text
stringlengths 0
3.34M
|
---|
(* Title: Examples/SML_Relativization/Algebra/SML_Groups.thy
Author: Mihails Milehins
Copyright 2021 (C) Mihails Milehins
*)
section\<open>Relativization of the results about groups\<close>
theory SML_Groups
imports SML_Monoids
begin
subsection\<open>Simple groups\<close>
subsubsection\<open>Definitions and common properties\<close>
locale group_ow = semigroup_ow U f for U :: "'ag set" and f +
fixes z (\<open>\<^bold>1\<^sub>o\<^sub>w\<close>)
and inverse :: "'ag \<Rightarrow> 'ag"
assumes z_closed[simp]: "\<^bold>1\<^sub>o\<^sub>w \<in> U"
and inverse_closed[simp]: "a \<in> U \<Longrightarrow> inverse a \<in> U"
and group_left_neutral: "a \<in> U \<Longrightarrow> \<^bold>1\<^sub>o\<^sub>w \<^bold>*\<^sub>o\<^sub>w a = a"
and left_inverse[simp]: "a \<in> U \<Longrightarrow> inverse a \<^bold>*\<^sub>o\<^sub>w a = \<^bold>1\<^sub>o\<^sub>w"
begin
notation z (\<open>\<^bold>1\<^sub>o\<^sub>w\<close>)
lemma inverse_closed': "inverse ` U \<subseteq> U" by auto
lemma inverse_closed'': "\<forall>x\<in>U. inverse x \<in> U" by auto
lemma left_cancel:
assumes "a \<in> U" and "b \<in> U" and "c \<in> U"
shows "a \<^bold>*\<^sub>o\<^sub>w b = a \<^bold>*\<^sub>o\<^sub>w c \<longleftrightarrow> b = c"
proof
assume "a \<^bold>*\<^sub>o\<^sub>w b = a \<^bold>*\<^sub>o\<^sub>w c"
then have "inverse a \<^bold>*\<^sub>o\<^sub>w (a \<^bold>*\<^sub>o\<^sub>w b) = inverse a \<^bold>*\<^sub>o\<^sub>w (a \<^bold>*\<^sub>o\<^sub>w c)" by simp
with assms have "(inverse a \<^bold>*\<^sub>o\<^sub>w a) \<^bold>*\<^sub>o\<^sub>w b = (inverse a \<^bold>*\<^sub>o\<^sub>w a) \<^bold>*\<^sub>o\<^sub>w c"
by (metis assoc inverse_closed)
with assms show "b = c"
using group_ow_axioms by (fastforce simp: group_ow.group_left_neutral)
qed simp
sublocale monoid_ow U \<open>(\<^bold>*\<^sub>o\<^sub>w)\<close> \<open>\<^bold>1\<^sub>o\<^sub>w\<close>
proof
show "a \<in> U \<Longrightarrow> a \<^bold>*\<^sub>o\<^sub>w \<^bold>1\<^sub>o\<^sub>w = a" for a
proof-
assume "a \<in> U"
with left_inverse[OF this] have "inverse a \<^bold>*\<^sub>o\<^sub>w (a \<^bold>*\<^sub>o\<^sub>w \<^bold>1\<^sub>o\<^sub>w) = inverse a \<^bold>*\<^sub>o\<^sub>w a"
by (metis assoc group_left_neutral inverse_closed z_closed)
with \<open>a \<in> U\<close> z_closed show "a \<^bold>*\<^sub>o\<^sub>w \<^bold>1\<^sub>o\<^sub>w = a"
by (meson left_cancel f_closed inverse_closed)
qed
qed (simp add: group_left_neutral)+
lemma inverse_image[simp]: "inverse ` U \<subseteq> U" by (simp add: image_subsetI)
end
lemma group_ow: "group = group_ow UNIV"
unfolding
group_def group_ow_def group_axioms_def group_ow_axioms_def semigroup_ow
by simp
locale uminus_ow =
fixes U :: "'ag set" and uminus :: "'ag \<Rightarrow> 'ag" (\<open>-\<^sub>o\<^sub>w _\<close> [81] 80)
assumes uminus_closed: "a \<in> U \<Longrightarrow> -\<^sub>o\<^sub>w a \<in> U"
begin
notation uminus (\<open>-\<^sub>o\<^sub>w _\<close> [81] 80)
lemma uminus_closed': "uminus ` U \<subseteq> U" by (auto simp: uminus_closed)
lemma uminus_closed'': "\<forall>a\<in>U. -\<^sub>o\<^sub>w a \<in> U" by (simp add: uminus_closed)
tts_register_sbts uminus | U by (rule tts_AB_transfer[OF uminus_closed'])
end
locale group_add_ow =
minus_ow U minus + uminus_ow U uminus + monoid_add_ow U plus zero
for U :: "'ag set" and minus plus zero uminus +
assumes left_inverse: "a \<in> U \<Longrightarrow> (-\<^sub>o\<^sub>w a) +\<^sub>o\<^sub>w a = 0\<^sub>o\<^sub>w"
and add_inv_conv_diff: "\<lbrakk> a \<in> U; b \<in> U \<rbrakk> \<Longrightarrow> a +\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w b) = a -\<^sub>o\<^sub>w b"
begin
sublocale add: group_ow U \<open>(+\<^sub>o\<^sub>w)\<close> \<open>0\<^sub>o\<^sub>w\<close> uminus
by unfold_locales (auto simp: uminus_closed left_inverse)
lemma inverse_unique:
assumes "a \<in> U" and "b \<in> U" and "a +\<^sub>o\<^sub>w b = 0\<^sub>o\<^sub>w"
shows "-\<^sub>o\<^sub>w a = b"
proof-
from assms have "(-\<^sub>o\<^sub>w a +\<^sub>o\<^sub>w a) +\<^sub>o\<^sub>w b = -\<^sub>o\<^sub>w a"
by (metis add.assoc uminus_closed add.right_neutral_mow)
thus ?thesis
unfolding left_inverse[OF \<open>a \<in> U\<close>] add.left_neutral_mow[OF \<open>b \<in> U\<close>] by simp
qed
lemma inverse_neutral[simp]: "-\<^sub>o\<^sub>w 0\<^sub>o\<^sub>w = 0\<^sub>o\<^sub>w"
by
(
rule inverse_unique[
OF zero_closed zero_closed add.left_neutral_mow[OF zero_closed]
]
)
lemma inverse_inverse:
assumes "a \<in> U"
shows "-\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w a) = a"
by
(
rule inverse_unique[
OF uminus_closed[OF assms] assms left_inverse[OF assms]
]
)
lemma right_inverse:
assumes "a \<in> U"
shows "a +\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w a) = 0\<^sub>o\<^sub>w"
proof -
from assms have "a +\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w a) = -\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w a) +\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w a)"
by (simp add: inverse_inverse)
moreover have "\<dots> = 0\<^sub>o\<^sub>w" by (rule left_inverse[OF uminus_closed[OF assms]])
ultimately show ?thesis by simp
qed
sublocale cancel_semigroup_add_ow U \<open>(+\<^sub>o\<^sub>w)\<close>
proof
fix a b c assume "a \<in> U" and "b \<in> U" and "c \<in> U" and "a +\<^sub>o\<^sub>w b = a +\<^sub>o\<^sub>w c"
from \<open>a \<in> U\<close> \<open>b \<in> U\<close> \<open>c \<in> U\<close> this have
"((-\<^sub>o\<^sub>w a) +\<^sub>o\<^sub>w a) +\<^sub>o\<^sub>w b = ((-\<^sub>o\<^sub>w a) +\<^sub>o\<^sub>w a) +\<^sub>o\<^sub>w c"
by (auto simp: add.left_cancel)
thus "b = c"
unfolding
left_inverse[OF \<open>a \<in> U\<close>]
add.left_neutral_mow[OF \<open>b \<in> U\<close>]
add.left_neutral_mow[OF \<open>c \<in> U\<close>]
by simp
next
fix a b c assume "a \<in> U" and "b \<in> U" and "c \<in> U" and "b +\<^sub>o\<^sub>w a = c +\<^sub>o\<^sub>w a"
then have "b +\<^sub>o\<^sub>w (a +\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w a)) = c +\<^sub>o\<^sub>w (a +\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w a))"
by (metis add.assoc uminus_closed)
thus "b = c"
unfolding
right_inverse[OF \<open>a \<in> U\<close>]
add.left_neutral_mow[OF \<open>b \<in> U\<close>]
add.right_neutral_mow[OF \<open>c \<in> U\<close>]
by (simp add: \<open>b \<in> U\<close>)
qed
end
lemma group_add_ow: "class.group_add = group_add_ow UNIV"
unfolding
class.group_add_def group_add_ow_def
class.group_add_axioms_def group_add_ow_axioms_def
minus_ow_def uminus_ow_def
monoid_add_ow
by simp
subsubsection\<open>Transfer rules\<close>
context
includes lifting_syntax
begin
lemma group_transfer[transfer_rule]:
assumes [transfer_rule]: "bi_unique A" "right_total A"
shows "((A ===> A ===> A) ===> A ===> (A ===> A) ===> (=))
(group_ow (Collect (Domainp A))) group"
proof -
let ?P = "((A ===> A ===> A) ===> A ===> (A ===> A) ===> (=))"
let ?group_ow = "group_ow (Collect (Domainp A))"
have
"?P
(\<lambda>f z inv. ?group_ow f z inv)
(\<lambda>f z inv. z \<in> UNIV \<and> (\<forall>x\<in>UNIV. inv x \<in> UNIV) \<and> group f z inv)"
unfolding group_ow_def group_def group_ow_axioms_def group_axioms_def
apply transfer_prover_start
apply transfer_step+
by blast
thus ?thesis by simp
qed
lemma group_add_transfer[transfer_rule]:
assumes [transfer_rule]: "bi_unique A" "right_total A"
shows
"((A ===> A ===> A) ===> (A ===> A ===> A) ===> A ===> (A ===> A) ===> (=))
(group_add_ow (Collect (Domainp A))) class.group_add"
proof -
let ?P =
"((A ===> A ===> A) ===> (A ===> A ===> A) ===> A ===> (A ===> A) ===> (=))"
let ?group_add_ow = "group_add_ow (Collect (Domainp A))"
have
"?P
(\<lambda>minus plus zero uminus. ?group_add_ow minus plus zero uminus)
(
\<lambda>fi f z inv_f.
(\<forall>x\<in>UNIV. \<forall>y\<in>UNIV. fi x y \<in> UNIV) \<and>
(\<forall>x\<in>UNIV. inv_f x \<in> UNIV) \<and>
class.group_add fi f z inv_f
)"
unfolding
group_add_ow_def class.group_add_def
group_add_ow_axioms_def class.group_add_axioms_def
minus_ow_def uminus_ow_def
apply transfer_prover_start
apply transfer_step+
by simp
thus ?thesis by simp
qed
end
subsubsection\<open>Relativization\<close>
context group_ow
begin
tts_context
tts: (?'a to U)
rewriting ctr_simps
substituting group_ow_axioms and not_empty
applying [OF f_closed' z_closed inverse_closed'']
begin
tts_lemma inverse_neutral: "inverse \<^bold>1\<^sub>o\<^sub>w = \<^bold>1\<^sub>o\<^sub>w"
is group.inverse_neutral.
tts_lemma inverse_inverse:
assumes "a \<in> U"
shows "inverse (inverse a) = a"
is group.inverse_inverse.
tts_lemma right_inverse:
assumes "a \<in> U"
shows "a \<^bold>*\<^sub>o\<^sub>w inverse a = \<^bold>1\<^sub>o\<^sub>w"
is group.right_inverse.
tts_lemma inverse_distrib_swap:
assumes "a \<in> U" and "b \<in> U"
shows "inverse (a \<^bold>*\<^sub>o\<^sub>w b) = inverse b \<^bold>*\<^sub>o\<^sub>w inverse a"
is group.inverse_distrib_swap.
tts_lemma right_cancel:
assumes "b \<in> U" and "a \<in> U" and "c \<in> U"
shows "(b \<^bold>*\<^sub>o\<^sub>w a = c \<^bold>*\<^sub>o\<^sub>w a) = (b = c)"
is group.right_cancel.
tts_lemma inverse_unique:
assumes "a \<in> U" and "b \<in> U" and "a \<^bold>*\<^sub>o\<^sub>w b = \<^bold>1\<^sub>o\<^sub>w"
shows "inverse a = b"
is group.inverse_unique.
end
end
context group_add_ow
begin
tts_context
tts: (?'a to U)
rewriting ctr_simps
substituting group_add_ow_axioms and zero.not_empty
applying [OF minus_closed' plus_closed' zero_closed add.inverse_closed'']
begin
tts_lemma diff_0:
assumes "a \<in> U"
shows "0\<^sub>o\<^sub>w -\<^sub>o\<^sub>w a = -\<^sub>o\<^sub>w a"
is group_add_class.diff_0.
tts_lemma diff_0_right:
assumes "a \<in> U"
shows "a -\<^sub>o\<^sub>w 0\<^sub>o\<^sub>w = a"
is group_add_class.diff_0_right.
tts_lemma diff_self:
assumes "a \<in> U"
shows "a -\<^sub>o\<^sub>w a = 0\<^sub>o\<^sub>w"
is group_add_class.diff_self.
tts_lemma group_left_neutral:
assumes "a \<in> U"
shows "0\<^sub>o\<^sub>w +\<^sub>o\<^sub>w a = a"
is group_add_class.add.group_left_neutral.
tts_lemma minus_minus:
assumes "a \<in> U"
shows "-\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w a) = a"
is group_add_class.minus_minus.
tts_lemma right_minus:
assumes "a \<in> U"
shows "a +\<^sub>o\<^sub>w -\<^sub>o\<^sub>w a = 0\<^sub>o\<^sub>w"
is group_add_class.right_minus.
