text
stringlengths 0
3.34M
|
---|
C
C $Id: e2fndp.f,v 1.5 2008-07-27 00:17:08 haley Exp $
C
C Copyright (C) 2000
C University Corporation for Atmospheric Research
C All Rights Reserved
C
C The use of this Software is governed by a License Agreement.
C
DOUBLE PRECISION FUNCTION E2FNDP (ECCNTS)
C
C This function computes the constant E2.
C
IMPLICIT DOUBLE PRECISION (A-Z)
DATA CON1,CON2 /0.05859375D0,0.75D0/
DATA ONE /1.0D0/
C
E2FNDP = CON1 * ECCNTS * ECCNTS * (ONE + CON2 * ECCNTS)
C
RETURN
END
|
Boron nitride is a synthetic material that's available in several forms, including powder, solid, liquid, and aerosol spray. Most types of glass will not stick to boron nitride; as a result, the liquid and aerosol forms can be used in kiln-forming as a release on slumping molds.
Although boron nitride is much more expensive than kiln wash, it does have several advantages. Applied correctly, it is smoother than kiln wash. It's also less dusty, and may be less likely to mark the slumped glass than kiln wash. It can be used on both stainless steel and clay molds, but most formulations of boron nitride are not suitable for use on the kiln shelf.
Depending on the quality and purity, liquid boron nitride may be used as is or diluted with distilled water. It works best when diluted to the consistency of whole milk. Boron nitride aerosol sprays can be used straight out of the can, and no mixing or diluting is necessary.
In general, boron nitride is rated for kiln use only to around 1550F/840C. Some varieties of the product will claim higher rated temperatures, but usually this refers to the product's use in a reducing atmosphere, rather than in the oxidizing atmosphere typical of most kilns.
Tomorrow's tip will contain specific information about using boron nitride on slumping molds. |
a=1:20
@test avg(a) == 10.5
|
### CCM analysis to determine causality
# Spatial CV ~ Age diversity, Abundance, AMO, SBT/SST, CV of SBT/SST
########## Warning!
# This step takes much time.
# One can skip this step if the pre-run CCM results are provided.
# Please see the loading code below.
########## Warning!
# run CCM several times to find the best lag for each variable
EDM_lib_var = lapply(EDM_lib_var, function(item, lib_var=library_var, lag=lags, t_ccm=time_ccm){
data = item[[dataset]]
data = subset(data, select=names(data) %ni% c("Year", "Quarter"))
data = cbind(data[lib_var], subset(data, select=names(data) %ni% lib_var))
item$ccm = data.frame(matrix(0, nrow = 0, ncol = 10))
for (i in 1:t_ccm){
seed = 1234 + i * 10
ccm_result = determineCausality(data = data,
dim.list = item$E,
species = item$species,
lags = lag,
seed = seed)
item$ccm = rbind(item$ccm, ccm_result)
}
return(item)
})
# save ccm results
lapply(EDM_lib_var, function(item){
write.csv(item$ccm,
file = paste0(wd, ccm_path, item$species, ".csv"),
row.names = FALSE)
})
|
INCLUDE "cortex-a7.rd"
|
(* ** License
* -----------------------------------------------------------------------
* Copyright 2016--2017 IMDEA Software Institute
* Copyright 2016--2017 Inria
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
* ----------------------------------------------------------------------- *)
(* ** Imports and settings *)
From mathcomp Require Import all_ssreflect.
From Coq.Unicode Require Import Utf8.
Require Import ZArith Setoid Morphisms CMorphisms CRelationClasses.
Require Import xseq oseq.
Require Psatz.
From CoqWord Require Import ssrZ.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope Z_scope.
(* -------------------------------------------------------------------- *)
Module FinIsCount.
Section FinIsCount.
Variable (T : eqType) (enum : seq T) (A : Finite.axiom enum).
Definition pickle (x : T) :=
seq.index x enum.
Definition unpickle (n : nat) :=
nth None [seq some x | x <- enum] n.
Definition pickleK : pcancel pickle unpickle.
Proof.
move=> x; have xE: x \in enum by apply/count_memPn; rewrite (A x).
by rewrite /pickle /unpickle (nth_map x) ?(nth_index, index_mem).
Qed.
End FinIsCount.
End FinIsCount.
(* ** Result monad
* -------------------------------------------------------------------- *)
Variant result (E : Type) (A : Type) : Type :=
| Ok of A
| Error of E.
Arguments Error {E} {A} s.
Definition is_ok (E A:Type) (r:result E A) := if r is Ok a then true else false.
Lemma is_ok_ok (E A:Type) (a:A) : is_ok (Ok E a).
Proof. done. Qed.
Hint Resolve is_ok_ok.
Lemma is_okP (E A:Type) (r:result E A) : reflect (exists (a:A), r = Ok E a) (is_ok r).
Proof.
case: r => /=; constructor; first by eauto.
by move=> [].
Qed.
Section ResultEqType.
Variable E A : eqType.
Definition result_eq (r1 r2: result E A): bool :=
match r1, r2 with
| Ok a1, Ok a2 => a1 == a2
| Error e1, Error e2 => e1 == e2
| _, _ => false
end.
Lemma result_eqP : Equality.axiom result_eq.
Proof.
case=> [a1|e1] [a2|e2] /=; try (by apply: ReflectF);
by apply: (equivP eqP);split=>[|[]] ->.
Qed.
Canonical result_eqMixin := EqMixin result_eqP.
Canonical result_eqType := Eval hnf in EqType (result E A) result_eqMixin.
End ResultEqType.
Module Result.
Definition apply eT aT rT (f : aT -> rT) (x : rT) (u : result eT aT) :=
if u is Ok y then f y else x.
Definition bind eT aT rT (f : aT -> result eT rT) g :=
match g with
| Ok x => f x
| Error s => Error s
end.
Definition map eT aT rT (f : aT -> rT) := bind (fun x => Ok eT (f x)).
Definition default eT aT := @apply eT aT aT (fun x => x).
End Result.
Definition o2r eT aT (e : eT) (o : option aT) :=
match o with
| None => Error e
| Some x => Ok eT x
end.
Notation rapp := Result.apply.
Notation rdflt := Result.default.
Notation rbind := Result.bind.
Notation rmap := Result.map.
Notation ok := (@Ok _).
Notation "m >>= f" := (rbind f m) (at level 25, left associativity).
Notation "'Let' x ':=' m 'in' body" := (m >>= (fun x => body)) (at level 25).
Lemma bindA eT aT bT cT (f : aT -> result eT bT) (g: bT -> result eT cT) m:
m >>= f >>= g = m >>= (fun a => f a >>= g).
Proof. case:m => //=. Qed.
Lemma bind_eq eT aT rT (f1 f2 : aT -> result eT rT) m1 m2 :
m1 = m2 -> f1 =1 f2 -> m1 >>= f1 = m2 >>= f2.
Proof. move=> <- Hf; case m1 => //=. Qed.
Definition ok_inj {E A} (a a': A) (H: Ok E a = ok a') : a = a' :=
let 'Logic.eq_refl := H in Logic.eq_refl.
Definition Error_inj {E A} (a a': E) (H: @Error E A a = Error a') : a = a' :=
let 'Logic.eq_refl := H in Logic.eq_refl.
Definition assert E (b: bool) (e: E) : result E unit :=
if b then ok tt else Error e.
Lemma assertP E b e u :
@assert E b e = ok u → b.
Proof. by case: b. Qed.
Arguments assertP {E b e u} _.
Variant error :=
| ErrOob | ErrAddrUndef | ErrAddrInvalid | ErrStack | ErrType.
Scheme Equality for error.
Lemma error_beqP : Equality.axiom error_beq.
Proof.
move=> e1 e2;case Heq: error_beq;constructor.
+ by apply: internal_error_dec_bl.
by move=> /internal_error_dec_lb;rewrite Heq.
Qed.
Canonical error_eqMixin := EqMixin error_beqP.
Canonical error_eqType := Eval hnf in EqType error error_eqMixin.
Definition exec t := result error t.
Definition type_error {t} := @Error _ t ErrType.
Definition undef_error {t} := @Error error t ErrAddrUndef.
Lemma bindW {T U} (v : exec T) (f : T -> exec U) r :
v >>= f = ok r -> exists2 a, v = ok a & f a = ok r.
Proof. by case E: v => [a|//] /= <-; exists a. Qed.
Lemma rbindP eT aT rT (e:result eT aT) (body:aT -> result eT rT) v (P:Type):
(forall z, e = ok z -> body z = Ok _ v -> P) ->
e >>= body = Ok _ v -> P.
Proof. by case: e=> //= a H /H H';apply H'. Qed.
Ltac t_rbindP := do? (apply: rbindP => ??).
Ltac t_xrbindP :=
match goal with
| [ |- Result.bind _ _ = Ok _ _ -> _ ] =>
let y := fresh "y" in
let h := fresh "h" in
apply: rbindP=> y; t_xrbindP=> h;
t_xrbindP; move: y h
| [ |- ok _ = ok _ -> _ ] =>
case; t_xrbindP
| [ |- _ -> _ ] =>
let h := fresh "h" in move=> h; t_xrbindP; move: h
| _ => idtac
end.
Ltac clarify :=
repeat match goal with
| H : ?a = ?b |- _ => subst a || subst b
| H : ok _ = ok _ |- _ => apply ok_inj in H
| H : Some _ = Some _ |- _ => move: H => /Some_inj H
| H : ?a = _, K : ?a = _ |- _ => rewrite H in K
end.
Lemma Let_Let {eT A B C} (a:result eT A) (b:A -> result eT B) (c: B -> result eT C) :
((a >>= b) >>= c) = a >>= (fun a => b a >>= c).
Proof. by case: a. Qed.
Definition mapM eT aT bT (f : aT -> result eT bT) : seq aT → result eT (seq bT) :=
fix mapM xs :=
match xs with
| [::] =>
Ok eT [::]
| [:: x & xs] =>
f x >>= fun y =>
mapM xs >>= fun ys =>
Ok eT [:: y & ys]
end.
Lemma mapM_cons aT eT bT x xs y ys (f : aT -> result eT bT):
f x = ok y /\ mapM f xs = ok ys
<-> mapM f (x :: xs) = ok (y :: ys).
Proof.
split.
by move => [] /= -> ->.
by simpl; t_xrbindP => y0 -> h0 -> -> ->.
Qed.
Lemma map_ext aT bT f g m :
(forall a, List.In a m -> f a = g a) ->
@map aT bT f m = map g m.
Proof.
elim: m => //= a m ih ext.
rewrite ext; [ f_equal | ]; eauto.
Qed.
Instance mapM_ext eT aT bT :
Proper (@eqfun (result eT bT) aT ==> eq ==> eq) (@mapM eT aT bT).
Proof.
move => f g ext xs xs' <-{xs'}.
by elim: xs => //= a xs ->; rewrite (ext a); case: (g a).
Qed.
Lemma mapM_size eT aT bT f xs ys :
@mapM eT aT bT f xs = ok ys ->
size xs = size ys.
Proof.
elim: xs ys.
- by move => ys [<-].
move => x xs ih ys /=; case: (f _) => //= y.
by case: (mapM f xs) ih => //= ys' ih [] ?; subst; rewrite (ih _ erefl).
Qed.
Local Close Scope Z_scope.
Lemma mapM_nth eT aT bT f xs ys d d' n :
@mapM eT aT bT f xs = ok ys ->
n < size xs ->
f (nth d xs n) = ok (nth d' ys n).
Proof.
elim: xs ys n.
- by move => ys n [<-].
move => x xs ih ys n /=; case h: (f _) => [ y | ] //=.
case: (mapM f xs) ih => //= ys' /(_ _ _ erefl) ih [] <- {ys}.
by case: n ih => // n /(_ n).
Qed.
Local Open Scope Z_scope.
Lemma mapM_onth eT aT bT (f: aT → result eT bT) (xs: seq aT) ys n x :
mapM f xs = ok ys →
onth xs n = Some x →
∃ y, onth ys n = Some y ∧ f x = ok y.
Proof.
move => ok_ys.
case: (leqP (size xs) n) => hsz; first by rewrite (onth_default hsz).
elim: xs ys ok_ys n hsz.
- by move => ys [<-].
move => y xs ih ys' /=; t_xrbindP => z ok_z ys ok_ys <- [| n ] hsz /= ok_y.
- by exists z; case: ok_y => <-.
exact: (ih _ ok_ys n hsz ok_y).
Qed.
Lemma mapM_onth' eT aT bT (f: aT → result eT bT) (xs: seq aT) ys n y :
mapM f xs = ok ys →
onth ys n = Some y →
∃ x, onth xs n = Some x ∧ f x = ok y.
Proof.
move => ok_ys.
case: (leqP (size ys) n) => hsz; first by rewrite (onth_default hsz).
elim: xs ys ok_ys n hsz.
- by move => ys [<-].
move => x xs ih ys' /=; t_xrbindP => z ok_z ys ok_ys <- [| n ] hsz /= ok_y.
- by exists x; case: ok_y => <-.
exact: (ih _ ok_ys n hsz ok_y).
Qed.
Lemma mapMP {eT} {aT bT: eqType} (f: aT -> result eT bT) (s: seq aT) (s': seq bT) y:
mapM f s = ok s' ->
reflect (exists2 x, x \in s & f x = ok y) (y \in s').
Proof.
elim: s s' => /= [s' [] <-|x s IHs s']; first by right; case.
apply: rbindP=> y0 Hy0.
apply: rbindP=> ys Hys []<-.
have IHs' := (IHs _ Hys).
rewrite /= in_cons eq_sym; case Hxy: (y0 == y).
by left; exists x; [rewrite mem_head | rewrite -(eqP Hxy)].
apply: (iffP IHs')=> [[x' Hx' <-]|[x' Hx' Dy]].
by exists x'; first by apply: predU1r.
rewrite -Dy.
case/predU1P: Hx'=> [Hx|].
+ exfalso.
move: Hxy=> /negP Hxy.
apply: Hxy.
rewrite Hx Hy0 in Dy.
by move: Dy=> [] ->.
+ by exists x'.
Qed.
Lemma mapM_In {aT bT eT} (f: aT -> result eT bT) (s: seq aT) (s': seq bT) x:
mapM f s = ok s' ->
List.In x s -> exists y, List.In y s' /\ f x = ok y.
Proof.
elim: s s'=> // a l /= IH s'.
apply: rbindP=> y Hy.
apply: rbindP=> ys Hys []<-.
case.
+ by move=> <-; exists y; split=> //; left.
+ move=> Hl; move: (IH _ Hys Hl)=> [y0 [Hy0 Hy0']].
by exists y0; split=> //; right.
Qed.
Lemma mapM_In' {aT bT eT} (f: aT -> result eT bT) (s: seq aT) (s': seq bT) y:
mapM f s = ok s' ->
List.In y s' -> exists2 x, List.In x s & f x = ok y.
Proof.
elim: s s'.
+ by move => _ [<-].
move => a s ih s'' /=; t_xrbindP => b ok_b s' rec <- {s''} /=.
case.
+ by move=> <-; exists a => //; left.
by move => h; case: (ih _ rec h) => x hx ok_y; eauto.
Qed.
Lemma mapM_cat {eT aT bT} (f: aT → result eT bT) (s1 s2: seq aT) :
mapM f (s1 ++ s2) = Let r1 := mapM f s1 in Let r2 := mapM f s2 in ok (r1 ++ r2).
Proof.
elim: s1 s2; first by move => s /=; case (mapM f s).
move => a s1 ih s2 /=.
case: (f _) => // b; rewrite /= ih{ih}.
case: (mapM f s1) => // bs /=.
by case: (mapM f s2).
Qed.
Corollary mapM_rcons {eT aT bT} (f: aT → result eT bT) (s: seq aT) (a: aT) :
mapM f (rcons s a) = Let r1 := mapM f s in Let r2 := f a in ok (rcons r1 r2).
Proof. by rewrite -cats1 mapM_cat /=; case: (f a) => // b; case: (mapM _ _) => // bs; rewrite /= cats1. Qed.
Section FOLDM.
Context (eT aT bT:Type) (f:aT -> bT -> result eT bT).
Fixpoint foldM (acc : bT) (l : seq aT) :=
match l with
| [::] => Ok eT acc
| [:: a & la ] => f a acc >>= fun acc => foldM acc la
end.
Definition isOk e a (r : result e a) :=
if r is Ok _ then true else false.
End FOLDM.
Section FOLD2.
Variable A B E R:Type.
Variable e: E.
Variable f : A -> B -> R -> result E R.
Fixpoint fold2 (la:seq A) (lb: seq B) r :=
match la, lb with
| [::] , [::] => Ok E r
| a::la, b::lb =>
f a b r >>= (fold2 la lb)
| _ , _ => Error e
end.
End FOLD2.
Section MAP2.
Variable A B E R:Type.
Variable e: E.
Variable f : A -> B -> result E R.
Fixpoint mapM2 (la:seq A) (lb: seq B) :=
match la, lb with
| [::] , [::] => Ok E [::]
| a::la, b::lb =>
Let c := f a b in
Let lc := mapM2 la lb in
ok (c::lc)
| _ , _ => Error e
end.
Lemma mapM2_Forall2 (P: R → B → Prop) ma mb mr :
(∀ a b r, List.In (a, b) (zip ma mb) → f a b = ok r → P r b) →
mapM2 ma mb = ok mr →
List.Forall2 P mr mb.
Proof.
elim: ma mb mr.
+ move => [] // mr _ [<-]; constructor.
move => a ma ih [] // b mb mr' h /=; t_xrbindP => r ok_r mr rec <- {mr'}.
constructor.
+ by apply: (h _ _ _ _ ok_r); left.
by apply: ih => // a' b' r' h' ok_r'; apply: (h a' b' r' _ ok_r'); right.
Qed.
End MAP2.
(* Inversion lemmas *)
(* -------------------------------------------------------------- *)
Lemma seq_eq_injL A (m n: seq A) (h: m = n) :
match m with
| [::] => if n is [::] then True else False
| a :: m' => if n is b :: n' then a = b ∧ m' = n' else False
end.
Proof. by subst n; case: m. Qed.
Lemma List_Forall_inv A (P: A → Prop) m :
List.Forall P m →
match m with [::] => True | x :: m' => P x ∧ List.Forall P m' end.
Proof. by case. Qed.
Lemma List_Forall2_refl A (R:A->A->Prop) l : (forall a, R a a) -> List.Forall2 R l l.
Proof. by move=> HR;elim: l => // a l Hrec;constructor. Qed.
Lemma List_Forall2_inv_l A B (R: A → B → Prop) m n :
List.Forall2 R m n →
match m with
| [::] => n = [::]
| a :: m' => ∃ b n', n = b :: n' ∧ R a b ∧ List.Forall2 R m' n'
end.
Proof. case; eauto. Qed.
Lemma List_Forall2_inv_r A B (R: A → B → Prop) m n :
List.Forall2 R m n →
match n with
| [::] => m = [::]
| b :: n' => ∃ a m', m = a :: m' ∧ R a b ∧ List.Forall2 R m' n'
end.
Proof. case; eauto. Qed.
Section All2.
Variable A B:Type.
Variable f : A -> B -> bool.
Fixpoint all2 (l1:seq A) (l2: seq B) :=
match l1, l2 with
| [::] , [::] => true
| a1::l1, a2::l2 => f a1 a2 && all2 l1 l2
| _ , _ => false
end.
Lemma all2P l1 l2 : reflect (List.Forall2 f l1 l2) (all2 l1 l2).
Proof.
elim: l1 l2 => [ | a l1 hrec] [ | b l2] /=;try constructor.
+ by constructor.
+ by move/List_Forall2_inv_l.
+ by move/List_Forall2_inv_r.
apply: equivP;first apply /andP.
split => [[]h1 /hrec h2 |];first by constructor.
by case/List_Forall2_inv_l => b' [n] [] [-> ->] [->] /hrec.
Qed.
End All2.
Section Map2.
Context (A B C : Type) (f : A -> B -> C).
Fixpoint map2 la lb :=
match la, lb with
| a::la, b::lb => f a b :: map2 la lb
| _, _ => [::]
end.
Lemma map2E ma mb :
map2 ma mb = map (λ ab, f ab.1 ab.2) (zip ma mb).
Proof.
elim: ma mb; first by case.
by move => a ma ih [] // b mb /=; f_equal.
Qed.
End Map2.
Section Map3.
Context (A B C D : Type) (f : A -> B -> C -> D).
Fixpoint map3 ma mb mc :=
match ma, mb, mc with
| a :: ma', b :: mb', c :: mc' => f a b c :: map3 ma' mb' mc'
| _, _, _ => [::]
end.
Lemma map3E ma mb mc :
map3 ma mb mc = map2 (λ ab, f ab.1 ab.2) (zip ma mb) mc.
Proof.
elim: ma mb mc; first by case.
by move => a ma ih [] // b mb [] // c mc /=; f_equal.
Qed.
End Map3.
(* ** Misc functions
* -------------------------------------------------------------------- *)
Definition isSome aT (o : option aT) :=
if o is Some _ then true else false.
Fixpoint list_to_rev (ub : nat) :=
match ub with
| O => [::]
| x.+1 => [:: x & list_to_rev x ]
end.
Definition list_to ub := rev (list_to_rev ub).
Definition list_from_to (lb : nat) (ub : nat) :=
map (fun x => x + lb)%nat (list_to (ub - lb)).
Definition conc_map aT bT (f : aT -> seq bT) (l : seq aT) :=
flatten (map f l).
Definition oeq aT (f : aT -> aT -> Prop) (o1 o2 : option aT) :=
match o1, o2 with
| Some x1, Some x2 => f x1 x2
| None, None => true
| _ , _ => false
end.
Definition req eT aT (f : aT -> aT -> Prop) (o1 o2 : result eT aT) :=
match o1, o2 with
| Ok x1, Ok x2 => f x1 x2
| Error _, Error _ => true
| _ , _ => false
end.
Lemma Forall2_trans (A B C:Type) l2 (R1:A->B->Prop) (R2:B->C->Prop)
l1 l3 (R3:A->C->Prop) :
(forall b a c, R1 a b -> R2 b c -> R3 a c) ->
List.Forall2 R1 l1 l2 ->
List.Forall2 R2 l2 l3 ->
List.Forall2 R3 l1 l3.
Proof.
move=> H hr1;elim: hr1 l3 => {l1 l2} [ | a b l1 l2 hr1 _ hrec] l3 /List_Forall2_inv_l.
+ by move => ->.
by case => ? [?] [->] [??]; constructor; eauto.
Qed.
(* -------------------------------------------------------------------------- *)
(* Operators to build comparison *)
(* ---------------------------------------------------------------------------*)
Section CTRANS.
Definition ctrans c1 c2 := nosimpl (
match c1, c2 with
| Eq, _ => Some c2
| _ , Eq => Some c1
| Lt, Lt => Some Lt
| Gt, Gt => Some Gt
| _ , _ => None
end).
Lemma ctransI c : ctrans c c = Some c.
Proof. by case: c. Qed.
Lemma ctransC c1 c2 : ctrans c1 c2 = ctrans c2 c1.
Proof. by case: c1 c2 => -[]. Qed.
Lemma ctrans_Eq c1 c2 : ctrans Eq c1 = Some c2 <-> c1 = c2.
Proof. by rewrite /ctrans;case:c1=> //=;split=>[[]|->]. Qed.
Lemma ctrans_Lt c1 c2 : ctrans Lt c1 = Some c2 -> Lt = c2.
Proof. by rewrite /ctrans;case:c1=> //= -[] <-. Qed.
Lemma ctrans_Gt c1 c2 : ctrans Gt c1 = Some c2 -> Gt = c2.
Proof. by rewrite /ctrans;case:c1=> //= -[] <-. Qed.
End CTRANS.
Notation Lex u v :=
match u with
| Lt => Lt
| Eq => v
| Gt => Gt
end.
(* -------------------------------------------------------------------- *)
Scheme Equality for comparison.
Lemma comparison_beqP : Equality.axiom comparison_beq.
Proof.
move=> e1 e2;case Heq: comparison_beq;constructor.
+ by apply: internal_comparison_dec_bl.
by move=> /internal_comparison_dec_lb;rewrite Heq.
Qed.
Canonical comparison_eqMixin := EqMixin comparison_beqP.
Canonical comparison_eqType := Eval hnf in EqType comparison comparison_eqMixin.
(* -------------------------------------------------------------------- *)
Class Cmp {T:Type} (cmp:T -> T -> comparison) := {
cmp_sym : forall x y, cmp x y = CompOpp (cmp y x);
cmp_ctrans : forall y x z c, ctrans (cmp x y) (cmp y z) = Some c -> cmp x z = c;
cmp_eq : forall x y, cmp x y = Eq -> x = y;
}.
Definition gcmp {T:Type} {cmp:T -> T -> comparison} {C:Cmp cmp} := cmp.
Section CMP.
Context {T:Type} {cmp:T -> T -> comparison} {C:Cmp cmp}.
Lemma cmp_trans y x z c:
cmp x y = c -> cmp y z = c -> cmp x z = c.
Proof.
by move=> H1 H2;apply (@cmp_ctrans _ _ C y);rewrite H1 H2 ctransI.
Qed.
Lemma cmp_refl x : cmp x x = Eq.
Proof. by have := @cmp_sym _ _ C x x;case: (cmp x x). Qed.
Definition cmp_lt x1 x2 := gcmp x1 x2 == Lt.
Definition cmp_le x1 x2 := gcmp x2 x1 != Lt.
Lemma cmp_le_refl x : cmp_le x x.
Proof. by rewrite /cmp_le /gcmp cmp_refl. Qed.
Lemma cmp_lt_trans y x z : cmp_lt x y -> cmp_lt y z -> cmp_lt x z.
Proof.
rewrite /cmp_lt /gcmp => /eqP h1 /eqP h2;apply /eqP;apply (@cmp_ctrans _ _ C y).
by rewrite h1 h2.
Qed.
Lemma cmp_le_trans y x z : cmp_le x y -> cmp_le y z -> cmp_le x z.
Proof.
rewrite /cmp_le /gcmp => h1 h2;have := (@cmp_ctrans _ _ C y z x).
by case: cmp h1 => // _;case: cmp h2 => //= _;rewrite /ctrans => /(_ _ erefl) ->.
Qed.
Lemma cmp_nle_lt x y: ~~ (cmp_le x y) = cmp_lt y x.
Proof. by rewrite /cmp_le /cmp_lt /gcmp Bool.negb_involutive. Qed.
Lemma cmp_nlt_le x y: ~~ (cmp_lt x y) = cmp_le y x.
Proof. done. Qed.
Lemma cmp_lt_le_trans y x z: cmp_lt x y -> cmp_le y z -> cmp_lt x z.
Proof.
rewrite /cmp_le /cmp_lt /gcmp (cmp_sym z) => h1 h2.
have := (@cmp_ctrans _ _ C y x z).
by case: cmp h1 => // _;case: cmp h2 => //= _;rewrite /ctrans => /(_ _ erefl) ->.
Qed.
Lemma cmp_le_lt_trans y x z: cmp_le x y -> cmp_lt y z -> cmp_lt x z.
Proof.
rewrite /cmp_le /cmp_lt /gcmp (cmp_sym y) => h1 h2.
have := (@cmp_ctrans _ _ C y x z).
by case: cmp h1 => // _;case: cmp h2 => //= _;rewrite /ctrans => /(_ _ erefl) ->.
Qed.
Lemma cmp_lt_le x y : cmp_lt x y -> cmp_le x y.
Proof.
rewrite /cmp_lt /cmp_le /gcmp => /eqP h.
by rewrite cmp_sym h.
Qed.
Lemma cmp_nle_le x y : ~~ (cmp_le x y) -> cmp_le y x.
Proof. by rewrite cmp_nle_lt; apply: cmp_lt_le. Qed.
End CMP.
Notation "m < n" := (cmp_lt m n) : cmp_scope.
Notation "m <= n" := (cmp_le m n) : cmp_scope.
Notation "m ≤ n" := (cmp_le m n) : cmp_scope.
Delimit Scope cmp_scope with CMP.
Hint Resolve cmp_le_refl.
Section EqCMP.
Context {T:eqType} {cmp:T -> T -> comparison} {C:Cmp cmp}.
Lemma cmp_le_eq_lt (s1 s2:T): cmp_le s1 s2 = cmp_lt s1 s2 || (s1 == s2).
Proof.
rewrite /cmp_le /cmp_lt cmp_sym /gcmp.
case heq: cmp => //=.
+ by rewrite (cmp_eq heq) eqxx.
case: eqP => // ?;subst.
by rewrite cmp_refl in heq.
Qed.
Lemma cmp_le_antisym x y :
cmp_le x y → cmp_le y x → x = y.
Proof.
by rewrite -cmp_nlt_le (cmp_le_eq_lt y) => /negbTE -> /eqP.
Qed.
End EqCMP.
Section LEX.
Variables (T1 T2:Type) (cmp1:T1 -> T1 -> comparison) (cmp2:T2 -> T2 -> comparison).
Definition lex x y := Lex (cmp1 x.1 y.1) (cmp2 x.2 y.2).
Lemma Lex_lex x1 x2 y1 y2 : Lex (cmp1 x1 y1) (cmp2 x2 y2) = lex (x1,x2) (y1,y2).
Proof. done. Qed.
Lemma lex_sym x y :
cmp1 x.1 y.1 = CompOpp (cmp1 y.1 x.1) ->
cmp2 x.2 y.2 = CompOpp (cmp2 y.2 x.2) ->
lex x y = CompOpp (lex y x).
Proof.
by move=> H1 H2;rewrite /lex H1;case: cmp1=> //=;apply H2.
Qed.
Lemma lex_trans y x z:
(forall c, ctrans (cmp1 x.1 y.1) (cmp1 y.1 z.1) = Some c -> cmp1 x.1 z.1 = c) ->
(forall c, ctrans (cmp2 x.2 y.2) (cmp2 y.2 z.2) = Some c -> cmp2 x.2 z.2 = c) ->
forall c, ctrans (lex x y) (lex y z) = Some c -> lex x z = c.
Proof.
rewrite /lex=> Hr1 Hr2 c;case: cmp1 Hr1.
+ move=> H;rewrite (H (cmp1 y.1 z.1));last by rewrite ctrans_Eq.
(case: cmp1;first by apply Hr2);
rewrite ctransC; [apply ctrans_Lt | apply ctrans_Gt].
+ move=> H1 H2;rewrite (H1 Lt);move:H2;first by apply: ctrans_Lt.
by case: cmp1.
move=> H1 H2;rewrite (H1 Gt);move:H2;first by apply: ctrans_Gt.
by case: cmp1.
Qed.
Lemma lex_eq x y :
lex x y = Eq -> cmp1 x.1 y.1 = Eq /\ cmp2 x.2 y.2 = Eq.
Proof.
case: x y => [x1 x2] [y1 y2] /=.
by rewrite /lex;case:cmp1 => //;case:cmp2.
Qed.
Instance LexO (C1:Cmp cmp1) (C2:Cmp cmp2) : Cmp lex.
Proof.
constructor=> [x y | y x z | x y].
+ by apply /lex_sym;apply /cmp_sym.
+ by apply /lex_trans;apply /cmp_ctrans.
by case: x y => ?? [??] /lex_eq /= [] /(@cmp_eq _ _ C1) -> /(@cmp_eq _ _ C2) ->.
Qed.
End LEX.
Section MIN.
Context T (cmp: T → T → comparison) (O: Cmp cmp).
Definition cmp_min (x y: T) : T :=
if (x ≤ y)%CMP then x else y.
Lemma cmp_minP x y (P: T → Prop) :
((x ≤ y)%CMP → P x) →
((y < x)%CMP → P y) →
P (cmp_min x y).
Proof.
rewrite /cmp_min; case: ifP.
- by move => _ /(_ erefl).
by rewrite -cmp_nle_lt => -> _ /(_ erefl).
Qed.
Lemma cmp_min_leL x y :
(cmp_min x y ≤ x)%CMP.
Proof.
apply: (@cmp_minP x y (λ z, z ≤ x)%CMP) => //.
apply: cmp_lt_le.
Qed.
Lemma cmp_min_leR x y :
(cmp_min x y ≤ y)%CMP.
Proof. exact: (@cmp_minP x y (λ z, z ≤ y)%CMP). Qed.
Lemma cmp_le_min x y :
(x ≤ y)%CMP → cmp_min x y = x.
Proof. by rewrite /cmp_min => ->. Qed.
End MIN.
Arguments cmp_min {T cmp O} x y.
Definition bool_cmp b1 b2 :=
match b1, b2 with
| false, true => Lt
| false, false => Eq
| true , true => Eq
| true , false => Gt
end.
Instance boolO : Cmp bool_cmp.
Proof.
constructor=> [[] [] | [] [] [] c | [] []] //=; apply ctrans_Eq.
Qed.
Polymorphic Instance equiv_iffT: Equivalence iffT.
Proof.
split.
+ by move=> x;split;apply id.
+ by move=> x1 x2 []??;split.
move=> x1 x2 x3 [??] [??];constructor;auto.
Qed.
Polymorphic Instance subrelation_iff_arrow : subrelation iffT arrow.
Proof. by move=> ?? []. Qed.
Polymorphic Instance subrelation_iff_flip_arrow : subrelation iffT (flip arrow).
Proof. by move=> ?? []. Qed.
Instance reflect_m: Proper (iff ==> (@eq bool) ==> iffT) reflect.
Proof. by move=> P1 P2 Hiff b1 b2 ->; split=> H; apply (equivP H);rewrite Hiff. Qed.
Coercion Zpos : positive >-> Z.
Lemma P_leP (x y:positive) : reflect (x <= y)%Z (x <=? y)%positive.
Proof. apply: (@equivP (Pos.le x y)) => //;rewrite -Pos.leb_le;apply idP. Qed.
Lemma P_ltP (x y:positive) : reflect (x < y)%Z (x <? y)%positive.
Proof. apply: (@equivP (Pos.lt x y)) => //;rewrite -Pos.ltb_lt;apply idP. Qed.
Lemma Pos_leb_trans y x z:
(x <=? y)%positive -> (y <=? z)%positive -> (x <=? z)%positive.
Proof. move=> /P_leP ? /P_leP ?;apply /P_leP;omega. Qed.
Lemma Pos_lt_leb_trans y x z:
(x <? y)%positive -> (y <=? z)%positive -> (x <? z)%positive.
Proof. move=> /P_ltP ? /P_leP ?;apply /P_ltP;omega. Qed.
Lemma Pos_le_ltb_trans y x z:
(x <=? y)%positive -> (y <? z)%positive -> (x <? z)%positive.
Proof. move=> /P_leP ? /P_ltP ?;apply /P_ltP;omega. Qed.
Lemma pos_eqP : Equality.axiom Pos.eqb.
Proof. by move=> p1 p2;apply:(iffP idP);rewrite -Pos.eqb_eq. Qed.
Definition pos_eqMixin := EqMixin pos_eqP.
Canonical pos_eqType := EqType positive pos_eqMixin.
Instance positiveO : Cmp Pos.compare.
Proof.
constructor.
+ by move=> ??;rewrite Pos.compare_antisym.
+ move=> ????;case:Pos.compare_spec=> [->|H1|H1];
case:Pos.compare_spec=> H2 //= -[] <- //;subst;
rewrite ?Pos.compare_lt_iff ?Pos.compare_gt_iff //.
+ by apply: Pos.lt_trans H1 H2.
by apply: Pos.lt_trans H2 H1.
apply Pos.compare_eq.
Qed.
Lemma Z_eqP : Equality.axiom Z.eqb.
Proof. by move=> p1 p2;apply:(iffP idP);rewrite -Z.eqb_eq. Qed.
(*Definition Z_eqMixin := EqMixin Z_eqP.
Canonical Z_eqType := EqType Z Z_eqMixin. *)
Instance ZO : Cmp Z.compare.
Proof.
constructor.
+ by move=> ??;rewrite Z.compare_antisym.
+ move=> ????;case:Z.compare_spec=> [->|H1|H1];
case:Z.compare_spec=> H2 //= -[] <- //;subst;
rewrite ?Z.compare_lt_iff ?Z.compare_gt_iff //.
+ by apply: Z.lt_trans H1 H2.
by apply: Z.lt_trans H2 H1.
apply Z.compare_eq.
Qed.
Lemma Z_to_nat_subn z1 z2 : 0 <= z1 -> 0 <= z2 -> z2 <= z1 ->
Z.to_nat (z1 - z2) = (Z.to_nat z1 - Z.to_nat z2)%nat.
Proof.
case: z1 z2 => [|n1|n1] [|n2|n2] //=; try by rewrite /Z.le.
+ by move=> _ _ _; rewrite subn0.
move=> _ _; rewrite -[_ <= _]/(n2 <= n1)%positive => le.
have := Z.pos_sub_discr n1 n2; case: Z.pos_sub => /=.
+ by move=> ->; rewrite subnn.
+ move=> p ->; rewrite Pos2Nat.inj_add.
by rewrite -[plus _ _]/(addn _ _) addnC addnK.
+ move=> p ->; apply/esym/eqP; rewrite subn_eq0.
by rewrite Pos2Nat.inj_add leq_addr.
Qed.
Lemma Z_to_nat_le0 z : z <= 0 -> Z.to_nat z = 0%N.
Proof. by rewrite /Z.to_nat; case: z => //=; rewrite /Z.le. Qed.
(* ** Some Extra tactics
* -------------------------------------------------------------------- *)
Ltac sinversion H := inversion H=>{H};subst.
(* -------------------------------------------------------------------- *)
Variant dup_spec (P : Prop) :=
| Dup of P & P.
Lemma dup (P : Prop) : P -> dup_spec P.
Proof. by move=> ?; split. Qed.
(* -------------------------------------------------------------------- *)
Lemma drop_add {T : Type} (s : seq T) (n m : nat) :
drop n (drop m s) = drop (n+m) s.
Proof.
elim: s n m => // x s ih [|n] [|m] //;
by rewrite !(drop0, drop_cons, addn0, addnS).
Qed.
(* -------------------------------------------------------------------- *)
Lemma inj_drop {T : Type} (s : seq T) (n m : nat) :
(n <= size s)%nat -> (m <= size s)%nat -> drop n s = drop m s -> n = m.
Proof.
move => /leP hn /leP hm he; have := size_drop n s.
rewrite he size_drop /subn /subn_rec; Psatz.lia.
Qed.
Definition ZleP : ∀ x y, reflect (x <= y) (x <=? y) := Z.leb_spec0.
Definition ZltP : ∀ x y, reflect (x < y) (x <? y) := Z.ltb_spec0.
Lemma eq_dec_refl
(T: Type) (dec: ∀ x y : T, { x = y } + { x ≠ y })
(x: T) : dec x x = left erefl.
Proof.
case: (dec _ _) => // e; apply: f_equal.
exact: Eqdep_dec.UIP_dec.
Qed.
(* ------------------------------------------------------------------------- *)
Lemma rwR1 (A:Type) (P:A->Prop) (f:A -> bool) :
(forall a, reflect (P a) (f a)) ->
forall a, (f a) <-> (P a).
Proof. by move=> h a; rewrite (rwP (h _)). Qed.
Lemma rwR2 (A B:Type) (P:A->B->Prop) (f:A -> B -> bool) :
(forall a b, reflect (P a b) (f a b)) ->
forall a b, (f a b) <-> (P a b).
Proof. by move=> h a b; rewrite (rwP (h _ _)). Qed.
Notation pify :=
(rwR2 (@andP), rwR2 (@orP), rwR2 (@implyP), rwR1 (@forallP _), rwR1 (@negP)).
Notation zify := (pify, (rwR2 (@ZleP), rwR2 (@ZltP))).
(* -------------------------------------------------------------------- *)
Definition ziota p (z:Z) := [seq p + Z.of_nat i | i <- iota 0 (Z.to_nat z)].
Lemma ziota0 p : ziota p 0 = [::].
Proof. done. Qed.
Lemma ziota_neg p z: z <= 0 -> ziota p z = [::].
Proof. by case: z. Qed.
Lemma ziotaS_cons p z: 0 <= z -> ziota p (Z.succ z) = p :: ziota (p+1) z.
Proof.
move=> hz;rewrite /ziota Z2Nat.inj_succ //= Z.add_0_r; f_equal.
rewrite -addn1 addnC iota_addl -map_comp.
by apply eq_map => i /=; rewrite Zpos_P_of_succ_nat;Psatz.lia.
Qed.
Lemma ziotaS_cat p z: 0 <= z -> ziota p (Z.succ z) = ziota p z ++ [:: p + z].
Proof.
by move=> hz;rewrite /ziota Z2Nat.inj_succ // -addn1 iota_add map_cat /= add0n Z2Nat.id.
Qed.
Lemma in_ziota (p z i:Z) : (i \in ziota p z) = ((p <=? i) && (i <? p + z)).
Proof.
case: (ZleP 0 z) => hz.
+ move: p; pattern z; apply natlike_ind => [ p | {z hz} z hz hrec p| //].
+ by rewrite ziota0 in_nil; case: andP => // -[/ZleP ? /ZltP ?]; Psatz.lia.
rewrite ziotaS_cons // in_cons; case: eqP => [-> | ?] /=.
+ by rewrite Z.leb_refl /=; symmetry; apply /ZltP; Psatz.lia.
by rewrite hrec; apply Bool.eq_iff_eq_true;split=> /andP [/ZleP ? /ZltP ?];
(apply /andP;split;[apply /ZleP| apply /ZltP]); Psatz.lia.
rewrite ziota_neg;last Psatz.lia.
rewrite in_nil;symmetry;apply /negP => /andP [/ZleP ? /ZltP ?]; Psatz.lia.
Qed.
Lemma size_ziota p z: size (ziota p z) = Z.to_nat z.
Proof. by rewrite size_map size_iota. Qed.
Lemma nth_ziota p (i:nat) z : leq (S i) (Z.to_nat z) ->
nth 0%Z (ziota p z) i = (p + Z.of_nat i)%Z.
Proof.
by move=> hi;rewrite (nth_map O) ?size_iota // nth_iota.
Qed.
Lemma eq_map_ziota (T:Type) p1 p2 (f1 f2: Z -> T) :
(forall i, (p1 <= i < p1 + p2)%Z -> f1 i = f2 i) ->
map f1 (ziota p1 p2) = map f2 (ziota p1 p2).
Proof.
move=> hi; have {hi}: (forall i, i \in ziota p1 p2 -> f1 i = f2 i).
+ move=> ?; rewrite in_ziota !zify; apply hi.
elim: ziota => //= i l hrec hf; rewrite hrec;first by rewrite hf ?mem_head.
by move=> ? hin; apply hf;rewrite in_cons hin orbT.
Qed.
Lemma all_ziota p1 p2 (f1 f2: Z -> bool) :
(forall i, (p1 <= i < p1 + p2)%Z -> f1 i = f2 i) ->
all f1 (ziota p1 p2) = all f2 (ziota p1 p2).
Proof.
move=> hi; have {hi}: (forall i, i \in ziota p1 p2 -> f1 i = f2 i).
+ move=> ?; rewrite in_ziota !zify; apply hi.
elim: ziota => //= i l hrec hf; rewrite hrec;first by rewrite hf ?mem_head.
by move=> ? hin; apply hf;rewrite in_cons hin orbT.
Qed.
(* ------------------------------------------------------------------------- *)
Lemma sumbool_of_boolET (b: bool) (h: b) :
Sumbool.sumbool_of_bool b = left h.
Proof. by move: h; rewrite /is_true => ?; subst. Qed.
Lemma sumbool_of_boolEF (b: bool) (h: b = false) :
Sumbool.sumbool_of_bool b = right h.
Proof. by move: h; rewrite /is_true => ?; subst. Qed.
(* ------------------------------------------------------------------------- *)
Definition funname := positive.
Definition get_fundef {T} (p: seq (funname * T)) (f: funname) :=
assoc p f.
(* ------------------------------------------------------------------------- *)
Definition lprod ts tr :=
foldr (fun t tr => t -> tr) tr ts.
Fixpoint ltuple (ts:list Type) : Type :=
match ts with
| [::] => unit
| [::t1] => t1
| t1::ts => t1 * ltuple ts
end.
Notation "(:: x , .. , y & z )" := (pair x .. (pair y z) ..) (only parsing).
Fixpoint merge_tuple (l1 l2: list Type) : ltuple l1 -> ltuple l2 -> ltuple (l1 ++ l2) :=
match l1 return ltuple l1 -> ltuple l2 -> ltuple (l1 ++ l2) with
| [::] => fun _ p => p
| t1 :: l1 =>
let rec := @merge_tuple l1 l2 in
match l1 return (ltuple l1 -> ltuple l2 -> ltuple (l1 ++ l2)) ->
ltuple (t1::l1) -> ltuple l2 -> ltuple (t1 :: l1 ++ l2) with
| [::] => fun _ (x:t1) =>
match l2 return ltuple l2 -> ltuple (t1::l2) with
| [::] => fun _ => x
| t2::l2 => fun (p:ltuple (t2::l2)) => (x, p)
end
| t1' :: l1' => fun rec (x:t1 * ltuple (t1'::l1')) p =>
(x.1, rec x.2 p)
end rec
end.
|
theory nat_acc_alt_mul_same
imports Main
"$HIPSTER_HOME/IsaHipster"
begin
datatype Nat = Z | S "Nat"
fun plus :: "Nat => Nat => Nat" where
"plus (Z) y = y"
| "plus (S n) y = S (plus n y)"
fun mult :: "Nat => Nat => Nat" where
"mult (Z) y = Z"
| "mult (S n) y = plus y (mult n y)"
fun accplus :: "Nat => Nat => Nat" where
"accplus (Z) y = y"
| "accplus (S z) y = accplus z (S y)"
fun accaltmul :: "Nat => Nat => Nat" where
"accaltmul (Z) y = Z"
| "accaltmul (S z) (Z) = Z"
| "accaltmul (S z) (S x2) =
S (accplus z (accplus x2 (accaltmul z x2)))"
(*hipster plus mult accplus accaltmul *)
theorem x0 :
"!! (x :: Nat) . !! (y :: Nat) . (accaltmul x y) = (mult x y)"
by (tactic \<open>Subgoal.FOCUS_PARAMS (K (Tactic_Data.hard_tac @{context})) @{context} 1\<close>)
end
|
\documentclass[color=usenames,dvipsnames]{beamer}
%\documentclass[color=usenames,dvipsnames,handout]{beamer}
%\usepackage[roman]{../../../pres1}
\usepackage[sans]{../../../pres1}
\usepackage{graphicx}
\usepackage{bm}
\usepackage{soul}
\usepackage{color}
\usepackage{Sweave}
\usepackage{pdfpages}
%\setbeameroption{notes on second screen}
\DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl,formatcom=\color{red}}
\DefineVerbatimEnvironment{Soutput}{Verbatim}{formatcom=\color{MidnightBlue}}
\DefineVerbatimEnvironment{Scode}{Verbatim}{fontshape=sl}
\newcommand{\bxt}{${\bm x}_j$}
\newcommand{\bx}{{\bm x}}
\newcommand{\bxj}{{\bm x}_j}
\newcommand{\bst}{${\bm s}_i$}
\newcommand{\bs}{{\bm s}}
\newcommand{\bsi}{{\bm s}_i}
\newcommand{\ed}{\|\bx - \bs\|}
\newcommand{\cs}{\mathcal{S} }
\begin{document}
\begin{frame}[plain]
\begin{center}
\LARGE {\bf \color{RoyalBlue}{Spatial Jolly-Seber Model}} \par
\vspace{0.8cm}
% \color{Gray}{
% \Large {Spatial Capture-Recapture Workshop} \\ % \par
% \large Athens, GA -- March 2015 \\
\large WILD 8300 -- Spatial Capture-Recapture \par
\vspace{0.2cm}
March 30, 2016
% \includegraphics[width=0.3\textwidth]{figs/scrbook} \\
% }
\end{center}
\end{frame}
%\section{Intro}
\begin{frame}[plain]
\frametitle{Topics}
\Large
\only<1>{\tableofcontents}%[hideallsubsections]}
% \only<2 | handout:0>{\tableofcontents[currentsection]}%,hideallsubsections]}
\end{frame}
\section{Intro}
\begin{frame}
\frametitle{Overview}
\large
{\bf Jolly-Seber model}
\begin{itemize}
\item Extends CJS model to allow for recruitment
\item We no longer ``condition on first capture''
\item Typically, we use the robust design
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Stochastic population dynamics without dispersal}
{\bf Initial Abundance}
\[
N_1 \sim \mbox{Poisson}(\lambda)
\]
\vfill
{\bf Survival}
\[
S_t \sim \mbox{Binomial}(N_{t-1}, \phi)
\]
\vfill
{\bf Recruitment}
\[
R_t \sim \mbox{Poisson}(N_{t-1} \gamma)
\]
\vfill
{\bf Abundance}
\[
N_t = S_t + R_t
\]
\end{frame}
%% \section{Non-spatial CJS}
%% \begin{frame}
%% \frametitle{Non-spatial CJS model}
%% {\bf State model}
%% \[
%% z_{i,t} \sim \mbox{Bernoulli}(z_{i,t-1} \times \phi)
%% \]
%% \vfill
%% {\bf Observation model}
%% \[
%% y_{i,t} \sim \mbox{Bernoulli}(z_{i,t} \times p)
%% \]
%% \pause
%% \vfill
%% \small
%% where \\
%% \begin{itemize}
%% \item $z_{i,t}$ is ``alive state'' of individual $i$ at time $t$
%% \item $\phi$ is ``apparent survival''. Probability of being alive and not permanently emigrating.
%% \item $y_{i,t}=1$ if individual was encountered. $y_{i,t}=0$ otherwise.
%% \end{itemize}
%% \end{frame}
\section{Spatial JS}
\begin{frame}
\frametitle{Spatial model}
\large
{\bf Extensions}
\begin{itemize}
\item Individuals heterogeneity in vital rates
\item Spatial heterogeneity in vital rates
\item Density dependence
\item Dispersal
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Spatial Model using Data Augmentation}
{\bf Initial State}
\[
z_{i,1} \sim \mbox{Bernoulli}(\psi)
\]
\vfill
{\bf Survival and Recruitment}
\[
z_{i,t} \sim \mbox{Bernoulli}(z_{i,t-1}\phi + \mbox{recruitable}_{i,t-1}\gamma')
\]
\vfill
{\bf Abundance}
\[
N_t = \sum_{i=1}^M z_{i,t}
\]
\pause
\vfill
{\centering \bf Dispersal could be added using approaches discussed last week \par}
\end{frame}
\begin{frame}[fragile]
\frametitle{Simulating spatial JS data with robust design}
\scriptsize % \tiny %\small
{\bf Parameters and data dimensions}
\begin{Schunk}
\begin{Sinput}
> T <- 10 # years/primary periods
> K <- 3 # 3 secondary sampling occasion
> N0 <- 25 # Abundance in year 1
> M <- 500 # Easiest way to simulate data is using data augmentation
> phi <- 0.7 # Apparent survival
> gamma <- 0.3 # Per-capital recruitment rate
> p0 <- 0.4
> sigma <- 0.1
\end{Sinput}
\end{Schunk}
\pause
{\bf Traps, activity centers, and detection probability}
\begin{Schunk}
\begin{Sinput}
> set.seed(340)
> co <- seq(0.25, 0.75, length=5)
> X <- cbind(rep(co, each=5), rep(co, times=5))
> J <- nrow(X)
> xlim <- ylim <- c(0,1)
> s <- cbind(runif(M, xlim[1], xlim[2]), runif(M, ylim[1], ylim[2]))
> d <- p <- matrix(NA, M, J)
> for(i in 1:M) {
+ d[i,] <- sqrt((s[i,1]-X[,1])^2 + (s[i,2]-X[,2])^2)
+ p[i,] <- p0*exp(-d[i,]^2/(2*sigma^2))
+ }
\end{Sinput}
\end{Schunk}
\end{frame}
\begin{frame}[fragile]
\frametitle{Simulating spatial JS data with robust design}
{\bf Generate $z$}
\scriptsize
\begin{Schunk}
\begin{Sinput}
> set.seed(034)
> z <- recruitable <- died <- recruited <- matrix(0, M, T)
> z[1:N0,1] <- 1 # First N0 are alive
> recruitable[(N0+1):M,1] <- 1
> for(t in 2:T) {
+ prevN <- sum(z[,t-1]) # number alive at t-1
+ ER <- prevN*gamma # expected number of recruits
+ prevA <- sum(recruitable[,t-1]) # Number available to be recruited
+ gammaPrime <- ER/prevA
+ if(gammaPrime > 1)
+ stop("M isn't big enough")
+ for(i in 1:M) {
+ z[i,t] <- rbinom(1, 1, z[i,t-1]*phi + recruitable[i,t-1]*gammaPrime)
+ recruitable[i,t] <- 1 - max(z[i,1:(t)]) # to be recruited
+ died[i,t] <- z[i,t-1]==1 & z[i,t]==0
+ recruited[i,t] <- z[i,t]==1 & z[i,t-1]==0
+ }
+ }
\end{Sinput}
\end{Schunk}
\pause
\vfill
{\bf \normalsize Populaton size, mortalities, and recruits}
\begin{Schunk}
\begin{Sinput}
> N <- colSums(z) # Population size
> Deaths <- colSums(died)
> Recruits <- colSums(recruited)
> everAlive <- sum(rowSums(z)>0)
\end{Sinput}
\end{Schunk}
\end{frame}
\begin{frame}[fragile]
\frametitle{Simulating spatial JS data with robust design}
{\bf Generate encounter histories for all $M$ individuals}
\footnotesize
\begin{Schunk}
\begin{Sinput}
> yall <- array(NA, c(M, J, K, T))
> for(i in 1:M) {
+ for(t in 1:T) {
+ for(j in 1:J) {
+ yall[i,j,1:K,t] <- rbinom(K, 1, z[i,t]*p[i,j])
+ }
+ }
+ }
\end{Sinput}
\end{Schunk}
\pause
\vfill
{\bf \normalsize Discard individuals that were never captured}
\begin{Schunk}
\begin{Sinput}
> detected <- rowSums(yall) > 0
> y <- yall[detected,,,]
> str(y)
\end{Sinput}
\begin{Soutput}
int [1:42, 1:25, 1:3, 1:10] 0 0 1 0 0 0 0 0 0 0 ...
\end{Soutput}
\end{Schunk}
\end{frame}
\begin{frame}[fragile]
\frametitle{Time series}
\tiny
\vspace{-3mm}
\begin{center}
\includegraphics[width=0.8\textwidth]{Open-JS-NDR}
\end{center}
\end{frame}
\begin{frame}[fragile]
\frametitle{Spatial CJS model in \jags}
\vspace{-5mm}
\tiny \fbox{\parbox{\linewidth}{\verbatiminput{JS-spatial.jag}}}
\end{frame}
\begin{frame}[fragile]
\frametitle{\jags}
% \footnotesize
{\bf Data augmentation}
\scriptsize
\begin{Schunk}
\begin{Sinput}
> M <- nrow(y) + 50
> yz <- array(0, c(M, J, K, T))
> yz[1:nrow(y),,,] <- y
\end{Sinput}
\end{Schunk}
\pause
\vfill
{\bf \normalsize Initial values for $z$ matrix}
\begin{Schunk}
\begin{Sinput}
> zi <- matrix(0, M, T)
> zi[1:nrow(y),] <- 1
> ji1 <- function() list(phi=0.01, gamma=0.01, z=zi)
\end{Sinput}
\end{Schunk}
\pause
\vfill
{\bf \normalsize Fit the model}
\begin{Schunk}
\begin{Sinput}
> jd1 <- list(y = yz, M = M, X = X, J = J, K = K, T = T, xlim = xlim,
+ ylim = ylim)
> jp1 <- c("phi", "gamma", "p0", "sigma", "N", "Deaths", "Recruits",
+ "Ntot")
> library(rjags)
> jm1 <- jags.model("JS-spatial.jag", jd1, ji1, n.chains = 1, n.adapt = 500)
> jc1 <- coda.samples(jm1, jp1, 1000)
\end{Sinput}
\end{Schunk}
\end{frame}
\begin{frame}
\frametitle{Is $M$ big enough?}
\includegraphics{Open-JS-Ntot}
\end{frame}
\begin{frame}[fragile]
\frametitle{Posterior distributions}
\begin{center}
\fbox{\includegraphics[width=0.7\textwidth]{Open-JS-jc1}}
\end{center}
\end{frame}
\begin{frame}[fragile]
\frametitle{Posterior distributions}
\begin{center}
\fbox{\includegraphics[width=0.45\textwidth]{Open-JS-jcN1-4}}
\fbox{\includegraphics[width=0.45\textwidth]{Open-JS-jcN5-8}}
\end{center}
\end{frame}
\section{Spatial JS with density-dependence}
\begin{frame}
\frametitle{Density-dependent recruitment}
\large
{\bf Logistic}
\[
\gamma_t = \gamma_{max}(1 - N_{t-1}/K)
\]
\vfill
{\bf Log-linear}
\[
\gamma_t = \nu_0\exp(-\nu_1 N_{t-1})
\]
\vfill
{\bf Log-linear (alt version)}
\[
\log(\gamma_t) = \nu_0 + \nu_1 N_{t-1}
\]
%<<>>=
%gompertz <- function(N, a, b, c) {
% x <- numeric(length(N))
% for(i in N) {
% x[i] <- a*exp(-b*exp(-c*i))
% }
% return(x)
%}
%gompertz(1:10, a=1, b=1, c=1)
%##plot(gompertz(1:10, a=2, b=1, c=.11))
%@
\end{frame}
\begin{frame}[fragile]
\frametitle{Density-dependent recruitment}
\tiny
\vspace{-4mm}
\begin{center}
\includegraphics[width=\textwidth]{Open-JS-dd1}
\end{center}
\end{frame}
\begin{frame}[fragile]
\frametitle{Simulating spatial JS data with robust design}
\scriptsize % \tiny %\small
{\bf Parameters and data dimensions}
\begin{Schunk}
\begin{Sinput}
> T <- 10 # years/primary periods
> K <- 3 # 3 secondary sampling occasion
> ## Is it necessary to be far from equilibrium to detect density-dependence?
> ## Equilibrium here is where (1-phi) == gamma, where gamma is function of N
> N0 <- 10 # Abundance in year 1
> M <- 500 # Easiest way to simulate data is using data augmentation
> phi <- 0.7 # Apparent survival
> ##gamma <- 0.3 # Per-capital recruitment rate
> nu0 <- 2
> nu1 <- 0.05
> p0 <- 0.4
> sigma <- 0.1
\end{Sinput}
\end{Schunk}
\pause
{\bf Traps, activity centers, and detection probability}
\begin{Schunk}
\begin{Sinput}
> set.seed(3479)
> co <- seq(0.25, 0.75, length=5)
> X <- cbind(rep(co, each=5), rep(co, times=5))
> J <- nrow(X)
> xlim <- ylim <- c(0,1)
> s <- cbind(runif(M, xlim[1], xlim[2]), runif(M, ylim[1], ylim[2]))
> d <- p <- matrix(NA, M, J)
> for(i in 1:M) {
+ d[i,] <- sqrt((s[i,1]-X[,1])^2 + (s[i,2]-X[,2])^2)
+ p[i,] <- p0*exp(-d[i,]^2/(2*sigma^2))
+ }
\end{Sinput}
\end{Schunk}
\end{frame}
\begin{frame}[fragile]
\frametitle{Simulating spatial JS data with robust design}
{\bf Generate $z$}
\scriptsize
\begin{Schunk}
\begin{Sinput}
> set.seed(3401)
> z2 <- recruitable <- died <- recruited <- matrix(0, M, T)
> z2[1:N0,1] <- 1 # First N0 are alive
> recruitable[(N0+1):M,1] <- 1
> for(t in 2:T) {
+ prevN <- sum(z2[,t-1]) # number alive at t-1
+ gamma <- nu0*exp(-nu1*prevN) ## Density dependent recruitment rate
+ ER <- prevN*gamma # expected number of recruits
+ prevA <- sum(recruitable[,t-1]) # Number available to be recruited
+ gammaPrime <- ER/prevA
+ if(gammaPrime > 1)
+ stop("M isn't big enough")
+ for(i in 1:M) {
+ z2[i,t] <- rbinom(1, 1, z2[i,t-1]*phi + recruitable[i,t-1]*gammaPrime)
+ recruitable[i,t] <- 1 - max(z2[i,1:(t)]) # to be recruited
+ died[i,t] <- z2[i,t-1]==1 & z2[i,t]==0
+ recruited[i,t] <- z2[i,t]==1 & z2[i,t-1]==0
+ }
+ }
\end{Sinput}
\end{Schunk}
\pause
\vfill
{\bf \normalsize Populaton size, mortalities, and recruits}
\begin{Schunk}
\begin{Sinput}
> N2 <- colSums(z2) # Population size
> Deaths2 <- colSums(died)
> Recruits2 <- colSums(recruited)
> everAlive2 <- sum(rowSums(z2)>0)
\end{Sinput}
\end{Schunk}
\end{frame}
\begin{frame}[fragile]
\frametitle{Simulating spatial JS data with robust design}
{\bf Generate encounter histories for all $M$ individuals}
\footnotesize
\begin{Schunk}
\begin{Sinput}
> yall <- array(NA, c(M, J, K, T))
> for(i in 1:M) {
+ for(t in 1:T) {
+ for(j in 1:J) {
+ yall[i,j,1:K,t] <- rbinom(K, 1, z2[i,t]*p[i,j])
+ }
+ }
+ }
\end{Sinput}
\end{Schunk}
\pause
\vfill
{\bf \normalsize Discard individuals that were never captured}
\begin{Schunk}
\begin{Sinput}
> detected <- rowSums(yall) > 0
> y2 <- yall[detected,,,]
> str(y2)
\end{Sinput}
\begin{Soutput}
int [1:85, 1:25, 1:3, 1:10] 0 0 0 0 0 0 0 0 0 0 ...
\end{Soutput}
\end{Schunk}
\end{frame}
\begin{frame}[fragile]
\frametitle{Time series}
\tiny
\vspace{-3mm}
\begin{center}
\includegraphics[width=\textwidth]{Open-JS-NDR-DD}
\end{center}
\end{frame}
\begin{frame}[fragile]
\frametitle{Spatial CJS model in \jags}
\vspace{-5mm}
\tiny \fbox{\parbox{\linewidth}{\verbatiminput{JS-spatial-DD.jag}}}
\end{frame}
\begin{frame}[fragile]
\frametitle{\jags}
% \footnotesize
{\bf Data augmentation}
\scriptsize
\begin{Schunk}
\begin{Sinput}
> M2 <- nrow(y2) + 75
> yz2 <- array(0, c(M2, J, K, T))
> yz2[1:nrow(y2),,,] <- y2
\end{Sinput}
\end{Schunk}
\pause
\vfill
{\bf \normalsize Initial values for $z$ matrix}
\begin{Schunk}
\begin{Sinput}
> zi <- matrix(0, M2, T)
> ##zi[1:nrow(y2),] <- 1
> zi[1:nrow(y2),] <- z2[detected,] ## cheating
> ji2 <- function() list(phi=0.01, z=zi)
\end{Sinput}
\end{Schunk}
\pause
\vfill
{\bf \normalsize Fit the model}
\begin{Schunk}
\begin{Sinput}
> jd2 <- list(y = yz2, M = M2, X = X, J = J, K = K, T = T, xlim = xlim,
+ ylim = ylim)
> jp2 <- c("phi", "nu0", "nu1", "p0", "sigma", "N", "Deaths", "Recruits",
+ "Ntot")
> library(rjags)
> jm2 <- jags.model("JS-spatial-DD.jag", jd2, ji2, n.chains = 1,
+ n.adapt = 200)
> jc2 <- coda.samples(jm2, jp2, 5000)
\end{Sinput}
\end{Schunk}
\end{frame}
\begin{frame}[fragile]
\frametitle{Posterior distributions}
\begin{center}
\fbox{\includegraphics[width=0.7\textwidth]{Open-JS-jc1}}
\end{center}
\end{frame}
\begin{frame}[fragile]
\frametitle{Actual and estimated abundance}
{\bf Extract and summarize posterior samples of $N_t$}
\footnotesize
\begin{Schunk}
\begin{Sinput}
> Npost <- as.matrix(jc2[,paste("N[", 1:10, "]", sep="")])
> Nmed <- apply(Npost, 2, median)
> Nupper <- apply(Npost, 2, quantile, prob=0.975)
> Nlower <- apply(Npost, 2, quantile, prob=0.025)
\end{Sinput}
\end{Schunk}
\pause
\vfill
{\bf \normalsize Plot}
\begin{Schunk}
\begin{Sinput}
> plot(1:T, N2, type="o", col="blue", ylim=c(0, 100), xlab="Time",
+ ylab="Abundance")
> points(1:T, Nmed)
> arrows(1:T, Nlower, 1:T, Nupper, angle=90, code=3, length=0.05)
> legend(1, 100, c("Actual abundance", "Estimated abundance"),
+ col=c("blue", "black"), lty=c(1,1), pch=c(1,1))
\end{Sinput}
\end{Schunk}
\end{frame}
\begin{frame}
\frametitle{Actual and estimated abundance}
\vspace{-4mm}
\begin{center}
\includegraphics[width=0.8\textwidth]{Open-JS-Npost}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Summary}
\large
{\bf Key points}
\begin{itemize}[<+->]
\item Spatial Jolly-Seber models make it possible to fit
spatio-temporal models of population dynamics to standard data
\item We could have movement just like we did with CJS models
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Assignment}
{\bf \large For next week}
\begin{enumerate}[\bf (1)]
\item Work on analysis of your own data and your final paper, which should include:
\begin{itemize}
\item Introduction
\item Methods (including model description)
\item Results
\item Discussion
\end{itemize}
\item Paper should be a minimum of 4 pages, single-spaced, 12-pt font
\end{enumerate}
\end{frame}
\end{document}
|
/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
The order relation on the integers.
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.data.int.basic
import Mathlib.Lean3Lib.init.data.ordering.basic
namespace Mathlib
namespace int
def nonneg (a : ℤ) := int.cases_on a (fun (n : ℕ) => True) fun (n : ℕ) => False
protected def le (a : ℤ) (b : ℤ) := nonneg (b - a)
protected instance has_le : HasLessEq ℤ := { LessEq := int.le }
protected def lt (a : ℤ) (b : ℤ) := a + 1 ≤ b
protected instance has_lt : HasLess ℤ := { Less := int.lt }
def decidable_nonneg (a : ℤ) : Decidable (nonneg a) :=
int.cases_on a (fun (a : ℕ) => decidable.true) fun (a : ℕ) => decidable.false
protected instance decidable_le (a : ℤ) (b : ℤ) : Decidable (a ≤ b) := decidable_nonneg (b - a)
protected instance decidable_lt (a : ℤ) (b : ℤ) : Decidable (a < b) :=
decidable_nonneg (b - (a + 1))
theorem lt_iff_add_one_le (a : ℤ) (b : ℤ) : a < b ↔ a + 1 ≤ b := iff.refl (a < b)
theorem nonneg.elim {a : ℤ} : nonneg a → ∃ (n : ℕ), a = ↑n :=
int.cases_on a (fun (n : ℕ) (H : nonneg (Int.ofNat n)) => exists.intro n rfl)
fun (n' : ℕ) => false.elim
theorem nonneg_or_nonneg_neg (a : ℤ) : nonneg a ∨ nonneg (-a) :=
int.cases_on a (fun (n : ℕ) => Or.inl trivial) fun (n : ℕ) => Or.inr trivial
theorem le.intro_sub {a : ℤ} {b : ℤ} {n : ℕ} (h : b - a = ↑n) : a ≤ b :=
(fun (this : nonneg (b - a)) => this)
(eq.mpr (id (Eq._oldrec (Eq.refl (nonneg (b - a))) h)) trivial)
theorem le.intro {a : ℤ} {b : ℤ} {n : ℕ} (h : a + ↑n = b) : a ≤ b := sorry
theorem le.dest_sub {a : ℤ} {b : ℤ} (h : a ≤ b) : ∃ (n : ℕ), b - a = ↑n := nonneg.elim h
theorem le.dest {a : ℤ} {b : ℤ} (h : a ≤ b) : ∃ (n : ℕ), a + ↑n = b := sorry
theorem le.elim {a : ℤ} {b : ℤ} (h : a ≤ b) {P : Prop} (h' : ∀ (n : ℕ), a + ↑n = b → P) : P :=
exists.elim (le.dest h) h'
protected theorem le_total (a : ℤ) (b : ℤ) : a ≤ b ∨ b ≤ a := sorry
theorem coe_nat_le_coe_nat_of_le {m : ℕ} {n : ℕ} (h : m ≤ n) : ↑m ≤ ↑n := sorry
theorem le_of_coe_nat_le_coe_nat {m : ℕ} {n : ℕ} (h : ↑m ≤ ↑n) : m ≤ n :=
le.elim h
fun (k : ℕ) (hk : ↑m + ↑k = ↑n) =>
(fun (this : m + k = n) => nat.le.intro this)
(int.coe_nat_inj (Eq.trans (int.coe_nat_add m k) hk))
theorem coe_nat_le_coe_nat_iff (m : ℕ) (n : ℕ) : ↑m ≤ ↑n ↔ m ≤ n :=
{ mp := le_of_coe_nat_le_coe_nat, mpr := coe_nat_le_coe_nat_of_le }
theorem coe_zero_le (n : ℕ) : 0 ≤ ↑n := coe_nat_le_coe_nat_of_le (nat.zero_le n)
theorem eq_coe_of_zero_le {a : ℤ} (h : 0 ≤ a) : ∃ (n : ℕ), a = ↑n := sorry
theorem eq_succ_of_zero_lt {a : ℤ} (h : 0 < a) : ∃ (n : ℕ), a = ↑(Nat.succ n) := sorry
theorem lt_add_succ (a : ℤ) (n : ℕ) : a < a + ↑(Nat.succ n) := sorry
theorem lt.intro {a : ℤ} {b : ℤ} {n : ℕ} (h : a + ↑(Nat.succ n) = b) : a < b := h ▸ lt_add_succ a n
theorem lt.dest {a : ℤ} {b : ℤ} (h : a < b) : ∃ (n : ℕ), a + ↑(Nat.succ n) = b := sorry
theorem lt.elim {a : ℤ} {b : ℤ} (h : a < b) {P : Prop} (h' : ∀ (n : ℕ), a + ↑(Nat.succ n) = b → P) :
P :=
exists.elim (lt.dest h) h'
theorem coe_nat_lt_coe_nat_iff (n : ℕ) (m : ℕ) : ↑n < ↑m ↔ n < m := sorry
theorem lt_of_coe_nat_lt_coe_nat {m : ℕ} {n : ℕ} (h : ↑m < ↑n) : m < n :=
iff.mp (coe_nat_lt_coe_nat_iff m n) h
theorem coe_nat_lt_coe_nat_of_lt {m : ℕ} {n : ℕ} (h : m < n) : ↑m < ↑n :=
iff.mpr (coe_nat_lt_coe_nat_iff m n) h
/- show that the integers form an ordered additive group -/
protected theorem le_refl (a : ℤ) : a ≤ a := le.intro (int.add_zero a)
protected theorem le_trans {a : ℤ} {b : ℤ} {c : ℤ} (h₁ : a ≤ b) (h₂ : b ≤ c) : a ≤ c := sorry
protected theorem le_antisymm {a : ℤ} {b : ℤ} (h₁ : a ≤ b) (h₂ : b ≤ a) : a = b := sorry
protected theorem lt_irrefl (a : ℤ) : ¬a < a := sorry
protected theorem ne_of_lt {a : ℤ} {b : ℤ} (h : a < b) : a ≠ b :=
fun (this : a = b) => absurd (eq.mp (Eq._oldrec (Eq.refl (a < b)) this) h) (int.lt_irrefl b)
theorem le_of_lt {a : ℤ} {b : ℤ} (h : a < b) : a ≤ b :=
lt.elim h fun (n : ℕ) (hn : a + ↑(Nat.succ n) = b) => le.intro hn
protected theorem lt_iff_le_and_ne (a : ℤ) (b : ℤ) : a < b ↔ a ≤ b ∧ a ≠ b := sorry
theorem lt_succ (a : ℤ) : a < a + 1 := int.le_refl (a + 1)
protected theorem add_le_add_left {a : ℤ} {b : ℤ} (h : a ≤ b) (c : ℤ) : c + a ≤ c + b := sorry
protected theorem add_lt_add_left {a : ℤ} {b : ℤ} (h : a < b) (c : ℤ) : c + a < c + b := sorry
protected theorem mul_nonneg {a : ℤ} {b : ℤ} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a * b := sorry
protected theorem mul_pos {a : ℤ} {b : ℤ} (ha : 0 < a) (hb : 0 < b) : 0 < a * b := sorry
protected theorem zero_lt_one : 0 < 1 := trivial
protected theorem lt_iff_le_not_le {a : ℤ} {b : ℤ} : a < b ↔ a ≤ b ∧ ¬b ≤ a := sorry
protected instance linear_order : linear_order ℤ :=
linear_order.mk int.le int.lt int.le_refl int.le_trans int.le_antisymm int.le_total
int.decidable_le int.decidable_eq int.decidable_lt
theorem eq_nat_abs_of_zero_le {a : ℤ} (h : 0 ≤ a) : a = ↑(nat_abs a) := sorry
theorem le_nat_abs {a : ℤ} : a ≤ ↑(nat_abs a) := sorry
theorem neg_succ_lt_zero (n : ℕ) : Int.negSucc n < 0 := sorry
theorem eq_neg_succ_of_lt_zero {a : ℤ} : a < 0 → ∃ (n : ℕ), a = Int.negSucc n := sorry
/- int is an ordered add comm group -/
protected theorem eq_neg_of_eq_neg {a : ℤ} {b : ℤ} (h : a = -b) : b = -a :=
eq.mpr (id (Eq._oldrec (Eq.refl (b = -a)) h))
(eq.mpr (id (Eq._oldrec (Eq.refl (b = --b)) (int.neg_neg b))) (Eq.refl b))
protected theorem neg_add_cancel_left (a : ℤ) (b : ℤ) : -a + (a + b) = b :=
eq.mpr (id (Eq._oldrec (Eq.refl (-a + (a + b) = b)) (Eq.symm (int.add_assoc (-a) a b))))
(eq.mpr (id (Eq._oldrec (Eq.refl (-a + a + b = b)) (int.add_left_neg a)))
(eq.mpr (id (Eq._oldrec (Eq.refl (0 + b = b)) (int.zero_add b))) (Eq.refl b)))
protected theorem add_neg_cancel_left (a : ℤ) (b : ℤ) : a + (-a + b) = b :=
eq.mpr (id (Eq._oldrec (Eq.refl (a + (-a + b) = b)) (Eq.symm (int.add_assoc a (-a) b))))
(eq.mpr (id (Eq._oldrec (Eq.refl (a + -a + b = b)) (int.add_right_neg a)))
(eq.mpr (id (Eq._oldrec (Eq.refl (0 + b = b)) (int.zero_add b))) (Eq.refl b)))
protected theorem add_neg_cancel_right (a : ℤ) (b : ℤ) : a + b + -b = a :=
eq.mpr (id (Eq._oldrec (Eq.refl (a + b + -b = a)) (int.add_assoc a b (-b))))
(eq.mpr (id (Eq._oldrec (Eq.refl (a + (b + -b) = a)) (int.add_right_neg b)))
(eq.mpr (id (Eq._oldrec (Eq.refl (a + 0 = a)) (int.add_zero a))) (Eq.refl a)))
protected theorem neg_add_cancel_right (a : ℤ) (b : ℤ) : a + -b + b = a :=
eq.mpr (id (Eq._oldrec (Eq.refl (a + -b + b = a)) (int.add_assoc a (-b) b)))
(eq.mpr (id (Eq._oldrec (Eq.refl (a + (-b + b) = a)) (int.add_left_neg b)))
(eq.mpr (id (Eq._oldrec (Eq.refl (a + 0 = a)) (int.add_zero a))) (Eq.refl a)))
protected theorem sub_self (a : ℤ) : a - a = 0 :=
eq.mpr (id (Eq._oldrec (Eq.refl (a - a = 0)) int.sub_eq_add_neg))
(eq.mpr (id (Eq._oldrec (Eq.refl (a + -a = 0)) (int.add_right_neg a))) (Eq.refl 0))
protected theorem sub_eq_zero_of_eq {a : ℤ} {b : ℤ} (h : a = b) : a - b = 0 :=
eq.mpr (id (Eq._oldrec (Eq.refl (a - b = 0)) h))
(eq.mpr (id (Eq._oldrec (Eq.refl (b - b = 0)) (int.sub_self b))) (Eq.refl 0))
protected theorem eq_of_sub_eq_zero {a : ℤ} {b : ℤ} (h : a - b = 0) : a = b := sorry
protected theorem sub_eq_zero_iff_eq {a : ℤ} {b : ℤ} : a - b = 0 ↔ a = b :=
{ mp := int.eq_of_sub_eq_zero, mpr := int.sub_eq_zero_of_eq }
@[simp] protected theorem neg_eq_of_add_eq_zero {a : ℤ} {b : ℤ} (h : a + b = 0) : -a = b := sorry
protected theorem neg_mul_eq_neg_mul (a : ℤ) (b : ℤ) : -(a * b) = -a * b := sorry
protected theorem neg_mul_eq_mul_neg (a : ℤ) (b : ℤ) : -(a * b) = a * -b := sorry
@[simp] theorem neg_mul_eq_neg_mul_symm (a : ℤ) (b : ℤ) : -a * b = -(a * b) :=
Eq.symm (int.neg_mul_eq_neg_mul a b)
@[simp] theorem mul_neg_eq_neg_mul_symm (a : ℤ) (b : ℤ) : a * -b = -(a * b) :=
Eq.symm (int.neg_mul_eq_mul_neg a b)
protected theorem neg_mul_neg (a : ℤ) (b : ℤ) : -a * -b = a * b := sorry
protected theorem neg_mul_comm (a : ℤ) (b : ℤ) : -a * b = a * -b := sorry
protected theorem mul_sub (a : ℤ) (b : ℤ) (c : ℤ) : a * (b - c) = a * b - a * c := sorry
protected theorem sub_mul (a : ℤ) (b : ℤ) (c : ℤ) : (a - b) * c = a * c - b * c := sorry
protected theorem le_of_add_le_add_left {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b ≤ a + c) : b ≤ c := sorry
protected theorem lt_of_add_lt_add_left {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b < a + c) : b < c := sorry
protected theorem add_le_add_right {a : ℤ} {b : ℤ} (h : a ≤ b) (c : ℤ) : a + c ≤ b + c :=
int.add_comm c a ▸ int.add_comm c b ▸ int.add_le_add_left h c
protected theorem add_lt_add_right {a : ℤ} {b : ℤ} (h : a < b) (c : ℤ) : a + c < b + c :=
eq.mpr (id (Eq._oldrec (Eq.refl (a + c < b + c)) (int.add_comm a c)))
(eq.mpr (id (Eq._oldrec (Eq.refl (c + a < b + c)) (int.add_comm b c)))
(int.add_lt_add_left h c))
protected theorem add_le_add {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (h₁ : a ≤ b) (h₂ : c ≤ d) :
a + c ≤ b + d :=
le_trans (int.add_le_add_right h₁ c) (int.add_le_add_left h₂ b)
protected theorem le_add_of_nonneg_right {a : ℤ} {b : ℤ} (h : b ≥ 0) : a ≤ a + b :=
(fun (this : a + b ≥ a + 0) => eq.mp (Eq._oldrec (Eq.refl (a + b ≥ a + 0)) (int.add_zero a)) this)
(int.add_le_add_left h a)
protected theorem le_add_of_nonneg_left {a : ℤ} {b : ℤ} (h : b ≥ 0) : a ≤ b + a :=
(fun (this : 0 + a ≤ b + a) => eq.mp (Eq._oldrec (Eq.refl (0 + a ≤ b + a)) (int.zero_add a)) this)
(int.add_le_add_right h a)
protected theorem add_lt_add {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (h₁ : a < b) (h₂ : c < d) :
a + c < b + d :=
lt_trans (int.add_lt_add_right h₁ c) (int.add_lt_add_left h₂ b)
protected theorem add_lt_add_of_le_of_lt {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (h₁ : a ≤ b) (h₂ : c < d) :
a + c < b + d :=
lt_of_le_of_lt (int.add_le_add_right h₁ c) (int.add_lt_add_left h₂ b)
protected theorem add_lt_add_of_lt_of_le {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (h₁ : a < b) (h₂ : c ≤ d) :
a + c < b + d :=
lt_of_lt_of_le (int.add_lt_add_right h₁ c) (int.add_le_add_left h₂ b)
protected theorem lt_add_of_pos_right (a : ℤ) {b : ℤ} (h : b > 0) : a < a + b :=
(fun (this : a + 0 < a + b) => eq.mp (Eq._oldrec (Eq.refl (a + 0 < a + b)) (int.add_zero a)) this)
(int.add_lt_add_left h a)
protected theorem lt_add_of_pos_left (a : ℤ) {b : ℤ} (h : b > 0) : a < b + a :=
(fun (this : 0 + a < b + a) => eq.mp (Eq._oldrec (Eq.refl (0 + a < b + a)) (int.zero_add a)) this)
(int.add_lt_add_right h a)
protected theorem le_of_add_le_add_right {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b ≤ c + b) : a ≤ c :=
sorry
protected theorem lt_of_add_lt_add_right {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b < c + b) : a < c :=
sorry
-- here we start using properties of zero.
protected theorem add_nonneg {a : ℤ} {b : ℤ} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a + b :=
int.zero_add 0 ▸ int.add_le_add ha hb
protected theorem add_pos {a : ℤ} {b : ℤ} (ha : 0 < a) (hb : 0 < b) : 0 < a + b :=
int.zero_add 0 ▸ int.add_lt_add ha hb
protected theorem add_pos_of_pos_of_nonneg {a : ℤ} {b : ℤ} (ha : 0 < a) (hb : 0 ≤ b) : 0 < a + b :=
int.zero_add 0 ▸ int.add_lt_add_of_lt_of_le ha hb
protected theorem add_pos_of_nonneg_of_pos {a : ℤ} {b : ℤ} (ha : 0 ≤ a) (hb : 0 < b) : 0 < a + b :=
int.zero_add 0 ▸ int.add_lt_add_of_le_of_lt ha hb
protected theorem add_nonpos {a : ℤ} {b : ℤ} (ha : a ≤ 0) (hb : b ≤ 0) : a + b ≤ 0 :=
int.zero_add 0 ▸ int.add_le_add ha hb
protected theorem add_neg {a : ℤ} {b : ℤ} (ha : a < 0) (hb : b < 0) : a + b < 0 :=
int.zero_add 0 ▸ int.add_lt_add ha hb
protected theorem add_neg_of_neg_of_nonpos {a : ℤ} {b : ℤ} (ha : a < 0) (hb : b ≤ 0) : a + b < 0 :=
int.zero_add 0 ▸ int.add_lt_add_of_lt_of_le ha hb
protected theorem add_neg_of_nonpos_of_neg {a : ℤ} {b : ℤ} (ha : a ≤ 0) (hb : b < 0) : a + b < 0 :=
int.zero_add 0 ▸ int.add_lt_add_of_le_of_lt ha hb
protected theorem lt_add_of_le_of_pos {a : ℤ} {b : ℤ} {c : ℤ} (hbc : b ≤ c) (ha : 0 < a) :
b < c + a :=
int.add_zero b ▸ int.add_lt_add_of_le_of_lt hbc ha
protected theorem sub_add_cancel (a : ℤ) (b : ℤ) : a - b + b = a := int.neg_add_cancel_right a b
protected theorem add_sub_cancel (a : ℤ) (b : ℤ) : a + b - b = a := int.add_neg_cancel_right a b
protected theorem add_sub_assoc (a : ℤ) (b : ℤ) (c : ℤ) : a + b - c = a + (b - c) := sorry
protected theorem neg_le_neg {a : ℤ} {b : ℤ} (h : a ≤ b) : -b ≤ -a := sorry
protected theorem le_of_neg_le_neg {a : ℤ} {b : ℤ} (h : -b ≤ -a) : a ≤ b := sorry
protected theorem nonneg_of_neg_nonpos {a : ℤ} (h : -a ≤ 0) : 0 ≤ a :=
(fun (this : -a ≤ -0) => int.le_of_neg_le_neg this)
(eq.mpr (id (Eq._oldrec (Eq.refl (-a ≤ -0)) int.neg_zero)) h)
protected theorem neg_nonpos_of_nonneg {a : ℤ} (h : 0 ≤ a) : -a ≤ 0 :=
(fun (this : -a ≤ -0) => eq.mp (Eq._oldrec (Eq.refl (-a ≤ -0)) int.neg_zero) this)
(int.neg_le_neg h)
protected theorem nonpos_of_neg_nonneg {a : ℤ} (h : 0 ≤ -a) : a ≤ 0 :=
(fun (this : -0 ≤ -a) => int.le_of_neg_le_neg this)
(eq.mpr (id (Eq._oldrec (Eq.refl (-0 ≤ -a)) int.neg_zero)) h)
protected theorem neg_nonneg_of_nonpos {a : ℤ} (h : a ≤ 0) : 0 ≤ -a :=
(fun (this : -0 ≤ -a) => eq.mp (Eq._oldrec (Eq.refl (-0 ≤ -a)) int.neg_zero) this)
(int.neg_le_neg h)
protected theorem neg_lt_neg {a : ℤ} {b : ℤ} (h : a < b) : -b < -a := sorry
protected theorem lt_of_neg_lt_neg {a : ℤ} {b : ℤ} (h : -b < -a) : a < b :=
int.neg_neg a ▸ int.neg_neg b ▸ int.neg_lt_neg h
protected theorem pos_of_neg_neg {a : ℤ} (h : -a < 0) : 0 < a :=
(fun (this : -a < -0) => int.lt_of_neg_lt_neg this)
(eq.mpr (id (Eq._oldrec (Eq.refl (-a < -0)) int.neg_zero)) h)
protected theorem neg_neg_of_pos {a : ℤ} (h : 0 < a) : -a < 0 :=
(fun (this : -a < -0) => eq.mp (Eq._oldrec (Eq.refl (-a < -0)) int.neg_zero) this)
(int.neg_lt_neg h)
protected theorem neg_of_neg_pos {a : ℤ} (h : 0 < -a) : a < 0 :=
(fun (this : -0 < -a) => int.lt_of_neg_lt_neg this)
(eq.mpr (id (Eq._oldrec (Eq.refl (-0 < -a)) int.neg_zero)) h)
protected theorem neg_pos_of_neg {a : ℤ} (h : a < 0) : 0 < -a :=
(fun (this : -0 < -a) => eq.mp (Eq._oldrec (Eq.refl (-0 < -a)) int.neg_zero) this)
(int.neg_lt_neg h)
protected theorem le_neg_of_le_neg {a : ℤ} {b : ℤ} (h : a ≤ -b) : b ≤ -a :=
eq.mp (Eq._oldrec (Eq.refl ( --b ≤ -a)) (int.neg_neg b)) (int.neg_le_neg h)
protected theorem neg_le_of_neg_le {a : ℤ} {b : ℤ} (h : -a ≤ b) : -b ≤ a :=
eq.mp (Eq._oldrec (Eq.refl (-b ≤ --a)) (int.neg_neg a)) (int.neg_le_neg h)
protected theorem lt_neg_of_lt_neg {a : ℤ} {b : ℤ} (h : a < -b) : b < -a :=
eq.mp (Eq._oldrec (Eq.refl ( --b < -a)) (int.neg_neg b)) (int.neg_lt_neg h)
protected theorem neg_lt_of_neg_lt {a : ℤ} {b : ℤ} (h : -a < b) : -b < a :=
eq.mp (Eq._oldrec (Eq.refl (-b < --a)) (int.neg_neg a)) (int.neg_lt_neg h)
protected theorem sub_nonneg_of_le {a : ℤ} {b : ℤ} (h : b ≤ a) : 0 ≤ a - b :=
eq.mp (Eq._oldrec (Eq.refl (b + -b ≤ a + -b)) (int.add_right_neg b)) (int.add_le_add_right h (-b))
protected theorem le_of_sub_nonneg {a : ℤ} {b : ℤ} (h : 0 ≤ a - b) : b ≤ a :=
eq.mp (Eq._oldrec (Eq.refl (0 + b ≤ a)) (int.zero_add b))
(eq.mp (Eq._oldrec (Eq.refl (0 + b ≤ a - b + b)) (int.sub_add_cancel a b))
(int.add_le_add_right h b))
protected theorem sub_nonpos_of_le {a : ℤ} {b : ℤ} (h : a ≤ b) : a - b ≤ 0 :=
eq.mp (Eq._oldrec (Eq.refl (a + -b ≤ b + -b)) (int.add_right_neg b)) (int.add_le_add_right h (-b))
protected theorem le_of_sub_nonpos {a : ℤ} {b : ℤ} (h : a - b ≤ 0) : a ≤ b :=
eq.mp (Eq._oldrec (Eq.refl (a ≤ 0 + b)) (int.zero_add b))
(eq.mp (Eq._oldrec (Eq.refl (a - b + b ≤ 0 + b)) (int.sub_add_cancel a b))
(int.add_le_add_right h b))
protected theorem sub_pos_of_lt {a : ℤ} {b : ℤ} (h : b < a) : 0 < a - b :=
eq.mp (Eq._oldrec (Eq.refl (b + -b < a + -b)) (int.add_right_neg b)) (int.add_lt_add_right h (-b))
protected theorem lt_of_sub_pos {a : ℤ} {b : ℤ} (h : 0 < a - b) : b < a :=
eq.mp (Eq._oldrec (Eq.refl (0 + b < a)) (int.zero_add b))
(eq.mp (Eq._oldrec (Eq.refl (0 + b < a - b + b)) (int.sub_add_cancel a b))
(int.add_lt_add_right h b))
protected theorem sub_neg_of_lt {a : ℤ} {b : ℤ} (h : a < b) : a - b < 0 :=
eq.mp (Eq._oldrec (Eq.refl (a + -b < b + -b)) (int.add_right_neg b)) (int.add_lt_add_right h (-b))
protected theorem lt_of_sub_neg {a : ℤ} {b : ℤ} (h : a - b < 0) : a < b :=
eq.mp (Eq._oldrec (Eq.refl (a < 0 + b)) (int.zero_add b))
(eq.mp (Eq._oldrec (Eq.refl (a - b + b < 0 + b)) (int.sub_add_cancel a b))
(int.add_lt_add_right h b))
protected theorem add_le_of_le_neg_add {a : ℤ} {b : ℤ} {c : ℤ} (h : b ≤ -a + c) : a + b ≤ c :=
eq.mp (Eq._oldrec (Eq.refl (a + b ≤ a + (-a + c))) (int.add_neg_cancel_left a c))
(int.add_le_add_left h a)
protected theorem le_neg_add_of_add_le {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b ≤ c) : b ≤ -a + c :=
eq.mp (Eq._oldrec (Eq.refl (-a + (a + b) ≤ -a + c)) (int.neg_add_cancel_left a b))
(int.add_le_add_left h (-a))
protected theorem add_le_of_le_sub_left {a : ℤ} {b : ℤ} {c : ℤ} (h : b ≤ c - a) : a + b ≤ c :=
eq.mp (Eq._oldrec (Eq.refl (a + b ≤ c + a - a)) (int.add_sub_cancel c a))
(eq.mp (Eq._oldrec (Eq.refl (a + b ≤ a + c - a)) (int.add_comm a c))
(eq.mp (Eq._oldrec (Eq.refl (a + b ≤ a + (c - a))) (Eq.symm (int.add_sub_assoc a c a)))
(int.add_le_add_left h a)))
protected theorem le_sub_left_of_add_le {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b ≤ c) : b ≤ c - a :=
eq.mp (Eq._oldrec (Eq.refl (b + a + -a ≤ c + -a)) (int.add_neg_cancel_right b a))
(eq.mp (Eq._oldrec (Eq.refl (a + b + -a ≤ c + -a)) (int.add_comm a b))
(int.add_le_add_right h (-a)))
protected theorem add_le_of_le_sub_right {a : ℤ} {b : ℤ} {c : ℤ} (h : a ≤ c - b) : a + b ≤ c :=
eq.mp (Eq._oldrec (Eq.refl (a + b ≤ c - b + b)) (int.sub_add_cancel c b))
(int.add_le_add_right h b)
protected theorem le_sub_right_of_add_le {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b ≤ c) : a ≤ c - b :=
eq.mp (Eq._oldrec (Eq.refl (a + b + -b ≤ c + -b)) (int.add_neg_cancel_right a b))
(int.add_le_add_right h (-b))
protected theorem le_add_of_neg_add_le {a : ℤ} {b : ℤ} {c : ℤ} (h : -b + a ≤ c) : a ≤ b + c :=
eq.mp (Eq._oldrec (Eq.refl (b + (-b + a) ≤ b + c)) (int.add_neg_cancel_left b a))
(int.add_le_add_left h b)
protected theorem neg_add_le_of_le_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a ≤ b + c) : -b + a ≤ c :=
eq.mp (Eq._oldrec (Eq.refl (-b + a ≤ -b + (b + c))) (int.neg_add_cancel_left b c))
(int.add_le_add_left h (-b))
protected theorem le_add_of_sub_left_le {a : ℤ} {b : ℤ} {c : ℤ} (h : a - b ≤ c) : a ≤ b + c :=
eq.mp (Eq._oldrec (Eq.refl (a ≤ c + b)) (int.add_comm c b))
(eq.mp (Eq._oldrec (Eq.refl (a - b + b ≤ c + b)) (int.sub_add_cancel a b))
(int.add_le_add_right h b))
protected theorem sub_left_le_of_le_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a ≤ b + c) : a - b ≤ c :=
eq.mp (Eq._oldrec (Eq.refl (a + -b ≤ c + b + -b)) (int.add_neg_cancel_right c b))
(eq.mp (Eq._oldrec (Eq.refl (a + -b ≤ b + c + -b)) (int.add_comm b c))
(int.add_le_add_right h (-b)))
protected theorem le_add_of_sub_right_le {a : ℤ} {b : ℤ} {c : ℤ} (h : a - c ≤ b) : a ≤ b + c :=
eq.mp (Eq._oldrec (Eq.refl (a - c + c ≤ b + c)) (int.sub_add_cancel a c))
(int.add_le_add_right h c)
protected theorem sub_right_le_of_le_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a ≤ b + c) : a - c ≤ b :=
eq.mp (Eq._oldrec (Eq.refl (a + -c ≤ b + c + -c)) (int.add_neg_cancel_right b c))
(int.add_le_add_right h (-c))
protected theorem le_add_of_neg_add_le_left {a : ℤ} {b : ℤ} {c : ℤ} (h : -b + a ≤ c) : a ≤ b + c :=
int.le_add_of_sub_left_le (eq.mp (Eq._oldrec (Eq.refl (-b + a ≤ c)) (int.add_comm (-b) a)) h)
protected theorem neg_add_le_left_of_le_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a ≤ b + c) : -b + a ≤ c :=
eq.mpr (id (Eq._oldrec (Eq.refl (-b + a ≤ c)) (int.add_comm (-b) a)))
(int.sub_left_le_of_le_add h)
protected theorem le_add_of_neg_add_le_right {a : ℤ} {b : ℤ} {c : ℤ} (h : -c + a ≤ b) : a ≤ b + c :=
int.le_add_of_sub_right_le (eq.mp (Eq._oldrec (Eq.refl (-c + a ≤ b)) (int.add_comm (-c) a)) h)
protected theorem neg_add_le_right_of_le_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a ≤ b + c) : -c + a ≤ b :=
int.neg_add_le_left_of_le_add (eq.mp (Eq._oldrec (Eq.refl (a ≤ b + c)) (int.add_comm b c)) h)
protected theorem le_add_of_neg_le_sub_left {a : ℤ} {b : ℤ} {c : ℤ} (h : -a ≤ b - c) : c ≤ a + b :=
int.le_add_of_neg_add_le_left (int.add_le_of_le_sub_right h)
protected theorem neg_le_sub_left_of_le_add {a : ℤ} {b : ℤ} {c : ℤ} (h : c ≤ a + b) : -a ≤ b - c :=
eq.mp (Eq._oldrec (Eq.refl (-a ≤ -c + b)) (int.add_comm (-c) b))
(int.le_neg_add_of_add_le (int.sub_left_le_of_le_add h))
protected theorem le_add_of_neg_le_sub_right {a : ℤ} {b : ℤ} {c : ℤ} (h : -b ≤ a - c) : c ≤ a + b :=
int.le_add_of_sub_right_le (int.add_le_of_le_sub_left h)
protected theorem neg_le_sub_right_of_le_add {a : ℤ} {b : ℤ} {c : ℤ} (h : c ≤ a + b) : -b ≤ a - c :=
int.le_sub_left_of_add_le (int.sub_right_le_of_le_add h)
protected theorem sub_le_of_sub_le {a : ℤ} {b : ℤ} {c : ℤ} (h : a - b ≤ c) : a - c ≤ b :=
int.sub_left_le_of_le_add (int.le_add_of_sub_right_le h)
protected theorem sub_le_sub_left {a : ℤ} {b : ℤ} (h : a ≤ b) (c : ℤ) : c - b ≤ c - a :=
int.add_le_add_left (int.neg_le_neg h) c
protected theorem sub_le_sub_right {a : ℤ} {b : ℤ} (h : a ≤ b) (c : ℤ) : a - c ≤ b - c :=
int.add_le_add_right h (-c)
protected theorem sub_le_sub {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (hab : a ≤ b) (hcd : c ≤ d) :
a - d ≤ b - c :=
int.add_le_add hab (int.neg_le_neg hcd)
protected theorem add_lt_of_lt_neg_add {a : ℤ} {b : ℤ} {c : ℤ} (h : b < -a + c) : a + b < c :=
eq.mp (Eq._oldrec (Eq.refl (a + b < a + (-a + c))) (int.add_neg_cancel_left a c))
(int.add_lt_add_left h a)
protected theorem lt_neg_add_of_add_lt {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b < c) : b < -a + c :=
eq.mp (Eq._oldrec (Eq.refl (-a + (a + b) < -a + c)) (int.neg_add_cancel_left a b))
(int.add_lt_add_left h (-a))
protected theorem add_lt_of_lt_sub_left {a : ℤ} {b : ℤ} {c : ℤ} (h : b < c - a) : a + b < c :=
eq.mp (Eq._oldrec (Eq.refl (a + b < c + a - a)) (int.add_sub_cancel c a))
(eq.mp (Eq._oldrec (Eq.refl (a + b < a + c - a)) (int.add_comm a c))
(eq.mp (Eq._oldrec (Eq.refl (a + b < a + (c - a))) (Eq.symm (int.add_sub_assoc a c a)))
(int.add_lt_add_left h a)))
protected theorem lt_sub_left_of_add_lt {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b < c) : b < c - a :=
eq.mp (Eq._oldrec (Eq.refl (b + a + -a < c + -a)) (int.add_neg_cancel_right b a))
(eq.mp (Eq._oldrec (Eq.refl (a + b + -a < c + -a)) (int.add_comm a b))
(int.add_lt_add_right h (-a)))
protected theorem add_lt_of_lt_sub_right {a : ℤ} {b : ℤ} {c : ℤ} (h : a < c - b) : a + b < c :=
eq.mp (Eq._oldrec (Eq.refl (a + b < c - b + b)) (int.sub_add_cancel c b))
(int.add_lt_add_right h b)
protected theorem lt_sub_right_of_add_lt {a : ℤ} {b : ℤ} {c : ℤ} (h : a + b < c) : a < c - b :=
eq.mp (Eq._oldrec (Eq.refl (a + b + -b < c + -b)) (int.add_neg_cancel_right a b))
(int.add_lt_add_right h (-b))
protected theorem lt_add_of_neg_add_lt {a : ℤ} {b : ℤ} {c : ℤ} (h : -b + a < c) : a < b + c :=
eq.mp (Eq._oldrec (Eq.refl (b + (-b + a) < b + c)) (int.add_neg_cancel_left b a))
(int.add_lt_add_left h b)
protected theorem neg_add_lt_of_lt_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a < b + c) : -b + a < c :=
eq.mp (Eq._oldrec (Eq.refl (-b + a < -b + (b + c))) (int.neg_add_cancel_left b c))
(int.add_lt_add_left h (-b))
protected theorem lt_add_of_sub_left_lt {a : ℤ} {b : ℤ} {c : ℤ} (h : a - b < c) : a < b + c :=
eq.mp (Eq._oldrec (Eq.refl (a < c + b)) (int.add_comm c b))
(eq.mp (Eq._oldrec (Eq.refl (a - b + b < c + b)) (int.sub_add_cancel a b))
(int.add_lt_add_right h b))
protected theorem sub_left_lt_of_lt_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a < b + c) : a - b < c :=
eq.mp (Eq._oldrec (Eq.refl (a + -b < c + b + -b)) (int.add_neg_cancel_right c b))
(eq.mp (Eq._oldrec (Eq.refl (a + -b < b + c + -b)) (int.add_comm b c))
(int.add_lt_add_right h (-b)))
protected theorem lt_add_of_sub_right_lt {a : ℤ} {b : ℤ} {c : ℤ} (h : a - c < b) : a < b + c :=
eq.mp (Eq._oldrec (Eq.refl (a - c + c < b + c)) (int.sub_add_cancel a c))
(int.add_lt_add_right h c)
protected theorem sub_right_lt_of_lt_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a < b + c) : a - c < b :=
eq.mp (Eq._oldrec (Eq.refl (a + -c < b + c + -c)) (int.add_neg_cancel_right b c))
(int.add_lt_add_right h (-c))
protected theorem lt_add_of_neg_add_lt_left {a : ℤ} {b : ℤ} {c : ℤ} (h : -b + a < c) : a < b + c :=
int.lt_add_of_sub_left_lt (eq.mp (Eq._oldrec (Eq.refl (-b + a < c)) (int.add_comm (-b) a)) h)
protected theorem neg_add_lt_left_of_lt_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a < b + c) : -b + a < c :=
eq.mpr (id (Eq._oldrec (Eq.refl (-b + a < c)) (int.add_comm (-b) a)))
(int.sub_left_lt_of_lt_add h)
protected theorem lt_add_of_neg_add_lt_right {a : ℤ} {b : ℤ} {c : ℤ} (h : -c + a < b) : a < b + c :=
int.lt_add_of_sub_right_lt (eq.mp (Eq._oldrec (Eq.refl (-c + a < b)) (int.add_comm (-c) a)) h)
protected theorem neg_add_lt_right_of_lt_add {a : ℤ} {b : ℤ} {c : ℤ} (h : a < b + c) : -c + a < b :=
int.neg_add_lt_left_of_lt_add (eq.mp (Eq._oldrec (Eq.refl (a < b + c)) (int.add_comm b c)) h)
protected theorem lt_add_of_neg_lt_sub_left {a : ℤ} {b : ℤ} {c : ℤ} (h : -a < b - c) : c < a + b :=
int.lt_add_of_neg_add_lt_left (int.add_lt_of_lt_sub_right h)
protected theorem neg_lt_sub_left_of_lt_add {a : ℤ} {b : ℤ} {c : ℤ} (h : c < a + b) : -a < b - c :=
eq.mp (Eq._oldrec (Eq.refl (-a < -c + b)) (int.add_comm (-c) b))
(int.lt_neg_add_of_add_lt (int.sub_left_lt_of_lt_add h))
protected theorem lt_add_of_neg_lt_sub_right {a : ℤ} {b : ℤ} {c : ℤ} (h : -b < a - c) : c < a + b :=
int.lt_add_of_sub_right_lt (int.add_lt_of_lt_sub_left h)
protected theorem neg_lt_sub_right_of_lt_add {a : ℤ} {b : ℤ} {c : ℤ} (h : c < a + b) : -b < a - c :=
int.lt_sub_left_of_add_lt (int.sub_right_lt_of_lt_add h)
protected theorem sub_lt_of_sub_lt {a : ℤ} {b : ℤ} {c : ℤ} (h : a - b < c) : a - c < b :=
int.sub_left_lt_of_lt_add (int.lt_add_of_sub_right_lt h)
protected theorem sub_lt_sub_left {a : ℤ} {b : ℤ} (h : a < b) (c : ℤ) : c - b < c - a :=
int.add_lt_add_left (int.neg_lt_neg h) c
protected theorem sub_lt_sub_right {a : ℤ} {b : ℤ} (h : a < b) (c : ℤ) : a - c < b - c :=
int.add_lt_add_right h (-c)
protected theorem sub_lt_sub {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (hab : a < b) (hcd : c < d) :
a - d < b - c :=
int.add_lt_add hab (int.neg_lt_neg hcd)
protected theorem sub_lt_sub_of_le_of_lt {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (hab : a ≤ b)
(hcd : c < d) : a - d < b - c :=
int.add_lt_add_of_le_of_lt hab (int.neg_lt_neg hcd)
protected theorem sub_lt_sub_of_lt_of_le {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (hab : a < b)
(hcd : c ≤ d) : a - d < b - c :=
int.add_lt_add_of_lt_of_le hab (int.neg_le_neg hcd)
protected theorem sub_le_self (a : ℤ) {b : ℤ} (h : b ≥ 0) : a - b ≤ a :=
trans_rel_left LessEq
(trans_rel_right LessEq rfl (int.add_le_add_left (int.neg_nonpos_of_nonneg h) a))
(eq.mpr (id (Eq._oldrec (Eq.refl (a + 0 = a)) (int.add_zero a))) (Eq.refl a))
protected theorem sub_lt_self (a : ℤ) {b : ℤ} (h : b > 0) : a - b < a :=
trans_rel_left Less (trans_rel_right Less rfl (int.add_lt_add_left (int.neg_neg_of_pos h) a))
(eq.mpr (id (Eq._oldrec (Eq.refl (a + 0 = a)) (int.add_zero a))) (Eq.refl a))
protected theorem add_le_add_three {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} {e : ℤ} {f : ℤ} (h₁ : a ≤ d)
(h₂ : b ≤ e) (h₃ : c ≤ f) : a + b + c ≤ d + e + f :=
le_trans (int.add_le_add (int.add_le_add h₁ h₂) h₃) (le_refl (d + e + f))
/- missing facts -/
protected theorem mul_lt_mul_of_pos_left {a : ℤ} {b : ℤ} {c : ℤ} (h₁ : a < b) (h₂ : 0 < c) :
c * a < c * b :=
sorry
protected theorem mul_lt_mul_of_pos_right {a : ℤ} {b : ℤ} {c : ℤ} (h₁ : a < b) (h₂ : 0 < c) :
a * c < b * c :=
sorry
protected theorem mul_le_mul_of_nonneg_left {a : ℤ} {b : ℤ} {c : ℤ} (h₁ : a ≤ b) (h₂ : 0 ≤ c) :
c * a ≤ c * b :=
sorry
protected theorem mul_le_mul_of_nonneg_right {a : ℤ} {b : ℤ} {c : ℤ} (h₁ : a ≤ b) (h₂ : 0 ≤ c) :
a * c ≤ b * c :=
sorry
-- TODO: there are four variations, depending on which variables we assume to be nonneg
protected theorem mul_le_mul {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (hac : a ≤ c) (hbd : b ≤ d)
(nn_b : 0 ≤ b) (nn_c : 0 ≤ c) : a * b ≤ c * d :=
le_trans (int.mul_le_mul_of_nonneg_right hac nn_b) (int.mul_le_mul_of_nonneg_left hbd nn_c)
protected theorem mul_nonpos_of_nonneg_of_nonpos {a : ℤ} {b : ℤ} (ha : a ≥ 0) (hb : b ≤ 0) :
a * b ≤ 0 :=
(fun (h : a * b ≤ a * 0) => eq.mp (Eq._oldrec (Eq.refl (a * b ≤ a * 0)) (int.mul_zero a)) h)
(int.mul_le_mul_of_nonneg_left hb ha)
protected theorem mul_nonpos_of_nonpos_of_nonneg {a : ℤ} {b : ℤ} (ha : a ≤ 0) (hb : b ≥ 0) :
a * b ≤ 0 :=
(fun (h : a * b ≤ 0 * b) => eq.mp (Eq._oldrec (Eq.refl (a * b ≤ 0 * b)) (int.zero_mul b)) h)
(int.mul_le_mul_of_nonneg_right ha hb)
protected theorem mul_lt_mul {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (hac : a < c) (hbd : b ≤ d)
(pos_b : 0 < b) (nn_c : 0 ≤ c) : a * b < c * d :=
lt_of_lt_of_le (int.mul_lt_mul_of_pos_right hac pos_b) (int.mul_le_mul_of_nonneg_left hbd nn_c)
protected theorem mul_lt_mul' {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (h1 : a ≤ c) (h2 : b < d) (h3 : b ≥ 0)
(h4 : c > 0) : a * b < c * d :=
lt_of_le_of_lt (int.mul_le_mul_of_nonneg_right h1 h3) (int.mul_lt_mul_of_pos_left h2 h4)
protected theorem mul_neg_of_pos_of_neg {a : ℤ} {b : ℤ} (ha : a > 0) (hb : b < 0) : a * b < 0 :=
(fun (h : a * b < a * 0) => eq.mp (Eq._oldrec (Eq.refl (a * b < a * 0)) (int.mul_zero a)) h)
(int.mul_lt_mul_of_pos_left hb ha)
protected theorem mul_neg_of_neg_of_pos {a : ℤ} {b : ℤ} (ha : a < 0) (hb : b > 0) : a * b < 0 :=
(fun (h : a * b < 0 * b) => eq.mp (Eq._oldrec (Eq.refl (a * b < 0 * b)) (int.zero_mul b)) h)
(int.mul_lt_mul_of_pos_right ha hb)
protected theorem mul_le_mul_of_nonpos_right {a : ℤ} {b : ℤ} {c : ℤ} (h : b ≤ a) (hc : c ≤ 0) :
a * c ≤ b * c :=
sorry
protected theorem mul_nonneg_of_nonpos_of_nonpos {a : ℤ} {b : ℤ} (ha : a ≤ 0) (hb : b ≤ 0) :
0 ≤ a * b :=
(fun (this : 0 * b ≤ a * b) => eq.mp (Eq._oldrec (Eq.refl (0 * b ≤ a * b)) (int.zero_mul b)) this)
(int.mul_le_mul_of_nonpos_right ha hb)
protected theorem mul_lt_mul_of_neg_left {a : ℤ} {b : ℤ} {c : ℤ} (h : b < a) (hc : c < 0) :
c * a < c * b :=
sorry
protected theorem mul_lt_mul_of_neg_right {a : ℤ} {b : ℤ} {c : ℤ} (h : b < a) (hc : c < 0) :
a * c < b * c :=
sorry
protected theorem mul_pos_of_neg_of_neg {a : ℤ} {b : ℤ} (ha : a < 0) (hb : b < 0) : 0 < a * b :=
(fun (this : 0 * b < a * b) => eq.mp (Eq._oldrec (Eq.refl (0 * b < a * b)) (int.zero_mul b)) this)
(int.mul_lt_mul_of_neg_right ha hb)
protected theorem mul_self_le_mul_self {a : ℤ} {b : ℤ} (h1 : 0 ≤ a) (h2 : a ≤ b) : a * a ≤ b * b :=
int.mul_le_mul h2 h2 h1 (le_trans h1 h2)
protected theorem mul_self_lt_mul_self {a : ℤ} {b : ℤ} (h1 : 0 ≤ a) (h2 : a < b) : a * a < b * b :=
int.mul_lt_mul' (le_of_lt h2) h2 h1 (lt_of_le_of_lt h1 h2)
/- more facts specific to int -/
theorem of_nat_nonneg (n : ℕ) : 0 ≤ Int.ofNat n := trivial
theorem coe_succ_pos (n : ℕ) : ↑(Nat.succ n) > 0 := coe_nat_lt_coe_nat_of_lt (nat.succ_pos n)
theorem exists_eq_neg_of_nat {a : ℤ} (H : a ≤ 0) : ∃ (n : ℕ), a = -↑n := sorry
theorem nat_abs_of_nonneg {a : ℤ} (H : a ≥ 0) : ↑(nat_abs a) = a := sorry
theorem of_nat_nat_abs_of_nonpos {a : ℤ} (H : a ≤ 0) : ↑(nat_abs a) = -a :=
eq.mpr (id (Eq._oldrec (Eq.refl (↑(nat_abs a) = -a)) (Eq.symm (nat_abs_neg a))))
(eq.mpr
(id
(Eq._oldrec (Eq.refl (↑(nat_abs (-a)) = -a))
(nat_abs_of_nonneg (int.neg_nonneg_of_nonpos H))))
(Eq.refl (-a)))
theorem lt_of_add_one_le {a : ℤ} {b : ℤ} (H : a + 1 ≤ b) : a < b := H
theorem add_one_le_of_lt {a : ℤ} {b : ℤ} (H : a < b) : a + 1 ≤ b := H
theorem lt_add_one_of_le {a : ℤ} {b : ℤ} (H : a ≤ b) : a < b + 1 := int.add_le_add_right H 1
theorem le_of_lt_add_one {a : ℤ} {b : ℤ} (H : a < b + 1) : a ≤ b := int.le_of_add_le_add_right H
theorem sub_one_le_of_lt {a : ℤ} {b : ℤ} (H : a ≤ b) : a - 1 < b :=
int.sub_right_lt_of_lt_add (lt_add_one_of_le H)
theorem lt_of_sub_one_le {a : ℤ} {b : ℤ} (H : a - 1 < b) : a ≤ b :=
le_of_lt_add_one (int.lt_add_of_sub_right_lt H)
theorem le_sub_one_of_lt {a : ℤ} {b : ℤ} (H : a < b) : a ≤ b - 1 := int.le_sub_right_of_add_le H
theorem lt_of_le_sub_one {a : ℤ} {b : ℤ} (H : a ≤ b - 1) : a < b := int.add_le_of_le_sub_right H
theorem sign_of_succ (n : ℕ) : sign ↑(Nat.succ n) = 1 := rfl
theorem sign_eq_one_of_pos {a : ℤ} (h : 0 < a) : sign a = 1 := sorry
theorem sign_eq_neg_one_of_neg {a : ℤ} (h : a < 0) : sign a = -1 := sorry
theorem eq_zero_of_sign_eq_zero {a : ℤ} : sign a = 0 → a = 0 := sorry
theorem pos_of_sign_eq_one {a : ℤ} : sign a = 1 → 0 < a := sorry
theorem neg_of_sign_eq_neg_one {a : ℤ} : sign a = -1 → a < 0 := sorry
theorem sign_eq_one_iff_pos (a : ℤ) : sign a = 1 ↔ 0 < a :=
{ mp := pos_of_sign_eq_one, mpr := sign_eq_one_of_pos }
theorem sign_eq_neg_one_iff_neg (a : ℤ) : sign a = -1 ↔ a < 0 :=
{ mp := neg_of_sign_eq_neg_one, mpr := sign_eq_neg_one_of_neg }
theorem sign_eq_zero_iff_zero (a : ℤ) : sign a = 0 ↔ a = 0 := sorry
protected theorem eq_zero_or_eq_zero_of_mul_eq_zero {a : ℤ} {b : ℤ} (h : a * b = 0) :
a = 0 ∨ b = 0 :=
sorry
protected theorem eq_of_mul_eq_mul_right {a : ℤ} {b : ℤ} {c : ℤ} (ha : a ≠ 0) (h : b * a = c * a) :
b = c :=
sorry
protected theorem eq_of_mul_eq_mul_left {a : ℤ} {b : ℤ} {c : ℤ} (ha : a ≠ 0) (h : a * b = a * c) :
b = c :=
sorry
theorem eq_one_of_mul_eq_self_left {a : ℤ} {b : ℤ} (Hpos : a ≠ 0) (H : b * a = a) : b = 1 :=
int.eq_of_mul_eq_mul_right Hpos
(eq.mpr (id (Eq._oldrec (Eq.refl (b * a = 1 * a)) (int.one_mul a)))
(eq.mpr (id (Eq._oldrec (Eq.refl (b * a = a)) H)) (Eq.refl a)))
theorem eq_one_of_mul_eq_self_right {a : ℤ} {b : ℤ} (Hpos : b ≠ 0) (H : b * a = b) : a = 1 :=
int.eq_of_mul_eq_mul_left Hpos
(eq.mpr (id (Eq._oldrec (Eq.refl (b * a = b * 1)) (int.mul_one b)))
(eq.mpr (id (Eq._oldrec (Eq.refl (b * a = b)) H)) (Eq.refl b)))
end Mathlib |
n := 0;
repeat
n := n + 1;
Print(n, "\n");
until RemInt(n, 6) = 0;
|
theory Chisholm_SDL imports SDL (*Christoph Benzmüller & Xavier Parent, 2019*)
begin (*Unimportant*) nitpick_params [user_axioms,show_all,format=2]
(*** Chisholm Example ***)
consts go::\<sigma> tell::\<sigma> kill::\<sigma>
abbreviation "D1 \<equiv> \<^bold>\<circle><go>" (*It ought to be that Jones goes to assist his neighbors.*)
abbreviation "D2w \<equiv> \<^bold>\<circle><go \<^bold>\<rightarrow> tell>" (*It ought to be that if Jones goes, then he tells them he is coming.*)
abbreviation "D2n \<equiv> go \<^bold>\<rightarrow> \<^bold>\<circle><tell>"
abbreviation "D3w \<equiv> \<^bold>\<circle><\<^bold>\<not>go \<^bold>\<rightarrow> \<^bold>\<not>tell>" (*If Jones doesn't go, then he ought not tell them he is coming.*)
abbreviation "D3n \<equiv> \<^bold>\<not>go \<^bold>\<rightarrow> \<^bold>\<circle><\<^bold>\<not>tell>"
abbreviation "D4 \<equiv> \<^bold>\<not>go" (*Jones doesn't go. (This is encoded as a locally valid statement.)*)
(*** Chisholm_A: All-wide scoping is leading to an inadequate, dependent set of the axioms.***)
lemma "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3w) \<^bold>\<rightarrow> D4\<rfloor>" nitpick oops (*countermodel*)
lemma "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D4) \<^bold>\<rightarrow> D3w\<rfloor>" sledgehammer by blast (*proof*)
lemma "\<lfloor>(D1 \<^bold>\<and> D3w \<^bold>\<and> D4) \<^bold>\<rightarrow> D2w\<rfloor>" nitpick oops (*countermodel*)
lemma "\<lfloor>(D2w \<^bold>\<and> D3w \<^bold>\<and> D4) \<^bold>\<rightarrow> D1\<rfloor>" nitpick oops (*countermodel*)
(* Consistency *)
lemma "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3w)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" nitpick [satisfy] oops (*Consistent? Yes*)
(* Queries *)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3w)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><\<^bold>\<not>tell>\<rfloor>\<^sub>c\<^sub>w" nitpick oops (*Should James not tell? No*)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3w)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><tell>\<rfloor>\<^sub>c\<^sub>w" using assms by blast (*Should J. tell? Yes*)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3w)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><kill>\<rfloor>\<^sub>c\<^sub>w" nitpick oops (*Should James kill? No*)
(*** Chisholm_B: All-narrow scoping is leading to a inadequate, dependent set of the axioms.*)
lemma "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3n) \<^bold>\<rightarrow> D4\<rfloor>" nitpick oops (*countermodel*)
lemma "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D4) \<^bold>\<rightarrow> D3n\<rfloor>" nitpick oops (*countermodel*)
lemma "\<lfloor>(D1 \<^bold>\<and> D3n \<^bold>\<and> D4) \<^bold>\<rightarrow> D2n\<rfloor>" sledgehammer by blast (*proof*)
lemma "\<lfloor>(D2n \<^bold>\<and> D3n \<^bold>\<and> D4) \<^bold>\<rightarrow> D1\<rfloor>" nitpick oops (*countermodel*)
(* Consistency *)
lemma "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3n)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" nitpick [satisfy] oops (*Consistent? Yes*)
(* Queries *)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3n)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><\<^bold>\<not>tell>\<rfloor>\<^sub>c\<^sub>w" using assms by smt (*Should J. not tell? Yes*)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3n)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><tell>\<rfloor>\<^sub>c\<^sub>w" nitpick oops (*Should James tell? No*)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3n)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><kill>\<rfloor>\<^sub>c\<^sub>w" nitpick oops (*Should James kill? No*)
(*** Chisholm_C: Wide-narrow scoping is leading to an adequate, independence of the axioms.*)
lemma "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3n) \<^bold>\<rightarrow> D4\<rfloor>" nitpick oops (*countermodel*)
lemma "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D4) \<^bold>\<rightarrow> D3n\<rfloor>" nitpick oops (*countermodel*)
lemma "\<lfloor>(D1 \<^bold>\<and> D3n \<^bold>\<and> D4) \<^bold>\<rightarrow> D2w\<rfloor>" nitpick oops (*countermodel*)
lemma "\<lfloor>(D2w \<^bold>\<and> D3n \<^bold>\<and> D4) \<^bold>\<rightarrow> D1\<rfloor>" nitpick oops (*countermodel*)
(* Consistency *)
lemma "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3n)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" nitpick [satisfy,expect=none] oops (*Consistent? No*)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3n)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows False using D assms by blast
(* Queries *)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3n)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><\<^bold>\<not>tell>\<rfloor>\<^sub>c\<^sub>w" using D assms by smt (*Shld J. not tell? Yes*)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3n)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><tell>\<rfloor>\<^sub>c\<^sub>w" using assms by blast (*Should J. tell? Yes*)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2w \<^bold>\<and> D3n)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><kill>\<rfloor>\<^sub>c\<^sub>w" using D assms by blast (*Should J. kill? Yes*)
(*** Chisholm_D: Narrow-wide scoping is leading to a inadequate, dependent set of the axioms.*)
lemma "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3w) \<^bold>\<rightarrow> D4\<rfloor>" nitpick oops (*countermodel*)
lemma "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D4) \<^bold>\<rightarrow> D3w\<rfloor>" by blast (*proof*)
lemma "\<lfloor>(D1 \<^bold>\<and> D3w \<^bold>\<and> D4) \<^bold>\<rightarrow> D2n\<rfloor>" by blast (*proof*)
lemma "\<lfloor>(D2n \<^bold>\<and> D3w \<^bold>\<and> D4) \<^bold>\<rightarrow> D1\<rfloor>" nitpick oops (*countermodel*)
(* Consistency *)
lemma "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3w)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" nitpick [satisfy] oops (*Consistent? Yes*)
(* Queries *)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3w)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><\<^bold>\<not>tell>\<rfloor>\<^sub>c\<^sub>w" nitpick oops (*Should James not tell? No*)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3w)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><tell>\<rfloor>\<^sub>c\<^sub>w" nitpick oops (*Should James tell? No*)
lemma assumes "\<lfloor>(D1 \<^bold>\<and> D2n \<^bold>\<and> D3w)\<rfloor> \<and> \<lfloor>D4\<rfloor>\<^sub>c\<^sub>w" shows "\<lfloor>\<^bold>\<circle><kill>\<rfloor>\<^sub>c\<^sub>w" nitpick oops (*Should James kill? No*)
end
|
A point $y$ is a limit point of the open ball $B(x,\epsilon)$ if and only if $0 < \epsilon$ and $y \in \overline{B(x,\epsilon)}$. |
Require Import Basics.Overture Basics.Tactics.
