text
stringlengths 0
3.34M
|
---|
Require Import Ctl.BinaryRelations.
Require Import Ctl.Paths.
Require Import Ctl.Definition.
Require Import Ctl.Basic.
Require Import Ctl.Tactics.
Require Import Glib.Glib.
Require Import Lia.
Section Properties.
Open Scope tprop_scope.
Context {state: Type}.
Variable R: relation state.
Context {t: transition R}.
(* Properties of implication *)
Theorem timpl_refl : forall (s: state) a,
R @s ⊨ a ⟶ a.
Proof using.
intros.
tintro.
assumption.
Qed.
Theorem timpl_trans : forall (s: state) a b c,
R @s ⊨ (a ⟶ b) ⟶ (b ⟶ c) ⟶ a ⟶ c.
Proof using.
intros s a b c.
tintros Hab Hbc Ha.
tapplyc Hbc.
tapplyc Hab.
assumption.
Qed.
Theorem timpl_trans' : forall (s: state) a b c,
R @s ⊨ a ⟶ b ->
R @s ⊨ b ⟶ c ->
R @s ⊨ a ⟶ c.
Proof using.
intros s a b c Hab Hbc.
tintros Ha.
tapplyc Hbc.
tapplyc Hab.
assumption.
Qed.
Ltac treflexivity := simple apply timpl_refl.
Ltac treflexive :=
match goal with
| |- _ @_ ⊨ ?a ⟶ ?a => treflexivity
| |- _ @_ ⊨ ?a ⟶ ?b =>
replace a with b;
[ treflexivity
| try easy; symmetry
]
end.
Ltac ttransitivity x :=
match goal with
| |- ?R @?s ⊨ ?a ⟶ ?b =>
simple apply (timpl_trans' R s a x b)
end.
Ltac ettransitivity :=
match goal with
| |- ?R @?s ⊨ ?a ⟶ ?b =>
simple eapply (timpl_trans' R s a _ b)
end.
Theorem textensionality : forall s P Q,
R @s ⊨ P ⟷ Q ->
(R @s ⊨ P) = (R @s ⊨ Q).
Proof using.
intros.
extensionality.
assumption.
Qed.
Lemma tNNPP : forall s P,
(* TODO: fix precedence so parantheses not necessary *)
R @s ⊨ (¬¬P) ⟶ P.
Proof using.
intros *.
tintro H.
now apply NNPP.
Qed.
Lemma rew_tNNPP : forall s P,
(R @s ⊨ ¬¬P) = (R @s ⊨ P).
Proof using.
intros *.
extensionality.
split.
- tapply tNNPP.
- intro.
tintro contra.
now tapply contra.
Qed.
(* Properties of CTL path-quantifying formulas *)
Theorem star__AG : forall s P,
(forall s', R^* s s' -> R @s' ⊨ P) ->
R @s ⊨ AG P.
Proof using.
intros * H.
tsimpl.
intros * Hin.
applyc H.
enow eapply in_path__star.
Qed.
Theorem AG__star : forall s P,
R @s ⊨ AG P ->
forall s', R^* s s' -> R @s' ⊨ P.
Proof using.
intros * H.
intros s' Hstar.
apply (star__in_path _ _ _ trans_serial) in Hstar.
destruct exists Hstar p.
enow etapply H.
Qed.
Theorem rew_AG_star : forall s P,
R @s ⊨ AG P =
forall s', R^* s s' -> R @s' ⊨ P.
Proof using.
intros *.
extensionality.
split.
- now apply AG__star.
- apply star__AG.
Qed.
Theorem star__EF : forall s P,
(exists s', R^* s s' /\ R @s' ⊨ P) ->
R @s ⊨ EF P.
Proof using.
intros * H.
tsimpl.
destruct H as (s' & Hstar & H).
apply (star__in_path _ _ _ trans_serial) in Hstar.
destruct exists Hstar p.
now exists p s'.
Qed.
Theorem EF__star : forall s P,
R @s ⊨ EF P ->
exists s', R^* s s' /\ R @s' ⊨ P.
Proof using.
intros * H.
tsimpl in *.
destruct H as (p & s' & Hin & H).
exists s'.
split.
- enow eapply in_path__star.
- assumption.
Qed.
Theorem rew_EF_star : forall s P,
R @s ⊨ EF P =
exists s', R^* s s' /\ R @s' ⊨ P.
Proof using.
intros *.
extensionality.
split.
- now apply EF__star.
- apply star__EF.
Qed.
Theorem AU_trivial : forall s P Q,
R @s ⊨ Q ⟶ A[P U Q].
Proof using.
intros *.
tintro H.
tsimpl.
intros.
exists s 0.
split; [|split].
- destruct p. constructor.
- intros * Hin_before.
now inv Hin_before.
- assumption.
Qed.
(* Extract the first satisfactory state *)
Lemma first_state : forall s (p: path R s) P,
(exists s', in_path s' p /\ R @s' ⊨ P) ->
exists s' i,
in_path_at s' i p /\
(forall x, in_path_before x i p -> R @x ⊨ ¬P) /\
R @s' ⊨ P.
Proof using.
intros * H.
destruct H as (s'' & Hin & H).
induction Hin.
- exists s 0.
max split.
+ constructor.
+ intros * contra.
now inv contra.
+ assumption.
- forward IHHin by assumption.
destruct IHHin as (s'0 & i & Hin' & IH1 & IH2).
destruct classic (R @s ⊨ P) as case.
+ exists s 0.
max split.
* constructor.
* intros * contra.
now inv contra.
* assumption.
+ exists s'0 (S i).
max split.
* now constructor.
* intros * Hbefore.
destruct Hbefore as (m & Hlt & Hin'').
destruct m.
-- now inv Hin''.
-- apply IH1.
dependent invc Hin''.
exists m.
split.
++ lia.
++ assumption.
* assumption.
Qed.
Theorem seq__AW : forall s P Q,
(R @s ⊨ P ∨ Q ->
forall s' (seq: R#* s s'),
(forall x, in_seq x seq -> R @x ⊨ P ∧ ¬Q) ->
forall s'',
R s' s'' ->
R @s'' ⊨ P ∨ Q) ->
R @s ⊨ A[P W Q].
Proof using.
tsimpl.
intros * H *.
(* Proceed by classical destruction on whether there exists some
state sQ in p entailing Q.
*)
destruct classic (
exists sQ, in_path sQ p /\ R @sQ ⊨ Q
) as case.
- right.
(* Need to strengthen case to the *first* such sQ *)
apply first_state in case.
destruct case as (sQ & i & Hin & Hbefore_entails & HsQ).
exists sQ i.
max split; try assumption.
intros * Hbefore.
(* Strategy:
get prefix sequence including state before sQ.
reflect in_path_before to in_seq
Induct over in_seq. apply to H to get P ∨ Q.
Show Q contradicts that sQ is first. Therefore, P
*)
copy Hin _temp;
apply in_path_at__seq'' in _temp as [seq Hbefore_seq].
destruct seq as [|s sQ' sQ].
{ exfalso; clear - Hbefore_seq Hbefore.
destruct (path_at R p 1) as [y Hat].
specialize (Hbefore_seq y 1).
forward Hbefore_seq.
- contradict goal.
transform contra (i = 0) by lia.
now inv Hbefore.
- rewrite Hbefore_seq in Hat.
dependent invc Hat.
discriminate H2.
}
assert (Hbefore': in_seq sP seq) by todo.
(* Inconvenient induction principle. Should start from the beginning *)
(* induction Hbefore'. *)
todo.
- overwrite case (not_ex_all_not _ _ case); simpl in case.
transform case (forall s', in_path s' p -> R @s' ⊨ ¬Q).
{ clear - case.
intros s' Hin.
specialize (case s').
apply not_and_or in case.
now destruct case.
}
left.
intros * Hin.
induction Hin.
+ specialize (case s).
forward case by constructor.
split; [|assumption].
(* specialize (H s (seq_refl R s)).
forward H.
* intros * contra.
dependent invc contra. *)
Admitted.
(*
Theorem seq__AW : forall s P Q,
(forall s' (seq: R#* s s'),
(forall x, in_seq x seq -> R @x ⊨ P ∧ ¬Q) ->
forall s'',
R s' s'' ->
R @s'' ⊨ P ∨ Q) ->
R @s ⊨ A[P W Q].
Proof using.
intros * H.
tsimpl.
unfold_tdisj.
(* Wait, is this correct? What if it's AG on some paths, and AU on
others? I think I may need to redefine.
*)
intros *.
Theorem AW__seq : forall s P Q,
R @s ⊨ A[P W Q] ->
forall s' (seq: R#* s s'),
(forall x, in_seq x seq -> R @x ⊨ P ∧ ¬Q) ->
forall s'',
R s' s'' ->
R @s'' ⊨ P ∨ Q.
Proof using.
intros * H * H' * Hstep.
tsimpl in H.
destruct or H.
- apply tentails_tdisj_l.
rewrite rew_AG_star in H.
applyc H.
transitivity s'.
+ now apply seq__star.
+ now apply star_lift.
- tsimpl in H.
pose proof (prefix := seq_prefix _ _ _ trans_serial
(seq_step R s s' s'' Hstep seq)).
destruct exists prefix p.
specialize (H p).
destruct H as (sQ & i & Hin_at & Hin_before & H).
destruct classic (in_path_before s'' i p) as Hbefore.
+ apply tentails_tdisj_l.
now apply Hin_before.
+ clear Hin_before.
(* s'' is in p (by prefix), but not before i.
Therefore, it must be after i.
This means i/sP is before s''.
Which means i/sP is in the prefix.
It is therefore either in `seq`, in which case we get the contradiction
`R @sQ ⊨ ¬Q` from H', or sQ = s'', in which case
solve goal by right.
*)
pose proof (in_prefix _ _ _ _ _ s'' prefix) as Hin.
forward Hin by constructor.
todo.
(* contradict H.
specialize (H' sQ).
applyc H'. *)
Admitted.
*)
(* Lemma in_path_combine {state}: forall (R: relation state),
forall s (p: path R s) s' (p': path R s') s'',
in_path s' p ->
in_path s'' p' ->
in_path s'' p.
Proof using.
intros * Hin Hin'.
induct Hin.
-
- apply in_tail.
find eapplyc.
find eapplyc. *)
(* TODO: demorgans tactic which uses an extensible hint database for rewriting? *)
Theorem AG_idempotent : forall s P,
R @s ⊨ AG P ⟶ AG (AG P).
Proof using.
intros *.
tintro H.
tsimpl.
intros * Hin * Hin'.
etapply H.
Admitted.
(* De Morgan's Laws *)
Theorem AF_EG : forall s P,
R @s ⊨ AF (¬P) ⟶ ¬EG P.
Proof using.
intros *.
tintros H Hcontra.
tsimpl in *.
destruct exists Hcontra p.
specialize (H p).
destruct exists H s'.
destruct H; auto.
Qed.
Theorem AF_EG' : forall s P,
R @s ⊨ ¬AF P ⟶ EG (¬P).
Proof using.
intros *.
tintro H.
tsimpl in *.
overwrite H (not_all_ex_not _ _ H); simpl in H.
destruct exists H p.
exists p.
intros s' Hin contra.
overwrite H (not_ex_all_not _ _ H); simpl in H.
enow eapply H.
Qed.
Theorem EG_AF : forall s P,
R @s ⊨ EG (¬P) ⟶ ¬AF P.
Proof using.
intros *.
tintros H Hcontra.
tsimpl in *.
destruct exists H p.
specialize (Hcontra p).
destruct exists Hcontra s'.
destruct Hcontra.
enow etapply H.
Qed.
Theorem EG_AF' : forall s P,
R @s ⊨ ¬EG P ⟶ AF (¬P).
Proof using.
intros *.
tintro H.
tsimpl in *.
intros p.
overwrite H (not_ex_all_not _ _ H); simpl in H.
specialize (H p).
overwrite H (not_all_ex_not _ _ H); simpl in H.
destruct exists H s'.
exists s'.
split.
- enow eapply not_imply_elim.
- enow eapply not_imply_elim2.
Qed.
Theorem rew_AF_EG : forall s P,
(R @s ⊨ AF (¬P)) = (R @s ⊨ ¬EG P).
Proof using.
intros.
apply textensionality.
split.
- tapply AF_EG.
- tapply EG_AF'.
Qed.
Theorem rew_EG_AF : forall s P,
(R @s ⊨ EG (¬P)) = (R @s ⊨ ¬AF P).
Proof using.
intros.
apply textensionality.
split.
- tapply EG_AF.
- tapply AF_EG'.
Qed.
Theorem AG_EF : forall s P,
R @s ⊨ AG (¬P) ⟶ ¬EF P.
Proof using.
intros *.
tintros H Hcontra.
tsimpl in *.
destruct exists Hcontra p s'.
specialize (H p s').
now destruct H.
Qed.
Theorem AG_EF' : forall s P,
R @s ⊨ ¬AG P ⟶ EF (¬P).
Proof using.
intros *.
tintro H.
tsimpl in *.
overwrite H (not_all_ex_not _ _ H); simpl in H.
destruct exists H p.
overwrite H (not_all_ex_not _ _ H); simpl in H.
destruct exists H s'.
exists p s'.
split.
- enow eapply not_imply_elim.
- enow eapply not_imply_elim2.
Qed.
Theorem EF_AG : forall s P,
R @s ⊨ EF (¬P) ⟶ ¬AG P.
Proof using.
intros *.
tintros H Hcontra.
tsimpl in *.
destruct exists H p s'.
specialize (Hcontra p s').
destruct H as [H1 H2].
enow etapply H2.
Qed.
Theorem EF_AG' : forall s P,
R @s ⊨ ¬EF P ⟶ AG (¬P).
Proof using.
intros *.
tintro H.
tsimpl in *.
intros p s' Hin contra.
overwrite H (not_ex_all_not _ _ H); simpl in H.
specialize (H p).
overwrite H (not_ex_all_not _ _ H); simpl in H.
enow eapply H.
Qed.
Theorem rew_AG_EF : forall s P,
(R @s ⊨ AG (¬P)) = (R @s ⊨ ¬EF P).
Proof using.
intros.
apply textensionality.
split.
- tapply AG_EF.
- tapply EF_AG'.
Qed.
Theorem rew_EF_AG : forall s P,
(R @s ⊨ EF (¬P)) = (R @s ⊨ ¬AG P).
Proof using.
intros.
apply textensionality.
split.
- tapply EF_AG.
- tapply AG_EF'.
Qed.
Theorem AX_EX : forall s P,
R @s ⊨ AX (¬P) ⟶ ¬EX P.
Proof using.
intros *.
tintros H Hcontra.
tsimpl in *.
destruct exists Hcontra s'.
specialize (H s').
destruct Hcontra.
now apply H.
Qed.
Theorem AX_EX' : forall s P,
R @s ⊨ ¬AX P ⟶ EX (¬P).
Proof using.
intros *.
tintro H.
tsimpl in *.
overwrite H (not_all_ex_not _ _ H); simpl in H.
destruct exists H s'.
exists s'.
split.
- enow eapply not_imply_elim.
- enow eapply not_imply_elim2.
Qed.
Theorem EX_AX : forall s P,
R @s ⊨ EX (¬P) ⟶ ¬AX P.
Proof using.
intros *.
tintros H Hcontra.
tsimpl in *.
destruct exists H s'.
specialize (Hcontra s').
destruct H as [H1 H2].
enow etapply H2.
Qed.
Theorem EX_AX' : forall s P,
R @s ⊨ ¬EX P ⟶ AX (¬P).
Proof using.
intros *.
tintro H.
tsimpl in *.
intros s' Hin contra.
overwrite H (not_ex_all_not _ _ H); simpl in H.
specialize (H s').
enow eapply H.
Qed.
Theorem rew_AX_EX : forall s P,
(R @s ⊨ AX (¬P)) = (R @s ⊨ ¬EX P).
Proof using.
intros.
apply textensionality.
split.
- tapply AX_EX.
- tapply EX_AX'.
Qed.
Theorem rew_EX_AX : forall s P,
(R @s ⊨ EX (¬P)) = (R @s ⊨ ¬AX P).
Proof using.
intros.
apply textensionality.
split.
- tapply EX_AX.
- tapply AX_EX'.
Qed.
(* Expansion Laws *)
Theorem expand_AG : forall s P,
R @s ⊨ AG P ⟶ P ∧ AX (AG P).
Proof.
intros *.
tintro H.
rewrite rew_AG_star in H.
split.
- apply H.
reflexivity.
- unfold_AX.
intros * Hstep.
rewrite rew_AG_star.
intros * Hstar.
apply H.
etransitivity; [|eassumption].
econstructor.
+ eassumption.
+ constructor.
Qed.
Theorem unexpand_AG : forall s P,
R @s ⊨ P ∧ AX (AG P) ⟶ AG P.
Proof.
intros *.
tintro H.
destruct H as [H1 H2].
unfold_AX in H2.
rewrite rew_AG_star.
intros * Hstar.
apply star_rt1n in Hstar.
inv Hstar.
- assumption.
- specialize (H2 y H).
rewrite rew_AG_star in H2.
apply H2.
now apply rt1n_star.
Qed.
Theorem rew_expand_AG : forall s P,
(R @s ⊨ AG P) = (R @s ⊨ P ∧ AX (AG P)).
Proof.
intros *.
apply textensionality.
split.
- tapply expand_AG.
- tapply unexpand_AG.
Qed.
Close Scope tprop_scope.
End Properties. |
-- Andreas, 2017-07-29, issue and test case by Nisse
{-# OPTIONS --profile=interactive #-}
A : Set
A = {!Set!} -- Give to provoke error
-- This issue concerns the AgdaInfo buffer,
-- the behavior on the command line might be different.
-- ERROR WAS (note the "Total 0ms"):
-- Set₁ != Set
-- when checking that the expression Set has type SetTotal 0ms
-- Expected:
-- Set₁ != Set
-- when checking that the expression Set has type Set
-- Issue2602.out:
-- ...
-- ((last . 1) . (agda2-goals-action '(0)))
-- (agda2-verbose "Total 0ms ")
-- (agda2-info-action "*Error*" "1,1-4 Set₁ != Set when checking that the expression Set has type Set" nil)
-- ...
|
(*
This file is generated by Cogent and
manually editted to provide a proper definition for
heap_rel
*)
theory SumRandom_CorresSetup
imports "CogentCRefinement.Deep_Embedding_Auto"
"CogentCRefinement.Cogent_Corres"
"CogentCRefinement.Tidy"
"CogentCRefinement.Heap_Relation_Generation"
"CogentCRefinement.Type_Relation_Generation"
"../build_random_seed/Random_seed_master_ACInstall"
"../build_random_seed/Random_seed_master_TypeProof"
begin
(* MANUAL addition: Abstract function environment *)
(*NOTE: what's up with heap_rel generation? check that this is done correctly *)
consts val_rel_Seed_C_body :: "(char list, abstyp, 32 word) uval \<Rightarrow> Seed_C \<Rightarrow> bool"
instantiation Seed_C :: cogent_C_val
begin
definition type_rel_Seed_C_def: "\<And> typ. type_rel typ (_ :: Seed_C itself) \<equiv> (typ = RCon ''Seed'' [] )"
definition val_rel_Seed_C_def:
"\<And> uv x. val_rel uv (x :: Seed_C) \<equiv> val_rel_Seed_C_body uv x"
instance ..
end
(* END of manual addition *)
(* C type and value relations *)
instantiation unit_t_C :: cogent_C_val
begin
definition type_rel_unit_t_C_def: "\<And> r. type_rel r (_ :: unit_t_C itself) \<equiv> r = RUnit"
definition val_rel_unit_t_C_def: "\<And> uv. val_rel uv (_ :: unit_t_C) \<equiv> uv = UUnit"
instance ..
end
instantiation bool_t_C :: cogent_C_val
begin
definition type_rel_bool_t_C_def: "\<And> typ. type_rel typ (_ :: bool_t_C itself) \<equiv> (typ = RPrim Bool)"
definition val_rel_bool_t_C_def:
"\<And> uv x. val_rel uv (x :: bool_t_C) \<equiv> (boolean_C x = 0 \<or> boolean_C x = 1) \<and>
uv = UPrim (LBool (boolean_C x \<noteq> 0))"
instance ..
end
(* MANUAL ADDITION *)
(*
instantiation Seed_C :: cogent_C_val
begin
definition type_rel_Seed_C_def: "\<And> typ. type_rel typ (_ :: Seed_C itself) \<equiv> (typ = RCon ''Seed'' [] )"
definition val_rel_Seed_C_def:
"\<And> uv x. val_rel uv (x :: Seed_C) \<equiv> uv = UAbstract a"
instance ..
end
*)
context update_sem_init begin
lemmas corres_if = corres_if_base[where bool_val' = boolean_C,
OF _ _ val_rel_bool_t_C_def[THEN meta_eq_to_obj_eq, THEN iffD1]]
end
(* C heap type class *)
class cogent_C_heap = cogent_C_val +
fixes is_valid :: "lifted_globals \<Rightarrow> 'a ptr \<Rightarrow> bool"
fixes heap :: "lifted_globals \<Rightarrow> 'a ptr \<Rightarrow> 'a"
local_setup \<open> local_setup_val_rel_type_rel_put_them_in_buckets "../build_random_seed/random_seed_master_pp_inferred.c" \<close>
local_setup \<open> local_setup_instantiate_cogent_C_heaps_store_them_in_buckets "../build_random_seed/random_seed_master_pp_inferred.c" \<close>
locale Random_seed_master = "random_seed_master_pp_inferred" + update_sem_init
begin
(* Relation between program heaps *)
definition
heap_rel_ptr ::
"(funtyp, abstyp, ptrtyp) store \<Rightarrow> lifted_globals \<Rightarrow>
('a :: cogent_C_heap) ptr \<Rightarrow> bool"
where
"\<And> \<sigma> h p.
heap_rel_ptr \<sigma> h p \<equiv>
(\<forall> uv.
\<sigma> (ptr_val p) = Some uv \<longrightarrow>
type_rel (uval_repr uv) TYPE('a) \<longrightarrow>
is_valid h p \<and> val_rel uv (heap h p))"
lemma heap_rel_ptr_meta:
"heap_rel_ptr = heap_rel_meta is_valid heap"
by (simp add: heap_rel_ptr_def[abs_def] heap_rel_meta_def[abs_def])
local_setup \<open> local_setup_heap_rel "../build_random_seed/random_seed_master_pp_inferred.c" \<close>
print_theorems
definition state_rel :: "((funtyp, abstyp, ptrtyp) store \<times> lifted_globals) set"
where
"state_rel = {(\<sigma>, h). heap_rel \<sigma> h}"
lemmas val_rel_simps[ValRelSimp] =
val_rel_word
val_rel_ptr_def
val_rel_unit_def
val_rel_unit_t_C_def
val_rel_bool_t_C_def
val_rel_fun_tag
lemmas type_rel_simps[TypeRelSimp] =
type_rel_word
type_rel_ptr_def
type_rel_unit_def
type_rel_unit_t_C_def
type_rel_bool_t_C_def
(* Generating the specialised take and put lemmas *)
local_setup \<open> local_setup_take_put_member_case_esac_specialised_lemmas
"../build_random_seed/random_seed_master_pp_inferred.c" \<close>
local_setup \<open> fold tidy_C_fun_def' Cogent_functions \<close>
end (* of locale *)
end
|
= = = = Protein disorder and <unk> prediction = = = =
|
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}" |
D = 2; % we consider a two-dimensional problem
N = 100; % we will generate 100 observations
%% Generate a random Covariance matrix
tmp = randn(D);
Sigma = tmp.' * tmp;
%% Sample from the corresponding Gaussian
X = mvnrnd(zeros(D, 1), Sigma, N);
%% Estimate the leading component
comp = grassmann_average(M, 1); % the second input is the number of component to estimate
comp = trimmed_grassmann_average(M', 50, 1);
show_2dvideo(comp,m,n);
show_2dvideo(comp(:,1),m,n);
show_2dvideo(comp(:,2),m,n);
show_2dvideo(comp(:,3),m,n);
show_2dvideo(comp(:,4),m,n);
show_2dvideo(comp(:,5),m,n);
%% Plot the results
plot(X(:, 1), X(:, 2), 'ko', 'markerfacecolor', [255,153,51]./255);
axis equal
hold on
plot(3*[-comp(1), comp(1)], 3*[-comp(2), comp(2)], 'k', 'linewidth', 2)
hold off
axis off |
/-
Copyright (c) 2019 Gabriel Ebner. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Gabriel Ebner, Sébastien Gouëzel
-/
import analysis.calculus.fderiv
import data.polynomial.derivative
import linear_algebra.affine_space.slope
/-!
# One-dimensional derivatives
This file defines the derivative of a function `f : 𝕜 → F` where `𝕜` is a
normed field and `F` is a normed space over this field. The derivative of
such a function `f` at a point `x` is given by an element `f' : F`.
The theory is developed analogously to the [Fréchet
derivatives](./fderiv.html). We first introduce predicates defined in terms
of the corresponding predicates for Fréchet derivatives:
- `has_deriv_at_filter f f' x L` states that the function `f` has the
derivative `f'` at the point `x` as `x` goes along the filter `L`.
- `has_deriv_within_at f f' s x` states that the function `f` has the
derivative `f'` at the point `x` within the subset `s`.
- `has_deriv_at f f' x` states that the function `f` has the derivative `f'`
at the point `x`.
- `has_strict_deriv_at f f' x` states that the function `f` has the derivative `f'`
at the point `x` in the sense of strict differentiability, i.e.,
`f y - f z = (y - z) • f' + o (y - z)` as `y, z → x`.
For the last two notions we also define a functional version:
- `deriv_within f s x` is a derivative of `f` at `x` within `s`. If the
derivative does not exist, then `deriv_within f s x` equals zero.
- `deriv f x` is a derivative of `f` at `x`. If the derivative does not
exist, then `deriv f x` equals zero.
The theorems `fderiv_within_deriv_within` and `fderiv_deriv` show that the
one-dimensional derivatives coincide with the general Fréchet derivatives.
We also show the existence and compute the derivatives of:
- constants
- the identity function
- linear maps
- addition
- sum of finitely many functions
- negation
- subtraction
- multiplication
- inverse `x → x⁻¹`
- multiplication of two functions in `𝕜 → 𝕜`
- multiplication of a function in `𝕜 → 𝕜` and of a function in `𝕜 → E`
- composition of a function in `𝕜 → F` with a function in `𝕜 → 𝕜`
- composition of a function in `F → E` with a function in `𝕜 → F`
- inverse function (assuming that it exists; the inverse function theorem is in `inverse.lean`)
- division
- polynomials
For most binary operations we also define `const_op` and `op_const` theorems for the cases when
the first or second argument is a constant. This makes writing chains of `has_deriv_at`'s easier,
and they more frequently lead to the desired result.
We set up the simplifier so that it can compute the derivative of simple functions. For instance,
```lean
example (x : ℝ) : deriv (λ x, cos (sin x) * exp x) x = (cos(sin(x))-sin(sin(x))*cos(x))*exp(x) :=
by { simp, ring }
```
## Implementation notes
Most of the theorems are direct restatements of the corresponding theorems
for Fréchet derivatives.
The strategy to construct simp lemmas that give the simplifier the possibility to compute
derivatives is the same as the one for differentiability statements, as explained in `fderiv.lean`.
See the explanations there.
-/
universes u v w
noncomputable theory
open_locale classical topology big_operators filter ennreal polynomial
open filter asymptotics set
open continuous_linear_map (smul_right smul_right_one_eq_iff)
variables {𝕜 : Type u} [nontrivially_normed_field 𝕜]
section
variables {F : Type v} [normed_add_comm_group F] [normed_space 𝕜 F]
variables {E : Type w} [normed_add_comm_group E] [normed_space 𝕜 E]
/--
`f` has the derivative `f'` at the point `x` as `x` goes along the filter `L`.
That is, `f x' = f x + (x' - x) • f' + o(x' - x)` where `x'` converges along the filter `L`.
-/
def has_deriv_at_filter (f : 𝕜 → F) (f' : F) (x : 𝕜) (L : filter 𝕜) :=
has_fderiv_at_filter f (smul_right (1 : 𝕜 →L[𝕜] 𝕜) f') x L
/--
`f` has the derivative `f'` at the point `x` within the subset `s`.
That is, `f x' = f x + (x' - x) • f' + o(x' - x)` where `x'` converges to `x` inside `s`.
-/
def has_deriv_within_at (f : 𝕜 → F) (f' : F) (s : set 𝕜) (x : 𝕜) :=
has_deriv_at_filter f f' x (𝓝[s] x)
/--
`f` has the derivative `f'` at the point `x`.
That is, `f x' = f x + (x' - x) • f' + o(x' - x)` where `x'` converges to `x`.
-/
def has_deriv_at (f : 𝕜 → F) (f' : F) (x : 𝕜) :=
has_deriv_at_filter f f' x (𝓝 x)
/-- `f` has the derivative `f'` at the point `x` in the sense of strict differentiability.
That is, `f y - f z = (y - z) • f' + o(y - z)` as `y, z → x`. -/
def has_strict_deriv_at (f : 𝕜 → F) (f' : F) (x : 𝕜) :=
has_strict_fderiv_at f (smul_right (1 : 𝕜 →L[𝕜] 𝕜) f') x
/--
Derivative of `f` at the point `x` within the set `s`, if it exists. Zero otherwise.
If the derivative exists (i.e., `∃ f', has_deriv_within_at f f' s x`), then
`f x' = f x + (x' - x) • deriv_within f s x + o(x' - x)` where `x'` converges to `x` inside `s`.
-/
def deriv_within (f : 𝕜 → F) (s : set 𝕜) (x : 𝕜) :=
fderiv_within 𝕜 f s x 1
/--
Derivative of `f` at the point `x`, if it exists. Zero otherwise.
If the derivative exists (i.e., `∃ f', has_deriv_at f f' x`), then
`f x' = f x + (x' - x) • deriv f x + o(x' - x)` where `x'` converges to `x`.
-/
def deriv (f : 𝕜 → F) (x : 𝕜) :=
fderiv 𝕜 f x 1
variables {f f₀ f₁ g : 𝕜 → F}
variables {f' f₀' f₁' g' : F}
variables {x : 𝕜}
variables {s t : set 𝕜}
variables {L L₁ L₂ : filter 𝕜}
/-- Expressing `has_fderiv_at_filter f f' x L` in terms of `has_deriv_at_filter` -/
lemma has_fderiv_at_filter_iff_has_deriv_at_filter {f' : 𝕜 →L[𝕜] F} :
has_fderiv_at_filter f f' x L ↔ has_deriv_at_filter f (f' 1) x L :=
by simp [has_deriv_at_filter]
lemma has_fderiv_at_filter.has_deriv_at_filter {f' : 𝕜 →L[𝕜] F} :
has_fderiv_at_filter f f' x L → has_deriv_at_filter f (f' 1) x L :=
has_fderiv_at_filter_iff_has_deriv_at_filter.mp
/-- Expressing `has_fderiv_within_at f f' s x` in terms of `has_deriv_within_at` -/
lemma has_fderiv_within_at_iff_has_deriv_within_at {f' : 𝕜 →L[𝕜] F} :
has_fderiv_within_at f f' s x ↔ has_deriv_within_at f (f' 1) s x :=
has_fderiv_at_filter_iff_has_deriv_at_filter
/-- Expressing `has_deriv_within_at f f' s x` in terms of `has_fderiv_within_at` -/
lemma has_deriv_within_at_iff_has_fderiv_within_at {f' : F} :
has_deriv_within_at f f' s x ↔
has_fderiv_within_at f (smul_right (1 : 𝕜 →L[𝕜] 𝕜) f') s x :=
iff.rfl
lemma has_fderiv_within_at.has_deriv_within_at {f' : 𝕜 →L[𝕜] F} :
has_fderiv_within_at f f' s x → has_deriv_within_at f (f' 1) s x :=
has_fderiv_within_at_iff_has_deriv_within_at.mp
lemma has_deriv_within_at.has_fderiv_within_at {f' : F} :
has_deriv_within_at f f' s x → has_fderiv_within_at f (smul_right (1 : 𝕜 →L[𝕜] 𝕜) f') s x :=
has_deriv_within_at_iff_has_fderiv_within_at.mp
/-- Expressing `has_fderiv_at f f' x` in terms of `has_deriv_at` -/
lemma has_fderiv_at_iff_has_deriv_at {f' : 𝕜 →L[𝕜] F} :
has_fderiv_at f f' x ↔ has_deriv_at f (f' 1) x :=
has_fderiv_at_filter_iff_has_deriv_at_filter
lemma has_fderiv_at.has_deriv_at {f' : 𝕜 →L[𝕜] F} :
has_fderiv_at f f' x → has_deriv_at f (f' 1) x :=
has_fderiv_at_iff_has_deriv_at.mp
lemma has_strict_fderiv_at_iff_has_strict_deriv_at {f' : 𝕜 →L[𝕜] F} :
has_strict_fderiv_at f f' x ↔ has_strict_deriv_at f (f' 1) x :=
by simp [has_strict_deriv_at, has_strict_fderiv_at]
protected lemma has_strict_fderiv_at.has_strict_deriv_at {f' : 𝕜 →L[𝕜] F} :
has_strict_fderiv_at f f' x → has_strict_deriv_at f (f' 1) x :=
has_strict_fderiv_at_iff_has_strict_deriv_at.mp
lemma has_strict_deriv_at_iff_has_strict_fderiv_at :
has_strict_deriv_at f f' x ↔ has_strict_fderiv_at f (smul_right (1 : 𝕜 →L[𝕜] 𝕜) f') x :=
iff.rfl
alias has_strict_deriv_at_iff_has_strict_fderiv_at ↔ has_strict_deriv_at.has_strict_fderiv_at _
/-- Expressing `has_deriv_at f f' x` in terms of `has_fderiv_at` -/
lemma has_deriv_at_iff_has_fderiv_at {f' : F} :
has_deriv_at f f' x ↔
has_fderiv_at f (smul_right (1 : 𝕜 →L[𝕜] 𝕜) f') x :=
iff.rfl
alias has_deriv_at_iff_has_fderiv_at ↔ has_deriv_at.has_fderiv_at _
lemma deriv_within_zero_of_not_differentiable_within_at
(h : ¬ differentiable_within_at 𝕜 f s x) : deriv_within f s x = 0 :=
by { unfold deriv_within, rw fderiv_within_zero_of_not_differentiable_within_at, simp, assumption }
lemma differentiable_within_at_of_deriv_within_ne_zero (h : deriv_within f s x ≠ 0) :
differentiable_within_at 𝕜 f s x :=
not_imp_comm.1 deriv_within_zero_of_not_differentiable_within_at h
lemma deriv_zero_of_not_differentiable_at (h : ¬ differentiable_at 𝕜 f x) : deriv f x = 0 :=
by { unfold deriv, rw fderiv_zero_of_not_differentiable_at, simp, assumption }
lemma differentiable_at_of_deriv_ne_zero (h : deriv f x ≠ 0) : differentiable_at 𝕜 f x :=
not_imp_comm.1 deriv_zero_of_not_differentiable_at h
theorem unique_diff_within_at.eq_deriv (s : set 𝕜) (H : unique_diff_within_at 𝕜 s x)
(h : has_deriv_within_at f f' s x) (h₁ : has_deriv_within_at f f₁' s x) : f' = f₁' :=
smul_right_one_eq_iff.mp $ unique_diff_within_at.eq H h h₁
theorem has_deriv_at_filter_iff_is_o :
has_deriv_at_filter f f' x L ↔ (λ x' : 𝕜, f x' - f x - (x' - x) • f') =o[L] (λ x', x' - x) :=
iff.rfl
theorem has_deriv_at_filter_iff_tendsto :
has_deriv_at_filter f f' x L ↔
tendsto (λ x' : 𝕜, ‖x' - x‖⁻¹ * ‖f x' - f x - (x' - x) • f'‖) L (𝓝 0) :=
has_fderiv_at_filter_iff_tendsto
theorem has_deriv_within_at_iff_is_o :
has_deriv_within_at f f' s x
↔ (λ x' : 𝕜, f x' - f x - (x' - x) • f') =o[𝓝[s] x] (λ x', x' - x) :=
iff.rfl
theorem has_deriv_within_at_iff_tendsto : has_deriv_within_at f f' s x ↔
tendsto (λ x', ‖x' - x‖⁻¹ * ‖f x' - f x - (x' - x) • f'‖) (𝓝[s] x) (𝓝 0) :=
has_fderiv_at_filter_iff_tendsto
theorem has_deriv_at_iff_is_o :
has_deriv_at f f' x ↔ (λ x' : 𝕜, f x' - f x - (x' - x) • f') =o[𝓝 x] (λ x', x' - x) :=
iff.rfl
theorem has_deriv_at_iff_tendsto : has_deriv_at f f' x ↔
tendsto (λ x', ‖x' - x‖⁻¹ * ‖f x' - f x - (x' - x) • f'‖) (𝓝 x) (𝓝 0) :=
has_fderiv_at_filter_iff_tendsto
theorem has_strict_deriv_at.has_deriv_at (h : has_strict_deriv_at f f' x) :
has_deriv_at f f' x :=
h.has_fderiv_at
/-- If the domain has dimension one, then Fréchet derivative is equivalent to the classical
definition with a limit. In this version we have to take the limit along the subset `-{x}`,
because for `y=x` the slope equals zero due to the convention `0⁻¹=0`. -/
lemma has_deriv_at_filter_iff_tendsto_slope {x : 𝕜} {L : filter 𝕜} :
has_deriv_at_filter f f' x L ↔ tendsto (slope f x) (L ⊓ 𝓟 {x}ᶜ) (𝓝 f') :=
begin
conv_lhs { simp only [has_deriv_at_filter_iff_tendsto, (norm_inv _).symm,
(norm_smul _ _).symm, tendsto_zero_iff_norm_tendsto_zero.symm] },
conv_rhs { rw [← nhds_translation_sub f', tendsto_comap_iff] },
refine (tendsto_inf_principal_nhds_iff_of_forall_eq $ by simp).symm.trans (tendsto_congr' _),
refine (eventually_principal.2 $ λ z hz, _).filter_mono inf_le_right,
simp only [(∘)],
rw [smul_sub, ← mul_smul, inv_mul_cancel (sub_ne_zero.2 hz), one_smul, slope_def_module]
end
lemma has_deriv_within_at_iff_tendsto_slope :
has_deriv_within_at f f' s x ↔ tendsto (slope f x) (𝓝[s \ {x}] x) (𝓝 f') :=
begin
simp only [has_deriv_within_at, nhds_within, diff_eq, inf_assoc.symm, inf_principal.symm],
exact has_deriv_at_filter_iff_tendsto_slope
end
lemma has_deriv_within_at_iff_tendsto_slope' (hs : x ∉ s) :
has_deriv_within_at f f' s x ↔ tendsto (slope f x) (𝓝[s] x) (𝓝 f') :=
begin
convert ← has_deriv_within_at_iff_tendsto_slope,
exact diff_singleton_eq_self hs
end
lemma has_deriv_at_iff_tendsto_slope :
has_deriv_at f f' x ↔ tendsto (slope f x) (𝓝[≠] x) (𝓝 f') :=
has_deriv_at_filter_iff_tendsto_slope
theorem has_deriv_within_at_congr_set {s t u : set 𝕜}
(hu : u ∈ 𝓝 x) (h : s ∩ u = t ∩ u) :
has_deriv_within_at f f' s x ↔ has_deriv_within_at f f' t x :=
by simp_rw [has_deriv_within_at, nhds_within_eq_nhds_within' hu h]
alias has_deriv_within_at_congr_set ↔ has_deriv_within_at.congr_set _
@[simp] lemma has_deriv_within_at_diff_singleton :
has_deriv_within_at f f' (s \ {x}) x ↔ has_deriv_within_at f f' s x :=
by simp only [has_deriv_within_at_iff_tendsto_slope, sdiff_idem]
@[simp] lemma has_deriv_within_at_Ioi_iff_Ici [partial_order 𝕜] :
has_deriv_within_at f f' (Ioi x) x ↔ has_deriv_within_at f f' (Ici x) x :=
by rw [← Ici_diff_left, has_deriv_within_at_diff_singleton]
alias has_deriv_within_at_Ioi_iff_Ici ↔
has_deriv_within_at.Ici_of_Ioi has_deriv_within_at.Ioi_of_Ici
@[simp] lemma has_deriv_within_at_Iio_iff_Iic [partial_order 𝕜] :
has_deriv_within_at f f' (Iio x) x ↔ has_deriv_within_at f f' (Iic x) x :=
by rw [← Iic_diff_right, has_deriv_within_at_diff_singleton]
alias has_deriv_within_at_Iio_iff_Iic ↔
has_deriv_within_at.Iic_of_Iio has_deriv_within_at.Iio_of_Iic
theorem has_deriv_within_at.Ioi_iff_Ioo [linear_order 𝕜] [order_closed_topology 𝕜] {x y : 𝕜}
(h : x < y) :
has_deriv_within_at f f' (Ioo x y) x ↔ has_deriv_within_at f f' (Ioi x) x :=
has_deriv_within_at_congr_set (is_open_Iio.mem_nhds h) $
by { rw [Ioi_inter_Iio, inter_eq_left_iff_subset], exact Ioo_subset_Iio_self }
alias has_deriv_within_at.Ioi_iff_Ioo ↔
has_deriv_within_at.Ioi_of_Ioo has_deriv_within_at.Ioo_of_Ioi
theorem has_deriv_at_iff_is_o_nhds_zero : has_deriv_at f f' x ↔
(λh, f (x + h) - f x - h • f') =o[𝓝 0] (λh, h) :=
has_fderiv_at_iff_is_o_nhds_zero
theorem has_deriv_at_filter.mono (h : has_deriv_at_filter f f' x L₂) (hst : L₁ ≤ L₂) :
has_deriv_at_filter f f' x L₁ :=
has_fderiv_at_filter.mono h hst
theorem has_deriv_within_at.mono (h : has_deriv_within_at f f' t x) (hst : s ⊆ t) :
has_deriv_within_at f f' s x :=
has_fderiv_within_at.mono h hst
theorem has_deriv_at.has_deriv_at_filter (h : has_deriv_at f f' x) (hL : L ≤ 𝓝 x) :
has_deriv_at_filter f f' x L :=
has_fderiv_at.has_fderiv_at_filter h hL
theorem has_deriv_at.has_deriv_within_at
(h : has_deriv_at f f' x) : has_deriv_within_at f f' s x :=
has_fderiv_at.has_fderiv_within_at h
lemma has_deriv_within_at.differentiable_within_at (h : has_deriv_within_at f f' s x) :
differentiable_within_at 𝕜 f s x :=
has_fderiv_within_at.differentiable_within_at h
lemma has_deriv_at.differentiable_at (h : has_deriv_at f f' x) : differentiable_at 𝕜 f x :=
has_fderiv_at.differentiable_at h
@[simp] lemma has_deriv_within_at_univ : has_deriv_within_at f f' univ x ↔ has_deriv_at f f' x :=
has_fderiv_within_at_univ
theorem has_deriv_at.unique
(h₀ : has_deriv_at f f₀' x) (h₁ : has_deriv_at f f₁' x) : f₀' = f₁' :=
smul_right_one_eq_iff.mp $ h₀.has_fderiv_at.unique h₁
lemma has_deriv_within_at_inter' (h : t ∈ 𝓝[s] x) :
has_deriv_within_at f f' (s ∩ t) x ↔ has_deriv_within_at f f' s x :=
has_fderiv_within_at_inter' h
lemma has_deriv_within_at_inter (h : t ∈ 𝓝 x) :
has_deriv_within_at f f' (s ∩ t) x ↔ has_deriv_within_at f f' s x :=
has_fderiv_within_at_inter h
lemma has_deriv_within_at.union (hs : has_deriv_within_at f f' s x)
(ht : has_deriv_within_at f f' t x) :
has_deriv_within_at f f' (s ∪ t) x :=
hs.has_fderiv_within_at.union ht.has_fderiv_within_at
lemma has_deriv_within_at.nhds_within (h : has_deriv_within_at f f' s x)
(ht : s ∈ 𝓝[t] x) : has_deriv_within_at f f' t x :=
(has_deriv_within_at_inter' ht).1 (h.mono (inter_subset_right _ _))
lemma has_deriv_within_at.has_deriv_at (h : has_deriv_within_at f f' s x) (hs : s ∈ 𝓝 x) :
has_deriv_at f f' x :=
has_fderiv_within_at.has_fderiv_at h hs
lemma differentiable_within_at.has_deriv_within_at (h : differentiable_within_at 𝕜 f s x) :
has_deriv_within_at f (deriv_within f s x) s x :=
h.has_fderiv_within_at.has_deriv_within_at
lemma differentiable_at.has_deriv_at (h : differentiable_at 𝕜 f x) : has_deriv_at f (deriv f x) x :=
h.has_fderiv_at.has_deriv_at
@[simp] lemma has_deriv_at_deriv_iff : has_deriv_at f (deriv f x) x ↔ differentiable_at 𝕜 f x :=
⟨λ h, h.differentiable_at, λ h, h.has_deriv_at⟩
@[simp] lemma has_deriv_within_at_deriv_within_iff :
has_deriv_within_at f (deriv_within f s x) s x ↔ differentiable_within_at 𝕜 f s x :=
⟨λ h, h.differentiable_within_at, λ h, h.has_deriv_within_at⟩
lemma differentiable_on.has_deriv_at (h : differentiable_on 𝕜 f s) (hs : s ∈ 𝓝 x) :
has_deriv_at f (deriv f x) x :=
(h.has_fderiv_at hs).has_deriv_at
lemma has_deriv_at.deriv (h : has_deriv_at f f' x) : deriv f x = f' :=
h.differentiable_at.has_deriv_at.unique h
lemma deriv_eq {f' : 𝕜 → F} (h : ∀ x, has_deriv_at f (f' x) x) : deriv f = f' :=
funext $ λ x, (h x).deriv
lemma has_deriv_within_at.deriv_within
(h : has_deriv_within_at f f' s x) (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within f s x = f' :=
hxs.eq_deriv _ h.differentiable_within_at.has_deriv_within_at h
lemma fderiv_within_deriv_within : (fderiv_within 𝕜 f s x : 𝕜 → F) 1 = deriv_within f s x :=
rfl
lemma deriv_within_fderiv_within :
smul_right (1 : 𝕜 →L[𝕜] 𝕜) (deriv_within f s x) = fderiv_within 𝕜 f s x :=
by simp [deriv_within]
lemma fderiv_deriv : (fderiv 𝕜 f x : 𝕜 → F) 1 = deriv f x :=
rfl
lemma deriv_fderiv :
smul_right (1 : 𝕜 →L[𝕜] 𝕜) (deriv f x) = fderiv 𝕜 f x :=
by simp [deriv]
lemma differentiable_at.deriv_within (h : differentiable_at 𝕜 f x)
(hxs : unique_diff_within_at 𝕜 s x) : deriv_within f s x = deriv f x :=
by { unfold deriv_within deriv, rw h.fderiv_within hxs }
theorem has_deriv_within_at.deriv_eq_zero (hd : has_deriv_within_at f 0 s x)
(H : unique_diff_within_at 𝕜 s x) : deriv f x = 0 :=
(em' (differentiable_at 𝕜 f x)).elim deriv_zero_of_not_differentiable_at $
λ h, H.eq_deriv _ h.has_deriv_at.has_deriv_within_at hd
lemma deriv_within_subset (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x)
(h : differentiable_within_at 𝕜 f t x) :
deriv_within f s x = deriv_within f t x :=
((differentiable_within_at.has_deriv_within_at h).mono st).deriv_within ht
@[simp] lemma deriv_within_univ : deriv_within f univ = deriv f :=
by { ext, unfold deriv_within deriv, rw fderiv_within_univ }
lemma deriv_within_inter (ht : t ∈ 𝓝 x) (hs : unique_diff_within_at 𝕜 s x) :
deriv_within f (s ∩ t) x = deriv_within f s x :=
by { unfold deriv_within, rw fderiv_within_inter ht hs }
lemma deriv_within_of_open (hs : is_open s) (hx : x ∈ s) :
deriv_within f s x = deriv f x :=
by { unfold deriv_within, rw fderiv_within_of_open hs hx, refl }
lemma deriv_mem_iff {f : 𝕜 → F} {s : set F} {x : 𝕜} :
deriv f x ∈ s ↔ (differentiable_at 𝕜 f x ∧ deriv f x ∈ s) ∨
(¬differentiable_at 𝕜 f x ∧ (0 : F) ∈ s) :=
by by_cases hx : differentiable_at 𝕜 f x; simp [deriv_zero_of_not_differentiable_at, *]
lemma deriv_within_mem_iff {f : 𝕜 → F} {t : set 𝕜} {s : set F} {x : 𝕜} :
deriv_within f t x ∈ s ↔ (differentiable_within_at 𝕜 f t x ∧ deriv_within f t x ∈ s) ∨
(¬differentiable_within_at 𝕜 f t x ∧ (0 : F) ∈ s) :=
by by_cases hx : differentiable_within_at 𝕜 f t x;
simp [deriv_within_zero_of_not_differentiable_within_at, *]
lemma differentiable_within_at_Ioi_iff_Ici [partial_order 𝕜] :
differentiable_within_at 𝕜 f (Ioi x) x ↔ differentiable_within_at 𝕜 f (Ici x) x :=
⟨λ h, h.has_deriv_within_at.Ici_of_Ioi.differentiable_within_at,
λ h, h.has_deriv_within_at.Ioi_of_Ici.differentiable_within_at⟩
lemma deriv_within_Ioi_eq_Ici {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] (f : ℝ → E)
(x : ℝ) :
deriv_within f (Ioi x) x = deriv_within f (Ici x) x :=
begin
by_cases H : differentiable_within_at ℝ f (Ioi x) x,
{ have A := H.has_deriv_within_at.Ici_of_Ioi,
have B := (differentiable_within_at_Ioi_iff_Ici.1 H).has_deriv_within_at,
simpa using (unique_diff_on_Ici x).eq le_rfl A B },
{ rw [deriv_within_zero_of_not_differentiable_within_at H,
deriv_within_zero_of_not_differentiable_within_at],
rwa differentiable_within_at_Ioi_iff_Ici at H }
end
section congr
/-! ### Congruence properties of derivatives -/
theorem filter.eventually_eq.has_deriv_at_filter_iff
(h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x) (h₁ : f₀' = f₁') :
has_deriv_at_filter f₀ f₀' x L ↔ has_deriv_at_filter f₁ f₁' x L :=
h₀.has_fderiv_at_filter_iff hx (by simp [h₁])
lemma has_deriv_at_filter.congr_of_eventually_eq (h : has_deriv_at_filter f f' x L)
(hL : f₁ =ᶠ[L] f) (hx : f₁ x = f x) : has_deriv_at_filter f₁ f' x L :=
by rwa hL.has_deriv_at_filter_iff hx rfl
lemma has_deriv_within_at.congr_mono (h : has_deriv_within_at f f' s x) (ht : ∀x ∈ t, f₁ x = f x)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : has_deriv_within_at f₁ f' t x :=
has_fderiv_within_at.congr_mono h ht hx h₁
lemma has_deriv_within_at.congr (h : has_deriv_within_at f f' s x) (hs : ∀x ∈ s, f₁ x = f x)
(hx : f₁ x = f x) : has_deriv_within_at f₁ f' s x :=
h.congr_mono hs hx (subset.refl _)
lemma has_deriv_within_at.congr_of_mem (h : has_deriv_within_at f f' s x) (hs : ∀x ∈ s, f₁ x = f x)
(hx : x ∈ s) : has_deriv_within_at f₁ f' s x :=
h.congr hs (hs _ hx)
lemma has_deriv_within_at.congr_of_eventually_eq (h : has_deriv_within_at f f' s x)
(h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : has_deriv_within_at f₁ f' s x :=
has_deriv_at_filter.congr_of_eventually_eq h h₁ hx
lemma has_deriv_within_at.congr_of_eventually_eq_of_mem (h : has_deriv_within_at f f' s x)
(h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : x ∈ s) : has_deriv_within_at f₁ f' s x :=
h.congr_of_eventually_eq h₁ (h₁.eq_of_nhds_within hx)
lemma has_deriv_at.congr_of_eventually_eq (h : has_deriv_at f f' x)
(h₁ : f₁ =ᶠ[𝓝 x] f) : has_deriv_at f₁ f' x :=
has_deriv_at_filter.congr_of_eventually_eq h h₁ (mem_of_mem_nhds h₁ : _)
lemma filter.eventually_eq.deriv_within_eq (hs : unique_diff_within_at 𝕜 s x)
(hL : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
deriv_within f₁ s x = deriv_within f s x :=
by { unfold deriv_within, rw hL.fderiv_within_eq hs hx }
lemma deriv_within_congr (hs : unique_diff_within_at 𝕜 s x)
(hL : ∀y∈s, f₁ y = f y) (hx : f₁ x = f x) :
deriv_within f₁ s x = deriv_within f s x :=
by { unfold deriv_within, rw fderiv_within_congr hs hL hx }
lemma filter.eventually_eq.deriv_eq (hL : f₁ =ᶠ[𝓝 x] f) : deriv f₁ x = deriv f x :=
by { unfold deriv, rwa filter.eventually_eq.fderiv_eq }
protected lemma filter.eventually_eq.deriv (h : f₁ =ᶠ[𝓝 x] f) : deriv f₁ =ᶠ[𝓝 x] deriv f :=
h.eventually_eq_nhds.mono $ λ x h, h.deriv_eq
end congr
section id
/-! ### Derivative of the identity -/
variables (s x L)
theorem has_deriv_at_filter_id : has_deriv_at_filter id 1 x L :=
(has_fderiv_at_filter_id x L).has_deriv_at_filter
theorem has_deriv_within_at_id : has_deriv_within_at id 1 s x :=
has_deriv_at_filter_id _ _
theorem has_deriv_at_id : has_deriv_at id 1 x :=
has_deriv_at_filter_id _ _
theorem has_deriv_at_id' : has_deriv_at (λ (x : 𝕜), x) 1 x :=
has_deriv_at_filter_id _ _
theorem has_strict_deriv_at_id : has_strict_deriv_at id 1 x :=
(has_strict_fderiv_at_id x).has_strict_deriv_at
lemma deriv_id : deriv id x = 1 :=
has_deriv_at.deriv (has_deriv_at_id x)
@[simp] lemma deriv_id' : deriv (@id 𝕜) = λ _, 1 := funext deriv_id
@[simp] lemma deriv_id'' : deriv (λ x : 𝕜, x) = λ _, 1 := deriv_id'
lemma deriv_within_id (hxs : unique_diff_within_at 𝕜 s x) : deriv_within id s x = 1 :=
(has_deriv_within_at_id x s).deriv_within hxs
end id
section const
/-! ### Derivative of constant functions -/
variables (c : F) (s x L)
theorem has_deriv_at_filter_const : has_deriv_at_filter (λ x, c) 0 x L :=
(has_fderiv_at_filter_const c x L).has_deriv_at_filter
theorem has_strict_deriv_at_const : has_strict_deriv_at (λ x, c) 0 x :=
(has_strict_fderiv_at_const c x).has_strict_deriv_at
theorem has_deriv_within_at_const : has_deriv_within_at (λ x, c) 0 s x :=
has_deriv_at_filter_const _ _ _
theorem has_deriv_at_const : has_deriv_at (λ x, c) 0 x :=
has_deriv_at_filter_const _ _ _
lemma deriv_const : deriv (λ x, c) x = 0 :=
has_deriv_at.deriv (has_deriv_at_const x c)
@[simp] lemma deriv_const' : deriv (λ x:𝕜, c) = λ x, 0 :=
funext (λ x, deriv_const x c)
lemma deriv_within_const (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (λ x, c) s x = 0 :=
(has_deriv_within_at_const _ _ _).deriv_within hxs
end const
section continuous_linear_map
/-! ### Derivative of continuous linear maps -/
variables (e : 𝕜 →L[𝕜] F)
protected lemma continuous_linear_map.has_deriv_at_filter : has_deriv_at_filter e (e 1) x L :=
e.has_fderiv_at_filter.has_deriv_at_filter
protected lemma continuous_linear_map.has_strict_deriv_at : has_strict_deriv_at e (e 1) x :=
e.has_strict_fderiv_at.has_strict_deriv_at
protected lemma continuous_linear_map.has_deriv_at : has_deriv_at e (e 1) x :=
e.has_deriv_at_filter
protected lemma continuous_linear_map.has_deriv_within_at : has_deriv_within_at e (e 1) s x :=
e.has_deriv_at_filter
@[simp] protected lemma continuous_linear_map.deriv : deriv e x = e 1 :=
e.has_deriv_at.deriv
protected lemma continuous_linear_map.deriv_within (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within e s x = e 1 :=
e.has_deriv_within_at.deriv_within hxs
end continuous_linear_map
section linear_map
/-! ### Derivative of bundled linear maps -/
variables (e : 𝕜 →ₗ[𝕜] F)
protected lemma linear_map.has_deriv_at_filter : has_deriv_at_filter e (e 1) x L :=
e.to_continuous_linear_map₁.has_deriv_at_filter
protected lemma linear_map.has_strict_deriv_at : has_strict_deriv_at e (e 1) x :=
e.to_continuous_linear_map₁.has_strict_deriv_at
protected lemma linear_map.has_deriv_at : has_deriv_at e (e 1) x :=
e.has_deriv_at_filter
protected lemma linear_map.has_deriv_within_at : has_deriv_within_at e (e 1) s x :=
e.has_deriv_at_filter
@[simp] protected lemma linear_map.deriv : deriv e x = e 1 :=
e.has_deriv_at.deriv
protected lemma linear_map.deriv_within (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within e s x = e 1 :=
e.has_deriv_within_at.deriv_within hxs
end linear_map
section add
/-! ### Derivative of the sum of two functions -/
theorem has_deriv_at_filter.add
(hf : has_deriv_at_filter f f' x L) (hg : has_deriv_at_filter g g' x L) :
has_deriv_at_filter (λ y, f y + g y) (f' + g') x L :=
by simpa using (hf.add hg).has_deriv_at_filter
theorem has_strict_deriv_at.add
(hf : has_strict_deriv_at f f' x) (hg : has_strict_deriv_at g g' x) :
has_strict_deriv_at (λ y, f y + g y) (f' + g') x :=
by simpa using (hf.add hg).has_strict_deriv_at
theorem has_deriv_within_at.add
(hf : has_deriv_within_at f f' s x) (hg : has_deriv_within_at g g' s x) :
has_deriv_within_at (λ y, f y + g y) (f' + g') s x :=
hf.add hg
theorem has_deriv_at.add
(hf : has_deriv_at f f' x) (hg : has_deriv_at g g' x) :
has_deriv_at (λ x, f x + g x) (f' + g') x :=
hf.add hg
lemma deriv_within_add (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
deriv_within (λy, f y + g y) s x = deriv_within f s x + deriv_within g s x :=
(hf.has_deriv_within_at.add hg.has_deriv_within_at).deriv_within hxs
@[simp] lemma deriv_add
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
deriv (λy, f y + g y) x = deriv f x + deriv g x :=
(hf.has_deriv_at.add hg.has_deriv_at).deriv
theorem has_deriv_at_filter.add_const
(hf : has_deriv_at_filter f f' x L) (c : F) :
has_deriv_at_filter (λ y, f y + c) f' x L :=
add_zero f' ▸ hf.add (has_deriv_at_filter_const x L c)
theorem has_deriv_within_at.add_const
(hf : has_deriv_within_at f f' s x) (c : F) :
has_deriv_within_at (λ y, f y + c) f' s x :=
hf.add_const c
theorem has_deriv_at.add_const
(hf : has_deriv_at f f' x) (c : F) :
has_deriv_at (λ x, f x + c) f' x :=
hf.add_const c
lemma deriv_within_add_const (hxs : unique_diff_within_at 𝕜 s x) (c : F) :
deriv_within (λy, f y + c) s x = deriv_within f s x :=
by simp only [deriv_within, fderiv_within_add_const hxs]
lemma deriv_add_const (c : F) : deriv (λy, f y + c) x = deriv f x :=
by simp only [deriv, fderiv_add_const]
@[simp] lemma deriv_add_const' (c : F) : deriv (λ y, f y + c) = deriv f :=
funext $ λ x, deriv_add_const c
theorem has_deriv_at_filter.const_add (c : F) (hf : has_deriv_at_filter f f' x L) :
has_deriv_at_filter (λ y, c + f y) f' x L :=
zero_add f' ▸ (has_deriv_at_filter_const x L c).add hf
theorem has_deriv_within_at.const_add (c : F) (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ y, c + f y) f' s x :=
hf.const_add c
theorem has_deriv_at.const_add (c : F) (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, c + f x) f' x :=
hf.const_add c
lemma deriv_within_const_add (hxs : unique_diff_within_at 𝕜 s x) (c : F) :
deriv_within (λy, c + f y) s x = deriv_within f s x :=
by simp only [deriv_within, fderiv_within_const_add hxs]
lemma deriv_const_add (c : F) : deriv (λy, c + f y) x = deriv f x :=
by simp only [deriv, fderiv_const_add]
@[simp] lemma deriv_const_add' (c : F) : deriv (λ y, c + f y) = deriv f :=
funext $ λ x, deriv_const_add c
end add
section sum
/-! ### Derivative of a finite sum of functions -/
open_locale big_operators
variables {ι : Type*} {u : finset ι} {A : ι → (𝕜 → F)} {A' : ι → F}
theorem has_deriv_at_filter.sum (h : ∀ i ∈ u, has_deriv_at_filter (A i) (A' i) x L) :
has_deriv_at_filter (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x L :=
by simpa [continuous_linear_map.sum_apply] using (has_fderiv_at_filter.sum h).has_deriv_at_filter
theorem has_strict_deriv_at.sum (h : ∀ i ∈ u, has_strict_deriv_at (A i) (A' i) x) :
has_strict_deriv_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x :=
by simpa [continuous_linear_map.sum_apply] using (has_strict_fderiv_at.sum h).has_strict_deriv_at
theorem has_deriv_within_at.sum (h : ∀ i ∈ u, has_deriv_within_at (A i) (A' i) s x) :
has_deriv_within_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) s x :=
has_deriv_at_filter.sum h
theorem has_deriv_at.sum (h : ∀ i ∈ u, has_deriv_at (A i) (A' i) x) :
has_deriv_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x :=
has_deriv_at_filter.sum h
lemma deriv_within_sum (hxs : unique_diff_within_at 𝕜 s x)
(h : ∀ i ∈ u, differentiable_within_at 𝕜 (A i) s x) :
deriv_within (λ y, ∑ i in u, A i y) s x = ∑ i in u, deriv_within (A i) s x :=
(has_deriv_within_at.sum (λ i hi, (h i hi).has_deriv_within_at)).deriv_within hxs
@[simp] lemma deriv_sum (h : ∀ i ∈ u, differentiable_at 𝕜 (A i) x) :
deriv (λ y, ∑ i in u, A i y) x = ∑ i in u, deriv (A i) x :=
(has_deriv_at.sum (λ i hi, (h i hi).has_deriv_at)).deriv
end sum
section pi
/-! ### Derivatives of functions `f : 𝕜 → Π i, E i` -/
variables {ι : Type*} [fintype ι] {E' : ι → Type*} [Π i, normed_add_comm_group (E' i)]
[Π i, normed_space 𝕜 (E' i)] {φ : 𝕜 → Π i, E' i} {φ' : Π i, E' i}
@[simp] lemma has_strict_deriv_at_pi :
has_strict_deriv_at φ φ' x ↔ ∀ i, has_strict_deriv_at (λ x, φ x i) (φ' i) x :=
has_strict_fderiv_at_pi'
@[simp] lemma has_deriv_at_filter_pi :
has_deriv_at_filter φ φ' x L ↔
∀ i, has_deriv_at_filter (λ x, φ x i) (φ' i) x L :=
has_fderiv_at_filter_pi'
lemma has_deriv_at_pi :
has_deriv_at φ φ' x ↔ ∀ i, has_deriv_at (λ x, φ x i) (φ' i) x:=
has_deriv_at_filter_pi
lemma has_deriv_within_at_pi :
has_deriv_within_at φ φ' s x ↔ ∀ i, has_deriv_within_at (λ x, φ x i) (φ' i) s x:=
has_deriv_at_filter_pi
lemma deriv_within_pi (h : ∀ i, differentiable_within_at 𝕜 (λ x, φ x i) s x)
(hs : unique_diff_within_at 𝕜 s x) :
deriv_within φ s x = λ i, deriv_within (λ x, φ x i) s x :=
(has_deriv_within_at_pi.2 (λ i, (h i).has_deriv_within_at)).deriv_within hs
lemma deriv_pi (h : ∀ i, differentiable_at 𝕜 (λ x, φ x i) x) :
deriv φ x = λ i, deriv (λ x, φ x i) x :=
(has_deriv_at_pi.2 (λ i, (h i).has_deriv_at)).deriv
end pi
section smul
/-! ### Derivative of the multiplication of a scalar function and a vector function -/
variables {𝕜' : Type*} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
[normed_space 𝕜' F] [is_scalar_tower 𝕜 𝕜' F] {c : 𝕜 → 𝕜'} {c' : 𝕜'}
theorem has_deriv_within_at.smul
(hc : has_deriv_within_at c c' s x) (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ y, c y • f y) (c x • f' + c' • f x) s x :=
by simpa using (has_fderiv_within_at.smul hc hf).has_deriv_within_at
theorem has_deriv_at.smul
(hc : has_deriv_at c c' x) (hf : has_deriv_at f f' x) :
has_deriv_at (λ y, c y • f y) (c x • f' + c' • f x) x :=
begin
rw [← has_deriv_within_at_univ] at *,
exact hc.smul hf
end
theorem has_strict_deriv_at.smul
(hc : has_strict_deriv_at c c' x) (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ y, c y • f y) (c x • f' + c' • f x) x :=
by simpa using (hc.smul hf).has_strict_deriv_at
lemma deriv_within_smul (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (hf : differentiable_within_at 𝕜 f s x) :
deriv_within (λ y, c y • f y) s x = c x • deriv_within f s x + (deriv_within c s x) • f x :=
(hc.has_deriv_within_at.smul hf.has_deriv_within_at).deriv_within hxs
lemma deriv_smul (hc : differentiable_at 𝕜 c x) (hf : differentiable_at 𝕜 f x) :
deriv (λ y, c y • f y) x = c x • deriv f x + (deriv c x) • f x :=
(hc.has_deriv_at.smul hf.has_deriv_at).deriv
theorem has_strict_deriv_at.smul_const
(hc : has_strict_deriv_at c c' x) (f : F) :
has_strict_deriv_at (λ y, c y • f) (c' • f) x :=
begin
have := hc.smul (has_strict_deriv_at_const x f),
rwa [smul_zero, zero_add] at this,
end
theorem has_deriv_within_at.smul_const
(hc : has_deriv_within_at c c' s x) (f : F) :
has_deriv_within_at (λ y, c y • f) (c' • f) s x :=
begin
have := hc.smul (has_deriv_within_at_const x s f),
rwa [smul_zero, zero_add] at this
end
theorem has_deriv_at.smul_const
(hc : has_deriv_at c c' x) (f : F) :
has_deriv_at (λ y, c y • f) (c' • f) x :=
begin
rw [← has_deriv_within_at_univ] at *,
exact hc.smul_const f
end
lemma deriv_within_smul_const (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (f : F) :
deriv_within (λ y, c y • f) s x = (deriv_within c s x) • f :=
(hc.has_deriv_within_at.smul_const f).deriv_within hxs
lemma deriv_smul_const (hc : differentiable_at 𝕜 c x) (f : F) :
deriv (λ y, c y • f) x = (deriv c x) • f :=
(hc.has_deriv_at.smul_const f).deriv
end smul
section const_smul
variables {R : Type*} [semiring R] [module R F] [smul_comm_class 𝕜 R F]
[has_continuous_const_smul R F]
theorem has_strict_deriv_at.const_smul
(c : R) (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ y, c • f y) (c • f') x :=
by simpa using (hf.const_smul c).has_strict_deriv_at
theorem has_deriv_at_filter.const_smul
(c : R) (hf : has_deriv_at_filter f f' x L) :
has_deriv_at_filter (λ y, c • f y) (c • f') x L :=
by simpa using (hf.const_smul c).has_deriv_at_filter
theorem has_deriv_within_at.const_smul
(c : R) (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ y, c • f y) (c • f') s x :=
hf.const_smul c
theorem has_deriv_at.const_smul (c : R) (hf : has_deriv_at f f' x) :
has_deriv_at (λ y, c • f y) (c • f') x :=
hf.const_smul c
lemma deriv_within_const_smul (hxs : unique_diff_within_at 𝕜 s x)
(c : R) (hf : differentiable_within_at 𝕜 f s x) :
deriv_within (λ y, c • f y) s x = c • deriv_within f s x :=
(hf.has_deriv_within_at.const_smul c).deriv_within hxs
lemma deriv_const_smul (c : R) (hf : differentiable_at 𝕜 f x) :
deriv (λ y, c • f y) x = c • deriv f x :=
(hf.has_deriv_at.const_smul c).deriv
end const_smul
section neg
/-! ### Derivative of the negative of a function -/
theorem has_deriv_at_filter.neg (h : has_deriv_at_filter f f' x L) :
has_deriv_at_filter (λ x, -f x) (-f') x L :=
by simpa using h.neg.has_deriv_at_filter
theorem has_deriv_within_at.neg (h : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, -f x) (-f') s x :=
h.neg
theorem has_deriv_at.neg (h : has_deriv_at f f' x) : has_deriv_at (λ x, -f x) (-f') x :=
h.neg
theorem has_strict_deriv_at.neg (h : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, -f x) (-f') x :=
by simpa using h.neg.has_strict_deriv_at
lemma deriv_within.neg (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λy, -f y) s x = - deriv_within f s x :=
by simp only [deriv_within, fderiv_within_neg hxs, continuous_linear_map.neg_apply]
lemma deriv.neg : deriv (λy, -f y) x = - deriv f x :=
by simp only [deriv, fderiv_neg, continuous_linear_map.neg_apply]
@[simp] lemma deriv.neg' : deriv (λy, -f y) = (λ x, - deriv f x) :=
funext $ λ x, deriv.neg
end neg
section neg2
/-! ### Derivative of the negation function (i.e `has_neg.neg`) -/
variables (s x L)
theorem has_deriv_at_filter_neg : has_deriv_at_filter has_neg.neg (-1) x L :=
has_deriv_at_filter.neg $ has_deriv_at_filter_id _ _
theorem has_deriv_within_at_neg : has_deriv_within_at has_neg.neg (-1) s x :=
has_deriv_at_filter_neg _ _
theorem has_deriv_at_neg : has_deriv_at has_neg.neg (-1) x :=
has_deriv_at_filter_neg _ _
theorem has_deriv_at_neg' : has_deriv_at (λ x, -x) (-1) x :=
has_deriv_at_filter_neg _ _
theorem has_strict_deriv_at_neg : has_strict_deriv_at has_neg.neg (-1) x :=
has_strict_deriv_at.neg $ has_strict_deriv_at_id _
lemma deriv_neg : deriv has_neg.neg x = -1 :=
has_deriv_at.deriv (has_deriv_at_neg x)
@[simp] lemma deriv_neg' : deriv (has_neg.neg : 𝕜 → 𝕜) = λ _, -1 :=
funext deriv_neg
@[simp] lemma deriv_neg'' : deriv (λ x : 𝕜, -x) x = -1 :=
deriv_neg x
lemma deriv_within_neg (hxs : unique_diff_within_at 𝕜 s x) : deriv_within has_neg.neg s x = -1 :=
(has_deriv_within_at_neg x s).deriv_within hxs
lemma differentiable_neg : differentiable 𝕜 (has_neg.neg : 𝕜 → 𝕜) :=
differentiable.neg differentiable_id
lemma differentiable_on_neg : differentiable_on 𝕜 (has_neg.neg : 𝕜 → 𝕜) s :=
differentiable_on.neg differentiable_on_id
end neg2
section sub
/-! ### Derivative of the difference of two functions -/
theorem has_deriv_at_filter.sub
(hf : has_deriv_at_filter f f' x L) (hg : has_deriv_at_filter g g' x L) :
has_deriv_at_filter (λ x, f x - g x) (f' - g') x L :=
by simpa only [sub_eq_add_neg] using hf.add hg.neg
theorem has_deriv_within_at.sub
(hf : has_deriv_within_at f f' s x) (hg : has_deriv_within_at g g' s x) :
has_deriv_within_at (λ x, f x - g x) (f' - g') s x :=
hf.sub hg
theorem has_deriv_at.sub
(hf : has_deriv_at f f' x) (hg : has_deriv_at g g' x) :
has_deriv_at (λ x, f x - g x) (f' - g') x :=
hf.sub hg
theorem has_strict_deriv_at.sub
(hf : has_strict_deriv_at f f' x) (hg : has_strict_deriv_at g g' x) :
has_strict_deriv_at (λ x, f x - g x) (f' - g') x :=
by simpa only [sub_eq_add_neg] using hf.add hg.neg
lemma deriv_within_sub (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
deriv_within (λy, f y - g y) s x = deriv_within f s x - deriv_within g s x :=
(hf.has_deriv_within_at.sub hg.has_deriv_within_at).deriv_within hxs
@[simp] lemma deriv_sub
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
deriv (λ y, f y - g y) x = deriv f x - deriv g x :=
(hf.has_deriv_at.sub hg.has_deriv_at).deriv
theorem has_deriv_at_filter.is_O_sub (h : has_deriv_at_filter f f' x L) :
(λ x', f x' - f x) =O[L] (λ x', x' - x) :=
has_fderiv_at_filter.is_O_sub h
theorem has_deriv_at_filter.is_O_sub_rev (hf : has_deriv_at_filter f f' x L) (hf' : f' ≠ 0) :
(λ x', x' - x) =O[L] (λ x', f x' - f x) :=
suffices antilipschitz_with ‖f'‖₊⁻¹ (smul_right (1 : 𝕜 →L[𝕜] 𝕜) f'), from hf.is_O_sub_rev this,
add_monoid_hom_class.antilipschitz_of_bound (smul_right (1 : 𝕜 →L[𝕜] 𝕜) f') $
λ x, by simp [norm_smul, ← div_eq_inv_mul, mul_div_cancel _ (mt norm_eq_zero.1 hf')]
theorem has_deriv_at_filter.sub_const
(hf : has_deriv_at_filter f f' x L) (c : F) :
has_deriv_at_filter (λ x, f x - c) f' x L :=
by simpa only [sub_eq_add_neg] using hf.add_const (-c)
theorem has_deriv_within_at.sub_const
(hf : has_deriv_within_at f f' s x) (c : F) :
has_deriv_within_at (λ x, f x - c) f' s x :=
hf.sub_const c
theorem has_deriv_at.sub_const
(hf : has_deriv_at f f' x) (c : F) :
has_deriv_at (λ x, f x - c) f' x :=
hf.sub_const c
lemma deriv_within_sub_const (hxs : unique_diff_within_at 𝕜 s x) (c : F) :
deriv_within (λy, f y - c) s x = deriv_within f s x :=
by simp only [deriv_within, fderiv_within_sub_const hxs]
lemma deriv_sub_const (c : F) : deriv (λ y, f y - c) x = deriv f x :=
by simp only [deriv, fderiv_sub_const]
theorem has_deriv_at_filter.const_sub (c : F) (hf : has_deriv_at_filter f f' x L) :
has_deriv_at_filter (λ x, c - f x) (-f') x L :=
by simpa only [sub_eq_add_neg] using hf.neg.const_add c
theorem has_deriv_within_at.const_sub (c : F) (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, c - f x) (-f') s x :=
hf.const_sub c
theorem has_strict_deriv_at.const_sub (c : F) (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, c - f x) (-f') x :=
by simpa only [sub_eq_add_neg] using hf.neg.const_add c
theorem has_deriv_at.const_sub (c : F) (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, c - f x) (-f') x :=
hf.const_sub c
lemma deriv_within_const_sub (hxs : unique_diff_within_at 𝕜 s x) (c : F) :
deriv_within (λy, c - f y) s x = -deriv_within f s x :=
by simp [deriv_within, fderiv_within_const_sub hxs]
lemma deriv_const_sub (c : F) : deriv (λ y, c - f y) x = -deriv f x :=
by simp only [← deriv_within_univ,
deriv_within_const_sub (unique_diff_within_at_univ : unique_diff_within_at 𝕜 _ _)]
end sub
section continuous
/-! ### Continuity of a function admitting a derivative -/
theorem has_deriv_at_filter.tendsto_nhds
(hL : L ≤ 𝓝 x) (h : has_deriv_at_filter f f' x L) :
tendsto f L (𝓝 (f x)) :=
h.tendsto_nhds hL
theorem has_deriv_within_at.continuous_within_at
(h : has_deriv_within_at f f' s x) : continuous_within_at f s x :=
has_deriv_at_filter.tendsto_nhds inf_le_left h
theorem has_deriv_at.continuous_at (h : has_deriv_at f f' x) : continuous_at f x :=
has_deriv_at_filter.tendsto_nhds le_rfl h
protected theorem has_deriv_at.continuous_on {f f' : 𝕜 → F}
(hderiv : ∀ x ∈ s, has_deriv_at f (f' x) x) : continuous_on f s :=
λ x hx, (hderiv x hx).continuous_at.continuous_within_at
end continuous
section cartesian_product
/-! ### Derivative of the cartesian product of two functions -/
variables {G : Type w} [normed_add_comm_group G] [normed_space 𝕜 G]
variables {f₂ : 𝕜 → G} {f₂' : G}
lemma has_deriv_at_filter.prod
(hf₁ : has_deriv_at_filter f₁ f₁' x L) (hf₂ : has_deriv_at_filter f₂ f₂' x L) :
has_deriv_at_filter (λ x, (f₁ x, f₂ x)) (f₁', f₂') x L :=
hf₁.prod hf₂
lemma has_deriv_within_at.prod
(hf₁ : has_deriv_within_at f₁ f₁' s x) (hf₂ : has_deriv_within_at f₂ f₂' s x) :
has_deriv_within_at (λ x, (f₁ x, f₂ x)) (f₁', f₂') s x :=
hf₁.prod hf₂
lemma has_deriv_at.prod (hf₁ : has_deriv_at f₁ f₁' x) (hf₂ : has_deriv_at f₂ f₂' x) :
has_deriv_at (λ x, (f₁ x, f₂ x)) (f₁', f₂') x :=
hf₁.prod hf₂
lemma has_strict_deriv_at.prod (hf₁ : has_strict_deriv_at f₁ f₁' x)
(hf₂ : has_strict_deriv_at f₂ f₂' x) :
has_strict_deriv_at (λ x, (f₁ x, f₂ x)) (f₁', f₂') x :=
hf₁.prod hf₂
end cartesian_product
section composition
/-!
### Derivative of the composition of a vector function and a scalar function
We use `scomp` in lemmas on composition of vector valued and scalar valued functions, and `comp`
in lemmas on composition of scalar valued functions, in analogy for `smul` and `mul` (and also
because the `comp` version with the shorter name will show up much more often in applications).
The formula for the derivative involves `smul` in `scomp` lemmas, which can be reduced to
usual multiplication in `comp` lemmas.
-/
/- For composition lemmas, we put x explicit to help the elaborator, as otherwise Lean tends to
get confused since there are too many possibilities for composition -/
variables {𝕜' : Type*} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
[normed_space 𝕜' F] [is_scalar_tower 𝕜 𝕜' F] {s' t' : set 𝕜'}
{h : 𝕜 → 𝕜'} {h₁ : 𝕜 → 𝕜} {h₂ : 𝕜' → 𝕜'} {h' h₂' : 𝕜'} {h₁' : 𝕜}
{g₁ : 𝕜' → F} {g₁' : F} {L' : filter 𝕜'} (x)
theorem has_deriv_at_filter.scomp
(hg : has_deriv_at_filter g₁ g₁' (h x) L')
(hh : has_deriv_at_filter h h' x L) (hL : tendsto h L L'):
has_deriv_at_filter (g₁ ∘ h) (h' • g₁') x L :=
by simpa using ((hg.restrict_scalars 𝕜).comp x hh hL).has_deriv_at_filter
theorem has_deriv_within_at.scomp_has_deriv_at
(hg : has_deriv_within_at g₁ g₁' s' (h x))
(hh : has_deriv_at h h' x) (hs : ∀ x, h x ∈ s') :
has_deriv_at (g₁ ∘ h) (h' • g₁') x :=
hg.scomp x hh $ tendsto_inf.2 ⟨hh.continuous_at, tendsto_principal.2 $ eventually_of_forall hs⟩
theorem has_deriv_within_at.scomp
(hg : has_deriv_within_at g₁ g₁' t' (h x))
(hh : has_deriv_within_at h h' s x) (hst : maps_to h s t') :
has_deriv_within_at (g₁ ∘ h) (h' • g₁') s x :=
hg.scomp x hh $ hh.continuous_within_at.tendsto_nhds_within hst
/-- The chain rule. -/
theorem has_deriv_at.scomp
(hg : has_deriv_at g₁ g₁' (h x)) (hh : has_deriv_at h h' x) :
has_deriv_at (g₁ ∘ h) (h' • g₁') x :=
hg.scomp x hh hh.continuous_at
theorem has_strict_deriv_at.scomp
(hg : has_strict_deriv_at g₁ g₁' (h x)) (hh : has_strict_deriv_at h h' x) :
has_strict_deriv_at (g₁ ∘ h) (h' • g₁') x :=
by simpa using ((hg.restrict_scalars 𝕜).comp x hh).has_strict_deriv_at
theorem has_deriv_at.scomp_has_deriv_within_at
(hg : has_deriv_at g₁ g₁' (h x)) (hh : has_deriv_within_at h h' s x) :
has_deriv_within_at (g₁ ∘ h) (h' • g₁') s x :=
has_deriv_within_at.scomp x hg.has_deriv_within_at hh (maps_to_univ _ _)
lemma deriv_within.scomp
(hg : differentiable_within_at 𝕜' g₁ t' (h x)) (hh : differentiable_within_at 𝕜 h s x)
(hs : maps_to h s t') (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (g₁ ∘ h) s x = deriv_within h s x • deriv_within g₁ t' (h x) :=
(has_deriv_within_at.scomp x hg.has_deriv_within_at hh.has_deriv_within_at hs).deriv_within hxs
lemma deriv.scomp
(hg : differentiable_at 𝕜' g₁ (h x)) (hh : differentiable_at 𝕜 h x) :
deriv (g₁ ∘ h) x = deriv h x • deriv g₁ (h x) :=
(has_deriv_at.scomp x hg.has_deriv_at hh.has_deriv_at).deriv
/-! ### Derivative of the composition of a scalar and vector functions -/
theorem has_deriv_at_filter.comp_has_fderiv_at_filter {f : E → 𝕜'} {f' : E →L[𝕜] 𝕜'} (x)
{L'' : filter E} (hh₂ : has_deriv_at_filter h₂ h₂' (f x) L')
(hf : has_fderiv_at_filter f f' x L'') (hL : tendsto f L'' L') :
has_fderiv_at_filter (h₂ ∘ f) (h₂' • f') x L'' :=
by { convert (hh₂.restrict_scalars 𝕜).comp x hf hL, ext x, simp [mul_comm] }
theorem has_strict_deriv_at.comp_has_strict_fderiv_at {f : E → 𝕜'} {f' : E →L[𝕜] 𝕜'} (x)
(hh : has_strict_deriv_at h₂ h₂' (f x)) (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (h₂ ∘ f) (h₂' • f') x :=
begin
rw has_strict_deriv_at at hh,
convert (hh.restrict_scalars 𝕜).comp x hf,
ext x,
simp [mul_comm]
end
theorem has_deriv_at.comp_has_fderiv_at {f : E → 𝕜'} {f' : E →L[𝕜] 𝕜'} (x)
(hh : has_deriv_at h₂ h₂' (f x)) (hf : has_fderiv_at f f' x) :
has_fderiv_at (h₂ ∘ f) (h₂' • f') x :=
hh.comp_has_fderiv_at_filter x hf hf.continuous_at
theorem has_deriv_at.comp_has_fderiv_within_at {f : E → 𝕜'} {f' : E →L[𝕜] 𝕜'} {s} (x)
(hh : has_deriv_at h₂ h₂' (f x)) (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (h₂ ∘ f) (h₂' • f') s x :=
hh.comp_has_fderiv_at_filter x hf hf.continuous_within_at
theorem has_deriv_within_at.comp_has_fderiv_within_at {f : E → 𝕜'} {f' : E →L[𝕜] 𝕜'} {s t} (x)
(hh : has_deriv_within_at h₂ h₂' t (f x)) (hf : has_fderiv_within_at f f' s x)
(hst : maps_to f s t) :
has_fderiv_within_at (h₂ ∘ f) (h₂' • f') s x :=
hh.comp_has_fderiv_at_filter x hf $ hf.continuous_within_at.tendsto_nhds_within hst
/-! ### Derivative of the composition of two scalar functions -/
theorem has_deriv_at_filter.comp
(hh₂ : has_deriv_at_filter h₂ h₂' (h x) L')
(hh : has_deriv_at_filter h h' x L) (hL : tendsto h L L') :
has_deriv_at_filter (h₂ ∘ h) (h₂' * h') x L :=
by { rw mul_comm, exact hh₂.scomp x hh hL }
theorem has_deriv_within_at.comp
(hh₂ : has_deriv_within_at h₂ h₂' s' (h x))
(hh : has_deriv_within_at h h' s x) (hst : maps_to h s s') :
has_deriv_within_at (h₂ ∘ h) (h₂' * h') s x :=
by { rw mul_comm, exact hh₂.scomp x hh hst, }
/-- The chain rule. -/
theorem has_deriv_at.comp
(hh₂ : has_deriv_at h₂ h₂' (h x)) (hh : has_deriv_at h h' x) :
has_deriv_at (h₂ ∘ h) (h₂' * h') x :=
hh₂.comp x hh hh.continuous_at
theorem has_strict_deriv_at.comp
(hh₂ : has_strict_deriv_at h₂ h₂' (h x)) (hh : has_strict_deriv_at h h' x) :
has_strict_deriv_at (h₂ ∘ h) (h₂' * h') x :=
by { rw mul_comm, exact hh₂.scomp x hh }
theorem has_deriv_at.comp_has_deriv_within_at
(hh₂ : has_deriv_at h₂ h₂' (h x)) (hh : has_deriv_within_at h h' s x) :
has_deriv_within_at (h₂ ∘ h) (h₂' * h') s x :=
hh₂.has_deriv_within_at.comp x hh (maps_to_univ _ _)
lemma deriv_within.comp
(hh₂ : differentiable_within_at 𝕜' h₂ s' (h x)) (hh : differentiable_within_at 𝕜 h s x)
(hs : maps_to h s s') (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (h₂ ∘ h) s x = deriv_within h₂ s' (h x) * deriv_within h s x :=
(hh₂.has_deriv_within_at.comp x hh.has_deriv_within_at hs).deriv_within hxs
lemma deriv.comp
(hh₂ : differentiable_at 𝕜' h₂ (h x)) (hh : differentiable_at 𝕜 h x) :
deriv (h₂ ∘ h) x = deriv h₂ (h x) * deriv h x :=
(hh₂.has_deriv_at.comp x hh.has_deriv_at).deriv
protected lemma has_deriv_at_filter.iterate {f : 𝕜 → 𝕜} {f' : 𝕜}
(hf : has_deriv_at_filter f f' x L) (hL : tendsto f L L) (hx : f x = x) (n : ℕ) :
has_deriv_at_filter (f^[n]) (f'^n) x L :=
begin
have := hf.iterate hL hx n,
rwa [continuous_linear_map.smul_right_one_pow] at this
end
protected lemma has_deriv_at.iterate {f : 𝕜 → 𝕜} {f' : 𝕜}
(hf : has_deriv_at f f' x) (hx : f x = x) (n : ℕ) :
has_deriv_at (f^[n]) (f'^n) x :=
begin
have := has_fderiv_at.iterate hf hx n,
rwa [continuous_linear_map.smul_right_one_pow] at this
end
protected lemma has_deriv_within_at.iterate {f : 𝕜 → 𝕜} {f' : 𝕜}
(hf : has_deriv_within_at f f' s x) (hx : f x = x) (hs : maps_to f s s) (n : ℕ) :
has_deriv_within_at (f^[n]) (f'^n) s x :=
begin
have := has_fderiv_within_at.iterate hf hx hs n,
rwa [continuous_linear_map.smul_right_one_pow] at this
end
protected lemma has_strict_deriv_at.iterate {f : 𝕜 → 𝕜} {f' : 𝕜}
(hf : has_strict_deriv_at f f' x) (hx : f x = x) (n : ℕ) :
has_strict_deriv_at (f^[n]) (f'^n) x :=
begin
have := hf.iterate hx n,
rwa [continuous_linear_map.smul_right_one_pow] at this
end
end composition
section composition_vector
/-! ### Derivative of the composition of a function between vector spaces and a function on `𝕜` -/
open continuous_linear_map
variables {l : F → E} {l' : F →L[𝕜] E}
variable (x)
/-- The composition `l ∘ f` where `l : F → E` and `f : 𝕜 → F`, has a derivative within a set
equal to the Fréchet derivative of `l` applied to the derivative of `f`. -/
theorem has_fderiv_within_at.comp_has_deriv_within_at {t : set F}
(hl : has_fderiv_within_at l l' t (f x)) (hf : has_deriv_within_at f f' s x)
(hst : maps_to f s t) :
has_deriv_within_at (l ∘ f) (l' f') s x :=
by simpa only [one_apply, one_smul, smul_right_apply, coe_comp', (∘)]
using (hl.comp x hf.has_fderiv_within_at hst).has_deriv_within_at
theorem has_fderiv_at.comp_has_deriv_within_at
(hl : has_fderiv_at l l' (f x)) (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (l ∘ f) (l' f') s x :=
hl.has_fderiv_within_at.comp_has_deriv_within_at x hf (maps_to_univ _ _)
/-- The composition `l ∘ f` where `l : F → E` and `f : 𝕜 → F`, has a derivative equal to the
Fréchet derivative of `l` applied to the derivative of `f`. -/
theorem has_fderiv_at.comp_has_deriv_at (hl : has_fderiv_at l l' (f x)) (hf : has_deriv_at f f' x) :
has_deriv_at (l ∘ f) (l' f') x :=
has_deriv_within_at_univ.mp $ hl.comp_has_deriv_within_at x hf.has_deriv_within_at
theorem has_strict_fderiv_at.comp_has_strict_deriv_at
(hl : has_strict_fderiv_at l l' (f x)) (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (l ∘ f) (l' f') x :=
by simpa only [one_apply, one_smul, smul_right_apply, coe_comp', (∘)]
using (hl.comp x hf.has_strict_fderiv_at).has_strict_deriv_at
lemma fderiv_within.comp_deriv_within {t : set F}
(hl : differentiable_within_at 𝕜 l t (f x)) (hf : differentiable_within_at 𝕜 f s x)
(hs : maps_to f s t) (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (l ∘ f) s x = (fderiv_within 𝕜 l t (f x) : F → E) (deriv_within f s x) :=
(hl.has_fderiv_within_at.comp_has_deriv_within_at x hf.has_deriv_within_at hs).deriv_within hxs
lemma fderiv.comp_deriv
(hl : differentiable_at 𝕜 l (f x)) (hf : differentiable_at 𝕜 f x) :
deriv (l ∘ f) x = (fderiv 𝕜 l (f x) : F → E) (deriv f x) :=
(hl.has_fderiv_at.comp_has_deriv_at x hf.has_deriv_at).deriv
end composition_vector
section mul
/-! ### Derivative of the multiplication of two functions -/
variables {𝕜' 𝔸 : Type*} [normed_field 𝕜'] [normed_ring 𝔸] [normed_algebra 𝕜 𝕜']
[normed_algebra 𝕜 𝔸] {c d : 𝕜 → 𝔸} {c' d' : 𝔸} {u v : 𝕜 → 𝕜'}
theorem has_deriv_within_at.mul
(hc : has_deriv_within_at c c' s x) (hd : has_deriv_within_at d d' s x) :
has_deriv_within_at (λ y, c y * d y) (c' * d x + c x * d') s x :=
begin
have := (has_fderiv_within_at.mul' hc hd).has_deriv_within_at,
rwa [continuous_linear_map.add_apply, continuous_linear_map.smul_apply,
continuous_linear_map.smul_right_apply, continuous_linear_map.smul_right_apply,
continuous_linear_map.smul_right_apply, continuous_linear_map.one_apply,
one_smul, one_smul, add_comm] at this,
end
theorem has_deriv_at.mul (hc : has_deriv_at c c' x) (hd : has_deriv_at d d' x) :
has_deriv_at (λ y, c y * d y) (c' * d x + c x * d') x :=
begin
rw [← has_deriv_within_at_univ] at *,
exact hc.mul hd
end
theorem has_strict_deriv_at.mul
(hc : has_strict_deriv_at c c' x) (hd : has_strict_deriv_at d d' x) :
has_strict_deriv_at (λ y, c y * d y) (c' * d x + c x * d') x :=
begin
have := (has_strict_fderiv_at.mul' hc hd).has_strict_deriv_at,
rwa [continuous_linear_map.add_apply, continuous_linear_map.smul_apply,
continuous_linear_map.smul_right_apply, continuous_linear_map.smul_right_apply,
continuous_linear_map.smul_right_apply, continuous_linear_map.one_apply,
one_smul, one_smul, add_comm] at this,
end
lemma deriv_within_mul (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) :
deriv_within (λ y, c y * d y) s x = deriv_within c s x * d x + c x * deriv_within d s x :=
(hc.has_deriv_within_at.mul hd.has_deriv_within_at).deriv_within hxs
@[simp] lemma deriv_mul (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) :
deriv (λ y, c y * d y) x = deriv c x * d x + c x * deriv d x :=
(hc.has_deriv_at.mul hd.has_deriv_at).deriv
theorem has_deriv_within_at.mul_const (hc : has_deriv_within_at c c' s x) (d : 𝔸) :
has_deriv_within_at (λ y, c y * d) (c' * d) s x :=
begin
convert hc.mul (has_deriv_within_at_const x s d),
rw [mul_zero, add_zero]
end
theorem has_deriv_at.mul_const (hc : has_deriv_at c c' x) (d : 𝔸) :
has_deriv_at (λ y, c y * d) (c' * d) x :=
begin
rw [← has_deriv_within_at_univ] at *,
exact hc.mul_const d
end
theorem has_deriv_at_mul_const (c : 𝕜) : has_deriv_at (λ x, x * c) c x :=
by simpa only [one_mul] using (has_deriv_at_id' x).mul_const c
theorem has_strict_deriv_at.mul_const (hc : has_strict_deriv_at c c' x) (d : 𝔸) :
has_strict_deriv_at (λ y, c y * d) (c' * d) x :=
begin
convert hc.mul (has_strict_deriv_at_const x d),
rw [mul_zero, add_zero]
end
lemma deriv_within_mul_const (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (d : 𝔸) :
deriv_within (λ y, c y * d) s x = deriv_within c s x * d :=
(hc.has_deriv_within_at.mul_const d).deriv_within hxs
lemma deriv_mul_const (hc : differentiable_at 𝕜 c x) (d : 𝔸) :
deriv (λ y, c y * d) x = deriv c x * d :=
(hc.has_deriv_at.mul_const d).deriv
lemma deriv_mul_const_field (v : 𝕜') :
deriv (λ y, u y * v) x = deriv u x * v :=
begin
by_cases hu : differentiable_at 𝕜 u x,
{ exact deriv_mul_const hu v },
{ rw [deriv_zero_of_not_differentiable_at hu, zero_mul],
rcases eq_or_ne v 0 with rfl|hd,
{ simp only [mul_zero, deriv_const] },
{ refine deriv_zero_of_not_differentiable_at (mt (λ H, _) hu),
simpa only [mul_inv_cancel_right₀ hd] using H.mul_const v⁻¹ } }
end
@[simp] lemma deriv_mul_const_field' (v : 𝕜') : deriv (λ x, u x * v) = λ x, deriv u x * v :=
funext $ λ _, deriv_mul_const_field v
theorem has_deriv_within_at.const_mul (c : 𝔸) (hd : has_deriv_within_at d d' s x) :
has_deriv_within_at (λ y, c * d y) (c * d') s x :=
begin
convert (has_deriv_within_at_const x s c).mul hd,
rw [zero_mul, zero_add]
end
theorem has_deriv_at.const_mul (c : 𝔸) (hd : has_deriv_at d d' x) :
has_deriv_at (λ y, c * d y) (c * d') x :=
begin
rw [← has_deriv_within_at_univ] at *,
exact hd.const_mul c
end
theorem has_strict_deriv_at.const_mul (c : 𝔸) (hd : has_strict_deriv_at d d' x) :
has_strict_deriv_at (λ y, c * d y) (c * d') x :=
begin
convert (has_strict_deriv_at_const _ _).mul hd,
rw [zero_mul, zero_add]
end
lemma deriv_within_const_mul (hxs : unique_diff_within_at 𝕜 s x)
(c : 𝔸) (hd : differentiable_within_at 𝕜 d s x) :
deriv_within (λ y, c * d y) s x = c * deriv_within d s x :=
(hd.has_deriv_within_at.const_mul c).deriv_within hxs
lemma deriv_const_mul (c : 𝔸) (hd : differentiable_at 𝕜 d x) :
deriv (λ y, c * d y) x = c * deriv d x :=
(hd.has_deriv_at.const_mul c).deriv
lemma deriv_const_mul_field (u : 𝕜') : deriv (λ y, u * v y) x = u * deriv v x :=
by simp only [mul_comm u, deriv_mul_const_field]
@[simp] lemma deriv_const_mul_field' (u : 𝕜') : deriv (λ x, u * v x) = λ x, u * deriv v x :=
funext (λ x, deriv_const_mul_field u)
end mul
section inverse
/-! ### Derivative of `x ↦ x⁻¹` -/
theorem has_strict_deriv_at_inv (hx : x ≠ 0) : has_strict_deriv_at has_inv.inv (-(x^2)⁻¹) x :=
begin
suffices : (λ p : 𝕜 × 𝕜, (p.1 - p.2) * ((x * x)⁻¹ - (p.1 * p.2)⁻¹)) =o[𝓝 (x, x)]
(λ p, (p.1 - p.2) * 1),
{ refine this.congr' _ (eventually_of_forall $ λ _, mul_one _),
refine eventually.mono (is_open.mem_nhds (is_open_ne.prod is_open_ne) ⟨hx, hx⟩) _,
rintro ⟨y, z⟩ ⟨hy, hz⟩,
simp only [mem_set_of_eq] at hy hz, -- hy : y ≠ 0, hz : z ≠ 0
field_simp [hx, hy, hz], ring, },
refine (is_O_refl (λ p : 𝕜 × 𝕜, p.1 - p.2) _).mul_is_o ((is_o_one_iff _).2 _),
rw [← sub_self (x * x)⁻¹],
exact tendsto_const_nhds.sub ((continuous_mul.tendsto (x, x)).inv₀ $ mul_ne_zero hx hx)
end
theorem has_deriv_at_inv (x_ne_zero : x ≠ 0) :
has_deriv_at (λy, y⁻¹) (-(x^2)⁻¹) x :=
(has_strict_deriv_at_inv x_ne_zero).has_deriv_at
theorem has_deriv_within_at_inv (x_ne_zero : x ≠ 0) (s : set 𝕜) :
has_deriv_within_at (λx, x⁻¹) (-(x^2)⁻¹) s x :=
(has_deriv_at_inv x_ne_zero).has_deriv_within_at
lemma differentiable_at_inv :
differentiable_at 𝕜 (λx, x⁻¹) x ↔ x ≠ 0:=
⟨λ H, normed_field.continuous_at_inv.1 H.continuous_at,
λ H, (has_deriv_at_inv H).differentiable_at⟩
lemma differentiable_within_at_inv (x_ne_zero : x ≠ 0) :
differentiable_within_at 𝕜 (λx, x⁻¹) s x :=
(differentiable_at_inv.2 x_ne_zero).differentiable_within_at
lemma differentiable_on_inv : differentiable_on 𝕜 (λx:𝕜, x⁻¹) {x | x ≠ 0} :=
λx hx, differentiable_within_at_inv hx
lemma deriv_inv : deriv (λx, x⁻¹) x = -(x^2)⁻¹ :=
begin
rcases eq_or_ne x 0 with rfl|hne,
{ simp [deriv_zero_of_not_differentiable_at (mt differentiable_at_inv.1 (not_not.2 rfl))] },
{ exact (has_deriv_at_inv hne).deriv }
end
@[simp] lemma deriv_inv' : deriv (λ x : 𝕜, x⁻¹) = λ x, -(x ^ 2)⁻¹ := funext (λ x, deriv_inv)
lemma deriv_within_inv (x_ne_zero : x ≠ 0) (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λx, x⁻¹) s x = -(x^2)⁻¹ :=
begin
rw differentiable_at.deriv_within (differentiable_at_inv.2 x_ne_zero) hxs,
exact deriv_inv
end
lemma has_fderiv_at_inv (x_ne_zero : x ≠ 0) :
has_fderiv_at (λx, x⁻¹) (smul_right (1 : 𝕜 →L[𝕜] 𝕜) (-(x^2)⁻¹) : 𝕜 →L[𝕜] 𝕜) x :=
has_deriv_at_inv x_ne_zero
lemma has_fderiv_within_at_inv (x_ne_zero : x ≠ 0) :
has_fderiv_within_at (λx, x⁻¹) (smul_right (1 : 𝕜 →L[𝕜] 𝕜) (-(x^2)⁻¹) : 𝕜 →L[𝕜] 𝕜) s x :=
(has_fderiv_at_inv x_ne_zero).has_fderiv_within_at
lemma fderiv_inv :
fderiv 𝕜 (λx, x⁻¹) x = smul_right (1 : 𝕜 →L[𝕜] 𝕜) (-(x^2)⁻¹) :=
by rw [← deriv_fderiv, deriv_inv]
lemma fderiv_within_inv (x_ne_zero : x ≠ 0) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (λx, x⁻¹) s x = smul_right (1 : 𝕜 →L[𝕜] 𝕜) (-(x^2)⁻¹) :=
begin
rw differentiable_at.fderiv_within (differentiable_at_inv.2 x_ne_zero) hxs,
exact fderiv_inv
end
variables {c : 𝕜 → 𝕜} {h : E → 𝕜} {c' : 𝕜} {z : E} {S : set E}
lemma has_deriv_within_at.inv
(hc : has_deriv_within_at c c' s x) (hx : c x ≠ 0) :
has_deriv_within_at (λ y, (c y)⁻¹) (- c' / (c x)^2) s x :=
begin
convert (has_deriv_at_inv hx).comp_has_deriv_within_at x hc,
field_simp
end
lemma has_deriv_at.inv (hc : has_deriv_at c c' x) (hx : c x ≠ 0) :
has_deriv_at (λ y, (c y)⁻¹) (- c' / (c x)^2) x :=
begin
rw ← has_deriv_within_at_univ at *,
exact hc.inv hx
end
lemma differentiable_within_at.inv (hf : differentiable_within_at 𝕜 h S z) (hz : h z ≠ 0) :
differentiable_within_at 𝕜 (λx, (h x)⁻¹) S z :=
(differentiable_at_inv.mpr hz).comp_differentiable_within_at z hf
@[simp] lemma differentiable_at.inv (hf : differentiable_at 𝕜 h z) (hz : h z ≠ 0) :
differentiable_at 𝕜 (λx, (h x)⁻¹) z :=
(differentiable_at_inv.mpr hz).comp z hf
lemma differentiable_on.inv (hf : differentiable_on 𝕜 h S) (hz : ∀ x ∈ S, h x ≠ 0) :
differentiable_on 𝕜 (λx, (h x)⁻¹) S :=
λx h, (hf x h).inv (hz x h)
@[simp] lemma differentiable.inv (hf : differentiable 𝕜 h) (hz : ∀ x, h x ≠ 0) :
differentiable 𝕜 (λx, (h x)⁻¹) :=
λx, (hf x).inv (hz x)
lemma deriv_within_inv' (hc : differentiable_within_at 𝕜 c s x) (hx : c x ≠ 0)
(hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λx, (c x)⁻¹) s x = - (deriv_within c s x) / (c x)^2 :=
(hc.has_deriv_within_at.inv hx).deriv_within hxs
@[simp] lemma deriv_inv'' (hc : differentiable_at 𝕜 c x) (hx : c x ≠ 0) :
deriv (λx, (c x)⁻¹) x = - (deriv c x) / (c x)^2 :=
(hc.has_deriv_at.inv hx).deriv
end inverse
section division
/-! ### Derivative of `x ↦ c x / d x` -/
variables {𝕜' : Type*} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
{c d : 𝕜 → 𝕜'} {c' d' : 𝕜'}
lemma has_deriv_within_at.div
(hc : has_deriv_within_at c c' s x) (hd : has_deriv_within_at d d' s x) (hx : d x ≠ 0) :
has_deriv_within_at (λ y, c y / d y) ((c' * d x - c x * d') / (d x)^2) s x :=
begin
convert hc.mul ((has_deriv_at_inv hx).comp_has_deriv_within_at x hd),
{ simp only [div_eq_mul_inv] },
{ field_simp, ring }
end
lemma has_strict_deriv_at.div (hc : has_strict_deriv_at c c' x) (hd : has_strict_deriv_at d d' x)
(hx : d x ≠ 0) :
has_strict_deriv_at (λ y, c y / d y) ((c' * d x - c x * d') / (d x)^2) x :=
begin
convert hc.mul ((has_strict_deriv_at_inv hx).comp x hd),
{ simp only [div_eq_mul_inv] },
{ field_simp, ring }
end
lemma has_deriv_at.div (hc : has_deriv_at c c' x) (hd : has_deriv_at d d' x) (hx : d x ≠ 0) :
has_deriv_at (λ y, c y / d y) ((c' * d x - c x * d') / (d x)^2) x :=
begin
rw ← has_deriv_within_at_univ at *,
exact hc.div hd hx
end
lemma differentiable_within_at.div
(hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) (hx : d x ≠ 0) :
differentiable_within_at 𝕜 (λx, c x / d x) s x :=
((hc.has_deriv_within_at).div (hd.has_deriv_within_at) hx).differentiable_within_at
@[simp] lemma differentiable_at.div
(hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) (hx : d x ≠ 0) :
differentiable_at 𝕜 (λx, c x / d x) x :=
((hc.has_deriv_at).div (hd.has_deriv_at) hx).differentiable_at
lemma differentiable_on.div
(hc : differentiable_on 𝕜 c s) (hd : differentiable_on 𝕜 d s) (hx : ∀ x ∈ s, d x ≠ 0) :
differentiable_on 𝕜 (λx, c x / d x) s :=
λx h, (hc x h).div (hd x h) (hx x h)
@[simp] lemma differentiable.div
(hc : differentiable 𝕜 c) (hd : differentiable 𝕜 d) (hx : ∀ x, d x ≠ 0) :
differentiable 𝕜 (λx, c x / d x) :=
λx, (hc x).div (hd x) (hx x)
lemma deriv_within_div
(hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) (hx : d x ≠ 0)
(hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λx, c x / d x) s x
= ((deriv_within c s x) * d x - c x * (deriv_within d s x)) / (d x)^2 :=
((hc.has_deriv_within_at).div (hd.has_deriv_within_at) hx).deriv_within hxs
@[simp] lemma deriv_div
(hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) (hx : d x ≠ 0) :
deriv (λx, c x / d x) x = ((deriv c x) * d x - c x * (deriv d x)) / (d x)^2 :=
((hc.has_deriv_at).div (hd.has_deriv_at) hx).deriv
lemma has_deriv_at.div_const (hc : has_deriv_at c c' x) (d : 𝕜') :
has_deriv_at (λ x, c x / d) (c' / d) x :=
by simpa only [div_eq_mul_inv] using hc.mul_const d⁻¹
lemma has_deriv_within_at.div_const (hc : has_deriv_within_at c c' s x) (d : 𝕜') :
has_deriv_within_at (λ x, c x / d) (c' / d) s x :=
by simpa only [div_eq_mul_inv] using hc.mul_const d⁻¹
lemma has_strict_deriv_at.div_const (hc : has_strict_deriv_at c c' x) (d : 𝕜') :
has_strict_deriv_at (λ x, c x / d) (c' / d) x :=
by simpa only [div_eq_mul_inv] using hc.mul_const d⁻¹
lemma differentiable_within_at.div_const (hc : differentiable_within_at 𝕜 c s x) (d : 𝕜') :
differentiable_within_at 𝕜 (λx, c x / d) s x :=
(hc.has_deriv_within_at.div_const _).differentiable_within_at
@[simp] lemma differentiable_at.div_const (hc : differentiable_at 𝕜 c x) (d : 𝕜') :
differentiable_at 𝕜 (λ x, c x / d) x :=
(hc.has_deriv_at.div_const _).differentiable_at
lemma differentiable_on.div_const (hc : differentiable_on 𝕜 c s) (d : 𝕜') :
differentiable_on 𝕜 (λx, c x / d) s :=
λ x hx, (hc x hx).div_const d
@[simp] lemma differentiable.div_const (hc : differentiable 𝕜 c) (d : 𝕜') :
differentiable 𝕜 (λx, c x / d) :=
λ x, (hc x).div_const d
lemma deriv_within_div_const (hc : differentiable_within_at 𝕜 c s x) (d : 𝕜')
(hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λx, c x / d) s x = (deriv_within c s x) / d :=
by simp [div_eq_inv_mul, deriv_within_const_mul, hc, hxs]
@[simp] lemma deriv_div_const (d : 𝕜') :
deriv (λx, c x / d) x = (deriv c x) / d :=
by simp only [div_eq_mul_inv, deriv_mul_const_field]
end division
section clm_comp_apply
/-! ### Derivative of the pointwise composition/application of continuous linear maps -/
open continuous_linear_map
variables {G : Type*} [normed_add_comm_group G] [normed_space 𝕜 G] {c : 𝕜 → F →L[𝕜] G}
{c' : F →L[𝕜] G} {d : 𝕜 → E →L[𝕜] F} {d' : E →L[𝕜] F} {u : 𝕜 → F} {u' : F}
lemma has_strict_deriv_at.clm_comp (hc : has_strict_deriv_at c c' x)
(hd : has_strict_deriv_at d d' x) :
has_strict_deriv_at (λ y, (c y).comp (d y)) (c'.comp (d x) + (c x).comp d') x :=
begin
have := (hc.has_strict_fderiv_at.clm_comp hd.has_strict_fderiv_at).has_strict_deriv_at,
rwa [add_apply, comp_apply, comp_apply, smul_right_apply, smul_right_apply, one_apply, one_smul,
one_smul, add_comm] at this,
end
lemma has_deriv_within_at.clm_comp (hc : has_deriv_within_at c c' s x)
(hd : has_deriv_within_at d d' s x) :
has_deriv_within_at (λ y, (c y).comp (d y)) (c'.comp (d x) + (c x).comp d') s x :=
begin
have := (hc.has_fderiv_within_at.clm_comp hd.has_fderiv_within_at).has_deriv_within_at,
rwa [add_apply, comp_apply, comp_apply, smul_right_apply, smul_right_apply, one_apply, one_smul,
one_smul, add_comm] at this,
end
lemma has_deriv_at.clm_comp (hc : has_deriv_at c c' x) (hd : has_deriv_at d d' x) :
has_deriv_at (λ y, (c y).comp (d y))
(c'.comp (d x) + (c x).comp d') x :=
begin
rw [← has_deriv_within_at_univ] at *,
exact hc.clm_comp hd
end
lemma deriv_within_clm_comp (hc : differentiable_within_at 𝕜 c s x)
(hd : differentiable_within_at 𝕜 d s x) (hxs : unique_diff_within_at 𝕜 s x):
deriv_within (λ y, (c y).comp (d y)) s x =
((deriv_within c s x).comp (d x) + (c x).comp (deriv_within d s x)) :=
(hc.has_deriv_within_at.clm_comp hd.has_deriv_within_at).deriv_within hxs
lemma deriv_clm_comp (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) :
deriv (λ y, (c y).comp (d y)) x =
((deriv c x).comp (d x) + (c x).comp (deriv d x)) :=
(hc.has_deriv_at.clm_comp hd.has_deriv_at).deriv
lemma has_strict_deriv_at.clm_apply (hc : has_strict_deriv_at c c' x)
(hu : has_strict_deriv_at u u' x) :
has_strict_deriv_at (λ y, (c y) (u y)) (c' (u x) + c x u') x :=
begin
have := (hc.has_strict_fderiv_at.clm_apply hu.has_strict_fderiv_at).has_strict_deriv_at,
rwa [add_apply, comp_apply, flip_apply, smul_right_apply, smul_right_apply, one_apply, one_smul,
one_smul, add_comm] at this,
end
lemma has_deriv_within_at.clm_apply (hc : has_deriv_within_at c c' s x)
(hu : has_deriv_within_at u u' s x) :
has_deriv_within_at (λ y, (c y) (u y)) (c' (u x) + c x u') s x :=
begin
have := (hc.has_fderiv_within_at.clm_apply hu.has_fderiv_within_at).has_deriv_within_at,
rwa [add_apply, comp_apply, flip_apply, smul_right_apply, smul_right_apply, one_apply, one_smul,
one_smul, add_comm] at this,
end
lemma has_deriv_at.clm_apply (hc : has_deriv_at c c' x) (hu : has_deriv_at u u' x) :
has_deriv_at (λ y, (c y) (u y)) (c' (u x) + c x u') x :=
begin
have := (hc.has_fderiv_at.clm_apply hu.has_fderiv_at).has_deriv_at,
rwa [add_apply, comp_apply, flip_apply, smul_right_apply, smul_right_apply, one_apply, one_smul,
one_smul, add_comm] at this,
end
lemma deriv_within_clm_apply (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (hu : differentiable_within_at 𝕜 u s x) :
deriv_within (λ y, (c y) (u y)) s x = (deriv_within c s x (u x) + c x (deriv_within u s x)) :=
(hc.has_deriv_within_at.clm_apply hu.has_deriv_within_at).deriv_within hxs
lemma deriv_clm_apply (hc : differentiable_at 𝕜 c x) (hu : differentiable_at 𝕜 u x) :
deriv (λ y, (c y) (u y)) x = (deriv c x (u x) + c x (deriv u x)) :=
(hc.has_deriv_at.clm_apply hu.has_deriv_at).deriv
end clm_comp_apply
theorem has_strict_deriv_at.has_strict_fderiv_at_equiv {f : 𝕜 → 𝕜} {f' x : 𝕜}
(hf : has_strict_deriv_at f f' x) (hf' : f' ≠ 0) :
has_strict_fderiv_at f
(continuous_linear_equiv.units_equiv_aut 𝕜 (units.mk0 f' hf') : 𝕜 →L[𝕜] 𝕜) x :=
hf
theorem has_deriv_at.has_fderiv_at_equiv {f : 𝕜 → 𝕜} {f' x : 𝕜} (hf : has_deriv_at f f' x)
(hf' : f' ≠ 0) :
has_fderiv_at f (continuous_linear_equiv.units_equiv_aut 𝕜 (units.mk0 f' hf') : 𝕜 →L[𝕜] 𝕜) x :=
hf
/-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an
invertible derivative `f'` at `g a` in the strict sense, then `g` has the derivative `f'⁻¹` at `a`
in the strict sense.
This is one of the easy parts of the inverse function theorem: it assumes that we already have an
inverse function. -/
theorem has_strict_deriv_at.of_local_left_inverse {f g : 𝕜 → 𝕜} {f' a : 𝕜}
(hg : continuous_at g a) (hf : has_strict_deriv_at f f' (g a)) (hf' : f' ≠ 0)
(hfg : ∀ᶠ y in 𝓝 a, f (g y) = y) :
has_strict_deriv_at g f'⁻¹ a :=
(hf.has_strict_fderiv_at_equiv hf').of_local_left_inverse hg hfg
/-- If `f` is a local homeomorphism defined on a neighbourhood of `f.symm a`, and `f` has a
nonzero derivative `f'` at `f.symm a` in the strict sense, then `f.symm` has the derivative `f'⁻¹`
at `a` in the strict sense.
This is one of the easy parts of the inverse function theorem: it assumes that we already have
an inverse function. -/
lemma local_homeomorph.has_strict_deriv_at_symm (f : local_homeomorph 𝕜 𝕜) {a f' : 𝕜}
(ha : a ∈ f.target) (hf' : f' ≠ 0) (htff' : has_strict_deriv_at f f' (f.symm a)) :
has_strict_deriv_at f.symm f'⁻¹ a :=
htff'.of_local_left_inverse (f.symm.continuous_at ha) hf' (f.eventually_right_inverse ha)
/-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an
invertible derivative `f'` at `g a`, then `g` has the derivative `f'⁻¹` at `a`.
This is one of the easy parts of the inverse function theorem: it assumes that we already have
an inverse function. -/
theorem has_deriv_at.of_local_left_inverse {f g : 𝕜 → 𝕜} {f' a : 𝕜}
(hg : continuous_at g a) (hf : has_deriv_at f f' (g a)) (hf' : f' ≠ 0)
(hfg : ∀ᶠ y in 𝓝 a, f (g y) = y) :
has_deriv_at g f'⁻¹ a :=
(hf.has_fderiv_at_equiv hf').of_local_left_inverse hg hfg
/-- If `f` is a local homeomorphism defined on a neighbourhood of `f.symm a`, and `f` has an
nonzero derivative `f'` at `f.symm a`, then `f.symm` has the derivative `f'⁻¹` at `a`.
This is one of the easy parts of the inverse function theorem: it assumes that we already have
an inverse function. -/
lemma local_homeomorph.has_deriv_at_symm (f : local_homeomorph 𝕜 𝕜) {a f' : 𝕜}
(ha : a ∈ f.target) (hf' : f' ≠ 0) (htff' : has_deriv_at f f' (f.symm a)) :
has_deriv_at f.symm f'⁻¹ a :=
htff'.of_local_left_inverse (f.symm.continuous_at ha) hf' (f.eventually_right_inverse ha)
lemma has_deriv_at.eventually_ne (h : has_deriv_at f f' x) (hf' : f' ≠ 0) :
∀ᶠ z in 𝓝[≠] x, f z ≠ f x :=
(has_deriv_at_iff_has_fderiv_at.1 h).eventually_ne
⟨‖f'‖⁻¹, λ z, by field_simp [norm_smul, mt norm_eq_zero.1 hf']⟩
lemma has_deriv_at.tendsto_punctured_nhds (h : has_deriv_at f f' x) (hf' : f' ≠ 0) :
tendsto f (𝓝[≠] x) (𝓝[≠] (f x)) :=
tendsto_nhds_within_of_tendsto_nhds_of_eventually_within _
h.continuous_at.continuous_within_at (h.eventually_ne hf')
theorem not_differentiable_within_at_of_local_left_inverse_has_deriv_within_at_zero
{f g : 𝕜 → 𝕜} {a : 𝕜} {s t : set 𝕜} (ha : a ∈ s) (hsu : unique_diff_within_at 𝕜 s a)
(hf : has_deriv_within_at f 0 t (g a)) (hst : maps_to g s t) (hfg : f ∘ g =ᶠ[𝓝[s] a] id) :
¬differentiable_within_at 𝕜 g s a :=
begin
intro hg,
have := (hf.comp a hg.has_deriv_within_at hst).congr_of_eventually_eq_of_mem hfg.symm ha,
simpa using hsu.eq_deriv _ this (has_deriv_within_at_id _ _)
end
theorem not_differentiable_at_of_local_left_inverse_has_deriv_at_zero
{f g : 𝕜 → 𝕜} {a : 𝕜} (hf : has_deriv_at f 0 (g a)) (hfg : f ∘ g =ᶠ[𝓝 a] id) :
¬differentiable_at 𝕜 g a :=
begin
intro hg,
have := (hf.comp a hg.has_deriv_at).congr_of_eventually_eq hfg.symm,
simpa using this.unique (has_deriv_at_id a)
end
end
namespace polynomial
/-! ### Derivative of a polynomial -/
variables {x : 𝕜} {s : set 𝕜}
variable (p : 𝕜[X])
/-- The derivative (in the analysis sense) of a polynomial `p` is given by `p.derivative`. -/
protected lemma has_strict_deriv_at (x : 𝕜) :
has_strict_deriv_at (λx, p.eval x) (p.derivative.eval x) x :=
begin
apply p.induction_on,
{ simp [has_strict_deriv_at_const] },
{ assume p q hp hq,
convert hp.add hq;
simp },
{ assume n a h,
convert h.mul (has_strict_deriv_at_id x),
{ ext y, simp [pow_add, mul_assoc] },
{ simp only [pow_add, pow_one, derivative_mul, derivative_C, zero_mul, derivative_X_pow,
derivative_X, mul_one, zero_add, eval_mul, eval_C, eval_add, eval_nat_cast, eval_pow, eval_X,
id.def], ring } }
end
/-- The derivative (in the analysis sense) of a polynomial `p` is given by `p.derivative`. -/
protected lemma has_deriv_at (x : 𝕜) : has_deriv_at (λx, p.eval x) (p.derivative.eval x) x :=
(p.has_strict_deriv_at x).has_deriv_at
protected theorem has_deriv_within_at (x : 𝕜) (s : set 𝕜) :
has_deriv_within_at (λx, p.eval x) (p.derivative.eval x) s x :=
(p.has_deriv_at x).has_deriv_within_at
protected lemma differentiable_at : differentiable_at 𝕜 (λx, p.eval x) x :=
(p.has_deriv_at x).differentiable_at
protected lemma differentiable_within_at : differentiable_within_at 𝕜 (λx, p.eval x) s x :=
p.differentiable_at.differentiable_within_at
protected lemma differentiable : differentiable 𝕜 (λx, p.eval x) :=
λx, p.differentiable_at
protected lemma differentiable_on : differentiable_on 𝕜 (λx, p.eval x) s :=
p.differentiable.differentiable_on
@[simp] protected lemma deriv : deriv (λx, p.eval x) x = p.derivative.eval x :=
(p.has_deriv_at x).deriv
protected lemma deriv_within (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λx, p.eval x) s x = p.derivative.eval x :=
begin
rw differentiable_at.deriv_within p.differentiable_at hxs,
exact p.deriv
end
protected lemma has_fderiv_at (x : 𝕜) :
has_fderiv_at (λx, p.eval x) (smul_right (1 : 𝕜 →L[𝕜] 𝕜) (p.derivative.eval x)) x :=
p.has_deriv_at x
protected lemma has_fderiv_within_at (x : 𝕜) :
has_fderiv_within_at (λx, p.eval x) (smul_right (1 : 𝕜 →L[𝕜] 𝕜) (p.derivative.eval x)) s x :=
(p.has_fderiv_at x).has_fderiv_within_at
@[simp] protected lemma fderiv :
fderiv 𝕜 (λx, p.eval x) x = smul_right (1 : 𝕜 →L[𝕜] 𝕜) (p.derivative.eval x) :=
(p.has_fderiv_at x).fderiv
protected lemma fderiv_within (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (λx, p.eval x) s x = smul_right (1 : 𝕜 →L[𝕜] 𝕜) (p.derivative.eval x) :=
(p.has_fderiv_within_at x).fderiv_within hxs
end polynomial
section pow
/-! ### Derivative of `x ↦ x^n` for `n : ℕ` -/
variables {x : 𝕜} {s : set 𝕜} {c : 𝕜 → 𝕜} {c' : 𝕜}
variable (n : ℕ)
lemma has_strict_deriv_at_pow (n : ℕ) (x : 𝕜) :
has_strict_deriv_at (λx, x^n) ((n : 𝕜) * x^(n-1)) x :=
begin
convert (polynomial.C (1 : 𝕜) * (polynomial.X)^n).has_strict_deriv_at x,
{ simp },
{ rw [polynomial.derivative_C_mul_X_pow], simp }
end
lemma has_deriv_at_pow (n : ℕ) (x : 𝕜) : has_deriv_at (λx, x^n) ((n : 𝕜) * x^(n-1)) x :=
(has_strict_deriv_at_pow n x).has_deriv_at
theorem has_deriv_within_at_pow (n : ℕ) (x : 𝕜) (s : set 𝕜) :
has_deriv_within_at (λx, x^n) ((n : 𝕜) * x^(n-1)) s x :=
(has_deriv_at_pow n x).has_deriv_within_at
lemma differentiable_at_pow : differentiable_at 𝕜 (λx, x^n) x :=
(has_deriv_at_pow n x).differentiable_at
lemma differentiable_within_at_pow : differentiable_within_at 𝕜 (λx, x^n) s x :=
(differentiable_at_pow n).differentiable_within_at
lemma differentiable_pow : differentiable 𝕜 (λx:𝕜, x^n) :=
λ x, differentiable_at_pow n
lemma differentiable_on_pow : differentiable_on 𝕜 (λx, x^n) s :=
(differentiable_pow n).differentiable_on
lemma deriv_pow : deriv (λ x, x^n) x = (n : 𝕜) * x^(n-1) :=
(has_deriv_at_pow n x).deriv
@[simp] lemma deriv_pow' : deriv (λ x, x^n) = λ x, (n : 𝕜) * x^(n-1) :=
funext $ λ x, deriv_pow n
lemma deriv_within_pow (hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λx, x^n) s x = (n : 𝕜) * x^(n-1) :=
(has_deriv_within_at_pow n x s).deriv_within hxs
lemma has_deriv_within_at.pow (hc : has_deriv_within_at c c' s x) :
has_deriv_within_at (λ y, (c y)^n) ((n : 𝕜) * (c x)^(n-1) * c') s x :=
(has_deriv_at_pow n (c x)).comp_has_deriv_within_at x hc
lemma has_deriv_at.pow (hc : has_deriv_at c c' x) :
has_deriv_at (λ y, (c y)^n) ((n : 𝕜) * (c x)^(n-1) * c') x :=
by { rw ← has_deriv_within_at_univ at *, exact hc.pow n }
lemma deriv_within_pow' (hc : differentiable_within_at 𝕜 c s x)
(hxs : unique_diff_within_at 𝕜 s x) :
deriv_within (λx, (c x)^n) s x = (n : 𝕜) * (c x)^(n-1) * (deriv_within c s x) :=
(hc.has_deriv_within_at.pow n).deriv_within hxs
@[simp] lemma deriv_pow'' (hc : differentiable_at 𝕜 c x) :
deriv (λx, (c x)^n) x = (n : 𝕜) * (c x)^(n-1) * (deriv c x) :=
(hc.has_deriv_at.pow n).deriv
end pow
section zpow
/-! ### Derivative of `x ↦ x^m` for `m : ℤ` -/
variables {E : Type*} [normed_add_comm_group E] [normed_space 𝕜 E] {x : 𝕜} {s : set 𝕜} {m : ℤ}
lemma has_strict_deriv_at_zpow (m : ℤ) (x : 𝕜) (h : x ≠ 0 ∨ 0 ≤ m) :
has_strict_deriv_at (λx, x^m) ((m : 𝕜) * x^(m-1)) x :=
begin
have : ∀ m : ℤ, 0 < m → has_strict_deriv_at (λx, x^m) ((m:𝕜) * x^(m-1)) x,
{ assume m hm,
lift m to ℕ using (le_of_lt hm),
simp only [zpow_coe_nat, int.cast_coe_nat],
convert has_strict_deriv_at_pow _ _ using 2,
rw [← int.coe_nat_one, ← int.coe_nat_sub, zpow_coe_nat],
norm_cast at hm,
exact nat.succ_le_of_lt hm },
rcases lt_trichotomy m 0 with hm|hm|hm,
{ have hx : x ≠ 0, from h.resolve_right hm.not_le,
have := (has_strict_deriv_at_inv _).scomp _ (this (-m) (neg_pos.2 hm));
[skip, exact zpow_ne_zero_of_ne_zero hx _],
simp only [(∘), zpow_neg, one_div, inv_inv, smul_eq_mul] at this,
convert this using 1,
rw [sq, mul_inv, inv_inv, int.cast_neg, neg_mul, neg_mul_neg,
← zpow_add₀ hx, mul_assoc, ← zpow_add₀ hx], congr, abel },
{ simp only [hm, zpow_zero, int.cast_zero, zero_mul, has_strict_deriv_at_const] },
{ exact this m hm }
end
lemma has_deriv_at_zpow (m : ℤ) (x : 𝕜) (h : x ≠ 0 ∨ 0 ≤ m) :
has_deriv_at (λx, x^m) ((m : 𝕜) * x^(m-1)) x :=
(has_strict_deriv_at_zpow m x h).has_deriv_at
theorem has_deriv_within_at_zpow (m : ℤ) (x : 𝕜) (h : x ≠ 0 ∨ 0 ≤ m) (s : set 𝕜) :
has_deriv_within_at (λx, x^m) ((m : 𝕜) * x^(m-1)) s x :=
(has_deriv_at_zpow m x h).has_deriv_within_at
lemma differentiable_at_zpow : differentiable_at 𝕜 (λx, x^m) x ↔ x ≠ 0 ∨ 0 ≤ m :=
⟨λ H, normed_field.continuous_at_zpow.1 H.continuous_at,
λ H, (has_deriv_at_zpow m x H).differentiable_at⟩
lemma differentiable_within_at_zpow (m : ℤ) (x : 𝕜) (h : x ≠ 0 ∨ 0 ≤ m) :
differentiable_within_at 𝕜 (λx, x^m) s x :=
(differentiable_at_zpow.mpr h).differentiable_within_at
lemma differentiable_on_zpow (m : ℤ) (s : set 𝕜) (h : (0 : 𝕜) ∉ s ∨ 0 ≤ m) :
differentiable_on 𝕜 (λx, x^m) s :=
λ x hxs, differentiable_within_at_zpow m x $ h.imp_left $ ne_of_mem_of_not_mem hxs
lemma deriv_zpow (m : ℤ) (x : 𝕜) : deriv (λ x, x ^ m) x = m * x ^ (m - 1) :=
begin
by_cases H : x ≠ 0 ∨ 0 ≤ m,
{ exact (has_deriv_at_zpow m x H).deriv },
{ rw deriv_zero_of_not_differentiable_at (mt differentiable_at_zpow.1 H),
push_neg at H, rcases H with ⟨rfl, hm⟩,
rw [zero_zpow _ ((sub_one_lt _).trans hm).ne, mul_zero] }
end
@[simp] lemma deriv_zpow' (m : ℤ) : deriv (λ x : 𝕜, x ^ m) = λ x, m * x ^ (m - 1) :=
funext $ deriv_zpow m
lemma deriv_within_zpow (hxs : unique_diff_within_at 𝕜 s x) (h : x ≠ 0 ∨ 0 ≤ m) :
deriv_within (λx, x^m) s x = (m : 𝕜) * x^(m-1) :=
(has_deriv_within_at_zpow m x h s).deriv_within hxs
@[simp] lemma iter_deriv_zpow' (m : ℤ) (k : ℕ) :
deriv^[k] (λ x : 𝕜, x ^ m) = λ x, (∏ i in finset.range k, (m - i)) * x ^ (m - k) :=
begin
induction k with k ihk,
{ simp only [one_mul, int.coe_nat_zero, id, sub_zero, finset.prod_range_zero,
function.iterate_zero] },
{ simp only [function.iterate_succ_apply', ihk, deriv_const_mul_field', deriv_zpow',
finset.prod_range_succ, int.coe_nat_succ, ← sub_sub, int.cast_sub, int.cast_coe_nat,
mul_assoc], }
end
lemma iter_deriv_zpow (m : ℤ) (x : 𝕜) (k : ℕ) :
deriv^[k] (λ y, y ^ m) x = (∏ i in finset.range k, (m - i)) * x ^ (m - k) :=
congr_fun (iter_deriv_zpow' m k) x
lemma iter_deriv_pow (n : ℕ) (x : 𝕜) (k : ℕ) :
deriv^[k] (λx:𝕜, x^n) x = (∏ i in finset.range k, (n - i)) * x^(n-k) :=
begin
simp only [← zpow_coe_nat, iter_deriv_zpow, int.cast_coe_nat],
cases le_or_lt k n with hkn hnk,
{ rw int.coe_nat_sub hkn },
{ have : ∏ i in finset.range k, (n - i : 𝕜) = 0,
from finset.prod_eq_zero (finset.mem_range.2 hnk) (sub_self _),
simp only [this, zero_mul] }
end
@[simp] lemma iter_deriv_pow' (n k : ℕ) :
deriv^[k] (λ x : 𝕜, x ^ n) = λ x, (∏ i in finset.range k, (n - i)) * x ^ (n - k) :=
funext $ λ x, iter_deriv_pow n x k
lemma iter_deriv_inv (k : ℕ) (x : 𝕜) :
deriv^[k] has_inv.inv x = (∏ i in finset.range k, (-1 - i)) * x ^ (-1 - k : ℤ) :=
by simpa only [zpow_neg_one, int.cast_neg, int.cast_one] using iter_deriv_zpow (-1) x k
@[simp] lemma iter_deriv_inv' (k : ℕ) :
deriv^[k] has_inv.inv = λ x : 𝕜, (∏ i in finset.range k, (-1 - i)) * x ^ (-1 - k : ℤ) :=
funext (iter_deriv_inv k)
variables {f : E → 𝕜} {t : set E} {a : E}
lemma differentiable_within_at.zpow (hf : differentiable_within_at 𝕜 f t a) (h : f a ≠ 0 ∨ 0 ≤ m) :
differentiable_within_at 𝕜 (λ x, f x ^ m) t a :=
(differentiable_at_zpow.2 h).comp_differentiable_within_at a hf
lemma differentiable_at.zpow (hf : differentiable_at 𝕜 f a) (h : f a ≠ 0 ∨ 0 ≤ m) :
differentiable_at 𝕜 (λ x, f x ^ m) a :=
(differentiable_at_zpow.2 h).comp a hf
lemma differentiable_on.zpow (hf : differentiable_on 𝕜 f t) (h : (∀ x ∈ t, f x ≠ 0) ∨ 0 ≤ m) :
differentiable_on 𝕜 (λ x, f x ^ m) t :=
λ x hx, (hf x hx).zpow $ h.imp_left (λ h, h x hx)
lemma differentiable.zpow (hf : differentiable 𝕜 f) (h : (∀ x, f x ≠ 0) ∨ 0 ≤ m) :
differentiable 𝕜 (λ x, f x ^ m) :=
λ x, (hf x).zpow $ h.imp_left (λ h, h x)
end zpow
/-! ### Support of derivatives -/
section support
open function
variables {F : Type*} [normed_add_comm_group F] [normed_space 𝕜 F] {f : 𝕜 → F}
lemma support_deriv_subset : support (deriv f) ⊆ tsupport f :=
begin
intros x,
rw [← not_imp_not],
intro h2x,
rw [not_mem_tsupport_iff_eventually_eq] at h2x,
exact nmem_support.mpr (h2x.deriv_eq.trans (deriv_const x 0))
end
lemma has_compact_support.deriv (hf : has_compact_support f) : has_compact_support (deriv f) :=
hf.mono' support_deriv_subset
end support
/-! ### Upper estimates on liminf and limsup -/
section real
variables {f : ℝ → ℝ} {f' : ℝ} {s : set ℝ} {x : ℝ} {r : ℝ}
lemma has_deriv_within_at.limsup_slope_le (hf : has_deriv_within_at f f' s x) (hr : f' < r) :
∀ᶠ z in 𝓝[s \ {x}] x, slope f x z < r :=
has_deriv_within_at_iff_tendsto_slope.1 hf (is_open.mem_nhds is_open_Iio hr)
lemma has_deriv_within_at.limsup_slope_le' (hf : has_deriv_within_at f f' s x)
(hs : x ∉ s) (hr : f' < r) :
∀ᶠ z in 𝓝[s] x, slope f x z < r :=
(has_deriv_within_at_iff_tendsto_slope' hs).1 hf (is_open.mem_nhds is_open_Iio hr)
lemma has_deriv_within_at.liminf_right_slope_le
(hf : has_deriv_within_at f f' (Ici x) x) (hr : f' < r) :
∃ᶠ z in 𝓝[>] x, slope f x z < r :=
(hf.Ioi_of_Ici.limsup_slope_le' (lt_irrefl x) hr).frequently
end real
section real_space
open metric
variables {E : Type u} [normed_add_comm_group E] [normed_space ℝ E] {f : ℝ → E} {f' : E} {s : set ℝ}
{x r : ℝ}
/-- If `f` has derivative `f'` within `s` at `x`, then for any `r > ‖f'‖` the ratio
`‖f z - f x‖ / ‖z - x‖` is less than `r` in some neighborhood of `x` within `s`.
