Datasets:
AI4M
/

text
stringlengths
0
3.34M
# Copyright (c) 2018-2021, Carnegie Mellon University # See LICENSE for details _RDFT_CONST := 2.5; #F TRDFT2D([<m>, <n>], <k>) Class(TRDFT2D, TaggedNonTerminal, rec( abbrevs := [ P -> Checked(IsList(P), Length(P) = 2, ForAll(P,i->IsPosInt(i) and IsEvenInt(i)), Product(P) > 1, [ RemoveOnes(P), 1]), (P,k) -> Checked(IsList(P), Length(P) = 2, ForAll(P,IsPosInt), IsInt(k), Product(P) > 1, Gcd(Product(P), k)=1, [ RemoveOnes(P), k mod Product(P)]) ], dims := self >> let(m := self.params[1][1], n := self.params[1][2], d := [n*(m+2), m*n], When(self.transposed, Reversed(d), d)), isReal := True, terminate := self >> Gath(fTensor(fAdd(self.params[1][1], (self.params[1][1]+2)/2, 0), fId(2*self.params[1][2]))) * RC(MDDFT(self.params[1], self.params[2]).terminate()) * Scat(fTensor(fId(Product(self.params[1])), fBase(2, 0))), normalizedArithCost := (self) >> let(n := Product(self.params[1]), IntDouble(_RDFT_CONST * n * d_log(n) / d_log(2))), compute := meth(self, data) local rows, cols, cxrows, m1, m2; rows := self.params[1][1]; cols := self.params[1][2]; cxrows := Rows(self)/cols; m1 := List(TransposedMat(List(TransposedMat(data), i->ComplexFFT(i){[1..cxrows/2]})), ComplexFFT); m2 := Flat(List(Flat(m1), i->[ReComplex(i), ImComplex(i)])); return List([0..cxrows-1], i->m2{[cols*i+1..cols*(i+1)]}); end )); #F TIRDFT2D([<m>, <n>], <k>) Class(TIRDFT2D, TaggedNonTerminal, rec( abbrevs := [ P -> Checked(IsList(P), Length(P) = 2, ForAll(P,i->IsPosInt(i) and IsEvenInt(i)), Product(P) > 1, [ RemoveOnes(P), 1]), (P,k) -> Checked(IsList(P), Length(P) = 2, ForAll(P,IsPosInt), IsInt(k), Product(P) > 1, Gcd(Product(P), k)=1, [ RemoveOnes(P), k mod Product(P)]) ], dims := self >> let(m := self.params[1][1], n := self.params[1][2], d := [m*n, n*(m+2)], When(self.transposed, Reversed(d), d)), isReal := True, terminate := self >> let(cxrows := (self.params[1][1]+2)/2, rows := self.params[1][1], cols := self.params[1][2], k := self.params[2], Tensor(PRDFT(rows,k).inverse().terminate(), I(cols)) * Tensor(I(cxrows), L(2*cols, 2)*RC(DFT(cols, -k)))), normalizedArithCost := (self) >> let(n := Product(self.params[1]), IntDouble(_RDFT_CONST * n * d_log(n) / d_log(2))) )); #F 2D RDFT Rule NewRulesFor(TRDFT2D, rec( TRDFT2D_ColRow_tSPL := rec( switch := true, applicable := (self, t) >> true, children := (self, t) >> let(m := t.params[1][1], n:=t.params[1][2], k:= t.params[2], tags := t.getTags(), [[ TCompose([ TTensorI(TCompose([TRC(DFT(n, k)), TPrm(L(2*n, n))]), (m+2)/2, APar, APar), TTensorI(PRDFT1(m, k), n, AVec, AVec) ]).withTags(t.getTags()) ]]), apply := (self, t, C, Nonterms) >> C[1] ) )); #F 2D IRDFT Rule NewRulesFor(TIRDFT2D, rec( TIRDFT2D_RowCol_tSPL := rec( switch := true, applicable := (self, t) >> true, children := (self, t) >> let(m := t.params[1][1], n:=t.params[1][2], k:= t.params[2], tags := t.getTags(), [[ TCompose([ TTensorI(PRDFT1(m, k).inverse(), n, AVec, AVec), TTensorI(TCompose([TPrm(L(2*n, 2)), TRC(DFT(n, -k))]), (m+2)/2, APar, APar) ]).withTags(t.getTags()) ]]), apply := (self, t, C, Nonterms) >> C[1] ) ));
import chainer import h5py import numpy as np import model # Create a model object first model = model.MLP() def save_parameters_as_npz(model, filename='model.npz'): # Save the model parameters into a NPZ file chainer.serializers.save_npz(filename, model) print('{} saved!\n'.format(filename)) # Load the saved npz from NumPy and show the parameter shapes print('--- The list of saved params in model.npz ---') saved_params = np.load('model.npz') for param_key, param in saved_params.items(): print(param_key, '\t:', param.shape) print('---------------------------------------------\n') def save_parameters_as_hdf5(model, filename='model.h5'): # Save the model parameters into a HDF5 archive chainer.serializers.save_hdf5(filename, model) print('model.h5 saved!\n') # Load the saved HDF5 using h5py print('--- The list of saved params in model.h5 ---') f = h5py.File('model.h5', 'r') for param_key, param in f.items(): msg = '{}:'.format(param_key) if isinstance(param, h5py.Dataset): msg += ' {}'.format(param.shape) print(msg) if isinstance(param, h5py.Group): for child_key, child in param.items(): print(' {}:{}'.format(child_key, child.shape)) print('---------------------------------------------\n') save_parameters_as_npz(model) save_parameters_as_hdf5(model)
header {* The Free Group *} theory "FreeGroups" imports "~~/src/HOL/Algebra/Group" "Cancelation" "Generators" begin text {* Based on the work in @{theory Cancelation}, the free group is now easily defined over the set of fully canceled words with the corresponding operations. *} subsection {* Inversion *} text {* To define the inverse of a word, we first create a helper function that inverts a single generator, and show that it is self-inverse. *} definition inv1 :: "'a g_i \<Rightarrow> 'a g_i" where "inv1 = apfst Not" lemma inv1_inv1: "inv1 \<circ> inv1 = id" by (simp add: fun_eq_iff comp_def inv1_def) lemmas inv1_inv1_simp [simp] = inv1_inv1[unfolded id_def] lemma snd_inv1: "snd \<circ> inv1 = snd" by(simp add: fun_eq_iff comp_def inv1_def) text {* The inverse of a word is obtained by reversing the order of the generators and inverting each generator using @{term inv1}. Some properties of @{term inv_fg} are noted. *} definition inv_fg :: "'a word_g_i \<Rightarrow> 'a word_g_i" where "inv_fg l = rev (map inv1 l)" lemma inv_idemp: "inv_fg (inv_fg l) = l" by (auto simp add:inv_fg_def rev_map) lemma inv_fg_cancel: "normalize (l @ inv_fg l) = []" proof(induct l rule:rev_induct) case Nil thus ?case by (auto simp add: inv_fg_def) next case (snoc x xs) have "canceling x (inv1 x)" by (simp add:inv1_def canceling_def) moreover let ?i = "length xs" have "Suc ?i < length xs + 1 + 1 + length xs" by auto moreover have "inv_fg (xs @ [x]) = [inv1 x] @ inv_fg xs" by (auto simp add:inv_fg_def) ultimately have "cancels_to_1_at ?i (xs @ [x] @ (inv_fg (xs @ [x]))) (xs @ inv_fg xs)" by (auto simp add:cancels_to_1_at_def cancel_at_def nth_append) hence "cancels_to_1 (xs @ [x] @ (inv_fg (xs @ [x]))) (xs @ inv_fg xs)" by (auto simp add: cancels_to_1_def) hence "cancels_to (xs @ [x] @ (inv_fg (xs @ [x]))) (xs @ inv_fg xs)" by (auto simp add:cancels_to_def) with `normalize (xs @ (inv_fg xs)) = []` show "normalize ((xs @ [x]) @ (inv_fg (xs @ [x]))) = []" by auto qed lemma inv_fg_cancel2: "normalize (inv_fg l @ l) = []" proof- have "normalize (inv_fg l @ inv_fg (inv_fg l)) = []" by (rule inv_fg_cancel) thus "normalize (inv_fg l @ l) = []" by (simp add: inv_idemp) qed lemma canceled_rev: assumes "canceled l" shows "canceled (rev l)" proof(rule ccontr) assume "\<not>canceled (rev l)" hence "DomainP cancels_to_1 (rev l)" by (simp add: canceled_def) then obtain l' where "cancels_to_1 (rev l) l'" by auto then obtain i where "cancels_to_1_at i (rev l) l'" by (auto simp add:cancels_to_1_def) hence "Suc i < length (rev l)" and "canceling (rev l ! i) (rev l ! Suc i)" by (auto simp add:cancels_to_1_at_def) let ?x = "length l - i - 2" from `Suc i < length (rev l)` have "Suc ?x < length l" by auto moreover from `Suc i < length (rev l)` have "i < length l" and "length l - Suc i = Suc(length l - Suc (Suc i))" by auto hence "rev l ! i = l ! Suc ?x" and "rev l ! Suc i = l ! ?x" by (auto simp add: rev_nth map_nth) with `canceling (rev l ! i) (rev l ! Suc i)` have "canceling (l ! Suc ?x) (l ! ?x)" by auto hence "canceling (l ! ?x) (l ! Suc ?x)" by (rule cancel_sym) hence "canceling (l ! ?x) (l ! Suc ?x)" by simp ultimately have "cancels_to_1_at ?x l (cancel_at ?x l)" by (auto simp add:cancels_to_1_at_def) hence "cancels_to_1 l (cancel_at ?x l)" by (auto simp add:cancels_to_1_def) hence "\<not>canceled l" by (auto simp add:canceled_def) with `canceled l` show False by contradiction qed lemma inv_fg_closure1: assumes "canceled l" shows "canceled (inv_fg l)" unfolding inv_fg_def and inv1_def and apfst_def proof- have "inj Not" by (auto intro:injI) moreover have "inj_on id (snd ` set l)" by auto ultimately have "canceled (map (map_prod Not id) l)" using `canceled l` by -(rule rename_gens_canceled) thus "canceled (rev (map (map_prod Not id) l))" by (rule canceled_rev) qed subsection {* The definition *} text {* Finally, we can define the Free Group over a set of generators, and show that it is indeed a group. *} definition free_group :: "'a set => ((bool * 'a) list) monoid" ("\<F>\<index>") where "\<F>\<^bsub>gens\<^esub> \<equiv> \<lparr> carrier = {l\<in>lists (UNIV \<times> gens). canceled l }, mult = \<lambda> x y. normalize (x @ y), one = [] \<rparr>" lemma occuring_gens_in_element: "x \<in> carrier \<F>\<^bsub>gens\<^esub> \<Longrightarrow> x \<in> lists (UNIV \<times> gens)" by(auto simp add:free_group_def) theorem free_group_is_group: "group \<F>\<^bsub>gens\<^esub>" proof fix x y assume "x \<in> carrier \<F>\<^bsub>gens\<^esub>" hence x: "x \<in> lists (UNIV \<times> gens)" by (rule occuring_gens_in_element) assume "y \<in> carrier \<F>\<^bsub>gens\<^esub>" hence y: "y \<in> lists (UNIV \<times> gens)" by (rule occuring_gens_in_element) from x and y have "x \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> y \<in> lists (UNIV \<times> gens)" by (auto intro!: normalize_preserves_generators simp add:free_group_def append_in_lists_conv) thus "x \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> y \<in> carrier \<F>\<^bsub>gens\<^esub>" by (auto simp add:free_group_def) next fix x y z have "cancels_to (x @ y) (normalize (x @ (y::'a word_g_i)))" and "cancels_to z (z::'a word_g_i)" by auto hence "normalize (normalize (x @ y) @ z) = normalize ((x @ y) @ z)" by (rule normalize_append_cancel_to[THEN sym]) also have "\<dots> = normalize (x @ (y @ z))" by auto also have "cancels_to (y @ z) (normalize (y @ (z::'a word_g_i)))" and "cancels_to x (x::'a word_g_i)" by auto hence "normalize (x @ (y @ z)) = normalize (x @ normalize (y @ z))" by -(rule normalize_append_cancel_to) finally show "x \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> y \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> z = x \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> (y \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> z)" by (auto simp add:free_group_def) next show "\<one>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> \<in> carrier \<F>\<^bsub>gens\<^esub>" by (auto simp add:free_group_def) next fix x assume "x \<in> carrier \<F>\<^bsub>gens\<^esub>" thus "\<one>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> x = x" by (auto simp add:free_group_def) next fix x assume "x \<in> carrier \<F>\<^bsub>gens\<^esub>" thus "x \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> \<one>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> = x" by (auto simp add:free_group_def) next show "carrier \<F>\<^bsub>gens\<^esub> \<subseteq> Units \<F>\<^bsub>gens\<^esub>" proof (simp add:free_group_def Units_def, rule subsetI) fix x :: "'a word_g_i" let ?x' = "inv_fg x" assume "x \<in> {y\<in>lists(UNIV\<times>gens). canceled y}" hence "?x' \<in> lists(UNIV\<times>gens) \<and> canceled ?x'" by (auto elim:inv_fg_closure1 simp add:inv_fg_closure2) moreover have "normalize (?x' @ x) = []" and "normalize (x @ ?x') = []" by (auto simp add:inv_fg_cancel inv_fg_cancel2) ultimately have "\<exists>y. y \<in> lists (UNIV \<times> gens) \<and> canceled y \<and> normalize (y @ x) = [] \<and> normalize (x @ y) = []" by auto with `x \<in> {y\<in>lists(UNIV\<times>gens). canceled y}` show "x \<in> {y \<in> lists (UNIV \<times> gens). canceled y \<and> (\<exists>x. x \<in> lists (UNIV \<times> gens) \<and> canceled x \<and> normalize (x @ y) = [] \<and> normalize (y @ x) = [])}" by auto qed qed lemma inv_is_inv_fg[simp]: "x \<in> carrier \<F>\<^bsub>gens\<^esub> \<Longrightarrow> inv\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> x = inv_fg x" by (rule group.inv_equality,auto simp add:free_group_is_group,auto simp add: free_group_def inv_fg_cancel inv_fg_cancel2 inv_fg_closure1 inv_fg_closure2) subsection {* The universal property *} text {* Free Groups are important due to their universal property: Every map of the set of generators to another group can be extended uniquely to an homomorphism from the Free Group. *} definition insert ("\<iota>") where "\<iota> g = [(False, g)]" lemma insert_closed: "g \<in> gens \<Longrightarrow> \<iota> g \<in> carrier \<F>\<^bsub>gens\<^esub>" by (auto simp add:insert_def free_group_def) definition (in group) lift_gi where "lift_gi f gi = (if fst gi then inv (f (snd gi)) else f (snd gi))" lemma (in group) lift_gi_closed: assumes cl: "f \<in> gens \<rightarrow> carrier G" and "snd gi \<in> gens" shows "lift_gi f gi \<in> carrier G" using assms by (auto simp add:lift_gi_def) definition (in group) lift where "lift f w = m_concat (map (lift_gi f) w)" lemma (in group) lift_nil[simp]: "lift f [] = \<one>" by (auto simp add:lift_def) lemma (in group) lift_closed[simp]: assumes cl: "f \<in> gens \<rightarrow> carrier G" and "x \<in> lists (UNIV \<times> gens)" shows "lift f x \<in> carrier G" proof- have "set (map (lift_gi f) x) \<subseteq> carrier G" using `x \<in> lists (UNIV \<times> gens)` by (auto simp add:lift_gi_closed[OF cl]) thus "lift f x \<in> carrier G" by (auto simp add:lift_def) qed lemma (in group) lift_append[simp]: assumes cl: "f \<in> gens \<rightarrow> carrier G" and "x \<in> lists (UNIV \<times> gens)" and "y \<in> lists (UNIV \<times> gens)" shows "lift f (x @ y) = lift f x \<otimes> lift f y" proof- from `x \<in> lists (UNIV \<times> gens)` have "set (map snd x) \<subseteq> gens" by auto hence "set (map (lift_gi f) x) \<subseteq> carrier G" by (induct x)(auto simp add:lift_gi_closed[OF cl]) moreover from `y \<in> lists (UNIV \<times> gens)` have "set (map snd y) \<subseteq> gens" by auto hence "set (map (lift_gi f) y) \<subseteq> carrier G" by (induct y)(auto simp add:lift_gi_closed[OF cl]) ultimately show "lift f (x @ y) = lift f x \<otimes> lift f y" by (auto simp add:lift_def m_assoc simp del:set_map foldr_append) qed lemma (in group) lift_cancels_to: assumes "cancels_to x y" and "x \<in> lists (UNIV \<times> gens)" and cl: "f \<in> gens \<rightarrow> carrier G" shows "lift f x = lift f y" using assms unfolding cancels_to_def proof(induct rule:rtranclp_induct) case (step y z) from `cancels_to_1\<^sup>*\<^sup>* x y` and `x \<in> lists (UNIV \<times> gens)` have "y \<in> lists (UNIV \<times> gens)" by -(rule cancels_to_preserves_generators, simp add:cancels_to_def) hence "lift f x = lift f y" using step by auto also from `cancels_to_1 y z` obtain ys1 y1 y2 ys2 where y: "y = ys1 @ y1 # y2 # ys2" and "z = ys1 @ ys2" and "canceling y1 y2" by (rule cancels_to_1_unfold) have "lift f y = lift f (ys1 @ [y1] @ [y2] @ ys2)" using y by simp also from y and cl and `y \<in> lists (UNIV \<times> gens)` have "lift f (ys1 @ [y1] @ [y2] @ ys2) = lift f ys1 \<otimes> (lift f [y1] \<otimes> lift f [y2]) \<otimes> lift f ys2" by (auto intro:lift_append[OF cl] simp del: append_Cons simp add:m_assoc iff:lists_eq_set) also from cl[THEN funcset_image] and y and `y \<in> lists (UNIV \<times> gens)` and `canceling y1 y2` have "(lift f [y1] \<otimes> lift f [y2]) = \<one>" by (auto simp add:lift_def lift_gi_def canceling_def iff:lists_eq_set) hence "lift f ys1 \<otimes> (lift f [y1] \<otimes> lift f [y2]) \<otimes> lift f ys2 = lift f ys1 \<otimes> \<one> \<otimes> lift f ys2" by simp also from y and `y \<in> lists (UNIV \<times> gens)` and cl have "lift f ys1 \<otimes> \<one> \<otimes> lift f ys2 = lift f (ys1 @ ys2)" by (auto intro:lift_append iff:lists_eq_set) also from `z = ys1 @ ys2` have "lift f (ys1 @ ys2) = lift f z" by simp finally show "lift f x = lift f z" . qed auto lemma (in group) lift_is_hom: assumes cl: "f \<in> gens \<rightarrow> carrier G" shows "lift f \<in> hom \<F>\<^bsub>gens\<^esub> G" proof- { fix x assume "x \<in> carrier \<F>\<^bsub>gens\<^esub>" hence "x \<in> lists (UNIV \<times> gens)" unfolding free_group_def by simp hence "lift f x \<in> carrier G" by (induct x, auto simp add:lift_def lift_gi_closed[OF cl]) } moreover { fix x assume "x \<in> carrier \<F>\<^bsub>gens\<^esub>" fix y assume "y \<in> carrier \<F>\<^bsub>gens\<^esub>" from `x \<in> carrier \<F>\<^bsub>gens\<^esub>` and `y \<in> carrier \<F>\<^bsub>gens\<^esub>` have "x \<in> lists (UNIV \<times> gens)" and "y \<in> lists (UNIV \<times> gens)" by (auto simp add:free_group_def) have "cancels_to (x @ y) (normalize (x @ y))" by simp from `x \<in> lists (UNIV \<times> gens)` and `y \<in> lists (UNIV \<times> gens)` and lift_cancels_to[THEN sym, OF `cancels_to (x @ y) (normalize (x @ y))`] and cl have "lift f (x \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> y) = lift f (x @ y)" by (auto simp add:free_group_def iff:lists_eq_set) also from `x \<in> lists (UNIV \<times> gens)` and `y \<in> lists (UNIV \<times> gens)` and cl have "lift f (x @ y) = lift f x \<otimes> lift f y" by simp finally have "lift f (x \<otimes>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> y) = lift f x \<otimes> lift f y" . } ultimately show "lift f \<in> hom \<F>\<^bsub>gens\<^esub> G" by auto qed lemma gens_span_free_group: shows "\<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> = carrier \<F>\<^bsub>gens\<^esub>" proof interpret group "\<F>\<^bsub>gens\<^esub>" by (rule free_group_is_group) show "\<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> \<subseteq> carrier \<F>\<^bsub>gens\<^esub>" by(rule gen_span_closed, auto simp add:insert_def free_group_def) show "carrier \<F>\<^bsub>gens\<^esub> \<subseteq> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" proof fix x show "x \<in> carrier \<F>\<^bsub>gens\<^esub> \<Longrightarrow> x \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" proof(induct x) case Nil have "one \<F>\<^bsub>gens\<^esub> \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" by simp thus "[] \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" by (simp add:free_group_def) next case (Cons a x) from `a # x \<in> carrier \<F>\<^bsub>gens\<^esub>` have "x \<in> carrier \<F>\<^bsub>gens\<^esub>" by (auto intro:cons_canceled simp add:free_group_def) hence "x \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" using Cons by simp moreover from `a # x \<in> carrier \<F>\<^bsub>gens\<^esub>` have "snd a \<in> gens" by (auto simp add:free_group_def) hence isa: "\<iota> (snd a) \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" by (auto simp add:insert_def intro:gen_gens) have "[a] \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" proof(cases "fst a") case False hence "[a] = \<iota> (snd a)" by (cases a, auto simp add:insert_def) with isa show "[a] \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" by simp next case True from `snd a \<in> gens` have "\<iota> (snd a) \<in> carrier \<F>\<^bsub>gens\<^esub>" by (auto simp add:free_group_def insert_def) with True have "[a] = inv\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> (\<iota> (snd a))" by (cases a, auto simp add:insert_def inv_fg_def inv1_def) moreover from isa have "inv\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub> (\<iota> (snd a)) \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" by (auto intro:gen_inv) ultimately show "[a] \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" by simp qed ultimately have "mult \<F>\<^bsub>gens\<^esub> [a] x \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" by (auto intro:gen_mult) with `a # x \<in> carrier \<F>\<^bsub>gens\<^esub>` show "a # x \<in> \<langle>\<iota> ` gens\<rangle>\<^bsub>\<F>\<^bsub>gens\<^esub>\<^esub>" by (simp add:free_group_def) qed qed qed lemma (in group) lift_is_unique: assumes "group G" and cl: "f \<in> gens \<rightarrow> carrier G" and "h \<in> hom \<F>\<^bsub>gens\<^esub> G" and "\<forall> g \<in> gens. h (\<iota> g) = f g" shows "\<forall>x \<in> carrier \<F>\<^bsub>gens\<^esub>. h x = lift f x" unfolding gens_span_free_group[THEN sym] proof(rule hom_unique_on_span[of "\<F>\<^bsub>gens\<^esub>" G]) show "group \<F>\<^bsub>gens\<^esub>" by (rule free_group_is_group) next show "group G" by fact next show "\<iota> ` gens \<subseteq> carrier \<F>\<^bsub>gens\<^esub>" by(auto intro:insert_closed) next show "h \<in> hom \<F>\<^bsub>gens\<^esub> G" by fact next show "lift f \<in> hom \<F>\<^bsub>gens\<^esub> G" by (rule lift_is_hom[OF cl]) next from `\<forall>g\<in> gens. h (\<iota> g) = f g` and cl[THEN funcset_image] show "\<forall>g\<in> \<iota> ` gens. h g = lift f g" by(auto simp add:insert_def lift_def lift_gi_def) qed end
Polish culture during World War II was suppressed by the occupying powers of Nazi Germany and the Soviet Union , both of whom were hostile to Poland 's people and cultural heritage . Policies aimed at cultural genocide resulted in the deaths of thousands of scholars and artists , and the theft and destruction of innumerable cultural artifacts . The " maltreatment of the Poles was one of many ways in which the Nazi and Soviet regimes had grown to resemble one another " , wrote British historian Niall Ferguson .
module Language.LSP.Metavars import Core.Context import Core.Core import Core.Directory import Core.Env import Core.TT import Core.Name import Idris.IDEMode.Holes import Idris.Pretty import Idris.Pretty.Render import Idris.REPL.Opts import Idris.Resugar import Idris.Syntax import Language.JSON import Language.LSP.Message import Language.LSP.Definition import Server.Configuration import Server.Log import Server.Utils import System.File import System.Path import Language.Reflection import Libraries.Text.PrettyPrint.Prettyprinter.Symbols %language ElabReflection %hide Language.Reflection.TT.FC %hide Language.Reflection.TT.Name -- Non-exported functions are temporary changes to functions in the module Idris.IDEMode.Holes. -- TODO: upstream changes to the compiler when stability is reached. public export record Premise where constructor MkPremise name : String location : Maybe Location type : String multiplicity : String isImplicit : Bool %runElab deriveJSON defaultOpts `{Metavars.Premise} public export record Metavar where constructor MkMetavar name : String location : Maybe Location type : String premises : List Metavars.Premise %runElab deriveJSON defaultOpts `{Metavars.Metavar} showName : Name -> Bool showName (UN Underscore) = False showName (MN _ _) = False showName _ = True getUserHolesData : Ref Ctxt Defs => Ref Syn SyntaxInfo => Core (List (Holes.Data, FC)) getUserHolesData = do defs <- get Ctxt ms <- getUserHoles globs <- concat <$> traverse (flip lookupCtxtName defs.gamma) ms let holesWithArgs = mapMaybe (\(n, i, gdef) => pure (n, gdef, !(isHole gdef))) globs traverse (\(n, gdef, args) => (, gdef.location) <$> holeData defs [] n args gdef.type) holesWithArgs ||| Returns the list of metavariables visible in the current context with their location. ||| JSON schema for a single metavariable: ||| { ||| location: Location | null; ||| name: string; ||| type: string; ||| premises: Premise[] ||| } ||| JSON schema for a single premise: ||| { ||| location: Location | null; ||| name: string; ||| type: string; ||| multiplicity: string; ||| isImplicit: bool; ||| } export metavarsCmd : Ref Ctxt Defs => Ref Syn SyntaxInfo => Ref ROpts REPLOpts => Ref LSPConf LSPConfiguration => Core (List Metavar) metavarsCmd = do logI Metavars "Fetching metavars" c <- getColor setColor False holes <- Metavars.getUserHolesData logI Metavars "Metavars fetched, found \{show $ length holes}" res <- for holes $ \(h, fc) => do loc <- mkLocation fc let name = show h.name type <- render (reAnnotate Syntax $ prettyTerm h.type) premises <- for h.context $ \p => do loc <- mkLocation replFC let name = show p.name type <- render (reAnnotate Syntax $ prettyTerm p.type) pure $ MkPremise { location = loc, name = name, type = type, isImplicit = p.isImplicit, multiplicity = show p.multiplicity } pure $ MkMetavar { location = loc, name = name, type = type, premises = premises } setColor c pure res
/- Copyright (c) 2021 Yourong Zang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yourong Zang -/ import analysis.complex.isometry import analysis.normed_space.conformal_linear_map /-! # Conformal maps between complex vector spaces We prove the sufficient and necessary conditions for a real-linear map between complex vector spaces to be conformal. ## Main results * `is_conformal_map_complex_linear`: a nonzero complex linear map into an arbitrary complex normed space is conformal. * `is_conformal_map_complex_linear_conj`: the composition of a nonzero complex linear map with `conj` is complex linear. * `is_conformal_map_iff_is_complex_or_conj_linear`: a real linear map between the complex plane is conformal iff it's complex linear or the composition of some complex linear map and `conj`. ## Warning Antiholomorphic functions such as the complex conjugate are considered as conformal functions in this file. -/ noncomputable theory open complex continuous_linear_map open_locale complex_conjugate lemma is_conformal_map_conj : is_conformal_map (conj_lie : ℂ →L[ℝ] ℂ) := conj_lie.to_linear_isometry.is_conformal_map section conformal_into_complex_normed variables {E : Type*} [normed_group E] [normed_space ℝ E] [normed_space ℂ E] {z : ℂ} {g : ℂ →L[ℝ] E} {f : ℂ → E} lemma is_conformal_map_complex_linear {map : ℂ →L[ℂ] E} (nonzero : map ≠ 0) : is_conformal_map (map.restrict_scalars ℝ) := begin have minor₁ : ∥map 1∥ ≠ 0, { simpa [ext_ring_iff] using nonzero }, refine ⟨∥map 1∥, minor₁, ⟨∥map 1∥⁻¹ • map, _⟩, _⟩, { intros x, simp only [linear_map.smul_apply], have : x = x • 1 := by rw [smul_eq_mul, mul_one], nth_rewrite 0 [this], rw [_root_.coe_coe map, linear_map.coe_coe_is_scalar_tower], simp only [map.coe_coe, map.map_smul, norm_smul, norm_inv, norm_norm], field_simp [minor₁], }, { ext1, simp [minor₁] }, end lemma is_conformal_map_complex_linear_conj {map : ℂ →L[ℂ] E} (nonzero : map ≠ 0) : is_conformal_map ((map.restrict_scalars ℝ).comp (conj_cle : ℂ →L[ℝ] ℂ)) := (is_conformal_map_complex_linear nonzero).comp is_conformal_map_conj end conformal_into_complex_normed section conformal_into_complex_plane open continuous_linear_map variables {f : ℂ → ℂ} {z : ℂ} {g : ℂ →L[ℝ] ℂ} lemma is_conformal_map.is_complex_or_conj_linear (h : is_conformal_map g) : (∃ (map : ℂ →L[ℂ] ℂ), map.restrict_scalars ℝ = g) ∨ (∃ (map : ℂ →L[ℂ] ℂ), map.restrict_scalars ℝ = g ∘L ↑conj_cle) := begin rcases h with ⟨c, hc, li, rfl⟩, obtain ⟨li, rfl⟩ : ∃ li' : ℂ ≃ₗᵢ[ℝ] ℂ, li'.to_linear_isometry = li, from ⟨li.to_linear_isometry_equiv rfl, by { ext1, refl }⟩, rcases linear_isometry_complex li with ⟨a, rfl|rfl⟩, -- let rot := c • (a : ℂ) • continuous_linear_map.id ℂ ℂ, { refine or.inl ⟨c • (a : ℂ) • continuous_linear_map.id ℂ ℂ, _⟩, ext1, simp only [coe_restrict_scalars', smul_apply, linear_isometry.coe_to_continuous_linear_map, linear_isometry_equiv.coe_to_linear_isometry, rotation_apply, id_apply, smul_eq_mul] }, { refine or.inr ⟨c • (a : ℂ) • continuous_linear_map.id ℂ ℂ, _⟩, ext1, simp only [coe_restrict_scalars', smul_apply, linear_isometry.coe_to_continuous_linear_map, linear_isometry_equiv.coe_to_linear_isometry, rotation_apply, id_apply, smul_eq_mul, comp_apply, linear_isometry_equiv.trans_apply, continuous_linear_equiv.coe_coe, conj_cle_apply, conj_lie_apply, conj_conj] }, end /-- A real continuous linear map on the complex plane is conformal if and only if the map or its conjugate is complex linear, and the map is nonvanishing. -/ lemma is_conformal_map_iff_is_complex_or_conj_linear: is_conformal_map g ↔ ((∃ (map : ℂ →L[ℂ] ℂ), map.restrict_scalars ℝ = g) ∨ (∃ (map : ℂ →L[ℂ] ℂ), map.restrict_scalars ℝ = g ∘L ↑conj_cle)) ∧ g ≠ 0 := begin split, { exact λ h, ⟨h.is_complex_or_conj_linear, h.ne_zero⟩, }, { rintros ⟨⟨map, rfl⟩ | ⟨map, hmap⟩, h₂⟩, { refine is_conformal_map_complex_linear _, contrapose! h₂ with w, simp [w] }, { have minor₁ : g = (map.restrict_scalars ℝ) ∘L ↑conj_cle, { ext1, simp [hmap] }, rw minor₁ at ⊢ h₂, refine is_conformal_map_complex_linear_conj _, contrapose! h₂ with w, simp [w] } } end end conformal_into_complex_plane
import Data.Either import Data.List import Data.List1 import Data.Maybe import Data.String import System.File data BingoNum = M Nat | U Nat Show BingoNum where show (M k) = "m " ++ show k show (U k) = "u " ++ show k Card : Type Card = List (List BingoNum) parseLines : (String -> Maybe a) -> String -> List a parseLines f s = catMaybes $ f <$> lines s getNumbers : List String -> Maybe (List Nat, List String) getNumbers [] = Nothing getNumbers (x :: xs) = Just (catMaybes $ parsePositive <$> (forget $ split (== ',') x), xs) parseCard : List String -> Card parseCard l = (\s => U <$> (catMaybes $ parsePositive <$> (forget $ split (== ' ') s))) <$> l parseCards : List String -> List Card parseCards [] = [] parseCards (_ :: xs) = parseCard (take 5 xs) :: parseCards (drop 5 xs) isMarked : BingoNum -> Bool isMarked (M _) = True isMarked (U _) = False winRow : Card -> Bool winRow [] = False winRow (x :: xs) = all isMarked x || winRow xs winColumn : Card -> Bool winColumn c = any id $ foldl (\a => \bs => (\(b1, b2) => b1 && b2) <$> zip a (isMarked <$> bs)) (replicate 5 True) c wins : Card -> Bool wins c = winRow c || winColumn c drawNumber : Nat -> Card -> Card drawNumber n [] = [] drawNumber n (x :: xs) = ((\d => case d of M m => M m U u => if u == n then M u else U u) <$> x) :: drawNumber n xs drawNumbers : List Nat -> List Card -> Maybe (Card, Nat) drawNumbers [] cs = Nothing drawNumbers (x :: xs) [] = Nothing drawNumbers (x :: xs) (c :: []) = let nc = drawNumber x c in if wins nc then Just (nc, x) else drawNumbers xs (nc :: []) drawNumbers (x :: xs) cs = let ncs = drawNumber x <$> cs losing = filter (not . wins) ncs in drawNumbers xs losing scoreOf : Card -> Nat scoreOf [] = 0 scoreOf (x :: xs) = (foldl (\a => \b => case b of M n => a U n => n + a) 0 x) + scoreOf xs run : String -> IO () run s = do let lines = lines s Just (ns, lines) <- pure $ getNumbers lines | Nothing => putStrLn $ "err" let cards = parseCards lines Just (win, n) <- pure $ drawNumbers ns cards | Nothing => putStrLn $ "no win" let score = n * scoreOf win putStrLn $ show $ score main : IO () main = do Right s <- readFile "input.txt" | Left err => putStrLn $ show err run s
*Board Designated allows the Foundation to identify and support a few efforts each year that do not fall within the Synergy Initiative or Activation Fund guidelines but complement the grant portfolio and mission. Organizations cannot apply for Board Designated grants. Click on the following images to see the impact of our grantmaking.
If you have received a building violation and are required to attend a hearing at the ECB, be advised that a proper defense should be created by a licensed attorney. We have several that we can recommend. In addition to this, you must comply with what the building violation states. There are many types of building violations. Below is a table of the many types of violations, and what you must do to cure the violations, so that you don’t receive second and third offenses, as the fines tend to go up drastically. If you have received a violation, and do not see it above, please contact us for guidance.
Lactarius indigo , commonly known as the indigo milk cap , the indigo ( or blue ) lactarius , or the blue milk mushroom , is a species of agaric fungus in the family Russulaceae . A widely distributed species , it grows naturally in eastern North America , East Asia , and Central America ; it has also been reported in southern France . L. indigo grows on the ground in both deciduous and coniferous forests , where it forms mycorrhizal associations with a broad range of trees . The fruit body color ranges from dark blue in fresh specimens to pale blue @-@ gray in older ones . The milk , or latex , that oozes when the mushroom tissue is cut or broken — a feature common to all members of the Lactarius genus — is also indigo blue , but slowly turns green upon exposure to air . The cap has a diameter of 5 to 15 cm ( 2 to 6 in ) , and the stem is 2 to 8 cm ( 0 @.@ 8 to 3 in ) tall and 1 to 2 @.@ 5 cm ( 0 @.@ 4 to 1 @.@ 0 in ) thick . It is an edible mushroom , and is sold in rural markets in China , Guatemala , and Mexico .
Require Import init. Require Export category_functor. Class NatTransformation `{C1 : Category, C2 : Category} `(F : @Functor C1 C2, G : @Functor C1 C2) := { nat_trans_f : ∀ A, cat_morphism C2 (F A) (G A); nat_trans_commute : ∀ {A B} (f : cat_morphism C1 A B), nat_trans_f B ∘ (⌈F⌉ f) = (⌈G⌉ f) ∘ nat_trans_f A; }. Arguments nat_trans_f {C1 C2 F G} NatTransformation. Arguments nat_trans_commute {C1 C2 F G} NatTransformation {A B}. Coercion nat_trans_f : NatTransformation >-> Funclass. (** So nat_trans_commute says: [(α B) ∘ (⌈F⌉ f) = (⌈G⌉ f) ∘ (α A)] *) (* begin show *) Local Program Instance id_nat_transformation `{C1 : Category, C2 : Category} `(F : @Functor C1 C2) : NatTransformation F F := { nat_trans_f A := 𝟙 }. (* end show *) Next Obligation. rewrite cat_lid. rewrite cat_rid. reflexivity. Qed. Notation "'𝕀'" := (id_nat_transformation _). (* begin show *) Local Program Instance vcompose_nat_transformation `{C1 : Category, C2 : Category} `{F : @Functor C1 C2, G : @Functor C1 C2, H : @Functor C1 C2} `(α : @NatTransformation C1 C2 G H, β : @NatTransformation C1 C2 F G) : NatTransformation F H := { nat_trans_f A := α A ∘ β A }. (* end show *) Next Obligation. rewrite cat_assoc. rewrite <- cat_assoc. rewrite nat_trans_commute. rewrite cat_assoc. rewrite nat_trans_commute. reflexivity. Qed. (* begin show *) Local Program Instance hcompose_nat_transformation `{C1 : Category, C2 : Category, C3 : Category} `{F' : @Functor C2 C3, G' : @Functor C2 C3} `{F : @Functor C1 C2, G : @Functor C1 C2} `(β : @NatTransformation C2 C3 F' G', α : @NatTransformation C1 C2 F G) : NatTransformation (F' ○ F) (G' ○ G) := { nat_trans_f A := β (G A) ∘ (⌈F'⌉ (α A)) }. (* end show *) Next Obligation. rewrite nat_trans_commute. rewrite <- cat_assoc. rewrite nat_trans_commute. rewrite cat_assoc. rewrite <- functor_compose. rewrite nat_trans_commute. rewrite functor_compose. rewrite <- cat_assoc. rewrite nat_trans_commute. reflexivity. Qed. Notation "α □ β" := (vcompose_nat_transformation α β) (at level 20, left associativity). Notation "α ⊡ β" := (hcompose_nat_transformation α β) (at level 20, left associativity). Global Remove Hints id_nat_transformation vcompose_nat_transformation hcompose_nat_transformation : typeclass_instances. Theorem nat_trans_compose_eq `{C1 : Category, C2 : Category} `{F : @Functor C1 C2, G : @Functor C1 C2, H : @Functor C1 C2} : ∀ (α : NatTransformation G H) (β : NatTransformation F G), ∀ A, (α □ β) A = α A ∘ β A. Proof. intros α β A. cbn. reflexivity. Qed. Theorem nat_trans_eq `{C1 : Category, C2 : Category} `{F : @Functor C1 C2, G : @Functor C1 C2} : ∀ (α β : NatTransformation F G), (∀ A, α A = β A) → α = β. Proof. intros [f1 commute1] [f2 commute2] H. cbn in *. assert (f1 = f2) as eq. { apply functional_ext. exact H. } subst f2; clear H. rewrite (proof_irrelevance commute2 commute1). reflexivity. Qed. Theorem nat_trans_interchange `{C1 : Category, C2 : Category, C3 : Category} `{F : @Functor C1 C2, G : @Functor C1 C2, H : @Functor C1 C2} `{F' : @Functor C2 C3, G' : @Functor C2 C3, H' : @Functor C2 C3} : ∀ (α : NatTransformation F G ) (β : NatTransformation G H) (α' : NatTransformation F' G') (β' : NatTransformation G' H'), (β' □ α') ⊡ (β □ α) = (β' ⊡ β) □ (α' ⊡ α). Proof. intros α β α' β'. apply nat_trans_eq. intros A. cbn. do 2 rewrite <- cat_assoc. apply lcompose. rewrite functor_compose. do 2 rewrite cat_assoc. apply rcompose. apply nat_trans_commute. Qed. Theorem nat_trans_id_interchange `{C1 : Category, C2 : Category, C3 : Category} `{F : @Functor C2 C3, G : @Functor C1 C2} : (id_nat_transformation F) ⊡ (id_nat_transformation G) = id_nat_transformation (F ○ G). Proof. apply nat_trans_eq. intros A. cbn. rewrite cat_lid. apply functor_id. Qed. Theorem nat_trans_lid `{C1 : Category, C2 : Category} `{F : @Functor C1 C2, G : @Functor C1 C2} : ∀ (α : NatTransformation F G), 𝕀 □ α = α. Proof. intros α. apply nat_trans_eq. intros A. cbn. apply cat_lid. Qed. Theorem nat_trans_rid `{C1 : Category, C2 : Category} `{F : @Functor C1 C2, G : @Functor C1 C2} : ∀ (α : NatTransformation F G), α □ 𝕀 = α. Proof. intros α. apply nat_trans_eq. intros A. cbn. apply cat_rid. Qed. Theorem nat_trans_assoc `{C1 : Category, C2 : Category} `{F : @Functor C1 C2, G : @Functor C1 C2, H : @Functor C1 C2, I : @Functor C1 C2} : ∀ (α : NatTransformation H I) (β : NatTransformation G H) (γ : NatTransformation F G), α □ (β □ γ) = (α □ β) □ γ. Proof. intros α β γ. apply nat_trans_eq. intros A. cbn. apply cat_assoc. Qed. (* begin show *) Local Program Instance FUNCTOR `(C1 : Category, C2 : Category) : Category := { cat_U := Functor C1 C2; cat_morphism F G := NatTransformation F G; cat_compose {A B C} α β := α □ β; cat_id F := id_nat_transformation F; }. (* end show *) Next Obligation. apply nat_trans_assoc. Qed. Next Obligation. apply nat_trans_lid. Qed. Next Obligation. apply nat_trans_rid. Qed. Global Remove Hints FUNCTOR : typeclass_instances. Definition nat_isomorphism `{C1 : Category, C2 : Category} `{F : @Functor C1 C2, G : @Functor C1 C2} `(α : @NatTransformation C1 C2 F G) := isomorphism (C0 := FUNCTOR C1 C2) α. Theorem nat_isomorphism_A `{C1 : Category, C2 : Category} `{F : @Functor C1 C2, G : @Functor C1 C2} : ∀ α : NatTransformation F G, nat_isomorphism α ↔ (∀ A, isomorphism (α A)). Proof. intros α. split. - intros α_iso A. destruct α_iso as [β [β_eq1 β_eq2]]. cbn in *. exists (β A). do 2 rewrite <- nat_trans_compose_eq. rewrite β_eq1, β_eq2. cbn. split; reflexivity. - intros all_iso. pose (β_f A := ex_val (all_iso A)). assert (∀ {A B} (f : cat_morphism C1 A B), β_f B ∘ (⌈G⌉ f) = (⌈F⌉ f) ∘ β_f A) as β_commute. { intros A B f. unfold β_f. rewrite_ex_val A' [A'_eq1 A'_eq2]. rewrite_ex_val B' [B'_eq1 B'_eq2]. apply rcompose with (⌈F⌉ f) in A'_eq2. rewrite cat_lid in A'_eq2. rewrite <- cat_assoc in A'_eq2. rewrite nat_trans_commute in A'_eq2. apply rcompose with B' in A'_eq2. do 2 rewrite <- cat_assoc in A'_eq2. rewrite B'_eq1 in A'_eq2. rewrite cat_rid in A'_eq2. exact A'_eq2. } pose (β := {|nat_trans_commute := β_commute|}). exists β. cbn. split. + apply nat_trans_eq. intros A. cbn. unfold β_f. rewrite_ex_val B [B_eq1 B_eq2]. exact B_eq1. + apply nat_trans_eq. intros A. cbn. unfold β_f. rewrite_ex_val B [B_eq1 B_eq2]. exact B_eq2. Qed. Definition nat_isomorphic `{C1 : Category, C2 : Category} `(F : @Functor C1 C2, G : @Functor C1 C2) := isomorphic (C0 := FUNCTOR C1 C2) F G. Theorem nat_isomorphic_wd `{C1 : Category, C2 : Category, C3 : Category} : ∀ (F G : Functor C2 C3) (H I : Functor C1 C2), nat_isomorphic F G → nat_isomorphic H I → nat_isomorphic (F ○ H) (G ○ I). Proof. intros F G H I [α [α' [α_eq1 α_eq2]]] [β [β' [β_eq1 β_eq2]]]. cbn in *. exists (α ⊡ β). exists (α' ⊡ β'). cbn. split. - rewrite <- nat_trans_interchange. rewrite α_eq1, β_eq1. apply nat_trans_id_interchange. - rewrite <- nat_trans_interchange. rewrite α_eq2, β_eq2. apply nat_trans_id_interchange. Qed. Theorem lnat_iso `{C1 : Category, C2 : Category, C3 : Category} : ∀ {F G : Functor C1 C2} (H : Functor C2 C3), isomorphic (C0 := FUNCTOR C1 C2) F G → isomorphic (C0 := FUNCTOR C1 C3) (H ○ F) (H ○ G). Proof. intros F G H eq. pose proof (isomorphic_refl (C0:= FUNCTOR C2 C3) H) as eq2. exact (nat_isomorphic_wd _ _ _ _ eq2 eq). Qed. Theorem rnat_iso `{C1 : Category, C2 : Category, C3 : Category} : ∀ {F G : Functor C2 C3} (H : Functor C1 C2), isomorphic (C0 := FUNCTOR C2 C3) F G → isomorphic (C0 := FUNCTOR C1 C3) (F ○ H) (G ○ H). Proof. intros F G H eq. pose proof (isomorphic_refl (C0:= FUNCTOR C1 C2) H) as eq2. exact (nat_isomorphic_wd _ _ _ _ eq eq2). Qed.
module _ where open import Prelude open import Numeric.Nat.Prime 2^44+7 2^46+15 2^48+21 : Nat 2^44+7 = 17592186044423 2^46+15 = 70368744177679 2^48+21 = 281474976710677 main : IO ⊤ main = print $ isPrime! 2^48+21
# A simple example script to install the packages provided by the command line arguments install.packages(commandArgs(trailingOnly = TRUE), repos = "https://cran.rstudio.com")
Require Import Classical Peano_dec Setoid PeanoNat. From hahn Require Import Hahn. Require Import Omega. Require Import Events. Require Import Execution. Require Import imm_s. Require Import TraversalConfig. Require Import Traversal. Require Import SimTraversal. Require Import SimTraversalProperties. Set Implicit Arguments. Remove Hints plus_n_O. Definition countP (f: actid -> Prop) l := length (filterP f l). Add Parametric Morphism : countP with signature set_subset ==> eq ==> le as countP_mori. Proof using. ins. unfold countP. induction y0. { simpls. } ins. desf; simpls. 1,3: omega. exfalso. apply n. by apply H. Qed. Add Parametric Morphism : countP with signature set_equiv ==> eq ==> eq as countP_more. Proof using. ins. unfold countP. erewrite filterP_set_equiv; eauto. Qed. Section TraversalCounting. Variable G : execution. Variable sc : relation actid. Variable WF : Wf G. Notation "'E'" := G.(acts_set). Notation "'lab'" := G.(lab). Notation "'W'" := (fun x => is_true (is_w lab x)). Notation "'Rel'" := (fun x => is_true (is_rel lab x)). Notation "'rmw'" := G.(rmw). Definition trav_steps_left (T : trav_config) := countP (set_compl (covered T)) G.(acts) + countP (W ∩₁ set_compl (issued T)) G.(acts). Lemma trav_steps_left_decrease (T T' : trav_config) (STEP : trav_step G sc T T') : trav_steps_left T > trav_steps_left T'. Proof using. red in STEP. desc. red in STEP. desf. { unfold trav_steps_left. rewrite ISSEQ. assert (countP (set_compl (covered T)) (acts G) > countP (set_compl (covered T')) (acts G)) as HH. 2: omega. rewrite COVEQ. unfold countP. assert (List.In e (acts G)) as LL. { apply COV. } induction (acts G). { done. } destruct l as [|h l]. { assert (a = e); subst. { inv LL. } simpls. desf. exfalso. apply s0. by right. } destruct LL as [|H]; subst. 2: { apply IHl in H. clear IHl. simpls. desf; simpls; try omega. all: try by (exfalso; apply s0; left; apply NNPP). by exfalso; apply s; left; apply NNPP. } clear IHl. assert (exists l', l' = h :: l) as [l' HH] by eauto. rewrite <- HH. clear h l HH. simpls. desf; simpls. { exfalso. apply s0. by right. } assert (length (filterP (set_compl (covered T ∪₁ eq e)) l') <= length (filterP (set_compl (covered T)) l')). 2: omega. eapply countP_mori; auto. basic_solver. } unfold trav_steps_left. rewrite COVEQ. assert (countP (W ∩₁ set_compl (issued T )) (acts G) > countP (W ∩₁ set_compl (issued T')) (acts G)) as HH. 2: omega. rewrite ISSEQ. unfold countP. assert (List.In e (acts G)) as LL. { apply ISS. } assert (W e) as WE. { apply ISS. } induction (acts G). { done. } destruct l as [|h l]. { assert (a = e); subst. { inv LL. } simpls. desf. { exfalso. apply s0. by right. } all: by exfalso; apply n; split. } destruct LL as [|H]; subst. 2: { apply IHl in H. clear IHl. simpls. desf; simpls; try omega. 1-2: by exfalso; apply n; destruct s0 as [H1 H2]; split; auto; intros HH; apply H2; left. all: by exfalso; apply n; destruct s as [H1 H2]; split; auto; intros HH; apply H2; left. } clear IHl. assert (exists l', l' = h :: l) as [l' HH] by eauto. rewrite <- HH. clear h l HH. simpls. desf; simpls. { exfalso. apply s0. by right. } 2: { exfalso. apply s. by right. } 2: { exfalso. apply n. by split. } assert (length (filterP (W ∩₁ set_compl (issued T ∪₁ eq e)) l') <= length (filterP (W ∩₁ set_compl (issued T)) l')). 2: omega. eapply countP_mori; auto. basic_solver. Qed. Lemma trav_steps_left_decrease_sim (T T' : trav_config) (STEP : sim_trav_step G sc T T') : trav_steps_left T > trav_steps_left T'. Proof using. red in STEP. desc. destruct STEP. 1-4: by apply trav_steps_left_decrease; red; eauto. { eapply lt_trans. all: apply trav_steps_left_decrease; red; eauto. } { eapply lt_trans. all: apply trav_steps_left_decrease; red; eauto. } eapply lt_trans. eapply lt_trans. all: apply trav_steps_left_decrease; red; eauto. Qed. Lemma trav_steps_left_null_cov (T : trav_config) (NULL : trav_steps_left T = 0) : E ⊆₁ covered T. Proof using. unfold trav_steps_left in *. assert (countP (set_compl (covered T)) (acts G) = 0) as HH by omega. clear NULL. unfold countP in *. apply length_zero_iff_nil in HH. intros x EX. destruct (classic (covered T x)) as [|NN]; auto. exfalso. assert (In x (filterP (set_compl (covered T)) (acts G))) as UU. 2: { rewrite HH in UU. inv UU. } apply in_filterP_iff. by split. Qed. Lemma trav_steps_left_ncov_nnull (T : trav_config) e (EE : E e) (NCOV : ~ covered T e): trav_steps_left T <> 0. Proof using. destruct (classic (trav_steps_left T = 0)) as [EQ|NEQ]; auto. exfalso. apply NCOV. apply trav_steps_left_null_cov; auto. Qed. Lemma trav_steps_left_nnull_ncov (T : trav_config) (TCCOH : tc_coherent G sc T) (NNULL : trav_steps_left T > 0): exists e, E e /\ ~ covered T e. Proof using. unfold trav_steps_left in *. assert (countP (set_compl (covered T)) (acts G) > 0 \/ countP (W ∩₁ set_compl (issued T)) (acts G) > 0) as YY by omega. assert (countP (set_compl (covered T)) (acts G) > 0) as HH. { destruct YY as [|YY]; auto. assert (countP (set_compl (covered T)) (acts G) >= countP (W ∩₁ set_compl (issued T)) (acts G)). 2: omega. apply countP_mori; auto. intros x [WX NN] COV. apply NN. eapply w_covered_issued; eauto. by split. } clear YY. unfold countP in HH. assert (exists h l, filterP (set_compl (covered T)) (acts G) = h :: l) as YY. { destruct (filterP (set_compl (covered T)) (acts G)); eauto. inv HH. } desc. exists h. assert (In h (filterP (set_compl (covered T)) (acts G))) as GG. { rewrite YY. red. by left. } apply in_filterP_iff in GG. simpls. Qed. Lemma trav_steps_left_decrease_sim_trans (T T' : trav_config) (STEPS : (sim_trav_step G sc)⁺ T T') : trav_steps_left T > trav_steps_left T'. Proof using. induction STEPS. { by apply trav_steps_left_decrease_sim. } eapply lt_trans; eauto. Qed. Theorem nat_ind_lt (P : nat -> Prop) (HPi : forall n, (forall m, m < n -> P m) -> P n) : forall n, P n. Proof using. set (Q n := forall m, m <= n -> P m). assert (forall n, Q n) as HH. 2: { ins. apply (HH n). omega. } ins. induction n. { unfold Q. ins. inv H. apply HPi. ins. inv H0. } unfold Q in *. ins. apply le_lt_eq_dec in H. destruct H as [Hl | Heq]. { unfold lt in Hl. apply le_S_n in Hl. by apply IHn. } rewrite Heq. apply HPi. ins. apply le_S_n in H. by apply IHn. Qed. Lemma sim_traversal_helper T (IMMCON : imm_consistent G sc) (TCCOH : tc_coherent G sc T) (RELCOV : W ∩₁ Rel ∩₁ issued T ⊆₁ covered T) (RMWCOV : forall r w (RMW : rmw r w), covered T r <-> covered T w) : exists T', (sim_trav_step G sc)* T T' /\ (G.(acts_set) ⊆₁ covered T'). Proof using WF. assert (exists T' : trav_config, (sim_trav_step G sc)* T T' /\ trav_steps_left T' = 0). 2: { desc. eexists. splits; eauto. by apply trav_steps_left_null_cov. } assert (exists n, n = trav_steps_left T) as [n NN] by eauto. generalize dependent T. generalize dependent n. set (P n := forall T, tc_coherent G sc T -> W ∩₁ Rel ∩₁ issued T ⊆₁ covered T -> (forall r w, rmw r w -> covered T r <-> covered T w) -> n = trav_steps_left T -> exists T', (sim_trav_step G sc)* T T' /\ trav_steps_left T' = 0). assert (forall n, P n) as YY. 2: by apply YY. apply nat_ind_lt. unfold P. ins. destruct (classic (trav_steps_left T = 0)) as [EQ|NEQ]. { eexists. splits; eauto. apply rt_refl. } assert (trav_steps_left T > 0) as HH by omega. eapply trav_steps_left_nnull_ncov in HH; auto. desc. eapply exists_next in HH0; eauto. desc. eapply exists_trav_step in HH1; eauto. desc. apply exists_sim_trav_step in HH1; eauto. desc. clear T'. subst. specialize (H (trav_steps_left T'')). edestruct H as [T' [II OO]]. { by apply trav_steps_left_decrease_sim. } { eapply sim_trav_step_coherence; eauto. } { eapply sim_trav_step_rel_covered; eauto. } { eapply sim_trav_step_rmw_covered; eauto. } { done. } exists T'. splits; auto. apply rt_begin. right. eexists. eauto. Qed. Lemma sim_traversal (IMMCON : imm_consistent G sc) : exists T, (sim_trav_step G sc)* (init_trav G) T /\ (G.(acts_set) ⊆₁ covered T). Proof using WF. apply sim_traversal_helper; auto. { by apply init_trav_coherent. } { unfold init_trav. simpls. basic_solver. } ins. split; intros [HH AA]. { apply WF.(init_w) in HH. apply (dom_l WF.(wf_rmwD)) in RMW. apply seq_eqv_l in RMW. type_solver. } apply WF.(rmw_in_sb) in RMW. apply no_sb_to_init in RMW. apply seq_eqv_r in RMW. desf. Qed. Notation "'NTid_' t" := (fun x => tid x <> t) (at level 1). Notation "'Tid_' t" := (fun x => tid x = t) (at level 1). Lemma sim_step_cov_full_thread T T' thread thread' (TCCOH : tc_coherent G sc T) (TS : isim_trav_step G sc thread' T T') (NCOV : NTid_ thread ∩₁ G.(acts_set) ⊆₁ covered T) : thread' = thread. Proof using. destruct (classic (thread' = thread)) as [|NEQ]; [by subst|]. exfalso. apply sim_trav_step_to_step in TS; auto. desf. red in TS. desf. { apply NEXT. apply NCOV. split; eauto. apply COV. } apply NISS. eapply w_covered_issued; eauto. split; auto. { apply ISS. } apply NCOV. split; auto. apply ISS. Qed. Lemma sim_step_cov_full_traversal T thread (IMMCON : imm_consistent G sc) (TCCOH : tc_coherent G sc T) (NCOV : NTid_ thread ∩₁ G.(acts_set) ⊆₁ covered T) (RELCOV : W ∩₁ Rel ∩₁ issued T ⊆₁ covered T) (RMWCOV : forall r w : actid, rmw r w -> covered T r <-> covered T w) : exists T', (isim_trav_step G sc thread)* T T' /\ (G.(acts_set) ⊆₁ covered T'). Proof using WF. edestruct sim_traversal_helper as [T']; eauto. desc. exists T'. splits; auto. clear H0. induction H. 2: ins; apply rt_refl. { ins. apply rt_step. destruct H as [thread' H]. assert (thread' = thread); [|by subst]. eapply sim_step_cov_full_thread; eauto. } ins. set (NCOV' := NCOV). apply IHclos_refl_trans1 in NCOV'; auto. eapply rt_trans; eauto. eapply IHclos_refl_trans2. { eapply sim_trav_steps_coherence; eauto. } { etransitivity; eauto. eapply sim_trav_steps_covered_le; eauto. } { eapply sim_trav_steps_rel_covered; eauto. } eapply sim_trav_steps_rmw_covered; eauto. Qed. End TraversalCounting.
