Datasets:
AI4M
/

text
stringlengths
0
3.34M
module Streaming.Encoding.Base64 import Streaming.Internal as S import Streaming.API as S import Data.Functor.Of import Streaming.Bytes import System.File import Data.Strings -- import Data.LazyList import Data.List -- zip import Data.IOArray import Control.Monad.State import Util import Language.Reflection import public Streaming.Encoding.Base64.Alphabet -- base64 is an encoding _from_ binary data _to_ binary data matching a -- restricted alphabet of characters. -- https://tools.ietf.org/rfc/rfc4648#section-1 export data EncodeError = CodepointOutOfRange | InvalidStartByte Bits8 | CodepointEndedEarly export Show EncodeError where show CodepointOutOfRange = "CodepointOutOfRange" show (InvalidStartByte x) = "InvalidStartByte " ++ show x show CodepointEndedEarly = "CodepointEndedEarly" export data DecodeError = CharNotInAlphabet Char | DataEndedEarly | TooMuchPadding export Show DecodeError where show (CharNotInAlphabet x) = "CharNotInAlphabet: " ++ show x show DataEndedEarly = "Encoded data ended early" show TooMuchPadding = "TooMuchPadding" -- base64 can't have a decode error because it pads missing bits. export encodeBase64 : Monad m => Alphabet -> Stream (Of Bits8) m r -> Stream (Of Char) m r encodeBase64 alph str0 = str0 &$ chunksOf 3 -- this foldl needs to account for folding over 3 instead of less |> mapf (store (\str => foldl (\acc,b => shiftL acc 8 .|. cast b) 0 (take'' 3 $ str <* replicate 3 0)) -- pad to 3 |> length -- <^ compute length and combine bits in one pass |> \res => effect $ do len :> b <- res pure $ case len of 1 => splitGroup 2 b <* yield 65 <* yield 65 -- pads 2 => splitGroup 3 b <* yield 65 _ => splitGroup 4 b) -- ^ Combine up to three Bits8, note the number we got, split based on it |> concats |> encode alph where -- Split the Int into 4 six bit parts. Left as Int to skip a cast. -- Because we construct the pieces ourself we don't need to do checks later -- to be sure our Int fits into our alphabet. Their size means they must. splitGroup : forall r. Int -> Of Int r -> Stream (Of Int) m r splitGroup n (x :> r) = (iterate (`shiftR`6) x &$ take {r=()} 4 |> maps (.&. 0x3F) |> rev -- the shifting makes the order backward |> take n) *> pure r -- e. = 101 46 -- Z S 4 = 25 28 56 -- A G U u = 0 6 20 46 -- Take our six bit parts and convert them to chars. encode : forall r. Alphabet -> Stream (Of Int) m r -> Stream (Of Char) m r encode alph str0 = effect $ do Right (b :> str) <- inspect str0 | Left r => pure . pure $ r pure $ if b == 65 -- pad then yield alph.pad *> encode alph str else yield (alph.toChar b) *> encode alph str -- What to do if encoded data ends early? -- Return what was decoded and the rest of the stream? ||| decode Char (from an Alphabet) to binary data export decodeBase64 : Monad m => Alphabet -> Stream (Of Char) m r -> Stream (Of Bits8) m (Either DecodeError r) decodeBase64 alph str0 = str0 &$ S.filter (not . alph.whitespace) -- ignore whitespace |> validate alph |> chunksOf 4 |> mapf (graft alph) |> concats where -- Ensure the encountered character is part of our alphabet validate : forall r. Alphabet -> Stream (Of Char) m r -> Stream (Of Char) m (Either DecodeError r) validate alph str0 = effect $ do Right (c :> str) <- inspect str0 | Left l => pure . pure . Right $ l pure $ if c /= alph.pad then case alph.fromChar c of Nothing => pure . Left $ CharNotInAlphabet c Just _ => wrap (c :> validate alph str) else wrap (c :> validate alph str) -- Split the collected bytes into `n` eight bit parts. splitGroup : forall r. Int -> Of Int r -> Stream (Of Bits8) m r splitGroup n (x :> r) = (iterate (`shiftR`8) x &$ take {r=()} 3 |> rev |> take n |> maps cast) -- the shifting makes the order backward *> Return r -- process 4 chars into 3 bytes -- store, check length gotten, unSplit, use what length demands pad otherwise graft : forall r. Alphabet -> Stream (Of Char) m r -> Stream (Of Bits8) m r graft alph str0 = str0 &$ store (maps (maybe 0 id . alph.fromChar) |> foldl (\acc,c => shiftL acc 6 .|. c) 0) -- merge chars) |> (length . S.filter (/= alph.pad)) |> \x => effect $ do len :> res <- x case len of -- 1 => pure . pure $ Left TooMuchPadding 2 => pure (splitGroup 1 res) 3 => pure (splitGroup 2 res) _ => pure (splitGroup len res) -- doesn't quite handle padding right yet
Symmetric : {c : Type} -> (c -> c -> Type) -> Type Symmetric {c} rel = {a : c} -> {b : c} -> rel a b -> rel b a record Symmetry (t : Type) (rel : t -> t -> Type) where constructor MkSymmetry is_symmetric : Symmetric {c=t} rel symmetry : {ty : Type} -> Symmetry ty (=) symmetry = MkSymmetry sym
import init.data.nat.basic import tactic.finish import tactic.ext import biject import init.data.int.basic import data.int.basic import data.nat.parity import tactic.hint import data.nat.basic universes u1 u2 u3 u4 def denombrable (α : Sort u1) : Prop := in_bijection ā„• α theorem tf_l {A : Sort u1} {B : Sort u2} {x3 x4 :pprod A B} : x3 = x4 → x3.1 = x4.1 ∧ x3.2 = x4.2 := begin intro a, apply and.intro, apply map_eq (Ī» x :pprod A B, x.1) a, apply map_eq (Ī» x :pprod A B, x.2) a, end theorem tf_r {A : Sort u1} {B : Sort u2} {x3 x4 :pprod A B} : x3.1 = x4.1 ∧ x3.2 = x4.2 → x3 = x4 := begin intro eq1, cases eq1 with a b, cases x3, cases x4, finish end theorem tf {A : Sort u1} {B : Sort u2} (x3 x4 :pprod A B) : x3 = x4 ↔ x3.1 = x4.1 ∧ x3.2 = x4.2 := begin split, apply tf_l, apply tf_r end def prod_func {A : Sort u1} {B : Sort u2} {C : Sort u3} {D : Sort u4} (f : A → B) (g : C → D) : pprod A C → pprod B D := Ī» x : pprod A C , pprod.mk (f (x.fst)) (g x.snd) theorem prod_bij_prod_left {A : Sort u1} {B : Sort u2} {C : Sort u3} {D : Sort u4} (f : A → B) (g : C → D) [bijective f] [bijective g] : bijective (prod_func f g) := begin apply and.intro, intros x1 x2, rw prod_func, simp, intro h, apply iff.elim_right (tf x1 x2), apply and.intro, apply _inst_1.left x1.fst x2.fst ((tf (prod_func f g x1) (prod_func f g x2)).elim_left h).left, apply _inst_2.left x1.snd x2.snd ((tf (prod_func f g x1) (prod_func f g x2)).elim_left h).right, intro y, let x1 := (_inst_1.elim_right y.1).some, let x2 := (_inst_2.elim_right y.2).some, use pprod.mk x1 x2, rw prod_func, simp, apply tf_r, simp, change x1 with (_inst_1.elim_right y.1).some, change x2 with (_inst_2.elim_right y.2).some, split, apply Exists.some_spec (_inst_1.elim_right y.1), apply Exists.some_spec (_inst_2.elim_right y.2) end def nat_plus := { n : ā„• // ¬ n = 0} lemma nat_succ_not_zero (n : ā„•) : ¬ n.succ = 0 := begin apply not.intro, trivial end def succ_plus (n : ā„• ) : nat_plus := ⟨ n.succ,nat_succ_not_zero n⟩ lemma not_zero_le (n : ā„•) : ¬ n = 0 ↔ 0 < n := begin split, apply nat.cases_on n, trivial, intro m, simp, apply nat.cases_on n, simp, intro m, simp, trivial end lemma bon (n : nat_plus) : n.val.pred.succ = n.val := begin apply n.cases_on, intros k p, simp, apply nat.succ_pred_eq_of_pos ((not_zero_le k).elim_left p) end theorem Nplus_denumbrable : denombrable nat_plus := begin rw [denombrable,in_bijection], use succ_plus, split, intros x1 x2, rw [succ_plus,succ_plus], intro hyp, apply subtype.mk.inj, simp, apply nat.succ.inj (subtype.mk_eq_mk.elim_left hyp), exact (Ī» n : ā„• , true), trivial, trivial, intro y, use y.val.pred, rw succ_plus, rw eq.symm (subtype.coe_eta y y.property), rw subtype.mk.inj_eq, simp, apply bon y end def abs_nat : ℤ → ā„• |(int.of_nat k) := k |(int.neg_succ_of_nat k) := k @[simp] def nat_abs : ℤ → ā„• | (int.of_nat m) := m | -[1+ m] := m.succ constant h : Prop constant dh : decidable h constants a b : α lemma if_works {α : Sort u1} {p : Prop} [decidable p] {a b: α} : p → (ite p a b = a) := begin intro h, simp, intro nh, trivial end lemma if_not_works {α : Sort u1} {p : Prop} [decidable p] {a b: α} : ¬ p → (ite p a b = b) := begin intro h, rw eq.symm (ite_not p b a), apply if_works, exact h end lemma whatever_decidable : decidable (āˆ€ (n : ā„•), 0 ≤ (n : ℤ )) := begin simp, apply decidable.true end def f : ā„• → ℤ := Ī» n: ā„• , (-1) ^n *(n/2) def g : ℤ → ā„• := Ī» z : ℤ, if z ≤ 0 then (0-2*(nat_abs z)) else 1+2*(nat_abs z) lemma leq_two_z_o (n : ā„•) : n<2 → n=0 ∨ n=1 := begin cases n, tauto, intro, fconstructor, hint end lemma is_le_one_is_zero : āˆ€ n : ā„•, n<1 → n=0 := begin intro n, cases n, simp, intro h, have p : ¬ n.succ < 1 := dec_trivial, apply absurd h p end lemma even_succ_not_zero (n : ā„•) (h : even n.succ) : ¬(n.succ / 2 = 0) := begin apply not.intro, have wut : 0 < 2 := by simp, rw nat.div_eq_zero_iff wut, simp at *, cases h, norm_cast at *, intro x, safe, rw eq.symm (nat.one_mul 2) at x, rw nat.mul_assoc at x, have lol : 1 * (2 * h_w) = (2 * h_w) := by simp, rw lol at x, rw nat.mul_comm 1 2 at x, have triv : 0 ≤ 2 := by simp, have hmm := @lt_of_mul_lt_mul_left nat nat.linear_ordered_semiring h_w 1 2 x triv, have hw_z : h_w= 0 := by apply is_le_one_is_zero h_w hmm, rw hw_z at h_h, simp at h_h, have triv : ¬ n.succ = 0 := by trivial, apply absurd h_h triv end theorem comp_fg_is_id : comp g f = id := begin rw comp, change g with Ī» (z : ℤ), ite (z ≤ 0) (0 - 2 * nat_abs z) (1+2 * nat_abs z), change f with Ī» (n : ā„•), (-1) ^ n * (↑n / 2), simp, rw function.funext_iff, intro n, simp, by_cases even n, rw nat.neg_one_pow_of_even h, simp, cases n, simp, have p : ¬(n.succ / 2 ≤ 0) := by simp;exact even_succ_not_zero n h, simp at p, split_ifs, simp at h_1, norm_cast at *, rw nat.succ_eq_add_one n at p, simp at h_1, apply absurd h_1 p, simp, cases n, simp, apply or.intro_right, finish, norm_cast at *, simp, cases n, simp, end /- theorem Z_denumbrable : denombrable ℤ := begin rw denombrable, rw in_bijection, use f, rw [bijective,and_comm], split, intro x, use g x, change g with Ī» (z : ℤ), ite (z ≤ 0) (1 - 2 * nat_abs z) (2 * nat_abs z), change f with Ī» (n : ā„•), (-1) ^ n * (↑n / 2), cases x, simp, apply if_works int.coe_nat_nonneg, end -/
program ch0811 ! Rank 2 Arrays and the Sum Intrinsic Funcoltion implicit none integer, parameter :: nrow = 5 integer, parameter :: ncol = 6 real, dimension(1:nrow*ncol) :: results = [ & 50., 47., 28., 89., 30., 46., 37., 67., 34., 65., 68., & 98., 25., 45., 26., 48., 10., 36., 89., 56., 33., 45., & 30., 65., 68., 78., 38., 76., 98., 65. ] real, dimension(1:nrow,1:ncol) :: exam_results = 0. real, dimension(1:nrow) :: people_average = 0. real, dimension(1:ncol) :: subject_average = 0. exam_results = reshape(results, [nrow,ncol], [0.,0.], [2,1]) exam_results(1:nrow,3) = exam_results(1:nrow,3)*2.5 people_average = sum(exam_results, 2) people_average = people_average/ncol subject_average = sum(exam_results, 1) subject_average = subject_average/nrow print *, ' People averages' print *, people_average print *, ' Subject averages' print *, subject_average end program
/** * Copyright (C) 2018-present MongoDB, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the Server Side Public License, version 1, * as published by MongoDB, Inc. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * Server Side Public License for more details. * * You should have received a copy of the Server Side Public License * along with this program. If not, see * <http://www.mongodb.com/licensing/server-side-public-license>. * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the Server Side Public License in all respects for * all of the code used other than as permitted herein. If you modify file(s) * with this exception, you may extend this exception to your version of the * file(s), but you are not obligated to do so. If you do not wish to do so, * delete this exception statement from your version. If you delete this * exception statement from all source files in the program, then also delete * it in the license file. */ #include "mongo/platform/basic.h" #include <boost/optional.hpp> #include <functional> #include "mongo/platform/atomic_word.h" #include "mongo/stdx/thread.h" #include "mongo/unittest/unittest.h" #include "mongo/util/future.h" #include "mongo/util/invalidating_lru_cache.h" #define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kTest namespace mongo { namespace { // The structure for testing is intentionally made movable, but non-copyable struct TestValue { TestValue(std::string in_value) : value(std::move(in_value)) {} TestValue(TestValue&&) = default; std::string value; }; using TestValueCache = InvalidatingLRUCache<int, TestValue>; using TestValueHandle = TestValueCache::ValueHandle; using TestValueCacheCausallyConsistent = InvalidatingLRUCache<int, TestValue, Timestamp>; using TestValueHandleCausallyConsistent = TestValueCacheCausallyConsistent::ValueHandle; TEST(InvalidatingLRUCacheTest, StandaloneValueHandle) { TestValueHandle standaloneHandle({"Standalone value"}); ASSERT(standaloneHandle.isValid()); ASSERT_EQ("Standalone value", standaloneHandle->value); } TEST(InvalidatingLRUCacheTest, ValueHandleOperators) { TestValueCache cache(1); cache.insertOrAssign(100, {"Test value"}); // Test non-const operators { auto valueHandle = cache.get(100); ASSERT_EQ("Test value", valueHandle->value); ASSERT_EQ("Test value", (*valueHandle).value); } // Test const operators { const auto valueHandle = cache.get(100); ASSERT_EQ("Test value", valueHandle->value); ASSERT_EQ("Test value", (*valueHandle).value); } } TEST(InvalidatingLRUCacheTest, CausalConsistency) { TestValueCacheCausallyConsistent cache(1); cache.insertOrAssign(2, TestValue("Value @ TS 100"), Timestamp(100)); ASSERT_EQ("Value @ TS 100", cache.get(2, CacheCausalConsistency::kLatestCached)->value); ASSERT_EQ("Value @ TS 100", cache.get(2, CacheCausalConsistency::kLatestKnown)->value); auto value = cache.get(2, CacheCausalConsistency::kLatestCached); ASSERT(cache.advanceTimeInStore(2, Timestamp(200))); ASSERT_EQ("Value @ TS 100", value->value); ASSERT(!value.isValid()); ASSERT_EQ("Value @ TS 100", cache.get(2, CacheCausalConsistency::kLatestCached)->value); ASSERT(!cache.get(2, CacheCausalConsistency::kLatestCached).isValid()); ASSERT(!cache.get(2, CacheCausalConsistency::kLatestKnown)); // Intentionally push value for key with a timestamp higher than the one passed to advanceTime cache.insertOrAssign(2, TestValue("Value @ TS 300"), Timestamp(300)); ASSERT_EQ("Value @ TS 100", value->value); ASSERT(!value.isValid()); ASSERT_EQ("Value @ TS 300", cache.get(2, CacheCausalConsistency::kLatestCached)->value); ASSERT_EQ("Value @ TS 300", cache.get(2, CacheCausalConsistency::kLatestKnown)->value); } TEST(InvalidatingLRUCacheTest, InvalidateNonCheckedOutValue) { TestValueCache cache(3); cache.insertOrAssign(0, {"Non checked-out (not invalidated)"}); cache.insertOrAssign(1, {"Non checked-out (invalidated)"}); cache.insertOrAssign(2, {"Non checked-out (not invalidated)"}); ASSERT(cache.get(0)); ASSERT(cache.get(1)); ASSERT(cache.get(2)); ASSERT_EQ(3UL, cache.getCacheInfo().size()); cache.invalidate(1); ASSERT(cache.get(0)); ASSERT(!cache.get(1)); ASSERT(cache.get(2)); ASSERT_EQ(2UL, cache.getCacheInfo().size()); } TEST(InvalidatingLRUCacheTest, InvalidateCheckedOutValue) { TestValueCache cache(3); cache.insertOrAssign(0, {"Non checked-out (not invalidated)"}); auto checkedOutValue = cache.insertOrAssignAndGet(1, {"Checked-out (invalidated)"}); cache.insertOrAssign(2, {"Non checked-out (not invalidated)"}); ASSERT(checkedOutValue.isValid()); ASSERT_EQ(3UL, cache.getCacheInfo().size()); cache.invalidate(1); ASSERT(!checkedOutValue.isValid()); ASSERT_EQ(2UL, cache.getCacheInfo().size()); ASSERT(cache.get(0)); ASSERT(!cache.get(1)); ASSERT(cache.get(2)); } TEST(InvalidatingLRUCacheTest, InvalidateOneKeyDoesnAffectAnyOther) { TestValueCache cache(4); auto checkedOutKey = cache.insertOrAssignAndGet(0, {"Checked-out key (0)"}); auto checkedOutAndInvalidatedKey = cache.insertOrAssignAndGet(1, {"Checked-out and invalidated key (1)"}); cache.insertOrAssign(2, {"Non-checked-out and invalidated key (2)"}); cache.insertOrAssign(3, {"Key which is not neither checked-out nor invalidated (3)"}); // Invalidated keys 1 and 2 above and then ensure that only they are affected cache.invalidate(1); cache.invalidate(2); ASSERT(checkedOutKey.isValid()); ASSERT(!checkedOutAndInvalidatedKey.isValid()); ASSERT(!cache.get(2)); ASSERT(cache.get(3)); ASSERT_EQ(2UL, cache.getCacheInfo().size()); } TEST(InvalidatingLRUCacheTest, CheckedOutItemsAreInvalidatedWhenEvictedFromCache) { TestValueCache cache(3); // Make a cache that's at its maximum size auto checkedOutKey = cache.insertOrAssignAndGet( 0, {"Checked-out key which will be discarded and invalidated (0)"}); (void)cache.insertOrAssignAndGet(1, {"Non-checked-out key (1)"}); (void)cache.insertOrAssignAndGet(2, {"Non-checked-out key (2)"}); { auto cacheInfo = cache.getCacheInfo(); std::sort(cacheInfo.begin(), cacheInfo.end(), [](auto a, auto b) { return a.key < b.key; }); ASSERT_EQ(3UL, cacheInfo.size()); ASSERT_EQ(0, cacheInfo[0].key); ASSERT_EQ(1, cacheInfo[0].useCount); ASSERT_EQ(1, cacheInfo[1].key); ASSERT_EQ(2, cacheInfo[2].key); } // Inserting one more key, should boot out key 0, which was inserted first, but it should still // show-up in the statistics for the cache cache.insertOrAssign(3, {"Non-checked-out key (3)"}); { auto cacheInfo = cache.getCacheInfo(); std::sort(cacheInfo.begin(), cacheInfo.end(), [](auto a, auto b) { return a.key < b.key; }); ASSERT_EQ(4UL, cacheInfo.size()); ASSERT_EQ(0, cacheInfo[0].key); ASSERT_EQ(1, cacheInfo[0].useCount); ASSERT_EQ(1, cacheInfo[1].key); ASSERT_EQ(2, cacheInfo[2].key); ASSERT_EQ(3, cacheInfo[3].key); } // Invalidating the key, which was booted out due to cache size exceeded should still be // reflected on the checked-out key ASSERT(checkedOutKey.isValid()); cache.invalidate(0); ASSERT(!checkedOutKey.isValid()); { auto cacheInfo = cache.getCacheInfo(); std::sort(cacheInfo.begin(), cacheInfo.end(), [](auto a, auto b) { return a.key < b.key; }); ASSERT_EQ(3UL, cacheInfo.size()); ASSERT_EQ(1, cacheInfo[0].key); ASSERT_EQ(2, cacheInfo[1].key); ASSERT_EQ(3, cacheInfo[2].key); } } TEST(InvalidatingLRUCacheTest, CheckedOutItemsAreInvalidatedWithPredicateWhenEvictedFromCache) { TestValueCache cache(3); // Make a cache that's at its maximum size auto checkedOutKey = cache.insertOrAssignAndGet( 0, {"Checked-out key which will be discarded and invalidated (0)"}); (void)cache.insertOrAssignAndGet(1, {"Non-checked-out key (1)"}); (void)cache.insertOrAssignAndGet(2, {"Non-checked-out key (2)"}); { auto cacheInfo = cache.getCacheInfo(); std::sort(cacheInfo.begin(), cacheInfo.end(), [](auto a, auto b) { return a.key < b.key; }); ASSERT_EQ(3UL, cacheInfo.size()); ASSERT_EQ(0, cacheInfo[0].key); ASSERT_EQ(1, cacheInfo[0].useCount); ASSERT_EQ(1, cacheInfo[1].key); ASSERT_EQ(2, cacheInfo[2].key); } // Inserting one more key, should boot out key 0, which was inserted first, but it should still // show-up in the statistics for the cache cache.insertOrAssign(3, {"Non-checked-out key (3)"}); { auto cacheInfo = cache.getCacheInfo(); std::sort(cacheInfo.begin(), cacheInfo.end(), [](auto a, auto b) { return a.key < b.key; }); ASSERT_EQ(4UL, cacheInfo.size()); ASSERT_EQ(0, cacheInfo[0].key); ASSERT_EQ(1, cacheInfo[0].useCount); ASSERT_EQ(1, cacheInfo[1].key); ASSERT_EQ(2, cacheInfo[2].key); ASSERT_EQ(3, cacheInfo[3].key); } // Invalidating the key, which was booted out due to cache size exceeded should still be // reflected on the checked-out key ASSERT(checkedOutKey.isValid()); cache.invalidateIf([](int key, TestValue* value) { return key == 0; }); ASSERT(!checkedOutKey.isValid()); { auto cacheInfo = cache.getCacheInfo(); std::sort(cacheInfo.begin(), cacheInfo.end(), [](auto a, auto b) { return a.key < b.key; }); ASSERT_EQ(3UL, cacheInfo.size()); ASSERT_EQ(1, cacheInfo[0].key); ASSERT_EQ(2, cacheInfo[1].key); ASSERT_EQ(3, cacheInfo[2].key); } } TEST(InvalidatingLRUCacheTest, CausalConsistencyPreservedForEvictedCheckedOutKeys) { TestValueCacheCausallyConsistent cache(1); auto key1ValueAtTS10 = cache.insertOrAssignAndGet(1, TestValue("Key 1 - Value @ TS 10"), Timestamp(10)); // This will evict key 1, but we have a handle to it, so it will stay accessible on the evicted // list cache.insertOrAssign(2, TestValue("Key 2 - Value @ TS 20"), Timestamp(20)); auto [cachedValueAtTS10, timeInStoreAtTS10] = cache.getCachedValueAndTimeInStore(1); ASSERT_EQ(Timestamp(10), timeInStoreAtTS10); ASSERT_EQ("Key 1 - Value @ TS 10", cachedValueAtTS10->value); ASSERT_EQ("Key 1 - Value @ TS 10", key1ValueAtTS10->value); ASSERT_EQ("Key 1 - Value @ TS 10", cache.get(1, CacheCausalConsistency::kLatestCached)->value); ASSERT_EQ("Key 1 - Value @ TS 10", cache.get(1, CacheCausalConsistency::kLatestKnown)->value); ASSERT(cache.advanceTimeInStore(1, Timestamp(11))); auto [cachedValueAtTS11, timeInStoreAtTS11] = cache.getCachedValueAndTimeInStore(1); ASSERT_EQ(Timestamp(11), timeInStoreAtTS11); ASSERT(!key1ValueAtTS10.isValid()); ASSERT_EQ("Key 1 - Value @ TS 10", cachedValueAtTS11->value); ASSERT_EQ("Key 1 - Value @ TS 10", key1ValueAtTS10->value); ASSERT_EQ("Key 1 - Value @ TS 10", cache.get(1, CacheCausalConsistency::kLatestCached)->value); ASSERT(!cache.get(1, CacheCausalConsistency::kLatestKnown)); cache.insertOrAssign(1, TestValue("Key 1 - Value @ TS 12"), Timestamp(12)); ASSERT_EQ("Key 1 - Value @ TS 12", cache.get(1, CacheCausalConsistency::kLatestCached)->value); ASSERT_EQ("Key 1 - Value @ TS 12", cache.get(1, CacheCausalConsistency::kLatestKnown)->value); } TEST(InvalidatingLRUCacheTest, InvalidateAfterAdvanceTime) { TestValueCacheCausallyConsistent cache(1); cache.insertOrAssign(20, TestValue("Value @ TS 200"), Timestamp(200)); ASSERT(cache.advanceTimeInStore(20, Timestamp(250))); ASSERT_EQ("Value @ TS 200", cache.get(20, CacheCausalConsistency::kLatestCached)->value); ASSERT(!cache.get(20, CacheCausalConsistency::kLatestKnown)); cache.invalidate(20); ASSERT(!cache.get(20, CacheCausalConsistency::kLatestCached)); ASSERT(!cache.get(20, CacheCausalConsistency::kLatestKnown)); } TEST(InvalidatingLRUCacheTest, InsertEntryAtTimeLessThanAdvanceTime) { TestValueCacheCausallyConsistent cache(1); cache.insertOrAssign(20, TestValue("Value @ TS 200"), Timestamp(200)); ASSERT(cache.advanceTimeInStore(20, Timestamp(300))); ASSERT_EQ("Value @ TS 200", cache.get(20, CacheCausalConsistency::kLatestCached)->value); ASSERT(!cache.get(20, CacheCausalConsistency::kLatestKnown)); cache.insertOrAssign(20, TestValue("Value @ TS 250"), Timestamp(250)); ASSERT_EQ("Value @ TS 250", cache.get(20, CacheCausalConsistency::kLatestCached)->value); ASSERT(!cache.get(20, CacheCausalConsistency::kLatestKnown)); cache.insertOrAssign(20, TestValue("Value @ TS 300"), Timestamp(300)); ASSERT_EQ("Value @ TS 300", cache.get(20, CacheCausalConsistency::kLatestCached)->value); ASSERT_EQ("Value @ TS 300", cache.get(20, CacheCausalConsistency::kLatestKnown)->value); } TEST(InvalidatingLRUCacheTest, OrderOfDestructionOfHandlesDiffersFromOrderOfInsertion) { TestValueCache cache(1); boost::optional<TestValueCache::ValueHandle> firstValue( cache.insertOrAssignAndGet(100, {"Key 100, Value 1"})); ASSERT(*firstValue); ASSERT(firstValue->isValid()); // This will invalidate the first value of key 100 auto secondValue = cache.insertOrAssignAndGet(100, {"Key 100, Value 2"}); ASSERT(secondValue); ASSERT(secondValue.isValid()); ASSERT(!firstValue->isValid()); // This will evict the second value of key 100 cache.insertOrAssignAndGet(200, {"Key 200, Value 1"}); ASSERT(secondValue); ASSERT(secondValue.isValid()); ASSERT(!firstValue->isValid()); // This makes the first value of 100's handle go away before the second value's hande firstValue.reset(); ASSERT(secondValue.isValid()); cache.invalidate(100); ASSERT(!secondValue.isValid()); } TEST(InvalidatingLRUCacheTest, AssignWhileValueIsCheckedOutInvalidatesFirstValue) { TestValueCache cache(1); auto firstGet = cache.insertOrAssignAndGet(100, {"First check-out of the key (100)"}); ASSERT(firstGet); ASSERT(firstGet.isValid()); auto secondGet = cache.insertOrAssignAndGet(100, {"Second check-out of the key (100)"}); ASSERT(!firstGet.isValid()); ASSERT(secondGet); ASSERT(secondGet.isValid()); ASSERT_EQ("Second check-out of the key (100)", secondGet->value); } TEST(InvalidatingLRUCacheTest, InvalidateIfAllEntries) { TestValueCache cache(6); for (int i = 0; i < 6; i++) { cache.insertOrAssign(i, TestValue{str::stream() << "Test value " << i}); } const std::vector checkedOutValues{cache.get(0), cache.get(1), cache.get(2)}; cache.invalidateIf([](int, TestValue*) { return true; }); } TEST(InvalidatingLRUCacheTest, CacheSizeZero) { TestValueCache cache(0); { auto immediatelyEvictedValue = cache.insertOrAssignAndGet(0, TestValue{"Evicted value"}); auto anotherImmediatelyEvictedValue = cache.insertOrAssignAndGet(1, TestValue{"Another evicted value"}); ASSERT(immediatelyEvictedValue.isValid()); ASSERT(anotherImmediatelyEvictedValue.isValid()); ASSERT(cache.get(0)); ASSERT(cache.get(1)); ASSERT_EQ(2UL, cache.getCacheInfo().size()); ASSERT_EQ(1UL, cache.getCacheInfo()[0].useCount); ASSERT_EQ(1UL, cache.getCacheInfo()[1].useCount); } ASSERT(!cache.get(0)); ASSERT(!cache.get(1)); ASSERT_EQ(0UL, cache.getCacheInfo().size()); } TEST(InvalidatingLRUCacheTest, CacheSizeZeroInvalidate) { TestValueCache cache(0); auto immediatelyEvictedValue = cache.insertOrAssignAndGet(0, TestValue{"Evicted value"}); ASSERT(immediatelyEvictedValue.isValid()); ASSERT(cache.get(0)); ASSERT_EQ(1UL, cache.getCacheInfo().size()); ASSERT_EQ(1UL, cache.getCacheInfo()[0].useCount); cache.invalidate(0); ASSERT(!immediatelyEvictedValue.isValid()); ASSERT(!cache.get(0)); ASSERT_EQ(0UL, cache.getCacheInfo().size()); } TEST(InvalidatingLRUCacheTest, CacheSizeZeroInvalidateAllEntries) { TestValueCache cache(0); std::vector<TestValueHandle> checkedOutValues; for (int i = 0; i < 6; i++) { checkedOutValues.emplace_back( cache.insertOrAssignAndGet(i, TestValue{str::stream() << "Test value " << i})); } cache.invalidateIf([](int, TestValue*) { return true; }); for (auto&& value : checkedOutValues) { ASSERT(!value.isValid()) << "Value " << value->value << " was not invalidated"; } } TEST(InvalidatingLRUCacheTest, CacheSizeZeroCausalConsistency) { TestValueCacheCausallyConsistent cache(0); ASSERT(cache.advanceTimeInStore(100, Timestamp(30))); cache.insertOrAssign(100, TestValue("Value @ TS 30"), Timestamp(30)); auto [cachedValueAtTS30, timeInStoreAtTS30] = cache.getCachedValueAndTimeInStore(100); ASSERT_EQ(Timestamp(), timeInStoreAtTS30); ASSERT(!cachedValueAtTS30); auto valueAtTS30 = cache.insertOrAssignAndGet(100, TestValue("Value @ TS 30"), Timestamp(30)); ASSERT_EQ("Value @ TS 30", cache.get(100, CacheCausalConsistency::kLatestCached)->value); ASSERT_EQ("Value @ TS 30", cache.get(100, CacheCausalConsistency::kLatestKnown)->value); ASSERT(cache.advanceTimeInStore(100, Timestamp(35))); auto [cachedValueAtTS35, timeInStoreAtTS35] = cache.getCachedValueAndTimeInStore(100); ASSERT_EQ(Timestamp(35), timeInStoreAtTS35); ASSERT_EQ("Value @ TS 30", cachedValueAtTS35->value); ASSERT_EQ("Value @ TS 30", cache.get(100, CacheCausalConsistency::kLatestCached)->value); ASSERT(!cache.get(100, CacheCausalConsistency::kLatestKnown)); auto valueAtTS40 = cache.insertOrAssignAndGet(100, TestValue("Value @ TS 40"), Timestamp(40)); ASSERT_EQ("Value @ TS 40", cache.get(100, CacheCausalConsistency::kLatestCached)->value); ASSERT_EQ("Value @ TS 40", cache.get(100, CacheCausalConsistency::kLatestKnown)->value); } TEST(InvalidatingLRUCacheTest, AdvanceTimeNoEntry) { TestValueCacheCausallyConsistent cache(1); // If there is no cached entry advanceTime will always return true ASSERT(cache.advanceTimeInStore(100, Timestamp(30))); ASSERT(cache.advanceTimeInStore(100, Timestamp(30))); } TEST(InvalidatingLRUCacheTest, AdvanceTimeSameTime) { TestValueCacheCausallyConsistent cache(1); cache.insertOrAssignAndGet(100, TestValue("Value @ TS 30"), Timestamp(30)); ASSERT(!cache.advanceTimeInStore(100, Timestamp(30))); } template <class TCache, typename TestFunc> void parallelTest(size_t cacheSize, TestFunc doTest) { constexpr auto kNumIterations = 100'000; constexpr auto kNumThreads = 4; TCache cache(cacheSize); std::vector<stdx::thread> threads; for (int i = 0; i < kNumThreads; i++) { threads.emplace_back([&] { for (int i = 0; i < kNumIterations / kNumThreads; i++) { doTest(cache); } }); } for (auto&& thread : threads) { thread.join(); } } TEST(InvalidatingLRUCacheParallelTest, InsertOrAssignThenGet) { parallelTest<TestValueCache>(1, [](auto& cache) { const int key = 100; cache.insertOrAssign(key, TestValue{"Parallel tester value"}); auto cachedItem = cache.get(key); if (!cachedItem || !cachedItem.isValid()) return; auto cachedItemSecondRef = cachedItem; cache.invalidate(key); ASSERT(!cachedItem.isValid()); ASSERT(!cachedItemSecondRef.isValid()); }); } TEST(InvalidatingLRUCacheParallelTest, InsertOrAssignAndGet) { parallelTest<TestValueCache>(1, [](auto& cache) { const int key = 200; auto cachedItem = cache.insertOrAssignAndGet(key, TestValue{"Parallel tester value"}); ASSERT(cachedItem); auto cachedItemSecondRef = cache.get(key); ASSERT(cachedItemSecondRef); }); } TEST(InvalidatingLRUCacheParallelTest, CacheSizeZeroInsertOrAssignAndGet) { parallelTest<TestValueCache>(0, [](auto& cache) { const int key = 300; auto cachedItem = cache.insertOrAssignAndGet(key, TestValue{"Parallel tester value"}); ASSERT(cachedItem); auto cachedItemSecondRef = cache.get(key); }); } TEST(InvalidatingLRUCacheParallelTest, AdvanceTime) { AtomicWord<uint64_t> counter{1}; Mutex insertOrAssignMutex = MONGO_MAKE_LATCH("ReadThroughCacheBase::_cancelTokenMutex"); parallelTest<TestValueCacheCausallyConsistent>(0, [&](auto& cache) { const int key = 300; { // The calls to insertOrAssign must always pass strictly incrementing time stdx::lock_guard lg(insertOrAssignMutex); cache.insertOrAssign( key, TestValue{"Parallel tester value"}, Timestamp(counter.fetchAndAdd(1))); } auto latestCached = cache.get(key, CacheCausalConsistency::kLatestCached); auto latestKnown = cache.get(key, CacheCausalConsistency::kLatestKnown); ASSERT(cache.advanceTimeInStore(key, Timestamp(counter.fetchAndAdd(1)))); }); } } // namespace } // namespace mongo
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _āŠ”_) open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Vectors open import Semirings.Definition open import Categories.Definition open import Groups.Definition open import Setoids.Setoids open import Groups.Homomorphisms.Definition open import Groups.Homomorphisms.Examples open import Groups.Homomorphisms.Lemmas open import Functions module Categories.Examples where SET : {a : _} → Category {lsuc a} {a} Category.objects (SET {a}) = Set a Category.arrows (SET {a}) = Ī» a b → (a → b) Category.id (SET {a}) = Ī» x → Ī» y → y Category._∘_ (SET {a}) = Ī» f g → Ī» x → f (g x) Category.rightId (SET {a}) = Ī» f → refl Category.leftId (SET {a}) = Ī» f → refl Category.compositionAssociative (SET {a}) = Ī» f g h → refl GROUP : {a b : _} → Category {lsuc a āŠ” lsuc b} {a āŠ” b} Category.objects (GROUP {a} {b}) = Sg (Set a) (Ī» A → Sg (A → A → A) (Ī» _+_ → Sg (Setoid {a} {b} A) (Ī» S → Group S _+_))) Category.arrows (GROUP {a}) (A , (_+A_ , (S , G))) (B , (_+B_ , (T , H))) = Sg (A → B) (GroupHom G H) Category.id (GROUP {a}) (A , (_+A_ , (S , G))) = (Ī» i → i) , identityHom G Category._∘_ (GROUP {a}) {A , (_+A_ , (S , G))} {B , (_+B_ , (T , H))} {C , (_+C_ , (U , I))} (f , fHom) (g , gHom) = (f ∘ g) , groupHomsCompose gHom fHom Category.rightId (GROUP {a}) {A , (_+A_ , (S , G))} {B , (_+B_ , (T , H))} (f , fHom) = {!!} Category.leftId (GROUP {a}) {A , (_+A_ , (S , G))} {B , (_+B_ , (T , H))} (f , fHom) = {!!} Category.compositionAssociative (GROUP {a}) = {!!} DISCRETE : {a : _} (X : Set a) → Category {a} {a} Category.objects (DISCRETE X) = X Category.arrows (DISCRETE X) = Ī» a b → a ≔ b Category.id (DISCRETE X) = Ī» x → refl Category._∘_ (DISCRETE X) = Ī» y=z x=y → transitivity x=y y=z Category.rightId (DISCRETE X) refl = refl Category.leftId (DISCRETE X) refl = refl Category.compositionAssociative (DISCRETE X) refl refl refl = refl
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import analysis.special_functions.complex.circle import measure_theory.group.integration import measure_theory.integral.integral_eq_improper /-! # The Fourier transform We set up the Fourier transform for complex-valued functions on finite-dimensional spaces. ## Design choices In namespace `vector_fourier`, we define the Fourier integral in the following context: * `š•œ` is a commutative ring. * `V` and `W` are `š•œ`-modules. * `e` is a unitary additive character of `š•œ`, i.e. a homomorphism `(multiplicative š•œ) →* circle`. * `μ` is a measure on `V`. * `L` is a `š•œ`-bilinear form `V Ɨ W → š•œ`. * `E` is a complete normed `ā„‚`-vector space. With these definitions, we define `fourier_integral` to be the map from functions `V → E` to functions `W → E` that sends `f` to `Ī» w, ∫ v in V, e [-L v w] • f v āˆ‚Ī¼`, where `e [x]` is notational sugar for `(e (multiplicative.of_add x) : ā„‚)` (available in locale `fourier_transform`). This includes the cases `W` is the dual of `V` and `L` is the canonical pairing, or `W = V` and `L` is a bilinear form (e.g. an inner product). In namespace `fourier`, we consider the more familiar special case when `V = W = š•œ` and `L` is the multiplication map (but still allowing `š•œ` to be an arbitrary ring equipped with a measure). The most familiar case of all is when `V = W = š•œ = ā„`, `L` is multiplication, `μ` is volume, and `e` is `real.fourier_char`, i.e. the character `Ī» x, exp ((2 * Ļ€ * x) * I)`. The Fourier integral in this case is defined as `real.fourier_integral`. ## Main results At present the only nontrivial lemma we prove is `continuous_fourier_integral`, stating that the Fourier transform of an integrable function is continuous (under mild assumptions). -/ noncomputable theory local notation `š•Š` := circle open measure_theory filter open_locale topology -- To avoid messing around with multiplicative vs. additive characters, we make a notation. localized "notation e `[` x `]` := (e (multiplicative.of_add x) : ā„‚)" in fourier_transform /-! ## Fourier theory for functions on general vector spaces -/ namespace vector_fourier variables {š•œ : Type*} [comm_ring š•œ] {V : Type*} [add_comm_group V] [module š•œ V] [measurable_space V] {W : Type*} [add_comm_group W] [module š•œ W] {E : Type*} [normed_add_comm_group E] [normed_space ā„‚ E] section defs variables [complete_space E] /-- The Fourier transform integral for `f : V → E`, with respect to a bilinear form `L : V Ɨ W → š•œ` and an additive character `e`. -/ def fourier_integral (e : (multiplicative š•œ) →* š•Š) (μ : measure V) (L : V →ₗ[š•œ] W →ₗ[š•œ] š•œ) (f : V → E) (w : W) : E := ∫ v, e [-L v w] • f v āˆ‚Ī¼ lemma fourier_integral_smul_const (e : (multiplicative š•œ) →* š•Š) (μ : measure V) (L : V →ₗ[š•œ] W →ₗ[š•œ] š•œ) (f : V → E) (r : ā„‚) : fourier_integral e μ L (r • f) = r • (fourier_integral e μ L f) := begin ext1 w, simp only [pi.smul_apply, fourier_integral, smul_comm _ r, integral_smul], end /-- The uniform norm of the Fourier integral of `f` is bounded by the `L¹` norm of `f`. -/ lemma fourier_integral_norm_le (e : (multiplicative š•œ) →* š•Š) {μ : measure V} (L : V →ₗ[š•œ] W →ₗ[š•œ] š•œ) {f : V → E} (hf : integrable f μ) (w : W) : ‖fourier_integral e μ L f w‖ ≤ ‖hf.to_L1 f‖ := begin rw L1.norm_of_fun_eq_integral_norm, refine (norm_integral_le_integral_norm _).trans (le_of_eq _), simp_rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul], end /-- The Fourier integral converts right-translation into scalar multiplication by a phase factor.-/ lemma fourier_integral_comp_add_right [has_measurable_add V] (e : (multiplicative š•œ) →* š•Š) (μ : measure V) [μ.is_add_right_invariant] (L : V →ₗ[š•œ] W →ₗ[š•œ] š•œ) (f : V → E) (vā‚€ : V) : fourier_integral e μ L (f ∘ (Ī» v, v + vā‚€)) = Ī» w, e [L vā‚€ w] • fourier_integral e μ L f w := begin ext1 w, dsimp only [fourier_integral, function.comp_apply], conv in (L _) { rw ←add_sub_cancel v vā‚€ }, rw integral_add_right_eq_self (Ī» (v : V), e [-L (v - vā‚€) w] • f v), swap, apply_instance, dsimp only, rw ←integral_smul, congr' 1 with v, rw [←smul_assoc, smul_eq_mul, ←submonoid.coe_mul, ←e.map_mul, ←of_add_add, ←linear_map.neg_apply, ←sub_eq_add_neg, ←linear_map.sub_apply, linear_map.map_sub, neg_sub] end end defs section continuous /- In this section we assume š•œ, V, W have topologies, and L, e are continuous (but f needn't be). This is used to ensure that `e [-L v w]` is (ae strongly) measurable. We could get away with imposing only a measurable-space structure on š•œ (it doesn't have to be the Borel sigma-algebra of a topology); but it seems hard to imagine cases where this extra generality would be useful, and allowing it would complicate matters in the most important use cases. -/ variables [topological_space š•œ] [topological_ring š•œ] [topological_space V] [borel_space V] [topological_space W] {e : (multiplicative š•œ) →* š•Š} {μ : measure V} {L : V →ₗ[š•œ] W →ₗ[š•œ] š•œ} /-- If `f` is integrable, then the Fourier integral is convergent for all `w`. -/ lemma fourier_integral_convergent (he : continuous e) (hL : continuous (Ī» p : V Ɨ W, L p.1 p.2)) {f : V → E} (hf : integrable f μ) (w : W) : integrable (Ī» (v : V), (e [-L v w]) • f v) μ := begin rw continuous_induced_rng at he, have c : continuous (Ī» v, e[-L v w]), { refine he.comp (continuous_of_add.comp (continuous.neg _)), exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩) }, rw ←integrable_norm_iff (c.ae_strongly_measurable.smul hf.1), convert hf.norm, ext1 v, rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul] end variables [complete_space E] lemma fourier_integral_add (he : continuous e) (hL : continuous (Ī» p : V Ɨ W, L p.1 p.2)) {f g : V → E} (hf : integrable f μ) (hg : integrable g μ) : (fourier_integral e μ L f) + (fourier_integral e μ L g) = fourier_integral e μ L (f + g) := begin ext1 w, dsimp only [pi.add_apply, fourier_integral], simp_rw smul_add, rw integral_add, { exact fourier_integral_convergent he hL hf w }, { exact fourier_integral_convergent he hL hg w }, end /-- The Fourier integral of an `L^1` function is a continuous function. -/ lemma fourier_integral_continuous [topological_space.first_countable_topology W] (he : continuous e) (hL : continuous (Ī» p : V Ɨ W, L p.1 p.2)) {f : V → E} (hf : integrable f μ) : continuous (fourier_integral e μ L f) := begin apply continuous_of_dominated, { exact Ī» w, (fourier_integral_convergent he hL hf w).1 }, { refine Ī» w, ae_of_all _ (Ī» v, _), { exact Ī» v, ‖f v‖ }, { rw [norm_smul, complex.norm_eq_abs, abs_coe_circle, one_mul] } }, { exact hf.norm }, { rw continuous_induced_rng at he, refine ae_of_all _ (Ī» v, (he.comp (continuous_of_add.comp _)).smul continuous_const), refine (hL.comp (continuous_prod_mk.mpr ⟨continuous_const, continuous_id⟩)).neg } end end continuous end vector_fourier /-! ## Fourier theory for functions on `š•œ` -/ namespace fourier variables {š•œ : Type*} [comm_ring š•œ] [measurable_space š•œ] {E : Type*} [normed_add_comm_group E] [normed_space ā„‚ E] section defs variables [complete_space E] /-- The Fourier transform integral for `f : š•œ → E`, with respect to the measure `μ` and additive character `e`. -/ def fourier_integral (e : (multiplicative š•œ) →* š•Š) (μ : measure š•œ) (f : š•œ → E) (w : š•œ) : E := vector_fourier.fourier_integral e μ (linear_map.mul š•œ š•œ) f w lemma fourier_integral_def (e : (multiplicative š•œ) →* š•Š) (μ : measure š•œ) (f : š•œ → E) (w : š•œ) : fourier_integral e μ f w = ∫ (v : š•œ), e[-(v * w)] • f v āˆ‚Ī¼ := rfl lemma fourier_integral_smul_const (e : (multiplicative š•œ) →* š•Š) (μ : measure š•œ) (f : š•œ → E) (r : ā„‚) : fourier_integral e μ (r • f) = r • (fourier_integral e μ f) := vector_fourier.fourier_integral_smul_const _ _ _ _ _ /-- The uniform norm of the Fourier transform of `f` is bounded by the `L¹` norm of `f`. -/ lemma fourier_integral_norm_le (e : (multiplicative š•œ) →* š•Š) {μ : measure š•œ} {f : š•œ → E} (hf : integrable f μ) (w : š•œ) : ‖fourier_integral e μ f w‖ ≤ ‖hf.to_L1 f‖ := vector_fourier.fourier_integral_norm_le _ _ _ _ /-- The Fourier transform converts right-translation into scalar multiplication by a phase factor.-/ lemma fourier_integral_comp_add_right [has_measurable_add š•œ] (e : (multiplicative š•œ) →* š•Š) (μ : measure š•œ) [μ.is_add_right_invariant] (f : š•œ → E) (vā‚€ : š•œ) : fourier_integral e μ (f ∘ (Ī» v, v + vā‚€)) = Ī» w, e [vā‚€ * w] • fourier_integral e μ f w := vector_fourier.fourier_integral_comp_add_right _ _ _ _ _ end defs end fourier open_locale real namespace real /-- The standard additive character of `ā„`, given by `Ī» x, exp (2 * Ļ€ * x * I)`. -/ def fourier_char : (multiplicative ā„) →* š•Š := { to_fun := Ī» z, exp_map_circle (2 * Ļ€ * z.to_add), map_one' := by rw [to_add_one, mul_zero, exp_map_circle_zero], map_mul' := Ī» x y, by rw [to_add_mul, mul_add, exp_map_circle_add] } lemma fourier_char_apply (x : ā„) : real.fourier_char [x] = complex.exp (↑(2 * Ļ€ * x) * complex.I) := by refl @[continuity] lemma continuous_fourier_char : continuous real.fourier_char := (map_continuous exp_map_circle).comp (continuous_const.mul continuous_to_add) variables {E : Type*} [normed_add_comm_group E] [complete_space E] [normed_space ā„‚ E] lemma vector_fourier_integral_eq_integral_exp_smul {V : Type*} [add_comm_group V] [module ā„ V] [measurable_space V] {W : Type*} [add_comm_group W] [module ā„ W] (L : V →ₗ[ā„] W →ₗ[ā„] ā„) (μ : measure V) (f : V → E) (w : W) : vector_fourier.fourier_integral fourier_char μ L f w = ∫ (v : V), complex.exp (↑(-2 * Ļ€ * L v w) * complex.I) • f v āˆ‚Ī¼ := by simp_rw [vector_fourier.fourier_integral, real.fourier_char_apply, mul_neg, neg_mul] /-- The Fourier integral for `f : ā„ → E`, with respect to the standard additive character and measure on `ā„`. -/ def fourier_integral (f : ā„ → E) (w : ā„) := fourier.fourier_integral fourier_char volume f w lemma fourier_integral_def (f : ā„ → E) (w : ā„) : fourier_integral f w = ∫ (v : ā„), fourier_char [-(v * w)] • f v := rfl localized "notation (name := fourier_integral) `š“•` := real.fourier_integral" in fourier_transform lemma fourier_integral_eq_integral_exp_smul {E : Type*} [normed_add_comm_group E] [complete_space E] [normed_space ā„‚ E] (f : ā„ → E) (w : ā„) : š“• f w = ∫ (v : ā„), complex.exp (↑(-2 * Ļ€ * v * w) * complex.I) • f v := by simp_rw [fourier_integral_def, real.fourier_char_apply, mul_neg, neg_mul, mul_assoc] end real
[STATEMENT] theorem HEndPhase0_HInv4c: "\<lbrakk> HEndPhase0 s s' p; HInv4c s q\<rbrakk> \<Longrightarrow> HInv4c s' q" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>HEndPhase0 s s' p; HInv4c s q\<rbrakk> \<Longrightarrow> HInv4c s' q [PROOF STEP] by(blast dest: HEndPhase0_HInv4c_p HEndPhase0_HInv4c_q)
{-# LANGUAGE BangPatterns #-} {-# LANGUAGE DeriveGeneric #-} module FokkerPlanck.BrownianMotion ( Particle(..) , generatePath , moveParticle , thetaPlus , scalePlus , generateRandomNumber , generatePath' ) where import Control.DeepSeq import Control.Monad import Data.DList as DL import Data.Ix import Data.List as L import GHC.Generics (Generic) import Statistics.Distribution import Statistics.Distribution.Exponential import Statistics.Distribution.Normal import Statistics.Distribution.Uniform import System.Random.MWC import Text.Printf import Utils.Distribution data Particle = Particle {-# UNPACK #-}!Double -- \phi {-# UNPACK #-}!Double -- \rho {-# UNPACK #-}!Double -- \theta {-# UNPACK #-}!Double -- r {-# UNPACK #-}!Double -- weight deriving (Show,Generic) instance NFData Particle {-# INLINE getParticleRho #-} getParticleRho :: Particle -> Double getParticleRho (Particle _ rho _ _ _ ) = rho thetaCheck :: Double -> Double thetaCheck theta = if theta < -pi then thetaCheck (theta + 2 * pi) else if theta >= pi then thetaCheck (theta - 2 * pi) else theta {-# INLINE scaleCheck #-} scaleCheck :: Double -> Double -> Double scaleCheck maxScale scale = if scale >= (1 / maxScale) && scale <= maxScale then scale else error (printf "scaleCheck: %.2f is out of boundary (0,%.2f)\n" scale maxScale) {-# INLINE thetaPlus #-} thetaPlus :: Double -> Double -> Double thetaPlus !x !y = let z = x + y in thetaCheck z {-# INLINE scalePlus #-} scalePlus :: Double -> Double -> Double scalePlus x delta = x * exp delta {-# INLINE scalePlusPeriodic #-} scalePlusPeriodic :: Double -> Double -> Double -> Double scalePlusPeriodic !logMaxScale !delta !x | z >= m = exp (z - 2 * m) | z < -m = exp (2 * m + z) | otherwise = exp z where !m = logMaxScale !z = log x + delta {-# INLINE rhoCutoff #-} rhoCutoff :: Double -> Double rhoCutoff !rho = if rho < 0 then 0 else rho {-# INLINE generateRandomNumber #-} generateRandomNumber :: (Distribution d, ContGen d) => GenIO -> Maybe d -> IO Double generateRandomNumber !gen dist = case dist of Nothing -> return 0 Just d -> genContVar d gen {-# INLINE moveParticle #-} moveParticle :: Double -> Particle -> Particle moveParticle deltaT (Particle phi rho theta r0 v) = let !r = r0 * deltaT !x = theta - phi !cosX = cos x !newPhi = phi `thetaPlus` atan2 (r * sin x) (rho + r * cosX) !newRho = sqrt (rho * rho + r * r + 2 * r * rho * cosX) in Particle newPhi newRho theta r0 v {-# INLINE diffuseParticle #-} diffuseParticle :: Double -> Double -> Double -> Particle -> Particle diffuseParticle !deltaTheta !deltaScale maxScale (Particle phi rho theta r v) = Particle phi rho (theta `thetaPlus` deltaTheta) (r `scalePlus` deltaScale) v brownianMotion :: (Distribution d1, ContGen d1, Distribution d2, ContGen d2, Distribution d3) => GenIO -> Maybe d1 -> Maybe d2 -> Maybe d3 -> Double -> Double -> Double -> Double -> Double -> Particle -> DList Particle -> IO (DList Particle) brownianMotion randomGen thetaDist scaleDist poissonDist deltaT maxRho maxR tao stdR2 particle xs = do deltaTheta <- generateRandomNumber randomGen thetaDist deltaScale <- generateRandomNumber randomGen scaleDist let newParticle@(Particle phi rho theta r v) = moveParticle deltaT particle ys = if r <= maxR && r > 1 / maxR && rho <= maxRho && rho >= 1 / maxRho then DL.cons (Particle phi rho theta r (1 - gaussian2DPolar rho stdR2)) xs else xs t <- genContVar (uniformDistr 0 1) randomGen :: IO Double if t > exp (1 / (-tao)) then return ys else brownianMotion randomGen thetaDist scaleDist poissonDist deltaT maxRho maxR tao stdR2 (diffuseParticle deltaTheta deltaScale maxR newParticle) ys {-# INLINE generatePath #-} generatePath :: (Distribution d1, ContGen d1, Distribution d2, ContGen d2, Distribution d3) => Maybe d1 -> Maybe d2 -> Maybe d3 -> Double -> Double -> Double -> Double -> Double -> GenIO -> IO (DList Particle) generatePath thetaDist scaleDist poissonDist maxRho maxR tao deltaT stdR2 randomGen = brownianMotion randomGen thetaDist scaleDist poissonDist deltaT maxRho maxR tao stdR2 (Particle 0 1 0 1 1) DL.empty {-# INLINE moveParticle' #-} moveParticle' :: Particle -> Particle moveParticle' (Particle phi rho theta r v) = let !x = theta - phi !cosX = cos x !newPhi = phi `thetaPlus` atan2 (r * sin x) (rho + r * cosX) !newRho = sqrt (rho * rho + r * r + 2 * r * rho * cosX) in Particle newPhi newRho theta r v {-# INLINE diffuseParticle' #-} diffuseParticle' :: (Distribution d, ContGen d) => GenIO -> Double -> Maybe d -> Double -> Particle -> IO Particle diffuseParticle' randomGen thetaSigma scaleDist deltaT (Particle phi rho theta r v) = do deltaScale <- generateRandomNumber randomGen scaleDist let r1 = r `scalePlus` deltaScale deltaTheta <- genContVar (normalDistr 0 (thetaSigma * sqrt (r1 * deltaT))) randomGen return $ Particle phi rho (theta `thetaPlus` deltaTheta) r1 v brownianMotion' :: (Distribution d, ContGen d) => GenIO -> Double -> Maybe d -> Double -> Double -> Double -> Double -> Double -> Double -> Particle -> DList Particle -> IO (DList Particle) brownianMotion' randomGen thetaSigma scaleDist poissonLambda deltaT maxRho maxR tao stdR2 particle xs = do let newParticle@(Particle phi rho theta r v) = moveParticle deltaT particle ys = if r <= maxR && r > 1 / maxR && rho <= maxRho && rho >= 1 / maxRho then DL.cons (Particle phi rho theta r (1 - gaussian2DPolar rho stdR2)) xs else xs t <- genContVar (uniformDistr 0 1) randomGen :: IO Double if t > exp (1 / (-tao / (r * deltaT))) then return ys else do diffusedParticle <- diffuseParticle' randomGen thetaSigma scaleDist deltaT newParticle brownianMotion' randomGen thetaSigma scaleDist poissonLambda deltaT maxRho maxR tao stdR2 diffusedParticle ys {-# INLINE generatePath' #-} generatePath' :: (Distribution d, ContGen d) => Double -> Maybe d -> Double -> Double -> Double -> Double -> Double -> Double -> GenIO -> IO (DList Particle) generatePath' thetaSigma scaleDist poissonLambda maxRho maxR tao deltaT stdR2 randomGen = do brownianMotion' randomGen thetaSigma scaleDist poissonLambda deltaT maxRho maxR tao stdR2 (Particle 0 1 0 1 1) DL.empty
subroutine compute_b(A,Nx,B) implicit none integer Nx real*8 A(Nx) real*8 B(Nx) integer i do i=1,Nx,1 B(i) = 1.0D0/dsqrt(A(i)) end do END
# MIT License # # Copyright (c) 2018 Martin Biel # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ SerialExecution Functor object for using serial execution in a progressive-hedging algorithm. Create by supplying a [`Serial`](@ref) object through `execution` in the `ProgressiveHedgingSolver` factory function and then pass to a `StochasticPrograms.jl` model. """ struct SerialExecution{T <: AbstractFloat, A <: AbstractVector, PT <: AbstractPenaltyTerm} <: AbstractProgressiveHedgingExecution subproblems::Vector{SubProblem{T,A,PT}} function SerialExecution(::Type{T}, ::Type{A}, ::Type{PT}) where {T <: AbstractFloat, A <: AbstractVector, PT <: AbstractPenaltyTerm} return new{T,A,PT}(Vector{SubProblem{T,A,PT}}()) end end function initialize_subproblems!(ph::AbstractProgressiveHedging, execution::SerialExecution{T}, scenarioproblems::ScenarioProblems, penaltyterm::AbstractPenaltyTerm) where T <: AbstractFloat # Create subproblems for i = 1:num_subproblems(scenarioproblems) push!(execution.subproblems, SubProblem( subproblem(scenarioproblems, i), i, T(probability(scenarioproblems, i)), copy(penaltyterm))) end # Initial reductions update_iterate!(ph) update_dual_gap!(ph) return nothing end function finish_initilization!(execution::SerialExecution, penalty::AbstractFloat) for subproblem in execution.subproblems initialize!(subproblem, penalty) end return nothing end function restore_subproblems!(ph::AbstractProgressiveHedging, execution::SerialExecution) for subproblem in execution.subproblems restore_subproblem!(subproblem) end return nothing end function resolve_subproblems!(ph::AbstractProgressiveHedging, execution::SerialExecution) Qs = Vector{SubproblemSolution}(undef, length(execution.subproblems)) # Reformulate and solve sub problems for (i, subproblem) in enumerate(execution.subproblems) reformulate_subproblem!(subproblem, ph.ξ, penalty(ph)) Qs[i] = subproblem(ph.ξ) end # Return current objective value return sum(Qs) end function update_iterate!(ph::AbstractProgressiveHedging, execution::SerialExecution) # Update the estimate ξ_prev = copy(ph.ξ) ph.ξ .= mapreduce(+, execution.subproblems, init = zero(ph.ξ)) do subproblem Ļ€ = subproblem.probability x = subproblem.x Ļ€ * x end # Update Γ₁ ph.data.Γ₁ = norm(ph.ξ - ξ_prev, 2) ^ 2 return nothing end function update_subproblems!(ph::AbstractProgressiveHedging, execution::SerialExecution) # Update dual prices update_subproblems!(execution.subproblems, ph.ξ, penalty(ph)) return nothing end function update_dual_gap!(ph::AbstractProgressiveHedging, execution::SerialExecution{T}) where T <: AbstractFloat # Update Γ₂ ph.data.Γ₂ = mapreduce(+, execution.subproblems, init = zero(T)) do subproblem Ļ€ = subproblem.probability x = subproblem.x Ļ€ * norm(x - ph.ξ, 2) ^ 2 end return nothing end function calculate_objective_value(ph::AbstractProgressiveHedging, execution::SerialExecution{T}) where T <: AbstractFloat return mapreduce(+, execution.subproblems, init = zero(T)) do subproblem _objective_value(subproblem) end end function scalar_subproblem_reduction(value::Function, execution::SerialExecution{T}) where T <: AbstractFloat return mapreduce(+, execution.subproblems, init = zero(T)) do subproblem Ļ€ = subproblem.probability return Ļ€ * value(subproblem) end end function vector_subproblem_reduction(value::Function, execution::SerialExecution{T}, n::Integer) where T <: AbstractFloat return mapreduce(+, execution.subproblems, init = zero(T, n)) do subproblem Ļ€ = subproblem.probability return Ļ€ * value(subproblem) end end # API # ------------------------------------------------------------ function (execution::Serial)(::Type{T}, ::Type{A}, ::Type{PT}) where {T <: AbstractFloat, A <: AbstractVector, PT <: AbstractPenaltyTerm} return SerialExecution(T, A, PT) end function str(::Serial) return "" end
Set Implicit Arguments. Set Bullet Behavior "Strict Subproofs". From Utils Require Import Base Booleans Eqb Default. Section __. Context (A : Type) `{Eqb_ok A}. Lemma invert_none_some (x : A) : None = Some x <-> False. Proof. solve_invert_constr_eq_lemma. Qed. Hint Rewrite invert_none_some : utils. Lemma invert_some_none (x : A) : Some x = None <-> False. Proof. solve_invert_constr_eq_lemma. Qed. Hint Rewrite invert_some_none : utils. Lemma invert_some_some (x y : A) : Some x = Some y <-> x = y. Proof. solve_invert_constr_eq_lemma. Qed. Hint Rewrite invert_some_some : utils. #[export] Instance option_eqb : Eqb (option A) := fun a b => match a, b with | Some a, Some b => eqb a b | None, None => true | _, _ => false end. #[export] Instance option_eqb_ok : Eqb_ok option_eqb. Proof. unfold Eqb_ok, option_eqb, eqb. intros a b; destruct a; destruct b; basic_goal_prep; basic_utils_crush. pose proof (H0 a a0) as H'. unfold eqb in *. revert H'. case_match; basic_utils_crush. Qed. #[export] Instance option_default : WithDefault (option A) := None. End __. #[export] Hint Rewrite invert_none_some : utils. #[export] Hint Rewrite invert_some_none : utils. #[export] Hint Rewrite invert_some_some : utils.