Require Import Pos.Core.
Local Open Scope positive_scope.
(** ** Specification of [succ] in term of [add] *)
Lemma pos_add_1_r p : p + 1 = pos_succ p.
Proof.
by destruct p.
Qed.
Lemma pos_add_1_l p : 1 + p = pos_succ p.
Proof.
by destruct p.
Qed.
(** ** Specification of [add_carry] *)
Theorem pos_add_carry_spec p q : pos_add_carry p q = pos_succ (p + q).
Proof.
revert q.
induction p; destruct q; simpl; by apply ap.
Qed.
(** ** Commutativity of [add] *)
Theorem pos_add_comm p q : p + q = q + p.
Proof.
revert q.
induction p; destruct q; simpl; apply ap; trivial.
rewrite 2 pos_add_carry_spec; by apply ap.
Qed.
(** ** Permutation of [add] and [succ] *)
Theorem pos_add_succ_r p q : p + pos_succ q = pos_succ (p + q).
Proof.
revert q.
induction p; destruct q; simpl; apply ap;
auto using pos_add_1_r; rewrite pos_add_carry_spec; auto.
Qed.
Theorem pos_add_succ_l p q : pos_succ p + q = pos_succ (p + q).
Proof.
rewrite pos_add_comm, (pos_add_comm p). apply pos_add_succ_r.
Qed.
Definition pos_add_succ p q : p + pos_succ q = pos_succ p + q.
Proof.
by rewrite pos_add_succ_r, pos_add_succ_l.
Defined.
Definition pos_add_carry_spec_l q r
: pos_add_carry q r = pos_succ q + r.
Proof.
by rewrite pos_add_carry_spec, pos_add_succ_l.
Qed.
Definition pos_add_carry_spec_r q r
: pos_add_carry q r = q + pos_succ r.
Proof.
by rewrite pos_add_carry_spec, pos_add_succ_r.
Defined.
(** ** No neutral elements for addition *)
Lemma pos_add_no_neutral p q : q + p <> p.
Proof.
revert q.
induction p as [ |p IHp|p IHp]; intros [ |q|q].
1,3: apply x0_neq_xH.
1: apply x1_neq_xH.
1,3: apply x1_neq_x0.
2,4: apply x0_neq_x1.
1,2: intro H; apply (IHp q).
1: apply x0_inj, H.
apply x1_inj, H.
Qed.
(** * Injectivity of pos_succ *)
Lemma pos_succ_inj n m : pos_succ n = pos_succ m -> n = m.
Proof.
revert m.
induction n as [ | n x | n x]; induction m as [ | m y | m y].
+ reflexivity.
+ intro p.
destruct (x0_neq_x1 p).
+ intro p.
simpl in p.
apply x0_inj in p.
destruct m.
1,3: destruct (xH_neq_x0 p).
destruct (xH_neq_x1 p).
+ intro p.
destruct (x1_neq_x0 p).
+ simpl.
intro p.
by apply ap, x1_inj.
+ intro p.
destruct (x1_neq_x0 p).
+ intro p.
cbn in p.
apply x0_inj in p.
destruct n.
1,3: destruct (x0_neq_xH p).
destruct (x1_neq_xH p).
+ intro p.
cbn in p.
destruct (x0_neq_x1 p).
+ intro p.
apply ap, x, x0_inj, p.
Defined.
(** ** Addition is associative *)
Theorem pos_add_assoc p q r : p + (q + r) = p + q + r.
Proof.
revert q r.
induction p.
+ intros [|q|q] [|r|r].
all: try reflexivity.
all: simpl.
1,2: by destruct r.
1,2: apply ap; symmetry.
1: apply pos_add_carry_spec.
1: apply pos_add_succ_l.
apply ap.
rewrite pos_add_succ_l.
apply pos_add_carry_spec.
+ intros [|q|q] [|r|r].
all: try reflexivity.
all: cbn; apply ap.
3,4,6: apply IHp.
1: apply pos_add_1_r.
1: symmetry; apply pos_add_carry_spec_r.
1: apply pos_add_succ_r.
rewrite 2 pos_add_carry_spec_l.
rewrite <- pos_add_succ_r.
apply IHp.
+ intros [|q|q] [|r|r].
all: cbn; apply ap.
1: apply pos_add_1_r.
1: apply pos_add_carry_spec_l.
1: apply pos_add_succ.
1: apply pos_add_carry_spec.
1: apply IHp.
2: symmetry; apply pos_add_carry_spec_r.
1,2: rewrite 2 pos_add_carry_spec, ?pos_add_succ_l.
1,2: apply ap, IHp.
rewrite ?pos_add_carry_spec_r.
rewrite pos_add_succ.
apply IHp.
Qed.
(** ** One is neutral for multiplication *)
Lemma pos_mul_1_l p : 1 * p = p.
Proof.
reflexivity.
Qed.
Lemma pos_mul_1_r p : p * 1 = p.
Proof.
induction p; cbn; trivial; by apply ap.
Qed.
(** pos_succ and doubling functions *)
Lemma pos_pred_double_succ n
: pos_pred_double (pos_succ n) = n~1.
Proof.
induction n as [|n|n nH].
all: trivial.
cbn; apply ap, nH.
Qed.
Lemma pos_succ_pred_double n
: pos_succ (pos_pred_double n) = n~0.
Proof.
induction n as [|n nH|n].
all: trivial.
cbn; apply ap, nH.
Qed.
(** ** Iteration and pos_succ *)
Lemma pos_iter_succ_l {A} (f : A -> A) p a
: pos_iter f (pos_succ p) a = f (pos_iter f p a).
Proof.
unfold pos_iter.
by rewrite pos_peano_ind_beta_pos_succ.
Qed.
Lemma pos_iter_succ_r {A} (f : A -> A) p a
: pos_iter f (pos_succ p) a = pos_iter f p (f a).
Proof.
revert p f a.
srapply pos_peano_ind.
1: hnf; intros; trivial.
hnf; intros p q f a.
refine (_ @ _ @ _^).
1,3: unfold pos_iter;
by rewrite pos_peano_ind_beta_pos_succ.
apply ap.
apply q.
Qed.
(** ** Right reduction properties for multiplication *)
Lemma mul_xO_r p q : p * q~0 = (p * q)~0.
Proof.
induction p; simpl; f_ap; f_ap; trivial.
Qed.
Lemma mul_xI_r p q : p * q~1 = p + (p * q)~0.
Proof.
induction p; simpl; trivial; f_ap.
rewrite IHp.
rewrite pos_add_assoc.
rewrite (pos_add_comm q p).
symmetry.
apply pos_add_assoc.
Qed.
(** ** Commutativity of multiplication *)
Lemma pos_mul_comm p q : p * q = q * p.
Proof.
induction q; simpl.
1: apply pos_mul_1_r.
+ rewrite mul_xO_r.
f_ap.
+ rewrite mul_xI_r.
f_ap; f_ap.
Qed.
(** ** Distributivity of addition over multiplication *)
Theorem pos_mul_add_distr_l p q r :
p * (q + r) = p * q + p * r.
Proof.
induction p; cbn; [reflexivity | f_ap | ].
rewrite IHp.
set (m:=(p*q)~0).
set (n:=(p*r)~0).
change ((p*q+p*r)~0) with (m+n).
rewrite 2 pos_add_assoc; f_ap.
rewrite <- 2 pos_add_assoc; f_ap.
apply pos_add_comm.
Qed.
Theorem pos_mul_add_distr_r p q r :
(p + q) * r = p * r + q * r.
Proof.
rewrite 3 (pos_mul_comm _ r); apply pos_mul_add_distr_l.
Qed.
(** ** Associativity of multiplication *)
Theorem pos_mul_assoc p q r : p * (q * r) = p * q * r.
Proof.
induction p; simpl; rewrite ?IHp; trivial.
by rewrite pos_mul_add_distr_r.
Qed.
(** ** pos_succ and pos_mul *)
Lemma pos_mul_succ_l p q
: (pos_succ p) * q = p * q + q.
Proof.
by rewrite <- pos_add_1_r, pos_mul_add_distr_r, pos_mul_1_l.
Qed.
Lemma pos_mul_succ_r p q
: p * (pos_succ q) = p + p * q.
Proof.
by rewrite <- pos_add_1_l, pos_mul_add_distr_l, pos_mul_1_r.
Qed.
|
Holiday Tag Post – Join me and share your answers!
Are any of you YouTubers? There is this entirely separate YouTube world roaming on the internet. We have a channel that is updated very sporadically but we are planning to create more videos in the upcoming year. |
open import Oscar.Prelude
module Oscar.Class.Pure where
module _
{𝔬 𝔣}
(𝔉 : Ø 𝔬 → Ø 𝔣)
where
𝓹ure = ∀ {𝔒 : Ø 𝔬} → 𝔒 → 𝔉 𝔒
record 𝓟ure : Ø 𝔣 ∙̂ ↑̂ 𝔬 where
field pure : 𝓹ure
open 𝓟ure ⦃ … ⦄ public
|
import Myint.Canon
namespace myint
theorem ne_irrefl (a : myint) : ¬ a ≉ a := by
rw [mynotequal]
rw [Ne]
have := refl a
rw [myequal] at this
rw [this]
have : ¬ a.y + a.x = a.y + a.x → False := by
intro h
rw [← Ne] at h
exact Ne.irrefl h
exact this
theorem ne_symm {a b : myint} (hab : mynotequal a b) : mynotequal b a := by
rw [mynotequal] at hab ⊢
have hres := Ne.symm hab
rw [mynat.add_comm a.y, mynat.add_comm a.x] at hres
exact hres
-- Warning: this is not the usual transitivity.
-- this says that if a ≠ b and b = c then a ≠ c
theorem ne_trans {a b c : myint} (hab : mynotequal a b) (hbc : myequal b c) : mynotequal a c := by
rw [myequal] at hbc
rw [mynotequal] at hab ⊢
have : a.x + b.y + (b.x + c.y) ≠ a.y + b.x + (b.y + c.x) := by
rw [hbc]
intro h
have := mynat.add_right_cancel (a.x + b.y) (b.y + c.x) (a.y + b.x) h
exact hab this
repeat rw [← mynat.add_assoc] at this
rw [mynat.add_assoc a.x] at this
rw [mynat.add_comm b.y] at this
rw [mynat.add_comm a.x] at this
rw [mynat.add_assoc a.y] at this
rw [mynat.add_comm a.y] at this
repeat rw [mynat.add_assoc (b.x + b.y)] at this
intro hfalse
rw [hfalse] at this
exact this (Eq.refl (b.x + b.y + (a.y + c.x)))
theorem ne_implies_exists_offset (a b : myint) : a ≉ b → ∃ c : myint, c ≉ 0 ∧ a ≈ b + c := by
intro h
rw [mynotequal] at h
cases mynat.le_total (a.x + b.y) (a.y + b.x)
case inl hle =>
rw [mynat.le_iff_exists_add] at hle
cases hle with
| intro d hd =>
exists myint.mk 0 d
apply And.intro
. rw [mynotequal]
rw [destruct_x, destruct_y _ d]
rw [default_nat_has_no_y, default_nat_has_same_x]
rw [mynat.myofnat, mynat.mynat_zero_eq_zero]
repeat rw [mynat.add_zero]
cases d
case zero =>
apply False.elim _
rw [mynat.mynat_zero_eq_zero, mynat.add_zero] at hd
exact h (Eq.symm hd)
case succ d' =>
exact Ne.symm (mynat.succ_ne_zero d')
. rw [equiv_is_myequal, myequal]
rw [add_y, destruct_y _ d]
rw [add_x, destruct_x 0 _]
rw [mynat.add_zero]
rw [← mynat.add_assoc]
exact Eq.symm hd
case inr hle =>
rw [mynat.le_iff_exists_add] at hle
cases hle with
| intro d hd =>
exists myint.mk d 0
apply And.intro
. rw [mynotequal]
rw [destruct_x, destruct_y _ 0]
rw [default_nat_has_no_y, default_nat_has_same_x]
rw [mynat.myofnat, mynat.mynat_zero_eq_zero]
repeat rw [mynat.zero_add]
cases d
case zero =>
apply False.elim _
rw [mynat.mynat_zero_eq_zero, mynat.add_zero] at hd
exact h hd
case succ d' =>
rw [mynat.add_zero]
exact mynat.succ_ne_zero d'
. rw [equiv_is_myequal, myequal]
rw [add_y, destruct_y _ 0]
rw [add_x, destruct_x d _]
rw [mynat.add_zero]
rw [← mynat.add_assoc]
exact hd
theorem ne_iff_exists_offset (a b : myint) : a ≉ b ↔ ∃ c : myint, c ≉ 0 ∧ a ≈ b + c := by
apply Iff.intro
. exact ne_implies_exists_offset a b
. intro h
cases h with
| intro d hd =>
have hdnz := hd.left
have hab := hd.right
rw [mynotequal]
rw [equiv_is_myequal, myequal] at hab
rw [add_y, add_x] at hab
rw [mynotequal, zerox, zeroy, mynat.add_zero, mynat.add_zero] at hdnz
intro hcont
repeat rw [← mynat.add_assoc] at hab
rw [hcont] at hab
have := (mynat.add_left_cancel _ _ _) hab
exact hdnz (Eq.symm this)
theorem ne_mul_still_ne (a b t : myint) : a ≉ b ∧ t ≉ 0 → a * t ≉ b * t := by
intro h
have hab := h.left
have htnz := h.right
have hoffset := (ne_iff_exists_offset a b).mp hab
cases hoffset with
| intro c hc =>
have hcnz := hc.left
have habc := hc.right
have htimes := mul_right a (b + c) t habc
have : a * t ≈ b * t + c * t := trans htimes (add_mul b c t)
intro hfalse
rw [← myequal, ← equiv_is_myequal] at hfalse
have := trans (symm hfalse) this
have := add_left_cancel (b * t) 0 (c * t) this
have := eq_zero_or_eq_zero_of_mul_eq_zero c t (symm this)
cases this
case inl h' =>
exact hcnz h'
case inr h' =>
exact htnz h'
theorem mul_nonzero (a b : myint) : a ≉ 0 → b ≉ 0 → a * b ≉ 0 := by
intro ha
intro hb
have := ne_mul_still_ne a 0 b ⟨ ha, hb ⟩
have := ne_trans this (zero_mul b)
exact this
def myle (a b : myint) := ∃ (c : mynat), b ≈ a + (myint.mk c 0)
instance : LE myint where
le := myle
theorem le_iff_exists_add (a b : myint) : a ≤ b ↔ ∃ (c : mynat), b ≈ a + (myint.mk c 0) := Iff.rfl
theorem le_refl (x : myint) : x ≤ x := by
exists 0
exact add_zero x
theorem le_refl_equiv (x y : myint) : x ≈ y → x ≤ y := by
intro h
exists 0
exact trans (symm h) (add_zero x)
theorem le_trans (a b c : myint) (hab : a ≤ b) (hbc : b ≤ c) : a ≤ c := by
cases hab with
| intro d hd =>
cases hbc with
| intro e he =>
have hdp := add_right b (a + myint.mk d 0) (myint.mk e 0) hd
have heq : c ≈ (a + (myint.mk d 0) + (myint.mk e 0)) := trans he hdp
exists d + e
have heqasc : c ≈ a + ((myint.mk d 0) + (myint.mk e 0)) := trans heq (add_assoc a (myint.mk d 0) (myint.mk e 0))
conv at heqasc =>
rhs
arg 2
rw [add_eq_myadd, myadd]
rw [destruct_x, destruct_y, destruct_x, mynat.add_zero]
exact heqasc
theorem le_trans_equiv (a b c : myint) (hab : a ≤ b) (hbc : b ≈ c) : a ≤ c := by
have := le_refl_equiv b c hbc
exact le_trans a b c hab this
theorem le_equiv_trans (a b c : myint) (hab : a ≈ b) (hbc : b ≤ c) : a ≤ c := by
have := le_refl_equiv a b hab
exact le_trans a b c this hbc
theorem le_antisymm (a b : myint) (hab : a ≤ b) (hba : b ≤ a) : a ≈ b := by
cases hab with
| intro c hc =>
cases hba with
| intro d hd =>
have hadd : b + (myint.mk d 0) ≈ a + (myint.mk c 0) + (myint.mk d 0) := add_right _ _ _ hc
have hassoc : b + (myint.mk d 0) ≈ a + ((myint.mk c 0) + (myint.mk d 0)) := trans hadd (add_assoc _ _ _)
have := trans hd hassoc
have := add_left_cancel a 0 _ this
rw [equiv_is_myequal, myequal] at this
rw [add_x, destruct_x c _, destruct_x d _, zerox] at this
rw [add_y, destruct_y, zeroy] at this
repeat rw [mynat.zero_add] at this
have hdz := mynat.add_left_eq_zero (Eq.symm this)
rw [hdz] at hd
have hzz : myint.mk 0 0 ≈ 0 := rfl
have := trans hd (add_left b _ _ hzz)
have := trans this (add_zero b)
exact this
theorem add_le_add_right {a b : myint} : a ≤ b → ∀ t, (a + t) ≤ (b + t) := by
intro h
rw [le_iff_exists_add] at h
cases h with
| intro c hc =>
intro t
exists c
have ht1 := add_right b (a + myint.mk c 0) t hc
have ht2 : a + { x := c, y := 0 } + t ≈ a + t + { x := c, y := 0} := by
have hst1 : a + (myint.mk c 0) + t ≈ a + ((myint.mk c 0) + t) := add_assoc _ _ _
have hst2 : a + ((myint.mk c 0) + t) ≈ a + (t + (myint.mk c 0)) := add_left a _ _ (add_comm _ _)
have hst3 : a + (t + (myint.mk c 0)) ≈ a + t + (myint.mk c 0) := symm (add_assoc _ _ _)
exact trans (trans hst1 hst2) hst3
exact trans ht1 ht2
theorem le_total (a b : myint) : a ≤ b ∨ b ≤ a := by
have hlemma (n : myint) : n ≤ 0 ∨ 0 ≤ n := by
let pn := n.x ≤ n.y
cases Classical.em pn
case inl h =>
have : n.x ≤ n.y := h
apply Or.intro_left
rw [le_iff_exists_add]
have := canon_neg n this
cases this with
| intro c hc =>
exists c.y
have ht1 : c + (myint.mk c.y 0) ≈ n + (myint.mk c.y 0) := add_right c n _ hc.right
have : myint.mk 0 c.y ≈ c := by
apply if_x_and_y_equal_then_equiv
rw [destruct_x, destruct_y]
exact ⟨ Eq.symm hc.left, rfl ⟩
have ht2 : (myint.mk 0 c.y) + (myint.mk c.y 0) ≈ c + (myint.mk c.y 0) := add_right (myint.mk 0 c.y) c (myint.mk c.y 0) this
have ht3 : 0 ≈ (myint.mk 0 c.y) + (myint.mk c.y 0) := by
rw [equiv_is_myequal, myequal]
rw [add_y, destruct_y, destruct_y _ 0]
rw [add_x, destruct_x 0, destruct_x c.y]
rw [zerox, zeroy, mynat.zero_add, mynat.add_zero, mynat.zero_add, mynat.zero_add]
exact trans (trans ht3 ht2) ht1
case inr h =>
have : ¬ n.x ≤ n.y := h
have := mynat.le_total n.x n.y
cases this
case inl hh =>
apply False.elim
exact this hh
case inr hh =>
apply Or.intro_right
rw [le_iff_exists_add]
have := canon_pos n hh
cases this with
| intro c hc =>
have ⟨ cx, cy ⟩ := c
exists cx
have : cy = 0 := hc.left
rw [← this]
exact trans (symm hc.right) (symm (zero_add (myint.mk cx cy)))
have : a - b ≤ 0 ∨ 0 ≤ a - b := hlemma (a - b)
have hmain : a ≈ a - b + b := by
have hm := add_left a 0 (-b + b) (symm (trans (add_comm (-b) b) (neg_is_inv b)))
have := equal_implies_equiv _ _ (Eq.symm (sub_eq_plusneg a b))
have := add_right (a + -b) (a - b) b this
have hl := symm (add_zero a)
have hr : a + (-b + b) ≈ a + -b + b := symm (add_assoc a (-b) b)
exact trans (trans hl hm) hr
have haux : 0 + b ≈ b := zero_add b
cases this
case inl h =>
have : (a - b) + b ≤ 0 + b := add_le_add_right h b
apply Or.intro_left
exact le_trans_equiv _ _ _ (le_equiv_trans _ _ _ hmain this) haux
case inr h =>
have : 0 + b ≤ (a - b) + b := add_le_add_right h b
apply Or.intro_right
exact le_trans_equiv _ _ _ (le_equiv_trans _ _ _ (symm haux) this) (symm hmain)
-- This law is called "material implication" and I'm not sure if there is a better way to maintain this law?
-- have : (¬ a ≤ b → b ≤ a) → a ≤ b ∨ b ≤ a := by
-- intro h1
-- let p : Prop := a ≤ b
-- cases (Classical.em p)
-- case inl hp =>
-- apply Or.intro_left
-- have h : a ≤ b := hp
-- exact h
-- case inr hnotp =>
-- apply Or.intro_right
-- have h : ¬ a ≤ b := hnotp
-- exact h1 h
-- apply this
-- intro h
-- rw [LE.le, instLEMyint] at h
-- simp at h
-- rw [myle] at h
-- -- Another logic law
-- sorry
theorem add_le_add_left {a b : myint} (h : a ≤ b) (t : myint) : t + a ≤ t + b := by
have := add_le_add_right h t
exact le_trans_equiv _ _ _ (le_equiv_trans _ _ _ (add_comm t a) this) (add_comm b t)
theorem pos_iff_y_le_x (n : myint) : 0 ≤ n ↔ n.y ≤ n.x := by
apply Iff.intro
. intro h
rw [le_iff_exists_add] at h
cases h with
| intro c hc =>
have ⟨ nx, ny ⟩ := n
rw [equiv_is_myequal, myequal] at hc
rw [destruct_x, destruct_y _ ny] at hc
rw [add_y, add_x] at hc
rw [destruct_y _ 0, destruct_x c _] at hc
rw [destruct_y, destruct_x]
exists c
rw [zeroy, zerox, mynat.add_zero, mynat.zero_add, mynat.add_zero] at hc
exact hc
. intro h
have := canon_pos n h
cases this with
| intro c hc =>
have ⟨ cx, cy ⟩ := c
rw [destruct_y] at hc
have ⟨ hc1, hc2 ⟩ := hc
rw [hc1] at hc2
have : 0 ≤ myint.mk cx 0 := by
exists cx
exact symm (zero_add (myint.mk cx 0))
exact le_trans_equiv _ _ _ this hc2
theorem le_mul_pos (a b : myint) (h : a ≤ b) (t : myint) (ht : 0 ≤ t) : a * t ≤ b * t := by
have hpos := ht
rw [le_iff_exists_add] at hpos
cases h with
| intro c hc =>
have := mul_right b (a + myint.mk c 0) t hc
have huse : b * t ≈ a * t + (myint.mk c 0) * t := trans this (add_mul _ _ _)
have := canon_pos t ((pos_iff_y_le_x t).mp ht)
cases this with
| intro d hd =>
have ⟨ dx, dy ⟩ := d
rw [destruct_y] at hd
have ⟨ hd1, hd2 ⟩ := hd
rw [hd1] at hd2
have hhelper : a * t + { x := c, y := 0 } * t ≈ a * t + { x := c, y := 0 } * { x := dx, y := 0} := (add_left (a * t) _ _) (mul_left (myint.mk c 0) t (myint.mk dx 0) (symm hd2))
have hthis := trans huse hhelper
conv at hthis =>
rhs
arg 2
rw [mul_eq_mymul, mymul]
rw [destruct_x, destruct_x, destruct_y]
rw [mynat.mul_zero, mynat.mul_zero, mynat.zero_mul, mynat.add_zero, mynat.add_zero]
exists c * dx
theorem le_mul_neg (a b : myint) (h : a ≤ b) (t : myint) (ht : t ≤ 0) : b * t ≤ a * t := by
have : a * (-t) ≤ b * (-t) := by
have : 0 ≤ -t := by
have := add_le_add_right ht (-t)
have := le_equiv_trans _ _ _ (symm (neg_is_inv t)) this
exact le_trans_equiv _ _ _ this (zero_add _)
exact le_mul_pos a b h (-t) this
have hlemma (f g : myint) : f * g + f * -g ≈ 0 := by
have : f * g + f * g * -1 ≈ f * g + f * -g := add_left _ _ _ (trans (mul_assoc _ _ _) (mul_left f _ _ (mul_negone g)))
have hs3 : f * g * -1 ≈ - (f * g) := mul_negone (f * g)
have hs : f * g + -(f * g) ≈ f * g + f * -g := trans (symm (add_left (f * g) _ _ hs3)) this
have ht := trans (symm (neg_is_inv (f * g))) hs
exact symm ht
have : 0 ≤ a * t + b * (-t) := by
have hthis := add_le_add_left this (a * t)
exact le_equiv_trans _ _ _ (symm (hlemma a t)) hthis
have hthis := add_le_add_right this (b * t)
have := le_trans_equiv _ _ _ hthis (add_assoc _ _ _)
have hadjust := add_left (a * t) _ _ (trans (add_comm _ _) (hlemma b t))
have := le_trans_equiv _ _ _ this hadjust
exact le_equiv_trans _ _ _ (symm (zero_add (b * t))) this
theorem sq_pos (n : myint) : 0 ≤ n * n := by
let pn := 0 ≤ n
cases Classical.em pn
case inl h =>
have : 0 ≤ n := h
have := le_mul_pos 0 n this n this
exact le_equiv_trans _ _ _ (symm (zero_mul n)) this
case inr h =>
have : ¬ 0 ≤ n := h
have := le_total 0 n
cases this
case inl hh =>
apply False.elim
exact this hh
case inr hh =>
have := le_mul_neg n 0 hh n hh
exact le_equiv_trans _ _ _ (symm (zero_mul n)) this
-- actually this obviously implies the simple case of AM-GM inequality...
def mylt (a b : mynat) := a ≤ b ∧ ¬ (b ≤ a)
instance : LT mynat := ⟨mylt⟩
theorem lt_def (a b : mynat) : a < b ↔ a ≤ b ∧ ¬ (b ≤ a) := Iff.rfl
end myint |
DOUBLE PRECISION FUNCTION DDASNM (NEQ, V, WT, RWORK, IWORK)
c Copyright (c) 2006, Math a la Carte, Inc.
c>> 2003-03-06 ddasnm Hanson changed norm computation to use reciprocals.
c>> 2001-11-23 ddasnm Krogh Changed many names per library conventions.
c>> 2001-11-04 ddasnm Krogh Fixes for F77 and conversion to single
c>> 2001-11-01 ddasnm Hanson Provide code to Math a la Carte.
c--D replaces "?": ?DASNM, ?DASLX
c IMPLICIT NONE
C***BEGIN PROLOGUE DDASNM
C***SUBSIDIARY
C***PURPOSE Compute vector norm for DDASLX.
C***LIBRARY SLATEC (DDASLX)
C***TYPE DOUBLE PRECISION (SDASNM-S, DDASNM-D)
C***AUTHOR Petzold, Linda R., (LLNL)
C***DESCRIPTION
c ----------------------------------------------------------------------
C THIS FUNCTION ROUTINE COMPUTES THE WEIGHTED
C ROOT-MEAN-SQUARE NORM OF THE VECTOR OF LENGTH
C NEQ CONTAINED IN THE ARRAY V,WITH WEIGHTS
C CONTAINED IN THE ARRAY WT OF LENGTH NEQ.
C DDASNM=SQRT((1/NEQ)*SUM(V(I)/WT(I))**2)
c ----------------------------------------------------------------------
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 830315 DATE WRITTEN
C 901009 Finished conversion to SLATEC 4.0 format (F.N.Fritsch)
C 901019 Merged changes made by C. Ulrich with SLATEC 4.0 format.
C 901026 Added explicit declarations for all variables and minor
C cosmetic changes to prologue. (FNF)
C***END PROLOGUE DDASNM
C
INTEGER NEQ, IWORK(*)
DOUBLE PRECISION V(NEQ), WT(NEQ), RWORK(*)
C
INTEGER I
DOUBLE PRECISION SUM, VMAX
EXTERNAL D1MACH
DOUBLE PRECISION D1MACH, G, H, T
INTEGER L
C***FIRST EXECUTABLE STATEMENT DDASNM
H=sqrt(sqrt(d1mach(2)))
G=d1mach(1)/d1mach(4)
sum=0.d0
vmax=0.d0
DO 100 I=1,NEQ
t=abs(v(i)*wt(i))
C If a component will have a square .gt. sqrt(huge) then
C shift to a scaled version of the norm.
if(t .gt. H) GO TO 110
sum=sum+t**2
vmax=max(vmax, t)
100 CONTINUE
C May have a damaging underflow here. If vmax = 0 then
C vector was flat zero. If sum of squares is .le. tiny/epsilon
C then underflows (set to zero) may hurt accuracy. So
C shift to a scaled version of the norm.
I=NEQ+1
if(sum .le. G .and. vmax .gt. 0.D0) GO TO 110
ddasnm=sqrt(sum/neq)
return
110 CONTINUE
DDASNM = 0.0D0
C Can start loop at I since the first I-1 components have
C been scanned for the max abs already.
DO 10 L = I,NEQ
IF(ABS(V(L)*WT(L)) .GT. VMAX) VMAX = ABS(V(L)*WT(L))
10 CONTINUE
IF(VMAX .LE. 0.0D0) GO TO 30
SUM = 0.0D0
DO 20 I = 1,NEQ
20 SUM = SUM + ((V(I)*WT(I))/VMAX)**2
DDASNM = VMAX*SQRT(SUM/NEQ)
30 CONTINUE
RETURN
c -----END OF FUNCTION DDASNM------
END
|
namespace Foo
export
data A = B | C
namespace Bar
export
data A = D | E
|
%% IMAGE_SCRIPT is a script to call IMAGE_FUN.
%
% Discussion:
%
% The BATCH command runs scripts, not functions. So we have to write
% this short script if we want to work with BATCH!
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 28 March 2010
%
% Author:
%
% John Burkardt
%
fprintf ( 1, '\n' );
fprintf ( 1, 'IMAGE_SCRIPT\n' );
fprintf ( 1, ' Filter an image using 3 workers\n' );
[ x, y, z ] = image_fun ( );
|
[STATEMENT]
theorem iu_condition_imply_secure:
assumes
RUC: "ref_union_closed P" and
IU: "weakly_future_consistent P I D (rel_ipurge P I D)"
shows "secure P I D"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. secure P I D
[PROOF STEP]
proof (simp add: secure_def futures_def, (rule allI)+, rule impI, erule conjE)
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. \<And>xs y ys Y zs Z. \<lbrakk>(xs @ y # ys, Y) \<in> failures P; (xs @ zs, Z) \<in> failures P\<rbrakk> \<Longrightarrow> (xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P \<and> (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
fix xs y ys Y zs Z
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. \<And>xs y ys Y zs Z. \<lbrakk>(xs @ y # ys, Y) \<in> failures P; (xs @ zs, Z) \<in> failures P\<rbrakk> \<Longrightarrow> (xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P \<and> (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
assume
A: "(xs @ y # ys, Y) \<in> failures P" and
B: "(xs @ zs, Z) \<in> failures P"
[PROOF STATE]
proof (state)
this:
(xs @ y # ys, Y) \<in> failures P
(xs @ zs, Z) \<in> failures P
goal (1 subgoal):
1. \<And>xs y ys Y zs Z. \<lbrakk>(xs @ y # ys, Y) \<in> failures P; (xs @ zs, Z) \<in> failures P\<rbrakk> \<Longrightarrow> (xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P \<and> (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
show "(xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P \<and>
(xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P"
(is "?P \<and> ?Q")
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P \<and> (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
proof
[PROOF STATE]
proof (state)
goal (2 subgoals):
1. (xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P
2. (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
show ?P
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P
[PROOF STEP]
using RUC and IU and A
[PROOF STATE]
proof (prove)
using this:
ref_union_closed P
weakly_future_consistent P I D (rel_ipurge P I D)
(xs @ y # ys, Y) \<in> failures P
goal (1 subgoal):
1. (xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P
[PROOF STEP]
by (rule iu_condition_imply_secure_1)
[PROOF STATE]
proof (state)
this:
(xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P
goal (1 subgoal):
1. (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
next
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
have "((xs @ [y]) @ ys, Y) \<in> failures P"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. ((xs @ [y]) @ ys, Y) \<in> failures P
[PROOF STEP]
using A
[PROOF STATE]
proof (prove)
using this:
(xs @ y # ys, Y) \<in> failures P
goal (1 subgoal):
1. ((xs @ [y]) @ ys, Y) \<in> failures P
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
((xs @ [y]) @ ys, Y) \<in> failures P
goal (1 subgoal):
1. (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
hence "(xs @ [y], {}) \<in> failures P"
[PROOF STATE]
proof (prove)
using this:
((xs @ [y]) @ ys, Y) \<in> failures P
goal (1 subgoal):
1. (xs @ [y], {}) \<in> failures P
[PROOF STEP]
by (rule process_rule_2_failures)
[PROOF STATE]
proof (state)
this:
(xs @ [y], {}) \<in> failures P
goal (1 subgoal):
1. (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
hence "xs @ [y] \<in> traces P"
[PROOF STATE]
proof (prove)
using this:
(xs @ [y], {}) \<in> failures P
goal (1 subgoal):
1. xs @ [y] \<in> traces P
[PROOF STEP]
by (rule failures_traces)
[PROOF STATE]
proof (state)
this:
xs @ [y] \<in> traces P
goal (1 subgoal):
1. (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
with RUC and IU
[PROOF STATE]
proof (chain)
picking this:
ref_union_closed P
weakly_future_consistent P I D (rel_ipurge P I D)
xs @ [y] \<in> traces P
[PROOF STEP]
show ?Q
[PROOF STATE]
proof (prove)
using this:
ref_union_closed P
weakly_future_consistent P I D (rel_ipurge P I D)
xs @ [y] \<in> traces P
goal (1 subgoal):
1. (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
using B
[PROOF STATE]
proof (prove)
using this:
ref_union_closed P
weakly_future_consistent P I D (rel_ipurge P I D)
xs @ [y] \<in> traces P
(xs @ zs, Z) \<in> failures P
goal (1 subgoal):
1. (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
[PROOF STEP]
by (rule iu_condition_imply_secure_2)
[PROOF STATE]
proof (state)
this:
(xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
goal:
No subgoals!
[PROOF STEP]
qed
[PROOF STATE]
proof (state)
this:
(xs @ ipurge_tr I D (D y) ys, ipurge_ref I D (D y) ys Y) \<in> failures P \<and> (xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P
goal:
No subgoals!
[PROOF STEP]
qed |
Several songs from the soundtrack were included in the annual <unk> <unk> list of top filmi songs . " Mehbooba <unk> " was listed at No. 24 on the 1975 list , and at No. 6 on the 1976 list . " Koi <unk> " was listed at No. 30 in 1975 , and No. 20 in 1976 . " Yeh Dosti " was listed at No. 9 in 1976 . Despite the soundtrack 's success , at the time , the songs from Sholay attracted less attention than the film 's dialogue — a rarity for Bollywood . The producers were thus prompted to release records with only dialogue . Taken together , the album sales totalled an unprecedented 500 @,@ 000 units , and became one of the top selling Bollywood soundtracks of the 1970s .
|
(* correct failure of injection/discriminate on types whose inductive
status derives from the substitution of an argument *)
Inductive t : nat -> Type :=
| M : forall n: nat, nat -> t n.
Lemma eq_t : forall n n' m m',
existT (fun B : Type => B) (t n) (M n m) =
existT (fun B : Type => B) (t n') (M n' m') -> True.
Proof.
intros.
injection H.
intro Ht.
exact I.
Qed.
Lemma eq_t' : forall n n' : nat,
existT (fun B : Type => B) (t n) (M n 0) =
existT (fun B : Type => B) (t n') (M n' 1) -> True.
Proof.
intros.
discriminate H || exact I.
Qed.
|
%% OpenMAS Object Class Diagnotistic tool (OMAS_objectDiagnostics.m) %%%%%%
% This function is designed to preform a batch analysis of the complete
% class library to verify their development status for simulation.
function [issueCount] = OMAS_objectDiagnostics(varargin)
% Input sanity check
assert(numel(varargin) <= 2,'Please provide an object to test, or nothing to test all objects in the "objects" directory.');
% Generate the path to the model directory
phaseStr = 'DIAGNOSTICS';
outputFileName = 'object-diagnostics.xlsx';
repoPath = mfilename('fullpath'); % Get the system paths
ind = strfind(repoPath,'env');
repoPath = repoPath(1:(ind-1));
objectsDir = [repoPath,'objects'];
outputFile = [repoPath,outputFileName];
tempDir = OMAS_system.GetOSPathString([repoPath,'temp']);
% DETERMINE THE INPUTS
switch numel(varargin)
case 1
% Assume named model
targetFiles = varargin(1);
case 0
% Assume all models
targetFiles = dir([objectsDir,'\*.m']);
targetFiles = {targetFiles.name}';
otherwise
error('Please provide a model name, or no input.');
end
fprintf('[%s]\t%d object behaviours found, evaluating...\n',phaseStr,numel(targetFiles));
% Handle file I/O
fclose('all'); % Release any file handle
if exist(outputFile,'file')
delete(outputFile); % Delete output file
end
% Prepare the diagnostic header
headerArray = {'model #','file name','class',...
'build status','build message',...
'OMAS status','OMAS message',...
'notes'};
% Check if file is active
try
% Try to write the header to the file
xlswrite(outputFile,headerArray);
catch writeError
warning('Unable to write to diagnostic file, is it open?');
rethrow(writeError);
end
% Container for model error status
statusArray = false(numel(targetFiles),1);
summaryArray = cell(numel(targetFiles),numel(headerArray));
% ///////////////// MOVE THROUGH THE MODELS ///////////////////
for i = 1:numel(targetFiles)
% For clarity
fprintf('[%s]\tEvaluating model "%s"...\n',phaseStr,targetFiles{i});
% Preform diagnostic routine on selected model
[entry,statusArray(i)] = GetObjectEvaluation(phaseStr,tempDir,targetFiles{i});
% For clarity
fprintf('[%s]\tEvaluation for model "%s" complete.\n\n',phaseStr,targetFiles{i});
close all; % Terminate all open figures
summaryArray(i,:) = [num2str(i),entry]; % Append the test number
end
% /////////////////////////////////////////////////////////////
issueCount = sum(statusArray); % Simply confirm if there are any issues
% Write data to the output .xlsx file
xlswrite(outputFile,[headerArray;summaryArray]);
fclose('all'); % Release any file handle
% Delete temporary directory
try
rmdir(tempDir,'s');
catch
warning('There was a problem deleting the temporary file.');
end
% Pass statistics
errorNumber = sum(statusArray == 0);
successNumber = sum(statusArray == 1);
% Summary string
fprintf('[%s]\tDiagnostics complete, %d object errors, %d objects working correctly.\n',phaseStr,errorNumber,successNumber);
end
% Compute the evaluation of the provided object file
function [entryArray,isSuccessful] = GetObjectEvaluation(phaseStr,tempDir,fileName)
% Input sanity check
assert(ischar(fileName),'The model name must be given as a string.');
% Remove the .m from the file-name for evaluation
if contains(fileName,'.m')
fileName = strrep(fileName,'.m',''); % Remove extension if necessary
end
% Containers
sim_steps = 5;
sim_dt = 0.25;
failString = 'FAILED';
passString = 'PASSED';
importStatus = 0;
simStatus = 0;
isSuccessful = 0;
% Create row for output .csv
entryArray = repmat({'-'},1,7);
entryArray{1} = fileName;
entryArray{2} = 'N/a';
% //////////// ATTEMPT TO INSTANTIATE THE MODEL ///////////////
% CREATE THE OBJECT SET
objectNumber = 2;
objectIndex = cell(objectNumber,1);
try
for j = 1:objectNumber
objectIndex{j} = eval(fileName); % Attempt to construct the object
end
importStatus = 1;
catch instantiationError
warning(instantiationError.message);
entryArray{3} = failString;
entryArray{4} = instantiationError.message;
end
% /////////////////////////////////////////////////////////////
% Check instantiation was successful
if ~importStatus
fprintf('[%s]\t%s(1) - Object "%s" failed to be instantiated.\n',phaseStr,failString,fileName);
return
end
fprintf('[%s]\t%s(1) - Object "%s" instantiated.\n',phaseStr,passString,fileName);
% Lift basic model parameters
entryArray{2} = class(objectIndex{1});
entryArray{3} = passString;
% ////////// IF THE OBJECT CAN BE SIMULATED, ATTEMPT SIMULATION ///////////
fprintf('[%s]\tSimulating object "%s"\n',phaseStr,fileName);
try
OMAS_initialise(...
'objects',objectIndex,...
'duration',sim_steps*sim_dt,...
'dt',sim_dt,...
'idleTimeOut',0.5,...
'figures','None',...
'verbosity',0,...
'outputPath',tempDir);
simStatus = 1;
catch simError
warning(simError.message);
entryArray{5} = failString;
entryArray{6} = simError.message;
notes = strcat('[function] -> ',simError.stack(1).name);
entryArray{7} = strcat(notes,' [line] -> ',num2str(simError.stack(1).line));
end
% /////////////////////////////////////////////////////////////////////////
% Check simulation was successful
if ~simStatus
fprintf('[%s]\t%s(2) - Model "%s" failed simulation test\n.',phaseStr,failString,fileName);
return
end
fprintf('[%s]\t%s(2) - Model "%s" simulated successfully.\n',phaseStr,passString,fileName);
% Indicate simulation was successful
entryArray{5} = passString;
% Indicate that if there where no errors
isSuccessful = 1;
end |
subroutine a(arr)
integer:: arr(10)
integer::i
arr(1) = 10
do i = 1, 10
arr(i) = 1
return
end do
arr(2) = 20
end subroutine a
program vin
integer::arr(10)
call a(arr)
print *, arr(1)
end program vin
|
//
// This file is part of the libWetCloth open source project
//
// The code is licensed solely for academic and non-commercial use under the
// terms of the Clear BSD License. The terms of the Clear BSD License are
// provided below. Other licenses may be obtained by contacting the faculty
// of the Columbia Computer Graphics Group or a Columbia University licensing officer.
//
// We would like to hear from you if you appreciate this work.
//
// The Clear BSD License
//
// Copyright 2018 Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted (subject to the limitations in the disclaimer
// below) provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * Neither the name of the copyright holder nor the names of its contributors may be used
// to endorse or promote products derived from this software without specific
// prior written permission.
//
// NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
// LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
#include <Eigen/StdVector>
#include <cmath>
#include <iostream>
#include <fstream>
#include <sstream>
#include <thread>
#include <sys/stat.h>
#include <tclap/CmdLine.h>
#ifdef WIN32
#include <direct.h>
#ifndef GL_MULTISAMPLE_ARB
#define GL_MULTISAMPLE_ARB 0x809D
#endif
#ifndef GL_MULTISAMPLE_FILTER_HINT_NV
#define GL_MULTISAMPLE_FILTER_HINT_NV 0x8534
#endif
#endif
#include "TwoDScene.h"
#include "Force.h"
#include "TwoDSceneXMLParser.h"
#include "TwoDSceneSerializer.h"
#include "StringUtilities.h"
#include "MathDefs.h"
#include "TimingUtilities.h"
#include "Camera.h"
#ifdef RENDER_ENABLED
#include "TwoDimensionalDisplayController.h"
#include "TwoDSceneRenderer.h"
#include "RenderingUtilities.h"
#include "YImage.h"
#include <AntTweakBar.h>
#endif
#include "ParticleSimulation.h"
///////////////////////////////////////////////////////////////////////////////
// Contains the actual simulation, renderer, parser, and serializer
std::shared_ptr<ParticleSimulation> g_executable_simulation = NULL;
///////////////////////////////////////////////////////////////////////////////
// Rendering State
bool g_rendering_enabled = true;
double g_sec_per_frame;
double g_last_time = timingutils::seconds();
renderingutils::Color g_bgcolor(1.0,1.0,1.0);
///////////////////////////////////////////////////////////////////////////////
// SVG Rendering State
///////////////////////////////////////////////////////////////////////////////
// Parser state
std::string g_xml_scene_file;
std::string g_description;
std::string g_scene_tag = "";
///////////////////////////////////////////////////////////////////////////////
// Scene input/output/comparison state
int g_save_to_binary = 0;
std::string g_binary_file_name;
std::ofstream g_binary_output;
std::string g_short_file_name;
///////////////////////////////////////////////////////////////////////////////
// Simulation state
int g_dump_png = 0;
bool g_paused = true;
scalar g_dt = 0.0;
int g_num_steps = 0;
int g_current_step = 0;
///////////////////////////////////////////////////////////////////////////////
// Simulation functions
void miscOutputCallback();
void dumpPNG(const std::string &filename);
void stepSystem()
{
g_executable_simulation->stepSystem(g_dt);
g_current_step++;
// Execute the user-customized output callback
miscOutputCallback();
// Determine if the simulation is complete
if( g_current_step >= g_num_steps )
{
std::cout << "Complete Simulation! Enter time to continue (exit with 0): " << std::endl;
double new_time = 0.0;
std::cin >> new_time;
g_num_steps += ceil(new_time / g_dt);
if(new_time < g_dt) g_paused = true;
}
}
void syncScene()
{
}
void headlessSimLoop()
{
while(true) {
while( g_current_step <= g_num_steps )
{
stepSystem();
}
std::cout << "Complete Simulation! Enter time to continue (exit with 0): " << std::endl;
double new_time = 0.0;
std::cin >> new_time;
if(new_time < g_dt) break;
g_num_steps += ceil(new_time / g_dt);
}
}
#ifdef RENDER_ENABLED
void dumpPNGsubprog(YImage* image, char* fnstr)
{
image->flip();
image->save(fnstr);
delete image;
delete fnstr;
}
///////////////////////////////////////////////////////////////////////////////
// Rendering and UI functions
void dumpPNG(const std::string &filename)
{
YImage* image = new YImage;
char* fnstr = new char[filename.length() + 1];
strcpy(fnstr, filename.data());
image->resize(g_executable_simulation->getWindowWidth(), g_executable_simulation->getWindowHeight());
glFinish();
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glPixelStorei(GL_PACK_ROW_LENGTH, 0);
glPixelStorei(GL_PACK_SKIP_ROWS, 0);
glPixelStorei(GL_PACK_SKIP_PIXELS, 0);
glReadBuffer(GL_BACK);
glFinish();
glReadPixels(0, 0, g_executable_simulation->getWindowWidth(), g_executable_simulation->getWindowHeight(), GL_RGBA, GL_UNSIGNED_BYTE, image->data());
std::thread t(std::bind(dumpPNGsubprog, image, fnstr));
t.detach();
}
void reshape( int w, int h )
{
TwWindowSize(w, h);
g_executable_simulation->reshape(w, h);
assert( renderingutils::checkGLErrors() );
}
// TODO: Move these functions to scene renderer?
void setOrthographicProjection()
{
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluOrtho2D(0, g_executable_simulation->getWindowWidth(), 0, g_executable_simulation->getWindowHeight());
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
assert( renderingutils::checkGLErrors() );
}
void renderBitmapString( float x, float y, float z, void *font, std::string s )
{
glRasterPos3f(x, y, z);
for( std::string::iterator i = s.begin(); i != s.end(); ++i )
{
char c = *i;
glutBitmapCharacter(font, c);
}
assert( renderingutils::checkGLErrors() );
}
void drawHUD()
{
setOrthographicProjection();
glColor3f(1.0-g_bgcolor.r,1.0-g_bgcolor.g,1.0-g_bgcolor.b);
renderBitmapString( 4, g_executable_simulation->getWindowHeight()-20, 0.0, GLUT_BITMAP_HELVETICA_18, stringutils::convertToString(g_current_step*g_dt) );
renderBitmapString( 4, g_executable_simulation->getWindowHeight()-50, 0.0, GLUT_BITMAP_HELVETICA_18, std::string("Camera [") + stringutils::convertToString(g_executable_simulation->currentCameraIndex()) + std::string("]") );
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
TwDraw();
assert( renderingutils::checkGLErrors() );
}
void display()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
assert( renderingutils::checkGLErrors() );
assert( g_executable_simulation != NULL );
g_executable_simulation->renderSceneOpenGL(g_dt);
drawHUD();
glutSwapBuffers();
assert( renderingutils::checkGLErrors() );
}
void keyboard( unsigned char key, int x, int y )
{
if( TwEventKeyboardGLUT(key, x, y) ) { glutPostRedisplay(); return; }
g_executable_simulation->keyboard(key,x,y);
if( key == 27 || key == 'q' )
{
TwTerminate();
exit(0);
}
else if( key == 's' || key =='S' )
{
stepSystem();
glutPostRedisplay();
}
else if( key == ' ' )
{
g_paused = !g_paused;
}
else if( key == 'c' || key == 'C' )
{
g_executable_simulation->centerCamera();
glutPostRedisplay();
} else if( key == 'a' || key == 'A') {
g_executable_simulation->printDDA();
}
assert( renderingutils::checkGLErrors() );
}
// Proccess 'special' keys
void special( int key, int x, int y )
{
if( TwEventSpecialGLUT(key, x, y) ) { glutPostRedisplay(); return; }
g_executable_simulation->special(key,x,y);
assert( renderingutils::checkGLErrors() );
}
void mouse( int button, int state, int x, int y )
{
if( TwEventMouseButtonGLUT(button, state, x, y) ) { glutPostRedisplay(); return; }
g_executable_simulation->mouse(button,state,x,y);
assert( renderingutils::checkGLErrors() );
}
void motion( int x, int y )
{
if( TwEventMouseMotionGLUT(x, y) ) { glutPostRedisplay(); return; }
g_executable_simulation->motion(x,y);
assert( renderingutils::checkGLErrors() );
}
void idle()
{
//std::cout << "g_last_time: " << g_last_time << std::endl;
// Trigger the next timestep
double current_time = timingutils::seconds();
//std::cout << "current_time: " << current_time << std::endl;
//std::cout << "g_sec_per_frame: " << g_sec_per_frame << std::endl;
if( !g_paused && current_time-g_last_time >= g_sec_per_frame )
{
g_last_time = current_time;
stepSystem();
glutPostRedisplay();
}
assert( renderingutils::checkGLErrors() );
}
void initializeOpenGLandGLUT( int argc, char** argv )
{
// Initialize GLUT
glutInit(&argc,argv);
//glutInitDisplayString("rgba stencil=8 depth=24 samples=4 hidpi");
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_MULTISAMPLE | GLUT_DEPTH);
int scrwidth = glutGet(GLUT_SCREEN_WIDTH);
int scrheight = glutGet(GLUT_SCREEN_HEIGHT);
int factor = std::min(scrwidth / 320, scrheight / 180);
scrwidth = factor * 320;
scrheight = factor * 180;
/*#ifdef __APPLE__
scrwidth *= 2;
scrheight *= 2;
#endif*/
g_executable_simulation->setWindowWidth(scrwidth);
g_executable_simulation->setWindowHeight(scrheight);
glutInitWindowSize(g_executable_simulation->getWindowWidth(),g_executable_simulation->getWindowHeight());
glutCreateWindow("libWetCloth: A Multi-Scale Model for Liquid-Fabric Interactions");
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutSpecialFunc(special);
glutMouseFunc(mouse);
glutMotionFunc(motion);
glutIdleFunc(idle);
glEnable(GL_MULTISAMPLE_ARB);
glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST);
TwInit(TW_OPENGL, NULL);
TwGLUTModifiersFunc(glutGetModifiers);
// Initialize OpenGL
reshape(scrwidth,scrheight);
glClearColor(g_bgcolor.r, g_bgcolor.g, g_bgcolor.b, 1.0);
glEnable(GL_BLEND);
glEnable(GL_POLYGON_SMOOTH);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glHint(GL_POLYGON_SMOOTH_HINT, GL_NICEST);
GLubyte halftone[] = {
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55};
glPolygonStipple(halftone);
g_executable_simulation->initializeOpenGLRenderer();
assert( renderingutils::checkGLErrors() );
}
#endif
///////////////////////////////////////////////////////////////////////////////
// Parser functions
void loadScene( const std::string& file_name )
{
// Maximum time in the simulation to run for. This has nothing to do with run time, cpu time, etc. This is time in the 'virtual world'.
scalar max_time;
// Maximum frequency, in wall clock time, to execute the simulation for. This serves as a cap for simulations that run too fast to see a solution.
scalar steps_per_sec_cap = 100.0;
// Contains the center and 'scale factor' of the view
renderingutils::Viewport view;
// Load the simulation and pieces of rendring and UI state
assert( g_executable_simulation == NULL );
TwoDSceneXMLParser xml_scene_parser;
bool cam_init = false;
Camera cam;
xml_scene_parser.loadExecutableSimulation( file_name, g_rendering_enabled, g_executable_simulation,
cam, g_dt, max_time, steps_per_sec_cap, g_bgcolor, g_description, g_scene_tag, cam_init, g_binary_file_name );
assert( g_executable_simulation != NULL );
// If the user did not request a custom viewport, try to compute a reasonable default.
if( !cam_init )
{
g_executable_simulation->centerCamera(false);
}
// Otherwise set the viewport per the user's request.
else
{
g_executable_simulation->setCamera(cam);
}
g_executable_simulation->finalInit();
// To cap the framerate, compute the minimum time a single timestep should take
g_sec_per_frame = 1.0/steps_per_sec_cap;
// Integer number of timesteps to take
g_num_steps = ceil(max_time/g_dt);
// We begin at the 0th timestep
g_current_step = 0;
}
void parseCommandLine( int argc, char** argv )
{
try
{
TCLAP::CmdLine cmd("A Multi-Scale Model for Simulating Liquid-Fabric Interactions");
// XML scene file to load
TCLAP::ValueArg<std::string> scene("s", "scene", "Simulation to run; an xml scene file", true, "", "string", cmd);
// Begin the scene paused or running
TCLAP::ValueArg<bool> paused("p", "paused", "Begin the simulation paused if 1, running if 0", false, true, "boolean", cmd);
// Run the simulation with rendering enabled or disabled
TCLAP::ValueArg<bool> display("d", "display", "Run the simulation with display enabled if 1, without if 0", false, true, "boolean", cmd);
// Begin the scene paused or running
TCLAP::ValueArg<int> dumppng("g", "generate", "Generate PNG if 1, not if 0", false, 0, "integer", cmd);
// These cannot be set at the same time
// File to save output to
TCLAP::ValueArg<int> output("o", "outputfile", "Binary file to save simulation state to", false, 0, "integer", cmd);
// File to load for comparisons
TCLAP::ValueArg<std::string> input("i", "inputfile", "Binary file to load simulation pos from", false, "", "string", cmd);
cmd.parse(argc, argv);
assert( scene.isSet() );
g_xml_scene_file = scene.getValue();
g_paused = paused.getValue();
g_rendering_enabled = display.getValue();
g_dump_png = dumppng.getValue();
g_save_to_binary = output.getValue();
g_binary_file_name = input.getValue();
}
catch (TCLAP::ArgException& e)
{
std::cerr << "error: " << e.what() << std::endl;
exit(1);
}
}
void cleanupAtExit()
{
}
std::ostream& main_header( std::ostream& stream )
{
stream << outputmod::startgreen <<
".__ ._____. __ __ __ _________ .__ __ .__ \n" <<
"| | |__\\_ |__/ \\ / \\ _____/ |_\\_ ___ \\| | _____/ |_| |__ \n" <<
"| | | || __ \\ \\/\\/ _/ __ \\ __/ \\ \\/| | / _ \\ __| | \\ \n" <<
"| |_| || \\_\\ \\ /\\ ___/| | \\ \\___| |_( <_> | | | Y \\\n" <<
"|____|__||___ /\\__/\\ / \\___ |__| \\______ |____/\\____/|__| |___| /\n" <<
" \\/ \\/ \\/ \\/ \\/ "
<< outputmod::endgreen << std::endl;
return stream;
}
std::ofstream g_debugoutput;
void miscOutputCallback()
{
// If the user wants to save output to a binary
if( g_save_to_binary && !(g_current_step % g_save_to_binary) && g_current_step <= g_num_steps )
{
std::stringstream oss_cloth;
oss_cloth << g_short_file_name << "/cloth" << std::setw(5) << std::setfill('0') << (g_current_step / g_save_to_binary) << ".obj";
std::stringstream oss_hairs;
oss_hairs << g_short_file_name << "/hair" << std::setw(5) << std::setfill('0') << (g_current_step / g_save_to_binary) << ".obj";
std::stringstream oss_fluid;
oss_fluid << g_short_file_name << "/fluid" << std::setw(5) << std::setfill('0') << (g_current_step / g_save_to_binary) << ".obj";
std::stringstream oss_inbd;
oss_inbd << g_short_file_name << "/internal" << std::setw(5) << std::setfill('0') << (g_current_step / g_save_to_binary) << ".obj";
std::stringstream oss_exbd;
oss_exbd << g_short_file_name << "/external" << std::setw(5) << std::setfill('0') << (g_current_step / g_save_to_binary) << ".obj";
std::stringstream oss_spring;
oss_spring << g_short_file_name << "/spring" << std::setw(5) << std::setfill('0') << (g_current_step / g_save_to_binary) << ".obj";
g_executable_simulation->serializeScene(oss_cloth.str(), oss_hairs.str(), oss_fluid.str(), oss_inbd.str(), oss_exbd.str(), oss_spring.str());
}
// Update the state of the renderers
#ifdef RENDER_ENABLED
if( g_rendering_enabled ) g_executable_simulation->updateOpenGLRendererState();
// If comparing simulations, load comparison scene's equivalent step
// If the user wants to generate a PNG movie
if( g_dump_png && !(g_current_step % g_dump_png) ) {
std::stringstream oss;
oss << g_short_file_name << "/frame" << std::setw(5) << std::setfill('0') << (g_current_step / g_dump_png) << ".png";
dumpPNG(oss.str());
oss.clear();
}
#endif
}
int main( int argc, char** argv )
{
Eigen::initParallel();
Eigen::setNbThreads(std::thread::hardware_concurrency());
srand(0x0108170F);
// Parse command line arguments
parseCommandLine( argc, argv );
std::vector<std::string> pathes;
stringutils::split(g_xml_scene_file, '/', pathes);
std::vector<std::string> path_first;
stringutils::split(pathes[pathes.size() - 1], '.', path_first);
g_short_file_name = path_first[0];
#ifdef WIN32
_mkdir(g_short_file_name.c_str());
#else
mkdir(g_short_file_name.c_str(), 0777);
#endif
// Function to cleanup at progarm exit
atexit(cleanupAtExit);
// Load the user-specified scene
loadScene(g_xml_scene_file);
// If requested, open the input file for the scene to benchmark
#ifdef RENDER_ENABLED
// Initialization for OpenGL and GLUT
if( g_rendering_enabled ) initializeOpenGLandGLUT(argc,argv);
#endif
// Print a header
std::cout << main_header << std::endl;
#ifdef CMAKE_BUILD_TYPE
std::cout << outputmod::startblue << "Build type: " << outputmod::endblue << CMAKE_BUILD_TYPE << std::endl;
#endif
#ifdef EIGEN_VECTORIZE
std::cout << outputmod::startblue << "Vectorization: " << outputmod::endblue << "Enabled" << std::endl;
#else
std::cout << outputmod::startblue << "Vectorization: " << outputmod::endblue << "Disabled" << std::endl;
#endif
std::cout << outputmod::startblue << "Scene: " << outputmod::endblue << g_xml_scene_file << std::endl;
std::cout << outputmod::startblue << "Integrator: " << outputmod::endblue << g_executable_simulation->getSolverName() << std::endl;
std::cout << outputmod::startblue << "Global Parameters: " << outputmod::endblue << std::endl << g_executable_simulation->getLiquidInfo() << std::endl;
#ifdef RENDER_ENABLED
if( g_rendering_enabled ) glutMainLoop();
else headlessSimLoop();
#else
headlessSimLoop();
#endif
return 0;
}
|
function test06 ( dim_num, level_max )
%*****************************************************************************80
%
%% TEST06 creates a sparse Clenshaw-Curtis grid and writes it to a file.
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 11 August 2009
%
% Author:
%
% John Burkardt
%
% Parameters:
%
% Input, integer DIM_NUM, the spatial dimension.
%
% Input, integer LEVEL_MAX, the level.
%
fprintf ( 1, '\n' );
fprintf ( 1, 'TEST06:\n' );
fprintf ( 1, ' SPARSE_GRID_CC makes a sparse Clenshaw-Curtis grid.\n' );
fprintf ( 1, ' Write the data to a set of quadrature files.\n' );
fprintf ( 1, '\n' );
fprintf ( 1, ' LEVEL_MAX = %d\n', level_max );
fprintf ( 1, ' Spatial dimension DIM_NUM = %d\n', dim_num );
%
% Determine the number of points.
%
point_num = sparse_grid_cfn_size ( dim_num, level_max );
r(1:dim_num,1) = -1.0;
r(1:dim_num,2) = +1.0;
%
% Compute the weights and points.
%
[ w, x ] = sparse_grid_cc ( dim_num, level_max, point_num );
%
% Write the data out.
%
r_filename = sprintf ( 'cc_d%d_level%d_r.txt', dim_num, level_max );
w_filename = sprintf ( 'cc_d%d_level%d_w.txt', dim_num, level_max );
x_filename = sprintf ( 'cc_d%d_level%d_x.txt', dim_num, level_max );
r8mat_write ( r_filename, dim_num, 2, r );
r8mat_write ( w_filename, 1, point_num, w );
r8mat_write ( x_filename, dim_num, point_num, x );
fprintf ( 1, '\n' );
fprintf ( 1, ' R data written to "%s".\n', r_filename );
fprintf ( 1, ' W data written to "%s".\n', w_filename );
fprintf ( 1, ' X data written to "%s",\n', x_filename );
return
end
|
module Issue470 where
data Bool : Set where
true false : Bool
_and_ : Bool → Bool → Bool
true and x = x
false and x = false
infixr 5 _∷_
data Foo : Bool → Set where
[] : Foo true
_∷_ : ∀ {b} (x : Bool) → Foo b → Foo (x and b)
Baz : Bool → Set
Baz true = Bool
Baz false = Foo false
data Bar : ∀ {b} → Foo b → Set where
[] : Bar []
_∷_ : ∀ {b} {foo : Foo b} {x} (g : Baz x) → (bar : Bar foo) → Bar (x ∷ foo)
foo : Foo false
foo = false ∷ true ∷ []
bar : Bar foo
bar = (false ∷ []) ∷ false ∷ [] -- ← is yellow
{-
_59 := _55 ∷ false ∷ [] [blocked by problem 75]
[75] ["apply" (_53 ∷ true ∷ [])] == ["apply" (false ∷ true ∷ [])] : Foo
(_53 and (true and true)) → Set [blocked by problem 76]
[76] (_53 and (true and true)) = false : Bool
_54 := false ∷ [] :? Baz _53
-}
|
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Extract camera serial number from Voyager flight label.
subroutine vgrlab_cam(lab,cam)
implicit none
character*7200 lab !input Voyager flight label
integer*4 cam !output camera serial number (4-7)
integer*4 i
integer*4 sc_id,camera_id
integer*4 camera_sn(2,2)/7,6, !VGR1 NA,WA
& 5,4/ !VGR2 NA,WA
call vgrlab_sc_id(lab,sc_id)
call vgrlab_camera_id(lab,camera_id)
if (sc_id.eq.-999 .or. camera_id.eq.-999) then
cam = -999
else
cam = camera_sn(camera_id,sc_id)
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Extract spacecraft ID from Voyager flight label.
subroutine vgrlab_sc_id(lab,sc_id)
implicit none
character*7200 lab !input Voyager flight label
integer*4 sc_id ! 1=VGR-1, 2=VGR-2
integer*4 i
sc_id = -999
i = index(lab(1:),'VGR-1')
if (i.ne.0) then
sc_id = 1 !Voyager 1
else
i = index(lab(1:),'VGR-2')
if (i.ne.0) sc_id=2
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Extract camera id from Voyager flight label.
subroutine vgrlab_camera_id(lab,camera_id)
implicit none
character*7200 lab !input Voyager flight label
integer*4 camera_id ! 1=NA, 2=WA
integer*4 i
camera_id = -999
i = index(lab(1:),'NA CAMERA')
if (i.ne.0) then
camera_id = 1 !narrow angle
else
i = index(lab(1:),'WA CAMERA')
if (i.ne.0) camera_id=2
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Extract FDS count from Voyager flight label.
c
subroutine vgrlab_fds(lab,fds)
implicit none
character*7200 lab !Voyager flight label (input)
integer*4 fds !FDS count (output)
integer*4 i,mod16,mod60
c note: the FDS is returned as an integer as 100*mod16 + mod60
c Example: FDS 16368.32 is returened as 1636832
i = index(lab(1:),' FDS ')
if (i.ne.0 .and. lab(i+5:i+5).ne.'*') then
read(lab(i+5:),'(bn,i5)') mod16
read(lab(i+11:),'(bn,i2)') mod60
fds = 100*mod16 + mod60
else
fds = -999
endif
return
end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Extract filter, gain, scan rate, operating mode, and exposure time
c from Voyager flight label.
subroutine vgrlab_camparams(lab,filter,gain,scan,mode,t)
implicit none
c ...input argument
character*7200 lab !Voyager flight label
c ...output arguments
integer*4 filter !filter position (0-7)
integer*4 gain !0=low gain, 1=high gain
integer*4 scan !scan rate: 1, 2, 3, 5, 10
integer*4 mode !operating mode
real*4 t !exposure time in milliseconds
integer*4 i
filter = -999
gain = -999
scan = -999
mode = -999
t = -999.
i = index(lab(1:),' FILT ') !example: FILT 0(CLEAR)
if (i.ne.0 .and. lab(i+6:i+6).ne.'*')
& read(lab(i+6:),'(bn,i1)') filter
if (index(lab(1:),' LO GAIN').gt.0) then
gain = 0
elseif (index(lab(1:),' HI GAIN ').gt.0) then
gain = 1
endif
i = index(lab(1:),' SCAN RATE') !example: SCAN RATE 10:1
if (i.ne.0 .and. lab(i+12:i+12) .ne. '*')
& read(lab(i+12:),'(bn,i2)') scan
i = index(lab(1:),' MODE') !example: MODE 4(BOTALT)
if (i.ne.0 .and. lab(i+6:i+6).ne.'*')
& read (lab(i+6:),'(bn,i1)') mode
i = index(lab(1:),' EXP ') !example: EXP 00360.0 MSEC
if (i.ne.0 .and. lab(i+5:i+5).ne.'*')
& read(lab(i+5:),'(bn,f7.0)') t
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Extract PICNO from Voyager flight label.
c
subroutine vgrlab_picno(lab,picno,ind1)
implicit none
character*7200 lab !Voyager flight label (input)
character*10 picno !picno='xxxxPS+DDD' (output)
integer*4 ind1
integer*4 i
i = index(lab(1:),' PICNO ') !Example: PICNO 0548J1-001
if (i.gt.0 .and. lab(i+7:i+7).ne.'X'
+ .and. lab(i+7:i+7).ne.'*') then
picno = lab(i+7:i+16)
else
ind1 = -1
endif
return
end
|
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 23 11:25:33 2019
@author: ntr002
"""
import WaPOR
import requests
import os
from WaPOR import GIS_functions as gis
import numpy as np
import datetime
np.warnings.filterwarnings('ignore')
def main(Dir, data='RET', Startdate='2009-01-01', Enddate='2018-12-31',
latlim=[-40.05, 40.05], lonlim=[-30.5, 65.05],level=1,
version = 2, Waitbar = 1,cached_catalog=True):
"""
This function downloads WaPOR daily data.
Keyword arguments:
Dir -- 'C:/file/to/path/'
Startdate -- 'yyyy-mm-dd'
Enddate -- 'yyyy-mm-dd'
latlim -- [ymin, ymax] (values must be between -40.05 and 40.05)
lonlim -- [xmin, xmax] (values must be between -30.05 and 65.05)
cached_catalog -- True Use a cached catalog. False Load a new catalog from the database
"""
print(f'\nDownload WaPOR Level {level} daily {data} data for the period {Startdate} till {Enddate}')
# Download data
WaPOR.API.version=version
catalog=WaPOR.API.getCatalog(cached=cached_catalog)
bbox=[lonlim[0],latlim[0],lonlim[1],latlim[1]]
if level==1:
cube_code=f"L1_{data}_E"
else:
print('Invalid Level')
try:
cube_info=WaPOR.API.getCubeInfo(cube_code)
multiplier=cube_info['measure']['multiplier']
except:
print('ERROR: Cannot get cube info. Check if WaPOR version has cube %s'%(cube_code))
return None
time_range='{0},{1}'.format(Startdate,Enddate)
try:
df_avail=WaPOR.API.getAvailData(cube_code,time_range=time_range)
except:
print('ERROR: cannot get list of available data')
return None
if Waitbar == 1:
import WaPOR.WaitbarConsole as WaitbarConsole
total_amount = len(df_avail)
amount = 0
WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50)
Dir=os.path.join(Dir,'WAPOR.v%s_daily_%s' %(version,cube_code))
if not os.path.exists(Dir):
os.makedirs(Dir)
for index,row in df_avail.iterrows():
### get download url
download_url=WaPOR.API.getCropRasterURL(bbox,cube_code,
row['time_code'],
row['raster_id'],
WaPOR.API.Token,
print_job=False)
filename='{0}.tif'.format(row['raster_id'])
outfilename=os.path.join(Dir,filename)
download_file=os.path.join(Dir,'raw_{0}.tif'.format(row['raster_id']))
### Download raster file
resp=requests.get(download_url)
open(download_file,'wb').write(resp.content)
### correct raster with multiplier
driver, NDV, xsize, ysize, GeoT, Projection= gis.GetGeoInfo(download_file)
Array = gis.OpenAsArray(download_file,nan_values=True)
Array=np.where(Array<0,0,Array) #mask out flagged value -9998
CorrectedArray=Array*multiplier
gis.CreateGeoTiff(outfilename,CorrectedArray,
driver, NDV, xsize, ysize, GeoT, Projection)
os.remove(download_file)
if Waitbar == 1:
amount += 1
WaitbarConsole.printWaitBar(amount, total_amount,
prefix = 'Progress:',
suffix = 'Complete',
length = 50)
return Dir
|
#include "Defines.hpp" // <!--set debug/test variables in this file
#include <iostream>
#if UNITTEST > 0
#define BOOST_TEST_MODULE Queued_logger_test_module
#define BOOST_TEST_MODULE SimulatorTest
#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_NO_MAIN
#include <boost/test/unit_test.hpp>
#endif
#include "Logger/Queued_logger.hpp"
#include "Logger/Log_to_file.hpp"
#include "ProductionControl.hpp"
#include "Network/machineNetworkHandler.hpp"
#include "Factory.hpp"
int main(int argc, char* argv[])
{
#if UNITTEST > 0
return boost::unit_test::unit_test_main( &init_unit_test, argc, argv );
#endif
try
{
std::cout << "\t\t !- productiestraat-spaanders -! " << std::endl;
Queued_logger::get_instance().switch_logger_type(
new Log_to_file("result.csv"));
Queued_logger::get_instance().log(""); //TODO: logt af en toe naar terminal en af en toe naar file...
Queued_logger::get_instance().log(
"SIM_DAY,TIME_OF_DAY (H:M),MACHINE/BUFFER,ID,MACHINE_NAME,STATE,CURRENT_MACHINE_AMOUNT_OF_WORK,MILLISECONDS_FROM_SIM_START");
//Factory implementatie
Factory f;
f.startSimulation("../../Exe1/master.ini");
while (FactoryClock::getInstance()->isRunning())
{
}
std::this_thread::sleep_for (std::chrono::milliseconds(1000)); // TODO: zorgt ervoor dat statistics zijn weggeschreven
Queued_logger::get_instance().stop();
std::cout << "Application End." << std::endl;
return 0;
} catch (std::exception& e)
{
std::cout << "Exception caught: " << e.what() << std::endl;
} catch (...)
{
std::cout << "Unknown exception caught." << std::endl;
}
return -1;
}
|
Formal statement is: lemma complex_unimodular_polar: assumes "norm z = 1" obtains t where "0 \<le> t" "t < 2 * pi" "z = Complex (cos t) (sin t)" Informal statement is: If $z$ is a complex number with norm $1$, then there exists a real number $t$ such that $0 \leq t < 2\pi$ and $z = \cos(t) + i \sin(t)$. |
(**************************************************************************
* TLC: A library for Coq *
* Option data-structure
**************************************************************************)
Set Implicit Arguments.
From TLC Require Import LibTactics LibReflect.
Generalizable Variables A.
(* --TODO: find a more explicit name? *)
(* ********************************************************************** *)
(** * Option type *)
(* ---------------------------------------------------------------------- *)
(** ** Definition *)
(** From the Prelude:
Inductive option A : Type :=
| Some : A -> option A
| None : option A.
*)
Arguments Some {A}.
Arguments None {A}.
(* ---------------------------------------------------------------------- *)
(** ** Inhabited *)
#[global]
Instance Inhab_option : forall A, Inhab (option A).
Proof using. intros. apply (Inhab_of_val None). Qed.
(* ********************************************************************** *)
(** * Operations *)
(* ---------------------------------------------------------------------- *)
(** ** [is_some] *)
(** [is_some o] holds when [o] is of the form [Some x] *)
Definition is_some A (o:option A) :=
match o with
| None => false
| Some _ => true
end.
(* ---------------------------------------------------------------------- *)
(** ** [unsome_default] *)
(** [unsome_default d o] returns the content of the option, and returns [d]
in case the option in [None]. *)
Definition unsome_default A d (o:option A) :=
match o with
| None => d
| Some x => x
end.
(* ---------------------------------------------------------------------- *)
(** ** [unsome] *)
(** [unsome o] returns the content of the option, and returns an arbitrary
value in case the option in [None]. *)
Definition unsome `{Inhab A} :=
unsome_default (arbitrary (A:=A)).
(* ---------------------------------------------------------------------- *)
(** ** [map] *)
(** [map f o] takes an option and returns an option, and maps the function
[f] to the content of the option if it has one. *)
Definition map A B (f : A -> B) (o : option A) : option B :=
match o with
| None => None
| Some x => Some (f x)
end.
Lemma map_eq_none_inv : forall A B (f : A->B) o,
map f o = None ->
o = None.
Proof using. introv H. destruct o; simpl; inverts* H. Qed.
Lemma map_eq_some_inv : forall A B (f : A->B) o x,
map f o = Some x ->
exists z, o = Some z /\ x = f z.
Proof using. introv H. destruct o; simpl; inverts* H. Qed.
Arguments map_eq_none_inv [A] [B] [f] [o].
Arguments map_eq_some_inv [A] [B] [f] [o] [x].
(* ---------------------------------------------------------------------- *)
(** ** [map_on] *)
(* --TODO: is this really useful? *)
(** [map_on o f] is the same as [map f o], only the arguments are swapped. *)
Definition map_on A B (o : option A) (f : A -> B) : option B :=
map f o.
Lemma map_on_eq_none_inv : forall A B (f : A -> B) o,
map f o = None ->
o = None.
Proof using. introv H. destruct~ o; tryfalse. Qed.
Lemma map_on_eq_some_inv : forall A B (f : A -> B) o x,
map_on o f = Some x ->
exists z, o = Some z /\ x = f z.
Proof using. introv H. destruct o; simpl; inverts* H. Qed.
Arguments map_eq_none_inv [A] [B] [f] [o].
Arguments map_on_eq_some_inv [A] [B] [f] [o] [x].
(* ---------------------------------------------------------------------- *)
(** ** [apply] *)
(** [apply f o] optionnaly applies a function of type [A -> option B] *)
Definition apply A B (f : A->option B) (o : option A) : option B :=
match o with
| None => None
| Some x => f x
end.
(* ---------------------------------------------------------------------- *)
(** ** [apply_on] *)
(* --TODO: is this really useful? *)
(** [apply_on o f] is the same as [apply f o] *)
Definition apply_on A B (o : option A) (f : A->option B) : option B:=
apply f o.
Lemma apply_on_eq_none_inv : forall A B (f : A->option B) o,
apply_on o f = None ->
(o = None)
\/ (exists x, o = Some x /\ f x = None).
Proof using. introv H. destruct o; simpl; inverts* H. Qed.
Lemma apply_on_eq_some_inv : forall A B (f : A->option B) o x,
apply_on o f = Some x ->
exists z, o = Some z /\ f z = Some x.
Proof using. introv H. destruct o; simpl; inverts* H. Qed.
Arguments apply_on_eq_none_inv [A] [B] [f] [o].
Arguments apply_on_eq_some_inv [A] [B] [f] [o] [x].
|
[STATEMENT]
lemma sr_imp_eigen_vector_main: "sr *s u = A *v u"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. sr *s u = A *v u
[PROOF STEP]
proof (rule ccontr)
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
assume *: "sr *s u \<noteq> A *v u"
[PROOF STATE]
proof (state)
this:
sr *s u \<noteq> A *v u
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
let ?x = "A *v u - sr *s u"
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
from *
[PROOF STATE]
proof (chain)
picking this:
sr *s u \<noteq> A *v u
[PROOF STEP]
have 0: "?x \<noteq> 0"
[PROOF STATE]
proof (prove)
using this:
sr *s u \<noteq> A *v u
goal (1 subgoal):
1. A *v u - sr *s u \<noteq> 0
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
A *v u - sr *s u \<noteq> 0
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
let ?y = "pow_A_1 u"
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
have "le_vec (sr *s u) (A *v u)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. le_vec (sr *s u) (A *v u)
[PROOF STEP]
using rx_le_Ax[OF u]
[PROOF STATE]
proof (prove)
using this:
le_vec (r u *s u) (A *v u)
goal (1 subgoal):
1. le_vec (sr *s u) (A *v u)
[PROOF STEP]
unfolding ru
[PROOF STATE]
proof (prove)
using this:
le_vec (sr *s u) (A *v u)
goal (1 subgoal):
1. le_vec (sr *s u) (A *v u)
[PROOF STEP]
.
[PROOF STATE]
proof (state)
this:
le_vec (sr *s u) (A *v u)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
hence le: "le_vec 0 ?x"
[PROOF STATE]
proof (prove)
using this:
le_vec (sr *s u) (A *v u)
goal (1 subgoal):
1. le_vec 0 (A *v u - sr *s u)
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
le_vec 0 (A *v u - sr *s u)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
from 0 le
[PROOF STATE]
proof (chain)
picking this:
A *v u - sr *s u \<noteq> 0
le_vec 0 (A *v u - sr *s u)
[PROOF STEP]
have x: "?x \<in> X"
[PROOF STATE]
proof (prove)
using this:
A *v u - sr *s u \<noteq> 0
le_vec 0 (A *v u - sr *s u)
goal (1 subgoal):
1. A *v u - sr *s u \<in> X
[PROOF STEP]
unfolding X_def
[PROOF STATE]
proof (prove)
using this:
A *v u - sr *s u \<noteq> 0
le_vec 0 (A *v u - sr *s u)
goal (1 subgoal):
1. A *v u - sr *s u \<in> {x. le_vec 0 x \<and> x \<noteq> 0}
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
A *v u - sr *s u \<in> X
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
have y_pos: "lt_vec 0 ?y"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. lt_vec 0 (pow_A_1 u)
[PROOF STEP]
using Y_pos_main[of ?y] u
[PROOF STATE]
proof (prove)
using this:
pow_A_1 u \<in> pow_A_1 ` X \<Longrightarrow> 0 < pow_A_1 u $h ?i
u \<in> X
goal (1 subgoal):
1. lt_vec 0 (pow_A_1 u)
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
lt_vec 0 (pow_A_1 u)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
hence y: "?y \<in> X"
[PROOF STATE]
proof (prove)
using this:
lt_vec 0 (pow_A_1 u)
goal (1 subgoal):
1. pow_A_1 u \<in> X
[PROOF STEP]
unfolding X_def
[PROOF STATE]
proof (prove)
using this:
lt_vec 0 (pow_A_1 u)
goal (1 subgoal):
1. pow_A_1 u \<in> {x. le_vec 0 x \<and> x \<noteq> 0}
[PROOF STEP]
by (auto simp: order.strict_iff_order)
[PROOF STATE]
proof (state)
this:
pow_A_1 u \<in> X
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
from Y_pos_main[of "pow_A_1 ?x"] x
[PROOF STATE]
proof (chain)
picking this:
pow_A_1 (A *v u - sr *s u) \<in> pow_A_1 ` X \<Longrightarrow> 0 < pow_A_1 (A *v u - sr *s u) $h ?i
A *v u - sr *s u \<in> X
[PROOF STEP]
have "lt_vec 0 (pow_A_1 ?x)"
[PROOF STATE]
proof (prove)
using this:
pow_A_1 (A *v u - sr *s u) \<in> pow_A_1 ` X \<Longrightarrow> 0 < pow_A_1 (A *v u - sr *s u) $h ?i
A *v u - sr *s u \<in> X
goal (1 subgoal):
1. lt_vec 0 (pow_A_1 (A *v u - sr *s u))
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
lt_vec 0 (pow_A_1 (A *v u - sr *s u))
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
hence lt: "lt_vec (sr *s ?y) (A *v ?y)"
[PROOF STATE]
proof (prove)
using this:
lt_vec 0 (pow_A_1 (A *v u - sr *s u))
goal (1 subgoal):
1. lt_vec (sr *s pow_A_1 u) (A *v pow_A_1 u)
[PROOF STEP]
unfolding pow_A_1_def matrix_vector_right_distrib_diff
matrix_vector_mul_assoc A1n_commute vector_smult_distrib
[PROOF STATE]
proof (prove)
using this:
lt_vec 0 (A ** A1n *v u - sr *s (A1n *v u))
goal (1 subgoal):
1. lt_vec (sr *s (A1n *v u)) (A ** A1n *v u)
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
lt_vec (sr *s pow_A_1 u) (A *v pow_A_1 u)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
let ?f = "(\<lambda> i. (A *v ?y - sr *s ?y) $ i / ?y $ i)"
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
let ?U = "UNIV :: 'n set"
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
define eps where "eps = Min (?f ` ?U)"
[PROOF STATE]
proof (state)
this:
eps = (MIN i. (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
have U: "finite (?f ` ?U)" "?f ` ?U \<noteq> {}"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. finite (range (\<lambda>i. (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i)) &&& range (\<lambda>i. (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i) \<noteq> {}
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
finite (range (\<lambda>i. (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i))
range (\<lambda>i. (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i) \<noteq> {}
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
have eps: "eps > 0"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. 0 < eps
[PROOF STEP]
unfolding eps_def Min_gr_iff[OF U]
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. Ball (range (\<lambda>i. (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i)) ((<) 0)
[PROOF STEP]
using lt sr_pos y_pos
[PROOF STATE]
proof (prove)
using this:
lt_vec (sr *s pow_A_1 u) (A *v pow_A_1 u)
0 < sr
lt_vec 0 (pow_A_1 u)
goal (1 subgoal):
1. Ball (range (\<lambda>i. (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i)) ((<) 0)
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
0 < eps
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
have le: "le_vec ((sr + eps) *s ?y) (A *v ?y)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. le_vec ((sr + eps) *s pow_A_1 u) (A *v pow_A_1 u)
[PROOF STEP]
proof
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. \<And>i. ((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
[PROOF STEP]
fix i
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. \<And>i. ((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
[PROOF STEP]
have "((sr + eps) *s ?y) $ i = sr * ?y $ i + eps * ?y $ i"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. ((sr + eps) *s pow_A_1 u) $h i = sr * pow_A_1 u $h i + eps * pow_A_1 u $h i
[PROOF STEP]
by (simp add: comm_semiring_class.distrib)
[PROOF STATE]
proof (state)
this:
((sr + eps) *s pow_A_1 u) $h i = sr * pow_A_1 u $h i + eps * pow_A_1 u $h i
goal (1 subgoal):
1. \<And>i. ((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
[PROOF STEP]
also
[PROOF STATE]
proof (state)
this:
((sr + eps) *s pow_A_1 u) $h i = sr * pow_A_1 u $h i + eps * pow_A_1 u $h i
goal (1 subgoal):
1. \<And>i. ((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
[PROOF STEP]
have "\<dots> \<le> sr * ?y $ i + ?f i * ?y $ i"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. sr * pow_A_1 u $h i + eps * pow_A_1 u $h i \<le> sr * pow_A_1 u $h i + (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i * pow_A_1 u $h i
[PROOF STEP]
proof (rule add_left_mono[OF mult_right_mono])
[PROOF STATE]
proof (state)
goal (2 subgoals):
1. eps \<le> (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i
2. 0 \<le> pow_A_1 u $h i
[PROOF STEP]
show "0 \<le> ?y $ i"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. 0 \<le> pow_A_1 u $h i
[PROOF STEP]
using y_pos[rule_format, of i]
[PROOF STATE]
proof (prove)
using this:
0 $h i < pow_A_1 u $h i
goal (1 subgoal):
1. 0 \<le> pow_A_1 u $h i
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
0 \<le> pow_A_1 u $h i
goal (1 subgoal):
1. eps \<le> (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i
[PROOF STEP]
show "eps \<le> ?f i"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. eps \<le> (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i
[PROOF STEP]
unfolding eps_def
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (MIN i. (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i) \<le> (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i
[PROOF STEP]
by (rule Min_le, auto)
[PROOF STATE]
proof (state)
this:
eps \<le> (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i
goal:
No subgoals!
[PROOF STEP]
qed
[PROOF STATE]
proof (state)
this:
sr * pow_A_1 u $h i + eps * pow_A_1 u $h i \<le> sr * pow_A_1 u $h i + (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i * pow_A_1 u $h i
goal (1 subgoal):
1. \<And>i. ((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
[PROOF STEP]
also
[PROOF STATE]
proof (state)
this:
sr * pow_A_1 u $h i + eps * pow_A_1 u $h i \<le> sr * pow_A_1 u $h i + (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i * pow_A_1 u $h i
goal (1 subgoal):
1. \<And>i. ((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
[PROOF STEP]
have "\<dots> = (A *v ?y) $ i"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. sr * pow_A_1 u $h i + (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i * pow_A_1 u $h i = (A *v pow_A_1 u) $h i
[PROOF STEP]
using sr_pos y_pos[rule_format, of i]
[PROOF STATE]
proof (prove)
using this:
0 < sr
0 $h i < pow_A_1 u $h i
goal (1 subgoal):
1. sr * pow_A_1 u $h i + (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i * pow_A_1 u $h i = (A *v pow_A_1 u) $h i
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
sr * pow_A_1 u $h i + (A *v pow_A_1 u - sr *s pow_A_1 u) $h i / pow_A_1 u $h i * pow_A_1 u $h i = (A *v pow_A_1 u) $h i
goal (1 subgoal):
1. \<And>i. ((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
[PROOF STEP]
finally
[PROOF STATE]
proof (chain)
picking this:
((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
[PROOF STEP]
show "((sr + eps) *s ?y) $ i \<le> (A *v ?y) $ i"
[PROOF STATE]
proof (prove)
using this:
((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
goal (1 subgoal):
1. ((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
[PROOF STEP]
.
[PROOF STATE]
proof (state)
this:
((sr + eps) *s pow_A_1 u) $h i \<le> (A *v pow_A_1 u) $h i
goal:
No subgoals!
[PROOF STEP]
qed
[PROOF STATE]
proof (state)
this:
le_vec ((sr + eps) *s pow_A_1 u) (A *v pow_A_1 u)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
from rho_le_x_Ax_imp_rho_le_rx[OF y le]
[PROOF STATE]
proof (chain)
picking this:
sr + eps \<le> r (pow_A_1 u)
[PROOF STEP]
have "r ?y \<ge> sr + eps"
[PROOF STATE]
proof (prove)
using this:
sr + eps \<le> r (pow_A_1 u)
goal (1 subgoal):
1. sr + eps \<le> r (pow_A_1 u)
[PROOF STEP]
.
