this before we exit the block.*} lemma blocks_test1: assumes "weak_lens i" shows "\<lbrace>true\<rbrace> i :== \<guillemotleft>2::int\<guillemotright>;; block (i :== \<guillemotleft>5\<guillemotright>) (II) (\<lambda> (s, s') (t, t'). i:== \<guillemotleft>\<lbrakk>\<langle>id\<rangle>\<^sub>s i\<rbrakk>\<^sub>e s\<guillemotright>) (\<lambda> (s, s') (t, t'). II) \<lbrace>&i =\<^sub>u \<guillemotleft>2::int\<guillemotright>\<rbrace>\<^sub>u" using assms by rel_auto text {*block_test2 is similar to block_test1 but the var i is a global var. In that case we can use restore function and the state t to set the variable to its latest value, ie.,its value in in the scope t,probably modified inside the scope of the block.*} lemma blocks_test2: assumes "weak_lens i" shows "\<lbrace>true\<rbrace> i :== \<guillemotleft>2::int\<guillemotright>;; block (i :== \<guillemotleft>5\<guillemotright>) (II) (\<lambda> (s, s') (t, t'). i:== \<guillemotleft>\<lbrakk>\<langle>id\<rangle>\<^sub>s i\<rbrakk>\<^sub>e t\<guillemotright>) (\<lambda> (s, s') (t, t'). II) \<lbrace>&i =\<^sub>u \<guillemotleft>5::int\<guillemotright>\<rbrace>\<^sub>u" using assms by rel_auto subsection {*Infinite loops*} text{*The next two lemmas are the witness needed to justify the theory of designs.*} lemma 1:"while\<^sub>\<bottom> true do II od = true" unfolding while_bot_def apply rel_simp unfolding gfp_def apply transfer apply auto done lemma "in\<alpha> \<sharp> ( x :== \<guillemotleft>c\<guillemotright>) \<Longrightarrow> while\<^sub>\<bottom> true do II od;; x :== \<guillemotleft>c\<guillemotright> = x :== \<guillemotleft>c\<guillemotright>" apply (subst 1) apply (simp only: assigns_r.abs_eq ) apply (simp only: seqr_def) apply simp apply rel_simp apply transfer apply auto done end
Miss Prism — Mrs. George <unk>
lemma space_lebesgue_on [simp]: "space (lebesgue_on S) = S"
lemmas prime_dvd_mult_eq_int = prime_dvd_mult_iff[where ?'a = int]
[STATEMENT] lemma execn_call: "\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t; \<Gamma>\<turnstile>\<langle>c s t,Normal (return s t)\<rangle> =Suc n\<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> u" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile> \<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t; \<Gamma>\<turnstile> \<langle>c s t,Normal (return s t)\<rangle> =Suc n\<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile> \<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> u [PROOF STEP] apply (simp add: call_def) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile> \<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t; \<Gamma>\<turnstile> \<langle>c s t,Normal (return s t)\<rangle> =Suc n\<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile> \<langle>block init (Call p) return c,Normal s\<rangle> =Suc n\<Rightarrow> u [PROOF STEP] apply (rule execn_block) [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile> \<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t; \<Gamma>\<turnstile> \<langle>c s t,Normal (return s t)\<rangle> =Suc n\<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile> \<langle>Call p,Normal (init s)\<rangle> =Suc n\<Rightarrow> Normal ?t 2. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile> \<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t; \<Gamma>\<turnstile> \<langle>c s t,Normal (return s t)\<rangle> =Suc n\<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile> \<langle>c s ?t,Normal (return s ?t)\<rangle> =Suc n\<Rightarrow> u [PROOF STEP] apply (erule (1) Call) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile> \<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t; \<Gamma>\<turnstile> \<langle>c s t,Normal (return s t)\<rangle> =Suc n\<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile> \<langle>c s t,Normal (return s t)\<rangle> =Suc n\<Rightarrow> u [PROOF STEP] apply assumption [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
{-# LANGUAGE BangPatterns #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# OPTIONS -Wall #-} module Statistics.Iteratee.Sample ( minMaxNBy , range , mean , harmonicMean , variance , stdDev ) where import Statistics.Iteratee.Compat import Control.Arrow import Control.Monad import Data.Iteratee as I import Data.Heap as Heap -- | /O(n)/ minMaxNBy. Calculate the 'n' highest and lowest elements of the -- stream, according to the given priority function. -- Returns /([minimum],[maximum]/ with the /(minimum,maximum)/ -- elements listed first. minMaxNBy :: forall m prio s el. (Monad m, Ord prio, ListLikey s el) => Int -> (el -> prio) -> Iteratee s m ([(prio,el)],[(prio,el)]) minMaxNBy ns prio = finalize `liftM` I.foldl' step (Heap.empty,Heap.empty) where finalize :: (MaxPrioHeap prio el, MinPrioHeap prio el) -> ([(prio,el)],[(prio,el)]) finalize = Heap.toDescList *** Heap.toDescList addHeap val = Heap.insert (prio val, val) step :: (MaxPrioHeap prio el, MinPrioHeap prio el) -> el -> (MaxPrioHeap prio el, MinPrioHeap prio el) step (!mins,!maxes) val = let sz = Heap.size mins adj hp = if sz >= ns then Heap.drop 1 hp else hp in (adj $ addHeap val mins ,adj $ addHeap val maxes) {-# INLINE minMaxNBy #-} -- | /O(n)/ Range. The difference between the largest and smallest elements of -- a stream. range :: (Monad m, ListLikey s el, Num el, Ord el) => Iteratee s m el range = finalize `liftM` minMaxNBy 1 id where finalize ([mins],[maxes]) = snd maxes - snd mins finalize _ = 0 {-# INLINE range #-} -- | /O(n)/ Arithmetic mean. Uses Welford's algorithm. mean :: forall s m el. (Fractional el, Monad m, ListLikey s el) => Iteratee s m el mean = fst `liftM` I.foldl' step (0,0) where step :: (el,Integer) -> el -> (el,Integer) step (!m,!n) x = let m' = m + (x-m) / fromIntegral n' n' = n + 1 in (m',n') {-# INLINE mean #-} -- | /O(n)/ Harmonic mean. harmonicMean :: (Fractional el, Monad m, ListLikey s el) => Iteratee s m el harmonicMean = finalize `liftM` I.foldl' step (0,0 :: Integer) where finalize (m,n) = fromIntegral n / m step (!m,!n) val = (m+(1/val),n+1) {-# INLINE harmonicMean #-} -- | /O(n)/ variance, using Knuth's algorithm. var :: (Fractional el, Integral t, Monad m, ListLikey s el) => Iteratee s m (t, el, el) var = I.foldl' step (0,0,0) where step (!n,!m,!s) x = let n' = n+1 m' = m+d/fromIntegral n' s' = s+d* (x-m') d = x-m in (n',m',s') {-# INLINE var #-} -- | /O(n)/ Maximum likelihood estimate of a sample's variance, using Knuth's -- algorithm. variance :: (Fractional b, Monad m, ListLikey s b) => Iteratee s m b variance = finalize `liftM` var where finalize (n,_,s) | n > 1 = s / fromInteger n | otherwise = 0 {-# INLINE variance #-} -- | /O(n) Standard deviation, using Knuth's algorithm. stdDev :: (Floating b, Monad m, Functor m, ListLikey s b) => Iteratee s m b stdDev = sqrt `liftM` variance {-# INLINE stdDev #-}
[GOAL] a b : ℤ ⊢ natAbs a = natAbs b ↔ Associated a b [PROOFSTEP] refine' Int.natAbs_eq_natAbs_iff.trans _ [GOAL] a b : ℤ ⊢ a = b ∨ a = -b ↔ Associated a b [PROOFSTEP] constructor [GOAL] case mp a b : ℤ ⊢ a = b ∨ a = -b → Associated a b [PROOFSTEP] rintro (rfl | rfl) [GOAL] case mp.inl a : ℤ ⊢ Associated a a [PROOFSTEP] rfl [GOAL] case mp.inr b : ℤ ⊢ Associated (-b) b [PROOFSTEP] exact ⟨-1, by simp⟩ [GOAL] b : ℤ ⊢ -b * ↑(-1) = b [PROOFSTEP] simp [GOAL] case mpr a b : ℤ ⊢ Associated a b → a = b ∨ a = -b [PROOFSTEP] rintro ⟨u, rfl⟩ [GOAL] case mpr.intro a : ℤ u : ℤˣ ⊢ a = a * ↑u ∨ a = -(a * ↑u) [PROOFSTEP] obtain rfl | rfl := Int.units_eq_one_or u [GOAL] case mpr.intro.inl a : ℤ ⊢ a = a * ↑1 ∨ a = -(a * ↑1) [PROOFSTEP] exact Or.inl (by simp) [GOAL] a : ℤ ⊢ a = a * ↑1 [PROOFSTEP] simp [GOAL] case mpr.intro.inr a : ℤ ⊢ a = a * ↑(-1) ∨ a = -(a * ↑(-1)) [PROOFSTEP] exact Or.inr (by simp) [GOAL] a : ℤ ⊢ a = -(a * ↑(-1)) [PROOFSTEP] simp
[STATEMENT] lemma app'Invoke[simp]: "app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) = (\<exists>apTs X ST' mD' rT' b'. ST = (rev apTs) @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT,fT)\<in>set(zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G,C) (mn,fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C)" (is "?app ST LT = ?P ST LT") [PROOF STATE] proof (prove) goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) = (\<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C) [PROOF STEP] proof [PROOF STATE] proof (state) goal (2 subgoals): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C 2. \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C \<Longrightarrow> app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) [PROOF STEP] assume "?P ST LT" [PROOF STATE] proof (state) this: \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>a\<in>set (zip apTs fpTs). case a of (aT, fT) \<Rightarrow> G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C goal (2 subgoals): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C 2. \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C \<Longrightarrow> app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) [PROOF STEP] thus "?app ST LT" [PROOF STATE] proof (prove) using this: \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>a\<in>set (zip apTs fpTs). case a of (aT, fT) \<Rightarrow> G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) [PROOF STEP] by (auto simp add: list_all2_iff) [PROOF STATE] proof (state) this: app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] assume app: "?app ST LT" [PROOF STATE] proof (state) this: app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] hence l: "length fpTs < length ST" [PROOF STATE] proof (prove) using this: app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) goal (1 subgoal): 1. length fpTs < length ST [PROOF STEP] by simp [PROOF STATE] proof (state) this: length fpTs < length ST goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] obtain xs ys where xs: "ST = xs @ ys" "length xs = length fpTs" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>xs ys. \<lbrakk>ST = xs @ ys; length xs = length fpTs\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (\<And>xs ys. \<lbrakk>ST = xs @ ys; length xs = length fpTs\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] have "ST = take (length fpTs) ST @ drop (length fpTs) ST" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ST = take (length fpTs) ST @ drop (length fpTs) ST [PROOF STEP] by simp [PROOF STATE] proof (state) this: ST = take (length fpTs) ST @ drop (length fpTs) ST goal (1 subgoal): 1. (\<And>xs ys. \<lbrakk>ST = xs @ ys; length xs = length fpTs\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] moreover [PROOF STATE] proof (state) this: ST = take (length fpTs) ST @ drop (length fpTs) ST goal (1 subgoal): 1. (\<And>xs ys. \<lbrakk>ST = xs @ ys; length xs = length fpTs\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] from l [PROOF STATE] proof (chain) picking this: length fpTs < length ST [PROOF STEP] have "length (take (length fpTs) ST) = length fpTs" [PROOF STATE] proof (prove) using this: length fpTs < length ST goal (1 subgoal): 1. length (take (length fpTs) ST) = length fpTs [PROOF STEP] by simp [PROOF STATE] proof (state) this: length (take (length fpTs) ST) = length fpTs goal (1 subgoal): 1. (\<And>xs ys. \<lbrakk>ST = xs @ ys; length xs = length fpTs\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: ST = take (length fpTs) ST @ drop (length fpTs) ST length (take (length fpTs) ST) = length fpTs [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: ST = take (length fpTs) ST @ drop (length fpTs) ST length (take (length fpTs) ST) = length fpTs goal (1 subgoal): 1. thesis [PROOF STEP] .. [PROOF STATE] proof (state) this: thesis goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ST = xs @ ys length xs = length fpTs goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] obtain apTs where "ST = (rev apTs) @ ys" and "length apTs = length fpTs" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (\<And>apTs. \<lbrakk>ST = rev apTs @ ys; length apTs = length fpTs\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. (\<And>apTs. \<lbrakk>ST = rev apTs @ ys; length apTs = length fpTs\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] from xs(1) [PROOF STATE] proof (chain) picking this: ST = xs @ ys [PROOF STEP] have "ST = rev (rev xs) @ ys" [PROOF STATE] proof (prove) using this: ST = xs @ ys goal (1 subgoal): 1. ST = rev (rev xs) @ ys [PROOF STEP] by simp [PROOF STATE] proof (state) this: ST = rev (rev xs) @ ys goal (1 subgoal): 1. (\<And>apTs. \<lbrakk>ST = rev apTs @ ys; length apTs = length fpTs\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] then [PROOF STATE] proof (chain) picking this: ST = rev (rev xs) @ ys [PROOF STEP] show thesis [PROOF STATE] proof (prove) using this: ST = rev (rev xs) @ ys goal (1 subgoal): 1. thesis [PROOF STEP] by (rule that) (simp add: xs(2)) [PROOF STATE] proof (state) this: thesis goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: ST = rev apTs @ ys length apTs = length fpTs goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] moreover [PROOF STATE] proof (state) this: ST = rev apTs @ ys length apTs = length fpTs goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] from l xs [PROOF STATE] proof (chain) picking this: length fpTs < length ST ST = xs @ ys length xs = length fpTs [PROOF STEP] obtain X ST' where "ys = X#ST'" [PROOF STATE] proof (prove) using this: length fpTs < length ST ST = xs @ ys length xs = length fpTs goal (1 subgoal): 1. (\<And>X ST'. ys = X # ST' \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by (auto simp add: neq_Nil_conv) [PROOF STATE] proof (state) this: ys = X # ST' goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: ST = rev apTs @ ys length apTs = length fpTs ys = X # ST' [PROOF STEP] have "ST = (rev apTs) @ X # ST'" "length apTs = length fpTs" [PROOF STATE] proof (prove) using this: ST = rev apTs @ ys length apTs = length fpTs ys = X # ST' goal (1 subgoal): 1. ST = rev apTs @ X # ST' &&& length apTs = length fpTs [PROOF STEP] by auto [PROOF STATE] proof (state) this: ST = rev apTs @ X # ST' length apTs = length fpTs goal (1 subgoal): 1. app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) \<Longrightarrow> \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>(aT, fT)\<in>set (zip apTs fpTs). G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] with app [PROOF STATE] proof (chain) picking this: app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) ST = rev apTs @ X # ST' length apTs = length fpTs [PROOF STEP] show "?P ST LT" [PROOF STATE] proof (prove) using this: app' (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) ST = rev apTs @ X # ST' length apTs = length fpTs goal (1 subgoal): 1. \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>a\<in>set (zip apTs fpTs). case a of (aT, fT) \<Rightarrow> G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C [PROOF STEP] apply (clarsimp simp add: list_all2_iff) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>a aa ab ac ad b. \<lbrakk>ST = rev apTs @ X # ST'; length apTs = length fpTs; G \<turnstile> X \<preceq> Class C; is_class G C; \<forall>x\<in>set (zip apTs fpTs). case x of (x, xa) \<Rightarrow> G \<turnstile> x \<preceq> xa; method (G, C) (mn, fpTs) = Some (a, aa, ab, ac, ad, b)\<rbrakk> \<Longrightarrow> \<exists>apTsa Xa. (\<exists>ST'a. rev apTs @ X # ST' = rev apTsa @ Xa # ST'a) \<and> length apTsa = length fpTs \<and> (\<forall>x\<in>set (zip apTsa fpTs). case x of (x, xa) \<Rightarrow> G \<turnstile> x \<preceq> xa) \<and> G \<turnstile> Xa \<preceq> Class C [PROOF STEP] apply (intro exI conjI) [PROOF STATE] proof (prove) goal (4 subgoals): 1. \<And>a aa ab ac ad b. \<lbrakk>ST = rev apTs @ X # ST'; length apTs = length fpTs; G \<turnstile> X \<preceq> Class C; is_class G C; \<forall>x\<in>set (zip apTs fpTs). case x of (x, xa) \<Rightarrow> G \<turnstile> x \<preceq> xa; method (G, C) (mn, fpTs) = Some (a, aa, ab, ac, ad, b)\<rbrakk> \<Longrightarrow> rev apTs @ X # ST' = rev (?apTs25 a aa ab ac ad b) @ ?X26 a aa ab ac ad b # ?ST'30 a aa ab ac ad b 2. \<And>a aa ab ac ad b. \<lbrakk>ST = rev apTs @ X # ST'; length apTs = length fpTs; G \<turnstile> X \<preceq> Class C; is_class G C; \<forall>x\<in>set (zip apTs fpTs). case x of (x, xa) \<Rightarrow> G \<turnstile> x \<preceq> xa; method (G, C) (mn, fpTs) = Some (a, aa, ab, ac, ad, b)\<rbrakk> \<Longrightarrow> length (?apTs25 a aa ab ac ad b) = length fpTs 3. \<And>a aa ab ac ad b. \<lbrakk>ST = rev apTs @ X # ST'; length apTs = length fpTs; G \<turnstile> X \<preceq> Class C; is_class G C; \<forall>x\<in>set (zip apTs fpTs). case x of (x, xa) \<Rightarrow> G \<turnstile> x \<preceq> xa; method (G, C) (mn, fpTs) = Some (a, aa, ab, ac, ad, b)\<rbrakk> \<Longrightarrow> \<forall>x\<in>set (zip (?apTs25 a aa ab ac ad b) fpTs). case x of (x, xa) \<Rightarrow> G \<turnstile> x \<preceq> xa 4. \<And>a aa ab ac ad b. \<lbrakk>ST = rev apTs @ X # ST'; length apTs = length fpTs; G \<turnstile> X \<preceq> Class C; is_class G C; \<forall>x\<in>set (zip apTs fpTs). case x of (x, xa) \<Rightarrow> G \<turnstile> x \<preceq> xa; method (G, C) (mn, fpTs) = Some (a, aa, ab, ac, ad, b)\<rbrakk> \<Longrightarrow> G \<turnstile> ?X26 a aa ab ac ad b \<preceq> Class C [PROOF STEP] apply auto [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done [PROOF STATE] proof (state) this: \<exists>apTs X ST' mD' rT' b'. ST = rev apTs @ X # ST' \<and> length apTs = length fpTs \<and> is_class G C \<and> (\<forall>a\<in>set (zip apTs fpTs). case a of (aT, fT) \<Rightarrow> G \<turnstile> aT \<preceq> fT) \<and> method (G, C) (mn, fpTs) = Some (mD', rT', b') \<and> G \<turnstile> X \<preceq> Class C goal: No subgoals! [PROOF STEP] qed
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.algebra.big_operators.basic import Mathlib.PostPort universes u v w namespace Mathlib /-! # Results about big operators with values in an ordered algebraic structure. Mostly monotonicity results for the `∑` operation. -/ namespace finset theorem le_sum_of_subadditive {α : Type u} {β : Type v} {γ : Type w} [add_comm_monoid α] [ordered_add_comm_monoid β] (f : α → β) (h_zero : f 0 = 0) (h_add : ∀ (x y : α), f (x + y) ≤ f x + f y) (s : finset γ) (g : γ → α) : f (finset.sum s fun (x : γ) => g x) ≤ finset.sum s fun (x : γ) => f (g x) := sorry theorem abs_sum_le_sum_abs {α : Type u} {β : Type v} [linear_ordered_field α] {f : β → α} {s : finset β} : abs (finset.sum s fun (x : β) => f x) ≤ finset.sum s fun (x : β) => abs (f x) := le_sum_of_subadditive abs abs_zero abs_add s f theorem abs_prod {α : Type u} {β : Type v} [linear_ordered_comm_ring α] {f : β → α} {s : finset β} : abs (finset.prod s fun (x : β) => f x) = finset.prod s fun (x : β) => abs (f x) := monoid_hom.map_prod (monoid_with_zero_hom.to_monoid_hom abs_hom) (fun (x : β) => f x) s theorem sum_le_sum {α : Type u} {β : Type v} {s : finset α} {f : α → β} {g : α → β} [ordered_add_comm_monoid β] : (∀ (x : α), x ∈ s → f x ≤ g x) → (finset.sum s fun (x : α) => f x) ≤ finset.sum s fun (x : α) => g x := sorry theorem card_le_mul_card_image_of_maps_to {α : Type u} {γ : Type w} [DecidableEq γ] {f : α → γ} {s : finset α} {t : finset γ} (Hf : ∀ (a : α), a ∈ s → f a ∈ t) (n : ℕ) (hn : ∀ (a : γ), a ∈ t → card (filter (fun (x : α) => f x = a) s) ≤ n) : card s ≤ n * card t := sorry theorem card_le_mul_card_image {α : Type u} {γ : Type w} [DecidableEq γ] {f : α → γ} (s : finset α) (n : ℕ) (hn : ∀ (a : γ), a ∈ image f s → card (filter (fun (x : α) => f x = a) s) ≤ n) : card s ≤ n * card (image f s) := card_le_mul_card_image_of_maps_to (fun (x : α) => mem_image_of_mem f) n hn theorem mul_card_image_le_card_of_maps_to {α : Type u} {γ : Type w} [DecidableEq γ] {f : α → γ} {s : finset α} {t : finset γ} (Hf : ∀ (a : α), a ∈ s → f a ∈ t) (n : ℕ) (hn : ∀ (a : γ), a ∈ t → n ≤ card (filter (fun (x : α) => f x = a) s)) : n * card t ≤ card s := sorry theorem mul_card_image_le_card {α : Type u} {γ : Type w} [DecidableEq γ] {f : α → γ} (s : finset α) (n : ℕ) (hn : ∀ (a : γ), a ∈ image f s → n ≤ card (filter (fun (x : α) => f x = a) s)) : n * card (image f s) ≤ card s := mul_card_image_le_card_of_maps_to (fun (x : α) => mem_image_of_mem f) n hn theorem sum_nonneg {α : Type u} {β : Type v} {s : finset α} {f : α → β} [ordered_add_comm_monoid β] (h : ∀ (x : α), x ∈ s → 0 ≤ f x) : 0 ≤ finset.sum s fun (x : α) => f x := le_trans (eq.mpr (id (Eq._oldrec (Eq.refl (0 ≤ finset.sum s fun (x : α) => 0)) sum_const_zero)) (le_refl 0)) (sum_le_sum h) theorem sum_nonpos {α : Type u} {β : Type v} {s : finset α} {f : α → β} [ordered_add_comm_monoid β] (h : ∀ (x : α), x ∈ s → f x ≤ 0) : (finset.sum s fun (x : α) => f x) ≤ 0 := le_trans (sum_le_sum h) (eq.mpr (id (Eq._oldrec (Eq.refl ((finset.sum s fun (x : α) => 0) ≤ 0)) sum_const_zero)) (le_refl 0)) theorem sum_le_sum_of_subset_of_nonneg {α : Type u} {β : Type v} {s₁ : finset α} {s₂ : finset α} {f : α → β} [ordered_add_comm_monoid β] (h : s₁ ⊆ s₂) (hf : ∀ (x : α), x ∈ s₂ → ¬x ∈ s₁ → 0 ≤ f x) : (finset.sum s₁ fun (x : α) => f x) ≤ finset.sum s₂ fun (x : α) => f x := sorry theorem sum_mono_set_of_nonneg {α : Type u} {β : Type v} {f : α → β} [ordered_add_comm_monoid β] (hf : ∀ (x : α), 0 ≤ f x) : monotone fun (s : finset α) => finset.sum s fun (x : α) => f x := fun (s₁ s₂ : finset α) (hs : s₁ ≤ s₂) => sum_le_sum_of_subset_of_nonneg hs fun (x : α) (_x : x ∈ s₂) (_x : ¬x ∈ s₁) => hf x theorem sum_fiberwise_le_sum_of_sum_fiber_nonneg {α : Type u} {β : Type v} {γ : Type w} [ordered_add_comm_monoid β] [DecidableEq γ] {s : finset α} {t : finset γ} {g : α → γ} {f : α → β} (h : ∀ (y : γ), ¬y ∈ t → 0 ≤ finset.sum (filter (fun (x : α) => g x = y) s) fun (x : α) => f x) : (finset.sum t fun (y : γ) => finset.sum (filter (fun (x : α) => g x = y) s) fun (x : α) => f x) ≤ finset.sum s fun (x : α) => f x := sorry theorem sum_le_sum_fiberwise_of_sum_fiber_nonpos {α : Type u} {β : Type v} {γ : Type w} [ordered_add_comm_monoid β] [DecidableEq γ] {s : finset α} {t : finset γ} {g : α → γ} {f : α → β} (h : ∀ (y : γ), ¬y ∈ t → (finset.sum (filter (fun (x : α) => g x = y) s) fun (x : α) => f x) ≤ 0) : (finset.sum s fun (x : α) => f x) ≤ finset.sum t fun (y : γ) => finset.sum (filter (fun (x : α) => g x = y) s) fun (x : α) => f x := sum_fiberwise_le_sum_of_sum_fiber_nonneg h theorem sum_eq_zero_iff_of_nonneg {α : Type u} {β : Type v} {s : finset α} {f : α → β} [ordered_add_comm_monoid β] : (∀ (x : α), x ∈ s → 0 ≤ f x) → ((finset.sum s fun (x : α) => f x) = 0 ↔ ∀ (x : α), x ∈ s → f x = 0) := sorry theorem sum_eq_zero_iff_of_nonpos {α : Type u} {β : Type v} {s : finset α} {f : α → β} [ordered_add_comm_monoid β] : (∀ (x : α), x ∈ s → f x ≤ 0) → ((finset.sum s fun (x : α) => f x) = 0 ↔ ∀ (x : α), x ∈ s → f x = 0) := sum_eq_zero_iff_of_nonneg theorem single_le_sum {α : Type u} {β : Type v} {s : finset α} {f : α → β} [ordered_add_comm_monoid β] (hf : ∀ (x : α), x ∈ s → 0 ≤ f x) {a : α} (h : a ∈ s) : f a ≤ finset.sum s fun (x : α) => f x := sorry @[simp] theorem sum_eq_zero_iff {α : Type u} {β : Type v} {s : finset α} {f : α → β} [canonically_ordered_add_monoid β] : (finset.sum s fun (x : α) => f x) = 0 ↔ ∀ (x : α), x ∈ s → f x = 0 := sum_eq_zero_iff_of_nonneg fun (x : α) (hx : x ∈ s) => zero_le (f x) theorem sum_le_sum_of_subset {α : Type u} {β : Type v} {s₁ : finset α} {s₂ : finset α} {f : α → β} [canonically_ordered_add_monoid β] (h : s₁ ⊆ s₂) : (finset.sum s₁ fun (x : α) => f x) ≤ finset.sum s₂ fun (x : α) => f x := sum_le_sum_of_subset_of_nonneg h fun (x : α) (h₁ : x ∈ s₂) (h₂ : ¬x ∈ s₁) => zero_le (f x) theorem sum_mono_set {α : Type u} {β : Type v} [canonically_ordered_add_monoid β] (f : α → β) : monotone fun (s : finset α) => finset.sum s fun (x : α) => f x := fun (s₁ s₂ : finset α) (hs : s₁ ≤ s₂) => sum_le_sum_of_subset hs theorem sum_le_sum_of_ne_zero {α : Type u} {β : Type v} {s₁ : finset α} {s₂ : finset α} {f : α → β} [canonically_ordered_add_monoid β] (h : ∀ (x : α), x ∈ s₁ → f x ≠ 0 → x ∈ s₂) : (finset.sum s₁ fun (x : α) => f x) ≤ finset.sum s₂ fun (x : α) => f x := sorry theorem sum_lt_sum {α : Type u} {β : Type v} {s : finset α} {f : α → β} {g : α → β} [ordered_cancel_add_comm_monoid β] (Hle : ∀ (i : α), i ∈ s → f i ≤ g i) (Hlt : ∃ (i : α), ∃ (H : i ∈ s), f i < g i) : (finset.sum s fun (x : α) => f x) < finset.sum s fun (x : α) => g x := sorry theorem sum_lt_sum_of_nonempty {α : Type u} {β : Type v} {s : finset α} {f : α → β} {g : α → β} [ordered_cancel_add_comm_monoid β] (hs : finset.nonempty s) (Hlt : ∀ (x : α), x ∈ s → f x < g x) : (finset.sum s fun (x : α) => f x) < finset.sum s fun (x : α) => g x := sum_lt_sum (fun (i : α) (hi : i ∈ s) => le_of_lt (Hlt i hi)) (Exists.dcases_on hs fun (i : α) (hi : i ∈ s) => Exists.intro i (Exists.intro hi (Hlt i hi))) theorem sum_lt_sum_of_subset {α : Type u} {β : Type v} {s₁ : finset α} {s₂ : finset α} {f : α → β} [ordered_cancel_add_comm_monoid β] [DecidableEq α] (h : s₁ ⊆ s₂) {i : α} (hi : i ∈ s₂ \ s₁) (hpos : 0 < f i) (hnonneg : ∀ (j : α), j ∈ s₂ \ s₁ → 0 ≤ f j) : (finset.sum s₁ fun (x : α) => f x) < finset.sum s₂ fun (x : α) => f x := sorry theorem exists_lt_of_sum_lt {α : Type u} {β : Type v} {s : finset α} {f : α → β} {g : α → β} [linear_ordered_cancel_add_comm_monoid β] (Hlt : (finset.sum s fun (x : α) => f x) < finset.sum s fun (x : α) => g x) : ∃ (i : α), ∃ (H : i ∈ s), f i < g i := sorry theorem exists_le_of_sum_le {α : Type u} {β : Type v} {s : finset α} {f : α → β} {g : α → β} [linear_ordered_cancel_add_comm_monoid β] (hs : finset.nonempty s) (Hle : (finset.sum s fun (x : α) => f x) ≤ finset.sum s fun (x : α) => g x) : ∃ (i : α), ∃ (H : i ∈ s), f i ≤ g i := sorry theorem exists_pos_of_sum_zero_of_exists_nonzero {α : Type u} {β : Type v} {s : finset α} [linear_ordered_cancel_add_comm_monoid β] (f : α → β) (h₁ : (finset.sum s fun (e : α) => f e) = 0) (h₂ : ∃ (x : α), ∃ (H : x ∈ s), f x ≠ 0) : ∃ (x : α), ∃ (H : x ∈ s), 0 < f x := sorry /- this is also true for a ordered commutative multiplicative monoid -/ theorem prod_nonneg {α : Type u} {β : Type v} [linear_ordered_comm_ring β] {s : finset α} {f : α → β} (h0 : ∀ (x : α), x ∈ s → 0 ≤ f x) : 0 ≤ finset.prod s fun (x : α) => f x := prod_induction f (fun (x : β) => 0 ≤ x) (fun (_x _x_1 : β) (ha : 0 ≤ _x) (hb : 0 ≤ _x_1) => mul_nonneg ha hb) zero_le_one h0 /- this is also true for a ordered commutative multiplicative monoid -/ theorem prod_pos {α : Type u} {β : Type v} [linear_ordered_comm_ring β] {s : finset α} {f : α → β} (h0 : ∀ (x : α), x ∈ s → 0 < f x) : 0 < finset.prod s fun (x : α) => f x := prod_induction f (fun (x : β) => 0 < x) (fun (_x _x_1 : β) (ha : 0 < _x) (hb : 0 < _x_1) => mul_pos ha hb) zero_lt_one h0 /- this is also true for a ordered commutative multiplicative monoid -/ theorem prod_le_prod {α : Type u} {β : Type v} [linear_ordered_comm_ring β] {s : finset α} {f : α → β} {g : α → β} (h0 : ∀ (x : α), x ∈ s → 0 ≤ f x) (h1 : ∀ (x : α), x ∈ s → f x ≤ g x) : (finset.prod s fun (x : α) => f x) ≤ finset.prod s fun (x : α) => g x := sorry theorem prod_le_one {α : Type u} {β : Type v} [linear_ordered_comm_ring β] {s : finset α} {f : α → β} (h0 : ∀ (x : α), x ∈ s → 0 ≤ f x) (h1 : ∀ (x : α), x ∈ s → f x ≤ 1) : (finset.prod s fun (x : α) => f x) ≤ 1 := sorry /-- If `g, h ≤ f` and `g i + h i ≤ f i`, then the product of `f` over `s` is at least the sum of the products of `g` and `h`. This is the version for `linear_ordered_comm_ring`. -/ theorem prod_add_prod_le {α : Type u} {β : Type v} [linear_ordered_comm_ring β] {s : finset α} {i : α} {f : α → β} {g : α → β} {h : α → β} (hi : i ∈ s) (h2i : g i + h i ≤ f i) (hgf : ∀ (j : α), j ∈ s → j ≠ i → g j ≤ f j) (hhf : ∀ (j : α), j ∈ s → j ≠ i → h j ≤ f j) (hg : ∀ (i : α), i ∈ s → 0 ≤ g i) (hh : ∀ (i : α), i ∈ s → 0 ≤ h i) : ((finset.prod s fun (i : α) => g i) + finset.prod s fun (i : α) => h i) ≤ finset.prod s fun (i : α) => f i := sorry theorem prod_le_prod' {α : Type u} {β : Type v} [canonically_ordered_comm_semiring β] {s : finset α} {f : α → β} {g : α → β} (h : ∀ (i : α), i ∈ s → f i ≤ g i) : (finset.prod s fun (x : α) => f x) ≤ finset.prod s fun (x : α) => g x := sorry /-- If `g, h ≤ f` and `g i + h i ≤ f i`, then the product of `f` over `s` is at least the sum of the products of `g` and `h`. This is the version for `canonically_ordered_comm_semiring`. -/ theorem prod_add_prod_le' {α : Type u} {β : Type v} [canonically_ordered_comm_semiring β] {s : finset α} {i : α} {f : α → β} {g : α → β} {h : α → β} (hi : i ∈ s) (h2i : g i + h i ≤ f i) (hgf : ∀ (j : α), j ∈ s → j ≠ i → g j ≤ f j) (hhf : ∀ (j : α), j ∈ s → j ≠ i → h j ≤ f j) : ((finset.prod s fun (i : α) => g i) + finset.prod s fun (i : α) => h i) ≤ finset.prod s fun (i : α) => f i := sorry end finset namespace with_top /-- A product of finite numbers is still finite -/ theorem prod_lt_top {α : Type u} {β : Type v} [canonically_ordered_comm_semiring β] [nontrivial β] [DecidableEq β] {s : finset α} {f : α → with_top β} (h : ∀ (a : α), a ∈ s → f a < ⊤) : (finset.prod s fun (x : α) => f x) < ⊤ := finset.prod_induction f (fun (a : with_top β) => a < ⊤) (fun (a b : with_top β) => mul_lt_top) (coe_lt_top 1) h /-- A sum of finite numbers is still finite -/ theorem sum_lt_top {α : Type u} {β : Type v} [ordered_add_comm_monoid β] {s : finset α} {f : α → with_top β} : (∀ (a : α), a ∈ s → f a < ⊤) → (finset.sum s fun (x : α) => f x) < ⊤ := sorry /-- A sum of finite numbers is still finite -/ theorem sum_lt_top_iff {α : Type u} {β : Type v} [canonically_ordered_add_monoid β] {s : finset α} {f : α → with_top β} : (finset.sum s fun (x : α) => f x) < ⊤ ↔ ∀ (a : α), a ∈ s → f a < ⊤ := sorry /-- A sum of numbers is infinite iff one of them is infinite -/ theorem sum_eq_top_iff {α : Type u} {β : Type v} [canonically_ordered_add_monoid β] {s : finset α} {f : α → with_top β} : (finset.sum s fun (x : α) => f x) = ⊤ ↔ ∃ (a : α), ∃ (H : a ∈ s), f a = ⊤ := sorry
REBOL [ System: "Ren-C Core Extraction of the Rebol System" Title: "Common Routines for Tools" Rights: { Copyright 2012-2017 Rebol Open Source Contributors REBOL is a trademark of REBOL Technologies } License: { Licensed under the Apache License, Version 2.0 See: http://www.apache.org/licenses/LICENSE-2.0 } Version: 2.100.0 Needs: 2.100.100 Purpose: { These are some common routines used by the utilities that build the system, which are found in %src/tools/ } ] ; !!! This file does not include the backwards compatibility %r2r3-future.r. ; The reason is that some code assumes it is running Ren-C, and that file ; disables features which are not backward compatible, which shouldn't be ; disabled if you *are* running Ren-C (e.g. the tests) ; Simple "divider-style" thing for remarks. At a certain verbosity level, ; it could dump those remarks out...perhaps based on how many == there are. ; (This is a good reason for retaking ==, as that looks like a divider.) ; ===: func [:remarks [any-value! <...>]] [ until [ equal? '=== take remarks ] ] ;; Repository meta data. ;; - Good for keeping fixed paths out of scripts. ;; repo: context [ root: clean-path %../../ source-root: root tools: what-dir ] spaced-tab: unspaced [space space space space] to-c-name: function [ {Take a Rebol value and transliterate it as a (likely) valid C identifier} return: [text!] value "Will be converted to text (via UNSPACED if BLOCK!)" [text! block! word!] /scope "See C's rules: http://stackoverflow.com/questions/228783/" where "Either #global or #local (defaults global)" [issue!] ][ all [ text? value empty? value ] then [ fail/where ["TO-C-NAME received empty input"] 'value ] c-chars: charset [ #"a" - #"z" #"A" - #"Z" #"0" - #"9" #"_" ] string: either block? :value [unspaced value] [form value] string: switch string [ ; Used specifically by t-routine.c to make SYM_ELLIPSIS ; "..." [copy "ellipsis"] ; Used to make SYM_HYPHEN which is needed by `charset [#"A" - #"Z"]` ; "-" [copy "hyphen"] ; Used to deal with the /? refinements (which may not last) ; "?" [copy "q"] ; None of these are used at present, but included just in case ; "*" [copy "asterisk"] "." [copy "period"] "!" [copy "exclamation"] "+" [copy "plus"] "~" [copy "tilde"] "|" [copy "bar"] default [ ; ; If these symbols occur composite in a longer word, they use a ; shorthand; e.g. `foo?` => `foo_q` for-each [reb c] [ #"'" "" ; isn't => isnt, don't => dont - "_" ; foo-bar => foo_bar * "_p" ; !!! because it symbolizes a (p)ointer in C?? . "_" ; !!! same as hyphen? ? "_q" ; (q)uestion ! "_x" ; e(x)clamation + "_a" ; (a)ddition ~ "_t" ; (t)ilde | "_b" ; (b)ar ][ replace/all string (form reb) c ] string ] ] if empty? string [ fail [ "empty identifier produced by to-c-name for" (mold value) "of type" (mold type of value) ] ] repeat s string [ (head? s) and [find charset [#"0" - #"9"] s/1] and [ fail ["identifier" string "starts with digit in to-c-name"] ] find c-chars s/1 or [ fail ["Non-alphanumeric or hyphen in" string "in to-c-name"] ] ] where: default [#global] case [ string/1 != "_" [<ok>] where = 'global [ fail "global C ids starting with _ are reserved" ] where = 'local [ find charset [#"A" - #"Z"] string/2 then [ fail "local C ids starting with _ and uppercase are reserved" ] ] fail "/SCOPE must be #global or #local" ] return string ] ; http://stackoverflow.com/questions/11488616/ binary-to-c: function [ {Converts a binary to a string of C source that represents an initializer for a character array. To be "strict" C standard compatible, we do not use a string literal due to length limits (509 characters in C89, and 4095 characters in C99). Instead we produce an array formatted as '{0xYY, ...}' with 8 bytes per line} return: [text!] data [binary!] ][ out: make text! 6 * (length of data) while [not tail? data] [ ;-- grab hexes in groups of 8 bytes hexed: enbase/base (copy/part data 8) 16 data: skip data 8 for-each [digit1 digit2] hexed [ append out unspaced [{0x} digit1 digit2 {,} space] ] take/last out ;-- drop the last space if tail? data [ take/last out ;-- lose that last comma ] append out newline ;-- newline after each group, and at end ] ;-- Sanity check (should be one more byte in source than commas out) parse out [ (comma-count: 0) some [thru "," (comma-count: comma-count + 1)] to end ] assert [(comma-count + 1) = (length of head of data)] out ] for-each-record: function [ {Iterate a table with a header by creating an object for each row} return: [<opt> any-value!] 'var "Word to set each time to the row made into an object record" [word!] table "Table of values with header block as first element" [block!] body "Block to evaluate each time" [block!] ][ if not block? first table [ fail {Table of records does not start with a header block} ] headings: map-each word first table [ if not word? word [ fail [{Heading} word {is not a word}] ] as set-word! word ] table: next table while-not [tail? table] [ if (length of headings) > (length of table) [ fail {Element count isn't even multiple of header count} ] spec: collect [ for-each column-name headings [ keep column-name keep compose/only [lit (table/1)] table: next table ] ] set var has spec do body ] ] find-record-unique: function [ {Get a record in a table as an object, error if duplicate, blank if absent} return: [<opt> object!] table [block!] {Table of values with header block as first element} key [word!] {Object key to search for a match on} value {Value that the looked up key must be uniquely equal to} ][ if not find first table key [ fail [key {not found in table headers:} (first table)] ] result: _ for-each-record rec table [ if value <> select rec key [continue] if result [ fail [{More than one table record matches} key {=} value] ] ; Could break, but walk whole table to verify that it is well-formed. ] return opt result ] parse-args: function [ args ][ ret: make block! 4 standalone: make block! 4 args: any [args copy []] if not block? args [args: split args [some " "]] iterate args [ name: _ value: args/1 case [ idx: find value #"=" [; name=value name: to word! copy/part value (index of idx) - 1 value: copy next idx ] #":" = last value [; name=value name: to word! copy/part value (length of value) - 1 args: next args if empty? args [ fail ["Missing value after" value] ] value: args/1 ] ] if all [; value1,value2,...,valueN not find value "[" find value "," ][value: mold split value ","] either name [ append ret reduce [name value] ][; standalone-arg append standalone value ] ] if empty? standalone [return ret] append ret '| append ret standalone ] fix-win32-path: func [ path [file!] <local> letter colon ][ if 3 != fourth system/version [return path] ;non-windows system drive: first path colon: second path all [ any [ (#"A" <= drive) and [#"Z" >= drive] (#"a" <= drive) and [#"z" >= drive] ] #":" = colon ] then [ insert path #"/" remove skip path 2 ;remove ":" ] path ] uppercase-of: func [ {Copying variant of UPPERCASE, also FORMs words} string [text! word!] ][ uppercase form string ] lowercase-of: func [ {Copying variant of LOWERCASE, also FORMs words} string [text! word!] ][ lowercase form string ] propercase: func [value] [uppercase/part (copy value) 1] propercase-of: func [ {Make a copy of a string with just the first character uppercase} string [text! word!] ][ propercase form string ] write-if-changed: function [ return: <void> dest [file!] content [text! block!] ][ if block? content [content: spaced content] content: to binary! content any [ not exists? dest content != read dest ] then [ write dest content ] ] relative-to-path: func [ target [file!] base [file!] ][ target: split clean-path target "/" base: split clean-path base "/" if "" = last base [take/last base] while [all [ not tail? target not tail? base base/1 = target/1 ]] [ base: next base target: next target ] iterate base [base/1: %..] append base target to-file delimit "/" base ]
Formal statement is: lemma zero_less_norm_iff [simp]: "norm x > 0 \<longleftrightarrow> x \<noteq> 0" Informal statement is: The norm of a complex number is positive if and only if the complex number is nonzero.