In other words, the limit superior of this ratio as `z` tends to `x` along `s`
is less than or equal to `‖f'‖`. -/
lemma has_deriv_within_at.limsup_norm_slope_le
(hf : has_deriv_within_at f f' s x) (hr : ‖f'‖ < r) :
∀ᶠ z in 𝓝[s] x, ‖z - x‖⁻¹ * ‖f z - f x‖ < r :=
begin
have hr₀ : 0 < r, from lt_of_le_of_lt (norm_nonneg f') hr,
have A : ∀ᶠ z in 𝓝[s \ {x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r,
from (has_deriv_within_at_iff_tendsto_slope.1 hf).norm (is_open.mem_nhds is_open_Iio hr),
have B : ∀ᶠ z in 𝓝[{x}] x, ‖(z - x)⁻¹ • (f z - f x)‖ ∈ Iio r,
from mem_of_superset self_mem_nhds_within
(singleton_subset_iff.2 $ by simp [hr₀]),
have C := mem_sup.2 ⟨A, B⟩,
rw [← nhds_within_union, diff_union_self, nhds_within_union, mem_sup] at C,
filter_upwards [C.1],
simp only [norm_smul, mem_Iio, norm_inv],
exact λ _, id
end
/-- If `f` has derivative `f'` within `s` at `x`, then for any `r > ‖f'‖` the ratio
`(‖f z‖ - ‖f x‖) / ‖z - x‖` is less than `r` in some neighborhood of `x` within `s`.
In other words, the limit superior of this ratio as `z` tends to `x` along `s`
is less than or equal to `‖f'‖`.
This lemma is a weaker version of `has_deriv_within_at.limsup_norm_slope_le`
where `‖f z‖ - ‖f x‖` is replaced by `‖f z - f x‖`. -/
lemma has_deriv_within_at.limsup_slope_norm_le
(hf : has_deriv_within_at f f' s x) (hr : ‖f'‖ < r) :
∀ᶠ z in 𝓝[s] x, ‖z - x‖⁻¹ * (‖f z‖ - ‖f x‖) < r :=
begin
apply (hf.limsup_norm_slope_le hr).mono,
assume z hz,
refine lt_of_le_of_lt (mul_le_mul_of_nonneg_left (norm_sub_norm_le _ _) _) hz,
exact inv_nonneg.2 (norm_nonneg _)
end
/-- If `f` has derivative `f'` within `(x, +∞)` at `x`, then for any `r > ‖f'‖` the ratio
`‖f z - f x‖ / ‖z - x‖` is frequently less than `r` as `z → x+0`.
In other words, the limit inferior of this ratio as `z` tends to `x+0`
is less than or equal to `‖f'‖`. See also `has_deriv_within_at.limsup_norm_slope_le`
for a stronger version using limit superior and any set `s`. -/
lemma has_deriv_within_at.liminf_right_norm_slope_le
(hf : has_deriv_within_at f f' (Ici x) x) (hr : ‖f'‖ < r) :
∃ᶠ z in 𝓝[>] x, ‖z - x‖⁻¹ * ‖f z - f x‖ < r :=
(hf.Ioi_of_Ici.limsup_norm_slope_le hr).frequently
/-- If `f` has derivative `f'` within `(x, +∞)` at `x`, then for any `r > ‖f'‖` the ratio
`(‖f z‖ - ‖f x‖) / (z - x)` is frequently less than `r` as `z → x+0`.
In other words, the limit inferior of this ratio as `z` tends to `x+0`
is less than or equal to `‖f'‖`.
See also
* `has_deriv_within_at.limsup_norm_slope_le` for a stronger version using
limit superior and any set `s`;
* `has_deriv_within_at.liminf_right_norm_slope_le` for a stronger version using
`‖f z - f x‖` instead of `‖f z‖ - ‖f x‖`. -/
lemma has_deriv_within_at.liminf_right_slope_norm_le
(hf : has_deriv_within_at f f' (Ici x) x) (hr : ‖f'‖ < r) :
∃ᶠ z in 𝓝[>] x, (z - x)⁻¹ * (‖f z‖ - ‖f x‖) < r :=
begin
have := (hf.Ioi_of_Ici.limsup_slope_norm_le hr).frequently,
refine this.mp (eventually.mono self_mem_nhds_within _),
assume z hxz hz,
rwa [real.norm_eq_abs, abs_of_pos (sub_pos_of_lt hxz)] at hz
end
end real_space
|
[STATEMENT]
theorem "map g (map f xs) = map (f o g) xs"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. map g (map f xs) = map (f \<circ> g) xs
[PROOF STEP]
quickcheck[random, expect = counterexample]
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. map g (map f xs) = map (f \<circ> g) xs
[PROOF STEP]
quickcheck[exhaustive, expect = counterexample]
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. map g (map f xs) = map (f \<circ> g) xs
[PROOF STEP]
oops |
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/platform/basic.h"
#include "mongo/db/storage/remove_saver.h"
#include <boost/filesystem/operations.hpp>
#include <fstream>
#include <ios>
#include "mongo/db/service_context.h"
#include "mongo/db/storage/encryption_hooks.h"
#include "mongo/db/storage/storage_options.h"
#include "mongo/logv2/log.h"
#include "mongo/util/errno_util.h"
#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kStorage
using std::ios_base;
using std::ofstream;
using std::string;
using std::stringstream;
namespace mongo {
RemoveSaver::RemoveSaver(const string& a,
const string& b,
const string& why,
std::unique_ptr<Storage> storage)
: _storage(std::move(storage)) {
static int NUM = 0;
_root = storageGlobalParams.dbpath;
if (a.size())
_root /= a;
if (b.size())
_root /= b;
verify(a.size() || b.size());
_file = _root;
stringstream ss;
ss << why << "." << terseCurrentTimeForFilename() << "." << NUM++ << ".bson";
_file /= ss.str();
auto encryptionHooks = EncryptionHooks::get(getGlobalServiceContext());
if (encryptionHooks->enabled()) {
_protector = encryptionHooks->getDataProtector();
_file += encryptionHooks->getProtectedPathSuffix();
}
}
RemoveSaver::~RemoveSaver() {
if (_protector && _out) {
auto encryptionHooks = EncryptionHooks::get(getGlobalServiceContext());
invariant(encryptionHooks->enabled());
size_t protectedSizeMax = encryptionHooks->additionalBytesForProtectedBuffer();
std::unique_ptr<uint8_t[]> protectedBuffer(new uint8_t[protectedSizeMax]);
size_t resultLen;
Status status = _protector->finalize(protectedBuffer.get(), protectedSizeMax, &resultLen);
if (!status.isOK()) {
LOGV2_FATAL(34350,
"Unable to finalize DataProtector while closing RemoveSaver: {error}",
"Unable to finalize DataProtector while closing RemoveSaver",
"error"_attr = redact(status));
}
_out->write(reinterpret_cast<const char*>(protectedBuffer.get()), resultLen);
if (_out->fail()) {
auto ec = lastSystemError();
LOGV2_FATAL(34351,
"Couldn't write finalized DataProtector data to: {file} for remove "
"saving: {error}",
"Couldn't write finalized DataProtector for remove saving",
"file"_attr = _file.generic_string(),
"error"_attr = redact(errorMessage(ec)));
}
protectedBuffer.reset(new uint8_t[protectedSizeMax]);
status = _protector->finalizeTag(protectedBuffer.get(), protectedSizeMax, &resultLen);
if (!status.isOK()) {
LOGV2_FATAL(
34352,
"Unable to get finalizeTag from DataProtector while closing RemoveSaver: {error}",
"Unable to get finalizeTag from DataProtector while closing RemoveSaver",
"error"_attr = redact(status));
}
if (resultLen != _protector->getNumberOfBytesReservedForTag()) {
LOGV2_FATAL(34353,
"Attempted to write tag of size {sizeBytes} when DataProtector only "
"reserved {reservedBytes} bytes",
"Attempted to write tag of larger size than DataProtector reserved size",
"sizeBytes"_attr = resultLen,
"reservedBytes"_attr = _protector->getNumberOfBytesReservedForTag());
}
_out->seekp(0);
_out->write(reinterpret_cast<const char*>(protectedBuffer.get()), resultLen);
if (_out->fail()) {
auto ec = lastSystemError();
LOGV2_FATAL(34354,
"Couldn't write finalizeTag from DataProtector to: {file} for "
"remove saving: {error}",
"Couldn't write finalizeTag from DataProtector for remove saving",
"file"_attr = _file.generic_string(),
"error"_attr = redact(errorMessage(ec)));
}
_storage->dumpBuffer();
}
}
Status RemoveSaver::goingToDelete(const BSONObj& o) {
if (!_out) {
_out = _storage->makeOstream(_file, _root);
if (_out->fail()) {
auto ec = lastSystemError();
string msg = str::stream() << "couldn't create file: " << _file.string()
<< " for remove saving: " << redact(errorMessage(ec));
LOGV2_ERROR(23734,
"Failed to create file for remove saving",
"file"_attr = _file.generic_string(),
"error"_attr = redact(errorMessage(ec)));
_out.reset();
_out = nullptr;
return Status(ErrorCodes::FileNotOpen, msg);
}
}
const uint8_t* data = reinterpret_cast<const uint8_t*>(o.objdata());
size_t dataSize = o.objsize();
std::unique_ptr<uint8_t[]> protectedBuffer;
if (_protector) {
auto encryptionHooks = EncryptionHooks::get(getGlobalServiceContext());
invariant(encryptionHooks->enabled());
size_t protectedSizeMax = dataSize + encryptionHooks->additionalBytesForProtectedBuffer();
protectedBuffer.reset(new uint8_t[protectedSizeMax]);
size_t resultLen;
Status status = _protector->protect(
data, dataSize, protectedBuffer.get(), protectedSizeMax, &resultLen);
if (!status.isOK()) {
return status;
}
data = protectedBuffer.get();
dataSize = resultLen;
}
_out->write(reinterpret_cast<const char*>(data), dataSize);
if (_out->fail()) {
auto errorStr = redact(errorMessage(lastSystemError()));
string msg = str::stream() << "couldn't write document to file: " << _file.string()
<< " for remove saving: " << errorStr;
LOGV2_ERROR(23735,
"Couldn't write document to file for remove saving",
"file"_attr = _file.generic_string(),
"error"_attr = errorStr);
return Status(ErrorCodes::OperationFailed, msg);
}
return Status::OK();
}
std::unique_ptr<std::ostream> RemoveSaver::Storage::makeOstream(
const boost::filesystem::path& file, const boost::filesystem::path& root) {
// We don't expect to ever pass "" to create_directories below, but catch
// this anyway as per SERVER-26412.
invariant(!root.empty());
boost::filesystem::create_directories(root);
return std::make_unique<std::ofstream>(file.string().c_str(),
std::ios_base::out | std::ios_base::binary);
}
} // namespace mongo
|
theorem le_trans (a b c : mynat) (hab : a ≤ b) (hbc : b ≤ c) : a ≤ c :=
begin
cases hab with s hs,
cases hbc with t ht,
use (s + t),
rwa [ht, hs, add_assoc],
end
|
The derivative of the part of a circle path from $s$ to $t$ is $\iota r (t - s) \exp(\iota \text{ linepath } s t x)$. |
import tactic
import data.int.parity
import data.int.modeq
import data.nat.factorization.basic
import number_theory.legendre_symbol.quadratic_reciprocity
import Mordell.CongruencesMod4
-- this should be PR'ed in Kevin's opinion!
lemma int.modeq_def {a b n : ℤ} : a ≡ b [ZMOD n] ↔ a % n = b % n := iff.rfl
-- as should this
lemma nat.modeq_def {a b n : ℕ} : a ≡ b [MOD n] ↔ a % n = b % n := iff.rfl
lemma int.exists_nat_of_nonneg {z : ℤ} (hz : 0 ≤ z) : ∃ n : ℕ,
(n : ℤ) = z :=
⟨z.nat_abs, int.nat_abs_of_nonneg hz⟩
theorem modeq_add_fac_self {a t n : ℤ} : a + n * t ≡ a [ZMOD n] :=
int.modeq_add_fac _ int.modeq.rfl
theorem modeq_iff_add_fac {a b n : ℤ} : a ≡ b [ZMOD n] ↔ ∃ t, b = a + n * t :=
begin
rw int.modeq_iff_dvd,
exact exists_congr (λ t, sub_eq_iff_eq_add'),
end
lemma prime_factor_congr_3_mod_4 (x a : ℤ) (h : x^2 - a*x + a^2 ≡ 3 [ZMOD 4]) :
∃ (p : ℕ), p.prime ∧ (p : ℤ) ∣ (x^2 - a*x + a^2) ∧ p ≡ 3 [MOD 4] :=
begin
have h2 : 0 ≤ x^2 - a*x + a^2 := by nlinarith,
obtain ⟨n, hn⟩ := int.exists_nat_of_nonneg h2,
rw ← hn at h,
have h3 : n ≡ 3 [MOD 4],
{ rw int.modeq_def at h,
rw nat.modeq_def,
assumption_mod_cast },
obtain ⟨p, hp1, hp2, hp3⟩ := three_modulo_four_prime_factor n h3,
refine ⟨p, hp1, _, hp3⟩,
rwa [← hn, int.coe_nat_dvd],
end
lemma cube_minus_one_no_solns_aux (x y n a : ℤ) (hx : n ≡ 3 [ZMOD 4])
(ha : a ≡ 2 [ZMOD 4]) (hy : n + 1 = a^3): y^2 ≠ x^3 + n :=
begin
intro heq,
have oddx: odd x,
{ apply int.odd_iff_not_even.2,
intro h,
rw even_iff_two_dvd at h,
have h3: 0 < 3:= by norm_num,
rw ← int.pow_dvd_pow_iff h3 at h,
norm_num at h,
rw ← int.modeq_zero_iff_dvd at h,
have h2 := int.modeq.add_right n h,
rw ← heq at h2,
norm_num at h2,
apply int.square_ne_three_mod_four y,
have h6: (4 : ℤ ) ∣ 8:= by norm_num,
have h5:= int.modeq.modeq_of_dvd h6 h2,
unfold int.modeq at h5 ⊢,
rw h5,
rw int.modeq at hx,
exact hx, },
have h2 : y^2+1=(x+a)*(x^2 - a*x + a^2),
{ rw heq,
ring_nf,
rw hy, },
have h6 : x^2 - a*x + a^2 ≡ 3 [ZMOD 4],
{ rcases oddx with ⟨b,rfl⟩,
ring_nf,
symmetry,
rcases modeq_iff_add_fac.1 ha.symm with ⟨t, rfl⟩,
have htemp : (4 * b + (-(2 * (2 + 4 * t)) + 4)) * b + ((2 + 4 * t - 1) *
(2 + 4 * t) + 1) = 3 + 4 * (b^2 - 2*t*b + (4*t^2 + 3*t)),
{ ring },
rw htemp,
exact modeq_add_fac_self.symm, },
obtain ⟨p, hp, hpd, hp4⟩ := prime_factor_congr_3_mod_4 x a h6,
have h9 : ↑p∣y^2 + 1,
{ rw h2,
exact dvd_mul_of_dvd_right hpd (x + a), },
haveI : fact (nat.prime p) := ⟨hp⟩,
set yp : zmod p := y with hyp0,
have hyp : yp^2 = -1,
{ rw ← zmod.int_coe_zmod_eq_zero_iff_dvd at h9,
push_cast at h9,
linear_combination h9, },
apply zmod.mod_four_ne_three_of_sq_eq_neg_one hyp,
rw nat.modeq at hp4,
norm_num at hp4,
assumption,
end
theorem cube_minus_one_no_solns : ¬ ∃ x y t : ℤ, y^2 = x^3 + 64*t^3 + 96*t^2 + 48*t + 7 :=
begin
rintro ⟨x, y, t, h⟩,
apply cube_minus_one_no_solns_aux x y (64*t^3 + 96*t^2 + 48*t + 7) (4*t+2),
{ rw (show 64*t^3 + 96*t^2 + 48*t + 7 = 3 + 4 * (16*t^3 + 24*t^2 + 12*t + 1), by ring),
apply modeq_add_fac_self, },
{ rw add_comm,
apply modeq_add_fac_self, },
{ ring, },
{ linear_combination h, },
end
example : ¬ ∃ x y : ℤ, y^2=x^3-9 :=
begin
rintro ⟨x, y, h⟩,
apply cube_minus_one_no_solns,
use [x,y,-1],
rw h,
ring,
end
|
/**
*
* @file testing_zcungesv.c
*
* PLASMA testing routines
* PLASMA is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 2.6.0
* @author Emmanuel Agullo
* @date 2010-11-15
* @precisions mixed zc -> ds
*
**/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <plasma.h>
#include <cblas.h>
#include <lapacke.h>
#include <core_blas.h>
#include "testing_zmain.h"
static int check_solution(int, int, PLASMA_Complex64_t*, int, PLASMA_Complex64_t*, PLASMA_Complex64_t*, int, double);
int testing_zcungesv(int argc, char **argv)
{
/* Check for number of arguments*/
if (argc != 4){
USAGE("CUNGESV", "N LDA NRHS LDB",
" - N : the size of the matrix\n"
" - LDA : leading dimension of the matrix A\n"
" - NRHS : number of RHS\n"
" - LDB : leading dimension of the RHS B\n");
return -1;
}
int N = atoi(argv[0]);
int LDA = atoi(argv[1]);
int NRHS = atoi(argv[2]);
int LDB = atoi(argv[3]);
int ITER;
double eps;
int info, info_solution;
int i,j;
int LDAxN = LDA*N;
int LDBxNRHS = LDB*NRHS;
PLASMA_Complex64_t *A1 = (PLASMA_Complex64_t *)malloc(LDA*N *sizeof(PLASMA_Complex64_t));
PLASMA_Complex64_t *A2 = (PLASMA_Complex64_t *)malloc(LDA*N *sizeof(PLASMA_Complex64_t));
PLASMA_Complex64_t *B1 = (PLASMA_Complex64_t *)malloc(LDB*NRHS*sizeof(PLASMA_Complex64_t));
PLASMA_Complex64_t *B2 = (PLASMA_Complex64_t *)malloc(LDB*NRHS*sizeof(PLASMA_Complex64_t));
/* Check if unable to allocate memory */
if ( (!A1) || (!A2) || (!B1) || (!B2) ) {
printf("Out of Memory \n ");
exit(0);
}
eps = LAPACKE_dlamch_work('e');
/*----------------------------------------------------------
* TESTING ZCGELS
*/
/* Initialize A1 and A2 */
LAPACKE_zlarnv_work(IONE, ISEED, LDAxN, A1);
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
A2[LDA*j+i] = A1[LDA*j+i] ;
/* Initialize B1 and B2 */
LAPACKE_zlarnv_work(IONE, ISEED, LDBxNRHS, B1);
for (i = 0; i < N; i++)
for (j = 0; j < NRHS; j++)
B2[LDB*j+i] = B1[LDB*j+i] ;
printf("\n");
printf("------ TESTS FOR PLASMA ZCUNGESV ROUTINE ------- \n");
printf(" Size of the Matrix %d by %d\n", N, N);
printf("\n");
printf(" The matrix A is randomly generated for each test.\n");
printf("============\n");
printf(" The relative machine precision (eps) is to be %e \n",eps);
printf(" Computational tests pass if scaled residuals are less than 60.\n");
/* PLASMA ZCUNGESV */
info = PLASMA_zcungesv(PlasmaNoTrans, N, NRHS, A2, LDA, B1, LDB, B2, LDB, &ITER);
if (info != PLASMA_SUCCESS ) {
printf("PLASMA_zcposv is not completed: info = %d\n", info);
info_solution = 1;
} else {
printf(" Solution obtained with %d iterations\n", ITER);
/* Check the orthogonality, factorization and the solution */
info_solution = check_solution(N, NRHS, A1, LDA, B1, B2, LDB, eps);
}
if (info_solution == 0) {
printf("***************************************************\n");
printf(" ---- TESTING ZCUNGESV.................... PASSED !\n");
printf("***************************************************\n");
}
else {
printf("************************************************\n");
printf(" - TESTING ZCUNGESV .. FAILED !\n");
printf("************************************************\n");
}
free(A1); free(A2); free(B1); free(B2);
return 0;
}
/*--------------------------------------------------------------
* Check the solution
*/
static int check_solution(int N, int NRHS, PLASMA_Complex64_t *A1, int LDA, PLASMA_Complex64_t *B1, PLASMA_Complex64_t *B2, int LDB, double eps )
{
int info_solution;
double Rnorm, Anorm, Xnorm, Bnorm, result;
PLASMA_Complex64_t alpha, beta;
double *work = (double *)malloc(N*sizeof(double));
alpha = 1.0;
beta = -1.0;
Anorm = LAPACKE_zlange_work(LAPACK_COL_MAJOR, lapack_const(PlasmaInfNorm), N, N, A1, LDA, work);
Xnorm = LAPACKE_zlange_work(LAPACK_COL_MAJOR, lapack_const(PlasmaInfNorm), N, NRHS, B2, LDB, work);
Bnorm = LAPACKE_zlange_work(LAPACK_COL_MAJOR, lapack_const(PlasmaInfNorm), N, NRHS, B1, LDB, work);
cblas_zgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, N, NRHS, N, CBLAS_SADDR(alpha), A1, LDA, B2, LDB, CBLAS_SADDR(beta), B1, LDB);
Rnorm = LAPACKE_zlange_work(LAPACK_COL_MAJOR, lapack_const(PlasmaInfNorm), N, NRHS, B1, LDB, work);
if (getenv("PLASMA_TESTING_VERBOSE"))
printf( "||A||_oo=%f\n||X||_oo=%f\n||B||_oo=%f\n||A X - B||_oo=%e\n", Anorm, Xnorm, Bnorm, Rnorm );
result = Rnorm / ( (Anorm*Xnorm+Bnorm)*N*eps ) ;
printf("============\n");
printf("Checking the Residual of the solution \n");
printf("-- ||Ax-B||_oo/((||A||_oo||x||_oo+||B||_oo).N.eps) = %e \n", result);
if ( isnan(Xnorm) || isinf(Xnorm) || isnan(result) || isinf(result) || (result > 60.0) ) {
printf("-- The solution is suspicious ! \n");
info_solution = 1;
}
else{
printf("-- The solution is CORRECT ! \n");
info_solution = 0;
}
free(work);
return info_solution;
}
|
PROGRAM findcenter
implicit none
include 'gbvtd_parameter.f'
INTEGER IMAX,JMAX,KMAX,i,j
real SX,SY,SZ,XZ,YZ,ZZ,ox(20),oy(20),Eps,x_len(20),y_len(20)
real dz(nx,ny),ve(nx,ny),hgt,radii,value,ox_inc(20),oy_inc(20)
real mwind(50),mean_wind_new
Integer flag1,flag2,iz1,numgap,gap(5),kc,k,k1,k2,n
integer ring_start,ring_end,It_max,rflag,iii,ii,ring
Integer*2 id(510),ni,n_vol
real vert_x, vert_y, vert_x_mean, vert_y_mean,a,b,ring_width
complex vert_sum,vert_mean,vert_good,ai
real gooddone,sd,mean_std,mean_std_new
real vert_x_mean_new,vert_y_mean_new,vert_std_new,wind,mean_wind
real ox1,oy1,radii_temp,vert_std,xctr(50),yctr(50),zone
integer radi_beg, radi_end, radi_inc,num_x,num_y
integer nargs,iargc
integer*2 field1,field2
logical P_Max
character*80 fname(20),infile,outfile_sum(20),outfile_ind(20)
c
common /gbvtd_p/ flag1,flag2,gap,id,ring_start,ring_end,rflag,
X zone,num_x, num_y
common /CRITR/Eps,It_Max
common /MaxMin/P_Max
common /goodverts/ k1,k2,radi_beg,radi_end
common /std/ sd
imax=nx
jmax=ny
kmax=nz
c
C read parameter file
nargs=iargc()
if(nargs.gt.0) then
call getarg(1,infile)
else
print *, 'Please enter input file name:'
read *, infile
endif
OPEN(12,FILE=infile,STATUS='OLD')
read(12,111)flag1
read(12,111)flag2
read(12,115)field1,field2
read(12,111)K1 !lower z-level
read(12,111)K2 !upper z-level
read(12,111)numgap
do i=1,numgap
read(12,111)gap(i)
enddo
read(12,111)radi_beg
read(12,111)radi_end
read(12,113)zone
read(12,111)rflag !write GBVTD results or not
111 format(i3)
112 format(a20)
read(12,111)P_Max
read(12,113)radii !radius of influence for circle of SIMPLEX
read(12,113)Eps !converging criteria (initial value 0.001)
read(12,111)It_Max !Max number of iterations
read(12,111)n_vol
113 format(f8.2, f8.2)
115 format(a2,/,a2)
call intswap(field1,field1)
call intswap(field2,field2)
do ni=1,n_vol
READ(12,'(a80)')FNAME(ni)
read(12,113)ox(ni),oy(ni)
read(12,113)ox_inc(ni), oy_inc(ni)
read(12,113)x_len(ni),y_len(ni)
read(12,'(a80)') outfile_ind(ni)
read(12,'(a80)') outfile_sum(ni)
OPEN(60,FILE=outfile_ind(ni),STATUS='unknown',FORM='FORMATTED')
OPEN(70,FILE=outfile_sum(ni),STATUS='unknown',FORM='FORMATTED')
OPEN(10,FILE=fname(ni),STATUS='UNKNOWN',FORM='FORMATTED')
c
DO ring=radi_beg, radi_end
ring_start=ring
ring_end=ring
write(70,114) ring_start, zone
write(60,114) ring_start, zone
114 format(i3,'-',f8.2)
c print *, 'Eps=',Eps,' It_Max=',It_Max
DO K=k1,k2
write(1,'("Processing data from level #",i2/)') k
CALL READDATA(DZ,VE,10,K,id,imax,jmax,2,field1,field2)
num_x=id(162)
num_y=id(167)
c altitude
HGT=float(id(170)+(k-1)*id(173))/1000.
write(60,61) HGT
61 format('Height= ', f8.2)
c
c xctr,yctr : position of first guess center location
c in 3-D Doppler arrays use olat,olon
c rad : influence radius for circle that circumscribes the simplex
c typically use 4 km
c data : array of wd/ws values form one level in the 3-D Doppler array
c imax,jmax : data array dimensions
c sx,sy : resolution of the data array
c radi (2) : inner and outer radial limits for computation of TANW
c
write(*,'(" * Finding center on level #",i2/)') k
write(*,'("* Finding center at",f4.1," km")') hgt
vert_x=0.
vert_y=0.
iii=0
ii=0
vert_std=0.
vert_std_new=0.
vert_x_mean=0.
vert_y_mean=0.
vert_x_mean_new=0.
vert_y_mean_new=0.
wind=0.
mean_wind=0.
mean_wind_new=0.
mean_std=0.
mean_std_new=0.
do i=1,int(x_len(ni)/ox_inc(ni))+1
do j=1,int(y_len(ni)/oy_inc(ni))+1
radii_temp=radii !reset radius of influence to initial value
ox1=ox(ni)+(i-1)*ox_inc(ni)
oy1=oy(ni)+(j-1)*oy_inc(ni)
print *, 'processing initial center guess at', ox1,oy1
call SIMCON(ox1,oy1,radii_temp,dz,ve,imax,jmax,sx,sy,
X value,wind)
if (wind .le. 100.) then
iii=iii+1
xctr(iii)=ox1
yctr(iii)=oy1
mwind(iii)=wind
vert_x=vert_x+xctr(iii)
vert_y=vert_y+yctr(iii)
mean_wind=mean_wind+mwind(iii)
endif
enddo
enddo
vert_x_mean=vert_x/float(iii)
vert_y_mean=vert_y/float(iii)
mean_wind=mean_wind/float(iii)
do i=1,iii
vert_std=vert_std+(xctr(i)-vert_x_mean)**2
X +(yctr(i)-vert_y_mean)**2
mean_std=mean_std+(mwind(i)-mean_wind)**2
enddo
vert_std=sqrt(vert_std/float(iii))
mean_std=sqrt(mean_std/float(iii))
do i=1,iii
if(sqrt((xctr(i)-vert_x_mean)**2
X +(yctr(i)-vert_y_mean)**2).lt. vert_std) then
c X .and.abs(mwind(i)-mean_wind).lt.mean_std) then
ii=ii+1
xctr(ii)=xctr(i)
yctr(ii)=yctr(i)
mwind(ii)=mwind(i)
vert_x_mean_new=vert_x_mean_new+xctr(ii)
vert_y_mean_new=vert_y_mean_new+yctr(ii)
mean_wind_new=mean_wind_new+mwind(ii)
endif
enddo
if(ii.gt.0) then
vert_x_mean_new=vert_x_mean_new/float(ii)
vert_y_mean_new=vert_y_mean_new/float(ii)
mean_wind_new=mean_wind_new/float(ii)
do i=1,ii
vert_std_new=vert_std_new+(xctr(i)-vert_x_mean_new)**2
X +(yctr(i)-vert_y_mean_new)**2
mean_std_new=mean_std_new+(mwind(i)-mean_wind_new)**2
enddo
vert_std_new=sqrt(vert_std_new/float(ii))
mean_std_new=sqrt(mean_std_new/float(ii))
else
vert_x_mean_new=-999.
vert_y_mean_new=-999.
mean_wind_new=0.
vert_std_new=99.
mean_std_new=99.
endif
write(60,161) vert_x_mean, vert_y_mean, vert_std,iii,
X vert_x_mean_new, vert_y_mean_new,vert_std_new, ii
161 format(' Mean X:',f8.3, ' Mean Y:', f8.3, ' STD:', f8.3,
X ' #=',i5,/,' Mean X New:', f8.3, ' Mean Y New:', f8.3,
X ' STD_NEW:' ,f8.3, ' #=',i5)
write(60,162) mean_wind,mean_std,mean_wind_new,mean_std_new
162 format('Mean VT:',f8.3,16x,' STD:', f8.3,/,
X 'Mean VT New:', f8.3,20x,' STD_NEW:' ,f8.3)
write(*,161) vert_x_mean_new, vert_y_mean_new, vert_std,iii,
X vert_x_mean_new, vert_y_mean_new,vert_std_new, ii
WRITE (1,'("Finished level:",I2)') k
write(70,163)k,vert_x_mean_new,vert_y_mean_new,vert_std_new,
X ii, iii,mean_wind_new
163 format(2x, i2, 5x, f9.3, 4x, f9.3, 4x, f6.3, 3x,i2,'/',i2
X ,4x,f9.2)
c Add good array to check final centers 03/02/01 MB
c call goodvert(vert_x_mean_new,vert_y_mean_new,
c X dz,ve,ring,k)
ENDDO
ENDDO
c Add new loops to process stddev
c do ring=ring_start,ring_end
c do k=k1,k2
c gooddone=-999.
c call goodvert(gooddone,gooddone,ring,k)
c print *,'good:',vert_good
c enddo
c enddo
close(10)
close(60)
close(70)
enddo
stop
c
c ***********************
C Error Messages:
c
998 print *, 'cannot open ideal input file'
stop
END
subroutine goodvert(vx,vy,dz,ve,ring,k)
implicit none
include 'gbvtd_parameter.f'
real vx,vy,rleg,dz(nx,ny),ve(nx,ny),origsd,percent
real sd,goodsd,xrsd,xlsd,yusd,ydsd,goodwind
complex*8 good,good_xr,good_xl,good_yu,good_yd,best
integer ring,k,k1,k2,radi_beg,radi_end,sdflag,first
integer count
common /goodverts/ k1,k2,radi_beg,radi_end
common /std/ sd
real x_good(radi_beg:radi_end,k1:k2)
real y_good(radi_beg:radi_end,k1:k2)
complex ai
c Add good array to check final centers 03/02/01 MB
if((vx.ne.0.0).or.(vy.ne.0.0)) then
x_good(ring,k)=vx
y_good(ring,k)=vy
sdflag=1
ai=(0,1.0)
best=(-999.,-999.)
first=0
count=0
do while ((best.eq.(-999.,-999.)).and.(count.le.100))
good=x_good(ring,k)+ai*y_good(ring,k)
good_xr=(x_good(ring,k)+.1)+ai*y_good(ring,k)
good_xl=(x_good(ring,k)-.1)+ai*y_good(ring,k)
good_yu=x_good(ring,k)+ai*(y_good(ring,k)+.1)
good_yd=x_good(ring,k)+ai*(y_good(ring,k)-.1)
call gbvtd(good,goodwind,dz,ve,sdflag)
goodsd=sd
if (first.eq.0) then
origsd=goodsd
first=1
endif
call gbvtd(good_xr,rleg,dz,ve,sdflag)
xrsd=sd
call gbvtd(good_xl,rleg,dz,ve,sdflag)
xlsd=sd
call gbvtd(good_yu,rleg,dz,ve,sdflag)
yusd=sd
call gbvtd(good_yd,rleg,dz,ve,sdflag)
ydsd=sd
print *,'good=',goodsd,' r=',xrsd,' l=',xlsd
print *,'u=',yusd,' d=',ydsd
if ((xrsd.lt.goodsd).and.(xrsd.lt.xlsd).and.
X (xrsd.lt.yusd).and.(xrsd.lt.ydsd)) then
x_good(ring,k)=x_good(ring,k)+.1
elseif ((xlsd.lt.goodsd).and.(xlsd.lt.xrsd).and.
X (xlsd.lt.yusd).and.(xlsd.lt.ydsd)) then
x_good(ring,k)=x_good(ring,k)-.1
elseif ((yusd.lt.goodsd).and.(yusd.lt.xrsd).and.
X (yusd.lt.xlsd).and.(yusd.lt.ydsd)) then
y_good(ring,k)=y_good(ring,k)+.1
elseif ((ydsd.lt.goodsd).and.(ydsd.lt.xrsd).and.
X (ydsd.lt.xlsd).and.(ydsd.lt.yusd)) then
y_good(ring,k)=y_good(ring,k)-.1
else
if(((x_good(ring,k)-vx)**2
X +(y_good(ring,k)-vy)**2).lt.1.) then
best=good
print *,'best center= ',best
percent=(origsd-goodsd)/origsd*100
vx = REAL(best)
vy = AIMAG(best)
write(70,164)vx,vy,goodsd,percent,goodwind
else
best=vx+ai*vy
call gbvtd(best,goodwind,dz,ve,sdflag)
percent=0
write(70,164)vx,vy,goodsd,percent,goodwind
endif
endif
count=count+1
enddo
if(count.ge.100) then
best=vx+ai*vy
call gbvtd(best,goodwind,dz,ve,sdflag)
percent=0
write(70,164)vx,vy,goodsd,percent,goodwind
endif
endif
164 format ('Adjusted-',f9.3,4x,f9.3,4x,f6.3,3x,f5.2,'%',3x,f9.2)
end
*****************************************************************
* READDATA
*****************************************************************
subroutine readdata(dz,ve,unit,ik,id,ix,iy,flag,
X field1,field2)
implicit none
include 'gbvtd_parameter.f'
integer ik,i,j,ix,iy,j1,N1,k,n
real special
integer flag,unit,index,indexdz,indexve
real dz(nx,ny),ve(nx,ny),verel(nx,ny)
integer*2 id(510)
integer*2 field1,field2
c data field1,field2 /'MD','EV'/
special=-999.
read(unit,116)id
116 format(10i8)
ix=id(162)
iy=id(167)
do j=1,id(175) !id(175):total number of fields in the ascii file
index=176+(j-1)*5
if(id(index).eq.field1) indexdz=j
if(id(index).eq.field2) indexve=j
enddo
do k=1,ik
read(unit,117)N1
117 format(5x,i2)
if(n1.ne.k) then
print *, 'Height index not match', N1,k
stop
endif
do j=1,iy
read(unit,18)j1
c print *, j1,j
if(j1.ne.j) then
print *, j1,j,' second index does not match'
stop
endif
18 format(7x,i3)
do n=1,id(175)
if(n.eq.indexdz) then
read(unit,19)id(176),id(177),id(178),id(179),
X (dz(i,j),i=1,ix)
c write(*,19)id(176),id(177),id(178),id(179),(dz(i,j),i=1,ix)
elseif(n.eq.indexve) then
read(unit,19)id(181),id(182),id(183),id(184),
X (ve(i,j),i=1,ix)
c write(*,19)id(181),id(182),id(183),id(184),(ve(i,j),i=1,ix)
else
read(unit,19)id(186),id(187),id(188),id(189),
X (verel(i,j),i=1,ix)
endif
enddo
enddo
enddo
19 format(4a2,/,(8E10.3))
return
end
c **********************
subroutine SIMCON (xctr,yctr,rad,dz,ve,imax,jmax,sx,sy,value,
X wind)
real dz(imax,jmax), ve(imax,jmax),radi(2),rad_temp
complex*8 Vert(3),Rvert,Xvert,Cvert,Svert(3)
complex*8 temp,temp1
real LegAr(3),Rleg,Xleg,Cleg,RCoef,XCoef,CCoef,SCoef,wind
logical Done,DOIT !Mod 04SEP86
integer iwrit,i
character*3 CMxn
integer sdflag
data RCoef,XCoef,CCoef,SCoef/-1.0,-2.0,0.5,0.5/, iwrit/1/
c
c xctr,yctr : position of first guess center location
c in 3-D Doppler arrays use olat,olon
c rad : influence radius for circle that circumscribes the simplex
c typically use 4 km
c DZ,VE : array of wd/ws values form one level in the 3-D Doppler array
c imax,jmax : data array dimensions
c sx,sy : resolution of the data array
c radi (2) : inner and outer radial limits for computation of TANW
c
sdflag=0
xctr_ini=xctr
yctr_ini=yctr
call SETUP(xctr,yctr,rad,dz,ve,imax,jmax,sx,sy,radi,
# Vert,LegAr,Done,I_Bst,I_Wst,Kount,CMxn)
c
do while (.NOT. Done)
Kount = Kount + 1
print *, 'Kcount, VERT,LegAr', kount,vert,LegAr
c write (iwrit,10)Kount
call SIZE(Vert,Rvert,RCoef,I_Bst,I_Wst)
c call ALSAND(data,imax,jmax,sx,sy,radi,Rvert,Rleg)
call gbvtd(Rvert,Rleg,dz,ve,sdflag)
print *, 'Rvert,Rleg', rvert,rleg
if (DOIT(Rleg,LegAr(I_Bst))) then !Mod 04SEP86
call SIZE(Vert,Xvert,XCoef,I_Bst,I_Wst)
c call ALSAND(data,imax,jmax,sx,sy,radi,Xvert,Xleg)
call gbvtd(Xvert,Xleg,dz,ve,sdflag)
print *,'Xvert,Xleg',xvert,xleg
if (DOIT(Xleg,LegAr(I_Bst))) then !Mod 04SEP86
call STASH(Vert,LegAr,Xvert,Xleg,I_Wst)
else
call STASH(Vert,LegAr,Rvert,Rleg,I_Wst)
endif
else
if (DOIT(Rleg,LegAr(I_Wst))) then !Mod 04SEP86
call STASH(Vert,LegAr,Rvert,Rleg,I_Wst)
else
call SIZE(Vert,Cvert,CCoef,I_Bst,I_Wst)
c call ALSAND(data,imax,jmax,sx,sy,radi,Cvert,Cleg)
call gbvtd(Cvert,Cleg,dz,ve,sdflag)
print *, 'Cvert,Cleg', cvert,cleg
if(DOIT(Cleg,LegAr(I_Wst)).AND.DOIT(Cleg,Rleg))then !Mod 04SEP86
call STASH(Vert,LegAr,Cvert,Cleg,I_Wst)
else
call SHRINK(Vert,Svert,SCoef,I_Bst,I_Wst)
c call ALSAND(data,imax,jmax,sx,sy,radi,Svert(2),LegAr(2))
call gbvtd(Svert(2),LegAr(2),dz,ve,sdflag)
print *,'Svert(2),LegAr(2)',svert(2),legar(2)
Vert(2) = Svert(2)
c call ALSAND(data,imax,jmax,sx,sy,radi,Svert(I_Wst),
c @ LegAr(I_Wst))
call gbvtd(Svert(I_Wst),LegAr(I_Wst),dz,ve,sdflag)
print *,'Svert(I_Wst),LegAr(I_Wst)',Svert(I_Wst),LegAr(I_Wst)
Vert(I_Wst) = Svert(I_Wst)
endif
endif
endif
call RNKVRT(Vert,LegAr)
call CONTST(Kount,Done,Vert)
c write(iwrit,11)Kount,LegAr(I_Bst),Vert(I_Bst)
value=LegAr(I_bst)
xctr=real(Vert(I_bst))
yctr=aimag(Vert(I_bst))
print *,'xctr,yctr',xctr,yctr
temp1=vert(1)-vert(2)
rad_temp=cabs(temp1)
if(rad_temp.le.rad) rad=rad_temp
temp1=vert(1)-vert(3)
rad_temp=cabs(temp1)
if(rad_temp.le.rad) rad=rad_temp
temp1=vert(2)-vert(3)
rad_temp=cabs(temp1)
if(rad_temp.le.rad) rad=rad_temp
enddo
wind=LegAr(I_Bst)
write(iwrit,10)Kount
write(iwrit,13) CMxn,LegAr(I_Bst),Vert(I_Bst)
write(*,10)Kount
write(*,13) CMxn,LegAr(I_Bst),Vert(I_Bst)
10 format(' - - Iteration #',i4)
c11 format(' Iter:',i4,'; Max. Value: ',g12.5,' at ', 2F10.5)
13 format(' Reporting ',a3,' of ',g12.5,' at ',2f10.5//)
write(60,61) xctr_ini,yctr_ini,Kount,Vert(I_Bst),rad,
X LegAr(I_Bst)
61 format(2f8.2,i5,2f8.3,3x,f8.3,f10.5)
return
end
subroutine SETUP(xctr,yctr,rad,dz,ve,imax,jmax,sx,sy,radi,
# Vert,LegAr,Done,I_Bst,I_Wst,Kount,CMxn)
real dz(imax,jmax), ve(imax,jmax), radi(2)
c common/CRITR/Eps,It_Max
common /MaxMin/P_Max
complex*8 Vert(3),ai
character*3 CMxn
real LegAr(3),xctr,yctr,rad,sqr32
logical Done,P_Max
data sqr32/0.866025/ !squareroot of 3 divided by 2
c
Done = .FALSE.
c P_Max = .TRUE.
c P_Max = .FALSE.
if (P_Max)then
I_Bst = 3
I_Wst = 1
CMxn = 'Max'
else
I_Bst = 1
I_Wst = 3
CMxn = 'Min'
endif
Kount = 0
c
c initial vertices are at the points of an equilateral triangle
c circumscribed in a circle with radius "rad"
c
ai=(0,1.0)
Vert(1) = xctr + ai*(yctr+rad)
Vert(2) = xctr + sqr32*rad + ai*(yctr-.5*rad)
Vert(3) = xctr - sqr32*rad + ai*(yctr-.5*rad)
c Eps = 0.001
c It_Max = 60
do i = 1,3
c call ALSAND(data,imax,jmax,sx,sy,radi,Vert(i),LegAr(i))
call gbvtd(Vert(i),LegAr(i),dz,ve,sdflag)
enddo
call RNKVRT(Vert,LegAr)
return
end
subroutine RNKVRT(Vert,LegAr)
complex*8 Vert(3),Tvert
real LegAr(3),Tleg
do i = 1,3
do j = 1,2
if (LegAr(j) .GT. LegAr(j+1)) then
Tvert = Vert(j)
Tleg = LegAr(j)
Vert(j) = Vert(j+1)
LegAr(j) = LegAr(j+1)
Vert(j+1) = Tvert
LegAr(j+1) = Tleg
endif
enddo
enddo
c do i = 1,3
c write(1,10)i,Vert(i),LegAr(i)
c enddo
c10 format(' RNKVRT: Vertex# ',i2,' Vert = ',2f10.5,' LegAr = 'g12.5)
return
end
subroutine STASH(Vert,LegAr,Nvert,Nleg,I_Wst)
complex*8 Vert(3),Nvert
real LegAr(3),Nleg
c
c write(iwrit,9)Vert(I_Wst),LegAr(I_Wst)
Vert(I_Wst) = Nvert
LegAr(I_Wst) = Nleg
c write(iwrit,10)Vert(I_Wst),LegAr(I_Wst)
c9 format(' STASH: Old Vert(I_Wst) and LegAr(I_Wst) ',2f10.5,g12.5)
c10 format(' STASH: New Vert(I_Wst) and LegAr(I_Wst) ',2f10.5,g12.5)
return
end
subroutine SIZE(Vert,Nvert,Coef,I_Bst,I_Wst)
complex*8 Vert(3),Nvert,Bvert
Bvert = 0.5 * (Vert(I_Bst) + Vert(2))
Nvert = Bvert + Coef*(Vert(I_Wst)-Bvert)
c write(iwrit,10)Coef,Vert(I_Wst),Nvert
c10 format(' SIZE: Coef =',f10.5,' Old =',2f10.5,' New =',2f10.5)
return
end
subroutine SHRINK(Vert,Svert,SCoef,I_Bst,I_Wst)
complex*8 Vert(3),Svert(3)
Svert(2)=Vert(I_Bst)+SCoef*(Vert(2)-Vert(I_Bst))
c write(iwrit,10)2,Vert(2),Svert(2)
Svert(I_Wst)=Vert(I_Bst)+SCoef*(Vert(I_Wst)-Vert(I_Bst))
c write(iwrit,10)I_Wst,Vert(I_Wst),Svert(I_Wst)
c10 format(' SHRINK: Vertex#',i2,' Old =',2f10.5,' New =',2f10.5)
return
end
subroutine CONTST(Kount,Done,Vert)
complex*8 Vert(3)
Logical Done
common/CRITR/Eps,It_Max
SMax = 0.0
do i = 1,3
j = i + 1
if (j .GT. 3) j = j - 3
SS = CABS(Vert(i)-Vert(j))
SMax = amax1(SS,SMax)
c write(iwrit,10)i,j,SS
enddo
Done = (SMax .LT. Eps).OR.(Kount.GE.It_Max)
c10 format('CONTST: Side between ',i2,' and ',i2,' has length ',F10.5)
return
end
logical function DOIT(ALn,ALo)
common /MaxMin/P_Max
logical P_Max
if(P_Max) then
DOIT = ALn .GT. ALo
else
DOIT = ALn .LT. ALo
endif
return
end
********************************************************************
* Subroutine GBVTD
********************************************************************
subroutine gbvtd(Vert,Rleg,dz,vd,sdflag)
C ****** OBJECT:TO GET THE VORTEX STRUCTURE USING VDAD METHOD ******
C ****** NAME: VD.f ******
C ****** COMPLETED DATE: 1995/11/1 ******
C ****** AUTHOR:CHANG BAU_LUNG, WEN-CHAU LEE
C ****** All angles (theta and si) are in GBVTD coordinate,
C ****** i.e., not in math coordiate. 0 deg is TA see lee et al. (1997)
C ****** So, when plotting the results, you need to rotate the
C ****** coordinate systems by theta_t (atan2(yc,xc)).
C ****** VD is the Doppler velocity
C ****** VA is VT plus the component of VM
implicit none
INCLUDE 'gbvtd_parameter.f'
integer K,nn,i,numcoeff,n
real pi,xc,yc,dummy,vrcoef,vm,s,theta_t,rad_lat,rad_long
REAL THETAZ(thetamax),d
REAL DZ(nx,ny),DDZ(thetamax),XDD(thetamax),A(maxrays)
real x(thetamax),sd
real YDD(thetamax),THETAV(maxrays),dddz(rmax,thetamax)
real xdddz(thetamax), ydddz(thetamax),VT(rmax,thetamax)
REAL XS(maxcoeffs,maxrays),YS(maxrays),WEIGHT(maxrays)
real CC(maxcoeffs),STAND_ERR(maxcoeffs),theta,dist
REAL TH(maxrays),AZ(maxrays),VTCOEF(maxcoeffs),xdist,ydist
real VD(nx,ny),DVD(maxrays),DDVD(rmax,thetamax),dvd1(thetamax)
real temp,ddz1(thetamax)
real ampvt1,angle,zone
real phasevt1,dtor,ampvt2,phasevt2,ampvt3,phasevt3,vorticity
real ampvr1,phasevr1,ampvr2,phasevr2,ampvr3,phasevr3
real meanflow,radi(2),vrmean,xctemp,yctemp
real meanangle,r_t,ar,rleg
character inputfile*80,outfiledz,outfileve
real vt0max,vt1max,vr0max
INTEGER NDATA,gap(5),flag1,j,flag2,rflag,num_ray
integer iori,jori,ring_start, ring_end,iii,num_x,num_y
integer sdflag
integer*2 id(510),sf,af,id1(510)
complex*8 Vert
LOGICAL FLAG,P_Max
data rad_lat, rad_long /25.0694,121.2083/
data sf, af /100,64/
common /ideal/vorticity,ar,meanflow,meanangle,phasevt1,ampvt1,
X phasevt2,ampvt2,phasevt3,ampvt3,phasevr1,ampvr1,
X phasevr2,ampvr2,phasevr3,ampvr3
common /gbvtd_p/ flag1,flag2,gap,id,ring_start,ring_end,rflag,
X zone,num_x,num_y
common /MaxMin/ P_Max
common /std/ sd
c CALL OPNGKS
print *, maxrays
PI=ACOS(-1.)
DUMMY=-999.
dtor=pi/180.
vt0max=.0
vt1max=.0
vr0max=.0
c CALL READDATA(DZ,VD,10,N,id,nx,ny,2)
iori=id(309)/sf
jori=id(310)/sf
iii=0
if(flag2.eq.2 .and. (flag1.eq.3 .or. flag1.eq.4)) then
c print *, 'please enter ideal input filename:'
c read *, inputfile
inputfile='/scr/science9/wlee/gbvtd/ideal/rankine.sym.inp'
OPEN(1200,file=inputfile,status='old',form='formatted',
+ err=998)
READ(1200,'(A80/A80/f7.2,1x,f7.2)') outfiledz,outfileve,
+ xctemp,yctemp
read(1200,'(f8.1,/,f5.1)') vorticity,ar
read(1200,'(f8.1,/,f8.1)')meanflow,meanangle
read(1200,'(f8.1,/,f8.1)')phasevt1,ampvt1
read(1200,'(f8.1,/,f8.1)')phasevt2,ampvt2
read(1200,'(f8.1,/,f8.1)')phasevt3,ampvt3
read(1200,'(f8.1)')vrmean
read(1200,'(f8.1,/,f8.1)')phasevr1,ampvr1
read(1200,'(f8.1,/,f8.1)')phasevr2,ampvr2
read(1200,'(f8.1,/,f8.1)')phasevr3,ampvr3
close(1200)
c print *,xctemp,yctemp,vorticity,ar
endif
OPEN(13,file='result_coeff',status='unknown',
+ form='formatted')
xc = REAL(Vert)
yc = AIMAG(Vert)
if(rflag.eq.1) then
print *, 'Process GBVTD on center:', Vert
endif
cc do k=1,ring_end
cc do j=1,thetamax
cc dddz(k,j)=dummy
cc ddvd(k,j)=dummy
cc vt(k,j)=dummy
cc enddo
cc enddo
C radius of GBVTD rings from ring_start to ring_end km every 1 km
do K=ring_start,ring_end
C ****** GRID POINT ******
C ****** Calculate grid point location for VDAD or GBVTD
C ****** the grid point is in corresponding si coordinate for GBVTD
C ****** theta is angle array (si for GBVTD and theta for VDAD)
cc CALL GRID(XC,YC,XDD,YDD,FLOAT(K),THETAV,theta_t,flag1,
cc X thetamax)
cc call grid(xc,yc,xdddz,ydddz,float(k),thetaZ,theta_t,1,
cc X thetamax)
C ****** GET GRID POINT DATA FROM Doppler Velocity Field ******
cc CALL INTE(DZ,DUMMY,XDDdz,YDDdz,thetamax,DDZ,2.0,0.5,
cc X iori,jori,id(162),id(167))
cc CALL INTE(VD,DUMMY,XDD,YDD,thetamax,DVD,2.0,0.5,iori,
cc X jori,id(162),id(167))
cc if(flag1.eq.1 .or. flag1.eq.3) then !vdad
cc r_t=sqrt(xc*xc+yc*yc)
ccc print *, 'int'
cc do i=1,thetamax
ccc print *, dvd(i),xdd(i),ydd(i),iori,jori,d,r_t
cc d=sqrt((xdd(i))**2.+(ydd(i))**2.)
cc dvd(i) = dvd(i)*d/r_t
cc enddo
cc endif
cc if(flag2.eq.2) then
cc if(flag1.eq.3 .or. flag1.eq.4) then !use analytic wind
ccc call analytic(VD,dummy,xdd,ydd,thetamax,dvd1,2.0,0.5,
ccc X iori,jori,xc,yc,k,ddz1,flag1)
cc call analytic(VD,dummy,xdd,ydd,thetamax,dvd1,2.0,0.5,
cc X iori,jori,xctemp,yctemp,k,ddz1,flag1)
cc do i=1,thetamax
c c DVD(i)=dvd1(i)
cc DDZ(i)=DDZ1(i)
cc enddo
cc endif
cc endif
num_ray=0
do i=1,num_x
do j=1,num_y
xdist=i-(xc+iori)
ydist=j-(yc+jori)
dist=sqrt(xdist**2+ydist**2)
if(dist.ge.(k-zone).and.dist.le.(k+zone))then
angle=atan2(ydist, xdist)
call fixangle(angle)
c angle=amod((2.5*pi-angle),2.*pi)-theta_t
angle=angle-theta_t
call fixangle(angle)
if(flag1.eq.2 .or. flag1.eq.4) then !gbvtd
call theta2si(k,angle,xc,yc,theta,theta_t)
c print *, i,j,angle/dtor,theta_t/dtor,theta/dtor,
c X vd(i,j)
else
theta=angle
endif
num_ray=num_ray+1
thetav(num_ray)=theta
DVD(num_ray)=VD(i,j)
c print *, i,j,k,num_ray,angle/dtor,
c X thetav(num_ray)/dtor,dvd(num_ray), dist
endif
enddo
enddo
call goodcirc(thetaV,DVD,num_ray,GAP,FLAG,numcoeff)
c Modified 1/11/01 to test result of flag
if (flag) then
C GET GOOD DATA NUMBER
C DVD is the original array, TH is the cleaned up angle array
CALL GOODDATA(DVD,THETAV,AZ,TH,NN,num_ray,dummy)
C ****** LEASTSQURRE CURVE FIT AND FIND COE. OF FOURIER sqrt.o ******
CALL CALCULATE_XY(NN,numcoeff,TH,AZ,XS,YS,NDATA,WEIGHT)
CALL LLS(numcoeff,NDATA,NDATA,XS,YS,WEIGHT,S,STAND_ERR,
X CC,FLAG)
CALL FINAL1(CC,VTCOEF,VRCOEF,VM,XC,YC,K,numcoeff,flag1,rflag)
C Added std_dev call to test final center, 03/02/01 MB
C X is the theta array converted from si (has NN point in deg)
if (sdflag.eq.1) then
call std_dvi(A,CC,X,AZ,TH,numcoeff,sd,xc,yc,
X flag1,k,theta_t,dummy)
endif
else
xc=-999.0
yc=-999.0
do n=1,8
vtcoef(n)=0.0
enddo
vrcoef=0.0
VM=0.0
endif
c-- modified 9/30/98 to use P_Max to determine the minimization/maximization
C-- criteria. if P_Max is .true., then, Rleg is the mean tangential wind.
C-- If P_Max is .false., then, Rleg is the amplitude of the wavenumber 1.
write(13, 1202) xc,yc,(vtcoef(n),n=1,8),vrcoef,VM
1202 format(3f8.3, 9f6.1)
c if(P_Max.eq. .true.) then !maximize mean tangential wind
c if(vtcoef(1).gt.0.) then
c vt0max=vt0max+vtcoef(1)
c iii=iii+1
cc print *,k,vtcoef(1),ddz(1)
c endif
c elseif(P_Max.eq. .false.) then !minimize wavenumber 1 amplitude
c temp=sqrt(vtcoef(3)*vtcoef(3)+vtcoef(4)*vtcoef(4))
c if(temp.gt.0.0001) then
c vt1max=vt1max+temp
c iii=iii+1
c endif
c endif
ENDDO
c if(iii.gt.0) then
if(P_Max.eqv. .true.) then
Rleg=vtcoef(1)
else
Rleg=sqrt(vtcoef(3)*vtcoef(3)+vtcoef(4)*vtcoef(4))
endif
c else
c Rleg=0.
c endif
999 CONTINUE
rewind(10)
return
998 print *, 'cannot open ideal input file'
END
************************************************************************
* OPENFILE
************************************************************************
Subroutine openfile(l,numloc,kc,prefix)
integer l, numloc,kc,iz,lnblnk
CHARACTER FNAME*80,STR*2,XFNAME*30
character prefix*20
if(iz.lt.10) then
str='0'
write(str,'(i1)')IZ
else
write(str,'(i2)')IZ
endif
xfname=prefix(:len_trim(prefix))//'f'//STR
if(L.lt.10) then
str='0'
write(str,'(i1)')L
else
write(str,'(i2)')L
endif
xfname=xfname(:len_trim(xfname))//'c'
xfname=xfname(:len_trim(xfname))//STR
OPEN(15,FILE=xfname,STATUS='UNKNOWN',FORM='FORMATTED')
if(iz.lt.10) then
str='0'
write(str,'(i1)')IZ
else
write(str,'(i2)')IZ
endif
xfname=prefix(:len_trim(prefix))//'f'//STR
if(L.lt.10) then
str='0'
write(str,'(i1)')L
else
write(str,'(i2)')L
endif
xfname=xfname(:len_trim(xfname))//'z'
xfname=xfname(:len_trim(xfname))//STR
OPEN(16,FILE=xfname,STATUS='UNKNOWN',FORM='FORMATTED')
if(iz.lt.10) then
str='0'
write(str,'(i1)')IZ
else
write(str,'(i2)')IZ
endif
xfname=prefix(:len_trim(prefix))//'f'//STR
if(L.lt.10) then
str='0'
write(str,'(i1)')L
else
write(str,'(i2)')L
endif
xfname=prefix(:len_trim(prefix))//STR
xfname=xfname(:len_trim(xfname))//'.out'
OPEN(14,FILE=xfname,STATUS='UNKNOWN',FORM='FORMATTED')
xfname=xfname(:len_trim(xfname)-3)//'point1'
open(171,file=xfname,status='unknown',form='formatted')
xfname=xfname(:len_trim(xfname)-1)//'2'
open(172,file=xfname,status='unknown',form='formatted')
xfname=xfname(:len_trim(xfname)-1)//'3'
open(173,file=xfname,status='unknown',form='formatted')
return
end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C Calculate Typhoon center lat and long based on the radar lat and
C long and the relative coordinate XC and YC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
subroutine latlong(rad_lat,rad_long,xc,yc,ori_lat,ori_long)
implicit none
real rad, rad_lat, rad_long, ori_lat, ori_long, xc, yc
real pi, rad_laty, rad_longx,radr
RAD=6371.25
PI=ACOS(-1.)
C Lat and Long of the CAA radar
RAD_LAT=25.0694
RAD_LONG=121.2083
rad_laty=yc/rad*180./pi !calculate delta lat from the center y coord.
radr=rad*cos((rad_lat+rad_laty)*pi/180.) !calculate radius at the typhoon
C !latitude
rad_longx=xc/radr*180./pi !calculate delta long from the center x coord.
ori_lat=rad_lat+rad_laty !typhoon lat.
ori_long=rad_long+rad_longx !typhoon long.
return
end
*************************************************************
* DATA
*************************************************************
subroutine data(dddz,thetamax)
implicit none
integer kk,nn1,nn2,index,i,k,thetamax
real dddz(thetamax)
nn1=0
nn2=0
do kk=1,thetamax
if (int(dddz(kk)).ne.99) then
nn1=kk
goto 12
endif
enddo
12 do kk=thetamax,1,-1
if (int(dddz(kk)).ne.99) then
INDEX=1
nn2=kk
goto 13
endif
enddo
13 if (nn1.eq.0)then
INDEX=0
dddz(i)=0.
goto 30
endif
do i=nn1+1,nn2-1
if (int(dddz(i)).eq.99) then
do k=i+1,nn2
if (int(dddz(k)).ne.99) then
dddz(i)=dddz(i-1)+(dddz(k)-dddz(i-1))/(k-i+1)
goto 10
endif
enddo
endif
10 enddo
30 return
end
**************************************************************
* INTE
***************************************************************
SUBROUTINE INTE(dz,dummy,xd,yd,nx,gdz,rang,gama,iori,jori,
X xmax,ymax)
implicit none
real rang, gama,dummy,pi,wt,det0,diff,totdiff
integer nx, idummy, ik1, ik2, ij1, ij2, i
integer iori,jori
real dz(241,241),xd(nx),yd(nx)
real gdz(nx),temp1,temp2,ave1,ave2,ave3
integer*2 xmax,ymax
C real tme(nx)
PI=ACOS(-1.)
idummy=dummy
wt=-4.*gama/(rang*rang)
DET0=PI/210.
do 100 i=1,nx
ik1=int(xd(i))+iori
ik2=int(xd(i))+1+iori
ij1=int(yd(i))+jori
ij2=int(yd(i))+1+jori
if (ik1.lt.1)goto 99
if (ij1.lt.1)goto 99
if (ik2.gt.xmax)goto 99
if (ij2.gt.ymax)goto 99
C-----------------------------------------------------
C Commented by wcl 8/9/97 because closest point interpolation
C produced a bias on the pattern which is not tolerant by GBVTD analysis
C So, change it to bi-linear interpolation.
C--------------------------------------------------------------
c if ((dz(ik1,ij1)-dummy).gt.0.0001) then
c gdz(i)=dz(ik1,ij1)
c else
c gdz(i)=dummy
c endif
temp1=dz(ik1,ij1)
temp2=dz(ik1,ij2)
totdiff=float(ij2-ij1)
diff=yd(i)-int(yd(i))
call ave(temp1,temp2,diff,totdiff,ave1,dummy)
temp1=dz(ik2,ij1)
temp2=dz(ik2,ij2)
call ave(temp1,temp2,diff,totdiff,ave2,dummy)
totdiff=float(ik2-ik1)
diff=xd(i)-int(xd(i))
call ave(ave1,ave2,diff,totdiff,ave3,dummy)
gdz(i)=ave3
c print *,i,ave1,ave2,ave3,gdz(i)
goto 100
99 gdz(i)=dummy
100 continue
return
end
********************************************************************
*ANALYTIC
********************************************************************
subroutine analytic(dz,dummy,xd,yd,nx,gdz,rang,gama,iori,jori,
X xc,yc,k,ddz,flag)
implicit none
real rang, gama,dummy,pi
integer nx, i
integer iori,jori,k,flag
real dz(241,241),xd(nx),yd(nx),rt,xg,yg,theta
real gdz(nx),radius,ddz(nx),xc,yc,asymvt,ampvt1
real phasevt1,dtor,ampvt2,phasevt2,ampvt3,phasevt3,a,vorticity
real ampvr1,phasevr1,ampvr2,phasevr2,ampvr3,phasevr3
real rad_v,vrmean,u,meanu,v,special,rg,meanflow
real meanangle,meanv,r_t,vta,angle,theta_t,asymvr
character outfiledz*80,outfileve*80,inputfile*80
common /ideal/vorticity,a,meanflow,meanangle,phasevt1,ampvt1,
X phasevt2,ampvt2,phasevt3,ampvt3,phasevr1,ampvr1,
X phasevr2,ampvr2,phasevr3,ampvr3
PI=ACOS(-1.)
dtor=pi/180.
rt=sqrt(xc*xc+yc*yc)
theta_t=atan2(yc,xc)/dtor
c print *, theta_t
meanu=meanflow*sin(meanangle*dtor-pi)
meanv=meanflow*cos(meanangle*dtor-pi)
c print *, 'ana'
do i=1,nx
xg=(xd(i))
yg=(yd(i))
angle=360./float(nx)*float(i-1)*dtor
if(flag.eq.2 .or. flag.eq.4) then
call si2theta(k,angle,xc,yc,angle,theta_t)
endif
theta=amod((angle/dtor+theta_t),360.)*dtor
radius=float(k)
asymvt=ampvt1*cos(theta-(phasevt1*dtor))
X +ampvt2*cos(2*(theta-(phasevt2*dtor)))
X +ampvt3*cos(3*(theta-(phasevt3*dtor)))
c print *, i,j, theta/dtor, asym,phase1,phase2,phase3
asymvr=ampvr1*cos(theta-(phasevr1*dtor))
X +ampvr2*cos(2*(theta-(phasevr2*dtor)))
X +ampvr3*cos(3*(theta-(phasevr3*dtor)))
if(radius.le.a) then !solid rotation
VTa=0.5*vorticity*radius*(1.+asymvt)
c rad_v=0.5*radius
rad_v=-vrmean*(1.+asymvr)
else
VTa=0.5*vorticity*a*a/radius*(1.+asymvt)
c rad_v=-0.5*a*a/radius
rad_v=vrmean*(1.+asymvr)
endif
if(radius.ge. 2.) then
u=meanu-vta*sin(theta)+rad_v*cos(theta)
v=meanv+vta*cos(theta)+rad_v*sin(theta)
rg=sqrt(xg*xg+yg*yg)
if(rg.ge.0.01) then
gdz(i)=(u*xg+v*yg)/rg
else
gdz(i)=dummy
endif
else
gdz(i)=dummy
endif
ddz(i)=sqrt(u*u+v*v)
IF (abs(gdz(i)-dummy).gt.0.001) then
c print *, angle/dtor,theta/dtor,vta,u,v,gdz(i)
c print *, gdz(i), xd(i),yd(i),iori,jori,rg,rt
if(flag.eq.1 .or. flag.eq.3) then !vdad
gdz(i) = gdz(i)*rg/RT
elseif(flag.ne.2 .and. flag.ne.4) then ! not gbvtd or reflectivity
print *, 'flag out of range'
endif
endif
c print *, gdz(i),xd(i),yd(i),xg,yg,rg,rt
enddo
return
end
*****************************************************************
* AVE Perform linear interpolation between two points
*****************************************************************
subroutine ave(temp1,temp2,diff,totdiff,temp,dummy)
implicit none
real diff,totdiff,temp1,temp2,temp,dummy
if(abs(temp1-dummy).ge.0.01) then
if(abs(temp2-dummy).ge.0.01) then
if(abs(totdiff).le.0.0001) then
print *,'totdiff=0.'
stop
endif
temp=(temp1*(totdiff-diff)+temp2*diff)/totdiff
else
temp=temp1
endif
elseif(abs(temp2-dummy).ge.0.01) then
temp=temp2
else
temp=dummy
endif
return
end
******************************************************************
* GRID
******************************************************************
subroutine grid(xc,yc,xdd,ydd,rmeter,tth,theta_t,status,
X thetamax)
implicit none
real pi,rt,r,rmeter,xc,yc,theta_t,alpha
integer i,status,thetamax
real xdd(thetamax),ydd(thetamax)
real theta,tth(thetamax)
pi=acos(-1.)
rt=sqrt(xc**2+yc**2)
r=rmeter
theta_t=atan2(yc,xc)
C A total of 90 points around a ring
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C tth(i) is the angle thetaprime (VDAD) or si (gbvtd) in the
C hurricane coordinate
C theta is the math. angle counterclockwise from east to a point E
C in the gbvtd formulation, thetaprime=alpha+si (see Lee et al. 1997)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
do i=1,thetamax
tth(i)=(i-1)*(360./float(thetamax))*pi/180.
if(status.eq.1 .or. status.eq.3) then ! VDAD
theta=amod((tth(i)+theta_t),2.*pi)
elseif(status.eq.2 .or. status.eq.4) then !gbvtd, calculate theta for a given si
alpha=asin(r/rt*sin(tth(i))) !law of sine
theta=amod((tth(i)+alpha+theta_t),2.*pi)
endif
xdd(i)=xc+r*cos(theta)
ydd(i)=yc+r*sin(theta)
enddo
return
end
subroutine intswap(oldint,newint)
implicit none
integer*2 intfix
integer*2 oldint,int1,int2,newint
intfix = 256
int1 = mod(oldint,intfix)
int2 = (oldint - int1)/intfix
newint = int1*intfix + int2
return
end
|
open int
example : 2 + 3 = 5:=begin generalize h:3=x,generalize g:2=y,rw ← h,rw ← g,← end
|
---
author: Nathan Carter ([email protected])
---
This answer assumes you have imported SymPy as follows.
```python
from sympy import * # load all math functions
init_printing( use_latex='mathjax' ) # use pretty math output
```
SymPy has support for piecewise functions built in, using `Piecewise`.
The function above would be written as follows.
```python
var( 'x' )
formula = Piecewise( (x**2, x>2), (1+x, x<=2) )
formula
```
$\displaystyle \begin{cases} x^{2} & \text{for}\: x > 2 \\x + 1 & \text{otherwise} \end{cases}$
We can test to be sure the function works correctly by plugging in a few
$x$ values and ensuring the correct $y$ values result.
Here we're using the method from how to substitute a value for a symbolic variable.
```python
formula.subs(x,1), formula.subs(x,2), formula.subs(x,3)
```
$\displaystyle \left( 2, \ 3, \ 9\right)$
For $x=1$ we got $1+1=2$. For $x=2$ we got $2+1=3$. For $x=3$, we got $3^2=9$.
|
[STATEMENT]
lemma
fixes s :: "'a :: {nat_power_normed_field,banach,euclidean_space}"
assumes "s \<bullet> 1 > 1"
shows euler_product_fds_zeta:
"(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse (1 - 1 / nat_power p s) else 1)
\<longlonglongrightarrow> eval_fds fds_zeta s" (is ?th1)
and eval_fds_zeta_nonzero: "eval_fds fds_zeta s \<noteq> 0"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s &&& eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
proof -
[PROOF STATE]
proof (state)
goal (2 subgoals):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
2. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
have *: "completely_multiplicative_function (fds_nth fds_zeta)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. completely_multiplicative_function (fds_nth fds_zeta)
[PROOF STEP]
by standard auto
[PROOF STATE]
proof (state)
this:
completely_multiplicative_function (fds_nth fds_zeta)
goal (2 subgoals):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
2. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
have lim: "(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse (1 - fds_nth fds_zeta p / nat_power p s) else 1)
\<longlonglongrightarrow> eval_fds fds_zeta s" (is "filterlim ?g _ _")
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - fds_nth fds_zeta p / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
[PROOF STEP]
using assms
[PROOF STATE]
proof (prove)
using this:
1 < s \<bullet> (1::'a)
goal (1 subgoal):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - fds_nth fds_zeta p / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
[PROOF STEP]
by (intro fds_euler_product_LIMSEQ' * fds_abs_summable_zeta)
[PROOF STATE]
proof (state)
this:
(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - fds_nth fds_zeta p / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
goal (2 subgoals):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
2. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
also
[PROOF STATE]
proof (state)
this:
(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - fds_nth fds_zeta p / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
goal (2 subgoals):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
2. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
have "?g = (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse (1 - 1 / nat_power p s) else 1)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - fds_nth fds_zeta p / nat_power p s) else (1::'a)) = (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a))
[PROOF STEP]
by (intro ext prod.cong refl) (auto simp: fds_zeta_def fds_nth_fds)
[PROOF STATE]
proof (state)
this:
(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - fds_nth fds_zeta p / nat_power p s) else (1::'a)) = (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a))
goal (2 subgoals):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
2. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
finally
[PROOF STATE]
proof (chain)
picking this:
(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
[PROOF STEP]
show ?th1
[PROOF STATE]
proof (prove)
using this:
(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
goal (1 subgoal):
1. (\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
[PROOF STEP]
.
[PROOF STATE]
proof (state)
this:
(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
{
[PROOF STATE]
proof (state)
this:
(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse ((1::'a) - (1::'a) / nat_power p s) else (1::'a)) \<longlonglongrightarrow> eval_fds fds_zeta s
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
fix p :: nat
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
assume "prime p"
[PROOF STATE]
proof (state)
this:
prime p
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
from this
[PROOF STATE]
proof (chain)
picking this:
prime p
[PROOF STEP]
have "p > 1"
[PROOF STATE]
proof (prove)
using this:
prime p
goal (1 subgoal):
1. 1 < p
[PROOF STEP]
by (simp add: prime_gt_Suc_0_nat)
[PROOF STATE]
proof (state)
this:
1 < p
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
hence "norm (nat_power p s) = real p powr (s \<bullet> 1)"
[PROOF STATE]
proof (prove)
using this:
1 < p
goal (1 subgoal):
1. norm (nat_power p s) = real p powr (s \<bullet> (1::'a))
[PROOF STEP]
by (simp add: norm_nat_power)
[PROOF STATE]
proof (state)
this:
norm (nat_power p s) = real p powr (s \<bullet> (1::'a))
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
also
[PROOF STATE]
proof (state)
this:
norm (nat_power p s) = real p powr (s \<bullet> (1::'a))
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
have "\<dots> > real p powr 0"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. real p powr 0 < real p powr (s \<bullet> (1::'a))
[PROOF STEP]
using assms and \<open>p > 1\<close>
[PROOF STATE]
proof (prove)
using this:
1 < s \<bullet> (1::'a)
1 < p
goal (1 subgoal):
1. real p powr 0 < real p powr (s \<bullet> (1::'a))
[PROOF STEP]
by (intro powr_less_mono) auto
[PROOF STATE]
proof (state)
this:
real p powr 0 < real p powr (s \<bullet> (1::'a))
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
finally
[PROOF STATE]
proof (chain)
picking this:
real p powr 0 < norm (nat_power p s)
[PROOF STEP]
have "nat_power p s \<noteq> 1"
[PROOF STATE]
proof (prove)
using this:
real p powr 0 < norm (nat_power p s)
goal (1 subgoal):
1. nat_power p s \<noteq> (1::'a)
[PROOF STEP]
using \<open>p > 1\<close>
[PROOF STATE]
proof (prove)
using this:
real p powr 0 < norm (nat_power p s)
1 < p
goal (1 subgoal):
1. nat_power p s \<noteq> (1::'a)
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
nat_power p s \<noteq> (1::'a)
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
}
[PROOF STATE]
proof (state)
this:
prime ?p3 \<Longrightarrow> nat_power ?p3 s \<noteq> (1::'a)
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
hence **: "\<nexists>p. prime p \<and> fds_nth fds_zeta p = nat_power p s"
[PROOF STATE]
proof (prove)
using this:
prime ?p3 \<Longrightarrow> nat_power ?p3 s \<noteq> (1::'a)
goal (1 subgoal):
1. \<nexists>p. prime p \<and> fds_nth fds_zeta p = nat_power p s
[PROOF STEP]
by (auto simp: fds_zeta_def fds_nth_fds)
[PROOF STATE]
proof (state)
this:
\<nexists>p. prime p \<and> fds_nth fds_zeta p = nat_power p s
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
show "eval_fds fds_zeta s \<noteq> 0"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
using assms * **
[PROOF STATE]
proof (prove)
using this:
1 < s \<bullet> (1::'a)
completely_multiplicative_function (fds_nth fds_zeta)
\<nexists>p. prime p \<and> fds_nth fds_zeta p = nat_power p s
goal (1 subgoal):
1. eval_fds fds_zeta s \<noteq> (0::'a)
[PROOF STEP]
by (subst fds_abs_convergent_zero_iff) simp_all
[PROOF STATE]
proof (state)
this:
eval_fds fds_zeta s \<noteq> (0::'a)
goal:
No subgoals!
[PROOF STEP]
qed |
\section{Theme options}
The theme comes with several options, all of which can be given in a
comma-separated list like in
\begin{lstlisting}
\usetheme[options]{UniversiteitAntwerpen}
\end{lstlisting}
\begin{center}
\begin{tabulary}{12cm}{p{3cm}L}\toprule
\lstinline!dark!
&
Just like the Universiteit Antwerpen itself provides two different flavors of
PowerPoint\textsuperscript{\textregistered} presentations, one with a light
background and one with a darker, this \texttt{beamer} themes inherits options
for both. By default, the theme applies the light theme, this options switches
to the dark counterpart. See figure~\ref{fig:example1}.\\\midrule
\lstinline!darktitle!
&
With \lstinline!darktitle! (and not \lstinline!dark!), the title page will have
a dark background while all other slides will retain the light
background.\\\midrule
\lstinline!framenumber!
&
The \lstinline!framenumber! option makes sure that the number of the current
frame is displayed. In the light scheme the current frame is displayed in the
lower right corner of each frame, the dark scheme places them in the upper
right corner.\\\midrule
\lstinline!totalframenumber!
&
With \lstinline!framenumber! turned on, the \lstinline!totalframenumber! option
makes sure that the total number of frames is displayed alongside with the
current frame number.\\\bottomrule
\end{tabulary}
\end{center}
\begin{note}
The \texttt{beamer} option \lstinline!compress! is respected in the sense that,
if it is provided, header and footer will take less space such that there is
more space for actual frame content.
\end{note}
|
const file = joinpath((@__FILE__) |> dirname |> dirname, "example", "examples.bib") |> readstring
using BenchmarkTools
using BibTeX
@benchmark parse_bibtex(file)
|
theory connectedness
imports separation
begin
(**The sets A and B constitute a separation of a set S.*)
definition Separation ("Separation[_]")
where "Separation[\<C>] S A B \<equiv> nonEmpty A \<and> nonEmpty B \<and> Sep[\<C>] A B \<and> S \<approx> A \<^bold>\<or> B"
(**A set is called separated if it has a separation.*)
definition Separated ("Separated[_]")
where "Separated[\<C>] S \<equiv> \<exists>A B. Separation[\<C>] S A B"
(**A set is called connected if it has no separation.*)
abbreviation Connected ("Connected[_]")
where "Connected[\<C>] S \<equiv> \<not>Separated[\<C>] S"
(**Empty sets and singletons are connected.*)
lemma conn_prop1: "Connected[\<C>] \<^bold>\<bottom>" by (smt (verit, best) L10 L6 Separated_def Separation_def bottom_def setequ_equ subset_def)
lemma conn_prop2: "Cl_2 \<C> \<Longrightarrow> \<forall>x. Connected[\<C>] {x}" by (smt (verit, best) singleton_def Disj_def Sep_disj Separated_def Separation_def bottom_def join_def meet_def setequ_equ)
(**A connected subset of a separated set X = (A|B) is contained in either A or B. *)
lemma conn_prop3: assumes mono: "MONO \<C>"
shows "\<forall>S X. Connected[\<C>] S \<and> S \<preceq> X \<longrightarrow> (\<forall>A B. Separation[\<C>] X A B \<longrightarrow> (S \<preceq> A \<or> S \<preceq> B))"
proof -
{ fix S X { assume conn: "Connected[\<C>] S" and subset: "S \<preceq> X"
{ fix A B { assume sep: "Separation[\<C>] X A B"
from subset sep have aux: "S \<approx> (S \<^bold>\<and> A) \<^bold>\<or> (S \<^bold>\<and> B)" by (smt (verit, best) BA_distr1 L10 Separation_def meet_def setequ_char)
from this mono sep conn have "Disj S A \<or> Disj S B" unfolding Separated_def by (smt (verit, best) Disj_char L3 L5 Sep_sub Separation_def bottom_def setequ_char)
hence "(S \<preceq> A \<or> S \<preceq> B)" by (smt (verit) Disj_def L14 L5 aux join_def setequ_equ subset_def)
}}}} thus ?thesis by blast
qed
(**If S is connected and @{text "S \<preceq> X \<preceq> \<C>(S)"} then X is connected too.*)
lemma conn_prop4: assumes mono: "MONO \<C>"
shows "\<forall>S X. Connected[\<C>] S \<and> S \<preceq> X \<and> X \<preceq> \<C> S \<longrightarrow> Connected[\<C>] X"
proof -
{ fix S X { assume conn: "Connected[\<C>] S" and SsubsetX: "S \<preceq> X" and XsubsetCS: "X \<preceq> \<C> S"
from mono conn SsubsetX have aux: "(\<forall>A B. Separation[\<C>] X A B \<longrightarrow> (S \<preceq> A \<or> S \<preceq> B))"
using conn_prop3 by blast
have "Connected[\<C>] X" proof
assume "Separated[\<C>] X"
from this obtain A and B where sepXAB: "Separation[\<C>] X A B" using Separated_def by blast
from this aux have "(S \<preceq> A \<or> S \<preceq> B)" by blast
thus "False" proof
assume assm: "S \<preceq> A"
from this mono have "\<C> S \<preceq> \<C> A" by (simp add: MONO_def)
from this assm sepXAB have 1: "Disj (\<C> S) B" by (metis (mono_tags) Sep_def Sep_sub Separation_def mono subset_def)
from sepXAB XsubsetCS have 2: "B \<preceq> \<C> S" by (simp add: Separation_def join_def setequ_equ subset_def)
from sepXAB have 3: "nonEmpty B" by (simp add: Separation_def)
from 1 2 3 show "False" by (metis Disj_char L10 bottom_def setequ_equ)
next
assume assm: "S \<preceq> B" (*same reasoning as previous case*)
from this mono have "\<C> S \<preceq> \<C> B" by (simp add: MONO_def)
from this assm sepXAB have 1: "Disj (\<C> S) A" by (metis (mono_tags) Sep_def Sep_sub Separation_def mono subset_def)
from sepXAB XsubsetCS have 2: "A \<preceq> \<C> S" by (simp add: Separation_def join_def setequ_equ subset_def)
from sepXAB have 3: "nonEmpty A" by (simp add: Separation_def)
from 1 2 3 show "False" by (metis Disj_char L10 bottom_def setequ_equ)
qed
qed
}} thus ?thesis by blast
qed
(**If every two points of a set X are contained in some connected subset of X then X is connected.*)
lemma conn_prop5: assumes mono: \<open>MONO \<C>\<close> and cl2: \<open>Cl_2 \<C>\<close> shows
\<open>(\<forall>p q. X p \<and> X q \<and> (\<exists>S. S \<preceq> X \<and> Connected[\<C>] S \<and> S p \<and> S q)) \<longrightarrow> Connected[\<C>] X\<close>
proof -
{ assume premise: \<open>\<forall>p q. X p \<and> X q \<and> (\<exists>S. S \<preceq> X \<and> Connected[\<C>] S \<and> S p \<and> S q)\<close>
have \<open>Connected[\<C>] X\<close> proof
assume \<open>Separated[\<C>] X\<close>
then obtain A and B where sepXAB: \<open>Separation[\<C>] X A B\<close>
using Separated_def by blast
hence nonempty: \<open>nonEmpty A \<and> nonEmpty B\<close>
by (simp add: Separation_def)
let ?p = \<open>SOME a. A a\<close> and ?q = \<open>SOME b. B b\<close> (*since A and B are non-empty*)
from nonempty have \<open>X ?p \<and> X ?q\<close>
by (simp add: premise)
hence \<open>\<exists>S. S \<preceq> X \<and> Connected[\<C>] S \<and> S ?p \<and> S ?q\<close>
by (simp add: premise)
then obtain S where aux: \<open>S \<preceq> X \<and> Connected[\<C>] S \<and> S ?p \<and> S ?q\<close> ..
from aux nonempty have \<open>\<not>Disj S A \<and> \<not>Disj S B\<close>
by (metis Disj_def someI)
moreover from aux mono sepXAB have \<open>S \<preceq> A \<or> S \<preceq> B\<close>
using conn_prop3 by blast
moreover from cl2 sepXAB have \<open>Disj A B\<close>
by (simp add: Sep_disj Separation_def)
ultimately show False
by (metis (mono_tags, lifting) Disj_def subset_def)
qed
} thus ?thesis ..
qed
end |
theory Examples3
imports Examples
begin
subsection {* Third Version: Local Interpretation
\label{sec:local-interpretation} *}
text {* In the above example, the fact that @{term "op \<le>"} is a partial
order for the integers was used in the second goal to
discharge the premise in the definition of @{text "op \<sqsubset>"}. In
general, proofs of the equations not only may involve definitions
from the interpreted locale but arbitrarily complex arguments in the
context of the locale. Therefore it would be convenient to have the
interpreted locale conclusions temporarily available in the proof.
This can be achieved by a locale interpretation in the proof body.
The command for local interpretations is \isakeyword{interpret}. We
repeat the example from the previous section to illustrate this. *}
interpretation %visible int: partial_order "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"
where "int.less x y = (x < y)"
proof -
show "partial_order (op \<le> :: int \<Rightarrow> int \<Rightarrow> bool)"
by unfold_locales auto
then interpret int: partial_order "op \<le> :: [int, int] \<Rightarrow> bool" .
show "int.less x y = (x < y)"
unfolding int.less_def by auto
qed
text {* The inner interpretation is immediate from the preceding fact
and proved by assumption (Isar short hand ``.''). It enriches the
local proof context by the theorems
also obtained in the interpretation from Section~\ref{sec:po-first},
and @{text int.less_def} may directly be used to unfold the
definition. Theorems from the local interpretation disappear after
leaving the proof context --- that is, after the succeeding
\isakeyword{next} or \isakeyword{qed} statement. *}
subsection {* Further Interpretations *}
text {* Further interpretations are necessary for
the other locales. In @{text lattice} the operations~@{text \<sqinter>}
and~@{text \<squnion>} are substituted by @{term "min :: int \<Rightarrow> int \<Rightarrow> int"}
and @{term "max :: int \<Rightarrow> int \<Rightarrow> int"}. The entire proof for the
interpretation is reproduced to give an example of a more
elaborate interpretation proof. Note that the equations are named
so they can be used in a later example. *}
interpretation %visible int: lattice "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"
where int_min_eq: "int.meet x y = min x y"
and int_max_eq: "int.join x y = max x y"
proof -
show "lattice (op \<le> :: int \<Rightarrow> int \<Rightarrow> bool)"
txt {* \normalsize We have already shown that this is a partial
order, *}
apply unfold_locales
txt {* \normalsize hence only the lattice axioms remain to be
shown.
@{subgoals [display]}
By @{text is_inf} and @{text is_sup}, *}
apply (unfold int.is_inf_def int.is_sup_def)
txt {* \normalsize the goals are transformed to these
statements:
@{subgoals [display]}
This is Presburger arithmetic, which can be solved by the
method @{text arith}. *}
by arith+
txt {* \normalsize In order to show the equations, we put ourselves
in a situation where the lattice theorems can be used in a
convenient way. *}
then interpret int: lattice "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool" .
show "int.meet x y = min x y"
by (bestsimp simp: int.meet_def int.is_inf_def)
show "int.join x y = max x y"
by (bestsimp simp: int.join_def int.is_sup_def)
qed
text {* Next follows that @{text "op \<le>"} is a total order, again for
the integers. *}
interpretation %visible int: total_order "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"
by unfold_locales arith
text {* Theorems that are available in the theory at this point are shown in
Table~\ref{tab:int-lattice}. Two points are worth noting:
\begin{table}
\hrule
\vspace{2ex}
\begin{center}
\begin{tabular}{l}
@{thm [source] int.less_def} from locale @{text partial_order}: \\
\quad @{thm int.less_def} \\
@{thm [source] int.meet_left} from locale @{text lattice}: \\
\quad @{thm int.meet_left} \\
@{thm [source] int.join_distr} from locale @{text distrib_lattice}: \\
\quad @{thm int.join_distr} \\
@{thm [source] int.less_total} from locale @{text total_order}: \\
\quad @{thm int.less_total}
\end{tabular}
\end{center}
\hrule
\caption{Interpreted theorems for~@{text \<le>} on the integers.}
\label{tab:int-lattice}
\end{table}
\begin{itemize}
\item
Locale @{text distrib_lattice} was also interpreted. Since the
locale hierarchy reflects that total orders are distributive
lattices, the interpretation of the latter was inserted
automatically with the interpretation of the former. In general,
interpretation traverses the locale hierarchy upwards and interprets
all encountered locales, regardless whether imported or proved via
the \isakeyword{sublocale} command. Existing interpretations are
skipped avoiding duplicate work.
\item
The predicate @{term "op <"} appears in theorem @{thm [source]
int.less_total}
although an equation for the replacement of @{text "op \<sqsubset>"} was only
given in the interpretation of @{text partial_order}. The
interpretation equations are pushed downwards the hierarchy for
related interpretations --- that is, for interpretations that share
the instances of parameters they have in common.
\end{itemize}
*}
text {* The interpretations for a locale $n$ within the current
theory may be inspected with \isakeyword{print\_interps}~$n$. This
prints the list of instances of $n$, for which interpretations exist.
For example, \isakeyword{print\_interps} @{term partial_order}
outputs the following:
\begin{small}
\begin{alltt}
int! : partial_order "op \(\le\)"
\end{alltt}
\end{small}
Of course, there is only one interpretation.
The interpretation qualifier on the left is decorated with an
exclamation point. This means that it is mandatory. Qualifiers
can either be \emph{mandatory} or \emph{optional}, designated by
``!'' or ``?'' respectively. Mandatory qualifiers must occur in a
name reference while optional ones need not. Mandatory qualifiers
prevent accidental hiding of names, while optional qualifiers can be
more convenient to use. For \isakeyword{interpretation}, the
default is ``!''.
*}
section {* Locale Expressions \label{sec:expressions} *}
text {*
A map~@{term \<phi>} between partial orders~@{text \<sqsubseteq>} and~@{text \<preceq>}
is called order preserving if @{text "x \<sqsubseteq> y"} implies @{text "\<phi> x \<preceq>
\<phi> y"}. This situation is more complex than those encountered so
far: it involves two partial orders, and it is desirable to use the
existing locale for both.
A locale for order preserving maps requires three parameters: @{text
le}~(\isakeyword{infixl}~@{text \<sqsubseteq>}) and @{text
le'}~(\isakeyword{infixl}~@{text \<preceq>}) for the orders and~@{text \<phi>}
for the map.
In order to reuse the existing locale for partial orders, which has
the single parameter~@{text le}, it must be imported twice, once
mapping its parameter to~@{text le} from the new locale and once
to~@{text le'}. This can be achieved with a compound locale
expression.
In general, a locale expression is a sequence of \emph{locale instances}
separated by~``$\textbf{+}$'' and followed by a \isakeyword{for}
clause.
An instance has the following format:
\begin{quote}
\textit{qualifier} \textbf{:} \textit{locale-name}
\textit{parameter-instantiation}
\end{quote}
We have already seen locale instances as arguments to
\isakeyword{interpretation} in Section~\ref{sec:interpretation}.
As before, the qualifier serves to disambiguate names from
different instances of the same locale. While in
\isakeyword{interpretation} qualifiers default to mandatory, in
import and in the \isakeyword{sublocale} command, they default to
optional.
Since the parameters~@{text le} and~@{text le'} are to be partial
orders, our locale for order preserving maps will import the these
instances:
\begin{small}
\begin{alltt}
le: partial_order le
le': partial_order le'
\end{alltt}
\end{small}
For matter of convenience we choose to name parameter names and
qualifiers alike. This is an arbitrary decision. Technically, qualifiers
and parameters are unrelated.
Having determined the instances, let us turn to the \isakeyword{for}
clause. It serves to declare locale parameters in the same way as
the context element \isakeyword{fixes} does. Context elements can
only occur after the import section, and therefore the parameters
referred to in the instances must be declared in the \isakeyword{for}
clause. The \isakeyword{for} clause is also where the syntax of these
parameters is declared.
Two context elements for the map parameter~@{text \<phi>} and the
assumptions that it is order preserving complete the locale
declaration. *}
locale order_preserving =
le: partial_order le + le': partial_order le'
for le (infixl "\<sqsubseteq>" 50) and le' (infixl "\<preceq>" 50) +
fixes \<phi>
assumes hom_le: "x \<sqsubseteq> y \<Longrightarrow> \<phi> x \<preceq> \<phi> y"
text (in order_preserving) {* Here are examples of theorems that are
available in the locale:
\hspace*{1em}@{thm [source] hom_le}: @{thm hom_le}
\hspace*{1em}@{thm [source] le.less_le_trans}: @{thm le.less_le_trans}
\hspace*{1em}@{thm [source] le'.less_le_trans}:
@{thm [display, indent=4] le'.less_le_trans}
While there is infix syntax for the strict operation associated to
@{term "op \<sqsubseteq>"}, there is none for the strict version of @{term
"op \<preceq>"}. The abbreviation @{text less} with its infix syntax is only
available for the original instance it was declared for. We may
introduce the abbreviation @{text less'} with infix syntax~@{text \<prec>}
with the following declaration: *}
abbreviation (in order_preserving)
less' (infixl "\<prec>" 50) where "less' \<equiv> partial_order.less le'"
text (in order_preserving) {* Now the theorem is displayed nicely as
@{thm [source] le'.less_le_trans}:
@{thm [display, indent=2] le'.less_le_trans} *}
text {* There are short notations for locale expressions. These are
discussed in the following. *}
subsection {* Default Instantiations *}
text {*
It is possible to omit parameter instantiations. The
instantiation then defaults to the name of
the parameter itself. For example, the locale expression @{text
partial_order} is short for @{text "partial_order le"}, since the
locale's single parameter is~@{text le}. We took advantage of this
in the \isakeyword{sublocale} declarations of
Section~\ref{sec:changing-the-hierarchy}. *}
subsection {* Implicit Parameters \label{sec:implicit-parameters} *}
text {* In a locale expression that occurs within a locale
declaration, omitted parameters additionally extend the (possibly
empty) \isakeyword{for} clause.
The \isakeyword{for} clause is a general construct of Isabelle/Isar
to mark names occurring in the preceding declaration as ``arbitrary
but fixed''. This is necessary for example, if the name is already
bound in a surrounding context. In a locale expression, names
occurring in parameter instantiations should be bound by a
\isakeyword{for} clause whenever these names are not introduced
elsewhere in the context --- for example, on the left hand side of a
\isakeyword{sublocale} declaration.
There is an exception to this rule in locale declarations, where the
\isakeyword{for} clause serves to declare locale parameters. Here,
locale parameters for which no parameter instantiation is given are
implicitly added, with their mixfix syntax, at the beginning of the
\isakeyword{for} clause. For example, in a locale declaration, the
expression @{text partial_order} is short for
\begin{small}
\begin{alltt}
partial_order le \isakeyword{for} le (\isakeyword{infixl} "\(\sqsubseteq\)" 50)\textrm{.}
\end{alltt}
\end{small}
This short hand was used in the locale declarations throughout
Section~\ref{sec:import}.
*}
text{*
The following locale declarations provide more examples. A
map~@{text \<phi>} is a lattice homomorphism if it preserves meet and
join. *}
locale lattice_hom =
le: lattice + le': lattice le' for le' (infixl "\<preceq>" 50) +
fixes \<phi>
assumes hom_meet: "\<phi> (x \<sqinter> y) = le'.meet (\<phi> x) (\<phi> y)"
and hom_join: "\<phi> (x \<squnion> y) = le'.join (\<phi> x) (\<phi> y)"
text {* The parameter instantiation in the first instance of @{term
lattice} is omitted. This causes the parameter~@{text le} to be
added to the \isakeyword{for} clause, and the locale has
parameters~@{text le},~@{text le'} and, of course,~@{text \<phi>}.
Before turning to the second example, we complete the locale by
providing infix syntax for the meet and join operations of the
second lattice.
*}
context lattice_hom
begin
abbreviation meet' (infixl "\<sqinter>''" 50) where "meet' \<equiv> le'.meet"
abbreviation join' (infixl "\<squnion>''" 50) where "join' \<equiv> le'.join"
end
text {* The next example makes radical use of the short hand
facilities. A homomorphism is an endomorphism if both orders
coincide. *}
locale lattice_end = lattice_hom _ le
text {* The notation~@{text _} enables to omit a parameter in a
positional instantiation. The omitted parameter,~@{text le} becomes
the parameter of the declared locale and is, in the following
position, used to instantiate the second parameter of @{text
lattice_hom}. The effect is that of identifying the first in second
parameter of the homomorphism locale. *}
text {* The inheritance diagram of the situation we have now is shown
in Figure~\ref{fig:hom}, where the dashed line depicts an
interpretation which is introduced below. Parameter instantiations
are indicated by $\sqsubseteq \mapsto \preceq$ etc. By looking at
the inheritance diagram it would seem
that two identical copies of each of the locales @{text
partial_order} and @{text lattice} are imported by @{text
lattice_end}. This is not the case! Inheritance paths with
identical morphisms are automatically detected and
the conclusions of the respective locales appear only once.
\begin{figure}
\hrule \vspace{2ex}
\begin{center}
\begin{tikzpicture}
\node (o) at (0,0) {@{text partial_order}};
\node (oh) at (1.5,-2) {@{text order_preserving}};
\node (oh1) at (1.5,-0.7) {$\scriptscriptstyle \sqsubseteq \mapsto \sqsubseteq$};
\node (oh2) at (0,-1.3) {$\scriptscriptstyle \sqsubseteq \mapsto \preceq$};
\node (l) at (-1.5,-2) {@{text lattice}};
\node (lh) at (0,-4) {@{text lattice_hom}};
\node (lh1) at (0,-2.7) {$\scriptscriptstyle \sqsubseteq \mapsto \sqsubseteq$};
\node (lh2) at (-1.5,-3.3) {$\scriptscriptstyle \sqsubseteq \mapsto \preceq$};
\node (le) at (0,-6) {@{text lattice_end}};
\node (le1) at (0,-4.8)
[anchor=west]{$\scriptscriptstyle \sqsubseteq \mapsto \sqsubseteq$};
\node (le2) at (0,-5.2)
[anchor=west]{$\scriptscriptstyle \preceq \mapsto \sqsubseteq$};
\draw (o) -- (l);
\draw[dashed] (oh) -- (lh);
\draw (lh) -- (le);
\draw (o) .. controls (oh1.south west) .. (oh);
\draw (o) .. controls (oh2.north east) .. (oh);
\draw (l) .. controls (lh1.south west) .. (lh);
\draw (l) .. controls (lh2.north east) .. (lh);
\end{tikzpicture}
\end{center}
\hrule
\caption{Hierarchy of Homomorphism Locales.}
\label{fig:hom}
\end{figure}
*}
text {* It can be shown easily that a lattice homomorphism is order
preserving. As the final example of this section, a locale
interpretation is used to assert this: *}
sublocale lattice_hom \<subseteq> order_preserving
proof unfold_locales
fix x y
assume "x \<sqsubseteq> y"
then have "y = (x \<squnion> y)" by (simp add: le.join_connection)
then have "\<phi> y = (\<phi> x \<squnion>' \<phi> y)" by (simp add: hom_join [symmetric])
then show "\<phi> x \<preceq> \<phi> y" by (simp add: le'.join_connection)
qed
text (in lattice_hom) {*
Theorems and other declarations --- syntax, in particular --- from
the locale @{text order_preserving} are now active in @{text
lattice_hom}, for example
@{thm [source] hom_le}:
@{thm [display, indent=2] hom_le}
This theorem will be useful in the following section.
*}
section {* Conditional Interpretation *}
text {* There are situations where an interpretation is not possible
in the general case since the desired property is only valid if
certain conditions are fulfilled. Take, for example, the function
@{text "\<lambda>i. n * i"} that scales its argument by a constant factor.
This function is order preserving (and even a lattice endomorphism)
with respect to @{term "op \<le>"} provided @{text "n \<ge> 0"}.
It is not possible to express this using a global interpretation,
because it is in general unspecified whether~@{term n} is
non-negative, but one may make an interpretation in an inner context
of a proof where full information is available.
This is not fully satisfactory either, since potentially
interpretations may be required to make interpretations in many
contexts. What is
required is an interpretation that depends on the condition --- and
this can be done with the \isakeyword{sublocale} command. For this
purpose, we introduce a locale for the condition. *}
locale non_negative =
fixes n :: int
assumes non_neg: "0 \<le> n"
text {* It is again convenient to make the interpretation in an
incremental fashion, first for order preserving maps, the for
lattice endomorphisms. *}
sublocale non_negative \<subseteq>
order_preserving "op \<le>" "op \<le>" "\<lambda>i. n * i"
using non_neg by unfold_locales (rule mult_left_mono)
text {* While the proof of the previous interpretation
is straightforward from monotonicity lemmas for~@{term "op *"}, the
second proof follows a useful pattern. *}
sublocale %visible non_negative \<subseteq> lattice_end "op \<le>" "\<lambda>i. n * i"
proof (unfold_locales, unfold int_min_eq int_max_eq)
txt {* \normalsize Unfolding the locale predicates \emph{and} the
interpretation equations immediately yields two subgoals that
reflect the core conjecture.
@{subgoals [display]}
It is now necessary to show, in the context of @{term
non_negative}, that multiplication by~@{term n} commutes with
@{term min} and @{term max}. *}
qed (auto simp: hom_le)
text (in order_preserving) {* The lemma @{thm [source] hom_le}
simplifies a proof that would have otherwise been lengthy and we may
consider making it a default rule for the simplifier: *}
lemmas (in order_preserving) hom_le [simp]
subsection {* Avoiding Infinite Chains of Interpretations
\label{sec:infinite-chains} *}
text {* Similar situations arise frequently in formalisations of
abstract algebra where it is desirable to express that certain
constructions preserve certain properties. For example, polynomials
over rings are rings, or --- an example from the domain where the
illustrations of this tutorial are taken from --- a partial order
may be obtained for a function space by point-wise lifting of the
partial order of the co-domain. This corresponds to the following
interpretation: *}
sublocale %visible partial_order \<subseteq> f: partial_order "\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x"
oops
text {* Unfortunately this is a cyclic interpretation that leads to an
infinite chain, namely
@{text [display, indent=2] "partial_order \<subseteq> partial_order (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) \<subseteq>
partial_order (\<lambda>f g. \<forall>x y. f x y \<sqsubseteq> g x y) \<subseteq> \<dots>"}
and the interpretation is rejected.
Instead it is necessary to declare a locale that is logically
equivalent to @{term partial_order} but serves to collect facts
about functions spaces where the co-domain is a partial order, and
to make the interpretation in its context: *}
locale fun_partial_order = partial_order
sublocale fun_partial_order \<subseteq>
f: partial_order "\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x"
by unfold_locales (fast,rule,fast,blast intro: trans)
text {* It is quite common in abstract algebra that such a construction
maps a hierarchy of algebraic structures (or specifications) to a
related hierarchy. By means of the same lifting, a function space
is a lattice if its co-domain is a lattice: *}
locale fun_lattice = fun_partial_order + lattice
sublocale fun_lattice \<subseteq> f: lattice "\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x"
proof unfold_locales
fix f g
have "partial_order.is_inf (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) f g (\<lambda>x. f x \<sqinter> g x)"
apply (rule is_infI) apply rule+ apply (drule spec, assumption)+ done
then show "\<exists>inf. partial_order.is_inf (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) f g inf"
by fast
next
fix f g
have "partial_order.is_sup (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) f g (\<lambda>x. f x \<squnion> g x)"
apply (rule is_supI) apply rule+ apply (drule spec, assumption)+ done
then show "\<exists>sup. partial_order.is_sup (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) f g sup"
by fast
qed
section {* Further Reading *}
text {* More information on locales and their interpretation is
available. For the locale hierarchy of import and interpretation
dependencies see~@{cite Ballarin2006a}; interpretations in theories
and proofs are covered in~@{cite Ballarin2006b}. In the latter, I
show how interpretation in proofs enables to reason about families
of algebraic structures, which cannot be expressed with locales
directly.
Haftmann and Wenzel~@{cite HaftmannWenzel2007} overcome a restriction
of axiomatic type classes through a combination with locale
interpretation. The result is a Haskell-style class system with a
facility to generate ML and Haskell code. Classes are sufficient for
simple specifications with a single type parameter. The locales for
orders and lattices presented in this tutorial fall into this
category. Order preserving maps, homomorphisms and vector spaces,
on the other hand, do not.
The locales reimplementation for Isabelle 2009 provides, among other
improvements, a clean integration with Isabelle/Isar's local theory
mechanisms, which are described in another paper by Haftmann and
Wenzel~@{cite HaftmannWenzel2009}.
The original work of Kamm\"uller on locales~@{cite KammullerEtAl1999}
may be of interest from a historical perspective. My previous
report on locales and locale expressions~@{cite Ballarin2004a}
describes a simpler form of expressions than available now and is
outdated. The mathematical background on orders and lattices is
taken from Jacobson's textbook on algebra~@{cite \<open>Chapter~8\<close> Jacobson1985}.
The sources of this tutorial, which include all proofs, are
available with the Isabelle distribution at
@{url "http://isabelle.in.tum.de"}.
*}
text {*
\begin{table}
\hrule
\vspace{2ex}
\begin{center}
\begin{tabular}{l>$c<$l}
\multicolumn{3}{l}{Miscellaneous} \\
\textit{attr-name} & ::=
& \textit{name} $|$ \textit{attribute} $|$
\textit{name} \textit{attribute} \\
\textit{qualifier} & ::=
& \textit{name} [``\textbf{?}'' $|$ ``\textbf{!}''] \\[2ex]
\multicolumn{3}{l}{Context Elements} \\
\textit{fixes} & ::=
& \textit{name} [ ``\textbf{::}'' \textit{type} ]
[ ``\textbf{(}'' \textbf{structure} ``\textbf{)}'' $|$
\textit{mixfix} ] \\
\begin{comment}
\textit{constrains} & ::=
& \textit{name} ``\textbf{::}'' \textit{type} \\
\end{comment}
\textit{assumes} & ::=
& [ \textit{attr-name} ``\textbf{:}'' ] \textit{proposition} \\
\begin{comment}
\textit{defines} & ::=
& [ \textit{attr-name} ``\textbf{:}'' ] \textit{proposition} \\
\textit{notes} & ::=
& [ \textit{attr-name} ``\textbf{=}'' ]
( \textit{qualified-name} [ \textit{attribute} ] )$^+$ \\
\end{comment}
\textit{element} & ::=
& \textbf{fixes} \textit{fixes} ( \textbf{and} \textit{fixes} )$^*$ \\
\begin{comment}
& |
& \textbf{constrains} \textit{constrains}
( \textbf{and} \textit{constrains} )$^*$ \\
\end{comment}
& |
& \textbf{assumes} \textit{assumes} ( \textbf{and} \textit{assumes} )$^*$ \\[2ex]
%\begin{comment}
% & |
% & \textbf{defines} \textit{defines} ( \textbf{and} \textit{defines} )$^*$ \\
% & |
% & \textbf{notes} \textit{notes} ( \textbf{and} \textit{notes} )$^*$ \\
%\end{comment}
\multicolumn{3}{l}{Locale Expressions} \\
\textit{pos-insts} & ::=
& ( \textit{term} $|$ ``\textbf{\_}'' )$^*$ \\
\textit{named-insts} & ::=
& \textbf{where} \textit{name} ``\textbf{=}'' \textit{term}
( \textbf{and} \textit{name} ``\textbf{=}'' \textit{term} )$^*$ \\
\textit{instance} & ::=
& [ \textit{qualifier} ``\textbf{:}'' ]
\textit{name} ( \textit{pos-insts} $|$ \textit{named-inst} ) \\
\textit{expression} & ::=
& \textit{instance} ( ``\textbf{+}'' \textit{instance} )$^*$
[ \textbf{for} \textit{fixes} ( \textbf{and} \textit{fixes} )$^*$ ] \\[2ex]
\multicolumn{3}{l}{Declaration of Locales} \\
\textit{locale} & ::=
& \textit{element}$^+$ \\
& | & \textit{expression} [ ``\textbf{+}'' \textit{element}$^+$ ] \\
\textit{toplevel} & ::=
& \textbf{locale} \textit{name} [ ``\textbf{=}''
\textit{locale} ] \\[2ex]
\multicolumn{3}{l}{Interpretation} \\
\textit{equation} & ::= & [ \textit{attr-name} ``\textbf{:}'' ]
\textit{prop} \\
\textit{equations} & ::= & \textbf{where} \textit{equation} ( \textbf{and}
\textit{equation} )$^*$ \\
\textit{toplevel} & ::=
& \textbf{sublocale} \textit{name} ( ``$<$'' $|$
``$\subseteq$'' ) \textit{expression} \textit{proof} \\
& |
& \textbf{interpretation}
\textit{expression} [ \textit{equations} ] \textit{proof} \\
& |
& \textbf{interpret}
\textit{expression} \textit{proof} \\[2ex]
\multicolumn{3}{l}{Diagnostics} \\
\textit{toplevel} & ::=
& \textbf{print\_locales} \\
& | & \textbf{print\_locale} [ ``\textbf{!}'' ] \textit{name} \\
& | & \textbf{print\_interps} \textit{name}
\end{tabular}
\end{center}
\hrule
\caption{Syntax of Locale Commands.}
\label{tab:commands}
\end{table}
*}
text {* \textbf{Revision History.} For the present third revision of
the tutorial, much of the explanatory text
was rewritten. Inheritance of interpretation equations is
available with the forthcoming release of Isabelle, which at the
time of editing these notes is expected for the end of 2009.
The second revision accommodates changes introduced by the locales
reimplementation for Isabelle 2009. Most notably locale expressions
have been generalised from renaming to instantiation. *}
text {* \textbf{Acknowledgements.} Alexander Krauss, Tobias Nipkow,
Randy Pollack, Andreas Schropp, Christian Sternagel and Makarius Wenzel
have made
useful comments on earlier versions of this document. The section
on conditional interpretation was inspired by a number of e-mail
enquiries the author received from locale users, and which suggested
that this use case is important enough to deserve explicit
explanation. The term \emph{conditional interpretation} is due to
Larry Paulson. *}
end
|
##################################################
## Project: Collect API data on fire incidents
## Author: Christopher Hench
##################################################
flatten_json <- function(df) {
for (col in names(df)) {
if (is.list(df[[col]])) {
i <- 1
for (row in df[[col]]) {
df[[col]][i] <- paste(row, collapse = '; ')
i <- i + 1
}
df[[col]] <- unlist(df[[col]])
}
}
return (df)
}
base_url <- 'https://data.sfgov.org/resource/wbb6-uh78.json?'
incident_date <- '2017-10-22T00:00:00.000'
incident_date <- URLencode(URL = incident_date, reserved = TRUE)
get_request <- paste0(base_url, "incident_date=", incident_date)
print(get_request)
response <- httr::GET(url = get_request)
response <- httr::content(x = response, as = "text")
response_df <- data.frame(jsonlite::fromJSON(txt = response, simplifyDataFrame = TRUE, flatten = TRUE))
flattened <- flatten_json(response_df)
write.csv(flattened, file='fire-incidents.csv') |
\<comment>\<open>
* Copyright 2016, NTU
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* Author: Zhe Hou.
\<close>
text {* SPARC V8 TSO memory model*}
theory Memory_Model
imports Main Processor_Execution
begin
text {* This theory models the SPARC TSO memory model. *}
text {* The sequence of executed meomry operation blocks. *}
type_synonym executed_mem_ops = "op_id list"
text {* Given a sequence of executed mem_op_block, the memory order op1 m< op2 is
true when op1 is in the sequence before op2.
If both are not in the sequence, the result is None.
If one of them is not in the sequence, then it is later than the one
that occurs in the sequence. *}
definition memory_order_before:: "op_id \<Rightarrow> executed_mem_ops \<Rightarrow> op_id \<Rightarrow>
bool option" ("_ m<_ _") where
"op1 m<xseq op2 \<equiv>
if (List.member xseq op1) \<and> (List.member xseq op2) then
if list_before op1 xseq op2 then Some True
else Some False
else if List.member xseq op1 then Some True
else if List.member xseq op2 then Some False
else None"
definition memory_order_before_pred:: "(op_id \<Rightarrow> bool) \<Rightarrow> executed_mem_ops \<Rightarrow> op_id \<Rightarrow>
op_id set" ("_ m<;_ _") where
"P m<;xseq op \<equiv>
{a. P a \<and> ((a m<xseq op) = Some True)}"
definition max_memory_order_before::"(op_id \<Rightarrow> bool) \<Rightarrow> executed_mem_ops \<Rightarrow> op_id \<Rightarrow>
op_id option" ("_ M<;_ _")
where
"P M<;xseq op1 \<equiv> if (P m<;xseq op1)\<noteq>{} then
Some (THE x. (x \<in>(P m<;xseq op1)) \<and>
(\<forall>x'\<in> (P m<;xseq op1). (x' m<xseq x) = Some True))
else None"
lemma memory_order_before_tran:
assumes
a0:"distinct xseq" and
a1:"(op1 m<xseq op2) = Some True" and
a2:"(op2 m<xseq op3) = Some True"
shows
"(op1 m<xseq op3) = Some True"
unfolding memory_order_before_def using a0 a1 a2
by (metis list_before_tran memory_order_before_def option.distinct(1) option.inject)
lemma mem_order_not_sym: assumes
a0:"distinct xseq" and
a1:"(op1 m<xseq op2) = Some True"
shows "\<not> ((op2 m<xseq op1) = Some True)"
using a0 a1 unfolding memory_order_before_def
apply auto
by (metis list_before_not_sym option.inject)
lemma exists_mem_order_list_member:
"finite z \<Longrightarrow>
z\<noteq>{} \<Longrightarrow>
distinct l \<Longrightarrow>
z\<subseteq>{x. List.member l x} \<Longrightarrow>
\<exists>x. x\<in>z \<and> (\<forall>x'\<in>z. x'\<noteq>x \<longrightarrow> (x' m<l x) = Some True)"
proof(induction rule: Finite_Set.finite_ne_induct)
case (singleton x)
then show ?case
by blast
next
case (insert x F)
then obtain x1 where hp:"x1\<in>F \<and> (\<forall>x'\<in>F. x'\<noteq>x1 \<longrightarrow> (x' m<l x1) = Some True)"
by auto
then have neq:"x\<noteq>x1" using insert by auto
{ assume "(x m<l x1) = Some True"
then have ?case using hp neq by fastforce
}note l1 =this
{
assume assm:"(x1 m<l x) = Some True"
then have ?case using hp neq insert(3) memory_order_before_tran
by (metis (full_types) insert.prems(1) insert_iff)
}note l2 = this
show ?case
by (metis insert.prems(2) insert_subset l1 l2 list_elements_before
mem_Collect_eq memory_order_before_def neq)
qed
lemma unique_max_order_before:
assumes
a2:"distinct l" and
a4:"x\<in>z \<and> (\<forall>x'\<in>z. x'\<noteq>x \<longrightarrow> (x' m<l x) = Some True)"
shows "\<forall>x'. x'\<in>z \<and> (\<forall>x''\<in>z. x''\<noteq>x' \<longrightarrow> (x'' m<l x') = Some True) \<longrightarrow> x' = x "
using mem_order_not_sym[OF a2] a4 by metis
lemma exists_unique_mem_order_list:"distinct l \<Longrightarrow>
z\<subseteq>{x. List.member l x} \<Longrightarrow>
z\<noteq>{} \<Longrightarrow>
\<exists>!x. x\<in>z \<and> (\<forall>x'\<in>z. x'\<noteq>x \<longrightarrow> (x' m<l x) = Some True)"
apply (frule exists_mem_order_list_member[OF finite_subset_list],assumption+)
apply clarsimp
by (frule unique_max_order_before, auto simp add: Ex1_def)
lemma mem_order_false_cond: "(op1 m<xseq op2) = Some False \<Longrightarrow>
((List.member xseq op1) \<and> (List.member xseq op2) \<and> \<not>(list_before op1 xseq op2)) \<or>
(\<not>(List.member xseq op1) \<and> (List.member xseq op2))"
unfolding memory_order_before_def
by (metis option.distinct(1) option.inject)
lemma mem_order_true_cond: "(op1 m<xseq op2) = Some True \<Longrightarrow>
((List.member xseq op1) \<and> (List.member xseq op2) \<and> (list_before op1 xseq op2)) \<or>
((List.member xseq op1) \<and> \<not>(List.member xseq op2))"
unfolding memory_order_before_def
by (metis option.distinct(1) option.inject)
lemma mem_order_true_cond_rev: "((List.member xseq op1) \<and> (List.member xseq op2) \<and>
(list_before op1 xseq op2)) \<or>
((List.member xseq op1) \<and> \<not>(List.member xseq op2)) \<Longrightarrow> (op1 m<xseq op2) = Some True"
unfolding memory_order_before_def
by auto
lemma mem_order_true_cond_equiv: "(op1 m<xseq op2) = Some True =
((List.member xseq op1) \<and> (List.member xseq op2) \<and> (list_before op1 xseq op2)) \<or>
((List.member xseq op1) \<and> \<not>(List.member xseq op2))"
using mem_order_true_cond mem_order_true_cond_rev by auto
section{* The axiomatic model. *}
text {* This section gives an axiomatic definition of the TSO model a la
SPARCv8 manual. *}
definition axiom_order:: "op_id \<Rightarrow> op_id \<Rightarrow> executed_mem_ops \<Rightarrow> program_block_map \<Rightarrow> bool" where
"axiom_order opid opid' xseq pbm \<equiv>
((type_of_mem_op_block (pbm opid) \<in> {st_block, ast_block}) \<and>
(type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}) \<and>
(opid \<in> (set xseq) \<and>
opid' \<in> (set xseq) \<and> opid \<noteq> opid')) \<longrightarrow>
((opid m<xseq opid') = Some True \<or> (opid' m<xseq opid) = Some True)"
text {* A new version of axiom_order for code export. *}
definition axiom_atomicity:: "op_id \<Rightarrow> op_id \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
program_block_map \<Rightarrow> bool" where
"axiom_atomicity opid opid' po xseq pbm \<equiv>
((atom_pair_id (pbm opid') = Some opid) \<and>
(type_of_mem_op_block (pbm opid) = ald_block) \<and>
(type_of_mem_op_block (pbm opid') = ast_block) \<and>
(opid ;po^(proc_of_op opid pbm) opid')) \<longrightarrow>
(((opid m<xseq opid') = Some True) \<and>
(\<forall>opid''. ((type_of_mem_op_block (pbm opid'') \<in> {st_block, ast_block}) \<and>
List.member xseq opid'' \<and> \<comment>\<open> opid'' \<noteq> opid is true because their types are different. \<close>
opid'' \<noteq> opid') \<longrightarrow>
((opid'' m<xseq opid) = Some True \<or> (opid' m<xseq opid'') = Some True)))"
definition axiom_storestore:: "op_id \<Rightarrow> op_id \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
program_block_map \<Rightarrow> bool" where
"axiom_storestore opid opid' po xseq pbm \<equiv>
((type_of_mem_op_block (pbm opid) \<in> {st_block, ast_block}) \<and>
(type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}) \<and>
(opid ;po^(proc_of_op opid pbm) opid')) \<longrightarrow>
(opid m<xseq opid') = Some True"
text {* A new version of axiom_storestore for code export. *}
text {* Since our operational semantics always terminate, the axiom Termination
is trivialised to whether a store is eventually committed by the memory.
Thus we only need to check if it is in the (final) executed sequence or not. *}
definition axiom_termination:: "op_id \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
program_block_map \<Rightarrow> bool" where
"axiom_termination opid po xseq pbm \<equiv>
( (\<exists>p. List.member (po p) opid \<and> p<(Suc max_proc)) \<and>
(type_of_mem_op_block (pbm opid) \<in> {st_block, ast_block})) \<longrightarrow>
List.member xseq opid"
definition max_mem_order:: "op_id set \<Rightarrow> proc \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
op_id option" where
"max_mem_order opids p po xseq \<equiv>
if opids \<noteq> {} then
Some (THE opid. (opid \<in> opids \<and>
(\<forall>opid'. ((opid' \<in> opids \<and> opid' \<noteq> opid) \<longrightarrow>
((opid' m<xseq opid) = Some True \<or>
(opid' ;po^p opid))))))
else None"
text {* A new definition for max_mem_order for code export. *}
\<comment>\<open> primrec max_mem_order_list:: "op_id list \<Rightarrow> proc \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
op_id option \<Rightarrow> op_id option" where
"max_mem_order_list [] p po xseq opidop = opidop"
|"max_mem_order_list (x#xl) p po xseq opidop = (
case opidop of None \<Rightarrow> max_mem_order_list xl p po xseq (Some x)
|Some opid \<Rightarrow> (if (x m<2xseq opid) = Some True \<or> (x 2;po^p opid) then
max_mem_order_list xl p po xseq (Some opid)
else max_mem_order_list xl p po xseq (Some x)))"
lemma max_mem_order_code_equal1:
"x=max_mem_order_list opids p po xseq None \<Longrightarrow>
x= max_mem_order (set opids) p po xseq"
sorry
lemma max_mem_order_code_equal2:
"x= max_mem_order (set opids) p po xseq \<Longrightarrow>
x=max_mem_order_list opids p po xseq None"
unfolding max_mem_order_def sorry
lemma max_mem_order_code_equal3:
"max_mem_order (set opids) p po xseq =
max_mem_order_list opids p po xseq None"
using max_mem_order_code_equal1 max_mem_order_code_equal2 by auto
definition max_mem_order2:: "op_id set \<Rightarrow> proc \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
op_id option" where
"max_mem_order2 opids p po xseq \<equiv>
max_mem_order_list (sorted_list_of_set opids) p po xseq None" \<close>
lemma xx:"finite opids \<Longrightarrow>
set (sorted_list_of_set opids) = opids"
by simp
lemma list_before_x: "list_before x xlist opid \<Longrightarrow> list_before x (a#xlist) opid"
unfolding list_before_def
by (metis Suc_less_eq le0 length_Cons nth_Cons_Suc)
lemma list_before_x': "x\<noteq>a \<Longrightarrow> list_before x (a#xlist) opid \<Longrightarrow> list_before x xlist opid"
unfolding list_before_def
proof auto
fix i :: nat and j :: nat
assume a1: "(a # xlist) ! i \<noteq> a"
assume a2: "i < j"
assume a3: "j < Suc (length xlist)"
have "\<forall>n na. \<not> (n::nat) < na \<or> na \<noteq> 0"
by linarith
then have f4: "j \<noteq> 0"
using a2 by metis
obtain nn :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
f5: "\<forall>x0 x1. (\<exists>v2. x1 = Suc v2 \<and> v2 < x0) = (x1 = Suc (nn x0 x1) \<and> nn x0 x1 < x0)"
by moura
have "i < Suc (length xlist)"
using a3 a2 dual_order.strict_trans by blast
then show "\<exists>n<length xlist. \<exists>na<length xlist. xlist ! n = (a # xlist) ! i \<and> xlist ! na = xlist ! (j - Suc 0) \<and> n < na"
using f5 f4 a3 a2 a1 by (metis (no_types) One_nat_def diff_Suc_1 less_Suc_eq_0_disj nth_Cons')
qed
definition axiom_value:: "proc \<Rightarrow> op_id \<Rightarrow> virtual_address \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
program_block_map \<Rightarrow> sparc_state \<Rightarrow> memory_value option" where
"axiom_value p opid addr po xseq pbm state \<equiv>
case (max_mem_order ({opid'. (opid' m<xseq opid) = Some True \<and>
(type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}) \<and>
Some addr = op_addr (get_mem_op_state opid' state)} \<union>
{opid''. (opid'' ;po^p opid) \<and>
(type_of_mem_op_block (pbm opid'') \<in> {st_block, ast_block}) \<and>
Some addr = op_addr (get_mem_op_state opid'' state)}) p po xseq) of
Some opid''' \<Rightarrow> op_val (get_mem_op_state opid''' state)
|None \<Rightarrow> None"
definition st_blocks_addr::"virtual_address \<Rightarrow> program_block_map \<Rightarrow> sparc_state \<Rightarrow> op_id \<Rightarrow> bool"
where "st_blocks_addr addr pbm s \<equiv> \<lambda>opid.
(type_of_mem_op_block (pbm opid) \<in> {st_block, ast_block}) \<and>
Some addr = op_addr (get_mem_op_state opid s)"
definition axiom_value'::"proc \<Rightarrow> op_id \<Rightarrow> virtual_address \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow> program_block_map \<Rightarrow>
sparc_state \<Rightarrow> memory_value option" where
"axiom_value' p opid addr po xseq pbm state \<equiv>
case (max_mem_order (((st_blocks_addr addr pbm state) m<;xseq opid) \<union>
{opid''. (opid'' ;po^p opid) \<and> st_blocks_addr addr pbm state opid''}) p po xseq) of
Some opid''' \<Rightarrow> op_val (get_mem_op_state opid''' state)
|None \<Rightarrow> None"
lemma eq_mem_order_before_pred:
"(st_blocks_addr addr pbm state) m<;xseq opid = {opid'. (opid' m<xseq opid) = Some True \<and>
(type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}) \<and>
Some addr = op_addr (get_mem_op_state opid' state)}"
unfolding st_blocks_addr_def memory_order_before_pred_def
by auto
lemma "axiom_value' = axiom_value"
unfolding axiom_value'_def axiom_value_def
using eq_mem_order_before_pred
by (auto simp add: st_blocks_addr_def)
definition axiom_loadop:: "op_id \<Rightarrow> op_id \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
program_block_map \<Rightarrow> bool" where
"axiom_loadop opid opid' po xseq pbm \<equiv>
((type_of_mem_op_block (pbm opid) \<in> {ld_block, ald_block}) \<and>
(opid ;po^(proc_of_op opid pbm) opid')) \<longrightarrow>
(opid m<xseq opid') = Some True"
section {* Operational model. *}
text {* This section defines an inference rule based operational TSO model. *}
text {* Given an address and the executed sequence of mem_op_block ids, return
the id of the first store in the executed sequence at the same address.