Subroutine CalcH20u8pProperties(fPerm, fPorosity, fPoreA, fKs, fKf, fap, faXw, faSw, faQInv, faPermeability) Implicit None Real, Intent(IN) :: fPerm, fPorosity, fPoreA, fKs, fKf, fap(8) Real, Intent(OUT) :: faXw(8), faSw(8), faQInv(8), faPermeability(8) ! Main routine faXw = 1. faSw = 1. faQInv = 0. + fPorosity * faSw / fKf + (fPoreA - fPorosity) * faXw / fKs faPermeability = fPerm End Subroutine ! ****************************************** ! Integer function CalcOnlyKHexa8() ! ! IN: ! iElemNo(integer): Position in the elements matrix ! of the element that the stiffness ! matrix will be calculated. ! ! OUT: ! --- ! ! RETURNS: ! (integer): Number of nodes per element ! ! UPDATES: ! --- ! ! PURPOSE: ! Calculate the element stiffness matrix ! ! NOTES: ! --- ! ****************************************** Subroutine CalcH20u8pGaussMatrices(iInt, faXYZ, faWeight20, faS20, faDS20, faJ20, faDetJ20, faB20, & faDetJ8, faB8, faWeight8, faS8, faDS8) !DEC$ ATTRIBUTES DLLEXPORT::CalcH20u8pGaussMatrices Implicit None Integer, Intent(IN) :: iInt Real, Intent(IN) :: faXYZ(3, 20) Real, Intent(OUT) :: faDS20(60, iInt ** 3), faS20(20, iInt ** 3), faS8(8, iInt ** 3), & faB20(6, 60, iInt ** 3), faB8(6, 24, iInt ** 3), faDetJ20(iInt ** 3), faJ20(3, 3, iInt ** 3), & faWeight20(iInt ** 3), faWeight8(iInt ** 3), faDetJ8(iInt ** 3), faDS8(24, iInt ** 3) Real fXi, fEta, fZeta, faXYZ8(3, 8), faJ8(3, 3, iInt ** 3), fWt Integer M, iX, iY, iZ, iErr, CalcH20JDetJ, CalcH8JDetJ, I, J Real GP(4, 4), GW(4, 4) ! GP Matrix stores Gauss - Legendre sampling points Data GP/ & 0.D0, 0.D0, 0.D0, 0.D0, -.5773502691896D0, & .5773502691896D0, 0.D0, 0.D0, -.7745966692415D0, 0.D0, & .7745966692415D0, 0.D0, -.8611363115941D0, & -.3399810435849D0, .3399810435849D0, .8611363115941D0 / ! GW Matrix stores Gauss - Legendre weighting factors Data GW/ & 2.D0, 0.D0, 0.D0, 0.D0, 1.D0, 1.D0, & 0.D0, 0.D0, .5555555555556D0, .8888888888889D0, & .5555555555556D0, 0.D0, .3478548451375D0, .6521451548625D0, & .6521451548625D0, .3478548451375D0 / ! Main routine faXYZ8(1, 1) = faXYZ(1, 1) faXYZ8(1, 2) = faXYZ(1, 2) faXYZ8(1, 3) = faXYZ(1, 3) faXYZ8(1, 4) = faXYZ(1, 4) faXYZ8(1, 5) = faXYZ(1, 5) faXYZ8(1, 6) = faXYZ(1, 6) faXYZ8(1, 7) = faXYZ(1, 7) faXYZ8(1, 8) = faXYZ(1, 8) faXYZ8(2, 1) = faXYZ(2, 1) faXYZ8(2, 2) = faXYZ(2, 2) faXYZ8(2, 3) = faXYZ(2, 3) faXYZ8(2, 4) = faXYZ(2, 4) faXYZ8(2, 5) = faXYZ(2, 5) faXYZ8(2, 6) = faXYZ(2, 6) faXYZ8(2, 7) = faXYZ(2, 7) faXYZ8(2, 8) = faXYZ(2, 8) faXYZ8(3, 1) = faXYZ(3, 1) faXYZ8(3, 2) = faXYZ(3, 2) faXYZ8(3, 3) = faXYZ(3, 3) faXYZ8(3, 4) = faXYZ(3, 4) faXYZ8(3, 5) = faXYZ(3, 5) faXYZ8(3, 6) = faXYZ(3, 6) faXYZ8(3, 7) = faXYZ(3, 7) faXYZ8(3, 8) = faXYZ(3, 8) M = 0 Do iX = 1, iInt fXi = GP(iX, iInt) Do iY = 1, iInt fEta = GP(iY, iInt) Do iZ = 1, iInt fZeta = GP(iZ, iInt) fWt = GW(iX, iInt) * GW(iY, iInt) * GW(iZ, iInt) M = M + 1 Call CalcH20NablaShape(fXi, fEta, fZeta, faDS20(1, M)) Call CalcH20Shape(fXi, fEta, fZeta, faS20(1, M)) iErr = CalcH20JDetJ(faXYZ, faDS20(1, M), faJ20(1, 1, M), faDetJ20(M)) Call CalcH20B(faDetJ20(M), faJ20(1, 1, M), faDS20(1, M), faB20(1, 1, M)) faWeight20(M) = fWt * faDetJ20(M) Call CalcH8NablaShape(fXi, fEta, fZeta, faDS8(1, M)) Call CalcH8Shape(fXi, fEta, fZeta, faS8(1, M)) iErr = CalcH8JDetJ(faXYZ8, faDS8(1, M), faJ8(1, 1, M), faDetJ8(M)) Call CalcH8B(faDetJ8(M), faJ8(1, 1, M), faDS8(1, M), faB8(1, 1, M)) faWeight8(M) = fWt * faDetJ8(M) EndDo EndDo EndDo End Subroutine ! ****************************************** ! Integer function CalcOnlyMHexa8(iElemNo) ! ! IN: ! iElemNo(integer): Position in the elements matrix ! of the element that the stiffness ! matrix will be calculated. ! ! OUT: ! --- ! ! RETURNS: ! (integer): Number of nodes per element ! ! UPDATES: ! --- ! ! PURPOSE: ! Calculate the element stiffness matrix ! ! NOTES: ! --- ! ****************************************** Subroutine CalcH20u8pH(iInt, faPermeability, faS, faB, faWeight, faH) !DEC$ ATTRIBUTES DLLEXPORT::CalcH20u8pH Implicit None Integer, Intent(IN) :: iInt Real, Intent(IN) :: faWeight(iInt ** 3), faS(8, iInt ** 3), faB(6, 24, iInt ** 3), faPermeability(8) Real, Intent(OUT) :: faH(36) Real :: fStiff, fTerm, fPermeability Integer :: I, J, K, M, KS, iX, iY, iZ, iR1, iR2, iR3, iC ! Main routine ! Calculate Stress-Strain equations ! Calculate stiffness matrix M = 0 Do I = 1, 36 faH(I) = 0D0 EndDo Do iX = 1, iInt Do iY = 1, iInt Do iZ = 1, iInt M = M + 1 ! Add contribution to element stiffness fPermeability = 0. Do J = 1, 8 fPermeability = fPermeability + faPermeability(J) * faS(J, M) End Do KS = 0 fTerm = faWeight(M) * fPermeability Do I = 1, 8 iR1 = 3 * (I - 1) + 1 iR2 = iR1 + 1 iR3 = iR1 + 2 Do J = I, 8 KS = KS + 1 iC = 3 * (J - 1) + 1 fStiff = faB(1, iC, M) * faB(1, iR1, M) + faB(2, iC + 1, M) * faB(2, iR2, M) + & faB(3, iC + 2, M) * faB(3, iR3, M) faH(KS) = faH(KS) + fStiff * fTerm EndDo EndDo EndDo EndDo EndDo End Subroutine ! ****************************************** ! Integer function CalcOnlyMHexa8(iElemNo) ! ! IN: ! iElemNo(integer): Position in the elements matrix ! of the element that the stiffness ! matrix will be calculated. ! ! OUT: ! --- ! ! RETURNS: ! (integer): Number of nodes per element ! ! UPDATES: ! --- ! ! PURPOSE: ! Calculate the element stiffness matrix ! ! NOTES: ! --- ! ****************************************** Subroutine CalcH20u8pS(iInt, faXwDivQ, faS, faWeight, faM) !DEC$ ATTRIBUTES DLLEXPORT::CalcH20u8pS Implicit None Integer, Intent(IN) :: iInt Real, Intent(IN) :: faXwDivQ(8), faWeight(iInt ** 3), faS(8, iInt ** 3) Real, Intent(OUT) :: faM(36) Integer :: I, J, M, KS, iX, iY, iZ Real :: fTerm, fXwDivQ ! Main routine M = 0 Do I = 1, 36 faM(I) = 0D0 EndDo Do iX = 1, iInt Do iY = 1, iInt Do iZ = 1, iInt M = M + 1 ! Add contribution to element stiffness fXwDivQ = 0. Do J = 1, 8 fXwDivQ = fXwDivQ + faXwDivQ(J) * faS(J, M) End Do KS = 0 fTerm = faWeight(M) * fXwDivQ Do I = 1, 8 Do J = I, 8 KS = KS + 1 faM(KS) = faM(KS) + fTerm * faS(I, M) * faS(J, M) EndDo EndDo EndDo EndDo EndDo ! Open(100, FILE = 'D:\GAnal\GAnalF\Mass3.txt', STATUS = 'NEW') ! Do I = 1, 300 ! Write(100, 999) (I), faM(I) ! EndDo ! Close(100) 999 FORMAT (I5, F10.5) End Subroutine ! ****************************************** ! Integer function CalcOnlyMHexa8(iElemNo) ! ! IN: ! iElemNo(integer): Position in the elements matrix ! of the element that the stiffness ! matrix will be calculated. ! ! OUT: ! --- ! ! RETURNS: ! (integer): Number of nodes per element ! ! UPDATES: ! --- ! ! PURPOSE: ! Calculate the element stiffness matrix ! ! NOTES: ! --- ! ****************************************** !Subroutine CalcH20u8pQTildeQ(iInt, fPoreA, fXw, faB20, faS8, faWeight20, faQ, faQTilde) Subroutine CalcH20u8pQMinus(iInt, fPoreA, faXw, faB20, faS8, faWeight20, faQTilde) !DEC$ ATTRIBUTES DLLEXPORT::CalcH20u8pQMinus Implicit None Integer, Intent(IN) :: iInt Real, Intent(IN) :: fPoreA, faXw(8), faWeight20(iInt ** 3), & faB20(6, 60, iInt ** 3), faS8(8, iInt ** 3) Real, Intent(OUT) :: faQTilde(60, 8) Integer :: I, J, K, M, KS, iX, iY, iZ, iWidth Real :: fWeight, fWeightShape, fXw ! Main routine M = 0 Do J = 1, 8 Do I = 1, 60 faQTilde(I, J) = 0. EndDo EndDo ! Compute QTilde Do iX = 1, iInt Do iY = 1, iInt Do iZ = 1, iInt M = M + 1 fXw = 0. Do J = 1, 8 fXw = fXw + faXw(J) * faS8(J, M) End Do fWeight = faWeight20(M) * fPoreA * fXw Do J = 1, 8 fWeightShape = fWeight * faS8(J, M) Do I = 1, 60 ! faQTilde(I, J) = faQTilde(I, J) + faB20(mod(I - 1, 3) + 1, I, M) * fWeightShape faQTilde(I, J) = faQTilde(I, J) - fWeightShape * & (faB20(1, I, M) + faB20(2, I, M) + faB20(3, I, M)) End Do End Do EndDo EndDo EndDo ! faQTilde = fXw * faQTilde ! Compute Q ! Do J = 1, 8 ! Do I = 1, 60 ! faQ(I, J) = faQTilde(I, J) * fXw ! EndDo ! EndDo ! Open(100, FILE = 'D:\GAnal\GAnalF\Mass3.txt', STATUS = 'NEW') ! Do I = 1, 300 ! Write(100, 999) (I), faM(I) ! EndDo ! Close(100) 999 FORMAT (I5, F10.5) End Subroutine ! ****************************************** ! Integer function CalcOnlyMHexa8(iElemNo) ! ! IN: ! iElemNo(integer): Position in the elements matrix ! of the element that the stiffness ! matrix will be calculated. ! ! OUT: ! --- ! ! RETURNS: ! (integer): Number of nodes per element ! ! UPDATES: ! --- ! ! PURPOSE: ! Calculate the element stiffness matrix ! ! NOTES: ! --- ! ****************************************** !Subroutine CalcH20u8pQTildeQ(iInt, fPoreA, fXw, faB20, faS8, faWeight20, faQ, faQTilde) Subroutine CalcH8u8pQMinus(iInt, fPoreA, faXw, faB20, faS8, faWeight20, faQTilde) !DEC$ ATTRIBUTES DLLEXPORT::CalcH8u8pQMinus Implicit None Integer, Intent(IN) :: iInt Real, Intent(IN) :: fPoreA, faXw(8), faWeight20(iInt ** 3), & faB20(6, 24, iInt ** 3), faS8(8, iInt ** 3) Real, Intent(OUT) :: faQTilde(24, 8) Integer :: I, J, K, M, KS, iX, iY, iZ, iWidth Real :: fWeight, fWeightShape, fXw ! Main routine M = 0 Do J = 1, 8 Do I = 1, 24 faQTilde(I, J) = 0. EndDo EndDo ! Compute QTilde Do iX = 1, iInt Do iY = 1, iInt Do iZ = 1, iInt M = M + 1 fXw = 0. Do J = 1, 8 fXw = fXw + faXw(J) * faS8(J, M) End Do fWeight = faWeight20(M) * fPoreA * fXw Do J = 1, 8 fWeightShape = fWeight * faS8(J, M) Do I = 1, 24 ! faQTilde(I, J) = faQTilde(I, J) + faB20(mod(I - 1, 3) + 1, I, M) * fWeightShape faQTilde(I, J) = faQTilde(I, J) - fWeightShape * & (faB20(1, I, M) + faB20(2, I, M) + faB20(3, I, M)) End Do End Do EndDo EndDo EndDo 999 FORMAT (I5, F10.5) End Subroutine Subroutine CalcH20u8pQTilde(iInt, fPoreA, faB20, faS8, faWeight20, faQTilde) !DEC$ ATTRIBUTES DLLEXPORT::CalcH20u8pQTilde Implicit None Integer, Intent(IN) :: iInt Real, Intent(IN) :: fPoreA, faWeight20(iInt ** 3), & faB20(6, 60, iInt ** 3), faS8(8, iInt ** 3) Real, Intent(OUT) :: faQTilde(60, 8) Integer :: I, J, K, M, KS, iX, iY, iZ, iWidth Real :: fWeight, fWeightShape ! Main routine M = 0 Do J = 1, 8 Do I = 1, 60 faQTilde(I, J) = 0. EndDo EndDo ! Compute QTilde Do iX = 1, iInt Do iY = 1, iInt Do iZ = 1, iInt M = M + 1 fWeight = faWeight20(M) * fPoreA Do J = 1, 8 fWeightShape = fWeight * faS8(J, M) Do I = 1, 60 faQTilde(I, J) = faQTilde(I, J) + fWeightShape * & (faB20(1, I, M) + faB20(2, I, M) + faB20(3, I, M)) End Do End Do EndDo EndDo EndDo End Subroutine Subroutine CalcH8u8pQTilde(iInt, fPoreA, faB20, faS8, faWeight20, faQTilde) !DEC$ ATTRIBUTES DLLEXPORT::CalcH8u8pQTilde Implicit None Integer, Intent(IN) :: iInt Real, Intent(IN) :: fPoreA, faWeight20(iInt ** 3), & faB20(6, 24, iInt ** 3), faS8(8, iInt ** 3) Real, Intent(OUT) :: faQTilde(24, 8) Integer :: I, J, K, M, KS, iX, iY, iZ, iWidth Real :: fWeight, fWeightShape ! Main routine M = 0 Do J = 1, 8 Do I = 1, 24 faQTilde(I, J) = 0. EndDo EndDo ! Compute QTilde Do iX = 1, iInt Do iY = 1, iInt Do iZ = 1, iInt M = M + 1 fWeight = faWeight20(M) * fPoreA Do J = 1, 8 fWeightShape = fWeight * faS8(J, M) Do I = 1, 24 faQTilde(I, J) = faQTilde(I, J) + fWeightShape * & (faB20(1, I, M) + faB20(2, I, M) + faB20(3, I, M)) End Do End Do EndDo EndDo EndDo End Subroutine Subroutine CalcH20u8pForcesFromPoresQ(piEqLM, pfElementQ, pfP, pfGlobalForces) Implicit None Integer, Intent(IN) :: piEqLM(1) Real, Intent(IN) :: pfElementQ(60, 8), pfP(8) Real, Intent(OUT) :: pfGlobalForces(1) Integer :: I, J, iTemp Real :: fLocalForces(60) ! Main function ! Initialize local forces vector fLocalForces(1) = 0D0 fLocalForces(2) = 0D0 fLocalForces(3) = 0D0 fLocalForces(4) = 0D0 fLocalForces(5) = 0D0 fLocalForces(6) = 0D0 fLocalForces(7) = 0D0 fLocalForces(8) = 0D0 fLocalForces(9) = 0D0 fLocalForces(10) = 0D0 fLocalForces(11) = 0D0 fLocalForces(12) = 0D0 fLocalForces(13) = 0D0 fLocalForces(14) = 0D0 fLocalForces(15) = 0D0 fLocalForces(16) = 0D0 fLocalForces(17) = 0D0 fLocalForces(18) = 0D0 fLocalForces(19) = 0D0 fLocalForces(20) = 0D0 fLocalForces(21) = 0D0 fLocalForces(22) = 0D0 fLocalForces(23) = 0D0 fLocalForces(24) = 0D0 fLocalForces(25) = 0D0 fLocalForces(26) = 0D0 fLocalForces(27) = 0D0 fLocalForces(28) = 0D0 fLocalForces(29) = 0D0 fLocalForces(30) = 0D0 fLocalForces(31) = 0D0 fLocalForces(32) = 0D0 fLocalForces(33) = 0D0 fLocalForces(34) = 0D0 fLocalForces(35) = 0D0 fLocalForces(36) = 0D0 fLocalForces(37) = 0D0 fLocalForces(38) = 0D0 fLocalForces(39) = 0D0 fLocalForces(40) = 0D0 fLocalForces(41) = 0D0 fLocalForces(42) = 0D0 fLocalForces(43) = 0D0 fLocalForces(44) = 0D0 fLocalForces(45) = 0D0 fLocalForces(46) = 0D0 fLocalForces(47) = 0D0 fLocalForces(48) = 0D0 fLocalForces(49) = 0D0 fLocalForces(50) = 0D0 fLocalForces(51) = 0D0 fLocalForces(52) = 0D0 fLocalForces(53) = 0D0 fLocalForces(54) = 0D0 fLocalForces(55) = 0D0 fLocalForces(56) = 0D0 fLocalForces(57) = 0D0 fLocalForces(58) = 0D0 fLocalForces(59) = 0D0 fLocalForces(60) = 0D0 ! Multiply element Q with vector pfP and store to fLocalForces Do J = 1, 8 Do I = 1, 60 fLocalForces(I) = fLocalForces(I) + pfElementQ(I, J) * pfP(J) End Do End Do ! Update the global loads vector (pfGlobalForces) iTemp = piEqLM(1) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(1) iTemp = piEqLM(2) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(2) iTemp = piEqLM(3) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(3) iTemp = piEqLM(4) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(4) iTemp = piEqLM(5) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(5) iTemp = piEqLM(6) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(6) iTemp = piEqLM(7) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(7) iTemp = piEqLM(8) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(8) iTemp = piEqLM(9) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(9) iTemp = piEqLM(10) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(10) iTemp = piEqLM(11) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(11) iTemp = piEqLM(12) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(12) iTemp = piEqLM(13) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(13) iTemp = piEqLM(14) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(14) iTemp = piEqLM(15) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(15) iTemp = piEqLM(16) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(16) iTemp = piEqLM(17) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(17) iTemp = piEqLM(18) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(18) iTemp = piEqLM(19) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(19) iTemp = piEqLM(20) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(20) iTemp = piEqLM(21) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(21) iTemp = piEqLM(22) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(22) iTemp = piEqLM(23) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(23) iTemp = piEqLM(24) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(24) iTemp = piEqLM(25) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(25) iTemp = piEqLM(26) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(26) iTemp = piEqLM(27) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(27) iTemp = piEqLM(28) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(28) iTemp = piEqLM(29) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(29) iTemp = piEqLM(30) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(30) iTemp = piEqLM(31) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(31) iTemp = piEqLM(32) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(32) iTemp = piEqLM(33) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(33) iTemp = piEqLM(34) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(34) iTemp = piEqLM(35) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(35) iTemp = piEqLM(36) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(36) iTemp = piEqLM(37) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(37) iTemp = piEqLM(38) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(38) iTemp = piEqLM(39) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(39) iTemp = piEqLM(40) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(40) iTemp = piEqLM(41) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(41) iTemp = piEqLM(42) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(42) iTemp = piEqLM(43) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(43) iTemp = piEqLM(44) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(44) iTemp = piEqLM(45) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(45) iTemp = piEqLM(46) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(46) iTemp = piEqLM(47) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(47) iTemp = piEqLM(48) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(48) iTemp = piEqLM(49) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(49) iTemp = piEqLM(50) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(50) iTemp = piEqLM(51) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(51) iTemp = piEqLM(52) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(52) iTemp = piEqLM(53) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(53) iTemp = piEqLM(54) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(54) iTemp = piEqLM(55) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(55) iTemp = piEqLM(56) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(56) iTemp = piEqLM(57) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(57) iTemp = piEqLM(58) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(58) iTemp = piEqLM(59) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(59) iTemp = piEqLM(60) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(60) End Subroutine Subroutine CalcH20u8pForcesFromPoresH(piEqLM, pfElementH, pfP, pfGlobalForces) Implicit None Integer, Intent(IN) :: piEqLM(1) Real, Intent(IN) :: pfElementH(36), pfP(8) Real, Intent(OUT) :: pfGlobalForces(1) Integer :: I, J, iRow, iAccR, iTemp, iDataPos Real :: fLocalForces(8) ! Main function ! Initialize local forces vector fLocalForces(1) = 0D0 fLocalForces(2) = 0D0 fLocalForces(3) = 0D0 fLocalForces(4) = 0D0 fLocalForces(5) = 0D0 fLocalForces(6) = 0D0 fLocalForces(7) = 0D0 fLocalForces(8) = 0D0 ! Multiply SKYLINE Element H with vector pfP and store to fLocalForces iDataPos = 1 Do I = 1, 8 fLocalForces(I) = fLocalForces(I) + pfElementH(iDataPos) * pfP(I) iDataPos = iDataPos + 1 Do J = I + 1, 8 fLocalForces(I) = fLocalForces(I) + pfElementH(iDataPos) * pfP(J) fLocalForces(J) = fLocalForces(J) + pfElementH(iDataPos) * pfP(I) iDataPos = iDataPos + 1 End Do End Do ! Update the global loads vector (pfGlobalForces) iTemp = piEqLM(1) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(1) iTemp = piEqLM(2) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(2) iTemp = piEqLM(3) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(3) iTemp = piEqLM(4) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(4) iTemp = piEqLM(5) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(5) iTemp = piEqLM(6) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(6) iTemp = piEqLM(7) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(7) iTemp = piEqLM(8) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(8) End Subroutine Subroutine CalcH20u8pForcesFromAccWater(iInt, iImpermeable, piImpermeableIDs, piEqLM, & piEqIDs, fDPS, pfElementB, pfAcc, pfWeights, pfGlobalForces) Implicit None Integer, Intent(IN) :: iInt, iImpermeable, piEqLM(1), piEqIDs(4, 1), piImpermeableIDs(1) Real, Intent(IN) :: fDPS, pfElementB(1), pfAcc(3), pfWeights(1) Real, Intent(OUT) :: pfGlobalForces(1) Integer :: I, iX, iY, iZ, iRow, iAccR, iTemp, iDataPos, iWPos, piEqs(8) Real :: fLocalForces(8), fAccDPS(3), fWeight, fTerm ! Main function ! Initialize local forces vector fLocalForces(1) = 0D0 fLocalForces(2) = 0D0 fLocalForces(3) = 0D0 fLocalForces(4) = 0D0 fLocalForces(5) = 0D0 fLocalForces(6) = 0D0 fLocalForces(7) = 0D0 fLocalForces(8) = 0D0 piEqs(1) = piEqLM(1) piEqs(2) = piEqLM(2) piEqs(3) = piEqLM(3) piEqs(4) = piEqLM(4) piEqs(5) = piEqLM(5) piEqs(6) = piEqLM(6) piEqs(7) = piEqLM(7) piEqs(8) = piEqLM(8) ! Multiply body forces with saturation, permeability and density fAccDPS(1) = fDPS * pfAcc(1) fAccDPS(2) = fDPS * pfAcc(2) fAccDPS(3) = fDPS * pfAcc(3) ! Multiply Element B with vector pfAcc and store to fLocalForces iDataPos = 1 iWPos = 0 Do iX = 1, iInt Do iY = 1, iInt Do iZ = 1, iInt iWPos = iWPos + 1 fWeight = pfWeights(iWPos) Do I = 1, 8 fTerm = pfElementB(iDataPos) * fAccDPS(1) + & pfElementB(iDataPos + 1) * fAccDPS(2) + & pfElementB(iDataPos + 2) * fAccDPS(3) fLocalForces(I) = fLocalForces(I) + fTerm * fWeight ! fLocalForces(I) = fLocalForces(I) + pfElementB(iDataPos) * fAccDPS(1) * & ! fTemp iDataPos = iDataPos + 3 End Do End Do End Do End Do ! Update the global loads vector (pfGlobalForces) Do I = 1, iImpermeable ! if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(1)) piEqs(1) = 0 ! if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(2)) piEqs(2) = 0 ! if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(3)) piEqs(3) = 0 ! if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(4)) piEqs(4) = 0 ! if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(5)) piEqs(5) = 0 ! if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(6)) piEqs(6) = 0 ! if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(7)) piEqs(7) = 0 ! if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(8)) piEqs(8) = 0 if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(1)) fLocalForces(1) = fLocalForces(1) / 1D11 if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(2)) fLocalForces(2) = fLocalForces(2) / 1D11 if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(3)) fLocalForces(3) = fLocalForces(3) / 1D11 if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(4)) fLocalForces(4) = fLocalForces(4) / 1D11 if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(5)) fLocalForces(5) = fLocalForces(5) / 1D11 if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(6)) fLocalForces(6) = fLocalForces(6) / 1D11 if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(7)) fLocalForces(7) = fLocalForces(7) / 1D11 if (piEqIDs(4, piImpermeableIDs(I)).EQ.piEqs(8)) fLocalForces(8) = fLocalForces(8) / 1D11 End Do iTemp = piEqs(1) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(1) iTemp = piEqs(2) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(2) iTemp = piEqs(3) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(3) iTemp = piEqs(4) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(4) iTemp = piEqs(5) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(5) iTemp = piEqs(6) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(6) iTemp = piEqs(7) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(7) iTemp = piEqs(8) If (iTemp.GT.0) pfGlobalForces(iTemp) = pfGlobalForces(iTemp) + fLocalForces(8) End Subroutine !DEC$ ATTRIBUTES DLLEXPORT::CalcH20u8pForcesWaterAcc Subroutine CalcH20u8pForcesWaterAcc(iInt, alImpermeable, ffDensity, afPermeability, afXw, afSw, afAcc, afS, afB, & afWeights, afLocalForces) Implicit None Integer, Intent(IN) :: iInt Logical, Intent(IN) :: alImpermeable(8) Real, Intent(IN) :: ffDensity, afPermeability(8), afXw(8), afSw(8), afS(8, iInt ** 3), & afB(6, 24, iInt ** 3), afAcc(3), afWeights(*) Real, Intent(OUT) :: afLocalForces(8) Integer :: I, iX, iY, iZ, iDataPos, iWPos Real :: afAccDPS(3), fWeight, fTerm ! Main function ! Initialize local forces vector afLocalForces(1) = 0D0 afLocalForces(2) = 0D0 afLocalForces(3) = 0D0 afLocalForces(4) = 0D0 afLocalForces(5) = 0D0 afLocalForces(6) = 0D0 afLocalForces(7) = 0D0 afLocalForces(8) = 0D0 ! Multiply Element B with vector pfAcc and store to fLocalForces iDataPos = 1 iWPos = 0 Do iX = 1, iInt Do iY = 1, iInt Do iZ = 1, iInt iWPos = iWPos + 1 fTerm = 0. Do I = 1, 8 fTerm = fTerm + afPermeability(I) * afXw(I) * afSw(I) * afS(I, iWPos) End Do afAccDPS = afAcc * ffDensity * fTerm fWeight = afWeights(iWPos) Do I = 0, 7 fTerm = afB(1, (I * 3) + 1, iWPos) * afAccDPS(1) + & afB(2, (I * 3) + 2, iWPos) * afAccDPS(2) + & afB(3, (I * 3) + 3, iWPos) * afAccDPS(3) ! fTerm = afElementB(iDataPos) * afAccDPS(1) + & ! afElementB(iDataPos + 1) * afAccDPS(2) + & ! afElementB(iDataPos + 2) * afAccDPS(3) afLocalForces(I + 1) = afLocalForces(I + 1) + fTerm * fWeight ! fLocalForces(I) = fLocalForces(I) + pfElementB(iDataPos) * fAccDPS(1) * fTemp iDataPos = iDataPos + 3 End Do End Do End Do End Do ! If impermeable, nullify force Do I = 1, 8 If (alImpermeable(I)) afLocalForces(I) = 0. End Do End Subroutine
PROGRAM TSETER C C This test program demonstrates minimal functioning of the error- C handling package used by NCAR Graphics. It first produces a single C frame showing what output print lines to expect and then steps C through a simple set of tests that should produce those print lines. C C Define the error file, the Fortran unit number, the workstation type, C and the workstation ID to be used in calls to GKS routines. C C PARAMETER (IERRF=6, LUNIT=2, IWTYPE=1, IWKID=1) ! NCGM C PARAMETER (IERRF=6, LUNIT=2, IWTYPE=8, IWKID=1) ! X Windows C PARAMETER (IERRF=6, LUNIT=2, IWTYPE=11, IWKID=1) ! PDF C PARAMETER (IERRF=6, LUNIT=2, IWTYPE=20, IWKID=1) ! PostScript C PARAMETER (IERRF=6, LUNIT=2, IWTYPE=1, IWKID=1) C C Make required character-variable declarations. ERMSG receives the C error message returned by the character function SEMESS. C CHARACTER*113 ERMSG,SEMESS C C The contents of the array LINE defines the lines of print that this C program should produce. C CHARACTER*60 LINE(40) C DATA (LINE(I),I=1,10) / + ' ' , + 'PROGRAM TSETER EXECUTING' , + ' ' , + 'TSETER - CALL ENTSR TO ENTER RECOVERY MODE' , + ' ' , + 'TSETER - CALL SETER TO REPORT RECOVERABLE ERROR 1' , + ' ' , + 'TSETER - CALL ERROF TO TURN OFF INTERNAL ERROR FLAG' , + ' ' , + 'TSETER - CALL SETER TO REPORT RECOVERABLE ERROR 2' / C DATA (LINE(I),I=11,20) / + ' ' , + 'TSETER - EXECUTE STATEMENT ''IERRO=NERRO(JERRO)''' , + 'TSETER - RESULTING IERRO: 2' , + 'TSETER - RESULTING JERRO: 2' , + ' ' , + 'TSETER - EXECUTE STATEMENT ''ERMSG=SEMESS(0)''' , + 'TSETER - RESULTING ERMSG: ROUTINE_NAME_2 - ERROR_MESSAGE_2' , + 'TSETER - (PRINTING ABOVE LINE ALSO TESTED ICLOEM)' , + ' ' , + 'TSETER - CALL EPRIN TO PRINT CURRENT ERROR MESSAGE' / C DATA (LINE(I),I=21,30) / + 'ERROR 2 IN ROUTINE_NAME_2 - ERROR_MESSAGE_2' , + 'TSETER - (AN ERROR MESSAGE SHOULD HAVE BEEN PRINTED)' , + ' ' , + 'TSETER - CALL ERROF TO TURN OFF INTERNAL ERROR FLAG' , + ' ' , + 'TSETER - CALL EPRIN TO PRINT CURRENT ERROR MESSAGE' , + 'TSETER - (NOTHING SHOULD HAVE BEEN PRINTED)' , + ' ' , + 'TSETER - CALL SETER TO REPORT RECOVERABLE ERROR 3' , + ' ' / C DATA (LINE(I),I=31,40) / + 'TSETER - TEST THE USE OF ICFELL' , + ' ' , + 'TSETER - CALL RETSR TO LEAVE RECOVERY MODE - BECAUSE' , + 'TSETER - THE LAST RECOVERABLE ERROR WAS NOT CLEARED,' , + 'TSETER - THIS WILL CAUSE A FATAL-ERROR CALL TO SETER' , + 'ERROR 3 IN SETER - AN UNCLEARED PRIOR ERROR EXISTS' , + '... MESSAGE FOR UNCLEARED PRIOR ERROR IS AS FOLLOWS:' , + '... ERROR 6 IN SETER/ROUTINE_NAME_3 - ERROR_MESSAGE_3' , + '... MESSAGE FOR CURRENT CALL TO SETER IS AS FOLLOWS:' , + '... ERROR 2 IN RETSR - PRIOR ERROR IS NOW UNRECOVERABLE' / C C Open GKS. C CALL GOPKS (IERRF, ISZDM) CALL GOPWK (IWKID, LUNIT, IWTYPE) CALL GACWK (IWKID) C C Produce a single frame of output, detailing what the program ought to C print. C CALL SET (0.,1.,0.,1.,0.,1.,0.,1.,1) C CALL PCSETC ('FC - FUNCTION CODE SIGNAL',CHAR(0)) C CALL PCSETI ('FN - FONT NUMBER',26) C CALL PLCHHQ (.5,.975,'SETER TEST "tseter"',.025,0.,0.) C CALL PCSETI ('FN - FONT NUMBER',1) C CALL PLCHHQ (.5,.925,'See the print output; it should consist of + the following lines:',.011,0.,0.) C DO 101 I=1,40 CALL PLCHHQ (.15,.9-REAL(I-1)*.022,LINE(I),.011,0.,-1.) 101 CONTINUE C C Advance the frame. C CALL FRAME C C Close GKS. C CALL GDAWK (IWKID) CALL GCLWK (IWKID) CALL GCLKS C C Enter recovery mode. C PRINT * , ' ' PRINT * , 'PROGRAM TSETER EXECUTING' PRINT * , ' ' PRINT * , 'TSETER - CALL ENTSR TO ENTER RECOVERY MODE' C CALL ENTSR (IROLD,1) C C Log a recoverable error. Nothing should be printed, but the internal C error flag should be set and the message should be remembered. C PRINT * , ' ' PRINT * , 'TSETER - CALL SETER TO REPORT RECOVERABLE ERROR 1' C CALL SETER ('ROUTINE_NAME_1 - ERROR_MESSAGE_1',1,1) C C Clear the internal error flag. C PRINT * , ' ' PRINT * , 'TSETER - CALL ERROF TO TURN OFF INTERNAL ERROR FLAG' C CALL ERROF C C Log another recoverable error. Again, nothing should be printed, but C the internal error flag should be set and the message should be C remembered. C PRINT * , ' ' PRINT * , 'TSETER - CALL SETER TO REPORT RECOVERABLE ERROR 2' C CALL SETER ('ROUTINE_NAME_2 - ERROR_MESSAGE_2',2,1) C C Pick up and print the error flag, as returned in each of two C ways by the function NERRO. C PRINT * , ' ' PRINT * , 'TSETER - EXECUTE STATEMENT ''IERRO=NERRO(JERRO)''' C IERRO=NERRO(JERRO) C PRINT * , 'TSETER - RESULTING IERRO: ',IERRO PRINT * , 'TSETER - RESULTING JERRO: ',JERRO C C Pick up and print the error message, as returned by the function C SEMESS. This also tests proper functioning of the function ICLOEM. C PRINT * , ' ' PRINT * , 'TSETER - EXECUTE STATEMENT ''ERMSG=SEMESS(0)''' C ERMSG=SEMESS(0) C PRINT * , 'TSETER - RESULTING ERMSG: ',ERMSG(1:ICLOEM(ERMSG)) PRINT * , 'TSETER - (PRINTING ABOVE LINE ALSO TESTED ICLOEM)' C C Print the current error message. C PRINT * , ' ' PRINT * , 'TSETER - CALL EPRIN TO PRINT CURRENT ERROR MESSAGE' C CALL EPRIN C PRINT * , 'TSETER - (AN ERROR MESSAGE SHOULD HAVE BEEN PRINTED)' C C Clear the internal error flag again. C PRINT * , ' ' PRINT * , 'TSETER - CALL ERROF TO TURN OFF INTERNAL ERROR FLAG' C CALL ERROF C C Try to print the error message again. Nothing should be printed. C PRINT * , ' ' PRINT * , 'TSETER - CALL EPRIN TO PRINT CURRENT ERROR MESSAGE' C CALL EPRIN C PRINT * , 'TSETER - (NOTHING SHOULD HAVE BEEN PRINTED)' C C Log another recoverable error. C PRINT * , ' ' PRINT * , 'TSETER - CALL SETER TO REPORT RECOVERABLE ERROR 3' C CALL SETER ('ROUTINE_NAME_3 - ERROR_MESSAGE_3',5,1) C C Test the use of ICFELL. C PRINT * , ' ' PRINT * , 'TSETER - TEST THE USE OF ICFELL' C IF (ICFELL('TSETER',6).NE.5) THEN PRINT * , ' ' PRINT * , 'TSETER - ICFELL MALFUNCTIONED - SOMETHING''S WRONG' STOP END IF C C Turn recovery mode off without clearing the internal error flag, C which should be treated as a fatal error. C PRINT * , ' ' PRINT * , 'TSETER - CALL RETSR TO LEAVE RECOVERY MODE - BECAUSE' PRINT * , 'TSETER - THE LAST RECOVERABLE ERROR WAS NOT CLEARED,' PRINT * , 'TSETER - THIS WILL CAUSE A FATAL-ERROR CALL TO SETER' C CALL RETSR (IROLD) C C Control should never get to the next statement, but just in case ... C PRINT * , ' ' PRINT * , 'TSETER - GOT CONTROL BACK - SOMETHING''S WRONG' C STOP C END
module FreeVarPresheaves where open import Data.Nat as Nat import Level open import Categories.Category open import Categories.Presheaf open import Relation.Binary.Core open import Relation.Binary open import Function using (flip) module DTO = DecTotalOrder Nat.decTotalOrder data ℕ-≤-eq {n m : ℕ} : Rel (n ≤ m) Level.zero where triv-eq : ∀ {p q} → ℕ-≤-eq p q ℕ-≤-eq-equivRel : ∀ {n m} → IsEquivalence (ℕ-≤-eq {n} {m}) ℕ-≤-eq-equivRel = record { refl = triv-eq ; sym = λ _ → triv-eq ; trans = λ _ _ → triv-eq } {- trans-assoc : ∀ {a ℓ} {A : Set a} → {_<_ : Rel A ℓ} → {trans : Transitive _<_} → ∀ {w x y z : A} → ∀{p : w < x} → ∀{q : x < y} → ∀{r : y < z} → (trans p (trans q r)) ≡ (trans (trans p q) r) trans-assoc = {!!} -} ℕ-≤-eq-assoc : {m n k i : ℕ} {p : m ≤ n} {q : n ≤ k} {r : k ≤ i} → ℕ-≤-eq (DTO.trans p (DTO.trans q r)) (DTO.trans (DTO.trans p q) r) ℕ-≤-eq-assoc = triv-eq trans-resp-ℕ-≤-eq : {m n k : ℕ} {p r : n ≤ k} {q s : m ≤ n} → ℕ-≤-eq p r → ℕ-≤-eq q s → ℕ-≤-eq (DTO.trans q p) (DTO.trans s r) trans-resp-ℕ-≤-eq _ _ = triv-eq op : Category Level.zero Level.zero Level.zero op = record { Obj = ℕ ; _⇒_ = Nat._≤_ ; _≡_ = ℕ-≤-eq ; _∘_ = flip DTO.trans ; id = DTO.refl ; assoc = ℕ-≤-eq-assoc ; identityˡ = triv-eq ; identityʳ = triv-eq ; equiv = ℕ-≤-eq-equivRel ; ∘-resp-≡ = trans-resp-ℕ-≤-eq } Ctx a = List (Var a) data Var : (Γ : Ctx) → Set where zero : ∀{Γ} → TyVar (Γ + 1) succ : ∀{Γ} (x : TyVar Γ) → TyVar (Γ + 1)
[STATEMENT] lemma keys_bulkload [simp]: "keys (bulkload xs) = {0..<length xs}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. keys (bulkload xs) = {0..<length xs} [PROOF STEP] by (simp add: bulkload_tabulate)
lemma (in semiring_of_sets) generated_ring_Inter: assumes "finite A" "A \<noteq> {}" shows "A \<subseteq> generated_ring \<Longrightarrow> \<Inter>A \<in> generated_ring"
=begin # sample-polynomial02.rb require "algebra" P = Polynomial(Integer, "x", "y", "z") x, y, z = P.vars p((-x + y + z)*(x + y - z)*(x - y + z)) #=> -z^3 + (y + x)z^2 + (y^2 - 2xy + x^2)z - y^3 + xy^2 + x^2y - x^3 ((<_|CONTENTS>)) =end
lemma algebraic_int_abs_real [simp]: "algebraic_int \<bar>x :: real\<bar> \<longleftrightarrow> algebraic_int x"
/- Copyright (c) 2021 Manuel Candales. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Manuel Candales -/ import data.real.basic import data.real.sqrt import data.nat.prime import number_theory.primes_congruent_one import number_theory.quadratic_reciprocity /-! # IMO 2008 Q3 Prove that there exist infinitely many positive integers `n` such that `n^2 + 1` has a prime divisor which is greater than `2n + √(2n)`. # Solution We first prove the following lemma: for every prime `p > 20`, satisfying `p ≡ 1 [MOD 4]`, there exists `n ∈ ℕ` such that `p ∣ n^2 + 1` and `p > 2n + √(2n)`. Then the statement of the problem follows from the fact that there exist infinitely many primes `p ≡ 1 [MOD 4]`. To prove the lemma, notice that `p ≡ 1 [MOD 4]` implies `∃ n ∈ ℕ` such that `n^2 ≡ -1 [MOD p]` and we can take this `n` such that `n ≤ p/2`. Let `k = p - 2n ≥ 0`. Then we have: `k^2 + 4 = (p - 2n)^2 + 4 ≣ 4n^2 + 4 ≡ 0 [MOD p]`. Then `k^2 + 4 ≥ p` and so `k ≥ √(p - 4) > 4`. Then `p = 2n + k ≥ 2n + √(p - 4) = 2n + √(2n + k - 4) > √(2n)` and we are done. -/ open real lemma p_lemma (p : ℕ) (hpp : nat.prime p) (hp_mod_4_eq_1 : p ≡ 1 [MOD 4]) (hp_gt_20 : p > 20) : ∃ n : ℕ, p ∣ n ^ 2 + 1 ∧ (p : ℝ) > 2 * n + sqrt(2 * n) := begin haveI := fact.mk hpp, have hp_mod_4_ne_3 : p % 4 ≠ 3, { linarith [(show p % 4 = 1, by exact hp_mod_4_eq_1)] }, obtain ⟨y, hy⟩ := (zmod.exists_sq_eq_neg_one_iff_mod_four_ne_three p).mpr hp_mod_4_ne_3, let m := zmod.val_min_abs y, let n := int.nat_abs m, have hnat₁ : p ∣ n ^ 2 + 1, { refine int.coe_nat_dvd.mp _, simp only [int.nat_abs_sq, int.coe_nat_pow, int.coe_nat_succ, int.coe_nat_dvd.mp], refine (zmod.int_coe_zmod_eq_zero_iff_dvd (m ^ 2 + 1) p).mp _, simp only [int.cast_pow, int.cast_add, int.cast_one, zmod.coe_val_min_abs], rw hy, exact add_left_neg 1 }, have hnat₂ : n ≤ p / 2 := zmod.nat_abs_val_min_abs_le y, have hnat₃ : p ≥ 2 * n, { linarith [nat.div_mul_le_self p 2] }, set k : ℕ := p - 2 * n with hnat₄, have hnat₅ : p ∣ k ^ 2 + 4, { cases hnat₁ with x hx, let p₁ := (p : ℤ), let n₁ := (n : ℤ), let k₁ := (k : ℤ), let x₁ := (x : ℤ), have : p₁ ∣ k₁ ^ 2 + 4, { use p₁ - 4 * n₁ + 4 * x₁, have hcast₁ : k₁ = p₁ - 2 * n₁, { assumption_mod_cast }, have hcast₂ : n₁ ^ 2 + 1 = p₁ * x₁, { assumption_mod_cast }, calc k₁ ^ 2 + 4 = (p₁ - 2 * n₁) ^ 2 + 4 : by rw hcast₁ ... = p₁ ^ 2 - 4 * p₁ * n₁ + 4 * (n₁ ^ 2 + 1) : by ring ... = p₁ ^ 2 - 4 * p₁ * n₁ + 4 * (p₁ * x₁) : by rw hcast₂ ... = p₁ * (p₁ - 4 * n₁ + 4 * x₁) : by ring }, assumption_mod_cast }, have hnat₆ : k ^ 2 + 4 ≥ p := nat.le_of_dvd (k ^ 2 + 3).succ_pos hnat₅, let p₀ := (p : ℝ), let n₀ := (n : ℝ), let k₀ := (k : ℝ), have hreal₁ : p₀ = 2 * n₀ + k₀, { linarith [(show k₀ = p₀ - 2 * n₀, by assumption_mod_cast)] }, have hreal₂ : p₀ > 20, { assumption_mod_cast }, have hreal₃ : k₀ ^ 2 + 4 ≥ p₀, { assumption_mod_cast }, have hreal₄ : k₀ ≥ sqrt(p₀ - 4), { calc k₀ = sqrt(k₀ ^ 2) : eq.symm (sqrt_sq (nat.cast_nonneg k)) ... ≥ sqrt(p₀ - 4) : sqrt_le_sqrt (by linarith [hreal₃]) }, have hreal₅ : k₀ > 4, { calc k₀ ≥ sqrt(p₀ - 4) : hreal₄ ... > sqrt(4 ^ 2) : (sqrt_lt (by linarith)).mpr (by linarith [hreal₂]) ... = 4 : sqrt_sq (by linarith) }, have hreal₆ : p₀ > 2 * n₀ + sqrt(2 * n), { calc p₀ = 2 * n₀ + k₀ : hreal₁ ... ≥ 2 * n₀ + sqrt(p₀ - 4) : by linarith [hreal₄] ... = 2 * n₀ + sqrt(2 * n₀ + k₀ - 4) : by rw hreal₁ ... > 2 * n₀ + sqrt(2 * n₀) : by { refine add_lt_add_left _ (2 * n₀), refine (sqrt_lt _).mpr _, refine mul_nonneg zero_le_two (nat.cast_nonneg n), linarith [hreal₅] } }, exact ⟨n, hnat₁, hreal₆⟩, end theorem imo2008_q3 : ∀ N : ℕ, ∃ n : ℕ, n ≥ N ∧ ∃ p : ℕ, nat.prime p ∧ p ∣ n ^ 2 + 1 ∧ (p : ℝ) > 2 * n + sqrt(2 * n) := begin intro N, obtain ⟨p, hpp, hineq₁, hpmod4⟩ := nat.exists_prime_ge_modeq_one 4 (N ^ 2 + 21) zero_lt_four, obtain ⟨n, hnat, hreal⟩ := p_lemma p hpp hpmod4 (by linarith [hineq₁, nat.zero_le (N ^ 2)]), have hineq₂ : n ^ 2 + 1 ≥ p := nat.le_of_dvd (n ^ 2).succ_pos hnat, have hineq₃ : n * n ≥ N * N, { linarith [hineq₁, hineq₂, (sq n), (sq N)] }, have hn_ge_N : n ≥ N := nat.mul_self_le_mul_self_iff.mpr hineq₃, exact ⟨n, hn_ge_N, p, hpp, hnat, hreal⟩, end
The questions were the usual sort of demographic-gathering thing for the time–how much money do you spend on DC comics each week, what are your other interests, what’s your age range, etc. But here’s the one that lept out at me. Prepare, depending on whether you were alive in 1978, to feel either totally mystified or REALLY OLD. I’m gonna go lie down.
------------- Example 1 ---------------- natInjective : (x, y : Nat) -> S x === S y -> x === y natInjective x x Refl = Refl succNotZero : (x : Nat) -> Not (S x === Z) succNotZero x Refl impossible peanoNat : (a : Type ** n0 : a ** ns : a -> a ** inj : ((x, y : a) -> ns x === ns y -> x === y) ** (x : a) -> Not (ns x === n0)) peanoNat = MkDPair Nat $ MkDPair Z $ MkDPair -- {a = Nat -> Nat} S $ MkDPair natInjective succNotZero ------------- Example 2 ---------------- ac : forall r. ((x : a) -> (y : b ** r x y)) -> (f : a -> b ** (x : a) -> r x (f x)) ac g = (\x => fst (g x) ** \x => snd (g x)) ------------- Example 3 ---------------- idid1 : forall A. (f : A -> A ** (x : A) -> f x = x) idid1 = MkDPair id (\x => Refl)
classdef GradientVariationWithRadiusExperiment < handle properties (Access = private) iMesh gExperiment end properties (Access = private) nameCase inputFiles outputFolder levelSetParams end methods (Access = public) function obj = GradientVariationWithRadiusExperiment(s) obj.init(s); end function compute(obj) for im = 1:numel(obj.inputFiles) obj.iMesh = im; obj.createGradientVariationExperiment(); obj.computeGradientVariationWithRadius(); end end end methods (Access = private) function init(obj,cParams) obj.nameCase = cParams.nameCase; obj.inputFiles = cParams.inputFiles; obj.outputFolder = cParams.outputFolder; obj.levelSetParams = cParams.levelSetParams; end function createGradientVariationExperiment(obj) s.inputFile = obj.inputFiles{obj.iMesh}; s.iMesh = obj.iMesh; s.levelSetParams = obj.levelSetParams; g = GradientVariationExperiment(s); obj.gExperiment = g; end function computeGradientVariationWithRadius(obj) s.mesh = obj.gExperiment.backgroundMesh; s.regularizedPerimeter = obj.gExperiment.regularizedPerimeter; s.inputFile = obj.inputFiles{obj.iMesh}; s.nameCase = obj.nameCase; s.outputFolder = obj.outputFolder; s.domainLength = obj.gExperiment.domainLength(); gComputer = GradientVariationWithRadiusComputer(s); gComputer.compute(); end end end
lemma complex_i_not_zero [simp]: "\<i> \<noteq> 0"
module LexicalSort ! This module was made available to the comp.lang.fortran newsgroup ! Author unkown implicit none public :: sort private :: partition, quicksort, swap, stringComp, UpperCase integer, dimension (:), allocatable, private :: indexarray logical, private :: CaseSensitive contains ! Subroutine sort uses the quicksort algorithm. ! On input, StringArray is a one-dimensional array of character strings ! to be sorted in ascending lexical order. ! On output, StringArray is the sorted array. ! If the optional argument CaseInsensitive is present and .true., ! the sort is case-insensitive. If CaseInsensitive is absent or ! if it is .false., the sort is case-sensitive. ! The characters of the elements of the string array are not modified, ! so that if blanks or punctuation characters are to be ignored, ! for instance, this needs to be done before calling sort. subroutine sort (StringArrayIn, iSortIndexArray, CaseInsensitive) character (len = *), dimension (:), intent (in out) :: StringArrayIn integer, dimension (:), intent (out) :: iSortIndexArray logical, intent (in), optional :: CaseInsensitive ! Local variables integer :: low, high, ios, k, i character (len = 50), dimension (:), allocatable :: StringArray if (present(CaseInsensitive)) then CaseSensitive = .not. CaseInsensitive else CaseSensitive = .true. end if low = 1 high = size(StringArrayIn) allocate(StringArray(high), stat = ios) StringArray = ' ' StringArray = StringArrayIn allocate(indexarray(high), stat = ios) if (ios /= 0) then write(*, *) "Error allocating indexarray in LexicalSort::sort" ! stop end if indexarray = (/ (k, k = low, high) /) call quicksort(StringArray, low, high) do i=low, high StringArrayIn(i) = StringArray(indexarray(i)) iSortIndexArray(i) = indexarray(i) end do deallocate(indexarray, stat = ios) if (ios /= 0) then write(*, *) "Error deallocating indexarray in LexicalSort::sort" ! stop ! Fortran's Stop is not the best exit for Windows programming ! end if return end subroutine sort recursive subroutine quicksort(StringArray, low, high) character (len = *), dimension (:), intent (in out) :: StringArray integer, intent (in) :: low, high integer :: pivotlocation if (low < high) then call partition(StringArray, low, high, pivotlocation) call quicksort(StringArray, low, pivotlocation - 1) call quicksort(StringArray, pivotlocation + 1, high) end if return end subroutine quicksort subroutine partition(StringArray, low, high, pivotlocation) character (len = *), dimension (:), intent (in out) :: StringArray integer, intent (in) :: low, high integer, intent (out) :: pivotlocation integer :: k, lastsmall call swap(indexarray(low), indexarray((low + high)/2)) lastsmall = low do k = low + 1, high if (stringComp(StringArray(indexarray(k)), StringArray(indexarray(low)))) then lastsmall = lastsmall + 1 call swap(indexarray(lastsmall), indexarray(k)) end if end do call swap(indexarray(low), indexarray(lastsmall)) pivotlocation = lastsmall return end subroutine partition subroutine swap(m, n) integer, intent (in out) :: m, n integer :: temp temp = m m = n n = temp return end subroutine swap function stringComp(p, q) result(lexicalLess) character (len = *), intent (in) :: p, q logical :: lexicalLess integer :: kq, k if (CaseSensitive) then lexicalLess = p < q else kq = 1 do k = 1, max(len_trim(p), len_trim(q)) if (UpperCase(p(k:k)) == UpperCase(q(k:k)) ) then cycle else kq = k exit end if end do lexicalLess = UpperCase(p(kq:kq)) < UpperCase(q(kq:kq)) end if return end function stringComp function UpperCase(letter) result(L) character (len = *), intent (in) :: letter character (len = 1) :: L character (len = 27), parameter :: Lower = "_abcdefghijklmnopqrstuvwxyz", & Upper = "_ABCDEFGHIJKLMNOPQRSTUVWXYZ" integer :: k k = index(Lower, letter) if (k > 0) then L = Upper(k:k) else L = letter end if return end function UpperCase end module LexicalSort
import tactic.ring -- Lemma 1.52, 2022-10-02 version, "Automatic complexity: a measure of irregularity" lemma lemma_1_52 (r x y:ℤ)(hr:0<r)(hy:0 ≤ y)(hx:0 ≤ x) : 2 * r^2 = (x+y)*r+(y+1) ↔ (x,y) = (r,r-1) := -- General facts: have hyy: 0 < y+1, from calc 0 ≤ y: hy ... < y+1: lt_add_one y, have hle: 0 ≤ y+1, from le_of_lt hyy, have hrn: r ≠ 0, from norm_num.ne_zero_of_pos r hr, have hlt1: 0 < r+1, from calc 0 < r: hr ... < r+1: lt_add_one r, have hltr: 0 ≤ r, from le_of_lt hr, have hr1: 0 ≤ r+1, from le_of_lt hlt1, have h5:y ≤ x + y, from calc y = 0+y: by ring ... ≤ x+y: add_le_add hx (le_refl y), have hzxy: 0 ≤ x+y, from calc 0 ≤ y: hy ...≤ x+y:h5, have h6:y*r ≤ (x+y)*r, from mul_le_mul h5 (le_refl r) hltr hzxy, -- Easy direction, just plugging in: have h2: (x,y) = (r,r-1) → 2* r^2 = (x+y)*r+(y+1) , from λ h, have hx: x=r, from congr_arg (λ p:ℤ×ℤ, p.1) h, have hy: y=r-1, from congr_arg (λ p:ℤ×ℤ, p.2) h, calc 2*r^2 = (r+(r-1)) * r + ((r-1)+1): by ring ... = (x+y) * r + (y+1): by {rw hx,rw hy}, -- Hard direction: have h1: 2 * r^2 = (x+y)*r+(y+1) → (x,y) = (r,r-1), from λ h:2 * r^2 = (x+y)*r+(y+1), have hz3: 0 = y+1 - r * ((y+1)/r), from calc 0 = ((2*r)*r) % r:(int.mul_mod_left (2*r) r).symm ... = (2 * r^2) % r:by ring_nf ... = ((x+y)*r+(y+1)) % r: by rw h ... = ((y+1)+(x+y)*r) % r: by ring_nf ... = (y+1)%r: int.add_mul_mod_self ... = y+1 - r * ((y+1)/r): int.mod_def (y+1) r, have hy1: y+1 = r * ((y+1)/r), from calc y+1 = (y+1-r*((y+1)/r)) + r*((y+1)/r): by ring ... = 0 + r*((y+1)/r): by rw hz3 ... = r*((y+1)/r): by ring, have r ∣ (y+1), from exists.intro ((y+1)/r) hy1, -- note it's \ mid not just | have hQ: 0 < (y+1)/r, from int.div_pos_of_pos_of_dvd hyy hltr this, have h_Q:0 ≤ (y+1)/r, from le_of_lt hQ, have hone: 1 ≤ (y+1)/r, from int.add_one_le_of_lt hQ, have 1 = (y+1)/r ∨ 2 ≤ (y+1)/r, from eq_or_lt_of_le hone, -- First OR statement have r = y+1 ∨ r*2 ≤ y+1, from or.elim this ( λ h11: 1 = (y+1)/r, or.inl (calc r = r * 1 : by ring ... = r * ((y+1)/r): congr_arg _ h11 ... = y+1: hy1.symm)) ( λ h2: 2 ≤ (y+1)/r, or.inr (calc r*2 = 2*r: by ring ... ≤ ((y+1)/r) * r: mul_le_mul h2 (le_refl r) hltr h_Q ... = r * ((y+1)/r): by ring ... = y+1: hy1.symm) ), -- Second OR statement have y = r-1 ∨ 2*r-1 ≤ y, from or.elim this ( λ H: r = y+1, or.inl (calc y = (y+1)-1: by ring ... = r-1: by rw H)) ( λ H: r*2 ≤ y+1, or.inr (calc 2*r-1 = (r*2) + (-1): by ring ... ≤ (y+1) + (-1): int.add_le_add_right H (-1) ... = y: by ring) ), -- Now finish the proof or.elim this (-- Easy case λ hyr : y = r - 1, have hurr: r*r = x*r, from calc r*r = (2*r^2) - r*r : by ring ... = x*r : by {rw h,rw hyr,ring,}, have hrx: r = x, from (mul_left_inj' hrn).mp hurr, congr_arg2 (λ (x y : ℤ), (x, y)) hrx.symm hyr ) (λ hry:2*r-1≤ y,-- Contradiction case have hok:(2*r-1)* (r+1) ≤ y*(r+1), from mul_le_mul hry (le_refl (r+1)) hr1 hy, have 2 * r^2 < 2 * r^2, from calc 2 * r^2 < 2 * r^2 + r: lt_add_of_pos_right (2 * r^2) hr ... = (2*r-1)* (r+1)+1: by ring ... ≤ y * (r+1)+1: add_le_add hok (le_refl 1) ... = y * r + (y + 1): by ring ... ≤ (x+y)*r+(y+1): add_le_add h6 (le_refl (y+1)) ... = 2 * r^2: h.symm, false.elim ((lt_self_iff_false (2*r^2)).mp this)), iff.intro h1 h2
import numpy as np import time from numba import jit, prange import matplotlib.pyplot as plt from matplotlib import gridspec from ..util import ( f_SRM, eta_SRM, eta_SRM_no_vector, kappa_interaction, h_exp_update, h_erlang_update, ) from ..QR import find_cutoff def quasi_renewal_pde( time_end, dt, Lambda, Gamma, c=1, Delta=1, theta=0, interaction=0, lambda_kappa=20, base_I=0, I_ext_time=0, I_ext=0, epsilon_c=1e-2, use_LambdaGamma=False, a_cutoff=5, A_t0=0, rho0=0, h_t0=0, kappa_type="exp", ): """""" # Check if model will not explode if np.sum(Gamma) > 0: print(f"Model will explode with {Gamma=}. Cannot performe QR.") return [], [], 0 Gamma = np.array(Gamma) Lambda = np.array(Lambda) if use_LambdaGamma: Gamma = Gamma * Lambda # Find cutoff tau_c tau_c = find_cutoff(0, 100, dt, Lambda, Gamma, epsilon_c) tau_c = np.round(tau_c, decimals=int(-np.log10(dt))) # print(f"Calculated tau_c: {tau_c}") tau_c = a_cutoff # Need dt = da a_grid_size = int(tau_c / dt) a_grid = np.linspace(0, tau_c, a_grid_size) steps = int(time_end / dt) dim = Gamma.shape[0] # Init vectors ts = np.linspace(0, time_end, steps) rho_t = np.zeros((steps, a_grid_size)) A_t = np.zeros(steps) h_t = np.zeros(steps) k_t = np.zeros(steps) rho_t[0, 0] = 1 / dt h_t[0] = h_t0 # A_t[0] = rho_t[0, 0] # if A_t0: # A_t[0] = A_t0 if isinstance(rho0, np.ndarray): rho_t[0] = rho0 K = a_grid_size da = dt J = interaction c = (c * 1.0) * np.exp(-theta / Delta) @jit(nopython=True, cache=True) def optimized(rho_t, h_t, k_t, A_t): Ks = np.arange(K) exp_eta = np.exp(1 / Delta * eta_SRM(dt * Ks, Gamma, Lambda)) y = np.exp(1 / Delta * eta_SRM(np.linspace(0, 2 * tau_c, 2 * (K + 1)), Gamma, Lambda)) - 1 # x = eta_SRM(np.linspace(0, 2 * tau_c, 2 * K), Gamma, Lambda) for n in range(0, steps - 1): x_fixed = I_ext + base_I if I_ext_time < dt * (n + 1) else base_I # Calculate f~(t|t - a) # f[0] = f~(t_n|t_n), f[1] = f~(t_n | t_{n-1}), .. f = np.zeros(K) t_n = n * dt sup = n - Ks inf = n - Ks - K integral = np.zeros(K) # int2 = np.zeros(K) for k in range(K): t_s_idx = np.arange(max(0, inf[k]), sup[k]) idx = k + np.arange(len(t_s_idx)) integral[k] = np.sum(y[idx][::-1] * A_t[t_s_idx] * dt) f = c * exp_eta * np.exp(1 / Delta * h_t[n] + integral) # firing_prob = np.clip(f * da, 0, 1) firing_prob = 1 - np.exp(-f * da) A_t[n] = np.sum(firing_prob * rho_t[n]) h_t[n + 1] = h_t[n] + lambda_kappa * dt * (J * A_t[n] + x_fixed - h_t[n]) # Next step # h_t[n + 1] = h_t[n] + dt * lambda_kappa * (-h_t[n] + (A_t[n] * J + x_fixed)) # Mass loss mass_transfer = rho_t[n] * firing_prob # rho_t[n + 1] -= mass_transfer lass_cell_mass = rho_t[n, -1] # Last cell necessarely spikes # Linear transport rho_t[n + 1, 1:] = rho_t[n, :-1] - mass_transfer[:-1] # Mass insertion rho_t[n + 1, 0] = np.sum(mass_transfer) + lass_cell_mass return rho_t, h_t, A_t rho_t, h_t, A_t = optimized(rho_t, h_t, k_t, A_t) mass_conservation = np.sum(rho_t * dt, axis=-1) activity = rho_t[:, 0] return ts, a_grid, rho_t, h_t, mass_conservation, activity
function out = spm_dicom_convert(Headers,opts,RootDirectory,format,OutputDirectory,meta) % Convert DICOM images into something that SPM can use (e.g. NIfTI) % FORMAT out = spm_dicom_convert(Headers,opts,RootDirectory,format,OutputDirectory) % Inputs: % Headers - a cell array of DICOM headers from spm_dicom_headers % opts - options: % 'all' - all DICOM files [default] % 'mosaic' - the mosaic images % 'standard' - standard DICOM files % 'spect' - SIEMENS Spectroscopy DICOMs (some formats only) % This will write out a 5D NIFTI containing real % and imaginary part of the spectroscopy time % points at the position of spectroscopy voxel(s) % 'raw' - convert raw FIDs (not implemented) % RootDirectory - 'flat' - do not produce file tree [default] % With all other options, files will be sorted into % directories according to their sequence/protocol names: % 'date_time' - Place files under ./<StudyDate-StudyTime> % 'patid' - Place files under ./<PatID> % 'patid_date' - Place files under ./<PatID-StudyDate> % 'series' - Place files in series folders, without % creating patient folders % format - output format: % 'nii' - Single file NIfTI format [default] % 'img' - Two file (Headers+img) NIfTI format % All images will contain a single 3D dataset, 4D images will % not be created. % OutputDirectory - output directory name [default: pwd] % meta - save metadata as sidecar JSON file [default: false] % % Output: % out - a struct with a single field .files. out.files contains a % cellstring with filenames of created files. If no files are % created, a cell with an empty string {''} is returned. %__________________________________________________________________________ % Copyright (C) 2002-2019 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_dicom_convert.m 7714 2019-11-26 11:25:50Z spm $ %-Input parameters %-------------------------------------------------------------------------- if nargin<2, opts = 'all'; end if nargin<3, RootDirectory = 'flat'; end if nargin<4, format = spm_get_defaults('images.format'); end if nargin<5, OutputDirectory = pwd; end if nargin<6, meta = false; end %-Select files %-------------------------------------------------------------------------- [images, other] = SelectTomographicImages(Headers); [multiframe,images] = SelectMultiframe(images); [spect, guff] = SelectSpectroscopyImages(other); [mosaic, standard] = SelectMosaicImages(images); [standard, guff] = SelectLastGuff(standard, guff); if ~isempty(guff) warning('spm:dicom','%d files could not be converted from DICOM.', numel(guff)); end %-Convert files %-------------------------------------------------------------------------- fmos = {}; fstd = {}; fspe = {}; fmul = {}; if (strcmp(opts,'all') || strcmp(opts,'mosaic')) && ~isempty(mosaic) fmos = ConvertMosaic(mosaic,RootDirectory,format,OutputDirectory,meta); end if (strcmp(opts,'all') || strcmp(opts,'standard')) && ~isempty(standard) fstd = ConvertStandard(standard,RootDirectory,format,OutputDirectory,meta); end if (strcmp(opts,'all') || strcmp(opts,'spect')) && ~isempty(spect) fspe = ConvertSpectroscopy(spect,RootDirectory,format,OutputDirectory,meta); end if (strcmp(opts,'all') || strcmp(opts,'multiframe')) && ~isempty(multiframe) fmul = ConvertMultiframes(multiframe,RootDirectory,format,OutputDirectory,meta); end out.files = [fmos(:); fstd(:); fspe(:); fmul(:)]; if isempty(out.files) out.files = {''}; end %========================================================================== % function fnames = ConvertMosaic(Headers,RootDirectory,format,OutputDirectory,meta) %========================================================================== function fnames = ConvertMosaic(Headers,RootDirectory,format,OutputDirectory,meta) spm_progress_bar('Init',length(Headers),'Writing Mosaic', 'Files written'); fnames = cell(length(Headers),1); for i=1:length(Headers) % Output filename %---------------------------------------------------------------------- fnames{i} = getfilelocation(Headers{i}, RootDirectory, 'f', format, OutputDirectory); % Image dimensions and data %---------------------------------------------------------------------- nc = Headers{i}.Columns; nr = Headers{i}.Rows; dim = [0 0 0]; dim(3) = ReadNumberOfImagesInMosaic(Headers{i}); np = [nc nr]/ceil(sqrt(dim(3))); dim(1:2) = np; if ~all(np==floor(np)) warning('spm:dicom','%s: dimension problem [Num Images=%d, Num Cols=%d, Num Rows=%d].',... Headers{i}.Filename,dim(3), nc,nr); continue end % Apparently, this is not the right way of doing it. %np = ReadAcquisitionMatrixText(Headers{i}); %if rem(nc, np(1)) || rem(nr, np(2)), % warning('spm:dicom','%s: %dx%d wont fit into %dx%d.',Headers{i}.Filename,... % np(1), np(2), nc,nr); % return; %end; %dim = [np ReadNumberOfImagesInMosaic(Headers{i})]; mosaic = ReadImageData(Headers{i}); volume = zeros(dim); snnz = zeros(dim(3), 1); for j=1:dim(3) img = mosaic((1:np(1))+np(1)*rem(j-1,nc/np(1)), (np(2):-1:1)+np(2)*floor((j-1)/(nc/np(1)))); snnz(j) = nnz(img) > 0; volume(:,:,j) = img; end d3 = find(snnz, 1, 'last'); if ~isempty(d3) dim(3) = d3; volume = volume(:,:,1:dim(3)); end dt = DetermineDatatype(Headers{1}); % Orientation information %---------------------------------------------------------------------- % Axial Analyze voxel co-ordinate system: % x increases right to left % y increases posterior to anterior % z increases inferior to superior % DICOM patient co-ordinate system: % x increases right to left % y increases anterior to posterior % z increases inferior to superior % T&T co-ordinate system: % x increases left to right % y increases posterior to anterior % z increases inferior to superior AnalyzeToDicom = [diag([1 -1 1]) [0 (dim(2)-1) 0]'; 0 0 0 1]*[eye(4,3) [-1 -1 -1 1]']; vox = [Headers{i}.PixelSpacing(:); Headers{i}.SpacingBetweenSlices]; pos = Headers{i}.ImagePositionPatient(:); orient = reshape(Headers{i}.ImageOrientationPatient,[3 2]); orient(:,3) = null(orient'); if det(orient)<0, orient(:,3) = -orient(:,3); end % The image position vector is not correct. In dicom this vector points to % the upper left corner of the image. Perhaps it is unlucky that this is % calculated in the syngo software from the vector pointing to the center of % the slice (keep in mind: upper left slice) with the enlarged FoV. DicomToPatient = [orient*diag(vox) pos ; 0 0 0 1]; truepos = DicomToPatient *[(size(mosaic)-dim(1:2))/2 0 1]'; DicomToPatient = [orient*diag(vox) truepos(1:3) ; 0 0 0 1]; PatientToTal = diag([-1 -1 1 1]); mat = PatientToTal*DicomToPatient*AnalyzeToDicom; % Maybe flip the image depending on SliceNormalVector from 0029,1010 %---------------------------------------------------------------------- SliceNormalVector = ReadSliceNormalVector(Headers{i}); if det([reshape(Headers{i}.ImageOrientationPatient,[3 2]) SliceNormalVector(:)])<0 volume = volume(:,:,end:-1:1); mat = mat*[eye(3) [0 0 -(dim(3)-1)]'; 0 0 0 1]; end % Possibly useful information %---------------------------------------------------------------------- if CheckFields(Headers{i},'AcquisitionTime','MagneticFieldStrength',... 'MRAcquisitionType','ScanningSequence','RepetitionTime',... 'EchoTime','FlipAngle','AcquisitionDate') tim = datevec(Headers{i}.AcquisitionTime/(24*60*60)); descrip = sprintf('%gT %s %s TR=%gms/TE=%gms/FA=%gdeg %s %d:%d:%.5g Mosaic',... Headers{i}.MagneticFieldStrength, Headers{i}.MRAcquisitionType,... deblank(Headers{i}.ScanningSequence),... Headers{i}.RepetitionTime,Headers{i}.EchoTime,Headers{i}.FlipAngle,... datestr(Headers{i}.AcquisitionDate),tim(4),tim(5),tim(6)); else descrip = Headers{1}.Modality; end if ~true % LEFT-HANDED STORAGE mat = mat*[-1 0 0 (dim(1)+1); 0 1 0 0; 0 0 1 0; 0 0 0 1]; volume = flipud(volume); end % Note that data are no longer scaled by the maximum amount. % This may lead to rounding errors in smoothed data, but it % will get around other problems. RescaleSlope = 1; RescaleIntercept = 0; if isfield(Headers{i},'RescaleSlope') RescaleSlope = Headers{i}.RescaleSlope; end if isfield(Headers{i},'RescaleIntercept') RescaleIntercept = Headers{i}.RescaleIntercept; end Nii = nifti; Nii.dat = file_array(fnames{i},dim,dt,0,RescaleSlope,RescaleIntercept); Nii.mat = mat; Nii.mat0 = mat; Nii.mat_intent = 'Scanner'; Nii.mat0_intent = 'Scanner'; Nii.descrip = descrip; create(Nii); if meta Nii = spm_dicom_metadata(Nii,Headers{i}); end % Write the data unscaled dat = Nii.dat; dat.scl_slope = []; dat.scl_inter = []; % write out volume at once - see spm_write_plane.m for performance comments dat(:,:,:) = volume; spm_progress_bar('Set',i); end spm_progress_bar('Clear'); %========================================================================== % function fnames = ConvertStandard(Headers,RootDirectory,format,OutputDirectory,meta) %========================================================================== function fnames = ConvertStandard(Headers,RootDirectory,format,OutputDirectory,meta) [Headers,dist] = SortIntoVolumes(Headers); fnames = cell(length(Headers),1); for i=1:length(Headers) fnames{i} = WriteVolume(Headers{i},RootDirectory,format,OutputDirectory,dist{i},meta); end %========================================================================== % function [SortedHeaders,dist] = SortIntoVolumes(Headers) %========================================================================== function [SortedHeaders,dist] = SortIntoVolumes(Headers) % % First of all, sort into volumes based on relevant % fields in the header. % SortedHeaders{1}{1} = Headers{1}; for i=2:length(Headers) %orient = reshape(Headers{i}.ImageOrientationPatient,[3 2]); %xy1 = Headers{i}.ImagePositionPatient(:)*orient; match = 0; if isfield(Headers{i},'CSAImageHeaderInfo') && isfield(Headers{i}.CSAImageHeaderInfo,'name') ice1 = sscanf( ... strrep(GetNumaris4Val(Headers{i}.CSAImageHeaderInfo,'ICE_Dims'), ... 'X', '-1'), '%i_%i_%i_%i_%i_%i_%i_%i_%i')'; dimsel = logical([1 1 1 1 1 1 0 0 1]); else ice1 = []; end for j=1:length(SortedHeaders) %orient = reshape(SortedHeaders{j}{1}.ImageOrientationPatient,[3 2]); %xy2 = SortedHeaders{j}{1}.ImagePositionPatient(:)*orient; % This line is a fudge because of some problematic data that Bogdan, % Cynthia and Stefan were trying to convert. I hope it won't cause % problems for others -JA % dist2 = sum((xy1-xy2).^2); dist2 = 0; if strcmp(Headers{i}.Modality,'CT') && ... strcmp(SortedHeaders{j}{1}.Modality,'CT') % Our CT seems to have shears in slice positions dist2 = 0; end if ~isempty(ice1) && isfield(SortedHeaders{j}{1},'CSAImageHeaderInfo') && numel(SortedHeaders{j}{1}.CSAImageHeaderInfo)>=1 && isfield(SortedHeaders{j}{1}.CSAImageHeaderInfo(1),'name') % Replace 'X' in ICE_Dims by '-1' ice2 = sscanf( ... strrep(GetNumaris4Val(SortedHeaders{j}{1}.CSAImageHeaderInfo,'ICE_Dims'), ... 'X', '-1'), '%i_%i_%i_%i_%i_%i_%i_%i_%i')'; if ~isempty(ice2) identical_ice_dims=all(ice1(dimsel)==ice2(dimsel)); else identical_ice_dims = 0; % have ice1 but not ice2, -> % something must be different end else identical_ice_dims = 1; % No way of knowing if there is no CSAImageHeaderInfo end try match = Headers{i}.SeriesNumber == SortedHeaders{j}{1}.SeriesNumber &&... Headers{i}.Rows == SortedHeaders{j}{1}.Rows &&... Headers{i}.Columns == SortedHeaders{j}{1}.Columns &&... sum((Headers{i}.ImageOrientationPatient - SortedHeaders{j}{1}.ImageOrientationPatient).^2)<1e-4 &&... sum((Headers{i}.PixelSpacing - SortedHeaders{j}{1}.PixelSpacing).^2)<1e-4 && ... identical_ice_dims && dist2<1e-3; %if (Headers{i}.AcquisitionNumber ~= Headers{i}.InstanceNumber) || ... % (SortedHeaders{j}{1}.AcquisitionNumber ~= SortedHeaders{j}{1}.InstanceNumber) % match = match && (Headers{i}.AcquisitionNumber == SortedHeaders{j}{1}.AcquisitionNumber) %end % For raw image data, tell apart real/complex or phase/magnitude if isfield(Headers{i},'ImageType') && isfield(SortedHeaders{j}{1}, 'ImageType') match = match && strcmp(Headers{i}.ImageType, SortedHeaders{j}{1}.ImageType); end if isfield(Headers{i},'SequenceName') && isfield(SortedHeaders{j}{1}, 'SequenceName') match = match && strcmp(Headers{i}.SequenceName, SortedHeaders{j}{1}.SequenceName); end if isfield(Headers{i},'SeriesInstanceUID') && isfield(SortedHeaders{j}{1}, 'SeriesInstanceUID') match = match && strcmp(Headers{i}.SeriesInstanceUID, SortedHeaders{j}{1}.SeriesInstanceUID); end if isfield(Headers{i},'EchoNumbers') && isfield(SortedHeaders{j}{1}, 'EchoNumbers') match = match && Headers{i}.EchoNumbers == SortedHeaders{j}{1}.EchoNumbers; end if isfield(Headers{i}, 'GE_ImageType') && numel( Headers{i}.GE_ImageType)==1 && ... isfield(SortedHeaders{j}{1}, 'GE_ImageType') && numel(SortedHeaders{j}{1}.GE_ImageType)==1 match = match && Headers{i}.GE_ImageType == SortedHeaders{j}{1}.GE_ImageType; end catch match = 0; end if match SortedHeaders{j}{end+1} = Headers{i}; break; end end if ~match SortedHeaders{end+1}{1} = Headers{i}; end end % % Secondly, sort volumes into ascending/descending % slices depending on .ImageOrientationPatient field. % SortedHeaders2 = {}; for j=1:length(SortedHeaders) orient = reshape(SortedHeaders{j}{1}.ImageOrientationPatient,[3 2]); proj = null(orient'); if det([orient proj])<0, proj = -proj; end z = zeros(length(SortedHeaders{j}),1); for i=1:length(SortedHeaders{j}) z(i) = SortedHeaders{j}{i}.ImagePositionPatient(:)'*proj; end [z,index] = sort(z); SortedHeaders{j} = SortedHeaders{j}(index); if length(SortedHeaders{j})>1 % dist = diff(z); if any(diff(z)==0) tmp = SortIntoVolumesAgain(SortedHeaders{j}); SortedHeaders{j} = tmp{1}; SortedHeaders2 = {SortedHeaders2{:} tmp{2:end}}; end end end SortedHeaders = {SortedHeaders{:} SortedHeaders2{:}}; dist = cell(length(SortedHeaders),1); for j=1:length(SortedHeaders) if length(SortedHeaders{j})>1 orient = reshape(SortedHeaders{j}{1}.ImageOrientationPatient,[3 2]); proj = null(orient'); if det([orient proj])<0, proj = -proj; end z = zeros(length(SortedHeaders{j}),1); for i=1:length(SortedHeaders{j}) z(i) = SortedHeaders{j}{i}.ImagePositionPatient(:)'*proj; end dist{j} = diff(sort(z)); if sum((dist{j}-mean(dist{j})).^2)/length(dist{j})>1e-4 fprintf('***************************************************\n'); fprintf('* VARIABLE SLICE SPACING *\n'); fprintf('* This may be due to missing DICOM files. *\n'); PatientID = 'anon'; if CheckFields(SortedHeaders{j}{1}, 'PatientID'), PatientID = deblank(SortedHeaders{j}{1}.PatientID); end if CheckFields(SortedHeaders{j}{1}, 'SeriesNumber', 'AcquisitionNumber', 'InstanceNumber') fprintf('* %s / %d / %d / %d \n',... PatientID, SortedHeaders{j}{1}.SeriesNumber, ... SortedHeaders{j}{1}.AcquisitionNumber, SortedHeaders{j}{1}.InstanceNumber); fprintf('* *\n'); end fprintf('* %20.4g *\n', dist{j}); fprintf('***************************************************\n'); end end end %========================================================================== % function SortedHeaders = SortIntoVolumesAgain(Headers) %========================================================================== function SortedHeaders = SortIntoVolumesAgain(Headers) if ~isfield(Headers{1},'InstanceNumber') fprintf('***************************************************\n'); fprintf('* The slices may be all mixed up and the data *\n'); fprintf('* not really usable. Talk to your physicists *\n'); fprintf('* about this. *\n'); fprintf('***************************************************\n'); SortedHeaders = {Headers}; return; end fprintf('***************************************************\n'); fprintf('* The AcquisitionNumber counter does not appear *\n'); fprintf('* to be changing from one volume to another. *\n'); fprintf('* Another possible explanation is that the same *\n'); fprintf('* DICOM slices are used multiple times. *\n'); %fprintf('* Talk to your MR sequence developers or scanner *\n'); %fprintf('* supplier to have this fixed. *\n'); fprintf('* The conversion is having to guess how slices *\n'); fprintf('* should be arranged into volumes. *\n'); PatientID = 'anon'; if CheckFields(Headers{1},'PatientID'), PatientID = deblank(Headers{1}.PatientID); end if CheckFields(Headers{1},'SeriesNumber','AcquisitionNumber') fprintf('* %s / %d / %d\n',... PatientID, Headers{1}.SeriesNumber, ... Headers{1}.AcquisitionNumber); end fprintf('***************************************************\n'); z = zeros(length(Headers),1); t = zeros(length(Headers),1); d = zeros(length(Headers),1); orient = reshape(Headers{1}.ImageOrientationPatient,[3 2]); proj = null(orient'); if det([orient proj])<0, proj = -proj; end for i=1:length(Headers) z(i) = Headers{i}.ImagePositionPatient(:)'*proj; t(i) = Headers{i}.InstanceNumber; end % msg = 0; [t,index] = sort(t); Headers = Headers(index); z = z(index); msk = find(diff(t)==0); if any(msk) % fprintf('***************************************************\n'); % fprintf('* These files have the same InstanceNumber: *\n'); % for i=1:length(msk), % [tmp,nam1,ext1] = fileparts(Headers{msk(i)}.Filename); % [tmp,nam2,ext2] = fileparts(Headers{msk(i)+1}.Filename); % fprintf('* %s%s = %s%s (%d)\n', nam1,ext1,nam2,ext2, Headers{msk(i)}.InstanceNumber); % end; % fprintf('***************************************************\n'); index = [true ; diff(t)~=0]; t = t(index); z = z(index); d = d(index); Headers = Headers(index); end %if any(diff(sort(t))~=1), msg = 1; end; [z,index] = sort(z); Headers = Headers(index); t = t(index); SortedHeaders = {}; while ~all(d) i = find(~d); i = i(1); i = find(z==z(i)); [t(i),si] = sort(t(i)); Headers(i) = Headers(i(si)); for i1=1:length(i) if length(SortedHeaders)<i1, SortedHeaders{i1} = {}; end SortedHeaders{i1} = {SortedHeaders{i1}{:} Headers{i(i1)}}; end d(i) = 1; end msg = 0; len = length(SortedHeaders{1}); for i=2:length(SortedHeaders) if length(SortedHeaders{i}) ~= len msg = 1; break; end end if msg fprintf('***************************************************\n'); fprintf('* There are missing DICOM files, so the the *\n'); fprintf('* resulting volumes may be messed up. *\n'); PatientID = 'anon'; if CheckFields(Headers{1},'PatientID'), PatientID = deblank(Headers{1}.PatientID); end if CheckFields(Headers{1},'SeriesNumber','AcquisitionNumber') fprintf('* %s / %d / %d\n',... PatientID, Headers{1}.SeriesNumber, ... Headers{1}.AcquisitionNumber); end fprintf('***************************************************\n'); end %========================================================================== % function fname = WriteVolume(Headers, RootDirectory, format, OutputDirectory, dist, meta) %========================================================================== function fname = WriteVolume(Headers, RootDirectory, format, OutputDirectory, dist, meta) % Output filename %-------------------------------------------------------------------------- fname = getfilelocation(Headers{1}, RootDirectory,'s',format,OutputDirectory); % Image dimensions %-------------------------------------------------------------------------- nc = Headers{1}.Columns; nr = Headers{1}.Rows; if length(Headers) == 1 && isfield(Headers{1},'NumberOfFrames') && Headers{1}.NumberOfFrames > 1 if isfield(Headers{1},'ImagePositionPatient') &&... isfield(Headers{1},'ImageOrientationPatient') &&... isfield(Headers{1},'SliceThickness') &&... isfield(Headers{1},'StartOfPixelData') &&... isfield(Headers{1},'SizeOfPixelData') orient = reshape(Headers{1}.ImageOrientationPatient,[3 2]); orient(:,3) = null(orient'); if det(orient)<0, orient(:,3) = -orient(:,3); end slicevec = orient(:,3); Headers_temp = cell(1,Headers{1}.NumberOfFrames); % alternative: NumberofSlices Headers_temp{1} = Headers{1}; Headers_temp{1}.SizeOfPixelData = Headers{1}.SizeOfPixelData / Headers{1}.NumberOfFrames; for sn = 2 : Headers{1}.NumberOfFrames Headers_temp{sn} = Headers{1}; Headers_temp{sn}.ImagePositionPatient = Headers{1}.ImagePositionPatient + (sn-1) * Headers{1}.SliceThickness * slicevec; Headers_temp{sn}.SizeOfPixelData = Headers_temp{1}.SizeOfPixelData; Headers_temp{sn}.StartOfPixelData = Headers{1}.StartOfPixelData + (sn-1) * Headers_temp{1}.SizeOfPixelData; end Headers = Headers_temp; else error('spm_dicom_convert:WriteVolume','TAGS missing in DICOM file.'); end end dim = [nc nr length(Headers)]; dt = DetermineDatatype(Headers{1}); % Orientation information %-------------------------------------------------------------------------- % Axial Analyze voxel co-ordinate system: % x increases right to left % y increases posterior to anterior % z increases inferior to superior % DICOM patient co-ordinate system: % x increases right to left % y increases anterior to posterior % z increases inferior to superior % T&T co-ordinate system: % x increases left to right % y increases posterior to anterior % z increases inferior to superior AnalyzeToDicom = [diag([1 -1 1]) [0 (dim(2)+1) 0]'; 0 0 0 1]; % Flip voxels in y PatientToTal = diag([-1 -1 1 1]); % Flip mm coords in x and y directions R = [reshape(Headers{1}.ImageOrientationPatient,3,2)*diag(Headers{1}.PixelSpacing); 0 0]; x1 = [1;1;1;1]; y1 = [Headers{1}.ImagePositionPatient(:); 1]; if length(Headers)>1 x2 = [1;1;dim(3); 1]; y2 = [Headers{end}.ImagePositionPatient(:); 1]; else orient = reshape(Headers{1}.ImageOrientationPatient,[3 2]); orient(:,3) = null(orient'); if det(orient)<0, orient(:,3) = -orient(:,3); end if CheckFields(Headers{1},'SliceThickness') z = Headers{1}.SliceThickness; else z = 1; end x2 = [0;0;1;0]; y2 = [orient*[0;0;z];0]; end DicomToPatient = [y1 y2 R]/[x1 x2 eye(4,2)]; mat = PatientToTal*DicomToPatient*AnalyzeToDicom; % Possibly useful information %-------------------------------------------------------------------------- if CheckFields(Headers{1},'AcquisitionTime','MagneticFieldStrength','MRAcquisitionType',... 