import data.set data.stream.basic open stream structure LTS:= (S : Type) (Act : Type)(TR : set (S × Act × S)) --structure LTS:= (S : Type) (A : Type) (Δ : set (S × Act × S)) structure path (M : LTS) := (init : M.S) (s : stream (M.Act × M.S)) (sound : ((init, (s 0).1, (s 0).2) ∈ M.TR) ∧ ∀ i : ℕ, ((s i).2, (s (i+1)).1, (s (i+1)).2) ∈ M.TR) variable {M : LTS} namespace path def index (π : path M) : ℕ+ → (M.Act × M.S) | (n) := (π.s (n-1)) lemma drop_aux (π : path M) (n : ℕ) : ((π.s n).snd, (drop (n+1) π.s 0).fst, (drop (n+1) π.s 0).snd) ∈ M.TR ∧ ∀ (i : ℕ), ((drop (n+1) π.s i).snd, (stream.drop (n+1) π.s (i + 1)).fst, (drop (n+1) π.s (i + 1)).snd) ∈ M.TR := begin have := π.sound, cases this with L R, rw stream.drop, dsimp at *, simp at *, split, apply R n, intro i, replace R := R (i+n.succ), rw add_assoc at R, rw add_comm n.succ 1 at R, rw ← add_assoc at R, apply R, end def drop (π : path M) : ℕ → path M | 0 := π | (nat.succ n) := path.mk (π.s n).2 (π.s.drop n.succ) (drop_aux π n) lemma drop_drop (π : path M) {i j : ℕ} : (π.drop i).drop j = π.drop (i+j) := begin cases i, {rw drop, simp}, cases j, rw [drop,drop], rw drop, rw drop, rw drop, simp, rw drop_drop, split, rw stream.drop, simp, rw add_comm, rw nat.add_succ, rw add_comm, rw nat.add_succ, rw add_comm i.succ, rw nat.add_succ, rw add_comm, end end path inductive formula (M : LTS) | T : formula | state_predicate (p : M.S → Prop) : formula | act_predicate (p : M.Act → Prop) : formula | state (s : M.S) : formula | act (a : M.Act) : formula | neg (x : formula) : formula | conj (φ₁ φ₂ : formula) : formula | disj (φ₁ φ₂ : formula) : formula | impl (φ₁ φ₂ : formula) : formula | next (φ : formula) : formula | always (φ : formula) : formula | eventually (φ : formula) : formula | until (φ₁ φ₂ : formula) : formula def sat {M : LTS} : formula M → path M → Prop | formula.T := λ _, true | (formula.state s) := λ π, π.init = s | (formula.act a) := λ π, (path.index π 1).1 = a | (formula.neg φ) := λ π, ¬ (sat φ) π | (formula.conj φ₁ φ₂) := λ π, sat φ₁ π ∧ sat φ₂ π | (formula.disj φ₁ φ₂) := λ π, sat φ₁ π ∨ sat φ₂ π | (formula.impl φ₁ φ₂) := λ π, sat φ₁ π → sat φ₂ π | (formula.next φ) := λ π, sat φ (π.drop 1) | (formula.until φ₁ φ₂) := λ π, ∃ j, sat φ₂ (π.drop j) ∧ (∀ i < j, sat φ₁ (π.drop i)) | (formula.always φ) := λ π, ∀ i, sat φ (π.drop i) | (formula.eventually φ) := λ π, ∃ i, sat φ (π.drop i) | (formula.state_predicate p) := λ π, p π.init | (formula.act_predicate p) := λ π, p (path.index π 1).1 notation φ ` & ` ψ := formula.conj φ ψ notation φ ` ⅋ ` ψ := formula.disj φ ψ notation ` !` φ := formula.neg φ notation φ ` U ` ψ := formula.until φ ψ notation ` ◆` φ := formula.eventually φ notation ` ◾` φ := formula.always φ notation φ ` ⇒ ` ψ := formula.impl φ ψ notation π `⊨` P := sat P π namespace formula def weak_until (φ ψ : formula M) : formula M := (◾φ) ⅋ (φ U ψ) end formula notation φ ` W ` ψ := formula.weak_until φ ψ namespace sat lemma weak_until (φ ψ : formula M) (π : path M) : sat (formula.weak_until φ ψ) π ↔ sat (◾ φ) π ∨ sat (φ U ψ) π := by {rw formula.weak_until, repeat {rw sat}} end sat lemma push_neg_tok {M : LTS} {π : path M} : ∀ P : formula M, ¬ (sat P π) ↔ sat (!P) π := by {intro P, refl,} lemma always_eventually_dual (P : formula M) (π : path M) : sat (◾!P) π ↔ (¬ sat (◆P) π) := by {repeat {rw sat}, tidy} @[simp] lemma succ_add_1 {π : path M} {i : ℕ} : (π.drop i).drop 1 = π.drop (i.succ) := by {rw path.drop_drop}
------------------------------------------------------------------------ -- The Agda standard library -- -- Basic definitions for Characters ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Char.Base where open import Level using (zero) import Data.Nat.Base as ℕ open import Function open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Re-export the type, and renamed primitives open import Agda.Builtin.Char public using ( Char ) renaming -- testing ( primIsLower to isLower ; primIsDigit to isDigit ; primIsAlpha to isAlpha ; primIsSpace to isSpace ; primIsAscii to isAscii ; primIsLatin1 to isLatin1 ; primIsPrint to isPrint ; primIsHexDigit to isHexDigit -- transforming ; primToUpper to toUpper ; primToLower to toLower -- converting ; primCharToNat to toℕ ; primNatToChar to fromℕ ) open import Agda.Builtin.String public using () renaming ( primShowChar to show ) infix 4 _≈_ _≈_ : Rel Char zero _≈_ = _≡_ on toℕ infix 4 _<_ _<_ : Rel Char zero _<_ = ℕ._<_ on toℕ ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 toNat = toℕ {-# WARNING_ON_USAGE toNat "Warning: toNat was deprecated in v1.1. Please use toℕ instead." #-} fromNat = fromℕ {-# WARNING_ON_USAGE fromNat "Warning: fromNat was deprecated in v1.1. Please use fromℕ instead." #-}
#include <stdio.h> #include <math.h> #include <gsl/gsl_integration.h> void integral_recur ( int nmin, int nmax, double vals[]); void integral_recur (int nmin, int nmax, double vals[]) { double IN = 0; int i = nmax - 1; vals [nmax] = IN; while ( i >= nmin) { vals[i] = (IN + exp (-1.))/((double) i); i = i - 1; } }
Marketing is the process by which companies create customer interest in goods or services. It generates the strategy that underlies sales techniques, business communication and business developments. It is an integrated process through which companies build strong customer relationships and creates value for their customers and for themselves. Though going by the definition, Marketing as a subject sounds too simple but one must not be deceived by it and take it lightly. Marketing has a lot of concepts to understand and deal with and thus needs to be understood perfectly. Business cannot run peacefully without appropriate marketing and thus it is important enough to understand all the techniques of Marketing. These days Digital marketing is becoming more and more popular and the marketing Network it growing many folds because of the new techniques like Website Marketing, Marketing Online and so on. Product Marketing also needs a lot of expertise and so one does require a good guise to understand them all and the Homework Helpers that we provide you here are well trained professional in the field of Marketing who can teach you all the basics and their working. We make sure that we do a lot more than just filling you all with the theory and also give you the knowledge of application of all this. We have put forward an effort of providing you the best Help In Homework and assignment in Marketing to enable you to get a good hold of the subject and add value where ever you work. Our trained professionals are working 24/7 with the aim of making you a better professional at work and to make you able of getting out the best in you. We provide you all the newly updated material, papers and Case Studies that help you explain the concepts faster and better. So, you're at the right place if you need Marketing Homework Help, Marketing Assignment Help and this is where you will find the answers to all your queries related to marketing. So log on to urgenthomework.com whenever you need that your mind needs to be directed towards this subject in a more better way.
State Before: C : Type u₁ inst✝¹ : SmallCategory C ℰ : Type u₂ inst✝ : Category ℰ A : C ⥤ ℰ P : Cᵒᵖ ⥤ Type u₁ E₁ E₂ : ℰ g : E₁ ⟶ E₂ c : Cocone ((CategoryOfElements.π P).leftOp ⋙ A) t : IsColimit c k : c.pt ⟶ E₁ ⊢ ↑(restrictYonedaHomEquiv A P E₂ t) (k ≫ g) = ↑(restrictYonedaHomEquiv A P E₁ t) k ≫ (restrictedYoneda A).map g State After: case w.h.h C : Type u₁ inst✝¹ : SmallCategory C ℰ : Type u₂ inst✝ : Category ℰ A : C ⥤ ℰ P : Cᵒᵖ ⥤ Type u₁ E₁ E₂ : ℰ g : E₁ ⟶ E₂ c : Cocone ((CategoryOfElements.π P).leftOp ⋙ A) t : IsColimit c k : c.pt ⟶ E₁ x : Cᵒᵖ X : P.obj x ⊢ (↑(restrictYonedaHomEquiv A P E₂ t) (k ≫ g)).app x X = (↑(restrictYonedaHomEquiv A P E₁ t) k ≫ (restrictedYoneda A).map g).app x X Tactic: ext x X State Before: case w.h.h C : Type u₁ inst✝¹ : SmallCategory C ℰ : Type u₂ inst✝ : Category ℰ A : C ⥤ ℰ P : Cᵒᵖ ⥤ Type u₁ E₁ E₂ : ℰ g : E₁ ⟶ E₂ c : Cocone ((CategoryOfElements.π P).leftOp ⋙ A) t : IsColimit c k : c.pt ⟶ E₁ x : Cᵒᵖ X : P.obj x ⊢ (↑(restrictYonedaHomEquiv A P E₂ t) (k ≫ g)).app x X = (↑(restrictYonedaHomEquiv A P E₁ t) k ≫ (restrictedYoneda A).map g).app x X State After: no goals Tactic: apply (assoc _ _ _).symm
Bedroom Unique Car Beds Kid Decor Ideas For Boy Clipgoo Beautiful Ideas , Download this wallpaper for free in high resolution. Bedroom Unique Car Beds Kid Decor Ideas For Boy Clipgoo Beautiful Ideas was posted in July 9, 2018 at 7:43 am and This Bedroom Unique Car Beds Kid Decor Ideas For Boy Clipgoo Beautiful Ideas Wallpaper has viewed by 348 users. If you wanna have it as yours, please click full size and you will go to page download in full size, so you just choose the size above the wallpaper that you want in "Download", Click it and download the Bedroom Unique Car Beds Kid Decor Ideas For Boy Clipgoo Beautiful Ideas Wallpaper.
(* This file is generated by Why3's Coq driver *) (* Beware! Only edit allowed sections below *) Require Import BuiltIn. Require BuiltIn. Require list.List. Require list.Length. Require int.Int. Require list.Mem. Require list.Append. (* Why3 assumption *) Definition unit := unit. Axiom qtmark : Type. Parameter qtmark_WhyType : WhyType qtmark. Existing Instance qtmark_WhyType. Axiom char : Type. Parameter char_WhyType : WhyType char. Existing Instance char_WhyType. (* Why3 assumption *) Inductive regexp := | Empty : regexp | Epsilon : regexp | Char : char -> regexp | Alt : regexp -> regexp -> regexp | Concat : regexp -> regexp -> regexp | Star : regexp -> regexp. Axiom regexp_WhyType : WhyType regexp. Existing Instance regexp_WhyType. (* Why3 assumption *) Definition word := (list char). (* Why3 assumption *) Inductive mem: (list char) -> regexp -> Prop := | mem_eps : (mem Init.Datatypes.nil Epsilon) | mem_char : forall (c:char), (mem (Init.Datatypes.cons c Init.Datatypes.nil) (Char c)) | mem_altl : forall (w:(list char)) (r1:regexp) (r2:regexp), (mem w r1) -> (mem w (Alt r1 r2)) | mem_altr : forall (w:(list char)) (r1:regexp) (r2:regexp), (mem w r2) -> (mem w (Alt r1 r2)) | mem_concat : forall (w1:(list char)) (w2:(list char)) (r1:regexp) (r2:regexp), (mem w1 r1) -> ((mem w2 r2) -> (mem (Init.Datatypes.app w1 w2) (Concat r1 r2))) | mems1 : forall (r:regexp), (mem Init.Datatypes.nil (Star r)) | mems2 : forall (w1:(list char)) (w2:(list char)) (r:regexp), (mem w1 r) -> ((mem w2 (Star r)) -> (mem (Init.Datatypes.app w1 w2) (Star r))). Axiom inversion_mem_star_gen : forall (c:char) (w:(list char)) (r:regexp) (w':(list char)) (r':regexp), ((w' = (Init.Datatypes.cons c w)) /\ (r' = (Star r))) -> ((mem w' r') -> exists w1:(list char), exists w2:(list char), (w = (Init.Datatypes.app w1 w2)) /\ ((mem (Init.Datatypes.cons c w1) r) /\ (mem w2 r'))). Axiom inversion_mem_star : forall (c:char) (w:(list char)) (r:regexp), (mem (Init.Datatypes.cons c w) (Star r)) -> exists w1:(list char), exists w2:(list char), (w = (Init.Datatypes.app w1 w2)) /\ ((mem (Init.Datatypes.cons c w1) r) /\ (mem w2 (Star r))). (* Why3 goal *) Theorem WP_parameter_residual : forall (r:regexp) (c:char), forall (x:regexp), (r = (Star x)) -> forall (o:regexp), (forall (w:(list char)), (mem w o) <-> (mem (Init.Datatypes.cons c w) x)) -> forall (w:(list char)), (mem w (Concat o r)) <-> (mem (Init.Datatypes.cons c w) r). intros r c x h1 o h2 w. subst. intuition. inversion H; subst; clear H. rewrite List.app_comm_cons. constructor; auto. rewrite <- h2; auto. destruct (inversion_mem_star _ _ _ H) as (w1 & w2 & hh1 & hh2 & hh3). subst w. constructor; auto. now rewrite h2. Qed.
[STATEMENT] lemma establish_invarI_CB [case_names prereq init new_root finish cross_back_edge discover]: \<comment> \<open>Establish a DFS invariant (cross and back edge cases are combined).\<close> assumes prereq: "\<And>u v s. on_back_edge param u v s = on_cross_edge param u v s" assumes init: "on_init param \<le>\<^sub>n SPEC (\<lambda>x. I (empty_state x))" assumes new_root: "\<And>s s' v0. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s = []; v0 \<in> V0; v0 \<notin> dom (discovered s); s' = new_root v0 s\<rbrakk> \<Longrightarrow> on_new_root param v0 s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>))" assumes finish: "\<And>s s' u. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; u = hd (stack s); pending s `` {u} = {}; s' = finish u s\<rbrakk> \<Longrightarrow> on_finish param u s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>))" assumes cross_back_edge: "\<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<in> dom (discovered s); discovered s' = discovered s; finished s' = finished s; stack s' = stack s; tree_edges s' = tree_edges s; counter s' = counter s; pending s' = pending s - {(u,v)}; cross_edges s' \<union> back_edges s' = cross_edges s \<union> back_edges s \<union> {(u,v)}; state.more s' = state.more s \<rbrakk> \<Longrightarrow> on_cross_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>))" assumes discover: "\<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<notin> dom (discovered s); s' = discover u v (s\<lparr>pending := pending s - {(u,v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_discover param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>))" shows "is_invar I" [PROOF STATE] proof (prove) goal (1 subgoal): 1. is_invar I [PROOF STEP] proof (induct rule: establish_invarI) [PROOF STATE] proof (state) goal (6 subgoals): 1. on_init param \<le>\<^sub>n SPEC (\<lambda>x. I (empty_state x)) 2. \<And>s s' v0. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s = []; v0 \<in> V0; v0 \<notin> dom (discovered s); s' = new_root v0 s\<rbrakk> \<Longrightarrow> on_new_root param v0 s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 3. \<And>s s' u. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; u = hd (stack s); pending s `` {u} = {}; s' = finish u s\<rbrakk> \<Longrightarrow> on_finish param u s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 4. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<in> dom (discovered s); v \<in> dom (finished s); s' = cross_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_cross_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 5. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<in> dom (discovered s); v \<notin> dom (finished s); s' = back_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_back_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 6. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<notin> dom (discovered s); s' = discover u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_discover param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] case cross_edge [PROOF STATE] proof (state) this: DFS_invar G param s_ I s_ cond s_ \<not> is_break param s_ stack s_ \<noteq> [] (u_, v_) \<in> pending s_ u_ = hd (stack s_) v_ \<in> dom (discovered s_) v_ \<in> dom (finished s_) s'_ = cross_edge u_ v_ (s_\<lparr>pending := pending s_ - {(u_, v_)}\<rparr>) goal (6 subgoals): 1. on_init param \<le>\<^sub>n SPEC (\<lambda>x. I (empty_state x)) 2. \<And>s s' v0. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s = []; v0 \<in> V0; v0 \<notin> dom (discovered s); s' = new_root v0 s\<rbrakk> \<Longrightarrow> on_new_root param v0 s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 3. \<And>s s' u. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; u = hd (stack s); pending s `` {u} = {}; s' = finish u s\<rbrakk> \<Longrightarrow> on_finish param u s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 4. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<in> dom (discovered s); v \<in> dom (finished s); s' = cross_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_cross_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 5. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<in> dom (discovered s); v \<notin> dom (finished s); s' = back_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_back_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 6. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<notin> dom (discovered s); s' = discover u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_discover param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] thus ?case [PROOF STATE] proof (prove) using this: DFS_invar G param s_ I s_ cond s_ \<not> is_break param s_ stack s_ \<noteq> [] (u_, v_) \<in> pending s_ u_ = hd (stack s_) v_ \<in> dom (discovered s_) v_ \<in> dom (finished s_) s'_ = cross_edge u_ v_ (s_\<lparr>pending := pending s_ - {(u_, v_)}\<rparr>) goal (1 subgoal): 1. on_cross_edge param u_ v_ s'_ \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'_\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'_\<lparr>state.more := x\<rparr>)) [PROOF STEP] by (auto intro!: cross_back_edge) [PROOF STATE] proof (state) this: on_cross_edge param u_ v_ s'_ \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'_\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'_\<lparr>state.more := x\<rparr>)) goal (5 subgoals): 1. on_init param \<le>\<^sub>n SPEC (\<lambda>x. I (empty_state x)) 2. \<And>s s' v0. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s = []; v0 \<in> V0; v0 \<notin> dom (discovered s); s' = new_root v0 s\<rbrakk> \<Longrightarrow> on_new_root param v0 s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 3. \<And>s s' u. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; u = hd (stack s); pending s `` {u} = {}; s' = finish u s\<rbrakk> \<Longrightarrow> on_finish param u s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 4. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<in> dom (discovered s); v \<notin> dom (finished s); s' = back_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_back_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 5. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<notin> dom (discovered s); s' = discover u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_discover param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] next [PROOF STATE] proof (state) goal (5 subgoals): 1. on_init param \<le>\<^sub>n SPEC (\<lambda>x. I (empty_state x)) 2. \<And>s s' v0. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s = []; v0 \<in> V0; v0 \<notin> dom (discovered s); s' = new_root v0 s\<rbrakk> \<Longrightarrow> on_new_root param v0 s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 3. \<And>s s' u. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; u = hd (stack s); pending s `` {u} = {}; s' = finish u s\<rbrakk> \<Longrightarrow> on_finish param u s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 4. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<in> dom (discovered s); v \<notin> dom (finished s); s' = back_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_back_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 5. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<notin> dom (discovered s); s' = discover u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_discover param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] case (back_edge s s' u v) [PROOF STATE] proof (state) this: DFS_invar G param s I s cond s \<not> is_break param s stack s \<noteq> [] (u, v) \<in> pending s u = hd (stack s) v \<in> dom (discovered s) v \<notin> dom (finished s) s' = back_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>) goal (5 subgoals): 1. on_init param \<le>\<^sub>n SPEC (\<lambda>x. I (empty_state x)) 2. \<And>s s' v0. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s = []; v0 \<in> V0; v0 \<notin> dom (discovered s); s' = new_root v0 s\<rbrakk> \<Longrightarrow> on_new_root param v0 s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 3. \<And>s s' u. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; u = hd (stack s); pending s `` {u} = {}; s' = finish u s\<rbrakk> \<Longrightarrow> on_finish param u s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 4. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<in> dom (discovered s); v \<notin> dom (finished s); s' = back_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_back_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 5. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<notin> dom (discovered s); s' = discover u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_discover param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] hence "on_cross_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>))" [PROOF STATE] proof (prove) using this: DFS_invar G param s I s cond s \<not> is_break param s stack s \<noteq> [] (u, v) \<in> pending s u = hd (stack s) v \<in> dom (discovered s) v \<notin> dom (finished s) s' = back_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>) goal (1 subgoal): 1. on_cross_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] by (auto intro!: cross_back_edge) [PROOF STATE] proof (state) this: on_cross_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) goal (5 subgoals): 1. on_init param \<le>\<^sub>n SPEC (\<lambda>x. I (empty_state x)) 2. \<And>s s' v0. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s = []; v0 \<in> V0; v0 \<notin> dom (discovered s); s' = new_root v0 s\<rbrakk> \<Longrightarrow> on_new_root param v0 s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 3. \<And>s s' u. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; u = hd (stack s); pending s `` {u} = {}; s' = finish u s\<rbrakk> \<Longrightarrow> on_finish param u s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 4. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<in> dom (discovered s); v \<notin> dom (finished s); s' = back_edge u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_back_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 5. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<notin> dom (discovered s); s' = discover u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_discover param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] with prereq [PROOF STATE] proof (chain) picking this: on_back_edge param ?u1 ?v1 ?s1 = on_cross_edge param ?u1 ?v1 ?s1 on_cross_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] show ?case [PROOF STATE] proof (prove) using this: on_back_edge param ?u1 ?v1 ?s1 = on_cross_edge param ?u1 ?v1 ?s1 on_cross_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) goal (1 subgoal): 1. on_back_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] by simp [PROOF STATE] proof (state) this: on_back_edge param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) goal (4 subgoals): 1. on_init param \<le>\<^sub>n SPEC (\<lambda>x. I (empty_state x)) 2. \<And>s s' v0. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s = []; v0 \<in> V0; v0 \<notin> dom (discovered s); s' = new_root v0 s\<rbrakk> \<Longrightarrow> on_new_root param v0 s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 3. \<And>s s' u. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; u = hd (stack s); pending s `` {u} = {}; s' = finish u s\<rbrakk> \<Longrightarrow> on_finish param u s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) 4. \<And>s s' u v. \<lbrakk>DFS_invar G param s; I s; cond s; \<not> is_break param s; stack s \<noteq> []; (u, v) \<in> pending s; u = hd (stack s); v \<notin> dom (discovered s); s' = discover u v (s\<lparr>pending := pending s - {(u, v)}\<rparr>)\<rbrakk> \<Longrightarrow> on_discover param u v s' \<le>\<^sub>n SPEC (\<lambda>x. DFS_invar G param (s'\<lparr>state.more := x\<rparr>) \<longrightarrow> I (s'\<lparr>state.more := x\<rparr>)) [PROOF STEP] qed fact+
function out=subsref(x,varargin) out=builtin('subsref',x,varargin{:});
Require Import ZArith. Require Import ASN1FP.Types.BitContainer ASN1FP.Types.Bitstring. (** * container tuples *) (* nbs - normal bitstring (i.e. not a special value) *) Inductive BER_nbs := | short_nbs (id co : cont8) (t s : cont1) (bb ff ee : cont2) (e : container (8 * (c2n ee + 1))) (m : container (8*((c2n co) - (c2n ee) - 2))) (VS1 : c2z id = real_id_b) (VS2 : c2z t = 1) (VS3 : c2z ee <= 2) (VS4 : 1 <= c2z m) (VS5 : c2z co <= 127) | long_nbs (id co : cont8) (t s : cont1) (bb ff ee : cont2) (eo : cont8) (e : container (8*(c2n eo))) (m : container (8 * ((c2n co) - (c2n eo) - 2))) (VL1 : c2z id = real_id_b) (VL2 : c2z t = 1) (VL3 : c2z ee = 3) (VL4 : 1 <= c2z m) (VL5 : c2z co <= 127). Inductive BER_bs_aux := | special_aux (val : BER_special) : BER_bs_aux | normal_aux (b : BER_nbs) : BER_bs_aux.
#pragma once #include <boost/asio.hpp> namespace boost { class thread; } class Asio { public: static void startup(); static boost::asio::io_service &getIoService(); static void shutdown(); private: static boost::asio::io_service *ioService; static boost::asio::io_service::work *work; static boost::thread *butler; };
/- Copyright (c) 2022 Tomaz Gomes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Tomaz Gomes. -/ import data.list.sort tactic import data.nat.log import init.data.nat import MergeSort.LogLemmas /- # Timed Split This file defines a new version of Split that, besides splitting the input lists into two halves, counts the number of operations made through the execution of the algorithm. Also, it presents proofs of it's time complexity, it's equivalence to the one defined in data/list/sort.lean and of some lemmas used in MergeSort.lean, related to the Split function. ## Main Definition - Timed.split : list α → (list α × list α × ℕ) ## Main Results - Timed.split_complexity : ∀ l : list α, (Timed.split l).snd.snd = l.length - Timed.split_equivalence : ∀ l : list α, (Timed.split l).fst = list.split l -/ variables {α : Type} (r : α → α → Prop) [decidable_rel r] local infix ` ≼ ` : 50 := r namespace Timed @[simp] def split : list α → (list α × list α × ℕ) | [] := ([], [], 0) | (h :: t) := let (l₁, l₂, n) := split t in (h :: l₂, l₁, n + 1) theorem split_equivalence : ∀ (l : list α) , (split l).fst = (list.split l).fst ∧ (split l).snd.fst = (list.split l).snd | [] := by simp only [list.split, split, and_self] | (h :: t) := begin simp only [list.split, split], have ih := split_equivalence t, cases ih with ih_fst ih_snd, cases (split t) with t_left₁ t_right₁, cases t_right₁ with t_right₁ _, unfold split, cases t.split with t_left₂ t_right₂, unfold list.split, simp only [true_and, eq_self_iff_true], exact ⟨ ih_snd, ih_fst ⟩, end theorem split_complexity : ∀ (l : list α) , (split l).snd.snd = l.length | [] := by simp only [list.length, split] | (h :: t) := begin simp only [list.length, split], have IH := split_complexity t, cases split t with l₁ l₂n, cases l₂n with l₂ n, unfold split, rw add_left_inj, exact IH, end lemma length_split_lt {a b: α} {l l₁ l₂ : list α} {n : ℕ} (h : split (a::b::l) = (l₁, l₂, n)): list.length l₁ < list.length (a::b::l) ∧ list.length l₂ < list.length (a::b::l) := begin have split_eq_full : l₁ = (a::b::l).split.fst ∧ l₂ = (a::b::l).split.snd := begin have l₂_n_id : (l₂, n) = (split (a :: b :: l)).snd := (congr_arg prod.snd h).congr_right.mpr rfl, have l₂_id : l₂ = (split (a :: b :: l)).snd.fst := (congr_arg prod.fst l₂_n_id).congr_right.mp rfl, have l₁_id : l₁ = (split (a :: b :: l)).fst := (congr_arg prod.fst h).congr_right.mpr rfl, have split_eq := split_equivalence (a :: b :: l), cases split_eq, rw split_eq_left at l₁_id, rw split_eq_right at l₂_id, exact ⟨ l₁_id , l₂_id ⟩, end, cases split_eq_full, have reconstruct : (a::b::l).split = (l₁, l₂) := begin rw split_eq_full_left, rw split_eq_full_right, exact prod.ext rfl rfl, end , exact list.length_split_lt reconstruct, end lemma split_halves_length : ∀ {l l₁ l₂ : list α} {n : ℕ}, split l = (l₁, l₂, n) → 2 * list.length l₁ ≤ list.length l + 1 ∧ 2 * list.length l₂ ≤ list.length l | [] := begin intros l₁ l₂ n h, unfold split at h, simp only [prod.mk.inj_iff] at h, cases h with h₁ h₂, cases h₂ with h₂ _, rw [← h₁, ← h₂], simp only [ zero_le_one , list.length , eq_self_iff_true , and_self , nonpos_iff_eq_zero , mul_zero ], end | (a :: t) := begin intros l₁ l₂ n h', cases e : split t with t₁ t₂m, cases t₂m with t₂ m, have split_id : split (a :: t) = (a :: t₂, t₁, m + 1) := begin rw split, cases split t with t₁' t₂', cases t₂' with t₂' m₂, unfold split, injection e, injection h_2, refine congr (congr_arg prod.mk (congr_arg (list.cons a) h_3)) _, rw h_1, rw h_4, end, rw split_id at h', injection h', injection h_2, have IH := split_halves_length e, refine and.intro _ _, { rw ← h_1, simp only [list.length], linarith, }, { rw ← h_3, simp only [list.length], linarith, }, end include r lemma split_lengths : ∀ (l l₁ l₂ : list α) {n : ℕ}, split l = (l₁, l₂, n) → l₁.length + l₂.length = l.length | [] := by { intros l₁ l₂ n, simp only [ and_imp , prod.mk.inj_iff , list.length , add_eq_zero_iff , split ], intros h₁ h₂ _, rw [← h₁, ← h₂], simp, } | [a] := by { intros l₁ l₂ n, simp only [ and_imp , prod.mk.inj_iff , list.length_singleton , zero_add , split ], intros h₁ h₂ _, rw [← h₁, ← h₂], simp only [list.length], } | (a :: b :: t) := begin intros l₁ l₂ n h, cases e : split t with l₁' l₂'m, cases l₂'m with l₂' m, simp only [split] at h, rw e at h, unfold split at h, have ih := split_lengths t l₁' l₂' e, injection h, injection h_2, rw [← h_1, ← h_3], simp only [list.length], linarith, end end Timed
[STATEMENT] lemma PO_refines_implies_R_image_invariant: assumes "PO_refines R Ta Tc" shows "reach Tc \<subseteq> R `` reach Ta" [PROOF STATE] proof (prove) goal (1 subgoal): 1. reach Tc \<subseteq> R `` reach Ta [PROOF STEP] proof(rule INV_rule) [PROOF STATE] proof (state) goal (2 subgoals): 1. init Tc \<subseteq> R `` reach Ta 2. {R `` reach Ta \<inter> reach Tc} TS.trans Tc {> R `` reach Ta} [PROOF STEP] show "init Tc \<subseteq> R `` reach Ta" [PROOF STATE] proof (prove) goal (1 subgoal): 1. init Tc \<subseteq> R `` reach Ta [PROOF STEP] by (rule subset_trans[OF PO_refines_implies_R_image_init, OF assms]) (auto) [PROOF STATE] proof (state) this: init Tc \<subseteq> R `` reach Ta goal (1 subgoal): 1. {R `` reach Ta \<inter> reach Tc} TS.trans Tc {> R `` reach Ta} [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. {R `` reach Ta \<inter> reach Tc} TS.trans Tc {> R `` reach Ta} [PROOF STEP] show "{R `` reach Ta \<inter> reach Tc} TS.trans Tc {> R `` reach Ta}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. {R `` reach Ta \<inter> reach Tc} TS.trans Tc {> R `` reach Ta} [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: PO_refines R Ta Tc goal (1 subgoal): 1. {R `` reach Ta \<inter> reach Tc} TS.trans Tc {> R `` reach Ta} [PROOF STEP] by (auto intro!: PO_refines_implies_R_image_trans) [PROOF STATE] proof (state) this: {R `` reach Ta \<inter> reach Tc} TS.trans Tc {> R `` reach Ta} goal: No subgoals! [PROOF STEP] qed
{-# LANGUAGE TupleSections #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE CPP #-} {-# LANGUAGE RecordWildCards #-} -- | -- Module : Pact.Repl.Lib -- Copyright : (C) 2016 Stuart Popejoy -- License : BSD-style (see the file LICENSE) -- Maintainer : Stuart Popejoy <[email protected]> -- -- Built-ins for repl functionality. Not part of standard library -- for blockchain execution, but instead for testing and dev. -- module Pact.Repl.Lib where import Control.Arrow ((&&&)) import Data.Default import Data.Semigroup import qualified Data.HashMap.Strict as HM import qualified Data.Map as M import Control.Monad.Reader import Control.Monad.Catch import Control.Monad.State.Strict (get) import Control.Lens import qualified Data.Set as S import qualified Data.ByteString.Lazy as BSL import Control.Concurrent.MVar import Data.Aeson (eitherDecode,toJSON) import qualified Data.Text as Text import Data.Text.Encoding import Data.Maybe #if !defined(ghcjs_HOST_OS) import Criterion import Criterion.Types import Pact.Analyze.Check #if MIN_VERSION_statistics(0,14,0) import Statistics.Types (Estimate(..)) #else import Statistics.Resampling.Bootstrap #endif #endif import Pact.Typechecker import Pact.Types.Typecheck -- intentionally hidden unused functions to prevent lib functions from consuming gas import Pact.Native.Internal hiding (defRNative,defGasRNative,defNative) import qualified Pact.Native.Internal as Native import Pact.Types.Runtime import Pact.Eval import Pact.Persist.Pure import Pact.PersistPactDb import Pact.Types.Logger import Pact.Repl.Types initLibState :: Loggers -> IO LibState initLibState loggers = do m <- newMVar (DbEnv def persister (newLogger loggers "Repl") def def) createSchema m return (LibState m Noop def def) -- | Native function with no gas consumption. type ZNativeFun e = FunApp -> [Term Ref] -> Eval e (Term Name) zeroGas :: Eval e a -> Eval e (Gas,a) zeroGas = fmap (0,) defZNative :: NativeDefName -> ZNativeFun e -> FunTypes (Term Name) -> Text -> NativeDef defZNative name fun = Native.defNative name $ \fi as -> zeroGas $ fun fi as defZRNative :: NativeDefName -> RNativeFun e -> FunTypes (Term Name) -> Text -> NativeDef defZRNative name fun = Native.defNative name (reduced fun) where reduced f fi as = mapM reduce as >>= zeroGas . f fi replDefs :: NativeModule replDefs = ("Repl", [ defZRNative "load" load (funType tTyString [("file",tTyString)] <> funType tTyString [("file",tTyString),("reset",tTyBool)]) $ "Load and evaluate FILE, resetting repl state beforehand if optional NO-RESET is true. " <> "`$(load \"accounts.repl\")`" ,defZRNative "env-keys" setsigs (funType tTyString [("keys",TyList tTyString)]) "Set transaction signature KEYS. `(env-keys [\"my-key\" \"admin-key\"])`" ,defZRNative "env-data" setmsg (funType tTyString [("json",json)]) $ "Set transaction JSON data, either as encoded string, or as pact types coerced to JSON. " <> "`(env-data { \"keyset\": { \"keys\": [\"my-key\" \"admin-key\"], \"pred\": \"keys-any\" } })`" ,defZRNative "env-step" setstep (funType tTyString [] <> funType tTyString [("step-idx",tTyInteger)] <> funType tTyString [("step-idx",tTyInteger),("rollback",tTyBool)] <> funType tTyString [("step-idx",tTyInteger),("rollback",tTyBool),("resume",TySchema TyObject (mkSchemaVar "y"))]) ("Set pact step state. With no arguments, unset step. With STEP-IDX, set step index to execute. " <> "ROLLBACK instructs to execute rollback expression, if any. RESUME sets a value to be read via 'resume'." <> "Clears any previous pact execution state. `$(env-step 1)` `$(env-step 0 true)`") ,defZRNative "pact-state" pactState (funType (tTyObject TyAny) []) ("Inspect state from previous pact execution. Returns object with fields " <> "'yield': yield result or 'false' if none; 'step': executed step; " <> "'executed': indicates if step was skipped because entity did not match. `$(pact-state)`") ,defZRNative "env-entity" setentity (funType tTyString [] <> funType tTyString [("entity",tTyString)]) ("Set environment confidential ENTITY id, or unset with no argument. " <> "Clears any previous pact execution state. `$(env-entity \"my-org\")` `$(env-entity)`") ,defZRNative "begin-tx" (tx Begin) (funType tTyString [] <> funType tTyString [("name",tTyString)]) "Begin transaction with optional NAME. `$(begin-tx \"load module\")`" ,defZRNative "commit-tx" (tx Commit) (funType tTyString []) "Commit transaction. `$(commit-tx)`" ,defZRNative "rollback-tx" (tx Rollback) (funType tTyString []) "Rollback transaction. `$(rollback-tx)`" ,defZRNative "expect" expect (funType tTyString [("doc",tTyString),("expected",a),("actual",a)]) "Evaluate ACTUAL and verify that it equals EXPECTED. `(expect \"Sanity prevails.\" 4 (+ 2 2))`" ,defZNative "expect-failure" expectFail (funType tTyString [("doc",tTyString),("exp",a)]) $ "Evaluate EXP and succeed only if it throws an error. " <> "`(expect-failure \"Enforce fails on false\" (enforce false \"Expected error\"))`" ,defZNative "bench" bench' (funType tTyString [("exprs",TyAny)]) "Benchmark execution of EXPRS. `$(bench (+ 1 2))`" ,defZRNative "typecheck" tc (funType tTyString [("module",tTyString)] <> funType tTyString [("module",tTyString),("debug",tTyBool)]) "Typecheck MODULE, optionally enabling DEBUG output." ,defZRNative "env-gaslimit" setGasLimit (funType tTyString [("limit",tTyInteger)]) "Set environment gas limit to LIMIT" ,defZRNative "env-gas" envGas (funType tTyInteger [] <> funType tTyString [("gas",tTyInteger)]) "Query gas state, or set it to GAS" ,defZRNative "env-gasprice" setGasPrice (funType tTyString [("price",tTyDecimal)]) "Set environment gas price to PRICE" ,defZRNative "env-gasrate" setGasRate (funType tTyString [("rate",tTyInteger)]) "Update gas model to charge constant RATE" #if !defined(ghcjs_HOST_OS) ,defZRNative "verify" verify (funType tTyString [("module",tTyString)]) "Verify MODULE, checking that all properties hold." #endif ,defZRNative "json" json' (funType tTyValue [("exp",a)]) $ "Encode pact expression EXP as a JSON value. " <> "This is only needed for tests, as Pact values are automatically represented as JSON in API output. " <> "`(json [{ \"name\": \"joe\", \"age\": 10 } {\"name\": \"mary\", \"age\": 25 }])`" ,defZRNative "sig-keyset" sigKeyset (funType tTyKeySet []) "Convenience to build a keyset from keys present in message signatures, using 'keys-all' as the predicate." ,defZRNative "print" print' (funType tTyString [("value",a)]) "Print a string, mainly to format newlines correctly" ,defZRNative "env-hash" envHash (funType tTyString [("hash",tTyString)]) "Set current transaction hash. HASH must be a valid BLAKE2b 512-bit hash. `(env-hash (hash \"hello\"))`" ]) where json = mkTyVar "a" [tTyInteger,tTyString,tTyTime,tTyDecimal,tTyBool, TyList (mkTyVar "l" []),TySchema TyObject (mkSchemaVar "o"),tTyKeySet,tTyValue] a = mkTyVar "a" [] invokeEnv :: (MVar (DbEnv PureDb) -> IO b) -> MVar LibState -> IO b invokeEnv f e = withMVar e $ \ls -> f $! _rlsPure ls {-# INLINE invokeEnv #-} repldb :: PactDb LibState repldb = PactDb { _readRow = \d k -> invokeEnv $ _readRow pactdb d k , _writeRow = \wt d k v -> invokeEnv $ _writeRow pactdb wt d k v , _keys = \t -> invokeEnv $ _keys pactdb t , _txids = \t tid -> invokeEnv $ _txids pactdb t tid , _createUserTable = \t m k -> invokeEnv $ _createUserTable pactdb t m k , _getUserTableInfo = \t -> invokeEnv $ _getUserTableInfo pactdb t , _beginTx = \tid -> invokeEnv $ _beginTx pactdb tid , _commitTx = invokeEnv $ _commitTx pactdb , _rollbackTx = invokeEnv $ _rollbackTx pactdb , _getTxLog = \d t -> invokeEnv $ _getTxLog pactdb d t } load :: RNativeFun LibState load _ [TLitString fn] = setop (Load (unpack fn) False) >> return (tStr $ "Loading " <> fn <> "...") load _ [TLitString fn, TLiteral (LBool r) _] = setop (Load (unpack fn) r) >> return (tStr $ "Loading " <> fn <> "...") load i as = argsError i as modifyLibState :: (LibState -> (LibState,a)) -> Eval LibState a modifyLibState f = view eePactDbVar >>= \m -> liftIO $ modifyMVar m (return . f) setLibState :: (LibState -> LibState) -> Eval LibState () setLibState f = modifyLibState (f &&& const ()) viewLibState :: (LibState -> a) -> Eval LibState a viewLibState f = modifyLibState (id &&& f) setop :: LibOp -> Eval LibState () setop v = setLibState $ set rlsOp v setenv :: Show a => Setter' (EvalEnv LibState) a -> a -> Eval LibState () setenv l v = setop $ UpdateEnv $ Endo (set l v) setsigs :: RNativeFun LibState setsigs i [TList ts _ _] = do ks <- forM ts $ \t -> case t of (TLitString s) -> return s _ -> argsError i ts setenv eeMsgSigs (S.fromList (map (PublicKey . encodeUtf8) ks)) return $ tStr "Setting transaction keys" setsigs i as = argsError i as setmsg :: RNativeFun LibState setmsg i [TLitString j] = case eitherDecode (BSL.fromStrict $ encodeUtf8 j) of Left f -> evalError' i ("Invalid JSON: " ++ show f) Right v -> setenv eeMsgBody v >> return (tStr "Setting transaction data") setmsg _ [a] = setenv eeMsgBody (toJSON a) >> return (tStr "Setting transaction data") setmsg i as = argsError i as setstep :: RNativeFun LibState setstep i as = case as of [] -> setstep' Nothing >> return (tStr "Un-setting step") [TLitInteger j] -> do setstep' (Just $ PactStep (fromIntegral j) False def def) return $ tStr "Setting step" [TLitInteger j,TLiteral (LBool b) _] -> do setstep' (Just $ PactStep (fromIntegral j) b def def) return $ tStr "Setting step and rollback" [TLitInteger j,TLiteral (LBool b) _,o@TObject{}] -> do setstep' (Just $ PactStep (fromIntegral j) b def (Just o)) return $ tStr "Setting step, rollback, and resume value" _ -> argsError i as where setstep' s = do setenv eePactStep s evalPactExec .