PROGRAM Qfep ! #DES: Program to produce and write the FEP/US calculation data in Qfep format. (SIC throughout) USE Util, ONLY : Startup, Cleanup USE Data, ONLY : ComputeDerivedData USE Log, ONLY : logUnit IMPLICIT NONE INTEGER, PARAMETER :: outUnit = 64 CALL Startup(readCoords=.FALSE.) CALL ComputeDerivedData(logUnit,doTiming=.FALSE.,readCoords=.FALSE.,doFEPUS=.TRUE.) CALL QFepAnalysis() CALL CleanUp() CONTAINS !Run the 3-stage analysis of the simulation data as in qfep SUBROUTINE QfepAnalysis() ! #DES: Master routine: create a Qfep log file, do the analyses and write the output. USE FileIO, ONLY : OpenFile, CloseFile USE Log, ONLY : logUnit IMPLICIT NONE WRITE(logUnit,'(A)') "Performing qfep analysis - output to QFEPstyle.log" WRITE(logUnit,*) CALL OpenFile(outUnit,"QFEPstyle.log","write") WRITE(outUnit,'(A)') "Qfep-style output generated by Fepcat (NB: small numerical differences with Qfep output may be observed)" WRITE(outUnit,*) "" CALL WriteParameters() CALL AnalyzeDynamics_Q() CALL AnalyzeFEP_Q() CALL AnalyzeFepUs_Q() CALL CloseFile(outUnit) END SUBROUTINE QfepAnalysis !* SUBROUTINE WriteParameters() USE Input, ONLY : nFepSteps, stateA, stateB, nStates, nSkip, nBins, minPop, rcCoeffA, rcCoeffB, alpha, beta IMPLICIT NONE WRITE(outUnit,'(A27)') "--> Number of energy files:" WRITE(outUNit,'(A20,I4)') "# Number of files = ", nFepSteps WRITE(outUnit,'(A55)') "--> No. of states, no. of predefined off-diag elements:" WRITE(outUnit,'(A21,I4)') "# Number of states = ", nStates WRITE(outUnit,'(A36,I4)') "# Number of off-diagonal elements = ", 0 WRITE(outUnit,'(A54)') "--> Give kT & no, of pts to skip & calculation mode:" WRITE(outUnit,'(A7,F7.3)') "# kT = ", 1.0d0 / beta WRITE(outUnit,'(A34,I6)') "# Number of data points to skip = ", nSkip WRITE(outUnit,'(A44,L1)') "# Only QQ interactions will be considered = ", .FALSE. WRITE(outUnit,'(A28)') "--> Give number of gap-bins:" WRITE(outUnit,'(A23,I4)') "# Number of gap-bins = ", nBins WRITE(outUnit,'(A27)') "--> Give minimum # pts/bin:" WRITE(outUnit,'(A37,I4)') "# Minimum number of points per bin = ", minPop WRITE(outUnit,'(A27)') "--> Give alpha for state 2:" WRITE(outUnit,'(A22,F7.2)') "# Alpha for state 2 = ", alpha(stateB) - alpha(stateA) WRITE(outUnit,'(A16)') "--> Hij scaling:" WRITE(outUNit,'(A25,F7.2)') "# Scale factor for Hij = ", 1.0d0 WRITE(outUnit,'(A57)') "--> linear combination of states defining reaction coord:" WRITE(outUnit,'(A37,2F7.2)') "# Linear combination co-efficients = ", rcCoeffA, rcCoeffB WRITE(outUnit,*); WRITE(outUnit,*) END SUBROUTINE WriteParameters !* SUBROUTINE AnalyzeDynamics_Q() ! #DES: Reproduce the output simulation data table of Q (same data, slightly different format) USE Input, ONLY : energyNames, stateEnergy, coeffs, mask, CreateFileNames, fileBase, nFepSteps USE StatisticalFunctions, ONLY : mean IMPLICIT NONE INTEGER :: name, fepstep, state, type CHARACTER(500) :: fileNames(nFepSteps) CALL CreateFileNames('en',fileBase,fileNames) WRITE(outUnit,'(A)') "# Part 0: Average energies for all states in all files" WRITE(outUnit,'(A9,1X,A5,1X,A8,1X,A9)',ADVANCE='NO') "FEP Index", "State", "Points", "Coeff" DO name = 1, SIZE(energyNames) !nEnergyTypes WRITE(outUnit,'(A11)',ADVANCE='NO') energyNames(name) ENDDO WRITE(outUnit,*) DO fepstep = 1, SIZE(stateEnergy,2) !nFepSteps DO state = 1, SIZE(stateEnergy,3) !nStates WRITE(outUnit,'(A,1X,I5,1X,I8,1X,F9.6)',ADVANCE='NO') TRIM(ADJUSTL(fileNames(fepstep))), state, COUNT(mask(fepstep,:)), coeffs(1,fepstep,state) DO type = 1, SIZE(energyNames) WRITE(outUnit,'(F11.2)',ADVANCE='NO') mean( stateEnergy(:,fepstep,state,type),mask=mask(fepstep,:) ) ENDDO WRITE(outUnit,*) ENDDO WRITE(outUnit,*) ENDDO ENDSUBROUTINE AnalyzeDynamics_Q !* ! Compute and print the output of the FEP procedure in Q format SUBROUTINE AnalyzeFep_Q() USE Data, ONLY : mappingEnergies USE Input, ONLY : stateA, coeffs, nFepSteps, mask USE FreeEnergy, ONLY : ComputeFEPIncrements IMPLICIT NONE REAL(8) :: forward(nFepSteps-1), reverse(nFepSteps-1), profile(nFepSteps-1) REAL(8) :: deltaG_f(nFepSteps), deltaG_r(nFepSteps), deltaG(nFepSteps) INTEGER :: fepstep CALL ComputeFEPIncrements(1,nFepSteps,mappingEnergies(:,:,:,1),mask(:,:),forward,reverse,profile) WRITE(outUnit,'(A43)') "# Part 1: Free energy perturbation summary:" WRITE(outUnit,*) "" WRITE(outUnit,'(A)') "# Calculation for full system" WRITE(outUnit,'(A)') "# lambda(1) dGf sum(dGf) dGr sum(dGr) <dG>" deltaG_f(:) = 0.0d0 deltaG(:) = 0.0d0 !1st value is 0 in each DO fepstep = 2, nFepSteps deltaG_f(fepstep) = forward(fepstep-1) deltaG(fepstep) = profile(fepstep-1) ENDDO !final value is 0 deltaG_r(:) = 0.0d0 DO fepstep = 1, nFepSteps - 1 deltaG_r(fepstep) = reverse(fepstep) ENDDO DO fepstep = 1, nFepSteps WRITE(outUnit,'(2X,F9.6,5F9.3)') coeffs(1,fepstep,stateA), deltaG_f(fepstep), SUM(deltaG_f(1:fepstep)) , & & deltaG_r(fepstep), SUM(deltaG_r(fepstep:nFepSteps)), & & SUM(deltaG(1:fepstep)) ENDDO WRITE(outUnit,*) ENDSUBROUTINE AnalyzeFep_Q !* ! Compute and print the output of the FEP/US procedure in Q format SUBROUTINE AnalyzeFepUs_Q() USE Data, ONLY : energyGap, mappingEnergies, groundStateEnergy, lambda USE Input, ONLY : Nbins, minPop, stateA, stateB, stateEnergy, mask USE FreeEnergy, ONLY : Histogram, ComputeFepProfile, FepUS IMPLICIT NONE INTEGER :: bin, step, binPopulations(Nbins,SIZE(energyGap,1)), binIndices(SIZE(energyGap,1),SIZE(energyGap,2)) REAL(8) :: binMidpoints(Nbins) REAL(8) :: dGg(Nbins,SIZE(energyGap,1)), dGa(Nbins,SIZE(energyGap,1)), dGb(Nbins,SIZE(energyGap,1)) REAL(8) :: binG(Nbins) REAL(8) :: G_FEP(SIZE(energyGap,1)) INTEGER :: count WRITE(outUnit,'(A20,F7.2)') "# Min energy-gap is:", MINVAL(energyGap(:,:)) WRITE(outUnit,'(A20,F7.2)') "# Max energy-gap is:", MAXVAL(energyGap(:,:)) WRITE(outUnit,*); WRITE(outUnit,*); WRITE(outUnit,*) WRITE(outUnit,'(A39)') "# Part 2: Reaction free energy summary:" WRITE(outUnit,'(A79)') "# Lambda(1) bin Energy gap dGa dGb dGg # pts c1**2 c2**2" CALL Histogram(energyGap,mask,Nbins,binPopulations,binIndices,binMidpoints) CALL ComputeFEPProfile(1,SIZE(energyGap,1),mappingEnergies(:,:,:,1),mask(:,:),profile=G_FEP) ! energyGap is the reaction coordinate, nBins is num histogram bins, binPop is histogram values, ! indices is which bin each point is in, binMidpoints is x values CALL FepUS(mappingEnergies(:,:,:,1),stateEnergy(:,:,stateA,1),G_FEP,binPopulations,binIndices,PMF2Dout=dGa,PMF1D=binG,minPop=minPop) CALL FepUS(mappingEnergies(:,:,:,1),stateEnergy(:,:,stateB,1),G_FEP,binPopulations,binIndices,PMF2Dout=dGb,PMF1D=binG,minPop=minPop) CALL FepUS(mappingEnergies(:,:,:,1),groundStateEnergy(:,:), G_FEP,binPopulations,binIndices,PMF2Dout=dGg,PMF1D=binG,minPop=minPop) DO step = 1, SIZE(energyGap,1) DO bin = 1, Nbins IF (binPopulations(bin,step) >= minPop) WRITE(outUnit,'(2X,F9.6,I5,2X,4F9.2,2X,I5)') lambda(step), bin, binMidpoints(bin), & & dGa(bin,step),dGb(bin,step), dGg(bin,step), binPopulations(bin,step) ENDDO ENDDO WRITE(outUnit,*); WRITE(outUnit,*) WRITE(outUnit,'(A30)') "# Part 3: Bin-averaged summary" WRITE(outUnit,'(A63)') "# bin energy gap <dGg> <dGg norm> pts <c1**2> <c2**2> <r_xy>" DO bin = 1, nBins count = SUM(binPopulations(bin,:), MASK = binPopulations(bin,:) >= minPop) IF (SUM(binPopulations(bin,:)) > minPop) WRITE(outUnit,'(I4,1X,3F9.2,2X,I5)') bin, binMidpoints(bin), binG(bin), binG(bin)-MINVAL(binG), count ENDDO ENDSUBROUTINE AnalyzeFepUs_Q END PROGRAM Qfep
module Issue1168 where id : {A : Set} → A → A id {A = A} a = a
" Š”Š¾Š·Š“Š°Ń‚ŃŒ скрипт Šø перенести в него Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Ń‹ ŃŠ°Š¼Š¾ŃŃ‚Š¾ŃŃ‚ŠµŠ»ŃŒŠ½Š¾Š³Š¾ Š·Š°Š“Š°Š½ŠøŃ No 3 ŠøŠ· Лабораторной работы No 2: ŃŠ¾Š·Š“Š°Ń‚ŃŒ несколько констант Šø переменных разных типов Š²Ń‹ŠæŠ¾Š»Š½ŠøŃ‚ŃŒ арифметические расчеты по ŃŠ°Š¼Š¾ŃŃ‚Š¾ŃŃ‚ŠµŠ»ŃŒŠ½Š¾ поГготовленным Ń„Š¾Ń€Š¼ŃƒŠ»Š°Š¼ с ŃŃ‚ŠøŠ¼Šø константами Šø переменными. Š’ Ń„Š¾Ń€Š¼ŃƒŠ»Š°Ń… ŠæŃ€Š¾Š²ŠµŃ€ŠøŃ‚ŃŒ Ń€Š°Š±Š¾Ń‚Ńƒ операторов %% Šø % / %. " { a <- c(5, 3, 6, 2) b <- 5 s <- c(4i, 5i, 6i) result <- a %% b print(result) result <- a %/% b print(result) result <- s %% b print(result) result <- s %/% b print(result) }
# Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber. # This work is licensed under the Creative Commons Attribution-NonCommercial- # ShareAlike 4.0 International License. To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative # Commons, PO Box 1866, Mountain View, CA 94042, USA. ############################################################################# # DynamicBounds.jl # A package for compute bounds and relaxations of the solutions of # parametric differential equations. # See https://github.com/PSORLab/DynamicBoundsBase.jl ############################################################################# # src/reexport_using.jl # A copy of the reexport module that contains the `@reexport using foo: bar` # syntax functionality contained in Reexport.jl master branch. Since no such # tagged release is currently available. #= Copyright (c) 2014: Simon Kornblith. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =# ############################################################################# macro reexport(ex) isa(ex, Expr) && (ex.head == :module || ex.head == :using || (ex.head == :toplevel && all(e->isa(e, Expr) && e.head == :using, ex.args))) || error("@reexport: syntax error") if ex.head == :module modules = Any[ex.args[2]] ex = Expr(:toplevel, ex, :(using .$(ex.args[2]))) elseif ex.head == :using && all(e->isa(e, Symbol), ex.args) modules = Any[ex.args[end]] elseif ex.head == :using && ex.args[1].head == :(:) symbols = [e.args[end] for e in ex.args[1].args[2:end]] return esc(Expr(:toplevel, ex, :(eval(Expr(:export, $symbols...))))) else modules = Any[e.args[end] for e in ex.args] end esc(Expr(:toplevel, ex, [:(eval(Expr(:export, names($mod)...))) for mod in modules]...)) end
lemma scale_scale_measure [simp]: "scale_measure r (scale_measure r' M) = scale_measure (r * r') M"
\documentclass[main.tex]{subfiles} \begin{document} \subsection{No shock accretion} \marginpar{Wednesday\\ 2020-12-16, \\ compiled \\ \today} % Yesterday we discussed column accretion onto a magnetized NS. If there is no shock, the velocity of the infalling gas will be very high % \begin{align} v \sim v _{\text{free-fall}} = \sqrt{ \frac{2GM}{R}} \sim \num{.5} c \,, \end{align} % while if there is a collisionless shock the velocity will be much lower: \(v \ll c_s\). The matter, with particles of mass \(m_1 \) (typically \(m_1 = m_p\)) accretes with a velocity \(u\) onto a plasma, which we assume to be composed of constituents with masses \(m_2 \) (typically \(m_2 = m_e\)) and \(m_1\). We assume that the typical kinetic energy of an accreting particle is much larger than the thermal energy of the plasma on the surface: % \begin{align} \frac{1}{2 } m_1 u^2 \gg \frac{3}{2} k_B T = \frac{1}{2} m_2 v_2^2 \,. \end{align} % \todo[inline]{Not \((\gamma -1 ) mc^2\)?} The typical \textbf{deflection timescale} for the infalling particles will look like % \begin{align} t_D = \frac{v^2}{\dv{(\Delta v)^2}{t}} \,, \end{align} % (we take the square in order to have a positive quantity) which can be calculated to be % \begin{align} t_D = \frac{m_1^2 u^3}{8 \pi n e_1^2 e_2^2 \log \Lambda } \,, \end{align} % where \(e_i\) are the charges of the particles, while \(\log \Lambda \) is known as the Coulomb logarithm. It is typically of the order \(\log \Lambda \sim 15 \divisionsymbol 20\), and it is given by % \begin{align} \log \Lambda = \log( \frac{\chi _{\text{max}}}{\chi _{\text{min}}}) \,, \end{align} % where the \(\chi \)s are the maximum and minimum deflection angles in a collision, respectively. % \todo[inline]{What are the \(e_i\)?} This is the typical time required in order to isotropize an initially anisotropic velocity distribution --- it need not become compatible with the thermal velocity distribution. For that, we have a new \textbf{energy exchange timescale}: % \begin{align} t_E &= \frac{E^2}{\dv{(\Delta E)^2}{t}} \\ &= \underbrace{\frac{m_1^2u^3}{8 \pi n e_1^2 e_2^2 \log \Lambda }}_{t_D} \underbrace{\frac{m_2 u^2}{2 k_B T}}_{\gg 1} \,. \end{align} This is the time we need to wait for in order to reach a Maxwell-Boltzmann-like distribution. The last timescale we will introduce is the \textbf{slowing-down} timescale: the typical time needed for an incoming particle to become stationary with respect to the Neutron Star, % \begin{align} t_S = \frac{u}{\dv{u}{t}} = \underbrace{\frac{m_1^2u^3}{8 \pi n e_1^2 e_2^2 \log \Lambda }}_{t_D} \underbrace{\frac{m_2}{m_1 + m_2 }}_{\sim 1/2000} \,. \end{align} The slowing down is \emph{mostly} due to interactions between the incoming protons (\(m_1 \)) and the plasma electrons (\(m_2 \)). % Typically, \(m_1 \sim m_p\) while \(m_2 \sim m_e\). % Then, % % % \begin{align} % t_S \propto \frac{m_e}{m_p + m_e} \sim \frac{m_e}{m_D} % \,, % \end{align} % % % so \(t_S \sim t_D (m_e / m_p) \ll t_D\). The result we get is then \(t_S \ll t_D \ll t_E\) typically: first the particles slow down, then they isotropize, then they transfer their energies. What happens, instead, if we take \(m_1 \) to be the \emph{electron} mass? Then, the stopping timescale will have contribution both from interactions with the plasma electrons and protons --- the contributions are \(m_e / (m_e + m_e) = 1/2\) and \(m_p / (m_p + m_e) \approx 1\) respectively, so they are both relevant. In this case, then, \(t_S \approx t_D \ll t_E\). A sketch of this is shown in figure \ref{fig:timescales}. \begin{figure}[] \centering \includegraphics[width=\textwidth]{figures/timescales} \caption{A very bad figure to show how the timescales look.} \label{fig:timescales} \end{figure} % Electrons are decelerated in the same way by both electrons and protons, protons are mostly decelerated by electrons: % % % \begin{align} % t_S^{(p)} &\propto \frac{m_p}{m_e + m_p} \\ % t_S^{(e)} &\propto 1 % \,. % \end{align} The stopping length will typically be \(\lambda _S \sim u t_S\), and the path will look like a random walk. We can write this in terms of the kinetic energy of the proton: \(E_{kp} = m_p u^2 /2\), so % \begin{align} \lambda _S = \frac{E_{kp}^2}{2 \pi n e^4 \log \Lambda } \frac{m_e}{m_p} = \frac{E^2_{kp}}{2 \pi \rho e^{4} \log \Lambda } m_e \,. \end{align} The stopping column density is defined as \(y_0 = \rho \lambda _S\), which resembles the definition for the optical depth (but without the absorption coefficient). Dimensionally, it is a mass over a length squared. The plasma will start to emit photons as it is heated by the accretion, and it is interesting to compare the typical free path of a photon to \(\lambda _S\). The main source of opacity will be scattering; the Thompson cross-section is given by % \begin{align} \sigma _T = \frac{8 \pi }{3} \frac{e^{4}}{m_e^2 c^{4}} \,. \end{align} The mean free path for photons looks like \(\lambda _{ph} = 1/ (n \sigma _T)\). The ratio \(\lambda _S / \lambda _{\text{ph}}\) is then % \begin{align} \frac{\lambda_S}{\lambda_{\text{ph}}} = \frac{m_p}{m_e} \frac{1}{3 \log \Lambda } \qty( \frac{u}{c})^4 \,; \end{align} % in order for the accreting material to ``penetrate'' the plasma and heat it from inside, as opposed to losing all of its energy on the surface, we need to ask \(\lambda _S > \lambda _{\text{ph}}\), and this is equivalent to \(u/c \gtrsim \num{.4}\). \end{document}
[STATEMENT] lemma octo_in_Reals_if_Re_con: assumes "Ree (octo_of_real q) = q" shows "q \<in> Reals" [PROOF STATE] proof (prove) goal (1 subgoal): 1. q \<in> \<real> [PROOF STEP] by (metis Reals_of_real inner_real_def mult.right_neutral of_real_inner_1)
import os import random import time import networkx as nx import numpy as np import constants from gen.utils import game_util MAX_WEIGHT_IN_GRAPH = 1e5 PRED_WEIGHT_THRESH = 10 EPSILON = 1e-4 # Direction: 0: north, 1: east, 2: south, 3: west class Graph(object): def __init__(self, use_gt=False, construct_graph=True, scene_id=None, debug=False): t_start = time.time() self.construct_graph = construct_graph ''' event = env.step({'action': 'GetReachablePositions'}) new_reachable_positions = event.metadata['reachablePositions'] points = [] for point in new_reachable_positions: xx = int(point['x'] / constants.AGENT_STEP_SIZE) yy = int(point['z'] / constants.AGENT_STEP_SIZE) points.append([xx, yy]) self.points = np.array(points, dtype=np.int32) self.points = self.points[np.lexsort(self.points.T)] ''' self.scene_id = scene_id self.points = np.load(os.path.join( os.path.dirname(__file__), os.pardir, 'layouts', 'FloorPlan%s-layout.npy' % self.scene_id)) self.points /= constants.AGENT_STEP_SIZE self.points = np.round(self.points).astype(np.int32) self.xMin = self.points[:, 0].min() - constants.SCENE_PADDING * 2 self.yMin = self.points[:, 1].min() - constants.SCENE_PADDING * 2 self.xMax = self.points[:, 0].max() + constants.SCENE_PADDING * 2 self.yMax = self.points[:, 1].max() + constants.SCENE_PADDING * 2 self.memory = np.zeros((self.yMax - self.yMin + 1, self.xMax - self.xMin + 1), dtype=np.float32) self.gt_graph = None self.shortest_paths = {} self.shortest_paths_unweighted = {} self.use_gt = use_gt self.impossible_spots = set() self.updated_weights = {} self.prev_navigable_locations = None if self.use_gt: self.memory[:] = MAX_WEIGHT_IN_GRAPH self.memory[self.points[:, 1] - self.yMin, self.points[:, 0] - self.xMin] = 1 + EPSILON else: self.memory[:] = 1 self.memory[:, :int(constants.SCENE_PADDING * 1.5)] = MAX_WEIGHT_IN_GRAPH self.memory[:int(constants.SCENE_PADDING * 1.5), :] = MAX_WEIGHT_IN_GRAPH self.memory[:, -int(constants.SCENE_PADDING * 1.5):] = MAX_WEIGHT_IN_GRAPH self.memory[-int(constants.SCENE_PADDING * 1.5):, :] = MAX_WEIGHT_IN_GRAPH if self.gt_graph is None: self.gt_graph = nx.DiGraph() if self.construct_graph: for yy in np.arange(self.yMin, self.yMax + 1): for xx in np.arange(self.xMin, self.xMax + 1): weight = self.memory[yy - self.yMin, xx - self.xMin] for direction in range(4): node = (xx, yy, direction) back_direction = (direction + 2) % 4 back_node = (xx, yy, back_direction) self.gt_graph.add_edge(node, (xx, yy, (direction + 1) % 4), weight=1) self.gt_graph.add_edge(node, (xx, yy, (direction - 1) % 4), weight=1) forward_node = None if direction == 0 and yy != self.yMax: forward_node = (xx, yy + 1, back_direction) elif direction == 1 and xx != self.xMax: forward_node = (xx + 1, yy, back_direction) elif direction == 2 and yy != self.yMin: forward_node = (xx, yy - 1, back_direction) elif direction == 3 and xx != self.xMin: forward_node = (xx - 1, yy, back_direction) if forward_node is not None: self.gt_graph.add_edge(forward_node, back_node, weight=weight) self.initial_memory = self.memory.copy() self.debug = debug if self.debug: print('Graph construction time %.3f' % (time.time() - t_start)) def clear(self): self.shortest_paths = {} self.shortest_paths_unweighted = {} self.impossible_spots = set() self.prev_navigable_locations = None if self.use_gt: self.memory[:] = self.initial_memory else: self.memory[:] = 1 self.memory[:, :int(constants.SCENE_PADDING * 1.5)] = MAX_WEIGHT_IN_GRAPH self.memory[:int(constants.SCENE_PADDING * 1.5), :] = MAX_WEIGHT_IN_GRAPH self.memory[:, -int(constants.SCENE_PADDING * 1.5):] = MAX_WEIGHT_IN_GRAPH self.memory[-int(constants.SCENE_PADDING * 1.5):, :] = MAX_WEIGHT_IN_GRAPH if self.construct_graph: for (nodea, nodeb), original_weight in self.updated_weights.items(): self.gt_graph[nodea][nodeb]['weight'] = original_weight self.updated_weights = {} @property def image(self): return self.memory[:, :].astype(np.uint8) def check_graph_memory_correspondence(self): # graph sanity check if self.construct_graph: for yy in np.arange(self.yMin, self.yMax + 1): for xx in np.arange(self.xMin, self.xMax + 1): for direction in range(4): back_direction = (direction + 2) % 4 back_node = (xx, yy, back_direction) if direction == 0 and yy != self.yMax: assert(abs(self.gt_graph[(xx, yy + 1, back_direction)][back_node]['weight'] - self.memory[int(yy - self.yMin), int(xx - self.xMin)]) < 0.0001) elif direction == 1 and xx != self.xMax: assert(abs(self.gt_graph[(xx + 1, yy, back_direction)][back_node]['weight'] - self.memory[int(yy - self.yMin), int(xx - self.xMin)]) < 0.0001) elif direction == 2 and yy != self.yMin: assert(abs(self.gt_graph[(xx, yy - 1, back_direction)][back_node]['weight'] - self.memory[int(yy - self.yMin), int(xx - self.xMin)]) < 0.0001) elif direction == 3 and xx != self.xMin: assert(abs(self.gt_graph[(xx - 1, yy, back_direction)][back_node]['weight'] - self.memory[int(yy - self.yMin), int(xx - self.xMin)]) < 0.0001) print('\t\t\tgraph tested successfully') def update_graph(self, graph_patch, pose): graph_patch, curr_val = graph_patch curr_val = np.array(curr_val) # Rotate the array to get its global coordinate frame orientation. rotation = int(pose[2]) assert(rotation in {0, 1, 2, 3}), 'rotation was %s' % str(rotation) if rotation != 0: graph_patch = np.rot90(graph_patch, rotation) # Shift offsets to global coordinate frame. if rotation == 0: x_min = pose[0] - int(constants.STEPS_AHEAD / 2) y_min = pose[1] + 1 elif rotation == 1: x_min = pose[0] + 1 y_min = pose[1] - int(constants.STEPS_AHEAD / 2) elif rotation == 2: x_min = pose[0] - int(constants.STEPS_AHEAD / 2) y_min = pose[1] - constants.STEPS_AHEAD elif rotation == 3: x_min = pose[0] - constants.STEPS_AHEAD y_min = pose[1] - int(constants.STEPS_AHEAD / 2) else: raise Exception('Invalid pose direction') if self.construct_graph: for yi, yy in enumerate(range(y_min, y_min + constants.STEPS_AHEAD)): for xi, xx in enumerate(range(x_min, x_min + constants.STEPS_AHEAD)): self.update_weight(xx, yy, graph_patch[yi, xi, 0]) self.update_weight(pose[0], pose[1], curr_val[0]) def get_graph_patch(self, pose): rotation = int(pose[2]) assert(rotation in {0, 1, 2, 3}) if rotation == 0: x_min = pose[0] - int(constants.STEPS_AHEAD / 2) y_min = pose[1] + 1 elif rotation == 1: x_min = pose[0] + 1 y_min = pose[1] - int(constants.STEPS_AHEAD / 2) elif rotation == 2: x_min = pose[0] - int(constants.STEPS_AHEAD / 2) y_min = pose[1] - constants.STEPS_AHEAD elif rotation == 3: x_min = pose[0] - constants.STEPS_AHEAD y_min = pose[1] - int(constants.STEPS_AHEAD / 2) else: raise Exception('Invalid pose direction') x_min -= self.xMin y_min -= self.yMin graph_patch = self.memory[y_min:y_min + constants.STEPS_AHEAD, x_min:x_min + constants.STEPS_AHEAD].copy() if rotation != 0: graph_patch = np.rot90(graph_patch, -rotation) return graph_patch, self.memory[pose[1] - self.yMin, pose[0] - self.xMin].copy() def add_impossible_spot(self, spot): self.update_weight(spot[0], spot[1], MAX_WEIGHT_IN_GRAPH) self.impossible_spots.add(spot) def update_weight(self, xx, yy, weight): if (xx, yy) not in self.impossible_spots: if self.construct_graph: for direction in range(4): node = (xx, yy, direction) self.update_edge(node, weight) self.memory[yy - self.yMin, xx - self.xMin] = weight self.shortest_paths = {} def update_edge(self, pose, weight): rotation = int(pose[2]) assert(rotation in {0, 1, 2, 3}) (xx, yy, direction) = pose back_direction = (direction + 2) % 4 back_pose = (xx, yy, back_direction) if direction == 0 and yy != self.yMax: forward_pose = (xx, yy + 1, back_direction) elif direction == 1 and xx != self.xMax: forward_pose = (xx + 1, yy, back_direction) elif direction == 2 and yy != self.yMin: forward_pose = (xx, yy - 1, back_direction) elif direction == 3 and xx != self.xMin: forward_pose = (xx - 1, yy, back_direction) else: raise NotImplementedError('Unknown direction') if (forward_pose, back_pose) not in self.updated_weights: self.updated_weights[(forward_pose, back_pose)] = self.gt_graph[forward_pose][back_pose]['weight'] self.gt_graph[forward_pose][back_pose]['weight'] = weight def get_shortest_path(self, pose, goal_pose): assert(pose[2] in {0, 1, 2, 3}) assert(goal_pose[2] in {0, 1, 2, 3}) # Store horizons for possible final look correction. curr_horizon = int(pose[3]) goal_horizon = int(goal_pose[3]) pose = tuple(int(pp) for pp in pose[:3]) goal_pose = tuple(int(pp) for pp in goal_pose[:3]) try: assert(self.construct_graph), 'Graph was not constructed, cannot get shortest path.' assert(pose in self.gt_graph), 'start point not in graph' assert(goal_pose in self.gt_graph), 'start point not in graph' except Exception as ex: print('pose', pose, 'goal_pose', goal_pose) raise ex if (pose, goal_pose) not in self.shortest_paths: path = nx.astar_path(self.gt_graph, pose, goal_pose, heuristic=lambda nodea, nodeb: (abs(nodea[0] - nodeb[0]) + abs(nodea[1] - nodeb[1]) + abs(nodea[2] - nodeb[2])), weight='weight') for ii, pp in enumerate(path): self.shortest_paths[(pp, goal_pose)] = path[ii:] path = self.shortest_paths[(pose, goal_pose)] max_point = 1 for ii in range(len(path) - 1): weight = self.gt_graph[path[ii]][path[ii + 1]]['weight'] if path[ii][:2] != path[ii + 1][:2]: if abs(self.memory[path[ii + 1][1] - self.yMin, path[ii + 1][0] - self.xMin] - weight) > 0.001: print(self.memory[path[ii + 1][1] - self.yMin, path[ii + 1][0] - self.xMin], weight) raise AssertionError('weights do not match') if weight >= PRED_WEIGHT_THRESH: break max_point += 1 path = path[:max_point] actions = [Graph.get_plan_move(path[ii], path[ii + 1]) for ii in range(len(path) - 1)] Graph.horizon_adjust(actions, path, curr_horizon, goal_horizon) return actions, path def get_shortest_path_unweighted(self, pose, goal_pose): assert(pose[2] in {0, 1, 2, 3}) assert(goal_pose[2] in {0, 1, 2, 3}) curr_horizon = int(pose[3]) goal_horizon = int(goal_pose[3]) pose = tuple(int(pp) for pp in pose[:3]) goal_pose = tuple(int(pp) for pp in goal_pose[:3]) try: assert(self.construct_graph), 'Graph was not constructed, cannot get shortest path.' assert(pose in self.gt_graph), 'start point not in graph' assert(goal_pose in self.gt_graph), 'start point not in graph' except Exception as ex: print('pose', pose, 'goal_pose', goal_pose) raise ex if (pose, goal_pose) not in self.shortest_paths_unweighted: # TODO: swap this out for astar (might be get_shortest_path tho) and update heuristic to account for # TODO: actual number of turns. path = nx.shortest_path(self.gt_graph, pose, goal_pose) for ii, pp in enumerate(path): self.shortest_paths_unweighted[(pp, goal_pose)] = path[ii:] path = self.shortest_paths_unweighted[(pose, goal_pose)] actions = [Graph.get_plan_move(path[ii], path[ii + 1]) for ii in range(len(path) - 1)] Graph.horizon_adjust(actions, path, curr_horizon, goal_horizon) return actions, path def update_map(self, env): event = env.step({'action': 'GetReachablePositions'}) new_reachable_positions = event.metadata['reachablePositions'] new_memory = np.full_like(self.memory[:, :], MAX_WEIGHT_IN_GRAPH) if self.construct_graph: for point in new_reachable_positions: xx = int(point['x'] / constants.AGENT_STEP_SIZE) yy = int(point['z'] / constants.AGENT_STEP_SIZE) new_memory[yy - self.yMin, xx - self.xMin] = 1 + EPSILON changed_locations = np.where(np.logical_xor(self.memory[:, :] == MAX_WEIGHT_IN_GRAPH, new_memory == MAX_WEIGHT_IN_GRAPH)) for location in zip(*changed_locations): self.update_weight(location[1] + self.xMin, location[0] + self.yMin, 1 + EPSILON) def navigate_to_goal(self, game_state, start_pose, end_pose): # Look down self.update_map(game_state.env) start_angle = start_pose[3] if start_angle > 180: start_angle -= 360 if start_angle != 30: # pitch angle # Perform initial tilt to get to 45 degrees. tilt_pose = [pp for pp in start_pose] tilt_pose[3] = 30 tilt_actions, _ = self.get_shortest_path(start_pose, tilt_pose) for action in tilt_actions: game_state.step(action) start_pose = tuple(tilt_pose) actions, path = self.get_shortest_path(start_pose, end_pose) while len(actions) > 0: for ii, (action, pose) in enumerate(zip(actions, path)): game_state.step(action) event = game_state.env.last_event last_action_success = event.metadata['lastActionSuccess'] if not last_action_success: # Can't traverse here, make sure the weight is correct. if action['action'].startswith('Look') or action['action'].startswith('Rotate'): raise Exception('Look action failed %s' % event.metadata['errorMessage']) self.add_impossible_spot(path[ii + 1]) break pose = game_util.get_pose(event) actions, path = self.get_shortest_path(pose, end_pose) print('nav done') @staticmethod def get_plan_move(pose0, pose1): if (pose0[2] + 1) % 4 == pose1[2]: action = {'action': 'RotateRight'} elif (pose0[2] - 1) % 4 == pose1[2]: action = {'action': 'RotateLeft'} else: action = {'action': 'MoveAhead', 'moveMagnitude': constants.AGENT_STEP_SIZE} return action @staticmethod def horizon_adjust(actions, path, hor0, hor1): if hor0 < hor1: for _ in range((hor1 - hor0) // constants.AGENT_HORIZON_ADJ): actions.append({'action': 'LookDown'}) path.append(path[-1]) elif hor0 > hor1: for _ in range((hor0 - hor1) // constants.AGENT_HORIZON_ADJ): actions.append({'action': 'LookUp',}) path.append(path[-1]) if __name__ == '__main__': # Test graphs env = game_util.create_env() scenes = sorted(constants.TRAIN_SCENE_NUMBERS + constants.TEST_SCENE_NUMBERS) while True: scene_id = random.choice(scenes) graph = Graph(use_gt=True, construct_graph=True, scene_id=scene_id) game_util.reset(env, scene_id, render_image=False, render_depth_image=False, render_class_image=False, render_object_image=False) num_points = len(graph.points) point1 = random.randint(0, num_points - 1) point2 = point1 while point2 == point1: point2 = random.randint(0, num_points) point1 = graph.points[point1] point2 = graph.points[point2] start_pose = (point1[0], point1[1], random.randint(0, 3), 0) end_pose = (point2[0], point2[1], random.randint(0, 3), 0) agent_height = env.last_event.metadata['agent']['position']['y'] action = {'action': 'TeleportFull', 'x': start_pose[0] * constants.AGENT_STEP_SIZE, 'y': agent_height, 'z': start_pose[1] * constants.AGENT_STEP_SIZE, 'rotateOnTeleport': True, 'rotation': start_pose[2], 'horizon': start_pose[3], } env.step(action) actions, path = graph.get_shortest_path(start_pose, end_pose) while len(actions) > 0: for ii, (action, pose) in enumerate(zip(actions, path)): env.step(action) event = env.last_event last_action_success = event.metadata['lastActionSuccess'] if not last_action_success: # Can't traverse here, make sure the weight is correct. if action['action'].startswith('Look') or action['action'].startswith('Rotate'): raise Exception('Look action failed %s' % event.metadata['errorMessage']) graph.add_impossible_spot(path[ii + 1]) break pose = game_util.get_pose(event) actions, path = graph.get_shortest_path(pose, end_pose) if end_pose == pose: print('made it') else: print('could not make it :(')
@test get_discretization_counts(LinearDiscretizer([0.0,1.0,2.0]), [0.5,0.5,0.5,1.5,1.5]) == [3,2]
/- Copyright (c) 2019 SĆ©bastien GouĆ«zel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: SĆ©bastien GouĆ«zel -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.geometry.manifold.algebra.smooth_functions import Mathlib.linear_algebra.finite_dimensional import Mathlib.analysis.normed_space.inner_product import Mathlib.PostPort namespace Mathlib /-! # Constructing examples of manifolds over ā„ We introduce the necessary bits to be able to define manifolds modelled over `ā„^n`, boundaryless or with boundary or with corners. As a concrete example, we construct explicitly the manifold with boundary structure on the real interval `[x, y]`. More specifically, we introduce * `model_with_corners ā„ (euclidean_space ā„ (fin n)) (euclidean_half_space n)` for the model space used to define `n`-dimensional real manifolds with boundary * `model_with_corners ā„ (euclidean_space ā„ (fin n)) (euclidean_quadrant n)` for the model space used to define `n`-dimensional real manifolds with corners ## Notations In the locale `manifold`, we introduce the notations * `š“” n` for the identity model with corners on `euclidean_space ā„ (fin n)` * `š“”āˆ‚ n` for `model_with_corners ā„ (euclidean_space ā„ (fin n)) (euclidean_half_space n)`. For instance, if a manifold `M` is boundaryless, smooth and modelled on `euclidean_space ā„ (fin m)`, and `N` is smooth with boundary modelled on `euclidean_half_space n`, and `f : M → N` is a smooth map, then the derivative of `f` can be written simply as `mfderiv (š“” m) (š“”āˆ‚ n) f` (as to why the model with corners can not be implicit, see the discussion in `smooth_manifold_with_corners.lean`). ## Implementation notes The manifold structure on the interval `[x, y] = Icc x y` requires the assumption `x < y` as a typeclass. We provide it as `[fact (x < y)]`. -/ /-- The half-space in `ā„^n`, used to model manifolds with boundary. We only define it when `1 ≤ n`, as the definition only makes sense in this case. -/ def euclidean_half_space (n : ā„•) [HasZero (fin n)] := Subtype fun (x : euclidean_space ā„ (fin n)) => 0 ≤ x 0 /-- The quadrant in `ā„^n`, used to model manifolds with corners, made of all vectors with nonnegative coordinates. -/ def euclidean_quadrant (n : ā„•) := Subtype fun (x : euclidean_space ā„ (fin n)) => āˆ€ (i : fin n), 0 ≤ x i /- Register class instances for euclidean half-space and quadrant, that can not be noticed without the following reducibility attribute (which is only set in this section). -/ protected instance euclidean_half_space.topological_space {n : ā„•} [HasZero (fin n)] : topological_space (euclidean_half_space n) := subtype.topological_space protected instance euclidean_quadrant.topological_space {n : ā„•} : topological_space (euclidean_quadrant n) := subtype.topological_space protected instance euclidean_half_space.inhabited {n : ā„•} [HasZero (fin n)] : Inhabited (euclidean_half_space n) := { default := { val := 0, property := sorry } } protected instance euclidean_quadrant.inhabited {n : ā„•} : Inhabited (euclidean_quadrant n) := { default := { val := 0, property := sorry } } theorem range_half_space (n : ā„•) [HasZero (fin n)] : (set.range fun (x : euclidean_half_space n) => subtype.val x) = set_of fun (x : euclidean_space ā„ (fin n)) => 0 ≤ x 0 := sorry theorem range_quadrant (n : ā„•) : (set.range fun (x : euclidean_quadrant n) => subtype.val x) = set_of fun (x : euclidean_space ā„ (fin n)) => āˆ€ (i : fin n), 0 ≤ x i := sorry /-- Definition of the model with corners `(euclidean_space ā„ (fin n), euclidean_half_space n)`, used as a model for manifolds with boundary. In the locale `manifold`, use the shortcut `š“”āˆ‚ n`. -/ def model_with_corners_euclidean_half_space (n : ā„•) [HasZero (fin n)] : model_with_corners ā„ (euclidean_space ā„ (fin n)) (euclidean_half_space n) := model_with_corners.mk (local_equiv.mk (fun (x : euclidean_half_space n) => subtype.val x) (fun (x : euclidean_space ā„ (fin n)) => { val := fun (i : fin n) => dite (i = 0) (fun (h : i = 0) => max (x i) 0) fun (h : ¬i = 0) => x i, property := sorry }) set.univ (set.range fun (x : euclidean_half_space n) => subtype.val x) sorry sorry sorry sorry) sorry sorry /-- Definition of the model with corners `(euclidean_space ā„ (fin n), euclidean_quadrant n)`, used as a model for manifolds with corners -/ def model_with_corners_euclidean_quadrant (n : ā„•) : model_with_corners ā„ (euclidean_space ā„ (fin n)) (euclidean_quadrant n) := model_with_corners.mk (local_equiv.mk (fun (x : euclidean_quadrant n) => subtype.val x) (fun (x : euclidean_space ā„ (fin n)) => { val := fun (i : fin n) => max (x i) 0, property := sorry }) set.univ (set.range fun (x : euclidean_quadrant n) => subtype.val x) sorry sorry sorry sorry) sorry sorry /-- The left chart for the topological space `[x, y]`, defined on `[x,y)` and sending `x` to `0` in `euclidean_half_space 1`. -/ def Icc_left_chart (x : ā„) (y : ā„) [fact (x < y)] : local_homeomorph (ↄ(set.Icc x y)) (euclidean_half_space 1) := local_homeomorph.mk (local_equiv.mk (fun (z : ↄ(set.Icc x y)) => { val := fun (i : fin 1) => subtype.val z - x, property := sorry }) (fun (z : euclidean_half_space 1) => { val := min (subtype.val z 0 + x) y, property := sorry }) (set_of fun (z : ↄ(set.Icc x y)) => subtype.val z < y) (set_of fun (z : euclidean_half_space 1) => subtype.val z 0 < y - x) sorry sorry sorry sorry) sorry sorry sorry sorry /-- The right chart for the topological space `[x, y]`, defined on `(x,y]` and sending `y` to `0` in `euclidean_half_space 1`. -/ def Icc_right_chart (x : ā„) (y : ā„) [fact (x < y)] : local_homeomorph (ↄ(set.Icc x y)) (euclidean_half_space 1) := local_homeomorph.mk (local_equiv.mk (fun (z : ↄ(set.Icc x y)) => { val := fun (i : fin 1) => y - subtype.val z, property := sorry }) (fun (z : euclidean_half_space 1) => { val := max (y - subtype.val z 0) x, property := sorry }) (set_of fun (z : ↄ(set.Icc x y)) => x < subtype.val z) (set_of fun (z : euclidean_half_space 1) => subtype.val z 0 < y - x) sorry sorry sorry sorry) sorry sorry sorry sorry /-- Charted space structure on `[x, y]`, using only two charts taking values in `euclidean_half_space 1`. -/ protected instance Icc_manifold (x : ā„) (y : ā„) [fact (x < y)] : charted_space (euclidean_half_space 1) ↄ(set.Icc x y) := charted_space.mk (insert (Icc_left_chart x y) (singleton (Icc_right_chart x y))) (fun (z : ↄ(set.Icc x y)) => ite (subtype.val z < y) (Icc_left_chart x y) (Icc_right_chart x y)) sorry sorry /-- The manifold structure on `[x, y]` is smooth. -/ protected instance Icc_smooth_manifold (x : ā„) (y : ā„) [fact (x < y)] : smooth_manifold_with_corners (model_with_corners_euclidean_half_space 1) ↄ(set.Icc x y) := sorry /-! Register the manifold structure on `Icc 0 1`, and also its zero and one. -/ theorem fact_zero_lt_one : fact (0 < 1) := zero_lt_one protected instance set.Icc.charted_space : charted_space (euclidean_half_space 1) ↄ(set.Icc 0 1) := Mathlib.Icc_manifold 0 1 protected instance set.Icc.smooth_manifold_with_corners : smooth_manifold_with_corners (model_with_corners_euclidean_half_space 1) ↄ(set.Icc 0 1) := Mathlib.Icc_smooth_manifold 0 1
subroutine runend(message) use typre !----------------------------------------------------------------------- ! ! This routine stops the run and writes the summary of CPU time. ! !----------------------------------------------------------------------- implicit none character(*) :: message logical(lg) :: lopen ! !Write the table with the CPU times. ! call cputab integer :: STATUS = 1 !Write message and stop the run. if(message/='O.K.!') then write(*,901) 'AN ERROR HAS BEEN DETECTED: '//message else write(*,'(//,a,/)') ' * * * END OF ANALYSIS * * *' end if ! ! Formats. ! 900 format(//,5x,34('* '),//,25x,'AN ERROR HAS BEEN DETECTED:',/) 901 format(/,5x,a,/) end subroutine runend
[STATEMENT] lemma error_free_Some [simp,intro]: "\<not> (\<exists> err. x=Error err) \<Longrightarrow> error_free ((Some x),s)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<nexists>err. x = Error err \<Longrightarrow> error_free (Some x, s) [PROOF STEP] by (auto simp add: error_free_def)
Are you one of the blessed few who has extremely nice neighbors? Do they share their Wi-Fi with you? Or, are there quite a few open networks that you could use?
Require Import List. Require Import Logic.Class.Eq. Require Import Logic.Func.Replace. Require Import Logic.Func.Composition. Require Import Logic.Fol.Free. Require Import Logic.Fol.Valid. Require Import Logic.Fol.Functor. Require Import Logic.Set.Set. Require Import Logic.Set.Equal. Require Import Logic.Lang1.Syntax. Require Import Logic.Lang1.Semantics. Require Import Logic.Lang1.Relevance. Require Import Logic.Lang1.Environment. Require Import Logic.Lang1.Substitution. (* A formula with a free variable could be viewed as a predicate which needs to *) (* be 'evaluated' at some variable, where such evaluation corresponds to a *) (* variable substitution. In the following, we formalize this evaluation by *) (* substituting the variable '0' by the argument 'n'. This choice of variable *) (* '0' is arbitrary, but having this default choice leads to simpler syntax as *) (* there is no need to spell out which variable is being replaced. There is *) (* nothing deep here, as we are just creating a new formula from an old one. *) (* The ability to apply a formula viewed as predicate to variables is important *) (* for two variables, and is needed to express the axiom schema of replacement. *) Definition apply (p:Formula) (n:nat) : Formula := fmap (n // 0) p. (* Same idea, but with two variables. *) Definition apply2 (p:Formula) (n m:nat) : Formula := fmap (replace2 0 1 n m) p. (* The semantics of 'apply p n' in an environement where n is bound to set x *) (* is the same as the semantics of p in an environment where 0 is bound to x. *) (* However, we cannot hope to obtain this semantics equivalence without *) (* assuming that the replacement of variable 0 by n is a valid substitution *) (* for p. Also, n cannot already be a free variable of p. *) Lemma evalApply1 : forall (e:Env) (p:Formula) (n:nat) (x:set), valid (n // 0) p -> ~In n (Fr p) -> eval1 e (apply p n) n x <-> eval1 e p 0 x. Proof. unfold eval1, apply. intros e p n x H1 H2. rewrite Substitution. - apply relevance. intros m H3. apply bindReplace. intros H4. subst. apply H2. assumption. - assumption. Qed. (* The semantics of 'apply2 p n m' in an environment where n is bound to x and *) (* m is bound to y, is the same as the semantics of p in an environment where 0 *) (* is bound to x and 1 is bound to y, with the obvious caveat. *) Lemma evalApply2 : forall (e:Env) (p:Formula) (n m:nat) (x y:set), valid (replace2 0 1 n m) p -> ~In n (Fr p) -> ~In m (Fr p) -> n <> m -> eval2 e (apply2 p n m) n m x y <-> eval2 e p 0 1 x y. Proof. unfold eval2, apply2. intros e p n m x y H1 H2 H3 H4. rewrite Substitution. - apply relevance. intros r H5. unfold comp. apply bindReplace2. + auto. + apply H4. (* <- H4 *) + intros H6. apply H2. rewrite H6. assumption. (* <- H2 *) + intros H6. apply H3. rewrite H6. assumption. (* <- H3 *) - apply H1. (* <- H1 *) Qed. Lemma evalApplyF1 : forall (e:Env) (p:Formula) (n m m':nat) (x y y':set), n <> m -> n <> m' -> m <> m' -> valid (replace2 0 1 n m) p -> ~ In m' (Fr p) -> ~ In m (Fr p) -> ~ In n (Fr p) -> eval (bind (bind (bind e n x) m y) m' y') (apply2 p n m) <-> eval (bind (bind e 0 x) 1 y) p. Proof. intros e p n m m' x y y' H1 H2 H3 H4 H1' H2' H3'. unfold apply2. rewrite Substitution. remember (bind (bind (bind e n x) m y) m' y'; replace2 0 1 n m) as e1 eqn:E1. remember (bind (bind e 0 x) 1 y) as e2 eqn:E2. apply (relevance e1 e2). - intros k H5. rewrite E1, E2. unfold comp, bind, replace2. destruct (eqDec k 0) as [H6|H6] eqn:K0. + subst. destruct (eqDec m' n) as [H7|H7]. { subst. exfalso. apply H2. reflexivity. } { destruct (eqDec m n) as [H8|H8]. { subst. exfalso. apply H1. reflexivity. } { simpl. destruct (PeanoNat.Nat.eq_dec n n) as [H9|H9]. { apply equalRefl. } { exfalso. apply H9. reflexivity. }}} + destruct (eqDec k 1) as [H7|H7] eqn:K1. { subst. destruct (eqDec m' m) as [H7|H7]. { subst. exfalso. apply H3. reflexivity. } { simpl. destruct (PeanoNat.Nat.eq_dec m m) as [H8|H8]. { apply equalRefl. } { exfalso. apply H8. reflexivity. }}} { destruct (eqDec m' k) as [H8|H8]. { subst. exfalso. apply H1'. assumption. } { destruct (eqDec m k) as [H9|H9]. { subst. exfalso. apply H2'. assumption. } { destruct (eqDec n k) as [H10|H10]. { subst. exfalso. apply H3'. assumption. } { destruct (eqDec 0 k) as [H11|H11]; destruct (eqDec 1 k) as [H12|H12]. { subst. inversion H12. } { exfalso. apply H6. symmetry. assumption. } { exfalso. apply H7. symmetry. assumption. } { apply equalRefl. }}}}} - assumption. Qed. Lemma evalApplyF2 : forall (e:Env) (p:Formula) (n m m':nat) (x y y':set), n <> m -> n <> m' -> m <> m' -> valid (replace2 0 1 n m') p -> ~ In m' (Fr p) -> ~ In m (Fr p) -> ~ In n (Fr p) -> eval (bind (bind (bind e n x) m y) m' y') (apply2 p n m') <-> eval (bind (bind e 0 x) 1 y') p. Proof. intros e p n m m' x y y' H1 H2 H3 H4 H1' H2' H3'. remember (bind (bind (bind e n x) m y) m' y') as e1 eqn:E1. remember (bind (bind (bind e n x) m' y') m y) as e2 eqn:E2. remember (bind (bind e 0 x) 1 y') as e3 eqn:E3. assert (envEqual e1 e2) as H5. { rewrite E1, E2. apply bindPermute. apply not_eq_sym. assumption. } assert (eval e1 (apply2 p n m') <-> eval e2 (apply2 p n m')) as H6. { apply evalEnvEqual. assumption. } rewrite H6, E2, E3. apply evalApplyF1; try (assumption). apply not_eq_sym. assumption. Qed.
items <- c(1,2,3,2,4,3,2) unique (items)
Require Import ProofIrrelevance. Lemma proj1_sig_injective: forall {A:Type} (P:A->Prop) (a1 a2:{x:A | P x}), proj1_sig a1 = proj1_sig a2 -> a1 = a2. Proof. intros. destruct a1, a2. now apply subset_eq_compat. Qed.
data Bad : Type where R : (Bad -> Nat) -> Bad
lemma collinear_lemma: "collinear {0, x, y} \<longleftrightarrow> x = 0 \<or> y = 0 \<or> (\<exists>c. y = c *\<^sub>R x)" (is "?lhs \<longleftrightarrow> ?rhs")
Formal statement is: lemma AE_distrD: assumes f: "f \<in> measurable M M'" and AE: "AE x in distr M M' f. P x" shows "AE x in M. P (f x)" Informal statement is: If $f$ is a measurable function from $M$ to $M'$ and $P$ holds almost everywhere on the image of $f$, then $P$ holds almost everywhere on $M$.