'ScanningSequence','RepetitionTime','EchoTime','FlipAngle',... 'AcquisitionDate') if isfield(Headers{1},'ScanOptions') ScanOptions = Headers{1}.ScanOptions; else ScanOptions = 'no'; end tim = datevec(Headers{1}.AcquisitionTime/(24*60*60)); descrip = sprintf('%gT %s %s TR=%gms/TE=%gms/FA=%gdeg/SO=%s %s %d:%d:%.5g',... Headers{1}.MagneticFieldStrength, Headers{1}.MRAcquisitionType,... deblank(Headers{1}.ScanningSequence),... Headers{1}.RepetitionTime,Headers{1}.EchoTime,Headers{1}.FlipAngle,... ScanOptions,... datestr(Headers{1}.AcquisitionDate),tim(4),tim(5),tim(6)); else descrip = Headers{1}.Modality; end if ~true % LEFT-HANDED STORAGE mat = mat*[-1 0 0 (dim(1)+1); 0 1 0 0; 0 0 1 0; 0 0 0 1]; end % Write the image volume %-------------------------------------------------------------------------- spm_progress_bar('Init',length(Headers),['Writing ' fname], 'Planes written'); pinfos = [ones(length(Headers),1) zeros(length(Headers),1)]; for i=1:length(Headers) if isfield(Headers{i},'RescaleSlope'), pinfos(i,1) = Headers{i}.RescaleSlope; end if isfield(Headers{i},'RescaleIntercept'), pinfos(i,2) = Headers{i}.RescaleIntercept; end % Philips do things differently. The following is for using their scales instead. % Chenevert, Thomas L., et al. "Errors in quantitative image analysis due to % platform-dependent image scaling." Translational oncology 7.1 (2014): 65-71. if isfield(Headers{i},'MRScaleSlope'), pinfos(i,1) = 1/Headers{i}.MRScaleSlope; end if isfield(Headers{i},'MRScaleIntercept'), pinfos(i,2) = -Headers{i}.MRScaleIntercept*pinfos(i,1); end end if any(any(diff(pinfos,1))) % Ensure random numbers are reproducible (see later) % when intensities are dithered to prevent aliasing effects. rand('state',0); end volume = zeros(dim); for i=1:length(Headers) plane = ReadImageData(Headers{i}); if any(any(diff(pinfos,1))) % This is to prevent aliasing effects in any subsequent histograms % of the data (eg for mutual information coregistration). % It's a bit inelegant, but probably necessary for when slices are % individually rescaled. plane = double(plane) + rand(size(plane)) - 0.5; end if pinfos(i,1)~=1, plane = plane*pinfos(i,1); end if pinfos(i,2)~=0, plane = plane+pinfos(i,2); end plane = fliplr(plane); if ~true, plane = flipud(plane); end % LEFT-HANDED STORAGE volume(:,:,i) = plane; spm_progress_bar('Set',i); end if ~any(any(diff(pinfos,1))) % Same slopes and intercepts for all slices pinfo = pinfos(1,:); else % Variable slopes and intercept (maybe PET/SPECT) mx = max(volume(:)); mn = min(volume(:)); % Slope and Intercept % 32767*pinfo(1) + pinfo(2) = mx % -32768*pinfo(1) + pinfo(2) = mn % pinfo = ([32767 1; -32768 1]\[mx; mn])'; % Slope only dt = 'int16-be'; pinfo = [max(mx/32767,-mn/32768) 0]; end Nii = nifti; Nii.dat = file_array(fname,dim,dt,0,pinfo(1),pinfo(2)); Nii.mat = mat; Nii.mat0 = mat; Nii.mat_intent = 'Scanner'; Nii.mat0_intent = 'Scanner'; Nii.descrip = descrip; create(Nii); if meta Nii = spm_dicom_metadata(Nii, Headers{1}); end Nii.dat(:,:,:) = volume; spm_progress_bar('Clear'); if sum((dist-mean(dist)).^2)/length(dist)>1e-4 % Adjusting for variable slice thickness % This is sometimes required for CT data because these scans are often % acquired with a gantry tilt and thinner slices near the brain stem. % If uncorrected, the resulting NIfTI image can appear distorted. Here, % the image is resampled to compensate for this effect. %---------------------------------------------------------------------- fprintf('***************************************************\n'); fprintf('* Adjusting for variable slice thickness. *\n'); fprintf('***************************************************\n'); ovx = sqrt(sum(mat(1:3,1:3).^2)); nvx = [ovx(1:2) max(min(dist),1)]; % Set new slice thickness in thick-slice direction to minimum of dist Nii = nifti(fname); img = Nii.dat(:,:,:); d = size(img); csdist = cumsum(dist); csdist = [1; 1 + csdist]; x = zeros([d(1:3) 3],'single'); [x1,x2] = meshgrid(single(1:d(2)),single(1:d(1))); for i=1:d(3) x(:,:,i,1) = x1; x(:,:,i,2) = x2; x(:,:,i,3) = csdist(i); end X = x(:,:,:,1); Y = x(:,:,:,2); Z = x(:,:,:,3); clear x if ~(csdist(end) == floor(csdist(end))) [Xq,Yq,Zq] = meshgrid(single(1:d(2)),single(1:d(1)),single([1:nvx(3):csdist(end) csdist(end)])); else [Xq,Yq,Zq] = meshgrid(single(1:d(2)),single(1:d(1)),single(1:nvx(3):csdist(end))); end img = interp3(X,Y,Z,img,Xq,Yq,Zq,'linear'); ndim = size(img); % Adjust orientation matrix D = diag([ovx./nvx 1]); mat = mat/D; N = nifti; N.dat = file_array(fname,ndim,dt,0,pinfo(1),pinfo(2)); N.mat = mat; N.mat0 = mat; N.mat_intent = 'Scanner'; N.mat0_intent = 'Scanner'; N.descrip = descrip; create(N); N.dat(:,:,:) = img; end %========================================================================== % function fnames = ConvertSpectroscopy(Headers, RootDirectory, format, OutputDirectory, meta) %========================================================================== function fnames = ConvertSpectroscopy(Headers, RootDirectory, format, OutputDirectory, meta) fnames = cell(length(Headers),1); for i=1:length(Headers) fnames{i} = WriteSpectroscopyVolume(Headers(i), RootDirectory, format, OutputDirectory, meta); end %========================================================================== % function fname = WriteSpectroscopyVolume(Headers, RootDirectory, format, OutputDirectory, meta) %========================================================================== function fname = WriteSpectroscopyVolume(Headers, RootDirectory, format, OutputDirectory, meta) % Output filename %------------------------------------------------------------------- fname = getfilelocation(Headers{1}, RootDirectory,'S',format,OutputDirectory); % private field to use - depends on SIEMENS software version if isfield(Headers{1}, 'CSANonImageHeaderInfoVA') privdat = Headers{1}.CSANonImageHeaderInfoVA; elseif isfield(Headers{1}, 'CSANonImageHeaderInfoVB') privdat = Headers{1}.CSANonImageHeaderInfoVB; else disp('Don''t know how to handle these spectroscopy data'); fname = ''; return; end % Image dimensions %-------------------------------------------------------------------------- nc = GetNumaris4NumVal(privdat,'Columns'); nr = GetNumaris4NumVal(privdat,'Rows'); % Guess number of timepoints in file - I don't know for sure whether this should be % 'DataPointRows'-by-'DataPointColumns', 'SpectroscopyAcquisitionDataColumns' % or sSpecPara.lVectorSize from SIEMENS ASCII header % ntp = GetNumaris4NumVal(privdat,'DataPointRows')*GetNumaris4NumVal(privdat,'DataPointColumns'); ac = ReadAscconv(Headers{1}); try ntp = ac.sSpecPara.lVectorSize; catch disp('Don''t know how to handle these spectroscopy data'); fname = ''; return; end dim = [nc nr numel(Headers) 2 ntp]; dt = spm_type('float32'); % Fixed datatype % Orientation information %-------------------------------------------------------------------------- % Axial Analyze voxel co-ordinate system: % x increases right to left % y increases posterior to anterior % z increases inferior to superior % DICOM patient co-ordinate system: % x increases right to left % y increases anterior to posterior % z increases inferior to superior % T&T co-ordinate system: % x increases left to right % y increases posterior to anterior % z increases inferior to superior AnalyzeToDicom = [diag([1 -1 1]) [0 (dim(2)+1) 0]'; 0 0 0 1]; % Flip voxels in y PatientToTal = diag([-1 -1 1 1]); % Flip mm coords in x and y directions shift_vx = [eye(4,3) [.5; .5; 0; 1]]; orient = reshape(GetNumaris4NumVal(privdat, 'ImageOrientationPatient'), [3 2]); ps = GetNumaris4NumVal(privdat, 'PixelSpacing'); if nc*nr == 1 % Single Voxel Spectroscopy (based on the following information from SIEMENS) %---------------------------------------------------------------------- % NOTE: Internally the position vector of the CSI matrix shows to the % outer border of the first voxel. Therefore the position vector has to % be corrected. (Note: The convention of Siemens spectroscopy raw data % is in contrast to the DICOM standard where the position vector points % to the center of the first voxel.) %---------------------------------------------------------------------- % SIEMENS decides which definition to use based on the contents of the % 'PixelSpacing' internal header field. If it has non-zero values, % assume DICOM convention. If any value is zero, assume SIEMENS % internal convention for this direction. % Note that in SIEMENS code, there is a shift when PixelSpacing is % zero. Here, the shift seems to be necessary when PixelSpacing is % non-zero. This may indicate more fundamental problems with % orientation decoding. if ps(1) == 0 % row ps(1) = GetNumaris4NumVal(privdat, 'VoiPhaseFoV'); shift_vx(1,4) = 0; end if ps(2) == 0 % col ps(2) = GetNumaris4NumVal(privdat, 'VoiReadoutFoV'); shift_vx(2,4) = 0; end end pos = GetNumaris4NumVal(privdat, 'ImagePositionPatient'); % for some reason, pixel spacing needs to be swapped R = [orient*diag(ps([2 1])); 0 0]; x1 = [1;1;1;1]; y1 = [pos; 1]; if length(Headers)>1 error('spm_dicom_convert:spectroscopy',... 'Don''t know how to handle multislice spectroscopy data.'); else orient(:,3) = null(orient'); if det(orient)<0, orient(:,3) = -orient(:,3); end z = GetNumaris4NumVal(privdat,... 'VoiThickness'); if isempty(z) z = GetNumaris4NumVal(privdat,... 'SliceThickness'); end if isempty(z) warning('spm_dicom_convert:spectroscopy',... 'Can not determine voxel thickness.'); z = 1; end x2 = [0;0;1;0]; y2 = [orient*[0;0;z];0]; end DicomToPatient = [y1 y2 R]/[x1 x2 eye(4,2)]; mat = patient_to_tal*DicomToPatient*shift_vx*AnalyzeToDicom; % Possibly useful information %-------------------------------------------------------------------------- if CheckFields(Headers{1},'AcquisitionTime','MagneticFieldStrength','MRAcquisitionType',... 'ScanningSequence','RepetitionTime','EchoTime','FlipAngle',... 'AcquisitionDate') tim = datevec(Headers{1}.AcquisitionTime/(24*60*60)); descrip = sprintf('%gT %s %s TR=%gms/TE=%gms/FA=%gdeg %s %d:%d:%.5g',... Headers{1}.MagneticFieldStrength, Headers{1}.MRAcquisitionType,... deblank(Headers{1}.ScanningSequence),... Headers{1}.RepetitionTime,Headers{1}.EchoTime,Headers{1}.FlipAngle,... datestr(Headers{1}.AcquisitionDate),tim(4),tim(5),tim(6)); else descrip = Headers{1}.Modality; end if ~true % LEFT-HANDED STORAGE mat = mat*[-1 0 0 (dim(1)+1); 0 1 0 0; 0 0 1 0; 0 0 0 1]; end % Write the image volume %-------------------------------------------------------------------------- Nii = nifti; pinfo = [1 0]; if isfield(Headers{1},'RescaleSlope'), pinfo(1) = Headers{1}.RescaleSlope; end if isfield(Headers{1},'RescaleIntercept'), pinfo(2) = Headers{1}.RescaleIntercept; end % Philips do things differently. The following is for using their scales instead. % Chenevert, Thomas L., et al. "Errors in quantitative image analysis due to % platform-dependent image scaling." Translational oncology 7.1 (2014): 65-71. if isfield(Headers{1},'MRScaleSlope'), pinfo(1) = 1/Headers{1}.MRScaleSlope; end if isfield(Headers{1},'MRScaleIntercept'), pinfo(2) = -Headers{1}.MRScaleIntercept*pinfo(1); end Nii.dat = file_array(fname,dim,dt,0,pinfo(1),pinfo(2)); Nii.mat = mat; Nii.mat0 = mat; Nii.mat_intent = 'Scanner'; Nii.mat0_intent = 'Scanner'; Nii.descrip = descrip; % Store LCMODEL control/raw info in Nii.extras Nii.extras = struct('MagneticFieldStrength', GetNumaris4NumVal(privdat,'MagneticFieldStrength'),... 'TransmitterReferenceAmplitude', GetNumaris4NumVal(privdat,'TransmitterReferenceAmplitude'),... 'ImagingFrequency', GetNumaris4NumVal(privdat,'ImagingFrequency'),... 'EchoTime', GetNumaris4NumVal(privdat,'EchoTime'),... 'RealDwellTime', GetNumaris4NumVal(privdat,'RealDwellTime')); create(Nii); if meta Nii = spm_dicom_metadata(Nii,Headers{1}); end % Read data, swap dimensions data = permute(reshape(ReadSpectData(Headers{1},ntp),dim([4 5 1 2 3])), ... [3 4 5 1 2]); % plane = fliplr(plane); Nii.dat(:,:,:,:,:) = data; %========================================================================== % function [images,guff] = SelectTomographicImages(Headers) %========================================================================== function [images,guff] = SelectTomographicImages(Headers) images = {}; guff = {}; for i=1:length(Headers) if ~CheckFields(Headers{i},'Modality') || ... ~(strcmp(Headers{i}.Modality,'MR') || ... strcmp(Headers{i}.Modality,'PT') || ... strcmp(Headers{i}.Modality,'NM') || ... strcmp(Headers{i}.Modality,'CT')) if CheckFields(Headers{i},'Modality') fprintf('File "%s" can not be converted because it is of type "%s", which is not MRI, CT, NM or PET.\n', ... Headers{i}.Filename, Headers{i}.Modality); else fprintf('File "%s" can not be converted because it does not encode an image.\n', Headers{i}.Filename); end guff = [guff(:)',Headers(i)]; elseif ~CheckFields(Headers{i},'StartOfPixelData','SamplesPerPixel',... 'Rows','Columns','BitsAllocated','BitsStored','HighBit','PixelRepresentation') fprintf('Cant find "Image Pixel" information for "%s".\n',Headers{i}.Filename); guff = [guff(:)',Headers(i)]; elseif ~(CheckFields(Headers{i},'PixelSpacing','ImagePositionPatient','ImageOrientationPatient') ... || isfield(Headers{i},'CSANonImageHeaderInfoVA') || isfield(Headers{i},'CSANonImageHeaderInfoVB')) if isfield(Headers{i},'SharedFunctionalGroupsSequence') || isfield(Headers{i},'PerFrameFunctionalGroupsSequence') fprintf(['\n"%s" appears to be multi-frame DICOM.\n'... 'Converting these data is still experimental and has only been tested on a very small number of\n'... 'multiframe DICOM files. Feedback about problems would be appreciated - particularly if you can\n'... 'give us examples of problematic data (providing there are no subject confidentiality issues).\n\n'], Headers{i}.Filename); images = [images(:)',Headers(i)]; else fprintf('No "Image Plane" information for "%s".\n',Headers{i}.Filename); guff = [guff(:)',Headers(i)]; end elseif ~CheckFields(Headers{i},'SeriesNumber','AcquisitionNumber','InstanceNumber') %disp(['Cant find suitable filename info for "' Headers{i}.Filename '".']); if ~isfield(Headers{i},'SeriesNumber') fprintf('Setting SeriesNumber to 1.\n'); Headers{i}.SeriesNumber = 1; images = [images(:)',Headers(i)]; end if ~isfield(Headers{i},'AcquisitionNumber') if isfield(Headers{i},'Manufacturer') && ~isempty(strfind(upper(Headers{1}.Manufacturer), 'PHILIPS')) % Philips oddity if isfield(Headers{i},'InstanceNumber') Headers{i}.AcquisitionNumber = Headers{i}.InstanceNumber; else fprintf('Setting AcquisitionNumber to 1.\n'); Headers{i}.AcquisitionNumber = 1; end else fprintf('Setting AcquisitionNumber to 1.\n'); Headers{i}.AcquisitionNumber = 1; end images = [images(:)',Headers(i)]; end if ~isfield(Headers{i},'InstanceNumber') fprintf('Setting InstanceNumber to 1.\n'); Headers{i}.InstanceNumber = 1; images = [images(:)',Headers(i)]; end %elseif isfield(Headers{i},'Private_2001_105f'), % % This field corresponds to: > Stack Sequence 2001,105F SQ VNAP, COPY % % http://www.medical.philips.com/main/company/connectivity/mri/index.html % % No documentation about this private field is yet available. % disp('Cant yet convert Philips Intera DICOM.'); % guff = {guff{:},Headers{i}}; else images = [images(:)',Headers(i)]; end end %========================================================================== % function [multiframe,other] = SelectMultiframe(Headers) %========================================================================== function [multiframe,other] = SelectMultiframe(Headers) multiframe = {}; other = {}; for i=1:length(Headers) if isfield(Headers{i},'SharedFunctionalGroupsSequence') || isfield(Headers{i},'PerFrameFunctionalGroupsSequence') multiframe = [multiframe(:)',Headers(i)]; else other = [other(:)',Headers(i)]; end end %========================================================================== % function [mosaic,standard] = SelectMosaicImages(Headers) %========================================================================== function [mosaic,standard] = SelectMosaicImages(Headers) mosaic = {}; standard = {}; for i=1:length(Headers) if ~CheckFields(Headers{i},'ImageType','CSAImageHeaderInfo') ||... isfield(Headers{i}.CSAImageHeaderInfo,'junk') ||... isempty(ReadAcquisitionMatrixText(Headers{i})) ||... isempty(ReadNumberOfImagesInMosaic(Headers{i})) ||... ReadNumberOfImagesInMosaic(Headers{i}) == 0 % NumberOfImagesInMosaic seems to be set to zero for pseudo images % containing e.g. online-fMRI design matrices, don't treat them as % mosaics standard = [standard, Headers(i)]; else mosaic = [mosaic, Headers(i)]; end end %========================================================================== % function [spect,images] = SelectSpectroscopyImages(Headers) %========================================================================== function [spect,images] = SelectSpectroscopyImages(Headers) spectsel = false(1,numel(Headers)); for i=1:numel(Headers) if isfield(Headers{i},'SOPClassUID') spectsel(i) = strcmp(Headers{i}.SOPClassUID,'1.3.12.2.1107.5.9.1'); end end spect = Headers(spectsel); images = Headers(~spectsel); %========================================================================== % function [standard, guff] = SelectLastGuff(standard, guff) %========================================================================== function [standard, guff] = SelectLastGuff(standard, guff) % See https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=spm;5b69d495.1108 i = find(cellfun(@(x) ~isfield(x,'ImageOrientationPatient'),standard)); guff = [guff, standard(i)]; standard(i) = []; %========================================================================== % function ok = CheckFields(Headers,varargin) %========================================================================== function ok = CheckFields(Headers,varargin) ok = 1; for i=1:(nargin-1) if ~isfield(Headers,varargin{i}) ok = 0; break; end end %========================================================================== % function clean = StripUnwantedChars(dirty) %========================================================================== function clean = StripUnwantedChars(dirty) msk = (dirty>='a'&dirty<='z') | (dirty>='A'&dirty<='Z') |... (dirty>='0'&dirty<='9') | dirty=='_'; clean = dirty(msk); %========================================================================== % function img = ReadImageData(Header) %========================================================================== function img = ReadImageData(Header) img = []; if Header.SamplesPerPixel ~= 1 warning('spm:dicom','%s: SamplesPerPixel = %d - cant be an MRI.', Header.Filename, Header.SamplesPerPixel); return; end prec = ['ubit' num2str(Header.BitsAllocated) '=>' 'uint32']; if isfield(Header,'TransferSyntaxUID') && strcmp(Header.TransferSyntaxUID,'1.2.840.10008.1.2.2') && strcmp(Header.VROfPixelData,'OW') fp = fopen(Header.Filename,'r','ieee-be'); else fp = fopen(Header.Filename,'r','ieee-le'); end if fp==-1 warning('spm:dicom','%s: Cant open file.', Header.Filename); return; end if isfield(Header,'NumberOfFrames') NFrames = Header.NumberOfFrames; else NFrames = 1; end if isfield(Header,'TransferSyntaxUID') switch(Header.TransferSyntaxUID) case {'1.2.840.10008.1.2.4.50','1.2.840.10008.1.2.4.51',... % 8 bit JPEG & 12 bit JPEG '1.2.840.10008.1.2.4.57','1.2.840.10008.1.2.4.70',... % lossless NH JPEG & lossless NH, 1st order '1.2.840.10008.1.2.4.80','1.2.840.10008.1.2.4.81',... % lossless JPEG-LS & near lossless JPEG-LS '1.2.840.10008.1.2.4.90','1.2.840.10008.1.2.4.91',... % lossless JPEG 2000 & possibly lossy JPEG 2000, Part 1 '1.2.840.10008.1.2.4.92','1.2.840.10008.1.2.4.93' ... % lossless JPEG 2000 & possibly lossy JPEG 2000, Part 2 } % try to read PixelData as JPEG image fseek(fp,Header.StartOfPixelData,'bof'); fread(fp,2,'uint16'); % uint16 encoding 65534/57344 (Item) offset = double(fread(fp,1,'uint32')); % followed by 4 0 0 0 fread(fp,2,'uint16'); % uint16 encoding 65534/57344 (Item) fread(fp,offset); sz = double(fread(fp,1,'*uint32')); img = fread(fp,sz,'*uint8'); % Next uint16 seem to encode 65534/57565 (SequenceDelimitationItem), followed by 0 0 % save PixelData into temp file - imread and its subroutines can only % read from file, not from memory tfile = tempname; tfp = fopen(tfile,'w+'); fwrite(tfp,img,'uint8'); fclose(tfp); % read decompressed data, transpose to match DICOM row/column order img = uint32(imread(tfile)'); delete(tfile); case {'1.2.840.10008.1.2.4.94' ,'1.2.840.10008.1.2.4.95' ,... % JPIP References & JPIP Referenced Deflate Transfer '1.2.840.10008.1.2.4.100','1.2.840.10008.1.2.4.101',... % MPEG2 MP@ML & MPEG2 MP@HL '1.2.840.10008.1.2.4.102', ... % MPEG-4 AVC/H.264 High Profile and BD-compatible } warning('spm:dicom',[Header.Filename ': cant deal with JPIP/MPEG data (' Header.TransferSyntaxUID ')']); otherwise fseek(fp,Header.StartOfPixelData,'bof'); img = fread(fp,Header.Rows*Header.Columns*NFrames,prec); end else fseek(fp,Header.StartOfPixelData,'bof'); img = fread(fp,Header.Rows*Header.Columns*NFrames,prec); end fclose(fp); if numel(img)~=Header.Rows*Header.Columns*NFrames error([Header.Filename ': cant read whole image']); end if Header.PixelRepresentation % Signed data - done this way because bitshift only % works with signed data. Negative values are stored % as 2s complement. neg = logical(bitshift(bitand(img,uint32(2^Header.HighBit)), -Header.HighBit)); msk = (2^Header.HighBit - 1); img = double(bitand(img,msk)); img(neg) = img(neg)-2^(Header.HighBit); else % Unsigned data msk = (2^(Header.HighBit+1) - 1); img = double(bitand(img,msk)); end img = reshape(img,[Header.Columns,Header.Rows,NFrames]); %========================================================================== % function img = ReadSpectData(Header,privdat) %========================================================================== function img = ReadSpectData(Header,ntp) % Data is stored as complex float32 values, timepoint by timepoint, voxel % by voxel. Reshaping is done in WriteSpectroscopyVolume. if ntp*2*4 ~= Header.SizeOfCSAData warning('spm:dicom', [Header.Filename,': Data size mismatch.']); end fp = fopen(Header.Filename,'r','ieee-le'); fseek(fp,Header.StartOfCSAData,'bof'); img = fread(fp,2*ntp,'float32'); fclose(fp); %========================================================================== % function nrm = ReadSliceNormalVector(Header) %========================================================================== function nrm = ReadSliceNormalVector(Header) str = Header.CSAImageHeaderInfo; val = GetNumaris4Val(str,'SliceNormalVector'); for i=1:3 nrm(i,1) = sscanf(val(i,:),'%g'); end %========================================================================== % function n = ReadNumberOfImagesInMosaic(Header) %========================================================================== function n = ReadNumberOfImagesInMosaic(Header) str = Header.CSAImageHeaderInfo; val = GetNumaris4Val(str,'NumberOfImagesInMosaic'); n = sscanf(val','%d'); if isempty(n), n = []; end %========================================================================== % function dim = ReadAcquisitionMatrixText(Header) %========================================================================== function dim = ReadAcquisitionMatrixText(Header) str = Header.CSAImageHeaderInfo; val = GetNumaris4Val(str,'AcquisitionMatrixText'); dim = sscanf(val','%d*%d')'; if length(dim)==1 dim = sscanf(val','%dp*%d')'; end if isempty(dim), dim=[]; end %========================================================================== % function val = GetNumaris4Val(str,name) %========================================================================== function val = GetNumaris4Val(str,name) name = deblank(name); val = {}; for i=1:length(str) if strcmp(deblank(str(i).name),name) for j=1:str(i).nitems if str(i).item(j).xx(1) val = [val {str(i).item(j).val}]; end end break; end end val = strvcat(val{:}); %========================================================================== % function val = GetNumaris4NumVal(str,name) %========================================================================== function val = GetNumaris4NumVal(str,name) val1 = GetNumaris4Val(str,name); val = zeros(size(val1,1),1); for k = 1:size(val1,1) val(k)=str2num(val1(k,:)); end %========================================================================== % function fname = getfilelocation(Header,RootDirectory,prefix,format,OutputDirectory) %========================================================================== function fname = getfilelocation(Header,RootDirectory,prefix,format,OutputDirectory) if nargin < 3 prefix = 'f'; end if strncmp(RootDirectory,'ice',3) RootDirectory = RootDirectory(4:end); imtype = textscan(Header.ImageType,'%s','delimiter','\\'); try imtype = imtype{1}{3}; catch imtype = ''; end prefix = [prefix imtype GetNumaris4Val(Header.CSAImageHeaderInfo,'ICE_Dims')]; end if isfield(Header,'PatientID'), PatientID = deblank(Header.PatientID); else PatientID = 'anon'; end if isfield(Header,'EchoNumbers'), EchoNumbers = Header.EchoNumbers; else EchoNumbers = 0; end if isfield(Header,'SeriesNumber'), SeriesNumber = Header.SeriesNumber; else SeriesNumber = 0; end if isfield(Header,'AcquisitionNumber'), AcquisitionNumber = Header.AcquisitionNumber; else AcquisitionNumber = 0; end if isfield(Header,'InstanceNumber'), InstanceNumber = Header.InstanceNumber; else InstanceNumber = 0; end ImTyp = ''; if isfield(Header,'GE_ImageType') if numel(Header.GE_ImageType)==1 switch Header.GE_ImageType case 1 ImTyp = '-Phase'; case 2 ImTyp = '-Real'; case 3 ImTyp = '-Imag'; end end end % To use ICE Dims systematically in file names in order to avoid % overwriting uncombined coil images, which have identical file name % otherwise) try ICE_Dims = GetNumaris4Val(Header.CSAImageHeaderInfo,'ICE_Dims'); % extract ICE dims as an array of numbers (replace 'X' which is for % combined images by '-1' first): CHA = sscanf(strrep(ICE_Dims,'X','-1'), '%i_%i_%i_%i_%i_%i_%i_%i_%i')'; if CHA(1)>0 CHA = sprintf('%.3d',CHA(1)); else CHA = ''; end catch CHA = ''; end if strcmp(RootDirectory, 'flat') % Standard SPM file conversion %---------------------------------------------------------------------- if CheckFields(Header,'SeriesNumber','AcquisitionNumber') if CheckFields(Header,'EchoNumbers') if ~isempty(CHA) fname = sprintf('%s%s-%.4d-%.5d-%.6d-%.2d-%s%s.%s', prefix, StripUnwantedChars(PatientID),... SeriesNumber, AcquisitionNumber, InstanceNumber, EchoNumbers, CHA, ImTyp, format); else fname = sprintf('%s%s-%.4d-%.5d-%.6d-%.2d%s.%s', prefix, StripUnwantedChars(PatientID),... SeriesNumber, AcquisitionNumber, InstanceNumber, EchoNumbers, ImTyp, format); end else if ~isempty(CHA) fname = sprintf('%s%s-%.4d-%.5d-%.6d-%s%s.%s', prefix, StripUnwantedChars(PatientID),... SeriesNumber, AcquisitionNumber, InstanceNumber, CHA, ImTyp, format); else fname = sprintf('%s%s-%.4d-%.5d-%.6d%s.%s', prefix, StripUnwantedChars(PatientID),... SeriesNumber, AcquisitionNumber, InstanceNumber, ImTyp, format); end end else fname = sprintf('%s%s-%.6d%s.%s',prefix, ... StripUnwantedChars(PatientID), InstanceNumber, ImTyp, format); end fname = fullfile(OutputDirectory,fname); return; end % more fancy stuff - sort images into subdirectories if isfield(Header,'StudyTime') m = sprintf('%02d', floor(rem(Header.StudyTime/60,60))); h = sprintf('%02d', floor(Header.StudyTime/3600)); else m = '00'; h = '00'; end if isfield(Header,'AcquisitionTime'), AcquisitionTime = Header.AcquisitionTime; else AcquisitionTime = 100; end if isfield(Header,'StudyDate'), StudyDate = Header.StudyDate; else StudyDate = 100; end % Obscure Easter Egg if isfield(Header,'SeriesDescription'), SeriesDescription = deblank(Header.SeriesDescription); else SeriesDescription = 'unknown'; end if isfield(Header,'ProtocolName') ProtocolName = deblank(Header.ProtocolName); else if isfield(Header,'SequenceName') ProtocolName = deblank(Header.SequenceName); else ProtocolName='unknown'; end end studydate = sprintf('%s_%s-%s', datestr(StudyDate,'yyyy-mm-dd'), h,m); switch RootDirectory case {'date_time','series'} id = studydate; case {'patid', 'patid_date', 'patname'} id = StripUnwantedChars(PatientID); end serdes = strrep(StripUnwantedChars(SeriesDescription), StripUnwantedChars(ProtocolName),''); protname = sprintf('%s%s_%.4d', StripUnwantedChars(ProtocolName), serdes, SeriesNumber); switch RootDirectory case 'date_time' dname = fullfile(OutputDirectory, id, protname); case 'patid' dname = fullfile(OutputDirectory, id, protname); case 'patid_date' dname = fullfile(OutputDirectory, id, studydate, protname); case 'series' dname = fullfile(OutputDirectory, protname); otherwise error('unknown file root specification'); end if ~exist(dname,'dir') mkdir_rec(dname); end % some non-product sequences on SIEMENS scanners seem to have problems % with image numbering in MOSAICs - doublettes, unreliable ordering % etc. To distinguish, always include Acquisition time in image name sa = sprintf('%02d', floor(rem(AcquisitionTime,60))); ma = sprintf('%02d', floor(rem(AcquisitionTime/60,60))); ha = sprintf('%02d', floor(AcquisitionTime/3600)); fname = sprintf('%s%s-%s%s%s-%.5d-%.5d-%d%s.%s', prefix, id, ha, ma, sa, ... AcquisitionNumber, InstanceNumber, EchoNumbers, ImTyp, format); fname = fullfile(dname, fname); %========================================================================== % function suc = mkdir_rec(str) %========================================================================== function suc = mkdir_rec(str) % works on full pathnames only if str(end) ~= filesep, str = [str filesep]; end pos = strfind(str,filesep); suc = zeros(1,length(pos)); for g=2:length(pos) if ~exist(str(1:pos(g)-1),'dir') suc(g) = mkdir(str(1:pos(g-1)-1),str(pos(g-1)+1:pos(g)-1)); end end %========================================================================== % function ret = ReadAscconv(Header) %========================================================================== function ret = ReadAscconv(Header) % In SIEMENS data, there is an ASCII text section with % additional information items. This section starts with a code % ### ASCCONV BEGIN <some version string> ### % and ends with % ### ASCCONV END ### % It is read by spm_dicom_headers into an entry 'MrProtocol' in % CSASeriesHeaderInfo or into an entry 'MrPhoenixProtocol' in % CSAMiscProtocolHeaderInfoVA or CSAMiscProtocolHeaderVB. % The additional items are assignments in C syntax, here they are just % translated according to % [] -> () % " -> ' % 0xX -> hex2dec('X') % and collected in a struct. % In addition, there seems to be "__attribute__" meta information for some % items. All "field names" starting with "_" are currently silently ignored. ret=struct; % get ascconv data if isfield(Header, 'CSAMiscProtocolHeaderInfoVA') X = GetNumaris4Val(Header.CSAMiscProtocolHeaderInfoVA,'MrProtocol'); elseif isfield(Header, 'CSAMiscProtocolHeaderInfoVB') X = GetNumaris4Val(Header.CSAMiscProtocolHeaderInfoVB,'MrPhoenixProtocol'); elseif isfield(Header, 'CSASeriesHeaderInfo') X = GetNumaris4Val(Header.CSASeriesHeaderInfo,'MrProtocol'); else return; end X = regexprep(X,'^.*### ASCCONV BEGIN [^#]*###(.*)### ASCCONV END ###.*$','$1'); if ~isempty(X) tokens = textscan(char(X),'%s', ... 'delimiter',char(10)); tokens{1}=regexprep(tokens{1},{'\[([0-9]*)\]','"(.*)"','^([^"]*)0x([0-9a-fA-F]*)','#.*','^.*\._.*$'},{'($1+1)','''$1''','$1hex2dec(''$2'')','',''}); % If everything would evaluate correctly, we could use % eval(sprintf('ret.%s;\n',tokens{1}{:})); for k = 1:numel(tokens{1}) if ~isempty(tokens{1}{k}) try [tlhrh] = regexp(tokens{1}{k}, '(?:=)+', 'split', 'match'); [tlh] = regexp(tlhrh{1}, '(?:\.)+', 'split', 'match'); tlh = cellfun(@genvarname, tlh, 'UniformOutput',false); tlh = sprintf('.%s', tlh{:}); eval(sprintf('ret%s = %s;', tlh, tlhrh{2})); catch disp(['AscConv: Error evaluating ''ret.' tokens{1}{k} ''';']); end end end end %========================================================================== % function Datatype = DetermineDatatype(Header) %========================================================================== function Datatype = DetermineDatatype(Header) % Determine what datatype to use for NIfTI images BigEndian = spm_platform('bigend'); if Header.BitsStored>16 if Header.PixelRepresentation Datatype = [spm_type( 'int32') BigEndian]; else Datatype = [spm_type('uint32') BigEndian]; end else if Header.PixelRepresentation Datatype = [spm_type( 'int16') BigEndian]; else Datatype = [spm_type('uint16') BigEndian]; end end %========================================================================== % function fspe = ConvertMultiframes(Headers, RootDirectory, format, OutputDirectory, meta) %========================================================================== function fspe = ConvertMultiframes(Headers, RootDirectory, format, OutputDirectory, meta) fspe = {}; DicomDictionary = ReadDicomDictionary; for i=1:numel(Headers) out = ConvertMultiframe(Headers{i}, DicomDictionary, RootDirectory, format,OutputDirectory,meta); fspe = [fspe(:); out(:)]; end %========================================================================== % function out = ConvertMultiframe(Header, DicomDictionary, RootDirectory, format, OutputDirectory, meta) %========================================================================== function out = ConvertMultiframe(Header, DicomDictionary, RootDirectory, format, OutputDirectory, meta) out = {}; DimOrg = GetDimOrg(Header, DicomDictionary); FGS = GetFGS(Header, DimOrg); N = numel(FGS); fname0 = getfilelocation(Header, RootDirectory,'MF',format,OutputDirectory); [pth,nam,ext0] = fileparts(fname0); fname0 = fullfile(pth,nam); if ~isfield(FGS,'ImageOrientationPatient') || ~isfield(FGS,'PixelSpacing') || ~isfield(FGS,'ImagePositionPatient') fprintf('"%s" does not seem to have positional information.\n', Header.Filename); return; end %if isfield(FGS, 'DimensionIndexValues') % disp(cat(1, FGS.DimensionIndexValues)) %end % Read the actual image data volume = ReadImageData(Header); % Sort into unique files according to image orientations etc stuff = [cat(2, FGS.ImageOrientationPatient); cat(2, FGS.PixelSpacing)]'; if isfield(FGS, 'StackID') stuff = [stuff double(cat(1, FGS.StackID))]; end ds = find(any(diff(stuff,1,1)~=0,2)); ord = sparse([],[],[],N,numel(ds)+1); start = 1; for i=1:numel(ds) ord(start:ds(i),i) = 1; start = ds(i)+1; end ord(start:size(stuff,1),numel(ds)+1) = 1; for n=1:size(ord,2) % Identify all slices that should go into the same output file %ind = find(all(bsxfun(@eq,stuff,u(n,:)),2)); ind = find(ord(:,n)); this = FGS(ind); if size(ord,2)>1 fname = sprintf('%s_%-.3d',fname0,n); else fname = fname0; end % Orientation information %---------------------------------------------------------------------- % Axial Analyze voxel co-ordinate system: % x increases right to left % y increases posterior to anterior % z increases inferior to superior % DICOM patient co-ordinate system: % x increases right to left % y increases anterior to posterior % z increases inferior to superior % T&T co-ordinate system: % x increases left to right % y increases posterior to anterior % z increases inferior to superior if any(sum(diff(cat(2,this.ImageOrientationPatient),1,2).^2,1)>0.001) fprintf('"%s" contains irregularly oriented slices.\n', Header.Filename); % break % Option to skip writing out the NIfTI image end ImageOrientationPatient = this(1).ImageOrientationPatient(:); if any(sum(diff(cat(2,this.PixelSpacing),1,2).^2,1)>0.001) fprintf('"%s" contains slices with irregularly spaced pixels.\n', Header.Filename); % break % Option to skip writing out the NIfTI image end PixelSpacing = this(1).PixelSpacing(:); R = [reshape(ImageOrientationPatient,3,2)*diag(PixelSpacing); 0 0]; % Determine the order of the slices by sorting their positions according to where they project % on a vector orthogonal to the image plane orient = reshape(this(1).ImageOrientationPatient,[3 2]); orient(:,3) = null(orient'); if det(orient)<0, orient(:,3) = -orient(:,3); end Positions = cat(2,this.ImagePositionPatient)'; [proj,slice_order,inv_slice_order] = unique(round(Positions*orient(:,3)*100)/100); if any(abs(diff(diff(proj),1,1))>0.025) problem1 = true; else problem1 = false; end inv_time_order = ones(numel(this),1); for i=1:numel(slice_order) ind = find(inv_slice_order == i); if numel(ind)>1 if isfield(this,'TemporalPositionIndex') sort_on = cat(2,this(ind).TemporalPositionIndex)'; else sort_on = ind; end [unused, tsort] = sort(sort_on); inv_time_order(ind) = tsort'; end end % Image dimensions %---------------------------------------------------------------------- nc = Header.Columns; nr = Header.Rows; dim = [nc nr 1 1]; dim(3) = max(inv_slice_order); dim(4) = max(inv_time_order); problem2 = false; for i=1:max(inv_time_order) if sum(inv_time_order==i)~=dim(3) problem2 = true; end end if problem1 || problem2 fname = [fname '-problem']; end if problem1 fprintf('"%s" contains irregularly spaced slices with the following spacings:\n', Header.Filename); spaces = unique(round(diff(proj)*100)/100); fprintf(' %g', spaces); fprintf('\nSee %s%s\n\n',fname,ext0); % break % Option to skip writing out the NIfTI image end if problem2 fprintf('"%s" has slices missing.\nSee the result in %s%s\n\n', Header.Filename,fname,ext0); % break % Option to skip writing out the NIfTI image end if dim(3)>1 y1 = [this(slice_order( 1)).ImagePositionPatient(:); 1]; y2 = [this(slice_order(end)).ImagePositionPatient(:); 1]; x2 = [1; 1; dim(3); 1]; else orient = reshape(ImageOrientationPatient,[3 2]); orient(:,3) = null(orient'); if det(orient)<0, orient(:,3) = -orient(:,3); end if isfield(Header,'SliceThickness'), z = Header.SliceThickness; else z = 1; end y1 = [this(1).ImagePositionPatient(:); 1]; y2 = [orient*[0;0;z];0]; x2 = [0;0;1;0]; end x1 = [1;1;1;1]; DicomToPatient = [y1 y2 R]/[x1 x2 eye(4,2)]; AnalyzeToDicom = [diag([1 -1 1]) [0 (dim(2)+1) 0]'; 0 0 0 1]; % Flip voxels in y PatientToTal = diag([-1 -1 1 1]); % Flip mm coords in x and y directions mat = PatientToTal*DicomToPatient*AnalyzeToDicom; flip_lr = det(mat(1:3,1:3))>0; if flip_lr mat = mat*[-1 0 0 (dim(1)+1); 0 1 0 0; 0 0 1 0; 0 0 0 1]; end % Possibly useful information for descrip field %---------------------------------------------------------------------- if isfield(Header,'AcquisitionTime') tim = datevec(Header.AcquisitionTime/(24*60*60)); elseif isfield(Header,'StudyTime') tim = datevec(Header.StudyTime/(24*60*60)); elseif isfield(Header,'ContentTime') tim = datevec(Header.ContentTime/(24*60*60)); else tim = ''; end if ~isempty(tim), tim = sprintf(' %d:%d:%.5g', tim(4),tim(5),tim(6)); end if isfield(Header,'AcquisitionDate') day = datestr(Header.AcquisitionDate); elseif isfield(Header,'StudyDate') day = datestr(Header.StudyDate); elseif isfield(Header,'ContentDate') day = datestr(Header.ContentDate); else day = ''; end when = [day tim]; if CheckFields(Header,'MagneticFieldStrength','MRAcquisitionType',... 'ScanningSequence','RepetitionTime','EchoTime','FlipAngle') if isfield(Header,'ScanOptions') ScanOptions = Header.ScanOptions; else ScanOptions = 'no'; end modality = sprintf('%gT %s %s TR=%gms/TE=%gms/FA=%gdeg/SO=%s',... Header.MagneticFieldStrength, Header.MRAcquisitionType,... deblank(Header.ScanningSequence),... Header.RepetitionTime, Header.EchoTime, Header.FlipAngle,... ScanOptions); else modality = [Header.Modality ' ' Header.ImageType]; end descrip = [modality ' ' when]; % Sort out datatype, as well as any scalefactors or intercepts %---------------------------------------------------------------------- pinfos = [ones(length(this),1) zeros(length(this),1)]; for i=1:length(this) if isfield(this(i),'RescaleSlope'), pinfos(i,1) = this(i).RescaleSlope; end if isfield(this(i),'RescaleIntercept'), pinfos(i,2) = this(i).RescaleIntercept; end % Philips do things differently. The following is for using their scales instead. % Chenevert, Thomas L., et al. "Errors in quantitative image analysis due to % platform-dependent image scaling." Translational oncology 7.1 (2014): 65-71. if isfield(this(i),'MRScaleSlope'), pinfos(i,1) = 1/this(i).MRScaleSlope; end if isfield(this(i),'MRScaleIntercept'), pinfos(i,2) = -this(i).MRScaleIntercept*pinfos(i,1); end end % The following requires more testing. Only tested on the following % multiframe datasets (all Philips MRI data): % - EPI series (either GRE-EPI (fMRI) or SE-EPI (DWI)), % - structural mono-volume images (FLAIR, T1FFE), % - structural multi-echo images (MPM protocol) % - B0 mapping (two volumes including magnitude and phase in % milliradians). % The first three cases above correspond to % any(any(diff(pinfos,1))) == false (identical scaling for all frames, % no problem there), while the latter corresponds to % any(any(diff(pinfos,1))) == true (variable scaling and problems). if ~any(any(diff(pinfos,1))) % Same slopes and intercepts for all slices dt = DetermineDatatype(Header); pinfo = pinfos(1,:); else % Variable slopes and intercept (maybe PET/SPECT) - or % magnitude/phase data, or...? % If variable slopes and intercepts in the multiframe dataset, % each volume is saved as a separate NIfTI file with appropriate % slope and intercept. NB: we assume that the same pinfo is used % for all frames in a given volume - might not be the case? dt = DetermineDatatype(Header); dt = 'int16-be'; pinfo = []; for cv = 1:max(inv_time_order) ind = find(inv_time_order==cv); pinfo = [pinfo; pinfos(ind(1),:)]; end % Ensure random numbers are reproducible (see later) % when intensities are dithered to prevent aliasing effects. rand('state',0); end % Define output NIfTI files %---------------------------------------------------------------------- fname0 = fname; for cNii = 1:size(pinfo,1) % Define output file name if size(pinfo,1)>1 fname = sprintf('%s-%.4d',fname0,cNii); dim = dim(1:3); end % Create nifti file Nii{cNii} = nifti; %#ok<*AGROW> fname = sprintf('%s%s', fname, ext0); Nii{cNii}.dat = file_array(fname, dim, dt, 0, pinfo(cNii,1), pinfo(cNii,2)); Nii{cNii}.mat = mat; Nii{cNii}.mat0 = mat; Nii{cNii}.mat_intent = 'Scanner'; Nii{cNii}.mat0_intent = 'Scanner'; Nii{cNii}.descrip = descrip; create(Nii{cNii}); % for json metadata, need to sort out the portion of the Header % that corresponds to the current Nii volume (if multiscale & % multiframe data -> 3D volumes): if meta cHeader{cNii} = Header; if size(pinfo,1)>1 cHeader{cNii} = rmfield(cHeader{cNii},'PerFrameFunctionalGroupsSequence'); ind = find(inv_time_order==cNii); cHeader{cNii}.NumberOfFrames = length(ind); for cF = 1:length(ind) cHeader{cNii}.PerFrameFunctionalGroupsSequence{cF} = Header.PerFrameFunctionalGroupsSequence{ind(cF)}; end end Nii{cNii} = spm_dicom_metadata(Nii{cNii},cHeader{cNii}); end Nii{cNii}.dat(end,end,end,end,end) = 0; end % Write the image volume %---------------------------------------------------------------------- spm_progress_bar('Init',length(this),['Writing ' fname], 'Planes written'); for i=1:length(this) plane = volume(:,:,this(i).number); if any(any(diff(pinfos,1))) % This is to prevent aliasing effects in any subsequent histograms % of the data (eg for mutual information coregistration). % It's a bit inelegant, but probably necessary for when slices are % individually rescaled. plane = double(plane) + rand(size(plane)) - 0.5; end if pinfos(i,1)~=1, plane = plane*pinfos(i,1); end if pinfos(i,2)~=0, plane = plane+pinfos(i,2); end plane = fliplr(plane); if flip_lr, plane = flipud(plane); end z = inv_slice_order(i); t = inv_time_order(i); if size(pinfo,1)>1 Nii{t}.dat(:,:,z) = plane; else Nii{1}.dat(:,:,z,t) = plane; end spm_progress_bar('Set',i); end for cNii = 1:size(pinfo,1) out = [out; {Nii{cNii}.dat.fname}]; end spm_progress_bar('Clear'); end %========================================================================== % function DimOrg = GetDimOrg(Header, DicomDictionary) %========================================================================== function DimOrg = GetDimOrg(Header, DicomDictionary) DimOrg = struct('DimensionIndexPointer',{},'FunctionalGroupPointer',{}); if isfield(Header,'DimensionIndexSequence') for i=1:numel(Header.DimensionIndexSequence) DIP = Header.DimensionIndexSequence{i}.DimensionIndexPointer; ind = find(DicomDictionary.group==DIP(1) & DicomDictionary.element == DIP(2)); if numel(ind)==1 DimOrg(i).DimensionIndexPointer = DicomDictionary.values(ind).name; else if rem(DIP(1),2) DimOrg(i).DimensionIndexPointer = sprintf('Private_%.4x_%.4x',DIP); else DimOrg(i).DimensionIndexPointer = sprintf('Tag_%.4x_%.4x',DIP); end end FGP = Header.DimensionIndexSequence{i}.FunctionalGroupPointer; ind = find(DicomDictionary.group==FGP(1) & DicomDictionary.element == FGP(2)); if numel(ind)==1 DimOrg(i).FunctionalGroupPointer = DicomDictionary.values(ind).name; else if rem(DIP(1),2) DimOrg(i).FunctionalGroupPointer = sprintf('Private_%.4x_%.4x',DIP); else DimOrg(i).FunctionalGroupPointer = sprintf('Tag_%.4x_%.4x',DIP); end end end end return %========================================================================== % FGS = GetFGS(Header, DimOrg) %========================================================================== function FGS = GetFGS(Header, DimOrg) FGS = struct; if isfield(Header,'PerFrameFunctionalGroupsSequence') % For documentation, see C.7.6.16 "Multi-frame Functional Groups Module" % of DICOM Standard PS 3.3 - 2003, Page 261. % Multiframe DICOM N = numel(Header.PerFrameFunctionalGroupsSequence); if isfield(Header,'NumberOfFrames') && Header.NumberOfFrames ~= N fprintf('"%s" has incompatible numbers of frames.', FGS.Filename); end % List of fields and subfields of those fields to retrieve information from. Macros = {'PixelMeasuresSequence',{'PixelSpacing','SliceThickness'} 'FrameContentSequence',{'Frame Acquisition Number','FrameReferenceDatetime',... 'FrameAcquisitionDatetime','FrameAcquisitionDuration',... 'CardiacCyclePosition','RespiratoryCyclePosition',... 'DimensionIndexValues','TemporalPositionIndex','Stack ID',... 'InStackPositionNumber','FrameComments'} 'PlanePositionSequence',{'ImagePositionPatient'} 'PlaneOrientationSequence',{'ImageOrientationPatient'} 'ReferencedImageSequence',{'ReferencedSOPClassUID','ReferencedSOPInstanceUID',... 'ReferencedFrameNumber','PurposeOfReferenceCode'} 'PixelValueTransformationSequence',{'RescaleIntercept','RescaleSlope','RescaleType'} % for specific PHILIPS rescaling 'PhilipsSequence_2005_140f',{'MRScaleSlope','MRScaleIntercept'}}; if isfield(Header,'SharedFunctionalGroupsSequence') for d=1:numel(DimOrg) if isfield(Header.SharedFunctionalGroupsSequence{1}, DimOrg(d).FunctionalGroupPointer) && ... isfield(Header.SharedFunctionalGroupsSequence{1}.(DimOrg(d).FunctionalGroupPointer){1}, DimOrg(d).DimensionIndexPointer) for n=N:-1:1 FGS(n).(DimOrg(d).DimensionIndexPointer) = Header.SharedFunctionalGroupsSequence{1}.(DimOrg(d).FunctionalGroupPointer){1}.(DimOrg(d).DimensionIndexPointer); end end end for k1=1:size(Macros,1) if isfield(Header.SharedFunctionalGroupsSequence{1}, Macros{k1,1}) for k2=1:numel(Macros{k1,2}) if (numel(Header.SharedFunctionalGroupsSequence{1}.(Macros{k1,1}))>0) &&... isfield(Header.SharedFunctionalGroupsSequence{1}.(Macros{k1,1}){1}, Macros{k1,2}{k2}) for n=N:-1:1 FGS(n).(Macros{k1,2}{k2}) = Header.SharedFunctionalGroupsSequence{1}.(Macros{k1,1}){1}.(Macros{k1,2}{k2}); end end end end end end for n=1:N FGS(n).number = n; F = Header.PerFrameFunctionalGroupsSequence{n}; for d=1:numel(DimOrg) if isfield(F,DimOrg(d).FunctionalGroupPointer) && ... isfield(F.(DimOrg(d).FunctionalGroupPointer){1}, DimOrg(d).DimensionIndexPointer) FGS(n).(DimOrg(d).DimensionIndexPointer) = F.(DimOrg(d).FunctionalGroupPointer){1}.(DimOrg(d).DimensionIndexPointer); end end for k1=1:size(Macros,1) if isfield(F,Macros{k1,1}) && (numel(F.(Macros{k1,1}))>0) for k2=1:numel(Macros{k1,2}) if isfield(F.(Macros{k1,1}){1},Macros{k1,2}{k2}) FGS(n).(Macros{k1,2}{k2}) = F.(Macros{k1,1}){1}.(Macros{k1,2}{k2}); end end end end end else error('"%s" is not multiframe.', Header.Filename); end %========================================================================== % function DicomDictionary = ReadDicomDictionary(DictionaryFile) %========================================================================== function DicomDictionary = ReadDicomDictionary(DictionaryFile) if nargin<1, DictionaryFile = 'spm_dicom_dict.mat'; end try DicomDictionary = load(DictionaryFile); catch Problem fprintf('\nUnable to load the file "%s".\n', DictionaryFile); rethrow(Problem); end
[STATEMENT] lemma finite_insert_card : assumes "finite (\<Union>SS)" and "finite S" and "S \<inter> (\<Union>SS) = {}" shows "card (\<Union> (insert S SS)) = card (\<Union>SS) + card S" [PROOF STATE] proof (prove) goal (1 subgoal): 1. card (\<Union> (insert S SS)) = card (\<Union> SS) + card S [PROOF STEP] by (simp add: assms(1) assms(2) assms(3) card_Un_disjoint)
#reshaping data is comon task in data analysis #data reshaping involves rearrangement of the form, not the contents of the data #for the purpose of reshaping we divide vars. in 2 groups. 1st is identifier. #these vars. identify the unit of measurements that take place on they are ususally decrete and fixed by design #2nd is measured variable: represents what is measured on that unit. #melting and casting in R #reshape package is used under there are 2 func. melt() and cast() #1.melt() : it takes data in wide format and stacks a set of cols. into a single col. data. #the arguments to this fun. are data.frame(), id vars. and measured vars. #e.g : install reshape package use data ships apply function melt() id var = type and year library(reshape) library(MASS) data = head(ships,n=10) var=melt(data,id=c("type","year")) var #aggreagation occures whenthe combination of the variables in the cast function does not idenify individual observations #in this case cast function() reduces multiple values to a single value by suming up the vals in the value column #e.g : var1 = cast(var, type+year~variable,sum) var1 library(reshape2) dataf = head(airquality, n=20) dataf variable=melt(dataf,id.vars =c("Month","Day")) variable variable1 = dcast(variable, Month+Day~variable,sum) variable1 #in reshape2 package melt takes wide format data and converts it into long format data #while cast take long format data and converts it into wide format data #e.g : use reshape2 package #1. consider mtcars convert into long format by setting id var to cyl and gear #2. convert dataset to wide format by using mean as aggreagation function df = head(mtcars, n=20) df var=melt(df,id.vars =c("cyl","gear")) var var1 = dcast(var, cyl+gear~variable,mean) var1 var2 = acast(var,cyl+gear~variable, mean)
module Procedures import DataTypes import Environment %access public export isProcedure : PrimitiveLispFunc isProcedure [LispFunc _ _ _ _ _] = pure $ LispBool True isProcedure [LispPrimitiveFunc _ _] = pure $ LispBool True isProcedure [_] = pure $ LispBool False isProcedure args = Left $ NumArgs (MinMax 1 1) (cast $ length args) args procedurePrimitives : List (String, PrimitiveLispFunc) procedurePrimitives = [ ("procedure?", isProcedure) ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% MISCELLANEOUS SETTINGS/COMMANDS %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\balA}[1][1]{BAL$^\mathup{I}_{#1:#1}$\xspace} \newcommand{\unbalA}[1][n]{UNBAL$^\mathup{I}_{1:#1}$\xspace} \newcommand{\balB}[1][1]{BAL$^\mathup{II}_{#1:#1}$\xspace} \newcommand{\unbalB}[1][n]{UNBAL$^\mathup{II}_{#1:1}$\xspace} %% Add separator slide to the beginning of each section ==> \AtBeginSection[]{ \begin{frame}[standout, c]{~} %\vfill \usebeamerfont{title}% \textcolor{SpotColor}{\insertsectionhead} %\vfill \end{frame}% } %% Alternativelyy, add ``Outline'' slide to the beginning of each section ==> %\AtBeginSection[]{ % \begin{frame}[plain]{Outline} % \tableofcontents[currentsection] % \end{frame} %} %% <== \title{A~Template for Academic Presentations} %\subtitle{I~Prefer to Avoid Subtitles} \author[Smith, Smith, and Smith]{% Adam Smith\inst{a,\,c} \and % Set the name of the presenting coauthor in boldface: \alert{Janet Smith}\inst{b,\,c} \and Jeremiah Smith\inst{a} } % Author(s) \institute{% \\ \inst{a}\,University of Bonn, Germany \and \inst{b}\,University of Cologne, Germany \and \inst{c}\,Collaborative Research Center Transregio~224% } % Institution(s) \date{% \\ Name of the Inviting Institution/Seminar Series \\[\medskipamount] \textmd{\today}% } %%%%%%%%%%%%%%%%%%% %% TITLE SLIDE %% %%%%%%%%%%%%%%%%%%% \begin{frame}[standout]{~} \titlepage% \end{frame} \begin{frame}[standout]{Outline} \medskip \tableofcontents \end{frame} %%%%%%%%%%%%%%%%% %% MAIN PART %% %%%%%%%%%%%%%%%%% \section{Introduction} \begin{frame}{\titleprefix: Choice of a~Reasonable Aspect Ratio} When preparing a~presentation, we often do not know whether the native aspect ratio of the projector in the seminar room/lecture hall will be 4\,:\,3 or 16\,:\,9 (or 16\,:\,10). In this case, it may be a~good idea to choose an~\alert{intermediate aspect ratio}, see \url{https://github.com/josephwright/beamer/issues/497}. The idea behind this recommendation is that it minimizes the average loss of available space. Hence, these templates include a~presentation in the \alert{14\,:\,9 aspect ratio} (see \url{https://en.wikipedia.org/wiki/14:9_aspect_ratio}): while it is imperfect for probably every projector that you will encounter, it is good on average for all of them. (Please note that 14\,:\,9${}\mathrel{\dot{=}} 1.556$, which is pretty close to the ``officially'' recommended 20\,:\,13${}\mathrel{\dot{=}} 1.5385$.) \end{frame} \begin{frame}{\titleprefix} \begin{quote} Great Minds Discuss Ideas. \\ Average Minds Discuss Events. \\ Small Minds Discuss People. \\ \upshape ---\url{https://quoteinvestigator.com/2014/11/18/great-minds/} \end{quote} \heading{Background} \begin{itemize} \item Temporal discounting is key concept in economics. \item Normative model: exponential discounting. However, observed decisions are hard to explain \citep[e.g.,][]{Dohmen2012}. \item One alternative: the ``focusing model'' by \cite{Koszegi2013}. \end{itemize} \end{frame} \begin{frame}{\titleprefix} \heading{Research Question} \begin{itemize} \item The composition of latex and of typical rubbers is given below. \item Is it true that trees are regularly tapped and the coagulated latex which exudes is collected and worked up into rubber? \end{itemize} \pause \heading{Preview of the Results} \begin{itemize} \item There is no feasible method at present known of preventing the inclusion of the resin of the latex with the rubber during coagulation. \item[$\Rightarrow$\hspace{-2.5pt}] Although the separation of the resin from the solid caoutchouc by means of solvents is possible, it is not practicable or profitable commercially. \end{itemize} \end{frame} \begin{frame}{\titleprefix: Beamer \texttt{block} Environments} \begin{block}{Block title example: 0123456789 äöüß ÄÖÜ Often finding flowers in official fjords} The \texttt{block} environment. The \texttt{block} environment. The \texttt{block} environment. The \texttt{block} environment. The \texttt{block} environment. \insertblocktitle \end{block}% \begin{exampleblock}{An~Exemplary Example} I~am the \texttt{exampleblock} environment. Use me for examples. I~am really exemplary. \end{exampleblock} \begin{alertblock}{Summary: Things to remember} The \texttt{alertblock} environment. Use this environment for really important stuff. The \texttt{alertblock} environment. \end{alertblock} \end{frame} \begin{frame}{\titleprefix: Beamer \texttt{definition} and \texttt{theorem} Environments} \begin{definition}[A~Very, Very, Very, Very, Very, Very Long Name of a~Concept that Spans Two Lines] The \texttt{definition} environment. Upright. \end{definition} \begin{theorem}[Theorem's Name] The \texttt{theorem} environment. Italic. \end{theorem}% \begin{lemma}[Lemma's Name] The \texttt{lemma} environment. Italic. \end{lemma}% \begin{corollary}[Corollary's Name] The \texttt{corollary} environment. Italic. \end{corollary}% \begin{proof}[Proof of Theorem's Name] The \texttt{proof} environment. Upright. \end{proof} \end{frame} \section{Study Design} \begin{frame}{\titleprefix: Design of the Study} \begin{itemize} \item The latex of the best rubber plants furnishes from 20\% to 50\% of rubber. \item As the removal of the impurities of the latex is one of the essential points to be aimed at, it was thought that the use of a centrifugal machine to separate the caoutchouc as a cream from the watery part of the latex would prove to be a satisfactory process. \end{itemize} \end{frame} \begin{frame}{\titleprefix: Design of the Study} The watery portion of the latex soaks into the trunk, and the soft spongy rubber which remains is kneaded and pressed into lumps or balls: \begin{tabularx}{\textwidth}{@{} l @{\hspace{0.67em}} L @{}} \alert{\balA, \balB:} & Each payment transferred on single day. \\ \addlinespace \alert{\unbalA:} & Earlier payoff concentrated, while later payoff dispersed over ${n = 2}$, $4$, or $8$~dates. \\ \addlinespace \alert{\unbalB:} & Earlier payoff dispersed over ${n = 2}$, $4$, or $8$ dates, while later payoff concentrated. \end{tabularx} \end{frame} \begin{frame}{\titleprefix: Control Experiment} \begin{itemize} \item Control for alternative explanations. \item Many of the example sentences were taken from \url{http://sentence.yourdictionary.com/latex}. \end{itemize} \end{frame} \begin{frame}{\titleprefix: An~Example \texttt{enumerate} List} \blindlistlist[3]{enumerate}[4] \end{frame} \begin{frame}{\titleprefix: An~Example \texttt{itemize} List} \blindlistlist[3]{itemize}[4] \end{frame} \begin{frame}{\titleprefix: Some Example Text} \heading{Let's include some Greek letters: $\alpha$, $\beta$, $\sigma$} \blindtext $\alpha$, $\beta$, $\sigma$ \textsf{Test: \fontencoding{LGR}\selectfont qrst qrs t qrs\noboundary\ t}. Math mode, upright: $\mathord{\textup{\fontencoding{LGR}\selectfont s\noboundary}}$ \end{frame} \begin{frame}{\titleprefix: Some Example Formulas} \alert{Let's include some additional Greek letters: $\gamma$, $\phi$} \vspace{-\smallskipamount} \[ p(R, \phi) \sim \int_{-\infty}^\infty \frac { \tilde{W}_n(\gamma) \exp \left[ \imath R / a \left( \sqrt{k^2 a^2 - \gamma^2} \cos \phi \right) \right] } { (k^2 a^2 - \gamma^2)^{3/4} {H'}_n^{(1)} \left( \sqrt{k^2 a^2 - \gamma^2} \right) } \mathup{d}\gamma \] \pause \vspace{-\smallskipamount} \alert{Let's also include some upright Latin letters in math mode: $\mathup{d}$, $\mathup{e}$ (\hyperlink{Eulers_number}{next slide})} \[ \int_{a}^{b} f(x)\,\mathup{d}x = F(b) - F(a) \] \pause \vspace{-\medskipamount} \alert{Let's test the math bold style} \[ \mathbfup{\Sigma} \coloneqq \mathup{Cov}(\mathbf{X}) = \begin{bmatrix} \mathup{Var}(X_1) & \cdots & \mathup{Cov}(X_1, X_n) \\[-2.5pt] \vdots & \ddots & \vdots \\ \mathup{Cov}(X_n, X_1) & \cdots & \mathup{Var}(X_n) \end{bmatrix} \] \end{frame} \begin{frame}{\titleprefix: Additional Example Formulas (with upright $\mathup{\pi}$)} \def\Pr{\ensuremath{\mathbb{P}}} \def\rmd{\mathup{d}} Only variables are set in italics according to \caps{ISO} style---hence, we use upright ``$\rmd$,'' ``$\mathup{e}$,'' and ``$\mathup{\pi}$'' (\texttt{\textbackslash mathup\{d\}}, \texttt{\textbackslash mathup\{e\}}, and \texttt{\textbackslash mathup\{\textbackslash pi\}}, respectively). \begin{theorem}[Simplest form of the \emph{Central Limit Theorem}] \ifnum \serifbodyfont=0 \sffamily \fi Let $X_1, X_2, \cdots$ be a sequence of i.i.d. random variables with mean $0$ and variance $1$ on a~probability space $(\Omega, \mathcal{F}, \Pr)$. Then \hypertarget{Eulers_number}{} \[ \Pr\left(\frac{X_1+\cdots+X_n}{\sqrt{n}}\le y\right) \to \mathfrak{N}(y) \coloneqq \int_{-\infty}^y \frac{\mathup{e}^{-v^2/2}}{\sqrt{2\mathup{\pi}}}\,\mathup{d}v \quad\text{as} \quad n\to\infty, \] or, equivalently, letting $S_n \coloneqq \sum_1^n X_k$, \[ \mathbb{E} f\left(S_n/\sqrt{n}\right) \to \int_{-\infty}^\infty f(v) \frac{\mathup{e}^{-v^2/2}}{\sqrt{2\piup}}\,\mathup{d}v \quad \mbox{as $n\to\infty$, for every $f \in \mathup{b}\mathcal{C}(\mathbb{R})$.} \] \end{theorem} \end{frame} \newcommand{\mc}[2]{\multicolumn{1}{@{} c #2}{#1}} \begin{frame}{\titleprefix: An~\texttt{siunitx} Example Table} \begin{table} \caption{% Overview of the choice lists presented to subjects \\ \citep[adapted from][]{Gerhardt2017}.% } \label{tab:choice_lists}% \resizebox*{!}{0.59\textheight}{% \input{1_Example_Content/9_Appendix/siunitx_Example_Choice_Lists} } \end{table}% \end{frame} \section{Results} \begin{frame}{\titleprefix: Overview} \begin{enumerate} \item<1-> As a secondary function we may recognize the power of closing wounds, which results from the rapid coagulation of exuded latex in contact with the air: \begin{enumerate} \item<2-> In some cases (Allium, Convolvulaceae, etc.) rows of cells with latex-like contents occur. \item<2-> However, the walls separating the individual cells do not break down. \end{enumerate} \item<3-> The rows of cells from which the laticiferous vessels are formed can be distinguished (6.3~p.p. vs. 2.6~p.p.; ${p < 0.01}$). \end{enumerate} \end{frame} \begin{frame}{\titleprefix: Our Main Results} The charts are taken from \cite{Dertwinkel-Kalt2017}. \begin{figure} \begin{minipage}[t]{\textwidth} \begin{minipage}[t]{0.46\textwidth} \Large\textbf{A} \textcolor{SpotColor}{\hspace{0.375in} {\small \textbf{Result~1}}} \\[15pt] \includegraphics[width=1.643in, trim={3.75in 1.75in 3.75in 2in}, clip] {1_Example_Content/Images/average_pb_fb.png} \\ \centering \footnotesize \sffamily $\text{\balA} - \text{\unbalA[\bullet]}$ \end{minipage} \hspace{2pt} \begin{minipage}[t]{0.46\textwidth} \Large\textbf{B} \textcolor{SpotColor}{\hspace{0.39in} {\small \textbf{Result~2}}} \\[15pt] \includegraphics[width=1.710in, trim={3.75in 1.75in 3.75in 2in}, clip] {1_Example_Content/Images/average_8_4_2.png} \\ \centering \footnotesize \sffamily $\text{\unbalB[\bullet]} - \text{\balB}$ \end{minipage} \\ \end{minipage} \caption{% \textbf{(A)}~Difference between treatment and control condition. \textbf{(B)}~Heterogeneity.% } \end{figure} \end{frame} \begin{frame}{\titleprefix: Main vs. Control Experiment} Rule out some alternative explanations. \bigskip \centering {\small \alert{Result~3}} \\[15pt] % trim={<left> <lower> <right> <upper>} \includegraphics[height=0.5\textheight, trim={3.75in 1.75in 3.75in 2in}, clip] {1_Example_Content/Images/average_main_control.png} \end{frame} \begin{frame}{\titleprefix: Another \texttt{siunitx} Example Table} \begin{table} \caption{% Example of a~regression table \citep[adapted from][]{Gerhardt2017}. Never forget to mention the dependent variable!% } \label{tab:lin_reg_interactions} \resizebox*{!}{0.59\textheight}{% \mdseries\selectfont \input{1_Example_Content/9_Appendix/siunitx_Example_Regression} } \end{table} \end{frame} \begin{frame}{\titleprefix: Yet Another \texttt{siunitx} Example Table} \begin{table} \caption{Figure grouping via \texttt{siunitx} in a~table.} \input{1_Example_Content/9_Appendix/siunitx_Example_Figure_Grouping} \end{table} \end{frame} \section{Discussion} \begin{frame}{\titleprefix} \begin{itemize}[<+->] \item The latex exhibits a neutral, acid, or alkaline reaction, depending on the plant from which it was obtained. \item The latex is therefore usually allowed to coagulate on the tree \citep{Koszegi2013}. \begin{itemize} \item<.->[$\Rightarrow$] The latex, which is usually coagulated by standing or by heating, is obtained from incisions. \end{itemize} \item See also \cite{Bordalo2013, Dohmen2012}. \end{itemize} \end{frame} \begin{frame}{\titleprefix: Conclusion} \begin{itemize} \item When exposed to air, the latex gradually undergoes putrefactive changes accompanied by coagulation. \item The addition of a small quantity of ammonia or of formalin to some latices has the effect of preserving them. \item There is, however, reason to believe the following. \item The coagulation of latex into rubber is not mainly of this character. \end{itemize} \end{frame} \begin{frame}{\titleprefix: An Automated Animation} The automated transition to the next slide (=~page in the PDF document) only works in full-screen mode. \begin{itemize} \item The feature is available in Adobe Acrobat and Acrobat Reader. \item Unfortunately, it is (currently, \today) not available in macOS Preview, Skim, and SumatraPDF. \end{itemize} \transduration{0.25}% \only<12>{\transduration{}}\hypertarget<1>{animation_start}{}% \foreach \n [evaluate=\n as \angle using \n * 30] in {0, ..., 12}{ \only<\n>{ \begin{figure} \begin{tikzpicture} \draw[draw=none, use as bounding box](-1, 0) rectangle (1, 2); \filldraw[fill=SpotColor, draw=none] (0,1) -- (0,2) arc (90:90-\angle:1cm) -- cycle; \end{tikzpicture} \caption{Step~\n---Angle: \angle\textdegree} \end{figure} } }% \vspace{-\bigskipamount} \hyperlink<12>{animation_start}{\beamerreturnbutton{Back to the start}} \end{frame} \begin{frame}[allowframebreaks]{\titleprefix: Testing the \texttt{allowframebreaks} option} Let's test automatic numbering with the \texttt{allowframebreaks} option. On this slide, \textbf{no} number should be included in the frame title. \end{frame} \begin{frame}[allowframebreaks]{\titleprefix: Testing the \texttt{allowframebreaks} option} \renewcommand{\blindmarkup}[1]{\emph{#1}} Let's test automatic numbering with the \texttt{allowframebreaks} option. On this slide, ``(1/3)'' should appear in the frame title. \blindtext \parstart{\framebreak} \Blindtext[2] \end{frame} %%%%%%%%%%%%%%%%%% %% REFERENCES %% %%%%%%%%%%%%%%%%%% \section{\refname} %\renewcommand\bibsection{} % % To prevent ``References'' from appearing twice in the navigation bar \begin{frame}[allowframebreaks]{\insertsection} \begin{refcontext}[sorting=nyt] % Sort BIBLIOGRAPHY by alphabet (while CITATIONS are sorted by year) \printbibliography[heading=none] \end{refcontext} %% Only when using BibTeX instead of BibLaTeX ==> %\bibliographystyle{0_0_Preamble/aea_doi_url_href} %\bibliography{Library} %% <== \end{frame} %%%%%%%%%%%%%%%% %% APPENDIX %% %%%%%%%%%%%%%%%% \begin{appendix} \section[Appendix\newline \textmd{Backup Slides}]{Appendix} \begin{frame}[label=model] \frametitle{\insertsection: Modeling Concentration Bias} Subjects consider a sequences of consequences $\boldsymbol{c}$ from choice set $\boldsymbol{C}$. %Focusing theory augments discounted utility (constant, hyperbolic, \dots) through an~additional weight \highlight{$g[\cdot]$} on the instantaneous utility function. \begin{itemize} \item \alert{Standard discounted utility:} Suppose that the instantaneous utility function $u$ satisfies ${u'>0}$ and ${u''\leq 0}$, and that earlier consequences are preferred over later consequences of the same magnitude, i.e., ${D(t)\leq 1}$: \item[] ${U}(\boldsymbol{c}\phantom{, \boldsymbol{C}}) \coloneqq \sum_{t=1}^{T} \phantom{g_t} D(t)\,u(c_t)$, \quad where, e.g., \quad $D(t) = \delta^t$ or $D(t) = \frac{1}{1 + k\,t}$. %$\beta \delta^t$. \medskip \item \only<1->{\alert{Focusing model \citep{Koszegi2013}:}} \item[]<1-> $\tilde{U}(\boldsymbol{c}\highlight{, \boldsymbol{C}}) \coloneqq \sum_{t=1}^{T} \highlight{g_t}\,D(t)\,u(c_t)$, \quad where \\[3pt] \highlight{$g_t \equiv % g[\Delta_t(C)]$, $\Delta_t(C) = g[\max_{\boldsymbol{c}'\in \boldsymbol{C}} %D(t) u(c'_t) - \min_{\boldsymbol{c}'\in \boldsymbol{C}} %D(t) u(c'_t)]$} \smallskip \begin{itemize} \item<1-> Weighting function \highlight{$g[\cdot]$} increases in difference of maximum and minimum possible utility at a~point in time. \item<1-> Subjects overweight intertemporal consequences with a greater range. %\item<3-> Subjects overweight intertemporal consequences with a greater range \end{itemize} \end{itemize} \end{frame} \end{appendix}
using Revise includet("src/Spring.jl") IArray = InternalArray # 3. Validating the solution -------------------------------------------------------------- const step = 1e-3 const nit = Int(40/step) # round to avoid small rounding errors # We define a problem with no friction prob = SpringProblem(p0 = 0.8, v0 = 0, m = 1, k = 1.5) x = eulermethod(prob, step, nit) timeline = [prob.t0 + i*step for i in 1:length(x)] plot(timeline, IArray(x, 1), label = "standard") # 5. Finding the frequency of the unforced movement --------------------------------------- # Empirically, We can see in the plot that the distance between two # equal values (!= 0) is aproximately 5. # Let's get the actual distance from our solution. p0 = 1 # Reference point P0 = -1 # Next equal point for i = 50:length(x) # We avoid the first numbers because they are very close if norm(x[p0][1]-x[i][1]) < 1e-3 P0 = i break end end if P0 != -1 period = timeline[P0]-timeline[p0] # Is similar to what we observed freq = 1/period end # 6. Using this frequency to force it ----------------------------------------------------- cond_prob = SpringProblem(p0 = 0.8, v0 = 0, m = 1, k = 1.5, A = 1, ω = 2*π*freq) y = eulermethod(cond_prob, step, nit) plot!(timeline, IArray(y, 1), label = "conditioned") savefig("media/spring_frequency_unforced.png")
[STATEMENT] lemma parts_insert_Number [simp]: "parts (insert (Number N) H) = insert (Number N) (parts H)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. parts (insert (Number N) H) = insert (Number N) (parts H) [PROOF STEP] apply (rule parts_insert_eq_I) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>x. x \<in> parts (insert (Number N) H) \<Longrightarrow> x \<in> insert (Number N) (parts H) [PROOF STEP] apply (erule parts.induct, auto) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
A set $S$ is open if and only if for every $x \in S$, there exists an $\epsilon > 0$ such that the open ball of radius $\epsilon$ centered at $x$ is contained in $S$.