= Nothing setentity :: RNativeFun LibState setentity i as = case as of [TLitString s] -> do setenv eeEntity $ Just (EntityName s) evalPactExec .= Nothing return (tStr $ "Set entity to " <> s) [] -> do setenv eeEntity Nothing evalPactExec .= Nothing return (tStr "Unset entity") _ -> argsError i as pactState :: RNativeFun LibState pactState i [] = do e <- use evalPactExec case e of Nothing -> evalError' i "pact-state: no pact exec in context" Just PactExec{..} -> return $ (\o -> TObject o TyAny def) [(tStr "yield",fromMaybe (toTerm False) _peYield) ,(tStr "executed",toTerm _peExecuted) ,(tStr "step",toTerm _peStep)] pactState i as = argsError i as txmsg :: Maybe Text -> Maybe TxId -> Text -> Term Name txmsg n tid s = tStr $ s <> " Tx " <> pack (show tid) <> maybe "" (": " <>) n tx :: Tx -> RNativeFun LibState tx Begin i as = do tname <- case as of [TLitString n] -> return $ Just n [] -> return Nothing _ -> argsError i as setop $ Tx (_faInfo i) Begin tname setLibState $ set rlsTxName tname return (tStr "") tx t i [] = do tname <- modifyLibState (set rlsTxName Nothing &&& view rlsTxName) setop (Tx (_faInfo i) t tname) return (tStr "") tx _ i as = argsError i as recordTest :: Text -> Maybe (FunApp,Text) -> Eval LibState () recordTest name failure = setLibState $ over rlsTests (++ [TestResult name failure]) testSuccess :: Text -> Text -> Eval LibState (Term Name) testSuccess name msg = recordTest name Nothing >> return (tStr msg) testFailure :: FunApp -> Text -> Text -> Eval LibState (Term Name) testFailure i name msg = recordTest name (Just (i,msg)) >> return (tStr msg) expect :: RNativeFun LibState expect i [TLitString a,b,c] = if b `termEq` c then testSuccess a $ "Expect: success: " <> a else testFailure i a $ "FAILURE: " <> a <> ": expected " <> pack (show b) <> ", received " <> pack (show c) expect i as = argsError i as expectFail :: ZNativeFun LibState expectFail i as@[a,b] = do a' <- reduce a case a' of TLitString msg -> do r <- catch (Right <$> reduce b) (\(_ :: SomeException) -> return $ Left ()) case r of Right v -> testFailure i msg $ "FAILURE: " <> msg <> ": expected failure, got result = " <> pack (show v) Left _ -> testSuccess msg $ "Expect failure: success: " <> msg _ -> argsError' i as expectFail i as = argsError' i as bench' :: ZNativeFun LibState #if !defined(ghcjs_HOST_OS) bench' i as = do e <- ask s <- get (r :: Either SomeException Report) <- try $ liftIO $ benchmark' $ whnfIO $ runEval s e $ do !ts <- mapM reduce as return $! toTerm (length ts) case r of Left ex -> evalError' i (show ex) Right rpt -> do let mean = estPoint (anMean (reportAnalysis rpt)) sd = estPoint (anStdDev (reportAnalysis rpt)) (reg,_) = splitAt 1 $ anRegress (reportAnalysis rpt) val = case reg of [] -> mean (r':_) -> case M.lookup "iters" (regCoeffs r') of Nothing -> mean Just t -> estPoint t tps = 1/val tperr = (1/(val - (sd/2))) - (1/(val + (sd/2))) liftIO $ putStrLn $ show (round tps :: Integer) ++ "/s, +-" ++ show (round tperr :: Integer) ++ "/s" return (tStr "Done") #else bench' i _ = evalError' i "Benchmarking not supported in GHCJS" #endif tc :: RNativeFun LibState tc i as = case as of [TLitString s] -> go s False [TLitString s,TLiteral (LBool d) _] -> go s d _ -> argsError i as where go modname dbg = do mdm <- HM.lookup (ModuleName modname) <$> view (eeRefStore . rsModules) case mdm of Nothing -> evalError' i $ "No such module: " ++ show modname Just md -> do r :: Either CheckerException ([TopLevel Node],[Failure]) <- try $ liftIO $ typecheckModule dbg md case r of Left (CheckerException ei e) -> evalError ei ("Typechecker Internal Error: " ++ e) Right (_,fails) -> case fails of [] -> return $ tStr $ "Typecheck " <> modname <> ": success" _ -> do setop $ TcErrors $ map (\(Failure ti s) -> renderInfo (_tiInfo ti) ++ ":Warning: " ++ s) fails return $ tStr $ "Typecheck " <> modname <> ": Unable to resolve all types" #if !defined(ghcjs_HOST_OS) verify :: RNativeFun LibState verify i as = case as of [TLitString modName] -> do modules <- view (eeRefStore . rsModules) let mdm = HM.lookup (ModuleName modName) modules case mdm of Nothing -> evalError' i $ "No such module: " ++ show modName Just md -> do results <- liftIO $ verifyModule modules md setop $ TcErrors $ fmap (Text.unpack . describeCheckResult) $ toListOf (traverse . each) results return (tStr "") _ -> argsError i as #endif json' :: RNativeFun LibState json' _ [a] = return $ TValue (toJSON a) def json' i as = argsError i as sigKeyset :: RNativeFun LibState sigKeyset _ _ = view eeMsgSigs >>= \ss -> return $ toTerm $ KeySet (S.toList ss) (Name (asString KeysAll) def) print' :: RNativeFun LibState print' _ [v] = setop (Print v) >> return (tStr "") print' i as = argsError i as envHash :: RNativeFun LibState envHash i [TLitString s] = case fromText' s of Left err -> evalError' i $ "Bad hash value: " ++ show s ++ ": " ++ err Right h -> do setenv eeHash h return $ tStr $ "Set tx hash to " <> s envHash i as = argsError i as setGasLimit :: RNativeFun LibState setGasLimit _ [TLitInteger l] = do setenv (eeGasEnv . geGasLimit) (fromIntegral l) return $ tStr $ "Set gas limit to " <> tShow l setGasLimit i as = argsError i as envGas :: RNativeFun LibState envGas _ [] = use evalGas >>= \g -> return (tLit $ LInteger $ fromIntegral g) envGas _ [TLitInteger g] = do evalGas .= fromIntegral g return $ tStr $ "Set gas to " <> tShow g envGas i as = argsError i as setGasPrice :: RNativeFun LibState setGasPrice _ [TLiteral (LDecimal d) _] = do setenv (eeGasEnv . geGasPrice) (GasPrice d) return $ tStr $ "Set gas price to " <> tShow d setGasPrice i as = argsError i as setGasRate :: RNativeFun LibState setGasRate _ [TLitInteger r] = do setenv (eeGasEnv . geGasModel) (constGasModel $ fromIntegral r) return $ tStr $ "Set gas rate to " <> tShow r setGasRate i as = argsError i as
(* 1st-order unification did not work when in competition with pattern unif. *) Set Implicit Arguments. Lemma test : forall (A : Type) (B : Type) (f : A -> B) (S : B -> Prop) (EV : forall y (f':A->B), (forall x', S (f' x')) -> S (f y)) (HS : forall x', S (f x')) (x : A), S (f x). Proof. intros. eapply EV. intros. (* worked in v8.2 but not in v8.3beta, fixed in r12898 *) apply HS. (* still not compatible with 8.2 because an evar can be solved in two different ways and is left open *)
program fixture use, intrinsic :: iso_fortran_env, only: wp => real64 use json_module type(json_core) :: json type(json_value), pointer :: root, case, array, data double precision x(6), y(6), yc(6), a(6, 6) data((a(i, j), i=1, 6), j=1, 6)/1.053750863028617, 0, 0, 0, 0, 0,& &0.197684262345795, -1.068692711254786, 0, 0, 0, 0,& &0.2626454586627623, -1.2329011995712644, -0.00372353379218051,& &0, 0, 0,& &-0.9740025611125269,& &0.6893726977654734,& &-0.955839103276798,& &-1.2317070584140966,& &0,& &0,& &-0.9106806824932887,& &0.7412763052602079,& &0.06851153327714439,& &-0.3237507545879617,& &-1.0865030469936974,& &0,& &-0.767790184730859,& &-1.1197200611269833,& &-0.4481742366033955,& &0.47173637445323024,& &-1.180490682884277,& &1.4702569970829857/ data(yc(i), i=1, 6)/& &0.7021167106675735,& &2.5071111484833684,& &-1.890027143624024,& &-0.5898127901911715,& &-1.7145022968458246,& &-0.4209978978166964/ data(x(i), i=1, 6)/& &-0.08252376201716412,& &0.6060734308621007,& &-0.8874201453170976,& &0.10542139019376515,& &0.3528744733184766,& &0.5503933584550523/ call json%initialize() call json%create_array(root, '') y = yc call addcase(root, '0', 'u', 6, 1._8, a, 6, x, 1, 1._8, y, 1) y = yc call addcase(root, '1', 'u', 6, 0._8, a, 6, x, 1, 0.35_8, y, 1) y = yc call addcase(root, '2', 'u', 6, 0.5_8, a, 6, x, -1, 0._8, y, -1) y = yc call addcase(root, '3', 'l', 6, 0.5_8, a, 6, x, -1, 0._8, y, -1) y = yc call addcase(root, '4', 'l', 6, 0._8, a, 6, x, -1, 1._8, y, -1) call print(root) contains subroutine addcase(root, ncase, uplo, n, alpha, a, lda, x, incx, beta, y, incy) type(json_core) :: json type(json_value), pointer :: root, case, array external dsymv character(len=*) ncase, uplo integer n, lda, incx, incy double precision alpha, beta, y(6), x(6), a(6, 6) call json%create_object(case, '') call json%add(root, case) call json%add(case, 'uplo', uplo) call json%add(case, 'n', n) call json%add(case, 'alpha', alpha) call json%create_array(array, 'a') do j = 1, 6 do i = 1, 6 call json%add(array, '', a(i, j)) enddo enddo call json%add(case, array) nullify (array) call json%add(case, 'lda', lda) call json%add(case, 'x', x) call json%add(case, 'incx', incx) call json%add(case, 'beta', beta) call json%add(case, 'y', y) call json%add(case, 'incy', incy) call dsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy) call json%add(case, 'expect', y) nullify (case) end subroutine addcase subroutine print(root) use, intrinsic :: iso_fortran_env, only: real64 use json_module, CK => json_CK, CK => json_CK implicit none type(json_core) :: json type(json_value), pointer :: root logical :: status_ok character(kind=CK, len=:), allocatable :: error_msg call json%print(root, './tests/fixtures/level2/symv.json') call json%destroy(root) if (json%failed()) then call json%check_for_errors(status_ok, error_msg) write (*, *) 'Error: '//error_msg call json%clear_exceptions() call json%destroy(root) end if end subroutine print end
!========================================================================== elemental function gsw_alpha_on_beta (sa, ct, p) !========================================================================== ! ! Calculates alpha divided by beta, where alpha is the thermal expansion ! coefficient and beta is the saline contraction coefficient of seawater ! from Absolute Salinity and Conservative Temperature. This function uses ! the computationally-efficient expression for specific volume in terms of ! SA, CT and p (Roquet et al., 2014). ! ! SA = Absolute Salinity [ g/kg ] ! CT = Conservative Temperature (ITS-90) [ deg C ] ! p = sea pressure [ dbar ] ! ( i.e. absolute pressure - 10.1325 dbar ) ! ! alpha_on_beta = thermal expansion coefficient with respect to ! Conservative Temperature divided by the saline ! contraction coefficient at constant Conservative ! Temperature [ kg g^-1 K^-1 ] !-------------------------------------------------------------------------- use gsw_mod_teos10_constants, only : gsw_sfac, offset use gsw_mod_specvol_coefficients use gsw_mod_kinds implicit none real (r8), intent(in) :: sa, ct, p real (r8) :: gsw_alpha_on_beta real (r8) :: xs, ys, z, v_ct_part, v_sa_part xs = sqrt(gsw_sfac*sa + offset) ys = ct*0.025_r8 z = p*1e-4_r8 v_ct_part = a000 + xs*(a100 + xs*(a200 + xs*(a300 + xs*(a400 + a500*xs)))) & + ys*(a010 + xs*(a110 + xs*(a210 + xs*(a310 + a410*xs))) & + ys*(a020 + xs*(a120 + xs*(a220 + a320*xs)) + ys*(a030 & + xs*(a130 + a230*xs) + ys*(a040 + a140*xs + a050*ys )))) & + z*(a001 + xs*(a101 + xs*(a201 + xs*(a301 + a401*xs))) & + ys*(a011 + xs*(a111 + xs*(a211 + a311*xs)) + ys*(a021 & + xs*(a121 + a221*xs) + ys*(a031 + a131*xs + a041*ys))) & + z*(a002 + xs*(a102 + xs*(a202 + a302*xs)) + ys*(a012 & + xs*(a112 + a212*xs) + ys*(a022 + a122*xs + a032*ys)) & + z*(a003 + a103*xs + a013*ys + a004*z))) v_sa_part = b000 + xs*(b100 + xs*(b200 + xs*(b300 + xs*(b400 + b500*xs)))) & + ys*(b010 + xs*(b110 + xs*(b210 + xs*(b310 + b410*xs))) & + ys*(b020 + xs*(b120 + xs*(b220 + b320*xs)) + ys*(b030 & + xs*(b130 + b230*xs) + ys*(b040 + b140*xs + b050*ys)))) & + z*(b001 + xs*(b101 + xs*(b201 + xs*(b301 + b401*xs))) & + ys*(b011 + xs*(b111 + xs*(b211 + b311*xs)) + ys*(b021 & + xs*(b121 + b221*xs) + ys*(b031 + b131*xs + b041*ys))) & + z*(b002 + xs*(b102 + xs*(b202 + b302*xs))+ ys*(b012 & + xs*(b112 + b212*xs) + ys*(b022 + b122*xs + b032*ys)) & + z*(b003 + b103*xs + b013*ys + b004*z))) gsw_alpha_on_beta = -(v_ct_part*xs)/(20.0_r8*gsw_sfac*v_sa_part) return end function !--------------------------------------------------------------------------
Following the Sarajevo concert , The Edge 's solo performance of " Sunday Bloody Sunday " was performed at the majority of shows for the remainder of the tour , and a recording of the song from the Sarajevo concert was released on the CD single for " If God Will Send His Angels " on 8 December 1997 ; The Edge later stated the band had " rediscovered " the song in Sarajevo after his solo performance . A short documentary about the concert , Missing Sarajevo , was included on the DVD release of U2 's 2002 video compilation , The Best of 1990 @-@ 2000 .
lemma poly_div_minus_right [simp]: "x div (- y) = - (x div y)" for x y :: "'a::field poly"
lemma countable_dense_exists: "\<exists>D::'a set. countable D \<and> (\<forall>X. p X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>d \<in> D. d \<in> X))"
``` from __future__ import division import sympy from sympy import * from sympy import init_printing init_printing(use_latex='mathjax') from sympy.utilities.autowrap import ufuncify, autowrap from copy import deepcopy import numpy as np from IPython.display import display ``` # Dielectric constant functions Let's generate some values for $\theta_\text{1}$ and $\theta_\text{2}$ that we can check by hand. ``` from sympy.abc import D, k, kappa, omega, lamda, eta, alpha, theta E_s1 = symbols('E_s1') E_s, E_d, E_eff, h_s, h_d= symbols('E_s E_d E_eff h_s h_d') k, kappa, omega, D, h = symbols('k kappa omega D h') ``` Intermediates used to calculate $\theta_\text{I}, \theta_\text{II}$: ``` intermediates = {alpha : E_eff / E_d, eta: sqrt(k**2 + kappa**2 / E_s + omega*1j / D), lamda: (1 - E_eff / E_s)*(k / eta)} for key, val in intermediates.viewitems(): display(Eq(key, val)) ``` $$\lambda = \frac{k}{\eta} \left(- \frac{E_{eff}}{E_{s}} + 1\right)$$ $$\alpha = \frac{E_{eff}}{E_{d}}$$ $$\eta = \sqrt{k^{2} + \frac{\kappa^{2}}{E_{s}} + \frac{1.0 i}{D} \omega}$$ ``` theta_I_bracket_term = (-lamda / tanh(eta * h_s) + (sinh(k * h_s) * sinh(eta * h_s) + alpha * cosh(k*h_s) * sinh(eta * h_s) - lamda * (cosh(k*h_s) * cosh(eta*h_s) - 2 + lamda * sinh(k*h_s)/sinh(eta *h_s)))/ (cosh(k*h_s)*sinh(eta*h_s) + alpha * sinh(k*h_s) * sinh(eta*h_s) - lamda * sinh(k * h_s) * cosh(eta * h_s)) ) ``` ``` theta_I = E_s / E_eff * theta_I_bracket_term ``` ``` theta_I ``` $$\frac{E_{s}}{E_{eff}} \left(- \frac{\lambda}{\tanh{\left (\eta h_{s} \right )}} + \frac{\alpha \sinh{\left (\eta h_{s} \right )} \cosh{\left (h_{s} k \right )} - \lambda \left(\frac{\lambda \sinh{\left (h_{s} k \right )}}{\sinh{\left (\eta h_{s} \right )}} + \cosh{\left (\eta h_{s} \right )} \cosh{\left (h_{s} k \right )} - 2\right) + \sinh{\left (\eta h_{s} \right )} \sinh{\left (h_{s} k \right )}}{\alpha \sinh{\left (\eta h_{s} \right )} \sinh{\left (h_{s} k \right )} - \lambda \sinh{\left (h_{s} k \right )} \cosh{\left (\eta h_{s} \right )} + \sinh{\left (\eta h_{s} \right )} \cosh{\left (h_{s} k \right )}}\right)$$ ``` theta_I_python = lambdify((k, E_s, E_eff, eta, h_s, alpha, lamda), theta_I) theta_I_c = autowrap(theta_I, language='C', backend='Cython', args=(k, E_s, E_eff, eta, h_s, alpha, lamda)) theta_I_f = autowrap(theta_I, language='F95', backend='f2py', args=(k, E_s, E_eff, eta, h_s, alpha, lamda)) ``` ``` theta_II = E_s / E_d * (E_eff + (1-lamda)*E_d/tanh(k*h_d))/(E_eff / tanh(k*h_d) + (1 - lamda) * E_d) theta_II ``` $$\frac{E_{s} \left(\frac{E_{d} \left(- \lambda + 1\right)}{\tanh{\left (h_{d} k \right )}} + E_{eff}\right)}{E_{d} \left(E_{d} \left(- \lambda + 1\right) + \frac{E_{eff}}{\tanh{\left (h_{d} k \right )}}\right)}$$ ``` {k:0.01, E_s:3.5-0.05j, E_d: 3.5-0.05j, E_eff: 3.5 - 0.5j, } ``` {k: 0.01, E_d: (3.5-0.05j), E_eff: (3.5-0.5j), E_s: (3.5-0.05j)} ``` %timeit theta_I_python(1, 3, 2, 0.2, 4, 1.02, 1.8) ``` 100000 loops, best of 3: 3.06 µs per loop ``` %timeit theta_I_c(1, 3, 2, 0.2, 4, 1.02, 1.8) ``` 1000000 loops, best of 3: 285 ns per loop ``` %timeit theta_I_f(1, 3, 2, 0.2, 4, 1.02, 1.8) ``` 1000000 loops, best of 3: 456 ns per loop ``` ((E_s - theta) / (E_s + theta)) ``` $$\frac{E_{s} - \theta}{E_{s} + \theta}$$ ``` from sympy.functions.elementary.complexes import im ``` ``` complex_result = (E_s - theta) / (E_s + theta) ``` ``` dielectric_I = complex_result.subs({theta:theta_I}).subs(intermediates).subs(intermediates) ``` ``` dielectric_args = (k, omega, kappa, E_s, E_d, E_eff, h_s, D) dielectric_I_python = lambdify(dielectric_args, dielectric_I, dummify=False, modules="numpy") ``` ``` %timeit dielectric_I_python(k=1.1, omega=432, kappa=0.3, E_s=3-0.1j, E_d=4-1j, E_eff=4-5j, h_s=0.07, D=0.0077) ``` 10000 loops, best of 3: 121 µs per loop ``` dielectric_I_python(k=1.1, omega=432, kappa=0.3, E_s=3-0.1j, E_d=4-1j, E_eff=4-5j, h_s=0.07, D=0.0077) ``` (0.6365044412573243-0.10023319309176819j) ``` lambdify(expr=tanh(h_s * intermediates[eta]), args=[k, kappa, omega, D, h_s, E_s], modules='numpy')(0.01, 0.3, 432, 0.0077, 0.07, 3-1j) ``` (1.0000000000148801-1.302525298862032e-10j) ``` lambdify(expr=(h_s * intermediates[eta]), args=[k, kappa, omega, D, h_s, E_s], modules='numpy')(0.01, 0.3, 432, 1e-6, 0.07, 3-1j) ``` (1028.78569201192+1028.7856919473827j) ``` np.tanh(100000) ``` $$1.0$$ ``` sympy.printing.lambdarepr.lambdarepr(dielectric_I) ``` '(E_s - E_s*(-k*(-E_eff/E_s + 1)/(sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D)*tanh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))) + (-k*(-E_eff/E_s + 1)*(k*(-E_eff/E_s + 1)*sinh(h_s*k)/(sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D)*sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))) + cosh(h_s*k)*cosh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D)) - 2)/sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D) + sinh(h_s*k)*sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D)) + E_eff*sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))*cosh(h_s*k)/E_d)/(-k*(-E_eff/E_s + 1)*sinh(h_s*k)*cosh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))/sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D) + sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))*cosh(h_s*k) + E_eff*sinh(h_s*k)*sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))/E_d))/E_eff)/(E_s + E_s*(-k*(-E_eff/E_s + 1)/(sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D)*tanh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))) + (-k*(-E_eff/E_s + 1)*(k*(-E_eff/E_s + 1)*sinh(h_s*k)/(sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D)*sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))) + cosh(h_s*k)*cosh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D)) - 2)/sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D) + sinh(h_s*k)*sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D)) + E_eff*sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))*cosh(h_s*k)/E_d)/(-k*(-E_eff/E_s + 1)*sinh(h_s*k)*cosh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))/sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D) + sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))*cosh(h_s*k) + E_eff*sinh(h_s*k)*sinh(h_s*sqrt(k**2 + kappa**2/E_s + 1.0*I*omega/D))/E_d))/E_eff)' ## Small functions ``` _eta = intermediates[eta] ``` ``` all_k = [1, 10, 100, 1000, 10000, 100000] all_eta = [_eta.evalf(subs={k:_k, kappa:3500, E_s:3 - 0.001j, D: 0.005, omega:300}) for _k in all_k] ``` ``` print(str(all_eta).replace('*I', 'j').replace(",", ",\n")) ``` [2020.78311260126 + 15.182507854811j, 2020.80760652432 + 15.182323829782j, 2023.25550170076 + 15.163955048756j, 2254.66583909462 + 13.607584302718j, 10202.1243828582 + 3.007271263178j, 100020.414581093 + 0.30674293451j] ``` _lamda = intermediates[lamda] all_lamda = [_lamda.evalf(subs= {k:_k, E_s:3-0.001j, D:0.005, E_eff:3 - 100j, eta: _eta_}) for _k, _eta_ in zip(all_k, all_eta)] ``` ``` print(str(all_lamda).replace('*I', 'j').replace(",", ",\n")) ``` [0.0001184255261724 + 0.0164941987549306j, 0.00118421087011718 + 0.164939988752172j, 0.0117978533636026 + 1.64740475175451j, 0.0842948437214929 + 14.7834985873234j, -0.00125999301746353 + 32.672603689536j, -0.0110065260871034 + 33.3261929274151j] ``` all_theta_I = [theta_I.evalf(subs={k:_k, E_s:3-0.001j, D:0.005, E_eff:3 - 100j, eta: _eta_, lamda:_lamda_, h_s:0.1, alpha: 0.65-0.0002j}) for _k, _eta, _lamda_ in zip(all_k, all_eta, all_lamda)] ``` ``` print(str(all_theta_I).replace('*I', 'j').replace(",", ",\n")) ``` [0.00157126996626562 + 0.0210682675809495j, 0.00672782406000677 + 0.0281575198774334j, 0.050275664263775 + 0.0281213204722464j, 0.443934273416263 + 0.0140052914999941j, 0.980197277948465 + 0.000305155415174606j, 0.999795989512753 + 3.05416795636227e-6j] ``` sympy.printing.lambdarepr.lambdarepr(theta_I) ``` 'E_s*(-lamda/tanh(eta*h_s) + (alpha*sinh(eta*h_s)*cosh(h_s*k) - lamda*(lamda*sinh(h_s*k)/sinh(eta*h_s) + cosh(eta*h_s)*cosh(h_s*k) - 2) + sinh(eta*h_s)*sinh(h_s*k))/(alpha*sinh(eta*h_s)*sinh(h_s*k) - lamda*sinh(h_s*k)*cosh(eta*h_s) + sinh(eta*h_s)*cosh(h_s*k)))/E_eff' ``` theta_I_python = lambdify((k, E_s, D, E_eff, eta, lamda, h_s, alpha), theta_I, dummify=False, modules='numpy') ``` ``` def copy_update_dict(dictionary, **kwargs): copied_dictionary = deepcopy(dictionary) copied_dictionary.update(kwargs) return copied_dictionary ``` ``` theta_subs = {k: 1, E_s:3-0.001j, D:0.005, E_eff:3 - 100j, eta: 2020.78311260126 + 15.182507854811j, lamda:0.0001184255261724 + 0.0164941987549306j, h_s:0.1, alpha: 0.65-0.0002j} theta_I_kwargs = {str(key): np.complex128(val) for key, val in theta_subs.items()} theta_I_all_kwargs = [copy_update_dict(theta_I_kwargs, k=np.float(_k), eta=np.complex128(_eta_), lamda=np.complex128(_lamda_)) for _k, _eta_, _lamda_ in zip(all_k, all_eta, all_lamda)] all_theta_I_lambda = [theta_I_python(**kwargs) for kwargs in theta_I_all_kwargs] ``` /Users/ryandwyer/anaconda/envs/jittermodel/lib/python2.7/site-packages/numpy/__init__.py:1: RuntimeWarning: overflow encountered in tanh """ /Users/ryandwyer/anaconda/envs/jittermodel/lib/python2.7/site-packages/numpy/__init__.py:1: RuntimeWarning: invalid value encountered in tanh """ /Users/ryandwyer/anaconda/envs/jittermodel/lib/python2.7/site-packages/numpy/__init__.py:1: RuntimeWarning: overflow encountered in sinh """ /Users/ryandwyer/anaconda/envs/jittermodel/lib/python2.7/site-packages/numpy/__init__.py:1: RuntimeWarning: overflow encountered in cosh """ /Users/ryandwyer/anaconda/envs/jittermodel/lib/python2.7/site-packages/numpy/__init__.py:1: RuntimeWarning: invalid value encountered in cosh """ /Users/ryandwyer/anaconda/envs/jittermodel/lib/python2.7/site-packages/numpy/__init__.py:1: RuntimeWarning: invalid value encountered in sinh """ ``` all_theta_I_lambda ``` [(0.0015712699662656167+0.021068267580949523j), (0.0067278240600067672+0.028157519877433347j), (0.050275664263774951+0.028121320472246414j), (0.44393427341626346+0.01400529149999408j), (nan+nan*j), (nan+nan*j)] So for some reason the sympy version of this is implemented better. ``` theta_subs = {k: 1, E_s:3-0.001j, D:0.005, E_eff:3 - 100j, E_d: 3 - 0.001j, eta: 2020.78311260126 + 15.182507854811j, lamda:0.0001184255261724 + 0.0164941987549306j, h_s:0.1, alpha: 0.65-0.0002j} all_theta_II = [theta_II.evalf(subs={k: _k, E_s:3-0.001j, E_eff:3 - 100j, E_d: 3 - 0.001j, lamda:_lamda_, h_d:0.1}) for _k, _lamda_ in zip(all_k, all_lamda)] ``` ``` print(str(all_theta_II).replace('*I', 'j').replace(",", ",\n")) ``` [0.101145810077246 + 0.0296480635666554j, 0.764320753451023 + 0.0123928030520502j, 0.999999996277978 + 2.1003332939236e-10j, 1.0 + 8.470329472543e-22j, 1.00000000000000, 1.00000000000000] ## Avoiding numerical errors in calculating $\theta_I$ To avoid numerical errors in calculating $\theta_I$ (associated with numpy's problems with large values of hyperbolic trigonometry functions for large values of $\theta$ (see Eric Moore's github issue). We have $\theta_I$ is $$\frac{\epsilon_{\text{s}}}{\epsilon_{\text{eff}}} \left(- \frac{\lambda}{\tanh{\left (\eta h_{\text{s}} \right )}} + \frac{\alpha \sinh{\left (\eta h_{\text{s}} \right )} \cosh{\left (h_{\text{s}} k \right )} - \lambda \left(\frac{\lambda \sinh{\left (h_{\text{s}} k \right )}}{\sinh{\left (\eta h_{\text{s}} \right )}} + \cosh{\left (\eta h_{\text{s}} \right )} \cosh{\left (h_{\text{s}} k \right )} - 2\right) + \sinh{\left (\eta h_{\text{s}} \right )} \sinh{\left (h_{\text{s}} k \right )}}{\alpha \sinh{\left (\eta h_{\text{s}} \right )} \sinh{\left (h_{\text{s}} k \right )} - \lambda \sinh{\left (h_{\text{s}} k \right )} \cosh{\left (\eta h_{\text{s}} \right )} + \sinh{\left (\eta h_{\text{s}} \right )} \cosh{\left (h_{\text{s}} k \right )}}\right)$$ ``` theta_I_numexpr = lambdify((k, E_s, D, E_eff, eta, lamda, h_s, alpha), theta_I, dummify=False, modules='numexpr') theta_subs = {k: 1, E_s:3-0.001j, D:0.005, E_eff:3 - 100j, eta: 2020.78311260126 + 15.182507854811j, lamda:0.0001184255261724 + 0.0164941987549306j, h_s:0.1, alpha: 0.65-0.0002j} theta_I_kwargs = {str(key): np.complex128(val) for key, val in theta_subs.items()} theta_I_all_kwargs = [copy_update_dict(theta_I_kwargs, k=np.float(_k), eta=np.complex128(_eta_), lamda=np.complex128(_lamda_)) for _k, _eta_, _lamda_ in zip(all_k, all_eta, all_lamda)] all_theta_I_numexpr = [theta_I_numexpr(**kwargs) for kwargs in theta_I_all_kwargs] ``` In the limit, $$e^{k h_{\text{s}}} \gg 1$$ we can approximate, $$\coth \eta h_\text{s} = \tanh \eta h_\text{s} = 1$$, $$\sinh k h_\text{s} = \cosh k h_\text{s} = \exp(k h_\text{s})/2$$, $$\sinh \eta h_\text{s} = \cosh \eta h_\text{s} = \exp(\eta h_\text{s})/2$$ ``` large_k = {sinh(k*h_s): exp(k*h_s)/2, cosh(k*h_s): exp(k*h_s)/2, sinh(eta*h_s): exp(eta*h_s)/2, cosh(eta*h_s): exp(eta*h_s)/2, coth(eta*h_s): 1, tanh(eta*h_s): 1} theta_I.subs(large_k) ``` $$\frac{E_{s}}{E_{eff}} \left(- \lambda + \frac{\frac{\alpha}{4} e^{\eta h_{s}} e^{h_{s} k} - \lambda \left(\lambda e^{- \eta h_{s}} e^{h_{s} k} + \frac{e^{\eta h_{s}}}{4} e^{h_{s} k} - 2\right) + \frac{e^{\eta h_{s}}}{4} e^{h_{s} k}}{\frac{\alpha}{4} e^{\eta h_{s}} e^{h_{s} k} - \frac{\lambda}{4} e^{\eta h_{s}} e^{h_{s} k} + \frac{e^{\eta h_{s}}}{4} e^{h_{s} k}}\right)$$ ``` theta_full = theta_I.subs(intermediates).subs(intermediates) def theta_k(_k): return {k: _k, E_s:3-0.001j, D:0.005, E_d:4.65, E_eff:3 - 100j, h_s:0.1, kappa:3500, E_s:3 - 0.001j, D: 0.005, omega:300} simplified_pre_sub = (E_s/E_eff*(-lamda + (1+alpha-lamda*(1 - 8*exp(-h_s*(k+eta)) + 4*lamda*exp(-2*eta*h_s)))/(1 + alpha - lamda))) simplified = simplified_pre_sub.subs(intermediates).subs(intermediates) ``` ``` print(theta_full.subs(theta_k(60)).evalf()) print(simplified.subs(theta_k(60)).evalf()) print(theta_I.subs(large_k).subs(intermediates).subs(intermediates).subs(theta_k(60)).evalf()) ``` 0.0305522794210152 + 0.0288610299476901*I 0.0305522357456196 + 0.0288606649881057*I 0.0305522357456196 + 0.0288606649881057*I ``` eta.subs(intermediates).subs(intermediates).subs(theta_k(80)).evalf() ``` $$2022.36570074502 + 15.170626889408 i$$ ``` def theta_k2(_k, _D, _kappa): return {k: _k, E_s:3-0.001j, D:_D, E_d:4.65, E_eff:3 - 100j, h_s:0.1, kappa:_kappa, E_s:3 - 0.001j, D: 0.005, omega:300} ``` ``` print(theta_full.subs(theta_k2(60, 0.005/1e6, 3500*1e6)).evalf()) print(simplified.subs(theta_k2(60, 0.005/1e6, 3500*1e6)).evalf()) ``` 0.000909256549701857 + 0.0299730883346336*I 0.000909211401593154 + 0.0299727236530035*I
module Core.SchemeEval.Compile {- TODO: - Make a decent set of test cases - Option to keep vs discard FCs for faster quoting where we don't need FC Advanced TODO (possibly not worth it...): - Write a conversion check - Extend unification to use SObj; include SObj in Glued -} import Core.Case.CaseTree import Core.Context import Core.Core import Core.Directory import Core.SchemeEval.Builtins import Core.SchemeEval.ToScheme import Core.TT import Data.List import Libraries.Utils.Scheme import System.Info schString : String -> String schString s = concatMap okchar (unpack s) where okchar : Char -> String okchar c = if isAlphaNum c || c =='_' then cast c else "C-" ++ show (cast {to=Int} c) schVarUN : UserName -> String schVarUN (Basic n) = schString n schVarUN (Field n) = "rf--" ++ schString n schVarUN Underscore = "_US_" schVarName : Name -> String schVarName (NS ns (UN n)) = schString (showNSWithSep "-" ns) ++ "-" ++ schVarUN n schVarName (NS ns n) = schString (showNSWithSep "-" ns) ++ "-" ++ schVarName n schVarName (UN n) = "u--" ++ schVarUN n schVarName (MN n i) = schString n ++ "-" ++ show i schVarName (PV n d) = "pat--" ++ schVarName n schVarName (DN _ n) = schVarName n schVarName (Nested (i, x) n) = "n--" ++ show i ++ "-" ++ show x ++ "-" ++ schVarName n schVarName (CaseBlock x y) = "case--" ++ schString x ++ "-" ++ show y schVarName (WithBlock x y) = "with--" ++ schString x ++ "-" ++ show y schVarName (Resolved i) = "fn--" ++ show i schName : Name -> String schName n = "ct-" ++ schVarName n export data Sym : Type where export nextName : Ref Sym Integer => Core Integer nextName = do n <- get Sym put Sym (n + 1) pure n public export data SVar = Bound String | Free String Show SVar where show (Bound x) = x show (Free x) = "'" ++ x export getName : SVar -> String getName (Bound x) = x getName (Free x) = x public export data SchVars : List Name -> Type where Nil : SchVars [] (::) : SVar -> SchVars ns -> SchVars (n :: ns) Show (SchVars ns) where show xs = show (toList xs) where toList : forall ns . SchVars ns -> List String toList [] = [] toList (Bound x :: xs) = x :: toList xs toList (Free x :: xs) = "'x" :: toList xs getSchVar : {idx : _} -> (0 _ : IsVar n idx vars) -> SchVars vars -> String getSchVar First (Bound x :: xs) = x getSchVar First (Free x :: xs) = "'" ++ x getSchVar (Later p) (x :: xs) = getSchVar p xs {- Encoding of NF -> Scheme Maybe consider putting this back into a logical order, rather than the order I implemented them in... vector (tag>=0) name args == data constructor vector (-10) (name, arity) (args as list) == blocked meta application (needs to be same arity as block app, for ct-addArg) vector (-11) symbol (args as list) == blocked local application vector (-1) ... == type constructor vector (-2) name (args as list) == blocked application vector (-3) ... == Pi binder vector (-4) ... == delay arg vector (-5) ... == force arg vector (-6) = Erased vector (-7) = Type vector (-8) ... = Lambda vector (-9) blockedapp proc = Top level lambda (from a PMDef, so not expanded) vector (-12) ... = PVar binding vector (-13) ... = PVTy binding vector (-14) ... = PLet binding vector (-15) ... = Delayed vector (-100 onwards) ... = constants -} blockedAppWith : Name -> List (SchemeObj Write) -> SchemeObj Write blockedAppWith n args = Vector (-2) [toScheme n, vars args] where vars : List (SchemeObj Write) -> SchemeObj Write vars [] = Null vars (x :: xs) = Cons x (vars xs) blockedMetaApp : Name -> SchemeObj Write blockedMetaApp n = Lambda ["arity-0"] (Vector (-10) [Cons (toScheme n) (Var "arity-0"), Null]) unload : SchemeObj Write -> List (SchemeObj Write) -> SchemeObj Write unload f [] = f unload f (a :: as) = unload (Apply (Var "ct-app") [f, a]) as compileConstant : FC -> Constant -> SchemeObj Write compileConstant fc (I x) = Vector (-100) [IntegerVal (cast x)] compileConstant fc (I8 x) = Vector (-101) [IntegerVal (cast x)] compileConstant fc (I16 x) = Vector (-102) [IntegerVal (cast x)] compileConstant fc (I32 x) = Vector (-103) [IntegerVal (cast x)] compileConstant fc (I64 x) = Vector (-104) [IntegerVal (cast x)] compileConstant fc (BI x) = Vector (-105) [IntegerVal x] compileConstant fc (B8 x) = Vector (-106) [IntegerVal (cast x)] compileConstant fc (B16 x) = Vector (-107) [IntegerVal (cast x)] compileConstant fc (B32 x) = Vector (-108) [IntegerVal (cast x)] compileConstant fc (B64 x) = Vector (-109) [IntegerVal (cast x)] compileConstant fc (Str x) = StringVal x compileConstant fc (Ch x) = CharVal x compileConstant fc (Db x) = FloatVal x -- Constant types get compiled as TyCon names, for matching purposes compileConstant fc t = Vector (-1) [IntegerVal (cast (constTag t)), StringVal (show t), toScheme (UN (Basic (show t))), toScheme fc] compileStk : Ref Sym Integer => {auto c : Ref Ctxt Defs} -> SchVars vars -> List (SchemeObj Write) -> Term vars -> Core (SchemeObj Write) compilePiInfo : Ref Sym Integer => {auto c : Ref Ctxt Defs} -> SchVars vars -> PiInfo (Term vars) -> Core (PiInfo (SchemeObj Write)) compilePiInfo svs Implicit = pure Implicit compilePiInfo svs Explicit = pure Explicit compilePiInfo svs AutoImplicit = pure AutoImplicit compilePiInfo svs (DefImplicit t) = do t' <- compileStk svs [] t pure (DefImplicit t') compileStk svs stk (Local fc isLet idx p) = pure $ unload (Var (getSchVar p svs)) stk -- We are assuming that the bound name is a valid scheme symbol. We should -- only see this when inventing temporary names during quoting compileStk svs stk (Ref fc Bound name) = pure $ unload (Symbol (show name)) stk compileStk svs stk (Ref fc (DataCon t a) name) = if length stk == a -- inline it if it's fully applied then pure $ Vector (cast t) (toScheme !(toResolvedNames name) :: toScheme fc :: stk) else pure $ unload (Apply (Var (schName name)) []) stk compileStk svs stk (Ref fc (TyCon t a) name) = if length stk == a -- inline it if it's fully applied then pure $ Vector (-1) (IntegerVal (cast t) :: StringVal (show name) :: toScheme !(toResolvedNames name) :: toScheme fc :: stk) else pure $ unload (Apply (Var (schName name)) []) stk compileStk svs stk (Ref fc x name) = pure $ unload (Apply (Var (schName name)) []) stk compileStk svs stk (Meta fc name i xs) = do xs' <- traverse (compileStk svs stk) xs -- we encode the arity as first argument to the hole definition, which -- helps in readback, so we have to apply the hole function to the -- length of xs to be able to restore the Meta properly pure $ unload (Apply (Var (schName name)) []) (IntegerVal (cast (length xs)) :: stk ++ xs') compileStk svs stk (Bind fc x (Let _ _ val _) scope) = do i <- nextName let x' = schVarName x ++ "-" ++ show i val' <- compileStk svs [] val sc' <- compileStk (Bound x' :: svs) [] scope pure $ unload (Let x' val' sc') stk compileStk svs stk (Bind fc x (Pi _ rig p ty) scope) = do i <- nextName let x' = schVarName x ++ "-" ++ show i ty' <- compileStk svs [] ty sc' <- compileStk (Bound x' :: svs) [] scope p' <- compilePiInfo svs p pure $ Vector (-3) [Lambda [x'] sc', toScheme rig, toSchemePi p', ty', toScheme x] compileStk svs stk (Bind fc x (PVar _ rig p ty) scope) = do i <- nextName let x' = schVarName x ++ "-" ++ show i ty' <- compileStk svs [] ty sc' <- compileStk (Bound x' :: svs) [] scope p' <- compilePiInfo svs p pure $ Vector (-12) [Lambda [x'] sc', toScheme rig, toSchemePi p', ty', toScheme x] compileStk svs stk (Bind fc x (PVTy _ rig ty) scope) = do i <- nextName let x' = schVarName x ++ "-" ++ show i ty' <- compileStk svs [] ty sc' <- compileStk (Bound x' :: svs) [] scope pure $ Vector (-13) [Lambda [x'] sc', toScheme rig, ty', toScheme x] compileStk svs stk (Bind fc x (PLet _ rig val ty) scope) -- we only see this on LHS = do i <- nextName let x' = schVarName x ++ "-" ++ show i val' <- compileStk svs [] val ty' <- compileStk svs [] ty sc' <- compileStk (Bound x' :: svs) [] scope pure $ Vector (-14) [Lambda [x'] sc', toScheme rig, val', ty', toScheme x] compileStk svs [] (Bind fc x (Lam _ rig p ty) scope) = do i <- nextName let x' = schVarName x ++ "-" ++ show i ty' <- compileStk svs [] ty sc' <- compileStk (Bound x' :: svs) [] scope p' <- compilePiInfo svs p pure $ Vector (-8) [Lambda [x'] sc', toScheme rig, toSchemePi p', ty', toScheme x] compileStk svs (s :: stk) (Bind fc x (Lam _ _ _ _) scope) = do i <- nextName let x' = schVarName x ++ "-" ++ show i sc' <- compileStk (Bound x' :: svs) stk scope pure $ Apply (Lambda [x'] sc') [s] compileStk svs stk (App fc fn arg) = compileStk svs (!(compileStk svs [] arg) :: stk) fn -- We're only using this evaluator for REPL and typechecking, not for -- tidying up definitions or LHSs, so we'll always remove As patterns compileStk svs stk (As fc x as pat) = compileStk svs stk pat compileStk svs stk (TDelayed fc r ty) = do ty' <- compileStk svs stk ty pure $ Vector (-15) [toScheme r, ty'] compileStk svs stk (TDelay fc r ty arg) = do ty' <- compileStk svs [] ty arg' <- compileStk svs [] arg pure $ Vector (-4) [toScheme r, toScheme fc, Lambda [] ty', Lambda [] arg'] compileStk svs stk (TForce fc x tm) = do tm' <- compileStk svs [] tm pure $ Apply (Var "ct-doForce") [tm', Vector (-5) [toScheme x, toScheme fc, Lambda [] tm']] compileStk svs stk (PrimVal fc c) = pure $ compileConstant fc c compileStk svs stk (Erased fc imp) = pure $ Vector (-6) [toScheme fc, toScheme imp] compileStk svs stk (TType fc u) = pure $ Vector (-7) [toScheme fc, toScheme u] export compile : Ref Sym Integer => {auto c : Ref Ctxt Defs} -> SchVars vars -> Term vars -> Core (SchemeObj Write) compile vars tm = compileStk vars [] tm getArgName : Ref Sym Integer => Core Name getArgName = do i <- nextName pure (MN "carg" (cast i)) extend : Ref Sym Integer => (args : List Name) -> SchVars vars -> Core (List Name, SchVars (args ++ vars)) extend [] svs = pure ([], svs) extend (arg :: args) svs = do n <- getArgName (args', svs') <- extend args svs pure (n :: args', Bound (schVarName n) :: svs') compileCase : Ref Sym Integer => {auto c : Ref Ctxt Defs} -> (blocked : SchemeObj Write) -> SchVars vars -> CaseTree vars -> Core (SchemeObj Write) compileCase blk svs (Case idx p scTy xs) = case !(caseType xs) of CON => toSchemeConCases idx p xs TYCON => toSchemeTyConCases idx p xs DELAY => toSchemeDelayCases idx p xs CONST => toSchemeConstCases idx p xs where data CaseType = CON | TYCON | DELAY | CONST caseType : List (CaseAlt vs) -> Core CaseType caseType [] = pure CON caseType (ConCase x tag args y :: xs) = do defs <- get Ctxt Just gdef <- lookupCtxtExact x (gamma defs) | Nothing => pure TYCON -- primitive type match case definition gdef of DCon{} => pure CON TCon{} => pure TYCON _ => pure CON -- or maybe throw? caseType (DelayCase ty arg x :: xs) = pure DELAY caseType (ConstCase x y :: xs) = pure CONST caseType (DefaultCase x :: xs) = caseType xs makeDefault : List (CaseAlt vars) -> Core (SchemeObj Write) makeDefault [] = pure blk makeDefault (DefaultCase sc :: xs) = compileCase blk svs sc makeDefault (_ :: xs) = makeDefault xs toSchemeConCases : (idx : Nat) -> (0 p : IsVar n idx vars) -> List (CaseAlt vars) -> Core (SchemeObj Write) toSchemeConCases idx p alts = do let var = getSchVar p svs alts' <- traverse (makeAlt var) alts let caseblock = Case (Apply (Var "vector-ref") [Var var, IntegerVal 0]) (mapMaybe id alts') (Just !(makeDefault alts)) pure $ If (Apply (Var "ct-isDataCon") [Var var]) caseblock blk where project : Int -> String -> List Name -> SchemeObj Write -> SchemeObj Write project i var [] body = body project i var (n :: ns) body = Let (schVarName n) (Apply (Var "vector-ref") [Var var, IntegerVal (cast i)]) (project (i + 1) var ns body) bindArgs : String -> (args : List Name) -> CaseTree (args ++ vars) -> Core (SchemeObj Write) bindArgs var args sc = do (bind, svs') <- extend args svs project 3 var bind <$> compileCase blk svs' sc makeAlt : String -> CaseAlt vars -> Core (Maybe (SchemeObj Write, SchemeObj Write)) makeAlt var (ConCase n t args sc) = pure $ Just (IntegerVal (cast t), !