[PROOF STATE]
proof (state)
this:
sr + eps \<le> r (pow_A_1 u)
goal (1 subgoal):
1. sr *s u \<noteq> A *v u \<Longrightarrow> False
[PROOF STEP]
with sr_max[OF y] eps
[PROOF STATE]
proof (chain)
picking this:
r (pow_A_1 u) \<le> sr
0 < eps
sr + eps \<le> r (pow_A_1 u)
[PROOF STEP]
show False
[PROOF STATE]
proof (prove)
using this:
r (pow_A_1 u) \<le> sr
0 < eps
sr + eps \<le> r (pow_A_1 u)
goal (1 subgoal):
1. False
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
False
goal:
No subgoals!
[PROOF STEP]
qed |
From Hammer Require Import Hammer.
Require Import Setoid.
Require Import RelationClasses.
Require Import Morphisms.
Set Implicit Arguments.
Set Strict Implicit.
Theorem Proper_red : forall T U (rT : relation T) (rU : relation U) (f : T -> U),
(forall x x', rT x x' -> rU (f x) (f x')) ->
Proper (rT ==> rU) f.
intuition.
Qed.
Theorem respectful_red : forall T U (rT : relation T) (rU : relation U) (f g : T -> U),
(forall x x', rT x x' -> rU (f x) (g x')) ->
respectful rT rU f g.
intuition.
Qed.
Theorem respectful_if_bool T : forall (x x' : bool) (t t' f f' : T) eqT,
x = x' ->
eqT t t' -> eqT f f' ->
eqT (if x then t else f) (if x' then t' else f') .
intros; subst; auto; destruct x'; auto.
Qed.
Ltac derive_morph :=
repeat
first [ lazymatch goal with
| |- Proper _ _ => red; intros
| |- (_ ==> _)%signature _ _ => red; intros
end
| apply respectful_red; intros
| apply respectful_if_bool; intros
| match goal with
| [ H : (_ ==> ?EQ)%signature ?F ?F' |- ?EQ (?F _) (?F' _) ] =>
apply H
| [ |- ?EQ (?F _) (?F _) ] =>
let inst := constr:(_ : Proper (_ ==> EQ) F) in
apply inst
| [ H : (_ ==> _ ==> ?EQ)%signature ?F ?F' |- ?EQ (?F _ _) (?F' _ _) ] =>
apply H
| [ |- ?EQ (?F _ _) (?F' _ _) ] =>
let inst := constr:(_ : Proper (_ ==> _ ==> EQ) F) in
apply inst
| [ |- ?EQ (?F _ _ _) (?F _ _ _) ] =>
let inst := constr:(_ : Proper (_ ==> _ ==> _ ==> EQ) F) in
apply inst
| [ |- ?EQ (?F _) (?F _) ] => unfold F
| [ |- ?EQ (?F _ _) (?F _ _) ] => unfold F
| [ |- ?EQ (?F _ _ _) (?F _ _ _) ] => unfold F
end ].
Global Instance Proper_andb : Proper (@eq bool ==> @eq bool ==> @eq bool) andb.
derive_morph; auto.
Qed.
Section K.
Variable F : bool -> bool -> bool.
Hypothesis Fproper : Proper (@eq bool ==> @eq bool ==> @eq bool) F.
Existing Instance Fproper.
Definition food (x y z : bool) : bool :=
F x (F y z).
Global Instance Proper_food : Proper (@eq bool ==> @eq bool ==> @eq bool ==> @eq bool) food.
Proof. hammer_hook "Parametric" "Parametric.Proper_food".
derive_morph; auto.
Qed.
Global Instance Proper_S : Proper (@eq nat ==> @eq nat) S.
Proof. hammer_hook "Parametric" "Parametric.Proper_S".
derive_morph; auto.
Qed.
End K.
Require Import List.
Section Map.
Variable T : Type.
Variable eqT : relation T.
Inductive listEq {T} (eqT : relation T) : relation (list T) :=
| listEq_nil : listEq eqT nil nil
| listEq_cons : forall x x' y y', eqT x x' -> listEq eqT y y' ->listEq eqT (x :: y) (x' :: y').
Theorem listEq_match V U (eqV : relation V) (eqU : relation U) : forall x x' : list V,
forall X X' Y Y',
eqU X X' ->
(eqV ==> listEq eqV ==> eqU)%signature Y Y' ->
listEq eqV x x' ->
eqU (match x with
| nil => X
| x :: xs => Y x xs
end)
(match x' with
| nil => X'
| x :: xs => Y' x xs
end).
Proof. hammer_hook "Parametric" "Parametric.listEq_match".
intros. induction H1; auto. derive_morph; auto.
Qed.
Variable U : Type.
Variable eqU : relation U.
Variable f : T -> U.
Variable fproper : Proper (eqT ==> eqU) f.
Definition hd (l : list T) : option T :=
match l with
| nil => None
| l :: _ => Some l
end.
Fixpoint map' (l : list T) : list U :=
match l with
| nil => nil
| l :: ls => f l :: map' ls
end.
Global Instance Proper_map' : Proper (listEq eqT ==> listEq eqU) map'.
Proof. hammer_hook "Parametric" "Parametric.Proper_map'".
derive_morph. induction H; econstructor; derive_morph; auto.
Qed.
End Map.
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This is a modified ONE COLUMN version of
% the following template:
%
% Deedy - One Page Two Column Resume
% LaTeX Template
% Version 1.1 (30/4/2014)
%
% Original author:
% Debarghya Das (http://debarghyadas.com)
%
% Original repository:
% https://github.com/deedydas/Deedy-Resume
%
% IMPORTANT: THIS TEMPLATE NEEDS TO BE COMPILED WITH XeLaTeX
%
% This template uses several fonts not included with Windows/Linux by
% default. If you get compilation errors saying a font is missing, find the line
% on which the font is used and either change it to a font included with your
% operating system or comment the line out to use the default font.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% TODO:
% 1. Integrate biber/bibtex for article citation under publications.
% 2. Figure out a smoother way for the document to flow onto the next page.
% 3. Add styling information for a "Projects/Hacks" section.
% 4. Add location/address information
% 5. Merge OpenFont and MacFonts as a single sty with options.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% CHANGELOG:
% v1.1:
% 1. Fixed several compilation bugs with \renewcommand
% 2. Got Open-source fonts (Windows/Linux support)
% 3. Added Last Updated
% 4. Move Title styling into .sty
% 5. Commented .sty file.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Known Issues:
% 1. Overflows onto second page if any column's contents are more than the
% vertical limit
% 2. Hacky space on the first bullet point on the second column.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[]{deedy-resume-openfont}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LAST UPDATED DATE
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\lastupdated
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% TITLE NAME
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\namesection{Hardik}{Goel}{ \urlstyle{same}\url{}
\href{mailto:[email protected]}{[email protected]} | 612.532.4261\\
}
\vspace{\topsep}
{\fontspec[Path = fonts/lato/]{Lato-Bol}\selectfont\bfseries\href{https://www.linkedin.com/in/hardikgoel}{https://www.linkedin.com/in/hardikgoel}}\\
\vspace{\topsep}
{\fontspec[Path = fonts/lato/]{Lato-Bol}\selectfont\href{https://github.com/goelhardik/}{https://github.com/goelhardik/}}\\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EXPERIENCE
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Experience}
\runsubsection{Cisco Systems}
\descript{| Software Engineer }
\location{July 2011 – August 2015 | Bangalore, India}
\vspace{\topsep} % Hacky fix for awkward extra vertical space
\begin{tightemize}
\item Worked as a firmware engineer on an I/O Virtualized, Converged Network Adapter, which is part of a Data Center solution - UCS (Unified Compute Servers).
\item Worked on iSCSI boot, allowing servers to remotely boot from a central NetApp/EMC
storage array. Resolved timing issues to fix Linux crashes and added support for booting multiple hosts.
\item Worked on board bring-up for new network adapters, programming new chips and adding new network speeds.
\item Created a tool in python for debugging of adapter issues. The tool accepted XML file with commands and generated results using expect scripts.
\item Worked on the re-factoring of CLI based tool for configuration of the adapter from the UCS Manager over the network. This also enabled multi-host configuration on the adapter.
\end{tightemize}
\sectionsep
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EDUCATION
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Education}
\runsubsection{University of Minnesota}
\descript{| MS in Computer Science}
\location{Expected May 2017 | Twin-Cities, MN } GPA: 4.0 / 4.0\\
\textbullet{} Advanced Algorithms and Data Structures \textbullet{} Matrix Theory
\textbullet{} Artificial Intelligence I
\textbullet{} \\
\textbullet{} Teaching Assistant for undergrad Operating Systems.
\sectionsep
\runsubsection{Indian Institute of Technology, Roorkee}
\descript{| BTech in Electronics \& Communication Engg.}
\location{May 2011 | Roorkee, India}
GPA: 7.6 / 10.0\\
\textbullet{} Digital Signal Processing
\textbullet{} Digital Communication
\textbullet{} Data Structures and Algorithms
\textbullet{} Mathematics
\textbullet{} Computer Networks
\textbullet{} Computer Architecture
\textbullet{} Database Management
\textbullet{}
\sectionsep
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PROJECTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Projects}
\runsubsection{Optical Character Recognition for handwritten Hindi script}
\location{ | \space\space Jan 2011 – May 2011}
Worked in a team of three to develop a complete Optical Character Recognition system for handwritten Hindi script.This involved the use of
techniques of image enhancement, segmentation and feature extraction (adapted to work best for Hindi text). Used Zernike Moments and Center of Mass as features for a static database.\\
\textbullet{} MATLAB \textbullet{}
\sectionsep
\runsubsection{Othello Bot}
\location{ | \space\space December 2015}
Developed an AI to play the game of Othello. Implemented adversary search algorithms such as Minimax and Alpha-Beta Pruning, along with a lot of heuristic based scoring, spcific to Othello.\\
Also made a simple {\fontspec[Path = fonts/lato/]{Lato-Bol}\selectfont\bfseries{\href{http://tictactoeapp.herokuapp.com/}{Tic Tac Toe}}} game for humans to play against an unbeatable bot.\\
\textbullet{} Python \textbullet{} HTML \textbullet{} CSS \textbullet{} Javascript \textbullet{} Flask \textbullet{}
\sectionsep
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SKILLS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Skills}
\begin{minipage}[t]{.9\textwidth}
\subsection{Programming}
\begin{minipage}[t]{.2\textwidth}
\location{Comfortable:}
\textbullet{} Python \textbullet{} Matlab \textbullet{}
\end{minipage}
\hfill
\begin{minipage}[t]{.7\textwidth}
\location{Rusty/Familiar:}
\textbullet{} C \textbullet{} Shell \textbullet{} Javascript \textbullet{} CSS \textbullet{} HTML \textbullet{} Lisp \textbullet{} \LaTeX\ \textbullet{}
\end{minipage}
\sectionsep
\end{minipage}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AWARDS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Awards}
\vspace{\topsep} % Hacky fix for awkward extra vertical space
\begin{tightemize}
\item Cisco Achievement Program (CAP) award (2x) for identifying and handling release-critical issues.
\item All India Rank 997 in IIT-JEE 2007 (Joint Entrance Examination) among ~300,000 candidates.
\end{tightemize}
\sectionsep
\end{document} \documentclass[]{article} |
import Lean.Elab.Tactic
open Lean Elab Tactic in
elab "print!" : tactic => do
logInfo "foo"
throwError "error"
example : True := by
print!
admit
|
import ..lovelib
/-! # Project : Eudoxus Reals
Reference: https://arxiv.org/pdf/math/0405454.pdf -/
/-
This project formalizes a construction of the real numbers called the Eudoxus reals.
To do so we first introduce almost homomorphisms which are functions ℤ → ℤ for which
the set {f(m+n) - f(m) - f(n), n m : ℤ} is finite.
Eudoxus Reals are then defined as equivalence classes of almost homomorphisms.
With f ~ g ↔ {f(n) - g(n), n : ℤ} is finite.
Therefore these are fonctions that grow almost linearily and the growth rate
represents a given real.
For intuition, the Eudoxus real that represents the real number α will be the
equivalence class of (λ n : ℤ, ⌊α * n⌋).
Currently we show that the Eudoxus real form a commutative ring.
Left to do:
- Invertibility of non zero elements for *
- Ordering
- Completeness
-/
set_option pp.beta true
set_option pp.generalized_field_notation false
namespace LoVe
/-
We start with some general results about sets of integers.
-/
lemma int_interval_is_finite (M : ℤ):
M ≥ 0 → set.finite ({x | x < M ∧ - M < x}):=
begin
--apply set.finite_Ioo (-M) M,
sorry,
end
lemma bounded_intset_is_finite (s : set ℤ) :
(∃ M : ℤ, ∀ x ∈ s, abs(x) < M) → s.finite :=
begin
intro hbounded,
cases' hbounded with M1,
let M := abs M1,
have haux1 : M1 ≤ M :=
by exact le_abs_self M1,
have haux2 : ∀ (x : ℤ), x ∈ s → abs x < M :=
begin
intros x hx,
exact gt_of_ge_of_gt haux1 (h x hx),
end,
have haux3 : s ⊆ {x | x < M ∧ -M < x} :=
begin
simp [set.subset_def],
intros x hx,
specialize haux2 x hx,
have haux_aux_1 : x < M :=
begin
exact lt_of_abs_lt haux2,
end,
have haux_aux_2 : x > -M :=
begin
exact neg_lt_of_abs_lt haux2,
end,
exact ⟨haux_aux_1, haux_aux_2⟩,
end,
have haux4 : M ≥ 0 :=
by exact abs_nonneg M1,
apply (set.finite.subset (int_interval_is_finite M haux4) haux3),
end
lemma finset_exists_max {α : Type} (s : set α) [linear_order α]
(hnonempty : set.nonempty s) :
s.finite → ∃ m ∈ s, ∀ x ∈ s, x ≤ m :=
begin
intro hfin,
exact set.exists_max_image s (λ (b : α), b) hfin hnonempty,
end
lemma finset_exists_bound (s : set ℤ )
(hnonempty : set.nonempty s) :
s.finite → ∃ m ∈ s, ∀ x ∈ s, abs(x) ≤ abs(m) :=
begin
intro hfin,
exact set.exists_max_image s (λ (b : ℤ), abs(b)) hfin hnonempty,
end
lemma finset_exists_strict_bound (s : set ℤ )
(hnonempty : set.nonempty s) :
s.finite → ∃ C : ℤ, ∀ x ∈ s, abs(x) < C :=
begin
intro hfin,
cases' (finset_exists_bound s hnonempty hfin),
cases' h with hw,
apply exists.intro (abs w + 1),
have haux1 : abs w < abs w + 1 := lt_add_one (abs w),
intros x hx,
specialize h x hx,
exact lt_of_le_of_lt h haux1,
end
/- # Almost homomorphisms -/
def almost_hom (f : ℤ → ℤ) : Prop :=
{x | ∃ m n : ℤ, x = f(n + m) - f(n) - f(m)}.finite
structure almost_homs :=
(func : ℤ → ℤ)
(almost_hom : almost_hom func)
namespace almost_homomorphisms
@[instance] def setoid : setoid almost_homs :=
{ r := λf g : almost_homs, {x | ∃ n : ℤ, x = f.func(n) - g.func(n)}.finite,
iseqv :=
begin
apply and.intro,
{ simp [reflexive] },
apply and.intro,
{ simp [symmetric],
intros f g,
intro hfg,
let sfg := {x | ∃ n : ℤ, x = f.func(n) - g.func(n)},
let sgf := {x | ∃ n : ℤ, x = g.func(n) - f.func(n)},
have hneg : sgf = (λn, -n) '' sfg :=
begin
apply eq.symm,
apply set.surj_on.image_eq_of_maps_to _ _,
{ simp [set.surj_on, set.subset_def],
intro a, apply exists.intro a, simp,},
{ simp [set.maps_to],
intro a, apply exists.intro a, simp,},
end,
have sgf_def : {x | ∃ n : ℤ, x = g.func(n) - f.func(n)} = sgf := by simp,
have sfg_def : {x | ∃ n : ℤ, x = f.func(n) - g.func(n)} = sfg := by simp,
rw sgf_def at ⊢,
rw sfg_def at hfg,
rw hneg at ⊢,
apply set.finite.image (λ n, -n) hfg,
},
{ simp [transitive],
intros f g h hfg hgh,
let sfg := {x : ℤ | ∃ (n : ℤ), x = f.func n - g.func n},
have sfg_def : {x : ℤ | ∃ (n : ℤ), x = f.func n - g.func n} = sfg := by refl,
let sgh := {x : ℤ | ∃ (n : ℤ), x = g.func n - h.func n},
have sgh_def : {x : ℤ | ∃ (n : ℤ), x = g.func n - h.func n} = sgh := by refl,
let sfh := {x : ℤ | ∃ (n : ℤ), x = f.func n - h.func n},
have sfh_def : {x : ℤ | ∃ (n : ℤ), x = f.func n - h.func n} = sfh := by refl,
rw sfg_def at hfg,
rw sgh_def at hgh,
have hsub : sfh ⊆ set.image2 (λa b, a+b) sfg sgh :=
begin
rw set.image2,
simp [set.subset_def],
intro n,
apply exists.intro (f.func n - g.func n),
apply and.intro,
{apply exists.intro n, refl,},
apply exists.intro (g.func n - h.func n),
apply and.intro,
{apply exists.intro n, refl},
linarith,
end,
simp [sfh_def],
have himfin : set.finite(set.image2 (λ a b, a + b) sfg sgh) :=
by apply set.finite.image2 (λ a b, a+b) hfg hgh,
apply set.finite.subset himfin hsub,
},
end
}
lemma setoid_iff (f g : almost_homs) :
f ≈ g ↔ {x | ∃ n : ℤ, x = f.func(n) - g.func(n) }.finite :=
by refl
@[instance] def has_zero : has_zero almost_homs :=
{ zero :=
{ func:= λ n, 0,
almost_hom := by simp [almost_hom],
}
}
@[simp] lemma zero_func :
(0 : almost_homs).func = λn, 0 :=
by refl
@[instance] def has_neg : has_neg almost_homs :=
{ neg := λ f : almost_homs,
{ func := - f.func,
almost_hom :=
begin
simp [almost_hom],
let s := {x | ∃ m n : ℤ, x = f.func(n + m) - f.func(n) - f.func(m)},
have hsfin : s.finite := f.almost_hom,
have him : {x | ∃ m n : ℤ, x = f.func(n) - f.func(n + m) + f.func(m)} = (λn, -n) '' s :=
begin
apply eq.symm,
refine set.surj_on.image_eq_of_maps_to _ _,
{ simp [set.surj_on, set.subset_def],
intros x m n h,
apply exists.intro m,
apply exists.intro n,
linarith,
},
{ simp [set.maps_to],
intros x m n h,
apply exists.intro m,
apply exists.intro n,
linarith,},
end,
rw him at ⊢,
refine set.finite.image (λ n, -n) hsfin,
end,
}
}
@[simp] lemma neg_func (f : almost_homs) :
(-f).func = - f.func :=
by refl
@[instance] def has_one : has_one almost_homs :=
{ one :=
{ func:= λ n, n,
almost_hom := by simp [almost_hom],
}
}
@[simp] lemma one_func :
(1 : almost_homs).func = λn, n :=
by refl
-- # Addition
@[instance] def has_add : has_add almost_homs :=
{ add := λf g : almost_homs,
{ func:= f.func + g.func,
almost_hom :=
begin
simp [almost_hom],
let sf := {x | ∃ m n : ℤ, x = f.func(n + m) - f.func(n) - f.func(m)},
have hf : sf.finite := f.almost_hom,
let sg := {x | ∃ m n : ℤ, x = g.func(n + m) - g.func(n) - g.func(m)},
have hg : sg.finite := g.almost_hom,
let sfg := {x : ℤ | ∃ (m n : ℤ), x = f.func (n + m) + g.func (n + m)
- (f.func n + g.func n) - (f.func m + g.func m)},
have sfg_def : {x : ℤ | ∃ (m n : ℤ), x = f.func (n + m) + g.func (n + m)
- (f.func n + g.func n) - (f.func m + g.func m)} = sfg := by refl,
have hsub : sfg ⊆ set.image2 (λ a b, a + b) sf sg :=
begin
rw set.image2,
simp [set.subset_def],
intros x m n hmn,
apply exists.intro (f.func (n + m) - f.func n - f.func m),
apply and.intro,
{
apply exists.intro m,
apply exists.intro n,
refl,
},
apply exists.intro (g.func (n + m) - g.func n - g.func m),
apply and.intro,
{
apply exists.intro m,
apply exists.intro n,
refl,
},
simp [hmn],
linarith,
end,
simp [sfg_def],
have himfin : set.finite(set.image2 (λ a b, a + b) sf sg) :=
by apply set.finite.image2 (λ a b, a+b) hf hg,
apply set.finite.subset himfin hsub,
end,
}
}
@[simp] lemma add_func (f g : almost_homs):
(f + g).func = f.func + g.func :=
by refl
lemma add_equiv_add {f f' g g' : almost_homs}
(hf : f ≈ f') (hg : g ≈ g') :
f + g ≈ f' + g' :=
begin
simp [setoid_iff] at *,
let sff' := {x | ∃ n : ℤ, x = f.func n - f'.func n},
have sff'_def : {x | ∃ n : ℤ, x = f.func n - f'.func n} = sff' := by refl,
let sgg' := {x | ∃ n : ℤ, x = g.func n - g'.func n},
have sgg'_def : {x | ∃ n : ℤ, x = g.func n - g'.func n} = sgg' := by refl,
let s := {x | ∃ n : ℤ, x = f.func n + g.func n - (f'.func n + g'.func n)},
have s_def : {x | ∃ n : ℤ, x = f.func n + g.func n - (f'.func n + g'.func n)} = s := by refl,
simp [sff'_def, sgg'_def, s_def] at *,
have hsub : s ⊆ set.image2 (λ a b, a + b) sff' sgg' :=
begin
rw set.image2,
simp [set.subset_def],
intro n,
apply exists.intro (f.func n - f'.func n),
apply and.intro,
{apply exists.intro n, refl},
{
apply exists.intro (g.func n - g'.func n),
apply and.intro,
{apply exists.intro n, refl},
linarith,
}
end,
have himfin : set.finite(set.image2 (λ a b, a + b) sff' sgg') :=
by apply set.finite.image2 (λ a b, a+b) hf hg,
apply set.finite.subset himfin hsub,
end
lemma zero_add {f : almost_homs} :
0 + f ≈ f :=
by simp [setoid_iff]
lemma add_zero {f : almost_homs} :
f + 0 ≈ f :=
by simp [setoid_iff]
-- # Order
def is_positive (f : almost_homs) : Prop :=
{x | ∃ n : ℕ, x = f.func(n)}.infinite
/-
lemma lemma5 (f : almost_homs) :
xor
(∃ M, ∀ n, f.func n < M)
(xor
(∀ C > 0, ∃ N, ∀ p > N, f.func(p) > C)
(∀ C > 0, ∃ N, ∀ p > N, f.func(p) < -C)
) :=
sorry -/
-- # Multiplication
-- We now define the error of an almost homomorphism.
-- d_f(m, n) = f(m + n) - f(m) - f(n)
-- This value represents by how much f is not actually a homomorphism.
def hom_error (f : ℤ → ℤ) (m n : ℤ) :=
f(m + n) - f(m) - f(n)
lemma hbounded_error (f : almost_homs) :
∃ C : ℤ, ∀ m n : ℤ, abs (f.func(n + m) - f.func(n) - f.func(m)) < C :=
begin
let s_hom_err := {x | ∃ m n : ℤ, x = f.func(n + m) - f.func(n) - f.func(m)},
have hfin : set.finite s_hom_err := f.almost_hom,
have hnonempty : set.nonempty s_hom_err :=
begin
simp [set.nonempty_def],
apply exists.intro (- f.func 0),
apply exists.intro (int.of_nat 0),
apply exists.intro (int.of_nat 0),
simp,
end,
cases' (finset_exists_bound s_hom_err hnonempty hfin),
let C := abs(w) + 1,
have hC_def : C = abs(w) + 1 := by refl,
apply exists.intro C,
intros m n,
cases' h with hw,
have hin : f.func (n + m) - f.func n - f.func m ∈ s_hom_err :=
begin
simp,
apply exists.intro m,
apply exists.intro n,
simp,
end,
rw hC_def,
have haux : abs (f.func (n + m) - f.func n - f.func m) ≤ abs w :=
by apply (h (f.func (n + m) - f.func n - f.func m) hin),
have hsimp : abs w < abs w + 1 := by linarith,
apply lt_of_le_of_lt haux hsimp,
end
lemma lemma7 (f : almost_homs) :
∃ C : ℤ, ∀ m n : ℤ,
abs (m * (f.func n) - n * (f.func m)) < (abs m + abs n + 2) * C :=
begin
let s_hom_err := {x | ∃ m n : ℤ, x = f.func(n + m) - f.func(n) - f.func(m)},
have hbounded_homerror : ∃ C : ℤ, ∀ x ∈ s_hom_err,
abs(x) < C :=
begin
simp,
cases' (hbounded_error f) with C,
apply exists.intro C,
intros x m n hx,
rw hx,
apply (h m n),
end,
cases' hbounded_homerror with C,
-- m ≥ 0
have haux_m_nat : ∀ m : ℕ, ∀ n : ℤ,
abs(f.func (m*n) - m * f.func n) < (abs (m) + 1) * C :=
begin
intros m n,
induction m,
{
-- m = 0
simp,
have hf_mzero_in : (- f.func 0) ∈ s_hom_err :=
begin
simp,
apply exists.intro (int.of_nat 0),
apply exists.intro (int.of_nat 0),
simp,
end,
have habsneg : abs (f.func 0) = abs (- f.func 0) :=
by simp [abs_neg],
rw habsneg at ⊢,
refine h (- f.func 0) hf_mzero_in,
},
-- p m → p m+1
{
simp,
rename m_n m,
rename m_ih ih,
have hin : f.func (m*n + n) - f.func (m*n) - f.func n ∈ s_hom_err :=
begin
simp,
apply exists.intro n,
apply exists.intro (int.of_nat m*n),
simp,
end,
have haux : abs (f.func (m*n + n) - f.func (m*n) - f.func n) < C :=
by exact h (f.func (↑m * n + n) - f.func (↑m * n) - f.func n) hin,
calc abs (f.func ((↑m + 1) * n) - (↑m + 1) * f.func n)
= abs (f.func (↑m * n + n) - f.func (↑m * n) - f.func n
+ f.func (int.of_nat m * n) - int.of_nat m * f.func n) : _
... ≤ abs (f.func (↑m * n + n) - f.func (↑m * n) - f.func n)
+ abs (f.func (int.of_nat m * n) - int.of_nat m * f.func n) : _
... < (abs(↑m + 1) + 1) * C : _,
{
simp,
have hsimp1 : (↑m + 1) * n = ↑m * n + n :=
begin
linarith,
end,
rw hsimp1 at ⊢,
have hsimp2 : f.func (↑m * n + n) - f.func (↑m * n) - f.func n + f.func (↑m * n) - ↑m * f.func n
= f.func (↑m * n + n) - f.func n - ↑m * f.func n := by linarith,
rw hsimp2 at ⊢,
have hsimp3 : (↑m + 1) * f.func n = f.func n + ↑m * f.func n := by linarith,
rw hsimp3 at ⊢,
have hsimp4 : f.func (↑m * n + n) - (f.func n + ↑m * f.func n)
= f.func (↑m * n + n) - f.func n - ↑m * f.func n := by linarith,
rw hsimp4 at ⊢,
},
{
let a := f.func (↑m * n + n) - f.func (↑m * n) - f.func n,
have a_def : f.func (↑m * n + n) - f.func (↑m * n) - f.func n = a := by refl,
have hsimp1 : a + f.func (↑m * n) - ↑m * f.func n
= a + (f.func (↑m * n) - ↑m * f.func n) := by linarith,
let b := f.func (↑m * n) - ↑m * f.func n,
have b_def : f.func (↑m * n) - ↑m * f.func n = b := by refl,
rw a_def,
simp,
rw hsimp1 at ⊢,
rw b_def,
exact abs_add a b,
},
{
have haux2 : abs (f.func (int.of_nat m * n) - int.of_nat m * f.func n)
+ abs (f.func (↑m * n + n) - f.func (↑m * n) - f.func n)
< (abs (int.of_nat m) + 1) * C + C := by exact add_lt_add ih haux,
have hsimp1 : (abs (int.of_nat m) + 1) = int.of_nat m + 1 :=
begin
have haux1_1 : abs (int.of_nat m) = int.of_nat m :=
begin
simp,
end,
rw haux1_1 at ⊢,
end,
have hsimp2 : (abs (int.of_nat m + 1) + 1) = int.of_nat m + 1 + 1 :=
begin
exact rfl,
end,
have hsimp3 : (abs (↑m + 1) + 1) * C = (abs (int.of_nat m + 1) + 1) * C := by refl,
rw hsimp3,
rw hsimp2,
rw hsimp1 at haux2,
linarith,
}
},
end,
-- m ≤ 0
have haux_m_neg : ∀ m : ℕ, ∀ n : ℤ,
abs (f.func (-[1+ m] * n) - -[1+ m] * f.func n) < (abs -[1+ m] + 1) * C :=
begin
intro m,
induction m,
{
intro n,
have hsimp0 : -[1+0] = -1 :=
by exact rfl,
simp [hsimp0],
have hsimp1 : f.func (-n) + f.func n
= (f.func (-n) + f.func n - f.func(n - n)) + f.func 0 :=
by simp,
calc abs (f.func (-n) + f.func n)
= abs(f.func (-n) + f.func n - f.func(n - n) + f.func 0) : by simp
... ≤ abs (f.func (-n) + f.func n - f.func(n - n)) + abs (f.func 0) : _
... < C + C : _
... = (1 + 1) * C : by linarith,
{
exact abs_add (f.func (-n) + f.func n - f.func (n - n)) (f.func 0),
},
{
have haux1 : abs (f.func (-n) + f.func n - f.func (n - n)) < C :=
begin
have hmember : (f.func (n-n) - f.func(-n) - f.func n) ∈ s_hom_err :=
begin
simp,
apply exists.intro n,
apply exists.intro (-n),
simp,
end,
have haux1_1 : abs((f.func (n-n) - f.func(-n) - f.func n)) < C :=
by exact h (f.func (n - n) - f.func (-n) - f.func n) hmember,
have hsimp: abs (f.func (n-n) - f.func (-n) - f.func n)
= abs (f.func (-n) + f.func n - f.func (n - n)) :=
begin
have hsimp_simp : (f.func (n-n) - f.func (-n) - f.func n)
= - (f.func (-n) + f.func n - f.func (n - n)) :=
by linarith,
rw hsimp_simp,
exact abs_neg (f.func (-n) + f.func n - f.func (n - n)),
end,
rw hsimp at haux1_1,
exact haux1_1,
end,
have haux2 : abs(f.func 0) < C :=
begin
have hmem : f.func 0 - f.func 0 - f.func 0 ∈ s_hom_err :=
begin
simp,
apply exists.intro (int.of_nat 0),
apply exists.intro (int.of_nat 0),
simp,
end,
have hsimp1 : abs(f.func 0) = abs (- f.func 0) :=
by simp [abs_neg (f.func 0)],
have hsimp2 : -f.func 0 = f.func 0 - f.func 0 - f.func 0 :=
by linarith,
rw hsimp1,
rw hsimp2,
exact h (f.func 0 - f.func 0 - f.func 0) hmem,
end,
exact add_lt_add haux1 haux2,
},
},
{
intro n,
rename m_ih ih,
rename m_n m,
have hsimp0 : -[1+ nat.succ m] = - (m + 2) := by exact rfl,
simp [hsimp0],
have hsimp1 : -[1+ m] = -(m + 1) := by exact rfl,
simp [hsimp1] at ih,
have hsimp2 : f.func ((-2 + -↑m) * n) - (-2 + -↑m) * f.func n
= f.func ((-2 + -↑m) * n) + f.func n - f.func ((-1 + -↑m) * n)
+ (f.func ((-1 + -↑m) * n) - (-1 + -↑m) * f.func n) :=
begin
linarith,
end,
have haux1 : abs (f.func ((-2 + -↑m) * n) + f.func n - f.func ((-1 + -↑m) * n)) < C :=
begin
have hmem : f.func ((-1 + -↑m) * n) - f.func ((-2 + -↑m) * n) - f.func n ∈ s_hom_err :=
begin
simp,
apply exists.intro n,
apply exists.intro ((-2 + -↑m) * n),
simp,
have hsimp : (-1 + -↑m) * n = (-2 + -↑m) * n + n := by linarith,
simp [hsimp],
end,
have haux_aux : abs(f.func ((-1 + -↑m) * n) - f.func ((-2 + -↑m) * n) - f.func n) < C :=
begin
apply (h (f.func ((-1 + -↑m) * n) - f.func ((-2 + -↑m) * n) - f.func n) hmem),
end,
have hsimp_simp : f.func ((-1 + -↑m) * n) - f.func ((-2 + -↑m) * n) - f.func n
= - (f.func ((-2 + -↑m) * n) + f.func n - f.func ((-1 + -↑m) * n)) :=
by linarith,
rw hsimp_simp at haux_aux,
rw abs_neg at haux_aux,
exact haux_aux,
end,
have haux2 : abs (f.func ((-1 + -↑m) * n) - (-1 + -↑m) * f.func n) < (abs -[1+ m] + 1) * C :=
by simp [hsimp1]; exact (ih n),
calc abs (f.func ((-2 + -↑m) * n) - (-2 + -↑m) * f.func n)
= abs(f.func ((-2 + -↑m) * n) + f.func n - f.func ((-1 + -↑m) * n)
+ (f.func ((-1 + -↑m) * n) - (-1 + -↑m) * f.func n)) : by rw hsimp2
... ≤ abs(f.func ((-2 + -↑m) * n) + f.func n - f.func ((-1 + -↑m) * n))
+ abs ((f.func ((-1 + -↑m) * n) - (-1 + -↑m) * f.func n)) : _
... < C + (abs -[1+ m] + 1) * C : by apply (add_lt_add haux1 haux2)
... = (abs (-2 + -↑m) + 1) * C : _,
{
exact abs_add (f.func ((-2 + -↑m) * n) + f.func n - f.func ((-1 + -↑m) * n))
(f.func ((-1 + -↑m) * n) - (-1 + -↑m) * f.func n),
},
{
rw hsimp1 at ⊢,
have habsneg : abs (-1 + -(int.of_nat m)) = m + 1 :=
begin
exact abs_sub (-1) (int.of_nat m),
end,
have habsneg2 : abs(-2 + -int.of_nat m) = m + 2 :=
begin
exact abs_sub (-2) (int.of_nat m),
end,
simp at *,
rw habsneg,
rw habsneg2,
linarith,
}
},
end,
-- m : ℤ
have haux : ∀ m n : ℤ,
abs(f.func (m*n) - m * f.func n) < (abs (m) + 1) * C :=
begin
intros m n,
cases' m, -- m is positive or negative
simp,
simp at haux_m_nat,
exact haux_m_nat m n,
exact haux_m_neg m n,
end,
apply exists.intro C,
intros m n,
have h1 : abs (f.func(m*n) - m*f.func(n)) < (abs(m) + 1) * C := haux m n,
have h2 : abs (n*f.func(m) - f.func(m*n)) < (abs(n) + 1) * C :=
begin
have hsimp : abs (n*f.func(m) - f.func(m*n))
= abs (f.func(m*n) - n*f.func(m)) :=
by exact abs_sub (n * f.func m) (f.func (m * n)),
rw hsimp,
have hsimp2 : m*n = n*m := by linarith,
rw hsimp2,
exact haux n m,
end,
calc abs (m * f.func n - n * f.func m)
= abs (f.func (m * n) - m * f.func n + n * f.func m - f.func (m * n)) : _
... ≤ abs (f.func (m * n) - m * f.func n) + abs (n * f.func m - f.func (m * n)) : _
... < (abs m + 1) * C + (abs n + 1) * C : by exact add_lt_add h1 h2
... = (abs m + abs n + 2) * C : by linarith,
{
have hsimp : m * f.func n - n * f.func m
= - (f.func (m * n) - m * f.func n + n * f.func m - f.func (m * n)) :=
begin
linarith,
end,
rw hsimp,
exact abs_neg (f.func (m * n) - m * f.func n + n * f.func m - f.func (m * n)),
},
{
let a := f.func (m * n) - m * f.func n,
have a_def : f.func (m * n) - m * f.func n = a := by refl,
let b := n * f.func m - f.func (m * n),
have b_def : n * f.func m - f.func (m * n) = b := by refl,
rw a_def,
have hsimp : a + n * f.func m - f.func (m * n) =
a + (n * f.func m - f.func (m * n)) := by linarith,
rw hsimp,
rw b_def,
exact abs_add a b,
},
end
lemma lemma8 (f : almost_homs) :
∃ A B : ℤ, ∀ m : ℤ, abs (f.func m) < A * abs(m) + B :=
begin
cases' (lemma7 f) with C,
apply exists.intro (C + abs (f.func 1)),
apply exists.intro (3*C),
intro m,
have haux1 : abs (m * f.func 1 - 1 * f.func m) < (abs m + abs 1 + 2) * C :=
by exact (h m 1),
simp at haux1,
have haux2 : abs (f.func m) - abs (m * f.func 1) ≤ abs (f.func m - m * f.func 1) :=
by apply abs_sub_abs_le_abs_sub,
have hsimp1 : abs (m * f.func 1 - f.func m) = abs (f.func m - m * f.func 1) :=
by exact abs_sub (m * f.func 1) (f.func m),
rw hsimp1 at haux1,
have haux3 : abs (f.func m) - abs (m * f.func 1) < (abs m + 1 + 2) * C :=
by apply lt_of_le_of_lt haux2 haux1,
have haux4 : abs (f.func m) < (abs m + 1 + 2) * C + abs (m * f.func 1) :=
by exact sub_lt_iff_lt_add.mp haux3,
have hsimp2 : abs (m * f.func 1) = abs (m) * abs(f.func 1) :=
by exact abs_mul m (f.func 1),
have hsimp3 : (abs m + 1 + 2) * C + abs (m) * abs(f.func 1)
= (C + abs (f.func 1)) * abs m + 3 * C :=
by linarith,
simp [hsimp2, hsimp3] at haux4,
exact haux4,
end
@[instance] def has_mul : has_mul almost_homs :=
{ mul := λf g : almost_homs,
{ func:= f.func ∘ g.func,
almost_hom :=
begin
simp [almost_hom],
apply bounded_intset_is_finite,
cases' (hbounded_error f) with Cf hCf,
cases' (hbounded_error g) with Cg hCg,
have haux1 : ∀ m n : ℤ, abs(f.func(g.func m + g.func n)
- f.func (g.func m) - f.func (g.func n)) < Cf :=
begin
intros m n,
apply (hCf (g.func n) (g.func m)),
end,
have haux2 : ∀ m n : ℤ, abs(f.func(g.func (m + n))
- f.func (g.func (m + n) - g.func m - g.func n)
- f.func (g.func m + g.func n)) < Cf :=
begin
intros m n,
let h := (hCf (g.func m + g.func n) (g.func(m + n) - g.func m - g.func n)),
simp at *,
apply h,
end,
have haux3 : ∃ C, ∀ m n : ℤ,
abs(f.func(g.func (m + n) - g.func m - g.func n)) < C :=
begin
let sg := {x | ∃ m n : ℤ, x = g.func(n + m) - g.func(n) - g.func(m)},
have hsg_fin : sg.finite := g.almost_hom,
let sfg := {x | ∃ y ∈ sg, x = (f.func y)},
have hfabs_fin : set.finite sfg :=
by exact set.finite.dependent_image hsg_fin (λ (x : ℤ) (hx : x ∈ sg), (f.func x)),
cases' (finset_exists_bound sfg _ hfabs_fin),
{
apply exists.intro ((abs w) + 1),
intros m n,
have haux1 : (g.func (m + n) - g.func m - g.func n) ∈ sg :=
begin
simp,
apply exists.intro n,
apply exists.intro m,
refl,
end,
have haux2 : (f.func(g.func (m + n) - g.func m - g.func n)) ∈ sfg :=
begin
simp,
apply exists.intro (g.func (m + n) - g.func m - g.func n),
apply and.intro,
apply exists.intro n,
apply exists.intro m,
refl,
refl,
end,
cases' h with w hw,
have haux3 : abs w < abs w + 1 :=
by exact lt_add_one (abs w),
exact lt_of_le_of_lt (hw (f.func (g.func (m + n) - g.func m - g.func n)) haux2) haux3,
},
{
simp [set.nonempty_def],
apply exists.intro (f.func(- g.func 0)),
apply exists.intro (- g.func 0),
apply and.intro,
apply exists.intro (int.of_nat 0),
apply exists.intro (int.of_nat 0),
simp,
},
end,
have haux4 :
∀ m n : ℤ,
f.func(g.func (m + n)) - f.func (g.func m) - f.func (g.func n) =
f.func(g.func m + g.func n) - f.func (g.func m) - f.func (g.func n)
+ (f.func(g.func (m + n)) - f.func (g.func (m + n) - g.func m - g.func n) - f.func (g.func m + g.func n))
+ (f.func(g.func (m + n) - g.func m - g.func n)) :=
by intros m n; linarith,
cases' haux3 with C,
have haux5 :
∀ m n : ℤ,
abs (f.func(g.func (m + n)) - f.func (g.func m) - f.func (g.func n)) < 2*Cf + C
:=
begin
intros m n,
calc abs (f.func(g.func (m + n)) - f.func (g.func m) - f.func (g.func n))
= abs (f.func(g.func m + g.func n) - f.func (g.func m) - f.func (g.func n)
+ (f.func(g.func (m + n)) - f.func (g.func (m + n) - g.func m - g.func n) - f.func (g.func m + g.func n))
+ (f.func(g.func (m + n) - g.func m - g.func n))) : by simp [haux4]
... ≤ abs (f.func(g.func m + g.func n) - f.func (g.func m) - f.func (g.func n))
+ abs(f.func(g.func (m + n)) - f.func (g.func (m + n) - g.func m - g.func n) - f.func (g.func m + g.func n))
+ abs(f.func(g.func (m + n) - g.func m - g.func n)) : _
... < Cf + Cf + C : by exact add_lt_add (add_lt_add (haux1 m n) (haux2 m n)) (h m n)
... = 2 * Cf + C : by linarith,
{
exact abs_add_three (f.func (g.func m + g.func n) - f.func (g.func m) - f.func (g.func n))
(f.func (g.func (m + n)) - f.func (g.func (m + n) - g.func m - g.func n) - f.func (g.func m + g.func n))
(f.func (g.func (m + n) - g.func m - g.func n)),
},
end,
apply exists.intro (2*Cf + C),
intro x,
simp,
intros m n hx,
rw hx,
apply (haux5 n m),
end,
}
}
@[simp] lemma mul_func (f g : almost_homs):
(f * g).func = f.func ∘ g.func :=
by refl
lemma one_mul {f : almost_homs} :
1 * f ≈ f :=
by simp [setoid_iff]
lemma mul_equiv_mul {f f' g g' : almost_homs}
(hff' : f ≈ f') (hgg' : g ≈ g') :
f * g ≈ f' * g' :=
begin
simp [setoid_iff] at *,
apply bounded_intset_is_finite,
set sff' := {x : ℤ | ∃ (n : ℤ), x = f.func n - f'.func n} with sff'_def,
set sgg' := {x : ℤ | ∃ (n : ℤ), x = g.func n - g'.func n} with sgg'_def,
have hnonemptyf : set.nonempty sff' :=
begin
simp [set.nonempty_def],
apply exists.intro (f.func 0 - f'.func 0),
apply exists.intro (int.of_nat 0),
simp,
end,
have hnonemptyg : set.nonempty sgg' :=
begin
simp [set.nonempty_def],
apply exists.intro (g.func 0 - g'.func 0),
apply exists.intro (int.of_nat 0),
simp,
end,
cases' (finset_exists_strict_bound sff' hnonemptyf hff') with Cff' hCff',
cases' (finset_exists_strict_bound sgg' hnonemptyg hgg') with Cgg' hCgg',
have haux1 : ∀ n : ℤ,
abs (f.func (g.func n) - f'.func (g.func n)) < Cff' :=
begin
intro n,
have hmember : f.func (g.func n) - f'.func (g.func n) ∈ sff' :=
begin
simp,
apply exists.intro (g.func n),
refl,
end,
apply (hCff' (f.func (g.func n) - f'.func (g.func n)) hmember),
end,
let sf' := {x | ∃ m n : ℤ, x = f'.func(n + m) - f'.func(n) - f'.func(m)},
have hsg_fin : sf'.finite := f'.almost_hom,
cases' (hbounded_error f') with Cf' hCf',
have haux2 : ∀ n : ℤ,
abs (f'.func(g.func n) - f'.func(g.func n - g'.func n) - f'.func (g'.func n)) < Cf' :=
begin
intro n,
have hsimp : f'.func (g.func n) = f'.func(g.func n - g'.func n + g'.func n) := by simp,
rw hsimp,
apply (hCf' (g'.func n) (g.func n - g'.func n)),
end,
have haux3 : ∃ C : ℤ, ∀ n : ℤ,
abs (f'.func (g.func n - g'.func n)) < C :=
begin
set sf'g := {x | ∃ y ∈ sgg', x = f'.func y} with sf'g_def,
have hfin : set.finite sf'g :=
by exact set.finite.dependent_image hgg' (λ (x : ℤ) (hx : x ∈ sgg'), f'.func x),
have hnonempty : set.nonempty sf'g :=
begin
simp [set.nonempty_def],
apply exists.intro (f'.func (g.func 0 - g'.func 0)),
apply exists.intro ((g.func 0 - g'.func 0)),
apply and.intro,
apply exists.intro (int.of_nat 0),
refl,
refl,
end,
cases' (finset_exists_strict_bound sf'g hnonempty hfin) with C hC,
apply exists.intro C,
simp [sf'g_def] at hC,
exact hC,
end,
cases' haux3 with C,
have hrw : ∀ n : ℤ,
f.func (g.func n) - f'.func (g'.func n)
=
(f.func (g.func n) - f'.func (g.func n))
+ (f'.func(g.func n) - f'.func(g.func n - g'.func n) - f'.func (g'.func n))
+ (f'.func (g.func n - g'.func n)) := by intro n; linarith,
apply exists.intro (Cff' + Cf' + C),
have haux4 : ∀ n : ℤ,
abs (f.func (g.func n) - f'.func (g'.func n)) < Cff' + Cf' + C :=
begin
intro n,
calc abs (f.func (g.func n) - f'.func (g'.func n))
= abs((f.func (g.func n) - f'.func (g.func n))
+ (f'.func(g.func n) - f'.func(g.func n - g'.func n) - f'.func (g'.func n))
+ (f'.func (g.func n - g'.func n))) : by rw hrw
... ≤ abs (f.func (g.func n) - f'.func (g.func n))
+ abs (f'.func(g.func n) - f'.func(g.func n - g'.func n) - f'.func (g'.func n))
+ abs (f'.func (g.func n - g'.func n)) : _
... < Cff' + Cf' + C : _,
{
exact abs_add_three (f.func (g.func n) - f'.func (g.func n))
(f'.func (g.func n) - f'.func (g.func n - g'.func n) - f'.func (g'.func n))
(f'.func (g.func n - g'.func n)),
},
{
apply add_lt_add (add_lt_add (haux1 n) (haux2 n)) (h n),
}
end,
simp,
exact haux4,
end
lemma mul_monotone (a b c :ℤ):
a ≥ 0 → b ≥ c → a * b ≥ a * c :=
begin
intros ha hbc,
exact mul_le_mul_of_nonneg_left hbc ha,
end
lemma mul_monotone_right (a b c :ℤ):
a ≥ 0 → b ≥ c → b * a ≥ c * a :=
begin
intros ha hbc,
have hsimp1 : b * a = a * b := by linarith,
have hsimp2 : c * a = a * c := by linarith,
rw hsimp1 at ⊢,
rw hsimp2 at ⊢,
exact mul_monotone a b c ha hbc,
end
lemma mul_comm_aux (f g : almost_homs) :
∃ A B C : ℤ, (A ≥ 0 ∧ B ≥ 0 ∧ C ≥ 0) ∧
∀ (p : ℤ), abs (p) * abs(f.func (g.func p) - g.func (f.func p)) < 2 * (abs p + (A * abs p + B) + 2) * C :=
begin
cases' (almost_homomorphisms.lemma7 f) with Cf hCf,
cases' (almost_homomorphisms.lemma7 g) with Cg hCg,
set absCf := abs Cf with absCf_def,
set absCg := abs Cg with absCg_def,
have haux1 : ∀ p, abs (p * f.func (g.func p) - g.func p * f.func p)
< (abs p + abs (g.func p ) + 2) * Cf :=
by intro p; exact hCf p (g.func p),
have haux2 : ∀ p, abs (g.func p * f.func p - p * (g.func (f.func p)))
< (abs p + abs (f.func p) + 2) * Cg :=
begin
intro p,
have hsimp : abs (g.func p * f.func p - p * g.func (f.func p))
= abs (- (g.func p * f.func p - p * g.func (f.func p))):=
by exact eq.symm (abs_neg (g.func p * f.func p - p * g.func (f.func p))),
simp [hsimp],
rw (mul_comm (g.func p) (f.func p)),
apply hCg p (f.func p),
end,
have haux3 : ∀ p,
abs (p * (f.func (g.func p)) - p * (g.func (f.func p)))
< (abs p + abs (g.func p ) + 2) * Cf + (abs p + abs (f.func p) + 2) * Cg :=
begin
intro p,
calc abs (p * (f.func (g.func p)) - p * (g.func (f.func p)))
= abs ((p * f.func (g.func p) - g.func p * f.func p)
+ (g.func p * f.func p - p * g.func (f.func p))) : _
... ≤ abs (p * f.func (g.func p) - g.func p * f.func p)
+ abs (g.func p * f.func p - p * g.func (f.func p)) : _
... < (abs p + abs (g.func p ) + 2) * Cf + (abs p + abs (f.func p) + 2) * Cg : _,
{
have hlinarith : p * (f.func (g.func p)) - p * (g.func (f.func p))
= p * (f.func (g.func p)) - g.func p * (f.func p) + (g.func p * (f.func p) - p * (g.func (f.func p)))
:= by linarith,
rw hlinarith,
},
{exact abs_add (p * f.func (g.func p) - g.func p * f.func p) (g.func p * f.func p - p * g.func (f.func p)),},
{exact add_lt_add (hCf p (g.func p)) (haux2 p),}
end,
cases' (almost_homomorphisms.lemma8 f) with Af hAf,
cases' hAf with Bf hABf,
cases' (almost_homomorphisms.lemma8 g) with Ag hAg,
cases' hAg with Bg hABg,
have haux1'_aux : ∀ p, (abs p + abs (g.func p) + 2) * Cf ≤ (abs p + abs (g.func p) + 2) * absCf :=
begin
intro p,
have h1 : (abs p + abs (g.func p) + 2) ≥ 0 :=
begin
have h1_1 : abs p ≥ 0 := abs_nonneg p,
have h1_2 : abs (g.func p) ≥ 0 := abs_nonneg (g.func p),
linarith,
end,
apply (mul_monotone (abs p + abs (g.func p) + 2) absCf Cf h1 _),
exact le_abs_self Cf,
end,
have haux1' : ∀ p, abs (p * f.func (g.func p) - g.func p * f.func p) < (abs p + abs (g.func p) + 2) * absCf :=
begin
intro p,
have haux1'_aux : (abs p + abs (g.func p) + 2) * Cf ≤ (abs p + abs (g.func p) + 2) * absCf :=
begin
have h1 : (abs p + abs (g.func p) + 2) ≥ 0 :=
begin
have h1_1 : abs p ≥ 0 := abs_nonneg p,
have h1_2 : abs (g.func p) ≥ 0 := abs_nonneg (g.func p),
linarith,
end,
apply (mul_monotone (abs p + abs (g.func p) + 2) absCf Cf h1 _),
exact le_abs_self Cf,
end,
apply lt_of_lt_of_le (haux1 p) haux1'_aux,
end,
have haux2' : ∀ (p : ℤ), abs (g.func p * f.func p - p * g.func (f.func p)) < (abs p + abs (f.func p) + 2) * absCg :=
begin
intro p,
have haux2'_aux : (abs p + abs (f.func p) + 2) * Cg ≤ (abs p + abs (f.func p) + 2) * absCg :=
begin
have h1 : (abs p + abs (f.func p) + 2) ≥ 0 :=
begin
have h1_1 : abs p ≥ 0 := abs_nonneg p,
have h1_2 : abs (f.func p) ≥ 0 := abs_nonneg (f.func p),
linarith,
end,
apply (mul_monotone (abs p + abs (f.func p) + 2) absCg Cg h1 _),
exact le_abs_self Cg,
end,
apply lt_of_lt_of_le (haux2 p) haux2'_aux,
end,
have haux4 : ∀ p,
(abs p + abs (g.func p) + 2) * absCf
≤ (abs p + (Ag * abs p + Bg) + 2) * absCf :=
begin
intro p,
have h1 : (abs p + abs(g.func p) + 2) < (abs p + (Ag * abs p + Bg) + 2) :=
begin
have h1_1 : abs p + abs (g.func p) < abs p + (Ag * abs p + Bg) :=
by exact add_lt_add_left (hABg p) (abs p),
exact add_lt_add_right h1_1 2,
end,
have h : absCf * (abs p + (Ag * abs p + Bg) + 2) ≥ absCf * (abs p + abs (g.func p) + 2) :=
begin
apply mul_monotone absCf (abs p + (Ag * abs p + Bg) + 2) (abs p + abs(g.func p) + 2),
exact abs_nonneg Cf,
exact le_of_lt h1,
end,
linarith,
end,
have haux5 : ∀ p,
(abs p + abs (f.func p) + 2) * absCg
≤ (abs p + (Af * abs p + Bf) + 2) * absCg :=
begin
intro p,
have h1 : (abs p + abs(f.func p) + 2) < (abs p + (Af * abs p + Bf) + 2) :=
begin
have h1_1 : abs p + abs (f.func p) < abs p + (Af * abs p + Bf) :=
by exact add_lt_add_left (hABf p) (abs p),
exact add_lt_add_right h1_1 2,
end,
have h : absCg * (abs p + (Af * abs p + Bf) + 2) ≥ absCg * (abs p + abs (f.func p) + 2) :=
begin
apply mul_monotone absCg (abs p + (Af * abs p + Bf) + 2) (abs p + abs(f.func p) + 2),
exact abs_nonneg Cg,
exact le_of_lt h1,
end,
linarith,
end,
have haux6 : ∀ (p : ℤ),
(abs p + abs (g.func p) + 2) * absCf + (abs p + abs (f.func p) + 2) * absCg
≤ (abs p + (Ag * abs p + Bg) + 2) * absCf + (abs p + (Af * abs p + Bf) + 2) * absCg :=
begin
intro p,
apply add_le_add (haux4 p) (haux5 p),
end,
have haux3' : ∀ (p : ℤ), abs (p * f.func (g.func p) - p * g.func (f.func p))
< (abs p + abs (g.func p) + 2) * absCf + (abs p + abs (f.func p) + 2) * absCg :=
begin
intro p,
calc abs (p * (f.func (g.func p)) - p * (g.func (f.func p)))
= abs ((p * f.func (g.func p) - g.func p * f.func p)
+ (g.func p * f.func p - p * g.func (f.func p))) : _
... ≤ abs (p * f.func (g.func p) - g.func p * f.func p)
+ abs (g.func p * f.func p - p * g.func (f.func p)) : _
... < (abs p + abs (g.func p ) + 2) * absCf + (abs p + abs (f.func p) + 2) * absCg : _,
{
have hlinarith : p * (f.func (g.func p)) - p * (g.func (f.func p))
= p * (f.func (g.func p)) - g.func p * (f.func p) + (g.func p * (f.func p) - p * (g.func (f.func p)))
:= by linarith,
rw hlinarith,
},
{exact abs_add (p * f.func (g.func p) - g.func p * f.func p) (g.func p * f.func p - p * g.func (f.func p)),},
{exact add_lt_add (lt_of_lt_of_le (hCf p (g.func p)) (haux1'_aux p)) (haux2' p),},
end,
have haux4' : ∀ (p : ℤ),
abs (p * f.func (g.func p) - p * g.func (f.func p))
< (abs p + (Ag * abs p + Bg) + 2) * absCf + (abs p + (Af * abs p + Bf) + 2) * absCg :=
begin
intro p,
apply lt_of_lt_of_le (haux3' p) (haux6 p),
end,
have haux5' : ∀ p,
abs (p * f.func (g.func p) - p * g.func (f.func p)) =
abs p * abs (f.func (g.func p) - g.func (f.func p)) :=
begin
intro p,
have h : (p * f.func (g.func p) - p * g.func (f.func p)) =
p * (f.func (g.func p) - g.func (f.func p)) := by linarith,
rw h,
exact abs_mul p (f.func (g.func p) - g.func (f.func p)),
end,
set A := max Af Ag with Adef,
set B := max Bf Bg with Bdef,
have hsimp1 : ∀ p,
Af * abs p + Bf ≤ A * abs p + B :=
begin
intro p,
have h1 : abs p * A ≥ abs p * Af :=
begin
apply mul_monotone (abs p) A Af,
exact abs_nonneg p,
exact le_max_left Af Ag,
end,
have h1' : abs p * Af ≤ abs p * A :=
by apply ge.le h1,
have h2 : Bf ≤ B := by exact le_max_left Bf Bg,
have h3 : abs p * Af + Bf ≤ abs p * A + B :=
by apply add_le_add h1 h2,
have hsimp1 : abs p * Af = Af * abs p := by linarith,
have hsimp2 : abs p * A = A * abs p := by linarith,
rw hsimp1 at h3,
rw hsimp2 at h3,
exact h3,
end,
have hsimp2 : ∀ p,
Ag * abs p + Bg ≤ A * abs p + B :=
begin
intro p,
have h1 : abs p * A ≥ abs p * Ag :=
begin
apply mul_monotone (abs p) A Ag,
exact abs_nonneg p,
exact le_max_right Af Ag,
end,
have h1' : abs p * Ag ≤ abs p * A :=
by apply ge.le h1,
have h2 : Bg ≤ B := by exact le_max_right Bf Bg,
have h3 : abs p * Ag + Bg ≤ abs p * A + B :=
by apply add_le_add h1 h2,
have hsimp1 : abs p * Ag = Ag * abs p := by linarith,
have hsimp2 : abs p * A = A * abs p := by linarith,
rw hsimp1 at h3,
rw hsimp2 at h3,
exact h3,
end,
set C := max absCf absCg with Cdef,
have hCpos : C ≥ 0 :=
begin
have haux : C ≥ absCf := by apply le_max_left absCf absCg,
have habsCfpos : absCf ≥ 0 := abs_nonneg Cf,
exact le_trans habsCfpos haux,
end,
set absA := abs A with absAdef,
set absB := abs B with absBdef,
have haux6': ∀ (p : ℤ), abs (p * f.func (g.func p) - p * g.func (f.func p))
< 2 * (abs p + (absA * abs p + absB) + 2) * C :=
begin
intro p,
calc abs (p * f.func (g.func p) - p * g.func (f.func p))
< (abs p + (Ag * abs p + Bg) + 2) * absCf + (abs p + (Af * abs p + Bf) + 2) * absCg : by exact (haux4' p)
... ≤ (abs p + (A * abs p + B) + 2) * absCf + (abs p + (A * abs p + B) + 2) * absCg : _
... ≤ (abs p + (absA * abs p + absB) + 2) * absCf + (abs p + (absA * abs p + absB) + 2) * absCg : _
... ≤ (abs p + (absA * abs p + absB) + 2) * C + (abs p + (absA * abs p + absB) + 2) * C : _
... = 2 * (abs p + (absA * abs p + absB) + 2) * C : by linarith,
{
have h1 : absCf * (abs p + (A * abs p + B) + 2) ≥ absCf * (abs p + (Ag * abs p + Bg) + 2) :=
begin
apply mul_monotone absCf (abs p + (A * abs p + B) + 2) (abs p + (Ag * abs p + Bg) + 2),
exact abs_nonneg Cf,
simp,
exact hsimp2 p,
end,
have h2 : absCg * (abs p + (A * abs p + B) + 2) ≥ absCg * (abs p + (Af * abs p + Bf) + 2) :=
begin
apply mul_monotone absCg (abs p + (A * abs p + B) + 2) (abs p + (Af * abs p + Bf) + 2),
exact abs_nonneg Cg,
simp,
exact hsimp1 p,
end,
rw ge_iff_le at h1,
rw ge_iff_le at h2,
have h3 : absCf * (abs p + (Ag * abs p + Bg) + 2) + absCg * (abs p + (Af * abs p + Bf) + 2) ≤
absCf * (abs p + (A * abs p + B) + 2) + absCg * (abs p + (A * abs p + B) + 2) :=
by apply add_le_add h1 h2,
have hs1 : absCf * (abs p + (Ag * abs p + Bg) + 2) = (abs p + (Ag * abs p + Bg) + 2) * absCf := by linarith,
have hs2 : absCg * (abs p + (Af * abs p + Bf) + 2) = (abs p + (Af * abs p + Bf) + 2) * absCg := by linarith,
have hs3 : absCf * (abs p + (A * abs p + B) + 2) = (abs p + (A * abs p + B) + 2) * absCf := by linarith,
have hs4 : absCg * (abs p + (A * abs p + B) + 2) = (abs p + (A * abs p + B) + 2) * absCg := by linarith,
rw hs1 at h3,
rw hs2 at h3,
rw hs3 at h3,
rw hs4 at h3,
exact h3,
},
{
have h1 : (abs p + (absA * abs p + absB) + 2) * absCf ≥ (abs p + (A * abs p + B) + 2) * absCf :=
begin
have h1_1 : absA * abs p ≥ A * abs p :=
by apply mul_monotone_right (abs p) (absA) A (abs_nonneg p) (le_abs_self A),
have h1_2 : absB ≥ B :=
by exact le_abs_self B,
have h1_3 : absA * abs p + absB ≥ A * abs p + B :=
by exact add_le_add h1_1 h1_2,
apply mul_monotone_right absCf (abs p + (absA * abs p + absB) + 2) (abs p + (A * abs p + B) + 2),
exact abs_nonneg Cf,
simp,
apply h1_3,
end,
have h2 : (abs p + (absA * abs p + absB) + 2) * absCg ≥ (abs p + (A * abs p + B) + 2) * absCg :=
begin
have h1_1 : absA * abs p ≥ A * abs p :=
by apply mul_monotone_right (abs p) (absA) A (abs_nonneg p) (le_abs_self A),
have h1_2 : absB ≥ B :=
by exact le_abs_self B,
have h1_3 : absA * abs p + absB ≥ A * abs p + B :=
by exact add_le_add h1_1 h1_2,
apply mul_monotone_right absCg (abs p + (absA * abs p + absB) + 2) (abs p + (A * abs p + B) + 2),
exact abs_nonneg Cg,
simp,
apply h1_3,
end,
apply add_le_add h1 h2,
},
{
have hpos : abs p + (absA * abs p + absB) + 2 ≥ 0 :=
begin
have hpos1 : absA ≥ 0 := abs_nonneg A,
have hpos2 : absB ≥ 0 := abs_nonneg B,
have hpos3 : abs p ≥ 0 := abs_nonneg p,
have hpos4 : absA * abs p ≥ 0 := mul_nonneg hpos1 hpos3,
have hpos5 : absA * abs p + absB ≥ 0 := add_nonneg hpos4 hpos2,
have hpos6 : abs p + (absA * abs p + absB) ≥ 0 := add_nonneg hpos3 hpos5,
refine add_nonneg hpos6 _,
linarith,
end,
have h1 : (abs p + (absA * abs p + absB) + 2) * C ≥ (abs p + (absA * abs p + absB) + 2) * absCf :=
begin
apply mul_monotone (abs p + (absA * abs p + absB) + 2) C absCf,
apply hpos,
apply le_max_left absCf absCg,
end,
have h2 : (abs p + (absA * abs p + absB) + 2) * C ≥ (abs p + (absA * abs p + absB) + 2) * absCg :=
begin
apply mul_monotone (abs p + (absA * abs p + absB) + 2) C absCg,
apply hpos,
apply le_max_right absCf absCg,
end,
apply add_le_add h1 h2,
},
end,
have haux7': ∀ (p : ℤ), abs (p) * abs(f.func (g.func p) - g.func (f.func p))
< 2 * (abs p + (absA * abs p + absB) + 2) * C :=
begin
intro p,
have h := (eq.symm (haux5' p)),
rw h at ⊢,
exact (haux6' p),
end,
apply exists.intro absA,
apply exists.intro absB,
apply exists.intro C,
apply and.intro,
apply and.intro,
apply abs_nonneg A,
apply and.intro,
apply abs_nonneg B,
apply hCpos,
exact haux7',
end
lemma abs_nonnul_ge_1 (x : ℤ) :
x ≠ 0 → abs x ≥ 1 :=
begin
intro hx,
have hpos : 0 < abs x :=
begin
exact abs_pos.mpr hx,
end,
exact hpos,
end
lemma mul_comm (f g : almost_homs) :
f * g ≈ g * f :=
begin
simp [almost_homomorphisms.setoid_iff],
apply bounded_intset_is_finite,
cases' mul_comm_aux f g with A hrest,
cases' hrest with B hrest,
cases' hrest with C hrest,
have hABCpos : (A ≥ 0 ∧ B ≥ 0 ∧ C ≥ 0) := by apply and.elim_left hrest,
have hApos : A ≥ 0 := and.elim_left hABCpos,
have hBpos : B ≥ 0 := and.elim_left (and.elim_right hABCpos),
have hCpos : C ≥ 0 := and.elim_right (and.elim_right hABCpos),
have hbound : ∀ (p : ℤ), abs (p) * abs(f.func (g.func p) - g.func (f.func p))
< 2 * (abs p + (A * abs p + B) + 2) * C := by apply and.elim_right hrest,
clear hrest,
have hbound_1 : ∀ (p : ℤ), p ≠ 0 → abs(f.func (g.func p) - g.func (f.func p))
< 2 * (1 + (A + B) + 2) * C :=
begin
intros p hp,
have haux1 : abs (p) * abs(f.func (g.func p) - g.func (f.func p))
< 2 * (abs p + (A * abs p + B) + 2) * C := hbound p,
have haux2 : abs p * abs(f.func (g.func p) - g.func (f.func p)) < abs p * (2 * (1 + (A + B) + 2) * C)
↔ abs(f.func (g.func p) - g.func (f.func p)) < 2 * (1 + (A + B) + 2) * C :=
begin
apply (@mul_lt_mul_left _ _ (abs(f.func (g.func p) - g.func (f.func p))) (2 * (1 + (A + B) + 2) * C) (abs p) _),
apply (iff.elim_right abs_pos),
apply hp,
end,
apply (iff.elim_left haux2),
have habsp_one : abs p ≥ 1 := by apply abs_nonnul_ge_1 p hp,
have haux4 : 2 * (abs p + (A * abs p + B) + 2) * C ≤ abs p * (2 * (1 + (A + B) + 2) * C) :=
begin
have hsimp : abs p * (2 * (1 + (A + B) + 2) * C) = 2 * (abs p * 1 + (A * abs p + abs p * B) + abs p *2) * C :=
by linarith,
rw hsimp,
have h1 := mul_monotone_right B (abs p) 1 hBpos habsp_one,
simp at h1,
have h2 := mul_monotone_right 2 (abs p) 1 zero_le_two habsp_one,
simp at h2,
have h3 : A * abs p + B ≤ A * abs p + abs p * B :=
begin
refine add_le_add _ h1,
linarith,
end,
have h4 : (A * abs p + B) + 2 ≤ (A * abs p + abs p * B) + abs p * 2 := by exact add_le_add h3 h2,
have h5 : abs p + (A * abs p + B) + 2 ≤ abs p + (A * abs p + abs p * B) + abs p * 2 := by linarith,
have h6 : 2 * (abs p + (A * abs p + B) + 2) ≤ 2 * (abs p + (A * abs p + abs p * B) + abs p * 2) := by linarith,
have h7 := mul_monotone_right C (2 * (abs p + (A * abs p + abs p * B) + abs p * 2)) (2 * (abs p + (A * abs p + B) + 2)) hCpos h6,
simp at h7,
simp,
exact h7,
end,
calc abs p * abs (f.func (g.func p) - g.func (f.func p))
< 2 * (abs p + (A * abs p + B) + 2) * C : hbound p
... ≤ abs p * (2 * (1 + (A + B) + 2) * C) : haux4,
end,
set M0 := abs (f.func (g.func 0) - g.func (f.func 0)) with M0_def,
set Mp := 2 * (1 + (A + B) + 2) * C with Mp_def,
set M := max (M0+1) Mp,
apply exists.intro M,
intros x,
simp,
intros n hx,
have cases_n : n = 0 ∨ n ≠ 0 := dec_em (n = 0),
cases cases_n,
{
simp [cases_n] at hx,
have hxM0 : abs x ≤ M0 := by simp [hx],
refine or.inl _,
calc abs x ≤ M0 : hxM0
... < M0 + 1 : lt_add_one M0,
},
{
refine or.inr _,
simp [hx],
apply (hbound_1 n cases_n),
},
end
end almost_homomorphisms
/-
# Eudoxus Reals
-/
namespace Eudoxus_Reals
def Eudoxus_Reals : Type :=
quotient almost_homomorphisms.setoid
@[instance] def has_add : has_add Eudoxus_Reals :=
{ add := quotient.lift₂ (λf g : almost_homs, ⟦f + g⟧)
begin
intros f g f' g' hf hg,
apply quotient.sound,
exact almost_homomorphisms.add_equiv_add hf hg,
end }
@[instance] def has_zero : has_zero Eudoxus_Reals :=
{ zero := ⟦0⟧ }
lemma zero_add (x : Eudoxus_Reals) : 0 + x = x :=
begin
apply quotient.induction_on x,
intro x',
apply quotient.sound,
apply almost_homomorphisms.zero_add,
end
lemma add_zero (x : Eudoxus_Reals) : x + 0 = x :=
begin
apply quotient.induction_on x,
intro x',
apply quotient.sound,
apply almost_homomorphisms.add_zero,
end
@[instance] def has_one : has_one Eudoxus_Reals :=
{ one := ⟦1⟧ }
lemma add_comm (a b : Eudoxus_Reals) :
a+b=b+a :=
begin
apply quotient.induction_on₂ a b,
intros a' b',
apply quotient.sound,
simp [almost_homomorphisms.setoid_iff],
have haux : a'.func + b'.func - (b'.func + a'.func) = 0 :=
begin
have hauxaux: a'.func + b'.func = b'.func + a'.func :=
by exact add_comm a'.func b'.func,
exact sub_eq_zero.mpr hauxaux,
end,
have haux2 : ∀ n, a'.func n + b'.func n - (b'.func n + a'.func n) = 0 :=
by exact congr_fun haux,
simp [haux2],
end
lemma add_assoc (a b c : Eudoxus_Reals) :
a + b + c = a + (b + c) :=
begin
apply quotient.induction_on₃ a b c,
intros a' b' c',
apply quotient.sound,
simp [almost_homomorphisms.setoid_iff],
have haux : ∀ n,
a'.func n + b'.func n + c'.func n - (a'.func n + (b'.func n + c'.func n)) = 0
:= by intro n; linarith,
simp [haux],
end
@[instance] def has_neg : has_neg Eudoxus_Reals :=
{ neg := quotient.lift (λf : almost_homs, ⟦- f⟧)
begin
intros f g hfg,
apply quotient.sound,
simp [almost_homomorphisms.setoid_iff] at *,
exact (almost_homomorphisms.setoid_iff g f).mp (setoid.symm hfg),
end
}
lemma add_left_neg (a : Eudoxus_Reals) :
-a + a = 0 :=
begin
apply quotient.induction_on a,
intro a',
apply quotient.sound,
simp [almost_homomorphisms.setoid_iff],
end
/- # Eudoxus Reals form an abelian group -/
@[instance] def Eudoxus_Reals.add_group :
add_comm_group Eudoxus_Reals :=
{
add := Eudoxus_Reals.has_add.add,
add_assoc := add_assoc,
zero := Eudoxus_Reals.has_zero.zero,
zero_add := zero_add,
add_zero := add_zero,
neg := Eudoxus_Reals.has_neg.neg,
add_left_neg := add_left_neg,
add_comm := add_comm,
}
@[instance] def has_mul : has_mul Eudoxus_Reals :=
{ mul := quotient.lift₂ (λf g : almost_homs, ⟦f * g⟧)
begin
intros f g f' g' hf hg,
apply quotient.sound,
exact almost_homomorphisms.mul_equiv_mul hf hg,
end }
lemma mul_assoc (a b c : Eudoxus_Reals) :
a * b * c = a * (b * c) :=
begin
apply quotient.induction_on₃ a b c,
intros a' b' c',
apply quotient.sound,
simp [almost_homomorphisms.setoid_iff],
end
lemma mul_comm (a b : Eudoxus_Reals) :
a * b = b * a :=
begin
apply quotient.induction_on₂ a b,
intros f g,
apply quotient.sound,
apply almost_homomorphisms.mul_comm f g,
end
lemma one_mul (x : Eudoxus_Reals) :
1 * x = x :=
begin
apply quotient.induction_on x,
intro x',
apply quotient.sound,
simp [almost_homomorphisms.setoid_iff],
end
lemma mul_one (x : Eudoxus_Reals) :
x * 1 = x :=
begin
apply quotient.induction_on x,
intro x',
apply quotient.sound,
simp [almost_homomorphisms.setoid_iff],
end
lemma left_distrib (a b c : Eudoxus_Reals):
a * (b + c) = a * b + a * c :=
begin
apply quotient.induction_on₃ a b c,
intros f g h,
apply quotient.sound,
simp [almost_homomorphisms.setoid_iff],
set s_hom_err := {x | ∃ m n : ℤ, x = f.func(n + m) - f.func(n) - f.func(m)} with s_hom_err_def,
set s := {x : ℤ | ∃ (n : ℤ), x = f.func (g.func n + h.func n) - (f.func (g.func n) + f.func (h.func n))} with s_def,
have hfin : set.finite s_hom_err := f.almost_hom,
have hsub : s ⊆ s_hom_err :=
begin
simp [set.subset_def],
intro n,
apply exists.intro (h.func n),
apply exists.intro (g.func n),
linarith,
end,
exact set.finite.subset hfin hsub,
end
lemma right_distrib (a b c : Eudoxus_Reals):
(a + b) * c = a * c + b * c :=
begin
apply quotient.induction_on₃ a b c,
intros f g h,
apply quotient.sound,
simp [almost_homomorphisms.setoid_iff],
end
/- # Eudoxus Reals form a ring -/
@[instance] def Eudoxus_Reals.ring:
comm_ring Eudoxus_Reals :=
{
add := Eudoxus_Reals.has_add.add,
add_assoc := add_assoc,
zero := Eudoxus_Reals.has_zero.zero,
zero_add := zero_add,
add_zero := add_zero,
neg := Eudoxus_Reals.has_neg.neg,
add_left_neg := add_left_neg,
add_comm := add_comm,
mul := Eudoxus_Reals.has_mul.mul,
mul_assoc := mul_assoc,
one := Eudoxus_Reals.has_one.one,
one_mul := one_mul,
mul_one := mul_one,
left_distrib := left_distrib,
right_distrib := right_distrib,
mul_comm := mul_comm,
}
end Eudoxus_Reals
end LoVe
|
State Before: α : Type u_5
β : Type ?u.94563
β₂ : Type ?u.94566
γ : Type ?u.94569
ι : Sort ?u.94572
ι' : Sort ?u.94575
κ : ι → Sort ?u.94580
κ' : ι' → Sort ?u.94585
inst✝ : CompleteLattice α
f✝ g s t : ι → α
a b : α
ι₁ : Sort u_1
ι₂ : Sort u_2
κ₁ : ι₁ → Sort u_3
κ₂ : ι₂ → Sort u_4
f : (i₁ : ι₁) → κ₁ i₁ → (i₂ : ι₂) → κ₂ i₂ → α
⊢ (⨆ (i₁ : ι₁) (j₁ : κ₁ i₁) (i₂ : ι₂) (j₂ : κ₂ i₂), f i₁ j₁ i₂ j₂) =
⨆ (i₂ : ι₂) (j₂ : κ₂ i₂) (i₁ : ι₁) (j₁ : κ₁ i₁), f i₁ j₁ i₂ j₂ State After: no goals Tactic: simp only [@iSup_comm _ (κ₁ _), @iSup_comm _ ι₁] |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Numbers.ClassicalReals.RealField
open import LogicalFormulae
open import Setoids.Subset
open import Setoids.Setoids
open import Setoids.Orders.Partial.Definition
open import Sets.EquivalenceRelations
open import Rings.Orders.Partial.Definition
open import Rings.Definition
open import Fields.Fields
open import Groups.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Functions.Definition
module Numbers.Intervals.Definition {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {_<_ : Rel {_} {c} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) where
record OpenInterval : Set a where
field
minBound : A
maxBound : A
isInInterval : A → OpenInterval → Set c
isInInterval a record { minBound = min ; maxBound = max } = (min < a) && (a < max)
|
lemma minus_pCons [simp]: "- pCons a p = pCons (- a) (- p)" |
import data.real.irrational
import topology.basic
import algebra.order.floor
--OUTPUT 1
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=density_of_irrational_orbit (α : ℝ) : α ∉ ℚ → ∃ S : set ℝ, (∀ x ∈ S, x ∈ Icc 0 1) ∧ (∀ x y ∈ S, x ≠ y) ∧ (∀ x y ∈ S, ∃ z ∈ S, |x - y| = z) :=
begin
-- Let $\alpha$ be an irrational number.
assume h1 : α ∉ ℚ,
-- Then for distinct $i, j \in \mathbb{Z}$, we must have $\{i \alpha\} \neq\{j \alpha\}$.
have h2 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α - ⌊(i : ℝ) * α⌋ ≠ (j : ℝ) * α - ⌊(j : ℝ) * α⌋,
from by auto [sub_floor, sub_floor],
-- If this were not true, then
-- $\alpha=\frac{\lfloor i \alpha\rfloor-\lfloor j \alpha\rfloor}{i-j} \in \mathbb{Q}$.
have h3 : ∀ i j : ℤ, i ≠ j → α ≠ ((⌊(i : ℝ) * α⌋ - ⌊(j : ℝ) * α⌋)/(i - j)),
from by auto [sub_floor, sub_floor, sub_div],
-- Hence,
-- $S:=\{\{i \alpha\} \mid i \in \mathbb{Z}\}$
let S := {(i : ℝ) * α - ⌊(i : ℝ) * α⌋ | i : ℤ},
-- is an infinite subset of $\left[0,1\right]$.
have h4 : ∀ i : ℤ, (i : ℝ) * α - ⌊(i : ℝ) * α⌋ ∈ Icc 0 1,
from by auto [sub_floor, sub_floor, sub_nonneg],
have h5 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α - ⌊(i : ℝ) * α⌋ ≠ (j : ℝ) * α - ⌊(j : ℝ) * α⌋,
from by auto [sub_floor, sub_floor],
have h6 : ∀ i : ℤ, ∃ j : ℤ, i ≠ j, from by auto [int.exists_ne],
have h7 : ∀ i : ℤ, ∃ j : ℤ, (i : ℝ) * α - ⌊(i : ℝ) * α⌋ ≠ (j : ℝ) * α - ⌊(j : ℝ) * α⌋,
from by auto [h6, h5],
have h8 : ∃ (i : ℤ), (i : ℝ) * α - ⌊(i : ℝ) * α⌋ ≠ (i : ℝ) * α - ⌊(i : ℝ) * α⌋,
from by auto [h7],
have h9 : ∃ (i : ℤ), (i : ℝ) * α - ⌊(i : ℝ) * α⌋ ∈ S,
from by auto [h8, set.mem_def],
-- By the Bolzano-Weierstrass theorem, $S$ has a limit point in $[0, 1]$.
have h10 : ∃ x : ℝ, x ∈ Icc 0 1 ∧ ∀ ε > 0, ∃ y ∈ S, y ≠ x ∧ |y - x| < ε,
from by auto [h9, set.bounded_iff, set.bounded_iff, set.compact_iff, set.compact_iff, set.compact_iff] using [compact_Icc],
-- One can thus find pairs of elements of $S$ that are arbitrarily close.
have h11 : ∀ ε > 0, ∃ x y ∈ S, x ≠ y ∧ |x - y| < ε,
from by auto [h10, set.mem_def, set.mem_def, set.mem_def],
-- Since (the absolute value of) the difference of any two elements of $S$ is also an element of $S$, it follows that $0$ is a limit point of $S$.
have h12 : ∀ x y ∈ S, ∃ z ∈ S, |x - y| = z,
from by auto [h11],
-- To show that $S$ is dense in $[0, 1]$, consider $y \in[0,1]$, and $\epsilon>0$.
have h13 : ∀ y ε > 0, ∃ x ∈ S, |y - x| < ε,
from by auto [h11],
-- Then by selecting $x \in S$ such that $\{x\}<\epsilon$ (which exists as $0$ is a limit point), and $N$ such that $N \cdot\{x\} \leq y<(N+1) \cdot\{x\}$, we get: $|y-\{N x\}|<\epsilon$.
have h14 : ∀ y ε > 0, ∃ N x ∈ S, N * x ≤ y ∧ y < (N + 1) * x ∧ |y - (N * x)| < ε,
from by auto [h13, set.mem_def, set.mem_def, set.mem_def, set.mem_def, set.mem_def, set.mem_def, set.mem_def, set.mem_def, set.mem_def],
-- QED
show ∃ (S : set ℝ), (∀ (x : ℝ), x ∈ S → x ∈ Icc 0 1) ∧ (∀ (x y : ℝ), x ∈ S → y ∈ S → x ≠ y) ∧ (∀ (x y : ℝ), x ∈ S → y ∈ S → ∃ (z : ℝ), z ∈ S ∧ |x - y| = z),
from by auto [h4, h5, h6, h7, h8, h9, h10, h11, h12, h13, h14, set.mem_def],
end
--OUTPUT 2
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=density_of_irrational_orbit (α : ℝ) (hα : ¬ is_rat α) :
∀ (ε : ℝ) (hε : ε > 0), ∃ (n : ℤ) (h1 : 0 ≤ n) (h2 : n ≤ 1/ε), ∃ (m : ℤ), (n : ℝ) ≤ m * α ∧ m * α < (n + 1) :=
begin
assume (ε : ℝ) (hε : ε > 0),
let S := {n : ℤ | 0 ≤ n ∧ n ≤ 1/ε},
have h1 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h2 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h3 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h4 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h5 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h6 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h7 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h8 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h9 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h10 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h11 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h12 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h13 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h14 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h15 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h16 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h17 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h18 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h19 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h20 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h21 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h22 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h23 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h24 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h25 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h26 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h27 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h28 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h29 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h30 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h31 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq],
have h32 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ 1 / ε, from by auto [set.mem_set_of_eq],
have h33 : ∀ (n : ℤ), n ∈ S ↔ (0 : ℝ) ≤ n ∧ n ≤ (1 : ℝ) / ε, from by auto [set.mem_set_of_eq
end --Needs more than 2000 tokens!
--OUTPUT 3
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=density_of_irrational_orbit (α : ℝ) (h1 : α ∉ ℚ) : ∀ y ∈ (Icc 0 1), ∃ x ∈ (Icc 0 1), y ≠ x ∧ |y - x| < 1 :=
begin
assume (y : ℝ) (h2 : y ∈ Icc 0 1),
let S := (set.range (λ (i : ℤ), (i : ℝ) * α)) ∩ Icc 0 1,
have h3 : S ⊆ Icc 0 1, from by auto [set.mem_inter_iff, set.mem_range, set.mem_Icc],
have h4 : ∀ i : ℤ, (i : ℝ) * α ∉ ℚ, from by auto [h1, mul_ne_zero],
have h5 : ∀ i : ℤ, (i : ℝ) * α ∉ ℚ, from by auto [h1, mul_ne_zero],
have h6 : ∀ i j : ℤ, i ≠ j → ((i : ℝ) * α) - (j : ℝ) * α ≠ 0, from by auto [h4, mul_ne_zero],
have h7 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h8 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h9 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h10 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h11 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h12 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h13 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h14 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h15 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h16 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h17 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h18 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h19 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h20 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h21 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h22 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h23 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h24 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h25 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h26 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h27 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h28 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h29 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h30 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h31 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h32 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h33 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h34 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h35 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h36 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h37 : ∀ i j : ℤ, i ≠ j → (i : ℝ) * α ≠ (j : ℝ) * α, from by auto [h5, mul_ne_zero],
have h38 : ∀ i j : ℤ, i ≠ j → (i :
end --Needs more than 2000 tokens!
--OUTPUT 4
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=density_of_irrational_orbit (α : ℝ) (hα : α ≠ 0) (hα2 : ¬ is_rat α) :
∀ y ∈ Icc 0 1, ∃ x ∈ set.range (λ n : ℤ, n • α % 1), |y - x| < 1 :=
begin
assume y h1,
have h2 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h3 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h4 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h5 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h6 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h7 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h8 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h9 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h10 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h11 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h12 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h13 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h14 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h15 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h16 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h17 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h18 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h19 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h20 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h21 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h22 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h23 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h24 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_of_mul_eq_mul_left, eq_of_mul_eq_mul_right, is_rat.def],
have h25 : ∀ i j : ℤ, i ≠ j → (i • α % 1) ≠ (j • α % 1), from by auto [hα, hα2, eq_
end --Needs more than 2000 tokens!
--OUTPUT 5
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=density_of_irrational_orbit (α : ℝ) (h1 : ¬ ∃ q : ℚ, α = q) :
∀ y : ℝ, ∃ x : ℝ, x ∈ {i * α | i : ℤ} ∧ |y - x| < 1 :=
begin
-- Let $\alpha$ be an irrational number. Then for distinct $i, j \in \mathbb{Z}$, we must have $\{i \alpha\} \neq\{j \alpha\}$. If this were not true, then
assume (y : ℝ),
have h2 : ∀ (i j : ℤ), (i ≠ j) → ((i * α) - (floor (i * α)) ≠ (j * α) - (floor (j * α))),
from by auto [h1, floor_eq_iff],
-- Hence, $S:=\{\{i \alpha\} \mid i \in \mathbb{Z}\}$ is an infinite subset of $\left[0,1\right]$.
let S : set ℝ := {i * α - floor (i * α) | i : ℤ},
have h3 : (∀ (i : ℤ), i * α - floor (i * α) ∈ S) ∧ (∀ (x : ℝ), x ∈ S → ∃ (i : ℤ), x = i * α - floor (i * α)),
from by auto,
have h4 : ∀ (x : ℝ), x ∈ S → x ∈ Icc 0 1,
from by auto [floor_nonneg, floor_le],
have h5 : ∀ (x : ℝ), x ∈ S → 0 ≤ x ∧ x < 1,
from by auto [h4],
have h6 : ∀ (x : ℝ), x ∈ S → x < 1,
from by auto [h5],
have h7 : ∀ (x : ℝ), x ∈ S → 0 ≤ x,
from by auto [h5],
have h8 : ∀ (x : ℝ), x ∈ S → x ≠ 0,
from by auto [h7],
have h9 : ∀ (x : ℝ), x ∈ S → x ≠ 1,
from by auto [h6],
have h10 : ∀ (x : ℝ), x ∈ S → x ∈ Ico 0 1,
from by auto [h5, h8, h9],
have h11 : S ⊆ Ico 0 1,
from by auto [h10],
have h12 : ∀ (x : ℝ), x ∈ S → x ∈ Icc 0 1,
from by auto [h4],
have h13 : S ⊆ Icc 0 1,
from by auto [h12],
have h14 : ∀ (x : ℝ), x ∈ S → x ∈ Ici 0 1,
from by auto [h7, h6],
have h15 : S ⊆ Ici 0 1,
from by auto [h14],
have h16 : S ⊆ {x : ℝ | 0 ≤ x ∧ x ≤ 1},
from by auto [h15],
have h17 : S ⊆ {x : ℝ | 0 < x ∧ x < 1},
from by auto [h11],
have h18 : S ⊆ {x : ℝ | 0 ≤ x ∧ x < 1},
from by auto [h16],
have h19 : S ⊆ {x : ℝ | 0 < x ∧ x ≤ 1},
from by auto [h16],
have h20 : S ⊆ {x : ℝ | 0 < x ∧ x < 1} ∪ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1},
from by auto [h17, h18, h19],
have h21 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1},
from by auto [h20, h8, h9],
have h22 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 < x ∧ x < 1},
from by auto [h20],
have h23 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 ≤ x ∧ x < 1},
from by auto [h18, h21],
have h24 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 < x ∧ x ≤ 1},
from by auto [h19, h21],
have h25 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 ≤ x ∧ x ≤ 1},
from by auto [h16, h21],
have h26 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 < x ∧ x < 1} ∪ {x : ℝ | 0 ≤ x ∧ x < 1},
from by auto [h23, h22],
have h27 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 < x ∧ x < 1} ∪ {x : ℝ | 0 < x ∧ x ≤ 1},
from by auto [h24, h22],
have h28 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 < x ∧ x < 1} ∪ {x : ℝ | 0 ≤ x ∧ x ≤ 1},
from by auto [h25, h22],
have h29 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 < x ∧ x < 1} ∪ {x : ℝ | 0 ≤ x ∧ x < 1} ∪ {x : ℝ | 0 < x ∧ x ≤ 1},
from by auto [h26, h27, h28],
have h30 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 < x ∧ x < 1} ∪ {x : ℝ | 0 ≤ x ∧ x < 1} ∪ {x : ℝ | 0 < x ∧ x ≤ 1} ∪ {x : ℝ | 0 ≤ x ∧ x ≤ 1},
from by auto [h29, h28],
have h31 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 < x ∧ x < 1} ∪ {x : ℝ | 0 ≤ x ∧ x < 1} ∪ {x : ℝ | 0 < x ∧ x ≤ 1} ∪ {x : ℝ | 0 ≤ x ∧ x ≤ 1} ∪ {x : ℝ | 0 < x ∧ x < 1},
from by auto [h29, h30],
have h32 : S ⊆ {x : ℝ | x = 0} ∪ {x : ℝ | x = 1} ∪ {x : ℝ | 0 < x ∧ x < 1} ∪ {x : ℝ | 0 ≤ x ∧ x < 1} ∪ {x : ℝ | 0 < x ∧ x ≤ 1} ∪ {x :
end --Needs more than 2000 tokens!
--OUTPUT 6
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=irrational_orbit_dense (α : ℝ) (hα : ¬ is_rat α) : ∃ (S : set ℝ), ∀ (x : ℝ), x ∈ S → x ∈ Icc 0 1 ∧ ∀ (y : ℝ), y ∈ Icc 0 1 → ∃ (z : ℝ), z ∈ S ∧ abs (z - y) < abs (x - y) :=
begin
--Let $\alpha$ be an irrational number. Then for distinct $i, j \in \mathbb{Z}$, we must have $\{i \alpha\} \neq\{j \alpha\}$. If this were not true, then
have h1 : ∀ (i j : ℤ), i ≠ j → (int.fract (i * α)) ≠ (int.fract (j * α)),
from by auto [int.fract_mul, int.fract_eq_iff, hα, int.fract_eq_iff],
--Hence, $S:=\{\{i \alpha\} \mid i \in \mathbb{Z}\}$ is an infinite subset of $\left[0,1\right]$.
have h2 : ∀ (i : ℤ), (int.fract (i * α)) ∈ Icc 0 1, from by auto [int.fract_nonneg, int.fract_lt_one],
have h3 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)), from by auto [int.fract_mul],
have h4 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h5 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h6 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h7 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h8 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h9 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h10 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h11 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h12 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h13 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h14 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h15 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h16 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h17 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h18 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h19 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h20 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h21 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h22 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h23 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h24 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h25 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h26 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h27 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.fract (i * α)) ∩ Icc 0 1, from by auto [h2, h3],
have h28 : ∀ (i : ℤ), (int.fract (i * α)) ∈ set.range (λ (i : ℤ), int.
end --Needs more than 2000 tokens!
/- FEW SHOT PROMPTS TO CODEX(START)
/--`theorem`
Power Set is Closed under Intersection
Let $S$ be a set.
Let $\powerset S$ be the power set of $S$.
Then:
:$\forall A, B \in \powerset S: A \cap B \in \powerset S$
`proof`
Let $A, B \in \powerset S$.
Then by the definition of power set, $A \subseteq S$ and $B \subseteq S$.
From Intersection is Subset we have that $A \cap B \subseteq A$.
It follows from Subset Relation is Transitive that $A \cap B \subseteq S$.
Thus $A \cap B \in \powerset S$ and closure is proved.
{{qed}}
-/
theorem power_set_intersection_closed {α : Type*} (S : set α) : ∀ A B ∈ 𝒫 S, (A ∩ B) ∈ 𝒫 S :=
begin
-- $A$ and $B$ are sets. $A$ and $B$ belong to power set of $S$
assume (A : set α) (hA : A ∈ 𝒫 S) (B : set α) (hB : B ∈ 𝒫 S),
-- Then $A ⊆ S$ and $B ⊆ S$, by power set definition
have h1 : (A ⊆ S) ∧ (B ⊆ S), from by auto [set.subset_of_mem_powerset, set.subset_of_mem_powerset],
-- Then $(A ∩ B) ⊆ A$, by intersection of set is a subset
have h2 : (A ∩ B) ⊆ A, from by auto [set.inter_subset_left],
-- Then $(A ∩ B) ⊆ S$, by subset relation is transitive
have h3 : (A ∩ B) ⊆ S, from by auto [set.subset.trans],
-- Hence $(A ∩ B) ∈ 𝒫 S$, by power set definition
show (A ∩ B) ∈ 𝒫 S, from by auto [set.mem_powerset],
end
/--`theorem`
Square of Sum
:$\forall x, y \in \R: \paren {x + y}^2 = x^2 + 2 x y + y^2$
`proof`
Follows from the distribution of multiplication over addition:
{{begin-eqn}}
{{eqn | l = \left({x + y}\right)^2
| r = \left({x + y}\right) \cdot \left({x + y}\right)
}}
{{eqn | r = x \cdot \left({x + y}\right) + y \cdot \left({x + y}\right)
| c = Real Multiplication Distributes over Addition
}}
{{eqn | r = x \cdot x + x \cdot y + y \cdot x + y \cdot y
| c = Real Multiplication Distributes over Addition
}}
{{eqn | r = x^2 + 2xy + y^2
| c =
}}
{{end-eqn}}
{{qed}}
-/
theorem square_of_sum (x y : ℝ) : (x + y)^2 = (x^2 + 2*x*y + y^2) :=
begin
-- expand the power
calc (x + y)^2 = (x+y)*(x+y) : by auto [sq]
-- distributive property of multiplication over addition gives:
... = x*(x+y) + y*(x+y) : by auto [add_mul]
-- applying the above property further gives:
... = x*x + x*y + y*x + y*y : by auto [mul_comm, add_mul] using [ring]
-- rearranging the terms using commutativity and adding gives:
... = x^2 + 2*x*y + y^2 : by auto [sq, mul_comm] using [ring]
end
/--`theorem`
Identity of Group is Unique
Let $\struct {G, \circ}$ be a group. Then there is a unique identity element $e \in G$.
`proof`
From Group has Latin Square Property, there exists a unique $x \in G$ such that:
:$a x = b$
and there exists a unique $y \in G$ such that:
:$y a = b$
Setting $b = a$, this becomes:
There exists a unique $x \in G$ such that:
:$a x = a$
and there exists a unique $y \in G$ such that:
:$y a = a$
These $x$ and $y$ are both $e$, by definition of identity element.
{{qed}}
-/
theorem group_identity_unique {G : Type*} [group G] : ∃! e : G, ∀ a : G, e * a = a ∧ a * e = a :=
begin
-- Group has Latin Square Property
have h1 : ∀ a b : G, ∃! x : G, a * x = b, from by auto using [use (a⁻¹ * b)],
have h2 : ∀ a b : G, ∃! y : G, y * a = b, from by auto using [use b * a⁻¹],
-- Setting $b = a$, this becomes:
have h3 : ∀ a : G, ∃! x : G, a * x = a, from by auto [h1],
have h4 : ∀ a : G, ∃! y : G, y * a = a, from by auto [h2],
-- These $x$ and $y$ are both $(1 : G)$, by definition of identity element
have h5 : ∀ a : G, classical.some (h3 a).exists = (1 : G), from by auto [exists_unique.unique, h3, classical.some_spec, exists_unique.exists, mul_one],
have h6 : ∀ a : G, classical.some (h4 a).exists = (1 : G), from by auto [exists_unique.unique, h4, classical.some_spec, exists_unique.exists, one_mul],
show ∃! e : G, ∀ a : G, e * a = a ∧ a * e = a, from by auto [h3, h4, exists_unique.unique, classical.some_spec, exists_unique.exists] using [use (1 : G)],
end
/--`theorem`
Squeeze Theorem for Real Numbers
Let $\sequence {x_n}$, $\sequence {y_n}$ and $\sequence {z_n}$ be sequences in $\R$.
Let $\sequence {y_n}$ and $\sequence {z_n}$ both be convergent to the following limit:
:$\ds \lim_{n \mathop \to \infty} y_n = l, \lim_{n \mathop \to \infty} z_n = l$
Suppose that:
:$\forall n \in \N: y_n \le x_n \le z_n$
Then:
:$x_n \to l$ as $n \to \infty$
that is:
:$\ds \lim_{n \mathop \to \infty} x_n = l$
`proof`
From Negative of Absolute Value:
:$\size {x - l} < \epsilon \iff l - \epsilon < x < l + \epsilon$
Let $\epsilon > 0$.
We need to prove that:
:$\exists N: \forall n > N: \size {x_n - l} < \epsilon$
As $\ds \lim_{n \mathop \to \infty} y_n = l$ we know that:
:$\exists N_1: \forall n > N_1: \size {y_n - l} < \epsilon$
As $\ds \lim_{n \mathop \to \infty} z_n = l$ we know that:
:$\exists N_2: \forall n > N_2: \size {z_n - l} < \epsilon$
Let $N = \max \set {N_1, N_2}$.
Then if $n > N$, it follows that $n > N_1$ and $n > N_2$.
So:
:$\forall n > N: l - \epsilon < y_n < l + \epsilon$
:$\forall n > N: l - \epsilon < z_n < l + \epsilon$
But:
:$\forall n \in \N: y_n \le x_n \le z_n$
So:
:$\forall n > N: l - \epsilon < y_n \le x_n \le z_n < l + \epsilon$
and so:
:$\forall n > N: l - \epsilon < x_n < l + \epsilon$
So:
:$\forall n > N: \size {x_n - l} < \epsilon$
Hence the result.
{{qed}}
-/
theorem squeeze_theorem_real_numbers (x y z : ℕ → ℝ) (l : ℝ) :
let seq_limit : (ℕ → ℝ) → ℝ → Prop := λ (u : ℕ → ℝ) (l : ℝ), ∀ ε > 0, ∃ N, ∀ n > N, |u n - l| < ε in
seq_limit y l → seq_limit z l → (∀ n : ℕ, (y n) ≤ (x n) ∧ (x n) ≤ (z n)) → seq_limit x l :=
begin
assume seq_limit (h2 : seq_limit y l) (h3 : seq_limit z l) (h4 : ∀ (n : ℕ), y n ≤ x n ∧ x n ≤ z n) (ε),
--From Negative of Absolute Value: $\size {x - l} < \epsilon \iff l - \epsilon < x < l + \epsilon$
have h5 : ∀ x, |x - l| < ε ↔ (((l - ε) < x) ∧ (x < (l + ε))),
from by auto [abs_sub_lt_iff] using [linarith],
--Let $\epsilon > 0$.
assume (h7 : ε > 0),
--As $\ds \lim_{n \mathop \to \infty} y_n = l$ we know that $\exists N_1: \forall n > N_1: \size {y_n - l} < \epsilon$
cases h2 ε h7 with N1 h8,
--As $\ds \lim_{n \mathop \to \infty} z_n = l$ we know that $\exists N_2: \forall n > N_2: \size {z_n - l} < \epsilon$
cases h3 ε h7 with N2 h9,
--Let $N = \max \set {N_1, N_2}$.
let N := max N1 N2,
use N,
--Then if $n > N$, it follows that $n > N_1$ and $n > N_2$.
have h10 : ∀ n > N, n > N1 ∧ n > N2 := by auto [lt_of_le_of_lt, le_max_left, le_max_right],
--$\forall n > N: l - \epsilon < y_n < l + \epsilon$
--$\forall n > N: l - \epsilon < z_n < l + \epsilon$
--$\forall n \in \N: y_n \le x_n \le z_n$
--So $\forall n > N: l - \epsilon < y_n \le x_n \le z_n < l + \epsilon$
have h11 : ∀ n > N, (((l - ε) < (y n)) ∧ ((y n) ≤ (x n))) ∧ (((x n) ≤ (z n)) ∧ ((z n) < l+ε)),
from by auto [h8, h10, h5, h9],
--$\forall n > N: l - \epsilon < x_n < l + \epsilon$
have h15 : ∀ n > N, ((l - ε) < (x n)) ∧ ((x n) < (l+ε)),
from by auto [h11] using [linarith],
--So $\forall n > N: \size {x_n - l} < \epsilon$
--Hence the result
show ∀ (n : ℕ), n > N → |x n - l| < ε,
from by auto [h5, h15],
end
/--`theorem`
Density of irrational orbit
The fractional parts of the integer multiples of an irrational number form a dense subset of the unit interval
`proof`
Let $\alpha$ be an irrational number. Then for distinct $i, j \in \mathbb{Z}$, we must have $\{i \alpha\} \neq\{j \alpha\}$. If this were not true, then
$$
i \alpha-\lfloor i \alpha\rfloor=\{i \alpha\}=\{j \alpha\}=j \alpha-\lfloor j \alpha\rfloor,
$$
which yields the false statement $\alpha=\frac{\lfloor i \alpha\rfloor-\lfloor j \alpha\rfloor}{i-j} \in \mathbb{Q}$. Hence,
$$
S:=\{\{i \alpha\} \mid i \in \mathbb{Z}\}
$$
is an infinite subset of $\left[0,1\right]$.
By the Bolzano-Weierstrass theorem, $S$ has a limit point in $[0, 1]$. One can thus find pairs of elements of $S$ that are arbitrarily close. Since (the absolute value of) the difference of any two elements of $S$ is also an element of $S$, it follows that $0$ is a limit point of $S$.
To show that $S$ is dense in $[0, 1]$, consider $y \in[0,1]$, and $\epsilon>0$. Then by selecting $x \in S$ such that $\{x\}<\epsilon$ (which exists as $0$ is a limit point), and $N$ such that $N \cdot\{x\} \leq y<(N+1) \cdot\{x\}$, we get: $|y-\{N x\}|<\epsilon$.
QED
-/
theorem
FEW SHOT PROMPTS TO CODEX(END)-/
|
text_raw \<open>\subsection[Identifiability, Isomorphical Uniqueness and Permutability]{Identifiability, Isomorphical Uniqueness and Permutability\isalabel{identifiability-iso-uniqueness}}\<close>
theory IdentifiabilityAndIsomorphicalUniqueness
imports Identifiability
"../ParticularStructures/StructuralPropertiesTheorems"
begin
text \<^marker>\<open>tag bodyonly\<close> \<open>
While we introduced, in the previous section, a definition for
what consists the ``identity'' of a particular in terms of the
existence of a suitable \emph{identifying predicate}, in this
section we show that it is not necessary to refer to the existence
of an
element that is ontologically extraneous to the UFO particular
structure (the identifying predicate), to characterize the concept
of the ``identity'' of a particular.
We achive this by proving the logical equivalence between the
notion of identifiability, as described in the previous section,
and the notions of isomorphical uniqueness and non-permutability,
that were introduced in \autoref{subsec:isomorphical-uniqueness}
and \autoref{subsec:permutability}.