! ################################################################################################################################## ! Begin MIT license text. ! _______________________________________________________________________________________________________ ! Copyright 2019 Dr William R Case, Jr ([email protected]) ! Permission is hereby granted, free of charge, to any person obtaining a copy of this software and ! associated documentation files (the "Software"), to deal in the Software without restriction, including ! without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ! copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to ! the following conditions: ! The above copyright notice and this permission notice shall be included in all copies or substantial ! portions of the Software and documentation. ! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ! OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN ! THE SOFTWARE. ! _______________________________________________________________________________________________________ ! End MIT license text. SUBROUTINE WRITE_INTEGER_VEC ( ARRAY_DESCR, INT_VEC, NROWS ) ! Writes an integer vector to F06 in a format that has 10 terms across the page (repeated until vector is completely written) USE PENTIUM_II_KIND, ONLY : BYTE, LONG USE IOUNT1, ONLY : WRT_ERR, WRT_LOG, F04, F06 USE SCONTR, ONLY : BLNK_SUB_NAM USE TIMDAT, ONLY : TSEC USE SUBR_BEGEND_LEVELS, ONLY : WRITE_MATRIX_BY_COLS_BEGEND USE WRITE_INTEGER_VEC_USE_IFs ! Corrected 2019/07/14 (was WRITE_VECTOR_USE_IFs) IMPLICIT NONE CHARACTER(LEN=LEN(BLNK_SUB_NAM)):: SUBR_NAME = 'WRITE_INTEGER_VEC' CHARACTER(LEN=*), INTENT(IN) :: ARRAY_DESCR ! Character descriptor of the integer array to be printed CHARACTER(131*BYTE) :: HEADER ! MAT_DESCRIPTOR centered in a line of output INTEGER(LONG), INTENT(IN) :: NROWS ! Number of rows in matrix MATOUT INTEGER(LONG), INTENT(IN) :: INT_VEC(NROWS) ! Integer vector to write out INTEGER(LONG) :: I,J ! DO loop indices INTEGER(LONG) :: INT_VEC_LINE(10) ! 10 members of INT_VEC INTEGER(LONG) :: NUM_LEFT ! Count of the number of rows of INT_VEC left to write out INTEGER(LONG) :: PAD ! Number of spaces to pad in HEADER to center MAT_DESCRIPTOR INTEGER(LONG), PARAMETER :: SUBR_BEGEND = WRITE_MATRIX_BY_COLS_BEGEND INTRINSIC :: LEN ! ********************************************************************************************************************************** IF (WRT_LOG >= SUBR_BEGEND) THEN CALL OURTIM WRITE(F04,9001) SUBR_NAME,TSEC 9001 FORMAT(1X,A,' BEGN ',F10.3) ENDIF ! ********************************************************************************************************************************** PAD = (132 - LEN(ARRAY_DESCR))/2 HEADER(1:) = ' ' HEADER(PAD+1:) = ARRAY_DESCR WRITE(F06,101) HEADER NUM_LEFT = NROWS DO I=1,NROWS,10 IF (NUM_LEFT >= 10) THEN DO J=1,10 INT_VEC_LINE(J) = INT_VEC(I+J-1) ENDDO WRITE(F06,103) (INT_VEC_LINE(J),J=1,10) ELSE DO J=1,NUM_LEFT INT_VEC_LINE(J) = INT_VEC(I+J-1) ENDDO WRITE(F06,103) (INT_VEC_LINE(J),J=1,NUM_LEFT) ENDIF NUM_LEFT = NUM_LEFT - 10 ENDDO WRITE(F06,*) ! ********************************************************************************************************************************** IF (WRT_LOG >= SUBR_BEGEND) THEN CALL OURTIM WRITE(F04,9002) SUBR_NAME,TSEC 9002 FORMAT(1X,A,' END ',F10.3) ENDIF RETURN ! ********************************************************************************************************************************** 101 FORMAT(1X,/,1X,A,/) 103 FORMAT(16X,10(I10)) ! ********************************************************************************************************************************** END SUBROUTINE WRITE_INTEGER_VEC
import category_theory.category import category_theory.functor import category_theory.types import help_functions import tactic.tidy namespace diagram_lemmas universe u open classical function set category_theory help_functions local notation f ` ⊚ ` :80 g:80 := category_struct.comp g f variables {F : Type u ⥤ Type u} {A B C : Type u} lemma diagram_injective (f: B ⟶ A) (g: C ⟶ A) (inj : injective f) : (∃! h : C ⟶ B , f ∘ h = g) ↔ (range g ⊆ range f) := iff.intro begin tidy end begin assume im, let G : C → B → Prop := λ c b , g c = f b, have G1 : ∀ c : C , ∃ b : B, G c b := have G10 : ∀ a : A , a ∈ range g → a ∈ range f := im, have G11 : ∀ c : C , g c ∈ range f := λ c , have G110 : g c ∈ range g := by tidy, G10 (g c) G110, have G12 : ∀ c : C , ∃ b : B , g c = f b := λ c : C, have G110 : g c ∈ range f := G11 c, by tidy, G12, have G2 : ∀ c : C , ∃! b : B, G c b := λ c, have G20 : G c (some (G1 c)) := some_spec (G1 c), have G21 : f (some (G1 c)) = g c := show f (some (G1 c)) = g c, from have G210 : _ := G c (some (G1 c)), by tidy, have G22 : ∀ b₁ : B, G c b₁ → b₁ = (some (G1 c)) := λ b₁ : B, assume cbG : G c b₁, show b₁ = (some (G1 c)), from have G220 : f b₁ = g c := by tidy, have G221 : f (some (G1 c)) = f b₁ := by rw [G21 , G220], eq.symm (inj G221), by tidy, let h : C ⟶ B := graph_to_map G G2, have G3 : ∀ c , (f ∘ h) c = g c:= assume c, have G31 : h c = some (G2 c) := by tidy, have G32 : _ := some_spec (G2 c), have G33 : G c (some (G2 c)) := and.left G32, by tidy, have G4 : f ∘ h = g := funext G3, have G5 : ∀ h₁ : C ⟶ B , f ∘ h₁ = g → h₁ = h := assume h₁ fh, have G51 : f ∘ h₁ = f ∘ h := by rw [fh , G4], have G511 : f ⊚ h₁ = f ⊚ h := by tidy, have G52 : mono f := iff.elim_right (mono_iff_injective f) inj, have G53 : _ := G52.right_cancellation, G53 h₁ h G511, exact exists_unique.intro h G4 G5 end lemma diagram_surjective (f : A ⟶ B) (g : A ⟶ C) (sur: surjective f) : (∃! h : B ⟶ C , h ∘ f = g) ↔ (sub_kern f g) := iff.intro begin assume ex : ∃ h , (h ∘ f = g ∧ ∀ h₁, h₁ ∘ f = g → h₁ = h), show ∀ a₁ a₂ , kern f a₁ a₂ → kern g a₁ a₂, cases ex with h spec, exact spec.1 ▸ kern_comp f h end begin assume k : ∀ a₁ a₂ , f a₁ = f a₂ → g a₁ = g a₂, let h : B → C := λ b : B, g (surj_inv sur b), have s2 : ∀ a , f (surj_inv sur (f a)) = f a := assume a , surj_inv_eq sur (f a), have s3 : ∀ a , g (surj_inv sur (f a)) = g a := assume a , k (surj_inv sur (f a)) a (s2 a), have s4 : ∀ a , h (f a) = g a := assume a, show g (surj_inv sur (f a)) = g a, from s3 a, have s5: h ∘ f = g := funext s4, have s6 : ∀ h₂ :B → C , h₂ ∘ f = g → h₂ = h := begin assume h₂ h2, have s61 : h₂ ∘ f = h ∘ f := by simp [s5 , h2], haveI s62 : epi f := (epi_iff_surjective f).2 sur, have left_cancel := s62.left_cancellation, have s63 : h₂ = h := left_cancel h₂ h s61, tidy end, exact exists_unique.intro h s5 s6, end end diagram_lemmas
{-# LANGUAGE FlexibleContexts #-} module Evaluator.Numerical where import LispTypes import Environment import Evaluator.Operators import Data.Complex import Data.Ratio import Data.Foldable import Data.Fixed import Numeric import Control.Monad.Except numericalPrimitives :: [(String, [LispVal] -> ThrowsError LispVal)] numericalPrimitives = -- Binary Numerical operations [("+", numAdd), ("-", numSub), ("*", numMul), ("/", numDivide), ("modulo", numMod), ("quotient", numericBinop quot), ("remainder", numericBinop rem), ("abs", numAbs), ("ceiling", numCeil), ("floor", numFloor), ("round", numRound), ("truncate", numTruncate), -- Conversion ("number->string", numToString), -- Numerical Boolean operators ("=", numBoolBinop (==)), ("<", numBoolBinop (<)), (">", numBoolBinop (>)), ("/=", numBoolBinop (/=)), (">=", numBoolBinop (>=)), ("<=", numBoolBinop (<=)), -- Scientific functions ("sqrt", sciSqrt), ("acos", sciAcos), ("asin", sciAsin), ("atan", sciAtan), ("cos", sciCos), ("sin", sciSin), ("tan", sciTan), -- ("acosh", sciAcosh), -- ("asinh", sciAsinh), -- ("atanh", sciAtanh), -- ("cosh", sciCosh), -- ("sinh", sciSinh), -- ("tanh", sciTanh), ("exp", sciExp), ("expt", sciExpt), ("log", sciLog), -- Complex numbers operations -- ("angle", cAngle), ("real-part", cRealPart), ("imag-part", cImagPart), ("magnitude", cMagnitude), ("make-polar", cMakePolar), -- ("make-rectangular", cMakeRectangular), -- Type testing functions ("number?", unaryOp numberp), ("integer?", unaryOp integerp), ("float?", unaryOp floatp), ("ratio?", unaryOp ratiop), ("complex?", unaryOp complexp)] -- |Type testing functions numberp, integerp, floatp, ratiop, complexp :: LispVal -> LispVal integerp (Number _) = Bool True integerp _ = Bool False numberp (Number _) = Bool True numberp (Float _) = Bool True numberp (Ratio _) = Bool True numberp (Complex _) = Bool True numberp _ = Bool False floatp (Float _) = Bool True floatp _ = Bool False ratiop (Ratio _) = Bool True ratiop _ = Bool False complexp (Complex _) = Bool True complexp _ = Bool False -- |Absolute value numAbs :: [LispVal] -> ThrowsError LispVal numAbs [Number x] = return $ Number $ abs x numAbs [Float x] = return $ Float $ abs x numAbs [Complex x] = return $ Complex $ abs x -- Calculates the magnitude numAbs [Ratio x] = return $ Ratio $ abs x numAbs [x] = throwError $ TypeMismatch "number" x numAbs l = throwError $ NumArgs 1 l -- |Ceiling, floor, round and truncate numCeil, numFloor, numRound, numTruncate :: [LispVal] -> ThrowsError LispVal numCeil [Number x] = return $ Number $ ceiling $ fromInteger x numCeil [Ratio x] = return $ Number $ ceiling $ fromRational x numCeil [Float x] = return $ Number $ ceiling x numCeil [Complex x] = if imagPart x == 0 then return $ Number $ ceiling $ realPart x else throwError $ TypeMismatch "integer or float" $ Complex x numCeil [x] = throwError $ TypeMismatch "integer or float" x numCeil l = throwError $ NumArgs 1 l numFloor [Number x] = return $ Number $ floor $ fromInteger x numFloor [Ratio x] = return $ Number $ floor $ fromRational x numFloor [Float x] = return $ Number $ floor x numFloor [Complex x] = if imagPart x == 0 then return $ Number $ floor $ realPart x else throwError $ TypeMismatch "integer or float" $ Complex x numFloor [x] = throwError $ TypeMismatch "integer or float" x numFloor l = throwError $ NumArgs 1 l numRound [Number x] = return $ Number $ round $ fromInteger x numRound [Ratio x] = return $ Number $ round $ fromRational x numRound [Float x] = return $ Number $ round x numRound [Complex x] = if imagPart x == 0 then return $ Number $ round $ realPart x else throwError $ TypeMismatch "integer or float" $ Complex x numRound [x] = throwError $ TypeMismatch "integer or float" x numRound l = throwError $ NumArgs 1 l numTruncate [Number x] = return $ Number $ truncate $ fromInteger x numTruncate [Ratio x] = return $ Number $ truncate $ fromRational x numTruncate [Float x] = return $ Number $ truncate x numTruncate [Complex x] = if imagPart x == 0 then return $ Number $ truncate $ realPart x else throwError $ TypeMismatch "integer or float" $ Complex x numTruncate [x] = throwError $ TypeMismatch "integer or float" x numTruncate l = throwError $ NumArgs 1 l -- |foldl1M is like foldlM but has no base case foldl1M :: Monad m => (a -> a -> m a) -> [a] -> m a foldl1M f (x : xs) = foldlM f x xs foldl1M _ _ = error "unexpected error in foldl1M" -- | Sum numbers numAdd :: [LispVal] -> ThrowsError LispVal numAdd [] = return $ Number 0 numAdd l = foldl1M (\ x y -> numCast [x, y] >>= go) l where go (List [Number x, Number y]) = return $ Number $ x + y go (List [Float x, Float y]) = return $ Float $ x + y go (List [Ratio x, Ratio y]) = return $ Ratio $ x + y go (List [Complex x, Complex y]) = return $ Complex $ x + y go _ = throwError $ Default "unexpected error in (+)" -- | Subtract numbers numSub :: [LispVal] -> ThrowsError LispVal numSub [] = throwError $ NumArgs 1 [] numSub [Number x] = return $ Number $ -1 * x numSub [Float x] = return $ Float $ -1 * x numSub [Ratio x] = return $ Ratio $ -1 * x numSub [Complex x] = return $ Complex $ -1 * x numSub l = foldl1M (\ x y -> numCast [x, y] >>= go) l where go (List [Number x, Number y]) = return $ Number $ x - y go (List [Float x, Float y]) = return $ Float $ x - y go (List [Ratio x, Ratio y]) = return $ Ratio $ x - y go (List [Complex x, Complex y]) = return $ Complex $ x - y go _ = throwError $ Default "unexpected error in (-)" -- | Multiply numbers numMul :: [LispVal] -> ThrowsError LispVal numMul [] = return $ Number 1 numMul l = foldl1M (\ x y -> numCast [x, y] >>= go) l where go (List [Number x, Number y]) = return $ Number $ x * y go (List [Float x, Float y]) = return $ Float $ x * y go (List [Ratio x, Ratio y]) = return $ Ratio $ x * y go (List [Complex x, Complex y]) = return $ Complex $ x * y go _ = throwError $ Default "unexpected error in (*)" -- |Divide two numbers numDivide :: [LispVal] -> ThrowsError LispVal numDivide [] = throwError $ NumArgs 1 [] numDivide [Number 0] = throwError DivideByZero numDivide [Ratio 0] = throwError DivideByZero numDivide [Number x] = return $ Ratio $ 1 / fromInteger x numDivide [Float x] = return $ Float $ 1.0 / x numDivide [Ratio x] = return $ Ratio $ 1 / x numDivide [Complex x] = return $ Complex $ 1 / x numDivide l = foldl1M (\ x y -> numCast [x, y] >>= go) l where go (List [Number x, Number y]) | y == 0 = throwError DivideByZero | mod x y == 0 = return $ Number $ div x y -- Integer division | otherwise = return $ Ratio $ fromInteger x / fromInteger y go (List [Float x, Float y]) | y == 0 = throwError DivideByZero | otherwise = return $ Float $ x / y go (List [Ratio x, Ratio y]) | y == 0 = throwError DivideByZero | otherwise = return $ Ratio $ x / y go (List [Complex x, Complex y]) | y == 0 = throwError DivideByZero | otherwise = return $ Complex $ x / y go _ = throwError $ Default "unexpected error in (/)" -- |Numerical modulus numMod :: [LispVal] -> ThrowsError LispVal numMod [] = return $ Number 1 numMod l = foldl1M (\ x y -> numCast [x, y] >>= go) l where go (List [Number a, Number b]) = return $ Number $ mod' a b go (List [Float a, Float b]) = return $ Float $ mod' a b go (List [Ratio a, Ratio b]) = return $ Ratio $ mod' a b -- #TODO implement modulus for complex numbers go (List [Complex a, Complex b]) = throwError $ Default "modulus is not yet implemented for complex numbers" go _ = throwError $ Default "unexpected error in (modulus)" -- | Boolean operator numBoolBinop :: (LispVal -> LispVal -> Bool) -> [LispVal] -> ThrowsError LispVal numBoolBinop op [] = throwError $ Default "need at least two arguments" numBoolBinop op [x] = throwError $ Default "need at least two arguments" numBoolBinop op [x, y] = numCast [x, y] >>= go op where go op (List [x@(Number _), y@(Number _)]) = return $ Bool $ x `op` y go op (List [x@(Float _), y@(Float _)]) = return $ Bool $ x `op` y go op (List [x@(Ratio _), y@(Ratio _)]) = return $ Bool $ x `op` y go op (List [x@(Complex _), y@(Complex _)]) = return $ Bool $ x `op` y go op _ = throwError $ Default "unexpected error in boolean operation" -- |Accept two numbers and cast one as the appropriate type numCast :: [LispVal] -> ThrowsError LispVal -- Same type, just return the two numbers numCast [a@(Number _), b@(Number _)] = return $ List [a,b] numCast [a@(Float _), b@(Float _)] = return $ List [a,b] numCast [a@(Ratio _), b@(Ratio _)] = return $ List [a,b] numCast [a@(Complex _), b@(Complex _)] = return $ List [a,b] -- First number is an integer numCast [Number a, b@(Float _)] = return $ List [Float $ fromInteger a, b] numCast [Number a, b@(Ratio _)] = return $ List [Ratio $ fromInteger a, b] numCast [Number a, b@(Complex _)] = return $ List [Complex $ fromInteger a, b] -- First number is a float numCast [a@(Float _), Number b] = return $ List [a, Float $ fromInteger b] numCast [a@(Float _), Ratio b] = return $ List [a, Float $ fromRational b] numCast [Float a, b@(Complex _)] = return $ List [Complex $ a :+ 0, b] -- First number is a rational numCast [a@(Ratio _), Number b] = return $ List [a, Ratio $ fromInteger b] numCast [Ratio a, b@(Float _)] = return $ List [Float $ fromRational a, b] numCast [Ratio a, b@(Complex _)] = return $ List [Complex $ fromInteger (numerator a) / fromInteger (denominator a), b] -- First number is a complex numCast [a@(Complex _), Number b] = return $ List [a, Complex $ fromInteger b] numCast [a@(Complex _), Float b] = return $ List [a, Complex $ b :+ 0] numCast [a@(Complex _), Ratio b] = return $ List [a, Complex $ fromInteger (numerator b) / fromInteger (denominator b)] -- Error cases numCast [a, b] = case a of Number _ -> throwError $ TypeMismatch "number" b Float _ -> throwError $ TypeMismatch "number" b Ratio _ -> throwError $ TypeMismatch "number" b Complex _ -> throwError $ TypeMismatch "number" b _ -> throwError $ TypeMismatch "number" a numCast _ = throwError $ Default "unknown error in numCast" -- |Take a primitive Haskell Integer function and wrap it -- with code to unpack an argument list, apply the function to it -- and return a numeric value numericBinop :: (Integer -> Integer -> Integer) -> [LispVal] -> ThrowsError LispVal -- Throw an error if there's only one argument numericBinop op val@[_] = throwError $ NumArgs 2 val -- Fold the operator leftway if there are enough args numericBinop op params = mapM unpackNum params >>= return . Number . foldl1 op -- |Convert a Number to a String numToString :: [LispVal] -> ThrowsError LispVal numToString [Number x] = return $ String $ show x numToString [Float x] = return $ String $ show x numToString [Ratio x] = return $ String $ show x numToString [Complex x] = return $ String $ show x numToString [x] = throwError $ TypeMismatch "number" x numToString badArgList = throwError $ NumArgs 2 badArgList -- | Trigonometric functions sciCos, sciSin, sciTan, sciAcos, sciAsin, sciAtan :: [LispVal] -> ThrowsError LispVal -- | Cosine of a number sciCos [Number x] = return $ Float $ cos $ fromInteger x sciCos [Float x] = return $ Float $ cos x sciCos [Ratio x] = return $ Float $ cos $ fromRational x sciCos [Complex x] = return $ Complex $ cos x sciCos [notnum] = throwError $ TypeMismatch "number" notnum sciCos badArgList = throwError $ NumArgs 1 badArgList -- | Sine of a number sciSin [Number x] = return $ Float $ sin $ fromInteger x sciSin [Float x] = return $ Float $ sin x sciSin [Ratio x] = return $ Float $ sin $ fromRational x sciSin [Complex x] = return $ Complex $ sin x sciSin [notnum] = throwError $ TypeMismatch "number" notnum sciSin badArgList = throwError $ NumArgs 1 badArgList -- | Tangent of a number sciTan [Number x] = return $ Float $ tan $ fromInteger x sciTan [Float x] = return $ Float $ tan x sciTan [Ratio x] = return $ Float $ tan $ fromRational x sciTan [Complex x] = return $ Complex $ tan x sciTan [notnum] = throwError $ TypeMismatch "number" notnum sciTan badArgList = throwError $ NumArgs 1 badArgList -- | Arccosine of a number sciAcos [Number x] = return $ Float $ acos $ fromInteger x sciAcos [Float x] = return $ Float $ acos x sciAcos [Ratio x] = return $ Float $ acos $ fromRational x sciAcos [Complex x] = return $ Complex $ acos x sciAcos [notnum] = throwError $ TypeMismatch "number" notnum sciAcos badArgList = throwError $ NumArgs 1 badArgList -- | Sine of a number sciAsin [Number x] = return $ Float $ asin $ fromInteger x sciAsin [Float x] = return $ Float $ asin x sciAsin [Ratio x] = return $ Float $ asin $ fromRational x sciAsin [Complex x] = return $ Complex $ asin x sciAsin [notnum] = throwError $ TypeMismatch "number" notnum sciAsin badArgList = throwError $ NumArgs 1 badArgList -- | Tangent of a number sciAtan [Number x] = return $ Float $ atan $ fromInteger x sciAtan [Float x] = return $ Float $ atan x sciAtan [Ratio x] = return $ Float $ atan $ fromRational x sciAtan [Complex x] = return $ Complex $ atan x sciAtan [notnum] = throwError $ TypeMismatch "number" notnum sciAtan badArgList = throwError $ NumArgs 1 badArgList -- #TODO Implement hyperbolic functions -- Ask teacher -- | Hyperbolic functions -- sciAcosh, sciAsinh, sciAtanh, sciCosh, sciSinh, sciTanh :: [LispVal] -> ThrowsError LispVal -- Misc. Scientific primitives sciSqrt, sciExp, sciExpt, sciLog :: [LispVal] -> ThrowsError LispVal -- | Square root of a number sciSqrt [Number x] = return $ Float $ sqrt $ fromInteger x sciSqrt [Float x] = return $ Float $ sqrt x sciSqrt [Ratio x] = return $ Float $ sqrt $ fromRational x sciSqrt [Complex x] = return $ Complex $ sqrt x sciSqrt [notnum] = throwError $ TypeMismatch "number" notnum sciSqrt badArgList = throwError $ NumArgs 1 badArgList -- | Return e to the power of x sciExp [Number x] = return $ Float $ exp $ fromInteger x sciExp [Float x] = return $ Float $ exp x sciExp [Ratio x] = return $ Float $ exp $ fromRational x sciExp [Complex x] = return $ Complex $ exp x sciExp [notnum] = throwError $ TypeMismatch "number" notnum sciExp badArgList = throwError $ NumArgs 1 badArgList -- | Return x to the power of y sciExpt [x, y] = numCast [x, y] >>= go where go (List [Number x, Number y]) = return $ Number $ round $ (fromInteger x) ** (fromInteger y) go (List [Float x, Float y]) = return $ Float $ x ** y go (List [Ratio x, Ratio y]) = return $ Float $ (fromRational x) ** (fromRational y) go (List [Complex x, Complex y]) = return $ Complex $ x ** y go _ = throwError $ Default "unexpected error in (-)" sciExpt badArgList = throwError $ NumArgs 2 badArgList -- | Return the natural logarithm of x sciLog [Number x] = return $ Float $ log $ fromInteger x sciLog [Float x] = return $ Float $ log x sciLog [Ratio x] = return $ Float $ log $ fromRational x sciLog [Complex x] = return $ Complex $ log x sciLog [notnum] = throwError $ TypeMismatch "number" notnum sciLog badArgList = throwError $ NumArgs 1 badArgList -- #TODO implement phase (angle) -- Ask teacher how to convert phase formats from haskell to guile scheme -- | Complex number functions cRealPart, cImagPart, cMakePolar, cMagnitude :: [LispVal] -> ThrowsError LispVal -- | Real part of a complex number cRealPart [Number x] = return $ Number $ fromInteger x cRealPart [Float x] = return $ Float x cRealPart [Ratio x] = return $ Float $ fromRational x cRealPart [Complex x] = return $ Float $ realPart x cRealPart [notnum] = throwError $ TypeMismatch "number" notnum cRealPart badArgList = throwError $ NumArgs 1 badArgList -- | Imaginary part of a complex number cImagPart [Number x] = return $ Number 0 cImagPart [Float x] = return $ Number 0 cImagPart [Ratio x] = return $ Number 0 cImagPart [Complex x] = return $ Float $ imagPart x cImagPart [notnum] = throwError $ TypeMismatch "number" notnum cImagPart badArgList = throwError $ NumArgs 1 badArgList -- | Form a complex number from polar components of magnitude and phase. cMakePolar [mag, p] = numCast [mag, p] >>= go where go (List [Number mag, Number p]) | mag == 0 = return $ Number 0 | p == 0 = return $ Number mag | otherwise = return $ Complex $ mkPolar (fromInteger mag) (fromInteger p) go (List [Float mag, Float p]) | mag == 0 = return $ Number 0 | p == 0 = return $ Float mag | otherwise = return $ Complex $ mkPolar mag p go (List [Ratio mag, Ratio p]) | mag == 0 = return $ Number 0 | p == 0 = return $ Float (fromRational mag) | otherwise = return $ Complex $ mkPolar (fromRational mag) (fromRational p) go val@(List [Complex mag, Complex p]) = throwError $ TypeMismatch "real" val go _ = throwError $ Default "unexpected error in make-polar" cMakePolar badArgList = throwError $ NumArgs 2 badArgList -- | Return the magnitude (length) of a complex number cMagnitude [Number x] = return $ Number $ fromInteger x cMagnitude [Float x] = return $ Float x cMagnitude [Ratio x] = return $ Float $ fromRational x cMagnitude [Complex x] = return $ Float $ magnitude x cMagnitude [notnum] = throwError $ TypeMismatch "number" notnum cMagnitude badArgList = throwError $ NumArgs 1 badArgList
Formal statement is: lemma null_measure_idem [simp]: "null_measure (null_measure M) = null_measure M" Informal statement is: The null measure of a null measure is the null measure.
(* * Copyright 2014, General Dynamics C4 Systems * * This software may be distributed and modified according to the terms of * the GNU General Public License version 2. Note that NO WARRANTY is provided. * See "LICENSE_GPLv2.txt" for details. * * @TAG(GD_GPL) *) theory Finalise_C imports IpcCancel_C begin context kernel_m begin lemma switchIfRequiredTo_ccorres [corres]: "ccorres dc xfdc (valid_queues and valid_objs' and tcb_at' thread and (\<lambda>s. weak_sch_act_wf (ksSchedulerAction s) s) and st_tcb_at' runnable' thread) (UNIV \<inter> \<lbrace>\<acute>target = tcb_ptr_to_ctcb_ptr thread\<rbrace>) hs (switchIfRequiredTo thread) (Call switchIfRequiredTo_'proc)" apply (cinit lift: target_') apply (ctac add: possibleSwitchTo_ccorres) apply clarsimp done declare if_split [split del] lemma empty_fail_getEndpoint: "empty_fail (getEndpoint ep)" unfolding getEndpoint_def by (auto intro: empty_fail_getObject) definition "option_map2 f m = option_map f \<circ> m" lemma tcbSchedEnqueue_cslift_spec: "\<forall>s. \<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> \<lbrace>s. \<exists>d v. option_map2 tcbPriority_C (cslift s) \<acute>tcb = Some v \<and> v \<le> ucast maxPrio \<and> option_map2 tcbDomain_C (cslift s) \<acute>tcb = Some d \<and> d \<le> ucast maxDom \<and> (end_C (index \<acute>ksReadyQueues (unat (d*0x100 + v))) \<noteq> NULL \<longrightarrow> option_map2 tcbPriority_C (cslift s) (head_C (index \<acute>ksReadyQueues (unat (d*0x100 + v)))) \<noteq> None \<and> option_map2 tcbDomain_C (cslift s) (head_C (index \<acute>ksReadyQueues (unat (d*0x100 + v)))) \<noteq> None)\<rbrace> Call tcbSchedEnqueue_'proc {s'. option_map2 tcbEPNext_C (cslift s') = option_map2 tcbEPNext_C (cslift s) \<and> option_map2 tcbEPPrev_C (cslift s') = option_map2 tcbEPPrev_C (cslift s) \<and> option_map2 tcbPriority_C (cslift s') = option_map2 tcbPriority_C (cslift s) \<and> option_map2 tcbDomain_C (cslift s') = option_map2 tcbDomain_C (cslift s)}" apply (hoare_rule HoarePartial.ProcNoRec1) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: option_map2_def fun_eq_iff h_t_valid_clift h_t_valid_field[OF h_t_valid_clift]) apply (rule conjI) apply (clarsimp simp: typ_heap_simps cong: if_cong) apply (simp split: if_split) apply (clarsimp simp: typ_heap_simps if_Some_helper cong: if_cong) by (simp split: if_split) lemma setThreadState_cslift_spec: "\<forall>s. \<Gamma>\<turnstile>\<^bsub>/UNIV\<^esub> \<lbrace>s. s \<Turnstile>\<^sub>c \<acute>tptr \<and> (\<forall>x. ksSchedulerAction_' (globals s) = tcb_Ptr x \<and> x \<noteq> 0 \<and> x \<noteq> ~~ 0 \<longrightarrow> (\<exists>d v. option_map2 tcbPriority_C (cslift s) (tcb_Ptr x) = Some v \<and> v \<le> ucast maxPrio \<and> option_map2 tcbDomain_C (cslift s) (tcb_Ptr x) = Some d \<and> d \<le> ucast maxDom \<and> (end_C (index \<acute>ksReadyQueues (unat (d*0x100 + v))) \<noteq> NULL \<longrightarrow> option_map2 tcbPriority_C (cslift s) (head_C (index \<acute>ksReadyQueues (unat (d*0x100 + v)))) \<noteq> None \<and> option_map2 tcbDomain_C (cslift s) (head_C (index \<acute>ksReadyQueues (unat (d*0x100 + v)))) \<noteq> None)))\<rbrace> Call setThreadState_'proc {s'. option_map2 tcbEPNext_C (cslift s') = option_map2 tcbEPNext_C (cslift s) \<and> option_map2 tcbEPPrev_C (cslift s') = option_map2 tcbEPPrev_C (cslift s) \<and> option_map2 tcbPriority_C (cslift s') = option_map2 tcbPriority_C (cslift s) \<and> option_map2 tcbDomain_C (cslift s') = option_map2 tcbDomain_C (cslift s) \<and> ksReadyQueues_' (globals s') = ksReadyQueues_' (globals s)}" apply (rule allI, rule conseqPre) apply vcg_step apply vcg_step apply vcg_step apply vcg_step apply vcg_step apply vcg_step apply vcg_step apply (vcg exspec=tcbSchedEnqueue_cslift_spec) apply (vcg_step+)[2] apply vcg_step apply (vcg exspec=isRunnable_modifies) apply vcg apply vcg_step apply vcg_step apply (vcg_step+)[1] apply vcg apply vcg_step+ apply (clarsimp simp: typ_heap_simps h_t_valid_clift_Some_iff fun_eq_iff option_map2_def if_1_0_0) by (simp split: if_split) lemma ep_queue_relation_shift: "(option_map2 tcbEPNext_C (cslift s') = option_map2 tcbEPNext_C (cslift s) \<and> option_map2 tcbEPPrev_C (cslift s') = option_map2 tcbEPPrev_C (cslift s)) \<longrightarrow> ep_queue_relation (cslift s') ts qPrev qHead = ep_queue_relation (cslift s) ts qPrev qHead" apply clarsimp apply (induct ts arbitrary: qPrev qHead) apply simp apply simp apply (simp add: option_map2_def fun_eq_iff map_option_case) apply (drule_tac x=qHead in spec)+ apply (clarsimp split: option.split_asm) done lemma rf_sr_cscheduler_relation: "(s, s') \<in> rf_sr \<Longrightarrow> cscheduler_action_relation (ksSchedulerAction s) (ksSchedulerAction_' (globals s'))" by (clarsimp simp: rf_sr_def cstate_relation_def Let_def) lemma obj_at_ko_at2': "\<lbrakk> obj_at' P p s; ko_at' ko p s \<rbrakk> \<Longrightarrow> P ko" apply (drule obj_at_ko_at') apply clarsimp apply (drule ko_at_obj_congD', simp+) done lemma ctcb_relation_tcbDomain: "ctcb_relation tcb tcb' \<Longrightarrow> ucast (tcbDomain tcb) = tcbDomain_C tcb'" by (simp add: ctcb_relation_def) lemma ctcb_relation_tcbPriority: "ctcb_relation tcb tcb' \<Longrightarrow> ucast (tcbPriority tcb) = tcbPriority_C tcb'" by (simp add: ctcb_relation_def) lemma ctcb_relation_tcbDomain_maxDom: "\<lbrakk> ctcb_relation tcb tcb'; tcbDomain tcb \<le> maxDomain \<rbrakk> \<Longrightarrow> tcbDomain_C tcb' \<le> ucast maxDom" apply (subst ctcb_relation_tcbDomain[symmetric], simp) apply (subst ucast_le_migrate) apply ((simp add:maxDom_def word_size)+)[2] apply (simp add: ucast_up_ucast is_up_def source_size_def word_size target_size_def) apply (simp add: maxDom_to_H) done lemma ctcb_relation_tcbPriority_maxPrio: "\<lbrakk> ctcb_relation tcb tcb'; tcbPriority tcb \<le> maxPriority \<rbrakk> \<Longrightarrow> tcbPriority_C tcb' \<le> ucast maxPrio" apply (subst ctcb_relation_tcbPriority[symmetric], simp) apply (subst ucast_le_migrate) apply ((simp add: seL4_MaxPrio_def word_size)+)[2] apply (simp add: ucast_up_ucast is_up_def source_size_def word_size target_size_def) apply (simp add: maxPrio_to_H) done lemma tcbSchedEnqueue_cslift_precond_discharge: "\<lbrakk> (s, s') \<in> rf_sr; obj_at' (P :: tcb \<Rightarrow> bool) x s; valid_queues s; valid_objs' s \<rbrakk> \<Longrightarrow> (\<exists>d v. option_map2 tcbPriority_C (cslift s') (tcb_ptr_to_ctcb_ptr x) = Some v \<and> v \<le> ucast maxPrio \<and> option_map2 tcbDomain_C (cslift s') (tcb_ptr_to_ctcb_ptr x) = Some d \<and> d \<le> ucast maxDom \<and> (end_C (index (ksReadyQueues_' (globals s')) (unat (d*0x100 + v))) \<noteq> NULL \<longrightarrow> option_map2 tcbPriority_C (cslift s') (head_C (index (ksReadyQueues_' (globals s')) (unat (d*0x100 + v)))) \<noteq> None \<and> option_map2 tcbDomain_C (cslift s') (head_C (index (ksReadyQueues_' (globals s')) (unat (d*0x100 + v)))) \<noteq> None))" apply (drule(1) obj_at_cslift_tcb) apply (clarsimp simp: typ_heap_simps' option_map2_def) apply (frule_tac t=x in valid_objs'_maxPriority, fastforce simp: obj_at'_def) apply (frule_tac t=x in valid_objs'_maxDomain, fastforce simp: obj_at'_def) apply (drule_tac P="\<lambda>tcb. tcbPriority tcb \<le> maxPriority" in obj_at_ko_at2', simp) apply (drule_tac P="\<lambda>tcb. tcbDomain tcb \<le> maxDomain" in obj_at_ko_at2', simp) apply (simp add: ctcb_relation_tcbDomain_maxDom ctcb_relation_tcbPriority_maxPrio) apply (frule_tac d="tcbDomain ko" and p="tcbPriority ko" in rf_sr_sched_queue_relation) apply (simp add: maxDom_to_H maxPrio_to_H)+ apply (simp add: cready_queues_index_to_C_def2 numPriorities_def) apply (clarsimp simp: ctcb_relation_def) apply (frule arg_cong[where f=unat], subst(asm) unat_ucast_8_32) apply (frule tcb_queue'_head_end_NULL) apply (erule conjunct1[OF valid_queues_valid_q]) apply (frule(1) tcb_queue_relation_qhead_valid') apply (simp add: valid_queues_valid_q) apply (clarsimp simp: h_t_valid_clift_Some_iff) done lemma cancel_all_ccorres_helper: "ccorres dc xfdc (\<lambda>s. valid_objs' s \<and> valid_queues s \<and> (\<forall>t\<in>set ts. tcb_at' t s \<and> t \<noteq> 0) \<and> sch_act_wf (ksSchedulerAction s) s) {s'. \<exists>p. ep_queue_relation (cslift s') ts p (thread_' s')} hs (mapM_x (\<lambda>t. do y \<leftarrow> setThreadState Restart t; tcbSchedEnqueue t od) ts) (WHILE \<acute>thread \<noteq> tcb_Ptr 0 DO (CALL setThreadState(\<acute>thread, scast ThreadState_Restart));; (CALL tcbSchedEnqueue(\<acute>thread));; Guard C_Guard \<lbrace>hrs_htd \<acute>t_hrs \<Turnstile>\<^sub>t \<acute>thread\<rbrace> (\<acute>thread :== h_val (hrs_mem \<acute>t_hrs) (Ptr &(\<acute>thread\<rightarrow>[''tcbEPNext_C'']) :: tcb_C ptr ptr)) OD)" unfolding whileAnno_def proof (induct ts) case Nil show ?case apply (simp del: Collect_const) apply (rule iffD1 [OF ccorres_expand_while_iff]) apply (rule ccorres_tmp_lift2[where G'=UNIV and G''="\<lambda>x. UNIV", simplified]) apply ceqv apply (simp add: ccorres_cond_iffs mapM_x_def sequence_x_def dc_def[symmetric]) apply (rule ccorres_guard_imp2, rule ccorres_return_Skip) apply simp done next case (Cons thread threads) show ?case apply (rule iffD1 [OF ccorres_expand_while_iff]) apply (simp del: Collect_const add: dc_def[symmetric] mapM_x_Cons) apply (rule ccorres_guard_imp2) apply (rule_tac xf'=thread_' in ccorres_abstract) apply ceqv apply (rule_tac P="rv' = tcb_ptr_to_ctcb_ptr thread" in ccorres_gen_asm2) apply (rule_tac P="tcb_ptr_to_ctcb_ptr thread \<noteq> Ptr 0" in ccorres_gen_asm) apply (clarsimp simp add: Collect_True ccorres_cond_iffs simp del: Collect_const) apply (rule_tac r'=dc and xf'=xfdc in ccorres_split_nothrow[where F=UNIV]) apply (intro ccorres_rhs_assoc) apply (ctac(no_vcg) add: setThreadState_ccorres) apply (rule ccorres_add_return2) apply (ctac(no_vcg) add: tcbSchedEnqueue_ccorres) apply (rule_tac P="tcb_at' thread" in ccorres_from_vcg[where P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: return_def) apply (drule obj_at_ko_at', clarsimp) apply (erule cmap_relationE1 [OF cmap_relation_tcb]) apply (erule ko_at_projectKO_opt) apply (fastforce intro: typ_heap_simps) apply (wp sts_running_valid_queues | simp)+ apply (rule ceqv_refl) apply (rule "Cons.hyps") apply (wp sts_valid_objs' sts_sch_act sch_act_wf_lift hoare_vcg_const_Ball_lift sts_running_valid_queues sts_st_tcb' setThreadState_oa_queued | simp)+ apply (vcg exspec=setThreadState_cslift_spec exspec=tcbSchedEnqueue_cslift_spec) apply (clarsimp simp: tcb_at_not_NULL Collect_const_mem valid_tcb_state'_def ThreadState_Restart_def mask_def valid_objs'_maxDomain valid_objs'_maxPriority) apply (drule(1) obj_at_cslift_tcb) apply (clarsimp simp: typ_heap_simps) apply (rule conjI) apply clarsimp apply (frule rf_sr_cscheduler_relation) apply (clarsimp simp: cscheduler_action_relation_def st_tcb_at'_def split: scheduler_action.split_asm) apply (rename_tac word) apply (frule_tac x=word in tcbSchedEnqueue_cslift_precond_discharge) apply simp apply clarsimp apply clarsimp apply clarsimp apply clarsimp apply (rule conjI) apply (frule(3) tcbSchedEnqueue_cslift_precond_discharge) apply clarsimp apply clarsimp apply (subst ep_queue_relation_shift, fastforce) apply (drule_tac x="tcb_ptr_to_ctcb_ptr thread" in fun_cong)+ apply (clarsimp simp add: option_map2_def typ_heap_simps) apply fastforce done qed lemma cancelAllIPC_ccorres: "ccorres dc xfdc (invs') (UNIV \<inter> {s. epptr_' s = Ptr epptr}) [] (cancelAllIPC epptr) (Call cancelAllIPC_'proc)" apply (cinit lift: epptr_') apply (rule ccorres_symb_exec_l [OF _ getEndpoint_inv _ empty_fail_getEndpoint]) apply (rule_tac xf'=ret__unsigned_' and val="case rv of IdleEP \<Rightarrow> scast EPState_Idle | RecvEP _ \<Rightarrow> scast EPState_Recv | SendEP _ \<Rightarrow> scast EPState_Send" and R="ko_at' rv epptr" in ccorres_symb_exec_r_known_rv_UNIV[where R'=UNIV]) apply vcg apply clarsimp apply (erule cmap_relationE1 [OF cmap_relation_ep]) apply (erule ko_at_projectKO_opt) apply (clarsimp simp add: typ_heap_simps) apply (simp add: cendpoint_relation_def Let_def split: endpoint.split_asm) apply ceqv apply (rule_tac A="invs' and ko_at' rv epptr" in ccorres_guard_imp2[where A'=UNIV]) apply wpc apply (rename_tac list) apply (simp add: endpoint_state_defs Collect_False Collect_True ccorres_cond_iffs del: Collect_const) apply (rule ccorres_rhs_assoc)+ apply csymbr apply (rule ccorres_abstract_cleanup) apply csymbr apply (rule ccorres_rhs_assoc2, rule ccorres_rhs_assoc2) apply (rule_tac r'=dc and xf'=xfdc in ccorres_split_nothrow) apply (rule_tac P="ko_at' (RecvEP list) epptr and invs'" in ccorres_from_vcg[where P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply clarsimp apply (rule cmap_relationE1 [OF cmap_relation_ep]) apply assumption apply (erule ko_at_projectKO_opt) apply (clarsimp simp: typ_heap_simps setEndpoint_def) apply (rule rev_bexI) apply (rule setObject_eq; simp add: objBits_simps)[1] apply (clarsimp simp: rf_sr_def cstate_relation_def Let_def carch_state_relation_def carch_globals_def cmachine_state_relation_def) apply (clarsimp simp: cpspace_relation_def update_ep_map_tos typ_heap_simps') apply (erule(2) cpspace_relation_ep_update_ep) subgoal by (simp add: cendpoint_relation_def endpoint_state_defs) subgoal by simp apply (rule ceqv_refl) apply (simp only: ccorres_seq_skip dc_def[symmetric]) apply (rule ccorres_split_nothrow_novcg) apply (rule cancel_all_ccorres_helper) apply ceqv apply (ctac add: rescheduleRequired_ccorres) apply (wp weak_sch_act_wf_lift_linear cancelAllIPC_mapM_x_valid_queues | simp)+ apply (rule mapM_x_wp', wp)+ apply (wp sts_st_tcb') apply (clarsimp split: if_split) apply (rule mapM_x_wp', wp)+ apply (clarsimp simp: valid_tcb_state'_def) apply (simp add: guard_is_UNIV_def) apply (wp set_ep_valid_objs' hoare_vcg_const_Ball_lift weak_sch_act_wf_lift_linear) apply vcg apply (simp add: ccorres_cond_iffs dc_def[symmetric]) apply (rule ccorres_return_Skip) apply (rename_tac list) apply (simp add: endpoint_state_defs Collect_False Collect_True ccorres_cond_iffs dc_def[symmetric] del: Collect_const) apply (rule ccorres_rhs_assoc)+ apply csymbr apply (rule ccorres_abstract_cleanup) apply csymbr apply (rule ccorres_rhs_assoc2, rule ccorres_rhs_assoc2) apply (rule_tac r'=dc and xf'=xfdc in ccorres_split_nothrow) apply (rule_tac P="ko_at' (SendEP list) epptr and invs'" in ccorres_from_vcg[where P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply clarsimp apply (rule cmap_relationE1 [OF cmap_relation_ep]) apply assumption apply (erule ko_at_projectKO_opt) apply (clarsimp simp: typ_heap_simps setEndpoint_def) apply (rule rev_bexI) apply (rule setObject_eq, simp_all add: objBits_simps)[1] apply (clarsimp simp: rf_sr_def cstate_relation_def Let_def carch_state_relation_def carch_globals_def cmachine_state_relation_def) apply (clarsimp simp: cpspace_relation_def typ_heap_simps' update_ep_map_tos) apply (erule(2) cpspace_relation_ep_update_ep) subgoal by (simp add: cendpoint_relation_def endpoint_state_defs) subgoal by simp apply (rule ceqv_refl) apply (simp only: ccorres_seq_skip dc_def[symmetric]) apply (rule ccorres_split_nothrow_novcg) apply (rule cancel_all_ccorres_helper) apply ceqv apply (ctac add: rescheduleRequired_ccorres) apply (wp cancelAllIPC_mapM_x_valid_queues) apply (wp mapM_x_wp' weak_sch_act_wf_lift_linear sts_st_tcb' | clarsimp simp: valid_tcb_state'_def split: if_split)+ apply (simp add: guard_is_UNIV_def) apply (wp set_ep_valid_objs' hoare_vcg_const_Ball_lift weak_sch_act_wf_lift_linear) apply vcg apply (clarsimp simp: valid_ep'_def invs_valid_objs' invs_queues) apply (rule cmap_relationE1[OF cmap_relation_ep], assumption) apply (erule ko_at_projectKO_opt) apply (frule obj_at_valid_objs', clarsimp+) apply (clarsimp simp: projectKOs valid_obj'_def valid_ep'_def) subgoal by (auto simp: typ_heap_simps cendpoint_relation_def Let_def tcb_queue_relation'_def invs_valid_objs' valid_objs'_maxDomain valid_objs'_maxPriority intro!: obj_at_conj') apply (clarsimp simp: guard_is_UNIV_def) apply (wp getEndpoint_wp) apply clarsimp done lemma empty_fail_getNotification: "empty_fail (getNotification ep)" unfolding getNotification_def by (auto intro: empty_fail_getObject) lemma cancelAllSignals_ccorres: "ccorres dc xfdc (invs') (UNIV \<inter> {s. ntfnPtr_' s = Ptr ntfnptr}) [] (cancelAllSignals ntfnptr) (Call cancelAllSignals_'proc)" apply (cinit lift: ntfnPtr_') apply (rule ccorres_symb_exec_l [OF _ get_ntfn_inv' _ empty_fail_getNotification]) apply (rule_tac xf'=ret__unsigned_' and val="case ntfnObj rv of IdleNtfn \<Rightarrow> scast NtfnState_Idle | ActiveNtfn _ \<Rightarrow> scast NtfnState_Active | WaitingNtfn _ \<Rightarrow> scast NtfnState_Waiting" and R="ko_at' rv ntfnptr" in ccorres_symb_exec_r_known_rv_UNIV[where R'=UNIV]) apply vcg apply clarsimp apply (erule cmap_relationE1 [OF cmap_relation_ntfn]) apply (erule ko_at_projectKO_opt) apply (clarsimp simp add: typ_heap_simps) apply (simp add: cnotification_relation_def Let_def split: ntfn.split_asm) apply ceqv apply (rule_tac A="invs' and ko_at' rv ntfnptr" in ccorres_guard_imp2[where A'=UNIV]) apply wpc apply (simp add: notification_state_defs ccorres_cond_iffs dc_def[symmetric]) apply (rule ccorres_return_Skip) apply (simp add: notification_state_defs ccorres_cond_iffs dc_def[symmetric]) apply (rule ccorres_return_Skip) apply (rename_tac list) apply (simp add: notification_state_defs ccorres_cond_iffs dc_def[symmetric] Collect_True del: Collect_const) apply (rule ccorres_rhs_assoc)+ apply csymbr apply (rule ccorres_abstract_cleanup) apply csymbr apply (rule ccorres_rhs_assoc2, rule ccorres_rhs_assoc2) apply (rule_tac r'=dc and xf'=xfdc in ccorres_split_nothrow) apply (rule_tac P="ko_at' rv ntfnptr and invs'" in ccorres_from_vcg[where P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply clarsimp apply (rule_tac x=ntfnptr in cmap_relationE1 [OF cmap_relation_ntfn], assumption) apply (erule ko_at_projectKO_opt) apply (clarsimp simp: typ_heap_simps setNotification_def) apply (rule rev_bexI) apply (rule setObject_eq, simp_all add: objBits_simps)[1] apply (clarsimp simp: rf_sr_def cstate_relation_def Let_def carch_state_relation_def carch_globals_def cmachine_state_relation_def) apply (clarsimp simp: cpspace_relation_def typ_heap_simps' update_ntfn_map_tos) apply (erule(2) cpspace_relation_ntfn_update_ntfn) subgoal by (simp add: cnotification_relation_def notification_state_defs Let_def) subgoal by simp apply (rule ceqv_refl) apply (simp only: ccorres_seq_skip dc_def[symmetric]) apply (rule ccorres_split_nothrow_novcg) apply (rule cancel_all_ccorres_helper) apply ceqv apply (ctac add: rescheduleRequired_ccorres) apply (wp cancelAllIPC_mapM_x_valid_queues) apply (wp mapM_x_wp' weak_sch_act_wf_lift_linear sts_st_tcb' | clarsimp simp: valid_tcb_state'_def split: if_split)+ apply (simp add: guard_is_UNIV_def) apply (wp set_ntfn_valid_objs' hoare_vcg_const_Ball_lift weak_sch_act_wf_lift_linear) apply vcg apply clarsimp apply (rule cmap_relationE1[OF cmap_relation_ntfn], assumption) apply (erule ko_at_projectKO_opt) apply (frule obj_at_valid_objs', clarsimp+) apply (clarsimp simp add: valid_obj'_def valid_ntfn'_def projectKOs) subgoal by (auto simp: typ_heap_simps cnotification_relation_def Let_def tcb_queue_relation'_def invs_valid_objs' valid_objs'_maxDomain valid_objs'_maxPriority intro!: obj_at_conj') apply (clarsimp simp: guard_is_UNIV_def) apply (wp getNotification_wp) apply clarsimp done lemma tcb_queue_concat: "tcb_queue_relation getNext getPrev mp (xs @ z # ys) qprev qhead \<Longrightarrow> tcb_queue_relation getNext getPrev mp (z # ys) (tcb_ptr_to_ctcb_ptr (last ((ctcb_ptr_to_tcb_ptr qprev) # xs))) (tcb_ptr_to_ctcb_ptr z)" apply (induct xs arbitrary: qprev qhead) apply clarsimp apply clarsimp apply (elim meta_allE, drule(1) meta_mp) apply (clarsimp cong: if_cong) done lemma tcb_fields_ineq_helper: "\<lbrakk> tcb_at' (ctcb_ptr_to_tcb_ptr x) s; tcb_at' (ctcb_ptr_to_tcb_ptr y) s \<rbrakk> \<Longrightarrow> &(x\<rightarrow>[''tcbSchedPrev_C'']) \<noteq> &(y\<rightarrow>[''tcbSchedNext_C''])" apply (clarsimp dest!: tcb_aligned'[OF obj_at'_weakenE, OF _ TrueI] ctcb_ptr_to_tcb_ptr_aligned) apply (clarsimp simp: field_lvalue_def) apply (subgoal_tac "is_aligned (ptr_val y - ptr_val x) 8") apply (drule sym, fastforce simp: is_aligned_def dvd_def) apply (erule(1) aligned_sub_aligned) apply (simp add: word_bits_conv) done end primrec tcb_queue_relation2 :: "(tcb_C \<Rightarrow> tcb_C ptr) \<Rightarrow> (tcb_C \<Rightarrow> tcb_C ptr) \<Rightarrow> (tcb_C ptr \<rightharpoonup> tcb_C) \<Rightarrow> tcb_C ptr list \<Rightarrow> tcb_C ptr \<Rightarrow> tcb_C ptr \<Rightarrow> bool" where "tcb_queue_relation2 getNext getPrev hp [] before after = True" | "tcb_queue_relation2 getNext getPrev hp (x # xs) before after = (\<exists>tcb. hp x = Some tcb \<and> getPrev tcb = before \<and> getNext tcb = hd (xs @ [after]) \<and> tcb_queue_relation2 getNext getPrev hp xs x after)" lemma use_tcb_queue_relation2: "tcb_queue_relation getNext getPrev hp xs qprev qhead = (tcb_queue_relation2 getNext getPrev hp (map tcb_ptr_to_ctcb_ptr xs) qprev (tcb_Ptr 0) \<and> qhead = (hd (map tcb_ptr_to_ctcb_ptr xs @ [tcb_Ptr 0])))" apply (induct xs arbitrary: qhead qprev) apply simp apply (simp add: conj_comms cong: conj_cong) done lemma tcb_queue_relation2_concat: "tcb_queue_relation2 getNext getPrev hp (xs @ ys) before after = (tcb_queue_relation2 getNext getPrev hp xs before (hd (ys @ [after])) \<and> tcb_queue_relation2 getNext getPrev hp ys (last (before # xs)) after)" apply (induct xs arbitrary: before) apply simp apply (rename_tac x xs before) apply (simp split del: if_split) apply (case_tac "hp x") apply simp apply simp done lemma tcb_queue_relation2_cong: "\<lbrakk>queue = queue'; before = before'; after = after'; \<And>p. p \<in> set queue' \<Longrightarrow> mp p = mp' p\<rbrakk> \<Longrightarrow> tcb_queue_relation2 getNext getPrev mp queue before after = tcb_queue_relation2 getNext getPrev mp' queue' before' after'" using [[hypsubst_thin = true]] apply clarsimp apply (induct queue' arbitrary: before') apply simp+ done context kernel_m begin lemma setThreadState_ccorres_valid_queues'_simple: "ccorres dc xfdc (\<lambda>s. tcb_at' thread s \<and> valid_queues' s \<and> \<not> runnable' st \<and> sch_act_simple s) ({s'. (\<forall>cl fl. cthread_state_relation_lifted st (cl\<lparr>tsType_CL := ts_' s' && mask 4\<rparr>, fl))} \<inter> {s. tptr_' s = tcb_ptr_to_ctcb_ptr thread}) [] (setThreadState st thread) (Call setThreadState_'proc)" apply (cinit lift: tptr_' cong add: call_ignore_cong) apply (ctac (no_vcg) add: threadSet_tcbState_simple_corres) apply (ctac add: scheduleTCB_ccorres_valid_queues'_simple) apply (wp threadSet_valid_queues'_and_not_runnable') apply (clarsimp simp: weak_sch_act_wf_def valid_queues'_def) done lemma suspend_ccorres: assumes cteDeleteOne_ccorres: "\<And>w slot. ccorres dc xfdc (invs' and cte_wp_at' (\<lambda>ct. w = -1 \<or> cteCap ct = NullCap \<or> (\<forall>cap'. ccap_relation (cteCap ct) cap' \<longrightarrow> cap_get_tag cap' = w)) slot) ({s. gs_get_assn cteDeleteOne_'proc (ghost'state_' (globals s)) = w} \<inter> {s. slot_' s = Ptr slot}) [] (cteDeleteOne slot) (Call cteDeleteOne_'proc)" shows "ccorres dc xfdc (invs' and sch_act_simple and tcb_at' thread and (\<lambda>s. thread \<noteq> ksIdleThread s)) (UNIV \<inter> {s. target_' s = tcb_ptr_to_ctcb_ptr thread}) [] (suspend thread) (Call suspend_'proc)" apply (cinit lift: target_') apply (ctac(no_vcg) add: cancelIPC_ccorres1 [OF cteDeleteOne_ccorres]) apply (ctac(no_vcg) add: setThreadState_ccorres_valid_queues'_simple) apply (ctac add: tcbSchedDequeue_ccorres') apply (rule_tac Q="\<lambda>_. (\<lambda>s. \<forall>t' d p. (t' \<in> set (ksReadyQueues s (d, p)) \<longrightarrow> obj_at' (\<lambda>tcb. tcbQueued tcb \<and> tcbDomain tcb = d \<and> tcbPriority tcb = p) t' s \<and> (t' \<noteq> thread \<longrightarrow> st_tcb_at' runnable' t' s)) \<and> distinct (ksReadyQueues s (d, p))) and valid_queues' and valid_objs' and tcb_at' thread" in hoare_post_imp) apply clarsimp apply (drule_tac x="t" in spec) apply (drule_tac x=d in spec) apply (drule_tac x=p in spec) apply (clarsimp elim!: obj_at'_weakenE simp: inQ_def) apply (wp_trace sts_valid_queues_partial)[1] apply (rule hoare_strengthen_post) apply (rule hoare_vcg_conj_lift) apply (rule hoare_vcg_conj_lift) apply (rule cancelIPC_sch_act_simple) apply (rule cancelIPC_tcb_at'[where t=thread]) apply (rule delete_one_conc_fr.cancelIPC_invs) apply (fastforce simp: invs_valid_queues' invs_queues invs_valid_objs' valid_tcb_state'_def) apply (auto simp: "StrictC'_thread_state_defs") done lemma cap_to_H_NTFNCap_tag: "\<lbrakk> cap_to_H cap = NotificationCap word1 word2 a b; cap_lift C_cap = Some cap \<rbrakk> \<Longrightarrow> cap_get_tag C_cap = scast cap_notification_cap" apply (clarsimp simp: cap_to_H_def Let_def split: cap_CL.splits if_split_asm) by (simp_all add: Let_def cap_lift_def split: if_splits) lemmas ccorres_pre_getBoundNotification = ccorres_pre_threadGet [where f=tcbBoundNotification, folded getBoundNotification_def] lemma option_to_ptr_not_NULL: "option_to_ptr x \<noteq> NULL \<Longrightarrow> x \<noteq> None" by (auto simp: option_to_ptr_def option_to_0_def split: option.splits) lemma doUnbindNotification_ccorres: "ccorres dc xfdc (invs' and tcb_at' tcb) (UNIV \<inter> {s. ntfnPtr_' s = ntfn_Ptr ntfnptr} \<inter> {s. tcbptr_' s = tcb_ptr_to_ctcb_ptr tcb}) [] (do ntfn \<leftarrow> getNotification ntfnptr; doUnbindNotification ntfnptr ntfn tcb od) (Call doUnbindNotification_'proc)" apply (cinit' lift: ntfnPtr_' tcbptr_') apply (rule ccorres_symb_exec_l [OF _ get_ntfn_inv' _ empty_fail_getNotification]) apply (rule_tac P="invs' and ko_at' rv ntfnptr" and P'=UNIV in ccorres_split_nothrow_novcg) apply (rule ccorres_from_vcg[where rrel=dc and xf=xfdc]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: option_to_ptr_def option_to_0_def) apply (frule cmap_relation_ntfn) apply (erule (1) cmap_relation_ko_atE) apply (rule conjI) apply (erule h_t_valid_clift) apply (clarsimp simp: setNotification_def split_def) apply (rule bexI [OF _ setObject_eq]) apply (simp add: rf_sr_def cstate_relation_def Let_def init_def typ_heap_simps' cpspace_relation_def update_ntfn_map_tos) apply (elim conjE) apply (intro conjI) -- "tcb relation" apply (rule cpspace_relation_ntfn_update_ntfn, assumption+) apply (clarsimp simp: cnotification_relation_def Let_def mask_def [where n=2] NtfnState_Waiting_def) apply (case_tac "ntfnObj rv", ((simp add: option_to_ctcb_ptr_def)+)[4]) subgoal by (simp add: carch_state_relation_def typ_heap_simps') subgoal by (simp add: cmachine_state_relation_def) subgoal by (simp add: h_t_valid_clift_Some_iff) subgoal by (simp add: objBits_simps) subgoal by (simp add: objBits_simps) apply assumption apply ceqv apply (rule ccorres_move_c_guard_tcb) apply (simp add: setBoundNotification_def) apply (rule_tac P'="\<top>" and P="\<top>" in threadSet_ccorres_lemma3[unfolded dc_def]) apply vcg apply simp apply (erule(1) rf_sr_tcb_update_no_queue2) apply (simp add: typ_heap_simps')+ apply (simp add: tcb_cte_cases_def) apply (simp add: ctcb_relation_def option_to_ptr_def option_to_0_def) apply (simp add: invs'_def valid_state'_def) apply (wp get_ntfn_ko' | simp add: guard_is_UNIV_def)+ done lemma doUnbindNotification_ccorres': "ccorres dc xfdc (invs' and tcb_at' tcb and ko_at' ntfn ntfnptr) (UNIV \<inter> {s. ntfnPtr_' s = ntfn_Ptr ntfnptr} \<inter> {s. tcbptr_' s = tcb_ptr_to_ctcb_ptr tcb}) [] (doUnbindNotification ntfnptr ntfn tcb) (Call doUnbindNotification_'proc)" apply (cinit' lift: ntfnPtr_' tcbptr_') apply (rule_tac P="invs' and ko_at' ntfn ntfnptr" and P'=UNIV in ccorres_split_nothrow_novcg) apply (rule ccorres_from_vcg[where rrel=dc and xf=xfdc]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: option_to_ptr_def option_to_0_def) apply (frule cmap_relation_ntfn) apply (erule (1) cmap_relation_ko_atE) apply (rule conjI) apply (erule h_t_valid_clift) apply (clarsimp simp: setNotification_def split_def) apply (rule bexI [OF _ setObject_eq]) apply (simp add: rf_sr_def cstate_relation_def Let_def init_def typ_heap_simps' cpspace_relation_def update_ntfn_map_tos) apply (elim conjE) apply (intro conjI) -- "tcb relation" apply (rule cpspace_relation_ntfn_update_ntfn, assumption+) apply (clarsimp simp: cnotification_relation_def Let_def mask_def [where n=2] NtfnState_Waiting_def) apply (fold_subgoals (prefix))[2] subgoal premises prems using prems by (case_tac "ntfnObj ntfn", (simp add: option_to_ctcb_ptr_def)+) subgoal by (simp add: carch_state_relation_def typ_heap_simps') subgoal by (simp add: cmachine_state_relation_def) subgoal by (simp add: h_t_valid_clift_Some_iff) subgoal by (simp add: objBits_simps) subgoal by (simp add: objBits_simps) apply assumption apply ceqv apply (rule ccorres_move_c_guard_tcb) apply (simp add: setBoundNotification_def) apply (rule_tac P'="\<top>" and P="\<top>" in threadSet_ccorres_lemma3[unfolded dc_def]) apply vcg apply simp apply (erule(1) rf_sr_tcb_update_no_queue2) apply (simp add: typ_heap_simps')+ apply (simp add: tcb_cte_cases_def) apply (simp add: ctcb_relation_def option_to_ptr_def option_to_0_def) apply (simp add: invs'_def valid_state'_def) apply (wp get_ntfn_ko' | simp add: guard_is_UNIV_def)+ done lemma unbindNotification_ccorres: "ccorres dc xfdc (invs') (UNIV \<inter> {s. tcb_' s = tcb_ptr_to_ctcb_ptr tcb}) [] (unbindNotification tcb) (Call unbindNotification_'proc)" apply (cinit lift: tcb_') apply (rule_tac xf'=ntfnPtr_' and r'="\<lambda>rv rv'. rv' = option_to_ptr rv \<and> rv \<noteq> Some 0" in ccorres_split_nothrow) apply (simp add: getBoundNotification_def) apply (rule_tac P="no_0_obj' and valid_objs'" in threadGet_vcg_corres_P) apply (rule allI, rule conseqPre, vcg) apply clarsimp apply (drule obj_at_ko_at', clarsimp) apply (drule spec, drule(1) mp, clarsimp) apply (clarsimp simp: typ_heap_simps ctcb_relation_def) apply (drule(1) ko_at_valid_objs', simp add: projectKOs) apply (clarsimp simp: option_to_ptr_def option_to_0_def projectKOs valid_obj'_def valid_tcb'_def) apply ceqv apply simp apply wpc apply (rule ccorres_cond_false) apply (rule ccorres_return_Skip[unfolded dc_def]) apply (rule ccorres_cond_true) apply (ctac (no_vcg) add: doUnbindNotification_ccorres[unfolded dc_def, simplified]) apply (wp gbn_wp') apply vcg apply (clarsimp simp: option_to_ptr_def option_to_0_def pred_tcb_at'_def obj_at'_weakenE[OF _ TrueI] split: option.splits) apply (clarsimp simp: invs'_def valid_pspace'_def valid_state'_def) done lemma unbindMaybeNotification_ccorres: "ccorres dc xfdc (invs') (UNIV \<inter> {s. ntfnPtr_' s = ntfn_Ptr ntfnptr}) [] (unbindMaybeNotification ntfnptr) (Call unbindMaybeNotification_'proc)" apply (cinit lift: ntfnPtr_') apply (rule ccorres_symb_exec_l [OF _ get_ntfn_inv' _ empty_fail_getNotification]) apply (rule ccorres_rhs_assoc2) apply (rule_tac P="ntfnBoundTCB rv \<noteq> None \<longrightarrow> option_to_ctcb_ptr (ntfnBoundTCB rv) \<noteq> NULL" in ccorres_gen_asm) apply (rule_tac xf'=boundTCB_' and val="option_to_ctcb_ptr (ntfnBoundTCB rv)" and R="ko_at' rv ntfnptr and valid_bound_tcb' (ntfnBoundTCB rv)" in ccorres_symb_exec_r_known_rv_UNIV[where R'=UNIV]) apply vcg apply clarsimp apply (erule cmap_relationE1[OF cmap_relation_ntfn]) apply (erule ko_at_projectKO_opt) apply (clarsimp simp: typ_heap_simps cnotification_relation_def Let_def) apply ceqv apply wpc apply (rule ccorres_cond_false) apply (rule ccorres_return_Skip) apply (rule ccorres_cond_true) apply (rule ccorres_call[where xf'=xfdc]) apply (rule doUnbindNotification_ccorres'[simplified]) apply simp apply simp apply simp apply (clarsimp simp add: guard_is_UNIV_def option_to_ctcb_ptr_def ) apply (wp getNotification_wp) apply (clarsimp ) apply (frule (1) ko_at_valid_ntfn'[OF _ invs_valid_objs']) by (auto simp: valid_ntfn'_def valid_bound_tcb'_def obj_at'_def projectKOs objBitsKO_def is_aligned_def option_to_ctcb_ptr_def tcb_at_not_NULL split: ntfn.splits) lemma finaliseCap_True_cases_ccorres: "\<And>final. isEndpointCap cap \<or> isNotificationCap cap \<or> isReplyCap cap \<or> isDomainCap cap \<or> cap = NullCap \<Longrightarrow> ccorres (\<lambda>rv rv'. ccap_relation (fst rv) (finaliseCap_ret_C.remainder_C rv') \<and> irq_opt_relation (snd rv) (finaliseCap_ret_C.irq_C rv')) ret__struct_finaliseCap_ret_C_' (invs') (UNIV \<inter> {s. ccap_relation cap (cap_' s)} \<inter> {s. final_' s = from_bool final} \<inter> {s. exposed_' s = from_bool flag (* dave has name wrong *)}) [] (finaliseCap cap final flag) (Call finaliseCap_'proc)" apply (subgoal_tac "\<not> isArchCap \<top> cap") prefer 2 apply (clarsimp simp: isCap_simps) apply (cinit lift: cap_' final_' exposed_' cong: call_ignore_cong) apply csymbr apply (simp add: cap_get_tag_isCap Collect_False del: Collect_const) apply (fold case_bool_If) apply (simp add: false_def) apply csymbr apply wpc apply (simp add: cap_get_tag_isCap ccorres_cond_univ_iff Let_def) apply (rule ccorres_rhs_assoc)+ apply (rule ccorres_split_nothrow_novcg) apply (simp add: when_def) apply (rule ccorres_cond2) apply (clarsimp simp: Collect_const_mem from_bool_0) apply csymbr apply (rule ccorres_call[where xf'=xfdc], rule cancelAllIPC_ccorres) apply simp apply simp apply simp apply (rule ccorres_from_vcg[where P=\<top> and P'=UNIV]) apply (simp add: return_def, vcg) apply (rule ceqv_refl) apply (rule ccorres_rhs_assoc2, rule ccorres_rhs_assoc2, rule ccorres_split_throws) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp add: return_def ccap_relation_NullCap_iff irq_opt_relation_def) apply vcg apply wp apply (simp add: guard_is_UNIV_def) apply wpc apply (simp add: cap_get_tag_isCap Let_def ccorres_cond_empty_iff ccorres_cond_univ_iff) apply (rule ccorres_rhs_assoc)+ apply (rule ccorres_split_nothrow_novcg) apply (simp add: when_def) apply (rule ccorres_cond2) apply (clarsimp simp: Collect_const_mem from_bool_0) apply (subgoal_tac "cap_get_tag capa = scast cap_notification_cap") prefer 2 apply (clarsimp simp: ccap_relation_def isNotificationCap_def) apply (case_tac cap, simp_all)[1] apply (clarsimp simp: option_map_def split: option.splits) apply (drule (2) cap_to_H_NTFNCap_tag[OF sym]) apply (rule ccorres_rhs_assoc) apply (rule ccorres_rhs_assoc) apply csymbr apply csymbr apply (ctac (no_vcg) add: unbindMaybeNotification_ccorres) apply (rule ccorres_call[where xf'=xfdc], rule cancelAllSignals_ccorres) apply simp apply simp apply simp apply (wp | wpc | simp add: guard_is_UNIV_def)+ apply (rule ccorres_return_Skip') apply (rule ceqv_refl) apply (rule ccorres_rhs_assoc2, rule ccorres_rhs_assoc2, rule ccorres_split_throws) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp add: return_def ccap_relation_NullCap_iff irq_opt_relation_def) apply vcg apply wp apply (simp add: guard_is_UNIV_def) apply wpc apply (simp add: cap_get_tag_isCap Let_def ccorres_cond_empty_iff ccorres_cond_univ_iff) apply (rule ccorres_rhs_assoc2, rule ccorres_rhs_assoc2, rule ccorres_split_throws) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp add: return_def ccap_relation_NullCap_iff irq_opt_relation_def) apply vcg apply wpc apply (simp add: cap_get_tag_isCap Let_def ccorres_cond_empty_iff ccorres_cond_univ_iff) apply (rule ccorres_rhs_assoc2, rule ccorres_rhs_assoc2, rule ccorres_split_throws) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp add: return_def ccap_relation_NullCap_iff) apply (clarsimp simp add: irq_opt_relation_def) apply vcg -- "NullCap case by exhaustion" apply (simp add: cap_get_tag_isCap Let_def ccorres_cond_empty_iff ccorres_cond_univ_iff) apply (rule ccorres_rhs_assoc2, rule ccorres_rhs_assoc2, rule ccorres_split_throws) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp add: return_def ccap_relation_NullCap_iff irq_opt_relation_def) apply vcg apply (clarsimp simp: Collect_const_mem cap_get_tag_isCap) apply (rule TrueI conjI impI TrueI)+ apply (frule cap_get_tag_to_H, erule(1) cap_get_tag_isCap [THEN iffD2]) apply (clarsimp simp: invs'_def valid_state'_def valid_pspace'_def isNotificationCap_def isEndpointCap_def valid_obj'_def projectKOs valid_ntfn'_def valid_bound_tcb'_def dest!: obj_at_valid_objs') apply clarsimp apply (frule cap_get_tag_to_H, erule(1) cap_get_tag_isCap [THEN iffD2]) apply clarsimp done lemma finaliseCap_True_standin_ccorres: "\<And>final. ccorres (\<lambda>rv rv'. ccap_relation (fst rv) (finaliseCap_ret_C.remainder_C rv') \<and> irq_opt_relation (snd rv) (finaliseCap_ret_C.irq_C rv')) ret__struct_finaliseCap_ret_C_' (invs') (UNIV \<inter> {s. ccap_relation cap (cap_' s)} \<inter> {s. final_' s = from_bool final} \<inter> {s. exposed_' s = from_bool True (* dave has name wrong *)}) [] (finaliseCapTrue_standin cap final) (Call finaliseCap_'proc)" unfolding finaliseCapTrue_standin_simple_def apply (case_tac "P :: bool" for P) apply (erule finaliseCap_True_cases_ccorres) apply (simp add: finaliseCap_def ccorres_fail') done lemma offset_xf_for_sequence: "\<forall>s f. offset_' (offset_'_update f s) = f (offset_' s) \<and> globals (offset_'_update f s) = globals s" by simp end context begin interpretation Arch . (*FIXME: arch_split*) crunch pde_mappings'[wp]: invalidateHWASIDEntry "valid_pde_mappings'" end context kernel_m begin lemma invalidateASIDEntry_ccorres: "ccorres dc xfdc (\<lambda>s. valid_pde_mappings' s \<and> asid \<le> mask asid_bits) (UNIV \<inter> {s. asid_' s = asid}) [] (invalidateASIDEntry asid) (Call invalidateASIDEntry_'proc)" apply (cinit lift: asid_') apply (ctac(no_vcg) add: loadHWASID_ccorres) apply csymbr apply (simp(no_asm) add: when_def del: Collect_const) apply (rule ccorres_split_nothrow_novcg_dc) apply (rule ccorres_cond2[where R=\<top>]) apply (clarsimp simp: Collect_const_mem pde_stored_asid_def to_bool_def split: if_split) apply csymbr apply (rule ccorres_Guard)+ apply (rule_tac P="rv \<noteq> None" in ccorres_gen_asm) apply (ctac(no_simp) add: invalidateHWASIDEntry_ccorres) apply (clarsimp simp: pde_stored_asid_def unat_ucast split: if_split_asm) apply (rule sym, rule nat_mod_eq') apply (simp add: pde_pde_invalid_lift_def pde_lift_def) apply (rule unat_less_power[where sz=8, simplified]) apply (simp add: word_bits_conv) apply (rule order_le_less_trans, rule word_and_le1) apply simp apply (rule ccorres_return_Skip) apply (fold dc_def) apply (ctac add: invalidateASID_ccorres) apply wp apply (simp add: guard_is_UNIV_def) apply wp apply (clarsimp simp: Collect_const_mem pde_pde_invalid_lift_def pde_lift_def order_le_less_trans[OF word_and_le1]) done end context begin interpretation Arch . (*FIXME: arch_split*) crunch obj_at'[wp]: invalidateASIDEntry "obj_at' P p" crunch obj_at'[wp]: flushSpace "obj_at' P p" crunch valid_objs'[wp]: invalidateASIDEntry "valid_objs'" crunch valid_objs'[wp]: flushSpace "valid_objs'" crunch pde_mappings'[wp]: invalidateASIDEntry "valid_pde_mappings'" crunch pde_mappings'[wp]: flushSpace "valid_pde_mappings'" end context kernel_m begin lemma invs'_invs_no_cicd': "invs' s \<longrightarrow> all_invs_but_ct_idle_or_in_cur_domain' s" by (simp add: invs'_invs_no_cicd) lemma