(bindArgs var args sc)) -- TODO: Matching on types, including -> makeAlt var _ = pure Nothing toSchemeTyConCases : (idx : Nat) -> (0 p : IsVar n idx vars) -> List (CaseAlt vars) -> Core (SchemeObj Write) toSchemeTyConCases idx p alts = do let var = getSchVar p svs alts' <- traverse (makeAlt var) alts caseblock <- addPiMatch var alts -- work on the name, so the 2nd arg (Case (Apply (Var "vector-ref") [Var var, IntegerVal 2]) (mapMaybe id alts') (Just !(makeDefault alts))) pure $ If (Apply (Var "ct-isTypeMatchable") [Var var]) caseblock blk where project : Int -> String -> List Name -> SchemeObj Write -> SchemeObj Write project i var [] body = body project i var (n :: ns) body = Let (schVarName n) (Apply (Var "vector-ref") [Var var, IntegerVal (cast i)]) (project (i + 1) var ns body) bindArgs : String -> (args : List Name) -> CaseTree (args ++ vars) -> Core (SchemeObj Write) bindArgs var args sc = do (bind, svs') <- extend args svs project 5 var bind <$> compileCase blk svs' sc makeAlt : String -> CaseAlt vars -> Core (Maybe (SchemeObj Write, SchemeObj Write)) makeAlt var (ConCase (UN (Basic "->")) t [_, _] sc) = pure Nothing -- do this in 'addPiMatch' below, since the -- representation is different makeAlt var (ConCase n t args sc) = pure $ Just (StringVal (show n), !(bindArgs var args sc)) makeAlt var _ = pure Nothing addPiMatch : String -> List (CaseAlt vars) -> SchemeObj Write -> Core (SchemeObj Write) addPiMatch var [] def = pure def -- t is a function type, and conveniently the scope of a pi -- binding is represented as a function. Lucky us! So we just need -- to extract it then evaluate the scope addPiMatch var (ConCase (UN (Basic "->")) _ [s, t] sc :: _) def = do sn <- getArgName tn <- getArgName let svs' = Bound (schVarName sn) :: Bound (schVarName tn) :: svs sc' <- compileCase blk svs' sc pure $ If (Apply (Var "ct-isPi") [Var var]) (Let (schVarName sn) (Apply (Var "vector-ref") [Var var, IntegerVal 4]) $ Let (schVarName tn) (Apply (Var "vector-ref") [Var var, IntegerVal 1]) $ sc') def addPiMatch var (x :: xs) def = addPiMatch var xs def toSchemeConstCases : (idx : Nat) -> (0 p : IsVar n idx vars) -> List (CaseAlt vars) -> Core (SchemeObj Write) toSchemeConstCases x p alts = do let var = getSchVar p svs alts' <- traverse (makeAlt var) alts let caseblock = Cond (mapMaybe id alts') (Just !(makeDefault alts)) pure $ If (Apply (Var "ct-isConstant") [Var var]) caseblock blk where makeAlt : String -> CaseAlt vars -> Core (Maybe (SchemeObj Write, SchemeObj Write)) makeAlt var (ConstCase c sc) = do sc' <- compileCase blk svs sc pure (Just (Apply (Var "equal?") [Var var, compileConstant emptyFC c], sc')) makeAlt var _ = pure Nothing toSchemeDelayCases : (idx : Nat) -> (0 p : IsVar n idx vars) -> List (CaseAlt vars) -> Core (SchemeObj Write) -- there will only ever be one, or a default case toSchemeDelayCases idx p (DelayCase ty arg sc :: rest) = do let var = getSchVar p svs tyn <- getArgName argn <- getArgName let svs' = Bound (schVarName tyn) :: Bound (schVarName argn) :: svs sc' <- compileCase blk svs' sc pure $ If (Apply (Var "ct-isDelay") [Var var]) (Let (schVarName tyn) (Apply (Apply (Var "vector-ref") [Var var, IntegerVal 3]) []) $ Let (schVarName argn) (Apply (Apply (Var "vector-ref") [Var var, IntegerVal 4]) []) $ sc') blk toSchemeDelayCases idx p (_ :: rest) = toSchemeDelayCases idx p rest toSchemeDelayCases idx p _ = pure Null compileCase blk vars (STerm _ tm) = compile vars tm compileCase blk vars _ = pure blk varObjs : SchVars ns -> List (SchemeObj Write) varObjs [] = [] varObjs (x :: xs) = Var (show x) :: varObjs xs mkArgs : (ns : List Name) -> Core (SchVars ns) mkArgs [] = pure [] mkArgs (x :: xs) = pure $ Bound (schVarName x) :: !(mkArgs xs) bindArgs : Name -> (todo : SchVars ns) -> (done : List (SchemeObj Write)) -> SchemeObj Write -> SchemeObj Write bindArgs n [] done body = body bindArgs n (x :: xs) done body = Vector (-9) [blockedAppWith n (reverse done), Lambda [show x] (bindArgs n xs (Var (show x) :: done) body)] compileBody : {auto c : Ref Ctxt Defs} -> Bool -> -- okay to reduce (if False, block) Name -> Def -> Core (SchemeObj Write) compileBody _ n None = pure $ blockedAppWith n [] compileBody redok n (PMDef pminfo args treeCT treeRT pats) = do i <- newRef Sym 0 argvs <- mkArgs args let blk = blockedAppWith n (varObjs argvs) body <- compileCase blk argvs treeCT let body' = if redok then If (Apply (Var "ct-isBlockAll") []) blk body else blk -- If it arose from a hole, we need to take an extra argument for -- the arity since that's what Meta gets applied to case holeInfo pminfo of NotHole => pure (bindArgs n argvs [] body') SolvedHole _ => pure (Lambda ["h-0"] (bindArgs n argvs [] body')) compileBody _ n (ExternDef arity) = pure $ blockedAppWith n [] compileBody _ n (ForeignDef arity xs) = pure $ blockedAppWith n [] compileBody _ n (Builtin x) = pure $ compileBuiltin n x compileBody _ n (DCon tag Z newtypeArg) = pure $ Vector (cast tag) [toScheme !(toResolvedNames n), toScheme emptyFC] compileBody _ n (DCon tag arity newtypeArg) = do let args = mkArgNs 0 arity argvs <- mkArgs args let body = Vector (cast tag) (toScheme n :: toScheme emptyFC :: map (Var . schVarName) args) pure (bindArgs n argvs [] body) where mkArgNs : Int -> Nat -> List Name mkArgNs i Z = [] mkArgNs i (S k) = MN "arg" i :: mkArgNs (i+1) k compileBody _ n (TCon tag Z parampos detpos flags mutwith datacons detagabbleBy) = pure $ Vector (-1) [IntegerVal (cast tag), StringVal (show n), toScheme n, toScheme emptyFC] compileBody _ n (TCon tag arity parampos detpos flags mutwith datacons detagabbleBy) = do let args = mkArgNs 0 arity argvs <- mkArgs args let body = Vector (-1) (IntegerVal (cast tag) :: StringVal (show n) :: toScheme n :: toScheme emptyFC :: map (Var . schVarName) args) pure (bindArgs n argvs [] body) where mkArgNs : Int -> Nat -> List Name mkArgNs i Z = [] mkArgNs i (S k) = MN "arg" i :: mkArgNs (i+1) k compileBody _ n (Hole numlocs x) = pure $ blockedMetaApp n compileBody _ n (BySearch x maxdepth defining) = pure $ blockedMetaApp n compileBody _ n (Guess guess envbind constraints) = pure $ blockedMetaApp n compileBody _ n ImpBind = pure $ blockedMetaApp n compileBody _ n (UniverseLevel _) = pure $ blockedMetaApp n compileBody _ n Delayed = pure $ blockedMetaApp n export compileDef : {auto c : Ref Ctxt Defs} -> SchemeMode -> Name -> Core () compileDef mode n_in = do n <- toFullNames n_in -- this is handy for readability of generated names -- we used resolved names for blocked names, though, as -- that's a bit better for performance defs <- get Ctxt Just def <- lookupCtxtExact n (gamma defs) | Nothing => throw (UndefinedName emptyFC n) let True = case schemeExpr def of Nothing => True Just (cmode, def) => cmode /= mode | _ => pure () -- already done -- If we're in BlockExport mode, check whether the name is -- available for reduction. let redok = mode == EvalAll || reducibleInAny (currentNS defs :: nestedNS defs) (fullname def) (visibility def) -- 'n' is used in compileBody for generating names for readback, -- and reading back resolved names is quicker because it's just -- an integer b <- compileBody redok !(toResolvedNames n) !(toFullNames (definition def)) let schdef = Define (schName n) b -- Add the new definition to the current scheme runtime Just obj <- coreLift $ evalSchemeObj schdef | Nothing => throw (InternalError ("Compiling " ++ show n ++ " failed")) -- Record that this one is done ignore $ addDef n ({ schemeExpr := Just (mode, schdef) } def) initEvalWith : {auto c : Ref Ctxt Defs} -> String -> Core Bool initEvalWith "chez" = do defs <- get Ctxt if defs.schemeEvalLoaded then pure True else catch (do f <- readDataFile "chez/ct-support.ss" Just _ <- coreLift $ evalSchemeStr $ "(begin " ++ f ++ ")" | Nothing => pure False put Ctxt ({ schemeEvalLoaded := True } defs) pure True) (\err => pure False) initEvalWith "racket" = do defs <- get Ctxt if defs.schemeEvalLoaded then pure True else catch (do f <- readDataFile "racket/ct-support.rkt" Just _ <- coreLift $ evalSchemeStr $ "(begin " ++ f ++ ")" | Nothing => pure False put Ctxt ({ schemeEvalLoaded := True } defs) pure True) (\err => do coreLift $ printLn err pure False) initEvalWith _ = pure False -- only works on Chez for now -- Initialise the internal functions we need to build/extend blocked -- applications -- These are in a support file, chez/support.ss. Returns True if loading -- and processing succeeds. If it fails, which it probably will during a -- bootstrap build at least, we can fall back to the default evaluator. export initialiseSchemeEval : {auto c : Ref Ctxt Defs} -> Core Bool initialiseSchemeEval = initEvalWith codegen
(* Title: HOL/HOLCF/IMP/HoareEx.thy Author: Tobias Nipkow, TUM Copyright 1997 TUM *) section "Correctness of Hoare by Fixpoint Reasoning" theory HoareEx imports Denotational begin text \<open> An example from the HOLCF paper by Müller, Nipkow, Oheimb, Slotosch \<^cite>\<open>MuellerNvOS99\<close>. It demonstrates fixpoint reasoning by showing the correctness of the Hoare rule for while-loops. \<close> type_synonym assn = "state \<Rightarrow> bool" definition hoare_valid :: "[assn, com, assn] \<Rightarrow> bool" ("|= {(1_)}/ (_)/ {(1_)}" 50) where "|= {P} c {Q} = (\<forall>s t. P s \<and> D c\<cdot>(Discr s) = Def t \<longrightarrow> Q t)" lemma WHILE_rule_sound: "|= {A} c {A} \<Longrightarrow> |= {A} WHILE b DO c {\<lambda>s. A s \<and> \<not> bval b s}" apply (unfold hoare_valid_def) apply (simp (no_asm)) apply (rule fix_ind) apply (simp (no_asm)) \<comment> \<open>simplifier with enhanced \<open>adm\<close>-tactic\<close> apply (simp (no_asm)) apply (simp (no_asm)) apply blast done end
module Xor where import Nnaskell import Numeric.LinearAlgebra.Data xorNN = do nn <- randomNN [2, 2, 1] return $ head $ drop 5000 $ optimizeCost (cost xorTD) nn xorTD :: [(Vector R, Vector R)] xorTD = [ (vector [0.0, 0.0], vector [0.0]) , (vector [1.0, 0.0], vector [1.0]) , (vector [0.0, 1.0], vector [1.0]) , (vector [1.0, 1.0], vector [0.0]) ]
import data.int.gcd /-1. Let a and b be coprime positive integers (recall that coprime here means gcd(a, b) = 1). I open a fast food restaurant which sells chicken nuggets in two sizes – you can either buy a box with a nuggets in, or a box with b nuggets in. Prove that there is some integer N with the property that for all integers m ≥ N, it is possible to buy exactly m nuggets. -/ variables {N m c d : ℕ} variables {a b : ℤ } theorem chicken_mcnugget (hp: int.gcd a b = 1) (h1: a > 0) (h2 : b >0): ∃ N, ∀ m ≥ N, m = a*c + b*d := begin --{existsi [gcd_a a b, gcd_b a b]}, have h3: ∃ (X Y :ℤ ), X * a + Y * b=1, let m := gcd_a a b, gcd_b a b, apply gcd_eq_gcd_ab, --{ existsi [gcd_a a b , gcd_b a b], --}, let X' := X + q*b, let Y' := Y - q*a, have h4: X' * a + Y' * b = 1, let Z' := -Y', -- have h5: (Z' X': ℕ ), X' * a= 1 + Z' * b, by norm_num, assume N = a * Z' * b, -- appply by the lemma end
# Copyright (C) 2016 Electronic Arts Inc. All rights reserved. str(mtcars) print("Sleeping for 15 seconds") Sys.sleep(15) print("Saving RData file") dir.create("/var/www/html/RServer/reports/mtcars") save(mtcars, file = "/var/www/html/RServer/reports/mtcars/mtcars.RData") fit <- lm(mpg~am + wt + hp, data = mtcars) summary(fit) print("Saving Model") Sys.sleep(10) save(fit, file = "/var/www/html/RServer/reports/mtcars/Model.RData")
State Before: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ⁅⁅H₂, H₃⁆, H₁⁆ = ⊥ h2 : ⁅⁅H₃, H₁⁆, H₂⁆ = ⊥ ⊢ ⁅⁅H₁, H₂⁆, H₃⁆ = ⊥ State After: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 ⊢ ∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ∀ (h : G), h ∈ H₃ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 Tactic: simp_rw [commutator_eq_bot_iff_le_centralizer, commutator_le, mem_centralizer_iff_commutator_eq_one, ← commutatorElement_def] at h1 h2⊢ State Before: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 ⊢ ∀ (g₁ : G), g₁ ∈ H₁ → ∀ (g₂ : G), g₂ ∈ H₂ → ∀ (h : G), h ∈ H₃ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 State After: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ H₃ ⊢ ⁅z, ⁅x, y⁆⁆ = 1 Tactic: intro x hx y hy z hz State Before: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ H₃ ⊢ ⁅z, ⁅x, y⁆⁆ = 1 State After: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ H₃ ⊢ ⁅z, ⁅x, y⁆⁆ = x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ H₃ ⊢ x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ = 1 Tactic: trans x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ State Before: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ H₃ ⊢ ⁅z, ⁅x, y⁆⁆ = x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ State After: no goals Tactic: group State Before: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ H₃ ⊢ x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹ = 1 State After: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ H₃ ⊢ x * z * 1⁻¹ * z⁻¹ * y * 1⁻¹ * y⁻¹ * x⁻¹ = 1 Tactic: rw [h1 _ (H₂.inv_mem hy) _ hz _ (H₁.inv_mem hx), h2 _ (H₃.inv_mem hz) _ (H₁.inv_mem hx) _ hy] State Before: G : Type u_1 G' : Type ?u.56694 F : Type ?u.56697 inst✝² : Group G inst✝¹ : Group G' inst✝ : MonoidHomClass F G G' f : F g₁ g₂ g₃ g : G H₁ H₂ H₃ K₁ K₂ : Subgroup G h1 : ∀ (g₁ : G), g₁ ∈ H₂ → ∀ (g₂ : G), g₂ ∈ H₃ → ∀ (h : G), h ∈ H₁ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 h2 : ∀ (g₁ : G), g₁ ∈ H₃ → ∀ (g₂ : G), g₂ ∈ H₁ → ∀ (h : G), h ∈ H₂ → ⁅h, ⁅g₁, g₂⁆⁆ = 1 x : G hx : x ∈ H₁ y : G hy : y ∈ H₂ z : G hz : z ∈ H₃ ⊢ x * z * 1⁻¹ * z⁻¹ * y * 1⁻¹ * y⁻¹ * x⁻¹ = 1 State After: no goals Tactic: group
# Tutorial on Hyperparameter Tuning in Neural Networks **Author:** Matthew Stewart <br> This notebook follows the same procedure as the Medium article **"Simple Guide to Hyperparameter Tuning in Neural Networks"**. [https://medium.com/@matthew_stewart/simple-guide-to-hyperparameter-tuning-in-neural-networks-3fe03dad8594]. In this notebook we will optimize and fine tune a neural network to find the global minimum of a particularly troublesome function known as the Beale function. This is one of many test functions for optimization that are commonly used in academia (see https://en.wikipedia.org/wiki/Test_functions_for_optimization for more information). ```python ## Formatting import requests from IPython.core.display import HTML styles = requests.get("https://raw.githubusercontent.com/Harvard-IACS/2019-CS109B/master/content/styles/cs109.css").text HTML(styles) ``` <style> blockquote { background: #AEDE94; } h1 { padding-top: 25px; padding-bottom: 25px; text-align: left; padding-left: 10px; background-color: #DDDDDD; color: black; } h2 { padding-top: 10px; padding-bottom: 10px; text-align: left; padding-left: 5px; background-color: #EEEEEE; color: black; } div.exercise { background-color: #ffcccc; border-color: #E9967A; border-left: 5px solid #800080; padding: 0.5em; } div.discussion { background-color: #ccffcc; border-color: #88E97A; border-left: 5px solid #0A8000; padding: 0.5em; } div.theme { background-color: #DDDDDD; border-color: #E9967A; border-left: 5px solid #800080; padding: 0.5em; font-size: 18pt; } div.gc { background-color: #AEDE94; border-color: #E9967A; border-left: 5px solid #800080; padding: 0.5em; font-size: 12pt; } p.q1 { padding-top: 5px; padding-bottom: 5px; text-align: left; padding-left: 5px; background-color: #EEEEEE; color: black; } header { padding-top: 35px; padding-bottom: 35px; text-align: left; padding-left: 10px; background-color: #DDDDDD; color: black; } </style> ## Learning Goals In this notebook, we will explore ways to optimize the loss function of a multilayer perceptor (MLP) by tuning the model hyperparameters. We will also explore the use of cross-validation as a technique for checking potential values for these hyperparameters. By the end of this notebook, you should: - Be familiar with the use of `sklearn`'s `optimize` function. - Be able to identify the hyperparameters that go into the training of a MLP. - Be familiar with the implementation in `keras` of various optimization techniques. - Know how to use callbacks - Apply cross-validation to check for multiple values of hyperparameters. ```python import matplotlib.pyplot as plt import numpy as np from scipy.optimize import minimize %matplotlib inline ``` ## Part 1: Beale's function ### First let's look at function optimization in `scipy.optimize`, using Beale's function as an example Optimizing a function $f: A\rightarrow R$, from some set A to the real numbers is finding an element $x_0\,\epsilon\, A$ such that $f(x_0)\leq f(x)$ for all $x\,\epsilon\, A$ (finding the minimum) or such that $f(x_0)\geq f(x)$ for all $x\,\epsilon\, A$ (finding the maximum). To illustrate our point we will use a function of two parameters. Our goal is to optimize over these 2 parameters. We can extend to higher dimensions by plotting pairs of parameters against each other. The Wikipedia article on Test functions for optimization has a few functions that are useful for evaluating optimization algorithms. Here is Beale's function: $f(x,y)$ = $(1.5−x+xy)^2+(2.25−x+xy^2)^2+(2.625−x+xy^3)^2$ We already know that this function has a minimum at [3.0, 0.5]. Let's see if `scipy` will find it. <pre>source: https://en.wikipedia.org/wiki/Test_functions_for_optimization</pre> ```python # define Beale's function which we want to minimize def objective(X): x = X[0]; y = X[1] return (1.5 - x + x*y)**2 + (2.25 - x + x*y**2)**2 + (2.625 - x + x*y**3)**2 ``` ```python # function boundaries xmin, xmax, xstep = -4.5, 4.5, .9 ymin, ymax, ystep = -4.5, 4.5, .9 ``` ```python # Let's create some points x1, y1 = np.meshgrid(np.arange(xmin, xmax + xstep, xstep), np.arange(ymin, ymax + ystep, ystep)) ``` Let's make an initial guess ```python # initial guess x0 = [4., 4.] f0 = objective(x0) print (f0) ``` 68891.203125 ```python bnds = ((xmin, xmax), (ymin, ymax)) minimum = minimize(objective, x0, bounds=bnds) ``` ```python print(minimum) ``` fun: 2.068025638865627e-12 hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64> jac: array([-1.55969780e-06, 9.89837957e-06]) message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' nfev: 60 nit: 14 status: 0 success: True x: array([3.00000257, 0.50000085]) ```python real_min = [3.0, 0.5] print (f'The answer, {minimum.x}, is very close to the optimum as we know it, which is {real_min}') print (f'The value of the objective for {real_min} is {objective(real_min)}') ``` The answer, [3.00000257 0.50000085], is very close to the optimum as we know it, which is [3.0, 0.5] The value of the objective for [3.0, 0.5] is 0.0 ## Part 2: Optimization in neural networks In general: **Learning Representation --> Objective function --> Optimization algorithm** A neural network can be defined as a framework that combines inputs and tries to guess the output. If we are lucky enough to have some results, called "the ground truth", to compare the outputs produced by the network, we can calculate the **error**. So the network guesses, calculates some error function, guesses again, trying to minimize this error, guesses again, until the error does not go down any more. This is optimization. In neural networks the most common used optimization algorithms, are flavors of **GD (gradient descent)**. The *objective function* used in gradient descent is the *loss function* which we want to minimize . ### A `keras` Refresher `Keras` is a Python library for deep learning that can run on top of both Theano or TensorFlow, two powerful Python libraries for fast numerical computing created and released by Facebook and Google, respectevely. Keras was developed to make developing deep learning models as fast and easy as possible for research and practical applications. It runs on Python 2.7 or 3.5 and can seamlessly execute on GPUs and CPUs. Keras is built on the idea of a model. At its core we have a sequence of layers called the `Sequential` model which is a linear stack of layers. Keras also provides the `functional API`, a way to define complex models, such as multi-output models, directed acyclic graphs, or models with shared layers. We can summarize the construction of deep learning models in Keras using the Sequential model as follows: 1. **Define your model**: create a `Sequential` model and add layers. 2. **Compile your model**: specify loss function and optimizers and call the `.compile()` function. 3. **Fit your model**: train the model on data by calling the `.fit()` function. 4. **Make predictions**: use the model to generate predictions on new data by calling functions such as `.evaluate()` or `.predict()`. ### Callbacks: taking a peek into our model while it's training You can look at what is happening in various stages of your model by using `callbacks`. A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training. You can pass a list of callbacks (as the keyword argument callbacks) to the `.fit()` method of the Sequential or Model classes. The relevant methods of the callbacks will then be called at each stage of the training. - A callback function you are already familiar with is `keras.callbacks.History()`. This is automatically included in `.fit()`. - Another very useful one is `keras.callbacks.ModelCheckpoint` which saves the model with its weights at a certain point in the training. This can prove useful if your model is running for a long time and a system failure happens. Not all is lost then. It's a good practice to save the model weights only when an improvement is observed as measured by the `acc`, for example. - `keras.callbacks.EarlyStopping` stops the training when a monitored quantity has stopped improving. - `keras.callbacks.LearningRateScheduler` will change the learning rate during training. We will apply some callbacks later. For full documentation on `callbacks` see https://keras.io/callbacks/ ### What are the steps to optimizing our network? ```python import tensorflow as tf import keras from keras import layers from keras import models from keras import utils from keras.layers import Dense from keras.models import Sequential from keras.layers import Flatten from keras.layers import Dropout from keras.layers import Activation from keras.regularizers import l2 from keras.optimizers import SGD from keras.optimizers import RMSprop from keras import datasets from keras.callbacks import LearningRateScheduler from keras.callbacks import History from keras import losses from sklearn.utils import shuffle print(tf.VERSION) print(tf.keras.__version__) ``` 1.12.0 2.1.6-tf Using TensorFlow backend. ```python # fix random seed for reproducibility np.random.seed(5) ``` ### Step 1 - Deciding on the network topology (not really considered optimization but is obviously very important) We will use the MNIST dataset which consists of grayscale images of handwritten digits (0-9) whose dimension is 28x28 pixels. Each pixel is 8 bits so its value ranges from 0 to 255. ```python #mnist = tf.keras.datasets.mnist mnist = keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train.shape, y_train.shape ``` ((60000, 28, 28), (60000,)) Each label is a number between 0 and 9 ```python print(y_train) ``` [5 0 4 ... 5 6 8] Let's look at some 10 of the images ```python plt.figure(figsize=(10,10)) for i in range(10): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(x_train[i], cmap=plt.cm.binary) plt.xlabel(y_train[i]) ``` ```python x_train[45].shape x_train[45, 15:20, 15:20] ``` array([[ 11, 198, 231, 41, 0], [ 82, 252, 204, 0, 0], [253, 253, 141, 0, 0], [252, 220, 36, 0, 0], [252, 96, 0, 0, 0]], dtype=uint8) ```python print(f'We have {x_train.shape[0]} train samples') print(f'We have {x_test.shape[0]} test samples') ``` We have 60000 train samples We have 10000 test samples #### Preprocessing the data To run our NN we need to pre-process the data * First we need to make the 2D image arrays into 1D (flatten them). We can either perform this by using array reshaping with `numpy.reshape()` or the `keras`' method for this: a layer called `tf.keras.layers.Flatten` which transforms the format of the images from a 2d-array (of 28 by 28 pixels), to a 1D-array of 28 * 28 = 784 pixels. * Then we need to normalize the pixel values (give them values between 0 and 1) using the following transformation: \begin{align} x := \dfrac{x - x_{min}}{x_{max} - x_{min}} \textrm{} \end{align} In our case $x_{min} = 0$ and $x_{max} = 255$ so the formula becomes simply $x := {x}/255$ ```python # normalize the data x_train, x_test = x_train / 255.0, x_test / 255.0 ``` ```python # reshape the data into 1D vectors x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) num_classes = 10 ``` ```python x_train.shape[1] ``` 784 Now let's prepare our class vector (y) to a binary class matrix, e.g. for use with categorical_crossentropy. ```python # Convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) ``` ```python y_train[0] ``` array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], dtype=float32) Now we are ready to build the model! ### Step 2 - Adjusting the `learning rate` One of the most common optimization algorithm is Stochastic Gradient Descent (SGD). The hyperparameters that can be optimized in SGD are `learning rate`, `momentum`, `decay` and `nesterov`. `Learning rate` controls the weight at the end of each batch, and `momentum` controls how much to let the previous update influence the current weight update. `Decay` indicates the learning rate decay over each update, and `nesterov` takes the value True or False depending on if we want to apply Nesterov momentum. Typical values for those hyperparameters are lr=0.01, decay=1e-6, momentum=0.9, and nesterov=True. The learning rate hyperparameter goes into the `optimizer` function which we will see below. Keras has a default learning rate scheduler in the `SGD` optimizer that decreases the learning rate during the stochastic gradient descent optimization algorithm. The learning rate is decreased according to this formula: \begin{align} lr = lr * 1./(1. + decay * epoch) \textrm{} \end{align} <pre>source: http://cs231n.github.io/neural-networks-3</pre> Let's implement a learning rate adaptation schedule in `Keras`. We'll start with SGD and a learning rate value of 0.1. We will then train the model for 60 epochs and set the decay argument to 0.0016 (0.1/60). We also include a momentum value of 0.8 since that seems to work well when using an adaptive learning rate. ```python epochs=60 learning_rate = 0.1 decay_rate = learning_rate / epochs momentum = 0.8 sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False) ``` ```python # build the model input_dim = x_train.shape[1] lr_model = Sequential() lr_model.add(Dense(64, activation=tf.nn.relu, kernel_initializer='uniform', input_dim = input_dim)) lr_model.add(Dropout(0.1)) lr_model.add(Dense(64, kernel_initializer='uniform', activation=tf.nn.relu)) lr_model.add(Dense(num_classes, kernel_initializer='uniform', activation=tf.nn.softmax)) # compile the model lr_model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['acc']) ``` ```python %%time # Fit the model batch_size = int(input_dim/100) lr_model_history = lr_model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) ``` Train on 60000 samples, validate on 10000 samples Epoch 1/60 60000/60000 [==============================] - 9s 145us/step - loss: 0.3158 - acc: 0.9043 - val_loss: 0.1467 - val_acc: 0.9550 Epoch 2/60 60000/60000 [==============================] - 8s 136us/step - loss: 0.1478 - acc: 0.9555 - val_loss: 0.1194 - val_acc: 0.9617 Epoch 3/60 60000/60000 [==============================] - 8s 137us/step - loss: 0.1248 - acc: 0.9620 - val_loss: 0.1122 - val_acc: 0.9646 Epoch 4/60 60000/60000 [==============================] - 8s 136us/step - loss: 0.1167 - acc: 0.9638 - val_loss: 0.1075 - val_acc: 0.9681 Epoch 5/60 60000/60000 [==============================] - 8s 137us/step - loss: 0.1103 - acc: 0.9666 - val_loss: 0.1039 - val_acc: 0.9691 Epoch 6/60 60000/60000 [==============================] - 8s 137us/step - loss: 0.1051 - acc: 0.9677 - val_loss: 0.1015 - val_acc: 0.9694 Epoch 7/60 60000/60000 [==============================] - 8s 136us/step - loss: 0.1003 - acc: 0.9691 - val_loss: 0.1002 - val_acc: 0.9694 Epoch 8/60 60000/60000 [==============================] - 9s 144us/step - loss: 0.0961 - acc: 0.9707 - val_loss: 0.0998 - val_acc: 0.9694 Epoch 9/60 60000/60000 [==============================] - 9s 154us/step - loss: 0.0951 - acc: 0.9707 - val_loss: 0.0989 - val_acc: 0.9699 Epoch 10/60 60000/60000 [==============================] - 9s 150us/step - loss: 0.0919 - acc: 0.9721 - val_loss: 0.0978 - val_acc: 0.9696 Epoch 11/60 60000/60000 [==============================] - 8s 141us/step - loss: 0.0930 - acc: 0.9720 - val_loss: 0.0964 - val_acc: 0.9702 Epoch 12/60 60000/60000 [==============================] - 8s 141us/step - loss: 0.0899 - acc: 0.9728 - val_loss: 0.0965 - val_acc: 0.9703 Epoch 13/60 60000/60000 [==============================] - 8s 141us/step - loss: 0.0883 - acc: 0.9732 - val_loss: 0.0951 - val_acc: 0.9713 Epoch 14/60 60000/60000 [==============================] - 8s 141us/step - loss: 0.0871 - acc: 0.9733 - val_loss: 0.0958 - val_acc: 0.9705 Epoch 15/60 60000/60000 [==============================] - 8s 141us/step - loss: 0.0888 - acc: 0.9731 - val_loss: 0.0952 - val_acc: 0.9709 Epoch 16/60 60000/60000 [==============================] - 9s 145us/step - loss: 0.0857 - acc: 0.9743 - val_loss: 0.0950 - val_acc: 0.9713 Epoch 17/60 60000/60000 [==============================] - 9s 157us/step - loss: 0.0843 - acc: 0.9742 - val_loss: 0.0957 - val_acc: 0.9709 Epoch 18/60 60000/60000 [==============================] - 8s 142us/step - loss: 0.0842 - acc: 0.9749 - val_loss: 0.0942 - val_acc: 0.9719 Epoch 19/60 60000/60000 [==============================] - 9s 142us/step - loss: 0.0839 - acc: 0.9750 - val_loss: 0.0936 - val_acc: 0.9723 Epoch 20/60 60000/60000 [==============================] - 9s 142us/step - loss: 0.0824 - acc: 0.9748 - val_loss: 0.0942 - val_acc: 0.9723 Epoch 21/60 60000/60000 [==============================] - 9s 143us/step - loss: 0.0824 - acc: 0.9749 - val_loss: 0.0940 - val_acc: 0.9725 Epoch 22/60 60000/60000 [==============================] - 9s 142us/step - loss: 0.0829 - acc: 0.9752 - val_loss: 0.0938 - val_acc: 0.9718 Epoch 23/60 60000/60000 [==============================] - 9s 143us/step - loss: 0.0795 - acc: 0.9763 - val_loss: 0.0939 - val_acc: 0.9718 Epoch 24/60 60000/60000 [==============================] - 9s 149us/step - loss: 0.0796 - acc: 0.9763 - val_loss: 0.0936 - val_acc: 0.9722 Epoch 25/60 60000/60000 [==============================] - 8s 140us/step - loss: 0.0783 - acc: 0.9759 - val_loss: 0.0935 - val_acc: 0.9724 Epoch 26/60 60000/60000 [==============================] - 8s 140us/step - loss: 0.0805 - acc: 0.9755 - val_loss: 0.0937 - val_acc: 0.9721 Epoch 27/60 60000/60000 [==============================] - 8s 140us/step - loss: 0.0795 - acc: 0.9759 - val_loss: 0.0930 - val_acc: 0.9721 Epoch 28/60 60000/60000 [==============================] - 9s 148us/step - loss: 0.0786 - acc: 0.9765 - val_loss: 0.0931 - val_acc: 0.9721 Epoch 29/60 60000/60000 [==============================] - 9s 148us/step - loss: 0.0780 - acc: 0.9764 - val_loss: 0.0926 - val_acc: 0.9726 Epoch 30/60 60000/60000 [==============================] - 9s 144us/step - loss: 0.0759 - acc: 0.9768 - val_loss: 0.0925 - val_acc: 0.9726 Epoch 31/60 60000/60000 [==============================] - 9s 147us/step - loss: 0.0780 - acc: 0.9768 - val_loss: 0.0931 - val_acc: 0.9727 Epoch 32/60 60000/60000 [==============================] - 9s 155us/step - loss: 0.0768 - acc: 0.9765 - val_loss: 0.0925 - val_acc: 0.9726 Epoch 33/60 60000/60000 [==============================] - 9s 144us/step - loss: 0.0762 - acc: 0.9770 - val_loss: 0.0927 - val_acc: 0.9723 Epoch 34/60 60000/60000 [==============================] - 9s 149us/step - loss: 0.0765 - acc: 0.9770 - val_loss: 0.0928 - val_acc: 0.9723 Epoch 35/60 60000/60000 [==============================] - 8s 140us/step - loss: 0.0751 - acc: 0.9778 - val_loss: 0.0928 - val_acc: 0.9721 Epoch 36/60 60000/60000 [==============================] - 8s 138us/step - loss: 0.0756 - acc: 0.9772 - val_loss: 0.0919 - val_acc: 0.9721 Epoch 37/60 60000/60000 [==============================] - 8s 140us/step - loss: 0.0760 - acc: 0.9769 - val_loss: 0.0923 - val_acc: 0.9723 Epoch 38/60 60000/60000 [==============================] - 8s 138us/step - loss: 0.0751 - acc: 0.9772 - val_loss: 0.0921 - val_acc: 0.9726 Epoch 39/60 60000/60000 [==============================] - 9s 148us/step - loss: 0.0756 - acc: 0.9774 - val_loss: 0.0924 - val_acc: 0.9728 Epoch 40/60 60000/60000 [==============================] - 8s 141us/step - loss: 0.0750 - acc: 0.9774 - val_loss: 0.0924 - val_acc: 0.9728 Epoch 41/60 60000/60000 [==============================] - 9s 142us/step - loss: 0.0760 - acc: 0.9774 - val_loss: 0.0926 - val_acc: 0.9724 Epoch 42/60 60000/60000 [==============================] - 8s 142us/step - loss: 0.0719 - acc: 0.9783 - val_loss: 0.0920 - val_acc: 0.9730 Epoch 43/60 60000/60000 [==============================] - 9s 143us/step - loss: 0.0730 - acc: 0.9779 - val_loss: 0.0919 - val_acc: 0.9726 Epoch 44/60 60000/60000 [==============================] - 8s 140us/step - loss: 0.0722 - acc: 0.9785 - val_loss: 0.0920 - val_acc: 0.9728 Epoch 45/60 60000/60000 [==============================] - 9s 142us/step - loss: 0.0746 - acc: 0.9774 - val_loss: 0.0923 - val_acc: 0.9730 Epoch 46/60 60000/60000 [==============================] - 9s 148us/step - loss: 0.0736 - acc: 0.9778 - val_loss: 0.0920 - val_acc: 0.9729 Epoch 47/60 60000/60000 [==============================] - 9s 156us/step - loss: 0.0739 - acc: 0.9777 - val_loss: 0.0920 - val_acc: 0.9725 Epoch 48/60 60000/60000 [==============================] - 9s 151us/step - loss: 0.0720 - acc: 0.9783 - val_loss: 0.0917 - val_acc: 0.9731 Epoch 49/60 60000/60000 [==============================] - 9s 146us/step - loss: 0.0735 - acc: 0.9780 - val_loss: 0.0917 - val_acc: 0.9729 Epoch 50/60 60000/60000 [==============================] - 9s 152us/step - loss: 0.0729 - acc: 0.9780 - val_loss: 0.0923 - val_acc: 0.9723 Epoch 51/60 60000/60000 [==============================] - 9s 151us/step - loss: 0.0716 - acc: 0.9777 - val_loss: 0.0919 - val_acc: 0.9727 Epoch 52/60 60000/60000 [==============================] - 9s 145us/step - loss: 0.0716 - acc: 0.9784 - val_loss: 0.0915 - val_acc: 0.9726 Epoch 53/60 60000/60000 [==============================] - 9s 149us/step - loss: 0.0715 - acc: 0.9782 - val_loss: 0.0912 - val_acc: 0.9722 Epoch 54/60 60000/60000 [==============================] - 9s 143us/step - loss: 0.0704 - acc: 0.9786 - val_loss: 0.0911 - val_acc: 0.9720 Epoch 55/60 60000/60000 [==============================] - 9s 142us/step - loss: 0.0721 - acc: 0.9782 - val_loss: 0.0917 - val_acc: 0.9727 Epoch 56/60 60000/60000 [==============================] - 9s 143us/step - loss: 0.0717 - acc: 0.9784 - val_loss: 0.0918 - val_acc: 0.9725 Epoch 57/60 60000/60000 [==============================] - 9s 151us/step - loss: 0.0717 - acc: 0.9783 - val_loss: 0.0918 - val_acc: 0.9726 Epoch 58/60 60000/60000 [==============================] - 9s 144us/step - loss: 0.0708 - acc: 0.9783 - val_loss: 0.0916 - val_acc: 0.9725 Epoch 59/60 60000/60000 [==============================] - 8s 137us/step - loss: 0.0703 - acc: 0.9782 - val_loss: 0.0916 - val_acc: 0.9731 Epoch 60/60 60000/60000 [==============================] - 8s 137us/step - loss: 0.0703 - acc: 0.9785 - val_loss: 0.0918 - val_acc: 0.9727 CPU times: user 15min 16s, sys: 3min 41s, total: 18min 57s Wall time: 8min 37s ```python fig, ax = plt.subplots(1, 1, figsize=(10,6)) ax.plot(np.sqrt(lr_model_history.history['loss']), 'r', label='train') ax.plot(np.sqrt(lr_model_history.history['val_loss']), 'b' ,label='val') ax.set_xlabel(r'Epoch', fontsize=20) ax.set_ylabel(r'Loss', fontsize=20) ax.legend() ax.tick_params(labelsize=20) ``` ```python fig, ax = plt.subplots(1, 1, figsize=(10,6)) ax.plot(np.sqrt(lr_model_history.history['acc']), 'r', label='train') ax.plot(np.sqrt(lr_model_history.history['val_acc']), 'b' ,label='val') ax.set_xlabel(r'Epoch', fontsize=20) ax.set_ylabel(r'Accuracy', fontsize=20) ax.legend() ax.tick_params(labelsize=20) ``` ### Apply a custon learning rate change using `LearningRateScheduler` Write a function that performs the exponential learning rate decay as indicated by the following formula: \begin{align} lr = lr0 * e^{(-kt)} \textrm{} \end{align} ```python # solution epochs = 60 learning_rate = 0.1 # initial learning rate decay_rate = 0.1 momentum = 0.8 # define the optimizer function sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False) ``` ```python input_dim = x_train.shape[1] num_classes = 10 batch_size = 196 # build the model exponential_decay_model = Sequential() exponential_decay_model.add(Dense(64, activation=tf.nn.relu, kernel_initializer='uniform', input_dim = input_dim)) exponential_decay_model.add(Dropout(0.1)) exponential_decay_model.add(Dense(64, kernel_initializer='uniform', activation=tf.nn.relu)) exponential_decay_model.add(Dense(num_classes, kernel_initializer='uniform', activation=tf.nn.softmax)) # compile the model exponential_decay_model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['acc']) ``` ```python # define the learning rate change def exp_decay(epoch): lrate = learning_rate * np.exp(-decay_rate*epoch) return lrate ``` ```python # learning schedule callback loss_history = History() lr_rate = LearningRateScheduler(exp_decay) callbacks_list = [loss_history, lr_rate] # you invoke the LearningRateScheduler during the .fit() phase exponential_decay_model_history = exponential_decay_model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=callbacks_list, verbose=1, validation_data=(x_test, y_test)) ``` Train on 60000 samples, validate on 10000 samples Epoch 1/60 60000/60000 [==============================] - 1s 16us/step - loss: 1.9924 - acc: 0.3865 - val_loss: 1.4953 - val_acc: 0.5841 Epoch 2/60 60000/60000 [==============================] - 1s 11us/step - loss: 1.2430 - acc: 0.6362 - val_loss: 1.0153 - val_acc: 0.7164 Epoch 3/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.9789 - acc: 0.7141 - val_loss: 0.8601 - val_acc: 0.7617 Epoch 4/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.8710 - acc: 0.7452 - val_loss: 0.7811 - val_acc: 0.7865 Epoch 5/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.8115 - acc: 0.7609 - val_loss: 0.7336 - val_acc: 0.7968 Epoch 6/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.7749 - acc: 0.7678 - val_loss: 0.7030 - val_acc: 0.8035 Epoch 7/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.7524 - acc: 0.7742 - val_loss: 0.6822 - val_acc: 0.8095 Epoch 8/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.7342 - acc: 0.7788 - val_loss: 0.6673 - val_acc: 0.8122 Epoch 9/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.7218 - acc: 0.7840 - val_loss: 0.6562 - val_acc: 0.8148 Epoch 10/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.7144 - acc: 0.7836 - val_loss: 0.6475 - val_acc: 0.8168 Epoch 11/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.7054 - acc: 0.7857 - val_loss: 0.6408 - val_acc: 0.8175 Epoch 12/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.7008 - acc: 0.7896 - val_loss: 0.6354 - val_acc: 0.8185 Epoch 13/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6950 - acc: 0.7885 - val_loss: 0.6311 - val_acc: 0.8197 Epoch 14/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6921 - acc: 0.7895 - val_loss: 0.6274 - val_acc: 0.8199 Epoch 15/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6888 - acc: 0.7913 - val_loss: 0.6244 - val_acc: 0.8204 Epoch 16/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6833 - acc: 0.7932 - val_loss: 0.6219 - val_acc: 0.8206 Epoch 17/60 60000/60000 [==============================] - 1s 12us/step - loss: 0.6831 - acc: 0.7942 - val_loss: 0.6199 - val_acc: 0.8208 Epoch 18/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6822 - acc: 0.7937 - val_loss: 0.6182 - val_acc: 0.8212 Epoch 19/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6790 - acc: 0.7955 - val_loss: 0.6167 - val_acc: 0.8215 Epoch 20/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6797 - acc: 0.7935 - val_loss: 0.6155 - val_acc: 0.8218 Epoch 21/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6773 - acc: 0.7953 - val_loss: 0.6144 - val_acc: 0.8222 Epoch 22/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6742 - acc: 0.7960 - val_loss: 0.6135 - val_acc: 0.8227 Epoch 23/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6746 - acc: 0.7958 - val_loss: 0.6127 - val_acc: 0.8236 Epoch 24/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6729 - acc: 0.7973 - val_loss: 0.6120 - val_acc: 0.8237 Epoch 25/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6749 - acc: 0.7963 - val_loss: 0.6114 - val_acc: 0.8238 Epoch 26/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6715 - acc: 0.7967 - val_loss: 0.6109 - val_acc: 0.8241 Epoch 27/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6728 - acc: 0.7975 - val_loss: 0.6105 - val_acc: 0.8241 Epoch 28/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6721 - acc: 0.7964 - val_loss: 0.6101 - val_acc: 0.8246 Epoch 29/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6707 - acc: 0.7972 - val_loss: 0.6098 - val_acc: 0.8247 Epoch 30/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6711 - acc: 0.7980 - val_loss: 0.6095 - val_acc: 0.8247 Epoch 31/60 60000/60000 [==============================] - 1s 12us/step - loss: 0.6721 - acc: 0.7960 - val_loss: 0.6092 - val_acc: 0.8248 Epoch 32/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6708 - acc: 0.7981 - val_loss: 0.6090 - val_acc: 0.8249 Epoch 33/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6720 - acc: 0.7968 - val_loss: 0.6088 - val_acc: 0.8249 Epoch 34/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6700 - acc: 0.7973 - val_loss: 0.6086 - val_acc: 0.8250 Epoch 35/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6714 - acc: 0.7979 - val_loss: 0.6084 - val_acc: 0.8250 Epoch 36/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6687 - acc: 0.7980 - val_loss: 0.6083 - val_acc: 0.8250 Epoch 37/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6700 - acc: 0.7963 - val_loss: 0.6082 - val_acc: 0.8250 Epoch 38/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6702 - acc: 0.7964 - val_loss: 0.6081 - val_acc: 0.8252 Epoch 39/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6711 - acc: 0.7963 - val_loss: 0.6080 - val_acc: 0.8250 Epoch 40/60 60000/60000 [==============================] - 1s 12us/step - loss: 0.6698 - acc: 0.7971 - val_loss: 0.6079 - val_acc: 0.8251 Epoch 41/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6696 - acc: 0.7967 - val_loss: 0.6079 - val_acc: 0.8252 Epoch 42/60 60000/60000 [==============================] - 1s 12us/step - loss: 0.6699 - acc: 0.7989 - val_loss: 0.6078 - val_acc: 0.8252 Epoch 43/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6701 - acc: 0.7952 - val_loss: 0.6077 - val_acc: 0.8252 Epoch 44/60 60000/60000 [==============================] - 1s 12us/step - loss: 0.6704 - acc: 0.7973 - val_loss: 0.6077 - val_acc: 0.8252 Epoch 45/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6697 - acc: 0.7971 - val_loss: 0.6076 - val_acc: 0.8252 Epoch 46/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6718 - acc: 0.7969 - val_loss: 0.6076 - val_acc: 0.8252 Epoch 47/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6708 - acc: 0.7965 - val_loss: 0.6076 - val_acc: 0.8252 Epoch 48/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6690 - acc: 0.7968 - val_loss: 0.6075 - val_acc: 0.8252 Epoch 49/60 60000/60000 [==============================] - 1s 12us/step - loss: 0.6700 - acc: 0.7959 - val_loss: 0.6075 - val_acc: 0.8252 Epoch 50/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6722 - acc: 0.7963 - val_loss: 0.6075 - val_acc: 0.8252 Epoch 51/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6698 - acc: 0.7950 - val_loss: 0.6075 - val_acc: 0.8252 Epoch 52/60 60000/60000 [==============================] - 1s 12us/step - loss: 0.6689 - acc: 0.7978 - val_loss: 0.6075 - val_acc: 0.8252 Epoch 53/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6696 - acc: 0.7973 - val_loss: 0.6074 - val_acc: 0.8252 Epoch 54/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6678 - acc: 0.7975 - val_loss: 0.6074 - val_acc: 0.8252 Epoch 55/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6694 - acc: 0.7969 - val_loss: 0.6074 - val_acc: 0.8252 Epoch 56/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6688 - acc: 0.7981 - val_loss: 0.6074 - val_acc: 0.8252 Epoch 57/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6674 - acc: 0.7988 - val_loss: 0.6074 - val_acc: 0.8252 Epoch 58/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6685 - acc: 0.7970 - val_loss: 0.6074 - val_acc: 0.8252 Epoch 59/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6702 - acc: 0.7953 - val_loss: 0.6074 - val_acc: 0.8252 Epoch 60/60 60000/60000 [==============================] - 1s 11us/step - loss: 0.6701 - acc: 0.7965 - val_loss: 0.6074 - val_acc: 0.8252 ```python # check on the variables that can show me the learning rate decay exponential_decay_model_history.history.keys() ``` dict_keys(['val_loss', 'val_acc', 'loss', 'acc', 'lr']) ```python fig, ax = plt.subplots(1, 1, figsize=(10,6)) ax.plot(exponential_decay_model_history.history['lr'] ,'r') #, label='learn rate') ax.set_xlabel(r'Epoch', fontsize=20) ax.set_ylabel(r'Learning Rate', fontsize=20) #ax.legend() ax.tick_params(labelsize=20) ``` ```python fig, ax = plt.subplots(1, 1, figsize=(10,6)) ax.plot(np.sqrt(exponential_decay_model_history.history['loss']), 'r', label='train') ax.plot(np.sqrt(exponential_decay_model_history.history['val_loss']), 'b' ,label='val') ax.set_xlabel(r'Epoch', fontsize=20) ax.set_ylabel(r'Loss', fontsize=20) ax.legend() ax.tick_params(labelsize=20) ``` ### Step 3 - Choosing an `optimizer` and a `loss function` When constructing a model and using it to make our predictions, for example to assign label scores to images ("cat", "plane", etc), we want to measure our success or failure by defining a "loss" function (or objective function). The goal of optimization is to efficiently calculate the parameters/weights that minimize this loss function. `keras` provides various types of [loss functions](https://github.com/keras-team/keras/blob/master/keras/losses.py). Sometimes the "loss" function measures the "distance". We can define this "distance" between two data points in various ways suitable to the problem or dataset. Distance - Euclidean - Manhattan - others such as Hamming which measures distances between strings, for example. The Hamming distance of "carolin" and "cathrin" is 3. Loss functions - MSE (for regression) - categorical cross-entropy (for classification) - binary cross entropy (for classification) ```python # build the model input_dim = x_train.shape[1] model = Sequential() model.add(Dense(64, activation=tf.nn.relu, kernel_initializer='uniform', input_dim = input_dim)) # fully-connected layer with 64 hidden units model.add(Dropout(0.1)) model.add(Dense(64, kernel_initializer='uniform', activation=tf.nn.relu)) model.add(Dense(num_classes, kernel_initializer='uniform', activation=tf.nn.softmax)) ``` ```python # defining the parameters for RMSprop (I used the keras defaults here) rms = RMSprop(lr=0.001, rho=0.9, epsilon=None, decay=0.0) model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['acc']) ``` ### Step 4 - Deciding on the `batch size` and `number of epochs` ```python %%time batch_size = input_dim epochs = 60 model_history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) ``` Train on 60000 samples, validate on 10000 samples Epoch 1/60 60000/60000 [==============================] - 1s 14us/step - loss: 1.1320 - acc: 0.7067 - val_loss: 0.5628 - val_acc: 0.8237 Epoch 2/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.4831 - acc: 0.8570 - val_loss: 0.3674 - val_acc: 0.8934 Epoch 3/60 60000/60000 [==============================] - 1s 9us/step - loss: 0.3665 - acc: 0.8931 - val_loss: 0.3199 - val_acc: 0.9061 Epoch 4/60 60000/60000 [==============================] - 1s 9us/step - loss: 0.3100 - acc: 0.9092 - val_loss: 0.2664 - val_acc: 0.9233 Epoch 5/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.2699 - acc: 0.9206 - val_loss: 0.2295 - val_acc: 0.9326 Epoch 6/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.2391 - acc: 0.9305 - val_loss: 0.2104 - val_acc: 0.9362 Epoch 7/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.2115 - acc: 0.9383 - val_loss: 0.1864 - val_acc: 0.9459 Epoch 8/60 60000/60000 [==============================] - 1s 9us/step - loss: 0.1900 - acc: 0.9451 - val_loss: 0.1658 - val_acc: 0.9493 Epoch 9/60 60000/60000 [==============================] - 1s 9us/step - loss: 0.1714 - acc: 0.9492 - val_loss: 0.1497 - val_acc: 0.9538 Epoch 10/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.1565 - acc: 0.9539 - val_loss: 0.1404 - val_acc: 0.9591 Epoch 11/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.1443 - acc: 0.9569 - val_loss: 0.1305 - val_acc: 0.9616 Epoch 12/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.1334 - acc: 0.9596 - val_loss: 0.1224 - val_acc: 0.9628 Epoch 13/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.1257 - acc: 0.9627 - val_loss: 0.1133 - val_acc: 0.9660 Epoch 14/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.1169 - acc: 0.9652 - val_loss: 0.1116 - val_acc: 0.9674 Epoch 15/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.1091 - acc: 0.9675 - val_loss: 0.1104 - val_acc: 0.9670 Epoch 16/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.1051 - acc: 0.9689 - val_loss: 0.1030 - val_acc: 0.9692 Epoch 17/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0978 - acc: 0.9697 - val_loss: 0.1044 - val_acc: 0.9686 Epoch 18/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0929 - acc: 0.9718 - val_loss: 0.0996 - val_acc: 0.9689 Epoch 19/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0882 - acc: 0.9738 - val_loss: 0.1035 - val_acc: 0.9695 Epoch 20/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0850 - acc: 0.9737 - val_loss: 0.0941 - val_acc: 0.9717 Epoch 21/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0803 - acc: 0.9751 - val_loss: 0.0953 - val_acc: 0.9715 Epoch 22/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0793 - acc: 0.9762 - val_loss: 0.0898 - val_acc: 0.9729 Epoch 23/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0747 - acc: 0.9775 - val_loss: 0.0901 - val_acc: 0.9732 Epoch 24/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0718 - acc: 0.9778 - val_loss: 0.0948 - val_acc: 0.9720 Epoch 25/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0697 - acc: 0.9781 - val_loss: 0.0908 - val_acc: 0.9727 Epoch 26/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0668 - acc: 0.9794 - val_loss: 0.0917 - val_acc: 0.9726 Epoch 27/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0648 - acc: 0.9800 - val_loss: 0.0895 - val_acc: 0.9737 Epoch 28/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0637 - acc: 0.9798 - val_loss: 0.0868 - val_acc: 0.9728 Epoch 29/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0598 - acc: 0.9813 - val_loss: 0.0883 - val_acc: 0.9736 Epoch 30/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0570 - acc: 0.9820 - val_loss: 0.0869 - val_acc: 0.9741 Epoch 31/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0555 - acc: 0.9825 - val_loss: 0.0896 - val_acc: 0.9732 Epoch 32/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0554 - acc: 0.9827 - val_loss: 0.0843 - val_acc: 0.9743 Epoch 33/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0512 - acc: 0.9836 - val_loss: 0.0843 - val_acc: 0.9746 Epoch 34/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0509 - acc: 0.9835 - val_loss: 0.0868 - val_acc: 0.9753 Epoch 35/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0491 - acc: 0.9842 - val_loss: 0.0841 - val_acc: 0.9755 Epoch 36/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0471 - acc: 0.9848 - val_loss: 0.0887 - val_acc: 0.9728 Epoch 37/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0466 - acc: 0.9850 - val_loss: 0.0876 - val_acc: 0.9756 Epoch 38/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0456 - acc: 0.9856 - val_loss: 0.0833 - val_acc: 0.9769 Epoch 39/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0431 - acc: 0.9866 - val_loss: 0.0869 - val_acc: 0.9759 Epoch 40/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0413 - acc: 0.9869 - val_loss: 0.0926 - val_acc: 0.9743 Epoch 41/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0401 - acc: 0.9872 - val_loss: 0.0851 - val_acc: 0.9756 Epoch 42/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0401 - acc: 0.9876 - val_loss: 0.0856 - val_acc: 0.9764 Epoch 43/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0392 - acc: 0.9870 - val_loss: 0.0861 - val_acc: 0.9771 Epoch 44/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0396 - acc: 0.9870 - val_loss: 0.0918 - val_acc: 0.9756 Epoch 45/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0371 - acc: 0.9883 - val_loss: 0.0866 - val_acc: 0.9766 Epoch 46/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0374 - acc: 0.9883 - val_loss: 0.0888 - val_acc: 0.9748 Epoch 47/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0376 - acc: 0.9878 - val_loss: 0.0850 - val_acc: 0.9761 Epoch 48/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0351 - acc: 0.9890 - val_loss: 0.0848 - val_acc: 0.9777 Epoch 49/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0361 - acc: 0.9884 - val_loss: 0.0850 - val_acc: 0.9771 Epoch 50/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0341 - acc: 0.9887 - val_loss: 0.0889 - val_acc: 0.9769 Epoch 51/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0322 - acc: 0.9897 - val_loss: 0.0882 - val_acc: 0.9771 Epoch 52/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0322 - acc: 0.9895 - val_loss: 0.0892 - val_acc: 0.9762 Epoch 53/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0313 - acc: 0.9892 - val_loss: 0.0916 - val_acc: 0.9771 Epoch 54/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0300 - acc: 0.9897 - val_loss: 0.0913 - val_acc: 0.9772 Epoch 55/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0306 - acc: 0.9902 - val_loss: 0.0904 - val_acc: 0.9763 Epoch 56/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0307 - acc: 0.9900 - val_loss: 0.0910 - val_acc: 0.9777 Epoch 57/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0299 - acc: 0.9901 - val_loss: 0.0918 - val_acc: 0.9763 Epoch 58/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0299 - acc: 0.9906 - val_loss: 0.0914 - val_acc: 0.9778 Epoch 59/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0284 - acc: 0.9909 - val_loss: 0.0907 - val_acc: 0.9769 Epoch 60/60 60000/60000 [==============================] - 0s 8us/step - loss: 0.0283 - acc: 0.9908 - val_loss: 0.0962 - val_acc: 0.9761 CPU times: user 1min 17s, sys: 7.4 s, total: 1min 24s Wall time: 29.3 s ```python score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` Test loss: 0.09620895183624088 Test accuracy: 0.9761 ```python fig, ax = plt.subplots(1, 1, figsize=(10,6)) ax.plot(np.sqrt(model_history.history['acc']), 'r', label='train_acc') ax.plot(np.sqrt(model_history.history['val_acc']), 'b' ,label='val_acc') ax.set_xlabel(r'Epoch', fontsize=20) ax.set_ylabel(r'Accuracy', fontsize=20) ax.legend() ax.tick_params(labelsize=20) ``` ```python fig, ax = plt.subplots(1, 1, figsize=(10,6)) ax.plot(np.sqrt(model_history.history['loss']), 'r', label='train') ax.plot(np.sqrt(model_history.history['val_loss']), 'b' ,label='val') ax.set_xlabel(r'Epoch', fontsize=20) ax.set_ylabel(r'Loss', fontsize=20) ax.legend() ax.tick_params(labelsize=20) ``` ### Step 5 - Random restarts This method does not seem to have an implementation in `keras`. Develop your own function for this using `keras.callbacks.LearningRateScheduler`. You can refer back to how we used it to set a custom learning rate. ### Tuning the Hyperparameters using Cross Validation Now instead of trying different values by hand, we will use GridSearchCV from Scikit-Learn to try out several values for our hyperparameters and compare the results. To do cross-validation with `keras` we will use the wrappers for the Scikit-Learn API. They provide a way to use Sequential Keras models (single-input only) as part of your Scikit-Learn workflow. There are two wrappers available: `keras.wrappers.scikit_learn.KerasClassifier(build_fn=None, **sk_params)`, which implements the Scikit-Learn classifier interface, `keras.wrappers.scikit_learn.KerasRegressor(build_fn=None, **sk_params)`, which implements the Scikit-Learn regressor interface. ```python import numpy from sklearn.model_selection import GridSearchCV from keras.wrappers.scikit_learn import KerasClassifier ``` #### Trying different weight initializations ```python # let's create a function that creates the model (required for KerasClassifier) # while accepting the hyperparameters we want to tune # we also pass some default values such as optimizer='rmsprop' def create_model(init_mode='uniform'): # define model model = Sequential() model.add(Dense(64, kernel_initializer=init_mode, activation=tf.nn.relu, input_dim=784)) model.add(Dropout(0.1)) model.add(Dense(64, kernel_initializer=init_mode, activation=tf.nn.relu)) model.add(Dense(10, kernel_initializer=init_mode, activation=tf.nn.softmax)) # compile model model.compile(loss='categorical_crossentropy', optimizer=RMSprop(), metrics=['accuracy']) return model ``` ```python %%time seed = 7 numpy.random.seed(seed) batch_size = 128 epochs = 10 model_CV = KerasClassifier(build_fn=create_model, epochs=epochs, batch_size=batch_size, verbose=1) # define the grid search parameters init_mode = ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform'] param_grid = dict(init_mode=init_mode) grid = GridSearchCV(estimator=model_CV, param_grid=param_grid, n_jobs=-1, cv=3) grid_result = grid.fit(x_train, y_train) ``` Epoch 1/10 60000/60000 [==============================] - 1s 21us/step - loss: 0.4118 - acc: 0.8824 Epoch 2/10 60000/60000 [==============================] - 1s 15us/step - loss: 0.1936 - acc: 0.9437 Epoch 3/10 60000/60000 [==============================] - 1s 14us/step - loss: 0.1482 - acc: 0.9553 Epoch 4/10 60000/60000 [==============================] - 1s 14us/step - loss: 0.1225 - acc: 0.9631 Epoch 5/10 60000/60000 [==============================] - 1s 14us/step - loss: 0.1064 - acc: 0.9676 Epoch 6/10 60000/60000 [==============================] - 1s 14us/step - loss: 0.0944 - acc: 0.9710 Epoch 7/10 60000/60000 [==============================] - 1s 14us/step - loss: 0.0876 - acc: 0.9732 Epoch 8/10 60000/60000 [==============================] - 1s 15us/step - loss: 0.0809 - acc: 0.9745 Epoch 9/10 60000/60000 [==============================] - 1s 14us/step - loss: 0.0741 - acc: 0.9775 Epoch 10/10 60000/60000 [==============================] - 1s 15us/step - loss: 0.0709 - acc: 0.9783 CPU times: user 21 s, sys: 3.56 s, total: 24.5 s Wall time: 1min 20s ```python # print results print(f'Best Accuracy for {grid_result.best_score_} using {grid_result.best_params_}') means = grid_result.cv_results_['mean_test_score'] stds = grid_result.cv_results_['std_test_score'] params = grid_result.cv_results_['params'] for mean, stdev, param in zip(means, stds, params): print(f' mean={mean:.4}, std={stdev:.4} using {param}') ``` Best Accuracy for 0.9689333333333333 using {'init_mode': 'lecun_uniform'} mean=0.9647, std=0.001438 using {'init_mode': 'uniform'} mean=0.9689, std=0.001044 using {'init_mode': 'lecun_uniform'} mean=0.9651, std=0.001515 using {'init_mode': 'normal'} mean=0.1124, std=0.002416 using {'init_mode': 'zero'} mean=0.9657, std=0.0005104 using {'init_mode': 'glorot_normal'} mean=0.9687, std=0.0008436 using {'init_mode': 'glorot_uniform'} mean=0.9681, std=0.002145 using {'init_mode': 'he_normal'} mean=0.9685, std=0.001952 using {'init_mode': 'he_uniform'} ### Save Your Neural Network Model to JSON The Hierarchical Data Format (HDF5) is a data storage format for storing large arrays of data including values for the weights in a neural network. You can install HDF5 Python module: pip install h5py Keras gives you the ability to describe and save any model using the JSON format. ```python from keras.models import model_from_json # serialize model to JSON model_json = model.to_json() with open("model.json", "w") as json_file: json_file.write(model_json) # save weights to HDF5 model.save_weights("model.h5") print("Model saved") # when you want to retrieve the model: load json and create model json_file = open('model.json', 'r') saved_model = json_file.read() # close the file as good practice json_file.close() model_from_json = model_from_json(saved_model) # load weights into new model model_from_json.load_weights("model.h5") print("Model loaded") ``` Model saved Model loaded ### Cross-validation with more than one hyperparameters We can do cross-validation with more than one parameters simultaneously, effectively trying out combinations of them. **Note: Cross-validation in neural networks is computationally expensive**. Think before you experiment! Multiply the number of features you are validating on to see how many combinations there are. Each combination is evaluated using the cv-fold cross-validation (cv is a parameter we choose). For example, we can choose to search for different values of: - batch size, - number of epochs and - initialization mode. The choices are specified into a dictionary and passed to GridSearchCV. We will perform a GridSearch for `batch size`, `number of epochs` and `initializer` combined. ```python # repeat some of the initial values here so we make sure they were not changed input_dim = x_train.shape[1] num_classes = 10 # let's create a function that creates the model (required for KerasClassifier) # while accepting the hyperparameters we want to tune # we also pass some default values such as optimizer='rmsprop' def create_model_2(optimizer='rmsprop', init='glorot_uniform'): model = Sequential() model.add(Dense(64, input_dim=input_dim, kernel_initializer=init, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(64, kernel_initializer=init, activation=tf.nn.relu)) model.add(Dense(num_classes, kernel_initializer=init, activation=tf.nn.softmax)) # compile model model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model ``` ```python %%time # fix random seed for reproducibility (this might work or might not work # depending on each library's implenentation) seed = 7 numpy.random.seed(seed) # create the sklearn model for the network model_init_batch_epoch_CV = KerasClassifier(build_fn=create_model_2, verbose=1) # we choose the initializers that came at the top in our previous cross-validation!! init_mode = ['glorot_uniform', 'uniform'] batches = [128, 512] epochs = [10, 20] # grid search for initializer, batch size and number of epochs param_grid = dict(epochs=epochs, batch_size=batches, init=init_mode) grid = GridSearchCV(estimator=model_init_batch_epoch_CV, param_grid=param_grid, cv=3) grid_result = grid.fit(x_train, y_train) ``` Epoch 1/10 40000/40000 [==============================] - 1s 21us/step - loss: 0.4801 - acc: 0.8601 Epoch 2/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.2309 - acc: 0.9310 Epoch 3/10 40000/40000 [==============================] - 1s 14us/step - loss: 0.1744 - acc: 0.9479 Epoch 4/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1422 - acc: 0.9575 Epoch 5/10 40000/40000 [==============================] - 1s 14us/step - loss: 0.1214 - acc: 0.9625 Epoch 6/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1081 - acc: 0.9675 Epoch 7/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0974 - acc: 0.9693 Epoch 8/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0874 - acc: 0.9730 Epoch 9/10 40000/40000 [==============================] - 1s 14us/step - loss: 0.0800 - acc: 0.9750 Epoch 10/10 40000/40000 [==============================] - 1s 14us/step - loss: 0.0750 - acc: 0.9765 20000/20000 [==============================] - 0s 10us/step 40000/40000 [==============================] - 0s 6us/step Epoch 1/10 40000/40000 [==============================] - 1s 22us/step - loss: 0.4746 - acc: 0.8656 Epoch 2/10 40000/40000 [==============================] - 1s 14us/step - loss: 0.2264 - acc: 0.9336 Epoch 3/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1734 - acc: 0.9487 Epoch 4/10 40000/40000 [==============================] - 1s 14us/step - loss: 0.1436 - acc: 0.9568 Epoch 5/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1256 - acc: 0.9614 Epoch 6/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1104 - acc: 0.9660 Epoch 7/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0973 - acc: 0.9707 Epoch 8/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0870 - acc: 0.9733 Epoch 9/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0818 - acc: 0.9748 Epoch 10/10 40000/40000 [==============================] - 1s 14us/step - loss: 0.0730 - acc: 0.9770 20000/20000 [==============================] - 0s 10us/step 40000/40000 [==============================] - 0s 6us/step Epoch 1/10 40000/40000 [==============================] - 1s 23us/step - loss: 0.4639 - acc: 0.8671 Epoch 2/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.2208 - acc: 0.9344 Epoch 3/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1693 - acc: 0.9491 Epoch 4/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1388 - acc: 0.9580 Epoch 5/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1206 - acc: 0.9634 Epoch 6/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1062 - acc: 0.9678 Epoch 7/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0956 - acc: 0.9711 Epoch 8/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0870 - acc: 0.9728 Epoch 9/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0794 - acc: 0.9750 Epoch 10/10 40000/40000 [==============================] - 1s 14us/step - loss: 0.0748 - acc: 0.9774 20000/20000 [==============================] - 0s 11us/step 40000/40000 [==============================] - 0s 7us/step Epoch 1/10 40000/40000 [==============================] - 1s 23us/step - loss: 0.7144 - acc: 0.7894 Epoch 2/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.3246 - acc: 0.9045 Epoch 3/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.2482 - acc: 0.9268 Epoch 4/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.2005 - acc: 0.9407 Epoch 5/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1673 - acc: 0.9485 Epoch 6/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1462 - acc: 0.9559 Epoch 7/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1305 - acc: 0.9604 Epoch 8/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1166 - acc: 0.9643 Epoch 9/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1079 - acc: 0.9675 Epoch 10/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0983 - acc: 0.9695 20000/20000 [==============================] - 0s 12us/step 40000/40000 [==============================] - 0s 6us/step Epoch 1/10 40000/40000 [==============================] - 1s 24us/step - loss: 0.6894 - acc: 0.7944 Epoch 2/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.3171 - acc: 0.9061 Epoch 3/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.2358 - acc: 0.9312 Epoch 4/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1911 - acc: 0.9422 Epoch 5/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1595 - acc: 0.9526 Epoch 6/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1401 - acc: 0.9579 Epoch 7/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1230 - acc: 0.9636 Epoch 8/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1096 - acc: 0.9672 Epoch 9/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1027 - acc: 0.9692 Epoch 10/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0936 - acc: 0.9718 20000/20000 [==============================] - 0s 12us/step 40000/40000 [==============================] - 0s 7us/step Epoch 1/10 40000/40000 [==============================] - 1s 24us/step - loss: 0.7028 - acc: 0.7976 Epoch 2/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.3189 - acc: 0.9055 Epoch 3/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.2390 - acc: 0.9307 Epoch 4/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1910 - acc: 0.9435 Epoch 5/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1595 - acc: 0.9528 Epoch 6/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1376 - acc: 0.9583 Epoch 7/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1213 - acc: 0.9629 Epoch 8/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.1100 - acc: 0.9664 Epoch 9/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0987 - acc: 0.9697 Epoch 10/10 40000/40000 [==============================] - 1s 15us/step - loss: 0.0932 - acc: 0.9714 20000/20000 [==============================] - 0s 13us/step 40000/40000 [==============================] - 0s 7us/step Epoch 1/20 40000/40000 [==============================] - 1s 25us/step - loss: 0.4938 - acc: 0.8589 Epoch 2/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.2286 - acc: 0.9324 Epoch 3/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1751 - acc: 0.9470 Epoch 4/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1458 - acc: 0.9553 Epoch 5/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1237 - acc: 0.9620 Epoch 6/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1106 - acc: 0.9669 Epoch 7/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0998 - acc: 0.9696 Epoch 8/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0898 - acc: 0.9729 Epoch 9/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0799 - acc: 0.9749 Epoch 10/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0746 - acc: 0.9769 Epoch 11/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0688 - acc: 0.9783 Epoch 12/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0655 - acc: 0.9792 Epoch 13/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0619 - acc: 0.9801 Epoch 14/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0574 - acc: 0.9814 Epoch 15/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0549 - acc: 0.9836 Epoch 16/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0512 - acc: 0.9837 Epoch 17/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0464 - acc: 0.9855 Epoch 18/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0466 - acc: 0.9850 Epoch 19/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0431 - acc: 0.9863 Epoch 20/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0430 - acc: 0.9861 20000/20000 [==============================] - 0s 13us/step 40000/40000 [==============================] - 0s 7us/step Epoch 1/20 40000/40000 [==============================] - 1s 25us/step - loss: 0.4956 - acc: 0.8584 Epoch 2/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.2286 - acc: 0.9321 Epoch 3/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1746 - acc: 0.9474 Epoch 4/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1438 - acc: 0.9574 Epoch 5/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1232 - acc: 0.9634 Epoch 6/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1104 - acc: 0.9665 Epoch 7/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0986 - acc: 0.9696 Epoch 8/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0886 - acc: 0.9723 Epoch 9/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0828 - acc: 0.9741 Epoch 10/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0763 - acc: 0.9768 Epoch 11/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0679 - acc: 0.9781 Epoch 12/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0656 - acc: 0.9788 Epoch 13/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0601 - acc: 0.9810 Epoch 14/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0571 - acc: 0.9817 Epoch 15/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0517 - acc: 0.9832 Epoch 16/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0509 - acc: 0.9834 Epoch 17/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0478 - acc: 0.9850 Epoch 18/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0461 - acc: 0.9852 Epoch 19/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0442 - acc: 0.9854 Epoch 20/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0427 - acc: 0.9866 20000/20000 [==============================] - 0s 14us/step 40000/40000 [==============================] - 0s 7us/step Epoch 1/20 40000/40000 [==============================] - 1s 27us/step - loss: 0.4694 - acc: 0.8670 Epoch 2/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.2196 - acc: 0.9336 Epoch 3/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1681 - acc: 0.9495 Epoch 4/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1391 - acc: 0.9589 Epoch 5/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1200 - acc: 0.9630 Epoch 6/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1067 - acc: 0.9671 Epoch 7/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0968 - acc: 0.9713 Epoch 8/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0880 - acc: 0.9730 Epoch 9/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0815 - acc: 0.9754 Epoch 10/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0742 - acc: 0.9771 Epoch 11/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0711 - acc: 0.9778 Epoch 12/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0643 - acc: 0.9806 Epoch 13/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0613 - acc: 0.9815 Epoch 14/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0561 - acc: 0.9818 Epoch 15/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0534 - acc: 0.9832 Epoch 16/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0528 - acc: 0.9832 Epoch 17/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0479 - acc: 0.9848 Epoch 18/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0486 - acc: 0.9844 Epoch 19/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0438 - acc: 0.9861 Epoch 20/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0427 - acc: 0.9861 20000/20000 [==============================] - 0s 14us/step 40000/40000 [==============================] - 0s 7us/step Epoch 1/20 40000/40000 [==============================] - 1s 27us/step - loss: 0.6830 - acc: 0.8003 Epoch 2/20 40000/40000 [==============================] - 1s 16us/step - loss: 0.3234 - acc: 0.9044 Epoch 3/20 40000/40000 [==============================] - 1s 16us/step - loss: 0.2456 - acc: 0.9269 Epoch 4/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1982 - acc: 0.9407 Epoch 5/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1627 - acc: 0.9506 Epoch 6/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1422 - acc: 0.9561 Epoch 7/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1251 - acc: 0.9618 Epoch 8/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1134 - acc: 0.9650 Epoch 9/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1037 - acc: 0.9677 Epoch 10/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0957 - acc: 0.9705 Epoch 11/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0891 - acc: 0.9730 Epoch 12/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0832 - acc: 0.9745 Epoch 13/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0760 - acc: 0.9768 Epoch 14/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0727 - acc: 0.9778 Epoch 15/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0681 - acc: 0.9782 Epoch 16/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0628 - acc: 0.9803 Epoch 17/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0613 - acc: 0.9801 Epoch 18/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0572 - acc: 0.9824 Epoch 19/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0549 - acc: 0.9821 Epoch 20/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0521 - acc: 0.9834 20000/20000 [==============================] - 0s 15us/step 40000/40000 [==============================] - 0s 7us/step Epoch 1/20 40000/40000 [==============================] - 1s 28us/step - loss: 0.6742 - acc: 0.8034 Epoch 2/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.3142 - acc: 0.9081 Epoch 3/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.2365 - acc: 0.9306 Epoch 4/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1873 - acc: 0.9453 Epoch 5/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1563 - acc: 0.9531 Epoch 6/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1373 - acc: 0.9580 Epoch 7/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1212 - acc: 0.9640 Epoch 8/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1084 - acc: 0.9665 Epoch 9/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1014 - acc: 0.9695 Epoch 10/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0917 - acc: 0.9732 Epoch 11/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0838 - acc: 0.9739 Epoch 12/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0788 - acc: 0.9749 Epoch 13/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0720 - acc: 0.9779 Epoch 14/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0685 - acc: 0.9793 Epoch 15/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0666 - acc: 0.9797 Epoch 16/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0618 - acc: 0.9807 Epoch 17/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0578 - acc: 0.9819 Epoch 18/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0557 - acc: 0.9825 Epoch 19/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0535 - acc: 0.9831 Epoch 20/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0482 - acc: 0.9848 20000/20000 [==============================] - 0s 15us/step 40000/40000 [==============================] - 0s 7us/step Epoch 1/20 40000/40000 [==============================] - 1s 29us/step - loss: 0.6865 - acc: 0.8001 Epoch 2/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.3089 - acc: 0.9106 Epoch 3/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.2292 - acc: 0.9304 Epoch 4/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1845 - acc: 0.9435 Epoch 5/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1562 - acc: 0.9527 Epoch 6/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1371 - acc: 0.9584 Epoch 7/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1206 - acc: 0.9629 Epoch 8/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.1098 - acc: 0.9667 Epoch 9/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0990 - acc: 0.9699 Epoch 10/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0912 - acc: 0.9718 Epoch 11/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0863 - acc: 0.9740 Epoch 12/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0792 - acc: 0.9757 Epoch 13/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0721 - acc: 0.9782 Epoch 14/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0696 - acc: 0.9782 Epoch 15/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0661 - acc: 0.9796 Epoch 16/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0621 - acc: 0.9810 Epoch 17/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0588 - acc: 0.9813 Epoch 18/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0541 - acc: 0.9831 Epoch 19/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0513 - acc: 0.9834 Epoch 20/20 40000/40000 [==============================] - 1s 15us/step - loss: 0.0514 - acc: 0.9835 20000/20000 [==============================] - 0s 16us/step 40000/40000 [==============================] - 0s 7us/step Epoch 1/10 40000/40000 [==============================] - 1s 22us/step - loss: 0.7656 - acc: 0.7926 Epoch 2/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.3345 - acc: 0.9021 Epoch 3/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2633 - acc: 0.9225 Epoch 4/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2207 - acc: 0.9357 Epoch 5/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1877 - acc: 0.9450 Epoch 6/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1684 - acc: 0.9500 Epoch 7/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1517 - acc: 0.9552 Epoch 8/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1358 - acc: 0.9587 Epoch 9/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1236 - acc: 0.9627 Epoch 10/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1153 - acc: 0.9661 20000/20000 [==============================] - 0s 14us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/10 40000/40000 [==============================] - 1s 22us/step - loss: 0.7640 - acc: 0.7905 Epoch 2/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.3207 - acc: 0.9055 Epoch 3/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2455 - acc: 0.9276 Epoch 4/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2050 - acc: 0.9392 Epoch 5/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1755 - acc: 0.9484 Epoch 6/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1573 - acc: 0.9524 Epoch 7/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1385 - acc: 0.9594 Epoch 8/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1247 - acc: 0.9634 Epoch 9/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1181 - acc: 0.9644 Epoch 10/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1074 - acc: 0.9679 20000/20000 [==============================] - 0s 15us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/10 40000/40000 [==============================] - 1s 23us/step - loss: 0.7858 - acc: 0.7867 Epoch 2/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.3358 - acc: 0.9017 Epoch 3/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2603 - acc: 0.9250 Epoch 4/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2160 - acc: 0.9367 Epoch 5/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1879 - acc: 0.9435 Epoch 6/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1663 - acc: 0.9513 Epoch 7/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1493 - acc: 0.9552 Epoch 8/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1363 - acc: 0.9591 Epoch 9/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1262 - acc: 0.9609 Epoch 10/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1147 - acc: 0.9653 20000/20000 [==============================] - 0s 16us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/10 40000/40000 [==============================] - 1s 23us/step - loss: 1.1193 - acc: 0.6932 Epoch 2/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.4829 - acc: 0.8573 Epoch 3/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.3785 - acc: 0.8885 Epoch 4/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.3208 - acc: 0.9062 Epoch 5/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2811 - acc: 0.9167 Epoch 6/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2472 - acc: 0.9263 Epoch 7/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2200 - acc: 0.9362 Epoch 8/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1963 - acc: 0.9422 Epoch 9/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1772 - acc: 0.9475 Epoch 10/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1611 - acc: 0.9519 20000/20000 [==============================] - 0s 16us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/10 40000/40000 [==============================] - 1s 24us/step - loss: 1.1189 - acc: 0.6828 Epoch 2/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.4867 - acc: 0.8556 Epoch 3/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.3713 - acc: 0.8919 Epoch 4/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.3125 - acc: 0.9090 Epoch 5/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2748 - acc: 0.9214 Epoch 6/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2443 - acc: 0.9285 Epoch 7/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2141 - acc: 0.9383 Epoch 8/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1919 - acc: 0.9445 Epoch 9/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1767 - acc: 0.9485 Epoch 10/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1617 - acc: 0.9528 20000/20000 [==============================] - 0s 17us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/10 40000/40000 [==============================] - 1s 25us/step - loss: 1.0997 - acc: 0.7128 Epoch 2/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.4652 - acc: 0.8638 Epoch 3/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.3716 - acc: 0.8919 Epoch 4/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.3165 - acc: 0.9072 Epoch 5/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2735 - acc: 0.9199 Epoch 6/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2381 - acc: 0.9299 Epoch 7/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.2094 - acc: 0.9380 Epoch 8/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1863 - acc: 0.9442 Epoch 9/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1693 - acc: 0.9491 Epoch 10/10 40000/40000 [==============================] - 0s 8us/step - loss: 0.1549 - acc: 0.9538 20000/20000 [==============================] - 0s 17us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/20 40000/40000 [==============================] - 1s 26us/step - loss: 0.7406 - acc: 0.7936 Epoch 2/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.3331 - acc: 0.9019 Epoch 3/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2623 - acc: 0.9229 Epoch 4/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2174 - acc: 0.9372 Epoch 5/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1876 - acc: 0.9436 Epoch 6/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1659 - acc: 0.9498 Epoch 7/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1493 - acc: 0.9559 Epoch 8/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1358 - acc: 0.9602 Epoch 9/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1244 - acc: 0.9624 Epoch 10/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1135 - acc: 0.9655 Epoch 11/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1063 - acc: 0.9683 Epoch 12/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0963 - acc: 0.9711 Epoch 13/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0924 - acc: 0.9720 Epoch 14/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0897 - acc: 0.9732 Epoch 15/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0811 - acc: 0.9752 Epoch 16/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0798 - acc: 0.9750 Epoch 17/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0733 - acc: 0.9770 Epoch 18/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0695 - acc: 0.9789 Epoch 19/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0652 - acc: 0.9798 Epoch 20/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0622 - acc: 0.9815 20000/20000 [==============================] - 0s 18us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/20 40000/40000 [==============================] - 1s 27us/step - loss: 0.7349 - acc: 0.8012 Epoch 2/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.3201 - acc: 0.9060 Epoch 3/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2541 - acc: 0.9257 Epoch 4/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2149 - acc: 0.9375 Epoch 5/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1894 - acc: 0.9443 Epoch 6/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1694 - acc: 0.9496 Epoch 7/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1552 - acc: 0.9541 Epoch 8/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1421 - acc: 0.9580 Epoch 9/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1307 - acc: 0.9605 Epoch 10/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1200 - acc: 0.9642 Epoch 11/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1110 - acc: 0.9663 Epoch 12/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1041 - acc: 0.9681 Epoch 13/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0971 - acc: 0.9698 Epoch 14/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0943 - acc: 0.9713 Epoch 15/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0864 - acc: 0.9733 Epoch 16/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0809 - acc: 0.9748 Epoch 17/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0776 - acc: 0.9762 Epoch 18/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0745 - acc: 0.9762 Epoch 19/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0712 - acc: 0.9777 Epoch 20/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0654 - acc: 0.9793 20000/20000 [==============================] - 0s 18us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/20 40000/40000 [==============================] - 1s 27us/step - loss: 0.7435 - acc: 0.8001 Epoch 2/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.3335 - acc: 0.9029 Epoch 3/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2555 - acc: 0.9254 Epoch 4/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2168 - acc: 0.9359 Epoch 5/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1872 - acc: 0.9458 Epoch 6/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1640 - acc: 0.9514 Epoch 7/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1452 - acc: 0.9578 Epoch 8/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1313 - acc: 0.9607 Epoch 9/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1193 - acc: 0.9644 Epoch 10/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1104 - acc: 0.9670 Epoch 11/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1024 - acc: 0.9691 Epoch 12/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0955 - acc: 0.9715 Epoch 13/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0881 - acc: 0.9734 Epoch 14/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0815 - acc: 0.9756 Epoch 15/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0772 - acc: 0.9764 Epoch 16/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0745 - acc: 0.9780 Epoch 17/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0681 - acc: 0.9788 Epoch 18/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0649 - acc: 0.9806 Epoch 19/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0640 - acc: 0.9800 Epoch 20/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0604 - acc: 0.9813 20000/20000 [==============================] - 0s 19us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/20 40000/40000 [==============================] - 1s 28us/step - loss: 1.1126 - acc: 0.6943 Epoch 2/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.4792 - acc: 0.8568 Epoch 3/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.3712 - acc: 0.8910 Epoch 4/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.3155 - acc: 0.9068 Epoch 5/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2746 - acc: 0.9196 Epoch 6/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2392 - acc: 0.9293 Epoch 7/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2126 - acc: 0.9363 Epoch 8/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1923 - acc: 0.9437 Epoch 9/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1706 - acc: 0.9489 Epoch 10/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1591 - acc: 0.9530 Epoch 11/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1462 - acc: 0.9560 Epoch 12/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1342 - acc: 0.9593 Epoch 13/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1272 - acc: 0.9609 Epoch 14/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1188 - acc: 0.9639 Epoch 15/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1126 - acc: 0.9660 Epoch 16/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1072 - acc: 0.9673 Epoch 17/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1016 - acc: 0.9692 Epoch 18/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0971 - acc: 0.9697 Epoch 19/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0901 - acc: 0.9719 Epoch 20/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0869 - acc: 0.9729 20000/20000 [==============================] - 0s 19us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/20 40000/40000 [==============================] - 1s 28us/step - loss: 1.0906 - acc: 0.7216 Epoch 2/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.4527 - acc: 0.8658 Epoch 3/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.3559 - acc: 0.8956 Epoch 4/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.3055 - acc: 0.9109 Epoch 5/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2642 - acc: 0.9219 Epoch 6/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2333 - acc: 0.9317 Epoch 7/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2057 - acc: 0.9386 Epoch 8/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1858 - acc: 0.9462 Epoch 9/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1674 - acc: 0.9501 Epoch 10/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1514 - acc: 0.9548 Epoch 11/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1410 - acc: 0.9571 Epoch 12/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1303 - acc: 0.9607 Epoch 13/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1193 - acc: 0.9643 Epoch 14/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1131 - acc: 0.9649 Epoch 15/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1054 - acc: 0.9680 Epoch 16/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0999 - acc: 0.9696 Epoch 17/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0937 - acc: 0.9712 Epoch 18/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0895 - acc: 0.9731 Epoch 19/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0830 - acc: 0.9758 Epoch 20/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0790 - acc: 0.9760 20000/20000 [==============================] - 0s 20us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/20 40000/40000 [==============================] - 1s 29us/step - loss: 1.1233 - acc: 0.6955 Epoch 2/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.4793 - acc: 0.8588 Epoch 3/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.3751 - acc: 0.8898 Epoch 4/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.3203 - acc: 0.9069 Epoch 5/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2760 - acc: 0.9196 Epoch 6/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2422 - acc: 0.9286 Epoch 7/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.2155 - acc: 0.9363 Epoch 8/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1910 - acc: 0.9437 Epoch 9/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1718 - acc: 0.9489 Epoch 10/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1584 - acc: 0.9530 Epoch 11/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1435 - acc: 0.9570 Epoch 12/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1326 - acc: 0.9603 Epoch 13/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1244 - acc: 0.9615 Epoch 14/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1171 - acc: 0.9644 Epoch 15/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1093 - acc: 0.9670 Epoch 16/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.1047 - acc: 0.9692 Epoch 17/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0984 - acc: 0.9698 Epoch 18/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0910 - acc: 0.9720 Epoch 19/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0860 - acc: 0.9734 Epoch 20/20 40000/40000 [==============================] - 0s 8us/step - loss: 0.0827 - acc: 0.9748 20000/20000 [==============================] - 0s 21us/step 40000/40000 [==============================] - 0s 4us/step Epoch 1/20 60000/60000 [==============================] - 2s 31us/step - loss: 0.4007 - acc: 0.8851 Epoch 2/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.1892 - acc: 0.9439 Epoch 3/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.1432 - acc: 0.9567 Epoch 4/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.1185 - acc: 0.9643 Epoch 5/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.1050 - acc: 0.9678 Epoch 6/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0929 - acc: 0.9715 Epoch 7/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0848 - acc: 0.9737 Epoch 8/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0775 - acc: 0.9764 Epoch 9/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0723 - acc: 0.9780 Epoch 10/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0693 - acc: 0.9785 Epoch 11/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0637 - acc: 0.9802 Epoch 12/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0602 - acc: 0.9814 Epoch 13/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0585 - acc: 0.9816 Epoch 14/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0546 - acc: 0.9827 Epoch 15/20 60000/60000 [==============================] - 1s 18us/step - loss: 0.0512 - acc: 0.9834 Epoch 16/20 60000/60000 [==============================] - 1s 18us/step - loss: 0.0501 - acc: 0.9841 Epoch 17/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0481 - acc: 0.9844 Epoch 18/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0456 - acc: 0.9860 Epoch 19/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0444 - acc: 0.9857 Epoch 20/20 60000/60000 [==============================] - 1s 17us/step - loss: 0.0439 - acc: 0.9861 CPU times: user 7min 56s, sys: 1min 6s, total: 9min 3s Wall time: 3min 43s ```python # print results print(f'Best Accuracy for {grid_result.best_score_:.4} using {grid_result.best_params_}') means = grid_result.cv_results_['mean_test_score'] stds = grid_result.cv_results_['std_test_score'] params = grid_result.cv_results_['params'] for mean, stdev, param in zip(means, stds, params): print(f'mean={mean:.4}, std={stdev:.4} using {param}') ``` Best Accuracy for 0.9712 using {'batch_size': 128, 'epochs': 20, 'init': 'glorot_uniform'} mean=0.9687, std=0.002174 using {'batch_size': 128, 'epochs': 10, 'init': 'glorot_uniform'} mean=0.966, std=0.000827 using {'batch_size': 128, 'epochs': 10, 'init': 'uniform'} mean=0.9712, std=0.0006276 using {'batch_size': 128, 'epochs': 20, 'init': 'glorot_uniform'} mean=0.97, std=0.001214 using {'batch_size': 128, 'epochs': 20, 'init': 'uniform'} mean=0.9594, std=0.001476 using {'batch_size': 512, 'epochs': 10, 'init': 'glorot_uniform'} mean=0.9516, std=0.003239 using {'batch_size': 512, 'epochs': 10, 'init': 'uniform'} mean=0.9684, std=0.003607 using {'batch_size': 512, 'epochs': 20, 'init': 'glorot_uniform'} mean=0.9633, std=0.0007962 using {'batch_size': 512, 'epochs': 20, 'init': 'uniform'}
[STATEMENT] lemma second_summand_not_universe: "x \<oplus> y \<noteq> u \<Longrightarrow> y \<noteq> u" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x \<oplus> y \<noteq> u \<Longrightarrow> y \<noteq> u [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. x \<oplus> y \<noteq> u \<Longrightarrow> y \<noteq> u [PROOF STEP] assume antecedent: "x \<oplus> y \<noteq> u" [PROOF STATE] proof (state) this: x \<oplus> y \<noteq> u goal (1 subgoal): 1. x \<oplus> y \<noteq> u \<Longrightarrow> y \<noteq> u [PROOF STEP] show "y \<noteq> u" [PROOF STATE] proof (prove) goal (1 subgoal): 1. y \<noteq> u [PROOF STEP] proof [PROOF STATE] proof (state) goal (1 subgoal): 1. y = u \<Longrightarrow> False [PROOF STEP] assume "y = u" [PROOF STATE] proof (state) this: y = u goal (1 subgoal): 1. y = u \<Longrightarrow> False [PROOF STEP] hence "x \<oplus> u \<noteq> u" [PROOF STATE] proof (prove) using this: y = u goal (1 subgoal): 1. x \<oplus> u \<noteq> u [PROOF STEP] using antecedent [PROOF STATE] proof (prove) using this: y = u x \<oplus> y \<noteq> u goal (1 subgoal): 1. x \<oplus> u \<noteq> u [PROOF STEP] by (rule subst) [PROOF STATE] proof (state) this: x \<oplus> u \<noteq> u goal (1 subgoal): 1. y = u \<Longrightarrow> False [PROOF STEP] thus "False" [PROOF STATE] proof (prove) using this: x \<oplus> u \<noteq> u goal (1 subgoal): 1. False [PROOF STEP] using universe_absorbing [PROOF STATE] proof (prove) using this: x \<oplus> u \<noteq> u ?x \<oplus> u = u goal (1 subgoal): 1. False [PROOF STEP] .. [PROOF STATE] proof (state) this: False goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: y \<noteq> u goal: No subgoals! [PROOF STEP] qed
# Введение Эти интерактивные тетрадки подразумевают последовательное выполнение. Нажмите `Shift+Enter` чтобы выполнить ячейку с кодом. ```python print("Hello","World") ``` Для работы с символьными вычисленями будем пользоваться пакетом `sympy`: ```python from sympy import * ``` Символы для вычислений создаются через `symbols`: ```python x, y, t = symbols("x, y, t") alpha, beta, gamma = symbols("alpha, beta, gamma", cls=Function) alpha(t) + x ``` Матрицы создаются из списка списков: ```python m = Matrix([ [cos(alpha(t)), -sin(alpha(t)), 0], [sin(alpha(t)), cos(alpha(t)), 0], [0, 0, 1] ]) v = Matrix([ [x], [y], [1] ]) ``` ```python rotated = m * v rotated ``` `sympy` позволяет легко дифферинцировать выражения: ```python velocity = diff(rotated, t) velocity[0] ``` ```python velocity[1] ``` Помимо этого, можно заменять части выражений. Например, если $$\alpha(t) = t$$ получим следующие скорости: ```python velocity[0].replace(alpha(t), t).simplify() ``` ```python velocity[1].replace(alpha(t), t).simplify() ``` А если вращение происходит с постоянным угловым ускорением $$ \alpha(t) = t^2 $$ получим следующие линейные скорости: ```python velocity[0].replace(alpha(t), t**2).simplify() ``` ```python velocity[1].replace(alpha(t), t**2).simplify() ```
import LMT variable {I} [Nonempty I] {E} [Nonempty E] [Nonempty (A I E)] example {a1 a2 a3 : A I E} : ((((a2).write i2 (v1)).write i1 (v1)).read i2) ≠ (v1) → False := by arr
// Distributed under the MIT License. // See LICENSE.txt for details. #pragma once #include <boost/functional/hash.hpp> #include <cstddef> #include <utility> #include "DataStructures/DataBox/Tag.hpp" #include "DataStructures/FixedHashMap.hpp" #include "Domain/Structure/Direction.hpp" #include "Domain/Structure/ElementId.hpp" #include "Domain/Structure/MaxNumberOfNeighbors.hpp" #include "Evolution/DgSubcell/NeighborData.hpp" namespace evolution::dg::subcell::Tags { /// The neighbor data for reconstruction and the RDMP troubled-cell indicator. /// /// This also holds the self-information for the RDMP at the time level `t^n` /// (the candidate is at `t^{n+1}`), with id `ElementId::external_boundary_id` /// and `Direction::lower_xi()` as the (arbitrary and meaningless) /// direction. template <size_t Dim> struct NeighborDataForReconstructionAndRdmpTci : db::SimpleTag { using type = FixedHashMap<maximum_number_of_neighbors(Dim) + 1, std::pair<Direction<Dim>, ElementId<Dim>>, NeighborData, boost::hash<std::pair<Direction<Dim>, ElementId<Dim>>>>; }; } // namespace evolution::dg::subcell::Tags
lemma has_vector_derivative_circlepath [derivative_intros]: "((circlepath z r) has_vector_derivative (2 * pi * \<i> * r * exp (2 * of_real pi * \<i> * x))) (at x within X)"
(** * Testcases for [we_conclude_that.v] Authors: - Lulof Pirée (1363638) Creation date: 3 June 2021 -------------------------------------------------------------------------------- This file is part of Waterproof-lib. Waterproof-lib is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Waterproof-lib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Waterproof-lib. If not, see <https://www.gnu.org/licenses/>. *) From Ltac2 Require Import Ltac2. From Ltac2 Require Option. From Ltac2 Require Import Int. Require Import Waterproof.message. Require Import Reals. Require Import micromega.Lra. Require Import Waterproof.test_auxiliary. Require Import Waterproof.selected_databases. Require Import Waterproof.set_intuition.Disabled. Require Import Waterproof.set_search_depth.To_5. Require Import Waterproof.populate_database.waterproof_core. Require Import Waterproof.populate_database.waterproof_integers. Require Import Waterproof.populate_database.waterproof_reals. Require Import Waterproof.populate_database.all_databases. Require Import Waterproof.load_database.RealsAndIntegers. Load we_conclude_that. Require Import Waterproof.load_database.DisableWildcard. Ltac2 store_verbosity := verbosity. Ltac2 Set verbosity := fun () => if (le (test_verbosity ()) 0) then -1 else (store_verbosity ()). (* lra only works in the [R_scope] *) Open Scope R_scope. Lemma zero_lt_one: 0 < 1. Proof. ltac1:(lra). Qed. (* -------------------------------------------------------------------------- *) (** * Testcases for [We conclude that ... ] *) (** * Test 1 Base case: should easily be possible to finish the goal. *) Lemma test_we_conclude_1: True. Proof. We conclude that True. Qed. (** * Test 2 Error case: wrong goal provided. *) Lemma test_we_conclude_2: True. Proof. let result () := We conclude that False in assert_raises_error result. Abort. (** * Test 3 Warning case: provided goal is equivalent, but uses an alternative notation. *) Lemma test_we_conclude_3: 2 = 2. Proof. print (of_string "Should raise warning:"). We conclude that (1+1 = 2). Qed. (** * Test 4 Base case, like test 1 but more complex goal. *) Lemma test_we_conclude_4: forall A: Prop, (A \/ ~A -> True). Proof. intros A h. We conclude that (True). Qed. (** * Test 5 Removed test case because it takes too long. Error case: Waterprove cannot find proof (because the statement is false!). Lemma test_we_conclude_5: 0 = 1. Proof. let result () := We conclude that (0 = 1) in assert_raises_error result. Abort. *) (** * Test 6 Alternative [It follows that ...] notation. *) Lemma test_we_conclude_6: True. Proof. It follows that True. Qed. (* -------------------------------------------------------------------------- *) (** * Testcases for [By ... we conclude that ... ] *) (** * Test 1 Base case: should easily be possible to finish the goal, even with the provided lemma. NOTE: this test would also pass if we just write [We conclude that (2 = 1).] Applarently, waterprove is powerful enough to apply symmetry to hypotheses. *) Lemma test_by_we_conclude_1: (1 = 2) -> (2 = 1). Proof. intros h. apply eq_sym in h. (* Rewrite h as (2 = 1) using symmetry of "="*) By h we conclude that (2 = 1). Qed. (** * Test 2 Remove test case as this required axiom. Base case: should easily be possible to finish the goal, but only with the given lemma. Lemma test_by_we_conclude_2: 0 + 0 = 20. Proof. assert (zero_plus_zero_is_twenty: 0+0 = 20). rewrite zero_is_ten. (* Get goal: [10 + 10 = 20]*) ltac1:(lra). (* This is just to test if the extra lemma is really needed: *) let failure () := We conclude that (0 + 0 = 10) in assert_raises_error failure. By zero_plus_zero_is_twenty we conclude that (0 + 0 = 20). Qed.*) (** * Test 3 Warning case: provided goal is equivalent, but uses an alternative notation. *) Lemma test_by_we_conclude_3: 2 = 1 + 1. Proof. print (of_string "Should raise warning:"). By zero_lt_one we conclude that (2 = 2). Qed. (** * Test 4 Removed test case as it takes too long. Error case: Waterprove cannot find proof (because the statement is false, even with the given lemma). Lemma test_by_we_conclude_4: 0 = 1. Proof. let result () := By zero_is_ten we conclude that (0 = 1) in assert_raises_error result. Abort.*) (** * Test 5 Shows that [waterprove] can solve [(1 < 2)] without explcitly being given the lemma that states [0 < 1]. *) Lemma test_by_we_conclude_5: 1 < 2. Proof. assert (useless: 1 = 1). reflexivity. By useless we conclude that (1 < 2). Qed. (** * Example for the SUM. Somewhat more realistic context. *) Open Scope nat_scope. Inductive even : nat -> Prop := even0 : even 0 | evenS : forall x:nat, even x -> even (S (S x)). Lemma sum_example_by_we_conclude: forall x:nat, x = 2 -> even x. Proof. intros x h. rewrite h. (* Change the goal to "even 2"*) apply evenS. (* Change the goal to "even 0"*) By even0 we conclude that (even 0). Qed. Require Import Waterproof.definitions.inequality_chains. Open Scope R_scope. (** * Test 4 We make an exception on the goal check when the argument is a chain of inequalities *) Goal (3 < 5). We conclude that (& 3 < 4 < 5). Qed. Goal (3 = 3). We conclude that (& 3 = 3 = 3). Qed. Goal forall eps : R, eps > 0 -> (Rmin (eps / 2) 1 <= eps). intro eps. intro eps_gt_0. assert (& Rmin (eps/2) 1 <= eps/2 <= eps). auto with waterproof_core reals. auto with reals. Qed. Close Scope R_scope. (** 'We conclude that' should accept (in nat_scope) (& 3 &<4 &< 5) for (3<5).*) Goal (3 < 5). We conclude that (& 3 < 4 < 5). Qed. (** 'We conclude that' should accept (in nat_scope) (& 3 &<4 &<= 5) for (3<5).*) Goal (3 < 5). We conclude that (& 3 < 4 <= 5). Qed. (** 'We conclude that' should accept (in nat_scope) (& 3 &<4 &< 5) for (3<=5).*) Goal (3 <= 5). We conclude that (& 3 < 4 < 5). Qed. (** * Test 6 Test whether wrapped goals requiring users to write out what they need to show can be solved immediately. It is irritating to have to write something like: 'We need to show that (a < b).' 'We conclude that (a < b).' *) Goal (StateGoal.Wrapper (0 = 0)). Proof. We conclude that (0 = 0). Qed. (** * Test 7 Test whether the tactic throws an error for other wrappers. *) Goal (Case.Wrapper (0 = 1) (0 = 0)). Proof. Fail We conclude that (0 = 0). Abort. (** * Test 8 *) (** Actually tests for [waterprove] automation suboutine, but this seemed like a convenient place to test. *) (** Tests whether the error points out which specific (in)equality in the chain does not hold. *) Local Parameter A : Type. Local Parameter x y z : A. Goal (& x = y = z). Proof. Fail We conclude that (& x = y = z). (* Expected: unable to find proof (x = y) *) Abort. Goal (x = y) -> (& x = y = z). Proof. intro p. Fail We conclude that (& x = y = z). (* Expected: unable to find proof (y = z) *) Abort. Ltac2 Set verbosity := store_verbosity.
Section Feelings. (** You have feelings about stuff. Everyone has feeling about stuffs. There are furthermore exactly two kinds of feelings: hate and love. This is naturally expressed as a boolean. **) Variable feelings : forall A : Type, A -> bool. (** If your feelings say that it is true, it is probably true. **) Axiom gut_feeling : forall P : Prop, feelings _ P = true -> P. (** Alternatively, if you hate something, it is likely false. **) Axiom hate : forall P : Prop, feelings _ P = false -> ~ P. End Feelings. (** Let the hate speak now. **) Theorem nihilism : forall P, ~ P. Proof. intro. apply hate with (feelings := fun _ _ => false). reflexivity. Qed. Corollary nothing_matters : False. Proof. apply gut_feeling with (feelings := fun _ _ => true). reflexivity. Qed.
Theorem ex50: forall a b c : Prop, (a -> b) -> ((b -> c) -> (a -> c)). Proof. intros. apply (H0 (H H1)). Qed. Theorem ex50_1: forall a b c : Prop, (a <-> b) -> ((b <-> c) -> (a <-> c)). Proof. Require Import Coq.Program.Basics. intros. elim H. elim H0. intros. split. apply (compose H1 H3). apply (compose H4 H2). Qed. Theorem ex50_2: forall a b c : Prop, (a -> b) -> ((c -> a) -> (c -> b)). Proof. intros. apply (H (H0 H1)). Qed. Theorem ex51: forall a b c : Prop, (a -> (b -> c)) <-> (b -> (a -> c)). Proof. split. intros. apply (H H1 H0). intros. apply (H H1 H0). Qed. Theorem ex52: forall a b c : Prop, (a -> (b -> c)) <-> (a /\ b -> c). Proof. split. intros. elim H0. assumption. intros. apply H. split. assumption. assumption. Qed. Theorem ex53: forall a b : Prop, ~a -> (a -> b). Proof. intros. contradiction. Qed. Theorem ex53_1: forall a b : Prop, ((a -> b) -> a) -> a. Proof. Require Import Classical. intros. apply NNPP. intro. cut a. intro. contradiction. apply H. intro. contradiction. Qed. Theorem ex53_2: forall a b c : Prop, (((a -> b) -> c) -> (a -> b)) -> (a -> b). Proof. Require Import Classical. intros. apply NNPP. intro. apply H1. apply H. intro. elim H1. cut b. intro. contradiction. apply (H2 H0). assumption. Qed. Theorem ex53_3: forall a b : Prop, ((((a -> b) -> a) -> a) -> a) -> a. Proof. Require Import Classical. intros. apply NNPP. intro. apply H0. apply H. intro. apply H1. intro. apply NNPP. intro. apply H0. assumption. Qed. Theorem ex53_4: forall a b : Prop, ((((a -> b) -> a) -> a) -> b) -> b. Proof. Require Import Coq.Program.Basics. intros. apply H. intros. apply H0. intro. refine (apply H (fun H0 => H1)). Qed. Theorem ex53_5: forall a b c : Prop, ((((((a -> b) -> c) -> c) -> a) -> a) -> b) -> b. Proof. intros. apply H. intros. apply H0. intros. apply H1. intros. apply H. intros. assumption. Qed. Theorem ex53_6: forall a b c d : Prop, ((((((((a -> b) -> c) -> c) -> d) -> d) -> a) -> a) -> b) -> b. Proof. intros. apply H. intros. apply H0. intros. apply H1. intros. apply H2. intros. apply H. intros. assumption. Qed. Theorem ex53_7: forall a b : Prop, ((a -> b) -> b) -> ((b -> a) -> a). Proof. intros. apply NNPP. intro. apply H1. apply H0. apply H. intro. contradiction. Qed.
import data.set.basic import topology.basic import algebra.module.basic import algebra.module.submodule import order.complete_lattice import analysis.normed_space.basic -- Soient F une partie fermée non vide d'un espace normé E et x ∈ E . Montrer -- d(x, F ) = 0 ⇐⇒ x ∈ F . theorem exo {R E: Type*} [normed_field R] [normed_group E] [normed_space R E] : forall (F: set E) (x: E), (is_closed F) -> (set.nonempty F) -> set.mem x F <-> infi (dist x) = 0 := sorry