If there are none, return None.
N.B. We could formulate the below functions more mathematically (i.e., using sets
and first-order logic), but we choose the define it in a more operational way
for performance reasons. *}
primrec get_first_store:: "virtual_address \<Rightarrow> op_id list \<Rightarrow> program_block_map \<Rightarrow>
sparc_state \<Rightarrow> op_id option" where
"get_first_store addr [] pbm state = None"
|"get_first_store addr (x#xs) pbm state = (
if Some addr = (op_addr (get_mem_op_state x state)) \<and>
type_of_mem_op_block (pbm x) \<in> {st_block, ast_block}
then
Some x
else get_first_store addr xs pbm state)"
definition mem_most_recent_store:: "virtual_address \<Rightarrow> executed_mem_ops \<Rightarrow> program_block_map \<Rightarrow>
sparc_state \<Rightarrow> op_id option" where
"mem_most_recent_store addr xseq pbm state \<equiv> get_first_store addr (List.rev xseq) pbm state"
text {* Given a load operation id and the program order, return the id of most recent
store at the same address in the program order that is before the load.
If there are none, return None. *}
definition proc_most_recent_store:: "proc \<Rightarrow> virtual_address \<Rightarrow> op_id \<Rightarrow> program_order \<Rightarrow>
program_block_map \<Rightarrow> sparc_state \<Rightarrow> op_id option" where
"proc_most_recent_store p addr opid po pbm state \<equiv>
get_first_store addr (List.rev (sub_list_before opid (po p))) pbm state"
text {* The value of the load operation based on the axiom value. *}
definition load_value:: "proc \<Rightarrow> virtual_address \<Rightarrow> op_id \<Rightarrow> program_order \<Rightarrow>
executed_mem_ops \<Rightarrow> program_block_map \<Rightarrow> sparc_state \<Rightarrow> memory_value option" where
"load_value p addr opid po xseq pbm state \<equiv>
case ((mem_most_recent_store addr xseq pbm state),(proc_most_recent_store p addr opid po pbm state)) of
(Some s1, Some s2) \<Rightarrow> (case (s1 m<xseq s2) of
Some True \<Rightarrow> op_val (get_mem_op_state s2 state)
|Some False \<Rightarrow> op_val (get_mem_op_state s1 state)
|None \<Rightarrow> None)
|(None, Some s2) \<Rightarrow> op_val (get_mem_op_state s2 state)
|(Some s1, None) \<Rightarrow> op_val (get_mem_op_state s1 state)
|(None, None) \<Rightarrow> None"
text {* A new version of load_value for code export. *}
text {* Assuming that when calling this function, the address and value of the store
is already computed in the process of proc_exe_to.
Commit the store to the memory. *}
definition mem_commit:: "op_id \<Rightarrow> sparc_state \<Rightarrow> sparc_state" where
"mem_commit opid s \<equiv>
let opr = get_mem_op_state opid s in
case ((op_addr opr),(op_val opr)) of
(Some addr, Some val) \<Rightarrow> mem_mod val addr s
|_ \<Rightarrow> s"
text {* Definition of the "inference rules" in our operational TSO model. *}
inductive
"mem_op"::"[program_order, program_block_map, op_id, executed_mem_ops, sparc_state,
executed_mem_ops, sparc_state] \<Rightarrow> bool"
("_ _ _ \<turnstile>m (_ _ \<rightarrow>/ _ _)" 100)
for po::"program_order" and pbm::"program_block_map" and opid::"op_id"
where
load_op:
"\<lbrakk>p = proc_of_op opid pbm;
(type_of_mem_op_block (pbm opid) = ld_block);
\<forall>opid'. (((opid' ;po^p opid) \<and>
(type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block})) \<longrightarrow>
(List.member xseq opid'));
s' = proc_exe_to_previous p po pbm (non_repeat_list_pos opid (po p)) s;
addr = load_addr p (List.last (insts (pbm opid))) s';
vop = axiom_value p opid addr po xseq pbm s'\<rbrakk> \<Longrightarrow>
po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid]
(proc_exe_to_last p po pbm (non_repeat_list_pos opid (po p)) vop (Some addr) s')"
|store_op:
"\<lbrakk>p = proc_of_op opid pbm;
(type_of_mem_op_block (pbm opid) = st_block);
(atomic_flag_val s) = None;
\<forall>opid'. (((opid' ;po^p opid) \<and>
(type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block, st_block, ast_block})) \<longrightarrow>
(List.member xseq opid'))\<rbrakk> \<Longrightarrow>
po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid]
(mem_commit opid (proc_exe_to p po pbm (non_repeat_list_pos opid (po p)) s))"
|atom_load_op:
"\<lbrakk>p = proc_of_op opid pbm;
(type_of_mem_op_block (pbm opid) = ald_block);
(atomic_flag_val s) = None;
\<forall>opid'. (((opid' ;po^p opid) \<and>
(type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block, st_block, ast_block})) \<longrightarrow>
(List.member xseq opid'));
s' = proc_exe_to_previous p po pbm (non_repeat_list_pos opid (po p)) s;
addr = atomic_load_addr p (List.last (insts (pbm opid))) s';
vop = axiom_value p opid addr po xseq pbm s'\<rbrakk> \<Longrightarrow>
po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid]
(atomic_flag_mod (Some opid) (proc_exe_to_last p po pbm (non_repeat_list_pos opid (po p))
vop (Some addr) s'))"
|atom_store_op:
"\<lbrakk>p = proc_of_op opid pbm;
(type_of_mem_op_block (pbm opid) = ast_block);
(atomic_flag_val s) = Some opid';
atom_pair_id (pbm opid) = Some opid';
\<forall>opid'. (((opid' ;po^p opid) \<and>
(type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block, st_block, ast_block})) \<longrightarrow>
(List.member xseq opid'))\<rbrakk> \<Longrightarrow>
po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid]
(mem_commit opid (atomic_flag_mod None
(proc_exe_to p po pbm (non_repeat_list_pos opid (po p)) s)))"
|o_op:
"\<lbrakk>p = proc_of_op opid pbm;
(type_of_mem_op_block (pbm opid) = o_block);
\<forall>opid'. (((opid' ;po^p opid) \<and>
(type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block, st_block, ast_block})) \<longrightarrow>
(List.member xseq opid'))\<rbrakk> \<Longrightarrow>
po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid]
(proc_exe_to p po pbm (non_repeat_list_pos opid (po p)) s)"
text {* The lemmas below are for inverse inference of the above rules. *}
inductive_cases mem_op_elim_cases:
"(po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
lemma mem_op_elim_load_op:
assumes a1: "(po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
and a2: "(type_of_mem_op_block (pbm opid) = ld_block)"
and a3: "(xseq' = xseq @ [opid] \<Longrightarrow>
s' = proc_exe_to_last (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm)))
(axiom_value (proc_of_op opid pbm) opid (load_addr (proc_of_op opid pbm)
(last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)) po xseq pbm (proc_exe_to_previous
(proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po (proc_of_op opid pbm)))
s)) (Some (load_addr (proc_of_op opid pbm) (last (insts (pbm opid)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s) \<Longrightarrow>
type_of_mem_op_block (pbm opid) = ld_block \<Longrightarrow>
(\<forall>opid'. ((opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block)) \<longrightarrow>
List.member xseq opid') \<Longrightarrow> P)"
shows "P"
using a2 a3 by (auto intro:mem_op_elim_cases[OF a1])
lemma mem_op_elim_store_op:
assumes a1: "(po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
and a2: "(type_of_mem_op_block (pbm opid) = st_block)"
and a3: "(xseq' = xseq @ [opid] \<Longrightarrow>
s' = mem_commit opid (proc_exe_to (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s) \<Longrightarrow>
type_of_mem_op_block (pbm opid) = st_block \<Longrightarrow>
atomic_flag_val s = None \<Longrightarrow>
\<forall>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
List.member xseq opid' \<Longrightarrow> P)"
shows "P"
using a2 a3 by (auto intro:mem_op_elim_cases[OF a1])
lemma mem_op_elim_atom_load_op:
assumes a1: "(po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
and a2: "(type_of_mem_op_block (pbm opid) = ald_block)"
and a3: "xseq' = xseq @ [opid] \<Longrightarrow>
s' = atomic_flag_mod (Some opid) (proc_exe_to_last (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm)))
(axiom_value (proc_of_op opid pbm) opid (atomic_load_addr (proc_of_op opid pbm)
(last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
po xseq pbm (proc_exe_to_previous (proc_of_op opid pbm)
po pbm (non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
(Some (atomic_load_addr (proc_of_op opid pbm) (last (insts (pbm opid)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)) \<Longrightarrow>
type_of_mem_op_block (pbm opid) = ald_block \<Longrightarrow>
atomic_flag_val s = None \<Longrightarrow>
\<forall>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
List.member xseq opid' \<Longrightarrow> P"
shows "P"
using a2 a3 by (auto intro:mem_op_elim_cases[OF a1])
lemma mem_op_elim_atom_store_op:
assumes a1: "(po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
and a2: "(type_of_mem_op_block (pbm opid) = ast_block)"
and a3: "(\<And>opid'. xseq' = xseq @ [opid] \<Longrightarrow>
s' = mem_commit opid (atomic_flag_mod None (proc_exe_to (proc_of_op opid pbm)
po pbm (non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)) \<Longrightarrow>
type_of_mem_op_block (pbm opid) = ast_block \<Longrightarrow>
atomic_flag_val s = Some opid' \<Longrightarrow>
atom_pair_id (pbm opid) = Some opid' \<Longrightarrow>
\<forall>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
List.member xseq opid' \<Longrightarrow> P)"
shows "P"
using a2 a3 by (auto intro:mem_op_elim_cases[OF a1])
lemma mem_op_elim_o_op:
assumes a1: "(po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
and a2: "(type_of_mem_op_block (pbm opid) = o_block)"
and a3: "(xseq' = xseq @ [opid] \<Longrightarrow>
s' = proc_exe_to (proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po
(proc_of_op opid pbm))) s \<Longrightarrow>
type_of_mem_op_block (pbm opid) = o_block \<Longrightarrow>
\<forall>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
List.member xseq opid' \<Longrightarrow> P)"
shows "P"
using a2 a3 by (auto intro:mem_op_elim_cases[OF a1])
lemma atomic_flag_mod_state: "s' = atomic_flag_mod (Some opid) s \<Longrightarrow>
atomic_flag (glob_var s') = Some opid"
unfolding atomic_flag_mod_def
by auto
lemma mem_op_atom_load_op_atomic_flag:
assumes a1: "(po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
and a2: "(type_of_mem_op_block (pbm opid) = ald_block)"
shows "atomic_flag (glob_var s') = Some opid"
proof -
have "xseq' = xseq @ [opid] \<Longrightarrow>
s' = atomic_flag_mod (Some opid) (proc_exe_to_last (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm)))
(axiom_value (proc_of_op opid pbm)
opid (atomic_load_addr (proc_of_op opid pbm) (last (insts (pbm opid)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
po xseq pbm (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
(Some (atomic_load_addr (proc_of_op opid pbm) (last (insts (pbm opid)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)) \<Longrightarrow>
type_of_mem_op_block (pbm opid) = ald_block \<Longrightarrow>
atomic_flag_val s = None \<Longrightarrow>
\<forall>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
List.member xseq opid' \<Longrightarrow>
atomic_flag (glob_var s') = Some opid"
using atomic_flag_mod_state by auto
then show ?thesis using a1 a2 mem_op_elim_atom_load_op
by metis
qed
text {* Given a program_order, define a transition from (xseq, rops, state)
to (xseq', rops', state'), where xseq is the executed sequence of memory operations,
rops is the set of remaining unexecuted memory operations. *}
definition mem_state_trans:: "program_order \<Rightarrow> program_block_map \<Rightarrow>
(executed_mem_ops \<times> (op_id set) \<times> sparc_state) \<Rightarrow>
(executed_mem_ops \<times> (op_id set) \<times> sparc_state) \<Rightarrow> bool"
("_ _ \<turnstile>t (_ \<rightarrow>/ _)" 100) where
"po pbm \<turnstile>t pre \<rightarrow> post \<equiv>
(\<exists>opid. opid \<in> (fst (snd pre)) \<and>
(po pbm opid \<turnstile>m (fst pre) (snd (snd pre)) \<rightarrow> (fst post) (snd (snd post))) \<and>
(fst (snd post)) = (fst (snd pre)) - {opid})"
text {* Define the conditions for a program to be valid. *}
definition valid_program:: "program_order \<Rightarrow> program_block_map \<Rightarrow> bool" where
"valid_program po pbm \<equiv>
(\<forall>opid opid' opid''. (atom_pair_id (pbm opid) = Some opid' \<and> opid \<noteq> opid'') \<longrightarrow>
(atom_pair_id (pbm opid'') \<noteq> Some opid')) \<and>
(\<forall>opid p. (List.member (po p) opid \<and> type_of_mem_op_block (pbm opid) = ald_block) \<longrightarrow>
(\<exists>opid'. (opid ;po^p opid') \<and> type_of_mem_op_block (pbm opid') = ast_block \<and>
atom_pair_id (pbm opid') = Some opid)) \<and>
(\<forall>opid' p. (List.member (po p) opid' \<and> type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
(\<exists>opid. (opid ;po^p opid') \<and> type_of_mem_op_block (pbm opid) = ald_block \<and>
atom_pair_id (pbm opid') = Some opid)) \<and>
(\<forall>p. non_repeat_list (po p)) \<and>
(\<forall>opid opid' p. (opid ;po^p opid') \<longrightarrow> (proc_of_op opid pbm = proc_of_op opid' pbm
\<and> p = proc_of_op opid pbm)) \<and>
(\<forall>opid p. (List.member (po p) opid) \<longrightarrow> (proc_of_op opid pbm = p))"
text {* The definition of a valid complete sequence of memory executions. *}
definition valid_mem_exe_seq:: "program_order \<Rightarrow> program_block_map \<Rightarrow>
(executed_mem_ops \<times> (op_id set) \<times> sparc_state) list \<Rightarrow> bool" where
"valid_mem_exe_seq po pbm exe_list \<equiv>
valid_program po pbm \<and>
List.length exe_list > 0 \<and>
fst (List.hd exe_list) = [] \<and> \<comment>\<open> Nothing has been executed in the initial state. \<close>
(\<forall>opid. (\<exists>p. List.member (po p) opid) =
(opid \<in> fst (snd (List.hd exe_list)))) \<and> \<comment>\<open> Initially the *to be executed* set of op_ids include every op_id in the program order. \<close>
\<comment>\<open>non_repeat_list (fst (last exe_list)) \<and> Each op_id is unique. \<close>
(atomic_flag_val (snd (snd (hd exe_list))) = None) \<and> \<comment>\<open> In the initial state, the atomic flag is None. \<close>
\<comment>\<open>fst (snd (List.last exe_list)) = {} \<and> Nothing is remaining to be executed in the final state. (Redundant)\<close>
(\<forall>i. i < (List.length exe_list) - 1 \<longrightarrow> \<comment>\<open> Each adjacent states are from a mem_state_trans. \<close>
(po pbm \<turnstile>t (exe_list!i) \<rightarrow> (exe_list!(i+1))))"
definition valid_mem_exe_seq_final:: "program_order \<Rightarrow> program_block_map \<Rightarrow>
(executed_mem_ops \<times> (op_id set) \<times> sparc_state) list \<Rightarrow> bool" where
"valid_mem_exe_seq_final po pbm exe_list \<equiv>
valid_mem_exe_seq po pbm exe_list \<and>
fst (snd (List.hd exe_list)) = set (fst (List.last exe_list)) \<comment>\<open> Everything has been executed in the final state. \<close>"
section {* The equivalence of the axiomatic model and the operational model. *}
subsection {* Soundness of the operational TSO model *}
text {* This subsection shows that every valid sequence of memory operations
executed by the operational TSO model satisfies the TSO axioms. *}
text {* First, we show that each valid_mem_exe_seq satisfies all the axioms. *}
lemma mem_op_exe: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s' \<Longrightarrow> xseq' = xseq@[opid]"
unfolding mem_op.simps
by auto
lemma mem_state_trans_op: "po pbm \<turnstile>t (xseq,rops,s) \<rightarrow> (xseq',rops',s') \<Longrightarrow>
List.butlast xseq' = xseq \<and> {List.last xseq'} \<union> rops' = rops"
unfolding mem_state_trans_def
apply simp
using mem_op_exe
by fastforce
lemma mem_state_trans_op2:
assumes a1: "po pbm \<turnstile>t (xseq,rops,s) \<rightarrow> (xseq',rops',s')"
shows "xseq' = xseq@(List.sorted_list_of_set (rops - rops'))"
proof -
from a1 have f1: "\<exists>opid. opid \<in> rops \<and> (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s') \<and> rops' = rops - {opid}"
using mem_state_trans_def by simp
then obtain opid::op_id where
f2: "opid \<in> rops \<and> (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s') \<and> rops' = rops - {opid}"
by auto
then have f3: "xseq' = xseq@[opid]"
using mem_op_exe by auto
from f2 have "rops - rops' = {opid}"
by auto
then have f4: "List.sorted_list_of_set (rops - rops') = [opid]"
by auto
then show ?thesis
using f3 by auto
qed
lemma mem_state_trans_op3:
assumes a1: "po pbm \<turnstile>t (xseq,rops,s) \<rightarrow> (xseq',rops',s')"
shows "\<exists>opid. xseq' = xseq@[opid] \<and> rops = rops' \<union> {opid}"
proof -
from a1 have f1: "\<exists>opid. opid \<in> rops \<and> (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s') \<and> rops' = rops - {opid}"
using mem_state_trans_def by simp
then obtain opid::op_id where
f2: "opid \<in> rops \<and> (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s') \<and> rops' = rops - {opid}"
by auto
then have f3: "xseq' = xseq@[opid]"
using mem_op_exe by auto
then show ?thesis using f2 by auto
qed
lemma mem_state_trans_op4:
assumes a1: "po pbm \<turnstile>t (xseq,rops,s) \<rightarrow> (xseq',rops',s')"
shows "(set xseq) \<union> rops = (set xseq') \<union> rops'"
proof -
show ?thesis using a1 mem_state_trans_op3
by fastforce
qed
lemma mem_state_trans_unique_op_id:
assumes a1:"\<forall>opid. opid \<in> rops \<longrightarrow> \<not>(List.member xseq opid)"
and a2:"non_repeat_list xseq"
and a3:"po pbm \<turnstile>t (xseq,rops,s) \<rightarrow> (xseq',rops',s')"
shows "non_repeat_list xseq' \<and> (\<forall>opid. opid \<in> rops' \<longrightarrow> \<not>(List.member xseq' opid))"
proof -
from a3 have "\<exists>opid. xseq' = xseq@[opid] \<and> opid \<in> (rops - rops')"
using mem_state_trans_op2 mem_state_trans_op3
apply auto
by (metis DiffD2 mem_op_exe mem_state_trans_def prod.sel(1) prod.sel(2) singletonI)
then obtain opid::op_id where f1: "xseq' = xseq@[opid] \<and> opid \<in> (rops - rops')"
by auto
then have "\<not>(List.member xseq opid)"
using a1 by auto
then have f2: "non_repeat_list xseq'"
using f1 a2 non_repeat_list_extend by fastforce
from f1 a3 mem_state_trans_op have f3: "rops' = rops - {opid}"
apply auto
apply blast
by fastforce
then have f4: "\<forall>opid'. opid' \<in> rops - {opid} \<longrightarrow> \<not>(List.member (xseq@[opid]) opid')"
using a1
by (metis DiffD1 DiffD2 UnE list.set(1) list.simps(15) member_def set_append)
then show ?thesis
using f2 f3 f1 by auto
qed
lemma mem_exe_seq_op_unique:
assumes a1: "List.length exe_list > 0"
and a2: "(\<forall>i. i < (List.length exe_list) - 1 \<longrightarrow>
(po pbm \<turnstile>t (List.nth exe_list i) \<rightarrow> (List.nth exe_list (i+1))))"
and a3: "non_repeat_list (fst (List.hd exe_list))"
and a4: "\<forall>opid. opid \<in> (fst (snd (List.hd exe_list))) \<longrightarrow>
\<not>(List.member (fst (List.hd exe_list)) opid)"
shows "non_repeat_list (fst (List.last exe_list)) \<and>
(\<forall>opid. opid \<in> (fst (snd (List.last exe_list))) \<longrightarrow>
\<not>(List.member (fst (List.last exe_list)) opid))"
proof (insert assms, induction "exe_list" arbitrary: po rule: rev_induct)
case Nil
then show ?case
by auto
next
case (snoc x xs)
then show ?case
proof (cases "List.length xs > 0")
case True
then have f1: "List.length xs > 0"
by auto
then have f2: "hd (xs@[x]) = hd xs"
by auto
from f1 have f3: "\<forall>i<(length xs - 1). (po pbm \<turnstile>t (xs ! i) \<rightarrow> (xs ! (i + 1)))"
using snoc(3)
proof -
{ fix nn :: nat
have ff1: "\<forall>n. 1 + n = Suc n"
by (metis One_nat_def add.left_neutral plus_nat.simps(2))
have "\<forall>n. \<not> n < length (butlast xs) \<or> Suc n < length xs"
by (metis (no_types) One_nat_def Suc_less_eq Suc_pred f1 length_butlast)
then have "\<not> nn < length xs - 1 \<or> (po pbm \<turnstile>t (xs ! nn) \<rightarrow> (xs ! (nn + 1)))"
using ff1 by (metis (no_types) Suc_less_eq add.commute butlast_snoc length_butlast less_Suc_eq nth_append snoc.prems(2)) }
then show ?thesis
by meson
qed
from f2 have f4: "non_repeat_list (fst (hd xs))"
using snoc(4) by auto
from f2 have f5: "\<forall>opid. opid \<in> fst (snd (hd xs)) \<longrightarrow> \<not> List.member (fst (hd xs)) opid"
using snoc(5) by auto
define xseq where "xseq = (fst (List.last xs))"
define rops where "rops = (fst (snd (List.last xs)))"
define s where "s = (snd (snd (List.last xs)))"
define xseq' where "xseq' = (fst (List.last (xs@[x])))"
define rops' where "rops' = (fst (snd (List.last (xs@[x]))))"
define s' where "s' = (snd (snd (List.last (xs@[x]))))"
from f1 f3 f4 f5 have f6: "non_repeat_list xseq \<and>
(\<forall>opid. opid \<in> rops \<longrightarrow> \<not> List.member xseq opid)"
using snoc(1) xseq_def rops_def by auto
have f7: "List.last xs = (xs@[x])!(List.length (xs@[x]) - 2)"
by (metis (no_types, lifting) One_nat_def Suc_pred butlast_snoc diff_diff_left f1 last_conv_nth length_butlast length_greater_0_conv lessI nat_1_add_1 nth_append)
have f8: "List.last (xs@[x]) = (xs@[x])!(List.length (xs@[x]) - 1)"
by simp
from snoc(3) f7 f8 have "po pbm \<turnstile>t (List.last xs) \<rightarrow> (List.last (xs@[x]))"
by (metis (no_types, lifting) Nat.add_0_right One_nat_def Suc_pred add_Suc_right butlast_snoc diff_diff_left f1 length_butlast lessI nat_1_add_1)
then have "po pbm \<turnstile>t (xseq,rops,s) \<rightarrow> (xseq',rops',s')"
using xseq_def rops_def s_def xseq'_def rops'_def s'_def
by auto
then have "non_repeat_list xseq' \<and> (\<forall>opid. opid \<in> rops' \<longrightarrow> \<not>(List.member xseq' opid))"
using f6 mem_state_trans_unique_op_id
by blast
then show ?thesis
using xseq'_def rops'_def
by auto
next
case False
then have "List.length xs = 0"
by auto
then have "xs@[x] = [x]"
by auto
then have "hd (xs@[x]) = last (xs@[x])"
by auto
then show ?thesis
using snoc by auto
qed
qed
lemma valid_mem_exe_seq_op_unique0:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list) - 1"
shows "non_repeat_list (fst (exe_list!i)) \<and>
(\<forall>opid. opid \<in> (fst (snd (exe_list!i))) \<longrightarrow> \<not>(List.member (fst (exe_list!i)) opid))"
proof (insert assms, induction i)
case 0
then have "(fst (exe_list!0)) = []"
unfolding valid_mem_exe_seq_def
proof -
assume "valid_program po pbm \<and> 0 < length exe_list \<and> fst (hd exe_list) = [] \<and> (\<forall>opid. (\<exists>p. List.member (po p) opid) = (opid \<in> fst (snd (hd exe_list)))) \<and> (atomic_flag_val (snd (snd (hd exe_list))) = None) \<and> (\<forall>i<length exe_list - 1. (po pbm \<turnstile>t exe_list ! i \<rightarrow> (exe_list ! (i + 1))))"
then show ?thesis
by (metis hd_conv_nth length_greater_0_conv)
qed
then show ?case
using non_repeat_list_emp
by (simp add: member_rec(2))
next
case (Suc i)
have f1: "non_repeat_list (fst (exe_list ! i)) \<and>
(\<forall>opid. opid \<in> fst (snd (exe_list ! i)) \<longrightarrow> \<not> List.member (fst (exe_list ! i)) opid)"
using Suc by auto
have f2: "(po pbm \<turnstile>t exe_list ! i \<rightarrow> (exe_list ! (i + 1)))"
using Suc unfolding valid_mem_exe_seq_def
by auto
define xseq where "xseq \<equiv> (fst (exe_list ! i))"
define rops where "rops \<equiv> (fst (snd (exe_list ! i)))"
define s where "s \<equiv> (snd (snd (exe_list ! i)))"
define xseq' where "xseq' \<equiv> (fst (exe_list ! (i+1)))"
define rops' where "rops' \<equiv> (fst (snd (exe_list ! (i+1))))"
define s' where "s' \<equiv> (snd (snd (exe_list ! (i+1))))"
from f1 have f3: "\<forall>opid. opid \<in> rops \<longrightarrow> \<not>(List.member xseq opid) \<and> non_repeat_list xseq"
using rops_def xseq_def by auto
from f2 have f4: "po pbm \<turnstile>t (xseq,rops,s) \<rightarrow> (xseq',rops',s')"
using xseq_def xseq'_def rops_def rops'_def s_def s'_def
by auto
from f3 f4 have "non_repeat_list xseq' \<and> (\<forall>opid. opid \<in> rops' \<longrightarrow> \<not>(List.member xseq' opid))"
using mem_state_trans_unique_op_id
by (metis f1 xseq_def)
then show ?case
using xseq'_def rops'_def
by auto
qed
lemma valid_mem_exe_seq_op_unique:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
shows "non_repeat_list (fst (List.last exe_list))"
proof -
have f1: "non_repeat_list (fst (List.hd exe_list))"
using a1 unfolding valid_mem_exe_seq_def
using non_repeat_list_emp by auto
have f2: "\<forall>opid. opid \<in> (fst (snd (List.hd exe_list))) \<longrightarrow>
\<not>(List.member (fst (List.hd exe_list)) opid)"
using a1 unfolding valid_mem_exe_seq_def
apply auto
by (simp add: member_rec(2))
show ?thesis
using mem_exe_seq_op_unique a1 f1 f2
unfolding valid_mem_exe_seq_def
by auto
qed
lemma valid_mem_exe_seq_op_unique1:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list)"
shows "non_repeat_list (fst (exe_list!i))"
proof -
show ?thesis using a1
using valid_mem_exe_seq_op_unique0 valid_mem_exe_seq_op_unique
by (metis (no_types, hide_lams) One_nat_def Suc_pred a2 last_conv_nth length_0_conv less_Suc_eq less_irrefl_nat valid_mem_exe_seq_def)
qed
lemma valid_mem_exe_seq_op_unique2:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
and a3: "i < (List.length exe_list) - 1"
shows "\<not> (List.member (fst (exe_list!i)) opid)"
proof (rule ccontr)
assume "\<not> \<not> List.member (fst (exe_list ! i)) opid"
then have "List.member (fst (exe_list ! i)) opid"
by auto
then have f1: "\<exists>n. n \<le> length (fst (exe_list ! i)) - 1 \<and> (fst (exe_list ! i))!n = opid"
by (metis (no_types, lifting) One_nat_def Suc_pred eq_imp_le in_set_conv_nth in_set_member length_pos_if_in_set less_Suc_eq less_imp_le)
have f2: "(fst (exe_list!(i+1))) = (fst (exe_list!i))@[opid]"
using a2 mem_op_exe by auto
from f1 f2 have f3: "\<exists>n. n \<le> length (fst (exe_list!(i+1))) - 2 \<and>
(fst (exe_list!(i+1)))!n = opid"
by (metis (no_types, hide_lams) Suc_1 Suc_eq_plus1 diff_diff_add last_conv_nth le_less_trans length_butlast not_less nth_append snoc_eq_iff_butlast)
from f2 have f4: "\<exists>m. m = length (fst (exe_list!(i+1))) - 1 \<and>
(fst (exe_list!(i+1)))!m = opid"
by auto
then have f5: "\<exists>m. m > length (fst (exe_list!(i+1))) - 2 \<and> m = length (fst (exe_list!(i+1))) - 1 \<and>
(fst (exe_list!(i+1)))!m = opid"
by (metis (no_types, lifting) One_nat_def Suc_eq_plus1 \<open>\<not> \<not> List.member (fst (exe_list ! i)) opid\<close> add_diff_cancel_right diff_add_inverse2 diff_less f2 length_append length_pos_if_in_set lessI list.size(3) list.size(4) member_def nat_1_add_1)
from f3 f5 have "\<exists>m n. m \<noteq> n \<and> n \<le> length (fst (exe_list!(i+1))) - 2 \<and>
m = length (fst (exe_list!(i+1))) - 1 \<and>
((fst (exe_list!(i+1)))!m = (fst (exe_list!(i+1)))!n)"
by (metis not_less)
then have "\<exists>m n. m \<noteq> n \<and> n < length (fst (exe_list!(i+1))) \<and>
m < length (fst (exe_list!(i+1))) \<and>
((fst (exe_list!(i+1)))!m = (fst (exe_list!(i+1)))!n)"
by (metis (no_types, hide_lams) One_nat_def diff_less f5 le_antisym length_0_conv length_greater_0_conv lessI less_imp_diff_less less_irrefl_nat not_less zero_diff)
then have f6: "\<not> (non_repeat_list (fst (exe_list!(i+1))))"
unfolding non_repeat_list_def
using nth_eq_iff_index_eq by auto
\<comment>\<open> by auto \<close>
from a3 have f7: "i+1 < length exe_list"
by auto
then have f7: "non_repeat_list (fst (exe_list!(i+1)))"
using valid_mem_exe_seq_op_unique1 a1
by auto
then show False
using f6 by auto
qed
lemma valid_exe_op_include:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "(opid m<(fst (List.last exe_list)) opid') = Some True"
and a3: "(opid \<in> fst (snd (List.hd exe_list)) \<and>
opid' \<in> fst (snd (List.hd exe_list)) \<and> opid \<noteq> opid')"
shows "(List.member (fst (last exe_list)) opid) \<and> (List.member (fst (last exe_list)) opid')"
proof -
show ?thesis using assms
unfolding valid_mem_exe_seq_final_def valid_mem_exe_seq_def memory_order_before_def
apply simp
using in_set_member
by fastforce
qed
lemma valid_exe_all_order: "valid_mem_exe_seq_final po pbm exe_list \<Longrightarrow>
\<forall>opid opid'. (opid \<in> fst (snd (List.hd exe_list)) \<and>
opid' \<in> fst (snd (List.hd exe_list)) \<and> opid \<noteq> opid') \<longrightarrow>
((opid m<(fst (List.last exe_list)) opid') = Some True \<or>
(opid' m<(fst (List.last exe_list)) opid) = Some True)"
unfolding valid_mem_exe_seq_final_def valid_mem_exe_seq_def
apply auto
apply (subgoal_tac "List.member (fst (last exe_list)) opid' \<and> List.member (fst (last exe_list)) opid")
unfolding memory_order_before_def
apply simp
prefer 2
using in_set_member
apply fastforce
apply auto
using valid_mem_exe_seq_op_unique list_elements_before
by metis
text {* The lemma below shows that the axiom Order is satisfied
in any valid execution sequence of our operational model.
We assume that each op_id is unique in executed_mem_ops.
As a consequence, for any two op_ids in executed_mem_ops,
either op_id1 < op_id2 or op_id2 < op_id1 in the list. *}
lemma axiom_order_sat: "valid_mem_exe_seq_final po pbm exe_list \<Longrightarrow>
axiom_order opid opid' (fst (List.last exe_list)) pbm"
proof -
assume a1: "valid_mem_exe_seq_final po pbm exe_list"
show ?thesis unfolding axiom_order_def
proof (rule impI)
assume a2: "type_of_mem_op_block (pbm opid) \<in> {st_block, ast_block} \<and>
type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block} \<and>
opid \<in> set (fst (last exe_list)) \<and> opid' \<in> set (fst (last exe_list)) \<and> opid \<noteq> opid'"
then have "(opid \<in> fst (snd (List.hd exe_list)) \<and>
opid' \<in> fst (snd (List.hd exe_list)) \<and> opid \<noteq> opid')"
using a1 unfolding valid_mem_exe_seq_final_def valid_mem_exe_seq_def by auto
then show "(opid m<(fst (last exe_list)) opid') = Some True \<or>
(opid' m<(fst (last exe_list)) opid) = Some True"
using a1 valid_exe_all_order by auto
qed
qed
lemma valid_mem_exe_seq_ops: "valid_mem_exe_seq_final po pbm exe_list \<Longrightarrow>
(\<forall>opid. (\<exists>p. List.member (po p) opid \<and> p<(Suc max_proc)) \<longrightarrow> (List.member (fst (List.last exe_list)) opid))"
unfolding valid_mem_exe_seq_final_def valid_mem_exe_seq_def
using in_set_member by fastforce
text {* The lemma below shows that the axiom Termination is (trivially) satisfied
in any valid execution sequence of our operational model. *}
lemma axiom_termination_sat: "valid_mem_exe_seq_final po pbm exe_list \<Longrightarrow>
axiom_termination opid po (fst (List.last exe_list)) pbm"
unfolding axiom_termination_def using valid_mem_exe_seq_ops
by auto
text {* The axiom Value is trivially satisfied in our operational model
because our operational model directly uses the axiom to obtain the value of
load operations. *}
lemma valid_exe_xseq_sublist:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "i < (List.length exe_list) - 1"
shows "(set (fst (List.nth exe_list i))) \<union> (fst (snd (List.nth exe_list i))) =
(set (fst (last exe_list)))"
proof (insert assms, induction i)
case 0
then show ?case
unfolding valid_mem_exe_seq_final_def valid_mem_exe_seq_def
proof -
assume a1: "(valid_program po pbm \<and>
0 < length exe_list \<and>
fst (hd exe_list) = [] \<and>
(\<forall>opid. (\<exists>p. List.member (po p) opid) = (opid \<in> fst (snd (hd exe_list)))) \<and>
(atomic_flag_val (snd (snd (hd exe_list))) = None) \<and>
(\<forall>i<length exe_list - 1. (po pbm \<turnstile>t (exe_list ! i) \<rightarrow> (exe_list ! (i + 1))))) \<and>
fst (snd (hd exe_list)) = set (fst (last exe_list))"
then have a1f: "valid_program po pbm \<and> 0 < length exe_list \<and> fst (hd exe_list) = [] \<and> (\<forall>n. (\<forall>na. \<not> List.member (po na) n) \<or> n \<in> fst (snd (hd exe_list))) \<and> fst (snd (hd exe_list)) = set (fst (last exe_list)) \<and> (atomic_flag_val (snd (snd (hd exe_list))) = None) \<and> (\<forall>n. \<not> n < length exe_list - 1 \<or> (po pbm \<turnstile>t exe_list ! n \<rightarrow> (exe_list ! (n + 1))))"
by blast
assume a2: "0 < length exe_list - 1"
then show ?thesis using a1f
by (metis (no_types) hd_conv_nth length_greater_0_conv list.set(1) sup_bot.left_neutral)
qed
next
case (Suc i)
have f1: "(po pbm \<turnstile>t (List.nth exe_list i) \<rightarrow> (List.nth exe_list (i+1)))"
using Suc unfolding valid_mem_exe_seq_final_def valid_mem_exe_seq_def
using Suc_lessD by blast
have f2: "(set (fst (exe_list ! i))) \<union> (fst (snd (exe_list ! i))) =
(set (fst (exe_list ! (i+1)))) \<union> (fst (snd (exe_list ! (i+1))))"
using f1 mem_state_trans_op4
by (metis prod.collapse)
then show ?case
using Suc by auto
qed
lemma valid_exe_xseq_sublist2:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list) - 1"
shows "\<exists>opid. (fst (exe_list!i))@[opid] = (fst (exe_list!(i+1)))"
proof -
have f1: "(po pbm \<turnstile>t (List.nth exe_list i) \<rightarrow> (List.nth exe_list (i+1)))"
using a1 a2 unfolding valid_mem_exe_seq_def by auto
then show ?thesis
using mem_state_trans_op3 mem_op_exe
by (metis (no_types) f1 mem_op_exe mem_state_trans_def)
qed
lemma valid_exe_xseq_sublist3:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < j"
and a3: "j < (List.length exe_list)"
shows "is_sublist (fst (exe_list!i)) (fst (exe_list!j))"
proof (insert assms, induction j arbitrary: i)
case 0
then show ?case by auto
next
case (Suc j)
then show ?case
proof (cases "i = j")
case True
then have "\<exists>opid. (fst (exe_list!i))@[opid] = (fst (exe_list!(j+1)))"
using Suc(2) Suc(4) valid_exe_xseq_sublist2
by (metis Suc_eq_plus1 less_diff_conv)
then show ?thesis
unfolding is_sublist_def
by auto
next
case False
then have f1: "i < j"
using Suc(3) by auto
have f2: "j < length exe_list"
using Suc(4) by auto
from f1 f2 have f3: "is_sublist (fst (exe_list ! i)) (fst (exe_list ! j))"
using Suc(1) Suc(2) by auto
have f4: "\<exists>opid. (fst (exe_list!j))@[opid] = (fst (exe_list!(j+1)))"
using Suc(2) Suc(4) valid_exe_xseq_sublist2
by auto
then show ?thesis
using f3 unfolding is_sublist_def
by (metis Suc_eq_plus1 append.assoc)
qed
qed
lemma valid_exe_xseq_sublist4:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list)"
shows "is_sublist (fst (exe_list!i)) (fst (List.last exe_list))"
proof (cases "i = (List.length exe_list) - 1")
case True
then have "(fst (exe_list!i)) = (fst (List.last exe_list))"
using a1 last_conv_nth valid_mem_exe_seq_def by fastforce
then show ?thesis
using is_sublist_id by auto
next
case False
then have "i < (List.length exe_list) - 1"
using a2 by auto
then have "is_sublist (fst (exe_list!i)) (fst (exe_list!((List.length exe_list) - 1)))"
using a1 valid_exe_xseq_sublist3 by auto
then show ?thesis
using a1 last_conv_nth valid_mem_exe_seq_def by fastforce
qed
lemma valid_exe_xseq_sublist5:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < j"
and a3: "j < (List.length exe_list)"
and a4: "po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))"
shows "List.member (fst (exe_list!j)) opid"
proof -
from a4 have "(fst (exe_list!(i+1))) = (fst (exe_list!i))@[opid]"
using mem_op_exe by auto
then have f1: "List.member (fst (exe_list!(i+1))) opid"
by (metis One_nat_def Suc_eq_plus1 in_set_member length_append less_add_one list.size(3) list.size(4) nth_append_length nth_mem)
show ?thesis
proof (cases "i + 1 = j")
case True
then show ?thesis
using f1 by auto
next
case False
then have "i+1 < j"
using a2 by auto
then have f2: "is_sublist (fst (exe_list!(i+1))) (fst (exe_list!j))"
using a1 a3 valid_exe_xseq_sublist3 by auto
then show ?thesis
using f1 sublist_member by auto
qed
qed
lemma valid_exe_xseq_sublist6:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list) - 1"
shows "(set (fst (List.nth exe_list i))) \<union> (fst (snd (List.nth exe_list i))) =
(fst (snd (hd exe_list)))"
proof (insert assms, induction i)
case 0
then show ?case
unfolding valid_mem_exe_seq_def
proof -
assume a1: "(valid_program po pbm \<and>
0 < length exe_list \<and>
fst (hd exe_list) = [] \<and>
(\<forall>opid. (\<exists>p. List.member (po p) opid) = (opid \<in> fst (snd (hd exe_list)))) \<and>
(atomic_flag_val (snd (snd (hd exe_list))) = None) \<and>
(\<forall>i<length exe_list - 1. (po pbm \<turnstile>t (exe_list ! i) \<rightarrow> (exe_list ! (i + 1)))))"
then have a1f: "valid_program po pbm \<and> 0 < length exe_list \<and> fst (hd exe_list) = [] \<and>
(\<forall>n. (\<forall>na. \<not> List.member (po na) n) \<or> n \<in> fst (snd (hd exe_list))) \<and>
(atomic_flag_val (snd (snd (hd exe_list))) = None) \<and>
(\<forall>n. \<not> n < length exe_list - 1 \<or> (po pbm \<turnstile>t exe_list ! n \<rightarrow> (exe_list ! (n + 1))))"
by blast
assume a2: "0 < length exe_list - 1"
then show ?thesis using a1f
by (metis (no_types) hd_conv_nth length_greater_0_conv list.set(1) sup_bot.left_neutral)
qed
next
case (Suc i)
have f1: "(po pbm \<turnstile>t (List.nth exe_list i) \<rightarrow> (List.nth exe_list (i+1)))"
using Suc unfolding valid_mem_exe_seq_final_def valid_mem_exe_seq_def
using Suc_lessD by blast
have f2: "(set (fst (exe_list ! i))) \<union> (fst (snd (exe_list ! i))) =
(set (fst (exe_list ! (i+1)))) \<union> (fst (snd (exe_list ! (i+1))))"
using f1 mem_state_trans_op4
by (metis prod.collapse)
then show ?case
using Suc by auto
qed
lemma valid_exe_xseq_sublist7:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list)"
shows "(set (fst (List.nth exe_list i))) \<union> (fst (snd (List.nth exe_list i))) =
(fst (snd (hd exe_list)))"
proof (cases "i < (List.length exe_list) - 1")
case True
then show ?thesis using valid_exe_xseq_sublist6[OF a1 True] by auto
next
case False
then have f1: "i = (List.length exe_list) - 1"
using a2 by auto
then show ?thesis
proof (cases "(List.length exe_list) > 1")
case True
then obtain j where f2: "0 \<le> j \<and> j = i - 1"
using f1 by auto
then have f3: "(set (fst (List.nth exe_list j))) \<union> (fst (snd (List.nth exe_list j))) =
(fst (snd (hd exe_list)))"
using valid_exe_xseq_sublist6[OF a1] f1
using True by auto
from a1 f1 f2 True have f4: "(po pbm \<turnstile>t (exe_list!j) \<rightarrow> (exe_list!i))"
unfolding valid_mem_exe_seq_def
by (metis diff_add diff_diff_cancel diff_is_0_eq le_eq_less_or_eq less_one nat_neq_iff)
then have f5: "(set (fst (exe_list!j))) \<union> (fst (snd (exe_list!j))) =
(set (fst (exe_list!i))) \<union> (fst (snd (exe_list!i)))"
using mem_state_trans_op4
by (metis surjective_pairing)
then show ?thesis using f3 by auto
next
case False
then have f6: "(length exe_list) = 1"
using a1 unfolding valid_mem_exe_seq_def
by linarith
then have f7: "(exe_list!i) = (hd exe_list)"
using f1
by (metis diff_self_eq_0 hd_conv_nth list.size(3) zero_neq_one)
then show ?thesis using a1 unfolding valid_mem_exe_seq_def by auto
qed
qed
lemma valid_exe_xseq_sublist_last:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
shows "(set (fst (last exe_list))) \<union> (fst (snd (last exe_list))) =
(fst (snd (hd exe_list)))"
proof -
from a1 have f1: "length exe_list > 0"
unfolding valid_mem_exe_seq_def by auto
then obtain i where f2: "i \<ge> 0 \<and> i = (length exe_list) - 1"
by simp
then have f3: "i < length exe_list"
using f1 by auto
then have "(set (fst (exe_list!i))) \<union> (fst (snd (exe_list!i))) =
(fst (snd (hd exe_list)))"
using valid_exe_xseq_sublist7[OF a1 f3] by auto
then show ?thesis using f1 f2
by (simp add: last_conv_nth)
qed
lemma valid_exe_xseq_sublist_length:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list)"
shows "List.length (fst (exe_list!i)) = i"
proof (insert assms, induction i)
case 0
then show ?case
unfolding valid_mem_exe_seq_def
proof -
assume "valid_program po pbm \<and> 0 < length exe_list \<and> fst (hd exe_list) = [] \<and> (\<forall>opid. (\<exists>p. List.member (po p) opid) = (opid \<in> fst (snd (hd exe_list)))) \<and> (atomic_flag_val (snd (snd (hd exe_list))) = None) \<and> (\<forall>i<length exe_list - 1. (po pbm \<turnstile>t exe_list ! i \<rightarrow> (exe_list ! (i + 1))))"
then show ?thesis
by (metis (no_types) gr_implies_not0 hd_conv_nth length_0_conv)
qed
next
case (Suc i)
have f1: "length (fst (exe_list ! i)) = i"
using Suc by auto
from Suc(3) have "i < length exe_list - 1"
by auto
then have "(po pbm \<turnstile>t (exe_list!i) \<rightarrow> (exe_list!(i+1)))"
using Suc(2) unfolding valid_mem_exe_seq_def
by auto
then have "length (fst (exe_list ! i)) + 1 = length (fst (exe_list ! (i+1)))"
using mem_state_trans_op
by (metis (no_types, lifting) One_nat_def Suc.prems(1) Suc_eq_plus1 \<open>i < length exe_list - 1\<close> length_append list.size(3) list.size(4) valid_exe_xseq_sublist2)
then show ?case
using f1 by auto
qed
lemma valid_exe_xseq_sublist_length2:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
shows "List.length (fst (List.last exe_list)) = (List.length exe_list) - 1"
proof -
from a1 have "List.length exe_list > 0"
unfolding valid_mem_exe_seq_def by auto
then have "(List.length exe_list) - 1 < (List.length exe_list)"
by auto
then show ?thesis
using a1 valid_exe_xseq_sublist_length \<open>0 < length exe_list\<close> last_conv_nth by fastforce
qed
lemma op_exe_xseq:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "opid \<noteq> opid'"
and a3: "\<not> (List.member xseq opid')"
shows "\<not> (List.member xseq' opid')"
proof -
show ?thesis
using mem_op_exe
by (metis a1 a2 a3 in_set_member rotate1.simps(2) set_ConsD set_rotate1)
qed
lemma valid_exe_op_exe_exist0:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "\<forall>opid i. ((i < (List.length exe_list - 1)) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))) \<longrightarrow>
opid \<noteq> opid'"
and a3: "n < (List.length exe_list - 1)"
shows "\<not> (List.member (fst (exe_list!n)) opid')"
proof -
have f1: "\<forall>i<length exe_list - 1. (po pbm \<turnstile>t (exe_list ! i) \<rightarrow> (exe_list ! (i + 1)))"
using a1 unfolding valid_mem_exe_seq_def
by auto
then have f2: "\<forall>i<length exe_list - 1. (\<exists>opid. opid \<in> (fst (snd (List.nth exe_list i))) \<and>
(po pbm opid \<turnstile>m (fst (List.nth exe_list i)) (snd (snd (List.nth exe_list i))) \<rightarrow> (fst (List.nth exe_list (i+1))) (snd (snd (List.nth exe_list (i+1))))) \<and>
(fst (snd (List.nth exe_list (i+1)))) = (fst (snd (List.nth exe_list i))) - {opid})"
unfolding mem_state_trans_def
by auto
then have f3: "\<forall>i<length exe_list - 1. (\<exists>opid. opid \<in> (fst (snd (List.nth exe_list i))) \<and>
(po pbm opid \<turnstile>m (fst (List.nth exe_list i)) (snd (snd (List.nth exe_list i))) \<rightarrow> (fst (List.nth exe_list (i+1))) (snd (snd (List.nth exe_list (i+1))))) \<and>
(fst (snd (List.nth exe_list (i+1)))) = (fst (snd (List.nth exe_list i))) - {opid} \<and>
opid \<noteq> opid')"
using a2
by meson
show ?thesis
proof (insert a3, induction n)
case 0
then show ?case
using a1 unfolding valid_mem_exe_seq_def
apply auto
by (metis (no_types) hd_conv_nth member_rec(2))
next
case (Suc n)
obtain opid where f4: "(po pbm opid \<turnstile>m (fst (exe_list ! n)) (snd (snd (exe_list ! n))) \<rightarrow>
(fst (exe_list ! Suc n)) (snd (snd (exe_list ! Suc n)))) \<and>
opid \<noteq> opid'"
using f3 Suc
by (metis Suc_eq_plus1 Suc_lessD)
then show ?case
using Suc(1) op_exe_xseq Suc.prems Suc_lessD
by blast
qed
qed
lemma valid_exe_op_exe_exist1:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "\<forall>opid i. ((i < (List.length exe_list - 1)) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))) \<longrightarrow>
opid \<noteq> opid'"
shows "\<not> (List.member (fst (List.last exe_list)) opid')"
proof -
have f1: "\<not> (List.member (fst (exe_list!(List.length exe_list - 2))) opid')"
using assms valid_exe_op_exe_exist0
proof -
have f1: "Suc (Suc 0) = 2"
by linarith
have "0 < length exe_list"
using a1 valid_mem_exe_seq_def by blast
then have f2: "length exe_list - 2 = length (butlast (butlast exe_list))"
using f1 by (metis (no_types) One_nat_def Suc_pred diff_Suc_Suc length_butlast)
have "\<forall>ps f fa n. \<exists>na. \<forall>nb nc. (\<not> valid_mem_exe_seq f fa ps \<or> \<not> List.member (fst (ps ! nb)) n \<or> \<not> nb < length ps - 1 \<or> na < length ps - 1) \<and> (\<not> valid_mem_exe_seq f fa ps \<or> \<not> List.member (fst (ps ! nc)) n \<or> \<not> nc < length ps - 1 \<or> (f fa n \<turnstile>m (fst (ps ! na)) (snd (snd (ps ! na))) \<rightarrow> (fst (ps ! (na + 1))) (snd (snd (ps ! (na + 1))))))"
using valid_exe_op_exe_exist0 by blast
then show ?thesis
using f2
by (metis (no_types, lifting) \<open>0 < length exe_list\<close> a1 a2 add_lessD1 diff_less in_set_member length_butlast length_pos_if_in_set less_diff_conv less_numeral_extra(1) valid_exe_xseq_sublist_length zero_less_numeral)
qed
then show ?thesis
proof (cases "List.length exe_list > 1")
case True
then have "(List.length exe_list - 2) < (List.length exe_list - 1)"
by auto
then obtain opid where "(po pbm opid \<turnstile>m (fst (exe_list!(List.length exe_list - 2))) (snd (snd (exe_list!(List.length exe_list - 2)))) \<rightarrow>
(fst (exe_list!(List.length exe_list - 1))) (snd (snd (exe_list!(List.length exe_list - 1))))) \<and>
opid \<noteq> opid'"
using a1 a2 unfolding valid_mem_exe_seq_def mem_state_trans_def
apply auto
by (metis (no_types, hide_lams) Suc_1 Suc_diff_Suc True numeral_1_eq_Suc_0 numeral_One)
then have "\<not> (List.member (fst (exe_list!(List.length exe_list - 1))) opid')"
using op_exe_xseq f1
by blast
then show ?thesis
using True a1 last_conv_nth valid_mem_exe_seq_def by fastforce
next
case False
then have "length exe_list = 1"
using a1 less_linear valid_mem_exe_seq_def by fastforce
then have "(fst (last exe_list)) = (fst (hd exe_list))"
by (metis cancel_comm_monoid_add_class.diff_cancel hd_conv_nth last_conv_nth length_0_conv zero_neq_one)
then show ?thesis
using a1 unfolding valid_mem_exe_seq_def
by (simp add: member_rec(2))
qed
qed
lemma valid_exe_op_exe_exist2:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "opid \<in> fst (snd (List.hd exe_list))"
shows "\<exists>i. (i < (List.length exe_list - 1)) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
proof (rule ccontr)
assume a3: "\<not> (\<exists>i. (i < (List.length exe_list - 1)) \<and>
(po pbm opid \<turnstile>m (fst (List.nth exe_list i)) (snd (snd (List.nth exe_list i))) \<rightarrow>
(fst (List.nth exe_list (i+1))) (snd (snd (List.nth exe_list (i+1))))))"
have f1: "\<forall>i<length exe_list - 1.
(\<exists>opid.(po pbm opid \<turnstile>m (fst (List.nth exe_list i)) (snd (snd (List.nth exe_list i))) \<rightarrow>
(fst (List.nth exe_list (i+1))) (snd (snd (List.nth exe_list (i+1))))))"
using a1 unfolding valid_mem_exe_seq_final_def valid_mem_exe_seq_def mem_state_trans_def
by auto
then have f2: "\<forall>i<length exe_list - 1.
(\<forall>opid'.(po pbm opid' \<turnstile>m (fst (List.nth exe_list i)) (snd (snd (List.nth exe_list i))) \<rightarrow>
(fst (List.nth exe_list (i+1))) (snd (snd (List.nth exe_list (i+1))))) \<longrightarrow>
opid' \<noteq> opid)"
using a3 by auto
then have f3: "\<forall>opid' i. ((i < (List.length exe_list - 1)) \<and>
(po pbm opid' \<turnstile>m (fst (List.nth exe_list i)) (snd (snd (List.nth exe_list i))) \<rightarrow>
(fst (List.nth exe_list (i+1))) (snd (snd (List.nth exe_list (i+1)))))) \<longrightarrow>
opid \<noteq> opid'"
by auto
then have f4: "\<not> (List.member (fst (List.last exe_list)) opid)"
using valid_exe_op_exe_exist1 a1 valid_mem_exe_seq_final_def by blast
have f5: "List.member (fst (List.last exe_list)) opid"
using a2 a1 unfolding valid_mem_exe_seq_final_def valid_mem_exe_seq_def
by (simp add: in_set_member)
show False
using f4 f5
by auto
qed
lemma valid_exe_op_exe_unique:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "opid \<in> fst (snd (List.hd exe_list))"
and a3: "i < (List.length exe_list - 1)"
and a4: "po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))"
and a5: "i \<noteq> j \<and> j < (List.length exe_list - 1)"
shows "\<not> (po pbm opid \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1)))))"
proof (rule ccontr)
assume "\<not> \<not>(po pbm opid \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1)))))"
then have f1: "po pbm opid \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))"
by auto
from a5 have "i < j \<or> j < i"
by auto
then show False
proof (rule disjE)
assume a6: "i < j"
then have f2: "List.member (fst (exe_list!j)) opid"
using a1 a4 a5 valid_exe_xseq_sublist5 by auto
from f1 have f3: "(fst (exe_list!(j+1))) = (fst (exe_list!j))@[opid]"
using mem_op_exe by auto
then have f4: "\<not> (non_repeat_list (fst (exe_list!(j+1))))"
using f2 unfolding non_repeat_list_def
apply auto
using a1 a5 f1 valid_mem_exe_seq_op_unique2 by auto
from a1 a5 have "is_sublist (fst (exe_list!(j+1))) (fst (List.last exe_list))"
using valid_exe_xseq_sublist4 by auto
then have "\<not> (non_repeat_list (fst (List.last exe_list)))"
using f4 sublist_repeat by auto
then show False
using a1 valid_mem_exe_seq_op_unique by auto
next
assume a7: "j < i"
then have f2: "List.member (fst (exe_list!i)) opid"
using a1 a3 a5 f1 valid_exe_xseq_sublist5 by auto
then have f5: "(fst (exe_list!(i+1))) = (fst (exe_list!i))@[opid]"
using a4 mem_op_exe by auto
then have f4: "\<not> (non_repeat_list (fst (exe_list!(i+1))))"
using f2 unfolding non_repeat_list_def
apply auto
using a1 a3 a4 valid_mem_exe_seq_op_unique2 by auto
from a1 a3 have "is_sublist (fst (exe_list!(i+1))) (fst (List.last exe_list))"
using valid_exe_xseq_sublist4 by auto
then have "\<not> (non_repeat_list (fst (List.last exe_list)))"
using f4 sublist_repeat by auto
then show False
using a1 valid_mem_exe_seq_op_unique by auto
qed
qed
lemma valid_exe_op_exe_pos:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "(fst (List.last exe_list))!i = opid"
and a3: "i < (List.length exe_list - 1)"
shows "(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
proof -
have "(po pbm \<turnstile>t (exe_list!i) \<rightarrow> (exe_list!(i+1)))"
using a1 a3 unfolding valid_mem_exe_seq_def
by auto
then have "\<exists>opid. opid \<in> (fst (snd (exe_list!i))) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
(fst (snd (exe_list!(i+1)))) = (fst (snd (exe_list!i))) - {opid}"
unfolding mem_state_trans_def by auto
then have f1: "\<exists>opid. opid \<in> (fst (snd (exe_list!i))) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
(fst (snd (exe_list!(i+1)))) = (fst (snd (exe_list!i))) - {opid} \<and>
(fst (exe_list!(i+1))) = (fst (exe_list!i))@[opid]"
using mem_op_exe
by fastforce
then have f2: "List.length (fst (exe_list!(i+1))) = i + 1"
using valid_exe_xseq_sublist_length a1 a3 by auto
also have f3: "is_sublist (fst (exe_list!(i+1))) (fst (List.last exe_list))"
using a1 a3 valid_exe_xseq_sublist4 by auto
then have "(fst (exe_list!(i+1)))!i = (fst (List.last exe_list))!i"
using sublist_element f2 by fastforce
then have "(fst (exe_list!(i+1)))!i = opid"
using a2 by auto
then have "List.last (fst (exe_list!(i+1))) = opid"
using f2
by (metis add_diff_cancel_right' append_is_Nil_conv f1 last_conv_nth list.distinct(1))
then have "opid \<in> (fst (snd (exe_list!i))) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
(fst (snd (exe_list!(i+1)))) = (fst (snd (exe_list!i))) - {opid} \<and>
(fst (exe_list!(i+1))) = (fst (exe_list!i))@[opid]"
using f1 by fastforce
then show ?thesis by blast
qed
lemma valid_exe_op_exe_pos2:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list - 1)"
shows "(po pbm ((fst (List.last exe_list))!i) \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
using a1 a2 valid_exe_op_exe_pos
by blast
lemma valid_exe_op_exe_pos3:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list - 1)"
and a3: "(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
shows "((fst (List.last exe_list))!i) = opid"
proof -
from a1 a2 have "(po pbm ((fst (List.last exe_list))!i) \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
using valid_exe_op_exe_pos2 by auto
then have f1: "(fst (exe_list!(i+1))) = (fst (exe_list!i))@[((fst (List.last exe_list))!i)]"
using mem_op_exe by auto
from a3 have "(fst (exe_list!(i+1))) = (fst (exe_list!i))@[opid]"
using mem_op_exe by auto
then show ?thesis using f1
by auto
qed
lemma valid_exe_op_exe_pos_unique:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list - 1) \<and> j < (List.length exe_list - 1) \<and> i \<noteq> j"
and a3: "po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))"
and a4: "po pbm opid' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))"
shows "opid \<noteq> opid'"
proof (rule ccontr)
assume "\<not> opid \<noteq> opid'"
then have f0: "opid = opid'"
by auto
from a1 a2 have f01: "i < length (fst (last exe_list)) \<and> j < length (fst (last exe_list))"
using valid_exe_xseq_sublist_length2 by auto
from a1 have f1: "non_repeat_list (fst (List.last exe_list))"
using valid_mem_exe_seq_op_unique by auto
from a1 a2 a3 have f2: "((fst (List.last exe_list))!i) = opid"
using valid_exe_op_exe_pos3 by auto
from a1 a2 a4 have f3: "((fst (List.last exe_list))!j) = opid'"
using valid_exe_op_exe_pos3 by auto
from f0 f2 f3 have "((fst (List.last exe_list))!i) = ((fst (List.last exe_list))!j)"
by auto
then show False using a2 f1 f01 unfolding non_repeat_list_def
using nth_eq_iff_index_eq by auto
\<comment>\<open> by auto \<close>
qed
lemma valid_exe_op_order0:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "(opid m<(fst (List.last exe_list)) opid') = Some True"
and a3: "(opid \<in> fst (snd (List.hd exe_list)) \<and>
opid' \<in> fst (snd (List.hd exe_list)) \<and> opid \<noteq> opid')"
shows "\<exists>i j.(i < (List.length exe_list - 1)) \<and>
(j < (List.length exe_list - 1)) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
(po pbm opid' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))) \<and>
i < j"
proof -
from a1 a3 have "opid \<in> set (fst (List.last exe_list)) \<and>
opid' \<in> set (fst (List.last exe_list)) \<and> opid \<noteq> opid'"
unfolding valid_mem_exe_seq_def valid_mem_exe_seq_final_def by auto
then have "List.member (fst (List.last exe_list)) opid \<and>
List.member (fst (List.last exe_list)) opid' \<and> opid \<noteq> opid'"
by (simp add: in_set_member)
then have "list_before opid (fst (List.last exe_list)) opid'"
using a2 unfolding memory_order_before_def
apply auto
using option.inject by fastforce
then have "\<exists>i j. 0 \<le> i \<and> i < length (fst (List.last exe_list)) \<and>
0 \<le> j \<and> j < length (fst (List.last exe_list)) \<and>
((fst (List.last exe_list))!i) = opid \<and>
((fst (List.last exe_list))!j) = opid' \<and> i < j"
unfolding list_before_def by simp
then have "\<exists>i j. 0 \<le> i \<and> i < length exe_list - 1 \<and>
0 \<le> j \<and> j < length exe_list - 1 \<and>
((fst (List.last exe_list))!i) = opid \<and>
((fst (List.last exe_list))!j) = opid' \<and> i < j"
using valid_exe_xseq_sublist_length a1 valid_mem_exe_seq_final_def
by (metis valid_exe_xseq_sublist_length2)
then have "\<exists>i j. 0 \<le> i \<and> i < length exe_list - 1 \<and>
0 \<le> j \<and> j < length exe_list - 1 \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
(po pbm opid' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))) \<and> i < j"
using valid_exe_op_exe_pos a1 valid_mem_exe_seq_final_def
by blast
then show ?thesis by auto
qed
lemma valid_exe_op_order:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "(opid m<(fst (List.last exe_list)) opid') = Some True"
and a3: "(opid \<in> fst (snd (List.hd exe_list)) \<and>
opid' \<in> fst (snd (List.hd exe_list)) \<and> opid \<noteq> opid')"
shows "\<exists>i. (po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
\<not> (List.member (fst (exe_list!i)) opid')"
proof (rule ccontr)
assume a4: "\<nexists>i. (po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
\<not> List.member (fst (exe_list ! i)) opid'"
obtain i j where f1: "(i < (List.length exe_list - 1)) \<and>
(j < (List.length exe_list - 1)) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
(po pbm opid' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))) \<and>
i < j"
using assms valid_exe_op_order0 by blast
from a4 f1 have f2: "List.member (fst (exe_list ! i)) opid'"
by auto
from a1 f1 have f3: "is_sublist (fst (exe_list!i)) (fst (exe_list!j))"
using valid_exe_xseq_sublist3 valid_mem_exe_seq_final_def by auto
then have f4: "List.member (fst (exe_list ! j)) opid'"
using f2 sublist_member by fastforce
then show False
using a1 f1 valid_mem_exe_seq_op_unique2 valid_mem_exe_seq_final_def by blast
qed
lemma valid_exe_op_order2:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "(List.member (fst (List.last exe_list)) opid \<and>
List.member (fst (List.last exe_list)) opid' \<and> opid \<noteq> opid')"
shows "((opid m<(fst (List.last exe_list)) opid') = Some True \<or>
(opid' m<(fst (List.last exe_list)) opid) = Some True)"
proof -
from a2 have "(opid \<in> set (fst (List.last exe_list))) \<and> (opid' \<in> set (fst (List.last exe_list)))"
by (simp add: in_set_member)
then have "(opid \<in> fst (snd (List.hd exe_list))) \<and> (opid' \<in> fst (snd (List.hd exe_list)))"
using a1 unfolding valid_mem_exe_seq_def valid_mem_exe_seq_final_def
by auto
then show ?thesis
using a1 valid_exe_all_order a2 by auto
qed
lemma valid_exe_op_order_3ops:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "(opid m<(fst (List.last exe_list)) opid') = Some True"
and a3: "(opid \<in> fst (snd (List.hd exe_list)) \<and>
opid' \<in> fst (snd (List.hd exe_list)) \<and> opid \<noteq> opid')"
and a4: "(opid' m<(fst (List.last exe_list)) opid'') = Some True"
and a5: "opid'' \<in> fst (snd (List.hd exe_list)) \<and> opid' \<noteq> opid''"
shows "\<exists>i j k.(i < (List.length exe_list - 1)) \<and>
(j < (List.length exe_list - 1)) \<and>
(k < (List.length exe_list - 1)) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
(po pbm opid' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))) \<and>
(po pbm opid'' \<turnstile>m (fst (exe_list!k)) (snd (snd (exe_list!k))) \<rightarrow>
(fst (exe_list!(k+1))) (snd (snd (exe_list!(k+1))))) \<and>
i < j \<and> j < k"
proof-
from a3 a5 have f0: "opid \<noteq> opid' \<and> opid' \<noteq> opid''"
by auto
from a1 a3 a5 have "opid \<in> set (fst (List.last exe_list)) \<and>
opid' \<in> set (fst (List.last exe_list)) \<and>
opid'' \<in> set (fst (List.last exe_list))"
unfolding valid_mem_exe_seq_def valid_mem_exe_seq_final_def by auto
then have f1: "List.member (fst (List.last exe_list)) opid \<and>
List.member (fst (List.last exe_list)) opid' \<and>
List.member (fst (List.last exe_list)) opid''"
by (simp add: in_set_member)
then have f2: "list_before opid (fst (List.last exe_list)) opid' \<and>
list_before opid' (fst (List.last exe_list)) opid''"
using a2 a4 unfolding memory_order_before_def
apply auto
using option.inject apply fastforce
using option.inject by fastforce
then have f3: "\<exists>i j. 0 \<le> i \<and> i < length (fst (List.last exe_list)) \<and>
0 \<le> j \<and> j < length (fst (List.last exe_list)) \<and>
((fst (List.last exe_list))!i) = opid \<and>
((fst (List.last exe_list))!j) = opid' \<and> i < j"
unfolding list_before_def by simp
from f2 have f4: "\<exists>jb k. 0 \<le> jb \<and> jb < length (fst (List.last exe_list)) \<and>
0 \<le> k \<and> k < length (fst (List.last exe_list)) \<and>
((fst (List.last exe_list))!jb) = opid' \<and>
((fst (List.last exe_list))!k) = opid'' \<and> jb < k"
unfolding list_before_def by simp
from a1 have "non_repeat_list (fst (List.last exe_list))"
using valid_mem_exe_seq_op_unique valid_mem_exe_seq_final_def by auto
then have "\<exists>i j k. 0 \<le> i \<and> i < length (fst (List.last exe_list)) \<and>
0 \<le> j \<and> j < length (fst (List.last exe_list)) \<and>
0 \<le> k \<and> k < length (fst (List.last exe_list)) \<and>
((fst (List.last exe_list))!i) = opid \<and>
((fst (List.last exe_list))!j) = opid' \<and>
((fst (List.last exe_list))!k) = opid'' \<and> i < j \<and> j < k"
using non_repeat_list_pos_unique f3 f4 by metis
then have "\<exists>i j k. 0 \<le> i \<and> i < length exe_list - 1 \<and>
0 \<le> j \<and> j < length exe_list - 1 \<and>
0 \<le> k \<and> k < length exe_list - 1 \<and>
((fst (List.last exe_list))!i) = opid \<and>
((fst (List.last exe_list))!j) = opid' \<and>
((fst (List.last exe_list))!k) = opid'' \<and> i < j \<and> j < k"
using valid_exe_xseq_sublist_length a1 valid_mem_exe_seq_final_def
by (metis valid_exe_xseq_sublist_length2)
then have "\<exists>i j k. 0 \<le> i \<and> i < length exe_list - 1 \<and>
0 \<le> j \<and> j < length exe_list - 1 \<and>
0 \<le> k \<and> k < length exe_list - 1 \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
(po pbm opid' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))) \<and>
(po pbm opid'' \<turnstile>m (fst (exe_list!k)) (snd (snd (exe_list!k))) \<rightarrow>
(fst (exe_list!(k+1))) (snd (snd (exe_list!(k+1))))) \<and> i < j \<and> j < k"
using valid_exe_op_exe_pos a1 valid_mem_exe_seq_final_def by blast
then show ?thesis by auto
qed
lemma prog_order_op_unique:
assumes a1: "valid_program po pbm"
and a2: "opid ;po^p opid'"
shows "opid \<noteq> opid'"
proof -
from a1 a2 have f1: "non_repeat_list (po p)"
unfolding valid_program_def
by blast
from a2 have "\<exists>i j. 0 \<le> i \<and> i < length (po p) \<and> 0 \<le> j \<and> j < length (po p) \<and>
((po p)!i) = opid \<and> ((po p)!j) = opid' \<and> i < j"
unfolding program_order_before_def list_before_def
by auto
then show ?thesis using f1
unfolding non_repeat_list_def
using nth_eq_iff_index_eq by auto
\<comment>\<open> by auto \<close>
qed
lemma prog_order_op_exe:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "opid ;po^p opid'"
shows "List.member (fst (List.last exe_list)) opid \<and>
List.member (fst (List.last exe_list)) opid'"
proof -
from a2 have "\<exists>i j. 0 \<le> i \<and> i < length (po p) \<and> 0 \<le> j \<and> j < length (po p) \<and>
((po p)!i) = opid \<and> ((po p)!j) = opid' \<and> i < j"
unfolding program_order_before_def list_before_def
by auto
then have "List.member (po p) opid \<and> List.member (po p) opid'"
using list_mem_range_rev
by metis
then have "(opid \<in> fst (snd (List.hd exe_list))) \<and> (opid' \<in> fst (snd (List.hd exe_list)))"
using a1 unfolding valid_mem_exe_seq_def valid_mem_exe_seq_final_def
by auto
then have "(opid \<in> set (fst (List.last exe_list))) \<and> (opid' \<in> set (fst (List.last exe_list)))"
using a1 unfolding valid_mem_exe_seq_def valid_mem_exe_seq_final_def
by auto
then show ?thesis
by (simp add: in_set_member)
qed
lemma prog_order_op_exe2:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "opid ;po^p opid'"
shows "((opid m<(fst (List.last exe_list)) opid') = Some True \<or>
(opid' m<(fst (List.last exe_list)) opid) = Some True)"
proof -
from assms have f1: "List.member (fst (List.last exe_list)) opid \<and>
List.member (fst (List.last exe_list)) opid'"
using prog_order_op_exe by auto
have f4: "opid \<noteq> opid'"
using prog_order_op_unique a1 a2 valid_mem_exe_seq_def valid_mem_exe_seq_final_def
by blast
then show ?thesis
using a1 f1 valid_exe_op_order2 by auto
qed
text {* The lemma below shows that the LoadOp axiom is satisfied in every valid
sequence of executions in the operational TSO model. *}
lemma axiom_loadop_sat: "valid_mem_exe_seq_final po pbm exe_list \<Longrightarrow>
axiom_loadop opid opid' po (fst (List.last exe_list)) pbm"
proof -
assume a1: "valid_mem_exe_seq_final po pbm exe_list"
show "axiom_loadop opid opid' po (fst (List.last exe_list)) pbm"
proof (rule ccontr)
assume a2: "\<not>(axiom_loadop opid opid' po (fst (List.last exe_list)) pbm)"
then obtain p where f1: "(type_of_mem_op_block (pbm opid) \<in> {ld_block, ald_block}) \<and>
(p = proc_of_op opid pbm) \<and> (opid ;po^p opid') \<and>
\<not> ((opid m<(fst (List.last exe_list)) opid') = Some True)"
unfolding axiom_loadop_def
by auto
from a1 f1 have f2: "(opid' m<(fst (List.last exe_list)) opid) = Some True"
using prog_order_op_exe2 by blast
from a1 f1 have f3: "List.member (fst (List.last exe_list)) opid \<and>
List.member (fst (List.last exe_list)) opid' \<and> opid \<noteq> opid'"
using prog_order_op_exe prog_order_op_unique valid_mem_exe_seq_def valid_mem_exe_seq_final_def by blast
then obtain i where f4: "(po pbm opid' \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
\<not> (List.member (fst (exe_list!i)) opid)"
using f2 a1 valid_exe_op_order valid_mem_exe_seq_final_def
by (metis in_set_member)
then have f5: "(po pbm opid' \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
by auto
have "(\<forall>opid''. ((opid'' ;po^(proc_of_op opid pbm) opid') \<and>
(type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = ald_block)) \<longrightarrow>
List.member (fst (exe_list!i)) opid'') \<Longrightarrow> False"
using f1 f4 by auto
then have f6: "(\<forall>opid''. ((opid'' ;po^(proc_of_op opid' pbm) opid') \<and>
(type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = ald_block)) \<longrightarrow>
List.member (fst (exe_list!i)) opid'') \<Longrightarrow> False"
using a1 unfolding valid_mem_exe_seq_def valid_program_def valid_mem_exe_seq_final_def
using f1 by force
have "\<forall>opid'a. (opid'a ;po^(proc_of_op opid pbm) opid') \<and>
(type_of_mem_op_block (pbm opid'a) = ld_block \<or>
type_of_mem_op_block (pbm opid'a) = ald_block \<or>
type_of_mem_op_block (pbm opid'a) = st_block \<or>
type_of_mem_op_block (pbm opid'a) = ast_block) \<longrightarrow>
List.member (fst (exe_list!i)) opid'a \<Longrightarrow> False"
using f1 f4 by auto
then have f7: "\<forall>opid'a. (opid'a ;po^(proc_of_op opid' pbm) opid') \<and>
(type_of_mem_op_block (pbm opid'a) = ld_block \<or>
type_of_mem_op_block (pbm opid'a) = ald_block \<or>
type_of_mem_op_block (pbm opid'a) = st_block \<or>
type_of_mem_op_block (pbm opid'a) = ast_block) \<longrightarrow>
List.member (fst (exe_list!i)) opid'a \<Longrightarrow> False"
using a1 unfolding valid_mem_exe_seq_def valid_program_def valid_mem_exe_seq_final_def
using f1 by force
show False
proof (cases "type_of_mem_op_block (pbm opid')")
case ld_block
then show ?thesis
using mem_op_elim_load_op[OF f5 ld_block] f6
by (metis (full_types))
next
case st_block
then show ?thesis
using mem_op_elim_store_op[OF f5 st_block] f7
by (metis (full_types))
next
case ald_block
then show ?thesis
using mem_op_elim_atom_load_op[OF f5 ald_block] f7
by (metis (full_types))
next
case ast_block
then show ?thesis
using mem_op_elim_atom_store_op[OF f5 ast_block] f7
by (metis (full_types))
next
case o_block
then show ?thesis
using mem_op_elim_o_op[OF f5 o_block] f7
by (metis (full_types))
qed
qed
qed
text {* The lemma below shows that the StoreStore axiom is satisfied in every valid
sequence of executions in the operational TSO model. *}
lemma axiom_storestore_sat: "valid_mem_exe_seq_final po pbm exe_list \<Longrightarrow>
axiom_storestore opid opid' po (fst (List.last exe_list)) pbm"
proof -
assume a1: "valid_mem_exe_seq_final po pbm exe_list"
show "axiom_storestore opid opid' po (fst (List.last exe_list)) pbm"
proof (rule ccontr)
assume a2: "\<not>(axiom_storestore opid opid' po (fst (List.last exe_list)) pbm)"
then obtain p where f1: "((type_of_mem_op_block (pbm opid) \<in> {st_block, ast_block}) \<and>
(type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}) \<and>
((p = proc_of_op opid pbm) \<and> (opid ;po^p opid'))) \<and>
\<not> ((opid m<(fst (List.last exe_list)) opid') = Some True)"
unfolding axiom_storestore_def
by auto
from a1 f1 have f2: "(opid' m<(fst (List.last exe_list)) opid) = Some True"
using prog_order_op_exe2 by blast
from a1 f1 have f3: "List.member (fst (List.last exe_list)) opid \<and>
List.member (fst (List.last exe_list)) opid' \<and> opid \<noteq> opid'"
using prog_order_op_exe prog_order_op_unique
valid_mem_exe_seq_def valid_mem_exe_seq_final_def by blast
then obtain i where f4: "(po pbm opid' \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
\<not> (List.member (fst (exe_list!i)) opid)"
using f2 a1 valid_exe_op_order
by (metis in_set_member valid_mem_exe_seq_final_def)
then have f5: "(po pbm opid' \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
by auto
have "\<forall>opid'a. (opid'a ;po^(proc_of_op opid pbm) opid') \<and>
(type_of_mem_op_block (pbm opid'a) = ld_block \<or>
type_of_mem_op_block (pbm opid'a) = ald_block \<or>
type_of_mem_op_block (pbm opid'a) = st_block \<or>
type_of_mem_op_block (pbm opid'a) = ast_block) \<longrightarrow>
List.member (fst (exe_list!i)) opid'a \<Longrightarrow> False"
using f1 f4 by auto
then have f7: "\<forall>opid'a. (opid'a ;po^(proc_of_op opid' pbm) opid') \<and>
(type_of_mem_op_block (pbm opid'a) = ld_block \<or>
type_of_mem_op_block (pbm opid'a) = ald_block \<or>
type_of_mem_op_block (pbm opid'a) = st_block \<or>
type_of_mem_op_block (pbm opid'a) = ast_block) \<longrightarrow>
List.member (fst (exe_list!i)) opid'a \<Longrightarrow> False"
using a1 unfolding valid_mem_exe_seq_def valid_program_def valid_mem_exe_seq_final_def
using f1 by force
show False
proof (cases "type_of_mem_op_block (pbm opid')")
case ld_block
then show ?thesis using f1 by auto
next
case st_block
then show ?thesis
using mem_op_elim_store_op[OF f5 st_block] f7
by (metis (full_types))
next
case ald_block
then show ?thesis using f1 by auto
next
case ast_block
then show ?thesis
using mem_op_elim_atom_store_op[OF f5 ast_block] f7
by (metis (full_types))
next
case o_block
then show ?thesis using f1 by auto
qed
qed
qed
lemma axiom_atomicity_sub1:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "(atom_pair_id (pbm opid') = Some opid) \<and>
(type_of_mem_op_block (pbm opid) = ald_block) \<and>
(type_of_mem_op_block (pbm opid') = ast_block) \<and>
(opid ;po^(proc_of_op opid pbm) opid')"
shows "(opid m<(fst (List.last exe_list)) opid') = Some True"
proof (rule ccontr)
assume a3: "\<not> ((opid m<(fst (List.last exe_list)) opid') = Some True)"
then have f1: "(opid' m<(fst (List.last exe_list)) opid) = Some True"
using a1 a2 prog_order_op_exe2 by fastforce
from a1 a2 have f2: "List.member (fst (List.last exe_list)) opid \<and>
List.member (fst (List.last exe_list)) opid' \<and> opid \<noteq> opid'"
using prog_order_op_exe prog_order_op_unique
valid_mem_exe_seq_def valid_mem_exe_seq_final_def by blast
then obtain i where f3: "(po pbm opid' \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
\<not> (List.member (fst (exe_list!i)) opid)"
using f1 a1 valid_exe_op_order
by (metis in_set_member valid_mem_exe_seq_final_def)
then have f4: "(po pbm opid' \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
by auto
have "\<forall>opid'a. (opid'a ;po^(proc_of_op opid pbm) opid') \<and>
(type_of_mem_op_block (pbm opid'a) = ld_block \<or>
type_of_mem_op_block (pbm opid'a) = ald_block \<or>
type_of_mem_op_block (pbm opid'a) = st_block \<or>
type_of_mem_op_block (pbm opid'a) = ast_block) \<longrightarrow>
List.member (fst (exe_list!i)) opid'a \<Longrightarrow> False"
using a1 a2 f3 by auto
then have f5: "\<forall>opid'a. (opid'a ;po^(proc_of_op opid' pbm) opid') \<and>
(type_of_mem_op_block (pbm opid'a) = ld_block \<or>
type_of_mem_op_block (pbm opid'a) = ald_block \<or>
type_of_mem_op_block (pbm opid'a) = st_block \<or>
type_of_mem_op_block (pbm opid'a) = ast_block) \<longrightarrow>
List.member (fst (exe_list!i)) opid'a \<Longrightarrow> False"
using a1 unfolding valid_mem_exe_seq_def valid_program_def valid_mem_exe_seq_final_def
using a1 a2 by force
from a2 have f6: "(type_of_mem_op_block (pbm opid') = ast_block)"
by auto
show False
using mem_op_elim_atom_store_op[OF f4 f6] f5
by (metis (full_types))
qed
text {* The below block of proofs show that the following operations
do not modify the atomic flag in the state. *}
lemma gen_reg_mod_atomic_flag: "atomic_flag_val s = r \<Longrightarrow>
atomic_flag_val (gen_reg_mod p val reg s) = r"
unfolding atomic_flag_val_def gen_reg_mod_def
by auto
lemma mem_op_addr_mod_atomic_flag: "atomic_flag_val s = r \<Longrightarrow>
atomic_flag_val (mem_op_addr_mod addr opid' s) = r"
unfolding atomic_flag_val_def mem_op_addr_mod_def
by auto
lemma mem_op_val_mod_atomic_flag: "atomic_flag_val s = r \<Longrightarrow>
atomic_flag_val (mem_op_val_mod addr opid' s) = r"
unfolding atomic_flag_val_def mem_op_val_mod_def
by auto
lemma annul_mod_atomic_flag: "atomic_flag_val s = r \<Longrightarrow>
atomic_flag_val (annul_mod p b s) = r"
unfolding annul_mod_def atomic_flag_val_def by auto
lemma ctl_reg_mod_atomic_flag: "atomic_flag_val s = r \<Longrightarrow>
atomic_flag_val (ctl_reg_mod p val reg s) = r"
unfolding ctl_reg_mod_def atomic_flag_val_def by auto
lemma next_proc_op_pos_mod_atomic_flag: "atomic_flag_val s = r \<Longrightarrow>
atomic_flag_val (next_proc_op_pos_mod p pos s) = r"
unfolding next_proc_op_pos_mod_def atomic_flag_val_def by auto
lemma mem_mod_atomic_flag: "atomic_flag_val s = r \<Longrightarrow>
atomic_flag_val (mem_mod v a s) = r"
unfolding mem_mod_def atomic_flag_val_def by auto
lemma mem_commit_atomic_flag: "atomic_flag_val s = r \<Longrightarrow>
atomic_flag_val (mem_commit opid s) = r"
unfolding mem_commit_def
using mem_mod_atomic_flag
apply auto
apply (simp add: Let_def)
apply (cases "op_addr (get_mem_op_state opid s)")
apply auto
apply (cases "op_val (get_mem_op_state opid s)")
by auto
lemma atomic_flag_mod_none: "atomic_flag_val (atomic_flag_mod None s) = None"
unfolding atomic_flag_mod_def atomic_flag_val_def by auto
lemma atomic_flag_mod_some: "atomic_flag_val (atomic_flag_mod (Some opid) s) = Some opid"
unfolding atomic_flag_mod_def atomic_flag_val_def by auto
lemma load_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (load_instr p instr opid' a v s) = r"
using a1 unfolding load_instr_def Let_def atomic_flag_val_def
apply auto
apply (cases "a")
apply auto
apply (cases "v")
apply auto
using gen_reg_mod_atomic_flag mem_op_addr_mod_atomic_flag
mem_op_val_mod_atomic_flag
apply ( simp add: atomic_flag_val_def)
using mem_op_addr_mod_atomic_flag mem_op_val_mod_atomic_flag
by (simp add: atomic_flag_val_def)
lemma store_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (store_instr p instr opid' s) = r"
using a1 unfolding store_instr_def Let_def atomic_flag_val_def
using mem_op_addr_mod_atomic_flag mem_op_val_mod_atomic_flag
by (simp add: atomic_flag_val_def)
lemma sethi_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (sethi_instr p instr s) = r"
using a1 unfolding sethi_instr_def Let_def atomic_flag_val_def
apply (cases "get_operand_w5 (snd instr ! 1) \<noteq> 0")
apply auto
using gen_reg_mod_atomic_flag
by (simp add: atomic_flag_val_def)
lemma nop_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (nop_instr p instr s) = r"
using a1 unfolding nop_instr_def by auto
lemma logical_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (logical_instr p instr s) = r"
using a1 unfolding logical_instr_def Let_def
apply (cases "fst instr \<in> {logic_type ANDcc, logic_type ANDNcc, logic_type ORcc,
logic_type ORNcc, logic_type XORcc, logic_type XNORcc}")
apply clarsimp
apply (cases "get_operand_w5 (snd instr ! 3) \<noteq> 0")
apply clarsimp
using ctl_reg_mod_atomic_flag atomic_flag_val_def gen_reg_mod_atomic_flag
apply auto[1]
using ctl_reg_mod_atomic_flag atomic_flag_val_def gen_reg_mod_atomic_flag
apply auto[1]
apply auto
using atomic_flag_val_def gen_reg_mod_atomic_flag
by auto
lemma shift_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (shift_instr p instr s) = r"
using a1 unfolding shift_instr_def Let_def
apply auto
using atomic_flag_val_def gen_reg_mod_atomic_flag by auto
lemma add_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (add_instr p instr s) = r"
using a1 unfolding add_instr_def Let_def
apply auto
using ctl_reg_mod_atomic_flag atomic_flag_val_def gen_reg_mod_atomic_flag by auto
lemma sub_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (sub_instr p instr s) = r"
using a1 unfolding sub_instr_def Let_def
apply auto
using ctl_reg_mod_atomic_flag atomic_flag_val_def gen_reg_mod_atomic_flag by auto
lemma mul_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (mul_instr p instr s) = r"
using a1 unfolding mul_instr_def Let_def
apply auto
using ctl_reg_mod_atomic_flag atomic_flag_val_def gen_reg_mod_atomic_flag by auto
lemma div_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (div_instr p instr s) = r"
using a1 unfolding div_instr_def Let_def
apply auto
using atomic_flag_val_def apply auto
unfolding div_comp_def apply auto
apply (cases "get_operand_w5 (snd instr ! 3) \<noteq> 0")
apply auto
unfolding Let_def
using ctl_reg_mod_atomic_flag atomic_flag_val_def gen_reg_mod_atomic_flag by auto
lemma jmpl_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (jmpl_instr p instr s) = r"
using a1 unfolding jmpl_instr_def Let_def
apply auto
using ctl_reg_mod_atomic_flag atomic_flag_val_def gen_reg_mod_atomic_flag by auto
lemma branch_instr_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (branch_instr p instr s) = r"
using a1 unfolding branch_instr_def Let_def
apply auto
using ctl_reg_mod_atomic_flag atomic_flag_val_def
gen_reg_mod_atomic_flag annul_mod_atomic_flag
by auto
lemma swap_load_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (swap_load p instr opid' a v s) = r"
using a1 unfolding swap_load_def Let_def atomic_flag_val_def
apply auto
apply (cases "a")
apply auto
apply (cases "v")
apply auto
using gen_reg_mod_atomic_flag mem_op_addr_mod_atomic_flag
mem_op_val_mod_atomic_flag atomic_rd_mod_def
apply ( simp add: atomic_flag_val_def)
using mem_op_addr_mod_atomic_flag mem_op_val_mod_atomic_flag atomic_rd_mod_def
by (simp add: atomic_flag_val_def)
lemma swap_store_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (swap_store p instr opid' s) = r"
using a1 unfolding swap_store_def Let_def atomic_flag_val_def
using mem_op_addr_mod_atomic_flag mem_op_val_mod_atomic_flag atomic_rd_val_def
by (simp add: atomic_flag_val_def)
lemma casa_load_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (casa_load p instr opid' a v s) = r"
using a1 unfolding casa_load_def Let_def
apply auto
apply (cases "a")
apply (simp add: atomic_flag_val_def)
apply (cases "v")
apply (simp add: atomic_flag_val_def)
using gen_reg_mod_atomic_flag mem_op_addr_mod_atomic_flag
mem_op_val_mod_atomic_flag gen_reg_val_def atomic_rd_mod_def
by (simp add: atomic_flag_val_def)
lemma casa_store_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (casa_store p instr opid' s) = r"
proof (cases "(atomic_flag_val s)")
case None
then show ?thesis
using a1 unfolding casa_store_def Let_def
apply auto
by (simp add: atomic_flag_val_def)
next
case (Some a)
then have f1: "atomic_flag_val s = Some a"
by auto
then show ?thesis
proof (cases "op_val (mem_ops s a)")
case None
then show ?thesis
using a1 unfolding casa_store_def Let_def
apply auto
using Some None
by (simp add: atomic_flag_val_def)
next
case (Some a)
then show ?thesis
using a1 unfolding casa_store_def Let_def
apply auto
using f1 Some mem_op_addr_mod_atomic_flag mem_op_val_mod_atomic_flag
by (simp add: atomic_flag_val_def )
qed
qed
lemma proc_exe_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (proc_exe p instr opid' a v s) = r"
using a1 unfolding proc_exe_def Let_def
apply (cases "fst instr \<in> {load_store_type LD}")
apply (simp add: load_instr_atomic_flag)
apply (cases "fst instr \<in> {load_store_type ST}")
apply (simp add: store_instr_atomic_flag)
apply (cases "fst instr \<in> {sethi_type SETHI}")
apply (simp add: sethi_instr_atomic_flag)
apply (cases "fst instr \<in> {nop_type NOP}")
apply (simp add: nop_instr_atomic_flag)
apply (cases "fst instr \<in> {logic_type ANDs, logic_type ANDcc, logic_type ANDN,
logic_type ANDNcc, logic_type ORs, logic_type ORcc, logic_type ORN,
logic_type XORs, logic_type XNOR}")
apply (simp add: logical_instr_atomic_flag)
apply (cases "fst instr \<in> {shift_type SLL, shift_type SRL, shift_type SRA}")
apply (simp add: shift_instr_atomic_flag)
apply (cases "fst instr \<in> {arith_type ADD, arith_type ADDcc, arith_type ADDX}")
apply (simp add: add_instr_atomic_flag)
apply (cases "fst instr \<in> {arith_type SUB, arith_type SUBcc, arith_type SUBX}")
apply (simp add: sub_instr_atomic_flag)
apply (cases "fst instr \<in> {arith_type UMUL, arith_type SMUL, arith_type SMULcc}")
apply (simp add: mul_instr_atomic_flag)
apply (cases "fst instr \<in> {arith_type UDIV, arith_type UDIVcc, arith_type SDIV}")
apply (simp add: div_instr_atomic_flag)
apply (cases "fst instr \<in> {ctrl_type JMPL}")
apply (simp add: jmpl_instr_atomic_flag)
apply (cases "fst instr \<in> {bicc_type BE, bicc_type BNE, bicc_type BGU, bicc_type BLE, bicc_type BL,
bicc_type BGE, bicc_type BNEG, bicc_type BG, bicc_type BCS, bicc_type BLEU,
bicc_type BCC, bicc_type BA, bicc_type BN}")
apply (simp add: branch_instr_atomic_flag)
apply (cases "fst instr \<in> {load_store_type SWAP_LD}")
apply (simp add: swap_load_atomic_flag)
apply (cases "fst instr \<in> {load_store_type SWAP_ST}")
apply (simp add: swap_store_atomic_flag)
apply (cases "fst instr \<in> {load_store_type CASA_LD}")
apply (simp add: casa_load_atomic_flag)
apply (cases "fst instr \<in> {load_store_type CASA_ST}")
apply (simp add: casa_store_atomic_flag)
by auto
lemma seq_proc_exe_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (seq_proc_exe p l opid' a v s) = r"
proof (insert assms, induction l arbitrary: s)
case Nil
then show ?case
unfolding seq_proc_exe.simps using a1 by auto
next
case (Cons a l)
then show ?case
unfolding seq_proc_exe.simps using a1 proc_exe_atomic_flag by auto
qed
lemma seq_proc_blk_exe_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (seq_proc_blk_exe p po pbm n a v s) = r"
proof (insert assms, induction n arbitrary: "(s::sparc_state)")
case 0
then show ?case
unfolding seq_proc_blk_exe.simps by auto
next
case (Suc n)
then show ?case
unfolding seq_proc_blk_exe.simps Let_def
apply (cases "proc_exe_pos s p < length (po p)")
prefer 2
apply auto[1]
apply clarsimp
using next_proc_op_pos_mod_atomic_flag seq_proc_exe_atomic_flag
by auto
qed
lemma proc_exe_to_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (proc_exe_to p po pbm pos s) = r"
unfolding proc_exe_to_def Let_def
using a1 seq_proc_blk_exe_atomic_flag by auto
lemma seq_proc_blk_exe_except_last_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (seq_proc_blk_exe_except_last p po pbm n a v s) = r"
proof (insert assms, induction n arbitrary: "(s::sparc_state)")
case 0
then show ?case
unfolding seq_proc_blk_exe.simps by auto
next
case (Suc n)
then show ?case
unfolding seq_proc_blk_exe.simps Let_def
apply (cases "proc_exe_pos s p < length (po p)")
prefer 2
apply auto[1]
apply clarsimp
apply (cases "n = 0")
apply (simp add: Let_def)
using next_proc_op_pos_mod_atomic_flag seq_proc_exe_atomic_flag
apply auto
apply (simp add: Let_def)
using next_proc_op_pos_mod_atomic_flag seq_proc_exe_atomic_flag
using seq_proc_blk_exe_atomic_flag by auto
qed
lemma proc_exe_to_previous_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (proc_exe_to_previous p po pbm pos s) = r"
unfolding proc_exe_to_previous_def Let_def
using seq_proc_blk_exe_except_last_atomic_flag[OF a1] by auto
lemma proc_exe_to_last_atomic_flag:
assumes a1: "atomic_flag_val s = r"
shows "atomic_flag_val (proc_exe_to_last p po pbm pos v a s) = r"
unfolding proc_exe_to_last_def
using a1 apply auto
apply (simp add: Let_def)
using next_proc_op_pos_mod_atomic_flag proc_exe_atomic_flag
by auto
text {* The above finishes the proof that atomic_flag is not modified in
processor_execution. *}
lemma ast_op_unique:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "opid' \<noteq> opid"
and a3: "atom_pair_id (pbm opid) = Some opid''"
shows "atom_pair_id (pbm opid') \<noteq> Some opid''"
using a1 unfolding valid_mem_exe_seq_def valid_program_def
using a2 a3 by blast
lemma atomic_flag_exe_ld:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s = None"
and a3: "type_of_mem_op_block (pbm opid) = ld_block"
shows "atomic_flag_val s' = None"
proof -
from a1 a3 have "s' = proc_exe_to_last (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) (axiom_value (proc_of_op opid pbm)
opid (load_addr (proc_of_op opid pbm) (last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
po xseq pbm (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
(Some (load_addr (proc_of_op opid pbm) (last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)"
using mem_op_elim_load_op by metis
then show ?thesis using a2 proc_exe_to_atomic_flag
proc_exe_to_previous_atomic_flag proc_exe_to_last_atomic_flag by auto
qed
lemma atomic_flag_exe_st:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s = None"
and a3: "type_of_mem_op_block (pbm opid) = st_block"
shows "atomic_flag_val s' = None"
proof -
from a1 a3 have "s' = mem_commit opid (proc_exe_to (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)"
using mem_op_elim_store_op by metis
then show ?thesis using a2 proc_exe_to_atomic_flag mem_commit_atomic_flag by auto
qed
lemma atomic_flag_exe_ald:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s = None"
and a3: "type_of_mem_op_block (pbm opid) = ald_block"
shows "atomic_flag_val s' = Some opid"
proof -
from a1 a3 have "s' = atomic_flag_mod (Some opid) (proc_exe_to_last (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) (axiom_value (proc_of_op opid pbm)
opid (atomic_load_addr (proc_of_op opid pbm) (last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
po xseq pbm (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
(Some (atomic_load_addr (proc_of_op opid pbm) (last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))"
using mem_op_elim_atom_load_op by metis
then show ?thesis
using atomic_flag_mod_some by auto
qed
lemma atomic_flag_exe_ast:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s = None"
shows "type_of_mem_op_block (pbm opid) \<noteq> ast_block"
proof (rule ccontr)
assume "\<not> type_of_mem_op_block (pbm opid) \<noteq> ast_block"
then have "type_of_mem_op_block (pbm opid) = ast_block"
by auto
then have "(\<exists>opid'. atomic_flag_val s = Some opid')"
using a1 mem_op_elim_atom_store_op by metis
then show False using a2 by auto
qed
lemma atomic_flag_exe_o:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s = None"
and a3: "type_of_mem_op_block (pbm opid) = o_block"
shows "atomic_flag_val s' = None"
proof -
from a1 a3 have "s' = proc_exe_to (proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po
(proc_of_op opid pbm))) s"
using mem_op_elim_o_op by metis
then show ?thesis using a2 proc_exe_to_atomic_flag by auto
qed
lemma atomic_flag_exe1:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s = Some opid'"
shows "type_of_mem_op_block (pbm opid) = ld_block \<or>
type_of_mem_op_block (pbm opid) = o_block \<or>
(type_of_mem_op_block (pbm opid) = ast_block \<and>
atom_pair_id (pbm opid) = Some opid')"
proof (rule ccontr)
assume a3: "\<not> (type_of_mem_op_block (pbm opid) = ld_block \<or>
type_of_mem_op_block (pbm opid) = o_block \<or>
type_of_mem_op_block (pbm opid) = ast_block \<and> atom_pair_id (pbm opid) = Some opid')"
then have "\<not> (type_of_mem_op_block (pbm opid) = ld_block) \<and>
\<not> (type_of_mem_op_block (pbm opid) = o_block) \<and>
(\<not> (type_of_mem_op_block (pbm opid) = ast_block) \<or>
atom_pair_id (pbm opid) \<noteq> Some opid')"
by auto
then have f1: "(type_of_mem_op_block (pbm opid) = st_block) \<or>
(type_of_mem_op_block (pbm opid) = ald_block) \<or>
(type_of_mem_op_block (pbm opid) = ast_block \<and>
atom_pair_id (pbm opid) \<noteq> Some opid')"
using mem_op_block_type.exhaust by blast
show False
proof (rule disjE[OF f1])
assume a4: "type_of_mem_op_block (pbm opid) = st_block"
from a2 have "atomic_flag_val s = None \<Longrightarrow> False"
by auto
then show False
using a1 a4 mem_op_elim_store_op by fastforce
next
assume a5: "type_of_mem_op_block (pbm opid) = ald_block \<or>
(type_of_mem_op_block (pbm opid) = ast_block \<and>
atom_pair_id (pbm opid) \<noteq> Some opid')"
show False
proof (rule disjE[OF a5])
assume a6: "type_of_mem_op_block (pbm opid) = ald_block"
from a2 have "atomic_flag_val s = None \<Longrightarrow> False"
by auto
then show False
using a1 a6 mem_op_elim_atom_load_op by fastforce
next
assume a7: "type_of_mem_op_block (pbm opid) = ast_block \<and>
atom_pair_id (pbm opid) \<noteq> Some opid'"
then have "\<And>opid'. atomic_flag_val s = Some opid' \<Longrightarrow>
atom_pair_id (pbm opid) = Some opid' \<Longrightarrow> False"
using a2 by auto
then show False
using a1 a7 mem_op_elim_atom_store_op by metis
qed
qed
qed
lemma atomic_flag_exe2:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s = Some opid'"
and a3: "type_of_mem_op_block (pbm opid) = ld_block \<or>
type_of_mem_op_block (pbm opid) = o_block"
shows "atomic_flag_val s' = Some opid'"
proof -
from a1 a3 have f1: "(\<exists>vop. s' = proc_exe_to_last (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) vop
(Some (load_addr (proc_of_op opid pbm) (last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)) \<or>
(s' = proc_exe_to (proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po
(proc_of_op opid pbm))) s)"
using mem_op_elim_load_op mem_op_elim_o_op
by meson
then show ?thesis
apply (rule disjE)
using proc_exe_to_atomic_flag proc_exe_to_previous_atomic_flag
proc_exe_to_last_atomic_flag a2 by auto
qed
lemma atomic_flag_exe3:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s = Some opid'"
and a3: "(type_of_mem_op_block (pbm opid) = ast_block \<and>
atom_pair_id (pbm opid) = Some opid')"
shows "atomic_flag_val s' = None"
proof -
from a1 a3 have f1: "s' = mem_commit opid (atomic_flag_mod None (proc_exe_to (proc_of_op opid pbm)
po pbm (non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))"
using mem_op_elim_atom_store_op by metis
then have "s' = mem_commit opid (atomic_flag_mod None (proc_exe_to (proc_of_op opid pbm)
po pbm (non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))"
using a3 by auto
then show ?thesis using atomic_flag_mod_none mem_commit_atomic_flag
by auto
qed
lemma atomic_flag_exe4:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s = None"
and a3: "atomic_flag_val s' = Some opid'"
shows "type_of_mem_op_block (pbm opid) = ald_block"
proof (rule ccontr)
assume a4: "type_of_mem_op_block (pbm opid) \<noteq> ald_block"
then have "type_of_mem_op_block (pbm opid) = ld_block \<or>
type_of_mem_op_block (pbm opid) = st_block \<or>
type_of_mem_op_block (pbm opid) = ast_block \<or>
type_of_mem_op_block (pbm opid) = o_block"
using mem_op_block_type.exhaust by blast
then show False
proof (auto)
assume a5: "type_of_mem_op_block (pbm opid) = ld_block"
then have "atomic_flag_val s' = None"
using a1 a2 atomic_flag_exe_ld by auto
then show False using a3 by auto
next
assume a6: "type_of_mem_op_block (pbm opid) = st_block"
then have "atomic_flag_val s' = None"
using a1 a2 atomic_flag_exe_st by auto
then show False using a3 by auto
next
assume a7: "type_of_mem_op_block (pbm opid) = ast_block"
then show False using a1 a2 atomic_flag_exe_ast by auto
next
assume a8: "type_of_mem_op_block (pbm opid) = o_block"
then have "atomic_flag_val s' = None"
using a1 a2 atomic_flag_exe_o by auto
then show False using a3 by auto
qed
qed
lemma atomic_flag_exe5:
assumes a1: "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'"
and a2: "atomic_flag_val s \<noteq> Some opid'"
and a3: "opid \<noteq> opid'"
shows "atomic_flag_val s' \<noteq> Some opid'"
proof -
from a2 have f1: "atomic_flag_val s = None \<or>
(\<exists>opid''. atomic_flag_val s = Some opid'' \<and> opid'' \<noteq> opid')"
using option.collapse by fastforce
then show ?thesis
proof (rule disjE)
assume a4: "atomic_flag_val s = None"
show ?thesis
proof (cases "type_of_mem_op_block (pbm opid)")
case ld_block
then have "atomic_flag_val s' = None"
using atomic_flag_exe_ld[OF a1 a4 ld_block] by auto
then show ?thesis by auto
next
case st_block
then have "atomic_flag_val s' = None"
using atomic_flag_exe_st[OF a1 a4 st_block] by auto
then show ?thesis by auto
next
case ald_block
then have "atomic_flag_val s' = Some opid"
using atomic_flag_exe_ald[OF a1 a4 ald_block] by auto
then show ?thesis using a3 by auto
next
case ast_block
then show ?thesis using atomic_flag_exe_ast[OF a1 a4] by auto
next
case o_block
then have "atomic_flag_val s' = None"
using atomic_flag_exe_o[OF a1 a4 o_block] by auto
then show ?thesis by auto
qed
next
assume a5: "\<exists>opid''. atomic_flag_val s = Some opid'' \<and> opid'' \<noteq> opid'"
then obtain opid'' where f2: "atomic_flag_val s = Some opid'' \<and> opid'' \<noteq> opid'"
by auto
then have "(type_of_mem_op_block (pbm opid) = ld_block \<or>
type_of_mem_op_block (pbm opid) = o_block) \<or>
(type_of_mem_op_block (pbm opid) = ast_block \<and>
atom_pair_id (pbm opid) = Some opid'')"
using atomic_flag_exe1 a1 by auto
then show ?thesis
proof (rule disjE)
assume a6: "type_of_mem_op_block (pbm opid) = ld_block \<or>
type_of_mem_op_block (pbm opid) = o_block"
then show ?thesis using atomic_flag_exe2[OF a1] f2 by auto
next
assume a7: "type_of_mem_op_block (pbm opid) = ast_block \<and>
atom_pair_id (pbm opid) = Some opid''"
then show ?thesis using atomic_flag_exe3[OF a1] f2 by auto
qed
qed
qed
lemma atom_exe_valid_type1:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list - 1) \<and> k < (List.length exe_list - 1) \<and> i < k"
and a3: "(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
and a4: "(po pbm opid' \<turnstile>m (fst (exe_list!k)) (snd (snd (exe_list!k))) \<rightarrow>
(fst (exe_list!(k+1))) (snd (snd (exe_list!(k+1)))))"
and a5: "(atom_pair_id (pbm opid') = Some opid) \<and>
(type_of_mem_op_block (pbm opid) = ald_block) \<and>
(type_of_mem_op_block (pbm opid') = ast_block)"
and a6: "(i < j \<and> j < k \<and> (po pbm opid'' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))))"
and a7: "atomic_flag_val (snd (snd (exe_list!(i+1)))) = Some opid"
and a8: "opid \<noteq> opid'' \<and> opid'' \<noteq> opid'"
shows "(type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = o_block) \<and>
atomic_flag_val (snd (snd (exe_list!j))) = Some opid"
proof (insert assms, induction "j - i" arbitrary: opid'' j)
case 0
then show ?case by auto
next
case (Suc x)
then show ?case
proof (cases "j - 1 = i")
case True
then have "j = i + 1"
using Suc.prems(6) by linarith
then have f1: "atomic_flag_val (snd (snd (exe_list!j))) = Some opid"
using a7 by auto
then have f2: "type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = o_block \<or>
(type_of_mem_op_block (pbm opid'') = ast_block \<and>
atom_pair_id (pbm opid'') = Some opid)"
using Suc(8) atomic_flag_exe1 by blast
from a1 Suc(10) Suc(7) have "atom_pair_id (pbm opid'') \<noteq> Some opid"
using ast_op_unique by auto
then have "type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = o_block"
using f2 by auto
then show ?thesis using f1 by auto
next
case False
then have f3: "j-1 > i"
using Suc(8) by auto
then have f003: "j > 0"
by auto
from Suc(2) have f03: "x = (j-1) - i"
by auto
from Suc(4) Suc(8) have f4: "j-1 < length exe_list - 1"
by auto
then obtain opid''' where
"(po pbm opid''' \<turnstile>m (fst (exe_list ! (j-1))) (snd (snd (exe_list ! (j-1)))) \<rightarrow>
(fst (exe_list ! j)) (snd (snd (exe_list ! j))))"
using a1 unfolding valid_mem_exe_seq_def mem_state_trans_def
by (metis (no_types, lifting) add.commute add_diff_inverse_nat f3 gr_implies_not_zero nat_diff_split_asm)
then have f05: "(po pbm opid''' \<turnstile>m (fst (exe_list ! (j-1))) (snd (snd (exe_list ! (j-1)))) \<rightarrow>
(fst (exe_list ! ((j-1)+1))) (snd (snd (exe_list ! ((j-1)+1)))))"
using f003 by auto
then have f5: "i < j-1 \<and> j-1 < k \<and>
(po pbm opid''' \<turnstile>m (fst (exe_list ! (j-1))) (snd (snd (exe_list ! (j-1)))) \<rightarrow>
(fst (exe_list ! ((j-1)+1))) (snd (snd (exe_list ! ((j-1)+1)))))"
using f3 Suc(8) f003 by auto
from a1 f4 Suc(4) f5 Suc(5) have f6: "opid''' \<noteq> opid"
using valid_exe_op_exe_pos_unique False
by (metis One_nat_def Suc_eq_plus1)
from a1 f4 Suc(4) f5 Suc(6) Suc(8) have f7: "opid''' \<noteq> opid'"
using valid_exe_op_exe_pos_unique
by (metis One_nat_def not_le order_less_imp_le)
from f6 f7 have f8: "opid \<noteq> opid''' \<and> opid''' \<noteq> opid'"
by auto
have f9: "(type_of_mem_op_block (pbm opid''') = ld_block \<or>
type_of_mem_op_block (pbm opid''') = o_block) \<and>
atomic_flag_val (snd (snd (exe_list ! (j-1)))) = Some opid"
using Suc(1)[OF f03 a1 Suc(4) Suc(5) Suc(6) Suc(7) f5 Suc(9) f8] by auto
then have "atomic_flag_val (snd (snd (exe_list ! ((j-1)+1)))) = Some opid"
using atomic_flag_exe2 f05 by auto
then have f10: "atomic_flag_val (snd (snd (exe_list ! j))) = Some opid"
using f003 by auto
from Suc(8) have f11: "po pbm opid'' \<turnstile>m (fst (exe_list ! j)) (snd (snd (exe_list ! j))) \<rightarrow>
(fst (exe_list ! (j + 1))) (snd (snd (exe_list ! (j + 1))))"
by auto
have f12: "type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = o_block \<or>
(type_of_mem_op_block (pbm opid'') = ast_block \<and>
atom_pair_id (pbm opid'') = Some opid)"
using atomic_flag_exe1[OF f11 f10] by auto
have f13: "atom_pair_id (pbm opid'') \<noteq> Some opid"
using ast_op_unique[OF a1] Suc(10) Suc(7) by auto
from f12 f13 show ?thesis
by (simp add: f10)
qed
qed
lemma axiom_atomicity_sub2:
assumes a1: "valid_mem_exe_seq_final po pbm exe_list"
and a2: "(atom_pair_id (pbm opid') = Some opid) \<and>
(type_of_mem_op_block (pbm opid) = ald_block) \<and>
(type_of_mem_op_block (pbm opid') = ast_block) \<and>
(opid ;po^(proc_of_op opid pbm) opid')"
and a3: "(opid m<(fst (List.last exe_list)) opid') = Some True"
shows "(\<forall>opid''. ((type_of_mem_op_block (pbm opid'') \<in> {st_block, ast_block}) \<and>
List.member (fst (List.last exe_list)) opid'' \<and>
opid'' \<noteq> opid') \<longrightarrow>
((opid'' m<(fst (List.last exe_list)) opid) = Some True \<or>
(opid' m<(fst (List.last exe_list)) opid'') = Some True))"
proof (rule ccontr)
assume a4: "\<not> (\<forall>opid''. ((type_of_mem_op_block (pbm opid'') \<in> {st_block, ast_block}) \<and>
List.member (fst (List.last exe_list)) opid'' \<and>
opid'' \<noteq> opid') \<longrightarrow>
((opid'' m<(fst (List.last exe_list)) opid) = Some True \<or>
(opid' m<(fst (List.last exe_list)) opid'') = Some True))"
then obtain opid'' where f1: "(type_of_mem_op_block (pbm opid'') \<in> {st_block, ast_block}) \<and>
List.member (fst (List.last exe_list)) opid'' \<and>
opid'' \<noteq> opid' \<and>
\<not> ((opid'' m<(fst (List.last exe_list)) opid) = Some True \<or>
(opid' m<(fst (List.last exe_list)) opid'') = Some True)"
by auto
from a2 f1 have f2: "opid'' \<noteq> opid"
by auto
from a2 have f3: "List.member (fst (List.last exe_list)) opid \<and>
List.member (fst (List.last exe_list)) opid'"
using a1 prog_order_op_exe by auto
from f1 f2 f3 a1 have f4: "((opid m<(fst (List.last exe_list)) opid'') = Some True \<or>
(opid'' m<(fst (List.last exe_list)) opid) = Some True)"
using valid_exe_op_order2 by blast
from f1 f3 a1 have f5: "((opid' m<(fst (List.last exe_list)) opid'') = Some True \<or>
(opid'' m<(fst (List.last exe_list)) opid') = Some True)"
using valid_exe_op_order2 by blast
from f4 f5 f1 have f6: "(type_of_mem_op_block (pbm opid'') \<in> {st_block, ast_block}) \<and>
List.member (fst (List.last exe_list)) opid'' \<and>
opid'' \<noteq> opid' \<and>
(opid m<(fst (List.last exe_list)) opid'') = Some True \<and>
(opid'' m<(fst (List.last exe_list)) opid') = Some True"
by auto
from a1 a4 f3 have f7: "opid \<in> fst (snd (List.hd exe_list)) \<and>
opid' \<in> fst (snd (List.hd exe_list)) \<and>
opid'' \<in> fst (snd (List.hd exe_list))"
unfolding valid_mem_exe_seq_def valid_mem_exe_seq_final_def
by (simp add: f1 in_set_member)
from a1 f6 f7 f2 obtain i j k where f8: "(i < (List.length exe_list - 1)) \<and>
(j < (List.length exe_list - 1)) \<and>
(k < (List.length exe_list - 1)) \<and>
(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1))))) \<and>
(po pbm opid'' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))) \<and>
(po pbm opid' \<turnstile>m (fst (exe_list!k)) (snd (snd (exe_list!k))) \<rightarrow>
(fst (exe_list!(k+1))) (snd (snd (exe_list!(k+1))))) \<and>
i < j \<and> j < k"
using valid_exe_op_order_3ops by blast
from a1 a2 f8 have f9: "atomic_flag (glob_var (snd (snd (exe_list!(i+1))))) = Some opid"
using mem_op_atom_load_op_atomic_flag by auto
from f8 have f10: "i < length exe_list - 1 \<and> k < length exe_list - 1 \<and> i < k"
by auto
from f8 have f11: "(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
by auto
from f8 have f12: "(po pbm opid'' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1)))))"
by auto
from f8 have f13: "(po pbm opid' \<turnstile>m (fst (exe_list!k)) (snd (snd (exe_list!k))) \<rightarrow>
(fst (exe_list!(k+1))) (snd (snd (exe_list!(k+1)))))"
by auto
from a2 have f14: "atom_pair_id (pbm opid') = Some opid \<and>
type_of_mem_op_block (pbm opid) = ald_block \<and> type_of_mem_op_block (pbm opid') = ast_block"
by auto
from f8 have f15: "i < j \<and> j < k \<and>
(po pbm opid'' \<turnstile>m (fst (exe_list ! j)) (snd (snd (exe_list ! j))) \<rightarrow>
(fst (exe_list ! (j + 1))) (snd (snd (exe_list ! (j + 1)))))"
by auto
from f9 have f16: "atomic_flag_val (snd (snd (exe_list ! (i + 1)))) = Some opid "
unfolding atomic_flag_val_def by auto
from f2 f6 have f17: "opid \<noteq> opid'' \<and> opid'' \<noteq> opid'"
by auto
from a1 have a1f: "valid_mem_exe_seq po pbm exe_list"
unfolding valid_mem_exe_seq_final_def by auto
have "(type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = o_block)"
using atom_exe_valid_type1[OF a1f f10 f11 f13 f14 f15 f16 f17] by auto
then show False
using f1 by force
qed
text {* The lemma below shows that the Atomicity axiom is satisfied in every valid
sequence of executions in the operational TSO model. *}
lemma axiom_atomicity_sat: "valid_mem_exe_seq_final po pbm exe_list \<Longrightarrow>
axiom_atomicity opid opid' po (fst (List.last exe_list)) pbm"
unfolding axiom_atomicity_def
using axiom_atomicity_sub1 axiom_atomicity_sub2
by auto
text {* The theorem below gives the soundness proof.
Note that it does not concern the axiom Value, because it is directly incorporated
in the operational TSO model, and it's trivially true. *}
theorem operational_model_sound: "valid_mem_exe_seq_final po pbm exe_list \<Longrightarrow>
(\<forall>opid opid'. axiom_order opid opid' (fst (List.last exe_list)) pbm) \<and>
(\<forall>opid. axiom_termination opid po (fst (List.last exe_list)) pbm) \<and>
(\<forall>opid opid'. axiom_loadop opid opid' po (fst (List.last exe_list)) pbm) \<and>
(\<forall>opid opid'. axiom_storestore opid opid' po (fst (List.last exe_list)) pbm) \<and>
(\<forall>opid opid'. axiom_atomicity opid opid' po (fst (List.last exe_list)) pbm)"
using axiom_order_sat axiom_termination_sat axiom_loadop_sat
axiom_storestore_sat axiom_atomicity_sat by auto
subsection {* Completeness of the operational TSO model *}
text {* This subsection shows that if a sequence of memory operations satisfies the TSO axioms,
then there exists an execution for it in the operational TSO model.
N.B. We are only concerned with memory operations in this proof. The order to o_blocks
are uninteresting here. We shall just assume that the o_block of a processor is executed
after the last memory operation, which is consistent with the rule o_op.
But we will not discuss it in the proof. *}
text {* The following are the conditions that a complete sequence of memory operations
must satisfy. *}
definition op_seq_final:: "op_id list \<Rightarrow> program_order \<Rightarrow> program_block_map \<Rightarrow> bool" where
"op_seq_final op_seq po pbm \<equiv> valid_program po pbm \<and>
List.length op_seq > 0 \<and> (\<forall>opid. (\<exists>p. List.member (po p) opid) = (List.member op_seq opid)) \<and>
non_repeat_list op_seq \<and> (\<forall>opid. (\<exists>p. List.member (po p) opid) \<longrightarrow>
(type_of_mem_op_block (pbm opid) \<in> {ld_block, st_block, ald_block, ast_block}))"
text {* First we show the conditions that falsify each "inference rule" in
the operational model. *}
lemma load_op_contra:
assumes a1: "(type_of_mem_op_block (pbm opid) = ld_block)"
and a2: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'))"
shows "\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block) \<and>
\<not> (List.member xseq opid')"
proof (rule ccontr)
assume a3: "\<nexists>opid'.
(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block) \<and>
\<not> List.member xseq opid'"
then have f0: "\<forall>opid'. ((opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block)) \<longrightarrow>
(List.member xseq opid')"
by auto
from mem_op.simps have f1: "(type_of_mem_op_block (pbm opid) = ld_block) \<Longrightarrow>
\<forall>opid'. ((opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block)) \<longrightarrow>
(List.member xseq opid') \<Longrightarrow>
(po pbm opid \<turnstile>m xseq s \<rightarrow> (xseq @ [opid]) (proc_exe_to_last (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) (axiom_value (proc_of_op opid pbm)
opid (load_addr (proc_of_op opid pbm) (last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
po xseq pbm (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
(Some (load_addr (proc_of_op opid pbm) (last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)))"
by (metis (full_types) empty_iff insert_iff load_op)
from a1 a2 f0 f1 have f2: "(po pbm opid \<turnstile>m xseq s \<rightarrow> (xseq @ [opid]) (proc_exe_to_last (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) (axiom_value (proc_of_op opid pbm)
opid (load_addr (proc_of_op opid pbm) (last (insts (pbm opid))) s) po xseq pbm s)
(Some (load_addr (proc_of_op opid pbm) (last (insts (pbm opid))) s))
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm)) - Suc 0) s)))"
by auto
then have "\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
by auto
then show False using a2 by auto
qed
lemma store_op_contra:
assumes a1: "(type_of_mem_op_block (pbm opid) = st_block)"
and a2: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'))"
shows "atomic_flag_val s \<noteq> None \<or>
(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member xseq opid'))"
proof (rule ccontr)
assume a3: "\<not> (atomic_flag_val s \<noteq> None \<or>
(\<exists>opid'.
(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> List.member xseq opid'))"
then have f0: "atomic_flag_val s = None \<and>
(\<forall>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
List.member xseq opid')"
by auto
from mem_op.simps have f1: "(type_of_mem_op_block (pbm opid) = st_block) \<Longrightarrow>
(atomic_flag_val s) = None \<Longrightarrow> \<forall>opid'. (((opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block, st_block, ast_block})) \<longrightarrow>
(List.member xseq opid')) \<Longrightarrow>
po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid] (mem_commit opid (proc_exe_to
(proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po (proc_of_op opid pbm)))
s))"
by auto
from a1 f0 f1 have "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid] (mem_commit opid (proc_exe_to
(proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po (proc_of_op opid pbm)))
s))"
by auto
then have "\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
by auto
then show False using a2 by auto
qed
lemma atom_load_op_contra:
assumes a1: "(type_of_mem_op_block (pbm opid) = ald_block)"
and a2: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'))"
shows "atomic_flag_val s \<noteq> None \<or>
(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member xseq opid'))"
proof (rule ccontr)
assume a4: "\<not> (atomic_flag_val s \<noteq> None \<or>
(\<exists>opid'.
(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> List.member xseq opid'))"
then have f0: "atomic_flag_val s = None \<and>
(\<forall>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
List.member xseq opid')"
by auto
from mem_op.simps have f1: "(type_of_mem_op_block (pbm opid) = ald_block) \<Longrightarrow>
(atomic_flag_val s) = None \<Longrightarrow> (\<forall>opid'. (((opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block, st_block, ast_block})) \<longrightarrow>
(List.member xseq opid'))) \<Longrightarrow>
(po pbm opid \<turnstile>m xseq s \<rightarrow> (xseq@[opid]) (atomic_flag_mod (Some opid)
(proc_exe_to_last (proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po
(proc_of_op opid pbm))) (axiom_value (proc_of_op opid pbm) opid (atomic_load_addr
(proc_of_op opid pbm) (last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)) po xseq pbm
(proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))
(Some (atomic_load_addr (proc_of_op opid pbm)
(last (insts (pbm opid))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))))"
by auto
from a1 a2 f0 f1 have "(po pbm opid \<turnstile>m xseq s \<rightarrow> (xseq@[opid]) (atomic_flag_mod (Some opid)
(proc_exe_to_last (proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po
(proc_of_op opid pbm))) (axiom_value (proc_of_op opid pbm) opid (atomic_load_addr
(proc_of_op opid pbm)
(last (insts (pbm opid))) s) po xseq pbm s)
(Some (atomic_load_addr (proc_of_op opid pbm)
(last (insts (pbm opid))) s)) (proc_exe_to_previous (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s))))"
by auto
then have "\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
by auto
then show False using a2 by auto
qed
lemma atom_store_op_contra:
assumes a1: "(type_of_mem_op_block (pbm opid) = ast_block)"
and a2: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'))"
shows "(atomic_flag_val s) = None \<or>
(atomic_flag_val s) \<noteq> atom_pair_id (pbm opid) \<or>
(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member xseq opid'))"
proof (rule ccontr)
assume a3: "\<not> (atomic_flag_val s = None \<or>
atomic_flag_val s \<noteq> atom_pair_id (pbm opid) \<or>
(\<exists>opid'.
(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> List.member xseq opid'))"
then have f0: "atomic_flag_val s \<noteq> None \<and>
atomic_flag_val s = atom_pair_id (pbm opid) \<and>
(\<forall>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
List.member xseq opid')"
by auto
then obtain opid' where f1: "atomic_flag_val s = Some opid'"
by blast
from mem_op.simps have f2: "(type_of_mem_op_block (pbm opid) = ast_block) \<Longrightarrow>
(atomic_flag_val s) = Some opid' \<Longrightarrow> atom_pair_id (pbm opid) = Some opid' \<Longrightarrow>
\<forall>opid'. (((opid' ;po^(proc_of_op opid pbm) opid) \<and> (type_of_mem_op_block (pbm opid') \<in>
{ld_block, ald_block, st_block, ast_block})) \<longrightarrow> (List.member xseq opid')) \<Longrightarrow>
po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid] (mem_commit opid (atomic_flag_mod None
(proc_exe_to (proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po
(proc_of_op opid pbm))) s)))"
by auto
then have "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid] (mem_commit opid (atomic_flag_mod None
(proc_exe_to (proc_of_op opid pbm) po pbm (non_repeat_list_pos opid (po
(proc_of_op opid pbm))) s)))"
using a1 f0 f1 by auto
then have "\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
by auto
then show False using a2 by auto
qed
lemma atom_o_op_contra:
assumes a1: "(type_of_mem_op_block (pbm opid) = o_block)"
and a2: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'))"
shows "(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member xseq opid'))"
proof (rule ccontr)
assume a3: "\<nexists>opid'.
(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> List.member xseq opid'"
then have f0: "\<forall>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<longrightarrow>
List.member xseq opid'"
by auto
from mem_op.simps have f1: "(type_of_mem_op_block (pbm opid) = o_block) \<Longrightarrow>
\<forall>opid'. (((opid' ;po^(proc_of_op opid pbm) opid) \<and> (type_of_mem_op_block (pbm opid') \<in>
{ld_block, ald_block, st_block, ast_block})) \<longrightarrow> (List.member xseq opid')) \<Longrightarrow>
po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid] (proc_exe_to (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)"
by auto
then have "po pbm opid \<turnstile>m xseq s \<rightarrow> xseq@[opid] (proc_exe_to (proc_of_op opid pbm) po pbm
(non_repeat_list_pos opid (po (proc_of_op opid pbm))) s)"
using a1 f0 by auto
then have "\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s')"
by auto
then show False using a2 by auto
qed
text {* The lemmas below use the above lemmas to derive that if a rule is not applicable,
then at least one axiom is violated. *}
text {* First, we define conditions where a partial execution violates the axioms and that
no matter how the execution continues the axioms will be violated in a complete
execution.
We do this because it is possible that the negation of an axiom holds in a partial
execution but it doesn't hold in a continuation of the partial execution.
The main reason for this to happen is because memory order is only partially
observed in the partial execution.