section propositional variables P Q R : Prop ------------------------------------------------ -- ProposiƧƵes de dupla negaƧo: ------------------------------------------------ theorem doubleneg_intro : P → ¬¬P := begin intro P, intro NoP, have boom : false := NoP P, exact boom, end theorem doubleneg_elim : ¬¬P → P := begin intro h, by_contradiction g, contradiction, end theorem doubleneg_law : ¬¬P ↔ P := begin split, intro h, by_contradiction p, have boom: false := h p, contradiction, intro g, intro t, contradiction, end ------------------------------------------------ -- Comutatividade dos ∨,∧: ------------------------------------------------ theorem disj_comm : (P ∨ Q) → (Q ∨ P) := begin intro pouq, cases pouq with p q, right, exact p, left, exact q, end theorem conj_comm : (P ∧ Q) → (Q ∧ P) := begin intro h, cases h with u v, split, exact v, exact u, end ------------------------------------------------ -- ProposiƧƵes de interdefinabilidade dos →,∨: ------------------------------------------------ theorem impl_as_disj_converse : (¬P ∨ Q) → (P → Q) := begin intro Nopq, intro p, cases Nopq with np q, have boom: false := np p, contradiction, exact q, end theorem disj_as_impl : (P ∨ Q) → (¬P → Q) := begin intro pouq, intro Nop, cases pouq with p q, have boom: false := Nop p, contradiction, exact q, end ------------------------------------------------ -- ProposiƧƵes de contraposição: ------------------------------------------------ theorem impl_as_contrapositive : (P → Q) → (¬Q → ¬P) := begin intro PimpQ, intro NoQ, intro P, have Q: Q := PimpQ P, have boom: false := NoQ Q, exact boom, end theorem impl_as_contrapositive_converse : (¬Q → ¬P) → (P → Q) := begin intro u, intro p, by_contra, have jj: ¬P := u h, contradiction, end theorem contrapositive_law : (P → Q) ↔ (¬Q → ¬P) := begin split, apply impl_as_contrapositive, apply impl_as_contrapositive_converse, end ------------------------------------------------ -- A irrefutabilidade do LEM: ------------------------------------------------ theorem lem_irrefutable : ¬¬(P∨¬P) := begin intro h, have g: (P∨¬P), right, intro j, have ll: (P∨¬P), left, exact j, contradiction, contradiction, end ------------------------------------------------ -- A lei de Peirce ------------------------------------------------ theorem peirce_law_weak : ((P → Q) → P) → ¬¬P := begin intro h, intro g, have hh: (P → Q), intro b, contradiction, have kj: P := h hh, contradiction, end ------------------------------------------------ -- ProposiƧƵes de interdefinabilidade dos ∨,∧: ------------------------------------------------ theorem disj_as_negconj : P∨Q → ¬(¬P∧¬Q) := begin intro h, intro g, cases h with p q, cases g with nop noq, have boom: false := nop p, contradiction, cases g with nop noq, have boom: false := noq q, exact boom, end theorem conj_as_negdisj : P∧Q → ¬(¬P∨¬Q) := begin intro h, intro g, cases h with p q, cases g with nop noq, contradiction, contradiction, end ------------------------------------------------ -- As leis de De Morgan para ∨,∧: ------------------------------------------------ theorem demorgan_disj : ¬(P∨Q) → (¬P ∧ ¬Q) := begin intro h, split, intro g, have pq: (P∨Q), left, exact g, have boom: false:= h pq, contradiction, intro pp, have bom: (P∨Q), right, exact pp, contradiction, end theorem demorgan_disj_converse : (¬P ∧ ¬Q) → ¬(P∨Q) := begin intro h, intro g, cases h with nop noq, cases g with p q, contradiction, contradiction, end theorem demorgan_conj : ¬(P∧Q) → (¬Q ∨ ¬P) := begin intro h, by_cases df: Q, right, intro gg, have nb: P ∧ Q, split, exact gg, exact df, have boom: false := h nb, contradiction, left, exact df, end theorem demorgan_conj_converse : (¬Q ∨ ¬P) → ¬(P∧Q) := begin intro h, intro g, cases g with u v, cases h with t o, contradiction, contradiction, end theorem demorgan_conj_law : ¬(P∧Q) ↔ (¬Q ∨ ¬P) := begin split, apply demorgan_conj, apply demorgan_conj_converse, end theorem demorgan_disj_law : ¬(P∨Q) ↔ (¬P ∧ ¬Q) := begin split, apply demorgan_disj, apply demorgan_disj_converse, end ------------------------------------------------ -- ProposiƧƵes de distributividade dos ∨,∧: ------------------------------------------------ theorem distr_conj_disj : P∧(Q∨R) → (P∧Q)∨(P∧R) := begin intro p, cases p with u v, cases v with pp mm, left, split, exact u, exact pp, right, split, exact u, exact mm, end theorem distr_conj_disj_converse : (P∧Q)∨(P∧R) → P∧(Q∨R) := begin intro h, split, cases h with p q, cases p with pp f, exact pp, cases q with qq rr, exact qq, cases h with u v, cases u with t y, left, exact y, cases v with k l, right, exact l, end theorem distr_disj_conj : P∨(Q∧R) → (P∨Q)∧(P∨R) := begin intro h, cases h with u v, split, left, exact u, left, exact u, split, cases v with w e, right, exact w, right, cases v with bb nn, exact nn, end theorem distr_disj_conj_converse : (P∨Q)∧(P∨R) → P∨(Q∧R) := begin intro f, cases f with d e, cases d with yy pp, cases e with gg kk, left, exact yy, left, exact yy, cases e with tt uu, left, exact tt, right, split, exact pp, exact uu, end ------------------------------------------------ -- Currificação ------------------------------------------------ theorem curry_prop : ((P∧Q)→R) → (P→(Q→R)) := begin intro h, intro g, intro f, have k: P ∧ Q, split, exact g, exact f, have pp: R := h k, exact pp, end theorem uncurry_prop : (P→(Q→R)) → ((P∧Q)→R) := begin intro h, intro g, cases g with p q, have qr: Q → R := h p, have r: R := qr q, exact r, end ------------------------------------------------ -- Reflexividade da →: ------------------------------------------------ theorem impl_refl : P → P := begin intro h, exact h, end ------------------------------------------------ -- Weakening and contraction: ------------------------------------------------ theorem weaken_disj_right : P → (P∨Q) := begin intro h, left, exact h, end theorem weaken_disj_left : Q → (P∨Q) := begin intro h, right, exact h, end theorem weaken_conj_right : (P∧Q) → P := begin intro h, cases h with u v, exact u, end theorem weaken_conj_left : (P∧Q) → Q := begin intro h, cases h with p q, exact q, end theorem conj_idempot : (P∧P) ↔ P := begin split, intro h, cases h with p hp, exact p, intro d, split, exact d, exact d, end theorem disj_idempot : (P∨P) ↔ P := begin split, intro h, cases h with p hp, exact p, exact hp, intro g, left, exact g, end end propositional ---------------------------------------------------------------- section predicate variable U : Type variables P Q : U -> Prop ------------------------------------------------ -- As leis de De Morgan para ∃,āˆ€: ------------------------------------------------ theorem demorgan_exists : ¬(∃x, P x) → (āˆ€x, ¬P x) := begin intro h, intro x, intro p, apply h, existsi x, exact p, end theorem demorgan_exists_converse : (āˆ€x, ¬P x) → ¬(∃x, P x) := begin intro h, intro g, cases g with x e, have boom: ¬P x := h x, contradiction, end theorem demorgan_forall : ¬(āˆ€x, P x) → (∃x, ¬P x) := begin rw contrapositive_law, rw doubleneg_law, intro h, intro x, by_cases j: P x, exact j, have: ∃ (x : U), ¬P x, existsi x, exact j, contradiction, end theorem demorgan_forall_converse : (∃x, ¬P x) → ¬(āˆ€x, P x) := begin intro h, intro g, cases h with x e, have boom: P x := g x, contradiction, end theorem demorgan_forall_law : ¬(āˆ€x, P x) ↔ (∃x, ¬P x) := begin split, apply demorgan_forall, apply demorgan_forall_converse, end theorem demorgan_exists_law : ¬(∃x, P x) ↔ (āˆ€x, ¬P x) := begin split, apply demorgan_exists, apply demorgan_exists_converse, end ------------------------------------------------ -- ProposiƧƵes de interdefinabilidade dos ∃,āˆ€: ------------------------------------------------ theorem exists_as_neg_forall : (∃x, P x) → ¬(āˆ€x, ¬P x) := begin intro h, intro g, cases h with x e, have boom: ¬P x := g x, contradiction, end theorem forall_as_neg_exists : (āˆ€x, P x) → ¬(∃x, ¬P x) := begin intro h, intro g, cases g with x e, have tt: P x := h x, contradiction, end theorem forall_as_neg_exists_converse : ¬(∃x, ¬P x) → (āˆ€x, P x) := begin intro h, intro x, have bt: ¬P x, intro pp, end theorem exists_as_neg_forall_converse : ¬(āˆ€x, ¬P x) → (∃x, P x) := begin sorry, end theorem forall_as_neg_exists_law : (āˆ€x, P x) ↔ ¬(∃x, ¬P x) := begin sorry, end theorem exists_as_neg_forall_law : (∃x, P x) ↔ ¬(āˆ€x, ¬P x) := begin split, apply exists_as_neg_forall, end ------------------------------------------------ -- ProposiƧƵes de distributividade de quantificadores: ------------------------------------------------ theorem exists_conj_as_conj_exists : (∃x, P x ∧ Q x) → (∃x, P x) ∧ (∃x, Q x) := begin intro h, cases h with x l, cases l with j m, split, existsi x, exact j, existsi x, exact m, end theorem exists_disj_as_disj_exists : (∃x, P x ∨ Q x) → (∃x, P x) ∨ (∃x, Q x) := begin intro h, cases h with x l, cases l with u v, left, existsi x, exact u, right, existsi x, exact v, end theorem exists_disj_as_disj_exists_converse : (∃x, P x) ∨ (∃x, Q x) → (∃x, P x ∨ Q x) := begin intro h, cases h with e k, cases e with x m, existsi x, left, exact m, cases k with d f, existsi d, right, exact f, end theorem forall_conj_as_conj_forall : (āˆ€x, P x ∧ Q x) → (āˆ€x, P x) ∧ (āˆ€x, Q x) := begin intro h, split, intro x, have m: P x ∧ Q x := h x, cases m with t c, exact t, intro xx, have mm: P xx ∧ Q xx := h xx, cases mm with ee rr, exact rr, end theorem forall_conj_as_conj_forall_converse : (āˆ€x, P x) ∧ (āˆ€x, Q x) → (āˆ€x, P x ∧ Q x) := begin sorry, end theorem forall_disj_as_disj_forall_converse : (āˆ€x, P x) ∨ (āˆ€x, Q x) → (āˆ€x, P x ∨ Q x) := begin sorry, end /- NOT THEOREMS -------------------------------- theorem forall_disj_as_disj_forall : (āˆ€x, P x ∨ Q x) → (āˆ€x, P x) ∨ (āˆ€x, Q x) := begin end theorem exists_conj_as_conj_exists_converse : (∃x, P x) ∧ (∃x, Q x) → (∃x, P x ∧ Q x) := begin end ---------------------------------------------- -/ end predicate
// (C) Copyright Jeremy Siek 2000. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #include <boost/concept_check.hpp> /* This file verifies that the BOOST_CLASS_REQUIRE macro of the Boost Concept Checking Library does not cause errors when it is not suppose to. */ struct foo { bool operator()(int) { return true; } }; struct bar { bool operator()(int, char) { return true; } }; class class_requires_test { BOOST_CONCEPT_ASSERT((boost::EqualityComparable<int>)); typedef int* int_ptr; typedef const int* const_int_ptr; BOOST_CONCEPT_ASSERT((boost::EqualOp<int_ptr,const_int_ptr>)); BOOST_CONCEPT_ASSERT((boost::UnaryFunction<foo,bool,int>)); BOOST_CONCEPT_ASSERT((boost::BinaryFunction<bar,bool,int,char>)); }; int main() { class_requires_test x; boost::ignore_unused_variable_warning(x); return 0; }
import MyNat import MyNat.proposition_world open MyNat example (P Q : Prop) (p : P) (q : Q) : P ∧ Q := by constructor exact p exact q lemma and_symm (P Q : Prop) : P ∧ Q → Q ∧ P := by intro h cases h with | intro p q => constructor exact q exact p lemma and_trans (P Q R : Prop) : P ∧ Q → Q ∧ R → P ∧ R := by intro h1 h2 cases h1 with | intro p q => cases h2 with | intro q r => constructor exact p exact r lemma iff_trans (P Q R : Prop) : (P ↔ Q) → (Q ↔ R) → (P ↔ R) := by intro h1 h2 cases h1 with | intro pq qp => cases h2 with | intro qr rq => constructor intro p exact (qr (pq p)) intro r exact (qp (rq r)) example (P Q R : Prop) : (P ↔ Q) → (Q ↔ R) → (P ↔ R) := by intro hpq hqr constructor intro p apply (Iff.mp hqr) apply (Iff.mp hpq) exact p intro r rewrite [hpq, hqr] exact r example (P Q : Prop) : Q → (P ∨ Q) := by intro q exact (Or.inr q) lemma or_symm (P Q : Prop) : P ∨ Q -> Q ∨ P := by intro pq exact ( Or.elim pq (Or.inr) (Or.inl) ) lemma alexs_discovery (P Q R : Prop) : P → (P ∨ Q) ∧ (P ∨ R) := by intro p exact ⟨Or.inl p, Or.inl p⟩ lemma and_or_distrib_left (P Q R : Prop) : P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R) := by constructor intro p_and_qr let p := (p_and_qr.left) let qr := (p_and_qr.right) exact ( Or.elim qr (fun q => Or.inl (And.intro p q)) (fun r => Or.inr (And.intro p r)) ) intro p_and_q_or_p_and_r exact ( Or.elim p_and_q_or_p_and_r (fun pq => And.intro pq.left (Or.inl pq.right) ) (fun pr => And.intro pr.left (Or.inr pr.right) ) ) lemma contra (P Q : Prop) : (P ∧ ¬ P) → Q := by intro pandnotp let p := pandnotp.left let notp := pandnotp.right -- rewrite [not_iff_imp_false] at notp -- let false := (notp p) -- exact False.elim false exact (absurd p notp) lemma contrapositive2 (P Q : Prop) : (¬Q → ¬P) → (P → Q) := by intro h p by_cases p : P case inl p' => . by_cases q : Q . case inl => exact q . case inr => exact absurd p (h q) case inr p' => . by_cases q : Q . case _ => exact q . case inr => exact absurd p' p lemma full_contrapositive (P Q : Prop) : (¬Q → ¬P) ↔ (P → Q) := by constructor exact contrapositive2 P Q exact contrapositive P Q
[GOAL] α : Type u_1 instāœĀ² : TopologicalSpace α instāœĀ¹ : PartialOrder α instāœ : PriestleySpace α x y : α h : x ≠ y ⊢ ∃ U, IsClopen U ∧ (IsUpperSet U ∨ IsLowerSet U) ∧ x ∈ U ∧ ¬y ∈ U [PROOFSTEP] obtain h | h := h.not_le_or_not_le [GOAL] case inl α : Type u_1 instāœĀ² : TopologicalSpace α instāœĀ¹ : PartialOrder α instāœ : PriestleySpace α x y : α hāœ : x ≠ y h : ¬x ≤ y ⊢ ∃ U, IsClopen U ∧ (IsUpperSet U ∨ IsLowerSet U) ∧ x ∈ U ∧ ¬y ∈ U [PROOFSTEP] exact (exists_clopen_upper_of_not_le h).imp fun _ ↦ And.imp_right <| And.imp_left Or.inl [GOAL] case inr α : Type u_1 instāœĀ² : TopologicalSpace α instāœĀ¹ : PartialOrder α instāœ : PriestleySpace α x y : α hāœ : x ≠ y h : ¬y ≤ x ⊢ ∃ U, IsClopen U ∧ (IsUpperSet U ∨ IsLowerSet U) ∧ x ∈ U ∧ ¬y ∈ U [PROOFSTEP] obtain ⟨U, hU, hU', hy, hx⟩ := exists_clopen_lower_of_not_le h [GOAL] case inr.intro.intro.intro.intro α : Type u_1 instāœĀ² : TopologicalSpace α instāœĀ¹ : PartialOrder α instāœ : PriestleySpace α x y : α hāœ : x ≠ y h : ¬y ≤ x U : Set α hU : IsClopen U hU' : IsLowerSet U hy : ¬y ∈ U hx : x ∈ U ⊢ ∃ U, IsClopen U ∧ (IsUpperSet U ∨ IsLowerSet U) ∧ x ∈ U ∧ ¬y ∈ U [PROOFSTEP] exact ⟨U, hU, Or.inr hU', hx, hy⟩
open import Type module Relator.Equals.Proofs.Equiv {ā„“} {T : Type{ā„“}} where import Relator.Equals.Proofs.Equivalence open Relator.Equals.Proofs.Equivalence.One {T = T} public open Relator.Equals.Proofs.Equivalence.Two {A = T} public open Relator.Equals.Proofs.Equivalence.Three {A = T} public open Relator.Equals.Proofs.Equivalence.Four {A = T} public instance [≔]-unary-relator-instance = [≔]-unary-relator instance [≔]-binary-relator-instance = [≔]-binary-relator instance [≔]-binary-operator-instance = [≔]-binary-operator instance [≔]-trinary-operator-instance = [≔]-trinary-operator instance [≔]-to-function-instance = [≔]-to-function instance [≔]-equiv-instance = [≔]-equiv
# --- # title: 785. Is Graph Bipartite? # id: problem785 # author: Indigo # date: 2021-01-28 # difficulty: Medium # categories: Depth-first Search, Breadth-first Search, Graph # link: <https://leetcode.com/problems/is-graph-bipartite/description/> # hidden: true # --- # # Given an undirected `graph`, return `true` if and only if it is bipartite. # # Recall that a graph is _bipartite_ if we can split its set of nodes into two # independent subsets A and B, such that every edge in the graph has one node in # A and another node in B. # # The graph is given in the following form: `graph[i]` is a list of indexes `j` # for which the edge between nodes `i` and `j` exists. Each node is an integer # between `0` and `graph.length - 1`. There are no self edges or parallel # edges: `graph[i]` does not contain `i`, and it doesn't contain any element # twice. # # # # **Example 1:** # # ![](https://assets.leetcode.com/uploads/2020/10/21/bi1.jpg) # # # # Input: graph = [[1,3],[0,2],[1,3],[0,2]] # Output: true # Explanation: We can divide the vertices into two groups: {0, 2} and {1, 3}. # # # # **Example 2:** # # ![](https://assets.leetcode.com/uploads/2020/10/21/bi2.jpg) # # # # Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]] # Output: false # Explanation: We cannot find a way to divide the set of nodes into two independent subsets. # # # # # # **Constraints:** # # * `1 <= graph.length <= 100` # * `0 <= graph[i].length < 100` # * `0 <= graph[i][j] <= graph.length - 1` # * `graph[i][j] != i` # * All the values of `graph[i]` are **unique**. # * The graph is **guaranteed** to be **undirected**. # # ## @lc code=start using LeetCode function is_bipartite(graph::Vector{Vector{Int}}) for edge in graph edge .+= 1 end color = fill(0, length(graph)) q = Queue{Int}() for i in 1:length(graph) if color[i] != 0 continue end color[i] = 1 enqueue!(q, i) while !isempty(q) root = dequeue!(q) for neighbor in graph[root] if color[neighbor] == 0 color[neighbor] = -color[root] enqueue!(q, neighbor) elseif color[neighbor] == color[root] return false end end end end return true end ## @lc code=end
module Type.Category.ExtensionalFunctionsCategory.HomFunctor where import Functional as Fn open import Function.Proofs open import Function.Equals open import Function.Equals.Proofs open import Logic.Predicate import Lvl import Relator.Equals.Proofs.Equiv open import Structure.Category open import Structure.Category.Dual open import Structure.Category.Functor open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type.Category.ExtensionalFunctionsCategory open import Type private variable ā„“ ā„“ā‚’ ā„“ā‚˜ ā„“ā‚‘ : Lvl.Level -- Note: This is implicitly using the identity type as the equivalence for (_⟶_). module _ {Obj : Type{ā„“ā‚’}} {_⟶_ : Obj → Obj → Type{ā„“ā‚˜}} (C : Category(_⟶_)) where open Category(C) covariantHomFunctor : Obj → ((intro C) ā†’į¶ įµ˜āæį¶œįµ—įµ’Ź³ typeExtensionalFnCategoryObject{ā„“ā‚˜}) ∃.witness (covariantHomFunctor x) y = (x ⟶ y) Functor.map (∃.proof (covariantHomFunctor _)) = (_∘_) _⊜_.proof (Function.congruence (Functor.map-function (∃.proof (covariantHomFunctor _))) {f₁} {fā‚‚} f₁fā‚‚) {g} = congruenceā‚‚ā‚—(_∘_) ⦃ binaryOperator ⦄ g f₁fā‚‚ _⊜_.proof (Functor.op-preserving (∃.proof (covariantHomFunctor _))) = Morphism.associativity(_∘_) _⊜_.proof (Functor.id-preserving (∃.proof (covariantHomFunctor _))) = Morphism.identityā‚—(_∘_)(id) contravariantHomFunctor : Obj → (dual(intro C) ā†’į¶ įµ˜āæį¶œįµ—įµ’Ź³ typeExtensionalFnCategoryObject{ā„“ā‚˜}) ∃.witness (contravariantHomFunctor x) y = (y ⟶ x) Functor.map (∃.proof (contravariantHomFunctor _)) = Fn.swap(_∘_) _⊜_.proof (Function.congruence (Functor.map-function (∃.proof (contravariantHomFunctor _))) {g₁} {gā‚‚} g₁gā‚‚) {f} = congruenceā‚‚įµ£(_∘_) ⦃ binaryOperator ⦄ f g₁gā‚‚ _⊜_.proof (Functor.op-preserving (∃.proof (contravariantHomFunctor _))) = symmetry(_) (Morphism.associativity(_∘_)) _⊜_.proof (Functor.id-preserving (∃.proof (contravariantHomFunctor _))) = Morphism.identityįµ£(_∘_)(id)
[GOAL] n : ā„• ⊢ (n + 1)‼ = (n + 1) * (n - 1)‼ [PROOFSTEP] cases n [GOAL] case zero ⊢ (zero + 1)‼ = (zero + 1) * (zero - 1)‼ [PROOFSTEP] rfl [GOAL] case succ nāœ : ā„• ⊢ (succ nāœ + 1)‼ = (succ nāœ + 1) * (succ nāœ - 1)‼ [PROOFSTEP] rfl [GOAL] k : ā„• ⊢ (k + 1 + 1)! = (k + 1 + 1)‼ * (k + 1)‼ [PROOFSTEP] rw [doubleFactorial_add_two, factorial, factorial_eq_mul_doubleFactorial _, mul_comm _ k‼, mul_assoc] [GOAL] n : ā„• ⊢ (2 * (n + 1))‼ = 2 ^ (n + 1) * (n + 1)! [PROOFSTEP] rw [mul_add, mul_one, doubleFactorial_add_two, factorial, pow_succ, doubleFactorial_two_mul _, succ_eq_add_one] [GOAL] n : ā„• ⊢ (2 * n + 2) * (2 ^ n * n !) = 2 ^ n * 2 * ((n + 1) * n !) [PROOFSTEP] ring [GOAL] n : ā„• ⊢ (2 * (n + 1))‼ = āˆ i in Finset.range (n + 1), 2 * (i + 1) [PROOFSTEP] rw [Finset.prod_range_succ, ← doubleFactorial_eq_prod_even _, mul_comm (2 * n)‼, (by ring : 2 * (n + 1) = 2 * n + 2)] [GOAL] n : ā„• ⊢ 2 * (n + 1) = 2 * n + 2 [PROOFSTEP] ring [GOAL] n : ā„• ⊢ (2 * n + 2)‼ = (2 * n + 2) * (2 * n)‼ [PROOFSTEP] rfl [GOAL] n : ā„• ⊢ (2 * (n + 1) + 1)‼ = āˆ i in Finset.range (n + 1), (2 * (i + 1) + 1) [PROOFSTEP] rw [Finset.prod_range_succ, ← doubleFactorial_eq_prod_odd _, mul_comm (2 * n + 1)‼, (by ring : 2 * (n + 1) + 1 = 2 * n + 1 + 2)] [GOAL] n : ā„• ⊢ 2 * (n + 1) + 1 = 2 * n + 1 + 2 [PROOFSTEP] ring [GOAL] n : ā„• ⊢ (2 * n + 1 + 2)‼ = (2 * n + 1 + 2) * (2 * n + 1)‼ [PROOFSTEP] rfl
State Before: q : ā„ ⊢ ‖exp ā„ q‖ = ‖exp ā„ q.re‖ State After: no goals Tactic: rw [norm_eq_sqrt_real_inner (exp ā„ q), inner_self, normSq_exp, Real.sqrt_sq_eq_abs, Real.norm_eq_abs]
Shortly after 20 : 00 , the German battleships engaged the 2nd Light Cruiser Squadron ; Markgraf fired primarily 15 cm shells . In this period , Markgraf was engaged by Agincourt 's 12 @-@ inch guns , which scored a single hit at 20 : 14 . The shell failed to explode and shattered on impact on the 8 @-@ inch side armor , causing minimal damage . Two of the adjoining 14 @-@ inch plates directly below the 8 @-@ inch armor were slightly forced inward and some minor flooding occurred . The heavy fire of the British fleet forced Scheer to order the fleet to turn away . Due to her reduced speed , Markgraf turned early in an attempt to maintain her place in the battle line ; this , however , forced Grosser Kurfürst to fall out of formation . Markgraf fell in behind Kronprinz while Grosser Kurfürst steamed ahead to return to her position behind König . After successfully withdrawing from the British , Scheer ordered the fleet to assume night cruising formation , though communication errors between Scheer aboard Friedrich der Grosse and Westfalen , the lead ship , caused delays . Several British light cruisers and destroyers stumbled into the German line around 21 : 20 . In the ensuing short engagement Markgraf hit the cruiser Calliope five times with her secondary guns . The fleet fell into formation by 23 : 30 , with Grosser Kurfürst the 13th vessel in the line of 24 capital ships .
module Feldspar.Frontend where import Prelude (Integral, Ord, RealFloat, RealFrac) import qualified Prelude as P import Prelude.EDSL import Control.Monad.Identity import Data.Bits (Bits, FiniteBits) import qualified Data.Bits as Bits import Data.Complex (Complex) import Data.Int import Data.List (genericLength) import Language.Syntactic (Internal) import Language.Syntactic.Functional import qualified Language.Syntactic as Syntactic import qualified Control.Monad.Operational.Higher as Oper import Language.Embedded.Imperative (IxRange) import qualified Language.Embedded.Imperative as Imp import qualified Data.Inhabited as Inhabited import Data.TypedStruct import Feldspar.Primitive.Representation import Feldspar.Representation import Feldspar.Sugar () -------------------------------------------------------------------------------- -- * Pure expressions -------------------------------------------------------------------------------- ---------------------------------------- -- ** General constructs ---------------------------------------- -- | Force evaluation of a value and share the result. Note that due to common -- sub-expression elimination, this function is rarely needed in practice. share :: (Syntax a, Syntax b) => a -- ^ Value to share -> (a -> b) -- ^ Body in which to share the value -> b share = shareTag "" -- Explicit sharing can be useful e.g. when the value to share contains a -- function or when the code motion algorithm for some reason doesn't work -- find opportunities for sharing. -- | Explicit tagged sharing shareTag :: (Syntax a, Syntax b) => String -- ^ A tag (that may be empty). May be used by a back end to -- generate a sensible variable name. -> a -- ^ Value to share -> (a -> b) -- ^ Body in which to share the value -> b shareTag tag = sugarSymFeld (Let tag) -- | For loop forLoop :: Syntax st => Data Length -> st -> (Data Index -> st -> st) -> st forLoop = sugarSymFeld ForLoop -- | Conditional expression cond :: Syntax a => Data Bool -- ^ Condition -> a -- ^ True branch -> a -- ^ False branch -> a cond = sugarSymFeld Cond -- | Condition operator; use as follows: -- -- @ -- cond1 `?` a $ -- cond2 `?` b $ -- cond3 `?` c $ -- default -- @ (?) :: Syntax a => Data Bool -- ^ Condition -> a -- ^ True branch -> a -- ^ False branch -> a (?) = cond infixl 1 ? -- | Multi-way conditional expression -- -- The first association @(a,b)@ in the list of cases for which @a@ is equal to -- the scrutinee is selected, and the associated @b@ is returned as the result. -- If no case matches, the default value is returned. switch :: (Syntax a, Syntax b, PrimType (Internal a)) => b -- ^ Default result -> [(a,b)] -- ^ Cases (match, result) -> a -- ^ Scrutinee -> b -- ^ Result switch def [] _ = def switch def cs s = P.foldr (\(c,a) b -> desugar c == desugar s ? a $ b) def cs ---------------------------------------- -- ** Literals ---------------------------------------- -- | Literal value :: Syntax a => Internal a -> a value = sugarSymFeld . Lit false :: Data Bool false = value False true :: Data Bool true = value True instance Syntactic.Syntactic () where type Domain () = FeldDomain type Internal () = Int32 desugar () = unData 0 sugar _ = () -- | Example value -- -- 'example' can be used similarly to 'undefined' in normal Haskell, i.e. to -- create an expression whose value is irrelevant. -- -- Note that it is generally not possible to use 'undefined' in Feldspar -- expressions, as this will crash the compiler. example :: Syntax a => a example = value Inhabited.example ---------------------------------------- -- ** Primitive functions ---------------------------------------- instance (Bounded a, Type a) => Bounded (Data a) where minBound = value minBound maxBound = value maxBound instance (Num a, PrimType a) => Num (Data a) where fromInteger = value . fromInteger (+) = sugarSymFeld Add (-) = sugarSymFeld Sub (*) = sugarSymFeld Mul negate = sugarSymFeld Neg abs = sugarSymFeld Abs signum = sugarSymFeld Sign instance (Fractional a, PrimType a) => Fractional (Data a) where fromRational = value . fromRational (/) = sugarSymFeld FDiv instance (Floating a, PrimType a) => Floating (Data a) where pi = sugarSymFeld Pi exp = sugarSymFeld Exp log = sugarSymFeld Log sqrt = sugarSymFeld Sqrt (**) = sugarSymFeld Pow sin = sugarSymFeld Sin cos = sugarSymFeld Cos tan = sugarSymFeld Tan asin = sugarSymFeld Asin acos = sugarSymFeld Acos atan = sugarSymFeld Atan sinh = sugarSymFeld Sinh cosh = sugarSymFeld Cosh tanh = sugarSymFeld Tanh asinh = sugarSymFeld Asinh acosh = sugarSymFeld Acosh atanh = sugarSymFeld Atanh -- | Alias for 'pi' Ļ€ :: (Floating a, PrimType a) => Data a Ļ€ = pi -- | Integer division truncated toward zero quot :: (Integral a, PrimType a) => Data a -> Data a -> Data a quot = sugarSymFeld Quot -- | Integer remainder satisfying -- -- > (x `quot` y)*y + (x `rem` y) == x rem :: (Integral a, PrimType a) => Data a -> Data a -> Data a rem = sugarSymFeld Rem -- | Simultaneous @quot@ and @rem@ quotRem :: (Integral a, PrimType a) => Data a -> Data a -> (Data a, Data a) quotRem a b = (q,r) where q = quot a b r = a - b * q -- | Integer division truncated toward negative infinity div :: (Integral a, PrimType a) => Data a -> Data a -> Data a div = sugarSymFeld Div -- | Integer modulus, satisfying -- -- > (x `div` y)*y + (x `mod` y) == x mod :: (Integral a, PrimType a) => Data a -> Data a -> Data a mod = sugarSymFeld Mod -- | Integer division assuming `unsafeBalancedDiv x y * y == x` (i.e. no -- remainder) -- -- The advantage of using 'unsafeBalancedDiv' over 'quot' or 'div' is that the -- above assumption can be used for simplifying the expression. unsafeBalancedDiv :: (Integral a, PrimType a) => Data a -> Data a -> Data a unsafeBalancedDiv a b = guardValLabel InternalAssertion (rem a b == 0) "unsafeBalancedDiv: division not balanced" (sugarSymFeld DivBalanced a b) -- Note: We can't check that `result * b == a`, because `result * b` gets -- simplified to `a`. -- | Construct a complex number complex :: (Num a, PrimType a, PrimType (Complex a)) => Data a -- ^ Real part -> Data a -- ^ Imaginary part -> Data (Complex a) complex = sugarSymFeld Complex -- | Construct a complex number polar :: (Floating a, PrimType a, PrimType (Complex a)) => Data a -- ^ Magnitude -> Data a -- ^ Phase -> Data (Complex a) polar = sugarSymFeld Polar -- | Extract the real part of a complex number realPart :: (PrimType a, PrimType (Complex a)) => Data (Complex a) -> Data a realPart = sugarSymFeld Real -- | Extract the imaginary part of a complex number imagPart :: (PrimType a, PrimType (Complex a)) => Data (Complex a) -> Data a imagPart = sugarSymFeld Imag -- | Extract the magnitude of a complex number's polar form magnitude :: (RealFloat a, PrimType a, PrimType (Complex a)) => Data (Complex a) -> Data a magnitude = sugarSymFeld Magnitude -- | Extract the phase of a complex number's polar form phase :: (RealFloat a, PrimType a, PrimType (Complex a)) => Data (Complex a) -> Data a phase = sugarSymFeld Phase -- | Complex conjugate conjugate :: (RealFloat a, PrimType (Complex a)) => Data (Complex a) -> Data (Complex a) conjugate = sugarSymFeld Conjugate -- `RealFloat` could be replaced by `Num` here, but it seems more consistent -- to use `RealFloat` for all functions. -- | Integral type casting i2n :: (Integral i, Num n, PrimType i, PrimType n) => Data i -> Data n i2n = sugarSymFeld I2N -- | Cast integer to 'Bool' i2b :: (Integral a, PrimType a) => Data a -> Data Bool i2b = sugarSymFeld I2B -- | Cast 'Bool' to integer b2i :: (Integral a, PrimType a) => Data Bool -> Data a b2i = sugarSymFeld B2I -- | Round a floating-point number to an integer round :: (RealFrac a, Num b, PrimType a, PrimType b) => Data a -> Data b round = sugarSymFeld Round -- | Boolean negation not :: Data Bool -> Data Bool not = sugarSymFeld Not -- | Boolean conjunction (&&) :: Data Bool -> Data Bool -> Data Bool (&&) = sugarSymFeld And infixr 3 && -- | Boolean disjunction (||) :: Data Bool -> Data Bool -> Data Bool (||) = sugarSymFeld Or infixr 2 || -- | Equality (==) :: PrimType a => Data a -> Data a -> Data Bool (==) = sugarSymFeld Eq -- | Inequality (/=) :: PrimType a => Data a -> Data a -> Data Bool a /= b = not (a==b) -- | Less than (<) :: (Ord a, PrimType a) => Data a -> Data a -> Data Bool (<) = sugarSymFeld Lt -- | Greater than (>) :: (Ord a, PrimType a) => Data a -> Data a -> Data Bool (>) = sugarSymFeld Gt -- | Less than or equal (<=) :: (Ord a, PrimType a) => Data a -> Data a -> Data Bool (<=) = sugarSymFeld Le -- | Greater than or equal (>=) :: (Ord a, PrimType a) => Data a -> Data a -> Data Bool (>=) = sugarSymFeld Ge infix 4 ==, /=, <, >, <=, >= -- | Return the smallest of two values min :: (Ord a, PrimType a) => Data a -> Data a -> Data a min a b = a<=b ? a $ b -- There's no standard definition of min/max in C: -- <http://stackoverflow.com/questions/3437404/min-and-max-in-c> -- -- There is `fmin`/`fminf` for floating-point numbers, but these are -- implemented essentially as above (except that they handle `NaN` -- specifically: -- <https://sourceware.org/git/?p=glibc.git;a=blob;f=math/s_fmin.c;hb=HEAD> -- | Return the greatest of two values max :: (Ord a, PrimType a) => Data a -> Data a -> Data a max a b = a>=b ? a $ b ---------------------------------------- -- ** Bit manipulation ---------------------------------------- -- | Bit-wise \"and\" (.&.) :: (Bits a, PrimType a) => Data a -> Data a -> Data a (.&.) = sugarSymFeld BitAnd -- | Bit-wise \"or\" (.|.) :: (Bits a, PrimType a) => Data a -> Data a -> Data a (.|.) = sugarSymFeld BitOr -- | Bit-wise \"xor\" xor :: (Bits a, PrimType a) => Data a -> Data a -> Data a xor = sugarSymFeld BitXor -- | Bit-wise \"xor\" (āŠ•) :: (Bits a, PrimType a) => Data a -> Data a -> Data a (āŠ•) = xor -- | Bit-wise complement complement :: (Bits a, PrimType a) => Data a -> Data a complement = sugarSymFeld BitCompl -- | Left shift shiftL :: (Bits a, PrimType a) => Data a -- ^ Value to shift -> Data Int32 -- ^ Shift amount (negative value gives right shift) -> Data a shiftL = sugarSymFeld ShiftL -- | Right shift shiftR :: (Bits a, PrimType a) => Data a -- ^ Value to shift -> Data Int32 -- ^ Shift amount (negative value gives left shift) -> Data a shiftR = sugarSymFeld ShiftR -- | Left shift (.<<.) :: (Bits a, PrimType a) => Data a -- ^ Value to shift -> Data Int32 -- ^ Shift amount (negative value gives right shift) -> Data a (.<<.) = shiftL -- | Right shift (.>>.) :: (Bits a, PrimType a) => Data a -- ^ Value to shift -> Data Int32 -- ^ Shift amount (negative value gives left shift) -> Data a (.>>.) = shiftR infixl 8 `shiftL`, `shiftR`, .<<., .>>. infixl 7 .&. infixl 6 `xor` infixl 5 .|. bitSize :: forall a . FiniteBits a => Data a -> Length bitSize _ = P.fromIntegral $ Bits.finiteBitSize (a :: a) where a = P.error "finiteBitSize evaluates its argument" -- | Set all bits to one allOnes :: (Bits a, Num a, PrimType a) => Data a allOnes = complement 0 -- | Set the @n@ lowest bits to one oneBits :: (Bits a, Num a, PrimType a) => Data Int32 -> Data a oneBits n = complement (allOnes .<<. n) -- | Extract the @k@ lowest bits lsbs :: (Bits a, Num a, PrimType a) => Data Int32 -> Data a -> Data a lsbs k i = i .&. oneBits k -- | Integer logarithm in base 2. Returns \(\lfloor log_2(x) \rfloor\). -- Assumes \(x>0\). ilog2 :: (FiniteBits a, Integral a, PrimType a) => Data a -> Data a ilog2 a = guardValLabel InternalAssertion (a >= 1) "ilog2: argument < 1" $ snd $ P.foldr (\ffi vr -> share vr (step ffi)) (a,0) ffis where step (ff,i) (v,r) = share (b2i (v > fromInteger ff) .<<. value i) $ \shift -> (v .>>. i2n shift, r .|. shift) -- [(0x1, 0), (0x3, 1), (0xF, 2), (0xFF, 3), (0xFFFF, 4), ...] ffis = (`P.zip` [0..]) $ P.takeWhile (P.<= (2 P.^ (bitSize a `P.div` 2) - 1 :: Integer)) $ P.map ((subtract 1) . (2 P.^) . (2 P.^)) $ [(0::Integer)..] -- Based on this algorithm: -- <http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog> ---------------------------------------- -- ** Arrays ---------------------------------------- -- | Index into an array arrIx :: Syntax a => IArr a -> Data Index -> a arrIx arr i = resugar $ mapStruct ix $ unIArr arr where ix :: forall b . PrimType' b => Imp.IArr Index b -> Data b ix arr' = sugarSymFeldPrim (GuardVal InternalAssertion "arrIx: index out of bounds") (i < length arr) (sugarSymFeldPrim (ArrIx arr') (i + iarrOffset arr) :: Data b) class Indexed a where type IndexedElem a -- | Indexing operator. If @a@ is 'Finite', it is assumed that -- @i < `length` a@ in any expression @a `!` i@. (!) :: a -> Data Index -> IndexedElem a infixl 9 ! -- | Linear structures with a length. If the type is also 'Indexed', the length -- is the successor of the maximal allowed index. class Finite a where -- | The length of a finite structure length :: a -> Data Length instance Finite (Arr a) where length = arrLength instance Finite (IArr a) where length = iarrLength -- | Linear structures that can be sliced class Slicable a where -- | Take a slice of a structure slice :: Data Index -- ^ Start index -> Data Length -- ^ Slice length -> a -- ^ Structure to slice -> a instance Syntax a => Indexed (IArr a) where type IndexedElem (IArr a) = a (!) = arrIx instance Slicable (Arr a) where slice from len (Arr o l arr) = Arr o' l' arr where o' = guardValLabel InternalAssertion (from<=l) "invalid Arr slice" (o+from) l' = guardValLabel InternalAssertion (from+len<=l) "invalid Arr slice" len instance Slicable (IArr a) where slice from len (IArr o l arr) = IArr o' l' arr where o' = guardValLabel InternalAssertion (from<=l) "invalid IArr slice" (o+from) l' = guardValLabel InternalAssertion (from+len<=l) "invalid IArr slice" len ---------------------------------------- -- ** Syntactic conversion ---------------------------------------- desugar :: Syntax a => a -> Data (Internal a) desugar = Data . Syntactic.desugar sugar :: Syntax a => Data (Internal a) -> a sugar = Syntactic.sugar . unData -- | Cast between two values that have the same syntactic representation resugar :: (Syntax a, Syntax b, Internal a ~ Internal b) => a -> b resugar = Syntactic.resugar ---------------------------------------- -- ** Assertions ---------------------------------------- -- | Guard a value by an assertion (with implicit label @`UserAssertion` ""@) guardVal :: Syntax a => Data Bool -- ^ Condition that is expected to be true -> String -- ^ Error message -> a -- ^ Value to attach the assertion to -> a guardVal = guardValLabel $ UserAssertion "" -- | Like 'guardVal' but with an explicit assertion label guardValLabel :: Syntax a => AssertionLabel -- ^ Assertion label -> Data Bool -- ^ Condition that is expected to be true -> String -- ^ Error message -> a -- ^ Value to attach the assertion to -> a guardValLabel c cond msg = sugarSymFeld (GuardVal c msg) cond ---------------------------------------- -- ** Unsafe operations ---------------------------------------- -- | Turn a 'Comp' computation into a pure value. For this to be safe, the -- computation should be free of side effects and independent of its -- environment. unsafePerform :: Syntax a => Comp a -> a unsafePerform = sugarSymFeld . UnsafePerform . fmap desugar -------------------------------------------------------------------------------- -- * Programs with computational effects -------------------------------------------------------------------------------- -- | Monads that support computational effects: mutable data structures and -- control flow class Monad m => MonadComp m where -- | Lift a 'Comp' computation liftComp :: Comp a -> m a -- | Conditional statement iff :: Data Bool -> m () -> m () -> m () -- | For loop for :: (Integral n, PrimType n) => IxRange (Data n) -> (Data n -> m ()) -> m () -- | While loop while :: m (Data Bool) -> m () -> m () instance MonadComp Comp where liftComp = id iff c t f = Comp $ Imp.iff c (unComp t) (unComp f) for range body = Comp $ Imp.for range (unComp . body) while cont body = Comp $ Imp.while (unComp cont) (unComp body) ---------------------------------------- -- ** References ---------------------------------------- -- | Create an uninitialized reference newRef :: (Syntax a, MonadComp m) => m (Ref a) newRef = newNamedRef "r" -- | Create an uninitialized named reference -- -- The provided base name may be appended with a unique identifier to avoid name -- collisions. newNamedRef :: (Syntax a, MonadComp m) => String -- ^ Base name -> m (Ref a) newNamedRef base = liftComp $ fmap Ref $ mapStructA (const $ Comp $ Imp.newNamedRef base) typeRep -- | Create an initialized named reference initRef :: (Syntax a, MonadComp m) => a -> m (Ref a) initRef = initNamedRef "r" -- | Create an initialized reference -- -- The provided base name may be appended with a unique identifier to avoid name -- collisions. initNamedRef :: (Syntax a, MonadComp m) => String -- ^ Base name -> a -- ^ Initial value -> m (Ref a) initNamedRef base = liftComp . fmap Ref . mapStructA (Comp . Imp.initNamedRef base) . resugar -- | Get the contents of a reference. getRef :: (Syntax a, MonadComp m) => Ref a -> m a getRef = liftComp . fmap resugar . mapStructA (Comp . Imp.getRef) . unRef -- | Set the contents of a reference. setRef :: (Syntax a, MonadComp m) => Ref a -> a -> m () setRef r = liftComp . sequence_ . zipListStruct (\r' a' -> Comp $ Imp.setRef r' a') (unRef r) . resugar -- | Modify the contents of reference. modifyRef :: (Syntax a, MonadComp m) => Ref a -> (a -> a) -> m () modifyRef r f = setRef r . f =<< unsafeFreezeRef r -- | Freeze the contents of reference (only safe if the reference is not updated -- as long as the resulting value is alive). unsafeFreezeRef :: (Syntax a, MonadComp m) => Ref a -> m a unsafeFreezeRef = liftComp . fmap resugar . mapStructA (Comp . Imp.unsafeFreezeRef) . unRef ---------------------------------------- -- ** Arrays ---------------------------------------- -- | Create an uninitialized array newArr :: (Type (Internal a), MonadComp m) => Data Length -> m (Arr a) newArr = newNamedArr "a" -- | Create an uninitialized named array -- -- The provided base name may be appended with a unique identifier to avoid name -- collisions. newNamedArr :: (Type (Internal a), MonadComp m) => String -- ^ Base name -> Data Length -> m (Arr a) newNamedArr base l = liftComp $ fmap (Arr 0 l) $ mapStructA (const (Comp $ Imp.newNamedArr base l)) typeRep -- | Create an array and initialize it with a constant list constArr :: (PrimType (Internal a), MonadComp m) => [Internal a] -- ^ Initial contents -> m (Arr a) constArr = constNamedArr "a" -- | Create a named array and initialize it with a constant list -- -- The provided base name may be appended with a unique identifier to avoid name -- collisions. constNamedArr :: (PrimType (Internal a), MonadComp m) => String -- ^ Base name -> [Internal a] -- ^ Initial contents -> m (Arr a) constNamedArr base as = liftComp $ fmap (Arr 0 len . Single) $ Comp $ Imp.constNamedArr base as where len = value $ genericLength as -- | Get an element of an array getArr :: (Syntax a, MonadComp m) => Arr a -> Data Index -> m a getArr arr i = do assertLabel InternalAssertion (i < length arr) "getArr: index out of bounds" liftComp $ fmap resugar $ mapStructA (Comp . flip Imp.getArr (i + arrOffset arr)) $ unArr arr -- | Set an element of an array setArr :: forall m a . (Syntax a, MonadComp m) => Arr a -> Data Index -> a -> m () setArr arr i a = do assertLabel InternalAssertion (i < length arr) "setArr: index out of bounds" liftComp $ sequence_ $ zipListStruct (\a' arr' -> Comp $ Imp.setArr arr' (i + arrOffset arr) a') rep $ unArr arr where rep = resugar a :: Struct PrimType' Data (Internal a) -- | Copy the contents of an array to another array. The length of the -- destination array must not be less than that of the source array. -- -- In order to copy only a part of an array, use 'slice' before calling -- 'copyArr'. copyArr :: MonadComp m => Arr a -- ^ Destination -> Arr a -- ^ Source -> m () copyArr arr1 arr2 = do assertLabel InternalAssertion (length arr1 >= length arr2) "copyArr: destination too small" liftComp $ sequence_ $ zipListStruct (\a1 a2 -> Comp $ Imp.copyArr (a1, arrOffset arr1) (a2, arrOffset arr2) (length arr2) ) (unArr arr1) (unArr arr2) -- | Freeze a mutable array to an immutable one. This involves copying the array -- to a newly allocated one. freezeArr :: (Type (Internal a), MonadComp m) => Arr a -> m (IArr a) freezeArr arr = liftComp $ do arr2 <- newArr (length arr) copyArr arr2 arr unsafeFreezeArr arr2 -- This is better than calling `freezeArr` from imperative-edsl, since that -- one copies without offset. -- | A version of 'freezeArr' that slices the array from 0 to the given length freezeSlice :: (Type (Internal a), MonadComp m) => Data Length -> Arr a -> m (IArr a) freezeSlice len = fmap (slice 0 len) . freezeArr -- | Freeze a mutable array to an immutable one without making a copy. This is -- generally only safe if the the mutable array is not updated as long as the -- immutable array is alive. unsafeFreezeArr :: MonadComp m => Arr a -> m (IArr a) unsafeFreezeArr arr = liftComp $ fmap (IArr (arrOffset arr) (length arr)) $ mapStructA (Comp . Imp.unsafeFreezeArr) $ unArr arr -- | A version of 'unsafeFreezeArr' that slices the array from 0 to the given -- length unsafeFreezeSlice :: MonadComp m => Data Length -> Arr a -> m (IArr a) unsafeFreezeSlice len = fmap (slice 0 len) . unsafeFreezeArr -- | Thaw an immutable array to a mutable one. This involves copying the array -- to a newly allocated one. thawArr :: (Type (Internal a), MonadComp m) => IArr a -> m (Arr a) thawArr arr = liftComp $ do arr2 <- unsafeThawArr arr arr3 <- newArr (length arr) copyArr arr3 arr2 return arr3 -- | Thaw an immutable array to a mutable one without making a copy. This is -- generally only safe if the the mutable array is not updated as long as the -- immutable array is alive. unsafeThawArr :: MonadComp m => IArr a -> m (Arr a) unsafeThawArr arr = liftComp $ fmap (Arr (iarrOffset arr) (length arr)) $ mapStructA (Comp . Imp.unsafeThawArr) $ unIArr arr -- | Create an immutable array and initialize it with a constant list constIArr :: (PrimType (Internal a), MonadComp m) => [Internal a] -> m (IArr a) constIArr = constArr >=> unsafeFreezeArr ---------------------------------------- -- ** Control-flow ---------------------------------------- -- | Conditional statement that returns an expression ifE :: (Syntax a, MonadComp m) => Data Bool -- ^ Condition -> m a -- ^ True branch -> m a -- ^ False branch -> m a ifE c t f = do res <- newRef iff c (t >>= setRef res) (f >>= setRef res) unsafeFreezeRef res -- | Break out from a loop break :: MonadComp m => m () break = liftComp $ Comp Imp.break -- | Assertion (with implicit label @`UserAssertion` ""@) assert :: MonadComp m => Data Bool -- ^ Expression that should be true -> String -- ^ Message in case of failure -> m () assert = assertLabel $ UserAssertion "" -- | Like 'assert' but tagged with an explicit assertion label assertLabel :: MonadComp m => AssertionLabel -- ^ Assertion label -> Data Bool -- ^ Expression that should be true -> String -- ^ Message in case of failure -> m () assertLabel c cond msg = liftComp $ Comp $ Oper.singleInj $ Assert c cond msg ---------------------------------------- -- ** Misc. ---------------------------------------- -- | Force evaluation of a value and share the result (monadic version of -- 'share') shareM :: (Syntax a, MonadComp m) => a -> m a shareM = initRef >=> unsafeFreezeRef -- This function is more commonly needed than `share`, since code motion -- doesn't work across monadic binds.
#!/usr/bin/env python3 from flask import Flask, request, jsonify import json import pickle import pandas as pd import numpy as np import drmodel import pytest import requests url = 'http://0.0.0.0:8000/api' feature = [[5.8, 4.0, 1.2, 0.2]] labels ={ 0: "setosa", 1: "versicolor", 2: "virginica" } def test_predict(): r = requests.post(url,json={'feature': feature}) print(labels[r.json()]) assert labels[r.json()] == "setosa"
(*<*) (* Title: Theory stream.thy (FOCUS streams) Author: Maria Spichkova <maria.spichkova at rmit.edu.au>, 2013 *) (*>*) header "FOCUS streams: operators and lemmas" theory stream imports ListExtras ArithExtras begin subsection {* Definition of the FOCUS stream types *} -- "Finite timed FOCUS stream" type_synonym 'a fstream = "'a list list" -- "Infinite timed FOCUS stream" type_synonym 'a istream = "nat \<Rightarrow> 'a list" -- "Infinite untimed FOCUS stream" type_synonym 'a iustream = "nat \<Rightarrow> 'a" -- "FOCUS stream (general)" datatype 'a stream = FinT "'a fstream" -- "finite timed streams" | FinU "'a list" -- "finite untimed streams" | InfT "'a istream" -- "infinite timed streams" | InfU "'a iustream" -- "infinite untimed streams" subsection {* Definitions of operators *} -- "domain of an infinite untimed stream" definition infU_dom :: "natInf set" where "infU_dom \<equiv> {x. \<exists> i. x = (Fin i)} \<union> {\<infinity>}" -- "domain of a finite untimed stream (using natural numbers enriched by Infinity)" definition finU_dom_natInf :: "'a list \<Rightarrow> natInf set" where "finU_dom_natInf s \<equiv> {x. \<exists> i. x = (Fin i) \<and> i < (length s)}" -- "domain of a finite untimed stream" primrec finU_dom :: "'a list \<Rightarrow> nat set" where "finU_dom [] = {}" | "finU_dom (x#xs) = {length xs} \<union> (finU_dom xs)" -- "range of a finite timed stream" primrec finT_range :: "'a fstream \<Rightarrow> 'a set" where "finT_range [] = {}" | "finT_range (x#xs) = (set x) \<union> finT_range xs" -- "range of a finite untimed stream" definition finU_range :: "'a list \<Rightarrow> 'a set" where "finU_range x \<equiv> set x" -- "range of an infinite timed stream" definition infT_range :: "'a istream \<Rightarrow> 'a set" where "infT_range s \<equiv> {y. \<exists> i::nat. y mem (s i)}" -- "range of a finite untimed stream" definition infU_range :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a set" where "infU_range s \<equiv> { y. \<exists> i::nat. y = (s i) }" -- "range of a (general) stream" definition stream_range :: "'a stream \<Rightarrow> 'a set" where "stream_range s \<equiv> case s of FinT x \<Rightarrow> finT_range x | FinU x \<Rightarrow> finU_range x | InfT x \<Rightarrow> infT_range x | InfU x \<Rightarrow> infU_range x" -- "finite timed stream that consists of n empty time intervals" primrec nticks :: "nat \<Rightarrow> 'a fstream" where "nticks 0 = []" | "nticks (Suc i) = [] # (nticks i)" -- "removing the first element from an infinite stream" -- "in the case of an untimed stream: removing the first data element" -- "in the case of a timed stream: removing the first time interval" definition inf_tl :: "(nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a)" where "inf_tl s \<equiv> (\<lambda> i. s (Suc i))" -- "removing i first elements from an infinite stream s" -- "in the case of an untimed stream: removing i first data elements" -- "in the case of a timed stream: removing i first time intervals" definition inf_drop :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a)" where "inf_drop i s \<equiv> \<lambda> j. s (i+j)" -- "finding the first nonempty time interval in a finite timed stream" primrec fin_find1nonemp :: "'a fstream \<Rightarrow> 'a list" where "fin_find1nonemp [] = []" | "fin_find1nonemp (x#xs) = ( if x = [] then fin_find1nonemp xs else x )" -- "finding the first nonempty time interval in an infinite timed stream" definition inf_find1nonemp :: "'a istream \<Rightarrow> 'a list" where "inf_find1nonemp s \<equiv> ( if (\<exists> i. s i \<noteq> []) then s (LEAST i. s i \<noteq> []) else [] )" -- "finding the index of the first nonempty time interval in a finite timed stream" primrec fin_find1nonemp_index :: "'a fstream \<Rightarrow> nat" where "fin_find1nonemp_index [] = 0" | "fin_find1nonemp_index (x#xs) = ( if x = [] then Suc (fin_find1nonemp_index xs) else 0 )" -- "finding the index of the first nonempty time interval in an infinite timed stream" definition inf_find1nonemp_index :: "'a istream \<Rightarrow> nat" where "inf_find1nonemp_index s \<equiv> ( if (\<exists> i. s i \<noteq> []) then (LEAST i. s i \<noteq> []) else 0 )" -- "length of a finite timed stream: number of data elements in this stream" primrec fin_length :: "'a fstream \<Rightarrow> nat" where "fin_length [] = 0" | "fin_length (x#xs) = (length x) + (fin_length xs)" -- "length of a (general) stream" definition stream_length :: "'a stream \<Rightarrow> natInf" where "stream_length s \<equiv> case s of (FinT x) \<Rightarrow> Fin (fin_length x) | (FinU x) \<Rightarrow> Fin (length x) | (InfT x) \<Rightarrow> \<infinity> | (InfU x) \<Rightarrow> \<infinity>" -- "removing the first k elements from a finite (nonempty) timed stream" axiomatization fin_nth :: "'a fstream \<Rightarrow> nat \<Rightarrow> 'a" where fin_nth_Cons: "fin_nth (hds # tls) k = ( if hds = [] then fin_nth tls k else ( if (k < (length hds)) then nth hds k else fin_nth tls (k - length hds) ))" -- "removing i first data elements from an infinite timed stream s" primrec inf_nth :: "'a istream \<Rightarrow> nat \<Rightarrow> 'a" where "inf_nth s 0 = hd (s (LEAST i.(s i) \<noteq> []))" | "inf_nth s (Suc k) = ( if ((Suc k) < (length (s 0))) then (nth (s 0) (Suc k)) else ( if (s 0) = [] then (inf_nth (inf_tl (inf_drop (LEAST i. (s i) \<noteq> []) s)) k ) else inf_nth (inf_tl s) k ))" -- "removing the first k data elements from a (general) stream" definition stream_nth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" where "stream_nth s k \<equiv> case s of (FinT x) \<Rightarrow> fin_nth x k | (FinU x) \<Rightarrow> nth x k | (InfT x) \<Rightarrow> inf_nth x k | (InfU x) \<Rightarrow> x k" -- "prefix of an infinite stream" primrec inf_prefix :: "'a list \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> bool" where "inf_prefix [] s k = True" | "inf_prefix (x#xs) s k = ( (x = (s k)) \<and> (inf_prefix xs s (Suc k)) )" -- "prefix of a finite stream" primrec fin_prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "fin_prefix [] s = True" | "fin_prefix (x#xs) s = (if (s = []) then False else (x = (hd s)) \<and> (fin_prefix xs s) )" -- "prefix of a (general) stream" definition stream_prefix :: "'a stream \<Rightarrow> 'a stream \<Rightarrow> bool" where "stream_prefix p s \<equiv> (case p of (FinT x) \<Rightarrow> (case s of (FinT y) \<Rightarrow> (fin_prefix x y) | (FinU y) \<Rightarrow> False | (InfT y) \<Rightarrow> inf_prefix x y 0 | (InfU y) \<Rightarrow> False ) | (FinU x) \<Rightarrow> (case s of (FinT y) \<Rightarrow> False | (FinU y) \<Rightarrow> (fin_prefix x y) | (InfT y) \<Rightarrow> False | (InfU y) \<Rightarrow> inf_prefix x y 0 ) | (InfT x) \<Rightarrow> (case s of (FinT y) \<Rightarrow> False | (FinU y) \<Rightarrow> False | (InfT y) \<Rightarrow> (\<forall> i. x i = y i) | (InfU y) \<Rightarrow> False ) | (InfU x) \<Rightarrow> (case s of (FinT y) \<Rightarrow> False | (FinU y) \<Rightarrow> False | (InfT y) \<Rightarrow> False | (InfU y) \<Rightarrow> (\<forall> i. x i = y i) ) )" -- "truncating a finite stream after the n-th element" primrec fin_truncate :: "'a list \<Rightarrow> nat \<Rightarrow> 'a list" where "fin_truncate [] n = []" | "fin_truncate (x#xs) i = (case i of 0 \<Rightarrow> [] | (Suc n) \<Rightarrow> x # (fin_truncate xs n))" -- "truncating a finite stream after the n-th element" -- "n is of type of natural numbers enriched by Infinity" definition fin_truncate_plus :: "'a list \<Rightarrow> natInf \<Rightarrow> 'a list" where "fin_truncate_plus s n \<equiv> case n of (Fin i) \<Rightarrow> fin_truncate s i | \<infinity> \<Rightarrow> s " -- "truncating an infinite stream after the n-th element" primrec inf_truncate :: "(nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a list" where "inf_truncate s 0 = [ s 0 ]" | "inf_truncate s (Suc k) = (inf_truncate s k) @ [s (Suc k)]" -- "truncating an infinite stream after the n-th element" -- "n is of type of natural numbers enriched by Infinity" definition inf_truncate_plus :: "'a istream \<Rightarrow> natInf \<Rightarrow> 'a stream" where "inf_truncate_plus s n \<equiv> case n of (Fin i) \<Rightarrow> FinT (inf_truncate s i) | \<infinity> \<Rightarrow> InfT s" -- "concatanation of a finite and an infinite stream" definition fin_inf_append :: "'a list \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a)" where "fin_inf_append us s \<equiv> (\<lambda> i. ( if (i < (length us)) then (nth us i) else s (i - (length us)) ))" -- "insuring that the infinite timed stream is time-synchronous" definition ts :: "'a istream \<Rightarrow> bool" where "ts s \<equiv> \<forall> i. (length (s i) = 1)" -- "insuring that each time interval of an infinite timed stream contains at most n data elements" definition msg :: "nat \<Rightarrow> 'a istream \<Rightarrow> bool" where "msg n s \<equiv> \<forall> t. length (s t) \<le> n" -- "insuring that each time interval of a finite timed stream contains at most n data elements" primrec fin_msg :: "nat \<Rightarrow> 'a list list \<Rightarrow> bool" where "fin_msg n [] = True" | "fin_msg n (x#xs) = (((length x) \<le> n) \<and> (fin_msg n xs))" -- "making a finite timed stream to a finite untimed stream" definition fin_make_untimed :: "'a fstream \<Rightarrow> 'a list" where "fin_make_untimed x \<equiv> concat x" -- "making an infinite timed stream to an infinite untimed stream" -- "(auxiliary function)" primrec inf_make_untimed1 :: "'a istream \<Rightarrow> nat \<Rightarrow> 'a " where inf_make_untimed1_0: "inf_make_untimed1 s 0 = hd (s (LEAST i.(s i) \<noteq> []))" | inf_make_untimed1_Suc: "inf_make_untimed1 s (Suc k) = ( if ((Suc k) < length (s 0)) then nth (s 0) (Suc k) else ( if (s 0) = [] then (inf_make_untimed1 (inf_tl (inf_drop (LEAST i. \<forall> j. j < i \<longrightarrow> (s j) = []) s)) k ) else inf_make_untimed1 (inf_tl s) k ))" -- "making an infinite timed stream to an infinite untimed stream" -- "(main function)" definition inf_make_untimed :: "'a istream \<Rightarrow> (nat \<Rightarrow> 'a) " where "inf_make_untimed s \<equiv> \<lambda> i. inf_make_untimed1 s i" -- "making a (general) stream untimed" definition make_untimed :: "'a stream \<Rightarrow> 'a stream" where "make_untimed s \<equiv> case s of (FinT x) \<Rightarrow> FinU (fin_make_untimed x) | (FinU x) \<Rightarrow> FinU x | (InfT x) \<Rightarrow> (if (\<exists> i.\<forall> j. i < j \<longrightarrow> (x j) = []) then FinU (fin_make_untimed (inf_truncate x (LEAST i.\<forall> j. i < j \<longrightarrow> (x j) = []))) else InfU (inf_make_untimed x)) | (InfU x) \<Rightarrow> InfU x" -- "finding the index of the time interval that contains the k-th data element" -- "defined over a finite timed stream" primrec fin_tm :: "'a fstream \<Rightarrow> nat \<Rightarrow> nat" where "fin_tm [] k = k" | "fin_tm (x#xs) k = (if k = 0 then 0 else (if (k \<le> length x) then (Suc 0) else Suc(fin_tm xs (k - length x))))" -- "auxiliary lemma for the definition of the truncate operator" lemma inf_tm_hint1: assumes "i2 = Suc i - length a" and "\<not> Suc i \<le> length a" and "a \<noteq> []" shows "i2 < Suc i" using assms by auto -- "filtering a finite timed stream" definition finT_filter :: "'a set => 'a fstream => 'a fstream" where "finT_filter m s \<equiv> map (\<lambda> s. filter (\<lambda> y. y \<in> m) s) s" -- "filtering an infinite timed stream" definition infT_filter :: "'a set => 'a istream => 'a istream" where "infT_filter m s \<equiv> (\<lambda>i.( filter (\<lambda> x. x \<in> m) (s i)))" -- "removing duplications from a finite timed stream" definition finT_remdups :: "'a fstream => 'a fstream" where "finT_remdups s \<equiv> map (\<lambda> s. remdups s) s" -- "removing duplications from an infinite timed stream" definition infT_remdups :: "'a istream => 'a istream" where "infT_remdups s \<equiv> (\<lambda>i.( remdups (s i)))" -- "removing duplications from a time interval of a stream" primrec fst_remdups :: "'a list \<Rightarrow> 'a list" where "fst_remdups [] = []" | "fst_remdups (x#xs) = (if xs = [] then [x] else (if x = (hd xs) then fst_remdups xs else (x#xs)))" -- "time interval operator" definition ti :: "'a fstream \<Rightarrow> nat \<Rightarrow> 'a list" where "ti s i \<equiv> (if s = [] then [] else (nth s i))" -- "insuring that a sheaf of channels is correctly defined" definition CorrectSheaf :: "nat \<Rightarrow> bool" where "CorrectSheaf n \<equiv> 0 < n" -- "insuring that all channels in a sheaf are disjunct" -- "indices in the sheaf are represented using an extra specified set" definition inf_disjS :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a istream) \<Rightarrow> bool" where "inf_disjS IdSet nS \<equiv> \<forall> (t::nat) i j. (i:IdSet) \<and> (j:IdSet) \<and> ((nS i) t) \<noteq> [] \<longrightarrow> ((nS j) t) = []" -- "insuring that all channels in a sheaf are disjunct" -- "indices in the sheaf are represented using natural numbers" definition inf_disj :: "nat \<Rightarrow> (nat \<Rightarrow> 'a istream) \<Rightarrow> bool" where "inf_disj n nS \<equiv> \<forall> (t::nat) (i::nat) (j::nat). i < n \<and> j < n \<and> i \<noteq> j \<and> ((nS i) t) \<noteq> [] \<longrightarrow> ((nS j) t) = []" -- "taking the prefix of n data elements from a finite timed stream" -- "(defined over natural numbers)" fun fin_get_prefix :: "('a fstream \<times> nat) \<Rightarrow> 'a fstream" where "fin_get_prefix([], n) = []" | "fin_get_prefix(x#xs, i) = ( if (length x) < i then x # fin_get_prefix(xs, (i - (length x))) else [take i x] ) " -- "taking the prefix of n data elements from a finite timed stream" -- "(defined over natural numbers enriched by Infinity)" definition fin_get_prefix_plus :: "'a fstream \<Rightarrow> natInf \<Rightarrow> 'a fstream" where "fin_get_prefix_plus s n \<equiv> case n of (Fin i) \<Rightarrow> fin_get_prefix(s, i) | \<infinity> \<Rightarrow> s " -- "auxiliary lemmas " lemma length_inf_drop_hint1: assumes "s k \<noteq> []" shows "length (inf_drop k s 0) \<noteq> 0" using assms by (auto simp: inf_drop_def) -- "taking the prefix of n data elements from an infinite timed stream" -- "(defined over natural numbers)" fun infT_get_prefix :: "('a istream \<times> nat) \<Rightarrow> 'a fstream" where "infT_get_prefix(s, 0) = []" | "infT_get_prefix(s, Suc i) = ( if (s 0) = [] then ( if (\<forall> i. s i = []) then [] else (let k = (LEAST k. s k \<noteq> [] \<and> (\<forall>i. i < k \<longrightarrow> s i = [])); s2 = inf_drop (k+1) s in (if (length (s k)=0) then [] else (if (length (s k) < (Suc i)) then s k # infT_get_prefix (s2,Suc i - length (s k)) else [take (Suc i) (s k)] ))) ) else (if ((length (s 0)) < (Suc i)) then (s 0) # infT_get_prefix( inf_drop 1 s, (Suc i) - (length (s 0))) else [take (Suc i) (s 0)] ) )" -- "taking the prefix of n data elements from an infinite untimed stream" -- "(defined over natural numbers)" primrec infU_get_prefix :: "(nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a list" where "infU_get_prefix s 0 = []" | "infU_get_prefix s (Suc i) = (infU_get_prefix s i) @ [s i]" -- "taking the prefix of n data elements from an infinite timed stream" -- "(defined over natural numbers enriched by Infinity)" definition infT_get_prefix_plus :: "'a istream \<Rightarrow> natInf \<Rightarrow> 'a stream" where "infT_get_prefix_plus s n \<equiv> case n of (Fin i) \<Rightarrow> FinT (infT_get_prefix(s, i)) | \<infinity> \<Rightarrow> InfT s" -- "taking the prefix of n data elements from an infinite untimed stream" -- "(defined over natural numbers enriched by Infinity)" definition infU_get_prefix_plus :: "(nat \<Rightarrow> 'a) \<Rightarrow> natInf \<Rightarrow> 'a stream" where "infU_get_prefix_plus s n \<equiv> case n of (Fin i) \<Rightarrow> FinU (infU_get_prefix s i) | \<infinity> \<Rightarrow> InfU s" -- "taking the prefix of n data elements from an infinite stream" -- "(defined over natural numbers enriched by Infinity)" definition take_plus :: "natInf \<Rightarrow> 'a list \<Rightarrow> 'a list" where "take_plus n s \<equiv> case n of (Fin i) \<Rightarrow> (take i s) | \<infinity> \<Rightarrow> s" -- "taking the prefix of n data elements from a (general) stream" -- "(defined over natural numbers enriched by Infinity)" definition get_prefix :: "'a stream \<Rightarrow> natInf \<Rightarrow> 'a stream" where "get_prefix s k \<equiv> case s of (FinT x) \<Rightarrow> FinT (fin_get_prefix_plus x k) | (FinU x) \<Rightarrow> FinU (take_plus k x) | (InfT x) \<Rightarrow> infT_get_prefix_plus x k | (InfU x) \<Rightarrow> infU_get_prefix_plus x k" -- "merging time intervals of two finite timed streams" primrec fin_merge_ti :: "'a fstream \<Rightarrow> 'a fstream \<Rightarrow> 'a fstream" where "fin_merge_ti [] y = y" | "fin_merge_ti (x#xs) y = ( case y of [] \<Rightarrow> (x#xs) | (z#zs) \<Rightarrow> (x@z) # (fin_merge_ti xs zs))" -- "merging time intervals of two infinite timed streams" definition inf_merge_ti :: "'a istream \<Rightarrow> 'a istream \<Rightarrow> 'a istream" where "inf_merge_ti x y \<equiv> \<lambda> i. (x i)@(y i)" -- "the last time interval of a finite timed stream" primrec fin_last_ti :: "('a list) list \<Rightarrow> nat \<Rightarrow> 'a list" where "fin_last_ti s 0 = hd s" | "fin_last_ti s (Suc i) = ( if s!(Suc i) \<noteq> [] then s!(Suc i) else fin_last_ti s i)" -- "the last nonempty time interval of a finite timed stream" -- "(can be applied to the streams which time intervals are empty from some moment)" primrec inf_last_ti :: "'a istream \<Rightarrow> nat \<Rightarrow> 'a list" where "inf_last_ti s 0 = s 0" | "inf_last_ti s (Suc i) = ( if s (Suc i) \<noteq> [] then s (Suc i) else inf_last_ti s i)" subsection {* Properties of operators *} lemma inf_last_ti_nonempty_k: assumes "inf_last_ti dt t \<noteq> []" shows "inf_last_ti dt (t + k) \<noteq> []" using assms by (induct k, auto) lemma inf_last_ti_nonempty: assumes "s t \<noteq> []" shows "inf_last_ti s (t + k) \<noteq> []" using assms by (induct k, auto, induct t, auto) lemma arith_sum_t2k: "t + 2 + k = (Suc t) + (Suc k)" by arith lemma inf_last_ti_Suc2: assumes "dt (Suc t) \<noteq> [] \<or> dt (Suc (Suc t)) \<noteq> []" shows "inf_last_ti dt (t + 2 + k) \<noteq> []" proof (cases "dt (Suc t) \<noteq> []") assume a1:"dt (Suc t) \<noteq> []" from a1 have sg2:"inf_last_ti dt ((Suc t) + (Suc k)) \<noteq> []" by (rule inf_last_ti_nonempty) from sg2 show ?thesis by (simp add: arith_sum_t2k) next assume a2:"\<not> dt (Suc t) \<noteq> []" from a2 and assms have sg1:"dt (Suc (Suc t)) \<noteq> []" by simp from sg1 have sg2:"inf_last_ti dt (Suc (Suc t) + k) \<noteq> []" by (rule inf_last_ti_nonempty) from sg2 show ?thesis by auto qed subsubsection {* Lemmas for concatenation operator *} lemma fin_length_append: "fin_length (x@y) = (fin_length x) + (fin_length y)" by (induct x, auto) lemma fin_append_Nil: "fin_inf_append [] z = z" by (simp add: fin_inf_append_def) lemma correct_fin_inf_append1: assumes "s1 = fin_inf_append [x] s" shows "s1 (Suc i) = s i" using assms by (simp add: fin_inf_append_def) lemma correct_fin_inf_append2: "fin_inf_append [x] s (Suc i) = s i" by (simp add: fin_inf_append_def) lemma fin_append_com_Nil1: "fin_inf_append [] (fin_inf_append y z) = fin_inf_append ([] @ y) z" by (simp add: fin_append_Nil) lemma fin_append_com_Nil2: "fin_inf_append x (fin_inf_append [] z) = fin_inf_append (x @ []) z" by (simp add: fin_append_Nil) lemma fin_append_com_i: "fin_inf_append x (fin_inf_append y z) i = fin_inf_append (x @ y) z i " proof (cases x) assume Nil:"x = []" thus ?thesis by (simp add: fin_append_com_Nil1) next fix a l assume Cons:"x = a # l" thus ?thesis proof (cases y) assume "y = []" thus ?thesis by (simp add: fin_append_com_Nil2) next fix aa la assume Cons2:"y = aa # la" show ?thesis apply (simp add: fin_inf_append_def, auto, simp add: list_nth_append0) by (simp add: nth_append) qed qed subsubsection {* Lemmas for operators $ts$ and $msg$ *} lemma ts_msg1: assumes "ts p" shows "msg 1 p" using assms by (simp add: ts_def msg_def) lemma ts_inf_tl: assumes "ts x" shows "ts (inf_tl x)" using assms by (simp add: ts_def inf_tl_def) lemma ts_length_hint1: assumes "ts x" shows "x i \<noteq> []" proof - from assms have sg1:"length (x i) = Suc 0" by (simp add: ts_def) thus ?thesis by auto qed lemma ts_length_hint2: assumes "ts x" shows "length (x i) = Suc (0::nat)" using assms by (simp add: ts_def) lemma ts_Least_0: assumes "ts x" shows "(LEAST i. (x i) \<noteq> [] ) = (0::nat)" proof - from assms have sg1:"x 0 \<noteq> []" by (rule ts_length_hint1) thus ?thesis apply (simp add: Least_def) by auto qed lemma inf_tl_Suc: "inf_tl x i = x (Suc i)" by (simp add: inf_tl_def) lemma ts_Least_Suc0: assumes "ts x" shows "(LEAST i. x (Suc i) \<noteq> []) = 0" proof - from assms have "x (Suc 0) \<noteq> []" by (simp add: ts_length_hint1) thus ?thesis by (simp add: Least_def, auto) qed lemma ts_inf_make_untimed_inf_tl: assumes "ts x" shows "inf_make_untimed (inf_tl x) i = inf_make_untimed x (Suc i)" using assms apply (simp add: inf_make_untimed_def) by (metis Suc_less_eq gr_implies_not0 ts_length_hint1 ts_length_hint2) lemma ts_inf_make_untimed1_inf_tl: assumes "ts x" shows "inf_make_untimed1 (inf_tl x) i = inf_make_untimed1 x (Suc i)" using assms by (metis inf_make_untimed_def ts_inf_make_untimed_inf_tl) lemma msg_nonempty1: assumes h1:"msg (Suc 0) a" and h2:"a t = aa # l" shows "l = []" proof - from h1 have "length (a t) \<le> Suc 0" by (simp add: msg_def) from h2 and this show ?thesis by auto qed lemma msg_nonempty2: assumes h1:"msg (Suc 0) a" and h2:"a t \<noteq> []" shows "length (a t) = (Suc 0)" proof - from h1 have sg1:"length (a t) \<le> Suc 0" by (simp add: msg_def) from h2 have sg2:"length (a t) \<noteq> 0" by auto from sg1 and sg2 show ?thesis by arith qed subsubsection {* Lemmas for $inf\_truncate$ *} lemma inf_truncate_nonempty: assumes "z i \<noteq> []" shows "inf_truncate z i \<noteq> []" proof (induct i) case 0 from assms show ?case by auto next case (Suc i) from assms show ?case by auto qed lemma concat_inf_truncate_nonempty: assumes "z i \<noteq> []" shows "concat (inf_truncate z i) \<noteq> []" using assms proof (induct i) case 0 thus ?case by auto next case (Suc i) thus ?case by auto qed lemma concat_inf_truncate_nonempty_a: assumes "z i = [a]" shows "concat (inf_truncate z i) \<noteq> []" using assms by (metis concat_inf_truncate_nonempty list.distinct(1)) lemma concat_inf_truncate_nonempty_el: assumes "z i \<noteq> []" shows "concat (inf_truncate z i) \<noteq> []" using assms by (metis concat_inf_truncate_nonempty) lemma inf_truncate_append: "(inf_truncate z i @ [z (Suc i)]) = inf_truncate z (Suc i)" using assms by (metis inf_truncate.simps(2)) subsubsection {* Lemmas for $fin\_make\_untimed$ *} lemma fin_make_untimed_append: assumes "fin_make_untimed x \<noteq> []" shows "fin_make_untimed (x @ y) \<noteq> []" using assms by (simp add: fin_make_untimed_def) lemma fin_make_untimed_inf_truncate_Nonempty: assumes "z k \<noteq> []" and "k \<le> i" shows "fin_make_untimed (inf_truncate z i) \<noteq> []" using assms apply (simp add: fin_make_untimed_def) proof (induct i) case 0 thus ?case by auto next case (Suc i) thus ?case proof cases assume "k \<le> i" from Suc and this show "\<exists>xs\<in>set (inf_truncate z (Suc i)). xs \<noteq> []" by auto next assume "\<not> k \<le> i" from Suc and this have "k = Suc i" by arith from Suc and this show "\<exists>xs\<in>set (inf_truncate z (Suc i)). xs \<noteq> []" by auto qed qed lemma last_fin_make_untimed_inf_truncate: assumes "z i = [a]" shows "last (fin_make_untimed (inf_truncate z i)) = a" using assms proof (induction i) case 0 thus ?case by (simp add: fin_make_untimed_def) next case (Suc i) thus ?case by (simp add: fin_make_untimed_def) qed lemma fin_make_untimed_append_empty: "fin_make_untimed (z @ [[]]) = fin_make_untimed z" by (simp add: fin_make_untimed_def) lemma fin_make_untimed_inf_truncate_append_a: "fin_make_untimed (inf_truncate z i @ [[a]]) ! (length (fin_make_untimed (inf_truncate z i @ [[a]])) - Suc 0) = a" by (simp add: fin_make_untimed_def) lemma fin_make_untimed_inf_truncate_Nonempty_all: assumes "z k \<noteq> []" shows "\<forall> i. k \<le> i \<longrightarrow> fin_make_untimed (inf_truncate z i) \<noteq> []" using assms by (simp add: fin_make_untimed_inf_truncate_Nonempty) lemma fin_make_untimed_inf_truncate_Nonempty_all0: assumes "z 0 \<noteq> []" shows "\<forall> i. fin_make_untimed (inf_truncate z i) \<noteq> []" using assms by (simp add: fin_make_untimed_inf_truncate_Nonempty) lemma fin_make_untimed_inf_truncate_Nonempty_all0a: assumes "z 0 = [a]" shows "\<forall> i. fin_make_untimed (inf_truncate z i) \<noteq> []" using assms by (simp add: fin_make_untimed_inf_truncate_Nonempty_all0) lemma fin_make_untimed_inf_truncate_Nonempty_all_app: assumes "z 0 = [a]" shows "\<forall> i. fin_make_untimed (inf_truncate z i @ [z (Suc i)]) \<noteq> []" proof fix i from assms have "fin_make_untimed (inf_truncate z i) \<noteq> []" by (simp add: fin_make_untimed_inf_truncate_Nonempty_all0a) from assms and this show "fin_make_untimed (inf_truncate z i @ [z (Suc i)]) \<noteq> []" by (simp add: fin_make_untimed_append) qed lemma fin_make_untimed_nth_length: assumes "z i = [a]" shows "fin_make_untimed (inf_truncate z i) ! (length (fin_make_untimed (inf_truncate z i)) - Suc 0) = a" proof - from assms have sg1:"last (fin_make_untimed (inf_truncate z i)) = a" by (simp add: last_fin_make_untimed_inf_truncate) from assms have sg2:"concat (inf_truncate z i) \<noteq> []" by (rule concat_inf_truncate_nonempty_a) from assms and sg1 and sg2 show ?thesis by (simp add: fin_make_untimed_def last_nth_length) qed subsubsection {* Lemmas for $inf\_disj$ and $inf\_disjS$ *} lemma inf_disj_index: assumes h1:"inf_disj n nS" and "nS k t \<noteq> []" and "k < n" shows "(SOME i. i < n \<and> nS i t \<noteq> []) = k" proof - from h1 have "\<forall> j. k < n \<and> j < n \<and> k \<noteq> j \<and> nS k t \<noteq> [] \<longrightarrow> nS j t = []" by (simp add: inf_disj_def, auto) from this and assms show ?thesis by auto qed lemma inf_disjS_index: assumes h1:"inf_disjS IdSet nS" and "k:IdSet" and "nS k t \<noteq> []" shows "(SOME i. (i:IdSet) \<and> nSend i t \<noteq> []) = k" proof - from h1 have "\<forall> j. k \<in> IdSet \<and> j \<in> IdSet \<and> nS k t \<noteq> [] \<longrightarrow> nS j t = []" by (simp add: inf_disjS_def, auto) from this and assms show ?thesis by auto qed end
/- Copyright (c) 2023 MarĆ­a InĆ©s de Frutos-FernĆ”ndez. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : MarĆ­a InĆ©s de Frutos-FernĆ”ndez -/ import tactic import data.real.basic /- # Ejercicios sobre nĆŗmeros reales Los siguientes ejercicios aparecen como pasos intermedios en algunos de los problemas de `limites.lean`. Intenta resolverlos utilizando las tĆ”cticas `library_search` y `linarith`. NOTA: adaptado de los cursos de formalización de Kevin Buzzard. -/ example (x : ā„) : |(-x)| = |x| := begin sorry end example (x y : ā„) : |x - y| = |y - x| := begin sorry end example (A B C : ā„•) : max A B ≤ C ↔ A ≤ C ∧ B ≤ C := begin sorry end example (x y : ā„) : |x| < y ↔ -y < x ∧ x < y := begin sorry end example (ε : ā„) (hε : 0 < ε) : 0 < ε / 2 := begin sorry end example (a b x y : ā„) (h1 : a < x) (h2 : b < y) : a + b < x + y := begin sorry end example (ε : ā„) (hε : 0 < ε) : 0 < ε / 3 := begin sorry end example (a b c d x y : ā„) (h1 : a + c < x) (h2 : b + d < y) : a + b + c + d < x + y := begin sorry, end
function varargout = aibcutpush(varargin) % VL_AIBCUTPUSH Quantize based on VL_AIB cut % Y = VL_AIBCUTPUSH(MAP, X) maps the data X to elements of the AIB % cut specified by MAP. % % The function is equivalent to Y = MAP(X). % % See also: VL_HELP(), VL_AIB(). [varargout{1:nargout}] = vl_aibcutpush(varargin{:});
lemma tendsto_rabs_zero_cancel: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
Require Import isla.isla. Require Import isla.aarch64.aarch64. Require Export isla.examples.pkvm_handler.a7414. Lemma a7414_spec `{!islaG Ī£} `{!threadG} pc: instr pc (Some a7414) -āˆ— instr_body pc (ldp_mapsto_spec pc "R0" "R1" "SP_EL2" 0 None). Proof. iStartProof. repeat liAStep; liShow. Unshelve. all: prepare_sidecond. all: bv_solve. Qed. Definition a7414_spec_inst `{!islaG Ī£} `{!threadG} pc := entails_to_simplify_hyp 0 (a7414_spec pc). Global Existing Instance a7414_spec_inst.