\<close>
context ufo_particular_theory
begin
lemma \<^marker>\<open>tag (proof) aponly\<close> ex1_intro_1:
fixes A and P
assumes \<open>f \<in> A\<close> \<open>\<And>g. g \<in> A \<Longrightarrow> g a = f a\<close>
shows \<open>\<exists>!z. \<forall>g \<in> A. g a = z\<close>
apply (intro ex1I[of _ \<open>f a\<close>] ballI)
subgoal using assms by blast
subgoal premises P for z
using P[rule_format,OF assms(1)]
by simp
done
text \<^marker>\<open>tag bodyonly\<close> \<open>
The equivalence of the set of isomorphically-unique particulars
and the set of identifiable particulars is shown by the following
lemmas and theorem:
\<close>
lemma im_uniques_are_identifiables: \<open>\<P>\<^sub>\<simeq>\<^sub>! \<subseteq> \<P>\<^sub>=\<close>
proof (intro subsetI)
fix x
assume as: \<open>x \<in> \<P>\<^sub>\<simeq>\<^sub>!\<close>
obtain \<open>x \<in> \<E>\<close> using as by blast
have A: \<open>\<sigma> x = \<phi> x\<close>
if \<open>inj_on \<phi> \<E>\<close>
\<open>particular_struct_morphism \<Gamma> (MorphImg \<phi> \<Gamma>) \<sigma>\<close>
for \<phi> \<sigma> :: \<open>'p \<Rightarrow> ZF\<close>
apply (rule as[THEN isomorphically_unique_particulars_E])
subgoal premises P
apply (rule P(2)[simplified,OF conjI
,OF that(1)[simplified] _ that(2) \<open>x \<in> \<E>\<close>,
THEN iffD2])
using inj_on_id by blast+
done
have pick_ex: \<open>\<exists>!y. \<forall>\<phi>' \<in> Morphs\<^bsub>\<Gamma>,\<Gamma>'\<^esub>. \<phi>' x = y\<close>
if as1: \<open>\<Gamma>' \<in> IsoModels\<^bsub>\<Gamma>,TYPE(ZF)\<^esub>\<close> for \<Gamma>'
proof -
obtain \<phi>\<^sub>1 where phi1:
\<open>\<phi>\<^sub>1 \<in> BijMorphs1\<^bsub>\<Gamma>,TYPE(ZF)\<^esub>\<close>
\<open>\<Gamma>' = MorphImg \<phi>\<^sub>1 \<Gamma>\<close>
using as1 by blast
interpret phi1: particular_struct_bijection_1 \<open>\<Gamma>\<close> \<open>\<phi>\<^sub>1\<close> using phi1 by simp
interpret phi1_inv: particular_struct_bijection_1 \<open>MorphImg \<phi>\<^sub>1 \<Gamma>\<close> \<open>phi1.inv_morph\<close>
using particular_struct_bijection_iff_particular_struct_bijection_1 by blast
have AA: \<open>\<phi>\<^sub>1 \<in> Morphs\<^bsub>\<Gamma>,\<Gamma>'\<^esub>\<close>
apply (auto)
using phi1(2) phi1.particular_struct_morphism_axioms
by blast
have BB: \<open>\<phi>' x = \<phi>\<^sub>1 x\<close> if as2: \<open>\<phi>' \<in> Morphs\<^bsub>\<Gamma>,\<Gamma>'\<^esub>\<close> for \<phi>'
apply (rule A)
subgoal using phi1.morph_is_injective[simplified] .
using phi1(2) as2 morphs_D by metis
show \<open>?thesis\<close>
apply (rule ex1_intro_1[of \<open>\<phi>\<^sub>1\<close>])
subgoal using AA .
subgoal premises P for \<phi>'
using BB[OF P] .
done
qed
show \<open>x \<in> \<P>\<^sub>=\<close>
proof (clarsimp simp: identifiables_def \<open>x \<in> \<E>\<close>)
define P where \<open>P \<Gamma>' z \<longleftrightarrow> z = (THE y. \<forall>\<phi>' \<in> Morphs\<^bsub>\<Gamma>,\<Gamma>'\<^esub>. \<phi>' x = y)\<close> for \<Gamma>' and z :: \<open>ZF\<close>
have P1: \<open>P \<Gamma>' (\<phi>' x)\<close>
if \<open>\<exists>\<phi>\<in>BijMorphs1\<^bsub>\<Gamma>,TYPE(ZF)\<^esub>. \<Gamma>' = MorphImg \<phi> \<Gamma>\<close> \<open>\<phi>' \<in> Morphs\<^bsub>\<Gamma>,\<Gamma>'\<^esub>\<close> for \<Gamma>' \<phi>'
using pick_ex[THEN the1I2,of \<open>\<Gamma>'\<close> \<open>\<lambda>y. \<forall>\<phi>' \<in> Morphs\<^bsub>\<Gamma>,\<Gamma>'\<^esub>. \<phi>' x = y\<close>,
simplified P_def[symmetric],simplified] that by metis
have P2: \<open>P (MorphImg \<phi> \<Gamma>) (\<phi>' x)\<close>
if \<open>\<phi> \<in> BijMorphs1\<^bsub>\<Gamma>,TYPE(ZF)\<^esub>\<close> \<open>\<phi>' \<in> Morphs\<^bsub>\<Gamma>, MorphImg \<phi> \<Gamma>\<^esub>\<close> for \<phi> \<phi>'
using P1 that by metis
have P3: \<open>y = \<phi> x\<close>
if as3: \<open>\<sigma> \<in> BijMorphs1\<^bsub>\<Gamma>,TYPE(ZF)\<^esub>\<close> \<open>\<phi> \<in> Morphs\<^bsub>\<Gamma>,MorphImg \<sigma> \<Gamma>\<^esub>\<close>
\<open>P (MorphImg \<sigma> \<Gamma>) y\<close> for \<sigma> \<phi> y
apply (rule the1_equality[of \<open>\<lambda>y. \<forall>\<phi>' \<in> Morphs\<^bsub>\<Gamma>,MorphImg \<sigma> \<Gamma>\<^esub>. \<phi>' x = y\<close>,of \<open>\<phi> x\<close>,
simplified as3(3)[simplified P_def,symmetric],OF pick_ex]
; (intro ballI)?)
subgoal G1 using that(1) by blast
subgoal for \<phi>\<^sub>3
apply auto
by (metis G1 morphs_iff pick_ex that(2))
done
show \<open>\<exists>P. identity_pred \<Gamma> P x\<close>
apply (intro exI[of _ \<open>P\<close>] identity_pred_I1 iffI )
subgoal by (simp add: \<open>x \<in> \<E>\<close>)
subgoal by (metis (full_types) P3 as isomorphic_models_E ufo_particular_theory_sig.isomorphically_unique_particulars_E)
using P2 \<open>x \<in> \<E>\<close> by auto
qed
qed
lemma identifiables_are_im_uniques: \<open>\<P>\<^sub>= \<subseteq> \<P>\<^sub>\<simeq>\<^sub>!\<close>
proof (intro subsetI)
fix x
assume \<open>x \<in> \<P>\<^sub>=\<close>
then obtain P where P: \<open>x \<in> \<E>\<close> \<open>identity_pred \<Gamma> P x\<close> by blast
show \<open>x \<in> \<P>\<^sub>\<simeq>\<^sub>!\<close>
proof (rule)
show \<open>x \<in> \<E>\<close> using P(1) .
fix \<phi> \<sigma> y
assume as: \<open>\<phi> \<in> BijMorphs1\<^bsub>\<Gamma>,TYPE(ZF)\<^esub>\<close> \<open>\<sigma> \<in> Morphs\<^bsub>\<Gamma>,MorphImg \<phi> \<Gamma>\<^esub>\<close> \<open>y \<in> \<E>\<close>
have P1: \<open>identity_pred (MorphImg \<phi> \<Gamma>) P (\<phi> x)\<close>
using identity_respects_isomorphisms[OF P(2) as(1)] .
interpret phi: particular_struct_bijection_1 \<open>\<Gamma>\<close> \<open>\<phi>\<close>
using as(1) by blast
have A: \<open>phi.tgt.\<Gamma> = MorphImg \<phi> \<Gamma>\<close>
using phi.tgt_Gamma_eq_Morph_img by auto
have B: \<open>\<phi> \<in> Morphs\<^bsub>\<Gamma>,MorphImg \<phi> \<Gamma>\<^esub>\<close>
using as(1) by (meson bijections1_are_morphisms)
note C = identity_pred_eqI[
where \<phi> = \<open>\<phi>\<close> and x = \<open>x\<close> and P = \<open>P\<close> and \<sigma> = \<open>\<phi>\<close>,
OF P(2) as(1) B]
identity_pred_eqI[
where \<phi> = \<open>\<sigma>\<close> and x = \<open>x\<close> and P = \<open>P\<close> and \<sigma> = \<open>\<phi>\<close>,
OF P(2) as(1,2)]
have D: \<open>P (MorphImg \<phi> \<Gamma>) (\<sigma> x) \<longleftrightarrow> P (MorphImg \<phi> \<Gamma>) (\<phi> x)\<close>
by (metis C(1) C(2) P(1))
have E: \<open>\<phi> x = \<sigma> x \<longleftrightarrow> P (MorphImg \<phi> \<Gamma>) (\<phi> x)\<close>
using C(2)[of \<open>\<phi> x\<close>]
using P(1) P(2) identity_pred phi.morph_is_injective by auto
have E1: \<open>MorphImg \<phi> \<Gamma> \<in> IsoModels\<^bsub>\<Gamma>,TYPE(ZF)\<^esub>\<close>
using as(1) by blast
obtain F: \<open>\<And>\<Gamma>' \<phi> y. \<Gamma>' \<in> IsoModels\<^bsub>\<Gamma>,TYPE(ZF)\<^esub> \<Longrightarrow> \<phi> \<in> Morphs\<^bsub>\<Gamma>,\<Gamma>'\<^esub> \<Longrightarrow> P \<Gamma>' y = (\<forall>z\<in>phi.src.endurants. (y = \<phi> z) = (z = x))\<close>
using P(2)[THEN identity_pred_E] by metis
note G = F[OF E1 as(2)]
note H = C(1)[simplified C(2)]
note J = H[THEN iffD1,simplified Ball_def,simplified,rule_format]
H[THEN iffD2,simplified Ball_def,simplified,rule_format]
show \<open>\<sigma> y = \<phi> x \<longleftrightarrow> y = x\<close>
apply (intro iffI)
subgoal using G P(2) as(3) identity_pred phi.particular_struct_bijection_1_axioms by auto
subgoal using J by (metis E P(2) identity_pred phi.morph_is_injective ufo_particular_theory_sig.\<Gamma>_simps(2))
done
qed
qed
theorem identifiables_are_the_im_uniques: \<open>\<P>\<^sub>= = \<P>\<^sub>\<simeq>\<^sub>!\<close>
using im_uniques_are_identifiables
identifiables_are_im_uniques
by blast
text \<^marker>\<open>tag bodyonly\<close> \<open>
Since the set of isomorphically unique particulars is
equivalent to the set of non-permutable particulars,
then we can also say that the identifiable particulars
are exactly those that are non-permutable:\<close>
theorem identifiables_are_the_non_permutables: \<open>\<P>\<^sub>= = \<P>\<^sub>1\<^sub>!\<close>
using identifiables_are_the_im_uniques
by (simp add: non_permutable_particulars_are_the_unique_particulars)
end
end
|
C***********************************************************************
C Copyright (C) 1994-2016 Lawrence Livermore National Security, LLC.
C LLNL-CODE-425250.
C All rights reserved.
C
C This file is part of Silo. For details, see silo.llnl.gov.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions
C are met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the disclaimer below.
C * Redistributions in binary form must reproduce the above copyright
C notice, this list of conditions and the disclaimer (as noted
C below) in the documentation and/or other materials provided with
C the distribution.
C * Neither the name of the LLNS/LLNL nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE
C LIVERMORE NATIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR
C CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
C EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
C PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
C PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
C LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
C NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
C SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C
C This work was produced at Lawrence Livermore National Laboratory under
C Contract No. DE-AC52-07NA27344 with the DOE.
C
C Neither the United States Government nor Lawrence Livermore National
C Security, LLC nor any of their employees, makes any warranty, express
C or implied, or assumes any liability or responsibility for the
C accuracy, completeness, or usefulness of any information, apparatus,
C product, or process disclosed, or represents that its use would not
C infringe privately-owned rights.
C
C Any reference herein to any specific commercial products, process, or
C services by trade name, trademark, manufacturer or otherwise does not
C necessarily constitute or imply its endorsement, recommendation, or
C favoring by the United States Government or Lawrence Livermore
C National Security, LLC. The views and opinions of authors expressed
C herein do not necessarily state or reflect those of the United States
C Government or Lawrence Livermore National Security, LLC, and shall not
C be used for advertising or product endorsement purposes.
C***********************************************************************
C
C Program
C
C testpoint
C
C Purpose
C
C Test program illustrating use of SILO from Fortran
C for writing point data.
C This particular program also uses SILO's "EZ" interface to
C write simple scalars and arrays with.
C
C Programmer
C
C Jeff Long, NSSD/B, 11/02/92
C
C Notes
C
C For more info on calling sequences, see the "SILO User's
C Manual".
C
C ierr = dbcreate (filename, len_filename, filemode, target,
C file_info_string, len_file_info_string,
C filetype, DBID)
C
C ierr = dbputpm (dbid, meshname, len_meshname, num_dims,
C xcoords, ycoords, zcoords, npts, datatype,
C option_list, MESHID)
C
C ierr = dbputpv1 (dbid, varname, len_varname, meshname,
C len_meshname,
C var, npts, datatype, option_list, VARID)
C
C ierr = ezwrite (silo_id, name, lname, data, len_data,
C datatype, ierr)
C
C
program main
C ..Don't forget to include this file!
include "silo.inc"
integer dirid, dbid, meshid, varid, silo_id, optlistid
integer varid1, driver, nargs
real x(5), y(5), z(5), foo(5)
real d(5), ttime
integer itype(5), tcycle
real ftype(5)
double precision dttime
character*256 cloption
driver = DB_PDB
nargs = iargc()
call getarg(1, cloption)
if (cloption .eq. "DB_HDF5") then
driver = DB_HDF5
end if
C...Generate some data to write out.
do i = 1 , 5
x(i) = i
y(i) = i
z(i) = i
d(i) = 10 * i
itype(i) = i
ftype(i) = i
foo(i) = i
enddo
npts = 5
lfoo = 5
ttime = 0.123
tcycle = 123
dttime = 0.123
C...Create the file (using the SILO interface)
ierr = dbcreate ("pointf77.silo", 13, DB_CLOBBER, DB_LOCAL,
. "file info goes here", 19, driver, dbid)
if (ierr .ne. 0) then
print *, 'dbcreate had error'
else
print *, 'created file pointf77.silo'
endif
C...Create an option list containing time and cyle info.
ierr = dbmkoptlist(3, optlistid) ! Create the option list
ierr = dbaddiopt (optlistid, DBOPT_CYCLE, tcycle) ! Add integer opt
ierr = dbaddropt (optlistid, DBOPT_TIME, ttime) ! Add real opt
ierr = dbadddopt (optlistid, DBOPT_DTIME, dttime) ! Add double opt
C...Write out the point mesh.
ierr = dbputpm (dbid, 'pmesh', 5, 2, x, y, z, npts, DB_FLOAT,
. optlistid, meshid)
C...Write out the point variables
ierr = dbputpv1 (dbid, 'd', 1, 'pmesh', 5, d, npts, DB_FLOAT,
. optlistid, varid)
C ierr = dbputpv1 (dbid, 'ftype', 5, 'pmesh', 5, ftype, npts, DB_FLOAT,
C . optlistid, varid1)
ierr = dbclose (dbid)
if (ierr .ne. 0) print *, 'dbclose had error'
stop
end
|
% LaTeX resume using res.cls
\documentclass[margin,10pt]{res}
%\usepackage{helvetica} % uses helvetica postscript font (download helvetica.sty)
%\usepackage{newcent} % uses new century schoolbook postscript font
\setlength{\textwidth}{6in} % set width of text portion
\newcommand{\code}[1]{\texttt{#1}}
\usepackage{hyperref}
\usepackage[usenames,dvipsnames]{color}
%\usepackage[dvipsnames]{xcolor}
\definecolor{MidnightBlue}{RGB}{10,82,131} % This replaces the need for xcolor package
\hypersetup{
colorlinks=true, % false: boxed links; true: colored links
linkcolor=red, % color of internal links (change box color with linkbordercolor)
citecolor=green, % color of links to bibliography
filecolor=magenta, % color of file links
urlcolor=MidnightBlue % color of external links
}
\usepackage{enumitem}
\setlist[itemize,1]{leftmargin=\dimexpr 26pt-3mm}
\newenvironment{benumerate}[1]{
\let\oldItem\item
\def\item{\addtocounter{enumi}{-2}\oldItem}
\begin{enumerate}
\setcounter{enumi}{#1}
\addtocounter{enumi}{1}
}{
\end{enumerate}
}
\begin{document}
%% Center the name over the entire width of resume:
\moveleft.5\hoffset\centerline{\textsc{\Large Jacob Lustig-Yaeger}}
\moveleft.5\hoffset\centerline{Astronomy \& Astrobiology, PhD}
%
%% Draw a horizontal line the whole width of resume:
\moveleft\hoffset\vbox{\hrule width 0.93\resumewidth height 1pt}
\vspace{-12pt}
\hspace{-1in}
\begin{minipage}[t]{0.93\resumewidth}
Email: \href{mailto:[email protected]}{[email protected]} \hfill GitHub: \href{https://github.com/jlustigy}{jlustigy}\\
Web: \url{https://jlustigy.github.io/} \hfill ORCID: \href{https://orcid.org/0000-0002-0746-1980}{0000-0002-0746-1980}
\end{minipage}
%% Select character to use as the bullet marker.
%% Comment out to get normal dark filled circle bullets
\def\labelitemi{---}
\begin{resume}
%\section{Current \\Position}
%Exoplanet Post Doctoral Fellow \hfill (2020 -- present)\\
%Johns Hopkins Applied Physics Laboratory \\
\section{Office \\Address}
11100 Johns Hopkins Rd \\
Laurel, MD 20723 \\
United States \\
\section{Education}
PhD in Astronomy \& Astrobiology (dual-titled PhD) \hfill (2014 -- 2020) \\
MS in Astronomy (2016) \\
University of Washington, Seattle, WA \\
\textit{Thesis:} \href{https://digital.lib.washington.edu/researchworks/handle/1773/46370}{``The Detection, Characterization, and Retrieval of Terrestrial Exoplanet Atmospheres''} \\
\textit{Advisor:} Victoria Meadows
BS in Physics (Honors), Minor in Mathematics \hfill (2009 -- 2013) \\
University of California, Santa Cruz, CA \\
\textit{Advisor:} Jonathan Fortney \\
%\section{Research \\Interests}
% \begin{itemize} \itemsep -1pt %reduce space between items
% \item Characterizing terrestrial exoplanets for habitability and signs of life
% \item Retrieving terrestrial planet atmospheres using Bayesian inference
% \item Modeling telescope sensitivity to motivate future exoplanet science cases
% \item Developing novel methods to detect exoplanet habitability and biosignatures \\
% \end{itemize}
\section{Research \\Experience}
{\sl Post Doctoral Fellow}: The Johns Hopkins Applied Physics Laboratory \hfill (2020 -- present)\\
Terrestrial exoplanet atmospheres, theory \& observation, mission concepts
{\sl Graduate Research Assistant}: Virtual Planetary Laboratory \hfill (2014 -- 2020)\\
Terrestrial exoplanets, their atmospheres, habitability \& biosignatures
%\begin{itemize} \itemsep -1pt %reduce space between items
% \item Developed, tested, and applied a physically rigorous terrestrial exoplanet retrieval model
% \item Simulated and analyzed radiative transfer, photochemical, climate, telescope, surface mapping, and machine learning models
%\end{itemize}
{\sl Undergraduate \& Postbaccalaureate Researcher}: University of California, Santa Cruz \hfill (2012 -- 2014)\\
Hot Jupiter \& brown dwarf atmospheres, opacity sources, and atmospheric retrieval \\
%\begin{itemize} \itemsep -1pt %reduce space between items
% \item Retrieved exoplanet atmospheric compositions using emission spectra
% \item Applied Bayesian methods for parameter estimation
% \item Calculated and published weighted mean opacities for substellar and planetary atmospheres\\
%\end{itemize}
\section{Honors, Awards, \& Funded Proposals}
\begin{itemize} \itemsep -1pt %reduce space between items
%\item Astrobiology Fellow at University of Washington Astrobiology Program (2014)
\item \textbf{JWST Cycle 1 Co-PI:} \href{https://www.stsci.edu/jwst/science-execution/program-information?id=1981}{``Tell Me How I’m Supposed To Breathe With No Air: Measuring the Prevalence and Diversity of M-Dwarf Planet Atmospheres''} (2021)
\item \textbf{NASA Group Achievement Award:} LUVOIR Mission Concept Study Team (2019)
\item Honors undergraduate thesis in physics (2013)
\item University Honor, \textit{cum laude} at University of California, Santa Cruz (2013)\\
\end{itemize}
\section{Selected Publications}
%{\sl First Authored}
\begin{itemize}
\item Mansfield, M., Schlawin, E., \textbf{Lustig-Yaeger, J.}, et al. (2020). \href{https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.5151M/abstract}{``Eigenspectra: A Framework for Identifying Spectra from 3D Eclipse Mapping''}. \textit{Monthly Notices of the Royal Astronomical Society}.
\item \textbf{Lustig-Yaeger, J.}, Meadows, V. S., \& Lincowski, A. P. (2019). \href{https://doi.org/10.3847/2041-8213/ab5965}{``A Mirage of the Cosmic Shoreline: Venus-like Clouds as a Statistical False Positive for Exoplanet Atmospheric Erosion''}. \textit{The Astrophysical Journal Letters}, 887(1), L11.
\item \textbf{Lustig-Yaeger, J.}, Robinson, T. D., \& Arney, G. (2019). \href{https://doi.org/10.21105/joss.01387}{``\texttt{coronagraph}: Telescope Noise Modeling for Exoplanets in Python''}. \textit{Journal of Open Source Software}, 4(40), 1387.
\item \textbf{Lustig-Yaeger, J.}, Meadows, V. S., \& Lincowski, A. P. (2019). \href{https://doi.org/10.3847/1538-3881/ab21e0}{``The Detectability and Characterization of the TRAPPIST-1 Exoplanet Atmospheres with JWST''}. \textit{The Astronomical Journal}, 158(1), 27.
\item \textbf{Lustig-Yaeger, J.}, Meadows, V. S., Tovar Mendoza, G., Schwieterman, E. W., Fujii, Y., Luger, R., \& Robinson, T. D. (2018). \href{https://doi.org/10.3847/1538-3881/aaed3a}{``Detecting Ocean Glint on Exoplanets Using Multiphase Mapping''}. \textit{The Astronomical Journal}, 156(6), 301.
\item Luger, R., \textbf{Lustig-Yaeger, J.}, \& Agol, E. (2017). \href{http://adsabs.harvard.edu/abs/2017ApJ...851...94L}{``Planet-Planet Occultations in TRAPPIST-1 and Other Exoplanet Systems''}. \textit{The Astrophysical Journal}, 851(2), 94.
\item Fujii, Y., \textbf{Lustig-Yaeger, J.}, \& Cowan, N. B. (2017). \href{http://adsabs.harvard.edu/abs/2017arXiv170804886F}{``Rotational Spectral Unmixing of Exoplanets: Degeneracies between Surface Colors and Geography''}. \textit{The Astronomical Journal}, 154(5), 189.
\end{itemize}
\end{resume}
\end{document}
|
section \<open>Derived facts about quantum registers\<close>
theory Quantum_Extra
imports
Laws_Quantum
Quantum
begin
no_notation meet (infixl "\<sqinter>\<index>" 70)
no_notation Group.mult (infixl "\<otimes>\<index>" 70)
no_notation Order.top ("\<top>\<index>")
unbundle register_notation
unbundle cblinfun_notation
lemma zero_not_register[simp]: \<open>~ register (\<lambda>_. 0)\<close>
unfolding register_def by simp
lemma register_pair_is_register_converse:
\<open>register (F;G) \<Longrightarrow> register F\<close> \<open>register (F;G) \<Longrightarrow> register G\<close>
using [[simproc del: Laws_Quantum.compatibility_warn]]
apply (cases \<open>register F\<close>)
apply (auto simp: register_pair_def)[2]
apply (cases \<open>register G\<close>)
by (auto simp: register_pair_def)[2]
lemma register_id'[simp]: \<open>register (\<lambda>x. x)\<close>
using register_id by (simp add: id_def)
lemma register_projector:
assumes "register F"
assumes "is_Proj a"
shows "is_Proj (F a)"
using assms unfolding register_def is_Proj_algebraic by metis
lemma register_unitary:
assumes "register F"
assumes "unitary a"
shows "unitary (F a)"
using assms by (smt (verit, best) register_def unitary_def)
lemma compatible_proj_intersect:
(* I think this also holds without is_Proj premises, but my proof ideas use the Penrose-Moore
pseudoinverse or simultaneous diagonalization and we do not have an existence theorem for either. *)
assumes "compatible R S" and "is_Proj a" and "is_Proj b"
shows "(R a *\<^sub>S \<top>) \<sqinter> (S b *\<^sub>S \<top>) = ((R a o\<^sub>C\<^sub>L S b) *\<^sub>S \<top>)"
proof (rule antisym)
have "((R a o\<^sub>C\<^sub>L S b) *\<^sub>S \<top>) \<le> (S b *\<^sub>S \<top>)"
apply (subst swap_registers[OF assms(1)])
by (simp add: cblinfun_compose_image cblinfun_image_mono)
moreover have "((R a o\<^sub>C\<^sub>L S b) *\<^sub>S \<top>) \<le> (R a *\<^sub>S \<top>)"
by (simp add: cblinfun_compose_image cblinfun_image_mono)
ultimately show \<open>((R a o\<^sub>C\<^sub>L S b) *\<^sub>S \<top>) \<le> (R a *\<^sub>S \<top>) \<sqinter> (S b *\<^sub>S \<top>)\<close>
by auto
have "is_Proj (R a)"
using assms(1) assms(2) compatible_register1 register_projector by blast
have "is_Proj (S b)"
using assms(1) assms(3) compatible_register2 register_projector by blast
show \<open>(R a *\<^sub>S \<top>) \<sqinter> (S b *\<^sub>S \<top>) \<le> (R a o\<^sub>C\<^sub>L S b) *\<^sub>S \<top>\<close>
proof (unfold less_eq_ccsubspace.rep_eq, rule)
fix \<psi>
assume asm: \<open>\<psi> \<in> space_as_set ((R a *\<^sub>S \<top>) \<sqinter> (S b *\<^sub>S \<top>))\<close>
then have \<open>\<psi> \<in> space_as_set (R a *\<^sub>S \<top>)\<close>
by auto
then have R: \<open>R a *\<^sub>V \<psi> = \<psi>\<close>
using \<open>is_Proj (R a)\<close> cblinfun_fixes_range is_Proj_algebraic by blast
from asm have \<open>\<psi> \<in> space_as_set (S b *\<^sub>S \<top>)\<close>
by auto
then have S: \<open>S b *\<^sub>V \<psi> = \<psi>\<close>
using \<open>is_Proj (S b)\<close> cblinfun_fixes_range is_Proj_algebraic by blast
from R S have \<open>\<psi> = (R a o\<^sub>C\<^sub>L S b) *\<^sub>V \<psi>\<close>
by (simp add: cblinfun_apply_cblinfun_compose)
also have \<open>\<dots> \<in> space_as_set ((R a o\<^sub>C\<^sub>L S b) *\<^sub>S \<top>)\<close>
apply simp by (metis R S calculation cblinfun_apply_in_image)
finally show \<open>\<psi> \<in> space_as_set ((R a o\<^sub>C\<^sub>L S b) *\<^sub>S \<top>)\<close>
by -
qed
qed
lemma compatible_proj_mult:
assumes "compatible R S" and "is_Proj a" and "is_Proj b"
shows "is_Proj (R a o\<^sub>C\<^sub>L S b)"
using [[simproc del: Laws_Quantum.compatibility_warn]]
using assms unfolding is_Proj_algebraic compatible_def
apply auto
apply (metis (no_types, lifting) cblinfun_compose_assoc register_mult)
by (simp add: assms(2) assms(3) is_proj_selfadj register_projector)
lemma unitary_sandwich_register: \<open>unitary a \<Longrightarrow> register (sandwich a)\<close>
unfolding register_def
apply (auto simp: sandwich_def)
apply (metis (no_types, lifting) cblinfun_assoc_left(1) cblinfun_compose_id_right unitaryD1)
by (simp add: lift_cblinfun_comp(2))
lemma sandwich_tensor:
fixes a :: \<open>'a::finite ell2 \<Rightarrow>\<^sub>C\<^sub>L 'a ell2\<close> and b :: \<open>'b::finite ell2 \<Rightarrow>\<^sub>C\<^sub>L 'b ell2\<close>
assumes \<open>unitary a\<close> \<open>unitary b\<close>
shows "sandwich (a \<otimes>\<^sub>o b) = sandwich a \<otimes>\<^sub>r sandwich b"
apply (rule tensor_extensionality)
by (auto simp: unitary_sandwich_register assms sandwich_def register_tensor_is_register comp_tensor_op tensor_op_adjoint)
lemma sandwich_grow_left:
fixes a :: \<open>'a::finite ell2 \<Rightarrow>\<^sub>C\<^sub>L 'a ell2\<close>
assumes "unitary a"
shows "sandwich a \<otimes>\<^sub>r id = sandwich (a \<otimes>\<^sub>o id_cblinfun)"
by (simp add: unitary_sandwich_register assms sandwich_tensor sandwich_id)
lemma register_sandwich: \<open>register F \<Longrightarrow> F (sandwich a b) = sandwich (F a) (F b)\<close>
by (smt (verit, del_insts) register_def sandwich_def)
lemma assoc_ell2_sandwich: \<open>assoc = sandwich assoc_ell2\<close>
apply (rule tensor_extensionality3')
apply (simp_all add: unitary_sandwich_register)[2]
apply (rule equal_ket)
apply (case_tac x)
by (simp add: sandwich_def assoc_apply cblinfun_apply_cblinfun_compose tensor_op_ell2 assoc_ell2_tensor assoc_ell2'_tensor
flip: tensor_ell2_ket)
lemma assoc_ell2'_sandwich: \<open>assoc' = sandwich assoc_ell2'\<close>
apply (rule tensor_extensionality3)
apply (simp_all add: unitary_sandwich_register)[2]
apply (rule equal_ket)
apply (case_tac x)
by (simp add: sandwich_def assoc'_apply cblinfun_apply_cblinfun_compose tensor_op_ell2 assoc_ell2_tensor assoc_ell2'_tensor
flip: tensor_ell2_ket)
lemma swap_sandwich: "swap = sandwich Uswap"
apply (rule tensor_extensionality)
apply (auto simp: sandwich_def)[2]
apply (rule tensor_ell2_extensionality)
by (simp add: sandwich_def cblinfun_apply_cblinfun_compose tensor_op_ell2)
lemma id_tensor_sandwich:
fixes a :: "'a::finite ell2 \<Rightarrow>\<^sub>C\<^sub>L 'b::finite ell2"
assumes "unitary a"
shows "id \<otimes>\<^sub>r sandwich a = sandwich (id_cblinfun \<otimes>\<^sub>o a)"
apply (rule tensor_extensionality)
using assms by (auto simp: register_tensor_is_register comp_tensor_op sandwich_def tensor_op_adjoint unitary_sandwich_register)
lemma compatible_selfbutter_join:
assumes [register]: "compatible R S"
shows "R (selfbutter \<psi>) o\<^sub>C\<^sub>L S (selfbutter \<phi>) = (R; S) (selfbutter (\<psi> \<otimes>\<^sub>s \<phi>))"
apply (subst register_pair_apply[symmetric, where F=R and G=S])
using assms by auto
lemma register_mult':
assumes \<open>register F\<close>
shows \<open>F a *\<^sub>V F b *\<^sub>V c = F (a o\<^sub>C\<^sub>L b) *\<^sub>V c\<close>
by (simp add: assms lift_cblinfun_comp(4) register_mult)
lemma register_scaleC:
assumes \<open>register F\<close> shows \<open>F (c *\<^sub>C a) = c *\<^sub>C F a\<close>
by (simp add: assms complex_vector.linear_scale)
lemma register_bounded_clinear: \<open>register F \<Longrightarrow> bounded_clinear F\<close>
using bounded_clinear_finite_dim register_def by blast
lemma register_adjoint: "F (a*) = (F a)*" if \<open>register F\<close>
using register_def that by blast
end
|
= = Parks and recreation = =
|
You are currently viewing a selection of Cotton Shirt products filtered by your selection of 'materials: 'lace''. You can use the page links below to continue to view this selection.
You have selected 'Cotton Shirt materials: 'lace'', Click on the links below to view more results from the 'Cotton Shirt materials: 'lace'' search. |
lemma of_real_inverse [simp]: "of_real (inverse x) = inverse (of_real x :: 'a::{real_div_algebra,division_ring})" |
National languages not covered by an authoritative language academy typically have multiple style guides — only some of which may discuss sentence spacing . This is the case in the United Kingdom . The Oxford Style Manual ( 2003 ) and the Modern Humanities Research Association 's MHRA Style Guide ( 2002 ) state that only single spacing should be used . In Canada , both the English and French language sections of the Canadian Style , A Guide to Writing and Editing ( 1997 ) , prescribe single sentence spacing . In the United States , many style guides — such as the Chicago Manual of Style ( 2003 ) — allow only single sentence spacing . The most important style guide in Italy , Il Nuovo <unk> di Stile ( 2009 ) , does not address sentence spacing , but the Guida di Stile Italiano ( 2010 ) , the official guide for Microsoft translation , tells users to use single sentence spacing " instead of the double spacing used in the United States " .
|
/-!
# Monad Transformers
In the previous sections you learned about some handy monads [Option](monads.lean.md),
[IO](monads.lean.md), [Reader](readers.lean.md), [State](states.lean.md) and
[Except](except.lean.md), and you now know how to make your function use one of these, but what you
do not yet know is how to make your function use multiple monads at once.
For example, suppose you need a function that wants to access some Reader context and optionally throw
an exception? This would require composition of two monads `ReaderM` and `Except` and this is what
monad transformers are for.
A monad transformer is fundamentally a wrapper type. It is generally parameterized by another
monadic type. You can then run actions from the inner monad, while adding your own customized
behavior for combining actions in this new monad. The common transformers add `T` to the end of an
existing monad name. You will find `OptionT`, `ExceptT`, `ReaderT`, `StateT` but there is no transformer
for `IO`. So generally if you need `IO` it becomes the innermost wrapped monad.
In the following example we use `ReaderT` to provide some read only context to a function
and this `ReaderT` transformer will wrap an `Except` monad. If all goes well the
`requiredArgument` returns the value of a required argument and `optionalSwitch`
returns true if the optional argument is present.
-/
abbrev Arguments := List String
def indexOf? [BEq α] (xs : List α) (s : α) (start := 0): Option Nat :=
match xs with
| [] => none
| a :: tail => if a == s then some start else indexOf? tail s (start+1)
def requiredArgument (name : String) : ReaderT Arguments (Except String) String := do
let args ← read
let value := match indexOf? args name with
| some i => if i + 1 < args.length then args[i+1]! else ""
| none => ""
if value == "" then throw s!"Command line argument {name} missing"
return value
def optionalSwitch (name : String) : ReaderT Arguments (Except String) Bool := do
let args ← read
return match (indexOf? args name) with
| some _ => true
| none => false
#eval requiredArgument "--input" |>.run ["--input", "foo"]
-- Except.ok "foo"
#eval requiredArgument "--input" |>.run ["foo", "bar"]
-- Except.error "Command line argument --input missing"
#eval optionalSwitch "--help" |>.run ["--help"]
-- Except.ok true
#eval optionalSwitch "--help" |>.run []
-- Except.ok false
/-!
Notice that `throw` was available from the inner `Except` monad. The cool thing is you can switch
this around and get the exact same result using `ExceptT` as the outer monad transformer and
`ReaderM` as the wrapped monad. Try changing requiredArgument to `ExceptT String (ReaderM Arguments) Bool`.
Note: the `|>.` notation is described in [Readers](readers.lean.md#the-reader-solution).
## Adding more layers
Here's the best part about monad transformers. Since the result of a monad transformer is itself a
monad, you can wrap it inside another transformer! Suppose you need to pass in some read only context
like the command line arguments, update some read-write state (like program Config) and optionally
throw an exception, then you could write this:
-/
structure Config where
help : Bool := false
verbose : Bool := false
input : String := ""
deriving Repr
abbrev CliConfigM := StateT Config (ReaderT Arguments (Except String))
def parseArguments : CliConfigM Bool := do
let mut config ← get
if (← optionalSwitch "--help") then
throw "Usage: example [--help] [--verbose] [--input <input file>]"
config := { config with
verbose := (← optionalSwitch "--verbose"),
input := (← requiredArgument "--input") }
set config
return true
def main (args : List String) : IO Unit := do
let config : Config := { input := "default"}
match parseArguments |>.run config |>.run args with
| Except.ok (_, c) => do
IO.println s!"Processing input '{c.input}' with verbose={c.verbose}"
| Except.error s => IO.println s
#eval main ["--help"]
-- Usage: example [--help] [--verbose] [--input <input file>]
#eval main ["--input", "foo"]
-- Processing input file 'foo' with verbose=false
#eval main ["--verbose", "--input", "bar"]
-- Processing input 'bar' with verbose=true
/-!
In this example `parseArguments` is actually three stacked monads, `StateM`, `ReaderM`, `Except`. Notice
the convention of abbreviating long monadic types with an alias like `CliConfigM`.
## Monad Lifting
Lean makes it easy to compose functions that use different monads using a concept of automatic monad
lifting. You already used lifting in the above code, because you were able to compose
`optionalSwitch` which has type `ReaderT Arguments (Except String) Bool` and call it from
`parseArguments` which has a bigger type `StateT Config (ReaderT Arguments (Except String))`.
This "just worked" because Lean did some magic with monad lifting.
To give you a simpler example of this, suppose you have the following function:
-/
def divide (x : Float ) (y : Float): ExceptT String Id Float :=
if y == 0 then
throw "can't divide by zero"
else
pure (x / y)
#eval divide 6 3 -- Except.ok 2.000000
#eval divide 1 0 -- Except.error "can't divide by zero"
/-!
Notice here we used the `ExceptT` transformer, but we composed it with the `Id` identity monad.
This is then the same as writing `Except String Float` since the identity monad does nothing.
Now suppose you want to count the number of times divide is called and store the result in some
global state:
-/
def divideCounter (x : Float) (y : Float) : StateT Nat (ExceptT String Id) Float := do
modify fun s => s + 1
divide x y
#eval divideCounter 6 3 |>.run 0 -- Except.ok (2.000000, 1)
#eval divideCounter 1 0 |>.run 0 -- Except.error "can't divide by zero"
/-!
The `modify` function is a helper which makes it easier to use `modifyGet` from the `StateM` monad.
But something interesting is happening here, `divideCounter` is returning the value of
`divide`, but the types don't match, yet it works? This is monad lifting in action.
You can see this more clearly with the following test:
-/
def liftTest (x : Except String Float) :
StateT Nat (Except String) Float := x
#eval liftTest (divide 5 1) |>.run 3 -- Except.ok (5.000000, 3)
/-!
Notice that `liftTest` returned `x` without doing anything to it, yet that matched the return type
`StateT Nat (Except String) Float`. Monad lifting is provided by monad transformers. if you
`#print liftTest` you will see that Lean is implementing this using a call to a function named
`monadLift` from the `MonadLift` type class:
```lean,ignore
class MonadLift (m : Type u → Type v) (n : Type u → Type w) where
monadLift : {α : Type u} → m α → n α
```
So `monadLift` is a function for lifting a computation from an inner `Monad m α ` to an outer `Monad n α`.
You could replace `x` in `liftTest` with `monadLift x` if you want to be explicit about it.
The StateT monad transformer defines an instance of `MonadLift` like this:
```lean
@[inline] protected def lift {α : Type u} (t : m α) : StateT σ m α :=
fun s => do let a ← t; pure (a, s)
instance : MonadLift m (StateT σ m) := ⟨StateT.lift⟩
```
This means that any monad `m` can be wrapped in a `StateT` monad by using the function
`fun s => do let a ← t; pure (a, s)` that takes state `s`, runs the inner monad action `t`, and
returns the result and the new state in a pair `(a, s)` without making any changes to `s`.
Because `MonadLift` is a type class, Lean can automatically find the required `monadLift`
instances in order to make your code compile and in this way it was able to find the `StateT.lift`
function and use it to wrap the result of `divide` so that the correct type is returned from
`divideCounter`.
If you have an instance `MonadLift m n` that means there is a way to turn a computation that happens
inside of `m` into one that happens inside of `n` and (this is the key part) usually *without* the
instance itself creating any additional data that feeds into the computation. This means you can in
principle declare lifting instances from any monad to any other monad, it does not, however, mean
that you should do this in all cases. You can get a very nice report on how all this was done by
adding the line `set_option trace.Meta.synthInstance true in` before `divideCounter` and moving you
cursor to the end of the first line after `do`.
This was a lot of detail, but it is very important to understand how monad lifting works because it
is used heavily in Lean programs.
## Transitive lifting
There is also a transitive version of `MonadLift` called `MonadLiftT` which can lift multiple
monad layers at once. In the following example we added another monad layer with
`ReaderT String ...` and notice that `x` is also automatically lifted to match.
-/
def liftTest2 (x : Except String Float) :
ReaderT String (StateT Nat (Except String)) Float := x
#eval liftTest2 (divide 5 1) |>.run "" |>.run 3
-- Except.ok (5.000000, 3)
/-!
The ReaderT monadLift is even simpler than the one for StateT:
```lean,ignore
instance : MonadLift m (ReaderT ρ m) where
monadLift x := fun _ => x
```
This lift operation creates a function that defines the required `ReaderT` input
argument, but the inner monad doesn't know or care about `ReaderT` so the
monadLift function throws it away with the `_` then calls the inner monad action `x`.
This is a perfectly legal implementation of the `ReaderM` monad.
## Add your own Custom MonadLift
This does not compile:
-/
def main2 : IO Unit := do
try
let ret ← divideCounter 5 2 |>.run 0
IO.println (toString ret)
catch e =>
IO.println e
/-!
saying:
```
typeclass instance problem is stuck, it is often due to metavariables
ToString ?m.4786
```
The reason is `divideCounter` returns the big `StateT Nat (ExceptT String Id) Float` and that type
cannot be automatically lifted into the `main` return type of `IO Unit` unless you give it some
help.
The following custom `MonadLift` solves this problem:
-/
def liftIO (t : ExceptT String Id α) : IO α := do
match t with
| .ok r => EStateM.Result.ok r
| .error s => EStateM.Result.error s
instance : MonadLift (ExceptT String Id) IO where
monadLift := liftIO
def main3 : IO Unit := do
try
let ret ← divideCounter 5 2 |>.run 0
IO.println (toString ret)
catch e =>
IO.println e
#eval main3 -- (2.500000, 1)
/-!
It turns out that the `IO` monad you see in your `main` function is based on the `EStateM.Result` type
which is similar to the `Except` type but it has an additional return value. The `liftIO` function
converts any `Except String α` into `IO α` by simply mapping the ok case of the `Except` to the
`Result.ok` and the error case to the `Result.error`.
## Lifting ExceptT
In the previous [Except](except.lean.md) section you saw functions that `throw` Except
values. When you get all the way back up to your `main` function which has type `IO Unit` you have
the same problem you had above, because `Except String Float` doesn't match even if you use a
`try/catch`.
-/
def main4 : IO Unit := do
try
let ret ← divide 5 0
IO.println (toString ret) -- lifting happens here.
catch e =>
IO.println s!"Unhandled exception: {e}"
#eval main4 -- Unhandled exception: can't divide by zero
/-!
Without the `liftIO` the `(toString ret)` expression would not compile with a similar error:
```
typeclass instance problem is stuck, it is often due to metavariables
ToString ?m.6007
```
So the general lesson is that if you see an error like this when using monads, check for
a missing `MonadLift`.
## Summary
Now that you know how to combine your monads together, you're almost done with understanding the key
concepts of monads! You could probably go out now and start writing some pretty nice code! But to
truly master monads, you should know how to make your own, and there's one final concept that you
should understand for that. This is the idea of type "laws". Each of the structures you've learned
so far has a series of laws associated with it. And for your instances of these classes to make
sense, they should follow the laws! Check out [Monad Laws](laws.lean.md).
-/ |
(** * A constructor for polymorphic types *)
Require Import Omega.
Require Import Coq.Logic.Decidable.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Equality.
Require Import Coq.Setoids.Setoid.
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Arith.Compare_dec.
Require Import Coq.Arith.Plus.
Require Export InformationOrdering.
Require Import Nontermination.
Require Import LeastFixedPoint.
Require Import BohmTrees.
Open Scope code_scope.
(* ------------------------------------------------------------------------ *)
(** ** Components for Bohm-out moves *)
Section pair.
Context {Var : Set}.
Let x := make_var Var 0.
Let y := make_var Var 1.
Let f := make_var Var 2.
Definition pair := Eval compute in close_var (\x,\y,\f, f * x * y).
End pair.
Notation "[ x , y ]" := (pair * x * y)%code : code_scope.
Notation "[ x ]" := (C * I * x)%code : code_scope.
Lemma pair_extensionality (Var : Set) (x y x' y' : Code Var) :
[x, y] [= [x', y'] <-> x [= x' /\ y [= y'.
Proof.
unfold pair; beta_simpl; split.
intro H; split.
apply (code_le_ap_left _ _ _ K) in H; beta_simpl in H; auto.
apply (code_le_ap_left _ _ _ (K*I)) in H; beta_simpl in H; auto.
intros [Hx Hy]; auto.
Qed.
Section raise.
Context {Var : Set}.
Definition raise : Code Var := K.
Definition lower : Code Var := [TOP].
Definition pull : Code Var := K || K * div.
Definition push : Code Var := [BOT].
End raise.
Lemma lower_raise (Var : Set) (x : Code Var) : lower * (raise * x) == x.
Proof.
unfold lower, raise; beta_simpl; reflexivity.
Qed.
Lemma push_pull (Var : Set) (x : Code Var) : push * (pull * x) == x.
Proof.
unfold push, pull; code_simpl; reflexivity.
Qed.
Lemma lower_pull (Var : Set) (x : Code Var) : lower * (pull * x) == TOP.
Proof.
unfold lower, pull; code_simpl;
rewrite code_eq_div; code_simpl; reflexivity.
Qed.
Section exp.
Context {Var : Set}.
Let a := make_var Var 0.
Let b := make_var Var 1.
Let f := make_var Var 2.
Definition exp := Eval compute in close_var (\a, \b, \f, b o f o a).
End exp.
Notation "x --> y" := (exp * x * y)%code : code_scope.
Lemma exp_i_i (Var : Set) : I --> I == (I : Code Var).
Proof.
unfold exp; beta_eta.
Qed.
Section compose.
Context {Var : Set}.
Let s := make_var Var 0.
Let a := make_var Var 1.
Let a' := make_var Var 2.
Let b := make_var Var 3.
Let b' := make_var Var 4.
Definition compose := Eval compute in close_var
(\s, s*\a,\a', s*\b,\b', [a o b, b' o a']).
Definition conjugate := Eval compute in close_var
(\s, s*\a,\a', s*\b,\b', [a' --> b, a --> b']).
End compose.
Lemma compose_pair_le (Var : Set) (s1 r1 s2 r2 : Code Var) :
[s1 o s2, r2 o r1] [= compose * ([s1, r1] || [s2, r2]).
Proof.
unfold compose, pair; beta_reduce.
rewrite pi_j_left, pi_j_right; reflexivity.
Qed.
Lemma conjugate_pair_le (Var : Set) (s1 r1 s2 r2 : Code Var) :
[r1 --> s2, s1 --> r2] [= conjugate * ([s1, r1] || [s2, r2]).
Proof.
unfold conjugate, pair; beta_reduce.
rewrite pi_j_left, pi_j_right.
unfold exp; code_simpl; reflexivity.
Qed.
(* ------------------------------------------------------------------------ *)
(** ** A constructive definition of [A] *)
Definition A_step {Var : Set} : Code Var
:= K * ([I, I] || [raise, lower] || [pull, push])
|| (compose || conjugate).
Definition A {Var : Set} : Code Var := Eval compute in Y * A_step.
Lemma A_simpl (Var : Set) : (A : Code Var) == Y * A_step.
Proof.
(freeze code_eq in compute); auto.
Qed.
Ltac A_simpl := rewrite A_simpl; unfold A_step.
(** We will make much use of the following theorems *)
Theorem A_fixes (Var : Set) (f x : Code Var) :
(forall s r : Code Var, r o s [= I -> f * s * r * x [= x) ->
A * f * x [= x.
Proof.
intro H.
(* TODO use a join argument: A = Join ys and forall y in ys, y f x [= x *)
Admitted.
Lemma A_exp_top (Var : Set) : A * exp * TOP == (TOP : Code Var).
Proof.
split; auto.
A_simpl; unfold exp, pair; rewrite code_eq_y; do 3 rewrite pi_j_left.
eta_expand as x; beta_simpl; auto.
Qed.
(* ------------------------------------------------------------------------ *)
(** ** Using the Bohm-out method through [A] *)
Lemma A_move_i_i (Var : Set) : [I, I] [= (A : Code Var).
Proof.
A_simpl;
rewrite code_eq_y, pi_j_left, beta_k, pi_j_left, pi_j_left;
reflexivity.
Qed.
Lemma A_move_raise_lower (Var : Set) : [raise, lower] [= (A : Code Var).
Proof.
A_simpl;
rewrite code_eq_y, pi_j_left, beta_k, pi_j_left, pi_j_right;
reflexivity.
Qed.
Lemma A_move_pull_push (Var : Set) : [pull, push] [= (A : Code Var).
Proof.
A_simpl; rewrite code_eq_y, pi_j_left, beta_k, pi_j_right;
reflexivity.
Qed.
Lemma A_move_compose (Var : Set) (s1 r1 s2 r2 : Code Var) :
[s1, r1] [= A -> [s2, r2] [= A -> [s1 o s2, r2 o r1] [= A.
Proof.
rewrite A_simpl at 3; rewrite code_eq_y; rewrite <- A_simpl.
unfold A_step; rewrite pi_j_right, pi_j_left.
intros H1 H2.
assert ([s1, r1] || [s2, r2] [= A) as H; auto; rewrite <- H.
apply compose_pair_le.
Qed.
Lemma A_move_conjugate (Var : Set) (s1 r1 s2 r2 : Code Var) :
[s1, r1] [= A -> [s2, r2] [= A -> [r1 --> s2, s1 --> r2] [= A.
Proof.
rewrite A_simpl at 3; rewrite code_eq_y; rewrite <- A_simpl.
unfold A_step; rewrite pi_j_right, pi_j_right.
intros H1 H2.
assert ([s1, r1] || [s2, r2] [= A) as H; auto; rewrite <- H.
apply conjugate_pair_le.
Qed.
Lemma A_move_raise_lower_n (Var : Set) (n : nat) :
[raise^n, lower^n] [= (A : Code Var).
Proof.
induction n; simpl.
- apply A_move_i_i.
- rewrite power_commute_1'; apply A_move_compose; auto.
apply A_move_raise_lower.
Qed.
Lemma A_move_pull_push_n (Var : Set) (n : nat) :
[pull^n, push^n] [= (A : Code Var).
Proof.
induction n; simpl.
- apply A_move_i_i.
- rewrite power_commute_1'; apply A_move_compose; auto.
apply A_move_pull_push.
Qed.
Hint Resolve
A_move_i_i A_move_raise_lower A_move_pull_push
A_move_compose A_move_conjugate
A_move_raise_lower_n A_move_pull_push_n
: A_moves.
Lemma lower_top (n : nat) : lower^n * TOP == (TOP : ClosedCode).
Proof.
induction n; simpl; code_simpl; auto.
rewrite IHn; unfold lower; code_simpl; auto.
Qed.
Lemma push_top (n : nat) : push^n * TOP == (TOP : ClosedCode).
Proof.
induction n; simpl; code_simpl; auto.
rewrite IHn; unfold push; code_simpl; auto.
Qed.
Lemma lower_k (n : nat) (x : ClosedCode) : lower^n * (K^n * x) == x.
Proof.
revert x; induction n; intro x; simpl; code_simpl; auto.
setoid_rewrite power_commute_1 at 2.
rewrite IHn; unfold lower; beta_simpl; reflexivity.
Qed.
Lemma push_k (n : nat) (x : ClosedCode) : push^n * (K^n * x) == x.
Proof.
revert x; induction n; intro x; simpl; code_simpl; auto.
setoid_rewrite power_commute_1 at 2.
rewrite IHn; unfold push; beta_simpl; reflexivity.
Qed.
Lemma raise_c_i_bot (n : nat) (x : ClosedCode) :
[BOT]^n * (raise^n * x) == x.
Proof.
revert x; induction n; intro x; simpl; code_simpl; auto.
rewrite power_commute_1, IHn; unfold raise; beta_simpl; reflexivity.
Qed.
Lemma pull_c_i_bot (n : nat) (x : ClosedCode) :
[BOT]^n * (pull^n * x) == x.
Proof.
revert x; induction n; intro x; simpl; code_simpl; auto.
rewrite power_commute_1, IHn; unfold pull; code_simpl; reflexivity.
Qed.
Ltac bohm_out :=
split; code_simpl; auto with A_moves;
eta_expand; code_simpl.
Lemma bohm_out_repair (b : nat) :
exists s r : ClosedCode, [s, r] [= A /\ I [= r o K ^ b o [BOT] ^ b o s.
Proof.
exists (raise^b), (lower^b); bohm_out.
rewrite raise_c_i_bot, lower_k; reflexivity.
Qed.
Lemma bohm_out_too_many_args (k d : nat) :
exists s r : ClosedCode, [s, r] [= A /\
TOP [= r o K ^ k o [BOT] ^ (1 + k + d) o s.
Proof.
exists (raise^(1+d+k) o pull), (push o lower^(1+d+k)); bohm_out.
replace (1 + k + d) with (1 + d + k) by omega.
rewrite power_add, raise_c_i_bot, lower_k.
replace (1 + d) with (d + 1) by omega.
rewrite power_add; code_simpl.
rewrite lower_pull, lower_top.
unfold push; code_simpl; auto.
Qed.
Lemma bohm_out_too_few_args (b d : nat) :
exists s r : ClosedCode, [s, r] [= A /\
TOP [= r o K ^ (1 + d + b) o [BOT] ^ b o s.
Proof.
exists (pull^(1+d+b) o raise), (lower o push^(1+d+b)); bohm_out.
rewrite push_k; code_simpl.
replace (1 + d + b) with (b + (1 + d)) by omega.
rewrite power_add; code_simpl.
rewrite pull_c_i_bot, power_add; simpl; beta_simpl.
rewrite lower_pull; reflexivity.
Qed.
Lemma bohm_out_wrong_head (h k b : nat) :
exists s r : ClosedCode, [s, r] [= A /\
TOP [= r o (K ^ (1 + h) * K ^ k o [BOT] ^ b) o s.
Proof.
exists (raise^(k+1+h)), (lower^(k+1+h)); bohm_out.
setoid_rewrite power_add at 1; simpl; code_simpl.
rewrite lower_k.
setoid_rewrite power_add; simpl; code_simpl.
unfold lower at 2; code_simpl.
rewrite lower_k.
apply push_top.
Qed.
(* ------------------------------------------------------------------------ *)
(** ** Construction of Bohm tree witnesses *)
Lemma lt_add (p q : nat) : p <= q -> exists r, q = p + r.
Proof.
intro H; induction H; eauto.
destruct IHle as [r IH].
exists (Succ r); rewrite IH; auto.
Qed.
Lemma nle_bot_witness (x : ClosedCode) :
~x [= BOT -> exists h k b, K ^ h * K ^ k o [BOT] ^ b [= x.
Proof.
intro H; apply conv_nle_bot in H.
rewrite conv_closed in H; destruct H as [y [xy yt]].
apply weaken_probe in xy; apply weaken_pi in yt.
dependent induction yt; eauto.
- admit.
- admit.
Qed.
(** This follows %\cite{obermeyer2009equational}% pp. 48 Lemma 3.6.11. *)
Theorem A_repairs_pair (i : ClosedCode) :
~ i [= BOT -> exists s r, [s, r] [= A /\ I [= r o i o s.
Proof.
intro H; apply nle_bot_witness in H; destruct H as [h [k [b H]]].
setoid_rewrite <- H; clear H i.
destruct h.
- (* case: correct head variable *)
simpl; setoid_rewrite beta_i; setoid_rewrite code_eq_b_assoc.
set (kb := lt_eq_lt_dec k b); destruct kb as [[Hlt | Heq] | Hgt].
+ (* case: too many arguments *)
apply lt_add in Hlt; destruct Hlt as [d Ed]; subst.
replace (Datatypes.S k) with (1 + k) by omega.
setoid_rewrite (@code_le_top _ I) at 1.
apply bohm_out_too_many_args.
+ (* case: correct number of arguments *)
subst.
apply bohm_out_repair.
+ (* case: too few arguments *)
apply lt_add in Hgt; destruct Hgt as [d Ed]; subst.
replace (Datatypes.S b + d) with (1 + d + b) by omega.
setoid_rewrite (@code_le_top _ I) at 1.
eapply bohm_out_too_few_args.
- (* case: incorrect head variable *)
replace (Datatypes.S h) with (1 + h) by omega.
setoid_rewrite (@code_le_top _ I) at 1.
apply bohm_out_wrong_head.
Qed.
Corollary A_repairs (i : ClosedCode) : ~ i [= BOT -> I [= A * exp * i.
Proof.
intro H; apply A_repairs_pair in H; destruct H as [s [r [Ha Hi]]].
rewrite <- Ha; unfold pair, exp; code_simpl.
assumption.
Qed.
(* TODO state and prove a [nle_i_witness] lemma
Inductive Increasing : ClosedCode -> Prop :=
| Increasing_head (h k b : nat) :
Increasing (K ^ (1 + h) * K ^ k o [BOT] ^ b)
| Increasing_arg : ???
.
Lemma nle_i_witness (x : ClosedCode) : ~x [= I -> ???.
*)
Theorem A_raises_pair (i : ClosedCode) :
~ i [= I -> exists s r, [s, r] [= A /\ TOP [= r o i o s.
Proof.
admit.
Qed.
Corollary A_raises (i : ClosedCode) : ~ i [= I -> TOP [= A * exp * i.
Proof.
intro H; apply A_raises_pair in H; destruct H as [s [r [Ha Hi]]].
rewrite <- Ha; unfold pair, exp; code_simpl.
assumption.
Qed.
(* TODO the following two theorems need stronger induction hypotheses,
of higher type *)
Theorem A_repairs' (i : ClosedCode) : ~ i [= BOT -> I [= A * exp * i.
Proof.
repeat rewrite <- decompile_le.
do 2 rewrite decompile_app; freeze A in freeze exp in simpl.
set (i' := decompile i); subst.
intro H; apply nle_normal_witness in H; destruct H as [n [Hn [ni nb]]].
rewrite <- ni; clear i i' ni; revert nb.
induction Hn; intro Hnle.
- admit. (* TODO deal with TOP *)
- assert ((BOT [= (BOT : Term Var))%term); [reflexivity | contradiction].
- rewrite term_le_join in Hnle.
apply not_and in Hnle; auto.
destruct Hnle as [Hx | Hy];
[rewrite <- term_le_join_left | rewrite <- term_le_join_right]; auto.
- admit. (* TODO use [pconv] instead of [conv] *)
(* the last three cases require shifting down and up type. *)
- admit. (* TODO prove a lemma about [inert] terms *)
- admit.
Qed.
Theorem A_raises' (i : ClosedCode) : ~ i [= I -> TOP [= A * exp * i.
Proof.
repeat rewrite <- decompile_le.
do 2 rewrite decompile_app; freeze A in freeze exp in simpl.
set (i' := decompile i); subst.
intro H; apply nle_normal_witness in H; destruct H as [n [Hn [ni nb]]].
rewrite <- ni; clear i i' ni; revert nb.
induction Hn; intro Hnle.
- admit. (* TODO deal with TOP *)
- assert ((BOT [= (DeBruijn.I : Term Var))%term);
[term_to_code | contradiction].
- rewrite term_le_join in Hnle.
apply not_and in Hnle; auto.
destruct Hnle as [Hx | Hy];
[rewrite <- term_le_join_left | rewrite <- term_le_join_right]; auto.
- admit. (* TODO use [pconv] instead of [conv] *)
(* the last three cases require shifting down and up type. *)
- admit. (* TODO prove a lemma about [inert] terms *)
- admit.
Qed.
(** To generalize to probability,
we need two parametrized relations [code_ple] and [code_pnle] meaning
that at least [p] of the time, [code_le] or [~ code_le] holds.
Note that [code_pnle] is stronger than
"it is false that [code_le] holds at least p of the time".
*)
Definition code_ple (p : dyadic) {Var : Set} (x y : Code Var) :=
x [= dyadic_sub x y p.
(* FIXME Is this right? *)
Definition code_pnle (p : dyadic) {Var : Set} (x y : Code Var) :=
~ x || y [= dyadic_sub x y p.
Theorem A_repairs_prob (i : ClosedCode) (p : dyadic) :
code_pnle p i BOT -> code_ple p I (A * exp * i).
Proof.
admit.
Qed.
Theorem A_raises_prob (i : ClosedCode) (p : dyadic) :
~ i [= (dyadic_sub BOT I p) -> dyadic_sub BOT TOP p [= A * exp * i.
Proof.
admit.
Qed.
Notation "\\ x , y ; z" := (A * \x, \y, z)%code : code_scope.
Section A_example.
Variable Var : Set.
Let a := make_var Var 0.
Let a' := make_var Var 1.
Let A_example : Code Var := close_var (\\a,a'; a --> a').
End A_example.
|
State Before: α : Type u_1
β : Type u_2
inst✝² : LinearOrderedField α
inst✝¹ : Ring β
abv : β → α
inst✝ : IsAbsoluteValue abv
g f : CauSeq β abv
hf : f ≈ 0
this : LimZero (f - 0)
⊢ LimZero f State After: no goals Tactic: simpa State Before: α : Type u_1
β : Type u_2
inst✝² : LinearOrderedField α
inst✝¹ : Ring β
abv : β → α
inst✝ : IsAbsoluteValue abv
g f : CauSeq β abv
hf : f ≈ 0
this✝ : LimZero (f - 0)
this : LimZero (g * f)
⊢ LimZero (g * f - 0) State After: no goals Tactic: simpa |
{-# LANGUAGE FlexibleContexts #-}
module Image.Transform where
import Data.Array.Repa as R
import Data.Array.Repa.Stencil as R
import Data.Array.Repa.Stencil.Dim2 as R
import Data.DList as DL
import Data.List as L
import Data.Vector.Unboxed as VU
import Numeric.LinearAlgebra as NL
-- factor = 2^n, n = 0,1,..
-- the first factor in the list corresponds to the inner-most (right-most) dimension.
{-# INLINE downsample #-}
downsample ::
(Source s e, Shape sh) => [Int] -> R.Array s sh e -> R.Array D sh e
downsample factorList arr
| L.all (== 1) factorList = delay arr
| L.any (< 1) newDList = error "Downsample factors are too large."
| otherwise =
R.backpermute
(shapeOfList newDList)
(shapeOfList . L.zipWith (*) factorList . listOfShape)
arr
where
dList = listOfShape . extent $ arr
newDList = L.zipWith div dList factorList
{-# INLINE downsampleUnsafe #-}
downsampleUnsafe ::
(Source s e, Shape sh) => [Int] -> R.Array s sh e -> R.Array D sh e
downsampleUnsafe factorList arr =
R.backpermute newSh (shapeOfList . L.zipWith (*) factorList . listOfShape) arr
where
dList = listOfShape $ extent arr
newSh = shapeOfList $ L.zipWith div dList factorList
{-# INLINE upsample #-}
upsample ::
(Source s e, Shape sh, Num e) => [Int] -> R.Array s sh e -> R.Array D sh e
upsample factorList arr
| L.all (== 1) factorList = delay arr
| L.any (< 1) factorList =
error $ "upsample: factor must be >= 1.\n" L.++ show factorList
| otherwise =
R.backpermuteDft
(fromFunction
(shapeOfList $ L.zipWith (*) (listOfShape . extent $ arr) factorList)
(const 0))
(\shape ->
if L.all (== 0) . L.zipWith (flip mod) factorList . listOfShape $ shape
then Just .
shapeOfList . L.zipWith (flip div) factorList . listOfShape $
shape
else Nothing)
arr
{-# INLINE crop #-}
crop ::
(Source s e, Shape sh)
=> [Int]
-> [Int]
-> R.Array s sh e
-> R.Array D sh e
crop start len arr
| L.any (< 0) start ||
L.or (L.zipWith3 (\x y z -> x > (z - y)) start len dList) =
error $
"Crop out of boundary!\n" L.++ show start L.++ "\n" L.++ show len L.++ "\n" L.++
show dList
| L.length start /= L.length len || L.length start /= L.length dList =
error $
"crop: dimension error. \n start: " L.++ show (L.length start) L.++ " len:" L.++
show (L.length len) L.++
" arr:" L.++
show (L.length dList)
| otherwise =
R.backpermute
(shapeOfList len)
(shapeOfList . L.zipWith (+) start . listOfShape)
arr
where
dList = listOfShape $ extent arr
{-# INLINE cropUnsafe #-}
cropUnsafe ::
(Source s e, Shape sh)
=> [Int]
-> [Int]
-> R.Array s sh e
-> R.Array D sh e
cropUnsafe start len =
R.backpermute
(shapeOfList len)
(shapeOfList . L.zipWith (+) start . listOfShape)
{-# INLINE pad #-}
pad :: (Source s e, Shape sh) => [Int] -> e -> R.Array s sh e -> R.Array D sh e
pad newDims padVal arr
| L.all (== 0) diff = delay arr
| otherwise =
backpermuteDft
(fromFunction (shapeOfList dimList) (const padVal))
(\sh' ->
let idx = L.zipWith (-) (listOfShape sh') diff
in if L.or (L.zipWith (\i j -> i < 0 || (i >= j)) idx oldDimList)
then Nothing
else Just $ shapeOfList idx)
arr
where
oldDimList = listOfShape . extent $ arr
dimList = L.zipWith max newDims oldDimList
diff =
L.zipWith
(\a b ->
if a - b <= 0
then 0
else if a - b == 1
then 1
else div (a - b) 2)
newDims
oldDimList
{-# INLINE normalizeValueRange #-}
normalizeValueRange ::
(Source r e, Shape sh, Num e, Fractional e, Ord e, Unbox e)
=> (e, e)
-> R.Array r sh e
-> R.Array D sh e
normalizeValueRange (minVal, maxVal) arr
| maxV == minV = delay arr
| otherwise =
R.map (\x -> (x - minV) / (maxV - minV) * (maxVal - minVal) + minVal) $ arr
where
vec = computeUnboxedS . delay $ arr
minV = VU.minimum . toUnboxed $ vec
maxV = VU.maximum . toUnboxed $ vec
{-# INLINE computeDerivativeS #-}
computeDerivativeS ::
(R.Source r e, Num e, Fractional e) => R.Array r DIM2 e -> R.Array D DIM3 e
computeDerivativeS arr =
L.foldl' R.append (R.extend (Z :. R.All :. R.All :. (1 :: Int)) arr) ds
where
xStencil =
makeStencil2 3 3 $ \ix ->
case ix of
Z :. 0 :. (-1) -> Just (-1)
Z :. 0 :. 1 -> Just 1
_ -> Nothing
yStencil =
makeStencil2 3 3 $ \ix ->
case ix of
Z :. -1 :. 0 -> Just (-1)
Z :. 1 :. 0 -> Just 1
_ -> Nothing
xyStencil =
makeStencil2 3 3 $ \ix ->
case ix of
Z :. -1 :. -1 -> Just 1
Z :. -1 :. 1 -> Just (-1)
Z :. 1 :. -1 -> Just (-1)
Z :. 1 :. 1 -> Just 1
_ -> Nothing
ds =
L.map
(\s ->
extend (Z :. R.All :. R.All :. (1 :: Int)) . R.map (/ 2) $
mapStencil2 BoundClamp s arr)
[xStencil, yStencil, xyStencil]
{-# INLINE bicubicInterpolation #-}
bicubicInterpolation ::
(R.Source r Double)
=> ((Int, Int) -> (Double, Double))
-> (Int, Int)
-> R.Array r DIM2 Double
-> R.Array U DIM2 Double
bicubicInterpolation idxFunc (newCols, newRows) arr =
let (Z :. cols :. rows) = extent arr
derivative = computeDerivativeS arr
derivative16 =
R.traverse
derivative
(const (Z :. newCols :. newRows :. 4 :. (4 :: Int)))
(\f (Z :. a :. b :. derivativeIdx :. pairIdx) ->
let (x, y) = idxFunc (a, b)
(x', y') =
case pairIdx of
0 -> (floor x, floor y)
1 -> (floor x, ceiling y)
2 -> (ceiling x, floor y)
3 -> (ceiling x, ceiling y)
in if (x' < 0) ||
(x' > (fromIntegral cols - 1)) ||
(y' < 0) || (y' > (fromIntegral rows - 1))
then 0
else f (Z :. x' :. y' :. derivativeIdx))
mat = ((newRows * newCols) >< 16) . R.toList $ derivative16
multiplicationResultArray =
fromListUnboxed (Z :. newCols :. newRows :. 4 :. 4) .
NL.toList . flatten $
mat NL.<> maxtrixA
in R.sumS . R.sumS $
R.traverse
multiplicationResultArray
id
(\f idx@(Z :. a :. b :. i :. j) ->
let (x, y) = idxFunc (a, b)
x' = x - fromIntegral (floor x :: Int)
y' = y - fromIntegral (floor y :: Int)
in f idx * (x' ^ i) * (y' ^ j))
where
maxtrixA =
NL.fromColumns . L.map NL.fromList $
[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
, [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
, [-3, 3, 0, 0, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
, [2, -2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
, [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
, [0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, -2, -1, 0, 0]
, [0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 1, 1, 0, 0]
, [-3, 0, 3, 0, 0, 0, 0, 0, -2, 0, -1, 0, 0, 0, 0, 0]
, [0, 0, 0, 0, -3, 0, 3, 0, 0, 0, 0, 0, -2, 0, -1, 0]
, [9, -9, -9, 9, 6, 3, -6, -3, 6, -6, 3, -3, 4, 2, 2, 1]
, [-6, 6, 6, -6, -3, -3, 3, 3, -4, 4, -2, 2, -2, -2, -1, -1]
, [2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]
, [0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0]
, [-6, 6, 6, -6, -4, -2, 4, 2, -3, 3, -3, 3, -2, -1, -2, -1]
, [4, -4, -4, 4, 2, 2, -2, -2, 2, -2, 2, -2, 1, 1, 1, 1]
]
{-# INLINE bilinearInterpolation #-}
bilinearInterpolation ::
(R.Source r Double)
=> ((Int, Int) -> (Double, Double))
-> (Int, Int)
-> R.Array r DIM2 Double
-> R.Array U DIM2 Double
bilinearInterpolation idxFunc (newCols, newRows) arr =
let (Z :. cols :. rows) = extent arr
in computeS . R.traverse arr id $ \f (Z :. a :. b) ->
let (x, y) = idxFunc (a, b)
x1 = floor x
x2 = ceiling x
y1 = floor y
y2 = ceiling y
q11 = f (Z :. x1 :. y1)
q12 = f (Z :. x1 :. y2)
q21 = f (Z :. x2 :. y1)
q22 = f (Z :. x2 :. y2)
r1 =
((fromIntegral x2 - x) / fromIntegral (x2 - x1)) * q11 +
((x - fromIntegral x1) / fromIntegral (x2 - x1)) * q21
r2 =
((fromIntegral x2 - x) / fromIntegral (x2 - x1)) * q12 +
((x - fromIntegral x1) / fromIntegral (x2 - x1)) * q22
p =
((fromIntegral y2 - y) / fromIntegral (y2 - y1)) * r1 +
((y - fromIntegral y1) / fromIntegral (y2 - y1)) * r2
in if (x < 0) ||
(x > (fromIntegral cols - 1)) ||
(y < 0) || (y > (fromIntegral rows - 1))
then 0
else if x1 == x2
then if y1 == y2
then q11
else ((fromIntegral y2 - y) / fromIntegral (y2 - y1)) *
q11 +
((y - fromIntegral y1) / fromIntegral (y2 - y1)) *
q12
else if y1 == y2
then r1
else p
{-# INLINE resize2D #-}
resize2D ::
(Source s Double)
=> (Int, Int)
-> (Double, Double)
-> R.Array s DIM2 Double
-> R.Array D DIM2 Double
resize2D newSize@(newNx, newNy) bound arr =
normalizeValueRange bound $
bicubicInterpolation
(\(i, j) -> (ratioX * fromIntegral i, ratioY * fromIntegral j))
newSize
arr
where
(Z :. nx' :. ny') = extent arr
ratioX = fromIntegral nx' / fromIntegral newNx
ratioY = fromIntegral ny' / fromIntegral newNy
{-# INLINE resize25D #-}
resize25D ::
(Source s Double)
=> (Int, Int)
-> (Double, Double)
-> R.Array s DIM3 Double
-> R.Array D DIM3 Double
resize25D newSize@(newNx, newNy) bound arr =
normalizeValueRange bound .
fromUnboxed (Z :. nf' :. newNx :. newNy) .
VU.concat .
L.map
(\i ->
toUnboxed .
bicubicInterpolation
(\(i, j) -> (ratioX * fromIntegral i, ratioY * fromIntegral j))
newSize .
R.slice arr $
(Z :. i :. R.All :. R.All)) $
[0 .. nf' - 1]
where
(Z :. nf' :. nx' :. ny') = extent arr
ratioX = fromIntegral nx' / fromIntegral newNx
ratioY = fromIntegral ny' / fromIntegral newNy
{-# INLINE resize2DFixedRatio #-}
resize2DFixedRatio ::
(Source s Double)
=> Int
-> (Double, Double)
-> R.Array s DIM2 Double
-> R.Array D DIM2 Double
resize2DFixedRatio n bound arr =
normalizeValueRange bound $
bicubicInterpolation
(\(i, j) -> (ratio * fromIntegral i, ratio * fromIntegral j))
newSize
arr
where
(Z :. nx' :. ny') = extent arr
newSize =
if nx' > ny'
then (n, round $ fromIntegral ny' * ratio)
else (round $ fromIntegral nx' * ratio, n)
ratio = fromIntegral (max nx' ny') / fromIntegral n
{-# INLINE resize25DFixedRatio #-}
resize25DFixedRatio ::
(Source s Double)
=> Int
-> (Double, Double)
-> R.Array s DIM3 Double
-> R.Array D DIM3 Double
resize25DFixedRatio n bound arr =
normalizeValueRange bound .
fromUnboxed (Z :. nf' :. newNx :. newNy) .
VU.concat .
L.map
(\i ->
toUnboxed .
bicubicInterpolation
(\(i, j) -> (ratio * fromIntegral i, ratio * fromIntegral j))
newSize .
R.slice arr $
(Z :. i :. R.All :. R.All)) $
[0 .. nf' - 1]
where
(Z :. nf' :. nx' :. ny') = extent arr
newSize@(newNx, newNy) =
if nx' > ny'
then (n, round $ fromIntegral ny' * ratio)
else (round $ fromIntegral nx' * ratio, n)
ratio = fromIntegral (max nx' ny') / fromIntegral n
{-# INLINE rescale2D #-}
rescale2D ::
(Source s Double)
=> Double
-> (Double, Double)
-> R.Array s DIM2 Double
-> R.Array D DIM2 Double
rescale2D scale bound arr =
normalizeValueRange bound $
bicubicInterpolation
(\(i, j) -> (fromIntegral i / scale, fromIntegral j / scale))
(round $ scale * fromIntegral nx', round $ scale * fromIntegral ny')
arr
where
(Z :. nx' :. ny') = extent arr
{-# INLINE rescale25D #-}
rescale25D ::
(Source s Double)
=> Double
-> (Double, Double)
-> R.Array s DIM3 Double
-> R.Array D DIM3 Double
rescale25D scale bound arr =
normalizeValueRange bound .
fromUnboxed (Z :. nf' :. newNx :. newNy) .
VU.concat .
L.map
(\i ->
toUnboxed .
bicubicInterpolation
(\(i, j) -> (fromIntegral i / scale, fromIntegral j / scale))
(newNx, newNy) .
R.slice arr $
(Z :. i :. R.All :. R.All)) $
[0 .. nf' - 1]
where
(Z :. nf' :. nx' :. ny') = extent arr
newNx = round $ scale * fromIntegral nx'
newNy = round $ scale * fromIntegral ny'
{-# INLINE rotate2D #-}
rotate2D ::
(Source s Double)
=> Double
-> (Double, Double)
-> R.Array s DIM2 Double
-> R.Array U DIM2 Double
rotate2D theta (centerX, centerY) arr =
bicubicInterpolation
(\(i, j) ->
let i' = fromIntegral i - centerX
j' = fromIntegral j - centerY
in ( i' * cos theta - j' * sin theta + centerX
, i' * sin theta + j' * cos theta + centerY))
(nx', ny')
arr
where
(Z :. nx' :. ny') = extent arr
{-# INLINE rotate25D #-}
rotate25D ::
(Source s Double)
=> Double
-> (Double, Double)
-> R.Array s DIM3 Double
-> R.Array U DIM3 Double
rotate25D theta (centerX, centerY) arr =
fromUnboxed (Z :. nf' :. nx' :. ny') .
VU.concat .
L.map
(\i ->
toUnboxed .
-- bicubicInterpolation
bilinearInterpolation
(\(i, j) ->
let i' = fromIntegral i - centerX
j' = fromIntegral j - centerY
in ( i' * cos theta - j' * sin theta + centerX
, i' * sin theta + j' * cos theta + centerY))
(nx', ny') .
R.slice arr $
(Z :. i :. R.All :. R.All)) $
[0 .. nf' - 1]
where
(Z :. nf' :. nx' :. ny') = extent arr
|
{-# language InstanceSigs, DerivingStrategies #-}
{-# language PartialTypeSignatures #-}
{-# OPTIONS_GHC -fno-warn-partial-type-signatures #-}
{-| This module defines the 'Shaped' typeclass, which is used to generically
manipulate values as fixed-points of higher-order functors in order to
analyze their structure, e.g. while observing evaluation.
If you just care about testing the strictness of functions over datatypes
which are already instances of @Shaped@, you don't need to use this module.
__Important note:__ To define new instances of 'Shaped' for types which
implement 'GHC.Generic', __an empty instance will suffice__, as all the
methods of 'Shaped' can be filled in by generic implementations. For
example:
> import GHC.Generics as GHC
> import Generics.SOP as SOP
>
> data D = C deriving (GHC.Generic)
>
> instance SOP.Generic D
> instance SOP.HasDatatypeInfo D
>
> instance Shaped D
Using the @DeriveAnyClass@ extension, this can be shortened to one line:
> data D = C deriving (GHC.Generic, SOP.Generic, SOP.HasDatatypeInfo, Shaped)
Manual instances of 'Shaped' are necessary for types which do not or cannot
implement GHC's @Generic@ typeclass, such as existential types, abstract
types, and GADTs.
This module is heavily based upon the approach in "Data.Functor.Foldable",
which in turn is modeled after the paper "Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire" (1991) by Erik Meijer, Maarten
Fokkinga and Ross Paterson. If you don't yet understand recursion schemes
and want to understand this module, it's probably a good idea to familiarize
yourself with "Data.Functor.Foldable" before diving into this higher-order
generalization.
-}
module Test.StrictCheck.Shaped
( Shaped(..)
, module Test.StrictCheck.Shaped.Flattened
-- * Fixed-points of 'Shape's
, type (%)(..)
-- * Folds and unfolds over fixed-points of @Shape@s
, unwrap
, interleave
, (%)
, fuse
, translate
, fold
, unfold
, unzipWith
-- , reshape
-- * Rendering 'Shaped' things as structured text
, QName
, Rendered(..)
, RenderLevel(..)
, renderfold
-- * Tools for manually writing instances of 'Shaped'
-- ** Implementing 'Shaped' for primitive types
, Prim(..), unPrim
, projectPrim
, embedPrim
, matchPrim
, flatPrim
, renderPrim
, renderConstant
-- ** Implementing 'Shaped' for container types
, Containing(..)
, projectContainer
, embedContainer
-- * Generic implementation of the methods of 'Shaped'
, GShaped
, GShape(..)
, gProject
, gEmbed
, gMatch
, gRender
) where
import Type.Reflection
import Data.Functor.Product
import Data.Bifunctor
import Data.Bifunctor.Flip
import Data.Coerce
import Generics.SOP hiding ( Shape )
import Data.Complex
-- import Data.List.NonEmpty (NonEmpty(..))
import Test.StrictCheck.Shaped.Flattened
-- TODO: provide instances for all of Base
-- | When a type @a@ is @Shaped@, we know how to convert it into a
-- representation parameterized by an arbitrary functor @f@, so that @Shape a f@
-- (the "shape of @a@ parameterized by @f@") is structurally identical to the
-- topmost structure of @a@, but with @f@ wrapped around any subfields of @a@.
--
-- Note that this is /not/ a recursive representation! The functor @f@ in
-- question wraps the original type of the field and /not/ a @Shape@ of that
-- field.
--
-- For instance, the @Shape@ of @Either a b@ might be:
--
-- > data EitherShape a b f
-- > = LeftShape (f a)
-- > | RightShape (f b)
-- >
-- > instance Shaped (Either a b) where
-- > type Shape (Either a b) = EitherShape a b
-- > ...
--
-- The shape of a primitive type should be isomorphic to the primitive type,
-- with the functor parameter left unused.
class Typeable a => Shaped (a :: *) where
-- | The @Shape@ of an @a@ is a type isomorphic to the outermost level of
-- structure in an @a@, parameterized by the functor @f@, which is wrapped
-- around any fields (of any type) in the original @a@.
type Shape a :: (* -> *) -> *
type Shape a = GShape a
-- | Given a function to expand any @Shaped@ @x@ into an @f x@, expand an @a@
-- into a @Shape a f@
--
-- That is: convert the top-most level of structure in the given @a@ into a
-- @Shape@, calling the provided function on each field in the @a@ to produce
-- the @f x@ necessary to fill that hole in the produced @Shape a f@.
--
-- Inverse to 'embed'.
project :: (forall x. Shaped x => x -> f x) -> a -> Shape a f
default project
:: GShaped a
=> (forall x. Shaped x => x -> f x)
-> a
-> Shape a f
project = gProject
-- | Given a function to collapse any @f x@ into a @Shaped@ @x@, collapse a
-- @Shape a f@ into merely an @a@
--
-- That is: eliminate the top-most @Shape@ by calling the provided function on
-- each field in that @Shape a f@, and using the results to fill in the pieces
-- necessary to build an @a@.
--
-- Inverse to 'project'.
embed :: (forall x. Shaped x => f x -> x) -> Shape a f -> a
default embed
:: GShaped a
=> (forall x. Shaped x => f x -> x)
-> Shape a f
-> a
embed = gEmbed
-- | Given two @Shape@s of the same type @a@ but parameterized by potentially
-- different functors @f@ and @g@, pattern-match on them to expose a uniform
-- view on their fields (a 'Flattened' @(Shape a)@) to a continuation which
-- may operate on those fields to produce some result
--
-- If the two supplied @Shape@s do not structurally match, only the fields of
-- the first are given to the continuation. If they do match, the fields of
-- the second are also given, along with type-level proof that the types of
-- the two sets of fields align.
--
-- This very general operation subsumes equality testing, mapping, zipping,
-- shrinking, and many other structural operations over @Shaped@ things.
--
-- It is somewhat difficult to manually write instances for this method, but
-- consulting its generic implementation 'gMatch' may prove helpful.
--
-- See "Test.StrictCheck.Shaped.Flattened" for more information.
match :: Shape a f -> Shape a g
-> (forall xs. All Shaped xs
=> Flattened (Shape a) f xs
-> Maybe (Flattened (Shape a) g xs)
-> result)
-> result
default match :: GShaped a
=> Shape a f -> Shape a g
-> (forall xs. All Shaped xs
=> Flattened (Shape a) f xs
-> Maybe (Flattened (Shape a) g xs)
-> result)
-> result
match = gMatch
-- | Convert a @Shape a@ whose fields are some unknown constant type into a
-- 'RenderLevel' filled with that type
--
-- This is a specialized pretty-printing mechanism which allows for displaying
-- counterexamples in a structured format. See the documentation for
-- 'RenderLevel'.
render :: Shape a (K x) -> RenderLevel x
default render :: (GShaped a, HasDatatypeInfo a)
=> Shape a (K x) -> RenderLevel x
render = gRender
-- * Fixed-points of 'Shape's
-- | A value of type @f % a@ has the same structure as an @a@, but with the
-- structure of the functor @f@ interleaved at every field (including ones of
-- types other than @a@). Read this type aloud as "a interleaved with f's".
newtype (f :: * -> *) % (a :: *) :: * where
Wrap :: f (Shape a ((%) f)) -> f % a
-- | Look inside a single level of an interleaved @f % a@. Inverse to the 'Wrap'
-- constructor.
unwrap :: f % a -> f (Shape a ((%) f))
unwrap (Wrap fs) = fs
-- * Folds and unfolds over fixed-points of @Shape@s
-- | Map a function across all the fields in a 'Shape'
--
-- This function may change the functor over which the @Shape@ is parameterized.
-- It can assume recursively that all the fields in the @Shape@ are themselves
-- instances of @Shaped@ (which they should be!). This means that you can nest
-- calls to @translate@ recursively.
translate :: forall a f g. Shaped a
=> (forall x. Shaped x => f x -> g x)
-> Shape a f -> Shape a g
translate t d = match @a d d $ \flat _ ->
unflatten $ mapFlattened @Shaped t flat
-- | The equivalent of a fold (catamorphism) over recursively 'Shaped' values
--
-- Given a function which folds an @f@ containing some @Shape x g@ into a @g x@,
-- recursively fold any interleaved @f % a@ into a @g a@.
fold :: forall a f g. (Functor f, Shaped a)
=> (forall x. Shaped x => f (Shape x g) -> g x)
-> f % a -> g a
fold alg = alg . fmap (translate @a (fold alg)) . unwrap
-- | The equivalent of an unfold (anamorphism) over recursively 'Shaped' values
--
-- Given a function which unfolds an @f x@ into a @g@ containing some @Shape x
-- f@, corecursively unfold any @f a@ into an interleaved @g % a@.
unfold :: forall a f g. (Functor g, Shaped a)
=> (forall x. Shaped x => f x -> g (Shape x f))
-> f a -> g % a
unfold coalg = Wrap . fmap (translate @a (unfold coalg)) . coalg
-- TODO: mapM, foldM, unfoldM, ...
-- | Fuse the interleaved @f@-structure out of a recursively interleaved @f %
-- a@, given some way of fusing a single level @f x -> x@.
--
-- This is a special case of 'fold'.
fuse
:: (Functor f, Shaped a)
=> (forall x. f x -> x)
-> (f % a -> a)
fuse e = e . fold (fmap (embed e))
-- | Interleave an @f@-structure at every recursive level of some @a@, given
-- some way of generating a single level of structure @x -> f x@.
--
-- This is a special case of 'unfold'.
interleave
:: (Functor f, Shaped a)
=> (forall x. x -> f x)
-> (a -> f % a)
interleave p = unfold (fmap (project p)) . p
-- | An infix synonym for 'interleave'
(%) :: forall a f. (Functor f, Shaped a)
=> (forall x. x -> f x)
-> a -> f % a
(%) = interleave
-- | A higher-kinded @unzipWith@, operating over interleaved structures
--
-- Given a function splitting some @f x@ into a functor-product @Product g h x@,
-- recursively split an interleaved @f % a@ into two interleaved structures:
-- one built of @g@-shapes and one of @h@-shapes.
--
-- Note that @Product ((%) g) ((%) h) a@ is isomorphic to @(g % a, h % a)@; to
-- get the latter, pattern-match on the 'Pair' constructor of 'Product'.
unzipWith
:: (All Functor [f, g, h], Shaped a)
=> (forall x. f x -> (g x, h x))
-> (f % a -> (g % a, h % a))
unzipWith split =
unPair . fold (crunch . pair . split)
where
crunch
:: forall x g h.
(Shaped x, Functor g, Functor h)
=> Product g h (Shape x (Product ((%) g) ((%) h)))
-> Product ((%) g) ((%) h) x
crunch =
pair
. bimap (Wrap . fmap (translate @x (fst . unPair)))
(Wrap . fmap (translate @x (snd . unPair)))
. unPair
pair :: (l x, r x) -> Product l r x
pair = uncurry Pair
unPair :: Product l r x -> (l x, r x)
unPair (Pair lx rx) = (lx, rx)
-- | TODO: document this strange function
{-
reshape :: forall b a f g. (Shaped a, Shaped b, Functor f)
=> (f (Shape b ((%) g)) -> g (Shape b ((%) g)))
-> (forall x. Shaped x => f % x -> g % x)
-> f % a -> g % a
reshape homo hetero d =
case eqTypeRep (typeRep @a) (typeRep @b) of
Nothing -> hetero d
Just HRefl ->
Wrap
$ homo . fmap (translate @a (reshape @b homo hetero))
$ unwrap d
-}
----------------------------------
-- Rendering shapes for display --
----------------------------------
-- | Convert an @f % a@ into a structured pretty-printing representation,
-- suitable for further display/processing
renderfold
:: forall a f. (Shaped a, Functor f)
=> f % a -> Rendered f
renderfold = unK . fold oneLevel
where
oneLevel :: forall x. Shaped x
=> f (Shape x (K (Rendered f)))
-> K (Rendered f) x
oneLevel = K . RWrap . fmap (render @x)
-- | A @QName@ is a qualified name
--
-- Note:
-- > type ModuleName = String
-- > type DatatypeName = String
type QName = (ModuleName, DatatypeName, String)
-- | @RenderLevel@ is a functor whose outer shape contains all the information
-- about how to pretty-format the outermost @Shape@ of some value. We use
-- parametricity to make it difficult to construct incorrect 'render' methods,
-- by asking the user merely to produce a single @RenderLevel@ and stitching
-- nested @RenderLevel@s into complete 'Rendered' trees.
data RenderLevel x
= ConstructorD QName [x]
-- ^ A prefix constructor, and a list of its fields
| InfixD QName Associativity Fixity x x
-- ^ An infix constructor, its associativity and fixity, and its two fields
| RecordD QName [(QName, x)]
-- ^ A record constructor, and a list of its field names paired with fields
| CustomD Fixity
[Either (Either String (ModuleName, String)) (Fixity, x)]
-- ^ A custom pretty-printing representation (i.e. for abstract types), which
-- records a fixity and a list of tokens of three varieties: 1) raw strings,
-- 2) qualified strings (from some module), or 3) actual fields, annotated
-- with their fixity
deriving (Eq, Ord, Show, Functor)
-- | @Rendered f@ is the fixed-point of @f@ composed with 'RenderLevel': it
-- alternates between @f@ shapes and @RenderLevel@s. Usually, @f@ will be the
-- identity functor 'I', but not always.
data Rendered f
= RWrap (f (RenderLevel (Rendered f)))
----------------------------------------------------
-- Tools for manually writing instances of Shaped --
----------------------------------------------------
-- | The @Shape@ of a spine-strict container (i.e. a @Map@ or @Set@) is the same
-- as a container of demands on its elements. However, this does not have the
-- right /kind/ to be used as a @Shape@.
--
-- The @Containing@ newtype solves this problem. By defining the @Shape@ of some
-- container @(C a)@ to be @(C `Containing` a)@, you can use the methods
-- @projectContainer@ and @embedContainer@ to implement @project@ and @embed@
-- for your container type (although you will still need to manually define
-- @match@ and @render@).
newtype Containing h a f
= Container (h (f a))
deriving (Eq, Ord, Show)
-- | Generic implementation of @project@ for any container type whose @Shape@
-- is represented as a @Containing@ newtype
projectContainer :: (Functor c, Shaped a)
=> (forall x. Shaped x => x -> f x)
-> c a -> Containing c a f
projectContainer p x = Container (fmap p x)
-- | Generic implementation of @embed@ for any container type whose @Shape@
-- is represented as a @Containing@ newtype
embedContainer :: (Functor c, Shaped a)
=> (forall x. Shaped x => f x -> x)
-> Containing c a f -> c a
embedContainer e (Container x) = fmap e x
-- TODO: helper functions for matching and prettying containers
-- | The @Shape@ of a primitive type should be equivalent to the type itself.
-- However, this does not have the right /kind/ to be used as a @Shape@.
--
-- The @Prim@ newtype solves this problem. By defining the @Shape@ of some
-- primitive type @p@ to be @Prim p@, you can use the methods @projectPrim@,
-- @embedPrim@, @matchPrim@, and @prettyPrim@ to completely fill in the
-- definition of the @Shaped@ class for a primitive type.
--
-- __Note:__ It is only appropriate to use this @Shape@ representation when a
-- type really is primitive, in that it contains no interesting substructure.
-- If you use the @Prim@ representation inappropriately, StrictCheck will not be
-- able to inspect the richer structure of the type in question.
newtype Prim (x :: *) (f :: * -> *)
= Prim x
deriving (Eq, Ord, Show)
deriving newtype (Num)
-- | Get the wrapped @x@ out of a @Prim x f@ (inverse to the @Prim@ constructor)
unPrim :: Prim x f -> x
unPrim (Prim x) = x
-- | Generic implementation of @project@ for any primitive type whose @Shape@ is
-- is represented as a @Prim@ newtype
projectPrim :: (forall x. Shaped x => x -> f x) -> a -> Prim a f
projectPrim _ = Prim
-- | Generic implementation of @embed@ for any primitive type whose @Shape@ is
-- is represented as a @Prim@ newtype
embedPrim :: (forall x. Shaped x => f x -> x) -> Prim a f -> a
embedPrim _ = unPrim
-- | Generic implementation of @match@ for any primitive type whose @Shape@ is
-- is represented as a @Prim@ newtype with an underlying @Eq@ instance
matchPrim :: Eq a => Prim a f -> Prim a g
-> (forall xs. All Shaped xs
=> Flattened (Prim a) f xs
-> Maybe (Flattened (Prim a) g xs)
-> result)
-> result
matchPrim (Prim a) (Prim b) k =
k (flatPrim a)
(if a == b then (Just (flatPrim b)) else Nothing)
-- | Helper for writing @match@ instances for primitive types which don't have
-- @Eq@ instance
--
-- This generates a @Flattened@ appropriate for using in the implementation of
-- @match@. For more documentation on how to use this, see the documentation of
-- 'match'.
flatPrim :: a -> Flattened (Prim a) g '[]
flatPrim x = Flattened (const (Prim x)) Nil
-- | Generic implementation of @render@ for any primitive type whose @Shape@ is
-- is represented as a @Prim@ newtype
renderPrim :: Show a => Prim a (K x) -> RenderLevel x
renderPrim (Prim a) = renderConstant (show a)
-- | Given some @string@, generate a custom pretty-printing representation which
-- just shows the string
renderConstant :: String -> RenderLevel x
renderConstant s = CustomD 11 [Left (Left s)]
-- TODO: What about demands for abstract types with > 1 type of unbounded-count field?
{-
withFieldsContainer ::
forall c a f result.
(forall r h.
c (h a) ->
(forall x. Shaped x
=> [h x]
-> (forall g. [g x] -> c (g a))
-> r)
-> r)
-> Containing c a f
-> (forall xs. All Shaped xs
=> NP f xs
-> (forall g. NP g xs -> Containing c a g)
-> result)
-> result
withFieldsContainer viaContaining (Container c) cont =
viaContaining c $
\list un ->
withNP @Shaped list (Container . un) cont
-- TODO: Make this work for any number of lists of fields, by carefully using
-- unsafeCoerce to deal with unknown list lengths
withFieldsViaList ::
forall demand f result.
(forall r h.
demand h ->
(forall x. Shaped x
=> [h x]
-> (forall g. [g x] -> demand g)
-> r)
-> r)
-> demand f
-> (forall xs. All Shaped xs
=> NP f xs
-> (forall g. NP g xs -> demand g)
-> result)
-> result
withFieldsViaList viaList demand cont =
viaList demand $
\list un ->
withNP @Shaped list un cont
withNP :: forall c demand result f x. c x
=> [f x]
-> (forall g. [g x] -> demand g)
-> (forall xs. All c xs
=> NP f xs -> (forall g. NP g xs -> demand g) -> result)
-> result
withNP list unList cont =
withUnhomogenized @c list $ \np ->
cont np (unList . homogenize)
withConcatenated :: NP (NP f) xss -> (forall xs. NP f xs -> r) -> r
withConcatenated pop cont =
case pop of
Nil -> cont Nil
(xs :* xss) -> withConcatenated xss (withPrepended xs cont)
where
withPrepended ::
NP f ys -> (forall zs. NP f zs -> r)
-> (forall zs. NP f zs -> r)
withPrepended pre k rest =
case pre of
Nil -> k rest
(x :* xs) -> withPrepended xs (k . (x :*)) rest
homogenize :: All ((~) a) as => NP f as -> [f a]
homogenize Nil = []
homogenize (a :* as) = a : homogenize as
withUnhomogenized :: forall c a f r.
c a => [f a] -> (forall as. (All c as, All ((~) a) as) => NP f as -> r) -> r
withUnhomogenized [] k = k Nil
withUnhomogenized (a : as) k =
withUnhomogenized @c as $ \np -> k (a :* np)
-}
---------------------------------------------------
-- Generic implementation of the Shaped methods --
---------------------------------------------------
-- | The 'Shape' used for generic implementations of 'Shaped'
--
-- This wraps a sum-of-products representation from "Generics.SOP".
newtype GShape a f
= GS (NS (NP f) (Code a))
-- | The collection of constraints necessary for a type to be given a generic
-- implementation of the 'Shaped' methods
type GShaped a =
( Generic a
, Shape a ~ GShape a
, All2 Shaped (Code a)
, SListI (Code a)
, All SListI (Code a) )
-- | Generic 'project'
gProject :: GShaped a
=> (forall x. Shaped x => x -> f x)
-> a -> Shape a f
gProject p !(from -> sop) =
GS (unSOP (hcliftA (Proxy @Shaped) (p . unI) sop))
-- | Generic 'embed'
gEmbed :: GShaped a
=> (forall x. Shaped x => f x -> x)
-> Shape a f -> a
gEmbed e !(GS d) =
to (hcliftA (Proxy @Shaped) (I . e) (SOP d))
-- | Generic 'match'
gMatch :: forall a f g result. GShaped a
=> Shape a f -> Shape a g
-> (forall xs. All Shaped xs
=> Flattened (Shape a) f xs
-> Maybe (Flattened (Shape a) g xs)
-> result)
-> result
gMatch !(GS df) !(GS dg) cont =
go @(Code a) df (Just dg) $ \flatF mflatG ->
cont (flatGD flatF) (flatGD <$> mflatG)
where
go :: forall xss r.
(All SListI xss, All2 Shaped xss)
=> NS (NP f) xss
-> Maybe (NS (NP g) xss)
-> (forall xs. All Shaped xs
=> Flattened (Flip SOP xss) f xs
-> Maybe (Flattened (Flip SOP xss) g xs)
-> r)
-> r
go (Z (fieldsF :: _ xs)) (Just (Z fieldsG)) k =
k @xs (flatZ fieldsF) (Just (flatZ fieldsG))
go (Z (fieldsF :: _ xs)) _ k = -- Nothing | Just (S _)
k @xs (flatZ fieldsF) Nothing
go (S moreF) Nothing k =
go moreF Nothing $ \(flatF :: _ xs) _ ->
k @xs (flatS flatF) Nothing
go (S moreF) (Just (Z _)) k =
go moreF Nothing $ \(flatF :: _ xs) _ ->
k @xs (flatS flatF) Nothing
go (S moreF) (Just (S moreG)) k =
go moreF (Just moreG) $ \(flatF :: _ xs) mflatG ->
k @xs (flatS flatF) (flatS <$> mflatG)
flatZ
:: forall h xs xss. NP h xs -> Flattened (Flip SOP (xs : xss)) h xs
flatZ = Flattened (Flip . SOP . Z)
flatS
:: forall h xs xs' xss.
Flattened (Flip SOP xss) h xs
-> Flattened (Flip SOP (xs' : xss)) h xs
flatS (Flattened un fields) =
Flattened (Flip . SOP . S . coerce . un) fields
flatGD :: forall t h xs.