tts_lemma left_minus:
assumes "a \<in> U"
shows "-\<^sub>o\<^sub>w a +\<^sub>o\<^sub>w a = 0\<^sub>o\<^sub>w"
is group_add_class.left_minus.
tts_lemma add_diff_cancel:
assumes "a \<in> U" and "b \<in> U"
shows "a +\<^sub>o\<^sub>w b -\<^sub>o\<^sub>w b = a"
is group_add_class.add_diff_cancel.
tts_lemma diff_add_cancel:
assumes "a \<in> U" and "b \<in> U"
shows "a -\<^sub>o\<^sub>w b +\<^sub>o\<^sub>w b = a"
is group_add_class.diff_add_cancel.
tts_lemma diff_conv_add_uminus:
assumes "a \<in> U" and "b \<in> U"
shows "a -\<^sub>o\<^sub>w b = a +\<^sub>o\<^sub>w -\<^sub>o\<^sub>w b"
is group_add_class.diff_conv_add_uminus.
tts_lemma diff_minus_eq_add:
assumes "a \<in> U" and "b \<in> U"
shows "a -\<^sub>o\<^sub>w -\<^sub>o\<^sub>w b = a +\<^sub>o\<^sub>w b"
is group_add_class.diff_minus_eq_add.
tts_lemma add_uminus_conv_diff:
assumes "a \<in> U" and "b \<in> U"
shows "a +\<^sub>o\<^sub>w -\<^sub>o\<^sub>w b = a -\<^sub>o\<^sub>w b"
is group_add_class.add_uminus_conv_diff.
tts_lemma minus_diff_eq:
assumes "a \<in> U" and "b \<in> U"
shows "-\<^sub>o\<^sub>w (a -\<^sub>o\<^sub>w b) = b -\<^sub>o\<^sub>w a"
is group_add_class.minus_diff_eq.
tts_lemma add_minus_cancel:
assumes "a \<in> U" and "b \<in> U"
shows "a +\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w a +\<^sub>o\<^sub>w b) = b"
is group_add_class.add_minus_cancel.
tts_lemma minus_add_cancel:
assumes "a \<in> U" and "b \<in> U"
shows "-\<^sub>o\<^sub>w a +\<^sub>o\<^sub>w (a +\<^sub>o\<^sub>w b) = b"
is group_add_class.minus_add_cancel.
tts_lemma neg_0_equal_iff_equal:
assumes "a \<in> U"
shows "(0\<^sub>o\<^sub>w = -\<^sub>o\<^sub>w a) = (0\<^sub>o\<^sub>w = a)"
is group_add_class.neg_0_equal_iff_equal.
tts_lemma neg_equal_0_iff_equal:
assumes "a \<in> U"
shows "(-\<^sub>o\<^sub>w a = 0\<^sub>o\<^sub>w) = (a = 0\<^sub>o\<^sub>w)"
is group_add_class.neg_equal_0_iff_equal.
tts_lemma eq_iff_diff_eq_0:
assumes "a \<in> U" and "b \<in> U"
shows "(a = b) = (a -\<^sub>o\<^sub>w b = 0\<^sub>o\<^sub>w)"
is group_add_class.eq_iff_diff_eq_0.
tts_lemma equation_minus_iff:
assumes "a \<in> U" and "b \<in> U"
shows "(a = -\<^sub>o\<^sub>w b) = (b = -\<^sub>o\<^sub>w a)"
is group_add_class.equation_minus_iff.
tts_lemma minus_equation_iff:
assumes "a \<in> U" and "b \<in> U"
shows "(-\<^sub>o\<^sub>w a = b) = (-\<^sub>o\<^sub>w b = a)"
is group_add_class.minus_equation_iff.
tts_lemma neg_equal_iff_equal:
assumes "a \<in> U" and "b \<in> U"
shows "(-\<^sub>o\<^sub>w a = -\<^sub>o\<^sub>w b) = (a = b)"
is group_add_class.neg_equal_iff_equal.
tts_lemma right_minus_eq:
assumes "a \<in> U" and "b \<in> U"
shows "(a -\<^sub>o\<^sub>w b = 0\<^sub>o\<^sub>w) = (a = b)"
is group_add_class.right_minus_eq.
tts_lemma minus_add:
assumes "a \<in> U" and "b \<in> U"
shows "-\<^sub>o\<^sub>w (a +\<^sub>o\<^sub>w b) = -\<^sub>o\<^sub>w b +\<^sub>o\<^sub>w -\<^sub>o\<^sub>w a"
is group_add_class.minus_add.
tts_lemma eq_neg_iff_add_eq_0:
assumes "a \<in> U" and "b \<in> U"
shows "(a = -\<^sub>o\<^sub>w b) = (a +\<^sub>o\<^sub>w b = 0\<^sub>o\<^sub>w)"
is group_add_class.eq_neg_iff_add_eq_0.
tts_lemma neg_eq_iff_add_eq_0:
assumes "a \<in> U" and "b \<in> U"
shows "(-\<^sub>o\<^sub>w a = b) = (a +\<^sub>o\<^sub>w b = 0\<^sub>o\<^sub>w)"
is group_add_class.neg_eq_iff_add_eq_0.
tts_lemma add_eq_0_iff2:
assumes "a \<in> U" and "b \<in> U"
shows "(a +\<^sub>o\<^sub>w b = 0\<^sub>o\<^sub>w) = (a = -\<^sub>o\<^sub>w b)"
is group_add_class.add_eq_0_iff2.
tts_lemma add_eq_0_iff:
assumes "a \<in> U" and "b \<in> U"
shows "(a +\<^sub>o\<^sub>w b = 0\<^sub>o\<^sub>w) = (b = -\<^sub>o\<^sub>w a)"
is group_add_class.add_eq_0_iff.
tts_lemma diff_diff_eq2:
assumes "a \<in> U" and "b \<in> U" and "c \<in> U"
shows "a -\<^sub>o\<^sub>w (b -\<^sub>o\<^sub>w c) = a +\<^sub>o\<^sub>w c -\<^sub>o\<^sub>w b"
is group_add_class.diff_diff_eq2.
tts_lemma diff_add_eq_diff_diff_swap:
assumes "a \<in> U" and "b \<in> U" and "c \<in> U"
shows "a -\<^sub>o\<^sub>w (b +\<^sub>o\<^sub>w c) = a -\<^sub>o\<^sub>w c -\<^sub>o\<^sub>w b"
is group_add_class.diff_add_eq_diff_diff_swap.
tts_lemma add_diff_eq:
assumes "a \<in> U" and "b \<in> U" and "c \<in> U"
shows "a +\<^sub>o\<^sub>w (b -\<^sub>o\<^sub>w c) = a +\<^sub>o\<^sub>w b -\<^sub>o\<^sub>w c"
is group_add_class.add_diff_eq.
tts_lemma eq_diff_eq:
assumes "a \<in> U" and "c \<in> U" and "b \<in> U"
shows "(a = c -\<^sub>o\<^sub>w b) = (a +\<^sub>o\<^sub>w b = c)"
is group_add_class.eq_diff_eq.
tts_lemma diff_eq_eq:
assumes "a \<in> U" and "b \<in> U" and "c \<in> U"
shows "(a -\<^sub>o\<^sub>w b = c) = (a = c +\<^sub>o\<^sub>w b)"
is group_add_class.diff_eq_eq.
tts_lemma left_cancel:
assumes "a \<in> U" and "b \<in> U" and "c \<in> U"
shows "(a +\<^sub>o\<^sub>w b = a +\<^sub>o\<^sub>w c) = (b = c)"
is group_add_class.add.left_cancel.
tts_lemma right_cancel:
assumes "b \<in> U" and "a \<in> U" and "c \<in> U"
shows "(b +\<^sub>o\<^sub>w a = c +\<^sub>o\<^sub>w a) = (b = c)"
is group_add_class.add.right_cancel.
tts_lemma minus_unique:
assumes "a \<in> U" and "b \<in> U" and "a +\<^sub>o\<^sub>w b = 0\<^sub>o\<^sub>w"
shows "-\<^sub>o\<^sub>w a = b"
is group_add_class.minus_unique.
tts_lemma diff_eq_diff_eq:
assumes "a \<in> U" and "b \<in> U" and "c \<in> U" and "d \<in> U" and "a -\<^sub>o\<^sub>w b = c -\<^sub>o\<^sub>w d"
shows "(a = b) = (c = d)"
is group_add_class.diff_eq_diff_eq.
end
end
subsection\<open>Abelian groups\<close>
subsubsection\<open>Definitions and common properties\<close>
locale ab_group_add_ow =
minus_ow U minus + uminus_ow U uminus + comm_monoid_add_ow U plus zero
for U :: "'ag set" and plus zero minus uminus +
assumes ab_left_minus: "a \<in> U \<Longrightarrow> -\<^sub>o\<^sub>w a +\<^sub>o\<^sub>w a = 0\<^sub>o\<^sub>w"
assumes ab_diff_conv_add_uminus:
"\<lbrakk> a \<in> U; b \<in> U \<rbrakk> \<Longrightarrow> a -\<^sub>o\<^sub>w b = a +\<^sub>o\<^sub>w (-\<^sub>o\<^sub>w b)"
begin
sublocale group_add_ow
by unfold_locales (simp_all add: ab_left_minus ab_diff_conv_add_uminus)
sublocale cancel_comm_monoid_add_ow
apply unfold_locales
subgoal using add.commute by (fastforce simp: add_diff_cancel)
subgoal by (metis add.commute diff_add_eq_diff_diff_swap)
done
end
lemma ab_group_add_ow: "class.ab_group_add = ab_group_add_ow UNIV"
unfolding
class.ab_group_add_def ab_group_add_ow_def
class.ab_group_add_axioms_def ab_group_add_ow_axioms_def
minus_ow_def uminus_ow_def
comm_monoid_add_ow
by simp
lemma ab_group_add_ow_UNIV_axioms:
"ab_group_add_ow (UNIV::'a::ab_group_add set) (+) 0 (-) uminus"
by (fold ab_group_add_ow) (rule ab_group_add_class.ab_group_add_axioms)
subsubsection\<open>Transfer rules\<close>
context
includes lifting_syntax
begin
lemma ab_group_add_transfer[transfer_rule]:
assumes [transfer_rule]: "bi_unique A" "right_total A"
shows
"((A ===> A ===> A) ===> A ===> (A ===> A ===> A) ===> (A ===> A) ===> (=))
(ab_group_add_ow (Collect (Domainp A))) class.ab_group_add"
proof -
let ?P =
"((A ===> A ===> A) ===> A ===> (A ===> A ===> A) ===> (A ===> A) ===> (=))"
let ?ab_group_add_ow = "ab_group_add_ow (Collect (Domainp A))"
have
"?P
?ab_group_add_ow
(
\<lambda>plus zero minus uminus.
(\<forall>x\<in>UNIV. \<forall>y\<in>UNIV. minus x y \<in> UNIV) \<and>
(\<forall>x\<in>UNIV. uminus x \<in> UNIV) \<and>
class.ab_group_add plus zero minus uminus
)"
unfolding
ab_group_add_ow_def class.ab_group_add_def
ab_group_add_ow_axioms_def class.ab_group_add_axioms_def
minus_ow_def uminus_ow_def
apply transfer_prover_start
apply transfer_step+
by simp
thus ?thesis by simp
qed
end
subsubsection\<open>Relativization\<close>
context ab_group_add_ow
begin
tts_context
tts: (?'a to U)
rewriting ctr_simps
substituting ab_group_add_ow_axioms and zero.not_empty
applying [OF plus_closed' zero_closed minus_closed' add.inverse_closed'']
begin
tts_lemma uminus_add_conv_diff:
assumes "a \<in> U" and "b \<in> U"
shows "-\<^sub>o\<^sub>w a +\<^sub>o\<^sub>w b = b -\<^sub>o\<^sub>w a"
is ab_group_add_class.uminus_add_conv_diff.
tts_lemma diff_add_eq:
assumes "a \<in> U" and "b \<in> U" and "c \<in> U"
shows "a -\<^sub>o\<^sub>w b +\<^sub>o\<^sub>w c = a +\<^sub>o\<^sub>w c -\<^sub>o\<^sub>w b"
is ab_group_add_class.diff_add_eq.