! ========================================================================= elemental function gsw_pt_from_entropy (sa, entropy) ! ========================================================================= ! ! Calculates potential temperature with reference pressure p_ref = 0 dbar ! and with entropy as an input variable. ! ! SA = Absolute Salinity [ g/kg ] ! entropy = specific entropy [ deg C ] ! ! pt = potential temperature [ deg C ] ! with reference sea pressure (p_ref) = 0 dbar. ! Note. The reference sea pressure of the output, pt, is zero dbar. !-------------------------------------------------------------------------- use gsw_mod_teos10_constants, only : gsw_cp0, gsw_sso, gsw_t0 use gsw_mod_toolbox, only : gsw_entropy_from_pt, gsw_gibbs_pt0_pt0 use gsw_mod_kinds implicit none real (r8), intent(in) :: sa, entropy real (r8) :: gsw_pt_from_entropy integer :: number_of_iterations real (r8) :: c, dentropy, dentropy_dt, ent_sa, part1, part2, pt, ptm real (r8) :: pt_old ! Find the initial value of pt part1 = 1.0_r8 - sa/gsw_sso part2 = 1.0_r8 - 0.05_r8*part1 ent_sa = (gsw_cp0/gsw_t0)*part1*(1.0_r8 - 1.01_r8*part1) c = (entropy - ent_sa)*(part2/gsw_cp0) pt = gsw_t0*(exp(c) - 1.0_r8) dentropy_dt = gsw_cp0/((gsw_t0 + pt)*part2) do number_of_iterations = 1, 2 pt_old = pt dentropy = gsw_entropy_from_pt(sa,pt_old) - entropy pt = pt_old - dentropy/dentropy_dt ptm = 0.5_r8*(pt + pt_old) dentropy_dt = -gsw_gibbs_pt0_pt0(sa,ptm) pt = pt_old - dentropy/dentropy_dt end do ! Maximum error of 2.2x10^-6 degrees C for one iteration. ! Maximum error is 1.4x10^-14 degrees C for two iterations ! (two iterations is the default, "for Number_of_iterations = 1:2"). gsw_pt_from_entropy = pt return end function !--------------------------------------------------------------------------
# LU Decomposition + This notebook is part of lecture 4 *Factorization into LU* in the OCW MIT course 18.06 [1] + Created by me, Dr Juan H Klopper + Head of Acute Care Surgery + Groote Schuur Hospital + University Cape Town + <a href="mailto:[email protected]">Email me with your thoughts, comments, suggestions and corrections</a> <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"></a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/InteractiveResource" property="dct:title" rel="dct:type">Linear Algebra OCW MIT18.06</span> <span xmlns:cc="http://creativecommons.org/ns#" property="cc:attributionName">IPython notebook [2] study notes by Dr Juan H Klopper</span> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>. + [1] <a href="http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm">OCW MIT 18.06</a> + [2] Fernando PĆ©rez, Brian E. Granger, IPython: A System for Interactive Scientific Computing, Computing in Science and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007, doi:10.1109/MCSE.2007.53. URL: http://ipython.org ```python from IPython.core.display import HTML, Image css_file = 'style.css' HTML(open(css_file, 'r').read()) ``` <link href='http://fonts.googleapis.com/css?family=Alegreya+Sans:100,300,400,500,700,800,900,100italic,300italic,400italic,500italic,700italic,800italic,900italic' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Arvo:400,700,400italic' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=PT+Mono' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Shadows+Into+Light' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Philosopher:400,700,400italic,700italic' rel='stylesheet' type='text/css'> <style> @font-face { font-family: "Computer Modern"; src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf'); } #notebook_panel { /* main background */ background: #ddd; color: #000000; } /* Formatting for header cells */ .text_cell_render h1 { font-family: 'Philosopher', sans-serif; font-weight: 400; font-size: 2.2em; line-height: 100%; color: rgb(0, 80, 120); margin-bottom: 0.1em; margin-top: 0.1em; display: block; } .text_cell_render h2 { font-family: 'Philosopher', serif; font-weight: 400; font-size: 1.9em; line-height: 100%; color: rgb(200,100,0); margin-bottom: 0.1em; margin-top: 0.1em; display: block; } .text_cell_render h3 { font-family: 'Philosopher', serif; margin-top:12px; margin-bottom: 3px; font-style: italic; color: rgb(94,127,192); } .text_cell_render h4 { font-family: 'Philosopher', serif; } .text_cell_render h5 { font-family: 'Alegreya Sans', sans-serif; font-weight: 300; font-size: 16pt; color: grey; font-style: italic; margin-bottom: .1em; margin-top: 0.1em; display: block; } .text_cell_render h6 { font-family: 'PT Mono', sans-serif; font-weight: 300; font-size: 10pt; color: grey; margin-bottom: 1px; margin-top: 1px; } .CodeMirror{ font-family: "PT Mono"; font-size: 100%; } </style> ```python import numpy as np from sympy import * import matplotlib.pyplot as plt import seaborn as sns from IPython.display import Image from warnings import filterwarnings init_printing(use_latex = 'mathjax') %matplotlib inline filterwarnings('ignore') ``` # LU decomposition of a matrix A * We will decompose the matrix A into and upper and lower triangular matrix, such that multiplying these will result back into A $$ A = LU $$ ## Turning the matrix of coefficients into <u>U</u>pper triangular form * Consider the following matrix of coefficients $$ \begin{bmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 6 & -1 & -1 \end{bmatrix} $$ * Successive elementary row operation follow * Which is nothing other than matrix multiplication of the elementary matrices * An elementary matrix is an identity matrix on which one elementary row operation was performed ```python A = Matrix([[1, -2, 1], [3, 2, -2], [6, -1, -1]]) A ``` $$\left[\begin{matrix}1 & -2 & 1\\3 & 2 & -2\\6 & -1 & -1\end{matrix}\right]$$ ```python eye(3) ``` $$\left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right]$$ * We have to get a -3 in the first **pivot** (the 1 in row 1, column 1) to get rid of the 3 in position row 2, column 1 (we call the resulting matrix E21, referring to the row 2, column 1) * Then we add the new row 1 to row two Row one of the identity matrix is then (-3,0,0) (but we leave it (1,0,0) in E21) and adding this to row 2 leaves (-3,1,0) ```python E21 = Matrix([[1, 0, 0], [-3, 1, 0], [0, 0, 1]]) E21 ``` $$\left[\begin{matrix}1 & 0 & 0\\-3 & 1 & 0\\0 & 0 & 1\end{matrix}\right]$$ ```python E21 * A # The resulting matrix after multiplication by E21 ``` $$\left[\begin{matrix}1 & -2 & 1\\0 & 8 & -5\\6 & -1 & -1\end{matrix}\right]$$ * We do the same to get rid of the 6 in row 3, column 1 * Multiplying row 1 (of the identity matrix) by -6 and adding this new row to row 3 (but again leaving row 1 as (1,0,0) in E31) ```python E31 = Matrix([[1, 0, 0], [0, 1, 0], [-6, 0, 1]]) E31 ``` $$\left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\-6 & 0 & 1\end{matrix}\right]$$ ```python E31 * E21 * A # This got rid of the leading 6 in row 3 ``` $$\left[\begin{matrix}1 & -2 & 1\\0 & 8 & -5\\0 & 11 & -7\end{matrix}\right]$$ * Now the 8 in row 2, column 2 is the **pivot** and we need to get rid of the 11 in row 3, column 2 * Unfortunately we have an 8 and an 11 to deal with * We will have to do two elementary row operations * -11 times row 2 of the identity matrix (0,-11,0) * Added to 8 times row 3 (0,0,8) &#8756; (0,-11,8) ```python E32 = Matrix([[1, 0 , 0], [0, 1, 0], [0, -11, 8]]) E32 ``` $$\left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & -11 & 8\end{matrix}\right]$$ ```python U = E32 * E31 * E21 * A U # We call is U for upper triangular ``` $$\left[\begin{matrix}1 & -2 & 1\\0 & 8 & -5\\0 & 0 & -1\end{matrix}\right]$$ * The matrix is now in upper triangular form $$ \left( { E }_{ 32 } \right) \left( { E }_{ 31 } \right) \left( { E }_{ 21 } \right) A=U $$ ## Calculating the <u>L</u>ower triangular from * Note, to reverse this process we would have to do the following: $$ { \left( { E }_{ 21 } \right) }^{ -1 }{ \left( { E }_{ 31 } \right) }^{ -1 }{ \left( { E }_{ 32 } \right) }^{ -1 }\left( { E }_{ 32 } \right) \left( { E }_{ 31 } \right) \left( { E }_{ 21 } \right) A=A $$ * The inverse of a matrix can be calculated using the sympy method .*inv*() * We can check this with a Boolean request ```python E21.inv() * E31.inv() * E32.inv() * E32 * E31 * E21 * A == A # The Boolean double equal signs asks: Is the # left-hand side equal to the right-hand side? ``` True * Indeed, we will be back with the identity matrix just multiplying the inverse elementary matrices and the elementary matrices ```python E21.inv() * E31.inv() * E32.inv() * E32 * E31 * E21 ``` $$\left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right]$$ * Multiplying the inverse elementary matrices on the left, must also have it happen on the right $$ { \left( { E }_{ 21 } \right) }^{ -1 }{ \left( { E }_{ 31 } \right) }^{ -1 }{ \left( { E }_{ 32 } \right) }^{ -1 }\left( { E }_{ 32 } \right) \left( { E }_{ 31 } \right) \left( { E }_{ 21 } \right) A={ \left( { E }_{ 21 } \right) }^{ -1 }{ \left( { E }_{ 31 } \right) }^{ -1 }{ \left( { E }_{ 32 } \right) }^{ -1 }U $$ * The multiplication of these inverse elementary matrices is <u>l</u>ower triangular * We can call in L $$ A=LU $$ ```python L = E21.inv() * E31.inv() * E32.inv() L ``` $$\left[\begin{matrix}1 & 0 & 0\\3 & 1 & 0\\6 & \frac{11}{8} & \frac{1}{8}\end{matrix}\right]$$ ```python A == L * U # Checking this with a Boolean question ``` True ```python A, L * U # They are identical ``` $$\left ( \left[\begin{matrix}1 & -2 & 1\\3 & 2 & -2\\6 & -1 & -1\end{matrix}\right], \quad \left[\begin{matrix}1 & -2 & 1\\3 & 2 & -2\\6 & -1 & -1\end{matrix}\right]\right )$$ ## Doing this in one go using sympy ```python L, U, _ = A.LUdecomposition() ``` ```python L ``` $$\left[\begin{matrix}1 & 0 & 0\\3 & 1 & 0\\6 & \frac{11}{8} & 1\end{matrix}\right]$$ ```python U # Note the difference from the U above ``` $$\left[\begin{matrix}1 & -2 & 1\\0 & 8 & -5\\0 & 0 & - \frac{1}{8}\end{matrix}\right]$$ ```python L * U # Back to A ``` $$\left[\begin{matrix}1 & -2 & 1\\3 & 2 & -2\\6 & -1 & -1\end{matrix}\right]$$ ## What's special about L? * This only works when no row interchange happens * It also actually only works when doing the conventional subtracting the scalar multiplication of a row from another row, leaving the positive scalar as opposed to the negatives I use, allowing me to add the two rows (as opposed to subtraction) * Note the 3 (in row 2, column 1) and the 6 (in row 3, column 1) * They are the row multiplications we have to do for E21 and E31 * The &#185;&#185; / &#8328; is what we did for E32 (we just did it in two steps so as not to use fractions) ## Row exchanges * We have to allow row exchanges if the pivot contains a zero * For an example, from a 3&#215;3 identity matrix we could have: ```python eye(3) ``` $$\left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right]$$ * Exchanging rows one and two would be: ```python Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) ``` $$\left[\begin{matrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{matrix}\right]$$ ```python A, Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) * A # Showing row exchange ``` $$\left ( \left[\begin{matrix}1 & -2 & 1\\3 & 2 & -2\\6 & -1 & -1\end{matrix}\right], \quad \left[\begin{matrix}3 & 2 & -2\\1 & -2 & 1\\6 & -1 & -1\end{matrix}\right]\right )$$ * How many permutations of row exchanges are there? $$ {n!} $$ * In a 3&#215;3 matrix there are 3! = 6 permutations * Multiplying any of them will result in one of the 6 * They are inverses of each other * The inverse are the transposes * For 4&#215;4 there are 4! = 24 ## Example problems ### Example problem 01 * Perform LU decomposition of: $$ \begin{bmatrix} 1 & 0 & 1 \\ a & a & a \\ b & b & a \end{bmatrix} $$ * For which values of *a* and *b* does L and U exist? #### Solution ```python a, b = symbols('a b') ``` ```python A = Matrix([[1, 0, 1], [a, a, a], [b, b, a]]) A ``` $$\left[\begin{matrix}1 & 0 & 1\\a & a & a\\b & b & a\end{matrix}\right]$$ ```python L,U, _ = A.LUdecomposition() ``` ```python L, U ``` $$\left ( \left[\begin{matrix}1 & 0 & 0\\a & 1 & 0\\b & \frac{b}{a} & 1\end{matrix}\right], \quad \left[\begin{matrix}1 & 0 & 1\\0 & a & 0\\0 & 0 & a - b\end{matrix}\right]\right )$$ * Checking ```python L * U == A ``` True * For existence: * *a* &#8800; 0 * It's easy to see why, since if a equals zero, we will have a zero in a pivot position and we will have to do row exchange, which is not allowed for LU-decomposition ## Hints and tips ```python E21, E21.inv() # To take the inverse of an elementary matrix, simply change the sign of the off-diagonal elements and # multiply each element by 1 over the determinant # The determinant is easy to do for these *n* = 3 square matrices, since the top row is (1,0,0) ``` $$\left ( \left[\begin{matrix}1 & 0 & 0\\-3 & 1 & 0\\0 & 0 & 1\end{matrix}\right], \quad \left[\begin{matrix}1 & 0 & 0\\3 & 1 & 0\\0 & 0 & 1\end{matrix}\right]\right )$$ ```python E31, E31.inv() ``` $$\left ( \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\-6 & 0 & 1\end{matrix}\right], \quad \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\6 & 0 & 1\end{matrix}\right]\right )$$ ```python E32, E32.inv() ``` $$\left ( \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & -11 & 8\end{matrix}\right], \quad \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & \frac{11}{8} & \frac{1}{8}\end{matrix}\right]\right )$$ * By keeping track of the elementary matrices it is easy to get L and U * It's easy to get the inverses of L and U * This means it is easy to calculate **x** $$ Ax=LUx=b\\ Ux={ L }^{ -1 }b\\ x={ U }^{ -1 }{ L }^{ -1 }b $$ ```python ```
[GOAL] ⊢ StableUnderComposition @Finite [PROOFSTEP] introv R hf hg [GOAL] R S T : Type u_1 instāœĀ² : CommRing R instāœĀ¹ : CommRing S instāœ : CommRing T f : R →+* S g : S →+* T hf : Finite f hg : Finite g ⊢ Finite (comp g f) [PROOFSTEP] exact hg.comp hf [GOAL] ⊢ RespectsIso @Finite [PROOFSTEP] apply finite_stableUnderComposition.respectsIso [GOAL] ⊢ āˆ€ {R S : Type u_1} [inst : CommRing R] [inst_1 : CommRing S] (e : R ā‰ƒ+* S), Finite (RingEquiv.toRingHom e) [PROOFSTEP] intros [GOAL] Rāœ Sāœ : Type u_1 instāœĀ¹ : CommRing Rāœ instāœ : CommRing Sāœ eāœ : Rāœ ā‰ƒ+* Sāœ ⊢ Finite (RingEquiv.toRingHom eāœ) [PROOFSTEP] exact Finite.of_surjective _ (RingEquiv.toEquiv _).surjective [GOAL] ⊢ StableUnderBaseChange @Finite [PROOFSTEP] refine StableUnderBaseChange.mk _ finite_respectsIso ?_ [GOAL] ⊢ āˆ€ ⦃R S T : Type u_1⦄ [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : CommRing T] [inst_3 : Algebra R S] [inst_4 : Algebra R T], Finite (algebraMap R T) → Finite includeLeftRingHom [PROOFSTEP] classical introv h replace h : Module.Finite R T := by rw [RingHom.Finite] at h ; convert h; ext; intros; simp_rw [Algebra.smul_def]; rfl suffices Module.Finite S (S āŠ—[R] T) by rw [RingHom.Finite]; convert this; congr; ext; intros; simp_rw [Algebra.smul_def]; rfl exact inferInstance [GOAL] ⊢ āˆ€ ⦃R S T : Type u_1⦄ [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : CommRing T] [inst_3 : Algebra R S] [inst_4 : Algebra R T], Finite (algebraMap R T) → Finite includeLeftRingHom [PROOFSTEP] introv h [GOAL] R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Finite (algebraMap R T) ⊢ Finite includeLeftRingHom [PROOFSTEP] replace h : Module.Finite R T := by rw [RingHom.Finite] at h ; convert h; ext; intros; simp_rw [Algebra.smul_def]; rfl [GOAL] R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Finite (algebraMap R T) ⊢ Module.Finite R T [PROOFSTEP] rw [RingHom.Finite] at h [GOAL] R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T ⊢ Module.Finite R T [PROOFSTEP] convert h [GOAL] case h.e'_5.h.e'_5 R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T ⊢ instāœ = toAlgebra (algebraMap R T) [PROOFSTEP] ext [GOAL] case h.e'_5.h.e'_5.h R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T rāœ : R xāœ : T ⊢ (let_fun I := instāœ; rāœ • xāœ) = rāœ • xāœ [PROOFSTEP] intros [GOAL] case h.e'_5.h.e'_5.h R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T rāœ : R xāœ : T ⊢ (let_fun I := instāœ; rāœ • xāœ) = rāœ • xāœ [PROOFSTEP] simp_rw [Algebra.smul_def] [GOAL] case h.e'_5.h.e'_5.h R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T rāœ : R xāœ : T ⊢ ↑(algebraMap R T) rāœ * xāœ = rāœ • xāœ [PROOFSTEP] rfl [GOAL] R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T ⊢ Finite includeLeftRingHom [PROOFSTEP] suffices Module.Finite S (S āŠ—[R] T) by rw [RingHom.Finite]; convert this; congr; ext; intros; simp_rw [Algebra.smul_def]; rfl [GOAL] R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T this : Module.Finite S (S āŠ—[R] T) ⊢ Finite includeLeftRingHom [PROOFSTEP] rw [RingHom.Finite] [GOAL] R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T this : Module.Finite S (S āŠ—[R] T) ⊢ Module.Finite S (S āŠ—[R] T) [PROOFSTEP] convert this [GOAL] case h.e'_5.h R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T this : Module.Finite S (S āŠ—[R] T) e_4āœ : NonUnitalNonAssocSemiring.toAddCommMonoid = instAddCommMonoidTensorProductToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToModuleToModule ⊢ Algebra.toModule = leftModule [PROOFSTEP] congr [GOAL] case h.e'_5.h.h.e_5.h R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T this : Module.Finite S (S āŠ—[R] T) e_4āœ : NonUnitalNonAssocSemiring.toAddCommMonoid = instAddCommMonoidTensorProductToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToModuleToModule ⊢ toAlgebra includeLeftRingHom = leftAlgebra [PROOFSTEP] ext [GOAL] case h.e'_5.h.h.e_5.h.h R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T this : Module.Finite S (S āŠ—[R] T) e_4āœ : NonUnitalNonAssocSemiring.toAddCommMonoid = instAddCommMonoidTensorProductToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToModuleToModule rāœ : S xāœ : S āŠ—[R] T ⊢ (let_fun I := toAlgebra includeLeftRingHom; rāœ • xāœ) = rāœ • xāœ [PROOFSTEP] intros [GOAL] case h.e'_5.h.h.e_5.h.h R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T this : Module.Finite S (S āŠ—[R] T) e_4āœ : NonUnitalNonAssocSemiring.toAddCommMonoid = instAddCommMonoidTensorProductToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToModuleToModule rāœ : S xāœ : S āŠ—[R] T ⊢ (let_fun I := toAlgebra includeLeftRingHom; rāœ • xāœ) = rāœ • xāœ [PROOFSTEP] simp_rw [Algebra.smul_def] [GOAL] case h.e'_5.h.h.e_5.h.h R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T this : Module.Finite S (S āŠ—[R] T) e_4āœ : NonUnitalNonAssocSemiring.toAddCommMonoid = instAddCommMonoidTensorProductToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToModuleToModule rāœ : S xāœ : S āŠ—[R] T ⊢ rāœ • xāœ = ↑(algebraMap S (S āŠ—[R] T)) rāœ * xāœ [PROOFSTEP] rfl [GOAL] R S T : Type u_1 instāœā“ : CommRing R instāœĀ³ : CommRing S instāœĀ² : CommRing T instāœĀ¹ : Algebra R S instāœ : Algebra R T h : Module.Finite R T ⊢ Module.Finite S (S āŠ—[R] T) [PROOFSTEP] exact inferInstance
Require Import Bool. (* Please ignore: negb is just another name for the not function for booleans, more on that later. *) Definition not := negb. Theorem deMorgen: forall x y:bool, not (x || y) = (not x) && (not y). Proof. Abort. Theorem deMorgen_answer: forall x y:bool, not (x || y) = (not x) && (not y). Proof. intros. (* We can start by doing case analysis on x into its two cases. Almost like a truth table for computer scientists or A very lame induction for mathematicians. *) Print bool. (* We can see that a bool is either true of false *) case x. (* Now we have two cases to prove, lets focus on our first goal *) - (* Seems like some of this equation is simply solvable. simpl can partially apply functions, for you have only supplied limited arguments. *) simpl. (* false = false is true by reflexivity *) reflexivity. (* Coq helps us remember all cases. The proof cannot complete, if we haven't proved it for all cases. *) - (* seems like this can also be simplified *) simpl. (* not y = not y, no matter what y is *) reflexivity. Qed. (* Qed = Proven *)
module Program import CommonTestingStuff export beforeString : String beforeString = "before coop" s150 : PrintString m => CanSleep m => (offset : Time) => m String s150 = do printTime offset "s150 proc, first" for 5 $ do printTime offset "s150 proc, before 1000" sleepFor 1.seconds printTime offset "s150 proc, before 2000" sleepFor 2.seconds "long" <$ printTime offset "s150 proc, last" export program : PrintString m => CanSleep m => Alternative m => m Unit program = do printString "\n------\n" do offset <- currentTime printTime offset "start" res <- empty <|> s150 printTime offset "top: \{res}" printTime offset "end" printString "\n------\n" do offset <- currentTime printTime offset "start" res <- s150 <|> empty printTime offset "top: \{show res}" printTime offset "end" printString "\n------"
generic2arg = Dict{Symbol,Any}( # :/ => (:(1./x2),:(-x1./abs2(x2))), # (*,N) (V,V) (M,M) # :\ => (:(-x2./abs2(x1)),:(1./x1)), # (N,*) (V,V) (M,M) (M,V) (V,M) ) # TODO: # eval # scale # generic_scale!: Not exported # scale! # cross # triu # tril # triu! # tril! # diff # gradient # diag # generic_vecnormMinusInf: Not exported # generic_vecnormInf: Not exported # generic_vecnorm1: Not exported # norm_sqr: Not exported # generic_vecnorm2: Not exported # generic_vecnormp: Not exported # vecnormMinusInf: Not exported # vecnormInf: Not exported # vecnorm1: Not exported # vecnorm2: Not exported # vecnormp: Not exported # vecnorm # norm # norm1: Not exported # norm2: Not exported # normInf: Not exported # vecdot # dot # rank # trace # inv # \ # / # cond # condskeel # issym # ishermitian # istriu # istril # isdiag # linreg # peakflops # axpy!: Not exported # reflector!: Not exported # reflectorApply!: Not exported # det # logdet # logabsdet # isapprox
[STATEMENT] lemma sinh_real_neg_iff [simp]: "sinh (x :: real) < 0 \<longleftrightarrow> x < 0" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (sinh x < 0) = (x < 0) [PROOF STEP] by (simp add: sinh_def)
If $X$ is a bounded sequence, then for every $K > 0$, if $\|X_n\| \leq K$ for all $n$, then $Q$.
Formal statement is: lemma simply_connected_empty [iff]: "simply_connected {}" Informal statement is: The empty set is simply connected.
module _ (A : Set) where open import Common.Prelude open import Common.Reflection macro foo : Tactic foo _ = returnTC _ bar : ⊤ bar = foo
# 16 PDEs: Waves (See *Computational Physics* Ch 21 and *Computational Modeling* Ch 6.5.) ## Background: waves on a string Assume a 1D string of length $L$ with mass density per unit length $\rho$ along the $x$ direction. It is held under constant tension $T$ (force per unit length). Ignore frictional forces and the tension is so high that we can ignore sagging due to gravity. ### 1D wave equation The string is displaced in the $y$ direction from its rest position, i.e., the displacement $y(x, t)$ is a function of space $x$ and time $t$. For small relative displacements $y(x, t)/L \ll 1$ and therefore small slopes $\partial y/\partial x$ we can describe $y(x, t)$ with a *linear* equation of motion: Newton's second law applied to short elements of the string with length $\Delta x$ and mass $\Delta m = \rho \Delta x$: the left hand side contains the *restoring force* that opposes the displacement, the right hand side is the acceleration of the string element: \begin{align} \sum F_{y}(x) &= \Delta m\, a(x, t)\\ T \sin\theta(x+\Delta x) - T \sin\theta(x) &= \rho \Delta x \frac{\partial^2 y(x, t)}{\partial t^2} \end{align} The angle $\theta$ measures by how much the string is bent away from the resting configuration. Because we assume small relative displacements, the angles are small ($\theta \ll 1$) and we can make the small angle approximation $$ \sin\theta \approx \tan\theta = \frac{\partial y}{\partial x} $$ and hence \begin{align} T \left.\frac{\partial y}{\partial x}\right|_{x+\Delta x} - T \left.\frac{\partial y}{\partial x}\right|_{x} &= \rho \Delta x \frac{\partial^2 y(x, t)}{\partial t^2}\\ \frac{T \left.\frac{\partial y}{\partial x}\right|_{x+\Delta x} - T \left.\frac{\partial y}{\partial x}\right|_{x}}{\Delta x} &= \rho \frac{\partial^2 y}{\partial t^2} \end{align} or in the limit $\Delta x \rightarrow 0$ a linear hyperbolic PDE results: \begin{gather} \frac{\partial^2 y(x, t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y(x, t)}{\partial t^2}, \quad c = \sqrt{\frac{T}{\rho}} \end{gather} where $c$ has the dimension of a velocity. This is the (linear) **wave equation**. ### General solution: waves General solutions are propagating waves: If $f(x)$ is a solution at $t=0$ then $$ y_{\mp}(x, t) = f(x \mp ct) $$ are also solutions at later $t > 0$. Because of linearity, any linear combination is also a solution, so the most general solution contains both right and left propagating waves $$ y(x, t) = A f(x - ct) + B g(x + ct) $$ (If $f$ and/or $g$ are present depends on the initial conditions.) In three dimensions the wave equation is $$ \boldsymbol{\nabla}^2 y(\mathbf{x}, t) - \frac{1}{c^2} \frac{\partial^2 y(\mathbf{x}, t)}{\partial t^2} = 0\ $$ ### Boundary and initial conditions * The boundary conditions could be that the ends are fixed $$y(0, t) = y(L, t) = 0$$ * The *initial condition* is a shape for the string, e.g., a Gaussian at the center $$ y(x, t=0) = g(x) = y_0 \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x - x_0)^2}{2\sigma^2}\right] $$ at time 0. * Because the wave equation is *second order in time* we need a second initial condition, for instance, the string is released from rest: $$ \frac{\partial y(x, t=0)}{\partial t} = 0 $$ (The derivative, i.e., the initial displacement velocity is provided.) ### Analytical solution Solve (as always) with *separation of variables*. $$ y(x, t) = X(x) T(t) $$ and this yields the general solution (with boundary conditions of fixed string ends and initial condition of zero velocity) as a superposition of normal modes $$ y(x, t) = \sum_{n=0}^{+\infty} B_n \sin k_n x\, \cos\omega_n t, \quad \omega_n = ck_n,\ k_n = n \frac{2\pi}{L} = n k_0. $$ (The angular frequency $\omega$ and the wave vector $k$ are determined from the boundary conditions.) The coefficients $B_n$ are obtained from the initial shape: $$ y(x, t=0) = \sum_{n=0}^{+\infty} B_n \sin n k_0 x = g(x) $$ In principle one can use the fact that $\int_0^L dx \sin m k_0 x \, \sin n k_0 x = \pi \delta_{mn}$ (orthogonality) to calculate the coefficients: \begin{align} \int_0^L dx \sin m k_0 x \sum_{n=0}^{+\infty} B_n \sin n k_0 x &= \int_0^L dx \sin(m k_0 x) \, g(x)\\ \pi \sum_{n=0}^{+\infty} B_n \delta_{mn} &= \dots \\ B_m &= \pi^{-1} \dots \end{align} (but the analytical solution is ugly and I cannot be bothered to put it down here.) ## Numerical solution 1. discretize wave equation 2. time stepping: leap frog algorithm (iterate) Use the central difference approximation for the second order derivatives: \begin{align} \frac{\partial^2 y}{\partial t^2} &\approx \frac{y(x, t+\Delta t) + y(x, t-\Delta t) - 2y(x, t)}{\Delta t ^2} = \frac{y_{i, j+1} + y_{i, j-1} - 2y_{i,j}}{\Delta t^2}\\ \frac{\partial^2 y}{\partial x^2} &\approx \frac{y(x+\Delta x, t) + y(x-\Delta x, t) - 2y(x, t)}{\Delta x ^2} = \frac{y_{i+1, j} + y_{i-1, j} - 2y_{i,j}}{\Delta x^2} \end{align} and substitute into the wave equation to yield the *discretized* wave equation: $$ \frac{y_{i+1, j} + y_{i-1, j} - 2y_{i,j}}{\Delta x^2} = \frac{1}{c^2} \frac{y_{i, j+1} + y_{i, j-1} - 2y_{i,j}}{\Delta t^2} $$ Re-arrange so that the future terms $j+1$ can be calculated from the present $j$ and past $j-1$ terms: $$ y_{i,j+1} = 2(1 - \beta^2)y_{i,j} - y_{i, j-1} + \beta^2 (y_{i+1,j} + y_{i-1,j}), \quad \beta := \frac{c}{\Delta x/\Delta t} $$ This is the time stepping algorithm for the wave equation. ## Numerical implementation ```python # if you have plotting problems, try # %matplotlib inline %matplotlib notebook import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D plt.style.use('ggplot') ``` ### Student version ```python L = 0.5 # m Nx = 50 Nt = 100 Dx = L/Nx Dt = 1e-4 # s rho = 1.5e-2 # kg/m tension = 150 # N c = np.sqrt(tension/rho) # TODO: calculate beta beta = c*Dt/Dx beta2 = beta**2 print("c = {0} m/s".format(c)) print("Dx = {0} m, Dt = {1} s, Dx/Dt = {2} m/s".format(Dx, Dt, Dx/Dt)) print("beta = {}".format(beta)) X = np.linspace(0, L, Nx+1) # need N+1! def gaussian(x, y0=0.05, x0=L/2, sigma=0.1*L): return y0/np.sqrt(2*np.pi*sigma) * np.exp(-(x-x0)**2/(2*sigma**2)) # displacements at j-1, j, j+1 y0 = np.zeros_like(X) y1 = np.zeros_like(y0) y2 = np.zeros_like(y0) # save array y_t = np.zeros((Nt+1, Nx+1)) # boundary conditions y0[0] = y0[-1] = y1[0] = y1[-1] = 0 y2[:] = y0 # initial conditions: velocity 0, i.e. no difference between y0 and y1 y0[1:-1] = y1[1:-1] = gaussian(X)[1:-1] # save initial t_index = 0 y_t[t_index, :] = y0 t_index += 1 y_t[t_index, :] = y1 for jt in range(2, Nt): y2[1:-1] = 2*(1-beta2)*y1[1:-1] - y0[1:-1] + beta2*(y1[2:] + y1[:-2]) y0[:], y1[:] = y1, y2 t_index += 1 y_t[t_index, :] = y2 print("Iteration {0:5d}".format(jt), end="\r") else: print("Completed {0:5d} iterations: t={1} s".format(jt, jt*Dt)) ``` c = 100.0 m/s Dx = 0.01 m, Dt = 0.0001 s, Dx/Dt = 100.0 m/s beta = 1.0 Completed 99 iterations: t=0.0099 s ### Fancy version Package as a function and can use `step` to only save every `step` time steps. ```python def wave(L=0.5, Nx=50, Dt=1e-4, Nt=100, step=1, rho=1.5e-2, tension=150.): Dx = L/Nx #rho = 1.5e-2 # kg/m #tension = 150 # N c = np.sqrt(tension/rho) beta = c*Dt/Dx beta2 = beta**2 print("c = {0} m/s".format(c)) print("Dx = {0} m, Dt = {1} s, Dx/Dt = {2} m/s".format(Dx, Dt, Dx/Dt)) print("beta = {}".format(beta)) X = np.linspace(0, L, Nx+1) # need N+1! def gaussian(x, y0=0.05, x0=L/2, sigma=0.1*L): return y0/np.sqrt(2*np.pi*sigma) * np.exp(-(x-x0)**2/(2*sigma**2)) # displacements at j-1, j, j+1 y0 = np.zeros_like(X) y1 = np.zeros_like(y0) y2 = np.zeros_like(y0) # save array y_t = np.zeros((int(np.ceil(Nt/step)) + 1, Nx+1)) # boundary conditions y0[0] = y0[-1] = y1[0] = y1[-1] = 0 y2[:] = y0 # initial conditions: velocity 0, i.e. no difference between y0 and y1 y0[1:-1] = y1[1:-1] = gaussian(X)[1:-1] # save initial t_index = 0 y_t[t_index, :] = y0 if step == 1: t_index += 1 y_t[t_index, :] = y1 for jt in range(2, Nt): y2[1:-1] = 2*(1-beta2)*y1[1:-1] - y0[1:-1] + beta2*(y1[2:] + y1[:-2]) y0[:], y1[:] = y1, y2 if jt % step == 0 or jt == Nt-1: t_index += 1 y_t[t_index, :] = y2 print("Iteration {0:5d}".format(jt), end="\r") else: print("Completed {0:5d} iterations: t={1} s".format(jt, jt*Dt)) return y_t, X, Dx, Dt, step ``` ```python y_t, X, Dx, Dt, step = wave() ``` c = 100.0 m/s Dx = 0.01 m, Dt = 0.0001 s, Dx/Dt = 100.0 m/s beta = 1.0 Completed 99 iterations: t=0.0099 s ### 1D plot Plot the output in the save array `y_t`. Vary the time steps that you look at with `y_t[start:end]`. We indicate time by color changing. ```python ax = plt.subplot(111) ax.set_prop_cycle("color", [plt.cm.viridis(i) for i in np.linspace(0, 1, len(y_t))]) ax.plot(X, y_t[:40].T, alpha=0.5); ``` <IPython.core.display.Javascript object> ### 1D Animation For 1D animation to work in a Jupyter notebook, use ```python %matplotlib notebook ``` If no animations are visible, restart kernel and execute the `%matplotlib notebook` cell as the very first one in the notebook. We use `matplotlib.animation` to look at movies of our solution: ```python import matplotlib.animation as animation ``` Generate one full period: ```python y_t, X, Dx, Dt, step = wave(Nt=100) ``` c = 100.0 m/s Dx = 0.01 m, Dt = 0.0001 s, Dx/Dt = 100.0 m/s beta = 1.0 Completed 99 iterations: t=0.0099 s The `update_wave()` function simply re-draws our image for every `frame`. ```python y_limits = 1.05*y_t.min(), 1.05*y_t.max() fig1 = plt.figure(figsize=(5,5)) ax = fig1.add_subplot(111) ax.set_aspect(1) def update_wave(frame, data): global ax, Dt, y_limits ax.clear() ax.set_xlabel("x (m)") ax.set_ylabel("y (m)") ax.plot(X, data[frame]) ax.set_ylim(y_limits) ax.text(0.1, 0.9, "t = {0:3.1f} ms".format(frame*Dt*1e3), transform=ax.transAxes) wave_anim = animation.FuncAnimation(fig1, update_wave, frames=len(y_t), fargs=(y_t,), interval=30, blit=True, repeat_delay=100) ``` <IPython.core.display.Javascript object> If you have ffmpeg installed then you can export to a MP4 movie file: ```python wave_anim.save("string.mp4", fps=30, dpi=300) ``` The whole video can be incoroporated into an html page (uses the HTML5 `<video>` tag). ```python with open("string.html", "w") as html: html.write(wave_anim.to_html5_video()) ``` ```python ``` ### 3D plot (Uses functions from previous lessons.) ```python def plot_y(y_t, Dx, Dt, step=1): X, Y = np.meshgrid(range(y_t.shape[0]), range(y_t.shape[1])) Z = y_t.T[Y, X] fig = plt.figure() ax = fig.add_subplot(111, projection="3d") ax.plot_wireframe(Y*Dx, X*Dt*step, Z) ax.set_ylabel(r"time $t$ (s)") ax.set_xlabel(r"position $x$ (m)") ax.set_zlabel(r"displacement $y$ (m)") fig.tight_layout() return ax def plot_surf(y_t, Dt, Dx, step=1, filename=None, offset=-1, zlabel=r'displacement', elevation=40, azimuth=20, cmap=plt.cm.coolwarm): """Plot y_t as a 3D plot with contour plot underneath. Arguments --------- y_t : 2D array displacement y(t, x) filename : string or None, optional (default: None) If `None` then show the figure and return the axes object. If a string is given (like "contour.png") it will only plot to the filename and close the figure but return the filename. offset : float, optional (default: 20) position the 2D contour plot by offset along the Z direction under the minimum Z value zlabel : string, optional label for the Z axis and color scale bar elevation : float, optional choose elevation for initial viewpoint azimuth : float, optional chooze azimuth angle for initial viewpoint """ t = np.arange(y_t.shape[0]) x = np.arange(y_t.shape[1]) T, X = np.meshgrid(t, x) Y = y_t.T[X, T] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(X*Dx, T*Dt*step, Y, cmap=cmap, rstride=1, cstride=1, alpha=1) cset = ax.contourf(X*Dx, T*Dt*step, Y, 20, zdir='z', offset=offset+Y.min(), cmap=cmap) ax.set_xlabel('x') ax.set_ylabel('t') ax.set_zlabel(zlabel) ax.set_zlim(offset + Y.min(), Y.max()) ax.view_init(elev=elevation, azim=azimuth) cb = fig.colorbar(surf, shrink=0.5, aspect=5) cb.set_label(zlabel) if filename: fig.savefig(filename) plt.close(fig) return filename else: return ax ``` ```python plot_y(y_t, Dx, Dt) ``` <IPython.core.display.Javascript object> <matplotlib.axes._subplots.Axes3DSubplot at 0x115b5e470> ```python plot_surf(y_t, Dt, Dx, offset=-0.04, cmap=plt.cm.coolwarm) ``` <IPython.core.display.Javascript object> <matplotlib.axes._subplots.Axes3DSubplot at 0x116361c88> ## von Neumann stability analysis: Courant condition Assume that the solutions of the discretized equation can be written as normal modes $$ y_{m,j} = \xi(k)^j e^{ikm\Delta x}, \quad t=j\Delta t,\ x=m\Delta x $$ The time stepping algorith is stable if $$ |\xi(k)| < 1 $$ Insert normal modes into the discretized equation $$ y_{i,j+1} = 2(1 - \beta^2)y_{i,j} - y_{i, j-1} + \beta^2 (y_{i+1,j} + y_{i-1,j}), \quad \beta := \frac{c}{\Delta x/\Delta t} $$ and simplify (use $1-\cos x = 2\sin^2\frac{x}{2}$): $$ \xi^2 - 2(1-2\beta^2 s^2)\xi + 1 = 0, \quad s=\sin(k\Delta x/2) $$ The characteristic equation has roots $$ \xi_{\pm} = 1 - 2\beta^2 s^2 \pm \sqrt{(1-2\beta^2 s^2)^2 - 1}. $$ It has one root for $$ \left|1-2\beta^2 s^2\right| = 1, $$ i.e., for $$ \beta s = 1 $$ We have two real roots for $$ \left|1-2\beta^2 s^2\right| < 1 \\ \beta s > 1 $$ but one of the roots is always $|\xi| > 1$ and hence these solutions will diverge and not be stable. For $$ \left|1-2\beta^2 s^2\right| ≄ 1 \\ \beta s ≤ 1 $$ the roots will be *complex conjugates of each other* $$ \xi_\pm = 1 - 2\beta^2s^2 \pm i\sqrt{1-(1-2\beta^2s^2)^2} $$ and the *magnitude* $$ |\xi_{\pm}|^2 = (1 - 2\beta^2s^2)^2 - (1-(1-2\beta^2s^2)^2) = 1 $$ is unity: Thus the solutions will not grow and will be *stable* for $$ \beta s ≤ 1\\ \frac{c}{\frac{\Delta x}{\Delta t}} \sin\frac{k \Delta x}{2} ≤ 1 $$ Assuming the "worst case" for the $\sin$ factor (namely, 1), the **condition for stability** is $$ c ≤ \frac{\Delta x}{\Delta t} $$ or $$ \beta ≤ 1. $$ This is also known as the **Courant condition**. When written as $$ \Delta t ≤ \frac{\Delta x}{c} $$ it means that the time step $\Delta t$ (for a given $\Delta x$) must be *smaller than the time that the wave takes to travel one grid step*. ## Simplified simulation The above example used real numbers for a cello string. Below is bare-bones where we just set $\beta$. ```python L = 10.0 Nx = 100 Nt = 200 step = 1 Dx = L/Nx beta2 = 1.0 X = np.linspace(0, L, Nx+1) # need N+1! def gaussian(x): return np.exp(-(x-5)**2) # displacements at j-1, j, j+1 y0 = np.zeros_like(X) y1 = np.zeros_like(y0) y2 = np.zeros_like(y0) # save array y_t = np.zeros((int(np.ceil(Nt/step)) + 1, Nx+1)) # boundary conditions y0[0] = y0[-1] = y1[0] = y1[-1] = 0 y2[:] = y0 # initial conditions: velocity 0, i.e. no difference between y0 and y1 y0[:] = y1[:] = gaussian(X) # save initial t_index = 0 y_t[t_index, :] = y0 if step == 1: t_index += 1 y_t[t_index, :] = y1 for jt in range(2, Nt): y2[1:-1] = 2*(1-beta2)*y1[1:-1] - y0[1:-1] + beta2*(y1[2:] + y1[:-2]) y0[:], y1[:] = y1, y2 if jt % step == 0 or jt == Nt-1: t_index += 1 y_t[t_index, :] = y2 print("Iteration {0:5d}".format(jt), end="\r") else: print("Completed {0:5d} iterations: t={1} s".format(jt, jt*Dt)) ``` Completed 199 iterations: t=199 s ```python %matplotlib inline ``` ```python ax = plt.subplot(111) ax.set_prop_cycle("color", [plt.cm.viridis_r(i) for i in np.linspace(0, 1, len(y_t))]) ax.plot(X, y_t.T); ```
import datetime import logging from typing import List, Tuple import numpy as np import geopandas as gpd import pandas as pd from geoalchemy2 import WKTElement from shapely import wkt from shapely.geometry import Polygon, Point from sklearn.base import TransformerMixin from sqlalchemy import VARCHAR from tqdm import tqdm import socket from contextlib import closing from coord2vec.common.db.connectors import get_connection from coord2vec.common.db.sqlalchemy_utils import get_df, merge_to_table, add_sdo_geo_to_table, insert_into_table, \ get_temp_table_name from coord2vec.common.geographic.visualization_utils import get_image_overlay from coord2vec.config import STEP_SIZE, ors_server_ip, ors_server_port from coord2vec.feature_extraction.feature_table import FEATURE_NAME, GEOM, GEOM_WKT, FEATURE_VALUE, \ MODIFICATION_DATE, DTYPES, GEOM_WKT_HASH # TODO: re-order file, too long def load_features_using_geoms(input_gs: gpd.GeoSeries, features_table: str, feature_names: List[str] = None) -> gpd.GeoDataFrame: """ Args: input_gs: A geo series with geometries to load features on features_table: the cache table to load features from feature_names: optional. load only a set of features. if None, will load all the features in the table Returns: A GeoDataFrame with feature names as columns, and input_gs as samples. The geometry column in the gdf is GEOM_WKT """ features_table = features_table.lower() # create temporary hash table input_wkt = input_gs.apply(lambda geo: geo.wkt) input_hash = [str(h) for h in pd.util.hash_pandas_object(input_wkt)] input_hash_df = pd.DataFrame({GEOM_WKT_HASH: input_hash}) eng = get_connection(db_name='POSTGRES') if not eng.has_table(features_table): # cache table does not exist return gpd.GeoDataFrame() # just an empty gdf tmp_tbl_name = get_temp_table_name() insert_into_table(eng, input_hash_df, tmp_tbl_name, dtypes={GEOM_WKT_HASH: VARCHAR(300)}) add_q = lambda l: ["'" + s + "'" for s in l] feature_filter_sql = f"WHERE {FEATURE_NAME} in ({', '.join(add_q(feature_names))})" if feature_names is not None else "" # extract the features query = f""" select {FEATURE_NAME}, {FEATURE_VALUE}, {GEOM_WKT}, f.{GEOM_WKT_HASH} from {features_table} f join {tmp_tbl_name} t on t.{GEOM_WKT_HASH} = f.{GEOM_WKT_HASH} {feature_filter_sql} """ results_df = get_df(query, eng) pivot_results_df = _pivot_table(results_df) # create the full results df full_df = pd.DataFrame(data={GEOM_WKT: input_gs.tolist()}, index=input_hash, columns=pivot_results_df.columns) assert pivot_results_df.index.isin(full_df.index).all(), "all loaded features should be from the input (according to hash)" if not pivot_results_df.empty: full_df[full_df.index.isin(pivot_results_df.index)] = pivot_results_df[ pivot_results_df.index.isin(full_df.index)].values full_gdf = gpd.GeoDataFrame(full_df, geometry=GEOM_WKT) full_gdf = full_gdf.astype({c: float for c in pivot_results_df.columns if c != GEOM_WKT}) with eng.begin() as con: con.execute(f"DROP TABLE {tmp_tbl_name}") return full_gdf def load_features_in_polygon(polygon: Polygon, features_table: str, feature_names: List[str] = None) -> gpd.GeoDataFrame: """ Extract all the features already calculated inside a polygon Args: :param polygon: a polygon to get features of all the geometries inside of it :param features_table: the name of the features table in which the cache is saved :param feature_names: The names of all the features you want to extract. if None, extract all features Returns: A GeoDataFrame with a features as columns """ features_table = features_table.lower() eng = get_connection(db_name='POSTGRES') if eng.has_table(features_table): # extract data add_q = lambda l: ["'" + s + "'" for s in l] feature_filter_sql = f"and {FEATURE_NAME} in ({', '.join(add_q(feature_names))})" if feature_names is not None else "" query = f""" select {FEATURE_NAME}, {FEATURE_VALUE}, CAST(ST_AsText({GEOM}) as TEXT) as {GEOM_WKT}, {GEOM_WKT_HASH} from {features_table} where ST_Covers(ST_GeomFromText('{polygon.wkt}', 4326)::geography, {GEOM}) {feature_filter_sql} """ res_df = get_df(query, eng) ret_df = _pivot_table(res_df) # rearrange the df else: ret_df = gpd.GeoDataFrame() eng.dispose() return ret_df def load_all_features(features_table: str) -> gpd.GeoDataFrame: """ Load all the features from the features table in the oracle db Returns: A Geo Dataframe with all the features as columns """ features_table = features_table.lower() eng = get_connection(db_name='POSTGRES') query = f""" select {FEATURE_NAME}, {FEATURE_VALUE}, CAST(ST_AsText({GEOM}) as TEXT) as {GEOM_WKT} from {features_table} """ res_df = pd.read_sql(query, eng) eng.dispose() return _pivot_table(res_df) def _pivot_table(df: pd.DataFrame) -> gpd.GeoDataFrame: hash2wkt = df[[GEOM_WKT_HASH, GEOM_WKT]].set_index(GEOM_WKT_HASH).to_dict()[GEOM_WKT] features_df = df.pivot(index=GEOM_WKT_HASH, columns=FEATURE_NAME, values=FEATURE_VALUE) features_df[GEOM_WKT] = [wkt.loads(hash2wkt[h]) for h in features_df.index] features_gdf = gpd.GeoDataFrame(features_df, geometry=GEOM_WKT, index=features_df.index) return features_gdf def save_features_to_db(gs: gpd.GeoSeries, df: pd.DataFrame, table_name: str): """ Insert features into the Oracle DB Args: gs: The geometries of the features df: the features, with columns as feature names table_name: the features table name in oracle db Returns: None """ if len(gs) == 0: return table_name = table_name.lower() eng = get_connection(db_name='POSTGRES') for column in tqdm(df.columns, desc=f'Inserting Features to {table_name}', unit='feature', leave=False): insert_df = pd.DataFrame(data={MODIFICATION_DATE: datetime.datetime.now(), GEOM: gs.values, FEATURE_NAME: column, FEATURE_VALUE: df[column]}) insert_df[GEOM_WKT] = insert_df[GEOM].apply(lambda g: g.wkt) # add hash column for the GEOM_WKT insert_df[GEOM_WKT_HASH] = [str(h) for h in pd.util.hash_pandas_object(insert_df[GEOM_WKT])] insert_df[GEOM] = insert_df[GEOM].apply(lambda x: WKTElement(x.wkt, srid=4326)) merge_to_table(eng, insert_df, table_name, compare_columns=[GEOM_WKT_HASH, FEATURE_NAME], update_columns=[MODIFICATION_DATE, FEATURE_VALUE, GEOM, GEOM_WKT], dtypes=DTYPES) eng.dispose() def extract_feature_image(polygon: Polygon, features_table: str, step=STEP_SIZE, feature_names: List[str] = None) -> Tuple[np.ndarray, np.ndarray]: features_table = features_table.lower() features_df = load_features_in_polygon(polygon, features_table, feature_names) image_mask_list = [get_image_overlay(features_df.iloc[:, -1], features_df[col], step=step, return_array=True) for col in tqdm(features_df.columns[:-1], desc="Creating image from features", unit='feature')] images_list = [feature[0] for feature in image_mask_list] image = np.transpose(np.stack(images_list), (1, 2, 0)) # create mask mask_index = image_mask_list[0][1] mask = np.zeros((image.shape[0], image.shape[1])) mask[mask_index] = 1 return image, mask def ors_is_up(host=ors_server_ip, port=ors_server_port) -> bool: with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: return sock.connect_ex((host, port)) == 0 class FeatureFilter(TransformerMixin): # TODO: typing + add test # TODO: this is no longer used in pipeline, old bug def __init__(self, bundle: list=None, importance=10): if bundle is not None: from coord2vec.feature_extraction.features_builders import FeaturesBuilder from coord2vec.feature_extraction.feature_bundles import create_building_features all_feats = create_building_features(bundle, importance) builder = FeaturesBuilder(all_feats) self.feat_names = builder.all_feat_names def fit(self, X: pd.DataFrame, y=None, **kwargs): return self def transform(self, X: pd.DataFrame): if self.feat_names is not None: assert isinstance(X, pd.DataFrame), f"X is not a DataFrame \n {X}" feat_names_after_filt = [c for c in X.columns if c in self.feat_names] if len(feat_names_after_filt) != len(self.feat_names): pass # logging.warning(f"""Some features in FeatureFilter do not appear in X # X: {X.columns} # filt_feat_names: {self.feat_names} # """) try: # TODO: old bug was that applying this after feature selection resulted in feature not being here X_filt = X[feat_names_after_filt] except: print("Error in FeatureFilter: returing X") X_filt = X return X_filt return X def fit_transform(self, X: pd.DataFrame, y=None, **fit_params): return self.transform(X)
\documentclass{clean_cv} % Add a BibTeX-style file encoding all of your publications to include here. You can export this from Zotero. Only include % publications you want to appear here! \addbibresource{pub.bib} \author{Kaiwen "Kevin" Dong} \headlineposition{Ph.D student, University of Notre Dame} \begin{document} \maketitle % In this section, you can use any of the FontAwesome icons. The commands \faCenter and \faCenterStyle have been defined to properly center the icons % when using the default font settings. % % You can use any of the icons listed in the fontawesome5 package documentation (https://ctan.math.utah.edu/ctan/tex-archive/fonts/fontawesome5/doc/fontawesome5.pdf) % If you need to specify a specific style (as is done here for the address card), you should use the two-argument \faCenterCycle command \begin{center} \begin{tabular}{lll} % & \faCenter{phone-alt} 541-754-301 \faCenter{envelope} \href{mailto:[email protected]}{[email protected]} & \faCenterStyle{regular}{address-card} 384 Nieuwland Science Hall, Notre Dame, IN 46556 USA & \faCenter{linkedin} \href{https://www.linkedin.com/in/kaiwen-dong-ab0634103/}{kaiwen-dong-ab0634103} \\ \faCenter{orcid} \href{https://orcid.org/0000-0001-8244-9562}{0000-0001-8244-9562} & \faCenter{globe} \url{https://barcavin.github.io/} & \faCenter{github} \href{https://github.com/Barcavin}{Barcavin}\\ \end{tabular} \end{center} \vspace{-1.5em} \section{Education} % The datetabular environment takes one argument, which is the width of the left date column. As seen here: % 9em is a good choice for "dual-date" formats (e.g. Sep 2015 - Nov 2019). % 4em is a good choice for month/year dates (Sep 2014). % 2em is a good choice for year-only dates (as seen in the publications) \begin{datetabular}{9em} % This is just a tabular environment, for the most part. The dateentry command has been defined for % convienence. It takes two arguments, the first is the date and the second is whatever you wish placed to the right. \dateentry{Aug 2021 -- Present}{ \textbf{University of Notre Dame} \textit{Ph.D student in Computer Science, Teaching Assistant, Research Assistant longerr} } \dateentry{Aug 2016 -- May 2018}{ \textbf{University of Illinois at Urbana-Champaign} \textit{Master of Science in Statistics} } \dateentry{Sep 2012 -- June 2016}{ \textbf{University of Illinois at Urbana-Champaign} \textit{Bachelor of Science in Mathematics and Applied Mathematics} } \end{datetabular} \section{Work Experience} \begin{datetabular}{9em} \dateentry{2021 - 2021}{ \textbf{University of Notre Dame} \textit{Graduate Teaching Assistant} \begin{itemize} \item Data Structure(Fall 2021) \end{itemize}\eatvspace } \dateentry{2018 - 2021}{ \textbf{Aunalytics} \textit{Data Scientist} \begin{itemize} \item Leaded the development of the text-to-SQL product, which translates a natural language utterance to a machine-executable SQL query. \end{itemize}\eatvspace } % There is something seriously funky happening between the tabular commands and the end of the itemize blocks. % The command \eatvspace should be used if extra space appears at the end of a datetabular environment. \end{datetabular} % \section{Leadership and Teaching Experience} % \section{Honors} \section{Publications} \nocite{*} % Loads every entry from the attached .bib file % Highlight takes three entries, given name, given name initials, and family name. % If you have a middle initial, this call looks like: % \highlightauthorname{Bob H.}{B. H.}{Smith} \highlightauthorname{Kaiwen}{K.}{Dong} \begin{datetabular}{2em} %printbibyear has been defined to only print entries from a given citation year. \dateentry{2021}{\printallbib} \end{datetabular} \end{document}