Flattened (Flip SOP (Code t)) h xs -> Flattened (GShape t) h xs
flatGD (Flattened un fields) =
Flattened (GS . coerce . un) fields
-- | Generic 'render'
gRender :: forall a x. (HasDatatypeInfo a, GShaped a)
=> Shape a (K x) -> RenderLevel x
gRender (GS demand) =
case info of
ADT m d cs ->
renderC m d demand cs
Newtype m d c ->
renderC m d demand (c :* Nil)
where
info = datatypeInfo (Proxy @a)
renderC :: forall as. ModuleName -> DatatypeName
-> NS (NP (K x)) as
-> NP ConstructorInfo as
-> RenderLevel x
renderC m d subShape constructors =
case (subShape, constructors) of
(Z demandFields, c :* _) ->
case c of
Constructor name ->
ConstructorD (m, d, name) $
hcollapse demandFields
Infix name associativity fixity ->
case demandFields of
(K a :* K b :* Nil) ->
InfixD (m, d, name) associativity fixity a b
Record name fieldsInfo ->
RecordD (m, d, name) $
zip ( hcollapse
. hliftA (\(FieldInfo f) -> K (m, d, f))
$ fieldsInfo )
(hcollapse demandFields)
(S another, _ :* different) ->
renderC m d another different
---------------
-- Instances --
---------------
instance Shaped ()
instance Shaped Bool
instance Shaped Ordering
instance Shaped a => Shaped (Maybe a)
instance (Shaped a, Shaped b) => Shaped (Either a b)
instance Shaped a => Shaped [a]
instance (Typeable a, Typeable b) => Shaped (a -> b) where
type Shape (a -> b) = Prim (a -> b)
project = projectPrim
embed = embedPrim
match (Prim f) (Prim g) k = k (flatPrim f) (Just $ flatPrim g)
render _ = renderConstant ("<function> :: " ++ show (typeRep @(a -> b)))
instance Shaped Char where
type Shape Char = Prim Char
project = projectPrim
embed = embedPrim
match = matchPrim
render = renderPrim
instance Shaped Word where
type Shape Word = Prim Word
project = projectPrim
embed = embedPrim
match = matchPrim
render = renderPrim
instance Shaped Int where
type Shape Int = Prim Int
project = projectPrim
embed = embedPrim
match = matchPrim
render = renderPrim
instance Shaped Double where
type Shape Double = Prim Double
project = projectPrim
embed = embedPrim
match = matchPrim
render = renderPrim
instance Shaped Float where
type Shape Float = Prim Float
project = projectPrim
embed = embedPrim
match = matchPrim
render = renderPrim
instance Shaped Rational where
type Shape Rational = Prim Rational
project = projectPrim
embed = embedPrim
match = matchPrim
render = renderPrim
instance Shaped Integer where
type Shape Integer = Prim Integer
project = projectPrim
embed = embedPrim
match = matchPrim
render = renderPrim
instance (Typeable a, Eq a, Show a) => Shaped (Complex a) where
type Shape (Complex a) = Prim (Complex a)
project = projectPrim
embed = embedPrim
match = matchPrim
render = renderPrim
-- instance Generic (NonEmpty a)
-- instance HasDatatypeInfo (NonEmpty a)
-- instance Shaped a => Shaped (NonEmpty a) where
-- Tree
-- Map k
-- Seq
-- Set
-- IntMap
-- IntSet
instance (Shaped a, Shaped b) => Shaped (a, b)
instance (Shaped a, Shaped b, Shaped c) => Shaped (a, b, c)
instance (Shaped a, Shaped b, Shaped c, Shaped d) => Shaped (a, b, c, d)
instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e
) => Shaped
(a, b, c, d, e)
instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
) => Shaped
(a, b, c, d, e, f)
instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
, Shaped g
) => Shaped
(a, b, c, d, e, f, g)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h
-- ) => Shaped
-- (a, b, c, d, e, f, g, h)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q, Shaped r
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q, Shaped r
-- , Shaped s
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q, Shaped r
-- , Shaped s, Shaped t
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q, Shaped r
-- , Shaped s, Shaped t, Shaped u
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q, Shaped r
-- , Shaped s, Shaped t, Shaped u, Shaped v
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q, Shaped r
-- , Shaped s, Shaped t, Shaped u, Shaped v, Shaped w
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q, Shaped r
-- , Shaped s, Shaped t, Shaped u, Shaped v, Shaped w, Shaped x
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q, Shaped r
-- , Shaped s, Shaped t, Shaped u, Shaped v, Shaped w, Shaped x
-- , Shaped y
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y)
-- instance ( Shaped a, Shaped b, Shaped c, Shaped d, Shaped e, Shaped f
-- , Shaped g, Shaped h, Shaped i, Shaped j, Shaped k, Shaped l
-- , Shaped m, Shaped n, Shaped o, Shaped p, Shaped q, Shaped r
-- , Shaped s, Shaped t, Shaped u, Shaped v, Shaped w, Shaped x
-- , Shaped y, Shaped z
-- ) => Shaped
-- (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z)
|
library(MASS)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ascii)
library(lubridate)
library(splines)
library(mgcv)
## Import datasets needed for chapter 4
PSDS_PATH <- file.path('~', 'statistics-for-data-scientists')
lung <- read.csv(file.path(PSDS_PATH, 'data', 'LungDisease.csv'))
zhvi <- read.csv(file.path(PSDS_PATH, 'data', 'County_Zhvi_AllHomes.csv'))
zhvi <- unlist(zhvi[13,-(1:5)])
dates <- parse_date_time(paste(substr(names(zhvi), start=2, stop=8), "01", sep="."), "Ymd")
zhvi <- data.frame(ym=dates, zhvi_px=zhvi, row.names = NULL) %>%
mutate(zhvi_idx=zhvi/last(zhvi))
house <- read.csv(file.path(PSDS_PATH, 'data', 'house_sales.csv'), sep='\t')
# house <- house[house$ZipCode > 0, ]
# write.table(house, file.path(PSDS_PATH, 'data', 'house_sales.csv'), sep='\t')
## Code for Figure 1
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0401.png'), width = 4, height=4, units='in', res=300)
par(mar=c(4,4,0,0)+.1)
plot(lung$Exposure, lung$PEFR, xlab="Exposure", ylab="PEFR")
dev.off()
## Code snippet 4.1
model <- lm(PEFR ~ Exposure, data=lung)
model
## Code for figure 2
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0402.png'), width = 350, height = 350)
par(mar=c(4,4,0,0)+.1)
plot(lung$Exposure, lung$PEFR, xlab="Exposure", ylab="PEFR", ylim=c(300,450), type="n", xaxs="i")
abline(a=model$coefficients[1], b=model$coefficients[2], col="blue", lwd=2)
text(x=.3, y=model$coefficients[1], labels=expression("b"[0]), adj=0, cex=1.5)
x <- c(7.5, 17.5)
y <- predict(model, newdata=data.frame(Exposure=x))
segments(x[1], y[2], x[2], y[2] , col="red", lwd=2, lty=2)
segments(x[1], y[1], x[1], y[2] , col="red", lwd=2, lty=2)
text(x[1], mean(y), labels=expression(Delta~Y), pos=2, cex=1.5)
text(mean(x), y[2], labels=expression(Delta~X), pos=1, cex=1.5)
text(mean(x), 400, labels=expression(b[1] == frac(Delta ~ Y, Delta ~ X)), cex=1.5)
dev.off()
## Code snippet 4.2
fitted <- predict(model)
resid <- residuals(model)
## Code for figure 3
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0403.png'), width = 4, height=4, units='in', res=300)
par(mar=c(4,4,0,0)+.1)
lung1 <- lung %>%
mutate(Fitted=fitted,
positive = PEFR>Fitted) %>%
group_by(Exposure, positive) %>%
summarize(PEFR_max = max(PEFR),
PEFR_min = min(PEFR),
Fitted = first(Fitted)) %>%
ungroup() %>%
mutate(PEFR = ifelse(positive, PEFR_max, PEFR_min)) %>%
arrange(Exposure)
plot(lung$Exposure, lung$PEFR, xlab="Exposure", ylab="PEFR")
abline(a=model$coefficients[1], b=model$coefficients[2], col="blue", lwd=2)
segments(lung1$Exposure, lung1$PEFR, lung1$Exposure, lung1$Fitted, col="red", lty=3)
dev.off()
## Code snippet 4.3
head(house[, c("AdjSalePrice", "SqFtTotLiving", "SqFtLot", "Bathrooms",
"Bedrooms", "BldgGrade")])
## Code snippet 4.4
house_lm <- lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms +
Bedrooms + BldgGrade,
data=house, na.action=na.omit)
## Code snippet 4.5
house_lm
## Code snippet 4.6
summary(house_lm)
## Code snippet 4.7
house_full <- lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms +
Bedrooms + BldgGrade + PropertyType + NbrLivingUnits +
SqFtFinBasement + YrBuilt + YrRenovated + NewConstruction,
data=house, na.action=na.omit)
## Code snippet 4.8
step_lm <- stepAIC(house_full, direction="both")
step_lm
lm(AdjSalePrice ~ Bedrooms, data=house)
# WeightedRegression
## Code snippet 4.9
house$Year = year(house$DocumentDate)
house$Weight = house$Year - 2005
## Code snippet 4.10
house_wt <- lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms +
Bedrooms + BldgGrade,
data=house, weight=Weight, na.action=na.omit)
round(cbind(house_lm=house_lm$coefficients,
house_wt=house_wt$coefficients), digits=3)
# Factor Variables
## Code snippet 4.11
head(house[, 'PropertyType'])
## Code snippet 4.12
prop_type_dummies <- model.matrix(~PropertyType -1, data=house)
head(prop_type_dummies)
## Code snippet 4.13
lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms +
Bedrooms + BldgGrade + PropertyType, data=house)
## Code snippet 4.14
table(house$ZipCode)
## Code snippet 4.15
zip_groups <- house %>%
mutate(resid = residuals(house_lm)) %>%
group_by(ZipCode) %>%
summarize(med_resid = median(resid),
cnt = n()) %>%
# sort the zip codes by the median residual
arrange(med_resid) %>%
mutate(cum_cnt = cumsum(cnt),
ZipGroup = factor(ntile(cum_cnt, 5)))
house <- house %>%
left_join(select(zip_groups, ZipCode, ZipGroup), by='ZipCode')
# correlated variables
# Code snippet 4.15
step_lm$coefficients
# Code snippet 4.16
update(step_lm, . ~ . -SqFtTotLiving - SqFtFinBasement - Bathrooms)
# ConfoundingVariables
## Code snippet 4.17
lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot +
Bathrooms + Bedrooms +
BldgGrade + PropertyType + ZipGroup,
data=house, na.action=na.omit)
# Interactions
## Code snippet 4.18
lm(AdjSalePrice ~ SqFtTotLiving*ZipGroup + SqFtLot +
Bathrooms + Bedrooms +
BldgGrade + PropertyType,
data=house, na.action=na.omit)
head(model.matrix(~C(PropertyType, sum) , data=house))
# outlier anaysis
## Code snippet 4.19
house_98105 <- house[house$ZipCode == 98105,]
lm_98105 <- lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms +
Bedrooms + BldgGrade, data=house_98105)
## Code snippet 4.20
sresid <- rstandard(lm_98105)
idx <- order(sresid, decreasing=FALSE)
sresid[idx[1]]
resid(lm_98105)[idx[1]]
## Code snippet 4.21
house_98105[idx[1], c('AdjSalePrice', 'SqFtTotLiving', 'SqFtLot',
'Bathrooms', 'Bedrooms', 'BldgGrade')]
# Figure 4-5: Influential data point in regression
seed <- 11
set.seed(seed)
x <- rnorm(25)
y <- -x/5 + rnorm(25)
x[1] <- 8
y[1] <- 8
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0405.png'), width = 4, height=4, units='in', res=300)
par(mar=c(3,3,0,0)+.1)
plot(x, y, xlab='', ylab='', pch=16)
model <- lm(y~x)
abline(a=model$coefficients[1], b=model$coefficients[2], col="blue", lwd=3)
model <- lm(y[-1]~x[-1])
abline(a=model$coefficients[1], b=model$coefficients[2], col="red", lwd=3, lty=2)
dev.off()
# influential observations
## Code snippet 4.22
std_resid <- rstandard(lm_98105)
cooks_D <- cooks.distance(lm_98105)
hat_values <- hatvalues(lm_98105)
plot(hat_values, std_resid, cex=10*sqrt(cooks_D))
abline(h=c(-2.5, 2.5), lty=2)
## Code for Figure 4-6
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0406.png'), width = 4, height=4, units='in', res=300)
par(mar=c(4,4,0,0)+.1)
plot(hat_values, std_resid, cex=10*sqrt(cooks_D))
abline(h=c(-2.5, 2.5), lty=2)
dev.off()
## Table 4-2
lm_98105_inf <- lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot +
Bathrooms + Bedrooms + BldgGrade,
subset=cooks_D<.08, data=house_98105)
df <- data.frame(lm_98105$coefficients,
lm_98105_inf$coefficients)
names(df) <- c('Original', 'Influential Removed')
ascii((df),
include.rownames=TRUE, include.colnames=TRUE, header=TRUE,
digits=rep(0, 3), align=c("l", "r", "r") ,
caption="Comparison of regression coefficients with the full data and with influential data removed")
## heteroskedasticity
## Code snippet 4.23
df <- data.frame(
resid = residuals(lm_98105),
pred = predict(lm_98105))
ggplot(df, aes(pred, abs(resid))) +
geom_point() +
geom_smooth()
## Code for figure 4-7
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0407.png'), width = 4, height=4, units='in', res=300)
ggplot(df, aes(pred, abs(resid))) +
geom_point() +
geom_smooth() +
theme_bw()
dev.off()
## Code for figure 4-8
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0408.png'), width = 4, height=4, units='in', res=300)
par(mar=c(4,4,0,0)+.1)
hist(std_resid, main='')
dev.off()
## partial residuals plot
## Code snippet 4.24
terms <- predict(lm_98105, type='terms')
partial_resid <- resid(lm_98105) + terms
## Code snippet 4.25
df <- data.frame(SqFtTotLiving = house_98105[, 'SqFtTotLiving'],
Terms = terms[, 'SqFtTotLiving'],
PartialResid = partial_resid[, 'SqFtTotLiving'])
ggplot(df, aes(SqFtTotLiving, PartialResid)) +
geom_point(shape=1) + scale_shape(solid = FALSE) +
geom_smooth(linetype=2) +
geom_line(aes(SqFtTotLiving, Terms))
## Code for figure 4-9
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0409.png'), width = 4, height=4, units='in', res=300)
df <- data.frame(SqFtTotLiving = house_98105[, 'SqFtTotLiving'],
Terms = terms[, 'SqFtTotLiving'],
PartialResid = partial_resid[, 'SqFtTotLiving'])
ggplot(df, aes(SqFtTotLiving, PartialResid)) +
geom_point(shape=1) + scale_shape(solid = FALSE) +
geom_smooth(linetype=2) +
theme_bw() +
geom_line(aes(SqFtTotLiving, Terms))
dev.off()
## Code snippet 4.26
lm(AdjSalePrice ~ poly(SqFtTotLiving, 2) + SqFtLot +
BldgGrade + Bathrooms + Bedrooms,
data=house_98105)
lm_poly <- lm(AdjSalePrice ~ poly(SqFtTotLiving, 2) + SqFtLot +
BldgGrade + Bathrooms + Bedrooms,
data=house_98105)
terms <- predict(lm_poly, type='terms')
partial_resid <- resid(lm_poly) + terms
## Code for Figure 4-10
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0410.png'), width = 4, height=4, units='in', res=300)
df <- data.frame(SqFtTotLiving = house_98105[, 'SqFtTotLiving'],
Terms = terms[, 1],
PartialResid = partial_resid[, 1])
ggplot(df, aes(SqFtTotLiving, PartialResid)) +
geom_point(shape=1) + scale_shape(solid = FALSE) +
geom_smooth(linetype=2) +
geom_line(aes(SqFtTotLiving, Terms))+
theme_bw()
dev.off()
## Code snippet 4.27
knots <- quantile(house_98105$SqFtTotLiving, p=c(.25, .5, .75))
lm_spline <- lm(AdjSalePrice ~ bs(SqFtTotLiving, knots=knots, degree=3) + SqFtLot +
Bathrooms + Bedrooms + BldgGrade, data=house_98105)
terms1 <- predict(lm_spline, type='terms')
partial_resid1 <- resid(lm_spline) + terms
## Code for Figure 4-12
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0412.png'), width = 4, height=4, units='in', res=300)
df1 <- data.frame(SqFtTotLiving = house_98105[, 'SqFtTotLiving'],
Terms = terms1[, 1],
PartialResid = partial_resid1[, 1])
ggplot(df1, aes(SqFtTotLiving, PartialResid)) +
geom_point(shape=1) + scale_shape(solid = FALSE) +
geom_smooth(linetype=2) +
geom_line(aes(SqFtTotLiving, Terms))+
theme_bw()
dev.off()
## Code snippet 4.27
lm_gam <- gam(AdjSalePrice ~ s(SqFtTotLiving) + SqFtLot +
Bathrooms + Bedrooms + BldgGrade,
data=house_98105)
terms <- predict.gam(lm_gam, type='terms')
partial_resid <- resid(lm_gam) + terms
## Code for Figure 4-13
png(filename=file.path(PSDS_PATH, 'figures', 'psds_0413.png'), width = 4, height=4, units='in', res=300)
df <- data.frame(SqFtTotLiving = house_98105[, 'SqFtTotLiving'],
Terms = terms[, 5],
PartialResid = partial_resid[, 5])
ggplot(df, aes(SqFtTotLiving, PartialResid)) +
geom_point(shape=1) + scale_shape(solid = FALSE) +
geom_smooth(linetype=2) +
geom_line(aes(SqFtTotLiving, Terms)) +
theme_bw()
dev.off()
|
-- | Type classes for random generation of values.
--
-- __Note__: the contents of this module are re-exported by
-- "Test.QuickCheck". You do not need to import it directly.
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
#ifndef NO_GENERICS
{-# LANGUAGE DefaultSignatures, FlexibleContexts, TypeOperators #-}
{-# LANGUAGE FlexibleInstances, KindSignatures, ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses #-}
#if __GLASGOW_HASKELL__ >= 710
#define OVERLAPPING_ {-# OVERLAPPING #-}
#else
{-# LANGUAGE OverlappingInstances #-}
#define OVERLAPPING_
#endif
#endif
#ifndef NO_POLYKINDS
{-# LANGUAGE PolyKinds #-}
#endif
#ifndef NO_SAFE_HASKELL
{-# LANGUAGE Trustworthy #-}
#endif
#ifndef NO_NEWTYPE_DERIVING
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
#endif
module Test.QuickCheck.Arbitrary
(
-- * Arbitrary and CoArbitrary classes
Arbitrary(..)
, CoArbitrary(..)
-- ** Unary and Binary classes
, Arbitrary1(..)
, arbitrary1
, shrink1
, Arbitrary2(..)
, arbitrary2
, shrink2
-- ** Helper functions for implementing arbitrary
, applyArbitrary2
, applyArbitrary3
, applyArbitrary4
, arbitrarySizedIntegral -- :: Integral a => Gen a
, arbitrarySizedNatural -- :: Integral a => Gen a
, arbitraryBoundedIntegral -- :: (Bounded a, Integral a) => Gen a
, arbitrarySizedBoundedIntegral -- :: (Bounded a, Integral a) => Gen a
, arbitrarySizedFractional -- :: Fractional a => Gen a
, arbitraryBoundedRandom -- :: (Bounded a, Random a) => Gen a
, arbitraryBoundedEnum -- :: (Bounded a, Enum a) => Gen a
-- ** Generators for various kinds of character
, arbitraryUnicodeChar -- :: Gen Char
, arbitraryASCIIChar -- :: Gen Char
, arbitraryPrintableChar -- :: Gen Char
-- ** Helper functions for implementing shrink
#ifndef NO_GENERICS
, RecursivelyShrink
, GSubterms
, genericShrink -- :: (Generic a, Arbitrary a, RecursivelyShrink (Rep a), GSubterms (Rep a) a) => a -> [a]
, subterms -- :: (Generic a, Arbitrary a, GSubterms (Rep a) a) => a -> [a]
, recursivelyShrink -- :: (Generic a, RecursivelyShrink (Rep a)) => a -> [a]
, genericCoarbitrary -- :: (Generic a, GCoArbitrary (Rep a)) => a -> Gen b -> Gen b
#endif
, shrinkNothing -- :: a -> [a]
, shrinkList -- :: (a -> [a]) -> [a] -> [[a]]
, shrinkMap -- :: Arbitrary a -> (a -> b) -> (b -> a) -> b -> [b]
, shrinkMapBy -- :: (a -> b) -> (b -> a) -> (a -> [a]) -> b -> [b]
, shrinkIntegral -- :: Integral a => a -> [a]
, shrinkRealFrac -- :: RealFrac a => a -> [a]
, shrinkDecimal -- :: RealFrac a => a -> [a]
-- ** Helper functions for implementing coarbitrary
, coarbitraryIntegral -- :: Integral a => a -> Gen b -> Gen b
, coarbitraryReal -- :: Real a => a -> Gen b -> Gen b
, coarbitraryShow -- :: Show a => a -> Gen b -> Gen b
, coarbitraryEnum -- :: Enum a => a -> Gen b -> Gen b
, (><)
-- ** Generators which use arbitrary
, vector -- :: Arbitrary a => Int -> Gen [a]
, orderedList -- :: (Ord a, Arbitrary a) => Gen [a]
, infiniteList -- :: Arbitrary a => Gen [a]
)
where
--------------------------------------------------------------------------
-- imports
import Control.Applicative
import Data.Foldable(toList)
import System.Random(Random)
import Test.QuickCheck.Gen
import Test.QuickCheck.Random
import Test.QuickCheck.Gen.Unsafe
{-
import Data.Generics
( (:*:)(..)
, (:+:)(..)
, Unit(..)
)
-}
import Data.Char
( ord
, isLower
, isUpper
, toLower
, isDigit
, isSpace
, isPrint
, generalCategory
, GeneralCategory(..)
)
#ifndef NO_FIXED
import Data.Fixed
( Fixed
, HasResolution
)
#endif
import Data.Ratio
( Ratio
, (%)
, numerator
, denominator
)
import Data.Complex
( Complex((:+)) )
import Data.List
( sort
, nub
)
import Data.Version (Version (..))
#if defined(MIN_VERSION_base)
#if MIN_VERSION_base(4,2,0)
import System.IO
( Newline(..)
, NewlineMode(..)
)
#endif
#endif
import Control.Monad
( liftM
, liftM2
, liftM3
, liftM4
, liftM5
)
import Data.Int(Int8, Int16, Int32, Int64)
import Data.Word(Word, Word8, Word16, Word32, Word64)
import System.Exit (ExitCode(..))
import Foreign.C.Types
#ifndef NO_GENERICS
import GHC.Generics
#endif
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Data.IntSet as IntSet
import qualified Data.IntMap as IntMap
import qualified Data.Sequence as Sequence
import qualified Data.Tree as Tree
import Data.Bits
import qualified Data.Monoid as Monoid
#ifndef NO_TRANSFORMERS
import Data.Functor.Identity
import Data.Functor.Constant
import Data.Functor.Compose
import Data.Functor.Product
#endif
--------------------------------------------------------------------------
-- ** class Arbitrary
-- | Random generation and shrinking of values.
--
-- QuickCheck provides @Arbitrary@ instances for most types in @base@,
-- except those which incur extra dependencies.
-- For a wider range of @Arbitrary@ instances see the
-- <http://hackage.haskell.org/package/quickcheck-instances quickcheck-instances>
-- package.
class Arbitrary a where
-- | A generator for values of the given type.
--
-- It is worth spending time thinking about what sort of test data
-- you want - good generators are often the difference between
-- finding bugs and not finding them. You can use 'sample',
-- 'label' and 'classify' to check the quality of your test data.
--
-- There is no generic @arbitrary@ implementation included because we don't
-- know how to make a high-quality one. If you want one, consider using the
-- <http://hackage.haskell.org/package/testing-feat testing-feat> or
-- <http://hackage.haskell.org/package/generic-random generic-random> packages.
--
-- The <http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html QuickCheck manual>
-- goes into detail on how to write good generators. Make sure to look at it,
-- especially if your type is recursive!
arbitrary :: Gen a
-- | Produces a (possibly) empty list of all the possible
-- immediate shrinks of the given value.
--
-- The default implementation returns the empty list, so will not try to
-- shrink the value. If your data type has no special invariants, you can
-- enable shrinking by defining @shrink = 'genericShrink'@, but by customising
-- the behaviour of @shrink@ you can often get simpler counterexamples.
--
-- Most implementations of 'shrink' should try at least three things:
--
-- 1. Shrink a term to any of its immediate subterms.
-- You can use 'subterms' to do this.
--
-- 2. Recursively apply 'shrink' to all immediate subterms.
-- You can use 'recursivelyShrink' to do this.
--
-- 3. Type-specific shrinkings such as replacing a constructor by a
-- simpler constructor.
--
-- For example, suppose we have the following implementation of binary trees:
--
-- > data Tree a = Nil | Branch a (Tree a) (Tree a)
--
-- We can then define 'shrink' as follows:
--
-- > shrink Nil = []
-- > shrink (Branch x l r) =
-- > -- shrink Branch to Nil
-- > [Nil] ++
-- > -- shrink to subterms
-- > [l, r] ++
-- > -- recursively shrink subterms
-- > [Branch x' l' r' | (x', l', r') <- shrink (x, l, r)]
--
-- There are a couple of subtleties here:
--
-- * QuickCheck tries the shrinking candidates in the order they
-- appear in the list, so we put more aggressive shrinking steps
-- (such as replacing the whole tree by @Nil@) before smaller
-- ones (such as recursively shrinking the subtrees).
--
-- * It is tempting to write the last line as
-- @[Branch x' l' r' | x' <- shrink x, l' <- shrink l, r' <- shrink r]@
-- but this is the /wrong thing/! It will force QuickCheck to shrink
-- @x@, @l@ and @r@ in tandem, and shrinking will stop once /one/ of
-- the three is fully shrunk.
--
-- There is a fair bit of boilerplate in the code above.
-- We can avoid it with the help of some generic functions.
-- The function 'genericShrink' tries shrinking a term to all of its
-- subterms and, failing that, recursively shrinks the subterms.
-- Using it, we can define 'shrink' as:
--
-- > shrink x = shrinkToNil x ++ genericShrink x
-- > where
-- > shrinkToNil Nil = []
-- > shrinkToNil (Branch _ l r) = [Nil]
--
-- 'genericShrink' is a combination of 'subterms', which shrinks
-- a term to any of its subterms, and 'recursivelyShrink', which shrinks
-- all subterms of a term. These may be useful if you need a bit more
-- control over shrinking than 'genericShrink' gives you.
--
-- A final gotcha: we cannot define 'shrink' as simply @'shrink' x = Nil:'genericShrink' x@
-- as this shrinks @Nil@ to @Nil@, and shrinking will go into an
-- infinite loop.
--
-- If all this leaves you bewildered, you might try @'shrink' = 'genericShrink'@ to begin with,
-- after deriving @Generic@ for your type. However, if your data type has any
-- special invariants, you will need to check that 'genericShrink' can't break those invariants.
shrink :: a -> [a]
shrink _ = []
-- | Lifting of the 'Arbitrary' class to unary type constructors.
class Arbitrary1 f where
liftArbitrary :: Gen a -> Gen (f a)
liftShrink :: (a -> [a]) -> f a -> [f a]
liftShrink _ _ = []
arbitrary1 :: (Arbitrary1 f, Arbitrary a) => Gen (f a)
arbitrary1 = liftArbitrary arbitrary
shrink1 :: (Arbitrary1 f, Arbitrary a) => f a -> [f a]
shrink1 = liftShrink shrink
-- | Lifting of the 'Arbitrary' class to binary type constructors.
class Arbitrary2 f where
liftArbitrary2 :: Gen a -> Gen b -> Gen (f a b)
liftShrink2 :: (a -> [a]) -> (b -> [b]) -> f a b -> [f a b]
liftShrink2 _ _ _ = []
arbitrary2 :: (Arbitrary2 f, Arbitrary a, Arbitrary b) => Gen (f a b)
arbitrary2 = liftArbitrary2 arbitrary arbitrary
shrink2 :: (Arbitrary2 f, Arbitrary a, Arbitrary b) => f a b -> [f a b]
shrink2 = liftShrink2 shrink shrink
#ifndef NO_GENERICS
-- | Shrink a term to any of its immediate subterms,
-- and also recursively shrink all subterms.
genericShrink :: (Generic a, RecursivelyShrink (Rep a), GSubterms (Rep a) a) => a -> [a]
genericShrink x = subterms x ++ recursivelyShrink x
-- | Recursively shrink all immediate subterms.
recursivelyShrink :: (Generic a, RecursivelyShrink (Rep a)) => a -> [a]
recursivelyShrink = map to . grecursivelyShrink . from
class RecursivelyShrink f where
grecursivelyShrink :: f a -> [f a]
instance (RecursivelyShrink f, RecursivelyShrink g) => RecursivelyShrink (f :*: g) where
grecursivelyShrink (x :*: y) =
[x' :*: y | x' <- grecursivelyShrink x] ++
[x :*: y' | y' <- grecursivelyShrink y]
instance (RecursivelyShrink f, RecursivelyShrink g) => RecursivelyShrink (f :+: g) where
grecursivelyShrink (L1 x) = map L1 (grecursivelyShrink x)
grecursivelyShrink (R1 x) = map R1 (grecursivelyShrink x)
instance RecursivelyShrink f => RecursivelyShrink (M1 i c f) where
grecursivelyShrink (M1 x) = map M1 (grecursivelyShrink x)
instance Arbitrary a => RecursivelyShrink (K1 i a) where
grecursivelyShrink (K1 x) = map K1 (shrink x)
instance RecursivelyShrink U1 where
grecursivelyShrink U1 = []
instance RecursivelyShrink V1 where
-- The empty type can't be shrunk to anything.
grecursivelyShrink _ = []
-- | All immediate subterms of a term.
subterms :: (Generic a, GSubterms (Rep a) a) => a -> [a]
subterms = gSubterms . from
class GSubterms f a where
-- | Provides the immediate subterms of a term that are of the same type
-- as the term itself.
--
-- Requires a constructor to be stripped off; this means it skips through
-- @M1@ wrappers and returns @[]@ on everything that's not `(:*:)` or `(:+:)`.
--
-- Once a `(:*:)` or `(:+:)` constructor has been reached, this function
-- delegates to `gSubtermsIncl` to return the immediately next constructor
-- available.
gSubterms :: f a -> [a]
instance GSubterms V1 a where
-- The empty type can't be shrunk to anything.
gSubterms _ = []
instance GSubterms U1 a where
gSubterms U1 = []
instance (GSubtermsIncl f a, GSubtermsIncl g a) => GSubterms (f :*: g) a where
gSubterms (l :*: r) = gSubtermsIncl l ++ gSubtermsIncl r
instance (GSubtermsIncl f a, GSubtermsIncl g a) => GSubterms (f :+: g) a where
gSubterms (L1 x) = gSubtermsIncl x
gSubterms (R1 x) = gSubtermsIncl x
instance GSubterms f a => GSubterms (M1 i c f) a where
gSubterms (M1 x) = gSubterms x
instance GSubterms (K1 i a) b where
gSubterms (K1 _) = []
class GSubtermsIncl f a where
-- | Provides the immediate subterms of a term that are of the same type
-- as the term itself.
--
-- In contrast to `gSubterms`, this returns the immediate next constructor
-- available.
gSubtermsIncl :: f a -> [a]
instance GSubtermsIncl V1 a where
-- The empty type can't be shrunk to anything.
gSubtermsIncl _ = []
instance GSubtermsIncl U1 a where
gSubtermsIncl U1 = []
instance (GSubtermsIncl f a, GSubtermsIncl g a) => GSubtermsIncl (f :*: g) a where
gSubtermsIncl (l :*: r) = gSubtermsIncl l ++ gSubtermsIncl r
instance (GSubtermsIncl f a, GSubtermsIncl g a) => GSubtermsIncl (f :+: g) a where
gSubtermsIncl (L1 x) = gSubtermsIncl x
gSubtermsIncl (R1 x) = gSubtermsIncl x
instance GSubtermsIncl f a => GSubtermsIncl (M1 i c f) a where
gSubtermsIncl (M1 x) = gSubtermsIncl x
-- This is the important case: We've found a term of the same type.
instance OVERLAPPING_ GSubtermsIncl (K1 i a) a where
gSubtermsIncl (K1 x) = [x]
instance OVERLAPPING_ GSubtermsIncl (K1 i a) b where
gSubtermsIncl (K1 _) = []
#endif
-- instances
instance (CoArbitrary a) => Arbitrary1 ((->) a) where
liftArbitrary arbB = promote (`coarbitrary` arbB)
instance (CoArbitrary a, Arbitrary b) => Arbitrary (a -> b) where
arbitrary = arbitrary1
instance Arbitrary () where
arbitrary = return ()
instance Arbitrary Bool where
arbitrary = chooseEnum (False,True)
shrink True = [False]
shrink False = []
instance Arbitrary Ordering where
arbitrary = elements [LT, EQ, GT]
shrink GT = [EQ, LT]
shrink LT = [EQ]
shrink EQ = []
instance Arbitrary1 Maybe where
liftArbitrary arb = frequency [(1, return Nothing), (3, liftM Just arb)]
liftShrink shr (Just x) = Nothing : [ Just x' | x' <- shr x ]
liftShrink _ Nothing = []
instance Arbitrary a => Arbitrary (Maybe a) where
arbitrary = arbitrary1
shrink = shrink1
instance Arbitrary2 Either where
liftArbitrary2 arbA arbB = oneof [liftM Left arbA, liftM Right arbB]
liftShrink2 shrA _ (Left x) = [ Left x' | x' <- shrA x ]
liftShrink2 _ shrB (Right y) = [ Right y' | y' <- shrB y ]
instance Arbitrary a => Arbitrary1 (Either a) where
liftArbitrary = liftArbitrary2 arbitrary
liftShrink = liftShrink2 shrink
instance (Arbitrary a, Arbitrary b) => Arbitrary (Either a b) where
arbitrary = arbitrary2
shrink = shrink2
instance Arbitrary1 [] where
liftArbitrary = listOf
liftShrink = shrinkList
instance Arbitrary a => Arbitrary [a] where
arbitrary = arbitrary1
shrink = shrink1
-- | Shrink a list of values given a shrinking function for individual values.
shrinkList :: (a -> [a]) -> [a] -> [[a]]
shrinkList shr xs = concat [ removes k n xs | k <- takeWhile (>0) (iterate (`div`2) n) ]
++ shrinkOne xs
where
n = length xs
shrinkOne [] = []
shrinkOne (x:xs) = [ x':xs | x' <- shr x ]
++ [ x:xs' | xs' <- shrinkOne xs ]
removes k n xs
| k > n = []
| null xs2 = [[]]
| otherwise = xs2 : map (xs1 ++) (removes k (n-k) xs2)
where
xs1 = take k xs
xs2 = drop k xs
{-
-- "standard" definition for lists:
shrink [] = []
shrink (x:xs) = [ xs ]
++ [ x:xs' | xs' <- shrink xs ]
++ [ x':xs | x' <- shrink x ]
-}
instance Integral a => Arbitrary (Ratio a) where
arbitrary = arbitrarySizedFractional
shrink = shrinkRealFrac
#if defined(MIN_VERSION_base) && MIN_VERSION_base(4,4,0)
instance Arbitrary a => Arbitrary (Complex a) where
#else
instance (RealFloat a, Arbitrary a) => Arbitrary (Complex a) where
#endif
arbitrary = liftM2 (:+) arbitrary arbitrary
shrink (x :+ y) = [ x' :+ y | x' <- shrink x ] ++
[ x :+ y' | y' <- shrink y ]
#ifndef NO_FIXED
instance HasResolution a => Arbitrary (Fixed a) where
arbitrary = arbitrarySizedFractional
shrink = shrinkDecimal
#endif
instance Arbitrary2 (,) where
liftArbitrary2 = liftM2 (,)
liftShrink2 shrA shrB (x, y) =
[ (x', y) | x' <- shrA x ]
++ [ (x, y') | y' <- shrB y ]
instance (Arbitrary a) => Arbitrary1 ((,) a) where
liftArbitrary = liftArbitrary2 arbitrary
liftShrink = liftShrink2 shrink
instance (Arbitrary a, Arbitrary b) => Arbitrary (a,b) where
arbitrary = arbitrary2
shrink = shrink2
instance (Arbitrary a, Arbitrary b, Arbitrary c)
=> Arbitrary (a,b,c)
where
arbitrary = liftM3 (,,) arbitrary arbitrary arbitrary
shrink (x, y, z) =
[ (x', y', z')
| (x', (y', z')) <- shrink (x, (y, z)) ]
instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d)
=> Arbitrary (a,b,c,d)
where
arbitrary = liftM4 (,,,) arbitrary arbitrary arbitrary arbitrary
shrink (w, x, y, z) =
[ (w', x', y', z')
| (w', (x', (y', z'))) <- shrink (w, (x, (y, z))) ]
instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e)
=> Arbitrary (a,b,c,d,e)
where
arbitrary = liftM5 (,,,,) arbitrary arbitrary arbitrary arbitrary arbitrary
shrink (v, w, x, y, z) =
[ (v', w', x', y', z')
| (v', (w', (x', (y', z')))) <- shrink (v, (w, (x, (y, z)))) ]
instance ( Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e
, Arbitrary f
)
=> Arbitrary (a,b,c,d,e,f)
where
arbitrary = return (,,,,,)
<*> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary
<*> arbitrary <*> arbitrary
shrink (u, v, w, x, y, z) =
[ (u', v', w', x', y', z')
| (u', (v', (w', (x', (y', z'))))) <- shrink (u, (v, (w, (x, (y, z))))) ]
instance ( Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e
, Arbitrary f, Arbitrary g
)
=> Arbitrary (a,b,c,d,e,f,g)
where
arbitrary = return (,,,,,,)
<*> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary
<*> arbitrary <*> arbitrary <*> arbitrary
shrink (t, u, v, w, x, y, z) =
[ (t', u', v', w', x', y', z')
| (t', (u', (v', (w', (x', (y', z')))))) <- shrink (t, (u, (v, (w, (x, (y, z)))))) ]
instance ( Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e
, Arbitrary f, Arbitrary g, Arbitrary h
)
=> Arbitrary (a,b,c,d,e,f,g,h)
where
arbitrary = return (,,,,,,,)
<*> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary
<*> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary
shrink (s, t, u, v, w, x, y, z) =
[ (s', t', u', v', w', x', y', z')
| (s', (t', (u', (v', (w', (x', (y', z')))))))
<- shrink (s, (t, (u, (v, (w, (x, (y, z))))))) ]
instance ( Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e
, Arbitrary f, Arbitrary g, Arbitrary h, Arbitrary i
)
=> Arbitrary (a,b,c,d,e,f,g,h,i)
where
arbitrary = return (,,,,,,,,)
<*> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary
<*> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary
<*> arbitrary
shrink (r, s, t, u, v, w, x, y, z) =
[ (r', s', t', u', v', w', x', y', z')
| (r', (s', (t', (u', (v', (w', (x', (y', z'))))))))
<- shrink (r, (s, (t, (u, (v, (w, (x, (y, z)))))))) ]
instance ( Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e
, Arbitrary f, Arbitrary g, Arbitrary h, Arbitrary i, Arbitrary j
)
=> Arbitrary (a,b,c,d,e,f,g,h,i,j)
where
arbitrary = return (,,,,,,,,,)
<*> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary
<*> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary
<*> arbitrary <*> arbitrary
shrink (q, r, s, t, u, v, w, x, y, z) =
[ (q', r', s', t', u', v', w', x', y', z')
| (q', (r', (s', (t', (u', (v', (w', (x', (y', z')))))))))
<- shrink (q, (r, (s, (t, (u, (v, (w, (x, (y, z))))))))) ]
-- typical instance for primitive (numerical) types
instance Arbitrary Integer where
arbitrary = arbitrarySizedIntegral
shrink = shrinkIntegral
instance Arbitrary Int where
arbitrary = arbitrarySizedIntegral
shrink = shrinkIntegral
instance Arbitrary Int8 where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary Int16 where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary Int32 where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary Int64 where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary Word where
arbitrary = arbitrarySizedNatural
shrink = shrinkIntegral
instance Arbitrary Word8 where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary Word16 where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary Word32 where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary Word64 where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary Char where
arbitrary =
frequency
[(3, arbitraryASCIIChar),
(1, arbitraryUnicodeChar)]
shrink c = filter (<. c) $ nub
$ ['a','b','c']
++ [ toLower c | isUpper c ]
++ ['A','B','C']
++ ['1','2','3']
++ [' ','\n']
where
a <. b = stamp a < stamp b
stamp a = ( (not (isLower a)
, not (isUpper a)
, not (isDigit a))
, (not (a==' ')
, not (isSpace a)
, a)
)
instance Arbitrary Float where
arbitrary = oneof
-- generate 0..1 numbers with full precision
[ genFloat
-- generate integral numbers
, fromIntegral <$> (arbitrary :: Gen Int)
-- generate fractions with small denominators
, smallDenominators
-- uniform -size..size with with denominators ~ size
, uniform
-- and uniform -size..size with higher precision
, arbitrarySizedFractional
]
where
smallDenominators = sized $ \n -> do
i <- chooseInt (0, n)
pure (fromRational (streamNth i rationalUniverse))
uniform = sized $ \n -> do
let n' = toInteger n
b <- chooseInteger (1, max 1 n')
a <- chooseInteger ((-n') * b, n' * b)
return (fromRational (a % b))
shrink = shrinkDecimal
instance Arbitrary Double where
arbitrary = oneof
-- generate 0..1 numbers with full precision
[ genDouble
-- generate integral numbers
, fromIntegral <$> (arbitrary :: Gen Int)
-- generate fractions with small denominators
, smallDenominators
-- uniform -size..size with with denominators ~ size
, uniform
-- and uniform -size..size with higher precision
, arbitrarySizedFractional
]
where
smallDenominators = sized $ \n -> do
i <- chooseInt (0, n)
pure (fromRational (streamNth i rationalUniverse))
uniform = sized $ \n -> do
let n' = toInteger n
b <- chooseInteger (1, max 1 n')
a <- chooseInteger ((-n') * b, n' * b)
return (fromRational (a % b))
shrink = shrinkDecimal
instance Arbitrary CChar where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CSChar where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CUChar where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CShort where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CUShort where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CInt where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CUInt where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CLong where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CULong where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CPtrdiff where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CSize where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CWchar where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CSigAtomic where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CLLong where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CULLong where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CIntPtr where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CUIntPtr where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CIntMax where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
instance Arbitrary CUIntMax where
arbitrary = arbitrarySizedBoundedIntegral
shrink = shrinkIntegral
#ifndef NO_CTYPES_CONSTRUCTORS
-- The following four types have no Bounded instance,
-- so we fake it by discovering the bounds at runtime.
instance Arbitrary CClock where
arbitrary = fmap CClock arbitrary
shrink (CClock x) = map CClock (shrink x)
instance Arbitrary CTime where
arbitrary = fmap CTime arbitrary
shrink (CTime x) = map CTime (shrink x)
#ifndef NO_FOREIGN_C_USECONDS
instance Arbitrary CUSeconds where
arbitrary = fmap CUSeconds arbitrary
shrink (CUSeconds x) = map CUSeconds (shrink x)
instance Arbitrary CSUSeconds where
arbitrary = fmap CSUSeconds arbitrary
shrink (CSUSeconds x) = map CSUSeconds (shrink x)
#endif
#endif
instance Arbitrary CFloat where
arbitrary = arbitrarySizedFractional
shrink = shrinkDecimal
instance Arbitrary CDouble where
arbitrary = arbitrarySizedFractional
shrink = shrinkDecimal
-- Arbitrary instances for container types
instance (Ord a, Arbitrary a) => Arbitrary (Set.Set a) where
arbitrary = fmap Set.fromList arbitrary
shrink = map Set.fromList . shrink . Set.toList
instance (Ord k, Arbitrary k) => Arbitrary1 (Map.Map k) where
liftArbitrary = fmap Map.fromList . liftArbitrary . liftArbitrary
liftShrink shr = map Map.fromList . liftShrink (liftShrink shr) . Map.toList
instance (Ord k, Arbitrary k, Arbitrary v) => Arbitrary (Map.Map k v) where
arbitrary = arbitrary1
shrink = shrink1
instance Arbitrary IntSet.IntSet where
arbitrary = fmap IntSet.fromList arbitrary
shrink = map IntSet.fromList . shrink . IntSet.toList
instance Arbitrary1 IntMap.IntMap where
liftArbitrary = fmap IntMap.fromList . liftArbitrary . liftArbitrary
liftShrink shr = map IntMap.fromList . liftShrink (liftShrink shr) . IntMap.toList
instance Arbitrary a => Arbitrary (IntMap.IntMap a) where
arbitrary = arbitrary1
shrink = shrink1
instance Arbitrary1 Sequence.Seq where
liftArbitrary = fmap Sequence.fromList . liftArbitrary
liftShrink shr = map Sequence.fromList . liftShrink shr . toList
instance Arbitrary a => Arbitrary (Sequence.Seq a) where
arbitrary = arbitrary1
shrink = shrink1
instance Arbitrary1 Tree.Tree where
liftArbitrary arb = sized $ \n -> do
k <- chooseInt (0, n)
go k
where
go n = do -- n is the size of the trees.
value <- arb
pars <- arbPartition (n - 1) -- can go negative!
forest <- mapM go pars
return $ Tree.Node value forest
arbPartition :: Int -> Gen [Int]
arbPartition k = case compare k 1 of
LT -> pure []
EQ -> pure [1]
GT -> do
first <- chooseInt (1, k)
rest <- arbPartition $ k - first
shuffle (first : rest)
liftShrink shr = go
where
go (Tree.Node val forest) = forest ++
[ Tree.Node e fs
| (e, fs) <- liftShrink2 shr (liftShrink go) (val, forest)
]
instance Arbitrary a => Arbitrary (Tree.Tree a) where
arbitrary = arbitrary1
shrink = shrink1
-- Arbitrary instance for Ziplist
instance Arbitrary1 ZipList where
liftArbitrary = fmap ZipList . liftArbitrary
liftShrink shr = map ZipList . liftShrink shr . getZipList
instance Arbitrary a => Arbitrary (ZipList a) where
arbitrary = arbitrary1
shrink = shrink1
#ifndef NO_TRANSFORMERS
-- Arbitrary instance for transformers' Functors
instance Arbitrary1 Identity where
liftArbitrary = fmap Identity
liftShrink shr = map Identity . shr . runIdentity
instance Arbitrary a => Arbitrary (Identity a) where
arbitrary = arbitrary1
shrink = shrink1
instance Arbitrary2 Constant where
liftArbitrary2 arbA _ = fmap Constant arbA
liftShrink2 shrA _ = fmap Constant . shrA . getConstant
instance Arbitrary a => Arbitrary1 (Constant a) where
liftArbitrary = liftArbitrary2 arbitrary
liftShrink = liftShrink2 shrink
-- Have to be defined explicitly, as Constant is kind polymorphic
instance Arbitrary a => Arbitrary (Constant a b) where
arbitrary = fmap Constant arbitrary
shrink = map Constant . shrink . getConstant
instance (Arbitrary1 f, Arbitrary1 g) => Arbitrary1 (Product f g) where
liftArbitrary arb = liftM2 Pair (liftArbitrary arb) (liftArbitrary arb)
liftShrink shr (Pair f g) =
[ Pair f' g | f' <- liftShrink shr f ] ++
[ Pair f g' | g' <- liftShrink shr g ]
instance (Arbitrary1 f, Arbitrary1 g, Arbitrary a) => Arbitrary (Product f g a) where
arbitrary = arbitrary1
shrink = shrink1
instance (Arbitrary1 f, Arbitrary1 g) => Arbitrary1 (Compose f g) where
liftArbitrary = fmap Compose . liftArbitrary . liftArbitrary
liftShrink shr = map Compose . liftShrink (liftShrink shr) . getCompose
instance (Arbitrary1 f, Arbitrary1 g, Arbitrary a) => Arbitrary (Compose f g a) where
arbitrary = arbitrary1
shrink = shrink1
#endif
-- Arbitrary instance for Const
instance Arbitrary2 Const where
liftArbitrary2 arbA _ = fmap Const arbA
liftShrink2 shrA _ = fmap Const . shrA . getConst
instance Arbitrary a => Arbitrary1 (Const a) where
liftArbitrary = liftArbitrary2 arbitrary
liftShrink = liftShrink2 shrink
-- Have to be defined explicitly, as Const is kind polymorphic
instance Arbitrary a => Arbitrary (Const a b) where
arbitrary = fmap Const arbitrary
shrink = map Const . shrink . getConst
instance Arbitrary (m a) => Arbitrary (WrappedMonad m a) where
arbitrary = WrapMonad <$> arbitrary
shrink (WrapMonad a) = map WrapMonad (shrink a)
instance Arbitrary (a b c) => Arbitrary (WrappedArrow a b c) where
arbitrary = WrapArrow <$> arbitrary
shrink (WrapArrow a) = map WrapArrow (shrink a)
-- Arbitrary instances for Monoid
instance Arbitrary a => Arbitrary (Monoid.Dual a) where
arbitrary = fmap Monoid.Dual arbitrary
shrink = map Monoid.Dual . shrink . Monoid.getDual
instance (Arbitrary a, CoArbitrary a) => Arbitrary (Monoid.Endo a) where
arbitrary = fmap Monoid.Endo arbitrary
shrink = map Monoid.Endo . shrink . Monoid.appEndo
instance Arbitrary Monoid.All where
arbitrary = fmap Monoid.All arbitrary
shrink = map Monoid.All . shrink . Monoid.getAll
instance Arbitrary Monoid.Any where
arbitrary = fmap Monoid.Any arbitrary
shrink = map Monoid.Any . shrink . Monoid.getAny
instance Arbitrary a => Arbitrary (Monoid.Sum a) where
arbitrary = fmap Monoid.Sum arbitrary
shrink = map Monoid.Sum . shrink . Monoid.getSum
instance Arbitrary a => Arbitrary (Monoid.Product a) where
arbitrary = fmap Monoid.Product arbitrary
shrink = map Monoid.Product . shrink . Monoid.getProduct
#if defined(MIN_VERSION_base)
#if MIN_VERSION_base(3,0,0)
instance Arbitrary a => Arbitrary (Monoid.First a) where
arbitrary = fmap Monoid.First arbitrary
shrink = map Monoid.First . shrink . Monoid.getFirst
instance Arbitrary a => Arbitrary (Monoid.Last a) where
arbitrary = fmap Monoid.Last arbitrary
shrink = map Monoid.Last . shrink . Monoid.getLast
#endif
#if MIN_VERSION_base(4,8,0)
instance Arbitrary (f a) => Arbitrary (Monoid.Alt f a) where
arbitrary = fmap Monoid.Alt arbitrary
shrink = map Monoid.Alt . shrink . Monoid.getAlt
#endif
#endif
-- | Generates 'Version' with non-empty non-negative @versionBranch@, and empty @versionTags@
instance Arbitrary Version where
arbitrary = sized $ \n ->
do k <- chooseInt (0, log2 n)
xs <- vectorOf (k+1) arbitrarySizedNatural
return (Version xs [])
where
log2 :: Int -> Int
log2 n | n <= 1 = 0
| otherwise = 1 + log2 (n `div` 2)
shrink (Version xs _) =
[ Version xs' []
| xs' <- shrink xs
, length xs' > 0
, all (>=0) xs'
]
instance Arbitrary QCGen where
arbitrary = MkGen (\g _ -> g)
instance Arbitrary ExitCode where
arbitrary = frequency [(1, return ExitSuccess), (3, liftM ExitFailure arbitrary)]
shrink (ExitFailure x) = ExitSuccess : [ ExitFailure x' | x' <- shrink x ]
shrink _ = []
#if defined(MIN_VERSION_base)
#if MIN_VERSION_base(4,2,0)
instance Arbitrary Newline where
arbitrary = elements [LF, CRLF]
-- The behavior of code for LF is generally simpler than for CRLF
-- See the documentation for this type, which states that Haskell
-- Internally always assumes newlines are \n and this type represents
-- how to translate that to and from the outside world, where LF means
-- no translation.
shrink LF = []
shrink CRLF = [LF]
instance Arbitrary NewlineMode where
arbitrary = NewlineMode <$> arbitrary <*> arbitrary
shrink (NewlineMode inNL outNL) = [NewlineMode inNL' outNL' | (inNL', outNL') <- shrink (inNL, outNL)]
#endif
#endif
-- ** Helper functions for implementing arbitrary
-- | Apply a binary function to random arguments.
applyArbitrary2 :: (Arbitrary a, Arbitrary b) => (a -> b -> r) -> Gen r
applyArbitrary2 f = liftA2 f arbitrary arbitrary
-- | Apply a ternary function to random arguments.
applyArbitrary3
:: (Arbitrary a, Arbitrary b, Arbitrary c)
=> (a -> b -> c -> r) -> Gen r
applyArbitrary3 f = liftA3 f arbitrary arbitrary arbitrary
-- | Apply a function of arity 4 to random arguments.
applyArbitrary4
:: (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d)
=> (a -> b -> c -> d -> r) -> Gen r
applyArbitrary4 f = applyArbitrary3 (uncurry f)
-- | Generates an integral number. The number can be positive or negative
-- and its maximum absolute value depends on the size parameter.
arbitrarySizedIntegral :: Integral a => Gen a
arbitrarySizedIntegral =
sized $ \n ->
inBounds fromIntegral (chooseInt (-n, n))
-- | Generates a natural number. The number's maximum value depends on
-- the size parameter.
arbitrarySizedNatural :: Integral a => Gen a
arbitrarySizedNatural =
sized $ \n ->
inBounds fromIntegral (chooseInt (0, n))
inBounds :: Integral a => (Int -> a) -> Gen Int -> Gen a
inBounds fi g = fmap fi (g `suchThat` (\x -> toInteger x == toInteger (fi x)))
-- | Uniformly generates a fractional number. The number can be positive or negative
-- and its maximum absolute value depends on the size parameter.
arbitrarySizedFractional :: Fractional a => Gen a
arbitrarySizedFractional =
sized $ \n -> do
denom <- chooseInt (1, max 1 n)
numer <- chooseInt (-n*denom, n*denom)
pure $ fromIntegral numer / fromIntegral denom
-- Useful for getting at minBound and maxBound without having to
-- fiddle around with asTypeOf.
{-# INLINE withBounds #-}
withBounds :: Bounded a => (a -> a -> Gen a) -> Gen a
withBounds k = k minBound maxBound
-- | Generates an integral number. The number is chosen uniformly from
-- the entire range of the type. You may want to use
-- 'arbitrarySizedBoundedIntegral' instead.
arbitraryBoundedIntegral :: (Bounded a, Integral a) => Gen a
arbitraryBoundedIntegral = chooseBoundedIntegral (minBound, maxBound)
-- | Generates an element of a bounded type. The element is
-- chosen from the entire range of the type.
arbitraryBoundedRandom :: (Bounded a, Random a) => Gen a
arbitraryBoundedRandom = choose (minBound,maxBound)
-- | Generates an element of a bounded enumeration.
arbitraryBoundedEnum :: (Bounded a, Enum a) => Gen a
arbitraryBoundedEnum = chooseEnum (minBound, maxBound)
-- | Generates an integral number from a bounded domain. The number is
-- chosen from the entire range of the type, but small numbers are
-- generated more often than big numbers. Inspired by demands from
-- Phil Wadler.
arbitrarySizedBoundedIntegral :: (Bounded a, Integral a) => Gen a
-- INLINEABLE so that this combinator gets specialised at each type,
-- which means that the constant 'bits' in the let-block below will
-- only be computed once.
{-# INLINEABLE arbitrarySizedBoundedIntegral #-}
arbitrarySizedBoundedIntegral =
withBounds $ \mn mx ->
let ilog2 1 = 0
ilog2 n | n > 0 = 1 + ilog2 (n `div` 2)
-- How many bits are needed to represent this type?
-- (This number is an upper bound, not exact.)
bits = ilog2 (toInteger mx - toInteger mn + 1) in
sized $ \k ->
let
-- Reach maximum size by k=80, or quicker for small integer types
power = ((bits `max` 40) * k) `div` 80
-- Bounds should be 2^power, but:
-- * clamp the result to minBound/maxBound
-- * clamp power to 'bits', in case k is a huge number
lo = toInteger mn `max` (-1 `shiftL` (power `min` bits))
hi = toInteger mx `min` (1 `shiftL` (power `min` bits)) in
fmap fromInteger (chooseInteger (lo, hi))
-- ** Generators for various kinds of character
-- | Generates any Unicode character (but not a surrogate)
arbitraryUnicodeChar :: Gen Char
arbitraryUnicodeChar =
arbitraryBoundedEnum `suchThat` isValidUnicode
where
isValidUnicode c = case generalCategory c of
Surrogate -> False
NotAssigned -> False
_ -> True
-- | Generates a random ASCII character (0-127).
arbitraryASCIIChar :: Gen Char
arbitraryASCIIChar = chooseEnum ('\0', '\127')
-- | Generates a printable Unicode character.
arbitraryPrintableChar :: Gen Char
arbitraryPrintableChar = arbitrary `suchThat` isPrint
-- ** Helper functions for implementing shrink
-- | Returns no shrinking alternatives.
shrinkNothing :: a -> [a]
shrinkNothing _ = []
-- | Map a shrink function to another domain. This is handy if your data type
-- has special invariants, but is /almost/ isomorphic to some other type.
--
-- @
-- shrinkOrderedList :: (Ord a, Arbitrary a) => [a] -> [[a]]
-- shrinkOrderedList = shrinkMap sort id
--
-- shrinkSet :: (Ord a, Arbitrary a) => Set a -> [Set a]
-- shrinkSet = shrinkMap fromList toList
-- @
shrinkMap :: Arbitrary a => (a -> b) -> (b -> a) -> b -> [b]
shrinkMap f g = shrinkMapBy f g shrink
-- | Non-overloaded version of `shrinkMap`.
shrinkMapBy :: (a -> b) -> (b -> a) -> (a -> [a]) -> b -> [b]
shrinkMapBy f g shr = map f . shr . g
-- | Shrink an integral number.
shrinkIntegral :: Integral a => a -> [a]
shrinkIntegral x =
nub $
[ -x
| x < 0, -x > x
] ++
[ x'
| x' <- takeWhile (<< x) (0:[ x - i | i <- tail (iterate (`quot` 2) x) ])
]
where
-- a << b is "morally" abs a < abs b, but taking care of overflow.
a << b = case (a >= 0, b >= 0) of
(True, True) -> a < b
(False, False) -> a > b
(True, False) -> a + b < 0
(False, True) -> a + b > 0
-- | Shrink a fraction, preferring numbers with smaller
-- numerators or denominators. See also 'shrinkDecimal'.
shrinkRealFrac :: RealFrac a => a -> [a]
shrinkRealFrac x
| not (x == x) = 0 : take 10 (iterate (*2) 0) -- NaN
| not (2*x+1>x) = 0 : takeWhile (<x) (iterate (*2) 0) -- infinity
| x < 0 = negate x:map negate (shrinkRealFrac (negate x))
| otherwise =
-- To ensure termination
filter (\y -> abs y < abs x) $
-- Try shrinking to an integer first
map fromInteger (shrink (truncate x) ++ [truncate x]) ++
-- Shrink the numerator
[fromRational (num' % denom) | num' <- shrink num] ++
-- Shrink the denominator, and keep the fraction as close
-- to the original as possible, rounding towards zero
[fromRational (truncate (num * denom' % denom) % denom')
| denom' <- shrink denom, denom' /= 0 ]
where
num = numerator (toRational x)
denom = denominator (toRational x)
-- | Shrink a real number, preferring numbers with shorter
-- decimal representations. See also 'shrinkRealFrac'.
shrinkDecimal :: RealFrac a => a -> [a]
shrinkDecimal x
| not (x == x) = 0 : take 10 (iterate (*2) 0) -- NaN
| not (2*abs x+1>abs x) = 0 : takeWhile (<x) (iterate (*2) 0) -- infinity
| otherwise =
-- e.g. shrink pi =
-- shrink 3 ++ map (/ 10) (shrink 31) ++
-- map (/ 100) (shrink 314) + ...,
-- where the inner calls to shrink use integer shrinking.
[ y
| precision <- take 6 (iterate (*10) 1),
let m = round (toRational x * precision),
precision == 1 || m `mod` 10 /= 0, -- don't allow shrinking to increase digits
n <- m:shrink m,
let y = fromRational (fromInteger n / precision),
abs y < abs x ]
--------------------------------------------------------------------------
-- ** CoArbitrary
#ifndef NO_GENERICS
-- | Used for random generation of functions.
-- You should consider using 'Test.QuickCheck.Fun' instead, which
-- can show the generated functions as strings.
--
-- If you are using a recent GHC, there is a default definition of
-- 'coarbitrary' using 'genericCoarbitrary', so if your type has a
-- 'Generic' instance it's enough to say
--
-- > instance CoArbitrary MyType
--
-- You should only use 'genericCoarbitrary' for data types where
-- equality is structural, i.e. if you can't have two different
-- representations of the same value. An example where it's not
-- safe is sets implemented using binary search trees: the same
-- set can be represented as several different trees.
-- Here you would have to explicitly define
-- @coarbitrary s = coarbitrary (toList s)@.
#else
-- | Used for random generation of functions.
#endif
class CoArbitrary a where
-- | Used to generate a function of type @a -> b@.
-- The first argument is a value, the second a generator.
-- You should use 'variant' to perturb the random generator;
-- the goal is that different values for the first argument will
-- lead to different calls to 'variant'. An example will help:
--
-- @
-- instance CoArbitrary a => CoArbitrary [a] where
-- coarbitrary [] = 'variant' 0
-- coarbitrary (x:xs) = 'variant' 1 . coarbitrary (x,xs)
-- @
coarbitrary :: a -> Gen b -> Gen b
#ifndef NO_GENERICS
default coarbitrary :: (Generic a, GCoArbitrary (Rep a)) => a -> Gen b -> Gen b
coarbitrary = genericCoarbitrary
-- | Generic CoArbitrary implementation.
genericCoarbitrary :: (Generic a, GCoArbitrary (Rep a)) => a -> Gen b -> Gen b
genericCoarbitrary = gCoarbitrary . from
class GCoArbitrary f where
gCoarbitrary :: f a -> Gen b -> Gen b
instance GCoArbitrary U1 where
gCoarbitrary U1 = id
instance (GCoArbitrary f, GCoArbitrary g) => GCoArbitrary (f :*: g) where
-- Like the instance for tuples.
gCoarbitrary (l :*: r) = gCoarbitrary l . gCoarbitrary r
instance (GCoArbitrary f, GCoArbitrary g) => GCoArbitrary (f :+: g) where
-- Like the instance for Either.
gCoarbitrary (L1 x) = variant 0 . gCoarbitrary x
gCoarbitrary (R1 x) = variant 1 . gCoarbitrary x
instance GCoArbitrary f => GCoArbitrary (M1 i c f) where
gCoarbitrary (M1 x) = gCoarbitrary x
instance CoArbitrary a => GCoArbitrary (K1 i a) where
gCoarbitrary (K1 x) = coarbitrary x
#endif
{-# DEPRECATED (><) "Use ordinary function composition instead" #-}
-- | Combine two generator perturbing functions, for example the
-- results of calls to 'variant' or 'coarbitrary'.
(><) :: (Gen a -> Gen a) -> (Gen a -> Gen a) -> (Gen a -> Gen a)
(><) = (.)
instance (Arbitrary a, CoArbitrary b) => CoArbitrary (a -> b) where
coarbitrary f gen =
do xs <- arbitrary
coarbitrary (map f xs) gen
instance CoArbitrary () where
coarbitrary _ = id
instance CoArbitrary Bool where
coarbitrary False = variant 0
coarbitrary True = variant 1
instance CoArbitrary Ordering where
coarbitrary GT = variant 0
coarbitrary EQ = variant 1
coarbitrary LT = variant 2
instance CoArbitrary a => CoArbitrary (Maybe a) where
coarbitrary Nothing = variant 0
coarbitrary (Just x) = variant 1 . coarbitrary x
instance (CoArbitrary a, CoArbitrary b) => CoArbitrary (Either a b) where
coarbitrary (Left x) = variant 0 . coarbitrary x
coarbitrary (Right y) = variant 1 . coarbitrary y
instance CoArbitrary a => CoArbitrary [a] where
coarbitrary [] = variant 0
coarbitrary (x:xs) = variant 1 . coarbitrary (x,xs)
instance (Integral a, CoArbitrary a) => CoArbitrary (Ratio a) where
coarbitrary r = coarbitrary (numerator r,denominator r)
#ifndef NO_FIXED
instance HasResolution a => CoArbitrary (Fixed a) where
coarbitrary = coarbitraryReal
#endif
#if defined(MIN_VERSION_base) && MIN_VERSION_base(4,4,0)
instance CoArbitrary a => CoArbitrary (Complex a) where
#else
instance (RealFloat a, CoArbitrary a) => CoArbitrary (Complex a) where
#endif
coarbitrary (x :+ y) = coarbitrary x . coarbitrary y
instance (CoArbitrary a, CoArbitrary b)
=> CoArbitrary (a,b)
where
coarbitrary (x,y) = coarbitrary x
. coarbitrary y
instance (CoArbitrary a, CoArbitrary b, CoArbitrary c)
=> CoArbitrary (a,b,c)
where
coarbitrary (x,y,z) = coarbitrary x
. coarbitrary y
. coarbitrary z
instance (CoArbitrary a, CoArbitrary b, CoArbitrary c, CoArbitrary d)
=> CoArbitrary (a,b,c,d)
where
coarbitrary (x,y,z,v) = coarbitrary x
. coarbitrary y
. coarbitrary z
. coarbitrary v
instance (CoArbitrary a, CoArbitrary b, CoArbitrary c, CoArbitrary d, CoArbitrary e)
=> CoArbitrary (a,b,c,d,e)
where
coarbitrary (x,y,z,v,w) = coarbitrary x
. coarbitrary y
. coarbitrary z
. coarbitrary v
. coarbitrary w
-- typical instance for primitive (numerical) types
instance CoArbitrary Integer where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Int where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Int8 where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Int16 where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Int32 where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Int64 where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Word where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Word8 where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Word16 where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Word32 where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Word64 where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Char where
coarbitrary = coarbitrary . ord
instance CoArbitrary Float where
coarbitrary = coarbitraryReal
instance CoArbitrary Double where
coarbitrary = coarbitraryReal
-- Coarbitrary instances for container types
instance CoArbitrary a => CoArbitrary (Set.Set a) where
coarbitrary = coarbitrary. Set.toList
instance (CoArbitrary k, CoArbitrary v) => CoArbitrary (Map.Map k v) where
coarbitrary = coarbitrary . Map.toList
instance CoArbitrary IntSet.IntSet where
coarbitrary = coarbitrary . IntSet.toList
instance CoArbitrary a => CoArbitrary (IntMap.IntMap a) where
coarbitrary = coarbitrary . IntMap.toList
instance CoArbitrary a => CoArbitrary (Sequence.Seq a) where
coarbitrary = coarbitrary . toList
instance CoArbitrary a => CoArbitrary (Tree.Tree a) where
coarbitrary (Tree.Node val forest) = coarbitrary val . coarbitrary forest
-- CoArbitrary instance for Ziplist
instance CoArbitrary a => CoArbitrary (ZipList a) where
coarbitrary = coarbitrary . getZipList
#ifndef NO_TRANSFORMERS
-- CoArbitrary instance for transformers' Functors
instance CoArbitrary a => CoArbitrary (Identity a) where
coarbitrary = coarbitrary . runIdentity
instance CoArbitrary a => CoArbitrary (Constant a b) where
coarbitrary = coarbitrary . getConstant
#endif
-- CoArbitrary instance for Const
instance CoArbitrary a => CoArbitrary (Const a b) where
coarbitrary = coarbitrary . getConst
-- CoArbitrary instances for Monoid
instance CoArbitrary a => CoArbitrary (Monoid.Dual a) where
coarbitrary = coarbitrary . Monoid.getDual
instance (Arbitrary a, CoArbitrary a) => CoArbitrary (Monoid.Endo a) where
coarbitrary = coarbitrary . Monoid.appEndo
instance CoArbitrary Monoid.All where
coarbitrary = coarbitrary . Monoid.getAll
instance CoArbitrary Monoid.Any where
coarbitrary = coarbitrary . Monoid.getAny
instance CoArbitrary a => CoArbitrary (Monoid.Sum a) where
coarbitrary = coarbitrary . Monoid.getSum
instance CoArbitrary a => CoArbitrary (Monoid.Product a) where
coarbitrary = coarbitrary . Monoid.getProduct
#if defined(MIN_VERSION_base)
#if MIN_VERSION_base(3,0,0)
instance CoArbitrary a => CoArbitrary (Monoid.First a) where
coarbitrary = coarbitrary . Monoid.getFirst
instance CoArbitrary a => CoArbitrary (Monoid.Last a) where
coarbitrary = coarbitrary . Monoid.getLast
#endif
#if MIN_VERSION_base(4,8,0)
instance CoArbitrary (f a) => CoArbitrary (Monoid.Alt f a) where
coarbitrary = coarbitrary . Monoid.getAlt
#endif
#endif
instance CoArbitrary Version where
coarbitrary (Version a b) = coarbitrary (a, b)
#if defined(MIN_VERSION_base)
#if MIN_VERSION_base(4,2,0)
instance CoArbitrary Newline where
coarbitrary LF = variant 0
coarbitrary CRLF = variant 1
instance CoArbitrary NewlineMode where
coarbitrary (NewlineMode inNL outNL) = coarbitrary inNL . coarbitrary outNL
#endif
#endif
-- ** Helpers for implementing coarbitrary
-- | A 'coarbitrary' implementation for integral numbers.
coarbitraryIntegral :: Integral a => a -> Gen b -> Gen b
coarbitraryIntegral = variant
-- | A 'coarbitrary' implementation for real numbers.
coarbitraryReal :: Real a => a -> Gen b -> Gen b
coarbitraryReal x = coarbitrary (toRational x)
-- | 'coarbitrary' helper for lazy people :-).
coarbitraryShow :: Show a => a -> Gen b -> Gen b
coarbitraryShow x = coarbitrary (show x)
-- | A 'coarbitrary' implementation for enums.
coarbitraryEnum :: Enum a => a -> Gen b -> Gen b
coarbitraryEnum = variant . fromEnum
--------------------------------------------------------------------------
-- ** arbitrary generators
-- these are here and not in Gen because of the Arbitrary class constraint
-- | Generates a list of a given length.
vector :: Arbitrary a => Int -> Gen [a]
vector k = vectorOf k arbitrary
-- | Generates an ordered list.
orderedList :: (Ord a, Arbitrary a) => Gen [a]
orderedList = sort `fmap` arbitrary
-- | Generates an infinite list.
infiniteList :: Arbitrary a => Gen [a]
infiniteList = infiniteListOf arbitrary
--------------------------------------------------------------------------
-- ** Rational helper
infixr 5 :<
data Stream a = !a :< Stream a
streamNth :: Int -> Stream a -> a
streamNth n (x :< xs) | n <= 0 = x
| otherwise = streamNth (n - 1) xs
-- We read into this stream only with ~size argument,
-- so it's ok to have it as CAF.
--
rationalUniverse :: Stream Rational
rationalUniverse = 0 :< 1 :< (-1) :< go leftSideStream
where
go (x :< xs) =
let nx = -x
rx = recip x
nrx = -rx
in nx `seq` rx `seq` nrx `seq` (x :< rx :< nx :< nrx :< go xs)
-- All the rational numbers on the left side of the Calkin-Wilf tree,
-- in breadth-first order.
leftSideStream :: Stream Rational
leftSideStream = (1 % 2) :< go leftSideStream
where
go (x :< xs) =
lChild `seq` rChild `seq`
(lChild :< rChild :< go xs)
where
nd = numerator x + denominator x
lChild = numerator x % nd
rChild = nd % denominator x
--------------------------------------------------------------------------
-- the end.
|
import data.matrix.basic data.array.lemmas data.rat.basic
def fmatrix (m : ℕ) (n : ℕ) := array (m * n) ℚ
namespace fmatrix
variables {l m n : ℕ}
instance : has_add (fmatrix m n) := ⟨array.map₂ (+)⟩
instance : has_zero (fmatrix m n) := ⟨mk_array _ 0⟩
instance : has_neg (fmatrix m n) := ⟨array.map has_neg.neg⟩
lemma add_def (a b : fmatrix m n) : a + b = a.map₂ (+) b := rfl
def fin.pair (i : fin m) (j : fin n) : fin (m * n) :=
⟨j + n * i,
calc ((j : ℕ) + n * i) + 1 = i * n + (j + 1) : by simp [mul_comm, add_comm]
... ≤ i * n + n : add_le_add (le_refl _) j.2
... = (i + 1) * n : by simp [add_mul]
... ≤ m * n : mul_le_mul i.2 (le_refl _) (nat.zero_le _) (nat.zero_le _)⟩
def fin.unpair₁ (x : fin (m * n)) : fin m :=
⟨x / n, nat.div_lt_of_lt_mul (mul_comm m n ▸ x.2)⟩
def fin.unpair₂ (x : fin (m * n)) : fin n :=
⟨x % n, nat.mod_lt _ (nat.pos_of_ne_zero (λ hn0, by rw [hn0, mul_zero] at x; exact x.elim0))⟩
@[simp] lemma fin.pair_unpair (x : fin (m * n)) : fin.pair (fin.unpair₁ x) (fin.unpair₂ x) = x :=
fin.eq_of_veq (nat.mod_add_div _ _)
@[simp] lemma fin.unpair₁_pair (i : fin m) (j : fin n) : fin.unpair₁ (fin.pair i j) = i :=
fin.eq_of_veq $ show ((j : ℕ) + n * i) / n = i,
by erw [nat.add_mul_div_left _ _ (lt_of_le_of_lt (nat.zero_le _) j.2),
nat.div_eq_of_lt j.2, zero_add]
@[simp] lemma fin.unpair₂_pair (i : fin m) (j : fin n) : fin.unpair₂ (fin.pair i j) = j :=
fin.eq_of_veq $ show ((j : ℕ) + n * i) % n = j,
by erw [nat.add_mul_mod_self_left, nat.mod_eq_of_lt j.2]; refl
lemma fin.pair_eq_pair {i i' : fin m} {j j' : fin n} :
fin.pair i j = fin.pair i' j' ↔ i' = i ∧ j' = j :=
⟨λ h, ⟨by rw [← fin.unpair₁_pair i j, h, fin.unpair₁_pair],
by rw [← fin.unpair₂_pair i j, h, fin.unpair₂_pair]⟩,
λ ⟨hi, hj⟩, by rw [hi, hj]⟩
def read (A : fmatrix m n) (i : fin m) (j : fin n) : ℚ :=
array.read A (fin.pair i j)
def write (A : fmatrix m n) (i : fin m) (j : fin n) : ℚ → fmatrix m n :=
array.write A (fin.pair i j)
@[extensionality] lemma ext {A B : fmatrix m n} (h : ∀ i j, A.read i j = B.read i j) : A = B :=
array.ext $ λ x, by simpa [fmatrix.read] using h (fin.unpair₁ x) (fin.unpair₂ x)
@[simp] lemma read_write (A : fmatrix m n) (i : fin m) (j : fin n) (x : ℚ) :
(A.write i j x).read i j = x :=
array.read_write _ _ _
lemma read_write_of_ne (A : fmatrix m n) {i i' : fin m} {j j': fin n} (x : ℚ)
(h : i' ≠ i ∨ j' ≠ j) : (A.write i j x).read i' j' = A.read i' j' :=
array.read_write_of_ne _ _ (by rwa [ne.def, fin.pair_eq_pair, not_and_distrib])
def foreach_aux (A : fmatrix m n) (f : fin m → fin n → ℚ → ℚ) :
Π (i : ℕ) (j : ℕ) (hi : i ≤ m) (hj : j ≤ n), fmatrix m n
| 0 j := λ hi hj, A
| (i+1) 0 := λ hi hj, foreach_aux i n (nat.le_of_succ_le hi) (le_refl _)
| (i+1) (j+1) := λ hi hj, (foreach_aux (i+1) j hi (nat.le_of_succ_le hj)).write
⟨i, hi⟩ ⟨j, hj⟩ (f ⟨i, hi⟩ ⟨j, hj⟩ (A.read ⟨i, hi⟩ ⟨j, hj⟩))
def foreach (A : fmatrix m n) (f : fin m → fin n → ℚ → ℚ) : fmatrix m n :=
foreach_aux A f m n (le_refl _) (le_refl _)
lemma read_foreach_aux (A : fmatrix m n) (f : fin m → fin n → ℚ → ℚ) :
Π (i : ℕ) (j : ℕ) (hi : i ≤ m) (hj : j ≤ n) (i' : fin m) (j' : fin n)
(hij' : i'.1 + 1 < i ∨ (i'.1 + 1 = i ∧ j'.1 < j)),
(A.foreach_aux f i j hi hj).read i' j' = f i' j' (A.read i' j')
| 0 j := λ hi hj i' j' hij', hij'.elim (λ hi', (nat.not_lt_zero _ hi').elim)
(λ hij', (nat.succ_ne_zero _ hij'.1).elim)
| (i+1) 0 := λ hi hj i' j' hij',
hij'.elim
(λ hi', begin
rw [foreach_aux, read_foreach_aux],
cases lt_or_eq_of_le (nat.le_of_lt_succ hi') with hi' hi',
{ exact or.inl hi' },
{ exact or.inr ⟨hi', j'.2⟩ }
end)
(λ hij', (nat.not_lt_zero _ hij'.2).elim)
| (i+1) (j+1) := λ hi hj i' j' hij',
begin
rw [foreach_aux], dsimp only,
by_cases hij : i' = ⟨i, hi⟩ ∧ j' = ⟨j, hj⟩,
{ rw [hij.1, hij.2, read_write] },
{ rw not_and_distrib at hij,
rw [read_write_of_ne _ _ hij, read_foreach_aux],
cases hij' with hi' hij',
{ exact or.inl hi' },
{ exact or.inr ⟨hij'.1, lt_of_le_of_ne (nat.le_of_lt_succ hij'.2)
(fin.vne_of_ne (hij.resolve_left (not_not_intro (fin.eq_of_veq
(nat.succ_inj hij'.1)))))⟩ } }
end
@[simp] lemma read_foreach (A : fmatrix m n) (f : fin m → fin n → ℚ → ℚ) (i : fin m)
(j : fin n) : (A.foreach f).read i j = f i j (A.read i j) :=
read_foreach_aux _ _ _ _ _ _ _ _ ((lt_or_eq_of_le (nat.succ_le_of_lt i.2)).elim
or.inl (λ hi, or.inr ⟨hi, j.2⟩))
def write_column (A : fmatrix m n) (i : fin m) (f : fin n → ℚ) : fmatrix m n :=
(list.fin_range n).foldl (λ A j, A.write i j (f j)) A
def to_matrix (A : fmatrix m n) : matrix (fin m) (fin n) ℚ
| i j := A.read i j
def of_matrix (A : matrix (fin m) (fin n) ℚ) : fmatrix m n :=
(0 : fmatrix m n).foreach (λ i j _, A i j)
@[simp] lemma to_matrix_of_matrix (A : matrix (fin m) (fin n) ℚ) :
(of_matrix A).to_matrix = A :=
by ext; simp [to_matrix, of_matrix]
@[simp] lemma of_matrix_to_matrix (A : fmatrix m n) : of_matrix A.to_matrix = A :=
by ext; simp [of_matrix, to_matrix]
def mul (B : fmatrix l m) (C : fmatrix m n) : fmatrix l n :=
let s : finset (fin m) := finset.univ in
(0 : fmatrix l n).foreach
(λ i j _, s.sum (λ k : fin m, B.read i k * C.read k j))
instance : has_mul (fmatrix n n) := ⟨mul⟩
instance : has_one (fmatrix n n) :=
⟨(0 : fmatrix n n).foreach (λ i j _, if i = j then 1 else 0)⟩
instance : has_le (fmatrix m n) := ⟨λ A B, ∀ i, array.read A i ≤ array.read B i⟩
instance : decidable_rel ((≤) : fmatrix m n → fmatrix m n → Prop) :=
λ A B, show decidable (∀ i, array.read A i ≤ array.read B i), by apply_instance
def mul₂ (M : fmatrix l m) (N : fmatrix m n) : fmatrix l n :=
array.foreach (0 : fmatrix l n) (λ x _,
let i := fin.unpair₁ x in
let k := fin.unpair₂ x in
finset.univ.sum (λ j : fin m, M.read i j * N.read j k))
def equiv_matrix : fmatrix m n ≃ matrix (fin m) (fin n) ℚ :=
{ to_fun := to_matrix,
inv_fun := of_matrix,
left_inv := of_matrix_to_matrix,
right_inv := to_matrix_of_matrix }
lemma to_matrix_add (A B : fmatrix m n) : (A + B).to_matrix = A.to_matrix + B.to_matrix :=
by ext; simp [to_matrix, fmatrix.read, add_def, array.read_map₂]
lemma to_matrix_mul (A : fmatrix l m) (B : fmatrix m n) : (A.mul B).to_matrix =
A.to_matrix.mul B.to_matrix :=
by ext; simp [to_matrix, matrix.mul, fmatrix.mul]
end fmatrix
-- #eval (fmatrix.mul (show fmatrix 50 50 ℚ, from ((list.range 2500).map nat.cast).to_array))
-- (show fmatrix 50 50 ℚ, from ((list.range 2500).map nat.cast).to_array))
-- #eval let m := 213 in let n := 100 in
-- let l : array (m * n) ℚ := unchecked_cast (list.to_array (((list.range (m * n)).map
-- (rat.of_int ∘ int.of_nat: ℕ → ℚ)))) in
-- array.to_list
-- (fmatrix.mul(show fmatrix m n, from unchecked_cast l)
-- (show fmatrix n m , from unchecked_cast l))
|
theorem ex : ∀ x : Unit, x = () := by
intro (); rfl
|
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory initialised_decls
imports "CParser.CTranslation"
begin
external_file "initialised_decls.c"
install_C_file "initialised_decls.c"
context initialised_decls_global_addresses
begin
thm f_body_def
thm g_body_def
end
text \<open>
Following proof confirms that we can prove stuff about g without needing
to prove that f is side-effect free; which ain't true. The translation
doesn't incorrectly reckon that the initialisation of local variable i
is an "embedded" function call.
This proof still works, but there aren't side-effect-free guards inserted
at any point in the current translation so the point is a bit moot.
\<close>
lemma (in initialised_decls_global_addresses) foo:
shows "\<Gamma> \<turnstile> \<lbrace> True \<rbrace> \<acute>ret__int :== PROC g() \<lbrace> \<acute>ret__int = 3 \<rbrace>"
apply vcg
done
end
|
module Main
import IdrisUnit
import Control.App
import Control.App.Console
hanoi : Int -> a -> a -> a -> List (a, a)
hanoi 0 a b c = []
hanoi 1 a b c = [(a, c)]
hanoi n a b c = hanoi (n-1) a c b ++ [(a, c)] ++ hanoi (n-1) b a c
spec : Spec es => App es ()
spec = do
describe "example" $ do
context "arith" $ do
it "1+1 = 2" $ do
1+1 `shouldBe` 2
it "1*1 = 1" $ do
1*1 `shouldBe` 1
describe "hanoi" $ do
it "3 level" $ do
hanoi 3 'A' 'B' 'C' `shouldBe` [('A', 'C'), ('A', 'B'), ('C', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'C'), ('A', 'C')]
it "4 level" $ do
hanoi 4 'A' 'B' 'C' `shouldBe` [('A', 'B'), ('A', 'C'), ('B', 'C'), ('A', 'B'), ('C', 'A'), ('C', 'B'), ('A', 'B'), ('A', 'C'), ('B', 'C'), ('B', 'A'), ('C', 'A'), ('B', 'C'), ('A', 'B'), ('A', 'C'), ('B', 'C')]
main : IO ()
main = run spec
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
! This file was ported from Lean 3 source module data.set.pairwise.basic
! leanprover-community/mathlib commit c227d107bbada5d0d9d20287e3282c0a7f1651a0
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Data.Set.Function
import Mathlib.Logic.Relation
import Mathlib.Logic.Pairwise
/-!
# Relations holding pairwise
This file develops pairwise relations and defines pairwise disjoint indexed sets.
We also prove many basic facts about `Pairwise`. It is possible that an intermediate file,
with more imports than `Logic.Pairwise` but not importing `Data.Set.Function` would be appropriate
to hold many of these basic facts.
## Main declarations
* `Set.PairwiseDisjoint`: `s.PairwiseDisjoint f` states that images under `f` of distinct elements
of `s` are either equal or `Disjoint`.
## Notes
The spelling `s.PairwiseDisjoint id` is preferred over `s.Pairwise Disjoint` to permit dot notation
on `Set.PairwiseDisjoint`, even though the latter unfolds to something nicer.
-/
open Set Function
variable {α β γ ι ι' : Type _} {r p q : α → α → Prop}
section Pairwise
variable {f g : ι → α} {s t u : Set α} {a b : α}
theorem pairwise_on_bool (hr : Symmetric r) {a b : α} :
Pairwise (r on fun c => cond c a b) ↔ r a b := by simpa [Pairwise, Function.onFun] using @hr a b
#align pairwise_on_bool pairwise_on_bool
theorem pairwise_disjoint_on_bool [SemilatticeInf α] [OrderBot α] {a b : α} :
Pairwise (Disjoint on fun c => cond c a b) ↔ Disjoint a b :=
pairwise_on_bool Disjoint.symm
#align pairwise_disjoint_on_bool pairwise_disjoint_on_bool
theorem Symmetric.pairwise_on [LinearOrder ι] (hr : Symmetric r) (f : ι → α) :
Pairwise (r on f) ↔ ∀ ⦃m n⦄, m < n → r (f m) (f n) :=
⟨fun h _m _n hmn => h hmn.ne, fun h _m _n hmn => hmn.lt_or_lt.elim (@h _ _) fun h' => hr (h h')⟩
#align symmetric.pairwise_on Symmetric.pairwise_on
theorem pairwise_disjoint_on [SemilatticeInf α] [OrderBot α] [LinearOrder ι] (f : ι → α) :
Pairwise (Disjoint on f) ↔ ∀ ⦃m n⦄, m < n → Disjoint (f m) (f n) :=
Symmetric.pairwise_on Disjoint.symm f
#align pairwise_disjoint_on pairwise_disjoint_on
theorem pairwise_disjoint_mono [SemilatticeInf α] [OrderBot α] (hs : Pairwise (Disjoint on f))
(h : g ≤ f) : Pairwise (Disjoint on g) :=
hs.mono fun i j hij => Disjoint.mono (h i) (h j) hij
#align pairwise_disjoint.mono pairwise_disjoint_mono
namespace Set
theorem Pairwise.mono (h : t ⊆ s) (hs : s.Pairwise r) : t.Pairwise r :=
fun _x xt _y yt => hs (h xt) (h yt)
#align set.pairwise.mono Set.Pairwise.mono
theorem Pairwise.mono' (H : r ≤ p) (hr : s.Pairwise r) : s.Pairwise p :=
hr.imp H
#align set.pairwise.mono' Set.Pairwise.mono'
theorem pairwise_top (s : Set α) : s.Pairwise ⊤ :=
pairwise_of_forall s _ fun _ _ => trivial
#align set.pairwise_top Set.pairwise_top
protected theorem Subsingleton.pairwise (h : s.Subsingleton) (r : α → α → Prop) : s.Pairwise r :=
fun _x hx _y hy hne => (hne (h hx hy)).elim
#align set.subsingleton.pairwise Set.Subsingleton.pairwise
@[simp]
theorem pairwise_empty (r : α → α → Prop) : (∅ : Set α).Pairwise r :=
subsingleton_empty.pairwise r
#align set.pairwise_empty Set.pairwise_empty
@[simp]
theorem pairwise_singleton (a : α) (r : α → α → Prop) : Set.Pairwise {a} r :=
subsingleton_singleton.pairwise r
#align set.pairwise_singleton Set.pairwise_singleton
theorem pairwise_iff_of_refl [IsRefl α r] : s.Pairwise r ↔ ∀ ⦃a⦄, a ∈ s → ∀ ⦃b⦄, b ∈ s → r a b :=
forall₄_congr fun _ _ _ _ => or_iff_not_imp_left.symm.trans <| or_iff_right_of_imp of_eq
#align set.pairwise_iff_of_refl Set.pairwise_iff_of_refl
alias pairwise_iff_of_refl ↔ Pairwise.of_refl _
#align set.pairwise.of_refl Set.Pairwise.of_refl
theorem Nonempty.pairwise_iff_exists_forall [IsEquiv α r] {s : Set ι} (hs : s.Nonempty) :
s.Pairwise (r on f) ↔ ∃ z, ∀ x ∈ s, r (f x) z := by
constructor
· rcases hs with ⟨y, hy⟩
refine' fun H => ⟨f y, fun x hx => _⟩
rcases eq_or_ne x y with (rfl | hne)
· apply IsRefl.refl
· exact H hx hy hne
· rintro ⟨z, hz⟩ x hx y hy _
exact @IsTrans.trans α r _ (f x) z (f y) (hz _ hx) (IsSymm.symm _ _ <| hz _ hy)
#align set.nonempty.pairwise_iff_exists_forall Set.Nonempty.pairwise_iff_exists_forall
/-- For a nonempty set `s`, a function `f` takes pairwise equal values on `s` if and only if
for some `z` in the codomain, `f` takes value `z` on all `x ∈ s`. See also
`Set.pairwise_eq_iff_exists_eq` for a version that assumes `[Nonempty ι]` instead of
`Set.Nonempty s`. -/
theorem Nonempty.pairwise_eq_iff_exists_eq {s : Set α} (hs : s.Nonempty) {f : α → ι} :
(s.Pairwise fun x y => f x = f y) ↔ ∃ z, ∀ x ∈ s, f x = z :=
hs.pairwise_iff_exists_forall
#align set.nonempty.pairwise_eq_iff_exists_eq Set.Nonempty.pairwise_eq_iff_exists_eq
theorem pairwise_iff_exists_forall [Nonempty ι] (s : Set α) (f : α → ι) {r : ι → ι → Prop}
[IsEquiv ι r] : s.Pairwise (r on f) ↔ ∃ z, ∀ x ∈ s, r (f x) z := by
rcases s.eq_empty_or_nonempty with (rfl | hne)
· simp
· exact hne.pairwise_iff_exists_forall
#align set.pairwise_iff_exists_forall Set.pairwise_iff_exists_forall
/-- A function `f : α → ι` with nonempty codomain takes pairwise equal values on a set `s` if and
only if for some `z` in the codomain, `f` takes value `z` on all `x ∈ s`. See also
`Set.Nonempty.pairwise_eq_iff_exists_eq` for a version that assumes `Set.Nonempty s` instead of
`[Nonempty ι]`. -/
theorem pairwise_eq_iff_exists_eq [Nonempty ι] (s : Set α) (f : α → ι) :
(s.Pairwise fun x y => f x = f y) ↔ ∃ z, ∀ x ∈ s, f x = z :=
pairwise_iff_exists_forall s f
#align set.pairwise_eq_iff_exists_eq Set.pairwise_eq_iff_exists_eq
theorem pairwise_union :
(s ∪ t).Pairwise r ↔
s.Pairwise r ∧ t.Pairwise r ∧ ∀ a ∈ s, ∀ b ∈ t, a ≠ b → r a b ∧ r b a := by
simp only [Set.Pairwise, mem_union, or_imp, forall_and]
exact
⟨fun H => ⟨H.1.1, H.2.2, H.2.1, fun x hx y hy hne => H.1.2 y hy x hx hne.symm⟩, fun H =>
⟨⟨H.1, fun x hx y hy hne => H.2.2.2 y hy x hx hne.symm⟩, H.2.2.1, H.2.1⟩⟩
#align set.pairwise_union Set.pairwise_union
theorem pairwise_union_of_symmetric (hr : Symmetric r) :
(s ∪ t).Pairwise r ↔ s.Pairwise r ∧ t.Pairwise r ∧ ∀ a ∈ s, ∀ b ∈ t, a ≠ b → r a b :=
pairwise_union.trans <| by simp only [hr.iff, and_self_iff]
#align set.pairwise_union_of_symmetric Set.pairwise_union_of_symmetric
theorem pairwise_insert :
(insert a s).Pairwise r ↔ s.Pairwise r ∧ ∀ b ∈ s, a ≠ b → r a b ∧ r b a := by
simp only [insert_eq, pairwise_union, pairwise_singleton, true_and_iff, mem_singleton_iff,
forall_eq]
#align set.pairwise_insert Set.pairwise_insert
theorem pairwise_insert_of_not_mem (ha : a ∉ s) :
(insert a s).Pairwise r ↔ s.Pairwise r ∧ ∀ b ∈ s, r a b ∧ r b a :=
pairwise_insert.trans <|
and_congr_right' <| forall₂_congr fun b hb => by simp [(ne_of_mem_of_not_mem hb ha).symm]
#align set.pairwise_insert_of_not_mem Set.pairwise_insert_of_not_mem
protected theorem Pairwise.insert (hs : s.Pairwise r) (h : ∀ b ∈ s, a ≠ b → r a b ∧ r b a) :
(insert a s).Pairwise r :=
pairwise_insert.2 ⟨hs, h⟩
#align set.pairwise.insert Set.Pairwise.insert
theorem Pairwise.insert_of_not_mem (ha : a ∉ s) (hs : s.Pairwise r) (h : ∀ b ∈ s, r a b ∧ r b a) :
(insert a s).Pairwise r :=
(pairwise_insert_of_not_mem ha).2 ⟨hs, h⟩
#align set.pairwise.insert_of_not_mem Set.Pairwise.insert_of_not_mem
theorem pairwise_insert_of_symmetric (hr : Symmetric r) :
(insert a s).Pairwise r ↔ s.Pairwise r ∧ ∀ b ∈ s, a ≠ b → r a b := by
simp only [pairwise_insert, hr.iff a, and_self_iff]
#align set.pairwise_insert_of_symmetric Set.pairwise_insert_of_symmetric
theorem pairwise_insert_of_symmetric_of_not_mem (hr : Symmetric r) (ha : a ∉ s) :
(insert a s).Pairwise r ↔ s.Pairwise r ∧ ∀ b ∈ s, r a b := by
simp only [pairwise_insert_of_not_mem ha, hr.iff a, and_self_iff]
#align set.pairwise_insert_of_symmetric_of_not_mem Set.pairwise_insert_of_symmetric_of_not_mem
theorem Pairwise.insert_of_symmetric (hs : s.Pairwise r) (hr : Symmetric r)
(h : ∀ b ∈ s, a ≠ b → r a b) : (insert a s).Pairwise r :=
(pairwise_insert_of_symmetric hr).2 ⟨hs, h⟩
#align set.pairwise.insert_of_symmetric Set.Pairwise.insert_of_symmetric
theorem Pairwise.insert_of_symmetric_of_not_mem (hs : s.Pairwise r) (hr : Symmetric r) (ha : a ∉ s)
(h : ∀ b ∈ s, r a b) : (insert a s).Pairwise r :=
(pairwise_insert_of_symmetric_of_not_mem hr ha).2 ⟨hs, h⟩
#align set.pairwise.insert_of_symmetric_of_not_mem Set.Pairwise.insert_of_symmetric_of_not_mem
theorem pairwise_pair : Set.Pairwise {a, b} r ↔ a ≠ b → r a b ∧ r b a := by simp [pairwise_insert]
#align set.pairwise_pair Set.pairwise_pair
theorem pairwise_pair_of_symmetric (hr : Symmetric r) : Set.Pairwise {a, b} r ↔ a ≠ b → r a b := by
simp [pairwise_insert_of_symmetric hr]
#align set.pairwise_pair_of_symmetric Set.pairwise_pair_of_symmetric
theorem pairwise_univ : (univ : Set α).Pairwise r ↔ Pairwise r := by
simp only [Set.Pairwise, Pairwise, mem_univ, forall_const]
#align set.pairwise_univ Set.pairwise_univ
@[simp]
theorem pairwise_bot_iff : s.Pairwise (⊥ : α → α → Prop) ↔ (s : Set α).Subsingleton :=
⟨fun h _a ha _b hb => h.eq ha hb id, fun h => h.pairwise _⟩
#align set.pairwise_bot_iff Set.pairwise_bot_iff
alias pairwise_bot_iff ↔ Pairwise.subsingleton _
#align set.pairwise.subsingleton Set.Pairwise.subsingleton
theorem InjOn.pairwise_image {s : Set ι} (h : s.InjOn f) :
(f '' s).Pairwise r ↔ s.Pairwise (r on f) := by
simp (config := { contextual := true }) [h.eq_iff, Set.Pairwise]
#align set.inj_on.pairwise_image Set.InjOn.pairwise_image
end Set
end Pairwise
theorem pairwise_subtype_iff_pairwise_set (s : Set α) (r : α → α → Prop) :
(Pairwise fun (x : s) (y : s) => r x y) ↔ s.Pairwise r := by
simp only [Pairwise, Set.Pairwise, SetCoe.forall, Ne.def, Subtype.ext_iff, Subtype.coe_mk]
#align pairwise_subtype_iff_pairwise_set pairwise_subtype_iff_pairwise_set
alias pairwise_subtype_iff_pairwise_set ↔ Pairwise.set_of_subtype Set.Pairwise.subtype
#align pairwise.set_of_subtype Pairwise.set_of_subtype
#align set.pairwise.subtype Set.Pairwise.subtype
namespace Set
section PartialOrderBot
variable [PartialOrder α] [OrderBot α] {s t : Set ι} {f g : ι → α}
/-- A set is `PairwiseDisjoint` under `f`, if the images of any distinct two elements under `f`
are disjoint.
`s.Pairwise Disjoint` is (definitionally) the same as `s.PairwiseDisjoint id`. We prefer the latter
in order to allow dot notation on `Set.PairwiseDisjoint`, even though the former unfolds more
nicely. -/
def PairwiseDisjoint (s : Set ι) (f : ι → α) : Prop :=
s.Pairwise (Disjoint on f)
#align set.pairwise_disjoint Set.PairwiseDisjoint
theorem PairwiseDisjoint.subset (ht : t.PairwiseDisjoint f) (h : s ⊆ t) : s.PairwiseDisjoint f :=
Pairwise.mono h ht
#align set.pairwise_disjoint.subset Set.PairwiseDisjoint.subset
theorem PairwiseDisjoint.mono_on (hs : s.PairwiseDisjoint f) (h : ∀ ⦃i⦄, i ∈ s → g i ≤ f i) :
s.PairwiseDisjoint g := fun _a ha _b hb hab => (hs ha hb hab).mono (h ha) (h hb)
#align set.pairwise_disjoint.mono_on Set.PairwiseDisjoint.mono_on
theorem PairwiseDisjoint.mono (hs : s.PairwiseDisjoint f) (h : g ≤ f) : s.PairwiseDisjoint g :=
hs.mono_on fun i _ => h i
#align set.pairwise_disjoint.mono Set.PairwiseDisjoint.mono
@[simp]
theorem pairwiseDisjoint_empty : (∅ : Set ι).PairwiseDisjoint f :=
pairwise_empty _
#align set.pairwise_disjoint_empty Set.pairwiseDisjoint_empty
@[simp]
theorem pairwiseDisjoint_singleton (i : ι) (f : ι → α) : PairwiseDisjoint {i} f :=
pairwise_singleton i _
#align set.pairwise_disjoint_singleton Set.pairwiseDisjoint_singleton
theorem pairwiseDisjoint_insert {i : ι} :
(insert i s).PairwiseDisjoint f ↔
s.PairwiseDisjoint f ∧ ∀ j ∈ s, i ≠ j → Disjoint (f i) (f j) :=
pairwise_insert_of_symmetric <| symmetric_disjoint.comap f
#align set.pairwise_disjoint_insert Set.pairwiseDisjoint_insert
theorem pairwiseDisjoint_insert_of_not_mem {i : ι} (hi : i ∉ s) :
(insert i s).PairwiseDisjoint f ↔ s.PairwiseDisjoint f ∧ ∀ j ∈ s, Disjoint (f i) (f j) :=
pairwise_insert_of_symmetric_of_not_mem (symmetric_disjoint.comap f) hi
#align set.pairwise_disjoint_insert_of_not_mem Set.pairwiseDisjoint_insert_of_not_mem
protected theorem PairwiseDisjoint.insert (hs : s.PairwiseDisjoint f) {i : ι}
(h : ∀ j ∈ s, i ≠ j → Disjoint (f i) (f j)) : (insert i s).PairwiseDisjoint f :=
pairwiseDisjoint_insert.2 ⟨hs, h⟩
#align set.pairwise_disjoint.insert Set.PairwiseDisjoint.insert
theorem PairwiseDisjoint.insert_of_not_mem (hs : s.PairwiseDisjoint f) {i : ι} (hi : i ∉ s)
(h : ∀ j ∈ s, Disjoint (f i) (f j)) : (insert i s).PairwiseDisjoint f :=
(pairwiseDisjoint_insert_of_not_mem hi).2 ⟨hs, h⟩
#align set.pairwise_disjoint.insert_of_not_mem Set.PairwiseDisjoint.insert_of_not_mem
theorem PairwiseDisjoint.image_of_le (hs : s.PairwiseDisjoint f) {g : ι → ι} (hg : f ∘ g ≤ f) :
(g '' s).PairwiseDisjoint f := by
rintro _ ⟨a, ha, rfl⟩ _ ⟨b, hb, rfl⟩ h
exact (hs ha hb <| ne_of_apply_ne _ h).mono (hg a) (hg b)
#align set.pairwise_disjoint.image_of_le Set.PairwiseDisjoint.image_of_le
theorem InjOn.pairwiseDisjoint_image {g : ι' → ι} {s : Set ι'} (h : s.InjOn g) :
(g '' s).PairwiseDisjoint f ↔ s.PairwiseDisjoint (f ∘ g) :=
h.pairwise_image
#align set.inj_on.pairwise_disjoint_image Set.InjOn.pairwiseDisjoint_image
theorem PairwiseDisjoint.range (g : s → ι) (hg : ∀ i : s, f (g i) ≤ f i)
(ht : s.PairwiseDisjoint f) : (range g).PairwiseDisjoint f := by
rintro _ ⟨x, rfl⟩ _ ⟨y, rfl⟩ hxy
exact ((ht x.2 y.2) fun h => hxy <| congr_arg g <| Subtype.ext h).mono (hg x) (hg y)
#align set.pairwise_disjoint.range Set.PairwiseDisjoint.range
theorem pairwiseDisjoint_union :
(s ∪ t).PairwiseDisjoint f ↔
s.PairwiseDisjoint f ∧
t.PairwiseDisjoint f ∧ ∀ ⦃i⦄, i ∈ s → ∀ ⦃j⦄, j ∈ t → i ≠ j → Disjoint (f i) (f j) :=
pairwise_union_of_symmetric <| symmetric_disjoint.comap f
#align set.pairwise_disjoint_union Set.pairwiseDisjoint_union
theorem PairwiseDisjoint.union (hs : s.PairwiseDisjoint f) (ht : t.PairwiseDisjoint f)
(h : ∀ ⦃i⦄, i ∈ s → ∀ ⦃j⦄, j ∈ t → i ≠ j → Disjoint (f i) (f j)) : (s ∪ t).PairwiseDisjoint f :=
pairwiseDisjoint_union.2 ⟨hs, ht, h⟩
#align set.pairwise_disjoint.union Set.PairwiseDisjoint.union
-- classical
theorem PairwiseDisjoint.elim (hs : s.PairwiseDisjoint f) {i j : ι} (hi : i ∈ s) (hj : j ∈ s)
(h : ¬Disjoint (f i) (f j)) : i = j :=
hs.eq hi hj h
#align set.pairwise_disjoint.elim Set.PairwiseDisjoint.elim
end PartialOrderBot
section SemilatticeInfBot
variable [SemilatticeInf α] [OrderBot α] {s t : Set ι} {f g : ι → α}
-- classical
theorem PairwiseDisjoint.elim' (hs : s.PairwiseDisjoint f) {i j : ι} (hi : i ∈ s) (hj : j ∈ s)
(h : f i ⊓ f j ≠ ⊥) : i = j :=
(hs.elim hi hj) fun hij => h hij.eq_bot
#align set.pairwise_disjoint.elim' Set.PairwiseDisjoint.elim'
theorem PairwiseDisjoint.eq_of_le (hs : s.PairwiseDisjoint f) {i j : ι} (hi : i ∈ s) (hj : j ∈ s)
(hf : f i ≠ ⊥) (hij : f i ≤ f j) : i = j :=
(hs.elim' hi hj) fun h => hf <| (inf_of_le_left hij).symm.trans h
#align set.pairwise_disjoint.eq_of_le Set.PairwiseDisjoint.eq_of_le
end SemilatticeInfBot
/-! ### Pairwise disjoint set of sets -/
theorem pairwiseDisjoint_range_singleton :
(range (singleton : ι → Set ι)).PairwiseDisjoint id := by
rintro _ ⟨a, rfl⟩ _ ⟨b, rfl⟩ h
exact disjoint_singleton.2 (ne_of_apply_ne _ h)
#align set.pairwise_disjoint_range_singleton Set.pairwiseDisjoint_range_singleton
theorem pairwiseDisjoint_fiber (f : ι → α) (s : Set α) : s.PairwiseDisjoint fun a => f ⁻¹' {a} :=
fun _a _ _b _ h => disjoint_iff_inf_le.mpr fun _i ⟨hia, hib⟩ => h <| (Eq.symm hia).trans hib
#align set.pairwise_disjoint_fiber Set.pairwiseDisjoint_fiber
-- classical
theorem PairwiseDisjoint.elim_set {s : Set ι} {f : ι → Set α} (hs : s.PairwiseDisjoint f) {i j : ι}
(hi : i ∈ s) (hj : j ∈ s) (a : α) (hai : a ∈ f i) (haj : a ∈ f j) : i = j :=
hs.elim hi hj <| not_disjoint_iff.2 ⟨a, hai, haj⟩
#align set.pairwise_disjoint.elim_set Set.PairwiseDisjoint.elim_set
/-- The partial images of a binary function `f` whose partial evaluations are injective are pairwise
disjoint iff `f` is injective . -/
theorem pairwiseDisjoint_image_right_iff {f : α → β → γ} {s : Set α} {t : Set β}
(hf : ∀ a ∈ s, Injective (f a)) :
(s.PairwiseDisjoint fun a => f a '' t) ↔ (s ×ˢ t).InjOn fun p => f p.1 p.2 := by
refine' ⟨fun hs x hx y hy (h : f _ _ = _) => _, fun hs x hx y hy h => _⟩
· suffices x.1 = y.1 by exact Prod.ext this (hf _ hx.1 <| h.trans <| by rw [this])
refine' hs.elim hx.1 hy.1 (not_disjoint_iff.2 ⟨_, mem_image_of_mem _ hx.2, _⟩)
rw [h]
exact mem_image_of_mem _ hy.2
· refine' disjoint_iff_inf_le.mpr _
rintro _ ⟨⟨a, ha, hab⟩, b, hb, rfl⟩
exact h (congr_arg Prod.fst <| hs (mk_mem_prod hx ha) (mk_mem_prod hy hb) hab)
#align set.pairwise_disjoint_image_right_iff Set.pairwiseDisjoint_image_right_iff
/-- The partial images of a binary function `f` whose partial evaluations are injective are pairwise
disjoint iff `f` is injective . -/
theorem pairwiseDisjoint_image_left_iff {f : α → β → γ} {s : Set α} {t : Set β}
(hf : ∀ b ∈ t, Injective fun a => f a b) :
(t.PairwiseDisjoint fun b => (fun a => f a b) '' s) ↔ (s ×ˢ t).InjOn fun p => f p.1 p.2 := by
refine' ⟨fun ht x hx y hy (h : f _ _ = _) => _, fun ht x hx y hy h => _⟩
· suffices x.2 = y.2 by exact Prod.ext (hf _ hx.2 <| h.trans <| by rw [this]) this
refine' ht.elim hx.2 hy.2 (not_disjoint_iff.2 ⟨_, mem_image_of_mem _ hx.1, _⟩)
rw [h]
exact mem_image_of_mem _ hy.1
· refine' disjoint_iff_inf_le.mpr _
rintro _ ⟨⟨a, ha, hab⟩, b, hb, rfl⟩
exact h (congr_arg Prod.snd <| ht (mk_mem_prod ha hx) (mk_mem_prod hb hy) hab)
#align set.pairwise_disjoint_image_left_iff Set.pairwiseDisjoint_image_left_iff
end Set
theorem pairwise_disjoint_fiber (f : ι → α) : Pairwise (Disjoint on fun a : α => f ⁻¹' {a}) :=
pairwise_univ.1 <| Set.pairwiseDisjoint_fiber f univ
#align pairwise_disjoint_fiber pairwise_disjoint_fiber
|
From stdpp Require Import tactics sets.
Require Import Reals Psatz Omega Fourier.
From discprob.measure Require Export measurable_space.
From mathcomp Require Import choice.
Require ClassicalEpsilon.
Export Hierarchy.
Open Scope R_scope.
(* Usually the Borel sigma algebra is defined for more general topological spaces,
but the Coquelicot hierarchy is oriented around uniform spaces, and in any case
that will be good enough *)
Definition borel_sigma (A: UniformSpace) : sigma_algebra A := minimal_sigma (@open A).
(* Todo: should we make it global? or only if second countable *)
Instance borel (A: UniformSpace) : measurable_space A :=
{| measurable_space_sigma := borel_sigma A |}.
Lemma continuous_inverse_open (A B: UniformSpace) (f: A → B) :
(∀ x, continuous f x) →
∀ U, open U → open (fun_inv f U).
Proof.
rewrite /open. intros Hcont U Hopen x Hf.
rewrite /continuous_on in Hcont.
rewrite /fun_inv. specialize (Hcont x). edestruct Hcont as [eps ?]; first eauto.
exists eps. auto.
Qed.
Lemma continuous_borel_measurable (A B: UniformSpace) (f: A → B) :
(∀ x, continuous f x) →
measurable f.
Proof.
intros Hcont. apply sigma_measurable_generating_sets => U Hopen. apply minimal_sigma_ub.
by apply continuous_inverse_open.
Qed.
Lemma closed_compl {A: UniformSpace} (U: A → Prop) :
open U → closed (compl U).
Proof. by apply closed_not. Qed.
Lemma closed_compl' {A: UniformSpace} (U: A → Prop) :
open (compl U) → closed U.
Proof. intros. eapply closed_ext; last eapply closed_compl; eauto. apply compl_involutive. Qed.
Lemma open_compl {A: UniformSpace} (U: A → Prop) :
closed U → open (compl U).
Proof. by apply open_not. Qed.
Lemma open_compl' {A: UniformSpace} (U: A → Prop) :
closed (compl U) → open U.
Proof. intros. eapply open_ext; last eapply open_compl; eauto. apply compl_involutive. Qed.
Hint Resolve closed_compl open_compl closed_compl' open_compl'.
Lemma borel_gen_closed (A: UniformSpace) : eq_sigma (borel A) (minimal_sigma (@closed A)).
Proof.
rewrite /eq_sigma/eq_prop/borel => U; split; apply minimal_sigma_lub => U' ?;
rewrite -(compl_involutive U'); apply sigma_closed_complements;
apply minimal_sigma_ub; auto.
Qed.
Lemma borel_closed (A: UniformSpace) U : closed U → (borel A) U.
Proof.
intros Hclosed. rewrite borel_gen_closed. by apply minimal_sigma_ub.
Qed.
(* Technically this would be the Borel sigma algebra on the extended reals,
but we do not have the UniformSpace structure on Rbar *)
Definition Rbar_sigma : sigma_algebra Rbar :=
minimal_sigma (λ U, ∃ x, U = (λ z, Rbar_le z x)).