end
end
text\<open>\newpage\<close>
end |
[STATEMENT]
lemma StepConf_EmptySet [simp]:
"StepConf A C {} = C"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. StepConf A C {} = C
[PROOF STEP]
by (unfold StepConf_def, auto) |
import .reverse
set_option trace.simplify.rewrite true
#print reverse_right
open list(nil)
-- axiom append.base (x : α) : append nil x = [x]
-- axiom append.step (x y : α) (xs : list α) :
-- append (x :: xs) y = x :: append xs y
-- axiom reverse.base : reverse nil = nil
-- axiom reverse.step (x : α) (xs : list α) :
-- reverse (x :: xs) = append (reverse xs) x
axiom reverse2.base : reverse2 nil = nil -- nil ~ []
axiom reverse2.step (x y : α) (xs : list α) :
reverse2 (append (x :: xs) y) = append (y :: reverse2 xs) x
attribute [simp] reverse2.base reverse2.step
-- how to prove that reverse2.single is not provable if we have only two axioms:
-- reverse2.base, reverse.step + append axioms
@[simp]
lemma reverse2.single (x : α) : reverse2 [x] = [x] :=
begin
type_check append.base x,
type_check append.step x x [],
conv {
to_lhs,
rw ←append.base,
},
sorry,
end
lemma reverse2_right (x : α) (xs : list α) :
reverse2 (append xs x) = x :: reverse2 xs :=
begin
induction xs with y ys ih,
{ simp },
-- rw append.step,
rw reverse2.step,
rw ←ih,
sorry,
end
theorem reverse_and_reverse2_are_equivalent (xs : list α) :
reverse xs = reverse2 xs :=
begin
induction xs with y ys ih,
{
simp,
},
{
simp [ih],
induction ys with z zs ih2,
{ simp },
sorry,
},
end |
record R (A : Set) : Set where
constructor c₂
field
f : A → A
open module R′ (A : Set) (r : R A) = R {A = A} r
renaming (f to f′)
_ : (@0 A : Set) → R A → A → A
_ = λ A → f′ {A = A}
|
# Copyright (c) 2018-2021, Carnegie Mellon University
# See LICENSE for details
Latex := x -> Cond(IsRec(x) and IsBound(x.latex), x.latex(),
IsRec(x) and IsBound(x.cprint), x.cprint(),
Print(x));
Cprint := x -> When(IsRec(x) and IsBound(x.cprint), x.cprint(), Print(x));
_infix_print := function ( lst, sep, prfunc )
local first, c;
first := true;
for c in lst do
if first then first := false;
else Print(sep); fi;
prfunc(c);
od;
return "";
end;
Gath.latex := self >> Print("\\Gath{", self.func.latex(), "}");
Scat.latex := self >> Print("\\Scat{", self.func.latex(), "}");
Diag.latex := self >> Print("\\Diag{", self.element.latex(), "}");
Prm.latex := self >> Print("\\Prm{", self.func.latex(), "}");
FuncClass.latex := self >> Print("\\f", self.name,
DoForAll(self.params, p -> Print("{",Cprint(p),"}")));
FDataOfs.latex := self >> Print("\\f", self.name,
DoForAll(self.rChildren(), p -> Print("{",Cprint(p),"}")));
HH.latex := self >> PrintEvalF("\\f$1{$2}{$3}{$4}{$5}",
self.name, ()->Latex(self.params[1]), ()->Latex(self.params[2]), ()->Latex(self.params[3]),
()->_infix_print(self.params[4],", ",Latex));
BHH.latex := self >> PrintEvalF("\\f$1{$2}{$3}{$4}{$5}",
self.name, ()->Cprint(self.params[1]), ()->Cprint(self.params[2]), ()->Cprint(self.params[3]),
()->_infix_print(self.params[4],", ",Cprint));
HHZ.latex := self >> PrintEvalF("\\f$1{$2}{$3}{$4}{$5}",
self.name, ()->Cprint(self.params[1]), ()->Cprint(self.params[2]), ()->Cprint(self.params[3]), ()->_infix_print(self.params[4],", ", Cprint));
NonTerminal.latex := self >> Print("\\n", self.name,
DoForAll(self.params, p -> Print("{",Latex(p),"}")));
Sym.latex := FuncClass.latex;
ISum.latex := self >> PrintEvalF("\\ISum{$1 0}{$2}{$3}",
() -> When(IsBound(self.var), Print(self.var, "=")),
() -> Latex(self.domain-1),
() -> self.child(1).latex());
Compose.latex := self >> DoForAll(self.children(), c->c.latex());
BaseContainer.latex := self >> PrintEvalF("\\$1{$2}", self.name, ()->self.child(1).latex());
BaseOperation.latex := self >> Print("\\", self.name, DoForAll(self.children(), c->Print("{",c.latex(),"}")));
SUM.latex := self >> Chain(
DoForAllButLast(self.children(), c->Print(c.latex(), "+")),
Last(self.children()).latex());
gammaTensor.latex := self >> InfixPrint(self.children(), "\\boxtimes", c->c.latex());
fTensor.latex := self >> InfixPrint(self.children(), "\\otimes", c->c.latex());
fDirsum.latex := self >> InfixPrint(self.children(), "\\oplus", c->c.latex());
fCompose.latex := self >> InfixPrint(self.children(), "\\circ", c->c.latex());
Blk.latex := self >> self.print(0,0);
|
import field_definition
import field_results
import numbers
import roots
def quadratic_subst (f : Type) [myfld f] : f -> f -> f -> f -> f
| x a b c := (a .* (x .* x)) .+ ((b .* x) .+ c)
lemma complete_the_square (f : Type) [myfld f] (x b : f) :
(x .* x) .+ (((two f) .* b) .* x) =
(square f (x .+ b)) .+ (.- (square f b)) :=
begin
unfold square, unfold two, rw distrib_simp, rw distrib_simp_alt, repeat {rw distrib_simp}, rw one_mul,
repeat {rw <- myfld.add_assoc _ _ _}, rw myfld.add_negate _, rw zero_simp f _, rw myfld.mul_comm x b,
end
lemma multiply_out_squared (f : Type) [myfld f] (x a : f) :
(square f (x .+ a)) = ((square f x) .+ (((two f) .* (a .* x)) .+ (square f a))) :=
begin
unfold square, unfold two,
repeat {rw distrib_simp f _ _ _}, repeat {rw distrib_simp_alt f _ _ _},
rw one_mul_simp f _, rw myfld.mul_comm a x,
repeat {rw myfld.add_assoc _ _ _},
end
def quadratic_formula (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f] (a b c : f)
(a_ne_zero : a ≠ myfld.zero) :=
(.- b .+ (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c))))))
.*
(myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))
/- The proof of the correctness of the quadratic formula starts here.
The proof is split into a couple of different sections so that they can be reused when it comes time to
prove that negating the square root still gives a correct formula.-/
/- This first section does all the work between unfolding the formula and multiplying the square root by itself.-/
lemma quadratic_formula_sub_proof_a (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f] (a b c sqrt : f) (a_ne_zero : a ≠ myfld.zero) :
(((a .* (((.- b) .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))) .* ((.- b) .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))))) .+ (a .* (((.- b) .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))) .* (sqrt .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero)))))) .+ ((a .* ((sqrt .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))) .* ((.- b) .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))))) .+ (a .* ((sqrt .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))) .* (sqrt .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))))))) .+ (((b .* ((.- b) .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero)))) .+ (b .* (sqrt .* (myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))))) .+ c)
=
c .+ ((myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero)) .* ((b .* (b .* (myfld.reciprocal (two f) (two_ne_zero f)))) .+ ((sqrt .* ((myfld.reciprocal (two f) (two_ne_zero f)) .* sqrt)) .+ ((.- b) .* b)))) :=
begin
/- First we can cancel inside some terms that have a * 1/2a.-/
rw myfld.mul_comm _ (myfld.reciprocal ((two f) .* a) _),
repeat {rw <- myfld.mul_assoc (myfld.reciprocal ((two f) .* a) _) _ _},
repeat {rw myfld.mul_assoc a (myfld.reciprocal ((two f) .* a) _) _},
rw myfld.mul_comm sqrt (myfld.reciprocal ((two f) .* a) _),
rw <- myfld.mul_assoc (myfld.reciprocal ((two f) .* a) _) sqrt _,
rw myfld.mul_assoc a (myfld.reciprocal ((two f) .* a) _) _,
have cancel_a : (a .* (myfld.reciprocal ((two f) .* a) _)) = (myfld.reciprocal (two f) (two_ne_zero f)),
rw split_reciprocal f (two f) a _,
rw only_one_reciprocal f (two f) _ (two_ne_zero f),
rw myfld.mul_comm (myfld.reciprocal (two f) _) (myfld.reciprocal a _),
rw myfld.mul_assoc, rw myfld.mul_reciprocal a _, rw myfld.mul_comm _ _,
rw <- myfld.mul_one (myfld.reciprocal (two f) (two_ne_zero f)),
rw cancel_a,
/- There are two terms consisting of 1/2 * (-b) * 1/2a * sqrt (det) .
We can add these together into a single (-b) * 1/2a * sqrt (det) term.-/
rw myfld.mul_assoc sqrt (myfld.reciprocal ((two f) .* a) _) (.- b),
rw myfld.mul_comm (sqrt .* (myfld.reciprocal ((two f) .* a) _)) (.- b),
rw myfld.mul_comm sqrt (myfld.reciprocal ((two f) .* a) _),
rw assoc_tree f _ ((myfld.reciprocal (two f) _) .* ((.- b) .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt))) ((myfld.reciprocal (two f) _) .* ((.- b) .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt))) _,
rw <- distrib_simp f (myfld.reciprocal (two f) _) _ _,
rw only_one_reciprocal f (two f) _ (two_ne_zero f),
rw add_two_halves f, rw one_mul f _,
/- (-b) * 1/2a * sqrt (det) cancels with b * 1/2a * sqrt (det) -/
repeat {rw mul_negate f b _},
rw myfld.add_comm (.- (b .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt))) (a .* (((myfld.reciprocal ((two f) .* a) _) .* sqrt) .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt))),
rw myfld.add_comm (b .* ((myfld.reciprocal ((two f) .* a) _) .* (.- b))) (b .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt)),
repeat {rw <- myfld.add_assoc},
rw myfld.add_assoc (.- (b .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt))) (b .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt)) ((b .* ((myfld.reciprocal ((two f) .* a) _) .* (.- b))) .+ c),
rw myfld.add_comm (.- (b .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt))) (b .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt)),
rw myfld.add_negate (b .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt)),
rw myfld.add_comm myfld.zero _, rw zero_simp f _,
/- We can factorise out a common factor of 1/2a from everything except the +c at the end.-/
rw myfld.mul_comm b ((myfld.reciprocal ((two f) .* a) _) .* (.- b)),
repeat {rw myfld.add_assoc _ _ _}, rw myfld.add_comm _ c, repeat {rw <- myfld.add_assoc _ _ _},
rw myfld.mul_comm (myfld.reciprocal (two f) _) (.- (((myfld.reciprocal ((two f) .* a) _) .* (.- b)) .* b)),
rw <- mul_negate f ((myfld.reciprocal ((two f) .* a) _) .* (.- b)) b,
rw mul_negate_alt f (myfld.reciprocal ((two f) .* a) _) (.- b),
rw double_negative f b,
rw myfld.mul_comm a (((myfld.reciprocal ((two f) .* a) _) .* sqrt) .* ((myfld.reciprocal ((two f) .* a) _) .* sqrt)),
repeat {rw <- myfld.mul_assoc _ _ _},
rw only_one_reciprocal f ((two f) .* a) _ (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero),
repeat {rw <- distrib_simp_alt f (myfld.reciprocal ((two f) .* a) _) _ _},
/- There's one term left with a * 1/2a, which we cancel..-/
rw myfld.mul_comm sqrt a,
rw myfld.mul_assoc (myfld.reciprocal ((two f) .* a) _) a _,
rw myfld.mul_comm (myfld.reciprocal ((two f) .* a) _) a,
rw cancel_a, clear cancel_a,
rw only_one_reciprocal f ((two f) .* a) _ (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero),
rw only_one_reciprocal f (two f) _ (two_ne_zero f),
rw mul_negate f b b,
end
/- This second section does all the work after the part that goes
(sqrt discriminant) * (sqrt discriminant) = discriminant.-/
lemma quadratic_formula_sub_proof_b (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f] (a b c : f) (a_ne_zero : a ≠ myfld.zero) :
c .+ ((myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero)) .* ((b .* (b .* (myfld.reciprocal (two f) (two_ne_zero f)))) .+ ((((b .* b) .* (myfld.reciprocal (two f) (two_ne_zero f))) .+ ((.- ((four f) .* (a .* c))) .* (myfld.reciprocal (two f) (two_ne_zero f)))) .+ ((.- b) .* b))))
= myfld.zero :=
begin
/- Two copies of b * b * 1/2 add together to give b * b...-/
rw myfld.mul_assoc b b (myfld.reciprocal (two f) _),
repeat {rw <- myfld.add_assoc _ _ _},
rw myfld.add_assoc ((b .* b) .* (myfld.reciprocal (two f) _)) ((b .* b) .* (myfld.reciprocal (two f) _)) _,
rw <- distrib_simp_alt f (b .* b) _ _,
rw add_two_halves f, rw <- myfld.mul_one (b .* b),
/- The b^2 that we just made cancels with the -b^2...-/
rw myfld.add_comm (b .* b) (((.- ((four f) .* (a .* c))) .* (myfld.reciprocal (two f) _)) .+ ((.- b) .* b)),
rw <- myfld.add_assoc _ ((.- b) .* b) (b .* b),
rw mul_negate f b b,
rw myfld.add_comm (.- (b .* b)) (b .* b),
rw myfld.add_negate (b .* b),
rw <- myfld.add_zero ((.- ((four f) .* (a .* c))) .* (myfld.reciprocal (two f) _)),
/- We're now down to c + 1/2a * 4ac * 1/2, which is fairly obviously zero.-/
/- All that's left to do is to simplify the second term.-/
rw split_reciprocal f (two f) a _, rw myfld.mul_assoc (four f) a c,
rw myfld.mul_comm (four f) a,
rw mul_negate _ _, rw <- mul_negate_alt _ _,
rw assoc_tree_mul f _ _ _ _, rw myfld.mul_assoc (myfld.reciprocal a _) _ _, rw myfld.mul_assoc (myfld.reciprocal a _) a _,
rw myfld.mul_comm (myfld.reciprocal a _) a, rw myfld.mul_reciprocal a _,
rw one_mul f (four f),
rw myfld.mul_comm ((four f) .* c) (myfld.reciprocal (two f) _),
rw myfld.mul_assoc _ _ _, rw mul_two_reciprocals f (two f) (two f) _ _,
unfold four, rw two_plus_two f,
rw myfld.mul_assoc (myfld.reciprocal ((two f) .* (two f)) _) ((two f) .* (two f)) c,
rw myfld.mul_comm (myfld.reciprocal ((two f) .* (two f)) _) ((two f) .* (two f)),
rw myfld.mul_reciprocal ((two f) .* (two f)) _, rw one_mul f c,
exact myfld.add_negate c,
end
/- And so this brings the two halves together into a proof of the correctness of the formula.-/
lemma quadratic_formula_works (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f] (a b c : f) (a_ne_zero : a ≠ myfld.zero) :
quadratic_subst f (quadratic_formula f a b c a_ne_zero) a b c = myfld.zero :=
begin
unfold quadratic_formula, unfold quadratic_subst,
rw distrib_simp f _ _ _, rw distrib_simp f _ _ _, repeat {rw distrib_simp_alt f _ _ _},
rw quadratic_formula_sub_proof_a f a b c (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c))))) a_ne_zero,
/- One of our terms now has the square root of the discriminant multiplied by itself.