deleteASIDPool_ccorres: "ccorres dc xfdc (invs' and (\<lambda>_. base < 2 ^ 17 \<and> pool \<noteq> 0)) (UNIV \<inter> {s. asid_base_' s = base} \<inter> {s. pool_' s = Ptr pool}) [] (deleteASIDPool base pool) (Call deleteASIDPool_'proc)" apply (rule ccorres_gen_asm) apply (cinit lift: asid_base_' pool_' simp: whileAnno_def) apply (rule ccorres_assert) apply (clarsimp simp: liftM_def dc_def[symmetric] fun_upd_def[symmetric] when_def simp del: Collect_const) apply (rule ccorres_Guard)+ apply (rule ccorres_pre_gets_armKSASIDTable_ksArchState) apply (rule_tac R="\<lambda>s. rv = armKSASIDTable (ksArchState s)" in ccorres_cond2) apply clarsimp apply (subst rf_sr_armKSASIDTable, assumption) apply (simp add: asid_high_bits_word_bits) apply (rule shiftr_less_t2n) apply (simp add: asid_low_bits_def asid_high_bits_def) apply (subst ucast_asid_high_bits_is_shift) apply (simp add: mask_def, simp add: asid_bits_def) apply (simp add: option_to_ptr_def option_to_0_def split: option.split) apply (rule ccorres_Guard_Seq ccorres_rhs_assoc)+ apply (rule ccorres_pre_getObject_asidpool) apply (rename_tac poolKO) apply (simp only: mapM_discarded) apply (rule ccorres_rhs_assoc2, rule ccorres_split_nothrow_novcg) apply (simp add: word_sle_def Kernel_C.asidLowBits_def Collect_True del: Collect_const) apply (rule ccorres_semantic_equivD2[rotated]) apply (simp only: semantic_equiv_def) apply (rule Seq_ceqv [OF ceqv_refl _ xpres_triv]) apply (simp only: ceqv_Guard_UNIV) apply (rule While_ceqv [OF _ _ xpres_triv], rule impI, rule refl) apply (rule ceqv_remove_eqv_skip) apply (simp add: ceqv_Guard_UNIV ceqv_refl) apply (rule_tac F="\<lambda>n. ko_at' poolKO pool and valid_objs' and valid_pde_mappings'" in ccorres_mapM_x_while_gen[OF _ _ _ _ _ offset_xf_for_sequence, where j=1, simplified]) apply (intro allI impI) apply (rule ccorres_guard_imp2) apply (rule_tac xf'="offset_'" in ccorres_abstract, ceqv) apply (rule_tac P="rv' = of_nat n" in ccorres_gen_asm2) apply (rule ccorres_Guard[where F=ArrayBounds]) apply (rule ccorres_move_c_guard_ap) apply (rule_tac R="ko_at' poolKO pool and valid_objs'" in ccorres_cond2) apply (clarsimp dest!: rf_sr_cpspace_asidpool_relation) apply (erule cmap_relationE1, erule ko_at_projectKO_opt) apply (clarsimp simp: casid_pool_relation_def typ_heap_simps inv_ASIDPool split: asidpool.split_asm asid_pool_C.split_asm) apply (simp add: upto_enum_word del: upt.simps) apply (drule(1) ko_at_valid_objs') apply (simp add: projectKOs) apply (clarsimp simp: array_relation_def valid_obj'_def ran_def) apply (drule_tac x="of_nat n" in spec)+ apply (simp add: asid_low_bits_def word_le_nat_alt) apply (simp add: word_unat.Abs_inverse unats_def) apply (simp add: option_to_ptr_def option_to_0_def split: option.split_asm) apply clarsimp apply (ctac(no_vcg) add: flushSpace_ccorres) apply (ctac add: invalidateASIDEntry_ccorres) apply wp apply (rule ccorres_return_Skip) apply (clarsimp simp: Collect_const_mem) apply (simp add: upto_enum_word typ_at_to_obj_at_arches obj_at'_weakenE[OF _ TrueI] del: upt.simps) apply (simp add: is_aligned_mask[symmetric]) apply (rule conjI[rotated]) apply (simp add: asid_low_bits_def word_of_nat_less) apply (clarsimp simp: mask_def) apply (erule is_aligned_add_less_t2n) apply (subst(asm) Suc_unat_diff_1) apply (simp add: asid_low_bits_def) apply (simp add: unat_power_lower asid_low_bits_word_bits) apply (erule of_nat_less_pow_32 [OF _ asid_low_bits_word_bits]) apply (simp add: asid_low_bits_def asid_bits_def) apply (simp add: asid_bits_def) apply (simp add: upto_enum_word ) apply (vcg exspec=flushSpace_modifies exspec=invalidateASIDEntry_modifies) apply clarsimp apply (rule hoare_pre, wp) apply simp apply (simp add: upto_enum_word asid_low_bits_def) apply ceqv apply (rule ccorres_move_const_guard)+ apply (rule ccorres_split_nothrow_novcg_dc) apply (rule_tac P="\<lambda>s. rv = armKSASIDTable (ksArchState s)" in ccorres_from_vcg[where P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: simpler_modify_def) apply (clarsimp simp: rf_sr_def cstate_relation_def Let_def carch_state_relation_def cmachine_state_relation_def carch_globals_def h_t_valid_clift_Some_iff) apply (erule array_relation_update[unfolded fun_upd_def]) apply (simp add: asid_high_bits_of_def unat_ucast asid_low_bits_def) apply (rule sym, rule nat_mod_eq') apply (rule order_less_le_trans, rule iffD1[OF word_less_nat_alt]) apply (rule shiftr_less_t2n[where m=7]) subgoal by simp subgoal by simp subgoal by (simp add: option_to_ptr_def option_to_0_def) subgoal by (simp add: asid_high_bits_def) apply (rule ccorres_pre_getCurThread) apply (ctac add: setVMRoot_ccorres) apply wp apply (simp add: guard_is_UNIV_def) apply (simp add: pred_conj_def fun_upd_def[symmetric] cur_tcb'_def[symmetric]) apply (strengthen invs'_invs_no_cicd', strengthen invs_asid_update_strg') apply (rule mapM_x_wp') apply (rule hoare_pre, wp) apply simp apply (simp add: guard_is_UNIV_def Kernel_C.asidLowBits_def word_sle_def word_sless_def Collect_const_mem mask_def asid_bits_def plus_one_helper asid_shiftr_low_bits_less) apply (rule ccorres_return_Skip) apply (simp add: Kernel_C.asidLowBits_def word_sle_def word_sless_def) apply (auto simp: asid_shiftr_low_bits_less Collect_const_mem mask_def asid_bits_def plus_one_helper) done lemma deleteASID_ccorres: "ccorres dc xfdc (invs' and K (asid < 2 ^ 17) and K (pdPtr \<noteq> 0)) (UNIV \<inter> {s. asid_' s = asid} \<inter> {s. pd_' s = Ptr pdPtr}) [] (deleteASID asid pdPtr) (Call deleteASID_'proc)" apply (cinit lift: asid_' pd_' cong: call_ignore_cong) apply (rule ccorres_Guard_Seq)+ apply (rule_tac r'="\<lambda>rv rv'. case rv (ucast (asid_high_bits_of asid)) of None \<Rightarrow> rv' = NULL | Some v \<Rightarrow> rv' = Ptr v \<and> rv' \<noteq> NULL" and xf'="poolPtr_'" in ccorres_split_nothrow) apply (rule_tac P="invs' and K (asid < 2 ^ 17)" and P'=UNIV in ccorres_from_vcg) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: simpler_gets_def Let_def) apply (erule(1) getKSASIDTable_ccorres_stuff) apply (simp add: asid_high_bits_of_def asidLowBits_def Kernel_C.asidLowBits_def asid_low_bits_def unat_ucast) apply (rule sym, rule mod_less) apply (rule unat_less_power[where sz=7, simplified]) apply (simp add: word_bits_conv) apply (rule shiftr_less_t2n[where m=7, simplified]) apply simp apply (rule order_less_le_trans, rule ucast_less) apply simp apply (simp add: asid_high_bits_def) apply ceqv apply csymbr apply wpc apply (simp add: ccorres_cond_iffs dc_def[symmetric] Collect_False del: Collect_const cong: call_ignore_cong) apply (rule ccorres_cond_false) apply (rule ccorres_return_Skip) apply (simp add: dc_def[symmetric] when_def Collect_True liftM_def cong: conj_cong call_ignore_cong del: Collect_const) apply (rule ccorres_pre_getObject_asidpool) apply (rule ccorres_Guard_Seq[where F=ArrayBounds]) apply (rule ccorres_move_c_guard_ap) apply (rule ccorres_Guard_Seq)+ apply (rename_tac pool) apply (rule_tac xf'=ret__int_' and val="from_bool (inv ASIDPool pool (asid && mask asid_low_bits) = Some pdPtr)" and R="ko_at' pool x2 and K (pdPtr \<noteq> 0)" in ccorres_symb_exec_r_known_rv_UNIV[where R'=UNIV]) apply (vcg, clarsimp) apply (clarsimp dest!: rf_sr_cpspace_asidpool_relation) apply (erule(1) cmap_relation_ko_atE) apply (clarsimp simp: typ_heap_simps casid_pool_relation_def array_relation_def split: asidpool.split_asm asid_pool_C.split_asm) apply (drule_tac x="asid && mask asid_low_bits" in spec) apply (simp add: asid_low_bits_def Kernel_C.asidLowBits_def mask_def word_and_le1) apply (drule sym, simp) apply (simp add: option_to_ptr_def option_to_0_def from_bool_def inv_ASIDPool split: option.split if_split bool.split) apply ceqv apply (rule ccorres_cond2[where R=\<top>]) apply (simp add: Collect_const_mem from_bool_0) apply (rule ccorres_rhs_assoc)+ apply (ctac (no_vcg) add: flushSpace_ccorres) apply (ctac (no_vcg) add: invalidateASIDEntry_ccorres) apply (rule ccorres_Guard_Seq[where F=ArrayBounds]) apply (rule ccorres_move_c_guard_ap) apply (rule ccorres_Guard_Seq)+ apply (rule ccorres_split_nothrow_novcg_dc) apply (rule_tac P="ko_at' pool x2" in ccorres_from_vcg[where P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply clarsimp apply (rule cmap_relationE1[OF rf_sr_cpspace_asidpool_relation], assumption, erule ko_at_projectKO_opt) apply (rule bexI [OF _ setObject_eq], simp_all add: objBits_simps archObjSize_def pageBits_def)[1] apply (clarsimp simp: rf_sr_def cstate_relation_def Let_def typ_heap_simps) apply (rule conjI) apply (clarsimp simp: cpspace_relation_def typ_heap_simps' update_asidpool_map_tos update_asidpool_map_to_asidpools) apply (rule cmap_relation_updI, simp_all)[1] apply (simp add: casid_pool_relation_def fun_upd_def[symmetric] inv_ASIDPool split: asidpool.split_asm asid_pool_C.split_asm) apply (erule array_relation_update) subgoal by (simp add: mask_def) subgoal by (simp add: option_to_ptr_def option_to_0_def) subgoal by (simp add: asid_low_bits_def) subgoal by (simp add: carch_state_relation_def cmachine_state_relation_def carch_globals_def update_asidpool_map_tos typ_heap_simps') apply (rule ccorres_pre_getCurThread) apply (ctac add: setVMRoot_ccorres) apply (simp add: cur_tcb'_def[symmetric]) apply (strengthen invs'_invs_no_cicd') apply wp apply (clarsimp simp: rf_sr_def guard_is_UNIV_def cstate_relation_def Let_def) apply wp[1] apply (simp add: fun_upd_def[symmetric]) apply wp apply (rule ccorres_return_Skip) subgoal by (clarsimp simp: guard_is_UNIV_def Collect_const_mem word_sle_def word_sless_def Kernel_C.asidLowBits_def asid_low_bits_def order_le_less_trans [OF word_and_le1]) apply wp apply vcg apply (clarsimp simp: Collect_const_mem if_1_0_0 word_sless_def word_sle_def Kernel_C.asidLowBits_def typ_at_to_obj_at_arches) apply (rule conjI) apply (clarsimp simp: mask_def inv_ASIDPool split: asidpool.split) apply (frule obj_at_valid_objs', clarsimp+) apply (clarsimp simp: asid_bits_def typ_at_to_obj_at_arches obj_at'_weakenE[OF _ TrueI] fun_upd_def[symmetric] valid_obj'_def projectKOs invs_valid_pde_mappings' invs_cur') apply (rule conjI, blast) subgoal by (fastforce simp: inv_into_def ran_def split: if_split_asm) by (clarsimp simp: order_le_less_trans [OF word_and_le1] asid_shiftr_low_bits_less asid_bits_def mask_def plus_one_helper arg_cong[where f="\<lambda>x. 2 ^ x", OF meta_eq_to_obj_eq, OF asid_low_bits_def] split: option.split_asm) lemma setObject_ccorres_lemma: fixes val :: "'a :: pspace_storable" shows "\<lbrakk> \<And>s. \<Gamma> \<turnstile> (Q s) c {s'. (s \<lparr> ksPSpace := ksPSpace s (ptr \<mapsto> injectKO val) \<rparr>, s') \<in> rf_sr},{}; \<And>s s' val (val' :: 'a). \<lbrakk> ko_at' val' ptr s; (s, s') \<in> rf_sr \<rbrakk> \<Longrightarrow> s' \<in> Q s; \<And>val :: 'a. updateObject val = updateObject_default val; \<And>val :: 'a. (1 :: word32) < 2 ^ objBits val; \<And>(val :: 'a) (val' :: 'a). objBits val = objBits val'; \<Gamma> \<turnstile> Q' c UNIV \<rbrakk> \<Longrightarrow> ccorres dc xfdc \<top> Q' hs (setObject ptr val) c" apply (rule ccorres_from_vcg_nofail) apply (rule allI) apply (case_tac "obj_at' (\<lambda>x :: 'a. True) ptr \<sigma>") apply (rule_tac P'="Q \<sigma>" in conseqPre, rule conseqPost, assumption) apply clarsimp apply (rule bexI [OF _ setObject_eq], simp+) apply (drule obj_at_ko_at') apply clarsimp apply clarsimp apply (rule conseqPre, erule conseqPost) apply clarsimp apply (subgoal_tac "fst (setObject ptr val \<sigma>) = {}") apply simp apply (erule notE, erule_tac s=\<sigma> in empty_failD[rotated]) apply (simp add: setObject_def split_def) apply (rule ccontr) apply (clarsimp elim!: nonemptyE) apply (frule use_valid [OF _ obj_at_setObject3[where P=\<top>]], simp_all)[1] apply (simp add: typ_at_to_obj_at'[symmetric]) apply (frule(1) use_valid [OF _ setObject_typ_at']) apply simp apply simp apply clarsimp done lemma findPDForASID_nonzero: "\<lbrace>\<top>\<rbrace> findPDForASID asid \<lbrace>\<lambda>rv s. rv \<noteq> 0\<rbrace>,-" apply (simp add: findPDForASID_def cong: option.case_cong) apply (wp | wpc | simp only: o_def simp_thms)+ done lemma unat_shiftr_le_bound: "2 ^ (len_of TYPE('a :: len) - n) - 1 \<le> bnd \<Longrightarrow> 0 < n \<Longrightarrow> unat ((x :: 'a word) >> n) \<le> bnd" apply (erule order_trans[rotated], simp) apply (rule nat_le_Suc_less_imp) apply (rule unat_less_helper, simp) apply (rule shiftr_less_t2n3) apply simp apply simp done lemma pageTableMapped_ccorres: "ccorres (\<lambda>rv rv'. rv' = option_to_ptr rv \<and> rv \<noteq> Some 0) ret__ptr_to_struct_pde_C_' (invs' and K (asid \<le> mask asid_bits)) (UNIV \<inter> {s. asid_' s = asid} \<inter> {s. vaddr_' s = vaddr} \<inter> {s. pt_' s = Ptr ptPtr}) [] (pageTableMapped asid vaddr ptPtr) (Call pageTableMapped_'proc)" apply (cinit lift: asid_' vaddr_' pt_') apply (simp add: ignoreFailure_def catch_def bindE_bind_linearise liftE_def del: Collect_const cong: call_ignore_cong) apply (rule ccorres_split_nothrow_novcg_case_sum) apply clarsimp apply (ctac (no_vcg) add: findPDForASID_ccorres) apply ceqv apply (simp add: Collect_False del: Collect_const cong: call_ignore_cong) apply (rule ccorres_Guard_Seq)+ apply csymbr apply (rule_tac xf'=pde_' and r'=cpde_relation in ccorres_split_nothrow_novcg) apply (rule ccorres_add_return2, rule ccorres_pre_getObject_pde) apply (rule ccorres_move_array_assertion_pd | (rule ccorres_flip_Guard, rule ccorres_move_array_assertion_pd))+ apply (rule_tac P="ko_at' x (lookup_pd_slot rv vaddr) and no_0_obj' and page_directory_at' rv" in ccorres_from_vcg[where P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: return_def lookup_pd_slot_def Let_def) apply (drule(1) page_directory_at_rf_sr) apply (erule cmap_relationE1[OF rf_sr_cpde_relation], erule ko_at_projectKO_opt) apply (clarsimp simp: typ_heap_simps' shiftl_t2n field_simps) apply ceqv apply (rule_tac P="rv \<noteq> 0" in ccorres_gen_asm) apply csymbr+ apply (wpc, simp_all add: if_1_0_0 returnOk_bind throwError_bind del: Collect_const) prefer 2 apply (rule ccorres_cond_true_seq) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: if_1_0_0 cpde_relation_def Let_def return_def addrFromPPtr_def pde_pde_coarse_lift_def) apply (rule conjI) apply (simp add: pde_lift_def Let_def split: if_split_asm) apply (clarsimp simp: option_to_0_def option_to_ptr_def split: if_split) apply (clarsimp simp: ARM.addrFromPPtr_def ARM.ptrFromPAddr_def) apply ((rule ccorres_cond_false_seq ccorres_cond_false ccorres_return_C | simp)+)[3] apply (simp only: simp_thms) apply wp apply (clarsimp simp: guard_is_UNIV_def Collect_const_mem if_1_0_0) apply (simp add: cpde_relation_def Let_def pde_lift_def split: if_split_asm, auto simp: option_to_0_def option_to_ptr_def pde_tag_defs)[1] apply simp apply (rule ccorres_split_throws) apply (rule ccorres_return_C, simp+) apply vcg apply (wp hoare_drop_imps findPDForASID_nonzero) apply (simp add: guard_is_UNIV_def word_sle_def pdBits_def pageBits_def unat_gt_0 unat_shiftr_le_bound) apply (simp add: guard_is_UNIV_def option_to_0_def option_to_ptr_def) apply auto[1] done lemma pageTableMapped_pd: "\<lbrace>\<top>\<rbrace> pageTableMapped asid vaddr ptPtr \<lbrace>\<lambda>rv s. case rv of Some x \<Rightarrow> page_directory_at' x s | _ \<Rightarrow> True\<rbrace>" apply (simp add: pageTableMapped_def) apply (rule hoare_pre) apply (wp getPDE_wp hoare_vcg_all_lift_R | wpc)+ apply (rule hoare_post_imp_R, rule findPDForASID_page_directory_at'_simple) apply (clarsimp split: if_split) apply simp done lemma unmapPageTable_ccorres: "ccorres dc xfdc (invs' and (\<lambda>s. asid \<le> mask asid_bits \<and> vaddr < kernelBase)) (UNIV \<inter> {s. asid_' s = asid} \<inter> {s. vaddr_' s = vaddr} \<inter> {s. pt_' s = Ptr ptPtr}) [] (unmapPageTable asid vaddr ptPtr) (Call unmapPageTable_'proc)" apply (rule ccorres_gen_asm) apply (cinit lift: asid_' vaddr_' pt_') apply (ctac(no_vcg) add: pageTableMapped_ccorres) apply wpc apply (simp add: option_to_ptr_def option_to_0_def ccorres_cond_iffs) apply (rule ccorres_return_Skip[unfolded dc_def]) apply (simp add: option_to_ptr_def option_to_0_def ccorres_cond_iffs) apply (rule ccorres_rhs_assoc)+ apply (rule ccorres_Guard_Seq)+ apply csymbr apply (rule ccorres_move_array_assertion_pd) apply csymbr apply csymbr apply (rule ccorres_split_nothrow_novcg_dc) apply (rule storePDE_Basic_ccorres) apply (simp add: cpde_relation_def Let_def pde_lift_pde_invalid) apply (fold dc_def) apply csymbr apply (ctac add: cleanByVA_PoU_ccorres) apply (ctac(no_vcg) add:flushTable_ccorres) apply wp apply (vcg exspec=cleanByVA_PoU_modifies) apply wp apply (fastforce simp: guard_is_UNIV_def Collect_const_mem Let_def shiftl_t2n field_simps lookup_pd_slot_def) apply (rule_tac Q="\<lambda>rv s. (case rv of Some pd \<Rightarrow> page_directory_at' pd s | _ \<Rightarrow> True) \<and> invs' s" in hoare_post_imp) apply (clarsimp simp: lookup_pd_slot_def Let_def mask_add_aligned less_kernelBase_valid_pde_offset'' page_directory_at'_def) apply (wp pageTableMapped_pd) apply (clarsimp simp: word_sle_def lookup_pd_slot_def Let_def shiftl_t2n field_simps Collect_const_mem pdBits_def pageBits_def) apply (simp add: unat_shiftr_le_bound unat_eq_0) done lemma return_Null_ccorres: "ccorres ccap_relation ret__struct_cap_C_' \<top> UNIV (SKIP # hs) (return NullCap) (\<acute>ret__struct_cap_C :== CALL cap_null_cap_new() ;; return_C ret__struct_cap_C_'_update ret__struct_cap_C_')" apply (rule ccorres_from_vcg_throws) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp add: ccap_relation_NullCap_iff return_def) done lemma no_0_pd_at'[elim!]: "\<lbrakk> page_directory_at' 0 s; no_0_obj' s \<rbrakk> \<Longrightarrow> P" apply (clarsimp simp: page_directory_at'_def) apply (drule spec[where x=0], clarsimp) done lemma Arch_finaliseCap_ccorres: "\<And>final. ccorres ccap_relation ret__struct_cap_C_' (invs' and valid_cap' (ArchObjectCap cap) and (\<lambda>s. 2 ^ acapBits cap \<le> gsMaxObjectSize s)) (UNIV \<inter> {s. ccap_relation (ArchObjectCap cap) (cap_' s)} \<inter> {s. final_' s = from_bool final}) [] (Arch.finaliseCap cap final) (Call Arch_finaliseCap_'proc)" apply (cinit lift: cap_' final_' cong: call_ignore_cong) apply csymbr apply (simp add: ARM_H.finaliseCap_def cap_get_tag_isCap_ArchObject del: Collect_const) apply (wpc, simp_all add: isCap_simps Collect_False Collect_True case_bool_If del: Collect_const)[1] apply (rule ccorres_if_lhs) apply (simp add: from_bool_0 true_def) apply (rule ccorres_rhs_assoc)+ apply csymbr apply csymbr apply simp apply (ctac(no_vcg) add: deleteASIDPool_ccorres) apply (rule return_Null_ccorres) apply wp apply (simp add: from_bool_0 false_def) apply (rule return_Null_ccorres)+ apply (rule ccorres_Cond_rhs_Seq) apply (frule(1) cap_get_tag_isCap_unfolded_H_cap) apply (frule small_frame_cap_is_mapped_alt) apply (clarsimp simp: cap_small_frame_cap_lift cap_to_H_def case_option_over_if elim!: ccap_relationE simp del: Collect_const) apply (rule ccorres_rhs_assoc)+ apply csymbr apply (simp cong: if_cong del: Collect_const) apply (rule ccorres_Cond_rhs_Seq, simp_all del: Collect_const)[1] apply (rule ccorres_rhs_assoc)+ apply (csymbr, csymbr, csymbr) apply (ctac(no_vcg) add: unmapPage_ccorres) apply (rule return_Null_ccorres) apply wp apply (rule return_Null_ccorres) apply simp apply (rule ccorres_rhs_assoc)+ apply csymbr apply (frule(1) cap_get_tag_isCap_unfolded_H_cap) apply (frule frame_cap_is_mapped_alt) apply (clarsimp simp: cap_frame_cap_lift cap_to_H_def case_option_over_if elim!: ccap_relationE simp del: Collect_const) apply (rule ccorres_Cond_rhs_Seq, simp_all del: Collect_const)[1] apply (rule ccorres_rhs_assoc)+ apply (csymbr, csymbr, csymbr, csymbr) apply (ctac(no_vcg) add: unmapPage_ccorres) apply (rule return_Null_ccorres) apply wp apply (rule return_Null_ccorres) apply (rule ccorres_rhs_assoc)+ apply csymbr apply (simp add: if_1_0_0 from_bool_0 del: Collect_const) apply (rule ccorres_Cond_rhs_Seq) apply (rule ccorres_rhs_assoc)+ apply csymbr apply csymbr apply (frule cap_get_tag_isCap_unfolded_H_cap) apply (clarsimp simp: cap_page_table_cap_lift cap_to_H_def case_option_over_if if_1_0_0 elim!: ccap_relationE simp del: Collect_const) apply (rule ccorres_Cond_rhs_Seq) apply (simp add: from_bool_0 to_bool_def) apply (rule ccorres_rhs_assoc)+ apply csymbr apply csymbr apply csymbr apply (ctac(no_vcg) add: unmapPageTable_ccorres) apply (rule return_Null_ccorres) apply wp apply (simp add: to_bool_def) apply (rule return_Null_ccorres) apply (simp only: bool.simps) apply (simp cong: option.case_cong add: case_option_If) apply (rule ccorres_cond_false_seq) apply simp apply (rule return_Null_ccorres) apply (rule ccorres_rhs_assoc)+ apply csymbr apply (simp only: if_1_0_0 simp_thms from_bool_0) apply (rule ccorres_Cond_rhs_Seq) apply (rule ccorres_rhs_assoc)+ apply csymbr+ apply (simp only: if_1_0_0 simp_thms) apply (frule cap_get_tag_isCap_unfolded_H_cap) apply (clarsimp simp: cap_page_directory_cap_lift cap_to_H_def case_option_over_if elim!: ccap_relationE simp del: Collect_const) apply (rule ccorres_Cond_rhs_Seq) apply (rule ccorres_rhs_assoc)+ apply csymbr apply csymbr apply (simp add: to_bool_def) apply (ctac(no_vcg) add: deleteASID_ccorres) apply (rule return_Null_ccorres) apply wp apply simp apply (rule return_Null_ccorres) apply (simp cong: option.case_cong add: case_option_If) apply (rule ccorres_cond_false_seq, simp) apply (rule return_Null_ccorres) apply (clarsimp simp: from_bool_0 Collect_const_mem) apply (intro conjI) apply (clarsimp simp: valid_cap'_def) apply (clarsimp simp: asid_bits_def) apply clarsimp apply (rule conjI) apply (clarsimp simp: valid_cap'_def mask_def) apply (frule cap_get_tag_isCap_unfolded_H_cap, rule refl) subgoal by (clarsimp simp: cap_small_frame_cap_lift cap_to_H_def to_bool_def vmsz_aligned_aligned_pageBits elim!: ccap_relationE split: option.split_asm if_split_asm) apply (clarsimp simp: valid_cap'_def mask_def) apply (frule(1) cap_get_tag_isCap_unfolded_H_cap) subgoal by (clarsimp simp: cap_frame_cap_lift cap_to_H_def to_bool_def vmsz_aligned_aligned_pageBits elim!: ccap_relationE split: option.split_asm if_split_asm) apply (clarsimp simp: valid_cap'_def mask_def) apply (frule cap_get_tag_isCap_unfolded_H_cap) apply (clarsimp simp: cap_page_table_cap_lift cap_to_H_def to_bool_def elim!: ccap_relationE split: option.split_asm if_split_asm) apply (clarsimp simp: valid_cap'_def) apply (frule cap_get_tag_isCap_unfolded_H_cap) apply (frule cap_lift_page_directory_cap) apply (clarsimp simp: ccap_relation_def cap_to_H_def capAligned_def to_bool_def cap_page_directory_cap_lift_def split: if_split_asm) apply (rule conjI) apply (clarsimp simp: asid_bits_def cap_page_directory_cap_lift_def) apply clarsimp apply clarsimp apply (frule cap_get_tag_isCap_unfolded_H_cap) apply (clarsimp simp: cap_asid_pool_cap_lift cap_to_H_def elim!: ccap_relationE simp del: Collect_const) apply (clarsimp simp: gen_framesize_to_H_def cap_get_tag_isCap_unfolded_H_cap) apply (rule conjI) apply clarsimp apply (frule cap_get_tag_isCap_unfolded_H_cap, simp) apply (clarsimp simp: cap_lift_small_frame_cap cap_to_H_simps cap_small_frame_cap_lift_def Kernel_C.ARMSmallPage_def elim!: ccap_relationE) apply clarsimp apply (frule(1) cap_get_tag_isCap_unfolded_H_cap) apply (frule frame_cap_size) apply (simp add: mask_eq_iff_w2p word_size del: frame_cap_size) apply (clarsimp simp: cap_frame_cap_lift cap_to_H_def vm_page_size_defs framesize_to_H_def elim!: ccap_relationE simp del: Collect_const frame_cap_size split: if_split) apply (clarsimp simp: c_valid_cap_def cl_valid_cap_def Kernel_C.ARMSmallPage_def) apply (clarsimp simp: cap_get_tag_isCap_unfolded_H_cap) apply (frule cap_get_tag_isCap_unfolded_H_cap) apply (clarsimp simp: cap_page_table_cap_lift cap_to_H_def elim!: ccap_relationE simp del: Collect_const) apply (clarsimp simp: cap_get_tag_isCap_unfolded_H_cap) done lemma ccte_relation_ccap_relation: "ccte_relation cte cte' \<Longrightarrow> ccap_relation (cteCap cte) (cte_C.cap_C cte')" by (clarsimp simp: ccte_relation_def ccap_relation_def cte_to_H_def map_option_Some_eq2 c_valid_cte_def) lemma isFinalCapability_ccorres: "ccorres (op = \<circ> from_bool) ret__unsigned_long_' (cte_wp_at' (op = cte) slot and invs') (UNIV \<inter> {s. cte_' s = Ptr slot}) [] (isFinalCapability cte) (Call isFinalCapability_'proc)" apply (cinit lift: cte_') apply (rule ccorres_Guard_Seq) apply (simp add: Let_def del: Collect_const) apply (rule ccorres_symb_exec_r) apply (rule_tac xf'="mdb_'" in ccorres_abstract) apply ceqv apply (rule_tac P="mdb_node_to_H (mdb_node_lift rv') = cteMDBNode cte" in ccorres_gen_asm2) apply csymbr apply (rule_tac r'="op = \<circ> from_bool" and xf'="prevIsSameObject_'" in ccorres_split_nothrow_novcg) apply (rule ccorres_cond2[where R=\<top>]) apply (clarsimp simp: Collect_const_mem nullPointer_def) apply (simp add: mdbPrev_to_H[symmetric]) apply (rule ccorres_from_vcg[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (simp add: return_def from_bool_def false_def) apply (rule ccorres_rhs_assoc)+ apply (rule ccorres_symb_exec_l[OF _ getCTE_inv getCTE_wp empty_fail_getCTE]) apply (rule_tac P="cte_wp_at' (op = cte) slot and cte_wp_at' (op = rv) (mdbPrev (cteMDBNode cte)) and valid_cap' (cteCap rv) and K (capAligned (cteCap cte) \<and> capAligned (cteCap rv))" and P'=UNIV in ccorres_from_vcg) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: return_def mdbPrev_to_H[symmetric]) apply (simp add: rf_sr_cte_at_validD) apply (clarsimp simp: cte_wp_at_ctes_of) apply (rule cmap_relationE1 [OF cmap_relation_cte], assumption+, simp?, simp add: typ_heap_simps)+ apply (drule ccte_relation_ccap_relation)+ apply (rule exI, rule conjI, assumption)+ apply (auto)[1] apply ceqv apply (clarsimp simp del: Collect_const) apply (rule ccorres_cond2[where R=\<top>]) apply (simp add: from_bool_0 Collect_const_mem) apply (rule ccorres_return_C, simp+)[1] apply csymbr apply (rule ccorres_cond2[where R=\<top>]) apply (simp add: nullPointer_def Collect_const_mem mdbNext_to_H[symmetric]) apply (rule ccorres_return_C, simp+)[1] apply (rule ccorres_symb_exec_l[OF _ getCTE_inv getCTE_wp empty_fail_getCTE]) apply (rule_tac P="cte_wp_at' (op = cte) slot and cte_wp_at' (op = rva) (mdbNext (cteMDBNode cte)) and K (capAligned (cteCap rva) \<and> capAligned (cteCap cte)) and valid_cap' (cteCap cte)" and P'=UNIV in ccorres_from_vcg_throws) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: return_def from_bool_eq_if from_bool_0 mdbNext_to_H[symmetric] rf_sr_cte_at_validD) apply (clarsimp simp: cte_wp_at_ctes_of split: if_split) apply (rule cmap_relationE1 [OF cmap_relation_cte], assumption+, simp?, simp add: typ_heap_simps)+ apply (drule ccte_relation_ccap_relation)+ apply (auto simp: false_def true_def from_bool_def split: bool.splits)[1] apply (wp getCTE_wp') apply (clarsimp simp add: guard_is_UNIV_def Collect_const_mem false_def from_bool_0 true_def from_bool_def) apply vcg apply (rule conseqPre, vcg) apply clarsimp apply (clarsimp simp: Collect_const_mem) apply (frule(1) rf_sr_cte_at_validD, simp add: typ_heap_simps) apply (clarsimp simp: cte_wp_at_ctes_of) apply (erule(1) cmap_relationE1 [OF cmap_relation_cte]) apply (simp add: typ_heap_simps) apply (clarsimp simp add: ccte_relation_def map_option_Some_eq2) by (auto, auto dest!: ctes_of_valid' [OF _ invs_valid_objs'] elim!: valid_capAligned) lemma cteDeleteOne_ccorres: "ccorres dc xfdc (invs' and cte_wp_at' (\<lambda>ct. w = -1 \<or> cteCap ct = NullCap \<or> (\<forall>cap'. ccap_relation (cteCap ct) cap' \<longrightarrow> cap_get_tag cap' = w)) slot) ({s. gs_get_assn cteDeleteOne_'proc (ghost'state_' (globals s)) = w} \<inter> {s. slot_' s = Ptr slot}) [] (cteDeleteOne slot) (Call cteDeleteOne_'proc)" unfolding cteDeleteOne_def apply (rule ccorres_symb_exec_l' [OF _ getCTE_inv getCTE_sp empty_fail_getCTE]) apply (cinit' lift: slot_' cong: call_ignore_cong) apply (rule ccorres_move_c_guard_cte) apply csymbr apply (rule ccorres_abstract_cleanup) apply (rule ccorres_gen_asm2, erule_tac t="cap_type = scast cap_null_cap" and s="cteCap cte = NullCap" in ssubst) apply (clarsimp simp only: when_def unless_def dc_def[symmetric]) apply (rule ccorres_cond2[where R=\<top>]) apply (clarsimp simp: Collect_const_mem) apply (rule ccorres_rhs_assoc)+ apply csymbr apply csymbr apply (rule ccorres_Guard_Seq) apply (rule ccorres_basic_srnoop) apply (ctac(no_vcg) add: isFinalCapability_ccorres[where slot=slot]) apply (rule_tac A="invs' and cte_wp_at' (op = cte) slot" in ccorres_guard_imp2[where A'=UNIV]) apply (simp add: split_def dc_def[symmetric] del: Collect_const) apply (rule ccorres_move_c_guard_cte) apply (ctac(no_vcg) add: finaliseCap_True_standin_ccorres) apply (rule ccorres_assert) apply (simp add: dc_def[symmetric]) apply (ctac add: emptySlot_ccorres) apply (simp add: pred_conj_def finaliseCapTrue_standin_simple_def) apply (strengthen invs_mdb_strengthen' invs_urz) apply (wp typ_at_lifts isFinalCapability_inv | strengthen invs_valid_objs')+ apply (clarsimp simp: from_bool_def true_def irq_opt_relation_def invs_pspace_aligned' cte_wp_at_ctes_of) apply (erule(1) cmap_relationE1 [OF cmap_relation_cte]) apply (clarsimp simp: typ_heap_simps ccte_relation_ccap_relation) apply (wp isFinalCapability_inv) apply simp apply (simp del: Collect_const add: false_def) apply (rule ccorres_return_Skip) apply (clarsimp simp: Collect_const_mem cte_wp_at_ctes_of) apply (erule(1) cmap_relationE1 [OF cmap_relation_cte]) apply (clarsimp simp: typ_heap_simps cap_get_tag_isCap dest!: ccte_relation_ccap_relation) apply (auto simp: o_def) done (* FIXME : move *) lemma of_int_uint_ucast: "of_int (uint (x :: 'a::len word)) = (ucast x :: 'b::len word)" by (metis ucast_def word_of_int) lemma getIRQSlot_ccorres_stuff: "\<lbrakk> (s, s') \<in> rf_sr \<rbrakk> \<Longrightarrow> CTypesDefs.ptr_add (intStateIRQNode_' (globals s')) (uint (irq :: 10 word)) = Ptr (irq_node' s + 2 ^ cte_level_bits * ucast irq)" apply (clarsimp simp add: rf_sr_def cstate_relation_def Let_def cinterrupt_relation_def) apply (simp add: objBits_simps cte_level_bits_def size_of_def mult.commute mult.left_commute of_int_uint_ucast ) done lemma deletingIRQHandler_ccorres: "ccorres dc xfdc (invs' and (\<lambda>s. weak_sch_act_wf (ksSchedulerAction s) s)) (UNIV \<inter> {s. irq_opt_relation (Some irq) (irq_' s)}) [] (deletingIRQHandler irq) (Call deletingIRQHandler_'proc)" apply (cinit lift: irq_' cong: call_ignore_cong) apply (clarsimp simp: irq_opt_relation_def ptr_add_assertion_def dc_def[symmetric] cong: call_ignore_cong ) apply (rule_tac r'="\<lambda>rv rv'. rv' = Ptr rv" and xf'="slot_'" in ccorres_split_nothrow) apply (simp add: sint_ucast_eq_uint is_down) apply (rule ccorres_move_array_assertion_irq) apply (rule ccorres_from_vcg[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: getIRQSlot_def liftM_def getInterruptState_def locateSlot_conv) apply (simp add: bind_def simpler_gets_def return_def ucast_nat_def uint_up_ucast is_up) apply (erule getIRQSlot_ccorres_stuff) apply ceqv apply (rule ccorres_symb_exec_l) apply (rule ccorres_symb_exec_l) apply (rule ccorres_Guard_Seq) apply (rule ccorres_symb_exec_r) apply (ctac add: cteDeleteOne_ccorres[where w="scast cap_notification_cap"]) apply vcg apply (rule conseqPre, vcg, clarsimp simp: rf_sr_def gs_set_assn_Delete_cstate_relation[unfolded o_def]) apply (wp getCTE_wp' | simp add: getSlotCap_def getIRQSlot_def locateSlot_conv getInterruptState_def)+ apply vcg apply (clarsimp simp: cap_get_tag_isCap ghost_assertion_data_get_def ghost_assertion_data_set_def) apply (simp add: cap_tag_defs) apply (clarsimp simp: cte_wp_at_ctes_of Collect_const_mem irq_opt_relation_def Kernel_C.maxIRQ_def) apply (drule word_le_nat_alt[THEN iffD1]) apply (clarsimp simp:uint_0_iff unat_gt_0 uint_up_ucast is_up unat_def[symmetric]) done lemma Zombie_new_spec: "\<forall>s. \<Gamma>\<turnstile> ({s} \<inter> {s. type_' s = 32 \<or> type_' s < 31}) Call Zombie_new_'proc {s'. cap_zombie_cap_lift (ret__struct_cap_C_' s') = \<lparr> capZombieID_CL = \<^bsup>s\<^esup>ptr && ~~ mask (if \<^bsup>s\<^esup>type = (1 << 5) then 5 else unat (\<^bsup>s\<^esup>type + 1)) || \<^bsup>s\<^esup>number___unsigned_long && mask (if \<^bsup>s\<^esup>type = (1 << 5) then 5 else unat (\<^bsup>s\<^esup>type + 1)), capZombieType_CL = \<^bsup>s\<^esup>type && mask 6 \<rparr> \<and> cap_get_tag (ret__struct_cap_C_' s') = scast cap_zombie_cap}" apply vcg apply (clarsimp simp: word_sle_def) apply (simp add: mask_def word_log_esimps[where 'a=32, simplified]) apply clarsimp apply (simp add: word_add_less_mono1[where k=1 and j="0x1F", simplified]) done lemma mod_mask_drop: "\<lbrakk> m = 2 ^ n; 0 < m; mask n && msk = mask n \<rbrakk> \<Longrightarrow> (x mod m) && msk = x mod m" by (simp add: word_mod_2p_is_mask word_bw_assocs) lemma irq_opt_relation_Some_ucast: "\<lbrakk> x && mask 10 = x; ucast x \<le> (scast Kernel_C.maxIRQ :: 10 word) \<or> x \<le> (scast Kernel_C.maxIRQ :: word32) \<rbrakk> \<Longrightarrow> irq_opt_relation (Some (ucast x)) (ucast ((ucast x):: 10 word))" using ucast_ucast_mask[where x=x and 'a=10, symmetric] apply (simp add: irq_opt_relation_def) apply (rule conjI, clarsimp simp: irqInvalid_def Kernel_C.maxIRQ_def) apply (simp only: unat_arith_simps ) apply (clarsimp simp: word_le_nat_alt Kernel_C.maxIRQ_def) done lemma upcast_ucast_id: "len_of TYPE('a) \<le> len_of TYPE('b) \<Longrightarrow> ((ucast (a :: 'a::len word) :: 'b ::len word) = ucast b) \<Longrightarrow> (a = b)" apply (rule word_eqI) apply (simp add:word_size) apply (drule_tac f = "%x. (x !! n)" in arg_cong) apply (simp add:nth_ucast) done lemma mask_eq_ucast_eq: "\<lbrakk> x && mask (len_of TYPE('a)) = (x :: ('c :: len word)); len_of TYPE('a) \<le> len_of TYPE('b)\<rbrakk> \<Longrightarrow> ucast (ucast x :: ('a :: len word)) = (ucast x :: ('b :: len word))" apply (rule word_eqI) apply (drule_tac f = "\<lambda>x. (x !! n)" in arg_cong) apply (auto simp:nth_ucast word_size) done lemma irq_opt_relation_Some_ucast': "\<lbrakk> x && mask 10 = x; ucast x \<le> (scast Kernel_C.maxIRQ :: 10 word) \<or> x \<le> (scast Kernel_C.maxIRQ :: word32) \<rbrakk> \<Longrightarrow> irq_opt_relation (Some (ucast x)) (ucast x)" apply (rule_tac P = "%y. irq_opt_relation (Some (ucast x)) y" in subst[rotated]) apply (rule irq_opt_relation_Some_ucast[rotated]) apply simp+ apply (rule word_eqI) apply (drule_tac f = "%x. (x !! n)" in arg_cong) apply (simp add:nth_ucast and_bang word_size) done lemma ccap_relation_IRQHandler_mask: "\<lbrakk> ccap_relation acap ccap; isIRQHandlerCap acap \<rbrakk> \<Longrightarrow> capIRQ_CL (cap_irq_handler_cap_lift ccap) && mask 10 = capIRQ_CL (cap_irq_handler_cap_lift ccap)" apply (simp only: cap_get_tag_isCap[symmetric]) apply (drule ccap_relation_c_valid_cap) apply (simp add: c_valid_cap_def cap_irq_handler_cap_lift cl_valid_cap_def) done lemma prepare_thread_delete_ccorres: "ccorres dc xfdc \<top> UNIV [] (prepareThreadDelete thread) (Call Arch_prepareThreadDelete_'proc)" unfolding prepareThreadDelete_def apply (rule ccorres_Call) apply (rule Arch_prepareThreadDelete_impl[unfolded Arch_prepareThreadDelete_body_def]) apply (rule ccorres_return_Skip) done lemma finaliseCap_ccorres: "\<And>final. ccorres (\<lambda>rv rv'. ccap_relation (fst rv) (finaliseCap_ret_C.remainder_C rv') \<and> irq_opt_relation (snd rv) (finaliseCap_ret_C.irq_C rv')) ret__struct_finaliseCap_ret_C_' (invs' and sch_act_simple and valid_cap' cap and (\<lambda>s. ksIdleThread s \<notin> capRange cap) and (\<lambda>s. 2 ^ capBits cap \<le> gsMaxObjectSize s)) (UNIV \<inter> {s. ccap_relation cap (cap_' s)} \<inter> {s. final_' s = from_bool final} \<inter> {s. exposed_' s = from_bool flag (* dave has name wrong *)}) [] (finaliseCap cap final flag) (Call finaliseCap_'proc)" apply (rule_tac F="capAligned cap" in Corres_UL_C.ccorres_req) apply (clarsimp simp: valid_capAligned) apply (case_tac "P :: bool" for P) apply (rule ccorres_guard_imp2, erule finaliseCap_True_cases_ccorres) apply simp apply (subgoal_tac "\<exists>acap. (0 <=s (-1 :: word8)) \<or> acap = capCap cap") prefer 2 apply simp apply (erule exE) apply (cinit lift: cap_' final_' exposed_' cong: call_ignore_cong) apply csymbr apply (simp del: Collect_const) apply (rule ccorres_Cond_rhs_Seq) apply (clarsimp simp: cap_get_tag_isCap isCap_simps from_bool_neq_0 cong: if_cong simp del: Collect_const) apply (clarsimp simp: word_sle_def) apply (rule ccorres_if_lhs) apply (rule ccorres_fail) apply (simp add: liftM_def del: Collect_const) apply (rule ccorres_rhs_assoc)+ apply (rule ccorres_split_nothrow_novcg) apply (rule ccorres_call[where xf'="finaliseCap_ret_C.remainder_C \<circ> fc_ret_'"], rule Arch_finaliseCap_ccorres) apply simp+ apply (rule ceqv_refl) apply (rule ccorres_rhs_assoc2, rule ccorres_split_throws) apply (rule_tac P'="{s. rv' = finaliseCap_ret_C.remainder_C (fc_ret_' s)}" in ccorres_from_vcg_throws[where P=\<top>]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: return_def Collect_const_mem irq_opt_relation_def) apply vcg apply wp apply (simp add: guard_is_UNIV_def Collect_const_mem) apply (simp add: cap_get_tag_isCap Collect_False del: Collect_const) apply csymbr apply (simp add: cap_get_tag_isCap Collect_False Collect_True del: Collect_const) apply (rule ccorres_if_lhs) apply (simp, rule ccorres_fail) apply (simp add: from_bool_0 Collect_True Collect_False false_def del: Collect_const) apply csymbr apply (simp add: cap_get_tag_isCap Collect_False Collect_True del: Collect_const) apply (rule ccorres_if_lhs) apply (simp add: Let_def) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: cap_get_tag_isCap word_sle_def return_def word_mod_less_divisor less_imp_neq [OF word_mod_less_divisor]) apply (frule cap_get_tag_to_H, erule(1) cap_get_tag_isCap [THEN iffD2]) apply (clarsimp simp: isCap_simps capAligned_def objBits_simps word_bits_conv signed_shift_guard_simpler_32) apply (rule conjI) apply (simp add: word_less_nat_alt) apply clarsimp apply (simp add: ccap_relation_def cap_zombie_cap_lift) apply (simp add: cap_to_H_def isZombieTCB_C_def ZombieTCB_C_def) apply (simp add: less_mask_eq word_less_nat_alt less_imp_neq) apply (simp add: mod_mask_drop[where n=5] mask_def[where n=5] less_imp_neq [OF word_mod_less_divisor] less_imp_neq Let_def) apply (thin_tac "a = b" for a b)+ apply (subgoal_tac "P" for P) apply (subst add.commute, subst unatSuc, assumption)+ apply (rule conjI) apply (rule word_eqI) apply (simp add: word_size word_ops_nth_size nth_w2p less_Suc_eq_le is_aligned_nth) apply (safe, simp_all)[1] apply (simp add: shiftL_nat irq_opt_relation_def) apply (rule trans, rule unat_power_lower32[symmetric]) apply (simp add: word_bits_conv) apply (rule unat_cong, rule word_eqI) apply (simp add: word_size word_ops_nth_size nth_w2p is_aligned_nth less_Suc_eq_le) apply (safe, simp_all)[1] apply (subst add.commute, subst eq_diff_eq[symmetric]) apply (clarsimp simp: minus_one_norm) apply (rule ccorres_if_lhs) apply (simp add: Let_def getThreadCSpaceRoot_def locateSlot_conv Collect_True Collect_False del: Collect_const) apply (rule ccorres_rhs_assoc)+ apply csymbr apply csymbr apply csymbr apply csymbr apply (rule ccorres_Guard_Seq)+ apply csymbr apply (ctac(no_vcg) add: unbindNotification_ccorres) apply (ctac(no_vcg) add: suspend_ccorres[OF cteDeleteOne_ccorres]) apply (ctac(no_vcg) add: prepare_thread_delete_ccorres) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: word_sle_def return_def) apply (subgoal_tac "cap_get_tag capa = scast cap_thread_cap") apply (drule(1) cap_get_tag_to_H) apply (clarsimp simp: isCap_simps capAligned_def) apply (simp add: ccap_relation_def cap_zombie_cap_lift) apply (simp add: cap_to_H_def isZombieTCB_C_def ZombieTCB_C_def mask_def) apply (simp add: cte_level_bits_def tcbCTableSlot_def Kernel_C.tcbCTable_def tcbCNodeEntries_def word_bool_alg.conj_disj_distrib2 word_bw_assocs) apply (simp add: objBits_simps ctcb_ptr_to_tcb_ptr_def) apply (frule is_aligned_add_helper[where p="tcbptr - ctcb_offset" and d=ctcb_offset for tcbptr]) apply (simp add: ctcb_offset_def) apply (simp add: mask_def irq_opt_relation_def) apply (simp add: cap_get_tag_isCap) apply wp+ apply (rule ccorres_if_lhs) apply (simp add: Let_def) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: return_def irq_opt_relation_def) apply (simp add: isArchCap_T_isArchObjectCap[symmetric] del: Collect_const) apply (rule ccorres_if_lhs) apply (simp add: Collect_False Collect_True Let_def true_def del: Collect_const) apply (rule_tac P="(capIRQ cap) \<le> ARM.maxIRQ" in ccorres_gen_asm) apply (rule ccorres_rhs_assoc)+ apply (rule ccorres_symb_exec_r) apply (rule_tac xf'=irq_' in ccorres_abstract,ceqv) apply (rule_tac P="rv' = ucast (capIRQ cap)" in ccorres_gen_asm2) apply (ctac(no_vcg) add: deletingIRQHandler_ccorres) apply (rule ccorres_from_vcg_throws[where P=\<top> ]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: return_def) apply (frule cap_get_tag_to_H, erule(1) cap_get_tag_isCap [THEN iffD2]) apply (simp add: ccap_relation_NullCap_iff split: if_split) apply (frule(1) ccap_relation_IRQHandler_mask) apply (erule irq_opt_relation_Some_ucast) apply (simp add: ARM.maxIRQ_def Kernel_C.maxIRQ_def) apply wp apply vcg apply (rule conseqPre,vcg) apply clarsimp apply (rule ccorres_if_lhs) apply simp apply (rule ccorres_fail) apply (rule ccorres_add_return, rule ccorres_split_nothrow_novcg[where r'=dc and xf'=xfdc]) apply (rule ccorres_Cond_rhs) apply (simp add: ccorres_cond_iffs dc_def[symmetric]) apply (rule ccorres_return_Skip) apply (rule ccorres_Cond_rhs) apply (simp add: ccorres_cond_iffs dc_def[symmetric]) apply (rule ccorres_return_Skip) apply (rule ccorres_Cond_rhs) apply (rule ccorres_inst[where P=\<top> and P'=UNIV]) apply simp apply (rule ccorres_Cond_rhs) apply (simp add: ccorres_cond_iffs dc_def[symmetric]) apply (rule ccorres_return_Skip) apply (simp add: ccorres_cond_iffs dc_def[symmetric]) apply (rule ccorres_return_Skip) apply (rule ceqv_refl) apply (rule ccorres_from_vcg_throws[where P=\<top> and P'=UNIV]) apply (rule allI, rule conseqPre, vcg) apply (clarsimp simp: return_def ccap_relation_NullCap_iff irq_opt_relation_def) apply wp apply (simp add: guard_is_UNIV_def) apply (clarsimp simp: cap_get_tag_isCap word_sle_def Collect_const_mem false_def from_bool_def) apply (intro impI conjI) apply (clarsimp split: bool.splits) apply (clarsimp split: bool.splits) apply (clarsimp simp: valid_cap'_def isCap_simps) apply (clarsimp simp: isCap_simps capRange_def capAligned_def) apply (clarsimp simp: isCap_simps valid_cap'_def) apply (clarsimp simp: isCap_simps capRange_def capAligned_def) apply (clarsimp simp: isCap_simps valid_cap'_def ) apply clarsimp apply (clarsimp simp: isCap_simps valid_cap'_def ) apply (clarsimp simp: tcb_ptr_to_ctcb_ptr_def ccap_relation_def isCap_simps c_valid_cap_def cap_thread_cap_lift_def cap_to_H_def ctcb_ptr_to_tcb_ptr_def Let_def split: option.splits cap_CL.splits if_splits) apply clarsimp apply (frule cap_get_tag_to_H, erule(1) cap_get_tag_isCap [THEN iffD2]) apply (clarsimp simp: isCap_simps from_bool_def false_def) apply (clarsimp simp: tcb_cnode_index_defs ptr_add_assertion_def) apply clarsimp apply (frule cap_get_tag_to_H, erule(1) cap_get_tag_isCap [THEN iffD2]) apply (frule(1) ccap_relation_IRQHandler_mask) apply (clarsimp simp: isCap_simps irqInvalid_def valid_cap'_def ARM.maxIRQ_def Kernel_C.maxIRQ_def) apply (rule irq_opt_relation_Some_ucast', simp) apply (clarsimp simp: isCap_simps irqInvalid_def valid_cap'_def ARM.maxIRQ_def Kernel_C.maxIRQ_def) apply fastforce apply clarsimp apply (frule cap_get_tag_to_H, erule(1) cap_get_tag_isCap [THEN iffD2]) apply (frule(1) ccap_relation_IRQHandler_mask) apply (clarsimp simp add:mask_eq_ucast_eq) done end end
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Reid Barton, Yury Kudryashov ! This file was ported from Lean 3 source module topology.paracompact ! leanprover-community/mathlib commit 2705404e701abc6b3127da906f40bae062a169c9 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Topology.SubsetProperties import Mathlib.Topology.Separation import Mathlib.Data.Option.Basic /-! # Paracompact topological spaces A topological space `X` is said to be paracompact if every open covering of `X` admits a locally finite refinement. The definition requires that each set of the new covering is a subset of one of the sets of the initial covering. However, one can ensure that each open covering `s : ι → Set X` admits a *precise* locally finite refinement, i.e., an open covering `t : ι → Set X` with the same index set such that `∀ i, t i ⊆ s i`, see lemma `precise_refinement`. We also provide a convenience lemma `precise_refinement_set` that deals with open coverings of a closed subset of `X` instead of the whole space. We also prove the following facts. * Every compact space is paracompact, see instance `paracompact_of_compact`. * A locally compact sigma compact Hausdorff space is paracompact, see instance `paracompact_of_locallyCompact_sigmaCompact`. Moreover, we can choose a locally finite refinement with sets in a given collection of filter bases of `𝓝 x, `x : X`, see `refinement_of_locallyCompact_sigmaCompact_of_nhds_basis`. For example, in a proper metric space every open covering `⋃ i, s i` admits a refinement `⋃ i, Metric.ball (c i) (r i)`. * Every paracompact Hausdorff space is normal. This statement is not an instance to avoid loops in the instance graph. * Every `EMetricSpace` is a paracompact space, see instance `EMetricSpace.ParacompactSpace` in `Topology/MetricSpace/EMetricParacompact`. ## TODO Prove (some of) [Michael's theorems](https://ncatlab.org/nlab/show/Michael%27s+theorem). ## Tags compact space, paracompact space, locally finite covering -/ open Set Filter Function open Filter Topology universe u v /-- A topological space is called paracompact, if every open covering of this space admits a locally finite refinement. We use the same universe for all types in the definition to avoid creating a class like `ParacompactSpace.{u v}`. Due to lemma `precise_refinement` below, every open covering `s : α → Set X` indexed on `α : Type v` has a *precise* locally finite refinement, i.e., a locally finite refinement `t : α → Set X` indexed on the same type such that each `∀ i, t i ⊆ s i`. -/ class ParacompactSpace (X : Type v) [TopologicalSpace X] : Prop where /-- Every open cover of a paracompact space assumes a locally finite refinement. -/ locallyFinite_refinement : ∀ (α : Type v) (s : α → Set X) (_ : ∀ a, IsOpen (s a)) (_ : (⋃ a, s a) = univ), ∃ (β : Type v) (t : β → Set X) (_ : ∀ b, IsOpen (t b)) (_ : (⋃ b, t b) = univ), LocallyFinite t ∧ ∀ b, ∃ a, t b ⊆ s a #align paracompact_space ParacompactSpace variable {ι : Type u} {X : Type v} [TopologicalSpace X] /-- Any open cover of a paracompact space has a locally finite *precise* refinement, that is, one indexed on the same type with each open set contained in the corresponding original one. -/ theorem precise_refinement [ParacompactSpace X] (u : ι → Set X) (uo : ∀ a, IsOpen (u a)) (uc : (⋃ i, u i) = univ) : ∃ v : ι → Set X, (∀ a, IsOpen (v a)) ∧ (⋃ i, v i) = univ ∧ LocallyFinite v ∧ ∀ a, v a ⊆ u a := by -- Apply definition to `range u`, then turn existence quantifiers into functions using `choose` have := ParacompactSpace.locallyFinite_refinement (range u) (fun r ↦ (r : Set X)) (SetCoe.forall.2 <| forall_range_iff.2 uo) (by rwa [← unionₛ_range, Subtype.range_coe]) simp only [SetCoe.exists, exists_range_iff', unionᵢ_eq_univ_iff, exists_prop] at this choose α t hto hXt htf ind hind using this choose t_inv ht_inv using hXt choose U hxU hU using htf -- Send each `i` to the union of `t a` over `a ∈ ind ⁻¹' {i}` refine' ⟨fun i ↦ ⋃ (a : α) (_ha : ind a = i), t a, _, _, _, _⟩ · exact fun a ↦ isOpen_unionᵢ fun a ↦ isOpen_unionᵢ fun _ ↦ hto a · simp only [eq_univ_iff_forall, mem_unionᵢ] exact fun x ↦ ⟨ind (t_inv x), _, rfl, ht_inv _⟩ · refine' fun x ↦ ⟨U x, hxU x, ((hU x).image ind).subset _⟩ simp only [subset_def, mem_unionᵢ, mem_setOf_eq, Set.Nonempty, mem_inter_iff] rintro i ⟨y, ⟨a, rfl, hya⟩, hyU⟩ exact mem_image_of_mem _ ⟨y, hya, hyU⟩ · simp only [subset_def, mem_unionᵢ] rintro i x ⟨a, rfl, hxa⟩ exact hind _ hxa #align precise_refinement precise_refinement /-- In a paracompact space, every open covering of a closed set admits a locally finite refinement indexed by the same type. -/ theorem precise_refinement_set [ParacompactSpace X] {s : Set X} (hs : IsClosed s) (u : ι → Set X) (uo : ∀ i, IsOpen (u i)) (us : s ⊆ ⋃ i, u i) : ∃ v : ι → Set X, (∀ i, IsOpen (v i)) ∧ (s ⊆ ⋃ i, v i) ∧ LocallyFinite v ∧ ∀ i, v i ⊆ u i := by -- Porting note: Added proof of uc have uc : (unionᵢ fun i => Option.elim' (sᶜ) u i) = univ := by apply Subset.antisymm (subset_univ _) · simp_rw [← compl_union_self s, Option.elim', unionᵢ_option] apply union_subset_union_right (sᶜ) us rcases precise_refinement (Option.elim' (sᶜ) u) (Option.forall.2 ⟨isOpen_compl_iff.2 hs, uo⟩) uc with ⟨v, vo, vc, vf, vu⟩ refine' ⟨v ∘ some, fun i ↦ vo _, _, vf.comp_injective (Option.some_injective _), fun i ↦ vu _⟩ · simp only [unionᵢ_option, ← compl_subset_iff_union] at vc exact Subset.trans (subset_compl_comm.1 <| vu Option.none) vc #align precise_refinement_set precise_refinement_set -- See note [lower instance priority] /-- A compact space is paracompact. -/ instance (priority := 100) paracompact_of_compact [CompactSpace X] : ParacompactSpace X := by -- the proof is trivial: we choose a finite subcover using compactness, and use it refine' ⟨fun ι s ho hu ↦ _⟩ rcases isCompact_univ.elim_finite_subcover _ ho hu.ge with ⟨T, hT⟩ have := hT; simp only [subset_def, mem_unionᵢ] at this choose i _ _ using fun x ↦ this x (mem_univ x) refine' ⟨(T : Set ι), fun t ↦ s t, fun t ↦ ho _, _, locallyFinite_of_finite _, fun t ↦ ⟨t, Subset.rfl⟩⟩ simpa only [unionᵢ_coe_set, ← univ_subset_iff] #align paracompact_of_compact paracompact_of_compact /-- Let `X` be a locally compact sigma compact Hausdorff topological space, let `s` be a closed set in `X`. Suppose that for each `x ∈ s` the sets `B x : ι x → Set X` with the predicate `p x : ι x → Prop` form a basis of the filter `𝓝 x`. Then there exists a locally finite covering `fun i ↦ B (c i) (r i)` of `s` such that all “centers” `c i` belong to `s` and each `r i` satisfies `p (c i)`. The notation is inspired by the case `B x r = Metric.ball x r` but the theorem applies to `nhds_basis_opens` as well. If the covering must be subordinate to some open covering of `s`, then the user should use a basis obtained by `Filter.HasBasis.restrict_subset` or a similar lemma, see the proof of `paracompact_of_locallyCompact_sigmaCompact` for an example. The formalization is based on two [ncatlab](https://ncatlab.org/) proofs: * [locally compact and sigma compact spaces are paracompact](https://ncatlab.org/nlab/show/locally+compact+and+sigma-compact+spaces+are+paracompact); * [open cover of smooth manifold admits locally finite refinement by closed balls](https://ncatlab.org/nlab/show/partition+of+unity#ExistenceOnSmoothManifolds). See also `refinement_of_locallyCompact_sigmaCompact_of_nhds_basis` for a version of this lemma dealing with a covering of the whole space. In most cases (namely, if `B c r ∪ B c r'` is again a set of the form `B c r''`) it is possible to choose `α = X`. This fact is not yet formalized in `mathlib`. -/ theorem refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set [LocallyCompactSpace X] [SigmaCompactSpace X] [T2Space X] {ι : X → Type u} {p : ∀ x, ι x → Prop} {B : ∀ x, ι x → Set X} {s : Set X} (hs : IsClosed s) (hB : ∀ x ∈ s, (𝓝 x).HasBasis (p x) (B x)) : ∃ (α : Type v) (c : α → X) (r : ∀ a, ι (c a)), (∀ a, c a ∈ s ∧ p (c a) (r a)) ∧ (s ⊆ ⋃ a, B (c a) (r a)) ∧ LocallyFinite fun a ↦ B (c a) (r a) := by classical -- For technical reasons we prepend two empty sets to the sequence `CompactExhaustion.choice X` set K' : CompactExhaustion X := CompactExhaustion.choice X set K : CompactExhaustion X := K'.shiftr.shiftr set Kdiff := fun n ↦ K (n + 1) \ interior (K n) -- Now we restate some properties of `CompactExhaustion` for `K`/`Kdiff` have hKcov : ∀ x, x ∈ Kdiff (K'.find x + 1) := by intro x simpa only [K'.find_shiftr] using diff_subset_diff_right interior_subset (K'.shiftr.mem_diff_shiftr_find x) have Kdiffc : ∀ n, IsCompact (Kdiff n ∩ s) := fun n ↦ ((K.isCompact _).diff isOpen_interior).inter_right hs -- Next we choose a finite covering `B (c n i) (r n i)` of each -- `Kdiff (n + 1) ∩ s` such that `B (c n i) (r n i) ∩ s` is disjoint with `K n` have : ∀ (n) (x : ↑(Kdiff (n + 1) ∩ s)), K nᶜ ∈ 𝓝 (x : X) := fun n x ↦ IsOpen.mem_nhds (K.isClosed n).isOpen_compl fun hx' ↦ x.2.1.2 <| K.subset_interior_succ _ hx' -- Porting note: Commented out `haveI` for now. --haveI : ∀ (n) (x : ↑(Kdiff n ∩ s)), Nonempty (ι x) := fun n x ↦ (hB x x.2.2).nonempty choose! r hrp hr using fun n (x : ↑(Kdiff (n + 1) ∩ s)) ↦ (hB x x.2.2).mem_iff.1 (this n x) have hxr : ∀ (n x) (hx : x ∈ Kdiff (n + 1) ∩ s), B x (r n ⟨x, hx⟩) ∈ 𝓝 x := fun n x hx ↦ (hB x hx.2).mem_of_mem (hrp _ ⟨x, hx⟩) choose T hT using fun n ↦ (Kdiffc (n + 1)).elim_nhds_subcover' _ (hxr n) set T' : ∀ n, Set ↑(Kdiff (n + 1) ∩ s) := fun n ↦ T n -- Finally, we take the union of all these coverings refine' ⟨Σn, T' n, fun a ↦ a.2, fun a ↦ r a.1 a.2, _, _, _⟩ · rintro ⟨n, x, hx⟩ exact ⟨x.2.2, hrp _ _⟩ · refine' fun x hx ↦ mem_unionᵢ.2 _ rcases mem_unionᵢ₂.1 (hT _ ⟨hKcov x, hx⟩) with ⟨⟨c, hc⟩, hcT, hcx⟩ exact ⟨⟨_, ⟨c, hc⟩, hcT⟩, hcx⟩ · intro x refine' ⟨interior (K (K'.find x + 3)), IsOpen.mem_nhds isOpen_interior (K.subset_interior_succ _ (hKcov x).1), _⟩ have : (⋃ k ≤ K'.find x + 2, range <| Sigma.mk k : Set (Σn, T' n)).Finite := (finite_le_nat _).bunionᵢ fun k _ ↦ finite_range _ apply this.subset rintro ⟨k, c, hc⟩ simp only [mem_unionᵢ, mem_setOf_eq, mem_image, Subtype.coe_mk] rintro ⟨x, hxB : x ∈ B c (r k c), hxK⟩ refine' ⟨k, _, ⟨c, hc⟩, rfl⟩ have := (mem_compl_iff _ _).1 (hr k c hxB) revert this contrapose! simp only [ge_iff_le, not_le] exact fun hnk ↦ K.subset hnk (interior_subset hxK) #align refinement_of_locally_compact_sigma_compact_of_nhds_basis_set refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set /-- Let `X` be a locally compact sigma compact Hausdorff topological space. Suppose that for each `x` the sets `B x : ι x → Set X` with the predicate `p x : ι x → Prop` form a basis of the filter `𝓝 x`. Then there exists a locally finite covering `fun i ↦ B (c i) (r i)` of `X` such that each `r i` satisfies `p (c i)`. The notation is inspired by the case `B x r = Metric.ball x r` but the theorem applies to `nhds_basis_opens` as well. If the covering must be subordinate to some open covering of `s`, then the user should use a basis obtained by `Filter.HasBasis.restrict_subset` or a similar lemma, see the proof of `paracompact_of_locallyCompact_sigmaCompact` for an example. The formalization is based on two [ncatlab](https://ncatlab.org/) proofs: * [locally compact and sigma compact spaces are paracompact](https://ncatlab.org/nlab/show/locally+compact+and+sigma-compact+spaces+are+paracompact); * [open cover of smooth manifold admits locally finite refinement by closed balls](https://ncatlab.org/nlab/show/partition+of+unity#ExistenceOnSmoothManifolds). See also `refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set` for a version of this lemma dealing with a covering of a closed set. In most cases (namely, if `B c r ∪ B c r'` is again a set of the form `B c r''`) it is possible to choose `α = X`. This fact is not yet formalized in `mathlib`. -/ theorem refinement_of_locallyCompact_sigmaCompact_of_nhds_basis [LocallyCompactSpace X] [SigmaCompactSpace X] [T2Space X] {ι : X → Type u} {p : ∀ x, ι x → Prop} {B : ∀ x, ι x → Set X} (hB : ∀ x, (𝓝 x).HasBasis (p x) (B x)) : ∃ (α : Type v) (c : α → X) (r : ∀ a, ι (c a)), (∀ a, p (c a) (r a)) ∧ (⋃ a, B (c a) (r a)) = univ ∧ LocallyFinite fun a ↦ B (c a) (r a) := let ⟨α, c, r, hp, hU, hfin⟩ := refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set isClosed_univ fun x _ ↦ hB x ⟨α, c, r, fun a ↦ (hp a).2, univ_subset_iff.1 hU, hfin⟩ #align refinement_of_locally_compact_sigma_compact_of_nhds_basis refinement_of_locallyCompact_sigmaCompact_of_nhds_basis -- See note [lower instance priority] /-- A locally compact sigma compact Hausdorff space is paracompact. See also `refinement_of_locallyCompact_sigmaCompact_of_nhds_basis` for a more precise statement. -/ instance (priority := 100) paracompact_of_locallyCompact_sigmaCompact [LocallyCompactSpace X] [SigmaCompactSpace X] [T2Space X] : ParacompactSpace X := by refine' ⟨fun α s ho hc ↦ _⟩ choose i hi using unionᵢ_eq_univ_iff.1 hc have : ∀ x : X, (𝓝 x).HasBasis (fun t : Set X ↦ (x ∈ t ∧ IsOpen t) ∧ t ⊆ s (i x)) id := fun x : X ↦ (nhds_basis_opens x).restrict_subset (IsOpen.mem_nhds (ho (i x)) (hi x)) rcases refinement_of_locallyCompact_sigmaCompact_of_nhds_basis this with ⟨β, c, t, hto, htc, htf⟩ exact ⟨β, t, fun x ↦ (hto x).1.2, htc, htf, fun b ↦ ⟨i <| c b, (hto b).2⟩⟩ #align paracompact_of_locally_compact_sigma_compact paracompact_of_locallyCompact_sigmaCompact /- Dieudonné's theorem: a paracompact Hausdorff space is normal. Formalization is based on the proof at [ncatlab](https://ncatlab.org/nlab/show/paracompact+Hausdorff+spaces+are+normal). -/ theorem normal_of_paracompact_t2 [T2Space X] [ParacompactSpace X] : NormalSpace X := by -- First we show how to go from points to a set on one side. have : ∀ s t : Set X, IsClosed s → IsClosed t → (∀ x ∈ s, ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v := by /- For each `x ∈ s` we choose open disjoint `u x ∋ x` and `v x ⊇ t`. The sets `u x` form an open covering of `s`. We choose a locally finite refinement `u' : s → Set X`, then `⋃ i, u' i` and `(closure (⋃ i, u' i))ᶜ` are disjoint open neighborhoods of `s` and `t`. -/ intro s t hs _ H choose u v hu hv hxu htv huv using SetCoe.forall'.1 H rcases precise_refinement_set hs u hu fun x hx ↦ mem_unionᵢ.2 ⟨⟨x, hx⟩, hxu _⟩ with ⟨u', hu'o, hcov', hu'fin, hsub⟩ refine' ⟨⋃ i, u' i, closure (⋃ i, u' i)ᶜ, isOpen_unionᵢ hu'o, isClosed_closure.isOpen_compl, hcov', _, disjoint_compl_right.mono le_rfl (compl_le_compl subset_closure)⟩ rw [hu'fin.closure_unionᵢ, compl_unionᵢ, subset_interᵢ_iff] refine' fun i x hxt hxu ↦ absurd (htv i hxt) (closure_minimal _ (isClosed_compl_iff.2 <| hv _) hxu) exact fun y hyu hyv ↦ (huv i).le_bot ⟨hsub _ hyu, hyv⟩ -- Now we apply the lemma twice: first to `s` and `t`, then to `t` and each point of `s`. refine' ⟨fun s t hs ht hst ↦ this s t hs ht fun x hx ↦ _⟩ rcases this t {x} ht isClosed_singleton fun y hy ↦ (by simp_rw [singleton_subset_iff] exact t2_separation (hst.symm.ne_of_mem hy hx)) with ⟨v, u, hv, hu, htv, hxu, huv⟩ exact ⟨u, v, hu, hv, singleton_subset_iff.1 hxu, htv, huv.symm⟩ #align normal_of_paracompact_t2 normal_of_paracompact_t2