/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis, Chris Hughes ! This file was ported from Lean 3 source module ring_theory.multiplicity ! leanprover-community/mathlib commit ceb887ddf3344dab425292e497fa2af91498437c ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Algebra.Associated import Mathlib.Algebra.BigOperators.Basic import Mathlib.RingTheory.Valuation.Basic /-! # Multiplicity of a divisor For a commutative monoid, this file introduces the notion of multiplicity of a divisor and proves several basic results on it. ## Main definitions * `multiplicity a b`: for two elements `a` and `b` of a commutative monoid returns the largest number `n` such that `a ^ n ∣ b` or infinity, written `⊤`, if `a ^ n ∣ b` for all natural numbers `n`. * `multiplicity.Finite a b`: a predicate denoting that the multiplicity of `a` in `b` is finite. -/ variable {α : Type _} open Nat Part open BigOperators /-- `multiplicity a b` returns the largest natural number `n` such that `a ^ n ∣ b`, as an `PartENat` or natural with infinity. If `āˆ€ n, a ^ n ∣ b`, then it returns `⊤`-/ def multiplicity [Monoid α] [DecidableRel ((Ā· ∣ Ā·) : α → α → Prop)] (a b : α) : PartENat := PartENat.find fun n => ¬a ^ (n + 1) ∣ b #align multiplicity multiplicity namespace multiplicity section Monoid variable [Monoid α] /-- `multiplicity.Finite a b` indicates that the multiplicity of `a` in `b` is finite. -/ @[reducible] def Finite (a b : α) : Prop := ∃ n : ā„•, ¬a ^ (n + 1) ∣ b #align multiplicity.finite multiplicity.Finite theorem finite_iff_dom [DecidableRel ((Ā· ∣ Ā·) : α → α → Prop)] {a b : α} : Finite a b ↔ (multiplicity a b).Dom := Iff.rfl #align multiplicity.finite_iff_dom multiplicity.finite_iff_dom theorem finite_def {a b : α} : Finite a b ↔ ∃ n : ā„•, ¬a ^ (n + 1) ∣ b := Iff.rfl #align multiplicity.finite_def multiplicity.finite_def theorem not_dvd_one_of_finite_one_right {a : α} : Finite a 1 → ¬a ∣ 1 := fun ⟨n, hn⟩ ⟨d, hd⟩ => hn ⟨d ^ (n + 1), (pow_mul_pow_eq_one (n + 1) hd.symm).symm⟩ #align multiplicity.not_dvd_one_of_finite_one_right multiplicity.not_dvd_one_of_finite_one_right @[norm_cast] theorem Int.coe_nat_multiplicity (a b : ā„•) : multiplicity (a : ℤ) (b : ℤ) = multiplicity a b := by apply Part.ext' Ā· rw [← @finite_iff_dom ā„•, @finite_def ā„•, ← @finite_iff_dom ℤ, @finite_def ℤ] norm_cast Ā· intro h1 h2 apply _root_.le_antisymm <;> Ā· apply Nat.find_mono norm_cast simp #align multiplicity.int.coe_nat_multiplicity multiplicity.Int.coe_nat_multiplicity theorem not_finite_iff_forall {a b : α} : ¬Finite a b ↔ āˆ€ n : ā„•, a ^ n ∣ b := ⟨fun h n => Nat.casesOn n (by rw [_root_.pow_zero] exact one_dvd _) (by simpa [Finite, Classical.not_not] using h), by simp [Finite, multiplicity, Classical.not_not]; tauto⟩ #align multiplicity.not_finite_iff_forall multiplicity.not_finite_iff_forall theorem not_unit_of_finite {a b : α} (h : Finite a b) : ¬IsUnit a := let ⟨n, hn⟩ := h hn ∘ IsUnit.dvd ∘ IsUnit.pow (n + 1) #align multiplicity.not_unit_of_finite multiplicity.not_unit_of_finite theorem finite_of_finite_mul_right {a b c : α} : Finite a (b * c) → Finite a b := fun ⟨n, hn⟩ => ⟨n, fun h => hn (h.trans (dvd_mul_right _ _))⟩ #align multiplicity.finite_of_finite_mul_right multiplicity.finite_of_finite_mul_right variable [DecidableRel ((Ā· ∣ Ā·) : α → α → Prop)] theorem pow_dvd_of_le_multiplicity {a b : α} {k : ā„•} : (k : PartENat) ≤ multiplicity a b → a ^ k ∣ b := by rw [← PartENat.some_eq_natCast] exact Nat.casesOn k (fun _ => by rw [_root_.pow_zero] exact one_dvd _) fun k ⟨_, hā‚‚āŸ© => by_contradiction fun hk => Nat.find_min _ (lt_of_succ_le (hā‚‚ ⟨k, hk⟩)) hk #align multiplicity.pow_dvd_of_le_multiplicity multiplicity.pow_dvd_of_le_multiplicity theorem pow_multiplicity_dvd {a b : α} (h : Finite a b) : a ^ get (multiplicity a b) h ∣ b := pow_dvd_of_le_multiplicity (by rw [PartENat.natCast_get]) #align multiplicity.pow_multiplicity_dvd multiplicity.pow_multiplicity_dvd theorem is_greatest {a b : α} {m : ā„•} (hm : multiplicity a b < m) : ¬a ^ m ∣ b := fun h => by rw [PartENat.lt_coe_iff] at hm; exact Nat.find_spec hm.fst ((pow_dvd_pow _ hm.snd).trans h) #align multiplicity.is_greatest multiplicity.is_greatest theorem is_greatest' {a b : α} {m : ā„•} (h : Finite a b) (hm : get (multiplicity a b) h < m) : ¬a ^ m ∣ b := is_greatest (by rwa [← PartENat.coe_lt_coe, PartENat.natCast_get] at hm) #align multiplicity.is_greatest' multiplicity.is_greatest' theorem pos_of_dvd {a b : α} (hfin : Finite a b) (hdiv : a ∣ b) : 0 < (multiplicity a b).get hfin := by refine' zero_lt_iff.2 fun h => _ simpa [hdiv] using is_greatest' hfin (lt_one_iff.mpr h) #align multiplicity.pos_of_dvd multiplicity.pos_of_dvd theorem unique {a b : α} {k : ā„•} (hk : a ^ k ∣ b) (hsucc : ¬a ^ (k + 1) ∣ b) : (k : PartENat) = multiplicity a b := le_antisymm (le_of_not_gt fun hk' => is_greatest hk' hk) <| by have : Finite a b := ⟨k, hsucc⟩ rw [PartENat.le_coe_iff] exact ⟨this, Nat.find_min' _ hsucc⟩ #align multiplicity.unique multiplicity.unique theorem unique' {a b : α} {k : ā„•} (hk : a ^ k ∣ b) (hsucc : ¬a ^ (k + 1) ∣ b) : k = get (multiplicity a b) ⟨k, hsucc⟩ := by rw [← PartENat.natCast_inj, PartENat.natCast_get, unique hk hsucc] #align multiplicity.unique' multiplicity.unique' theorem le_multiplicity_of_pow_dvd {a b : α} {k : ā„•} (hk : a ^ k ∣ b) : (k : PartENat) ≤ multiplicity a b := le_of_not_gt fun hk' => is_greatest hk' hk #align multiplicity.le_multiplicity_of_pow_dvd multiplicity.le_multiplicity_of_pow_dvd theorem pow_dvd_iff_le_multiplicity {a b : α} {k : ā„•} : a ^ k ∣ b ↔ (k : PartENat) ≤ multiplicity a b := ⟨le_multiplicity_of_pow_dvd, pow_dvd_of_le_multiplicity⟩ #align multiplicity.pow_dvd_iff_le_multiplicity multiplicity.pow_dvd_iff_le_multiplicity theorem multiplicity_lt_iff_neg_dvd {a b : α} {k : ā„•} : multiplicity a b < (k : PartENat) ↔ ¬a ^ k ∣ b := by rw [pow_dvd_iff_le_multiplicity, not_le] #align multiplicity.multiplicity_lt_iff_neg_dvd multiplicity.multiplicity_lt_iff_neg_dvd theorem eq_coe_iff {a b : α} {n : ā„•} : multiplicity a b = (n : PartENat) ↔ a ^ n ∣ b ∧ ¬a ^ (n + 1) ∣ b := by rw [← PartENat.some_eq_natCast] exact ⟨fun h => let ⟨h₁, hā‚‚āŸ© := eq_some_iff.1 h hā‚‚ ā–ø ⟨pow_multiplicity_dvd _, is_greatest (by rw [PartENat.lt_coe_iff] exact ⟨h₁, lt_succ_self _⟩)⟩, fun h => eq_some_iff.2 ⟨⟨n, h.2⟩, Eq.symm <| unique' h.1 h.2⟩⟩ #align multiplicity.eq_coe_iff multiplicity.eq_coe_iff theorem eq_top_iff {a b : α} : multiplicity a b = ⊤ ↔ āˆ€ n : ā„•, a ^ n ∣ b := (PartENat.find_eq_top_iff _).trans <| by simp only [Classical.not_not] exact ⟨fun h n => Nat.casesOn n (by rw [_root_.pow_zero] exact one_dvd _) fun n => h _, fun h n => h _⟩ #align multiplicity.eq_top_iff multiplicity.eq_top_iff @[simp] theorem isUnit_left {a : α} (b : α) (ha : IsUnit a) : multiplicity a b = ⊤ := eq_top_iff.2 fun _ => IsUnit.dvd (ha.pow _) #align multiplicity.is_unit_left multiplicity.isUnit_left -- @[simp] Porting note: simp can prove this theorem one_left (b : α) : multiplicity 1 b = ⊤ := isUnit_left b isUnit_one #align multiplicity.one_left multiplicity.one_left @[simp] theorem get_one_right {a : α} (ha : Finite a 1) : get (multiplicity a 1) ha = 0 := by rw [PartENat.get_eq_iff_eq_coe, eq_coe_iff, _root_.pow_zero] simp [not_dvd_one_of_finite_one_right ha] #align multiplicity.get_one_right multiplicity.get_one_right -- @[simp] Porting note: simp can prove this theorem unit_left (a : α) (u : αˣ) : multiplicity (u : α) a = ⊤ := isUnit_left a u.isUnit #align multiplicity.unit_left multiplicity.unit_left theorem multiplicity_eq_zero {a b : α} : multiplicity a b = 0 ↔ ¬a ∣ b := by rw [← Nat.cast_zero, eq_coe_iff] simp only [_root_.pow_zero, isUnit_one, IsUnit.dvd, zero_add, pow_one, true_and] #align multiplicity.multiplicity_eq_zero multiplicity.multiplicity_eq_zero theorem multiplicity_ne_zero {a b : α} : multiplicity a b ≠ 0 ↔ a ∣ b := multiplicity_eq_zero.not_left #align multiplicity.multiplicity_ne_zero multiplicity.multiplicity_ne_zero theorem eq_top_iff_not_finite {a b : α} : multiplicity a b = ⊤ ↔ ¬Finite a b := Part.eq_none_iff' #align multiplicity.eq_top_iff_not_finite multiplicity.eq_top_iff_not_finite theorem ne_top_iff_finite {a b : α} : multiplicity a b ≠ ⊤ ↔ Finite a b := by rw [Ne.def, eq_top_iff_not_finite, Classical.not_not] #align multiplicity.ne_top_iff_finite multiplicity.ne_top_iff_finite theorem lt_top_iff_finite {a b : α} : multiplicity a b < ⊤ ↔ Finite a b := by rw [lt_top_iff_ne_top, ne_top_iff_finite] #align multiplicity.lt_top_iff_finite multiplicity.lt_top_iff_finite theorem exists_eq_pow_mul_and_not_dvd {a b : α} (hfin : Finite a b) : ∃ c : α, b = a ^ (multiplicity a b).get hfin * c ∧ ¬a ∣ c := by obtain ⟨c, hc⟩ := multiplicity.pow_multiplicity_dvd hfin refine' ⟨c, hc, _⟩ rintro ⟨k, hk⟩ rw [hk, ← mul_assoc, ← _root_.pow_succ'] at hc have h₁ : a ^ ((multiplicity a b).get hfin + 1) ∣ b := ⟨k, hc⟩ exact (multiplicity.eq_coe_iff.1 (by simp)).2 h₁ #align multiplicity.exists_eq_pow_mul_and_not_dvd multiplicity.exists_eq_pow_mul_and_not_dvd open Classical theorem multiplicity_le_multiplicity_iff {a b c d : α} : multiplicity a b ≤ multiplicity c d ↔ āˆ€ n : ā„•, a ^ n ∣ b → c ^ n ∣ d := ⟨fun h n hab => pow_dvd_of_le_multiplicity (le_trans (le_multiplicity_of_pow_dvd hab) h), fun h => if hab : Finite a b then by rw [← PartENat.natCast_get (finite_iff_dom.1 hab)]; exact le_multiplicity_of_pow_dvd (h _ (pow_multiplicity_dvd _)) else by have : āˆ€ n : ā„•, c ^ n ∣ d := fun n => h n (not_finite_iff_forall.1 hab _) rw [eq_top_iff_not_finite.2 hab, eq_top_iff_not_finite.2 (not_finite_iff_forall.2 this)] apply le_refl⟩ #align multiplicity.multiplicity_le_multiplicity_iff multiplicity.multiplicity_le_multiplicity_iff theorem multiplicity_eq_multiplicity_iff {a b c d : α} : multiplicity a b = multiplicity c d ↔ āˆ€ n : ā„•, a ^ n ∣ b ↔ c ^ n ∣ d := ⟨fun h n => ⟨multiplicity_le_multiplicity_iff.mp h.le n, multiplicity_le_multiplicity_iff.mp h.ge n⟩, fun h => le_antisymm (multiplicity_le_multiplicity_iff.mpr fun n => (h n).mp) (multiplicity_le_multiplicity_iff.mpr fun n => (h n).mpr)⟩ #align multiplicity.multiplicity_eq_multiplicity_iff multiplicity.multiplicity_eq_multiplicity_iff theorem multiplicity_le_multiplicity_of_dvd_right {a b c : α} (h : b ∣ c) : multiplicity a b ≤ multiplicity a c := multiplicity_le_multiplicity_iff.2 fun _ hb => hb.trans h #align multiplicity.multiplicity_le_multiplicity_of_dvd_right multiplicity.multiplicity_le_multiplicity_of_dvd_right theorem eq_of_associated_right {a b c : α} (h : Associated b c) : multiplicity a b = multiplicity a c := le_antisymm (multiplicity_le_multiplicity_of_dvd_right h.dvd) (multiplicity_le_multiplicity_of_dvd_right h.symm.dvd) #align multiplicity.eq_of_associated_right multiplicity.eq_of_associated_right theorem dvd_of_multiplicity_pos {a b : α} (h : (0 : PartENat) < multiplicity a b) : a ∣ b := by rw [← pow_one a] apply pow_dvd_of_le_multiplicity simpa only [Nat.cast_one, PartENat.pos_iff_one_le] using h #align multiplicity.dvd_of_multiplicity_pos multiplicity.dvd_of_multiplicity_pos theorem dvd_iff_multiplicity_pos {a b : α} : (0 : PartENat) < multiplicity a b ↔ a ∣ b := ⟨dvd_of_multiplicity_pos, fun hdvd => lt_of_le_of_ne (zero_le _) fun heq => is_greatest (show multiplicity a b < ↑1 by simpa only [heq, Nat.cast_zero] using PartENat.coe_lt_coe.mpr zero_lt_one) (by rwa [pow_one a])⟩ #align multiplicity.dvd_iff_multiplicity_pos multiplicity.dvd_iff_multiplicity_pos theorem finite_nat_iff {a b : ā„•} : Finite a b ↔ a ≠ 1 ∧ 0 < b := by rw [← not_iff_not, not_finite_iff_forall, not_and_or, Ne.def, Classical.not_not, not_lt, le_zero_iff] exact ⟨fun h => or_iff_not_imp_right.2 fun hb => have ha : a ≠ 0 := fun ha => hb <| zero_dvd_iff.mp <| by rw [ha] at h; exact h 1 Classical.by_contradiction fun ha1 : a ≠ 1 => have ha_gt_one : 1 < a := lt_of_not_ge fun _ => match a with | 0 => ha rfl | 1 => ha1 rfl | b+2 => by linarith not_lt_of_ge (le_of_dvd (Nat.pos_of_ne_zero hb) (h b)) (lt_pow_self ha_gt_one b), fun h => by cases h <;> simp [*]⟩ #align multiplicity.finite_nat_iff multiplicity.finite_nat_iff alias dvd_iff_multiplicity_pos ↔ _ _root_.has_dvd.dvd.multiplicity_pos end Monoid section CommMonoid variable [CommMonoid α] theorem finite_of_finite_mul_left {a b c : α} : Finite a (b * c) → Finite a c := by rw [mul_comm]; exact finite_of_finite_mul_right #align multiplicity.finite_of_finite_mul_left multiplicity.finite_of_finite_mul_left variable [DecidableRel ((Ā· ∣ Ā·) : α → α → Prop)] theorem isUnit_right {a b : α} (ha : ¬IsUnit a) (hb : IsUnit b) : multiplicity a b = 0 := eq_coe_iff.2 ⟨show a ^ 0 ∣ b by simp only [_root_.pow_zero, one_dvd], by rw [pow_one] exact fun h => mt (isUnit_of_dvd_unit h) ha hb⟩ #align multiplicity.is_unit_right multiplicity.isUnit_right theorem one_right {a : α} (ha : ¬IsUnit a) : multiplicity a 1 = 0 := isUnit_right ha isUnit_one #align multiplicity.one_right multiplicity.one_right theorem unit_right {a : α} (ha : ¬IsUnit a) (u : αˣ) : multiplicity a u = 0 := isUnit_right ha u.isUnit #align multiplicity.unit_right multiplicity.unit_right open Classical theorem multiplicity_le_multiplicity_of_dvd_left {a b c : α} (hdvd : a ∣ b) : multiplicity b c ≤ multiplicity a c := multiplicity_le_multiplicity_iff.2 fun n h => (pow_dvd_pow_of_dvd hdvd n).trans h #align multiplicity.multiplicity_le_multiplicity_of_dvd_left multiplicity.multiplicity_le_multiplicity_of_dvd_left theorem eq_of_associated_left {a b c : α} (h : Associated a b) : multiplicity b c = multiplicity a c := le_antisymm (multiplicity_le_multiplicity_of_dvd_left h.dvd) (multiplicity_le_multiplicity_of_dvd_left h.symm.dvd) #align multiplicity.eq_of_associated_left multiplicity.eq_of_associated_left -- Porting note: this was doing nothing in mathlib3 also -- alias dvd_iff_multiplicity_pos ↔ _ _root_.has_dvd.dvd.multiplicity_pos end CommMonoid section MonoidWithZero variable [MonoidWithZero α] theorem ne_zero_of_finite {a b : α} (h : Finite a b) : b ≠ 0 := let ⟨n, hn⟩ := h fun hb => by simp [hb] at hn #align multiplicity.ne_zero_of_finite multiplicity.ne_zero_of_finite variable [DecidableRel ((Ā· ∣ Ā·) : α → α → Prop)] @[simp] protected theorem zero (a : α) : multiplicity a 0 = ⊤ := Part.eq_none_iff.2 fun _ ⟨⟨_, hk⟩, _⟩ => hk (dvd_zero _) #align multiplicity.zero multiplicity.zero @[simp] theorem multiplicity_zero_eq_zero_of_ne_zero (a : α) (ha : a ≠ 0) : multiplicity 0 a = 0 := multiplicity.multiplicity_eq_zero.2 <| mt zero_dvd_iff.1 ha #align multiplicity.multiplicity_zero_eq_zero_of_ne_zero multiplicity.multiplicity_zero_eq_zero_of_ne_zero end MonoidWithZero section CommMonoidWithZero variable [CommMonoidWithZero α] variable [DecidableRel ((Ā· ∣ Ā·) : α → α → Prop)] theorem multiplicity_mk_eq_multiplicity [DecidableRel ((Ā· ∣ Ā·) : Associates α → Associates α → Prop)] {a b : α} : multiplicity (Associates.mk a) (Associates.mk b) = multiplicity a b := by by_cases h : Finite a b Ā· rw [← PartENat.natCast_get (finite_iff_dom.mp h)] refine' (multiplicity.unique (show Associates.mk a ^ (multiplicity a b).get h ∣ Associates.mk b from _) _).symm <;> rw [← Associates.mk_pow, Associates.mk_dvd_mk] Ā· exact pow_multiplicity_dvd h Ā· exact is_greatest ((PartENat.lt_coe_iff _ _).mpr (Exists.intro (finite_iff_dom.mp h) (Nat.lt_succ_self _))) Ā· suffices ¬Finite (Associates.mk a) (Associates.mk b) by rw [finite_iff_dom, PartENat.not_dom_iff_eq_top] at h this rw [h, this] refine' not_finite_iff_forall.mpr fun n => by rw [← Associates.mk_pow, Associates.mk_dvd_mk] exact not_finite_iff_forall.mp h n #align multiplicity.multiplicity_mk_eq_multiplicity multiplicity.multiplicity_mk_eq_multiplicity end CommMonoidWithZero section Semiring variable [Semiring α] [DecidableRel ((Ā· ∣ Ā·) : α → α → Prop)] theorem min_le_multiplicity_add {p a b : α} : min (multiplicity p a) (multiplicity p b) ≤ multiplicity p (a + b) := (le_total (multiplicity p a) (multiplicity p b)).elim (fun h => by rw [min_eq_left h, multiplicity_le_multiplicity_iff]; exact fun n hn => dvd_add hn (multiplicity_le_multiplicity_iff.1 h n hn)) fun h => by rw [min_eq_right h, multiplicity_le_multiplicity_iff]; exact fun n hn => dvd_add (multiplicity_le_multiplicity_iff.1 h n hn) hn #align multiplicity.min_le_multiplicity_add multiplicity.min_le_multiplicity_add end Semiring section Ring variable [Ring α] [DecidableRel ((Ā· ∣ Ā·) : α → α → Prop)] @[simp] protected theorem neg (a b : α) : multiplicity a (-b) = multiplicity a b := Part.ext' (by simp only [multiplicity, PartENat.find, dvd_neg]) fun h₁ hā‚‚ => PartENat.natCast_inj.1 (by rw [PartENat.natCast_get] exact Eq.symm (unique ((dvd_neg _ _).2 (pow_multiplicity_dvd _)) (mt (dvd_neg _ _).1 (is_greatest' _ (lt_succ_self _))))) #align multiplicity.neg multiplicity.neg theorem Int.natAbs (a : ā„•) (b : ℤ) : multiplicity a b.natAbs = multiplicity (a : ℤ) b := by cases' Int.natAbs_eq b with h h <;> conv_rhs => rw [h] Ā· rw [Int.coe_nat_multiplicity] Ā· rw [multiplicity.neg, Int.coe_nat_multiplicity] #align multiplicity.int.nat_abs multiplicity.Int.natAbs theorem multiplicity_add_of_gt {p a b : α} (h : multiplicity p b < multiplicity p a) : multiplicity p (a + b) = multiplicity p b := by apply le_antisymm Ā· apply PartENat.le_of_lt_add_one cases' PartENat.ne_top_iff.mp (PartENat.ne_top_of_lt h) with k hk rw [hk] rw_mod_cast [multiplicity_lt_iff_neg_dvd] intro h_dvd rw [← dvd_add_iff_right] at h_dvd Ā· apply multiplicity.is_greatest _ h_dvd rw [hk, ←Nat.succ_eq_add_one] norm_cast apply Nat.lt_succ_self k Ā· rw [pow_dvd_iff_le_multiplicity, Nat.cast_add, ← hk, Nat.cast_one] exact PartENat.add_one_le_of_lt h Ā· have := @min_le_multiplicity_add α _ _ p a b rwa [← min_eq_right (le_of_lt h)] #align multiplicity.multiplicity_add_of_gt multiplicity.multiplicity_add_of_gt theorem multiplicity_sub_of_gt {p a b : α} (h : multiplicity p b < multiplicity p a) : multiplicity p (a - b) = multiplicity p b := by rw [sub_eq_add_neg, multiplicity_add_of_gt] <;> rw [multiplicity.neg]; assumption #align multiplicity.multiplicity_sub_of_gt multiplicity.multiplicity_sub_of_gt theorem multiplicity_add_eq_min {p a b : α} (h : multiplicity p a ≠ multiplicity p b) : multiplicity p (a + b) = min (multiplicity p a) (multiplicity p b) := by rcases lt_trichotomy (multiplicity p a) (multiplicity p b) with (hab | hab | hab) Ā· rw [add_comm, multiplicity_add_of_gt hab, min_eq_left] exact le_of_lt hab Ā· contradiction Ā· rw [multiplicity_add_of_gt hab, min_eq_right] exact le_of_lt hab #align multiplicity.multiplicity_add_eq_min multiplicity.multiplicity_add_eq_min end Ring section CancelCommMonoidWithZero variable [CancelCommMonoidWithZero α] /- Porting note: removed previous wf recursion hints and added termination_by Also pulled a b intro parameters since Lean parses that more easily -/ theorem finite_mul_aux {p : α} (hp : Prime p) {a b : α}: āˆ€ {n m : ā„•}, ¬p ^ (n + 1) ∣ a → ¬p ^ (m + 1) ∣ b → ¬p ^ (n + m + 1) ∣ a * b | n, m => fun ha hb ⟨s, hs⟩ => have : p ∣ a * b := ⟨p ^ (n + m) * s, by simp [hs, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩ (hp.2.2 a b this).elim (fun ⟨x, hx⟩ => have hn0 : 0 < n := Nat.pos_of_ne_zero fun hn0 => by simp [hx, hn0] at ha have hpx : ¬p ^ (n - 1 + 1) ∣ x := fun ⟨y, hy⟩ => ha (hx.symm ā–ø ⟨y, mul_right_cancelā‚€ hp.1 <| by rw [tsub_add_cancel_of_le (succ_le_of_lt hn0)] at hy; simp [hy, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩) have : 1 ≤ n + m := le_trans hn0 (Nat.le_add_right n m) finite_mul_aux hp hpx hb ⟨s, mul_right_cancelā‚€ hp.1 (by rw [tsub_add_eq_add_tsub (succ_le_of_lt hn0), tsub_add_cancel_of_le this] simp_all [mul_comm, mul_assoc, mul_left_comm, pow_add])⟩) fun ⟨x, hx⟩ => have hm0 : 0 < m := Nat.pos_of_ne_zero fun hm0 => by simp [hx, hm0] at hb have hpx : ¬p ^ (m - 1 + 1) ∣ x := fun ⟨y, hy⟩ => hb (hx.symm ā–ø ⟨y, mul_right_cancelā‚€ hp.1 <| by rw [tsub_add_cancel_of_le (succ_le_of_lt hm0)] at hy; simp [hy, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩) finite_mul_aux hp ha hpx ⟨s, mul_right_cancelā‚€ hp.1 (by rw [add_assoc, tsub_add_cancel_of_le (succ_le_of_lt hm0)] simp_all [mul_comm, mul_assoc, mul_left_comm, pow_add])⟩ termination_by finite_mul_aux _ _ n m => n+m #align multiplicity.finite_mul_aux multiplicity.finite_mul_aux theorem finite_mul {p a b : α} (hp : Prime p) : Finite p a → Finite p b → Finite p (a * b) := fun ⟨n, hn⟩ ⟨m, hm⟩ => ⟨n + m, finite_mul_aux hp hn hm⟩ #align multiplicity.finite_mul multiplicity.finite_mul theorem finite_mul_iff {p a b : α} (hp : Prime p) : Finite p (a * b) ↔ Finite p a ∧ Finite p b := ⟨fun h => ⟨finite_of_finite_mul_right h, finite_of_finite_mul_left h⟩, fun h => finite_mul hp h.1 h.2⟩ #align multiplicity.finite_mul_iff multiplicity.finite_mul_iff theorem finite_pow {p a : α} (hp : Prime p) : āˆ€ {k : ā„•} (_ : Finite p a), Finite p (a ^ k) | 0, _ => ⟨0, by simp [mt isUnit_iff_dvd_one.2 hp.2.1]⟩ | k + 1, ha => by rw [_root_.pow_succ]; exact finite_mul hp ha (finite_pow hp ha) #align multiplicity.finite_pow multiplicity.finite_pow variable [DecidableRel ((Ā· ∣ Ā·) : α → α → Prop)] @[simp] theorem multiplicity_self {a : α} (ha : ¬IsUnit a) (ha0 : a ≠ 0) : multiplicity a a = 1 := by rw [← Nat.cast_one] exact eq_coe_iff.2 ⟨by simp, fun ⟨b, hb⟩ => ha (isUnit_iff_dvd_one.2 ⟨b, mul_left_cancelā‚€ ha0 <| by simpa [_root_.pow_succ, mul_assoc] using hb⟩)⟩ #align multiplicity.multiplicity_self multiplicity.multiplicity_self @[simp] theorem get_multiplicity_self {a : α} (ha : Finite a a) : get (multiplicity a a) ha = 1 := PartENat.get_eq_iff_eq_coe.2 (eq_coe_iff.2 ⟨by simp, fun ⟨b, hb⟩ => by rw [← mul_one a, pow_add, pow_one, mul_assoc, mul_assoc, mul_right_inj' (ne_zero_of_finite ha)] at hb; exact mt isUnit_iff_dvd_one.2 (not_unit_of_finite ha) ⟨b, by simp_all⟩⟩) #align multiplicity.get_multiplicity_self multiplicity.get_multiplicity_self protected theorem mul' {p a b : α} (hp : Prime p) (h : (multiplicity p (a * b)).Dom) : get (multiplicity p (a * b)) h = get (multiplicity p a) ((finite_mul_iff hp).1 h).1 + get (multiplicity p b) ((finite_mul_iff hp).1 h).2 := by have hdiva : p ^ get (multiplicity p a) ((finite_mul_iff hp).1 h).1 ∣ a := pow_multiplicity_dvd _ have hdivb : p ^ get (multiplicity p b) ((finite_mul_iff hp).1 h).2 ∣ b := pow_multiplicity_dvd _ have hpoweq : p ^ (get (multiplicity p a) ((finite_mul_iff hp).1 h).1 + get (multiplicity p b) ((finite_mul_iff hp).1 h).2) = p ^ get (multiplicity p a) ((finite_mul_iff hp).1 h).1 * p ^ get (multiplicity p b) ((finite_mul_iff hp).1 h).2 := by simp [pow_add] have hdiv : p ^ (get (multiplicity p a) ((finite_mul_iff hp).1 h).1 + get (multiplicity p b) ((finite_mul_iff hp).1 h).2) ∣ a * b := by rw [hpoweq]; apply mul_dvd_mul <;> assumption have hsucc : ¬p ^ (get (multiplicity p a) ((finite_mul_iff hp).1 h).1 + get (multiplicity p b) ((finite_mul_iff hp).1 h).2 + 1) ∣ a * b := fun h => not_or_of_not (is_greatest' _ (lt_succ_self _)) (is_greatest' _ (lt_succ_self _)) (_root_.succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul hp hdiva hdivb h) rw [← PartENat.natCast_inj, PartENat.natCast_get, eq_coe_iff]; exact ⟨hdiv, hsucc⟩ #align multiplicity.mul' multiplicity.mul' open Classical protected theorem mul {p a b : α} (hp : Prime p) : multiplicity p (a * b) = multiplicity p a + multiplicity p b := if h : Finite p a ∧ Finite p b then by rw [← PartENat.natCast_get (finite_iff_dom.1 h.1), ← PartENat.natCast_get (finite_iff_dom.1 h.2), ← PartENat.natCast_get (finite_iff_dom.1 (finite_mul hp h.1 h.2)), ← Nat.cast_add, PartENat.natCast_inj, multiplicity.mul' hp] else by rw [eq_top_iff_not_finite.2 (mt (finite_mul_iff hp).1 h)] cases' not_and_or.1 h with h h <;> simp [eq_top_iff_not_finite.2 h] #align multiplicity.mul multiplicity.mul theorem Finset.prod {β : Type _} {p : α} (hp : Prime p) (s : Finset β) (f : β → α) : multiplicity p (āˆ x in s, f x) = āˆ‘ x in s, multiplicity p (f x) := by classical induction' s using Finset.induction with a s has ih h Ā· simp only [Finset.sum_empty, Finset.prod_empty] convert one_right hp.not_unit Ā· simp [has, ← ih] convert multiplicity.mul hp #align multiplicity.finset.prod multiplicity.Finset.prod -- Porting note: with protected could not use pow' k in the succ branch protected theorem pow' {p a : α} (hp : Prime p) (ha : Finite p a) : āˆ€ {k : ā„•}, get (multiplicity p (a ^ k)) (finite_pow hp ha) = k * get (multiplicity p a) ha := by intro k induction' k with k hk Ā· simp [one_right hp.not_unit] Ā· have : multiplicity p (a ^ (k + 1)) = multiplicity p (a * a ^ k) := by rw [_root_.pow_succ] rw [succ_eq_add_one, get_eq_get_of_eq _ _ this, multiplicity.mul' hp, hk, add_mul, one_mul, add_comm] #align multiplicity.pow' multiplicity.pow' theorem pow {p a : α} (hp : Prime p) : āˆ€ {k : ā„•}, multiplicity p (a ^ k) = k • multiplicity p a | 0 => by simp [one_right hp.not_unit] | succ k => by simp [_root_.pow_succ, succ_nsmul, pow hp, multiplicity.mul hp] #align multiplicity.pow multiplicity.pow theorem multiplicity_pow_self {p : α} (h0 : p ≠ 0) (hu : ¬IsUnit p) (n : ā„•) : multiplicity p (p ^ n) = n := by rw [eq_coe_iff] use dvd_rfl rw [pow_dvd_pow_iff h0 hu] apply Nat.not_succ_le_self #align multiplicity.multiplicity_pow_self multiplicity.multiplicity_pow_self theorem multiplicity_pow_self_of_prime {p : α} (hp : Prime p) (n : ā„•) : multiplicity p (p ^ n) = n := multiplicity_pow_self hp.ne_zero hp.not_unit n #align multiplicity.multiplicity_pow_self_of_prime multiplicity.multiplicity_pow_self_of_prime end CancelCommMonoidWithZero section Valuation variable {R : Type _} [CommRing R] [IsDomain R] {p : R} [DecidableRel (Dvd.dvd : R → R → Prop)] /-- `multiplicity` of a prime in an integral domain as an additive valuation to `PartENat`. -/ noncomputable def addValuation (hp : Prime p) : AddValuation R PartENat := AddValuation.of (multiplicity p) (multiplicity.zero _) (one_right hp.not_unit) (fun _ _ => min_le_multiplicity_add) fun _ _ => multiplicity.mul hp #align multiplicity.add_valuation multiplicity.addValuation @[simp] theorem addValuation_apply {hp : Prime p} {r : R} : addValuation hp r = multiplicity p r := rfl #align multiplicity.add_valuation_apply multiplicity.addValuation_apply end Valuation end multiplicity section Nat open multiplicity theorem multiplicity_eq_zero_of_coprime {p a b : ā„•} (hp : p ≠ 1) (hle : multiplicity p a ≤ multiplicity p b) (hab : Nat.coprime a b) : multiplicity p a = 0 := by rw [multiplicity_le_multiplicity_iff] at hle rw [← nonpos_iff_eq_zero, ← not_lt, PartENat.pos_iff_one_le, ← Nat.cast_one, ← pow_dvd_iff_le_multiplicity] intro h have := Nat.dvd_gcd h (hle _ h) rw [coprime.gcd_eq_one hab, Nat.dvd_one, pow_one] at this exact hp this #align multiplicity_eq_zero_of_coprime multiplicity_eq_zero_of_coprime end Nat
Note: Rijeka Challenger Men live on FlashScore.ca. Follow Rijeka Challenger Men page for live scores, final results, fixtures and draws! Tennis live scores "point by point" on FlashScore.ca: Here you'll find the "Point by pointā€ tab with highlighted lost serves, break points, set- and match points in match details of all ATP and WTA matches. You can find Rijeka Challenger Men scores and brackets on FlashScore.ca Rijeka Challenger Men page, or click on the tennis scores page to see all today's tennis scores.
(** This file extends the HeapLang program logic with some derived laws (not using the lifting lemmas) about arrays and prophecies. For utility functions on arrays (e.g., freeing/copying an array), see [heap_lang.lib.array]. *) From stdpp Require Import fin_maps. From iris.bi Require Import lib.fractional. From iris.proofmode Require Import tactics. From iris.heap_lang Require Export primitive_laws. From iris.heap_lang Require Import tactics notation. From iris Require Import options. (** The [array] connective is a version of [mapsto] that works with lists of values. *) Definition array `{!heapG Ī£} (l : loc) (q : Qp) (vs : list val) : iProp Ī£ := ([āˆ— list] i ↦ v ∈ vs, (l +ā‚— i) ↦{q} v)%I. Notation "l ā†¦āˆ—{ q } vs" := (array l q vs) (at level 20, q at level 50, format "l ā†¦āˆ—{ q } vs") : bi_scope. Notation "l ā†¦āˆ— vs" := (array l 1 vs) (at level 20, format "l ā†¦āˆ— vs") : bi_scope. (** We have [FromSep] and [IntoSep] instances to split the fraction (via the [AsFractional] instance below), but not for splitting the list, as that would lead to overlapping instances. *) Section lifting. Context `{!heapG Ī£}. Implicit Types P Q : iProp Ī£. Implicit Types Φ : val → iProp Ī£. Implicit Types σ : state. Implicit Types v : val. Implicit Types vs : list val. Implicit Types q : Qp. Implicit Types l : loc. Implicit Types sz off : nat. Global Instance array_timeless l q vs : Timeless (array l q vs) := _. Global Instance array_fractional l vs : Fractional (Ī» q, l ā†¦āˆ—{q} vs)%I := _. Global Instance array_as_fractional l q vs : AsFractional (l ā†¦āˆ—{q} vs) (Ī» q, l ā†¦āˆ—{q} vs)%I q. Proof. split; done || apply _. Qed. Lemma array_nil l q : l ā†¦āˆ—{q} [] ⊣⊢ emp. Proof. by rewrite /array. Qed. Lemma array_singleton l q v : l ā†¦āˆ—{q} [v] ⊣⊢ l ↦{q} v. Proof. by rewrite /array /= right_id loc_add_0. Qed. Lemma array_app l q vs ws : l ā†¦āˆ—{q} (vs ++ ws) ⊣⊢ l ā†¦āˆ—{q} vs āˆ— (l +ā‚— length vs) ā†¦āˆ—{q} ws. Proof. rewrite /array big_sepL_app. setoid_rewrite Nat2Z.inj_add. by setoid_rewrite loc_add_assoc. Qed. Lemma array_cons l q v vs : l ā†¦āˆ—{q} (v :: vs) ⊣⊢ l ↦{q} v āˆ— (l +ā‚— 1) ā†¦āˆ—{q} vs. Proof. rewrite /array big_sepL_cons loc_add_0. setoid_rewrite loc_add_assoc. setoid_rewrite Nat2Z.inj_succ. by setoid_rewrite Z.add_1_l. Qed. Global Instance array_cons_frame l q v vs R Q : Frame false R (l ↦{q} v āˆ— (l +ā‚— 1) ā†¦āˆ—{q} vs) Q → Frame false R (l ā†¦āˆ—{q} (v :: vs)) Q. Proof. by rewrite /Frame array_cons. Qed. Lemma update_array l q vs off v : vs !! off = Some v → ⊢ l ā†¦āˆ—{q} vs -āˆ— ((l +ā‚— off) ↦{q} v āˆ— āˆ€ v', (l +ā‚— off) ↦{q} v' -āˆ— l ā†¦āˆ—{q} <[off:=v']>vs). Proof. iIntros (Hlookup) "Hl". rewrite -[X in (l ā†¦āˆ—{_} X)%I](take_drop_middle _ off v); last done. iDestruct (array_app with "Hl") as "[Hl1 Hl]". iDestruct (array_cons with "Hl") as "[Hl2 Hl3]". assert (off < length vs) as H by (apply lookup_lt_is_Some; by eexists). rewrite take_length min_l; last by lia. iFrame "Hl2". iIntros (w) "Hl2". clear Hlookup. assert (<[off:=w]> vs !! off = Some w) as Hlookup. { apply list_lookup_insert. lia. } rewrite -[in (l ā†¦āˆ—{_} <[off:=w]> vs)%I](take_drop_middle (<[off:=w]> vs) off w Hlookup). iApply array_app. rewrite take_insert; last by lia. iFrame. iApply array_cons. rewrite take_length min_l; last by lia. iFrame. rewrite drop_insert_gt; last by lia. done. Qed. (** * Rules for allocation *) Lemma mapsto_seq_array l q v n : ([āˆ— list] i ∈ seq 0 n, (l +ā‚— (i : nat)) ↦{q} v) -āˆ— l ā†¦āˆ—{q} replicate n v. Proof. rewrite /array. iInduction n as [|n'] "IH" forall (l); simpl. { done. } iIntros "[$ Hl]". rewrite -fmap_S_seq big_sepL_fmap. setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l. setoid_rewrite <-loc_add_assoc. iApply "IH". done. Qed. Lemma twp_allocN s E v n : (0 < n)%Z → [[{ True }]] AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E [[{ l, RET LitV (LitLoc l); l ā†¦āˆ— replicate (Z.to_nat n) v āˆ— [āˆ— list] i ∈ seq 0 (Z.to_nat n), meta_token (l +ā‚— (i : nat)) ⊤ }]]. Proof. iIntros (Hzs Φ) "_ HΦ". iApply twp_allocN_seq; [done..|]. iIntros (l) "Hlm". iApply "HΦ". iDestruct (big_sepL_sep with "Hlm") as "[Hl $]". by iApply mapsto_seq_array. Qed. Lemma wp_allocN s E v n : (0 < n)%Z → {{{ True }}} AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E {{{ l, RET LitV (LitLoc l); l ā†¦āˆ— replicate (Z.to_nat n) v āˆ— [āˆ— list] i ∈ seq 0 (Z.to_nat n), meta_token (l +ā‚— (i : nat)) ⊤ }}}. Proof. iIntros (? Φ) "_ HΦ". iApply (twp_wp_step with "HΦ"). iApply twp_allocN; [auto..|]; iIntros (l) "H HΦ". by iApply "HΦ". Qed. Lemma twp_allocN_vec s E v n : (0 < n)%Z → [[{ True }]] AllocN #n v @ s ; E [[{ l, RET #l; l ā†¦āˆ— vreplicate (Z.to_nat n) v āˆ— [āˆ— list] i ∈ seq 0 (Z.to_nat n), meta_token (l +ā‚— (i : nat)) ⊤ }]]. Proof. iIntros (Hzs Φ) "_ HΦ". iApply twp_allocN; [ lia | done | .. ]. iIntros (l) "[Hl Hm]". iApply "HΦ". rewrite vec_to_list_replicate. iFrame. Qed. Lemma wp_allocN_vec s E v n : (0 < n)%Z → {{{ True }}} AllocN #n v @ s ; E {{{ l, RET #l; l ā†¦āˆ— vreplicate (Z.to_nat n) v āˆ— [āˆ— list] i ∈ seq 0 (Z.to_nat n), meta_token (l +ā‚— (i : nat)) ⊤ }}}. Proof. iIntros (? Φ) "_ HΦ". iApply (twp_wp_step with "HΦ"). iApply twp_allocN_vec; [auto..|]; iIntros (l) "H HΦ". by iApply "HΦ". Qed. (** * Rules for accessing array elements *) Lemma twp_load_offset s E l q off vs v : vs !! off = Some v → [[{ l ā†¦āˆ—{q} vs }]] ! #(l +ā‚— off) @ s; E [[{ RET v; l ā†¦āˆ—{q} vs }]]. Proof. iIntros (Hlookup Φ) "Hl HΦ". iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]". iApply (twp_load with "Hl1"). iIntros "Hl1". iApply "HΦ". iDestruct ("Hl2" $! v) as "Hl2". rewrite list_insert_id; last done. iApply "Hl2". iApply "Hl1". Qed. Lemma wp_load_offset s E l q off vs v : vs !! off = Some v → {{{ ā–· l ā†¦āˆ—{q} vs }}} ! #(l +ā‚— off) @ s; E {{{ RET v; l ā†¦āˆ—{q} vs }}}. Proof. iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ"). iApply (twp_load_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ". Qed. Lemma twp_load_offset_vec s E l q sz (off : fin sz) (vs : vec val sz) : [[{ l ā†¦āˆ—{q} vs }]] ! #(l +ā‚— off) @ s; E [[{ RET vs !!! off; l ā†¦āˆ—{q} vs }]]. Proof. apply twp_load_offset. by apply vlookup_lookup. Qed. Lemma wp_load_offset_vec s E l q sz (off : fin sz) (vs : vec val sz) : {{{ ā–· l ā†¦āˆ—{q} vs }}} ! #(l +ā‚— off) @ s; E {{{ RET vs !!! off; l ā†¦āˆ—{q} vs }}}. Proof. apply wp_load_offset. by apply vlookup_lookup. Qed. Lemma twp_store_offset s E l off vs v : is_Some (vs !! off) → [[{ l ā†¦āˆ— vs }]] #(l +ā‚— off) <- v @ s; E [[{ RET #(); l ā†¦āˆ— <[off:=v]> vs }]]. Proof. iIntros ([w Hlookup] Φ) "Hl HΦ". iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]". iApply (twp_store with "Hl1"). iIntros "Hl1". iApply "HΦ". iApply "Hl2". iApply "Hl1". Qed. Lemma wp_store_offset s E l off vs v : is_Some (vs !! off) → {{{ ā–· l ā†¦āˆ— vs }}} #(l +ā‚— off) <- v @ s; E {{{ RET #(); l ā†¦āˆ— <[off:=v]> vs }}}. Proof. iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ"). iApply (twp_store_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ". Qed. Lemma twp_store_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v : [[{ l ā†¦āˆ— vs }]] #(l +ā‚— off) <- v @ s; E [[{ RET #(); l ā†¦āˆ— vinsert off v vs }]]. Proof. setoid_rewrite vec_to_list_insert. apply twp_store_offset. eexists. by apply vlookup_lookup. Qed. Lemma wp_store_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v : {{{ ā–· l ā†¦āˆ— vs }}} #(l +ā‚— off) <- v @ s; E {{{ RET #(); l ā†¦āˆ— vinsert off v vs }}}. Proof. iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ"). iApply (twp_store_offset_vec with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ". Qed. Lemma twp_cmpxchg_suc_offset s E l off vs v' v1 v2 : vs !! off = Some v' → v' = v1 → vals_compare_safe v' v1 → [[{ l ā†¦āˆ— vs }]] CmpXchg #(l +ā‚— off) v1 v2 @ s; E [[{ RET (v', #true); l ā†¦āˆ— <[off:=v2]> vs }]]. Proof. iIntros (Hlookup ?? Φ) "Hl HΦ". iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]". iApply (twp_cmpxchg_suc with "Hl1"); [done..|]. iIntros "Hl1". iApply "HΦ". iApply "Hl2". iApply "Hl1". Qed. Lemma wp_cmpxchg_suc_offset s E l off vs v' v1 v2 : vs !! off = Some v' → v' = v1 → vals_compare_safe v' v1 → {{{ ā–· l ā†¦āˆ— vs }}} CmpXchg #(l +ā‚— off) v1 v2 @ s; E {{{ RET (v', #true); l ā†¦āˆ— <[off:=v2]> vs }}}. Proof. iIntros (??? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ"). iApply (twp_cmpxchg_suc_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ". Qed. Lemma twp_cmpxchg_suc_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v1 v2 : vs !!! off = v1 → vals_compare_safe (vs !!! off) v1 → [[{ l ā†¦āˆ— vs }]] CmpXchg #(l +ā‚— off) v1 v2 @ s; E [[{ RET (vs !!! off, #true); l ā†¦āˆ— vinsert off v2 vs }]]. Proof. intros. setoid_rewrite vec_to_list_insert. eapply twp_cmpxchg_suc_offset=> //. by apply vlookup_lookup. Qed. Lemma wp_cmpxchg_suc_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v1 v2 : vs !!! off = v1 → vals_compare_safe (vs !!! off) v1 → {{{ ā–· l ā†¦āˆ— vs }}} CmpXchg #(l +ā‚— off) v1 v2 @ s; E {{{ RET (vs !!! off, #true); l ā†¦āˆ— vinsert off v2 vs }}}. Proof. iIntros (?? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ"). iApply (twp_cmpxchg_suc_offset_vec with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ". Qed. Lemma twp_cmpxchg_fail_offset s E l q off vs v0 v1 v2 : vs !! off = Some v0 → v0 ≠ v1 → vals_compare_safe v0 v1 → [[{ l ā†¦āˆ—{q} vs }]] CmpXchg #(l +ā‚— off) v1 v2 @ s; E [[{ RET (v0, #false); l ā†¦āˆ—{q} vs }]]. Proof. iIntros (Hlookup HNEq Hcmp Φ) "Hl HΦ". iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]". iApply (twp_cmpxchg_fail with "Hl1"); first done. { destruct Hcmp; by [ left | right ]. } iIntros "Hl1". iApply "HΦ". iDestruct ("Hl2" $! v0) as "Hl2". rewrite list_insert_id; last done. iApply "Hl2". iApply "Hl1". Qed. Lemma wp_cmpxchg_fail_offset s E l q off vs v0 v1 v2 : vs !! off = Some v0 → v0 ≠ v1 → vals_compare_safe v0 v1 → {{{ ā–· l ā†¦āˆ—{q} vs }}} CmpXchg #(l +ā‚— off) v1 v2 @ s; E {{{ RET (v0, #false); l ā†¦āˆ—{q} vs }}}. Proof. iIntros (??? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ"). iApply (twp_cmpxchg_fail_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ". Qed. Lemma twp_cmpxchg_fail_offset_vec s E l q sz (off : fin sz) (vs : vec val sz) v1 v2 : vs !!! off ≠ v1 → vals_compare_safe (vs !!! off) v1 → [[{ l ā†¦āˆ—{q} vs }]] CmpXchg #(l +ā‚— off) v1 v2 @ s; E [[{ RET (vs !!! off, #false); l ā†¦āˆ—{q} vs }]]. Proof. intros. eapply twp_cmpxchg_fail_offset=> //. by apply vlookup_lookup. Qed. Lemma wp_cmpxchg_fail_offset_vec s E l q sz (off : fin sz) (vs : vec val sz) v1 v2 : vs !!! off ≠ v1 → vals_compare_safe (vs !!! off) v1 → {{{ ā–· l ā†¦āˆ—{q} vs }}} CmpXchg #(l +ā‚— off) v1 v2 @ s; E {{{ RET (vs !!! off, #false); l ā†¦āˆ—{q} vs }}}. Proof. intros. eapply wp_cmpxchg_fail_offset=> //. by apply vlookup_lookup. Qed. Lemma twp_faa_offset s E l off vs (i1 i2 : Z) : vs !! off = Some #i1 → [[{ l ā†¦āˆ— vs }]] FAA #(l +ā‚— off) #i2 @ s; E [[{ RET LitV (LitInt i1); l ā†¦āˆ— <[off:=#(i1 + i2)]> vs }]]. Proof. iIntros (Hlookup Φ) "Hl HΦ". iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]". iApply (twp_faa with "Hl1"). iIntros "Hl1". iApply "HΦ". iApply "Hl2". iApply "Hl1". Qed. Lemma wp_faa_offset s E l off vs (i1 i2 : Z) : vs !! off = Some #i1 → {{{ ā–· l ā†¦āˆ— vs }}} FAA #(l +ā‚— off) #i2 @ s; E {{{ RET LitV (LitInt i1); l ā†¦āˆ— <[off:=#(i1 + i2)]> vs }}}. Proof. iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ"). iApply (twp_faa_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ". Qed. Lemma twp_faa_offset_vec s E l sz (off : fin sz) (vs : vec val sz) (i1 i2 : Z) : vs !!! off = #i1 → [[{ l ā†¦āˆ— vs }]] FAA #(l +ā‚— off) #i2 @ s; E [[{ RET LitV (LitInt i1); l ā†¦āˆ— vinsert off #(i1 + i2) vs }]]. Proof. intros. setoid_rewrite vec_to_list_insert. apply twp_faa_offset=> //. by apply vlookup_lookup. Qed. Lemma wp_faa_offset_vec s E l sz (off : fin sz) (vs : vec val sz) (i1 i2 : Z) : vs !!! off = #i1 → {{{ ā–· l ā†¦āˆ— vs }}} FAA #(l +ā‚— off) #i2 @ s; E {{{ RET LitV (LitInt i1); l ā†¦āˆ— vinsert off #(i1 + i2) vs }}}. Proof. iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ"). iApply (twp_faa_offset_vec with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ". Qed. (** Derived prophecy laws *) (** Lemmas for some particular expression inside the [Resolve]. *) Lemma wp_resolve_proph s E (p : proph_id) (pvs : list (val * val)) v : {{{ proph p pvs }}} ResolveProph (Val $ LitV $ LitProphecy p) (Val v) @ s; E {{{ pvs', RET (LitV LitUnit); ⌜pvs = (LitV LitUnit, v)::pvs'āŒ āˆ— proph p pvs' }}}. Proof. iIntros (Φ) "Hp HΦ". iApply (wp_resolve with "Hp"); first done. iApply lifting.wp_pure_step_later=> //=. iApply wp_value. iIntros "!>" (vs') "HEq Hp". iApply "HΦ". iFrame. Qed. Lemma wp_resolve_cmpxchg_suc s E l (p : proph_id) (pvs : list (val * val)) v1 v2 v : vals_compare_safe v1 v1 → {{{ proph p pvs āˆ— ā–· l ↦ v1 }}} Resolve (CmpXchg #l v1 v2) #p v @ s; E {{{ RET (v1, #true) ; ∃ pvs', ⌜pvs = ((v1, #true)%V, v)::pvs'āŒ āˆ— proph p pvs' āˆ— l ↦ v2 }}}. Proof. iIntros (Hcmp Φ) "[Hp Hl] HΦ". iApply (wp_resolve with "Hp"); first done. assert (val_is_unboxed v1) as Hv1; first by destruct Hcmp. iApply (wp_cmpxchg_suc with "Hl"); [done..|]. iIntros "!> Hl". iIntros (pvs' ->) "Hp". iApply "HΦ". eauto with iFrame. Qed. Lemma wp_resolve_cmpxchg_fail s E l (p : proph_id) (pvs : list (val * val)) q v' v1 v2 v : v' ≠ v1 → vals_compare_safe v' v1 → {{{ proph p pvs āˆ— ā–· l ↦{q} v' }}} Resolve (CmpXchg #l v1 v2) #p v @ s; E {{{ RET (v', #false) ; ∃ pvs', ⌜pvs = ((v', #false)%V, v)::pvs'āŒ āˆ— proph p pvs' āˆ— l ↦{q} v' }}}. Proof. iIntros (NEq Hcmp Φ) "[Hp Hl] HΦ". iApply (wp_resolve with "Hp"); first done. iApply (wp_cmpxchg_fail with "Hl"); [done..|]. iIntros "!> Hl". iIntros (pvs' ->) "Hp". iApply "HΦ". eauto with iFrame. Qed. End lifting. Typeclasses Opaque array.
{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} import Control.Applicative import Control.Monad import Control.Monad.Random import Control.Monad.Trans.Except import qualified Data.Attoparsec.Text as A import Data.List ( foldl' ) #if ! MIN_VERSION_base(4,13,0) import Data.Semigroup ( (<>) ) #endif import qualified Data.Text as T import qualified Data.Text.IO as T import qualified Data.Vector.Storable as V import Numeric.LinearAlgebra ( maxIndex ) import qualified Numeric.LinearAlgebra.Static as SA import Options.Applicative import Grenade import Grenade.Utils.OneHot -- It's logistic regression! -- -- This network is used to show how we can embed a Network as a layer in the larger MNIST -- type. type FL i o = Network '[ FullyConnected i o, Logit ] '[ 'D1 i, 'D1 o, 'D1 o ] -- The definition of our convolutional neural network. -- In the type signature, we have a type level list of shapes which are passed between the layers. -- One can see that the images we are inputing are two dimensional with 28 * 28 pixels. -- It's important to keep the type signatures, as there's many layers which can "squeeze" into the gaps -- between the shapes, so inference can't do it all for us. -- With the mnist data from Kaggle normalised to doubles between 0 and 1, learning rate of 0.01 and 15 iterations, -- this network should get down to about a 1.3% error rate. -- -- /NOTE:/ This model is actually too complex for MNIST, and one should use the type given in the readme instead. -- This one is just here to demonstrate Inception layers in use. -- type MNIST = Network '[ Reshape, Concat ('D3 28 28 1) Trivial ('D3 28 28 14) (InceptionMini 28 28 1 5 9), Pooling 2 2 2 2, Relu, Concat ('D3 14 14 3) (Convolution 15 3 1 1 1 1) ('D3 14 14 15) (InceptionMini 14 14 15 5 10), Crop 1 1 1 1, Pooling 3 3 3 3, Relu, Reshape, FL 288 80, FL 80 10 ] '[ 'D2 28 28, 'D3 28 28 1, 'D3 28 28 15, 'D3 14 14 15, 'D3 14 14 15, 'D3 14 14 18, 'D3 12 12 18, 'D3 4 4 18, 'D3 4 4 18, 'D1 288, 'D1 80, 'D1 10 ] randomMnist :: MonadRandom m => m MNIST randomMnist = randomNetwork convTest :: Int -> FilePath -> FilePath -> LearningParameters -> ExceptT String IO () convTest iterations trainFile validateFile rate = do net0 <- lift randomMnist trainData <- readMNIST trainFile validateData <- readMNIST validateFile lift $ foldM_ (runIteration trainData validateData) net0 [1..iterations] where trainEach rate' !network (i, o) = train rate' network i o runIteration trainRows validateRows net i = do let trained' = foldl' (trainEach ( rate { learningRate = learningRate rate * 0.9 ^ i} )) net trainRows let res = fmap (\(rowP,rowL) -> (rowL,) $ runNet trained' rowP) validateRows let res' = fmap (\(S1D label, S1D prediction) -> (maxIndex (SA.extract label), maxIndex (SA.extract prediction))) res print trained' putStrLn $ "Iteration " ++ show i ++ ": " ++ show (length (filter ((==) <$> fst <*> snd) res')) ++ " of " ++ show (length res') return trained' data MnistOpts = MnistOpts FilePath FilePath Int LearningParameters mnist' :: Parser MnistOpts mnist' = MnistOpts <$> argument str (metavar "TRAIN") <*> argument str (metavar "VALIDATE") <*> option auto (long "iterations" <> short 'i' <> value 15) <*> (LearningParameters <$> option auto (long "train_rate" <> short 'r' <> value 0.01) <*> option auto (long "momentum" <> value 0.9) <*> option auto (long "l2" <> value 0.0005) ) main :: IO () main = do MnistOpts mnist vali iter rate <- execParser (info (mnist' <**> helper) idm) putStrLn "Training convolutional neural network..." res <- runExceptT $ convTest iter mnist vali rate case res of Right () -> pure () Left err -> putStrLn err readMNIST :: FilePath -> ExceptT String IO [(S ('D2 28 28), S ('D1 10))] readMNIST mnist = ExceptT $ do mnistdata <- T.readFile mnist return $ traverse (A.parseOnly parseMNIST) (T.lines mnistdata) parseMNIST :: A.Parser (S ('D2 28 28), S ('D1 10)) parseMNIST = do Just lab <- oneHot <$> A.decimal pixels <- many (A.char ',' >> A.double) image <- maybe (fail "Parsed row was of an incorrect size") pure (fromStorable . V.fromList $ pixels) return (image, lab)
import sys sys.path.append('../') import cv2 import numpy as np from rcnnpose.estimator import BodyPoseEstimator from rcnnpose.utils import draw_body_connections, draw_keypoints, draw_masks estimator = BodyPoseEstimator(pretrained=True) image_src = cv2.imread('media/example.jpg') pred_dict = estimator(image_src, masks=True, keypoints=True) masks = estimator.get_masks(pred_dict['estimator_m'], score_threshold=0.99) keypoints = estimator.get_keypoints(pred_dict['estimator_k'], score_threshold=0.99) image_dst = cv2.cvtColor(image_src, cv2.COLOR_BGR2GRAY) image_dst = cv2.merge([image_dst] * 3) overlay_m = draw_masks(image_dst, masks, color=(0, 255, 0), alpha=0.5) overlay_k = draw_body_connections(image_src, keypoints, thickness=4, alpha=0.7) overlay_k = draw_keypoints(overlay_k, keypoints, radius=5, alpha=0.8) image_dst = np.hstack((image_src, overlay_m, overlay_k)) while True: cv2.imshow('Image Demo', image_dst) if cv2.waitKey(1) & 0xff == 27: # exit if pressed `ESC` break cv2.destroyAllWindows()
#pragma once #include <api/ApiMetadata.hpp> #include <client/Client.hpp> #include <rpc/RpcServer.hpp> #include <fc/variant.hpp> #include <boost/optional.hpp> namespace thinkyoung { namespace rpc { class RpcServer; typedef std::shared_ptr<RpcServer> RpcServerPtr; } } #define CLI_PROMPT_SUFFIX ">>> " namespace thinkyoung { namespace cli { using namespace thinkyoung::client; using namespace thinkyoung::rpc; using namespace thinkyoung::wallet; namespace detail { class CliImpl; } extern bool FILTER_OUTPUT_FOR_TESTS; class Cli { public: Cli(thinkyoung::client::Client* client, std::istream* command_script = nullptr, std::ostream* output_stream = nullptr); virtual ~Cli(); void start(); void set_input_stream_log(boost::optional<std::ostream&> input_stream_log); void set_daemon_mode(bool enable_daemon_mode); void display_status_message(const std::string& message); void display_message(const std::string& message); void process_commands(std::istream* input_stream); void enable_output(bool enable_output); void filter_output_for_tests(bool enable_flag); //Parse and execute a command line. Returns false if line is a quit command. bool execute_command_line(const std::string& line, std::ostream* output = nullptr); void confirm_and_broadcast(SignedTransaction& tx); // hooks to implement custom behavior for interactive command, if the default json-style behavior is undesirable virtual fc::variant parse_argument_of_known_type(fc::buffered_istream& argument_stream, const thinkyoung::api::MethodData& method_data, unsigned parameter_index); virtual fc::variants parse_unrecognized_interactive_command(fc::buffered_istream& argument_stream, const std::string& command); virtual fc::variants parse_recognized_interactive_command(fc::buffered_istream& argument_stream, const thinkyoung::api::MethodData& method_data); virtual fc::variants parse_interactive_command(fc::buffered_istream& argument_stream, const std::string& command); virtual fc::variant execute_interactive_command(const std::string& command, const fc::variants& arguments); virtual void format_and_print_result(const std::string& command, const fc::variants& arguments, const fc::variant& result); private: std::unique_ptr<detail::CliImpl> my; }; typedef std::shared_ptr<Cli> CliPtr; string get_line( std::istream* input_stream, std::ostream* out, const string& prompt = CLI_PROMPT_SUFFIX, bool no_echo = false, fc::thread* cin_thread = nullptr, bool saved_out = false, std::ostream* input_stream_log = nullptr ); } } // thinkyoung::cli
(* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at https://mozilla.org/MPL/2.0/. *) (* Copyright (C) 2018–2020 ANSSI *) From ExtLib Require Import StateMonad MonadTrans. #[local] Existing Instance Monad_stateT. From FreeSpec.Core Require Import Interface Semantics Contract. Notation instrument Ī© i := (stateT Ī© (state (semantics i))). Definition interface_to_instrument `{MayProvide ix i} `(c : contract i Ī©) : ix ~> instrument Ī© ix := fun a e => let* x := lift $ interface_to_state _ e in modify (fun ω => gen_witness_update c ω e x);; ret x. Definition to_instrument `{MayProvide ix i} `(c : contract i Ī©) : impure ix ~> instrument Ī© ix := impure_lift $ interface_to_instrument c. Arguments to_instrument {ix i _ Ī©} (c) {α}. Definition instrument_to_state {i} `(ω : Ī©) : instrument Ī© i ~> state (semantics i) := fun a instr => fst <$> runStateT instr ω. Arguments instrument_to_state {i Ī©} (ω) {α}.