This, of course, gives us the discriminant.-/
rw myfld.mul_comm (myfld.reciprocal (two f) _) (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c))))),
rw myfld.mul_assoc (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c))))) (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c))))) _,
rw fld_with_sqrt.sqrt_mul_sqrt ((b .* b) .+ (.- ((four f) .* (a .* c)))),
rw distrib_simp f _ _ _,
exact quadratic_formula_sub_proof_b f a b c a_ne_zero,
end
/- Of course, a given quadratic has two solutions...-/
def quadratic_formula_alt (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f] (a b c : f)
(a_ne_zero : a ≠ myfld.zero) :=
((.- b) .+ (.- (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c))))))) .*
(myfld.reciprocal ((two f) .* a) (mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero))
/- And both solutions are correct...-/
lemma quadratic_formula_alt_works (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f] (a b c : f) (a_ne_zero : a ≠ myfld.zero) :
quadratic_subst f (quadratic_formula_alt f a b c a_ne_zero) a b c = myfld.zero :=
begin
unfold quadratic_formula_alt, unfold quadratic_subst,
rw distrib_simp f _ _ _, rw distrib_simp f _ _ _, repeat {rw distrib_simp_alt f _ _ _},
rw quadratic_formula_sub_proof_a f a b c (.- (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c)))))) a_ne_zero,
/- One of our terms now has the negative of the square root of the discriminant multiplied by itself.
This, of course, gives us the discriminant.-/
rw myfld.mul_comm (myfld.reciprocal (two f) _) (.- (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c)))))),
rw myfld.mul_assoc (.- (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c)))))) (.- (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c)))))) _,
rw negative_sqrt f ((b .* b) .+ (.- ((four f) .* (a .* c)))),
rw distrib_simp f _ _ _,
exact quadratic_formula_sub_proof_b f a b c a_ne_zero,
end
/- So both versions of the quadratic formula work properly.-/
/- However we have not proven that these are the only solutions.-/
/- OK: proof that no solutions to a quadratic exist besides the formula ones. -/
lemma quadratic_solution_unique (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f]
(a b c x : f) (a_ne_zero : a ≠ myfld.zero) :
(x ≠ quadratic_formula f a b c a_ne_zero /\ x ≠ quadratic_formula_alt f a b c a_ne_zero) ->
quadratic_subst f x a b c ≠ myfld.zero :=
begin
intros not_formula h,
/- This will involve reducing the introduced formulae into a form that can be passed to
only_two_square_roots, which requires three formulae of the forms:
k ≠ sqrt (y)
k ≠ - sqrt (y)
k * k = y
So we first have to unfold the statement that x is not the solution to the quadratic formula
and reduce it to a form that looks like something ≠ ± (sqrt (something else)) . -/
unfold quadratic_formula at not_formula, unfold quadratic_formula_alt at not_formula,
repeat {rw distrib_simp f _ _ _ at not_formula},
repeat {rw myfld.add_comm ((.- b) .* (myfld.reciprocal ((two f) .* a) _)) _ at not_formula},
rw mul_negate f _ _ at not_formula,
repeat {rw <- carry_term_across_ne f x _ (b .* (myfld.reciprocal ((two f) .* a) _)) at not_formula},
cases not_formula with nfa nfb,
have two_a_ne_zero : ((two f) .* a) ≠ myfld.zero,
exact mul_nonzero f (two f) a (two_ne_zero f) a_ne_zero,
have nfa_tmp : (x .+ (b .* (myfld.reciprocal ((two f) .* a) _))) .* ((two f) .* a) ≠ ((sqroot ((b .* b) .+ (.- ((four f) .* (a .* c))))) .* (myfld.reciprocal ((two f) .* a) _)) .* ((two f) .* a) ,
exact mul_both_sides_ne f _ _ ((two f) .* a) nfa two_a_ne_zero,
clear nfa, rename nfa_tmp nfa,
have nfb_tmp : (x .+ (b .* (myfld.reciprocal ((two f) .* a) _))) .* ((two f) .* a) ≠ ((.- (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c)))))) .* (myfld.reciprocal ((two f) .* a) _)) .* ((two f) .* a) ,
exact mul_both_sides_ne f _ _ ((two f) .* a) nfb two_a_ne_zero,
clear nfb, rename nfb_tmp nfb,
rw distrib_simp f x (b .* (myfld.reciprocal ((two f) .* a) _)) _ at nfa nfb,
rw <- myfld.mul_assoc _ _ ((two f) .* a) at nfa nfb, rw <- myfld.mul_assoc _ _ ((two f) .* a) at nfa nfb,
repeat {rw myfld.mul_comm (myfld.reciprocal ((two f) .* a) _) ((two f) .* a) at nfa nfb},
repeat {rw myfld.mul_reciprocal ((two f) .* a) _ at nfa nfb},
rw <- myfld.mul_one b at nfa nfb,
rw <- myfld.mul_one (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c))))) at nfa,
rw <- myfld.mul_one (.- (sqroot ((b .* b) .+ (.- ((four f) .* (a .* c)))))) at nfb,
clear two_a_ne_zero,
/- Next we have to unfold the actual quadratic and transform it into a similar form as the above, but with
square (something) ≠ (something else) .
This is pretty much just using the method of "completing the square" that we all learned at school.-/
unfold quadratic_subst at h,
have h1 : ((a .* (x .* x)) .+ ((b .* x) .+ c)) .* (myfld.reciprocal a a_ne_zero)
= myfld.zero,
rw h, exact mul_zero f _,
clear h, rename h1 h,
rw distrib_simp f _ _ _ at h,
rw myfld.mul_comm (a .* (x .* x)) (myfld.reciprocal a a_ne_zero) at h,
rw myfld.mul_assoc (myfld.reciprocal a a_ne_zero) a _ at h,
rw myfld.mul_comm (myfld.reciprocal a a_ne_zero) a at h, rw myfld.mul_reciprocal a _ at h,
rw one_mul f _ at h,
rw distrib_simp f _ _ _ at h, rw myfld.add_assoc _ _ _ at h,
have tmp : ((b .* x) .* (myfld.reciprocal a a_ne_zero)) =
((two f) .* ((myfld.reciprocal (two f) fld_not_char_two.not_char_two) .* ((b .* x) .* (myfld.reciprocal a a_ne_zero)))),
have sub_tmp : ((two f) .* (myfld.reciprocal (two f) fld_not_char_two.not_char_two)) = myfld.one,
exact myfld.mul_reciprocal (two f) _,
rw myfld.mul_assoc (two f) (myfld.reciprocal (two f) _) _, rw sub_tmp, rw one_mul f _,
rw tmp at h, clear tmp,
rw <- myfld.mul_assoc b x _ at h, rw myfld.mul_comm x (myfld.reciprocal a a_ne_zero) at h,
rw myfld.mul_assoc _ _ x at h, rw myfld.mul_assoc _ _ x at h, rw myfld.mul_assoc _ _ x at h,
rw complete_the_square f x _ at h,
rw carry_term_across f _ _ (c .* (myfld.reciprocal a a_ne_zero)) at h,
rw simp_zero at h,
rw carry_term_across f _ _ (.- (square f ((myfld.reciprocal (two f) fld_not_char_two.not_char_two) .* (b .* (myfld.reciprocal a a_ne_zero))))) at h,
/- All the work that is at all interesting has been done above, the below is just a load of tedious rearranging
to make various expressions that anyone can see are equivalent visibly equal to the computer.
I wouldn't bother scrutinizing the below in detail unless you're having insomnia trouble.-/
have h1 : (square f (x .+ ((myfld.reciprocal (two f) fld_not_char_two.not_char_two) .* (b .* (myfld.reciprocal a a_ne_zero))))) .* (square f ((two f) .* a)) = ((.- (c .* (myfld.reciprocal a a_ne_zero))) .+ (.- (.- (square f ((myfld.reciprocal (two f) fld_not_char_two.not_char_two) .* (b .* (myfld.reciprocal a a_ne_zero))))))) .* (square f ((two f) .* a)) ,
have h_tmp : (square f (x .+ ((myfld.reciprocal (two f) fld_not_char_two.not_char_two) .* (b .* (myfld.reciprocal a a_ne_zero))))) .* (square f ((two f) .* a)) = (square f (x .+ ((myfld.reciprocal (two f) fld_not_char_two.not_char_two) .* (b .* (myfld.reciprocal a a_ne_zero))))) .* (square f ((two f) .* a)) ,
refl,
rw h at h_tmp {occs := occurrences.pos [2]}, exact h_tmp,
clear h, rename h1 h,
rw multiply_two_squares f _ _ at h,
rw distrib_simp f _ _ _ at h,
rw myfld.mul_assoc ((myfld.reciprocal (two f) fld_not_char_two.not_char_two) .* (b .* (myfld.reciprocal a a_ne_zero))) (two f) a at h,
rw myfld.mul_comm (myfld.reciprocal (two f) fld_not_char_two.not_char_two) _ at h,
rw <- myfld.mul_assoc _ (myfld.reciprocal (two f) fld_not_char_two.not_char_two) (two f) at h,
rw myfld.mul_comm (myfld.reciprocal (two f) fld_not_char_two.not_char_two) (two f) at h,
rw myfld.mul_reciprocal _ _ at h, rw simp_mul_one f _ at h,
rw <- myfld.mul_assoc _ (myfld.reciprocal a a_ne_zero) a at h,
rw myfld.mul_comm (myfld.reciprocal a a_ne_zero) a at h,
rw myfld.mul_reciprocal _ _ at h, rw simp_mul_one f _ at h,
rw double_negative f _ at h, rw distrib_simp f _ _ _ at h, rw multiply_two_squares f _ _ at h,
have tmp : (square f ((two f) .* a)) = a .* ((four f) .* a) ,
unfold square, unfold four, rw two_plus_two f, rw <- myfld.mul_assoc (two f) (two f) a,
have tmp_tmp : a .* ((two f) .* ((two f) .* a)) = a .* ((two f) .* (a .* (two f))) ,
rw myfld.mul_comm (two f) a,
rw tmp_tmp, rw myfld.mul_comm (two f) a, repeat {rw myfld.mul_assoc _ _ _},
rw tmp at h, clear tmp,
rw mul_negate at h,
rw myfld.mul_assoc (c .* (myfld.reciprocal a a_ne_zero)) a _ at h,
rw <- myfld.mul_assoc c _ a at h, rw myfld.mul_comm (myfld.reciprocal a _) a at h,
rw myfld.mul_reciprocal a _ at h, rw simp_mul_one f _ at h,
rw <- myfld.mul_assoc _ (myfld.reciprocal (two f) _) _ at h,
rw myfld.mul_assoc (myfld.reciprocal (two f) _) (two f) a at h,
rw myfld.mul_comm (myfld.reciprocal (two f) _) (two f) at h,
rw myfld.mul_reciprocal (two f) _ at h, rw one_mul f _ at h,
rw <- myfld.mul_assoc b _ a at h, rw myfld.mul_comm (myfld.reciprocal a a_ne_zero) a at h,
rw myfld.mul_reciprocal a a_ne_zero at h, rw simp_mul_one f b at h,
have tmp : (square f b) = b .* b, unfold square,
rw tmp at h, clear tmp,
rw myfld.add_comm _ (b .* b) at h,
rw myfld.mul_assoc c (four f) a at h, rw myfld.mul_comm c (four f) at h,
rw <- myfld.mul_assoc (four f) c a at h, rw myfld.mul_comm c a at h,
/- Having finally finished rearranging, the problem has been reduced to the question of whether
more than two square roots of the same number can exist.
They can't.-/
exact only_two_square_roots f ((x .* ((two f) .* a)) .+ b) ((b .* b) .+ (.- ((four f) .* (a .* c)))) nfa nfb h,
end
/- QED.-/
lemma quadratic_factorize (f : Type) [myfld f] [fld_with_sqrt f] [fld_not_char_two f] (b c x : f)
: (x .+ .- (quadratic_formula f myfld.one b c myfld.zero_distinct_one)) .*
(x .+ .- (quadratic_formula_alt f myfld.one b c myfld.zero_distinct_one))
=
(quadratic_subst f x myfld.one b c) :=
begin
rw distrib_simp, rw distrib_simp_alt, rw distrib_simp_alt,
repeat {rw mul_negate, rw mul_negate_alt_simp}, rw double_negative,
rw myfld.mul_comm (quadratic_formula f myfld.one b c _) x,
repeat {rw <- myfld.add_assoc}, rw myfld.add_assoc (.- _) (.- _) _, rw <- add_negate,
rw <- distrib_simp_alt,
have tmp : (quadratic_formula f myfld.one b c myfld.zero_distinct_one) .+
(quadratic_formula_alt f myfld.one b c myfld.zero_distinct_one) = .- b,
unfold quadratic_formula, unfold quadratic_formula_alt,
rw <- distrib_simp, repeat {rw <- myfld.add_assoc},
rw reciprocal_rewrite f _ _ (simp_mul_one f _) _,
rw one_mul_simp f,
rw myfld.add_comm _ (.- sqroot _), rw myfld.add_assoc (sqroot _) (.- sqroot _) _,
rw myfld.add_negate, rw simp_zero,
rw distrib_simp, rw <- distrib_simp_alt, rw add_two_halves, rw simp_mul_one,
rw myfld.add_comm at tmp,
rw tmp, clear tmp,
have clear_term : ∀ (a b x : f), a = b -> (x .+ a) = (x .+ b),
intros a b x h, rw h,
unfold quadratic_subst, rw one_mul_simp, apply clear_term,
rw mul_negate_alt_simp, rw double_negative, rw myfld.mul_comm x b, apply clear_term,
clear clear_term,
unfold quadratic_formula, unfold quadratic_formula_alt,
repeat {rw <- myfld.mul_assoc}, rw myfld.mul_comm (myfld.reciprocal _ _) _,
repeat {rw myfld.mul_assoc},
rw difference_of_squares,
rw sqrt_squared, unfold square,
rw mul_negate, rw mul_negate_alt_simp, rw double_negative, rw add_negate,
rw myfld.add_assoc, rw myfld.add_negate, rw simp_zero, rw double_negative,
rw <- myfld.mul_assoc,
rw reciprocal_rewrite f _ _ (simp_mul_one f _) _,
rw mul_two_reciprocals, rw myfld.mul_comm _ c,
rw <- myfld.mul_assoc c _ _, rw simp_mul_one,
unfold four, rw two_plus_two, rw myfld.mul_reciprocal, rw simp_mul_one,
end
|
(*<*)
(***********************************************************************
* HiVe theory files
*
* Copyright (C) 2015 Commonwealth of Australia as represented by Defence Science and Technology
* Group (DST Group)
*
* All rights reserved.