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """WaveNet construction""" from __future__ import with_statement, print_function, absolute_import import math import numpy as np from mindspore import nn, Tensor import mindspore.common.dtype as mstype from mindspore.ops import operations as P from wavenet_vocoder import upsample from .modules import Embedding from .modules import Conv1d1x1 from .modules import ResidualConv1dGLU from .mixture import sample_from_discretized_mix_logistic from .mixture import sample_from_mix_gaussian from .mixture import sample_from_mix_onehotcategorical class WaveNet(nn.Cell): """ WaveNet model definition. Only local condition is supported Args: out_channels (int): Output channels. If input_type is mu-law quantized one-hot vecror, it should equal to the quantize channels. Otherwise, it equals to num_mixtures x 3. Default: 256. layers (int): Number of ResidualConv1dGLU layers stacks (int): Number of dilation cycles residual_channels (int): Residual input / output channels gate_channels (int): Gated activation channels. skip_out_channels (int): Skip connection channels. kernel_size (int): Kernel size . dropout (float): Dropout rate. cin_channels (int): Local conditioning channels. If given negative value, local conditioning is disabled. gin_channels (int): Global conditioning channels. If given negative value, global conditioning is disabled. n_speakers (int): Number of speakers. This is used when global conditioning is enabled. upsample_conditional_features (bool): Whether upsampling local conditioning features by resize_nearestneighbor and conv or not. scalar_input (Bool): If True, scalar input ([-1, 1]) is expected, otherwise, quantized one-hot vector is expected. use_speaker_embedding (Bool): Use speaker embedding or Not. """ def __init__(self, out_channels=256, layers=20, stacks=2, residual_channels=512, gate_channels=512, skip_out_channels=512, kernel_size=3, dropout=1 - 0.95, cin_channels=-1, gin_channels=-1, n_speakers=None, upsample_conditional_features=False, upsample_net="ConvInUpsampleNetwork", upsample_params=None, scalar_input=False, use_speaker_embedding=False, output_distribution="Logistic", cin_pad=0, ): super(WaveNet, self).__init__() self.transpose_op = P.Transpose() self.softmax = P.Softmax(axis=1) self.reshape_op = P.Reshape() self.zeros_op = P.Zeros() self.ones_op = P.Ones() self.relu_op = P.ReLU() self.squeeze_op = P.Squeeze() self.expandim_op = P.ExpandDims() self.transpose_op = P.Transpose() self.tile_op = P.Tile() self.scalar_input = scalar_input self.out_channels = out_channels self.cin_channels = cin_channels self.output_distribution = output_distribution self.fack_data = P.Zeros() assert layers % stacks == 0 layers_per_stack = layers // stacks if scalar_input: self.first_conv = Conv1d1x1(1, residual_channels) else: self.first_conv = Conv1d1x1(out_channels, residual_channels) conv_layers = [] for layer in range(layers): dilation = 2 ** (layer % layers_per_stack) conv = ResidualConv1dGLU( residual_channels, gate_channels, kernel_size=kernel_size, skip_out_channels=skip_out_channels, bias=True, dropout=dropout, dilation=dilation, cin_channels=cin_channels, gin_channels=gin_channels) conv_layers.append(conv) self.conv_layers = nn.CellList(conv_layers) self.last_conv_layers = nn.CellList([ nn.ReLU(), Conv1d1x1(skip_out_channels, skip_out_channels), nn.ReLU(), Conv1d1x1(skip_out_channels, out_channels)]) if gin_channels > 0 and use_speaker_embedding: assert n_speakers is not None self.embed_speakers = Embedding( n_speakers, gin_channels, padding_idx=None, std=0.1) else: self.embed_speakers = None if upsample_conditional_features: self.upsample_net = getattr(upsample, upsample_net)(**upsample_params) else: self.upsample_net = None self.factor = math.sqrt(1.0 / len(self.conv_layers)) def _expand_global_features(self, batch_size, time_step, g_fp, is_expand=True): """Expand global conditioning features to all time steps Args: batch_size (int): Batch size. time_step (int): Time length. g_fp (Tensor): Global features, (B x C) or (B x C x 1). is_expand (bool) : Expanded global conditioning features Returns: Tensor: B x C x T or B x T x C or None """ if g_fp is None: return None if len(g_fp.shape) == 2: g_fp = self.expandim_op(g_fp, -1) else: g_fp = g_fp if is_expand: expand_fp = self.tile_op(g_fp, (batch_size, 1, time_step)) return expand_fp expand_fp = self.tile_op(g_fp, (batch_size, 1, time_step)) expand_fp = self.transpose_op(expand_fp, (0, 2, 1)) return expand_fp def construct(self, x, c=None, g=None, softmax=False): """ Args: x (Tensor): One-hot encoded audio signal c (Tensor): Local conditioning feature g (Tensor): Global conditioning feature softmax (bool): Whether use softmax or not Returns: Tensor: Net output """ g = None B, _, T = x.shape if g is not None: if self.embed_speakers is not None: g = self.embed_speakers(self.reshape_op(g, (B, -1))) g = self.transpose_op(g, (0, 2, 1)) g_bct = self._expand_global_features(B, T, g, is_expand=True) if c is not None and self.upsample_net is not None: c = self.upsample_net(c) x = self.first_conv(x) skips = 0 for f in self.conv_layers: x, h = f(x, c, g_bct) skips += h skips *= self.factor x = skips for f in self.last_conv_layers: x = f(x) x = self.softmax(x) if softmax else x return x def relu_numpy(self, inX): """numpy relu function""" return np.maximum(0, inX) def softmax_numpy(self, x): """ numpy softmax function """ x -= np.max(x, axis=1, keepdims=True) return np.exp(x) / np.sum(np.exp(x), axis=1, keepdims=True) def incremental_forward(self, initial_input=None, c=None, g=None, T=100, test_inputs=None, tqdm=lambda x: x, softmax=True, quantize=True, log_scale_min=-50.0, is_numpy=True): """ Incremental forward. Current output depends on last output. Args: initial_input (Tensor): Initial input, the shape is B x C x 1 c (Tensor): Local conditioning feature, the shape is B x C x T g (Tensor): Global conditioning feature, the shape is B x C or B x C x 1 T (int): decoding time step. test_inputs: Teacher forcing inputs (for debugging) tqdm (lamda): tqmd softmax (bool): Whether use softmax or not quantize (bool): Whether quantize softmax output in last step when decoding current step log_scale_min (float): Log scale minimum value Returns: Tensor: Predicted on-hot encoded samples or scalar vector depending on loss type """ self.clear_buffer() B = 1 if test_inputs is not None: if self.scalar_input: if test_inputs.shape[1] == 1: test_inputs = self.transpose_op(test_inputs, (0, 2, 1)) else: if test_inputs.shape[1] == self.out_channels: test_inputs = self.transpose_op(test_inputs, (0, 2, 1)) B = test_inputs.shape[0] if T is None: T = test_inputs.shape[1] else: T = max(T, test_inputs.shape[1]) T = int(T) # Global conditioning if g is not None: if self.embed_speakers is not None: g = self.embed_speakers(self.reshape_op(g, (B, -1))) g = self.transpose_op(g, (0, 2, 1)) assert g.dim() == 3 g_btc = self._expand_global_features(B, T, g, is_expand=False) # Local conditioning if c is not None: B = c.shape[0] if self.upsample_net is not None: c = self.upsample_net(c) assert c.shape[-1] == T if c.shape[-1] == T: c = self.transpose_op(c, (0, 2, 1)) outputs = [] if initial_input is None: if self.scalar_input: initial_input = self.zeros_op((B, 1, 1), mstype.float32) else: initial_input = np.zeros((B, 1, self.out_channels), np.float32) initial_input[:, :, 127] = 1 initial_input = Tensor(initial_input) else: if initial_input.shape[1] == self.out_channels: initial_input = self.transpose_op(initial_input, (0, 2, 1)) if is_numpy: current_input = initial_input.asnumpy() else: current_input = initial_input for t in tqdm(range(T)): if test_inputs is not None and t < test_inputs.shape[1]: current_input = self.expandim_op(test_inputs[:, t, :], 1) else: if t > 0: if not is_numpy: current_input = Tensor(outputs[-1]) else: current_input = outputs[-1] # Conditioning features for single time step ct = None if c is None else self.expandim_op(c[:, t, :], 1) gt = None if g is None else self.expandim_op(g_btc[:, t, :], 1) x = current_input if is_numpy: ct = ct.asnumpy() x = self.first_conv.incremental_forward(x, is_numpy=is_numpy) skips = 0 for f in self.conv_layers: x, h = f.incremental_forward(x, ct, gt, is_numpy=is_numpy) skips += h skips *= self.factor x = skips for f in self.last_conv_layers: try: x = f.incremental_forward(x, is_numpy=is_numpy) except AttributeError: if is_numpy: x = self.relu_numpy(x) else: x = self.relu_op(x) # Generate next input by sampling if not is_numpy: x = x.asnumpy() if self.scalar_input: if self.output_distribution == "Logistic": x = sample_from_discretized_mix_logistic(x.reshape((B, -1, 1)), log_scale_min=log_scale_min) elif self.output_distribution == "Normal": x = sample_from_mix_gaussian(x.reshape((B, -1, 1)), log_scale_min=log_scale_min) else: assert False else: x = self.softmax_numpy(np.reshape(x, (B, -1))) if softmax else np.reshape(x, (B, -1)) if quantize: x = sample_from_mix_onehotcategorical(x) outputs += [x] # T x B x C outputs = np.stack(outputs, 0) # B x C x T outputs = np.transpose(outputs, (1, 2, 0)) self.clear_buffer() return outputs def clear_buffer(self): """clear buffer""" self.first_conv.clear_buffer() for f in self.conv_layers: f.clear_buffer() for f in self.last_conv_layers: try: f.clear_buffer() except AttributeError: pass
// Copyright Jeroen Habraken 2011. // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file ../../../LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #define BOOST_TEST_MODULE default_value #define BOOST_SPIRIT_NO_PREDEFINED_TERMINALS #include <boost/coerce.hpp> #include <boost/test/unit_test.hpp> BOOST_AUTO_TEST_CASE(default_value) { using namespace boost; BOOST_CHECK_EQUAL(coerce::as_default<int>("XXX"), 0); BOOST_CHECK_EQUAL(coerce::as_default<int>("XXX", 23), 23); }
----------------------------------------------------------------------------- -- | -- Module : Graphics.Rendering.Plot.Figure.Plot -- Copyright : (c) A. V. H. McPhail 2010 -- License : BSD3 -- -- Maintainer : haskell.vivian.mcphail <at> gmail <dot> com -- Stability : provisional -- Portability : portable -- -- Creation and manipulation of 'Plot's -- ----------------------------------------------------------------------------- module Graphics.Rendering.Plot.Figure.Plot ( Plot -- * Plot elements , Border , setBorder , setPlotBackgroundColour , setPlotPadding , withHeading -- * Series data , D.Abscissa(), D.Ordinate(), D.Dataset() , SeriesLabel , D.FormattedSeries() , D.line, D.point, D.linepoint , D.impulse, D.step , D.area , D.bar , D.hist , D.candle, D.whisker , setDataset -- * Annotations , Location, Head, Fill , AN.arrow , AN.oval , AN.rect , AN.glyph , AN.text , AN.cairo , withAnnotations -- ** Plot type , setSeriesType , setAllSeriesTypes -- ** Formatting , D.PlotFormats(..) , withSeriesFormat , withAllSeriesFormats -- * Range , Scale(..) , setRange , setRangeFromData -- * Axes , AX.Axis , AxisType(..),AxisSide(..),AxisPosn(..) , clearAxes , clearAxis , addAxis , withAxis -- * BarSetting , barSetting -- * SampleData , sampleData -- * Legend , L.Legend , LegendBorder , L.LegendLocation(..), L.LegendOrientation(..) , clearLegend , setLegend , withLegendFormat -- ** Formatting , Tick(..), TickValues(..), GridLines , TickFormat(..) , AX.setTicks , AX.setGridlines , AX.setTickLabelFormat , AX.setTickLabels , AX.withTickLabelsFormat , AX.withAxisLabel , AX.withAxisLine , AX.withGridLine ) where ----------------------------------------------------------------------------- --import Data.Eq.Unicode --import Data.Bool.Unicode --import Data.Ord.Unicode import Numeric.LinearAlgebra.Data hiding(Range) import qualified Data.Array.IArray as A import Control.Monad.State import Control.Monad.Reader --import Control.Monad.Supply import Prelude hiding(min,max) import qualified Prelude as Prelude import Graphics.Rendering.Plot.Types import Graphics.Rendering.Plot.Defaults import qualified Graphics.Rendering.Plot.Figure.Text as T import qualified Graphics.Rendering.Plot.Figure.Plot.Data as D import qualified Graphics.Rendering.Plot.Figure.Plot.Axis as AX import qualified Graphics.Rendering.Plot.Figure.Plot.Legend as L import qualified Graphics.Rendering.Plot.Figure.Plot.Annotation as AN ----------------------------------------------------------------------------- -- | whether to draw a boundary around the plot area setBorder :: Border -> Plot () setBorder b = modify $ \s -> s { _border = b } -- | set the plot background colour setPlotBackgroundColour :: Color -> Plot () setPlotBackgroundColour c = modify $ \s -> s { _back_colr = c } -- | set the padding of the subplot setPlotPadding :: Double -> Double -> Double -> Double -> Plot () setPlotPadding l r b t = modify $ \s -> s { _plot_pads = Padding l r b t } -- | set the heading of the subplot withHeading :: Text () -> Plot () withHeading m = do o <- asks _textoptions modify $ \s -> s { _heading = execText m o (_heading s) } ----------------------------------------------------------------------------- -- | set the axis range setRange :: AxisType -> AxisSide -> Scale -> Double -> Double -> Plot () setRange XAxis sd sc min max = modify $ \s -> s { _ranges = setXRanges' (_ranges s) } where setXRanges' r | sc == Log && min <= 0 = error "non-positive logarithmic range" | otherwise = setXRanges sd r setXRanges Lower (Ranges (Left _) yr) = Ranges (Left (Range sc min max)) yr setXRanges Lower (Ranges (Right (_,xr)) yr) = Ranges (Right ((Range sc min max,xr))) yr setXRanges Upper (Ranges (Left xr) yr) = Ranges (Right (xr,Range sc min max)) yr setXRanges Upper (Ranges (Right (_,xr)) yr) = Ranges (Right (Range sc min max,xr)) yr setRange YAxis sd sc min max = modify $ \s -> s { _ranges = setYRanges' (_ranges s) } where setYRanges' r | sc == Log && min <= 0 = error "non-positive logarithmic range" | otherwise = setYRanges sd r setYRanges Lower (Ranges xr (Left _)) = Ranges xr (Left (Range sc min max)) setYRanges Lower (Ranges xr (Right (_,yr))) = Ranges xr (Right ((Range sc min max,yr))) setYRanges Upper (Ranges xr (Left yr)) = Ranges xr (Right (yr,Range sc min max)) setYRanges Upper (Ranges xr (Right (_,yr))) = Ranges xr (Right ((Range sc min max,yr))) -- | set the axis ranges to values based on dataset setRangeFromData :: AxisType -> AxisSide -> Scale -> Plot () setRangeFromData ax sd sc = do ds <- gets _data let ((xmin,xmax),(ymin,ymax)) = calculateRanges ds case ax of XAxis -> setRange ax sd sc (if sc == Log then if xmin == 0 then 1 else xmin else xmin) xmax YAxis -> setRange ax sd sc (if sc == Log then if ymin == 0 then 1 else ymin else ymin) ymax ----------------------------------------------------------------------------- withAnnotations :: Annote () -> Plot () withAnnotations = annoteInPlot ----------------------------------------------------------------------------- -- | clear the axes of a subplot clearAxes :: Plot () clearAxes = modify $ \s -> s { _axes = [] } -- | clear an axis of a subplot clearAxis :: AxisType -> AxisPosn -> Plot () clearAxis at axp = do ax <- gets _axes modify $ \s -> s { _axes = filter (\(Axis at' axp' _ _ _ _ _ _) -> not (at == at' && axp == axp')) ax } -- | add an axis to the subplot addAxis :: AxisType -> AxisPosn -> AX.Axis () -> Plot () addAxis at axp m = do ax' <- gets _axes o <- ask let ax = execAxis m o (defaultAxis at axp) modify $ \s -> s { _axes = ax : ax' } -- | operate on the given axis withAxis :: AxisType -> AxisPosn -> AX.Axis () -> Plot () withAxis at axp m = do axes' <- gets _axes o <- ask modify $ \s -> s { _axes = map (\a@(Axis at' ap' _ _ _ _ _ _) -> if at == at' && axp == ap' then execAxis m o a else a) axes' } ----------------------------------------------------------------------------- barSetting :: BarSetting -> Plot () barSetting bc = modify $ \s -> s { _barconfig = bc } ----------------------------------------------------------------------------- sampleData :: SampleData -> Plot () sampleData sd = modify $ \s -> s { _sampledata = sd } ----------------------------------------------------------------------------- -- | clear the legend clearLegend :: Plot () clearLegend = withLegend $ L.clearLegend -- | set the legend location and orientation setLegend :: L.LegendBorder -> L.LegendLocation -> L.LegendOrientation -> Plot () setLegend b l o = withLegend $ L.setLegend b l o -- | format the legend text withLegendFormat :: T.Text () -> Plot () withLegendFormat f = withLegend $ L.withLegendFormat f -- | operate on the legend withLegend :: L.Legend () -> Plot () withLegend = legendInPlot ----------------------------------------------------------------------------- -- | operate on the data withData :: D.Data () -> Plot () withData = dataInPlot {- | set the data series of the subplot The data series are either 'FormattedSeries' or plain data series. A plain data series must carry a 'SeriesType'. A dataset may or may not have an abscissa series, and if so, it is paired with either a list of ordinate series or a single ordinate series. The abscissa series (if present) is of type 'Vector Double'. An ordinate series be a function (@Double -> Double@) or a series of points, a 'Vector Double' with optional error series, y axis preference, and labels. To specify decoration options for an ordinate series, use the appropriate function, such as 'linespoints', with the ordinate series and decoration formatting ('LineFormat', 'PointFormat', and 'BarFormat') as arguments. > setDataset (ts,[linespoints (xs,(le,ue),Upper,"data") (([Dash,Dash],3,blue),(Diamond,green))]) has abscissa @ts@ paired with a list of ordinate series, the single element of which is a 'FormattedSeries', @linespoints@ where the ordinate is @xs@ with error series @le@ and @ue@, to be graphed against the upper y-range with label \"data\". The line element is formatted to be dashed, of width 3, and blue and the point element is to be a green diamond. -} setDataset :: D.Dataset a => a -> Plot () setDataset d = withData $ D.setDataSeries d -- | set the plot type of a given data series setSeriesType :: Int -> SeriesType -> Plot () setSeriesType i t = withData $ D.setSeriesType t i -- | change the plot type of all data series setAllSeriesTypes :: SeriesType -> Plot () setAllSeriesTypes t = withData $ D.setAllSeriesTypes t -- | format the plot elements of a given series withSeriesFormat :: D.PlotFormats m => Int -> m () -> Plot () withSeriesFormat i f = withData $ D.withSeriesFormat i f {- | format the plot elements of all series the operation to modify the formats is passed the series index. This allows, for example, colours to be selected from a list that gets indexed by the argument > setColour = withAllSeriesFormats (\i -> do > setLineColour $ [black,blue,red,green,yellow] !! i > setLineWidth 1.0) -} withAllSeriesFormats :: D.PlotFormats m => (Int -> m ()) -> Plot () withAllSeriesFormats f = withData $ D.withAllSeriesFormats f ----------------------------------------------------------------------------- findMinMax :: Abscissae -> Ordinates -> (Double,Double) findMinMax (AbsFunction _) (OrdFunction _ f _) = let v = f (linspace 100 (-1,1)) in (minElement v,maxElement v) findMinMax (AbsPoints _ x) (OrdFunction _ f _) = let v = f x in (minElement v,maxElement v) -- what if errors go beyond plot? findMinMax _ (OrdPoints _ (Plain o) _) = (minElement o,maxElement o) findMinMax _ (OrdPoints _ (Error o _) _) = (minElement o,maxElement o) findMinMax _ (OrdPoints _ (MinMax (o,p) _) _) = (Prelude.min (minElement o) (minElement p) ,Prelude.max (maxElement o) (maxElement p)) abscMinMax :: Abscissae -> (Double,Double) abscMinMax (AbsFunction _) = defaultXAxisSideLowerRange abscMinMax (AbsPoints _ x) = (minElement x,maxElement x) ordDim :: Ordinates -> Int ordDim (OrdFunction _ _ _) = 1 ordDim (OrdPoints _ o _) = size $ getOrdData o calculateRanges :: DataSeries -> ((Double,Double),(Double,Double)) calculateRanges (DS_Y ys) = let xmax = maximum $ map (\(DecSeries o _) -> fromIntegral $ ordDim o) $ A.elems ys ym = unzip $ map (\(DecSeries o _) -> findMinMax (AbsFunction id) o) $ A.elems ys ymm = (minimum $ fst ym,maximum $ snd ym) in ((0,xmax),ymm) calculateRanges (DS_1toN x ys) = let ym = unzip $ map (\(DecSeries o _) -> findMinMax x o) $ A.elems ys ymm = (minimum $ fst ym,maximum $ snd ym) xmm = abscMinMax x in (xmm,ymm) calculateRanges (DS_1to1 ys) = let (xm',ym') = unzip $ A.elems ys ym = unzip $ map (\(x,(DecSeries o _)) -> findMinMax x o) (zip xm' ym') ymm = (minimum $ fst ym,maximum $ snd ym) xm = unzip $ map abscMinMax xm' xmm = (minimum $ fst xm,maximum $ snd xm) in (xmm,ymm) calculateRanges (DS_Surf m) = ((0,fromIntegral $ cols m),(fromIntegral $ rows m,0)) -----------------------------------------------------------------------------
\cleardoublepage \def\pageLang{c} \section{Procedure Declarations in C} % (fold) \label{sec:procedure_declaration_in_c} % Concept overview \input{topics/program-creation/c/c-morse-calling} % Parts of the syntax % section procedure_declaration_in_c (end)
%%\documentclass[handout]{beamer} %\documentclass[aspectratio=169,13pt]{beamer} %\input{./preamble} \subtitle{Numerical Integration and Differentiation} \date{} \begin{document} \begin{frame} \titlepage \end{frame} \section{Introduction to Numerical Integration} \begin{frame}{Integrability and Sensitivity} \begin{itemize} \item Seek to compute $\mathcal{I}(f)=\int_{a}^b f(x) dx$: \mdcond{ \begin{itemize} \item $f$ is integrable if continuous and bounded. \mitem Finite number of discontinuities is also often permissible. \end{itemize} } \item The condition number of integration is bounded by the distance $b-a$: \lgcond{ Suppose the input function is perturbed $\hat{f}=f+ \delta f$, then \begin{align*} \delta I &= |\mathcal{I}(\hat{f}) - \mathcal{I}(f)| \\ &\leq |\mathcal{I}(\delta f)| \\ &\leq (b-a) ||\delta f||_\infty, \quad \text{where} \quad |f||_\infty = \max_{x\in[a,b]} | f(x)|. %\left|\int_{a}^b \hat{f}(x) dx - \int^b_a f(x) dx\right| \\ % &\leq |\int_{a}^b \underbrace{|\hat{f}(x) dx - \int^b_a f(x)|}_{\leq||\hat{f}-f||_\infty = \delta f}dx \\ % &\leq (b-a) \delta f \end{align*} Note that this result {\it does not depend on the magnitude of $f$ or its derivatives}, which means integration is generally very well-conditioned, which makes sense since integration corresponds to averaging. } \end{itemize} \end{frame} \section{Quadrature Rules} \begin{frame}{Quadrature Rules} \begin{itemize} \item Approximate the integral $\mathcal{I}(f)$ by a weighted sum of function values: \lgcond{ \[\mathcal{I}(f) \approx Q_n(f)= \sum_{i=1}^n w_i f(x_i)\] \begin{itemize} \item $\{x_i\}_{i=1}^n$ are quadrature \coloremph{nodes} or \coloremph{abscissas}, %\item $\{w_i\}_{i=1}^n$ are quadrature \coloremph{weights}. \mitem Quadrature rule %defined by $(\{x_i\}_{i=1}^n,\{w_i\}_{i=1}^n)$ is \coloremph{closed} if $x_1=a,x_n=b$ and \coloremph{open} otherwise. \mitem Rule is \coloremph{progressive} if nodes of $Q_n$ are a subset of those of $Q_{n+1}$. \end{itemize} } \sitem For a fixed set of $n$ nodes, polynomial interpolation followed by integration give \coloremph{$(n-1)$-degree quadrature rule}: \lgcond{ \begin{itemize} \item Accuracy depends on interpolant, is exact for all $(n-1)$-degree polynomials. \mitem Can obtain weights by expressing the unique $(n-1)$-degree polynomial interpolant in the Lagrange basis $p(x)=\sum_{i=1}^{n} \phi_i(x)f(x_i)$, so that %, the coefficients are then % of $f$ is given by the Vandermonde system, %\[\B y = \B y, \quad \text{where} \quad y_i= f(x_i) \quad \text{and} \quad d_{ii}=\phi_i(x_i).\] %The quadrature rule is defined by \[Q_n(f)=\mathcal{I}(p)= \sum_{i=1}^{n} \underbrace{\mathcal{I}(\phi_i)}_{w_i}f(x_i).\] \end{itemize} } \end{itemize} \end{frame} \begin{frame}{Determining Weights in a General Basis} \begin{itemize} \item A quadrature rule provides $\B x$ and $\B w$ so as to approximate \lgcond{ \[\mathcal{I}(f)\approx Q_n(f)=\langle \B w, \B y \rangle, \quad \text{where} \quad y_i=f(x_i)\] $Q_n$ is the integral of the polynomial interpolant $p$ of $(x_1,y_1),\ldots,(x_n,y_n)$. %\begin{itemize} %\item %\end{itemize} } \item \coloremph{Method of undetermined coefficients} obtains $\B y$ from \coloremph{moment equations} based on Vandermonde system: \lgcond{ \[ \mathcal{I}(p) = \mathcal{I}(\langle \{\phi_i(x)\}_{i=1}^n, \underbrace{\B V(\B x, \{\phi_i\}_{i=1}^n)^{-1} \B y}_\text{interpolant coefficients}\rangle) = \langle \underbrace{\B V(\B x, \{\phi_i\}_{i=1}^n)^{-T}\{\mathcal{I}(\phi_i(x))\}_{i=1}^n}_{\B w}, \B y\rangle\] %\begin{bmatrix} \int_a^b \phi_1(x) dx & \cdots &\int_a^b \phi_n(x)dx \end{bmatrix} \B V(\B x, \{\phi_i\}_{i=1}^n)^{-1} \B y.\] %\begin{bmatrix} \int_a^b \phi_1(x) dx & \cdots &\int_a^b \phi_n(x)dx \end{bmatrix} \B V(\B x, \{\phi_i\}_{i=1}^n)^{-1} \B y.\] \begin{itemize} \item Thus to obtain $\B w$, we need to solve the linear system, \[\B V(\B x, \{\phi_i\}_{i=1}^n)^T\B w = \begin{bmatrix} \int_a^b \phi_1(x) dx & \cdots &\int_a^b \phi_n(x)dx \end{bmatrix}^T,\] \item Note that the weights $\B w$ are \coloremph{independent} of the function values $\B y$. \end{itemize} } \end{itemize} \end{frame} \begin{frame}{Newton-Cotes Quadrature} \urcornerlinkdemo{08-quadrature-and-differentiation}{Newton-Cotes weight finder} \begin{itemize} \item \coloremph{Newton-Cotes} quadrature rules are defined by equispaced nodes on $[a,b]$: \mdcond{ open: $x_i=a+i(b-a)/(n+1)$, closed: $x_i=a+(i-1)(b-a)/(n-1)$. } \item The \coloremph{midpoint rule} is the $n=1$ open Newton-Cotes rule: \mdcond{ \[M(f) = (b-a)f\left(\frac{a+b}{2}\right)\] } \item The \coloremph{trapezoid rule} is the $n=2$ closed Newton-Cotes rule: \mdcond{ \[T(f) = \frac{(b-a)}{2}(f(a) + f(b))\] } \item \coloremph{Simpson's rule} is the $n=3$ closed Newton-Cotes rule: \mdcond{ \[S(f)=\frac{b-a}{6}\left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)\right)\] } \end{itemize} \end{frame} \subsection{Error and Conditioning of Quadrature Rules} \begin{frame}[fragile]{Error in Newton-Cotes Quadrature} \urcornerlinkdemo{08-quadrature-and-differentiation}{Accuracy of Newton-Cotes} \begin{itemize} \item Consider the Taylor expansion of $f$ about the midpoint of the integration interval $m=(a+b)/2$: \mdcond{ \[f(x) = f(m) + f'(m)(x-m) + \frac{f''(m)}{2}(x-m)^2 +\ldots\] } Integrating the Taylor approximation of $f$, we note that the odd terms drop: \lgcond{ \[\mathcal{I}(f) = \underbrace{f(m)(b-a)}_{M(f)} + \underbrace{\frac{f''(m)}{24}(b-a)^3}_{E(f)} + O((b-a)^5)\] Consequently, the midpoint rule is third-order accurate (first degree). } \end{itemize} \end{frame} \begin{frame}{Error Estimation} \begin{itemize} %\item Quadrature weights can be alternatively determined for a rule by solving the moment equations: %\lgcond{ %\begin{align*} %\B V(\B x, \{\phi_i\}_{i=1}^n) \B w = \B y(\{\phi_i\}_{i=1}^n), \quad \text{where} \quad y_i = \mathcal{I}(\phi_i) %\end{align*} %} \item The trapezoid rule is also first degree, despite using higher-degree polynomial interpolant approximation, since \lgcond{ \begin{align*} f(m) = \frac{1}{2}\bigg(&f(a) - f'(m)(a-m) - \frac{f''(m)}{2}(a-m)^2 +\ldots \\ +&f(b) - f'(m)(b-m) - \frac{f''(m)}{2}(b-m)^2 +\ldots \bigg) \\ \mathcal{I}(f)= T(f) -& \underbrace{\frac{f''(m)}{12}(b-a)^3}_{2E(f)} - O((b-a)^5) \end{align*} } \item The above derivation allows us to obtain an error approximation via a difference of midpoint and trapezoidal rules: \lgcond{ \[T(f)-M(f)\approx 3E(f).\] This approximation rapidly becomes accurate as $b-a$ decreases. } \end{itemize} \end{frame} \begin{frame}{Error in Polynomial Quadrature Rules} \begin{itemize} \item We can bound the error for a an arbitrary polynomial quadrature rule by \lgcond{ \begin{align*} |\mathcal{I}(f)-Q_n(f)| &= |\mathcal{I}(f-p)| \\ &\leq (b-a) || f-p||_\infty \\ &\leq \frac{b-a}{4n}h^n || f^{(n)}||_\infty \end{align*} where $h=\max_i(x_{i+1}-x_i)$. } \lgcond{ } \end{itemize} \end{frame} \begin{frame}{Conditioning of Newton-Cotes Quadrature} \begin{itemize} \item We can ascertain stability of quadrature rules, by considering the amplification of a perturbation $\hat{f} = f+ \delta f$: \lgcond { \begin{align*} |Q_n(\hat{f})-Q_n(f)| &= |Q_n(\delta f)| \\ &= \sum_{i=1}^n w_i \delta f(x_i) \\ &\leq ||\B w||_1 ||\delta f||_\infty. \end{align*} Note that we always have $\sum_i w_i=b-a$, since the quadrature rule must be correct for a constant function. So if $\B w$ is positive $||\B w||_1=b-a$, the quadrature rule is stable, i.e. it matches the conditioning of the problem. } \item Newton-Cotes quadrature rules have at least one negative weight for any $n\geq 11$: \lgcond{ More generally, $||\B w||_1\to \infty$ as $n \to \infty$ for fixed $b-a$. This means that the Newton-Cotes rules can be ill-conditioned. } \end{itemize} \end{frame} \subsection{Chebyshev Quadrature} \begin{frame}{Clenshaw-Curtis Quadrature} \begin{itemize} \item To obtain a more stable quadrature rule, we need to ensure the integrated interpolant is well-behaved as $n$ increases: \lgcond{ \begin{itemize} \mitem Chebyshev quadrature nodes ensure that interpolant polynomial has bounded coefficients so long as $f$ is bounded, since the Vandermonde system defining its coefficients is well-conditioned. \mitem Formally, it can be shown that $w_i>0$ for the Chebyshev-node ({\color{red} Clenshaw-Curtis}) quadrature. \mitem The weights for Clenshaw-Curtis quadrature rules can be obtained by solutions to Vandermonde systems on $[-1,1]$ with Chebyshev-spaced nodes, then translating to a desired integration interval. \end{itemize} } \end{itemize} \end{frame} %\begin{frame}{Gaussian Quadrature} % %\begin{itemize} %\item So far, we have only considered quadrature rules based on a fixed set of nodes, but we can also choose a set of nodes to improve accuracy: % %\lgcond{ %Choice of nodes gives additional $n$ parameters for a total of $2n$ degrees of freedom, permitting representation of polynomials of degree $2n-1$. %} %\item The \coloremph{unique} $n$-point \coloremph{Gaussian quadrature rule} is defined by the solution of the nonlinear form of the moment equations in terms of \textit{both} $\B x$ and $\B w$: %\lgcond{ %Given any complete basis, we seek to solve the nonlinear equations, %\[\B V(\B x, \{\phi_i\}_{i=1}^{2n+1}) \B w = \B y(\{\phi_i\}_{i=1}^{2n+1}), \quad \text{where} \quad y_i = \mathcal{I}(\phi_i)\] %For fixed $\B x$, we have an overdetermined system of linear equations for $\B w$. %} %%To obtain a more stable quadrature rule, we need to ensure the integrated interpolant is well-behaved as $n$ increases: %% %%\lgcond { %%Chebyshev quadrature nodes ensure that interpolant polynomial has bounded coefficients so long as $f$ is bounded, since the Vandermonde system defining its coefficients is well-conditioned. %% %%Formally, it can be shown that $w_i>0$ for Chebyshev-node (Clenshaw-Curtis) quadrature. %%} %\end{itemize} % %\end{frame} % %\begin{frame}{Using Gaussian Quadrature Rules} % %\begin{itemize} %\item Gaussian quadrature rules are hard to determine and usually, but can be enumerated for a fixed interval, e.g. $a=0,b=1$, so it suffices to transform the integral to $[0,1]$ % %\lgcond{ %We have that %\[\mathcal{I}(f) = \int_{a}^b f(x)dx = \int_0^1 g(t) dt \quad \text{where} \quad g(x) = f(t), t=\frac{x+b-a}{b-a}\] % %Choice of nodes gives additional $n$ parameters for a total of $2n$ degrees od freedom, permitting representation of polynomials of degree $2n-1$. %} %\item The \coloremph{unique} $n$-point \coloremph{Gaussian quadrature rule} is defined by the solution of the nonlinear form of the moment equations in terms of \textit{both} $\B x$ and $\B w$: %\lgcond{ %Given any complete basis, we seek to solve the nonlinear equations, %\[\B V(\B x, \{\phi_i\}_{i=1}^{2n+1}) \B w = \B y(\{\phi_i\}_{i=1}^{2n+1}), \quad \text{where} \quad y_i = \mathcal{I}(\phi_i)\] %For fixed $\B x$, we have an overdetermined system of linear equations for $\B w$. %} %%To obtain a more stable quadrature rule, we need to ensure the integrated interpolant is well-behaved as $n$ increases: %% %%\lgcond { %%Chebyshev quadrature nodes ensure that interpolant polynomial has bounded coefficients so long as $f$ is bounded, since the Vandermonde system defining its coefficients is well-conditioned. %% %%Formally, it can be shown that $w_i>0$ for Chebyshev-node (Clenshaw-Curtis) quadrature. %%} %\end{itemize} % %\end{frame} % %\begin{frame}{Improvements to Gaussian Quadrature} % %\begin{itemize} %\item Gaussian quadrature rules are are accurate and stable but not progressive (nodes cannot be reused to obtain higher-degree approximation): % %\mdcond{} % %\item \coloremph{Kronod} quadrature rules construct $(2n+1)$-point quadrature $K_{2n+1}$ that is progressive w.r.t. Gaussian quadrature rule $G_n$ % %\mdcond{} % %\item Gaussian quadrature rules are in general open, but Gauss-Radau and Gauss-Lobatto rules permit including end-points: % %\mdcond{ %Gauss-Radau uses one of two end-points as a node, while Gauss-Lobatto quadrature uses both. %} % %\end{itemize} % % %\end{frame} % % %\begin{frame}{Composite and Adaptive Quadrature} % %\begin{itemize} %\item Composite quadrature rules are obtained by integrating a piecewise interpolant of $f$: % %\lgcond{} % %\item Adaptive quadrature corresponds to using composite quadrature with adaptive refinement: % %\lgcond{ %Introduce new nodes where error estimate is large. %Error estimate can be obtained by e.g. comparing trapezoid and midpoint rules, but can be completely wrong if function is insufficiently smooth. %} % %\end{itemize} % % %\end{frame} %\end{document} \subsection{Gaussian Quadrature} \begin{frame}{Gaussian Quadrature} \urcornerlinkdemo{08-quadrature-and-differentiation}{Gaussian quadrature weight finder} \begin{itemize} \item So far, we have only considered quadrature rules based on a fixed set of nodes, but we may also be able to choose nodes to maximize accuracy: \lgcond{ \begin{itemize} \item Choice of nodes gives additional $n$ parameters for total $2n$ degrees of freedom. \mitem Permits exact integration of degree-$(2n-1)$ polynomials and corresponding general accuracy. \end{itemize} } \item The \coloremph{unique} $n$-point \coloremph{Gaussian quadrature rule} is defined by the solution of the nonlinear form of the moment equations in terms of \textit{both} $\B x$ and $\B w$: \lgcond{ Given any complete basis, we seek to solve the nonlinear equations for $\B x,\B w$, \[\B V(\B x, \{\phi_i\}_{i=1}^{2n+1})^T \B w = \B y, \quad \text{where} \quad y_i = \mathcal{I}(\phi_i).\] \begin{itemize} \item These nonlinear equations generally have a unique solution $(\B x^*, \B w^*)$. \mitem For fixed $\B x$, we have an overdetermined system of linear equations for $\B w$. \end{itemize} } %To obtain a more stable quadrature rule, we need to ensure the integrated interpolant is well-behaved as $n$ increases: % %\lgcond { %Chebyshev quadrature nodes ensure that interpolant polynomial has bounded coefficients so long as $f$ is bounded, since the Vandermonde system defining its coefficients is well-conditioned. % %Formally, it can be shown that $w_i>0$ for Chebyshev-node (Clenshaw-Curtis) quadrature. %} \end{itemize} \end{frame} \begin{frame}{Using Gaussian Quadrature Rules} \begin{itemize} \item Gaussian quadrature rules are hard to compute, but can be enumerated for a fixed interval, e.g. $a=0,b=1$, so it suffices to transform the integral to $[0,1]$ \lgcond{ \begin{itemize} \item We can transform a given integral using variable substitution $t=\frac{x-a}{b-a}$, \[\mathcal{I}(f) = \int_{a}^b f(x)dx = (b-a)\int_0^1 g(t) dt \quad \text{where} \quad g(t) = f(t(b-a)+a)).\] \item For quadrature rules defined on $[-1,1]$, we can transform via the substitution $t=2\frac{x-a}{b-a}-1$, \[\mathcal{I}(f) = \int_{a}^b f(x)dx = \frac{b-a}{2}\int_{-1}^1 g(t) dt \quad \text{where} \quad g(t) = f((t+1)(b-a)/2+a).\] \end{itemize} } \item Gaussian quadrature rules are accurate and stable but not progressive (nodes cannot be reused to obtain higher-degree approximation): \mdcond{ \begin{itemize} \item maximal degree is obtained \sitem weights are always positive (perfect conditioning) \end{itemize} } \end{itemize} \end{frame} \begin{frame}{Progressive Gaussian-like Quadrature Rules} \begin{itemize} \item \coloremph{Kronod} quadrature rules construct $(2n+1)$-point $(3n+1)$-degree quadrature $K_{2n+1}$ that is progressive with respect to Gaussian quadrature rule $G_n$: \lgcond{ \begin{itemize} \item Gaussian quadrature rule $G_{2n+1}$ would use same number of points and have degree $4n+1$. \mitem Kronod rule points are optimal chosen to reuse all points of $G_n$, so $n+1$ rather than $2n+1$ new evaluations are necessary. \end{itemize} } \item \coloremph{Patterson} quadrature rules use $2n+2$ more points to extend $(2n+1)$-point Kronod rule to degree $6n+4$, while reusing all $2n+1$ points. \item Gaussian quadrature rules are in general open, but \coloremph{Gauss-Radau} and \coloremph{Gauss-Lobatto} rules permit including end-points: \lgcond{ Gauss-Radau uses one of two end-points as a node, while Gauss-Lobatto quadrature uses both. } \end{itemize} \end{frame} \begin{frame}{Composite and Adaptive Quadrature} \begin{itemize} \item \coloremph{Composite quadrature rules} are obtained by integrating a piecewise interpolant of $f$: \lgcond{ For example, we can derive simple composite Newton-Cotes rules by partitioning the domain into sub-intervals $[x_i,x_{i+1}]$: \begin{itemize} \sitem composite midpoint rule \[\mathcal{I}(f) = \sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} f(x)dx \approx \sum_{i=1}^{n-1} (x_{i+1}-x_i)f((x_{i+1}+x_i)/2)\] \item composite trapezoid rule \[\mathcal{I}(f) = \sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} f(x)dx \approx \sum_{i=1}^{n-1} \frac{(x_{i+1}-x_i)}2 (f(x_{i+1})+f(x_i))\] \end{itemize} } \item Composite quadrature can be done with adaptive refinement: \lgcond{ Introduce new nodes where error estimate is large. Error estimate can be obtained by e.g. comparing trapezoid and midpoint rules, but can be completely wrong if function is insufficiently smooth. } \end{itemize} \end{frame} \begin{frame}{More Complicated Integration Problems} \begin{itemize} \item To handle improper integrals can either transform integral to get rid of infinite limit or use appropriate open quadrature rules. \mdcond{} \item Double integrals can simply be computed by successive 1-D integration. \mdcond{ Composite multidimensional rules are also possible by partitioning the domain into chunks. } \item High-dimensional integration is often effectively done by \coloremph{Monte Carlo}: \lgcond{ \[\int_\Omega f(\B x) d\B x = E[Y], \quad Y = \frac{|\Omega|}{N} \sum_{i=1}^N Y_i, \quad Y_i = f(\B x_i), \quad \B x_i \ \ \text{chosen randomly from $\Omega$}.\] \begin{itemize} \item Convergence rate is independent of function (effective polynomial degree approximation) or dimension of integration domain. \mitem Instead, it depends on number of samples ($N$), with error scaling as $O(1/\sqrt{N})$. \end{itemize} } \end{itemize} \end{frame} \begin{frame}{Integral Equations} \begin{itemize} \item Rather than evaluating an integral, in solving an \coloremph{integral equation} we seek to compute the integrand. A typical linear integral equation has the form \[\int_a^b K(s,t)u(t) dt = f(s), \quad \text{where} \quad K \quad \text{and} \quad f \quad \text{are known}.\] \lgcond{ \begin{itemize} \item Useful for recovering signal $u$ given response function with kernel $K$ and measurements of $f$. \mitem Also arise from solve equations arising from Green's function methods for PDEs. \end{itemize} } \item Using a quadrature rule with weights $w_1,\ldots, w_n$ and nodes $t_1,\ldots, t_n$ obtain \lgcond{ \[\sum_{j=1}^n w_jK(s,t_j)u(t_j) = f(s).\] Discrete sample of $f$ on $s_1,\ldots, s_n$ yields a linear system of equations, \[\sum_{j=1}^n w_jK(s_i,t_j)u(t_j) = f(s_i).\] %The resulting matrix $\B A$ can be ill-conditioned for many kernels $K$. } \end{itemize} \end{frame} %\begin{frame}{Challenges in Solving Integral Equations} % %\begin{itemize} %\item Integral equations based on response functions tend to be ill-conditioned, which is resolved using % %\begin{itemize} %\item truncated singular value decomposition of $\B A$, where $a_{ij}=w_jK(s_i,t_j)$ % %\mdcond{} % %\item replacing the linear system with a regularized linear least squares problem, % %\mdcond{} % %\item expressing the solution using a basis % %\mdcond{Let $u(t)\approx \sum_{j=1}^n c_j \phi_j(t)$ and derive equations for the coefficients.} % %\end{itemize} %\end{itemize} % % %\end{frame} \begin{frame}{Numerical Differentiation} \urcornerlinkdemo{08-quadrature-and-differentiation}{Taking Derivatives with Vandermonde Matrices} \begin{itemize} \item Automatic (symbolic) differentiation is a surprisingly viable option: \lgcond{ \begin{itemize} \item Any computer program is differentiable, since it is an assembly of basic arithmetic operations. \item Existing software packages can automatically differentiate whole programs. \end{itemize} } \item Numerical differentiation can be done by interpolation or finite differencing: \lgcond{ \begin{itemize} \item Given polynomial interpolant, its derivative is easy to obtain by differentiating the basis in which it is expressed, \[f'(x)\approx p'(x) = \begin{bmatrix} \phi'_1(x) & \cdots &\phi'_n(x) \end{bmatrix}^T\B V(\B t, \{\phi_i\}_{i=1}^n)^{-1} \B y, \ \text{where} \ y_i=f(t_i).\] \item Obtaining the values of the derivative at the interpolation nodes, can be done via \[\underbrace{\B V(\B t, \{\phi_i'\}_{i=1}^n)\B V(\B t, \{\phi_i\}_{i=1}^n)^{-1}}_\text{Differentiation matrix} \B y, \ \text{where} \ y_i=f(t_i).\] \item Finite-differencing formulas effectively use linear interpolant. \end{itemize} } \end{itemize} \end{frame} \begin{frame}{Accuracy of Finite Differences} \dblurcornerlinkdemo{08-quadrature-and-differentiation}{Finite Differences vs Noise}{08-quadrature-and-differentiation}{Floating point vs Finite Differences} \begin{itemize} \item \coloremph{Forward and backward differencing} provide first-order accuracy: \lgcond{ These can be derived, respectively from forward and backward Taylor expansions of $f$ about $x$, \begin{align*} f(x+h) &= f(x) + f'(x)h + f''(x) h^2 /2 + \ldots \\ f(x-h) &= f(x) - f'(x)h + f''(x) h^2 /2 - \ldots \end{align*} For forward differencing, we obtain an approximation from the first equation, \[f'(x) = \frac{f(x+h)- f(x)}h + f''(x) h /2 + \ldots.\] } \item \coloremph{Centered differencing} provides second-order accuracy. \lgcond{ Subtracting the backward Taylor expansion from the forward, we obtain centered differencing, \[f'(x) = \frac{f(x+h)- f(x-h)}{2h} + O(h^2).\] Second order accuracy is due to cancellation of odd terms like $f''(x)h/2$. } \end{itemize} \end{frame} \begin{frame}{Extrapolation Techniques} \urcornerlinkdemoinclass{08-quadrature-and-differentiation}{Richardson with Finite Differences}{inclass-richardson}{Richardson Extrapolation} \begin{itemize} \item Given a series of approximate solutions produced by an iterative procedure, a more accurate approximation may be obtained by \coloremph{extrapolating} this series. \lgcond{ For example, as we lower the step size $h$ in a finite-difference formula, we can try to extrapolate the series to $h=0$, if we know that \[F(h)=a_0 + a_1h^p + O(h^r) \ \text{as} \ h\to 0 \ \text{and seek to determine $F(0)=a_0$},\] for example in centered differences $p=2$ and $r=4$. } \item In particular, given two guesses, \coloremph{Richardson extrapolation} eliminates the leading order error term. \lgcond{ Seek to eliminate $a_1h^p$ term in $F(h)$, $F(h/2)$ to improve approximation of $a_0$, \begin{align*} F(h) &= a_0 + a_1h^p + O(h^r), \\ F(h/2) &= a_0 + a_1h^p/2^p + O(h^r), \\ a_0 &= F(h) - \frac{F(h)-F(h/2)}{1-1/2^{p}} + O(h^r). \end{align*} } \end{itemize} \end{frame} \begin{frame}{High-Order Extrapolation} \begin{itemize} \item Given a series of $k$ approximations, \coloremph{Romberg integration} applies $(k-1)$-levels of Richardson extrapolation. \lgcond{ Can apply Richardson extrapolation to each of $k-1$ pairs of consecutive nodes, then proceed recursively on the $k-1$ resulting approximations. } \item Extrapolation can be used within an iterative procedure at each step: \lgcond{ For example, Steffensen's method for finding roots of nonlinear equations, \[x_{n+1} = x_n + \frac{f(x_n)}{1-f(x_n+f(x_n))/f(x_n)},\] derived from Aitken's delta-squared extrapolation process: \begin{itemize} \item achieves quadratic convergence, \sitem requires no derivative, \sitem competes with the Secant method (quadratic versus superlinear convergence, but an extra function evaluation necessary). \end{itemize} } \end{itemize} \end{frame} %\end{document}
[GOAL] B : Type u_1 F : Type u_2 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F ⊢ topologicalSpace B F = induced (↑(TotalSpace.toProd B F)) instTopologicalSpaceProd [PROOFSTEP] simp only [instTopologicalSpaceProd, induced_inf, induced_compose] [GOAL] B : Type u_1 F : Type u_2 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F ⊢ topologicalSpace B F = induced (Prod.fst ∘ ↑(TotalSpace.toProd B F)) inst✝¹ ⊓ induced (Prod.snd ∘ ↑(TotalSpace.toProd B F)) inst✝ [PROOFSTEP] rfl [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] let f₁ : TotalSpace (F₁ × F₂) (E₁ ×ᵇ E₂) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p ↦ ((⟨p.1, p.2.1⟩ : TotalSpace F₁ E₁), (⟨p.1, p.2.2⟩ : TotalSpace F₂ E₂)) [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] let f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p ↦ ⟨e₁ p.1, e₂ p.2⟩ [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] let f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p ↦ ⟨p.1.1, p.1.2, p.2.2⟩ [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] have hf₁ : Continuous f₁ := (Prod.inducing_diag F₁ E₁ F₂ E₂).continuous [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] have hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) := e₁.toLocalHomeomorph.continuousOn.prod_map e₂.toLocalHomeomorph.continuousOn [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] have hf₃ : Continuous f₃ := (continuous_fst.comp continuous_fst).prod_mk (continuous_snd.prod_map continuous_snd) [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] refine' ((hf₃.comp_continuousOn hf₂).comp hf₁.continuousOn _).congr _ [GOAL] case refine'_1 B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ ⊢ MapsTo f₁ (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) (e₁.source ×ˢ e₂.source) [PROOFSTEP] rw [e₁.source_eq, e₂.source_eq] [GOAL] case refine'_1 B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ ⊢ MapsTo f₁ (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) ((TotalSpace.proj ⁻¹' e₁.baseSet) ×ˢ (TotalSpace.proj ⁻¹' e₂.baseSet)) [PROOFSTEP] exact mapsTo_preimage _ _ [GOAL] case refine'_2 B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ ⊢ EqOn (toFun' e₁ e₂) ((f₃ ∘ f₂) ∘ f₁) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] rintro ⟨b, v₁, v₂⟩ ⟨hb₁, _⟩ [GOAL] case refine'_2.mk.mk.intro B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ b : B v₁ : E₁ b v₂ : E₂ b hb₁ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₁.baseSet right✝ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₂.baseSet ⊢ toFun' e₁ e₂ { proj := b, snd := (v₁, v₂) } = ((f₃ ∘ f₂) ∘ f₁) { proj := b, snd := (v₁, v₂) } [PROOFSTEP] simp only [Prod.toFun', Prod.mk.inj_iff, Function.comp_apply, and_true_iff] [GOAL] case refine'_2.mk.mk.intro B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ b : B v₁ : E₁ b v₂ : E₂ b hb₁ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₁.baseSet right✝ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₂.baseSet ⊢ b = (↑e₁ { proj := b, snd := v₁ }).fst [PROOFSTEP] rw [e₁.coe_fst] [GOAL] case refine'_2.mk.mk.intro B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ b : B v₁ : E₁ b v₂ : E₂ b hb₁ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₁.baseSet right✝ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₂.baseSet ⊢ { proj := b, snd := v₁ } ∈ e₁.source [PROOFSTEP] rw [e₁.source_eq, mem_preimage] [GOAL] case refine'_2.mk.mk.intro B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ b : B v₁ : E₁ b v₂ : E₂ b hb₁ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₁.baseSet right✝ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₂.baseSet ⊢ { proj := b, snd := v₁ }.proj ∈ e₁.baseSet [PROOFSTEP] exact hb₁ [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x h : x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) ⊢ invFun' e₁ e₂ (toFun' e₁ e₂ x) = x [PROOFSTEP] obtain ⟨x, v₁, v₂⟩ := x [GOAL] case mk.mk B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B v₁ : E₁ x v₂ : E₂ x h : { proj := x, snd := (v₁, v₂) } ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) ⊢ invFun' e₁ e₂ (toFun' e₁ e₂ { proj := x, snd := (v₁, v₂) }) = { proj := x, snd := (v₁, v₂) } [PROOFSTEP] obtain ⟨h₁ : x ∈ e₁.baseSet, h₂ : x ∈ e₂.baseSet⟩ := h [GOAL] case mk.mk.intro B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B v₁ : E₁ x v₂ : E₂ x h₁ : x ∈ e₁.baseSet h₂ : x ∈ e₂.baseSet ⊢ invFun' e₁ e₂ (toFun' e₁ e₂ { proj := x, snd := (v₁, v₂) }) = { proj := x, snd := (v₁, v₂) } [PROOFSTEP] simp only [Prod.toFun', Prod.invFun', symm_apply_apply_mk, h₁, h₂] [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B × F₁ × F₂ h : x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ ⊢ toFun' e₁ e₂ (invFun' e₁ e₂ x) = x [PROOFSTEP] obtain ⟨x, w₁, w₂⟩ := x [GOAL] case mk.mk B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B w₁ : F₁ w₂ : F₂ h : (x, w₁, w₂) ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ ⊢ toFun' e₁ e₂ (invFun' e₁ e₂ (x, w₁, w₂)) = (x, w₁, w₂) [PROOFSTEP] obtain ⟨⟨h₁ : x ∈ e₁.baseSet, h₂ : x ∈ e₂.baseSet⟩, -⟩ := h [GOAL] case mk.mk.intro.intro B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B w₁ : F₁ w₂ : F₂ h₁ : x ∈ e₁.baseSet h₂ : x ∈ e₂.baseSet ⊢ toFun' e₁ e₂ (invFun' e₁ e₂ (x, w₁, w₂)) = (x, w₁, w₂) [PROOFSTEP] simp only [Prod.toFun', Prod.invFun', apply_mk_symm, h₁, h₂] [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) ⊢ ContinuousOn (invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ) [PROOFSTEP] rw [(Prod.inducing_diag F₁ E₁ F₂ E₂).continuousOn_iff] [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) ⊢ ContinuousOn ((fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ∘ invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ) [PROOFSTEP] have H₁ : Continuous fun p : B × F₁ × F₂ ↦ ((p.1, p.2.1), (p.1, p.2.2)) := (continuous_id.prod_map continuous_fst).prod_mk (continuous_id.prod_map continuous_snd) [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) H₁ : Continuous fun p => ((p.fst, p.snd.fst), p.fst, p.snd.snd) ⊢ ContinuousOn ((fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ∘ invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ) [PROOFSTEP] refine' (e₁.continuousOn_symm.prod_map e₂.continuousOn_symm).comp H₁.continuousOn _ [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) H₁ : Continuous fun p => ((p.fst, p.snd.fst), p.fst, p.snd.snd) ⊢ MapsTo (fun p => ((p.fst, p.snd.fst), p.fst, p.snd.snd)) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ) ((e₁.baseSet ×ˢ univ) ×ˢ e₂.baseSet ×ˢ univ) [PROOFSTEP] exact fun x h ↦ ⟨⟨h.1.1, mem_univ _⟩, ⟨h.1.2, mem_univ _⟩⟩ [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) ⊢ IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source [PROOFSTEP] convert (e₁.open_source.prod e₂.open_source).preimage (FiberBundle.Prod.inducing_diag F₁ E₁ F₂ E₂).continuous [GOAL] case h.e'_3 B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) ⊢ { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source = (fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ⁻¹' e₁.source ×ˢ e₂.source [PROOFSTEP] ext x [GOAL] case h.e'_3.h B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x ⊢ x ∈ { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source ↔ x ∈ (fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ⁻¹' e₁.source ×ˢ e₂.source [PROOFSTEP] simp only [Trivialization.source_eq, mfld_simps] [GOAL] B : Type u_1 inst✝¹⁰ : TopologicalSpace B F₁ : Type u_2 inst✝⁹ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁸ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝⁷ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝⁶ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁵ : (x : B) → Zero (E₁ x) inst✝⁴ : (x : B) → Zero (E₂ x) inst✝³ : (x : B) → TopologicalSpace (E₁ x) inst✝² : (x : B) → TopologicalSpace (E₂ x) inst✝¹ : FiberBundle F₁ E₁ inst✝ : FiberBundle F₂ E₂ b : B ⊢ Inducing (TotalSpace.mk b) [PROOFSTEP] rw [(Prod.inducing_diag F₁ E₁ F₂ E₂).inducing_iff] [GOAL] B : Type u_1 inst✝¹⁰ : TopologicalSpace B F₁ : Type u_2 inst✝⁹ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁸ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝⁷ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝⁶ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁵ : (x : B) → Zero (E₁ x) inst✝⁴ : (x : B) → Zero (E₂ x) inst✝³ : (x : B) → TopologicalSpace (E₁ x) inst✝² : (x : B) → TopologicalSpace (E₂ x) inst✝¹ : FiberBundle F₁ E₁ inst✝ : FiberBundle F₂ E₂ b : B ⊢ Inducing ((fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ∘ TotalSpace.mk b) [PROOFSTEP] exact (totalSpaceMk_inducing F₁ E₁ b).prod_map (totalSpaceMk_inducing F₂ E₂ b) [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f : B' → B inst✝ : (x : B) → TopologicalSpace (E x) ⊢ (x : B') → TopologicalSpace ((f *ᵖ E) x) [PROOFSTEP] intro x [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f : B' → B inst✝ : (x : B) → TopologicalSpace (E x) x : B' ⊢ TopologicalSpace ((f *ᵖ E) x) [PROOFSTEP] rw [Bundle.Pullback] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f : B' → B inst✝ : (x : B) → TopologicalSpace (E x) x : B' ⊢ TopologicalSpace (E (f x)) [PROOFSTEP] infer_instance [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ Continuous TotalSpace.proj [PROOFSTEP] rw [continuous_iff_le_induced, Pullback.TotalSpace.topologicalSpace, pullbackTopology_def] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ induced TotalSpace.proj inst✝¹ ⊓ induced (Pullback.lift f) inst✝ ≤ induced TotalSpace.proj inst✝¹ [PROOFSTEP] exact inf_le_left [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ Continuous (Pullback.lift f) [PROOFSTEP] rw [continuous_iff_le_induced, Pullback.TotalSpace.topologicalSpace, pullbackTopology_def] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ induced TotalSpace.proj inst✝¹ ⊓ induced (Pullback.lift f) inst✝ ≤ induced (Pullback.lift f) inst✝ [PROOFSTEP] exact inf_le_right [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ Inducing (pullbackTotalSpaceEmbedding f) [PROOFSTEP] constructor [GOAL] case induced B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ Pullback.TotalSpace.topologicalSpace F E f = induced (pullbackTotalSpaceEmbedding f) instTopologicalSpaceProd [PROOFSTEP] simp_rw [instTopologicalSpaceProd, induced_inf, induced_compose, Pullback.TotalSpace.topologicalSpace, pullbackTopology_def] [GOAL] case induced B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ induced TotalSpace.proj inst✝¹ ⊓ induced (Pullback.lift f) inst✝ = induced (Prod.fst ∘ pullbackTotalSpaceEmbedding f) inst✝¹ ⊓ induced (Prod.snd ∘ pullbackTotalSpaceEmbedding f) inst✝ [PROOFSTEP] rfl [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E f : B' → B x : B' ⊢ Continuous (TotalSpace.mk x) [PROOFSTEP] simp only [continuous_iff_le_induced, Pullback.TotalSpace.topologicalSpace, induced_compose, induced_inf, Function.comp, induced_const, top_inf_eq, pullbackTopology_def] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E f : B' → B x : B' ⊢ instForAllTopologicalSpacePullback E f x ≤ induced (fun x_1 => Pullback.lift f { proj := x, snd := x_1 }) inst✝⁴ [PROOFSTEP] exact le_of_eq (FiberBundle.totalSpaceMk_inducing F E (f x)).induced [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : TotalSpace F (↑f *ᵖ E) h : x ∈ Pullback.lift ↑f ⁻¹' e.source ⊢ (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ [PROOFSTEP] simp_rw [e.source_eq, mem_preimage, Pullback.lift_proj] at h [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : TotalSpace F (↑f *ᵖ E) h : ↑f x.proj ∈ e.baseSet ⊢ (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ [PROOFSTEP] simp_rw [prod_mk_mem_set_prod_eq, mem_univ, and_true_iff, mem_preimage, h] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K y : B' × F h : y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ ⊢ (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source [PROOFSTEP] rw [mem_prod, mem_preimage] at h [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K y : B' × F h : ↑f y.fst ∈ e.baseSet ∧ y.snd ∈ univ ⊢ (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source [PROOFSTEP] simp_rw [e.source_eq, mem_preimage, Pullback.lift_proj, h.1] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : TotalSpace F (↑f *ᵖ E) h : x ∈ Pullback.lift ↑f ⁻¹' e.source ⊢ (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x [PROOFSTEP] simp_rw [mem_preimage, e.mem_source, Pullback.lift_proj] at h [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : TotalSpace F (↑f *ᵖ E) h : ↑f x.proj ∈ e.baseSet ⊢ (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x [PROOFSTEP] simp_rw [Pullback.lift, e.symm_apply_apply_mk h] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : B' × F h : x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ ⊢ (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x [PROOFSTEP] simp_rw [mem_prod, mem_preimage, mem_univ, and_true_iff] at h [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : B' × F h : ↑f x.fst ∈ e.baseSet ⊢ (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x [PROOFSTEP] simp_rw [Pullback.lift_mk, e.apply_mk_symm h] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ IsOpen { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.source [PROOFSTEP] simp_rw [e.source_eq, ← preimage_comp] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ IsOpen (TotalSpace.proj ∘ Pullback.lift ↑f ⁻¹' e.baseSet) [PROOFSTEP] exact e.open_baseSet.preimage ((map_continuous f).comp <| Pullback.continuous_proj F E f) [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ ContinuousOn { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.invFun { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.target [PROOFSTEP] dsimp only [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ ContinuousOn (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((↑f ⁻¹' e.baseSet) ×ˢ univ) [PROOFSTEP] simp_rw [(inducing_pullbackTotalSpaceEmbedding F E f).continuousOn_iff, Function.comp, pullbackTotalSpaceEmbedding] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ ContinuousOn (fun x => (x.fst, { proj := ↑f x.fst, snd := Trivialization.symm e (↑f x.fst) x.snd })) ((↑f ⁻¹' e.baseSet) ×ˢ univ) [PROOFSTEP] refine' continuousOn_fst.prod (e.continuousOn_symm.comp ((map_continuous f).prod_map continuous_id).continuousOn Subset.rfl) [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ { toLocalEquiv := { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }, open_source := (_ : IsOpen { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.source), open_target := (_ : IsOpen ((↑f ⁻¹' e.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (fun x => (x.proj, (↑e (Pullback.lift (↑f) x)).snd)) { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.source), continuous_invFun := (_ : ContinuousOn { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.invFun { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.target) }.toLocalEquiv.source = TotalSpace.proj ⁻¹' (↑f ⁻¹' e.baseSet) [PROOFSTEP] dsimp only [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ Pullback.lift ↑f ⁻¹' e.source = TotalSpace.proj ⁻¹' (↑f ⁻¹' e.baseSet) [PROOFSTEP] rw [e.source_eq] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ Pullback.lift ↑f ⁻¹' (TotalSpace.proj ⁻¹' e.baseSet) = TotalSpace.proj ⁻¹' (↑f ⁻¹' e.baseSet) [PROOFSTEP] rfl
\chapter{Chapter 1 - The Fourth House} \begin{itemize} \item Difficulty: Normal/Casual \item Male \Byleth \end{itemize} \begin{battle}{The Fourth House} \begin{multicols}{2} \battleinfo{commander}{9}{\Byleth, \Ashe, \Linhardt, \Dimitri, \Claude} \prep{ \item Options: \begin{itemize} \item Combat Animations: Off \arrow{right}{1} \item Assist Animations: Off \item Battle Speed: Fast \item Action Skip: On \item Automatic Cursor: Off \end{itemize} \abilities{ \Bylethf \removeAbility{Battalion Vantage} \addAbility{HP+5} \Dimitrif \arrow{right}{2} \removeAbility{Authority Level 3, Battalion Wrath} \addAbility{HP+5, Dexterity+4} \Claudef \arrow{right}{1} \addAbility{Authority Level 3, Battalion Desparation} \removeAbility{HP+5, Dexterity+4} } \armory{ \Dimitrif \buy{2 Silver Lances} \Claudef \buy{1 Silver Bow} } } \begin{enumerate} \turn{ \Ashef \arrow{left}{2} \movegambit{3L, 2D}{Retribution}{\Hilda}{1R} \Dimitrif \arrow{\right}{3} \movegambit{1U, 7R}{Assault Troop}{\enemy{Rogue}}{1R} \turnend } \turn{ \Linhardtf \arrow{right}{1} \movephysic{4R}{\Dimitri}{} \Dimitrif \arrow{left}{1} \moveattack{1R}{\Balthus}{1R with Silver Lance} \movewait{5D, 2R} \autoCharge } \turn{ \Linhardtf \arrow{right}{2} \movephysic{4R}{\Dimitri}{} \autoCharge } \columnbreak \turn{ \Claudef \movewait{5R - 1D, 1L from the Gate, which is 2D, 4L from \Hapi. Actual travelling will be different based on where Charge placed everyone.} \autoCharge \Dimitrif \begin{itemize} \item When the Door Key is picked up, send the Iron Lance into the Convoy. \end{itemize} } \turn{ \Dimitrif \arrow{right}{2} \moveattack{2R, 4U}{\enemy{Rogue}}{1U, with the more worn-down Silver Lance} \Linhardtf \arrow{left}{2} \movephysic{Upper-Right Corner}{\Dimitri}{\arrow{right}{1}} \turnend } \turn{ \Dimitrif \arrow{right}{2} \moveattack{1R, 5U}{\enemy{Archer}}{1L} \Linhardtf \arrow{right}{1} \begin{itemize}\physic{\Dimitri}{\arrow{left}{1}}\end{itemize} \turnend } \turn{ \Dimitrif \arrow{left}{1} \movewait{4L, 1U} \begin{itemize} \item If there are any remaining enemies, kill them and then Canto to the avoid tile to the right of the left hole. \end{itemize} \Linhardtf \arrow{right}{1} \begin{itemize}\physic{\Dimitri}{\arrow{right}{1}}\end{itemize} \turnend } \turn{ \Dimitrif \arrow{left}{1} \moveattack{1U}{\Constance}{1U with Javelin and Tempest Lance} \movewait{1U} \Linhardtf \arrow{right}{1} \begin{itemize}\physic{\Dimitri}{\arrow{right}{1}}\end{itemize} \turnend } \turn{ \Dimitrif \arrow{left}{1} \moveattack{3U}{\Yuri}{1R with Silver Lance and Knightkneeler. If it isn't a one-shot, use Tempest Lance instead.} \ifc{\Dimitri\ fails to kill \Yuri}{\item \divinepulse \item Burn a RN with \Linhardt's Physic} \ifc{\Dimitri\ still fails to kill \Yuri}{\item \divinepulse \item Try Gambiting \Yuri\ instead from 1U above \Yuri} } \end{enumerate} \end{multicols} \end{battle}
data Nat : Set where O : Nat S : Nat → Nat syntax S x = suc x test : Nat → Nat test _ = suc O syntax lim (λ n → m) = limit n at m data lim (f : Nat → Nat) : Set where syntax foo (λ _ → n) = const-foo n postulate foo : (Nat → Nat) → Nat
# 自定义生成包的工具。 # 基于LibraryTools。 # 增加了不存在包文件则直接创建文件的功能。 LibMaker:=module() option package; export MakeLib; (* 将package保存到文件 如果文件不存在则创建文件 如果文件不含后缀名则补全后缀名 默认文件名为 lib.mla *) MakeLib:=proc(mName,fName:="lib.mla") if not StringTools:-RegMatch(".*\\.mla",fName) then fName:=cat(fName,".mla"); end if; if not FileTools:-Exists(fName) then LibraryTools:-Create(fName); end if; LibraryTools:-Save(mName,fNmae); end proc: end module:
[STATEMENT] lemma ifTrue_deterministic [simp]: assumes s_r: "s r = Some (\<sigma>, \<tau>, \<E> [Ite (VE (CV T)) e1 e2])" shows "(revision_step r s s') = (s' = (s(r \<mapsto> (\<sigma>, \<tau>, \<E> [e1]))))" (is "?l = ?r") [PROOF STATE] proof (prove) goal (1 subgoal): 1. revision_step r s s' = (s' = s(r \<mapsto> (\<sigma>, \<tau>, \<E> [e1]))) [PROOF STEP] proof (rule iffI) [PROOF STATE] proof (state) goal (2 subgoals): 1. revision_step r s s' \<Longrightarrow> s' = s(r \<mapsto> (\<sigma>, \<tau>, \<E> [e1])) 2. s' = s(r \<mapsto> (\<sigma>, \<tau>, \<E> [e1])) \<Longrightarrow> revision_step r s s' [PROOF STEP] assume ?l [PROOF STATE] proof (state) this: revision_step r s s' goal (2 subgoals): 1. revision_step r s s' \<Longrightarrow> s' = s(r \<mapsto> (\<sigma>, \<tau>, \<E> [e1])) 2. s' = s(r \<mapsto> (\<sigma>, \<tau>, \<E> [e1])) \<Longrightarrow> revision_step r s s' [PROOF STEP] thus ?r [PROOF STATE] proof (prove) using this: revision_step r s s' goal (1 subgoal): 1. s' = s(r \<mapsto> (\<sigma>, \<tau>, \<E> [e1])) [PROOF STEP] by (cases rule: revision_stepE) (use s_r in auto) [PROOF STATE] proof (state) this: s' = s(r \<mapsto> (\<sigma>, \<tau>, \<E> [e1])) goal (1 subgoal): 1. s' = s(r \<mapsto> (\<sigma>, \<tau>, \<E> [e1])) \<Longrightarrow> revision_step r s s' [PROOF STEP] qed (simp add: s_r revision_step.ifTrue)
From LogRel.AutoSubst Require Import core unscoped Ast Extra. From LogRel Require Import Utils BasicAst Notations Context NormalForms Weakening DeclarativeTyping GenericTyping LogicalRelation Validity. From LogRel.LogicalRelation Require Import Escape Reflexivity Neutral Weakening Irrelevance. From LogRel.Substitution Require Import Irrelevance Properties. From LogRel.Substitution.Introductions Require Import Universe Pi Application. Set Universe Polymorphism. Section SimpleArrValidity. Context `{GenericTypingProperties}. Lemma simpleArrValid {l Γ F G} (VΓ : [||-v Γ]) (VF : [Γ ||-v< l > F | VΓ ]) (VG : [Γ ||-v< l > G | VΓ]) : [Γ ||-v<l> arr F G | VΓ]. Proof. unshelve eapply PiValid; tea. replace G⟨↑⟩ with G⟨@wk1 Γ F⟩ by now bsimpl. now eapply wk1ValidTy. Qed. Lemma simpleArrCongValid {l Γ F F' G G'} (VΓ : [||-v Γ]) (VF : [Γ ||-v< l > F | VΓ ]) (VF' : [Γ ||-v< l > F' | VΓ ]) (VeqF : [Γ ||-v< l > F ≅ F' | VΓ | VF]) (VG : [Γ ||-v< l > G | VΓ ]) (VG' : [Γ ||-v< l > G' | VΓ ]) (VeqG : [Γ ||-v< l > G ≅ G' | VΓ | VG]) : [Γ ||-v<l> arr F G ≅ arr F' G' | VΓ | simpleArrValid _ VF VG]. Proof. eapply irrelevanceEq. unshelve eapply PiCong; tea. + replace G⟨↑⟩ with G⟨@wk1 Γ F⟩ by now bsimpl. now eapply wk1ValidTy. + replace G'⟨↑⟩ with G'⟨@wk1 Γ F'⟩ by now bsimpl. now eapply wk1ValidTy. + replace G'⟨↑⟩ with G'⟨@wk1 Γ F⟩ by now bsimpl. eapply irrelevanceEq'. 2: now eapply wk1ValidTyEq. now bsimpl. Unshelve. 2: tea. Qed. Lemma simple_appValid {Γ t u F G l} (VΓ : [||-v Γ]) {VF : [Γ ||-v<l> F | VΓ]} (VG : [Γ ||-v<l> G | VΓ]) (VΠ : [Γ ||-v<l> arr F G | VΓ]) (Vt : [Γ ||-v<l> t : arr F G | _ | VΠ]) (Vu : [Γ ||-v<l> u : F | _ | VF]) : [Γ ||-v<l> tApp t u : G| _ | VG]. Proof. eapply irrelevanceTm'. 2: eapply appValid; tea. now bsimpl. Unshelve. all: tea. Qed. End SimpleArrValidity.