# Load the Adjust client library(httr) library(data.table) library(adjust) # Set Adjust user and app credentials prepare_adjust <- function(usertoken, apptoken) { adjust.setup(user.token=usertoken, app.token=apptoken) }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Orders.Total.Definition open import Orders.Partial.Definition open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import Sets.EquivalenceRelations open import Agda.Primitive using (Level; lzero; lsuc; _āŠ”_) module Setoids.Orders.Total.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {c : _} {_<_ : A → A → Set c} {P : SetoidPartialOrder S _<_} (T : SetoidTotalOrder P) where open SetoidTotalOrder T open SetoidPartialOrder P open Setoid S open Equivalence eq maxInequalitiesR : {a b c : A} → (a < b) → (a < c) → (a < max b c) maxInequalitiesR {a} {b} {c} a<b a<c with totality b c ... | inl (inl x) = a<c ... | inl (inr x) = a<b ... | inr x = a<c minInequalitiesR : {a b c : A} → (a < b) → (a < c) → (a < min b c) minInequalitiesR {a} {b} {c} a<b a<c with totality b c ... | inl (inl x) = a<b ... | inl (inr x) = a<c ... | inr x = a<b maxInequalitiesL : {a b c : A} → (a < c) → (b < c) → (max a b < c) maxInequalitiesL {a} {b} {c} a<b a<c with totality a b ... | inl (inl x) = a<c ... | inl (inr x) = a<b ... | inr x = a<c minInequalitiesL : {a b c : A} → (a < c) → (b < c) → (min a b < c) minInequalitiesL {a} {b} {c} a<b a<c with totality a b ... | inl (inl x) = a<b ... | inl (inr x) = a<c ... | inr x = a<b minLessL : (a b : A) → min a b <= a minLessL a b with totality a b ... | inl (inl x) = inr reflexive ... | inl (inr x) = inl x ... | inr x = inr reflexive minLessR : (a b : A) → min a b <= b minLessR a b with totality a b ... | inl (inl x) = inl x ... | inl (inr x) = inr reflexive ... | inr x = inr x maxGreaterL : (a b : A) → a <= max a b maxGreaterL a b with totality a b ... | inl (inl x) = inl x ... | inl (inr x) = inr reflexive ... | inr x = inr x maxGreaterR : (a b : A) → b <= max a b maxGreaterR a b with totality a b ... | inl (inl x) = inr reflexive ... | inl (inr x) = inl x ... | inr x = inr reflexive
[GOAL] R : Type u_1 instāœ : CommRing R ⊢ bernsteinPolynomial ℤ 3 2 = 3 * X ^ 2 - 3 * X ^ 3 [PROOFSTEP] simp [bernsteinPolynomial, choose] [GOAL] R : Type u_1 instāœ : CommRing R ⊢ (1 + 1 + 1) * X ^ 2 * (1 - X) = 3 * X ^ 2 - 3 * X ^ 3 [PROOFSTEP] norm_num [GOAL] R : Type u_1 instāœ : CommRing R ⊢ 3 * X ^ 2 * (1 - X) = 3 * X ^ 2 - 3 * X ^ 3 [PROOFSTEP] ring [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• h : n < ν ⊢ bernsteinPolynomial R n ν = 0 [PROOFSTEP] simp [bernsteinPolynomial, Nat.choose_eq_zero_of_lt h] [GOAL] R : Type u_1 instāœĀ¹ : CommRing R S : Type u_2 instāœ : CommRing S f : R →+* S n ν : ā„• ⊢ Polynomial.map f (bernsteinPolynomial R n ν) = bernsteinPolynomial S n ν [PROOFSTEP] simp [bernsteinPolynomial] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν ≤ n ⊢ Polynomial.comp (bernsteinPolynomial R n ν) (1 - X) = bernsteinPolynomial R n (n - ν) [PROOFSTEP] simp [bernsteinPolynomial, h, tsub_tsub_assoc, mul_right_comm] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν ≤ n ⊢ bernsteinPolynomial R n ν = Polynomial.comp (bernsteinPolynomial R n (n - ν)) (1 - X) [PROOFSTEP] simp [← flip _ _ _ h, Polynomial.comp_assoc] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ Polynomial.eval 0 (bernsteinPolynomial R n ν) = if ν = 0 then 1 else 0 [PROOFSTEP] rw [bernsteinPolynomial] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ Polynomial.eval 0 (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) = if ν = 0 then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν = 0 ⊢ Polynomial.eval 0 (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) = 1 [PROOFSTEP] subst h [GOAL] case pos R : Type u_1 instāœ : CommRing R n : ā„• ⊢ Polynomial.eval 0 (↑(choose n 0) * X ^ 0 * (1 - X) ^ (n - 0)) = 1 [PROOFSTEP] simp [GOAL] case neg R : Type u_1 instāœ : CommRing R n ν : ā„• h : ¬ν = 0 ⊢ Polynomial.eval 0 (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) = 0 [PROOFSTEP] simp [zero_pow (Nat.pos_of_ne_zero h)] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ Polynomial.eval 1 (bernsteinPolynomial R n ν) = if ν = n then 1 else 0 [PROOFSTEP] rw [bernsteinPolynomial] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ Polynomial.eval 1 (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) = if ν = n then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν = n ⊢ Polynomial.eval 1 (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) = 1 [PROOFSTEP] subst h [GOAL] case pos R : Type u_1 instāœ : CommRing R ν : ā„• ⊢ Polynomial.eval 1 (↑(choose ν ν) * X ^ ν * (1 - X) ^ (ν - ν)) = 1 [PROOFSTEP] simp [GOAL] case neg R : Type u_1 instāœ : CommRing R n ν : ā„• h : ¬ν = n ⊢ Polynomial.eval 1 (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) = 0 [PROOFSTEP] obtain w | w := (n - ν).eq_zero_or_pos [GOAL] case neg.inl R : Type u_1 instāœ : CommRing R n ν : ā„• h : ¬ν = n w : n - ν = 0 ⊢ Polynomial.eval 1 (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) = 0 [PROOFSTEP] simp [Nat.choose_eq_zero_of_lt ((tsub_eq_zero_iff_le.mp w).lt_of_ne (Ne.symm h))] [GOAL] case neg.inr R : Type u_1 instāœ : CommRing R n ν : ā„• h : ¬ν = n w : n - ν > 0 ⊢ Polynomial.eval 1 (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) = 0 [PROOFSTEP] simp [zero_pow w] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑Polynomial.derivative (bernsteinPolynomial R (n + 1) (ν + 1)) = (↑n + 1) * (bernsteinPolynomial R n ν - bernsteinPolynomial R n (ν + 1)) [PROOFSTEP] rw [bernsteinPolynomial] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑Polynomial.derivative (↑(choose (n + 1) (ν + 1)) * X ^ (ν + 1) * (1 - X) ^ (n + 1 - (ν + 1))) = (↑n + 1) * (bernsteinPolynomial R n ν - bernsteinPolynomial R n (ν + 1)) [PROOFSTEP] suffices ((n + 1).choose (ν + 1) : R[X]) * ((↑(ν + 1 : ā„•) : R[X]) * X ^ ν) * (1 - X) ^ (n - ν) - ((n + 1).choose (ν + 1) : R[X]) * X ^ (ν + 1) * ((↑(n - ν) : R[X]) * (1 - X) ^ (n - ν - 1)) = (↑(n + 1) : R[X]) * ((n.choose ν : R[X]) * X ^ ν * (1 - X) ^ (n - ν) - (n.choose (ν + 1) : R[X]) * X ^ (ν + 1) * (1 - X) ^ (n - (ν + 1))) by simpa [Polynomial.derivative_pow, ← sub_eq_add_neg, Nat.succ_sub_succ_eq_sub, Polynomial.derivative_mul, Polynomial.derivative_nat_cast, zero_mul, Nat.cast_add, algebraMap.coe_one, Polynomial.derivative_X, mul_one, zero_add, Polynomial.derivative_sub, Polynomial.derivative_one, zero_sub, mul_neg, Nat.sub_zero, bernsteinPolynomial, map_add, map_natCast, Nat.cast_one] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• this : ↑(choose (n + 1) (ν + 1)) * (↑(ν + 1) * X ^ ν) * (1 - X) ^ (n - ν) - ↑(choose (n + 1) (ν + 1)) * X ^ (ν + 1) * (↑(n - ν) * (1 - X) ^ (n - ν - 1)) = ↑(n + 1) * (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν) - ↑(choose n (ν + 1)) * X ^ (ν + 1) * (1 - X) ^ (n - (ν + 1))) ⊢ ↑Polynomial.derivative (↑(choose (n + 1) (ν + 1)) * X ^ (ν + 1) * (1 - X) ^ (n + 1 - (ν + 1))) = (↑n + 1) * (bernsteinPolynomial R n ν - bernsteinPolynomial R n (ν + 1)) [PROOFSTEP] simpa [Polynomial.derivative_pow, ← sub_eq_add_neg, Nat.succ_sub_succ_eq_sub, Polynomial.derivative_mul, Polynomial.derivative_nat_cast, zero_mul, Nat.cast_add, algebraMap.coe_one, Polynomial.derivative_X, mul_one, zero_add, Polynomial.derivative_sub, Polynomial.derivative_one, zero_sub, mul_neg, Nat.sub_zero, bernsteinPolynomial, map_add, map_natCast, Nat.cast_one] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(choose (n + 1) (ν + 1)) * (↑(ν + 1) * X ^ ν) * (1 - X) ^ (n - ν) - ↑(choose (n + 1) (ν + 1)) * X ^ (ν + 1) * (↑(n - ν) * (1 - X) ^ (n - ν - 1)) = ↑(n + 1) * (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν) - ↑(choose n (ν + 1)) * X ^ (ν + 1) * (1 - X) ^ (n - (ν + 1))) [PROOFSTEP] conv_rhs => rw [mul_sub] -- We'll prove the two terms match up separately. [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• | ↑(n + 1) * (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν) - ↑(choose n (ν + 1)) * X ^ (ν + 1) * (1 - X) ^ (n - (ν + 1))) [PROOFSTEP] rw [mul_sub] -- We'll prove the two terms match up separately. [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• | ↑(n + 1) * (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν) - ↑(choose n (ν + 1)) * X ^ (ν + 1) * (1 - X) ^ (n - (ν + 1))) [PROOFSTEP] rw [mul_sub] -- We'll prove the two terms match up separately. [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• | ↑(n + 1) * (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν) - ↑(choose n (ν + 1)) * X ^ (ν + 1) * (1 - X) ^ (n - (ν + 1))) [PROOFSTEP] rw [mul_sub] -- We'll prove the two terms match up separately. [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(choose (n + 1) (ν + 1)) * (↑(ν + 1) * X ^ ν) * (1 - X) ^ (n - ν) - ↑(choose (n + 1) (ν + 1)) * X ^ (ν + 1) * (↑(n - ν) * (1 - X) ^ (n - ν - 1)) = ↑(n + 1) * (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) - ↑(n + 1) * (↑(choose n (ν + 1)) * X ^ (ν + 1) * (1 - X) ^ (n - (ν + 1))) [PROOFSTEP] refine' congr (congr_arg Sub.sub _) _ [GOAL] case refine'_1 R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(choose (n + 1) (ν + 1)) * (↑(ν + 1) * X ^ ν) * (1 - X) ^ (n - ν) = ↑(n + 1) * (↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν)) [PROOFSTEP] simp only [← mul_assoc] [GOAL] case refine'_1 R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(choose (n + 1) (ν + 1)) * ↑(ν + 1) * X ^ ν * (1 - X) ^ (n - ν) = ↑(n + 1) * ↑(choose n ν) * X ^ ν * (1 - X) ^ (n - ν) [PROOFSTEP] refine' congr (congr_arg (Ā· * Ā·) (congr (congr_arg (Ā· * Ā·) _) rfl)) rfl [GOAL] case refine'_1 R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(choose (n + 1) (ν + 1)) * ↑(ν + 1) = ↑(n + 1) * ↑(choose n ν) [PROOFSTEP] exact_mod_cast congr_arg (fun m : ā„• => (m : R[X])) (Nat.succ_mul_choose_eq n ν).symm [GOAL] case refine'_2 R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(choose (n + 1) (ν + 1)) * X ^ (ν + 1) * (↑(n - ν) * (1 - X) ^ (n - ν - 1)) = ↑(n + 1) * (↑(choose n (ν + 1)) * X ^ (ν + 1) * (1 - X) ^ (n - (ν + 1))) [PROOFSTEP] rw [← tsub_add_eq_tsub_tsub, ← mul_assoc, ← mul_assoc] [GOAL] case refine'_2 R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(choose (n + 1) (ν + 1)) * X ^ (ν + 1) * ↑(n - ν) * (1 - X) ^ (n - (ν + 1)) = ↑(n + 1) * (↑(choose n (ν + 1)) * X ^ (ν + 1)) * (1 - X) ^ (n - (ν + 1)) [PROOFSTEP] congr 1 [GOAL] case refine'_2.e_a R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(choose (n + 1) (ν + 1)) * X ^ (ν + 1) * ↑(n - ν) = ↑(n + 1) * (↑(choose n (ν + 1)) * X ^ (ν + 1)) [PROOFSTEP] rw [mul_comm, ← mul_assoc, ← mul_assoc] [GOAL] case refine'_2.e_a R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(n - ν) * ↑(choose (n + 1) (ν + 1)) * X ^ (ν + 1) = ↑(n + 1) * ↑(choose n (ν + 1)) * X ^ (ν + 1) [PROOFSTEP] congr 1 [GOAL] case refine'_2.e_a.e_a R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑(n - ν) * ↑(choose (n + 1) (ν + 1)) = ↑(n + 1) * ↑(choose n (ν + 1)) [PROOFSTEP] norm_cast [GOAL] case refine'_2.e_a.e_a R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑((n - ν) * choose (n + 1) (ν + 1)) = ↑((n + 1) * choose n (ν + 1)) [PROOFSTEP] congr 1 [GOAL] case refine'_2.e_a.e_a.e_a R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ (n - ν) * choose (n + 1) (ν + 1) = (n + 1) * choose n (ν + 1) [PROOFSTEP] convert (Nat.choose_mul_succ_eq n (ν + 1)).symm using 1 [GOAL] case h.e'_2 R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ (n - ν) * choose (n + 1) (ν + 1) = choose (n + 1) (ν + 1) * (n + 1 - (ν + 1)) [PROOFSTEP] rw [mul_comm, Nat.succ_sub_succ_eq_sub] [GOAL] case h.e'_3 R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ (n + 1) * choose n (ν + 1) = choose n (ν + 1) * (n + 1) [PROOFSTEP] apply mul_comm [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ ↑Polynomial.derivative (bernsteinPolynomial R n (ν + 1)) = ↑n * (bernsteinPolynomial R (n - 1) ν - bernsteinPolynomial R (n - 1) (ν + 1)) [PROOFSTEP] cases n [GOAL] case zero R : Type u_1 instāœ : CommRing R ν : ā„• ⊢ ↑Polynomial.derivative (bernsteinPolynomial R Nat.zero (ν + 1)) = ↑Nat.zero * (bernsteinPolynomial R (Nat.zero - 1) ν - bernsteinPolynomial R (Nat.zero - 1) (ν + 1)) [PROOFSTEP] simp [bernsteinPolynomial] [GOAL] case succ R : Type u_1 instāœ : CommRing R ν nāœ : ā„• ⊢ ↑Polynomial.derivative (bernsteinPolynomial R (Nat.succ nāœ) (ν + 1)) = ↑(Nat.succ nāœ) * (bernsteinPolynomial R (Nat.succ nāœ - 1) ν - bernsteinPolynomial R (Nat.succ nāœ - 1) (ν + 1)) [PROOFSTEP] rw [Nat.cast_succ] [GOAL] case succ R : Type u_1 instāœ : CommRing R ν nāœ : ā„• ⊢ ↑Polynomial.derivative (bernsteinPolynomial R (Nat.succ nāœ) (ν + 1)) = (↑nāœ + 1) * (bernsteinPolynomial R (Nat.succ nāœ - 1) ν - bernsteinPolynomial R (Nat.succ nāœ - 1) (ν + 1)) [PROOFSTEP] apply derivative_succ_aux [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• ⊢ ↑Polynomial.derivative (bernsteinPolynomial R n 0) = -↑n * bernsteinPolynomial R (n - 1) 0 [PROOFSTEP] simp [bernsteinPolynomial, Polynomial.derivative_pow] [GOAL] R : Type u_1 instāœ : CommRing R n ν k : ā„• ⊢ k < ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n ν)) = 0 [PROOFSTEP] cases' ν with ν [GOAL] case zero R : Type u_1 instāœ : CommRing R n k : ā„• ⊢ k < Nat.zero → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n Nat.zero)) = 0 [PROOFSTEP] rintro ⟨⟩ [GOAL] case succ R : Type u_1 instāœ : CommRing R n k ν : ā„• ⊢ k < Nat.succ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n (Nat.succ ν))) = 0 [PROOFSTEP] rw [Nat.lt_succ_iff] [GOAL] case succ R : Type u_1 instāœ : CommRing R n k ν : ā„• ⊢ k ≤ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n (Nat.succ ν))) = 0 [PROOFSTEP] induction' k with k ih generalizing n ν [GOAL] case succ.zero R : Type u_1 instāœ : CommRing R nāœ Ī½āœ n ν : ā„• ⊢ Nat.zero ≤ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[Nat.zero] (bernsteinPolynomial R n (Nat.succ ν))) = 0 [PROOFSTEP] simp [eval_at_0] [GOAL] case succ.succ R : Type u_1 instāœ : CommRing R nāœ Ī½āœ k : ā„• ih : āˆ€ (n ν : ā„•), k ≤ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n (Nat.succ ν))) = 0 n ν : ā„• ⊢ Nat.succ k ≤ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[Nat.succ k] (bernsteinPolynomial R n (Nat.succ ν))) = 0 [PROOFSTEP] simp only [derivative_succ, Int.coe_nat_eq_zero, mul_eq_zero, Function.comp_apply, Function.iterate_succ, Polynomial.iterate_derivative_sub, Polynomial.iterate_derivative_nat_cast_mul, Polynomial.eval_mul, Polynomial.eval_nat_cast, Polynomial.eval_sub] [GOAL] case succ.succ R : Type u_1 instāœ : CommRing R nāœ Ī½āœ k : ā„• ih : āˆ€ (n ν : ā„•), k ≤ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n (Nat.succ ν))) = 0 n ν : ā„• ⊢ Nat.succ k ≤ ν → ↑n * (Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R (n - 1) ν)) - Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R (n - 1) (ν + 1)))) = 0 [PROOFSTEP] intro h [GOAL] case succ.succ R : Type u_1 instāœ : CommRing R nāœ Ī½āœ k : ā„• ih : āˆ€ (n ν : ā„•), k ≤ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n (Nat.succ ν))) = 0 n ν : ā„• h : Nat.succ k ≤ ν ⊢ ↑n * (Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R (n - 1) ν)) - Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R (n - 1) (ν + 1)))) = 0 [PROOFSTEP] apply mul_eq_zero_of_right [GOAL] case succ.succ.h R : Type u_1 instāœ : CommRing R nāœ Ī½āœ k : ā„• ih : āˆ€ (n ν : ā„•), k ≤ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n (Nat.succ ν))) = 0 n ν : ā„• h : Nat.succ k ≤ ν ⊢ Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R (n - 1) ν)) - Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R (n - 1) (ν + 1))) = 0 [PROOFSTEP] rw [ih _ _ (Nat.le_of_succ_le h), sub_zero] [GOAL] case succ.succ.h R : Type u_1 instāœ : CommRing R nāœ Ī½āœ k : ā„• ih : āˆ€ (n ν : ā„•), k ≤ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n (Nat.succ ν))) = 0 n ν : ā„• h : Nat.succ k ≤ ν ⊢ Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R (n - 1) ν)) = 0 [PROOFSTEP] convert ih _ _ (Nat.pred_le_pred h) [GOAL] case h.e'_2.h.e'_4.h.h.e'_4.h.e'_4 R : Type u_1 instāœ : CommRing R nāœ Ī½āœ k : ā„• ih : āˆ€ (n ν : ā„•), k ≤ ν → Polynomial.eval 0 ((↑Polynomial.derivative)^[k] (bernsteinPolynomial R n (Nat.succ ν))) = 0 n ν : ā„• h : Nat.succ k ≤ ν e_2āœ : Ring.toSemiring = CommSemiring.toSemiring ⊢ ν = Nat.succ (Nat.pred ν) [PROOFSTEP] exact (Nat.succ_pred_eq_of_pos (k.succ_pos.trans_le h)).symm [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• ⊢ eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) [PROOFSTEP] by_cases h : ν ≤ n [GOAL] case pos R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν ≤ n ⊢ eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) [PROOFSTEP] induction' ν with ν ih generalizing n [GOAL] case pos.zero R : Type u_1 instāœ : CommRing R nāœ ν : ā„• hāœ : ν ≤ nāœ n : ā„• h : Nat.zero ≤ n ⊢ eval 0 ((↑derivative)^[Nat.zero] (bernsteinPolynomial R n Nat.zero)) = eval (↑(n - (Nat.zero - 1))) (pochhammer R Nat.zero) [PROOFSTEP] simp [eval_at_0] [GOAL] case pos.succ R : Type u_1 instāœ : CommRing R nāœ Ī½āœ : ā„• hāœ : Ī½āœ ≤ nāœ ν : ā„• ih : āˆ€ (n : ā„•), ν ≤ n → eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) n : ā„• h : Nat.succ ν ≤ n ⊢ eval 0 ((↑derivative)^[Nat.succ ν] (bernsteinPolynomial R n (Nat.succ ν))) = eval (↑(n - (Nat.succ ν - 1))) (pochhammer R (Nat.succ ν)) [PROOFSTEP] have h' : ν ≤ n - 1 := le_tsub_of_add_le_right h [GOAL] case pos.succ R : Type u_1 instāœ : CommRing R nāœ Ī½āœ : ā„• hāœ : Ī½āœ ≤ nāœ ν : ā„• ih : āˆ€ (n : ā„•), ν ≤ n → eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) n : ā„• h : Nat.succ ν ≤ n h' : ν ≤ n - 1 ⊢ eval 0 ((↑derivative)^[Nat.succ ν] (bernsteinPolynomial R n (Nat.succ ν))) = eval (↑(n - (Nat.succ ν - 1))) (pochhammer R (Nat.succ ν)) [PROOFSTEP] simp only [derivative_succ, ih (n - 1) h', iterate_derivative_succ_at_0_eq_zero, Nat.succ_sub_succ_eq_sub, tsub_zero, sub_zero, iterate_derivative_sub, iterate_derivative_nat_cast_mul, eval_one, eval_mul, eval_add, eval_sub, eval_X, eval_comp, eval_nat_cast, Function.comp_apply, Function.iterate_succ, pochhammer_succ_left] [GOAL] case pos.succ R : Type u_1 instāœ : CommRing R nāœ Ī½āœ : ā„• hāœ : Ī½āœ ≤ nāœ ν : ā„• ih : āˆ€ (n : ā„•), ν ≤ n → eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) n : ā„• h : Nat.succ ν ≤ n h' : ν ≤ n - 1 ⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (pochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (pochhammer R ν) [PROOFSTEP] obtain rfl | h'' := ν.eq_zero_or_pos [GOAL] case pos.succ.inl R : Type u_1 instāœ : CommRing R nāœ ν : ā„• hāœ : ν ≤ nāœ n : ā„• ih : āˆ€ (n : ā„•), 0 ≤ n → eval 0 ((↑derivative)^[0] (bernsteinPolynomial R n 0)) = eval (↑(n - (0 - 1))) (pochhammer R 0) h : Nat.succ 0 ≤ n h' : 0 ≤ n - 1 ⊢ ↑n * eval (↑(n - 1 - (0 - 1))) (pochhammer R 0) = ↑(n - 0) * eval (↑(n - 0) + 1) (pochhammer R 0) [PROOFSTEP] simp [GOAL] case pos.succ.inr R : Type u_1 instāœ : CommRing R nāœ Ī½āœ : ā„• hāœ : Ī½āœ ≤ nāœ ν : ā„• ih : āˆ€ (n : ā„•), ν ≤ n → eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) n : ā„• h : Nat.succ ν ≤ n h' : ν ≤ n - 1 h'' : ν > 0 ⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (pochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (pochhammer R ν) [PROOFSTEP] have : n - 1 - (ν - 1) = n - ν := by rw [gt_iff_lt, ← Nat.succ_le_iff] at h'' rw [← tsub_add_eq_tsub_tsub, add_comm, tsub_add_cancel_of_le h''] [GOAL] R : Type u_1 instāœ : CommRing R nāœ Ī½āœ : ā„• hāœ : Ī½āœ ≤ nāœ ν : ā„• ih : āˆ€ (n : ā„•), ν ≤ n → eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) n : ā„• h : Nat.succ ν ≤ n h' : ν ≤ n - 1 h'' : ν > 0 ⊢ n - 1 - (ν - 1) = n - ν [PROOFSTEP] rw [gt_iff_lt, ← Nat.succ_le_iff] at h'' [GOAL] R : Type u_1 instāœ : CommRing R nāœ Ī½āœ : ā„• hāœ : Ī½āœ ≤ nāœ ν : ā„• ih : āˆ€ (n : ā„•), ν ≤ n → eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) n : ā„• h : Nat.succ ν ≤ n h' : ν ≤ n - 1 h'' : Nat.succ 0 ≤ ν ⊢ n - 1 - (ν - 1) = n - ν [PROOFSTEP] rw [← tsub_add_eq_tsub_tsub, add_comm, tsub_add_cancel_of_le h''] [GOAL] case pos.succ.inr R : Type u_1 instāœ : CommRing R nāœ Ī½āœ : ā„• hāœ : Ī½āœ ≤ nāœ ν : ā„• ih : āˆ€ (n : ā„•), ν ≤ n → eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) n : ā„• h : Nat.succ ν ≤ n h' : ν ≤ n - 1 h'' : ν > 0 this : n - 1 - (ν - 1) = n - ν ⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (pochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (pochhammer R ν) [PROOFSTEP] rw [this, pochhammer_eval_succ] [GOAL] case pos.succ.inr R : Type u_1 instāœ : CommRing R nāœ Ī½āœ : ā„• hāœ : Ī½āœ ≤ nāœ ν : ā„• ih : āˆ€ (n : ā„•), ν ≤ n → eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) n : ā„• h : Nat.succ ν ≤ n h' : ν ≤ n - 1 h'' : ν > 0 this : n - 1 - (ν - 1) = n - ν ⊢ ↑n * eval (↑(n - ν)) (pochhammer R ν) = (↑(n - ν) + ↑ν) * eval (↑(n - ν)) (pochhammer R ν) [PROOFSTEP] rw_mod_cast [tsub_add_cancel_of_le (h'.trans n.pred_le)] [GOAL] case neg R : Type u_1 instāœ : CommRing R n ν : ā„• h : ¬ν ≤ n ⊢ eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) [PROOFSTEP] simp only [not_le] at h [GOAL] case neg R : Type u_1 instāœ : CommRing R n ν : ā„• h : n < ν ⊢ eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν) [PROOFSTEP] rw [tsub_eq_zero_iff_le.mpr (Nat.le_pred_of_lt h), eq_zero_of_lt R h] [GOAL] case neg R : Type u_1 instāœ : CommRing R n ν : ā„• h : n < ν ⊢ eval 0 ((↑derivative)^[ν] 0) = eval (↑0) (pochhammer R ν) [PROOFSTEP] simp [pos_iff_ne_zero.mp (pos_of_gt h)] [GOAL] R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n ν : ā„• h : ν ≤ n ⊢ eval 0 ((↑derivative)^[ν] (bernsteinPolynomial R n ν)) ≠ 0 [PROOFSTEP] simp only [Int.coe_nat_eq_zero, bernsteinPolynomial.iterate_derivative_at_0, Ne.def, Nat.cast_eq_zero] [GOAL] R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n ν : ā„• h : ν ≤ n ⊢ ¬eval (↑(n - (ν - 1))) (pochhammer R ν) = 0 [PROOFSTEP] simp only [← pochhammer_eval_cast] [GOAL] R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n ν : ā„• h : ν ≤ n ⊢ ¬↑(eval (n - (ν - 1)) (pochhammer ā„• ν)) = 0 [PROOFSTEP] norm_cast [GOAL] R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n ν : ā„• h : ν ≤ n ⊢ ¬eval (n - (ν - 1)) (pochhammer ā„• ν) = 0 [PROOFSTEP] apply ne_of_gt [GOAL] case h R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n ν : ā„• h : ν ≤ n ⊢ 0 < eval (n - (ν - 1)) (pochhammer ā„• ν) [PROOFSTEP] obtain rfl | h' := Nat.eq_zero_or_pos ν [GOAL] case h.inl R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n : ā„• h : 0 ≤ n ⊢ 0 < eval (n - (0 - 1)) (pochhammer ā„• 0) [PROOFSTEP] simp [GOAL] case h.inr R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n ν : ā„• h : ν ≤ n h' : ν > 0 ⊢ 0 < eval (n - (ν - 1)) (pochhammer ā„• ν) [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos h'] at h [GOAL] case h.inr R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n ν : ā„• h : Nat.succ (Nat.pred ν) ≤ n h' : ν > 0 ⊢ 0 < eval (n - (ν - 1)) (pochhammer ā„• ν) [PROOFSTEP] exact pochhammer_pos _ _ (tsub_pos_of_lt (Nat.lt_of_succ_le h)) [GOAL] R : Type u_1 instāœ : CommRing R n ν k : ā„• ⊢ k < n - ν → eval 1 ((↑derivative)^[k] (bernsteinPolynomial R n ν)) = 0 [PROOFSTEP] intro w [GOAL] R : Type u_1 instāœ : CommRing R n ν k : ā„• w : k < n - ν ⊢ eval 1 ((↑derivative)^[k] (bernsteinPolynomial R n ν)) = 0 [PROOFSTEP] rw [flip' _ _ _ (tsub_pos_iff_lt.mp (pos_of_gt w)).le] [GOAL] R : Type u_1 instāœ : CommRing R n ν k : ā„• w : k < n - ν ⊢ eval 1 ((↑derivative)^[k] (comp (bernsteinPolynomial R n (n - ν)) (1 - X))) = 0 [PROOFSTEP] simp [Polynomial.eval_comp, iterate_derivative_at_0_eq_zero_of_lt R n w] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν ≤ n ⊢ eval 1 ((↑derivative)^[n - ν] (bernsteinPolynomial R n ν)) = (-1) ^ (n - ν) * eval (↑ν + 1) (pochhammer R (n - ν)) [PROOFSTEP] rw [flip' _ _ _ h] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν ≤ n ⊢ eval 1 ((↑derivative)^[n - ν] (comp (bernsteinPolynomial R n (n - ν)) (1 - X))) = (-1) ^ (n - ν) * eval (↑ν + 1) (pochhammer R (n - ν)) [PROOFSTEP] simp [Polynomial.eval_comp, h] [GOAL] R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν ≤ n ⊢ (-1) ^ (n - ν) * eval (↑(n - (n - ν - 1))) (pochhammer R (n - ν)) = (-1) ^ (n - ν) * eval (↑ν + 1) (pochhammer R (n - ν)) [PROOFSTEP] obtain rfl | h' := h.eq_or_lt [GOAL] case inl R : Type u_1 instāœ : CommRing R ν : ā„• h : ν ≤ ν ⊢ (-1) ^ (ν - ν) * eval (↑(ν - (ν - ν - 1))) (pochhammer R (ν - ν)) = (-1) ^ (ν - ν) * eval (↑ν + 1) (pochhammer R (ν - ν)) [PROOFSTEP] simp [GOAL] case inr R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν ≤ n h' : ν < n ⊢ (-1) ^ (n - ν) * eval (↑(n - (n - ν - 1))) (pochhammer R (n - ν)) = (-1) ^ (n - ν) * eval (↑ν + 1) (pochhammer R (n - ν)) [PROOFSTEP] congr [GOAL] case inr.e_a.e_a R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν ≤ n h' : ν < n ⊢ ↑(n - (n - ν - 1)) = ↑ν + 1 [PROOFSTEP] norm_cast [GOAL] case inr.e_a.e_a R : Type u_1 instāœ : CommRing R n ν : ā„• h : ν ≤ n h' : ν < n ⊢ ↑(n - (n - ν - 1)) = ↑(ν + 1) [PROOFSTEP] rw [← tsub_add_eq_tsub_tsub, tsub_tsub_cancel_of_le (Nat.succ_le_iff.mpr h')] [GOAL] R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n ν : ā„• h : ν ≤ n ⊢ eval 1 ((↑derivative)^[n - ν] (bernsteinPolynomial R n ν)) ≠ 0 [PROOFSTEP] rw [bernsteinPolynomial.iterate_derivative_at_1 _ _ _ h, Ne.def, neg_one_pow_mul_eq_zero_iff, ← Nat.cast_succ, ← pochhammer_eval_cast, ← Nat.cast_zero, Nat.cast_inj] [GOAL] R : Type u_1 instāœĀ¹ : CommRing R instāœ : CharZero R n ν : ā„• h : ν ≤ n ⊢ ¬eval (Nat.succ ν) (pochhammer ā„• (n - ν)) = 0 [PROOFSTEP] exact (pochhammer_pos _ _ (Nat.succ_pos ν)).ne' [GOAL] R : Type u_1 instāœ : CommRing R n k : ā„• h : k ≤ n + 1 ⊢ LinearIndependent ā„š fun ν => bernsteinPolynomial ā„š n ↑ν [PROOFSTEP] induction' k with k ih [GOAL] case zero R : Type u_1 instāœ : CommRing R n k : ā„• hāœ : k ≤ n + 1 h : Nat.zero ≤ n + 1 ⊢ LinearIndependent ā„š fun ν => bernsteinPolynomial ā„š n ↑ν [PROOFSTEP] simp [Nat.zero_eq] [GOAL] case zero R : Type u_1 instāœ : CommRing R n k : ā„• hāœ : k ≤ n + 1 h : Nat.zero ≤ n + 1 ⊢ LinearIndependent ā„š fun ν => bernsteinPolynomial ā„š n ↑ν [PROOFSTEP] apply linearIndependent_empty_type [GOAL] case succ R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• ih : k ≤ n + 1 → LinearIndependent ā„š fun ν => bernsteinPolynomial ā„š n ↑ν h : Nat.succ k ≤ n + 1 ⊢ LinearIndependent ā„š fun ν => bernsteinPolynomial ā„š n ↑ν [PROOFSTEP] apply linearIndependent_fin_succ'.mpr [GOAL] case succ R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• ih : k ≤ n + 1 → LinearIndependent ā„š fun ν => bernsteinPolynomial ā„š n ↑ν h : Nat.succ k ≤ n + 1 ⊢ LinearIndependent ā„š (Fin.init fun ν => bernsteinPolynomial ā„š n ↑ν) ∧ ¬bernsteinPolynomial ā„š n ↑(Fin.last k) ∈ span ā„š (Set.range (Fin.init fun ν => bernsteinPolynomial ā„š n ↑ν)) [PROOFSTEP] fconstructor [GOAL] case succ.left R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• ih : k ≤ n + 1 → LinearIndependent ā„š fun ν => bernsteinPolynomial ā„š n ↑ν h : Nat.succ k ≤ n + 1 ⊢ LinearIndependent ā„š (Fin.init fun ν => bernsteinPolynomial ā„š n ↑ν) [PROOFSTEP] exact ih (le_of_lt h) [GOAL] case succ.right R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• ih : k ≤ n + 1 → LinearIndependent ā„š fun ν => bernsteinPolynomial ā„š n ↑ν h : Nat.succ k ≤ n + 1 ⊢ ¬bernsteinPolynomial ā„š n ↑(Fin.last k) ∈ span ā„š (Set.range (Fin.init fun ν => bernsteinPolynomial ā„š n ↑ν)) [PROOFSTEP] clear ih [GOAL] case succ.right R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : Nat.succ k ≤ n + 1 ⊢ ¬bernsteinPolynomial ā„š n ↑(Fin.last k) ∈ span ā„š (Set.range (Fin.init fun ν => bernsteinPolynomial ā„š n ↑ν)) [PROOFSTEP] simp only [Nat.succ_eq_add_one, add_le_add_iff_right] at h [GOAL] case succ.right R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n ⊢ ¬bernsteinPolynomial ā„š n ↑(Fin.last k) ∈ span ā„š (Set.range (Fin.init fun ν => bernsteinPolynomial ā„š n ↑ν)) [PROOFSTEP] simp only [Fin.val_last, Fin.init_def] [GOAL] case succ.right R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n ⊢ ¬bernsteinPolynomial ā„š n k ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑(Fin.castSucc k_1)) [PROOFSTEP] dsimp [GOAL] case succ.right R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n ⊢ ¬bernsteinPolynomial ā„š n k ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) [PROOFSTEP] apply not_mem_span_of_apply_not_mem_span_image (@Polynomial.derivative ā„š _ ^ (n - k)) [GOAL] case succ.right R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n ⊢ ¬↑(derivative ^ (n - k)) (bernsteinPolynomial ā„š n k) ∈ span ā„š (↑(derivative ^ (n - k)) '' Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) [PROOFSTEP] simp only [not_exists, not_and, Submodule.mem_map, Submodule.span_image] [GOAL] case succ.right R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n ⊢ āˆ€ (x : ā„š[X]), x ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) → ¬↑(derivative ^ (n - k)) x = ↑(derivative ^ (n - k)) (bernsteinPolynomial ā„š n k) [PROOFSTEP] intro p m [GOAL] case succ.right R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) ⊢ ¬↑(derivative ^ (n - k)) p = ↑(derivative ^ (n - k)) (bernsteinPolynomial ā„š n k) [PROOFSTEP] apply_fun Polynomial.eval (1 : ā„š) [GOAL] R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) ⊢ eval 1 (↑(derivative ^ (n - k)) p) ≠ eval 1 (↑(derivative ^ (n - k)) (bernsteinPolynomial ā„š n k)) [PROOFSTEP] simp only [LinearMap.pow_apply] -- The right hand side is nonzero, -- so it will suffice to show the left hand side is always zero. [GOAL] R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) ⊢ eval 1 ((↑derivative)^[n - k] p) ≠ eval 1 ((↑derivative)^[n - k] (bernsteinPolynomial ā„š n k)) [PROOFSTEP] suffices (Polynomial.derivative^[n - k] p).eval 1 = 0 by rw [this] exact (iterate_derivative_at_1_ne_zero ā„š n k h).symm [GOAL] R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) this : eval 1 ((↑derivative)^[n - k] p) = 0 ⊢ eval 1 ((↑derivative)^[n - k] p) ≠ eval 1 ((↑derivative)^[n - k] (bernsteinPolynomial ā„š n k)) [PROOFSTEP] rw [this] [GOAL] R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) this : eval 1 ((↑derivative)^[n - k] p) = 0 ⊢ 0 ≠ eval 1 ((↑derivative)^[n - k] (bernsteinPolynomial ā„š n k)) [PROOFSTEP] exact (iterate_derivative_at_1_ne_zero ā„š n k h).symm [GOAL] R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) ⊢ eval 1 ((↑derivative)^[n - k] p) = 0 [PROOFSTEP] refine span_induction m ?_ ?_ ?_ ?_ [GOAL] case refine_1 R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) ⊢ āˆ€ (x : ā„š[X]), (x ∈ Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) → eval 1 ((↑derivative)^[n - k] x) = 0 [PROOFSTEP] simp [GOAL] case refine_1 R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) ⊢ āˆ€ (a : Fin k), eval 1 ((↑derivative)^[n - k] (bernsteinPolynomial ā„š n ↑a)) = 0 [PROOFSTEP] rintro ⟨a, w⟩ [GOAL] case refine_1.mk R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) a : ā„• w : a < k ⊢ eval 1 ((↑derivative)^[n - k] (bernsteinPolynomial ā„š n ↑{ val := a, isLt := w })) = 0 [PROOFSTEP] simp only [Fin.val_mk] [GOAL] case refine_1.mk R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) a : ā„• w : a < k ⊢ eval 1 ((↑derivative)^[n - k] (bernsteinPolynomial ā„š n a)) = 0 [PROOFSTEP] rw [iterate_derivative_at_1_eq_zero_of_lt ā„š n ((tsub_lt_tsub_iff_left_of_le h).mpr w)] [GOAL] case refine_2 R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) ⊢ eval 1 ((↑derivative)^[n - k] 0) = 0 [PROOFSTEP] simp [GOAL] case refine_3 R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) ⊢ āˆ€ (x y : ā„š[X]), eval 1 ((↑derivative)^[n - k] x) = 0 → eval 1 ((↑derivative)^[n - k] y) = 0 → eval 1 ((↑derivative)^[n - k] (x + y)) = 0 [PROOFSTEP] intro x y hx hy [GOAL] case refine_3 R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) x y : ā„š[X] hx : eval 1 ((↑derivative)^[n - k] x) = 0 hy : eval 1 ((↑derivative)^[n - k] y) = 0 ⊢ eval 1 ((↑derivative)^[n - k] (x + y)) = 0 [PROOFSTEP] simp [hx, hy] [GOAL] case refine_4 R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœ : kāœ ≤ n + 1 k : ā„• h : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) ⊢ āˆ€ (a : ā„š) (x : ā„š[X]), eval 1 ((↑derivative)^[n - k] x) = 0 → eval 1 ((↑derivative)^[n - k] (a • x)) = 0 [PROOFSTEP] intro a x h [GOAL] case refine_4 R : Type u_1 instāœ : CommRing R n kāœ : ā„• hāœĀ¹ : kāœ ≤ n + 1 k : ā„• hāœ : k ≤ n p : ā„š[X] m : p ∈ span ā„š (Set.range fun k_1 => bernsteinPolynomial ā„š n ↑k_1) a : ā„š x : ā„š[X] h : eval 1 ((↑derivative)^[n - k] x) = 0 ⊢ eval 1 ((↑derivative)^[n - k] (a • x)) = 0 [PROOFSTEP] simp [h] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• ⊢ āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = (X + (1 - X)) ^ n [PROOFSTEP] rw [add_pow] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• ⊢ āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ m in Finset.range (n + 1), X ^ m * (1 - X) ^ (n - m) * ↑(choose n m) [PROOFSTEP] simp only [bernsteinPolynomial, mul_comm, mul_assoc, mul_left_comm] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• ⊢ (X + (1 - X)) ^ n = 1 [PROOFSTEP] simp [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• ⊢ āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν = n • X [PROOFSTEP] let x : MvPolynomial Bool R := MvPolynomial.X true [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true ⊢ āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν = n • X [PROOFSTEP] let y : MvPolynomial Bool R := MvPolynomial.X false [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false ⊢ āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν = n • X [PROOFSTEP] have pderiv_true_x : pderiv true x = 1 := by rw [pderiv_X]; rfl [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false ⊢ ↑(pderiv true) x = 1 [PROOFSTEP] rw [pderiv_X] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false ⊢ Pi.single true 1 true = 1 [PROOFSTEP] rfl [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 ⊢ āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν = n • X [PROOFSTEP] have pderiv_true_y : pderiv true y = 0 := by rw [pderiv_X]; rfl [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 ⊢ ↑(pderiv true) y = 0 [PROOFSTEP] rw [pderiv_X] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 ⊢ Pi.single true 1 false = 0 [PROOFSTEP] rfl [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 ⊢ āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν = n • X [PROOFSTEP] let e : Bool → R[X] := fun i => cond i X (1 - X) -- Start with `(x+y)^n = (x+y)^n`, -- take the `x`-derivative, evaluate at `x=X, y=1-X`, and multiply by `X`: [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν = n • X [PROOFSTEP] trans MvPolynomial.aeval e (pderiv true ((x + y) ^ n)) * X [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν = ↑(MvPolynomial.aeval e) (↑(pderiv true) ((x + y) ^ n)) * X [PROOFSTEP] have w : āˆ€ k : ā„•, k • bernsteinPolynomial R n k = (k : R[X]) * Polynomial.X ^ (k - 1) * (1 - Polynomial.X) ^ (n - k) * (n.choose k : R[X]) * Polynomial.X := by rintro (_ | k) Ā· simp Ā· rw [bernsteinPolynomial] simp only [← nat_cast_mul, Nat.succ_eq_add_one, Nat.add_succ_sub_one, add_zero, pow_succ] push_cast ring [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ āˆ€ (k : ā„•), k • bernsteinPolynomial R n k = ↑k * X ^ (k - 1) * (1 - X) ^ (n - k) * ↑(choose n k) * X [PROOFSTEP] rintro (_ | k) [GOAL] case zero R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ Nat.zero • bernsteinPolynomial R n Nat.zero = ↑Nat.zero * X ^ (Nat.zero - 1) * (1 - X) ^ (n - Nat.zero) * ↑(choose n Nat.zero) * X [PROOFSTEP] simp [GOAL] case succ R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X k : ā„• ⊢ Nat.succ k • bernsteinPolynomial R n (Nat.succ k) = ↑(Nat.succ k) * X ^ (Nat.succ k - 1) * (1 - X) ^ (n - Nat.succ k) * ↑(choose n (Nat.succ k)) * X [PROOFSTEP] rw [bernsteinPolynomial] [GOAL] case succ R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X k : ā„• ⊢ Nat.succ k • (↑(choose n (Nat.succ k)) * X ^ Nat.succ k * (1 - X) ^ (n - Nat.succ k)) = ↑(Nat.succ k) * X ^ (Nat.succ k - 1) * (1 - X) ^ (n - Nat.succ k) * ↑(choose n (Nat.succ k)) * X [PROOFSTEP] simp only [← nat_cast_mul, Nat.succ_eq_add_one, Nat.add_succ_sub_one, add_zero, pow_succ] [GOAL] case succ R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X k : ā„• ⊢ ↑(k + 1) * (↑(choose n (k + 1)) * (X * X ^ k) * (1 - X) ^ (n - (k + 1))) = ↑(k + 1) * X ^ k * (1 - X) ^ (n - (k + 1)) * ↑(choose n (k + 1)) * X [PROOFSTEP] push_cast [GOAL] case succ R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X k : ā„• ⊢ (↑k + 1) * (↑(choose n (k + 1)) * (X * X ^ k) * (1 - X) ^ (n - (k + 1))) = (↑k + 1) * X ^ k * (1 - X) ^ (n - (k + 1)) * ↑(choose n (k + 1)) * X [PROOFSTEP] ring [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X w : āˆ€ (k : ā„•), k • bernsteinPolynomial R n k = ↑k * X ^ (k - 1) * (1 - X) ^ (n - k) * ↑(choose n k) * X ⊢ āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν = ↑(MvPolynomial.aeval e) (↑(pderiv true) ((x + y) ^ n)) * X [PROOFSTEP] rw [add_pow, (pderiv true).map_sum, (MvPolynomial.aeval e).map_sum, Finset.sum_mul] -- Step inside the sum: [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X w : āˆ€ (k : ā„•), k • bernsteinPolynomial R n k = ↑k * X ^ (k - 1) * (1 - X) ^ (n - k) * ↑(choose n k) * X ⊢ āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν = āˆ‘ x_1 in Finset.range (n + 1), ↑(MvPolynomial.aeval e) (↑(pderiv true) (x ^ x_1 * y ^ (n - x_1) * ↑(choose n x_1))) * X [PROOFSTEP] refine' Finset.sum_congr rfl fun k _ => (w k).trans _ [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X w : āˆ€ (k : ā„•), k • bernsteinPolynomial R n k = ↑k * X ^ (k - 1) * (1 - X) ^ (n - k) * ↑(choose n k) * X k : ā„• xāœ : k ∈ Finset.range (n + 1) ⊢ ↑k * X ^ (k - 1) * (1 - X) ^ (n - k) * ↑(choose n k) * X = ↑(MvPolynomial.aeval e) (↑(pderiv true) (x ^ k * y ^ (n - k) * ↑(choose n k))) * X [PROOFSTEP] simp only [pderiv_true_x, pderiv_true_y, Algebra.id.smul_eq_mul, nsmul_eq_mul, Bool.cond_true, Bool.cond_false, add_zero, mul_one, mul_zero, smul_zero, MvPolynomial.aeval_X, MvPolynomial.pderiv_mul, Derivation.leibniz_pow, Derivation.map_coe_nat, map_natCast, map_pow, map_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ ↑(MvPolynomial.aeval e) (↑(pderiv true) ((x + y) ^ n)) * X = n • X [PROOFSTEP] rw [(pderiv true).leibniz_pow, (pderiv true).map_add, pderiv_true_x, pderiv_true_y] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ ↑(MvPolynomial.aeval e) (n • (x + y) ^ (n - 1) • (1 + 0)) * X = n • X [PROOFSTEP] simp only [Algebra.id.smul_eq_mul, nsmul_eq_mul, map_natCast, map_pow, map_add, map_mul, Bool.cond_true, Bool.cond_false, MvPolynomial.aeval_X, add_sub_cancel'_right, one_pow, add_zero, mul_one] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• ⊢ āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = (n * (n - 1)) • X ^ 2 [PROOFSTEP] let x : MvPolynomial Bool R := MvPolynomial.X true [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true ⊢ āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = (n * (n - 1)) • X ^ 2 [PROOFSTEP] let y : MvPolynomial Bool R := MvPolynomial.X false [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false ⊢ āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = (n * (n - 1)) • X ^ 2 [PROOFSTEP] have pderiv_true_x : pderiv true x = 1 := by rw [pderiv_X]; rfl [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false ⊢ ↑(pderiv true) x = 1 [PROOFSTEP] rw [pderiv_X] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false ⊢ Pi.single true 1 true = 1 [PROOFSTEP] rfl [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 ⊢ āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = (n * (n - 1)) • X ^ 2 [PROOFSTEP] have pderiv_true_y : pderiv true y = 0 := by rw [pderiv_X]; rfl [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 ⊢ ↑(pderiv true) y = 0 [PROOFSTEP] rw [pderiv_X] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 ⊢ Pi.single true 1 false = 0 [PROOFSTEP] rfl [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 ⊢ āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = (n * (n - 1)) • X ^ 2 [PROOFSTEP] let e : Bool → R[X] := fun i => cond i X (1 - X) -- Start with `(x+y)^n = (x+y)^n`, -- take the second `x`-derivative, evaluate at `x=X, y=1-X`, and multiply by `X`: [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = (n * (n - 1)) • X ^ 2 [PROOFSTEP] trans MvPolynomial.aeval e (pderiv true (pderiv true ((x + y) ^ n))) * X ^ 2 -- On the left hand side we'll use the binomial theorem, then simplify. [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = ↑(MvPolynomial.aeval e) (↑(pderiv true) (↑(pderiv true) ((x + y) ^ n))) * X ^ 2 [PROOFSTEP] have w : āˆ€ k : ā„•, (k * (k - 1)) • bernsteinPolynomial R n k = (n.choose k : R[X]) * ((1 - Polynomial.X) ^ (n - k) * ((k : R[X]) * ((↑(k - 1) : R[X]) * Polynomial.X ^ (k - 1 - 1)))) * Polynomial.X ^ 2 := by rintro (_ | _ | k) Ā· simp Ā· simp Ā· rw [bernsteinPolynomial] simp only [← nat_cast_mul, Nat.succ_eq_add_one, Nat.add_succ_sub_one, add_zero, pow_succ] push_cast ring [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ āˆ€ (k : ā„•), (k * (k - 1)) • bernsteinPolynomial R n k = ↑(choose n k) * ((1 - X) ^ (n - k) * (↑k * (↑(k - 1) * X ^ (k - 1 - 1)))) * X ^ 2 [PROOFSTEP] rintro (_ | _ | k) [GOAL] case zero R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ (Nat.zero * (Nat.zero - 1)) • bernsteinPolynomial R n Nat.zero = ↑(choose n Nat.zero) * ((1 - X) ^ (n - Nat.zero) * (↑Nat.zero * (↑(Nat.zero - 1) * X ^ (Nat.zero - 1 - 1)))) * X ^ 2 [PROOFSTEP] simp [GOAL] case succ.zero R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ (Nat.succ Nat.zero * (Nat.succ Nat.zero - 1)) • bernsteinPolynomial R n (Nat.succ Nat.zero) = ↑(choose n (Nat.succ Nat.zero)) * ((1 - X) ^ (n - Nat.succ Nat.zero) * (↑(Nat.succ Nat.zero) * (↑(Nat.succ Nat.zero - 1) * X ^ (Nat.succ Nat.zero - 1 - 1)))) * X ^ 2 [PROOFSTEP] simp [GOAL] case succ.succ R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X k : ā„• ⊢ (Nat.succ (Nat.succ k) * (Nat.succ (Nat.succ k) - 1)) • bernsteinPolynomial R n (Nat.succ (Nat.succ k)) = ↑(choose n (Nat.succ (Nat.succ k))) * ((1 - X) ^ (n - Nat.succ (Nat.succ k)) * (↑(Nat.succ (Nat.succ k)) * (↑(Nat.succ (Nat.succ k) - 1) * X ^ (Nat.succ (Nat.succ k) - 1 - 1)))) * X ^ 2 [PROOFSTEP] rw [bernsteinPolynomial] [GOAL] case succ.succ R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X k : ā„• ⊢ (Nat.succ (Nat.succ k) * (Nat.succ (Nat.succ k) - 1)) • (↑(choose n (Nat.succ (Nat.succ k))) * X ^ Nat.succ (Nat.succ k) * (1 - X) ^ (n - Nat.succ (Nat.succ k))) = ↑(choose n (Nat.succ (Nat.succ k))) * ((1 - X) ^ (n - Nat.succ (Nat.succ k)) * (↑(Nat.succ (Nat.succ k)) * (↑(Nat.succ (Nat.succ k) - 1) * X ^ (Nat.succ (Nat.succ k) - 1 - 1)))) * X ^ 2 [PROOFSTEP] simp only [← nat_cast_mul, Nat.succ_eq_add_one, Nat.add_succ_sub_one, add_zero, pow_succ] [GOAL] case succ.succ R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X k : ā„• ⊢ ↑((k + 1 + 1) * (k + 1)) * (↑(choose n (k + 1 + 1)) * (X * (X * X ^ k)) * (1 - X) ^ (n - (k + 1 + 1))) = ↑(choose n (k + 1 + 1)) * ((1 - X) ^ (n - (k + 1 + 1)) * (↑(k + 1 + 1) * (↑(k + 1) * X ^ k))) * (X * (X * X ^ 0)) [PROOFSTEP] push_cast [GOAL] case succ.succ R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X k : ā„• ⊢ (↑k + 1 + 1) * (↑k + 1) * (↑(choose n (k + 1 + 1)) * (X * (X * X ^ k)) * (1 - X) ^ (n - (k + 1 + 1))) = ↑(choose n (k + 1 + 1)) * ((1 - X) ^ (n - (k + 1 + 1)) * ((↑k + 1 + 1) * ((↑k + 1) * X ^ k))) * (X * (X * X ^ 0)) [PROOFSTEP] ring [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X w : āˆ€ (k : ā„•), (k * (k - 1)) • bernsteinPolynomial R n k = ↑(choose n k) * ((1 - X) ^ (n - k) * (↑k * (↑(k - 1) * X ^ (k - 1 - 1)))) * X ^ 2 ⊢ āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = ↑(MvPolynomial.aeval e) (↑(pderiv true) (↑(pderiv true) ((x + y) ^ n))) * X ^ 2 [PROOFSTEP] rw [add_pow, (pderiv true).map_sum, (pderiv true).map_sum, (MvPolynomial.aeval e).map_sum, Finset.sum_mul] -- Step inside the sum: [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X w : āˆ€ (k : ā„•), (k * (k - 1)) • bernsteinPolynomial R n k = ↑(choose n k) * ((1 - X) ^ (n - k) * (↑k * (↑(k - 1) * X ^ (k - 1 - 1)))) * X ^ 2 ⊢ āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν = āˆ‘ x_1 in Finset.range (n + 1), ↑(MvPolynomial.aeval e) (↑(pderiv true) (↑(pderiv true) (x ^ x_1 * y ^ (n - x_1) * ↑(choose n x_1)))) * X ^ 2 [PROOFSTEP] refine' Finset.sum_congr rfl fun k _ => (w k).trans _ [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X w : āˆ€ (k : ā„•), (k * (k - 1)) • bernsteinPolynomial R n k = ↑(choose n k) * ((1 - X) ^ (n - k) * (↑k * (↑(k - 1) * X ^ (k - 1 - 1)))) * X ^ 2 k : ā„• xāœ : k ∈ Finset.range (n + 1) ⊢ ↑(choose n k) * ((1 - X) ^ (n - k) * (↑k * (↑(k - 1) * X ^ (k - 1 - 1)))) * X ^ 2 = ↑(MvPolynomial.aeval e) (↑(pderiv true) (↑(pderiv true) (x ^ k * y ^ (n - k) * ↑(choose n k)))) * X ^ 2 [PROOFSTEP] simp only [pderiv_true_x, pderiv_true_y, Algebra.id.smul_eq_mul, nsmul_eq_mul, Bool.cond_true, Bool.cond_false, add_zero, zero_add, mul_zero, smul_zero, mul_one, MvPolynomial.aeval_X, MvPolynomial.pderiv_X_self, MvPolynomial.pderiv_X_of_ne, Derivation.leibniz_pow, Derivation.leibniz, Derivation.map_coe_nat, map_natCast, map_pow, map_mul, map_add] -- On the right hand side, we'll just simplify. [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• x : MvPolynomial Bool R := MvPolynomial.X true y : MvPolynomial Bool R := MvPolynomial.X false pderiv_true_x : ↑(pderiv true) x = 1 pderiv_true_y : ↑(pderiv true) y = 0 e : Bool → R[X] := fun i => bif i then X else 1 - X ⊢ ↑(MvPolynomial.aeval e) (↑(pderiv true) (↑(pderiv true) ((x + y) ^ n))) * X ^ 2 = (n * (n - 1)) • X ^ 2 [PROOFSTEP] simp only [pderiv_one, pderiv_mul, (pderiv _).leibniz_pow, (pderiv _).map_coe_nat, (pderiv true).map_add, pderiv_true_x, pderiv_true_y, Algebra.id.smul_eq_mul, add_zero, mul_one, Derivation.map_smul_of_tower, map_nsmul, map_pow, map_add, Bool.cond_true, Bool.cond_false, MvPolynomial.aeval_X, add_sub_cancel'_right, one_pow, smul_smul, smul_one_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• ⊢ āˆ‘ ν in Finset.range (n + 1), (n • X - ↑ν) ^ 2 * bernsteinPolynomial R n ν = n • X * (1 - X) [PROOFSTEP] have p : ((((Finset.range (n + 1)).sum fun ν => (ν * (ν - 1)) • bernsteinPolynomial R n ν) + (1 - (2 * n) • Polynomial.X) * (Finset.range (n + 1)).sum fun ν => ν • bernsteinPolynomial R n ν) + n ^ 2 • X ^ 2 * (Finset.range (n + 1)).sum fun ν => bernsteinPolynomial R n ν) = _ := rfl [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν ⊢ āˆ‘ ν in Finset.range (n + 1), (n • X - ↑ν) ^ 2 * bernsteinPolynomial R n ν = n • X * (1 - X) [PROOFSTEP] conv at p => lhs rw [Finset.mul_sum, Finset.mul_sum, ← Finset.sum_add_distrib, ← Finset.sum_add_distrib] simp only [← nat_cast_mul] simp only [← mul_assoc] simp only [← add_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν [PROOFSTEP] lhs rw [Finset.mul_sum, Finset.mul_sum, ← Finset.sum_add_distrib, ← Finset.sum_add_distrib] simp only [← nat_cast_mul] simp only [← mul_assoc] simp only [← add_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν [PROOFSTEP] lhs rw [Finset.mul_sum, Finset.mul_sum, ← Finset.sum_add_distrib, ← Finset.sum_add_distrib] simp only [← nat_cast_mul] simp only [← mul_assoc] simp only [← add_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν [PROOFSTEP] lhs [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν [PROOFSTEP] rw [Finset.mul_sum, Finset.mul_sum, ← Finset.sum_add_distrib, ← Finset.sum_add_distrib] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ x in Finset.range (n + 1), ((x * (x - 1)) • bernsteinPolynomial R n x + (↑1 - (2 * n) • X) * x • bernsteinPolynomial R n x + n ^ 2 • X ^ 2 * bernsteinPolynomial R n x) [PROOFSTEP] simp only [← nat_cast_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) * bernsteinPolynomial R n x + (↑1 - ↑(2 * n) * X) * (↑x * bernsteinPolynomial R n x) + ↑(n ^ 2) * X ^ 2 * bernsteinPolynomial R n x) [PROOFSTEP] simp only [← mul_assoc] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) * bernsteinPolynomial R n x + (↑1 - ↑(2 * n) * X) * ↑x * bernsteinPolynomial R n x + ↑(n ^ 2) * X ^ 2 * bernsteinPolynomial R n x) [PROOFSTEP] simp only [← add_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν ⊢ āˆ‘ ν in Finset.range (n + 1), (n • X - ↑ν) ^ 2 * bernsteinPolynomial R n ν = n • X * (1 - X) [PROOFSTEP] conv at p => rhs rw [sum, sum_smul, sum_mul_smul, ← nat_cast_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν [PROOFSTEP] rhs rw [sum, sum_smul, sum_mul_smul, ← nat_cast_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν [PROOFSTEP] rhs rw [sum, sum_smul, sum_mul_smul, ← nat_cast_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν [PROOFSTEP] rhs [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν | āˆ‘ ν in Finset.range (n + 1), (ν * (ν - 1)) • bernsteinPolynomial R n ν + (↑1 - (2 * n) • X) * āˆ‘ ν in Finset.range (n + 1), ν • bernsteinPolynomial R n ν + n ^ 2 • X ^ 2 * āˆ‘ ν in Finset.range (n + 1), bernsteinPolynomial R n ν [PROOFSTEP] rw [sum, sum_smul, sum_mul_smul, ← nat_cast_mul] [GOAL] R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 ⊢ āˆ‘ ν in Finset.range (n + 1), (n • X - ↑ν) ^ 2 * bernsteinPolynomial R n ν = n • X * (1 - X) [PROOFSTEP] calc _ = _ := Finset.sum_congr rfl fun k m => ?_ _ = _ := p _ = _ := ?_ [GOAL] case calc_1 R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 k : ā„• m : k ∈ Finset.range (n + 1) ⊢ (n • X - ↑k) ^ 2 * bernsteinPolynomial R n k = (↑(k * (k - 1)) + (↑1 - ↑(2 * n) * X) * ↑k + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n k [PROOFSTEP] congr 1 [GOAL] case calc_1.e_a R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 k : ā„• m : k ∈ Finset.range (n + 1) ⊢ (n • X - ↑k) ^ 2 = ↑(k * (k - 1)) + (↑1 - ↑(2 * n) * X) * ↑k + ↑(n ^ 2) * X ^ 2 [PROOFSTEP] simp only [← nat_cast_mul, push_cast] [GOAL] case calc_1.e_a R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 k : ā„• m : k ∈ Finset.range (n + 1) ⊢ (↑n * X - ↑k) ^ 2 = ↑k * ↑(k - 1) + (1 - 2 * ↑n * X) * ↑k + ↑n ^ 2 * X ^ 2 [PROOFSTEP] cases k [GOAL] case calc_1.e_a.zero R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 m : Nat.zero ∈ Finset.range (n + 1) ⊢ (↑n * X - ↑Nat.zero) ^ 2 = ↑Nat.zero * ↑(Nat.zero - 1) + (1 - 2 * ↑n * X) * ↑Nat.zero + ↑n ^ 2 * X ^ 2 [PROOFSTEP] simp [GOAL] case calc_1.e_a.zero R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 m : Nat.zero ∈ Finset.range (n + 1) ⊢ (↑n * X) ^ 2 = ↑n ^ 2 * X ^ 2 [PROOFSTEP] ring [GOAL] case calc_1.e_a.succ R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 nāœ : ā„• m : Nat.succ nāœ ∈ Finset.range (n + 1) ⊢ (↑n * X - ↑(Nat.succ nāœ)) ^ 2 = ↑(Nat.succ nāœ) * ↑(Nat.succ nāœ - 1) + (1 - 2 * ↑n * X) * ↑(Nat.succ nāœ) + ↑n ^ 2 * X ^ 2 [PROOFSTEP] simp [GOAL] case calc_1.e_a.succ R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 nāœ : ā„• m : Nat.succ nāœ ∈ Finset.range (n + 1) ⊢ (↑n * X - (↑nāœ + 1)) ^ 2 = (↑nāœ + 1) * ↑nāœ + (1 - 2 * ↑n * X) * (↑nāœ + 1) + ↑n ^ 2 * X ^ 2 [PROOFSTEP] ring [GOAL] case calc_2 R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 ⊢ ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 = n • X * (1 - X) [PROOFSTEP] simp only [← nat_cast_mul, push_cast] [GOAL] case calc_2 R : Type u_1 instāœ : CommRing R n : ā„• p : āˆ‘ x in Finset.range (n + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * n) * X) * ↑x + ↑(n ^ 2) * X ^ 2) * bernsteinPolynomial R n x = ↑(n * (n - 1)) * X ^ 2 + (↑1 - (2 * n) • X) * n • X + n ^ 2 • X ^ 2 * 1 ⊢ ↑n * ↑(n - 1) * X ^ 2 + (1 - 2 * ↑n * X) * (↑n * X) + ↑n ^ 2 * X ^ 2 * 1 = ↑n * X * (1 - X) [PROOFSTEP] cases n [GOAL] case calc_2.zero R : Type u_1 instāœ : CommRing R p : āˆ‘ x in Finset.range (Nat.zero + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * Nat.zero) * X) * ↑x + ↑(Nat.zero ^ 2) * X ^ 2) * bernsteinPolynomial R Nat.zero x = ↑(Nat.zero * (Nat.zero - 1)) * X ^ 2 + (↑1 - (2 * Nat.zero) • X) * Nat.zero • X + Nat.zero ^ 2 • X ^ 2 * 1 ⊢ ↑Nat.zero * ↑(Nat.zero - 1) * X ^ 2 + (1 - 2 * ↑Nat.zero * X) * (↑Nat.zero * X) + ↑Nat.zero ^ 2 * X ^ 2 * 1 = ↑Nat.zero * X * (1 - X) [PROOFSTEP] simp [GOAL] case calc_2.succ R : Type u_1 instāœ : CommRing R nāœ : ā„• p : āˆ‘ x in Finset.range (Nat.succ nāœ + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * Nat.succ nāœ) * X) * ↑x + ↑(Nat.succ nāœ ^ 2) * X ^ 2) * bernsteinPolynomial R (Nat.succ nāœ) x = ↑(Nat.succ nāœ * (Nat.succ nāœ - 1)) * X ^ 2 + (↑1 - (2 * Nat.succ nāœ) • X) * Nat.succ nāœ • X + Nat.succ nāœ ^ 2 • X ^ 2 * 1 ⊢ ↑(Nat.succ nāœ) * ↑(Nat.succ nāœ - 1) * X ^ 2 + (1 - 2 * ↑(Nat.succ nāœ) * X) * (↑(Nat.succ nāœ) * X) + ↑(Nat.succ nāœ) ^ 2 * X ^ 2 * 1 = ↑(Nat.succ nāœ) * X * (1 - X) [PROOFSTEP] simp [GOAL] case calc_2.succ R : Type u_1 instāœ : CommRing R nāœ : ā„• p : āˆ‘ x in Finset.range (Nat.succ nāœ + 1), (↑(x * (x - 1)) + (↑1 - ↑(2 * Nat.succ nāœ) * X) * ↑x + ↑(Nat.succ nāœ ^ 2) * X ^ 2) * bernsteinPolynomial R (Nat.succ nāœ) x = ↑(Nat.succ nāœ * (Nat.succ nāœ - 1)) * X ^ 2 + (↑1 - (2 * Nat.succ nāœ) • X) * Nat.succ nāœ • X + Nat.succ nāœ ^ 2 • X ^ 2 * 1 ⊢ (↑nāœ + 1) * ↑nāœ * X ^ 2 + (1 - 2 * (↑nāœ + 1) * X) * ((↑nāœ + 1) * X) + (↑nāœ + 1) ^ 2 * X ^ 2 = (↑nāœ + 1) * X * (1 - X) [PROOFSTEP] ring