*
* The HiVe theory files are free software: released for redistribution and use, and/or modification,
* under the BSD License, details of which can be found in the LICENSE file included in the
* distribution.
************************************************************************)
theory
Z_Numbers_Chap
imports
Z_Fun
Orders
Equipotence
begin(*>*)
lemma fin_card_dom:
assumes
a1: "finite f" and
a2: "card (\<zdom> f) = card f"
shows
"functional f"
proof -
from a1 have
b1: "card (\<zdom> f) = card f \<Rightarrow> functional f" (is "?P f")
proof (induct f set: finite)
show
"?P \<emptyset>"
by (simp add: empty_functional)
next
apply_end (tactic {* split_all_tac @{context} 1 *} )
fix
f x y
assume
c1: "finite f" and
c2: "(x \<mapsto> y) \<notin> f" and
c3: "?P f"
show
"?P (insert (x \<mapsto> y) f)"
proof
assume
d1: "card (\<zdom> (insert (x \<mapsto> y) f)) = card (insert (x \<mapsto> y) f)"
from c1 c2 have
d2: "card (insert (x \<mapsto> y) f) = card f + 1"
by (simp)
have
d3: "\<zdom> f \<subseteq> \<fst>\<lparr>f\<rparr>"
by (auto simp add: image_def)
from c1 c1 [THEN fun_finite_dom] have
d4: "card (\<zdom> (insert (x \<mapsto> y) f)) \<le> card (\<zdom> f) + 1"
by (simp add: insert_dom card_insert_if)
with c1 c2 have
"card f \<le> card (\<zdom> f)"
apply (simp only: d1)
apply (simp)
done
moreover from c1 c1 [THEN fun_finite_dom] subepIsurj [OF d3] have
"card (\<zdom> f) \<le> card f"
by (simp add: finite_subequipotent_card)
ultimately have
d5: "card (\<zdom> f) = card f"
by (auto)
with c1 c2 have
d6: "card (\<zdom> (insert (x \<mapsto> y) f)) = card (\<zdom> f) + 1"
apply (simp only: d1)
apply (auto)
done
from d5 c3 have
"functional f"
by (simp)
then show
"functional (insert (x \<mapsto> y) f)"
apply (rule insert_functionalI)
using d6 c1 [THEN fun_finite_dom]
apply (simp add: card_insert_if)
apply (cases "x \<in> \<zdom> f")
apply (auto)
done
qed
qed
with a2 show
"?thesis"
by (simp)
qed
chapter {* The Z Mathkit: Numbers *}
(*<*)end(*>*)
|
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
module Vector where
import Tensor
import Data.Monoid
import Data.Maybe
import Data.Complex
import Helper
import Data.Either
import System.Random
data Vector a = Scalar a | Row [Vector a] | Column [Vector a]
-- This Eq implementation ignores structural differences
instance (Eq a) => Eq (Vector a) where
x == y = wx == wy && hx == hy && go 0 0
where
wx = width x
wy = width y
hx = height x
hy = height y
go i j
| i == hx = True
| j == wx = go (i + 1) 0
| otherwise = atM x (i, j) == atM y (i, j) && go i (j + 1)
instance Functor Vector where
fmap f (Scalar s) = Scalar $ f s
fmap f (Row t) = Row $ map (fmap f) t
fmap f (Column t) = Column $ map (fmap f) t
instance Applicative Vector where
pure = Scalar
Scalar s <*> t = fmap s t
t <*> (Scalar s) = fmap ($s) t
Row r <*> t = Row $ map (<*> t) r
Column c <*> t = Column $ map (<*> t) c
instance Monad Vector where
Scalar s >>= f = f s
Row r >>= f = Row $ map (>>= f) r
Column c >>= f = Column $ map (>>= f) c
instance Num a => Num (Vector a) where
Row x + (Row y) = Row $ zipWith (+) x y
Column x + (Column y) = Column $ zipWith (+) x y
Scalar x + y = fmap (+ x) y
x + (Scalar y) = fmap (+ y) x
_+_ = error "Vector Addition: Dimension mismatch"
Scalar x * y = fmap (* x) y
x * Scalar y = fmap (* y) x
Row x * (Column y) = getSum $ foldMap Sum $ zipWith (*) x y
Column x * (Column y) = Column $ map (* Column y) x
x * (Row y) = Row $ map (x *) y
abs = fmap abs
signum = fmap signum
fromInteger = Scalar . fromInteger
negate = fmap negate
instance Foldable Vector where
foldr f acc (Scalar s) = f s acc
foldr f acc (Row r) = foldr (flip (foldr f)) acc r
foldr f acc (Column c) = foldr (flip (foldr f)) acc c
instance Traversable Vector where
traverse f (Scalar s) = Scalar <$> f s
traverse f (Row r) = Row <$> traverse (traverse f) r
traverse f (Column c) = Column <$> traverse (traverse f) c
instance (Num a) => Semigroup (Vector a) where
x <> y = (*) <$> x <*> y
instance (Num a) => Monoid (Vector a) where
mempty = Scalar 1
instance (Cmplx a) => Cmplx (Vector a) where
conj = fmap conj . transposeStruct
instance (Num a, Cmplx a) => Tensor Vector a where
inner = dot
-- TODO: norm for matrices
norm t = (/ (sqrt.getSum $ foldMap (Sum . (**2) . abs) t)) <$> t
fromList xs dim = go (foldr (con . Scalar) (Column []) xs) dim
where
go (Column c) n
| n == 1 = Column [go (Row c) dim]
| l <= fromIntegral dim = Column c
| otherwise = go (Row $ take (l `div` fromIntegral n) c) dim
`con` go (Column $ drop (l `div` fromIntegral n) c) (n - 1)
where l = length c
go (Row r) n
| n == 1 = Row [go (Column r) dim]
| l <= fromIntegral dim = Row r
| otherwise = go (Column $ take (l `div` fromIntegral n) r) dim
`con` go (Row $ drop (l `div` fromIntegral n) r) (n - 1)
where l = length r
go s n = error "error when adding tensor rank"
rank (Scalar s) = 0
rank (Row []) = 1
rank (Column []) = 1
rank (Row (r:rs)) = rank r + 1
rank (Column (c:cs)) = rank c + 1
isSquare t
| (Scalar _) <- t = True
| (Column c) <- t = getAll $ go (Column c) (length c)
| (Row r) <- t = getAll $ go (Row r) (length r)
where
go (Column c) l
| length c == l = foldMap (`go` l) c
| otherwise = All False
go (Row r) l
| length r == l = foldMap (`go` l) r
| otherwise = All False
go (Scalar _) _ = All True
conjTr = conj
instance (Floating a, Eq a, Show a, Ord a, UniformRange a, Cmplx a) => QuantumRegister Vector a where
densityOp x = transposeStruct x * x
initQubit zero one
| abs zero ** 2 + abs one ** 2 == 1 = Right $ fromList [zero, one] 2
| otherwise = Left "Sum of probability of |0> and |1> state does not equal to 1"
initQubit0 = fromList [1, 0] 2
initNumQubit0 n
| n < 1 = Left "Invalid qubit number"
| otherwise = Right $ foldr (|*|) initQubit0 $ replicate (fromIntegral n - 1) initQubit0
toQuantumRegister q
| isLeft num = Left "Input list length is not a power of 2"
| otherwise = Right . norm $ fromList q 2
where num = integralLog 2 (length q)
illegalPeek (Scalar s) = show s
illegalPeek q = go 0 0
where
w = width q
h = height q
go i j
| i == h = mempty
| j == w = "\t|\n" ++ go (i + 1) 0
| j == 0 = "|\t" <> current <> "\t" <> go i (j + 1)
| otherwise = current <> "\t" <> go i (j + 1)
where
current = maybe "null" show (atM q (i, j))
subSystem lst q
| getAny $ foldMap (Any . (\ x -> x >= rank q || x < 0)) lst = Left "Index out of bounds"
| not (isSquare q) = Left "Invalid Quantum Register"
| otherwise = Right . fmap sqrt $ go lst (fmap (\x -> conj x * x) q)
where
go [] (Scalar s) = Scalar s
go is (Row r)
| null is || Prelude.head is /= 0 = foldr (+) (Scalar 0) preSum
| otherwise = Row $ map (go $ fmap (flip (-) 1) (Prelude.tail is)) r
where
preSum = map (go $ fmap (flip (-) 1) is) r
go is (Column c)
| null is || Prelude.head is /= 0 = foldr (+) (Scalar 0) preSum
| otherwise = Column $ map (go $ fmap (flip (-) 1) (Prelude.tail is)) c
where
preSum = map (go $ fmap (flip (-) 1) is) c
go _ _ = error "Exceptions not handled by subSystem function"
isEntangled lst q = do
reduced <- reducedDensity lst q
return $ abs (trace (reduced * reduced) - 1) > 1e-13
mask0 = Row [
Column[1, 0],
Column[0, 0]
]
mask1 = Row [
Column[0, 0],
Column[0, 1]
]
pauliId = Row [
Column [1, 0],
Column [0, 1]
]
instance (RealFloat a, Show a, UniformRange a) => Gates Vector (Complex a) where
pauliX = Row [
Column [Scalar (0 :+ 0), Scalar (1 :+ 0)],
Column [Scalar (1 :+ 0), Scalar (0 :+ 0)]
]
pauliY = Row [
Column [Scalar (0 :+ 0), Scalar (0 :+ 1)],
Column [Scalar (0 :+ (-1)), Scalar (0 :+ 0)]
]
pauliZ = Row [
Column [Scalar (1 :+ 0), Scalar (0 :+ 0)],
Column [Scalar (0 :+ 0), Scalar ((-1) :+ 0)]
]
hadamard = Row [
Column [Scalar (1 / sqrt 2 :+ 0), Scalar (1 / sqrt 2 :+ 0)],
Column [Scalar (1 / sqrt 2 :+ 0), Scalar ((-1) / sqrt 2 :+ 0)]
]
at :: Integral b => a -> Vector a -> (b, b) -> a
at x y z = fromMaybe x (atM y z)
atM :: Integral b => Vector a -> (b, b) -> Maybe a
atM (Scalar s) (0, 0) = Just s
atM (Column (c:cs)) (i, j)
| height (Column (c:cs)) > i = let offset = height c in
if offset > i
then atM c (i, j)
else atM (Column cs) (i - offset, j)
| otherwise = Nothing
atM (Row (r:rs)) (i, j)
| width (Row (r:rs)) > j = let offset = width r in
if offset > j
then atM r (i, j)
else atM (Row rs) (i, j - offset)
| otherwise = Nothing
atM _ _ = Nothing
con :: Vector a -> Vector a -> Vector a
con x (Row y) = Row $ x : y
con x (Column y) = Column $ x : y
con _ _ = error "Appending to Scalar is prohibited"
append :: Vector a -> Vector a -> Vector a
append (Row x) (Row y) = Row $ x ++ y
append (Column x) (Column y) = Column $ x ++ y
append _ _ = error "Vector direction mismatch"
width :: Integral b => Vector a -> b
width (Scalar s) = 1
width (Row r) = getSum $ foldMap (Sum . width) r
width (Column c) = width $ Prelude.head c
height :: Integral b => Vector a -> b
height (Scalar s) = 1
height (Column c) = getSum $ foldMap (Sum . height) c
height (Row r) = height $ Prelude.head r
-- Transform structure retaining the original rank and shape
transformStruct :: Vector a -> Vector a
transformStruct (Row (Column c:cs)) = Column . go $ Column c:cs
where
go (Row [] : _) = []
go (Column [] : _) = []
go cs = Row (map (transformStruct . Vector.head) cs)
: go (map Vector.tail cs)
transformStruct (Column (Row r:rs)) = Row . go $ Row r:rs
where
go (Row [] : _) = []
go (Column [] : _) = []
go rs = Column (map (transformStruct . Vector.head) rs)
: go (map Vector.tail rs)
transformStruct (Column cs) = Column $ map transformStruct cs
transformStruct (Row rs) = Row $ map transformStruct rs
transformStruct t = t
-- transpose via structure
transposeStruct :: Vector a -> Vector a
transposeStruct (Scalar s) = Scalar s
transposeStruct (Row r) = Column $ map transposeStruct r
transposeStruct (Column c) = Row $ map transposeStruct c
-- transpose retaining structure
transpose :: Vector a -> Vector a
transpose = transformStruct . transposeStruct
head :: Vector a -> Vector a
head (Scalar s) = Scalar s
head (Row r) = Prelude.head r
head (Column c) = Prelude.head c
last :: Vector a -> Vector a
last (Scalar s) = Scalar s
last (Row r) = Prelude.last r
last (Column c) = Prelude.last c
tail :: Vector a -> Vector a
tail (Scalar s) = Scalar s
tail (Row r) = Row $ Prelude.tail r
tail (Column c) = Column $ Prelude.tail c
init :: Vector a -> Vector a
init (Scalar s) = Scalar s
init (Row r) = Row $ Prelude.init r
init (Column c) = Column $ Prelude.init c
dot :: Num a => Vector a -> Vector a -> Vector a
dot x y = transposeStruct x * y
reducedDensity :: (Num a, Cmplx a, Floating a) => [Int] -> Vector a -> Either String (Vector a)
reducedDensity lst q
| getAny $ foldMap (Any . (\ x -> x >= rank q || x < 0)) lst = Left "Index out of bounds"
| not (isSquare q) = Left "Invalid Quantum Register"
| otherwise = Right $ go lst q (transposeStruct q)
where
go [] (Scalar s) (Scalar t) = Scalar (s * t)
go is (Column c) (Row r)
| null is || Prelude.head is /= 0 = (getSum . foldMap Sum) $ zipWith (go (flip (-) 1 <$> is)) c r
| otherwise = Row $ map (Column . ($ c) . (\ b a -> map (\ x -> go (flip (-) 1 <$> Prelude.tail is) x b) a)) r
go _ _ _ = error "Input is not a valid statevector"
isColumn :: Vector a -> Bool
isColumn (Column _) = True
isColumn _ = False
isRow :: Vector a -> Bool
isRow (Row _) = True
isRow _ = False
isScalar :: Vector a -> Bool
isScalar (Scalar _) = True
isScalar _ = False
trace :: (Num a) => Vector a -> a
trace (Scalar s) = s
trace (Row r) = (getSum . foldMap Sum) $ zipWith go [0, 1 ..] r
where
go i (Row r) = trace (r !! i)
go i (Column c) = trace (c !! i)
go i (Scalar s) = s
{-
Tensor type:
All one-dimensional tensors are column vectors. This means matrices,
which are rank 2 tensors, compose of multiple column tensors, which
may not follow conventional representation in other traversable types.