(* * Copyright 2014, NICTA * * This software may be distributed and modified according to the terms of * the BSD 2-Clause license. Note that NO WARRANTY is provided. * See "LICENSE_BSD2.txt" for details. * * @TAG(NICTA_BSD) *) theory signedoverflow imports "../CTranslation" begin install_C_file "signedoverflow.c" context signedoverflow begin thm f_body_def (* painful lemma about sint and word arithmetic results... lemma j0: "\<Gamma> \<turnstile> \<lbrace> True \<rbrace> Call f_'proc \<lbrace> \<acute>ret__int = 0 \<rbrace>" apply vcg apply simp_all apply auto *) thm g_body_def lemma "\<Gamma> \<turnstile> \<lbrace> True \<rbrace> \<acute>ret__int :== CALL g(1) \<lbrace> \<acute>ret__int = - 1 \<rbrace>" apply vcg apply (simp add: word_sle_def) done lemma "\<Gamma> \<turnstile> \<lbrace> True \<rbrace> \<acute>ret__int :== CALL g(- 2147483648) \<lbrace> \<acute>ret__int = - 1 \<rbrace>" apply vcg apply (simp add: word_sle_def) done lemma "\<Gamma> \<turnstile> \<lbrace> True \<rbrace> \<acute>ret__int :== CALL g(- 2147483647) \<lbrace> \<acute>ret__int = 2147483647 \<rbrace>" apply vcg apply (simp add: word_sle_def) done end (* context *) end (* theory *)
[GOAL] α β : DistLatCat e : ↑α ≃o ↑β ⊢ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } = 𝟙 α [PROOFSTEP] ext [GOAL] case w α β : DistLatCat e : ↑α ≃o ↑β x✝ : (forget DistLatCat).obj α ⊢ ↑({ toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } ≫ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) }) x✝ = ↑(𝟙 α) x✝ [PROOFSTEP] exact e.symm_apply_apply _ [GOAL] α β : DistLatCat e : ↑α ≃o ↑β ⊢ { toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) } = 𝟙 β [PROOFSTEP] ext [GOAL] case w α β : DistLatCat e : ↑α ≃o ↑β x✝ : (forget DistLatCat).obj β ⊢ ↑({ toSupHom := { toFun := ↑(OrderIso.symm e), map_sup' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊔ b) = ↑(OrderIso.symm e) a ⊔ ↑(OrderIso.symm e) b) }, map_inf' := (_ : ∀ (a b : ↑β), ↑(OrderIso.symm e) (a ⊓ b) = ↑(OrderIso.symm e) a ⊓ ↑(OrderIso.symm e) b) } ≫ { toSupHom := { toFun := ↑e, map_sup' := (_ : ∀ (a b : ↑α), ↑e (a ⊔ b) = ↑e a ⊔ ↑e b) }, map_inf' := (_ : ∀ (a b : ↑α), ↑e (a ⊓ b) = ↑e a ⊓ ↑e b) }) x✝ = ↑(𝟙 β) x✝ [PROOFSTEP] exact e.apply_symm_apply _
From stdpp Require Export strings. From stdpp Require Import relations numbers. From Coq Require Import Ascii. From stdpp Require Import options. Class Pretty A := pretty : A → string. Global Hint Mode Pretty ! : typeclass_instances. Definition pretty_N_char (x : N) : ascii := match x with | 0 => "0" | 1 => "1" | 2 => "2" | 3 => "3" | 4 => "4" | 5 => "5" | 6 => "6" | 7 => "7" | 8 => "8" | _ => "9" end%char%N. Lemma pretty_N_char_inj x y : (x < 10)%N → (y < 10)%N → pretty_N_char x = pretty_N_char y → x = y. Proof. compute; intros. by repeat (discriminate || case_match). Qed. Fixpoint pretty_N_go_help (x : N) (acc : Acc (<)%N x) (s : string) : string := match decide (0 < x)%N with | left H => pretty_N_go_help (x `div` 10)%N (Acc_inv acc (N.div_lt x 10 H eq_refl)) (String (pretty_N_char (x `mod` 10)) s) | right _ => s end. Definition pretty_N_go (x : N) : string → string := pretty_N_go_help x (wf_guard 32 N.lt_wf_0 x). Instance pretty_N : Pretty N := λ x, if decide (x = 0)%N then "0" else pretty_N_go x "". Lemma pretty_N_go_0 s : pretty_N_go 0 s = s. Proof. done. Qed. Lemma pretty_N_go_help_irrel x acc1 acc2 s : pretty_N_go_help x acc1 s = pretty_N_go_help x acc2 s. Proof. revert x acc1 acc2 s; fix FIX 2; intros x [acc1] [acc2] s; simpl. destruct (decide (0 < x)%N); auto. Qed. Lemma pretty_N_go_step x s : (0 < x)%N → pretty_N_go x s = pretty_N_go (x `div` 10) (String (pretty_N_char (x `mod` 10)) s). Proof. unfold pretty_N_go; intros; destruct (wf_guard 32 N.lt_wf_0 x). destruct (wf_guard _ _). (* this makes coqchk happy. *) unfold pretty_N_go_help at 1; fold pretty_N_go_help. by destruct (decide (0 < x)%N); auto using pretty_N_go_help_irrel. Qed. (** Helper lemma to prove [pretty_N_inj] and [pretty_Z_inj]. *) Lemma pretty_N_go_ne_0 x s : s ≠ "0" → pretty_N_go x s ≠ "0". Proof. revert s. induction (N.lt_wf_0 x) as [x _ IH]; intros s ?. assert (x = 0 ∨ 0 < x < 10 ∨ 10 ≤ x)%N as [->|[[??]|?]] by lia. - by rewrite pretty_N_go_0. - rewrite pretty_N_go_step by done. apply IH. { by apply N.div_lt. } assert (x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4 ∨ x = 5 ∨ x = 6 ∨ x = 7 ∨ x = 8 ∨ x = 9)%N by lia; naive_solver. - rewrite 2!pretty_N_go_step by (try apply N.div_str_pos_iff; lia). apply IH; [|done]. trans (x `div` 10)%N; apply N.div_lt; auto using N.div_str_pos with lia. Qed. (** Helper lemma to prove [pretty_Z_inj]. *) Lemma pretty_N_go_ne_dash x s s' : s ≠ "-" +:+ s' → pretty_N_go x s ≠ "-" +:+ s'. Proof. revert s. induction (N.lt_wf_0 x) as [x _ IH]; intros s ?. assert (x = 0 ∨ 0 < x)%N as [->|?] by lia. - by rewrite pretty_N_go_0. - rewrite pretty_N_go_step by done. apply IH. { by apply N.div_lt. } unfold pretty_N_char. by repeat case_match. Qed. Instance pretty_N_inj : Inj (=@{N}) (=) pretty. Proof. cut (∀ x y s s', pretty_N_go x s = pretty_N_go y s' → String.length s = String.length s' → x = y ∧ s = s'). { intros help x y. unfold pretty, pretty_N. intros. repeat case_decide; simplify_eq/=; [done|..]. - by destruct (pretty_N_go_ne_0 y ""). - by destruct (pretty_N_go_ne_0 x ""). - by apply (help x y "" ""). } assert (∀ x s, ¬String.length (pretty_N_go x s) < String.length s) as help. { setoid_rewrite <-Nat.le_ngt. intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros s. assert (x = 0 ∨ 0 < x)%N as [->|?] by lia; [by rewrite pretty_N_go_0|]. rewrite pretty_N_go_step by done. etrans; [|by eapply IH, N.div_lt]; simpl; lia. } intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros y s s'. assert ((x = 0 ∨ 0 < x) ∧ (y = 0 ∨ 0 < y))%N as [[->|?] [->|?]] by lia; rewrite ?pretty_N_go_0, ?pretty_N_go_step, ?(pretty_N_go_step y) by done. { done. } { intros -> Hlen. edestruct help; rewrite Hlen; simpl; lia. } { intros <- Hlen. edestruct help; rewrite <-Hlen; simpl; lia. } intros Hs Hlen. apply IH in Hs as [? [= Hchar]]; [|auto using N.div_lt_upper_bound with lia|simpl; lia]. split; [|done]. apply pretty_N_char_inj in Hchar; [|by auto using N.mod_lt..]. rewrite (N.div_mod x 10), (N.div_mod y 10) by done. lia. Qed. Instance pretty_nat : Pretty nat := λ x, pretty (N.of_nat x). Instance pretty_nat_inj : Inj (=@{nat}) (=) pretty. Proof. apply _. Qed. Instance pretty_Z : Pretty Z := λ x, match x with | Z0 => "0" | Zpos x => pretty (Npos x) | Zneg x => "-" +:+ pretty (Npos x) end%string. Instance pretty_Z_inj : Inj (=@{Z}) (=) pretty. Proof. unfold pretty, pretty_Z. intros [|x|x] [|y|y] Hpretty; simplify_eq/=; try done. - by destruct (pretty_N_go_ne_0 (N.pos y) ""). - by destruct (pretty_N_go_ne_0 (N.pos x) ""). - by edestruct (pretty_N_go_ne_dash (N.pos x) ""). - by edestruct (pretty_N_go_ne_dash (N.pos y) ""). Qed.
MODULE open79_I INTERFACE !...Generated by Pacific-Sierra Research 77to90 4.3E 14:44:54 12/27/06 SUBROUTINE open79 (I) integer, INTENT(IN) :: I !...This routine performs I/O. END SUBROUTINE END INTERFACE END MODULE
lemma Schottky_lemma3: fixes z::complex assumes "z \<in> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)}) \<union> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)})" shows "cos(pi * cos(pi * z)) = 1 \<or> cos(pi * cos(pi * z)) = -1"
If you love the Toyota Tacoma, then our Christian Trucker Men`s Tank Top is a must have! This shirt is just incredibly cool, and is perfect for every occasion. Our Toyota Tacoma Christian Trucker Men`s Tank Top is the softest, smoothest, best-looking tank top tee shirt available anywhere! It features original artwork of the Toyota Tacoma on the highest quality Men`s Tank Top. Our Toyota Tacoma Christian Trucker Men`s Tank Top is the ultimate HOT gift for the Toyota Tacoma fan on birthdays, holidays, anniversaries, retirement, or for no reason at all. A fashion necessity for everyone. If you love the Toyota Tacoma, or know someone who does, then our Christian Trucker Men`s Tank Top is the thing to have!
lemma cauchy_isometric:\<comment> \<open>TODO: rename lemma to \<open>Cauchy_isometric\<close>\<close> assumes e: "e > 0" and s: "subspace s" and f: "bounded_linear f" and normf: "\<forall>x\<in>s. norm (f x) \<ge> e * norm x" and xs: "\<forall>n. x n \<in> s" and cf: "Cauchy (f \<circ> x)" shows "Cauchy x"
module menu_ using IUP export menu include("../src/libiup_h.jl") #------------------------example html/examples/C/menu.c ---------------------------------- function menu() IupOpen() #Initializes IUP item_open = IupItem ("Open", ""); IupSetAttribute(item_open, "KEY", "O"); item_save = IupItem ("Save", ""); IupSetAttribute(item_save, "KEY", "S"); item_undo = IupItem ("Undo", ""); IupSetAttribute(item_undo, "KEY", "U"); IupSetAttribute(item_undo, "ACTIVE", "NO"); item_exit = IupItem ("Exit", ""); IupSetAttribute(item_exit, "KEY", "x"); IupSetCallback(item_exit, "ACTION", cfunction(exit_cb, Cint, (Ptr{Ihandle},))) file_menu = IupMenu(item_open, item_save, IupSeparator(), item_undo, item_exit) sub1_menu = IupSubmenu("File", file_menu); thismenu = IupMenu(sub1_menu) IupSetHandle("mymenu", thismenu) dlg = IupDialog(IupCanvas("")) IupSetAttribute(dlg, "MENU", "mymenu") IupSetAttribute(dlg, "TITLE", "IupMenu") IupShow(dlg) IupMainLoop() # Initializes IUP main loop IupClose() # And close it when ready end function exit_cb(h::Ptr{Ihandle}) return convert(Cint, IUP_CLOSE) end end # module
[STATEMENT] lemma rat_floor_code [code]: "\<lfloor>p\<rfloor> = (let (a, b) = quotient_of p in a div b)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lfloor>p\<rfloor> = (let (a, b) = quotient_of p in a div b) [PROOF STEP] by (cases p) (simp add: quotient_of_Fract floor_Fract)
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.algebra.ring.pi import Mathlib.algebra.big_operators.basic import Mathlib.data.fintype.basic import Mathlib.algebra.group.prod import Mathlib.PostPort universes u_1 u_2 u_3 namespace Mathlib /-! # Big operators for Pi Types This file contains theorems relevant to big operators in binary and arbitrary product of monoids and groups -/ namespace pi theorem list_sum_apply {α : Type u_1} {β : α → Type u_2} [(a : α) → add_monoid (β a)] (a : α) (l : List ((a : α) → β a)) : list.sum l a = list.sum (list.map (fun (f : (a : α) → β a) => f a) l) := add_monoid_hom.map_list_sum (add_monoid_hom.apply β a) l theorem multiset_sum_apply {α : Type u_1} {β : α → Type u_2} [(a : α) → add_comm_monoid (β a)] (a : α) (s : multiset ((a : α) → β a)) : multiset.sum s a = multiset.sum (multiset.map (fun (f : (a : α) → β a) => f a) s) := add_monoid_hom.map_multiset_sum (add_monoid_hom.apply β a) s end pi @[simp] theorem finset.sum_apply {α : Type u_1} {β : α → Type u_2} {γ : Type u_3} [(a : α) → add_comm_monoid (β a)] (a : α) (s : finset γ) (g : γ → (a : α) → β a) : finset.sum s (fun (c : γ) => g c) a = finset.sum s fun (c : γ) => g c a := add_monoid_hom.map_sum (add_monoid_hom.apply β a) (fun (c : γ) => g c) s @[simp] theorem fintype.prod_apply {α : Type u_1} {β : α → Type u_2} {γ : Type u_3} [fintype γ] [(a : α) → comm_monoid (β a)] (a : α) (g : γ → (a : α) → β a) : finset.prod finset.univ (fun (c : γ) => g c) a = finset.prod finset.univ fun (c : γ) => g c a := finset.prod_apply a finset.univ g theorem prod_mk_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [comm_monoid α] [comm_monoid β] (s : finset γ) (f : γ → α) (g : γ → β) : (finset.prod s fun (x : γ) => f x, finset.prod s fun (x : γ) => g x) = finset.prod s fun (x : γ) => (f x, g x) := sorry -- As we only defined `single` into `add_monoid`, we only prove the `finset.sum` version here. theorem finset.univ_sum_single {I : Type u_1} [DecidableEq I] {Z : I → Type u_2} [(i : I) → add_comm_monoid (Z i)] [fintype I] (f : (i : I) → Z i) : (finset.sum finset.univ fun (i : I) => pi.single i (f i)) = f := sorry theorem add_monoid_hom.functions_ext {I : Type u_1} [DecidableEq I] {Z : I → Type u_2} [(i : I) → add_comm_monoid (Z i)] [fintype I] (G : Type u_3) [add_comm_monoid G] (g : ((i : I) → Z i) →+ G) (h : ((i : I) → Z i) →+ G) (w : ∀ (i : I) (x : Z i), coe_fn g (pi.single i x) = coe_fn h (pi.single i x)) : g = h := sorry -- we need `apply`+`convert` because Lean fails to unify different `add_monoid` instances -- on `Π i, f i` theorem ring_hom.functions_ext {I : Type u_1} [DecidableEq I] {f : I → Type u_2} [(i : I) → semiring (f i)] [fintype I] (G : Type u_3) [semiring G] (g : ((i : I) → f i) →+* G) (h : ((i : I) → f i) →+* G) (w : ∀ (i : I) (x : f i), coe_fn g (pi.single i x) = coe_fn h (pi.single i x)) : g = h := sorry namespace prod theorem fst_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [comm_monoid α] [comm_monoid β] {s : finset γ} {f : γ → α × β} : fst (finset.prod s fun (c : γ) => f c) = finset.prod s fun (c : γ) => fst (f c) := monoid_hom.map_prod (monoid_hom.fst α β) f s theorem snd_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} [comm_monoid α] [comm_monoid β] {s : finset γ} {f : γ → α × β} : snd (finset.prod s fun (c : γ) => f c) = finset.prod s fun (c : γ) => snd (f c) := monoid_hom.map_prod (monoid_hom.snd α β) f s end Mathlib
lemma int_imp_algebraic_int: assumes "x \<in> \<int>" shows "algebraic_int x"
[STATEMENT] lemma ltl_models_equiv_prop_entailment: "w \<Turnstile>\<^sub>n \<phi> \<longleftrightarrow> {\<psi>. w \<Turnstile>\<^sub>n \<psi>} \<Turnstile>\<^sub>P \<phi>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. w \<Turnstile>\<^sub>n \<phi> = {\<psi>. w \<Turnstile>\<^sub>n \<psi>} \<Turnstile>\<^sub>P \<phi> [PROOF STEP] by (induction \<phi>) auto
The difference between the infdist of $x$ and $y$ to a set $A$ is bounded by the distance between $x$ and $y$.
data Nat : Set where zero : Nat suc : Nat → Nat interleaved mutual data Even : Nat → Set data Odd : Nat → Set -- base cases: 0 is Even, 1 is Odd constructor even-zero : Even zero odd-one : Odd (suc zero) -- step case: suc switches the even/odd-ness constructor even-suc : ∀ {n} → Odd n → Even (suc n) odd-suc : ∀ {n} → Even n → Odd (suc n)
------------------------------------------------------------------------ -- Higher lenses, defined using the requirement that the remainder -- function should be surjective ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Lens.Non-dependent.Higher.Surjective-remainder {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq hiding (univ) open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Function-universe equality-with-J as F open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq open import Lens.Non-dependent eq import Lens.Non-dependent.Higher eq as Higher private variable a b : Level A B : Set a -- A variant of the lenses defined in Lens.Non-dependent.Higher. In -- this definition the function called inhabited is replaced by a -- requirement that the remainder function should be surjective. Lens : Set a → Set b → Set (lsuc (a ⊔ b)) Lens {a = a} {b = b} A B = ∃ λ (get : A → B) → ∃ λ (R : Set (a ⊔ b)) → ∃ λ (remainder : A → R) → Is-equivalence (λ a → remainder a , get a) × Surjective remainder instance -- The lenses defined above have getters and setters. has-getter-and-setter : Has-getter-and-setter (Lens {a = a} {b = b}) has-getter-and-setter = record { get = λ (get , _) → get ; set = λ (_ , _ , rem , equiv , _) a b → _≃_.from Eq.⟨ _ , equiv ⟩ (rem a , b) } -- Higher.Lens A B is isomorphic to Lens A B. Higher-lens↔Lens : Higher.Lens A B ↔ Lens A B Higher-lens↔Lens {A = A} {B = B} = Higher.Lens A B ↝⟨ Higher.Lens-as-Σ ⟩ (∃ λ (R : Set _) → (A ≃ (R × B)) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → Eq.≃-as-Σ ×-cong F.id) ⟩ (∃ λ (R : Set _) → (∃ λ (f : A → R × B) → Eq.Is-equivalence f) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → inverse Σ-assoc) ⟩ (∃ λ (R : Set _) → ∃ λ (f : A → R × B) → Eq.Is-equivalence f × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → Σ-cong ΠΣ-comm λ _ → F.id) ⟩ (∃ λ (R : Set _) → ∃ λ (rg : (A → R) × (A → B)) → Eq.Is-equivalence (λ a → proj₁ rg a , proj₂ rg a) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → inverse Σ-assoc) ⟩ (∃ λ (R : Set _) → ∃ λ (remainder : A → R) → ∃ λ (get : A → B) → Eq.Is-equivalence (λ a → remainder a , get a) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ∃-comm) ⟩ (∃ λ (R : Set _) → ∃ λ (get : A → B) → ∃ λ (remainder : A → R) → Eq.Is-equivalence (λ a → remainder a , get a) × (R → ∥ B ∥)) ↝⟨ ∃-comm ⟩ (∃ λ (get : A → B) → ∃ λ (R : Set _) → ∃ λ (remainder : A → R) → Eq.Is-equivalence (λ a → remainder a , get a) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ get → ∃-cong λ R → ∃-cong λ rem → ∃-cong λ eq → ∀-cong ext λ _ → ∥∥-cong $ lemma get R rem eq _) ⟩□ (∃ λ (get : A → B) → ∃ λ (R : Set _) → ∃ λ (remainder : A → R) → Eq.Is-equivalence (λ a → remainder a , get a) × Surjective remainder) □ where lemma : ∀ _ _ _ _ _ → _ lemma = λ _ _ remainder eq r → B ↝⟨ (inverse $ drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ singleton-contractible _) ⟩ B × Singleton r ↝⟨ Σ-assoc ⟩ (∃ λ { (_ , r′) → r′ ≡ r }) ↝⟨ (Σ-cong ×-comm λ _ → F.id) ⟩ (∃ λ { (r′ , _) → r′ ≡ r }) ↝⟨ (inverse $ Σ-cong Eq.⟨ _ , eq ⟩ λ _ → F.id) ⟩□ (∃ λ a → remainder a ≡ r) □ -- The isomorphism preserves getters and setters. Higher-lens↔Lens-preserves-getters-and-setters : Preserves-getters-and-setters-⇔ A B (_↔_.logical-equivalence Higher-lens↔Lens) Higher-lens↔Lens-preserves-getters-and-setters = Preserves-getters-and-setters-→-↠-⇔ (_↔_.surjection Higher-lens↔Lens) (λ _ → refl _ , refl _)
module Data.Unit.Instance where open import Class.Monoid open import Data.Unit.Polymorphic instance Unit-Monoid : ∀ {a} → Monoid {a} ⊤ Unit-Monoid = record { mzero = tt ; _+_ = λ _ _ -> tt }
#' Intersects a lits of arrays for common dimension names #' #' @param l. List of arrays to perform operations on #' @param along The axis along which to intersect #' @param drop Drop unused dimensions on result #' @param fail_if_empty Stop if intersection yields empty set #' @export intersect_list = function(l., along=1, drop=FALSE, fail_if_empty=TRUE) { if (!is.list(l.)) stop("`intersect_list()` expects a list as first argument, found: ", class(l.)) red_int = function(...) Reduce(base::intersect, list(...)) common = do.call(red_int, dimnames(l., along=along)) if (length(common) == 0 && fail_if_empty) stop("Intersection is empty and fail_if_empty is TRUE") lapply(l., function(e) subset(e, index=common, along=along, drop=drop)) }
\chapter{Swapping order with Lebesgue integrals} \section{Motivating limit interchange} \prototype{$\mathbf{1}_\QQ$ is good!} One of the issues with the Riemann integral is that it behaves badly with respect to convergence of functions, and the Lebesgue integral deals with this. This is therefore often given as a poster child or why the Lebesgue integral has better behaviors than the Riemann one. We technically have already seen this: consider the indicator function $\mathbf{1}_\QQ$, which is not Riemann integrable by \Cref{prob:1QQ}. But we can readily compute its Lebesgue integral over $[0,1]$, as \[ \int_{[0,1]} \mathbf{1}_\QQ \; d\mu = \mu\left( [0,1] \cap \QQ \right) = 0 \] since it is countable. This \emph{could} be thought of as a failure of convergence for the Riemann integral. \begin{example} [$\mathbf{1}_\QQ$ is a limit of finitely supported functions] \label{ex:1QQindicator} We can define the sequence of functions $g_1$, $g_2$, \dots\ by \[ g_n(x) = \begin{cases} 1 & (n!)x \text{ is an integer} \\ 0 & \text{else}. \end{cases} \] Then each $g_n$ is piecewise continuous and hence Riemann integrable on $[0,1]$ (with integral zero), but $\lim_{n \to \infty} g_n = \mathbf{1}_\QQ$ is not. \end{example} The limit here is defined in the following sense: \begin{definition} Let $f$ and $f_1, f_2, \dots \colon \Omega \to \RR$ be a sequence of functions. Suppose that for each $\omega \in \Omega$, the sequence \[ f_1(\omega), \; f_2(\omega), \; f_3(\omega), \;, \dots \] converges to $f(\omega)$. Then we say $(f_n)_n$ \vocab{converges pointwise} to the limit $f$, written $\lim_{n \to \infty} f_n = f$. We can define $\liminf_{n \to \infty} f_n$ and $\limsup_{n \to \infty} f_n$ similarly. \end{definition} This is actually a fairly weak notion of convergence, for example: \begin{exercise} [Witch's hat] Find a sequence of continuous function on $[-1,1] \to \RR$ which converges pointwise to the function $f$ given by \[ f(x) = \begin{cases} 1 & x = 0 \\ 0 & \text{otherwise}. \end{cases} \] \end{exercise} This is why when thinking about the Riemann integral it is commonplace to work with stronger conditions like ``uniformly convergent'' and the like. However, with the Lebesgue integral, we can mostly not think about these! \section{Overview} The three big-name results for exchanging pointwise limits with Lebesgue integrals is: \begin{itemize} \ii Fatou's lemma: the most general statement possible, for any nonnegative measurable functions. \ii Monotone convergence: ``increasing limits'' just work. \ii Dominated convergence (actually Fatou-Lebesgue): limits that are not too big (bounded by some absolutely integrable function) just work. \end{itemize} \section{Fatou's lemma} Without further ado: \begin{lemma} [Fatou's lemma] Let $f_1, f_2, \dots \colon \Omega \to [0,+\infty]$ be a sequence of \emph{nonnegative} measurable functions. Then $\liminf_n \colon \Omega \to [0,+\infty]$ is measurable and \[ \int_\Omega \left( \liminf_{n \to \infty} f_n \right) \; d\mu \le \liminf_{n \to \infty} \left( \int_\Omega f_n \; d\mu \right). \] Here we allow either side to be $+\infty$. \end{lemma} Notice that there are \emph{no extra hypothesis} on $f_n$ other than nonnegative: which makes this quite surprisingly versatile if you ever are trying to prove some general result. \section{Everything else} The big surprise is how quickly all the ``big-name'' theorem follows from Fatou's lemma. Here is the so-called ``monotone convergence theorem''. \begin{corollary} [Monotone convergence theorem] Let $f$ and $f_1, f_2, \dots \colon \Omega \to [0,+\infty]$ be a sequence of \emph{nonnegative} measurable functions such that $\lim_n f_n = f$ and $f_n(\omega) \le f(\omega)$ for each $n$. Then $f$ is measurable and \[ \lim_{n \to \infty} \left( \int_\Omega f_n \; d\mu \right) = \int_\Omega f \; d\mu. \] Here we allow either side to be $+\infty$. \end{corollary} \begin{proof} We have \begin{align*} \int_\Omega f \; d\mu &= \int_\Omega \left( \liminf_{n \to \infty} f_n \right) \; d\mu \\ &\le \liminf_{n \to \infty} \int_\Omega f_n \; d\mu \\ &\le \limsup_{n \to \infty} \int_\Omega f_n \; d\mu \\ &\le \int_\Omega f \; d\mu \end{align*} where the first $\le$ is by Fatou lemma, and the second by the fact that $\int_\Omega f_n \le \int_\Omega f$ for every $n$. This implies all the inequalities are equalities and we are done. \end{proof} \begin{remark} [The monotone convergence theorem does not require monotonicity!] In the literature it is much more common to see the hypothesis $f_1(\omega) \le f_2(\omega) \le \dots \le f(\omega)$ rather than just $f_n(\omega) \le f(\omega)$ for all $n$, which is where the theorem gets its name. However as we have shown this hypothesis is superfluous! This is pointed out in \url{https://mathoverflow.net/a/296540/70654}, as a response to a question entitled ``Do you know of any very important theorems that remain unknown?''. \end{remark} \begin{example} [Monotone convergence gives $\mathbf{1}_\QQ$] This already implies \Cref{ex:1QQindicator}. Letting $g_n$ be the indicator function for $\frac1{n!}\ZZ$ as described in that example, we have $g_n \le \mathbf{1}_\QQ$ and $\lim_{n \to \infty} g_n(x) = \mathbf{1}_\QQ(x)$, for each individual $x$. So since $\int_{[0,1]} g_n \; d\mu = 0$ for each $n$, this gives $\int_{[0,1]} \mathbf{1}_\QQ = 0$ as we already knew. \end{example} The most famous result, though is the following. \begin{corollary} [Fatou–Lebesgue theorem] Let $f$ and $f_1, f_2, \dots \colon \Omega \to \RR$ be a sequence of measurable functions. Assume that $g \colon \Omega \to \RR$ is an \emph{absolutely integrable} function for which $|f_n(\omega)| \le |g(\omega)|$ for all $\omega \in \Omega$. Then the inequality \begin{align*} \int_\Omega \left( \liminf_{n \to \infty} f_n \right) \; d\mu &\le \liminf_{n \to \infty} \left( \int_\Omega f_n \; d\mu \right) \\ &\le \limsup_{n \to \infty} \left( \int_\Omega f_n \; d\mu \right) \le \int_\Omega \left( \limsup_{n \to \infty} f_n \right) \; d\mu. \end{align*} \end{corollary} \begin{proof} There are three inequalities: \begin{itemize} \ii The first inequality follows by Fatou on $g + f_n$ which is nonnegative. \ii The second inequality is just $\liminf \le \limsup$. (This makes the theorem statement easy to remember!) \ii The third inequality follows by Fatou on $g - f_n$ which is nonnegative. \qedhere \end{itemize} \end{proof} \begin{exercise} Where is the fact that $g$ is absolutely integrable used in this proof? \end{exercise} \begin{corollary} [Dominated convergence theorem] Let $f_1, f_2, \dots \colon \Omega \to \RR$ be a sequence of measurable functions such that $f = \lim_{n \to \infty} f_n$ exists. Assume that $g \colon \Omega \to \RR$ is an \emph{absolutely integrable} function for which $|f_n(\omega)| \le |g(\omega)|$ for all $\omega \in \Omega$. Then \[ \int_\Omega f \; d \mu = \lim_{n \to \infty} \left( \int_\Omega f_n \; d\mu \right). \] \end{corollary} \begin{proof} If $f(\omega) = \lim_{n \to \infty} f_n(\omega)$, then $f(\omega) = \liminf_{n \to \infty} f_n(\omega) = \limsup_{n \to \infty} f_n(\omega)$. So all the inequalities in the Fatou-Lebesgue theorem become equalities, since the leftmost and rightmost sides are equal. \end{proof} Note this gives yet another way to verify \Cref{ex:1QQindicator}. In general, the dominated convergence theorem is a favorite clich\'{e} for undergraduate exams, because it is easy to create questions for it. Here is one example showing how they all look. \begin{example} [The usual Lebesgue dominated convergence examples] Suppose one wishes to compute \[ \lim_{n \to \infty} \left( \int_{(0,1)} \frac{n\sin(n\inv x)}{\sqrt x} \right) \; dx \] then one starts by observing that the inner term is bounded by the absolutely integrable function $x^{-1/2}$. Therefore it equals \begin{align*} \int_{(0,1)} \lim_{n \to \infty} \left( \frac{n\sin(n\inv x)}{\sqrt x} \right) \; dx &= \int_{(0,1)} \frac{x}{\sqrt x} \; dx \\ &= \int_{(0,1)} \sqrt{x} \; dx = \frac23. \end{align*} \end{example} \section{Fubini and Tonelli} \todo{TO BE WRITTEN} \section{\problemhead} \todo{problems}
Until election day, Pasadena ISD will be producing a series of articles and materials to provide our community and stakeholders with a detailed look at both Propositions A & B. Additionally, parent, civic, and community presentations will be held to provide further information regarding these two Propositions. Our goal is to inform our Pasadena ISD community on the facts that have led the Board of Trustees and Administration to call for these two election items. Check back regularly to our website and social media channels for more information.
Formal statement is: lemma rel_frontier_deformation_retract_of_punctured_convex: fixes S :: "'a::euclidean_space set" assumes "convex S" "convex T" "bounded S" and arelS: "a \<in> rel_interior S" and relS: "rel_frontier S \<subseteq> T" and affS: "T \<subseteq> affine hull S" obtains r where "homotopic_with_canon (\<lambda>x. True) (T - {a}) (T - {a}) id r" "retraction (T - {a}) (rel_frontier S) r" Informal statement is: If $S$ is a convex set with nonempty interior, $T$ is a convex set, and $T$ is contained in the affine hull of $S$, then $T - \{a\}$ is a deformation retract of $S - \{a\}$.
function res = chanlabels(this, varargin) % Method for getting/setting the channel labels % FORMAT res = chanlabels(this, ind, label) % _______________________________________________________________________ % Copyright (C) 2008-2012 Wellcome Trust Centre for Neuroimaging % Vladimir Litvak % $Id: chanlabels.m 5933 2014-03-28 13:22:28Z vladimir $ if this.montage.Mind == 0 if nargin == 3 ind = varargin{1}; label = varargin{2}; if iscell(label) && length(label)>1 if isnumeric(ind) && length(ind)~=length(label) error('Indices and values do not match'); end if length(label)>1 for i = 1:length(label) for j = (i+1):length(label) if strcmp(label{i}, label{j}) error('All labels must be different'); end end end end end end res = getset(this, 'channels', 'label', varargin{:}); else % case with an online montage applied if nargin == 3 ind = varargin{1}; label = varargin{2}; if iscell(label) && length(label)>1 if isnumeric(ind) && length(ind)~=length(label) error('Indices and values do not match'); end if length(label)>1 for i = 1:length(label) for j = (i+1):length(label) if strcmp(label{i}, label{j}) error('All labels must be different'); end end end end end this.montage.M(this.montage.Mind) = getset(this.montage.M(this.montage.Mind), 'channels', 'label', varargin{:}); res = this; else res = getset(this.montage.M(this.montage.Mind), 'channels', 'label', varargin{:}); end end
lemma complex_cnj_zero [simp]: "cnj 0 = 0"
""" Module: SymbolicDiff (Symbolic Operation for Arithmetic) """ """ seval(f, dvar, env, cache) Return the first derivative of expr f with respect to dvar """ function seval(f, dvar::Symbol) seval(f, dvar, globalenv, SymbolicCache()) end function seval(f, dvar::Symbol, env::SymbolicEnv) seval(f, dvar, env, SymbolicCache()) end function seval(f, dvar::Symbol, cache::SymbolicCache) seval(f, dvar, globalenv, cache) end ### function seval(f, dvar::SymbolicVariable{Tv}) where Tv seval(f, dvar.var) end function seval(f, dvar::SymbolicVariable{Tv}, env::SymbolicEnv) where Tv seval(f, dvar.var, env) end function seval(f, dvar::SymbolicVariable{Tv}, cache::SymbolicCache) where Tv seval(f, dvar.var, cache) end function seval(f, dvar::SymbolicVariable{Tv}, env::SymbolicEnv, cache::SymbolicCache) where Tv seval(f, dvar.var, env, cache) end ### function seval(f::SymbolicValue{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv Tv(0) end function seval(f::SymbolicVariable{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv f.var == dvar ? 1 : 0 end function seval(f::AbstractNumberSymbolic{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv (dvar in f.params) || return 0 get(cache, (f,dvar)) do retval = _eval(Val(f.op), f, dvar, env, cache) cache[(f,dvar)] = retval end end """ _eval(::Val{xx}, dvar, f, env, cache) Dispached function to evaluate the first derivative of f """ function _eval(::Val{:+}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv args = [seval(x, dvar, env, cache) for x = f.args] +(args...) end function _eval(::Val{:-}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv args = [seval(x, dvar, env, cache) for x = f.args] -(args...) end function _eval(::Val{:*}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv args = [seval(x, env, cache) for x = f.args] dargs = [seval(x, dvar, env, cache) for x = f.args] ret = dargs[1] s = args[1] for i = 2:length(args) ret *= args[i] ret += s * dargs[i] (i == length(args)) && break s *= args[i] end ret end function _eval(::Val{:/}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv x,y = [seval(x, env, cache) for x = f.args] dx,dy = [seval(x, dvar, env, cache) for x = f.args] (dx * y - x * dy) / y^2 end function _eval(::Val{:^}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv x,y = [seval(x, env, cache) for x = f.args] dx,dy = [seval(x, dvar, env, cache) for x = f.args] x^(y-1) * (x * log(x) * dy + y * dx) end function _eval(::Val{:exp}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv x, = [seval(x, env, cache) for x = f.args] dx, = [seval(x, dvar, env, cache) for x = f.args] exp(x) * dx end function _eval(::Val{:log}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv x, = [seval(x, env, cache) for x = f.args] dx, = [seval(x, dvar, env, cache) for x = f.args] dx / x end function _eval(::Val{:sqrt}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv x, = [seval(x, env, cache) for x = f.args] dx, = [seval(x, dvar, env, cache) for x = f.args] dx /(2 * sqrt(x)) end function _eval(::Val{:sum}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv dx, = [seval(x, dvar, env, cache) for x = f.args] sum(dx) end function _eval(::Val{:dot}, f::SymbolicExpression{Tv}, dvar::Symbol, env::SymbolicEnv, cache::SymbolicCache)::Tv where Tv x,y = [seval(x, env, cache) for x = f.args] dx,dy = [seval(x, dvar, env, cache) for x = f.args] dot(x,dy) + dot(dx,y) end
/- Copyright (c) 2021 James Gallicchio. Authors: James Gallicchio -/ import LeanColls.AuxLemmas /-! # Finger Trees TODO: Describe ## References See [Matthieu2007], section 4 -/ inductive Digit (τ : Type u) (msr : τ → M) [Monoid M] | Digit1 : (a : τ) → Cached (msr a) → Digit τ msr | Digit2 : (a : τ) → (b : τ) → Cached (msr a ++ msr b) → Digit τ msr | Digit3 : (a : τ) → (b : τ) → (c : τ) → Cached (msr a ++ msr b ++ msr c) → Digit τ msr | Digit4 : (a : τ) → (b : τ) → (c : τ) → (d : τ) → Cached (msr a ++ msr b ++ msr c ++ msr d) → Digit τ msr namespace Digit variable {msr : τ → M} [Monoid M] (d : Digit τ msr) @[inline] def tryAddLeft (a : τ) (av : Cached (msr a)) (sc : Digit τ msr → α) (fc : τ → τ → τ → τ → α) : α := match d with | Digit1 b v => sc (Digit2 a b ⟨av.1 ++ v.1,by simp [av.2]⟩) | Digit2 b c v => sc (Digit3 a b c ⟨av.1 ++ v.1,by simp [av.2]⟩) | Digit3 b c d v => sc (Digit4 a b c d ⟨av.1 ++ v.1,by simp [av.2]⟩) | Digit4 b c d e _ => fc b c d e @[inline] def tryFront (sc : τ → Digit τ msr → α) (fc : (a : τ) → Cached (msr a) → α) : α := match d with | Digit1 a v => fc a v | Digit2 a b _ => sc a (Digit1 b (cached (msr b))) | Digit3 a b c _ => sc a (Digit2 b c (cached (msr b ++ msr c))) | Digit4 a b c d _ => sc a (Digit3 b c d (cached (msr b ++ msr c ++ msr d))) @[inline] def tryAddRight (z : τ) (zv : Cached (msr z)) (sc : Digit τ msr → α) (fc : τ → τ → τ → τ → α) : α := match h':d with | Digit1 y v => sc (Digit2 y z ⟨v.1 ++ zv.1,by simp [zv.2]⟩) | Digit2 x y v => sc (Digit3 x y z ⟨v.1 ++ zv.1,by simp [zv.2]⟩) | Digit3 w x y v => sc (Digit4 w x y z ⟨v.1 ++ zv.1,by simp [zv.2]⟩) | Digit4 v w x y _ => fc v w x y @[inline] def tryBack (sc : τ → Digit τ msr → α) (fc : (a : τ) → Cached (msr a) → α) : α := match d with | Digit1 z v => fc z v | Digit2 y z v => sc z (Digit1 y (cached (msr y))) | Digit3 x y z v => sc z (Digit2 x y (cached (msr x ++ msr y))) | Digit4 w x y z v => sc z (Digit3 w x y (cached (msr w ++ msr x ++ msr y))) def toList : Digit τ msr → List τ | Digit1 a _ => [a] | Digit2 a b _ => [a,b] | Digit3 a b c _ => [a,b,c] | Digit4 a b c d _ => [a,b,c,d] end Digit open Digit inductive Node (τ : Type u) (msr : τ → M) [Monoid M] | Node2 : (a : τ) → (b : τ) → Cached (msr a ++ msr b) → Node τ msr | Node3 : (a : τ) → (b : τ) → (c : τ) → Cached (msr a ++ msr b ++ msr c) → Node τ msr namespace Node def toDigit {msr : τ → M} [Monoid M] : Node τ msr → Digit τ msr | Node2 a b => Digit.Digit2 a b (cached (msr a ++ msr b)) | Node3 a b c => Digit.Digit3 a b c (cached (msr a ++ msr b ++ msr c)) def toList {msr : τ → M} [Monoid M] : Node τ msr → List τ | Node2 a b => [a,b] | Node3 a b c => [a,b,c] end Node open Node inductive FingerTree [Monoid M] : (τ : Type u) → (msr : τ → M) → Type (u+3000) | Empty : FingerTree τ msr | Single : (t : τ) → FingerTree τ msr | Deep : Digit τ msr → FingerTree (Node τ) msr → Digit τ msr → FingerTree τ msr namespace FingerTree def toList : FingerTree τ → List τ | Empty => [] | Single x => [x] | Deep pr tr sf => pr.toList ++ (tr.toList.bind Node.toList) ++ sf.toList @[inline] def cons (f : FingerTree τ) (a : τ) : FingerTree τ := match f with | Empty => Single a | Single b => Deep (Digit1 a) Empty (Digit1 b) | Deep pr tr sf => tryAddLeft pr a (λ pr' => Deep pr' tr sf) (λ b c d e => Deep (Digit2 a b) (tr.cons (Node3 c d e)) sf) @[inline] def front? (f : FingerTree τ) : Option (τ × FingerTree τ) := match f with | Empty => none | Single a => some (a, Empty) | Deep pr tr sf => some ( tryFront pr (λ a pr' => (a, Deep pr' tr sf)) (λ a => /- pr = Digit1 a -/ (a, match front? tr with | some (n, tr') => Deep n.toDigit tr' sf | none => /- tr empty -/ tryFront sf (λ b sf' => Deep (Digit1 b) Empty sf') (λ b => /- sf = Digit1 b -/ Single b)))) theorem toList_cons (f : FingerTree τ) (a : τ) : (f.cons a).toList = a :: f.toList := by induction f simp [cons, toList] simp [cons, toList, Digit.toList, List.bind, List.map, List.join] case Deep pr tr sf ih => simp [cons, tryAddLeft] split simp [toList, Digit.toList, List.bind, List.map, List.join] simp [toList, Digit.toList, List.bind, List.map, List.join] simp [toList, Digit.toList, List.bind, List.map, List.join] case h_4 b c d e => simp [toList, Digit.toList, List.bind, List.map, List.join, ih] split simp [toList, Digit.toList, Node.toList, List.bind, List.map, List.join] simp [toList, Digit.toList, Node.toList, List.bind, List.map, List.join] simp [toList, Digit.toList, Node.toList, List.bind, List.map, List.join] simp [toList, Digit.toList, Node.toList, List.bind, List.map, List.join] theorem toList_front (f : FingerTree τ) : f.front?.map (λ (a,f') => (a,f'.toList)) = f.toList.front? := by induction f simp [front?, toList, List.front?, Option.map, Option.bind] simp [front?, toList, List.front?, Option.map, Option.bind] case Deep pr tr sf ih => match pr with | Digit2 a b => simp [front?, toList, List.front?, tryFront, Option.map, Option.bind, HAppend.hAppend, Append.append, List.append] | Digit3 a b c => simp [front?, toList, List.front?, tryFront, Option.map, Option.bind, HAppend.hAppend, Append.append, List.append] | Digit4 a b c d => simp [front?, toList, List.front?, tryFront, Option.map, Option.bind, HAppend.hAppend, Append.append, List.append] | Digit1 a => match h:front? tr with | some (t,tr') => rw [h] at ih simp [Option.map, Option.bind, List.front?] at ih split at ih contradiction case h_2 h_tr x => cases x simp [h,h_tr,front?, toList, List.front?, tryFront, Option.map, Option.bind, HAppend.hAppend, Append.append, List.append, List.bind, List.map, List.join] cases t repeat {simp [Digit.toList, Node.toDigit, Node.toList]} | none => rw [h] at ih simp [Option.map, Option.bind, List.front?] at ih split at ih focus { case h_1 h_tr x => simp [h,h_tr,front?, toList, List.front?, tryFront, Option.map, Option.bind, HAppend.hAppend, Append.append, List.append, List.bind, List.map, List.join] split simp [Digit.toList, toList, List.bind, List.join, List.map] simp [Digit.toList, toList, List.bind, List.join, List.map] simp [Digit.toList, toList, List.bind, List.join, List.map] simp [Digit.toList, toList, List.bind, List.join, List.map] } contradiction def snoc (f : FingerTree τ) (z : τ) : FingerTree τ := match f with | Empty => Single z | Single b => Deep (Digit1 b) Empty (Digit1 z) | Deep pr tr sf => tryAddRight sf z (λ sf' => Deep pr tr sf') (λ a b c d => Deep pr (tr.snoc (Node3 a b c)) (Digit2 d z)) def back? (f : FingerTree τ) : Option (FingerTree τ × τ) := match f with | Empty => none | Single z => some (Empty, z) | Deep pr tr sf => some ( tryBack pr (λ z sf' => (Deep pr tr sf', z)) (λ z => /- sf = Digit1 z -/ ( match back? tr with | some (tr', n) => Deep pr tr' n.toDigit | none => /- tr empty -/ tryBack pr (λ y pr' => Deep pr' Empty (Digit1 y)) (λ y => /- pr = Digit1 y -/ Single y), z))) theorem toList_snoc (f : FingerTree τ) (a : τ) : (f.snoc a).toList = f.toList.concat a := by induction f simp [snoc, toList, List.concat] simp [snoc, toList, Digit.toList, List.bind, List.map, List.join, List.concat] case Deep pr tr sf ih => simp [snoc, tryAddRight] split simp [toList, Digit.toList, List.bind, List.map, List.join, List.concat_append, List.concat] simp [toList, Digit.toList, List.bind, List.map, List.join, List.concat_append, List.concat] simp [toList, Digit.toList, List.bind, List.map, List.join, List.concat_append, List.concat] case h_4 b c d e => simp [toList, Digit.toList, List.bind, List.map, List.join, ih, List.concat_append, List.concat] split simp [toList, Digit.toList, Node.toList, List.bind, List.map, List.join, List.concat_append, List.concat, List.map_concat, List.join_concat, List.append_assoc] simp [toList, Digit.toList, Node.toList, List.bind, List.map, List.join, List.concat_append, List.concat, List.map_concat, List.join_concat, List.append_assoc] simp [toList, Digit.toList, Node.toList, List.bind, List.map, List.join, List.concat_append, List.concat, List.map_concat, List.join_concat, List.append_assoc] simp [toList, Digit.toList, Node.toList, List.bind, List.map, List.join, List.concat_append, List.concat, List.map_concat, List.join_concat, List.append_assoc] theorem toList_back (f : FingerTree τ) : f.back?.map (λ (f',a) => (f'.toList,a)) = f.toList.back? := by sorry def append (f1 f2 : FingerTree τ) : FingerTree τ := match f1, f2 with | f1, Empty => f1 | Empty, f2 => f2 | f1, Single z => f1.snoc z | Single a, f1 => f1.cons a | Deep pr1 tr1 sf1, Deep pr2 tr2 sf2 => let tr' := match sf1, pr2 with | Digit1 a, Digit1 b => (tr1.snoc (Node2 a b)).append tr2 | Digit2 a b, Digit1 c => (tr1.snoc (Node3 a b c)).append tr2 | Digit1 a, Digit2 b c => tr1.append (tr2.cons (Node3 a b c)) | Digit3 a b c, Digit1 d => (tr1.snoc (Node2 a b)).append (tr2.cons (Node2 c d)) | Digit2 a b, Digit2 c d => (tr1.snoc (Node2 a b)).append (tr2.cons (Node2 c d)) | Digit1 a, Digit3 b c d => (tr1.snoc (Node2 a b)).append (tr2.cons (Node2 c d)) | Digit4 a b c d, Digit1 e => (tr1.snoc (Node3 a b c)).append (tr2.cons (Node2 d e)) | Digit3 a b c, Digit2 d e => (tr1.snoc (Node3 a b c)).append (tr2.cons (Node2 d e)) | Digit2 a b, Digit3 c d e => (tr1.snoc (Node2 a b)).append (tr2.cons (Node3 c d e)) | Digit1 a, Digit4 b c d e => (tr1.snoc (Node2 a b)).append (tr2.cons (Node3 c d e)) | Digit4 a b c d, Digit2 e f => (tr1.snoc (Node3 a b c)).append (tr2.cons (Node3 d e f)) | Digit3 a b c, Digit3 d e f => (tr1.snoc (Node3 a b c)).append (tr2.cons (Node3 d e f)) | Digit2 a b, Digit4 c d e f => (tr1.snoc (Node3 a b c)).append (tr2.cons (Node3 d e f)) | Digit4 a b c d, Digit3 e f g => (tr1.snoc (Node3 a b c)).append ((tr2.cons (Node2 f g)).cons (Node2 d e)) | Digit3 a b c, Digit4 d e f g => ((tr1.snoc (Node2 a b)).snoc (Node2 c d)).append (tr2.cons (Node3 e f g)) | Digit4 a b c d, Digit4 e f g h => (tr1.snoc (Node3 a b c)).append ((tr2.cons (Node3 f g h)).cons (Node2 d e)) Deep pr1 tr' sf2 end FingerTree
lemma local_lipschitzI: assumes "\<And>t x. t \<in> T \<Longrightarrow> x \<in> X \<Longrightarrow> \<exists>u>0. \<exists>L. \<forall>t \<in> cball t u \<inter> T. L-lipschitz_on (cball x u \<inter> X) (f t)" shows "local_lipschitz T X f"
../src/ff_d.sv
(*<*) theory Hilbert imports Main "HOL-Eisbach.Eisbach" abbrevs not="\<^bold>\<not>" and disj="\<^bold>\<or>" and conj="\<^bold>\<and>" and impl="\<^bold>\<rightarrow>" and equiv="\<^bold>\<leftrightarrow>" and true="\<^bold>\<top>" and false="\<^bold>\<bottom>" and ob="\<^bold>\<circle>" and perm="\<^bold>P" and forb="\<^bold>F" and derivable="\<turnstile>" begin (*>*) section \<open>Proving first theorems\<close> subsection \<open>Hilbert Calculus for Classical Logic\<close> text \<open>Technical remark at the beginning: In order to distinguish our connectives from the usual logical connectives of the Isabelle/HOL system, we use @{text "\<^bold>b\<^bold>o\<^bold>l\<^bold>d"}-face written versions of them. You may use the abbreviations at the top of the document (in the theory file) to write things down, e.g. if you start writing "dis..." (the abbreviation is "disj"), Isabelle should suggest the autocompletion for @{text "\<^bold>\<or>"}, etc.\<close> typedecl \<sigma> \<comment> \<open>Introduce new type for syntactical formulae (propositions).\<close> text \<open> For our classical propositional language, we introduce two primitive symbols: Implication and negation. The others can be defined in terms of these two. \<close> consts PLimpl :: "\<sigma> \<Rightarrow> \<sigma> \<Rightarrow> \<sigma>" (infixr "\<^bold>\<rightarrow>" 49) PLnot :: "\<sigma> \<Rightarrow> \<sigma>" ("\<^bold>\<not>_" [52]53) consts PLatomicProp :: "\<sigma>" definition PLdisj :: "\<sigma> \<Rightarrow> \<sigma> \<Rightarrow> \<sigma>" (infixr "\<^bold>\<or>" 50) where "a \<^bold>\<or> b \<equiv> \<^bold>\<not>a \<^bold>\<rightarrow> b" definition PLconj :: "\<sigma> \<Rightarrow> \<sigma> \<Rightarrow> \<sigma>" (infixr "\<^bold>\<and>" 51) where "a \<^bold>\<and> b \<equiv> \<^bold>\<not>(\<^bold>\<not>a \<^bold>\<or> \<^bold>\<not>b)" definition PLequi :: "\<sigma> \<Rightarrow> \<sigma> \<Rightarrow> \<sigma>" (infix "\<^bold>\<leftrightarrow>" 48) where "a \<^bold>\<leftrightarrow> b \<equiv> (a \<^bold>\<rightarrow> b) \<^bold>\<and> (b \<^bold>\<rightarrow> a)" definition PLtop :: "\<sigma>" ("\<^bold>\<top>") where "\<^bold>\<top> \<equiv> PLatomicProp \<^bold>\<or> \<^bold>\<not>PLatomicProp" definition PLbot :: "\<sigma>" ("\<^bold>\<bottom>") where "\<^bold>\<bottom> \<equiv> \<^bold>\<not>\<^bold>\<top>" text \<open>Next we define the notion of syntactical derivability and consequence: \<close> consts derivable :: "\<sigma> \<Rightarrow> bool" ("\<turnstile> _" 40) definition consequence :: "\<sigma> \<Rightarrow> \<sigma> \<Rightarrow> bool" ("_ \<turnstile> _" 40) where "A \<turnstile> B \<equiv> \<turnstile> (A \<^bold>\<rightarrow> B)" text \<open>We can now axiomatize the derivability relation using a Hilbert-style system:\<close> axiomatization where A2: "\<turnstile> A \<^bold>\<rightarrow> (B \<^bold>\<rightarrow> A)" and (* Three Hilbert-style axioms *) A3: "\<turnstile> (A \<^bold>\<rightarrow> (B \<^bold>\<rightarrow> C)) \<^bold>\<rightarrow> ((A \<^bold>\<rightarrow> B) \<^bold>\<rightarrow> (A \<^bold>\<rightarrow> C))" and A4: "\<turnstile> (\<^bold>\<not>A \<^bold>\<rightarrow> \<^bold>\<not>B) \<^bold>\<rightarrow> (B \<^bold>\<rightarrow> A)" and MP: "\<turnstile> (A \<^bold>\<rightarrow> B) \<Longrightarrow> \<turnstile> A \<Longrightarrow> \<turnstile> B" (* One inference rule: Modus ponens *) paragraph \<open>Proof example.\<close> text \<open>Now we are ready to proof first simple theorems:\<close> lemma "\<turnstile> A \<^bold>\<rightarrow> A" proof - have 1: "\<turnstile> (A \<^bold>\<rightarrow> ((B \<^bold>\<rightarrow> A) \<^bold>\<rightarrow> A)) \<^bold>\<rightarrow> ((A \<^bold>\<rightarrow> (B \<^bold>\<rightarrow> A)) \<^bold>\<rightarrow> (A \<^bold>\<rightarrow> A))" by (rule A3[of _ "B \<^bold>\<rightarrow> A" "A"]) have 2: "\<turnstile> A \<^bold>\<rightarrow> ((B \<^bold>\<rightarrow> A) \<^bold>\<rightarrow> A)" by (rule A2[of _ "B \<^bold>\<rightarrow> A"]) from 1 2 have 3: "\<turnstile> (A \<^bold>\<rightarrow> (B \<^bold>\<rightarrow> A)) \<^bold>\<rightarrow> (A \<^bold>\<rightarrow> A)" by (rule MP) have 4: "\<turnstile> A \<^bold>\<rightarrow> (B \<^bold>\<rightarrow> A)" by (rule A2[of _ _]) from 3 4 have "\<turnstile> A \<^bold>\<rightarrow> A" by (rule MP) then show ?thesis . qed text \<open>The same proof a little bit nicer with syntactic sugar:\<close> lemma "\<turnstile> A \<^bold>\<rightarrow> A" proof - have "\<turnstile> (A \<^bold>\<rightarrow> ((B \<^bold>\<rightarrow> A) \<^bold>\<rightarrow> A)) \<^bold>\<rightarrow> ((A \<^bold>\<rightarrow> (B \<^bold>\<rightarrow> A)) \<^bold>\<rightarrow> (A \<^bold>\<rightarrow> A))" by (rule A3[of _ "B \<^bold>\<rightarrow> A" "A"]) moreover have "\<turnstile> A \<^bold>\<rightarrow> ((B \<^bold>\<rightarrow> A) \<^bold>\<rightarrow> A)" by (rule A2[of _ "B \<^bold>\<rightarrow> A"]) ultimately have "\<turnstile> (A \<^bold>\<rightarrow> (B \<^bold>\<rightarrow> A)) \<^bold>\<rightarrow> (A \<^bold>\<rightarrow> A)" by (rule MP) moreover have "\<turnstile> A \<^bold>\<rightarrow> (B \<^bold>\<rightarrow> A)" by (rule A2[of _ _]) ultimately show "\<turnstile> A \<^bold>\<rightarrow> A" by (rule MP) qed subsection \<open>Exercises\<close> paragraph \<open>Exercise 2.\<close> text \<open>Prove one of the following statements by giving an explicit proof within the given Hilbert calculus. Please make sure that every inference step in your proof is fine-grained and annotated with the respective calculus rule name. Hint: Find a proof first by pen-and-paper work and then formalize it within Isabelle.\<close> text \<open> \<^item> @{prop "\<turnstile> \<^bold>\<not>(F \<^bold>\<rightarrow> F) \<^bold>\<rightarrow> G"} \<^item> @{prop "\<turnstile> \<^bold>\<not>\<^bold>\<not>F \<^bold>\<rightarrow> F"} \<close> text "We will later see that many proofs can in fact be done almost automatically by Isabelle, see e.g. the example from further above:" lemma PL1: "\<turnstile> A \<^bold>\<rightarrow> A" using A2 A3 MP by blast lemma PL2: "\<turnstile> \<^bold>\<not>(F \<^bold>\<rightarrow> F) \<^bold>\<rightarrow> G" by (metis A2 A3 A4 MP) lemma PL3: "\<turnstile> \<^bold>\<not>\<^bold>\<not>F \<^bold>\<rightarrow> F" by (metis A2 A3 A4 MP) text \<open>Also, to make things look a bit nicer, we define a compound strategy @{text "PL"} (for "Propositional Logic") that applies an internal automated theorem prover with the respective axioms for propositional logic (A2, A3, A4 and MP)\<close> (*<*) named_theorems add \<comment> \<open>Needed for technical reasons\<close> (*>*) method PL declares add = (metis A2 A3 A4 MP add) text \<open>In the following, we can simply use @{text "by PL"} for proving propositional tautologies. However, as proofs can be arbitrarily complicated, this method may fail for difficult formulas.\<close> section \<open>Hilbert proofs for MDL\<close> text "We augment the language PL with the new connectives of MDL:" consts ob :: "\<sigma> \<Rightarrow> \<sigma>" ("\<^bold>\<circle>_" [52]53) \<comment> \<open>New atomic connective for obligation\<close> text \<open>The other new deontic logic connective can be defined as usual:\<close> definition perm :: "\<sigma> \<Rightarrow> \<sigma>" ("\<^bold>P_" [52]53) where "\<^bold>P a \<equiv> \<^bold>\<not>(\<^bold>\<circle>(\<^bold>\<not>a))" definition forbidden :: "\<sigma> \<Rightarrow> \<sigma>" ("\<^bold>F_" [52]53) where "\<^bold>F a \<equiv> \<^bold>\<circle>(\<^bold>\<not>a)" text \<open>Next, we additionally augment the axiomatization of our proof system for PL with the rules of the system D for MDL:\<close> axiomatization where K: "\<turnstile> \<^bold>\<circle>(A \<^bold>\<rightarrow> B) \<^bold>\<rightarrow> (\<^bold>\<circle>A \<^bold>\<rightarrow> \<^bold>\<circle>B)" and D: "\<turnstile> \<^bold>\<circle>A \<^bold>\<rightarrow> \<^bold>PA" and NEC: "\<turnstile> A \<Longrightarrow> \<turnstile> (\<^bold>\<circle>A)" subsection \<open>MDL Proof Examples\<close> lemma "\<turnstile> \<^bold>\<circle>(p \<^bold>\<and> q) \<^bold>\<rightarrow> \<^bold>\<circle>p" proof - have 1: "\<turnstile> (p \<^bold>\<and> q) \<^bold>\<rightarrow> p" by (PL add: PLconj_def PLdisj_def) from 1 have 2: "\<turnstile> \<^bold>\<circle>((p \<^bold>\<and> q) \<^bold>\<rightarrow> p)" by (rule NEC) have 3: "\<turnstile> \<^bold>\<circle>((p \<^bold>\<and> q) \<^bold>\<rightarrow> p) \<^bold>\<rightarrow> \<^bold>\<circle>(p \<^bold>\<and> q) \<^bold>\<rightarrow> \<^bold>\<circle>p" by (rule K) from 3 2 show "\<turnstile> \<^bold>\<circle>(p \<^bold>\<and> q) \<^bold>\<rightarrow> \<^bold>\<circle>p" by (rule MP) qed text \<open>Note that, although we have the necessitation rule @{thm "NEC"} , the formula @{term "A \<^bold>\<rightarrow> \<^bold>\<circle>A"} is not generally valid:\<close> lemma "\<turnstile> a \<^bold>\<rightarrow> \<^bold>\<circle>a" nitpick[user_axioms,expect=genuine] oops subsection \<open>Exercises\<close> paragraph \<open>Exercise 2.\<close> text \<open>Prove the following statement by giving an explicit proof within the given Hilbert calculus. Please make sure that every inference step in your proof is fine-grained and annotated with the respective calculus rule name. You may use the general @{method "PL"} method for inferring propositional tautologies. Hint: Reuse your proof from the previous exercise sheet and formalize it within Isabelle.\<close> text \<open> \<^item> @{prop "\<turnstile> \<^bold>\<not>\<^bold>\<circle>\<^bold>\<bottom>"} \<close> (*<*) end (*>*)
Require Export Iron.Language.SystemF2.TyBase. (*******************************************************************) (* Lift type indices that are at least a certain depth. *) Fixpoint liftTT (n: nat) (d: nat) (tt: ty) : ty := match tt with | TVar ix => if le_gt_dec d ix then TVar (ix + n) else tt | TCon _ => tt | TForall t => TForall (liftTT n (S d) t) | TApp t1 t2 => TApp (liftTT n d t1) (liftTT n d t2) end. Hint Unfold liftTT. (********************************************************************) (* Lifting and well-formedness *) Lemma liftTT_wfT : forall kn t d , wfT kn t -> wfT (S kn) (liftTT 1 d t). Proof. intros. gen kn d. lift_burn t; inverts H; try burn. Case "TVar". repeat (simpl; lift_cases). eapply WfT_TVar. burn. eapply WfT_TVar. burn. Qed. Hint Resolve liftTT_wfT. (********************************************************************) (* Lifting and type utils *) Lemma liftTT_getCtorOfType : forall d ix t , getCtorOfType (liftTT d ix t) = getCtorOfType t. Proof. lift_burn t. Qed. Hint Rewrite liftTT_getCtorOfType : global. Lemma liftTT_takeTCon : forall tt d ix , liftTT d ix (takeTCon tt) = takeTCon (liftTT d ix tt). Proof. intros; lift_burn tt. Qed. Hint Rewrite liftTT_takeTCon : global. Lemma liftTT_takeTCon' : forall n d tt tCon , takeTCon tt = tCon -> takeTCon (liftTT n d tt) = liftTT n d tCon. Proof. intros. gen n d. induction tt; intros; rewrite <- H; burn. Qed. Hint Resolve liftTT_takeTCon'. Lemma liftTT_takeTArgs : forall tt d ix , map (liftTT d ix) (takeTArgs tt) = takeTArgs (liftTT d ix tt). Proof. intros. induction tt; intros; simpl; auto. lift_cases; auto. rr. burn. Qed. Hint Rewrite liftTT_takeTArgs : global. Lemma liftTT_takeTArgs' : forall n d tt tsArgs , takeTArgs tt = tsArgs -> takeTArgs (liftTT n d tt) = map (liftTT n d) tsArgs. Proof. intros. induction tt; intros; rewrite <- H; try burn. Qed. Hint Resolve liftTT_takeTArgs'. Lemma liftTT_makeTApps : forall n d t1 ts , liftTT n d (makeTApps t1 ts) = makeTApps (liftTT n d t1) (map (liftTT n d) ts). Proof. intros. gen t1. induction ts; burn. Qed. Hint Rewrite liftTT_makeTApps : global. (********************************************************************) Lemma liftTT_zero : forall d t , liftTT 0 d t = t. Proof. intros. gen d. lift_burn t. Qed. Hint Rewrite liftTT_zero : global. Lemma liftTT_comm : forall n m d t , liftTT n d (liftTT m d t) = liftTT m d (liftTT n d t). Proof. intros. gen d. lift_burn t. Qed. Lemma liftTT_succ : forall n m d t , liftTT (S n) d (liftTT m d t) = liftTT n d (liftTT (S m) d t). Proof. intros. gen d m n. lift_burn t. Qed. Hint Rewrite liftTT_succ : global. Lemma liftTT_plus : forall n m d t , liftTT n d (liftTT m d t) = liftTT (n + m) d t. Proof. intros. gen n d. induction m; intros. rewrite liftTT_zero; burn. rw (n + S m = S n + m). rewrite liftTT_comm. rewrite <- IHm. rewrite liftTT_comm. burn. Qed. Hint Rewrite <- liftTT_plus : global. (******************************************************************************) Lemma liftTT_wfT_1 : forall t n ix , wfT n t -> liftTT 1 (n + ix) t = t. Proof. intros. gen n ix. induction t; intros; inverts H; simpl; auto. Case "TVar". lift_cases; burn. Case "TForall". f_equal. spec IHt H1. rw (S (n + ix) = S n + ix). burn. Case "TApp". rs. burn. Qed. Hint Resolve liftTT_wfT_1. Lemma liftTT_closedT_id_1 : forall t d , closedT t -> liftTT 1 d t = t. Proof. intros. rw (d = d + 0). eauto. Qed. Hint Resolve liftTT_closedT_id_1. Lemma liftTT_closedT_10 : forall t , closedT t -> closedT (liftTT 1 0 t). Proof. intros. red. rw (0 = 0 + 0). rewrite liftTT_wfT_1; auto. Qed. Hint Resolve liftTT_closedT_10. (********************************************************************) (* Changing the order of lifting. We build this up in stages. Start out by only allow lifting by a single place for both applications. Then allow lifting by multiple places in the first application, then multiple places in both. *) Lemma liftTT_liftTT_11 : forall d d' t , liftTT 1 d (liftTT 1 (d + d') t) = liftTT 1 (1 + (d + d')) (liftTT 1 d t). Proof. intros. gen d d'. induction t; intros; simpl; try burn. Case "TVar". repeat (lift_cases; unfold liftTT); burn. Case "TForall". rw (S (d + d') = (S d) + d'). burn. Qed. Lemma liftTT_liftTT_1 : forall n1 m1 n2 t , liftTT m1 n1 (liftTT 1 (n2 + n1) t) = liftTT 1 (m1 + n2 + n1) (liftTT m1 n1 t). Proof. intros. gen n1 m1 n2 t. induction m1; intros; simpl. burn. rw (S m1 = 1 + m1). rewrite <- liftTT_plus. rs. rw (m1 + n2 + n1 = n1 + (m1 + n2)). rewrite liftTT_liftTT_11. burn. Qed. Lemma liftTT_liftTT : forall m1 n1 m2 n2 t , liftTT m1 n1 (liftTT m2 (n2 + n1) t) = liftTT m2 (m1 + n2 + n1) (liftTT m1 n1 t). Proof. intros. gen n1 m1 n2 t. induction m2; intros. burn. rw (S m2 = 1 + m2). rewrite <- liftTT_plus. rewrite liftTT_liftTT_1. rewrite IHm2. burn. Qed. Hint Rewrite liftTT_liftTT : global. Lemma liftTT_map_liftTT : forall m1 n1 m2 n2 ts , map (liftTT m1 n1) (map (liftTT m2 (n2 + n1)) ts) = map (liftTT m2 (m1 + n2 + n1)) (map (liftTT m1 n1) ts). Proof. induction ts; simpl; burn. Qed.