dat <- expand.grid(rep=gl(2,1), NO3=factor(c(0,10)),field=gl(3,1) ) dat Agropyron <- with(dat, as.numeric(field) + as.numeric(NO3)+2) +rnorm(12)/2 Schizachyrium <- with(dat, as.numeric(field) - as.numeric(NO3)+2) +rnorm(12)/2 total <- Agropyron + Schizachyrium dotplot(total ~ NO3, dat, jitter.x=TRUE, groups=field, type=c('p','a'), xlab="NO3", auto.key=list(columns=3, lines=TRUE) ) Y <- data.frame(Agropyron, Schizachyrium) mod <- metaMDS(Y) plot(mod) ### Hulls show treatment with(dat, ordihull(mod, group=NO3, show="0")) with(dat, ordihull(mod, group=NO3, show="10", col=3)) ### Spider shows fields with(dat, ordispider(mod, group=field, lty=3, col="red")) ### Correct hypothesis test (with strata) adonis(Y ~ NO3, data=dat, strata=dat$field, perm=999) library(dplyr) data <- read.csv('/Users/glmarschmann/.julia/dev/DEBTrait/files/BatchC/adonis_BGE_select.csv') X <- data.frame(data$response, as.factor(data$rX), data$concentration) names(X) <- c('Response', 'rX', 'Concentration') Y <- data.frame(data$BGE) names(Y) <- c('BGE') row_sub = apply(Y, 1, function(row) all(row !=0 )) Yf <- Y[row_sub,] Xf <- X[row_sub,] mod <- metaMDS(Yf) plot(mod) with(Xf, ordihull(mod, group=rM, show="1")) with(Xf, ordihull(mod, group=rM, show="2", col=3)) with(Xf, ordispider(mod, group=Response, lty=3, col="red")) adonis(Yf ~ rX, data=Xf, perm=999)
open import Relation.Binary.Core module InsertSort.Impl2.Correctness.Permutation.Base {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List open import Data.Sum open import InsertSort.Impl2 _≤_ tot≤ open import List.Permutation.Base A open import OList _≤_ lemma-forget-insert : {b : Bound} → (x : A) → (b≤x : LeB b (val x)) → (xs : OList b) → forget (insert b≤x xs) / x ⟶ forget xs lemma-forget-insert x b≤x onil = /head lemma-forget-insert x b≤x (:< {x = y} b≤y ys) with tot≤ x y ... | inj₁ x≤y = /head ... | injā‚‚ y≤x = /tail (lemma-forget-insert x (lexy y≤x) ys) theorem-insertSort∼ : (xs : List A) → xs ∼ forget (insertSort xs) theorem-insertSort∼ [] = ∼[] theorem-insertSort∼ (x ∷ xs) = ∼x /head (lemma-forget-insert x lebx (insertSort xs)) (theorem-insertSort∼ xs)
/- Copyright (c) 2022 Sebastian Monnet. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Monnet ! This file was ported from Lean 3 source module field_theory.krull_topology ! leanprover-community/mathlib commit 83f81aea33931a1edb94ce0f32b9a5d484de6978 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.FieldTheory.Galois import Mathbin.Topology.Algebra.FilterBasis import Mathbin.Topology.Algebra.OpenSubgroup import Mathbin.Tactic.ByContra /-! # Krull topology We define the Krull topology on `L ā‰ƒā‚[K] L` for an arbitrary field extension `L/K`. In order to do this, we first define a `group_filter_basis` on `L ā‰ƒā‚[K] L`, whose sets are `E.fixing_subgroup` for all intermediate fields `E` with `E/K` finite dimensional. ## Main Definitions - `finite_exts K L`. Given a field extension `L/K`, this is the set of intermediate fields that are finite-dimensional over `K`. - `fixed_by_finite K L`. Given a field extension `L/K`, `fixed_by_finite K L` is the set of subsets `Gal(L/E)` of `Gal(L/K)`, where `E/K` is finite - `gal_basis K L`. Given a field extension `L/K`, this is the filter basis on `L ā‰ƒā‚[K] L` whose sets are `Gal(L/E)` for intermediate fields `E` with `E/K` finite. - `gal_group_basis K L`. This is the same as `gal_basis K L`, but with the added structure that it is a group filter basis on `L ā‰ƒā‚[K] L`, rather than just a filter basis. - `krull_topology K L`. Given a field extension `L/K`, this is the topology on `L ā‰ƒā‚[K] L`, induced by the group filter basis `gal_group_basis K L`. ## Main Results - `krull_topology_t2 K L`. For an integral field extension `L/K`, the topology `krull_topology K L` is Hausdorff. - `krull_topology_totally_disconnected K L`. For an integral field extension `L/K`, the topology `krull_topology K L` is totally disconnected. ## Notations - In docstrings, we will write `Gal(L/E)` to denote the fixing subgroup of an intermediate field `E`. That is, `Gal(L/E)` is the subgroup of `L ā‰ƒā‚[K] L` consisting of automorphisms that fix every element of `E`. In particular, we distinguish between `L ā‰ƒā‚[E] L` and `Gal(L/E)`, since the former is defined to be a subgroup of `L ā‰ƒā‚[K] L`, while the latter is a group in its own right. ## Implementation Notes - `krull_topology K L` is defined as an instance for type class inference. -/ open Classical /-- Mapping intermediate fields along algebra equivalences preserves the partial order -/ theorem IntermediateField.map_mono {K L M : Type _} [Field K] [Field L] [Field M] [Algebra K L] [Algebra K M] {E1 E2 : IntermediateField K L} (e : L ā‰ƒā‚[K] M) (h12 : E1 ≤ E2) : E1.map e.toAlgHom ≤ E2.map e.toAlgHom := Set.image_subset e h12 #align intermediate_field.map_mono IntermediateField.map_mono /-- Mapping intermediate fields along the identity does not change them -/ theorem IntermediateField.map_id {K L : Type _} [Field K] [Field L] [Algebra K L] (E : IntermediateField K L) : E.map (AlgHom.id K L) = E := SetLike.coe_injective <| Set.image_id _ #align intermediate_field.map_id IntermediateField.map_id /-- Mapping a finite dimensional intermediate field along an algebra equivalence gives a finite-dimensional intermediate field. -/ instance im_finiteDimensional {K L : Type _} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (σ : L ā‰ƒā‚[K] L) [FiniteDimensional K E] : FiniteDimensional K (E.map σ.toAlgHom) := LinearEquiv.finiteDimensional (IntermediateField.intermediateFieldMap σ E).toLinearEquiv #align im_finite_dimensional im_finiteDimensional /-- Given a field extension `L/K`, `finite_exts K L` is the set of intermediate field extensions `L/E/K` such that `E/K` is finite -/ def finiteExts (K : Type _) [Field K] (L : Type _) [Field L] [Algebra K L] : Set (IntermediateField K L) := { E | FiniteDimensional K E } #align finite_exts finiteExts /-- Given a field extension `L/K`, `fixed_by_finite K L` is the set of subsets `Gal(L/E)` of `L ā‰ƒā‚[K] L`, where `E/K` is finite -/ def fixedByFinite (K L : Type _) [Field K] [Field L] [Algebra K L] : Set (Subgroup (L ā‰ƒā‚[K] L)) := IntermediateField.fixingSubgroup '' finiteExts K L #align fixed_by_finite fixedByFinite /-- For an field extension `L/K`, the intermediate field `K` is finite-dimensional over `K` -/ theorem IntermediateField.finiteDimensional_bot (K L : Type _) [Field K] [Field L] [Algebra K L] : FiniteDimensional K (⊄ : IntermediateField K L) := finiteDimensional_of_dim_eq_one IntermediateField.dim_bot #align intermediate_field.finite_dimensional_bot IntermediateField.finiteDimensional_bot /-- This lemma says that `Gal(L/K) = L ā‰ƒā‚[K] L` -/ theorem IntermediateField.fixingSubgroup.bot {K L : Type _} [Field K] [Field L] [Algebra K L] : IntermediateField.fixingSubgroup (⊄ : IntermediateField K L) = ⊤ := by ext f refine' ⟨fun _ => Subgroup.mem_top _, fun _ => _⟩ rintro ⟨x, hx : x ∈ (⊄ : IntermediateField K L)⟩ rw [IntermediateField.mem_bot] at hx rcases hx with ⟨y, rfl⟩ exact f.commutes y #align intermediate_field.fixing_subgroup.bot IntermediateField.fixingSubgroup.bot /-- If `L/K` is a field extension, then we have `Gal(L/K) ∈ fixed_by_finite K L` -/ theorem top_fixedByFinite {K L : Type _} [Field K] [Field L] [Algebra K L] : ⊤ ∈ fixedByFinite K L := ⟨⊄, IntermediateField.finiteDimensional_bot K L, IntermediateField.fixingSubgroup.bot⟩ #align top_fixed_by_finite top_fixedByFinite /-- If `E1` and `E2` are finite-dimensional intermediate fields, then so is their compositum. This rephrases a result already in mathlib so that it is compatible with our type classes -/ theorem finiteDimensional_sup {K L : Type _} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) (h1 : FiniteDimensional K E1) (h2 : FiniteDimensional K E2) : FiniteDimensional K ↄ(E1 āŠ” E2) := IntermediateField.finiteDimensional_sup E1 E2 #align finite_dimensional_sup finiteDimensional_sup /-- An element of `L ā‰ƒā‚[K] L` is in `Gal(L/E)` if and only if it fixes every element of `E`-/ theorem IntermediateField.mem_fixingSubgroup_iff {K L : Type _} [Field K] [Field L] [Algebra K L] (E : IntermediateField K L) (σ : L ā‰ƒā‚[K] L) : σ ∈ E.fixingSubgroup ↔ āˆ€ x : L, x ∈ E → σ x = x := ⟨fun hσ x hx => hσ ⟨x, hx⟩, fun h ⟨x, hx⟩ => h x hx⟩ #align intermediate_field.mem_fixing_subgroup_iff IntermediateField.mem_fixingSubgroup_iff /-- The map `E ↦ Gal(L/E)` is inclusion-reversing -/ theorem IntermediateField.fixingSubgroup.antimono {K L : Type _} [Field K] [Field L] [Algebra K L] {E1 E2 : IntermediateField K L} (h12 : E1 ≤ E2) : E2.fixingSubgroup ≤ E1.fixingSubgroup := by rintro σ hσ ⟨x, hx⟩ exact hσ ⟨x, h12 hx⟩ #align intermediate_field.fixing_subgroup.antimono IntermediateField.fixingSubgroup.antimono /-- Given a field extension `L/K`, `gal_basis K L` is the filter basis on `L ā‰ƒā‚[K] L` whose sets are `Gal(L/E)` for intermediate fields `E` with `E/K` finite dimensional -/ def galBasis (K L : Type _) [Field K] [Field L] [Algebra K L] : FilterBasis (L ā‰ƒā‚[K] L) where sets := Subgroup.carrier '' fixedByFinite K L Nonempty := ⟨⊤, ⊤, top_fixedByFinite, rfl⟩ inter_sets := by rintro X Y ⟨H1, ⟨E1, h_E1, rfl⟩, rfl⟩ ⟨H2, ⟨E2, h_E2, rfl⟩, rfl⟩ use (IntermediateField.fixingSubgroup (E1 āŠ” E2)).carrier refine' ⟨⟨_, ⟨_, finiteDimensional_sup E1 E2 h_E1 h_E2, rfl⟩, rfl⟩, _⟩ rw [Set.subset_inter_iff] exact ⟨IntermediateField.fixingSubgroup.antimono le_sup_left, IntermediateField.fixingSubgroup.antimono le_sup_right⟩ #align gal_basis galBasis /-- A subset of `L ā‰ƒā‚[K] L` is a member of `gal_basis K L` if and only if it is the underlying set of `Gal(L/E)` for some finite subextension `E/K`-/ theorem mem_galBasis_iff (K L : Type _) [Field K] [Field L] [Algebra K L] (U : Set (L ā‰ƒā‚[K] L)) : U ∈ galBasis K L ↔ U ∈ Subgroup.carrier '' fixedByFinite K L := Iff.rfl #align mem_gal_basis_iff mem_galBasis_iff /-- For a field extension `L/K`, `gal_group_basis K L` is the group filter basis on `L ā‰ƒā‚[K] L` whose sets are `Gal(L/E)` for finite subextensions `E/K` -/ def galGroupBasis (K L : Type _) [Field K] [Field L] [Algebra K L] : GroupFilterBasis (L ā‰ƒā‚[K] L) where toFilterBasis := galBasis K L one' := fun U ⟨H, hH, h2⟩ => h2 ā–ø H.one_mem mul' U hU := ⟨U, hU, by rcases hU with ⟨H, hH, rfl⟩ rintro x ⟨a, b, haH, hbH, rfl⟩ exact H.mul_mem haH hbH⟩ inv' U hU := ⟨U, hU, by rcases hU with ⟨H, hH, rfl⟩ exact fun _ => H.inv_mem'⟩ conj' := by rintro σ U ⟨H, ⟨E, hE, rfl⟩, rfl⟩ let F : IntermediateField K L := E.map σ.symm.to_alg_hom refine' ⟨F.fixing_subgroup.carrier, ⟨⟨F.fixing_subgroup, ⟨F, _, rfl⟩, rfl⟩, fun g hg => _⟩⟩ Ā· apply im_finiteDimensional σ.symm exact hE change σ * g * σ⁻¹ ∈ E.fixing_subgroup rw [IntermediateField.mem_fixingSubgroup_iff] intro x hx change σ (g (σ⁻¹ x)) = x have h_in_F : σ⁻¹ x ∈ F := ⟨x, hx, by dsimp rw [← AlgEquiv.invFun_eq_symm] rfl⟩ have h_g_fix : g (σ⁻¹ x) = σ⁻¹ x := by rw [Subgroup.mem_carrier, IntermediateField.mem_fixingSubgroup_iff F g] at hg exact hg (σ⁻¹ x) h_in_F rw [h_g_fix] change σ (σ⁻¹ x) = x exact AlgEquiv.apply_symm_apply σ x #align gal_group_basis galGroupBasis /-- For a field extension `L/K`, `krull_topology K L` is the topological space structure on `L ā‰ƒā‚[K] L` induced by the group filter basis `gal_group_basis K L` -/ instance krullTopology (K L : Type _) [Field K] [Field L] [Algebra K L] : TopologicalSpace (L ā‰ƒā‚[K] L) := GroupFilterBasis.topology (galGroupBasis K L) #align krull_topology krullTopology /-- For a field extension `L/K`, the Krull topology on `L ā‰ƒā‚[K] L` makes it a topological group. -/ instance (K L : Type _) [Field K] [Field L] [Algebra K L] : TopologicalGroup (L ā‰ƒā‚[K] L) := GroupFilterBasis.is_topologicalGroup (galGroupBasis K L) section KrullT2 open Topology Filter /-- Let `L/E/K` be a tower of fields with `E/K` finite. Then `Gal(L/E)` is an open subgroup of `L ā‰ƒā‚[K] L`. -/ theorem IntermediateField.fixingSubgroup_isOpen {K L : Type _} [Field K] [Field L] [Algebra K L] (E : IntermediateField K L) [FiniteDimensional K E] : IsOpen (E.fixingSubgroup : Set (L ā‰ƒā‚[K] L)) := by have h_basis : E.fixing_subgroup.carrier ∈ galGroupBasis K L := ⟨E.fixing_subgroup, ⟨E, ‹_›, rfl⟩, rfl⟩ have h_nhd := GroupFilterBasis.mem_nhds_one (galGroupBasis K L) h_basis exact Subgroup.isOpen_of_mem_nhds _ h_nhd #align intermediate_field.fixing_subgroup_is_open IntermediateField.fixingSubgroup_isOpen /-- Given a tower of fields `L/E/K`, with `E/K` finite, the subgroup `Gal(L/E) ≤ L ā‰ƒā‚[K] L` is closed. -/ theorem IntermediateField.fixingSubgroup_isClosed {K L : Type _} [Field K] [Field L] [Algebra K L] (E : IntermediateField K L) [FiniteDimensional K E] : IsClosed (E.fixingSubgroup : Set (L ā‰ƒā‚[K] L)) := OpenSubgroup.isClosed ⟨E.fixingSubgroup, E.fixingSubgroup_isOpen⟩ #align intermediate_field.fixing_subgroup_is_closed IntermediateField.fixingSubgroup_isClosed /-- If `L/K` is an algebraic extension, then the Krull topology on `L ā‰ƒā‚[K] L` is Hausdorff. -/ theorem krullTopology_t2 {K L : Type _} [Field K] [Field L] [Algebra K L] (h_int : Algebra.IsIntegral K L) : T2Space (L ā‰ƒā‚[K] L) := { t2 := fun f g hfg => by let φ := f⁻¹ * g cases' FunLike.exists_ne hfg with x hx have hφx : φ x ≠ x := by apply ne_of_apply_ne f change f (f.symm (g x)) ≠ f x rw [AlgEquiv.apply_symm_apply f (g x), ne_comm] exact hx let E : IntermediateField K L := IntermediateField.adjoin K {x} let h_findim : FiniteDimensional K E := IntermediateField.adjoin.finiteDimensional (h_int x) let H := E.fixing_subgroup have h_basis : (H : Set (L ā‰ƒā‚[K] L)) ∈ galGroupBasis K L := ⟨H, ⟨E, ⟨h_findim, rfl⟩⟩, rfl⟩ have h_nhd := GroupFilterBasis.mem_nhds_one (galGroupBasis K L) h_basis rw [mem_nhds_iff] at h_nhd rcases h_nhd with ⟨W, hWH, hW_open, hW_1⟩ refine' ⟨leftCoset f W, leftCoset g W, ⟨hW_open.left_coset f, hW_open.left_coset g, ⟨1, hW_1, mul_one _⟩, ⟨1, hW_1, mul_one _⟩, _⟩⟩ rw [Set.disjoint_left] rintro σ ⟨w1, hw1, h⟩ ⟨w2, hw2, rfl⟩ rw [eq_inv_mul_iff_mul_eq.symm, ← mul_assoc, mul_inv_eq_iff_eq_mul.symm] at h have h_in_H : w1 * w2⁻¹ ∈ H := H.mul_mem (hWH hw1) (H.inv_mem (hWH hw2)) rw [h] at h_in_H change φ ∈ E.fixing_subgroup at h_in_H rw [IntermediateField.mem_fixingSubgroup_iff] at h_in_H specialize h_in_H x have hxE : x ∈ E := by apply IntermediateField.subset_adjoin apply Set.mem_singleton exact hφx (h_in_H hxE) } #align krull_topology_t2 krullTopology_t2 end KrullT2 section TotallyDisconnected /-- If `L/K` is an algebraic field extension, then the Krull topology on `L ā‰ƒā‚[K] L` is totally disconnected. -/ theorem krullTopology_totally_disconnected {K L : Type _} [Field K] [Field L] [Algebra K L] (h_int : Algebra.IsIntegral K L) : IsTotallyDisconnected (Set.univ : Set (L ā‰ƒā‚[K] L)) := by apply isTotallyDisconnected_of_clopen_set intro σ Ļ„ h_diff have hĻƒĻ„ : σ⁻¹ * Ļ„ ≠ 1 := by rwa [Ne.def, inv_mul_eq_one] rcases FunLike.exists_ne hĻƒĻ„ with ⟨x, hx : (σ⁻¹ * Ļ„) x ≠ x⟩ let E := IntermediateField.adjoin K ({x} : Set L) haveI := IntermediateField.adjoin.finiteDimensional (h_int x) refine' ⟨leftCoset σ E.fixing_subgroup, ⟨E.fixing_subgroup_is_open.left_coset σ, E.fixing_subgroup_is_closed.left_coset σ⟩, ⟨1, E.fixing_subgroup.one_mem', mul_one σ⟩, _⟩ simp only [mem_leftCoset_iff, SetLike.mem_coe, IntermediateField.mem_fixingSubgroup_iff, not_forall] exact ⟨x, IntermediateField.mem_adjoin_simple_self K x, hx⟩ #align krull_topology_totally_disconnected krullTopology_totally_disconnected end TotallyDisconnected
postulate A : Set module _ where {-# POLARITY A #-}
{-# Language TypeApplications #-} module PointSpec where import Test.Hspec import Test.QuickCheck hiding (scale) import Test.Invariant import Data.Complex import Geometry import Geometry.Testing spec :: Spec spec = describe "Point" $ do describe "Affinity" $ do it "1" $ property $ cmp `inverts` Point it "2" $ property $ Point `inverts` cmp it "3" $ property $ cmp `inverts` (Point . cmp) it "4" $ property $ (Point . cmp) `inverts` cmp describe "pointOn" $ do it "1" $ xy (pointOn (aCircle # scale 2) 0) ~= (2, 0) it "2" $ xy (pointOn (aCircle # scale 2) 0.5) ~= (-2, 0) it "3" $ property $ \(AnyCircle c) t -> c `isContaining` pointOn c t it "4" $ property $ \(AnyLine l) t -> l `isContaining` pointOn l t it "5" $ property $ \n t -> let p = regularPoly (3 + abs n) in p `isContaining` pointOn p t describe "aligned" $ do it "1" $ property $ \(AnyLine l) xs -> length xs > 1 ==> aligned (param l <$> xs) it "2" $ property $ \(Position a) (Position b) (Position c) -> (aligned [a,b,c] ==> isDegenerate (Triangle [a,b,c])) .&. (not (aligned [a,b,c]) ==> not (isDegenerate (Triangle [a,b,c]))) describe "APoint" $ do it "1" $ property $ toPoint `inverts` (asPoint @XY) it "2" $ property $ toPoint `inverts` (asPoint @Cmp) it "3" $ property $ toPoint `inverts` (asPoint @(Maybe Point))
State Before: p : ā„• R S : Type u σ : Type ?u.597461 idx : Type ?u.597464 instāœĀ¹ : CommRing R instāœ : CommRing S g : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R f : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R → š•Ž R hg : IsPoly p g hf : IsPolyā‚‚ p f ⊢ IsPolyā‚‚ p fun R _Rcr x y => g (f x y) State After: case mk'.intro p : ā„• R S : Type u σ : Type ?u.597461 idx : Type ?u.597464 instāœĀ¹ : CommRing R instāœ : CommRing S g : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R f : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R → š•Ž R hg : IsPoly p g φ : ā„• → MvPolynomial (Fin 2 Ɨ ā„•) ℤ hf : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ⊢ IsPolyā‚‚ p fun R _Rcr x y => g (f x y) Tactic: obtain āŸØĻ†, hf⟩ := hf State Before: case mk'.intro p : ā„• R S : Type u σ : Type ?u.597461 idx : Type ?u.597464 instāœĀ¹ : CommRing R instāœ : CommRing S g : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R f : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R → š•Ž R hg : IsPoly p g φ : ā„• → MvPolynomial (Fin 2 Ɨ ā„•) ℤ hf : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ⊢ IsPolyā‚‚ p fun R _Rcr x y => g (f x y) State After: case mk'.intro.mk'.intro p : ā„• R S : Type u σ : Type ?u.597461 idx : Type ?u.597464 instāœĀ¹ : CommRing R instāœ : CommRing S g : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R f : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R → š•Ž R φ : ā„• → MvPolynomial (Fin 2 Ɨ ā„•) ℤ hf : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ψ : ā„• → MvPolynomial ā„• ℤ hg : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x : š•Ž R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n) ⊢ IsPolyā‚‚ p fun R _Rcr x y => g (f x y) Tactic: obtain ⟨ψ, hg⟩ := hg State Before: case mk'.intro.mk'.intro p : ā„• R S : Type u σ : Type ?u.597461 idx : Type ?u.597464 instāœĀ¹ : CommRing R instāœ : CommRing S g : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R f : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R → š•Ž R φ : ā„• → MvPolynomial (Fin 2 Ɨ ā„•) ℤ hf : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ψ : ā„• → MvPolynomial ā„• ℤ hg : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x : š•Ž R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n) ⊢ IsPolyā‚‚ p fun R _Rcr x y => g (f x y) State After: case mk'.intro.mk'.intro p : ā„• R S : Type u σ : Type ?u.597461 idx : Type ?u.597464 instāœĀ¹ : CommRing R instāœ : CommRing S g : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R f : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R → š•Ž R φ : ā„• → MvPolynomial (Fin 2 Ɨ ā„•) ℤ hf : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ψ : ā„• → MvPolynomial ā„• ℤ hg : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x : š•Ž R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n) ⊢ āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (g (f x y)).coeff = fun n => peval ((fun n => ↑(bind₁ φ) (ψ n)) n) ![x.coeff, y.coeff] Tactic: use fun n => bind₁ φ (ψ n) State Before: case mk'.intro.mk'.intro p : ā„• R S : Type u σ : Type ?u.597461 idx : Type ?u.597464 instāœĀ¹ : CommRing R instāœ : CommRing S g : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R f : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R → š•Ž R φ : ā„• → MvPolynomial (Fin 2 Ɨ ā„•) ℤ hf : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ψ : ā„• → MvPolynomial ā„• ℤ hg : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x : š•Ž R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n) ⊢ āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (g (f x y)).coeff = fun n => peval ((fun n => ↑(bind₁ φ) (ψ n)) n) ![x.coeff, y.coeff] State After: case mk'.intro.mk'.intro p : ā„• R S : Type u σ : Type ?u.597461 idx : Type ?u.597464 instāœĀ² : CommRing R instāœĀ¹ : CommRing S g : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R f : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R → š•Ž R φ : ā„• → MvPolynomial (Fin 2 Ɨ ā„•) ℤ hf : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ψ : ā„• → MvPolynomial ā„• ℤ hg : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x : š•Ž R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n) Rāœ : Type u_1 instāœ : CommRing Rāœ xāœ yāœ : š•Ž Rāœ ⊢ (g (f xāœ yāœ)).coeff = fun n => peval ((fun n => ↑(bind₁ φ) (ψ n)) n) ![xāœ.coeff, yāœ.coeff] Tactic: intros State Before: case mk'.intro.mk'.intro p : ā„• R S : Type u σ : Type ?u.597461 idx : Type ?u.597464 instāœĀ² : CommRing R instāœĀ¹ : CommRing S g : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R f : ⦃R : Type u_1⦄ → [inst : CommRing R] → š•Ž R → š•Ž R → š•Ž R φ : ā„• → MvPolynomial (Fin 2 Ɨ ā„•) ℤ hf : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x y : š•Ž R), (f x y).coeff = fun n => peval (φ n) ![x.coeff, y.coeff] ψ : ā„• → MvPolynomial ā„• ℤ hg : āˆ€ ⦃R : Type u_1⦄ [inst : CommRing R] (x : š•Ž R), (g x).coeff = fun n => ↑(aeval x.coeff) (ψ n) Rāœ : Type u_1 instāœ : CommRing Rāœ xāœ yāœ : š•Ž Rāœ ⊢ (g (f xāœ yāœ)).coeff = fun n => peval ((fun n => ↑(bind₁ φ) (ψ n)) n) ![xāœ.coeff, yāœ.coeff] State After: no goals Tactic: simp only [peval, aeval_bind₁, Function.comp, hg, hf]
! { dg-do run } ! { dg-options "-fno-range-check" } ! { dg-add-options ieee } ! ! PR fortran/34192 ! ! Test compile-time implementation of NEAREST ! program test implicit none ! Single precision ! 0+ > 0 if (nearest(0.0, 1.0) & <= 0.0) & STOP 1 ! 0++ > 0+ if (nearest(nearest(0.0, 1.0), 1.0) & <= nearest(0.0, 1.0)) & STOP 2 ! 0+++ > 0++ if (nearest(nearest(nearest(0.0, 1.0), 1.0), 1.0) & <= nearest(nearest(0.0, 1.0), 1.0)) & STOP 3 ! 0+- = 0 if (nearest(nearest(0.0, 1.0), -1.0) & /= 0.0) & STOP 4 ! 0++- = 0+ if (nearest(nearest(nearest(0.0, 1.0), 1.0), -1.0) & /= nearest(0.0, 1.0)) & STOP 5 ! 0++-- = 0 if (nearest(nearest(nearest(nearest(0.0, 1.0), 1.0), -1.0), -1.0) & /= 0.0) & STOP 6 ! 0- < 0 if (nearest(0.0, -1.0) & >= 0.0) & STOP 7 ! 0-- < 0+ if (nearest(nearest(0.0, -1.0), -1.0) & >= nearest(0.0, -1.0)) & STOP 8 ! 0--- < 0-- if (nearest(nearest(nearest(0.0, -1.0), -1.0), -1.0) & >= nearest(nearest(0.0, -1.0), -1.0)) & STOP 9 ! 0-+ = 0 if (nearest(nearest(0.0, -1.0), 1.0) & /= 0.0) & STOP 10 ! 0--+ = 0- if (nearest(nearest(nearest(0.0, -1.0), -1.0), 1.0) & /= nearest(0.0, -1.0)) & STOP 11 ! 0--++ = 0 if (nearest(nearest(nearest(nearest(0.0, -1.0), -1.0), 1.0), 1.0) & /= 0.0) & STOP 12 ! 42++ > 42+ if (nearest(nearest(42.0, 1.0), 1.0) & <= nearest(42.0, 1.0)) & STOP 13 ! 42-- < 42- if (nearest(nearest(42.0, -1.0), -1.0) & >= nearest(42.0, -1.0)) & STOP 14 ! 42-+ = 42 if (nearest(nearest(42.0, -1.0), 1.0) & /= 42.0) & STOP 15 ! 42+- = 42 if (nearest(nearest(42.0, 1.0), -1.0) & /= 42.0) & STOP 16 ! INF+ = INF if (nearest(1.0/0.0, 1.0) /= 1.0/0.0) STOP 17 ! -INF- = -INF if (nearest(-1.0/0.0, -1.0) /= -1.0/0.0) STOP 18 ! NAN- = NAN if (.not.isnan(nearest(0.0d0/0.0, 1.0))) STOP 19 ! NAN+ = NAN if (.not.isnan(nearest(0.0d0/0.0, -1.0))) STOP 20 ! Double precision ! 0+ > 0 if (nearest(0.0d0, 1.0) & <= 0.0d0) & STOP 21 ! 0++ > 0+ if (nearest(nearest(0.0d0, 1.0), 1.0) & <= nearest(0.0d0, 1.0)) & STOP 22 ! 0+++ > 0++ if (nearest(nearest(nearest(0.0d0, 1.0), 1.0), 1.0) & <= nearest(nearest(0.0d0, 1.0), 1.0)) & STOP 23 ! 0+- = 0 if (nearest(nearest(0.0d0, 1.0), -1.0) & /= 0.0d0) & STOP 24 ! 0++- = 0+ if (nearest(nearest(nearest(0.0d0, 1.0), 1.0), -1.0) & /= nearest(0.0d0, 1.0)) & STOP 25 ! 0++-- = 0 if (nearest(nearest(nearest(nearest(0.0d0, 1.0), 1.0), -1.0), -1.0) & /= 0.0d0) & STOP 26 ! 0- < 0 if (nearest(0.0d0, -1.0) & >= 0.0d0) & STOP 27 ! 0-- < 0+ if (nearest(nearest(0.0d0, -1.0), -1.0) & >= nearest(0.0d0, -1.0)) & STOP 28 ! 0--- < 0-- if (nearest(nearest(nearest(0.0d0, -1.0), -1.0), -1.0) & >= nearest(nearest(0.0d0, -1.0), -1.0)) & STOP 29 ! 0-+ = 0 if (nearest(nearest(0.0d0, -1.0), 1.0) & /= 0.0d0) & STOP 30 ! 0--+ = 0- if (nearest(nearest(nearest(0.0d0, -1.0), -1.0), 1.0) & /= nearest(0.0d0, -1.0)) & STOP 31 ! 0--++ = 0 if (nearest(nearest(nearest(nearest(0.0d0, -1.0), -1.0), 1.0), 1.0) & /= 0.0d0) & STOP 32 ! 42++ > 42+ if (nearest(nearest(42.0d0, 1.0), 1.0) & <= nearest(42.0d0, 1.0)) & STOP 33 ! 42-- < 42- if (nearest(nearest(42.0d0, -1.0), -1.0) & >= nearest(42.0d0, -1.0)) & STOP 34 ! 42-+ = 42 if (nearest(nearest(42.0d0, -1.0), 1.0) & /= 42.0d0) & STOP 35 ! 42+- = 42 if (nearest(nearest(42.0d0, 1.0), -1.0) & /= 42.0d0) & STOP 36 ! INF+ = INF if (nearest(1.0d0/0.0d0, 1.0) /= 1.0d0/0.0d0) STOP 37 ! -INF- = -INF if (nearest(-1.0d0/0.0d0, -1.0) /= -1.0d0/0.0d0) STOP 38 ! NAN- = NAN if (.not.isnan(nearest(0.0d0/0.0, 1.0))) STOP 39 ! NAN+ = NAN if (.not.isnan(nearest(0.0d0/0.0, -1.0))) STOP 40 end program test
/- Copyright (c) 2018 Jan-David Salchow. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jan-David Salchow, Patrick Massot -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.topology.bases import Mathlib.topology.subset_properties import Mathlib.topology.metric_space.basic import Mathlib.PostPort universes u_1 u_3 l u_2 namespace Mathlib /-! # Sequences in topological spaces In this file we define sequences in topological spaces and show how they are related to filters and the topology. In particular, we * define the sequential closure of a set and prove that it's contained in the closure, * define a type class "sequential_space" in which closure and sequential closure agree, * define sequential continuity and show that it coincides with continuity in sequential spaces, * provide an instance that shows that every first-countable (and in particular metric) space is a sequential space. * define sequential compactness, prove that compactness implies sequential compactness in first countable spaces, and prove they are equivalent for uniform spaces having a countable uniformity basis (in particular metric spaces). -/ /-! ### Sequential closures, sequential continuity, and sequential spaces. -/ /-- A sequence converges in the sence of topological spaces iff the associated statement for filter holds. -/ theorem topological_space.seq_tendsto_iff {α : Type u_1} [topological_space α] {x : ā„• → α} {limit : α} : filter.tendsto x filter.at_top (nhds limit) ↔ āˆ€ (U : set α), limit ∈ U → is_open U → ∃ (N : ā„•), āˆ€ (n : ā„•), n ≄ N → x n ∈ U := sorry /-- The sequential closure of a subset M āŠ† α of a topological space α is the set of all p ∈ α which arise as limit of sequences in M. -/ def sequential_closure {α : Type u_1} [topological_space α] (M : set α) : set α := set_of fun (p : α) => ∃ (x : ā„• → α), (āˆ€ (n : ā„•), x n ∈ M) ∧ filter.tendsto x filter.at_top (nhds p) theorem subset_sequential_closure {α : Type u_1} [topological_space α] (M : set α) : M āŠ† sequential_closure M := fun (p : α) (_x : p ∈ M) => (fun (this : p ∈ sequential_closure M) => this) (Exists.intro (fun (n : ā„•) => p) { left := fun (n : ā„•) => _x, right := tendsto_const_nhds }) /-- A set `s` is sequentially closed if for any converging sequence `x n` of elements of `s`, the limit belongs to `s` as well. -/ def is_seq_closed {α : Type u_1} [topological_space α] (s : set α) := s = sequential_closure s /-- A convenience lemma for showing that a set is sequentially closed. -/ theorem is_seq_closed_of_def {α : Type u_1} [topological_space α] {A : set α} (h : āˆ€ (x : ā„• → α) (p : α), (āˆ€ (n : ā„•), x n ∈ A) → filter.tendsto x filter.at_top (nhds p) → p ∈ A) : is_seq_closed A := sorry /-- The sequential closure of a set is contained in the closure of that set. The converse is not true. -/ theorem sequential_closure_subset_closure {α : Type u_1} [topological_space α] (M : set α) : sequential_closure M āŠ† closure M := sorry /-- A set is sequentially closed if it is closed. -/ theorem is_seq_closed_of_is_closed {α : Type u_1} [topological_space α] (M : set α) (_x : is_closed M) : is_seq_closed M := (fun (this : sequential_closure M āŠ† M) => set.eq_of_subset_of_subset (subset_sequential_closure M) this) (trans_rel_left has_subset.subset (sequential_closure_subset_closure M) (is_closed.closure_eq _x)) /-- The limit of a convergent sequence in a sequentially closed set is in that set.-/ theorem mem_of_is_seq_closed {α : Type u_1} [topological_space α] {A : set α} (_x : is_seq_closed A) {x : ā„• → α} : (āˆ€ (n : ā„•), x n ∈ A) → āˆ€ {limit : α}, filter.tendsto x filter.at_top (nhds limit) → limit ∈ A := sorry /-- The limit of a convergent sequence in a closed set is in that set.-/ theorem mem_of_is_closed_sequential {α : Type u_1} [topological_space α] {A : set α} (_x : is_closed A) {x : ā„• → α} : (āˆ€ (n : ā„•), x n ∈ A) → āˆ€ {limit : α}, filter.tendsto x filter.at_top (nhds limit) → limit ∈ A := fun (_x_1 : āˆ€ (n : ā„•), x n ∈ A) {limit : α} (_x_2 : filter.tendsto x filter.at_top (nhds limit)) => mem_of_is_seq_closed (is_seq_closed_of_is_closed A _x) _x_1 _x_2 /-- A sequential space is a space in which 'sequences are enough to probe the topology'. This can be formalised by demanding that the sequential closure and the closure coincide. The following statements show that other topological properties can be deduced from sequences in sequential spaces. -/ class sequential_space (α : Type u_3) [topological_space α] where sequential_closure_eq_closure : āˆ€ (M : set α), sequential_closure M = closure M /-- In a sequential space, a set is closed iff it's sequentially closed. -/ theorem is_seq_closed_iff_is_closed {α : Type u_1} [topological_space α] [sequential_space α] {M : set α} : is_seq_closed M ↔ is_closed M := sorry /-- In a sequential space, a point belongs to the closure of a set iff it is a limit of a sequence taking values in this set. -/ theorem mem_closure_iff_seq_limit {α : Type u_1} [topological_space α] [sequential_space α] {s : set α} {a : α} : a ∈ closure s ↔ ∃ (x : ā„• → α), (āˆ€ (n : ā„•), x n ∈ s) ∧ filter.tendsto x filter.at_top (nhds a) := sorry /-- A function between topological spaces is sequentially continuous if it commutes with limit of convergent sequences. -/ def sequentially_continuous {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] (f : α → β) := āˆ€ (x : ā„• → α) {limit : α}, filter.tendsto x filter.at_top (nhds limit) → filter.tendsto (f ∘ x) filter.at_top (nhds (f limit)) /- A continuous function is sequentially continuous. -/ theorem continuous.to_sequentially_continuous {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} (_x : continuous f) : sequentially_continuous f := sorry /-- In a sequential space, continuity and sequential continuity coincide. -/ theorem continuous_iff_sequentially_continuous {α : Type u_1} {β : Type u_2} [topological_space α] [topological_space β] {f : α → β} [sequential_space α] : continuous f ↔ sequentially_continuous f := sorry namespace topological_space namespace first_countable_topology /-- Every first-countable space is sequential. -/ protected instance sequential_space {α : Type u_1} [topological_space α] [first_countable_topology α] : sequential_space α := sequential_space.mk ((fun (this : āˆ€ (M : set α), sequential_closure M = closure M) => this) fun (M : set α) => (fun (this : closure M āŠ† sequential_closure M) => set.subset.antisymm (sequential_closure_subset_closure M) this) fun (p : α) (hp : p ∈ closure M) => sorry) end first_countable_topology end topological_space /-- A set `s` is sequentially compact if every sequence taking values in `s` has a converging subsequence. -/ def is_seq_compact {α : Type u_1} [topological_space α] (s : set α) := āˆ€ {u : ā„• → α}, (āˆ€ (n : ā„•), u n ∈ s) → ∃ (x : α), ∃ (H : x ∈ s), ∃ (φ : ā„• → ā„•), strict_mono φ ∧ filter.tendsto (u ∘ φ) filter.at_top (nhds x) /-- A space `α` is sequentially compact if every sequence in `α` has a converging subsequence. -/ class seq_compact_space (α : Type u_3) [topological_space α] where seq_compact_univ : is_seq_compact set.univ theorem is_seq_compact.subseq_of_frequently_in {α : Type u_1} [topological_space α] {s : set α} (hs : is_seq_compact s) {u : ā„• → α} (hu : filter.frequently (fun (n : ā„•) => u n ∈ s) filter.at_top) : ∃ (x : α), ∃ (H : x ∈ s), ∃ (φ : ā„• → ā„•), strict_mono φ ∧ filter.tendsto (u ∘ φ) filter.at_top (nhds x) := sorry theorem seq_compact_space.tendsto_subseq {α : Type u_1} [topological_space α] [seq_compact_space α] (u : ā„• → α) : ∃ (x : α), ∃ (φ : ā„• → ā„•), strict_mono φ ∧ filter.tendsto (u ∘ φ) filter.at_top (nhds x) := sorry theorem is_compact.is_seq_compact {α : Type u_1} [topological_space α] [topological_space.first_countable_topology α] {s : set α} (hs : is_compact s) : is_seq_compact s := sorry theorem is_compact.tendsto_subseq' {α : Type u_1} [topological_space α] [topological_space.first_countable_topology α] {s : set α} {u : ā„• → α} (hs : is_compact s) (hu : filter.frequently (fun (n : ā„•) => u n ∈ s) filter.at_top) : ∃ (x : α), ∃ (H : x ∈ s), ∃ (φ : ā„• → ā„•), strict_mono φ ∧ filter.tendsto (u ∘ φ) filter.at_top (nhds x) := is_seq_compact.subseq_of_frequently_in (is_compact.is_seq_compact hs) hu theorem is_compact.tendsto_subseq {α : Type u_1} [topological_space α] [topological_space.first_countable_topology α] {s : set α} {u : ā„• → α} (hs : is_compact s) (hu : āˆ€ (n : ā„•), u n ∈ s) : ∃ (x : α), ∃ (H : x ∈ s), ∃ (φ : ā„• → ā„•), strict_mono φ ∧ filter.tendsto (u ∘ φ) filter.at_top (nhds x) := is_compact.is_seq_compact hs hu protected instance first_countable_topology.seq_compact_of_compact {α : Type u_1} [topological_space α] [topological_space.first_countable_topology α] [compact_space α] : seq_compact_space α := seq_compact_space.mk (is_compact.is_seq_compact compact_univ) theorem compact_space.tendsto_subseq {α : Type u_1} [topological_space α] [topological_space.first_countable_topology α] [compact_space α] (u : ā„• → α) : ∃ (x : α), ∃ (φ : ā„• → ā„•), strict_mono φ ∧ filter.tendsto (u ∘ φ) filter.at_top (nhds x) := seq_compact_space.tendsto_subseq u theorem lebesgue_number_lemma_seq {β : Type u_2} [uniform_space β] {s : set β} {ι : Type u_1} {c : ι → set β} (hs : is_seq_compact s) (hc₁ : āˆ€ (i : ι), is_open (c i)) (hcā‚‚ : s āŠ† set.Union fun (i : ι) => c i) (hU : filter.is_countably_generated (uniformity β)) : ∃ (V : set (β Ɨ β)), ∃ (H : V ∈ uniformity β), symmetric_rel V ∧ āˆ€ (x : β), x ∈ s → ∃ (i : ι), uniform_space.ball x V āŠ† c i := sorry theorem is_seq_compact.totally_bounded {β : Type u_2} [uniform_space β] {s : set β} (h : is_seq_compact s) : totally_bounded s := sorry protected theorem is_seq_compact.is_compact {β : Type u_2} [uniform_space β] {s : set β} (h : filter.is_countably_generated (uniformity β)) (hs : is_seq_compact s) : is_compact s := sorry protected theorem uniform_space.compact_iff_seq_compact {β : Type u_2} [uniform_space β] {s : set β} (h : filter.is_countably_generated (uniformity β)) : is_compact s ↔ is_seq_compact s := { mp := fun (H : is_compact s) => is_compact.is_seq_compact H, mpr := fun (H : is_seq_compact s) => is_seq_compact.is_compact h H } theorem uniform_space.compact_space_iff_seq_compact_space {β : Type u_2} [uniform_space β] (H : filter.is_countably_generated (uniformity β)) : compact_space β ↔ seq_compact_space β := sorry /-- A version of Bolzano-Weistrass: in a metric space, is_compact s ↔ is_seq_compact s -/ theorem metric.compact_iff_seq_compact {β : Type u_2} [metric_space β] {s : set β} : is_compact s ↔ is_seq_compact s := uniform_space.compact_iff_seq_compact emetric.uniformity_has_countable_basis /-- A version of Bolzano-Weistrass: in a proper metric space (eg. $ā„^n$), every bounded sequence has a converging subsequence. This version assumes only that the sequence is frequently in some bounded set. -/ theorem tendsto_subseq_of_frequently_bounded {β : Type u_2} [metric_space β] {s : set β} [proper_space β] (hs : metric.bounded s) {u : ā„• → β} (hu : filter.frequently (fun (n : ā„•) => u n ∈ s) filter.at_top) : ∃ (b : β), ∃ (H : b ∈ closure s), ∃ (φ : ā„• → ā„•), strict_mono φ ∧ filter.tendsto (u ∘ φ) filter.at_top (nhds b) := sorry /-- A version of Bolzano-Weistrass: in a proper metric space (eg. $ā„^n$), every bounded sequence has a converging subsequence. -/ theorem tendsto_subseq_of_bounded {β : Type u_2} [metric_space β] {s : set β} [proper_space β] (hs : metric.bounded s) {u : ā„• → β} (hu : āˆ€ (n : ā„•), u n ∈ s) : ∃ (b : β), ∃ (H : b ∈ closure s), ∃ (φ : ā„• → ā„•), strict_mono φ ∧ filter.tendsto (u ∘ φ) filter.at_top (nhds b) := tendsto_subseq_of_frequently_bounded hs (filter.frequently_of_forall hu) theorem metric.compact_space_iff_seq_compact_space {β : Type u_2} [metric_space β] : compact_space β ↔ seq_compact_space β := uniform_space.compact_space_iff_seq_compact_space emetric.uniformity_has_countable_basis theorem seq_compact.lebesgue_number_lemma_of_metric {β : Type u_2} [metric_space β] {s : set β} {ι : Type u_1} {c : ι → set β} (hs : is_seq_compact s) (hc₁ : āˆ€ (i : ι), is_open (c i)) (hcā‚‚ : s āŠ† set.Union fun (i : ι) => c i) : ∃ (Ī“ : ā„), ∃ (H : Ī“ > 0), āˆ€ (x : β), x ∈ s → ∃ (i : ι), metric.ball x Ī“ āŠ† c i := sorry end Mathlib
data IsS : (Nat -> Nat) -> Type where Indeed : (s : Nat -> Nat) -> s === S -> IsS s ------------------------------------------------------------------------ -- 1. -- the S pattern is forced by the fact the parameter is instantiated -- so everything is fine -- either left implicit indeed : IsS S -> S === S indeed (Indeed _ eq) = eq -- or made explicit indeed2 : IsS S -> S === S indeed2 (Indeed S eq) = eq ------------------------------------------------------------------------ -- 2. The S pattern is not forced by the parameter (a generic variable) -- either don't match on it indeed3 : IsS s -> s === S indeed3 (Indeed s eq) = eq -- or match on the proof that forces it indeed4 : IsS s -> s === S indeed4 (Indeed S Refl) = Refl -- ^ forced by Refl -- If you don't: too bad! fail : IsS s -> s === S fail (Indeed S eq) = eq -- ^ not Refl, S not forced! OUCH
Formal statement is: lemma (in first_countable_topology) first_countable_basis_Int_stableE: obtains \<A> where "countable \<A>" "\<And>A. A \<in> \<A> \<Longrightarrow> x \<in> A" "\<And>A. A \<in> \<A> \<Longrightarrow> open A" "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> (\<exists>A\<in>\<A>. A \<subseteq> S)" "\<And>A B. A \<in> \<A> \<Longrightarrow> B \<in> \<A> \<Longrightarrow> A \<inter> B \<in> \<A>" Informal statement is: If a topological space is first countable, then there exists a countable basis for the topology at every point.
#define BOOST_TEST_MODULE TestrocFFT #include "libraries/rocfft/rocfft_helper.hpp" #include <hip/hip_runtime_api.h> #include <hip/hip_vector_types.h> #include <rocfft.h> #include <boost/test/included/unit_test.hpp> // Single-header usage variant #include <cstdint> #include <iostream> #include <vector> #include <complex> BOOST_AUTO_TEST_CASE( FFT1DSmall, * boost::unit_test::tolerance(0.0001f) ) { // rocFFT gpu compute // ======================================== CHECK_HIP(rocfft_setup()); std::size_t N = 2 << 10; //should be small enough to not need a work_buffer std::size_t Nbytes = N * sizeof(float2); // Create HIP device buffer float2 *x; CHECK_HIP(hipMalloc(&x, Nbytes)); // Initialize data std::vector<float2> cx(N); for (std::size_t i = 0; i < N; i++) { cx[i].x = 1; cx[i].y = -1; } // Copy data to device CHECK_HIP(hipMemcpy(x, cx.data(), Nbytes, hipMemcpyHostToDevice)); // Create fwd rocFFT fwd rocfft_plan fwd = nullptr; std::size_t length = N; CHECK_HIP( rocfft_plan_create(&fwd, rocfft_placement_inplace, rocfft_transform_type_complex_forward, rocfft_precision_single, 1, &length, 1, nullptr)); // Create bwd rocFFT bwd rocfft_plan bwd = nullptr; CHECK_HIP( rocfft_plan_create(&bwd, rocfft_placement_inplace, rocfft_transform_type_complex_inverse, rocfft_precision_single, 1, &length, 1, nullptr)); // Execute fwd CHECK_HIP(rocfft_execute(fwd, (void**) &x, nullptr, nullptr)); // Wait for execution to finish CHECK_HIP(hipDeviceSynchronize()); // Destroy fwd CHECK_HIP(rocfft_plan_destroy(fwd)); // Execute bwd CHECK_HIP(rocfft_execute(bwd, (void**) &x, nullptr, nullptr)); // Wait for execution to finish CHECK_HIP(hipDeviceSynchronize()); // Destroy bwd CHECK_HIP(rocfft_plan_destroy(bwd)); // Copy result back to host std::vector<float2> y(N); CHECK_HIP(hipMemcpy(y.data(), x, Nbytes, hipMemcpyDeviceToHost)); // Print results for (std::size_t i = 0; i < N; i++) { y[i].x *= 1.f/N; y[i].y *= 1.f/N; BOOST_TEST( cx[i].x == y[i].x ); BOOST_TEST( cx[i].y == y[i].y ); } // Free device buffer CHECK_HIP(hipFree(x)); CHECK_HIP(rocfft_cleanup()); } BOOST_AUTO_TEST_CASE( FFT1D, * boost::unit_test::tolerance(0.0001f) ) { // rocFFT gpu compute // ======================================== CHECK_HIP(rocfft_setup()); std::size_t N = 128 << 10; //needs a work_buffer std::size_t Nbytes = N * sizeof(float2); // Create HIP device buffer float2 *x; CHECK_HIP(hipMalloc(&x, Nbytes)); // Initialize data std::vector<float2> cx(N); for (std::size_t i = 0; i < N; i++) { cx[i].x = 1; cx[i].y = -1; } // Copy data to device CHECK_HIP(hipMemcpy(x, cx.data(), Nbytes, hipMemcpyHostToDevice)); // Create fwd rocFFT fwd rocfft_plan fwd = nullptr; std::size_t length = N; CHECK_HIP( rocfft_plan_create(&fwd, rocfft_placement_inplace, rocfft_transform_type_complex_forward, rocfft_precision_single, 1, &length, 1, nullptr)); // Create bwd rocFFT bwd rocfft_plan bwd = nullptr; CHECK_HIP( rocfft_plan_create(&bwd, rocfft_placement_inplace, rocfft_transform_type_complex_inverse, rocfft_precision_single, 1, &length, 1, nullptr)); // Setup work buffer void *workBuffer = nullptr; size_t workBufferSize_fwd = 0; CHECK_HIP(rocfft_plan_get_work_buffer_size(fwd, &workBufferSize_fwd)); size_t workBufferSize_bwd = 0; CHECK_HIP(rocfft_plan_get_work_buffer_size(bwd, &workBufferSize_bwd)); BOOST_REQUIRE_EQUAL(workBufferSize_bwd,workBufferSize_fwd); // Setup exec info to pass work buffer to the library rocfft_execution_info info = nullptr; CHECK_HIP(rocfft_execution_info_create(&info)); if(workBufferSize_fwd > 0) { CHECK_HIP(hipMalloc(&workBuffer, workBufferSize_fwd)); CHECK_HIP(rocfft_execution_info_set_work_buffer(info, workBuffer, workBufferSize_fwd)); } // Execute fwd CHECK_HIP(rocfft_execute(fwd, (void**) &x, nullptr, info)); // Wait for execution to finish CHECK_HIP(hipDeviceSynchronize()); // Destroy fwd CHECK_HIP(rocfft_plan_destroy(fwd)); // Execute bwd CHECK_HIP(rocfft_execute(bwd, (void**) &x, nullptr, info)); // Wait for execution to finish CHECK_HIP(hipDeviceSynchronize()); // Destroy bwd CHECK_HIP(rocfft_plan_destroy(bwd)); if(workBuffer) CHECK_HIP(hipFree(workBuffer)); CHECK_HIP(rocfft_execution_info_destroy(info)); // Copy result back to host std::vector<float2> y(N); CHECK_HIP(hipMemcpy(y.data(), x, Nbytes, hipMemcpyDeviceToHost)); // Print results for (std::size_t i = 0; i < N; i++) { y[i].x *= 1.f/N; y[i].y *= 1.f/N; BOOST_TEST( cx[i].x == y[i].x ); BOOST_TEST( cx[i].y == y[i].y ); } // Free device buffer CHECK_HIP(hipFree(x)); CHECK_HIP(rocfft_cleanup()); } BOOST_AUTO_TEST_CASE( FFT1DSmall_stdcomplex, * boost::unit_test::tolerance(0.0001f) ) { // rocFFT gpu compute // ======================================== CHECK_HIP(rocfft_setup()); std::size_t N = 2 << 10; //should be small enough to not need a work_buffer std::size_t Nbytes = N * sizeof(std::complex<float>); // Create HIP device buffer std::complex<float> *x; CHECK_HIP(hipMalloc(&x, Nbytes)); // Initialize data std::vector<std::complex<float>> cx(N); for (std::size_t i = 0; i < N; i++) { cx[i].real( 1 ); cx[i].imag( -1); } // Copy data to device CHECK_HIP(hipMemcpy(x, cx.data(), Nbytes, hipMemcpyHostToDevice)); // Create fwd rocFFT fwd rocfft_plan fwd = nullptr; std::size_t length = N; CHECK_HIP( rocfft_plan_create(&fwd, rocfft_placement_inplace, rocfft_transform_type_complex_forward, rocfft_precision_single, 1, &length, 1, nullptr)); // Create bwd rocFFT bwd rocfft_plan bwd = nullptr; CHECK_HIP( rocfft_plan_create(&bwd, rocfft_placement_inplace, rocfft_transform_type_complex_inverse, rocfft_precision_single, 1, &length, 1, nullptr)); // Execute fwd CHECK_HIP(rocfft_execute(fwd, (void**) &x, nullptr, nullptr)); // Wait for execution to finish CHECK_HIP(hipDeviceSynchronize()); // Destroy fwd CHECK_HIP(rocfft_plan_destroy(fwd)); // Execute bwd CHECK_HIP(rocfft_execute(bwd, (void**) &x, nullptr, nullptr)); // Wait for execution to finish CHECK_HIP(hipDeviceSynchronize()); // Destroy bwd CHECK_HIP(rocfft_plan_destroy(bwd)); // Copy result back to host std::vector<std::complex<float>> y(N); CHECK_HIP(hipMemcpy(y.data(), x, Nbytes, hipMemcpyDeviceToHost)); // Print results for (std::size_t i = 0; i < N; i++) { y[i].real ( y[i].real() * 1.f/N); y[i].imag ( y[i].imag() * 1.f/N); BOOST_TEST( cx[i].real() == y[i].real() ); BOOST_TEST( cx[i].imag() == y[i].imag() ); } // Free device buffer CHECK_HIP(hipFree(x)); CHECK_HIP(rocfft_cleanup()); } BOOST_AUTO_TEST_CASE( failing_float_265841_Inplace_Real, * boost::unit_test::tolerance(0.0001f) ) { // rocFFT gpu compute // ======================================== CHECK_HIP(rocfft_setup()); std::size_t N = 265841; std::size_t Nbytes = 2*(N/2 + 1) * sizeof(float); BOOST_REQUIRE_GT(Nbytes, N*sizeof(float)); // Create HIP device buffer float *x; CHECK_HIP(hipMalloc(&x, Nbytes)); // Initialize data std::vector<float> h_x(N,1.); // Copy data to device CHECK_HIP(hipMemcpy(x, h_x.data(), Nbytes, hipMemcpyHostToDevice)); // Create fwd rocFFT fwd rocfft_plan fwd = nullptr; std::size_t length = N; CHECK_HIP( rocfft_plan_create(&fwd, rocfft_placement_inplace, rocfft_transform_type_real_forward, rocfft_precision_single, 1, &length, 1, nullptr)); // Create bwd rocFFT bwd rocfft_plan bwd = nullptr; CHECK_HIP( rocfft_plan_create(&bwd, rocfft_placement_inplace, rocfft_transform_type_real_inverse, rocfft_precision_single, 1, &length, 1, nullptr)); // Setup work buffer void *workBuffer = nullptr; size_t workBufferSize_fwd = 0; CHECK_HIP(rocfft_plan_get_work_buffer_size(fwd, &workBufferSize_fwd)); size_t workBufferSize_bwd = 0; CHECK_HIP(rocfft_plan_get_work_buffer_size(bwd, &workBufferSize_bwd)); BOOST_REQUIRE_EQUAL(workBufferSize_bwd,workBufferSize_fwd); // Setup exec info to pass work buffer to the library rocfft_execution_info info = nullptr; CHECK_HIP(rocfft_execution_info_create(&info)); if(workBufferSize_fwd > 0) { CHECK_HIP(hipMalloc(&workBuffer, workBufferSize_fwd)); CHECK_HIP(rocfft_execution_info_set_work_buffer(info, workBuffer, workBufferSize_fwd)); } // Execute fwd CHECK_HIP(rocfft_execute(fwd, (void**) &x, nullptr, info)); // Wait for execution to finish CHECK_HIP(hipDeviceSynchronize()); // Destroy fwd CHECK_HIP(rocfft_plan_destroy(fwd)); // Execute bwd CHECK_HIP(rocfft_execute(bwd, (void**) &x, nullptr, info)); // Wait for execution to finish CHECK_HIP(hipDeviceSynchronize()); // Destroy bwd CHECK_HIP(rocfft_plan_destroy(bwd)); if(workBuffer) CHECK_HIP(hipFree(workBuffer)); CHECK_HIP(rocfft_execution_info_destroy(info)); // Copy result back to host std::vector<float> h_y(N); CHECK_HIP(hipMemcpy(h_y.data(), x, Nbytes, hipMemcpyDeviceToHost)); // Print results for (std::size_t i = 0; i < N; i++) { h_y[i]*= 1.f/N; BOOST_TEST( h_x[i] == h_y[i] ); } // Free device buffer CHECK_HIP(hipFree(x)); CHECK_HIP(rocfft_cleanup()); }
import Pkg; Pkg.add(Pkg.PackageSpec(url="https://github.com/JuliaComputing/JuliaAcademyData.jl")) using JuliaAcademyData; activate("Foundations of machine learning") # ## Intro to neurons # # At this point, we know how to build models and have a computer automatically learn how to match the model to data. This is the core of how any machine learning method works. # # Now, let's narrow our focus and look at **neural networks**. Neural networks (or "neural nets", for short) are a specific choice of a **model**. It's a network made up of **neurons**; this, in turn, leads to the question, "what is a neuron?" #- # ### Models with multiple inputs # # So far, we have been using the sigmoid function as our model. One of the forms of the sigmoid function we've used is # # $$\sigma_{w, b}(x) = \frac{1}{1 + \exp(-wx + b)},$$ # # where `x` and `w` are both single numbers. We have been using this function to model how the amount of the color green in an image (`x`) can be used to determine if an image shows an apple or a banana. # # But what if we had multiple data features we wanted to fit? # # We could then extend our model to include multiple features like # # $$\sigma_{\mathbf{w},b}(\mathbf{x}) = \frac{1}{1 + \exp(-w_1 x_1 - w_2 x_2 - \cdots - w_n x_n + b)}$$ # # Note that now $\mathbf{x}$ and $\mathbf{w}$ are vectors with many components, rather than a single number. # # For example, $x_1$ might be the amount of the color green in an image, $x_2$ could be the height of the object in the picture, $x_3$ could be the width, and so forth. We can add information for as many features as we have! Our model now has more parameters, but the same idea of gradient descent ("rolling the ball downhill") will still work to train our model. # # This version of the sigmoid model that takes multiple inputs is an example of a **neuron**. #- # In the video, we see that one huge class of learning techniques is based around neurons, that is, *artificial neurons*. These are caricatures of real, biological neurons. Both *artificial* and *biological* neurons have several inputs $x_1, \ldots, x_n$, and a single output, $y$. Schematically they look like this: include(datapath("scripts/draw_neural_net.jl")) number_inputs, number_neurons = 4, 1 draw_network([number_inputs, number_neurons]) # We should read this as showing how information flows from left to right: # - 4 pieces of input information arrive (shown in green on the left); # # - the neuron (shown in red on the right) receives all the inputs, processes them, and outputs a single number to the right. #- # In other words, a neuron is just a type of function that takes multiple inputs and returns a single output. # # The simplest interesting case that we will look at in this notebook is when there are just two pieces of input data: draw_network([2, 1]) # Each link between circles above represents a **weight** $w$ that can be modified to allow the neuron to learn, so in this case the neuron has two weights, $w_1$ and $w_2$. # # The neuron also has a single bias $b$, and an **activation function**, which we will take to be the $\sigma$ sigmoidal function that we have been using. (Note that other activation functions can be used!) # # Let's call our neuron $f_{w_1,w_2, b}(x_1, x_2)$, where # # $$f_{w_1,w_2, b}(x_1, x_2) := \sigma(w_1 x_1 + w_2 x_2 + b).$$ # # Note that $f_{w_1,w_2, b}(x_1, x_2)$ has 3 parameters: two weights and a bias. # # To simplify the notation, and to prepare for more complicated scenarios later, we put the two weights into a vector, and the two data values into another vector: # # $$ # \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}; # \qquad # \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. # $$ # # We thus have # # $$f_{\mathbf{w}, b}(\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x} + b),$$ # # where the dot product $\mathbf{w} \cdot \mathbf{x}$ is an abbreviated syntax for $w_1 x_1 + w_2 x_2$. #- # #### Exercise 1 # # Declare the function `f(x, w, b)` in Julia. `f` should take vectors `x` and `w` as vectors and `b` as a scalar. Furthermore `f` should call # # ```julia # σ(x) = 1 / (1 + exp(-x)) # ``` # # What output do you get for # # ```julia # f(3, 4, 5) # ``` # ? #- # #### Solution σ(x) = 1 / (1 + exp(-x)) f(x, w, b) = σ(w ā‹… x + b) # use \cdot<TAB> to get "ā‹…" ## or alternatively, use juxtaposed multiplication with the transpose w' ## f(x, w, b) = σ(w'x + b) # use \cdot<TAB> to get "ā‹…" # **Tests** @assert f(3, 4, 5) ā‰ˆ 0.99999996
The current Romanian Land Forces were formed in 1859 , immediately after the unification of Wallachia with Moldavia , and were commanded by Alexandru Ioan Cuza , Domnitor of Romania until his abdication in 1866 . In 1877 , at the request of Nikolai Konstantinovich , Grand Duke of Russia the Romanian army fused with the Russian forces , and led by King Carol I , fought in what was to become the Romanian War of Independence . They participated in the Siege of Plevna and several other battles . The Romanians won the war , but suffered about 27 @,@ 000 casualties . Until World War I , the Romanian army didn 't face any other serious actions .