-}
-- data Tensor a = Scalar a | Tensor [Tensor a]
-- deriving(Eq)
-- instance (Show a) => Show (Tensor a) where
-- show (Scalar s) = show s
-- show (Tensor ((Tensor t):ts)) = "[\n" ++ unlines (go (Tensor t:ts)) ++ "]"
-- where go = fmap (" " ++).concatMap(lines . show)
-- show (Tensor s) = show s ++ "\n"
-- instance Functor Tensor where
-- fmap f (Scalar s) = Scalar $ f s
-- fmap f (Tensor t) = Tensor $ map (fmap f) t
-- instance Applicative Tensor where
-- pure = Scalar
-- (Scalar s) <*> t = fmap s t
-- t <*> (Scalar s) = fmap ($ s) t
-- (Tensor []) <*> _ = Tensor []
-- (Tensor (Scalar s : ss)) <*> t = Tensor $ fmap s t : tensorList
-- where Tensor tensorList = Tensor ss <*> t
-- (Tensor (Tensor t : ts)) <*> t2 = Tensor $ (Tensor t <*> t2) : tensorList
-- where Tensor tensorList = Tensor ts <*> t2
-- instance Monad Tensor where
-- (Scalar s) >>= f = f s
-- (Tensor t) >>= f = Tensor $ map (>>= f) t
-- instance (Num a) => Num (Tensor a) where
-- (Scalar s) + t = fmap (+ s) t
-- t + (Scalar s) = fmap (+ s) t
-- (Tensor xs) + (Tensor ys) = Tensor $ zipWith (+) xs ys
-- (Scalar s) * t = fmap (* s) t
-- t * (Scalar s) = fmap (* s) t
-- _ * Tensor[] = Tensor []
-- (Tensor x) * (Tensor y) = getSum $ foldMap Sum (zipWith go x y)
-- where
-- go (Tensor a) b = Tensor $ map (* b) a
-- go a b = a * b
-- abs = fmap abs
-- signum = fmap signum
-- negate = fmap negate
-- fromInteger i = Scalar $ fromInteger i
-- instance Foldable Tensor where
-- foldr f acc (Tensor t) = foldr (flip $ foldr f) acc t
-- foldr f acc (Scalar s) = f s acc
-- instance Traversable Tensor where
-- traverse f (Scalar s) = Scalar <$> f s
-- traverse f (Tensor t) = Tensor <$> traverse (traverse f) t
-- -- TODO: revise function for higher-dimension tensors
-- fromList :: [a] -> Int -> Tensor a
-- fromList xs dim = go (foldr (con . Scalar) (Tensor[]) xs) dim
-- where
-- go (Tensor t) n
-- | n == 1 = Tensor [go (Tensor t) dim]
-- | length t <= dim = Tensor t
-- | otherwise = go (Tensor $ take (length t `div` n) t) dim
-- `con` go (Tensor $ drop (length t `div` n) t) (n - 1)
-- go s n = error "error when adding tensor rank"
-- product :: (Num a) => Tensor a -> Tensor a -> Tensor a
-- product (Scalar s) t = Scalar s * t
-- product t (Scalar s) = t * Scalar s
-- product (Tensor []) _ = Tensor []
-- product _ (Tensor []) = Tensor []
-- product (Tensor (x:xs)) y = Tensor $ current : rest
-- where
-- current = Tensor.product x y
-- Tensor rest = Tensor.product (Tensor xs) y
-- norm :: (Floating a) => Tensor a -> Tensor a
-- norm t= (/ (sqrt.getSum $ foldMap (Sum . (**2) . abs) t)) <$> t
-- append :: Tensor a -> Tensor a -> Tensor a
-- append (Tensor x) (Tensor y) = Tensor $ x ++ y
-- append _ _ = error "Concatenating scalars is prohibited"
-- con :: Tensor a -> Tensor a -> Tensor a
-- con x (Tensor y) = Tensor $ x : y
-- con _ _ = error "Appending to Scalar is prohibited"
-- dot :: Num a => Tensor a -> Tensor a -> a
-- dot (Tensor x) (Tensor y) = getSum $ foldMap Sum (zipWith dot x y)
-- dot (Scalar x) (Scalar y) = x * y
-- dot _ _ = error "Length mismatch"
-- flatten2d :: Tensor a -> Tensor a
-- flatten2d (Tensor ((Tensor ((Tensor (t:ts)):ss)):xs)) = Tensor . go $ Tensor (Tensor (t:ts):ss):xs
-- where
-- go :: [Tensor a] -> [Tensor a]
-- go (Tensor (Tensor (Scalar s:ss):us):ys) = foldr (\a acc ->
-- let (Tensor result) = Tensor.transpose a
-- in result ++ acc
-- ) [] (Tensor (Tensor (Scalar s:ss):us):ys)
-- go y = go flattened
-- where flattened = foldr (\a acc ->
-- let (Tensor next) = a
-- in Tensor (go next) : acc
-- ) [] y
-- flatten2d t = t
-- head :: Tensor a -> Tensor a
-- head (Tensor ts) = Prelude.head ts
-- head t = t
-- last :: Tensor a -> Tensor a
-- last (Tensor ts) = Prelude.last ts
-- last t = t
-- tail :: Tensor a -> Tensor a
-- tail (Tensor ts) = Tensor $ Prelude.tail ts
-- tail t = t
-- init :: Tensor a -> Tensor a
-- init (Tensor ts) = Tensor $ Prelude.init ts
-- init t = t
-- transpose :: Tensor a -> Tensor a
-- transpose (Tensor (Tensor t:ts)) = Tensor $ go $ Tensor t:ts
-- where
-- go :: [Tensor a] -> [Tensor a]
-- go (Tensor [] : _) = []
-- go xs = Tensor (map Tensor.head xs) : go (map Tensor.tail xs)
-- transpose (Tensor (Scalar s:ss)) = Tensor $ map (Tensor.(:[])) (Scalar s:ss)
-- transpose t = t
-- isSquare :: Tensor a -> Bool
-- isSquare (Scalar _) = True
-- isSquare (Tensor []) = True
-- isSquare (Tensor t) = getAll $ go (Tensor t) (length t)
-- where
-- go (Tensor x) l
-- | length x == l = foldMap (`go` l) x
-- | otherwise = All False
-- go (Scalar _) _ = All True
-- rank :: Integral b => Tensor a -> b
-- rank (Scalar s) = 0
-- rank (Tensor []) = 1
-- rank (Tensor (t:ts)) = rank t + 1
|
State Before: α✝ β✝ α β : Type u
inst✝¹ : Fintype α
inst✝ : Zero β
⊢ (#α →₀ β) = (#β) ^ Fintype.card α State After: no goals Tactic: simp |
Require Import Logic.Axiom.Extensionality.
Require Import Logic.Rel.R.
Require Import Logic.Rel.Id.
Require Import Logic.Rel.Range.
Require Import Logic.Rel.Include.
Require Import Logic.Rel.Converse.
Require Import Logic.Rel.Intersect.
Require Import Logic.Rel.Composition.
Require Import Logic.Rel.Coreflexive.
(* Domain of a relation defined as coreflexive relation rather than set *)
Inductive dom (a b:Type) (r:R a b) : Rel a :=
| mkDom : forall (x:a), (exists (y:b), r x y) -> dom a b r x x
.
Arguments dom {a} {b}.
Lemma dom_corefl : forall (a b:Type) (r:R a b), coreflexive (dom r).
Proof.
unfold coreflexive. intros a b r. apply incl_charac. intros x y H1.
destruct H1. constructor.
Qed.
Lemma dom_universal : forall (a b:Type) (r:R a b) (s:Rel a), s <= id ->
dom r <= s <-> r <= r ; s.
Proof.
intros a b r s H1. split; intros H2; apply incl_charac; intros x y H3.
- unfold comp. exists x. split; try assumption.
assert (dom r x x) as H4.
{ constructor. exists y. assumption. }
apply incl_charac_to with (dom r); assumption.
- destruct H3 as [x [y H3]].
apply (incl_charac_to _ _ _ (r ; s)) in H3; try assumption.
unfold comp in H3. destruct H3 as [z [H3 H4]]. generalize H3. intros H3'.
apply (incl_charac_to _ _ _ id) in H3'; try assumption.
destruct H3'. assumption.
Qed.
Lemma dom_inter : forall (a b:Type) (r:R a b),
dom r = ((conv r ; r) /\ id).
Proof.
intros a b r. apply Ext. intros x y. split; intros H1.
- destruct H1 as [x [y H1]]. unfold inter, conv, comp. split.
+ exists y. split; assumption.
+ constructor.
- unfold inter in H1. destruct H1 as [H1 H2]. destruct H2 as [x].
constructor. unfold comp in H1. destruct H1 as [y [H1 H2]].
exists y. assumption.
Qed.
Lemma dom_comp_self : forall (a b:Type) (r:R a b), r = r ; dom r.
Proof.
intros a b r. apply Ext. intros x y. unfold comp. split; intros H1.
- exists x. split; try assumption. constructor. exists y. assumption.
- destruct H1 as [z [H1 H2]]. destruct H1. assumption.
Qed.
Lemma dom_comp : forall (a b c:Type) (r:R a b) (s:R b c),
dom (s ; r) = dom (dom s ; r).
Proof.
intros a b c r s. apply Ext. intros x y. split; intros H1.
- destruct H1 as [x [y H1]]. constructor. unfold comp in H1.
destruct H1 as [z [H1 H2]]. exists z. unfold comp. exists z.
split; try assumption. constructor. exists y. assumption.
- destruct H1 as [x [y H1]]. constructor. unfold comp in H1.
destruct H1 as [z [H1 H2]]. destruct H2 as [z [y H2]].
exists y. exists z. split; assumption.
Qed.
Lemma dom_comp_incl : forall (a b c:Type) (r:R a b) (s:R b c),
dom (s ; r) <= dom r.
Proof.
intros a b c r s. apply incl_charac. intros x y H1.
destruct H1 as [x [z [y [H1 H2]]]]. constructor. exists y. assumption.
Qed.
Lemma dom_inter_conv : forall (a b:Type) (r s:R a b),
dom (s /\ r) = (id /\ (conv r ; s)).
Proof.
intros a b r s. apply Ext. intros x y. split; intros H1.
- destruct H1 as [x [y [H1 H2]]]. split; try constructor.
exists y. split; assumption.
- destruct H1 as [H1 [z [H2 H3]]]. destruct H1. constructor.
exists z. split; assumption.
Qed.
Lemma dom_incl_compat : forall (a b:Type) (r s:R a b),
r <= s -> dom r <= dom s.
Proof.
intros a b r s H1. apply incl_charac. intros x y H2.
destruct H2 as [x [y H2]]. constructor. exists y.
apply incl_charac_to with r; assumption.
Qed.
Lemma dom_rng_conv : forall (a b:Type) (r:R a b), dom r = rng (conv r).
Proof.
intros a b r. apply Ext. intros x y. split; intros H1;
destruct H1 as [x [y H1]]; constructor; exists y; assumption.
Qed.
Lemma rng_dom_conv : forall (a b:Type) (r:R a b), rng r = dom (conv r).
Proof.
intros a b r. apply Ext. intros x y. split; intros H1;
destruct H1 as [y [x H1]]; constructor; exists x; assumption.
Qed.
|
```python
import numpy as np
%matplotlib inline
from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import pickle
```
# 8-7. Batch Normalizations
Just like we normalize the input of the network, it turns out that normalizing values before the activation each layer is beneficial for training neural networks. Usually, a batch norm layer is inserted before an activation layer.
The benefits of batch norm are:
1. Faster training via higher learning rate
1. Robustness for initial weight
1. Slight regularization effect
Paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [arXiv:1502.03167](https://arxiv.org/abs/1502.03167)
With the learnable parameter $\gamma$ and $\beta$ (initially 1 and 0), the forward pass of batch norm is defined as followings:
\begin{align}
\mu &\leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \\
\sigma^2 &\leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)^2 \\
\hat{x_i}&\leftarrow \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}} \\
y_i &\leftarrow \gamma \hat{x_i} + \beta
\end{align}
The backward pass can be derived using computational graph. [Understanding the backward pass through Batch Normalization Layer](https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html) by Frederik Kratzert has a detailed explanation.