A function $f$ has a non-trivial limit at $x$ if and only if for every $\epsilon > 0$, there exists a point $y \in S$ such that $0 < |x - y| < \epsilon$.
-- Forced constructor arguments don't count towards the size of the datatype -- (only if not --withoutK). data _≡_ {a} {A : Set a} : A → A → Set where refl : ∀ x → x ≡ x data Singleton {a} {A : Set a} : A → Set where [_] : ∀ x → Singleton x
Anyone requiring specialist care will need a team of highly-trained staff to support them with living with their condition. For specialist care we gain further training from outside agencies to ensure that our care teams have the most relevant and up-to-date training, ensuring we become specialist in the required areas. This makes sure that any individual receives the highest quality care achievable. Westcountry Home Care has experience within smaller and larger packages of care such as Learning Difficulties, Epilepsy, Motor Neurone Disease, Huntington's, Parkinson’s, Multiple Sclerosis and Spinal Injuries to name a few. We ensure that our care packages are kept person-centred for all of our customers and reviewed on a 3-month basis. Upon initial assessment we will assess the training requirements and care needs for the individual's care package. We then establish a team in which the customer has input into along with gaining more in-depth knowledge of the specialism and training. We encourage the individual to be involved with our training if they would like to. "Your carers are excellent! Very professional and cheerful, they couldn’t be better and I look forward to their visit. I don’t know how we would manage without them."
Our existence is not in isolation with the rest of the world. While this idea sounds spiritual, it is very pertinent to social and global situations that we see every now and then. When a house is on fire in the neighborhood, if we don’t act, it is only a matter of time before the fire reaches our own doorstep. There is an idea found in many ancient cultures that this world is one organism. The microcosm is a reflection of the macrocosm. Just like within us there are billions of cells with their independent existence that collectively make up our existence, all the billions of people and other creatures make up the Being of this world. Today, there are many parts of the world that are on fire. Many governments and authorities, like in Syria and Egypt, end up using force in conflict-zones. While sometimes necessary in extreme situations, such an approach is reactive and often leads to complications in the long term. Taking care of hygiene and preserving health is easier than to go through treatment after the onset of disease. Just as we need to be proactive in maintaining our health, we need to be proactive in maintaining harmony in the world. A healthy multi-cultural exposure to children can go a long way in eliminating religious fanaticism. An attitude of service cultivated in young minds can be a preventive approach to tackling corruption. Therefore, proper education – one that inculcates human values and honors diversity, is necessary for sustainable peace in the world. Only a few people in the world cause terror, not the whole population. Of the seven billion people on this planet, there are hardly a few thousand who cause crime and the whole world is affected. With the same law, won’t the reverse also work? Just a few thousand of us, being really peaceful, loving and caring for the whole planet — can we not bring a transformation? One should not think, ‘What can I do?” or that one is insignificant. Everyone has a role to play when the world is in turmoil. A tiny homeopathic pill has the power to heal an 80 kg body. In the same way, every individual has an influence on this cosmos, on this planet. When we radiate peace and good vibrations, it definitely makes an impact. Those of us who have been fortunate to find some peace within ourselves, now have a challenge to reach out to all those who are not at peace with themselves as well as to those countries and parts of the world where there is conflict. The knowledge of the oneness that we share with the world can bring people out of their narrow mindsets. A bigger vision of life can kindle human values, enabling one to see diversity in oneness and unity in diversity. New York: We have known it for ages. Now Americans have woken up to the benefits meditation brings in life. Meditations have different effects and that meditation can lead to non-dual or transcendental experiences – a sense of self-awareness without content, says a fascinating study. According to Fred Travis, director of the centre for brain, consciousness, and cognition at Maharishi University of Management in the US, physiological measures and first-person descriptions of transcendental experiences and higher states have only been investigated during practice of the Transcendental Meditation (TM) technique. After analyzing descriptions of transcendental consciousness from 52 people practicing TM, Travis found that they experienced “a state where thinking, feeling, and individual intention were missing, but self-awareness remained”. A systematic analysis of their experiences revealed three themes – absence of time, space and body sense. “This research focuses on the larger purpose of meditation practices – to develop higher states of consciousness,” explained Travis. With regular meditation, experiences of transcendental consciousness begin to co-exist with sleeping, dreaming and even while one is awake. This state is called cosmic consciousness in the Vedic tradition, said the paper published in the journal Annals of the New York Academy of Sciences. Whereas people practicing TM describe themselves in relation to concrete cognitive and behavioral processes, those experiencing cosmic consciousness describe themselves in terms of a continuum of inner self-awareness that underlies their thoughts, feelings and actions, added the paper. “The practical benefit of higher states is that you become more anchored to your inner self, and, therefore, less likely to be overwhelmed by the vicissitudes of daily life,” said Travis. TM is an effortless technique for automatic self-transcending, different from the other categories of meditation – focused attention or open monitoring. It allows the mind to settle inward beyond thought to experience the source of thought – pure awareness or transcendental consciousness. This is the most silent and peaceful level of consciousness – one’s innermost self, said the study.
Rural Rap and Jewelry is a booth run by Sally Parker at the Davis Farmers Market on Saturdays that sells jewelry to benefit Rural RAP. The jewelry is a mix of necklaces and bracelets, earrings, and small sculptures made with sculpting clay. Sally accepts Davis Dollars. Rural R(R?)AP was incorporated as a nonprofit by Isao Fujimoto. Rural RAP stands for Rural Research Access Project.
module Network.Curl.Types.SSL import Network.Curl.Types.Code import Util import Derive.Enum %language ElabReflection data CurlSSLBackend = CURLSSLBACKEND_NONE -- 0, | CURLSSLBACKEND_OPENSSL -- 1, | CURLSSLBACKEND_GNUTLS -- 2, | CURLSSLBACKEND_NSS -- 3, | CURLSSLBACKEND_GSKIT -- 5, | CURLSSLBACKEND_POLARSSL -- 6, /* deprecated */ | CURLSSLBACKEND_WOLFSSL -- 7, | CURLSSLBACKEND_SCHANNEL -- 8, | CURLSSLBACKEND_SECURETRANSPORT -- 9, | CURLSSLBACKEND_AXTLS -- 10, /* deprecated */ | CURLSSLBACKEND_MBEDTLS -- 11, | CURLSSLBACKEND_MESALINK -- 12, | CURLSSLBACKEND_BEARSSL -- 13 Show CurlSSLBackend where show = showEnum Eq CurlSSLBackend where (==) = eqEnum Ord CurlSSLBackend where compare = compareEnum ToCode CurlSSLBackend where toCode = enumTo [0,1,2,3, 5,6,7,8,9,10,11,12,13] FromCode CurlSSLBackend where unsafeFromCode = unsafeEnumFrom [0,1,2,3, 5,6,7,8,9,10,11,12,13] fromCode = enumFrom [0,1,2,3, 5,6,7,8,9,10,11,12,13] data CurlSSLSet = CURLSSLSET_OK -- = 0 | CURLSSLSET_UNKNOWN_BACKEND | CURLSSLSET_TOO_LATE | CURLSSLSET_NO_BACKENDS Show CurlSSLSet where show = showEnum Eq CurlSSLSet where (==) = eqEnum Ord CurlSSLSet where compare = compareEnum ToCode CurlSSLSet where toCode = enumTo [0..3] FromCode CurlSSLSet where unsafeFromCode = unsafeEnumFrom [0..3] fromCode = enumFrom [0..3] {- typedef struct { curl_sslbackend id; const char *name; } curl_ssl_backend; -}
/- Copyright (c) 2020 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import ring_theory.int.basic import ring_theory.localization /-! # Gauss's Lemma Gauss's Lemma is one of a few results pertaining to irreducibility of primitive polynomials. ## Main Results - `polynomial.is_primitive.irreducible_iff_irreducible_map_fraction_map`: A primitive polynomial is irreducible iff it is irreducible in a fraction field. - `polynomial.is_primitive.int.irreducible_iff_irreducible_map_cast`: A primitive polynomial over `ℤ` is irreducible iff it is irreducible over `ℚ`. - `polynomial.is_primitive.dvd_iff_fraction_map_dvd_fraction_map`: Two primitive polynomials divide each other iff they do in a fraction field. - `polynomial.is_primitive.int.dvd_iff_map_cast_dvd_map_cast`: Two primitive polynomials over `ℤ` divide each other if they do in `ℚ`. -/ open_locale non_zero_divisors variables {R : Type*} [comm_ring R] [is_domain R] namespace polynomial section normalized_gcd_monoid variable [normalized_gcd_monoid R] section variables {S : Type*} [comm_ring S] [is_domain S] {φ : R →+* S} (hinj : function.injective φ) variables {f : polynomial R} (hf : f.is_primitive) include hinj hf lemma is_primitive.is_unit_iff_is_unit_map_of_injective : is_unit f ↔ is_unit (map φ f) := begin refine ⟨(map_ring_hom φ).is_unit_map, λ h, _⟩, rcases is_unit_iff.1 h with ⟨_, ⟨u, rfl⟩, hu⟩, have hdeg := degree_C u.ne_zero, rw [hu, degree_map_eq_of_injective hinj] at hdeg, rw [eq_C_of_degree_eq_zero hdeg, is_primitive_iff_content_eq_one, content_C, normalize_eq_one] at hf, rwa [eq_C_of_degree_eq_zero hdeg, is_unit_C], end lemma is_primitive.irreducible_of_irreducible_map_of_injective (h_irr : irreducible (map φ f)) : irreducible f := begin refine ⟨λ h, h_irr.not_unit (is_unit.map ((map_ring_hom φ).to_monoid_hom) h), _⟩, intros a b h, rcases h_irr.is_unit_or_is_unit (by rw [h, map_mul]) with hu | hu, { left, rwa (hf.is_primitive_of_dvd (dvd.intro _ h.symm)).is_unit_iff_is_unit_map_of_injective hinj }, right, rwa (hf.is_primitive_of_dvd (dvd.intro_left _ h.symm)).is_unit_iff_is_unit_map_of_injective hinj end end section fraction_map variables {K : Type*} [field K] [algebra R K] [is_fraction_ring R K] lemma is_primitive.is_unit_iff_is_unit_map {p : polynomial R} (hp : p.is_primitive) : is_unit p ↔ is_unit (p.map (algebra_map R K)) := hp.is_unit_iff_is_unit_map_of_injective (is_fraction_ring.injective _ _) open is_localization lemma is_unit_or_eq_zero_of_is_unit_integer_normalization_prim_part {p : polynomial K} (h0 : p ≠ 0) (h : is_unit (integer_normalization R⁰ p).prim_part) : is_unit p := begin rcases is_unit_iff.1 h with ⟨_, ⟨u, rfl⟩, hu⟩, obtain ⟨⟨c, c0⟩, hc⟩ := integer_normalization_map_to_map R⁰ p, rw [subtype.coe_mk, algebra.smul_def, algebra_map_apply] at hc, apply is_unit_of_mul_is_unit_right, rw [← hc, (integer_normalization R⁰ p).eq_C_content_mul_prim_part, ← hu, ← ring_hom.map_mul, is_unit_iff], refine ⟨algebra_map R K ((integer_normalization R⁰ p).content * ↑u), is_unit_iff_ne_zero.2 (λ con, _), by simp⟩, replace con := (algebra_map R K).injective_iff.1 (is_fraction_ring.injective _ _) _ con, rw [mul_eq_zero, content_eq_zero_iff, is_fraction_ring.integer_normalization_eq_zero_iff] at con, rcases con with con | con, { apply h0 con }, { apply units.ne_zero _ con }, end /-- **Gauss's Lemma** states that a primitive polynomial is irreducible iff it is irreducible in the fraction field. -/ theorem is_primitive.irreducible_iff_irreducible_map_fraction_map {p : polynomial R} (hp : p.is_primitive) : irreducible p ↔ irreducible (p.map (algebra_map R K)) := begin refine ⟨λ hi, ⟨λ h, hi.not_unit (hp.is_unit_iff_is_unit_map.2 h), λ a b hab, _⟩, hp.irreducible_of_irreducible_map_of_injective (is_fraction_ring.injective _ _)⟩, obtain ⟨⟨c, c0⟩, hc⟩ := integer_normalization_map_to_map R⁰ a, obtain ⟨⟨d, d0⟩, hd⟩ := integer_normalization_map_to_map R⁰ b, rw [algebra.smul_def, algebra_map_apply, subtype.coe_mk] at hc hd, rw mem_non_zero_divisors_iff_ne_zero at c0 d0, have hcd0 : c * d ≠ 0 := mul_ne_zero c0 d0, rw [ne.def, ← C_eq_zero] at hcd0, have h1 : C c * C d * p = integer_normalization R⁰ a * integer_normalization R⁰ b, { apply map_injective (algebra_map R K) (is_fraction_ring.injective _ _) _, rw [map_mul, map_mul, map_mul, hc, hd, map_C, map_C, hab], ring }, obtain ⟨u, hu⟩ : associated (c * d) (content (integer_normalization R⁰ a) * content (integer_normalization R⁰ b)), { rw [← dvd_dvd_iff_associated, ← normalize_eq_normalize_iff, normalize.map_mul, normalize.map_mul, normalize_content, normalize_content, ← mul_one (normalize c * normalize d), ← hp.content_eq_one, ← content_C, ← content_C, ← content_mul, ← content_mul, ← content_mul, h1] }, rw [← ring_hom.map_mul, eq_comm, (integer_normalization R⁰ a).eq_C_content_mul_prim_part, (integer_normalization R⁰ b).eq_C_content_mul_prim_part, mul_assoc, mul_comm _ (C _ * _), ← mul_assoc, ← mul_assoc, ← ring_hom.map_mul, ← hu, ring_hom.map_mul, mul_assoc, mul_assoc, ← mul_assoc (C ↑u)] at h1, have h0 : (a ≠ 0) ∧ (b ≠ 0), { classical, rw [ne.def, ne.def, ← decidable.not_or_iff_and_not, ← mul_eq_zero, ← hab], intro con, apply hp.ne_zero (map_injective (algebra_map R K) (is_fraction_ring.injective _ _) _), simp [con] }, rcases hi.is_unit_or_is_unit (mul_left_cancel₀ hcd0 h1).symm with h | h, { right, apply is_unit_or_eq_zero_of_is_unit_integer_normalization_prim_part h0.2 (is_unit_of_mul_is_unit_right h) }, { left, apply is_unit_or_eq_zero_of_is_unit_integer_normalization_prim_part h0.1 h }, end lemma is_primitive.dvd_of_fraction_map_dvd_fraction_map {p q : polynomial R} (hp : p.is_primitive) (hq : q.is_primitive) (h_dvd : p.map (algebra_map R K) ∣ q.map (algebra_map R K)) : p ∣ q := begin rcases h_dvd with ⟨r, hr⟩, obtain ⟨⟨s, s0⟩, hs⟩ := integer_normalization_map_to_map R⁰ r, rw [subtype.coe_mk, algebra.smul_def, algebra_map_apply] at hs, have h : p ∣ q * C s, { use (integer_normalization R⁰ r), apply map_injective (algebra_map R K) (is_fraction_ring.injective _ _), rw [map_mul, map_mul, hs, hr, mul_assoc, mul_comm r], simp }, rw [← hp.dvd_prim_part_iff_dvd, prim_part_mul, hq.prim_part_eq, associated.dvd_iff_dvd_right] at h, { exact h }, { symmetry, rcases is_unit_prim_part_C s with ⟨u, hu⟩, use u, rw hu }, iterate 2 { apply mul_ne_zero hq.ne_zero, rw [ne.def, C_eq_zero], contrapose! s0, simp [s0, mem_non_zero_divisors_iff_ne_zero] } end variables (K) lemma is_primitive.dvd_iff_fraction_map_dvd_fraction_map {p q : polynomial R} (hp : p.is_primitive) (hq : q.is_primitive) : (p ∣ q) ↔ (p.map (algebra_map R K) ∣ q.map (algebra_map R K)) := ⟨λ ⟨a,b⟩, ⟨a.map (algebra_map R K), b.symm ▸ map_mul (algebra_map R K)⟩, λ h, hp.dvd_of_fraction_map_dvd_fraction_map hq h⟩ end fraction_map /-- **Gauss's Lemma** for `ℤ` states that a primitive integer polynomial is irreducible iff it is irreducible over `ℚ`. -/ theorem is_primitive.int.irreducible_iff_irreducible_map_cast {p : polynomial ℤ} (hp : p.is_primitive) : irreducible p ↔ irreducible (p.map (int.cast_ring_hom ℚ)) := hp.irreducible_iff_irreducible_map_fraction_map lemma is_primitive.int.dvd_iff_map_cast_dvd_map_cast (p q : polynomial ℤ) (hp : p.is_primitive) (hq : q.is_primitive) : (p ∣ q) ↔ (p.map (int.cast_ring_hom ℚ) ∣ q.map (int.cast_ring_hom ℚ)) := hp.dvd_iff_fraction_map_dvd_fraction_map ℚ hq end normalized_gcd_monoid end polynomial
// // Copyright Jason Rice 2016 // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // #ifndef NBDL_DEF_BUILDER_MAKE_MESSAGE_API_HPP #define NBDL_DEF_BUILDER_MAKE_MESSAGE_API_HPP #include <nbdl/concept/UpstreamMessage.hpp> #include <nbdl/def/builder/entity_messages.hpp> #include <nbdl/def/builder/producer_meta.hpp> #include <boost/hana/functional/on.hpp> #include <boost/hana/functional/partial.hpp> #include <boost/hana/flatten.hpp> #include <boost/hana/partition.hpp> #include <boost/hana/type.hpp> #include <boost/hana/unpack.hpp> #include <boost/mp11/list.hpp> #include <boost/mp11/integral.hpp> namespace nbdl_def::builder { using namespace boost::mp11; namespace hana = boost::hana; template < typename UpstreamMessageTypes , typename DownstreamMessageTypes > struct message_api_meta { using upstream_types = UpstreamMessageTypes; using downstream_types = DownstreamMessageTypes; }; struct make_message_api_fn { template <typename T> struct is_upstream_message : mp_bool<nbdl::UpstreamMessage<T>> { }; // aggregate all entity messages // and partition by upstream/downstream template<typename ProducersMeta> constexpr auto operator()(ProducersMeta) const { return mp_apply<message_api_meta, mp_partition< mp_apply<mp_append, mp_transform<builder::entity_messages, mp_apply<mp_append, mp_transform_q<mpdef::metastruct_get<decltype(producer_meta::access_points)>, ProducersMeta >>>> , is_upstream_message >>{}; } }; constexpr make_message_api_fn make_message_api{}; } #endif
State Before: a b : Nat h : a ≤ b ⊢ max a b = b State After: no goals Tactic: simp [Nat.max_def, h, Nat.not_lt.2 h]
import analysis.calculus.deriv import algebra.group.pi import analysis.normed_space.ordered namespace asymptotics open filter open_locale topological_space lemma is_o.tendsto_of_tendsto_const {α E 𝕜 : Type*} [normed_group E] [normed_field 𝕜] {u : α → E} {v : α → 𝕜} {l : filter α} {y : 𝕜} (huv : is_o u v l) (hv : tendsto v l (𝓝 y)) : tendsto u l (𝓝 0) := begin suffices h : is_o u (λ x, (1 : 𝕜)) l, { rwa is_o_one_iff at h }, exact huv.trans_is_O (is_O_one_of_tendsto 𝕜 hv), end section normed_linear_ordered_group variables {α β : Type*} [normed_linear_ordered_group β] {u v w : α → β} {l : filter α} {c : ℝ} lemma is_O.trans_tendsto_norm_at_top (huv : is_O u v l) (hu : tendsto (λ x, ∥u x∥) l at_top) : tendsto (λ x, ∥v x∥) l at_top := begin rcases huv.exists_pos with ⟨c, hc, hcuv⟩, rw is_O_with at hcuv, convert tendsto_at_top_div hc (tendsto_at_top_mono' l hcuv hu), ext x, rw mul_div_cancel_left _ hc.ne.symm, end end normed_linear_ordered_group end asymptotics
% % OK % % setting up at Aug. third, 2009 % finished at Aug 5th, 2009 % seems to be OK % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Introduction to delta function} \label{sec:delta_function} As what we can see, in the discussion of quantum mechanics or even the quantum chemistry, we always meet the situation that the delta function has to be used (for example, the normalization of free particle wave function, the discussion of position and momentum operator in \ref{sec:PRAMR_in_position_representation} etc. For the case of the continuous basis functions, the delta function is frequently used). Hence in this part, we are going to give some mathematical introduction for the delta function. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Definition of delta function} \label{sec:definition_delta_function} % % % % The delta function can be considered as some ``peculiar'' function which has two features below: \begin{equation} \label{DELTAeq:1} \delta (x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases} \end{equation} \begin{equation} \label{DELTAeq:2} \int_{-\infty}^{+\infty}\delta (x)dx = \int_{-\epsilon}^{+\epsilon}\delta (x)dx = 1 \end{equation} Here $(-\epsilon, \epsilon)$ is some ``small enough'' open interval around the $0$. The (\ref{DELTAeq:1}) and (\ref{DELTAeq:2}) are also the definition for the delta function, which indicates that the delta function is infinity at $0$, but quickly tends to $0$ as is apart from the $0$ point. Now let's give some examples. Firstly, consider the function below: \begin{equation}\label{} \Psi_{n}(x) = \frac{\sin nx}{\pi x} \quad \text{$n$ is some natural number } \end{equation} Firstly, we can prove that: \begin{align}\label{} \lim_{x \rightarrow 0}\Psi_{n}(x) = \lim_{x \rightarrow 0}\frac{\sin nx}{\pi x} = \lim_{x \rightarrow 0}\frac{\sin nx}{n x}\frac{n}{\pi} = \frac{n}{\pi} \end{align} So we can think that $\Psi_{n}(0) = \frac{n}{\pi}$. Here as $n \rightarrow +\infty$, $\Psi_{\infty}(0) \rightarrow +\infty$. Hence the (\ref{DELTAeq:1}) is satisfied. Secondly, from the improper integral theory, we can know that: \begin{equation}\label{} \int_{0}^{+\infty}\frac{\sin nx}{x}dx = \frac{\pi}{2} \end{equation} Hence we have the integral as: \begin{align}\label{} \int_{-\infty}^{+\infty}\frac{\sin nx}{\pi x}dx &= 2\frac{1}{\pi}\int_{0}^{+\infty}\frac{\sin nx}{x}dx \quad \text{here the $\Psi_{n}(x)$ is even function}\nonumber \\ &=2\frac{1}{\pi}\times\frac{\pi}{2} \nonumber \\ &=1 \end{align} So the (\ref{DELTAeq:2}) is satisfied. Thus we can have $\Psi_{\infty}(x) = \delta(x)$. From the definition of $\Psi_{n}(x)$, we can even prove that the function below is also the delta function: \begin{equation}\label{} \Phi(x) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} e^{ikx}dk \end{equation} This function is very important in discussing the property related to plane wave functions. Firstly, as $x = 0$, it's easy to see tat the $\Phi(0) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} dk \Rightarrow \infty$, so the (\ref{DELTAeq:1}) is satisfied. As for the (\ref{DELTAeq:2}) since we have (suggest that $a$ is some natural number): \begin{align}\label{} \Phi_{a}(x) = \frac{1}{2\pi}\int_{-a}^{+a} e^{ikx}dk &= \frac{1}{i2x\pi}e^{ikx}\Big|^{a}_{-a} \nonumber \\ &=\frac{1}{i2x\pi}2i\sin ax \quad \cos(a) = \cos(-a)\nonumber \\ &=\frac{\sin ax}{x\pi} \end{align} Hence the integral for the $\Phi(x)$ in the whole real space has been resorted to the $\Psi_{a\rightarrow \infty}(x)$; so we have: \begin{equation}\label{} \Phi(x) = \delta(x) \end{equation} Finally, let's consider the Gauss distribution function: \begin{equation}\label{} \Omega_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{x^{2}}{2\sigma}} \end{equation} Firstly, we can see that: \begin{align}\label{} \Omega_{\sigma}(0) &= \frac{1}{\sqrt{2\pi\sigma}}\times 1 \quad \underrightarrow{\sigma \rightarrow 0} \nonumber \\ \Omega_{\sigma \rightarrow 0 }(0) &= \infty \end{align} On the other hand, since from the improper integral theory, we have: \begin{equation}\label{DELTAeq:20} \int_{0}^{+\infty}e^{-x^{2}}dx = \frac{\sqrt{\pi}}{2} \end{equation} Then we have the integral for the $\Omega_{\sigma}(x)$ as: \begin{align}\label{} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{x^{2}}{2\sigma}} dx &= \frac{1}{\sqrt{2\pi\sigma}}\int_{-\infty}^{+\infty} e^{-\frac{x^{2}}{2\sigma}} dx \nonumber \\ &= \frac{2}{\sqrt{2\pi\sigma}}\int_{0}^{+\infty}\sqrt{2\sigma} e^{-(\frac{x}{\sqrt{2\sigma}})^{2}} d\frac{x}{\sqrt{2\sigma}} \quad \text{$\Omega_{\sigma}(x)$ is even} \nonumber \\ &=\frac{2}{\sqrt{\pi}}\times\frac{\sqrt{\pi}}{2} \quad \text{From the \ref{DELTAeq:20}}\nonumber \\ &= 1 \end{align} Hence we have $\Omega_{0}(x) = \delta(x)$. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Characters of delta function} \label{sec:character_delta_function} % % % % In this section let's state some characters of delta function. \begin{theorem} $\delta(x)$ is some even function: $\delta(x) = \delta(-x)$ \end{theorem} \begin{proof} the proof is straightforward. For (\ref{DELTAeq:1}), the $\delta(-x)$ is naturally satisfied, and for the integral in the (\ref{DELTAeq:2}) we have: \begin{equation}\label{} \int_{-\infty}^{+\infty}\delta(-x)dx = -\int_{-\infty}^{+\infty}\delta(-x)d(-x) = \int_{-\infty}^{+\infty}\delta(t)dt = 1 \end{equation} Hence $\delta(x) = \delta(-x)$. \qedhere \end{proof} \begin{theorem} $\delta(ax) = \frac{1}{|a|}\delta(x)$ \end{theorem} \begin{proof} Firstly suggest that $a>0$, then: \begin{equation}\label{DELTAeq:3} \begin{split} \int_{-\infty}^{+\infty}\delta(ax)dx &= \frac{1}{a}\int_{-\infty}^{+\infty}\delta(ax)d(ax) \\ &= \frac{1}{a}\delta(x) \end{split} \end{equation} For the $a < 0$ (in this case, if we simply repeat the progress in \ref{DELTAeq:3}; the upper limit and the lower limit in integral should change), since we have $\delta(ax) = \delta(-ax)$; then we can replace the $a$ with $|a|$ to repeat the demonstration in (\ref{DELTAeq:3}). So finally we can get the conclusion. \qedhere \end{proof} \begin{theorem} \label{DELTA:4} $\int_{-\infty}^{+\infty}f(x)\delta(x)dx = f(0)$. \end{theorem} \begin{proof} \begin{equation}\label{} \begin{split} \int_{-\infty}^{+\infty}f(x)\delta(x)dx &= \int_{-\epsilon}^{+\epsilon}f(x)\delta(x)dx \\ &= f(0)\int_{-\epsilon}^{+\epsilon}\delta(x)dx \\ &= f(0) \end{split} \end{equation} \qedhere \end{proof} The theorem (\ref{DELTA:4}) is some important expression for delta function. Now consider the delta function $\delta (x - x^{'})$, where $x^{'}$ is some arbitrary number; it can be easily understood that the (\ref{DELTAeq:1}) and (\ref{DELTAeq:2}) are converted as: \begin{equation} \label{DELTAeq:5} \delta (x - x^{'}) = \begin{cases} \infty & x = x^{'} \\ 0 & x \neq x^{'} \end{cases} \end{equation} \begin{equation} \label{DELTAeq:6} \int_{-\infty}^{+\infty}\delta (x - x^{'})dx = \int_{-\epsilon}^{+\epsilon}\delta (x - x^{'})dx = 1 \end{equation} The (\ref{DELTAeq:1}) and (\ref{DELTAeq:2}) can be considered as the special case while $x^{'} = 0$. Through this expansion, by using the theorem (\ref{DELTA:4}) we can prove that the relation below is true: \begin{theorem} \begin{equation}\label{DELTAeq:7} \int_{-\infty}^{+\infty}f(x)\delta(x - x^{'})dx = \int_{-\infty}^{+\infty}f(x^{'})\delta(x - x^{'})dx^{'} =f(x) \end{equation} \end{theorem} \begin{proof} For the first equation in the (\ref{DELTAeq:7}), we can directly use the even function character to prove it. For the second equation in (\ref{DELTAeq:7}), we have: \begin{equation}\label{} \begin{split} \int_{-\infty}^{+\infty}f(x)\delta(x - x^{'})dx &= \int_{-\infty}^{+\infty}f(t+x^{'})\delta(t)dt \quad t = x - x^{'}\\ &= f(t+x^{'})\Big|_{t=0} \quad \text{From theorem \ref{DELTA:4}}\\ &= f(x^{'}) \end{split} \end{equation} \qedhere \end{proof} \begin{theorem} $\delta(x) = \delta^{*}(x)$ \end{theorem} \begin{proof} Suggest that we have some arbitrary real function of $f(x)$, \begin{equation}\label{} \begin{split} \left[\int_{-\infty}^{+\infty}f(x)\delta(x)dx\right]^{*} &= \int_{-\infty}^{+\infty}f(x)\delta^{*}(x)dx \\ &=f^{*}(0) = f(0) \\ &= \int_{-\infty}^{+\infty}f(x)\delta(x)dx \Rightarrow \\ &= \int_{-\infty}^{+\infty}f(x) \Big(\delta(x)-\delta^{*}(x)\Big)dx = 0 \end{split} \end{equation} Hence we have $\delta(x) = \delta^{*}(x)$. \qedhere \end{proof} \begin{theorem} $\int_{-\infty}^{+\infty}\delta(x - x^{'}) \delta(x - x^{''})dx = \delta(x^{'} - x^{''})$. Here $x^{'}$ and $x^{''}$ are both of arbitrary real number. \end{theorem} \begin{proof} From (\ref{DELTAeq:7}), we set the $f(x) = \delta(x)$ so according to the (\ref{DELTAeq:7}): \begin{equation}\label{} \begin{split} \int_{-\infty}^{+\infty}f(x- x^{''})\delta(x - x^{'})dx &= f(x- x^{''})\Big|_{x =x^{'}} \\ &= f(x^{'}- x^{''}) \end{split} \end{equation} \qedhere \end{proof} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Example to use delta function: the normalization of plane wave functions} \label{sec:normalization_delta_function} % % % % Now by using the delta function let's solve some important problem in quantum mechanics: how to normalize the plane wave function? According to the (\ref{BASICeq:14}), the plane wave function can be expressed as: \begin{equation}\label{} \Psi_{p}(x) = e^{\frac{ipx}{\hbar}} \end{equation} Actually it's the eigen state for the $\hat{p}$: \begin{equation}\label{} \hat{p}\Psi_{p}(x) = p\Psi_{p}(x) \end{equation} Now let's go to see how to normalize this function: \begin{equation}\label{} \begin{split} \langle \Psi_{p}(x^{'})|\Psi_{p}(x)\rangle =\int_{-\infty}^{+\infty}\Psi^{*}(x')\Psi(x)dp &= \int_{-\infty}^{+\infty} e^{\frac{ip(x-x^{'})}{\hbar}}dp \\ &= \hbar\int_{-\infty}^{+\infty} e^{\frac{ip(x-x^{'})}{\hbar}} d\left(\frac{p}{\hbar}\right) \\ &= 2\pi\hbar\delta(x-x^{'}) \end{split} \end{equation} Hence if we integrate over all the $x$: \begin{equation}\label{} \begin{split} \int_{-\infty}^{+\infty} \langle \Psi_{p}(x^{'})|\Psi_{p}(x)\rangle dx &= \int_{-\infty}^{+\infty} 2\pi\hbar\delta(x-x^{'}) dx \\ &= 2\pi\hbar \end{split} \end{equation} Thus finally we can express the plane wave function as: \begin{equation}\label{} \Psi_{p}(x) = \frac{1}{\sqrt{2\pi\hbar}}e^{\frac{ipx}{\hbar}} \end{equation} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Local Variables: %%% mode: latex %%% TeX-master: "../main" %%% End:
(* I hereby assign copyright in my past and future contributions to the Software Foundations project to the Author of Record of each volume or component, to be licensed under the same terms as the rest of Software Foundations. I understand that, at present, the Authors of Record are as follows: For Volumes 1 and 2, known until 2016 as "Software Foundations" and from 2016 as (respectively) "Logical Foundations" and "Programming Foundations," and for Volume 4, "QuickChick: Property-Based Testing in Coq," the Author of Record is Benjamin C. Pierce. For Volume 3, "Verified Functional Algorithms", the Author of Record is Andrew W. Appel. For components outside of designated volumes (e.g., typesetting and grading tools and other software infrastructure), the Author of Record is Benjamin Pierce. *) Inductive day : Type := | monday : day | tuesday : day | wednesday : day | thursday : day | friday : day | saturday : day | sunday : day. Definition next_weekday (d:day) : day := match d with | monday => tuesday | tuesday => wednesday | wednesday => thursday | thursday => friday | friday => monday | saturday => monday | sunday => monday end. Compute (next_weekday friday). (* ==> monday : day *) Compute (next_weekday (next_weekday saturday)). (* ==> tuesday : day *) Example test_next_weekday: (next_weekday (next_weekday saturday)) = tuesday. Proof. simpl. reflexivity. Qed. (** ** Booleans *) Inductive bool : Type := | true : bool | false : bool. Definition negb (b:bool) : bool := match b with | true => false | false => true end. Definition andb (b1:bool) (b2:bool) : bool := match b1 with | true => b2 | false => false end. Definition orb (b1:bool) (b2:bool) : bool := match b1 with | true => true | false => b2 end. Example test_orb1: (orb true false) = true. Proof. simpl. reflexivity. Qed. Example test_orb2: (orb false false) = false. Proof. simpl. reflexivity. Qed. Example test_orb3: (orb false true) = true. Proof. simpl. reflexivity. Qed. Example test_orb4: (orb true true) = true. Proof. simpl. reflexivity. Qed. Notation "x && y" := (andb x y). Notation "x || y" := (orb x y). Example test_orb5: false || false || true = true. Proof. simpl. reflexivity. Qed. (** **** Exercise: 1 star (nandb) *) (** Remove "[Admitted.]" and complete the definition of the following function; then make sure that the [Example] assertions below can each be verified by Coq. (Remove "[Admitted.]" and fill in each proof, following the model of the [orb] tests above.) The function should return [true] if either or both of its inputs are [false]. *) Definition nandb (b1:bool) (b2:bool) : bool (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted. Example test_nandb1: (nandb true false) = true. (* FILL IN HERE *) Admitted. Example test_nandb2: (nandb false false) = true. (* FILL IN HERE *) Admitted. Example test_nandb3: (nandb false true) = true. (* FILL IN HERE *) Admitted. Example test_nandb4: (nandb true true) = false. (* FILL IN HERE *) Admitted. (** [] *) (** **** Exercise: 1 star (andb3) *) (** Do the same for the [andb3] function below. This function should return [true] when all of its inputs are [true], and [false] otherwise. *) Definition andb3 (b1:bool) (b2:bool) (b3:bool) : bool (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted. Example test_andb31: (andb3 true true true) = true. (* FILL IN HERE *) Admitted. Example test_andb32: (andb3 false true true) = false. (* FILL IN HERE *) Admitted. Example test_andb33: (andb3 true false true) = false. (* FILL IN HERE *) Admitted. Example test_andb34: (andb3 true true false) = false. (* FILL IN HERE *) Admitted. (** [] *) (* ================================================================= *) (** ** Function Types *) Check true. (* ===> true : bool *) Check (negb true). (* ===> negb true : bool *) Check negb. (* ===> negb : bool -> bool *) (* ================================================================= *) (** ** Compound Types *) Inductive rgb : Type := | red : rgb | green : rgb | blue : rgb. Inductive color : Type := | black : color | white : color | primary : rgb -> color. (* Exercise : What is the type of primary? What about primary blue? Write appropriate commands that print the types of these expressions. *) Definition monochrome (c : color) : bool := match c with | black => true | white => true | primary p => false end. Definition isred (c : color) : bool := match c with | black => false | white => false | primary red => true | primary _ => false end. (* Exercise: What is the type of each of these functions? Write appropriate commands that print the types of these expressions. *) (* Exercise: Prove that isred returns false when the color is blue. You need to write an assertion that specifies this, and then prove it. *) (* ================================================================= *) (** ** Modules *) Module NatPlayground. (* ================================================================= *) (** ** Numbers *) Inductive nat : Type := | O : nat | S : nat -> nat. Definition pred (n : nat) : nat := match n with | O => O | S n' => n' end. End NatPlayground. Check (S (S (S (S O)))). (* ===> 4 : nat *) Definition minustwo (n : nat) : nat := match n with | O => O | S O => O | S (S n') => n' end. Compute (minustwo 4). (* ===> 2 : nat *) Check S. Check pred. Check minustwo. Compute (S (minustwo (S (S O)))). (*New Session!*) Fixpoint evenb (n:nat) : bool := match n with | O => true | S O => false | S (S n') => evenb n' end. Definition oddb (n:nat) : bool := negb (evenb n). Example test_oddb1: oddb 1 = true. Proof. simpl. reflexivity. Qed. Example test_oddb2: oddb 4 = false. Proof. simpl. reflexivity. Qed. Module NatPlayground2. Fixpoint plus (n : nat) (m : nat) : nat := match n with | O => m | S n' => S (plus n' m) end. Compute (plus 3 2). Fixpoint mult (n m : nat) : nat := match n with | O => O | S n' => plus m (mult n' m) end. Example test_mult1: (mult 3 3) = 9. Proof. simpl. reflexivity. Qed. Fixpoint minus (n m:nat) : nat := match n, m with | O , _ => O | S _ , O => n | S n', S m' => minus n' m' end. End NatPlayground2. Fixpoint exp (base power : nat) : nat := match power with | O => S O | S p => mult base (exp base p) end. (** **** Exercise: 1 star (factorial) *) (** Recall the standard mathematical factorial function: factorial(0) = 1 factorial(n) = n * factorial(n-1) (if n>0) Translate this into Coq. *) Fixpoint factorial (n:nat) : nat (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted. Example test_factorial1: (factorial 3) = 6. (* FILL IN HERE *) Admitted. Example test_factorial2: (factorial 5) = (mult 10 12). (* FILL IN HERE *) Admitted. (** [] *) Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope. Notation "x - y" := (minus x y) (at level 50, left associativity) : nat_scope. Notation "x * y" := (mult x y) (at level 40, left associativity) : nat_scope. Check ((0 + 1) + 1). Fixpoint beq_nat (n m : nat) : bool := match n with | O => match m with | O => true | S m' => false end | S n' => match m with | O => false | S m' => beq_nat n' m' end end. Fixpoint leb (n m : nat) : bool := match n with | O => true | S n' => match m with | O => false | S m' => leb n' m' end end. Example test_leb1: (leb 2 2) = true. Proof. simpl. reflexivity. Qed. Example test_leb2: (leb 2 4) = true. Proof. simpl. reflexivity. Qed. Example test_leb3: (leb 4 2) = false. Proof. simpl. reflexivity. Qed. (** **** Exercise: 1 star (blt_nat) *) (** The [blt_nat] function tests [nat]ural numbers for [l]ess-[t]han, yielding a [b]oolean. Instead of making up a new [Fixpoint] for this one, define it in terms of a previously defined function. *) Definition blt_nat (n m : nat) : bool (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted. Example test_blt_nat1: (blt_nat 2 2) = false. (* FILL IN HERE *) Admitted. Example test_blt_nat2: (blt_nat 2 4) = true. (* FILL IN HERE *) Admitted. Example test_blt_nat3: (blt_nat 4 2) = false. (* FILL IN HERE *) Admitted. (** [] *) (* ################################################################# *) (** * Proof by Simplification *) Theorem plus_O_n : forall n : nat, 0 + n = n. Proof. intros n. simpl. reflexivity. Qed. Theorem plus_O_n' : forall n : nat, 0 + n = n. Proof. intros n. reflexivity. Qed. Theorem plus_1_l : forall n:nat, 1 + n = S n. Proof. intros n. reflexivity. Qed. Theorem mult_0_l : forall n:nat, 0 * n = 0. Proof. intros n. reflexivity. Qed. (* ################################################################# *) (** * Proof by Rewriting *) Theorem plus_id_example : forall n m:nat, n = m -> n + n = m + m. Proof. (* move both quantifiers into the context: *) intros n m. (* move the hypothesis into the context: *) intros H. (* rewrite the goal using the hypothesis: *) rewrite -> H. reflexivity. Qed. Theorem mult_0_plus : forall n m : nat, (0 + n) * m = n * m. Proof. intros n m. rewrite -> plus_O_n. reflexivity. Qed. (** **** Exercise: 1 star (plus_id_exercise) *) (** Remove "[Admitted.]" and fill in the proof. *) Theorem plus_id_exercise : forall n m o : nat, n = m -> m = o -> n + m = m + o. Proof. intros n m o. intros H J. rewrite -> H. rewrite <- J. reflexivity. Qed. (** **** Exercise: 2 stars (mult_S_1) *) Theorem mult_S_1 : forall n m : nat, m = S n -> m * (1 + n) = m * m. Proof. intros n m. intros H. rewrite -> H. reflexivity. Qed. (* ################################################################# *) (** * Proof by Case Analysis *) Theorem plus_1_neq_0_firsttry : forall n : nat, beq_nat (n + 1) 0 = false. Proof. intros n. simpl. (* does nothing! *) Abort. Theorem plus_1_neq_0 : forall n : nat, beq_nat (n + 1) 0 = false. Proof. intros n. destruct n as [| n']. - reflexivity. - reflexivity. Qed. Theorem negb_involutive : forall b : bool, negb (negb b) = b. Proof. intros b. destruct b. - reflexivity. - reflexivity. Qed. Theorem andb_commutative : forall b c, andb b c = andb c b. Proof. intros b c. destruct b. - destruct c. + reflexivity. + reflexivity. - destruct c. + reflexivity. + reflexivity. Qed. Theorem andb_commutative' : forall b c, andb b c = andb c b. Proof. intros b c. destruct b. { destruct c. { reflexivity. } { reflexivity. } } { destruct c. { reflexivity. } { reflexivity. } } Qed. Theorem andb3_exchange : forall b c d, andb (andb b c) d = andb (andb b d) c. Proof. intros b c d. destruct b. - destruct c. { destruct d. - reflexivity. - reflexivity. } { destruct d. - reflexivity. - reflexivity. } - destruct c. { destruct d. - reflexivity. - reflexivity. } { destruct d. - reflexivity. - reflexivity. } Qed. Theorem plus_1_neq_0' : forall n : nat, beq_nat (n + 1) 0 = false. Proof. intros [|n]. - reflexivity. - reflexivity. Qed. Theorem andb_commutative'' : forall b c, andb b c = andb c b. Proof. intros [] []. - reflexivity. - reflexivity. - reflexivity. - reflexivity. Qed. (** **** Exercise: 2 stars (andb_true_elim2) *) (** Prove the following claim, marking cases (and subcases) with bullets when you use [destruct]. *) Theorem andb_true_elim2 : forall b c : bool, andb b c = true -> c = true. Proof. intros b c. intros H. destruct c. - reflexivity. - destruct b. + simpl in H. rewrite -> H. reflexivity. + simpl in H. rewrite -> H. reflexivity. Qed. (** [] *) (** **** Exercise: 1 star (zero_nbeq_plus_1) *) Theorem zero_nbeq_plus_1 : forall n : nat, beq_nat 0 (n + 1) = false. Proof. intros [|n]. reflexivity. reflexivity. Qed.
[STATEMENT] lemma p2r_conj_hom [simp]: "\<lceil>P\<rceil> \<inter> \<lceil>Q\<rceil> = \<lceil>\<lambda>s. P s \<and> Q s\<rceil>" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lceil>P\<rceil> \<inter> \<lceil>Q\<rceil> = \<lceil>\<lambda>s. P s \<and> Q s\<rceil> [PROOF STEP] by auto
# 16 PDEs: Waves (See *Computational Physics* Ch 21 and *Computational Modeling* Ch 6.5.) ## Background: waves on a string Assume a 1D string of length $L$ with mass density per unit length $\rho$ along the $x$ direction. It is held under constant tension $T$ (force per unit length). Ignore frictional forces and the tension is so high that we can ignore sagging due to gravity. ### 1D wave equation The string is displaced in the $y$ direction from its rest position, i.e., the displacement $y(x, t)$ is a function of space $x$ and time $t$. For small relative displacements $y(x, t)/L \ll 1$ and therefore small slopes $\partial y/\partial x$ we can describe $y(x, t)$ with a *linear* equation of motion: Newton's second law applied to short elements of the string with length $\Delta x$ and mass $\Delta m = \rho \Delta x$: the left hand side contains the *restoring force* that opposes the displacement, the right hand side is the acceleration of the string element: \begin{align} \sum F_{y}(x) &= \Delta m\, a(x, t)\\ T \sin\theta(x+\Delta x) - T \sin\theta(x) &= \rho \Delta x \frac{\partial^2 y(x, t)}{\partial t^2} \end{align} The angle $\theta$ measures by how much the string is bent away from the resting configuration. Because we assume small relative displacements, the angles are small ($\theta \ll 1$) and we can make the small angle approximation $$ \sin\theta \approx \tan\theta = \frac{\partial y}{\partial x} $$ and hence \begin{align} T \left.\frac{\partial y}{\partial x}\right|_{x+\Delta x} - T \left.\frac{\partial y}{\partial x}\right|_{x} &= \rho \Delta x \frac{\partial^2 y(x, t)}{\partial t^2}\\ \frac{T \left.\frac{\partial y}{\partial x}\right|_{x+\Delta x} - T \left.\frac{\partial y}{\partial x}\right|_{x}}{\Delta x} &= \rho \frac{\partial^2 y}{\partial t^2} \end{align} or in the limit $\Delta x \rightarrow 0$ a linear hyperbolic PDE results: \begin{gather} \frac{\partial^2 y(x, t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y(x, t)}{\partial t^2}, \quad c = \sqrt{\frac{T}{\rho}} \end{gather} where $c$ has the dimension of a velocity. This is the (linear) **wave equation**. ### General solution: waves General solutions are propagating waves: If $f(x)$ is a solution at $t=0$ then $$ y_{\mp}(x, t) = f(x \mp ct) $$ are also solutions at later $t > 0$. Because of linearity, any linear combination is also a solution, so the most general solution contains both right and left propagating waves $$ y(x, t) = A f(x - ct) + B g(x + ct) $$ (If $f$ and/or $g$ are present depends on the initial conditions.) In three dimensions the wave equation is $$ \boldsymbol{\nabla}^2 y(\mathbf{x}, t) - \frac{1}{c^2} \frac{\partial^2 y(\mathbf{x}, t)}{\partial t^2} = 0\ $$ ### Boundary and initial conditions * The boundary conditions could be that the ends are fixed $$y(0, t) = y(L, t) = 0$$ * The *initial condition* is a shape for the string, e.g., a Gaussian at the center $$ y(x, t=0) = g(x) = y_0 \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x - x_0)^2}{2\sigma^2}\right] $$ at time 0. * Because the wave equation is *second order in time* we need a second initial condition, for instance, the string is released from rest: $$ \frac{\partial y(x, t=0)}{\partial t} = 0 $$ (The derivative, i.e., the initial displacement velocity is provided.) ### Analytical solution Solve (as always) with *separation of variables*. $$ y(x, t) = X(x) T(t) $$ and this yields the general solution (with boundary conditions of fixed string ends and initial condition of zero velocity) as a superposition of normal modes $$ y(x, t) = \sum_{n=0}^{+\infty} B_n \sin k_n x\, \cos\omega_n t, \quad \omega_n = ck_n,\ k_n = n \frac{2\pi}{L} = n k_0. $$ (The angular frequency $\omega$ and the wave vector $k$ are determined from the boundary conditions.) The coefficients $B_n$ are obtained from the initial shape: $$ y(x, t=0) = \sum_{n=0}^{+\infty} B_n \sin n k_0 x = g(x) $$ In principle one can use the fact that $\int_0^L dx \sin m k_0 x \, \sin n k_0 x = \pi \delta_{mn}$ (orthogonality) to calculate the coefficients: \begin{align} \int_0^L dx \sin m k_0 x \sum_{n=0}^{+\infty} B_n \sin n k_0 x &= \int_0^L dx \sin(m k_0 x) \, g(x)\\ \pi \sum_{n=0}^{+\infty} B_n \delta_{mn} &= \dots \\ B_m &= \pi^{-1} \dots \end{align} (but the analytical solution is ugly and I cannot be bothered to put it down here.) ## Numerical solution 1. discretize wave equation 2. time stepping: leap frog algorithm (iterate) Use the central difference approximation for the second order derivatives: \begin{align} \frac{\partial^2 y}{\partial t^2} &\approx \frac{y(x, t+\Delta t) + y(x, t-\Delta t) - 2y(x, t)}{\Delta t ^2} = \frac{y_{i, j+1} + y_{i, j-1} - 2y_{i,j}}{\Delta t^2}\\ \frac{\partial^2 y}{\partial x^2} &\approx \frac{y(x+\Delta x, t) + y(x-\Delta x, t) - 2y(x, t)}{\Delta x ^2} = \frac{y_{i+1, j} + y_{i-1, j} - 2y_{i,j}}{\Delta x^2} \end{align} and substitute into the wave equation to yield the *discretized* wave equation: $$ \frac{y_{i+1, j} + y_{i-1, j} - 2y_{i,j}}{\Delta x^2} = \frac{1}{c^2} \frac{y_{i, j+1} + y_{i, j-1} - 2y_{i,j}}{\Delta t^2} $$ Re-arrange so that the future terms $j+1$ can be calculated from the present $j$ and past $j-1$ terms: $$ y_{i,j+1} = 2(1 - \beta^2)y_{i,j} - y_{i, j-1} + \beta^2 (y_{i+1,j} + y_{i-1,j}), \quad \beta := \frac{c}{\Delta x/\Delta t} $$ This is the time stepping algorithm for the wave equation. ## Numerical implementation ```python import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D plt.style.use('ggplot') ``` ### Student version ```python L = 0.5 # m Nx = 50 Nt = 100 Dx = L/Nx Dt = 1e-4 # s rho = 1.5e-2 # kg/m tension = 150 # N c = np.sqrt(tension/rho) # TODO: calculate beta beta = c*Dt/Dx beta2 = beta**2 print("c = {0} m/s".format(c)) print("Dx = {0} m, Dt = {1} s, Dx/Dt = {2} m/s".format(Dx, Dt, Dx/Dt)) print("beta = {}".format(beta)) X = np.linspace(0, L, Nx+1) # need N+1! def gaussian(x, y0=0.05, x0=L/2, sigma=0.1*L): return y0/np.sqrt(2*np.pi*sigma) * np.exp(-(x-x0)**2/(2*sigma**2)) # displacements at j-1, j, j+1 y0 = np.zeros_like(X) y1 = np.zeros_like(y0) y2 = np.zeros_like(y0) # save array y_t = np.zeros((Nt+1, Nx+1)) # boundary conditions y0[0] = y0[-1] = y1[0] = y1[-1] = 0 y2[:] = y0 # initial conditions: velocity 0, i.e. no difference between y0 and y1 y0[1:-1] = y1[1:-1] = gaussian(X)[1:-1] # save initial t_index = 0 y_t[t_index, :] = y0 t_index += 1 y_t[t_index, :] = y1 for jt in range(2, Nt): y2[1:-1] = 2*(1-beta2)*y1[1:-1] - y0[1:-1] + beta2*(y1[2:] + y1[:-2]) y0[:], y1[:] = y1, y2 t_index += 1 y_t[t_index, :] = y2 print("Iteration {0:5d}".format(jt), end="\r") else: print("Completed {0:5d} iterations: t={1} s".format(jt, jt*Dt)) ``` c = 100.0 m/s Dx = 0.01 m, Dt = 0.0001 s, Dx/Dt = 100.0 m/s beta = 1.0 Completed 99 iterations: t=0.0099 s ### Fancy version Package as a function and can use `step` to only save every `step` time steps. ```python def wave(L=0.5, Nx=50, Dt=1e-4, Nt=100, step=1, rho=1.5e-2, tension=150.): Dx = L/Nx #rho = 1.5e-2 # kg/m #tension = 150 # N c = np.sqrt(tension/rho) beta = c*Dt/Dx beta2 = beta**2 print("c = {0} m/s".format(c)) print("Dx = {0} m, Dt = {1} s, Dx/Dt = {2} m/s".format(Dx, Dt, Dx/Dt)) print("beta = {}".format(beta)) X = np.linspace(0, L, Nx+1) # need N+1! def gaussian(x, y0=0.05, x0=L/2, sigma=0.1*L): return y0/np.sqrt(2*np.pi*sigma) * np.exp(-(x-x0)**2/(2*sigma**2)) # displacements at j-1, j, j+1 y0 = np.zeros_like(X) y1 = np.zeros_like(y0) y2 = np.zeros_like(y0) # save array y_t = np.zeros((int(np.ceil(Nt/step)) + 1, Nx+1)) # boundary conditions y0[0] = y0[-1] = y1[0] = y1[-1] = 0 y2[:] = y0 # initial conditions: velocity 0, i.e. no difference between y0 and y1 y0[1:-1] = y1[1:-1] = gaussian(X)[1:-1] # save initial t_index = 0 y_t[t_index, :] = y0 if step == 1: t_index += 1 y_t[t_index, :] = y1 for jt in range(2, Nt): y2[1:-1] = 2*(1-beta2)*y1[1:-1] - y0[1:-1] + beta2*(y1[2:] + y1[:-2]) y0[:], y1[:] = y1, y2 if jt % step == 0 or jt == Nt-1: t_index += 1 y_t[t_index, :] = y2 print("Iteration {0:5d}".format(jt), end="\r") else: print("Completed {0:5d} iterations: t={1} s".format(jt, jt*Dt)) return y_t, X, Dx, Dt, step ``` ```python y_t, X, Dx, Dt, step = wave() ``` c = 100.0 m/s Dx = 0.01 m, Dt = 0.0001 s, Dx/Dt = 100.0 m/s beta = 1.0 Completed 99 iterations: t=0.0099 s ### 1D plot Plot the output in the save array `y_t`. Vary the time steps that you look at with `y_t[start:end]`. We indicate time by color changing. ```python ax = plt.subplot(111) ax.set_prop_cycle("color", [plt.cm.viridis(i) for i in np.linspace(0, 1, len(y_t))]) ax.plot(X, y_t[:40].T, alpha=0.5); ``` ### 1D Animation For 1D animation to work in a Jupyter notebook, use ```python %matplotlib widget ``` If no animations are visible, restart kernel and execute the `%matplotlib notebook` cell as the very first one in the notebook. We use `matplotlib.animation` to look at movies of our solution: ```python import matplotlib.animation as animation ``` Generate one full period: ```python y_t, X, Dx, Dt, step = wave(Nt=100) ``` The `update_wave()` function simply re-draws our image for every `frame`. ```python y_limits = 1.05*y_t.min(), 1.05*y_t.max() fig1 = plt.figure(figsize=(5,5)) ax = fig1.add_subplot(111) ax.set_aspect(1) def update_wave(frame, data): global ax, Dt, y_limits ax.clear() ax.set_xlabel("x (m)") ax.set_ylabel("y (m)") ax.plot(X, data[frame]) ax.set_ylim(y_limits) ax.text(0.1, 0.9, "t = {0:3.1f} ms".format(frame*Dt*1e3), transform=ax.transAxes) wave_anim = animation.FuncAnimation(fig1, update_wave, frames=len(y_t), fargs=(y_t,), interval=30, blit=True, repeat_delay=100) ``` If you have ffmpeg installed then you can export to a MP4 movie file: ```python wave_anim.save("string.mp4", fps=30, dpi=300) ``` The whole video can be incoroporated into an html page (uses the HTML5 `<video>` tag). ```python with open("string.html", "w") as html: html.write(wave_anim.to_html5_video()) ``` ```python ``` ### 3D plot (Uses functions from previous lessons.) ```python def plot_y(y_t, Dt, Dx, step=1): T, X = np.meshgrid(range(y_t.shape[0]), range(y_t.shape[1])) Y = y_t.T[X, T] # intepret index 0 as "t" and index 1 as "x", but plot x along axis 1 and t along axis 2 fig = plt.figure() ax = fig.add_subplot(111, projection="3d") ax.plot_wireframe(X*Dx, T*Dt*step, Y) ax.set_ylabel(r"time $t$ (s)") ax.set_xlabel(r"position $x$ (m)") ax.set_zlabel(r"displacement $y$ (m)") fig.tight_layout() return ax def plot_surf(y_t, Dt, Dx, step=1, filename=None, offset=-1, zlabel=r'displacement', elevation=40, azimuth=-20, cmap=plt.cm.coolwarm): """Plot y_t as a 3D plot with contour plot underneath. Arguments --------- y_t : 2D array displacement y(t, x) filename : string or None, optional (default: None) If `None` then show the figure and return the axes object. If a string is given (like "contour.png") it will only plot to the filename and close the figure but return the filename. offset : float, optional (default: 20) position the 2D contour plot by offset along the Z direction under the minimum Z value zlabel : string, optional label for the Z axis and color scale bar elevation : float, optional choose elevation for initial viewpoint azimuth : float, optional chooze azimuth angle for initial viewpoint """ t = np.arange(y_t.shape[0], dtype=int) x = np.arange(y_t.shape[1], dtype=int) T, X = np.meshgrid(t, x) Y = y_t.T[X, T] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(X*Dx, T*Dt*step, Y, cmap=cmap, rstride=1, cstride=1, alpha=1) cset = ax.contourf(X*Dx, T*Dt*step, Y, 20, zdir='z', offset=offset+Y.min(), cmap=cmap) ax.set_xlabel('x') ax.set_ylabel('t') ax.set_zlabel(zlabel) ax.set_zlim(offset + Y.min(), Y.max()) ax.view_init(elev=elevation, azim=azimuth) cb = fig.colorbar(surf, shrink=0.5, aspect=5) cb.set_label(zlabel) if filename: fig.savefig(filename) plt.close(fig) return filename else: return ax ``` ```python plot_y(y_t, Dt, Dx) ``` ```python plot_surf(y_t, Dt, Dx, offset=-0.04, cmap=plt.cm.coolwarm) ``` ## von Neumann stability analysis: Courant condition Assume that the solutions of the discretized equation can be written as normal modes $$ y_{m,j} = \xi(k)^j e^{ikm\Delta x}, \quad t=j\Delta t,\ x=m\Delta x $$ The time stepping algorith is stable if $$ |\xi(k)| < 1 $$ Insert normal modes into the discretized equation $$ y_{i,j+1} = 2(1 - \beta^2)y_{i,j} - y_{i, j-1} + \beta^2 (y_{i+1,j} + y_{i-1,j}), \quad \beta := \frac{c}{\Delta x/\Delta t} $$ and simplify (use $1-\cos x = 2\sin^2\frac{x}{2}$): $$ \xi^2 - 2(1-2\beta^2 s^2)\xi + 1 = 0, \quad s=\sin(k\Delta x/2) $$ The characteristic equation has roots $$ \xi_{\pm} = 1 - 2\beta^2 s^2 \pm \sqrt{(1-2\beta^2 s^2)^2 - 1}. $$ It has one root for $$ \left|1-2\beta^2 s^2\right| = 1, $$ i.e., for $$ \beta s = 1 $$ We have two real roots for $$ \left|1-2\beta^2 s^2\right| < 1 \\ \beta s > 1 $$ but one of the roots is always $|\xi| > 1$ and hence these solutions will diverge and not be stable. For $$ \left|1-2\beta^2 s^2\right| ≥ 1 \\ \beta s ≤ 1 $$ the roots will be *complex conjugates of each other* $$ \xi_\pm = 1 - 2\beta^2s^2 \pm i\sqrt{1-(1-2\beta^2s^2)^2} $$ and the *magnitude* $$ |\xi_{\pm}|^2 = (1 - 2\beta^2s^2)^2 - (1-(1-2\beta^2s^2)^2) = 1 $$ is unity: Thus the solutions will not grow and will be *stable* for $$ \beta s ≤ 1\\ \frac{c}{\frac{\Delta x}{\Delta t}} \sin\frac{k \Delta x}{2} ≤ 1 $$ Assuming the "worst case" for the $\sin$ factor (namely, 1), the **condition for stability** is $$ c ≤ \frac{\Delta x}{\Delta t} $$ or $$ \beta ≤ 1. $$ This is also known as the **Courant condition**. When written as $$ \Delta t ≤ \frac{\Delta x}{c} $$ it means that the time step $\Delta t$ (for a given $\Delta x$) must be *smaller than the time that the wave takes to travel one grid step*. ## Simplified simulation The above example used real numbers for a cello string. Below is bare-bones where we just set $\beta$. ```python L = 10.0 Nx = 100 Nt = 200 step = 1 Dx = L/Nx beta2 = 1.0 X = np.linspace(0, L, Nx+1) # need N+1! def gaussian(x): return np.exp(-(x-5)**2) # displacements at j-1, j, j+1 y0 = np.zeros_like(X) y1 = np.zeros_like(y0) y2 = np.zeros_like(y0) # save array y_t = np.zeros((int(np.ceil(Nt/step)) + 1, Nx+1)) # boundary conditions y0[0] = y0[-1] = y1[0] = y1[-1] = 0 y2[:] = y0 # initial conditions: velocity 0, i.e. no difference between y0 and y1 y0[:] = y1[:] = gaussian(X) # save initial t_index = 0 y_t[t_index, :] = y0 if step == 1: t_index += 1 y_t[t_index, :] = y1 for jt in range(2, Nt): y2[1:-1] = 2*(1-beta2)*y1[1:-1] - y0[1:-1] + beta2*(y1[2:] + y1[:-2]) y0[:], y1[:] = y1, y2 if jt % step == 0 or jt == Nt-1: t_index += 1 y_t[t_index, :] = y2 print("Iteration {0:5d}".format(jt), end="\r") else: print("Completed {0:5d} iterations: t={1} s".format(jt, jt*Dt)) ``` ```python ax = plt.subplot(111) ax.set_prop_cycle("color", [plt.cm.viridis_r(i) for i in np.linspace(0, 1, len(y_t))]) ax.plot(X, y_t.T); ``` ```python ```
theory IP_Address_toString imports IP_Address IPv4 IPv6 Lib_Word_toString Lib_List_toString "HOL-Library.Code_Target_Nat" (*!!*) begin section\<open>Pretty Printing IP Addresses\<close> subsection\<open>Generic Pretty Printer\<close> text\<open>Generic function. Whenever possible, use IPv4 or IPv6 pretty printing!\<close> definition ipaddr_generic_toString :: "'i::len word \<Rightarrow> string" where "ipaddr_generic_toString ip \<equiv> ''[IP address ('' @ string_of_nat (LENGTH('i)) @ '' bit): '' @ dec_string_of_word0 ip @ '']''" lemma "ipaddr_generic_toString (ipv4addr_of_dotdecimal (192,168,0,1)) = ''[IP address (32 bit): 3232235521]''" by eval subsection\<open>IPv4 Pretty Printing\<close> fun dotteddecimal_toString :: "nat \<times> nat \<times> nat \<times> nat \<Rightarrow> string" where "dotteddecimal_toString (a,b,c,d) = string_of_nat a@''.''@string_of_nat b@''.''@string_of_nat c@''.''@string_of_nat d" definition ipv4addr_toString :: "ipv4addr \<Rightarrow> string" where "ipv4addr_toString ip = dotteddecimal_toString (dotdecimal_of_ipv4addr ip)" lemma "ipv4addr_toString (ipv4addr_of_dotdecimal (192, 168, 0, 1)) = ''192.168.0.1''" by eval text\<open>Correctness Theorems:\<close> thm dotdecimal_of_ipv4addr_ipv4addr_of_dotdecimal ipv4addr_of_dotdecimal_dotdecimal_of_ipv4addr subsection\<open>IPv6 Pretty Printing\<close> definition ipv6addr_toString :: "ipv6addr \<Rightarrow> string" where "ipv6addr_toString ip = ( let partslist = ipv6_preferred_to_compressed (int_to_ipv6preferred ip); \<comment> \<open>add empty lists to the beginning and end if omission occurs at start/end\<close> \<comment> \<open>to join over \<^verbatim>\<open>:\<close> properly\<close> fix_start = (\<lambda>ps. case ps of None#_ \<Rightarrow> None#ps | _ \<Rightarrow> ps); fix_end = (\<lambda>ps. case rev ps of None#_ \<Rightarrow> ps@[None] | _ \<Rightarrow> ps) in list_separated_toString '':'' (\<lambda>pt. case pt of None \<Rightarrow> '''' | Some w \<Rightarrow> hex_string_of_word0 w) ((fix_end \<circ> fix_start) partslist) )" lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0x2001 0xDB8 0x0 0x0 0x8 0x800 0x200C 0x417A)) = ''2001:db8::8:800:200c:417a''" by eval \<comment> \<open>a unicast address\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0xFF01 0x0 0x0 0x0 0x0 0x0 0x0 0x0101)) = ''ff01::101''" by eval \<comment> \<open>a multicast address\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0 0 0 0 0x8 0x800 0x200C 0x417A)) = ''::8:800:200c:417a''" by eval lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0x2001 0xDB8 0 0 0 0 0 0)) = ''2001:db8::''" by eval lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0xFF00 0 0 0 0 0 0 0)) = ''ff00::''" by eval \<comment> \<open>Multicast\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0xFE80 0 0 0 0 0 0 0)) = ''fe80::''" by eval \<comment> \<open>Link-Local unicast\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0 0 0 0 0 0 0 0)) = ''::''" by eval \<comment> \<open>unspecified address\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0 0 0 0 0 0 0 1)) = ''::1''" by eval \<comment> \<open>loopback address\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0x2001 0xdb8 0x0 0x0 0x0 0x0 0x0 0x1)) = ''2001:db8::1''" by eval \<comment> \<open>Section 4.1 of RFC5952\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0x2001 0xdb8 0x0 0x0 0x0 0x0 0x2 0x1)) = ''2001:db8::2:1''" by eval \<comment> \<open>Section 4.2.1 of RFC5952\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0x2001 0xdb8 0x0 0x1 0x1 0x1 0x1 0x1)) = ''2001:db8:0:1:1:1:1:1''" by eval \<comment> \<open>Section 4.2.2 of RFC5952\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0x2001 0x0 0x0 0x1 0x0 0x0 0x0 0x1)) = ''2001:0:0:1::1''" by eval \<comment> \<open>Section 4.2.3 of RFC5952\<close> lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0x2001 0xdb8 0x0 0x0 0x1 0x0 0x0 0x1)) = ''2001:db8::1:0:0:1''" by eval \<comment> \<open>Section 4.2.3 of RFC5952\<close> lemma "ipv6addr_toString max_ipv6_addr = ''ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff''" by eval lemma "ipv6addr_toString (ipv6preferred_to_int (IPv6AddrPreferred 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff)) = ''ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff''" by eval text\<open>Correctness Theorems:\<close> thm ipv6_preferred_to_compressed ipv6_preferred_to_compressed_RFC_4291_format ipv6_unparsed_compressed_to_preferred_identity1 ipv6_unparsed_compressed_to_preferred_identity2 RFC_4291_format ipv6preferred_to_int_int_to_ipv6preferred int_to_ipv6preferred_ipv6preferred_to_int end
lemma (in sigma_algebra) sets_Collect_countable_Ball: assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M" shows "{x\<in>\<Omega>. \<forall>i::'i::countable\<in>X. P i x} \<in> M"
! { dg-do run } module m implicit character(8) (a-z) contains function f(x) integer :: x integer :: f real :: e f = x return entry e(x) e = x end end module program p use m if (f(1) /= 1) call abort if (e(1) /= 1.0) call abort end
module Ag05 where open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Bool {- data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x -} data Refine : (A : Set) → (A → Set) → Set where MkRefine : ∀ {A : Set} {f : A → Set} → (a : A) → (f a) → Refine A f data _∧_ : Set → Set → Set where and : ∀ (A B : Set) → A ∧ B -- hl-suc : ∀ {a : Nat} → Refine Nat (λ ) silly : Set silly = Refine Nat (_≡_ 0) sillySon : silly sillySon = MkRefine zero refl data _≤_ : Nat → Nat → Set where z≤s : ∀ {b : Nat} → 0 ≤ b s≤s : ∀ {m n : Nat} → m ≤ n → suc m ≤ suc n data le-Total (x y : Nat) : Set where le-left : x ≤ y → le-Total x y le-right : y ≤ x → le-Total x y le : Nat → Nat → Bool le zero zero = true le zero (suc n) = true le (suc m) zero = false le (suc m) (suc n) = le m n le-wtf : ∀ (x y : Nat) → le-Total x y le-wtf zero zero = le-left z≤s le-wtf zero (suc y) = le-left z≤s le-wtf (suc x) zero = le-right z≤s le-wtf (suc x) (suc y) with le-wtf x y ... | le-left P = le-left (s≤s P) ... | le-right Q = le-right (s≤s Q) {- with le x y -- x ≤ y ... | true = {!!} ... | false = {!!} -} _⟨_⟩ : (A : Set) → (A → Set) → Set _⟨_⟩ = Refine and-refine : ∀ {A : Set} (f g : A → Set) → (a : A) → f a → g a → Refine A (λ x → (f x) ∧ (g x)) and-refine f g x Pa Pb = MkRefine x (and (f x) (g x)) hSuc : ∀ {m : Nat} → ( Nat ⟨ (λ x → x ≤ m ) ⟩ ) → ( Nat ⟨ (λ x → x ≤ suc m ) ⟩ ) hSuc (MkRefine a P) = MkRefine (suc a) (s≤s P) postulate ≤-trans : ∀ {x y z : Nat} → x ≤ y → y ≤ z → x ≤ z min : ∀ {m n : Nat} → ( Nat ⟨ (λ x → x ≤ m) ⟩ ) → ( Nat ⟨ (λ x → x ≤ n) ⟩ ) → ( Nat ⟨ (λ x → (x ≤ m) ∧ (x ≤ n)) ⟩ ) min (MkRefine a Pa) (MkRefine b Pb) with le-wtf a b ... {- a ≤ b -} | le-left P = {!and-refine ? ? Pa ? !} ... {- b ≤ a -} | le-right Q = {!and-refine _ _ ? Pb !} {- with le-Total a b ... | le-left a = {!!} ... | le-right b = ? -} {- min {m} {n} (MkRefine a P₀) (MkRefine b P₁) with (le a b) ... | true = {!!} ... | false = {!!} -} {- min {m} {n} (MkRefine zero x) (MkRefine b y) = MkRefine 0 (and (zero ≤ m) (zero ≤ n)) min {m} {n} (MkRefine (suc a) x) (MkRefine zero y) = MkRefine 0 (and (zero ≤ m) (zero ≤ n)) min {suc m} {suc n} (MkRefine (suc a) x) (MkRefine (suc b) y) = {!hSuc (min (MkRefine a ?) (MkRefine b ?))!} -}