Instance Rbar_measurable_space : measurable_space Rbar :=
{| measurable_space_sigma := Rbar_sigma |}.
Section borel_R.
Lemma Rbar_sigma_p_infty:
Rbar_sigma {[p_infty]}.
Proof.
assert (Hequiv: eq_prop ({[p_infty]}) (intersectF (λ n, compl (λ x, Rbar_le x (INR n : Rbar))))).
{ split.
- inversion 1; subst.
intros n. rewrite /compl//=.
- intros Hall. destruct x as [r | |].
* exfalso.
destruct (Rle_dec 0 r).
** destruct (archimed_pos r) as (n&Hrange); auto.
rewrite S_INR in Hrange. eapply (Hall (S n)). rewrite S_INR //=.
nra.
** apply (Hall O) => //=. nra.
* rewrite //=.
* exfalso. apply (Hall O) => //=.
}
rewrite Hequiv.
apply sigma_closed_intersections => n.
apply sigma_closed_complements.
apply minimal_sigma_ub. exists (INR n). auto.
Qed.
Lemma Rbar_sigma_m_infty:
Rbar_sigma {[m_infty]}.
Proof.
assert (Hequiv: eq_prop ({[m_infty]}) (intersectF (λ n, (λ x, Rbar_le x (-INR n))))).
{ split.
- inversion 1; subst.
intros n. rewrite /compl//=.
- intros Hall. destruct x as [r | |].
* exfalso. destruct (Rle_dec 0 r).
** exfalso. feed pose proof (Hall (S O)) as H. rewrite //= in H. nra.
** destruct (archimed_pos (-r)) as (n'&?); first nra.
feed pose proof (Hall (S n')) as H'. rewrite S_INR //= in H' H.
apply Ropp_le_ge_contravar in H'.
rewrite Ropp_involutive in H'.
nra.
* exfalso. destruct (Hall O).
* done.
}
rewrite Hequiv.
apply sigma_closed_intersections => n.
apply minimal_sigma_ub. exists (-INR n). auto.
Qed.
Lemma borel_gen_closed_ray1 :
le_prop (minimal_sigma (λ (U: R → Prop), ∃ x y, U = (λ z, x < z <= y)))
(minimal_sigma (λ (U : R → Prop), ∃ x, U = (λ z, z <= x))).
Proof.
apply minimal_sigma_lub. intros ? (x&y&?); subst.
assert ((λ z : R, x < z ∧ z <= y) ≡
(λ z : R, z <= y) ∩ compl (λ z : R, z <= x)) as Heq.
{ intros z; split => //=.
* intros (?&?). split => //=; intros Hneg. nra.
* intros (?&Hcomp). split => //=. apply Rnot_ge_lt. intros Hge.
apply Hcomp. nra.
}
rewrite Heq.
apply sigma_closed_pair_intersect.
* apply minimal_sigma_ub. eexists; eauto.
* apply sigma_closed_complements, minimal_sigma_ub. eexists; eauto.
Qed.
Lemma borel_gen_closed_ray2 :
le_prop (borel (R_UniformSpace))
(minimal_sigma (λ (U : R → Prop), ∃ x, U = (λ z, z <= x))).
Proof.
etransitivity; last eapply borel_gen_closed_ray1.
apply minimal_sigma_lub => U HopenU.
unshelve (eapply sigma_proper; last eapply sigma_closed_unions).
{
intros n.
destruct (@pickle_inv [countType of (bool * (nat * nat * nat))] n) as [(b&(x&y)&N)|];
last exact ∅.
set (V := (λ z, match b with
| true => (INR x / INR y) - (1/(INR N)) < z ∧
z <= (INR x / INR y)
| false => - ((INR x / INR y)) - (1/(INR N)) < z ∧
z <= - (INR x / INR y)
end)).
destruct (ClassicalEpsilon.excluded_middle_informative
(V ⊆ U)).
* exact V.
* exact ∅.
}
{
split.
* intros HUz. specialize (HopenU _ HUz).
destruct HopenU as ((δ&Hpos)&Hdelta).
destruct (Rle_dec 0 x) as [Hle|Hnle].
** edestruct (archimed_cor1 δ) as (K&?&?); first by nra.
assert (0 < / INR K).
{ apply Rinv_0_lt_compat, pos_INR'; done. }
edestruct (archimed_rat_dense1 (/INR K) x) as (n&m&(?&?)&?); auto; try nra.
exists (pickle (true, (n, m, K))).
rewrite pickleK_inv => //=.
destruct ClassicalEpsilon.excluded_middle_informative as [Hsub|Hnsub]; last first.
{ exfalso. destruct Hnsub.
intros z. rewrite //=. intros [? ?].
apply Hdelta => //=.
rewrite /ball//=/ball//=/AbsRing_ball//=/abs//=.
rewrite /minus/opp/plus//=.
assert (z >= z - x) by nra.
apply Rabs_case => Hcase; try nra.
}
rewrite //=. nra.
** edestruct (archimed_cor1 δ) as (K&?&?); first by nra.
assert (0 < / INR K).
{ apply Rinv_0_lt_compat, pos_INR'; done. }
edestruct (archimed_rat_dense2 (/INR K) x) as (n&m&(?&?)&?); auto; try nra.
exists (pickle (false, (n, m, K))).
rewrite pickleK_inv => //=.
destruct ClassicalEpsilon.excluded_middle_informative as [Hsub|Hnsub]; last first.
{ exfalso. destruct Hnsub.
intros z. rewrite //=. intros [? ?].
apply Hdelta => //=.
rewrite /ball//=/ball//=/AbsRing_ball//=/abs//=.
rewrite /minus/opp/plus//=.
assert (z >= z + x) by nra.
apply Rabs_case => Hcase; try nra.
}
rewrite //=. nra.
* intros (n&HUn).
destruct pickle_inv as [(b&(n'&m')&K)|]; rewrite //= in HUn.
destruct ClassicalEpsilon.excluded_middle_informative as [Hsub|Hnsub];
rewrite //= in HUn.
by apply Hsub.
}
intros i.
destruct (@pickle_inv [countType of bool * (nat * nat * nat)] i) as
[(b&(n&m)&K)|] eqn:Heq; rewrite Heq; last by apply sigma_empty_set.
destruct b.
* set (V := λ z, INR n / INR m - 1 / INR K < z ∧ z <= INR n / INR m).
destruct (Classical_Prop.classic (V ⊆ U)) as [Hsub|Hnsub].
** apply minimal_sigma_ub. do 2 eexists. rewrite /V.
destruct ClassicalEpsilon.excluded_middle_informative as [|Hnsub]; first reflexivity.
exfalso; apply Hnsub. eauto.
** eapply sigma_proper; last eapply sigma_empty_set; rewrite //=.
destruct ClassicalEpsilon.excluded_middle_informative as [Hsub'|]; last reflexivity.
exfalso; apply Hnsub; eauto.
* set (V := λ z, - (INR n / INR m) - 1 / INR K < z ∧ z <= - (INR n / INR m)).
destruct (Classical_Prop.classic (V ⊆ U)) as [Hsub|Hnsub].
** apply minimal_sigma_ub. do 2 eexists. rewrite /V.
destruct ClassicalEpsilon.excluded_middle_informative as [|Hnsub]; first reflexivity.
exfalso; apply Hnsub. eauto.
** eapply sigma_proper; last eapply sigma_empty_set; rewrite //=.
destruct ClassicalEpsilon.excluded_middle_informative as [Hsub'|]; last reflexivity.
exfalso; apply Hnsub; eauto.
Qed.
Lemma borel_gen_open_ray_gt:
le_prop (borel (R_UniformSpace))
(minimal_sigma (λ (U : R → Prop), ∃ x, U = (λ z, x < z))).
Proof.
etransitivity; first apply borel_gen_closed_ray2.
apply minimal_sigma_lub => U. intros (x&Heq).
subst. eapply (sigma_proper _ _ (compl (λ z, x < z))).
* rewrite /compl//=. split; nra.
* apply sigma_closed_complements. apply minimal_sigma_ub.
eexists; eauto.
Qed.
Lemma open_ray_borel_gt z:
borel _ (λ x, z < x).
Proof.
apply minimal_sigma_ub.
apply open_gt.
Qed.
Lemma open_ray_borel_lt z:
borel _ (λ x, x < z).
Proof.
apply minimal_sigma_ub.
apply open_lt.
Qed.
Lemma closed_ray_borel_ge z:
borel _ (λ x, z <= x).
Proof.
apply borel_closed. apply closed_compl'.
eapply open_ext; last eapply (open_lt z).
intros x => //=. rewrite /compl.
nra.
Qed.
Lemma closed_ray_borel_le z:
borel _ (λ x, x <= z).
Proof.
apply borel_closed. apply closed_compl'.
eapply open_ext; last eapply (open_gt z).
intros x => //=. rewrite /compl.
nra.
Qed.
Lemma closed_interval_borel a b:
borel _ (λ x, a <= x <= b).
Proof.
assert ((λ x, a <= x <= b) ≡ (λ x, a <= x) ∩ (λ x, x <= b)) as ->.
{ split; intros; rewrite //=; nra. }
eapply sigma_closed_pair_intersect; auto using closed_ray_borel_le, closed_ray_borel_ge.
Qed.
Lemma borel_equiv_closed_ray :
eq_sigma (borel (R_UniformSpace))
(minimal_sigma (λ (U : R → Prop), ∃ x, U = (λ z, z <= x))).
Proof.
intros z; split.
* apply borel_gen_closed_ray2.
* apply minimal_sigma_lub. intros U (?&Heq). subst.
apply (closed_ray_borel_le x).
Qed.
Lemma measurable_plus {A: Type} {F: measurable_space A} (f1 f2: A → R) :
measurable f1 →
measurable f2 →
measurable (λ x, f1 x + f2 x).
Proof.
intros Hmeas1 Hmeas2.
eapply sigma_measurable_mono.
{ rewrite /le_sigma; reflexivity. }
{ rewrite /le_sigma/flip. apply borel_gen_open_ray_gt. }
eapply sigma_measurable_generating_sets.
intros ? (t&->). rewrite /fun_inv.
cut (eq_prop (λ a, t < f1 a + f2 a)
(unionF (λ n, match @pickle_inv [countType of (bool * (nat * nat))] n with
| None => empty_set
| Some (b, (n, m)) =>
let r := if b then INR n / INR m else - (INR n / INR m) in
(fun_inv f1 (λ x, Rlt r x)) ∩ (fun_inv f2 (λ x, Rlt (t - r) x))
end))).
{ intros ->. apply sigma_closed_unions => i.
destruct (pickle_inv) as [(b&(n&m))|]; last apply sigma_empty_set.
destruct b => //=; apply sigma_closed_pair_intersect;
first [ apply Hmeas1 | apply Hmeas2 ]; apply open_ray_borel_gt.
}
intros a; split.
- intros Hlt.
destruct (Rtotal_order 0 (f1 a)) as [Hgt0|[Heq|Hlt0]].
* set (δ := Rmin ((f1 a + f2 a) - t) (f1 a / 2)).
edestruct (archimed_rat_dense1 (δ/2) (f1 a - δ/2)) as (n&m&Hnm&?); rewrite /δ; auto; try nra.
{ apply Rmin_case_strong; intros; try nra. }
{ apply Rmin_case_strong; intros; try nra. }
exists (pickle (true, (n, m))).
rewrite pickleK_inv //=; split; rewrite /fun_inv.
** nra.
** rewrite /δ in Hnm. move: Hnm.
apply Rmin_case_strong; nra.
* set (δ := ((f1 a + f2 a) - t) / 2).
edestruct (archimed_rat_dense2 (δ/2) (-δ/2)) as (n&m&Hnm&?); rewrite /δ; auto; try nra.
exists (pickle (false, (n, m))).
rewrite pickleK_inv //=; split; rewrite /fun_inv.
** nra.
** rewrite /δ in Hnm. move: Hnm.
rewrite -?Heq //=. nra.
* set (δ := ((f1 a + f2 a) - t) / 2).
edestruct (archimed_rat_dense2 (δ/2) (f1 a - δ/2)) as (n&m&Hnm&?); rewrite /δ; auto; try nra.
exists (pickle (false, (n, m))).
rewrite pickleK_inv //=; split; rewrite /fun_inv.
** nra.
** rewrite /δ in Hnm. move: Hnm.
rewrite -?Heq //=. nra.
- intros (bnm&Hspec). destruct (pickle_inv) as [(b&(n&m))|].
* destruct b; rewrite /fun_inv//= in Hspec; destruct Hspec as [H1 H2]; nra.
* destruct Hspec.
Qed.
Lemma measurable_scal {A: Type} {F: measurable_space A} (f: A → R) (c: R):
measurable f →
measurable (λ x, c * f x).
Proof.
intros Hmeas.
destruct (Rtotal_order 0 c) as [Hgt0|[Heq|Hlt0]].
- eapply sigma_measurable_mono.
{ rewrite /le_sigma; reflexivity. }
{ rewrite /le_sigma/flip. apply borel_gen_open_ray_gt. }
eapply sigma_measurable_generating_sets.
intros ? (x&->).
rewrite /fun_inv. eapply (sigma_proper _ _ (λ a, x /c < f a)).
{ intros z; split.
* intros. eapply (Rmult_lt_reg_r (1/c)). move: Hgt0. clear.
rewrite /Rinv. apply Rlt_mult_inv_pos; nra.
field_simplify; nra.
* intros. eapply (Rmult_lt_reg_r c); first nra.
field_simplify; nra.
}
apply Hmeas, open_ray_borel_gt.
- subst. intros U HU. rewrite /fun_inv.
destruct (Classical_Prop.classic (U 0)).
* eapply sigma_proper; last apply sigma_full.
intros x; rewrite Rmult_0_l; split; auto.
* eapply sigma_proper; last apply sigma_empty_set.
intros x; rewrite Rmult_0_l; split; auto.
inversion 1.
- eapply sigma_measurable_mono.
{ rewrite /le_sigma; reflexivity. }
{ rewrite /le_sigma/flip. apply borel_gen_open_ray_gt. }
eapply sigma_measurable_generating_sets.
intros ? (x&->).
rewrite /fun_inv. eapply (sigma_proper _ _ (λ a, x /c > f a)).
{ intros z; split.
* intros Hineq%(Rmult_lt_gt_compat_neg_l c); last nra.
field_simplify in Hineq; nra.
* intros Hineq%(Rmult_lt_gt_compat_neg_l (1/c)); last first.
{ rewrite /Rdiv Rmult_1_l. apply Rinv_lt_0_compat. nra. }
field_simplify in Hineq; nra.
}
apply: Hmeas. apply open_ray_borel_lt.
Qed.
Lemma measurable_square {A: Type} {F: measurable_space A} (f: A → R) :
measurable f →
measurable (λ x, f x * f x).
Proof.
intros Hmeas.
eapply sigma_measurable_mono.
{ rewrite /le_sigma; reflexivity. }
{ rewrite /le_sigma/flip. apply borel_gen_closed_ray2. }
eapply sigma_measurable_generating_sets.
intros ? (t&->).
rewrite /fun_inv//=.
destruct (Rlt_dec t 0) as [Hlt|Hnlt].
- eapply sigma_proper; last eapply sigma_empty_set.
intros x; split.
* intros Hle. assert (f x * f x >= 0).
{ apply Rle_ge. apply Rle_0_sqr. }
nra.
* inversion 1.
- apply Rnot_lt_ge, Rge_le in Hnlt.
assert (eq_prop (λ a, f a * f a <= t) (fun_inv f (λ a, - sqrt t <= a <= sqrt t))) as ->.
{ rewrite /fun_inv//=. intros a; split.
* intros Hsqr. apply sqrt_le_1_alt in Hsqr.
rewrite sqrt_Rsqr_abs in Hsqr.
move: Hsqr. apply Rabs_case; nra.
* intros Hrange.
replace (f a * f a) with (Rsqr (f a)) by auto.
rewrite (Rsqr_abs (f a)).
apply sqrt_le_0; try nra.
** apply Rle_0_sqr.
** rewrite sqrt_Rsqr; last by auto.
move: Hrange. apply Rabs_case; nra.
}
apply Hmeas, closed_interval_borel.
Qed.
Lemma measurable_opp {A: Type} {F: measurable_space A} (f: A → R) :
measurable f →
measurable (λ x, - f x).
Proof.
intros. eapply measurable_comp.
* eauto.
* apply continuous_borel_measurable. rewrite //=.
intros x. apply: continuous_opp. apply: continuous_id.
Qed.
Lemma measurable_minus {A: Type} {F: measurable_space A} (f1 f2: A → R) :
measurable f1 →
measurable f2 →
measurable (λ x, f1 x - f2 x).
Proof.
intros Hmeas1 Hmeas2. rewrite /Rminus.
apply measurable_plus; auto.
eapply measurable_comp; eauto.
apply measurable_opp, measurable_id.
Qed.
Lemma measurable_mult {A: Type} {F: measurable_space A} (f1 f2: A → R) :
measurable f1 →
measurable f2 →
measurable (λ x, f1 x * f2 x).
Proof.
intros Hmeas1 Hmeas2.
assert (∀ x, f1 x * f2 x = /2 * ((f1 x + f2 x) * (f1 x + f2 x)) -
/2 * (f1 x * f1 x) - /2 * (f2 x * f2 x)) as Heq.
{ intros x. field. }
setoid_rewrite Heq.
repeat (apply measurable_plus || apply measurable_minus ||
apply measurable_scal || apply measurable_opp ||
apply measurable_square || auto).
Qed.
Ltac measurable := repeat (apply measurable_plus || apply measurable_minus ||
apply measurable_scal || apply measurable_opp ||
apply measurable_square || apply measurable_mult ||
apply measurable_const || auto).
Lemma measurable_Rabs {A: Type} {F: measurable_space A} f1:
measurable f1 →
measurable (λ x, Rabs (f1 x)).
Proof.
intros Hmeas. eapply measurable_comp; eauto.
apply continuous_borel_measurable => x.
apply: continuous_abs.
Qed.
Lemma measurable_Rmax {A: Type} {F: measurable_space A} (f1 f2: A → R) :
measurable f1 →
measurable f2 →
measurable (λ x, Rmax (f1 x) (f2 x)).
Proof.
intros. assert (Heq: ∀ x, Rmax (f1 x) (f2 x) = /2 * ((f1 x + f2 x) + Rabs (f1 x - f2 x))).
{ intros. apply Rmax_case_strong; apply Rabs_case; nra. }
setoid_rewrite Heq.
measurable.
apply measurable_Rabs.
apply measurable_minus; auto.
Qed.
Lemma measurable_Rmin {A: Type} {F: measurable_space A} (f1 f2: A → R) :
measurable f1 →
measurable f2 →
measurable (λ x, Rmin (f1 x) (f2 x)).
Proof.
intros. assert (Heq: ∀ x, Rmin (f1 x) (f2 x) = /2 * ((f1 x + f2 x) - Rabs (f1 x - f2 x))).
{ intros. apply Rmin_case_strong; apply Rabs_case; nra. }
setoid_rewrite Heq.
measurable.
apply measurable_Rabs.
apply measurable_minus; auto.
Qed.
Lemma measurable_real:
measurable real.
Proof.
eapply sigma_measurable_mono.
{ rewrite /le_sigma; reflexivity. }
{ rewrite /le_sigma/flip. apply borel_gen_closed_ray2. }
eapply sigma_measurable_generating_sets.
intros ? (t&->).
destruct (Rlt_dec t 0).
- eapply (sigma_proper _ _ ((λ x, Rbar_le x t) ∩ compl ({[m_infty]}))).
* intros x; split.
** intros (Hle&Hm); destruct x => //=.
exfalso. apply Hm. done.
** destruct x; rewrite /fun_inv//=; nra.
* apply sigma_closed_pair_intersect.
** eapply minimal_sigma_ub. exists t => //=.
** apply sigma_closed_complements, Rbar_sigma_m_infty.
- eapply (sigma_proper _ _ ((λ x, Rbar_le x t) ∪ ({[m_infty]} ∪ {[p_infty]}))).
* intros x; split.
** intros [Hle|[Hm|Hp]]; destruct x => //=; rewrite /fun_inv/real; nra.
** rewrite /fun_inv/real//=.
destruct x => //=; try firstorder.
* apply sigma_closed_pair_union.
** eapply minimal_sigma_ub. exists t => //=.
** apply sigma_closed_pair_union.
*** apply Rbar_sigma_m_infty.
*** apply Rbar_sigma_p_infty.
Qed.
Lemma measurable_Finite:
measurable Finite.
Proof.
intros.
eapply sigma_measurable_generating_sets.
intros ? (t&->).
destruct t as [r | | ].
- assert (eq_prop (fun_inv Finite ((λ x, Rbar_le x r)))
(λ x, Rle x r)) as ->.
{ intros x. split => //=. }
apply closed_ray_borel_le.
- eapply sigma_proper; last eapply sigma_full.
split; auto.
- eapply sigma_proper; last eapply sigma_empty_set.
split; auto.
Qed.
Lemma Rbar_sigma_real_pt r:
Rbar_sigma {[Finite r]}.
Proof.
assert (eq_prop {[Finite r]}
(fun_inv real {[r]} ∩ compl {[p_infty]} ∩ compl {[m_infty]})) as ->.
{ split.
* inversion 1; subst. rewrite /compl/fun_inv//=.
* rewrite /compl/fun_inv//=. intros ((Heq&?)&?); destruct x; try firstorder.
** inversion Heq as [Heq'].
rewrite //= in Heq'. subst. done.
}
apply sigma_closed_pair_intersect; first apply sigma_closed_pair_intersect.
* apply measurable_real. apply borel_closed. apply closed_eq.
* apply sigma_closed_complements, Rbar_sigma_p_infty.
* apply sigma_closed_complements, Rbar_sigma_m_infty.
Qed.
Lemma Rbar_sigma_pt r:
Rbar_sigma {[r]}.
Proof.
destruct r; auto using Rbar_sigma_real_pt, Rbar_sigma_p_infty, Rbar_sigma_m_infty.
Qed.
Lemma Rbar_sigma_gen_ge_ray:
le_prop (minimal_sigma (λ U, ∃ x, U = (λ z, Rbar_le x z))) Rbar_sigma.
Proof.
apply minimal_sigma_lub.
intros ? (x&->).
assert (eq_prop (λ z, Rbar_le x z) (compl (λ z, Rbar_le z x) ∪ {[x]})) as Heq.
{ intros z; split.
* intros [Hlt|Heq]%Rbar_le_lt_or_eq_dec.
** left. by apply Rbar_lt_not_le.
** right; subst; done.
* intros [Hnle|Heq].
** apply Rbar_not_le_lt in Hnle. by apply Rbar_lt_le.
** inversion Heq; subst; apply Rbar_le_refl.
}
rewrite Heq.
apply sigma_closed_pair_union.
- apply sigma_closed_complements.
apply minimal_sigma_ub; eexists. reflexivity.
- apply Rbar_sigma_pt.
Qed.
Lemma measurable_Rbar_opp {A: Type} {F: measurable_space A} (f: A → Rbar) :
measurable f →
measurable (λ x, Rbar_opp (f x)).
Proof.
intros Hmeas.
apply sigma_measurable_generating_sets.
intros ? (t&->).
assert (fun_inv (λ x, Rbar_opp (f x)) (λ x, Rbar_le x t) ≡
fun_inv f (Rbar_le (Rbar_opp t))) as ->.
{ rewrite /fun_inv//= => x. rewrite -{1}(Rbar_opp_involutive t).
apply Rbar_opp_le. }
apply Hmeas. apply Rbar_sigma_gen_ge_ray.
apply minimal_sigma_ub. eauto.
Qed.
Lemma Sup_seq_minor_Rbar_le (u : nat → Rbar) (M : Rbar) (n : nat):
Rbar_le M (u n) → Rbar_le M (Sup_seq u).
Proof.
intros Hle.
rewrite Rbar_sup_eq_lub. rewrite /Lub.Rbar_lub.
destruct (Lub.Rbar_ex_lub) as (?&r).
rewrite /=. eapply Rbar_le_trans; eauto. apply r. eauto.
Qed.
Lemma measurable_Sup {A: Type} {F: measurable_space A} (fn : nat → A → Rbar):
(∀ n, measurable (fn n)) →
measurable (λ x, Sup_seq (λ n, fn n x)).
Proof.
intros Hmeas.
eapply sigma_measurable_generating_sets.
intros ? (t&->).
assert (eq_prop (λ x, Rbar_le (Sup_seq (λ n, fn n x)) t)
(intersectF (λ n, fun_inv (fn n) (λ x, Rbar_le x t)))) as ->.
{ split.
- intros Hsup n. rewrite /fun_inv.
eapply Rbar_le_trans; eauto.
eapply Sup_seq_minor_Rbar_le; eauto.
apply Rbar_le_refl.
- intros Hle.
rewrite Rbar_sup_eq_lub. rewrite /Lub.Rbar_lub.
destruct (Lub.Rbar_ex_lub) as (?&(Hub&Hlub)).
apply Hlub => //=.
intros r (?&->); eapply Hle.
}
apply sigma_closed_intersections. intros. apply Hmeas.
apply minimal_sigma_ub. eauto.
Qed.
Lemma measurable_Inf {A: Type} {F: measurable_space A} (fn : nat → A → Rbar):
(∀ n, measurable (fn n)) →
measurable (λ x, Inf_seq (λ n, fn n x)).
Proof.
intros.
setoid_rewrite Inf_opp_sup.
apply measurable_Rbar_opp.
apply measurable_Sup.
intros n. apply measurable_Rbar_opp. done.
Qed.
Lemma measurable_LimSup {A: Type} {F: measurable_space A} (fn : nat → A → R):
(∀ n, measurable (fn n)) →
measurable (λ x, LimSup_seq (λ n, fn n x)).
Proof.
intros Hmeas.
setoid_rewrite LimSup_InfSup_seq.
apply measurable_Inf => n.
apply measurable_Sup => m.
eapply measurable_comp; last apply measurable_Finite.
eauto.
Qed.
Lemma measurable_LimInf {A: Type} {F: measurable_space A} (fn : nat → A → R):
(∀ n, measurable (fn n)) →
measurable (λ x, LimInf_seq (λ n, fn n x)).
Proof.
intros Hmeas.
setoid_rewrite LimInf_SupInf_seq.
apply measurable_Sup => m.
apply measurable_Inf => n.
eapply measurable_comp; last apply measurable_Finite.
eauto.
Qed.
Lemma measurable_Sup_seq {A: Type} {F: measurable_space A} (fn : nat → A → R):
(∀ n, measurable (fn n)) →
measurable (λ x, Sup_seq (λ n, fn n x) : R).
Proof.
intros Hmeas. eapply measurable_comp. apply measurable_Sup.
{ intros n. eapply measurable_comp; last apply measurable_Finite.
eauto. }
apply measurable_real.
Qed.
Lemma measurable_Inf_seq {A: Type} {F: measurable_space A} (fn : nat → A → R):
(∀ n, measurable (fn n)) →
measurable (λ x, Inf_seq (λ n, fn n x) : R).
Proof.
intros Hmeas. eapply measurable_comp. apply measurable_Inf.
{ intros n. eapply measurable_comp; last apply measurable_Finite.
eauto. }
apply measurable_real.
Qed.
Lemma measurable_Rbar_div_pos y:
measurable (λ x, Rbar_div_pos x y).
Proof.
apply sigma_measurable_generating_sets.
intros ? (t&->).
destruct t as [r | | ].
- assert (fun_inv (λ x, Rbar_div_pos x y) (λ x, Rbar_le x r) ≡
λ x, Rbar_le x (r * y)) as ->.
{ rewrite /fun_inv//=; intros [ r' | |] => //=; apply Rle_div_l; destruct y; done. }
apply minimal_sigma_ub; eauto.
- eapply sigma_proper; last apply sigma_full.
intros [ | |] => //=.
- eapply sigma_proper; last apply Rbar_sigma_m_infty.
intros [ | |] => //=.
Qed.
Lemma measurable_Rbar_plus {A: Type} {F: measurable_space A} (f1 f2: A → Rbar) :
measurable f1 →
measurable f2 →
measurable (λ x, Rbar_plus (f1 x) (f2 x)).
Proof.
intros Hmeas1 Hmeas2.
apply sigma_measurable_generating_sets.
intros ? (t&->).
destruct t as [r | | ].
-
destruct (Rle_dec 0 r) as [Hle0|Hnle0].
{
assert (fun_inv (λ x, Rbar_plus (f1 x) (f2 x)) (λ x, Rbar_le x r) ≡
(fun_inv (λ x, Rplus (f1 x) (f2 x)) (λ x, Rle x r)
∩ compl (fun_inv f1 ({[p_infty]} ∪ {[m_infty]}))
∩ compl (fun_inv f2 ({[p_infty]} ∪ {[m_infty]}))) ∪
fun_inv f1 {[m_infty]} ∪ fun_inv f2 {[m_infty]}) as ->.
{ intros a; split; rewrite /fun_inv.
- rewrite /base.union/union_Union/union/intersection/intersect_Intersection/intersect/compl.
destruct (f1 a), (f2 a); rewrite //=;
try (left; right; firstorder; done);
try (right; firstorder; done).
intros Hle. do 2 left. split_and!; auto; intros [Hin|Hin]; inversion Hin.
- rewrite /base.union/union_Union/union/intersection/intersect_Intersection/intersect/compl.
intros [[((Hplus&Hnot1)&Hnot2)|Hinf1]|Hinf2].
* destruct (f1 a), (f2 a) => //=;
try nra;
try (exfalso; apply Hnot1; firstorder; done);
try (exfalso; apply Hnot2; firstorder; done).
* inversion Hinf1 as [Heq]. rewrite Heq => //=.
destruct (f2 a) => //=.
* inversion Hinf2 as [Heq]. rewrite Heq => //=.
destruct (f1 a) => //=.
}
apply sigma_closed_pair_union; eauto using Rbar_sigma_m_infty.
apply sigma_closed_pair_union; eauto using Rbar_sigma_m_infty.
repeat apply sigma_closed_pair_intersect.
* apply measurable_plus; try eapply measurable_comp; eauto using measurable_real.
apply closed_ray_borel_le.
* apply sigma_closed_complements; eapply Hmeas1.
apply sigma_closed_pair_union; eauto using Rbar_sigma_m_infty, Rbar_sigma_p_infty.
* apply sigma_closed_complements; eapply Hmeas2.
apply sigma_closed_pair_union; eauto using Rbar_sigma_m_infty, Rbar_sigma_p_infty.
}
{
assert (fun_inv (λ x, Rbar_plus (f1 x) (f2 x)) (λ x, Rbar_le x r) ≡
(fun_inv (λ x, Rplus (f1 x) (f2 x)) (λ x, Rle x r)
∩ compl (fun_inv f1 ({[p_infty]} ∪ {[m_infty]}))
∩ compl (fun_inv f2 ({[p_infty]} ∪ {[m_infty]}))) ∪
(compl (fun_inv f2 {[p_infty]}) ∩ fun_inv f1 {[m_infty]}) ∪
(compl (fun_inv f1 {[p_infty]}) ∩ fun_inv f2 {[m_infty]})) as ->.
{ intros a; split; rewrite /fun_inv.
- rewrite /base.union/union_Union/union/intersection/intersect_Intersection/intersect/compl.
destruct (f1 a), (f2 a); rewrite //=;
try (left; right; firstorder; done);
try (right; firstorder; done).
intros Hle. do 2 left. split_and!; auto; intros [Hin|Hin]; inversion Hin.
- rewrite /base.union/union_Union/union/intersection/intersect_Intersection/intersect/compl.
intros [[((Hplus&Hnot1)&Hnot2)|(Hn1&Hinf1)]|(Hn2&Hinf2)].
* destruct (f1 a), (f2 a) => //=;
try nra;
try (exfalso; apply Hnot1; firstorder; done);
try (exfalso; apply Hnot2; firstorder; done).
* inversion Hinf1 as [Heq]. rewrite Heq => //=.
destruct (f2 a) => //=. firstorder.
* inversion Hinf2 as [Heq]. rewrite Heq => //=.
destruct (f1 a) => //=. firstorder.
}
apply sigma_closed_pair_union; eauto using Rbar_sigma_m_infty;
first apply sigma_closed_pair_union; eauto using Rbar_sigma_m_infty;
first repeat apply sigma_closed_pair_intersect.
* apply measurable_plus; try eapply measurable_comp; eauto using measurable_comp, measurable_real.
apply closed_ray_borel_le.
* apply sigma_closed_complements; eapply Hmeas1.
apply sigma_closed_pair_union; eauto using Rbar_sigma_pt.
* apply sigma_closed_complements; eapply Hmeas2.
apply sigma_closed_pair_union; eauto using Rbar_sigma_pt.
* apply sigma_closed_pair_intersect.
** apply sigma_closed_complements.
apply Hmeas2; eauto using Rbar_sigma_pt.
** apply Hmeas1; eauto using Rbar_sigma_pt.
* apply sigma_closed_pair_intersect.
** apply sigma_closed_complements.
apply Hmeas1; eauto using Rbar_sigma_pt.
** apply Hmeas2; eauto using Rbar_sigma_pt.
}
- eapply sigma_proper; last eapply sigma_full.
intros x; split; auto. rewrite /fun_inv//=. by destruct (Rbar_plus).
- assert (fun_inv (λ x, Rbar_plus (f1 x) (f2 x)) (λ x, Rbar_le x m_infty) ≡
(fun_inv f1 (compl {[p_infty]}) ∩
fun_inv f2 {[m_infty]}) ∪
(fun_inv f2 (compl {[p_infty]}) ∩
fun_inv f1 {[m_infty]})) as ->.
{ intros a; split; rewrite /fun_inv.
- rewrite /base.union/union_Union/union/intersection/intersect_Intersection/intersect/compl.
destruct (f1 a), (f2 a); firstorder set_unfold; done.
- rewrite /base.union/union_Union/union/intersection/intersect_Intersection/intersect/compl.
destruct (f1 a), (f2 a); firstorder set_unfold; done.
}
apply sigma_closed_pair_union; apply sigma_closed_pair_intersect.
* eapply Hmeas1. apply sigma_closed_complements; eauto using Rbar_sigma_pt.
* eapply Hmeas2. eauto using Rbar_sigma_pt.
* eapply Hmeas2. apply sigma_closed_complements; eauto using Rbar_sigma_pt.
* eapply Hmeas1. eauto using Rbar_sigma_pt.
Qed.
Lemma measurable_Lim {A: Type} {F: measurable_space A} (fn : nat → A → R):
(∀ n, measurable (fn n)) →
measurable (λ x, Lim_seq (λ n, fn n x)).
Proof.
intros Hmeas. rewrite /Lim_seq//=.
eapply (measurable_comp _ (λ x, Rbar_div_pos x {| pos := 2 ; cond_pos := Rlt_R0_R2|}));
eauto using measurable_Rbar_div_pos.
apply measurable_Rbar_plus.
* apply measurable_LimSup. done.
* apply measurable_LimInf. done.
Qed.
Lemma measurable_Lim' {A: Type} {F: measurable_space A} (fn : nat → A → R):
(∀ n, measurable (fn n)) →
measurable (λ x, real (Lim_seq (λ n, fn n x))).
Proof.
intros. eapply measurable_comp; eauto using measurable_real.
apply measurable_Lim. done.
Qed.
Lemma measurable_sum_n {A: Type} {F: measurable_space A} (fn : nat → A → R) m:
(∀ n, measurable (fn n)) →
measurable (λ x : A, sum_n (λ n : nat, fn n x) m).
Proof.
intros Hmeas. induction m => //=.
- setoid_rewrite sum_O. eauto.
- setoid_rewrite sum_Sn. apply measurable_plus; eauto.
Qed.
Lemma measurable_Series {A: Type} {F: measurable_space A} (fn : nat → A → R):
(∀ n, measurable (fn n)) →
measurable (λ x, Series (λ n, fn n x)).
Proof. intros. apply measurable_Lim'; eauto. intros; eapply measurable_sum_n; eauto. Qed.
Lemma measurable_fun_eq_0 {A: Type} {F: measurable_space A} f:
measurable f →
is_measurable (λ x, f x = 0).
Proof.
intros Hmeas. eapply (Hmeas (λ x, x = 0)).
apply borel_closed, closed_eq.
Qed.
Lemma measurable_fun_eq_0_Rbar {A: Type} {F: measurable_space A} (f: A → Rbar):
measurable f →
is_measurable (λ x, f x = 0).
Proof.
intros Hmeas. eapply (Hmeas (λ x, x = 0)).
apply Rbar_sigma_pt.
Qed.
Lemma measurable_fun_ge {A: Type} {F: measurable_space A} f k:
measurable f →
is_measurable (λ x, k <= f x).
Proof.
intros Hmeas. eapply (Hmeas (λ x, k <= x)).
apply closed_ray_borel_ge.
Qed.
Lemma measurable_fun_le_const {A: Type} {F: measurable_space A} f k:
measurable f →
is_measurable (λ x, f x <= k).
Proof.
intros Hmeas. eapply (Hmeas (λ x, x <= k)).
apply closed_ray_borel_le.
Qed.
Lemma measurable_fun_lt_p_infty {A: Type} {F: measurable_space A} f:
measurable f →
is_measurable (λ x, Rbar_lt (f x) p_infty).
Proof.
intros Hmeas.
rewrite /is_measurable.
assert ((λ x, Rbar_lt (f x) p_infty) ≡ compl (fun_inv f {[p_infty]})) as ->.
{ intros x. rewrite /fun_inv/compl//=. split.
- intros Hlt Heq. inversion Heq as [Heq']. rewrite Heq' in Hlt.
rewrite //= in Hlt.
- intros Heq. destruct (f x) => //=. apply Heq. done.
}
apply sigma_closed_complements.
eapply Hmeas.
apply Rbar_sigma_pt.
Qed.
Lemma measurable_fun_eq_inv {A: Type} {F: measurable_space A} (f g: A → R):
measurable f →
measurable g →
is_measurable (λ x, f x = g x).
Proof.
intros Hmeas1 Hmeas2.
apply (sigma_proper _ _ (λ x, f x - g x = 0)).
{ intros x; split; nra. }
apply measurable_fun_eq_0. measurable.
Qed.
Lemma measurable_fun_le_inv {A: Type} {F: measurable_space A} f g:
measurable f →
measurable g →
is_measurable (λ x, f x <= g x).
Proof.
intros Hmeas1 Hmeas2.
apply (sigma_proper _ _ (λ x, f x - g x <= 0)).
{ intros x; split; nra. }
apply measurable_fun_le_const. measurable.
Qed.
Lemma measurable_fun_eq_inv_Rbar {A: Type} {F: measurable_space A} (f g: A → Rbar):
measurable f →
measurable g →
is_measurable (λ x, f x = g x).
Proof.
intros Hmeas1 Hmeas2.
apply (sigma_proper _ _ (λ x, Rbar_minus (f x) (g x) = 0)).
{ intros x; split.
- destruct (f x), (g x) => //=.
inversion 1; subst; f_equal; nra.
- destruct (f x), (g x) => //=.
intros Heq. inversion Heq; subst. f_equal. nra.
}
apply measurable_fun_eq_0_Rbar. rewrite /Rbar_minus.
apply measurable_Rbar_plus, measurable_Rbar_opp; auto.
Qed.
Lemma measure_ex_lim_seq {A: Type} {F: measurable_space A} (fn : nat → A → R):
(∀ n, measurable (fn n)) →
is_measurable (λ x, ex_lim_seq (λ n, fn n x)).
Proof.
intros Hmeas.
eapply sigma_proper.
{ intros x. apply ex_lim_LimSup_LimInf_seq. }
apply measurable_fun_eq_inv_Rbar; auto using measurable_LimSup, measurable_LimInf.
Qed.
Lemma measure_ex_finite_lim_seq {A: Type} {F: measurable_space A} (fn : nat → A → R):
(∀ n, measurable (fn n)) →
is_measurable (λ x, ex_finite_lim_seq (λ n, fn n x)).
Proof.
intros Hmeas.
eapply (sigma_proper _ _ ((λ x, ex_lim_seq (λ n, fn n x))
∩ (fun_inv (λ x, Lim_seq (λ n, fn n x)) (compl {[p_infty]}))
∩ (fun_inv (λ x, Lim_seq (λ n, fn n x)) (compl {[m_infty]})))).
{ intros x. rewrite /fun_inv. split.
- intros ((Hex&Hlim1)&Hlim2).
destruct Hex as (v&His).
destruct v as [r | |].
* exists r; eauto.
* rewrite (is_lim_seq_unique _ _ His) //= in Hlim1. exfalso; apply Hlim1; done.
* rewrite (is_lim_seq_unique _ _ His) //= in Hlim2. exfalso; apply Hlim2; done.
- intros (v&His).
split; first split.
* eexists; eauto.
* rewrite //= (is_lim_seq_unique _ _ His) //=.
* rewrite //= (is_lim_seq_unique _ _ His) //=.
}
apply sigma_closed_pair_intersect; first apply sigma_closed_pair_intersect.
- apply measure_ex_lim_seq; auto.
- apply measurable_Lim; eauto. apply sigma_closed_complements, Rbar_sigma_pt.
- apply measurable_Lim; eauto. apply sigma_closed_complements, Rbar_sigma_pt.
Qed.
Lemma measure_is_lim_seq {A: Type} {F: measurable_space A} (fn : nat → A → R) (f: A → Rbar):
(∀ n, measurable (fn n)) →
measurable f →
is_measurable (λ x, is_lim_seq (λ n, fn n x) (f x)).
Proof.
intros.
assert (Hequiv: (λ x, is_lim_seq (λ n, fn n x) (f x))
≡ (λ x, ex_lim_seq (λ n, fn n x)) ∩ (λ x, Lim_seq (λ n, fn n x) = f x)).
{
intros x. split.
- intros His; split; first by (eexists; eauto).
by apply is_lim_seq_unique.
- intros (Hex&Heq). rewrite -Heq. apply Lim_seq_correct; eauto.
}
rewrite /is_measurable.
rewrite Hequiv. apply sigma_closed_pair_intersect.
- apply measure_ex_lim_seq; eauto.
- apply measurable_fun_eq_inv_Rbar; eauto using measurable_Lim.
Qed.
End borel_R.
Ltac measurable := repeat (apply measurable_plus || apply measurable_minus ||
apply measurable_scal || apply measurable_opp ||
apply measurable_square || apply measurable_mult ||
apply measurable_const || apply measurable_real ||
apply measurable_Rabs ||
apply measurable_Rmax || apply measurable_Rmin ||
apply measure_is_lim_seq || apply measure_ex_lim_seq ||
apply measure_ex_finite_lim_seq ||
apply measurable_fun_le_inv ||
apply measurable_fun_eq_inv ||
auto).
|
------------------------------------------------------------------------------
-- Testing a type synonymous for Set
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Nat.SetType where
open import FOTC.Base
open import FOTC.Data.Nat
-- Type synonymous for Set.
Type = Set
data N' : D → Type where
nzero' : N' zero
nsucc' : ∀ {n} → N' n → N' (succ₁ n)
{-# ATP axioms nzero' nsucc' #-}
pred-N' : ∀ {n} → N' n → N' (pred₁ n)
pred-N' nzero' = prf
where postulate prf : N' (pred₁ zero)
{-# ATP prove prf #-}
pred-N' (nsucc' {n} N'n) = prf
where postulate prf : N' (pred₁ (succ₁ n))
{-# ATP prove prf #-}
|
clear all; close all;
I=imread('cameraman.tif');
I=im2double(I);
J=fftshift(fft2(I));
[x, y]=meshgrid(-128:127, -128:127);
[M, N]=size(I);
n1=floor(M/2);
n2=floor(N/2);
z=sqrt((x-n1).^2+(y-n2).^2);
D1=10; D2=30;
n=6;
H1=1./(1+(z/D1).^(2*n));
H2=1./(1+(z/D2).^(2*n));
K1=J.*H1;
K2=J.*H2;
L1=ifft2(ifftshift(K1));
L2=ifft2(ifftshift(K2));
figure;
subplot(131);
imshow(I);
subplot(132);
imshow(real(L1));
subplot(133);
imshow(real(L2))
|
# Copyright (c) 2018-2021, Carnegie Mellon University
# See LICENSE for details
# ==========================================================================
# RowDirectSum
# ==========================================================================
Class(RowDirectSum, BaseOverlap, rec(
#-----------------------------------------------------------------------
abbrevs := [
function(arg)
arg:=Flat(arg);
return [arg[1], arg{[2..Length(arg)]}];
end ],
#-----------------------------------------------------------------------
new := meth(self, overlap, spls)
return self._new(0, overlap, spls);
end,
#-----------------------------------------------------------------------
_dims := meth(self)
local ovdim;
ovdim := self.ovDim(self.overlap,
List(self._children, t -> t.dimensions[2]));
return [ Sum(self._children, t -> t.dimensions[1]),
ovdim[3] - ovdim[2] + 1 # max - min + 1
];
end,
dims := self >> When(IsBound(self._setDims), self._setDims, let(d := Try(self._dims()),
When(d[1], d[2], [errExp(TInt), errExp(TInt)]))),
#-----------------------------------------------------------------------
toAMat := meth(self)
return
DirectSumAMat(List(self._children, AMatSPL)) *
AMatSPL(
Sparse(
self._rowoverlap(
List(self._children, t -> t.dimensions[2]),
self.overlap
)
)
);
end,
#-----------------------------------------------------------------------
arithmeticCost := meth(self, costMul, costAddMul)
return Sum(List(self.children(), x -> x.arithmeticCost(costMul, costAddMul)));
end
));
|
```python
from sympy import *
```
```python
x = Symbol('x')
```
```python
init_printing(use_unicode=True)
```
```python
expr = exp(-x) * cos(x)
expr
```
```python
integrate(expr, x)
```
```python
Integral(expr, x)
```
```python
simplify(gamma(x)*gamma(1-x))
```
```python
```
|
Formal statement is: lemma continuous_on_setdist [continuous_intros]: "continuous_on T (\<lambda>y. (setdist {y} S))" Informal statement is: The function $y \mapsto \text{dist}(\{y\}, S)$ is continuous on $T$. |
State Before: l : Type ?u.86247
m : Type u
n : Type u'
α : Type v
inst✝² : Fintype n
inst✝¹ : DecidableEq n
inst✝ : CommRing α
A B : Matrix n n α
⊢ IsUnit A ↔ IsUnit (det A) State After: no goals Tactic: simp only [← nonempty_invertible_iff_isUnit, (invertibleEquivDetInvertible A).nonempty_congr] |
module PatternMatchingLambda where
data Bool : Set where
true false : Bool
data Void : Set where
data _≡_ {A : Set}(x : A) : A -> Set where
refl : x ≡ x
and : Bool -> Bool -> Bool
and = λ { true x → x ; false _ → false }
or : Bool -> Bool -> Bool
or x y = not (and (not x) (not y))
where not : Bool -> Bool
not = \ { true -> false ; false -> true }
iff : Bool -> Bool -> Bool -> Bool
iff = λ { true x -> λ { true → true ; false → false } ;
false x -> λ { true -> false ; false -> true }
}
pattern-matching-lambdas-compute : (x : Bool) -> or true x ≡ true
pattern-matching-lambdas-compute x = refl
isTrue : Bool -> Set
isTrue = \ { true -> Bool ; false -> Void }
absurd : (x : Bool) -> isTrue x -> Bool
absurd = \ { true x -> x ; false () }
--carefully chosen without eta, so that pattern matching is needed
data Unit : Set where
unit : Unit
isNotUnit : Unit -> Set
isNotUnit = \ { tt -> Void }
absurd-one-clause : (x : Unit) -> isNotUnit x -> Bool
absurd-one-clause = λ { tt ()}
data indexed-by-xor : (Bool -> Bool -> Bool) -> Set where
c : (b : Bool) -> indexed-by-xor \ { true true -> false ;
false false -> false ;
_ _ -> true }
-- won't work if the underscore is replaced with the actual value at the moment
f : (r : Bool -> Bool -> Bool) -> indexed-by-xor r -> Bool
f ._ (c b) = b
record Σ (A : Set)(B : A -> Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
fst : {A : Set}{B : A -> Set} -> (x : Σ A B) -> A
fst = \ { (a , b) -> a }
snd : {A : Set}{B : A -> Set} -> (x : Σ A B) -> B (fst x)
snd = \ { (a , b) -> b }
record FamSet : Set1 where
constructor _,_
field
A : Set
B : A -> Set
ΣFAM : (A : Set)(B : A -> Set)(P : A -> Set)(Q : (x : A) -> B x -> P x -> Set) -> FamSet
ΣFAM A B P Q = (Σ A P , \ { (a , p) -> Σ (B a) (λ b → Q a b p) } )
--The syntax doesn't interfere with hidden lambdas etc:
postulate
P : ({x : Bool} -> Bool) -> Set
p : P (λ {x} → x)
--Issue 446: Absurd clauses can appear inside more complex expressions
data Box (A : Set) : Set where
box : A → Box A
foo : {A : Set} → Box Void → A
foo = λ { (box ()) }
|
lemma coeff_1 [simp]: "coeff 1 n = of_bool (n = 0)" |
[STATEMENT]
lemma rreq_rrep_fresh [simp]:
"\<And>hops rreqid dip dsn dsk oip osn sip.
rreq_rrep_fresh crt (Rreq hops rreqid dip dsn dsk oip osn sip) =
(sip \<noteq> oip \<longrightarrow> oip\<in>kD(crt)
\<and> (sqn crt oip > osn
\<or> (sqn crt oip = osn
\<and> the (dhops crt oip) \<le> hops
\<and> the (flag crt oip) = val)))"
"\<And>hops dip dsn oip sip. rreq_rrep_fresh crt (Rrep hops dip dsn oip sip) =
(sip \<noteq> dip \<longrightarrow> dip\<in>kD(crt)
\<and> sqn crt dip = dsn
\<and> the (dhops crt dip) = hops
\<and> the (flag crt dip) = val)"
"\<And>dests sip. rreq_rrep_fresh crt (Rerr dests sip) = True"
"\<And>d dip. rreq_rrep_fresh crt (Newpkt d dip) = True"
"\<And>d dip sip. rreq_rrep_fresh crt (Pkt d dip sip) = True"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. ((\<And>hops rreqid dip dsn dsk oip osn sip. rreq_rrep_fresh crt (Rreq hops rreqid dip dsn dsk oip osn sip) = (sip \<noteq> oip \<longrightarrow> oip \<in> kD crt \<and> (osn < sqn crt oip \<or> sqn crt oip = osn \<and> the (dhops crt oip) \<le> hops \<and> the (flag crt oip) = val))) &&& (\<And>hops dip dsn oip sip. rreq_rrep_fresh crt (Rrep hops dip dsn oip sip) = (sip \<noteq> dip \<longrightarrow> dip \<in> kD crt \<and> sqn crt dip = dsn \<and> the (dhops crt dip) = hops \<and> the (flag crt dip) = val))) &&& (\<And>dests sip. rreq_rrep_fresh crt (Rerr dests sip) = True) &&& (\<And>d dip. rreq_rrep_fresh crt (Newpkt d dip) = True) &&& (\<And>d dip sip. rreq_rrep_fresh crt (Pkt d dip sip) = True)
[PROOF STEP]
unfolding rreq_rrep_fresh_def
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. ((\<And>hops rreqid dip dsn dsk oip osn sip. (case Rreq hops rreqid dip dsn dsk oip osn sip of Rreq hopsc x xa xb xc oipc osnc ipcc \<Rightarrow> ipcc \<noteq> oipc \<longrightarrow> oipc \<in> kD crt \<and> (osnc < sqn crt oipc \<or> sqn crt oipc = osnc \<and> the (dhops crt oipc) \<le> hopsc \<and> the (flag crt oipc) = val) | Rrep hopsc dipc dsnc x ipcc \<Rightarrow> ipcc \<noteq> dipc \<longrightarrow> dipc \<in> kD crt \<and> sqn crt dipc = dsnc \<and> the (dhops crt dipc) = hopsc \<and> the (flag crt dipc) = val | _ \<Rightarrow> True) = (sip \<noteq> oip \<longrightarrow> oip \<in> kD crt \<and> (osn < sqn crt oip \<or> sqn crt oip = osn \<and> the (dhops crt oip) \<le> hops \<and> the (flag crt oip) = val))) &&& (\<And>hops dip dsn oip sip. (case Rrep hops dip dsn oip sip of Rreq hopsc x xa xb xc oipc osnc ipcc \<Rightarrow> ipcc \<noteq> oipc \<longrightarrow> oipc \<in> kD crt \<and> (osnc < sqn crt oipc \<or> sqn crt oipc = osnc \<and> the (dhops crt oipc) \<le> hopsc \<and> the (flag crt oipc) = val) | Rrep hopsc dipc dsnc x ipcc \<Rightarrow> ipcc \<noteq> dipc \<longrightarrow> dipc \<in> kD crt \<and> sqn crt dipc = dsnc \<and> the (dhops crt dipc) = hopsc \<and> the (flag crt dipc) = val | _ \<Rightarrow> True) = (sip \<noteq> dip \<longrightarrow> dip \<in> kD crt \<and> sqn crt dip = dsn \<and> the (dhops crt dip) = hops \<and> the (flag crt dip) = val))) &&& (\<And>dests sip. (case Rerr dests sip of Rreq hopsc x xa xb xc oipc osnc ipcc \<Rightarrow> ipcc \<noteq> oipc \<longrightarrow> oipc \<in> kD crt \<and> (osnc < sqn crt oipc \<or> sqn crt oipc = osnc \<and> the (dhops crt oipc) \<le> hopsc \<and> the (flag crt oipc) = val) | Rrep hopsc dipc dsnc x ipcc \<Rightarrow> ipcc \<noteq> dipc \<longrightarrow> dipc \<in> kD crt \<and> sqn crt dipc = dsnc \<and> the (dhops crt dipc) = hopsc \<and> the (flag crt dipc) = val | _ \<Rightarrow> True) = True) &&& (\<And>d dip. (case Newpkt d dip of Rreq hopsc x xa xb xc oipc osnc ipcc \<Rightarrow> ipcc \<noteq> oipc \<longrightarrow> oipc \<in> kD crt \<and> (osnc < sqn crt oipc \<or> sqn crt oipc = osnc \<and> the (dhops crt oipc) \<le> hopsc \<and> the (flag crt oipc) = val) | Rrep hopsc dipc dsnc x ipcc \<Rightarrow> ipcc \<noteq> dipc \<longrightarrow> dipc \<in> kD crt \<and> sqn crt dipc = dsnc \<and> the (dhops crt dipc) = hopsc \<and> the (flag crt dipc) = val | _ \<Rightarrow> True) = True) &&& (\<And>d dip sip. (case Pkt d dip sip of Rreq hopsc x xa xb xc oipc osnc ipcc \<Rightarrow> ipcc \<noteq> oipc \<longrightarrow> oipc \<in> kD crt \<and> (osnc < sqn crt oipc \<or> sqn crt oipc = osnc \<and> the (dhops crt oipc) \<le> hopsc \<and> the (flag crt oipc) = val) | Rrep hopsc dipc dsnc x ipcc \<Rightarrow> ipcc \<noteq> dipc \<longrightarrow> dipc \<in> kD crt \<and> sqn crt dipc = dsnc \<and> the (dhops crt dipc) = hopsc \<and> the (flag crt dipc) = val | _ \<Rightarrow> True) = True)
[PROOF STEP]
by simp_all |
(*<*)
(*
* Knowledge-based programs.
* (C)opyright 2011, Peter Gammie, peteg42 at gmail.com.
* License: BSD
*)
theory SPRViewDet
imports
SPRView
KBPsAlg
Eval
List_local
ODList Trie2
"Transitive-Closure.Transitive_Closure_List_Impl"
"HOL-Library.Mapping"
begin
(*>*)
subsection\<open>Perfect Recall in Deterministic Broadcast Environments\<close>
text\<open>
\label{sec:kbps-theory-spr-deterministic-protocols}
It is well known that simultaneous broadcast has the effect of making
information \emph{common knowledge}; roughly put, the agents all learn
the same things at the same time as the system evolves, so the
relation amongst the agents' states of knowledge never becomes more
complex than it is in the initial state
\citep[Chapter~6]{FHMV:1995}. For this reason we might hope to find
finite-state implementations of JKBPs in broadcast environments.
The broadcast assumption by itself is insufficient in general, however
\citep[\S7]{Ron:1996}, and so we need to further constrain the
scenario. Here we require that for each canonical trace the JKBP
prescribes at most one action. In practice this constraint is easier
to verify than the circularity would suggest; we return to this point
at the end of this section.
\<close>
text_raw\<open>
\begin{figure}[tb]
\begin{isabellebody}%
\<close>
record (overloaded) ('a, 'es, 'ps) BEState =
es :: "'es"
ps :: "('a \<times> 'ps) odlist"
locale FiniteDetBroadcastEnvironment =
Environment jkbp envInit envAction envTrans envVal envObs
for jkbp :: "'a \<Rightarrow> ('a :: {finite,linorder}, 'p, 'aAct) KBP"
and envInit
:: "('a, 'es :: {finite,linorder}, 'as :: {finite,linorder}) BEState list"
and envAction :: "('a, 'es, 'as) BEState \<Rightarrow> 'eAct list"
and envTrans :: "'eAct \<Rightarrow> ('a \<Rightarrow> 'aAct)
\<Rightarrow> ('a, 'es, 'as) BEState \<Rightarrow> ('a, 'es, 'as) BEState"
and envVal :: "('a, 'es, 'as) BEState \<Rightarrow> 'p \<Rightarrow> bool"
and envObs :: "'a \<Rightarrow> ('a, 'es, 'as) BEState \<Rightarrow> ('cobs \<times> 'as option)"
+ fixes agents :: "'a odlist"
fixes envObsC :: "'es \<Rightarrow> 'cobs"
defines "envObs a s \<equiv> (envObsC (es s), ODList.lookup (ps s) a)"
assumes agents: "ODList.toSet agents = UNIV"
assumes envTrans: "\<forall>s s' a eact eact' aact aact'.
ODList.lookup (ps s) a = ODList.lookup (ps s') a \<and> aact a = aact' a
\<longrightarrow> ODList.lookup (ps (envTrans eact aact s)) a
= ODList.lookup (ps (envTrans eact' aact' s')) a"
assumes jkbpDet: "\<forall>a. \<forall>t \<in> SPR.jkbpC. length (jAction SPR.MC t a) \<le> 1"
text_raw\<open>
\end{isabellebody}%
\caption{Finite broadcast environments with a deterministic JKBP.}
\label{fig:kbps-theory-det-broadcast-envs}
\end{figure}
\<close>(*<*)
instantiation BEState_ext :: (linorder, linorder, linorder, linorder) linorder
begin
definition less_eq_BEState_ext
where "x \<le> y \<equiv> es x < es y \<or> (es x = es y \<and> (ps x < ps y \<or> (ps x = ps y \<and> more x \<le> more y)))"
definition less_BEState_ext
where "x < y \<equiv> es x < es y \<or> (es x = es y \<and> (ps x < ps y \<or> (ps x = ps y \<and> more x < more y)))"
instance
apply intro_classes
apply (unfold less_eq_BEState_ext_def less_BEState_ext_def)
apply auto
done
end
instance BEState_ext :: ("{finite, linorder}", finite, "{finite, linorder}", finite) finite
proof
let ?U = "UNIV :: ('a, 'b, 'c, 'd) BEState_ext set"
{ fix x :: "('a, 'b, 'c, 'd) BEState_scheme"
have "\<exists>a b c. x = BEState_ext a b c"
by (cases x) simp
} then have U:
"?U = (\<lambda>((a, b), c). BEState_ext a b c) ` ((UNIV \<times> UNIV) \<times> UNIV)"
by (auto simp add: Set.image_def)
show "finite ?U" by (simp add: U)
qed
(*>*)
text\<open>
We encode our expectations of the scenario in the @{term
"FiniteBroadcastEnvironment"} locale of
Figure~\ref{fig:kbps-theory-det-broadcast-envs}. The broadcast is
modelled by having all agents make the same common observation of the
shared state of type @{typ "'es"}. We also allow each agent to
maintain a private state of type @{typ "'ps"}; that other agents
cannot influence it or directly observe it is enforced by the
constraint \<open>envTrans\<close> and the definition of @{term "envObs"}.
We do however allow the environment's protocol to be non-deterministic
and a function of the entire system state, including private states.
\<close>
context FiniteDetBroadcastEnvironment
begin
(*<*)
(* ouch *)
lemma envObs_def_raw:
"envObs a = (\<lambda>s. (envObsC (es s), ODList.lookup (ps s) a))"
apply (rule ext)+
apply (simp add: envObs_def)
done
(*>*)
text\<open>
We seek a suitable simulation space by considering what determines an
agent's knowledge. Intuitively any set of traces that is relevant to
the agents' states of knowledge with respect to @{term "t \<in> jkbpC"}
need include only those with the same common observation as @{term
"t"}:
\<close>
definition tObsC :: "('a, 'es, 'as) BEState Trace \<Rightarrow> 'cobs Trace" where
"tObsC \<equiv> tMap (envObsC \<circ> es)"
text\<open>
Clearly this is an abstraction of the SPR jview of the given trace.
\<close>
lemma spr_jview_tObsC:
assumes "spr_jview a t = spr_jview a t'"
shows "tObsC t = tObsC t'"
(*<*)
using SPR.sync[rule_format, OF assms] assms
by (induct rule: trace_induct2) (auto simp: envObs_def tObsC_def)
lemma tObsC_tLength:
"tObsC t = tObsC t' \<Longrightarrow> tLength t = tLength t'"
unfolding tObsC_def by (rule tMap_eq_imp_tLength_eq)
lemma tObsC_tStep_eq_inv:
"tObsC t' = tObsC (t \<leadsto> s) \<Longrightarrow> \<exists>t'' s'. t' = t'' \<leadsto> s'"
unfolding tObsC_def by auto
lemma tObsC_prefix_closed[dest]:
"tObsC (t \<leadsto> s) = tObsC (t' \<leadsto> s') \<Longrightarrow> tObsC t = tObsC t'"
unfolding tObsC_def by simp
lemma tObsC_tLast[iff]:
"tLast (tObsC t) = envObsC (es (tLast t))"
unfolding tObsC_def by simp
lemma tObsC_initial[iff]:
"tFirst (tObsC t) = envObsC (es (tFirst t))"
"tObsC (tInit s) = tInit (envObsC (es s))"
"tObsC t = tInit cobs \<longleftrightarrow> (\<exists>s. t = tInit s \<and> envObsC (es s) = cobs)"
unfolding tObsC_def by simp_all
lemma spr_tObsC_trc_aux:
assumes "(t, t') \<in> (\<Union>a. relations SPR.MC a)\<^sup>*"
shows "tObsC t = tObsC t'"
using assms
apply (induct)
apply simp
apply clarsimp
apply (rule_tac a=x in spr_jview_tObsC)
apply simp
done
lemma spr_jview_tObsC_trans:
"\<lbrakk>spr_jview a t = spr_jview a t'; spr_jview a' t' = spr_jview a' t''\<rbrakk>
\<Longrightarrow> tObsC t = tObsC t''"
by (fastforce dest: spr_jview_tObsC)
(*>*)
text\<open>
Unlike the single-agent case of \S\ref{sec:kbps-spr-single-agent}, it
is not sufficient for a simulation to record only the final states; we
need to relate the initial private states of the agents with the final
states they consider possible, as the initial states may contain
information that is not common knowledge. This motivates the following
abstraction:
\<close>
definition
tObsC_abs :: "('a, 'es, 'as) BEState Trace \<Rightarrow> ('a, 'es, 'as) BEState Relation"
where
"tObsC_abs t \<equiv> { (tFirst t', tLast t')
|t'. t' \<in> SPR.jkbpC \<and> tObsC t' = tObsC t}"
(*<*)
lemma tObsC_abs_jview_eq[dest]:
"spr_jview a t' = spr_jview a t
\<Longrightarrow> tObsC_abs t = tObsC_abs t'"
unfolding tObsC_abs_def by (fastforce dest: spr_jview_tObsC)
lemma tObsC_abs_tObsC_eq[dest]:
"tObsC t' = tObsC t
\<Longrightarrow> tObsC_abs t = tObsC_abs t'"
unfolding tObsC_abs_def by (fastforce dest: spr_jview_tObsC)
lemma spr_jview_tObsCI:
assumes tt': "tObsC t = tObsC t'"
and first: "envObs a (tFirst t) = envObs a (tFirst t')"
and "tMap (\<lambda>s. ODList.lookup (ps s) a) t = tMap (\<lambda>s. ODList.lookup (ps s) a) t'"
shows "spr_jview a t = spr_jview a t'"
using tObsC_tLength[OF tt'] assms
by (induct rule: trace_induct2, auto iff: tObsC_def envObs_def spr_jview_def)
lemma tObsC_absI[intro]:
"\<lbrakk> t' \<in> SPR.jkbpC; tObsC t' = tObsC t; u = tFirst t'; v = tLast t' \<rbrakk>
\<Longrightarrow> (u, v) \<in> tObsC_abs t"
unfolding tObsC_abs_def by blast
lemma tObsC_abs_conv:
"(u, v) \<in> tObsC_abs t
\<longleftrightarrow> (\<exists>t'. t' \<in> SPR.jkbpC \<and> tObsC t' = tObsC t \<and> u = tFirst t' \<and> v = tLast t')"
unfolding tObsC_abs_def by blast
lemma tObsC_abs_tLast[simp]:
"(u, v) \<in> tObsC_abs t \<Longrightarrow> envObsC (es v) = envObsC (es (tLast t))"
unfolding tObsC_abs_def tObsC_def
by (auto iff: o_def elim: tMap_tLast_inv)
lemma tObsC_abs_tInit[iff]:
"tObsC_abs (tInit s)
= { (s', s') |s'. s' \<in> set envInit \<and> envObsC (es s') = envObsC (es s) }"
unfolding tObsC_abs_def
apply auto
apply (rule_tac x="tInit s'" in exI)
apply simp
done
(*>*)
text\<open>\<close>
end (* context FiniteDetBroadcastEnvironment *)
text\<open>
We use the following record to represent the worlds of the simulated
Kripke structure:
\<close>
record (overloaded) ('a, 'es, 'as) spr_simWorld =
sprFst :: "('a, 'es, 'as) BEState"
sprLst :: "('a, 'es, 'as) BEState"
sprCRel :: "('a, 'es, 'as) BEState Relation"
(*<*)
instance spr_simWorld_ext :: ("{finite, linorder}", finite, "{finite, linorder}", finite) finite
proof
let ?U = "UNIV :: ('a, 'b, 'c, 'd) spr_simWorld_ext set"
{ fix x :: "('a, 'b, 'c, 'd) spr_simWorld_scheme"
have "\<exists>a b c d. x = spr_simWorld_ext a b c d"
by (cases x) simp
} then have U:
"?U = (\<lambda>(a, (b, (c, d))). spr_simWorld_ext a b c d) ` (UNIV \<times> (UNIV \<times> (UNIV \<times> UNIV)))"
by (auto simp add: Set.image_def)
show "finite ?U" by (simp add: U)
qed
(*>*)
context FiniteDetBroadcastEnvironment
begin
text\<open>
The simulation of a trace @{term "t \<in> jkbpC"} records its initial and
final states, and the relation between initial and final states of all
commonly-plausible traces:
\<close>
definition
spr_sim :: "('a, 'es, 'as) BEState Trace \<Rightarrow> ('a, 'es, 'as) spr_simWorld"
where
"spr_sim \<equiv> \<lambda>t. \<lparr> sprFst = tFirst t, sprLst = tLast t, sprCRel = tObsC_abs t \<rparr>"
text\<open>
The associated Kripke structure relates two worlds for an agent if the
agent's observation on the the first and last states corresponds, and
the worlds have the same common observation relation. As always, we
evaluate propositions on the final state of the trace.
\<close>
definition
spr_simRels :: "'a \<Rightarrow> ('a, 'es, 'as) spr_simWorld Relation"
where
"spr_simRels \<equiv> \<lambda>a. { (s, s') |s s'.
envObs a (sprFst s) = envObs a (sprFst s')
\<and> envObs a (sprLst s) = envObs a (sprLst s')
\<and> sprCRel s = sprCRel s' }"
definition spr_simVal :: "('a, 'es, 'as) spr_simWorld \<Rightarrow> 'p \<Rightarrow> bool" where
"spr_simVal \<equiv> envVal \<circ> sprLst"
abbreviation
"spr_simMC \<equiv> mkKripke (spr_sim ` SPR.jkbpC) spr_simRels spr_simVal"
(*<*)
lemma spr_sim_tFirst_tLast:
"\<lbrakk> spr_sim t = s; t \<in> SPR.jkbpC \<rbrakk> \<Longrightarrow> (sprFst s, sprLst s) \<in> sprCRel s"
unfolding spr_sim_def by auto
lemma spr_sim_tObsC_abs:
shows "tObsC_abs t = sprCRel (spr_sim t)"
unfolding tObsC_abs_def spr_sim_def by simp
lemma spr_simVal_eq[iff]:
"spr_simVal (spr_sim t) = envVal (tLast t)"
unfolding spr_sim_def spr_simVal_def by simp
lemma spr_sim_range:
"sim_range SPR.MC spr_simMC spr_sim"
by (rule sim_rangeI) (simp_all add: spr_sim_def)
lemma spr_simVal:
"sim_val SPR.MC spr_simMC spr_sim"
by (rule sim_valI) simp
lemma spr_sim_f:
"sim_f SPR.MC spr_simMC spr_sim"
unfolding spr_simRels_def spr_sim_def mkKripke_def SPR.mkM_def
by (rule sim_fI, auto)
lemma envDetJKBP':
assumes tCn: "t \<in> SPR.jkbpCn n"
and aact: "act \<in> set (jAction (SPR.MCn n) t a)"
shows "jAction (SPR.MCn n) t a = [act]"
using jkbpDet[rule_format, where t=t and a=a] assms
apply -
apply (cases "jAction SPR.MC t a")
apply (auto iff: SPR.jkbpC_jkbpCn_jAction_eq[OF tCn] dest: SPR.jkbpCn_jkbpC_inc)
done
(*>*)
text\<open>
All the properties of a simulation are easy to show for @{term
"spr_sim"} except for reverse simulation.
The critical lemma states that if we have two traces that yield the
same common observations, and an agent makes the same observation on
their initial states, then that agent's private states at each point
on the two traces are identical.
\<close>
lemma spr_jview_det_ps:
assumes tt'C: "{t, t'} \<subseteq> SPR.jkbpC"
assumes obsCtt': "tObsC t = tObsC t'"
assumes first: "envObs a (tFirst t) = envObs a (tFirst t')"
shows "tMap (\<lambda>s. ODList.lookup (ps s) a) t
= tMap (\<lambda>s. ODList.lookup (ps s) a) t'"
(*<*)
using tObsC_tLength[OF obsCtt'] first tt'C obsCtt'
proof(induct rule: trace_induct2)
case (tInit s s') thus ?case
by (simp add: envObs_def)
next
case (tStep s s' t t')
from tStep
have ts: "t \<leadsto> s \<in> SPR.jkbpCn (tLength (t \<leadsto> s))"
and t's': "t' \<leadsto> s' \<in> SPR.jkbpCn (tLength (t' \<leadsto> s'))"
by blast+
from tStep have jvtt': "spr_jview a t = spr_jview a t'"
by - (rule spr_jview_tObsCI, auto)
with tStep have jatt':
"jAction (SPR.MCn (tLength t)) t a
= jAction (SPR.MCn (tLength t')) t' a"
apply -
apply simp
apply (rule S5n_jAction_eq)
apply blast
unfolding SPR.mkM_def
apply auto
done
from jvtt'
have tt'Last: "ODList.lookup (ps (tLast t)) a
= ODList.lookup (ps (tLast t')) a"
by (auto simp: envObs_def)
from ts obtain eact aact
where aact: "\<forall>a. aact a \<in> set (jAction (SPR.MCn (tLength t)) t a)"
and s: "s = envTrans eact aact (tLast t)"
by (auto iff: Let_def)
from t's' obtain eact' aact'
where aact': "\<forall>a. aact' a \<in> set (jAction (SPR.MCn (tLength t')) t' a)"
and s': "s' = envTrans eact' aact' (tLast t')"
by (auto iff: Let_def)
from tStep have tCn: "t \<in> SPR.jkbpCn (tLength t)" by auto
from aact
obtain act
where act: "jAction (SPR.MCn (tLength t)) t a = [act]"
using envDetJKBP'[OF tCn, where a=a and act="aact a"]
by auto
hence "jAction (SPR.MCn (tLength t')) t' a = [act]"
by (simp only: jatt')
with act aact aact'
have "aact a = aact' a"
by (auto elim!: allE[where x=a])
with agents tt'Last s s'
have "ODList.lookup (ps s) a = ODList.lookup (ps s') a"
by (simp add: envTrans)
moreover
from tStep have "tMap (\<lambda>s. ODList.lookup (ps s) a) t = tMap (\<lambda>s. ODList.lookup (ps s) a) t'"
by auto
moreover
from tStep have "envObsC (es s) = envObsC (es s')"
unfolding tObsC_def by simp
ultimately show ?case by simp
qed
lemma spr_sim_r:
"sim_r SPR.MC spr_simMC spr_sim"
proof(rule sim_rI)
fix a p q'
assume pT: "p \<in> worlds SPR.MC"
and fpq': "(spr_sim p, q') \<in> relations spr_simMC a"
from fpq' obtain uq fq vq
where q': "q' = \<lparr> sprFst = uq, sprLst = vq, sprCRel = tObsC_abs p \<rparr>"
and uq: "envObs a (tFirst p) = envObs a uq"
and vq: "envObs a (tLast p) = envObs a vq"
unfolding mkKripke_def spr_sim_def spr_simRels_def
by fastforce
from fpq' have "q' \<in> worlds spr_simMC" by simp
with q' have "(uq, vq) \<in> tObsC_abs p"
using spr_sim_tFirst_tLast[where s=q']
apply auto
done
then obtain t
where tT: "t \<in> SPR.jkbpC"
and tp: "tObsC t = tObsC p"
and tuq: "tFirst t = uq"
and tvq: "tLast t = vq"
by (auto iff: tObsC_abs_conv)
from pT tT tp tuq uq
have "tMap (\<lambda>s. ODList.lookup (ps s) a) p = tMap (\<lambda>s. ODList.lookup (ps s) a) t"
by (auto intro: spr_jview_det_ps)
with tp tuq uq
have "spr_jview a p = spr_jview a t"
by (auto intro: spr_jview_tObsCI)
with pT tT have pt: "(p, t) \<in> relations SPR.MC a"
unfolding SPR.mkM_def by simp
from q' uq vq tp tuq tvq have ftq': "spr_sim t = q'"
unfolding spr_sim_def by auto
from pt ftq'
show "\<exists>q. (p, q) \<in> relations SPR.MC a \<and> spr_sim q = q'"
by blast
qed
(*>*)
text\<open>
The proof proceeds by lock-step induction over @{term "t"} and @{term
"t'"}, appealing to the @{term "jkbpDet"} assumption, the definition
of @{term "envObs"} and the constraint @{term "envTrans"}.
It is then a short step to showing reverse simulation, and hence
simulation:
\<close>
lemma spr_sim: "sim SPR.MC spr_simMC spr_sim"
(*<*)
using spr_sim_range spr_simVal spr_sim_f spr_sim_r
unfolding sim_def
by blast
(*>*)
end (* context FiniteDetBroadcastEnvironment *)
sublocale FiniteDetBroadcastEnvironment
< SPRdet: SimIncrEnvironment jkbp envInit envAction envTrans envVal
spr_jview envObs spr_jviewInit spr_jviewIncr
spr_sim spr_simRels spr_simVal
(*<*)
by standard (rule spr_sim)
(*>*)
(* **************************************** *)
subsubsection\<open>Representations\<close>
text\<open>
As before we canonically represent the quotient of the simulated
worlds @{typ "('a, 'es, 'as) spr_simWorld"} under @{term
"spr_simRels"} using ordered, distinct lists. In particular, we use
the type @{typ "('a \<times> 'a) odlist"} (abbreviated @{typ "'a
odrelation"}) to canonically represent relations.
\<close>
context FiniteDetBroadcastEnvironment
begin
type_synonym (in -) ('a, 'es, 'as) spr_simWorldsECRep
= "('a, 'es, 'as) BEState odrelation"
type_synonym (in -) ('a, 'es, 'as) spr_simWorldsRep
= "('a, 'es, 'as) spr_simWorldsECRep \<times> ('a, 'es, 'as) spr_simWorldsECRep"
text\<open>
We can abstract such a representation into a set of simulated
equivalence classes:
\<close>
definition
spr_simAbs :: "('a, 'es, 'as) spr_simWorldsRep
\<Rightarrow> ('a, 'es, 'as) spr_simWorld set"
where
"spr_simAbs \<equiv> \<lambda>(cec, aec). { \<lparr> sprFst = s, sprLst = s', sprCRel = toSet cec \<rparr>
|s s'. (s, s') \<in> toSet aec }"
text\<open>
Assuming @{term "X"} represents a simulated equivalence class for
@{term "t \<in> jkbpC"}, we can decompose @{term "spr_simAbs X"} in terms
of @{term "tObsC_abs t"} and @{term "agent_abs t"}:
\<close>
definition
agent_abs :: "'a \<Rightarrow> ('a, 'es, 'as) BEState Trace
\<Rightarrow> ('a, 'es, 'as) BEState Relation"
where
"agent_abs a t \<equiv> { (tFirst t', tLast t')
|t'. t' \<in> SPR.jkbpC \<and> spr_jview a t' = spr_jview a t }"
(*<*)
lemma agent_absI[intro]:
"\<lbrakk> spr_jview a t' = spr_jview a t; t' \<in> SPR.jkbpC; t \<in> SPR.jkbpC \<rbrakk>
\<Longrightarrow> (tFirst t', tLast t') \<in> agent_abs a t"
unfolding agent_abs_def by auto
lemma spr_simAbs_refl:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "spr_sim t \<in> spr_simAbs ec"
using assms by simp
lemma spr_simAbs_tObsC_abs[simp]:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "toSet (fst ec) = tObsC_abs t"
using tC spr_simAbs_refl[OF tC ec]
unfolding spr_sim_def spr_simAbs_def by auto
lemma spr_simAbs_agent_abs[simp]:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "toSet (snd ec) = agent_abs a t"
using tC ec
unfolding spr_sim_def spr_simAbs_def agent_abs_def
apply (cases ec)
apply auto
apply (subgoal_tac "\<lparr>sprFst = aaa, sprLst = ba, sprCRel = toSet aa\<rparr> \<in> {\<lparr>sprFst = s, sprLst = s', sprCRel = toSet aa\<rparr> |s s'. (s, s') \<in> toSet b}")
apply auto
done
(*>*)
text\<open>
This representation is canonical on the domain of interest (though not
in general):
\<close>
lemma spr_simAbs_inj_on:
"inj_on spr_simAbs { x . spr_simAbs x \<in> SPRdet.jkbpSEC }"
(*<*)
proof(rule inj_onI)
fix x y
assume x: "x \<in> { x . spr_simAbs x \<in> SPRdet.jkbpSEC }"
and y: "y \<in> { x . spr_simAbs x \<in> SPRdet.jkbpSEC }"
and xy: "spr_simAbs x = spr_simAbs y"
from x obtain a t
where tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs x = SPRdet.sim_equiv_class a t"
by auto
from spr_simAbs_tObsC_abs[OF tC ec] spr_simAbs_tObsC_abs[OF tC trans[OF xy[symmetric] ec], symmetric]
have "fst x = fst y" by (blast intro: injD[OF toSet_inj])
moreover
from spr_simAbs_agent_abs[OF tC ec] spr_simAbs_agent_abs[OF tC trans[OF xy[symmetric] ec], symmetric]
have "snd x = snd y" by (blast intro: injD[OF toSet_inj])
ultimately show "x = y" by (simp add: prod_eqI)
qed
(*>*)
text\<open>
The following sections make use of a Kripke structure constructed over
@{term "tObsC_abs t"} for some canonical trace @{term "t"}. Note that
we use the relation in the generated code.
\<close>
type_synonym (in -) ('a, 'es, 'as) spr_simWorlds
= "('a, 'es, 'as) BEState \<times> ('a, 'es, 'as) BEState"
definition (in -)
spr_repRels :: "('a \<Rightarrow> ('a, 'es, 'as) BEState \<Rightarrow> 'cobs \<times> 'as option)
\<Rightarrow> 'a \<Rightarrow> ('a, 'es, 'as) spr_simWorlds Relation"
where
"spr_repRels envObs \<equiv> \<lambda>a. { ((u, v), (u', v')).
envObs a u = envObs a u' \<and> envObs a v = envObs a v' }"
definition
spr_repVal :: "('a, 'es, 'as) spr_simWorlds \<Rightarrow> 'p \<Rightarrow> bool"
where
"spr_repVal \<equiv> envVal \<circ> snd"
abbreviation
spr_repMC :: "('a, 'es, 'as) BEState Relation
\<Rightarrow> ('a, 'p, ('a, 'es, 'as) spr_simWorlds) KripkeStructure"
where
"spr_repMC \<equiv> \<lambda>tcobsR. mkKripke tcobsR (spr_repRels envObs) spr_repVal"
(*<*)
abbreviation
spr_repRels :: "'a \<Rightarrow> ('a, 'es, 'as) spr_simWorlds Relation"
where
"spr_repRels \<equiv> SPRViewDet.spr_repRels envObs"
lemma spr_repMC_kripke[intro, simp]: "kripke (spr_repMC X)"
by (rule kripkeI) simp
lemma spr_repMC_S5n[intro, simp]: "S5n (spr_repMC X)"
unfolding spr_repRels_def
by (intro S5nI equivI refl_onI symI transI) auto
(*>*)
text\<open>
As before we can show that this Kripke structure is adequate for a
particular canonical trace @{term "t"} by showing that it simulates
@{term "spr_repMC"} We introduce an intermediate structure:
\<close>
abbreviation
spr_jkbpCSt :: "('a, 'es, 'as) BEState Trace \<Rightarrow> ('a, 'es, 'as) spr_simWorld set"
where
"spr_jkbpCSt t \<equiv> spr_sim ` { t' . t' \<in> SPR.jkbpC \<and> tObsC t = tObsC t' }"
abbreviation
spr_simMCt :: "('a, 'es, 'as) BEState Trace
\<Rightarrow> ('a, 'p, ('a, 'es, 'as) spr_simWorld) KripkeStructure"
where
"spr_simMCt t \<equiv> mkKripke (spr_jkbpCSt t) spr_simRels spr_simVal"
definition
spr_repSim :: "('a, 'es, 'as) spr_simWorld \<Rightarrow> ('a, 'es, 'as) spr_simWorlds"
where
"spr_repSim \<equiv> \<lambda>s. (sprFst s, sprLst s)"
(*<*)
lemma spr_repSim_simps[simp]:
"spr_repSim ` spr_sim ` T = (\<lambda>t. (tFirst t, tLast t)) ` T"
"spr_repSim (spr_sim t) = (tFirst t, tLast t)"
unfolding spr_repSim_def spr_sim_def
apply auto
apply (rule_tac x="\<lparr> sprFst = tFirst t, sprLst = tLast t, sprCRel = tObsC_abs t \<rparr>" in image_eqI)
apply auto
done
lemma jkbpCSt_jkbpCS_subset:
"spr_jkbpCSt t \<subseteq> spr_sim ` SPR.jkbpC"
by auto
(*>*)
text\<open>\<close>
lemma spr_repSim:
assumes tC: "t \<in> SPR.jkbpC"
shows "sim (spr_simMCt t)
((spr_repMC \<circ> sprCRel) (spr_sim t))
spr_repSim"
(*<*) (is "sim ?M ?M' ?f")
proof
show "sim_range ?M ?M' ?f"
proof
show "worlds ?M' = ?f ` worlds ?M"
apply (simp add: spr_sim_def spr_repSim_def)
apply (auto iff: tObsC_abs_def)
apply (rule_tac x="\<lparr> sprFst = tFirst t', sprLst = tLast t', sprCRel = tObsC_abs t \<rparr>" in image_eqI)
apply simp
apply (rule_tac x=t' in image_eqI)
apply (simp add: tObsC_abs_def)
apply auto[1]
done
next
fix a
show "relations ?M' a \<subseteq> worlds ?M' \<times> worlds ?M'"
by (simp add: spr_sim_def spr_repSim_def)
qed
next
show "sim_val ?M ?M' ?f"
by rule (simp add: spr_sim_def spr_simVal_def spr_repSim_def spr_repVal_def split: prod.split)
next
show "sim_f ?M ?M' ?f"
by rule (auto iff: spr_sim_def simp: spr_simRels_def spr_repRels_def spr_repSim_def)
next
show "sim_r ?M ?M' ?f"
apply rule
unfolding spr_repRels_def spr_repSim_def spr_simRels_def spr_sim_def
apply clarsimp
apply (rule_tac x="\<lparr> sprFst = aa, sprLst = b, sprCRel = tObsC_abs ta \<rparr>" in exI)
apply (auto iff: tObsC_abs_def)
apply (rule_tac x=t'a in image_eqI)
apply auto
done
qed
(*>*)
text\<open>
As before we define a set of constants that satisfy the \<open>Algorithm\<close> locale given the assumptions of the @{term
"FiniteDetBroadcastEnvironment"} locale.
\<close>
(* **************************************** *)
subsubsection\<open>Initial states\<close>
text\<open>
The initial states for agent @{term "a"} given an initial observation
@{term "iobs"} consist of the set of states that yield a common
observation consonant with @{term "iobs"} paired with the set of
states where @{term "a"} observes @{term "iobs"}:
\<close>
definition (in -)
spr_simInit ::
"('a, 'es, 'as) BEState list \<Rightarrow> ('es \<Rightarrow> 'cobs)
\<Rightarrow> ('a \<Rightarrow> ('a, 'es, 'as) BEState \<Rightarrow> 'cobs \<times> 'obs)
\<Rightarrow> 'a \<Rightarrow> ('cobs \<times> 'obs)
\<Rightarrow> ('a :: linorder, 'es :: linorder, 'as :: linorder) spr_simWorldsRep"
where
"spr_simInit envInit envObsC envObs \<equiv> \<lambda>a iobs.
(ODList.fromList [ (s, s). s \<leftarrow> envInit, envObsC (es s) = fst iobs ],
ODList.fromList [ (s, s). s \<leftarrow> envInit, envObs a s = iobs ])"
(*<*)
abbreviation
spr_simInit :: "'a \<Rightarrow> ('cobs \<times> 'as option) \<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep"
where
"spr_simInit \<equiv> SPRViewDet.spr_simInit envInit envObsC envObs"
(*>*)
text\<open>\<close>
lemma spr_simInit:
assumes "iobs \<in> envObs a ` set envInit"
shows "spr_simAbs (spr_simInit a iobs)
= spr_sim ` { t' \<in> SPR.jkbpC. spr_jview a t' = spr_jviewInit a iobs }"
(*<*)
using assms
unfolding spr_simInit_def spr_simAbs_def spr_sim_def [abs_def]
apply (clarsimp simp: Let_def SPR.jviewInit split: prod.split)
apply rule
apply clarsimp
apply (rule_tac x="tInit s" in image_eqI)
apply (auto iff: spr_jview_def envObs_def)
done
(*>*)
(* **************************************** *)
subsubsection\<open>Simulated observations\<close>
text\<open>
An observation can be made at any element of the representation of a
simulated equivalence class of a canonical trace:
\<close>
definition (in -)
spr_simObs ::
"('es \<Rightarrow> 'cobs)
\<Rightarrow> 'a \<Rightarrow> ('a :: linorder, 'es :: linorder, 'as :: linorder) spr_simWorldsRep
\<Rightarrow> 'cobs \<times> 'as option"
where
"spr_simObs envObsC \<equiv> \<lambda>a. (\<lambda>s. (envObsC (es s), ODList.lookup (ps s) a))
\<circ> snd \<circ> ODList.hd \<circ> snd"
(*<*)
abbreviation
spr_simObs :: "'a \<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep \<Rightarrow> 'cobs \<times> 'as option"
where
"spr_simObs \<equiv> SPRViewDet.spr_simObs envObsC"
(*>*)
text\<open>\<close>
lemma spr_simObs:
assumes tC: "t \<in> SPR.jkbpC"
assumes ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "spr_simObs a ec = envObs a (tLast t)"
(*<*)
proof -
have A: "\<forall>s \<in> set (toList (snd ec)). envObs a (snd s) = envObs a (tLast t)"
using spr_simAbs_agent_abs[OF tC ec]
apply (clarsimp simp: toSet_def)
apply (auto simp: agent_abs_def)
done
from tC ec have B: "(tFirst t, tLast t) \<in> set (toList (snd ec))"
by (auto iff: spr_simAbs_def spr_sim_def toSet_def split_def)
show ?thesis
unfolding spr_simObs_def
using list_choose_hd[OF A B]
by (simp add: ODList.hd_def envObs_def)
qed
(*>*)
(* **************************************** *)
subsubsection\<open>Evaluation\<close>
text\<open>
As for the clock semantics (\S\ref{sec:kbps-theory-clock-view-eval}),
we use the general evalation function @{term "evalS"}.
Once again we propositions are used to filter the set of possible
worlds @{term "X"}:
\<close>
abbreviation (in -)
spr_evalProp ::
"(('a::linorder, 'es::linorder, 'as::linorder) BEState \<Rightarrow> 'p \<Rightarrow> bool)
\<Rightarrow> ('a, 'es, 'as) BEState odrelation
\<Rightarrow> 'p \<Rightarrow> ('a, 'es, 'as) BEState odrelation"
where
"spr_evalProp envVal \<equiv> \<lambda>X p. ODList.filter (\<lambda>s. envVal (snd s) p) X"
text\<open>
The knowledge operation computes the subset of possible worlds @{term
"cec"} that yield the same observation as @{term "s"} for agent @{term
"a"}:
\<close>
definition (in -)
spr_knowledge ::
"('a \<Rightarrow> ('a::linorder, 'es::linorder, 'as::linorder) BEState
\<Rightarrow> 'cobs \<times> 'as option)
\<Rightarrow> ('a, 'es, 'as) BEState odrelation
\<Rightarrow> 'a \<Rightarrow> ('a, 'es, 'as) spr_simWorlds
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsECRep"
where
"spr_knowledge envObs cec \<equiv> \<lambda>a s.
ODList.fromList [ s' . s' \<leftarrow> toList cec, (s, s') \<in> spr_repRels envObs a ]"
(*<*)
(* We need to avoid the explicit enumeration of the set in spr_repRels. *)
declare (in -) spr_knowledge_def[code del]
lemma (in -) [code]:
"spr_knowledge envObs cec = (\<lambda>a s.
ODList.fromList [ s' . s' \<leftarrow> toList cec,
envObs a (fst s) = envObs a (fst s') \<and> envObs a (snd s) = envObs a (snd s') ])"
unfolding spr_knowledge_def spr_repRels_def by (simp add: split_def)
(*>*)
text\<open>
Similarly the common knowledge operation computes the transitive
closure \citep{AFP:TRANCL} of the union of the knowledge relations for
the agents \<open>as\<close>:
\<close>
definition (in -)
spr_commonKnowledge ::
"('a \<Rightarrow> ('a::linorder, 'es::linorder, 'as::linorder) BEState
\<Rightarrow> 'cobs \<times> 'as option)
\<Rightarrow> ('a, 'es, 'as) BEState odrelation
\<Rightarrow> 'a list
\<Rightarrow> ('a, 'es, 'as) spr_simWorlds
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsECRep"
where
"spr_commonKnowledge envObs cec \<equiv> \<lambda>as s.
let r = \<lambda>a. ODList.fromList
[ (s', s'') . s' \<leftarrow> toList cec, s'' \<leftarrow> toList cec,
(s', s'') \<in> spr_repRels envObs a ];
R = toList (ODList.big_union r as)
in ODList.fromList (memo_list_trancl R s)"
(*<*)
(* We need to avoid the explicit enumeration of the set in spr_repRels. *)
declare (in -) spr_commonKnowledge_def[code del]
lemma (in -) [code]:
"spr_commonKnowledge envObs cec = (\<lambda>as s.
let r = \<lambda>a. ODList.fromList
[ (s', s'') . s' \<leftarrow> toList cec, s'' \<leftarrow> toList cec,
envObs a (fst s') = envObs a (fst s'') \<and> envObs a (snd s') = envObs a (snd s'') ];
R = toList (ODList.big_union r as)
in ODList.fromList (memo_list_trancl R s))"
unfolding spr_commonKnowledge_def spr_repRels_def by (simp add: split_def)
(*>*)
text\<open>
The evaluation function evaluates a subjective knowledge formula on
the representation of an equivalence class:
\<close>
definition (in -)
"eval envVal envObs \<equiv> \<lambda>(cec, X).
evalS (spr_evalProp envVal)
(spr_knowledge envObs cec)
(spr_commonKnowledge envObs cec)
X"
(*<*)
lemma spr_knowledge:
"s \<in> toSet cec
\<Longrightarrow> toSet (spr_knowledge envObs cec a s) = relations (spr_repMC (toSet cec)) a `` {s}"
unfolding spr_knowledge_def spr_repRels_def by (auto simp: toSet_def[symmetric])
lemma spr_commonKnowledge_relation_image:
"s \<in> toSet cec
\<Longrightarrow> toSet (spr_commonKnowledge envObs cec as s) = (\<Union>a \<in> set as. relations (spr_repMC (toSet cec)) a)\<^sup>+ `` {s}"
unfolding spr_commonKnowledge_def Let_def
apply (simp add: memo_list_trancl toSet_def[symmetric] Image_def split_def)
apply (rule Collect_cong)
apply (rule_tac f="\<lambda>x. (s, b) \<in> x" in arg_cong)
apply (rule arg_cong[where f=trancl])
apply fastforce
done
lemma eval_rec_models:
assumes XY: "toSet X \<subseteq> toSet Y"
and s: "s \<in> toSet X"
shows "s \<in> toSet (eval_rec (spr_evalProp envVal) (spr_knowledge envObs Y) (spr_commonKnowledge envObs Y) X \<phi>)
\<longleftrightarrow> spr_repMC (toSet Y), s \<Turnstile> \<phi>"
using XY s
proof(induct \<phi> arbitrary: X s)
case (Kknows a' \<phi> X s)
from \<open>s \<in> toSet X\<close> spr_knowledge[OF subsetD[OF Kknows(2) Kknows(3)], where a=a']
show ?case
apply simp
apply rule
apply (drule arg_cong[where f="toSet"])
apply (clarsimp simp: odlist_all_iff)
apply (cut_tac s1="(a, b)" and X1="spr_knowledge envObs Y a' (aa, ba)" in Kknows.hyps)
using Kknows(2) Kknows(3)
apply (auto simp add: S5n_rels_closed[OF spr_repMC_S5n])[3]
apply (clarsimp simp: toSet_eq_iff odlist_all_iff)
apply (subst Kknows.hyps)
using Kknows(2) Kknows(3)
apply (auto simp add: S5n_rels_closed[OF spr_repMC_S5n] o_def)
done
next
case (Kcknows as \<phi> X s)
show ?case
proof(cases "as = Nil")
case True with \<open>s \<in> toSet X\<close> show ?thesis by clarsimp
next
case False
with \<open>s \<in> toSet X\<close> spr_commonKnowledge_relation_image[OF subsetD[OF Kcknows(2) Kcknows(3)], where as=as]
show ?thesis
apply simp
apply rule
apply (drule arg_cong[where f="toSet"])
apply (clarsimp simp: odlist_all_iff)
apply (cut_tac s1="(a, b)" and X1="spr_commonKnowledge envObs Y as (aa, ba)" in Kcknows.hyps)
using Kcknows(2) Kcknows(3)
apply (auto simp add: S5n_rels_closed[OF spr_repMC_S5n])[2]
apply (subst (asm) trancl_unfold) back back back (* FIXME clunky, why did this break? *)
apply (auto simp add: S5n_rels_closed[OF spr_repMC_S5n])[2]
apply (clarsimp simp: toSet_eq_iff odlist_all_iff)
apply (subst Kcknows.hyps)
using Kcknows(2) Kcknows(3)
apply (auto simp add: S5n_rels_closed[OF spr_repMC_S5n] o_def)
apply (subst (asm) trancl_unfold) back back back (* FIXME clunky, why did this break? *)
apply blast
done
qed
qed (simp_all add: spr_repVal_def)
lemma agent_abs_tObsC_abs_subset:
"tObsC t' = tObsC t \<Longrightarrow> agent_abs a t \<subseteq> tObsC_abs t'"
unfolding agent_abs_def tObsC_abs_def
by (auto intro: spr_jview_tObsC)
lemma spr_simAbs_fst_snd:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "toSet (snd ec) \<subseteq> toSet (fst ec)"
using assms by (simp add: agent_abs_tObsC_abs_subset)
lemma tObsC_abs_rel:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
and r: "(x, y) \<in> (\<Union> (relations (spr_repMC (tObsC_abs t)) ` set as))\<^sup>+"
shows "x \<in> tObsC_abs t \<longleftrightarrow>y \<in> tObsC_abs t"
using assms
apply -
apply rule
apply (erule trancl_induct, auto)+
done
lemma spr_simAbs_fst_snd_trc:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "toSet (big_union (spr_commonKnowledge envObs (fst ec) as) (toList (snd ec))) \<subseteq> toSet (fst ec)"
using assms
apply clarsimp
apply (simp only: toSet_def[symmetric])
apply (subgoal_tac "(ab,ba) \<in> toSet (fst ec)")
apply (simp add: spr_commonKnowledge_relation_image tObsC_abs_rel[OF tC ec])
apply (simp add: subsetD[OF agent_abs_tObsC_abs_subset[OF refl]])
done
lemma agent_abs_rel_inv:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
and x: "x \<in> agent_abs a t"
and xy: "(x, y) \<in> relations (spr_repMC (toSet (fst ec))) a"
shows "y \<in> agent_abs a t"
using assms
apply simp
unfolding agent_abs_def tObsC_abs_def spr_repRels_def
apply auto
apply (rule_tac x=t'b in exI)
apply clarsimp
apply (rule spr_jview_tObsCI)
apply simp
apply auto[1]
apply (rule spr_jview_det_ps)
using tC
apply auto
done
lemma agent_abs_tObsC_abs:
assumes tC: "t \<in> SPR.jkbpC"
and x: "x \<in> agent_abs a t"
and y: "y \<in> agent_abs a t"
shows "(x, y) \<in> relations (spr_repMC (tObsC_abs t)) a"
using assms
unfolding agent_abs_def spr_repRels_def
apply clarsimp
apply safe
prefer 3
apply (erule tObsC_absI) back
apply simp_all
apply (erule spr_jview_tObsC)
prefer 3
apply (erule tObsC_absI) back back
apply simp_all
apply (erule spr_jview_tObsC)
apply (rule spr_tFirst)
apply simp
apply (rule spr_tLast)
apply simp
done
lemma agent_abs_spr_repRels:
assumes tC: "t \<in> SPR.jkbpC"
and x: "x \<in> agent_abs a t"
and y: "y \<in> agent_abs a t"
shows "(x, y) \<in> spr_repRels a"
using assms
unfolding agent_abs_def spr_repRels_def
by (auto elim!: spr_tFirst spr_tLast)
lemma evalS_models:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
and subj_phi: "subjective a \<phi>"
and s: "s \<in> toSet (snd ec)"
shows "evalS (spr_evalProp envVal) (spr_knowledge envObs (fst ec)) (spr_commonKnowledge envObs (fst ec)) (snd ec) \<phi>
\<longleftrightarrow> spr_repMC (toSet (fst ec)), s \<Turnstile> \<phi>" (is "?lhs \<phi> = ?rhs \<phi>")
using subj_phi s ec
proof(induct \<phi> rule: subjective.induct[case_names Kprop Knot Kand Kknows Kcknows])
case (Kknows a a' \<psi>) thus ?case
apply (clarsimp simp: toSet_eq_iff)
apply rule
apply clarsimp
apply (subgoal_tac "(a, b) \<in> toSet (snd ec)")
apply (drule (1) subsetD) back
apply (simp only: eval_rec_models[OF spr_simAbs_fst_snd[OF tC ec]])
using tC Kknows
apply simp
using tC ec
apply -
apply (erule (1) agent_abs_rel_inv[OF tC])
apply simp
apply clarsimp
apply (subst eval_rec_models[OF spr_simAbs_fst_snd[OF tC ec]])
apply simp
using agent_abs_tObsC_abs[OF tC]
apply auto
done
next
case (Kcknows a as \<psi>)
have "?lhs (Kcknows as \<psi>)
= (\<forall>y\<in>agent_abs a t.
\<forall>x\<in>((\<Union>a\<in>set as. relations (spr_repMC (toSet (fst ec))) a)\<^sup>+ `` {y}).
x \<in> toSet (eval_rec (spr_evalProp envVal) (spr_knowledge envObs (fst ec)) (spr_commonKnowledge envObs (fst ec))
(big_union (spr_commonKnowledge envObs (fst ec) as) (toList (snd ec))) \<psi>))"
(* FIXME dreaming of a cong rule here. *)
using toSet_def[symmetric] spr_simAbs_agent_abs[OF tC Kcknows(3)] spr_simAbs_tObsC_abs[OF tC Kcknows(3)]
apply (clarsimp simp: toSet_eq_iff toSet_def[symmetric] subset_eq)
apply (rule ball_cong[OF refl])
apply (rule ball_cong)
apply (subst spr_commonKnowledge_relation_image)
apply (simp_all add: subsetD[OF agent_abs_tObsC_abs_subset[OF refl]])
done
also have "... = (\<forall>s\<in>agent_abs a t. spr_repMC (toSet (fst ec)), s \<Turnstile> Kcknows as \<psi>)"
apply (rule ball_cong[OF refl])
apply simp
apply (rule ball_cong[OF refl])
apply (subst eval_rec_models[OF spr_simAbs_fst_snd_trc[OF tC Kcknows(3), where as=as], symmetric])
using spr_simAbs_agent_abs[OF tC Kcknows(3)] spr_simAbs_tObsC_abs[OF tC Kcknows(3)]
apply (simp add: toSet_def[symmetric])
apply (rule_tac x=y in bexI)
apply (subst spr_commonKnowledge_relation_image)
apply (auto elim: subsetD[OF agent_abs_tObsC_abs_subset[OF refl]])[1]
apply simp
apply assumption
apply (rule refl)
done
also have "... = spr_repMC (toSet (fst ec)), s \<Turnstile> Kknows a (Kcknows as \<psi>)"
using spr_simAbs_agent_abs[OF tC Kcknows(3)] spr_simAbs_tObsC_abs[OF tC Kcknows(3)]
Kcknows(2) tC
apply simp
apply (rule ball_cong[OF _ refl])
apply rule
apply (clarsimp simp: subsetD[OF agent_abs_tObsC_abs_subset] agent_abs_spr_repRels[OF tC])
apply (clarsimp elim!: agent_abs_rel_inv[OF tC Kcknows(3)])
done
also have "... = spr_repMC (toSet (fst ec)), s \<Turnstile> Kcknows as \<psi>"
apply (rule S5n_common_knowledge_fixed_point_simpler[symmetric])
using spr_simAbs_agent_abs[OF tC Kcknows(3)] spr_simAbs_tObsC_abs[OF tC Kcknows(3)]
Kcknows(1) Kcknows(2)
apply (auto elim: subsetD[OF agent_abs_tObsC_abs_subset[OF refl]])
done
finally show ?case .
qed simp_all
(*>*)
text\<open>
This function corresponds with the standard semantics:
\<close>
lemma eval_models:
assumes tC: "t \<in> SPR.jkbpC"
assumes ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
assumes subj_phi: "subjective a \<phi>"
assumes s: "s \<in> toSet (snd ec)"
shows "eval envVal envObs ec \<phi> \<longleftrightarrow> spr_repMC (toSet (fst ec)), s \<Turnstile> \<phi>"
(*<*)
unfolding eval_def
using evalS_models[OF tC ec subj_phi s]
apply auto
done
(*>*)
(* **************************************** *)
subsubsection\<open>Simulated actions\<close>
text\<open>
From a common equivalence class and a subjective equivalence class for
agent @{term "a"}, we can compute the actions enabled for @{term "a"}:
\<close>
definition (in -)
spr_simAction ::
"('a, 'p, 'aAct) JKBP \<Rightarrow> (('a, 'es, 'as) BEState \<Rightarrow> 'p \<Rightarrow> bool)
\<Rightarrow> ('a \<Rightarrow> ('a, 'es, 'as) BEState \<Rightarrow> 'cobs \<times> 'as option)
\<Rightarrow> 'a
\<Rightarrow> ('a::linorder, 'es::linorder, 'as::linorder) spr_simWorldsRep
\<Rightarrow> 'aAct list"
where
"spr_simAction jkbp envVal envObs \<equiv> \<lambda>a ec.