# Part 1: Introduction to Python ## 1.1 [About Python](https://lectures.quantecon.org/py/about_py.html#id3) ### 1.1.1 Overview ### 1.1.2 What's Python? ### 1.1.3 Scientific Programming - [Machine learing and data science](http://scikit-learn.org/stable/) - [Astronomy(天文学)](http://www.astropy.org/) - [Artificial intelligence](https://wiki.python.org/moin/PythonForArtificialIntelligence) - [Chemistry](http://chemlab.github.io/chemlab/) - [Computational biology](http://biopython.org/) - [Meteorology(气象学)](https://pypi.python.org/pypi/metrology) ### 1.1.4 Learn More #### Numerical Programming ```python import numpy as np # Load the library a = np.linspace(-np.pi,np.pi,100) # Create even grid from -pi to pi b = np.cos(a) # Apply cosine to each element of a c = np.sin(a) # Apply sin to each element of a ``` ```python np.dot(b,c) # matrix multiplication ``` -1.8041124150158794e-16 ```python b @ c # matrix multiplication # element-wise product: np.multiply(), 或 * ``` -1.8041124150158794e-16 #### SciPy The SciPy library is built on top of NumPy and provides additional functionality For example, let’s calculate $\int^2_{-2}{\phi(z)dz}$ where $\phi$ is the standard normal density ```python from scipy.stats import norm # Load norm (normal distribution) from scipy.integrate import quad # Load quad (caculating intergration) theta = norm() # Theta follows normal distribution value, error = quad(theta.pdf, -2, 2) # Integrate using Gaussian quadrature .pdf 概率密度函数 .cdf 累计密度函数 -2,2 积分上下限 value # 返回value的值 ``` 0.9544997361036417 ```python # 使用cdf手动方法计算 import scipy.stats # Load library value=1-2*scipy.stats.norm.cdf(-2,loc=0,scale=1) #http://blog.csdn.net/claroja/article/details/72830515 value ``` 0.95449973610364158 SciPy includes many of the standard routines used in - [linear algebra(线性代数)](https://docs.scipy.org/doc/scipy/reference/linalg.html) - [integration(整合)](https://docs.scipy.org/doc/scipy/reference/integrate.html) - [interpolation(插补)](https://docs.scipy.org/doc/scipy/reference/interpolate.html) - [optimization](https://docs.scipy.org/doc/scipy/reference/optimize.html) - [distributions and random number generation](https://docs.scipy.org/doc/scipy/reference/stats.html) - [signal processing](https://docs.scipy.org/doc/scipy/reference/signal.html) - [etc.](https://docs.scipy.org/doc/scipy/reference/index.html) #### Graphics [Library Matplotlib](https://matplotlib.org/gallery.html) Other graphics libraries include - [Plotly](https://plot.ly/python/) - [Bokeh](http://bokeh.pydata.org/en/latest/) - [VPython](http://www.vpython.org/) #### Symbolic Algebra(符号代数) ```python from sympy import Symbol ``` Symbolic Computing (符号计算) ```python x, y = Symbol('x'), Symbol('y') # Treat 'x' and 'y' as algebraic symbols(代数符号) x + x + x + y ``` 3*x + y Factor Analysis (因子分析) ```python expression = (x + y)**2 # ** 乘方 expression.expand() # .expand 展开式 ``` x**2 + 2*x*y + y**2 Solving Polynomials ```python from sympy import solve solve(x**2 + x + 2) # 解方程 ``` [-1/2 - sqrt(7)*I/2, -1/2 + sqrt(7)*I/2] ```python solve(x**2 + 2*x + 1) ``` [-1] Calculating Limits, Derivatives and Integrals(极限,导数,积分) ```python from sympy import limit, sin, diff limit(1 / x, x, 0) # 求1/x的极限,其中x趋向于0 ``` oo ```python limit(sin(x) / x, x, 0) ``` 1 ```python diff(sin(x), x) # 求sin(x)对x的导数 ``` cos(x) #### Statistics Python’s data manipulation and statistics libraries have improved rapidly over the last few years #### Pandas How to generate random number 如何生成随机数? - numpy.random.uniform(low=0.0, high=1.0, size=None) [0,1)均匀分布 - numpy.random.random(size=None) - numpy.random.random((2, 3)) 元组形式指定 - numpy.random.normal(size,loc,scale): 给出均值为loc,标准差为scale的高斯随机数 - numpy.random.rand(d0, d1, ..., dn) [0,1) 标准正态分布 numpy.random.randn(d0, d1, ..., dn) 没有限制 标准正态分布 - 当函数括号内没有参数时,则返回一个浮点数 - 当函数括号内有一个参数时,则返回秩为1的数组,不能表示向量和矩阵 - 当函数括号内有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵 - numpy.random.standard_normal() 函数与np.random.randn()类似,但是np.random.standard_normal() 的输入参数为元组(tuple) - numpy.random.randint(low, high=None, size=None, dtype=’l’) 整数型 ```python np.random.uniform() ``` 0.8474738087470629 ```python np.random.uniform(2,3,6) # [2,3)中均匀分布中的6个随机数 ``` array([ 2.9860889 , 2.19519615, 2.00777363, 2.23653008, 2.05505467, 2.89117726]) ```python np.random.uniform(2,3,(2,2)) ``` array([[ 2.53819935, 2.85976506], [ 2.91869204, 2.64991819]]) ```python np.random.random() ``` 0.7304829610087114 ```python np.random.random(10) ``` array([ 0.86273288, 0.5279635 , 0.33135421, 0.72708269, 0.86928968, 0.47071769, 0.05077265, 0.69756921, 0.16713672, 0.54353137]) ```python np.random.random((3,4)) ``` array([[ 0.96642415, 0.37624851, 0.32901655, 0.58515682], [ 0.62271202, 0.56993156, 0.47964188, 0.42931829], [ 0.60408005, 0.77272266, 0.00162158, 0.52869527]]) ```python np.random.normal(1,0.5,10) ``` array([ 1.20349355, 1.17745893, 0.98227701, 1.58086968, 1.54173165, 1.01738413, 0.91850826, 1.16709306, 1.03949584, 1.00972302]) ```python np.mean(np.random.normal(1,0.5,1000)) ``` 0.97477448694503321 ```python np.random.normal(5,0.8,(2,4)) ``` array([[ 5.37148902, 5.52165235, 3.10762657, 3.21051536], [ 6.40331996, 5.35974761, 5.53317151, 4.81759955]]) ```python np.random.rand() ``` 0.6991420637529272 ```python np.random.rand(3) ``` array([ 0.59372934, 0.2606707 , 0.85677761]) ```python np.random.rand(2,2) ``` array([[ 0.12969677, 0.26830264], [ 0.26575202, 0.15031921]]) ```python np.random.rand(3,2,2) # 3组 2*2 ``` array([[[ 0.04667944, 0.56022617], [ 0.99076839, 0.2932098 ]], [[ 0.70883542, 0.72276065], [ 0.0241512 , 0.66399433]], [[ 0.56175472, 0.93324534], [ 0.47822311, 0.29943678]]]) ```python np.random.rand(2,4,3,3) # 4 组 3*3 , 这样的4组有2个 ``` array([[[[ 0.91655043, 0.12037943, 0.85462637], [ 0.31528861, 0.59644266, 0.24527812], [ 0.41429085, 0.80717022, 0.21825278]], [[ 0.89791812, 0.19810456, 0.75128835], [ 0.34516507, 0.8161068 , 0.6074346 ], [ 0.19217673, 0.46841586, 0.22780444]], [[ 0.0995358 , 0.38507414, 0.13525457], [ 0.71547676, 0.58165184, 0.54236188], [ 0.94241399, 0.42352624, 0.52700985]], [[ 0.55401586, 0.97291657, 0.26568722], [ 0.94813474, 0.69113245, 0.87098301], [ 0.58442572, 0.24803309, 0.18808223]]], [[[ 0.82405861, 0.06174618, 0.44058703], [ 0.04691451, 0.01917401, 0.97859124], [ 0.95750291, 0.38926466, 0.18569959]], [[ 0.19203849, 0.44958773, 0.61960534], [ 0.43102461, 0.79000366, 0.43515503], [ 0.16416595, 0.6032064 , 0.1556198 ]], [[ 0.62336311, 0.26819523, 0.01729941], [ 0.01069535, 0.69215579, 0.03171449], [ 0.6912115 , 0.17182265, 0.24050492]], [[ 0.59704035, 0.48744065, 0.74663878], [ 0.85071639, 0.89530915, 0.23641053], [ 0.3558962 , 0.63559743, 0.79752732]]]]) ```python np.random.randn(2,2,3) ``` array([[[ 0.41860832, 0.20000057, 1.61377788], [ 0.34181873, -1.41733621, 0.31367332]], [[-2.18577938, 0.47208238, 1.08411372], [ 0.56983538, -1.25560168, -1.44829982]]]) ```python np.random.standard_normal((2,2,3)) ``` array([[[ 0.33496069, 0.15313107, 0.68528172], [ 0.20353637, -0.06418014, -0.2242228 ]], [[ 0.01099221, 0.10426834, -0.51487265], [ 1.17121491, -0.55703709, -0.22933557]]]) ```python np.random.randint(5,7,(2,2,3)) # [5,7) 结构 (2,2,3) ``` array([[[6, 6, 6], [5, 5, 5]], [[5, 6, 6], [6, 5, 6]]]) ```python import pandas as pd np.random.seed(1234) # 在随机数中从1234这个位置开始抽取随机数 data = np.random.randn(5,2) # 5x2 matrix of N(0, 1) random draws dates = pd.date_range('01/03/2018', periods = 5) # 生成5期data,从2018/03/01开始 df = pd.DataFrame(data, columns = ('price', 'weight'), index = dates) # 数据框格式,(数据,列名,编号为dates) print(df) ``` price weight 2018-01-03 0.471435 -1.190976 2018-01-04 1.432707 -0.312652 2018-01-05 -0.720589 0.887163 2018-01-06 0.859588 -0.636524 2018-01-07 0.015696 -2.242685 ```python df.mean() # 均值 ``` price 0.411768 weight -0.699135 dtype: float64 #### Other Useful Statistics Libraries - [statsmodels](http://www.statsmodels.org/stable/index.html)— various statistical routines - [scikit-learn](http://scikit-learn.org/stable/) —(machine learning in Python (sponsored by Google, among others) - [pyMC](http://pymc-devs.github.io/pymc/)—for Bayesian data analysis - [pystan](https://pystan.readthedocs.io/en/latest/) Bayesian analysis based on [stan](http://mc-stan.org/) #### Networks and Graphs Library [NetworkX](http://networkx.github.io/) A simple netword sample ```python import networkx as nx # network library import matplotlib.pyplot as plt # plot library import numpy as np np.random.seed(1234) # seef of random number # Generate random graph # function: numpy.random.uniform(low,high,size) p = dict((i,(np.random.uniform(0,1),np.random.uniform(0,1))) for i in range(200)) # dict: dictionary # genenrate {0:(0.5,0.8), 1:(0.6,0.7), 2:(0.2,0.9),.....,199:(0.3,0.8)} G = nx.random_geometric_graph(200, 0.12, pos = p) # position is stored as node attribute data for random_geometric_graph # <networkx.classes.graph.Graph at 0xc03c588> pos = nx.get_node_attributes(G, 'pos') # Get node attributes from graph ``` `nx.random_geometric_graph(n, radius, dim=2, pos=None)` - `n` : int; Number of nodes - `radius`: float ; Distance threshold value - `dim` : int, optional; Dimension of graph - `pos` : dict, optional ; A dictionary keyed by node with node positions as values. ` nx.get_node_attributes(G, name)` - `G` : NetworkX Graph - `name` : string ; Attribute name ```python # find node nearest the center point (0.5, 0.5) # 离中心越远,颜色变化的设定? dists = [(x - 0.5)**2 + (y - 0.5)**2 for x,y in list(pos.values())] # dists = [(x - 0.2)**2 + (y - 0.8)**2 for x,y in list(pos.values())] ncenter = np.argmin(dists) # argmin() 求出离中心最近的那个点,命名为C点 ``` ```python # Plot graph, coloring by path length from central node p = nx.single_source_shortest_path_length(G, ncenter) # 计算C点离其他点的距离 plt.figure() # 设置一副空图 nx.draw_networkx_edges(G, pos, alpha=0.5) # 画出线条 alpha:边缘透明度 nx.draw_networkx_nodes(G, # 画出点 pos, # 点的属性 nodelist=list(p.keys()), # Draw only specified nodes (default G.nodes()) node_size=120,alpha=0.5, node_color=list(p.values()), cmap=plt.cm.jet_r) # Colormap for mapping intensities of nodes (default=None) plt.show() ``` #### Cloud Computing Library: [Wakar](https://www.wakari.io/) See also - [Amazon Elastic Compute Cloud](http://aws.amazon.com/ec2/) - [The Google App Engine (Python, Java, PHP or Go)](https://cloud.google.com/appengine/) - [Pythonanywhere](https://www.pythonanywhere.com/) - [Sagemath Cloud](https://cloud.sagemath.com/) #### Parallel Processing - [Parallel computing through IPython clusters](http://ipython.org/ipython-doc/stable/parallel/parallel_demos.html) - [The Starcluster interface to Amazon’s EC2](http://star.mit.edu/cluster/) - GPU programming through [PyCuda](https://wiki.tiker.net/PyCuda), [PyOpenCL](https://mathema.tician.de/software/pyopencl/), [Theano](http://deeplearning.net/software/theano/) or similar #### Other Developments - [Jupyter](http://jupyter.org/)—Python in your browser with code cells, embedded images, etc. - [Numba](http://numba.pydata.org/) —Make Python run at the same speed as native machine code! - [Blaze](http://blaze.pydata.org/) —a generalization of NumPy - [PyTables](http://www.pytables.org/)— manage large data sets - [CVXPY](https://github.com/cvxgrp/cvxpy) — convex optimization in Python ## 1.2 [Setting up Your Python Environment](https://lectures.quantecon.org/py/getting_started.html) ### 1.2.1 Overview ### 1.2.2 First Steps Anaconda ### 1.2.3 Jupyter #### A Test Program Don’t worry about the details for now — let’s just run it and see what happens ```python import numpy as np import matplotlib.pyplot as plt N = 20 theta = np.linspace(0.0, 2 * np.pi, N, endpoint = False) # [0,2pi] 中生成20个节点 radii = 10 * np.random.rand(N) # 生成[0,9]随机数 width = np.pi / 4 * np.random.rand(N) # ax = plt.subplot(111, polar=True) bars = ax.bar(theta, radii, width=width, bottom=0.0) # Use custom colors and opacity for r, bar in zip(radii, bars): bar.set_facecolor(plt.cm.jet(r / 10.)) bar.set_alpha(0.5) plt.show() ``` ```python np.random? ``` `np. ` 安住 tab 选择属性 ### 1.2.4 Additional Software #### Installing QuantEcon.py control+r cmd ` pip install quantecon ` #### Method 1: Copy and Paste #### Method 2: Run - pwd asks Jupyter to show the PWD (or %pwd — see the comment about automagic above) – This is where Jupyter is going to look for files to run – Your output will look a bit different depending on your OS - ls asks Jupyter to list files in the PWD (or %ls) – Note that test.py is there (on our computer, because we saved it there earlier) - cat test.py asks Jupyter to print the contents of test.py (or !type test.py onWindows) - run test.py runs the file and prints any output ### 1.2.5 Alternatives ipython blah blah ### 1.2.6 Exercises ## [1.3 An Introductory Example](https://lectures.quantecon.org/py/python_by_example.html) ### 1.3.1 Overview ### 1.3.2 The Task: Plotting a White Noise Process ### 1.3.3 Version 1 ```python import numpy as np import matplotlib.pyplot as plt x = np.random.randn(100) # 100个随机数 plt.plot(x) # 画出x plt.show() # 呈现出来 ``` ```python import numpy as np np.sqrt(4) # 开根号 ``` 2.0 ```python import numpy numpy.sqrt(4) ``` 2.0 ```python from numpy import sqrt sqrt(4) ``` 2.0 ### 1.3.4 Alternative Versions #### A Version with a For Loop ```python import numpy as np import matplotlib.pyplot as plt ts_length = 100 _values = [] # 设置一个空的列表,之后才能往里面加东西呀 for i in range(ts_length): # 循环 ts_length = 100 次 e = np.random.randn() # 每次循环跳出一个随机数 _values.append(e) # 将这个随机数加到已经定义的列表中 plt.plot(_values, 'b-') #'b-':line type ,the color is blue #plt.plot(_values, 'r-') # 试试看这种颜色好了 plt.show() ``` #### Lists - 列表用[]框起来 - 元组用()框起来 ```python x = [10, 'foo', False] # We can include heterogeneous data inside a list 不同类型的都放一起,数值型、字符型、布尔型(就是逻辑型啦) type(x) # 看看x是什么类型的 ``` list ```python x # 告诉我x里面都是什么呢? ``` [10, 'foo', False] ```python x.append(2.5) # 我想再加一点东西 x # 在告诉我现在x变什么样了 ``` [10, 'foo', False, 2.5] ```python x.pop() # 我想删了最后一个元素 ``` 2.5 ```python x # again ``` [10, 'foo', False] ```python x[0] # 看看x的第一个数是什么,[]里面是元素的位置,记住是从0开始哟 ``` 10 ```python x[1] # 第二个元素是什么呢 ``` 'foo' #### The For Loop 循环 ```python for i in range(ts_length): # 这个上面见过咯 e = np.random.randn() _values.append(e) ``` ```python animals = ['dog', 'cat', 'bird'] for animal in animals: # 前面的animal 可以写成i ,a,b 啥都行 print("The plural of " + animal + " is " + animal + "s") # 我想写成 The plural of 填充 is 填充s。 # 字符型 加上双引号,空格也要加上,用 + 连接 # 有三个元素就循环三次 ``` The plural of dog is dogs The plural of cat is cats The plural of bird is birds ` for variable_name in sequence: <code block> ` #### Code Blocks and Indentation 三种循环形式 ` for i in range(10): if x > y: while x < 100: etc., etc. ` #### While Loops ```python import numpy as np import matplotlib.pyplot as plt ts_length = 100 _values = [] i = 0 while i < ts_length: # 当且仅当 i比100小的时候循环 e = np.random.randn() _values.append(e) i = i + 1 # 每次循环i都要增加1,一直增加到99,再加1变成100的时候就不能进入循环了,所以循环的i为0~99,100次 plt.plot(_values, 'b-') plt.show() ``` #### User-Defined Functions 用定义函数的形式进行循环 ```python import numpy as np import matplotlib.pyplot as plt def generation_data(n): # 定义 一个函数,以后输入genenration_data(n)就能生成n个随机数了。 _values =[] # 定义一个空列表 for i in range(n): # 循环 e = np.random.randn() _values.append(e) return _values # 通过这个函数可以得到100个随机数,都在_values列表里面 data = generation_data(100) # 有了这个函数,先生成100个数 plt.plot(data,'b-') # 画图 plt.show() ``` #### Conditions 给定义的函数多添加点属性吧 ```python import numpy as np import matplotlib.pyplot as plt def generate_data(n, generator_type): # 定义一个可以生成n个随机数同时带有两种属性的函数 _values = [] for i in range(n): if generator_type == 'U': # 其中一种属性就叫 U 好了 e = np.random.uniform(0,1) # U这种属性呢,会提供[0,1)均匀分布的随机数 else: e = np.random.randn() # 如果用户没有输入他想要的属性,那就默认给他(0,1)正态分布的随机数吧 _values.append(e) # 任一情况生成的随机数都放到列表里,注意要和if对齐,因为它不属于if else内部。 return _values # 循环完成,得到了完整的列表了,要与for对齐,他是循环的总结果嘛 data = generate_data(100, 'U') # 现在来100个均匀分布的随机数吧 plt.plot(data, 'b-') plt.show() ``` ```python import numpy as np import matplotlib.pyplot as plt def generate_data(n, generator_type): _values = [] for i in range(n): e = generator_type() # 允许多种选择了,但是用户要回写随机数代码 # 输入np.random.uniform,这一行就变成 e = np.random.uniform(),跟上面完全一样啊 # 输入np.random.rand,这一行就变成 e = np.random.rand() # 就是最简单的替换啊 _values.append(e) return _values data = generate_data(100, np.random.uniform) plt.plot(data, 'b-') plt.show() ``` ```python max(7, 2, 4) # 最大值 ``` 7 ```python m = max m(7, 2, 4) # 这不也是简单替换吗 ``` 7 #### List Comprehensions ```python animals = ['dog', 'cat', 'bird'] plurals = [animal + 's' for animal in animals] # for in 简单的循环 plurals ``` ['dogs', 'cats', 'birds'] ```python range(8) # range(8)是,[0, 1, 2, 3, 4, 5, 6, 7] range(0, 8) 是[0,8) ``` range(0, 8) ```python [x for x in range(8)] ``` [0, 1, 2, 3, 4, 5, 6, 7] ```python doubles = [2 * x for x in range(8)] doubles ``` [0, 2, 4, 6, 8, 10, 12, 14] 将 ` _values = [] for i in range(n): e = generator_type() _values.append(e) ` 简化为 ` _values = [generator_type() for i in range(n)] ` ### 1.3.5 Exercises #### Exercise 1 n! ```python import numpy as np import matplotlib.pyplot as plt def factorial(n): # 定义这个函数 factorial(n) e = 2 _values = 1 while e < n + 1: # 因为 n 也要乘进去,所以 要循环到 < n+1 # 第二次循环e = 3进来了 # e = n< n +1可以进来 _values = _values * e # 第一次 1*2 # 第二次1*2的上一次结果再*3 # (n-1)!* n 得到 n!了 e = e + 1 # 第一次 3 # e = 4 。。。。 # e = n+1 退出循环 return _values factorial(10) ``` 3628800 ```python def factorial(n): # 书上写的很简单啊 k = 1 for i in range(n): k = k * (i + 1) return k factorial(10) ``` 3628800 #### Exercise 2 binomial random variable Y ~ Bin(n, p) 均匀分布,n个随机数小于P的个数 ```python from numpy.random import uniform def binomial_rv(n, p): count = 0 for i in range(n): U = uniform(0,1) if U < p: count = count + 1 return count binomial_rv(10,0.5) ``` 7 #### Exercise 3 Compute an approximation to $\pi$ using Monte Carlo. 计算pi的值 设想往1\*1的方格随机丢种子,种子在半径为0.5的圆中的概率是 pi\*0.5\*\*2,嗯,这样算出概率然后在乘上1/(0.5\*\*2)=4,就能算出pi值了。 ```python import numpy as np n = 100000 count = 0 for i in range(n): x = np.random.uniform() y = np.random.uniform() r = np.sqrt((x - 0.5)**2 + (y - 0.5)**2) if r < 0.5: count += 1 count*4/n ``` 3.13956 #### Exercise 4 均匀分布,连续三次大于0.5,就支付一美元 ```python from numpy.random import uniform _values = [] for i in range(10): a = uniform() if a >= 0.5: b = 1 else: b = 0 _values.append(b) _values ``` [1, 1, 1, 1, 1, 1, 0, 0, 0, 0] ```python count = 0 for i in range(0,9): if _values[i:i+3] == [1,1,1]: count = count + 1 if count>=1: print('pay one dollar') ``` pay one dollar ```python from numpy.random import uniform payoff = 0 count = 0 for i in range(10): U = uniform() count = count + 1 if U < 0.5 else 0 #在U<0.5时+1,>=0.5时+0 if count == 3: payoff = 1 print(payoff) ``` 1 #### Exercise 5 Time series $x_t = 0.9 * x_{t-1}+\epsilon$ 画出两百期的时间序列 ```python import numpy as np import matplotlib.pyplot as plt alpha = 0.9 ts_length = 200 current_x = 0 x_values = [] for i in range(ts_length + 1): #[0,200] 201个数 x_values.append(current_x) current_x = alpha * current_x + np.random.randn() # current_x 不断进入 plt.plot(x_values, 'b-') plt.show() ``` #### Exercise 6 ```python import numpy as np import matplotlib.pyplot as plt x = [np.random.randn() for i in range(100)] plt.plot(x, 'b-', label="white noise") # 添加一个标签 plt.legend() # 要写这句话,标签才能显示出来 plt.show() ``` ```python import numpy as np import matplotlib.pyplot as plt for alpha in [0,0.8,0.98]: # 三个不同的系数循环 ts_length = 200 current_x = 0 x_values = [] for i in range(ts_length + 1): #[0,200] 201个数 循环内套循环 x_values.append(current_x) current_x = alpha * current_x + np.random.randn() plt.plot(x_values, label=r'$\alpha =$ ' + str(alpha)) # ''前面要加 r $数学公式$ plt.legend() plt.show() ``` ```python alphas = [0.0, 0.8, 0.98] ts_length = 200 for alpha in alphas: # 先有循环的列表,再循环 x_values = [] current_x = 0 for i in range(ts_length): x_values.append(current_x) current_x = alpha * current_x + np.random.randn() plt.plot(x_values, label=r'$\alpha$ = ' + str(alpha)) plt.legend() plt.show() ``` ## 1.4 [Python Essentials](https://lectures.quantecon.org/py/python_essentials.html) ### 1.4.1 Overview ### 1.4.2 Data Types #### Primitive Data Types 布尔型 ```python x = True y = 100 < 10 # Python evaluates expression on right and assigns it to y y ``` False ```python type(y) ``` bool ```python x + y # True 为1, False 为0 ``` 1 ```python x * y ``` 0 ```python True + True ``` 2 ```python bools = [True, True, False, True] # List of Boolean values sum(bools) ``` 3 ```python a, b = 1, 2 # 整数型 c, d = 2.5, 10.0 # 浮点型 type(a) ``` int ```python type(c) ``` float ```python 1 / 2 ``` 0.5 ```python 1 // 2 # 取 整 ``` 0 ```python x = complex(1, 2) # 复数计算 y = complex(2, 1) x * y ``` 5j #### Containers 容器 ```python x = ('a', 'b') # Round brackets instead of the square brackets x = 'a', 'b' # Or no brackets at all---the meaning is identical x ``` ('a', 'b') ```python type(x) # 数组 ``` tuple ```python x = [1, 2] # List x[0] = 10 # Now x = [10, 2] 第一个数被10替代了 ``` ```python x = (1, 2) # tuple cant be changed 元组是不能被替换的 x[0] = 10 ``` ```python integers = (10, 20, 30) x, y, z = integers x ``` 10 ```python y ``` 20 #### Slice Notation 切片 ```python a = [2, 4, 6, 8] a[1:] # 从第2位往后 ``` [4, 6, 8] ```python a[1:3] # 从第2位到第3位 [1,3) ``` [4, 6] ```python a[-2:] # 倒数第2位到最后 ``` [6, 8] ```python s = 'foobar' s[-3:] # Select the last three elements ``` 'bar' #### Sets and Dictionaries 集与字典 ```python d = {'name': 'Frodo', 'age': 33} # 一一对应 type(d) ``` dict ```python d['age'] ``` 33 ```python s1 = {'a', 'b'} type(s1) ``` set ```python s2 = {'b', 'c'} s1.issubset(s2) # s1 是 s2 子集吗 X ``` False ```python s1.intersection(s2) # 交集 ``` {'b'} ```python s3 = set(('foo', 'bar', 'foo')) # Unique elements only s3 ``` {'bar', 'foo'} ### 1.4.3 Imports ```python import math math.sqrt(4) ``` 2.0 ```python from math import * sqrt(4) ``` 2.0 ### 1.4.4 Input and Output ```python f = open('newfile.txt', 'w') # Open 'newfile.txt' for writing f.write('Testing\n') # Here '\n' means new line 写入 f.write('Testing again') # 写入 f.close() # 关闭 ``` ```python %pwd # 文件位置 ``` 'C:\\Users\\Administrator\\Desktop\\QuantEcon' ```python f = open('newfile.txt', 'r') # 打开,读入 out = f.read() # 读入 out ``` 'Testing\nTesting again' ```python print(out) ``` Testing Testing again ```python f = open('C:\\Users\\Administrator\\Desktop\\QuantEcon\\newfile.txt', 'r') ``` ### 1.4.5 Iterating #### Looping over Different Objects 让我们写一个us_cities.txt文件,列出美国的城市和他们的人口 ```python %%file us_cities.txt new york: 8244910 los angeles: 3819702 chicago: 2707120 houston: 2145146 philadelphia: 1536471 phoenix: 1469471 san antonio: 1359758 san diego: 1326179 dallas: 1223229 ``` Overwriting us_cities.txt ```python data_file = open('us_cities.txt', 'r') for line in data_file: city,population = line.split(':') # Tuple unpacking 根据‘:’将他们分割开来 city = city.title() # Capitalize city names 城市名称大写 population = '{0:,}'.format(int(population)) # Add commas to numbers 数字添加, print(city.ljust(15) + population) # ljust是python中用于将字符串填充至指定长度的内置函数 data_file.close() ``` New York 8,244,910 Los Angeles 3,819,702 Chicago 2,707,120 Houston 2,145,146 Philadelphia 1,536,471 Phoenix 1,469,471 San Antonio 1,359,758 San Diego 1,326,179 Dallas 1,223,229 #### Looping without Indices ```python x_values = [1,2,3] #Some iterable x for x in x_values: print(x * x) ``` 1 4 9 ```python for i in range(len(x_values)): print(x_values[i] * x_values[i]) ``` 1 4 9 ```python # Python提供了一些工具来简化没有索引的循环 # 一个是zip(),它用于从两个序列中逐个进行配对 countries = ('Japan', 'Korea', 'China') cities = ('Tokyo', 'Seoul', 'Beijing') for country, city in zip(countries, cities): print('The capital of {0} is {1}'.format(country, city)) # {0}和{1}是(country,city)列表的位置 ``` The capital of Japan is Tokyo The capital of Korea is Seoul The capital of China is Beijing ```python names = ['Tom', 'John'] marks = ['E', 'F'] dict(zip(names, marks)) ``` {'John': 'F', 'Tom': 'E'} If we actually need the index from a list, one option is to use enumerate() ```python letter_list = ['a', 'b', 'c'] for index, letter in enumerate(letter_list): print("letter_list[{0}] = '{1}'".format(index, letter)) # {0}和{1}是(index, letter)列表的位置 ``` letter_list[0] = 'a' letter_list[1] = 'b' letter_list[2] = 'c' ### 1.4.6 Comparisons and Logical Operators #### Comparisons ```python x, y = 1, 2 x < y ``` True ```python x > y ``` False ```python 1 < 2 < 3 ``` True ```python 1 <= 2 <= 3 ``` True ```python x = 1 # Assignment x == 2 # Comparison ``` False ```python 1 != 2 ``` True ```python x = 'yes' if 42 else 'no' # 其他值就是True x ``` 'yes' ```python x = 'yes' if [] else 'no' # []和()相当于False x ``` 'no' The rule is: - Expressions that evaluate to zero, empty sequences or containers (strings, lists, etc.) and None are all equivalent to False – for example, [] and () are equivalent to False in an if clause - All other values are equivalent to True – for example, 42 is equivalent to True in an if clause #### Combining Expressions ```python 1 < 2 and 'f' in 'foo' # 两个都是对的 ``` True ```python 1 < 2 and 'g' in 'foo' # 其中一个是错的 ``` False ```python 1 < 2 or 'g' in 'foo' # x 或 y ``` True ```python not True ``` False ```python not not True ``` True Remember - P and Q is True if both are True, else False - P or Q is False if both are False, else True ### 1.4.7 More Functions ```python max(19, 20) ``` 20 ```python range(4) # in python3 this returns a range iterator object ``` range(0, 4) ```python list(range(4)) # will evaluate the range iterator and create a list ``` [0, 1, 2, 3] ```python str(22) # 数值型转字符型 ``` '22' ```python type(22) # 22的类型是整数型 ``` int ```python bools = False, True, True all(bools) # True if all are True and False otherwise ``` False ```python any(bools) # False if all are False and True otherwise ``` True #### The Flexibility of Python Functions ```python def f(x): if x < 0: # 定义一个函数, 如果x<0,则返回negetive,其他情况返回nonnegative return 'negative' return 'nonnegative' ``` ```python # Filename: temp.py def f(x): """ This function squares its argument """ return x**2 # f(x) = x**2 ``` ```python f(50) ``` 2500 #### One-Line Functions: lambda ```python def f(x): return x**3 ``` ```python f = lambda x: x**3 # 简化定义函数方法 ``` calculating $\int_0^2{x^3dx}$ The syntax of the quad function is `quad(f, a, b)` where f is a function and a and b are numbers ```python from scipy.integrate import quad # 计算积分 quad(lambda x:x**3, 0, 2) ``` (4.0, 4.440892098500626e-14) #### Keyword Arguments ```python def f(x, coefficients=(1, 1)): a, b = coefficients return a + b * x ``` ```python f(2, coefficients=(0, 0)) # 0+0*2 ``` 0 ```python f(2) # Use default values (1, 1) ``` 3 ### 1.4.8 Coding Style and PEP8 ### 1.4.9 Exercises #### Exercise 1 对应元素相乘 ```python x_vals = [1, 2, 3] y_vals = [1, 1, 1] sum([x * y for x, y in zip(x_vals, y_vals)]) ``` 6 0-99中偶数数量 ```python 3 % 2 == 0 ``` False ```python sum([x % 2 == 0 for x in range(100)]) # x % 2余数为0 为偶数,返回True,也就是1 ``` 50 (x,y)同时为偶数的次数 ```python pairs = ((2, 5), (4, 2), (9, 8), (12, 10)) sum([x % 2 == 0 and y % 2 == 0 for x, y in pairs]) ``` 2 #### Exercise 2 计算 $ p(x)= a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+...+a_nx^n$ ```python def p(x, coeff): return sum(a * x**i for i, a in enumerate(coeff)) # 指代coeff中数值的位置,a是coeff中的数值 ``` ```python p(1,[1,2]) ``` 3 #### Exercise 3 判断字符串中大写字母个数 ```python def f(string): count = 0 for letter in string: if letter == letter.upper() and letter.isalpha(): # isalpha 判断是否是英文字母 如果这个字母是大写就进入循环 count +=1 return count f('L`Arc En Ciel') ``` 4 #### Exercise 4 字符串A是否是字符串B的子集 ```python def f(seq_a, seq_b): is_subset = True # 定义函数 先假设 a是b的子集 for a in seq_a: if a not in seq_b: # 如果不是子集的话 is_subset = False # 修正之前的假设 return is_subset # 返回 # == test == # print(f([1, 2], [1, 2, 3])) print(f([1, 2, 3], [1, 2])) print(f("L`Arc En Ciel","L`Arc En Ciel X")) ``` True False True ```python def f(seq_a, seq_b): return set(seq_a).issubset(set(seq_b)) # 超简化写法 ``` #### Exercise 5 近似算x点函数值 将[a,b]区间用n个节点等分 ```python def linapprox(f, a, b, n, x): # Evaluates the piecewise linear interpolant of f at x on the interval [a, b], with n evenly spaced grid points. # Parameters # ========== # f : function # The function to approximate # x, a, b : scalars (floats or integers) # Evaluation point and endpoints, with a <= x <= b # n : integer # Number of grid points # Returns # ========= # A float. The interpolant evaluated at x length_of_interval = b - a # 区间长度 num_subintervals = n - 1 # 分成n-1份 step = length_of_interval / num_subintervals # 步长 # === find first grid point larger than x === # point = a while point <= x: # 求得大于x,且离x最近的节点 point += step # point = point + step # === x must lie between the gridpoints (point - step) and point === # # x 一定在(point-step,point)间 u, v = point - step, point return f(u) + (x - u) * (f(v) - f(u)) / (v - u) ```
program flush1 ! Tests for syntax (AST only): flush (10, IOSTAT = n) flush (20, IOMSG = n) flush (ERR = label) flush (30, UNIT = 40) FLUSH 50 end program
[STATEMENT] lemma Resid_along_normal_preserves_Cong\<^sub>0: assumes "t \<approx>\<^sub>0 t'" and "u \<in> \<NN>" and "R.sources t = R.sources u" shows "t \\ u \<approx>\<^sub>0 t' \\ u" [PROOF STATE] proof (prove) goal (1 subgoal): 1. t \ u \<approx>\<^sub>0 t' \ u [PROOF STEP] by (metis Cong\<^sub>0_imp_coinitial R.arr_resid_iff_con R.coinitialI R.coinitial_def R.cube R.sources_resid assms elements_are_arr forward_stable)
# Tedium Free MLE - toc: true - branch: master - badges: true - comments: true ## Introduction Maximum likelihood estimation has the dubious honor of being difficult for humans and machines alike (difficult for machines at least in the naïve formulation that doesn't use log-likelihood). MLE is challenging for humans because it requires the multiplication of $n$ likelihood expressions, which is time consuming and error prone - this is the *tedium* part we're trying to avoid. Fortunately, computers are very good at repeated multiplication, even repeated *symbolic* multiplication. ## Problem Formulation and Example MLE estimates parameters of an assumed probability distribution, given data $x_i$ observed independently from the same distribution. If that distribution has probability function $f(\cdot)$, then the likelihood of $x_i$ is $f(x_i)$. As the $x_i$s are independent, the likelihood of all $x_i$s will be the product of their individual likelihoods. In mathematical notation, the product will be: $$\prod_{i=1}^{n} f(x_i)$$ Probability functions (mass functions or density functions) like our $f(\cdot)$ typically have **parameters**. For instance, the Gaussian distribution has parameters $\mu$ and $\sigma^2$, and the Poisson distribution has rate parameter λ. We use MLE to estimate these parameters, so they are the unknowns in the expression and they will appear in each $f(x_i)$ term. We can restate the problem as an equality with the generic parameter $\theta$: $$L(\theta) = \prod_{i=1}^{n} f(x_i)$$ The expression $L(\theta)$ is the likelihood. In order to find the MLE it is necessary to *maximize* this function, or find the value of $\theta$ for which $L(\theta)$ is as large as possible. This process is probably easier to show than to describe. In particular, we'll be demonstrating the usefulness of the `sympy` module in making these symbolic calculations. ### Example Say we observed values $[3,1,2]$ generated from a Poisson. What is likelihood function of λ? Importing the necessities and setting up some symbols and expressions: ```python from sympy.stats import Poisson, density, E, variance from sympy import Symbol, simplify from sympy.abc import x lambda_ = Symbol("lambda", positive=True) f = Poisson("f", lambda_) density(f)(x) ``` $\displaystyle \frac{\lambda^{x} e^{- \lambda}}{x!}$ `sympy` gives us a representation of the Poisson density to work with in the [`Poisson()` object](https://docs.sympy.org/latest/modules/stats.html#sympy.stats.Poisson), keeping track of all of the terms internally. The likelihood expression is the product of the probability function evaluated at these three points: ```python L_ = density(f)(3) * density(f)(1) * density(f)(2) L_ ``` $\displaystyle \frac{\lambda^{6} e^{- 3 \lambda}}{12}$ That's our expression for the likelihood $L(\theta)$ 🙂 In order to maximize the expression, we'll take the derivative expression and then solve for the value of parameter $\lambda$ where the derivative expression is equal to 0. [This value of $\lambda$ will maximize the likelihood.](https://tutorial.math.lamar.edu/classes/calci/DerivativeAppsProofs.aspx) Finding the derivative using `sympy`: ```python from sympy import diff dL_ = diff(L_, lambda_) dL_ ``` $\displaystyle - \frac{\lambda^{6} e^{- 3 \lambda}}{4} + \frac{\lambda^{5} e^{- 3 \lambda}}{2}$ Setting the derivative $\frac{dL}{d\theta}$ equal to zero: ```python from sympy import Eq dLeqz = Eq(dL_, 0) dLeqz ``` $\displaystyle - \frac{\lambda^{6} e^{- 3 \lambda}}{4} + \frac{\lambda^{5} e^{- 3 \lambda}}{2} = 0$ And finally, solving the equation for $\lambda$: ```python from sympy import solve solve(dLeqz, lambda_) ``` [2] And that's our answer! ## Complications There is a slight wrinkle with this approach. It is susceptible to numerical instability, which (luckily) did not affect us in this example. This is how MLE can become difficult for computers too. Likelihoods are usually very small numbers and computers simply can't track numbers that are too small or too large. Multiplying very small numbers together repeatedly makes very VERY small numbers that can sometimes disappear completely. Without getting too distracted by the minutiae of numerical stability or underflow, we can still appreciate some bizarre behavior that results when floats are misused: ```python 6.89 + .1 ``` 6.989999999999999 ```python (0.1)**512 ``` 0.0 In the second scenario, we can imagine having 512 data points and finding that the likelihood evaluates to 0.1 (times our parameter) for every single one. Then our product would look like $g(\theta) \cdot (0.1)^{512}$. The computer just told us that one of those terms is *zero*, and we're left unable to find the parameters for our MLE. ## Solution What do we do instead? Is there any way to make these numbers bigger, without changing the problem or solution? Is there an equivalent problem with bigger numbers? Adding a number and multiplying by a number don't fix the problem - they just add terms to the expression, which ends up zero anyhow. However these functions do have one property that we will need to be sure we are solving an equivalent problem: *they preserve the order of the input in the output.* We call these functions **monotonic**. The monotonic functions also include the *log* function. The log function has some very nice properties, not least of which that it makes our calculations immune to the problems we saw above. Calculating the log likelihood: ```python from sympy import log _ = simplify(log(L_)) _ ``` $\displaystyle - 3 \lambda + 6 \log{\left(\lambda \right)} - \log{\left(12 \right)}$ And then taking the derivative as before: ```python d_ = diff(_, lambda_) d_ ``` Setting equal to zero: ```python _ = Eq(_, 0) _ ``` $\displaystyle -3 + \frac{6}{\lambda} = 0$ And solving: ```python from sympy import solve solve(_, lambda_) ``` [2] The two solutions agree! Which is necessary, but not sufficient to show these methods are equivalent in general.
[STATEMENT] lemma Enc_keys_clean_AencSet_Un: "Enc_keys_clean (G \<union> H) \<Longrightarrow> Enc_keys_clean (AencSet G K \<union> H)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Enc_keys_clean (G \<union> H) \<Longrightarrow> Enc_keys_clean (AencSet G K \<union> H) [PROOF STEP] by (auto simp add: Enc_keys_clean_def dest!: parts_msgSetD)
import numpy as np import pandas as pd import string from nltk import sent_tokenize, word_tokenize from nltk.corpus import stopwords import time start = time.time() #change your file location resprective of your path file_location = "/Users/marctheshark/Documents/Github/NLP/Tokenization/data.txt" #opening and then closing the file def getfile(address): file = pd.read_csv(address) return file #Looping through the data to pull each sentence and sentiment label def preprocessing(your_data): data = getfile(your_data) sentiment = [] corpus = [] #looping over the length of the data for i in range(1,data.shape[0]): tweet = data.iloc[i][0] label = data.iloc[i][1] #Building sentences from the data and removing punctuation and lowering captilizations. words = word_tokenize(tweet) words = [word.lower() for word in words] # removing any punctuation matrix = str.maketrans('', '', string.punctuation) removed = [word.translate(matrix) for word in words] filter_words = [word for word in removed if word.isalpha()] sw = set(stopwords.words('english')) filter_words = [w for w in filter_words if not w in sw] corpus.append(filter_words) sentiment.append(label) #somehow the labels and corpus is off, easily fixable return sentiment , corpus x,y = (preprocessing(file_location)) print(len(x)) print(len(y)) def n_gram_GetTraining(data, n): nothing = preprocessing(data) labels, corpus = nothing corpus_ngram =[] #looking through each sentence in the corpus for i in range(len(corpus)): sentences = corpus[i] sentence_ngram =[] #print(sentences) #looking at each word of the sentence for word in range(len(sentences)): #storing the ngram sentence_ngram.append(sentences[word:word+n]) #storing all ngrams in their respective sentences corpus_ngram.append(sentence_ngram) #splitting into unique ngram tokens tokens = [] for j in range(len(corpus_ngram)): index = corpus_ngram[j] for w in range(len(index)): next_index = index[w] #if there are unequal ngrams dont use them try: if len(next_index) < n: #print('breaking') break except: w = 0 if next_index not in tokens: tokens.append(next_index) tokens.sort() encoded_data = np.zeros([len(corpus_ngram), len(tokens)]) count = 0 for z in range(len(tokens)): unique_token = tokens[z] for e in range(len(corpus_ngram)): if unique_token in corpus_ngram[e]: count += 1 encoded_data[e, z] = count return encoded_data , labels #data is the location of you file in txt format #wasnt able to link it from the github not sure how to do that -Marc tri_gram = n_gram_GetTraining(file_location,3) quad_gram = n_gram_GetTraining(file_location,4) combination_gram = np.hstack((tri_gram, quad_gram)) x , y = quad_gram print(x) print(len(x)) print(len(y)) qg = pd.DataFrame(quad_gram) print(qg) qg.to_csv(path_or_buf= "/Users/marctheshark/Documents/NLP/Final Project/output.csv" , index=False) #export_csv = quad_gram.to_csv (r"/Users/marctheshark/Documents/NLP/Final Project/outputdata.csv", header=True) #Don't forget to add '.csv' at the end of the path #might be a good idea to output all three of n_grams so we dont have to reprocess them everytime end = time.time() print(end - start) ''' from sklearn.model_selection import train_test_split , GridSearchCV , RepeatedKFold from sklearn.metrics import classification_report, confusion_matrix from sklearn.svm import SVC print(len(x)) print(len(y)) X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=333) print(len(X_train)) print(len(y_train)) kf = KFold(n_splits=10) hyperparameters = [{'kernel': ['rbf'], 'gamma' : [1, .1, .01, 0.001], 'C': [1, 10, 100]}, {'kernel': ['linear'], 'gamma' : [1, .1, .01, 0.001] , 'C': [1, 10, 100]}] classifier = GridSearchCV( estimator= svm.SVC(random_state= 333) , param_grid= hyperparameters, cv = kf) classifier.fit(X_train, y_train) means = classifier.cv_results_['mean_test_score'] stds = classifier.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, classifier.cv_results_['params']): print("%0.4f (+/-%0.03f) for %r" % (mean, std * 2, params)) print ('') print ("The Best Training Score was:" , classifier.best_score_) print('') print ("The Best Parameters were: " , classifier.best_params_) print (' ') '''