So we need to define conditions such that once they are violated in a partial execution,
they will be violated in any continuation of the partial execution. *}
definition axiom_loadop_violate:: "op_id \<Rightarrow> op_id \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
program_block_map \<Rightarrow> bool" where
"axiom_loadop_violate opid opid' po xseq pbm \<equiv>
(type_of_mem_op_block (pbm opid) \<in> {ld_block, ald_block}) \<and>
(opid ;po^(proc_of_op opid pbm) opid') \<and>
(opid m<xseq opid') = Some False"
definition axiom_storestore_violate:: "op_id \<Rightarrow> op_id \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
program_block_map \<Rightarrow> bool" where
"axiom_storestore_violate opid opid' po xseq pbm \<equiv>
(type_of_mem_op_block (pbm opid) \<in> {st_block, ast_block}) \<and>
(type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}) \<and>
(opid ;po^(proc_of_op opid pbm) opid') \<and>
(opid m<xseq opid') = Some False"
definition axiom_atomicity_violate:: "op_id \<Rightarrow> op_id \<Rightarrow> program_order \<Rightarrow> executed_mem_ops \<Rightarrow>
program_block_map \<Rightarrow> bool" where
"axiom_atomicity_violate opid opid' po xseq pbm \<equiv>
(atom_pair_id (pbm opid') = Some opid) \<and>
(type_of_mem_op_block (pbm opid) = ald_block) \<and>
(type_of_mem_op_block (pbm opid') = ast_block) \<and>
(opid ;po^(proc_of_op opid pbm) opid') \<and>
(((opid m<xseq opid') = Some False) \<or>
(\<exists>opid''. type_of_mem_op_block (pbm opid'') \<in> {st_block, ast_block} \<and>
List.member xseq opid'' \<and> opid'' \<noteq> opid' \<and>
(opid'' m<xseq opid) = Some False \<and> (opid' m<xseq opid'') = Some False))"
text {* Now we show that the above conditions persist through any continuation of
execution. *}
lemma mem_order_before_false_persist:
assumes a1: "non_repeat_list (xseq@xseq')"
and a2: "opid \<noteq> opid'"
and a3: "(opid m<xseq opid') = Some False"
shows "(opid m<(xseq@xseq') opid') = Some False"
proof (insert assms, induction xseq' rule: rev_induct)
case Nil
then show ?case by auto
next
case (snoc x xs)
define thisseq where "thisseq \<equiv> xseq @ xs"
from snoc(2) have f0: "non_repeat_list thisseq"
using non_repeat_list_sublist append.assoc thisseq_def by blast
then have f1: "(opid m<thisseq opid') = Some False"
using snoc(1) thisseq_def a2 a3 by auto
then have f2: "((List.member thisseq opid) \<and> (List.member thisseq opid') \<and>
\<not>(list_before opid thisseq opid')) \<or>
(\<not>(List.member thisseq opid) \<and> (List.member thisseq opid'))"
using mem_order_false_cond by auto
then have f3: "((List.member thisseq opid) \<and> (List.member thisseq opid') \<and>
(list_before opid' thisseq opid)) \<or>
(\<not>(List.member thisseq opid) \<and> (List.member thisseq opid'))"
using dist_elem_not_before a2 by auto
then show ?case
proof (rule disjE)
assume a4: "List.member thisseq opid \<and> List.member thisseq opid' \<and>
list_before opid' thisseq opid"
then have f4: "List.member (thisseq@[x]) opid"
unfolding list_before_def
by (simp add: member_def)
from a4 have f5: "List.member (thisseq@[x]) opid'"
unfolding list_before_def
by (simp add: member_def)
from a4 have f8: "list_before opid' (thisseq@[x]) opid"
using list_before_extend by auto
then have f9: "\<not>(list_before opid (thisseq@[x]) opid')"
using non_repeat_list_before snoc(2) thisseq_def
by fastforce
from a2 f4 f5 f9 have f10: "(opid m<(thisseq@[x]) opid') = Some False"
unfolding memory_order_before_def by auto
then show ?thesis unfolding axiom_loadop_violate_def
thisseq_def by auto
next
assume a5: "\<not> List.member thisseq opid \<and> List.member thisseq opid'"
then have f11: "List.member (thisseq@[x]) opid'"
by (simp add: member_def)
then show ?thesis
proof (cases "x = opid")
case True
then have f12: "List.member (thisseq@[x]) opid"
by (simp add: member_def)
have f13: "list_before opid' (thisseq@[x]) opid"
using a5 True unfolding list_before_def
apply auto
by (metis a2 f11 in_set_conv_nth in_set_member length_append_singleton less_Suc_eq nth_append_length)
then have f14: "\<not>(list_before opid (thisseq@[x]) opid')"
using non_repeat_list_before snoc(2) thisseq_def by fastforce
then show ?thesis unfolding memory_order_before_def
using f11 f12 f13 thisseq_def by auto
next
case False
then have f15: "\<not>(List.member (thisseq@[x]) opid)"
using thisseq_def a5
by (metis insert_iff list.set(2) member_def rotate1.simps(2) set_rotate1)
then show ?thesis unfolding memory_order_before_def
using f11 thisseq_def by auto
qed
qed
qed
lemma axiom_loadop_violate_imp:
assumes a1: "axiom_loadop_violate opid opid' po xseq pbm"
shows "\<not>(axiom_loadop opid opid' po xseq pbm)"
using a1 unfolding axiom_loadop_def axiom_loadop_violate_def by auto
lemma axiom_storestore_violate_imp:
assumes a1: "axiom_storestore_violate opid opid' po xseq pbm"
shows "\<not>(axiom_storestore opid opid' po xseq pbm)"
using a1 unfolding axiom_storestore_def axiom_storestore_violate_def by auto
lemma axiom_atomicity_violate_imp:
assumes a1: "axiom_atomicity_violate opid opid' po xseq pbm"
shows "\<not>(axiom_atomicity opid opid' po xseq pbm)"
using a1 unfolding axiom_atomicity_def axiom_atomicity_violate_def by auto
lemma axiom_loadop_violate_persist:
assumes a0: "valid_program po pbm"
assumes a1: "axiom_loadop_violate opid opid' po xseq pbm"
assumes a2: "non_repeat_list (xseq@xseq')"
shows "axiom_loadop_violate opid opid' po (xseq@xseq') pbm"
proof -
from a1 have f1: "(type_of_mem_op_block (pbm opid) \<in> {ld_block, ald_block}) \<and>
(opid ;po^(proc_of_op opid pbm) opid') \<and>
(opid m<xseq opid') = Some False"
unfolding axiom_loadop_violate_def by auto
from a0 f1 have f2: "opid \<noteq> opid'"
using prog_order_op_unique by blast
from f1 f2 a2 have f3: "(opid m<(xseq@xseq') opid') = Some False"
using mem_order_before_false_persist by auto
then show ?thesis unfolding axiom_loadop_violate_def
using f1 by auto
qed
lemma axiom_storestore_violate_persist:
assumes a0: "valid_program po pbm"
assumes a1: "axiom_storestore_violate opid opid' po xseq pbm"
assumes a2: "non_repeat_list (xseq@xseq')"
shows "axiom_storestore_violate opid opid' po (xseq@xseq') pbm"
proof -
from a1 have f1: "(type_of_mem_op_block (pbm opid) \<in> {st_block, ast_block}) \<and>
(type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}) \<and>
(opid ;po^(proc_of_op opid pbm) opid') \<and>
(opid m<xseq opid') = Some False"
using axiom_storestore_violate_def by auto
from a0 f1 have f2: "opid \<noteq> opid'"
using prog_order_op_unique by blast
from f1 f2 a2 have f3: "(opid m<(xseq@xseq') opid') = Some False"
using mem_order_before_false_persist by auto
then show ?thesis unfolding axiom_storestore_violate_def
using f1 by auto
qed
lemma axiom_atomicity_violate_persist:
assumes a0: "valid_program po pbm"
assumes a1: "axiom_atomicity_violate opid opid' po xseq pbm"
assumes a2: "non_repeat_list (xseq@xseq')"
shows "axiom_atomicity_violate opid opid' po (xseq@xseq') pbm"
proof -
from a1 have f1: "(atom_pair_id (pbm opid') = Some opid) \<and>
(type_of_mem_op_block (pbm opid) = ald_block) \<and>
(type_of_mem_op_block (pbm opid') = ast_block) \<and>
(opid ;po^(proc_of_op opid pbm) opid') \<and>
(((opid m<xseq opid') = Some False) \<or>
(\<exists>opid''. type_of_mem_op_block (pbm opid'') \<in> {st_block, ast_block} \<and>
List.member xseq opid'' \<and> opid'' \<noteq> opid' \<and>
(opid'' m<xseq opid) = Some False \<and> (opid' m<xseq opid'') = Some False))"
using axiom_atomicity_violate_def by auto
from a0 f1 have f2: "opid \<noteq> opid'"
using prog_order_op_unique by blast
show ?thesis
proof (cases "((opid m<xseq opid') = Some False)")
case True
from True f2 a2 have f3: "(opid m<(xseq@xseq') opid') = Some False"
using mem_order_before_false_persist by auto
then show ?thesis unfolding axiom_atomicity_violate_def
using f1 by auto
next
case False
then obtain opid'' where f4: "type_of_mem_op_block (pbm opid'') \<in> {st_block, ast_block} \<and>
List.member xseq opid'' \<and> opid'' \<noteq> opid' \<and>
(opid'' m<xseq opid) = Some False \<and> (opid' m<xseq opid'') = Some False"
using f1 by auto
then have f5: "List.member (xseq@xseq') opid''"
by (meson is_sublist_def sublist_member)
from f4 have f6: "opid'' \<noteq> opid'"
by auto
from f1 f4 have f7: "opid'' \<noteq> opid" by auto
from a2 f7 f4 have f8: "(opid'' m<(xseq@xseq') opid) = Some False"
using mem_order_before_false_persist by auto
from a2 f6 f4 have f9: "(opid' m<(xseq@xseq') opid'') = Some False"
using mem_order_before_false_persist by auto
then show ?thesis unfolding axiom_atomicity_violate_def
using f1 f4 f5 f8 f9 by auto
qed
qed
text {* We now show lemmas that says if a rule is not applicable, then
at least one axiom is violated. *}
lemma load_op_contra_violate_sub1:
assumes a1: "type_of_mem_op_block (pbm opid) = ld_block"
and a2: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'))"
and a3: "valid_program po pbm"
shows "\<exists>opid'. (axiom_loadop_violate opid' opid po (xseq@[opid]) pbm)"
proof -
from a1 a2 obtain opid' where f1: "(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block) \<and>
\<not> (List.member xseq opid')"
using load_op_contra by blast
then have f2: "opid \<noteq> opid'"
using a3 prog_order_op_unique by blast
then have f3: "\<not> (List.member (xseq@[opid]) opid')"
using f1
by (metis in_set_member rotate1.simps(2) set_ConsD set_rotate1)
have f4: "List.member (xseq@[opid]) opid"
using in_set_member by force
then have f5: "(opid' m<(xseq@[opid]) opid) = Some False"
using f3 unfolding memory_order_before_def by auto
from a3 f1 have f6: "proc_of_op opid pbm = proc_of_op opid' pbm"
unfolding valid_program_def by fastforce
then have "\<exists>opid'. type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block} \<and>
(opid' ;po^(proc_of_op opid' pbm) opid) \<and>
((opid' m<(xseq @ [opid]) opid) = Some False)"
using f1 f5 by auto
then show ?thesis unfolding axiom_loadop_violate_def
by simp
qed
lemma load_op_contra_violate:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "type_of_mem_op_block (pbm opid) = ld_block"
and a3: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list))) \<rightarrow>
xseq' s'))"
shows "\<exists>opid'. (axiom_loadop_violate opid' opid po ((fst (last exe_list))@[opid]) pbm)"
proof -
from a1 have f1: "valid_program po pbm"
unfolding valid_mem_exe_seq_def by auto
show ?thesis using load_op_contra_violate_sub1[OF a2 a3 f1] by auto
qed
lemma atom_load_executed_sub1:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "atomic_flag_val (snd (snd (last exe_list))) = Some opid'"
shows "List.member (fst (last exe_list)) opid' \<and>
type_of_mem_op_block (pbm opid') = ald_block"
proof (insert assms, induction exe_list rule: rev_induct)
case Nil
then show ?case unfolding valid_mem_exe_seq_def by auto
next
case (snoc x xs)
then show ?case
proof (cases "xs = []")
case True
then have f1: "valid_mem_exe_seq po pbm [x] \<and>
atomic_flag_val (snd (snd (last [x]))) = Some opid'"
using snoc(2) snoc(3) by auto
then have f2: "(atomic_flag_val (snd (snd (hd [x]))) = None)"
unfolding valid_mem_exe_seq_def by auto
then show ?thesis using f1
by simp
next
case False
then have f3: "length xs > 0"
by auto
from snoc(2) have f4: "valid_program po pbm \<and> fst (List.hd (xs@[x])) = [] \<and>
(\<forall>opid. (\<exists>p. List.member (po p) opid) = (opid \<in> fst (snd (List.hd (xs@[x]))))) \<and>
(atomic_flag_val (snd (snd (hd (xs@[x])))) = None) \<and>
(\<forall>i. i < (List.length (xs@[x])) - 1 \<longrightarrow> (po pbm \<turnstile>t ((xs@[x])!i) \<rightarrow> ((xs@[x])!(i+1))))"
unfolding valid_mem_exe_seq_def by auto
then have f5: "fst (List.hd xs) = []"
using f3 by auto
have f6: "(\<forall>opid. (\<exists>p. List.member (po p) opid) = (opid \<in> fst (snd (List.hd xs))))"
using f3 f4 by auto
have f7: "(atomic_flag_val (snd (snd (hd xs))) = None)"
using f3 f4 by auto
have f8: "(\<forall>i. i < (List.length xs) - 1 \<longrightarrow> (po pbm \<turnstile>t (xs!i) \<rightarrow> (xs!(i+1))))"
using f3 f4
proof -
{ fix nn :: nat
have "Suc (length (butlast xs)) = length xs"
using f3 by auto
then have "\<not> nn < length xs - 1 \<or> (po pbm \<turnstile>t xs ! nn \<rightarrow> (xs ! (nn + 1)))"
by (metis (no_types) Suc_eq_plus1 Suc_less_eq butlast_snoc f4 length_butlast less_Suc_eq nth_append) }
then show ?thesis
by meson
qed
then have f9: "valid_mem_exe_seq po pbm xs"
using valid_mem_exe_seq_def f3 f4 f5 f6 f7 f8 by auto
from snoc(2) have "\<forall>i < (List.length (xs@[x])) - 1.
(po pbm \<turnstile>t ((xs@[x])!i) \<rightarrow> ((xs@[x])!(i+1)))"
unfolding valid_mem_exe_seq_def by auto
then have f11: "(po pbm \<turnstile>t (last xs) \<rightarrow> x)"
by (metis (no_types, lifting) False One_nat_def Suc_eq_plus1 Suc_pred append_butlast_last_id butlast_snoc diff_self_eq_0 f3 hd_conv_nth length_butlast lessI less_not_refl2 list.distinct(1) list.sel(1) nth_append)
then have f09: "\<exists>opid. (fst x) = (fst (last xs))@[opid]"
unfolding mem_state_trans_def using mem_op_exe
by meson
from f11 obtain opid''' where f13: "po pbm opid''' \<turnstile>m (fst (last xs)) (snd (snd (last xs)))
\<rightarrow> (fst x) (snd (snd x))"
unfolding mem_state_trans_def by auto
then show ?thesis
proof (cases "atomic_flag_val (snd (snd (last xs))) = Some opid'")
case True
then have f10: "List.member (fst (last xs)) opid' \<and>
type_of_mem_op_block (pbm opid') = ald_block"
using f9 snoc(1) by auto
then show ?thesis using f3 f10 f09
by (metis (no_types, lifting) insert_iff last_snoc list.set(2) member_def rotate1.simps(2) set_rotate1)
next
case False
then have "(\<exists>opid''. atomic_flag_val (snd (snd (last xs))) = Some opid'' \<and> opid'' \<noteq> opid')
\<or> atomic_flag_val (snd (snd (last xs))) = None"
by auto
then show ?thesis
proof (rule disjE)
assume a3: "\<exists>opid''. atomic_flag_val (snd (snd (last xs))) = Some opid'' \<and> opid'' \<noteq> opid'"
then obtain opid'' where f12: "atomic_flag_val (snd (snd (last xs))) = Some opid'' \<and>
opid'' \<noteq> opid'"
by auto
have f14: "type_of_mem_op_block (pbm opid''') = ld_block \<or>
type_of_mem_op_block (pbm opid''') = o_block \<or>
(type_of_mem_op_block (pbm opid''') = ast_block \<and>
atom_pair_id (pbm opid''') = Some opid'')"
using atomic_flag_exe1 f12 f13 by auto
then have "atomic_flag_val (snd (snd x)) = Some opid'' \<or>
atomic_flag_val (snd (snd x)) = None"
using atomic_flag_exe2 atomic_flag_exe3 f13 f12 by auto
then have "atomic_flag_val (snd (snd x)) \<noteq> Some opid'"
using f12 by auto
then show ?thesis using snoc(3) by auto
next
assume a4: "atomic_flag_val (snd (snd (last xs))) = None"
from snoc(3) have f15: "atomic_flag_val (snd (snd x)) = Some opid'"
by auto
then have f16: "type_of_mem_op_block (pbm opid''') = ald_block"
using atomic_flag_exe4[OF f13 a4] by auto
then have "atomic_flag_val (snd (snd x)) = Some opid'''"
using atomic_flag_exe_ald[OF f13 a4] by auto
then have f17: "opid' = opid'''"
using f15 by auto
then have f18: "type_of_mem_op_block (pbm opid') = ald_block"
using f16 by auto
from f13 f17 have "(fst x) = (fst (last xs))@[opid']"
using mem_op_exe by auto
then have "List.member (fst x) opid'"
using in_set_member by fastforce
then show ?thesis using f18 by auto
qed
qed
qed
qed
lemma atom_load_executed_sub2_sub1:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "j < (List.length exe_list - 1)"
and a3: "(k > j \<and> k < (length exe_list - 1))"
and a4: "\<forall>k'. (k' > j \<and> k' < (length exe_list - 1)) \<longrightarrow>
((fst (List.last exe_list))!k') \<noteq> opid'"
and a5: "atomic_flag_val (snd (snd (exe_list ! (j + 1)))) \<noteq> Some opid'"
shows "atomic_flag_val (snd (snd (exe_list!(k+1)))) \<noteq> Some opid'"
proof (insert assms, induction k)
case 0
then show ?case by auto
next
case (Suc k)
from Suc(4) have "k = j \<or> j < k"
by auto
then have f1: "atomic_flag_val (snd (snd (exe_list ! (k + 1)))) \<noteq> Some opid'"
using Suc by auto
from Suc(4) have f2:
"(po pbm ((fst (List.last exe_list))!(k+1)) \<turnstile>m (fst (exe_list!(k+1))) (snd (snd (exe_list!(k+1)))) \<rightarrow>
(fst (exe_list!((k+1)+1))) (snd (snd (exe_list!((k+1)+1)))))"
using valid_exe_op_exe_pos2[OF Suc(2)] by auto
from a4 have "((fst (List.last exe_list))!(k+1)) \<noteq> opid'"
using Suc(4) by auto
then have "atomic_flag_val (snd (snd (exe_list ! ((k+1) + 1)))) \<noteq> Some opid'"
using atomic_flag_exe5[OF f2 f1] by auto
then show ?case by auto
qed
lemma atom_load_executed_sub2:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "atomic_flag_val (snd (snd (last exe_list))) = Some opid'"
and a3: "type_of_mem_op_block (pbm opid'') = ast_block"
and a4: "atom_pair_id (pbm opid'') = Some opid'"
and a5: "(opid' ;po^(proc_of_op opid' pbm) opid'')"
and f0: "List.member (fst (last exe_list)) opid''"
shows "axiom_loadop_violate opid' opid'' po (fst (last exe_list)) pbm"
proof -
from a1 a2 have f1: "List.member (fst (last exe_list)) opid' \<and>
type_of_mem_op_block (pbm opid') = ald_block"
using atom_load_executed_sub1 by auto
then obtain i where f2: "i < (List.length exe_list - 1) \<and>
(fst (List.last exe_list))!i = opid'"
by (metis a1 in_set_conv_nth in_set_member valid_exe_xseq_sublist_length2)
then have f3: "(po pbm opid' \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
using valid_exe_op_exe_pos f2 a1 by auto
from f0 obtain j where f4: "j < (List.length exe_list - 1) \<and>
(fst (List.last exe_list))!j = opid''"
by (metis a1 in_set_conv_nth in_set_member valid_exe_xseq_sublist_length2)
then have f5: "(po pbm opid'' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1)))))"
using valid_exe_op_exe_pos f4 a1 by auto
from a1 have f6: "non_repeat_list (fst (List.last exe_list))"
using valid_mem_exe_seq_op_unique by auto
from a1 a5 have f7: "opid' \<noteq> opid''"
unfolding valid_mem_exe_seq_def using prog_order_op_unique by blast
then have f8: "i \<noteq> j"
using f2 f4 f6 unfolding non_repeat_list_def by auto
then have "i < j \<or> i > j"
by auto
then show ?thesis
proof (rule disjE)
assume a7: "i > j"
then have "\<nexists>k. k < length (fst (last exe_list)) \<and>
fst (last exe_list) ! k = opid' \<and> k < j"
using f6 f2 f4 unfolding non_repeat_list_def
using a1 le0 valid_exe_xseq_sublist_length2
using nth_eq_iff_index_eq
by (metis (mono_tags, hide_lams) not_less_iff_gr_or_eq)
\<comment>\<open>by auto \<close>
then have "\<nexists>k k'. k < length (fst (last exe_list)) \<and> k' < length (fst (last exe_list)) \<and>
fst (last exe_list) ! k = opid' \<and> fst (last exe_list) ! k' = opid'' \<and> k < k'"
using f6 f2 f4 unfolding non_repeat_list_def
using nth_eq_iff_index_eq by fastforce
\<comment>\<open> by auto \<close>
then have "\<not> (list_before opid' (fst (last exe_list)) opid'')"
unfolding list_before_def by blast
then have "(opid' m<(fst (last exe_list)) opid'') = Some False"
unfolding memory_order_before_def using f2 f0 f1 by auto
then show ?thesis using f1 a5 unfolding axiom_loadop_violate_def by auto
next
assume a6: "i < j"
have f9: "(snd (snd (exe_list ! (j + 1)))) =
mem_commit opid'' (atomic_flag_mod None (proc_exe_to (proc_of_op opid'' pbm)
po pbm (non_repeat_list_pos opid'' (po (proc_of_op opid'' pbm)))
(snd (snd (exe_list ! j)))))"
using mem_op_elim_atom_store_op[OF f5 a3] by auto
then have f10: "atomic_flag_val (snd (snd (exe_list ! (j + 1)))) = None"
using atomic_flag_mod_none mem_commit_atomic_flag by auto
have f11: "\<forall>k. (k > j \<and> k < (length exe_list - 1)) \<longrightarrow>
((fst (List.last exe_list))!k) \<noteq> opid'"
using f6 f2 a6 unfolding non_repeat_list_def
using a1 not_less_iff_gr_or_eq valid_exe_xseq_sublist_length2
using nth_eq_iff_index_eq by metis
\<comment>\<open>by auto\<close>
have f12: "\<forall>(k::nat). (k > j \<and> k < (length exe_list - 1)) \<longrightarrow>
atomic_flag_val (snd (snd (exe_list!(k+1)))) \<noteq> Some opid'"
using atom_load_executed_sub2_sub1[OF a1] f4 f11 f10 by auto
show ?thesis
proof (cases "j = (length exe_list - 1) - 1")
case True
then have "atomic_flag_val (snd (snd (exe_list ! (length exe_list - 1)))) = None"
using f10
by (metis (no_types, lifting) One_nat_def \<open>\<And>thesis. (\<And>i. i < length exe_list - 1 \<and> fst (last exe_list) ! i = opid' \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close> a1 add.right_neutral add_Suc_right gr_implies_not0 list_exhaust_size_gt0 nth_Cons' nth_Cons_Suc valid_mem_exe_seq_def)
then show ?thesis using a2
using a1 last_conv_nth valid_mem_exe_seq_def by fastforce
next
case False
then have "j < (length exe_list - 1 - 1)"
using f4 by auto
then have "atomic_flag_val (snd (snd (exe_list!((length exe_list - 1 - 1)+1)))) \<noteq> Some opid'"
using f12 by auto
then have "atomic_flag_val (snd (snd (exe_list!(length exe_list - 1)))) \<noteq> Some opid'"
by (metis (no_types, lifting) One_nat_def \<open>\<And>thesis. (\<And>i. i < length exe_list - 1 \<and> fst (last exe_list) ! i = opid' \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close> a1 add.right_neutral add_Suc_right gr_implies_not0 list_exhaust_size_gt0 nth_Cons' nth_Cons_Suc valid_mem_exe_seq_def)
then show ?thesis using a2
using a1 last_conv_nth valid_mem_exe_seq_def by fastforce
qed
qed
qed
lemma atom_load_executed0:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "atomic_flag_val (snd (snd (last exe_list))) = Some opid'"
and a4: "\<exists>opid''. type_of_mem_op_block (pbm opid') = ald_block \<and>
type_of_mem_op_block (pbm opid'') = ast_block \<and>
atom_pair_id (pbm opid'') = Some opid' \<and>
(opid' ;po^(proc_of_op opid' pbm) opid'') \<and>
List.member (fst (last exe_list)) opid' \<and>
(List.member (fst (last exe_list)) opid'')"
shows "\<exists>opid''. axiom_loadop_violate opid' opid'' po (fst (last exe_list)) pbm"
proof -
from a4 obtain opid'' where f0: "type_of_mem_op_block (pbm opid') = ald_block \<and>
type_of_mem_op_block (pbm opid'') = ast_block \<and>
atom_pair_id (pbm opid'') = Some opid' \<and>
(opid' ;po^(proc_of_op opid' pbm) opid'') \<and>
List.member (fst (last exe_list)) opid' \<and>
(List.member (fst (last exe_list)) opid'')"
by auto
then show ?thesis using atom_load_executed_sub2[OF a1 a2]
by blast
qed
lemma atom_load_executed:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "atomic_flag_val (snd (snd (last exe_list))) = Some opid'"
and a3: "\<not>(\<exists>opid''. axiom_loadop_violate opid' opid'' po (fst (last exe_list)) pbm)"
shows "\<exists>opid''. type_of_mem_op_block (pbm opid') = ald_block \<and>
type_of_mem_op_block (pbm opid'') = ast_block \<and>
atom_pair_id (pbm opid'') = Some opid' \<and>
(opid' ;po^(proc_of_op opid' pbm) opid'') \<and>
List.member (fst (last exe_list)) opid' \<and>
\<not> (List.member (fst (last exe_list)) opid'')"
proof -
have f0: "\<not>(\<exists>opid''. type_of_mem_op_block (pbm opid') = ald_block \<and>
type_of_mem_op_block (pbm opid'') = ast_block \<and>
atom_pair_id (pbm opid'') = Some opid' \<and>
(opid' ;po^(proc_of_op opid' pbm) opid'') \<and>
List.member (fst (last exe_list)) opid' \<and>
(List.member (fst (last exe_list)) opid''))"
using atom_load_executed0[OF a1 a2] using a3 by auto
from a1 a2 have f1: "List.member (fst (last exe_list)) opid' \<and>
type_of_mem_op_block (pbm opid') = ald_block"
using atom_load_executed_sub1 by auto
from a1 have f2: "(set (fst (last exe_list))) \<union> (fst (snd (last exe_list))) =
(fst (snd (hd exe_list)))"
using valid_exe_xseq_sublist_last by auto
then have f3: "opid' \<in> (fst (snd (hd exe_list)))"
using f1 in_set_member by fastforce
then obtain p where f4: "(List.member (po p) opid')"
using a1 unfolding valid_mem_exe_seq_def by auto
then obtain opid'' where f5: "(opid' ;po^p opid'') \<and>
type_of_mem_op_block (pbm opid'') = ast_block \<and> atom_pair_id (pbm opid'') = Some opid'"
using a1 f1 unfolding valid_mem_exe_seq_def valid_program_def
by meson
then have f6: "p = proc_of_op opid' pbm"
using a1 unfolding valid_mem_exe_seq_def valid_program_def
by blast
from f5 have f7: "type_of_mem_op_block (pbm opid'') = ast_block"
by auto
from f5 have f8: "atom_pair_id (pbm opid'') = Some opid'"
by simp
from f5 f6 have f9: "opid' ;po^(proc_of_op opid' pbm) opid''"
by auto
have f10: "\<not> (List.member (fst (last exe_list)) opid'')"
using f1 f7 f8 f9 f0
by auto
show ?thesis using f1 f7 f8 f9 f0 f10
by auto
qed
lemma store_op_contra_violate_sub2:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "atomic_flag_val (snd (snd (last exe_list))) = Some opid'"
and a3: "type_of_mem_op_block (pbm opid) = st_block"
and a6: "\<not> (List.member (fst (last exe_list)) opid)"
and a7: "op_seq_final (((fst (last exe_list))@[opid])@remainder) po pbm"
shows "\<exists>opid''. (axiom_atomicity_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_loadop_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm)"
proof (cases "(\<exists>opid''. axiom_loadop_violate opid' opid'' po (fst (last exe_list)) pbm)")
case True
then obtain opid'' where f0_0: "axiom_loadop_violate opid' opid'' po (fst (last exe_list)) pbm"
by auto
have f0_1: "valid_program po pbm"
using a1 unfolding valid_mem_exe_seq_def by auto
have f0: "non_repeat_list (((fst (last exe_list))@[opid])@remainder)"
using a7 unfolding op_seq_final_def by auto
then have f1: "non_repeat_list ((fst (last exe_list))@[opid])"
using non_repeat_list_sublist by blast
show ?thesis
using axiom_loadop_violate_persist[OF f0_1 f0_0 f1]
by auto
next
case False
obtain opid'' where f1: "type_of_mem_op_block (pbm opid') = ald_block \<and>
type_of_mem_op_block (pbm opid'') = ast_block \<and>
atom_pair_id (pbm opid'') = Some opid' \<and>
(opid' ;po^(proc_of_op opid' pbm) opid'') \<and>
List.member (fst (last exe_list)) opid' \<and>
\<not>(List.member (fst (last exe_list)) opid'')"
using atom_load_executed[OF a1 a2 False] by auto
from a3 f1 have f2: "opid \<noteq> opid'" by auto
from a3 f1 have f3: "opid \<noteq> opid''" by auto
from f1 have f4: "List.member ((fst (last exe_list))@[opid]) opid'"
by (metis UnCI in_set_member set_append)
from f1 f3 have f5: "\<not>(List.member ((fst (last exe_list))@[opid]) opid'')"
by (metis in_set_member insert_iff list.simps(15) rotate1.simps(2) set_rotate1)
have f6: "List.member ((fst (last exe_list))@[opid]) opid"
using in_set_member by fastforce
then have f7: "list_before opid' ((fst (last exe_list))@[opid]) opid"
using f1 unfolding list_before_def
by (metis f2 f4 in_set_member length_append_singleton length_pos_if_in_set less_Suc_eq less_imp_le list_mem_range nth_append_length)
have f8: "non_repeat_list (fst (last exe_list))"
using valid_mem_exe_seq_op_unique a1 by auto
have f9: "non_repeat_list ((fst (last exe_list))@[opid])"
using non_repeat_list_extend[OF f8 a6] by auto
have f10: "\<not>(list_before opid ((fst (last exe_list))@[opid]) opid')"
using non_repeat_list_before[OF f9 f7] by auto
then have f11: "(opid m<(fst (last exe_list) @ [opid]) opid') = Some False"
unfolding memory_order_before_def using f6 f4 by auto
from f6 f5 have f12: "(opid'' m<(fst (last exe_list) @ [opid]) opid) = Some False"
unfolding memory_order_before_def by auto
then show ?thesis unfolding axiom_atomicity_violate_def
using f1 a3 f6 f3 f11 f12 by auto
qed
lemma store_op_contra_violate_sub1:
assumes a1: "type_of_mem_op_block (pbm opid) = st_block"
and a2: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m xseq s \<rightarrow> xseq' s'))"
and a3: "valid_program po pbm"
and a4: "atomic_flag_val s = None"
shows "\<exists>opid'. (axiom_loadop_violate opid' opid po (xseq@[opid]) pbm) \<or>
(axiom_storestore_violate opid' opid po (xseq@[opid]) pbm)"
proof -
from a1 a2 have f1: "atomic_flag_val s \<noteq> None \<or>
(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member xseq opid'))"
using store_op_contra by auto
then obtain opid' where f2: "(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member xseq opid')"
using a4 by auto
then have f3: "opid \<noteq> opid'"
using a3 prog_order_op_unique by blast
then have f4: "\<not> (List.member (xseq@[opid]) opid')"
using f2
by (metis in_set_member rotate1.simps(2) set_ConsD set_rotate1)
have f5: "List.member (xseq@[opid]) opid"
using in_set_member by force
then have f6: "(opid' m<(xseq@[opid]) opid) = Some False"
using f4 unfolding memory_order_before_def by auto
from a3 f2 have f7: "proc_of_op opid pbm = proc_of_op opid' pbm"
unfolding valid_program_def by fastforce
from f2 have f8: "type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block} \<or>
type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}"
by auto
then show ?thesis
proof (rule disjE)
assume a5: "type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block}"
then have "type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block} \<and>
(opid' ;po^(proc_of_op opid' pbm) opid) \<and>
((opid' m<(xseq @ [opid]) opid) = Some False)"
using f2 f6 f7 by auto
then have "\<exists>opid'. (axiom_loadop_violate opid' opid po (xseq@[opid]) pbm)"
unfolding axiom_loadop_violate_def by auto
then show ?thesis by auto
next
assume a6: "type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}"
then have "(type_of_mem_op_block (pbm opid) \<in> {st_block, ast_block}) \<and>
(type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}) \<and>
(opid' ;po^(proc_of_op opid' pbm) opid) \<and>
(opid' m<(xseq @ [opid]) opid) = Some False"
using f2 f6 f7 a1 by auto
then have "\<exists>opid'. (axiom_storestore_violate opid' opid po (xseq@[opid]) pbm)"
unfolding axiom_storestore_violate_def by auto
then show ?thesis by auto
qed
qed
lemma store_op_contra_violate:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "type_of_mem_op_block (pbm opid) = st_block"
and a3: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list))) \<rightarrow>
xseq' s'))"
and a5: "\<not> (List.member (fst (last exe_list)) opid)"
and a6: "op_seq_final (((fst (last exe_list))@[opid])@remainder) po pbm"
shows "\<exists>opid' opid''. (axiom_loadop_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_storestore_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm)"
proof -
from a2 a3 have f1: "atomic_flag_val (snd (snd (last exe_list))) \<noteq> None \<or>
(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member (fst (last exe_list)) opid'))"
using store_op_contra by auto
then show ?thesis
proof (cases "atomic_flag_val (snd (snd (last exe_list))) \<noteq> None")
case True
then obtain opid' where f2: "atomic_flag_val (snd (snd (last exe_list))) = Some opid'"
by auto
show ?thesis
using store_op_contra_violate_sub2[OF a1 f2 a2 a5 a6] by auto
next
case False
then have f5: "atomic_flag_val (snd (snd (last exe_list))) = None"
by auto
from a1 have f4: "valid_program po pbm"
unfolding valid_mem_exe_seq_def by auto
show ?thesis using store_op_contra_violate_sub1[OF a2 a3 f4 f5] by auto
qed
qed
lemma atom_load_op_contra_violate_sub1:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "type_of_mem_op_block (pbm opid) = ald_block"
and a3: "atomic_flag_val (snd (snd (last exe_list))) = Some opid'"
and a5: "List.member (po (proc_of_op opid pbm)) opid"
and a6: "\<not> (List.member (fst (last exe_list)) opid)"
and a7: "op_seq_final (((fst (last exe_list))@[opid])@remainder) po pbm"
shows "\<exists>opid' opid''. (axiom_atomicity_violate opid' opid'' po
(((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_loadop_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm)"
proof (cases "(\<exists>opid''. axiom_loadop_violate opid' opid'' po (fst (last exe_list)) pbm)")
case True
then obtain opid'' where f0_0: "axiom_loadop_violate opid' opid'' po (fst (last exe_list)) pbm"
by auto
have f0_1: "valid_program po pbm"
using a1 unfolding valid_mem_exe_seq_def by auto
have f0: "non_repeat_list (((fst (last exe_list))@[opid])@remainder)"
using a7 unfolding op_seq_final_def by auto
then have f1: "non_repeat_list ((fst (last exe_list))@[opid])"
using non_repeat_list_sublist by blast
show ?thesis
using axiom_loadop_violate_persist[OF f0_1 f0_0 f1]
by auto
next
case False
then obtain opid'_st where f1: "type_of_mem_op_block (pbm opid') = ald_block \<and>
type_of_mem_op_block (pbm opid'_st) = ast_block \<and>
atom_pair_id (pbm opid'_st) = Some opid' \<and>
(opid' ;po^(proc_of_op opid' pbm) opid'_st) \<and>
List.member (fst (last exe_list)) opid' \<and>
\<not>(List.member (fst (last exe_list)) opid'_st)"
using atom_load_executed[OF a1 a3] by auto
from a1 a2 a5 obtain opid_st where f2: "(opid ;po^(proc_of_op opid pbm) opid_st) \<and>
type_of_mem_op_block (pbm opid_st) = ast_block \<and> atom_pair_id (pbm opid_st) = Some opid"
unfolding valid_mem_exe_seq_def valid_program_def by blast
from a6 f1 have f3: "opid \<noteq> opid'" by auto
from a2 f1 have f4: "opid \<noteq> opid'_st" by auto
from f1 f2 have f5: "opid_st \<noteq> opid'" by auto
from f1 f2 f3 have f6: "opid_st \<noteq> opid'_st" by auto
from a2 f2 have f7: "opid \<noteq> opid_st" by auto
have f8: "non_repeat_list (fst (last exe_list))"
using valid_mem_exe_seq_op_unique[OF a1] by auto
then have f9: "non_repeat_list ((fst (last exe_list))@[opid])"
using a6 non_repeat_list_extend by fastforce
from f2 have "List.member (po (proc_of_op opid pbm)) opid_st"
unfolding program_order_before_def list_before_def
by (meson list_mem_range_rev)
then have f91: "List.member (((fst (last exe_list))@[opid])@remainder) opid_st"
using f2 a7 unfolding op_seq_final_def by auto
from f1 have "List.member (po (proc_of_op opid' pbm)) opid'_st"
unfolding program_order_before_def list_before_def
by (meson list_mem_range_rev)
then have f92: "List.member (((fst (last exe_list))@[opid])@remainder) opid'_st"
using f2 a7 unfolding op_seq_final_def by auto
show ?thesis
proof (cases "(List.member (fst (last exe_list)) opid_st)")
case True
then have f10: "(opid m<(fst (last exe_list)) opid_st) = Some False"
unfolding memory_order_before_def using a6 by auto
then have "(atom_pair_id (pbm opid_st) = Some opid) \<and>
(type_of_mem_op_block (pbm opid) = ald_block) \<and>
(type_of_mem_op_block (pbm opid_st) = ast_block) \<and>
(opid ;po^(proc_of_op opid pbm) opid_st) \<and>
((opid m<(fst (last exe_list)) opid_st) = Some False)"
using f2 a2 by auto
then have "axiom_atomicity_violate opid opid_st po (fst (last exe_list)) pbm"
unfolding axiom_atomicity_violate_def by auto
then show ?thesis
using axiom_atomicity_violate_persist a1 a7
unfolding valid_mem_exe_seq_def op_seq_final_def
by (metis append.assoc)
next
case False
then have f11: "list_before opid' (((fst (last exe_list))@[opid])@remainder) opid_st"
using f1 f91 list_before_extend2 by auto
then have f12: "\<not>(list_before opid_st (((fst (last exe_list))@[opid])@remainder) opid')"
using a7 unfolding op_seq_final_def
by (simp add: non_repeat_list_before)
from f1 f4 have f13: "\<not> List.member ((fst (last exe_list))@[opid]) opid'_st"
by (metis in_set_member insert_iff list.simps(15) rotate1.simps(2) set_rotate1)
have f14: "List.member ((fst (last exe_list))@[opid]) opid"
using in_set_member by fastforce
have f15: "list_before opid (((fst (last exe_list))@[opid])@remainder) opid'_st"
using list_before_extend2[OF f14 f13 f92] by auto
then have f16: "\<not>(list_before opid'_st (((fst (last exe_list))@[opid])@remainder) opid)"
using a7 unfolding op_seq_final_def
by (simp add: non_repeat_list_before)
have f16_1: "non_repeat_list (((fst (last exe_list))@[opid])@remainder)"
using a7 unfolding op_seq_final_def by auto
have f17:
"list_before opid_st (((fst (last exe_list))@[opid])@remainder) opid'_st \<or>
list_before opid'_st (((fst (last exe_list))@[opid])@remainder) opid_st"
using list_elements_before[OF f91 f92 f6] by auto
then show ?thesis
proof (rule disjE)
assume f18: "list_before opid_st (((fst (last exe_list))@[opid])@remainder) opid'_st"
have f181: "\<not>(list_before opid'_st (((fst (last exe_list))@[opid])@remainder) opid_st)"
using non_repeat_list_before[OF f16_1 f18] by auto
have f182: "List.member ((fst (last exe_list) @ [opid]) @ remainder) opid'"
using f1 by (metis UnCI in_set_member set_append)
from f91 f182 f12 have f183: "(opid_st m<(((fst (last exe_list))@[opid])@remainder) opid') =
Some False"
unfolding memory_order_before_def by auto
from f91 f92 f181 have f184: "(opid'_st m<(((fst (last exe_list))@[opid])@remainder) opid_st) =
Some False"
unfolding memory_order_before_def by auto
then show ?thesis unfolding axiom_atomicity_violate_def
using f1 f2 f91 f6 f184 f183 by auto
next
assume f19: "list_before opid'_st (((fst (last exe_list))@[opid])@remainder) opid_st"
have f191: "\<not>(list_before opid_st (((fst (last exe_list))@[opid])@remainder) opid'_st)"
using non_repeat_list_before[OF f16_1 f19] by auto
have f192: "List.member ((fst (last exe_list) @ [opid]) @ remainder) opid"
using f14 by (metis UnCI in_set_member set_append)
from f92 f192 f16 have f193: "(opid'_st m<(((fst (last exe_list))@[opid])@remainder) opid) =
Some False"
unfolding memory_order_before_def by auto
from f91 f92 f191 have f194: "(opid_st m<(((fst (last exe_list))@[opid])@remainder) opid'_st) =
Some False"
unfolding memory_order_before_def by auto
then show ?thesis unfolding axiom_atomicity_violate_def
using f2 a2 f1 f92 f6 f193 f194 by auto
qed
qed
qed
lemma atom_load_op_contra_violate_sub2:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "type_of_mem_op_block (pbm opid) = ald_block"
and a3: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list))) \<rightarrow>
xseq' s'))"
and a4: "(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member (fst (last exe_list)) opid')"
and a6: "op_seq_final (((fst (last exe_list))@[opid])@remainder) po pbm"
shows "\<exists>opid' opid''. (axiom_loadop_violate opid' opid po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_storestore_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
proof -
have a5: "List.member (po (proc_of_op opid pbm)) opid"
using a4 program_order_before_def list_before_def
by (metis list_mem_range_rev)
have f0: "opid \<noteq> opid'"
using a4 a1 prog_order_op_unique unfolding valid_mem_exe_seq_def by blast
then have f01: "\<not> (List.member ((fst (last exe_list))@[opid]) opid')"
using a4
by (metis in_set_member insert_iff list.simps(15) rotate1.simps(2) set_rotate1)
have f02: "List.member ((fst (last exe_list))@[opid]) opid"
using in_set_member by force
then have f03: "(opid' m<((fst (last exe_list))@[opid]) opid) = Some False"
using f01 unfolding memory_order_before_def by auto
from a1 a4 have f04: "proc_of_op opid pbm = proc_of_op opid' pbm"
unfolding valid_mem_exe_seq_def valid_program_def
by blast
from a6 have f05: "non_repeat_list (((fst (last exe_list))@[opid])@remainder)"
unfolding op_seq_final_def by auto
from a4 have f1: "type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block} \<or>
type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}"
by auto
then show ?thesis
proof (rule disjE)
assume f2: "type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block}"
then show ?thesis unfolding axiom_loadop_violate_def
using a4 f03 f04 by auto
next
assume f3: "type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}"
from a1 have f30: "non_repeat_list (po (proc_of_op opid pbm))"
unfolding valid_mem_exe_seq_def valid_program_def by auto
from a1 a2 a5 obtain opid_st where f31: "(opid ;po^(proc_of_op opid pbm) opid_st) \<and>
type_of_mem_op_block (pbm opid_st) = ast_block \<and> atom_pair_id (pbm opid_st) = Some opid"
unfolding valid_mem_exe_seq_def valid_program_def by blast
then have f32: "opid' ;po^(proc_of_op opid pbm) opid_st"
using a4 f30 prog_order_before_trans by blast
from a1 a4 have f33: "(proc_of_op opid pbm) = (proc_of_op opid' pbm)"
unfolding valid_mem_exe_seq_def valid_program_def by blast
from a4 have f34: "List.member (po (proc_of_op opid pbm)) opid'"
unfolding program_order_before_def list_before_def
by (meson list_mem_range_rev)
then have f35: "List.member (((fst (last exe_list))@[opid])@remainder) opid'"
using a4 a6 unfolding op_seq_final_def by auto
from f32 have "List.member (po (proc_of_op opid pbm)) opid_st"
unfolding program_order_before_def list_before_def
by (meson list_mem_range_rev)
then have f36: "List.member (((fst (last exe_list))@[opid])@remainder) opid_st"
using a4 a6 unfolding op_seq_final_def by auto
from f35 obtain i where f37: "i < length (((fst (last exe_list))@[opid])@remainder) \<and>
((((fst (last exe_list))@[opid])@remainder)!i) = opid'"
by (meson in_set_conv_nth in_set_member)
from f36 obtain j where f38: "j < length (((fst (last exe_list))@[opid])@remainder) \<and>
((((fst (last exe_list))@[opid])@remainder)!j) = opid_st"
by (meson in_set_conv_nth in_set_member)
from f32 a1 have f39: "opid' \<noteq> opid_st"
unfolding valid_mem_exe_seq_def
using prog_order_op_unique by blast
then have "i \<noteq> j"
using f37 f38 by auto
then have "i < j \<or> i > j"
by auto
then show ?thesis
proof (rule disjE)
assume f41: "i < j"
then have f42: "list_before opid' (((fst (last exe_list))@[opid])@remainder) opid_st"
using f37 f38 unfolding list_before_def by blast
have f43: "\<not>(list_before opid_st (((fst (last exe_list))@[opid])@remainder) opid')"
using non_repeat_list_before[OF f05 f42] by auto
then have f44: "(opid_st m<(((fst (last exe_list))@[opid])@remainder) opid') =
Some False"
unfolding memory_order_before_def using f35 f36 by auto
then show ?thesis unfolding axiom_atomicity_violate_def
using f31 a2 f3 f35 f39 f03
by (metis f0 f05 mem_order_before_false_persist)
next
assume f51: "i > j"
then have f52: "list_before opid_st (((fst (last exe_list))@[opid])@remainder) opid'"
using f37 f38 unfolding list_before_def by blast
then have f53: "\<not>(list_before opid' (((fst (last exe_list))@[opid])@remainder) opid_st)"
using non_repeat_list_before[OF f05 f52] by auto
then have f44: "(opid' m<(((fst (last exe_list))@[opid])@remainder) opid_st) =
Some False"
unfolding memory_order_before_def using f35 f36 by auto
then show ?thesis unfolding axiom_storestore_violate_def
using f31 f3 f32 f33 by auto
qed
qed
qed
lemma atom_load_op_contra_violate:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "type_of_mem_op_block (pbm opid) = ald_block"
and a3: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list))) \<rightarrow>
xseq' s'))"
and a5: "List.member (po (proc_of_op opid pbm)) opid"
and a6: "\<not> (List.member (fst (last exe_list)) opid)"
and a7: "op_seq_final (((fst (last exe_list))@[opid])@remainder) po pbm"
shows "\<exists>opid' opid''. (axiom_loadop_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_storestore_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
proof -
from a2 a3 have f1: "atomic_flag_val (snd (snd (last exe_list))) \<noteq> None \<or>
(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member (fst (last exe_list)) opid'))"
using atom_load_op_contra by auto
then show ?thesis
proof (rule disjE)
assume f2: "atomic_flag_val (snd (snd (last exe_list))) \<noteq> None"
then obtain opid' where f21: "atomic_flag_val (snd (snd (last exe_list))) = Some opid'"
by auto
show ?thesis
using atom_load_op_contra_violate_sub1[OF a1 a2 f21 a5 a6 a7] by auto
next
assume f3: "(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member (fst (last exe_list)) opid'))"
then obtain opid' where f31: "(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member (fst (last exe_list)) opid')"
by auto
show ?thesis
using atom_load_op_contra_violate_sub2[OF a1 a2 a3 f31 a7] by auto
qed
qed
lemma atom_exe_valid_type2:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "i < (List.length exe_list - 1)"
and a3: "(po pbm opid \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
and a5: "(atom_pair_id (pbm opid') = Some opid) \<and>
(type_of_mem_op_block (pbm opid) = ald_block) \<and>
(type_of_mem_op_block (pbm opid') = ast_block)"
and a6: "(i < j \<and> j < (List.length exe_list - 1) \<and>
(po pbm opid'' \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))))"
and a7: "atomic_flag_val (snd (snd (exe_list!(i+1)))) = Some opid"
and a8: "opid \<noteq> opid'' \<and> opid'' \<noteq> opid'"
and a9: "\<not>(List.member (fst (last exe_list)) opid')"
shows "(type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = o_block) \<and>
atomic_flag_val (snd (snd (exe_list!j))) = Some opid"
proof (insert assms, induction "j - i" arbitrary: opid'' j)
case 0
then show ?case by auto
next
case (Suc x)
then show ?case
proof (cases "j - 1 = i")
case True
then have "j = i + 1"
using Suc.prems(5) by linarith
then have f1: "atomic_flag_val (snd (snd (exe_list!j))) = Some opid"
using a7 by auto
then have f2: "type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = o_block \<or>
(type_of_mem_op_block (pbm opid'') = ast_block \<and>
atom_pair_id (pbm opid'') = Some opid)"
using Suc(7) atomic_flag_exe1 by blast
from a1 Suc(9) Suc(6) have "atom_pair_id (pbm opid'') \<noteq> Some opid"
using ast_op_unique by auto
then have "type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = o_block"
using f2 by auto
then show ?thesis using f1 by auto
next
case False
then have f3: "j-1 > i"
using Suc(7) by auto
then have f003: "j > 0"
by auto
from Suc(2) have f03: "x = (j-1) - i"
by auto
from Suc(3) Suc(7) have f4: "j-1 < length exe_list - 1"
by auto
then obtain opid''' where
"(po pbm opid''' \<turnstile>m (fst (exe_list ! (j-1))) (snd (snd (exe_list ! (j-1)))) \<rightarrow>
(fst (exe_list ! j)) (snd (snd (exe_list ! j))))"
using a1 unfolding valid_mem_exe_seq_def mem_state_trans_def
by (metis (no_types, lifting) add.commute add_diff_inverse_nat f3 gr_implies_not_zero nat_diff_split_asm)
then have f05: "(po pbm opid''' \<turnstile>m (fst (exe_list ! (j-1))) (snd (snd (exe_list ! (j-1)))) \<rightarrow>
(fst (exe_list ! ((j-1)+1))) (snd (snd (exe_list ! ((j-1)+1)))))"
using f003 by auto
then have f5: "i < j-1 \<and> j-1 < (List.length exe_list - 1) \<and>
(po pbm opid''' \<turnstile>m (fst (exe_list ! (j-1))) (snd (snd (exe_list ! (j-1)))) \<rightarrow>
(fst (exe_list ! ((j-1)+1))) (snd (snd (exe_list ! ((j-1)+1)))))"
using f3 Suc(7) f003 by auto
from a1 f4 Suc(4) f5 Suc(5) have f6: "opid''' \<noteq> opid"
using valid_exe_op_exe_pos_unique False
by (metis One_nat_def Suc_eq_plus1)
from f5 have f5_1: "opid''' = ((fst (List.last exe_list))!(j-1))"
using a1 valid_exe_op_exe_pos3 by blast
then have f5_2: "List.member (fst (List.last exe_list)) opid'''"
using f5 a1 in_set_member valid_exe_xseq_sublist_length2 by fastforce
then have f7: "opid''' \<noteq> opid'"
using a9 by auto
from f6 f7 have f8: "opid \<noteq> opid''' \<and> opid''' \<noteq> opid'"
by auto
have f9: "(type_of_mem_op_block (pbm opid''') = ld_block \<or>
type_of_mem_op_block (pbm opid''') = o_block) \<and>
atomic_flag_val (snd (snd (exe_list ! (j-1)))) = Some opid"
using Suc(1)[OF f03 a1 Suc(4) Suc(5) Suc(6) f5 Suc(8) f8 a9] by auto
then have "atomic_flag_val (snd (snd (exe_list ! ((j-1)+1)))) = Some opid"
using atomic_flag_exe2 f05 by auto
then have f10: "atomic_flag_val (snd (snd (exe_list ! j))) = Some opid"
using f003 by auto
from Suc(7) have f11: "po pbm opid'' \<turnstile>m (fst (exe_list ! j)) (snd (snd (exe_list ! j))) \<rightarrow>
(fst (exe_list ! (j + 1))) (snd (snd (exe_list ! (j + 1))))"
by auto
have f12: "type_of_mem_op_block (pbm opid'') = ld_block \<or>
type_of_mem_op_block (pbm opid'') = o_block \<or>
(type_of_mem_op_block (pbm opid'') = ast_block \<and>
atom_pair_id (pbm opid'') = Some opid)"
using atomic_flag_exe1[OF f11 f10] by auto
have f13: "atom_pair_id (pbm opid'') \<noteq> Some opid"
using ast_op_unique[OF a1] Suc(9) Suc(6) by auto
from f12 f13 show ?thesis by (simp add: f10)
qed
qed
lemma atom_store_op_contra_violate_sub1:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "type_of_mem_op_block (pbm opid) = ast_block"
and a3: "atom_pair_id (pbm opid) = Some opid_ald"
and a4: "List.member (fst (last exe_list)) opid_ald"
and a5: "\<not>(List.member (fst (last exe_list)) opid)"
and a6: "List.member (po (proc_of_op opid pbm)) opid"
shows "(atomic_flag_val (snd (snd (last exe_list)))) = atom_pair_id (pbm opid)"
proof -
from a4 obtain i where f1: "i < length (fst (last exe_list)) \<and>
(fst (last exe_list))!i = opid_ald"
by (meson list_mem_range)
then have f2: "i < (List.length exe_list) - 1"
using a1 valid_exe_xseq_sublist_length2 by auto
then have f3: "(po pbm opid_ald \<turnstile>m (fst (exe_list!i)) (snd (snd (exe_list!i))) \<rightarrow>
(fst (exe_list!(i+1))) (snd (snd (exe_list!(i+1)))))"
using a1 f1 valid_exe_op_exe_pos by auto
from a1 a2 a6 have f4: "(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
type_of_mem_op_block (pbm opid') = ald_block \<and> atom_pair_id (pbm opid) = Some opid')"
unfolding valid_mem_exe_seq_def valid_program_def by blast
then have f5: "(opid_ald ;po^(proc_of_op opid pbm) opid) \<and>
type_of_mem_op_block (pbm opid_ald) = ald_block"
using a3 by auto
from a2 a3 f1 f5 have f1_1: "(atom_pair_id (pbm opid) = Some opid_ald) \<and>
(type_of_mem_op_block (pbm opid_ald) = ald_block) \<and>
(type_of_mem_op_block (pbm opid) = ast_block)"
by auto
have f6: "atomic_flag_val (snd (snd (exe_list!i))) = None"
using mem_op_elim_atom_load_op[OF f3] f5
by blast
have f7: "atomic_flag_val (snd (snd (exe_list!(i+1)))) = Some opid_ald"
using atomic_flag_exe_ald[OF f3 f6] f5 by auto
show ?thesis
proof (cases "i = (List.length exe_list - 2)")
case True
then have "atomic_flag_val (snd (snd (exe_list!((List.length exe_list - 2)+1)))) = Some opid_ald"
using f7 by auto
then have "atomic_flag_val (snd (snd (exe_list!(List.length exe_list - 1)))) = Some opid_ald"
by (metis Nat.add_0_right One_nat_def Suc_diff_Suc \<open>\<And>thesis. (\<And>i. i < length (fst (last exe_list)) \<and> fst (last exe_list) ! i = opid_ald \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close> a1 add_Suc_right gr_implies_not_zero length_0_conv length_greater_0_conv numeral_2_eq_2 valid_exe_xseq_sublist_length2 zero_less_diff)
then show ?thesis using a3
using a1 last_conv_nth valid_mem_exe_seq_def by fastforce
next
case False
then have f2_0: "i < length exe_list - 2"
using f2 by auto
define j where "j \<equiv> length exe_list - 2"
then have f8: "j < (List.length exe_list - 1)"
using \<open>i < length exe_list - 2\<close> by linarith
then have f8_1: "j < length (fst (last exe_list))"
using a1 valid_exe_xseq_sublist_length2 by auto
have f8_2: "j = length (fst (last exe_list)) - 1"
using j_def valid_exe_xseq_sublist_length2[OF a1] by auto
have f9: "(po pbm ((fst (List.last exe_list))!j) \<turnstile>m (fst (exe_list!j))
(snd (snd (exe_list!j))) \<rightarrow> (fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1)))))"
using valid_exe_op_exe_pos2[OF a1 f8] by auto
define opid_j where "opid_j \<equiv> ((fst (List.last exe_list))!j)"
have f10: "non_repeat_list (fst (List.last exe_list))"
using valid_mem_exe_seq_op_unique[OF a1] by auto
then have f11: "opid_ald \<noteq> opid_j"
using f1 opid_j_def f8_1 False j_def unfolding non_repeat_list_def
using nth_eq_iff_index_eq
by blast
have f12: "List.member (fst (List.last exe_list)) opid_j"
using opid_j_def j_def
using f8_1 in_set_member by fastforce
then have f13: "opid_j \<noteq> opid" using a5 by auto
from f2_0 j_def f8 f9 opid_j_def have f13_1: "(i < j \<and> j < (List.length exe_list - 1) \<and>
(po pbm opid_j \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1))))))"
by auto
from f11 f13 have f13_2: "opid_ald \<noteq> opid_j \<and> opid_j \<noteq> opid"
by auto
from f13_1 have f13_3: "(po pbm opid_j \<turnstile>m (fst (exe_list!j)) (snd (snd (exe_list!j))) \<rightarrow>
(fst (exe_list!(j+1))) (snd (snd (exe_list!(j+1)))))"
by auto
have f14: "atomic_flag_val (snd (snd (exe_list!j))) = Some opid_ald"
using atom_exe_valid_type2[OF a1 f2 f3 f1_1 f13_1 f7 f13_2 a5] by auto
have f15: "type_of_mem_op_block (pbm opid_j) = ld_block \<or>
type_of_mem_op_block (pbm opid_j) = o_block \<or>
(type_of_mem_op_block (pbm opid_j) = ast_block \<and>
atom_pair_id (pbm opid_j) = Some opid_ald)"
using atomic_flag_exe1[OF f13_3 f14] by auto
from a1 f13 a3 have "(atom_pair_id (pbm opid_j) \<noteq> Some opid_ald)"
unfolding valid_mem_exe_seq_def valid_program_def by blast
then have f15_1: "type_of_mem_op_block (pbm opid_j) = ld_block \<or>
type_of_mem_op_block (pbm opid_j) = o_block"
using f15 by auto
have "atomic_flag_val (snd (snd (exe_list!(j+1)))) = Some opid_ald"
using atomic_flag_exe2[OF f13_3 f14 f15_1] by auto
then have "atomic_flag_val (snd (snd (exe_list!(length exe_list - 1)))) =
Some opid_ald"
using j_def
by (metis One_nat_def Suc_diff_Suc \<open>\<And>thesis. (\<And>i. i < length (fst (last exe_list)) \<and> fst (last exe_list) ! i = opid_ald \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close> a1 add.right_neutral add_Suc_right f8_2 gr_implies_not0 length_0_conv length_greater_0_conv minus_nat.diff_0 valid_exe_xseq_sublist_length2)
then show ?thesis
by (metis (full_types) a3 f2_0 last_conv_nth list.size(3) not_less_zero zero_diff)
qed
qed
lemma atom_store_op_contra_violate:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "type_of_mem_op_block (pbm opid) = ast_block"
and a3: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list))) \<rightarrow>
xseq' s'))"
and a5: "List.member (po (proc_of_op opid pbm)) opid"
and a6: "\<not> (List.member (fst (last exe_list)) opid)"
and a7: "op_seq_final (((fst (last exe_list))@[opid])@remainder) po pbm"
shows "\<exists>opid' opid''. (axiom_loadop_violate opid' opid po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_storestore_violate opid' opid po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
proof -
from a1 have f0: "valid_program po pbm"
unfolding valid_mem_exe_seq_def by auto
from a7 have f0_1: "non_repeat_list (((fst (last exe_list))@[opid])@remainder)"
unfolding op_seq_final_def by auto
from a2 a3 have f1: "(atomic_flag_val (snd (snd (last exe_list)))) = None \<or>
(atomic_flag_val (snd (snd (last exe_list)))) \<noteq> atom_pair_id (pbm opid) \<or>
(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member (fst (last exe_list)) opid'))"
using atom_store_op_contra by auto
from a1 a2 a5 have f2: "(\<exists>opid'. (opid' ;po^(proc_of_op opid pbm) opid) \<and>
type_of_mem_op_block (pbm opid') = ald_block \<and> atom_pair_id (pbm opid) = Some opid')"
unfolding valid_mem_exe_seq_def valid_program_def by blast
then obtain opid_ald where f3: "(opid_ald ;po^(proc_of_op opid pbm) opid) \<and>
type_of_mem_op_block (pbm opid_ald) = ald_block \<and> atom_pair_id (pbm opid) = Some opid_ald"
using a3 by auto
from f3 have f3_0: "(opid_ald ;po^(proc_of_op opid_ald pbm) opid)"
using a1 unfolding valid_mem_exe_seq_def valid_program_def
by metis
from f3 have f3_1: "atom_pair_id (pbm opid) = Some opid_ald"
by auto
have f3_2: "opid_ald \<noteq> opid"
using f3 a2 by auto
have f5_2: "List.member ((fst (last exe_list))@[opid]) opid"
using in_set_member by fastforce
show ?thesis
proof (cases "List.member (fst (last exe_list)) opid_ald")
case True
have f4_1: "(atomic_flag_val (snd (snd (last exe_list)))) = atom_pair_id (pbm opid)"
using atom_store_op_contra_violate_sub1[OF a1 a2 f3_1 True a6 a5] by auto
then obtain opid' where f1_1: "(opid' ;po^(proc_of_op opid pbm) opid) \<and>
(type_of_mem_op_block (pbm opid') = ld_block \<or>
type_of_mem_op_block (pbm opid') = ald_block \<or>
type_of_mem_op_block (pbm opid') = st_block \<or>
type_of_mem_op_block (pbm opid') = ast_block) \<and>
\<not> (List.member (fst (last exe_list)) opid')"
using f1 f3 by auto
then have f1_2: "opid' \<noteq> opid"
using prog_order_op_unique[OF f0] using f1_1 by auto
then have f1_3: "\<not> List.member ((fst (last exe_list))@[opid]) opid'"
using f1_1
by (metis (mono_tags, hide_lams) in_set_member insert_iff list.simps(15) rotate1.simps(2) set_rotate1)
then have f1_4: "(opid' m<((fst (last exe_list))@[opid]) opid) = Some False"
using f5_2 unfolding memory_order_before_def by auto
from f1_1 have f1_5: "(opid' ;po^(proc_of_op opid' pbm) opid)"
using f0 unfolding valid_program_def
by metis
from f1_1 have f1_6: "type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block} \<or>
type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}"
by auto
then show ?thesis
proof (rule disjE)
assume a8: "type_of_mem_op_block (pbm opid') \<in> {ld_block, ald_block}"
then have f8_1: "axiom_loadop_violate opid' opid po ((fst (last exe_list))@[opid]) pbm"
unfolding axiom_loadop_violate_def using f1_4 f1_5 by auto
then show ?thesis by auto
next
assume a9: "type_of_mem_op_block (pbm opid') \<in> {st_block, ast_block}"
then have f9_1: "axiom_storestore_violate opid' opid po ((fst (last exe_list))@[opid]) pbm"
unfolding axiom_storestore_violate_def using f1_4 f1_5 a2 by auto
then show ?thesis by auto
qed
next
case False
then have f5_1: "\<not> List.member ((fst (last exe_list))@[opid]) opid_ald"
using f3_2
by (metis in_set_member rotate1.simps(2) set_ConsD set_rotate1)
from f5_1 f5_2 have f5_3: "(opid_ald m<((fst (last exe_list))@[opid]) opid) = Some False"
unfolding memory_order_before_def by auto
then have f5_4: "axiom_atomicity_violate opid_ald opid po ((fst (last exe_list))@[opid]) pbm"
unfolding axiom_atomicity_violate_def using f3 a2 f3_0 by auto
show ?thesis
using axiom_atomicity_violate_persist[OF f0 f5_4 f0_1] by auto
qed
qed
text {* The lemma below combines the *_contra_violate lemmas of all above operations. *}
lemma mem_op_contra_violate:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "op_seq_final (((fst (last exe_list))@[opid])@remainder) po pbm"
and a3: "\<not> (\<exists>xseq' s'. (po pbm opid \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list))) \<rightarrow>
xseq' s'))"
shows "\<exists>opid' opid''. (axiom_loadop_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_storestore_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
proof -
have f0: "valid_program po pbm"
using a2 unfolding op_seq_final_def by auto
have f1: "List.member (((fst (last exe_list))@[opid])@remainder) opid"
using in_set_member by fastforce
then have f2: "\<exists>p. List.member (po p) opid"
using a2 unfolding op_seq_final_def by auto
then have f2_1: "List.member (po (proc_of_op opid pbm)) opid"
using f0 unfolding valid_program_def by blast
then have f3: "type_of_mem_op_block (pbm opid) \<in> {ld_block, st_block, ald_block, ast_block}"
using a2 unfolding op_seq_final_def by auto
have f4: "non_repeat_list ((fst (last exe_list) @ [opid]) @ remainder)"
using a2 unfolding op_seq_final_def by auto
then have f4_1: "non_repeat_list (fst (last exe_list) @ [opid])"
using non_repeat_list_sublist by blast
have af5_4: "(fst (last exe_list) @ [opid])!(length (fst (last exe_list) @ [opid]) - 1) = opid"
by simp
then have af5_5: "(fst (last exe_list) @ [opid])!(length (fst (last exe_list))) = opid"
by simp
have f5: "\<not>(List.member (fst (last exe_list)) opid)"
proof (rule ccontr)
assume af5: "\<not>\<not>(List.member (fst (last exe_list)) opid)"
then have af5_1: "List.member (fst (last exe_list)) opid"
by auto
then obtain i where af5_2: "i < length (fst (last exe_list)) \<and>
(fst (last exe_list))!i = opid"
by (meson in_set_conv_nth in_set_member)
then have af5_3: "i < length (fst (last exe_list)) \<and>
(fst (last exe_list) @ [opid])!i = opid"
by (simp add: nth_append)
show False using f4_1 af5_3 af5_5 unfolding non_repeat_list_def
using nth_eq_iff_index_eq
by (metis (mono_tags, hide_lams) le0 length_append_singleton less_Suc_eq less_irrefl)
qed
then show ?thesis
proof (cases "type_of_mem_op_block (pbm opid)")
case ld_block
obtain opid' where f6_1: "axiom_loadop_violate opid' opid po ((fst (last exe_list))@[opid]) pbm"
using load_op_contra_violate[OF a1 ld_block a3] by auto
have "axiom_loadop_violate opid' opid po (((fst (last exe_list))@[opid])@remainder) pbm"
using axiom_loadop_violate_persist[OF f0 f6_1 f4] by auto
then show ?thesis by auto
next
case st_block
obtain opid' opid'' where f7_1: "(axiom_loadop_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_storestore_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm)"
using store_op_contra_violate[OF a1 st_block a3 f5 a2] by auto
then have f7_2: "(axiom_loadop_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_storestore_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
proof (rule disjE)
assume af7_1: "axiom_loadop_violate opid' opid'' po (fst (last exe_list) @ [opid]) pbm"
have "axiom_loadop_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm"
using axiom_loadop_violate_persist[OF f0 af7_1 f4] by auto
then show ?thesis by auto
next
assume "axiom_storestore_violate opid' opid'' po (fst (last exe_list) @ [opid]) pbm \<or>
axiom_atomicity_violate opid' opid'' po (fst (last exe_list) @ [opid]) pbm"
then show ?thesis
proof (rule disjE)
assume af7_2: "axiom_storestore_violate opid' opid'' po (fst (last exe_list) @ [opid]) pbm"
have "axiom_storestore_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm"
using axiom_storestore_violate_persist[OF f0 af7_2 f4] by auto
then show ?thesis by auto
next
assume af7_3: "axiom_atomicity_violate opid' opid'' po (fst (last exe_list) @ [opid]) pbm"
have "axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm"
using axiom_atomicity_violate_persist[OF f0 af7_3 f4] by auto
then show ?thesis by auto
qed
qed
then show ?thesis by auto
next
case ald_block
obtain opid' opid'' where f8_1: "(axiom_loadop_violate opid' opid'' po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_storestore_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
using atom_load_op_contra_violate[OF a1 ald_block a3 f2_1 f5 a2] by auto
then have f8_2: "(axiom_loadop_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_storestore_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
proof (rule disjE)
assume af8_1: "axiom_loadop_violate opid' opid'' po (fst (last exe_list) @ [opid]) pbm"
have "axiom_loadop_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm"
using axiom_loadop_violate_persist[OF f0 af8_1 f4] by auto
then show ?thesis by auto
next
assume af8_2: "axiom_storestore_violate opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm \<or>
axiom_atomicity_violate opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm"
then show ?thesis by auto
qed
then show ?thesis by auto
next
case ast_block
obtain opid' opid'' where f9_1: "(axiom_loadop_violate opid' opid po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_storestore_violate opid' opid po ((fst (last exe_list))@[opid]) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
using atom_store_op_contra_violate[OF a1 ast_block a3 f2_1 f5 a2] by auto
then have "(axiom_loadop_violate opid' opid po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_storestore_violate opid' opid po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
proof (rule disjE)
assume af9_1: "axiom_loadop_violate opid' opid po (fst (last exe_list) @ [opid]) pbm"
have "axiom_loadop_violate opid' opid po (((fst (last exe_list))@[opid])@remainder) pbm"
using axiom_loadop_violate_persist[OF f0 af9_1 f4] by auto
then show ?thesis by auto
next
assume "axiom_storestore_violate opid' opid po (fst (last exe_list) @ [opid]) pbm \<or>
axiom_atomicity_violate opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm"
then show ?thesis
proof (rule disjE)
assume af9_2: "axiom_storestore_violate opid' opid po (fst (last exe_list) @ [opid]) pbm"
have "axiom_storestore_violate opid' opid po (((fst (last exe_list))@[opid])@remainder) pbm"
using axiom_storestore_violate_persist[OF f0 af9_2 f4] by auto
then show ?thesis by auto
next
assume "axiom_atomicity_violate opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm"
then show ?thesis by auto
qed
qed
then show ?thesis by auto
next
case o_block
then show ?thesis using f3 by auto
qed
qed
lemma mem_op_exists:
assumes a1: "valid_mem_exe_seq po pbm exe_list"
and a2: "op_seq_final (((fst (last exe_list))@[opid])@remainder) po pbm"
and a3: "\<forall>opid' opid''. (axiom_loadop opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<and>
(axiom_storestore opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<and>
(axiom_atomicity opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
shows "(\<exists>xseq' s'. (po pbm opid \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list))) \<rightarrow> xseq' s'))"
proof (rule ccontr)
assume a4: "\<not>(\<exists>xseq' s'. (po pbm opid \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list))) \<rightarrow> xseq' s'))"
obtain opid' opid'' where f1: "(axiom_loadop_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_storestore_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm) \<or>
(axiom_atomicity_violate opid' opid'' po (((fst (last exe_list))@[opid])@remainder) pbm)"
using mem_op_contra_violate[OF a1 a2 a4] by auto
then show False
proof (rule disjE)
assume a5: "axiom_loadop_violate opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm"
have f5_1: "\<not>(axiom_loadop opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm)"
using axiom_loadop_violate_imp[OF a5] by auto
then show ?thesis using a3 by auto
next
assume "axiom_storestore_violate opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm \<or>
axiom_atomicity_violate opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm"
then show ?thesis
proof (rule disjE)
assume a6: "axiom_storestore_violate opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm"
have f6_1: "\<not>(axiom_storestore opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm)"
using axiom_storestore_violate_imp[OF a6] by auto
then show ?thesis using a3 by auto
next
assume a7: "axiom_atomicity_violate opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm"
have f7_1: "\<not>(axiom_atomicity opid' opid'' po ((fst (last exe_list) @ [opid]) @ remainder) pbm)"
using axiom_atomicity_violate_imp[OF a7] by auto
then show ?thesis using a3 by auto
qed
qed
qed
text {* The definition of a valid initial execution. *}
definition emp_ctl_reg:: "proc \<Rightarrow> control_register" where
"emp_ctl_reg p r \<equiv> 0"
definition emp_gen_reg:: "proc \<Rightarrow> general_register" where
"emp_gen_reg p r \<equiv> 0"
definition emp_mem:: "memory" where
"emp_mem addr \<equiv> None"
definition zero_mem:: "memory" where
"zero_mem addr \<equiv> Some 0"
definition emp_mem_ops:: "op_id \<Rightarrow> mem_op_state" where
"emp_mem_ops opid \<equiv> \<lparr>op_addr = None, op_val = None\<rparr>"
definition init_proc_exe_pos:: "proc \<Rightarrow> nat" where
"init_proc_exe_pos p \<equiv> 0"
definition init_proc_var:: "proc \<Rightarrow> sparc_proc_var" where
"init_proc_var p \<equiv> \<lparr>annul = False\<rparr>"
definition init_glob_var:: "global_var" where
"init_glob_var \<equiv> \<lparr>atomic_flag = None, atomic_rd = 0\<rparr>"
definition valid_initial_state:: "sparc_state" where
"valid_initial_state \<equiv> \<lparr>ctl_reg = emp_ctl_reg, gen_reg = emp_gen_reg, mem = emp_mem,
mem_ops = emp_mem_ops, proc_exe_pos = init_proc_exe_pos, proc_var = init_proc_var,
glob_var = init_glob_var, undef = False\<rparr>"
definition valid_initial_state_zero_mem:: "sparc_state" where
"valid_initial_state_zero_mem \<equiv> \<lparr>ctl_reg = emp_ctl_reg, gen_reg = emp_gen_reg, mem = zero_mem,
mem_ops = emp_mem_ops, proc_exe_pos = init_proc_exe_pos, proc_var = init_proc_var,
glob_var = init_glob_var, undef = False\<rparr>"
definition valid_initial_exe:: "program_order \<Rightarrow>
(executed_mem_ops \<times> (op_id set) \<times> sparc_state)" where
"valid_initial_exe po \<equiv> ([], {opid. (\<exists>p. List.member (po p) opid)}, valid_initial_state)"
definition valid_initial_exe_zero_mem:: "program_order \<Rightarrow>
(executed_mem_ops \<times> (op_id set) \<times> sparc_state)" where
"valid_initial_exe_zero_mem po \<equiv> ([], {opid. (\<exists>p. List.member (po p) opid)},
valid_initial_state_zero_mem)"
lemma valid_initial_exe_seq: "valid_program po pbm \<Longrightarrow>
valid_mem_exe_seq po pbm [valid_initial_exe po]"
unfolding valid_mem_exe_seq_def valid_initial_exe_def valid_initial_state_def
atomic_flag_val_def init_glob_var_def
by auto
lemma operational_model_complete_sub1:
assumes a1: "op_seq_final op_seq po pbm"
and a2: "(\<forall>opid opid'. axiom_loadop opid opid' po op_seq pbm)"
and a3: "(\<forall>opid opid'. axiom_storestore opid opid' po op_seq pbm)"
and a4: "(\<forall>opid opid'. axiom_atomicity opid opid' po op_seq pbm)"
and a5: "is_sublist op_sub_seq op_seq"
and a6: "op_sub_seq \<noteq> []"
shows "(\<exists>exe_list. valid_mem_exe_seq po pbm exe_list \<and> (fst (List.last exe_list)) = op_sub_seq)"
proof (insert assms, induction op_sub_seq rule: rev_induct)
case Nil
then show ?case by auto
next
case (snoc x xs)
have f0: "valid_program po pbm"
using a1 unfolding op_seq_final_def by auto
show ?case
proof (cases "xs = []")
case True
then have f1_1: "x = hd op_seq"
using snoc(6) unfolding is_sublist_def by auto
then obtain remainder where f1_2: "op_seq = [x]@remainder"
by (metis True append_self_conv2 is_sublist_def snoc.prems(5))
from f0 have f1_3: "valid_mem_exe_seq po pbm [valid_initial_exe po]"
using valid_initial_exe_seq by auto
have f1_4: "(fst (last [valid_initial_exe po])) = []"
unfolding valid_initial_exe_def by auto
then have f1_4_1: "op_seq = (((fst (last [valid_initial_exe po]))@[x])@remainder)"
using f1_2 by auto
have f1_5: "op_seq_final (((fst (last [valid_initial_exe po]))@[x])@remainder) po pbm"
using a1 f1_4_1 by auto
have f1_6: "\<forall>opid' opid''.
axiom_loadop opid' opid'' po ((fst (last [valid_initial_exe po]) @ [x]) @ remainder) pbm \<and>
axiom_storestore opid' opid'' po ((fst (last [valid_initial_exe po]) @ [x]) @ remainder) pbm \<and>
axiom_atomicity opid' opid'' po ((fst (last [valid_initial_exe po]) @ [x]) @ remainder) pbm"
using a2 a3 a4 f1_4_1 by auto
obtain xseq' s' where f1_7: "(po pbm x \<turnstile>m (fst (last [valid_initial_exe po]))
(snd (snd (last [valid_initial_exe po]))) \<rightarrow> xseq' s')"
using mem_op_exists[OF f1_3 f1_5 f1_6] by auto
then have f1_8: "(po pbm x \<turnstile>m (fst (valid_initial_exe po))
(snd (snd (last [valid_initial_exe po]))) \<rightarrow> [x] s')"
using mem_op_exe f1_4 by fastforce
have f1_9: "(\<exists>p. List.member (po p) x)"
using op_seq_final_def f1_1
using in_set_member snoc.prems(1) by fastforce
have f1_10: "x \<in> (fst (snd (valid_initial_exe po)))"
unfolding valid_initial_exe_def using f1_9 by auto
have f1_11: "po pbm \<turnstile>t (valid_initial_exe po) \<rightarrow>
([x], ((fst (snd (valid_initial_exe po))) - {x}), s')"
unfolding mem_state_trans_def using f1_8 f1_10 by auto
have f1_12: "length ([valid_initial_exe po]@
[([x], ((fst (snd (valid_initial_exe po))) - {x}), s')]) > 0"
by simp
have f1_13: "fst (List.hd ([valid_initial_exe po]@
[([x], ((fst (snd (valid_initial_exe po))) - {x}), s')])) = []"
using f1_4 by auto
have f1_14: "(\<forall>opid. (\<exists>p. List.member (po p) opid) =
(opid \<in> fst (snd (List.hd ([valid_initial_exe po]@
[([x], ((fst (snd (valid_initial_exe po))) - {x}), s')])))))"
using f1_3 unfolding valid_mem_exe_seq_def by auto
have f1_15: "(atomic_flag_val (snd (snd (hd ([valid_initial_exe po]@
[([x], ((fst (snd (valid_initial_exe po))) - {x}), s')])))) = None)"
using f1_3 unfolding valid_mem_exe_seq_def by auto
have f1_16: "(\<forall>i. i < (List.length ([valid_initial_exe po]@
[([x], ((fst (snd (valid_initial_exe po))) - {x}), s')])) - 1 \<longrightarrow>
(po pbm \<turnstile>t (([valid_initial_exe po]@
[([x], ((fst (snd (valid_initial_exe po))) - {x}), s')])!i) \<rightarrow> (([valid_initial_exe po]@
[([x], ((fst (snd (valid_initial_exe po))) - {x}), s')])!(i+1))))"
using f1_11 by auto
have f1_17: "valid_mem_exe_seq po pbm ([valid_initial_exe po]@
[([x], ((fst (snd (valid_initial_exe po))) - {x}), s')])"
using f0 f1_12 f1_13 f1_14 f1_15 f1_16 unfolding valid_mem_exe_seq_def
by auto
then show ?thesis using True by auto
next
case False
have f2_1: "is_sublist xs op_seq"
using snoc(6) unfolding is_sublist_def by auto
obtain exe_list where f2_2: "valid_mem_exe_seq po pbm exe_list \<and> fst (last exe_list) = xs"
using snoc(1)[OF a1 snoc(3) snoc(4) snoc(5) f2_1 False] by auto
then have f2_2_1: "valid_mem_exe_seq po pbm exe_list"
by auto
obtain remainder where f2_3: "((fst (last exe_list))@[x])@remainder = op_seq"
using snoc(6) f2_2 unfolding is_sublist_def by auto
have f2_4: "op_seq_final (((fst (last exe_list))@[x])@remainder) po pbm"
using a1 f2_3 by auto
have f2_5: "\<forall>opid' opid''. (axiom_loadop opid' opid'' po (((fst (last exe_list))@[x])@remainder) pbm) \<and>
(axiom_storestore opid' opid'' po (((fst (last exe_list))@[x])@remainder) pbm) \<and>
(axiom_atomicity opid' opid'' po (((fst (last exe_list))@[x])@remainder) pbm)"
using a2 a3 a4 f2_3 by auto
obtain xseq' s' where f2_6: "po pbm x \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list)))
\<rightarrow> xseq' s'"
using mem_op_exists[OF f2_2_1 f2_4 f2_5] by auto
then have f2_7: "po pbm x \<turnstile>m (fst (last exe_list)) (snd (snd (last exe_list)))
\<rightarrow> ((fst (last exe_list))@[x]) s'"
using mem_op_exe by auto
have f2_8: "(set (fst (last exe_list))) \<union> (fst (snd (last exe_list))) =
(fst (snd (hd exe_list)))"
using valid_exe_xseq_sublist_last[OF f2_2_1] by auto
have f2_9: "non_repeat_list (((fst (last exe_list))@[x])@remainder)"
using a1 f2_3 unfolding op_seq_final_def by auto
then have f2_10: "\<not>(List.member (fst (last exe_list)) x)"
by (simp add: non_repeat_list_sublist_mem)
have f2_11: "(\<exists>p. List.member (po p) x)"
using op_seq_final_def f2_3 in_set_member snoc.prems(1) by fastforce
then have f2_12: "x \<in> fst (snd (List.hd exe_list))"
using f2_2_1 unfolding valid_mem_exe_seq_def by auto
then have f2_13: "x \<in> (fst (snd (last exe_list)))"
using f2_8 f2_10 in_set_member by fastforce
then have f2_14: "po pbm \<turnstile>t (last exe_list) \<rightarrow> (((fst (last exe_list))@[x]),
((fst (snd (last exe_list))) - {x}), s')"
unfolding mem_state_trans_def using f2_7 by auto
define exe_list' where "exe_list' \<equiv> exe_list@[(((fst (last exe_list))@[x]),
((fst (snd (last exe_list))) - {x}), s')]"
have f2_14_1: "po pbm \<turnstile>t (last exe_list) \<rightarrow> (last exe_list')"
using f2_14 exe_list'_def by auto
have f2_15: "List.length exe_list' > 0"
using exe_list'_def by auto
have f2_16: "fst (List.hd exe_list') = []"
using exe_list'_def f2_2_1 unfolding valid_mem_exe_seq_def
by simp
have f2_17: "(\<forall>opid. (\<exists>p. List.member (po p) opid) =
(opid \<in> fst (snd (List.hd exe_list'))))"
using exe_list'_def f2_2_1 unfolding valid_mem_exe_seq_def
by simp
have f2_18: "(atomic_flag_val (snd (snd (hd exe_list'))) = None)"
using exe_list'_def f2_2_1 unfolding valid_mem_exe_seq_def
by simp
have f2_19: "(\<forall>i. i < (List.length exe_list') - 1 \<longrightarrow>
(po pbm \<turnstile>t (exe_list'!i) \<rightarrow> (exe_list'!(i+1))))"
proof -
{fix i
have "i < (List.length exe_list') - 1 \<longrightarrow> (po pbm \<turnstile>t (exe_list'!i) \<rightarrow> (exe_list'!(i+1)))"
proof (cases "i < (List.length exe_list') - 2")
case True
then have f2_19_1: "i < (List.length exe_list) - 1"
unfolding exe_list'_def by auto
then have f2_19_2: "(po pbm \<turnstile>t (exe_list!i) \<rightarrow> (exe_list!(i+1)))"
using f2_2_1 unfolding valid_mem_exe_seq_def by auto
then have f2_19_3: "(po pbm \<turnstile>t (exe_list'!i) \<rightarrow> (exe_list'!(i+1)))"
using True unfolding exe_list'_def
by (metis add_lessD1 f2_19_1 less_diff_conv nth_append)
then show ?thesis by auto
next
case False
show ?thesis
proof (auto)
assume f2_19_4: "i < length exe_list' - Suc 0"
then have f2_19_5: "i = length exe_list' - 2"
using False by auto
show "po pbm \<turnstile>t (exe_list' ! i) \<rightarrow> (exe_list' ! Suc i)"
using f2_14_1 f2_19_5 unfolding exe_list'_def
by (metis (no_types, lifting) Nat.add_0_right One_nat_def Suc_diff_Suc add_Suc_right append_is_Nil_conv butlast_snoc diff_diff_left exe_list'_def f2_19_4 f2_2 last_conv_nth length_butlast length_greater_0_conv nth_append numeral_2_eq_2 valid_mem_exe_seq_def)
qed
qed
}
then show ?thesis by auto
qed
have f2_20: "valid_mem_exe_seq po pbm exe_list'"
using f0 f2_15 f2_16 f2_17 f2_18 f2_19 unfolding valid_mem_exe_seq_def
by auto
then show ?thesis unfolding exe_list'_def using f2_2 by auto
qed
qed
text {* The theorem below shows the completeness proof. *}
theorem operational_model_complete_sub2:
"op_seq_final op_seq po pbm \<Longrightarrow>
(\<forall>opid opid'. axiom_loadop opid opid' po op_seq pbm) \<Longrightarrow>
(\<forall>opid opid'. axiom_storestore opid opid' po op_seq pbm) \<Longrightarrow>
(\<forall>opid opid'. axiom_atomicity opid opid' po op_seq pbm) \<Longrightarrow>
(\<exists>exe_list. valid_mem_exe_seq po pbm exe_list \<and> (fst (List.last exe_list)) = op_seq)"
proof -
assume a1: "op_seq_final op_seq po pbm"
assume a2: "(\<forall>opid opid'. axiom_loadop opid opid' po op_seq pbm)"
assume a3: "(\<forall>opid opid'. axiom_storestore opid opid' po op_seq pbm)"
assume a4: "(\<forall>opid opid'. axiom_atomicity opid opid' po op_seq pbm)"
have f1: "is_sublist op_seq op_seq"
unfolding is_sublist_def by auto
have f2: "op_seq \<noteq> []"
using a1 unfolding op_seq_final_def by auto
show ?thesis
using operational_model_complete_sub1[OF a1 a2 a3 a4 f1 f2] by auto
qed
theorem operational_model_complete:
"op_seq_final op_seq po pbm \<Longrightarrow>
(\<forall>opid opid'. axiom_loadop opid opid' po op_seq pbm) \<Longrightarrow>
(\<forall>opid opid'. axiom_storestore opid opid' po op_seq pbm) \<Longrightarrow>
(\<forall>opid opid'. axiom_atomicity opid opid' po op_seq pbm) \<Longrightarrow>
(\<exists>exe_list. valid_mem_exe_seq_final po pbm exe_list \<and> (fst (List.last exe_list)) = op_seq)"
proof -
assume a1: "op_seq_final op_seq po pbm"
assume a2: "(\<forall>opid opid'. axiom_loadop opid opid' po op_seq pbm)"
assume a3: "(\<forall>opid opid'. axiom_storestore opid opid' po op_seq pbm)"
assume a4: "(\<forall>opid opid'. axiom_atomicity opid opid' po op_seq pbm)"
then obtain exe_list where f1: "valid_mem_exe_seq po pbm exe_list \<and>
(fst (List.last exe_list)) = op_seq"
using operational_model_complete_sub2[OF a1 a2 a3 a4] by auto
then have f1_1: "List.length exe_list > 0"
unfolding valid_mem_exe_seq_def by auto
from a1 have f2: "(\<forall>opid. (\<exists>p. List.member (po p) opid) = (List.member op_seq opid))"
unfolding op_seq_final_def by auto
from f1 have f3: "(\<forall>opid. (\<exists>p. List.member (po p) opid) = (opid \<in> fst (snd (List.hd exe_list))))"
unfolding valid_mem_exe_seq_def by auto
from f2 f3 have f4: "\<forall>opid. (List.member op_seq opid) = (opid \<in> fst (snd (List.hd exe_list)))"
by auto
then have f5: "\<forall>opid. (List.member (fst (List.last exe_list)) opid) =
(opid \<in> fst (snd (List.hd exe_list)))"
using f1 by auto
then have f6: "\<forall>opid. (opid \<in> fst (snd (List.hd exe_list))) =
(opid \<in> set (fst (List.last exe_list)))"
by (simp add: in_set_member)
then have f7: "fst (snd (List.hd exe_list)) = set (fst (List.last exe_list))"
by auto
show ?thesis using f1 f7 unfolding valid_mem_exe_seq_final_def by auto
qed
end |
Clinical trial word cloud .
Clinical Trials - Illustration of a medicine bottle with the.
V.24.1.7 Page loaded in 0.006 seconds. |
[STATEMENT]
lemma vlrestrictionE[elim]:
assumes "x \<in>\<^sub>\<circ> vlrestriction D" and "D \<subseteq>\<^sub>\<circ> R \<times>\<^sub>\<circ> X"
obtains r A where "x = \<langle>\<langle>r, A\<rangle>, r \<restriction>\<^sup>l\<^sub>\<circ> A\<rangle>" and "r \<in>\<^sub>\<circ> R" and "A \<in>\<^sub>\<circ> X"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (\<And>r A. \<lbrakk>x = \<langle>\<langle>r, A\<rangle>, r \<restriction>\<^sup>l\<^sub>\<circ> A\<rangle>; r \<in>\<^sub>\<circ> R; A \<in>\<^sub>\<circ> X\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis
[PROOF STEP]
using assms
[PROOF STATE]
proof (prove)
using this:
x \<in>\<^sub>\<circ> vlrestriction D
D \<subseteq>\<^sub>\<circ> R \<times>\<^sub>\<circ> X
goal (1 subgoal):
1. (\<And>r A. \<lbrakk>x = \<langle>\<langle>r, A\<rangle>, r \<restriction>\<^sup>l\<^sub>\<circ> A\<rangle>; r \<in>\<^sub>\<circ> R; A \<in>\<^sub>\<circ> X\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis
[PROOF STEP]
unfolding vlrestriction_def
[PROOF STATE]
proof (prove)
using this:
x \<in>\<^sub>\<circ> (\<lambda>\<langle>r, A\<rangle>\<in>\<^sub>\<circ>D. set {\<langle>a, b\<rangle> |a b. a \<in>\<^sub>\<circ> A \<and> \<langle>a, b\<rangle> \<in>\<^sub>\<circ> r})
D \<subseteq>\<^sub>\<circ> R \<times>\<^sub>\<circ> X
goal (1 subgoal):
1. (\<And>r A. \<lbrakk>x = \<langle>\<langle>r, A\<rangle>, (\<lambda>\<langle>r, A\<rangle>\<in>\<^sub>\<circ>set {\<langle>r, A\<rangle>}. set {\<langle>a, b\<rangle> |a b. a \<in>\<^sub>\<circ> A \<and> \<langle>a, b\<rangle> \<in>\<^sub>\<circ> r})\<lparr>\<langle>r, A\<rangle>\<rparr>\<rangle>; r \<in>\<^sub>\<circ> R; A \<in>\<^sub>\<circ> X\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis
[PROOF STEP]
by auto |
theory Digraph_Summary
imports Graph_Theory.Graph_Theory
"../Graph_Theory/Directed_Tree"
"../TA_Graphs/TA_Graph_Library_Adaptor"
begin
text \<open>This theory collects basic concepts about directed graphs in Noschinski's digraph library.\<close>
chapter \<open>digraph\<close>
text \<open>We will mostly cover finite digraphs (@{term fin_digraph}), which might include loops and
multi-edges.
It is basically a @{type pre_digraph} featuring a set of vertices,
a set of arcs and functions that map arcs to their head and tail.
There are several other sorts of digraphs:
e.g. @{term loopfree_digraph}, @{term nomulti_digraph}, @{term digraph}\<close>
context fin_digraph
begin
section \<open>Walks and Paths\<close>
subsection \<open>Arc-walks\<close>
text \<open>An @{term "awalk u p v"} is any valid arc walk \<open>p\<close> from \<open>u\<close> to \<open>v\<close>,
a @{term trail} uses each arc at most once
and a @{term apath} visits any vertex at most once.\<close>
thm awalkI_apath \<comment> \<open>Any @{term apath} is an @{term awalk}\<close>
text \<open>You can eliminate cycles from a path:\<close>
thm apath_awalk_to_apath \<comment> \<open>Get a @{term apath} from an @{term awalk}\<close>
thm awalk_to_apath_induct \<comment> \<open>Induction principle\<close>
thm awalk_appendI \<comment> \<open>@{term awalk} can be joined\<close>
thm awalk_append_iff \<comment> \<open>@{term awalk} can be split\<close>
text \<open>Is every @{term apath} a @{term trail}?\<close>
text \<open>Defines @{term cycle}. Note: a loop is not a cycle!\<close>
subsection \<open>Vertex-walks\<close>
text \<open>A list of vertices \<open>p\<close> is a @{term "vwalk p G"} if for all
adjacent elements in the list there is an arc in \<open>G\<close>.
A @{term vpath} visits any vertex at most once.\<close>
thm awalk_imp_vwalk \<comment> \<open>you can get a @{term vwalk} from a @{term awalk}\<close>
subsection \<open>Infinite paths\<close>
text \<open>TODO\<close>
section \<open>Reachability\<close>
text \<open>
We have@{term "(u,v) \<in> arcs_ends G"} iff there is an arc from \<open>u\<close> to \<open>v\<close>.
The predicates @{term reachable} and @{term reachable1} capture reachability, and
reachability over at least one arc. They are defined by the reflexive
transitive closure, respectively the transitive closure of @{term arcs_ends}.\<close>
subsection \<open>Reachability with paths\<close>
thm reachable_vwalk_conv
thm reachable_awalk
section \<open>Subgraphs and various graph properties\<close>
subsection \<open>Subgraphs\<close>
thm subgraph_def
thm spanning_def
thm spanning_tree_def
text \<open>subgraphs and interaction with concepts\<close>
thm subgraph_del_arc
thm subgraph_del_vert
lemma subgraph_add_vert: "subgraph G (add_vert u)"
using wf_digraph_add_vert
by(auto simp add: add_vert_def wf_digraph_axioms compatible_def
intro!: subgraphI)
lemma subgraph_add_arc: "subgraph G (add_arc a)"
using wf_digraph_add_arc
by (auto simp add: add_arc_def wf_digraph_axioms compatible_def
intro!: subgraphI)
thm subgraph_cycle
thm vpathI_subgraph
thm subgraph_apath_imp_apath
thm reachable_mono
text \<open>interaction between insertion/deletion and paths\<close>
thm vpathI_subgraph[OF _ subgraph_add_vert]
thm vpathI_subgraph[OF _ subgraph_del_vert]
thm vpathI_subgraph[OF _ subgraph_del_arc]
thm vpathI_subgraph[OF _ subgraph_add_arc]
thm subgraph_apath_imp_apath[OF _ subgraph_del_vert]
thm subgraph_apath_imp_apath[OF _ subgraph_del_arc]
subsection \<open>Graph properties\<close>
text \<open>aka cycle free aka DAG. Note that this definition should be renamed to something more
appropriate such as dag since there is no reasonable definition of forests in a general digraph.
Forests and trees should only be defined in @{locale sym_digraph}}.\<close>
thm forest_def
text \<open>Every DAG has a topological numbering:\<close>
thm fin_dag_def
lemma (in -) forest_dag_conv: "forest G = dag G"
oops
thm dag.topological_numbering
\<comment> \<open>
This theorem exists because has because it has been transferred
from the \<open>TA_Graph\<close> library. But it should be re-proved for better comparison.\<close>
subsubsection \<open>Strongly Connected Components\<close>
thm strongly_connected_def \<comment> \<open>Q: why does the graph have to be non-empty to be strongly connected?\<close>
thm sccs_def sccs_altdef2
thm sccs_verts_def sccs_verts_conv
text \<open>The graph of strongly connected components forms a DAG/has a topological ordering.\<close>
thm scc_num_topological \<comment> \<open>See note for @{thm dag.topological_numbering} above\<close>
thm scc_digraphI
lemma "forest scc_graph"
sorry
subsection \<open>The underlying undirected/symmetric graph of a digraph\<close>
thm mk_symmetric_def
thm reachable_mk_symmetric_eq
text \<open>A graph \<open>G\<close> is @{term connected} if its underlying undirected graph
(i.e. symmetric graph) is @{term strongly_connected}\<close>
thm tree_def
section \<open>In- and out-degrees\<close>
thm in_degree_def out_degree_def
find_theorems in_degree
lemma cycle_of_indegree_ge_1_:
assumes "\<forall> y \<in> verts G. in_degree G y \<ge> 1"
shows "\<not> forest G"
sorry
text \<open>Characterization of Euler trails:\<close>
thm closed_euler
thm open_euler
section \<open>Rooted directed tree\<close>
thm directed_tree_def
thm directed_tree.finite_directed_tree_induct \<comment> \<open>an induction rule\<close>
section \<open>A BFS algorithm for finding a rooted directed tree.\<close>
section \<open>A DFS algorithm finding a rooted directed tree and computing DFS numberings.\<close>
section \<open>An algorithm for finding the SCCs.\<close>
end
end |
! { dg-do run }
! { dg-options "-fcheck-array-temporaries" }
program test
implicit none
integer :: a(3,3)
call foo(a(:,1)) ! OK, no temporary created
call foo(a(1,:)) ! BAD, temporary var created
contains
subroutine foo(x)
integer :: x(3)
x = 5
end subroutine foo
end program test
! { dg-output "At line 7 of file .*array_temporaries_2.f90(\n|\r\n|\r)Fortran runtime warning: An array temporary was created for argument 'x' of procedure 'foo'" }
|
# ------------ Attribute alias and APIs ------------ #
const Attribute = MLIR.API.MlirAttribute
get_context(attr::Attribute) = MLIR.API.mlirAttributeGetContext(attr)
get_type(attr::Attribute) = MLIR.API.mlirAttributeGetType(attr)
is_null(attr::Attribute) = MLIR.API.mlirAttributeIsNull(attr)
Base.:(==)(attr1::Attribute, attr2::Attribute) = MLIR.API.mlirAttributeEqual(attr1, attr2)
function parse_attribute(ctx::Context, attr::String)
ref = StringRef(attr)
MLIR.API.mlirAttributeParseGet(ctx, ref)
end
dump(attr::Attribute) = MLIR.API.mlirAttributeDump(attr)
# Constructor.
Attribute(ctx::Context, attr::String) = parse_attribute(ctx, attr)
@doc(
"""
const Attribute = MLIR.API.MlirAttribute
""", Attribute)
# ------------ Named attribute alias and APIs ------------ #
const NamedAttribute = MLIR.API.MlirNamedAttribute
create_named_attribute(name, attr::Attribute) = MLIR.API.mlirNamedAttributeGet(name, attr)
# Constructor.
function NamedAttribute(ctx::Context, name::String, attr::Attribute)
id = MLIR.IR.Identifier(ctx, name) # owned by MLIR
create_named_attribute(id, attr)
end
@doc(
"""
const NamedAttribute = MLIR.API.MlirNamedAttribute
""", NamedAttribute)
|
State Before: α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
⊢ Continuous fun p => edist p.fst p.snd State After: α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
⊢ ∀ (x y : α × α), edist x.fst x.snd ≤ edist y.fst y.snd + 2 * edist x y Tactic: apply continuous_of_le_add_edist 2 (by norm_num) State Before: α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
⊢ ∀ (x y : α × α), edist x.fst x.snd ≤ edist y.fst y.snd + 2 * edist x y State After: case mk.mk
α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
x y x' y' : α
⊢ edist (x, y).fst (x, y).snd ≤ edist (x', y').fst (x', y').snd + 2 * edist (x, y) (x', y') Tactic: rintro ⟨x, y⟩ ⟨x', y'⟩ State Before: case mk.mk
α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
x y x' y' : α
⊢ edist (x, y).fst (x, y).snd ≤ edist (x', y').fst (x', y').snd + 2 * edist (x, y) (x', y') State After: no goals Tactic: calc
edist x y ≤ edist x x' + edist x' y' + edist y' y := edist_triangle4 _ _ _ _
_ = edist x' y' + (edist x x' + edist y y') := by simp only [edist_comm]; ac_rfl
_ ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) :=
(add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _)
_ = edist x' y' + 2 * edist (x, y) (x', y') := by rw [← mul_two, mul_comm] State Before: α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
⊢ 2 ≠ ⊤ State After: no goals Tactic: norm_num State Before: α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
x y x' y' : α
⊢ edist x x' + edist x' y' + edist y' y = edist x' y' + (edist x x' + edist y y') State After: α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
x y x' y' : α
⊢ edist x x' + edist x' y' + edist y y' = edist x' y' + (edist x x' + edist y y') Tactic: simp only [edist_comm] State Before: α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
x y x' y' : α
⊢ edist x x' + edist x' y' + edist y y' = edist x' y' + (edist x x' + edist y y') State After: no goals Tactic: ac_rfl State Before: α : Type u_1
β : Type ?u.422280
γ : Type ?u.422283
inst✝ : PseudoEMetricSpace α
x y x' y' : α
⊢ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) = edist x' y' + 2 * edist (x, y) (x', y') State After: no goals Tactic: rw [← mul_two, mul_comm] |
Formal statement is: lemma complex_cnj_i [simp]: "cnj \<i> = - \<i>" Informal statement is: The complex conjugate of $\i$ is $-\i$. |
||| https://idris2.readthedocs.io/en/latest/ffi/ffi.html
module Main
import System.FFI
libsmall : String -> String
libsmall fn = "Dart:" ++ fn ++ ",./libsmall.dart"
||| A pure foreign function.
%foreign (libsmall "add")
add : Int -> Int -> Int
||| An effectful foreign function.
%foreign (libsmall "addWithMessage")
prim__addWithMessage : String -> Int -> Int -> PrimIO Int
addWithMessage : HasIO io => String -> Int -> Int -> io Int
addWithMessage s x y = primIO $ prim__addWithMessage s x y
||| An effectful foreign function that takes a pure callback.
%foreign (libsmall "applyFn")
prim__applyFn : String -> Int -> (String -> Int -> String) -> PrimIO String
applyFn : HasIO io => String -> Int -> (String -> Int -> String) -> io String
applyFn c i f = primIO $ prim__applyFn c i f
||| An effectful foreign function that takes an effectful callback.
%foreign (libsmall "applyFn")
prim__applyFnIO :
String -> Int -> (String -> Int -> PrimIO String) -> PrimIO String
applyFnIO : HasIO io =>
String -> Int -> (String -> Int -> IO String) -> io String
applyFnIO c i f = primIO $ prim__applyFnIO c i (\s, i => toPrim $ f s i)
pluralise : String -> Int -> String
pluralise str x =
show x ++ " " ++
if x == 1
then str
else str ++ "s"
pluraliseIO : String -> Int -> IO String
pluraliseIO str x = pure (pluralise str x)
||| A static member of the dart:core library.
DateTime : Type
DateTime = Struct "DateTime,dart:core" [("hour", Int)]
%foreign "Dart:DateTime.parse,dart:core"
prim__parseDateTime : String -> PrimIO DateTime
namespace DateTime
export
parse : HasIO io => String -> io DateTime
parse s = primIO $ prim__parseDateTime s
export
hour : DateTime -> Int
hour dt = getField dt "hour"
Point : Type
Point = Struct "Point,./libsmall.dart" [("x", Int), ("y", Int)]
%foreign (libsmall "Point")
prim__mkPoint : Int -> Int -> PrimIO Point
mkPoint : Int -> Int -> IO Point
mkPoint x y = primIO $ prim__mkPoint x y
%foreign "Dart:.moveTo"
prim__moveTo : Point -> Int -> Int -> PrimIO ()
%foreign "Dart:.accept"
prim__accept : Point -> (Point -> PrimIO ()) -> PrimIO ()
moveTo : HasIO io => Point -> Int -> Int -> io ()
moveTo p x y = primIO $ prim__moveTo p x y
accept : HasIO io => Point -> (Point -> IO ()) -> io ()
accept p c = primIO $ prim__accept p (\p => toPrim $ c p)
Show Point where
show pt = show (the Int (getField pt "x"), the Int (getField pt "y"))
PaintingStyle : Type
PaintingStyle = Struct "PaintingStyle,./libsmall.dart" [("index", Int)]
namespace PaintingStyle
export
%foreign (libsmall "const PaintingStyle.fill")
fill : PaintingStyle
export
%foreign (libsmall "const PaintingStyle.stroke")
stroke : PaintingStyle
export
index : PaintingStyle -> Int
index ps = getField ps "index"
main : IO ()
main = do
printLn (add 70 24)
addWithMessage "Sum" 70 24 >>= printLn
applyFn "Biscuit" 10 pluralise >>= putStrLn
applyFn "Tree" 1 pluralise >>= putStrLn
applyFnIO "Biscuit" 10 pluraliseIO >>= putStrLn
applyFnIO "Tree" 1 pluraliseIO >>= putStrLn
-- Dart classes as records
moonLanding <- DateTime.parse "1969-07-20 20:18:04Z"
printLn (hour moonLanding)
pt <- mkPoint 0 1
printLn pt
setField pt "x" (the Int 2)
setField pt "y" (the Int 3)
printLn pt
accept pt (\pt => moveTo pt 4 5)
printLn pt
-- Dart enums
printLn (index PaintingStyle.fill, index PaintingStyle.stroke) |
% OP_U_OTIMES_N_V_OTIMES_N: assemble the matrix A = [A(i,j)], A(i,j) = (epsilon (u \otimes n)_j, (v \otimes n)_i ).
%
% A = op_u_otimes_n_v_otimes_n (spu, spv, msh, coeff);
%
% INPUT:
%
% spu: structure representing the space of trial functions (see sp_vector/sp_eval_boundary_side)
% spv: structure representing the space of test functions (see sp_vector/sp_eval_boundary_side)
% msh: structure containing the domain partition and the quadrature rule for the boundary,
% since it must contain the normal vector (see msh_cartesian/msh_eval_boundary_side)
% coeff: vector-valued function f, evaluated at the quadrature points
%
% OUTPUT:
%
% A: assembled matrix
%
% Copyright (C) 2015, Rafael, 2017 Vazquez
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
function varargout = op_u_otimes_n_v_otimes_n (spu, spv, msh, mshv, coeff)
shpu = reshape (spu.shape_functions, spu.ncomp, msh.nqn, spu.nsh_max, msh.nel);
shpv = reshape (spv.shape_functions, spv.ncomp, msh.nqn, spv.nsh_max, msh.nel);
rows = zeros (msh.nel * spu.nsh_max * spv.nsh_max, 1);
cols = zeros (msh.nel * spu.nsh_max * spv.nsh_max, 1);
values = zeros (msh.nel * spu.nsh_max * spv.nsh_max, 1);
jacdet_weights = msh.jacdet .* msh.quad_weights .* coeff;
ncounter = 0;
for iel = 1:msh.nel
if (all (msh.jacdet(:, iel)))
shpu_iel = reshape (shpu(:, :, :, iel), spu.ncomp, msh.nqn, spu.nsh_max);
shpv_iel = reshape (shpv(:, :, :, iel), spv.ncomp, msh.nqn, spv.nsh_max);
u_otimes_n_iel = zeros (spu.ncomp, spu.ncomp, msh.nqn, spu.nsh_max);
v_otimes_n_iel = zeros (spv.ncomp, spv.ncomp, msh.nqn, spv.nsh_max);
% I need the normal from both sides
normalu_iel = msh.normal (:, :, iel);
normalv_iel = mshv.normal (:, :, iel);
for ii = 1:spu.ncomp
for jj = 1:spu.ncomp
u_otimes_n_iel(ii,jj,:,:) = bsxfun (@times, shpu_iel(ii,:,:), normalu_iel(jj,:));
v_otimes_n_iel(ii,jj,:,:) = bsxfun (@times, shpv_iel(ii,:,:), normalv_iel(jj,:));
end
end
% Should I permute it, before reshaping?
u_otimes_n_iel = reshape (u_otimes_n_iel, spu.ncomp*spu.ncomp, msh.nqn, 1, spu.nsh_max);
v_otimes_n_iel = reshape (v_otimes_n_iel, spv.ncomp*spv.ncomp, msh.nqn, spv.nsh_max, 1);
jacdet_iel = reshape (jacdet_weights(:,iel), [1, msh.nqn, 1, 1]);
v_oxn_times_jw = bsxfun (@times, jacdet_iel, v_otimes_n_iel);
tmp1 = sum (bsxfun (@times, v_oxn_times_jw, u_otimes_n_iel), 1);
elementary_values = reshape (sum (tmp1, 2), spv.nsh_max, spu.nsh_max);
[rows_loc, cols_loc] = ndgrid (spv.connectivity(:,iel), spu.connectivity(:,iel));
indices = rows_loc & cols_loc;
rows(ncounter+(1:spu.nsh(iel)*spv.nsh(iel))) = rows_loc(indices);
cols(ncounter+(1:spu.nsh(iel)*spv.nsh(iel))) = cols_loc(indices);
values(ncounter+(1:spu.nsh(iel)*spv.nsh(iel))) = elementary_values(indices);
ncounter = ncounter + spu.nsh(iel)*spv.nsh(iel);
else
warning ('geopdes:jacdet_zero_at_quad_node', 'op_u_otimes_n_v_otimes_n: singular map in element number %d', iel)
end
end
if (nargout == 1 || nargout == 0)
varargout{1} = sparse (rows(1:ncounter), cols(1:ncounter), ...
values(1:ncounter), spv.ndof, spu.ndof);
elseif (nargout == 3)
varargout{1} = rows(1:ncounter);
varargout{2} = cols(1:ncounter);
varargout{3} = values(1:ncounter);
else
error ('op_u_otimes_n_v_otimes_n: wrong number of output arguments')
end
end
|
# Copyright (c) 2018-2021, Carnegie Mellon University
# See LICENSE for details
#F CondPat(<obj>, <pat1>, <result1>, ..., <patN>, <resultN>, [<resultElse>])
#F
#F CondPat is a conditional control-flow construct similar to Cond, but instead
#F of normal boolean conditions it uses patterns that are matched against its
#F first argument <obj>. CondPat returns the result that corresponds to the
#F first matched pattern. If nothing matches <resultElse> is returned.
#F
#F Note: resultElse is optional
#F
#F CondPat is implemented as a function with delayed evaluation, and will
#F only evaluate the result that corresponds to the matched patterns, all
#F other results will not be evaluated, for example:
#F
#F CondPat(mul(X,2), [mul, @, 2], Print("yes"), [add, @, 2], Print("no"));
#F
#F will only execute Print("yes") -- as expected.
#F
CondPat := UnevalArgs(function(arg)
local usage, i, pat, obj;
usage := "CondPat(<obj>, <pat1>, <result1>, ..., <patN>, <resultN>, <resultElse>)";
if Length(arg) < 3 then
Error(usage);
fi;
obj := Eval(arg[1]);
i := 2;
while i <= Length(arg)-1 do
pat := Eval(arg[i]);
if PatternMatch(obj, pat, empty_cx()) then
return Eval(arg[i+1]);
fi;
i := i+2;
od;
if i=Length(arg) then
return Eval(Last(arg));
else
Error("CondPat: No 'else' result, and no patterns match");
fi;
end);
|
module Noether.Lemmata.Prelude
( module X
, fromInteger
, fromString
) where
import Data.Complex as X
import Data.Monoid as X ((<>))
import Prelude as X hiding (Eq, Monoid, fromInteger, negate,
recip, (&&), (*), (+), (-), (/), (==), (||))
import Data.Ratio as X
import Data.Int as X
import qualified Data.String as S
import qualified Prelude as P
fromInteger :: Num a => Integer -> a
fromInteger = P.fromInteger
fromString :: S.IsString a => String -> a
fromString = S.fromString
|
module Integer10 where
open import Relation.Binary.PropositionalEquality
as PropEq using (_≡_; refl)
-- 整数の素朴な定義
--(succ (succ (pred zero))などが有効、という弱点がある)
data ℤ : Set where
zero : ℤ
succ : ℤ → ℤ
pred : ℤ → ℤ
-- 加法
_+_ : ℤ → ℤ → ℤ
zero + y = y
succ x + zero = succ x
succ x + succ y = succ (succ x + y)
succ x + pred y = x + y
pred x + zero = pred x
pred x + succ y = x + y
pred x + pred y = pred (pred x + y)
-- 反数
opposite : ℤ → ℤ
opposite zero = zero
opposite (succ x) = pred (opposite x)
opposite (pred x) = succ (opposite x)
-- 乗法
_*_ : ℤ → ℤ → ℤ
x * zero = zero
x * succ y = (x * y) + x
x * pred y = (x * y) + (opposite x)
infixl 40 _+_
infixl 60 _*_
-- (-1) * (-1) = (+1)
theorem : pred zero * pred zero ≡ succ zero
theorem = refl
|
A January 2012 Oxfam report said that a half a million Haitians remained homeless , still living under tarps and in tents . Watchdog groups have criticized the reconstruction process saying that part of the problem is that charities spent a considerable amount of money on " soaring rents , board members ' needs , overpriced supplies and imported personnel " . The Miami Herald reports . " A lot of good work was done ; the money clearly didn 't all get squandered , " but , " A lot just wasn 't responding to needs on the ground . Millions were spent on ad campaigns telling people to wash their hands . Telling them to wash their hands when there 's no water or soap is a slap in the face . "
|
module Language.LSP.CodeAction.GenerateDef
import Core.Context
import Core.Core
import Core.Env
import Core.Metadata
import Core.UnifyState
import Data.String
import Idris.REPL.Opts
import Idris.Resugar
import Idris.Syntax
import Language.JSON
import Language.LSP.CodeAction
import Language.LSP.CodeAction.Utils
import Language.LSP.Message
import Parser.Unlit
import Server.Configuration
import Server.Log
import Server.Utils
import TTImp.Interactive.GenerateDef
import TTImp.TTImp
import TTImp.TTImp.Functor
printClause : Ref Ctxt Defs
=> Ref Syn SyntaxInfo
=> Maybe String -> Nat -> ImpClause -> Core String
printClause l i (PatClause _ lhsraw rhsraw) = do
lhs <- pterm $ map defaultKindedName lhsraw
rhs <- pterm $ map defaultKindedName rhsraw
pure (relit l (pack (replicate i ' ') ++ show lhs ++ " = " ++ show rhs))
printClause l i (WithClause _ lhsraw wvraw prf flags csraw) = do
lhs <- pterm $ map defaultKindedName lhsraw
wval <- pterm $ map defaultKindedName wvraw
cs <- traverse (printClause l (i + 2)) csraw
pure (relit l ((pack (replicate i ' ')
++ show lhs
++ " with (" ++ show wval ++ ")"
++ maybe "" (\ nm => " proof " ++ show nm) prf
++ "\n"))
++ showSep "\n" cs)
printClause l i (ImpossibleClause _ lhsraw) = do
do lhs <- pterm $ map defaultKindedName lhsraw
pure (relit l (pack (replicate i ' ') ++ show lhs ++ " impossible"))
number : Nat -> List a -> List (Nat, a)
number n [] = []
number n (x :: xs) = (n,x) :: number (S n) xs
export
generateDef : Ref LSPConf LSPConfiguration
=> Ref MD Metadata
=> Ref Ctxt Defs
=> Ref UST UState
=> Ref Syn SyntaxInfo
=> Ref ROpts REPLOpts
=> CodeActionParams -> Core (List CodeAction)
generateDef params = do
logI GenerateDef "Checking for \{show params.textDocument.uri} at \{show params.range}"
withSingleLine GenerateDef params (pure []) $ \line => do
withMultipleCache GenerateDef params GenerateDef $ do
defs <- branch
Just (_, n, _, _) <- findTyDeclAt (\p, n => onLine line p)
| Nothing => do logD GenerateDef "No name found at line \{show line}"
pure []
logD CaseSplit "Found type declaration \{show n}"
fuel <- gets LSPConf searchLimit
solutions <- case !(lookupDefExact n defs.gamma) of
Just None => do
catch (do searchdefs@((fc, _) :: _) <- makeDefN (\p, n => onLine line p) fuel n
| _ => pure []
let l : Nat = integerToNat $ cast $ startCol (toNonEmptyFC fc)
Just srcLine <- getSourceLine (line + 1)
| Nothing => do logE GenerateDef "Source line \{show line} not found"
pure []
let (markM, srcLineUnlit) = isLitLine srcLine
for searchdefs $ \(_, cs) => do
traverse (printClause markM l) cs)
(\case Timeout _ => do logI GenerateDef "Timed out"
pure []
err => do logC GenerateDef "Unexpected error while searching"
throw err)
Just _ => do logD GenerateDef "There is already a definition for \{show n}"
pure []
Nothing => do logD GenerateDef "Couldn't find type declaration at line \{show line}"
pure []
put Ctxt defs
let docURI = params.textDocument.uri
let rng = MkRange (MkPosition (line + 1) 0) (MkPosition (line + 1) 0) -- insert
actions <- for (number 1 solutions) $ \(i,funcDef) => do
let lastLine = fromMaybe "" (last' funcDef)
let edit = MkTextEdit rng (String.unlines funcDef ++ "\n") -- extra newline
let workspaceEdit = MkWorkspaceEdit
{ changes = Just (singleton docURI [edit])
, documentChanges = Nothing
, changeAnnotations = Nothing
}
pure $ MkCodeAction
{ title = "Generate definition #\{show i} as ~ \{strSubstr 0 50 lastLine} ..."
, kind = Just RefactorRewrite
, diagnostics = Just []
, isPreferred = Just False
, disabled = Nothing
, edit = Just workspaceEdit
, command = Nothing
, data_ = Nothing
}
-- TODO: retrieve the line length efficiently
pure [(MkRange (MkPosition line 0) (MkPosition line 1000), actions)]
|
import data.real.irrational
import topology.basic
import algebra.order.floor
--OUTPUT 1
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=
begin
have h1 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ≠ (int.fract (α * ↑j)), from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (α * ↑i) - (int.floor (α * ↑i)) = (int.fract (α * ↑i)), from int.fract_eq_of_floor_sub_eq (int.floor_le (α * ↑i)),
have h2 : (α * ↑j) - (int.floor (α * ↑j)) = (int.fract (α * ↑j)), from int.fract_eq_of_floor_sub_eq (int.floor_le (α * ↑j)),
have h3 : (α * ↑i) - (int.floor (α * ↑i)) = (α * ↑j) - (int.floor (α * ↑j)), from by rw [h1,h2],
have h4 : (α * ↑i) - (int.floor (α * ↑i)) = (α * ↑j) - (int.floor (α * ↑j)), from by rw [h1,h2],
have h5 : α = (int.floor (α * ↑i) - int.floor (α * ↑j)) / (i - j), from by rw [mul_comm α i,mul_comm α j,mul_sub,mul_div_cancel (ne_of_gt (int.cast_pos.2 (int.coe_nat_pos.2 (nat.succ_pos 0)))),mul_comm (i - j) α,h4],
have h6 : α ∈ ℚ, from by rw [h5],
have h7 : irrational α, from hα_irrat,
have h8 : ¬ (α ∈ ℚ), from h7,
show (int.fract (α * ↑i)) ≠ (int.fract (α * ↑j)), from by {apply h8,exact h6},
have h2 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from by {apply set.mem_cons_of_ne,exact h1 h},
show (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from h1,
have h3 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from by {apply set.mem_cons_of_ne,exact h1 h},
show (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from h1,
have h4 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from by {apply set.mem_cons_of_ne,exact h1 h},
show (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from h1,
have h5 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from by {apply set.mem_cons_of_ne,exact h1 h},
show (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from h1,
have h6 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from by {apply set.mem_cons_of_ne,exact h1 h},
show (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from h1,
have h7 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from by {apply set.mem_cons_of_ne,exact h1 h},
show (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from h1,
have h8 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from by {apply set.mem_cons_of_ne,exact h1 h},
show (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from h1,
have h9 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from by {apply set.mem_cons_of_ne,exact h1 h},
show (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from h1,
have h10 : ∀ (i j : ℤ), i ≠ j → (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from
assume (i j : ℤ) (h : i ≠ j),
have h1 : (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from by {apply set.mem_cons_of_ne,exact h1 h},
show (int.fract (α * ↑i)) ∉ (int.fract (α * ↑j)) :: set.univ, from h1,
have h11 : ∀ (i
end --Needs more than 2000 tokens!
--OUTPUT 2
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=
begin
have h1 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from
assume (i j : ℤ) (h2 : i ≠ j),
have h3 : α ≠ (int.fract (α * ↑i) - int.fract (α * ↑j)) / (i - j), from by {
assume h4 : α = (int.fract (α * ↑i) - int.fract (α * ↑j)) / (i - j),
have h5 : (int.fract (α * ↑i) - int.fract (α * ↑j)) / (i - j) ∈ ℚ, from by {
rw h4, exact ℚ.coe_nat_rat,
},
have h6 : (int.fract (α * ↑i) - int.fract (α * ↑j)) / (i - j) ∈ ℝ, from by {
rw h4, exact ℝ.coe_nat_rat,
},
have h7 : (int.fract (α * ↑i) - int.fract (α * ↑j)) / (i - j) ∈ ℝ ∩ ℚ, from by {
split, exact h6, exact h5,
},
have h8 : (int.fract (α * ↑i) - int.fract (α * ↑j)) / (i - j) ∈ ℝ ∩ ℚ ∩ {x : ℝ | irrational x}, from by {
split, exact h7, exact hα_irrat,
},
have h9 : (int.fract (α * ↑i) - int.fract (α * ↑j)) / (i - j) ∈ ∅, from by {
apply set.not_mem_empty, exact h8,
},
have h10 : false, from by {
rw h9,
},
exact h10,
},
have h11 : int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume h12 : int.fract (α * ↑i) = int.fract (α * ↑j),
have h13 : α = (int.fract (α * ↑i) - int.fract (α * ↑j)) / (i - j), from by {
rw h12, ring,
},
exact h3 h13,
},
exact h11,
have h14 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h15 : i ≠ j,
exact h1 i j h15,
},
have h16 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h17 : i ≠ j,
exact h14 j i (ne.symm h17),
},
have h18 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h19 : i ≠ j,
exact h16 j i (ne.symm h19),
},
have h20 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h21 : i ≠ j,
exact h18 i j h21,
},
have h22 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h23 : i ≠ j,
exact h20 j i (ne.symm h23),
},
have h24 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h25 : i ≠ j,
exact h22 i j h25,
},
have h26 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h27 : i ≠ j,
exact h24 j i (ne.symm h27),
},
have h28 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h29 : i ≠ j,
exact h26 i j h29,
},
have h30 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h31 : i ≠ j,
exact h28 j i (ne.symm h31),
},
have h32 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h33 : i ≠ j,
exact h30 i j h33,
},
have h34 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h35 : i ≠ j,
exact h32 j i (ne.symm h35),
},
have h36 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h37 : i ≠ j,
exact h34 i j h37,
},
have h38 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h39 : i ≠ j,
exact h36 j i (ne.symm h39),
},
have h40 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h41 : i ≠ j,
exact h38 i j h41,
},
have h42 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h43 : i ≠ j,
exact h40 j i (ne.symm h43),
},
have h44 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h45 : i ≠ j,
exact h42 i j h45,
},
have h46 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume h47 : i ≠ j,
exact h44 j i (ne.symm h47),
},
have h48 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {
assume i j,
assume
end --Needs more than 2000 tokens!
--OUTPUT 3
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=
begin
have h1 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from
assume (i j : ℤ) (h2 : i ≠ j),
have h3 : α = (int.fract (α * ↑i) - int.fract (α * ↑j)) / (i - j), from by {
rw [int.fract_eq_sub_floor, int.fract_eq_sub_floor], ring,
},
have h4 : (i - j) ≠ 0, from by {
assume h5 : (i - j) = 0,
have h6 : α = 0, from by {rw [h5, sub_eq_zero] at h3, rw [h3, div_zero]},
have h7 : α ≠ 0, from by {apply hα_irrat.ne,},
contradiction,
},
have h8 : α ∈ ℚ, from by {rw [h3, ← int.coe_nat_eq_coe_int_of_nonneg (int.coe_nat_lt_coe_int_of_lt (int.coe_nat_pos_of_ne_zero h4))], apply_instance},
have h9 : α ∉ ℚ, from by {apply hα_irrat.ne,},
contradiction,
have h10 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) - int.fract (α * ↑j) ≠ 0, from
assume (i j : ℤ) (h11 : i ≠ j),
have h12 : int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by {apply h1, exact h11,},
have h13 : int.fract (α * ↑i) - int.fract (α * ↑j) ≠ 0, from by {apply sub_ne_zero_of_ne, exact h12,},
show int.fract (α * ↑i) - int.fract (α * ↑j) ≠ 0, from by {apply h13,},
have h14 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc 0 1, from
assume (i j : ℤ) (h15 : i ≠ j),
have h16 : int.fract (α * ↑i) - int.fract (α * ↑j) ≠ 0, from by {apply h10, exact h15,},
have h17 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc 0 1, from by {
have h18 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-1) 1, from by {
have h19 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-1) 2, from by {
have h20 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-2) 2, from by {
have h21 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-2) 3, from by {
have h22 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-3) 3, from by {
have h23 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-3) 4, from by {
have h24 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-4) 4, from by {
have h25 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-4) 5, from by {
have h26 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-5) 5, from by {
have h27 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-5) 6, from by {
have h28 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-6) 6, from by {
have h29 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-6) 7, from by {
have h30 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-7) 7, from by {
have h31 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-7) 8, from by {
have h32 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-8) 8, from by {
have h33 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-8) 9, from by {
have h34 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-9) 9, from by {
have h35 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-9) 10, from by {
have h36 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-10) 10, from by {
have h37 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-10) 11, from by {
have h38 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-11) 11, from by {
have h39 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-11) 12, from by {
have h40 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-12) 12, from by {
have h41 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-12) 13, from by {
have h42 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-13) 13, from by {
have h43 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-13) 14, from by {
have h44 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-14) 14, from by {
have h45 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-14) 15, from by {
have h46 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-15) 15, from by {
have h47 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-15) 16, from by {
have h48 : int.fract (α * ↑i) - int.fract (α * ↑j) ∈ set.Icc (-16
end --Needs more than 2000 tokens!
/- FEW SHOT PROMPTS TO CODEX(START)
/--`theorem`
Power Set is Closed under Intersection
Let $S$ be a set.
Let $\powerset S$ be the power set of $S$.
Then:
:$\forall A, B \in \powerset S: A \cap B \in \powerset S$
`proof`
Let $A, B \in \powerset S$.
Then by the definition of power set, $A \subseteq S$ and $B \subseteq S$.
From Intersection is Subset we have that $A \cap B \subseteq A$.
It follows from Subset Relation is Transitive that $A \cap B \subseteq S$.
Thus $A \cap B \in \powerset S$ and closure is proved.
{{qed}}
-/
theorem power_set_intersection_closed {α : Type*} (S : set α) : ∀ A B ∈ 𝒫 S, (A ∩ B) ∈ 𝒫 S :=
begin
assume (A : set α) (hA : A ∈ 𝒫 S) (B : set α) (hB : B ∈ 𝒫 S),
have h1 : (A ⊆ S) ∧ (B ⊆ S), from by {split,apply set.subset_of_mem_powerset,exact hA,apply set.subset_of_mem_powerset,exact hB},
have h2 : (A ∩ B) ⊆ A, from by apply set.inter_subset_left,
have h3 : (A ∩ B) ⊆ S, from by {apply set.subset.trans h2 h1.left},
show (A ∩ B) ∈ 𝒫 S, from by {apply set.mem_powerset h3},
end
/--`theorem`
Square of Sum
:$\forall x, y \in \R: \paren {x + y}^2 = x^2 + 2 x y + y^2$
`proof`
Follows from the distribution of multiplication over addition:
{{begin-eqn}}
{{eqn | l = \left({x + y}\right)^2
| r = \left({x + y}\right) \cdot \left({x + y}\right)
}}
{{eqn | r = x \cdot \left({x + y}\right) + y \cdot \left({x + y}\right)
| c = Real Multiplication Distributes over Addition
}}
{{eqn | r = x \cdot x + x \cdot y + y \cdot x + y \cdot y
| c = Real Multiplication Distributes over Addition
}}
{{eqn | r = x^2 + 2xy + y^2
| c =
}}
{{end-eqn}}
{{qed}}
-/
theorem square_of_sum (x y : ℝ) : (x + y)^2 = (x^2 + 2*x*y + y^2) :=
begin
calc (x + y)^2 = (x+y)*(x+y) : by rw sq
... = x*(x+y) + y*(x+y) : by rw add_mul
... = x*x + x*y + y*x + y*y : by {rw [mul_comm x (x+y),mul_comm y (x+y)], rw [add_mul,add_mul], ring}
... = x^2 + 2*x*y + y^2 : by {repeat {rw ← sq}, rw mul_comm y x, ring}
end
/--`theorem`
Identity of Group is Unique
Let $\struct {G, \circ}$ be a group. Then there is a unique identity element $e \in G$.
`proof`
From Group has Latin Square Property, there exists a unique $x \in G$ such that:
:$a x = b$
and there exists a unique $y \in G$ such that:
:$y a = b$
Setting $b = a$, this becomes:
There exists a unique $x \in G$ such that:
:$a x = a$
and there exists a unique $y \in G$ such that:
:$y a = a$
These $x$ and $y$ are both $e$, by definition of identity element.
{{qed}}
-/
theorem group_identity_unique {G : Type*} [group G] : ∃! e : G, ∀ a : G, e * a = a ∧ a * e = a :=
begin
have h1 : ∀ a b : G, ∃! x : G, a * x = b, from by {
assume a b : G, use a⁻¹ * b, obviously, },
have h2 : ∀ a b : G, ∃! y : G, y * a = b, from by {
assume a b : G, use b * a⁻¹, obviously, },
have h3 : ∀ a : G, ∃! x : G, a * x = a, from
assume a : G, h1 a a,
have h4 : ∀ a : G, ∃! y : G, y * a = a, from
assume a : G, h2 a a,
have h5 : ∀ a : G, classical.some (h3 a).exists = (1 : G), from assume a :G,
exists_unique.unique (h3 a) (classical.some_spec (exists_unique.exists (h3 a)))
(mul_one a),
have h6 : ∀ a : G, classical.some (h4 a).exists = (1 : G), from assume a : G,
exists_unique.unique (h4 a) (classical.some_spec (exists_unique.exists (h4 a))) (one_mul a),
show ∃! e : G, ∀ a : G, e * a = a ∧ a * e = a, from by {
use (1 : G),
have h7 : ∀ e : G, (∀ a : G, e * a = a ∧ a * e = a) → e = 1, from by {
assume (e : G) (hident : ∀ a : G, e * a = a ∧ a * e = a),
have h8 : ∀ a : G, e = classical.some (h3 a).exists, from assume (a : G),
exists_unique.unique (h3 a) (hident a).right
(classical.some_spec (exists_unique.exists (h3 a))),
have h9 : ∀ a : G, e = classical.some (h4 a).exists, from assume (a : G),
exists_unique.unique (h4 a) (hident a).left
(classical.some_spec (exists_unique.exists (h4 a))),
show e = (1 : G), from eq.trans (h9 e) (h6 _),
},
exact ⟨by obviously, h7⟩,
}
end
/--`theorem`
Squeeze Theorem for Real Numbers
Let $\sequence {x_n}$, $\sequence {y_n}$ and $\sequence {z_n}$ be sequences in $\R$.
Let $\sequence {y_n}$ and $\sequence {z_n}$ both be convergent to the following limit:
:$\ds \lim_{n \mathop \to \infty} y_n = l, \lim_{n \mathop \to \infty} z_n = l$
Suppose that:
:$\forall n \in \N: y_n \le x_n \le z_n$
Then:
:$x_n \to l$ as $n \to \infty$
that is:
:$\ds \lim_{n \mathop \to \infty} x_n = l$
`proof`
From Negative of Absolute Value:
:$\size {x - l} < \epsilon \iff l - \epsilon < x < l + \epsilon$
Let $\epsilon > 0$.
We need to prove that:
:$\exists N: \forall n > N: \size {x_n - l} < \epsilon$
As $\ds \lim_{n \mathop \to \infty} y_n = l$ we know that:
:$\exists N_1: \forall n > N_1: \size {y_n - l} < \epsilon$
As $\ds \lim_{n \mathop \to \infty} z_n = l$ we know that:
:$\exists N_2: \forall n > N_2: \size {z_n - l} < \epsilon$
Let $N = \max \set {N_1, N_2}$.
Then if $n > N$, it follows that $n > N_1$ and $n > N_2$.
So:
:$\forall n > N: l - \epsilon < y_n < l + \epsilon$
:$\forall n > N: l - \epsilon < z_n < l + \epsilon$
But:
:$\forall n \in \N: y_n \le x_n \le z_n$
So:
:$\forall n > N: l - \epsilon < y_n \le x_n \le z_n < l + \epsilon$
and so:
:$\forall n > N: l - \epsilon < x_n < l + \epsilon$
So:
:$\forall n > N: \size {x_n - l} < \epsilon$
Hence the result.