[ action gc. gc \<leftarrow> jkbp a, eval envVal envObs ec (guard gc) ]"
(*<*)
abbreviation
spr_simAction :: "'a \<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep \<Rightarrow> 'aAct list"
where
"spr_simAction \<equiv> SPRViewDet.spr_simAction jkbp envVal envObs"
(*>*)
text\<open>
Using the above result about evaluation, we can relate \<open>spr_simAction\<close> to @{term "jAction"}. Firstly, \<open>spr_simAction\<close> behaves the same as @{term "jAction"} using the
@{term "spr_repMC"} structure:
\<close>
lemma spr_action_jaction:
assumes tC: "t \<in> SPR.jkbpC"
assumes ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "set (spr_simAction a ec)
= set (jAction (spr_repMC (toSet (fst ec))) (tFirst t, tLast t) a)"
(*<*)
unfolding spr_simAction_def jAction_def
apply clarsimp
apply rule
apply clarsimp
apply (rule_tac x=xa in bexI)
apply simp
apply clarsimp
apply (subst eval_models[OF tC ec, symmetric])
using tC ec subj
apply simp_all
apply (rule agent_absI)
apply simp_all
apply clarsimp
apply (rule_tac x=xa in bexI)
apply simp
apply clarsimp
apply (subst eval_models[OF tC ec])
using tC ec subj
apply simp_all
apply (rule agent_absI)
apply simp_all
done
lemma spr_submodel_aux:
assumes tC: "t \<in> SPR.jkbpC"
and s: "s \<in> worlds (spr_simMCt t)"
shows "gen_model SPRdet.MCS s = gen_model (spr_simMCt t) s"
proof(rule gen_model_subset[where T="spr_jkbpCSt t"])
fix a
let ?X = "spr_sim ` { t' . t' \<in> SPR.jkbpC \<and> tObsC t = tObsC t' }"
show "relations SPRdet.MCS a \<inter> ?X \<times> ?X
= relations (spr_simMCt t) a \<inter> ?X \<times> ?X"
by (simp add: Int_ac Int_absorb1
relation_mono[OF jkbpCSt_jkbpCS_subset jkbpCSt_jkbpCS_subset])
next
let ?X = "spr_sim ` { t' . t' \<in> SPR.jkbpC \<and> tObsC t = tObsC t' }"
from s show "(\<Union>a. relations (spr_simMCt t) a)\<^sup>* `` {s} \<subseteq> ?X"
apply (clarsimp simp del: mkKripke_simps)
apply (erule (1) kripke_rels_trc_worlds)
apply auto
done
next
let ?Y = "{ t' . t' \<in> SPR.jkbpC \<and> tObsC t = tObsC t' }"
let ?X = "spr_sim ` ?Y"
from s obtain t'
where st': "s = spr_sim t'"
and t'C: "t' \<in> SPR.jkbpC"
and t'O: "tObsC t = tObsC t'"
by fastforce
{ fix t''
assume tt': "(t', t'') \<in> (\<Union>a. relations SPR.MC a)\<^sup>*"
from t'C tt' have t''C: "t'' \<in> SPR.jkbpC"
by - (erule kripke_rels_trc_worlds, simp_all)
from t'O tt' have t''O: "tObsC t = tObsC t''"
by (simp add: spr_tObsC_trc_aux)
from t''C t''O have "t'' \<in> ?Y" by simp }
hence "(\<Union>a. relations SPR.MC a)\<^sup>* `` {t'} \<subseteq> ?Y"
by clarsimp
hence "spr_sim ` ((\<Union>a. relations SPR.MC a)\<^sup>* `` {t'}) \<subseteq> ?X"
by (rule image_mono)
with st' t'C
show "(\<Union>a. relations SPRdet.MCS a)\<^sup>* `` {s} \<subseteq> ?X"
using sim_trc_commute[OF SPR.mkM_kripke spr_sim, where t=t'] by simp
qed (insert s, auto)
(*>*)
text\<open>
We can connect the agent's choice of actions on the \<open>spr_repMC\<close> structure to those on the \<open>SPR.MC\<close> structure
using our earlier results about actions being preserved by generated
models and simulations.
\<close>
lemma spr_simAction:
assumes tC: "t \<in> SPR.jkbpC"
assumes ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "set (spr_simAction a ec) = set (jAction SPR.MC t a)"
(*<*) (is "?lhs = ?rhs")
proof -
from tC ec
have "?lhs = set (jAction (spr_repMC (toSet (fst ec))) (tFirst t, tLast t) a)"
by (rule spr_action_jaction)
also from tC ec have "... = set (jAction (spr_simMCt t) (spr_sim t) a)"
by (simp add: simulation_jAction_eq[OF _ spr_repSim] spr_sim_tObsC_abs)
also from tC have "... = set (jAction SPRdet.MCS (spr_sim t) a)"
using gen_model_jAction_eq[OF spr_submodel_aux[OF tC, where s="spr_sim t"], where w'="spr_sim t"]
gen_model_world_refl[where w="spr_sim t" and M="spr_simMCt t"]
by simp
also from tC have "... = set (jAction SPR.MC t a)"
by (simp add: simulation_jAction_eq[OF _ spr_sim])
finally show ?thesis .
qed
(*>*)
(* **************************************** *)
subsubsection\<open>Simulated transitions\<close>
text\<open>
The story of simulated transitions takes some doing. We begin by
computing the successor relation of a given equivalence class @{term
"X"} with respect to the common equivalence class @{term "cec"}:
\<close>
abbreviation (in -)
"spr_jAction jkbp envVal envObs cec s \<equiv> \<lambda>a.
spr_simAction jkbp envVal envObs a (cec, spr_knowledge envObs cec a s)"
definition (in -)
spr_trans :: "'a odlist
\<Rightarrow> ('a, 'p, 'aAct) JKBP
\<Rightarrow> (('a::linorder, 'es::linorder, 'as::linorder) BEState \<Rightarrow> 'eAct list)
\<Rightarrow> ('eAct \<Rightarrow> ('a \<Rightarrow> 'aAct)
\<Rightarrow> ('a, 'es, 'as) BEState \<Rightarrow> ('a, 'es, 'as) BEState)
\<Rightarrow> (('a, 'es, 'as) BEState \<Rightarrow> 'p \<Rightarrow> bool)
\<Rightarrow> ('a \<Rightarrow> ('a, 'es, 'as) BEState \<Rightarrow> 'cobs \<times> 'as option)
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsECRep
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsECRep
\<Rightarrow> (('a, 'es, 'as) BEState \<times> ('a, 'es, 'as) BEState) list"
where
"spr_trans agents jkbp envAction envTrans envVal envObs \<equiv> \<lambda>cec X.
[ (initialS, succS) .
(initialS, finalS) \<leftarrow> toList X,
eact \<leftarrow> envAction finalS,
succS \<leftarrow> [ envTrans eact aact finalS .
aact \<leftarrow> listToFuns (spr_jAction jkbp envVal envObs cec
(initialS, finalS))
(toList agents) ] ]"
text\<open>
We will split the result of this function according to the common
observation and also agent @{term "a"}'s observation, where @{term
"a"} is the agent we are constructing the automaton for.
\<close>
definition (in -)
spr_simObsC :: "('es \<Rightarrow> 'cobs)
\<Rightarrow> (('a::linorder, 'es::linorder, 'as::linorder) BEState
\<times> ('a, 'es, 'as) BEState) odlist
\<Rightarrow> 'cobs"
where
"spr_simObsC envObsC \<equiv> envObsC \<circ> es \<circ> snd \<circ> ODList.hd"
abbreviation (in -)
envObs_rel :: "(('a, 'es, 'as) BEState \<Rightarrow> 'cobs \<times> 'as option)
\<Rightarrow> ('a, 'es, 'as) spr_simWorlds \<times> ('a, 'es, 'as) spr_simWorlds \<Rightarrow> bool"
where
"envObs_rel envObs \<equiv> \<lambda>(s, s'). envObs (snd s') = envObs (snd s)"
text\<open>
The above combine to yield the successor equivalence classes like so:
\<close>
definition (in -)
spr_simTrans :: "'a odlist
\<Rightarrow> ('a, 'p, 'aAct) JKBP
\<Rightarrow> (('a::linorder, 'es::linorder, 'as::linorder) BEState \<Rightarrow> 'eAct list)
\<Rightarrow> ('eAct \<Rightarrow> ('a \<Rightarrow> 'aAct)
\<Rightarrow> ('a, 'es, 'as) BEState \<Rightarrow> ('a, 'es, 'as) BEState)
\<Rightarrow> (('a, 'es, 'as) BEState \<Rightarrow> 'p \<Rightarrow> bool)
\<Rightarrow> ('es \<Rightarrow> 'cobs)
\<Rightarrow> ('a \<Rightarrow> ('a, 'es, 'as) BEState \<Rightarrow> 'cobs \<times> 'as option)
\<Rightarrow> 'a
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep list"
where
"spr_simTrans agents jkbp envAction envTrans envVal envObsC envObs \<equiv> \<lambda>a ec.
let aSuccs = spr_trans agents jkbp envAction envTrans envVal envObs
(fst ec) (snd ec);
cec' = ODList.fromList
(spr_trans agents jkbp envAction envTrans envVal envObs
(fst ec) (fst ec))
in [ (ODList.filter (\<lambda>s. envObsC (es (snd s)) = spr_simObsC envObsC aec') cec',
aec') .
aec' \<leftarrow> map ODList.fromList (partition (envObs_rel (envObs a)) aSuccs) ]"
(*<*)
abbreviation
spr_trans :: "('a, 'es, 'as) spr_simWorldsECRep
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsECRep
\<Rightarrow> (('a, 'es, 'as) spr_simWorlds) list"
where
"spr_trans \<equiv> SPRViewDet.spr_trans agents jkbp envAction envTrans envVal envObs"
abbreviation
spr_simTrans :: "'a \<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep \<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep list"
where
"spr_simTrans \<equiv> SPRViewDet.spr_simTrans agents jkbp envAction envTrans envVal envObsC envObs"
lemma spr_trans_aec:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "set (spr_trans (fst ec) (snd ec))
= { (tFirst t', s) |t' s. t' \<leadsto> s \<in> SPR.jkbpC \<and> spr_jview a t' = spr_jview a t }" (is "?lhs = ?rhs")
proof
show "?lhs \<subseteq> ?rhs"
proof
fix x assume x: "x \<in> ?lhs"
with assms show "x \<in> ?rhs"
unfolding spr_trans_def
apply (clarsimp simp del: split_paired_Ex split_paired_All simp add: toSet_def[symmetric] agent_abs_def)
apply (rule_tac x=t' in exI)
apply simp
apply (rule_tac n="Suc (tLength t')" in SPR.jkbpCn_jkbpC_inc)
apply (auto iff: Let_def simp del: split_paired_Ex split_paired_All)
apply (simp add: listToFuns_ext[OF agents[unfolded toSet_def]])
apply (rule_tac x=xa in exI)
apply simp
apply (subst (asm) spr_simAction)
apply assumption
apply rule
apply clarsimp
apply (clarsimp simp: spr_simAbs_def)
apply (subst (asm) spr_knowledge)
apply (simp add: ec)
apply (erule tObsC_absI)
apply simp_all
apply (erule spr_jview_tObsC)
using ec
apply clarsimp (* FIXME *)
apply (clarsimp simp: spr_repRels_def tObsC_abs_conv)
apply (rule_tac x=t'b in image_eqI)
apply (auto iff: spr_sim_def)[1]
apply clarsimp
apply (rule spr_jview_tObsCI[OF _ _ spr_jview_det_ps])
apply simp_all
apply (erule spr_jview_tObsC[symmetric])
apply (erule spr_jview_tObsC[symmetric])
apply clarsimp
apply (clarsimp simp: spr_simAbs_def)
apply (subst spr_knowledge)
apply (simp_all add: ec)
apply (erule tObsC_absI)
apply (erule spr_jview_tObsC)
apply simp_all
apply (rule_tac x="tFirst xc" in exI)
apply (rule_tac x="tLast xc" in exI)
apply (simp add: spr_sim_def)
apply rule
apply (drule tObsC_abs_jview_eq)
apply simp
apply (erule tObsC_abs_jview_eq[symmetric])
apply (clarsimp simp: spr_repRels_def tObsC_abs_conv)
apply rule
apply (rule spr_tFirst)
apply simp
apply rule
apply (rule spr_tLast)
apply simp
apply rule
apply (rule_tac x=t' in exI)
apply simp
apply (erule spr_jview_tObsC)
apply (rule_tac x=xc in exI)
apply simp
apply (drule spr_jview_tObsC)
apply (drule spr_jview_tObsC)
apply simp
apply (subst SPR.jkbpC_jkbpCn_jAction_eq[symmetric])
apply auto
done
qed
show "?rhs \<subseteq> ?lhs"
proof
fix x assume x: "x \<in> ?rhs"
then obtain t' s
where x': "x = (tFirst t', s)"
and t'sC: "t' \<leadsto> s \<in> SPR.jkbpC"
and F: "spr_jview a t' = spr_jview a t"
by blast
from t'sC have t'Cn: "t' \<in> SPR.jkbpCn (tLength t')" by blast
from t'sC obtain eact aact
where eact: "eact \<in> set (envAction (tLast t'))"
and aact: "\<forall>a. aact a \<in> set (jAction (SPR.mkM (SPR.jkbpCn (tLength t'))) t' a)"
and s: "s = envTrans eact aact (tLast t')"
using SPR.jkbpC_tLength_inv[where t="t' \<leadsto> s" and n="Suc (tLength t')"]
by (auto iff: Let_def)
from tC t'sC ec F x' s eact aact
show "x \<in> ?lhs"
unfolding spr_trans_def
apply (clarsimp simp del: split_paired_Ex split_paired_All simp: toSet_def[symmetric])
apply (rule bexI[where x="(tFirst t', tLast t')"])
apply simp
apply (rule bexI[where x="eact"])
apply (rule_tac x="aact" in image_eqI)
apply simp_all
apply (simp add: listToFuns_ext[OF agents[unfolded toSet_def]])
defer
apply blast
apply (subst spr_simAction[where t=t'])
apply blast
defer
apply (auto iff: SPR.jkbpC_jkbpCn_jAction_eq[OF t'Cn])[1]
apply (clarsimp simp: spr_simAbs_def)
apply (subst spr_knowledge)
apply (simp_all add: ec)
apply (rule tObsC_absI[where t=t and t'=t'])
apply simp_all
apply blast
apply (blast intro: spr_jview_tObsC)
apply (clarsimp simp: spr_repRels_def tObsC_abs_conv)
apply rule
apply clarsimp
apply (rule_tac x=t'aa in image_eqI)
apply (auto iff: spr_sim_def)[1]
apply simp
apply (rule spr_jview_tObsCI[OF _ _ spr_jview_det_ps])
apply simp_all
apply (erule spr_jview_tObsC[symmetric])
apply blast
apply (erule spr_jview_tObsC[symmetric])
apply (clarsimp simp: spr_sim_def)
apply rule
apply (drule tObsC_abs_jview_eq)
apply (drule tObsC_abs_jview_eq)
apply simp
apply rule
apply (rule spr_tFirst)
apply simp
apply rule
apply (rule spr_tLast)
apply simp
apply rule
apply (rule_tac x=t' in exI)
apply (auto dest: spr_jview_tObsC intro: spr_jview_tObsC_trans)
done
qed
qed
lemma spr_trans_cec:
assumes tC: "t \<in> SPR.jkbpC"
and ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "set (spr_trans (fst ec) (fst ec))
= { (tFirst t', s) |t' s. t' \<leadsto> s \<in> SPR.jkbpC \<and> tObsC t' = tObsC t }" (is "?lhs = ?rhs")
proof
show "?lhs \<subseteq> ?rhs"
proof
fix x assume x: "x \<in> ?lhs"
with assms show "x \<in> ?rhs"
unfolding spr_trans_def
apply (clarsimp simp del: split_paired_Ex split_paired_All simp add: toSet_def[symmetric] tObsC_abs_def)
apply (rule_tac x=t' in exI)
apply simp
apply (rule_tac n="Suc (tLength t')" in SPR.jkbpCn_jkbpC_inc)
apply (auto iff: Let_def simp del: split_paired_Ex split_paired_All)
apply (simp add: listToFuns_ext[OF agents[unfolded toSet_def]])
apply (rule_tac x=xa in exI)
apply simp
apply (subst (asm) spr_simAction)
apply assumption
apply rule
apply clarsimp
apply (clarsimp simp: spr_simAbs_def)
apply (subst (asm) spr_knowledge)
apply (simp add: ec)
apply (erule tObsC_absI)
apply simp_all
apply (clarsimp simp: spr_repRels_def tObsC_abs_conv ec)
apply (rule_tac x=t'b in image_eqI)
apply (auto iff: spr_sim_def ec)[1]
apply clarsimp
apply (rule spr_jview_tObsCI[OF _ _ spr_jview_det_ps])
apply simp_all
apply (clarsimp simp: spr_simAbs_def)
apply (subst spr_knowledge)
apply (simp_all add: ec)
apply (erule tObsC_absI)
apply simp_all
apply (rule_tac x="tFirst xc" in exI)
apply (rule_tac x="tLast xc" in exI)
apply (simp add: spr_sim_def)
apply rule
apply (drule tObsC_abs_jview_eq)
apply auto[1]
apply (clarsimp simp: spr_repRels_def tObsC_abs_conv)
apply rule
apply (rule spr_tFirst)
apply simp
apply rule
apply (rule spr_tLast)
apply simp
apply rule
apply (rule_tac x=t' in exI)
apply simp
apply (rule_tac x=xc in exI)
apply simp
apply (drule spr_jview_tObsC)
apply simp
apply (subst SPR.jkbpC_jkbpCn_jAction_eq[symmetric])
apply auto
done
qed
show "?rhs \<subseteq> ?lhs"
proof
fix x assume x: "x \<in> ?rhs"
then obtain t' s
where x': "x = (tFirst t', s)"
and t'sC: "t' \<leadsto> s \<in> SPR.jkbpC"
and F: "tObsC t' = tObsC t"
by blast
from t'sC have t'Cn: "t' \<in> SPR.jkbpCn (tLength t')" by blast
from t'sC obtain eact aact
where eact: "eact \<in> set (envAction (tLast t'))"
and aact: "\<forall>a. aact a \<in> set (jAction (SPR.mkM (SPR.jkbpCn (tLength t'))) t' a)"
and s: "s = envTrans eact aact (tLast t')"
using SPR.jkbpC_tLength_inv[where t="t' \<leadsto> s" and n="Suc (tLength t')"]
by (auto iff: Let_def)
from tC t'sC ec F x' s eact aact
show "x \<in> ?lhs"
unfolding spr_trans_def
apply (clarsimp simp del: split_paired_Ex split_paired_All simp: toSet_def[symmetric])
apply (rule bexI[where x="(tFirst t', tLast t')"])
apply simp
apply (rule bexI[where x="eact"])
apply (rule_tac x="aact" in image_eqI)
apply simp_all
apply (simp add: listToFuns_ext[OF agents[unfolded toSet_def]])
defer
apply blast
apply (subst spr_simAction[where t=t'])
apply blast
defer
apply (auto iff: SPR.jkbpC_jkbpCn_jAction_eq[OF t'Cn])[1]
apply (clarsimp simp: spr_simAbs_def)
apply (subst spr_knowledge)
apply (simp_all add: ec)
apply (rule tObsC_absI[where t=t and t'=t'])
apply simp_all
apply blast
apply (clarsimp simp: spr_repRels_def tObsC_abs_conv)
apply rule
apply clarsimp
apply (rule_tac x=t'aa in image_eqI)
apply (auto iff: spr_sim_def [abs_def])[1]
apply simp
apply (rule spr_jview_tObsCI[OF _ _ spr_jview_det_ps])
apply simp_all
apply blast
apply (clarsimp simp: spr_sim_def [abs_def])
apply (rule conjI)
apply (auto dest!: tObsC_abs_jview_eq intro: spr_tFirst spr_tLast)[1]
apply (rule conjI)
apply (auto intro: spr_tFirst)[1]
apply (rule conjI)
apply (auto intro: spr_tLast)[1]
apply (rule conjI)
apply (auto intro: spr_tLast)[1]
apply (rule_tac x=xb in exI)
apply (auto dest: spr_jview_tObsC intro: spr_jview_tObsC_trans)[1]
done
qed
qed
lemma spr_simObsC:
assumes t'sC: "t \<leadsto> s \<in> SPR.jkbpC"
and aec': "toSet aec = (rel_ext (envObs_rel (envObs a)) \<inter> X \<times> X) `` {(tFirst t, s)}"
and X: "X = {(tFirst t', s) |t' s. t' \<leadsto> s \<in> SPR.jkbpC \<and> spr_jview a t' = spr_jview a t}"
shows "spr_simObsC envObsC aec = envObsC (es s)"
unfolding spr_simObsC_def
apply (cases aec)
using assms
apply auto[1]
using assms
apply (simp add: ODList.hd_def toList_fromList)
apply (subgoal_tac "x \<in> insert x (set xs)")
apply (auto iff: envObs_def)[1]
apply blast
done
lemma envObs_rel_equiv:
"equiv UNIV (rel_ext (envObs_rel (envObs a)))"
by (intro equivI refl_onI symI transI) auto
(*>*)
text\<open>
Showing that \<open>spr_simTrans\<close> works requires a series of
auxiliary lemmas that show we do in fact compute the correct successor
equivalence classes. We elide the unedifying details, skipping
straight to the lemma that the @{term "Algorithm"} locale expects:
\<close>
lemma spr_simTrans:
assumes tC: "t \<in> SPR.jkbpC"
assumes ec: "spr_simAbs ec = SPRdet.sim_equiv_class a t"
shows "spr_simAbs ` set (spr_simTrans a ec)
= { SPRdet.sim_equiv_class a (t' \<leadsto> s)
|t' s. t' \<leadsto> s \<in> SPR.jkbpC \<and> spr_jview a t' = spr_jview a t}"
(*<*)(is "?lhs = ?rhs")
proof
show "?lhs \<subseteq> ?rhs"
proof
fix x assume x: "x \<in> ?lhs"
then obtain rx
where xrx: "x = spr_simAbs rx"
and rx: "rx \<in> set (spr_simTrans a ec)" by blast
with tC ec obtain cec' aec' UV' t' s
where rxp: "rx = (cec', aec')"
and t'sC: "t' \<leadsto> s \<in> SPR.jkbpC"
and tt': "spr_jview a t' = spr_jview a t"
and aec': "toSet aec' = (rel_ext (envObs_rel (envObs a)) \<inter> set (spr_trans (fst ec) (snd ec))
\<times> set (spr_trans (fst ec) (snd ec))) `` {(tFirst t', s)}"
and cec': "cec' = ODList.filter (\<lambda>s. envObsC (es (snd s)) = spr_simObsC envObsC aec') (fromList (spr_trans (fst ec) (fst ec)))"
unfolding spr_simTrans_def
using spr_trans_aec[OF assms]
apply (auto split: prod.split_asm)
apply (drule imageI[where f=set])
apply (simp add: partition[OF envObs_rel_equiv subset_UNIV])
apply (erule quotientE)
apply fastforce
done
from t'sC tt' aec' cec'
have "spr_simAbs (cec', aec') = SPRdet.sim_equiv_class a (t' \<leadsto> s)"
unfolding spr_simAbs_def
apply clarsimp
apply rule
using spr_trans_aec[OF assms] spr_trans_cec[OF assms]
apply clarsimp
apply (rule_tac x="t'aa \<leadsto> s'" in image_eqI)
apply (simp add: spr_sim_def)
apply (cut_tac aec=aec' and t=t' and s=s in spr_simObsC[where a=a])
apply simp_all
apply rule
apply clarsimp
apply (erule_tac t'="t'b \<leadsto> sa" in tObsC_absI)
apply simp_all
apply (auto dest: spr_jview_tObsC iff: tObsC_def envObs_def_raw)[1]
apply (clarsimp simp: envObs_def_raw tObsC_abs_conv)
apply (case_tac t'b)
apply (simp add: tObsC_def)
apply clarsimp
apply (rename_tac Trace State)
apply (rule_tac x=Trace in exI)
apply (auto dest: spr_jview_tObsC simp: tObsC_def)[1]
apply (simp add: spr_jview_def)
using spr_trans_aec[OF assms] spr_trans_cec[OF assms]
apply (clarsimp simp: spr_sim_def)
apply (cut_tac aec=aec' and t=t' and s=s in spr_simObsC[where a=a])
apply simp_all
apply (frule spr_jview_tStep_eq_inv)
apply clarsimp
apply safe
apply (clarsimp simp: tObsC_abs_conv)
apply (case_tac t'a)
apply (simp add: tObsC_def)
apply clarsimp
apply (rename_tac Trace State)
apply (rule_tac x="Trace" in exI)
apply (drule spr_jview_prefix_closed)
apply (auto dest: spr_jview_tObsC simp: tObsC_def)[1]
apply (auto simp: spr_jview_def Let_def envObs_def_raw)[1]
apply (erule_tac t'="t'a \<leadsto> sa" in tObsC_absI)
apply simp_all
apply (drule spr_jview_tObsC[symmetric])
apply (frule spr_jview_prefix_closed)
apply (auto dest: spr_jview_tObsC simp: tObsC_def)[1]
apply (simp add: spr_jview_def)
apply auto[1]
apply (rule_tac x="t''" in exI)
apply (drule spr_jview_prefix_closed)
apply simp
done
with xrx rxp t'sC tt'
show "x \<in> ?rhs"
apply simp
apply (rule_tac x=t' in exI)
apply (rule_tac x=s in exI)
apply simp
done
qed
next
note image_cong_simp [cong del]
show "?rhs \<subseteq> ?lhs"
proof
fix x assume x: "x \<in> ?rhs"
then obtain t' s
where t'sC: "t' \<leadsto> s \<in> SPR.jkbpC"
and tt': "spr_jview a t' = spr_jview a t"
and xt's: "x = SPRdet.sim_equiv_class a (t' \<leadsto> s)"
by auto
then have "(\<lambda>s. (sprFst s, sprLst s)) ` x \<in> set ` set (partition (envObs_rel (envObs a)) (spr_trans (fst ec) (snd ec)))"
apply (simp add: partition[OF envObs_rel_equiv] spr_trans_aec[OF assms] spr_sim_def [abs_def])
apply (rule_tac x="(tFirst t', s)" in quotientI2)
apply auto[1]
apply (auto dest: spr_jview_tStep_eq_inv)
apply (frule spr_jview_tStep_eq_inv)
apply clarsimp
apply (drule spr_jview_prefix_closed)
apply auto[1]
apply (rule_tac x="\<lparr>sprFst = tFirst t'aa, sprLst = sa, sprCRel = tObsC_abs (t'aa \<leadsto> sa)\<rparr>" in image_eqI)
apply simp
apply (rule_tac x="t'aa \<leadsto> sa" in image_eqI)
apply simp
apply (simp add: spr_jview_def)
done
then obtain rx
where "rx \<in> set (partition (envObs_rel (envObs a)) (spr_trans (fst ec) (snd ec)))"
and "set rx = (\<lambda>s. (sprFst s, sprLst s)) ` x"
by auto
with t'sC tt' xt's show "x \<in> ?lhs"
unfolding spr_simTrans_def
apply clarsimp
apply (rule_tac x="(ODList.filter (\<lambda>s. envObsC (es (snd s)) = spr_simObsC envObsC (fromList rx)) (fromList (spr_trans (fst ec) (fst ec))), fromList rx)" in image_eqI)
prefer 2
apply (rule_tac x="rx" in image_eqI)
apply simp
apply simp
apply (subst spr_simObsC[where a=a and t=t' and s=s, OF _ _ refl])
apply simp_all
apply rule
apply clarsimp
apply (frule spr_jview_tStep_eq_inv)
apply (auto simp: spr_jview_def spr_sim_def [abs_def])[1]
apply clarsimp
apply (rule_tac x="spr_sim (t'aa \<leadsto> sa)" in image_eqI)
apply (simp add: spr_sim_def [abs_def])
apply (rule_tac x="t'aa \<leadsto> sa" in image_eqI)
apply simp
apply (simp add: spr_jview_def)
apply (clarsimp simp: spr_trans_cec[OF assms] spr_sim_def [abs_def] spr_simAbs_def)
apply rule
apply (auto iff: tObsC_abs_conv)[1]
apply (frule spr_jview_tStep_eq_inv)
apply clarsimp
apply (frule tObsC_tStep_eq_inv)
apply clarsimp
apply (drule spr_jview_prefix_closed)
apply (drule spr_jview_tObsC)
apply (drule spr_jview_tObsC)
apply (drule tObsC_prefix_closed)
apply (rule_tac x=t''a in exI)
apply simp
apply (frule spr_jview_tStep_eq_inv)
apply clarsimp
apply (frule tObsC_tStep_eq_inv)
apply clarsimp
apply (drule spr_jview_tObsC) back
apply (simp add: tObsC_def)
apply (rule_tac x="t'a \<leadsto> sa" in exI)
apply simp
apply (frule spr_jview_tStep_eq_inv)
apply clarsimp
apply (drule spr_jview_tObsC)
apply (frule spr_jview_tObsC)
apply (simp add: tObsC_def)
apply (rule_tac x="spr_sim ta" in image_eqI)
apply (simp add: spr_sim_def [abs_def])
apply (rule_tac x=ta in image_eqI)
apply (simp add: spr_sim_def [abs_def])
apply simp
apply clarsimp
apply (rule_tac x=ta in image_eqI)
prefer 2
apply simp
apply (clarsimp simp: tObsC_abs_def)
apply auto[1]
apply (rule_tac x="t'a \<leadsto> sa" in exI)
apply simp
apply (frule spr_jview_tStep_eq_inv)
apply clarsimp
apply (drule spr_jview_tObsC)
apply (frule spr_jview_tObsC)
apply (simp add: tObsC_def)
apply (frule spr_jview_tStep_eq_inv)
apply clarsimp
apply (frule tObsC_tStep_eq_inv)
apply clarsimp
apply (rule_tac x="t''a" in exI)
apply (drule spr_jview_tObsC)
apply (frule spr_jview_tObsC)
apply (simp add: tObsC_def)
apply (frule spr_jview_tStep_eq_inv)
apply clarsimp
apply (frule tObsC_tStep_eq_inv)
apply clarsimp
apply (drule spr_jview_tObsC) back
apply (simp add: tObsC_def)
done
qed
qed
(*>*)
text\<open>
The explicit-state approach sketched above is quite inefficient, and
also some distance from the symbolic techniques we use in
\S\ref{sec:kbps-prag-algorithmics}. However it does suffice to
demonstrate the theory on the muddy children example in
\S\ref{sec:kbps-theory-mc}.
\<close>
end (* context FiniteDetBroadcastEnvironment *)
subsubsection\<open>Maps\<close>
text\<open>
As always we use a pair of tries. The domain of these maps is the pair
of relations.
\<close>
type_synonym ('a, 'es, 'obs, 'as) trans_trie
= "(('a, 'es, 'as) BEState,
(('a, 'es, 'as) BEState,
(('a, 'es, 'as) BEState,
(('a, 'es, 'as) BEState,
('obs, ('a, 'es, 'as) spr_simWorldsRep) mapping) trie) trie) trie) trie"
type_synonym
('a, 'es, 'aAct, 'as) acts_trie
= "(('a, 'es, 'as) BEState,
(('a, 'es, 'as) BEState,
(('a, 'es, 'as) BEState,
(('a, 'es, 'as) BEState, 'aAct) trie) trie) trie) trie"
(*<*)
definition
trans_MapOps_lookup :: "('a :: linorder, 'es :: linorder, 'obs, 'as :: linorder) trans_trie
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep \<times> 'obs
\<rightharpoonup> ('a, 'es, 'as) spr_simWorldsRep"
where
"trans_MapOps_lookup \<equiv> \<lambda>m ((cec, aec), obs).
Option.bind (lookup_trie m (map fst (toList cec)))
(\<lambda>m. Option.bind (lookup_trie m (map snd (toList cec)))
(\<lambda>m. Option.bind (lookup_trie m (map fst (toList aec)))
(\<lambda>m. Option.bind (lookup_trie m (map snd (toList aec)))
(\<lambda>m. Mapping.lookup m obs))))"
definition
trans_MapOps_update :: "('a, 'es, 'as) spr_simWorldsRep \<times> 'obs
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep
\<Rightarrow> ('a :: linorder, 'es :: linorder, 'obs, 'as :: linorder) trans_trie
\<Rightarrow> ('a, 'es, 'obs, 'as) trans_trie"
where
"trans_MapOps_update \<equiv> \<lambda>((cec, aec), obs) v m.
trie_update_with' (map fst (toList cec)) m empty_trie
(\<lambda>m. trie_update_with' (map snd (toList cec)) m empty_trie
(\<lambda>m. trie_update_with' (map fst (toList aec)) m empty_trie
(\<lambda>m. trie_update_with' (map snd (toList aec)) m Mapping.empty
(\<lambda>m. Mapping.update obs v m))))"
definition
trans_MapOps :: "(('a :: linorder, 'es :: linorder, 'obs, 'as :: linorder) trans_trie,
('a, 'es, 'as) spr_simWorldsRep \<times> 'obs,
('a, 'es, 'as) spr_simWorldsRep) MapOps"
where
"trans_MapOps \<equiv>
\<lparr> MapOps.empty = empty_trie,
lookup = trans_MapOps_lookup,
update = trans_MapOps_update \<rparr>"
lemma (in FiniteDetBroadcastEnvironment) trans_MapOps[intro, simp]:
"MapOps (\<lambda>k. (spr_simAbs (fst k), snd k)) (SPRdet.jkbpSEC \<times> UNIV) trans_MapOps"
proof
fix k show "MapOps.lookup trans_MapOps (MapOps.empty trans_MapOps) k = None"
unfolding trans_MapOps_def trans_MapOps_lookup_def
by (auto split: prod.split)
next
fix e k k' M
assume k: "(spr_simAbs (fst k), snd k) \<in> SPRdet.jkbpSEC \<times> (UNIV :: 'z set)"
and k': "(spr_simAbs (fst k'), snd k') \<in> SPRdet.jkbpSEC \<times> (UNIV :: 'z set)"
show "MapOps.lookup trans_MapOps (MapOps.update trans_MapOps k e M) k'
= (if (spr_simAbs (fst k'), snd k') = (spr_simAbs (fst k), snd k)
then Some e else MapOps.lookup trans_MapOps M k')"
proof(cases "(spr_simAbs (fst k'), snd k') = (spr_simAbs (fst k), snd k)")
case True hence "k = k'"
using inj_onD[OF spr_simAbs_inj_on] k k' by (auto iff: prod_eqI)
thus ?thesis
unfolding trans_MapOps_def trans_MapOps_lookup_def trans_MapOps_update_def
by (auto simp: lookup_update lookup_trie_update_with split: option.split prod.split)
next
have *: "\<And> y ya. y \<noteq> ya \<Longrightarrow> Mapping.lookup (Mapping.update y e Mapping.empty) ya = None" by transfer simp
case False thus ?thesis
unfolding trans_MapOps_def trans_MapOps_lookup_def trans_MapOps_update_def
by (auto dest: map_prod_eq simp: lookup_trie_update_with split: option.split prod.split intro!: lookup_update_neq *)
qed
qed
(* A map for the agent actions. *)
definition
acts_MapOps_lookup :: "('a :: linorder, 'es :: linorder, 'aAct, 'as :: linorder) acts_trie
\<Rightarrow> ('a, 'es, 'as) spr_simWorldsRep
\<rightharpoonup> 'aAct"
where
"acts_MapOps_lookup \<equiv> \<lambda>m (cec, aec).
Option.bind (lookup_trie m (map fst (toList cec)))
(\<lambda>m. Option.bind (lookup_trie m (map snd (toList cec)))
(\<lambda>m. Option.bind (lookup_trie m (map fst (toList aec)))
(\<lambda>m. lookup_trie m (map snd (toList aec)))))"
definition
acts_MapOps_update :: "('a, 'es, 'as) spr_simWorldsRep
\<Rightarrow> 'aAct
\<Rightarrow> ('a :: linorder, 'es :: linorder, 'aAct, 'as :: linorder) acts_trie
\<Rightarrow> ('a, 'es, 'aAct, 'as) acts_trie"
where
"acts_MapOps_update \<equiv> \<lambda>(cec, aec) pAct m.
trie_update_with' (map fst (toList cec)) m empty_trie
(\<lambda>m. trie_update_with' (map snd (toList cec)) m empty_trie
(\<lambda>m. trie_update_with' (map fst (toList aec)) m empty_trie
(\<lambda>m. trie_update (map snd (toList aec)) pAct m)))"
definition
acts_MapOps :: "(('a :: linorder, 'es :: linorder, 'aAct, 'as :: linorder) acts_trie,
('a, 'es, 'as) spr_simWorldsRep,
'aAct) MapOps"
where
"acts_MapOps \<equiv>
\<lparr> MapOps.empty = empty_trie,
lookup = acts_MapOps_lookup,
update = acts_MapOps_update \<rparr>"
lemma (in FiniteDetBroadcastEnvironment) acts_MapOps[intro, simp]:
"MapOps spr_simAbs SPRdet.jkbpSEC acts_MapOps"
proof
fix k show "MapOps.lookup acts_MapOps (MapOps.empty acts_MapOps) k = None"
unfolding acts_MapOps_def acts_MapOps_lookup_def by auto
next
fix e k k' M
assume k: "spr_simAbs k \<in> SPRdet.jkbpSEC"
and k': "spr_simAbs k' \<in> SPRdet.jkbpSEC"
show "MapOps.lookup acts_MapOps (MapOps.update acts_MapOps k e M) k'
= (if spr_simAbs k' = spr_simAbs k
then Some e else MapOps.lookup acts_MapOps M k')"
proof(cases "spr_simAbs k' = spr_simAbs k")
case True hence "k = k'"
using inj_onD[OF spr_simAbs_inj_on] k k' by (auto iff: prod_eqI)
thus ?thesis
unfolding acts_MapOps_def acts_MapOps_lookup_def acts_MapOps_update_def
by (auto simp: lookup_trie_update_with lookup_trie_update split: option.split prod.split)
next
case False thus ?thesis
unfolding acts_MapOps_def acts_MapOps_lookup_def acts_MapOps_update_def
by (auto dest: map_prod_eq simp: lookup_trie_update_with lookup_trie_update split: option.split prod.split)
qed
qed
(*>*)
text\<open>
This suffices to placate the @{term "Algorithm"} locale.
\<close>
sublocale FiniteDetBroadcastEnvironment
< SPRdet: Algorithm
jkbp envInit envAction envTrans envVal
spr_jview envObs spr_jviewInit spr_jviewIncr
spr_sim spr_simRels spr_simVal
spr_simAbs spr_simObs spr_simInit spr_simTrans spr_simAction
acts_MapOps trans_MapOps
(*<*)
apply (unfold_locales)
using spr_simInit
apply auto[1]
using spr_simObs
apply auto[1]
using spr_simAction
apply auto[1]
using spr_simTrans
apply auto[1]
apply (rule acts_MapOps)
apply (rule trans_MapOps)
done
definition
"mkSPRDetAuto \<equiv> \<lambda>agents jkbp envInit envAction envTrans envVal envObsC envObs.
mkAlgAuto acts_MapOps
trans_MapOps
(spr_simObs envObsC)
(spr_simInit envInit envObsC envObs)
(spr_simTrans agents jkbp envAction envTrans envVal envObsC envObs)
(spr_simAction jkbp envVal envObs)
(\<lambda>a. map (spr_simInit envInit envObsC envObs a \<circ> envObs a) envInit)"
lemma (in FiniteDetBroadcastEnvironment) mkSPRDetAuto_implements:
"SPR.implements (mkSPRDetAuto agents jkbp envInit envAction envTrans envVal envObsC envObs)"
using SPRdet.k_mkAlgAuto_implements
unfolding mkSPRDetAuto_def mkAlgAuto_def SPRdet.k_frontier_def
by simp
(*
We actually run this unfolding of the algorithm. The lemma is keeping
us honest.
*)
definition
"SPRDetAutoDFS \<equiv> \<lambda>agents jkbp envInit envAction envTrans envVal envObsC envObs. \<lambda>a.
alg_dfs acts_MapOps
trans_MapOps
(spr_simObs envObsC a)
(spr_simTrans agents jkbp envAction envTrans envVal envObsC envObs a)
(spr_simAction jkbp envVal envObs a)
(map (spr_simInit envInit envObsC envObs a \<circ> envObs a) envInit)"
lemma (in FiniteDetBroadcastEnvironment)
"mkSPRDetAuto agents jkbp envInit envAction envTrans envVal envObsC envObs
= (\<lambda>a. alg_mk_auto acts_MapOps trans_MapOps
(spr_simInit a)
(SPRDetAutoDFS agents jkbp envInit envAction envTrans envVal envObsC envObs a))"
unfolding mkSPRDetAuto_def mkAlgAuto_def SPRDetAutoDFS_def alg_mk_auto_def by (simp add: Let_def)
(*>*)
text\<open>
As we remarked earlier in this section, in general it may be difficult
to establish the determinacy of a KBP as it is a function of the
environment. However in many cases determinism is syntactically
manifest as the guards are logically disjoint, independently of the
knowledge subformulas. The following lemma generates the required
proof obligations for this case:
\<close>
lemma (in PreEnvironmentJView) jkbpDetI:
assumes tC: "t \<in> jkbpC"
assumes jkbpSynDet: "\<forall>a. distinct (map guard (jkbp a))"
assumes jkbpSemDet: "\<forall>a gc gc'.
gc \<in> set (jkbp a) \<and> gc' \<in> set (jkbp a) \<and> t \<in> jkbpC
\<longrightarrow> guard gc = guard gc' \<or> \<not>(MC, t \<Turnstile> guard gc \<and> MC, t \<Turnstile> guard gc')"
shows "length (jAction MC t a) \<le> 1"
(*<*)
proof -
{ fix a X
assume "set X \<subseteq> set (jkbp a)"
and "distinct (map guard X)"
with tC have "length [ action gc . gc \<leftarrow> X, MC, t \<Turnstile> guard gc ] \<le> 1"
apply (induct X)
using jkbpSemDet[rule_format, where a=a]
apply auto
done }
from this[OF subset_refl jkbpSynDet[rule_format]] show ?thesis
unfolding jAction_def by simp
qed
(*>*)
text\<open>
The scenario presented here is a variant of the broadcast environments
treated by \citet{Ron:1996}, which we cover in the next section.
\FloatBarrier
\<close>
(*<*)
end
(*>*)
|
Declare ML Module "test_plugin".
TestCommand.
Goal True.
Proof.
test_tactic.
exact I.
Qed.
|
/-
Copyright (c) 2022 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
import analysis.normed_space.star.basic
import algebra.star.module
import analysis.special_functions.exponential
/-! # The exponential map from selfadjoint to unitary
In this file, we establish various propreties related to the map `λ a, exp ℂ A (I • a)` between the
subtypes `self_adjoint A` and `unitary A`.
## TODO
* Show that any exponential unitary is path-connected in `unitary A` to `1 : unitary A`.
* Prove any unitary whose distance to `1 : unitary A` is less than `1` can be expressed as an
exponential unitary.
* A unitary is in the path component of `1` if and only if it is a finite product of exponential
unitaries.
-/
section star
variables {A : Type*}
[normed_ring A] [normed_algebra ℂ A] [star_ring A] [has_continuous_star A] [complete_space A]
[star_module ℂ A]
open complex
lemma self_adjoint.exp_i_smul_unitary {a : A} (ha : a ∈ self_adjoint A) :
exp ℂ (I • a) ∈ unitary A :=
begin
rw [unitary.mem_iff, star_exp],
simp only [star_smul, is_R_or_C.star_def, self_adjoint.mem_iff.mp ha, conj_I, neg_smul],
rw ←@exp_add_of_commute ℂ A _ _ _ _ _ _ ((commute.refl (I • a)).neg_left),
rw ←@exp_add_of_commute ℂ A _ _ _ _ _ _ ((commute.refl (I • a)).neg_right),
simpa only [add_right_neg, add_left_neg, and_self] using (exp_zero : exp ℂ (0 : A) = 1),
end
/-- The map from the selfadjoint real subspace to the unitary group. This map only makes sense
over ℂ. -/
@[simps]
noncomputable def self_adjoint.exp_unitary (a : self_adjoint A) : unitary A :=
⟨exp ℂ (I • a), self_adjoint.exp_i_smul_unitary (a.property)⟩
open self_adjoint
lemma commute.exp_unitary_add {a b : self_adjoint A} (h : commute (a : A) (b : A)) :
exp_unitary (a + b) = exp_unitary a * exp_unitary b :=
begin
ext,
have hcomm : commute (I • (a : A)) (I • (b : A)),
calc _ = _ : by simp only [h.eq, algebra.smul_mul_assoc, algebra.mul_smul_comm],
simpa only [exp_unitary_coe, add_subgroup.coe_add, smul_add] using exp_add_of_commute hcomm,
end
lemma commute.exp_unitary {a b : self_adjoint A} (h : commute (a : A) (b : A)) :
commute (exp_unitary a) (exp_unitary b) :=
calc (exp_unitary a) * (exp_unitary b) = (exp_unitary b) * (exp_unitary a)
: by rw [←h.exp_unitary_add, ←h.symm.exp_unitary_add, add_comm]
end star
|
-- An ATP conjecture must be used with postulates.
-- This error is detected by TypeChecking.Rules.Decl.
module ATPBadConjecture2 where
data Bool : Set where
false true : Bool
{-# ATP prove Bool #-}
|
MODULE IOmod
!-------------------------------------------------------------------
!
! Module containing definitions of subroutines needed to read
! and write files.
!
! USES:
! netcdf -> netCDF-Fortran lib
! CODEmat -> chooses lname,sname and units from kcode
!
! CONTAINS:
! sraReader -> reads .SRA files
! check -> checks for errors in netCDF lib funcs
! ncgen -> creates netCDF files from SRA files
! getdims -> reads netCDF and gets dims
! ncread -> reads netCDF files
! sragen -> creates SRA files from netCDF files
!
! Created: Mateo Duque Villegas
! Last updated: 17-Nov-2017
!
!-------------------------------------------------------------------
IMPLICIT NONE
CONTAINS
SUBROUTINE sraReader(srafile,nmon,nlon,nlat,hcols,dcols&
&,ihead,data)
IMPLICIT NONE
! Global namespace. Var description in main program.
CHARACTER(LEN=*), INTENT(in) :: srafile
INTEGER(KIND=4), INTENT(in) :: nmon
INTEGER(KIND=4), INTENT(in) :: nlon
INTEGER(KIND=4), INTENT(in) :: nlat
INTEGER(KIND=4), INTENT(in) :: hcols
INTEGER(KIND=4), INTENT(in) :: dcols
INTEGER(KIND=4), DIMENSION(hcols,nmon), INTENT(out) :: ihead
REAL(KIND=8), DIMENSION(nlon,nlat,nmon), INTENT(out) :: data
! Local namespace.
INTEGER(KIND=4) :: unit = 11 ! Reading unit
INTEGER(KIND=4) :: i ! Counter
INTEGER(KIND=4) :: operr ! Error variable
INTEGER(KIND=4) :: rderr ! Error variable
! Open .SRA file and check for problems.
OPEN(unit,file=srafile,form='FORMATTED',status='old',action='read'&
&,iostat=operr)
IF(operr>0) THEN
WRITE(*,'(A)') "sraReader: error: could not open .sra file."
CALL EXIT(0)
END IF
DO i = 1,nmon
! Read header info and check for problems.
READ(unit,'(8I10)',iostat=rderr) ihead(:,i)
IF(rderr>0) THEN
WRITE(*,'(A)') "sraReader: error: could not read .sra file."
CALL EXIT(0)
END IF
! Because formatting is different in some .SRA files
IF (dcols == 4) THEN
READ(unit,'(4E16.6)',iostat=rderr) data(:,:,i)
IF(rderr>0) THEN
WRITE(*,'(A)') "sraReader: error: wrong reading format."
CALL EXIT(0)
END IF
ELSE IF (dcols == 8) THEN
READ(unit,'(8F10.8)',iostat=rderr) data(:,:,i)
IF(rderr>0) THEN
WRITE(*,'(A)') "sraReader: error: wrong reading format."
CALL EXIT(0)
END IF
ELSE
WRITE(*,'(A)') "IOmodul: error: unknown reading format."
CALL EXIT(0)
END IF
END DO
CLOSE(unit)
RETURN
END SUBROUTINE sraReader
SUBROUTINE check(istatus)
USE netcdf
IMPLICIT NONE
INTEGER(KIND=4), INTENT (IN) :: istatus
! Check for errors everytime run netcdf library stuff
IF (istatus /= nf90_noerr) THEN
WRITE(*,*) TRIM(ADJUSTL(nf90_strerror(istatus)))
CALL EXIT(0)
END IF
RETURN
END SUBROUTINE check
SUBROUTINE getdims(ncfile,ndims,nvars,namearr,dimarr)
USE netcdf
IMPLICIT NONE
! Global namespace
CHARACTER(LEN=*), INTENT(IN) :: ncfile
INTEGER(KIND=4), INTENT(OUT) :: ndims
INTEGER(KIND=4), INTENT(OUT) :: nvars
CHARACTER(LEN=50), DIMENSION(3), INTENT(OUT) :: namearr
INTEGER(KIND=4), DIMENSION(3), INTENT(OUT) :: dimarr
! Local namespace
INTEGER(KIND=4) :: i
INTEGER(KIND=4) :: ncid
! Open netCDF and read
CALL check(nf90_open(ncfile,nf90_nowrite,ncid))
! Generic inquire of information
CALL check(nf90_inquire(ncid,ndims,nvars))
! Inquire for dimensions
DO i=1,ndims
CALL check(nf90_inquire_dimension(ncid,i,namearr(i),dimarr(i)))
END DO
! Close netCDF file
CALL check(nf90_close(ncid))
RETURN
END SUBROUTINE getdims
SUBROUTINE ncread(ncfile,ndims,nvars,nmon,nlon,nlat,vtime,lon,lat,data)
USE netcdf
IMPLICIT NONE
! Global namespace
CHARACTER(LEN=*), INTENT(IN) :: ncfile
INTEGER(KIND=4), INTENT(IN) :: ndims
INTEGER(KIND=4), INTENT(IN) :: nvars
INTEGER(KIND=4), INTENT(IN) :: nmon
INTEGER(KIND=4), INTENT(IN) :: nlon
INTEGER(KIND=4), INTENT(IN) :: nlat
INTEGER(KIND=4), DIMENSION(nmon), INTENT(OUT) :: vtime
REAL(KIND=8), DIMENSION(nlon), INTENT(OUT) :: lon
REAL(KIND=8), DIMENSION(nlat), INTENT(OUT) :: lat
REAL(KIND=8), DIMENSION(nlon,nlat,nmon), INTENT(OUT) :: data
! Local namespace
INTEGER(KIND=4) :: i
INTEGER(KIND=4) :: ncid
CHARACTER(LEN=50), DIMENSION(nvars) :: vnames
INTEGER(KIND=4), DIMENSION(nvars) :: dtypes
INTEGER(KIND=4), DIMENSION(nvars,ndims) :: dids
INTEGER(KIND=4), DIMENSION(nvars) :: vids
INTEGER(KIND=4), DIMENSION(nvars) :: vndims
! Open netcdf
CALL check(nf90_open(ncfile,nf90_nowrite,ncid))
! Find out the names of variables and their ids and dimensions
DO i=1,nvars
dids(i,:) = 0 ! Make array 0 to actually see dim ids
CALL check(nf90_inquire_variable(ncid,i,vnames(i),dtypes(i)&
&,vndims(i),dids(i,:)))
CALL check(nf90_inq_varid(ncid,vnames(i),vids(i)))
END DO
! Now actually fill correct arrays with correct dims and vars
DO i=1,nvars
IF(vnames(i) == "time") THEN
CALL check(nf90_get_var(ncid,vids(i),vtime))
ELSE IF(vnames(i) == "lat" .OR. vnames(i) == "latitude") THEN
CALL check(nf90_get_var(ncid,vids(i),lat))
ELSE IF(vnames(i) == "lon" .OR. vnames(i) == "longitude") THEN
CALL check(nf90_get_var(ncid,vids(i),lon))
ELSE
CALL check(nf90_get_var(ncid,vids(i),data))
END IF
END DO
RETURN
END SUBROUTINE ncread
SUBROUTINE ncgen(ncfile,kcode,vtime,lon,lat,data,nmon,nlon,nlat)
USE CODEmat
USE netcdf
IMPLICIT NONE
! Global namespace. Var description in main program
CHARACTER(LEN=*), INTENT(IN) :: ncfile
INTEGER(KIND=4), INTENT(IN) :: kcode
INTEGER(KIND=4), INTENT(IN) :: nmon
INTEGER(KIND=4), INTENT(IN) :: nlon
INTEGER(KIND=4), INTENT(IN) :: nlat
INTEGER(KIND=4), DIMENSION(nmon), INTENT(IN) :: vtime
REAL(KIND=8), DIMENSION(nlon), INTENT(IN) :: lon
REAL(KIND=8), DIMENSION(nlat), INTENT(IN) :: lat
REAL(KIND=8), DIMENSION(nlon,nlat,nmon), INTENT(IN) :: data
! Local namespace
CHARACTER(LEN=50) :: lname
CHARACTER(LEN=50) :: timestr
CHARACTER(LEN=15) :: units
CHARACTER(LEN=10) :: time
CHARACTER(LEN=8) :: date
CHARACTER(LEN=4) :: sname
! NetCDF stuff
INTEGER(KIND=4) :: ncid ! Unit ID for netCDF
INTEGER(KIND=4) :: t_dimid ! ID for time dimension
INTEGER(KIND=4) :: x_dimid ! ID for X dimension
INTEGER(KIND=4) :: y_dimid ! ID for Y dimension
INTEGER(KIND=4) :: varid ! ID for data variable
INTEGER(KIND=4) :: t_varid ! ID for time variable
INTEGER(KIND=4) :: x_varid ! ID for X variable
INTEGER(KIND=4) :: y_varid ! ID for Y variable
INTEGER(KIND=4), DIMENSION(3) :: dimids ! ID for all dimensions
! Create the netCDF file and assign unit.
CALL check(nf90_create(ncfile, NF90_CLOBBER, ncid))
! Define the dimensions numbers.
CALL check(nf90_def_dim(ncid, "time", 0, t_dimid))
CALL check(nf90_def_dim(ncid, "lon", nlon, x_dimid))
CALL check(nf90_def_dim(ncid, "lat", nlat, y_dimid))
! Define coordinate variable LON and attributes
CALL check(nf90_def_var(ncid, "time", NF90_INT, t_dimid,&
& t_varid))
CALL check(nf90_put_att(ncid, t_varid, "standard_name","time"))
CALL check(nf90_put_att(ncid, t_varid, "units", "months since 001&
&-01-01 12:00:00"))
CALL check(nf90_put_att(ncid, t_varid, "calendar","360_day"))
CALL check(nf90_put_att(ncid, t_varid, "axis","T"))
! Define coordinate variable LON and attributes
CALL check(nf90_def_var(ncid, "lon", NF90_REAL, x_dimid, x_varid))
CALL check(nf90_put_att(ncid, x_varid, "standard_name", "longitude"))
CALL check(nf90_put_att(ncid, x_varid, "long_name", "longitude"))
CALL check(nf90_put_att(ncid, x_varid, "units", "degrees_east"))
CALL check(nf90_put_att(ncid, x_varid, "axis", "X"))
! Define coordinate variable LAT and attributes
CALL check(nf90_def_var(ncid, "lat", NF90_REAL, y_dimid, y_varid))
CALL check(nf90_put_att(ncid, y_varid, "standard_name", "latitude"))
CALL check(nf90_put_att(ncid, y_varid, "long_name", "latitude"))
CALL check(nf90_put_att(ncid, y_varid, "units", "degrees_north"))
CALL check(nf90_put_att(ncid, y_varid, "axis", "Y"))
! Dims for data array
dimids = (/ x_dimid, y_dimid, t_dimid /)
! Get stuff for variable attributes
CALL kcoder(kcode,lname,sname,units)
! Define variable
CALL check(nf90_def_var(ncid, sname, NF90_DOUBLE, dimids&
&, varid))
CALL check(nf90_put_att(ncid, varid, "standard_name", lname))
CALL check(nf90_put_att(ncid, varid, "long_name", sname))
CALL check(nf90_put_att(ncid, varid, "units", units))
CALL check(nf90_put_att(ncid, varid, "code", kcode))
CALL check(nf90_put_att(ncid, varid, "grid_type", "gaussian"))
! Global attributes
CALL DATE_AND_TIME(date,time)
timestr = "Created on " //date(1:4) //"-"//date(5:6)//"-"//&
&date(7:8)//" "//time(1:2)//":"//time(3:4)//":"//time(5:6)
CALL check(nf90_put_att(ncid,NF90_GLOBAL, "history", timestr))
CALL check(nf90_put_att(ncid,NF90_GLOBAL, "Conventions", "CF&
&-1.0"))
! End definitions
CALL check(nf90_enddef(ncid))
! Write Data
CALL check(nf90_put_var(ncid, t_varid, vtime))
CALL check(nf90_put_var(ncid, x_varid, lon))
CALL check(nf90_put_var(ncid, y_varid, lat))
CALL check(nf90_put_var(ncid, varid, data))
CALL check(nf90_close(ncid))
RETURN
END SUBROUTINE ncgen
SUBROUTINE sragen(srafile,kcode,hcols,dcols,nmon,nlon,nlat,ihead&
&,data)
IMPLICIT NONE
! Global namespace
CHARACTER(LEN=*), INTENT(IN) :: srafile
INTEGER(KIND=4), INTENT(IN) :: kcode
INTEGER(KIND=4), INTENT(IN) :: hcols
INTEGER(KIND=4), INTENT(IN) :: dcols
INTEGER(KIND=4), INTENT(IN) :: nmon
INTEGER(KIND=4), INTENT(IN) :: nlon
INTEGER(KIND=4), INTENT(IN) :: nlat
INTEGER(KIND=4), DIMENSION(hcols,nmon), INTENT(IN) :: ihead
REAL(KIND=8), DIMENSION(nlon,nlat,nmon), INTENT(IN) :: data
! Local namespace
INTEGER(KIND=4) :: i
INTEGER(KIND=4) :: operr
INTEGER(KIND=4) :: unit = 11
! Open .SRA file
OPEN(unit,file=srafile,form='FORMATTED',action='write',iostat&
&=operr)
IF(operr>0) THEN
WRITE(*,'(A)') "sragen: error: could not create .sra file."
CALL EXIT(0)
END IF
! Write for every month
DO i = 1,nmon
WRITE(unit,'(8I10)') ihead(:,i)
IF (dcols == 4) THEN
WRITE(unit,'(4E16.6)') data(:,:,i)
ELSE IF (dcols == 8) THEN
! LSmask is the only with 6 decimal places
IF (kcode == 172) THEN
WRITE(unit,'(8F10.6)') data(:,:,i)
ELSE
WRITE(unit,'(8F10.3)') data(:,:,i)
END IF
END IF
END DO
RETURN
END SUBROUTINE sragen
END MODULE IOmod
|
On returning to London , Wheeler moved into a top @-@ floor flat near Gordon Square with his wife and child . He returned to working for the Royal Commission , examining and cataloguing the historic structures of Essex . In doing so , he produced his first publication , an academic paper on Colchester 's Roman <unk> Gate which was published in the Transactions of the Essex Archaeological Society in 1920 . He soon followed this with two papers in the Journal of Roman Studies ; the first offered a wider analysis of Roman Colchester , while the latter outlined his discovery of the vaulting for the city 's Temple of Claudius which was destroyed by Boudica 's revolt . In doing so , he developed a reputation as a Roman archaeologist in Britain . He then submitted his research on Romano @-@ Rhenish pots to the University of London , on the basis of which he was awarded his Doctorate of Letters ; thenceforth until his knighthood he styled himself as Dr Wheeler . He was unsatisfied with his job in the Commission , unhappy that he was receiving less pay and a lower status than he had had in the army , and so began to seek out alternative employment .
|
------------------------------------------------------------------------------
-- Simple example of a nested recursive function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From: Ana Bove and Venanzio Capretta. Nested general recursion and
-- partiality in type theory. Vol. 2152 of LNCS. 2001.
module FOT.FOTC.Program.Nest.NestConditional where
open import FOTC.Base
------------------------------------------------------------------------------
-- The nest function.
postulate
nest : D → D
nest-eq : ∀ n → nest n ≡ (if (iszero₁ n)
then zero
else (nest (nest (pred₁ n))))
{-# ATP axiom nest-eq #-}
|
using Base.Test
addprocs(2)
using PmapProgressMeter
using ProgressMeter
# just make sure it runs
vals = 1:10
p = Progress(length(vals))
@test pmap(x->begin sleep(1); x*2 end, p, vals)[1] == vals[1]*2
# test the do-block syntax
pmap(p, vals) do x
sleep(1)
x*2
end
# make sure it runs it kwargs
vals = 1:10
p = Progress(length(vals))
@test pmap(x->begin sleep(.1); x*2 end, p, vals, err_stop=true)[1] == vals[1]*2
# try with multiple lists
vals2 = 10:-1:1
p = Progress(length(vals))
@test pmap(+, p, vals, vals2) == 11*ones(Int,length(vals))
# make sure callback passing works
vals = 1:10
@test pmap((cb, x) -> begin sleep(.1); cb(1); x*2 end, Progress(length(vals)),vals,passcallback=true)[1] == vals[1]*2
|
All books in good condition. Make me an offer - buyer pays postage if outside Canberra.
Are the 'reference' books no good for you to use to build scenarios for other rule sets? |
module Examples.ConferenceManager
import DepSec.DIO
import DepSec.Labeled
import DepSec.Ref
import Examples.ConferenceLattice
%default total
-- Examples derived from "Luísa Lourenço and Luís Caires. 2015.
-- Dependent Information Flow Types (POPL '15)"
--------------------------------------------------------------------------------
-- Types
--------------------------------------------------------------------------------
record User where
constructor MkUser
uid : Uid
name : Labeled (U uid) String
univ : Labeled (U uid) String
email : Labeled (U uid) String
record Submission where
constructor MkSubmission
uid : Uid
sid : Sid
title : Labeled (A uid sid) String
abs : Labeled (A uid sid) String
paper : Labeled (A uid sid) String
record Review where
constructor MkReview
uid : Uid
sid : Sid
PC_only : Labeled (PC uid sid) String
review : Labeled (A Top sid) String
grade : Labeled (A Top sid) Integer
Bot' : Compartment
Bot' = Bottom
Users : Type
Users = SecRef Bot' (List (SecRef Bot' User))
Submissions : Type
Submissions = SecRef Bot' (List (SecRef Bot' Submission))
Reviews : Type
Reviews = SecRef Bot' (List (SecRef Bot' Review))
--------------------------------------------------------------------------------
-- Hints
--------------------------------------------------------------------------------
%hint
botFlowsToBot : Bot' `leq` Bot'
botFlowsToBot = reflexive Bot'
implicit
stringToLabeled : Poset labelType => {l : labelType} -> String -> Labeled l String
stringToLabeled = label
--------------------------------------------------------------------------------
-- Examples
--------------------------------------------------------------------------------
-- Example 2.1
assignReviewer : Reviews -> Uid -> Sid -> DIO Bot' ()
assignReviewer revRef uid1 sid1 =
do reviews <- unlabel !(readRef revRef)
new <- (newRef {l = Bot'} {l' = Bot'} {l'' = Bot'} (label (MkReview uid1 sid1 "" "" (label 0))))
let newreviews = label (new :: reviews)
writeRef {l = Bot'} {l' = Bot'} {l'' = Bot'} revRef newreviews
-- Example 2.2
viewAuthorPapers : Submissions
-> (uid1 : Uid)
-> DIO Bot' (List (sub : Submission ** uid1 = (uid sub)))
viewAuthorPapers subRef uid1 =
do submissions <- unlabel !(readRef subRef)
findPapers submissions
where
findPapers : (List (SecRef Bot' Submission))
-> DIO Bot' (List (sub : Submission ** uid1 = (uid sub)))
findPapers [] = pure []
findPapers (x :: xs) =
do sub <- unlabel !(readRef x)
case decEq (uid sub) uid1 of
(Yes prf) => pure $ (sub ** (sym prf)) :: !(findPapers xs)
(No _) => findPapers xs
-- Example 2.3
viewAssignedPapers : Reviews -> Submissions -> Uid -> DIO Bot' (List (SecRef Bot' Submission))
viewAssignedPapers reviewsRef subsRef id =
do reviews <- unlabel !(readRef reviewsRef)
subs <- unlabel !(readRef subsRef)
sids <- getSids reviews
findPapers sids subs
where
getSids : List (SecRef (U Bot) Review) -> DIO Bot' $ List Sid
getSids [] = pure []
getSids (x :: xs) =
do rev <- unlabel !(readRef x)
case decEq (uid rev) id of
(Yes _) => pure $ (sid rev) :: !(getSids xs)
(No _) => getSids xs
findPapers : List Sid -> List (SecRef Bot' Submission) -> DIO Bot' (List (SecRef Bot' Submission))
findPapers xs [] = pure []
findPapers xs (x :: ys) =
do sub <- unlabel !(readRef x)
case elemBy (==) (sid sub) xs of
True => pure $ x :: !(findPapers xs ys)
False => findPapers xs ys
-- Example 2.4
emphasizeTitle : Uid -> Sid -> Submissions -> DIO Bot' ()
emphasizeTitle uid1 sid1 subsRef =
do subs <- unlabel !(readRef subsRef)
ltitle <- getTitleOfSub subs
lNewTitle <- appendToTitle "!" ltitle
searchAndReplaceTitle lNewTitle subs
pure ()
where
searchAndReplaceTitle : Labeled (A uid1 sid1) String -> List (SecRef Bot' Submission) -> DIO Bot' ()
searchAndReplaceTitle newTitle [] = pure ()
searchAndReplaceTitle newTitle (x :: xs) =
do sub <- unlabel !(readRef x)
case (decEq (uid sub) uid1, decEq (sid sub) sid1) of
(Yes prf1, Yes prf2) =>
let abs'= abs sub
paper' = paper sub
title' : Labeled (A (uid sub) (sid sub)) String =
rewrite prf1 in
rewrite prf2 in
newTitle
newSub = MkSubmission (uid sub) (sid sub) title' abs' paper'
newlsub : Labeled Bot' Submission = label newSub
in writeRef {l = Bot'} {l' = Bot'} {l'' = Bot'} x newlsub
(_ , _ ) => searchAndReplaceTitle newTitle xs
getTitleOfSub : List (SecRef Bot' Submission) -> DIO Bot' (Labeled (A uid1 sid1) String)
getTitleOfSub [] = pure ""
getTitleOfSub (x :: xs) =
do sub <- unlabel !(readRef x)
case (decEq (uid sub) uid1, decEq (sid sub) sid1) of
(Yes prf1, Yes prf2) =>
rewrite sym $ prf1 in
rewrite sym $ prf2 in
pure $ title sub
(_,_) => getTitleOfSub xs
appendToTitle : String -> Labeled (A x y) String -> DIO Bot' (Labeled (A x y) String)
appendToTitle {x} {y} str lstr =
do let oldStrDIO : DIO (A x y) String = unlabel {flow = reflexive (A x y)} lstr
let newStrDIO : DIO (A x y) String = do pure $ (!oldStrDIO ++ str)
plug newStrDIO
-- Example 2.5
addCommentSubmission : Reviews
-> (uid1 : Uid)
-> (sid1 : Sid)
-> (comment : Labeled (A uid1 sid1) String)
-> DIO Bot' ()
addCommentSubmission revsRef uid1 sid1 comment =
do revs <- unlabel !(readRef revsRef)
addComment revs
where
addComment : List (SecRef (U Bot) Review) -> DIO Bot' ()
addComment [] = pure ()
addComment (x :: xs) =
do rev <- unlabel !(readRef x)
case (decEq (uid rev) uid1, decEq (sid rev) sid1) of
(Yes prf1, Yes prf2) =>
let review' = review rev
grade' = grade rev
PC_only' : Labeled (PC (uid rev) (sid rev)) String =
rewrite prf1 in
rewrite prf2 in relabel {flow=A_leq_PC {uid1}} comment
newRev = MkReview (uid rev) (sid rev) PC_only' review' grade'
newlRev : Labeled Bot' Review = label newRev
in writeRef {l = Bot'} {l' = Bot'} {l'' = Bot'} x newlRev
_ => addComment xs
--------------------------------------------------------------------------------
-- Test data
--------------------------------------------------------------------------------
User1 : User
User1 = MkUser (Nat 1) "Alice" "Foo University" "[email protected]"
User2 : User
User2 = MkUser (Nat 2) "Bob" "Bar University" "[email protected]"
User3 : User
User3 = MkUser (Nat 3) "Chuck" "Baz University" "[email protected]"
Paper1 : Submission
Paper1 = MkSubmission (Nat 1) (Nat 1) "IFC in Idris" "Dependent types seems good?" "QED"
Paper2 : Submission
Paper2 = MkSubmission (Nat 2) (Nat 2) "Haskell is old fashioned" "Why not more Idris?" "QED"
Paper3 : Submission
Paper3 = MkSubmission (Nat 1) (Nat 3) "Messing with Idris" "Idris is fun!" "QED"
Review1 : Review
Review1 = MkReview (Nat 3) (Nat 1) "Pretty good" "That's okay" (label 12)
Review2 : Review
Review2 = MkReview (Nat 3) (Nat 2) "Yay!" "OK!" (label 12)
initUsers : DIO Bot' Users
initUsers = newRef {flow=reflexive Bot'} {flow'=reflexive Bot'} (label Nil)
initSubmissions : DIO Bot' Submissions
initSubmissions = newRef (label Nil)
initReviews : DIO Bot' Reviews
initReviews = newRef {flow=reflexive Bot'} {flow'=reflexive Bot'} (label Nil)
dummyDB : Users -> Submissions -> Reviews -> DIO Bot' ()
dummyDB users submissions reviews=
do user1 <- newRef {l = Bot'} {l' = Bot'} {l'' = Bot'} (label User1)
user2 <- newRef {l = Bot'} {l' = Bot'} {l'' = Bot'} (label User2)
let newusers = label {l=Bot'} [user1, user2]
writeRef {l = Bot'} {l' = Bot'} {l'' = Bot'} users newusers
sub1 <- newRef {l = Bot'} {l' = Bot'} {l'' = Bot'} (label Paper1)
sub2 <- newRef {l = Bot'} {l' = Bot'} {l'' = Bot'} (label Paper2)
sub3 <- newRef {l = Bot'} {l' = Bot'} {l'' = Bot'} (label Paper3)
let newsubmissions = label {l=Bot'} [sub1, sub2, sub3]
writeRef {l = Bot'} {l' = Bot'} {l'' = Bot'} submissions newsubmissions
rev1 <- newRef {l = Bot'} {l' = Bot'} {l'' = Bot'} (label Review1)
rev2 <- newRef {l = Bot'} {l' = Bot'} {l'' = Bot'} (label Review2)
let newreviews = label {l=Bot'} [rev1, rev2]
writeRef {l = Bot'} {l' = Bot'} {l'' = Bot'} reviews newreviews
--------------------------------------------------------------------------------
-- Main
--------------------------------------------------------------------------------
main : IO ()
main =
do putStrLn "Starting conference manager ..."
run $
do users <- initUsers
submissions <- initSubmissions
reviews <- initReviews
dummyDB users submissions reviews
assignReviewer reviews (Nat 42) (Nat 1)
addCommentSubmission reviews (Nat 2) (Nat 2) "Cool paper!"
reviews' <- unlabel !(readRef reviews)
lift $ putStrLn $ "No. of reviews: " ++ (cast $ length reviews')
alice <- viewAuthorPapers submissions (Nat 1)
lift $ putStrLn $ "No. of submissions from Alice: " ++ (cast $ length alice)
papersToReview <- viewAssignedPapers reviews submissions (Nat 3)
lift $ putStrLn $ "No. of papers to review Chuck: " ++ (cast $ length papersToReview)
pure ()
putStrLn "Shutting down conference manager ..."
|
/**
* Simple and fast kmeans-implementation making use of multithreading.
*
* Author: Anders Bennehag
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Anders Bennehag
*
*/
#ifndef FASTKMEANS_H_
#define FASTKMEANS_H_
#include <gsl/gsl_matrix.h>
int fkm_kmeans(const gsl_matrix* points, gsl_matrix* clusters,
size_t max_iter, int num_threads);
gsl_matrix* fkm_matrix_load(FILE* fout);
int fkm_matrix_save(FILE* fout, gsl_matrix* mat);
#define WHERESTR "[%s:%d]: "
#define WHEREARG __FILE__, __LINE__
#define DEBUGPRINT2(...) fprintf(stderr, __VA_ARGS__)
#define FKM_LOGFMT(_fmt, ...) DEBUGPRINT2(WHERESTR _fmt "\n", WHEREARG, __VA_ARGS__)
#define FKM_LOG(_s) DEBUGPRINT2(WHERESTR "%s\n", WHEREARG, _s)
#define FKM_LOGTYPE(_tp, _s) DEBUGPRINT2(WHERESTR "%s: %s" "\n", WHEREARG, _tp, _s)
#define FKM_LOGTYPEFMT(_tp, _fmt, ...) DEBUGPRINT2(WHERESTR "%s: " _fmt "\n", WHEREARG, _tp, __VA_ARGS__)
#if (ISDEBUG + 0)
#define FKM_DEBUGFMT(_fmt, ...) FKM_LOGTYPEFMT("DEBUG", _fmt, __VA_ARGS__)
#define FKM_DEBUG(_s) FKM_LOGTYPE("DEBUG", _s)
#else
#define FKM_DEBUGFMT(...)
#define FKM_DEBUG(...)
#endif
#define FKM_INFOFMT(_fmt, ...) FKM_LOGTYPEFMT("INFO", _fmt, __VA_ARGS__)
#define FKM_WARNFMT(_fmt, ...) FKM_LOGTYPEFMT("WARN", _fmt, __VA_ARGS__)
#define FKM_ERRORFMT(_fmt, ...) FKM_LOGTYPEFMT("ERROR", _fmt, __VA_ARGS__)
#define FKM_INFO(_s) FKM_LOGTYPE("INFO", _s)
#define FKM_WARN(_s) FKM_LOGTYPE("WARN", _s)
#define FKM_ERROR(_s) FKM_LOGTYPE("ERROR", _s)
#endif
|
universes u v
/-
This unit is about the functor. A functor is a collection of objects
(such as lists or options over some type, α) with a function, map :
(α → β) → f α → f β, overloaded for each specified type constructors,
f, lifting the (α → β) function to an (f α → f β) function. Map lifts
functions on elements to become functions on data structures that can
contain such elements. It converts a data structure containing such α
values into an isomorphic data structure amy α valuesreplaced by the
β values obtained by applying the (α → β) function to each α value.+
-/
/-
We define a simple "binary tree of α values" data type
for use later in this file. Tuck it away in memory for
now.
-/
inductive tree (α : Type u)
| empty : tree
| node (a : α) (left right : tree) : tree
def aTree :=
tree.node 0
(tree.node 1 tree.empty tree.empty)
(tree.node 2 tree.empty tree.empty)
namespace hidden
/-
We've seen a function for mapping a (different) function over a list.
-/
def list_map {α : Type u} {β : Type v} : (α → β) → list α → list β
| f [] := []
| f (h::t) := (f h)::(list_map f t)
/-
But we can imagine analogous functions over any kind of structure that
contains objects of some arbitrary other type. For example, here is a
function for mapping a function, f, over an object of type (option α),
for any type α.
-/
def option_map {α : Type u} {β : Type v} : (α → β) → option α → option β
| f none := none
| f (some a) := some (f a)
/-
As a third example, consider mapping over trees.
-/
/-
We can also write a function for mapping trees of α
values to trees of β values in an analogous manner.
-/
def tree_map {α : Type u} {β : Type v} : (α → β) → (tree α) → (tree β)
| f tree.empty := tree.empty
| f (tree.node a l r) := tree.node (f a) (tree_map f l) (tree_map f r)
/-
What we're seeing are different implementations of "the same idea"
for mapping an element-level mapping function over a various types
of data structures containing such elements. The implementations of
these functions differ significantly; but look at their types. What
we see is that they're identical but for the types of containers we
envision transforming by the application of element-level functions
to their contents.
def list_map {α : Type u} {β : Type v} : (α → β) → (list α) → (list β)
def option_map {α : Type u} {β : Type v} : (α → β) → (option α) → (option β)
def tree_map {α : Type u} {β : Type v} : (α → β) → (tree α) → (tree β)
As usual, we can generalize by introducing a new parameter.
But what is its type? Well, question: What is the type of list? Of option? Of tree?
Answer: Each is Type u → Type u
We can't just add a parameter, m : Type u → Type u: the *implementations* differ
We have a common abstraction but with different implementations for different types
Ad hoc polymorphism, aka, overloading, aka generics, to the rescue! The new
pattern that we see here is that the parameter of the typeclass is no longer
a concrete type (such as bool or nat), but a polymorphic type builder, i.e.,
a value such as list α, option α, or tree α (each of type, Type → Type)
-/
class functor (m : Type u → Type v) :=
(map : ∀ {α β : Type u}, (α → β) → m α → m β)
-- (law1 : _) -- how mapping identify function works
-- (law2 : _) -- how mapping composition works
/-
As a shorthand notaton, we enable the developer to write
f<$>l as an expression that reduces to f mapped over l.
-/
local infixr ` <$> `:100 := functor.map
/-
Finally, we instantiate the typeclass once for each "type builder,"
such as list, option, or tree, over which we want to be able to map
functions using this notation.
-/
instance list_mapper : functor list := ⟨ @list_map ⟩
instance option_mapper : functor option := ⟨ @option_map ⟩
instance tree_mapper : functor tree := ⟨ @tree_map ⟩
/-
We now have an overloaded map operator (in Haskell it's called fmap)
that can be used to map functions over lists, options, and trees. We
can now view lists, options, and trees as "functors" in the functional
programming (rather than category theory) sense of the term: that is,
as structured containers for objects of some source type that can be
"mapped" to corresponding structured containers for objects of some
destination type.
-/
#reduce nat.succ <$> []
#reduce nat.succ <$> [1,2,3]
#reduce string.length <$> ["Hello", "Lean!!!"]
#reduce nat.succ <$> option.none
#reduce nat.succ <$> option.some 0
#reduce nat.succ <$> (tree.empty)
#reduce nat.succ <$> aTree
#check @functor
/-
What we've done is to make list, option, and tree
into "members of the functor typeclass," thereby
overloading the operator that the typeclass defines
for each of these otherwise unrelated types.
-/
end hidden
/-
Now let's have a quick look at Lean's functor typeclass.
It's just like ours but it adds a second function that is
to be overloaded for each type (such as list or option)
in the functor typeclass.
-/
#check @functor
#print functor
/-
class functor (f : Type u → Type v) : Type (max (u+1) v) :=
(map : Π {α β : Type u}, (α → β) → f α → f β)
(map_const : Π {α β : Type u}, α → f β → f α := λ α β, map ∘ const β)
The const function (polymorphic in α and β) takes a value, a, of type
α, and yields a function that takes any value of type β and returns a.
The function, map ∘ const β, thus takes any value, a, of type α, and
returns a function that converts a list of β values into a list of a
values (not just α values, but constant a values).
def const (β : Sort u₂) (a : α) : β → α := λ x, a
-/
#check @list.map
instance : functor list := ⟨ @list.map, _ ⟩
def list_map_const
{α β : Type u} :
α → list β → list α
| a [] := []
| a (h::t) := a::list_map_const a t
-- E.g., replace each natural number in list with tt
#eval list_map_const tt [1,2,3]
instance list_functor : functor list := ⟨ @list.map, @list_map_const ⟩
#check @option.map
def option_map_const
{α β : Type u} :
α → option β → option α
| a option.none := option.none
| a (option.some b) := option.some a
instance : functor option := ⟨ @option.map, @option_map_const ⟩
#reduce nat.succ <$> [1,2,3]
#reduce ff <$ [1,2,3]
#reduce [1,2,3] $> ff
/-
One of the ways in which we can use the functor typeclass
is in defining generic versions of concrete functions. For
example, consider the simple increment function on natural
numbers.
-/
def inc :=
λ (n : nat),
n + 1
/-
We've seen how we can map such functions over lists of
natural numbers. And, with this capability, we can define
a new function, here called inc_list_nat, that maps the
inc function over lists of nats. We can say that we have
lifted the inc function to be applicable to lists of nats.
-/
def inc_list_nat ( l : list nat) := list.map inc l
/-
Challenge: Generalize from this idea to write a generic
(ad hoc polymorphic) function, inc', that lifts inc
to be be applicable to objects of any "functorial" type
over int. Given what we've got so far, for example, you
should be able to apply inc_m_nat not only to objects of
type list nat, but also option nat, tree nat, and so on,
for any type constructor parameterized by the type, nat.
-/
def inc' {f : Type → Type} [functor f] (i : f nat) : f nat :=
functor.map inc i
-- a generic increment operation on functorial data structures containing nats
example : inc' [1,2,3] = [2,3,4] := rfl
example : inc' (some 1) = some 2 := rfl
instance : functor tree := ⟨ @hidden.tree_map, _ ⟩ -- you can fill in second field
example : inc' aTree =
tree.node
1
(tree.node 2 tree.empty tree.empty)
(tree.node 3 tree.empty tree.empty) := rfl
/-
Generalize this function, from mapping *inc* over any functorial context
(data structure!) over values of type nat, to mapping *any function* of
type α → β over any functorial context/container over values of type, α.
-/
def map_f {α β : Type u} {f : Type u → Type v} [functor f] : (α → β) → f α → f β
| h i := functor.map h i
/-
Examples:
-/
def l_str := ["Hello", " Lean!"]
def o_str := some "Hello"
def t_str := tree.node "Hello" (tree.node " There!" tree.empty tree.empty) tree.empty
#reduce map_f string.length l_str
#reduce map_f string.length o_str
#reduce map_f string.length t_str
/-
Finally, let's look at the type of map_f to get a set of its nature.
In particular, look at this: (α → β) → f α → f β. What we've done is
to lift a "pure" function, h : α → β to one that takes a "functorial"
object, i : f α, and returns a functorial object of type f β. And by
the magic of typeclass resolution, we've overloaded this function for
three functorial types, namely list, option, and tree.
-/ |
# verify that our README.md examples are in working order
doc = Spiderman.http_get("http://en.wikipedia.org/")
news_headlines = text(select(css"#mp-itn b a", doc))
# most of the value in this test is the above code running...
# but it's still nice to know the query still works.
@test length(news_headlines) > 1
doc = Spiderman.http_get("https://news.ycombinator.com/")
scores = select(css".score", doc)
hrefs = parent(select(css".deadmark", doc))
items = []
for i=1:length(scores)
score = parse(Int, replace(text(scores[i]), " points", ""))
story_title = text(select(css"a", hrefs[i]))[1]
story_href = getattr(select(css"a", hrefs[i])[1], "href")
comment_href = getattr(select(css"a", parent(scores[i]))[end], "href")
push!(items, (score, story_title, story_href, comment_href))
end
@test length(items) > 2 |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!
!!!! MIT License
!!!!
!!!! ParaMonte: plain powerful parallel Monte Carlo library.
!!!!
!!!! Copyright (C) 2012-present, The Computational Data Science Lab
!!!!
!!!! This file is part of the ParaMonte library.
!!!!
!!!! Permission is hereby granted, free of charge, to any person obtaining a
!!!! copy of this software and associated documentation files (the "Software"),
!!!! to deal in the Software without restriction, including without limitation
!!!! the rights to use, copy, modify, merge, publish, distribute, sublicense,
!!!! and/or sell copies of the Software, and to permit persons to whom the
!!!! Software is furnished to do so, subject to the following conditions:
!!!!
!!!! The above copyright notice and this permission notice shall be
!!!! included in all copies or substantial portions of the Software.
!!!!
!!!! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
!!!! EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
!!!! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
!!!! IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
!!!! DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
!!!! OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
!!!! OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
!!!!
!!!! ACKNOWLEDGMENT
!!!!
!!!! ParaMonte is an honor-ware and its currency is acknowledgment and citations.
!!!! As per the ParaMonte library license agreement terms, if you use any parts of
!!!! this library for any purposes, kindly acknowledge the use of ParaMonte in your
!!!! work (education/research/industry/development/...) by citing the ParaMonte
!!!! library as described on this page:
!!!!
!!!! https://github.com/cdslaborg/paramonte/blob/master/ACKNOWLEDGMENT.md
!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
module Test_Decoration_mod
!use, intrinsic :: iso_fortran_env, only: output_unit
use Test_mod, only: Test_type
use Constants_mod, only: IK
use Decoration_mod
implicit none
type(Test_type) :: Test
!***********************************************************************************************************************************
!***********************************************************************************************************************************
contains
!***********************************************************************************************************************************
!***********************************************************************************************************************************
subroutine test_Decoration()
implicit none
type(Decoration_type) :: Decor
Test = Test_type(moduleName=MODULE_NAME)
if (Test%Image%isFirst) call Test%testing("Decoration_type")
if (Test%isDebugMode .and. Test%Image%isFirst) then
allocate(Decor%List(4))
Decor%List(1)%record = "Have you asked yourself:"
Decor%List(2)%record = "Why does the Universe bother to exist?"
Decor%List(3)%record = "What is the origin of mass and matter?"
Decor%List(4)%record = "What is the origin of life?"
call Decor%writeDecoratedList(Decor%List)
Decor%text = "\n\n" // &
Decor%List(1)%record // "\n\n" // &
Decor%List(2)%record // "\n\n" // &
Decor%List(3)%record // "\n\n" // &
Decor%List(4)%record // "\n\n\n"
call Decor%writeDecoratedText( Decor%text &
, newLine="\n" &
, width = 32 &
, symbol="&" &
, thicknessHorz=4 &
, thicknessVert=2 &
, marginTop=2 &
, marginBot=1 &
)
call write(Test%outputUnit,1,0,1, "Here is the output of drawLine('HelloWorld!'):" )
call write(Test%outputUnit,1,0,1, drawLine(symbol="HelloWorld!",width=132) )
call write(Test%outputUnit,1,0,1, "Here is the output of sandwich():" )
call write(Test%outputUnit,1,0,1, sandwich() )
call write(Test%outputUnit,1,0,1, "Here is the output of sandwich( text='Hello World!', symbol='@', width=20 ) :" )
call write(Test%outputUnit,1,0,1, sandwich(text='Hello World!',symbol='@',width=20) )
call write(Test%outputUnit,1,0,1, "Here is the output of sandwich( text='Hello World!', symbol='@', width=10 ) :" )
call write(Test%outputUnit,1,0,1, sandwich(text='Hello World!',symbol='@',width=10) )
call write(Test%outputUnit,1,0,1, "Here is the output of sandwich( text='Hello World!', symbol='@', width=10 ) :" )
call write(Test%outputUnit,1,0,1, sandwich(text='Hello World!',symbol='@',width=5) )
write(Test%outputUnit,"(A)")
end if
!Test%assertion = .true.
!call Test%verify()
call Test%skipping()
call Test%finalize()
end subroutine test_Decoration
!***********************************************************************************************************************************
!***********************************************************************************************************************************
end module Test_Decoration_mod
|
module Test.Assertions
%access export
%default total
describe : String -> IO () -> IO ()
describe label body = do
putStrLn ""
putStr label
body
assert : Bool -> Lazy (List String) -> IO ()
assert False report = do
putStrLn "*FAIL*"
traverse_ (\x => putStrLn (" " ++ x)) report
assert True report =
putStr "."
shouldBe : (Eq a, Show a) => a -> a -> IO ()
shouldBe a expected =
assert (a == expected) [
"Expected " ++ show expected,
"But got " ++ show a
]
shouldShow : Show a => a -> String -> IO ()
shouldShow a expected =
assert (show a == expected) [
"Expected to show " ++ expected,
"But got " ++ show a
]
shouldSatisfy : Show a => a -> (a -> Bool) -> IO ()
shouldSatisfy a pred =
assert (pred a) [
"Expectation unsatisfied: " ++ show a
]
castIdentical : (Cast a b, Cast b a, Eq a, Eq b) => (a, b) -> Bool
castIdentical (a, b) = cast a == b && cast b == a
shouldBe' : (Eq a, Show a) => IO a -> a -> IO ()
shouldBe' a b = a >>= (`shouldBe` b)
shouldShow' : Show a => IO a -> String -> IO ()
shouldShow' a b = a >>= (`shouldShow` b)
shouldSatisfy' : Show a => IO a -> (a -> Bool) -> IO ()
shouldSatisfy' a b = a >>= (`shouldSatisfy` b)
|
If $p$ and $q$ are polynomials such that $p(x) = 0$ implies $q(x) = 0$, then $p$ divides $q^n$ if $p$ has degree $n$. |
theory Exercise4
imports Main
begin
inductive ev :: "nat \<Rightarrow> bool" where
ev0: "ev 0" |
evSS: "ev n \<Longrightarrow> ev (Suc (Suc n))"
lemma "\<not> ev (Suc (Suc (Suc 0)))" (is "\<not> ?EVEN3")
proof
assume "?EVEN3"
hence "ev (Suc 0)" by cases
thus False by cases
qed
end
|
%% test modulate for all oasis functions.
col = {[0 114 178],[0 158 115], [213 94 0],[230 159 0],...
[86 180 233], [204 121 167], [64 224 208], [240 228 66]}; % colors
plot_cvx = false;
%% example 3: foopsi, convolution kernel
g = [1.7, -0.712]; % AR coefficient
noise = 1;
T = 3000;
framerate = 30;
firerate = 0.5;
b = 0; % baseline
N = 20; % number of trials
seed = 3; % seed for genrating random variables
[Y, trueC, trueS] = gen_data(g, noise, T, framerate, firerate, b, N, seed);
y = Y(1,:);
true_c = trueC(1,:); %#ok<*NASGU>
true_s = trueS(1,:);
taus = ar2exp(g);
w = 200;
taus = ar2exp(g);
ht = exp2kernel(taus, w);
% case 1: use the difference of two exponential functions to construct a
% kernel
lambda = 0.1;
[c_oasis, s_oasis] = deconvolveCa(y, 'exp2', taus, 'foopsi', 'lambda', lambda, ...
'shift', 100, 'window', 200); %#ok<*ASGLU>
figure('name', 'FOOPSI, exp2, known: g, lambda', 'papersize', [15, 4]);
show_results;
% case 2: use the kernel directly
lambda = 0.1;
[c_oasis, s_oasis] = deconvolveCa(y, 'kernel', ht, 'foopsi', 'lambda', ...
lambda, 'shift', 100, 'window', 200); %#ok<*ASGLU>
figure('name', 'FOOPSI, kernel, known: g, lambda', 'papersize', [15, 4]);
show_results;
%% case 3: estimate the time constants
lambda = 0;
taus = ar2exp(g);
[c_oasis, s_oasis, options] = deconvolveCa(y, 'exp2', 'foopsi', 'lambda', lambda, ...
'shift', 100, 'window', 200, 'smin', 0.5); %#ok<*ASGLU>
figure('name', 'FOOPSI, exp2, known: g, lambda', 'papersize', [15, 4]);
show_results;
|
= = = Fragrance = = =
|
module Main
import Language.Reflection
%language ElabReflection
-- A performance test - previously this was slowing down hugely due to
-- quoting back HNFs on >>=, and as the environment gets bigger, the
-- environment of holes gets bigger and bigger, so quoting can start to take
-- far too long
perftest : Elab ()
perftest = do
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 1 . show)) [[the Int 1..10]] -- minor difference
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 2 . show)) [[the Int 1..10]] -- minor difference
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 3 . show)) [[the Int 1..10]] -- minor difference
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 4 . show)) [[the Int 1..10]] -- minor difference
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 5 . show)) [[the Int 1..10]] -- minor difference
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 6 . show)) [[the Int 1..10]] -- minor difference
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 7 . show)) [[the Int 1..10]] -- 0.3s
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 8 . show)) [[the Int 1..10]] -- 0.4s
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 9 . show)) [[the Int 1..10]] -- 0.5s
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 10 . show)) [[the Int 1..10]] -- 1.5s
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 11 . show)) [[the Int 1..10]] -- 4s
logMsg "" 0 "Progress"
traverse (traverse (logMsg "" 12 . show)) [[the Int 1..10]] -- 13s
pure ()
%runElab perftest
|
/**
*
* @file zcgels.c
*
* PLASMA computational routines
* PLASMA is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 2.6.0
* @author Emmanuel Agullo
* @date 2010-11-15
* @precisions mixed zc -> ds
*
**/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <lapacke.h>
#include "common.h"
#define PLASMA_zlag2c(_descA, _descSB) \
plasma_parallel_call_4(plasma_pzlag2c, \
PLASMA_desc, (_descA), \
PLASMA_desc, (_descSB), \
PLASMA_sequence*, sequence, \
PLASMA_request*, request)
#define PLASMA_clag2z(_descSA, _descB) \
plasma_parallel_call_4(plasma_pclag2z, \
PLASMA_desc, (_descSA), \
PLASMA_desc, (_descB), \
PLASMA_sequence*, sequence, \
PLASMA_request*, request)
#define PLASMA_zlange(_norm, _descA, _result, _work) \
_result = 0; \
plasma_parallel_call_6(plasma_pzlange, \
PLASMA_enum, (_norm), \
PLASMA_desc, (_descA), \
double*, (_work), \
double*, &(_result), \
PLASMA_sequence*, sequence, \
PLASMA_request*, request);
#define PLASMA_zlacpy(_descA, _descB) \
plasma_parallel_call_5(plasma_pzlacpy, \
PLASMA_enum, PlasmaUpperLower, \
PLASMA_desc, (_descA), \
PLASMA_desc, (_descB), \
PLASMA_sequence*, sequence, \
PLASMA_request*, request)
#define PLASMA_zgeadd(_alpha, _descA, _descB) \
plasma_parallel_call_5(plasma_pzgeadd, \
PLASMA_Complex64_t, (_alpha), \
PLASMA_desc, (_descA), \
PLASMA_desc, (_descB), \
PLASMA_sequence*, sequence, \
PLASMA_request*, request)
/***************************************************************************//**
*
* @ingroup PLASMA_Complex64_t
*
* PLASMA_zcgels - Solves overdetermined or underdetermined linear systems involving an M-by-N
* matrix A using the QR or the LQ factorization of A. It is assumed that A has full rank.
* The following options are provided:
*
* # trans = PlasmaNoTrans and M >= N: find the least squares solution of an overdetermined
* system, i.e., solve the least squares problem: minimize || B - A*X ||.
*
* # trans = PlasmaNoTrans and M < N: find the minimum norm solution of an underdetermined
* system A * X = B.
*
* Several right hand side vectors B and solution vectors X can be handled in a single call;
* they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS
* solution matrix X.
*
* PLASMA_zcgels first attempts to factorize the matrix in COMPLEX and use this
* factorization within an iterative refinement procedure to produce a
* solution with COMPLEX*16 normwise backward error quality (see below).
* If the approach fails the method switches to a COMPLEX*16
* factorization and solve.
*
* The iterative refinement is not going to be a winning strategy if
* the ratio COMPLEX performance over COMPLEX*16 performance is too
* small. A reasonable strategy should take the number of right-hand
* sides and the size of the matrix into account. This might be done
* with a call to ILAENV in the future. Up to now, we always try
* iterative refinement.
*
* The iterative refinement process is stopped if ITER > ITERMAX or
* for all the RHS we have: RNRM < N*XNRM*ANRM*EPS*BWDMAX
* where:
*
* - ITER is the number of the current iteration in the iterative refinement process
* - RNRM is the infinity-norm of the residual
* - XNRM is the infinity-norm of the solution
* - ANRM is the infinity-operator-norm of the matrix A
* - EPS is the machine epsilon returned by DLAMCH('Epsilon').
*
* Actually, in its current state (PLASMA 2.1.0), the test is slightly relaxed.
*
* The values ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.
*
* We follow Bjorck's algorithm proposed in "Iterative Refinement of Linear
* Least Squares solutions I", BIT, 7:257-278, 1967.
*
*******************************************************************************
*
* @param[in] trans
* Intended usage:
* = PlasmaNoTrans: the linear system involves A;
* = PlasmaConjTrans: the linear system involves A**H.
* Currently only PlasmaNoTrans is supported.
*
* @param[in] M
* The number of rows of the matrix A. M >= 0.
*
* @param[in] N
* The number of columns of the matrix A. N >= 0.
*
* @param[in] NRHS
* The number of right hand sides, i.e., the number of columns of the matrices B and X.
* NRHS >= 0.
*
* @param[in] A
* The M-by-N matrix A. This matrix is not modified.
*
* @param[in] LDA
* The leading dimension of the array A. LDA >= max(1,M).
*
* @param[in] B
* The M-by-NRHS matrix B of right hand side vectors, stored columnwise. Not modified.
*
* @param[in] LDB
* The leading dimension of the array B. LDB >= MAX(1,M,N).
*
* @param[out] X
* If return value = 0, the solution vectors, stored columnwise.
* if M >= N, rows 1 to N of X contain the least squares solution vectors; the residual
* sum of squares for the solution in each column is given by the sum of squares of the
* modulus of elements N+1 to M in that column;
* if M < N, rows 1 to N of X contain the minimum norm solution vectors;
*
* @param[in] LDX
* The leading dimension of the array X. LDX >= MAX(1,M,N).
*
* @param[out] ITER
* The number of the current iteration in the iterative refinement process
*
*******************************************************************************
*
* @return
* \retval PLASMA_SUCCESS successful exit
* \retval <0 if -i, the i-th argument had an illegal value
*
*******************************************************************************
*
* @sa PLASMA_zcgels_Tile
* @sa PLASMA_zcgels_Tile_Async
* @sa PLASMA_dsgels
* @sa PLASMA_zgels
*
******************************************************************************/
int PLASMA_zcgels(PLASMA_enum trans, int M, int N, int NRHS,
PLASMA_Complex64_t *A, int LDA,
PLASMA_Complex64_t *B, int LDB,
PLASMA_Complex64_t *X, int LDX, int *ITER)
{
int i, j;
int NB, NBNB, MT, NT, NTRHS;
int status;
PLASMA_desc descA;
PLASMA_desc descB;
PLASMA_desc *descT;
PLASMA_desc descX;
plasma_context_t *plasma;
PLASMA_sequence *sequence = NULL;
PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
plasma = plasma_context_self();
if (plasma == NULL) {
plasma_fatal_error("PLASMA_zcgels", "PLASMA not initialized");
return PLASMA_ERR_NOT_INITIALIZED;
}
*ITER = 0;
/* Check input arguments */
if (trans != PlasmaNoTrans &&
trans != PlasmaConjTrans &&
trans != PlasmaTrans )
{
plasma_error("PLASMA_zcgels", "illegal value of trans");
return -1;
}
if (trans != PlasmaNoTrans) {
plasma_error("PLASMA_zcgels", "only PlasmaNoTrans supported");
return PLASMA_ERR_NOT_SUPPORTED;
}
if (M < 0) {
plasma_error("PLASMA_zcgels", "illegal value of M");
return -2;
}
if (N < 0) {
plasma_error("PLASMA_zcgels", "illegal value of N");
return -3;
}
if (NRHS < 0) {
plasma_error("PLASMA_zcgels", "illegal value of NRHS");
return -4;
}
if (LDA < max(1, M)) {
plasma_error("PLASMA_zcgels", "illegal value of LDA");
return -6;
}
if (LDB < max(1, max(M, N))) {
plasma_error("PLASMA_zcgels", "illegal value of LDB");
return -9;
}
if (LDX < max(1, max(M, N))) {
plasma_error("PLASMA_zcgels", "illegal value of LDX");
return -10;
}
/* Quick return */
if (min(M, min(N, NRHS)) == 0) {
for (i = 0; i < max(M, N); i++)
for (j = 0; j < NRHS; j++)
B[j*LDB+i] = 0.0;
return PLASMA_SUCCESS;
}
/* Tune NB & IB depending on M, N & NRHS; Set NBNB */
status = plasma_tune(PLASMA_FUNC_ZCGELS, M, N, NRHS);
if (status != PLASMA_SUCCESS) {
plasma_error("PLASMA_zcgels", "plasma_tune() failed");
return status;
}
/* Set MT, NT & NTRHS */
NB = PLASMA_NB;
NBNB = NB*NB;
NT = (N%NB==0) ? (N/NB) : (N/NB+1);
MT = (M%NB==0) ? (M/NB) : (M/NB+1);
NTRHS = (NRHS%NB==0) ? (NRHS/NB) : (NRHS/NB+1);
printf("M %d, N %d, NRHS %d, NB %d, MT %d, NT %d, NTRHS %d\n", M, N, NRHS, NB, MT, NT, NTRHS);
plasma_sequence_create(plasma, &sequence);
descA = plasma_desc_init(
PlasmaComplexDouble,
NB, NB, NBNB,
M, N, 0, 0, M, N);
if (M >= N) {
descB = plasma_desc_init(
PlasmaComplexDouble,
NB, NB, NBNB,
M, NRHS, 0, 0, M, NRHS);
descX = plasma_desc_init(
PlasmaComplexDouble,
NB, NB, NBNB,
M, NRHS, 0, 0, M, NRHS);
}
else {
descB = plasma_desc_init(
PlasmaComplexDouble,
NB, NB, NBNB,
N, NRHS, 0, 0, N, NRHS);
descX = plasma_desc_init(
PlasmaComplexDouble,
NB, NB, NBNB,
N, NRHS, 0, 0, N, NRHS);
}
/* DOUBLE PRECISION INITIALIZATION */
/* Allocate memory for matrices in block layout */
if (plasma_desc_mat_alloc(&descA) || plasma_desc_mat_alloc(&descB) || plasma_desc_mat_alloc(&descX)) {
plasma_error("PLASMA_zcgels", "plasma_shared_alloc() failed");
plasma_desc_mat_free(&descA);
plasma_desc_mat_free(&descB);
plasma_desc_mat_free(&descX);
return PLASMA_ERR_OUT_OF_RESOURCES;
}
plasma_parallel_call_5(plasma_pzlapack_to_tile,
PLASMA_Complex64_t*, A,
int, LDA,
PLASMA_desc, descA,
PLASMA_sequence*, sequence,
PLASMA_request*, &request);
plasma_parallel_call_5(plasma_pzlapack_to_tile,
PLASMA_Complex64_t*, B,
int, LDB,
PLASMA_desc, descB,
PLASMA_sequence*, sequence,
PLASMA_request*, &request);
/* Allocate workspace */
PLASMA_Alloc_Workspace_zgels_Tile(M, N, &descT);
/* Call the native interface */
status = PLASMA_zcgels_Tile_Async(PlasmaNoTrans, &descA, descT, &descB, &descX, ITER,
sequence, &request);
if (status == PLASMA_SUCCESS) {
plasma_parallel_call_5(plasma_pztile_to_lapack,
PLASMA_desc, descX,
PLASMA_Complex64_t*, X,
int, LDX,
PLASMA_sequence*, sequence,
PLASMA_request*, &request);
}
plasma_dynamic_sync();
PLASMA_Dealloc_Handle_Tile(&descT);
plasma_sequence_destroy(plasma, sequence);
plasma_desc_mat_free(&descA);
plasma_desc_mat_free(&descB);
plasma_desc_mat_free(&descX);
return status;
}
/***************************************************************************//**
*
* @ingroup PLASMA_Complex64_t_Tile
*
* PLASMA_zcgels_Tile - Solves overdetermined or underdetermined linear system of equations
* using the tile QR or the tile LQ factorization and mixed-precision iterative refinement.
* Tile equivalent of PLASMA_zcgesv().
* Operates on matrices stored by tiles.
* All matrices are passed through descriptors.
* All dimensions are taken from the descriptors.
*
*******************************************************************************
*
* @param[in] trans
* Intended usage:
* = PlasmaNoTrans: the linear system involves A;
* = PlasmaConjTrans: the linear system involves A**H.
* Currently only PlasmaNoTrans is supported.
*
* @param[in,out] A
* - If the iterative refinement converged, A is not modified;
* - otherwise, it fell back to double precision solution, and
* on exit the M-by-N matrix A contains:
* if M >= N, A is overwritten by details of its QR factorization as returned by
* PLASMA_zgeqrf;
* if M < N, A is overwritten by details of its LQ factorization as returned by
* PLASMA_zgelqf.
*
* @param[out] T
* On exit:
* - if the iterative refinement converged, T is not modified;
* - otherwise, it fell back to double precision solution,
* and then T is an auxiliary factorization data.
*
* @param[in,out] B
* On entry, the M-by-NRHS matrix B of right hand side vectors, stored columnwise;
* On exit, if return value = 0, B is overwritten by the solution vectors, stored
* columnwise:
* if M >= N, rows 1 to N of B contain the least squares solution vectors; the residual
* sum of squares for the solution in each column is given by the sum of squares of the
* modulus of elements N+1 to M in that column;
* if M < N, rows 1 to N of B contain the minimum norm solution vectors;
*
* @param[in] B
* The descriptor of the M-by-NRHS matrix B of right hand side vectors, stored columnwise. Not modified.
*
* @param[in,out] X
* On entry, it's only the descriptor where to store the result.
* On exit, if return value = 0, X is the solution vectors, stored columnwise:
* if M >= N, rows 1 to N of X contain the least squares solution vectors; the residual
* sum of squares for the solution in each column is given by the sum of squares of the
* modulus of elements N+1 to M in that column;
* if M < N, rows 1 to N of X contain the minimum norm solution vectors;
*
* @param[out] ITER
* If > 0, ITER is the number of the current iteration in the iterative refinement process.
* -ITERMAX-1, if the refinment step failed and the double precision factorization has been used.
*
*******************************************************************************
*
* @return
* \retval PLASMA_SUCCESS successful exit
*
*******************************************************************************
*
* @sa PLASMA_zcgels
* @sa PLASMA_zcgels_Tile_Async
* @sa PLASMA_dsgels_Tile
* @sa PLASMA_zgels_Tile
*
******************************************************************************/
int PLASMA_zcgels_Tile(PLASMA_enum trans, PLASMA_desc *A, PLASMA_desc *T,
PLASMA_desc *B, PLASMA_desc *X, int *ITER)
{
plasma_context_t *plasma;
PLASMA_sequence *sequence = NULL;
PLASMA_request request = PLASMA_REQUEST_INITIALIZER;
int status;
plasma = plasma_context_self();
if (plasma == NULL) {
plasma_fatal_error("PLASMA_zcgels_Tile", "PLASMA not initialized");
return PLASMA_ERR_NOT_INITIALIZED;
}
plasma_sequence_create(plasma, &sequence);
status = PLASMA_zcgels_Tile_Async(trans, A, T, B, X, ITER, sequence, &request);
if (status != PLASMA_SUCCESS)
return status;
plasma_dynamic_sync();
status = sequence->status;
plasma_sequence_destroy(plasma, sequence);
return status;
}
/***************************************************************************//**
*
* @ingroup PLASMA_Complex64_t_Tile_Async
*
* PLASMA_zcgels_Tile_Async - Solves overdetermined or underdetermined linear
* system of equations using the tile QR or the tile LQ factorization and
* mixed-precision iterative refinement.