section \<open>Identity Through Identity Anchors\<close> text \<^marker>\<open>tag bodyonly\<close> \<open> In this section, we describe another approach for characterizing the identity of a particular in a particular structure. Though we prove that this approach is logically equivalent to the characterizations based on identifiability, non-permutability or isomorphical uniqueness, it nevertheless is able to better highlight the context that characterizes the identity of a particular. \<close> text_raw\<open>\par\<close> text_raw \<open>\subsection[Anchoring]{Anchoring\isalabel{subsec:anchoring}}\<close> text \<^marker>\<open>tag bodyonly\<close> \<open> The value of an ontology, or conceptual model, lies in the information it carries about the concepts and assumptions that characterize a domain. In the context of Information Systems development, one of the most important users of a conceptual model is the database designer, and some of the elements the DB designer expects to find in the conceptual model are the identity conditions of the elements in the domain. The definitions provided so far for the identity of particulars were (1) by identifiability, (2) by isomorphical uniqueness, and (3) by non-permutability. The first one has the disadvantage of requiring the existence of a predicate (and of a formal language) at a fundamental level in the foundational ontology, even though such predicate would be useful for the purposes of the DB designer. The other two, though not requiring the existence of elements that are not in the particular structure, simply provides us a yes or no answer to whether a particular has identity. Here we introduce the notion of an \emph{identity anchor} as a structure that represents the \emph{identity neighborhood} of a particular in a particular structure, i.e., the elements of the structure that play a role in the identification of the particular. Note that we are not referring to the identity condition itself, which would be a predicate, but to the elements of the structure that would participate in some identity predicate. \<close> text_raw\<open>\par\<close> theory Anchoring imports "../ParticularStructures/SubStructures" begin context ufo_particular_theory_sig begin text \<^marker>\<open>tag bodyonly\<close> \<open> Given a particular structure \<open>\<Gamma>\<close> and a particular \<open>x\<close> of \<open>\<Gamma>\<close>, and given another particular structure \<open>\<Gamma>\<^sub>x\<close>, a particular \<open>y\<close> of \<open>\<Gamma>\<^sub>x\<close>, and a morphism \<open>\<phi>\<close> from \<open>\<Gamma>\<^sub>x\<close> to \<open>\<Gamma>\<close>, we say that \<open>(\<Gamma>\<^sub>x,y,\<phi>)\<close> anchors \<open>x\<close> in \<open>\<Gamma>\<close>, written as \<open>y \<midarrow>\<Gamma>\<^sub>x,\<phi>\<rightarrow>\<^sub>1 x\<close>, or that \<open>(\<Gamma>\<^sub>x,y,\<phi>)\<close> is an anchor for \<open>x\<close> (in \<open>\<Gamma>\<close>), if and only if, for every morphism \<open>\<sigma>\<close> from \<open>\<Gamma>\<^sub>x\<close> to \<open>\<Gamma>\<close>, \<open>\<sigma> y\<close> is always \<open>x\<close>. In other words, there are sufficient elements in \<open>\<Gamma>\<^sub>x\<close> to make it so that \<open>y\<close> (in \<open>\<Gamma>\<^sub>x\<close>) cannot be seen as anything but \<open>x\<close> in \<open>\<Gamma>\<close>. Formally, we have: \<close> text_raw\<open>\par\<close> definition anchors :: \<open> 'p\<^sub>2 \<Rightarrow> ('p\<^sub>2,'q) particular_struct \<Rightarrow> ('p\<^sub>2 \<Rightarrow> 'p) \<Rightarrow> 'p \<Rightarrow> bool\<close> (\<open>_ \<midarrow>_,_\<rightarrow>\<^sub>1 _\<close> [74,1,1,74] 75) where \<open>y \<midarrow>\<Gamma>\<^sub>x,\<phi>\<rightarrow>\<^sub>1 x \<equiv> x \<in> \<P> \<and> \<Gamma>\<^sub>x \<lless>\<^bsub>\<phi>\<^esub> \<Gamma> \<and> y \<in> particulars \<Gamma>\<^sub>x \<and> (\<forall>\<sigma> \<in> Morphs\<^bsub>\<Gamma>\<^sub>x,\<Gamma>\<^esub>. \<forall>z \<in> particulars \<Gamma>\<^sub>x. \<sigma> z = x \<longleftrightarrow> z = y)\<close> text \<^marker>\<open>tag bodyonly\<close> \<open> Note that, since \<open>x\<close> is invariant with respect to the morphisms from \<open>\<Gamma>\<^sub>x\<close> to \<open>\<Gamma>\<close>, the choice of the morphism \<open>\<phi>\<close> doesn't matter. Thus, we can just say that \<open>(\<Gamma>\<^sub>x,y)\<close> anchors \<open>x\<close>, or simply that \<open>\<Gamma>\<^sub>x\<close> is an anchor for \<open>x\<close>. Note that from a particular structure with a single particular, \<open>y\<close>, we can always have a morphism to \<open>\<Gamma>\<close> that maps \<open>y\<close> to \<open>x\<close>. However, this configuration would only work as anchor for \<open>x\<close> if \<open>x\<close> is the only substantial in \<open>\<Gamma>\<close>. Otherwise, there would be morphisms from the single-particular structure to any substantial in \<open>\<Gamma>\<close>. Thus, it always possible to remove enough elements from an anchor in such a way that it stops being an anchor. Conversely, if \<open>\<Gamma>'\<close> is an anchor for \<open>x\<close>, then the addition of new elements to \<open>\<Gamma>'\<close>, while maintaing the existence of at least one morphism to \<open>\<Gamma>\<close>, will not remove its status as an anchor for \<open>x\<close>. \<close> text_raw\<open>\par\<close> lemma \<^marker>\<open>tag (proof) aponly\<close> \<^marker>\<open>tag (proof) aponly\<close> anchorsI[intro!]: assumes \<open>x \<in> \<P>\<close> \<open>\<Gamma>\<^sub>x \<lless>\<^bsub>\<phi>\<^esub> \<Gamma>\<close> \<open>y \<in> particulars \<Gamma>\<^sub>x\<close> \<open>\<And>\<phi> z. \<lbrakk> z \<in> particulars \<Gamma>\<^sub>x ; \<phi> \<in> Morphs\<^bsub>\<Gamma>\<^sub>x,\<Gamma>\<^esub> \<rbrakk> \<Longrightarrow> \<phi> z = x \<longleftrightarrow> z = y\<close> shows \<open>y \<midarrow>\<Gamma>\<^sub>x,\<phi>\<rightarrow>\<^sub>1 x\<close> apply (simp add: anchors_def assms(1,2,3) del: morphs_iff injectives_iff) apply (intro ballI) using assms by metis lemma \<^marker>\<open>tag (proof) aponly\<close> anchorsE[elim!]: assumes \<open>y \<midarrow>\<Gamma>\<^sub>x,\<phi>\<rightarrow>\<^sub>1 x\<close> obtains \<open>x \<in> \<P>\<close> \<open>\<Gamma>\<^sub>x \<lless>\<^bsub>\<phi>\<^esub> \<Gamma>\<close> \<open>y \<in> particulars \<Gamma>\<^sub>x\<close> \<open>\<And>\<phi> z. \<lbrakk> z \<in> particulars \<Gamma>\<^sub>x ; \<phi> \<in> Morphs\<^bsub>\<Gamma>\<^sub>x,\<Gamma>\<^esub> \<rbrakk> \<Longrightarrow> \<phi> z = x \<longleftrightarrow> z = y\<close> using assms by (simp add: anchors_def) definition anchored_particulars :: \<open>'p set\<close> (\<open>\<P>\<^sub>\<down>\<close>) where \<open>\<P>\<^sub>\<down> \<equiv> { x | x (y :: ZF) \<Gamma>\<^sub>x \<phi> . y \<midarrow>\<Gamma>\<^sub>x,\<phi>\<rightarrow>\<^sub>1 x }\<close> lemma \<^marker>\<open>tag (proof) aponly\<close> anchored_particulars_I[intro]: fixes y :: ZF and \<Gamma>\<^sub>x and x assumes \<open>y \<midarrow>\<Gamma>\<^sub>x,\<phi>\<rightarrow>\<^sub>1 x\<close> shows \<open>x \<in> \<P>\<^sub>\<down>\<close> using assms by (simp add: anchored_particulars_def ; metis) lemma \<^marker>\<open>tag (proof) aponly\<close> anchored_particulars_E[elim!]: assumes \<open>x \<in> \<P>\<^sub>\<down>\<close> obtains y :: ZF and \<Gamma>\<^sub>x \<phi> where \<open>y \<midarrow>\<Gamma>\<^sub>x,\<phi>\<rightarrow>\<^sub>1 x\<close> using assms by (simp add: anchored_particulars_def ; metis) lemma \<^marker>\<open>tag (proof) aponly\<close> anchored_particulars_I1[intro!]: fixes y :: \<open>'p\<^sub>1\<close> assumes \<open>y \<midarrow>\<Gamma>\<^sub>x,\<phi>\<^sub>x\<rightarrow>\<^sub>1 x\<close> shows \<open>x \<in> \<P>\<^sub>\<down>\<close> proof - obtain A: \<open>x \<in> \<P>\<close> \<open>\<Gamma>\<^sub>x \<lless>\<^bsub>\<phi>\<^sub>x\<^esub> \<Gamma>\<close> \<open>y \<in> particulars \<Gamma>\<^sub>x\<close> and B: \<open>\<And>\<phi> z. \<lbrakk> z \<in> particulars \<Gamma>\<^sub>x ; \<phi> \<in> Morphs\<^bsub>\<Gamma>\<^sub>x,\<Gamma>\<^esub> \<rbrakk> \<Longrightarrow> \<phi> z = x \<longleftrightarrow> z = y\<close> using assms by blast interpret I: particular_struct_injection \<open>\<Gamma>\<^sub>x\<close> \<open>\<Gamma>\<close> \<open>\<phi>\<^sub>x\<close> using A(2) by simp obtain \<sigma> :: \<open>'p\<^sub>1 \<Rightarrow> ZF\<close> where \<open>inj \<sigma>\<close> using I.src.injection_to_ZF_exist by blast interpret I2: particular_struct_bijection_1 \<open>\<Gamma>\<^sub>x\<close> \<sigma> using I.src.inj_morph_img_isomorphism[of \<sigma>] by (metis I.src.\<Gamma>_simps UNIV_I \<open>inj \<sigma>\<close> inj_on_id inj_on_subset particular_struct_eqI subsetI) have C: \<open>I2.tgt.\<Gamma> = MorphImg \<sigma> \<Gamma>\<^sub>x\<close> using I2.tgt.\<Gamma>_simps by blast interpret I3: particular_struct_bijection_1 \<open>MorphImg \<sigma> \<Gamma>\<^sub>x\<close> \<open>inv \<sigma>\<close> apply (intro I2.tgt.inj_morph_img_isomorphism[simplified C]) subgoal by (metis I2.inv_morph_morph UNIV_I image_eqI inj_on_inv_into subsetI) using I.src.injection_to_ZF_exist by blast have D[simp]: \<open>inv \<sigma> ` \<sigma> ` X = X\<close> for X using \<open>inj \<sigma>\<close> by (auto simp: image_def) have E[simp]: \<open>inv \<sigma> (\<sigma> x) = x\<close> for x using \<open>inj \<sigma>\<close> by (auto simp: image_def) have F[simp]: \<open>MorphImg (inv \<sigma>) (MorphImg \<sigma> \<Gamma>\<^sub>x) = \<Gamma>\<^sub>x\<close> apply (intro particular_struct_eqI ext ; auto simp add: particular_struct_morphism_image_simps) subgoal using D by blast subgoal by force by (metis UNIV_I \<open>inj \<sigma>\<close> inv_into_f_f) interpret I4: particular_struct_injection \<open>MorphImg \<sigma> \<Gamma>\<^sub>x\<close> \<Gamma> \<open>\<phi>\<^sub>x \<circ> inv \<sigma>\<close> apply (intro particular_struct_injection_comp[of _ \<open>\<Gamma>\<^sub>x\<close>]) using I3.particular_struct_injection_axioms[simplified] I.particular_struct_injection_axioms by simp+ have G: \<open>\<phi>\<^sub>x \<circ> inv \<sigma> \<in> InjMorphs\<^bsub>MorphImg \<sigma> \<Gamma>\<^sub>x,\<Gamma>\<^esub>\<close> using I4.particular_struct_injection_axioms by blast then have H: \<open>MorphImg \<sigma> \<Gamma>\<^sub>x \<lless>\<^bsub>\<phi>\<^sub>x \<circ> inv \<sigma>\<^esub> \<Gamma>\<close> by blast have J[simp]: \<open>(\<phi> z = x) = (z = \<sigma> y)\<close> if as: \<open>z \<in> I3.src.endurants\<close> \<open>particular_struct_morphism (MorphImg \<sigma> \<Gamma>\<^sub>x) \<Gamma> \<phi>\<close> for z \<phi> proof - interpret I5: particular_struct_morphism \<open>MorphImg \<sigma> \<Gamma>\<^sub>x\<close> \<Gamma> \<phi> using as by simp have AA: \<open>\<phi> \<circ> \<sigma> \<in> Morphs\<^bsub>\<Gamma>\<^sub>x,\<Gamma>\<^esub>\<close> apply (intro morphs_I particular_struct_morphism_comp[of _ \<open>MorphImg \<sigma> \<Gamma>\<^sub>x\<close>] as) by (simp add: I2.particular_struct_morphism_axioms) have BB: \<open>inv \<sigma> z \<in> I.src.endurants\<close> by (metis F I3.I_img_eq_tgt_I I3.morph_image_def image_eqI as(1)) have CC:\<open>\<sigma> (inv \<sigma> z) = z\<close> using as(1) by (meson BB E I2.morph_preserves_particulars I3.morph_is_injective inj_onD) have DD: \<open>(\<phi> z = x) = (inv \<sigma> z = y)\<close> using B[OF BB AA] CC by (simp ; metis) show ?thesis apply (simp add: DD) using CC by auto qed have K: \<open>\<sigma> y \<midarrow>MorphImg \<sigma> \<Gamma>\<^sub>x,\<phi>\<^sub>x \<circ> inv \<sigma>\<rightarrow>\<^sub>1 x\<close> apply (intro anchorsI I4.particular_struct_injection_axioms H A) using A(3) by auto show ?thesis by (intro anchored_particulars_I[OF K]) qed lemma \<^marker>\<open>tag (proof) aponly\<close> anchor_to_zf_I: fixes y :: 'a assumes \<open>y \<midarrow>\<Gamma>\<^sub>x,\<phi>\<rightarrow>\<^sub>1 x\<close> shows \<open>\<exists>(y\<^sub>1 :: ZF) \<Gamma>\<^sub>1 \<sigma>. y\<^sub>1 \<midarrow>\<Gamma>\<^sub>1,\<sigma>\<rightarrow>\<^sub>1 x \<and> \<Gamma>\<^sub>1 \<in> IsoModels\<^bsub>\<Gamma>\<^sub>x,TYPE(ZF)\<^esub>\<close> proof - obtain A: \<open>x \<in> \<P>\<close> \<open>y \<in> particulars \<Gamma>\<^sub>x\<close> \<open>\<Gamma>\<^sub>x \<lless>\<^bsub>\<phi>\<^esub> \<Gamma>\<close> \<open>\<And>\<sigma> z. \<lbrakk> z \<in> particulars \<Gamma>\<^sub>x ; \<sigma> \<in> Morphs\<^bsub>\<Gamma>\<^sub>x,\<Gamma>\<^esub> \<rbrakk> \<Longrightarrow> \<sigma> z = x \<longleftrightarrow> z = y\<close> using anchorsE[OF assms] by metis interpret phi: particular_struct_injection \<Gamma>\<^sub>x \<Gamma> \<phi> using A(3) . obtain f :: \<open>'a \<Rightarrow> ZF\<close> where f: \<open>inj f\<close> using phi.src.injection_to_ZF_exist by blast have \<open>phi.src.\<Gamma> = \<Gamma>\<^sub>x\<close> by auto have \<open>particular_struct_bijection_1 \<Gamma>\<^sub>x f\<close> using f apply (subst \<open>phi.src.\<Gamma> = \<Gamma>\<^sub>x\<close>[symmetric]) apply (intro phi.src.inj_morph_img_isomorphism) subgoal using inj_on_subset by blast using inj_on_id by blast then interpret gamma_x: particular_struct_bijection_1 \<Gamma>\<^sub>x f by blast have \<open>particular_struct_injection (MorphImg f \<Gamma>\<^sub>x) \<Gamma>\<^sub>x gamma_x.inv_morph\<close> using particular_struct_bijection_def by blast then interpret gamma_x_inv: particular_struct_injection \<open>MorphImg f \<Gamma>\<^sub>x\<close> \<Gamma>\<^sub>x gamma_x.inv_morph . have \<open>particular_struct_injection (MorphImg f \<Gamma>\<^sub>x) \<Gamma> (\<phi> \<circ> gamma_x.inv_morph)\<close> apply (intro particular_struct_injection_comp[of _ \<Gamma>\<^sub>x]) by (intro_locales) then interpret phi_gamma_x_inv: particular_struct_injection \<open>MorphImg f \<Gamma>\<^sub>x\<close> \<Gamma> \<open>\<phi> \<circ> gamma_x.inv_morph\<close> \<open>TYPE(ZF)\<close> \<open>TYPE('p)\<close> . have R1: \<open>MorphImg f \<Gamma>\<^sub>x \<lless>\<^bsub>\<phi> \<circ> gamma_x.inv_morph\<^esub> \<Gamma>\<close> using injectives_I[ OF phi_gamma_x_inv.particular_struct_injection_axioms] by blast have R2: \<open>\<phi> \<in> Morphs\<^bsub>\<Gamma>\<^sub>x,\<Gamma>\<^esub>\<close> using phi.particular_struct_morphism_axioms by blast have R3[simp]: \<open>\<phi> y = x\<close> using A(4)[OF _ R2,simplified,of y,simplified] A(2) by metis have R4: \<open>f y \<in> gamma_x_inv.src.\<P>\<close> using A(2) by blast have R5: \<open>f y \<midarrow>MorphImg f \<Gamma>\<^sub>x,\<phi> \<circ> gamma_x.inv_morph\<rightarrow>\<^sub>1 x\<close> proof (intro anchorsI A(1) R1 R4) fix \<sigma> z assume as: \<open>z \<in> gamma_x_inv.src.\<P>\<close> \<open>\<sigma> \<in> Morphs\<^bsub>MorphImg f \<Gamma>\<^sub>x,\<Gamma>\<^esub>\<close> interpret sigma: particular_struct_morphism \<open>MorphImg f \<Gamma>\<^sub>x\<close> \<Gamma> \<sigma> using as(2) by blast interpret particular_struct_morphism \<Gamma>\<^sub>x \<Gamma> \<open>\<phi> \<circ> gamma_x.inv_morph \<circ> f\<close> apply (intro particular_struct_morphism_comp[ of _ \<open>MorphImg f \<Gamma>\<^sub>x\<close>]) by intro_locales interpret sigma_f: particular_struct_morphism \<Gamma>\<^sub>x \<Gamma> \<open>\<sigma> \<circ> f\<close> apply (intro particular_struct_morphism_comp[of _ \<open>MorphImg f \<Gamma>\<^sub>x\<close>]) by intro_locales have RR1: \<open>\<sigma> \<circ> f \<in> Morphs\<^bsub>\<Gamma>\<^sub>x,\<Gamma>\<^esub>\<close> using sigma_f.particular_struct_morphism_axioms by blast have I1: \<open>gamma_x.inv_morph (f x) = x\<close> if \<open>x \<in> phi.src.\<P>\<close> for x using that by simp have I2: \<open>f (gamma_x.inv_morph x) = x\<close> if \<open>x \<in> gamma_x.tgt.\<P>\<close> for x using that by simp show \<open>\<sigma> z = x \<longleftrightarrow> z = f y\<close> supply R = I1 I2 A(4)[OF _ RR1,simplified] R3 as(1) A(2) apply (intro iffI) subgoal using R by (metis gamma_x_inv.morph_preserves_particulars) using R by blast qed have R6: \<open>MorphImg f \<Gamma>\<^sub>x \<in> IsoModels\<^bsub>\<Gamma>\<^sub>x,TYPE(ZF)\<^esub>\<close> using gamma_x.particular_struct_bijection_1_axioms by blast then show ?thesis using R5 by blast qed lemma \<^marker>\<open>tag (proof) aponly\<close> anchored_particulars_are_particulars: \<open>\<P>\<^sub>\<down> \<subseteq> \<P>\<close> by blast end end
[GOAL] ⊢ LawfulFunctor Multiset [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 ⊢ ∀ {α β : Type ?u.250}, Functor.mapConst = Functor.map ∘ Function.const β [PROOFSTEP] intros [GOAL] case refine'_2 ⊢ ∀ {α : Type ?u.250} (x : Multiset α), id <$> x = x [PROOFSTEP] intros [GOAL] case refine'_3 ⊢ ∀ {α β γ : Type ?u.250} (g : α → β) (h : β → γ) (x : Multiset α), (h ∘ g) <$> x = h <$> g <$> x [PROOFSTEP] intros [GOAL] case refine'_1 α✝ β✝ : Type ?u.250 ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] try simp [GOAL] case refine'_1 α✝ β✝ : Type ?u.250 ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] simp [GOAL] case refine'_2 α✝ : Type ?u.250 x✝ : Multiset α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] try simp [GOAL] case refine'_2 α✝ : Type ?u.250 x✝ : Multiset α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] simp [GOAL] case refine'_3 α✝ β✝ γ✝ : Type ?u.250 g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : Multiset α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] try simp [GOAL] case refine'_3 α✝ β✝ γ✝ : Type ?u.250 g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : Multiset α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] simp [GOAL] case refine'_1 α✝ β✝ : Type ?u.250 ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' ⊢ Multiset α' → F (Multiset β') [PROOFSTEP] refine' Quotient.lift (Functor.map Coe.coe ∘ Traversable.traverse f) _ [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' ⊢ ∀ (a b : List α'), a ≈ b → (Functor.map Coe.coe ∘ Traversable.traverse f) a = (Functor.map Coe.coe ∘ Traversable.traverse f) b [PROOFSTEP] introv p [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' p : a ≈ b ⊢ (Functor.map Coe.coe ∘ Traversable.traverse f) a = (Functor.map Coe.coe ∘ Traversable.traverse f) b [PROOFSTEP] unfold Function.comp [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' p : a ≈ b ⊢ Coe.coe <$> Traversable.traverse f a = Coe.coe <$> Traversable.traverse f b [PROOFSTEP] induction p [GOAL] case nil F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' ⊢ Coe.coe <$> Traversable.traverse f [] = Coe.coe <$> Traversable.traverse f [] case cons F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x✝ : α' l₁✝ l₂✝ : List α' a✝ : l₁✝ ~ l₂✝ a_ih✝ : Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₂✝ ⊢ Coe.coe <$> Traversable.traverse f (x✝ :: l₁✝) = Coe.coe <$> Traversable.traverse f (x✝ :: l₂✝) case swap F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x✝ y✝ : α' l✝ : List α' ⊢ Coe.coe <$> Traversable.traverse f (y✝ :: x✝ :: l✝) = Coe.coe <$> Traversable.traverse f (x✝ :: y✝ :: l✝) case trans F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b l₁✝ l₂✝ l₃✝ : List α' a✝¹ : l₁✝ ~ l₂✝ a✝ : l₂✝ ~ l₃✝ a_ih✝¹ : Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₂✝ a_ih✝ : Coe.coe <$> Traversable.traverse f l₂✝ = Coe.coe <$> Traversable.traverse f l₃✝ ⊢ Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₃✝ [PROOFSTEP] case nil => rfl [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' ⊢ Coe.coe <$> Traversable.traverse f [] = Coe.coe <$> Traversable.traverse f [] [PROOFSTEP] case nil => rfl [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' ⊢ Coe.coe <$> Traversable.traverse f [] = Coe.coe <$> Traversable.traverse f [] [PROOFSTEP] rfl [GOAL] case cons F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x✝ : α' l₁✝ l₂✝ : List α' a✝ : l₁✝ ~ l₂✝ a_ih✝ : Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₂✝ ⊢ Coe.coe <$> Traversable.traverse f (x✝ :: l₁✝) = Coe.coe <$> Traversable.traverse f (x✝ :: l₂✝) case swap F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x✝ y✝ : α' l✝ : List α' ⊢ Coe.coe <$> Traversable.traverse f (y✝ :: x✝ :: l✝) = Coe.coe <$> Traversable.traverse f (x✝ :: y✝ :: l✝) case trans F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b l₁✝ l₂✝ l₃✝ : List α' a✝¹ : l₁✝ ~ l₂✝ a✝ : l₂✝ ~ l₃✝ a_ih✝¹ : Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₂✝ a_ih✝ : Coe.coe <$> Traversable.traverse f l₂✝ = Coe.coe <$> Traversable.traverse f l₃✝ ⊢ Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₃✝ [PROOFSTEP] case cons x l₁ l₂ _ h => have : Multiset.cons <$> f x <*> Coe.coe <$> Traversable.traverse f l₁ = Multiset.cons <$> f x <*> Coe.coe <$> Traversable.traverse f l₂ := by rw [h] simpa [functor_norm] using this [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x : α' l₁ l₂ : List α' a✝ : l₁ ~ l₂ h : Coe.coe <$> Traversable.traverse f l₁ = Coe.coe <$> Traversable.traverse f l₂ ⊢ Coe.coe <$> Traversable.traverse f (x :: l₁) = Coe.coe <$> Traversable.traverse f (x :: l₂) [PROOFSTEP] case cons x l₁ l₂ _ h => have : Multiset.cons <$> f x <*> Coe.coe <$> Traversable.traverse f l₁ = Multiset.cons <$> f x <*> Coe.coe <$> Traversable.traverse f l₂ := by rw [h] simpa [functor_norm] using this [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x : α' l₁ l₂ : List α' a✝ : l₁ ~ l₂ h : Coe.coe <$> Traversable.traverse f l₁ = Coe.coe <$> Traversable.traverse f l₂ ⊢ Coe.coe <$> Traversable.traverse f (x :: l₁) = Coe.coe <$> Traversable.traverse f (x :: l₂) [PROOFSTEP] have : Multiset.cons <$> f x <*> Coe.coe <$> Traversable.traverse f l₁ = Multiset.cons <$> f x <*> Coe.coe <$> Traversable.traverse f l₂ := by rw [h] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x : α' l₁ l₂ : List α' a✝ : l₁ ~ l₂ h : Coe.coe <$> Traversable.traverse f l₁ = Coe.coe <$> Traversable.traverse f l₂ ⊢ (Seq.seq (cons <$> f x) fun x => Coe.coe <$> Traversable.traverse f l₁) = Seq.seq (cons <$> f x) fun x => Coe.coe <$> Traversable.traverse f l₂ [PROOFSTEP] rw [h] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x : α' l₁ l₂ : List α' a✝ : l₁ ~ l₂ h : Coe.coe <$> Traversable.traverse f l₁ = Coe.coe <$> Traversable.traverse f l₂ this : (Seq.seq (cons <$> f x) fun x => Coe.coe <$> Traversable.traverse f l₁) = Seq.seq (cons <$> f x) fun x => Coe.coe <$> Traversable.traverse f l₂ ⊢ Coe.coe <$> Traversable.traverse f (x :: l₁) = Coe.coe <$> Traversable.traverse f (x :: l₂) [PROOFSTEP] simpa [functor_norm] using this [GOAL] case swap F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x✝ y✝ : α' l✝ : List α' ⊢ Coe.coe <$> Traversable.traverse f (y✝ :: x✝ :: l✝) = Coe.coe <$> Traversable.traverse f (x✝ :: y✝ :: l✝) case trans F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b l₁✝ l₂✝ l₃✝ : List α' a✝¹ : l₁✝ ~ l₂✝ a✝ : l₂✝ ~ l₃✝ a_ih✝¹ : Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₂✝ a_ih✝ : Coe.coe <$> Traversable.traverse f l₂✝ = Coe.coe <$> Traversable.traverse f l₃✝ ⊢ Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₃✝ [PROOFSTEP] case swap x y l => have : (fun a b (l : List β') ↦ (↑(a :: b :: l) : Multiset β')) <$> f y <*> f x = (fun a b l ↦ ↑(a :: b :: l)) <$> f x <*> f y := by rw [CommApplicative.commutative_map] congr funext a b l simpa [flip] using Perm.swap a b l simp [(· ∘ ·), this, functor_norm, Coe.coe] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x y : α' l : List α' ⊢ Coe.coe <$> Traversable.traverse f (y :: x :: l) = Coe.coe <$> Traversable.traverse f (x :: y :: l) [PROOFSTEP] case swap x y l => have : (fun a b (l : List β') ↦ (↑(a :: b :: l) : Multiset β')) <$> f y <*> f x = (fun a b l ↦ ↑(a :: b :: l)) <$> f x <*> f y := by rw [CommApplicative.commutative_map] congr funext a b l simpa [flip] using Perm.swap a b l simp [(· ∘ ·), this, functor_norm, Coe.coe] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x y : α' l : List α' ⊢ Coe.coe <$> Traversable.traverse f (y :: x :: l) = Coe.coe <$> Traversable.traverse f (x :: y :: l) [PROOFSTEP] have : (fun a b (l : List β') ↦ (↑(a :: b :: l) : Multiset β')) <$> f y <*> f x = (fun a b l ↦ ↑(a :: b :: l)) <$> f x <*> f y := by rw [CommApplicative.commutative_map] congr funext a b l simpa [flip] using Perm.swap a b l [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x y : α' l : List α' ⊢ (Seq.seq ((fun a b l => ↑(a :: b :: l)) <$> f y) fun x_1 => f x) = Seq.seq ((fun a b l => ↑(a :: b :: l)) <$> f x) fun x => f y [PROOFSTEP] rw [CommApplicative.commutative_map] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x y : α' l : List α' ⊢ (Seq.seq ((flip fun a b l => ↑(a :: b :: l)) <$> f x) fun x => f y) = Seq.seq ((fun a b l => ↑(a :: b :: l)) <$> f x) fun x => f y [PROOFSTEP] congr [GOAL] case e_a.e_a F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x y : α' l : List α' ⊢ (flip fun a b l => ↑(a :: b :: l)) = fun a b l => ↑(a :: b :: l) [PROOFSTEP] funext a b l [GOAL] case e_a.e_a.h.h.h F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a✝ b✝ : List α' x y : α' l✝ : List α' a b : β' l : List β' ⊢ flip (fun a b l => ↑(a :: b :: l)) a b l = ↑(a :: b :: l) [PROOFSTEP] simpa [flip] using Perm.swap a b l [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b : List α' x y : α' l : List α' this : (Seq.seq ((fun a b l => ↑(a :: b :: l)) <$> f y) fun x_1 => f x) = Seq.seq ((fun a b l => ↑(a :: b :: l)) <$> f x) fun x => f y ⊢ Coe.coe <$> Traversable.traverse f (y :: x :: l) = Coe.coe <$> Traversable.traverse f (x :: y :: l) [PROOFSTEP] simp [(· ∘ ·), this, functor_norm, Coe.coe] [GOAL] case trans F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b l₁✝ l₂✝ l₃✝ : List α' a✝¹ : l₁✝ ~ l₂✝ a✝ : l₂✝ ~ l₃✝ a_ih✝¹ : Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₂✝ a_ih✝ : Coe.coe <$> Traversable.traverse f l₂✝ = Coe.coe <$> Traversable.traverse f l₃✝ ⊢ Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₃✝ [PROOFSTEP] case trans => simp [*] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b l₁✝ l₂✝ l₃✝ : List α' a✝¹ : l₁✝ ~ l₂✝ a✝ : l₂✝ ~ l₃✝ a_ih✝¹ : Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₂✝ a_ih✝ : Coe.coe <$> Traversable.traverse f l₂✝ = Coe.coe <$> Traversable.traverse f l₃✝ ⊢ Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₃✝ [PROOFSTEP] case trans => simp [*] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' a b l₁✝ l₂✝ l₃✝ : List α' a✝¹ : l₁✝ ~ l₂✝ a✝ : l₂✝ ~ l₃✝ a_ih✝¹ : Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₂✝ a_ih✝ : Coe.coe <$> Traversable.traverse f l₂✝ = Coe.coe <$> Traversable.traverse f l₃✝ ⊢ Coe.coe <$> Traversable.traverse f l₁✝ = Coe.coe <$> Traversable.traverse f l₃✝ [PROOFSTEP] simp [*] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' α✝ : Type ?u.36389 x✝ : Multiset α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] simp only [fmap_def, id_eq, map_id'] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' α✝ β✝ : Type ?u.36389 x✝¹ : α✝ x✝ : α✝ → Multiset β✝ ⊢ pure x✝¹ >>= x✝ = x✝ x✝¹ [PROOFSTEP] simp only [pure_def, bind_def, singleton_bind] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' α✝ β✝ : Type ?u.36389 x✝¹ : α✝ → β✝ x✝ : Multiset α✝ ⊢ (do let y ← x✝ pure (x✝¹ y)) = x✝¹ <$> x✝ [PROOFSTEP] simp only [pure_def, bind_def, bind_singleton, fmap_def] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' α β : Type u_1 h : α → β ⊢ Functor.map h ∘ Coe.coe = Coe.coe ∘ Functor.map h [PROOFSTEP] funext [GOAL] case h F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' α β : Type u_1 h : α → β x✝ : List α ⊢ (Functor.map h ∘ Coe.coe) x✝ = (Coe.coe ∘ Functor.map h) x✝ [PROOFSTEP] simp only [Function.comp_apply, Coe.coe, fmap_def, coe_map, List.map_eq_map] [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' α : Type u_1 x : Multiset α ⊢ traverse pure x = x [PROOFSTEP] refine' Quotient.inductionOn x _ [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' α : Type u_1 x : Multiset α ⊢ ∀ (a : List α), traverse pure (Quotient.mk (isSetoid α) a) = Quotient.mk (isSetoid α) a [PROOFSTEP] intro [GOAL] F : Type u → Type u inst✝¹ : Applicative F inst✝ : CommApplicative F α' β' : Type u f : α' → F β' α : Type u_1 x : Multiset α a✝ : List α ⊢ traverse pure (Quotient.mk (isSetoid α) a✝) = Quotient.mk (isSetoid α) a✝ [PROOFSTEP] simp [traverse, Coe.coe] [GOAL] F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : CommApplicative F α' β' : Type u f : α' → F β' G H : Type u_1 → Type u_1 inst✝³ : Applicative G inst✝² : Applicative H inst✝¹ : CommApplicative G inst✝ : CommApplicative H α β γ : Type u_1 g : α → G β h : β → H γ x : Multiset α ⊢ traverse (Comp.mk ∘ Functor.map h ∘ g) x = Comp.mk (traverse h <$> traverse g x) [PROOFSTEP] refine' Quotient.inductionOn x _ [GOAL] F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : CommApplicative F α' β' : Type u f : α' → F β' G H : Type u_1 → Type u_1 inst✝³ : Applicative G inst✝² : Applicative H inst✝¹ : CommApplicative G inst✝ : CommApplicative H α β γ : Type u_1 g : α → G β h : β → H γ x : Multiset α ⊢ ∀ (a : List α), traverse (Comp.mk ∘ Functor.map h ∘ g) (Quotient.mk (isSetoid α) a) = Comp.mk (traverse h <$> traverse g (Quotient.mk (isSetoid α) a)) [PROOFSTEP] intro [GOAL] F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : CommApplicative F α' β' : Type u f : α' → F β' G H : Type u_1 → Type u_1 inst✝³ : Applicative G inst✝² : Applicative H inst✝¹ : CommApplicative G inst✝ : CommApplicative H α β γ : Type u_1 g : α → G β h : β → H γ x : Multiset α a✝ : List α ⊢ traverse (Comp.mk ∘ Functor.map h ∘ g) (Quotient.mk (isSetoid α) a✝) = Comp.mk (traverse h <$> traverse g (Quotient.mk (isSetoid α) a✝)) [PROOFSTEP] simp only [traverse, quot_mk_to_coe, lift_coe, Coe.coe, Function.comp_apply, Functor.map_map, functor_norm] [GOAL] F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : CommApplicative F α' β' : Type u f : α' → F β' G H : Type u_1 → Type u_1 inst✝³ : Applicative G inst✝² : Applicative H inst✝¹ : CommApplicative G inst✝ : CommApplicative H α β γ : Type u_1 g : α → G β h : β → H γ x : Multiset α a✝ : List α ⊢ Comp.mk (((fun x => ofList <$> x) ∘ Traversable.traverse h) <$> Traversable.traverse g a✝) = Comp.mk ((Quotient.lift (Functor.map ofList ∘ Traversable.traverse h) (_ : ∀ (a b : List β), a ≈ b → (Functor.map Coe.coe ∘ Traversable.traverse h) a = (Functor.map Coe.coe ∘ Traversable.traverse h) b) ∘ ofList) <$> Traversable.traverse g a✝) [PROOFSTEP] simp only [Function.comp, lift_coe] [GOAL] F : Type u → Type u inst✝³ : Applicative F inst✝² : CommApplicative F α' β' : Type u f : α' → F β' G : Type u_1 → Type u_1 inst✝¹ : Applicative G inst✝ : CommApplicative G α β γ : Type u_1 g : α → G β h : β → γ x : Multiset α ⊢ Functor.map h <$> traverse g x = traverse (Functor.map h ∘ g) x [PROOFSTEP] refine' Quotient.inductionOn x _ [GOAL] F : Type u → Type u inst✝³ : Applicative F inst✝² : CommApplicative F α' β' : Type u f : α' → F β' G : Type u_1 → Type u_1 inst✝¹ : Applicative G inst✝ : CommApplicative G α β γ : Type u_1 g : α → G β h : β → γ x : Multiset α ⊢ ∀ (a : List α), Functor.map h <$> traverse g (Quotient.mk (isSetoid α) a) = traverse (Functor.map h ∘ g) (Quotient.mk (isSetoid α) a) [PROOFSTEP] intro [GOAL] F : Type u → Type u inst✝³ : Applicative F inst✝² : CommApplicative F α' β' : Type u f : α' → F β' G : Type u_1 → Type u_1 inst✝¹ : Applicative G inst✝ : CommApplicative G α β γ : Type u_1 g : α → G β h : β → γ x : Multiset α a✝ : List α ⊢ Functor.map h <$> traverse g (Quotient.mk (isSetoid α) a✝) = traverse (Functor.map h ∘ g) (Quotient.mk (isSetoid α) a✝) [PROOFSTEP] simp only [traverse, quot_mk_to_coe, lift_coe, Function.comp_apply, Functor.map_map, map_comp_coe] [GOAL] F : Type u → Type u inst✝³ : Applicative F inst✝² : CommApplicative F α' β' : Type u f : α' → F β' G : Type u_1 → Type u_1 inst✝¹ : Applicative G inst✝ : CommApplicative G α β γ : Type u_1 g : α → G β h : β → γ x : Multiset α a✝ : List α ⊢ (Coe.coe ∘ Functor.map h) <$> Traversable.traverse g a✝ = Coe.coe <$> Traversable.traverse (Functor.map h ∘ g) a✝ [PROOFSTEP] rw [LawfulFunctor.comp_map, Traversable.map_traverse'] [GOAL] F : Type u → Type u inst✝³ : Applicative F inst✝² : CommApplicative F α' β' : Type u f : α' → F β' G : Type u_1 → Type u_1 inst✝¹ : Applicative G inst✝ : CommApplicative G α β γ : Type u_1 g : α → G β h : β → γ x : Multiset α a✝ : List α ⊢ Coe.coe <$> Functor.map h <$> Traversable.traverse g a✝ = Coe.coe <$> (Functor.map (Functor.map h) ∘ Traversable.traverse g) a✝ [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝³ : Applicative F inst✝² : CommApplicative F α' β' : Type u f : α' → F β' G : Type u_1 → Type u_1 inst✝¹ : Applicative G inst✝ : CommApplicative G α β γ : Type u_1 g : α → β h : β → G γ x : Multiset α ⊢ traverse h (map g x) = traverse (h ∘ g) x [PROOFSTEP] refine' Quotient.inductionOn x _ [GOAL] F : Type u → Type u inst✝³ : Applicative F inst✝² : CommApplicative F α' β' : Type u f : α' → F β' G : Type u_1 → Type u_1 inst✝¹ : Applicative G inst✝ : CommApplicative G α β γ : Type u_1 g : α → β h : β → G γ x : Multiset α ⊢ ∀ (a : List α), traverse h (map g (Quotient.mk (isSetoid α) a)) = traverse (h ∘ g) (Quotient.mk (isSetoid α) a) [PROOFSTEP] intro [GOAL] F : Type u → Type u inst✝³ : Applicative F inst✝² : CommApplicative F α' β' : Type u f : α' → F β' G : Type u_1 → Type u_1 inst✝¹ : Applicative G inst✝ : CommApplicative G α β γ : Type u_1 g : α → β h : β → G γ x : Multiset α a✝ : List α ⊢ traverse h (map g (Quotient.mk (isSetoid α) a✝)) = traverse (h ∘ g) (Quotient.mk (isSetoid α) a✝) [PROOFSTEP] simp only [traverse, quot_mk_to_coe, coe_map, lift_coe, Function.comp_apply] [GOAL] F : Type u → Type u inst✝³ : Applicative F inst✝² : CommApplicative F α' β' : Type u f : α' → F β' G : Type u_1 → Type u_1 inst✝¹ : Applicative G inst✝ : CommApplicative G α β γ : Type u_1 g : α → β h : β → G γ x : Multiset α a✝ : List α ⊢ Coe.coe <$> Traversable.traverse h (List.map g a✝) = Coe.coe <$> Traversable.traverse (h ∘ g) a✝ [PROOFSTEP] rw [← Traversable.traverse_map h g, List.map_eq_map] [GOAL] F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : CommApplicative F α' β' : Type u f✝ : α' → F β' G H : Type u_1 → Type u_1 inst✝³ : Applicative G inst✝² : Applicative H inst✝¹ : CommApplicative G inst✝ : CommApplicative H eta : ApplicativeTransformation G H α β : Type u_1 f : α → G β x : Multiset α ⊢ (fun {α} => ApplicativeTransformation.app eta α) (traverse f x) = traverse ((fun {α} => ApplicativeTransformation.app eta α) ∘ f) x [PROOFSTEP] refine' Quotient.inductionOn x _ [GOAL] F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : CommApplicative F α' β' : Type u f✝ : α' → F β' G H : Type u_1 → Type u_1 inst✝³ : Applicative G inst✝² : Applicative H inst✝¹ : CommApplicative G inst✝ : CommApplicative H eta : ApplicativeTransformation G H α β : Type u_1 f : α → G β x : Multiset α ⊢ ∀ (a : List α), (fun {α} => ApplicativeTransformation.app eta α) (traverse f (Quotient.mk (isSetoid α) a)) = traverse ((fun {α} => ApplicativeTransformation.app eta α) ∘ f) (Quotient.mk (isSetoid α) a) [PROOFSTEP] intro [GOAL] F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : CommApplicative F α' β' : Type u f✝ : α' → F β' G H : Type u_1 → Type u_1 inst✝³ : Applicative G inst✝² : Applicative H inst✝¹ : CommApplicative G inst✝ : CommApplicative H eta : ApplicativeTransformation G H α β : Type u_1 f : α → G β x : Multiset α a✝ : List α ⊢ (fun {α} => ApplicativeTransformation.app eta α) (traverse f (Quotient.mk (isSetoid α) a✝)) = traverse ((fun {α} => ApplicativeTransformation.app eta α) ∘ f) (Quotient.mk (isSetoid α) a✝) [PROOFSTEP] simp only [quot_mk_to_coe, traverse, lift_coe, Function.comp_apply, ApplicativeTransformation.preserves_map, LawfulTraversable.naturality]
With Celebrate Express, you don't have to be a party animal to know how to get great party supplies and costumes at fantastic prices. Use our promotional keycode and you will have access to products from three party brands: Birthday Express (which offers over 150 different themed children's party supplies), 1st Wishes(which features over 30 different themes for 1st birthday parties), and Costume Express (which provides a wide array of costumes for Halloween and costume parties). Celebrate Express is also able to design and manufacture their own party products so that party planners and partgoers get a personalized unique experience. Go on, use our promotional code today at Celebrate Express and channel your inner party planner. Click here to visit the Celebrate Express website. HSN.com brings fashion, beauty, home goods, kitchen, and more to the shopper in search of both quality and value. Target.com is the online store for Target, one of the largest and most successful discount retail stores.
Formal statement is: lemma measure_null_measure[simp]: "measure (null_measure M) X = 0" Informal statement is: The measure of any set with respect to the null measure is zero.
###VISUALISE MODEL OUTPUTS### library(tidyverse) library(ggpubr) ############################################################################### folder <- dirname(rstudioapi::getSourceEditorContext()$path) filename = 'regional_market_results_technology_options.csv' data <- read.csv(file.path(folder, '..', 'results', 'model_results', filename)) names(data)[names(data) == 'GID_0'] <- 'country' data$scenario_adopt = '' data$scenario_adopt[grep("low", data$scenario)] = 'Low (2% Adoption Growth)' data$scenario_adopt[grep("baseline", data$scenario)] = 'Baseline (3% Adoption Growth)' data$scenario_adopt[grep("high", data$scenario)] = 'High (4% Adoption Growth)' data$scenario_capacity = '' data$scenario_capacity[grep("5_5_5", data$scenario)] = '5 Mbps Per User' data$scenario_capacity[grep("10_10_10", data$scenario)] = '10 Mbps Per User' data$scenario_capacity[grep("20_20_20", data$scenario)] = '20 Mbps Per User' data$strategy_short = '' data$strategy_short[grep("3G_umts_fiber", data$strategy)] = '3G (F)' data$strategy_short[grep("3G_umts_wireless", data$strategy)] = '3G (W)' data$strategy_short[grep("4G_epc_fiber", data$strategy)] = '4G (F)' data$strategy_short[grep("4G_epc_wireless", data$strategy)] = '4G (W)' data$strategy_short[grep("5G_nsa_fiber", data$strategy)] = '5G (F)' data$strategy_short[grep("5G_nsa_wireless", data$strategy)] = '5G (W)' data$strategy_short = factor(data$strategy_short, levels=c( "3G (F)", "4G (F)", '5G (F)', "3G (W)", "4G (W)", '5G (W)' )) data = data %>% filter(data$strategy_short == '4G (W)') data$scenario_capacity = factor(data$scenario_capacity, levels=c("20 Mbps Per User", "10 Mbps Per User", "5 Mbps Per User")) data$scenario_adopt = factor(data$scenario_adopt, levels=c("Low (2% Adoption Growth)", "Baseline (3% Adoption Growth)", "High (4% Adoption Growth)")) data <- data[(data$confidence == 50),] data <- select(data, decile, scenario_adopt, scenario_capacity, strategy_short, private_cost_per_network_user, government_cost_per_network_user) data <- gather(data, metric, value, private_cost_per_network_user: government_cost_per_network_user) data$metric = factor(data$metric, levels=c("private_cost_per_network_user", "government_cost_per_network_user"), labels=c("Private Cost", "Government Cost")) min_value = min(round(data$value)) max_value = max(round(data$value)) data_summary <- function(data, varname, groupnames){ require(plyr) summary_func <- function(x, col){ c(mean = mean(x[[col]], na.rm=TRUE), sd = sd(x[[col]], na.rm=TRUE)) } data_sum<-ddply(data, groupnames, .fun=summary_func, varname) data_sum <- rename(data_sum, c("mean" = varname)) return(data_sum) } df2 <- data_summary(data, varname="value", groupnames=c('decile', 'metric', 'scenario_adopt', 'scenario_capacity', 'strategy_short')) ggplot(df2, aes(x=decile, y=value, fill=metric)) + geom_bar(stat="identity", color="black", position=position_dodge()) + geom_errorbar(aes(ymin=value, ymax=value+sd), width=.2, position=position_dodge(9)) + scale_fill_manual(values=c("#E1BE6A", "#40B0A6"), name=NULL) + theme(legend.position = "bottom", axis.text.x = element_text(angle = 45, hjust=1) ) + labs(title = "Per User Social Cost of Universal Broadband by Technology for The Gambia", colour=NULL, subtitle = "Reported for 4G (W) using error bars representing one standard deviation", x = NULL, y = "Cost Per User ($USD)") + scale_x_continuous(expand = c(0, 0), breaks = seq(0,100, 10)) + scale_y_continuous(expand = c(0, 0), limits=c(min_value+100, max_value-100)) + theme(panel.spacing = unit(0.6, "lines")) + guides(fill=guide_legend(ncol=3, reverse = TRUE)) + facet_grid(scenario_capacity~scenario_adopt) path = file.path(folder, 'figures', 'social_cost_per_user_by_strategy.png') ggsave(path, units="in", width=8, height=8, dpi=300) dev.off() ############################################################################### folder <- dirname(rstudioapi::getSourceEditorContext()$path) filename = 'regional_market_results_technology_options.csv' data <- read.csv(file.path(folder, '..', 'results', 'model_results', filename)) names(data)[names(data) == 'GID_0'] <- 'country' data$scenario_adopt = '' data$scenario_adopt[grep("low", data$scenario)] = 'Low (2% Adoption Growth)' data$scenario_adopt[grep("baseline", data$scenario)] = 'Baseline (3% Adoption Growth)' data$scenario_adopt[grep("high", data$scenario)] = 'High (4% Adoption Growth)' data$scenario_capacity = '' data$scenario_capacity[grep("5_5_5", data$scenario)] = '5 Mbps Per User' data$scenario_capacity[grep("10_10_10", data$scenario)] = '10 Mbps Per User' data$scenario_capacity[grep("20_20_20", data$scenario)] = '20 Mbps Per User' data$strategy_short = '' data$strategy_short[grep("3G_umts_fiber", data$strategy)] = '3G (F)' data$strategy_short[grep("3G_umts_wireless", data$strategy)] = '3G (W)' data$strategy_short[grep("4G_epc_fiber", data$strategy)] = '4G (F)' data$strategy_short[grep("4G_epc_wireless", data$strategy)] = '4G (W)' data$strategy_short[grep("5G_nsa_fiber", data$strategy)] = '5G (F)' data$strategy_short[grep("5G_nsa_wireless", data$strategy)] = '5G (W)' data$strategy_short = factor(data$strategy_short, levels=c( "3G (F)", "4G (F)", '5G (F)', "3G (W)", "4G (W)", '5G (W)' )) data = data %>% filter(data$strategy_short == '4G (W)') data$scenario_capacity = factor(data$scenario_capacity, levels=c("20 Mbps Per User", "10 Mbps Per User", "5 Mbps Per User")) data$scenario_adopt = factor(data$scenario_adopt, levels=c("Low (2% Adoption Growth)", "Baseline (3% Adoption Growth)", "High (4% Adoption Growth)")) data <- data[(data$confidence == 50),] data <- select(data, decile, scenario_adopt, scenario_capacity, strategy_short, private_cost_per_smartphone_user, government_cost_per_smartphone_user) data <- gather(data, metric, value, private_cost_per_smartphone_user: government_cost_per_smartphone_user) data$metric = factor(data$metric, levels=c("private_cost_per_smartphone_user", "government_cost_per_smartphone_user"), labels=c("Private Cost", "Government Cost")) min_value = min(round(data$value)) max_value = max(round(data$value)) data_summary <- function(data, varname, groupnames){ require(plyr) summary_func <- function(x, col){ c(mean = mean(x[[col]], na.rm=TRUE), sd = sd(x[[col]], na.rm=TRUE)) } data_sum<-ddply(data, groupnames, .fun=summary_func, varname) data_sum <- rename(data_sum, c("mean" = varname)) return(data_sum) } df2 <- data_summary(data, varname="value", groupnames=c('decile', 'metric', 'scenario_adopt', 'scenario_capacity', 'strategy_short')) ggplot(df2, aes(x=decile, y=value, fill=metric)) + geom_bar(stat="identity", color="black", position=position_dodge()) + geom_errorbar(aes(ymin=value, ymax=value+sd), width=.2, position=position_dodge(9)) + scale_fill_manual(values=c("#E1BE6A", "#40B0A6"), name=NULL) + theme(legend.position = "bottom", axis.text.x = element_text(angle = 45, hjust=1) ) + labs(title = "Smartphone User Social Cost of Universal Broadband by Technology for The Gambia", colour=NULL, subtitle = "Reported for 4G (W) using error bars representing one standard deviation", x = NULL, y = "Cost Per Smartphone ($USD)") + scale_x_continuous(expand = c(0, 0), breaks = seq(0,100, 10)) + scale_y_continuous(expand = c(0, 0), limits=c(min_value+100, max_value)) + theme(panel.spacing = unit(0.6, "lines")) + guides(fill=guide_legend(ncol=3, reverse = TRUE)) + facet_grid(scenario_capacity~scenario_adopt) path = file.path(folder, 'figures', 'social_cost_per_smartphone_user_by_strategy.png') ggsave(path, units="in", width=8, height=8, dpi=300) dev.off()
-- Christian Sattler, 2013-12-31 -- Testing eta-expansion of bound record metavars, as implemented by Andreas. module Issue376-2 where {- A simple example. -} module example-0 {A B : Set} where record Prod : Set where constructor _,_ field fst : A snd : B module _ (F : (Prod → Set) → Set) where q : (∀ f → F f) → (∀ f → F f) q h _ = h (λ {(a , b) → _}) {- A more complex, real-life-based example: the dependent generalization of (A × B) × (C × D) ≃ (A × C) × (B × D). -} module example-1 where record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst postulate _≃_ : (A B : Set) → Set Σ-interchange-Type = (A : Set) (B C : A → Set) (D : (a : A) → B a → C a → Set) → Σ (Σ A B) (λ {(a , b) → Σ (C a) (λ c → D a b c)}) ≃ Σ (Σ A C) (λ {(a , c) → Σ (B a) (λ b → D a b c)}) postulate Σ-interchange : Σ-interchange-Type {- Can the implicit arguments to Σ-interchange be inferred from the global type? -} Σ-interchange' : Σ-interchange-Type Σ-interchange' A B C D = Σ-interchange _ _ _ _