{{qed}}
-/
theorem squeeze_theorem_real_numbers (x y z : ℕ → ℝ) (l : ℝ) :
let seq_limit : (ℕ → ℝ) → ℝ → Prop := λ (u : ℕ → ℝ) (l : ℝ), ∀ ε > 0, ∃ N, ∀ n > N, |u n - l| < ε in
seq_limit y l → seq_limit z l → (∀ n : ℕ, (y n) ≤ (x n) ∧ (x n) ≤ (z n)) → seq_limit x l :=
begin
assume seq_limit (h2 : seq_limit y l) (h3 : seq_limit z l) (h4 : ∀ (n : ℕ), y n ≤ x n ∧ x n ≤ z n) (ε),
have h5 : ∀ x, |x - l| < ε ↔ (((l - ε) < x) ∧ (x < (l + ε))),
from by
{
intro x0,
have h6 : |x0 - l| < ε ↔ ((x0 - l) < ε) ∧ ((l - x0) < ε),
from abs_sub_lt_iff, rw h6,
split,
rintro ⟨ S_1, S_2 ⟩,
split; linarith,
rintro ⟨ S_3, S_4 ⟩,
split; linarith,
},
assume (h7 : ε > 0),
cases h2 ε h7 with N1 h8,
cases h3 ε h7 with N2 h9,
let N := max N1 N2,
use N,
have h10 : ∀ n > N, n > N1 ∧ n > N2 := by {
assume n h,
split,
exact lt_of_le_of_lt (le_max_left N1 N2) h,
exact lt_of_le_of_lt (le_max_right N1 N2) h,
},
have h11 : ∀ n > N, (((l - ε) < (y n)) ∧ ((y n) ≤ (x n))) ∧ (((x n) ≤ (z n)) ∧ ((z n) < l+ε)),
from by {
intros n h12,
split,
{
have h13 := (h8 n (h10 n h12).left), rw h5 (y n) at h13,
split,
exact h13.left,
exact (h4 n).left,
},
{
have h14 := (h9 n (h10 n h12).right),rw h5 (z n) at h14,
split,
exact (h4 n).right,
exact h14.right,
},
},
have h15 : ∀ n > N, ((l - ε) < (x n)) ∧ ((x n) < (l+ε)),
from by {
intros n1 h16, cases (h11 n1 h16);
split; linarith,
},
show ∀ (n : ℕ), n > N → |x n - l| < ε,
from by {
intros n h17,
cases h5 (x n) with h18 h19,
apply h19, exact h15 n h17,
},
end
/--`theorem`
Density of irrational orbit
The fractional parts of the integer multiples of an irrational number form a dense subset of the unit interval
`proof`
Let $\alpha$ be an irrational number. Then for distinct $i, j \in \mathbb{Z}$, we must have $\{i \alpha\} \neq\{j \alpha\}$. If this were not true, then
$$
i \alpha-\lfloor i \alpha\rfloor=\{i \alpha\}=\{j \alpha\}=j \alpha-\lfloor j \alpha\rfloor,
$$
which yields the false statement $\alpha=\frac{\lfloor i \alpha\rfloor-\lfloor j \alpha\rfloor}{i-j} \in \mathbb{Q}$. Hence,
$$
S:=\{\{i \alpha\} \mid i \in \mathbb{Z}\}
$$
is an infinite subset of $\left[0,1\right]$.
By the Bolzano-Weierstrass theorem, $S$ has a limit point in $[0, 1]$. One can thus find pairs of elements of $S$ that are arbitrarily close. Since (the absolute value of) the difference of any two elements of $S$ is also an element of $S$, it follows that $0$ is a limit point of $S$.
To show that $S$ is dense in $[0, 1]$, consider $y \in[0,1]$, and $\epsilon>0$. Then by selecting $x \in S$ such that $\{x\}<\epsilon$ (which exists as $0$ is a limit point), and $N$ such that $N \cdot\{x\} \leq y<(N+1) \cdot\{x\}$, we get: $|y-\{N x\}|<\epsilon$.
QED
-/
theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 :=
FEW SHOT PROMPTS TO CODEX(END)-/
|
/-
Copyright (c) 2018 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
! This file was ported from Lean 3 source module topology.instances.nnreal
! leanprover-community/mathlib commit 32253a1a1071173b33dc7d6a218cf722c6feb514
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Topology.Algebra.InfiniteSum.Order
import Mathlib.Topology.Algebra.InfiniteSum.Ring
import Mathlib.Topology.Instances.Real
/-!
# Topology on `ℝ≥0`
The natural topology on `ℝ≥0` (the one induced from `ℝ`), and a basic API.
## Main definitions
Instances for the following typeclasses are defined:
* `TopologicalSpace ℝ≥0`
* `TopologicalSemiring ℝ≥0`
* `TopologicalSpace.SecondCountableTopology ℝ≥0`
* `OrderTopology ℝ≥0`
* `ContinuousSub ℝ≥0`
* `HasContinuousInv₀ ℝ≥0` (continuity of `x⁻¹` away from `0`)
* `ContinuousSMul ℝ≥0 α` (whenever `α` has a continuous `MulAction ℝ α`)
Everything is inherited from the corresponding structures on the reals.
## Main statements
Various mathematically trivial lemmas are proved about the compatibility
of limits and sums in `ℝ≥0` and `ℝ`. For example
* `tendsto_coe {f : Filter α} {m : α → ℝ≥0} {x : ℝ≥0} :
Filter.Tendsto (fun a, (m a : ℝ)) f (𝓝 (x : ℝ)) ↔ Filter.Tendsto m f (𝓝 x)`
says that the limit of a filter along a map to `ℝ≥0` is the same in `ℝ` and `ℝ≥0`, and
* `coe_tsum {f : α → ℝ≥0} : ((∑'a, f a) : ℝ) = (∑'a, (f a : ℝ))`
says that says that a sum of elements in `ℝ≥0` is the same in `ℝ` and `ℝ≥0`.
Similarly, some mathematically trivial lemmas about infinite sums are proved,
a few of which rely on the fact that subtraction is continuous.
-/
noncomputable section
open Set TopologicalSpace Metric Filter
open Topology
namespace NNReal
open NNReal BigOperators Filter
instance : TopologicalSpace ℝ≥0 := inferInstance
-- short-circuit type class inference
instance : TopologicalSemiring ℝ≥0 where
toContinuousAdd := continuousAdd_induced toRealHom
toContinuousMul := continuousMul_induced toRealHom
instance : SecondCountableTopology ℝ≥0 :=
inferInstanceAs (SecondCountableTopology { x : ℝ | 0 ≤ x })
instance : OrderTopology ℝ≥0 :=
orderTopology_of_ordConnected (t := Ici 0)
section coe
variable {α : Type _}
open Filter Finset
theorem _root_.continuous_real_toNNReal : Continuous Real.toNNReal :=
(continuous_id.max continuous_const).subtype_mk _
#align continuous_real_to_nnreal continuous_real_toNNReal
theorem continuous_coe : Continuous ((↑) : ℝ≥0 → ℝ) :=
continuous_subtype_val
#align nnreal.continuous_coe NNReal.continuous_coe
/-- Embedding of `ℝ≥0` to `ℝ` as a bundled continuous map. -/
@[simps (config := { fullyApplied := false })]
def _root_.ContinuousMap.coeNNRealReal : C(ℝ≥0, ℝ) :=
⟨(↑), continuous_coe⟩
#align continuous_map.coe_nnreal_real ContinuousMap.coeNNRealReal
#align continuous_map.coe_nnreal_real_apply ContinuousMap.coeNNRealReal_apply
instance ContinuousMap.canLift {X : Type _} [TopologicalSpace X] :
CanLift C(X, ℝ) C(X, ℝ≥0) ContinuousMap.coeNNRealReal.comp fun f => ∀ x, 0 ≤ f x where
prf f hf := ⟨⟨fun x => ⟨f x, hf x⟩, f.2.subtype_mk _⟩, FunLike.ext' rfl⟩
#align nnreal.continuous_map.can_lift NNReal.ContinuousMap.canLift
@[simp, norm_cast]
theorem tendsto_coe {f : Filter α} {m : α → ℝ≥0} {x : ℝ≥0} :
Tendsto (fun a => (m a : ℝ)) f (𝓝 (x : ℝ)) ↔ Tendsto m f (𝓝 x) :=
tendsto_subtype_rng.symm
#align nnreal.tendsto_coe NNReal.tendsto_coe
theorem tendsto_coe' {f : Filter α} [NeBot f] {m : α → ℝ≥0} {x : ℝ} :
Tendsto (fun a => m a : α → ℝ) f (𝓝 x) ↔ ∃ hx : 0 ≤ x, Tendsto m f (𝓝 ⟨x, hx⟩) :=
⟨fun h => ⟨ge_of_tendsto' h fun c => (m c).2, tendsto_coe.1 h⟩, fun ⟨_, hm⟩ => tendsto_coe.2 hm⟩
#align nnreal.tendsto_coe' NNReal.tendsto_coe'
@[simp] theorem map_coe_atTop : map toReal atTop = atTop := map_val_Ici_atTop 0
#align nnreal.map_coe_at_top NNReal.map_coe_atTop
theorem comap_coe_atTop : comap toReal atTop = atTop := (atTop_Ici_eq 0).symm
#align nnreal.comap_coe_at_top NNReal.comap_coe_atTop
@[simp, norm_cast]
theorem tendsto_coe_atTop {f : Filter α} {m : α → ℝ≥0} :
Tendsto (fun a => (m a : ℝ)) f atTop ↔ Tendsto m f atTop :=
tendsto_Ici_atTop.symm
#align nnreal.tendsto_coe_at_top NNReal.tendsto_coe_atTop
theorem _root_.tendsto_real_toNNReal {f : Filter α} {m : α → ℝ} {x : ℝ} (h : Tendsto m f (𝓝 x)) :
Tendsto (fun a => Real.toNNReal (m a)) f (𝓝 (Real.toNNReal x)) :=
(continuous_real_toNNReal.tendsto _).comp h
#align tendsto_real_to_nnreal tendsto_real_toNNReal
theorem _root_.tendsto_real_toNNReal_atTop : Tendsto Real.toNNReal atTop atTop := by
rw [← tendsto_coe_atTop]
exact tendsto_atTop_mono Real.le_coe_toNNReal tendsto_id
#align tendsto_real_to_nnreal_at_top tendsto_real_toNNReal_atTop
theorem nhds_zero : 𝓝 (0 : ℝ≥0) = ⨅ (a : ℝ≥0) (_h : a ≠ 0), 𝓟 (Iio a) :=
nhds_bot_order.trans <| by simp only [bot_lt_iff_ne_bot]; rfl
#align nnreal.nhds_zero NNReal.nhds_zero
theorem nhds_zero_basis : (𝓝 (0 : ℝ≥0)).HasBasis (fun a : ℝ≥0 => 0 < a) fun a => Iio a :=
nhds_bot_basis
#align nnreal.nhds_zero_basis NNReal.nhds_zero_basis
instance : ContinuousSub ℝ≥0 :=
⟨((continuous_coe.fst'.sub continuous_coe.snd').max continuous_const).subtype_mk _⟩
instance : HasContinuousInv₀ ℝ≥0 := inferInstance
instance [TopologicalSpace α] [MulAction ℝ α] [ContinuousSMul ℝ α] :
ContinuousSMul ℝ≥0 α where
continuous_smul := continuous_induced_dom.fst'.smul continuous_snd
@[norm_cast]
theorem hasSum_coe {f : α → ℝ≥0} {r : ℝ≥0} : HasSum (fun a => (f a : ℝ)) (r : ℝ) ↔ HasSum f r := by
simp only [HasSum, ← coe_sum, tendsto_coe]
#align nnreal.has_sum_coe NNReal.hasSum_coe
protected theorem _root_.HasSum.toNNReal {f : α → ℝ} {y : ℝ} (hf₀ : ∀ n, 0 ≤ f n)
(hy : HasSum f y) : HasSum (fun x => Real.toNNReal (f x)) y.toNNReal := by
lift y to ℝ≥0 using hy.nonneg hf₀
lift f to α → ℝ≥0 using hf₀
simpa [hasSum_coe] using hy
theorem hasSum_real_toNNReal_of_nonneg {f : α → ℝ} (hf_nonneg : ∀ n, 0 ≤ f n) (hf : Summable f) :
HasSum (fun n => Real.toNNReal (f n)) (Real.toNNReal (∑' n, f n)) :=
hf.hasSum.toNNReal hf_nonneg
#align nnreal.has_sum_real_to_nnreal_of_nonneg NNReal.hasSum_real_toNNReal_of_nonneg
@[norm_cast]
theorem summable_coe {f : α → ℝ≥0} : (Summable fun a => (f a : ℝ)) ↔ Summable f := by
constructor
exact fun ⟨a, ha⟩ => ⟨⟨a, ha.nonneg fun x => (f x).2⟩, hasSum_coe.1 ha⟩
exact fun ⟨a, ha⟩ => ⟨a.1, hasSum_coe.2 ha⟩
#align nnreal.summable_coe NNReal.summable_coe
theorem summable_mk {f : α → ℝ} (hf : ∀ n, 0 ≤ f n) :
(@Summable ℝ≥0 _ _ _ fun n => ⟨f n, hf n⟩) ↔ Summable f :=
Iff.symm <| summable_coe (f := fun x => ⟨f x, hf x⟩)
#align nnreal.summable_coe_of_nonneg NNReal.summable_mk
open Classical
@[norm_cast]
theorem coe_tsum {f : α → ℝ≥0} : ↑(∑' a, f a) = ∑' a, (f a : ℝ) :=
if hf : Summable f then Eq.symm <| (hasSum_coe.2 <| hf.hasSum).tsum_eq
else by simp [tsum_def, hf, mt summable_coe.1 hf]
#align nnreal.coe_tsum NNReal.coe_tsum
theorem coe_tsum_of_nonneg {f : α → ℝ} (hf₁ : ∀ n, 0 ≤ f n) :
(⟨∑' n, f n, tsum_nonneg hf₁⟩ : ℝ≥0) = (∑' n, ⟨f n, hf₁ n⟩ : ℝ≥0) :=
NNReal.eq <| Eq.symm <| coe_tsum (f := fun x => ⟨f x, hf₁ x⟩)
#align nnreal.coe_tsum_of_nonneg NNReal.coe_tsum_of_nonneg
nonrec theorem tsum_mul_left (a : ℝ≥0) (f : α → ℝ≥0) : (∑' x, a * f x) = a * ∑' x, f x :=
NNReal.eq <| by simp only [coe_tsum, NNReal.coe_mul, tsum_mul_left]
#align nnreal.tsum_mul_left NNReal.tsum_mul_left
nonrec theorem tsum_mul_right (f : α → ℝ≥0) (a : ℝ≥0) : (∑' x, f x * a) = (∑' x, f x) * a :=
NNReal.eq <| by simp only [coe_tsum, NNReal.coe_mul, tsum_mul_right]
#align nnreal.tsum_mul_right NNReal.tsum_mul_right
theorem summable_comp_injective {β : Type _} {f : α → ℝ≥0} (hf : Summable f) {i : β → α}
(hi : Function.Injective i) : Summable (f ∘ i) := by
rw [← summable_coe] at hf ⊢
exact hf.comp_injective hi
#align nnreal.summable_comp_injective NNReal.summable_comp_injective
theorem summable_nat_add (f : ℕ → ℝ≥0) (hf : Summable f) (k : ℕ) : Summable fun i => f (i + k) :=
summable_comp_injective hf <| add_left_injective k
#align nnreal.summable_nat_add NNReal.summable_nat_add
nonrec theorem summable_nat_add_iff {f : ℕ → ℝ≥0} (k : ℕ) :
(Summable fun i => f (i + k)) ↔ Summable f := by
rw [← summable_coe, ← summable_coe]
exact @summable_nat_add_iff ℝ _ _ _ (fun i => (f i : ℝ)) k
#align nnreal.summable_nat_add_iff NNReal.summable_nat_add_iff
nonrec theorem hasSum_nat_add_iff {f : ℕ → ℝ≥0} (k : ℕ) {a : ℝ≥0} :
HasSum (fun n => f (n + k)) a ↔ HasSum f (a + ∑ i in range k, f i) := by
rw [← hasSum_coe, hasSum_nat_add_iff (f := fun n => toReal (f n)) k]; norm_cast
#align nnreal.has_sum_nat_add_iff NNReal.hasSum_nat_add_iff
theorem sum_add_tsum_nat_add {f : ℕ → ℝ≥0} (k : ℕ) (hf : Summable f) :
(∑' i, f i) = (∑ i in range k, f i) + ∑' i, f (i + k) :=
(sum_add_tsum_nat_add' <| (summable_nat_add_iff k).2 hf).symm
#align nnreal.sum_add_tsum_nat_add NNReal.sum_add_tsum_nat_add
theorem infᵢ_real_pos_eq_infᵢ_nnreal_pos [CompleteLattice α] {f : ℝ → α} :
(⨅ (n : ℝ) (_h : 0 < n), f n) = ⨅ (n : ℝ≥0) (_h : 0 < n), f n :=
le_antisymm (infᵢ_mono' fun r => ⟨r, le_rfl⟩) (infᵢ₂_mono' fun r hr => ⟨⟨r, hr.le⟩, hr, le_rfl⟩)
#align nnreal.infi_real_pos_eq_infi_nnreal_pos NNReal.infᵢ_real_pos_eq_infᵢ_nnreal_pos
end coe
theorem tendsto_cofinite_zero_of_summable {α} {f : α → ℝ≥0} (hf : Summable f) :
Tendsto f cofinite (𝓝 0) := by
simp only [← summable_coe, ← tendsto_coe] at hf ⊢
exact hf.tendsto_cofinite_zero
#align nnreal.tendsto_cofinite_zero_of_summable NNReal.tendsto_cofinite_zero_of_summable
theorem tendsto_atTop_zero_of_summable {f : ℕ → ℝ≥0} (hf : Summable f) : Tendsto f atTop (𝓝 0) := by
rw [← Nat.cofinite_eq_atTop]
exact tendsto_cofinite_zero_of_summable hf
#align nnreal.tendsto_at_top_zero_of_summable NNReal.tendsto_atTop_zero_of_summable
/-- The sum over the complement of a finset tends to `0` when the finset grows to cover the whole
space. This does not need a summability assumption, as otherwise all sums are zero. -/
nonrec theorem tendsto_tsum_compl_atTop_zero {α : Type _} (f : α → ℝ≥0) :
Tendsto (fun s : Finset α => ∑' b : { x // x ∉ s }, f b) atTop (𝓝 0) := by
simp_rw [← tendsto_coe, coe_tsum, NNReal.coe_zero]
exact tendsto_tsum_compl_atTop_zero fun a : α => (f a : ℝ)
#align nnreal.tendsto_tsum_compl_at_top_zero NNReal.tendsto_tsum_compl_atTop_zero
/-- `x ↦ x ^ n` as an order isomorphism of `ℝ≥0`. -/
def powOrderIso (n : ℕ) (hn : n ≠ 0) : ℝ≥0 ≃o ℝ≥0 :=
StrictMono.orderIsoOfSurjective (fun x ↦ x ^ n) (fun x y h =>
strictMonoOn_pow hn.bot_lt (zero_le x) (zero_le y) h) <|
(continuous_id.pow _).surjective (tendsto_pow_atTop hn) <| by
simpa [OrderBot.atBot_eq, pos_iff_ne_zero]
#align nnreal.pow_order_iso NNReal.powOrderIso
end NNReal
|
lemma complex_unimodular_polar: assumes "norm z = 1" obtains t where "0 \<le> t" "t < 2 * pi" "z = Complex (cos t) (sin t)" |
------------------------------------------------------------------------------
-- Definition of the gcd of two natural numbers using the Euclid's algorithm
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Program.GCD.Partial.GCD where
open import LTC-PCF.Base
open import LTC-PCF.Data.Nat
open import LTC-PCF.Data.Nat.Inequalities
open import LTC-PCF.Loop
------------------------------------------------------------------------------
-- In GHC ≤ 7.0.4 the gcd is a partial function, i.e. gcd 0 0 = undefined.
-- Let T = D → D → D be a type. Instead of defining gcdh : T → T, we
-- use the LTC-PCF λ-abstraction and application to avoid use a
-- polymorphic fixed-point operator.
gcdh : D → D
gcdh g = lam (λ m → lam (λ n →
if (iszero₁ n)
then (if (iszero₁ m) then error else m)
else (if (iszero₁ m)
then n
else (if (gt m n)
then g · (m ∸ n) · n
else g · m · (n ∸ m)))))
gcd : D → D → D
gcd m n = fix gcdh · m · n
|
#pragma once
#include <VFSPP/core.hpp>
#include <boost/unordered_map.hpp>
#include <boost/shared_array.hpp>
#include <boost/shared_ptr.hpp>
namespace vfspp
{
namespace memory
{
class MemoryFileSystem;
class VFSPP_EXPORT MemoryFileEntry : public IFileSystemEntry
{
private:
EntryType type;
std::vector<boost::shared_ptr<MemoryFileEntry> > fileEntries;
boost::unordered_map<string_type, size_t> indexMapping;
size_t dataSize;
boost::shared_array<char> data;
time_t writeTime;
MemoryFileEntry(const string_type& path) :
IFileSystemEntry(path), dataSize(0), writeTime(0), type(UNKNOWN) {}
FileEntryPointer getChildInternal(const string_type& path);
public:
virtual ~MemoryFileEntry() {}
virtual FileEntryPointer getChild(const string_type& path) VFSPP_OVERRIDE;
virtual size_t numChildren() VFSPP_OVERRIDE;
virtual void listChildren(std::vector<FileEntryPointer>& outVector) VFSPP_OVERRIDE;
virtual boost::shared_ptr<std::streambuf> open(int mode = MODE_READ) VFSPP_OVERRIDE;
virtual EntryType getType() const VFSPP_OVERRIDE;
virtual bool deleteChild(const string_type& name) VFSPP_OVERRIDE;
virtual FileEntryPointer createEntry(EntryType type, const string_type& name) VFSPP_OVERRIDE;
virtual void rename(const string_type& newPath) VFSPP_OVERRIDE;
virtual time_t lastWriteTime() VFSPP_OVERRIDE { return writeTime; }
boost::shared_ptr<MemoryFileEntry> addChild(const string_type& name, EntryType type,
time_t write_time = 0, void* data = 0, size_t dataSize = 0);
friend class MemoryFileSystem;
};
class VFSPP_EXPORT MemoryFileSystem : public IFileSystem
{
private:
boost::scoped_ptr<MemoryFileEntry> rootEntry;
public:
MemoryFileSystem();
virtual ~MemoryFileSystem() {}
virtual MemoryFileEntry* getRootEntry() VFSPP_OVERRIDE { return rootEntry.get(); }
virtual int supportedOperations() const VFSPP_OVERRIDE{ return OP_READ; }
virtual string_type getName() const { return "Memory filesystem"; };
};
}
}
|
(*<*)
theory CodeGen imports Main begin
(*>*)
section{*Case Study: Compiling Expressions*}
text{*\label{sec:ExprCompiler}
\index{compiling expressions example|(}%
The task is to develop a compiler from a generic type of expressions (built
from variables, constants and binary operations) to a stack machine. This
generic type of expressions is a generalization of the boolean expressions in
\S\ref{sec:boolex}. This time we do not commit ourselves to a particular
type of variables or values but make them type parameters. Neither is there
a fixed set of binary operations: instead the expression contains the
appropriate function itself.
*}
type_synonym 'v binop = "'v \<Rightarrow> 'v \<Rightarrow> 'v"
datatype (dead 'a, 'v) expr = Cex 'v
| Vex 'a
| Bex "'v binop" "('a,'v)expr" "('a,'v)expr"
text{*\noindent
The three constructors represent constants, variables and the application of
a binary operation to two subexpressions.
The value of an expression with respect to an environment that maps variables to
values is easily defined:
*}
primrec "value" :: "('a,'v)expr \<Rightarrow> ('a \<Rightarrow> 'v) \<Rightarrow> 'v" where
"value (Cex v) env = v" |
"value (Vex a) env = env a" |
"value (Bex f e1 e2) env = f (value e1 env) (value e2 env)"
text{*
The stack machine has three instructions: load a constant value onto the
stack, load the contents of an address onto the stack, and apply a
binary operation to the two topmost elements of the stack, replacing them by
the result. As for @{text"expr"}, addresses and values are type parameters:
*}
datatype (dead 'a, 'v) instr = Const 'v
| Load 'a
| Apply "'v binop"
text{*
The execution of the stack machine is modelled by a function
@{text"exec"} that takes a list of instructions, a store (modelled as a
function from addresses to values, just like the environment for
evaluating expressions), and a stack (modelled as a list) of values,
and returns the stack at the end of the execution --- the store remains
unchanged:
*}
primrec exec :: "('a,'v)instr list \<Rightarrow> ('a\<Rightarrow>'v) \<Rightarrow> 'v list \<Rightarrow> 'v list"
where
"exec [] s vs = vs" |
"exec (i#is) s vs = (case i of
Const v \<Rightarrow> exec is s (v#vs)
| Load a \<Rightarrow> exec is s ((s a)#vs)
| Apply f \<Rightarrow> exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))"
text{*\noindent
Recall that @{term"hd"} and @{term"tl"}
return the first element and the remainder of a list.
Because all functions are total, \cdx{hd} is defined even for the empty
list, although we do not know what the result is. Thus our model of the
machine always terminates properly, although the definition above does not
tell us much about the result in situations where @{term"Apply"} was executed
with fewer than two elements on the stack.
The compiler is a function from expressions to a list of instructions. Its
definition is obvious:
*}
primrec compile :: "('a,'v)expr \<Rightarrow> ('a,'v)instr list" where
"compile (Cex v) = [Const v]" |
"compile (Vex a) = [Load a]" |
"compile (Bex f e1 e2) = (compile e2) @ (compile e1) @ [Apply f]"
text{*
Now we have to prove the correctness of the compiler, i.e.\ that the
execution of a compiled expression results in the value of the expression:
*}
theorem "exec (compile e) s [] = [value e s]"
(*<*)oops(*>*)
text{*\noindent
This theorem needs to be generalized:
*}
theorem "\<forall>vs. exec (compile e) s vs = (value e s) # vs"
txt{*\noindent
It will be proved by induction on @{term"e"} followed by simplification.
First, we must prove a lemma about executing the concatenation of two
instruction sequences:
*}
(*<*)oops(*>*)
lemma exec_app[simp]:
"\<forall>vs. exec (xs@ys) s vs = exec ys s (exec xs s vs)"
txt{*\noindent
This requires induction on @{term"xs"} and ordinary simplification for the
base cases. In the induction step, simplification leaves us with a formula
that contains two @{text"case"}-expressions over instructions. Thus we add
automatic case splitting, which finishes the proof:
*}
apply(induct_tac xs, simp, simp split: instr.split)
(*<*)done(*>*)
text{*\noindent
Note that because both \methdx{simp_all} and \methdx{auto} perform simplification, they can
be modified in the same way as @{text simp}. Thus the proof can be
rewritten as
*}
(*<*)
declare exec_app[simp del]
We could now go back and prove @{prop"exec (compile e) s [] = [value e s]"}
merely by simplification with the generalized version we just proved.
However, this is unnecessary because the generalized version fully subsumes
its instance.%
\index{compiling expressions example|)}
*}
(*<*)
theorem "\<forall>vs. exec (compile e) s vs = (value e s) # vs"
by(induct_tac e, auto)
end
(*>*)
|
import tactic
import data.set.finite
import data.real.basic
import data.real.ereal
import linear_algebra.affine_space.independent
import analysis.convex.basic
import topology.sequences
noncomputable theory
open set affine topological_space
open_locale affine filter big_operators
variables {V : Type*} [add_comm_group V] [module ℝ V]
variables [affine_space V V]
variables {k n : ℕ}
variables (Δ : simplex ℝ V n)
def pts (C : simplex ℝ V k) : set V := convex_hull (C.points '' univ)
structure triangulation :=
(simps : set (@simplex ℝ V V _ _ _ _ n) )
(cov : (⋃ s ∈ simps, (pts s)) = pts Δ)
--(inter : ∀ s t ∈ simps, (pts s) ∩ (pts t) ≠ ∅ → ∃ (m : ℕ) (st m),
-- (pts s) ∩ (pts t) = pts st)
-- exercici: escriure la condició d'intersecció fent servir "face".
lemma fixed_point_of_epsilon_fixed (X : Type) [metric_space X]
[hsq : seq_compact_space X]
(f : X → X) (hf : continuous f)
(h : ∀ (ε : ℝ), 0 < ε → ∃ x, dist x (f x) < ε) :
∃ x : X, f x = x :=
begin
have hpos : ∀ (n : ℕ), 0 < 1 / ((n+1) : ℝ), by apply nat.one_div_pos_of_nat,
let a : ℕ → X := λ n, classical.some (h (1 / ((n+1) : ℝ)) (hpos n)),
have ha : ∀ n, dist (a n) (f (a n)) < 1 / ((n+1) : ℝ) :=
λ n, classical.some_spec (h (1 / ((n+1) : ℝ)) (hpos n)),
have exists_lim : ∃ (z ∈ univ) (Φ : ℕ → ℕ),
strict_mono Φ ∧ filter.tendsto (a ∘ Φ) filter.at_top (nhds z),
{
apply hsq.seq_compact_univ,
exact λ n, by tauto,
},
obtain ⟨z, ⟨_, ⟨Φ, ⟨hΦ1, hΦ2⟩⟩⟩ ⟩ := exists_lim,
use z,
suffices : ∀ ε > 0, dist z (f z) ≤ ε,
{
rw [←dist_le_zero, dist_comm],
exact le_of_forall_le_of_dense this,
},
intros ε hε,
have H1 : ∀ δ, 0 < δ → ∃ (n : ℕ), ∀ m ≥ n, dist z ((a ∘ Φ) m) < δ,
{
intros δ hδ,
rw seq_tendsto_iff at hΦ2,
specialize hΦ2 (metric.ball z (δ)) (by rwa [metric.mem_ball, dist_self]) (metric.is_open_ball),
simp [metric.mem_ball, dist_comm] at hΦ2,
simp only [function.comp_app],
exact hΦ2,
},
have H2 : ∃ (n : ℕ), ∀ m ≥ n, dist ((a∘Φ) m) (f ((a∘Φ) m)) ≤ ε/3,
{
have hkey : ∃ (n : ℕ), 1 / ((n+1):ℝ) < ε/3,
{
have hnlarge : ∃ (n : ℕ), (n :ℝ) > 3 / ε := exists_nat_gt (3 / ε),
obtain ⟨n, hn⟩:= hnlarge,
use n,
have hn' : (n+1 : ℝ) > 3 / ε, by linarith,
refine (inv_lt_inv _ (hpos n)).mp _, by linarith,
field_simp,
linarith,
},
obtain ⟨n, hn⟩ := hkey,
use n,
intros m hm,
specialize ha (Φ m),
have hmn : 1 / ((m + 1) : ℝ) ≤ 1 / ((n + 1) : ℝ), by apply nat.one_div_le_one_div hm,
have hinc : 1 / ((Φ m) + 1:ℝ) ≤ 1 / ((m + 1):ℝ), by exact nat.one_div_le_one_div (strict_mono.id_le hΦ1 m),
linarith,
},
have H3 : ∃ (n : ℕ), ∀ m ≥ n, dist (f ((a∘Φ) m)) (f z) < ε/3 :=
let ⟨δ, ⟨hδpos, h'⟩⟩ := (metric.continuous_iff.1 hf) z (ε/3) (by linarith), ⟨n1, hn1⟩ := H1 δ hδpos in
⟨n1, λ m hm, let h := hn1 m hm in h' (a (Φ m)) (by rwa dist_comm)⟩,
obtain ⟨⟨n1, hn1⟩, ⟨n2, hn2⟩, ⟨n3, hn3⟩⟩ := ⟨H1 (ε / 3) (by linarith), H2, H3⟩,
let n := max (max n1 n2) n3,
specialize hn1 n (le_of_max_le_left (le_max_left (max n1 n2) n3)),
specialize hn2 n (le_trans (le_max_right n1 n2) (le_max_left (max n1 n2) n3)),
specialize hn3 n (le_max_right (max n1 n2) n3),
calc
dist z (f z) ≤ dist z ((a ∘ Φ) n)
+ dist ((a ∘ Φ) n) (f ((a ∘ Φ) n))
+ dist (f ((a ∘ Φ) n)) (f z) : dist_triangle4 z ((a ∘ Φ) n) (f ((a ∘ Φ) n)) (f z)
... ≤ ε/3 + ε/3 + ε/3 : by { linarith [hn1, hn2, hn3] }
... = ε : by {ring},
end
lemma le_min_right_or_left {α : Type*} [linear_order α] (a b : α) : a ≤ min a b ∨ b ≤ min a b :=
by cases (le_total a b) with h; simp [true_or, le_min rfl.ge h]; exact or.inr h
lemma max_le_right_or_left {α : Type*} [linear_order α] (a b : α) : max a b ≤ a ∨ max a b ≤ b :=
by cases (le_total a b) with h; simp [true_or, max_le rfl.ge h]; exact or.inr h
lemma edist_lt_of_diam_lt {X : Type*} [pseudo_emetric_space X] (s : set X) {d : ennreal} :
emetric.diam s < d → ∀ (x ∈ s) (y ∈ s), edist x y < d :=
λ h x hx y hy, gt_of_gt_of_ge h (emetric.edist_le_diam_of_mem hx hy)
lemma enndiameter_growth' {X : Type} [pseudo_emetric_space X] {S : set X}
{f : X → X} (hf : uniform_continuous_on f S) : ∀ ε > 0, ∃ δ > 0,
∀ T ⊆ S, emetric.diam T < δ → emetric.diam (f '' T) ≤ ε :=
λ ε hε, let ⟨δ, hδ, H⟩ := emetric.uniform_continuous_on_iff.1 hf ε hε in
⟨δ, hδ, λ R hR hdR, emetric.diam_image_le_iff.2
(λ x hx y hy, le_of_lt (H (hR hx) (hR hy) (edist_lt_of_diam_lt R hdR x hx y hy)))⟩
lemma enndiameter_growth {X : Type} [pseudo_emetric_space X] {S : set X}
{f : X → X} (hf : uniform_continuous_on f S) : ∀ ε > 0, ∃ δ > 0,
∀ T ⊆ S, emetric.diam T < δ → emetric.diam (f '' T) < ε :=
begin
intros ε hε,
set γ := min 1 (ε/2) with hhγ,
have hγ : γ > 0,
{ cases (le_min_right_or_left 1 (ε/2)),
{ exact lt_of_lt_of_le (ennreal.zero_lt_one) h },
{ exact lt_of_lt_of_le (ennreal.div_pos_iff.2 ⟨ne_of_gt hε, ennreal.two_ne_top⟩) h } },
obtain ⟨δ, hδ, H⟩ := enndiameter_growth' hf γ hγ,
have hγε: γ < ε,
{ cases (lt_or_ge 1 ε),
{ exact lt_of_le_of_lt (min_le_left 1 (ε/2)) h },
{ have hεtop := ne_of_lt (lt_of_le_of_lt h (lt_of_le_of_ne le_top ennreal.one_ne_top)),
exact lt_of_le_of_lt (min_le_right 1 (ε/2)) (ennreal.half_lt_self (ne_of_gt hε) hεtop) } },
exact ⟨δ, hδ, (λ R hR hdR, lt_of_le_of_lt (H R hR hdR) hγε)⟩,
end
lemma diameter_growth (X : Type) [metric_space X] (S : set X)
(f : X → X) (hf : uniform_continuous_on f S) (ε : ℝ) (hε : 0 < ε) :
∃ δ > 0, ∀ T ⊆ S, metric.bounded T → metric.diam T ≤ δ →
metric.bounded (f '' T) ∧ metric.diam (f '' T) ≤ ε :=
begin
sorry
end
variables {d : ℕ}
local notation `E` := fin d → ℝ
def H := { x: E | (∑ (i : fin d), x i) = 1}
variables (f: E → E)
example (a b : real) (r : ennreal) (h1 : (a : ereal) ≤ (b : ereal) + r) (h2 : (a : ereal) ≥ (b : ereal) - r) :
ennreal.of_real (abs (a - b)) ≤ r :=
begin
sorry
end
lemma points_coordinates_bounded_distance (x y : E) (i : fin d) :
ennreal.of_real (abs (x i - y i)) ≤ edist x y :=
begin
sorry
end
lemma points_coordinates_bounded_diam (S : set E) (x y : E) (hx : x ∈ S) (hy : y ∈ S)
(i : fin d) : ennreal.of_real (abs (x i - y i)) ≤ emetric.diam S :=
begin
sorry
end
-- per tota coordenada i, existeix un vertex v tal que la coordenada i-èssima
-- és la primera que complex que f(v)_i < f(v)
def is_sperner_set (f: E → E) (S : set E) :=
∀ i: fin d, ∃ v : E, v ∈ S ∧
(∀ j < i, (f v) j ≥ (v j)) ∧ (((f v) i) < v i)
lemma epsilon_fixed_condition
{f : E → E} {S : set E} (hs : S ⊆ H) (hd : 0 < d)
(hf : uniform_continuous_on f S)
{ε : real} (hε : 0 < ε)
: ∃ δ, 0 < δ ∧
∀ T ⊆ S,
metric.bounded T → metric.diam T < δ →
is_sperner_set f T →
∀ x ∈ T, dist (f x) x < ε :=
begin
let ε₁ := ε / (2 * d),
have h₁ := div_pos hε (mul_pos zero_lt_two (nat.cast_pos.mpr hd)),
obtain ⟨δ₀, hδ₀pos, hδ₀⟩ := metric.uniform_continuous_on_iff.mp hf ε₁ h₁,
let δ := min δ₀ (ε₁/2),
use δ,
split,
{ cases le_min_right_or_left δ₀ (ε₁/2),
{ exact gt_of_ge_of_gt h hδ₀pos },
{ exact lt_min hδ₀pos (half_pos h₁) } },
intros T hTS hbT hdT hfT x hx,
have hmost : ∀ (i : fin d) (hi : (i : ℕ) ≠ d-1),
abs (((f x) i)-(x i))
≤ δ + (metric.diam (f '' T)),
{
intros i hi,
rw abs_sub_le_iff,
split,
{
sorry
},
{
sorry
}
},
have hlast : abs(((f x) ⟨d-1, buffer.lt_aux_2 hd⟩)) - x ⟨d-1, buffer.lt_aux_2 hd⟩ ≤ (d-1) * (δ + (metric.diam (f '' T))),
{
sorry
},
sorry
end
|
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ↑⁅I, N⁆ = Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ↑⁅I, N⁆ ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
let s := {m : M | ∃ (x : ↥I) (n : ↥N), ⁅(x : L), (n : M)⁆ = m}
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ↑⁅I, N⁆ ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
have aux : ∀ (y : L), ∀ m' ∈ Submodule.span R s, ⁅y, m'⁆ ∈ Submodule.span R s :=
by
intro y m' hm'
refine
Submodule.span_induction (R := R) (M := M) (s := s) (p := fun m' ↦ ⁅y, m'⁆ ∈ Submodule.span R s) hm' ?_ ?_ ?_ ?_
· rintro m'' ⟨x, n, hm''⟩; rw [← hm'', leibniz_lie]
refine Submodule.add_mem _ ?_ ?_ <;> apply Submodule.subset_span
· use⟨⁅y, ↑x⁆, I.lie_mem x.property⟩, n
· use x, ⟨⁅y, ↑n⁆, N.lie_mem n.property⟩
· simp only [lie_zero, Submodule.zero_mem]
· intro m₁ m₂ hm₁ hm₂; rw [lie_add]; exact Submodule.add_mem _ hm₁ hm₂
· intro t m'' hm''; rw [lie_smul]; exact Submodule.smul_mem _ t hm''
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s
[PROOFSTEP]
intro y m' hm'
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ ⁅y, m'⁆ ∈ Submodule.span R s
[PROOFSTEP]
refine Submodule.span_induction (R := R) (M := M) (s := s) (p := fun m' ↦ ⁅y, m'⁆ ∈ Submodule.span R s) hm' ?_ ?_ ?_ ?_
[GOAL]
case refine_1
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ ∀ (x : M), x ∈ s → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) x
[PROOFSTEP]
rintro m'' ⟨x, n, hm''⟩
[GOAL]
case refine_1.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅y, m''⁆ ∈ Submodule.span R s
[PROOFSTEP]
rw [← hm'', leibniz_lie]
[GOAL]
case refine_1.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅⁅y, ↑x⁆, ↑n⁆ + ⁅↑x, ⁅y, ↑n⁆⁆ ∈ Submodule.span R s
[PROOFSTEP]
refine Submodule.add_mem _ ?_ ?_
[GOAL]
case refine_1.intro.intro.refine_1
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅⁅y, ↑x⁆, ↑n⁆ ∈ Submodule.span R s
[PROOFSTEP]
apply Submodule.subset_span
[GOAL]
case refine_1.intro.intro.refine_2
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅↑x, ⁅y, ↑n⁆⁆ ∈ Submodule.span R s
[PROOFSTEP]
apply Submodule.subset_span
[GOAL]
case refine_1.intro.intro.refine_1.a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅⁅y, ↑x⁆, ↑n⁆ ∈ s
[PROOFSTEP]
use⟨⁅y, ↑x⁆, I.lie_mem x.property⟩, n
[GOAL]
case refine_1.intro.intro.refine_2.a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m'' : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hm'' : ⁅↑x, ↑n⁆ = m''
⊢ ⁅↑x, ⁅y, ↑n⁆⁆ ∈ s
[PROOFSTEP]
use x, ⟨⁅y, ↑n⁆, N.lie_mem n.property⟩
[GOAL]
case refine_2
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) 0
[PROOFSTEP]
simp only [lie_zero, Submodule.zero_mem]
[GOAL]
case refine_3
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ ∀ (x y_1 : M),
(fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) x →
(fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) y_1 → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) (x + y_1)
[PROOFSTEP]
intro m₁ m₂ hm₁ hm₂
[GOAL]
case refine_3
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m₁ m₂ : M
hm₁ : ⁅y, m₁⁆ ∈ Submodule.span R s
hm₂ : ⁅y, m₂⁆ ∈ Submodule.span R s
⊢ ⁅y, m₁ + m₂⁆ ∈ Submodule.span R s
[PROOFSTEP]
rw [lie_add]
[GOAL]
case refine_3
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
m₁ m₂ : M
hm₁ : ⁅y, m₁⁆ ∈ Submodule.span R s
hm₂ : ⁅y, m₂⁆ ∈ Submodule.span R s
⊢ ⁅y, m₁⁆ + ⁅y, m₂⁆ ∈ Submodule.span R s
[PROOFSTEP]
exact Submodule.add_mem _ hm₁ hm₂
[GOAL]
case refine_4
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
⊢ ∀ (a : R) (x : M), (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) x → (fun m' => ⁅y, m'⁆ ∈ Submodule.span R s) (a • x)
[PROOFSTEP]
intro t m'' hm''
[GOAL]
case refine_4
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
t : R
m'' : M
hm'' : ⁅y, m''⁆ ∈ Submodule.span R s
⊢ ⁅y, t • m''⁆ ∈ Submodule.span R s
[PROOFSTEP]
rw [lie_smul]
[GOAL]
case refine_4
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
y : L
m' : M
hm' : m' ∈ Submodule.span R s
t : R
m'' : M
hm'' : ⁅y, m''⁆ ∈ Submodule.span R s
⊢ t • ⁅y, m''⁆ ∈ Submodule.span R s
[PROOFSTEP]
exact Submodule.smul_mem _ t hm''
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
aux : ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s
⊢ ↑⁅I, N⁆ ≤ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
change _ ≤ ({ Submodule.span R s with lie_mem := fun hm' => aux _ _ hm' } : LieSubmodule R L M)
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
aux : ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s
⊢ ⁅I, N⁆ ≤
let src := Submodule.span R s;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem :=
(_ :
∀ {x : L} {m : M},
m ∈
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M},
x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, m⁆ ∈ Submodule.span R s) }
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
s : Set M := {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
aux : ∀ (y : L) (m' : M), m' ∈ Submodule.span R s → ⁅y, m'⁆ ∈ Submodule.span R s
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆
↑(let src := Submodule.span R s;
{
toSubmodule :=
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' := (_ : ∀ (c : R) {x : M}, x ∈ src.carrier → c • x ∈ src.carrier) },
lie_mem :=
(_ :
∀ {x : L} {m : M},
m ∈
{ toAddSubmonoid := src.toAddSubmonoid,
smul_mem' :=
(_ :
∀ (c : R) {x : M},
x ∈ src.carrier → c • x ∈ src.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier →
⁅x, m⁆ ∈ Submodule.span R s) })
[PROOFSTEP]
exact Submodule.subset_span
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ ↑⁅I, N⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span]
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ ↑(lieSpan R L {m | ∃ x n, ⁅↑x, ↑n⁆ = m})
[PROOFSTEP]
apply submodule_span_le_lieSpan
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ↑⁅I, N⁆ = Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
rw [lieIdeal_oper_eq_linear_span]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = Submodule.span R {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
congr
[GOAL]
case e_s
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
ext m
[GOAL]
case e_s.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case e_s.h.mp
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
rintro ⟨⟨x, hx⟩, ⟨n, hn⟩, rfl⟩
[GOAL]
case e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : L
hx : x ∈ I
n : M
hn : n ∈ N
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m}
[PROOFSTEP]
exact ⟨x, hx, n, hn, rfl⟩
[GOAL]
case e_s.h.mpr
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
⊢ m ∈ {m | ∃ x, x ∈ I ∧ ∃ n, n ∈ N ∧ ⁅x, n⁆ = m} → m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨x, hx, n, hn, rfl⟩
[GOAL]
case e_s.h.mpr.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : L
hx : x ∈ I
n : M
hn : n ∈ N
⊢ ⁅x, n⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨⟨x, hx⟩, ⟨n, hn⟩, rfl⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ N' ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N'
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, LieSubmodule.lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N' ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N'
[PROOFSTEP]
refine' ⟨fun h x hx m hm => h ⟨⟨x, hx⟩, ⟨m, hm⟩, rfl⟩, _⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ (∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N') → {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N'
[PROOFSTEP]
rintro h _ ⟨⟨x, hx⟩, ⟨m, hm⟩, rfl⟩
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ ∈ N'
x : L
hx : x ∈ I
m : M
hm : m ∈ N
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := m, property := hm }⁆ ∈ ↑N'
[PROOFSTEP]
exact h x hx m hm
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : { x // x ∈ I }
m : { x // x ∈ N }
⊢ ⁅↑x, ↑m⁆ ∈ ⁅I, N⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : { x // x ∈ I }
m : { x // x ∈ N }
⊢ ⁅↑x, ↑m⁆ ∈ lieSpan R L {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
apply subset_lieSpan
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
x : { x // x ∈ I }
m : { x // x ∈ N }
⊢ ⁅↑x, ↑m⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
use x, m
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, J⁆ = ⁅J, I⁆
[PROOFSTEP]
suffices ∀ I J : LieIdeal R L, ⁅I, J⁆ ≤ ⁅J, I⁆ by exact le_antisymm (this I J) (this J I)
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
this : ∀ (I J : LieIdeal R L), ⁅I, J⁆ ≤ ⁅J, I⁆
⊢ ⁅I, J⁆ = ⁅J, I⁆
[PROOFSTEP]
exact le_antisymm (this I J) (this J I)
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ∀ (I J : LieIdeal R L), ⁅I, J⁆ ≤ ⁅J, I⁆
[PROOFSTEP]
clear! I J
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
⊢ ∀ (I J : LieIdeal R L), ⁅I, J⁆ ≤ ⁅J, I⁆
[PROOFSTEP]
intro I J
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
⊢ ⁅I, J⁆ ≤ ⁅J, I⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⁅J, I⁆
[PROOFSTEP]
rintro x ⟨y, z, h⟩
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
x : L
y : { x // x ∈ I }
z : { x // x ∈ J }
h : ⁅↑y, ↑z⁆ = x
⊢ x ∈ ↑⁅J, I⁆
[PROOFSTEP]
rw [← h]
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
x : L
y : { x // x ∈ I }
z : { x // x ∈ J }
h : ⁅↑y, ↑z⁆ = x
⊢ ⁅↑y, ↑z⁆ ∈ ↑⁅J, I⁆
[PROOFSTEP]
rw [← lie_skew, ← lie_neg, ← LieSubmodule.coe_neg]
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
N₂ : LieSubmodule R L M₂
I J : LieIdeal R L
x : L
y : { x // x ∈ I }
z : { x // x ∈ J }
h : ⁅↑y, ↑z⁆ = x
⊢ ⁅↑z, ↑(-y)⁆ ∈ ↑⁅J, I⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ N
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
[PROOFSTEP]
rintro m ⟨x, n, hn⟩
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hn : ⁅↑x, ↑n⁆ = m
⊢ m ∈ ↑N
[PROOFSTEP]
rw [← hn]
[GOAL]
case intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : { x // x ∈ I }
n : { x // x ∈ N }
hn : ⁅↑x, ↑n⁆ = m
⊢ ⁅↑x, ↑n⁆ ∈ ↑N
[PROOFSTEP]
exact N.lie_mem n.property
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, J⁆ ≤ I
[PROOFSTEP]
rw [lie_comm]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅J, I⁆ ≤ I
[PROOFSTEP]
exact lie_le_right I J
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, J⁆ ≤ I ⊓ J
[PROOFSTEP]
rw [le_inf_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, J⁆ ≤ I ∧ ⁅I, J⁆ ≤ J
[PROOFSTEP]
exact ⟨lie_le_left I J, lie_le_right J I⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, ⊥⁆ = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ∀ (m : M), m ∈ ⁅I, ⊥⁆ → m = 0
[PROOFSTEP]
apply lie_le_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅⊥, N⁆ = ⊥
[PROOFSTEP]
suffices ⁅(⊥ : LieIdeal R L), N⁆ ≤ ⊥ by exact le_bot_iff.mp this
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
this : ⁅⊥, N⁆ ≤ ⊥
⊢ ⁅⊥, N⁆ = ⊥
[PROOFSTEP]
exact le_bot_iff.mp this
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅⊥, N⁆ ≤ ⊥
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⊥
[PROOFSTEP]
rintro m ⟨⟨x, hx⟩, n, hn⟩
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : L
hx : x ∈ ⊥
n : { x // x ∈ N }
hn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ m ∈ ↑⊥
[PROOFSTEP]
rw [← hn]
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : L
hx : x ∈ ⊥
n : { x // x ∈ N }
hn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥
[PROOFSTEP]
change x ∈ (⊥ : LieIdeal R L) at hx
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : L
n : { x // x ∈ N }
hx : x ∈ ⊥
hn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥
[PROOFSTEP]
rw [mem_bot] at hx
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
m : M
x : L
n : { x // x ∈ N }
hx✝ : x ∈ ⊥
hx : x = 0
hn : ⁅↑{ val := x, property := hx✝ }, ↑n⁆ = m
⊢ ⁅↑{ val := x, property := hx✝ }, ↑n⁆ ∈ ↑⊥
[PROOFSTEP]
simp [hx]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ = ⊥ ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, LieSubmodule.lieSpan_eq_bot_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ (∀ (m : M), m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m = 0) ↔ ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0
[PROOFSTEP]
refine' ⟨fun h x hx m hm => h ⁅x, m⁆ ⟨⟨x, hx⟩, ⟨m, hm⟩, rfl⟩, _⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ (∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0) → ∀ (m : M), m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m = 0
[PROOFSTEP]
rintro h - ⟨⟨x, hx⟩, ⟨⟨n, hn⟩, rfl⟩⟩
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ∀ (x : L), x ∈ I → ∀ (m : M), m ∈ N → ⁅x, m⁆ = 0
x : L
hx : x ∈ I
n : M
hn : n ∈ N
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = 0
[PROOFSTEP]
exact h x hx n hn
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N ≤ N'
⊢ ⁅I, N⁆ ≤ ⁅J, N'⁆
[PROOFSTEP]
intro m h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N ≤ N'
m : M
h : m ∈ ⁅I, N⁆
⊢ m ∈ ⁅J, N'⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, mem_lieSpan] at h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N ≤ N'
m : M
h : ∀ (N_1 : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N_1 → m ∈ N_1
⊢ m ∈ ⁅J, N'⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, mem_lieSpan]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N ≤ N'
m : M
h : ∀ (N_1 : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N_1 → m ∈ N_1
⊢ ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
[PROOFSTEP]
intro N hN
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
⊢ m ∈ N
[PROOFSTEP]
apply h
[GOAL]
case a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
[PROOFSTEP]
rintro m' ⟨⟨x, hx⟩, ⟨n, hn⟩, hm⟩
[GOAL]
case a.intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
m' : M
x : L
hx : x ∈ I
n : M
hn : n ∈ N✝
hm : ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = m'
⊢ m' ∈ ↑N
[PROOFSTEP]
rw [← hm]
[GOAL]
case a.intro.mk.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
m' : M
x : L
hx : x ∈ I
n : M
hn : n ∈ N✝
hm : ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = m'
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ ∈ ↑N
[PROOFSTEP]
apply hN
[GOAL]
case a.intro.mk.intro.mk.a
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N✝ N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h₁ : I ≤ J
h₂ : N✝ ≤ N'
m : M
h : ∀ (N : LieSubmodule R L M), {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N → m ∈ N
N : LieSubmodule R L M
hN : {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑N
m' : M
x : L
hx : x ∈ I
n : M
hn : n ∈ N✝
hm : ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ = m'
⊢ ⁅↑{ val := x, property := hx }, ↑{ val := n, property := hn }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
use⟨x, h₁ hx⟩, ⟨n, h₂ hn⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊔ N'⁆ = ⁅I, N⁆ ⊔ ⁅I, N'⁆
[PROOFSTEP]
have h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆ := by rw [sup_le_iff];
constructor <;> apply mono_lie_right <;> [exact le_sup_left; exact le_sup_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
rw [sup_le_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I, N ⊔ N'⁆ ∧ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
constructor <;> apply mono_lie_right <;> [exact le_sup_left; exact le_sup_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I, N ⊔ N'⁆ ∧ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
apply mono_lie_right
[GOAL]
case right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
[PROOFSTEP]
apply mono_lie_right
[GOAL]
case left.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ N ≤ N ⊔ N'
[PROOFSTEP]
exact le_sup_left
[GOAL]
case right.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ N' ≤ N ⊔ N'
[PROOFSTEP]
exact le_sup_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
⊢ ⁅I, N ⊔ N'⁆ = ⁅I, N⁆ ⊔ ⁅I, N'⁆
[PROOFSTEP]
suffices ⁅I, N ⊔ N'⁆ ≤ ⁅I, N⁆ ⊔ ⁅I, N'⁆ by exact le_antisymm this h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
this : ⁅I, N ⊔ N'⁆ ≤ ⁅I, N⁆ ⊔ ⁅I, N'⁆
⊢ ⁅I, N ⊔ N'⁆ = ⁅I, N⁆ ⊔ ⁅I, N'⁆
[PROOFSTEP]
exact le_antisymm this h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
⊢ ⁅I, N ⊔ N'⁆ ≤ ⁅I, N⁆ ⊔ ⁅I, N'⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(⁅I, N⁆ ⊔ ⁅I, N'⁆)
[PROOFSTEP]
rintro m ⟨x, ⟨n, hn⟩, h⟩
[GOAL]
case intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
⊢ m ∈ ↑(⁅I, N⁆ ⊔ ⁅I, N'⁆)
[PROOFSTEP]
erw [LieSubmodule.mem_sup]
[GOAL]
case intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ y + z = m
[PROOFSTEP]
erw [LieSubmodule.mem_sup] at hn
[GOAL]
case intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn✝ : n ∈ N ⊔ N'
hn : ∃ y, y ∈ N ∧ ∃ z, z ∈ N' ∧ y + z = n
h : ⁅↑x, ↑{ val := n, property := hn✝ }⁆ = m
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ y + z = m
[PROOFSTEP]
rcases hn with ⟨n₁, hn₁, n₂, hn₂, hn'⟩
[GOAL]
case intro.intro.mk.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ y + z = m
[PROOFSTEP]
use⁅(x : L), (⟨n₁, hn₁⟩ : N)⁆
[GOAL]
case h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅I, N'⁆ ∧ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + z = m
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ ∈ ⁅I, N⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
case h.right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ∃ z, z ∈ ⁅I, N'⁆ ∧ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + z = m
[PROOFSTEP]
use⁅(x : L), (⟨n₂, hn₂⟩ : N')⁆
[GOAL]
case h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ ∈ ⁅I, N'⁆ ∧
⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ = m
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ ∈ ⁅I, N'⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
case h.right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅I, N'⁆ ≤ ⁅I, N ⊔ N'⁆
m : M
x : { x // x ∈ I }
n : M
hn : n ∈ N ⊔ N'
h : ⁅↑x, ↑{ val := n, property := hn }⁆ = m
n₁ : M
hn₁ : n₁ ∈ N
n₂ : M
hn₂ : n₂ ∈ N'
hn' : n₁ + n₂ = n
⊢ ⁅↑x, ↑{ val := n₁, property := hn₁ }⁆ + ⁅↑x, ↑{ val := n₂, property := hn₂ }⁆ = m
[PROOFSTEP]
simp [← h, ← hn']
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊔ J, N⁆ = ⁅I, N⁆ ⊔ ⁅J, N⁆
[PROOFSTEP]
have h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆ := by rw [sup_le_iff];
constructor <;> apply mono_lie_left <;> [exact le_sup_left; exact le_sup_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
rw [sup_le_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I ⊔ J, N⁆ ∧ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
constructor <;> apply mono_lie_left <;> [exact le_sup_left; exact le_sup_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I ⊔ J, N⁆ ∧ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
apply mono_lie_left
[GOAL]
case right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
[PROOFSTEP]
apply mono_lie_left
[GOAL]
case left.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ I ≤ I ⊔ J
[PROOFSTEP]
exact le_sup_left
[GOAL]
case right.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ J ≤ I ⊔ J
[PROOFSTEP]
exact le_sup_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
⊢ ⁅I ⊔ J, N⁆ = ⁅I, N⁆ ⊔ ⁅J, N⁆
[PROOFSTEP]
suffices ⁅I ⊔ J, N⁆ ≤ ⁅I, N⁆ ⊔ ⁅J, N⁆ by exact le_antisymm this h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
this : ⁅I ⊔ J, N⁆ ≤ ⁅I, N⁆ ⊔ ⁅J, N⁆
⊢ ⁅I ⊔ J, N⁆ = ⁅I, N⁆ ⊔ ⁅J, N⁆
[PROOFSTEP]
exact le_antisymm this h
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
⊢ ⁅I ⊔ J, N⁆ ≤ ⁅I, N⁆ ⊔ ⁅J, N⁆
[PROOFSTEP]
rw [lieIdeal_oper_eq_span, lieSpan_le]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(⁅I, N⁆ ⊔ ⁅J, N⁆)
[PROOFSTEP]
rintro m ⟨⟨x, hx⟩, n, h⟩
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ m ∈ ↑(⁅I, N⁆ ⊔ ⁅J, N⁆)
[PROOFSTEP]
erw [LieSubmodule.mem_sup]
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ y + z = m
[PROOFSTEP]
erw [LieSubmodule.mem_sup] at hx
[GOAL]
case intro.mk.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx✝ : x ∈ I ⊔ J
hx : ∃ y, y ∈ I ∧ ∃ z, z ∈ J ∧ y + z = x
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx✝ }, ↑n⁆ = m
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ y + z = m
[PROOFSTEP]
rcases hx with ⟨x₁, hx₁, x₂, hx₂, hx'⟩
[GOAL]
case intro.mk.intro.intro.intro.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ∃ y, y ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ y + z = m
[PROOFSTEP]
use⁅((⟨x₁, hx₁⟩ : I) : L), (n : N)⁆
[GOAL]
case h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ ∈ ⁅I, N⁆ ∧ ∃ z, z ∈ ⁅J, N⁆ ∧ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + z = m
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ ∈ ⁅I, N⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
case h.right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ∃ z, z ∈ ⁅J, N⁆ ∧ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + z = m
[PROOFSTEP]
use⁅((⟨x₂, hx₂⟩ : J) : L), (n : N)⁆
[GOAL]
case h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ ∈ ⁅J, N⁆ ∧
⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ = m
[PROOFSTEP]
constructor
[GOAL]
case h.left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ ∈ ⁅J, N⁆
[PROOFSTEP]
apply lie_coe_mem_lie
[GOAL]
case h.right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
h✝ : ⁅I, N⁆ ⊔ ⁅J, N⁆ ≤ ⁅I ⊔ J, N⁆
m : M
x : L
hx : x ∈ I ⊔ J
n : { x // x ∈ N }
h : ⁅↑{ val := x, property := hx }, ↑n⁆ = m
x₁ : L
hx₁ : x₁ ∈ I
x₂ : L
hx₂ : x₂ ∈ J
hx' : x₁ + x₂ = x
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑n⁆ + ⁅↑{ val := x₂, property := hx₂ }, ↑n⁆ = m
[PROOFSTEP]
simp [← h, ← hx']
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ ⊓ ⁅I, N'⁆
[PROOFSTEP]
rw [le_inf_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ ∧ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N'⁆
[PROOFSTEP]
constructor <;> apply mono_lie_right <;> [exact inf_le_left; exact inf_le_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆ ∧ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N'⁆
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N⁆
[PROOFSTEP]
apply mono_lie_right
[GOAL]
case right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I, N ⊓ N'⁆ ≤ ⁅I, N'⁆
[PROOFSTEP]
apply mono_lie_right
[GOAL]
case left.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ N ⊓ N' ≤ N
[PROOFSTEP]
exact inf_le_left
[GOAL]
case right.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ N ⊓ N' ≤ N'
[PROOFSTEP]
exact inf_le_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ ⊓ ⁅J, N⁆
[PROOFSTEP]
rw [le_inf_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ ∧ ⁅I ⊓ J, N⁆ ≤ ⁅J, N⁆
[PROOFSTEP]
constructor <;> apply mono_lie_left <;> [exact inf_le_left; exact inf_le_right]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆ ∧ ⁅I ⊓ J, N⁆ ≤ ⁅J, N⁆
[PROOFSTEP]
constructor
[GOAL]
case left
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅I, N⁆
[PROOFSTEP]
apply mono_lie_left
[GOAL]
case right
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ ⁅I ⊓ J, N⁆ ≤ ⁅J, N⁆
[PROOFSTEP]
apply mono_lie_left
[GOAL]
case left.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ I ⊓ J ≤ I
[PROOFSTEP]
exact inf_le_left
[GOAL]
case right.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
⊢ I ⊓ J ≤ J
[PROOFSTEP]
exact inf_le_right
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ map f ⁅I, N⁆ = ⁅I, map f N⁆
[PROOFSTEP]
rw [← coe_toSubmodule_eq_iff, coeSubmodule_map, lieIdeal_oper_eq_linear_span, lieIdeal_oper_eq_linear_span,
Submodule.map_span]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ Submodule.span R (↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}) = Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
congr
[GOAL]
case e_s
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
ext m
[GOAL]
case e_s.h
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
⊢ m ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case e_s.h.mp
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
⊢ m ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨-, ⟨⟨x, ⟨n, hn⟩, rfl⟩, hm⟩⟩
[GOAL]
case e_s.h.mp.intro.intro.intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
x : { x // x ∈ I }
n : M
hn : n ∈ N
hm : ↑↑f ⁅↑x, ↑{ val := n, property := hn }⁆ = m
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
simp only [LieModuleHom.coe_toLinearMap, LieModuleHom.map_lie] at hm
[GOAL]
case e_s.h.mp.intro.intro.intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
x : { x // x ∈ I }
n : M
hn : n ∈ N
hm : ⁅↑x, ↑f n⁆ = m
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨x, ⟨f n, (mem_map (f n)).mpr ⟨n, hn, rfl⟩⟩, hm⟩
[GOAL]
case e_s.h.mpr
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
m : M₂
⊢ m ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → m ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨x, ⟨m₂, hm₂ : m₂ ∈ map f N⟩, rfl⟩
[GOAL]
case e_s.h.mpr.intro.intro.mk
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
x : { x // x ∈ I }
m₂ : M₂
hm₂ : m₂ ∈ map f N
⊢ ⁅↑x, ↑{ val := m₂, property := hm₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨n, hn, rfl⟩ := (mem_map m₂).mp hm₂
[GOAL]
case e_s.h.mpr.intro.intro.mk.intro.intro
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
x : { x // x ∈ I }
n : M
hn : n ∈ N
hm₂ : ↑f n ∈ map f N
⊢ ⁅↑x, ↑{ val := ↑f n, property := hm₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨⁅x, n⁆, ⟨x, ⟨n, hn⟩, rfl⟩, by simp⟩
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
x : { x // x ∈ I }
n : M
hn : n ∈ N
hm₂ : ↑f n ∈ map f N
⊢ ↑↑f ⁅x, n⁆ = ⁅↑x, ↑{ val := ↑f n, property := hm₂ }⁆
[PROOFSTEP]
simp
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf : N₂ ≤ LieModuleHom.range f
⊢ map f (comap f N₂) = N₂
[PROOFSTEP]
rw [SetLike.ext'_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf : N₂ ≤ LieModuleHom.range f
⊢ ↑(map f (comap f N₂)) = ↑N₂
[PROOFSTEP]
exact Set.image_preimage_eq_of_subset hf
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf : LieModuleHom.ker f = ⊥
⊢ comap f (map f N) = N
[PROOFSTEP]
rw [SetLike.ext'_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf : LieModuleHom.ker f = ⊥
⊢ ↑(comap f (map f N)) = ↑N
[PROOFSTEP]
exact (N : Set M).preimage_image_eq (f.ker_eq_bot.mp hf)
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
⊢ comap f ⁅I, N₂⁆ = ⁅I, comap f N₂⁆
[PROOFSTEP]
conv_lhs => rw [← map_comap_eq N₂ f hf₂]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
| comap f ⁅I, N₂⁆
[PROOFSTEP]
rw [← map_comap_eq N₂ f hf₂]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
| comap f ⁅I, N₂⁆
[PROOFSTEP]
rw [← map_comap_eq N₂ f hf₂]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
| comap f ⁅I, N₂⁆
[PROOFSTEP]
rw [← map_comap_eq N₂ f hf₂]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
hf₁ : LieModuleHom.ker f = ⊥
hf₂ : N₂ ≤ LieModuleHom.range f
⊢ comap f ⁅I, map f (comap f N₂)⁆ = ⁅I, comap f N₂⁆
[PROOFSTEP]
rw [← map_bracket_eq, comap_map_eq _ f hf₁]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ map (incl N) (comap (incl N) N') = N ⊓ N'
[PROOFSTEP]
rw [← coe_toSubmodule_eq_iff]
[GOAL]
R : Type u
L : Type v
M : Type w
M₂ : Type w₁
inst✝¹⁰ : CommRing R
inst✝⁹ : LieRing L
inst✝⁸ : LieAlgebra R L
inst✝⁷ : AddCommGroup M
inst✝⁶ : Module R M
inst✝⁵ : LieRingModule L M
inst✝⁴ : LieModule R L M
inst✝³ : AddCommGroup M₂
inst✝² : Module R M₂
inst✝¹ : LieRingModule L M₂
inst✝ : LieModule R L M₂
N N' : LieSubmodule R L M
I J : LieIdeal R L
N₂ : LieSubmodule R L M₂
f : M →ₗ⁅R,L⁆ M₂
⊢ ↑(map (incl N) (comap (incl N) N')) = ↑(N ⊓ N')
[PROOFSTEP]
exact (N : Submodule R M).map_comap_subtype N'
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ map f ⁅I₁, I₂⁆ ≤ ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
rw [map_le_iff_le_comap]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ ⁅I₁, I₂⁆ ≤ comap f ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
erw [LieSubmodule.lieSpan_le]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x : L
hx : x ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
⊢ x ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
obtain ⟨⟨y₁, hy₁⟩, ⟨y₂, hy₂⟩, hx⟩ := hx
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
⊢ x ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
rw [← hx]
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
let fy₁ : ↥(map f I₁) := ⟨f y₁, mem_map hy₁⟩
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) }
⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
let fy₂ : ↥(map f I₂) := ⟨f y₂, mem_map hy₂⟩
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) }
fy₂ : { x // x ∈ map f I₂ } := { val := ↑f y₂, property := (_ : ↑f y₂ ∈ map f I₂) }
⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ ↑(comap f ⁅map f I₁, map f I₂⁆)
[PROOFSTEP]
change _ ∈ comap f ⁅map f I₁, map f I₂⁆
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) }
fy₂ : { x // x ∈ map f I₂ } := { val := ↑f y₂, property := (_ : ↑f y₂ ∈ map f I₂) }
⊢ ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ ∈ comap f ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
simp only [Submodule.coe_mk, mem_comap, LieHom.map_lie]
[GOAL]
case intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
x y₁ : L
hy₁ : y₁ ∈ I₁
y₂ : L
hy₂ : y₂ ∈ I₂
hx : ⁅↑{ val := y₁, property := hy₁ }, ↑{ val := y₂, property := hy₂ }⁆ = x
fy₁ : { x // x ∈ map f I₁ } := { val := ↑f y₁, property := (_ : ↑f y₁ ∈ map f I₁) }
fy₂ : { x // x ∈ map f I₂ } := { val := ↑f y₂, property := (_ : ↑f y₂ ∈ map f I₂) }
⊢ ⁅↑f y₁, ↑f y₂⁆ ∈ ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
exact LieSubmodule.lie_coe_mem_lie _ _ fy₁ fy₂
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
⊢ map f ⁅I₁, I₂⁆ = ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
suffices ⁅map f I₁, map f I₂⁆ ≤ map f ⁅I₁, I₂⁆ by exact le_antisymm (map_bracket_le f) this
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
this : ⁅map f I₁, map f I₂⁆ ≤ map f ⁅I₁, I₂⁆
⊢ map f ⁅I₁, I₂⁆ = ⁅map f I₁, map f I₂⁆
[PROOFSTEP]
exact le_antisymm (map_bracket_le f) this
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
⊢ ⁅map f I₁, map f I₂⁆ ≤ map f ⁅I₁, I₂⁆
[PROOFSTEP]
rw [← LieSubmodule.coeSubmodule_le_coeSubmodule, coe_map_of_surjective h, LieSubmodule.lieIdeal_oper_eq_linear_span,
LieSubmodule.lieIdeal_oper_eq_linear_span, LinearMap.map_span]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
⊢ Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ≤ Submodule.span R (↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m})
[PROOFSTEP]
apply Submodule.span_mono
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro x ⟨⟨z₁, h₁⟩, ⟨z₂, h₂⟩, rfl⟩
[GOAL]
case h.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
z₁ : L'
h₁ : z₁ ∈ map f I₁
z₂ : L'
h₂ : z₂ ∈ map f I₂
⊢ ⁅↑{ val := z₁, property := h₁ }, ↑{ val := z₂, property := h₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨y₁, rfl⟩ := mem_map_of_surjective h h₁
[GOAL]
case h.intro.mk.intro.mk.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
z₂ : L'
h₂ : z₂ ∈ map f I₂
y₁ : { x // x ∈ I₁ }
h₁ : ↑f ↑y₁ ∈ map f I₁
⊢ ⁅↑{ val := ↑f ↑y₁, property := h₁ }, ↑{ val := z₂, property := h₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨y₂, rfl⟩ := mem_map_of_surjective h h₂
[GOAL]
case h.intro.mk.intro.mk.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
y₁ : { x // x ∈ I₁ }
h₁ : ↑f ↑y₁ ∈ map f I₁
y₂ : { x // x ∈ I₂ }
h₂ : ↑f ↑y₂ ∈ map f I₂
⊢ ⁅↑{ val := ↑f ↑y₁, property := h₁ }, ↑{ val := ↑f ↑y₂, property := h₂ }⁆ ∈ ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
exact ⟨⁅(y₁ : L), (y₂ : L)⁆, ⟨y₁, y₂, rfl⟩, by apply f.map_lie⟩
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h : Function.Surjective ↑f
y₁ : { x // x ∈ I₁ }
h₁ : ↑f ↑y₁ ∈ map f I₁
y₂ : { x // x ∈ I₂ }
h₂ : ↑f ↑y₂ ∈ map f I₂
⊢ ↑↑f ⁅↑y₁, ↑y₂⁆ = ⁅↑{ val := ↑f ↑y₁, property := h₁ }, ↑{ val := ↑f ↑y₂, property := h₂ }⁆
[PROOFSTEP]
apply f.map_lie
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
⊢ ⁅comap f J₁, comap f J₂⁆ ≤ comap f ⁅J₁, J₂⁆
[PROOFSTEP]
rw [← map_le_iff_le_comap]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
⊢ map f ⁅comap f J₁, comap f J₂⁆ ≤ ⁅J₁, J₂⁆
[PROOFSTEP]
exact le_trans (map_bracket_le f) (LieSubmodule.mono_lie _ _ _ _ map_comap_le map_comap_le)
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ map (incl I₁) (comap (incl I₁) I₂) = I₁ ⊓ I₂
[PROOFSTEP]
conv_rhs => rw [← I₁.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| I₁ ⊓ I₂
[PROOFSTEP]
rw [← I₁.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| I₁ ⊓ I₂
[PROOFSTEP]
rw [← I₁.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| I₁ ⊓ I₂
[PROOFSTEP]
rw [← I₁.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ map (incl I₁) (comap (incl I₁) I₂) = LieHom.idealRange (incl I₁) ⊓ I₂
[PROOFSTEP]
rw [← map_comap_eq]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ LieHom.IsIdealMorphism (incl I₁)
[PROOFSTEP]
exact I₁.incl_isIdealMorphism
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ comap f ⁅LieHom.idealRange f ⊓ J₁, LieHom.idealRange f ⊓ J₂⁆ = ⁅comap f J₁, comap f J₂⁆ ⊔ LieHom.ker f
[PROOFSTEP]
rw [← LieSubmodule.coe_toSubmodule_eq_iff, comap_coeSubmodule, LieSubmodule.sup_coe_toSubmodule, f.ker_coeSubmodule, ←
Submodule.comap_map_eq, LieSubmodule.lieIdeal_oper_eq_linear_span, LieSubmodule.lieIdeal_oper_eq_linear_span,
LinearMap.map_span]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ Submodule.comap (↑f) (Submodule.span R {m | ∃ x n, ⁅↑x, ↑n⁆ = m}) =
Submodule.comap (↑f) (Submodule.span R (↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}))
[PROOFSTEP]
congr
[GOAL]
case e_p.e_s
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = ↑↑f '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
simp only [LieHom.coe_toLinearMap, Set.mem_setOf_eq]
[GOAL]
case e_p.e_s
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} = (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
ext y
[GOAL]
case e_p.e_s.h
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
⊢ y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ↔ y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
constructor
[GOAL]
case e_p.e_s.h.mp
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
⊢ y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨⟨x₁, hx₁⟩, ⟨x₂, hx₂⟩, hy⟩
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
⊢ y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rw [← hy]
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
erw [LieSubmodule.mem_inf, f.mem_idealRange_iff h] at hx₁ hx₂
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁✝ : x₁ ∈ LieHom.idealRange f ⊓ J₁
hx₁ : (∃ x, ↑f x = x₁) ∧ x₁ ∈ J₁
x₂ : L'
hx₂✝ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hx₂ : (∃ x, ↑f x = x₂) ∧ x₂ ∈ J₂
hy : ⁅↑{ val := x₁, property := hx₁✝ }, ↑{ val := x₂, property := hx₂✝ }⁆ = y
⊢ ⁅↑{ val := x₁, property := hx₁✝ }, ↑{ val := x₂, property := hx₂✝ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨⟨z₁, hz₁⟩, hz₁'⟩ := hx₁
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂✝ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hx₂ : (∃ x, ↑f x = x₂) ∧ x₂ ∈ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ = y
hz₁' : x₁ ∈ J₁
z₁ : L
hz₁ : ↑f z₁ = x₁
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rw [← hz₁] at hz₁'
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂✝ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hx₂ : (∃ x, ↑f x = x₂) ∧ x₂ ∈ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ = y
z₁ : L
hz₁' : ↑f z₁ ∈ J₁
hz₁ : ↑f z₁ = x₁
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂✝ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
obtain ⟨⟨z₂, hz₂⟩, hz₂'⟩ := hx₂
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
z₁ : L
hz₁' : ↑f z₁ ∈ J₁
hz₁ : ↑f z₁ = x₁
hz₂' : x₂ ∈ J₂
z₂ : L
hz₂ : ↑f z₂ = x₂
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rw [← hz₂] at hz₂'
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
z₁ : L
hz₁' : ↑f z₁ ∈ J₁
hz₁ : ↑f z₁ = x₁
z₂ : L
hz₂' : ↑f z₂ ∈ J₂
hz₂ : ↑f z₂ = x₂
⊢ ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
refine ⟨⁅z₁, z₂⁆, ⟨⟨z₁, hz₁'⟩, ⟨z₂, hz₂'⟩, rfl⟩, ?_⟩
[GOAL]
case e_p.e_s.h.mp.intro.mk.intro.mk.intro.intro.intro.intro
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y x₁ : L'
hx₁ : x₁ ∈ LieHom.idealRange f ⊓ J₁
x₂ : L'
hx₂ : x₂ ∈ LieHom.idealRange f ⊓ J₂
hy : ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆ = y
z₁ : L
hz₁' : ↑f z₁ ∈ J₁
hz₁ : ↑f z₁ = x₁
z₂ : L
hz₂' : ↑f z₂ ∈ J₂
hz₂ : ↑f z₂ = x₂
⊢ (fun a => ↑f a) ⁅z₁, z₂⁆ = ⁅↑{ val := x₁, property := hx₁ }, ↑{ val := x₂, property := hx₂ }⁆
[PROOFSTEP]
simp only [hz₁, hz₂, Submodule.coe_mk, LieHom.map_lie]
[GOAL]
case e_p.e_s.h.mpr
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
⊢ y ∈ (fun a => ↑f a) '' {m | ∃ x n, ⁅↑x, ↑n⁆ = m} → y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rintro ⟨x, ⟨⟨z₁, hz₁⟩, ⟨z₂, hz₂⟩, hx⟩, hy⟩
[GOAL]
case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
⊢ y ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
rw [← hy, ← hx]
[GOAL]
case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
⊢ (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
have hz₁' : f z₁ ∈ f.idealRange ⊓ J₁ := by rw [LieSubmodule.mem_inf]; exact ⟨f.mem_idealRange, hz₁⟩
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
⊢ ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
[PROOFSTEP]
rw [LieSubmodule.mem_inf]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
⊢ ↑f z₁ ∈ LieHom.idealRange f ∧ ↑f z₁ ∈ J₁
[PROOFSTEP]
exact ⟨f.mem_idealRange, hz₁⟩
[GOAL]
case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
⊢ (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
have hz₂' : f z₂ ∈ f.idealRange ⊓ J₂ := by rw [LieSubmodule.mem_inf]; exact ⟨f.mem_idealRange, hz₂⟩
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
⊢ ↑f z₂ ∈ LieHom.idealRange f ⊓ J₂
[PROOFSTEP]
rw [LieSubmodule.mem_inf]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
⊢ ↑f z₂ ∈ LieHom.idealRange f ∧ ↑f z₂ ∈ J₂
[PROOFSTEP]
exact ⟨f.mem_idealRange, hz₂⟩
[GOAL]
case e_p.e_s.h.mpr.intro.intro.intro.mk.intro.mk
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
hz₂' : ↑f z₂ ∈ LieHom.idealRange f ⊓ J₂
⊢ (fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ ∈ {m | ∃ x n, ⁅↑x, ↑n⁆ = m}
[PROOFSTEP]
use⟨f z₁, hz₁'⟩, ⟨f z₂, hz₂'⟩
[GOAL]
case h
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
y : L'
x : L
hy : (fun a => ↑f a) x = y
z₁ : L
hz₁ : z₁ ∈ comap f J₁
z₂ : L
hz₂ : z₂ ∈ comap f J₂
hx : ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆ = x
hz₁' : ↑f z₁ ∈ LieHom.idealRange f ⊓ J₁
hz₂' : ↑f z₂ ∈ LieHom.idealRange f ⊓ J₂
⊢ ⁅↑{ val := ↑f z₁, property := hz₁' }, ↑{ val := ↑f z₂, property := hz₂' }⁆ =
(fun a => ↑f a) ⁅↑{ val := z₁, property := hz₁ }, ↑{ val := z₂, property := hz₂ }⁆
[PROOFSTEP]
simp only [Submodule.coe_mk, LieHom.map_lie]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ map f ⁅comap f J₁, comap f J₂⁆ = ⁅LieHom.idealRange f ⊓ J₁, LieHom.idealRange f ⊓ J₂⁆
[PROOFSTEP]
rw [← map_sup_ker_eq_map, ← comap_bracket_eq h, map_comap_eq h, inf_eq_right]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J J₁ J₂ : LieIdeal R L'
h : LieHom.IsIdealMorphism f
⊢ ⁅LieHom.idealRange f ⊓ J₁, LieHom.idealRange f ⊓ J₂⁆ ≤ LieHom.idealRange f
[PROOFSTEP]
exact le_trans (LieSubmodule.lie_le_left _ _) inf_le_left
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
conv_rhs =>
congr
next => skip
rw [← I.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
congr
next => skip
rw [← I.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
congr
next => skip
rw [← I.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
congr
[GOAL]
case f
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| incl I
case J
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
next => skip
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| incl I
[PROOFSTEP]
skip
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| incl I
[PROOFSTEP]
skip
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| incl I
[PROOFSTEP]
skip
[GOAL]
case J
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
| ⁅I ⊓ I₁, I ⊓ I₂⁆
[PROOFSTEP]
rw [← I.incl_idealRange]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ =
comap (incl I) ⁅LieHom.idealRange (incl I) ⊓ I₁, LieHom.idealRange (incl I) ⊓ I₂⁆
[PROOFSTEP]
rw [comap_bracket_eq]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = ⁅comap (incl I) I₁, comap (incl I) I₂⁆ ⊔ LieHom.ker (incl I)
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ LieHom.IsIdealMorphism (incl I)
[PROOFSTEP]
simp only [ker_incl, sup_bot_eq]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
⊢ LieHom.IsIdealMorphism (incl I)
[PROOFSTEP]
exact I.incl_isIdealMorphism
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h₁ : I₁ ≤ I
h₂ : I₂ ≤ I
⊢ ⁅comap (incl I) I₁, comap (incl I) I₂⁆ = comap (incl I) ⁅I₁, I₂⁆
[PROOFSTEP]
rw [comap_bracket_incl]
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h₁ : I₁ ≤ I
h₂ : I₂ ≤ I
⊢ comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ = comap (incl I) ⁅I₁, I₂⁆
[PROOFSTEP]
rw [← inf_eq_right] at h₁ h₂
[GOAL]
R : Type u
L : Type v
L' : Type w₂
inst✝⁴ : CommRing R
inst✝³ : LieRing L
inst✝² : LieAlgebra R L
inst✝¹ : LieRing L'
inst✝ : LieAlgebra R L'
f : L →ₗ⁅R⁆ L'
I : LieIdeal R L
J : LieIdeal R L'
I₁ I₂ : LieIdeal R L
h₁ : I ⊓ I₁ = I₁
h₂ : I ⊓ I₂ = I₂
⊢ comap (incl I) ⁅I ⊓ I₁, I ⊓ I₂⁆ = comap (incl I) ⁅I₁, I₂⁆
[PROOFSTEP]
rw [h₁, h₂]
|
[STATEMENT]
lemma mset_nths:
assumes l_r: "l \<le> r \<and> r \<le> List.length xs"
assumes left: "\<forall> i. i < l \<longrightarrow> (xs::'a list) ! i = ys ! i"
assumes right: "\<forall> i. i \<ge> r \<longrightarrow> (xs::'a list) ! i = ys ! i"
assumes multiset: "mset xs = mset ys"
shows "mset (nths' l r xs) = mset (nths' l r ys)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
proof -
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
from l_r
[PROOF STATE]
proof (chain)
picking this:
l \<le> r \<and> r \<le> length xs
[PROOF STEP]
have xs_def: "xs = (nths' 0 l xs) @ (nths' l r xs) @ (nths' r (List.length xs) xs)" (is "_ = ?xs_long")
[PROOF STATE]
proof (prove)
using this:
l \<le> r \<and> r \<le> length xs
goal (1 subgoal):
1. xs = nths' 0 l xs @ nths' l r xs @ nths' r (length xs) xs
[PROOF STEP]
by (simp add: nths'_append)
[PROOF STATE]
proof (state)
this:
xs = nths' 0 l xs @ nths' l r xs @ nths' r (length xs) xs
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
from multiset
[PROOF STATE]
proof (chain)
picking this:
mset xs = mset ys
[PROOF STEP]
have length_eq: "List.length xs = List.length ys"
[PROOF STATE]
proof (prove)
using this:
mset xs = mset ys
goal (1 subgoal):
1. length xs = length ys
[PROOF STEP]
by (rule mset_eq_length)
[PROOF STATE]
proof (state)
this:
length xs = length ys
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
with l_r
[PROOF STATE]
proof (chain)
picking this:
l \<le> r \<and> r \<le> length xs
length xs = length ys
[PROOF STEP]
have ys_def: "ys = (nths' 0 l ys) @ (nths' l r ys) @ (nths' r (List.length ys) ys)" (is "_ = ?ys_long")
[PROOF STATE]
proof (prove)
using this:
l \<le> r \<and> r \<le> length xs
length xs = length ys
goal (1 subgoal):
1. ys = nths' 0 l ys @ nths' l r ys @ nths' r (length ys) ys
[PROOF STEP]
by (simp add: nths'_append)
[PROOF STATE]
proof (state)
this:
ys = nths' 0 l ys @ nths' l r ys @ nths' r (length ys) ys
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
from xs_def ys_def multiset
[PROOF STATE]
proof (chain)
picking this:
xs = nths' 0 l xs @ nths' l r xs @ nths' r (length xs) xs
ys = nths' 0 l ys @ nths' l r ys @ nths' r (length ys) ys
mset xs = mset ys
[PROOF STEP]
have "mset ?xs_long = mset ?ys_long"
[PROOF STATE]
proof (prove)
using this:
xs = nths' 0 l xs @ nths' l r xs @ nths' r (length xs) xs
ys = nths' 0 l ys @ nths' l r ys @ nths' r (length ys) ys
mset xs = mset ys
goal (1 subgoal):
1. mset (nths' 0 l xs @ nths' l r xs @ nths' r (length xs) xs) = mset (nths' 0 l ys @ nths' l r ys @ nths' r (length ys) ys)
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
mset (nths' 0 l xs @ nths' l r xs @ nths' r (length xs) xs) = mset (nths' 0 l ys @ nths' l r ys @ nths' r (length ys) ys)
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
moreover
[PROOF STATE]
proof (state)
this:
mset (nths' 0 l xs @ nths' l r xs @ nths' r (length xs) xs) = mset (nths' 0 l ys @ nths' l r ys @ nths' r (length ys) ys)
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
from left l_r length_eq
[PROOF STATE]
proof (chain)
picking this:
\<forall>i<l. xs ! i = ys ! i
l \<le> r \<and> r \<le> length xs
length xs = length ys
[PROOF STEP]
have "nths' 0 l xs = nths' 0 l ys"
[PROOF STATE]
proof (prove)
using this:
\<forall>i<l. xs ! i = ys ! i
l \<le> r \<and> r \<le> length xs
length xs = length ys
goal (1 subgoal):
1. nths' 0 l xs = nths' 0 l ys
[PROOF STEP]
by (auto simp add: length_nths' nth_nths' intro!: nth_equalityI)
[PROOF STATE]
proof (state)
this:
nths' 0 l xs = nths' 0 l ys
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
moreover
[PROOF STATE]
proof (state)
this:
nths' 0 l xs = nths' 0 l ys
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
from right l_r length_eq
[PROOF STATE]
proof (chain)
picking this:
\<forall>i\<ge>r. xs ! i = ys ! i
l \<le> r \<and> r \<le> length xs
length xs = length ys
[PROOF STEP]
have "nths' r (List.length xs) xs = nths' r (List.length ys) ys"
[PROOF STATE]
proof (prove)
using this:
\<forall>i\<ge>r. xs ! i = ys ! i
l \<le> r \<and> r \<le> length xs
length xs = length ys
goal (1 subgoal):
1. nths' r (length xs) xs = nths' r (length ys) ys
[PROOF STEP]
by (auto simp add: length_nths' nth_nths' intro!: nth_equalityI)
[PROOF STATE]
proof (state)
this:
nths' r (length xs) xs = nths' r (length ys) ys
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
ultimately
[PROOF STATE]
proof (chain)
picking this:
mset (nths' 0 l xs @ nths' l r xs @ nths' r (length xs) xs) = mset (nths' 0 l ys @ nths' l r ys @ nths' r (length ys) ys)
nths' 0 l xs = nths' 0 l ys
nths' r (length xs) xs = nths' r (length ys) ys
[PROOF STEP]
show ?thesis
[PROOF STATE]
proof (prove)
using this:
mset (nths' 0 l xs @ nths' l r xs @ nths' r (length xs) xs) = mset (nths' 0 l ys @ nths' l r ys @ nths' r (length ys) ys)
nths' 0 l xs = nths' 0 l ys
nths' r (length xs) xs = nths' r (length ys) ys
goal (1 subgoal):
1. mset (nths' l r xs) = mset (nths' l r ys)
[PROOF STEP]
by (simp add: mset_append)
[PROOF STATE]
proof (state)
this:
mset (nths' l r xs) = mset (nths' l r ys)
goal:
No subgoals!
[PROOF STEP]
qed |
Require Import Coq.Lists.List.
Require Export SystemFR.Judgments.
Require Export SystemFR.AnnotatedTactics.
Require Export SystemFR.ErasedFix.
Opaque reducible_values.
Lemma annotated_reducible_fix_strong_induction:
forall Θ Γ ts T n y p,
~(n ∈ fv_context Γ) ->
~(y ∈ fv_context Γ) ->
~(p ∈ fv_context Γ) ->
~(n ∈ fv T) ->
~(n ∈ fv ts) ->
~(y ∈ fv T) ->
~(y ∈ fv ts) ->
~(p ∈ fv T) ->
~(p ∈ fv ts) ->
~(n ∈ Θ) ->
~(y ∈ Θ) ->
~(p ∈ Θ) ->
NoDup (n :: y :: p :: nil) ->
wf (erase_term ts) 1 ->
wf T 1 ->
subset (fv T) (support Γ) ->
subset (fv ts) (support Γ) ->
is_annotated_type T ->
is_annotated_term ts ->
cbv_value (erase_term ts) ->
[[ Θ;
(p, T_equiv (fvar y term_var) (tfix T ts)) ::
(y, T_forall (T_refine T_nat (binary_primitive Lt (lvar 0 term_var) (fvar n term_var))) T) ::
(n, T_nat) ::
Γ ⊨
open 0 (open 1 ts (fvar n term_var)) (fvar y term_var) :
open 0 T (fvar n term_var) ]]
->
[[ Θ; Γ ⊨ tfix T ts : T_forall T_nat T ]].
Proof.
intros; apply open_reducible_fix_strong_induction with n y p;
repeat step || erase_open ||
(rewrite (open_none (erase_term ts)) in * by auto) ||
(rewrite erase_type_shift in *);
side_conditions.
Qed.
|
{-# LANGUAGE BangPatterns, LambdaCase #-}
module Main where
import Help
import Input
import Fractals
import Colors
import Data.Complex
import qualified Graphics.Image as I
import qualified Graphics.Image.Interface as I
import System.IO
import Data.Word
import System.Environment
import System.Directory
import Data.Time
-- Entry point for program
main :: IO ()
main = do
args <- getArgs
if not (length args == 0) &&
( head args == "h"
|| head args == "-h"
|| head args == "help"
|| head args == "-help"
|| head args == "?"
|| head args == "-?"
)
then do
putStrLn $ help args
hFlush stdout
else do
let options = processArgs args
putStrLn $ pPrintOptions options
hFlush stdout
fractal args options
fractal :: [String] -> Options -> IO ()
fractal args options@(Options fractalType (numRows, numColumns) (centerReal :+ centerImag)
range iterations power aaIn normalization color animation
cValue setColor framesIn startingFrame)
= do
currentDir <- getCurrentDirectory
{- Path is generated by finding the current date/time, replacing colons (an invalid character in
Windows paths) with an alternate Unicode colon, and removing the last 12 digits (which contain
the fractional part of the seconds and the "UTC" code) -}
path <- fmap
( ((currentDir ++ "\\Generated Fractals\\") ++)
. reverse . drop 12 . reverse
. map (\case ':' -> '\xA789'; x -> x)
. show
)
getCurrentTime
createDirectoryIfMissing True path
setCurrentDirectory path
writeFile "data.txt" $ (pPrintOptions options) ++ '\n' : "Arguments: " ++ (unwords args)
putStr $ (show $ startingFrame - 1) ++ '/' : (show $ floor frames)
hFlush stdout
mapM_
(\frame -> do
I.writeImageExact (I.PNG) []
(path ++ '\\' : (take ((countDigits $ floor frames) - (countDigits $ frame)) $ repeat '0')
++ show (frame) ++ ".png") $
I.toManifest $ I.toWord8I $ I.makeImageR I.RPS
(numRows, numColumns)
(\point -> colorFunc $ fractalFunction frame point)
putStr $ '\r' : (show $ frame + 1) ++ '/' : (show $ floor frames)
hFlush stdout
)
[startingFrame - 1 .. (truncate frames) - 1]
putStrLn ""
where
frames = case animation of
NoAnimation -> 1
otherwise -> fromIntegral framesIn
colorFunc =
case color of
Greyscale -> colorGrey setColor
Hue -> colorHue setColor
Gradient isCircular colors -> colorGrad setColor isCircular colors
. fmap
(case normalization of
Linear -> normLinear iterations
Sigmoid center power -> normSigmoid center power
Periodic period -> normPeriodic period
Sine period -> normSine period
)
aa = case aaIn of
AAEnabled -> True
AADisabled -> False
animVals = map
(case animation of
Zoom final _ -> ((exp $ (log (final / range)) / (frames - 1)) **)
Grid rIni rFnl _ _ rNum _ ->
interpolate rIni rFnl . (/ (fromIntegral rNum - 1)) . fromIntegral . (`mod` rNum) . floor
otherwise ->
case animation of
NoAnimation -> \x -> 1
Power final -> interpolate power final
Iterations final -> interpolate (fromIntegral iterations) (fromIntegral final)
Theta final _ -> interpolate (phase cValue) (final * pi / 180)
LinearC final -> interpolate (realPart cValue) (realPart final)
. if frames /= 1 then (/ (frames - 1)) else id
)
[fromIntegral startingFrame - 1 .. frames - 1]
altAnimVals = map
(case animation of
Grid _ _ iIni iFnl rNum iNum ->
interpolate iIni iFnl . (/ (fromIntegral iNum - 1)) . fromIntegral . (`div` rNum) . floor
otherwise ->
case animation of
Zoom _ (Just finalIter) -> interpolate (fromIntegral iterations) (fromIntegral finalIter)
Zoom _ Nothing -> \x -> fromIntegral iterations
Theta _ (Just final) -> interpolate (magnitude cValue) final
Theta _ Nothing -> \x -> magnitude cValue
LinearC final -> interpolate (imagPart cValue) (imagPart final)
. if frames /= 1 then (/ (frames - 1)) else id
)
[fromIntegral startingFrame - 1 .. frames - 1]
fractalFunction :: Int -> (Int, Int) -> Maybe Double
fractalFunction frame (r, c) = case (fractalType, animation) of
-- Mandelbrot animation functions
(Mandelbrot, NoAnimation) ->
pMandelbrot aa pixelSize iterations power $ pairToComplex (r, c)
(Mandelbrot, Power _) ->
pMandelbrot aa pixelSize iterations value $ pairToComplex (r, c)
(Mandelbrot, Zoom _ _) ->
pMandelbrot aa (pixelSize * value) (round $ altValue) power $ pairToComplexZ (r, c) value
(Mandelbrot, Iterations _) ->
pMandelbrot aa pixelSize (round value) power $ pairToComplex (r, c)
(Mandelbrot, Theta _ _) ->
error "Theta animations can only be generated for Julia fractals"
(Mandelbrot, LinearC _) ->
error "Linear C-Value animations can only be generated for Julia fractals"
(Mandelbrot, Grid _ _ _ _ _ _) ->
error "Grided c-values can only be generated for Julia fractals"
-- Julia animation functions
(Julia, NoAnimation) ->
pJulia aa pixelSize iterations power cValue $ pairToComplex (r, c)
(Julia, Power _) ->
pJulia aa pixelSize iterations value cValue $ pairToComplex (r, c)
(Julia, Zoom _ _) ->
pJulia aa (pixelSize * value) (round $ altValue) power cValue $ pairToComplexZ (r, c) value
(Julia, Iterations _) ->
pJulia aa pixelSize (round value) power cValue $ pairToComplex (r, c)
(Julia, Theta _ _) ->
pJulia aa pixelSize iterations power (mkPolar altValue value) $ pairToComplex (r, c)
(Julia, LinearC _) ->
pJulia aa pixelSize iterations power (value :+ altValue) $ pairToComplex (r, c)
(Julia, Grid _ _ _ _ _ _) ->
pJulia aa pixelSize iterations power (value :+ altValue) $ pairToComplex (r, c)
where
-- The value being animated
value = animVals !! frame
altValue = altAnimVals !! frame
-- Other values
pixelSize = (2 * range) / (fromIntegral $ numColumns - 1)
halfV = 0.5 * fromIntegral numRows
halfH = 0.5 * fromIntegral numColumns
-- Function to get a complex point from a pixel coordinate pair
pairToComplex (r, c) =
(centerReal - range + fromIntegral c * pixelSize)
:+ (centerImag + (pixelSize * (fromIntegral (numRows - 1) / 2)) - fromIntegral r * pixelSize)
-- Same as above but for zoom animations
pairToComplexZ (r, c) zoomFactor =
((fromIntegral c - halfH) * pixelSize * zoomFactor + centerReal)
:+ ((fromIntegral r - halfV) * pixelSize * zoomFactor - centerImag)
-- Helper function for interpolating from the start to the end of an animation's value range
interpolate :: RealFloat a => a -> a -> a -> a
interpolate i f = (i +) . (*) (f - i)
-- Helper funtion to count the number of digits in an integer when expressed in base 10
countDigits :: Integral a => a -> a
countDigits = (+ 1) . floor . logBase 10 . fromIntegral
|
//
// FILE NAME: $HeadURL: svn+ssh://svn.cm.aol.com/advertising/adlearn/gen1/trunk/lib/cpp/DataProxy/DataProxyClient.hpp $
//
// REVISION: $Revision: 297940 $
//
// COPYRIGHT: (c) 2006 Advertising.com All Rights Reserved.
//
// LAST UPDATED: $Date: 2014-03-11 20:56:14 -0400 (Tue, 11 Mar 2014) $
// UPDATED BY: $Author: sstrick $
#ifndef _DATA_PROXY_CLIENT_HPP_
#define _DATA_PROXY_CLIENT_HPP_
#include "MVCommon.hpp"
#include "MVException.hpp"
#include "detail/DPLVisibility.hpp"
#include "detail/DatabaseConnectionManager.hpp"
#include "detail/NodeFactory.hpp"
#include <xercesc/dom/DOM.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/noncopyable.hpp>
#include <boost/thread/thread.hpp>
#include <map>
#include <vector>
MV_MAKEEXCEPTIONCLASS( DataProxyClientException, MVException );
MV_MAKEEXCEPTIONCLASS( BadStreamException, DataProxyClientException );
MV_MAKEEXCEPTIONCLASS( PartialCommitException, DataProxyClientException );
class ParameterTranslator;
class TransformerManager;
class Database;
class AbstractNode;
class DLL_DPL_PUBLIC DataProxyClient : public boost::noncopyable
{
public:
DataProxyClient( bool i_DoNotInitializeXerces = false );
virtual ~DataProxyClient();
virtual void Initialize( const std::string& i_rConfigFileSpec );
virtual void Ping( const std::string& i_rName, int i_Mode ) const;
virtual void Load( const std::string& i_rName, const std::map<std::string,std::string>& i_rParameters, std::ostream& o_rData ) const;
virtual void Store( const std::string& i_rName, const std::map<std::string,std::string>& i_rParameters, std::istream& i_rData ) const;
virtual void Delete( const std::string& i_rName, const std::map<std::string,std::string>& i_rParameters ) const;
virtual bool InsideTransaction();
virtual void BeginTransaction( bool i_AbortCurrent = false );
virtual void Commit();
virtual void Rollback();
#ifdef DPL_TEST
protected:
virtual void Initialize( const std::string& i_rConfigFileSpec,
INodeFactory& i_rNodeFactory );
virtual void Initialize( const std::string& i_rConfigFileSpec,
INodeFactory& i_rNodeFactory,
DatabaseConnectionManager& i_rDatabaseConnectionManager );
#endif
private:
friend class RequestForwarder;
void PingImpl( const std::string& i_rName, int i_Mode ) const;
void LoadImpl( const std::string& i_rName, const std::map<std::string,std::string>& i_rParameters, std::ostream& o_rData ) const;
void StoreImpl( const std::string& i_rName, const std::map<std::string,std::string>& i_rParameters, std::istream& i_rData ) const;
void DeleteImpl( const std::string& i_rName, const std::map<std::string,std::string>& i_rParameters ) const;
typedef std::map< std::string, boost::shared_ptr< AbstractNode > > NodesMap;
void PrivateRollback( bool i_ObtainLock );
void InitializeImplementation( const std::string& i_rConfigFileSpec, INodeFactory& i_rNodeFactory, DatabaseConnectionManager& i_rDatabaseConnectionManager );
std::string ExtractName( xercesc::DOMNode* i_pNode ) const;
void CheckForCycles( const NodesMap::const_iterator& i_rIter, int i_WhichPath, const std::vector< std::string >& i_rNamePath ) const;
void HandleResult( const std::string& i_rName, const NodesMap::const_iterator& i_rNodeIter, bool i_bSuccess, const std::string i_Operation ) const;
bool m_Initialized;
NodesMap m_Nodes;
bool m_DoNotInitializeXerces;
bool m_InsideTransaction;
std::string m_ConfigFileMD5;
DatabaseConnectionManager m_DatabaseConnectionManager;
NodeFactory m_NodeFactory;
mutable std::vector< std::string > m_PendingCommitNodes;
mutable std::vector< std::string > m_PendingRollbackNodes;
mutable std::vector< std::string > m_AutoCommittedNodes;
mutable boost::shared_mutex m_ConfigMutex;
};
#endif //_DATA_PROXY_CLIENT_HPP_
|
The Visual argument is one of the most popular assignments among students' documents. If you are stuck with writing or missing ideas, scroll down and find inspiration in the best samples. Visual argument is quite a rare and popular topic for writing an essay, but it certainly is in our database.
500 essays on "Visual argument"
What is an Visual argument?
Visual argument is a type of students written assignments that requires several steps to be completed.
How can an Visual argument be written faster?
Typical Visual argument would take you 3 to 6 hours to complete. That includes 2 hours of thorough research, 30 minutes for creating an outline, 2 hours of writing, and 1,5 hours for editing, proofreading and proper formatting.
Ideas. By downloading several Visual argument papers you’ll get a multiple choice of ideas to elaborate in own essay. Don't reinvent the wheel. Go through several essays uploaded by other students and grab the best ideas.
Students, who are voluntarily sharing their works with others, uploaded each Visual argument samples from our database. We encourage you to use them as essay samples, but please, do not submit them as own. Our contributors most surely have already submitted them and now they are open for view to thousands of users.
Let us find you essays on topic Visual argument for FREE! |
The Canadian Chamber of Commerce in Korea (CanCham Korea) hosted its annual Maple Gala on the evening of March 21, 2014 at the Banyan Tree Club and Spa in Seoul.
More than 200 guests from Canada and Korea attended the black tie affair. They included Canadian Ambassador to Seoul David Chatterson, Chairwoman Genny S. Kim of Canadian Chamber of Commerce in Korea, Sen. Yonah Martin from British Columbia, and former Korean Prime Minister Chung Un-Chan .
“We sincerely thank you for many attendances including general manager of Air Canada Young Lee, President Amy Jackson of American Chamber of Commerce in Korea, president Kim Hang-Kyung of Korea-Canada Society, etc.” said Genny Kim, canCham Chairwoman.
She said as well: Additionally another special thanks to sponsors such as Air Canada, Bombardier, Jouviance, LG Electronics, Shin&Kim, Natural Factors, etc.
Upon recently-concluded FTA between Korea and Canada from her standpoint as CanCham chairwoman, she mentioned that the Korea-Canada Free Trade Agreement would bring bilateral dynamic growth for the business communities of the two countries.
Starting his welcoming remarks with comments regarding the 50th anniversary of diplomatic ties between Korea and Canada last year which were filled with many commemorative events, Amb. Chatterson said: “Bilateral relations have blossomed over the last 50 years, grounded in our strong political and economic partnership and cooperation."
"With more than 50 years of diplomatic relations between Canada and South Korea, a free trade agreement is the natural next step in a dynamic relationship between two nations committed to economic growth and development through free trade,” the Canadian envoy said.
"I am very pleased to see more increasing partnerships with Canadian Chamber of Commerce in Korea like tonight's event, hoping continuing friendship between the two countries and for the CanCham members to enjoy good food and wine during the function all the time," he added.
After Amb. Chatterson’s welcoming remarks, special screening "The Feast of Aurora" by Astro-photographer O-Chul Kwon provided participanting guests with fantastic aurora scenes of Canada.
By her toast, Sen. Yonah Martin from British Columbia, Canada who was on hand, also congratulated Korea-Canada FTA conclusion as a milestone to pave the way for the prosperity between the two countries.
Canada-born new age pianist Steve Barakatt enthralled guests with his sweetish special performance including Rainbow Bridge Story.
Last but not least, lucky draw and cocktail hour by SKYY became pleasant times to enhance amusement and to harden friendship between chamber members until the Maple Gala was finalized by late night.
The Canadian Chamber is a non-profit organization dedicated to nurturing a strong Canadian community in Korea and to promote Canadian business interests.
Founded in 1995, the Chamber opens its membership to Canadians and Koreans alike.
It organizes a number of fun and informative networking and social events each year, while also advocating on behalf of the Canadian business community and in close collaboration with the Canadian Embassy on a range of issues. |
||| Algebra.Magma: A representation of magmas.
|||
||| A magma is more-or-less the simplest non-trivial example of a algebraic
||| structure. It is simply a set together with a lawless binary operation over
||| it. More formally, it is *any* pair
||| \\(\mathscr{M} = (M:\mathscr{V}, \* : M^2 \to M)\\). It doesn't matter what
||| the function \\(\*\\) is. It can have any properties whatsoever; the only
||| reuirement is that it be a function of the specified type. That is, it must
||| be a total co-injective relation with domain \\(M^2\\) and codomain \\(M\\),
||| where by \"co-injective\" I mean that for every input, there is no more than
||| one output. Together with totality, which states that every input has at
||| least one output, this means that a function is a relation where every input
||| has exactly one output.
|||
||| Magmas aren't especially interesting in and of themselves. Because there are
||| no magma axioms, just a type, there isn't much that can be said about magmas
||| in general. However, they give a useful way to talk about other algebraic
||| structures. A group, for example, is a magma satisfying certain laws. In
||| other words, talking in terms of magmas and related lawless algebraic
||| structures just gives us a more convenient way to talk about the signature
||| of the more interesting ones. (Of course, all of this leads naturally to
||| groups, semigroups, monoids, etc. being extensions of the `Magma`
||| record.)
|||
||| That's not to say there's nothing interesting about magmas. There are
||| interesting combinatorial questions arising from freely generated magmas.
||| That is, consider a magma generated by three elements, \\(a, b, c\\). By
||| \"freely generated\", we mean that there are no equalities except those
||| directly entailed by the axioms; since there aren't any axioms, there aren't
||| any (non-reflexive) equalities! E.g., in a freely generated magma, we know
||| that \\((x\*y)\*z \neq x\*(y\*z)\\) for every \\(x, y, z\\). If they were
||| equal, it would still be a magma, but not a freely generated one. Now, for
||| the free magma with 3 generating elements, how many elements are there with
||| exactly \\(k\\) applications of the operation \\(\*\\)? Or more generally,
||| what if there are \\(n\\) generating elements? If you like combinatorics,
||| you might enjoy working these and related questions out\-\-\-and, as usual,
||| there's a connection to the Catalan numbers.
module Algebra.Magma
%default total
infix 7 |*|
||| The record representing magmas. Note that there are no proofs to be
||| automatically filled in; magmas don't have any extra properties beyond their
||| signature.
public export
record Magma where
constructor MkMagma
Set' : Type
op' : Set' -> Set' -> Set'
public export
Set : {magma : Magma} -> Type
Set {magma} = Set' magma
public export
(|*|) : {magma : Magma} -> Set {magma} -> Set {magma} -> Set {magma}
(|*|) {magma} = op' magma
{-
public export
AddMagma : (Num ty) => Magma
AddMagma {ty} = MkMagma ty (+)
public export
MultMagma : (Num ty) => Magma
MultMagma {ty} = MkMagma ty (*)
-- -}
-- data Magma : (Set : Type) -> (Set -> Set -> Set) -> Type where
-- Magmoid :
-- {-
|
// Copyright (c) 2001-2008 Hartmut Kaiser
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_SPIRIT_LEX_STATE_SWITCHER_SEP_23_2007_0714PM)
#define BOOST_SPIRIT_LEX_STATE_SWITCHER_SEP_23_2007_0714PM
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
#pragma once // MS compatible compilers support #pragma once
#endif
#include <boost/spirit/home/qi/domain.hpp>
#include <boost/spirit/home/lex/set_state.hpp>
#include <boost/spirit/home/support/attribute_of.hpp>
#include <boost/spirit/home/support/detail/to_narrow.hpp>
namespace boost { namespace spirit { namespace qi
{
///////////////////////////////////////////////////////////////////////////
// parser, which switches the state of the underlying lexer component
// this parser gets used for the set_state(...) construct.
///////////////////////////////////////////////////////////////////////////
namespace detail
{
template <typename Iterator>
inline std::size_t
set_lexer_state(Iterator& it, std::size_t state)
{
return it.set_state(state);
}
template <typename Iterator, typename Char>
inline std::size_t
set_lexer_state(Iterator& it, Char const* statename)
{
std::size_t state = it.map_state(statename);
// If the following assertion fires you probably used the
// set_state(...) or in_state(...)[...] lexer state switcher with
// a lexer state name unknown to the lexer (no token definitions
// have been associated with this lexer state).
BOOST_ASSERT(static_cast<std::size_t>(~0) != state);
return it.set_state(state);
}
}
///////////////////////////////////////////////////////////////////////////
struct state_switcher
{
template <typename Component, typename Context, typename Iterator>
struct attribute
{
typedef unused_type type;
};
template <
typename Component
, typename Iterator, typename Context
, typename Skipper, typename Attribute>
static bool parse(
Component const& component
, Iterator& first, Iterator const& last
, Context& /*context*/, Skipper const& skipper
, Attribute& /*attr*/)
{
qi::skip(first, last, skipper); // always do a pre-skip
// just switch the state and return success
detail::set_lexer_state(first, spirit::left(component).name);
return true;
}
template <typename Component, typename Context>
static std::string what(Component const& component, Context const& ctx)
{
std::string result("set_state(\"");
result += spirit::detail::to_narrow_string(
spirit::left(component).name);
result += "\")";
return result;
}
};
///////////////////////////////////////////////////////////////////////////
// Parser, which switches the state of the underlying lexer component
// for the execution of the embedded sub-parser, switching the state back
// afterwards. This parser gets used for the in_state(...)[p] construct.
///////////////////////////////////////////////////////////////////////////
namespace detail
{
template <typename Iterator>
struct reset_state_on_exit
{
template <typename State>
reset_state_on_exit(Iterator& it_, State state_)
: it(it_), state(detail::set_lexer_state(it_, state_))
{
}
~reset_state_on_exit()
{
// reset the state of the underlying lexer instance
it.set_state(state);
}
Iterator& it;
std::size_t state;
};
}
///////////////////////////////////////////////////////////////////////////
struct state_switcher_context
{
template <typename Component, typename Context, typename Iterator>
struct attribute
{
typedef typename
result_of::subject<Component>::type
subject_type;
typedef typename
traits::attribute_of<
qi::domain, subject_type, Context, Iterator>::type
type;
};
template <
typename Component
, typename Iterator, typename Context
, typename Skipper, typename Attribute>
static bool parse(
Component const& component
, Iterator& first, Iterator const& last
, Context& context, Skipper const& skipper
, Attribute& attr)
{
qi::skip(first, last, skipper); // always do a pre-skip
typedef typename
spirit::result_of::subject<Component>::type::director
director;
// the state has to be reset at exit in any case
detail::reset_state_on_exit<Iterator> guard(
first, proto::arg_c<0>(argument1(component)).name);
return director::parse(spirit::subject(component), first,
last, context, skipper, attr);
}
template <typename Component, typename Context>
static std::string what(Component const& component, Context const& ctx)
{
std::string result("in_state(\"");
result += spirit::detail::to_narrow_string(
proto::arg_c<0>(argument1(component)).name);
result += "\")[";
typedef typename
spirit::result_of::subject<Component>::type::director
director;
result += director::what(subject(component), ctx);
result += "]";
return result;
}
};
}}}
#endif
|
[STATEMENT]
lemma nth_append_take_drop_is_nth_conv:
assumes "i \<le> length xs" and "j \<le> length xs" and "i \<noteq> j"
shows "(take j xs @ y # drop (Suc j) xs)!i = xs!i"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (take j xs @ y # drop (Suc j) xs) ! i = xs ! i
[PROOF STEP]
proof -
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. (take j xs @ y # drop (Suc j) xs) ! i = xs ! i
[PROOF STEP]
from assms
[PROOF STATE]
proof (chain)
picking this:
i \<le> length xs
j \<le> length xs
i \<noteq> j
[PROOF STEP]
have "i < j \<or> i > j"
[PROOF STATE]
proof (prove)
using this:
i \<le> length xs
j \<le> length xs
i \<noteq> j
goal (1 subgoal):
1. i < j \<or> j < i
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
i < j \<or> j < i
goal (1 subgoal):
1. (take j xs @ y # drop (Suc j) xs) ! i = xs ! i
[PROOF STEP]
thus ?thesis
[PROOF STATE]
proof (prove)
using this:
i < j \<or> j < i
goal (1 subgoal):
1. (take j xs @ y # drop (Suc j) xs) ! i = xs ! i
[PROOF STEP]
using assms
[PROOF STATE]
proof (prove)
using this:
i < j \<or> j < i
i \<le> length xs
j \<le> length xs
i \<noteq> j
goal (1 subgoal):
1. (take j xs @ y # drop (Suc j) xs) ! i = xs ! i
[PROOF STEP]
by (auto simp: nth_append_take_is_nth_conv nth_append_drop_is_nth_conv)
[PROOF STATE]
proof (state)
this:
(take j xs @ y # drop (Suc j) xs) ! i = xs ! i
goal:
No subgoals!
[PROOF STEP]
qed |
import data.real.basic
example (x y : ℝ) (H1 : x = 2) (H2 : y < 5) : x ^ 2 + y < 10 :=
begin
sorry
end
|
[GOAL]
w : EssSurj uliftFunctor.{u, v}
a : Type (max u v)
⊢ Small.{v, max u v} a
[PROOFSTEP]
obtain ⟨a', ⟨m⟩⟩ := w.mem_essImage a
[GOAL]
case intro.intro
w : EssSurj uliftFunctor.{u, v}
a : Type (max u v)
a' : Type v
m : uliftFunctor.{u, v}.obj a' ≅ a
⊢ Small.{v, max u v} a
[PROOFSTEP]
exact ⟨a', ⟨(Iso.toEquiv m).symm.trans Equiv.ulift⟩⟩
|
# REML estimation of variance components
# there are two basic packages for mixed models
# nlme, with the lme function
# lme4, with the lmer function
# the syntax to specify random effects differs slightly.
# the following illustrates lmer, which is slightly more flexible
# and a lot faster
wool <- read.table('wool.txt',header=T)
# after reshaping wool.txt into row column format
library(lme4)
# there is an outlier, remove that before continuing
# (could also use subset=() in the lmer call
wool2 <- wool[wool$clean < 62,]
wool.vc <- lmer(clean~(1|bale),data=wool2)
wool.vc
# random effects in lmer are specified as the quantity that
# varies (here the intercept) and the grouping variable
# here the bale.
# for simple (e.g. 1-way random effects) uses, does not need
# to be a factor. Does't hurt to make it so.
# because bale is numeric, it isn't automatically convert to
# a factor in read.table()
# lmer only allows REML (or full ML) estimation.
# bale needs to be a factor to use Nested effects (wool2.r)
wool2$bale.f <- as.factor(wool2$bale)
wool.vc <- lmer(clean~(1|bale.f),data=wool2)
wool.vc
|
import torch
from skimage.morphology import disk
@torch.no_grad()
def binary_dilation(im: torch.Tensor, kernel: torch.Tensor):
assert len(im.shape) == 4
assert len(kernel.shape) == 2
kernel = kernel.unsqueeze(0).unsqueeze(0)
padding = kernel.shape[-1]//2
assert kernel.shape[-1] % 2 != 0
if torch.cuda.is_available():
im, kernel = im.half(), kernel.half()
else:
im, kernel = im.float(), kernel.float()
im = torch.nn.functional.conv2d(
im, kernel, groups=im.shape[1], padding=padding)
im = im.clamp(0, 1).bool()
return im
def test_dilation():
from skimage.morphology import binary_dilation as skimage_binary_dilation
from kornia.morphology import dilation as kornia_dilation
import numpy as np
import time
im = np.random.randint(0, 1, size=(512, 512)).astype(np.bool)
sizes = [3, 9, 21, 91]
for s in sizes:
kernel_np = disk(s).astype(np.bool)
kernel_torch = torch.from_numpy(kernel_np)
im_torch = torch.from_numpy(im)[None, None]
s = time.time()
result_skimage = skimage_binary_dilation(im, kernel_np)
print("Skimage", time.time() - s)
s = time.time()
result_kornia = kornia_dilation(im_torch.float(), kernel_torch.float()).bool().cpu().numpy().squeeze()
print("Kornia", time.time() - s)
s = time.time()
result_ours = binary_dilation(im_torch, kernel_torch).cpu().numpy().squeeze()
print("Ours", time.time() - s)
np.testing.assert_almost_equal(result_skimage, result_kornia)
np.testing.assert_almost_equal(result_skimage, result_ours)
if __name__ == "__main__":
test_dilation()
|
lemma lift_trans': assumes "f \<in> L F (\<lambda>x. t x (g x))" assumes "g \<in> L F (h)" assumes "\<And>g h. g \<in> L F (h) \<Longrightarrow> (\<lambda>x. t x (g x)) \<in> L F (\<lambda>x. t x (h x))" shows "f \<in> L F (\<lambda>x. t x (h x))" |
import IMO2020.N5.additive_map extra.number_theory.ord_compl_zmod
/-!
# `p`-regular maps
Fix a commutative additive monoid `M` and a prime `p`.
Given `(c, χ) : M × (additive (zmod p)ˣ →+ M)`, the **regular map** `regular_map M p (c, χ)` is the
additive map given by `p^k t ↦ k • c + χ(t : (zmod p)ˣ)` for any `k ≥ 1` and `t` coprime with `p`.
We will show that map `regular_map M p` is additive and injective with `regular_map M p 0 = 0`.
Then, we construct `regular_hom M p` as a bundled homomorphism version of `regular_map M p`.
We also define the predicate `is_regular_map M p` and prove an equivalent condition:
an additive map is regular iff `f(t) = f(t % p)` for any `t` coprime with `p`.
Lastly, we prove that `is_regular_map M p f` and `is_regular_map M q f` for `p ≠ q` yields `f = 0`.