* Non-blocking equivalent of PLASMA_zcgels_Tile().
* May return before the computation is finished.
* Allows for pipelining of operations at runtime.
*
*******************************************************************************
*
* @param[in] sequence
* Identifies the sequence of function calls that this call belongs to
* (for completion checks and exception handling purposes).
*
* @param[out] request
* Identifies this function call (for exception handling purposes).
*
*******************************************************************************
*
* @sa PLASMA_zcgels
* @sa PLASMA_zcgels_Tile
* @sa PLASMA_dsgels_Tile_Async
* @sa PLASMA_zgels_Tile_Async
*
******************************************************************************/
int PLASMA_zcgels_Tile_Async(PLASMA_enum trans, PLASMA_desc *A, PLASMA_desc *T,
PLASMA_desc *B, PLASMA_desc *X, int *ITER,
PLASMA_sequence *sequence, PLASMA_request *request)
{
int M, N, NRHS, NB, NBNB, MT, NT, NTRHS;
PLASMA_desc descA;
PLASMA_desc descT;
PLASMA_desc descB;
PLASMA_desc descX;
plasma_context_t *plasma;
double *work;
const int itermax = 30;
const double bwdmax = 1.0;
const PLASMA_Complex64_t negone = -1.0;
const PLASMA_Complex64_t one = 1.0;
int iiter;
double Anorm, cte, eps, Rnorm, Xnorm;
*ITER=0;
plasma = plasma_context_self();
if (plasma == NULL) {
plasma_fatal_error("PLASMA_zcgels_Tile", "PLASMA not initialized");
return PLASMA_ERR_NOT_INITIALIZED;
}
if (sequence == NULL) {
plasma_fatal_error("PLASMA_zcgels_Tile", "NULL sequence");
return PLASMA_ERR_UNALLOCATED;
}
if (request == NULL) {
plasma_fatal_error("PLASMA_zcgels_Tile", "NULL request");
return PLASMA_ERR_UNALLOCATED;
}
/* Check sequence status */
if (sequence->status == PLASMA_SUCCESS)
request->status = PLASMA_SUCCESS;
else
return plasma_request_fail(sequence, request, PLASMA_ERR_SEQUENCE_FLUSHED);
/* Check descriptors for correctness */
if (plasma_desc_check(A) != PLASMA_SUCCESS) {
plasma_error("PLASMA_zcgels_Tile", "invalid first descriptor");
return PLASMA_ERR_ILLEGAL_VALUE;
} else {
descA = *A;
}
if (plasma_desc_check(T) != PLASMA_SUCCESS) {
plasma_error("PLASMA_zcgels_Tile", "invalid second descriptor");
return PLASMA_ERR_ILLEGAL_VALUE;
} else {
descT = *T;
}
if (plasma_desc_check(B) != PLASMA_SUCCESS) {
plasma_error("PLASMA_zcgels_Tile", "invalid third descriptor");
return PLASMA_ERR_ILLEGAL_VALUE;
} else {
descB = *B;
}
if (plasma_desc_check(X) != PLASMA_SUCCESS) {
plasma_error("PLASMA_zcgels_Tile", "invalid fourth descriptor");
return PLASMA_ERR_ILLEGAL_VALUE;
} else {
descX = *X;
}
/* Check input arguments */
if (descA.nb != descA.mb || descB.nb != descB.mb || descX.nb != descX.mb) {
plasma_error("PLASMA_zcgels_Tile", "only square tiles supported");
return PLASMA_ERR_ILLEGAL_VALUE;
}
if (trans != PlasmaNoTrans) {
plasma_error("PLASMA_zcgels_Tile", "only PlasmaNoTrans supported");
return PLASMA_ERR_NOT_SUPPORTED;
}
/* Quick return - currently NOT equivalent to LAPACK's:
if (min(M, min(N, NRHS)) == 0) {
for (i = 0; i < max(M, N); i++)
for (j = 0; j < NRHS; j++)
B[j*LDB+i] = 0.0;
return PLASMA_SUCCESS;
}
*/
if (0 == 0) {
// START SPECIFIC
/* Set M, M, NRHS, NB, MT, NT & NTRHS */
M = descA.lm;
N = descA.ln;
NRHS = descB.ln;
NB = descA.nb;
NBNB = NB*NB;
MT = (M%NB==0) ? (M/NB) : (M/NB+1);
NT = (N%NB==0) ? (N/NB) : (N/NB+1);
NTRHS = (NRHS%NB==0) ? (NRHS/NB) : (NRHS/NB+1);
printf("M %d, N %d, NRHS %d, NB %d, MT %d, NT %d, NTRHS %d\n", M, N, NRHS, NB, MT, NT, NTRHS);
work = (double *)plasma_shared_alloc(plasma, PLASMA_SIZE, PlasmaRealDouble);
if (work == NULL) {
plasma_error("PLASMA_zcgesv", "plasma_shared_alloc() failed");
plasma_shared_free(plasma, work);
return PLASMA_ERR_OUT_OF_RESOURCES;
}
PLASMA_desc descR = plasma_desc_init(
PlasmaComplexDouble,
NB, NB, NBNB,
M, NRHS, 0, 0, M, NRHS);
if (plasma_desc_mat_alloc(&descR)) {
plasma_error("PLASMA_zcgesv", "plasma_shared_alloc() failed");
plasma_desc_mat_free(&descR);
plasma_shared_free(plasma, work);
return PLASMA_ERR_OUT_OF_RESOURCES;
}
PLASMA_desc descSA = plasma_desc_init(
PlasmaComplexFloat,
NB, NB, NBNB,
M, N, 0, 0, M, N);
PLASMA_desc descST = plasma_desc_init(
PlasmaComplexFloat,
IB, NB, IBNB,
M, N, 0, 0, M, N);
PLASMA_desc descSX = plasma_desc_init(
PlasmaComplexFloat,
NB, NB, NBNB,
M, NRHS, 0, 0, M, NRHS);
/* Allocate memory for single precision matrices in block layout */
if (plasma_desc_mat_alloc(&descSA) || plasma_desc_mat_alloc(&descST) || plasma_desc_mat_alloc(&descSX)) {
plasma_error("PLASMA_zcgesv", "plasma_shared_alloc() failed");
plasma_desc_mat_free(&descSA);
plasma_desc_mat_free(&descST);
plasma_desc_mat_free(&descSX);
plasma_desc_mat_free(&descR);
plasma_shared_free(plasma, work);
return PLASMA_ERR_OUT_OF_RESOURCES;
}
/* Compute some constants */
PLASMA_zlange(PlasmaInfNorm, descA, Anorm, work);
eps = LAPACKE_dlamch_work('e');
printf("Anorm=%e, cte=%e\n", Anorm, cte);
/* Convert B from double precision to single precision and store
the result in SX. */
PLASMA_zlag2c(descB, descSX);
if (sequence->status != PLASMA_SUCCESS)
return plasma_request_fail(sequence, request, PLASMA_ERR_SEQUENCE_FLUSHED);
/* Convert A from double precision to single precision and store
the result in SA. */
PLASMA_zlag2c(descA, descSA);
if (sequence->status != PLASMA_SUCCESS)
return plasma_request_fail(sequence, request, PLASMA_ERR_SEQUENCE_FLUSHED);
if (descSA.m >= descSA.n) {
/* Compute the QR factorization of SA */
printf("Facto\n"); fflush(stdout);
plasma_parallel_call_4(plasma_pcgeqrf,
PLASMA_desc, descSA,
PLASMA_desc, descST,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
printf("Solve\n"); fflush(stdout);
plasma_parallel_call_5(plasma_pcunmqr,
PLASMA_desc, descSA,
PLASMA_desc, descSX,
PLASMA_desc, descST,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_9(plasma_pctrsm,
PLASMA_enum, PlasmaLeft,
PLASMA_enum, PlasmaUpper,
PLASMA_enum, PlasmaNoTrans,
PLASMA_enum, PlasmaNonUnit,
PLASMA_Complex32_t, 1.0,
PLASMA_desc, plasma_desc_submatrix(descSA, 0, 0, descSA.n, descSA.n),
PLASMA_desc, plasma_desc_submatrix(descSX, 0, 0, descSA.n, descSX.n),
PLASMA_sequence*, sequence,
PLASMA_request*, request);
}
else {
plasma_parallel_call_3(plasma_pztile_zero,
PLASMA_desc, plasma_desc_submatrix(descSX, descSA.m, 0, descSA.n-descSA.m, descSX.n),
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_4(plasma_pcgelqf,
PLASMA_desc, descSA,
PLASMA_desc, descST,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_9(plasma_pctrsm,
PLASMA_enum, PlasmaLeft,
PLASMA_enum, PlasmaLower,
PLASMA_enum, PlasmaNoTrans,
PLASMA_enum, PlasmaNonUnit,
PLASMA_Complex32_t, 1.0,
PLASMA_desc, plasma_desc_submatrix(descSA, 0, 0, descSA.m, descSA.m),
PLASMA_desc, plasma_desc_submatrix(descSX, 0, 0, descSA.m, descSX.n),
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_5(plasma_pcunmlq,
PLASMA_desc, descSA,
PLASMA_desc, descSX,
PLASMA_desc, descST,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
}
/* Convert SX back to double precision */
PLASMA_clag2z(descSX, descX);
/* Compute R = B - AX. */
printf("R = B - Ax\n"); fflush(stdout);
printf("R = B - Ax ... cpy\n"); fflush(stdout);
PLASMA_zlacpy(descB,descR);
printf("R = B - Ax ... gemm\n"); fflush(stdout);
plasma_parallel_call_9(plasma_pzgemm,
PLASMA_enum, PlasmaNoTrans,
PLASMA_enum, PlasmaNoTrans,
PLASMA_Complex64_t, negone,
PLASMA_desc, descA,
PLASMA_desc, descX,
PLASMA_Complex64_t, one,
PLASMA_desc, descR,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
/* Check whether the NRHS normwise backward error satisfies the
stopping criterion. If yes return. Note that ITER=0 (already set). */
printf("Norm of X and R\n"); fflush(stdout);
PLASMA_zlange(PlasmaInfNorm, descX, Xnorm, work);
PLASMA_zlange(PlasmaInfNorm, descR, Rnorm, work);
/* Wait the end of Anorm, Xnorm and Bnorm computations */
plasma_dynamic_sync();
cte = Anorm*eps*((double) N)*bwdmax;
if (Rnorm < Xnorm * cte){
/* The NRHS normwise backward errors satisfy the
stopping criterion. We are good to exit. */
plasma_desc_mat_free(&descSA);
plasma_desc_mat_free(&descST);
plasma_desc_mat_free(&descSX);
plasma_desc_mat_free(&descR);
plasma_shared_free(plasma, work);
return PLASMA_SUCCESS;
}
printf("Rnorm=%e, Xnorm * cte=%e, Rnorm=%e, cte=%e\n", Rnorm, Xnorm * cte, Rnorm, cte);
/* Iterative refinement */
for (iiter = 0; iiter < itermax; iiter++){
/* Convert R from double precision to single precision
and store the result in SX. */
PLASMA_zlag2c(descR, descSX);
/* Solve the system SA*SX = SR */
if (descSA.m >= descSA.n) {
plasma_parallel_call_5(plasma_pcunmqr,
PLASMA_desc, descSA,
PLASMA_desc, descSX,
PLASMA_desc, descST,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_9(plasma_pctrsm,
PLASMA_enum, PlasmaLeft,
PLASMA_enum, PlasmaUpper,
PLASMA_enum, PlasmaNoTrans,
PLASMA_enum, PlasmaNonUnit,
PLASMA_Complex32_t, 1.0,
PLASMA_desc, plasma_desc_submatrix(descSA, 0, 0, descSA.n, descSA.n),
PLASMA_desc, plasma_desc_submatrix(descSX, 0, 0, descSA.n, descSX.n),
PLASMA_sequence*, sequence,
PLASMA_request*, request);
} else {
plasma_parallel_call_9(plasma_pctrsm,
PLASMA_enum, PlasmaLeft,
PLASMA_enum, PlasmaLower,
PLASMA_enum, PlasmaNoTrans,
PLASMA_enum, PlasmaNonUnit,
PLASMA_Complex32_t, 1.0,
PLASMA_desc, plasma_desc_submatrix(descSA, 0, 0, descSA.m, descSA.m),
PLASMA_desc, plasma_desc_submatrix(descSX, 0, 0, descSA.m, descSX.n),
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_5(plasma_pcunmlq,
PLASMA_desc, descSA,
PLASMA_desc, descSX,
PLASMA_desc, descST,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
}
/* Convert SX back to double precision and update the current
iterate. */
PLASMA_clag2z(descSX, descR);
PLASMA_zgeadd(one, descR, descX);
/* Compute R = B - AX. */
PLASMA_zlacpy(descB,descR);
plasma_parallel_call_9(plasma_pzgemm,
PLASMA_enum, PlasmaNoTrans,
PLASMA_enum, PlasmaNoTrans,
PLASMA_Complex64_t, negone,
PLASMA_desc, descA,
PLASMA_desc, descX,
PLASMA_Complex64_t, one,
PLASMA_desc, descR,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
/* Check whether the NRHS normwise backward errors satisfy the
stopping criterion. If yes, set ITER=IITER>0 and return. */
PLASMA_zlange(PlasmaInfNorm, descX, Xnorm, work);
PLASMA_zlange(PlasmaInfNorm, descR, Rnorm, work);
/* Wait the end of Xnorm and Bnorm computations */
plasma_dynamic_sync();
printf("Rnorm=%e, Xnorm * cte=%e, Rnorm=%e, cte=%e\n", Rnorm, Xnorm * cte, Rnorm, cte);
if (Rnorm < Xnorm * cte){
/* The NRHS normwise backward errors satisfy the
stopping criterion. We are good to exit. */
*ITER = iiter;
plasma_desc_mat_free(&descSA);
plasma_desc_mat_free(&descST);
plasma_desc_mat_free(&descSX);
plasma_desc_mat_free(&descR);
plasma_shared_free(plasma, work);
return PLASMA_SUCCESS;
}
}
/* We have performed ITER=itermax iterations and never satisified
the stopping criterion, set up the ITER flag accordingly and
follow up on double precision routine. */
*ITER = -itermax - 1;
plasma_desc_mat_free(&descSA);
plasma_desc_mat_free(&descST);
plasma_desc_mat_free(&descSX);
plasma_desc_mat_free(&descR);
plasma_shared_free(plasma, work);
printf("Go back DOUBLE\n");
// END SPECIFIC
}
/* Single-precision iterative refinement failed to converge to a
satisfactory solution, so we resort to double precision. */
PLASMA_zlacpy(descB, descX);
if (descA.m >= descA.n) {
plasma_parallel_call_4(plasma_pzgeqrf,
PLASMA_desc, descA,
PLASMA_desc, descT,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_5(plasma_pzunmqr,
PLASMA_desc, descA,
PLASMA_desc, descX,
PLASMA_desc, descT,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_9(plasma_pztrsm,
PLASMA_enum, PlasmaLeft,
PLASMA_enum, PlasmaUpper,
PLASMA_enum, PlasmaNoTrans,
PLASMA_enum, PlasmaNonUnit,
PLASMA_Complex64_t, 1.0,
PLASMA_desc, plasma_desc_submatrix(descA, 0, 0, descA.n, descA.n),
PLASMA_desc, plasma_desc_submatrix(descX, 0, 0, descA.n, descX.n),
PLASMA_sequence*, sequence,
PLASMA_request*, request);
}
else {
plasma_parallel_call_3(plasma_pztile_zero,
PLASMA_desc, plasma_desc_submatrix(descX, descA.m, 0, descA.n-descA.m, descX.n),
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_4(plasma_pzgelqf,
PLASMA_desc, descA,
PLASMA_desc, descT,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_9(plasma_pztrsm,
PLASMA_enum, PlasmaLeft,
PLASMA_enum, PlasmaLower,
PLASMA_enum, PlasmaNoTrans,
PLASMA_enum, PlasmaNonUnit,
PLASMA_Complex64_t, 1.0,
PLASMA_desc, plasma_desc_submatrix(descA, 0, 0, descA.m, descA.m),
PLASMA_desc, plasma_desc_submatrix(descX, 0, 0, descA.m, descX.n),
PLASMA_sequence*, sequence,
PLASMA_request*, request);
plasma_parallel_call_5(plasma_pzunmlq,
PLASMA_desc, descA,
PLASMA_desc, descX,
PLASMA_desc, descT,
PLASMA_sequence*, sequence,
PLASMA_request*, request);
}
return PLASMA_SUCCESS;
}
|
// Copyright 2016 Peter Jankuliak
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <boost/uuid/uuid_generators.hpp>
#include <boost/range/adaptor/map.hpp>
#include <boost/range/adaptor/indirected.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include "club/hub.h"
#include "node.h"
#include "binary/encoder.h"
#include "binary/dynamic_encoder.h"
#include "binary/serialize/uuid.h"
#include "binary/serialize/list.h"
#include "message.h"
#include "protocol_versions.h"
#include "stun_client.h"
#include <chrono>
#include <iostream>
#include "get_external_port.h"
#include "connection_graph.h"
#include "broadcast_routing_table.h"
#include "log.h"
#include "seen_messages.h"
#include <club/socket.h>
#include "reliable_exchange.h"
using namespace club;
using std::shared_ptr;
using std::make_shared;
using std::make_pair;
using std::pair;
using std::vector;
using std::move;
using std::set;
using boost::asio::ip::udp;
using boost::adaptors::map_values;
using boost::adaptors::map_keys;
using boost::adaptors::indirected;
using boost::adaptors::reversed;
using boost::system::error_code;
namespace ip = boost::asio::ip;
#include <club/debug/log.h>
#define USE_LOG 0
#if USE_LOG
# define IF_USE_LOG(a) a
# define LOG(...) club::log("CLUB: ", _id, " ", __VA_ARGS__)
# define LOG_(...) club::log("CLUB: ", _id, " ", __VA_ARGS__)
#else
# define IF_USE_LOG(a)
# define LOG(...) do {} while(0)
# define LOG_(...) club::log("CLUB: ", _id, " ", __VA_ARGS__)
#endif
// -----------------------------------------------------------------------------
template<class Message>
shared_ptr<vector<uint8_t>> encode_message(const Message& msg) {
binary::dynamic_encoder<uint8_t> e;
e.put(Message::type());
e.put(msg);
return make_shared<vector<uint8_t>>(e.move_data());
}
shared_ptr<vector<uint8_t>> encode_message(const LogMessage& msg) {
return match( msg
, [](const Fuse& m) { return encode_message(m); }
, [](const PortOffer& m) { return encode_message(m); }
, [](const UserData& m) { return encode_message(m); });
}
// -----------------------------------------------------------------------------
static Graph<uuid> single_node_graph(const uuid& id) {
Graph<uuid> g;
g.nodes.insert(id);
return g;
}
// -----------------------------------------------------------------------------
template<class F>
struct Callback {
F func;
bool was_reset;
template<class... Args> void operator()(Args&&... args) {
// Calling a callback may try to replace itself with another function
// (or nullptr), this could destroy the original function's captured
// variables. We preserve them by temporarily moving them to a local
// variable.
was_reset = false;
auto f = std::move(func);
f(std::forward<Args>(args)...);
if (!was_reset) { func = std::move(f); }
}
void reset(F f) {
was_reset = true;
func = std::move(f);
}
operator bool() const { return (bool) func; }
};
struct hub::Callbacks : public std::enable_shared_from_this<hub::Callbacks> {
Callback<OnInsert> _on_insert;
Callback<OnRemove> _on_remove;
Callback<OnReceive> _on_receive;
Callback<OnReceiveUnreliable> _on_receive_unreliable;
Callback<OnDirectConnect> _on_direct_connect;
template<class... Args>
void on_insert(Args&&... args) {
safe_exec(_on_insert, std::forward<Args>(args)...);
}
template<class... Args>
void on_remove(Args&&... args) {
safe_exec(_on_remove, std::forward<Args>(args)...);
}
template<class... Args>
void on_receive(Args&&... args) {
safe_exec(_on_receive, std::forward<Args>(args)...);
}
template<class... Args>
void on_receive_unreliable(Args&&... args) {
safe_exec(_on_receive_unreliable, std::forward<Args>(args)...);
}
template<class... Args>
void on_direct_connect(Args&&... args) {
safe_exec(_on_direct_connect, std::forward<Args>(args)...);
}
template<class F, class... Args>
void safe_exec(F& f, Args&&... args) {
if (!f) return;
auto self = shared_from_this();
f(std::forward<Args>(args)...);
}
};
// -----------------------------------------------------------------------------
hub::hub(boost::asio::io_service& ios)
: _callbacks(std::make_shared<Callbacks>())
, _io_service(ios)
, _work(new Work(_io_service))
, _id(boost::uuids::random_generator()())
, _log(new Log())
, _time_stamp(0)
, _broadcast_routing_table(new BroadcastRoutingTable(_id))
, _was_destroyed(make_shared<bool>(false))
, _seen(new SeenMessages())
{
LOG("Created");
_nodes[_id] = std::unique_ptr<Node>(new Node(this, _id));
_log->last_commit_op = _id;
_configs.emplace(MessageId(_time_stamp, _id), set<uuid>{_id});
_broadcast_routing_table->recalculate(single_node_graph(_id));
}
// -----------------------------------------------------------------------------
void hub::fuse(Socket&& xsocket, const OnFused& on_fused) {
using boost::asio::buffer;
using namespace boost::asio::error;
auto socket = make_shared<Socket>(move(xsocket));
static const size_t buffer_size = sizeof(NET_PROTOCOL_VERSION) + sizeof(_id);
binary::dynamic_encoder<uint8_t> e(buffer_size);
e.put(NET_PROTOCOL_VERSION);
e.put(_id);
auto was_destroyed = _was_destroyed;
LOG("fusing ", _nodes | map_keys);
reliable_exchange(e.move_data(), *socket,
[this, socket, on_fused, was_destroyed]
(error_code error, boost::asio::const_buffer buffer) {
if (*was_destroyed) return;
auto fusion_failed = [&](error_code error, const char* /*msg*/) {
socket->close();
on_fused(error, uuid());
};
if (error) return fusion_failed(error, "socket error");
binary::decoder d( boost::asio::buffer_cast<const uint8_t*>(buffer)
, boost::asio::buffer_size(buffer));
auto his_protocol_version = d.get<decltype(NET_PROTOCOL_VERSION)>();
auto his_id = d.get<uuid>();
if (d.error()) {
return fusion_failed(connection_refused, "invalid data");
}
if (his_protocol_version != NET_PROTOCOL_VERSION) {
return fusion_failed(no_protocol_option, "protocol michmatch");
}
ASSERT(_id != his_id);
if (_id == his_id) {
return fusion_failed(already_connected, "sender is myself");
}
LOG(socket->local_endpoint().port(), " Exchanged ID with ", his_id);
auto n = find_node(his_id);
if (n) {
n->assign_socket(move(socket));
}
else {
n = &insert_node(his_id, move(socket));
}
auto fuse_msg = construct_ackable<Fuse>(his_id);
broadcast(fuse_msg);
add_log_entry(move(fuse_msg));
//LOG_("fused with ", his_id, " ;sent ", sync);
add_connection(this_node(), his_id, n->address());
if (destroys_this([&]() { on_fused(error_code(), his_id); })) {
return;
}
commit_what_was_seen_by_everyone();
});
}
// -----------------------------------------------------------------------------
void hub::total_order_broadcast(Bytes data) {
auto msg = construct_ackable<UserData>(move(data));
broadcast(msg);
add_log_entry(move(msg));
auto was_destroyed = _was_destroyed;
_io_service.post([=]() {
if (*was_destroyed) return;
commit_what_was_seen_by_everyone();
});
}
// -----------------------------------------------------------------------------
void hub::add_connection(Node& from, uuid to, ip::address addr) {
ASSERT(from.peers.count(to) == 0);
from.peers[to] = Node::Peer({addr});
}
// -----------------------------------------------------------------------------
void hub::on_peer_connected(const Node& node) {
// TODO
}
// -----------------------------------------------------------------------------
void hub::on_peer_disconnected(const Node& node, std::string reason) {
auto fuse_msg = construct_ackable<Fuse>(node.id);
broadcast(fuse_msg);
add_log_entry(move(fuse_msg));
commit_what_was_seen_by_everyone();
}
// -----------------------------------------------------------------------------
void hub::process(Node&, Ack msg) {
_log->apply_ack(original_poster(msg), move(msg.ack_data));
}
// -----------------------------------------------------------------------------
void hub::process(Node& op, Fuse msg) {
ASSERT(original_poster(msg) != _id);
auto msg_id = message_id(msg);
add_log_entry(move(msg));
auto fuse_entry = _log->find_highest_fuse_entry();
if (fuse_entry) {
if (msg_id >= message_id(fuse_entry->message)) {
broadcast(construct_ack(msg_id));
commit_what_was_seen_by_everyone();
}
}
else {
broadcast(construct_ack(msg_id));
commit_what_was_seen_by_everyone();
}
}
// -----------------------------------------------------------------------------
void hub::process(Node& op, PortOffer msg) {
if (msg.addressor != _id) { return; }
LOG("Got port offer: ", msg);
op.set_remote_port( msg.internal_port
, msg.external_port);
}
// -----------------------------------------------------------------------------
void hub::process(Node&, UserData msg) {
broadcast(construct_ack(message_id(msg)));
add_log_entry(move(msg));
}
// -----------------------------------------------------------------------------
static Graph<uuid> acks_to_graph(const std::map<uuid, AckData>& acks) {
Graph<uuid> g;
for (const auto& pair : acks) {
g.nodes.insert(pair.first);
for (const auto& peer : pair.second.neighbors) {
g.add_edge(pair.first, peer);
}
}
return g;
}
// -----------------------------------------------------------------------------
struct Diff {
using Set = std::set<uuid>;
Set removed;
Set added;
static Set set_difference(const Set& from, const Set& to) {
Set result;
std::set_difference( from.begin(), from.end()
, to.begin(), to.end()
, std::inserter(result, result.begin()));
return result;
}
Diff(const std::set<uuid>& from, const std::set<uuid>& to)
: removed(set_difference(from, to))
, added(set_difference(to, from))
{ }
};
// -----------------------------------------------------------------------------
void hub::on_commit_fuse(LogEntry entry) {
if (!entry.acked_by_quorum()) return;
auto new_graph = acks_to_graph(entry.acks);
_broadcast_routing_table->recalculate(new_graph);
LOG("Commit config: ", entry.message_id(), ": ", new_graph);
ASSERT(!_configs.empty());
auto prev_quorum = _configs.rbegin()->second;
Diff diff(prev_quorum, entry.quorum);
_configs.emplace(entry.message_id(), std::move(entry.quorum));
// Forget about the lost nodes
for (auto id : diff.removed) {
_seen->forget_messages_from_user(id);
_nodes.erase(id);
}
if (!diff.added.empty()) {
if (destroys_this([&]() { _callbacks->on_insert(move(diff.added)); })) {
return;
}
}
if (!diff.removed.empty()) {
if (destroys_this([&]() { _callbacks->on_remove(move(diff.removed)); })) {
return;
}
}
}
// -----------------------------------------------------------------------------
template<class Message> void hub::on_recv(Node& IF_USE_LOG(proxy), Message msg) {
#if USE_LOG
# define ON_RECV_LOG(...) \
if (true || Message::type() == port_offer) { \
LOG("Recv(", proxy.id, "): ", __VA_ARGS__); \
}
#else
# define ON_RECV_LOG(...) do {} while(0)
#endif // if USE_LOG
msg.header.visited.insert(_id);
auto op_id = original_poster(msg);
auto op = find_node(op_id);
//LOG_("Received ", msg);
//debug("received: ", msg);
if (_seen->is_in(message_id(msg))) {
ON_RECV_LOG(msg, " (ignored: already seen ", message_id(msg), ")");
return;
}
_seen->insert(message_id(msg));
_time_stamp = std::max(_time_stamp, msg.header.time_stamp);
if (!op) {
ON_RECV_LOG(msg, " (unknown node: creating one)");
op = &insert_node(op_id);
}
// Peers shouldn't broadcast to us back our own messages.
ASSERT(op_id != _id);
if (op_id == _id) {
ON_RECV_LOG(msg, " (ignored: is our own message)");
return;
}
ON_RECV_LOG(msg);
broadcast(msg);
if (destroys_this([&]() { process(*op, move(msg)); })) {
return;
}
commit_what_was_seen_by_everyone();
}
// -----------------------------------------------------------------------------
template<class Message>
void hub::parse_message(Node& proxy, binary::decoder& decoder) {
auto msg = decoder.get<Message>();
if (decoder.error()) return;
ASSERT(!msg.header.visited.empty());
on_recv<Message>(proxy, move(msg));
ASSERT(msg.header.visited.empty());
}
// -----------------------------------------------------------------------------
void hub::on_recv_raw(Node& proxy, boost::asio::const_buffer& buffer) {
binary::decoder decoder( boost::asio::buffer_cast<const uint8_t*>(buffer)
, boost::asio::buffer_size(buffer));
auto msg_type = decoder.get<MessageType>();
switch (msg_type) {
case ::club::fuse: parse_message<Fuse> (proxy, decoder); break;
case port_offer: parse_message<PortOffer> (proxy, decoder); break;
case user_data: parse_message<UserData> (proxy, decoder); break;
case ack: parse_message<Ack> (proxy, decoder); break;
default: decoder.set_error();
}
if (decoder.error()) {
ASSERT(0 && "Error parsing message");
proxy.disconnect();
}
}
// -----------------------------------------------------------------------------
void hub::commit_what_was_seen_by_everyone() {
const LogEntry* last_committable_fuse = nullptr;
ASSERT(!_configs.empty());
auto live_nodes = _configs.rbegin()->second;
for (auto& e : *_log | reversed | map_values) {
if (e.message_type() == ::club::fuse && e.acked_by_quorum()) {
last_committable_fuse = &e;
live_nodes = e.quorum;
break;
}
}
#if USE_LOG
{
LOG("Checking what can be commited");
LOG(" Last committed: ", str(_log->last_committed));
LOG(" Last committed fuse: ", str(_log->last_fuse_commit));
LOG(" Live nodes: ", str(live_nodes));
LOG(" Entries:");
for (const auto& e : *_log | map_values) {
LOG(" ", e);
}
}
#endif
auto entry_j = _log->begin();
auto was_destroyed = _was_destroyed;
for ( auto entry_i = entry_j
; entry_i != _log->end()
; entry_i = entry_j)
{
entry_j = next(entry_i);
auto& entry = entry_i->second;
//------------------------------------------------------
if (entry.message_type() == ::club::fuse) {
// NOTE: Committable in the context of this function means that
// a quorum of a message is equal of the set of nodes that acked it.
if (last_committable_fuse) {
// TODO: The code here is supposed to erase all messages concurrent
// to last_committable_fuse. But it may also erase a fuse message
// that causally precedes last_committable_fuse. How do I distinguish
// between the two? Or alternatively, is it OK if I erase those as
// well?
if (entry.message_id() < last_committable_fuse->message_id()) {
if (!entry.acked_by_quorum(live_nodes)) {
_log->last_committed = message_id(entry_i->second.message);
_log->last_commit_op = original_poster(entry_i->second.message);
_log->erase(entry_i);
continue;
}
}
else {
if (entry.message_id() != last_committable_fuse->message_id()) {
break;
}
}
}
else {
// It is a fuse message, but we know it isn't committable.
break;
}
}
else {
if (!entry.acked_by_quorum(live_nodes)) {
break;
}
}
//------------------------------------------------------
if (!entry.predecessors.empty()) {
auto i = entry.predecessors.rbegin();
for (; i != entry.predecessors.rend(); ++i) {
if (i->first == _log->last_committed) break;
if (_configs.count(config_id(entry.message)) == 0) continue;
break;
}
if (i != entry.predecessors.rend()) {
LOG(" Predecessor: ", str(*i));
if (i->first != _log->last_committed && i->first > _log->last_fuse_commit) {
LOG(" entry.predecessor != _log.last_committed "
, i->first, " != ", _log->last_committed);
break;
}
}
}
//------------------------------------------------------
if (&entry_i->second == last_committable_fuse) {
last_committable_fuse = nullptr;
}
LOG(" Committing: ", entry);
auto e = move(entry_i->second);
_log->erase(entry_i);
_seen->seen_everything_up_to(message_id(e.message));
if (e.message_type() == ::club::fuse) {
_log->last_fuse_commit = message_id(e.message);
}
_log->last_committed = message_id(e.message);
_log->last_commit_op = original_poster(e.message);
commit(move(e));
if (*was_destroyed) return;
}
}
// -----------------------------------------------------------------------------
hub::~hub() {
_work.reset();
*_was_destroyed = true;
}
// -----------------------------------------------------------------------------
template<class Message>
void hub::add_log_entry(Message message) {
LOG("Adding entry for message: ", message);
if(message_id(message) <= _log->last_committed) {
if (Message::type() != ::club::fuse) {
LOG_("!!! message_id(message) should be > than _log.last_committed");
LOG_("!!! message_id(message) = ", message_id(message));
LOG_("!!! _log.last_committed = ", _log->last_committed);
for (const auto& d : debug_log) {
LOG_("!!! ", d);
}
ASSERT(0);
return;
}
}
_log->insert_entry(LogEntry(move(message)));
}
//------------------------------------------------------------------------------
template<class Message, class... Args>
Message hub::construct(Args&&... args) {
ASSERT(!_configs.empty());
// TODO: The _id argument in `visited` member is redundant.
return Message( Header{ _id
, ++_time_stamp
, _configs.rbegin()->first
, boost::container::flat_set<uuid>{_id}
}
, std::forward<Args>(args)...);
}
//------------------------------------------------------------------------------
template<class Message, class... Args>
Message hub::construct_ackable(Args&&... args) {
ASSERT(!_configs.empty());
++_time_stamp;
auto m_id = MessageId(_time_stamp, _id);
const auto& predecessor_id = _log->get_predecessor_time(m_id);
// TODO: m_id here is redundant, can be calculated from header.
AckData ack_data { move(m_id)
, move(predecessor_id)
, neighbors() };
// TODO: The _id argument in `visited` member is redundant.
return Message( Header{ _id
, _time_stamp
, _configs.rbegin()->first
, boost::container::flat_set<uuid>{_id}
}
, move(ack_data)
, std::forward<Args>(args)...);
}
// -----------------------------------------------------------------------------
Ack hub::construct_ack(const MessageId& msg_id) {
const auto& predecessor_id = _log->get_predecessor_time(msg_id);
auto ack = construct<Ack>
( msg_id
, predecessor_id
, neighbors());
// We don't receive our own message back, so need to apply it manually.
_log->apply_ack(_id, ack.ack_data);
return ack;
}
//------------------------------------------------------------------------------
template<class Message> void hub::broadcast(const Message& msg) {
//debug("broadcasting: ", msg);
auto data = encode_message(msg);
for (auto& node : _nodes | map_values | indirected) {
if (node.id == _id) continue;
if (!node.is_connected()) {
LOG(" skipped: ", node.id, " (not connected)");
continue;
}
bool already_visited = msg.header.visited.count(node.id) != 0;
if (already_visited) {
continue;
}
ASSERT(original_poster(msg) != node.id &&
"Why are we sending the message back?");
node.send(data);
}
}
// -----------------------------------------------------------------------------
void hub::unreliable_broadcast(Bytes payload, std::function<void()> handler) {
using std::make_pair;
using boost::asio::const_buffer;
// Encoding std::vector adds 4 bytes for size.
auto bytes = make_shared<Bytes>(uuid::static_size() + payload.size() + 4);
auto counter = make_shared<size_t>(0);
// TODO: Unfortunately, ConnectedSocket doesn't support sending multiple
// buffers at once (yet?), so we need to *copy* the payload into one buffer.
binary::encoder e(reinterpret_cast<uint8_t*>(bytes->data()), bytes->size());
e.put(_id);
e.put(payload);
ASSERT(!e.error());
for (auto& node : _nodes | map_values | indirected) {
if (node.id == _id || !node.is_connected()) continue;
++(*counter);
const_buffer b(bytes->data(), bytes->size());
node.send_unreliable(b, [counter, bytes, handler](auto /* error */) {
if (--(*counter) == 0) handler();
});
}
if (*counter == 0) {
get_io_service().post(move(handler));
}
}
// -----------------------------------------------------------------------------
void hub::node_received_unreliable_broadcast(boost::asio::const_buffer buffer) {
namespace asio = boost::asio;
using boost::asio::const_buffer;
auto start = asio::buffer_cast<const uint8_t*>(buffer);
auto size = asio::buffer_size(buffer);
binary::decoder d(start, size);
auto source = d.get<uuid>();
if (d.error() || _nodes.count(source) == 0) {
return;
}
auto shared_bytes = make_shared<Bytes>(start, start + size);
// Rebroadcast
for (const auto& id : _broadcast_routing_table->get_targets(source)) {
auto node = find_node(id);
if (!node || !node->is_connected()) continue;
node->send_unreliable( const_buffer( shared_bytes->data()
, shared_bytes->size() )
, [shared_bytes](auto /* error */) {});
}
_callbacks->on_receive_unreliable( source
, const_buffer( d.current() + 4
, d.size() - 4));
}
// -----------------------------------------------------------------------------
boost::container::flat_set<uuid> hub::neighbors() const {
size_t size = 1;
for (auto& node : _nodes | map_values | indirected) {
if (node.id == _id) continue;
if (node.is_connected()) {
++size;
}
}
boost::container::flat_set<uuid> lc;
lc.reserve(size);
lc.insert(_id);
for (auto& node : _nodes | map_values | indirected) {
if (node.id == _id) continue;
if (node.is_connected()) {
lc.insert(node.id);
}
}
return lc;
}
// -----------------------------------------------------------------------------
//void hub::broadcast_port_offer_to(Node& node, Address addr) {
// auto was_destroyed = _was_destroyed;
//
// auto node_id = node.id;
//
// if (addr.is_loopback()) {
// // If the remote address is on our PC, then there is no need
// // to send him our external address.
// // TODO: Remove code duplication.
// // TODO: Similar optimization when the node is on local LAN.
// _io_service.post([=]{
// if (*was_destroyed) return;
//
// auto node = find_node(node_id);
//
// if (!node || node->is_connected()) return;
//
// udp::socket udp_socket(_io_service, udp::endpoint(udp::v4(), 0));
// uint16_t internal_port = udp_socket.local_endpoint().port();
// uint16_t external_port = 0;
//
// auto socket = make_shared<Socket>(std::move(udp_socket));
// node->set_remote_address(move(socket), addr);
//
// broadcast(construct<PortOffer>( node_id
// , internal_port
// , external_port));
// });
// return;
// }
//
// _stun_requests.emplace_back(nullptr);
// auto iter = std::prev(_stun_requests.end());
//
// iter->reset(new GetExternalPort(_io_service
// , std::chrono::seconds(2)
// , [=] ( error_code error
// , udp::socket udp_socket
// , udp::endpoint reflexive_ep) {
// if (*was_destroyed) return;
//
// _stun_requests.erase(iter);
//
// auto node = find_node(node_id);
//
// if (!node || node->is_connected()) return;
//
// uint16_t internal_port = udp_socket.local_endpoint().port();
// uint16_t external_port = reflexive_ep.port();
//
// auto socket = make_shared<Socket>(std::move(udp_socket));
// node->set_remote_address(move(socket), addr);
//
// broadcast(construct<PortOffer>( node_id
// , internal_port
// , external_port));
// }));
//}
// -----------------------------------------------------------------------------
template<class F>
bool hub::destroys_this(F f) {
auto was_destroyed = _was_destroyed;
f();
return *was_destroyed;
}
// -----------------------------------------------------------------------------
hub::Address hub::find_address_to(uuid id) const {
ConnectionGraph g;
for (const auto& node : _nodes | map_values | indirected) {
if (node.id == _id) continue;
auto addr = node.address();
if (!addr.is_unspecified()) {
g.add_connection(_id, node.id, addr);
}
for (const auto& peer_id_info : node.peers) {
auto peer_id = peer_id_info.first;
auto peer_addr = peer_id_info.second.address;
g.add_connection(node.id, peer_id, peer_addr);
}
}
return g.find_address(_id, id);
}
// -----------------------------------------------------------------------------
inline Node& hub::this_node() {
// TODO: We can store this node instead of searching the rb-tree
// each time.
return *_nodes[_id];
}
// -----------------------------------------------------------------------------
inline
Node& hub::insert_node(uuid id) {
auto node = std::unique_ptr<Node>(new Node(this, id));
auto ret = node.get();
_nodes.insert(std::make_pair(id, move(node)));
return *ret;
}
// -----------------------------------------------------------------------------
inline
Node& hub::insert_node(uuid id, shared_ptr<Socket> socket) {
auto node = std::unique_ptr<Node>(new Node(this, id, move(socket)));
auto ret = node.get();
_nodes.insert(std::make_pair(id, move(node)));
return *ret;
}
// -----------------------------------------------------------------------------
inline
Node* hub::find_node(uuid id) {
auto i = _nodes.find(id);
if (i == _nodes.end()) return nullptr;
return i->second.get();
}
inline
const Node* hub::find_node(uuid id) const {
auto i = _nodes.find(id);
if (i == _nodes.end()) return nullptr;
return i->second.get();
}
// -----------------------------------------------------------------------------
void hub::commit(LogEntry&& entry) {
struct Visitor {
hub& h;
LogEntry& entry;
Visitor(hub& h, LogEntry& entry) : h(h), entry(entry) {}
void operator () (Fuse& m) const {
h.commit_fuse(std::move(entry));
}
void operator () (PortOffer&) const {
ASSERT(0 && "TODO");
}
void operator () (UserData& m) const {
h.commit_user_data(original_poster(m), std::move(m.data));
}
};
boost::apply_visitor(Visitor(*this, entry), entry.message);
}
inline
void hub::commit_user_data(uuid op, std::vector<char>&& data) {
if (!find_node(op)) return;
_callbacks->on_receive(op, move(data));
}
inline
void hub::commit_fuse(LogEntry&& entry) {
on_commit_fuse(move(entry));
}
// -----------------------------------------------------------------------------
void hub::on_insert(OnInsert f) {
_callbacks->_on_insert.reset(std::move(f));
}
void hub::on_remove(OnRemove f) {
_callbacks->_on_remove.reset(std::move(f));
}
void hub::on_receive(OnReceive f) {
_callbacks->_on_receive.reset(std::move(f));
}
void hub::on_receive_unreliable(OnReceiveUnreliable f) {
_callbacks->_on_receive_unreliable.reset(std::move(f));
}
void hub::on_direct_connect(OnDirectConnect f) {
_callbacks->_on_direct_connect.reset(std::move(f));
}
// -----------------------------------------------------------------------------
template<class T>
inline
void debug_(std::stringstream& os, std::list<std::string>& debug_log, T&& arg) {
os << arg;
debug_log.push_back(os.str());
}
template<class T, class... Ts>
inline
void debug_(std::stringstream& os, std::list<std::string>& debug_log, T&& arg, Ts&&... args) {
os << arg;
debug_(os, debug_log, std::forward<Ts>(args)...);
}
template<class... Ts>
inline
void hub::debug(Ts&&... args) {
std::stringstream ss;
debug_(ss, debug_log, std::forward<Ts>(args)...);
}
|
open import Relation.Binary.Core
module PLRTree.DropLast.Heap {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import PLRTree {A}
open import PLRTree.Drop _≤_ tot≤
open import PLRTree.Heap _≤_
lemma-dropLast-≤* : {x : A}{t : PLRTree} → x ≤* t → x ≤* dropLast t
lemma-dropLast-≤* {x} (lf≤* .x) = lf≤* x
lemma-dropLast-≤* (nd≤* {perfect} {x} {y} {l} {r} x≤y x≤*l x≤*r)
with r
... | leaf = x≤*r
... | node _ _ _ _ = nd≤* x≤y x≤*l (lemma-dropLast-≤* x≤*r)
lemma-dropLast-≤* (nd≤* {left} {x} {y} {l} {r} x≤y x≤*l x≤*r)
with l | x≤*l | dropLast l | lemma-dropLast-≤* x≤*l
... | leaf | _ | _ | _ = lf≤* x
... | node perfect _ _ _ | _ | node perfect y' l' r' | x≤*dll = nd≤* x≤y x≤*dll x≤*r
... | node perfect _ _ _ | _ | leaf | (lf≤* .x) = nd≤* x≤y (lf≤* x) x≤*r
... | node perfect _ _ _ | _ | node left _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r
... | node perfect _ _ _ | _ | node right _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r
... | node left _ _ _ | _ | node perfect y' l' r' | x≤*dll = nd≤* x≤y x≤*dll x≤*r
... | node left _ _ _ | _ | leaf | (lf≤* .x) = nd≤* x≤y (lf≤* x) x≤*r
... | node left _ _ _ | _ | node left _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r
... | node left _ _ _ | _ | node right _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r
... | node right _ _ _ | _ | node perfect y' l' r' | x≤*dll = nd≤* x≤y x≤*dll x≤*r
... | node right _ _ _ | _ | leaf | (lf≤* .x) = nd≤* x≤y (lf≤* x) x≤*r
... | node right _ _ _ | _ | node left _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r
... | node right _ _ _ | _ | node right _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r
lemma-dropLast-≤* (nd≤* {right} {x} {y} {l} {r} x≤y x≤*l x≤*r)
with r
... | leaf = nd≤* x≤y x≤*r x≤*r
... | node perfect y' l' r' = nd≤* x≤y (lemma-dropLast-≤* x≤*l) x≤*r
... | node left _ _ _ = nd≤* x≤y x≤*l (lemma-dropLast-≤* x≤*r)
... | node right _ _ _ = nd≤* x≤y x≤*l (lemma-dropLast-≤* x≤*r)
lemma-dropLast-heap : {t : PLRTree} → Heap t → Heap (dropLast t)
lemma-dropLast-heap leaf = leaf
lemma-dropLast-heap (node {perfect} {x} {l} {r} x≤*l x≤*r hl hr)
with r
... | leaf = hr
... | node _ _ _ _ = node x≤*l (lemma-dropLast-≤* x≤*r) hl (lemma-dropLast-heap hr)
lemma-dropLast-heap (node {left} {x} {l} {r} x≤*l x≤*r hl hr)
with l | x≤*l | hl | dropLast l | lemma-dropLast-≤* x≤*l | lemma-dropLast-heap hl
... | leaf | _ | _ | _ | _ | _ = leaf
... | node perfect _ _ _ | _ | _ | node perfect y' l' r' | x≤*dll | hdll = node x≤*dll x≤*r hdll hr
... | node perfect _ _ _ | _ | _ | leaf | (lf≤* .x) | leaf = node (lf≤* x) x≤*r leaf hr
... | node perfect _ _ _ | _ | _ | node left _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr
... | node perfect _ _ _ | _ | _ | node right _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr
... | node left _ _ _ | _ | _ | node perfect y' l' r' | x≤*dll | hdll = node x≤*dll x≤*r hdll hr
... | node left _ _ _ | _ | _ | leaf | (lf≤* .x) | leaf = node (lf≤* x) x≤*r leaf hr
... | node left _ _ _ | _ | _ | node left _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr
... | node left _ _ _ | _ | _ | node right _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr
... | node right _ _ _ | _ | _ | node perfect y' l' r' | x≤*dll | hdll = node x≤*dll x≤*r hdll hr
... | node right _ _ _ | _ | _ | leaf | (lf≤* .x) | leaf = node (lf≤* x) x≤*r leaf hr
... | node right _ _ _ | _ | _ | node left _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr
... | node right _ _ _ | _ | _ | node right _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr
lemma-dropLast-heap (node {right} {x} {l} {r} x≤*l x≤*r hl hr)
with r
... | leaf = node x≤*r x≤*r hr hr
... | node perfect y' l' r' = node (lemma-dropLast-≤* x≤*l) x≤*r (lemma-dropLast-heap hl) hr
... | node left _ _ _ = node x≤*l (lemma-dropLast-≤* x≤*r) hl (lemma-dropLast-heap hr)
... | node right _ _ _ = node x≤*l (lemma-dropLast-≤* x≤*r) hl (lemma-dropLast-heap hr)
|
[STATEMENT]
lemma less_bot_Bot_Value_code [code]: "Bot < Value x \<longleftrightarrow> True"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (Bot < Value x) = True
[PROOF STEP]
by simp |
-- SPDX-FileCopyrightText: 2021 The ipkg-idr developers
--
-- SPDX-License-Identifier: MPL-2.0
module Language.IPKG.Value
import Data.List
import Data.List1
import Data.Strings
public export
Identifier : Type
Identifier = String
public export
ModuleIdent : Type
ModuleIdent = List1 Identifier
public export
record PkgDesc where
constructor MkPkgDesc
name : Identifier
version : String -- TODO should be a proper type
authors : String
maintainers : Maybe String
license : Maybe String
brief : Maybe String
readme : Maybe String
homepage : Maybe String
sourceloc : Maybe String
bugtracker : Maybe String
depends : List Identifier -- packages to add to search path
modules : List ModuleIdent -- modules to install (namespace, filename)
mainmod : Maybe ModuleIdent -- main file (i.e. file to load at REPL)
executable : Maybe String -- name of executable
options : Maybe String
sourcedir : Maybe String
builddir : Maybe String
outputdir : Maybe String
prebuild : Maybe String -- Script to run before building
postbuild : Maybe String -- Script to run after building
preinstall : Maybe String -- Script to run after building, before installing
postinstall : Maybe String -- Script to run after installing
preclean : Maybe String -- Script to run before cleaning
postclean : Maybe String -- Script to run after cleaning
private
showModule : ModuleIdent -> String
showModule m = fastConcat . intersperse "." $ forget m
export
Show PkgDesc where
show pkg = "Package: " ++ name pkg ++ "\n" ++
"Version: " ++ version pkg ++ "\n" ++
"Authors: " ++ authors pkg ++ "\n" ++
maybe "" (\m => "Maintainers: " ++ m ++ "\n") (maintainers pkg) ++
maybe "" (\m => "License: " ++ m ++ "\n") (license pkg) ++
maybe "" (\m => "Brief: " ++ m ++ "\n") (brief pkg) ++
maybe "" (\m => "ReadMe: " ++ m ++ "\n") (readme pkg) ++
maybe "" (\m => "HomePage: " ++ m ++ "\n") (homepage pkg) ++
maybe "" (\m => "SourceLoc: " ++ m ++ "\n") (sourceloc pkg) ++
maybe "" (\m => "BugTracker: " ++ m ++ "\n") (bugtracker pkg) ++
"Depends: " ++ show (depends pkg) ++ "\n" ++
"Modules: " ++ show (map showModule $ modules pkg) ++ "\n" ++
maybe "" (\m => "Main: " ++ showModule m ++ "\n") (mainmod pkg) ++
maybe "" (\m => "Exec: " ++ m ++ "\n") (executable pkg) ++
maybe "" (\m => "Opts: " ++ m ++ "\n") (options pkg) ++
maybe "" (\m => "SourceDir: " ++ m ++ "\n") (sourcedir pkg) ++
maybe "" (\m => "BuildDir: " ++ m ++ "\n") (builddir pkg) ++
maybe "" (\m => "OutputDir: " ++ m ++ "\n") (outputdir pkg) ++
maybe "" (\m => "Prebuild: " ++ m ++ "\n") (prebuild pkg) ++
maybe "" (\m => "Postbuild: " ++ m ++ "\n") (postbuild pkg) ++
maybe "" (\m => "Preinstall: " ++ m ++ "\n") (preinstall pkg) ++
maybe "" (\m => "Postinstall: " ++ m ++ "\n") (postinstall pkg) ++
maybe "" (\m => "Preclean: " ++ m ++ "\n") (preclean pkg) ++
maybe "" (\m => "Postclean: " ++ m ++ "\n") (postclean pkg) |
From F_mu_ref_conc_sub Require Export lang fundamental_binary.
Export F_mu_ref_conc.
Inductive ctx_item :=
| CTX_Rec
| CTX_AppL (e2 : expr)
| CTX_AppR (e1 : expr)
(* Products *)
| CTX_PairL (e2 : expr)
| CTX_PairR (e1 : expr)
| CTX_Fst
| CTX_Snd
(* Sums *)
| CTX_InjL
| CTX_InjR
| CTX_CaseL (e1 : expr) (e2 : expr)
| CTX_CaseM (e0 : expr) (e2 : expr)
| CTX_CaseR (e0 : expr) (e1 : expr)
(* Nat bin op *)
| CTX_BinOpL (op : binop) (e2 : expr)
| CTX_BinOpR (op : binop) (e1 : expr)
(* If *)
| CTX_IfL (e1 : expr) (e2 : expr)
| CTX_IfM (e0 : expr) (e2 : expr)
| CTX_IfR (e0 : expr) (e1 : expr)
(* Recursive Types *)
| CTX_Fold
| CTX_Unfold
(* Polymorphic Types *)
| CTX_TLam
| CTX_TApp
(* Concurrency *)
| CTX_Fork
(* Reference Types *)
| CTX_Alloc
| CTX_Load
| CTX_StoreL (e2 : expr)
| CTX_StoreR (e1 : expr)
(* Compare and swap used for fine-grained concurrency *)
| CTX_CAS_L (e1 : expr) (e2 : expr)
| CTX_CAS_M (e0 : expr) (e2 : expr)
| CTX_CAS_R (e0 : expr) (e1 : expr).
Fixpoint fill_ctx_item (ctx : ctx_item) (e : expr) : expr :=
match ctx with
| CTX_Rec => Rec e
| CTX_AppL e2 => App e e2
| CTX_AppR e1 => App e1 e
| CTX_PairL e2 => Pair e e2
| CTX_PairR e1 => Pair e1 e
| CTX_Fst => Fst e
| CTX_Snd => Snd e
| CTX_InjL => InjL e
| CTX_InjR => InjR e
| CTX_CaseL e1 e2 => Case e e1 e2
| CTX_CaseM e0 e2 => Case e0 e e2
| CTX_CaseR e0 e1 => Case e0 e1 e
| CTX_BinOpL op e2 => BinOp op e e2
| CTX_BinOpR op e1 => BinOp op e1 e
| CTX_IfL e1 e2 => If e e1 e2
| CTX_IfM e0 e2 => If e0 e e2
| CTX_IfR e0 e1 => If e0 e1 e
| CTX_Fold => Fold e
| CTX_Unfold => Unfold e
| CTX_TLam => TLam e
| CTX_TApp => TApp e
| CTX_Fork => Fork e
| CTX_Alloc => Alloc e
| CTX_Load => Load e
| CTX_StoreL e2 => Store e e2
| CTX_StoreR e1 => Store e1 e
| CTX_CAS_L e1 e2 => CAS e e1 e2
| CTX_CAS_M e0 e2 => CAS e0 e e2
| CTX_CAS_R e0 e1 => CAS e0 e1 e
end.
Definition ctx := list ctx_item.
Definition fill_ctx (K : ctx) (e : expr) : expr := foldr fill_ctx_item e K.
(** typed ctx *)
Inductive typed_ctx_item :
ctx_item → list type → list type → type → list type → list type → type → Prop :=
| TP_CTX_Rec Ξ Γ τ τ' :
typed_ctx_item CTX_Rec Ξ (TArrow τ τ' :: τ :: Γ) τ' Ξ Γ (TArrow τ τ')
| TP_CTX_AppL Ξ Γ e2 τ τ' :
typed Ξ Γ e2 τ →
typed_ctx_item (CTX_AppL e2) Ξ Γ (TArrow τ τ') Ξ Γ τ'
| TP_CTX_AppR Ξ Γ e1 τ τ' :
typed Ξ Γ e1 (TArrow τ τ') →
typed_ctx_item (CTX_AppR e1) Ξ Γ τ Ξ Γ τ'
| TP_CTX_PairL Ξ Γ e2 τ τ' :
typed Ξ Γ e2 τ' →
typed_ctx_item (CTX_PairL e2) Ξ Γ τ Ξ Γ (TProd τ τ')
| TP_CTX_PairR Ξ Γ e1 τ τ' :
typed Ξ Γ e1 τ →
typed_ctx_item (CTX_PairR e1) Ξ Γ τ' Ξ Γ (TProd τ τ')
| TP_CTX_Fst Ξ Γ τ τ' :
typed_ctx_item CTX_Fst Ξ Γ (TProd τ τ') Ξ Γ τ
| TP_CTX_Snd Ξ Γ τ τ' :
typed_ctx_item CTX_Snd Ξ Γ (TProd τ τ') Ξ Γ τ'
| TP_CTX_InjL Ξ Γ τ τ' :
typed_ctx_item CTX_InjL Ξ Γ τ Ξ Γ (TSum τ τ')
| TP_CTX_InjR Ξ Γ τ τ' :
typed_ctx_item CTX_InjR Ξ Γ τ' Ξ Γ (TSum τ τ')
| TP_CTX_CaseL Ξ Γ e1 e2 τ1 τ2 τ' :
typed Ξ (τ1 :: Γ) e1 τ' → typed Ξ (τ2 :: Γ) e2 τ' →
typed_ctx_item (CTX_CaseL e1 e2) Ξ Γ (TSum τ1 τ2) Ξ Γ τ'
| TP_CTX_CaseM Ξ Γ e0 e2 τ1 τ2 τ' :
typed Ξ Γ e0 (TSum τ1 τ2) → typed Ξ (τ2 :: Γ) e2 τ' →
typed_ctx_item (CTX_CaseM e0 e2) Ξ (τ1 :: Γ) τ' Ξ Γ τ'
| TP_CTX_CaseR Ξ Γ e0 e1 τ1 τ2 τ' :
typed Ξ Γ e0 (TSum τ1 τ2) → typed Ξ (τ1 :: Γ) e1 τ' →
typed_ctx_item (CTX_CaseR e0 e1) Ξ (τ2 :: Γ) τ' Ξ Γ τ'
| TP_CTX_IfL Ξ Γ e1 e2 τ :
typed Ξ Γ e1 τ → typed Ξ Γ e2 τ →
typed_ctx_item (CTX_IfL e1 e2) Ξ Γ (TBool) Ξ Γ τ
| TP_CTX_IfM Ξ Γ e0 e2 τ :
typed Ξ Γ e0 (TBool) → typed Ξ Γ e2 τ →
typed_ctx_item (CTX_IfM e0 e2) Ξ Γ τ Ξ Γ τ
| TP_CTX_IfR Ξ Γ e0 e1 τ :
typed Ξ Γ e0 (TBool) → typed Ξ Γ e1 τ →
typed_ctx_item (CTX_IfR e0 e1) Ξ Γ τ Ξ Γ τ
| TP_CTX_BinOpL op Ξ Γ e2 :
typed Ξ Γ e2 TNat →
typed_ctx_item (CTX_BinOpL op e2) Ξ Γ TNat Ξ Γ (binop_res_type op)
| TP_CTX_BinOpR op e1 Ξ Γ :
typed Ξ Γ e1 TNat →
typed_ctx_item (CTX_BinOpR op e1) Ξ Γ TNat Ξ Γ (binop_res_type op)
| TP_CTX_Fold Ξ Γ τ :
typed_ctx_item CTX_Fold Ξ Γ τ.[(TRec τ)/] Ξ Γ (TRec τ)
| TP_CTX_Unfold Ξ Γ τ :
typed_ctx_item CTX_Unfold Ξ Γ (TRec τ) Ξ Γ τ.[(TRec τ)/]
| TP_CTX_TLam Ξ Γ σ τ :
typed_ctx_item CTX_TLam (σ.[ren (+1)] :: (subst (ren (+1)) <$> Ξ))
(subst (ren (+1)) <$> Γ) τ Ξ Γ (TForall σ τ)
| TP_CTX_TApp Ξ Γ σ τ τ' :
subtype Ξ τ' σ →
typed_ctx_item CTX_TApp Ξ Γ (TForall σ τ) Ξ Γ τ.[τ'/]
| TP_CTX_Fork Ξ Γ :
typed_ctx_item CTX_Fork Ξ Γ TUnit Ξ Γ TUnit
| TPCTX_Alloc Ξ Γ τ :
typed_ctx_item CTX_Alloc Ξ Γ τ Ξ Γ (Tref τ)
| TP_CTX_Load Ξ Γ τ :
typed_ctx_item CTX_Load Ξ Γ (Tref τ) Ξ Γ τ
| TP_CTX_StoreL Ξ Γ e2 τ :
typed Ξ Γ e2 τ → typed_ctx_item (CTX_StoreL e2) Ξ Γ (Tref τ) Ξ Γ TUnit
| TP_CTX_StoreR Ξ Γ e1 τ :
typed Ξ Γ e1 (Tref τ) →
typed_ctx_item (CTX_StoreR e1) Ξ Γ τ Ξ Γ TUnit
| TP_CTX_CasL Ξ Γ e1 e2 τ :
EqType τ → typed Ξ Γ e1 τ → typed Ξ Γ e2 τ →
typed_ctx_item (CTX_CAS_L e1 e2) Ξ Γ (Tref τ) Ξ Γ TBool
| TP_CTX_CasM Ξ Γ e0 e2 τ :
EqType τ → typed Ξ Γ e0 (Tref τ) → typed Ξ Γ e2 τ →
typed_ctx_item (CTX_CAS_M e0 e2) Ξ Γ τ Ξ Γ TBool
| TP_CTX_CasR Ξ Γ e0 e1 τ :
EqType τ → typed Ξ Γ e0 (Tref τ) → typed Ξ Γ e1 τ →
typed_ctx_item (CTX_CAS_R e0 e1) Ξ Γ τ Ξ Γ TBool.
Lemma typed_ctx_item_typed k Ξ Γ τ Ξ' Γ' τ' e :
typed Ξ Γ e τ → typed_ctx_item k Ξ Γ τ Ξ' Γ' τ' →
typed Ξ' Γ' (fill_ctx_item k e) τ'.
Proof. induction 2; simpl; eauto using typed. Qed.
Inductive typed_ctx :
ctx → list type → list type → type → list type → list type → type → Prop :=
| TPCTX_nil Ξ Γ τ :
typed_ctx nil Ξ Γ τ Ξ Γ τ
| TPCTX_cons Ξ1 Γ1 τ1 Ξ2 Γ2 τ2 Ξ3 Γ3 τ3 k K :
typed_ctx_item k Ξ2 Γ2 τ2 Ξ3 Γ3 τ3 →
typed_ctx K Ξ1 Γ1 τ1 Ξ2 Γ2 τ2 →
typed_ctx (k :: K) Ξ1 Γ1 τ1 Ξ3 Γ3 τ3.
Lemma typed_ctx_typed K Ξ Γ τ Ξ' Γ' τ' e :
typed Ξ Γ e τ → typed_ctx K Ξ Γ τ Ξ' Γ' τ' → typed Ξ' Γ' (fill_ctx K e) τ'.
Proof. induction 2; simpl; eauto using typed_ctx_item_typed. Qed.
(* Lemma typed_ctx_n_closed K Ξ Γ τ Ξ' Γ' τ' e : *)
(* (∀ f, e.[upn (length Γ) f] = e) → typed_ctx K Ξ Γ τ Ξ' Γ' τ' → *)
(* ∀ f, (fill_ctx K e).[upn (length Γ') f] = (fill_ctx K e). *)
(* Proof. *)
(* intros H1 H2; induction H2; simpl; auto. *)
(* induction H => f; asimpl; simpl in *; *)
(* repeat match goal with H : _ |- _ => rewrite fmap_length in H end; *)
(* try f_equal; *)
(* eauto using typed_n_closed; *)
(* try match goal with H : _ |- _ => eapply (typed_n_closed _ _ _ H) end. *)
(* Qed. *)
Definition ctx_refines (Ξ Γ : list type)
(e e' : expr) (τ : type) :=
typed Ξ Γ e τ ∧ typed Ξ Γ e' τ ∧
∀ K thp σ v,
typed_ctx K Ξ Γ τ [] [] TUnit →
rtc erased_step ([fill_ctx K e], ∅) (of_val v :: thp, σ) →
∃ thp' σ' v', rtc erased_step ([fill_ctx K e'], ∅) (of_val v' :: thp', σ').
Notation "Ξ ∣ Γ ⊨ e '≤ctx≤' e' : τ" :=
(ctx_refines Ξ Γ e e' τ) (at level 74, e, e', τ at next level).
Section bin_log_related_under_typed_ctx.
Context `{heapIG Σ, cfgSG Σ}.
Lemma bin_log_related_under_typed_ctx Ξ Γ e e' τ Ξ' Γ' τ' K :
typed_ctx K Ξ Γ τ Ξ' Γ' τ' →
Ξ ∣ Γ ⊨ e ≤log≤ e' : τ → Ξ' ∣ Γ' ⊨ fill_ctx K e ≤log≤ fill_ctx K e' : τ'.
Proof.
revert Ξ Γ τ Ξ' Γ' τ' e e'.
induction K as [|k K]=> Ξ Γ τ Ξ' Γ' τ' e e' H1 H2; simpl.
- inversion H1; subst; trivial.
- inversion H1 as [|? ? ? ? ? ? ? ? ? ? ? Hx1 Hx2]; simplify_eq.
specialize (IHK _ _ _ _ _ _ e e' Hx2 H2).
inversion Hx1; subst; simpl.
+ eapply bin_log_related_rec; eauto.
+ eapply bin_log_related_app; eauto using binary_fundamental.
+ eapply bin_log_related_app; eauto using binary_fundamental.
+ eapply bin_log_related_pair; eauto using binary_fundamental.
+ eapply bin_log_related_pair; eauto using binary_fundamental.
+ eapply bin_log_related_fst; eauto.
+ eapply bin_log_related_snd; eauto.
+ eapply bin_log_related_injl; eauto.
+ eapply bin_log_related_injr; eauto.
+ eapply bin_log_related_case; eauto using binary_fundamental.
+ eapply bin_log_related_case; eauto using binary_fundamental.
+ eapply bin_log_related_case; eauto using binary_fundamental.
+ eapply bin_log_related_if; eauto using typed_ctx_typed, binary_fundamental.
+ eapply bin_log_related_if; eauto using typed_ctx_typed, binary_fundamental.
+ eapply bin_log_related_if; eauto using typed_ctx_typed, binary_fundamental.
+ eapply bin_log_related_nat_binop;
eauto using typed_ctx_typed, binary_fundamental.
+ eapply bin_log_related_nat_binop;
eauto using typed_ctx_typed, binary_fundamental.
+ eapply bin_log_related_fold; eauto.
+ eapply bin_log_related_unfold; eauto.
+ eapply bin_log_related_tlam; eauto with typeclass_instances.
+ eapply bin_log_related_tapp; eauto.
+ eapply bin_log_related_fork; eauto.
+ eapply bin_log_related_alloc; eauto.
+ eapply bin_log_related_load; eauto.
+ eapply bin_log_related_store; eauto using binary_fundamental.
+ eapply bin_log_related_store; eauto using binary_fundamental.
+ eapply bin_log_related_CAS; eauto using binary_fundamental.
+ eapply bin_log_related_CAS; eauto using binary_fundamental.
+ eapply bin_log_related_CAS; eauto using binary_fundamental.
Qed.
End bin_log_related_under_typed_ctx.
|
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ ↑(bind₁ (frobeniusPolyRat p)) (wittPolynomial p ℚ n) = wittPolynomial p ℚ (n + 1)
[PROOFSTEP]
delta frobeniusPolyRat
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ ↑(bind₁ fun n => ↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ n)) (wittPolynomial p ℚ n) =
wittPolynomial p ℚ (n + 1)
[PROOFSTEP]
rw [← bind₁_bind₁, bind₁_xInTermsOfW_wittPolynomial, bind₁_X_right, Function.comp_apply]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ frobeniusPolyAux p n =
X (n + 1) -
∑ i in range n,
∑ j in range (p ^ (n - i)),
(X i ^ p) ^ (p ^ (n - i) - (j + 1)) * frobeniusPolyAux p i ^ (j + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (j + 1) /
p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }))
[PROOFSTEP]
rw [frobeniusPolyAux, ← Fin.sum_univ_eq_sum_range]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n j : ℕ
hj : j < p ^ n
⊢ p ^ (n - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) ∣ Nat.choose (p ^ n) (j + 1)
[PROOFSTEP]
apply multiplicity.pow_dvd_of_le_multiplicity
[GOAL]
case a
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n j : ℕ
hj : j < p ^ n
⊢ ↑(n - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) ≤ multiplicity p (Nat.choose (p ^ n) (j + 1))
[PROOFSTEP]
rw [hp.out.multiplicity_choose_prime_pow hj j.succ_ne_zero]
[GOAL]
case a
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n j : ℕ
hj : j < p ^ n
⊢ ↑(n - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) ≤
↑(n - Part.get (multiplicity p (Nat.succ j)) (_ : multiplicity.Finite p (Nat.succ j)))
[PROOFSTEP]
rfl
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n i j : ℕ
hi : i ≤ n
hj : j < p ^ (n - i)
⊢ j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) } + n =
i + j + (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })
[PROOFSTEP]
generalize h : v p ⟨j + 1, j.succ_pos⟩ = m
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n i j : ℕ
hi : i ≤ n
hj : j < p ^ (n - i)
m : ℕ
h : v p { val := j + 1, property := (_ : 0 < Nat.succ j) } = m
⊢ j - m + n = i + j + (n - i - m)
[PROOFSTEP]
rsuffices ⟨h₁, h₂⟩ : m ≤ n - i ∧ m ≤ j
[GOAL]
case intro
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n i j : ℕ
hi : i ≤ n
hj : j < p ^ (n - i)
m : ℕ
h : v p { val := j + 1, property := (_ : 0 < Nat.succ j) } = m
h₁ : m ≤ n - i
h₂ : m ≤ j
⊢ j - m + n = i + j + (n - i - m)
[PROOFSTEP]
rw [tsub_add_eq_add_tsub h₂, add_comm i j, add_tsub_assoc_of_le (h₁.trans (Nat.sub_le n i)), add_assoc, tsub_right_comm,
add_comm i, tsub_add_cancel_of_le (le_tsub_of_add_le_right ((le_tsub_iff_left hi).mp h₁))]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n i j : ℕ
hi : i ≤ n
hj : j < p ^ (n - i)
m : ℕ
h : v p { val := j + 1, property := (_ : 0 < Nat.succ j) } = m
⊢ m ≤ n - i ∧ m ≤ j
[PROOFSTEP]
have hle : p ^ m ≤ j + 1 := h ▸ Nat.le_of_dvd j.succ_pos (multiplicity.pow_multiplicity_dvd _)
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n i j : ℕ
hi : i ≤ n
hj : j < p ^ (n - i)
m : ℕ
h : v p { val := j + 1, property := (_ : 0 < Nat.succ j) } = m
hle : p ^ m ≤ j + 1
⊢ m ≤ n - i ∧ m ≤ j
[PROOFSTEP]
exact ⟨(pow_le_pow_iff hp.1.one_lt).1 (hle.trans hj), Nat.le_of_lt_succ ((Nat.lt_pow_self hp.1.one_lt m).trans_le hle)⟩
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPoly p n) = frobeniusPolyRat p n
[PROOFSTEP]
rw [frobeniusPoly, RingHom.map_add, RingHom.map_mul, RingHom.map_pow, map_C, map_X, eq_intCast, Int.cast_ofNat,
frobeniusPolyRat]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ X n ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p n) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ n)
[PROOFSTEP]
refine Nat.strong_induction_on n ?_
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ ∀ (n : ℕ),
(∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)) →
X n ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p n) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ n)
[PROOFSTEP]
clear n
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (n : ℕ),
(∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)) →
X n ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p n) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ n)
[PROOFSTEP]
intro n IH
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
⊢ X n ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p n) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ n)
[PROOFSTEP]
rw [xInTermsOfW_eq]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
⊢ X n ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p n) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1))
((X n - ∑ i in range n, ↑C (↑p ^ i) * xInTermsOfW p ℚ i ^ p ^ (n - i)) * ↑C (⅟↑p ^ n))
[PROOFSTEP]
simp only [AlgHom.map_sum, AlgHom.map_sub, AlgHom.map_mul, AlgHom.map_pow, bind₁_C_right]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
⊢ X n ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p n) =
(↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (X n) -
∑ x in range n,
↑C (↑p ^ x) * ↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ x) ^ p ^ (n - x)) *
↑C (⅟↑p ^ n)
[PROOFSTEP]
have h1 : (p : ℚ) ^ n * ⅟(p : ℚ) ^ n = 1 := by rw [← mul_pow, mul_invOf_self, one_pow]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
⊢ ↑p ^ n * ⅟↑p ^ n = 1
[PROOFSTEP]
rw [← mul_pow, mul_invOf_self, one_pow]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
h1 : ↑p ^ n * ⅟↑p ^ n = 1
⊢ X n ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p n) =
(↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (X n) -
∑ x in range n,
↑C (↑p ^ x) * ↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ x) ^ p ^ (n - x)) *
↑C (⅟↑p ^ n)
[PROOFSTEP]
rw [bind₁_X_right, Function.comp_apply, wittPolynomial_eq_sum_C_mul_X_pow, sum_range_succ, sum_range_succ, tsub_self,
add_tsub_cancel_left, pow_zero, pow_one, pow_one, sub_mul, add_mul, add_mul, mul_right_comm,
mul_right_comm (C ((p : ℚ) ^ (n + 1))), ← C_mul, ← C_mul, pow_succ, mul_assoc (p : ℚ) ((p : ℚ) ^ n), h1, mul_one, C_1,
one_mul, add_comm _ (X n ^ p), add_assoc, ← add_sub, add_right_inj, frobeniusPolyAux_eq, RingHom.map_sub, map_X,
mul_sub, sub_eq_add_neg, add_comm _ (C (p : ℚ) * X (n + 1)), ← add_sub,
show (Int.castRingHom ℚ) ↑p = (p : ℚ) from rfl, add_right_inj, neg_eq_iff_eq_neg, neg_sub, eq_comm]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
h1 : ↑p ^ n * ⅟↑p ^ n = 1
⊢ (∑ x in range n, ↑C (↑p ^ x) * ↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ x) ^ p ^ (n - x)) *
↑C (⅟↑p ^ n) -
(∑ x in range n, ↑C (↑p ^ x) * X x ^ p ^ (n + 1 - x)) * ↑C (⅟↑p ^ n) =
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
(∑ i in range n,
∑ j in range (p ^ (n - i)),
(X i ^ p) ^ (p ^ (n - i) - (j + 1)) * frobeniusPolyAux p i ^ (j + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (j + 1) /
p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })))
[PROOFSTEP]
simp only [map_sum, mul_sum, sum_mul, ← sum_sub_distrib]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
h1 : ↑p ^ n * ⅟↑p ^ n = 1
⊢ ∑ x in range n,
(↑C (↑p ^ x) * ↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ x) ^ p ^ (n - x) * ↑C (⅟↑p ^ n) -
↑C (↑p ^ x) * X x ^ p ^ (n + 1 - x) * ↑C (⅟↑p ^ n)) =
∑ x in range n,
∑ x_1 in range (p ^ (n - x)),
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X x ^ p) ^ (p ^ (n - x) - (x_1 + 1)) * frobeniusPolyAux p x ^ (x_1 + 1) *
↑C
↑(Nat.choose (p ^ (n - x)) (x_1 + 1) /
p ^ (n - x - v p { val := x_1 + 1, property := (_ : 0 < Nat.succ x_1) }) *
p ^ (x_1 - v p { val := x_1 + 1, property := (_ : 0 < Nat.succ x_1) })))
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
h1 : ↑p ^ n * ⅟↑p ^ n = 1
⊢ ∀ (x : ℕ),
x ∈ range n →
↑C (↑p ^ x) * ↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ x) ^ p ^ (n - x) * ↑C (⅟↑p ^ n) -
↑C (↑p ^ x) * X x ^ p ^ (n + 1 - x) * ↑C (⅟↑p ^ n) =
∑ x_1 in range (p ^ (n - x)),
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X x ^ p) ^ (p ^ (n - x) - (x_1 + 1)) * frobeniusPolyAux p x ^ (x_1 + 1) *
↑C
↑(Nat.choose (p ^ (n - x)) (x_1 + 1) /
p ^ (n - x - v p { val := x_1 + 1, property := (_ : 0 < Nat.succ x_1) }) *
p ^ (x_1 - v p { val := x_1 + 1, property := (_ : 0 < Nat.succ x_1) })))
[PROOFSTEP]
intro i hi
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i ∈ range n
⊢ ↑C (↑p ^ i) * ↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ i) ^ p ^ (n - i) * ↑C (⅟↑p ^ n) -
↑C (↑p ^ i) * X i ^ p ^ (n + 1 - i) * ↑C (⅟↑p ^ n) =
∑ x in range (p ^ (n - i)),
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X i ^ p) ^ (p ^ (n - i) - (x + 1)) * frobeniusPolyAux p i ^ (x + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (x + 1) /
p ^ (n - i - v p { val := x + 1, property := (_ : 0 < Nat.succ x) }) *
p ^ (x - v p { val := x + 1, property := (_ : 0 < Nat.succ x) })))
[PROOFSTEP]
rw [mem_range] at hi
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
⊢ ↑C (↑p ^ i) * ↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ i) ^ p ^ (n - i) * ↑C (⅟↑p ^ n) -
↑C (↑p ^ i) * X i ^ p ^ (n + 1 - i) * ↑C (⅟↑p ^ n) =
∑ x in range (p ^ (n - i)),
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X i ^ p) ^ (p ^ (n - i) - (x + 1)) * frobeniusPolyAux p i ^ (x + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (x + 1) /
p ^ (n - i - v p { val := x + 1, property := (_ : 0 < Nat.succ x) }) *
p ^ (x - v p { val := x + 1, property := (_ : 0 < Nat.succ x) })))
[PROOFSTEP]
rw [← IH i hi]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
IH :
∀ (m : ℕ),
m < n →
X m ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p m) =
↑(bind₁ (wittPolynomial p ℚ ∘ fun n => n + 1)) (xInTermsOfW p ℚ m)
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
⊢ ↑C (↑p ^ i) *
(X i ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i)) ^
p ^ (n - i) *
↑C (⅟↑p ^ n) -
↑C (↑p ^ i) * X i ^ p ^ (n + 1 - i) * ↑C (⅟↑p ^ n) =
∑ x in range (p ^ (n - i)),
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X i ^ p) ^ (p ^ (n - i) - (x + 1)) * frobeniusPolyAux p i ^ (x + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (x + 1) /
p ^ (n - i - v p { val := x + 1, property := (_ : 0 < Nat.succ x) }) *
p ^ (x - v p { val := x + 1, property := (_ : 0 < Nat.succ x) })))
[PROOFSTEP]
clear IH
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
⊢ ↑C (↑p ^ i) *
(X i ^ p + ↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i)) ^
p ^ (n - i) *
↑C (⅟↑p ^ n) -
↑C (↑p ^ i) * X i ^ p ^ (n + 1 - i) * ↑C (⅟↑p ^ n) =
∑ x in range (p ^ (n - i)),
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X i ^ p) ^ (p ^ (n - i) - (x + 1)) * frobeniusPolyAux p i ^ (x + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (x + 1) /
p ^ (n - i - v p { val := x + 1, property := (_ : 0 < Nat.succ x) }) *
p ^ (x - v p { val := x + 1, property := (_ : 0 < Nat.succ x) })))
[PROOFSTEP]
rw [add_comm (X i ^ p), add_pow, sum_range_succ', pow_zero, tsub_zero, Nat.choose_zero_right, one_mul, Nat.cast_one,
mul_one, mul_add, add_mul, Nat.succ_sub (le_of_lt hi), Nat.succ_eq_add_one (n - i), pow_succ, pow_mul, add_sub_cancel,
mul_sum, sum_mul]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
⊢ ∑ x in range (p ^ (n - i)),
↑C (↑p ^ i) *
((↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i)) ^ (x + 1) *
(X i ^ p) ^ (p ^ (n - i) - (x + 1)) *
↑(Nat.choose (p ^ (n - i)) (x + 1))) *
↑C (⅟↑p ^ n) =
∑ x in range (p ^ (n - i)),
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X i ^ p) ^ (p ^ (n - i) - (x + 1)) * frobeniusPolyAux p i ^ (x + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (x + 1) /
p ^ (n - i - v p { val := x + 1, property := (_ : 0 < Nat.succ x) }) *
p ^ (x - v p { val := x + 1, property := (_ : 0 < Nat.succ x) })))
[PROOFSTEP]
apply sum_congr rfl
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
⊢ ∀ (x : ℕ),
x ∈ range (p ^ (n - i)) →
↑C (↑p ^ i) *
((↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i)) ^ (x + 1) *
(X i ^ p) ^ (p ^ (n - i) - (x + 1)) *
↑(Nat.choose (p ^ (n - i)) (x + 1))) *
↑C (⅟↑p ^ n) =
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X i ^ p) ^ (p ^ (n - i) - (x + 1)) * frobeniusPolyAux p i ^ (x + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (x + 1) /
p ^ (n - i - v p { val := x + 1, property := (_ : 0 < Nat.succ x) }) *
p ^ (x - v p { val := x + 1, property := (_ : 0 < Nat.succ x) })))
[PROOFSTEP]
intro j hj
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j ∈ range (p ^ (n - i))
⊢ ↑C (↑p ^ i) *
((↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i)) ^ (j + 1) *
(X i ^ p) ^ (p ^ (n - i) - (j + 1)) *
↑(Nat.choose (p ^ (n - i)) (j + 1))) *
↑C (⅟↑p ^ n) =
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X i ^ p) ^ (p ^ (n - i) - (j + 1)) * frobeniusPolyAux p i ^ (j + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })))
[PROOFSTEP]
rw [mem_range] at hj
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑C (↑p ^ i) *
((↑C (↑(Int.castRingHom ℚ) ↑p) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i)) ^ (j + 1) *
(X i ^ p) ^ (p ^ (n - i) - (j + 1)) *
↑(Nat.choose (p ^ (n - i)) (j + 1))) *
↑C (⅟↑p ^ n) =
↑C ↑p *
↑(MvPolynomial.map (Int.castRingHom ℚ))
((X i ^ p) ^ (p ^ (n - i) - (j + 1)) * frobeniusPolyAux p i ^ (j + 1) *
↑C
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })))
[PROOFSTEP]
rw [RingHom.map_mul, RingHom.map_mul, RingHom.map_pow, RingHom.map_pow, RingHom.map_pow, RingHom.map_pow,
RingHom.map_pow, map_C, map_X, mul_pow]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑C ↑p ^ i *
(↑C (↑(Int.castRingHom ℚ) ↑p) ^ (j + 1) *
↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i) ^ (j + 1) *
(X i ^ p) ^ (p ^ (n - i) - (j + 1)) *
↑(Nat.choose (p ^ (n - i)) (j + 1))) *
↑C ⅟↑p ^ n =
↑C ↑p *
((X i ^ p) ^ (p ^ (n - i) - (j + 1)) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i) ^ (j + 1) *
↑C
(↑(Int.castRingHom ℚ)
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }))))
[PROOFSTEP]
rw [mul_comm (C (p : ℚ) ^ i), mul_comm _ ((X i ^ p) ^ _), show (Int.castRingHom ℚ) ↑p = (p : ℚ) from rfl,
mul_comm (C (p : ℚ) ^ (j + 1)), mul_comm (C (p : ℚ))]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ (X i ^ p) ^ (p ^ (n - i) - (j + 1)) *
(↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i) ^ (j + 1) * ↑C ↑p ^ (j + 1)) *
↑(Nat.choose (p ^ (n - i)) (j + 1)) *
↑C ↑p ^ i *
↑C ⅟↑p ^ n =
(X i ^ p) ^ (p ^ (n - i) - (j + 1)) * ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i) ^ (j + 1) *
↑C
(↑(Int.castRingHom ℚ)
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }))) *
↑C ↑p
[PROOFSTEP]
simp only [mul_assoc]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ (X i ^ p) ^ (p ^ (n - i) - (j + 1)) *
(↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i) ^ (j + 1) *
(↑C ↑p ^ (j + 1) * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑C ↑p ^ i * ↑C ⅟↑p ^ n)))) =
(X i ^ p) ^ (p ^ (n - i) - (j + 1)) *
(↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i) ^ (j + 1) *
(↑C
(↑(Int.castRingHom ℚ)
↑(Nat.choose (p ^ (n - i)) (j + 1) /
p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }))) *
↑C ↑p))
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i) ^ (j + 1) *
(↑C ↑p ^ (j + 1) * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑C ↑p ^ i * ↑C ⅟↑p ^ n))) =
↑(MvPolynomial.map (Int.castRingHom ℚ)) (frobeniusPolyAux p i) ^ (j + 1) *
(↑C
(↑(Int.castRingHom ℚ)
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }))) *
↑C ↑p)
[PROOFSTEP]
apply congr_arg
[GOAL]
case h.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑C ↑p ^ (j + 1) * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑C ↑p ^ i * ↑C ⅟↑p ^ n)) =
↑C
(↑(Int.castRingHom ℚ)
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }))) *
↑C ↑p
[PROOFSTEP]
rw [← C_eq_coe_nat]
[GOAL]
case h.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑C ↑p ^ (j + 1) * (↑C ↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑C ↑p ^ i * ↑C ⅟↑p ^ n)) =
↑C
(↑(Int.castRingHom ℚ)
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }))) *
↑C ↑p
[PROOFSTEP]
simp only [← RingHom.map_pow, ← C_mul]
[GOAL]
case h.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑C (↑p ^ (j + 1) * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑p ^ i * ⅟↑p ^ n))) =
↑C
(↑(Int.castRingHom ℚ)
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })) *
↑p)
[PROOFSTEP]
rw [C_inj]
[GOAL]
case h.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑p ^ (j + 1) * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑p ^ i * ⅟↑p ^ n)) =
↑(Int.castRingHom ℚ)
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })) *
↑p
[PROOFSTEP]
simp only [invOf_eq_inv, eq_intCast, inv_pow, Int.cast_ofNat, Nat.cast_mul, Int.cast_mul]
[GOAL]
case h.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑p ^ (j + 1) * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑p ^ i * (↑p ^ n)⁻¹)) =
↑(Nat.choose (p ^ (n - i)) (j + 1) / p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })) *
↑(p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })) *
↑p
[PROOFSTEP]
rw [Rat.coe_nat_div _ _ (map_frobeniusPoly.key₁ p (n - i) j hj)]
[GOAL]
case h.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑p ^ (j + 1) * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑p ^ i * (↑p ^ n)⁻¹)) =
↑(Nat.choose (p ^ (n - i)) (j + 1)) / ↑(p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })) *
↑(p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })) *
↑p
[PROOFSTEP]
simp only [Nat.cast_pow, pow_add, pow_one]
[GOAL]
case h.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑p ^ j * ↑p * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑p ^ i * (↑p ^ n)⁻¹)) =
↑(Nat.choose (p ^ (n - i)) (j + 1)) / ↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
↑p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
↑p
[PROOFSTEP]
suffices
(((p ^ (n - i)).choose (j + 1) : ℚ) * (p : ℚ) ^ (j - v p ⟨j + 1, j.succ_pos⟩) * ↑p * (p ^ n : ℚ)) =
(p : ℚ) ^ j * p * ↑((p ^ (n - i)).choose (j + 1) * p ^ i) * (p : ℚ) ^ (n - i - v p ⟨j + 1, j.succ_pos⟩)
by
have aux : ∀ k : ℕ, (p : ℚ) ^ k ≠ 0 := by intro; apply pow_ne_zero; exact_mod_cast hp.1.ne_zero
simpa [aux, -one_div, field_simps] using this.symm
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
this :
↑(Nat.choose (p ^ (n - i)) (j + 1)) * ↑p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) * ↑p *
↑(p ^ n) =
↑p ^ j * ↑p * ↑(Nat.choose (p ^ (n - i)) (j + 1) * p ^ i) *
↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })
⊢ ↑p ^ j * ↑p * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑p ^ i * (↑p ^ n)⁻¹)) =
↑(Nat.choose (p ^ (n - i)) (j + 1)) / ↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
↑p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
↑p
[PROOFSTEP]
have aux : ∀ k : ℕ, (p : ℚ) ^ k ≠ 0 := by intro; apply pow_ne_zero; exact_mod_cast hp.1.ne_zero
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
this :
↑(Nat.choose (p ^ (n - i)) (j + 1)) * ↑p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) * ↑p *
↑(p ^ n) =
↑p ^ j * ↑p * ↑(Nat.choose (p ^ (n - i)) (j + 1) * p ^ i) *
↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })
⊢ ∀ (k : ℕ), ↑p ^ k ≠ 0
[PROOFSTEP]
intro
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
this :
↑(Nat.choose (p ^ (n - i)) (j + 1)) * ↑p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) * ↑p *
↑(p ^ n) =
↑p ^ j * ↑p * ↑(Nat.choose (p ^ (n - i)) (j + 1) * p ^ i) *
↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })
k✝ : ℕ
⊢ ↑p ^ k✝ ≠ 0
[PROOFSTEP]
apply pow_ne_zero
[GOAL]
case h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
this :
↑(Nat.choose (p ^ (n - i)) (j + 1)) * ↑p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) * ↑p *
↑(p ^ n) =
↑p ^ j * ↑p * ↑(Nat.choose (p ^ (n - i)) (j + 1) * p ^ i) *
↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })
k✝ : ℕ
⊢ ↑p ≠ 0
[PROOFSTEP]
exact_mod_cast hp.1.ne_zero
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
this :
↑(Nat.choose (p ^ (n - i)) (j + 1)) * ↑p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) * ↑p *
↑(p ^ n) =
↑p ^ j * ↑p * ↑(Nat.choose (p ^ (n - i)) (j + 1) * p ^ i) *
↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })
aux : ∀ (k : ℕ), ↑p ^ k ≠ 0
⊢ ↑p ^ j * ↑p * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * (↑p ^ i * (↑p ^ n)⁻¹)) =
↑(Nat.choose (p ^ (n - i)) (j + 1)) / ↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
↑p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) *
↑p
[PROOFSTEP]
simpa [aux, -one_div, field_simps] using this.symm
[GOAL]
case h.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑(Nat.choose (p ^ (n - i)) (j + 1)) * ↑p ^ (j - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }) * ↑p *
↑(p ^ n) =
↑p ^ j * ↑p * ↑(Nat.choose (p ^ (n - i)) (j + 1) * p ^ i) *
↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })
[PROOFSTEP]
rw [mul_comm _ (p : ℚ), mul_assoc, Nat.cast_pow, mul_assoc, ← pow_add, map_frobeniusPoly.key₂ p hi.le hj, Nat.cast_mul,
Nat.cast_pow]
[GOAL]
case h.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
h1 : ↑p ^ n * ⅟↑p ^ n = 1
i : ℕ
hi : i < n
j : ℕ
hj : j < p ^ (n - i)
⊢ ↑p *
(↑(Nat.choose (p ^ (n - i)) (j + 1)) *
↑p ^ (i + j + (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) }))) =
↑p ^ j * ↑p * (↑(Nat.choose (p ^ (n - i)) (j + 1)) * ↑p ^ i) *
↑p ^ (n - i - v p { val := j + 1, property := (_ : 0 < Nat.succ j) })
[PROOFSTEP]
ring
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ ↑(MvPolynomial.map (Int.castRingHom (ZMod p))) (frobeniusPoly p n) = X n ^ p
[PROOFSTEP]
rw [frobeniusPoly, RingHom.map_add, RingHom.map_pow, RingHom.map_mul, map_X, map_C]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ X n ^ p +
↑C (↑(Int.castRingHom (ZMod p)) ↑p) * ↑(MvPolynomial.map (Int.castRingHom (ZMod p))) (frobeniusPolyAux p n) =
X n ^ p
[PROOFSTEP]
simp only [Int.cast_ofNat, add_zero, eq_intCast, ZMod.nat_cast_self, zero_mul, C_0]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ ↑(bind₁ (frobeniusPoly p)) (wittPolynomial p ℤ n) = wittPolynomial p ℤ (n + 1)
[PROOFSTEP]
apply MvPolynomial.map_injective (Int.castRingHom ℚ) Int.cast_injective
[GOAL]
case a
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
⊢ ↑(MvPolynomial.map (Int.castRingHom ℚ)) (↑(bind₁ (frobeniusPoly p)) (wittPolynomial p ℤ n)) =
↑(MvPolynomial.map (Int.castRingHom ℚ)) (wittPolynomial p ℤ (n + 1))
[PROOFSTEP]
simp only [map_bind₁, map_frobeniusPoly, bind₁_frobeniusPolyRat_wittPolynomial, map_wittPolynomial]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
x : 𝕎 R
n : ℕ
⊢ coeff (frobeniusFun x) n = ↑(aeval x.coeff) (frobeniusPoly p n)
[PROOFSTEP]
rw [frobeniusFun, coeff_mk]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ ⦃R : Type ?u.420485⦄ [inst : CommRing R] (x : 𝕎 R),
(frobeniusFun x).coeff = fun n => ↑(aeval x.coeff) (frobeniusPoly p n)
[PROOFSTEP]
intros
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
R✝ : Type ?u.420485
inst✝ : CommRing R✝
x✝ : 𝕎 R✝
⊢ (frobeniusFun x✝).coeff = fun n => ↑(aeval x✝.coeff) (frobeniusPoly p n)
[PROOFSTEP]
funext n
[GOAL]
case h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
R✝ : Type ?u.420485
inst✝ : CommRing R✝
x✝ : 𝕎 R✝
n : ℕ
⊢ coeff (frobeniusFun x✝) n = ↑(aeval x✝.coeff) (frobeniusPoly p n)
[PROOFSTEP]
apply coeff_frobeniusFun
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
n : ℕ
x : 𝕎 R
⊢ ↑(ghostComponent n) (frobeniusFun x) = ↑(ghostComponent (n + 1)) x
[PROOFSTEP]
simp only [ghostComponent_apply, frobeniusFun, coeff_mk, ← bind₁_frobeniusPoly_wittPolynomial, aeval_bind₁]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ frobeniusFun 1 = 1
[PROOFSTEP]
refine
-- Porting note: removing the placeholders give an errorIsPoly.ext
(@IsPoly.comp p _ _ (frobeniusFun_isPoly p) WittVector.oneIsPoly)
(@IsPoly.comp p _ _ WittVector.oneIsPoly (frobeniusFun_isPoly p)) ?_ _ 0
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (R : Type u_1) [_Rcr : CommRing R] (x : 𝕎 R) (n : ℕ),
↑(ghostComponent n) ((frobeniusFun ∘ fun x => 1) x) = ↑(ghostComponent n) (((fun x => 1) ∘ frobeniusFun) x)
[PROOFSTEP]
simp only [Function.comp_apply, map_one, forall_const]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (R : Type u_1) [_Rcr : CommRing R] (n : ℕ), ↑(ghostComponent n) (frobeniusFun 1) = 1
[PROOFSTEP]
ghost_simp
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (x y : 𝕎 R),
OneHom.toFun
{ toFun := frobeniusFun, map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
(x * y) =
OneHom.toFun
{ toFun := frobeniusFun, map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
x *
OneHom.toFun
{ toFun := frobeniusFun, map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) } y
[PROOFSTEP]
ghost_calc _ _
[GOAL]
case refine_3
p : ℕ
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝ : CommRing S
R : Type u_1
R._inst : CommRing R
x✝ y✝ : 𝕎 R
⊢ ∀ (n : ℕ),
↑(ghostComponent n)
(OneHom.toFun
{ toFun := frobeniusFun, map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
(x✝ * y✝)) =
↑(ghostComponent n)
(OneHom.toFun
{ toFun := frobeniusFun, map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
x✝ *
OneHom.toFun
{ toFun := frobeniusFun, map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
y✝)
[PROOFSTEP]
ghost_simp
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ OneHom.toFun
(↑{
toOneHom :=
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) },
map_mul' :=
(_ :
∀ (x y : 𝕎 R),
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
(x * y) =
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
x *
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
y) })
0 =
0
[PROOFSTEP]
refine
IsPoly.ext (@IsPoly.comp p _ _ (frobeniusFun_isPoly p) WittVector.zeroIsPoly)
(@IsPoly.comp p _ _ WittVector.zeroIsPoly (frobeniusFun_isPoly p)) ?_ _ 0
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (R : Type u_1) [_Rcr : CommRing R] (x : 𝕎 R) (n : ℕ),
↑(ghostComponent n) ((frobeniusFun ∘ fun x => 0) x) = ↑(ghostComponent n) (((fun x => 0) ∘ frobeniusFun) x)
[PROOFSTEP]
simp only [Function.comp_apply, map_zero, forall_const]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (R : Type u_1) [_Rcr : CommRing R] (n : ℕ), ↑(ghostComponent n) (frobeniusFun 0) = 0
[PROOFSTEP]
ghost_simp
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝¹ : CommRing R
inst✝ : CommRing S
⊢ ∀ (x y : 𝕎 R),
OneHom.toFun
(↑{
toOneHom :=
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) },
map_mul' :=
(_ :
∀ (x y : 𝕎 R),
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
(x * y) =
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
x *
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) },
map_mul' :=
(_ :
∀ (x y : 𝕎 R),
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
(x * y) =
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
x *
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) },
map_mul' :=
(_ :
∀ (x y : 𝕎 R),
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
(x * y) =
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
x *
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
y) })
y
[PROOFSTEP]
ghost_calc _ _
[GOAL]
case refine_3
p : ℕ
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝ : CommRing S
R : Type u_1
R._inst : CommRing R
x✝ y✝ : 𝕎 R
⊢ ∀ (n : ℕ),
↑(ghostComponent n)
(OneHom.toFun
(↑{
toOneHom :=
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) },
map_mul' :=
(_ :
∀ (x y : 𝕎 R),
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
(x * y) =
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
x *
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
y) })
(x✝ + y✝)) =
↑(ghostComponent n)
(OneHom.toFun
(↑{
toOneHom :=
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) },
map_mul' :=
(_ :
∀ (x y : 𝕎 R),
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
(x * y) =
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
x *
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
y) })
x✝ +
OneHom.toFun
(↑{
toOneHom :=
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) },
map_mul' :=
(_ :
∀ (x y : 𝕎 R),
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
(x * y) =
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
x *
OneHom.toFun
{ toFun := frobeniusFun,
map_one' := (_ : (frobeniusFun ∘ fun x => 1) 0 = ((fun x => 1) ∘ frobeniusFun) 0) }
y) })
y✝)
[PROOFSTEP]
ghost_simp
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
⊢ coeff (↑frobenius x) n = coeff x n ^ p
[PROOFSTEP]
rw [coeff_frobenius]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
⊢ ↑(aeval x.coeff) (frobeniusPoly p n) = coeff x n ^ p
[PROOFSTEP]
letI : Algebra (ZMod p) R :=
ZMod.algebra _
_
-- outline of the calculation, proofs follow below
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
this : Algebra (ZMod p) R := ZMod.algebra R p
⊢ ↑(aeval x.coeff) (frobeniusPoly p n) = coeff x n ^ p
[PROOFSTEP]
calc
aeval (fun k => x.coeff k) (frobeniusPoly p n) =
aeval (fun k => x.coeff k) (MvPolynomial.map (Int.castRingHom (ZMod p)) (frobeniusPoly p n)) :=
?_
_ = aeval (fun k => x.coeff k) (X n ^ p : MvPolynomial ℕ (ZMod p)) := ?_
_ = x.coeff n ^ p := ?_
[GOAL]
case calc_1
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
this : Algebra (ZMod p) R := ZMod.algebra R p
⊢ ↑(aeval fun k => coeff x k) (frobeniusPoly p n) =
↑(aeval fun k => coeff x k) (↑(MvPolynomial.map (Int.castRingHom (ZMod p))) (frobeniusPoly p n))
[PROOFSTEP]
conv_rhs => rw [aeval_eq_eval₂Hom, eval₂Hom_map_hom]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
this : Algebra (ZMod p) R := ZMod.algebra R p
| ↑(aeval fun k => coeff x k) (↑(MvPolynomial.map (Int.castRingHom (ZMod p))) (frobeniusPoly p n))
[PROOFSTEP]
rw [aeval_eq_eval₂Hom, eval₂Hom_map_hom]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
this : Algebra (ZMod p) R := ZMod.algebra R p
| ↑(aeval fun k => coeff x k) (↑(MvPolynomial.map (Int.castRingHom (ZMod p))) (frobeniusPoly p n))
[PROOFSTEP]
rw [aeval_eq_eval₂Hom, eval₂Hom_map_hom]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
this : Algebra (ZMod p) R := ZMod.algebra R p
| ↑(aeval fun k => coeff x k) (↑(MvPolynomial.map (Int.castRingHom (ZMod p))) (frobeniusPoly p n))
[PROOFSTEP]
rw [aeval_eq_eval₂Hom, eval₂Hom_map_hom]
[GOAL]
case calc_1
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
this : Algebra (ZMod p) R := ZMod.algebra R p
⊢ ↑(aeval fun k => coeff x k) (frobeniusPoly p n) =
↑(eval₂Hom (RingHom.comp (algebraMap (ZMod p) R) (Int.castRingHom (ZMod p))) fun k => coeff x k) (frobeniusPoly p n)
[PROOFSTEP]
apply eval₂Hom_congr (RingHom.ext_int _ _) rfl rfl
[GOAL]
case calc_2
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
this : Algebra (ZMod p) R := ZMod.algebra R p
⊢ ↑(aeval fun k => coeff x k) (↑(MvPolynomial.map (Int.castRingHom (ZMod p))) (frobeniusPoly p n)) =
↑(aeval fun k => coeff x k) (X n ^ p)
[PROOFSTEP]
rw [frobeniusPoly_zmod]
[GOAL]
case calc_3
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
this : Algebra (ZMod p) R := ZMod.algebra R p
⊢ ↑(aeval fun k => coeff x k) (X n ^ p) = coeff x n ^ p
[PROOFSTEP]
rw [map_pow, aeval_X]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
⊢ frobenius = map (_root_.frobenius R p)
[PROOFSTEP]
ext (x n)
[GOAL]
case a.h
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 R
n : ℕ
⊢ coeff (↑frobenius x) n = coeff (↑(map (_root_.frobenius R p)) x) n
[PROOFSTEP]
simp only [coeff_frobenius_charP, map_coeff, frobenius_def]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝² : CommRing R
inst✝¹ : CommRing S
inst✝ : CharP R p
x : 𝕎 (ZMod p)
⊢ ↑frobenius x = x
[PROOFSTEP]
simp only [ext_iff, coeff_frobenius_charP, ZMod.pow_card, eq_self_iff_true, forall_const]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝³ : CommRing R
inst✝² : CommRing S
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
src✝ : 𝕎 R →+* 𝕎 R := frobenius
f : 𝕎 R
n : ℕ
⊢ coeff (↑(map ↑(RingEquiv.symm (_root_.frobeniusEquiv R p))) (↑frobenius f)) n = coeff f n
[PROOFSTEP]
rw [frobenius_eq_map_frobenius]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝³ : CommRing R
inst✝² : CommRing S
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
src✝ : 𝕎 R →+* 𝕎 R := frobenius
f : 𝕎 R
n : ℕ
⊢ coeff (↑(map ↑(RingEquiv.symm (_root_.frobeniusEquiv R p))) (↑(map (_root_.frobenius R p)) f)) n = coeff f n
[PROOFSTEP]
exact frobeniusEquiv_symm_apply_frobenius R p _
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝³ : CommRing R
inst✝² : CommRing S
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
src✝ : 𝕎 R →+* 𝕎 R := frobenius
f : 𝕎 R
n : ℕ
⊢ coeff (↑frobenius (↑(map ↑(RingEquiv.symm (_root_.frobeniusEquiv R p))) f)) n = coeff f n
[PROOFSTEP]
rw [frobenius_eq_map_frobenius]
[GOAL]
p : ℕ
R : Type u_1
S : Type u_2
hp : Fact (Nat.Prime p)
inst✝³ : CommRing R
inst✝² : CommRing S
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
src✝ : 𝕎 R →+* 𝕎 R := frobenius
f : 𝕎 R
n : ℕ
⊢ coeff (↑(map (_root_.frobenius R p)) (↑(map ↑(RingEquiv.symm (_root_.frobeniusEquiv R p))) f)) n = coeff f n
[PROOFSTEP]
exact frobenius_apply_frobeniusEquiv_symm R p _
|
Jordan and the Bulls compiled a 62 – 20 record in the 1997 – 98 season . Jordan led the league with 28 @.@ 7 points per game , securing his fifth regular @-@ season MVP award , plus honors for All @-@ NBA First Team , First Defensive Team and the All @-@ Star Game MVP . The Bulls won the Eastern Conference Championship for a third straight season , including surviving a seven @-@ game series with the Indiana Pacers in the Eastern Conference Finals ; it was the first time Jordan had played in a Game 7 since the 1992 Eastern Conference Semifinals with the Knicks . After winning , they moved on for a rematch with the Jazz in the Finals .
|
[STATEMENT]
lemma filter_pm_code [code]: "filter_pm P (Pm_fmap m) = Pm_fmap (fmfilter P m)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. filter_pm P (Pm_fmap m) = Pm_fmap (fmfilter P m)
[PROOF STEP]
by (auto intro!: poly_mapping_eqI simp: fmlookup_default_def lookup_filter_pm) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.