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} ------------------------------------------------------------------------------ import LibraBFT.Impl.Consensus.SafetyRules.PersistentSafetyStorage as PersistentSafetyStorage import LibraBFT.Impl.Consensus.SafetyRules.SafetyRules as SafetyRules open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.PKCS open import Util.Prelude ------------------------------------------------------------------------------ module LibraBFT.Impl.Consensus.SafetyRules.SafetyRulesManager where storage : SafetyRulesConfig -> Author -> SK → Either ErrLog PersistentSafetyStorage storage config obmMe obmSK = do pure $ PersistentSafetyStorage.new -- internalStorage obmMe (config ^āˆ™ srcObmGenesisWaypoint) obmSK newLocal : PersistentSafetyStorage → Bool → Either ErrLog SafetyRulesManager new : SafetyRulesConfig → Author → SK → Either ErrLog SafetyRulesManager new config obmMe obmSK = do storage0 ← storage config obmMe obmSK let exportConsensusKey = config ^āˆ™ srcExportConsensusKey case config ^āˆ™ srcService of Ī» where SRSLocal → newLocal storage0 exportConsensusKey newLocal storage0 exportConsensusKey = do safetyRules ← SafetyRules.new storage0 exportConsensusKey pure (mkSafetyRulesManager (SRWLocal safetyRules)) client : SafetyRulesManager → SafetyRules client self = case self ^āˆ™ srmInternalSafetyRules of Ī» where (SRWLocal safetyRules) → safetyRules
(** This file collects general purpose definitions and theorems on the option data type that are not in the Coq standard library. *) From stdpp Require Export tactics. From stdpp Require Import options. Inductive option_reflect {A} (P : A → Prop) (Q : Prop) : option A → Type := | ReflectSome x : P x → option_reflect P Q (Some x) | ReflectNone : Q → option_reflect P Q None. (** * General definitions and theorems *) (** Basic properties about equality. *) Lemma None_ne_Some {A} (x : A) : None ≠ Some x. Proof. congruence. Qed. Lemma Some_ne_None {A} (x : A) : Some x ≠ None. Proof. congruence. Qed. Lemma eq_None_ne_Some {A} (mx : option A) : (āˆ€ x, mx ≠ Some x) ↔ mx = None. Proof. destruct mx; split; congruence. Qed. Lemma eq_None_ne_Some_1 {A} (mx : option A) x : mx = None → mx ≠ Some x. Proof. intros ?. by apply eq_None_ne_Some. Qed. Lemma eq_None_ne_Some_2 {A} (mx : option A) : (āˆ€ x, mx ≠ Some x) → mx = None. Proof. intros ?. by apply eq_None_ne_Some. Qed. Global Instance Some_inj {A} : Inj (=) (=) (@Some A). Proof. congruence. Qed. (** The [from_option] is the eliminator for option. *) Definition from_option {A B} (f : A → B) (y : B) (mx : option A) : B := match mx with None => y | Some x => f x end. Global Instance: Params (@from_option) 2 := {}. Global Arguments from_option {_ _} _ _ !_ / : assert. (** The eliminator with the identity function. *) Notation default := (from_option id). (** An alternative, but equivalent, definition of equality on the option data type. This theorem is useful to prove that two options are the same. *) Lemma option_eq {A} (mx my: option A): mx = my ↔ āˆ€ x, mx = Some x ↔ my = Some x. Proof. split; [by intros; by subst |]. destruct mx, my; naive_solver. Qed. Lemma option_eq_1 {A} (mx my: option A) x : mx = my → mx = Some x → my = Some x. Proof. congruence. Qed. Lemma option_eq_1_alt {A} (mx my : option A) x : mx = my → my = Some x → mx = Some x. Proof. congruence. Qed. Definition is_Some {A} (mx : option A) := ∃ x, mx = Some x. Global Instance: Params (@is_Some) 1 := {}. (** We avoid calling [done] recursively as that can lead to an unresolved evar. *) Global Hint Extern 0 (is_Some _) => eexists; fast_done : core. Lemma is_Some_alt {A} (mx : option A) : is_Some mx ↔ match mx with Some _ => True | None => False end. Proof. unfold is_Some. destruct mx; naive_solver. Qed. Lemma mk_is_Some {A} (mx : option A) x : mx = Some x → is_Some mx. Proof. by intros ->. Qed. Global Hint Resolve mk_is_Some : core. Lemma is_Some_None {A} : ¬is_Some (@None A). Proof. by destruct 1. Qed. Global Hint Resolve is_Some_None : core. Lemma eq_None_not_Some {A} (mx : option A) : mx = None ↔ ¬is_Some mx. Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed. Lemma not_eq_None_Some {A} (mx : option A) : mx ≠ None ↔ is_Some mx. Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed. Global Instance is_Some_pi {A} (mx : option A) : ProofIrrel (is_Some mx). Proof. set (P (mx : option A) := match mx with Some _ => True | _ => False end). set (f mx := match mx return P mx → is_Some mx with Some _ => Ī» _, ex_intro _ _ eq_refl | None => False_rect _ end). set (g mx (H : is_Some mx) := match H return P mx with ex_intro _ _ p => eq_rect _ _ I _ (eq_sym p) end). assert (āˆ€ mx H, f mx (g mx H) = H) as f_g by (by intros ? [??]; subst). intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct mx, p1. Qed. Global Instance is_Some_dec {A} (mx : option A) : Decision (is_Some mx) := match mx with | Some x => left (ex_intro _ x eq_refl) | None => right is_Some_None end. Definition is_Some_proj {A} {mx : option A} : is_Some mx → A := match mx with Some x => Ī» _, x | None => False_rect _ ∘ is_Some_None end. Definition Some_dec {A} (mx : option A) : { x | mx = Some x } + { mx = None } := match mx return { x | mx = Some x } + { mx = None } with | Some x => inleft (x ↾ eq_refl _) | None => inright eq_refl end. (** Lifting a relation point-wise to option *) Inductive option_Forall2 {A B} (R: A → B → Prop) : option A → option B → Prop := | Some_Forall2 x y : R x y → option_Forall2 R (Some x) (Some y) | None_Forall2 : option_Forall2 R None None. Definition option_relation {A B} (R: A → B → Prop) (P: A → Prop) (Q: B → Prop) (mx : option A) (my : option B) : Prop := match mx, my with | Some x, Some y => R x y | Some x, None => P x | None, Some y => Q y | None, None => True end. Section Forall2. Context {A} (R : relation A). Global Instance option_Forall2_refl : Reflexive R → Reflexive (option_Forall2 R). Proof. intros ? [?|]; by constructor. Qed. Global Instance option_Forall2_sym : Symmetric R → Symmetric (option_Forall2 R). Proof. destruct 2; by constructor. Qed. Global Instance option_Forall2_trans : Transitive R → Transitive (option_Forall2 R). Proof. destruct 2; inversion_clear 1; constructor; etrans; eauto. Qed. Global Instance option_Forall2_equiv : Equivalence R → Equivalence (option_Forall2 R). Proof. destruct 1; split; apply _. Qed. End Forall2. (** Setoids *) Global Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 (≔). Section setoids. Context `{Equiv A}. Implicit Types mx my : option A. Lemma equiv_option_Forall2 mx my : mx ≔ my ↔ option_Forall2 (≔) mx my. Proof. done. Qed. Global Instance option_equivalence : Equivalence (≔@{A}) → Equivalence (≔@{option A}). Proof. apply _. Qed. Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A). Proof. intros x y; destruct 1; f_equal; by apply leibniz_equiv. Qed. Global Instance Some_proper : Proper ((≔) ==> (≔@{option A})) Some. Proof. by constructor. Qed. Global Instance Some_equiv_inj : Inj (≔) (≔@{option A}) Some. Proof. by inversion_clear 1. Qed. Lemma None_equiv_eq mx : mx ≔ None ↔ mx = None. Proof. split; [by inversion_clear 1|intros ->; constructor]. Qed. Lemma Some_equiv_eq mx y : mx ≔ Some y ↔ ∃ y', mx = Some y' ∧ y' ≔ y. Proof. split; [inversion 1; naive_solver|naive_solver (by constructor)]. Qed. Global Instance is_Some_proper : Proper ((≔@{option A}) ==> iff) is_Some. Proof. by inversion_clear 1. Qed. Global Instance from_option_proper {B} (R : relation B) : Proper (((≔@{A}) ==> R) ==> R ==> (≔) ==> R) from_option. Proof. destruct 3; simpl; auto. Qed. End setoids. Typeclasses Opaque option_equiv. (** Equality on [option] is decidable. *) Global Instance option_eq_None_dec {A} (mx : option A) : Decision (mx = None) := match mx with Some _ => right (Some_ne_None _) | None => left eq_refl end. Global Instance option_None_eq_dec {A} (mx : option A) : Decision (None = mx) := match mx with Some _ => right (None_ne_Some _) | None => left eq_refl end. Global Instance option_eq_dec `{dec : EqDecision A} : EqDecision (option A). Proof. refine (Ī» mx my, match mx, my with | Some x, Some y => cast_if (decide (x = y)) | None, None => left _ | _, _ => right _ end); clear dec; abstract congruence. Defined. (** * Monadic operations *) Global Instance option_ret: MRet option := @Some. Global Instance option_bind: MBind option := Ī» A B f mx, match mx with Some x => f x | None => None end. Global Instance option_join: MJoin option := Ī» A mmx, match mmx with Some mx => mx | None => None end. Global Instance option_fmap: FMap option := @option_map. Global Instance option_guard: MGuard option := Ī» P dec A f, match dec with left H => f H | _ => None end. Global Instance option_fmap_inj {A B} (f : A → B) : Inj (=) (=) f → Inj (=@{option A}) (=@{option B}) (fmap f). Proof. intros ? [x1|] [x2|] [=]; naive_solver. Qed. Global Instance option_fmap_equiv_inj `{Equiv A, Equiv B} (f : A → B) : Inj (≔) (≔) f → Inj (≔@{option A}) (≔@{option B}) (fmap f). Proof. intros ? [x1|] [x2|]; inversion 1; subst; constructor; by apply (inj _). Qed. Lemma fmap_is_Some {A B} (f : A → B) mx : is_Some (f <$> mx) ↔ is_Some mx. Proof. unfold is_Some; destruct mx; naive_solver. Qed. Lemma fmap_Some {A B} (f : A → B) mx y : f <$> mx = Some y ↔ ∃ x, mx = Some x ∧ y = f x. Proof. destruct mx; naive_solver. Qed. Lemma fmap_Some_1 {A B} (f : A → B) mx y : f <$> mx = Some y → ∃ x, mx = Some x ∧ y = f x. Proof. apply fmap_Some. Qed. Lemma fmap_Some_2 {A B} (f : A → B) mx x : mx = Some x → f <$> mx = Some (f x). Proof. intros. apply fmap_Some; eauto. Qed. Lemma fmap_Some_equiv {A B} `{Equiv B} `{!Equivalence (≔@{B})} (f : A → B) mx y : f <$> mx ≔ Some y ↔ ∃ x, mx = Some x ∧ y ≔ f x. Proof. destruct mx; simpl; split. - intros ?%(inj Some). eauto. - intros (? & ->%(inj Some) & ?). constructor. done. - intros [=]%symmetry%None_equiv_eq. - intros (? & [=] & ?). Qed. Lemma fmap_Some_equiv_1 {A B} `{Equiv B} `{!Equivalence (≔@{B})} (f : A → B) mx y : f <$> mx ≔ Some y → ∃ x, mx = Some x ∧ y ≔ f x. Proof. by rewrite fmap_Some_equiv. Qed. Lemma fmap_None {A B} (f : A → B) mx : f <$> mx = None ↔ mx = None. Proof. by destruct mx. Qed. Lemma option_fmap_id {A} (mx : option A) : id <$> mx = mx. Proof. by destruct mx. Qed. Lemma option_fmap_compose {A B} (f : A → B) {C} (g : B → C) (mx : option A) : g ∘ f <$> mx = g <$> (f <$> mx). Proof. by destruct mx. Qed. Lemma option_fmap_ext {A B} (f g : A → B) (mx : option A) : (āˆ€ x, f x = g x) → f <$> mx = g <$> mx. Proof. intros; destruct mx; f_equal/=; auto. Qed. Lemma option_fmap_equiv_ext {A} `{Equiv B} (f g : A → B) (mx : option A) : (āˆ€ x, f x ≔ g x) → f <$> mx ≔ g <$> mx. Proof. destruct mx; constructor; auto. Qed. Lemma option_fmap_bind {A B C} (f : A → B) (g : B → option C) mx : (f <$> mx) ≫= g = mx ≫= g ∘ f. Proof. by destruct mx. Qed. Lemma option_bind_assoc {A B C} (f : A → option B) (g : B → option C) (mx : option A) : (mx ≫= f) ≫= g = mx ≫= (mbind g ∘ f). Proof. by destruct mx; simpl. Qed. Lemma option_bind_ext {A B} (f g : A → option B) mx my : (āˆ€ x, f x = g x) → mx = my → mx ≫= f = my ≫= g. Proof. destruct mx, my; naive_solver. Qed. Lemma option_bind_ext_fun {A B} (f g : A → option B) mx : (āˆ€ x, f x = g x) → mx ≫= f = mx ≫= g. Proof. intros. by apply option_bind_ext. Qed. Lemma bind_Some {A B} (f : A → option B) (mx : option A) y : mx ≫= f = Some y ↔ ∃ x, mx = Some x ∧ f x = Some y. Proof. destruct mx; naive_solver. Qed. Lemma bind_Some_equiv {A} `{Equiv B} (f : A → option B) (mx : option A) y : mx ≫= f ≔ Some y ↔ ∃ x, mx = Some x ∧ f x ≔ Some y. Proof. destruct mx; (split; [inversion 1|]); naive_solver. Qed. Lemma bind_None {A B} (f : A → option B) (mx : option A) : mx ≫= f = None ↔ mx = None ∨ ∃ x, mx = Some x ∧ f x = None. Proof. destruct mx; naive_solver. Qed. Lemma bind_with_Some {A} (mx : option A) : mx ≫= Some = mx. Proof. by destruct mx. Qed. Global Instance option_fmap_proper `{Equiv A, Equiv B} : Proper (((≔) ==> (≔)) ==> (≔@{option A}) ==> (≔@{option B})) fmap. Proof. destruct 2; constructor; auto. Qed. Global Instance option_bind_proper `{Equiv A, Equiv B} : Proper (((≔) ==> (≔)) ==> (≔@{option A}) ==> (≔@{option B})) mbind. Proof. destruct 2; simpl; try constructor; auto. Qed. Global Instance option_join_proper `{Equiv A} : Proper ((≔) ==> (≔@{option (option A)})) mjoin. Proof. destruct 1 as [?? []|]; simpl; by constructor. Qed. (** ** Inverses of constructors *) (** We can do this in a fancy way using dependent types, but rewrite does not particularly like type level reductions. *) Class Maybe {A B : Type} (c : A → B) := maybe : B → option A. Global Arguments maybe {_ _} _ {_} !_ / : assert. Class Maybe2 {A1 A2 B : Type} (c : A1 → A2 → B) := maybe2 : B → option (A1 * A2). Global Arguments maybe2 {_ _ _} _ {_} !_ / : assert. Class Maybe3 {A1 A2 A3 B : Type} (c : A1 → A2 → A3 → B) := maybe3 : B → option (A1 * A2 * A3). Global Arguments maybe3 {_ _ _ _} _ {_} !_ / : assert. Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1 → A2 → A3 → A4 → B) := maybe4 : B → option (A1 * A2 * A3 * A4). Global Arguments maybe4 {_ _ _ _ _} _ {_} !_ / : assert. Global Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1 ∘ c2) := Ī» x, maybe c1 x ≫= maybe c2. Global Arguments maybe_comp _ _ _ _ _ _ _ !_ / : assert. Global Instance maybe_inl {A B} : Maybe (@inl A B) := Ī» xy, match xy with inl x => Some x | _ => None end. Global Instance maybe_inr {A B} : Maybe (@inr A B) := Ī» xy, match xy with inr y => Some y | _ => None end. Global Instance maybe_Some {A} : Maybe (@Some A) := id. Global Arguments maybe_Some _ !_ / : assert. (** * Union, intersection and difference *) Global Instance option_union_with {A} : UnionWith A (option A) := Ī» f mx my, match mx, my with | Some x, Some y => f x y | Some x, None => Some x | None, Some y => Some y | None, None => None end. Global Instance option_intersection_with {A} : IntersectionWith A (option A) := Ī» f mx my, match mx, my with Some x, Some y => f x y | _, _ => None end. Global Instance option_difference_with {A} : DifferenceWith A (option A) := Ī» f mx my, match mx, my with | Some x, Some y => f x y | Some x, None => Some x | None, _ => None end. Global Instance option_union {A} : Union (option A) := union_with (Ī» x _, Some x). Lemma option_union_Some {A} (mx my : option A) z : mx ∪ my = Some z → mx = Some z ∨ my = Some z. Proof. destruct mx, my; naive_solver. Qed. Section union_intersection_difference. Context {A} (f : A → A → option A). Global Instance union_with_left_id : LeftId (=) None (union_with f). Proof. by intros [?|]. Qed. Global Instance union_with_right_id : RightId (=) None (union_with f). Proof. by intros [?|]. Qed. Global Instance union_with_comm : Comm (=) f → Comm (=@{option A}) (union_with f). Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed. Global Instance intersection_with_left_ab : LeftAbsorb (=) None (intersection_with f). Proof. by intros [?|]. Qed. Global Instance intersection_with_right_ab : RightAbsorb (=) None (intersection_with f). Proof. by intros [?|]. Qed. Global Instance difference_with_comm : Comm (=) f → Comm (=@{option A}) (intersection_with f). Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed. Global Instance difference_with_right_id : RightId (=) None (difference_with f). Proof. by intros [?|]. Qed. Global Instance union_with_proper `{Equiv A} : Proper (((≔) ==> (≔) ==> (≔)) ==> (≔@{option A}) ==> (≔) ==> (≔)) union_with. Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed. Global Instance intersection_with_proper `{Equiv A} : Proper (((≔) ==> (≔) ==> (≔)) ==> (≔@{option A}) ==> (≔) ==> (≔)) intersection_with. Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed. Global Instance difference_with_proper `{Equiv A} : Proper (((≔) ==> (≔) ==> (≔)) ==> (≔@{option A}) ==> (≔) ==> (≔)) difference_with. Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed. Global Instance union_proper `{Equiv A} : Proper ((≔@{option A}) ==> (≔) ==> (≔)) union. Proof. apply union_with_proper. by constructor. Qed. End union_intersection_difference. (** * Tactics *) Tactic Notation "case_option_guard" "as" ident(Hx) := match goal with | H : context C [@mguard option _ ?P ?dec] |- _ => change (@mguard option _ P dec) with (Ī» A (f : P → option A), match @decide P dec with left H' => f H' | _ => None end) in *; destruct_decide (@decide P dec) as Hx | |- context C [@mguard option _ ?P ?dec] => change (@mguard option _ P dec) with (Ī» A (f : P → option A), match @decide P dec with left H' => f H' | _ => None end) in *; destruct_decide (@decide P dec) as Hx end. Tactic Notation "case_option_guard" := let H := fresh in case_option_guard as H. Lemma option_guard_True {A} P `{Decision P} (mx : option A) : P → mguard P (Ī» _, mx) = mx. Proof. intros. by case_option_guard. Qed. Lemma option_guard_True_pi {A} P `{Decision P, ProofIrrel P} (f : P → option A) (HP : P) : mguard P f = f HP. Proof. intros. case_option_guard; [|done]. f_equal; apply proof_irrel. Qed. Lemma option_guard_False {A} P `{Decision P} (f : P → option A) : ¬P → mguard P f = None. Proof. intros. by case_option_guard. Qed. Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (mx : option A) : (P ↔ Q) → (guard P; mx) = guard Q; mx. Proof. intros [??]. repeat case_option_guard; intuition. Qed. Tactic Notation "simpl_option" "by" tactic3(tac) := let assert_Some_None A mx H := first [ let x := mk_evar A in assert (mx = Some x) as H by tac | assert (mx = None) as H by tac ] in repeat match goal with | H : context [@mret _ _ ?A] |- _ => change (@mret _ _ A) with (@Some A) in H | |- context [@mret _ _ ?A] => change (@mret _ _ A) with (@Some A) | H : context [mbind (M:=option) (A:=?A) ?f ?mx] |- _ => let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx | H : context [fmap (M:=option) (A:=?A) ?f ?mx] |- _ => let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx | H : context [from_option (A:=?A) _ _ ?mx] |- _ => let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx | H : context [ match ?mx with _ => _ end ] |- _ => match type of mx with | option ?A => let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx end | |- context [mbind (M:=option) (A:=?A) ?f ?mx] => let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx | |- context [fmap (M:=option) (A:=?A) ?f ?mx] => let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx | |- context [from_option (A:=?A) _ _ ?mx] => let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx | |- context [ match ?mx with _ => _ end ] => match type of mx with | option ?A => let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx end | H : context [decide _] |- _ => rewrite decide_True in H by tac | H : context [decide _] |- _ => rewrite decide_False in H by tac | H : context [mguard _ _] |- _ => rewrite option_guard_False in H by tac | H : context [mguard _ _] |- _ => rewrite option_guard_True in H by tac | _ => rewrite decide_True by tac | _ => rewrite decide_False by tac | _ => rewrite option_guard_True by tac | _ => rewrite option_guard_False by tac | H : context [None ∪ _] |- _ => rewrite (left_id_L None (∪)) in H | H : context [_ ∪ None] |- _ => rewrite (right_id_L None (∪)) in H | |- context [None ∪ _] => rewrite (left_id_L None (∪)) | |- context [_ ∪ None] => rewrite (right_id_L None (∪)) end. Tactic Notation "simplify_option_eq" "by" tactic3(tac) := repeat match goal with | _ => progress simplify_eq/= | _ => progress simpl_option by tac | _ : maybe _ ?x = Some _ |- _ => is_var x; destruct x | _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x | _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x | _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x | H : _ ∪ _ = Some _ |- _ => apply option_union_Some in H; destruct H | H : mbind (M:=option) ?f ?mx = ?my |- _ => match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end; match my with Some _ => idtac | None => idtac | _ => fail 1 end; let x := fresh in destruct mx as [x|] eqn:?; [change (f x = my) in H|change (None = my) in H] | H : ?my = mbind (M:=option) ?f ?mx |- _ => match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end; match my with Some _ => idtac | None => idtac | _ => fail 1 end; let x := fresh in destruct mx as [x|] eqn:?; [change (my = f x) in H|change (my = None) in H] | H : fmap (M:=option) ?f ?mx = ?my |- _ => match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end; match my with Some _ => idtac | None => idtac | _ => fail 1 end; let x := fresh in destruct mx as [x|] eqn:?; [change (Some (f x) = my) in H|change (None = my) in H] | H : ?my = fmap (M:=option) ?f ?mx |- _ => match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end; match my with Some _ => idtac | None => idtac | _ => fail 1 end; let x := fresh in destruct mx as [x|] eqn:?; [change (my = Some (f x)) in H|change (my = None) in H] | _ => progress case_decide | _ => progress case_option_guard end. Tactic Notation "simplify_option_eq" := simplify_option_eq by eauto.
If $P$ is a transitive relation on the real numbers and $P$ is locally true, then $P$ is true.
#!/usr/bin/Rscript # Bhishan Poudel # Jan 8, 2016 # clear; Rscript plot1.r; xdg-open ./plots/plot1.eps # inputs: nothing # outputs: figures/plot1.eps # set the working directory setwd("~/Copy/Programming/R/rprograms/plotting/2dplots/") # Start device driver to save output to figure.pdf #postscript(file="figures/plot1.eps", height=8.5, width=5) # Define 2 vectors cars <- c(1, 3, 6, 4, 9) trucks <- c(2, 5, 4, 5, 12) # Calculate range from 0 to max value of cars and trucks g_range <- range(0, cars, trucks) # Graph autos using y axis that ranges from 0 to max # value in cars or trucks vector. Turn off axes and # annotations (axis labels) so we can specify them ourself plot(cars, type="o", col="blue", ylim=g_range, axes=FALSE, ann=FALSE) # Make x axis using Mon-Fri labels axis(1, at=1:5, lab=c("Mon","Tue","Wed","Thu","Fri")) # Make y axis with horizontal labels that display ticks at # every 4 marks. 4*0:g_range[2] is equivalent to c(0,4,8,12). axis(2, las=1, at=4*0:g_range[2]) # Create box around plot box() # Graph trucks with red dashed line and square points lines(trucks, type="o", pch=22, lty=2, col="red") # Create a title with a red, bold/italic font title(main="Autos", col.main="red", font.main=4) # Label the x and y axes with dark green text title(xlab="Days", col.lab=rgb(0,0.5,0)) title(ylab="Total", col.lab=rgb(0,0.5,0)) # Create a legend at (1, g_range[2]) that is slightly smaller # (cex) and uses the same line colors and points used by # the actual plots legend(1, g_range[2], c("cars","trucks"), cex=0.8, col=c("blue","red"), pch=21:22, lty=1:2); # Turn off device driver #dev.off()
I have to create a form where the drop-down lists are filled according to our choices in the previous ones. A Region may have several Cities (ManyToOne) relationship. I followed the documentation from here How to Dynamically Modify Forms Using Form Events (Dynamic Generation for Submitted Forms) . I retrieve the list of regions with the query_builder option but how do I retrieve the list of cities according to the choice of region.
The quake created a landslide dam on the Rivière de Grand Goâve . As of February 2010 the water level was low , but engineer Yves <unk> believed the dam could collapse during the rainy season , which would flood Grand @-@ Goâve 12 km ( 7 @.@ 5 mi ) downstream .
import Graphics.UI.GLUT import Data.Complex iterations = 400 chunk :: Int -> [a] -> [[a]] chunk n [] = [] chunk n xs = let (xs', rest) = splitAt n xs in xs' : chunk n rest vertices :: IO [Vertex2 GLfloat] vertices = get windowSize >>= \(Size w h) -> return $ [pixel (Size w h) (x, y) | x <- [0..w-1], y <- [0..h-1]] where pixel (Size w h) (x, y) = Vertex2 ((fromIntegral 3 / fromIntegral w * fromIntegral x) - 2.0) ((fromIntegral 2 / fromIntegral h * fromIntegral y) - 1.0) getcol :: Int -> Color3 Float getcol iter | iter == iterations = Color3 0 0 0 | otherwise = Color3 (amt*0.5) amt (amt*0.5) where amt = fromIntegral iter / fromIntegral iterations mandelbrot :: RealFloat a => Vertex2 a -> Int mandelbrot (Vertex2 r i) = length . takeWhile (\z -> magnitude z <= 2) . take iterations $ iterate (\z -> z^2 + (r :+ i)) 0 drawVert :: (RealFloat a, VertexComponent a) => Vertex2 a -> IO () drawVert v = do color . getcol $ mandelbrot v vertex v display' :: [[Vertex2 GLfloat]] -> IO () display' chunks = do mapM_ (\vs -> do renderPrimitive Points $ mapM_ drawVert vs flush) chunks displayCallback $= display display :: IO () display = do clear [ ColorBuffer ] displayCallback $= (vertices >>= display' . chunk 256) get currentWindow >>= postRedisplay main :: IO () main = do getArgsAndInitialize initialDisplayMode $= [ SingleBuffered, RGBMode ] initialWindowSize $= Size 1200 1024 initialWindowPosition $= Position 100 100 createWindow "Mandelbrot" clearColor $= Color4 0 0 0 0 matrixMode $= Projection loadIdentity ortho (-2) 1 (-1) 1 (-1) 1 displayCallback $= display mainLoop
The French government was more fastidious than Spanish and Neapolitan . Only three cardinals were considered good candidates : Conti , <unk> and Ganganelli
#include<iostream> #define EIGEN_USE_MKL_ALL #include"basis.hpp" #include"operators.hpp" #include"diag.h" #include"tpoperators.hpp" #include"files.hpp" #include"timeev.hpp" #include"ETH.hpp" #include<iomanip> #include <boost/program_options.hpp> using namespace boost::program_options; int main(int argc, char *argv[]) { using namespace Eigen; using namespace std; using namespace Many_Body; using HolsteinBasis= TensorProduct<ElectronBasis, PhononBasis>; // std::vector<size_t> ee(L, 0); using Mat= Operators::Mat; size_t M{}; size_t L{}; double t0{}; double omega{}; double gamma{}; double T{}; bool PB{}; try { options_description desc{"Options"}; desc.add_options() ("help,h", "Help screen") ("L", value(&L)->default_value(4), "L") ("M", value(&M)->default_value(2), "M") ("t", value(&t0)->default_value(1.), "t0") ("gam", value(&gamma)->default_value(1.), "gamma") ("omg", value(&omega)->default_value(1.), "omega") ("T", value(&T)->default_value(1.), "T") ("pb", value(&PB)->default_value(true), "PB"); variables_map vm; store(parse_command_line(argc, argv, desc), vm); notify(vm); if (vm.count("help")) {std::cout << desc << '\n'; return 0;} else{ if (vm.count("L")) { std::cout << "L: " << vm["L"].as<size_t>() << '\n'; } if (vm.count("M,m")) { std::cout << "M: " << vm["M"].as<size_t>() << '\n'; } if (vm.count("t")) { std::cout << "t0: " << vm["t"].as<double>() << '\n'; } if (vm.count("omg")) { std::cout << "omega: " << vm["omg"].as<double>() << '\n'; } if (vm.count("gam")) { std::cout << "gamma: " << vm["gam"].as<double>() << '\n'; } if (vm.count("T")) { std::cout << "T: " << vm["T"].as<double>() << '\n'; } if (vm.count("pb")) { std::cout << "PB: " << vm["pb"].as<bool>() << '\n'; } } } catch (const error &ex) { std::cerr << ex.what() << '\n'; return 0; } ElectronBasis e( L, 1); // std::cout<< e<<std::endl; ElectronState e2( L, 0); // std::cout<< e<<std::endl; PhononBasis ph(L, M); // std::cout<< ph<<std::endl; HolsteinBasis TP(e, ph); //HolsteinBasis TP2(e2, ph); // std::cout<< TP<<std::endl; e.insert(e2); std::cout<< e<< std::endl; // std::cout<< TP2<< std::endl; std::cout<<"total dim "<< TP.dim << std::endl; std::cout<<std::endl; Mat E1=Operators::EKinOperatorL(TP, e, t0, PB); Mat Ebdag=Operators::NBosonCOperator(TP, ph, gamma, PB); Mat Eb=Operators::NBosonDOperator(TP, ph, gamma, PB); Mat Eph=Operators::NumberOperator(TP, ph, omega, PB); Mat H=E1 +Ebdag + Eb+ Eph; Eigen::MatrixXcd HH=Eigen::MatrixXcd(H); Eigen::VectorXd ev=Eigen::VectorXd(TP.dim); diagMat(HH, ev); return 0; }
-- | see examples/ module DimMat ( -- * Quasiquotes matD, blockD, -- * Data.Packed.Vector (@>), -- * Data.Packed.Matrix -- ** dimension cols, rows, colsNT, rowsNT, hasRows, hasCols, -- (><), trans, -- reshape, flatten, fromLists, toLists, buildMatrix, -- broken ToHLists(toHLists), toHList, FromHLists(fromHLists), fromHList, (@@>), -- asRow, asColumn, fromRows, toRows, fromColumns, toColumns -- fromBlocks #if MIN_VERSION_hmatrix(0,15,0) diagBlock, #endif -- toBlocks, toBlocksEvery, repmat, flipud, fliprl -- subMatrix, takeRows, dropRows, takeColumns, dropColumns, -- extractRows, diagRect, takeDiag, mapMatrix, -- mapMatrixWithIndexM, mapMatrixWithIndexM_, liftMatrix, -- liftMatrix2, liftMatrix2Auto, fromArray2D, ident, -- where to put this? -- * Numeric.Container -- constant, linspace, diag, ctrans, -- ** Container class scalar, conj, scale, scaleRecip, recipMat, addConstant, add, sub, mulMat, mulVec, divideMat, divideVec, equal, arctan2, hconcat, vconcat, cmap, konst, zeroes, -- build, atIndex, minIndex, maxIndex, minElement, maxElement, -- sumElements, prodElements, step, cond, find, assoc, accum, -- Convert -- ** Product class Dot(..), -- absSum, norm1, norm2, normInf, -- norm1, normInf, pnorm, -- optimiseMult, mXm, mXv, vXm, (<.>), -- (<>), (<\>), outer, kronecker, -- ** Random numbers -- ** Element conversion -- ** Input/Output -- ** Experimental -- * Numeric.LinearAlgebra.Algorithms -- | incomplete wrapper for "Numeric.LinearAlgebra.Algorithms" -- ** Linear Systems -- linearSolve, luSolve, cholSolve, linearSolveLS, linearSolveSVD, inv, PInv(pinv), pinvTol, det, -- invlndet, rank, -- rcond, -- ** Matrix factorizations -- *** Singular value decomposition -- *** Eigensystems -- eigs {- wrapEig, wrapEigOnly, EigV, EigE, -- **** eigenvalues and eigenvectors eig, eigC, eigH, eigH', eigR, eigS, eigS', eigSH, eigSH', -- **** eigenvalues eigOnlyC, eigOnlyH, eigOnlyR, eigOnlyS, eigenvalues, eigenvaluesSH, eigenvaluesSH', -} -- *** QR -- *** Cholesky -- *** Hessenberg -- *** Schur -- *** LU -- ** Matrix functions -- sqrtm, matFunc expm, -- ** Nullspace -- ** Norms -- ** Misc -- ** Util -- * Automatic Differentiation -- ad #ifdef WITH_Ad diff, #endif -- * todo arrange DotS, MultEq, -- * to keep types looking ok D, module Data.HList.CommonMain, Complex, -- ** "Numeric.NumType" Pos, Neg, Succ, Zero, Neg1, ) where import Numeric.NumType import DimMat.Internal import DimMat.QQ import Data.HList.CommonMain import Data.Complex
module sample import extensible_records import Data.List -- All functions must be total %default total -- *** Initial records *** r1 : Record [("surname", String), ("age", Int)] r1 = ("surname" .=. "Bond") .*. ("age" .=. 30) .*. emptyRec r2 : Record [("surname", String), ("name", String)] r2 = ("surname" .=. "Bond") .*. ("name" .=. "James") .*. emptyRec r3 : Record [("name", String), ("code", String)] r3 = ("name" .=. "James") .*. ("code" .=. "007") .*. emptyRec -- *** Record Extension *** rExtended : Record [("name", String), ("surname", String), ("age", Int)] rExtended = ("name" .=. "James") .*. r1 -- *** Lookup *** r1Surname : String r1Surname = r1 .!. "surname" -- "Bond" r1Age : Int r1Age = r1 .!. "age" -- 30 -- *** Append *** rAppend : Record [("surname", String), ("age", Int), ("name", String), ("code", String)] rAppend = r1 .++. r3 -- { "surname" = "Bond", "age" = 30, "name" = "James", "code" = "007" } -- *** Update *** rUpdate : Record [("surname", String), ("age", Int)] rUpdate = updR "surname" r1 "Dean" -- { "surname" = "Dean", "age" = 30 } -- *** Delete *** rDelete : Record [("age", Int)] rDelete = "surname" .//. r1 -- { "age" = 30 } -- *** Delete Labels *** rDeleteLabels1 : Record [("age", Int), ("name", String)] rDeleteLabels1 = ["surname", "code"] .///. rAppend -- { "age" = 30, "name" = "James" } rDeleteLabels2 : Record [("age", Int), ("name", String)] rDeleteLabels2 = ["code", "surname"] .///. rAppend -- { "age" = 30, "name" = "James" } -- *** Left Union *** rLeftUnion1 : Record [("surname", String), ("age", Int), ("name", String), ("code", String)] rLeftUnion1 = r1 .||. r3 -- { "surname" = "Bond", "age" = 30, "name" = "James", "code" = "007" } r4 : Record [("name", String), ("code", String)] r4 = ("name" .=. "Ronald") .*. ("code" .=. "007") .*. emptyRec rLeftUnion2 : Record [("surname", String), ("name", String), ("code", String)] rLeftUnion2 = r2 .||. r4 -- { "surname" = "Bond", "name" = "James", "code" = "007" } rLeftUnion3 : Record [("name", String), ("code", String), ("surname", String)] rLeftUnion3 = r4 .||. r2 -- { "name" = "Ronald", "code" = "007", "surname" = "Bond" } -- *** Projection *** r5 : Record [("name", String), ("surname", String), ("age", Int), ("code", String), ("supervisor", String)] r5 = ("name" .=. "James") .*. ("surname" .=. "Bond") .*. ("age" .=. 30) .*. ("code" .=. "007") .*. ("supervisor" .=. "M") .*. emptyRec rProjectLeft : Record [("name", String), ("age", Int), ("supervisor", String)] rProjectLeft = ["name", "supervisor", "age"] .<. r5 -- { "name" = "James", "age" = 30, "supervisor" = "M" } rProjectRight : Record [("surname", String), ("code", String)] rProjectRight = ["name", "supervisor", "age"] .>. r5 -- { "surname" = "Bond", "code" = "007" }
lemma (in subset_class) smallest_closed_cdi2: "closed_cdi \<Omega> (smallest_ccdi_sets \<Omega> M)"
module Main import Data.List main : IO () main = putStrLn "Hello world" lst1 : List String lst1 = ["as", "the"] lst2 : List String lst2 = ["as", "them", "the", "here"] --lst3 : List String --lst3 = lst1 \\ lst2
/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta -/ import category_theory.adjunction.limits import category_theory.adjunction.opposites import category_theory.elements import category_theory.limits.functor_category import category_theory.limits.kan_extension import category_theory.limits.shapes.terminal import category_theory.limits.types /-! # Colimit of representables This file constructs an adjunction `yoneda_adjunction` between `(Cįµ’įµ– ℤ Type u)` and `ā„°` given a functor `A : C ℤ ā„°`, where the right adjoint sends `(E : ā„°)` to `c ↦ (A.obj c ⟶ E)` (provided `ā„°` has colimits). This adjunction is used to show that every presheaf is a colimit of representables. Further, the left adjoint `colimit_adj.extend_along_yoneda : (Cįµ’įµ– ℤ Type u) ℤ ā„°` satisfies `yoneda ā‹™ L ≅ A`, that is, an extension of `A : C ℤ ā„°` to `(Cįµ’įµ– ℤ Type u) ℤ ā„°` through `yoneda : C ℤ Cįµ’įµ– ℤ Type u`. It is the left Kan extension of `A` along the yoneda embedding, sometimes known as the Yoneda extension, as proved in `extend_along_yoneda_iso_Kan`. `unique_extension_along_yoneda` shows `extend_along_yoneda` is unique amongst cocontinuous functors with this property, establishing the presheaf category as the free cocompletion of a small category. ## Tags colimit, representable, presheaf, free cocompletion ## References * [S. MacLane, I. Moerdijk, *Sheaves in Geometry and Logic*][MM92] * https://ncatlab.org/nlab/show/Yoneda+extension -/ namespace category_theory noncomputable theory open category limits universes u₁ uā‚‚ variables {C : Type u₁} [small_category C] variables {ā„° : Type uā‚‚} [category.{u₁} ā„°] variable (A : C ℤ ā„°) namespace colimit_adj /-- The functor taking `(E : ā„°) (c : Cįµ’įµ–)` to the homset `(A.obj C ⟶ E)`. It is shown in `L_adjunction` that this functor has a left adjoint (provided `E` has colimits) given by taking colimits over categories of elements. In the case where `ā„° = Cįµ’įµ– ℤ Type u` and `A = yoneda`, this functor is isomorphic to the identity. Defined as in [MM92], Chapter I, Section 5, Theorem 2. -/ @[simps] def restricted_yoneda : ā„° ℤ (Cįµ’įµ– ℤ Type u₁) := yoneda ā‹™ (whiskering_left _ _ (Type u₁)).obj (functor.op A) /-- The functor `restricted_yoneda` is isomorphic to the identity functor when evaluated at the yoneda embedding. -/ def restricted_yoneda_yoneda : restricted_yoneda (yoneda : C ℤ Cįµ’įµ– ℤ Type u₁) ≅ šŸ­ _ := nat_iso.of_components (Ī» P, nat_iso.of_components (Ī» X, yoneda_sections_small X.unop _) (Ī» X Y f, funext $ Ī» x, begin dsimp, rw ← functor_to_types.naturality _ _ x f (šŸ™ _), dsimp, simp, end)) (Ī» _ _ _, rfl) /-- (Implementation). The equivalence of homsets which helps construct the left adjoint to `colimit_adj.restricted_yoneda`. It is shown in `restrict_yoneda_hom_equiv_natural` that this is a natural bijection. -/ def restrict_yoneda_hom_equiv (P : Cįµ’įµ– ℤ Type u₁) (E : ā„°) {c : cocone ((category_of_elements.Ļ€ P).left_op ā‹™ A)} (t : is_colimit c) : (c.X ⟶ E) ā‰ƒ (P ⟶ (restricted_yoneda A).obj E) := ((ulift_trivial _).symm ≪≫ t.hom_iso' E).to_equiv.trans { to_fun := Ī» k, { app := Ī» c p, k.1 (opposite.op ⟨_, p⟩), naturality' := Ī» c c' f, funext $ Ī» p, (k.2 (quiver.hom.op ⟨f, rfl⟩ : (opposite.op ⟨c', P.map f p⟩ : P.elementsįµ’įµ–) ⟶ opposite.op ⟨c, p⟩)).symm }, inv_fun := Ī» Ļ„, { val := Ī» p, Ļ„.app p.unop.1 p.unop.2, property := Ī» p p' f, begin simp_rw [← f.unop.2], apply (congr_fun (Ļ„.naturality f.unop.1) p'.unop.2).symm, end }, left_inv := begin rintro ⟨k₁, kā‚‚āŸ©, ext, dsimp, congr' 1, simp, end, right_inv := begin rintro ⟨_, _⟩, refl, end } /-- (Implementation). Show that the bijection in `restrict_yoneda_hom_equiv` is natural (on the right). -/ lemma restrict_yoneda_hom_equiv_natural (P : Cįµ’įµ– ℤ Type u₁) (E₁ Eā‚‚ : ā„°) (g : E₁ ⟶ Eā‚‚) {c : cocone _} (t : is_colimit c) (k : c.X ⟶ E₁) : restrict_yoneda_hom_equiv A P Eā‚‚ t (k ≫ g) = restrict_yoneda_hom_equiv A P E₁ t k ≫ (restricted_yoneda A).map g := begin ext _ X p, apply (assoc _ _ _).symm, end variables [has_colimits ā„°] /-- The left adjoint to the functor `restricted_yoneda` (shown in `yoneda_adjunction`). It is also an extension of `A` along the yoneda embedding (shown in `is_extension_along_yoneda`), in particular it is the left Kan extension of `A` through the yoneda embedding. -/ def extend_along_yoneda : (Cįµ’įµ– ℤ Type u₁) ℤ ā„° := adjunction.left_adjoint_of_equiv (Ī» P E, restrict_yoneda_hom_equiv A P E (colimit.is_colimit _)) (Ī» P E E' g, restrict_yoneda_hom_equiv_natural A P E E' g _) @[simp] lemma extend_along_yoneda_obj (P : Cįµ’įµ– ℤ Type u₁) : (extend_along_yoneda A).obj P = colimit ((category_of_elements.Ļ€ P).left_op ā‹™ A) := rfl lemma extend_along_yoneda_map {X Y : Cįµ’įµ– ℤ Type u₁} (f : X ⟶ Y) : (extend_along_yoneda A).map f = colimit.pre ((category_of_elements.Ļ€ Y).left_op ā‹™ A) (category_of_elements.map f).op := begin ext J, erw colimit.ι_pre ((category_of_elements.Ļ€ Y).left_op ā‹™ A) (category_of_elements.map f).op, dsimp only [extend_along_yoneda, restrict_yoneda_hom_equiv, is_colimit.hom_iso', is_colimit.hom_iso, ulift_trivial], simpa end /-- Show `extend_along_yoneda` is left adjoint to `restricted_yoneda`. The construction of [MM92], Chapter I, Section 5, Theorem 2. -/ def yoneda_adjunction : extend_along_yoneda A ⊣ restricted_yoneda A := adjunction.adjunction_of_equiv_left _ _ /-- The initial object in the category of elements for a representable functor. In `is_initial` it is shown that this is initial. -/ def elements.initial (A : C) : (yoneda.obj A).elements := ⟨opposite.op A, šŸ™ _⟩ /-- Show that `elements.initial A` is initial in the category of elements for the `yoneda` functor. -/ def is_initial (A : C) : is_initial (elements.initial A) := { desc := Ī» s, ⟨s.X.2.op, comp_id _⟩, uniq' := Ī» s m w, begin simp_rw ← m.2, dsimp [elements.initial], simp, end, fac' := by rintros s ⟨⟨⟩⟩, } /-- `extend_along_yoneda A` is an extension of `A` to the presheaf category along the yoneda embedding. `unique_extension_along_yoneda` shows it is unique among functors preserving colimits with this property (up to isomorphism). The first part of [MM92], Chapter I, Section 5, Corollary 4. See Property 1 of <https://ncatlab.org/nlab/show/Yoneda+extension#properties>. -/ def is_extension_along_yoneda : (yoneda : C ℤ Cįµ’įµ– ℤ Type u₁) ā‹™ extend_along_yoneda A ≅ A := nat_iso.of_components (Ī» X, (colimit.is_colimit _).cocone_point_unique_up_to_iso (colimit_of_diagram_terminal (terminal_op_of_initial (is_initial _)) _)) begin intros X Y f, change (colimit.desc _ ⟨_, _⟩ ≫ colimit.desc _ _) = colimit.desc _ _ ≫ _, apply colimit.hom_ext, intro j, rw [colimit.ι_desc_assoc, colimit.ι_desc_assoc], change (colimit.ι _ _ ≫ šŸ™ _) ≫ colimit.desc _ _ = _, rw [comp_id, colimit.ι_desc], dsimp, rw ← A.map_comp, congr' 1, end /-- See Property 2 of https://ncatlab.org/nlab/show/Yoneda+extension#properties. -/ instance : preserves_colimits (extend_along_yoneda A) := (yoneda_adjunction A).left_adjoint_preserves_colimits /-- Show that the images of `X` after `extend_along_yoneda` and `Lan yoneda` are indeed isomorphic. This follows from `category_theory.category_of_elements.costructured_arrow_yoneda_equivalence`. -/ @[simps] def extend_along_yoneda_iso_Kan_app (X) : (extend_along_yoneda A).obj X ≅ ((Lan yoneda : (_ ℤ ā„°) ℤ _).obj A).obj X := let eq := category_of_elements.costructured_arrow_yoneda_equivalence X in { hom := colimit.pre (Lan.diagram (yoneda : C ℤ _ ℤ Type u₁) A X) eq.functor, inv := colimit.pre ((category_of_elements.Ļ€ X).left_op ā‹™ A) eq.inverse, hom_inv_id' := begin erw colimit.pre_pre ((category_of_elements.Ļ€ X).left_op ā‹™ A) eq.inverse, transitivity colimit.pre ((category_of_elements.Ļ€ X).left_op ā‹™ A) (šŸ­ _), congr, { exact congr_arg functor.op (category_of_elements.from_to_costructured_arrow_eq X) }, { ext, simp only [colimit.ι_pre], erw category.comp_id, congr } end, inv_hom_id' := begin erw colimit.pre_pre (Lan.diagram (yoneda : C ℤ _ ℤ Type u₁) A X) eq.functor, transitivity colimit.pre (Lan.diagram (yoneda : C ℤ _ ℤ Type u₁) A X) (šŸ­ _), congr, { exact category_of_elements.to_from_costructured_arrow_eq X }, { ext, simp only [colimit.ι_pre], erw category.comp_id, congr } end } /-- Verify that `extend_along_yoneda` is indeed the left Kan extension along the yoneda embedding. -/ @[simps] def extend_along_yoneda_iso_Kan : extend_along_yoneda A ≅ (Lan yoneda : (_ ℤ ā„°) ℤ _).obj A := nat_iso.of_components (extend_along_yoneda_iso_Kan_app A) begin intros X Y f, simp, rw extend_along_yoneda_map, erw colimit.pre_pre (Lan.diagram (yoneda : C ℤ _ ℤ Type u₁) A Y) (costructured_arrow.map f), erw colimit.pre_pre (Lan.diagram (yoneda : C ℤ _ ℤ Type u₁) A Y) (category_of_elements.costructured_arrow_yoneda_equivalence Y).functor, congr' 1, apply category_of_elements.costructured_arrow_yoneda_equivalence_naturality, end /-- extending `F ā‹™ yoneda` along the yoneda embedding is isomorphic to `Lan F.op`. -/ @[simps] def extend_of_comp_yoneda_iso_Lan {D : Type u₁} [small_category D] (F : C ℤ D) : extend_along_yoneda (F ā‹™ yoneda) ≅ Lan F.op := adjunction.nat_iso_of_right_adjoint_nat_iso (yoneda_adjunction (F ā‹™ yoneda)) (Lan.adjunction (Type u₁) F.op) (iso_whisker_right curried_yoneda_lemma' ((whiskering_left Cįµ’įµ– Dįµ’įµ– (Type u₁)).obj F.op : _)) end colimit_adj open colimit_adj /-- `F ā‹™ yoneda` is naturally isomorphic to `yoneda ā‹™ Lan F.op`. -/ @[simps] def comp_yoneda_iso_yoneda_comp_Lan {D : Type u₁} [small_category D] (F : C ℤ D) : F ā‹™ yoneda ≅ yoneda ā‹™ Lan F.op := (is_extension_along_yoneda (F ā‹™ yoneda)).symm ≪≫ iso_whisker_left yoneda (extend_of_comp_yoneda_iso_Lan F) /-- Since `extend_along_yoneda A` is adjoint to `restricted_yoneda A`, if we use `A = yoneda` then `restricted_yoneda A` is isomorphic to the identity, and so `extend_along_yoneda A` is as well. -/ def extend_along_yoneda_yoneda : extend_along_yoneda (yoneda : C ℤ _) ≅ šŸ­ _ := adjunction.nat_iso_of_right_adjoint_nat_iso (yoneda_adjunction _) adjunction.id restricted_yoneda_yoneda /-- A functor to the presheaf category in which everything in the image is representable (witnessed by the fact that it factors through the yoneda embedding). `cocone_of_representable` gives a cocone for this functor which is a colimit and has point `P`. -/ -- Maybe this should be reducible or an abbreviation? def functor_to_representables (P : Cįµ’įµ– ℤ Type u₁) : (P.elements)įµ’įµ– ℤ Cįµ’įµ– ℤ Type u₁ := (category_of_elements.Ļ€ P).left_op ā‹™ yoneda /-- This is a cocone with point `P` for the functor `functor_to_representables P`. It is shown in `colimit_of_representable P` that this cocone is a colimit: that is, we have exhibited an arbitrary presheaf `P` as a colimit of representables. The construction of [MM92], Chapter I, Section 5, Corollary 3. -/ def cocone_of_representable (P : Cįµ’įµ– ℤ Type u₁) : cocone (functor_to_representables P) := cocone.extend (colimit.cocone _) (extend_along_yoneda_yoneda.hom.app P) @[simp] lemma cocone_of_representable_X (P : Cįµ’įµ– ℤ Type u₁) : (cocone_of_representable P).X = P := rfl /-- An explicit formula for the legs of the cocone `cocone_of_representable`. -/ -- Marking this as a simp lemma seems to make things more awkward. lemma cocone_of_representable_ι_app (P : Cįµ’įµ– ℤ Type u₁) (j : (P.elements)įµ’įµ–): (cocone_of_representable P).ι.app j = (yoneda_sections_small _ _).inv j.unop.2 := colimit.ι_desc _ _ /-- The legs of the cocone `cocone_of_representable` are natural in the choice of presheaf. -/ lemma cocone_of_representable_naturality {P₁ Pā‚‚ : Cįµ’įµ– ℤ Type u₁} (α : P₁ ⟶ Pā‚‚) (j : (P₁.elements)įµ’įµ–) : (cocone_of_representable P₁).ι.app j ≫ α = (cocone_of_representable Pā‚‚).ι.app ((category_of_elements.map α).op.obj j) := begin ext T f, simpa [cocone_of_representable_ι_app] using functor_to_types.naturality _ _ α f.op _, end /-- The cocone with point `P` given by `the_cocone` is a colimit: that is, we have exhibited an arbitrary presheaf `P` as a colimit of representables. The result of [MM92], Chapter I, Section 5, Corollary 3. -/ def colimit_of_representable (P : Cįµ’įµ– ℤ Type u₁) : is_colimit (cocone_of_representable P) := begin apply is_colimit.of_point_iso (colimit.is_colimit (functor_to_representables P)), change is_iso (colimit.desc _ (cocone.extend _ _)), rw [colimit.desc_extend, colimit.desc_cocone], apply_instance, end /-- Given two functors L₁ and Lā‚‚ which preserve colimits, if they agree when restricted to the representable presheaves then they agree everywhere. -/ def nat_iso_of_nat_iso_on_representables (L₁ Lā‚‚ : (Cįµ’įµ– ℤ Type u₁) ℤ ā„°) [preserves_colimits L₁] [preserves_colimits Lā‚‚] (h : yoneda ā‹™ L₁ ≅ yoneda ā‹™ Lā‚‚) : L₁ ≅ Lā‚‚ := begin apply nat_iso.of_components _ _, { intro P, refine (is_colimit_of_preserves L₁ (colimit_of_representable P)).cocone_points_iso_of_nat_iso (is_colimit_of_preserves Lā‚‚ (colimit_of_representable P)) _, apply functor.associator _ _ _ ≪≫ _, exact iso_whisker_left (category_of_elements.Ļ€ P).left_op h }, { intros P₁ Pā‚‚ f, apply (is_colimit_of_preserves L₁ (colimit_of_representable P₁)).hom_ext, intro j, dsimp only [id.def, is_colimit.cocone_points_iso_of_nat_iso_hom, iso_whisker_left_hom], have : (L₁.map_cocone (cocone_of_representable P₁)).ι.app j ≫ L₁.map f = (L₁.map_cocone (cocone_of_representable Pā‚‚)).ι.app ((category_of_elements.map f).op.obj j), { dsimp, rw [← L₁.map_comp, cocone_of_representable_naturality], refl }, rw [reassoc_of this, is_colimit.ι_map_assoc, is_colimit.ι_map], dsimp, rw [← Lā‚‚.map_comp, cocone_of_representable_naturality], refl } end variable [has_colimits ā„°] /-- Show that `extend_along_yoneda` is the unique colimit-preserving functor which extends `A` to the presheaf category. The second part of [MM92], Chapter I, Section 5, Corollary 4. See Property 3 of https://ncatlab.org/nlab/show/Yoneda+extension#properties. -/ def unique_extension_along_yoneda (L : (Cįµ’įµ– ℤ Type u₁) ℤ ā„°) (hL : yoneda ā‹™ L ≅ A) [preserves_colimits L] : L ≅ extend_along_yoneda A := nat_iso_of_nat_iso_on_representables _ _ (hL ≪≫ (is_extension_along_yoneda _).symm) /-- If `L` preserves colimits and `ā„°` has them, then it is a left adjoint. This is a special case of `is_left_adjoint_of_preserves_colimits` used to prove that. -/ def is_left_adjoint_of_preserves_colimits_aux (L : (Cįµ’įµ– ℤ Type u₁) ℤ ā„°) [preserves_colimits L] : is_left_adjoint L := { right := restricted_yoneda (yoneda ā‹™ L), adj := (yoneda_adjunction _).of_nat_iso_left ((unique_extension_along_yoneda _ L (iso.refl _)).symm) } /-- If `L` preserves colimits and `ā„°` has them, then it is a left adjoint. Note this is a (partial) converse to `left_adjoint_preserves_colimits`. -/ def is_left_adjoint_of_preserves_colimits (L : (C ℤ Type u₁) ℤ ā„°) [preserves_colimits L] : is_left_adjoint L := let e : (_ ℤ Type u₁) ā‰Œ (_ ℤ Type u₁) := (op_op_equivalence C).congr_left, t := is_left_adjoint_of_preserves_colimits_aux (e.functor ā‹™ L : _) in by exactI adjunction.left_adjoint_of_nat_iso (e.inv_fun_id_assoc _) end category_theory
Formal statement is: lemma complex_cnj_fact [simp]: "cnj (fact n) = fact n" Informal statement is: The complex conjugate of the factorial of a natural number is the factorial of that natural number.
#pragma once #ifdef QP_SOLVER_SPARSE #include <Eigen/Sparse> #endif #include <Eigen/Dense> #include <limits> #include <vector> #define QP_SOLVER_PRINTING namespace qp_solver { /** Quadratic Problem * minimize 0.5 x' P x + q' x * subject to l <= A x <= u */ template <typename Scalar = double> struct QuadraticProblem { using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>; #ifdef QP_SOLVER_SPARSE using Matrix = Eigen::SparseMatrix<Scalar>; Eigen::Matrix<int, Eigen::Dynamic, 1> P_col_nnz; Eigen::Matrix<int, Eigen::Dynamic, 1> A_col_nnz; #else using Matrix = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>; #endif const Matrix *P; const Vector *q; const Matrix *A; const Vector *l; const Vector *u; }; template <typename Scalar> struct QPSolverSettings { Scalar rho = 1e-1; /**< ADMM rho step, 0 < rho */ Scalar sigma = 1e-6; /**< ADMM sigma step, 0 < sigma, (small) */ Scalar alpha = 1.0; /**< ADMM overrelaxation parameter, 0 < alpha < 2, values in [1.5, 1.8] give good results (empirically) */ Scalar eps_rel = 1e-3; /**< Relative tolerance for termination, 0 < eps_rel */ Scalar eps_abs = 1e-3; /**< Absolute tolerance for termination, 0 < eps_abs */ int max_iter = 1000; /**< Maximal number of iteration, 0 < max_iter */ int check_termination = 25; /**< Check termination after every Nth iteration, 0 (disabled) or 0 < check_termination */ bool warm_start = false; /**< Warm start solver, reuses previous x,z,y */ bool adaptive_rho = false; /**< Adapt rho to optimal estimate */ Scalar adaptive_rho_tolerance = 5; /**< Minimal for rho update factor, 1 < adaptive_rho_tolerance */ int adaptive_rho_interval = 25; /**< change rho every Nth iteration, 0 < adaptive_rho_interval, set equal to check_termination to save computation */ bool verbose = false; #ifdef QP_SOLVER_PRINTING void print() const { printf("ADMM settings:\n"); printf(" sigma %.2e\n", sigma); printf(" rho %.2e\n", rho); printf(" alpha %.2f\n", alpha); printf(" eps_rel %.1e\n", eps_rel); printf(" eps_abs %.1e\n", eps_abs); printf(" max_iter %d\n", max_iter); printf(" adaptive_rho %d\n", adaptive_rho); printf(" warm_start %d\n", warm_start); } #endif }; typedef enum { SOLVED, MAX_ITER_EXCEEDED, UNSOLVED, NUMERICAL_ISSUES, UNINITIALIZED } QPSolverStatus; template <typename Scalar> struct QPSolverInfo { QPSolverStatus status = UNINITIALIZED; /**< Solver status */ int iter = 0; /**< Number of iterations */ int rho_updates = 0; /**< Number of rho updates (factorizations) */ Scalar rho_estimate = 0; /**< Last rho estimate */ Scalar res_prim = 0; /**< Primal residual */ Scalar res_dual = 0; /**< Dual residual */ #ifdef QP_SOLVER_PRINTING void print() const { printf("ADMM info:\n"); printf(" status "); switch (status) { case SOLVED: printf("SOLVED\n"); break; case MAX_ITER_EXCEEDED: printf("MAX_ITER_EXCEEDED\n"); break; case UNSOLVED: printf("UNSOLVED\n"); break; case NUMERICAL_ISSUES: printf("NUMERICAL_ISSUES\n"); break; default: printf("UNINITIALIZED\n"); }; printf(" iter %d\n", iter); printf(" rho_updates %d\n", rho_updates); printf(" rho_estimate %f\n", rho_estimate); printf(" res_prim %f\n", res_prim); printf(" res_dual %f\n", res_dual); } #endif }; /** * minimize 0.5 x' P x + q' x * subject to l <= A x <= u * * with: * x element of R^n * Ax element of R^m */ template <typename SCALAR> class QPSolver { public: using Scalar = SCALAR; using QP = QuadraticProblem<Scalar>; using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>; #ifdef QP_SOLVER_SPARSE using Matrix = Eigen::SparseMatrix<Scalar, Eigen::ColMajor>; using LinearSolver = Eigen::SimplicialLDLT<Matrix, Eigen::Lower>; #else using Matrix = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>; using LinearSolver = Eigen::LDLT<Matrix, Eigen::Lower>; #endif using Settings = QPSolverSettings<Scalar>; using Info = QPSolverInfo<Scalar>; enum { INEQUALITY_CONSTRAINT, EQUALITY_CONSTRAINT, LOOSE_BOUNDS } ConstraintType; static constexpr Scalar RHO_MIN = 1e-6; static constexpr Scalar RHO_MAX = 1e+6; static constexpr Scalar RHO_TOL = 1e-4; static constexpr Scalar RHO_EQ_FACTOR = 1e+3; static constexpr Scalar LOOSE_BOUNDS_THRESH = 1e+16; static constexpr Scalar DIV_BY_ZERO_REGUL = std::numeric_limits<Scalar>::epsilon(); // enforce 16 byte alignment // https://eigen.tuxfamily.org/dox/group__TopicStructHavingEigenMembers.html EIGEN_MAKE_ALIGNED_OPERATOR_NEW /** Constructor */ QPSolver() = default; /** Setup solver for QP. */ void setup(const QP &qp); /** Update solver for QP of same size as initial setup. */ void update_qp(const QP &qp); /** Solve the QP. */ void solve(const QP &qp); inline const Vector &primal_solution() const { return x; } inline Vector &primal_solution() { return x; } inline const Vector &dual_solution() const { return y; } inline Vector &dual_solution() { return y; } inline const Settings &settings() const { return settings_; } inline Settings &settings() { return settings_; } inline const Info &info() const { return info_; } inline Info &info() { return info_; } /* Public funcitions for unit testing */ static void constr_type_init(const Vector& l, const Vector& u, Eigen::VectorXi &constr_type); private: /* Construct the KKT matrix of the form * * [[ P + sigma*I, A' ], * [ A, -1/rho.*I ]] * * If LinearSolver_UpLo parameter is Eigen::Lower, then only the lower * triangular part is constructed to optimize memory. * * Note: For Eigen::ConjugateGradient it is advised to set Upper|Lower for * best performance. */ void construct_KKT_mat(const QP &qp); /** KKT matrix value update, assumes same sparsity pattern */ void update_KKT_mat(const QP &qp); void update_KKT_rho(); bool factorize_KKT(); bool compute_KKT(); #ifdef QP_SOLVER_SPARSE void sparse_insert_at(Matrix &dst, int row, int col, const Matrix &src) const #endif void form_KKT_rhs(const QP &qp, Vector &rhs); void box_projection(Vector &z, const Vector &l, const Vector &u); void constr_type_init(const QP &qp); void rho_vec_update(Scalar rho0); void update_state(const QP &qp); Scalar rho_estimate(const Scalar rho0, const QP &qp) const; Scalar eps_prim(const QP &qp) const; Scalar eps_dual(const QP &qp) const; Scalar residual_prim(const QP &qp) const; Scalar residual_dual(const QP &qp) const; bool termination_criteria(const QP &qp); #ifdef QP_SOLVER_PRINTING void print_status(const QP &qp) const; #endif size_t n; //< number of variables size_t m; //< number of constraints // Solver state variables int iter; Vector x; //< primal variable, size n Vector z; //< additional variable, size m Vector y; //< dual variable, size m Vector x_tilde; Vector z_tilde; Vector z_prev; Vector rho_vec; Vector rho_inv_vec; Scalar rho; Vector rhs; Vector x_tilde_nu; // State Scalar res_prim; Scalar res_dual; Scalar max_Ax_z_norm_; Scalar max_Px_ATy_q_norm_; Eigen::VectorXi constr_type; /**< constraint type classification */ Settings settings_; Info info_; Matrix kkt_mat; LinearSolver linear_solver; }; extern template class QPSolver<double>; extern template class QPSolver<float>; } // namespace qp_solver