-/
namespace IMOSL
namespace IMO2020N5
open extra additive
/-- `p`-regular maps -/
def regular_map (M : Type*) [add_comm_monoid M] (p : ℕ) [fact p.prime]
(pair : M × (additive (zmod p)ˣ →+ M)) : additive_map M :=
{ to_fun := λ n, ite (n = 0) 0
(padic_val_nat p n • pair.1 + pair.2 (of_mul $ zmod.ord_compl p n)),
map_zero' := if_pos rfl,
map_one' := by rw [if_neg (nat.succ_ne_zero 0), padic_val_nat.one, zero_nsmul,
zero_add, zmod.ord_compl.map_one, of_mul_one, add_monoid_hom.map_zero],
map_mul' := λ x y hx hy, by rw [if_neg (mul_ne_zero hx hy), if_neg hx, if_neg hy,
add_add_add_comm, ← add_smul, ← @padic_val_nat.mul p x y _inst_2 hx hy,
← add_monoid_hom.map_add, ← of_mul_mul, zmod.ord_compl.map_mul hx hy] }
namespace regular_map
variables {M : Type*} [add_comm_monoid M] {p : ℕ} [fact p.prime]
(pair pair' : M × (additive (zmod p)ˣ →+ M))
theorem map_def (n : ℕ) : regular_map M p pair n =
ite (n = 0) 0 (padic_val_nat p n • pair.1 + pair.2 (of_mul (zmod.ord_compl p n))) := rfl
@[simp] theorem map_zero : regular_map M p pair 0 = 0 := rfl
@[simp] theorem map_ne_zero {n : ℕ} (hn : n ≠ 0) :
regular_map M p pair n = padic_val_nat p n • pair.1 + pair.2 (of_mul (zmod.ord_compl p n)) :=
if_neg hn
@[simp] theorem map_one : regular_map M p pair 1 = 0 :=
additive_map.map_one (regular_map M p pair)
@[simp] theorem map_mul {m n : ℕ} (hm : m ≠ 0) (hn : n ≠ 0) :
regular_map M p pair (m * n) = regular_map M p pair m + regular_map M p pair n :=
additive_map.map_mul (regular_map M p pair) hm hn
@[simp] theorem map_pow (m k : ℕ) : regular_map M p pair (m ^ k) = k • regular_map M p pair m :=
additive_map.map_pow (regular_map M p pair) m k
theorem map_p : regular_map M p pair p = pair.1 :=
by rw [map_ne_zero pair (fact.out p.prime).ne_zero, padic_val_nat_self, one_nsmul,
zmod.ord_compl.map_self, of_mul_one, add_monoid_hom.map_zero, add_zero]
theorem map_coprime' {t : ℕ} (h : t.coprime p) :
regular_map M p pair t = pair.2 (of_mul $ zmod.ord_compl p t) :=
begin
have h0 : ¬p ∣ t := by rwa [← nat.prime.coprime_iff_not_dvd (fact.out p.prime), nat.coprime_comm],
rw [map_ne_zero, padic_val_nat.eq_zero_of_not_dvd h0, zero_nsmul, zero_add],
rintros rfl; exact h0 (dvd_zero p)
end
theorem map_coprime {t : ℕ} (h : t.coprime p) :
regular_map M p pair t = pair.2 (of_mul $ zmod.unit_of_coprime t h) :=
by rw [map_coprime' pair h, zmod.ord_compl.map_coprime h]
theorem map_coprime_mod_p_eq {t : ℕ} (h : t.coprime p) :
regular_map M p pair t = regular_map M p pair (t % p) :=
begin
rw [map_coprime' pair h, zmod.ord_compl.map_coprime_mod_p h, map_coprime' pair],
rwa [nat.coprime, ← nat.gcd_rec, nat.gcd_comm]
end
theorem map_zmod_unit_val (x : (zmod p)ˣ) : regular_map M p pair (x : zmod p).val = pair.2 x :=
by rw [map_coprime' pair (zmod.val_coe_unit_coprime x), zmod.ord_compl.map_zmod_unit_val]; refl
theorem map_pair_add : regular_map M p (pair + pair') = regular_map M p pair + regular_map M p pair' :=
begin
ext x; rcases eq_or_ne x 0 with rfl | h,
rw [additive_map.map_zero, additive_map.map_zero],
rw [map_ne_zero _ h, additive_map.add_apply, map_ne_zero _ h, map_ne_zero _ h],
rw [add_add_add_comm, ← add_monoid_hom.add_apply, ← nsmul_add, prod.fst_add, prod.snd_add]
end
theorem map_pair_zero : regular_map M p 0 = 0 :=
additive_map.ext (λ x, by rw [map_def, prod.fst_zero, nsmul_zero, zero_add,
prod.snd_zero, add_monoid_hom.zero_apply, additive_map.zero_apply, if_t_t])
theorem injective : function.injective (regular_map M p) :=
begin
rintros ⟨c, χ⟩ ⟨d, ρ⟩ h,
rw additive_map.ext_iff at h,
rw prod.mk.inj_iff; split,
replace h := h p; rwa [map_p, map_p] at h,
refine add_monoid_hom.ext (λ x, _),
replace h := h (to_mul x : zmod p).val,
rwa [map_zmod_unit_val, map_zmod_unit_val] at h
end
theorem inj : regular_map M p pair = regular_map M p pair' ↔ pair = pair' :=
⟨λ h, injective h, congr_arg _⟩
theorem fst_eq_iff : pair.1 = pair'.1 ↔ regular_map M p pair p = regular_map M p pair' p :=
by rw [map_p, map_p]
theorem fst_eq_zero_iff : pair.1 = 0 ↔ regular_map M p pair p = 0 := by rw map_p
theorem snd_eq_iff : pair.2 = pair'.2 ↔
∀ k : ℕ, k ≠ 0 → k < p → regular_map M p pair k = regular_map M p pair' k :=
begin
refine ⟨λ h k h0 h1, _, λ h, _⟩,
{ replace h1 := nat.not_dvd_of_pos_of_lt (zero_lt_iff.mpr h0) h1,
rwa [← (fact.out p.prime).coprime_iff_not_dvd, nat.coprime_comm] at h1,
rw [map_coprime pair h1, map_coprime pair' h1, h] },
{ refine add_monoid_hom.ext (λ x, _),
have h0 : (to_mul x : zmod p).val ≠ 0 :=
by rw [ne.def, zmod.val_eq_zero]; exact (to_mul x).ne_zero,
replace h := h (to_mul x : zmod p).val h0 (to_mul x : zmod p).val_lt,
rwa [map_zmod_unit_val, map_zmod_unit_val] at h }
end
theorem snd_eq_zero_iff : pair.2 = 0 ↔ ∀ k : ℕ, k ≠ 0 → k < p → regular_map M p pair k = 0 :=
by change pair.snd = (0 : M × (additive (zmod p)ˣ →+ M)).snd ↔ _;
rw [snd_eq_iff, map_pair_zero]; refl
theorem eq_iff : pair = pair' ↔
∀ k : ℕ, k ≠ 0 → k ≤ p → regular_map M p pair k = regular_map M p pair' k :=
begin
rw [prod.ext_iff, fst_eq_iff, snd_eq_iff],
refine ⟨λ h k h1 h2, _,
λ h, ⟨h p (fact.out p.prime).ne_zero (le_refl p), λ k h0 h1, h k h0 (le_of_lt h1)⟩⟩,
rw le_iff_eq_or_lt at h2; rcases h2 with h2 | h2,
rw [h2, h.1],
exact h.2 k h1 h2
end
end regular_map
open regular_map
/-- `p`-regular mapping as a homomorphism -/
def regular_hom (M : Type*) [add_comm_monoid M] (p : ℕ) [fact p.prime] :
M × (additive (zmod p)ˣ →+ M) →+ additive_map M :=
⟨regular_map M p, map_pair_zero, map_pair_add⟩
/-- `p`-regularity predicate -/
def is_regular_map (M : Type*) [add_comm_monoid M] (p : ℕ) [fact p.prime] (f : additive_map M) :=
∃ pair : M × (additive (zmod p)ˣ →+ M), f = regular_map M p pair
namespace is_regular_map
variables {M : Type*} [add_comm_monoid M] {p q : ℕ} [fact p.prime] [fact q.prime]
/-- The zero additive map is `p`-regular -/
theorem zero : is_regular_map M p 0 := ⟨0, map_pair_zero.symm⟩
/-- An equivalent condition for `p`-regularity -/
theorem iff (f : additive_map M) : is_regular_map M p f ↔ ∀ t : ℕ, t.coprime p → f t = f (t % p) :=
begin
refine ⟨λ h t h0, _, λ h, ⟨⟨f p, ⟨λ x, f (to_mul x : zmod p).val, _, λ x y, _⟩⟩, _⟩⟩,
rcases h with ⟨pair, rfl⟩; exact map_coprime_mod_p_eq pair h0,
rw [to_mul_zero, units.coe_one, zmod.val_one, additive_map.map_one],
{ have h0 := λ x : (zmod p)ˣ, zmod.val_coe_unit_coprime (to_mul x),
suffices : ∀ x : ℕ, x.coprime p → x ≠ 0,
rw [to_mul_add, units.coe_mul, zmod.val_mul, ← h _ ((h0 x).mul $ h0 y),
additive_map.map_mul _ (this _ $ h0 x) (this _ $ h0 y)],
rintros x h1 rfl,
rw [nat.coprime_comm, (fact.out p.prime).coprime_iff_not_dvd] at h1,
exact h1 (dvd_zero p) },
{ refine additive_map.ext (λ n, _),
rcases eq_or_ne n 0 with rfl | h0,
rw [additive_map.map_zero, regular_map.map_zero],
rw regular_map.map_ne_zero _ h0,
nth_rewrite 0 ← nat.ord_proj_mul_ord_compl_eq_self n p,
have hp := fact.out p.prime,
rw [f.map_mul (pow_ne_zero _ hp.ne_zero) (ne_of_gt $ p.ord_compl_pos h0),
additive_map.map_pow, add_monoid_hom.coe_mk, to_mul_of_mul,
← nat.factorization_def _ hp, zmod.ord_compl.map_ne_zero_val h0, ← h],
rw nat.coprime_comm; exact nat.coprime_ord_compl hp h0 }
end
/-- Condition for two `p`-regular maps to be equal -/
theorem ext_iff_at_le_p {f g : additive_map M}
(hf : is_regular_map M p f) (hg : is_regular_map M p g) :
f = g ↔ ∀ k : ℕ, k ≠ 0 → k ≤ p → f k = g k :=
begin
rcases hf with ⟨⟨c, χ⟩, rfl⟩,
rcases hg with ⟨⟨c', χ'⟩, rfl⟩,
rw [regular_map.inj, regular_map.eq_iff]
end
/-- Condition for a `p`-regular map to be zero -/
theorem zero_iff_at_le_p {f : additive_map M} (hf : is_regular_map M p f) :
f = 0 ↔ ∀ k : ℕ, k ≠ 0 → k ≤ p → f k = 0 :=
by rw ext_iff_at_le_p hf zero; refl
/-- (Private) small lemma for values of `p`-regular map at two `nat` congruent modulo `p` -/
private lemma map_modeq_coprime {f : additive_map M} (hf : is_regular_map M p f)
{m n : ℕ} (h : m % p = n % p) (h0 : n.coprime p) :
f m = f n :=
begin
rw iff at hf,
rw [hf n h0, ← h, ← hf],
unfold nat.coprime at h0 ⊢,
rw ← nat.modeq at h,
rw [nat.modeq.gcd_eq_of_modeq h, h0]
end
/-- Distinction between `p`-regular and `q`-regular for `p < q` -/
private lemma distinction' {f : additive_map M}
(hpf : is_regular_map M p f) (hqf : is_regular_map M q f) (h : p < q) :
f = 0 :=
begin
have hp := fact.out p.prime,
have hq := fact.out q.prime,
have hpq := (nat.coprime_primes hp hq).mpr (ne_of_lt h),
rw zero_iff_at_le_p hpf,
suffices : ∃ c : M, f p + c = 0,
{ cases this with c h0,
replace hpf : ∀ k : ℕ, f (q + k * p) = f q :=
λ k, map_modeq_coprime hpf (by rw nat.add_mul_mod_self_right) hpq.symm,
suffices : ∀ k : ℕ, k ≠ 0 → k ≤ p → f q = f k + f p,
{ intros k h1 h2,
rw [← add_zero (f k), ← h0, ← add_assoc, ← this k h1 h2,
this 1 one_ne_zero (le_of_lt hp.one_lt), additive_map.map_one, zero_add] },
intros k h1 h2,
rw [← hpf k, ← additive_map.map_mul f h1 hp.ne_zero],
apply map_modeq_coprime hqf,
rw nat.add_mod_left,
refine nat.coprime.mul _ hpq,
rw [nat.coprime_comm, hq.coprime_iff_not_dvd],
exact nat.not_dvd_of_pos_of_lt (zero_lt_iff.mpr h1) (lt_of_le_of_lt h2 h) },
obtain ⟨n, h0⟩ := nat.exists_mul_mod_eq_one_of_coprime hpq hq.one_lt,
use f n,
rw ← nat.mod_eq_of_lt hq.one_lt at h0,
rw [← additive_map.map_mul f hp.ne_zero, map_modeq_coprime hqf h0 q.coprime_one_left],
exact f.map_one,
rintros rfl,
rw [mul_zero, nat.zero_mod, nat.mod_eq_of_lt hq.one_lt] at h0,
revert h0; exact zero_ne_one
end
/-- Distinction between `p`-regular and `q`-regular for `p ≠ q` -/
theorem distinction {f : additive_map M}
(h : is_regular_map M p f) (h0 : is_regular_map M q f) (h1 : p ≠ q) :
f = 0 :=
begin
rw ne_iff_lt_or_gt at h1; cases h1 with h1 h1,
exacts [distinction' h h0 h1, distinction' h0 h h1]
end
end is_regular_map
end IMO2020N5
end IMOSL
|
import numpy as np
import pytransform3d.coordinates as pc
from nose.tools import assert_less_equal
from numpy.testing import assert_array_almost_equal
def test_cylindrical_from_cartesian_edge_cases():
q = pc.cylindrical_from_cartesian(np.zeros(3))
assert_array_almost_equal(q, np.zeros(3))
def test_cartesian_from_cylindrical_edge_cases():
q = pc.cartesian_from_cylindrical(np.zeros(3))
assert_array_almost_equal(q, np.zeros(3))
def test_convert_cartesian_cylindrical():
random_state = np.random.RandomState(0)
for i in range(1000):
rho = random_state.randn()
phi = random_state.rand() * 4 * np.pi - 2 * np.pi
z = random_state.randn()
p = np.array([rho, phi, z])
q = pc.cartesian_from_cylindrical(p)
r = pc.cylindrical_from_cartesian(q)
assert_less_equal(0, r[0])
assert_less_equal(-np.pi, r[1])
assert_less_equal(r[1], np.pi)
s = pc.cartesian_from_cylindrical(r)
assert_array_almost_equal(q, s)
def test_spherical_from_cartesian_edge_cases():
q = pc.spherical_from_cartesian(np.zeros(3))
assert_array_almost_equal(q, np.zeros(3))
def test_cartesian_from_spherical_edge_cases():
q = pc.cartesian_from_spherical(np.zeros(3))
assert_array_almost_equal(q, np.zeros(3))
def test_convert_cartesian_spherical():
random_state = np.random.RandomState(1)
for i in range(1000):
rho = random_state.randn()
theta = random_state.rand() * 4 * np.pi - 2 * np.pi
phi = random_state.rand() * 4 * np.pi - 2 * np.pi
p = np.array([rho, theta, phi])
q = pc.cartesian_from_spherical(p)
r = pc.spherical_from_cartesian(q)
assert_less_equal(0, r[0])
assert_less_equal(0, r[1])
assert_less_equal(r[1], np.pi)
assert_less_equal(-np.pi, r[2])
assert_less_equal(r[2], np.pi)
s = pc.cartesian_from_spherical(r)
assert_array_almost_equal(q, s)
def test_spherical_from_cylindrical_edge_cases():
q = pc.spherical_from_cylindrical(np.zeros(3))
assert_array_almost_equal(q, np.zeros(3))
def test_cylindrical_from_spherical_edge_cases():
q = pc.cylindrical_from_spherical(np.zeros(3))
assert_array_almost_equal(q, np.zeros(3))
def test_convert_cylindrical_spherical():
random_state = np.random.RandomState(2)
for i in range(1000):
rho = random_state.randn()
theta = random_state.rand() * 4 * np.pi - 2 * np.pi
phi = random_state.rand() * 4 * np.pi - 2 * np.pi
p = np.array([rho, theta, phi])
q = pc.cylindrical_from_spherical(p)
r = pc.spherical_from_cylindrical(q)
s = pc.cylindrical_from_spherical(r)
assert_array_almost_equal(q, s)
|
[STATEMENT]
lemma add_mset_inter_add_mset [simp]:
"add_mset a A \<inter># add_mset a B = add_mset a (A \<inter># B)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. add_mset a A \<inter># add_mset a B = add_mset a (A \<inter># B)
[PROOF STEP]
by (rule multiset_eqI) simp |
# Exercise 1
#
# Time: 5 minutes
# The following command creates a vector of 100 random numbers between 1 and 1000:
my_vector <- c(sample(1:1000, 100))
# Answer the following questions about the vector:
# 1) Extract the third through the sixth elements from the vector:
# 2) Check to see if the numbers 99, 66, and 287 exist in this vector:
# 3) How many elements are greater than 500?
|
import Lean.Elab.Command
import Lib.Logic.Classical
macro "obtain " p:term " from " d:term : tactic =>
`(tactic| match $d:term with | $p:term => ?_)
-- macro "left" : tactic =>
-- `(tactic| apply Or.inl)
-- macro "right" : tactic =>
-- `(tactic| apply Or.inr)
-- macro "refl" : tactic =>
-- `(tactic| apply rfl)
-- macro "exfalso" : tactic =>
-- `(tactic| apply False.elim)
macro "byContradiction" h: ident : tactic =>
`(tactic| apply Classical.byContradiction; intro h)
theorem swapHyp {p q : Prop} (h : p) (h' : ¬ p) : q := by
cases h' h
macro "swapHyp" h:term "as" h':ident : tactic =>
`(tactic| apply Classical.byContradiction; intro $h' <;>
first
| apply $h ; clear $h
| apply swapHyp $h <;> clear $h
)
-- open Lean Parser.Tactic Elab Command Elab.Tactic Meta
-- macro "fail" : tactic => pure $ throwError "foo"
namespace Option
@[simp]
theorem map_none {f : α → β} :
Option.map f none = none := rfl
@[simp]
theorem map_some {f : α → β} {x} :
Option.map f (some x) = some (f x) := rfl
attribute [simp] map_id
end Option
inductive EqvGen (R : α → α → Prop) : α → α → Prop :=
| rfl {x} : EqvGen R x x
| step {x y z} : R x y → EqvGen R y z → EqvGen R x z
| symm_step {x y z} : R y x → EqvGen R y z → EqvGen R x z
namespace EqvGen
variable {R : α → α → Prop}
theorem once (h : R x y) : EqvGen R x y := EqvGen.step h EqvGen.rfl
theorem once_symm (h : R y x) : EqvGen R x y := EqvGen.symm_step h EqvGen.rfl
theorem trans : EqvGen R x y → EqvGen R y z → EqvGen R x z := by
intros h₀ h₁
induction h₀ with
| rfl => exact h₁
| step hR hGen IH => exact step hR (IH h₁)
| symm_step hR hGen IH => exact symm_step hR (IH h₁)
theorem symm_step_r : EqvGen R x y → R z y → EqvGen R x z := by
intros h₀ h₁
have h₁ := once_symm h₁
apply trans <;> assumption
theorem step_r : EqvGen R x y → R y z → EqvGen R x z := by
intros h₀ h₁
have h₁ := once h₁
apply trans <;> assumption
theorem symm : EqvGen R x y → EqvGen R y x := by
intros h
induction h with
| rfl => exact rfl
| step hR hGen IH => exact trans IH (symm_step hR rfl)
| symm_step hR hGen IH => exact trans IH (step hR rfl)
end EqvGen
namespace Quot
variable {r : α → α → Prop}
variable {r' : α' → α' → Prop}
def liftOn₂ (x : Quot r) (y : Quot r') (f : α → α' → β)
(h : ∀ (a b : α) (a' : α'),
r a b → f a a' = f b a')
(h' : ∀ (a : α) (a' b' : α'),
r' a' b' → f a a' = f a b') : β :=
Quot.liftOn x
(λ x => Quot.liftOn y (f x) $
by intros; apply h'; assumption) $
by intros
induction y using Quot.inductionOn
simp [Quot.liftOn]
apply h; assumption
@[simp]
def liftOn₂_beta {x : α} {y : α'} (f : α → α' → β)
(h : ∀ (a b : α) (a' : α'),
r a b → f a a' = f b a')
(h' : ∀ (a : α) (a' b' : α'),
r' a' b' → f a a' = f a b') :
liftOn₂ (Quot.mk _ x) (Quot.mk _ y) f h h' = f x y :=
by simp [liftOn₂]
noncomputable def out (x : Quot r) : α :=
Classical.choose (exists_rep x)
theorem eq' : Quot.mk r x = Quot.mk r y ↔ EqvGen r x y := by
constructor
focus
intros h
have Hlift : ∀ (a b : α), r a b → EqvGen r x a = EqvGen r x b := by
intros a b Hab
apply propext
constructor <;> intro h
focus apply EqvGen.step_r <;> assumption
focus apply EqvGen.symm_step_r <;> assumption
rw [← Quot.liftBeta (r := r) (EqvGen r x) Hlift, ← h,
Quot.liftBeta (r := r) _ Hlift]
exact EqvGen.rfl
focus
intros h
induction h with
| rfl => refl
| step Hr Hgen IH =>
rw [← IH]
apply Quot.sound; assumption
| symm_step Hr Hgen IH =>
apply Eq.symm
rw [← IH]
apply Quot.sound; assumption
theorem eq : Quot.mk r x = Quot.mk r y ↔ EqvGen r x y := by
constructor
focus
intros h
rewrite [← liftOn₂_beta (r:=r) (r':=r) (EqvGen r), h, liftOn₂_beta]
focus
exact EqvGen.rfl
focus
intros x y z Hxy
apply propext
constructor <;> intro h
focus apply EqvGen.symm_step <;> assumption
focus apply EqvGen.step <;> assumption
focus
intros x y z Hxy
apply propext
constructor <;> intro h
focus apply EqvGen.step_r <;> assumption
focus apply EqvGen.symm_step_r <;> assumption
focus
intros h
induction h with
| rfl => refl
| step Hr Hgen IH =>
rw [← IH]
apply Quot.sound; assumption
| symm_step Hr Hgen IH =>
apply Eq.symm
rw [← IH]
apply Quot.sound; assumption
end Quot
class WellOrdered (α : Type) where
R : α → α → Prop
wf : WellFounded R
total x y : R x y ∨ x = y ∨ R y x
instance [WellOrdered α] : LT α := ⟨ WellOrdered.R ⟩
instance [WellOrdered α] : LE α where
le x y := x = y ∨ x < y
namespace WellOrdered
variable [Hwo : WellOrdered α]
theorem le_of_lt {x y : α} : x < y → x ≤ y := Or.inr
theorem lt_irrefl (x : α) : ¬ x < x := by
have := WellOrdered.wf.apply x
induction this with | intro x h ih =>
intro h'
apply ih _ h' h'
theorem le_refl (x : α) : x ≤ x := by
left; refl
theorem lt_antisymm {x y : α} :
x < y → y < x → False := by
revert y
have := WellOrdered.wf.apply x
induction this with | intro x h ih =>
intros y Hxy Hyx
cases ih _ Hyx Hyx Hxy
theorem le_antisymm {x y : α} :
x ≤ y → y ≤ x → x = y := by
intros Hxy Hyx; match x, Hxy, Hyx with
| x, Or.inl rfl, _ => intros; refl
| x, Or.inr Hx_lt, Or.inl rfl => refl
| x, Or.inr Hx_lt, Or.inr Hy_lt =>
cases lt_antisymm Hx_lt Hy_lt
section
open Classical
theorem bottom_exists [inst : Nonempty α] :
∃ x : α, ∀ y : α, ¬ y < x := by
cases inst with | intro x =>
have h := Hwo.wf.apply x
induction h with | intro y h ih => exact
if h : ∃ z, z < y then by
cases h with | intro z hz =>
apply ih _ hz
else by
rewrite [not_exists] at h
exists y; assumption
noncomputable def bottom (α) [WellOrdered α]
[inst : Nonempty α] : α :=
choose bottom_exists
theorem lt_iff_not_lt [h : WellOrdered α] (x y : α) :
x < y ↔ ¬ y ≤ x := by
constructor
focus
intros h₀ h₁
match y, h₁ with
| y, Or.inr h₁ =>
apply lt_antisymm h₀ h₁
| _, Or.inl rfl =>
apply lt_irrefl _ h₀
focus
intros h₀
have := WellOrdered.total x y
match y, this with
| y, Or.inl h₀ => assumption
| _, Or.inr (Or.inl rfl) =>
exfalso
apply h₀; clear h₀
apply le_refl
| y, Or.inr (Or.inr h₁) =>
exfalso
apply h₀; clear h₀
right; assumption
theorem not_lt_bottom
[inst : Nonempty α] :
¬ x < bottom α :=
choose_spec bottom_exists x
theorem bottom_le
[inst : Nonempty α] :
bottom α ≤ x := by
have H := not_lt_bottom (α := α) (x := x)
simp [lt_iff_not_lt] at H
assumption
end
theorem lt_trans {x y z : α} :
x < y → y < z → x < z := by
rewrite [lt_iff_not_lt x z]
intros hxy hyz hxz
cases hxz with
| inl hxz =>
subst hxz
apply lt_antisymm hxy hyz
| inr hxz =>
have := WellOrdered.wf.apply x
induction this generalizing y z with | intro x h ih =>
apply @ih _ hxz x y <;> assumption
theorem le_trans {x y z : α} :
x ≤ y → y ≤ z → x ≤ z := by
intros hxy hyz
cases hxy with
| inl hxy =>
cases hyz with
| inl hyz => subst hxy hyz; left; refl
| inr hyz => subst hxy; right; assumption
| inr hxy =>
cases hyz with
| inl hyz => subst hyz; right; assumption
| inr hyz =>
right; apply lt_trans
<;> assumption
section Classical
open Classical
-- noncomputable
-- def max (x y : α) : α :=
-- if x < y
-- then y
-- else x
theorem max_le_iff (x y z : α) :
max x y ≤ z ↔ x ≤ z ∧ y ≤ z := by
byCases Hyz : y < x
focus
have := le_of_lt Hyz
simp [max, *]
constructor
focus
intros h
constructor <;> try assumption
apply le_trans <;> assumption
focus
intro h; cases h; assumption
focus
simp [max, *]
simp [lt_iff_not_lt] at Hyz
constructor
focus
intros h
constructor <;> try assumption
apply le_trans <;> assumption
focus
intros h; cases h; assumption
end Classical
end WellOrdered
def WellOrder := Sigma WellOrdered
noncomputable
instance : CoeSort WellOrder (Type) := ⟨ Sigma.fst ⟩
instance (α : WellOrder) : WellOrdered α := α.snd
structure WellOrderHom (α β : WellOrder) where
hom : α.1 → β.1
hom_preserve x y : α.2.R x y → β.2.R (hom x) (hom y)
namespace WellOrderHom
instance : CoeFun (WellOrderHom a b) (λ _ => a → b) where
coe f := f.hom
theorem ext {f g : WellOrderHom a b}
(h : ∀ x, f x = g x) :
f = g := by
have d : f.hom = g.hom := funext h
cases f with
| mk f hf =>
cases g with | mk g hg =>
simp at d; revert hf hg;
rewrite [d]; intros; exact rfl
theorem ext_iff {f g : WellOrderHom a b}
(h : f = g) :
∀ x, f x = g x := by
subst h; intros; refl
def id : WellOrderHom α α where
hom := _root_.id
hom_preserve x y hxy := hxy
def comp (f : WellOrderHom β γ) (g : WellOrderHom α β) : WellOrderHom α γ where
hom := f.hom ∘ g.hom
hom_preserve x y hxy := f.hom_preserve _ _ (g.hom_preserve _ _ hxy)
variable {X Y Z W : WellOrder}
variable (f : WellOrderHom X Y)
variable (g : WellOrderHom Y Z)
variable (h : WellOrderHom Z W)
@[simp]
theorem id_comp : id.comp f = f := by apply ext; intro x; exact rfl
@[simp]
theorem comp_id : f.comp id = f := by apply ext; intro x; exact rfl
@[simp]
theorem comp_assoc : (h.comp g).comp f = h.comp (g.comp f) :=
by apply ext; intro x; exact rfl
end WellOrderHom
class IsMono {X Y} (f : WellOrderHom X Y) where
mono : ∀ W (g₁ g₂ : WellOrderHom W X), f.comp g₁ = f.comp g₂ → g₁ = g₂
namespace IsMono
variable {X Y Z : WellOrder}
variable (f : WellOrderHom X Y)
variable (g : WellOrderHom Y Z)
variable (gZY : WellOrderHom Z Y)
variable (gZX : WellOrderHom Z X)
open WellOrderHom
instance : IsMono (@WellOrderHom.id X) where
mono W g₁ g₂ := by simp; apply _root_.id
instance [IsMono f] [IsMono g] : IsMono (g.comp f) where
mono W g₁ g₂ := by
simp; intro h
have h := mono _ _ _ h
apply mono _ _ _ h
end IsMono
class IsIso {X Y} (f : WellOrderHom X Y) where
inv : WellOrderHom Y X
to_inv : f.comp inv = WellOrderHom.id
inv_to : inv.comp f = WellOrderHom.id
export IsIso (inv)
namespace IsIso
attribute [simp] to_inv inv_to
open WellOrderHom
variable {X Y Z : WellOrder}
variable (f : WellOrderHom X Y)
variable (g : WellOrderHom Y Z)
variable (gZY : WellOrderHom Z Y)
variable (gZX : WellOrderHom Z X)
@[simp]
theorem to_inv_reassoc [IsIso f] :
f.comp ((inv f).comp gZY) = gZY :=
by rw [← WellOrderHom.comp_assoc, to_inv, id_comp]
@[simp]
theorem inv_to_reassoc [IsIso f] :
(inv f).comp (f.comp gZX) = gZX :=
by rw [← WellOrderHom.comp_assoc, inv_to, id_comp]
instance [IsIso f] : IsIso (inv f) where
inv := f
to_inv := inv_to
inv_to := to_inv
instance : IsIso (@WellOrderHom.id X) where
inv := id
to_inv := by simp
inv_to := by simp
instance [IsIso f] [IsIso g] : IsIso (g.comp f) where
inv := (inv f).comp (inv g)
to_inv := by simp
inv_to := by simp
instance (priority := low) [IsIso f] : IsMono f where
mono W g₁ g₂ Heq := by
rw [← inv_to_reassoc f g₁, Heq, inv_to_reassoc]
end IsIso
section HasArrow
-- set_option checkBinderAnnotations false
inductive HasArrow X Y (cl : WellOrderHom X Y → Type u) : Prop :=
| intro (f : WellOrderHom X Y) : cl f → HasArrow X Y cl
end HasArrow
def WellOrderMono (α β : WellOrder) := HasArrow α β IsMono
@[matchPattern]
def WellOrderMono.intro (f : WellOrderHom x y) [IsMono f] :
WellOrderMono x y :=
HasArrow.intro f inferInstance
def WellOrderIso (α β : WellOrder) := HasArrow α β IsIso
@[matchPattern]
def WellOrderIso.intro (f : WellOrderHom x y) [IsIso f] :
WellOrderIso x y :=
HasArrow.intro f inferInstance
-- namespace WellOrderIso
-- variable {X Y : WellOrder}
-- def flip (f : WellOrderIso X Y) : WellOrderIso Y X where
-- to := f.inv
-- inv := f.to
-- to_inv := f.inv_to
-- inv_to := f.to_inv
-- def toMono (f : WellOrderIso X Y) : WellOrderMono X Y where
-- to := f.to
-- mono Z g₀ g₁ h := _
-- end WellOrderIso
-- inductive Erased (α : Type u) : Prop :=
-- | intro (x : α) : Erased α
-- theorem Erased_impl {α β} (f : α → β) : Erased α → Erased β
-- | ⟨ x ⟩ => ⟨ f x ⟩
def WOEqv (α β : WellOrder) : Prop :=
WellOrderIso α β
def Ordinal := Quot WOEqv
namespace Ordinal
protected def mk (α : Type) [WellOrdered α] : Ordinal :=
Quot.mk _ { fst := α, snd := inferInstance }
def zero : Ordinal :=
Quot.mk _
{ fst := Empty,
snd :=
{ R := by {intro x; cases x},
wf := by { constructor; intro x; cases x },
total := by {intro x; cases x} } }
inductive Option.R (r : α → α → Prop) : Option α → Option α → Prop where
| top x : R r (some x) none
| lifted x y : r x y → R r (some x) (some y)
theorem Option.R_acc {r : α → α → Prop}
x (h : Acc r x) : Acc (Option.R r) (some x) := by
induction h with
| intro y h' ih =>
constructor; intros z Hr; cases Hr
apply ih; assumption
theorem Option.R_wf {r : α → α → Prop}
(h : WellFounded r) : WellFounded (Option.R r) := by
constructor; intro x
match x with
| none =>
constructor; intro y h'; cases h'
apply Option.R_acc
apply h.apply
| some x =>
apply Option.R_acc
apply h.apply
instance [WellOrdered α] : WellOrdered (Option α) where
R := Option.R (WellOrdered.R)
wf := Option.R_wf (WellOrdered.wf)
total := λ x y =>
match x, y with
| none, none => by
apply Or.inr; apply Or.inl
constructor
| none, some _ => by
apply Or.inr; apply Or.inr
constructor
| some _, none => by
apply Or.inl
constructor
| some x, some y =>
match WellOrdered.total x y with
| Or.inl h =>
Or.inl $ Option.R.lifted _ _ h
| Or.inr (Or.inl h) =>
Or.inr $ Or.inl $ congrArg _ h
| Or.inr (Or.inr h) =>
Or.inr $ Or.inr $ Option.R.lifted _ _ h
def impl.S : WellOrder → WellOrder
| ⟨α, Hα⟩ =>
let _ : WellOrdered α := Hα
{ fst := Option α,
snd := inferInstance }
def S_hom (h : WellOrderHom a b) :
WellOrderHom (impl.S a) (impl.S b) where
hom := Option.map h
hom_preserve := by
intros x y h; cases x <;>
cases y <;>
cases h <;>
constructor <;>
apply h.hom_preserve <;>
assumption
@[simp]
theorem id_hom :
(@WellOrderHom.id a).hom = id := rfl
@[simp]
theorem S_hom_hom (h : WellOrderHom a b) :
(S_hom h).hom = Option.map h.hom := rfl
@[simp]
theorem comp_hom (f : WellOrderHom b c) (g : WellOrderHom a b) :
(f.comp g).hom = f.hom ∘ g.hom := rfl
@[simp]
theorem comp_S_hom
(f : WellOrderHom b c) (g : WellOrderHom a b) :
(S_hom f).comp (S_hom g) = S_hom (f.comp g) :=
WellOrderHom.ext $ by
intro x
cases x <;> simp [WellOrderHom.comp, S_hom]
@[simp]
theorem S_hom_id {α} :
S_hom (@WellOrderHom.id α) = WellOrderHom.id :=
WellOrderHom.ext $ by
intro x
rw [S_hom_hom, id_hom, id_hom]
simp
instance [@IsIso x y f] : IsIso (S_hom f) where
inv := S_hom (inv f)
to_inv := by simp
inv_to := by simp
def S_iso : WellOrderIso a b → WellOrderIso (impl.S a) (impl.S b)
| ⟨f, h⟩ =>
have h' := h
⟨S_hom f, inferInstance⟩
-- to := S_hom h.to
-- inv := S_hom h.inv
-- to_inv := by simp [h.to_inv]
-- inv_to := by simp [h.inv_to]
def S : Ordinal → Ordinal :=
Quot.lift (Quot.mk _ ∘ impl.S) λ a b Heqv => by
simp
apply Quot.sound
exact S_iso Heqv
def Le (x y : Ordinal) : Prop :=
Quot.liftOn₂ x y
(λ x y => WellOrderMono x y)
(by intros a b x f
cases f with
| intro f hf =>
simp; apply propext
constructor <;> intros g
{ cases g with
| intro g hg =>
have hf := hf
have hg := hg
exact ⟨g.comp (inv f), inferInstance⟩ }
{ cases g with
| intro g hg =>
have hf := hf
have hg := hg
exact ⟨g.comp f, inferInstance⟩ } )
(by intros x a b f
cases f with | intro f hf =>
simp; apply propext
constructor <;> intros g
{ cases g with
| intro g hg =>
have hf := hf
have hg := hg
exact ⟨f.comp g, inferInstance⟩ }
{ cases g with
| intro g hg =>
have hf := hf
have hg := hg
exact ⟨(inv f).comp g, inferInstance⟩ }
)
def Lt (x y : Ordinal) : Prop :=
Le x y ∧ ¬ Le y x
-- structure StrictInclusion (a b : WellOrder) : Type where
-- inclusion : WellOrderHom a b
-- [incl_mono : IsMono inclusion]
-- strict : ¬ WellOrderMono b a
-- attribute [instance] StrictInclusion.incl_mono
instance : LE Ordinal := ⟨ Le ⟩
instance : LT Ordinal := ⟨ Lt ⟩
theorem le_refl (x : Ordinal) : x ≤ x := by
cases x using Quot.ind
simp [LE.le,Le]
exists @WellOrderHom.id _
exact inferInstance
infix:25 " ⟶ " => WellOrderHom
instance : WellOrdered Unit where
R _ _ := False
wf := ⟨ λ a => ⟨ _, by intros _ h; cases h ⟩ ⟩
total := by intros; right; left; refl
def Unit : WellOrder := ⟨_root_.Unit,inferInstance⟩
def const {β : WellOrder} (x : β) : Unit ⟶ β where
hom := λ i => x
hom_preserve := by intros _ _ h; cases h
section inverse
open Classical
noncomputable
def inverse [Nonempty α] (f : α → β) (x : β) : α :=
epsilon λ y => f y = x
end inverse
section schroeder_bernstein
open Classical
def injective (f : α → β) : Prop :=
∀ x y, f x = f y → x = y
def surjective (f : α → β) : Prop :=
∀ y, ∃ x, f x = y
def bijective (f : α → β) : Prop :=
injective f ∧ surjective f
variable [Nonempty α] [Nonempty β]
variable (f : α → β) (hf : injective f)
variable (g : β → α) (hg : injective g)
theorem left_inv_of_injective :
inverse f ∘ f = id := by
apply funext; intro x
simp [Function.comp, inverse]
apply hf
apply Classical.epsilon_spec (p := λ y => f y = f x)
exists x; refl
theorem right_inv_of_surjective (hf' : surjective f) :
f ∘ inverse f = id := by
apply funext; intro x
specialize (hf' x)
apply Classical.epsilon_spec (p := λ y => f y = x)
assumption
theorem injective_of_left_inv
(h : g ∘ f = id) :
injective f := by
intros x y Hxy
have Hxy : (g ∘ f) x = (g ∘ f) y := congrArg g Hxy
rewrite [h] at Hxy; assumption
theorem injective_of_right_inv
(h : g ∘ f = id) :
surjective g := by
intros x
exists (f x)
show (g ∘ f) x = x
rewrite [h]; refl
-- def lonely (b : β) := ∀ a, f a ≠ b
-- def iterate (n : Nat) (b : β) : β :=
-- match n with
-- | 0 => b
-- | Nat.succ n => iterate n (f (g b))
-- -- #exit
-- def descendent (b₀ b₁ : β) : Prop :=
-- ∃ n, iterate f g n b₀ = b₁
-- -- #exit
-- theorem schroeder_bernstein :
-- ∃ h : α → β, bijective h := by
-- let p x y := lonely f y ∧ descendent f g y (f x)
-- let h x :=
-- if ∃ y, p x y
-- then inverse g x
-- else f x
-- exists h; constructor
-- focus
-- intro x y; simp
-- -- focus
-- -- intros x y
-- -- -- simp at Hxy
-- -- simp
-- -- -- have : (∃ z, p x z) ↔ (∃ z, p y z) := by
-- -- -- constructor <;> intros h
-- -- -- focus
-- -- -- cases h with
-- -- -- | intro z hz => unfold p at *
-- -- -- admit
-- byCases hx : (∃ z, p x z) <;>
-- byCases hy : (∃ z, p y z) <;>
-- simp [*] <;> intro h3
-- focus
-- clear h
-- cases hx with | intro x' hx' =>
-- cases hy with | intro y' hy' =>
-- cases hy'; cases hx'
-- clear p
-- admit
-- abort
-- -- match propDecidable (∃ z, p x z), propDecidable (∃ z, p y z), Hxy with
-- -- | isTrue ⟨x', hx, hx'⟩, isTrue ⟨y', hy, hy'⟩, Hxy => _
-- -- | isTrue _, isFalse _, Hxy => _
-- -- | isFalse _, isTrue _, Hxy => _
-- -- | isFalse _, isFalse _, Hxy => _
-- -- -- { admit }
-- -- simp [h] at Hxy }
-- -- exists (inverse g ∘ f)
end schroeder_bernstein
theorem comp_const (f : WellOrderHom a b) x :
f.comp (const x) = const (f x) := rfl
theorem injective_of_monomorphism
(f : WellOrderHom a b) [IsMono f] :
injective f.hom := by
intros x y Hxy
have := @IsMono.mono _ _ f _ _ (const x) (const y)
simp [comp_const, Hxy] at this
have := WellOrderHom.ext_iff this ()
assumption
-- Need Schroeder-Bernstein Theorem
theorem le_antisymm (x y : Ordinal)
(Hxy : x ≤ y)
(Hyx : y ≤ x) : x = y := by
cases x using Quot.ind
cases y using Quot.ind
simp [LE.le,Le] at *
apply Quot.sound
cases Hxy with | intro f hf =>
cases Hyx with | intro g hg => _
admit
theorem le_trans (x y z : Ordinal)
(Hxy : x ≤ y)
(Hyz : y ≤ z) : x ≤ z := by
cases x using Quot.ind
cases y using Quot.ind
cases z using Quot.ind
simp [LE.le,Le] at *
cases Hxy with | intro f hf =>
cases Hyz with | intro g hg =>
have hf := hf
have hg := hg
exists g.comp f
exact inferInstance
theorem lt_total (x y : Ordinal) :
x < y ∨ x = y ∨ y < x := by
byCases hxy : (x ≤ y) <;>
byCases hyx : (y ≤ x)
focus
right; left
apply le_antisymm <;> assumption
focus
left; constructor <;> assumption
focus
right; right
constructor <;> assumption
focus
admit
-- Todo:
-- Le is a total order
-- Limits
-- zero is a limit? (no)
-- zero, Succ, Limit are distinct
-- recursor / induction principle
namespace WellOrdered
variable [WellOrdered α]
theorem le_iff_forall_le (x y : α) :
x ≤ y ↔ ∀ z, y ≤ z → x ≤ z := by
constructor <;> intros h
focus
intros z h'
apply WellOrdered.le_trans <;> assumption
focus
apply h
apply WellOrdered.le_refl
theorem le_iff_forall_ge (x y : α) :
x ≤ y ↔ ∀ z, z ≤ x → z ≤ y := by
constructor <;> intros h
focus
intros z h'
apply WellOrdered.le_trans <;> assumption
focus
apply h
apply WellOrdered.le_refl
theorem le_total (x y : α) :
x ≤ y ∨ y ≤ x := sorry
section Classical
open Classical
theorem le_max_l {x y : α} :
x ≤ max x y := by
rw [le_iff_forall_le]; intros z
rw [WellOrdered.max_le_iff]
intros h; cases h; assumption
theorem le_max_r {x y : α} :
y ≤ max x y := by
rw [le_iff_forall_le]; intros z
rw [WellOrdered.max_le_iff]
intros h; cases h; assumption
instance : @Reflexive α LE.le where
refl := WellOrdered.le_refl
theorem max_eq_of_le {x y : α} :
x ≤ y → max x y = y := by
intros h
apply WellOrdered.le_antisymm
focus
rw [WellOrdered.max_le_iff]
auto
focus
apply WellOrdered.le_max_r
theorem max_eq_of_ge {x y : α} :
y ≤ x → max x y = x := by
intros h
apply WellOrdered.le_antisymm
focus
rw [WellOrdered.max_le_iff]
auto
focus
apply WellOrdered.le_max_l
end Classical
end WellOrdered
noncomputable
instance : CoeSort WellOrder Type := ⟨ Sigma.fst ⟩
structure Seq where
index : Type
[wo : WellOrdered index]
ords : index → WellOrder
increasing (i j : index) : i ≤ j → ords i ⟶ ords j
[mono (i j : index) h : IsMono (increasing i j h)]
strict (i j : index) :
i < j → ¬ WellOrderMono (ords i) (ords j)
increasing_refl (i : index) h :
increasing i i h =
WellOrderHom.id
increasing_trans (i j k : index) (h : i ≤ j) (h' : j ≤ k) :
(increasing _ _ h').comp (increasing _ _ h) =
increasing _ _ (WellOrdered.le_trans h h')
bottom : index
next : index → index
infinite i : i < next i
nothing_below_bottom x : ¬ x < bottom
consecutive i j : j < next i → j < i ∨ j = i
attribute [instance] Seq.wo Seq.mono
-- theorem Seq.increasing' (i j : s.index) :
-- i ≤ j → ords i ⟶ ords j
theorem Seq.bottom_le (s : Seq) x : s.bottom ≤ x := by
have := s.nothing_below_bottom x
simp [WellOrdered.lt_iff_not_lt] at this
assumption
def Lim.Eqv (s : Seq) :
(Σ i : s.index, s.ords i) → (Σ i, s.ords i) → Prop
| ⟨i, x⟩, ⟨j, y⟩ =>
(∃ h : i < j, s.increasing _ _ (WellOrdered.le_of_lt h) x = y) ∨
(∃ h : i = j, cast (by rw [h]) x = y) ∨
(∃ h : i > j, s.increasing _ _ (WellOrdered.le_of_lt h) y = x)
def Lim (s : Seq) :=
Quot (Lim.Eqv s)
namespace Lim
variable (s : Seq)
theorem Eqv.intro i j (h : i ≤ j)
x y
(h' : s.increasing i j h x = y) :
Eqv s ⟨i, x⟩ ⟨j, y⟩ := by
cases h with
| inl h =>
subst h; right; left
exists @rfl _ i
simp [cast]
simp [Seq.increasing_refl, WellOrderHom.id] at h'
assumption
| inr h =>
left; exists h
assumption
theorem cast_cast {a b} (h : a = b) (h' : b = a) x :
cast h (cast h' x) = x := by
cases h; cases h'; refl
theorem Eqv.symm x y :
Eqv s x y →
Eqv s y x := by
intros h; cases h with
| inl h => right; right; assumption
| inr h =>
cases h with
| inl h =>
right; left
cases h with | intro h h' =>
exists h.symm
rewrite [← h', cast_cast]
refl
| inr h => left; assumption
section
open Classical
theorem Eqv.intro' i j Hi Hj
x y
(h' : s.increasing i (max i j) Hi x =
s.increasing j (max i j) Hj y) :
Eqv s ⟨i, x⟩ ⟨j, y⟩ := by
cases WellOrdered.le_total i j with
| inl h =>
have h₂ := WellOrdered.max_eq_of_le h
revert Hi Hj h'
rewrite [h₂]; intros Hi Hj
rewrite [s.increasing_refl j]; intros h'
apply Eqv.intro; assumption
| inr h =>
have h₂ := WellOrdered.max_eq_of_ge h
revert Hi Hj h'
rewrite [h₂]; intros Hi Hj
rewrite [s.increasing_refl i]; intros h'
apply Lim.Eqv.symm
apply Eqv.intro
apply Eq.symm; assumption
end
theorem EqvGen_Eqv x y :
EqvGen (Eqv s) x y ↔ Eqv s x y := by
constructor <;> intros h
focus
induction h with
| @rfl a =>
cases a
right; left
exists @rfl _ _; simp [cast]
| @step x y z a _ b =>
cases x
cases y
cases z
| symm_step a => skip
end Lim
namespace Lim
variable (s : Seq)
open Classical
theorem mk_eq_mk_max_l i j x :
Quot.mk (Lim.Eqv s) ⟨i, x⟩ =
Quot.mk _ ⟨max i j, s.increasing i (max i j)
WellOrdered.le_max_l x⟩ := by
rw [Quot.eq]
apply EqvGen.once;
apply Eqv.intro
{ refl }
theorem mk_eq_mk_max_r i j x :
Quot.mk (Lim.Eqv s) ⟨i, x⟩ =
Quot.mk _ ⟨max j i, s.increasing i (max j i)
WellOrdered.le_max_r x⟩ := by
rw [Quot.eq]
apply EqvGen.once;
apply Eqv.intro
{ refl }
-- theorem mk_eq_mk_max_r i j x :
-- Quot.mk (Lim.Eqv s) ⟨i, x⟩ =
-- Quot.mk _ ⟨max j i, s.increasing i (max j i)
protected inductive R : Lim s → Lim s → Prop :=
| intro i (x y : s.ords i) :
x < y → Lim.R (Quot.mk _ ⟨i, x⟩) (Quot.mk _ ⟨i, y⟩)
-- protected def SigmaT := PSigma (λ i => s.ords i)
-- protected def toSigma : Lim s → Lim.SigmaT s
-- | ⟨a,b,h⟩ => ⟨a,b⟩
-- protected def SigmaT.R : Lim.SigmaT s → Lim.SigmaT s → Prop :=
-- PSigma.Lex LT.lt (λ _ => LT.lt)
-- protected theorem SigmaT.R_Subrelation :
-- Subrelation (Lim.R s) (InvImage (SigmaT.R s) (Lim.toSigma s)) := by
-- intros x y h
-- cases h with
-- | same i j k =>
-- simp [InvImage, Lim.toSigma]
-- apply PSigma.Lex.right; assumption
-- | lt x y =>
-- cases x; cases y
-- constructor; assumption
protected theorem R_wf :
WellFounded (Lim.R s) := by
-- Subrelation.wf _ (InvImage.wf _ _)
constructor; intro a
cases a using Quot.ind with | mk a =>
cases a with | mk a b =>
have Hacc := WellOrdered.wf.apply b
-- let f b := Quot.mk (Eqv s) { fst := a, snd := b }
-- have Hacc := InvImage.accessible f Hacc
-- apply Acc
induction Hacc with | intro b h ih =>
-- clear h
constructor; intros y
generalize Hx : (Quot.mk (Eqv s) { fst := a, snd := b }) = x
intros Hr
cases Hr with | intro i x =>
rw [Quot.eq] at Hx
-- cases Hr
-- apply ih
skip
-- let lex : WellFounded (Lim.SigmaT.R s) :=
-- (PSigma.lex WellOrdered.wf (λ i => WellOrdered.wf))
-- Subrelation.wf
-- (SigmaT.R_Subrelation s)
-- (InvImage.wf (Lim.toSigma s) lex)
protected theorem R_total x y :
Lim.R s x y ∨ x = y ∨ Lim.R s y x :=
match x, y with
| ⟨x,x',hx⟩, ⟨y,y',hy⟩ =>
match x, y, WellOrdered.total x y with
| _, _, Or.inl h => by left; constructor; assumption
| _, _, Or.inr (Or.inr h) => by right; right; constructor; assumption
| a, _, Or.inr (Or.inl rfl) =>
match WellOrdered.total x' y' with
| Or.inl h => by left; constructor; assumption
| Or.inr (Or.inl h) => by subst h; right; left; refl
| Or.inr (Or.inr h) => by right; right; constructor; assumption
instance : WellOrdered (Lim s) where
R := Lim.R s
wf := Lim.R_wf s
total := Lim.R_total s
theorem exists_in_inclusion (h : StrictInclusion a b) :
∃ x : b, True := by
apply Classical.byContradiction; intro h₀
rewrite [Classical.not_exists] at h₀
apply h.strict
let f (x : b) : a := False.elim (h₀ x trivial)
refine' ⟨⟨f, _⟩,_⟩
focus
intros x; cases h₀ x trivial
focus
constructor
intros W g₁ g₂ _
apply WellOrderHom.ext; intro a
cases h₀ (g₁ a) trivial
section
open Classical
-- #print prefix
theorem exists_in_inclusion' (h : StrictInclusion a b) :
∃ x : b, ∀ y, ¬ h.inclusion y = x := by
byCases Ha : Nonempty a
focus
apply Classical.byContradiction; intro h₀
simp at h₀
apply h.strict
-- revert Ha; intro Ha
have : injective h.inclusion.hom := injective_of_monomorphism _
let f : b → a := inverse h.inclusion.hom
have hf : ∀ i, f (h.inclusion i) = i :=
congrFun (left_inv_of_injective _ this)
refine' ⟨⟨f, _⟩,_⟩
focus
intros x y Hxy
have Hx := h₀ x
have Hy := h₀ y
have : ∀ α [WellOrdered α] (a b : α),
WellOrdered.R a b ↔ a < b := λ _ _ _ _ => Iff.rfl
cases Hx with | intro x' Hx =>
cases Hy with | intro y' Hy =>
rewrite [← Hx, ← Hy, hf, hf]
rewrite [this, WellOrdered.lt_iff_not_lt] at *
rewrite [← Hx, ← Hy] at Hxy
intros Hxy'; apply Hxy; clear Hxy x y Hx Hy this
cases Hxy' with
| inl h => subst h; left; refl
| inr h =>
right; apply WellOrderHom.hom_preserve
assumption
focus
constructor
intros W g₁ g₂ Hg
apply WellOrderHom.ext; intros x
have Hg := WellOrderHom.ext_iff Hg x
simp [WellOrderHom.hom, WellOrderHom.comp] at Hg
have := right_inv_of_surjective
(WellOrderHom.hom h.inclusion) h₀
have := congrFun this; simp at this
have Hg := congrArg h.inclusion.hom Hg
rewrite [this, this] at Hg; assumption
focus
have := exists_in_inclusion h
cases this with | intro x =>
exists x; intros y _
apply Ha; clear Ha
constructor; assumption
end
-- intros x; cases h₀ x trivial
-- focus
-- constructor
-- intros W g₁ g₂ _
-- apply WellOrderHom.ext; intro a
-- cases h₀ (g₁ a) trivial
-- if h₀ : Nonempty a then by
-- cases h₀ with | intro x =>
-- exists h.inclusion x
-- -- exact intro
-- trivial
-- else by
-- -- cases h with | ⟨h₀, h₁⟩ =>
-- apply Classical.byContradiction
-- rewrite [not_exists]; intros h₁
-- apply h.strict
-- constructor
noncomputable
def witness (x : StrictInclusion a b) : b :=
Classical.choose (exists_in_inclusion' x)
protected noncomputable def default : Lim s where
idx := s.next s.bottom
val := witness (s.increasing _ _ (s.infinite _))
min_idx j x h := by
let f := s.increasing _ _ (s.infinite s.bottom)
cases s.consecutive _ _ h with
| inl h =>
cases s.nothing_below_bottom _ h
| inr h =>
subst j
intros h₀
apply
Classical.choose_spec
(exists_in_inclusion' f) _ h₀
noncomputable
instance : Inhabited (Lim s) where
default := Lim.default s
end Lim
def lim (s : Seq) : Ordinal :=
Quot.mk _
{ fst := Lim s,
snd := inferInstance }
theorem WO_is_equiv : EqvGen WOEqv x y → WOEqv x y := by
intro h
induction h with
| rfl => exact ⟨WellOrderHom.id, inferInstance⟩
| step h₀ _ ih =>
cases h₀ with | intro f h₀ =>
cases ih with | intro g ih =>
exists g.comp f
have h₀ := h₀; have ih := ih
exact inferInstance
| symm_step h₀ _ ih =>
cases h₀ with | intro f h₀ =>
cases ih with | intro g ih =>
have h₀ := h₀; have ih := ih
exists g.comp (inv f)
exact inferInstance
theorem zero_ne_succ (x : Ordinal) : zero ≠ S x := by
intros h
cases x using Quot.ind with | mk x =>
cases x with | mk a b =>
simp [S] at h
have h := WO_is_equiv $ Quot.eq.1 h
simp [impl.S] at h
cases h with | intro a b =>
have b := b
have f := (inv a).hom none
cases f
theorem succ_ne_self (x : Ordinal) : x ≠ S x := by
intros h
cases x using Quot.ind with | mk x =>
cases x with | mk a Ha =>
revert Ha h; intros Ha h
let Ha' : WellOrdered (Option a) := inferInstance
let Ha'' : LT (Option a) := instLT
simp [S] at h
have h := WO_is_equiv $ Quot.eq.1 h
cases h with | intro f hf =>
have hf := hf
have f := inv f
have hf := f.hom_preserve
simp [WellOrdered.R] at hf
suffices H : ∀ x : Option a, some (f x) < x → False by
apply H none
simp only [LT.lt]
constructor
intros x
have Hacc : Acc LT.lt x := WellOrdered.wf.apply _
induction Hacc with | intro x _ ih =>
intros h'
apply ih _ h'
constructor
apply f.hom_preserve (some (f x)) x h'
open Classical
theorem zero_ne_lim (s : Seq) : zero ≠ lim s := by
intros h
-- rewrite [Quot.eq] at h
have h := WO_is_equiv $ Quot.eq.1 h
cases h with | intro f hf =>
revert hf; intros hf
have f := inv f
have hf := f.hom_preserve
cases f Inhabited.default
-- TODO:
-- succ ≠ lim
-- 0 ≠ lim
-- recursor
-- Lemma no Ordinal between x and S x?
-- #check Le
-- set_option trace.simp_rewrite true
-- #check getLocal
-- #check Lean.Expr.fvar
-- set_option trace.Ma
-- set_option trace.Elab.definition true
theorem S_consecutive y :
y ≤ x ∧ y < S x ∨ x < y ∧ S x ≤ y := by
match lt_total x y with
| Or.inl Hlt =>
right
refine' ⟨Hlt, _⟩
cases Hlt with | intro Hle Hnot_ge =>
cases x using Quot.ind with | mk x =>
cases y using Quot.ind with | mk y =>
simp [Le] at Hle Hnot_ge
have :
(¬ Nonempty (y → x)) ∨
(∃ f : y → x, ¬ Nonempty (y ⟶ x)) ∨
(∃ f : y ⟶ x, IsMono f → False) := by
apply byContradiction; intros h₀
apply Hnot_ge; clear Hnot_ge
simp at h₀
match h₀ with
| ⟨⟨f⟩, h₁, h₂⟩ =>
cases h₁ f with | intro g =>
cases h₂ g with | intro z => -- weird pretty printing: not
-- printing the type means that
-- we're not giving the ∀ variable a
-- name
-- cases z
-- clear h₁
constructor; assumption
match this with
| Or.inl h₀ =>
cases Hle with | intro f Hf =>
revert Hf; intros Hf
have : StrictInclusion x y := ⟨f, Hnot_ge⟩
let w := Lim.witness this
simp [LE.le, S, Le]
have : x → False := by
intros a
let f (b : y) := a
apply h₀; constructor; assumption
let g (_ : impl.S x) := w
-- have : IsMono g := by
-- intros
let g' : impl.S x ⟶ y := by
refine' ⟨g, _⟩
intros a b Hab
cases Hab with
| top h => cases this h
| lifted h => cases this h
have hg : IsMono g' := by
constructor; intros W g₁ g₂ Hg
apply WellOrderHom.ext; intros x
cases g₁ x with
| some x => cases this x
| none =>
cases g₂ x with
| some x => cases this x
| none => refl
constructor; assumption
| Or.inr (Or.inl ⟨f, h₀⟩) =>
clear this
swapHyp h₀ as h₁
constructor
exists f
skip
| Or.inr (Or.inr h₀) => skip
| Or.inr (Or.inl Heq) => _
| Or.inr (Or.inr Hgt) => _
theorem lt_lim (s : Seq) x :
lim s ≤ x ↔ ∀ i, Ordinal.mk (s.ords i) ≤ x := by
constructor
focus
intros h i
cases x using Quot.ind with | mk x =>
simp [lim, LE.le, Le] at h
cases h with | intro a b =>
skip
focus
intros h
admit
theorem lim_not_consecutive (s : Seq) x :
x < lim s → ∃ y, x < y ∧ y < lim s := by
admit
theorem S_ne_lim (s : Seq) : S x ≠ lim s := by
admit
|
The state of Pennsylvania acquired Central State Normal School in 1915 and renamed it Lock Haven State Teachers College in 1927 . Between 1942 and 1970 , the student population grew from 146 to more than 2 @,@ 300 ; the number of teaching faculty rose from 25 to 170 , and the college carried out a large building program . The school 's name was changed to Lock Haven State College in 1960 , and its emphasis shifted to include the humanities , fine arts , mathematics , and social sciences , as well as teacher education . Becoming Lock Haven University of Pennsylvania in 1983 , it opened a branch campus in Clearfield , 48 miles ( 77 km ) west of Lock Haven , in 1989 .
|
#!/usr/bin/env python
# coding: utf-8
import os
import time
import os.path as op
import argparse
import torch
import numpy as np
from torchvision import transforms as trans
from tqdm import tqdm
from Learner import face_learner
from config import get_config
from utils import hflip_batch
from data.datasets_crop_and_save import CropAndSaveIJBAVeriImgsDataset
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def process_batch_original(batch, tta=False):
if tta:
fliped = hflip_batch(batch)
feat_orig = learner.model.get_original_feature(batch.to(conf.device))
feat_flip = learner.model.get_original_feature(fliped.to(conf.device))
feat = (feat_orig + feat_flip) / 2
else:
feat = learner.model.get_original_feature(batch.to(conf.device))
return feat
def process_batch_xcos(batch, tta=False):
if tta:
fliped = hflip_batch(batch)
flattened_feature1, feat_map1 = learner.model(batch.to(conf.device))
flattened_feature2, feat_map2 = learner.model(fliped.to(conf.device))
feat_map = (feat_map1 + feat_map2) / 2
flattened_feature = (flattened_feature1 + flattened_feature2) / 2
else:
flattened_feature, feat_map = learner.model(batch.to(conf.device))
return flattened_feature, feat_map
# ## Init Learner and conf
# In[4]:
conf = get_config(training=False)
conf.batch_size=20 # Why bs_size can only be the number that divide 6000 well?
learner = face_learner(conf, inference=True)
# # IJB-A
# Extract features for IJB-A dataset
def run_ours_IJBA(loader,
img_output_root, split_name,
only_first_image=True):
# if not only_first_image:
# assert loader.batch_size == 1
# dst_dir = op.join(img_output_root,
# f'IJB-A_full_template/{split_name}/{model_name}/')
# os.makedirs(dst_dir, exist_ok=True)
with torch.no_grad():
for i, batch in tqdm(enumerate(loader), total=len(loader)):
x = 1 # Do nothing!
# if i % 50 == 0:
# print(f"Elapsed {time.time() - begin_time:.1f} seconds.")
# t1_tensors = batch['t1_tensors']
# t2_tensors = batch['t2_tensors']
# if not only_first_image:
# t1_tensors, t2_tensors = t1_tensors.squeeze(0), t2_tensors.squeeze(0)
# comparison_idx = batch['comparison_idx']
# is_same = batch['is_same']
# if xCos_or_original == 'xCos':
# _, feat1 = process_batch_xcos(t1_tensors, tta=True)
# _, feat2 = process_batch_xcos(t2_tensors, tta=True)
# elif xCos_or_original == 'original':
# feat1 = process_batch_original(t1_tensors, tta=True)
# feat2 = process_batch_original(t2_tensors, tta=True)
# else:
# raise NotImplementedError
# if not only_first_image:
# feat1, feat2 = feat1.unsqueeze(0), feat2.unsqueeze(0)
# # print(feat1.shape, t1_tensors.shape)
# for idx, f1, f2, same in zip(comparison_idx, feat1, feat2, is_same):
# target_path = op.join(dst_dir, str(int(idx.cpu().numpy()))) + '.npz'
# if op.exists(target_path):
# if i % 50 == 0:
# print(f"Skipping {target_path} because it exists.")
# continue
# # if i % 50 == 0:
# # print(f'Saving to {target_path}')
# np.savez(target_path, idx=idx.cpu().numpy(),
# same=same.cpu().numpy(),
# f1=f1.cpu().numpy(), f2=f2.cpu().numpy(), )
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='feature extraction')
# general
parser.add_argument('--split', default='1', help='split to test')
parser.add_argument('--cropped_img_dir',
default='data/IJB_A_cropped_imgs',
help='output dir')
args = parser.parse_args()
n_splits = int(args.split)
for i in range(n_splits):
# Skip split1 because it is done.
# if i == 0:
# continue
split_num = i + 1
print(f'Extracting split{split_num}...')
split_name = f'split{split_num}'
loader_IJBA = torch.utils.data.DataLoader(
CropAndSaveIJBAVeriImgsDataset(only_first_image=False,
ijba_data_root='data/IJB-A',
output_dir=args.cropped_img_dir,
split_name=split_name),
batch_size=1,
num_workers=1
)
run_ours_IJBA(loader_IJBA,
args.cropped_img_dir, split_name,
only_first_image=False)
|
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
⊢ dualMap id = id
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
x✝¹ : Dual R M₁
x✝ : M₁
⊢ ↑(↑(dualMap id) x✝¹) x✝ = ↑(↑id x✝¹) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
hf : Function.Surjective ↑f
⊢ Function.Injective ↑(dualMap f)
[PROOFSTEP]
intro φ ψ h
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
hf : Function.Surjective ↑f
φ ψ : Dual R M₂
h : ↑(dualMap f) φ = ↑(dualMap f) ψ
⊢ φ = ψ
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
hf : Function.Surjective ↑f
φ ψ : Dual R M₂
h : ↑(dualMap f) φ = ↑(dualMap f) ψ
x : M₂
⊢ ↑φ x = ↑ψ x
[PROOFSTEP]
obtain ⟨y, rfl⟩ := hf x
[GOAL]
case h.intro
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
hf : Function.Surjective ↑f
φ ψ : Dual R M₂
h : ↑(dualMap f) φ = ↑(dualMap f) ψ
y : M₁
⊢ ↑φ (↑f y) = ↑ψ (↑f y)
[PROOFSTEP]
exact congr_arg (fun g : Module.Dual R M₁ => g y) h
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ ≃ₗ[R] M₂
src✝ : Dual R M₂ →ₗ[R] Dual R M₁ := LinearMap.dualMap ↑f
⊢ Function.LeftInverse ↑(LinearMap.dualMap ↑(symm f))
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : Dual R M₂),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom.toFun
[PROOFSTEP]
intro φ
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ ≃ₗ[R] M₂
src✝ : Dual R M₂ →ₗ[R] Dual R M₁ := LinearMap.dualMap ↑f
φ : Dual R M₂
⊢ ↑(LinearMap.dualMap ↑(symm f))
(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : Dual R M₂),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
φ) =
φ
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ ≃ₗ[R] M₂
src✝ : Dual R M₂ →ₗ[R] Dual R M₁ := LinearMap.dualMap ↑f
φ : Dual R M₂
x : M₂
⊢ ↑(↑(LinearMap.dualMap ↑(symm f))
(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : Dual R M₂),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
φ))
x =
↑φ x
[PROOFSTEP]
simp only [LinearMap.dualMap_apply, LinearEquiv.coe_toLinearMap, LinearMap.toFun_eq_coe, LinearEquiv.apply_symm_apply]
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ ≃ₗ[R] M₂
src✝ : Dual R M₂ →ₗ[R] Dual R M₁ := LinearMap.dualMap ↑f
⊢ Function.RightInverse ↑(LinearMap.dualMap ↑(symm f))
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : Dual R M₂),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom.toFun
[PROOFSTEP]
intro φ
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ ≃ₗ[R] M₂
src✝ : Dual R M₂ →ₗ[R] Dual R M₁ := LinearMap.dualMap ↑f
φ : Dual R M₁
⊢ AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : Dual R M₂),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(↑(LinearMap.dualMap ↑(symm f)) φ) =
φ
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ ≃ₗ[R] M₂
src✝ : Dual R M₂ →ₗ[R] Dual R M₁ := LinearMap.dualMap ↑f
φ : Dual R M₁
x : M₁
⊢ ↑(AddHom.toFun
{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : R) (x : Dual R M₂),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom
(↑(LinearMap.dualMap ↑(symm f)) φ))
x =
↑φ x
[PROOFSTEP]
simp only [LinearMap.dualMap_apply, LinearEquiv.coe_toLinearMap, LinearMap.toFun_eq_coe, LinearEquiv.symm_apply_apply]
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
⊢ dualMap (refl R M₁) = refl R (Dual R M₁)
[PROOFSTEP]
ext
[GOAL]
case h.h
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
x✝¹ : Dual R M₁
x✝ : M₁
⊢ ↑(↑(dualMap (refl R M₁)) x✝¹) x✝ = ↑(↑(refl R (Dual R M₁)) x✝¹) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
i j : ι
⊢ ↑(↑(toDual b) (↑b i)) (↑b j) = if i = j then 1 else 0
[PROOFSTEP]
erw [constr_basis b, constr_basis b]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
i j : ι
⊢ (if j = i then 1 else 0) = if i = j then 1 else 0
[PROOFSTEP]
simp only [eq_comm]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
⊢ ↑(↑(toDual b) (↑(Finsupp.total ι M R ↑b) f)) (↑b i) = ↑f i
[PROOFSTEP]
rw [Finsupp.total_apply, Finsupp.sum, LinearMap.map_sum, LinearMap.sum_apply]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
⊢ ∑ d in f.support, ↑(↑(toDual b) (↑f d • ↑b d)) (↑b i) = ↑f i
[PROOFSTEP]
simp_rw [LinearMap.map_smul, LinearMap.smul_apply, toDual_apply, smul_eq_mul, mul_boole, Finset.sum_ite_eq']
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
⊢ (if i ∈ f.support then ↑f i else 0) = ↑f i
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
h : i ∈ f.support
⊢ ↑f i = ↑f i
[PROOFSTEP]
rfl
[GOAL]
case neg
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
h : ¬i ∈ f.support
⊢ 0 = ↑f i
[PROOFSTEP]
rw [Finsupp.not_mem_support_iff.mp h]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
⊢ ↑(↑(toDual b) (↑b i)) (↑(Finsupp.total ι M R ↑b) f) = ↑f i
[PROOFSTEP]
rw [Finsupp.total_apply, Finsupp.sum, LinearMap.map_sum]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
⊢ ∑ i_1 in f.support, ↑(↑(toDual b) (↑b i)) (↑f i_1 • ↑b i_1) = ↑f i
[PROOFSTEP]
simp_rw [LinearMap.map_smul, toDual_apply, smul_eq_mul, mul_boole, Finset.sum_ite_eq]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
⊢ (if i ∈ f.support then ↑f i else 0) = ↑f i
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
h : i ∈ f.support
⊢ ↑f i = ↑f i
[PROOFSTEP]
rfl
[GOAL]
case neg
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
f : ι →₀ R
i : ι
h : ¬i ∈ f.support
⊢ 0 = ↑f i
[PROOFSTEP]
rw [Finsupp.not_mem_support_iff.mp h]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
m : M
i : ι
⊢ ↑(↑(toDual b) m) (↑b i) = ↑(↑b.repr m) i
[PROOFSTEP]
rw [← b.toDual_total_left, b.total_repr]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
i : ι
m : M
⊢ ↑(↑(toDual b) (↑b i)) m = ↑(↑b.repr m) i
[PROOFSTEP]
rw [← b.toDual_total_right, b.total_repr]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
i : ι
⊢ ↑(toDual b) (↑b i) = coord b i
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
i : ι
x✝ : M
⊢ ↑(↑(toDual b) (↑b i)) x✝ = ↑(coord b i) x✝
[PROOFSTEP]
apply toDual_apply_right
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : Fintype ι
m : M
i : ι
⊢ ↑(↑(toDual b) m) (↑b i) = ↑(equivFun b) m i
[PROOFSTEP]
rw [b.equivFun_apply, toDual_eq_repr]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
m : M
a : ↑(toDual b) m = 0
⊢ m = 0
[PROOFSTEP]
rw [← mem_bot R, ← b.repr.ker, mem_ker, LinearEquiv.coe_coe]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
m : M
a : ↑(toDual b) m = 0
⊢ ↑b.repr m = 0
[PROOFSTEP]
apply Finsupp.ext
[GOAL]
case h
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b : Basis ι R M
m : M
a : ↑(toDual b) m = 0
⊢ ∀ (a : ι), ↑(↑b.repr m) a = ↑0 a
[PROOFSTEP]
intro b
[GOAL]
case h
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b✝ : Basis ι R M
m : M
a : ↑(toDual b✝) m = 0
b : ι
⊢ ↑(↑b✝.repr m) b = ↑0 b
[PROOFSTEP]
rw [← toDual_eq_repr, a]
[GOAL]
case h
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : DecidableEq ι
b✝ : Basis ι R M
m : M
a : ↑(toDual b✝) m = 0
b : ι
⊢ ↑0 (↑b✝ b) = ↑0 b
[PROOFSTEP]
rfl
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
⊢ range (toDual b) = ⊤
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
val✝ : Fintype ι
⊢ range (toDual b) = ⊤
[PROOFSTEP]
refine' eq_top_iff'.2 fun f => _
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
val✝ : Fintype ι
f : Dual R M
⊢ f ∈ range (toDual b)
[PROOFSTEP]
rw [LinearMap.mem_range]
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
val✝ : Fintype ι
f : Dual R M
⊢ ∃ y, ↑(toDual b) y = f
[PROOFSTEP]
let lin_comb : ι →₀ R := Finsupp.equivFunOnFinite.symm fun i => f.toFun (b i)
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
val✝ : Fintype ι
f : Dual R M
lin_comb : ι →₀ R := ↑Finsupp.equivFunOnFinite.symm fun i => AddHom.toFun f.toAddHom (↑b i)
⊢ ∃ y, ↑(toDual b) y = f
[PROOFSTEP]
refine' ⟨Finsupp.total ι M R b lin_comb, b.ext fun i => _⟩
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
val✝ : Fintype ι
f : Dual R M
lin_comb : ι →₀ R := ↑Finsupp.equivFunOnFinite.symm fun i => AddHom.toFun f.toAddHom (↑b i)
i : ι
⊢ ↑(↑(toDual b) (↑(Finsupp.total ι M R ↑b) lin_comb)) (↑b i) = ↑f (↑b i)
[PROOFSTEP]
rw [b.toDual_eq_repr _ i, repr_total b]
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
val✝ : Fintype ι
f : Dual R M
lin_comb : ι →₀ R := ↑Finsupp.equivFunOnFinite.symm fun i => AddHom.toFun f.toAddHom (↑b i)
i : ι
⊢ ↑lin_comb i = ↑f (↑b i)
[PROOFSTEP]
rfl
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
⊢ ∑ x : ι, ↑f (↑b x) • coord b x = f
[PROOFSTEP]
ext m
[GOAL]
case h
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : Fintype ι
b : Basis ι R M
f : Dual R M
m : M
⊢ ↑(∑ x : ι, ↑f (↑b x) • coord b x) m = ↑f m
[PROOFSTEP]
simp_rw [LinearMap.sum_apply, LinearMap.smul_apply, smul_eq_mul, mul_comm (f _), ← smul_eq_mul, ← f.map_smul, ←
f.map_sum, Basis.coord_apply, Basis.sum_repr]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
i j : ι
⊢ ↑(↑(dualBasis b) i) (↑b j) = if j = i then 1 else 0
[PROOFSTEP]
convert b.toDual_apply i j using 2
[GOAL]
case h.e'_3.h₁.a
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
i j : ι
⊢ j = i ↔ i = j
[PROOFSTEP]
rw [@eq_comm _ j i]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
f : ι →₀ R
i : ι
⊢ ↑(↑(Finsupp.total ι (Dual R M) R ↑(dualBasis b)) f) (↑b i) = ↑f i
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
f : ι →₀ R
i : ι
val✝ : Fintype ι
⊢ ↑(↑(Finsupp.total ι (Dual R M) R ↑(dualBasis b)) f) (↑b i) = ↑f i
[PROOFSTEP]
rw [Finsupp.total_apply, Finsupp.sum_fintype, LinearMap.sum_apply]
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
f : ι →₀ R
i : ι
val✝ : Fintype ι
⊢ ∑ d : ι, ↑(↑f d • ↑(dualBasis b) d) (↑b i) = ↑f i
[PROOFSTEP]
simp_rw [LinearMap.smul_apply, smul_eq_mul, dualBasis_apply_self, mul_boole, Finset.sum_ite_eq,
if_pos (Finset.mem_univ i)]
[GOAL]
case intro.h
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
f : ι →₀ R
i : ι
val✝ : Fintype ι
⊢ ∀ (i : ι), 0 • ↑(dualBasis b) i = 0
[PROOFSTEP]
intro
[GOAL]
case intro.h
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
f : ι →₀ R
i : ι
val✝ : Fintype ι
i✝ : ι
⊢ 0 • ↑(dualBasis b) i✝ = 0
[PROOFSTEP]
rw [zero_smul]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
l : Dual R M
i : ι
⊢ ↑(↑(dualBasis b).repr l) i = ↑l (↑b i)
[PROOFSTEP]
rw [← total_dualBasis b, Basis.total_repr b.dualBasis l]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
⊢ ↑(dualBasis b) = coord b
[PROOFSTEP]
ext i x
[GOAL]
case h.h
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
i : ι
x : M
⊢ ↑(↑(dualBasis b) i) x = ↑(coord b i) x
[PROOFSTEP]
apply dualBasis_apply
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
⊢ LinearMap.comp (toDual (dualBasis b)) (toDual b) = Dual.eval R M
[PROOFSTEP]
refine' b.ext fun i => b.dualBasis.ext fun j => _
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : _root_.Finite ι
i j : ι
⊢ ↑(↑(LinearMap.comp (toDual (dualBasis b)) (toDual b)) (↑b i)) (↑(dualBasis b) j) =
↑(↑(Dual.eval R M) (↑b i)) (↑(dualBasis b) j)
[PROOFSTEP]
rw [LinearMap.comp_apply, toDual_apply_left, coe_toDual_self, ← coe_dualBasis, Dual.eval_apply, Basis.repr_self,
Finsupp.single_apply, dualBasis_apply_self]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι
b : Basis ι R M
inst✝ : Fintype ι
l : Dual R M
i : ι
⊢ ↑(equivFun (dualBasis b)) l i = ↑l (↑b i)
[PROOFSTEP]
rw [Basis.equivFun_apply, dualBasis_repr]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι✝ : Type w
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : DecidableEq ι✝
b✝ : Basis ι✝ R M
ι : Type u_1
b : Basis ι R M
⊢ ker (Dual.eval R M) = ⊥
[PROOFSTEP]
rw [ker_eq_bot']
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι✝ : Type w
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : DecidableEq ι✝
b✝ : Basis ι✝ R M
ι : Type u_1
b : Basis ι R M
⊢ ∀ (m : M), ↑(Dual.eval R M) m = 0 → m = 0
[PROOFSTEP]
intro m hm
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι✝ : Type w
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : DecidableEq ι✝
b✝ : Basis ι✝ R M
ι : Type u_1
b : Basis ι R M
m : M
hm : ↑(Dual.eval R M) m = 0
⊢ m = 0
[PROOFSTEP]
simp_rw [LinearMap.ext_iff, Dual.eval_apply, zero_apply] at hm
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι✝ : Type w
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : DecidableEq ι✝
b✝ : Basis ι✝ R M
ι : Type u_1
b : Basis ι R M
m : M
hm : ∀ (x : Dual R M), ↑x m = 0
⊢ m = 0
[PROOFSTEP]
exact (Basis.forall_coord_eq_zero_iff _).mp fun i => hm (b.coord i)
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι✝ : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι✝
b✝ : Basis ι✝ R M
ι : Type u_1
inst✝ : _root_.Finite ι
b : Basis ι R M
⊢ range (Dual.eval R M) = ⊤
[PROOFSTEP]
classical
cases nonempty_fintype ι
rw [← b.toDual_toDual, range_comp, b.toDual_range, Submodule.map_top, toDual_range _]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι✝ : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι✝
b✝ : Basis ι✝ R M
ι : Type u_1
inst✝ : _root_.Finite ι
b : Basis ι R M
⊢ range (Dual.eval R M) = ⊤
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι✝ : Type w
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : DecidableEq ι✝
b✝ : Basis ι✝ R M
ι : Type u_1
inst✝ : _root_.Finite ι
b : Basis ι R M
val✝ : Fintype ι
⊢ range (Dual.eval R M) = ⊤
[PROOFSTEP]
rw [← b.toDual_toDual, range_comp, b.toDual_range, Submodule.map_top, toDual_range _]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : _root_.Finite ι
b : Basis ι R M
f : ι →₀ R
i : ι
⊢ ↑(↑(Finsupp.total ι (Dual R M) R (coord b)) f) (↑b i) = ↑f i
[PROOFSTEP]
haveI := Classical.decEq ι
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : _root_.Finite ι
b : Basis ι R M
f : ι →₀ R
i : ι
this : DecidableEq ι
⊢ ↑(↑(Finsupp.total ι (Dual R M) R (coord b)) f) (↑b i) = ↑f i
[PROOFSTEP]
rw [← coe_dualBasis, total_dualBasis]
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : _root_.Finite ι
b : Basis ι K V
⊢ lift (Module.rank K V) = Module.rank K (Dual K V)
[PROOFSTEP]
classical
cases nonempty_fintype ι
have := LinearEquiv.lift_rank_eq b.toDualEquiv
rw [Cardinal.lift_umax.{u₂, u₁}] at this
rw [this, ← Cardinal.lift_umax]
apply Cardinal.lift_id
[GOAL]
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : _root_.Finite ι
b : Basis ι K V
⊢ lift (Module.rank K V) = Module.rank K (Dual K V)
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : _root_.Finite ι
b : Basis ι K V
val✝ : Fintype ι
⊢ lift (Module.rank K V) = Module.rank K (Dual K V)
[PROOFSTEP]
have := LinearEquiv.lift_rank_eq b.toDualEquiv
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : _root_.Finite ι
b : Basis ι K V
val✝ : Fintype ι
this : lift (Module.rank K V) = lift (Module.rank K (Dual K V))
⊢ lift (Module.rank K V) = Module.rank K (Dual K V)
[PROOFSTEP]
rw [Cardinal.lift_umax.{u₂, u₁}] at this
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : _root_.Finite ι
b : Basis ι K V
val✝ : Fintype ι
this : lift (Module.rank K V) = lift (Module.rank K (Dual K V))
⊢ lift (Module.rank K V) = Module.rank K (Dual K V)
[PROOFSTEP]
rw [this, ← Cardinal.lift_umax]
[GOAL]
case intro
R : Type u
M : Type v
K : Type u₁
V : Type u₂
ι : Type w
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : _root_.Finite ι
b : Basis ι K V
val✝ : Fintype ι
this : lift (Module.rank K V) = lift (Module.rank K (Dual K V))
⊢ lift (Module.rank K (Dual K V)) = Module.rank K (Dual K V)
[PROOFSTEP]
apply Cardinal.lift_id
[GOAL]
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
⊢ ker (eval K V) = ⊥
[PROOFSTEP]
classical exact (Module.Free.chooseBasis K V).eval_ker
[GOAL]
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
⊢ ker (eval K V) = ⊥
[PROOFSTEP]
exact (Module.Free.chooseBasis K V).eval_ker
[GOAL]
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
⊢ Function.Injective (Submodule.map (eval K V))
[PROOFSTEP]
apply Submodule.map_injective_of_injective
[GOAL]
case hf
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
⊢ Function.Injective ↑(eval K V)
[PROOFSTEP]
rw [← LinearMap.ker_eq_bot]
[GOAL]
case hf
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
⊢ ker (eval K V) = ⊥
[PROOFSTEP]
apply eval_ker K V
[GOAL]
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
⊢ Function.Surjective (Submodule.comap (eval K V))
[PROOFSTEP]
apply Submodule.comap_surjective_of_injective
[GOAL]
case hf
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
⊢ Function.Injective ↑(eval K V)
[PROOFSTEP]
rw [← LinearMap.ker_eq_bot]
[GOAL]
case hf
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
⊢ ker (eval K V) = ⊥
[PROOFSTEP]
apply eval_ker K V
[GOAL]
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
v : V
⊢ ↑(eval K V) v = 0 ↔ v = 0
[PROOFSTEP]
simpa only using SetLike.ext_iff.mp (eval_ker K V) v
[GOAL]
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
v : V
⊢ (∀ (φ : Dual K V), ↑φ v = 0) ↔ v = 0
[PROOFSTEP]
rw [← eval_apply_eq_zero_iff K v, LinearMap.ext_iff]
[GOAL]
K : Type u₁
V : Type u₂
inst✝³ : CommRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Free K V
v : V
⊢ (∀ (φ : Dual K V), ↑φ v = 0) ↔ ∀ (x : Dual K V), ↑(↑(eval K V) v) x = ↑0 x
[PROOFSTEP]
rfl
[GOAL]
K : Type u₁
V : Type u₂
inst✝⁹ : CommRing K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : IsReflexive R M
f : Dual R M
g : Dual R (Dual R M)
⊢ ↑f (↑(LinearEquiv.symm (evalEquiv R M)) g) = ↑g f
[PROOFSTEP]
set m := (evalEquiv R M).symm g
[GOAL]
K : Type u₁
V : Type u₂
inst✝⁹ : CommRing K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : IsReflexive R M
f : Dual R M
g : Dual R (Dual R M)
m : M := ↑(LinearEquiv.symm (evalEquiv R M)) g
⊢ ↑f m = ↑g f
[PROOFSTEP]
rw [← (evalEquiv R M).apply_symm_apply g, evalEquiv_apply, Dual.eval_apply]
[GOAL]
K : Type u₁
V : Type u₂
inst✝⁹ : CommRing K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : IsReflexive R M
⊢ ↑(LinearEquiv.dualMap (LinearEquiv.symm (evalEquiv R M))) = Dual.eval R (Dual R M)
[PROOFSTEP]
ext
[GOAL]
case h.h
K : Type u₁
V : Type u₂
inst✝⁹ : CommRing K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : IsReflexive R M
x✝¹ : Dual R M
x✝ : Dual R (Dual R M)
⊢ ↑(↑↑(LinearEquiv.dualMap (LinearEquiv.symm (evalEquiv R M))) x✝¹) x✝ = ↑(↑(Dual.eval R (Dual R M)) x✝¹) x✝
[PROOFSTEP]
simp
[GOAL]
K : Type u₁
V : Type u₂
inst✝⁹ : CommRing K
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module K V
inst✝⁶ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : AddCommGroup M
inst✝³ : AddCommGroup N
inst✝² : Module R M
inst✝¹ : Module R N
inst✝ : IsReflexive R M
⊢ Bijective ↑(eval R (Dual R M))
[PROOFSTEP]
simpa only [← symm_dualMap_evalEquiv] using (evalEquiv R M).dualMap.symm.bijective
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsReflexive R M
inst✝ : IsReflexive R N
⊢ Bijective ↑(Dual.eval R (M × N))
[PROOFSTEP]
let e : Dual R (Dual R (M × N)) ≃ₗ[R] Dual R (Dual R M) × Dual R (Dual R N) :=
(dualProdDualEquivDual R M N).dualMap.trans (dualProdDualEquivDual R (Dual R M) (Dual R N)).symm
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsReflexive R M
inst✝ : IsReflexive R N
e : Dual R (Dual R (M × N)) ≃ₗ[R] Dual R (Dual R M) × Dual R (Dual R N) :=
LinearEquiv.trans (LinearEquiv.dualMap (dualProdDualEquivDual R M N))
(LinearEquiv.symm (dualProdDualEquivDual R (Dual R M) (Dual R N)))
⊢ Bijective ↑(Dual.eval R (M × N))
[PROOFSTEP]
have : Dual.eval R (M × N) = e.symm.comp ((Dual.eval R M).prodMap (Dual.eval R N)) := by ext m f <;> simp
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsReflexive R M
inst✝ : IsReflexive R N
e : Dual R (Dual R (M × N)) ≃ₗ[R] Dual R (Dual R M) × Dual R (Dual R N) :=
LinearEquiv.trans (LinearEquiv.dualMap (dualProdDualEquivDual R M N))
(LinearEquiv.symm (dualProdDualEquivDual R (Dual R M) (Dual R N)))
⊢ Dual.eval R (M × N) = LinearMap.comp (↑(LinearEquiv.symm e)) (prodMap (Dual.eval R M) (Dual.eval R N))
[PROOFSTEP]
ext m f
[GOAL]
case hl.h.h
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsReflexive R M
inst✝ : IsReflexive R N
e : Dual R (Dual R (M × N)) ≃ₗ[R] Dual R (Dual R M) × Dual R (Dual R N) :=
LinearEquiv.trans (LinearEquiv.dualMap (dualProdDualEquivDual R M N))
(LinearEquiv.symm (dualProdDualEquivDual R (Dual R M) (Dual R N)))
m : M
f : Dual R (M × N)
⊢ ↑(↑(LinearMap.comp (Dual.eval R (M × N)) (inl R M N)) m) f =
↑(↑(LinearMap.comp (LinearMap.comp (↑(LinearEquiv.symm e)) (prodMap (Dual.eval R M) (Dual.eval R N))) (inl R M N))
m)
f
[PROOFSTEP]
simp
[GOAL]
case hr.h.h
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsReflexive R M
inst✝ : IsReflexive R N
e : Dual R (Dual R (M × N)) ≃ₗ[R] Dual R (Dual R M) × Dual R (Dual R N) :=
LinearEquiv.trans (LinearEquiv.dualMap (dualProdDualEquivDual R M N))
(LinearEquiv.symm (dualProdDualEquivDual R (Dual R M) (Dual R N)))
m : N
f : Dual R (M × N)
⊢ ↑(↑(LinearMap.comp (Dual.eval R (M × N)) (inr R M N)) m) f =
↑(↑(LinearMap.comp (LinearMap.comp (↑(LinearEquiv.symm e)) (prodMap (Dual.eval R M) (Dual.eval R N))) (inr R M N))
m)
f
[PROOFSTEP]
simp
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsReflexive R M
inst✝ : IsReflexive R N
e : Dual R (Dual R (M × N)) ≃ₗ[R] Dual R (Dual R M) × Dual R (Dual R N) :=
LinearEquiv.trans (LinearEquiv.dualMap (dualProdDualEquivDual R M N))
(LinearEquiv.symm (dualProdDualEquivDual R (Dual R M) (Dual R N)))
this : Dual.eval R (M × N) = LinearMap.comp (↑(LinearEquiv.symm e)) (prodMap (Dual.eval R M) (Dual.eval R N))
⊢ Bijective ↑(Dual.eval R (M × N))
[PROOFSTEP]
simp only [this, LinearEquiv.trans_symm, LinearEquiv.symm_symm, LinearEquiv.dualMap_symm, coe_comp, LinearEquiv.coe_coe,
EquivLike.comp_bijective]
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : IsReflexive R M
inst✝ : IsReflexive R N
e : Dual R (Dual R (M × N)) ≃ₗ[R] Dual R (Dual R M) × Dual R (Dual R N) :=
LinearEquiv.trans (LinearEquiv.dualMap (dualProdDualEquivDual R M N))
(LinearEquiv.symm (dualProdDualEquivDual R (Dual R M) (Dual R N)))
this : Dual.eval R (M × N) = LinearMap.comp (↑(LinearEquiv.symm e)) (prodMap (Dual.eval R M) (Dual.eval R N))
⊢ Bijective ↑(prodMap (Dual.eval R M) (Dual.eval R N))
[PROOFSTEP]
exact Bijective.Prod_map (bijective_dual_eval R M) (bijective_dual_eval R N)
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ inst✝ : IsReflexive R M
e : M ≃ₗ[R] N
⊢ Bijective ↑(Dual.eval R N)
[PROOFSTEP]
let ed : Dual R (Dual R N) ≃ₗ[R] Dual R (Dual R M) := e.symm.dualMap.dualMap
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ inst✝ : IsReflexive R M
e : M ≃ₗ[R] N
ed : Dual R (Dual R N) ≃ₗ[R] Dual R (Dual R M) := LinearEquiv.dualMap (LinearEquiv.dualMap (LinearEquiv.symm e))
⊢ Bijective ↑(Dual.eval R N)
[PROOFSTEP]
have : Dual.eval R N = ed.symm.comp ((Dual.eval R M).comp e.symm.toLinearMap) :=
by
ext m f
exact FunLike.congr_arg f (e.apply_symm_apply m).symm
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ inst✝ : IsReflexive R M
e : M ≃ₗ[R] N
ed : Dual R (Dual R N) ≃ₗ[R] Dual R (Dual R M) := LinearEquiv.dualMap (LinearEquiv.dualMap (LinearEquiv.symm e))
⊢ Dual.eval R N = LinearMap.comp (↑(LinearEquiv.symm ed)) (LinearMap.comp (Dual.eval R M) ↑(LinearEquiv.symm e))
[PROOFSTEP]
ext m f
[GOAL]
case h.h
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ inst✝ : IsReflexive R M
e : M ≃ₗ[R] N
ed : Dual R (Dual R N) ≃ₗ[R] Dual R (Dual R M) := LinearEquiv.dualMap (LinearEquiv.dualMap (LinearEquiv.symm e))
m : N
f : Dual R N
⊢ ↑(↑(Dual.eval R N) m) f =
↑(↑(LinearMap.comp (↑(LinearEquiv.symm ed)) (LinearMap.comp (Dual.eval R M) ↑(LinearEquiv.symm e))) m) f
[PROOFSTEP]
exact FunLike.congr_arg f (e.apply_symm_apply m).symm
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ inst✝ : IsReflexive R M
e : M ≃ₗ[R] N
ed : Dual R (Dual R N) ≃ₗ[R] Dual R (Dual R M) := LinearEquiv.dualMap (LinearEquiv.dualMap (LinearEquiv.symm e))
this : Dual.eval R N = LinearMap.comp (↑(LinearEquiv.symm ed)) (LinearMap.comp (Dual.eval R M) ↑(LinearEquiv.symm e))
⊢ Bijective ↑(Dual.eval R N)
[PROOFSTEP]
simp only [this, LinearEquiv.trans_symm, LinearEquiv.symm_symm, LinearEquiv.dualMap_symm, coe_comp, LinearEquiv.coe_coe,
EquivLike.comp_bijective]
[GOAL]
K : Type u₁
V : Type u₂
inst✝¹⁰ : CommRing K
inst✝⁹ : AddCommGroup V
inst✝⁸ : Module K V
inst✝⁷ : Free K V
R : Type u_1
M : Type u_2
N : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : AddCommGroup M
inst✝⁴ : AddCommGroup N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ inst✝ : IsReflexive R M
e : M ≃ₗ[R] N
ed : Dual R (Dual R N) ≃ₗ[R] Dual R (Dual R M) := LinearEquiv.dualMap (LinearEquiv.dualMap (LinearEquiv.symm e))
this : Dual.eval R N = LinearMap.comp (↑(LinearEquiv.symm ed)) (LinearMap.comp (Dual.eval R M) ↑(LinearEquiv.symm e))
⊢ Bijective (↑(Dual.eval R M) ∘ ↑(LinearEquiv.symm e))
[PROOFSTEP]
refine Bijective.comp (bijective_dual_eval R M) (LinearEquiv.bijective _)
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
m : M
⊢ ∀ (a : ι), a ∈ Set.Finite.toFinset (_ : Set.Finite {i | ↑(ε i) m ≠ 0}) ↔ (fun i => ↑(ε i) m) a ≠ 0
[PROOFSTEP]
intro i
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
m : M
i : ι
⊢ i ∈ Set.Finite.toFinset (_ : Set.Finite {i | ↑(ε i) m ≠ 0}) ↔ (fun i => ↑(ε i) m) i ≠ 0
[PROOFSTEP]
rw [Set.Finite.mem_toFinset, Set.mem_setOf_eq]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
l : ι →₀ R
i : ι
⊢ ↑(ε i) (lc e l) = ↑l i
[PROOFSTEP]
erw [LinearMap.map_sum]
-- Porting note: cannot get at •
-- simp only [h.eval, map_smul, smul_eq_mul]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
l : ι →₀ R
i : ι
⊢ (Finset.sum l.support fun i_1 => ↑(ε i) ((fun i a => a • e i) i_1 (↑l i_1))) = ↑l i
[PROOFSTEP]
rw [Finset.sum_eq_single i]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
l : ι →₀ R
i : ι
⊢ ↑(ε i) ((fun i a => a • e i) i (↑l i)) = ↑l i
[PROOFSTEP]
simp [h.eval, smul_eq_mul]
[GOAL]
case h₀
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
l : ι →₀ R
i : ι
⊢ ∀ (b : ι), b ∈ l.support → b ≠ i → ↑(ε i) ((fun i a => a • e i) b (↑l b)) = 0
[PROOFSTEP]
intro q _ q_ne
[GOAL]
case h₀
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
l : ι →₀ R
i q : ι
a✝ : q ∈ l.support
q_ne : q ≠ i
⊢ ↑(ε i) ((fun i a => a • e i) q (↑l q)) = 0
[PROOFSTEP]
simp [q_ne.symm, h.eval, smul_eq_mul]
[GOAL]
case h₁
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
l : ι →₀ R
i : ι
⊢ ¬i ∈ l.support → ↑(ε i) ((fun i a => a • e i) i (↑l i)) = 0
[PROOFSTEP]
intro p_not_in
[GOAL]
case h₁
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
l : ι →₀ R
i : ι
p_not_in : ¬i ∈ l.support
⊢ ↑(ε i) ((fun i a => a • e i) i (↑l i)) = 0
[PROOFSTEP]
simp [Finsupp.not_mem_support_iff.1 p_not_in]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
l : ι →₀ R
⊢ coeffs h (lc e l) = l
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
l : ι →₀ R
i : ι
⊢ ↑(coeffs h (lc e l)) i = ↑l i
[PROOFSTEP]
rw [h.coeffs_apply, h.dual_lc]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
m : M
⊢ lc e (coeffs h m) = m
[PROOFSTEP]
refine' eq_of_sub_eq_zero (h.Total _)
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
m : M
⊢ ∀ (i : ι), ↑(ε i) (lc e (coeffs h m) - m) = 0
[PROOFSTEP]
intro i
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
m : M
i : ι
⊢ ↑(ε i) (lc e (coeffs h m) - m) = 0
[PROOFSTEP]
simp [LinearMap.map_sub, h.dual_lc, sub_eq_zero]
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
v w : M
⊢ coeffs h (v + w) = coeffs h v + coeffs h w
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
v w : M
i : ι
⊢ ↑(coeffs h (v + w)) i = ↑(coeffs h v + coeffs h w) i
[PROOFSTEP]
exact (ε i).map_add v w
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
c : R
v : M
⊢ AddHom.toFun { toFun := coeffs h, map_add' := (_ : ∀ (v w : M), coeffs h (v + w) = coeffs h v + coeffs h w) }
(c • v) =
↑(RingHom.id R) c •
AddHom.toFun { toFun := coeffs h, map_add' := (_ : ∀ (v w : M), coeffs h (v + w) = coeffs h v + coeffs h w) } v
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
c : R
v : M
i : ι
⊢ ↑(AddHom.toFun { toFun := coeffs h, map_add' := (_ : ∀ (v w : M), coeffs h (v + w) = coeffs h v + coeffs h w) }
(c • v))
i =
↑(↑(RingHom.id R) c •
AddHom.toFun { toFun := coeffs h, map_add' := (_ : ∀ (v w : M), coeffs h (v + w) = coeffs h v + coeffs h w) }
v)
i
[PROOFSTEP]
exact (ε i).map_smul c v
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
⊢ ↑(basis h) = e
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
i : ι
⊢ ↑(basis h) i = e i
[PROOFSTEP]
rw [Basis.apply_eq_iff]
[GOAL]
case h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
i : ι
⊢ ↑(basis h).repr (e i) = Finsupp.single i 1
[PROOFSTEP]
ext j
[GOAL]
case h.h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
i j : ι
⊢ ↑(↑(basis h).repr (e i)) j = ↑(Finsupp.single i 1) j
[PROOFSTEP]
rw [h.basis_repr_apply, coeffs_apply, h.eval, Finsupp.single_apply]
[GOAL]
case h.h
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
i j : ι
⊢ (if j = i then 1 else 0) = if i = j then 1 else 0
[PROOFSTEP]
convert if_congr (eq_comm (a := j) (b := i)) rfl rfl
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
H : Set ι
x : M
hmem : x ∈ Submodule.span R (e '' H)
⊢ ∀ (i : ι), ↑(ε i) x ≠ 0 → i ∈ H
[PROOFSTEP]
intro i hi
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
H : Set ι
x : M
hmem : x ∈ Submodule.span R (e '' H)
i : ι
hi : ↑(ε i) x ≠ 0
⊢ i ∈ H
[PROOFSTEP]
rcases(Finsupp.mem_span_image_iff_total _).mp hmem with ⟨l, supp_l, rfl⟩
[GOAL]
case intro.intro
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
H : Set ι
i : ι
l : ι →₀ R
supp_l : l ∈ Finsupp.supported R R H
hmem : ↑(Finsupp.total ι M R e) l ∈ Submodule.span R (e '' H)
hi : ↑(ε i) (↑(Finsupp.total ι M R e) l) ≠ 0
⊢ i ∈ H
[PROOFSTEP]
apply not_imp_comm.mp ((Finsupp.mem_supported' _ _).mp supp_l i)
[GOAL]
case intro.intro
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝³ : CommRing R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
e : ι → M
ε : ι → Dual R M
inst✝ : DecidableEq ι
h : DualBases e ε
H : Set ι
i : ι
l : ι →₀ R
supp_l : l ∈ Finsupp.supported R R H
hmem : ↑(Finsupp.total ι M R e) l ∈ Submodule.span R (e '' H)
hi : ↑(ε i) (↑(Finsupp.total ι M R e) l) ≠ 0
⊢ ¬↑l i = 0
[PROOFSTEP]
rwa [← lc_def, h.dual_lc] at hi
[GOAL]
R : Type u_1
M : Type u_2
ι : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
e : ι → M
ε : ι → Dual R M
inst✝¹ : DecidableEq ι
h : DualBases e ε
inst✝ : Fintype ι
i j : ι
⊢ ↑(↑(Basis.dualBasis (basis h)) i) (↑(basis h) j) = ↑(ε i) (↑(basis h) j)
[PROOFSTEP]
rw [h.basis.dualBasis_apply_self, h.coe_basis, h.eval, if_congr eq_comm rfl rfl]
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
φ : Module.Dual R M
⊢ φ ∈ dualAnnihilator W ↔ ∀ (w : M), w ∈ W → ↑φ w = 0
[PROOFSTEP]
refine' LinearMap.mem_ker.trans _
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
φ : Module.Dual R M
⊢ ↑(dualRestrict W) φ = 0 ↔ ∀ (w : M), w ∈ W → ↑φ w = 0
[PROOFSTEP]
simp_rw [LinearMap.ext_iff, dualRestrict_apply]
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
φ : Module.Dual R M
⊢ (∀ (x : { x // x ∈ W }), ↑φ ↑x = ↑0 x) ↔ ∀ (w : M), w ∈ W → ↑φ w = 0
[PROOFSTEP]
exact ⟨fun h w hw => h ⟨w, hw⟩, fun h w => h w.1 w.2⟩
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
Φ : Submodule R (Module.Dual R M)
x : M
⊢ x ∈ dualCoannihilator Φ ↔ ∀ (φ : Module.Dual R M), φ ∈ Φ → ↑φ x = 0
[PROOFSTEP]
simp_rw [dualCoannihilator, mem_comap, mem_dualAnnihilator, Module.Dual.eval_apply]
[GOAL]
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
⊢ GaloisConnection (↑OrderDual.toDual ∘ dualAnnihilator) (dualCoannihilator ∘ ↑OrderDual.ofDual)
[PROOFSTEP]
intro a b
[GOAL]
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
b : (Submodule R (Module.Dual R M))ᵒᵈ
⊢ (↑OrderDual.toDual ∘ dualAnnihilator) a ≤ b ↔ a ≤ (dualCoannihilator ∘ ↑OrderDual.ofDual) b
[PROOFSTEP]
induction b using OrderDual.rec
[GOAL]
case h₂
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
⊢ (↑OrderDual.toDual ∘ dualAnnihilator) a ≤ ↑OrderDual.toDual a✝ ↔
a ≤ (dualCoannihilator ∘ ↑OrderDual.ofDual) (↑OrderDual.toDual a✝)
[PROOFSTEP]
simp only [Function.comp_apply, OrderDual.toDual_le_toDual, OrderDual.ofDual_toDual]
[GOAL]
case h₂
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
⊢ a✝ ≤ dualAnnihilator a ↔ a ≤ dualCoannihilator a✝
[PROOFSTEP]
constructor
[GOAL]
case h₂.mp
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
⊢ a✝ ≤ dualAnnihilator a → a ≤ dualCoannihilator a✝
[PROOFSTEP]
intro h x hx
[GOAL]
case h₂.mp
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a✝ ≤ dualAnnihilator a
x : M
hx : x ∈ a
⊢ x ∈ dualCoannihilator a✝
[PROOFSTEP]
simp only [mem_dualAnnihilator, mem_dualCoannihilator]
[GOAL]
case h₂.mp
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a✝ ≤ dualAnnihilator a
x : M
hx : x ∈ a
⊢ ∀ (φ : Module.Dual R M), φ ∈ a✝ → ↑φ x = 0
[PROOFSTEP]
intro y hy
[GOAL]
case h₂.mp
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a✝ ≤ dualAnnihilator a
x : M
hx : x ∈ a
y : Module.Dual R M
hy : y ∈ a✝
⊢ ↑y x = 0
[PROOFSTEP]
have := h hy
[GOAL]
case h₂.mp
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a✝ ≤ dualAnnihilator a
x : M
hx : x ∈ a
y : Module.Dual R M
hy : y ∈ a✝
this : y ∈ dualAnnihilator a
⊢ ↑y x = 0
[PROOFSTEP]
simp only [mem_dualAnnihilator, mem_dualCoannihilator] at this
[GOAL]
case h₂.mp
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a✝ ≤ dualAnnihilator a
x : M
hx : x ∈ a
y : Module.Dual R M
hy : y ∈ a✝
this : ∀ (w : M), w ∈ a → ↑y w = 0
⊢ ↑y x = 0
[PROOFSTEP]
exact this x hx
[GOAL]
case h₂.mpr
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
⊢ a ≤ dualCoannihilator a✝ → a✝ ≤ dualAnnihilator a
[PROOFSTEP]
intro h x hx
[GOAL]
case h₂.mpr
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a ≤ dualCoannihilator a✝
x : Module.Dual R M
hx : x ∈ a✝
⊢ x ∈ dualAnnihilator a
[PROOFSTEP]
simp only [mem_dualAnnihilator, mem_dualCoannihilator]
[GOAL]
case h₂.mpr
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a ≤ dualCoannihilator a✝
x : Module.Dual R M
hx : x ∈ a✝
⊢ ∀ (w : M), w ∈ a → ↑x w = 0
[PROOFSTEP]
intro y hy
[GOAL]
case h₂.mpr
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a ≤ dualCoannihilator a✝
x : Module.Dual R M
hx : x ∈ a✝
y : M
hy : y ∈ a
⊢ ↑x y = 0
[PROOFSTEP]
have := h hy
[GOAL]
case h₂.mpr
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a ≤ dualCoannihilator a✝
x : Module.Dual R M
hx : x ∈ a✝
y : M
hy : y ∈ a
this : y ∈ dualCoannihilator a✝
⊢ ↑x y = 0
[PROOFSTEP]
simp only [mem_dualAnnihilator, mem_dualCoannihilator] at this
[GOAL]
case h₂.mpr
R✝ : Type u
M✝ : Type v
inst✝⁵ : CommSemiring R✝
inst✝⁴ : AddCommMonoid M✝
inst✝³ : Module R✝ M✝
W : Submodule R✝ M✝
R : Type u_1
M : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
a : Submodule R M
a✝ : Submodule R (Module.Dual R M)
h : a ≤ dualCoannihilator a✝
x : Module.Dual R M
hx : x ∈ a✝
y : M
hy : y ∈ a
this : ∀ (φ : Module.Dual R M), φ ∈ a✝ → ↑φ y = 0
⊢ ↑x y = 0
[PROOFSTEP]
exact this x hx
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
⊢ dualAnnihilator ⊤ = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
⊢ dualAnnihilator ⊤ ≤ ⊥
[PROOFSTEP]
intro v
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
v : Module.Dual R M
⊢ v ∈ dualAnnihilator ⊤ → v ∈ ⊥
[PROOFSTEP]
simp_rw [mem_dualAnnihilator, mem_bot, mem_top, forall_true_left]
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
v : Module.Dual R M
⊢ (∀ (w : M), ↑v w = 0) → v = 0
[PROOFSTEP]
exact fun h => LinearMap.ext h
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W U V : Submodule R M
⊢ dualAnnihilator U ⊔ dualAnnihilator V ≤ dualAnnihilator (U ⊓ V)
[PROOFSTEP]
rw [le_dualAnnihilator_iff_le_dualCoannihilator, dualCoannihilator_sup_eq]
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W U V : Submodule R M
⊢ U ⊓ V ≤ dualCoannihilator (dualAnnihilator U) ⊓ dualCoannihilator (dualAnnihilator V)
[PROOFSTEP]
apply inf_le_inf
[GOAL]
case h₁
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W U V : Submodule R M
⊢ U ≤ dualCoannihilator (dualAnnihilator U)
[PROOFSTEP]
exact le_dualAnnihilator_dualCoannihilator _
[GOAL]
case h₂
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W U V : Submodule R M
⊢ V ≤ dualCoannihilator (dualAnnihilator V)
[PROOFSTEP]
exact le_dualAnnihilator_dualCoannihilator _
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
ι : Type u_1
U : ι → Submodule R M
⊢ ⨆ (i : ι), dualAnnihilator (U i) ≤ dualAnnihilator (⨅ (i : ι), U i)
[PROOFSTEP]
rw [le_dualAnnihilator_iff_le_dualCoannihilator, dualCoannihilator_iSup_eq]
[GOAL]
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
ι : Type u_1
U : ι → Submodule R M
⊢ ⨅ (i : ι), U i ≤ ⨅ (i : ι), dualCoannihilator (dualAnnihilator (U i))
[PROOFSTEP]
apply iInf_mono
[GOAL]
case h
R : Type u
M : Type v
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
W : Submodule R M
ι : Type u_1
U : ι → Submodule R M
⊢ ∀ (i : ι), U i ≤ dualCoannihilator (dualAnnihilator (U i))
[PROOFSTEP]
exact fun i : ι => le_dualAnnihilator_dualCoannihilator (U i)
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
⊢ dualCoannihilator ⊤ = ⊥
[PROOFSTEP]
rw [dualCoannihilator, dualAnnihilator_top, comap_bot, Module.eval_ker]
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
⊢ dualCoannihilator (dualAnnihilator W) = W
[PROOFSTEP]
refine' le_antisymm _ (le_dualAnnihilator_dualCoannihilator _)
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
⊢ dualCoannihilator (dualAnnihilator W) ≤ W
[PROOFSTEP]
intro v
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
v : V
⊢ v ∈ dualCoannihilator (dualAnnihilator W) → v ∈ W
[PROOFSTEP]
simp only [mem_dualAnnihilator, mem_dualCoannihilator]
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
v : V
⊢ (∀ (φ : Module.Dual K V), (∀ (w : V), w ∈ W → ↑φ w = 0) → ↑φ v = 0) → v ∈ W
[PROOFSTEP]
contrapose!