## Five layer net w/ or wo/ batch normalization
* Five layers
* Around 40 neurons
* ReLU
* Random initialization ($10$–$10^{-4}$)
* With or without batch normalization
```python
plt.rcParams['figure.figsize'] = [16, 16]
```
```python
fig, axes = plt.subplots(4, 4)
for row in range(4):
for col in range(4):
index = row * 4 + col
with_log = pickle.load(open('code/08_techniques/08_7_batch_norm/experiment_{}_True.pkl'.format(index), "rb"))
without_log = pickle.load(open('code/08_techniques/08_7_batch_norm/experiment_{}_False.pkl'.format(index), "rb"))
current = axes[row, col]
current.plot(with_log['accuracy_test_itr'], with_log['accuracy_test'], 'b', label='with bn')
current.plot(without_log['accuracy_test_itr'], without_log['accuracy_test'], 'r', label='without bn')
current.legend()
current.set_title('stddev %.5f' % with_log['weight_stddev'])
plt.show()
```
|
[STATEMENT]
lemma crel_vs_iterate_state:
"crel_vs (=) () (iterate_state f xs)" if "((=) ===>\<^sub>T R) g f"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. crel_vs (=) () (iterate_state f xs)
[PROOF STEP]
proof (induction xs)
[PROOF STATE]
proof (state)
goal (2 subgoals):
1. crel_vs (=) () (iterate_state f [])
2. \<And>a xs. crel_vs (=) () (iterate_state f xs) \<Longrightarrow> crel_vs (=) () (iterate_state f (a # xs))
[PROOF STEP]
case Nil
[PROOF STATE]
proof (state)
this:
goal (2 subgoals):
1. crel_vs (=) () (iterate_state f [])
2. \<And>a xs. crel_vs (=) () (iterate_state f xs) \<Longrightarrow> crel_vs (=) () (iterate_state f (a # xs))
[PROOF STEP]
then
[PROOF STATE]
proof (chain)
picking this:
[PROOF STEP]
show ?case
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. crel_vs (=) () (iterate_state f [])
[PROOF STEP]
by (simp; rule crel_vs_return_ext[unfolded Transfer.Rel_def]; simp; fail)
[PROOF STATE]
proof (state)
this:
crel_vs (=) () (iterate_state f [])
goal (1 subgoal):
1. \<And>a xs. crel_vs (=) () (iterate_state f xs) \<Longrightarrow> crel_vs (=) () (iterate_state f (a # xs))
[PROOF STEP]
next
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. \<And>a xs. crel_vs (=) () (iterate_state f xs) \<Longrightarrow> crel_vs (=) () (iterate_state f (a # xs))
[PROOF STEP]
case (Cons x xs)
[PROOF STATE]
proof (state)
this:
crel_vs (=) () (iterate_state f xs)
goal (1 subgoal):
1. \<And>a xs. crel_vs (=) () (iterate_state f xs) \<Longrightarrow> crel_vs (=) () (iterate_state f (a # xs))
[PROOF STEP]
have unit_expand: "() = (\<lambda> a f. f a) () (\<lambda> _. ())"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. () = ()
[PROOF STEP]
..
[PROOF STATE]
proof (state)
this:
() = ()
goal (1 subgoal):
1. \<And>a xs. crel_vs (=) () (iterate_state f xs) \<Longrightarrow> crel_vs (=) () (iterate_state f (a # xs))
[PROOF STEP]
from Cons
[PROOF STATE]
proof (chain)
picking this:
crel_vs (=) () (iterate_state f xs)
[PROOF STEP]
show ?case
[PROOF STATE]
proof (prove)
using this:
crel_vs (=) () (iterate_state f xs)
goal (1 subgoal):
1. crel_vs (=) () (iterate_state f (x # xs))
[PROOF STEP]
by simp
(rule
bind_transfer[unfolded rel_fun_def, rule_format, unfolded unit_expand]
that[unfolded rel_fun_def, rule_format] HOL.refl
)+
[PROOF STATE]
proof (state)
this:
crel_vs (=) () (iterate_state f (x # xs))
goal:
No subgoals!
[PROOF STEP]
qed |
# Global configuration settings
"Configuration options"
module config
# Data directories
"Location of the data files in this package"
const datadir = normpath(joinpath(dirname(@__FILE__), "..", "data"))
end
include("config_defaults.jl")
|
T-to-≡ : ∀ {x} → T x → x ≡ true
T-to-≡ {true} tx = refl
≡-to-T : ∀ {x} → x ≡ true → T x
≡-to-T {true} x≡true = tt
≤-to-→ : ∀ {x y} → x 𝔹.≤ y → T x → T y
≤-to-→ {true} {true} x≤y _ = tt
→-to-≤ : ∀ {x y} → (T x → T y) → x 𝔹.≤ y
→-to-≤ {false} {false} Tx→Ty = b≤b
→-to-≤ {false} {true} Tx→Ty = f≤t
→-to-≤ {true} {false} Tx→Ty = ⊥-elim (Tx→Ty tt)
→-to-≤ {true} {true} Tx→Ty = b≤b
toFun : (x : ℕ → Bool) → (∀ i → x (suc i) 𝔹.≤ x i) →
∀ i → T (x (suc i)) → T (x i)
toFun x p i = ≤-to-→ (p i)
fromFun : (x : ℕ → Bool) → (∀ i → T (x (suc i)) → T (x i)) →
∀ i → x (suc i) 𝔹.≤ x i
fromFun _ f i = →-to-≤ (f i)
Dec-T : ∀ b → Dec (T b)
Dec-T false = no id
Dec-T true = yes tt
private
_≈Decidable_ : ∀ {P Q : ℕ → Set} (P? : U.Decidable P) (Q? : U.Decidable Q) → Set
P? ≈Decidable Q? = ∀ x → isYes (P? x) ≡ isYes (Q? x)
make≈Decidable : {P Q : ℕ → Set} → (∀ x → P x → Q x) → (∀ x → Q x → P x) →
(P? : U.Decidable P) (Q? : U.Decidable Q) → P? ≈Decidable Q?
make≈Decidable P→Q Q→P P? Q? x with P? x | Q? x
... | yes p | yes q = refl
... | yes p | no ¬q = contradiction (P→Q _ p) ¬q
... | no ¬p | yes q = contradiction (Q→P _ q) ¬p
... | no ¬p | no ¬q = refl
ℕ≤-all-dec′ : ∀ {P : ℕ → Set} → U.Decidable P → U.Decidable (λ n → ∀ i → i ≤ n → P i)
ℕ≤-all-dec′ P? = DecU⇒decidable $ ℕ≤-all-dec (decidable⇒DecU P?)
idem-map-Pred : (α : ℕ → Bool) → ℕ → Set
idem-map-Pred α n = ∀ i → i ≤ n → T (α i)
idem-map-Pred? : (α : ℕ → Bool) → U.Decidable (idem-map-Pred α)
idem-map-Pred? α = ℕ≤-all-dec′ (λ i → Dec-T (α i))
idem-map : (ℕ → Bool) → (ℕ → Bool)
idem-map α n = isYes (idem-map-Pred? α n)
idem-map-idem : ∀ α → idem-map (idem-map α) ≈ idem-map α
idem-map-idem α =
make≈Decidable
(λ n x i i≤n → {! !})
{! !}
(idem-map-Pred? (λ n → isYes (idem-map-Pred? α n)))
(idem-map-Pred? α)
-- x : idem-map-Pred (λ n₁ → isYes (idem-map-Pred? α n₁)) n
-- x : ∀ i → i ≤ n → T (isYes (idem-map-Pred? α i))
-- True toWitness
-- hyp : idem-map-Pred α i
-- hyp : ∀ i →
-- Goal : ∀ i → i ≤ n → T (α i)
-- idem-map α n
-- isYes (ℕ-all-dec′ (λ i → Dec-⊤ (α i)) n)
idem-map-image : ∀ α → let x = idem-map α in (∀ i → T (x (suc i)) → T (x i))
idem-map-image α n ppp with ℕ≤-all-dec′ (λ i → Dec-T (α i)) n
... | yes _ = {! !}
... | no _ = {! !}
|
/-
Copyright (c) 2021 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
! This file was ported from Lean 3 source module geometry.manifold.whitney_embedding
! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathbin.Geometry.Manifold.Diffeomorph
import Mathbin.Geometry.Manifold.Instances.Real
import Mathbin.Geometry.Manifold.PartitionOfUnity
/-!
# Whitney embedding theorem
In this file we prove a version of the Whitney embedding theorem: for any compact real manifold `M`,
for sufficiently large `n` there exists a smooth embedding `M → ℝ^n`.
## TODO
* Prove the weak Whitney embedding theorem: any `σ`-compact smooth `m`-dimensional manifold can be
embedded into `ℝ^(2m+1)`. This requires a version of Sard's theorem: for a locally Lipschitz
continuous map `f : ℝ^m → ℝ^n`, `m < n`, the range has Hausdorff dimension at most `m`, hence it
has measure zero.
## Tags
partition of unity, smooth bump function, whitney theorem
-/
universe uι uE uH uM
variable {ι : Type uι} {E : Type uE} [NormedAddCommGroup E] [NormedSpace ℝ E]
[FiniteDimensional ℝ E] {H : Type uH} [TopologicalSpace H] {I : ModelWithCorners ℝ E H}
{M : Type uM} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M]
open Function Filter FiniteDimensional Set
open Topology Manifold Classical Filter BigOperators
noncomputable section
namespace SmoothBumpCovering
/-!
### Whitney embedding theorem
In this section we prove a version of the Whitney embedding theorem: for any compact real manifold
`M`, for sufficiently large `n` there exists a smooth embedding `M → ℝ^n`.
-/
variable [T2Space M] [hi : Fintype ι] {s : Set M} (f : SmoothBumpCovering ι I M s)
include hi
/-- Smooth embedding of `M` into `(E × ℝ) ^ ι`. -/
def embeddingPiTangent : C^∞⟮I, M; 𝓘(ℝ, ι → E × ℝ), ι → E × ℝ⟯
where
toFun x i := (f i x • extChartAt I (f.c i) x, f i x)
contMdiff_toFun :=
contMdiff_pi_space.2 fun i =>
((f i).smooth_smul contMdiffOn_extChartAt).prod_mk_space (f i).Smooth
#align smooth_bump_covering.embedding_pi_tangent SmoothBumpCovering.embeddingPiTangent
@[local simp]
theorem embeddingPiTangent_coe :
⇑f.embeddingPiTangent = fun x i => (f i x • extChartAt I (f.c i) x, f i x) :=
rfl
#align smooth_bump_covering.embedding_pi_tangent_coe SmoothBumpCovering.embeddingPiTangent_coe
theorem embeddingPiTangent_injOn : InjOn f.embeddingPiTangent s :=
by
intro x hx y hy h
simp only [embedding_pi_tangent_coe, funext_iff] at h
obtain ⟨h₁, h₂⟩ := Prod.mk.inj_iff.1 (h (f.ind x hx))
rw [f.apply_ind x hx] at h₂
rw [← h₂, f.apply_ind x hx, one_smul, one_smul] at h₁
have := f.mem_ext_chart_at_source_of_eq_one h₂.symm
exact (extChartAt I (f.c _)).InjOn (f.mem_ext_chart_at_ind_source x hx) this h₁
#align smooth_bump_covering.embedding_pi_tangent_inj_on SmoothBumpCovering.embeddingPiTangent_injOn
theorem embeddingPiTangent_injective (f : SmoothBumpCovering ι I M) :
Injective f.embeddingPiTangent :=
injective_iff_injOn_univ.2 f.embeddingPiTangent_injOn
#align smooth_bump_covering.embedding_pi_tangent_injective SmoothBumpCovering.embeddingPiTangent_injective
theorem comp_embeddingPiTangent_mfderiv (x : M) (hx : x ∈ s) :
((ContinuousLinearMap.fst ℝ E ℝ).comp
(@ContinuousLinearMap.proj ℝ _ ι (fun _ => E × ℝ) _ _ (fun _ => inferInstance)
(f.ind x hx))).comp
(mfderiv I 𝓘(ℝ, ι → E × ℝ) f.embeddingPiTangent x) =
mfderiv I I (chartAt H (f.c (f.ind x hx))) x :=
by
set L :=
(ContinuousLinearMap.fst ℝ E ℝ).comp
(@ContinuousLinearMap.proj ℝ _ ι (fun _ => E × ℝ) _ _ (fun _ => inferInstance) (f.ind x hx))
have := L.has_mfderiv_at.comp x f.embedding_pi_tangent.mdifferentiable_at.has_mfderiv_at
convert hasMfderivAt_unique this _
refine' (hasMfderivAt_extChartAt I (f.mem_chart_at_ind_source x hx)).congr_of_eventuallyEq _
refine' (f.eventually_eq_one x hx).mono fun y hy => _
simp only [embedding_pi_tangent_coe, ContinuousLinearMap.coe_comp', (· ∘ ·),
ContinuousLinearMap.coe_fst', ContinuousLinearMap.proj_apply]
rw [hy, Pi.one_apply, one_smul]
#align smooth_bump_covering.comp_embedding_pi_tangent_mfderiv SmoothBumpCovering.comp_embeddingPiTangent_mfderiv
theorem embeddingPiTangent_ker_mfderiv (x : M) (hx : x ∈ s) :
LinearMap.ker (mfderiv I 𝓘(ℝ, ι → E × ℝ) f.embeddingPiTangent x) = ⊥ :=
by
apply bot_unique
rw [←
(mdifferentiable_chart I (f.c (f.ind x hx))).ker_mfderiv_eq_bot
(f.mem_chart_at_ind_source x hx),
← comp_embedding_pi_tangent_mfderiv]
exact LinearMap.ker_le_ker_comp _ _
#align smooth_bump_covering.embedding_pi_tangent_ker_mfderiv SmoothBumpCovering.embeddingPiTangent_ker_mfderiv
theorem embeddingPiTangent_injective_mfderiv (x : M) (hx : x ∈ s) :
Injective (mfderiv I 𝓘(ℝ, ι → E × ℝ) f.embeddingPiTangent x) :=