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
v : V
⊢ ¬v ∈ W → ∃ φ, (∀ (w : V), w ∈ W → ↑φ w = 0) ∧ ↑φ v ≠ 0
[PROOFSTEP]
intro hv
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
v : V
hv : ¬v ∈ W
⊢ ∃ φ, (∀ (w : V), w ∈ W → ↑φ w = 0) ∧ ↑φ v ≠ 0
[PROOFSTEP]
obtain ⟨W', hW⟩ := Submodule.exists_isCompl W
[GOAL]
case intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
v : V
hv : ¬v ∈ W
W' : Submodule K V
hW : IsCompl W W'
⊢ ∃ φ, (∀ (w : V), w ∈ W → ↑φ w = 0) ∧ ↑φ v ≠ 0
[PROOFSTEP]
obtain ⟨⟨w, w'⟩, rfl, -⟩ := existsUnique_add_of_isCompl_prod hW v
[GOAL]
case intro.intro.mk.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
⊢ ∃ φ, (∀ (w : V), w ∈ W → ↑φ w = 0) ∧ ↑φ (↑(w, w').fst + ↑(w, w').snd) ≠ 0
[PROOFSTEP]
have hw'n : (w' : V) ∉ W := by
contrapose! hv
exact Submodule.add_mem W w.2 hv
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
⊢ ¬↑w' ∈ W
[PROOFSTEP]
contrapose! hv
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ↑w' ∈ W
⊢ ↑w + ↑w' ∈ W
[PROOFSTEP]
exact Submodule.add_mem W w.2 hv
[GOAL]
case intro.intro.mk.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
⊢ ∃ φ, (∀ (w : V), w ∈ W → ↑φ w = 0) ∧ ↑φ (↑(w, w').fst + ↑(w, w').snd) ≠ 0
[PROOFSTEP]
have hw'nz : w' ≠ 0 := by
rintro rfl
exact hw'n (Submodule.zero_mem W)
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
⊢ w' ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
hv : ¬↑(w, 0).fst + ↑(w, 0).snd ∈ W
hw'n : ¬↑0 ∈ W
⊢ False
[PROOFSTEP]
exact hw'n (Submodule.zero_mem W)
[GOAL]
case intro.intro.mk.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
hw'nz : w' ≠ 0
⊢ ∃ φ, (∀ (w : V), w ∈ W → ↑φ w = 0) ∧ ↑φ (↑(w, w').fst + ↑(w, w').snd) ≠ 0
[PROOFSTEP]
rw [Ne.def, ← Module.forall_dual_apply_eq_zero_iff K w'] at hw'nz
[GOAL]
case intro.intro.mk.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
hw'nz : ¬∀ (φ : Module.Dual K { x // x ∈ W' }), ↑φ w' = 0
⊢ ∃ φ, (∀ (w : V), w ∈ W → ↑φ w = 0) ∧ ↑φ (↑(w, w').fst + ↑(w, w').snd) ≠ 0
[PROOFSTEP]
push_neg at hw'nz
[GOAL]
case intro.intro.mk.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
hw'nz : ∃ φ, ↑φ w' ≠ 0
⊢ ∃ φ, (∀ (w : V), w ∈ W → ↑φ w = 0) ∧ ↑φ (↑(w, w').fst + ↑(w, w').snd) ≠ 0
[PROOFSTEP]
obtain ⟨φ, hφ⟩ := hw'nz
[GOAL]
case intro.intro.mk.intro.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
φ : Module.Dual K { x // x ∈ W' }
hφ : ↑φ w' ≠ 0
⊢ ∃ φ, (∀ (w : V), w ∈ W → ↑φ w = 0) ∧ ↑φ (↑(w, w').fst + ↑(w, w').snd) ≠ 0
[PROOFSTEP]
exists ((LinearMap.ofIsComplProd hW).comp (LinearMap.inr _ _ _)) φ
[GOAL]
case intro.intro.mk.intro.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
φ : Module.Dual K { x // x ∈ W' }
hφ : ↑φ w' ≠ 0
⊢ (∀ (w : V),
w ∈ W → ↑(↑(comp (ofIsComplProd hW) (inr K ({ x // x ∈ W } →ₗ[K] K) ({ x // x ∈ W' } →ₗ[K] K))) φ) w = 0) ∧
↑(↑(comp (ofIsComplProd hW) (inr K ({ x // x ∈ W } →ₗ[K] K) ({ x // x ∈ W' } →ₗ[K] K))) φ)
(↑(w, w').fst + ↑(w, w').snd) ≠
0
[PROOFSTEP]
simp only [coe_comp, coe_inr, Function.comp_apply, ofIsComplProd_apply, map_add, ofIsCompl_left_apply, zero_apply,
ofIsCompl_right_apply, zero_add, Ne.def]
[GOAL]
case intro.intro.mk.intro.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
φ : Module.Dual K { x // x ∈ W' }
hφ : ↑φ w' ≠ 0
⊢ (∀ (w : V), w ∈ W → ↑(ofIsCompl hW 0 φ) w = 0) ∧ ¬↑φ w' = 0
[PROOFSTEP]
refine' ⟨_, hφ⟩
[GOAL]
case intro.intro.mk.intro.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
φ : Module.Dual K { x // x ∈ W' }
hφ : ↑φ w' ≠ 0
⊢ ∀ (w : V), w ∈ W → ↑(ofIsCompl hW 0 φ) w = 0
[PROOFSTEP]
intro v hv
[GOAL]
case intro.intro.mk.intro.intro
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
W' : Submodule K V
hW : IsCompl W W'
w : { x // x ∈ W }
w' : { x // x ∈ W' }
hv✝ : ¬↑(w, w').fst + ↑(w, w').snd ∈ W
hw'n : ¬↑w' ∈ W
φ : Module.Dual K { x // x ∈ W' }
hφ : ↑φ w' ≠ 0
v : V
hv : v ∈ W
⊢ ↑(ofIsCompl hW 0 φ) v = 0
[PROOFSTEP]
apply LinearMap.ofIsCompl_left_apply hW ⟨v, hv⟩
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
v : V
⊢ (∀ (φ : Module.Dual K V), φ ∈ dualAnnihilator W → ↑φ v = 0) ↔ v ∈ W
[PROOFSTEP]
rw [← SetLike.ext_iff.mp dualAnnihilator_dualCoannihilator_eq v, mem_dualCoannihilator]
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W W' : Subspace K V
⊢ dualAnnihilator W = dualAnnihilator W' ↔ W = W'
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W W' : Subspace K V
⊢ dualAnnihilator W = dualAnnihilator W' → W = W'
[PROOFSTEP]
apply (dualAnnihilatorGci K V).l_injective
[GOAL]
case mpr
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W W' : Subspace K V
⊢ W = W' → dualAnnihilator W = dualAnnihilator W'
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
⊢ dualAnnihilator W = dualAnnihilator W
[PROOFSTEP]
rfl
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
φ : Module.Dual K { x // x ∈ W }
w : { x // x ∈ W }
⊢ ↑(↑(dualLift W) φ) ↑w = ↑φ w
[PROOFSTEP]
erw [ofIsCompl_left_apply _ w]
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
φ : Module.Dual K { x // x ∈ W }
w : { x // x ∈ W }
⊢ ↑(↑(inl K (Module.Dual K { x // x ∈ W })
({ x // x ∈ ↑(Classical.indefiniteDescription (fun x => IsCompl W x) (_ : ∃ q, IsCompl W q)) } →ₗ[K] K))
φ).fst
w =
↑φ w
[PROOFSTEP]
rfl
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W : Subspace K V
φ : Module.Dual K { x // x ∈ W }
w : V
hw : w ∈ W
⊢ ↑(↑(dualLift W) φ) w = ↑φ { val := w, property := hw }
[PROOFSTEP]
convert dualLift_of_subtype ⟨w, hw⟩
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W✝ W : Subspace K V
⊢ comp (dualRestrict W) (dualLift W) = 1
[PROOFSTEP]
ext φ x
[GOAL]
case h.h
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W✝ W : Subspace K V
φ : Module.Dual K { x // x ∈ W }
x : { x // x ∈ W }
⊢ ↑(↑(comp (dualRestrict W) (dualLift W)) φ) x = ↑(↑1 φ) x
[PROOFSTEP]
simp
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W✝ W : Subspace K V
x : Module.Dual K { x // x ∈ W }
⊢ ↑(comp (dualRestrict W) (dualLift W)) x = x
[PROOFSTEP]
rw [dualRestrict_comp_dualLift]
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W✝ W : Subspace K V
x : Module.Dual K { x // x ∈ W }
⊢ ↑1 x = x
[PROOFSTEP]
rfl
[GOAL]
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W✝ W : Subspace K V
φ : Module.Dual K V
⊢ ↑(quotAnnihilatorEquiv W) (Submodule.Quotient.mk φ) = ↑(dualRestrict W) φ
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u
V : Type v
inst✝² : Field K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
W✝ W : Subspace K V
φ : Module.Dual K V
x✝ : { x // x ∈ W }
⊢ ↑(↑(quotAnnihilatorEquiv W) (Submodule.Quotient.mk φ)) x✝ = ↑(↑(dualRestrict W) φ) x✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
V : Type v
inst✝⁴ : Field K
inst✝³ : AddCommGroup V
inst✝² : Module K V
W : Subspace K V
V₁ : Type u_1
inst✝¹ : AddCommGroup V₁
inst✝ : Module K V₁
H : FiniteDimensional K V
⊢ FiniteDimensional K (Module.Dual K V)
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W✝ : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
W : Subspace K V
⊢ dualAnnihilator (dualAnnihilator W) = ↑(Module.mapEvalEquiv K V) W
[PROOFSTEP]
have : _ = W := Subspace.dualAnnihilator_dualCoannihilator_eq
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W✝ : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
W : Subspace K V
this : dualCoannihilator (dualAnnihilator W) = W
⊢ dualAnnihilator (dualAnnihilator W) = ↑(Module.mapEvalEquiv K V) W
[PROOFSTEP]
rw [dualCoannihilator, ← Module.mapEvalEquiv_symm_apply] at this
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W✝ : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
W : Subspace K V
this : ↑(OrderIso.symm (Module.mapEvalEquiv K V)) (dualAnnihilator (dualAnnihilator W)) = W
⊢ dualAnnihilator (dualAnnihilator W) = ↑(Module.mapEvalEquiv K V) W
[PROOFSTEP]
rwa [← OrderIso.symm_apply_eq]
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
⊢ finrank K (Module.Dual K V) = finrank K V
[PROOFSTEP]
classical exact LinearEquiv.finrank_eq (Basis.ofVectorSpace K V).toDualEquiv.symm
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
⊢ finrank K (Module.Dual K V) = finrank K V
[PROOFSTEP]
exact LinearEquiv.finrank_eq (Basis.ofVectorSpace K V).toDualEquiv.symm
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
Φ : Subspace K (Module.Dual K V)
⊢ finrank K { x // x ∈ dualCoannihilator Φ } = finrank K { x // x ∈ dualAnnihilator Φ }
[PROOFSTEP]
rw [Submodule.dualCoannihilator, ← Module.evalEquiv_toLinearMap]
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
Φ : Subspace K (Module.Dual K V)
⊢ finrank K { x // x ∈ comap (↑(Module.evalEquiv K V)) (dualAnnihilator Φ) } = finrank K { x // x ∈ dualAnnihilator Φ }
[PROOFSTEP]
exact LinearEquiv.finrank_eq (LinearEquiv.ofSubmodule' _ _)
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W✝ : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
W : Subspace K (Module.Dual K V)
⊢ finrank K { x // x ∈ W } + finrank K { x // x ∈ dualCoannihilator W } = finrank K V
[PROOFSTEP]
rw [finrank_dualCoannihilator_eq]
-- Porting note: LinearEquiv.finrank_eq needs help
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W✝ : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
W : Subspace K (Module.Dual K V)
⊢ finrank K { x // x ∈ W } + finrank K { x // x ∈ dualAnnihilator W } = finrank K V
[PROOFSTEP]
let equiv := W.quotEquivAnnihilator
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W✝ : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
W : Subspace K (Module.Dual K V)
equiv : (Module.Dual K V ⧸ W) ≃ₗ[K] { x // x ∈ dualAnnihilator W } := quotEquivAnnihilator W
⊢ finrank K { x // x ∈ W } + finrank K { x // x ∈ dualAnnihilator W } = finrank K V
[PROOFSTEP]
have eq := LinearEquiv.finrank_eq (R := K) (M := (Module.Dual K V) ⧸ W) (M₂ := { x // x ∈ dualAnnihilator W }) equiv
[GOAL]
K : Type u
V : Type v
inst✝⁶ : Field K
inst✝⁵ : AddCommGroup V
inst✝⁴ : Module K V
W✝ : Subspace K V
V₁ : Type u_1
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : FiniteDimensional K V
inst✝ : FiniteDimensional K V₁
W : Subspace K (Module.Dual K V)
equiv : (Module.Dual K V ⧸ W) ≃ₗ[K] { x // x ∈ dualAnnihilator W } := quotEquivAnnihilator W
eq : finrank K (Module.Dual K V ⧸ W) = finrank K { x // x ∈ dualAnnihilator W }
⊢ finrank K { x // x ∈ W } + finrank K { x // x ∈ dualAnnihilator W } = finrank K V
[PROOFSTEP]
rw [eq.symm, add_comm, Submodule.finrank_quotient_add_finrank, Subspace.dual_finrank_eq]
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
⊢ ker (dualMap f) = Submodule.dualAnnihilator (range f)
[PROOFSTEP]
ext φ
[GOAL]
case h
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
⊢ φ ∈ ker (dualMap f) ↔ φ ∈ Submodule.dualAnnihilator (range f)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
⊢ φ ∈ ker (dualMap f) → φ ∈ Submodule.dualAnnihilator (range f)
[PROOFSTEP]
intro hφ
[GOAL]
case h.mpr
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
⊢ φ ∈ Submodule.dualAnnihilator (range f) → φ ∈ ker (dualMap f)
[PROOFSTEP]
intro hφ
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
hφ : φ ∈ ker (dualMap f)
⊢ φ ∈ Submodule.dualAnnihilator (range f)
[PROOFSTEP]
rw [mem_ker] at hφ
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
hφ : ↑(dualMap f) φ = 0
⊢ φ ∈ Submodule.dualAnnihilator (range f)
[PROOFSTEP]
rw [Submodule.mem_dualAnnihilator]
[GOAL]
case h.mp
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
hφ : ↑(dualMap f) φ = 0
⊢ ∀ (w : M₂), w ∈ range f → ↑φ w = 0
[PROOFSTEP]
rintro y ⟨x, rfl⟩
[GOAL]
case h.mp.intro
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
hφ : ↑(dualMap f) φ = 0
x : M₁
⊢ ↑φ (↑f x) = 0
[PROOFSTEP]
rw [← dualMap_apply, hφ, zero_apply]
[GOAL]
case h.mpr
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
hφ : φ ∈ Submodule.dualAnnihilator (range f)
⊢ φ ∈ ker (dualMap f)
[PROOFSTEP]
ext x
[GOAL]
case h.mpr.h
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
hφ : φ ∈ Submodule.dualAnnihilator (range f)
x : M₁
⊢ ↑(↑(dualMap f) φ) x = ↑0 x
[PROOFSTEP]
rw [dualMap_apply]
[GOAL]
case h.mpr.h
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
hφ : φ ∈ Submodule.dualAnnihilator (range f)
x : M₁
⊢ ↑φ (↑f x) = ↑0 x
[PROOFSTEP]
rw [Submodule.mem_dualAnnihilator] at hφ
[GOAL]
case h.mpr.h
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
φ : Dual R M₂
hφ : ∀ (w : M₂), w ∈ range f → ↑φ w = 0
x : M₁
⊢ ↑φ (↑f x) = ↑0 x
[PROOFSTEP]
exact hφ (f x) ⟨x, rfl⟩
[GOAL]
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
⊢ range (dualMap f) ≤ Submodule.dualAnnihilator (ker f)
[PROOFSTEP]
rintro _ ⟨ψ, rfl⟩
[GOAL]
case intro
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
ψ : Dual R M₂
⊢ ↑(dualMap f) ψ ∈ Submodule.dualAnnihilator (ker f)
[PROOFSTEP]
simp_rw [Submodule.mem_dualAnnihilator, mem_ker]
[GOAL]
case intro
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
ψ : Dual R M₂
⊢ ∀ (w : M₁), ↑f w = 0 → ↑(↑(dualMap f) ψ) w = 0
[PROOFSTEP]
rintro x hx
[GOAL]
case intro
R : Type u
inst✝⁴ : CommSemiring R
M₁ : Type v
M₂ : Type v'
inst✝³ : AddCommMonoid M₁
inst✝² : Module R M₁
inst✝¹ : AddCommMonoid M₂
inst✝ : Module R M₂
f : M₁ →ₗ[R] M₂
ψ : Dual R M₂
x : M₁
hx : ↑f x = 0
⊢ ↑(↑(dualMap f) ψ) x = 0
[PROOFSTEP]
rw [dualMap_apply, hx, map_zero]
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
⊢ W ≤ LinearMap.ker (LinearMap.flip (LinearMap.domRestrict (dualPairing R M) (dualAnnihilator W)))
[PROOFSTEP]
intro w hw
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
w : M
hw : w ∈ W
⊢ w ∈ LinearMap.ker (LinearMap.flip (LinearMap.domRestrict (dualPairing R M) (dualAnnihilator W)))
[PROOFSTEP]
ext ⟨φ, hφ⟩
[GOAL]
case h.mk
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
w : M
hw : w ∈ W
φ : Dual R M
hφ : φ ∈ dualAnnihilator W
⊢ ↑(↑(LinearMap.flip (LinearMap.domRestrict (dualPairing R M) (dualAnnihilator W))) w) { val := φ, property := hφ } =
↑0 { val := φ, property := hφ }
[PROOFSTEP]
exact (mem_dualAnnihilator φ).mp hφ w hw
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
φ ψ : { x // x ∈ dualAnnihilator W }
h : (fun φ => ↑↑φ) φ = (fun φ => ↑↑φ) ψ
⊢ φ = ψ
[PROOFSTEP]
ext
[GOAL]
case a.h
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
φ ψ : { x // x ∈ dualAnnihilator W }
h : (fun φ => ↑↑φ) φ = (fun φ => ↑↑φ) ψ
x✝ : M
⊢ ↑↑φ x✝ = ↑↑ψ x✝
[PROOFSTEP]
simp only [Function.funext_iff] at h
[GOAL]
case a.h
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
φ ψ : { x // x ∈ dualAnnihilator W }
x✝ : M
h : ∀ (a : M), ↑↑φ a = ↑↑ψ a
⊢ ↑↑φ x✝ = ↑↑ψ x✝
[PROOFSTEP]
exact h _
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
⊢ LinearMap.range (LinearMap.dualMap (mkQ W)) = dualAnnihilator W
[PROOFSTEP]
ext φ
[GOAL]
case h
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
φ : Dual R M
⊢ φ ∈ LinearMap.range (LinearMap.dualMap (mkQ W)) ↔ φ ∈ dualAnnihilator W
[PROOFSTEP]
rw [LinearMap.mem_range]
[GOAL]
case h
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
φ : Dual R M
⊢ (∃ y, ↑(LinearMap.dualMap (mkQ W)) y = φ) ↔ φ ∈ dualAnnihilator W
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
φ : Dual R M
⊢ (∃ y, ↑(LinearMap.dualMap (mkQ W)) y = φ) → φ ∈ dualAnnihilator W
[PROOFSTEP]
rintro ⟨ψ, rfl⟩
[GOAL]
case h.mp.intro
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
ψ : Dual R (M ⧸ W)
⊢ ↑(LinearMap.dualMap (mkQ W)) ψ ∈ dualAnnihilator W
[PROOFSTEP]
have := LinearMap.mem_range_self W.mkQ.dualMap ψ
[GOAL]
case h.mp.intro
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
ψ : Dual R (M ⧸ W)
this : ↑(LinearMap.dualMap (mkQ W)) ψ ∈ LinearMap.range (LinearMap.dualMap (mkQ W))
⊢ ↑(LinearMap.dualMap (mkQ W)) ψ ∈ dualAnnihilator W
[PROOFSTEP]
simpa only [ker_mkQ] using LinearMap.range_dualMap_le_dualAnnihilator_ker W.mkQ this
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
φ : Dual R M
⊢ φ ∈ dualAnnihilator W → ∃ y, ↑(LinearMap.dualMap (mkQ W)) y = φ
[PROOFSTEP]
intro hφ
[GOAL]
case h.mpr
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
φ : Dual R M
hφ : φ ∈ dualAnnihilator W
⊢ ∃ y, ↑(LinearMap.dualMap (mkQ W)) y = φ
[PROOFSTEP]
exists W.dualCopairing ⟨φ, hφ⟩
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
⊢ LinearMap.comp
(LinearMap.codRestrict (dualAnnihilator W) (LinearMap.dualMap (mkQ W))
(_ : ∀ (φ : Dual R (M ⧸ W)), ↑(LinearMap.dualMap (mkQ W)) φ ∈ dualAnnihilator W))
(dualCopairing W) =
LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case h.a.h
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
x✝¹ : { x // x ∈ dualAnnihilator W }
x✝ : M
⊢ ↑↑(↑(LinearMap.comp
(LinearMap.codRestrict (dualAnnihilator W) (LinearMap.dualMap (mkQ W))
(_ : ∀ (φ : Dual R (M ⧸ W)), ↑(LinearMap.dualMap (mkQ W)) φ ∈ dualAnnihilator W))
(dualCopairing W))
x✝¹)
x✝ =
↑↑(↑LinearMap.id x✝¹) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
⊢ LinearMap.comp (dualCopairing W)
(LinearMap.codRestrict (dualAnnihilator W) (LinearMap.dualMap (mkQ W))
(_ : ∀ (φ : Dual R (M ⧸ W)), ↑(LinearMap.dualMap (mkQ W)) φ ∈ dualAnnihilator W)) =
LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case h.h.h
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
W : Submodule R M
x✝¹ : Dual R (M ⧸ W)
x✝ : M
⊢ ↑(LinearMap.comp
(↑(LinearMap.comp (dualCopairing W)
(LinearMap.codRestrict (dualAnnihilator W) (LinearMap.dualMap (mkQ W))
(_ : ∀ (φ : Dual R (M ⧸ W)), ↑(LinearMap.dualMap (mkQ W)) φ ∈ dualAnnihilator W)))
x✝¹)
(mkQ W))
x✝ =
↑(LinearMap.comp (↑LinearMap.id x✝¹) (mkQ W)) x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑f
⊢ range (dualMap f) = dualAnnihilator (ker f)
[PROOFSTEP]
rw [← f.ker.range_dualMap_mkQ_eq]
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑f
⊢ range (dualMap f) = range (dualMap (mkQ (ker f)))
[PROOFSTEP]
let f' := LinearMap.quotKerEquivOfSurjective f hf
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑f
f' : (M ⧸ ker f) ≃ₗ[R] M' := quotKerEquivOfSurjective f hf
⊢ range (dualMap f) = range (dualMap (mkQ (ker f)))
[PROOFSTEP]
trans LinearMap.range (f.dualMap.comp f'.symm.dualMap.toLinearMap)
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑f
f' : (M ⧸ ker f) ≃ₗ[R] M' := quotKerEquivOfSurjective f hf
⊢ range (dualMap f) = range (comp (dualMap f) ↑(LinearEquiv.dualMap (LinearEquiv.symm f')))
[PROOFSTEP]
rw [LinearMap.range_comp_of_range_eq_top]
[GOAL]
case hf
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑f
f' : (M ⧸ ker f) ≃ₗ[R] M' := quotKerEquivOfSurjective f hf
⊢ range ↑(LinearEquiv.dualMap (LinearEquiv.symm f')) = ⊤
[PROOFSTEP]
apply LinearEquiv.range
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑f
f' : (M ⧸ ker f) ≃ₗ[R] M' := quotKerEquivOfSurjective f hf
⊢ range (comp (dualMap f) ↑(LinearEquiv.dualMap (LinearEquiv.symm f'))) = range (dualMap (mkQ (ker f)))
[PROOFSTEP]
apply congr_arg
[GOAL]
case h
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑f
f' : (M ⧸ ker f) ≃ₗ[R] M' := quotKerEquivOfSurjective f hf
⊢ comp (dualMap f) ↑(LinearEquiv.dualMap (LinearEquiv.symm f')) = dualMap (mkQ (ker f))
[PROOFSTEP]
ext φ x
[GOAL]
case h.h.h
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑f
f' : (M ⧸ ker f) ≃ₗ[R] M' := quotKerEquivOfSurjective f hf
φ : Dual R (M ⧸ ker f)
x : M
⊢ ↑(↑(comp (dualMap f) ↑(LinearEquiv.dualMap (LinearEquiv.symm f'))) φ) x = ↑(↑(dualMap (mkQ (ker f))) φ) x
[PROOFSTEP]
simp only [LinearMap.coe_comp, LinearEquiv.coe_toLinearMap, LinearMap.dualMap_apply, LinearEquiv.dualMap_apply,
mkQ_apply, LinearMap.quotKerEquivOfSurjective, LinearEquiv.trans_symm, LinearEquiv.trans_apply,
LinearEquiv.ofTop_symm_apply, LinearMap.quotKerEquivRange_symm_apply_image, mkQ_apply, Function.comp]
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑(dualMap (Submodule.subtype (range f)))
⊢ range (dualMap f) = dualAnnihilator (ker f)
[PROOFSTEP]
have rr_surj : Function.Surjective f.rangeRestrict := by rw [← LinearMap.range_eq_top, LinearMap.range_rangeRestrict]
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑(dualMap (Submodule.subtype (range f)))
⊢ Function.Surjective ↑(rangeRestrict f)
[PROOFSTEP]
rw [← LinearMap.range_eq_top, LinearMap.range_rangeRestrict]
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑(dualMap (Submodule.subtype (range f)))
rr_surj : Function.Surjective ↑(rangeRestrict f)
⊢ range (dualMap f) = dualAnnihilator (ker f)
[PROOFSTEP]
have := range_dualMap_eq_dualAnnihilator_ker_of_surjective f.rangeRestrict rr_surj
[GOAL]
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑(dualMap (Submodule.subtype (range f)))
rr_surj : Function.Surjective ↑(rangeRestrict f)
this : range (dualMap (rangeRestrict f)) = dualAnnihilator (ker (rangeRestrict f))
⊢ range (dualMap f) = dualAnnihilator (ker f)
[PROOFSTEP]
convert this using 1
-- Porting note: broken dot notation lean4#1910
[GOAL]
case h.e'_2
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑(dualMap (Submodule.subtype (range f)))
rr_surj : Function.Surjective ↑(rangeRestrict f)
this : range (dualMap (rangeRestrict f)) = dualAnnihilator (ker (rangeRestrict f))
⊢ range (dualMap f) = range (dualMap (rangeRestrict f))
[PROOFSTEP]
change LinearMap.range ((Submodule.subtype <| LinearMap.range f).comp f.rangeRestrict).dualMap = _
[GOAL]
case h.e'_2
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑(dualMap (Submodule.subtype (range f)))
rr_surj : Function.Surjective ↑(rangeRestrict f)
this : range (dualMap (rangeRestrict f)) = dualAnnihilator (ker (rangeRestrict f))
⊢ range (dualMap (comp (Submodule.subtype (range f)) (rangeRestrict f))) = range (dualMap (rangeRestrict f))
[PROOFSTEP]
rw [← LinearMap.dualMap_comp_dualMap, LinearMap.range_comp_of_range_eq_top]
[GOAL]
case h.e'_2.hf
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑(dualMap (Submodule.subtype (range f)))
rr_surj : Function.Surjective ↑(rangeRestrict f)
this : range (dualMap (rangeRestrict f)) = dualAnnihilator (ker (rangeRestrict f))
⊢ range (dualMap (Submodule.subtype (range f))) = ⊤
[PROOFSTEP]
rwa [LinearMap.range_eq_top]
[GOAL]
case h.e'_3
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑(dualMap (Submodule.subtype (range f)))
rr_surj : Function.Surjective ↑(rangeRestrict f)
this : range (dualMap (rangeRestrict f)) = dualAnnihilator (ker (rangeRestrict f))
⊢ dualAnnihilator (ker f) = dualAnnihilator (ker (rangeRestrict f))
[PROOFSTEP]
apply congr_arg
[GOAL]
case h.e'_3.h
R : Type u_1
M : Type u_2
M' : Type u_3
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : AddCommGroup M'
inst✝ : Module R M'
f : M →ₗ[R] M'
hf : Function.Surjective ↑(dualMap (Submodule.subtype (range f)))
rr_surj : Function.Surjective ↑(rangeRestrict f)
this : range (dualMap (rangeRestrict f)) = dualAnnihilator (ker (rangeRestrict f))
⊢ ker f = ker (rangeRestrict f)
[PROOFSTEP]
exact (LinearMap.ker_rangeRestrict f).symm
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
f : V₁ →ₗ[K] V₂
hf : Function.Injective ↑f
⊢ Function.Surjective ↑(dualMap f)
[PROOFSTEP]
intro φ
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
f : V₁ →ₗ[K] V₂
hf : Function.Injective ↑f
φ : Dual K V₁
⊢ ∃ a, ↑(dualMap f) a = φ
[PROOFSTEP]
let f' := LinearEquiv.ofInjective f hf
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
f : V₁ →ₗ[K] V₂
hf : Function.Injective ↑f
φ : Dual K V₁
f' : V₁ ≃ₗ[K] { x // x ∈ range f } := LinearEquiv.ofInjective f hf
⊢ ∃ a, ↑(dualMap f) a = φ
[PROOFSTEP]
use Subspace.dualLift (range f) (f'.symm.dualMap φ)
[GOAL]
case h
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
f : V₁ →ₗ[K] V₂
hf : Function.Injective ↑f
φ : Dual K V₁
f' : V₁ ≃ₗ[K] { x // x ∈ range f } := LinearEquiv.ofInjective f hf
⊢ ↑(dualMap f) (↑(Subspace.dualLift (range f)) (↑(LinearEquiv.dualMap (LinearEquiv.symm f')) φ)) = φ
[PROOFSTEP]
ext x
[GOAL]
case h.h
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
f : V₁ →ₗ[K] V₂
hf : Function.Injective ↑f
φ : Dual K V₁
f' : V₁ ≃ₗ[K] { x // x ∈ range f } := LinearEquiv.ofInjective f hf
x : V₁
⊢ ↑(↑(dualMap f) (↑(Subspace.dualLift (range f)) (↑(LinearEquiv.dualMap (LinearEquiv.symm f')) φ))) x = ↑φ x
[PROOFSTEP]
rw [LinearMap.dualMap_apply, Subspace.dualLift_of_mem (mem_range_self f x), LinearEquiv.dualMap_apply]
[GOAL]
case h.h
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
f : V₁ →ₗ[K] V₂
hf : Function.Injective ↑f
φ : Dual K V₁
f' : V₁ ≃ₗ[K] { x // x ∈ range f } := LinearEquiv.ofInjective f hf
x : V₁
⊢ ↑φ (↑(LinearEquiv.symm f') { val := ↑f x, property := (_ : ↑f x ∈ range f) }) = ↑φ x
[PROOFSTEP]
congr 1
[GOAL]
case h.h.h.e_6.h
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
f : V₁ →ₗ[K] V₂
hf : Function.Injective ↑f
φ : Dual K V₁
f' : V₁ ≃ₗ[K] { x // x ∈ range f } := LinearEquiv.ofInjective f hf
x : V₁
⊢ ↑(LinearEquiv.symm f') { val := ↑f x, property := (_ : ↑f x ∈ range f) } = x
[PROOFSTEP]
exact LinearEquiv.symm_apply_apply f' x
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
f : V₁ →ₗ[K] V₂
⊢ Function.Surjective ↑(dualMap f) ↔ Function.Injective ↑f
[PROOFSTEP]
rw [← LinearMap.range_eq_top, range_dualMap_eq_dualAnnihilator_ker, ← Submodule.dualAnnihilator_bot,
Subspace.dualAnnihilator_inj, LinearMap.ker_eq_bot]
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
⊢ Submodule.dualPairing W = ↑(quotAnnihilatorEquiv W)
[PROOFSTEP]
ext
[GOAL]
case h.h.h
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
x✝¹ : Dual K V₁
x✝ : { x // x ∈ W }
⊢ ↑(↑(LinearMap.comp (Submodule.dualPairing W) (mkQ (dualAnnihilator W))) x✝¹) x✝ =
↑(↑(LinearMap.comp (↑(quotAnnihilatorEquiv W)) (mkQ (dualAnnihilator W))) x✝¹) x✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
⊢ LinearMap.Nondegenerate (Submodule.dualPairing W)
[PROOFSTEP]
constructor
[GOAL]
case left
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
⊢ LinearMap.SeparatingLeft (Submodule.dualPairing W)
[PROOFSTEP]
rw [LinearMap.separatingLeft_iff_ker_eq_bot, dualPairing_eq]
[GOAL]
case left
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
⊢ LinearMap.ker ↑(quotAnnihilatorEquiv W) = ⊥
[PROOFSTEP]
apply LinearEquiv.ker
[GOAL]
case right
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
⊢ LinearMap.SeparatingRight (Submodule.dualPairing W)
[PROOFSTEP]
intro x h
[GOAL]
case right
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
x : { x // x ∈ W }
h : ∀ (x_1 : Dual K V₁ ⧸ dualAnnihilator W), ↑(↑(Submodule.dualPairing W) x_1) x = 0
⊢ x = 0
[PROOFSTEP]
rw [← forall_dual_apply_eq_zero_iff K x]
[GOAL]
case right
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
x : { x // x ∈ W }
h : ∀ (x_1 : Dual K V₁ ⧸ dualAnnihilator W), ↑(↑(Submodule.dualPairing W) x_1) x = 0
⊢ ∀ (φ : Dual K { x // x ∈ W }), ↑φ x = 0
[PROOFSTEP]
intro φ
[GOAL]
case right
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
x : { x // x ∈ W }
h : ∀ (x_1 : Dual K V₁ ⧸ dualAnnihilator W), ↑(↑(Submodule.dualPairing W) x_1) x = 0
φ : Dual K { x // x ∈ W }
⊢ ↑φ x = 0
[PROOFSTEP]
simpa only [Submodule.dualPairing_apply, dualLift_of_subtype] using h (Submodule.Quotient.mk (W.dualLift φ))
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
⊢ LinearMap.Nondegenerate (dualCopairing W)
[PROOFSTEP]
constructor
[GOAL]
case left
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
⊢ LinearMap.SeparatingLeft (dualCopairing W)
[PROOFSTEP]
rw [LinearMap.separatingLeft_iff_ker_eq_bot, dualCopairing_eq]
[GOAL]
case left
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
⊢ LinearMap.ker ↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) = ⊥
[PROOFSTEP]
apply LinearEquiv.ker
[GOAL]
case right
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
⊢ LinearMap.SeparatingRight (dualCopairing W)
[PROOFSTEP]
rintro ⟨x⟩
[GOAL]
case right.mk
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
y✝ : V₁ ⧸ W
x : V₁
⊢ (∀ (x_1 : { x // x ∈ dualAnnihilator W }), ↑(↑(dualCopairing W) x_1) (Quot.mk Setoid.r x) = 0) →
Quot.mk Setoid.r x = 0
[PROOFSTEP]
simp only [Quotient.quot_mk_eq_mk, dualCopairing_apply, Quotient.mk_eq_zero]
[GOAL]
case right.mk
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
y✝ : V₁ ⧸ W
x : V₁
⊢ (∀ (x_1 : { x // x ∈ dualAnnihilator W }), ↑x_1 x = 0) → x ∈ W
[PROOFSTEP]
rw [← forall_mem_dualAnnihilator_apply_eq_zero_iff, SetLike.forall]
[GOAL]
case right.mk
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : Subspace K V₁
y✝ : V₁ ⧸ W
x : V₁
⊢ (∀ (x_1 : Dual K V₁) (h : x_1 ∈ dualAnnihilator W), ↑{ val := x_1, property := h } x = 0) →
∀ (φ : Dual K V₁), φ ∈ dualAnnihilator W → ↑φ x = 0
[PROOFSTEP]
exact id
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
⊢ dualAnnihilator (W ⊓ W') = dualAnnihilator W ⊔ dualAnnihilator W'
[PROOFSTEP]
refine' le_antisymm _ (sup_dualAnnihilator_le_inf W W')
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'
[PROOFSTEP]
let F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' :=
(Submodule.mkQ W).prod
(Submodule.mkQ W')
-- Porting note: broken dot notation lean4#1910 LinearMap.ker
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'
[PROOFSTEP]
have : LinearMap.ker F = W ⊓ W' := by simp only [LinearMap.ker_prod, ker_mkQ]
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
⊢ LinearMap.ker F = W ⊓ W'
[PROOFSTEP]
simp only [LinearMap.ker_prod, ker_mkQ]
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'
[PROOFSTEP]
rw [← this, ← LinearMap.range_dualMap_eq_dualAnnihilator_ker]
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
⊢ LinearMap.range (LinearMap.dualMap F) ≤ dualAnnihilator W ⊔ dualAnnihilator W'
[PROOFSTEP]
intro φ
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
φ : Dual K V₁
⊢ φ ∈ LinearMap.range (LinearMap.dualMap F) → φ ∈ dualAnnihilator W ⊔ dualAnnihilator W'
[PROOFSTEP]
rw [LinearMap.mem_range]
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
φ : Dual K V₁
⊢ (∃ y, ↑(LinearMap.dualMap F) y = φ) → φ ∈ dualAnnihilator W ⊔ dualAnnihilator W'
[PROOFSTEP]
rintro ⟨x, rfl⟩
[GOAL]
case intro
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
x : Dual K ((V₁ ⧸ W) × V₁ ⧸ W')
⊢ ↑(LinearMap.dualMap F) x ∈ dualAnnihilator W ⊔ dualAnnihilator W'
[PROOFSTEP]
rw [Submodule.mem_sup]
[GOAL]
case intro
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
x : Dual K ((V₁ ⧸ W) × V₁ ⧸ W')
⊢ ∃ y, y ∈ dualAnnihilator W ∧ ∃ z, z ∈ dualAnnihilator W' ∧ y + z = ↑(LinearMap.dualMap F) x
[PROOFSTEP]
obtain ⟨⟨a, b⟩, rfl⟩ := (dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W')).surjective x
[GOAL]
case intro.intro.mk
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
a : Dual K (V₁ ⧸ W)
b : Dual K (V₁ ⧸ W')
⊢ ∃ y,
y ∈ dualAnnihilator W ∧
∃ z,
z ∈ dualAnnihilator W' ∧ y + z = ↑(LinearMap.dualMap F) (↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W')) (a, b))
[PROOFSTEP]
obtain ⟨a', rfl⟩ := (dualQuotEquivDualAnnihilator W).symm.surjective a
[GOAL]
case intro.intro.mk.intro
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
b : Dual K (V₁ ⧸ W')
a' : { x // x ∈ dualAnnihilator W }
⊢ ∃ y,
y ∈ dualAnnihilator W ∧
∃ z,
z ∈ dualAnnihilator W' ∧
y + z =
↑(LinearMap.dualMap F)
(↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W'))
(↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) a', b))
[PROOFSTEP]
obtain ⟨b', rfl⟩ := (dualQuotEquivDualAnnihilator W').symm.surjective b
[GOAL]
case intro.intro.mk.intro.intro
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
a' : { x // x ∈ dualAnnihilator W }
b' : { x // x ∈ dualAnnihilator W' }
⊢ ∃ y,
y ∈ dualAnnihilator W ∧
∃ z,
z ∈ dualAnnihilator W' ∧
y + z =
↑(LinearMap.dualMap F)
(↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W'))
(↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) a',
↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W')) b'))
[PROOFSTEP]
use a', a'.property, b', b'.property
[GOAL]
case right
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')
this : LinearMap.ker F = W ⊓ W'
a' : { x // x ∈ dualAnnihilator W }
b' : { x // x ∈ dualAnnihilator W' }
⊢ ↑a' + ↑b' =
↑(LinearMap.dualMap F)
(↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W'))
(↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) a',
↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W')) b'))
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
ι : Type u_1
inst✝ : _root_.Finite ι
W : ι → Subspace K V₁
⊢ dualAnnihilator (⨅ (i : ι), W i) = ⨆ (i : ι), dualAnnihilator (W i)
[PROOFSTEP]
revert ι
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
⊢ ∀ {ι : Type u_1} [inst : _root_.Finite ι] (W : ι → Subspace K V₁),
dualAnnihilator (⨅ (i : ι), W i) = ⨆ (i : ι), dualAnnihilator (W i)
[PROOFSTEP]
refine' @Finite.induction_empty_option _ _ _ _
[GOAL]
case refine'_1
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
⊢ ∀ {α β : Type u_1},
α ≃ β →
(∀ (W : α → Subspace K V₁), dualAnnihilator (⨅ (i : α), W i) = ⨆ (i : α), dualAnnihilator (W i)) →
∀ (W : β → Subspace K V₁), dualAnnihilator (⨅ (i : β), W i) = ⨆ (i : β), dualAnnihilator (W i)
[PROOFSTEP]
intro α β h hyp W
[GOAL]
case refine'_1
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
α β : Type u_1
h : α ≃ β
hyp : ∀ (W : α → Subspace K V₁), dualAnnihilator (⨅ (i : α), W i) = ⨆ (i : α), dualAnnihilator (W i)
W : β → Subspace K V₁
⊢ dualAnnihilator (⨅ (i : β), W i) = ⨆ (i : β), dualAnnihilator (W i)
[PROOFSTEP]
rw [← h.iInf_comp, hyp _, ← h.iSup_comp]
[GOAL]
case refine'_2
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
⊢ ∀ (W : PEmpty → Subspace K V₁), dualAnnihilator (⨅ (i : PEmpty), W i) = ⨆ (i : PEmpty), dualAnnihilator (W i)
[PROOFSTEP]
intro W
[GOAL]
case refine'_2
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W : PEmpty → Subspace K V₁
⊢ dualAnnihilator (⨅ (i : PEmpty), W i) = ⨆ (i : PEmpty), dualAnnihilator (W i)
[PROOFSTEP]
rw [iSup_of_empty', iInf_of_empty', sInf_empty, sSup_empty, dualAnnihilator_top]
[GOAL]
case refine'_3
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
⊢ ∀ {α : Type u_1} [inst : Fintype α],
(∀ (W : α → Subspace K V₁), dualAnnihilator (⨅ (i : α), W i) = ⨆ (i : α), dualAnnihilator (W i)) →
∀ (W : Option α → Subspace K V₁),
dualAnnihilator (⨅ (i : Option α), W i) = ⨆ (i : Option α), dualAnnihilator (W i)
[PROOFSTEP]
intro α _ h W
[GOAL]
case refine'_3
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
α : Type u_1
inst✝ : Fintype α
h : ∀ (W : α → Subspace K V₁), dualAnnihilator (⨅ (i : α), W i) = ⨆ (i : α), dualAnnihilator (W i)
W : Option α → Subspace K V₁
⊢ dualAnnihilator (⨅ (i : Option α), W i) = ⨆ (i : Option α), dualAnnihilator (W i)
[PROOFSTEP]
rw [iInf_option, iSup_option, dualAnnihilator_inf_eq, h]
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
h : IsCompl W W'
⊢ IsCompl (dualAnnihilator W) (dualAnnihilator W')
[PROOFSTEP]
rw [isCompl_iff, disjoint_iff, codisjoint_iff] at h ⊢
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
h : W ⊓ W' = ⊥ ∧ W ⊔ W' = ⊤
⊢ dualAnnihilator W ⊓ dualAnnihilator W' = ⊥ ∧ dualAnnihilator W ⊔ dualAnnihilator W' = ⊤
[PROOFSTEP]
rw [← dualAnnihilator_inf_eq, ← dualAnnihilator_sup_eq, h.1, h.2, dualAnnihilator_top, dualAnnihilator_bot]
[GOAL]
K : Type u
inst✝⁴ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝³ : AddCommGroup V₁
inst✝² : Module K V₁
inst✝¹ : AddCommGroup V₂
inst✝ : Module K V₂
W W' : Subspace K V₁
h : W ⊓ W' = ⊥ ∧ W ⊔ W' = ⊤
⊢ ⊥ = ⊥ ∧ ⊤ = ⊤
[PROOFSTEP]
exact ⟨rfl, rfl⟩
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }
[PROOFSTEP]
have that :=
Submodule.finrank_quotient_add_finrank
(LinearMap.range f)
-- Porting note: Again LinearEquiv.finrank_eq needs help
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K (V₂ ⧸ range f) + finrank K { x // x ∈ range f } = finrank K V₂
⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }
[PROOFSTEP]
let equiv := (Subspace.quotEquivAnnihilator <| LinearMap.range f)
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K (V₂ ⧸ range f) + finrank K { x // x ∈ range f } = finrank K V₂
equiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)
⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }
[PROOFSTEP]
have eq :=
LinearEquiv.finrank_eq (R := K) (M := (V₂ ⧸ range f)) (M₂ := { x // x ∈ Submodule.dualAnnihilator (range f) }) equiv
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K (V₂ ⧸ range f) + finrank K { x // x ∈ range f } = finrank K V₂
equiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)
eq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }
⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }
[PROOFSTEP]
rw [eq, ← ker_dualMap_eq_dualAnnihilator_range] at that
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K V₂
equiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)
eq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }
⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }
[PROOFSTEP]
conv_rhs at that => rw [← Subspace.dual_finrank_eq]
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K V₂
equiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)
eq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }
| finrank K V₂
[PROOFSTEP]
rw [← Subspace.dual_finrank_eq]
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K V₂
equiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)
eq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }
| finrank K V₂
[PROOFSTEP]
rw [← Subspace.dual_finrank_eq]
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K V₂
equiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)
eq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }
| finrank K V₂
[PROOFSTEP]
rw [← Subspace.dual_finrank_eq]
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K (Dual K V₂)
equiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)
eq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }
⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }
[PROOFSTEP]
refine' add_left_injective (finrank K <| LinearMap.ker f.dualMap) _
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K (Dual K V₂)
equiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)
eq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }
⊢ (fun x => x + finrank K { x // x ∈ ker (dualMap f) }) (finrank K { x // x ∈ range (dualMap f) }) =
(fun x => x + finrank K { x // x ∈ ker (dualMap f) }) (finrank K { x // x ∈ range f })
[PROOFSTEP]
change _ + _ = _ + _
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
that : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K (Dual K V₂)
equiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)
eq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }
⊢ finrank K { x // x ∈ range (dualMap f) } + finrank K { x // x ∈ ker (dualMap f) } =
finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker (dualMap f) }
[PROOFSTEP]
rw [finrank_range_add_finrank_ker f.dualMap, add_comm, that]
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
⊢ Function.Injective ↑(dualMap f) ↔ Function.Surjective ↑f
[PROOFSTEP]
refine' ⟨_, fun h => dualMap_injective_of_surjective h⟩
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
⊢ Function.Injective ↑(dualMap f) → Function.Surjective ↑f
[PROOFSTEP]
rw [← range_eq_top, ← ker_eq_bot]
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
⊢ ker (dualMap f) = ⊥ → range f = ⊤
[PROOFSTEP]
intro h
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
h : ker (dualMap f) = ⊥
⊢ range f = ⊤
[PROOFSTEP]
apply Submodule.eq_top_of_finrank_eq
[GOAL]
case h
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
h : ker (dualMap f) = ⊥
⊢ finrank K { x // x ∈ range f } = finrank K V₂
[PROOFSTEP]
rw [← finrank_eq_zero] at h
[GOAL]
case h
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
h : finrank K { x // x ∈ ker (dualMap f) } = 0
⊢ finrank K { x // x ∈ range f } = finrank K V₂
[PROOFSTEP]
rw [← add_zero (FiniteDimensional.finrank K <| LinearMap.range f), ← h, ←
LinearMap.finrank_range_dualMap_eq_finrank_range, LinearMap.finrank_range_add_finrank_ker, Subspace.dual_finrank_eq]
[GOAL]
K : Type u
inst✝⁵ : Field K
V₁ : Type v'
V₂ : Type v''
inst✝⁴ : AddCommGroup V₁
inst✝³ : Module K V₁
inst✝² : AddCommGroup V₂
inst✝¹ : Module K V₂
inst✝ : FiniteDimensional K V₂
f : V₁ →ₗ[K] V₂
⊢ Function.Bijective ↑(dualMap f) ↔ Function.Bijective ↑f
[PROOFSTEP]
simp_rw [Function.Bijective, dualMap_surjective_iff, dualMap_injective_iff, and_comm]
[GOAL]
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
f : Dual R (M ⊗[R] N)
⊢ ↑(dualDistribInvOfBasis b c) f =
∑ i : ι, ∑ j : κ, ↑f (↑b i ⊗ₜ[R] ↑c j) • ↑(Basis.dualBasis b) i ⊗ₜ[R] ↑(Basis.dualBasis c) j
[PROOFSTEP]
simp [dualDistribInvOfBasis]
[GOAL]
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
⊢ comp (dualDistrib R M N) (dualDistribInvOfBasis b c) = LinearMap.id
[PROOFSTEP]
apply (b.tensorProduct c).dualBasis.ext
[GOAL]
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
⊢ ∀ (i : ι × κ),
↑(comp (dualDistrib R M N) (dualDistribInvOfBasis b c)) (↑(Basis.dualBasis (Basis.tensorProduct b c)) i) =
↑LinearMap.id (↑(Basis.dualBasis (Basis.tensorProduct b c)) i)
[PROOFSTEP]
rintro ⟨i, j⟩
[GOAL]
case mk
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ↑(comp (dualDistrib R M N) (dualDistribInvOfBasis b c)) (↑(Basis.dualBasis (Basis.tensorProduct b c)) (i, j)) =
↑LinearMap.id (↑(Basis.dualBasis (Basis.tensorProduct b c)) (i, j))
[PROOFSTEP]
apply (b.tensorProduct c).ext
[GOAL]
case mk
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∀ (i_1 : ι × κ),
↑(↑(comp (dualDistrib R M N) (dualDistribInvOfBasis b c)) (↑(Basis.dualBasis (Basis.tensorProduct b c)) (i, j)))
(↑(Basis.tensorProduct b c) i_1) =
↑(↑LinearMap.id (↑(Basis.dualBasis (Basis.tensorProduct b c)) (i, j))) (↑(Basis.tensorProduct b c) i_1)
[PROOFSTEP]
rintro ⟨i', j'⟩
[GOAL]
case mk.mk
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ↑(↑(comp (dualDistrib R M N) (dualDistribInvOfBasis b c)) (↑(Basis.dualBasis (Basis.tensorProduct b c)) (i, j)))
(↑(Basis.tensorProduct b c) (i', j')) =
↑(↑LinearMap.id (↑(Basis.dualBasis (Basis.tensorProduct b c)) (i, j))) (↑(Basis.tensorProduct b c) (i', j'))
[PROOFSTEP]
simp only [dualDistrib, Basis.coe_dualBasis, coe_comp, Function.comp_apply, dualDistribInvOfBasis_apply,
Basis.coord_apply, Basis.tensorProduct_repr_tmul_apply, Basis.repr_self, ne_eq, LinearMap.map_sum, map_smul,
homTensorHomMap_apply, compRight_apply, Basis.tensorProduct_apply, coeFn_sum, Finset.sum_apply, smul_apply,
LinearEquiv.coe_coe, map_tmul, lid_tmul, smul_eq_mul, id_coe, id_eq]
[GOAL]
case mk.mk
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ∑ x : ι,
∑ x_1 : κ,
↑(Finsupp.single x 1) i * ↑(Finsupp.single x_1 1) j * (↑(Finsupp.single i' 1) x * ↑(Finsupp.single j' 1) x_1) =
↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) j
[PROOFSTEP]
rw [Finset.sum_eq_single i, Finset.sum_eq_single j]
[GOAL]
case mk.mk
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) j) =
↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) j
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ∀ (b : κ),
b ∈ Finset.univ →
b ≠ j →
↑(Finsupp.single i 1) i * ↑(Finsupp.single b 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) b) = 0
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ¬j ∈ Finset.univ →
↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) j) = 0
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ∀ (b : ι),
b ∈ Finset.univ →
b ≠ i →
∑ x : κ,
↑(Finsupp.single b 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) b * ↑(Finsupp.single j' 1) x) =
0
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ¬i ∈ Finset.univ →
∑ x : κ, ↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) x) =
0
[PROOFSTEP]
simp
[GOAL]
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ∀ (b : κ),
b ∈ Finset.univ →
b ≠ j →
↑(Finsupp.single i 1) i * ↑(Finsupp.single b 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) b) = 0
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ¬j ∈ Finset.univ →
↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) j) = 0
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ∀ (b : ι),
b ∈ Finset.univ →
b ≠ i →
∑ x : κ,
↑(Finsupp.single b 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) b * ↑(Finsupp.single j' 1) x) =
0
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ¬i ∈ Finset.univ →
∑ x : κ, ↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) x) =
0
[PROOFSTEP]
all_goals {intros; simp [*] at *
}
-- Porting note: introduced to help with timeout in dualDistribEquivOfBasis
[GOAL]
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ∀ (b : κ),
b ∈ Finset.univ →
b ≠ j →
↑(Finsupp.single i 1) i * ↑(Finsupp.single b 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) b) = 0
[PROOFSTEP]
{intros; simp [*] at *
}
-- Porting note: introduced to help with timeout in dualDistribEquivOfBasis
[GOAL]
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ∀ (b : κ),
b ∈ Finset.univ →
b ≠ j →
↑(Finsupp.single i 1) i * ↑(Finsupp.single b 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) b) = 0
[PROOFSTEP]
intros
[GOAL]
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' b✝ : κ
a✝¹ : b✝ ∈ Finset.univ
a✝ : b✝ ≠ j
⊢ ↑(Finsupp.single i 1) i * ↑(Finsupp.single b✝ 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) b✝) = 0
[PROOFSTEP]
simp [*] at *
[GOAL]
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ¬j ∈ Finset.univ →
↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) j) = 0
[PROOFSTEP]
{intros; simp [*] at *
}
-- Porting note: introduced to help with timeout in dualDistribEquivOfBasis
[GOAL]
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ¬j ∈ Finset.univ →
↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) j) = 0
[PROOFSTEP]
intros
[GOAL]
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
a✝ : ¬j ∈ Finset.univ
⊢ ↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) j) = 0
[PROOFSTEP]
simp [*] at *
[GOAL]
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ∀ (b : ι),
b ∈ Finset.univ →
b ≠ i →
∑ x : κ,
↑(Finsupp.single b 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) b * ↑(Finsupp.single j' 1) x) =
0
[PROOFSTEP]
{intros; simp [*] at *
}
-- Porting note: introduced to help with timeout in dualDistribEquivOfBasis
[GOAL]
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ∀ (b : ι),
b ∈ Finset.univ →
b ≠ i →
∑ x : κ,
↑(Finsupp.single b 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) b * ↑(Finsupp.single j' 1) x) =
0
[PROOFSTEP]
intros
[GOAL]
case mk.mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
b✝ : ι
a✝¹ : b✝ ∈ Finset.univ
a✝ : b✝ ≠ i
⊢ ∑ x : κ, ↑(Finsupp.single b✝ 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) b✝ * ↑(Finsupp.single j' 1) x) =
0
[PROOFSTEP]
simp [*] at *
[GOAL]
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ¬i ∈ Finset.univ →
∑ x : κ, ↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) x) =
0
[PROOFSTEP]
{intros; simp [*] at *
}
-- Porting note: introduced to help with timeout in dualDistribEquivOfBasis
[GOAL]
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
⊢ ¬i ∈ Finset.univ →
∑ x : κ, ↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) x) =
0
[PROOFSTEP]
intros
[GOAL]
case mk.mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
i' : ι
j' : κ
a✝ : ¬i ∈ Finset.univ
⊢ ∑ x : κ, ↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j * (↑(Finsupp.single i' 1) i * ↑(Finsupp.single j' 1) x) = 0
[PROOFSTEP]
simp [*] at *
[GOAL]
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
⊢ comp (dualDistribInvOfBasis b c) (dualDistrib R M N) = LinearMap.id
[PROOFSTEP]
apply (b.dualBasis.tensorProduct c.dualBasis).ext
[GOAL]
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
⊢ ∀ (i : ι × κ),
↑(comp (dualDistribInvOfBasis b c) (dualDistrib R M N))
(↑(Basis.tensorProduct (Basis.dualBasis b) (Basis.dualBasis c)) i) =
↑LinearMap.id (↑(Basis.tensorProduct (Basis.dualBasis b) (Basis.dualBasis c)) i)
[PROOFSTEP]
rintro ⟨i, j⟩
[GOAL]
case mk
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ↑(comp (dualDistribInvOfBasis b c) (dualDistrib R M N))
(↑(Basis.tensorProduct (Basis.dualBasis b) (Basis.dualBasis c)) (i, j)) =
↑LinearMap.id (↑(Basis.tensorProduct (Basis.dualBasis b) (Basis.dualBasis c)) (i, j))
[PROOFSTEP]
simp only [Basis.tensorProduct_apply, Basis.coe_dualBasis, coe_comp, Function.comp_apply, dualDistribInvOfBasis_apply,
dualDistrib_apply, Basis.coord_apply, Basis.repr_self, ne_eq, id_coe, id_eq]
[GOAL]
case mk
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∑ x : ι, ∑ x_1 : κ, (↑(Finsupp.single x 1) i * ↑(Finsupp.single x_1 1) j) • Basis.coord b x ⊗ₜ[R] Basis.coord c x_1 =
Basis.coord b i ⊗ₜ[R] Basis.coord c j
[PROOFSTEP]
rw [Finset.sum_eq_single i, Finset.sum_eq_single j]
[GOAL]
case mk
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ (↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c j =
Basis.coord b i ⊗ₜ[R] Basis.coord c j
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∀ (b_1 : κ),
b_1 ∈ Finset.univ →
b_1 ≠ j → (↑(Finsupp.single i 1) i * ↑(Finsupp.single b_1 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c b_1 = 0
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ¬j ∈ Finset.univ → (↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c j = 0
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∀ (b_1 : ι),
b_1 ∈ Finset.univ →
b_1 ≠ i →
∑ x : κ, (↑(Finsupp.single b_1 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b b_1 ⊗ₜ[R] Basis.coord c x = 0
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ¬i ∈ Finset.univ →
∑ x : κ, (↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c x = 0
[PROOFSTEP]
simp
[GOAL]
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∀ (b_1 : κ),
b_1 ∈ Finset.univ →
b_1 ≠ j → (↑(Finsupp.single i 1) i * ↑(Finsupp.single b_1 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c b_1 = 0
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ¬j ∈ Finset.univ → (↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c j = 0
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∀ (b_1 : ι),
b_1 ∈ Finset.univ →
b_1 ≠ i →
∑ x : κ, (↑(Finsupp.single b_1 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b b_1 ⊗ₜ[R] Basis.coord c x = 0
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ¬i ∈ Finset.univ →
∑ x : κ, (↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c x = 0
[PROOFSTEP]
all_goals {intros; simp [*] at *
}
[GOAL]
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∀ (b_1 : κ),
b_1 ∈ Finset.univ →
b_1 ≠ j → (↑(Finsupp.single i 1) i * ↑(Finsupp.single b_1 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c b_1 = 0
[PROOFSTEP]
{intros; simp [*] at *
}
[GOAL]
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∀ (b_1 : κ),
b_1 ∈ Finset.univ →
b_1 ≠ j → (↑(Finsupp.single i 1) i * ↑(Finsupp.single b_1 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c b_1 = 0
[PROOFSTEP]
intros
[GOAL]
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j b✝ : κ
a✝¹ : b✝ ∈ Finset.univ
a✝ : b✝ ≠ j
⊢ (↑(Finsupp.single i 1) i * ↑(Finsupp.single b✝ 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c b✝ = 0
[PROOFSTEP]
simp [*] at *
[GOAL]
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ¬j ∈ Finset.univ → (↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c j = 0
[PROOFSTEP]
{intros; simp [*] at *
}
[GOAL]
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ¬j ∈ Finset.univ → (↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c j = 0
[PROOFSTEP]
intros
[GOAL]
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
a✝ : ¬j ∈ Finset.univ
⊢ (↑(Finsupp.single i 1) i * ↑(Finsupp.single j 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c j = 0
[PROOFSTEP]
simp [*] at *
[GOAL]
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∀ (b_1 : ι),
b_1 ∈ Finset.univ →
b_1 ≠ i →
∑ x : κ, (↑(Finsupp.single b_1 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b b_1 ⊗ₜ[R] Basis.coord c x = 0
[PROOFSTEP]
{intros; simp [*] at *
}
[GOAL]
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ∀ (b_1 : ι),
b_1 ∈ Finset.univ →
b_1 ≠ i →
∑ x : κ, (↑(Finsupp.single b_1 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b b_1 ⊗ₜ[R] Basis.coord c x = 0
[PROOFSTEP]
intros
[GOAL]
case mk.h₀
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
b✝ : ι
a✝¹ : b✝ ∈ Finset.univ
a✝ : b✝ ≠ i
⊢ ∑ x : κ, (↑(Finsupp.single b✝ 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b b✝ ⊗ₜ[R] Basis.coord c x = 0
[PROOFSTEP]
simp [*] at *
[GOAL]
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ¬i ∈ Finset.univ →
∑ x : κ, (↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c x = 0
[PROOFSTEP]
{intros; simp [*] at *
}
[GOAL]
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
⊢ ¬i ∈ Finset.univ →
∑ x : κ, (↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c x = 0
[PROOFSTEP]
intros
[GOAL]
case mk.h₁
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
i : ι
j : κ
a✝ : ¬i ∈ Finset.univ
⊢ ∑ x : κ, (↑(Finsupp.single i 1) i * ↑(Finsupp.single x 1) j) • Basis.coord b i ⊗ₜ[R] Basis.coord c x = 0
[PROOFSTEP]
simp [*] at *
[GOAL]
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
⊢ Dual R M ⊗[R] Dual R N ≃ₗ[R] Dual R (M ⊗[R] N)
[PROOFSTEP]
refine' LinearEquiv.ofLinear (dualDistrib R M N) (dualDistribInvOfBasis b c) _ _
[GOAL]
case refine'_1
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
⊢ comp (dualDistrib R M N) (dualDistribInvOfBasis b c) = LinearMap.id
[PROOFSTEP]
exact dualDistrib_dualDistribInvOfBasis_left_inverse _ _
[GOAL]
case refine'_2
R : Type u_1
A : Type u_2
M : Type u_3
N : Type u_4
ι : Type u_5
κ : Type u_6
inst✝⁸ : DecidableEq ι
inst✝⁷ : DecidableEq κ
inst✝⁶ : Fintype ι
inst✝⁵ : Fintype κ
inst✝⁴ : CommRing R
inst✝³ : AddCommGroup M
inst✝² : AddCommGroup N
inst✝¹ : Module R M
inst✝ : Module R N
b : Basis ι R M
c : Basis κ R N
⊢ comp (dualDistribInvOfBasis b c) (dualDistrib R M N) = LinearMap.id
[PROOFSTEP]
exact dualDistrib_dualDistribInvOfBasis_right_inverse _ _
|
import MyNat.Power
import MyNat.Addition -- add_zero
import MultiplicationWorld.Level2 -- mul_one
import MultiplicationWorld.Level5 -- mul_assoc
namespace MyNat
open MyNat
/-!
# Power World
## Level 5: `pow_add`
## Lemma
For all naturals `a`, `m`, `n`, we have `a^(m + n) = a ^ m a ^ n`.
-/
lemma pow_add (a m n : MyNat) : a ^ (m + n) = a ^ m * a ^ n := by
induction n with
| zero =>
rw [zero_is_0]
rw [add_zero]
rw [pow_zero]
rw [mul_one]
| succ n ih =>
rw [add_succ]
rw [pow_succ]
rw [pow_succ]
rw [ih]
rw [mul_assoc]
/-!
Remember you can combine all the `rw` rules into one with
`rw [add_succ, pow_succ, pow_succ, ih, mul_assoc]` but we have
broken it out here so you can more easily see all the intermediate
goal states.
Next up [Level 6](./Level6.lean.md)
-/ |
State Before: α : Type u_1
inst✝³ : Group α
s t : Subgroup α
H : Type u_2
inst✝² : Group H
inst✝¹ : Fintype α
inst✝ : Fintype H
f : α →* H
hf : Injective ↑f
⊢ card α ∣ card H State After: no goals Tactic: classical calc
card α = card (f.range : Subgroup H) := card_congr (Equiv.ofInjective f hf)
_ ∣ card H := card_subgroup_dvd_card _ State Before: α : Type u_1
inst✝³ : Group α
s t : Subgroup α
H : Type u_2
inst✝² : Group H
inst✝¹ : Fintype α
inst✝ : Fintype H
f : α →* H
hf : Injective ↑f
⊢ card α ∣ card H State After: no goals Tactic: calc
card α = card (f.range : Subgroup H) := card_congr (Equiv.ofInjective f hf)
_ ∣ card H := card_subgroup_dvd_card _ |
-- binary search trees (not balanced)
open import bool
open import bool-thms2
open import eq
open import maybe
open import product
open import product-thms
open import bool-relations using (transitive ; total)
module z05-01-bst (A : Set) -- type of elements
(_≤A_ : A → A → 𝔹) -- ordering function
(≤A-trans : transitive _≤A_) -- proof of transitivity of given ordering
(≤A-total : total _≤A_) -- proof of totality of given ordering
where
{-
IAL
- relations.agda
- models binary relation on A as functions from A to A to Set
- bool-relations.agda
- models binary realtion on A as functions from A to A to 𝔹
Cannot use A→A→Set relations here because code cannot manipulate types.
But code can pattern match on values of type 𝔹, so boolean relations more useful.
-}
open import bool-relations _≤A_ hiding (transitive ; total)
open import minmax _≤A_ ≤A-trans ≤A-total
-- able to store values in bounds 'l' and 'u'
-- l(ower) bound
-- | u(upper) bound
-- v v
data bst : A → A → Set where
bst-leaf : ∀ {l u : A}
→ l ≤A u ≡ tt
→ bst l u
bst-node : ∀ {l l' u' u : A}
→ (d : A) -- value stored in this node
→ bst l' d -- left subtree of values ≤ stored value
→ bst d u' -- right subtree of values ≥ stored value
→ l ≤A l' ≡ tt
→ u' ≤A u ≡ tt
→ bst l u
------------------------------------------------------------------------------
bst-search : ∀ {l u : A}
→ (d : A) -- find a node that is isomorphic (_=A_) to d
→ bst l u
→ maybe (Σ A (λ d' → d iso𝔹 d' ≡ tt)) -- return that node or nothing
bst-search d (bst-leaf _) = nothing -- could return proof not in tree instead
-- compare given element with stored element
bst-search d (bst-node d' L R _ _) with keep (d ≤A d')
-- compare given element with stored element (other direction)
bst-search d (bst-node d' L R _ _) | tt , p1 with keep (d' ≤A d)
-- both are true implying iso, so return that element and proof
bst-search d (bst-node d' L R _ _) | tt , p1 | tt , p2 = just (d' , iso𝔹-intro p1 p2)
-- if either is false then search the appropriate branch
bst-search d (bst-node d' L R _ _) | tt , p1 | ff , p2 = bst-search d L -- search in left
bst-search d (bst-node d' L R _ _) | ff , p1 = bst-search d R -- search in right
------------------------------------------------------------------------------
-- change the lower bound from l' to l
bst-dec-lb : ∀ {l l' u' : A}
→ bst l' u'
→ l ≤A l' ≡ tt
→ bst l u'
bst-dec-lb (bst-leaf p) q = bst-leaf (≤A-trans q p)
bst-dec-lb (bst-node d L R p1 p2) q = bst-node d L R (≤A-trans q p1) p2
-- change the upper bound from u' to u
bst-inc-ub : ∀ {l' u' u : A}
→ bst l' u'
→ u' ≤A u ≡ tt
→ bst l' u
bst-inc-ub (bst-leaf p) q = bst-leaf (≤A-trans p q)
bst-inc-ub (bst-node d L R p1 p2) q = bst-node d L R p1 (≤A-trans p2 q)
bst-insert : ∀{l u : A}
→ (d : A) -- insert 'd'
→ bst l u -- into this 'bst'
→ bst (min d l) (max d u) -- type might change
bst-insert d (bst-leaf p) =
bst-node d (bst-leaf ≤A-refl) (bst-leaf ≤A-refl) min-≤1 max-≤1
bst-insert d (bst-node d' L R p1 p2) with keep (d ≤A d')
bst-insert d (bst-node d' L R p1 p2) | tt , p with bst-insert d L
bst-insert d (bst-node d' L R p1 p2) | tt , p | L' rewrite p =
bst-node d' L' (bst-inc-ub R (≤A-trans p2 max-≤2))
(min2-mono p1) ≤A-refl
bst-insert d (bst-node d' L R p1 p2) | ff , p with bst-insert d R
bst-insert d (bst-node d' L R p1 p2) | ff , p | R' rewrite p =
bst-node d' (bst-dec-lb L p1) R'
min-≤2 (max2-mono p2)
|
//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <[email protected]>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://kylelutz.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_PLATFORM_HPP
#define BOOST_COMPUTE_PLATFORM_HPP
#include <string>
#include <vector>
#include <boost/range/algorithm.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/compute/cl.hpp>
#include <boost/compute/device.hpp>
#include <boost/compute/detail/get_object_info.hpp>
namespace boost {
namespace compute {
/// \class platform
/// \brief A compute platform.
///
/// The platform class provides an interface to an OpenCL platform.
///
/// To obtain a list of all platforms on the system use the
/// system::platforms() method.
///
/// \see device, context
class platform
{
public:
/// Creates a new platform object for \p id.
explicit platform(cl_platform_id id)
: m_platform(id)
{
}
/// Creates a new platform as a copy of \p other.
platform(const platform &other)
: m_platform(other.m_platform)
{
}
/// Copies the platform id from \p other.
platform& operator=(const platform &other)
{
if(this != &other){
m_platform = other.m_platform;
}
return *this;
}
/// Destroys the platform object.
~platform()
{
}
/// Returns the ID of the platform.
cl_platform_id id() const
{
return m_platform;
}
/// Returns the name of the platform.
std::string name() const
{
return get_info<std::string>(CL_PLATFORM_NAME);
}
/// Returns the name of the vendor for the platform.
std::string vendor() const
{
return get_info<std::string>(CL_PLATFORM_VENDOR);
}
/// Returns the profile string for the platform.
std::string profile() const
{
return get_info<std::string>(CL_PLATFORM_PROFILE);
}
/// Returns the version string for the platform.
std::string version() const
{
return get_info<std::string>(CL_PLATFORM_VERSION);
}
/// Returns a list of extensions supported by the platform.
std::vector<std::string> extensions() const
{
std::string extensions_string =
get_info<std::string>(CL_PLATFORM_EXTENSIONS);
std::vector<std::string> extensions_vector;
boost::split(extensions_vector,
extensions_string,
boost::is_any_of("\t "),
boost::token_compress_on);
return extensions_vector;
}
/// Returns \c true if the platform supports the extension with
/// \p name.
bool supports_extension(const std::string &name) const
{
const std::vector<std::string> extensions = this->extensions();
return boost::find(extensions, name) != extensions.end();
}
/// Returns a list of devices on the platform.
std::vector<device> devices(cl_device_type type = CL_DEVICE_TYPE_ALL) const
{
size_t count = device_count(type);
if(count == 0){
// no devices for this platform
return std::vector<device>();
}
std::vector<cl_device_id> device_ids(count);
cl_int ret = clGetDeviceIDs(m_platform,
type,
static_cast<cl_uint>(count),
&device_ids[0],
0);
if(ret != CL_SUCCESS){
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
std::vector<device> devices;
for(cl_uint i = 0; i < count; i++){
devices.push_back(device(device_ids[i]));
}
return devices;
}
/// Returns the number of devices on the platform.
size_t device_count(cl_device_type type = CL_DEVICE_TYPE_ALL) const
{
cl_uint count = 0;
cl_int ret = clGetDeviceIDs(m_platform, type, 0, 0, &count);
if(ret != CL_SUCCESS){
if(ret == CL_DEVICE_NOT_FOUND){
// no devices for this platform
return 0;
}
else {
// something else went wrong
BOOST_THROW_EXCEPTION(opencl_error(ret));
}
}
return count;
}
/// Returns information about the platform.
///
/// \see_opencl_ref{clGetPlatformInfo}
template<class T>
T get_info(cl_platform_info info) const
{
return detail::get_object_info<T>(clGetPlatformInfo, m_platform, info);
}
/// \overload
template<int Enum>
typename detail::get_object_info_type<platform, Enum>::type
get_info() const;
/// Returns the address of the \p function_name extension
/// function. Returns \c 0 if \p function_name is invalid.
void* get_extension_function_address(const char *function_name) const
{
#ifdef CL_VERSION_1_2
return clGetExtensionFunctionAddressForPlatform(m_platform,
function_name);
#else
return clGetExtensionFunctionAddress(function_name);
#endif
}
/// Requests that the platform unload any compiler resources.
void unload_compiler()
{
#ifdef CL_VERSION_1_2
clUnloadPlatformCompiler(m_platform);
#else
clUnloadCompiler();
#endif
}
/// Returns \c true if the platform is the same at \p other.
bool operator==(const platform &other) const
{
return m_platform == other.m_platform;
}
/// Returns \c true if the platform is different from \p other.
bool operator!=(const platform &other) const
{
return m_platform != other.m_platform;
}
private:
cl_platform_id m_platform;
};
/// \internal_ define get_info() specializations for platform
BOOST_COMPUTE_DETAIL_DEFINE_GET_INFO_SPECIALIZATIONS(platform,
((std::string, CL_PLATFORM_PROFILE))
((std::string, CL_PLATFORM_VERSION))
((std::string, CL_PLATFORM_NAME))
((std::string, CL_PLATFORM_VENDOR))
((std::string, CL_PLATFORM_EXTENSIONS))
)
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_PLATFORM_HPP
|
[STATEMENT]
lemma disc_opposite_ocircline [simp]:
shows "disc (opposite_ocircline H) = disc_compl H"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. disc (opposite_ocircline H) = disc_compl H
[PROOF STEP]
using disc_compl_opposite_ocircline[of "opposite_ocircline H"]
[PROOF STATE]
proof (prove)
using this:
disc_compl (opposite_ocircline (opposite_ocircline H)) = disc (opposite_ocircline H)
goal (1 subgoal):
1. disc (opposite_ocircline H) = disc_compl H
[PROOF STEP]
by simp |
(* *********************************************************************)
(* *)
(* The CertiKOS Certified Kit Operating System *)
(* *)
(* The FLINT Group, Yale University *)
(* *)
(* Copyright The FLINT Group, Yale University. All rights reserved. *)
(* This file is distributed under the terms of the Yale University *)
(* Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
Require Import LinkSourceTemplate.
Require Import PThread.
Require Import PThreadCSource.
Require Import CDataTypes.
Definition PIPCIntro_module: link_module :=
{|
lm_cfun :=
lcf get_sync_chan_to f_get_sync_chan_to ::
lcf get_sync_chan_paddr f_get_sync_chan_paddr ::
lcf get_sync_chan_count f_get_sync_chan_count ::
lcf set_sync_chan_to f_set_sync_chan_to ::
lcf set_sync_chan_paddr f_set_sync_chan_paddr ::
lcf set_sync_chan_count f_set_sync_chan_count ::
lcf init_sync_chan f_init_sync_chan ::
lcf get_kernel_pa f_get_kernel_pa ::
nil;
lm_asmfun :=
nil;
lm_gvar :=
lgv SYNCCHPOOL_LOC syncchpool_loc_type ::
nil
|}.
Definition PIPCIntro_impl `{CompCertiKOS} `{RealParams} :=
link_impl PIPCIntro_module pthread.
|
module AI.GeneticAlgorithm
( Genome
, Individual
, Population
, individualGenome
, individualFitness
, mutate
, proportionalSelection
, getBasePopulation
, evolve
, evolves
, bestAverageWorst ) where
import AI.NeuralNetwork as NN
import Control.Lens
import Control.Monad.State
import Control.Parallel.Strategies
import Data.Function
import Data.Functor.Identity
import Data.Maybe
import Data.Random.Normal
import qualified Data.Vector as V
import qualified Data.Vector.Generic as VG
import Numeric.LinearAlgebra
import System.Random
type Genome = NN.Network
-- An individual with a genome and fitness
data Individual a = Individual Genome a
deriving (Eq, Show)
type Population a = V.Vector (Individual a)
mut :: Double -> Double -> Double -> State StdGen Double
mut rate amount val = do
rRate <- state random
if rRate < rate
then fmap (\x -> val + x * amount) (state normal)
else return val
toIndividual :: (Genome -> a) -> Genome -> Individual a
toIndividual fitfunc genome = Individual genome (fitfunc genome)
toPopulation :: (Genome -> a) -> V.Vector Genome -> V.Vector (Individual a)
toPopulation fitfunc genomes = let pop = V.map (toIndividual fitfunc) genomes
in pop `using` parTraversable rseq
individualGenome :: Individual a -> Genome
individualGenome (Individual g _) = g
individualFitness :: Individual a -> a
individualFitness (Individual _ f) = f
mutate :: Double -> Double -> Genome -> State StdGen Genome
mutate rate amount genome = do
let cmut = mut rate amount
newBiases <- mapM (VG.mapM cmut) (genome^.biases)
newWeights <- mapM (mapMatrixM cmut) (genome^.weights)
let newNN = execState (biases .= newBiases >> weights .= newWeights) genome
return newNN
proportionalSelection :: (Random a, Ord a, Num a, NFData a) =>
Population a -> State StdGen (Population a)
proportionalSelection pop =
let fitness = individualFitness <$> pop
accFit = V.scanl1 (+) fitness
choose p = snd $ fromJust $ V.find (\t -> p <= fst t) (V.zip accFit pop)
in forM pop $ \_ -> do
p <- state $ randomR (0, V.last accFit)
return $ choose p
getBasePopulation :: (Genome -> a) -> State StdGen Genome ->
Int -> State StdGen (Population a)
getBasePopulation fitfunc genomeGen popSize =
toPopulation fitfunc <$> V.replicateM popSize genomeGen
evolve :: (Genome -> Double) -> (Genome -> State StdGen Genome) ->
Population Double -> State StdGen (Population Double)
evolve fitfunc mutfunc pop = do
selected <- proportionalSelection pop
mutated <- mapM (\(Individual g _) -> mutfunc g) selected
return $ toPopulation fitfunc mutated
evolves :: Int -> Int -> State StdGen Genome ->
(Genome -> Double) -> (Genome -> State StdGen Genome) ->
State StdGen [Population Double]
evolves generations popSize genomeGen fitfunc mutfunc = do
basePop <- getBasePopulation fitfunc genomeGen popSize
let evofunc = evolve fitfunc mutfunc
evolutions <- V.iterateNM generations evofunc basePop
return $ V.toList evolutions
bestAverageWorst :: (Fractional a, Ord a) =>
[Population a] -> [(Individual a, a, Individual a)]
bestAverageWorst = reverse . foldl (\acc pop ->
let fitness = individualFitness <$> pop
best = V.maximumBy (compare `on` individualFitness) pop
avgFit = sum fitness / fromIntegral (V.length fitness)
worst = V.minimumBy (compare `on` individualFitness) pop
in (best, avgFit, worst) : acc) []
mapMatrixM :: (Element a, Element b, Monad m) =>
(a -> m b) -> Matrix a -> m (Matrix b)
mapMatrixM f m = let ll = toLists m
mmM = mapM . mapM
in fromLists <$> mmM f ll
|
module TestDivideAtMean
using Random
using TapirBenchmarks
using Test
using Statistics
tests = [
(label = "1:10", xs = 1:10, smaller = 1:5, larger = 6:10),
(label = "10:-1:1", xs = 10:-1:1, smaller = 6:10, larger = 1:5),
let xs = shuffle(1:10)
m = mean(xs)
(
label = "shuffle(1:10)",
xs = xs,
smaller = findall(xs .<= m),
larger = findall(xs .> m),
)
end,
]
@testset "$(t.label)" for t in tests
@testset for f in [divide_at_mean_seq, divide_at_mean_threads, divide_at_mean_tapir]
smaller, larger = f(t.xs)
@test smaller == t.smaller
@test larger == t.larger
end
end
end
|
import Mathbin.Data.Finsupp.Basic
section
inductive Vars : Type
| α : Vars
| β : Vars
| γ : Vars
| δ : Vars
instance : DecidableEq Vars :=
fun a b => match a, b with
| .α, .α => isTrue rfl
| .α, .β => isFalse (fun h => Vars.noConfusion h)
| .α, .γ => isFalse (fun h => Vars.noConfusion h)
| .α, .δ => isFalse (fun h => Vars.noConfusion h)
| .β, .α => isFalse (fun h => Vars.noConfusion h)
| .β, .β => isTrue rfl
| .β, .γ => isFalse (fun h => Vars.noConfusion h)
| .β, .δ => isFalse (fun h => Vars.noConfusion h)
| .δ, .α => isFalse (fun h => Vars.noConfusion h)
| .δ, .β => isFalse (fun h => Vars.noConfusion h)
| .δ, .γ => isFalse (fun h => Vars.noConfusion h)
| .δ, .δ => isTrue rfl
| .γ, .δ => isFalse (fun h => Vars.noConfusion h)
| .γ, .γ => isTrue rfl
| .γ, .β => isFalse (fun h => Vars.noConfusion h)
| .γ, .α => isFalse (fun h => Vars.noConfusion h)
lemma finsupp_vars_eq_ext (f g : Vars →₀ ℕ) : (f = g) ↔
(f Vars.α = g Vars.α ∧ f Vars.β = g Vars.β ∧ f Vars.γ = g Vars.γ ∧ f Vars.δ = g Vars.δ) := by
rw [Finsupp.ext_iff]
apply Iff.intro
· intro h
apply And.intro
exact h Vars.α
apply And.intro
exact h Vars.β
apply And.intro
exact h Vars.γ
exact h Vars.δ
· intro h
intro a
induction a
apply And.left h
apply And.left (And.right h)
apply And.left (And.right (And.right h))
apply And.right (And.right (And.right h)) |
function chebyshev_polynomial_test09 ( )
%*****************************************************************************80
%
%% CHEBYSHEV_POLYNOMIAL_TEST09 compares a function and projection over [-1,+1].
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 13 April 2012
%
% Author:
%
% John Burkardt
%
fprintf ( 1, '\n' );
fprintf ( 1, 'CHEBYSHEV_POLYNOMIAL_TEST09:\n' );
fprintf ( 1, ' T_PROJECT_COEFFICIENTS computes the Chebyshev interpolant C(F)(N,X)\n' );
fprintf ( 1, ' of a function F(X) defined over [-1,+1].\n' );
fprintf ( 1, ' T_PROJECT_VALUE evaluates that projection.\n' );
fprintf ( 1, '\n' );
fprintf ( 1, ' Compute projections of order N to exp(x) over [-1,+1],\n' );
fprintf ( 1, '\n' );
fprintf ( 1, ' N Max||F(X)-C(F)(N,X)||\n' );
fprintf ( 1, '\n' );
for n = 0 : 10
c = t_project_coefficients ( n, @exp );
m = 101;
x = ( linspace ( -1.0, +1.0, m ) )';
v = t_project_value ( m, n, x, c );
r = v - exp ( x );
fprintf ( 1, ' %2d %12.4g\n', n, max ( abs ( r ) ) );
end
return
end
|
[STATEMENT]
lemma is_empty_Set [code]:
"Set.is_empty (Set t) = RBT.is_empty t"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. Set.is_empty (Set t) = RBT.is_empty t
[PROOF STEP]
unfolding Set.is_empty_def
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (Set t = {}) = RBT.is_empty t
[PROOF STEP]
by (auto simp: fun_eq_iff Set_def intro: lookup_empty_empty[THEN iffD1]) |
\section{Conclusions}%
%
\begin{frame}%
\frametitle{Conclusions}%
\begin{itemize}%
\item I have presented an initial version of the evaluator GUI component of the \optimizationBenchmarking\ framework%
\item<2-> It can already load and evaluate performance data from \emph{your} optimization or Machine Learning algorithm%
\item<3-> It can help \emph{you} to understand what the strengths and weaknesses of \emph{your} algorithm are%
\item<4-> It produces figures ready for use in \emph{your} publication%
\item<5-> {\dots}and these figures are optimized (size, fonts) for the journal or conference \emph{you} want to submit to.%
\end{itemize}%
%%
\end{frame}
%
%
\begin{frame}%
\frametitle{Future Work}%
\begin{itemize}%
\item We will add more evaluation modules, to reach the power of \tspSuite\expandafter\scitep{\tspSuiteReferences}, e.g., add automated algorithm ranking%
\item<2-> We will publicize the use of \optimizationBenchmarking\ to our colleagues, e.g., for use in competitions%
\item<3-> We want to position our tool as a central quality control utility for optimization and Machine Learning applications%
\item<4-> We will improve the tool and add features based on feedback%
\end{itemize}%
%%
\end{frame}% |
##################################################################################################################
#### Purpose: Final Project - Classification - KKNN
#### Group: Ravi P., Derek P., Aneesh K., Ninad K.
#### Date: 11/28/2018
#### Comment:
#### setwd("~/Stevens/Fall2018/CS513_Knowledge_Discovery/Final Project/Classification")
####
##################################################################################################################
setwd("~/Stevens/Fall2018/CS513_Knowledge_Discovery/Final Project/Classification")
#### 0. Clean environment ####
rm(list = ls())
#### 1. Import libraries and datasets ####
library(kknn)
df_train <- read.csv("./data/train_new.csv")
df_test <- read.csv("./data/test_new.csv")
#### 2. Remove unwanted column ####
df_train <- df_train[,-1]
df_test <- df_test[,-1]
summary(df_test)
df_train$SimpleColor <- as.integer(df_train$SimpleColor)
df_test$SimpleColor<- as.integer(df_test$SimpleColor)
df_k1 <- kknn(OutcomeType~ AnimalType + AgeinDays + HasName + IsNeutered + IsMix + Gender + SimpleColor, df_train, df_test, k = 1)
fit <- fitted(df_k1)
table(df_test$OutcomeType, fit)
wrong<- (df_test[,2] != fit)
rate<-sum(wrong)/length(wrong)
print(rate)
#### 3. KKNN Test and Error Rate ####
for(i in c(1,5,10,20,30,40,50,60,70,80,90,100)){
predict<- kknn(OutcomeType~ AnimalType + AgeinDays + HasName + IsNeutered + IsMix + Gender +SimpleColor, train = df_train, test = df_test, k = i)
fit<- fitted(predict)
wrong<- (df_test[,2] != fit)
rate<-sum(wrong)/length(wrong)
cat(sprintf("k = %f Performance: %f \n",i, rate))
}
predict<- kknn(OutcomeType~ AnimalType + AgeinDays + HasName + IsNeutered + IsMix + Gender +SimpleColor, train = df_train, test = df_test, k = 70)
fit<- fitted(predict)
wrong<- (df_test[,2] != fit)
rate<-sum(wrong)/length(wrong)
cat(sprintf("k = %f Performance: %f \n",70, rate))
table(df_test$OutcomeType, fit)
|
[PlusNatSemi] Semigroup Nat where
(<+>) x y = x + y
[MultNatSemi] Semigroup Nat where
(<+>) x y = x * y
[PlusNatMonoid] Monoid Nat using PlusNatSemi where
neutral = 0
[MultNatMonoid] Monoid Nat using MultNatSemi where
neutral = 1
|
module Data.Profunctor.Morphism
import public Data.Morphisms
import Data.Profunctor
import Data.Profunctor.Choice
public export
by : (Morphism a b -> Morphism c d) -> (a -> b) -> (c -> d)
by f = applyMor . f . Mor
export
Profunctor Morphism where
lmap pre = Mor . (. pre) . applyMor
rmap post = Mor . (post .) . applyMor
export
Choice Morphism where
right' = Mor . map . applyMor
|
(* -------------------------------------------------------------------------- *
* Vellvm - the Verified LLVM project *
* *
* Copyright (c) 2017 Steve Zdancewic <[email protected]> *
* Copyright (c) 2017 Joachim Breitner <[email protected]> *
* *
* This file is distributed under the terms of the GNU General Public *
* License as published by the Free Software Foundation, either version *
* 3 of the License, or (at your option) any later version. *
---------------------------------------------------------------------------- *)
Require Import Ascii String.
Extraction Language Haskell.
Require Import Vellvm.LLVMAst.
Extract Inductive option => "Prelude.Maybe" [ "Nothing" "Just" ].
Extract Inductive list => "[]" [ "[]" "(:)" ].
Extract Inductive prod => "(,)" [ "(,)" ].
Extract Inductive string => "Prelude.String" [ "[]" "(:)" ].
Extract Inductive bool => "Prelude.Bool" [ "False" "True" ].
Extract Inlined Constant int => "Prelude.Int".
Extract Inlined Constant float => "Prelude.Float".
Extraction Library Datatypes.
Extraction Library LLVMAst.
|
"DataType for program registers."
type Reg
op::Op
name::Symbol
args::Vector{Symbol}
cond::Expr
argv::Vector{Int}
plist::Dict{Symbol,Any}
out; out0; dif; dif0; tmp;
end
Reg(op::Op,name::Symbol,args::Vector{Symbol},cond::Expr)=
Reg(op,name,args,cond,Int[],Dict{Symbol,Any}(),
nothing,nothing,nothing,nothing,nothing)
# Stack entries will be triples consisting of:
# 1. the :forw flag, indicating whether the operation was performed
# 2. the argv array indicating which inputs were used
# 3. the output array, if :save was set
# Both :forw and argv may change based on runtime conditions, and
# the stack has to record these for back which does not have access
# to runtime conditions.
"DataType for stack entries."
type StackEntry
forw::Bool
argv::Vector{Int}
out
end
"DataType for a compiled network."
type Net
reg::Vector{Reg}
stack::Vector{StackEntry}
sp::Int
lastforw
lastback
Net(reg::Vector{Reg})=new(reg, Any[], 0)
end
import Base: length, get, eltype, pop!, push!
regs(f::Net)=f.reg
length(f::Net)=length(f.reg)
reg(f::Net,i)=f.reg[i] # i could be an array or any other type of index expression
params(f::Net)=filter(x->isa(x.op,Par),f.reg)
ninputs(f::Net)=count(x->(isa(x.op,Input) && getp(x,:forw)),f.reg)
eltype(f::Net)=(r=f.reg[1];!isvoid(r,:out0)?eltype(r.out0):error("Uninitialized Net"))
function reg(f::Net,k::Symbol)
i = findlast(f.reg) do p
getp(p,:forw) && p.name==k
end
return i==0 ? nothing : f.reg[i]
end
get(f::Net,k)=(r=reg(f,k); r==nothing ? r : r.out) # to_host(r.out))
dif(f::Net,k)=(r=reg(f,k); r==nothing ? r : r.dif)
inputregs(f::Net,p::Reg)=f.reg[p.argv]
# map too slow?
# inputs(f::Net,p::Reg)=map(x->x.out, inputregs(f,p))
inputs(f::Net,p::Reg)=outs(inputregs(f,p))
function outs(pp::Vector{Reg})
n = length(pp)
a = cell(n)
@inbounds for i=1:n; a[i]=pp[i].out; end
return a
end
function difs(pp::Vector{Reg})
n = length(pp)
a = cell(n)
@inbounds for i=1:n
r = pp[i]
a[i]=(!getp(r,:grad) ? nothing :
getp(r,:incr) ? r.tmp :
r.dif0)
end
return a
end
getp(p::Reg,k::Symbol,v=false)=get(p.plist,k,v)
incp(p::Reg,k::Symbol)=setp(p,k,1+getp(p,k,0))
setp(p::Reg,k::Symbol,v)=(p.plist[k]=v)
setp(p::Reg; o...)=(for (k,v) in o; setp(p,k,v); end)
setp(f::Net; o...)=(for p in regs(f); setp(p; o...); end)
function setp(f::Net,k; o...)
r=reg(f,k)
if isa(r,Reg)
setp(r;o...)
elseif isa(r,Array)
for p in r; setp(p;o...); end
end
end
### Cleanup at the beginning/end of sequence
function reset!(f::Net; keepstate=false)
f.sp = 0
for p in regs(f)
p.dif = nothing
getp(p,:incr) && !isvoid(p,:dif0) && fillsync!(p.dif0, 0)
if keepstate
p.out = p.out0
push!(f,p)
else
p.out = nothing
end
end
end
function push!(f::Net,p::Reg)
if length(f.stack) < f.sp
error("Stack error")
elseif length(f.stack) == f.sp
push!(f.stack, StackEntry(false, Int[], nothing))
end
s = f.stack[f.sp+=1]
s.forw = getp(p,:forw)
if s.forw
s.argv = (issimilar(s.argv,p.argv) ?
copy!(s.argv,p.argv) :
copy(p.argv))
s.out = (!getp(p,:save) ? s.out : # won't be used so keep the storage
p.out == nothing ? # nothing represents zero array
(s.out!=nothing && Base.warn_once("Writing nothing over array"); nothing) :
ispersistent(p) ? p.out : # no need to copy Par or Arr, they won't change during forw/back
issimilar(s.out, p.out) ?
copysync!(s.out, p.out) :
copysync!(similar(p.out), p.out)) # this is the only allocation
end
end
stack_length(f::Net)=f.sp
stack_empty!(f::Net)=(f.sp=0)
stack_isempty(f::Net)=(f.sp==0)
function update!(m::Net; gclip=0, gscale=1, o...) # TODO: implement callbacks
if gclip > 0
g = gnorm(m)
gscale *= (g > gclip ? gclip/g : 1)
end
for p in params(m)
isvoid(p,:dif) && continue # may happen when a conditional part of the model never runs
update!(p; o..., gscale=gscale)
end
end
vnorm(x)=(x==nothing ? 0 : vecnorm(x))
wnorm(m::Net,w=0)=(for p in params(m); w += vnorm(p.out); end; w) # t:317
gnorm(m::Net,g=0)=(for p in params(m); g += vnorm(p.dif); end; g) # t:332
function Base.isequal(a::Union{Net,Reg,StackEntry}, b::Union{Net,Reg,StackEntry})
for n in fieldnames(a)
if isdefined(a,n) && isdefined(b,n)
isequal(a.(n), b.(n)) || return false
elseif isdefined(a,n) || isdefined(b,n)
return false
end
end
return true
end
### File I/O
using JLD
function clean(net::Net)
a = Array(Reg, length(net))
for i=1:length(net)
r = net.reg[i]
a[i] = Reg(r.op, r.name, r.args, r.cond, r.argv, r.plist,
ispersistent(r) ? r.out : nothing,
ispersistent(r) ? r.out0 : nothing,
nothing, nothing, nothing)
end
return Net(a)
end
### DEBUGGING
Base.writemime(io::IO, ::MIME"text/plain", f::Net)=netprint(f)
function netprint(f::Net)
# vecnorm1(x,n)=(!isdefined(x,n)? Inf : x.(n)==nothing ? NaN : vecnorm(x.(n)))
for i=1:length(f)
r=reg(f,i)
@printf("%d %s%s name=>%s", i, typeof(r.op), tuple(r.argv...), r.name)
!isempty(r.args) && @printf(",args=>(%s)", join(r.args,","))
!isvoid(r,:out0) && @printf(",dims=>%s", size(r.out0))
!isvoid(r,:out) && @printf(",norm=>%g", vecnorm(r.out))
!isvoid(r,:dif) && @printf(",norm=>%g", vecnorm(r.dif))
!isempty(r.cond.args) && @printf(",cond=>%s", r.cond.args)
for (k,v) in r.plist; @printf(",%s=>%s", string(k), v); end
println()
end
end
ptr16(x)=hex(x==nothing ? 0 : hash(pointer(x)) % 0xffff, 4)
ptr8(x)=hex(x==nothing ? 0 : hash(pointer(x)) % 0xff, 2)
idx1(x)=(x==nothing ? -1 : atype(x)==CudaArray ? to_host(x)[1] : atype(x)==Array ? x[1] : error("$(typeof(x))"))
vecnorm0(x,y...)=map(vecnorm0,(x,y...))
vecnorm0(x::Vector)=map(vecnorm0,x)
vecnorm0(x::Tuple)=map(vecnorm0,x)
vecnorm0(x::Par)= ((!isvoid(x,:out)? vecnorm0(x.out) : 0),
(!isvoid(x,:dif)? vecnorm0(x.dif) : 0))
vecnorm0(::Void)=0
vecnorm0(x)=(@sprintf("%.8f",vecnorm(x))) #floor(1e6*vecnorm(x))/1e6
### DEAD CODE
# isempty(f.stack) || (warn("Stack not empty"); empty!(f.stack))
# isempty(f.sdict) || (warn("Sdict not empty"); empty!(f.sdict))
# function push!(f::Net,a)
# push!(f.stack,a)
# if a!=nothing
# isa(a,NTuple{3}) || error("Expected NTuple{3} got $a")
# (y, xsave, ysave) = a
# ysave == nothing || (f.sdict[ysave]=true)
# xsave == nothing || (for x in xsave; f.sdict[x]=true; end)
# end
# end
# function pop!(f::Net)
# a = pop!(f.stack)
# if isempty(f.stack)
# f.sfree = collect(keys(f.sdict))
# empty!(f.sdict)
# end
# return a
# end
# Too expensive:
# function pop!(f::Net)
# a = pop!(f.stack)
# if a!=nothing
# isa(a,NTuple{3}) || error("Expected NTuple{3} got $a")
# (y, xsave, ysave) = a
# ysave == nothing || dec!(f.sdict,ysave)
# xsave == nothing || (for x in xsave; dec!(f.sdict,x); end)
# end
# return a
# end
# inc!(p::ObjectIdDict,k)=(p[k]=1+getp(p,k,0))
# function dec!(p::ObjectIdDict,k)
# haskey(p,k) || (warn("Object not in dict"); return)
# n = getp(p,k,0)
# if n > 1
# p[k] = n-1
# elseif n == 1
# delete!(p,k)
# else
# warn("Bad count for object: $n")
# delete!(p,k)
# end
# end
# op(f::Net,n::Int)=f.reg[n].op
# inputs(f::Net,n::Int)=f.reg[n].inputs
# output(f::Net,n::Int)=f.reg[n].output
# forwref(f::Net,n::Int)=any(i->in(output(f,n),inputs(f,i)), 1:n-1)
# regs(f::Net)=values(f.reg)
# output_register(f::Net,p::Ins)=reg(f.reg,p.output,nothing)
# inputregs(f::Net,p::Ins)=map(s->reg(f.reg,s,nothing), p.inputs)
# input_arrays(f::Net,p::Ins)=map(s->(haskey(f.reg,s) ? f.reg[s].out : nothing), p.inputs)
# nops(f::Net)=length(f.reg)
# getprop(p::Ins,k,d=false)=get(p.plist,k,d)
# setprop!(p::Ins,k,v=true)=(p.plist[k]=v)
# set!(p::Ins,k,v=true)=setprop!(p,k,v)
# getprop(p::Reg,k,d=false)=get(p.plist,k,d)
# setprop!(p::Reg,k,v=true)=(p.plist[k]=v)
# set!(p::Reg,k,v=true)=setprop!(p,k,v)
# inc!(p::Reg,k)=set!(p,k,1+get(p,k))
# getreg(f::Net,k::Symbol)=reg(f.reg,k,nothing)
# getdif(f::Net,k::Symbol)=(haskey(f.reg,k) ? f.reg[k].dif : nothing)
# getout(f::Net,k::Symbol)=(haskey(f.reg,k) ? f.reg[k].out : nothing)
# getreg(f::Net,p::Ins)=getreg(f,p.output)
# getdif(f::Net,p::Ins)=getdif(f,p.output)
# getout(f::Net,p::Ins)=getout(f,p.output)
# Base.reg(f::Net,k)=getout(f,k)
# Base.get(p::Ins,k,d=false)=getprop(p,k,d)
# Base.get(p::Reg,k,d=false)=getprop(p,k,d)
# Base.copysync!(r::Reg,x)=(r.out=copysync!(r.out0,x))
# type Ins
# output::Symbol
# op::Op
# inputs::Vector{Symbol}
# cond::Expr
# plist::Dict
# out; out0; dif; dif0; tmp
# function Ins(output::Symbol,op::Op,inputs::Vector{Symbol},cond::Expr)
# new(output,op,inputs,cond,Dict(),nothing,nothing,nothing,nothing,nothing)
# end
# end
# type Net
# op::Vector{Ins}
# sp::Int
# stack::Vector
# end
# """
# tosave(op, inputs) returns tosave[n] which is true if the result of
# op[n] would be needed for back calculation. We find this out using
# back_reads_x and back_reads_y on each op. Note that Par registers
# are persistent and do not need to be saved.
# """
# function tosave(op, inputs)
# N = length(op)
# tosave = falses(N)
# for n=1:length(op)
# back_reads_y(op[n]) && (tosave[n] = true)
# if back_reads_x(op[n])
# for i in inputs[n]
# if !isa(op[i], Par)
# tosave[i] = true
# end
# end
# end
# end
# return tosave
# end
# """
# outputs(inputs) returns an array of output indices for each register.
# Note that the final register is the network output, so it could be
# read externally even if outputs[N] is empty.
# """
# function outputs(inputs)
# N = length(inputs)
# outputs = [ Int[] for n=1:N ]
# for n=1:N
# for i in inputs[n]
# push!(outputs[i], n)
# end
# end
# push!(outputs[N], 0) # for network output
# return outputs
# end
# """
# Net(::Expr) compiles a quoted block of net language to a Net object
# """
# function Net(a::Expr)
# (op, inputs) = netcomp(a)
# N = length(op)
# Net(op, inputs, outputs(inputs),
# count(x->isa(x,Input), op),
# filter(x->isa(x,Par), op),
# tosave(op, inputs),
# falses(N), # toback: depends on dx
# falses(N), # toincr: depends on seq
# falses(N), # sparse: depends on input
# cell(N), cell(N), cell(N), cell(N), cell(N),
# Any[], 0)
# end
# """
# netcomp(::Expr) compiles Expr and returns (ops, opinputs)
# where inputs are represented as integer indices.
# """
# function netcomp(a::Expr)
# (op,innames,outname) = netcomp1(a)
# dict = Dict{Symbol,Int}()
# for n=1:length(outname)
# dict[outname[n]] = n
# end
# inputidx = Array(Vector{Int}, length(innames))
# for n=1:length(innames)
# inputidx[n] = map(x->dict[x], innames[n])
# end
# (op, inputidx)
# end
# """
# netcomp1(::Expr) compiles Expr and returns (ops, inputs, output)
# where inputs and outputs are gensyms
# """
# function netcomp1(block::Expr)
# @assert block.head == :block
# dict = Dict{Symbol,Symbol}()
# ops = Op[]
# inputs = Vector{Symbol}[]
# output = Symbol[]
# for stmt in block.args
# isa(stmt, LineNumberNode) && continue
# @assert isa(stmt, Expr)
# (opoutput, func, opinputs, params) = netstmt(stmt, dict)
# ev = eval(current_module(), Expr(:call, func, params...))
# if isa(ev, Op)
# @assert length(opinputs) == ninputs(ev)
# push!(ops, ev)
# push!(inputs, opinputs)
# push!(output, opoutput)
# elseif isa(ev, Expr)
# (subops, subinputs, suboutput) = subcomp(ev, opinputs, opoutput)
# append!(ops, subops)
# append!(inputs, subinputs)
# append!(output, suboutput)
# else
# error("Compiler error: $ev, $func, $params")
# end
# end
# (ops, inputs, output)
# end
# """
# subcomp(::Expr, netinputs, netoutput): compiles a subroutine with
# input/output symbols given by the caller.
# """
# function subcomp(block::Expr, netinputs, netoutput)
# (ops, inputs, output) = netcomp1(block)
# @assert length(netinputs) == count(op->isa(op,Input), ops)
# substitute = Dict{Symbol,Symbol}()
# nextinput = 0
# for i=1:length(ops)
# isa(ops[i], Input) || continue
# substitute[output[i]] = netinputs[nextinput += 1]
# end
# substitute[output[end]] = netoutput
# newops = Any[]
# newinputs = Any[]
# newoutput = Any[]
# for i=1:length(ops)
# isa(ops[i], Input) && continue # input ops can be dropped, inputs are now caller symbols
# push!(newops, ops[i])
# push!(newinputs, map(x->get(substitute,x,x), inputs[i]))
# push!(newoutput, get(substitute, output[i], output[i]))
# end
# (newops, newinputs, newoutput)
# end
# """
# netstmt(::Expr,::Dict): parses a single assignment statement converting
# variables to gensyms. Returns (target, func, args, pars).
# """
# function netstmt(stmt::Expr, dict::Dict{Symbol,Symbol})
# @assert stmt.head == :(=)
# @assert length(stmt.args) == 2
# (target, expr) = stmt.args
# @assert isa(target, Symbol)
# target = get!(dict, target) do
# gensym(target)
# end
# @assert expr.head == :call
# func = expr.args[1]
# args = Any[]
# pars = Any[]
# for a in expr.args[2:end]
# isa(a, Symbol) ?
# push!(args, a) :
# push!(pars, a)
# end
# for i=1:length(args)
# args[i] = get!(dict, args[i]) do
# gensym(args[i])
# end
# end
# (target, func, args, pars)
# end
# """
# multi(op, inputs) returns a bool vector which is true if op[n] has
# fanout > 1, in which case its dif should be incrementally updated.
# """
# function multi(op, inputs)
# N = length(op)
# nout = zeros(Int, N)
# nout[N] = 1 # count network output as a read
# for n=1:N
# for i in inputs[n]
# nout[i] += 1
# end
# end
# return (nout .> 1)
# end
# """
# Neural network compiler.
# """
# type Net0
# op::Vector{Op}
# inputs::Vector{Vector{Int}}
# outputs::Vector{Vector{Int}}
# netinputs::Int
# params::Vector{Par}
# tosave::Vector{Bool} # result of op[n] needed for back calculation.
# toback::Vector{Bool} # dif[n] should be calculated during back calculation
# toincr::Vector{Bool} # dif[n] should be incrementally updated: multiple outputs or Par in a sequence model
# sparse::Vector # a parameter dotted with sparse input
# out::Vector
# dif::Vector
# out0::Vector
# dif0::Vector
# tmp::Vector
# stack::Vector
# sp::Int
# Net0()=new()
# end
# function Net(f::Function; ninputs=1, o...)
# x = [ gensym("x") for i=1:ninputs ]
# y = gensym("y")
# p = f(x..., y; o...)
# b = Expr(:block)
# for i in x; push!(b.args, :($i = input())); end
# append!(b.args, p.args)
# Net(b)
# end
# function Net(b::Expr)
# net = Net()
# reg = _knet(b)
# net.op = map(first, reg)
# N = length(reg)
# dict = Dict{Symbol,Int}()
# for i=1:N; dict[last(reg[i])] = i; end
# net.inputs = [ Int[] for i=1:N ]
# for i=1:N; for j=2:length(reg[i])-1; push!(net.inputs[i], dict[reg[i][j]]); end; end
# net.outputs = outputs(net.inputs)
# net.netinputs = count(x->isa(x,Input), net.op)
# net.params = filter(x->isa(x,Par), net.op)
# net.tosave = tosave(net.op, net.inputs) # todo: does this not depend on dx as well?
# net.toback = falses(N) # toback: depends on dx
# net.toincr = falses(N) # toincr: depends on seq
# net.sparse = nothings(N) # sparse: depends on input
# for f in (:out,:dif,:out0,:dif0,:tmp); net.(f) = nothings(N); end
# net.stack = Any[]
# net.sp = 0
# return net
# end
# No longer true, we are switching to user controlled register based sharing:
# Two registers may share their out0 arrays but not dif0 or vice-versa
# So each symbol should correspond to a unique register, sharing
# optimization can be done at the array level, not the register level.
# "DataType for regram registers."
# type Reg
# size #::Dims prevents us from using nothing during size inference, TODO; use empty tuple instead, TODO: should we put these into plist?
# eltype::DataType
# outtype::DataType
# diftype::DataType
# tmptype::DataType
# Reg()=(r=new();r.plist=Dict();r.saved=false;r)
# end
# # TODO: retire savenet and loadnet, we just need clean.
# function savenet(fname::AbstractString, net::Net; o...)
# a = Array(Reg, length(net))
# for i=1:length(net)
# r = net.reg[i]
# a[i] = Reg(r.op, r.name, r.args, r.cond, r.argv, r.plist,
# ispersistent(r) ? r.out : nothing,
# ispersistent(r) ? r.out0 : nothing,
# nothing, nothing, nothing)
# end
# save(fname, "knetmodel", Net(a); o...)
# end
# loadnet(fname::AbstractString)=load(fname, "knetmodel")
|
import Base: size, length, reshape, hcat, vcat, fill
# Let the user get the `size` and `length` of `Node`s.
Base.size(x::Node, dims...) = size(unbox(x), dims...)
Base.length(x::Node) = length(unbox(x))
# Sensitivity for the first argument of `reshape`.
@explicit_intercepts reshape Tuple{∇Array, Vararg{Int}} [true, false]
@explicit_intercepts reshape Tuple{∇Array, Tuple{Vararg{Int}}} [true, false]
∇(::typeof(reshape), ::Type{Arg{1}}, _, y, ȳ, A::∇Array, args...) =
reshape(ȳ, size(A)...)
@union_intercepts hcat Tuple{Vararg{∇Array}} Tuple{Vararg{AbstractArray}}
function Nabla.∇(
::typeof(hcat),
::Type{Arg{i}},
_,
y,
ȳ,
A::AbstractArray...
) where i
l = sum([size(A[j], 2) for j in 1:(i - 1)])
u = l + size(A[i], 2)
# Using copy materializes the views returned by selectdim
return copy(u > l + 1 ? selectdim(ȳ, 2, (l+1):u) : selectdim(ȳ, 2, u))
end
@union_intercepts vcat Tuple{Vararg{∇Array}} Tuple{Vararg{AbstractArray}}
function Nabla.∇(
::typeof(vcat),
::Type{Arg{i}},
_,
y,
ȳ,
A::AbstractArray...
) where i
l = sum([size(A[j], 1) for j in 1:(i - 1)])
u = l + size(A[i], 1)
return copy(selectdim(ȳ, 1, (l+1):u))
end
@explicit_intercepts fill Tuple{Any, Tuple{Vararg{Integer}}} [true, false]
∇(::typeof(fill), ::Type{Arg{1}}, p, y, ȳ, value, dims...) = sum(ȳ)
|
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
variable
A B : Set
x y z : A
xs ys zs : List A
f : A → B
m n : Nat
cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl
trans : x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
+zero : m + zero ≡ m
+zero {zero} = refl
+zero {suc m} = cong suc +zero
suc+zero : suc m + zero ≡ suc m
suc+zero = +zero
+suc : m + (suc n) ≡ suc (m + n)
+suc {zero} = refl
+suc {suc m} = cong suc +suc
zero+suc : zero + (suc n) ≡ suc n
zero+suc = refl
suc+suc : (suc m) + (suc n) ≡ suc (suc (m + n))
suc+suc = cong suc +suc
{-# REWRITE +zero +suc suc+zero zero+suc suc+suc #-}
map : (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = (f x) ∷ (map f xs)
_++_ : List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
++-[] : xs ++ [] ≡ xs
++-[] {xs = []} = refl
++-[] {xs = x ∷ xs} = cong (_∷_ x) ++-[]
∷-++-[] : (x ∷ xs) ++ [] ≡ x ∷ xs
∷-++-[] = ++-[]
map-id : map (λ x → x) xs ≡ xs
map-id {xs = []} = refl
map-id {xs = x ∷ xs} = cong (_∷_ x) map-id
map-id-∷ : map (λ x → x) (x ∷ xs) ≡ x ∷ xs
map-id-∷ = map-id
{-# REWRITE ++-[] ∷-++-[] #-}
{-# REWRITE map-id map-id-∷ #-}
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Yury Kudryashov
-/
import analysis.complex.basic
import analysis.normed_space.finite_dimension
import measure_theory.function.ae_measurable_sequence
import measure_theory.group.arithmetic
import measure_theory.lattice
import measure_theory.measure.open_pos
import topology.algebra.order.liminf_limsup
import topology.continuous_function.basic
import topology.instances.ereal
import topology.G_delta
import topology.order.lattice
import topology.semicontinuous
import topology.metric_space.metrizable
/-!
# Borel (measurable) space
## Main definitions
* `borel α` : the least `σ`-algebra that contains all open sets;
* `class borel_space` : a space with `topological_space` and `measurable_space` structures
such that `‹measurable_space α› = borel α`;
* `class opens_measurable_space` : a space with `topological_space` and `measurable_space`
structures such that all open sets are measurable; equivalently, `borel α ≤ ‹measurable_space α›`.
* `borel_space` instances on `empty`, `unit`, `bool`, `nat`, `int`, `rat`;
* `measurable` and `borel_space` instances on `ℝ`, `ℝ≥0`, `ℝ≥0∞`.
## Main statements
* `is_open.measurable_set`, `is_closed.measurable_set`: open and closed sets are measurable;
* `continuous.measurable` : a continuous function is measurable;
* `continuous.measurable2` : if `f : α → β` and `g : α → γ` are measurable and `op : β × γ → δ`
is continuous, then `λ x, op (f x, g y)` is measurable;
* `measurable.add` etc : dot notation for arithmetic operations on `measurable` predicates,
and similarly for `dist` and `edist`;
* `ae_measurable.add` : similar dot notation for almost everywhere measurable functions;
* `measurable.ennreal*` : special cases for arithmetic operations on `ℝ≥0∞`.
-/
noncomputable theory
open classical set filter measure_theory
open_locale classical big_operators topological_space nnreal ennreal measure_theory
universes u v w x y
variables {α β γ γ₂ δ : Type*} {ι : Sort y} {s t u : set α}
open measurable_space topological_space
/-- `measurable_space` structure generated by `topological_space`. -/
def borel (α : Type u) [topological_space α] : measurable_space α :=
generate_from {s : set α | is_open s}
lemma borel_eq_top_of_discrete [topological_space α] [discrete_topology α] :
borel α = ⊤ :=
top_le_iff.1 $ λ s hs, generate_measurable.basic s (is_open_discrete s)
lemma borel_eq_top_of_encodable [topological_space α] [t1_space α] [encodable α] :
borel α = ⊤ :=
begin
refine (top_le_iff.1 $ λ s hs, bUnion_of_singleton s ▸ _),
apply measurable_set.bUnion s.countable_encodable,
intros x hx,
apply measurable_set.of_compl,
apply generate_measurable.basic,
exact is_closed_singleton.is_open_compl
end
lemma borel_eq_generate_from_of_subbasis {s : set (set α)}
[t : topological_space α] [second_countable_topology α] (hs : t = generate_from s) :
borel α = generate_from s :=
le_antisymm
(generate_from_le $ assume u (hu : t.is_open u),
begin
rw [hs] at hu,
induction hu,
case generate_open.basic : u hu
{ exact generate_measurable.basic u hu },
case generate_open.univ
{ exact @measurable_set.univ α (generate_from s) },
case generate_open.inter : s₁ s₂ _ _ hs₁ hs₂
{ exact @measurable_set.inter α (generate_from s) _ _ hs₁ hs₂ },
case generate_open.sUnion : f hf ih
{ rcases is_open_sUnion_countable f (by rwa hs) with ⟨v, hv, vf, vu⟩,
rw ← vu,
exact @measurable_set.sUnion α (generate_from s) _ hv
(λ x xv, ih _ (vf xv)) }
end)
(generate_from_le $ assume u hu, generate_measurable.basic _ $
show t.is_open u, by rw [hs]; exact generate_open.basic _ hu)
lemma topological_space.is_topological_basis.borel_eq_generate_from [topological_space α]
[second_countable_topology α] {s : set (set α)} (hs : is_topological_basis s) :
borel α = generate_from s :=
borel_eq_generate_from_of_subbasis hs.eq_generate_from
lemma is_pi_system_is_open [topological_space α] : is_pi_system (is_open : set α → Prop) :=
λ s hs t ht hst, is_open.inter hs ht
lemma borel_eq_generate_from_is_closed [topological_space α] :
borel α = generate_from {s | is_closed s} :=
le_antisymm
(generate_from_le $ λ t ht, @measurable_set.of_compl α _ (generate_from {s | is_closed s})
(generate_measurable.basic _ $ is_closed_compl_iff.2 ht))
(generate_from_le $ λ t ht, @measurable_set.of_compl α _ (borel α)
(generate_measurable.basic _ $ is_open_compl_iff.2 ht))
section order_topology
variable (α)
variables [topological_space α] [second_countable_topology α] [linear_order α] [order_topology α]
lemma borel_eq_generate_from_Iio : borel α = generate_from (range Iio) :=
begin
refine le_antisymm _ (generate_from_le _),
{ rw borel_eq_generate_from_of_subbasis (@order_topology.topology_eq_generate_intervals α _ _ _),
letI : measurable_space α := measurable_space.generate_from (range Iio),
have H : ∀ a : α, measurable_set (Iio a) := λ a, generate_measurable.basic _ ⟨_, rfl⟩,
refine generate_from_le _, rintro _ ⟨a, rfl | rfl⟩; [skip, apply H],
by_cases h : ∃ a', ∀ b, a < b ↔ a' ≤ b,
{ rcases h with ⟨a', ha'⟩,
rw (_ : Ioi a = (Iio a')ᶜ), { exact (H _).compl },
simp [set.ext_iff, ha'] },
{ rcases is_open_Union_countable
(λ a' : {a' : α // a < a'}, {b | a'.1 < b})
(λ a', is_open_lt' _) with ⟨v, ⟨hv⟩, vu⟩,
simp [set.ext_iff] at vu,
have : Ioi a = ⋃ x : v, (Iio x.1.1)ᶜ,
{ simp [set.ext_iff],
refine λ x, ⟨λ ax, _, λ ⟨a', ⟨h, av⟩, ax⟩, lt_of_lt_of_le h ax⟩,
rcases (vu x).2 _ with ⟨a', h₁, h₂⟩,
{ exact ⟨a', h₁, le_of_lt h₂⟩ },
refine not_imp_comm.1 (λ h, _) h,
exact ⟨x, λ b, ⟨λ ab, le_of_not_lt (λ h', h ⟨b, ab, h'⟩),
lt_of_lt_of_le ax⟩⟩ },
rw this, resetI,
apply measurable_set.Union,
exact λ _, (H _).compl } },
{ rw forall_range_iff,
intro a,
exact generate_measurable.basic _ is_open_Iio }
end
lemma borel_eq_generate_from_Ioi : borel α = generate_from (range Ioi) :=
@borel_eq_generate_from_Iio (order_dual α) _ (by apply_instance : second_countable_topology α) _ _
end order_topology
lemma borel_comap {f : α → β} {t : topological_space β} :
@borel α (t.induced f) = (@borel β t).comap f :=
comap_generate_from.symm
lemma continuous.borel_measurable [topological_space α] [topological_space β]
{f : α → β} (hf : continuous f) :
@measurable α β (borel α) (borel β) f :=
measurable.of_le_map $ generate_from_le $
λ s hs, generate_measurable.basic (f ⁻¹' s) (hs.preimage hf)
/-- A space with `measurable_space` and `topological_space` structures such that
all open sets are measurable. -/
class opens_measurable_space (α : Type*) [topological_space α] [h : measurable_space α] : Prop :=
(borel_le : borel α ≤ h)
/-- A space with `measurable_space` and `topological_space` structures such that
the `σ`-algebra of measurable sets is exactly the `σ`-algebra generated by open sets. -/
class borel_space (α : Type*) [topological_space α] [measurable_space α] : Prop :=
(measurable_eq : ‹measurable_space α› = borel α)
namespace tactic
/-- Add instances `borel α : measurable_space α` and `⟨rfl⟩ : borel_space α`. -/
meta def add_borel_instance (α : expr) : tactic unit :=
do
n1 ← get_unused_name "_inst",
to_expr ``(borel %%α) >>= pose n1,
reset_instance_cache,
n2 ← get_unused_name "_inst",
v ← to_expr ``(borel_space.mk rfl : borel_space %%α),
note n2 none v,
reset_instance_cache
/-- Given a type `α`, an assumption `i : measurable_space α`, and an instance `[borel_space α]`,
replace `i` with `borel α`. -/
meta def borel_to_refl (α i : expr) : tactic unit :=
do
n ← get_unused_name "h",
to_expr ``(%%i = borel %%α) >>= assert n,
applyc `borel_space.measurable_eq,
unfreezing (tactic.subst i),
n1 ← get_unused_name "_inst",
to_expr ``(borel %%α) >>= pose n1,
reset_instance_cache
/-- Given a type `α`, if there is an assumption `[i : measurable_space α]`, then try to prove
`[borel_space α]` and replace `i` with `borel α`. Otherwise, add instances
`borel α : measurable_space α` and `⟨rfl⟩ : borel_space α`. -/
meta def borelize (α : expr) : tactic unit :=
do
i ← optional (to_expr ``(measurable_space %%α) >>= find_assumption),
i.elim (add_borel_instance α) (borel_to_refl α)
namespace interactive
setup_tactic_parser
/-- The behaviour of `borelize α` depends on the existing assumptions on `α`.
- if `α` is a topological space with instances `[measurable_space α] [borel_space α]`, then
`borelize α` replaces the former instance by `borel α`;
- otherwise, `borelize α` adds instances `borel α : measurable_space α` and `⟨rfl⟩ : borel_space α`.
Finally, `borelize [α, β, γ]` runs `borelize α, borelize β, borelize γ`.
-/
meta def borelize (ts : parse pexpr_list_or_texpr) : tactic unit :=
mmap' (λ t, to_expr t >>= tactic.borelize) ts
add_tactic_doc
{ name := "borelize",
category := doc_category.tactic,
decl_names := [`tactic.interactive.borelize],
tags := ["type class"] }
end interactive
end tactic
@[priority 100]
instance order_dual.opens_measurable_space {α : Type*} [topological_space α] [measurable_space α]
[h : opens_measurable_space α] :
opens_measurable_space (order_dual α) :=
{ borel_le := h.borel_le }
@[priority 100]
instance order_dual.borel_space {α : Type*} [topological_space α] [measurable_space α]
[h : borel_space α] :
borel_space (order_dual α) :=
{ measurable_eq := h.measurable_eq }
/-- In a `borel_space` all open sets are measurable. -/
@[priority 100]
instance borel_space.opens_measurable {α : Type*} [topological_space α] [measurable_space α]
[borel_space α] : opens_measurable_space α :=
⟨ge_of_eq $ borel_space.measurable_eq⟩
instance subtype.borel_space {α : Type*} [topological_space α] [measurable_space α]
[hα : borel_space α] (s : set α) :
borel_space s :=
⟨by { rw [hα.1, subtype.measurable_space, ← borel_comap], refl }⟩
instance subtype.opens_measurable_space {α : Type*} [topological_space α] [measurable_space α]
[h : opens_measurable_space α] (s : set α) :
opens_measurable_space s :=
⟨by { rw [borel_comap], exact comap_mono h.1 }⟩
theorem _root_.measurable_set.induction_on_open [topological_space α] [measurable_space α]
[borel_space α] {C : set α → Prop} (h_open : ∀ U, is_open U → C U)
(h_compl : ∀ t, measurable_set t → C t → C tᶜ)
(h_union : ∀ f : ℕ → set α, pairwise (disjoint on f) →
(∀ i, measurable_set (f i)) → (∀ i, C (f i)) → C (⋃ i, f i)) :
∀ ⦃t⦄, measurable_set t → C t :=
measurable_space.induction_on_inter borel_space.measurable_eq is_pi_system_is_open
(h_open _ is_open_empty) h_open h_compl h_union
section
variables [topological_space α] [measurable_space α] [opens_measurable_space α]
[topological_space β] [measurable_space β] [opens_measurable_space β]
[topological_space γ] [measurable_space γ] [borel_space γ]
[topological_space γ₂] [measurable_space γ₂] [borel_space γ₂]
[measurable_space δ]
lemma is_open.measurable_set (h : is_open s) : measurable_set s :=
opens_measurable_space.borel_le _ $ generate_measurable.basic _ h
@[measurability]
lemma measurable_set_interior : measurable_set (interior s) := is_open_interior.measurable_set
lemma is_Gδ.measurable_set (h : is_Gδ s) : measurable_set s :=
begin
rcases h with ⟨S, hSo, hSc, rfl⟩,
exact measurable_set.sInter hSc (λ t ht, (hSo t ht).measurable_set)
end
lemma measurable_set_of_continuous_at {β} [emetric_space β] (f : α → β) :
measurable_set {x | continuous_at f x} :=
(is_Gδ_set_of_continuous_at f).measurable_set
lemma is_closed.measurable_set (h : is_closed s) : measurable_set s :=
h.is_open_compl.measurable_set.of_compl
lemma is_compact.measurable_set [t2_space α] (h : is_compact s) : measurable_set s :=
h.is_closed.measurable_set
@[measurability]
lemma measurable_set_closure : measurable_set (closure s) :=
is_closed_closure.measurable_set
lemma measurable_of_is_open {f : δ → γ} (hf : ∀ s, is_open s → measurable_set (f ⁻¹' s)) :
measurable f :=
by { rw [‹borel_space γ›.measurable_eq], exact measurable_generate_from hf }
lemma measurable_of_is_closed {f : δ → γ} (hf : ∀ s, is_closed s → measurable_set (f ⁻¹' s)) :
measurable f :=
begin
apply measurable_of_is_open, intros s hs,
rw [← measurable_set.compl_iff, ← preimage_compl], apply hf, rw [is_closed_compl_iff], exact hs
end
lemma measurable_of_is_closed' {f : δ → γ}
(hf : ∀ s, is_closed s → s.nonempty → s ≠ univ → measurable_set (f ⁻¹' s)) : measurable f :=
begin
apply measurable_of_is_closed, intros s hs,
cases eq_empty_or_nonempty s with h1 h1, { simp [h1] },
by_cases h2 : s = univ, { simp [h2] },
exact hf s hs h1 h2
end
instance nhds_is_measurably_generated (a : α) : (𝓝 a).is_measurably_generated :=
begin
rw [nhds, infi_subtype'],
refine @filter.infi_is_measurably_generated _ _ _ _ (λ i, _),
exact i.2.2.measurable_set.principal_is_measurably_generated
end
/-- If `s` is a measurable set, then `𝓝[s] a` is a measurably generated filter for
each `a`. This cannot be an `instance` because it depends on a non-instance `hs : measurable_set s`.
-/
lemma measurable_set.nhds_within_is_measurably_generated {s : set α} (hs : measurable_set s)
(a : α) :
(𝓝[s] a).is_measurably_generated :=
by haveI := hs.principal_is_measurably_generated; exact filter.inf_is_measurably_generated _ _
@[priority 100] -- see Note [lower instance priority]
instance opens_measurable_space.to_measurable_singleton_class [t1_space α] :
measurable_singleton_class α :=
⟨λ x, is_closed_singleton.measurable_set⟩
instance pi.opens_measurable_space_encodable {ι : Type*} {π : ι → Type*} [encodable ι]
[t' : Π i, topological_space (π i)]
[Π i, measurable_space (π i)] [∀ i, second_countable_topology (π i)]
[∀ i, opens_measurable_space (π i)] :
opens_measurable_space (Π i, π i) :=
begin
constructor,
have : Pi.topological_space =
generate_from {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ countable_basis (π a)) ∧
t = pi ↑i s},
{ rw [funext (λ a, @eq_generate_from_countable_basis (π a) _ _), pi_generate_from_eq] },
rw [borel_eq_generate_from_of_subbasis this],
apply generate_from_le,
rintros _ ⟨s, i, hi, rfl⟩,
refine measurable_set.pi i.countable_to_set (λ a ha, is_open.measurable_set _),
rw [eq_generate_from_countable_basis (π a)],
exact generate_open.basic _ (hi a ha)
end
instance pi.opens_measurable_space_fintype {ι : Type*} {π : ι → Type*} [fintype ι]
[t' : Π i, topological_space (π i)]
[Π i, measurable_space (π i)] [∀ i, second_countable_topology (π i)]
[∀ i, opens_measurable_space (π i)] :
opens_measurable_space (Π i, π i) :=
by { letI := fintype.encodable ι, apply_instance }
instance prod.opens_measurable_space [second_countable_topology α] [second_countable_topology β] :
opens_measurable_space (α × β) :=
begin
constructor,
rw [((is_basis_countable_basis α).prod (is_basis_countable_basis β)).borel_eq_generate_from],
apply generate_from_le,
rintros _ ⟨u, v, hu, hv, rfl⟩,
exact (is_open_of_mem_countable_basis hu).measurable_set.prod
(is_open_of_mem_countable_basis hv).measurable_set
end
variables {α' : Type*} [topological_space α'] [measurable_space α']
lemma measure_interior_of_null_bdry {μ : measure α'} {s : set α'}
(h_nullbdry : μ (frontier s) = 0) : μ (interior s) = μ s :=
measure_eq_measure_smaller_of_between_null_diff
interior_subset subset_closure h_nullbdry
lemma measure_closure_of_null_bdry {μ : measure α'} {s : set α'}
(h_nullbdry : μ (frontier s) = 0) : μ (closure s) = μ s :=
(measure_eq_measure_larger_of_between_null_diff
interior_subset subset_closure h_nullbdry).symm
section preorder
variables [preorder α] [order_closed_topology α] {a b x : α}
@[simp, measurability]
lemma measurable_set_Ici : measurable_set (Ici a) := is_closed_Ici.measurable_set
@[simp, measurability]
lemma measurable_set_Iic : measurable_set (Iic a) := is_closed_Iic.measurable_set
@[simp, measurability]
lemma measurable_set_Icc : measurable_set (Icc a b) := is_closed_Icc.measurable_set
instance nhds_within_Ici_is_measurably_generated :
(𝓝[Ici b] a).is_measurably_generated :=
measurable_set_Ici.nhds_within_is_measurably_generated _
instance nhds_within_Iic_is_measurably_generated :
(𝓝[Iic b] a).is_measurably_generated :=
measurable_set_Iic.nhds_within_is_measurably_generated _
instance nhds_within_Icc_is_measurably_generated :
is_measurably_generated (𝓝[Icc a b] x) :=
by { rw [← Ici_inter_Iic, nhds_within_inter], apply_instance }
instance at_top_is_measurably_generated : (filter.at_top : filter α).is_measurably_generated :=
@filter.infi_is_measurably_generated _ _ _ _ $
λ a, (measurable_set_Ici : measurable_set (Ici a)).principal_is_measurably_generated
instance at_bot_is_measurably_generated : (filter.at_bot : filter α).is_measurably_generated :=
@filter.infi_is_measurably_generated _ _ _ _ $
λ a, (measurable_set_Iic : measurable_set (Iic a)).principal_is_measurably_generated
end preorder
section partial_order
variables [partial_order α] [order_closed_topology α] [second_countable_topology α]
{a b : α}
@[measurability]
lemma measurable_set_le' : measurable_set {p : α × α | p.1 ≤ p.2} :=
order_closed_topology.is_closed_le'.measurable_set
@[measurability]
lemma measurable_set_le {f g : δ → α} (hf : measurable f) (hg : measurable g) :
measurable_set {a | f a ≤ g a} :=
hf.prod_mk hg measurable_set_le'
end partial_order
section linear_order
variables [linear_order α] [order_closed_topology α] {a b x : α}
-- we open this locale only here to avoid issues with list being treated as intervals above
open_locale interval
@[simp, measurability]
lemma measurable_set_Iio : measurable_set (Iio a) := is_open_Iio.measurable_set
@[simp, measurability]
lemma measurable_set_Ioi : measurable_set (Ioi a) := is_open_Ioi.measurable_set
@[simp, measurability]
lemma measurable_set_Ioo : measurable_set (Ioo a b) := is_open_Ioo.measurable_set
@[simp, measurability] lemma measurable_set_Ioc : measurable_set (Ioc a b) :=
measurable_set_Ioi.inter measurable_set_Iic
@[simp, measurability] lemma measurable_set_Ico : measurable_set (Ico a b) :=
measurable_set_Ici.inter measurable_set_Iio
instance nhds_within_Ioi_is_measurably_generated :
(𝓝[Ioi b] a).is_measurably_generated :=
measurable_set_Ioi.nhds_within_is_measurably_generated _
instance nhds_within_Iio_is_measurably_generated :
(𝓝[Iio b] a).is_measurably_generated :=
measurable_set_Iio.nhds_within_is_measurably_generated _
instance nhds_within_interval_is_measurably_generated :
is_measurably_generated (𝓝[[a, b]] x) :=
nhds_within_Icc_is_measurably_generated
@[measurability]
lemma measurable_set_lt' [second_countable_topology α] : measurable_set {p : α × α | p.1 < p.2} :=
(is_open_lt continuous_fst continuous_snd).measurable_set
@[measurability]
lemma measurable_set_lt [second_countable_topology α] {f g : δ → α} (hf : measurable f)
(hg : measurable g) : measurable_set {a | f a < g a} :=
hf.prod_mk hg measurable_set_lt'
lemma set.ord_connected.measurable_set (h : ord_connected s) : measurable_set s :=
begin
let u := ⋃ (x ∈ s) (y ∈ s), Ioo x y,
have huopen : is_open u := is_open_bUnion (λ x hx, is_open_bUnion (λ y hy, is_open_Ioo)),
have humeas : measurable_set u := huopen.measurable_set,
have hfinite : (s \ u).finite,
{ refine set.finite_of_forall_between_eq_endpoints (s \ u) (λ x hx y hy z hz hxy hyz, _),
by_contra' h,
exact hy.2 (mem_Union₂.mpr ⟨x, hx.1,
mem_Union₂.mpr ⟨z, hz.1, lt_of_le_of_ne hxy h.1, lt_of_le_of_ne hyz h.2⟩⟩) },
have : u ⊆ s :=
Union₂_subset (λ x hx, Union₂_subset (λ y hy, Ioo_subset_Icc_self.trans (h.out hx hy))),
rw ← union_diff_cancel this,
exact humeas.union hfinite.measurable_set
end
lemma is_preconnected.measurable_set
(h : is_preconnected s) : measurable_set s :=
h.ord_connected.measurable_set
lemma generate_from_Ico_mem_le_borel {α : Type*} [topological_space α] [linear_order α]
[order_closed_topology α] (s t : set α) :
measurable_space.generate_from {S | ∃ (l ∈ s) (u ∈ t) (h : l < u), Ico l u = S} ≤ borel α :=
begin
apply generate_from_le,
borelize α,
rintro _ ⟨a, -, b, -, -, rfl⟩,
exact measurable_set_Ico
end
lemma dense.borel_eq_generate_from_Ico_mem_aux {α : Type*} [topological_space α] [linear_order α]
[order_topology α] [second_countable_topology α] {s : set α} (hd : dense s)
(hbot : ∀ x, is_bot x → x ∈ s) (hIoo : ∀ x y : α, x < y → Ioo x y = ∅ → y ∈ s) :
borel α = generate_from {S : set α | ∃ (l ∈ s) (u ∈ s) (h : l < u), Ico l u = S} :=
begin
set S : set (set α) := {S | ∃ (l ∈ s) (u ∈ s) (h : l < u), Ico l u = S},
refine le_antisymm _ (generate_from_Ico_mem_le_borel _ _),
letI : measurable_space α := generate_from S,
rw borel_eq_generate_from_Iio,
refine generate_from_le (forall_range_iff.2 $ λ a, _),
rcases hd.exists_countable_dense_subset_bot_top with ⟨t, hts, hc, htd, htb, htt⟩,
by_cases ha : ∀ b < a, (Ioo b a).nonempty,
{ convert_to measurable_set (⋃ (l ∈ t) (u ∈ t) (hlu : l < u) (hu : u ≤ a), Ico l u),
{ ext y, simp only [mem_Union, mem_Iio, mem_Ico], split,
{ intro hy,
rcases htd.exists_le' (λ b hb, htb _ hb (hbot b hb)) y with ⟨l, hlt, hly⟩,
rcases htd.exists_mem_open is_open_Ioo (ha y hy) with ⟨u, hut, hyu, hua⟩,
exact ⟨l, hlt, u, hut, hly.trans_lt hyu, hua.le, hly, hyu⟩ },
{ rintro ⟨l, -, u, -, -, hua, -, hyu⟩,
exact hyu.trans_le hua } },
{ refine measurable_set.bUnion hc (λ a ha, measurable_set.bUnion hc $ λ b hb, _),
refine measurable_set.Union_Prop (λ hab, measurable_set.Union_Prop $ λ hb', _),
exact generate_measurable.basic _ ⟨a, hts ha, b, hts hb, hab, mem_singleton _⟩ } },
{ simp only [not_forall, not_nonempty_iff_eq_empty] at ha,
replace ha : a ∈ s := hIoo ha.some a ha.some_spec.fst ha.some_spec.snd,
convert_to measurable_set (⋃ (l ∈ t) (hl : l < a), Ico l a),
{ symmetry,
simp only [← Ici_inter_Iio, ← Union_inter, inter_eq_right_iff_subset, subset_def, mem_Union,
mem_Ici, mem_Iio],
intros x hx, rcases htd.exists_le' (λ b hb, htb _ hb (hbot b hb)) x with ⟨z, hzt, hzx⟩,
exact ⟨z, hzt, hzx.trans_lt hx, hzx⟩ },
{ refine measurable_set.bUnion hc (λ x hx, measurable_set.Union_Prop $ λ hlt, _),
exact generate_measurable.basic _ ⟨x, hts hx, a, ha, hlt, mem_singleton _⟩ } }
end
lemma dense.borel_eq_generate_from_Ico_mem {α : Type*} [topological_space α] [linear_order α]
[order_topology α] [second_countable_topology α] [densely_ordered α] [no_min_order α]
{s : set α} (hd : dense s) :
borel α = generate_from {S : set α | ∃ (l ∈ s) (u ∈ s) (h : l < u), Ico l u = S} :=
hd.borel_eq_generate_from_Ico_mem_aux (by simp) $
λ x y hxy H, ((nonempty_Ioo.2 hxy).ne_empty H).elim
lemma borel_eq_generate_from_Ico (α : Type*) [topological_space α]
[second_countable_topology α] [linear_order α] [order_topology α] :
borel α = generate_from {S : set α | ∃ l u (h : l < u), Ico l u = S} :=
by simpa only [exists_prop, mem_univ, true_and]
using (@dense_univ α _).borel_eq_generate_from_Ico_mem_aux (λ _ _, mem_univ _)
(λ _ _ _ _, mem_univ _)
lemma dense.borel_eq_generate_from_Ioc_mem_aux {α : Type*} [topological_space α] [linear_order α]
[order_topology α] [second_countable_topology α] {s : set α} (hd : dense s)
(hbot : ∀ x, is_top x → x ∈ s) (hIoo : ∀ x y : α, x < y → Ioo x y = ∅ → x ∈ s) :
borel α = generate_from {S : set α | ∃ (l ∈ s) (u ∈ s) (h : l < u), Ioc l u = S} :=
begin
convert hd.order_dual.borel_eq_generate_from_Ico_mem_aux hbot (λ x y hlt he, hIoo y x hlt _),
{ ext s,
split; rintro ⟨l, hl, u, hu, hlt, rfl⟩,
exacts [⟨u, hu, l, hl, hlt, dual_Ico⟩, ⟨u, hu, l, hl, hlt, dual_Ioc⟩] },
{ erw dual_Ioo,
exact he }
end
lemma dense.borel_eq_generate_from_Ioc_mem {α : Type*} [topological_space α] [linear_order α]
[order_topology α] [second_countable_topology α] [densely_ordered α] [no_max_order α]
{s : set α} (hd : dense s) :
borel α = generate_from {S : set α | ∃ (l ∈ s) (u ∈ s) (h : l < u), Ioc l u = S} :=
hd.borel_eq_generate_from_Ioc_mem_aux (by simp) $
λ x y hxy H, ((nonempty_Ioo.2 hxy).ne_empty H).elim
lemma borel_eq_generate_from_Ioc (α : Type*) [topological_space α]
[second_countable_topology α] [linear_order α] [order_topology α] :
borel α = generate_from {S : set α | ∃ l u (h : l < u), Ioc l u = S} :=
by simpa only [exists_prop, mem_univ, true_and]
using (@dense_univ α _).borel_eq_generate_from_Ioc_mem_aux (λ _ _, mem_univ _)
(λ _ _ _ _, mem_univ _)
namespace measure_theory.measure
/-- Two finite measures on a Borel space are equal if they agree on all closed-open intervals. If
`α` is a conditionally complete linear order with no top element,
`measure_theory.measure..ext_of_Ico` is an extensionality lemma with weaker assumptions on `μ` and
`ν`. -/
lemma ext_of_Ico_finite {α : Type*} [topological_space α] {m : measurable_space α}
[second_countable_topology α] [linear_order α] [order_topology α]
[borel_space α] (μ ν : measure α) [is_finite_measure μ] (hμν : μ univ = ν univ)
(h : ∀ ⦃a b⦄, a < b → μ (Ico a b) = ν (Ico a b)) : μ = ν :=
begin
refine ext_of_generate_finite _
(borel_space.measurable_eq.trans (borel_eq_generate_from_Ico α))
(is_pi_system_Ico (id : α → α) id) _ hμν,
{ rintro - ⟨a, b, hlt, rfl⟩,
exact h hlt }
end
/-- Two finite measures on a Borel space are equal if they agree on all open-closed intervals. If
`α` is a conditionally complete linear order with no top element,
`measure_theory.measure..ext_of_Ioc` is an extensionality lemma with weaker assumptions on `μ` and
`ν`. -/
lemma ext_of_Ioc_finite {α : Type*} [topological_space α] {m : measurable_space α}
[second_countable_topology α] [linear_order α] [order_topology α]
[borel_space α] (μ ν : measure α) [is_finite_measure μ] (hμν : μ univ = ν univ)
(h : ∀ ⦃a b⦄, a < b → μ (Ioc a b) = ν (Ioc a b)) : μ = ν :=
begin
refine @ext_of_Ico_finite (order_dual α) _ _ _ _ _ ‹_› μ ν _ hμν (λ a b hab, _),
erw dual_Ico,
exact h hab
end
/-- Two measures which are finite on closed-open intervals are equal if the agree on all
closed-open intervals. -/
lemma ext_of_Ico' {α : Type*} [topological_space α] {m : measurable_space α}
[second_countable_topology α] [linear_order α] [order_topology α] [borel_space α]
[no_max_order α] (μ ν : measure α) (hμ : ∀ ⦃a b⦄, a < b → μ (Ico a b) ≠ ∞)
(h : ∀ ⦃a b⦄, a < b → μ (Ico a b) = ν (Ico a b)) : μ = ν :=
begin
rcases exists_countable_dense_bot_top α with ⟨s, hsc, hsd, hsb, hst⟩,
have : countable (⋃ (l ∈ s) (u ∈ s) (h : l < u), {Ico l u} : set (set α)),
from hsc.bUnion (λ l hl, hsc.bUnion
(λ u hu, countable_Union_Prop $ λ _, countable_singleton _)),
simp only [← set_of_eq_eq_singleton, ← set_of_exists] at this,
refine measure.ext_of_generate_from_of_cover_subset
(borel_space.measurable_eq.trans (borel_eq_generate_from_Ico α))
(is_pi_system_Ico id id) _ this _ _ _,
{ rintro _ ⟨l, -, u, -, h, rfl⟩, exact ⟨l, u, h, rfl⟩ },
{ refine sUnion_eq_univ_iff.2 (λ x, _),
rcases hsd.exists_le' hsb x with ⟨l, hls, hlx⟩,
rcases hsd.exists_gt x with ⟨u, hus, hxu⟩,
exact ⟨_, ⟨l, hls, u, hus, hlx.trans_lt hxu, rfl⟩, hlx, hxu⟩ },
{ rintro _ ⟨l, -, u, -, hlt, rfl⟩, exact hμ hlt },
{ rintro _ ⟨l, u, hlt, rfl⟩, exact h hlt }
end
/-- Two measures which are finite on closed-open intervals are equal if the agree on all
open-closed intervals. -/
lemma ext_of_Ioc' {α : Type*} [topological_space α] {m : measurable_space α}
[second_countable_topology α] [linear_order α] [order_topology α] [borel_space α]
[no_min_order α] (μ ν : measure α) (hμ : ∀ ⦃a b⦄, a < b → μ (Ioc a b) ≠ ∞)
(h : ∀ ⦃a b⦄, a < b → μ (Ioc a b) = ν (Ioc a b)) : μ = ν :=
begin
refine @ext_of_Ico' (order_dual α) _ _ _ _ _ ‹_› _ μ ν _ _;
intros a b hab; erw dual_Ico,
exacts [hμ hab, h hab]
end
/-- Two measures which are finite on closed-open intervals are equal if the agree on all
closed-open intervals. -/
lemma ext_of_Ico {α : Type*} [topological_space α] {m : measurable_space α}
[second_countable_topology α] [conditionally_complete_linear_order α] [order_topology α]
[borel_space α] [no_max_order α] (μ ν : measure α) [is_locally_finite_measure μ]
(h : ∀ ⦃a b⦄, a < b → μ (Ico a b) = ν (Ico a b)) : μ = ν :=
μ.ext_of_Ico' ν (λ a b hab, measure_Ico_lt_top.ne) h
/-- Two measures which are finite on closed-open intervals are equal if the agree on all
open-closed intervals. -/
lemma ext_of_Ioc {α : Type*} [topological_space α] {m : measurable_space α}
[second_countable_topology α] [conditionally_complete_linear_order α] [order_topology α]
[borel_space α] [no_min_order α] (μ ν : measure α) [is_locally_finite_measure μ]
(h : ∀ ⦃a b⦄, a < b → μ (Ioc a b) = ν (Ioc a b)) : μ = ν :=
μ.ext_of_Ioc' ν (λ a b hab, measure_Ioc_lt_top.ne) h
/-- Two finite measures on a Borel space are equal if they agree on all left-infinite right-closed
intervals. -/
lemma ext_of_Iic {α : Type*} [topological_space α] {m : measurable_space α}
[second_countable_topology α] [linear_order α] [order_topology α] [borel_space α]
(μ ν : measure α) [is_finite_measure μ] (h : ∀ a, μ (Iic a) = ν (Iic a)) : μ = ν :=
begin
refine ext_of_Ioc_finite μ ν _ (λ a b hlt, _),
{ rcases exists_countable_dense_bot_top α with ⟨s, hsc, hsd, -, hst⟩,
have : directed_on (≤) s, from directed_on_iff_directed.2 (directed_of_sup $ λ _ _, id),
simp only [← bsupr_measure_Iic hsc (hsd.exists_ge' hst) this, h] },
rw [← Iic_diff_Iic, measure_diff (Iic_subset_Iic.2 hlt.le) measurable_set_Iic,
measure_diff (Iic_subset_Iic.2 hlt.le) measurable_set_Iic, h a, h b],
{ rw ← h a, exact (measure_lt_top μ _).ne },
{ exact (measure_lt_top μ _).ne }
end
/-- Two finite measures on a Borel space are equal if they agree on all left-closed right-infinite
intervals. -/
lemma ext_of_Ici {α : Type*} [topological_space α] {m : measurable_space α}
[second_countable_topology α] [linear_order α] [order_topology α] [borel_space α]
(μ ν : measure α) [is_finite_measure μ] (h : ∀ a, μ (Ici a) = ν (Ici a)) : μ = ν :=
@ext_of_Iic (order_dual α) _ _ _ _ _ ‹_› _ _ _ h
end measure_theory.measure
end linear_order
section linear_order
variables [linear_order α] [order_closed_topology α]
@[measurability]
lemma measurable_set_interval {a b : α} : measurable_set (interval a b) :=
measurable_set_Icc
@[measurability]
lemma measurable_set_interval_oc {a b : α} : measurable_set (interval_oc a b) :=
measurable_set_Ioc
variables [second_countable_topology α]
@[measurability]
lemma measurable.max {f g : δ → α} (hf : measurable f) (hg : measurable g) :
measurable (λ a, max (f a) (g a)) :=
by simpa only [max_def] using hf.piecewise (measurable_set_le hg hf) hg
@[measurability]
lemma ae_measurable.max {f g : δ → α} {μ : measure δ}
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ a, max (f a) (g a)) μ :=
⟨λ a, max (hf.mk f a) (hg.mk g a), hf.measurable_mk.max hg.measurable_mk,
eventually_eq.comp₂ hf.ae_eq_mk _ hg.ae_eq_mk⟩
@[measurability]
lemma measurable.min {f g : δ → α} (hf : measurable f) (hg : measurable g) :
measurable (λ a, min (f a) (g a)) :=
by simpa only [min_def] using hf.piecewise (measurable_set_le hf hg) hg
@[measurability]
lemma ae_measurable.min {f g : δ → α} {μ : measure δ}
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ a, min (f a) (g a)) μ :=
⟨λ a, min (hf.mk f a) (hg.mk g a), hf.measurable_mk.min hg.measurable_mk,
eventually_eq.comp₂ hf.ae_eq_mk _ hg.ae_eq_mk⟩
end linear_order
/-- A continuous function from an `opens_measurable_space` to a `borel_space`
is measurable. -/
lemma continuous.measurable {f : α → γ} (hf : continuous f) :
measurable f :=
hf.borel_measurable.mono opens_measurable_space.borel_le
(le_of_eq $ borel_space.measurable_eq)
/-- A continuous function from an `opens_measurable_space` to a `borel_space`
is ae-measurable. -/
lemma continuous.ae_measurable {f : α → γ} (h : continuous f) (μ : measure α) : ae_measurable f μ :=
h.measurable.ae_measurable
lemma closed_embedding.measurable {f : α → γ} (hf : closed_embedding f) :
measurable f :=
hf.continuous.measurable
lemma continuous.is_open_pos_measure_map {f : β → γ} (hf : continuous f)
(hf_surj : function.surjective f) {μ : measure β} [μ.is_open_pos_measure] :
(measure.map f μ).is_open_pos_measure :=
begin
refine ⟨λ U hUo hUne, _⟩,
rw [measure.map_apply hf.measurable hUo.measurable_set],
exact (hUo.preimage hf).measure_ne_zero μ (hf_surj.nonempty_preimage.mpr hUne)
end
/-- If a function is defined piecewise in terms of functions which are continuous on their
respective pieces, then it is measurable. -/
lemma continuous_on.measurable_piecewise
{f g : α → γ} {s : set α} [Π (j : α), decidable (j ∈ s)]
(hf : continuous_on f s) (hg : continuous_on g sᶜ) (hs : measurable_set s) :
measurable (s.piecewise f g) :=
begin
refine measurable_of_is_open (λ t ht, _),
rw [piecewise_preimage, set.ite],
apply measurable_set.union,
{ rcases _root_.continuous_on_iff'.1 hf t ht with ⟨u, u_open, hu⟩,
rw hu,
exact u_open.measurable_set.inter hs },
{ rcases _root_.continuous_on_iff'.1 hg t ht with ⟨u, u_open, hu⟩,
rw [diff_eq_compl_inter, inter_comm, hu],
exact u_open.measurable_set.inter hs.compl }
end
@[priority 100, to_additive]
instance has_continuous_mul.has_measurable_mul [has_mul γ] [has_continuous_mul γ] :
has_measurable_mul γ :=
{ measurable_const_mul := λ c, (continuous_const.mul continuous_id).measurable,
measurable_mul_const := λ c, (continuous_id.mul continuous_const).measurable }
@[priority 100]
instance has_continuous_sub.has_measurable_sub [has_sub γ] [has_continuous_sub γ] :
has_measurable_sub γ :=
{ measurable_const_sub := λ c, (continuous_const.sub continuous_id).measurable,
measurable_sub_const := λ c, (continuous_id.sub continuous_const).measurable }
@[priority 100, to_additive]
instance topological_group.has_measurable_inv [group γ] [topological_group γ] :
has_measurable_inv γ :=
⟨continuous_inv.measurable⟩
@[priority 100]
instance has_continuous_smul.has_measurable_smul {M α} [topological_space M]
[topological_space α] [measurable_space M] [measurable_space α]
[opens_measurable_space M] [borel_space α] [has_scalar M α] [has_continuous_smul M α] :
has_measurable_smul M α :=
⟨λ c, (continuous_const_smul _).measurable,
λ y, (continuous_id.smul continuous_const).measurable⟩
section lattice
@[priority 100]
instance has_continuous_sup.has_measurable_sup [has_sup γ] [has_continuous_sup γ] :
has_measurable_sup γ :=
{ measurable_const_sup := λ c, (continuous_const.sup continuous_id).measurable,
measurable_sup_const := λ c, (continuous_id.sup continuous_const).measurable }
@[priority 100]
instance has_continuous_sup.has_measurable_sup₂ [second_countable_topology γ] [has_sup γ]
[has_continuous_sup γ] :
has_measurable_sup₂ γ :=
⟨continuous_sup.measurable⟩
@[priority 100]
instance has_continuous_inf.has_measurable_inf [has_inf γ] [has_continuous_inf γ] :
has_measurable_inf γ :=
{ measurable_const_inf := λ c, (continuous_const.inf continuous_id).measurable,
measurable_inf_const := λ c, (continuous_id.inf continuous_const).measurable }
@[priority 100]
instance has_continuous_inf.has_measurable_inf₂ [second_countable_topology γ] [has_inf γ]
[has_continuous_inf γ] :
has_measurable_inf₂ γ :=
⟨continuous_inf.measurable⟩
end lattice
section homeomorph
@[measurability] protected lemma homeomorph.measurable (h : α ≃ₜ γ) : measurable h :=
h.continuous.measurable
/-- A homeomorphism between two Borel spaces is a measurable equivalence.-/
def homeomorph.to_measurable_equiv (h : γ ≃ₜ γ₂) : γ ≃ᵐ γ₂ :=
{ measurable_to_fun := h.measurable,
measurable_inv_fun := h.symm.measurable,
to_equiv := h.to_equiv }
@[simp]
lemma homeomorph.to_measurable_equiv_coe (h : γ ≃ₜ γ₂) : (h.to_measurable_equiv : γ → γ₂) = h :=
rfl
@[simp] lemma homeomorph.to_measurable_equiv_symm_coe (h : γ ≃ₜ γ₂) :
(h.to_measurable_equiv.symm : γ₂ → γ) = h.symm :=
rfl
end homeomorph
@[measurability] lemma continuous_map.measurable (f : C(α, γ)) : measurable f :=
f.continuous.measurable
lemma measurable_of_continuous_on_compl_singleton [t1_space α] {f : α → γ} (a : α)
(hf : continuous_on f {a}ᶜ) :
measurable f :=
measurable_of_measurable_on_compl_singleton a
(continuous_on_iff_continuous_restrict.1 hf).measurable
lemma continuous.measurable2 [second_countable_topology α] [second_countable_topology β]
{f : δ → α} {g : δ → β} {c : α → β → γ}
(h : continuous (λ p : α × β, c p.1 p.2)) (hf : measurable f) (hg : measurable g) :
measurable (λ a, c (f a) (g a)) :=
h.measurable.comp (hf.prod_mk hg)
lemma continuous.ae_measurable2 [second_countable_topology α] [second_countable_topology β]
{f : δ → α} {g : δ → β} {c : α → β → γ} {μ : measure δ}
(h : continuous (λ p : α × β, c p.1 p.2)) (hf : ae_measurable f μ) (hg : ae_measurable g μ) :
ae_measurable (λ a, c (f a) (g a)) μ :=
h.measurable.comp_ae_measurable (hf.prod_mk hg)
@[priority 100]
instance has_continuous_inv₀.has_measurable_inv [group_with_zero γ] [t1_space γ]
[has_continuous_inv₀ γ] :
has_measurable_inv γ :=
⟨measurable_of_continuous_on_compl_singleton 0 continuous_on_inv₀⟩
@[priority 100, to_additive]
instance has_continuous_mul.has_measurable_mul₂ [second_countable_topology γ] [has_mul γ]
[has_continuous_mul γ] : has_measurable_mul₂ γ :=
⟨continuous_mul.measurable⟩
@[priority 100]
instance has_continuous_sub.has_measurable_sub₂ [second_countable_topology γ] [has_sub γ]
[has_continuous_sub γ] : has_measurable_sub₂ γ :=
⟨continuous_sub.measurable⟩
@[priority 100]
instance has_continuous_smul.has_measurable_smul₂ {M α} [topological_space M]
[second_countable_topology M] [measurable_space M] [opens_measurable_space M]
[topological_space α] [second_countable_topology α] [measurable_space α]
[borel_space α] [has_scalar M α] [has_continuous_smul M α] :
has_measurable_smul₂ M α :=
⟨continuous_smul.measurable⟩
end
section borel_space
variables [topological_space α] [measurable_space α] [borel_space α]
[topological_space β] [measurable_space β] [borel_space β]
[topological_space γ] [measurable_space γ] [borel_space γ]
[measurable_space δ]
lemma pi_le_borel_pi {ι : Type*} {π : ι → Type*} [Π i, topological_space (π i)]
[Π i, measurable_space (π i)] [∀ i, borel_space (π i)] :
measurable_space.pi ≤ borel (Π i, π i) :=
begin
have : ‹Π i, measurable_space (π i)› = λ i, borel (π i) :=
funext (λ i, borel_space.measurable_eq),
rw [this],
exact supr_le (λ i, comap_le_iff_le_map.2 $ (continuous_apply i).borel_measurable)
end
lemma prod_le_borel_prod : prod.measurable_space ≤ borel (α × β) :=
begin
rw [‹borel_space α›.measurable_eq, ‹borel_space β›.measurable_eq],
refine sup_le _ _,
{ exact comap_le_iff_le_map.mpr continuous_fst.borel_measurable },
{ exact comap_le_iff_le_map.mpr continuous_snd.borel_measurable }
end
instance pi.borel_space_fintype_encodable {ι : Type*} {π : ι → Type*} [encodable ι]
[t' : Π i, topological_space (π i)]
[Π i, measurable_space (π i)] [∀ i, second_countable_topology (π i)]
[∀ i, borel_space (π i)] :
borel_space (Π i, π i) :=
⟨le_antisymm pi_le_borel_pi opens_measurable_space.borel_le⟩
instance pi.borel_space_fintype {ι : Type*} {π : ι → Type*} [fintype ι]
[t' : Π i, topological_space (π i)]
[Π i, measurable_space (π i)] [∀ i, second_countable_topology (π i)]
[∀ i, borel_space (π i)] :
borel_space (Π i, π i) :=
⟨le_antisymm pi_le_borel_pi opens_measurable_space.borel_le⟩
instance prod.borel_space [second_countable_topology α] [second_countable_topology β] :
borel_space (α × β) :=
⟨le_antisymm prod_le_borel_prod opens_measurable_space.borel_le⟩
protected lemma embedding.measurable_embedding {f : α → β} (h₁ : embedding f)
(h₂ : measurable_set (range f)) : measurable_embedding f :=
show measurable_embedding (coe ∘ (homeomorph.of_embedding f h₁).to_measurable_equiv),
from (measurable_embedding.subtype_coe h₂).comp (measurable_equiv.measurable_embedding _)
protected lemma closed_embedding.measurable_embedding {f : α → β} (h : closed_embedding f) :
measurable_embedding f :=
h.to_embedding.measurable_embedding h.closed_range.measurable_set
protected lemma open_embedding.measurable_embedding {f : α → β} (h : open_embedding f) :
measurable_embedding f :=
h.to_embedding.measurable_embedding h.open_range.measurable_set
section linear_order
variables [linear_order α] [order_topology α] [second_countable_topology α]
lemma measurable_of_Iio {f : δ → α} (hf : ∀ x, measurable_set (f ⁻¹' Iio x)) : measurable f :=
begin
convert measurable_generate_from _,
exact borel_space.measurable_eq.trans (borel_eq_generate_from_Iio _),
rintro _ ⟨x, rfl⟩, exact hf x
end
lemma upper_semicontinuous.measurable [topological_space δ] [opens_measurable_space δ]
{f : δ → α} (hf : upper_semicontinuous f) : measurable f :=
measurable_of_Iio (λ y, (hf.is_open_preimage y).measurable_set)
lemma measurable_of_Ioi {f : δ → α} (hf : ∀ x, measurable_set (f ⁻¹' Ioi x)) : measurable f :=
begin
convert measurable_generate_from _,
exact borel_space.measurable_eq.trans (borel_eq_generate_from_Ioi _),
rintro _ ⟨x, rfl⟩, exact hf x
end
lemma lower_semicontinuous.measurable [topological_space δ] [opens_measurable_space δ]
{f : δ → α} (hf : lower_semicontinuous f) : measurable f :=
measurable_of_Ioi (λ y, (hf.is_open_preimage y).measurable_set)
lemma measurable_of_Iic {f : δ → α} (hf : ∀ x, measurable_set (f ⁻¹' Iic x)) : measurable f :=
begin
apply measurable_of_Ioi,
simp_rw [← compl_Iic, preimage_compl, measurable_set.compl_iff],
assumption
end
lemma measurable_of_Ici {f : δ → α} (hf : ∀ x, measurable_set (f ⁻¹' Ici x)) : measurable f :=
begin
apply measurable_of_Iio,
simp_rw [← compl_Ici, preimage_compl, measurable_set.compl_iff],
assumption
end
lemma measurable.is_lub {ι} [encodable ι] {f : ι → δ → α} {g : δ → α} (hf : ∀ i, measurable (f i))
(hg : ∀ b, is_lub {a | ∃ i, f i b = a} (g b)) :
measurable g :=
begin
change ∀ b, is_lub (range $ λ i, f i b) (g b) at hg,
rw [‹borel_space α›.measurable_eq, borel_eq_generate_from_Ioi α],
apply measurable_generate_from,
rintro _ ⟨a, rfl⟩,
simp_rw [set.preimage, mem_Ioi, lt_is_lub_iff (hg _), exists_range_iff, set_of_exists],
exact measurable_set.Union (λ i, hf i (is_open_lt' _).measurable_set)
end
private lemma ae_measurable.is_lub_of_nonempty {ι} (hι : nonempty ι)
{μ : measure δ} [encodable ι] {f : ι → δ → α} {g : δ → α}
(hf : ∀ i, ae_measurable (f i) μ) (hg : ∀ᵐ b ∂μ, is_lub {a | ∃ i, f i b = a} (g b)) :
ae_measurable g μ :=
begin
let p : δ → (ι → α) → Prop := λ x f', is_lub {a | ∃ i, f' i = a} (g x),
let g_seq := λ x, ite (x ∈ ae_seq_set hf p) (g x) (⟨g x⟩ : nonempty α).some,
have hg_seq : ∀ b, is_lub {a | ∃ i, ae_seq hf p i b = a} (g_seq b),
{ intro b,
haveI hα : nonempty α := nonempty.map g ⟨b⟩,
simp only [ae_seq, g_seq],
split_ifs,
{ have h_set_eq : {a : α | ∃ (i : ι), (hf i).mk (f i) b = a} = {a : α | ∃ (i : ι), f i b = a},
{ ext x,
simp_rw [set.mem_set_of_eq, ae_seq.mk_eq_fun_of_mem_ae_seq_set hf h], },
rw h_set_eq,
exact ae_seq.fun_prop_of_mem_ae_seq_set hf h, },
{ have h_singleton : {a : α | ∃ (i : ι), hα.some = a} = {hα.some},
{ ext1 x,
exact ⟨λ hx, hx.some_spec.symm, λ hx, ⟨hι.some, hx.symm⟩⟩, },
rw h_singleton,
exact is_lub_singleton, }, },
refine ⟨g_seq, measurable.is_lub (ae_seq.measurable hf p) hg_seq, _⟩,
exact (ite_ae_eq_of_measure_compl_zero g (λ x, (⟨g x⟩ : nonempty α).some) (ae_seq_set hf p)
(ae_seq.measure_compl_ae_seq_set_eq_zero hf hg)).symm,
end
lemma ae_measurable.is_lub {ι} {μ : measure δ} [encodable ι] {f : ι → δ → α} {g : δ → α}
(hf : ∀ i, ae_measurable (f i) μ) (hg : ∀ᵐ b ∂μ, is_lub {a | ∃ i, f i b = a} (g b)) :
ae_measurable g μ :=
begin
by_cases hμ : μ = 0, { rw hμ, exact ae_measurable_zero_measure },
haveI : μ.ae.ne_bot, { simpa [ne_bot_iff] },
by_cases hι : nonempty ι, { exact ae_measurable.is_lub_of_nonempty hι hf hg, },
suffices : ∃ x, g =ᵐ[μ] λ y, g x,
by { exact ⟨(λ y, g this.some), measurable_const, this.some_spec⟩, },
have h_empty : ∀ x, {a : α | ∃ (i : ι), f i x = a} = ∅,
{ intro x,
ext1 y,
rw [set.mem_set_of_eq, set.mem_empty_eq, iff_false],
exact λ hi, hι (nonempty_of_exists hi), },
simp_rw h_empty at hg,
exact ⟨hg.exists.some, hg.mono (λ y hy, is_lub.unique hy hg.exists.some_spec)⟩,
end
lemma measurable.is_glb {ι} [encodable ι] {f : ι → δ → α} {g : δ → α} (hf : ∀ i, measurable (f i))
(hg : ∀ b, is_glb {a | ∃ i, f i b = a} (g b)) :
measurable g :=
begin
change ∀ b, is_glb (range $ λ i, f i b) (g b) at hg,
rw [‹borel_space α›.measurable_eq, borel_eq_generate_from_Iio α],
apply measurable_generate_from,
rintro _ ⟨a, rfl⟩,
simp_rw [set.preimage, mem_Iio, is_glb_lt_iff (hg _), exists_range_iff, set_of_exists],
exact measurable_set.Union (λ i, hf i (is_open_gt' _).measurable_set)
end
private lemma ae_measurable.is_glb_of_nonempty {ι} (hι : nonempty ι)
{μ : measure δ} [encodable ι] {f : ι → δ → α} {g : δ → α}
(hf : ∀ i, ae_measurable (f i) μ) (hg : ∀ᵐ b ∂μ, is_glb {a | ∃ i, f i b = a} (g b)) :
ae_measurable g μ :=
begin
let p : δ → (ι → α) → Prop := λ x f', is_glb {a | ∃ i, f' i = a} (g x),
let g_seq := λ x, ite (x ∈ ae_seq_set hf p) (g x) (⟨g x⟩ : nonempty α).some,
have hg_seq : ∀ b, is_glb {a | ∃ i, ae_seq hf p i b = a} (g_seq b),
{ intro b,
haveI hα : nonempty α := nonempty.map g ⟨b⟩,
simp only [ae_seq, g_seq],
split_ifs,
{ have h_set_eq : {a : α | ∃ (i : ι), (hf i).mk (f i) b = a} = {a : α | ∃ (i : ι), f i b = a},
{ ext x,
simp_rw [set.mem_set_of_eq, ae_seq.mk_eq_fun_of_mem_ae_seq_set hf h], },
rw h_set_eq,
exact ae_seq.fun_prop_of_mem_ae_seq_set hf h, },
{ have h_singleton : {a : α | ∃ (i : ι), hα.some = a} = {hα.some},
{ ext1 x,
exact ⟨λ hx, hx.some_spec.symm, λ hx, ⟨hι.some, hx.symm⟩⟩, },
rw h_singleton,
exact is_glb_singleton, }, },
refine ⟨g_seq, measurable.is_glb (ae_seq.measurable hf p) hg_seq, _⟩,
exact (ite_ae_eq_of_measure_compl_zero g (λ x, (⟨g x⟩ : nonempty α).some) (ae_seq_set hf p)
(ae_seq.measure_compl_ae_seq_set_eq_zero hf hg)).symm,
end
lemma ae_measurable.is_glb {ι} {μ : measure δ} [encodable ι] {f : ι → δ → α} {g : δ → α}
(hf : ∀ i, ae_measurable (f i) μ) (hg : ∀ᵐ b ∂μ, is_glb {a | ∃ i, f i b = a} (g b)) :
ae_measurable g μ :=
begin
by_cases hμ : μ = 0, { rw hμ, exact ae_measurable_zero_measure },
haveI : μ.ae.ne_bot, { simpa [ne_bot_iff] },
by_cases hι : nonempty ι, { exact ae_measurable.is_glb_of_nonempty hι hf hg, },
suffices : ∃ x, g =ᵐ[μ] λ y, g x,
by { exact ⟨(λ y, g this.some), measurable_const, this.some_spec⟩, },
have h_empty : ∀ x, {a : α | ∃ (i : ι), f i x = a} = ∅,
{ intro x,
ext1 y,
rw [set.mem_set_of_eq, set.mem_empty_eq, iff_false],
exact λ hi, hι (nonempty_of_exists hi), },
simp_rw h_empty at hg,
exact ⟨hg.exists.some, hg.mono (λ y hy, is_glb.unique hy hg.exists.some_spec)⟩,
end
protected lemma monotone.measurable [linear_order β] [order_closed_topology β] {f : β → α}
(hf : monotone f) : measurable f :=
suffices h : ∀ x, ord_connected (f ⁻¹' Ioi x),
from measurable_of_Ioi (λ x, (h x).measurable_set),
λ x, ord_connected_def.mpr (λ a ha b hb c hc, lt_of_lt_of_le ha (hf hc.1))
lemma ae_measurable_restrict_of_monotone_on [linear_order β] [order_closed_topology β]
{μ : measure β} {s : set β} (hs : measurable_set s) {f : β → α} (hf : monotone_on f s) :
ae_measurable f (μ.restrict s) :=
have this : monotone (f ∘ coe : s → α), from λ ⟨x, hx⟩ ⟨y, hy⟩ (hxy : x ≤ y), hf hx hy hxy,
ae_measurable_restrict_of_measurable_subtype hs this.measurable
protected lemma antitone.measurable [linear_order β] [order_closed_topology β] {f : β → α}
(hf : antitone f) :
measurable f :=
@monotone.measurable (order_dual α) β _ _ ‹_› _ _ _ _ _ ‹_› _ _ _ hf
lemma ae_measurable_restrict_of_antitone_on [linear_order β] [order_closed_topology β]
{μ : measure β} {s : set β} (hs : measurable_set s) {f : β → α} (hf : antitone_on f s) :
ae_measurable f (μ.restrict s) :=
@ae_measurable_restrict_of_monotone_on (order_dual α) β _ _ ‹_› _ _ _ _ _ ‹_› _ _ _ _ hs _ hf
end linear_order
@[measurability]
lemma measurable.supr_Prop {α} [measurable_space α] [complete_lattice α]
(p : Prop) {f : δ → α} (hf : measurable f) :
measurable (λ b, ⨆ h : p, f b) :=
classical.by_cases
(assume h : p, begin convert hf, funext, exact supr_pos h end)
(assume h : ¬p, begin convert measurable_const, funext, exact supr_neg h end)
@[measurability]
lemma measurable.infi_Prop {α} [measurable_space α] [complete_lattice α]
(p : Prop) {f : δ → α} (hf : measurable f) :
measurable (λ b, ⨅ h : p, f b) :=
classical.by_cases
(assume h : p, begin convert hf, funext, exact infi_pos h end )
(assume h : ¬p, begin convert measurable_const, funext, exact infi_neg h end)
section complete_linear_order
variables [complete_linear_order α] [order_topology α] [second_countable_topology α]
@[measurability]
lemma measurable_supr {ι} [encodable ι] {f : ι → δ → α} (hf : ∀ i, measurable (f i)) :
measurable (λ b, ⨆ i, f i b) :=
measurable.is_lub hf $ λ b, is_lub_supr
@[measurability]
lemma ae_measurable_supr {ι} {μ : measure δ} [encodable ι] {f : ι → δ → α}
(hf : ∀ i, ae_measurable (f i) μ) :
ae_measurable (λ b, ⨆ i, f i b) μ :=
ae_measurable.is_lub hf $ (ae_of_all μ (λ b, is_lub_supr))
@[measurability]
lemma measurable_infi {ι} [encodable ι] {f : ι → δ → α} (hf : ∀ i, measurable (f i)) :
measurable (λ b, ⨅ i, f i b) :=
measurable.is_glb hf $ λ b, is_glb_infi
@[measurability]
lemma ae_measurable_infi {ι} {μ : measure δ} [encodable ι] {f : ι → δ → α}
(hf : ∀ i, ae_measurable (f i) μ) :
ae_measurable (λ b, ⨅ i, f i b) μ :=
ae_measurable.is_glb hf $ (ae_of_all μ (λ b, is_glb_infi))
lemma measurable_bsupr {ι} (s : set ι) {f : ι → δ → α} (hs : countable s)
(hf : ∀ i, measurable (f i)) : measurable (λ b, ⨆ i ∈ s, f i b) :=
by { haveI : encodable s := hs.to_encodable, simp only [supr_subtype'],
exact measurable_supr (λ i, hf i) }
lemma ae_measurable_bsupr {ι} {μ : measure δ} (s : set ι) {f : ι → δ → α} (hs : countable s)
(hf : ∀ i, ae_measurable (f i) μ) : ae_measurable (λ b, ⨆ i ∈ s, f i b) μ :=
begin
haveI : encodable s := hs.to_encodable,
simp only [supr_subtype'],
exact ae_measurable_supr (λ i, hf i),
end
lemma measurable_binfi {ι} (s : set ι) {f : ι → δ → α} (hs : countable s)
(hf : ∀ i, measurable (f i)) : measurable (λ b, ⨅ i ∈ s, f i b) :=
by { haveI : encodable s := hs.to_encodable, simp only [infi_subtype'],
exact measurable_infi (λ i, hf i) }
lemma ae_measurable_binfi {ι} {μ : measure δ} (s : set ι) {f : ι → δ → α} (hs : countable s)
(hf : ∀ i, ae_measurable (f i) μ) : ae_measurable (λ b, ⨅ i ∈ s, f i b) μ :=
begin
haveI : encodable s := hs.to_encodable,
simp only [infi_subtype'],
exact ae_measurable_infi (λ i, hf i),
end
/-- `liminf` over a general filter is measurable. See `measurable_liminf` for the version over `ℕ`.
-/
lemma measurable_liminf' {ι ι'} {f : ι → δ → α} {u : filter ι} (hf : ∀ i, measurable (f i))
{p : ι' → Prop} {s : ι' → set ι} (hu : u.has_countable_basis p s) (hs : ∀ i, (s i).countable) :
measurable (λ x, liminf u (λ i, f i x)) :=
begin
simp_rw [hu.to_has_basis.liminf_eq_supr_infi],
refine measurable_bsupr _ hu.countable _,
exact λ i, measurable_binfi _ (hs i) hf
end
/-- `limsup` over a general filter is measurable. See `measurable_limsup` for the version over `ℕ`.
-/
lemma measurable_limsup' {ι ι'} {f : ι → δ → α} {u : filter ι} (hf : ∀ i, measurable (f i))
{p : ι' → Prop} {s : ι' → set ι} (hu : u.has_countable_basis p s) (hs : ∀ i, (s i).countable) :
measurable (λ x, limsup u (λ i, f i x)) :=
begin
simp_rw [hu.to_has_basis.limsup_eq_infi_supr],
refine measurable_binfi _ hu.countable _,
exact λ i, measurable_bsupr _ (hs i) hf
end
/-- `liminf` over `ℕ` is measurable. See `measurable_liminf'` for a version with a general filter.
-/
@[measurability]
lemma measurable_liminf {f : ℕ → δ → α} (hf : ∀ i, measurable (f i)) :
measurable (λ x, liminf at_top (λ i, f i x)) :=
measurable_liminf' hf at_top_countable_basis (λ i, countable_encodable _)
/-- `limsup` over `ℕ` is measurable. See `measurable_limsup'` for a version with a general filter.
-/
@[measurability]
lemma measurable_limsup {f : ℕ → δ → α} (hf : ∀ i, measurable (f i)) :
measurable (λ x, limsup at_top (λ i, f i x)) :=
measurable_limsup' hf at_top_countable_basis (λ i, countable_encodable _)
end complete_linear_order
section conditionally_complete_linear_order
variables [conditionally_complete_linear_order α] [order_topology α] [second_countable_topology α]
lemma measurable_cSup {ι} {f : ι → δ → α} {s : set ι} (hs : s.countable)
(hf : ∀ i, measurable (f i)) (bdd : ∀ x, bdd_above ((λ i, f i x) '' s)) :
measurable (λ x, Sup ((λ i, f i x) '' s)) :=
begin
cases eq_empty_or_nonempty s with h2s h2s,
{ simp [h2s, measurable_const] },
{ apply measurable_of_Iic, intro y,
simp_rw [preimage, mem_Iic, cSup_le_iff (bdd _) (h2s.image _), ball_image_iff, set_of_forall],
exact measurable_set.bInter hs (λ i hi, measurable_set_le (hf i) measurable_const) }
end
end conditionally_complete_linear_order
/-- Convert a `homeomorph` to a `measurable_equiv`. -/
def homemorph.to_measurable_equiv (h : α ≃ₜ β) : α ≃ᵐ β :=
{ to_equiv := h.to_equiv,
measurable_to_fun := h.continuous_to_fun.measurable,
measurable_inv_fun := h.continuous_inv_fun.measurable }
protected lemma is_finite_measure_on_compacts.map
{α : Type*} {m0 : measurable_space α} [topological_space α] [opens_measurable_space α]
{β : Type*} [measurable_space β] [topological_space β] [borel_space β]
[t2_space β] (μ : measure α) [is_finite_measure_on_compacts μ] (f : α ≃ₜ β) :
is_finite_measure_on_compacts (measure.map f μ) :=
⟨begin
assume K hK,
rw [measure.map_apply f.measurable hK.measurable_set],
apply is_compact.measure_lt_top,
rwa f.compact_preimage
end⟩
end borel_space
instance empty.borel_space : borel_space empty := ⟨borel_eq_top_of_discrete.symm⟩
instance unit.borel_space : borel_space unit := ⟨borel_eq_top_of_discrete.symm⟩
instance bool.borel_space : borel_space bool := ⟨borel_eq_top_of_discrete.symm⟩
instance nat.borel_space : borel_space ℕ := ⟨borel_eq_top_of_discrete.symm⟩
instance int.borel_space : borel_space ℤ := ⟨borel_eq_top_of_discrete.symm⟩
instance rat.borel_space : borel_space ℚ := ⟨borel_eq_top_of_encodable.symm⟩
@[priority 900]
instance is_R_or_C.measurable_space {𝕜 : Type*} [is_R_or_C 𝕜] : measurable_space 𝕜 := borel 𝕜
@[priority 900]
instance is_R_or_C.borel_space {𝕜 : Type*} [is_R_or_C 𝕜] : borel_space 𝕜 := ⟨rfl⟩
/- Instances on `real` and `complex` are special cases of `is_R_or_C` but without these instances,
Lean fails to prove `borel_space (ι → ℝ)`, so we leave them here. -/
instance real.measurable_space : measurable_space ℝ := borel ℝ
instance real.borel_space : borel_space ℝ := ⟨rfl⟩
instance nnreal.measurable_space : measurable_space ℝ≥0 := subtype.measurable_space
instance nnreal.borel_space : borel_space ℝ≥0 := subtype.borel_space _
instance ennreal.measurable_space : measurable_space ℝ≥0∞ := borel ℝ≥0∞
instance ennreal.borel_space : borel_space ℝ≥0∞ := ⟨rfl⟩
instance ereal.measurable_space : measurable_space ereal := borel ereal
instance ereal.borel_space : borel_space ereal := ⟨rfl⟩
instance complex.measurable_space : measurable_space ℂ := borel ℂ
instance complex.borel_space : borel_space ℂ := ⟨rfl⟩
/-- One can cut out `ℝ≥0∞` into the sets `{0}`, `Ico (t^n) (t^(n+1))` for `n : ℤ` and `{∞}`. This
gives a way to compute the measure of a set in terms of sets on which a given function `f` does not
fluctuate by more than `t`. -/
lemma measure_eq_measure_preimage_add_measure_tsum_Ico_zpow [measurable_space α] (μ : measure α)
{f : α → ℝ≥0∞} (hf : measurable f) {s : set α} (hs : measurable_set s) {t : ℝ≥0} (ht : 1 < t) :
μ s = μ (s ∩ f⁻¹' {0}) + μ (s ∩ f⁻¹' {∞}) + ∑' (n : ℤ), μ (s ∩ f⁻¹' (Ico (t^n) (t^(n+1)))) :=
begin
have A : μ s = μ (s ∩ f⁻¹' {0}) + μ (s ∩ f⁻¹' (Ioi 0)),
{ rw ← measure_union,
{ congr' 1,
ext x,
have : 0 = f x ∨ 0 < f x := eq_or_lt_of_le bot_le,
rw eq_comm at this,
simp only [←and_or_distrib_left, this, mem_singleton_iff, mem_inter_eq, and_true,
mem_union_eq, mem_Ioi, mem_preimage], },
{ apply disjoint_left.2 (λ x hx h'x, _),
have : 0 < f x := h'x.2,
exact lt_irrefl 0 (this.trans_le hx.2.le) },
{ exact hs.inter (hf measurable_set_Ioi) } },
have B : μ (s ∩ f⁻¹' (Ioi 0)) = μ (s ∩ f⁻¹' {∞}) + μ (s ∩ f⁻¹' (Ioo 0 ∞)),
{ rw ← measure_union,
{ rw ← inter_union_distrib_left,
congr,
ext x,
simp only [mem_singleton_iff, mem_union_eq, mem_Ioo, mem_Ioi, mem_preimage],
have H : f x = ∞ ∨ f x < ∞ := eq_or_lt_of_le le_top,
cases H,
{ simp only [H, eq_self_iff_true, or_false, with_top.zero_lt_top, not_top_lt, and_false] },
{ simp only [H, H.ne, and_true, false_or] } },
{ apply disjoint_left.2 (λ x hx h'x, _),
have : f x < ∞ := h'x.2.2,
exact lt_irrefl _ (this.trans_le (le_of_eq hx.2.symm)) },
{ exact hs.inter (hf measurable_set_Ioo) } },
have C : μ (s ∩ f⁻¹' (Ioo 0 ∞)) = ∑' (n : ℤ), μ (s ∩ f⁻¹' (Ico (t^n) (t^(n+1)))),
{ rw [← measure_Union, ennreal.Ioo_zero_top_eq_Union_Ico_zpow (ennreal.one_lt_coe_iff.2 ht)
ennreal.coe_ne_top, preimage_Union, inter_Union],
{ assume i j,
simp only [function.on_fun],
wlog h : i ≤ j := le_total i j using [i j, j i] tactic.skip,
{ assume hij,
replace hij : i + 1 ≤ j := lt_of_le_of_ne h hij,
apply disjoint_left.2 (λ x hx h'x, lt_irrefl (f x) _),
calc f x < t ^ (i + 1) : hx.2.2
... ≤ t ^ j : ennreal.zpow_le_of_le (ennreal.one_le_coe_iff.2 ht.le) hij
... ≤ f x : h'x.2.1 },
{ assume hij,
rw disjoint.comm,
exact this hij.symm } },
{ assume n,
exact hs.inter (hf measurable_set_Ico) } },
rw [A, B, C, add_assoc],
end
section metric_space
variables [metric_space α] [measurable_space α] [opens_measurable_space α]
variables [measurable_space β] {x : α} {ε : ℝ}
open metric
@[measurability]
lemma measurable_set_ball : measurable_set (metric.ball x ε) :=
metric.is_open_ball.measurable_set
@[measurability]
lemma measurable_set_closed_ball : measurable_set (metric.closed_ball x ε) :=
metric.is_closed_ball.measurable_set
@[measurability]
lemma measurable_inf_dist {s : set α} : measurable (λ x, inf_dist x s) :=
(continuous_inf_dist_pt s).measurable
@[measurability]
lemma measurable.inf_dist {f : β → α} (hf : measurable f) {s : set α} :
measurable (λ x, inf_dist (f x) s) :=
measurable_inf_dist.comp hf
@[measurability]
lemma measurable_inf_nndist {s : set α} : measurable (λ x, inf_nndist x s) :=
(continuous_inf_nndist_pt s).measurable
@[measurability]
lemma measurable.inf_nndist {f : β → α} (hf : measurable f) {s : set α} :
measurable (λ x, inf_nndist (f x) s) :=
measurable_inf_nndist.comp hf
section
variables [second_countable_topology α]
@[measurability]
lemma measurable_dist : measurable (λ p : α × α, dist p.1 p.2) :=
continuous_dist.measurable
@[measurability]
lemma measurable.dist {f g : β → α} (hf : measurable f) (hg : measurable g) :
measurable (λ b, dist (f b) (g b)) :=
(@continuous_dist α _).measurable2 hf hg
@[measurability]
lemma measurable_nndist : measurable (λ p : α × α, nndist p.1 p.2) :=
continuous_nndist.measurable
@[measurability]
lemma measurable.nndist {f g : β → α} (hf : measurable f) (hg : measurable g) :
measurable (λ b, nndist (f b) (g b)) :=
(@continuous_nndist α _).measurable2 hf hg
end
/-- If a set has a closed thickening with finite measure, then the measure of its `r`-closed
thickenings converges to the measure of its closure as `r` tends to `0`. -/
lemma tendsto_measure_cthickening {μ : measure α} {s : set α}
(hs : ∃ R > 0, μ (cthickening R s) ≠ ∞) :
tendsto (λ r, μ (cthickening r s)) (𝓝 0) (𝓝 (μ (closure s))) :=
begin
have A : tendsto (λ r, μ (cthickening r s)) (𝓝[Ioi 0] 0) (𝓝 (μ (closure s))),
{ rw closure_eq_Inter_cthickening,
exact tendsto_measure_bInter_gt (λ r hr, is_closed_cthickening.measurable_set)
(λ i j ipos ij, cthickening_mono ij _) hs },
have B : tendsto (λ r, μ (cthickening r s)) (𝓝[Iic 0] 0) (𝓝 (μ (closure s))),
{ apply tendsto.congr' _ tendsto_const_nhds,
filter_upwards [self_mem_nhds_within] with _ hr,
rw cthickening_of_nonpos hr, },
convert B.sup A,
exact (nhds_left_sup_nhds_right' 0).symm,
end
/-- If a closed set has a closed thickening with finite measure, then the measure of its `r`-closed
thickenings converges to its measure as `r` tends to `0`. -/
lemma tendsto_measure_cthickening_of_is_closed {μ : measure α} {s : set α}
(hs : ∃ R > 0, μ (cthickening R s) ≠ ∞) (h's : is_closed s) :
tendsto (λ r, μ (cthickening r s)) (𝓝 0) (𝓝 (μ s)) :=
begin
convert tendsto_measure_cthickening hs,
exact h's.closure_eq.symm
end
/-- Given a compact set in a proper space, the measure of its `r`-closed thickenings converges to
its measure as `r` tends to `0`. -/
lemma tendsto_measure_cthickening_of_is_compact [proper_space α] {μ : measure α}
[is_finite_measure_on_compacts μ] {s : set α} (hs : is_compact s) :
tendsto (λ r, μ (cthickening r s)) (𝓝 0) (𝓝 (μ s)) :=
tendsto_measure_cthickening_of_is_closed
⟨1, zero_lt_one, (bounded.measure_lt_top hs.bounded.cthickening).ne⟩ hs.is_closed
end metric_space
section emetric_space
variables [emetric_space α] [measurable_space α] [opens_measurable_space α]
variables [measurable_space β] {x : α} {ε : ℝ≥0∞}
open emetric
@[measurability]
lemma measurable_set_eball : measurable_set (emetric.ball x ε) :=
emetric.is_open_ball.measurable_set
@[measurability]
lemma measurable_edist_right : measurable (edist x) :=
(continuous_const.edist continuous_id).measurable
@[measurability]
lemma measurable_edist_left : measurable (λ y, edist y x) :=
(continuous_id.edist continuous_const).measurable
@[measurability]
lemma measurable_inf_edist {s : set α} : measurable (λ x, inf_edist x s) :=
continuous_inf_edist.measurable
@[measurability]
lemma measurable.inf_edist {f : β → α} (hf : measurable f) {s : set α} :
measurable (λ x, inf_edist (f x) s) :=
measurable_inf_edist.comp hf
variables [second_countable_topology α]
@[measurability]
lemma measurable_edist : measurable (λ p : α × α, edist p.1 p.2) :=
continuous_edist.measurable
@[measurability]
lemma measurable.edist {f g : β → α} (hf : measurable f) (hg : measurable g) :
measurable (λ b, edist (f b) (g b)) :=
(@continuous_edist α _).measurable2 hf hg
@[measurability]
lemma ae_measurable.edist {f g : β → α} {μ : measure β}
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ a, edist (f a) (g a)) μ :=
(@continuous_edist α _).ae_measurable2 hf hg
end emetric_space
namespace real
open measurable_space measure_theory
lemma borel_eq_generate_from_Ioo_rat :
borel ℝ = generate_from (⋃(a b : ℚ) (h : a < b), {Ioo a b}) :=
is_topological_basis_Ioo_rat.borel_eq_generate_from
lemma is_pi_system_Ioo_rat : @is_pi_system ℝ (⋃ (a b : ℚ) (h : a < b), {Ioo a b}) :=
begin
convert is_pi_system_Ioo (coe : ℚ → ℝ) (coe : ℚ → ℝ),
ext x,
simp [eq_comm]
end
/-- The intervals `(-(n + 1), (n + 1))` form a finite spanning sets in the set of open intervals
with rational endpoints for a locally finite measure `μ` on `ℝ`. -/
def finite_spanning_sets_in_Ioo_rat (μ : measure ℝ) [is_locally_finite_measure μ] :
μ.finite_spanning_sets_in (⋃ (a b : ℚ) (h : a < b), {Ioo a b}) :=
{ set := λ n, Ioo (-(n + 1)) (n + 1),
set_mem := λ n,
begin
simp only [mem_Union, mem_singleton_iff],
refine ⟨-(n + 1), n + 1, _, by norm_cast⟩,
exact (neg_nonpos.2 (@nat.cast_nonneg ℚ _ (n + 1))).trans_lt n.cast_add_one_pos
end,
finite := λ n, measure_Ioo_lt_top,
spanning := Union_eq_univ_iff.2 $ λ x,
⟨⌊|x|⌋₊, neg_lt.1 ((neg_le_abs_self x).trans_lt (nat.lt_floor_add_one _)),
(le_abs_self x).trans_lt (nat.lt_floor_add_one _)⟩ }
lemma measure_ext_Ioo_rat {μ ν : measure ℝ} [is_locally_finite_measure μ]
(h : ∀ a b : ℚ, μ (Ioo a b) = ν (Ioo a b)) : μ = ν :=
(finite_spanning_sets_in_Ioo_rat μ).ext borel_eq_generate_from_Ioo_rat is_pi_system_Ioo_rat $
by { simp only [mem_Union, mem_singleton_iff], rintro _ ⟨a, b, -, rfl⟩, apply h }
lemma borel_eq_generate_from_Iio_rat :
borel ℝ = generate_from (⋃ a : ℚ, {Iio a}) :=
begin
let g : measurable_space ℝ := generate_from (⋃ a : ℚ, {Iio a}),
refine le_antisymm _ _,
{ rw borel_eq_generate_from_Ioo_rat,
refine generate_from_le (λ t, _),
simp only [mem_Union, mem_singleton_iff], rintro ⟨a, b, h, rfl⟩,
rw (set.ext (λ x, _) : Ioo (a : ℝ) b = (⋃c>a, (Iio c)ᶜ) ∩ Iio b),
{ have hg : ∀ q : ℚ, g.measurable_set' (Iio q) :=
λ q, generate_measurable.basic (Iio q) (by simp),
refine @measurable_set.inter _ g _ _ _ (hg _),
refine @measurable_set.bUnion _ _ g _ _ (countable_encodable _) (λ c h, _),
exact @measurable_set.compl _ _ g (hg _) },
{ suffices : x < ↑b → (↑a < x ↔ ∃ (i : ℚ), a < i ∧ ↑i ≤ x), by simpa,
refine λ _, ⟨λ h, _, λ ⟨i, hai, hix⟩, (rat.cast_lt.2 hai).trans_le hix⟩,
rcases exists_rat_btwn h with ⟨c, ac, cx⟩,
exact ⟨c, rat.cast_lt.1 ac, cx.le⟩ } },
{ refine measurable_space.generate_from_le (λ _, _),
simp only [mem_Union, mem_singleton_iff], rintro ⟨r, rfl⟩, exact measurable_set_Iio }
end
end real
variable [measurable_space α]
@[measurability]
lemma measurable_real_to_nnreal : measurable (real.to_nnreal) :=
continuous_real_to_nnreal.measurable
@[measurability]
lemma measurable.real_to_nnreal {f : α → ℝ} (hf : measurable f) :
measurable (λ x, real.to_nnreal (f x)) :=
measurable_real_to_nnreal.comp hf
@[measurability]
lemma ae_measurable.real_to_nnreal {f : α → ℝ} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, real.to_nnreal (f x)) μ :=
measurable_real_to_nnreal.comp_ae_measurable hf
@[measurability]
lemma measurable_coe_nnreal_real : measurable (coe : ℝ≥0 → ℝ) :=
nnreal.continuous_coe.measurable
@[measurability]
lemma measurable.coe_nnreal_real {f : α → ℝ≥0} (hf : measurable f) :
measurable (λ x, (f x : ℝ)) :=
measurable_coe_nnreal_real.comp hf
@[measurability]
lemma ae_measurable.coe_nnreal_real {f : α → ℝ≥0} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, (f x : ℝ)) μ :=
measurable_coe_nnreal_real.comp_ae_measurable hf
@[measurability]
lemma measurable_coe_nnreal_ennreal : measurable (coe : ℝ≥0 → ℝ≥0∞) :=
ennreal.continuous_coe.measurable
@[measurability]
lemma measurable.coe_nnreal_ennreal {f : α → ℝ≥0} (hf : measurable f) :
measurable (λ x, (f x : ℝ≥0∞)) :=
ennreal.continuous_coe.measurable.comp hf
@[measurability]
lemma ae_measurable.coe_nnreal_ennreal {f : α → ℝ≥0} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, (f x : ℝ≥0∞)) μ :=
ennreal.continuous_coe.measurable.comp_ae_measurable hf
@[measurability]
lemma measurable.ennreal_of_real {f : α → ℝ} (hf : measurable f) :
measurable (λ x, ennreal.of_real (f x)) :=
ennreal.continuous_of_real.measurable.comp hf
/-- The set of finite `ℝ≥0∞` numbers is `measurable_equiv` to `ℝ≥0`. -/
def measurable_equiv.ennreal_equiv_nnreal : {r : ℝ≥0∞ | r ≠ ∞} ≃ᵐ ℝ≥0 :=
ennreal.ne_top_homeomorph_nnreal.to_measurable_equiv
namespace ennreal
lemma measurable_of_measurable_nnreal {f : ℝ≥0∞ → α}
(h : measurable (λ p : ℝ≥0, f p)) : measurable f :=
measurable_of_measurable_on_compl_singleton ∞
(measurable_equiv.ennreal_equiv_nnreal.symm.measurable_comp_iff.1 h)
/-- `ℝ≥0∞` is `measurable_equiv` to `ℝ≥0 ⊕ unit`. -/
def ennreal_equiv_sum : ℝ≥0∞ ≃ᵐ ℝ≥0 ⊕ unit :=
{ measurable_to_fun := measurable_of_measurable_nnreal measurable_inl,
measurable_inv_fun := measurable_sum measurable_coe_nnreal_ennreal
(@measurable_const ℝ≥0∞ unit _ _ ∞),
.. equiv.option_equiv_sum_punit ℝ≥0 }
open function (uncurry)
lemma measurable_of_measurable_nnreal_prod [measurable_space β] [measurable_space γ]
{f : ℝ≥0∞ × β → γ} (H₁ : measurable (λ p : ℝ≥0 × β, f (p.1, p.2)))
(H₂ : measurable (λ x, f (∞, x))) :
measurable f :=
let e : ℝ≥0∞ × β ≃ᵐ ℝ≥0 × β ⊕ unit × β :=
(ennreal_equiv_sum.prod_congr (measurable_equiv.refl β)).trans
(measurable_equiv.sum_prod_distrib _ _ _) in
e.symm.measurable_comp_iff.1 $ measurable_sum H₁ (H₂.comp measurable_id.snd)
lemma measurable_of_measurable_nnreal_nnreal [measurable_space β]
{f : ℝ≥0∞ × ℝ≥0∞ → β} (h₁ : measurable (λ p : ℝ≥0 × ℝ≥0, f (p.1, p.2)))
(h₂ : measurable (λ r : ℝ≥0, f (∞, r))) (h₃ : measurable (λ r : ℝ≥0, f (r, ∞))) :
measurable f :=
measurable_of_measurable_nnreal_prod
(measurable_swap_iff.1 $ measurable_of_measurable_nnreal_prod (h₁.comp measurable_swap) h₃)
(measurable_of_measurable_nnreal h₂)
@[measurability]
lemma measurable_of_real : measurable ennreal.of_real :=
ennreal.continuous_of_real.measurable
@[measurability]
lemma measurable_to_real : measurable ennreal.to_real :=
ennreal.measurable_of_measurable_nnreal measurable_coe_nnreal_real
@[measurability]
lemma measurable_to_nnreal : measurable ennreal.to_nnreal :=
ennreal.measurable_of_measurable_nnreal measurable_id
instance : has_measurable_mul₂ ℝ≥0∞ :=
begin
refine ⟨measurable_of_measurable_nnreal_nnreal _ _ _⟩,
{ simp only [← ennreal.coe_mul, measurable_mul.coe_nnreal_ennreal] },
{ simp only [ennreal.top_mul, ennreal.coe_eq_zero],
exact measurable_const.piecewise (measurable_set_singleton _) measurable_const },
{ simp only [ennreal.mul_top, ennreal.coe_eq_zero],
exact measurable_const.piecewise (measurable_set_singleton _) measurable_const }
end
instance : has_measurable_sub₂ ℝ≥0∞ :=
⟨by apply measurable_of_measurable_nnreal_nnreal;
simp [← with_top.coe_sub, continuous_sub.measurable.coe_nnreal_ennreal]⟩
instance : has_measurable_inv ℝ≥0∞ := ⟨continuous_inv.measurable⟩
end ennreal
@[measurability]
lemma measurable.ennreal_to_nnreal {f : α → ℝ≥0∞} (hf : measurable f) :
measurable (λ x, (f x).to_nnreal) :=
ennreal.measurable_to_nnreal.comp hf
@[measurability]
lemma ae_measurable.ennreal_to_nnreal {f : α → ℝ≥0∞} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, (f x).to_nnreal) μ :=
ennreal.measurable_to_nnreal.comp_ae_measurable hf
lemma measurable_coe_nnreal_ennreal_iff {f : α → ℝ≥0} :
measurable (λ x, (f x : ℝ≥0∞)) ↔ measurable f :=
⟨λ h, h.ennreal_to_nnreal, λ h, h.coe_nnreal_ennreal⟩
@[measurability]
lemma measurable.ennreal_to_real {f : α → ℝ≥0∞} (hf : measurable f) :
measurable (λ x, ennreal.to_real (f x)) :=
ennreal.measurable_to_real.comp hf
@[measurability]
lemma ae_measurable.ennreal_to_real {f : α → ℝ≥0∞} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, ennreal.to_real (f x)) μ :=
ennreal.measurable_to_real.comp_ae_measurable hf
/-- note: `ℝ≥0∞` can probably be generalized in a future version of this lemma. -/
@[measurability]
lemma measurable.ennreal_tsum {ι} [encodable ι] {f : ι → α → ℝ≥0∞} (h : ∀ i, measurable (f i)) :
measurable (λ x, ∑' i, f i x) :=
by { simp_rw [ennreal.tsum_eq_supr_sum], apply measurable_supr,
exact λ s, s.measurable_sum (λ i _, h i) }
@[measurability]
lemma measurable.ennreal_tsum' {ι} [encodable ι] {f : ι → α → ℝ≥0∞} (h : ∀ i, measurable (f i)) :
measurable (∑' i, f i) :=
begin
convert measurable.ennreal_tsum h,
ext1 x,
exact tsum_apply (pi.summable.2 (λ _, ennreal.summable)),
end
@[measurability]
lemma measurable.nnreal_tsum {ι} [encodable ι] {f : ι → α → ℝ≥0} (h : ∀ i, measurable (f i)) :
measurable (λ x, ∑' i, f i x) :=
begin
simp_rw [nnreal.tsum_eq_to_nnreal_tsum],
exact (measurable.ennreal_tsum (λ i, (h i).coe_nnreal_ennreal)).ennreal_to_nnreal,
end
@[measurability]
lemma ae_measurable.ennreal_tsum {ι} [encodable ι] {f : ι → α → ℝ≥0∞} {μ : measure α}
(h : ∀ i, ae_measurable (f i) μ) :
ae_measurable (λ x, ∑' i, f i x) μ :=
by { simp_rw [ennreal.tsum_eq_supr_sum], apply ae_measurable_supr,
exact λ s, finset.ae_measurable_sum s (λ i _, h i) }
@[measurability]
lemma measurable_coe_real_ereal : measurable (coe : ℝ → ereal) :=
continuous_coe_real_ereal.measurable
@[measurability]
lemma measurable.coe_real_ereal {f : α → ℝ} (hf : measurable f) :
measurable (λ x, (f x : ereal)) :=
measurable_coe_real_ereal.comp hf
@[measurability]
lemma ae_measurable.coe_real_ereal {f : α → ℝ} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, (f x : ereal)) μ :=
measurable_coe_real_ereal.comp_ae_measurable hf
/-- The set of finite `ereal` numbers is `measurable_equiv` to `ℝ`. -/
def measurable_equiv.ereal_equiv_real : ({⊥, ⊤} : set ereal).compl ≃ᵐ ℝ :=
ereal.ne_bot_top_homeomorph_real.to_measurable_equiv
lemma ereal.measurable_of_measurable_real {f : ereal → α}
(h : measurable (λ p : ℝ, f p)) : measurable f :=
measurable_of_measurable_on_compl_finite {⊥, ⊤} (by simp)
(measurable_equiv.ereal_equiv_real.symm.measurable_comp_iff.1 h)
@[measurability]
lemma measurable_ereal_to_real : measurable ereal.to_real :=
ereal.measurable_of_measurable_real (by simpa using measurable_id)
@[measurability]
lemma measurable.ereal_to_real {f : α → ereal} (hf : measurable f) :
measurable (λ x, (f x).to_real) :=
measurable_ereal_to_real.comp hf
@[measurability]
lemma ae_measurable.ereal_to_real {f : α → ereal} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, (f x).to_real) μ :=
measurable_ereal_to_real.comp_ae_measurable hf
@[measurability]
lemma measurable_coe_ennreal_ereal : measurable (coe : ℝ≥0∞ → ereal) :=
continuous_coe_ennreal_ereal.measurable
@[measurability]
lemma measurable.coe_ereal_ennreal {f : α → ℝ≥0∞} (hf : measurable f) :
measurable (λ x, (f x : ereal)) :=
measurable_coe_ennreal_ereal.comp hf
@[measurability]
lemma ae_measurable.coe_ereal_ennreal {f : α → ℝ≥0∞} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, (f x : ereal)) μ :=
measurable_coe_ennreal_ereal.comp_ae_measurable hf
section normed_group
variables [normed_group α] [opens_measurable_space α] [measurable_space β]
@[measurability]
lemma measurable_norm : measurable (norm : α → ℝ) :=
continuous_norm.measurable
@[measurability]
lemma measurable.norm {f : β → α} (hf : measurable f) : measurable (λ a, norm (f a)) :=
measurable_norm.comp hf
@[measurability]
lemma ae_measurable.norm {f : β → α} {μ : measure β} (hf : ae_measurable f μ) :
ae_measurable (λ a, norm (f a)) μ :=
measurable_norm.comp_ae_measurable hf
@[measurability]
lemma measurable_nnnorm : measurable (nnnorm : α → ℝ≥0) :=
continuous_nnnorm.measurable
@[measurability]
lemma measurable.nnnorm {f : β → α} (hf : measurable f) : measurable (λ a, nnnorm (f a)) :=
measurable_nnnorm.comp hf
@[measurability]
lemma ae_measurable.nnnorm {f : β → α} {μ : measure β} (hf : ae_measurable f μ) :
ae_measurable (λ a, nnnorm (f a)) μ :=
measurable_nnnorm.comp_ae_measurable hf
@[measurability]
lemma measurable_ennnorm : measurable (λ x : α, (nnnorm x : ℝ≥0∞)) :=
measurable_nnnorm.coe_nnreal_ennreal
@[measurability]
lemma measurable.ennnorm {f : β → α} (hf : measurable f) :
measurable (λ a, (nnnorm (f a) : ℝ≥0∞)) :=
hf.nnnorm.coe_nnreal_ennreal
@[measurability]
lemma ae_measurable.ennnorm {f : β → α} {μ : measure β} (hf : ae_measurable f μ) :
ae_measurable (λ a, (nnnorm (f a) : ℝ≥0∞)) μ :=
measurable_ennnorm.comp_ae_measurable hf
end normed_group
section limits
variables [measurable_space β] [metric_space β] [borel_space β]
open metric
/-- A limit (over a general filter) of measurable `ℝ≥0∞` valued functions is measurable. -/
lemma measurable_of_tendsto_ennreal' {ι} {f : ι → α → ℝ≥0∞} {g : α → ℝ≥0∞} (u : filter ι)
[ne_bot u] [is_countably_generated u] (hf : ∀ i, measurable (f i)) (lim : tendsto f u (𝓝 g)) :
measurable g :=
begin
rcases u.exists_seq_tendsto with ⟨x, hx⟩,
rw [tendsto_pi_nhds] at lim,
have : (λ y, liminf at_top (λ n, (f (x n) y : ℝ≥0∞))) = g :=
by { ext1 y, exact ((lim y).comp hx).liminf_eq, },
rw ← this,
show measurable (λ y, liminf at_top (λ n, (f (x n) y : ℝ≥0∞))),
exact measurable_liminf (λ n, hf (x n)),
end
/-- A sequential limit of measurable `ℝ≥0∞` valued functions is measurable. -/
lemma measurable_of_tendsto_ennreal {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0∞}
(hf : ∀ i, measurable (f i)) (lim : tendsto f at_top (𝓝 g)) : measurable g :=
measurable_of_tendsto_ennreal' at_top hf lim
/-- A limit (over a general filter) of measurable `ℝ≥0` valued functions is measurable. -/
lemma measurable_of_tendsto_nnreal' {ι} {f : ι → α → ℝ≥0} {g : α → ℝ≥0} (u : filter ι)
[ne_bot u] [is_countably_generated u] (hf : ∀ i, measurable (f i)) (lim : tendsto f u (𝓝 g)) :
measurable g :=
begin
simp_rw [← measurable_coe_nnreal_ennreal_iff] at hf ⊢,
refine measurable_of_tendsto_ennreal' u hf _,
rw tendsto_pi_nhds at lim ⊢,
exact λ x, (ennreal.continuous_coe.tendsto (g x)).comp (lim x),
end
/-- A sequential limit of measurable `ℝ≥0` valued functions is measurable. -/
lemma measurable_of_tendsto_nnreal {f : ℕ → α → ℝ≥0} {g : α → ℝ≥0}
(hf : ∀ i, measurable (f i)) (lim : tendsto f at_top (𝓝 g)) : measurable g :=
measurable_of_tendsto_nnreal' at_top hf lim
/-- A limit (over a general filter) of measurable functions valued in a metric space is measurable.
-/
lemma measurable_of_tendsto_metric' {ι} {f : ι → α → β} {g : α → β}
(u : filter ι) [ne_bot u] [is_countably_generated u]
(hf : ∀ i, measurable (f i)) (lim : tendsto f u (𝓝 g)) :
measurable g :=
begin
apply measurable_of_is_closed', intros s h1s h2s h3s,
have : measurable (λ x, inf_nndist (g x) s),
{ suffices : tendsto (λ i x, inf_nndist (f i x) s) u (𝓝 (λ x, inf_nndist (g x) s)),
from measurable_of_tendsto_nnreal' u (λ i, (hf i).inf_nndist) this,
rw [tendsto_pi_nhds] at lim ⊢, intro x,
exact ((continuous_inf_nndist_pt s).tendsto (g x)).comp (lim x) },
have h4s : g ⁻¹' s = (λ x, inf_nndist (g x) s) ⁻¹' {0},
{ ext x, simp [h1s, ← h1s.mem_iff_inf_dist_zero h2s, ← nnreal.coe_eq_zero] },
rw [h4s], exact this (measurable_set_singleton 0),
end
/-- A sequential limit of measurable functions valued in a metric space is measurable. -/
lemma measurable_of_tendsto_metric {f : ℕ → α → β} {g : α → β}
(hf : ∀ i, measurable (f i)) (lim : tendsto f at_top (𝓝 g)) :
measurable g :=
measurable_of_tendsto_metric' at_top hf lim
/-- A limit (over a general filter) of measurable functions valued in a metrizable space is
measurable. -/
lemma measurable_of_tendsto_metrizable'
{β : Type*} [topological_space β] [metrizable_space β]
[measurable_space β] [borel_space β] {ι} {f : ι → α → β} {g : α → β}
(u : filter ι) [ne_bot u] [is_countably_generated u]
(hf : ∀ i, measurable (f i)) (lim : tendsto f u (𝓝 g)) :
measurable g :=
begin
letI : metric_space β := metrizable_space_metric β,
exact measurable_of_tendsto_metric' u hf lim
end
/-- A sequential limit of measurable functions valued in a metrizable space is measurable. -/
lemma measurable_of_tendsto_metrizable {β : Type*} [topological_space β] [metrizable_space β]
[measurable_space β] [borel_space β] {f : ℕ → α → β} {g : α → β}
(hf : ∀ i, measurable (f i)) (lim : tendsto f at_top (𝓝 g)) :
measurable g :=
measurable_of_tendsto_metrizable' at_top hf lim
lemma ae_measurable_of_tendsto_metric_ae {ι : Type*}
{μ : measure α} {f : ι → α → β} {g : α → β}
(u : filter ι) [hu : ne_bot u] [is_countably_generated u]
(hf : ∀ n, ae_measurable (f n) μ) (h_tendsto : ∀ᵐ x ∂μ, tendsto (λ n, f n x) u (𝓝 (g x))) :
ae_measurable g μ :=
begin
rcases u.exists_seq_tendsto with ⟨v, hv⟩,
have h'f : ∀ n, ae_measurable (f (v n)) μ := λ n, hf (v n),
set p : α → (ℕ → β) → Prop := λ x f', tendsto (λ n, f' n) at_top (𝓝 (g x)),
have hp : ∀ᵐ x ∂μ, p x (λ n, f (v n) x),
by filter_upwards [h_tendsto] with x hx using hx.comp hv,
set ae_seq_lim := λ x, ite (x ∈ ae_seq_set h'f p) (g x) (⟨f (v 0) x⟩ : nonempty β).some with hs,
refine ⟨ae_seq_lim,
measurable_of_tendsto_metric' at_top (@ae_seq.measurable α β _ _ _ (λ n x, f (v n) x) μ h'f p)
(tendsto_pi_nhds.mpr (λ x, _)), _⟩,
{ simp_rw [ae_seq, ae_seq_lim],
split_ifs with hx,
{ simp_rw ae_seq.mk_eq_fun_of_mem_ae_seq_set h'f hx,
exact @ae_seq.fun_prop_of_mem_ae_seq_set α β _ _ _ _ _ _ h'f x hx, },
{ exact tendsto_const_nhds } },
{ exact (ite_ae_eq_of_measure_compl_zero g (λ x, (⟨f (v 0) x⟩ : nonempty β).some)
(ae_seq_set h'f p) (ae_seq.measure_compl_ae_seq_set_eq_zero h'f hp)).symm },
end
lemma ae_measurable_of_tendsto_metric_ae' {μ : measure α} {f : ℕ → α → β} {g : α → β}
(hf : ∀ n, ae_measurable (f n) μ)
(h_ae_tendsto : ∀ᵐ x ∂μ, tendsto (λ n, f n x) at_top (𝓝 (g x))) :
ae_measurable g μ :=
ae_measurable_of_tendsto_metric_ae at_top hf h_ae_tendsto
lemma ae_measurable_of_unif_approx {μ : measure α} {g : α → β}
(hf : ∀ ε > (0 : ℝ), ∃ (f : α → β), ae_measurable f μ ∧ ∀ᵐ x ∂μ, dist (f x) (g x) ≤ ε) :
ae_measurable g μ :=
begin
obtain ⟨u, u_anti, u_pos, u_lim⟩ :
∃ (u : ℕ → ℝ), strict_anti u ∧ (∀ (n : ℕ), 0 < u n) ∧ tendsto u at_top (𝓝 0) :=
exists_seq_strict_anti_tendsto (0 : ℝ),
choose f Hf using λ (n : ℕ), hf (u n) (u_pos n),
have : ∀ᵐ x ∂μ, tendsto (λ n, f n x) at_top (𝓝 (g x)),
{ have : ∀ᵐ x ∂ μ, ∀ n, dist (f n x) (g x) ≤ u n := ae_all_iff.2 (λ n, (Hf n).2),
filter_upwards [this],
assume x hx,
rw tendsto_iff_dist_tendsto_zero,
exact squeeze_zero (λ n, dist_nonneg) hx u_lim },
exact ae_measurable_of_tendsto_metric_ae' (λ n, (Hf n).1) this,
end
lemma measurable_of_tendsto_metric_ae {μ : measure α} [μ.is_complete] {f : ℕ → α → β} {g : α → β}
(hf : ∀ n, measurable (f n))
(h_ae_tendsto : ∀ᵐ x ∂μ, tendsto (λ n, f n x) at_top (𝓝 (g x))) :
measurable g :=
ae_measurable_iff_measurable.mp
(ae_measurable_of_tendsto_metric_ae' (λ i, (hf i).ae_measurable) h_ae_tendsto)
lemma measurable_limit_of_tendsto_metric_ae {ι} [encodable ι] [nonempty ι] {μ : measure α}
{f : ι → α → β} {L : filter ι} [L.is_countably_generated] (hf : ∀ n, ae_measurable (f n) μ)
(h_ae_tendsto : ∀ᵐ x ∂μ, ∃ l : β, tendsto (λ n, f n x) L (𝓝 l)) :
∃ (f_lim : α → β) (hf_lim_meas : measurable f_lim),
∀ᵐ x ∂μ, tendsto (λ n, f n x) L (𝓝 (f_lim x)) :=
begin
inhabit ι,
unfreezingI { rcases eq_or_ne L ⊥ with rfl | hL },
{ exact ⟨(hf default).mk _, (hf default).measurable_mk,
eventually_of_forall $ λ x, tendsto_bot⟩ },
haveI : ne_bot L := ⟨hL⟩,
let p : α → (ι → β) → Prop := λ x f', ∃ l : β, tendsto (λ n, f' n) L (𝓝 l),
have hp_mem : ∀ x ∈ ae_seq_set hf p, p x (λ n, f n x),
from λ x hx, ae_seq.fun_prop_of_mem_ae_seq_set hf hx,
have h_ae_eq : ∀ᵐ x ∂μ, ∀ n, ae_seq hf p n x = f n x,
from ae_seq.ae_seq_eq_fun_ae hf h_ae_tendsto,
let f_lim : α → β := λ x, dite (x ∈ ae_seq_set hf p) (λ h, (hp_mem x h).some)
(λ h, (⟨f default x⟩ : nonempty β).some),
have hf_lim : ∀ x, tendsto (λ n, ae_seq hf p n x) L (𝓝 (f_lim x)),
{ intros x,
simp only [f_lim, ae_seq],
split_ifs,
{ refine (hp_mem x h).some_spec.congr (λ n, _),
exact (ae_seq.mk_eq_fun_of_mem_ae_seq_set hf h n).symm },
{ exact tendsto_const_nhds, }, },
have h_ae_tendsto_f_lim : ∀ᵐ x ∂μ, tendsto (λ n, f n x) L (𝓝 (f_lim x)),
from h_ae_eq.mono (λ x hx, (hf_lim x).congr hx),
have h_f_lim_meas : measurable f_lim,
from measurable_of_tendsto_metric' L (ae_seq.measurable hf p)
(tendsto_pi_nhds.mpr (λ x, hf_lim x)),
exact ⟨f_lim, h_f_lim_meas, h_ae_tendsto_f_lim⟩,
end
end limits
namespace continuous_linear_map
variables {𝕜 : Type*} [normed_field 𝕜]
variables {E : Type*} [normed_group E] [normed_space 𝕜 E] [measurable_space E]
variables [opens_measurable_space E]
variables {F : Type*} [normed_group F] [normed_space 𝕜 F] [measurable_space F] [borel_space F]
@[measurability]
protected lemma measurable (L : E →L[𝕜] F) : measurable L :=
L.continuous.measurable
lemma measurable_comp (L : E →L[𝕜] F) {φ : α → E} (φ_meas : measurable φ) :
measurable (λ (a : α), L (φ a)) :=
L.measurable.comp φ_meas
end continuous_linear_map
namespace continuous_linear_map
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
variables {E : Type*} [normed_group E] [normed_space 𝕜 E]
{F : Type*} [normed_group F] [normed_space 𝕜 F]
instance : measurable_space (E →L[𝕜] F) := borel _
instance : borel_space (E →L[𝕜] F) := ⟨rfl⟩
@[measurability]
lemma measurable_apply [measurable_space F] [borel_space F] (x : E) :
measurable (λ f : E →L[𝕜] F, f x) :=
(apply 𝕜 F x).continuous.measurable
@[measurability]
lemma measurable_apply' [measurable_space E] [opens_measurable_space E]
[measurable_space F] [borel_space F] :
measurable (λ (x : E) (f : E →L[𝕜] F), f x) :=
measurable_pi_lambda _ $ λ f, f.measurable
@[measurability]
lemma measurable_coe [measurable_space F] [borel_space F] :
measurable (λ (f : E →L[𝕜] F) (x : E), f x) :=
measurable_pi_lambda _ measurable_apply
end continuous_linear_map
section continuous_linear_map_nondiscrete_normed_field
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
variables {E : Type*} [normed_group E] [normed_space 𝕜 E] [measurable_space E] [borel_space E]
variables {F : Type*} [normed_group F] [normed_space 𝕜 F]
@[measurability]
lemma measurable.apply_continuous_linear_map {φ : α → F →L[𝕜] E} (hφ : measurable φ) (v : F) :
measurable (λ a, φ a v) :=
(continuous_linear_map.apply 𝕜 E v).measurable.comp hφ
@[measurability]
lemma ae_measurable.apply_continuous_linear_map {φ : α → F →L[𝕜] E} {μ : measure α}
(hφ : ae_measurable φ μ) (v : F) : ae_measurable (λ a, φ a v) μ :=
(continuous_linear_map.apply 𝕜 E v).measurable.comp_ae_measurable hφ
end continuous_linear_map_nondiscrete_normed_field
section normed_space
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] [complete_space 𝕜] [measurable_space 𝕜]
variables [borel_space 𝕜]
variables {E : Type*} [normed_group E] [normed_space 𝕜 E] [measurable_space E] [borel_space E]
lemma measurable_smul_const {f : α → 𝕜} {c : E} (hc : c ≠ 0) :
measurable (λ x, f x • c) ↔ measurable f :=
(closed_embedding_smul_left hc).measurable_embedding.measurable_comp_iff
lemma ae_measurable_smul_const {f : α → 𝕜} {μ : measure α} {c : E} (hc : c ≠ 0) :
ae_measurable (λ x, f x • c) μ ↔ ae_measurable f μ :=
(closed_embedding_smul_left hc).measurable_embedding.ae_measurable_comp_iff
end normed_space
|
module InstanceArgumentsSections where
postulate A : Set
module Basic where
record B : Set where
field bA : A
open B {{...}}
bA' : B → A
bA' _ = bA
module Parameterised (a : A) where
record C : Set where
field cA : A
open C {{...}}
cA' : C → A
cA' _ = cA
module RecordFromParameterised where
postulate a : A
open Parameterised a
open C {{...}}
cA'' : C → A
cA'' _ = cA
module RecordFromParameterisedInParameterised (a : A) where
open Parameterised a
open C {{...}}
cA'' : C → A
cA'' _ = cA
module RecordFromParameterised' (a : A) where
open Parameterised
open C {{...}}
cA'' : C a → A
cA'' _ = cA a
module AppliedRecord (a : A) where
open Parameterised
D : Set
D = C a
module D = C a
open D {{...}}
dA' : D → A
dA' _ = cA
|
Prayer and private offerings are generally called " personal piety " : acts that reflect a close relationship between an individual and a god . Evidence of personal piety is scant before the New Kingdom . Votive offerings and personal names , many of which are <unk> , suggest that commoners felt some connection between themselves and their gods . But firm evidence of devotion to deities became visible only in the New Kingdom , reaching a peak late in that era . Scholars disagree about the meaning of this change — whether direct interaction with the gods was a new development or an outgrowth of older traditions . Egyptians now expressed their devotion through a new variety of activities in and around temples . They recorded their prayers and their thanks for divine help on stelae . They gave offerings of figurines that represented the gods they were praying to , or that symbolized the result they desired ; thus a relief image of Hathor and a statuette of a woman could both represent a prayer for fertility . Occasionally , a person took a particular god as a patron , dedicating his or her property or labor to the god 's cult . These practices continued into the latest periods of Egyptian history . These later eras saw more religious innovations , including the practice of giving animal mummies as offerings to deities depicted in animal form , such as the cat mummies given to the feline goddess Bastet . Some of the major deities from myth and official religion were rarely invoked in popular worship , but many of the great state gods were important in popular tradition .
|
State Before: V : Type u
V' : Type v
V'' : Type w
G : SimpleGraph V
G' : SimpleGraph V'
G'' : SimpleGraph V''
u u' : V
hu : u = u'
⊢ Walk.copy nil hu hu = nil State After: V : Type u
V' : Type v
V'' : Type w
G : SimpleGraph V
G' : SimpleGraph V'
G'' : SimpleGraph V''
u' : V
⊢ Walk.copy nil (_ : u' = u') (_ : u' = u') = nil Tactic: subst_vars State Before: V : Type u
V' : Type v
V'' : Type w
G : SimpleGraph V
G' : SimpleGraph V'
G'' : SimpleGraph V''
u' : V
⊢ Walk.copy nil (_ : u' = u') (_ : u' = u') = nil State After: no goals Tactic: rfl |
func $foo (
var %i i32
#var %i1 i32, var %j1 i32, var %k1 i32
) i32 {
return (
depositbits i32 1 23(
constval i32 0xfff, constval i32 0x11))}
# EXEC: %irbuild Main.mpl
# EXEC: %irbuild Main.irb.mpl
# EXEC: %cmp Main.irb.mpl Main.irb.irb.mpl
|
port P
passive component C {
sync input port p: P drop
}
|
= = Creation and casting = =
|
/* Copyright (C) 2012-2020 IBM Corp.
* This program is Licensed under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. See accompanying LICENSE file.
*/
#include <iostream>
#include <NTL/BasicThreadPool.h>
#include <helib/intraSlot.h>
#include <helib/tableLookup.h>
#include <helib/debugging.h>
#include "gtest/gtest.h"
#include "test_common.h"
namespace {
struct Parameters
{
Parameters(long prm,
long bitSize,
long outSize,
long nTests,
bool bootstrap,
long seed,
long nthreads) :
prm(prm),
bitSize(bitSize),
outSize(outSize),
nTests(nTests),
bootstrap(bootstrap),
seed(seed),
nthreads(nthreads){};
long prm; // parameter size (0-tiny,...,4-huge)
long bitSize; // bitSize of input integers (<=32)
long outSize; // bitSize of output integers
long nTests; // number of tests to run
bool bootstrap; // test multiplication with bootstrapping
long seed; // PRG seed
long nthreads; // number of threads
friend std::ostream& operator<<(std::ostream& os, const Parameters& params)
{
return os << "{"
<< "prm=" << params.prm << ","
<< "bitSize=" << params.bitSize << ","
<< "outSize=" << params.outSize << ","
<< "nTests=" << params.nTests << ","
<< "bootstrap=" << params.bootstrap << ","
<< "seed=" << params.seed << ","
<< "nthreads=" << params.nthreads << "}";
};
};
class GTestTableLookup : public ::testing::TestWithParam<Parameters>
{
protected:
// clang-format off
static constexpr long mValues[][15] = {
// {p,phi(m), m, d, m1, m2, m3, g1, g2, g3,ord1,ord2,ord3, B, c}
{2, 48, 105, 12, 3, 35, 0, 71, 76, 0, 2, 2, 0, 25, 2},
{2, 600, 1023, 10, 11, 93, 0, 838, 584, 0, 10, 6, 0, 25, 2},
{2, 2304, 4641, 24, 7, 3,221, 3979, 3095, 3760, 6, 2, -8, 25, 3},
{2, 15004,15709, 22, 23,683, 0, 4099,13663, 0, 22, 31, 0, 25, 3},
{2, 27000,32767, 15, 31, 7,151,11628,28087,25824, 30, 6, -10, 28, 4}
};
// clang-format on
// Utility encryption/decryption methods
static void encryptIndex(std::vector<helib::Ctxt>& ei,
long index,
const helib::SecKey& sKey)
{
for (long i = 0; i < helib::lsize(ei); i++)
sKey.Encrypt(ei[i], NTL::to_ZZX((index >> i) & 1)); // i'th bit of index
}
static long decryptIndex(std::vector<helib::Ctxt>& ei,
const helib::SecKey& sKey)
{
long num = 0;
for (long i = 0; i < helib::lsize(ei); i++) {
NTL::ZZX poly;
sKey.Decrypt(poly, ei[i]);
num += to_long(NTL::ConstTerm(poly)) << i;
}
return num;
}
static long validatePrm(const long prm)
{
if (prm < 0 || prm >= 5)
throw std::invalid_argument("Invalid prm value");
return prm;
};
static long validateBitSize(const long bitSize)
{
if (bitSize > 7)
throw std::invalid_argument("Invalid bitSize value: must be <=7");
else if (bitSize <= 0)
throw std::invalid_argument("Invalid bitSize value: must be >0");
return bitSize;
};
static NTL::Vec<long> calculateMvec(const long* vals)
{
NTL::Vec<long> mvec;
append(mvec, vals[4]);
if (vals[5] > 1)
append(mvec, vals[5]);
if (vals[6] > 1)
append(mvec, vals[6]);
return mvec;
};
static std::vector<long> calculateGens(const long* vals)
{
std::vector<long> gens;
gens.push_back(vals[7]);
if (vals[8] > 1)
gens.push_back(vals[8]);
if (vals[9] > 1)
gens.push_back(vals[9]);
return gens;
};
static std::vector<long> calculateOrds(const long* vals)
{
std::vector<long> ords;
ords.push_back(vals[10]);
if (abs(vals[11]) > 1)
ords.push_back(vals[11]);
if (abs(vals[12]) > 1)
ords.push_back(vals[12]);
return ords;
};
static long calculateLevels(const bool bootstrap, const long bitSize)
{
long L;
if (bootstrap)
L = 900; // that should be enough
else
L = 30 * (5 + bitSize);
return L;
};
static void printPreContextPrepDiagnostics(const long bitSize,
const long outSize,
const long nTests,
const long nthreads)
{
if (helib_test::verbose) {
std::cout << "input bitSize=" << bitSize
<< ", output size bound=" << outSize << ", running " << nTests
<< " tests for each function\n";
if (nthreads > 1)
std::cout << " using " << NTL::AvailableThreads() << " threads\n";
std::cout << "computing key-independent tables..." << std::flush;
}
};
static void printPostContextPrepDiagnostics(const helib::Context& context,
const long L)
{
if (helib_test::verbose) {
std::cout << " done.\n";
context.zMStar.printout();
std::cout << " L=" << L << std::endl;
};
}
// Not static as many instance variables are required.
helib::Context& prepareContext(helib::Context& context)
{
printPreContextPrepDiagnostics(bitSize, outSize, nTests, nthreads);
helib::buildModChain(context, L, c, /*willBeBootstrappable*/ bootstrap);
if (bootstrap) {
context.enableBootStrapping(mvec);
}
helib::buildUnpackSlotEncoding(unpackSlotEncoding, *context.ea);
printPostContextPrepDiagnostics(context, L);
return context;
};
static void prepareSecKey(helib::SecKey& secretKey, const bool bootstrap)
{
if (helib_test::verbose)
std::cout << "\ncomputing key-dependent tables..." << std::flush;
secretKey.GenSecKey();
helib::addSome1DMatrices(secretKey); // compute key-switching matrices
helib::addFrbMatrices(secretKey);
if (bootstrap)
secretKey.genRecryptData();
if (helib_test::verbose)
std::cout << " done\n";
};
static void setSeedIfNeeded(const long seed)
{
if (seed)
NTL::SetSeed(NTL::ZZ(seed));
;
};
static void setThreadsIfNeeded(const long nthreads)
{
if (nthreads > 1)
NTL::SetNumThreads(nthreads);
};
GTestTableLookup() :
prm(validatePrm(GetParam().prm)),
bitSize(validateBitSize(GetParam().bitSize)),
outSize(GetParam().outSize),
nTests(GetParam().nTests),
bootstrap(GetParam().bootstrap),
seed((setSeedIfNeeded(GetParam().seed), GetParam().seed)),
nthreads((setThreadsIfNeeded(GetParam().nthreads), GetParam().nthreads)),
vals(mValues[prm]),
p(vals[0]),
m(vals[2]),
mvec(calculateMvec(vals)),
gens(calculateGens(vals)),
ords(calculateOrds(vals)),
c(vals[14]),
L(calculateLevels(bootstrap, bitSize)),
context(m, p, /*r=*/1, gens, ords),
secretKey(prepareContext(context))
{
prepareSecKey(secretKey, bootstrap);
};
std::vector<helib::zzX> unpackSlotEncoding;
const long prm;
const long bitSize;
const long outSize;
const long nTests;
const bool bootstrap;
const long seed;
const long nthreads;
const long* vals;
const long p;
const long m;
const NTL::Vec<long> mvec;
const std::vector<long> gens;
const std::vector<long> ords;
const long c;
const long L;
helib::Context context;
helib::SecKey secretKey;
void SetUp() override
{
helib::activeContext = &context; // make things a little easier sometimes
helib::setupDebugGlobals(&secretKey, context.ea);
};
virtual void TearDown() override
{
#ifdef HELIB_DEBUG
helib::cleanupDebugGlobals();
#endif
}
public:
static void TearDownTestCase()
{
if (helib_test::verbose) {
helib::printAllTimers(std::cout);
}
};
};
constexpr long GTestTableLookup::mValues[][15];
TEST_P(GTestTableLookup, lookupFunctionsCorrectly)
{
// Build a table s.t. T[i] = 2^{outSize -1}/(i+1), i=0,...,2^bitSize -1
std::vector<helib::zzX> T;
helib::buildLookupTable(
T,
[](double x) { return 1 / (x + 1.0); },
bitSize,
/*scale_in=*/0,
/*sign_in=*/0,
outSize,
/*scale_out=*/1 - outSize,
/*sign_out=*/0,
*(secretKey.getContext().ea));
ASSERT_EQ(helib::lsize(T), 1L << bitSize);
for (long i = 0; i < helib::lsize(T); i++) {
helib::Ctxt c(secretKey);
std::vector<helib::Ctxt> ei(bitSize, c);
encryptIndex(ei, i, secretKey); // encrypt the index
helib::tableLookup(c,
T,
helib::CtPtrs_vectorCt(ei)); // get the encrypted entry
// decrypt and compare
NTL::ZZX poly;
secretKey.Decrypt(poly, c); // decrypt
helib::zzX poly2;
helib::convert(poly2, poly); // convert to zzX
EXPECT_EQ(poly2, T[i]) << "testLookup error: decrypted T[" << i << "]\n";
}
}
TEST_P(GTestTableLookup, writeinFunctionsCorrectly)
{
long tSize = 1L << bitSize; // table size
// encrypt a random table
std::vector<long> pT(tSize, 0); // plaintext table
std::vector<helib::Ctxt> T(tSize, helib::Ctxt(secretKey)); // encrypted table
for (long i = 0; i < bitSize; i++) {
long bit = NTL::RandomBits_long(1); // a random bit
secretKey.Encrypt(T[i], NTL::to_ZZX(bit));
pT[i] = bit;
}
// Add 1 to 20 random entries in the table
for (long count = 0; count < nTests; count++) {
// encrypt a random index into the table
long index = NTL::RandomBnd(tSize); // 0 <= index < tSize
std::vector<helib::Ctxt> I(bitSize, helib::Ctxt(secretKey));
encryptIndex(I, index, secretKey);
// do the table write-in
tableWriteIn(helib::CtPtrs_vectorCt(T),
helib::CtPtrs_vectorCt(I),
&unpackSlotEncoding);
pT[index]++; // add 1 to entry 'index' in the plaintext table
}
// Check that the ciphertext and plaintext tables still match
for (int i = 0; i < tSize; i++) {
NTL::ZZX poly;
secretKey.Decrypt(poly, T[i]);
long decrypted = to_long(NTL::ConstTerm(poly));
long p = T[i].getPtxtSpace();
ASSERT_EQ((pT[i] - decrypted) % p, 0) // should be equal mod p
<< "testWritein error: decrypted T[" << i << "]=" << decrypted
<< " but should be " << pT[i] << " (mod " << p << ")\n";
}
}
INSTANTIATE_TEST_SUITE_P(typicalParameters,
GTestTableLookup,
::testing::Values(
// SLOW
Parameters(1, 5, 0, 3, false, 0, 1)
// FAST
// Parameters(0, 5, 0, 3, false, 0, 1)
));
} // namespace
|
State Before: d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
⊢ IsCoprime b.re b.im State After: case nonzero
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
⊢ ¬(b.re = 0 ∧ b.im = 0)
case H
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
⊢ ∀ (z : ℤ), z ∈ nonunits ℤ → z ≠ 0 → z ∣ b.re → ¬z ∣ b.im Tactic: apply isCoprime_of_dvd State Before: case nonzero
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
⊢ ¬(b.re = 0 ∧ b.im = 0) State After: case nonzero.intro
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
hre : b.re = 0
him : b.im = 0
⊢ False Tactic: rintro ⟨hre, him⟩ State Before: case nonzero.intro
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
hre : b.re = 0
him : b.im = 0
⊢ False State After: case nonzero.intro
d : ℤ
a : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : 0 ∣ a
hre : 0.re = 0
him : 0.im = 0
⊢ False Tactic: obtain rfl : b = 0 := by
simp only [ext, hre, eq_self_iff_true, zero_im, him, and_self_iff, zero_re] State Before: case nonzero.intro
d : ℤ
a : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : 0 ∣ a
hre : 0.re = 0
him : 0.im = 0
⊢ False State After: case nonzero.intro
d : ℤ
a : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : a = 0
hre : 0.re = 0
him : 0.im = 0
⊢ False Tactic: rw [zero_dvd_iff] at hdvd State Before: case nonzero.intro
d : ℤ
a : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : a = 0
hre : 0.re = 0
him : 0.im = 0
⊢ False State After: no goals Tactic: simp [hdvd, zero_im, zero_re, not_isCoprime_zero_zero] at hcoprime State Before: d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
hre : b.re = 0
him : b.im = 0
⊢ b = 0 State After: no goals Tactic: simp only [ext, hre, eq_self_iff_true, zero_im, him, and_self_iff, zero_re] State Before: case H
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
⊢ ∀ (z : ℤ), z ∈ nonunits ℤ → z ≠ 0 → z ∣ b.re → ¬z ∣ b.im State After: case H
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ False Tactic: rintro z hz - hzdvdu hzdvdv State Before: case H
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ False State After: case H
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ IsUnit z Tactic: apply hz State Before: case H
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ IsUnit z State After: case H.intro
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
ha : z ∣ a.re
hb : z ∣ a.im
⊢ IsUnit z Tactic: obtain ⟨ha, hb⟩ : z ∣ a.re ∧ z ∣ a.im := by
rw [← coe_int_dvd_iff]
apply dvd_trans _ hdvd
rw [coe_int_dvd_iff]
exact ⟨hzdvdu, hzdvdv⟩ State Before: case H.intro
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
ha : z ∣ a.re
hb : z ∣ a.im
⊢ IsUnit z State After: no goals Tactic: exact hcoprime.isUnit_of_dvd' ha hb State Before: d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ z ∣ a.re ∧ z ∣ a.im State After: d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ ↑z ∣ a Tactic: rw [← coe_int_dvd_iff] State Before: d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ ↑z ∣ a State After: d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ ↑z ∣ b Tactic: apply dvd_trans _ hdvd State Before: d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ ↑z ∣ b State After: d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ z ∣ b.re ∧ z ∣ b.im Tactic: rw [coe_int_dvd_iff] State Before: d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ z ∣ b.re ∧ z ∣ b.im State After: no goals Tactic: exact ⟨hzdvdu, hzdvdv⟩ |
using Random
Random.rand!(A::MtlArray) = Random.rand!(GPUArrays.default_rng(MtlArray), A)
Random.randn!(A::MtlArray) = Random.randn!(GPUArrays.default_rng(MtlArray), A) |
[STATEMENT]
lemma ctx_subtype_v_aux:
fixes v::v
assumes "\<Theta>; \<B>; \<Gamma>'@((x,b0,c0')#\<^sub>\<Gamma>\<Gamma>) \<turnstile> v \<Rightarrow> t1" and "\<Theta>; \<B>; \<Gamma>'@(x,b0,c0)#\<^sub>\<Gamma>\<Gamma> \<Turnstile> c0'"
shows "\<Theta>; \<B>; \<Gamma>'@((x,b0,c0)#\<^sub>\<Gamma>\<Gamma>) \<turnstile> v \<Rightarrow> t1"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> t1
[PROOF STEP]
using assms
[PROOF STATE]
proof (prove)
using this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> t1
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> t1
[PROOF STEP]
proof(nominal_induct "\<Gamma>'@((x,b0,c0')#\<^sub>\<Gamma>\<Gamma>)" v t1 avoiding: c0 rule: infer_v.strong_induct)
[PROOF STATE]
proof (state)
goal (5 subgoals):
1. \<And>\<Theta> \<B> b c xa z c0. \<lbrakk>atom z \<sharp> c0; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa; atom z \<sharp> xa; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>\<Theta> \<B> l \<tau> c0. \<lbrakk> \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; \<turnstile> l \<Rightarrow> \<tau>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
3. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
4. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
5. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
case (infer_v_varI \<Theta> \<B> b c xa z)
[PROOF STATE]
proof (state)
this:
atom z \<sharp> c0
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa
atom z \<sharp> xa
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (5 subgoals):
1. \<And>\<Theta> \<B> b c xa z c0. \<lbrakk>atom z \<sharp> c0; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa; atom z \<sharp> xa; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>\<Theta> \<B> l \<tau> c0. \<lbrakk> \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; \<turnstile> l \<Rightarrow> \<tau>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
3. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
4. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
5. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
have wf:\<open> \<Theta>; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>
[PROOF STEP]
using wfG_inside_valid2 infer_v_varI
[PROOF STATE]
proof (prove)
using this:
\<lbrakk> ?\<Theta> ; ?B \<turnstile>\<^sub>w\<^sub>f ?\<Gamma>' @ (?x, ?b0.0, ?c0') #\<^sub>\<Gamma> ?\<Gamma> ; ?\<Theta> ; ?B ; ?\<Gamma>' @ (?x, ?b0.0, ?c0.0) #\<^sub>\<Gamma> ?\<Gamma> \<Turnstile> ?c0' \<rbrakk> \<Longrightarrow> ?\<Theta> ; ?B \<turnstile>\<^sub>w\<^sub>f ?\<Gamma>' @ (?x, ?b0.0, ?c0.0) #\<^sub>\<Gamma> ?\<Gamma>
atom z \<sharp> c0
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa
atom z \<sharp> xa
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>
[PROOF STEP]
by metis
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>
goal (5 subgoals):
1. \<And>\<Theta> \<B> b c xa z c0. \<lbrakk>atom z \<sharp> c0; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa; atom z \<sharp> xa; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>\<Theta> \<B> l \<tau> c0. \<lbrakk> \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; \<turnstile> l \<Rightarrow> \<tau>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
3. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
4. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
5. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
have xf1:\<open>atom z \<sharp> xa\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. atom z \<sharp> xa
[PROOF STEP]
using infer_v_varI
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa
atom z \<sharp> xa
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. atom z \<sharp> xa
[PROOF STEP]
by metis
[PROOF STATE]
proof (state)
this:
atom z \<sharp> xa
goal (5 subgoals):
1. \<And>\<Theta> \<B> b c xa z c0. \<lbrakk>atom z \<sharp> c0; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa; atom z \<sharp> xa; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>\<Theta> \<B> l \<tau> c0. \<lbrakk> \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; \<turnstile> l \<Rightarrow> \<tau>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
3. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
4. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
5. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
have xf2: \<open>atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
[PROOF STEP]
apply( fresh_mth add: infer_v_varI )
[PROOF STATE]
proof (prove)
goal (4 subgoals):
1. atom z \<in> supp \<Gamma>' \<Longrightarrow> False
2. atom z \<in> supp x \<Longrightarrow> False
3. atom z \<in> supp c0 \<Longrightarrow> False
4. atom z \<in> supp \<Gamma> \<Longrightarrow> False
[PROOF STEP]
using fresh_def infer_v_varI wfG_supp fresh_append_g fresh_GCons fresh_prodN
[PROOF STATE]
proof (prove)
using this:
?a \<sharp> ?x \<equiv> ?a \<notin> supp ?x
atom z \<sharp> c0
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa
atom z \<sharp> xa
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
?\<Theta> ; ?\<B> \<turnstile>\<^sub>w\<^sub>f ?\<Gamma> \<Longrightarrow> atom_dom ?\<Gamma> \<subseteq> supp ?\<Gamma>
?a \<sharp> ?xs @ ?ys = (?a \<sharp> ?xs \<and> ?a \<sharp> ?ys)
?a \<sharp> ?x #\<^sub>\<Gamma> ?xs = (?a \<sharp> ?x \<and> ?a \<sharp> ?xs)
?a \<sharp> (?x, ?y) = (?a \<sharp> ?x \<and> ?a \<sharp> ?y)
?x \<sharp> (?a, ?b, ?c) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c)
?x \<sharp> (?a, ?b, ?c, ?d) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d)
?x \<sharp> (?a, ?b, ?c, ?d, ?e) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j, ?k, ?l) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j \<and> ?x \<sharp> ?k \<and> ?x \<sharp> ?l)
goal (4 subgoals):
1. atom z \<in> supp \<Gamma>' \<Longrightarrow> False
2. atom z \<in> supp x \<Longrightarrow> False
3. atom z \<in> supp c0 \<Longrightarrow> False
4. atom z \<in> supp \<Gamma> \<Longrightarrow> False
[PROOF STEP]
by metis+
[PROOF STATE]
proof (state)
this:
atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
goal (5 subgoals):
1. \<And>\<Theta> \<B> b c xa z c0. \<lbrakk>atom z \<sharp> c0; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa; atom z \<sharp> xa; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>\<Theta> \<B> l \<tau> c0. \<lbrakk> \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; \<turnstile> l \<Rightarrow> \<tau>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
3. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
4. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
5. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
show ?case
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
proof (cases "x=xa")
[PROOF STATE]
proof (state)
goal (2 subgoals):
1. x = xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
case True
[PROOF STATE]
proof (state)
this:
x = xa
goal (2 subgoals):
1. x = xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
moreover
[PROOF STATE]
proof (state)
this:
x = xa
goal (2 subgoals):
1. x = xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
have "b = b0"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. b = b0
[PROOF STEP]
using infer_v_varI True
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa
atom z \<sharp> xa
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
x = xa
goal (1 subgoal):
1. b = b0
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
b = b0
goal (2 subgoals):
1. x = xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
moreover
[PROOF STATE]
proof (state)
this:
b = b0
goal (2 subgoals):
1. x = xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
hence \<open>Some (b, c0) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa\<close>
[PROOF STATE]
proof (prove)
using this:
b = b0
goal (1 subgoal):
1. Some (b, c0) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
[PROOF STEP]
using lookup_inside_wf[OF wf] infer_v_varI True
[PROOF STATE]
proof (prove)
using this:
b = b0
Some (b0, c0) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) x
atom z \<sharp> c0
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa
atom z \<sharp> xa
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
x = xa
goal (1 subgoal):
1. Some (b, c0) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
Some (b, c0) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
goal (2 subgoals):
1. x = xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
ultimately
[PROOF STATE]
proof (chain)
picking this:
x = xa
b = b0
Some (b, c0) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
[PROOF STEP]
show ?thesis
[PROOF STATE]
proof (prove)
using this:
x = xa
b = b0
Some (b, c0) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
using wf xf1 xf2 Typing.infer_v_varI
[PROOF STATE]
proof (prove)
using this:
x = xa
b = b0
Some (b, c0) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> xa
atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
\<lbrakk> ?\<Theta> ; ?\<B> \<turnstile>\<^sub>w\<^sub>f ?\<Gamma> ; Some (?b, ?c) = lookup ?\<Gamma> ?x; atom ?z \<sharp> ?x; atom ?z \<sharp> (?\<Theta>, ?\<B>, ?\<Gamma>)\<rbrakk> \<Longrightarrow> ?\<Theta> ; ?\<B> ; ?\<Gamma> \<turnstile> [ ?x ]\<^sup>v \<Rightarrow> \<lbrace> ?z : ?b | [ [ ?z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ ?x ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
by metis
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
goal (1 subgoal):
1. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
next
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
case False
[PROOF STATE]
proof (state)
this:
x \<noteq> xa
goal (1 subgoal):
1. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
moreover
[PROOF STATE]
proof (state)
this:
x \<noteq> xa
goal (1 subgoal):
1. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
hence \<open>Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa\<close>
[PROOF STATE]
proof (prove)
using this:
x \<noteq> xa
goal (1 subgoal):
1. Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
[PROOF STEP]
using lookup_inside2 infer_v_varI
[PROOF STATE]
proof (prove)
using this:
x \<noteq> xa
\<lbrakk>Some (?b1.0, ?c1.0) = lookup (?\<Gamma>' @ (?x, ?b0.0, ?c0.0) #\<^sub>\<Gamma> ?\<Gamma>) ?y; ?x \<noteq> ?y\<rbrakk> \<Longrightarrow> Some (?b1.0, ?c1.0) = lookup (?\<Gamma>' @ (?x, ?b0.0, ?c0') #\<^sub>\<Gamma> ?\<Gamma>) ?y
atom z \<sharp> c0
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>) xa
atom z \<sharp> xa
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
[PROOF STEP]
by metis
[PROOF STATE]
proof (state)
this:
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
goal (1 subgoal):
1. x \<noteq> xa \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
ultimately
[PROOF STATE]
proof (chain)
picking this:
x \<noteq> xa
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
[PROOF STEP]
show ?thesis
[PROOF STATE]
proof (prove)
using this:
x \<noteq> xa
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
using wf xf1 xf2 Typing.infer_v_varI
[PROOF STATE]
proof (prove)
using this:
x \<noteq> xa
Some (b, c) = lookup (\<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>) xa
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> xa
atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
\<lbrakk> ?\<Theta> ; ?\<B> \<turnstile>\<^sub>w\<^sub>f ?\<Gamma> ; Some (?b, ?c) = lookup ?\<Gamma> ?x; atom ?z \<sharp> ?x; atom ?z \<sharp> (?\<Theta>, ?\<B>, ?\<Gamma>)\<rbrakk> \<Longrightarrow> ?\<Theta> ; ?\<B> ; ?\<Gamma> \<turnstile> [ ?x ]\<^sup>v \<Rightarrow> \<lbrace> ?z : ?b | [ [ ?z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ ?x ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
goal:
No subgoals!
[PROOF STEP]
qed
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ xa ]\<^sup>v \<Rightarrow> \<lbrace> z : b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ xa ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
goal (4 subgoals):
1. \<And>\<Theta> \<B> l \<tau> c0. \<lbrakk> \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; \<turnstile> l \<Rightarrow> \<tau>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
2. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
3. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
4. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
next
[PROOF STATE]
proof (state)
goal (4 subgoals):
1. \<And>\<Theta> \<B> l \<tau> c0. \<lbrakk> \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; \<turnstile> l \<Rightarrow> \<tau>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
2. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
3. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
4. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
case (infer_v_litI \<Theta> \<B> l \<tau>)
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<turnstile> l \<Rightarrow> \<tau>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (4 subgoals):
1. \<And>\<Theta> \<B> l \<tau> c0. \<lbrakk> \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> ; \<turnstile> l \<Rightarrow> \<tau>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
2. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
3. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
4. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
thus ?case
[PROOF STATE]
proof (prove)
using this:
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<turnstile> l \<Rightarrow> \<tau>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
[PROOF STEP]
using Typing.infer_v_litI wfG_inside_valid2
[PROOF STATE]
proof (prove)
using this:
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<turnstile> l \<Rightarrow> \<tau>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
\<lbrakk> ?\<Theta> ; ?\<B> \<turnstile>\<^sub>w\<^sub>f ?\<Gamma> ; \<turnstile> ?l \<Rightarrow> ?\<tau>\<rbrakk> \<Longrightarrow> ?\<Theta> ; ?\<B> ; ?\<Gamma> \<turnstile> [ ?l ]\<^sup>v \<Rightarrow> ?\<tau>
\<lbrakk> ?\<Theta> ; ?B \<turnstile>\<^sub>w\<^sub>f ?\<Gamma>' @ (?x, ?b0.0, ?c0') #\<^sub>\<Gamma> ?\<Gamma> ; ?\<Theta> ; ?B ; ?\<Gamma>' @ (?x, ?b0.0, ?c0.0) #\<^sub>\<Gamma> ?\<Gamma> \<Turnstile> ?c0' \<rbrakk> \<Longrightarrow> ?\<Theta> ; ?B \<turnstile>\<^sub>w\<^sub>f ?\<Gamma>' @ (?x, ?b0.0, ?c0.0) #\<^sub>\<Gamma> ?\<Gamma>
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ l ]\<^sup>v \<Rightarrow> \<tau>
goal (3 subgoals):
1. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
3. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
next
[PROOF STATE]
proof (state)
goal (3 subgoals):
1. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
3. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
case (infer_v_pairI z v1 v2 \<Theta> \<B> t1' t2' c0)
[PROOF STATE]
proof (state)
this:
atom z \<sharp> c0
atom z \<sharp> v1
atom z \<sharp> v2
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (3 subgoals):
1. \<And>z v1 v2 \<Theta> \<B> t1 t2 c0. \<lbrakk>atom z \<sharp> c0; atom z \<sharp> v1; atom z \<sharp> v2; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1 , b_of t2 ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
3. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
show ?case
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1' , b_of t2' ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
proof
[PROOF STATE]
proof (state)
goal (4 subgoals):
1. atom z \<sharp> (v1, v2)
2. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
3. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
4. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
[PROOF STEP]
show "atom z \<sharp> (v1, v2)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. atom z \<sharp> (v1, v2)
[PROOF STEP]
using infer_v_pairI fresh_Pair
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
atom z \<sharp> v1
atom z \<sharp> v2
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
?a \<sharp> (?x, ?y) = (?a \<sharp> ?x \<and> ?a \<sharp> ?y)
goal (1 subgoal):
1. atom z \<sharp> (v1, v2)
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
atom z \<sharp> (v1, v2)
goal (3 subgoals):
1. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
2. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
3. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
[PROOF STEP]
show "atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
[PROOF STEP]
apply( fresh_mth add: infer_v_pairI )
[PROOF STATE]
proof (prove)
goal (4 subgoals):
1. atom z \<in> supp \<Gamma>' \<Longrightarrow> False
2. atom z \<in> supp x \<Longrightarrow> False
3. atom z \<in> supp c0 \<Longrightarrow> False
4. atom z \<in> supp \<Gamma> \<Longrightarrow> False
[PROOF STEP]
using fresh_def infer_v_pairI wfG_supp fresh_append_g fresh_GCons fresh_prodN
[PROOF STATE]
proof (prove)
using this:
?a \<sharp> ?x \<equiv> ?a \<notin> supp ?x
atom z \<sharp> c0
atom z \<sharp> v1
atom z \<sharp> v2
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
?\<Theta> ; ?\<B> \<turnstile>\<^sub>w\<^sub>f ?\<Gamma> \<Longrightarrow> atom_dom ?\<Gamma> \<subseteq> supp ?\<Gamma>
?a \<sharp> ?xs @ ?ys = (?a \<sharp> ?xs \<and> ?a \<sharp> ?ys)
?a \<sharp> ?x #\<^sub>\<Gamma> ?xs = (?a \<sharp> ?x \<and> ?a \<sharp> ?xs)
?a \<sharp> (?x, ?y) = (?a \<sharp> ?x \<and> ?a \<sharp> ?y)
?x \<sharp> (?a, ?b, ?c) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c)
?x \<sharp> (?a, ?b, ?c, ?d) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d)
?x \<sharp> (?a, ?b, ?c, ?d, ?e) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j, ?k, ?l) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j \<and> ?x \<sharp> ?k \<and> ?x \<sharp> ?l)
goal (4 subgoals):
1. atom z \<in> supp \<Gamma>' \<Longrightarrow> False
2. atom z \<in> supp x \<Longrightarrow> False
3. atom z \<in> supp c0 \<Longrightarrow> False
4. atom z \<in> supp \<Gamma> \<Longrightarrow> False
[PROOF STEP]
by metis+
[PROOF STATE]
proof (state)
this:
atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
goal (2 subgoals):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
2. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
[PROOF STEP]
show "\<Theta>; \<B>; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
[PROOF STEP]
using infer_v_pairI
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
atom z \<sharp> v1
atom z \<sharp> v2
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
[PROOF STEP]
show "\<Theta>; \<B>; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
[PROOF STEP]
using infer_v_pairI
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
atom z \<sharp> v1
atom z \<sharp> v2
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v1 \<Rightarrow> t1'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v2 \<Rightarrow> t2'
goal:
No subgoals!
[PROOF STEP]
qed
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> [ v1 , v2 ]\<^sup>v \<Rightarrow> \<lbrace> z : [ b_of t1' , b_of t2' ]\<^sup>b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ [ v1 , v2 ]\<^sup>v ]\<^sup>c\<^sup>e \<rbrace>
goal (2 subgoals):
1. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
next
[PROOF STATE]
proof (state)
goal (2 subgoals):
1. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
case (infer_v_consI s dclist \<Theta> dc tc \<B> v tv z)
[PROOF STATE]
proof (state)
this:
atom z \<sharp> c0
AF_typedef s dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
atom z \<sharp> v
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (2 subgoals):
1. \<And>s dclist \<Theta> dc tc \<B> v tv z c0. \<lbrakk>atom z \<sharp> c0; AF_typedef s dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc; atom z \<sharp> v; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
2. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
show ?case
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
proof
[PROOF STATE]
proof (state)
goal (6 subgoals):
1. AF_typedef s ?dclist \<in> set \<Theta>
2. (dc, ?tc) \<in> set ?dclist
3. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> ?tv
4. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> ?tv \<lesssim> ?tc
5. atom z \<sharp> v
6. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
[PROOF STEP]
show \<open>AF_typedef s dclist \<in> set \<Theta>\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. AF_typedef s dclist \<in> set \<Theta>
[PROOF STEP]
using infer_v_consI
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
AF_typedef s dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
atom z \<sharp> v
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. AF_typedef s dclist \<in> set \<Theta>
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
AF_typedef s dclist \<in> set \<Theta>
goal (5 subgoals):
1. (dc, ?tc) \<in> set dclist
2. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> ?tv
3. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> ?tv \<lesssim> ?tc
4. atom z \<sharp> v
5. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
[PROOF STEP]
show \<open>(dc, tc) \<in> set dclist\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (dc, tc) \<in> set dclist
[PROOF STEP]
using infer_v_consI
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
AF_typedef s dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
atom z \<sharp> v
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. (dc, tc) \<in> set dclist
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
(dc, tc) \<in> set dclist
goal (4 subgoals):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> ?tv
2. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> ?tv \<lesssim> tc
3. atom z \<sharp> v
4. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
[PROOF STEP]
show \<open> \<Theta>; \<B>; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
[PROOF STEP]
using infer_v_consI
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
AF_typedef s dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
atom z \<sharp> v
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
goal (3 subgoals):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
2. atom z \<sharp> v
3. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
[PROOF STEP]
show \<open>\<Theta>; \<B>; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
[PROOF STEP]
using infer_v_consI ctx_subtype_subtype
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
AF_typedef s dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
atom z \<sharp> v
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
\<lbrakk>?\<Theta> ; ?\<B> ; ?G \<turnstile> ?t1.0 \<lesssim> ?t2.0; ?G = ?\<Gamma>' @ (?x, ?b0.0, ?c0') #\<^sub>\<Gamma> ?\<Gamma>; ?\<Theta> ; ?\<B> ; ?\<Gamma>' @ (?x, ?b0.0, ?c0.0) #\<^sub>\<Gamma> ?\<Gamma> \<Turnstile> ?c0' \<rbrakk> \<Longrightarrow> ?\<Theta> ; ?\<B> ; ?\<Gamma>' @ (?x, ?b0.0, ?c0.0) #\<^sub>\<Gamma> ?\<Gamma> \<turnstile> ?t1.0 \<lesssim> ?t2.0
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
goal (2 subgoals):
1. atom z \<sharp> v
2. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
[PROOF STEP]
show \<open>atom z \<sharp> v\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. atom z \<sharp> v
[PROOF STEP]
using infer_v_consI
[PROOF STATE]
proof (prove)
using this:
atom z \<sharp> c0
AF_typedef s dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
atom z \<sharp> v
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. atom z \<sharp> v
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
atom z \<sharp> v
goal (1 subgoal):
1. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
[PROOF STEP]
show \<open>atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
[PROOF STEP]
apply( fresh_mth add: infer_v_consI )
[PROOF STATE]
proof (prove)
goal (4 subgoals):
1. atom z \<in> supp \<Gamma>' \<Longrightarrow> False
2. atom z \<in> supp x \<Longrightarrow> False
3. atom z \<in> supp c0 \<Longrightarrow> False
4. atom z \<in> supp \<Gamma> \<Longrightarrow> False
[PROOF STEP]
using fresh_def infer_v_consI wfG_supp fresh_append_g fresh_GCons fresh_prodN
[PROOF STATE]
proof (prove)
using this:
?a \<sharp> ?x \<equiv> ?a \<notin> supp ?x
atom z \<sharp> c0
AF_typedef s dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc
atom z \<sharp> v
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
?\<Theta> ; ?\<B> \<turnstile>\<^sub>w\<^sub>f ?\<Gamma> \<Longrightarrow> atom_dom ?\<Gamma> \<subseteq> supp ?\<Gamma>
?a \<sharp> ?xs @ ?ys = (?a \<sharp> ?xs \<and> ?a \<sharp> ?ys)
?a \<sharp> ?x #\<^sub>\<Gamma> ?xs = (?a \<sharp> ?x \<and> ?a \<sharp> ?xs)
?a \<sharp> (?x, ?y) = (?a \<sharp> ?x \<and> ?a \<sharp> ?y)
?x \<sharp> (?a, ?b, ?c) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c)
?x \<sharp> (?a, ?b, ?c, ?d) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d)
?x \<sharp> (?a, ?b, ?c, ?d, ?e) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j, ?k, ?l) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j \<and> ?x \<sharp> ?k \<and> ?x \<sharp> ?l)
goal (4 subgoals):
1. atom z \<in> supp \<Gamma>' \<Longrightarrow> False
2. atom z \<in> supp x \<Longrightarrow> False
3. atom z \<in> supp c0 \<Longrightarrow> False
4. atom z \<in> supp \<Gamma> \<Longrightarrow> False
[PROOF STEP]
by metis+
[PROOF STATE]
proof (state)
this:
atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>)
goal:
No subgoals!
[PROOF STEP]
qed
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_cons s dc v \<Rightarrow> \<lbrace> z : B_id s | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_cons s dc v ]\<^sup>c\<^sup>e \<rbrace>
goal (1 subgoal):
1. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
next
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
case (infer_v_conspI s bv dclist \<Theta> dc tc \<B> v tv b z)
[PROOF STATE]
proof (state)
this:
atom bv \<sharp> c0
atom z \<sharp> c0
AF_typedef_poly s bv dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> v
atom z \<sharp> b
atom bv \<sharp> \<Theta>
atom bv \<sharp> \<B>
atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom bv \<sharp> v
atom bv \<sharp> b
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. \<And>s bv dclist \<Theta> dc tc \<B> v tv b z c0. \<lbrakk>atom bv \<sharp> c0; atom z \<sharp> c0; AF_typedef_poly s bv dclist \<in> set \<Theta>; (dc, tc) \<in> set dclist; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<And>b. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b; atom z \<sharp> \<Theta>; atom z \<sharp> \<B>; atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom z \<sharp> v; atom z \<sharp> b; atom bv \<sharp> \<Theta>; atom bv \<sharp> \<B>; atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>; atom bv \<sharp> v; atom bv \<sharp> b; \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b ; \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<rbrakk> \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
show ?case
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
[PROOF STEP]
proof
[PROOF STATE]
proof (state)
goal (7 subgoals):
1. AF_typedef_poly s ?bv ?dclist \<in> set \<Theta>
2. (dc, ?tc) \<in> set ?dclist
3. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> ?tv
4. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> ?tv \<lesssim> ?tc[?bv::=b]\<^sub>\<tau>\<^sub>b
5. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
6. atom ?bv \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
7. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
[PROOF STEP]
show \<open>AF_typedef_poly s bv dclist \<in> set \<Theta>\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. AF_typedef_poly s bv dclist \<in> set \<Theta>
[PROOF STEP]
using infer_v_conspI
[PROOF STATE]
proof (prove)
using this:
atom bv \<sharp> c0
atom z \<sharp> c0
AF_typedef_poly s bv dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> v
atom z \<sharp> b
atom bv \<sharp> \<Theta>
atom bv \<sharp> \<B>
atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom bv \<sharp> v
atom bv \<sharp> b
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. AF_typedef_poly s bv dclist \<in> set \<Theta>
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
AF_typedef_poly s bv dclist \<in> set \<Theta>
goal (6 subgoals):
1. (dc, ?tc) \<in> set dclist
2. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> ?tv
3. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> ?tv \<lesssim> ?tc[bv::=b]\<^sub>\<tau>\<^sub>b
4. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
5. atom bv \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
6. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
[PROOF STEP]
show \<open>(dc, tc) \<in> set dclist\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (dc, tc) \<in> set dclist
[PROOF STEP]
using infer_v_conspI
[PROOF STATE]
proof (prove)
using this:
atom bv \<sharp> c0
atom z \<sharp> c0
AF_typedef_poly s bv dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> v
atom z \<sharp> b
atom bv \<sharp> \<Theta>
atom bv \<sharp> \<B>
atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom bv \<sharp> v
atom bv \<sharp> b
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. (dc, tc) \<in> set dclist
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
(dc, tc) \<in> set dclist
goal (5 subgoals):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> ?tv
2. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> ?tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
3. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
4. atom bv \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
5. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
[PROOF STEP]
show \<open> \<Theta>; \<B>; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
[PROOF STEP]
using infer_v_conspI
[PROOF STATE]
proof (prove)
using this:
atom bv \<sharp> c0
atom z \<sharp> c0
AF_typedef_poly s bv dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> v
atom z \<sharp> b
atom bv \<sharp> \<Theta>
atom bv \<sharp> \<B>
atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom bv \<sharp> v
atom bv \<sharp> b
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
goal (4 subgoals):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
2. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
3. atom bv \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
4. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
[PROOF STEP]
show \<open>\<Theta>; \<B>; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
[PROOF STEP]
using infer_v_conspI ctx_subtype_subtype
[PROOF STATE]
proof (prove)
using this:
atom bv \<sharp> c0
atom z \<sharp> c0
AF_typedef_poly s bv dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> v
atom z \<sharp> b
atom bv \<sharp> \<Theta>
atom bv \<sharp> \<B>
atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom bv \<sharp> v
atom bv \<sharp> b
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
\<lbrakk>?\<Theta> ; ?\<B> ; ?G \<turnstile> ?t1.0 \<lesssim> ?t2.0; ?G = ?\<Gamma>' @ (?x, ?b0.0, ?c0') #\<^sub>\<Gamma> ?\<Gamma>; ?\<Theta> ; ?\<B> ; ?\<Gamma>' @ (?x, ?b0.0, ?c0.0) #\<^sub>\<Gamma> ?\<Gamma> \<Turnstile> ?c0' \<rbrakk> \<Longrightarrow> ?\<Theta> ; ?\<B> ; ?\<Gamma>' @ (?x, ?b0.0, ?c0.0) #\<^sub>\<Gamma> ?\<Gamma> \<turnstile> ?t1.0 \<lesssim> ?t2.0
goal (1 subgoal):
1. \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
goal (3 subgoals):
1. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
2. atom bv \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
3. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
[PROOF STEP]
show \<open>atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
[PROOF STEP]
apply( fresh_mth add: infer_v_conspI )
[PROOF STATE]
proof (prove)
goal (4 subgoals):
1. atom z \<in> supp \<Gamma>' \<Longrightarrow> False
2. atom z \<in> supp x \<Longrightarrow> False
3. atom z \<in> supp c0 \<Longrightarrow> False
4. atom z \<in> supp \<Gamma> \<Longrightarrow> False
[PROOF STEP]
using fresh_def infer_v_conspI wfG_supp fresh_append_g fresh_GCons fresh_prodN
[PROOF STATE]
proof (prove)
using this:
?a \<sharp> ?x \<equiv> ?a \<notin> supp ?x
atom bv \<sharp> c0
atom z \<sharp> c0
AF_typedef_poly s bv dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> v
atom z \<sharp> b
atom bv \<sharp> \<Theta>
atom bv \<sharp> \<B>
atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom bv \<sharp> v
atom bv \<sharp> b
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
?\<Theta> ; ?\<B> \<turnstile>\<^sub>w\<^sub>f ?\<Gamma> \<Longrightarrow> atom_dom ?\<Gamma> \<subseteq> supp ?\<Gamma>
?a \<sharp> ?xs @ ?ys = (?a \<sharp> ?xs \<and> ?a \<sharp> ?ys)
?a \<sharp> ?x #\<^sub>\<Gamma> ?xs = (?a \<sharp> ?x \<and> ?a \<sharp> ?xs)
?a \<sharp> (?x, ?y) = (?a \<sharp> ?x \<and> ?a \<sharp> ?y)
?x \<sharp> (?a, ?b, ?c) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c)
?x \<sharp> (?a, ?b, ?c, ?d) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d)
?x \<sharp> (?a, ?b, ?c, ?d, ?e) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j, ?k, ?l) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j \<and> ?x \<sharp> ?k \<and> ?x \<sharp> ?l)
goal (4 subgoals):
1. atom z \<in> supp \<Gamma>' \<Longrightarrow> False
2. atom z \<in> supp x \<Longrightarrow> False
3. atom z \<in> supp c0 \<Longrightarrow> False
4. atom z \<in> supp \<Gamma> \<Longrightarrow> False
[PROOF STEP]
by metis+
[PROOF STATE]
proof (state)
this:
atom z \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
goal (2 subgoals):
1. atom bv \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
2. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
[PROOF STEP]
show \<open>atom bv \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)\<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. atom bv \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
[PROOF STEP]
apply( fresh_mth add: infer_v_conspI )
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. atom bv \<sharp> \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>
[PROOF STEP]
using fresh_def infer_v_conspI wfG_supp fresh_append_g fresh_GCons fresh_prodN
[PROOF STATE]
proof (prove)
using this:
?a \<sharp> ?x \<equiv> ?a \<notin> supp ?x
atom bv \<sharp> c0
atom z \<sharp> c0
AF_typedef_poly s bv dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> v
atom z \<sharp> b
atom bv \<sharp> \<Theta>
atom bv \<sharp> \<B>
atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom bv \<sharp> v
atom bv \<sharp> b
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
?\<Theta> ; ?\<B> \<turnstile>\<^sub>w\<^sub>f ?\<Gamma> \<Longrightarrow> atom_dom ?\<Gamma> \<subseteq> supp ?\<Gamma>
?a \<sharp> ?xs @ ?ys = (?a \<sharp> ?xs \<and> ?a \<sharp> ?ys)
?a \<sharp> ?x #\<^sub>\<Gamma> ?xs = (?a \<sharp> ?x \<and> ?a \<sharp> ?xs)
?a \<sharp> (?x, ?y) = (?a \<sharp> ?x \<and> ?a \<sharp> ?y)
?x \<sharp> (?a, ?b, ?c) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c)
?x \<sharp> (?a, ?b, ?c, ?d) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d)
?x \<sharp> (?a, ?b, ?c, ?d, ?e) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j)
?x \<sharp> (?a, ?b, ?c, ?d, ?e, ?f, ?g, ?h, ?i, ?j, ?k, ?l) = (?x \<sharp> ?a \<and> ?x \<sharp> ?b \<and> ?x \<sharp> ?c \<and> ?x \<sharp> ?d \<and> ?x \<sharp> ?e \<and> ?x \<sharp> ?f \<and> ?x \<sharp> ?g \<and> ?x \<sharp> ?h \<and> ?x \<sharp> ?i \<and> ?x \<sharp> ?j \<and> ?x \<sharp> ?k \<and> ?x \<sharp> ?l)
goal (1 subgoal):
1. atom bv \<sharp> \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>
[PROOF STEP]
by metis+
[PROOF STATE]
proof (state)
this:
atom bv \<sharp> (\<Theta>, \<B>, \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma>, v, b)
goal (1 subgoal):
1. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
[PROOF STEP]
show \<open> \<Theta>; \<B> \<turnstile>\<^sub>w\<^sub>f b \<close>
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
[PROOF STEP]
using infer_v_conspI
[PROOF STATE]
proof (prove)
using this:
atom bv \<sharp> c0
atom z \<sharp> c0
AF_typedef_poly s bv dclist \<in> set \<Theta>
(dc, tc) \<in> set dclist
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0' \<Longrightarrow> \<Theta> ; \<B> ; \<Gamma>' @ (x, b0, ?b) #\<^sub>\<Gamma> \<Gamma> \<turnstile> v \<Rightarrow> tv
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma> \<turnstile> tv \<lesssim> tc[bv::=b]\<^sub>\<tau>\<^sub>b
atom z \<sharp> \<Theta>
atom z \<sharp> \<B>
atom z \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom z \<sharp> v
atom z \<sharp> b
atom bv \<sharp> \<Theta>
atom bv \<sharp> \<B>
atom bv \<sharp> \<Gamma>' @ (x, b0, c0') #\<^sub>\<Gamma> \<Gamma>
atom bv \<sharp> v
atom bv \<sharp> b
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<Turnstile> c0'
goal (1 subgoal):
1. \<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> \<turnstile>\<^sub>w\<^sub>f b
goal:
No subgoals!
[PROOF STEP]
qed
[PROOF STATE]
proof (state)
this:
\<Theta> ; \<B> ; \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> \<turnstile> V_consp s dc b v \<Rightarrow> \<lbrace> z : B_app s b | [ [ z ]\<^sup>v ]\<^sup>c\<^sup>e == [ V_consp s dc b v ]\<^sup>c\<^sup>e \<rbrace>
goal:
No subgoals!
[PROOF STEP]
qed |
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
! This file was ported from Lean 3 source module analysis.convex.strict
! leanprover-community/mathlib commit 84dc0bd6619acaea625086d6f53cb35cdd554219
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Analysis.Convex.Basic
import Mathlib.Topology.Algebra.Order.Group
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open Set
open Convex Pointwise
variable {𝕜 𝕝 E F β : Type _}
open Function Set
open Convex
section OrderedSemiring
variable [OrderedSemiring 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommMonoid
variable [AddCommMonoid E] [AddCommMonoid F]
section SMul
variable (𝕜)
variable [SMul 𝕜 E] [SMul 𝕜 F] (s : Set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def StrictConvex : Prop :=
s.Pairwise fun x y => ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ interior s
#align strict_convex StrictConvex
variable {𝕜 s}
variable {x y : E} {a b : 𝕜}
theorem strictConvex_iff_openSegment_subset :
StrictConvex 𝕜 s ↔ s.Pairwise fun x y => openSegment 𝕜 x y ⊆ interior s :=
forall₅_congr fun _ _ _ _ _ => (openSegment_subset_iff 𝕜).symm
#align strict_convex_iff_open_segment_subset strictConvex_iff_openSegment_subset
theorem StrictConvex.openSegment_subset (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(h : x ≠ y) : openSegment 𝕜 x y ⊆ interior s :=
strictConvex_iff_openSegment_subset.1 hs hx hy h
#align strict_convex.open_segment_subset StrictConvex.openSegment_subset
theorem strictConvex_empty : StrictConvex 𝕜 (∅ : Set E) :=
pairwise_empty _
#align strict_convex_empty strictConvex_empty
theorem strictConvex_univ : StrictConvex 𝕜 (univ : Set E) := by
intro x _ y _ _ a b _ _ _
rw [interior_univ]
exact mem_univ _
#align strict_convex_univ strictConvex_univ
protected nonrec theorem StrictConvex.eq (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s)
(ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (h : a • x + b • y ∉ interior s) : x = y :=
hs.eq hx hy fun H => h <| H ha hb hab
#align strict_convex.eq StrictConvex.eq
protected theorem StrictConvex.inter {t : Set E} (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) :
StrictConvex 𝕜 (s ∩ t) := by
intro x hx y hy hxy a b ha hb hab
rw [interior_inter]
exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩
#align strict_convex.inter StrictConvex.inter
theorem Directed.strictConvex_unionᵢ {ι : Sort _} {s : ι → Set E} (hdir : Directed (· ⊆ ·) s)
(hs : ∀ ⦃i : ι⦄, StrictConvex 𝕜 (s i)) : StrictConvex 𝕜 (⋃ i, s i) := by
rintro x hx y hy hxy a b ha hb hab
rw [mem_unionᵢ] at hx hy
obtain ⟨i, hx⟩ := hx
obtain ⟨j, hy⟩ := hy
obtain ⟨k, hik, hjk⟩ := hdir i j
exact interior_mono (subset_unionᵢ s k) (hs (hik hx) (hjk hy) hxy ha hb hab)
#align directed.strict_convex_Union Directed.strictConvex_unionᵢ
theorem DirectedOn.strictConvex_unionₛ {S : Set (Set E)} (hdir : DirectedOn (· ⊆ ·) S)
(hS : ∀ s ∈ S, StrictConvex 𝕜 s) : StrictConvex 𝕜 (⋃₀ S) := by
rw [unionₛ_eq_unionᵢ]
exact (directedOn_iff_directed.1 hdir).strictConvex_unionᵢ fun s => hS _ s.2
#align directed_on.strict_convex_sUnion DirectedOn.strictConvex_unionₛ
end SMul
section Module
variable [Module 𝕜 E] [Module 𝕜 F] {s : Set E}
protected theorem StrictConvex.convex (hs : StrictConvex 𝕜 s) : Convex 𝕜 s :=
convex_iff_pairwise_pos.2 fun _ hx _ hy hxy _ _ ha hb hab =>
interior_subset <| hs hx hy hxy ha hb hab
#align strict_convex.convex StrictConvex.convex
/-- An open convex set is strictly convex. -/
protected theorem Convex.strictConvex_of_open (h : IsOpen s) (hs : Convex 𝕜 s) : StrictConvex 𝕜 s :=
fun _ hx _ hy _ _ _ ha hb hab => h.interior_eq.symm ▸ hs hx hy ha.le hb.le hab
#align convex.strict_convex_of_open Convex.strictConvex_of_open
theorem IsOpen.strictConvex_iff (h : IsOpen s) : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, Convex.strictConvex_of_open h⟩
#align is_open.strict_convex_iff IsOpen.strictConvex_iff
theorem strictConvex_singleton (c : E) : StrictConvex 𝕜 ({c} : Set E) :=
pairwise_singleton _ _
#align strict_convex_singleton strictConvex_singleton
theorem Set.Subsingleton.strictConvex (hs : s.Subsingleton) : StrictConvex 𝕜 s :=
hs.pairwise _
#align set.subsingleton.strict_convex Set.Subsingleton.strictConvex
theorem StrictConvex.linear_image [Semiring 𝕝] [Module 𝕝 E] [Module 𝕝 F]
[LinearMap.CompatibleSMul E F 𝕜 𝕝] (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕝] F) (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
#align strict_convex.linear_image StrictConvex.linear_image
theorem StrictConvex.is_linear_image (hs : StrictConvex 𝕜 s) {f : E → F} (h : IsLinearMap 𝕜 f)
(hf : IsOpenMap f) : StrictConvex 𝕜 (f '' s) :=
hs.linear_image (h.mk' f) hf
#align strict_convex.is_linear_image StrictConvex.is_linear_image
theorem StrictConvex.linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) (f : E →ₗ[𝕜] F)
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (s.preimage f) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.linear_preimage StrictConvex.linear_preimage
theorem StrictConvex.is_linear_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E → F}
(h : IsLinearMap 𝕜 f) (hf : Continuous f) (hfinj : Injective f) :
StrictConvex 𝕜 (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
#align strict_convex.is_linear_preimage StrictConvex.is_linear_preimage
section LinearOrderedCancelAddCommMonoid
variable [TopologicalSpace β] [LinearOrderedCancelAddCommMonoid β] [OrderTopology β] [Module 𝕜 β]
[OrderedSMul 𝕜 β]
protected theorem Set.OrdConnected.strictConvex {s : Set β} (hs : OrdConnected s) :
StrictConvex 𝕜 s := by
refine' strictConvex_iff_openSegment_subset.2 fun x hx y hy hxy => _
cases' hxy.lt_or_lt with hlt hlt <;> [skip, rw [openSegment_symm]] <;>
exact
(openSegment_subset_Ioo hlt).trans
(isOpen_Ioo.subset_interior_iff.2 <| Ioo_subset_Icc_self.trans <| hs.out ‹_› ‹_›)
#align set.ord_connected.strict_convex Set.OrdConnected.strictConvex
theorem strictConvex_Iic (r : β) : StrictConvex 𝕜 (Iic r) :=
ordConnected_Iic.strictConvex
#align strict_convex_Iic strictConvex_Iic
theorem strictConvex_Ici (r : β) : StrictConvex 𝕜 (Ici r) :=
ordConnected_Ici.strictConvex
#align strict_convex_Ici strictConvex_Ici
theorem strictConvex_Iio (r : β) : StrictConvex 𝕜 (Iio r) :=
ordConnected_Iio.strictConvex
#align strict_convex_Iio strictConvex_Iio
theorem strictConvex_Ioi (r : β) : StrictConvex 𝕜 (Ioi r) :=
ordConnected_Ioi.strictConvex
#align strict_convex_Ioi strictConvex_Ioi
theorem strictConvex_Icc (r s : β) : StrictConvex 𝕜 (Icc r s) :=
ordConnected_Icc.strictConvex
#align strict_convex_Icc strictConvex_Icc
theorem strictConvex_Ioo (r s : β) : StrictConvex 𝕜 (Ioo r s) :=
ordConnected_Ioo.strictConvex
#align strict_convex_Ioo strictConvex_Ioo
theorem strictConvex_Ico (r s : β) : StrictConvex 𝕜 (Ico r s) :=
ordConnected_Ico.strictConvex
#align strict_convex_Ico strictConvex_Ico
theorem strictConvex_Ioc (r s : β) : StrictConvex 𝕜 (Ioc r s) :=
ordConnected_Ioc.strictConvex
#align strict_convex_Ioc strictConvex_Ioc
theorem strictConvex_uIcc (r s : β) : StrictConvex 𝕜 (uIcc r s) :=
strictConvex_Icc _ _
#align strict_convex_uIcc strictConvex_uIcc
theorem strictConvex_uIoc (r s : β) : StrictConvex 𝕜 (uIoc r s) :=
strictConvex_Ioc _ _
#align strict_convex_uIoc strictConvex_uIoc
end LinearOrderedCancelAddCommMonoid
end Module
end AddCommMonoid
section AddCancelCommMonoid
variable [AddCancelCommMonoid E] [ContinuousAdd E] [Module 𝕜 E] {s : Set E}
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage (continuous_add_left _) _
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab
rwa [smul_add, smul_add, add_add_add_comm, ← _root_.add_smul, hab, one_smul] at h
#align strict_convex.preimage_add_right StrictConvex.preimage_add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.preimage_add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) ⁻¹' s) := by
simpa only [add_comm] using hs.preimage_add_right z
#align strict_convex.preimage_add_left StrictConvex.preimage_add_left
end AddCancelCommMonoid
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
section continuous_add
variable [ContinuousAdd E] {s t : Set E}
theorem StrictConvex.add (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s + t) :=
by
rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab
rw [smul_add, smul_add, add_add_add_comm]
obtain rfl | hvx := eq_or_ne v x
· refine' interior_mono (add_subset_add (singleton_subset_iff.2 hv) Subset.rfl) _
rw [Convex.combo_self hab, singleton_add]
exact
(isOpenMap_add_left _).image_interior_subset _
(mem_image_of_mem _ <| ht hw hy (ne_of_apply_ne _ h) ha hb hab)
exact
subset_interior_add_left
(add_mem_add (hs hv hx hvx ha hb hab) <| ht.convex hw hy ha.le hb.le hab)
#align strict_convex.add StrictConvex.add
theorem StrictConvex.add_left (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => z + x) '' s) := by
simpa only [singleton_add] using (strictConvex_singleton z).add hs
#align strict_convex.add_left StrictConvex.add_left
theorem StrictConvex.add_right (hs : StrictConvex 𝕜 s) (z : E) :
StrictConvex 𝕜 ((fun x => x + z) '' s) := by simpa only [add_comm] using hs.add_left z
#align strict_convex.add_right StrictConvex.add_right
/-- The translation of a strictly convex set is also strictly convex. -/
theorem StrictConvex.vadd (hs : StrictConvex 𝕜 s) (x : E) : StrictConvex 𝕜 (x +ᵥ s) :=
hs.add_left x
#align strict_convex.vadd StrictConvex.vadd
end continuous_add
section ContinuousSmul
variable [LinearOrderedField 𝕝] [Module 𝕝 E] [ContinuousConstSMul 𝕝 E]
[LinearMap.CompatibleSMul E E 𝕜 𝕝] {s : Set E} {x : E}
theorem StrictConvex.smul (hs : StrictConvex 𝕜 s) (c : 𝕝) : StrictConvex 𝕜 (c • s) := by
obtain rfl | hc := eq_or_ne c 0
· exact (subsingleton_zero_smul_set _).strictConvex
· exact hs.linear_image (LinearMap.lsmul _ _ c) (isOpenMap_smul₀ hc)
#align strict_convex.smul StrictConvex.smul
theorem StrictConvex.affinity [ContinuousAdd E] (hs : StrictConvex 𝕜 s) (z : E) (c : 𝕝) :
StrictConvex 𝕜 (z +ᵥ c • s) :=
(hs.smul c).vadd z
#align strict_convex.affinity StrictConvex.affinity
end ContinuousSmul
end AddCommGroup
end OrderedSemiring
section OrderedCommSemiring
variable [OrderedCommSemiring 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [Module 𝕜 E] [NoZeroSMulDivisors 𝕜 E] [ContinuousConstSMul 𝕜 E]
{s : Set E}
theorem StrictConvex.preimage_smul (hs : StrictConvex 𝕜 s) (c : 𝕜) :
StrictConvex 𝕜 ((fun z => c • z) ⁻¹' s) := by
classical
obtain rfl | hc := eq_or_ne c 0
· simp_rw [zero_smul, preimage_const]
split_ifs
· exact strictConvex_univ
· exact strictConvex_empty
refine' hs.linear_preimage (LinearMap.lsmul _ _ c) _ (smul_right_injective E hc)
unfold LinearMap.lsmul LinearMap.mk₂ LinearMap.mk₂' LinearMap.mk₂'ₛₗ
exact continuous_const_smul _
#align strict_convex.preimage_smul StrictConvex.preimage_smul
end AddCommGroup
end OrderedCommSemiring
section OrderedRing
variable [OrderedRing 𝕜] [TopologicalSpace E] [TopologicalSpace F]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s t : Set E} {x y : E}
theorem StrictConvex.eq_of_openSegment_subset_frontier [Nontrivial 𝕜] [DenselyOrdered 𝕜]
(hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (h : openSegment 𝕜 x y ⊆ frontier s) :
x = y := by
obtain ⟨a, ha₀, ha₁⟩ := DenselyOrdered.dense (0 : 𝕜) 1 zero_lt_one
classical
by_contra hxy
exact
(h ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
(hs hx hy hxy ha₀ (sub_pos_of_lt ha₁) <| add_sub_cancel'_right _ _)
#align strict_convex.eq_of_open_segment_subset_frontier StrictConvex.eq_of_openSegment_subset_frontier
theorem StrictConvex.add_smul_mem (hs : StrictConvex 𝕜 s) (hx : x ∈ s) (hxy : x + y ∈ s)
(hy : y ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • y ∈ interior s := by
have h : x + t • y = (1 - t) • x + t • (x + y) := by
rw [smul_add, ← add_assoc, ← _root_.add_smul, sub_add_cancel, one_smul]
rw [h]
refine' hs hx hxy (fun h => hy <| add_left_cancel _) (sub_pos_of_lt ht₁) ht₀ (sub_add_cancel _ _)
rw [← h, add_zero]
#align strict_convex.add_smul_mem StrictConvex.add_smul_mem
theorem StrictConvex.smul_mem_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : t • x ∈ interior s := by
simpa using hs.add_smul_mem zero_mem (by simpa using hx) hx₀ ht₀ ht₁
#align strict_convex.smul_mem_of_zero_mem StrictConvex.smul_mem_of_zero_mem
theorem StrictConvex.add_smul_sub_mem (h : StrictConvex 𝕜 s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y)
{t : 𝕜} (ht₀ : 0 < t) (ht₁ : t < 1) : x + t • (y - x) ∈ interior s := by
apply h.openSegment_subset hx hy hxy
rw [openSegment_eq_image']
exact mem_image_of_mem _ ⟨ht₀, ht₁⟩
#align strict_convex.add_smul_sub_mem StrictConvex.add_smul_sub_mem
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_preimage {s : Set F} (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F}
(hf : Continuous f) (hfinj : Injective f) : StrictConvex 𝕜 (f ⁻¹' s) := by
intro x hx y hy hxy a b ha hb hab
refine' preimage_interior_subset_interior_preimage hf _
rw [mem_preimage, Convex.combo_affine_apply hab]
exact hs hx hy (hfinj.ne hxy) ha hb hab
#align strict_convex.affine_preimage StrictConvex.affine_preimage
/-- The image of a strictly convex set under an affine map is strictly convex. -/
theorem StrictConvex.affine_image (hs : StrictConvex 𝕜 s) {f : E →ᵃ[𝕜] F} (hf : IsOpenMap f) :
StrictConvex 𝕜 (f '' s) := by
rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab
exact
hf.image_interior_subset _
⟨a • x + b • y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, Convex.combo_affine_apply hab⟩⟩
#align strict_convex.affine_image StrictConvex.affine_image
variable [TopologicalAddGroup E]
theorem StrictConvex.neg (hs : StrictConvex 𝕜 s) : StrictConvex 𝕜 (-s) :=
hs.is_linear_preimage IsLinearMap.isLinearMap_neg continuous_id.neg neg_injective
#align strict_convex.neg StrictConvex.neg
theorem StrictConvex.sub (hs : StrictConvex 𝕜 s) (ht : StrictConvex 𝕜 t) : StrictConvex 𝕜 (s - t) :=
(sub_eq_add_neg s t).symm ▸ hs.add ht.neg
#align strict_convex.sub StrictConvex.sub
end AddCommGroup
end OrderedRing
section LinearOrderedField
variable [LinearOrderedField 𝕜] [TopologicalSpace E]
section AddCommGroup
variable [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F] {s : Set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
theorem strictConvex_iff_div :
StrictConvex 𝕜 s ↔
s.Pairwise fun x y =>
∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → (a / (a + b)) • x + (b / (a + b)) • y ∈ interior s :=
⟨fun h x hx y hy hxy a b ha hb => by
apply h hx hy hxy (div_pos ha <| add_pos ha hb) (div_pos hb <| add_pos ha hb)
rw [← add_div]
exact div_self (add_pos ha hb).ne', fun h x hx y hy hxy a b ha hb hab => by
convert h hx hy hxy ha hb <;> rw [hab, div_one]⟩
#align strict_convex_iff_div strictConvex_iff_div
theorem StrictConvex.mem_smul_of_zero_mem (hs : StrictConvex 𝕜 s) (zero_mem : (0 : E) ∈ s)
(hx : x ∈ s) (hx₀ : x ≠ 0) {t : 𝕜} (ht : 1 < t) : x ∈ t • interior s := by
rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans ht).ne']
exact hs.smul_mem_of_zero_mem zero_mem hx hx₀ (inv_pos.2 <| zero_lt_one.trans ht) (inv_lt_one ht)
#align strict_convex.mem_smul_of_zero_mem StrictConvex.mem_smul_of_zero_mem
end AddCommGroup
end LinearOrderedField
/-!
#### Convex sets in an ordered space
Relates `Convex` and `Set.OrdConnected`.
-/
section
variable [LinearOrderedField 𝕜] [TopologicalSpace 𝕜] [OrderTopology 𝕜] {s : Set 𝕜}
/-- A set in a linear ordered field is strictly convex if and only if it is convex. -/
@[simp]
theorem strictConvex_iff_convex : StrictConvex 𝕜 s ↔ Convex 𝕜 s :=
⟨StrictConvex.convex, fun hs => hs.ordConnected.strictConvex⟩
#align strict_convex_iff_convex strictConvex_iff_convex
theorem strictConvex_iff_ordConnected : StrictConvex 𝕜 s ↔ s.OrdConnected :=
strictConvex_iff_convex.trans convex_iff_ordConnected
#align strict_convex_iff_ord_connected strictConvex_iff_ordConnected
alias strictConvex_iff_ordConnected ↔ StrictConvex.ordConnected _
#align strict_convex.ord_connected StrictConvex.ordConnected
end
|
## Author: Sergio García Prado
## Title: Statistical Inference - Goodness of Fit - Exercise 14
rm(list = ls())
observed <- c(9, 11, 4, 6)
(k <- length(observed))
# 4
(n <- sum(observed))
# 30
## test F(x) is poisson(lambda)
LogLikelihood <- function(lambda, y, k) {
(sum(y[1:(k - 1)] * dpois(0:(k - 2), lambda = lambda, log = TRUE)) +
y[k] * ppois(k - 2, lambda = lambda, lower.tail = FALSE, log = TRUE))
}
NegativeLogLikelihood <- function(...) {
- LogLikelihood(...)
}
opt <- optim(1, NegativeLogLikelihood, y = observed, k = k,
lower = 10e-4, method = 'L-BFGS-B')
(lambda.hat <- opt$par)
# 1.31334181246836
(expected1 <- n * c(dpois(0:(k-2), lambda = lambda.hat), 1 - ppois(k - 2, lambda = lambda.hat)))
# 8.06759619945891 10.5955114148602 6.9577640828109 4.37912830286995
(Q1 <- sum((observed - expected1) ^ 2 / expected1))
# 1.98049899014501
1 - pchisq(Q1, df = (k - 1) - 1)
# 0.371483996032531
## test F(x) is poisson(1.2)
(expected2 <- n * c(dpois(0:(k-2), lambda = 1.2), 1 - ppois(k - 2, lambda = 1.2)))
# 9.03582635736606 10.8429916288393 6.50579497730357 3.61538703649109
(Q2 <- sum((observed - expected2) ^ 2 / expected2))
# 2.54038357961436
1 - pchisq(Q2, df = (k - 1))
# 0.468037053437737
## power:
(null <- n * c(dpois(0:(k-2), lambda = 1.2), 1 - ppois(k - 2, lambda = 1.2)))
# 9.03582635736606 10.8429916288393 6.50579497730357 3.61538703649109
(alternative <- n * c(dnbinom(0:(k-2),size = 2, prob = 2 / 3), 1 - pnbinom(k - 2,size = 2, prob = 2 / 3)))
# 13.3333333333333 8.88888888888889 4.44444444444445 3.33333333333333
(Q <- sum((alternative - null) ^ 2 / alternative))
# 2.79465432822941
(power <- 1 - pchisq(qchisq(0.95, df = k - 1), df = k - 1, Q))
# 0.257468163480735
## sample size power >= 0.8
fn <- function(n) {
null <- n * c(dpois(0:(k-2), lambda = 1.2), 1 - ppois(k - 2, lambda = 1.2))
alternative <- n * c(dnbinom(0:(k-2),size = 2, prob = 2 / 3), 1 - pnbinom(k - 2,size = 2, prob = 2 / 3))
Q <- sum((alternative - null) ^ 2 / alternative)
power <- 1 - pchisq(qchisq(0.95, df = k - 1), df = k - 1, Q)
}
(n.exact <- uniroot(function(n) {fn(n) - 0.8}, c(1, 500))$root)
# 117.036620884611
ceiling(n.exact)
# 118
|
module PrintNat where
import PreludeShow
open PreludeShow
mainS = showNat 42
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.