LinearMap.ker_eq_bot.1 (f.embeddingPiTangent_ker_mfderiv x hx)
#align smooth_bump_covering.embedding_pi_tangent_injective_mfderiv SmoothBumpCovering.embeddingPiTangent_injective_mfderiv
omit hi
/-- Baby version of the **Whitney weak embedding theorem**: if `M` admits a finite covering by
supports of bump functions, then for some `n` it can be immersed into the `n`-dimensional
Euclidean space. -/
theorem exists_immersion_euclidean [Finite ι] (f : SmoothBumpCovering ι I M) :
∃ (n : ℕ)(e : M → EuclideanSpace ℝ (Fin n)),
Smooth I (𝓡 n) e ∧ Injective e ∧ ∀ x : M, Injective (mfderiv I (𝓡 n) e x) :=
by
cases nonempty_fintype ι
set F := EuclideanSpace ℝ (Fin <| finrank ℝ (ι → E × ℝ))
letI : IsNoetherian ℝ (E × ℝ) := IsNoetherian.iff_fg.2 inferInstance
letI : FiniteDimensional ℝ (ι → E × ℝ) := IsNoetherian.iff_fg.1 inferInstance
set eEF : (ι → E × ℝ) ≃L[ℝ] F :=
ContinuousLinearEquiv.ofFinrankEq finrank_euclidean_space_fin.symm
refine'
⟨_, eEF ∘ f.embedding_pi_tangent, eEF.to_diffeomorph.smooth.comp f.embedding_pi_tangent.smooth,
eEF.injective.comp f.embedding_pi_tangent_injective, fun x => _⟩
rw [mfderiv_comp _ eEF.differentiable_at.mdifferentiable_at
f.embedding_pi_tangent.mdifferentiable_at,
eEF.mfderiv_eq]
exact eEF.injective.comp (f.embedding_pi_tangent_injective_mfderiv _ trivial)
#align smooth_bump_covering.exists_immersion_euclidean SmoothBumpCovering.exists_immersion_euclidean
end SmoothBumpCovering
/-- Baby version of the Whitney weak embedding theorem: if `M` admits a finite covering by
supports of bump functions, then for some `n` it can be embedded into the `n`-dimensional
Euclidean space. -/
theorem exists_embedding_euclidean_of_compact [T2Space M] [CompactSpace M] :
∃ (n : ℕ)(e : M → EuclideanSpace ℝ (Fin n)),
Smooth I (𝓡 n) e ∧ ClosedEmbedding e ∧ ∀ x : M, Injective (mfderiv I (𝓡 n) e x) :=
by
rcases SmoothBumpCovering.exists_isSubordinate I isClosed_univ fun (x : M) _ => univ_mem with
⟨ι, f, -⟩
haveI := f.fintype
rcases f.exists_immersion_euclidean with ⟨n, e, hsmooth, hinj, hinj_mfderiv⟩
exact ⟨n, e, hsmooth, hsmooth.continuous.closed_embedding hinj, hinj_mfderiv⟩
#align exists_embedding_euclidean_of_compact exists_embedding_euclidean_of_compact
|
/**
*
* @file core_dgbelr.c
*
* PLASMA core_blas kernel
* PLASMA is a software package provided by Univ. of Tennessee,
* Univ. of California Berkeley and Univ. of Colorado Denver
*
* @version 2.6.0
* @author Azzam Haidar
* @date 2011-05-15
* @generated d Tue Jan 7 11:44:50 2014
*
**/
#include <lapacke.h>
#include "common.h"
#define A(_m, _n) (double *)plasma_geteltaddr(A, ((_m)-1), ((_n)-1), eltsize)
#define V(_m) &(V[(_m)-1])
#define TAU(_m) &(TAU[(_m)-1])
/***************************************************************************//**
*
* @ingroup CORE_double
*
* CORE_dgbelr is a kernel that will operate on a region (triangle) of data
* bounded by st and ed. This kernel eliminate a column by an element-wise
* annihiliation, and for each annihiliation, it apply a left update, followed
* by an right update on the diagonal 2x2 element, where it create a new nnz,
* eliminate it and update V and TAU, then it continue until finishing the the
* whole column. When this is done, it take advantage that data are on cache
* and will apply the right on the remaining part of this region that has not
* been updated by the right yet.
* Note that the column to be eliminated is located at st-1.
*
*******************************************************************************
*
* @param[in] uplo
* @arg PlasmaLower:
* @arg PlasmaUpper:
*
* @param[in] N
* The order of the matrix A.
*
* @param[in, out] A
* A pointer to the descriptor of the matrix A.
*
* @param[out] V
* double array, dimension (N).
* The scalar elementary reflectors are written in this
* array. So it is used as a workspace for V at each step
* of the bulge chasing algorithm.
*
* @param[out] TAU
* double array, dimension (N).
* The scalar factors of the elementary reflectors are written
* in thisarray. So it is used as a workspace for TAU at each step
* of the bulge chasing algorithm.
*
* @param[in] st
* A pointer to the start index where this kernel will operate.
*
* @param[in] ed
* A pointer to the end index where this kernel will operate.
*
* @param[in] eltsize
* PLASMA internal value which refer to the size of the precision.
*
*******************************************************************************
*
* @return
* \retval PLASMA_SUCCESS successful exit
* \retval <0 if -i, the i-th argument had an illegal value
*
******************************************************************************/
/***************************************************************************//**
* TYPE 1-BDL Householder
* add -1 because of C
******************************************************************************/
int
CORE_dgbelr(PLASMA_enum uplo, int N,
PLASMA_desc *A,
double *V,
double *TAU,
int st,
int ed,
int eltsize)
{
int NB, J1, J2;
int len1, len2, t1ed, t2st;
int i;
static double zzero = 0.0;
PLASMA_desc vA=*A;
/* Check input arguments */
if (N < 0) {
coreblas_error(2, "Illegal value of N");
return -2;
}
if (ed <= st) {
coreblas_error(6, "Illegal value of st and ed (internal)");
return -6;
}
/* Quick return */
if (N == 0)
return PLASMA_SUCCESS;
NB = A->mb;
if( uplo == PlasmaLower ){
/* ========================
* LOWER CASE
* ========================*/
for (i = ed; i >= st+1 ; i--){
/* generate Householder to annihilate a(i+k-1,i) within the band*/
*V(i) = *A(i, (st-1));
*A(i, (st-1)) = zzero;
LAPACKE_dlarfg_work( 2, A((i-1),(st-1)), V(i), 1, TAU(i));
/* apply reflector from the left (horizontal row) and from the right for only the diagonal 2x2.*/
J1 = st;
J2 = i-2;
t1ed = (J2/NB)*NB;
t2st = max(t1ed+1,J1);
len1 = t1ed-J1+1;
len2 = J2-t2st+1;
if(len1>0)CORE_dlarfx2(PlasmaLeft, len1 , *V(i), (*TAU(i)), A(i-1, J1 ), ELTLDD(vA, (i-1)), A(i, J1 ), ELTLDD(vA, i) );
if(len2>0)CORE_dlarfx2(PlasmaLeft, len2 , *V(i), (*TAU(i)), A(i-1, t2st), ELTLDD(vA, (i-1)), A(i, t2st), ELTLDD(vA, i) );
CORE_dlarfx2ce(PlasmaLower, V(i), TAU(i), A(i-1,i-1), A(i,i-1), A(i,i));
}
/* APPLY RIGHT ON THE REMAINING ELEMENT OF KERNEL 1 */
for (i = ed; i >= st+1 ; i--){
J1 = i+1;
J2 = min(ed,N);
t1ed = (J2/NB)*NB;
t2st = max(t1ed+1,J1);
len1 = t1ed-J1+1;
len2 = J2-t2st+1;
if(len1>0)CORE_dlarfx2(PlasmaRight, len1, (*V(i)), (*TAU(i)), A(J1,i-1), ELTLDD(vA, J1) , A(J1 , i), ELTLDD(vA, J1) );
if(len2>0)CORE_dlarfx2(PlasmaRight, len2, (*V(i)), (*TAU(i)), A(t2st,i-1), ELTLDD(vA, t2st), A(t2st, i), ELTLDD(vA, t2st) );
}
} else {
/* ========================
* UPPER CASE
* ========================*/
for (i = ed; i >= st+1 ; i--){
/* generate Householder to annihilate a(i+k-1,i) within the band*/
*V(i) = *A((st-1), i);
*A((st-1), i) = zzero;
LAPACKE_dlarfg_work( 2, A((st-1), (i-1)), V(i), 1, TAU(i));
/* apply reflector from the left (horizontal row) and from the right for only the diagonal 2x2.*/
J1 = st;
J2 = i-2;
t1ed = (J2/NB)*NB;
t2st = max(t1ed+1,J1);
len1 = t1ed-J1+1;
len2 = J2-t2st+1;
if(len1>0)CORE_dlarfx2(PlasmaRight, len1, (*V(i)), (*TAU(i)), A(J1,i-1), ELTLDD(vA, J1) , A(J1 , i), ELTLDD(vA, J1) );
if(len2>0)CORE_dlarfx2(PlasmaRight, len2, (*V(i)), (*TAU(i)), A(t2st,i-1), ELTLDD(vA, t2st), A(t2st, i), ELTLDD(vA, t2st) );
CORE_dlarfx2ce(PlasmaUpper, V(i), TAU(i), A((i-1),(i-1)), A((i-1), i), A(i,i));
}
/* APPLY LEFT ON THE REMAINING ELEMENT OF KERNEL 1*/
for (i = ed; i >= st+1 ; i--){
J1 = i+1;
J2 = min(ed,N);
t1ed = (J2/NB)*NB;
t2st = max(t1ed+1,J1);
len1 = t1ed-J1+1;
len2 = J2-t2st+1;
if(len1>0)CORE_dlarfx2(PlasmaLeft, len1 , *V(i), (*TAU(i)), A(i-1, J1 ), ELTLDD(vA, (i-1)), A(i, J1 ), ELTLDD(vA, i) );
if(len2>0)CORE_dlarfx2(PlasmaLeft, len2 , *V(i), (*TAU(i)), A(i-1, t2st), ELTLDD(vA, (i-1)), A(i, t2st), ELTLDD(vA, i) );
}
} /* end of else for the upper case*/
return PLASMA_SUCCESS;
}
|
import ring_theory.coprime
import data.real.basic
import data.nat.modeq
open nat
noncomputable theory
namespace fermat
def is_sum_of_relprime_squares (n:ℕ) :=
∃ a b, n = a^2 + b^2 ∧ gcd a b = 1.
theorem lem_1_4 (N q: ℕ) :
is_sum_of_relprime_squares N →
nat.prime q → is_sum_of_relprime_squares q → q ∣ N →
is_sum_of_relprime_squares (N/q) :=
begin
intros Hrel Hqprime Hqsq Hqdiv,
unfold is_sum_of_relprime_squares at Hrel,
cases Hrel with a Hrel,
cases Hrel with b Hrel,
cases Hrel with H1 H2,
sorry
end
theorem strong_induction {p : ℕ → Prop} (n : ℕ) (h : ∀ (k : ℕ), (∀ (m : ℕ), m < k → p m) → p k) :
p n := sorry.
-- induction on N, then induction on p
--
theorem descent_wolog (p N : ℕ) :
N > 0 → prime p → p ∣ N → is_sum_of_relprime_squares N → is_sum_of_relprime_squares p:=
begin
revert N,
apply strong_induction p,
intros p Hih1 N,
apply strong_induction N,
clear N,
intros Ntemp Hih2,
intros HNpos Hprime Hdiv Hsum,
have HN : ∃ N, 0 < N ∧ is_sum_of_relprime_squares N ∧ p ∣ N ∧ N < p^2/2,
{
sorry,
},
clear Hdiv Hsum,
rcases HN with ⟨N, HNpos, Hsum, Hdiv, Hle⟩,
have Hcases : (N = p ∨ p < N),
{
let H : _ := nat.le_of_dvd HNpos Hdiv,
-- This shouldn't be so complicated.
by_contra,
push_neg at h,
have h2 : (p = N),
{ exact le_antisymm H h.2, },
rw h2 at h,
let H := h.1,
contradiction,
},
cases Hcases with Heasy HpltN,
{ -- case N = p; easy!
rw ←Heasy,
assumption,
},
{ -- case p < N
-- show that there's a smaller prime factor q
have Hq : ∃ q, prime q ∧ q ∣ N ∧ q < p,
{ -- split into cases using dite
exact dite (N.factors = [p])
(begin -- case p is the only prime factor; contradiction
intros Hps2,
let h2 := prod_factors HNpos,
rewrite Hps2 at h2,
simp at h2,
exfalso,
linarith
end
)
(begin -- case that there are factors other than p
let Hpfactor := (mem_factors HNpos).2 ⟨Hprime, Hdiv⟩,
have Hp : [p] ⊆ N.factors,
{ sorry, },
intros HNp,
have Hothers : ∀ q ∈ (N/p).factors, q < p,
{ sorry, },
have Hp : ¬((N/p).factors = list.nil),
{ sorry },
set qs := (N/p).factors,
destruct qs,
{ sorry }, -- contradiction
{ intros q _ Hqs,
specialize Hothers q _,
{ rewrite Hqs, simp },
existsi q,
let Hy := (nat.mem_factors HNpos).1 _, swap,
{
exact q
},
swap,
{ -- q ∈ (N/p).factors → q ∈ N.factors
sorry,
},
{
have Hyy : prime q ∧ q ∣ N,
{ exact Hy },
cases Hyy with Hqprime Hqdiv,
split,
{ assumption },
split,
{ assumption },
{ assumption },
},
}
end
)
},
-- use lemma 1.4 to show that p | (N/q) and N/q is also a sum of squares of rel prime integers
cases Hq with q Hq,
specialize Hih1 q Hq.2.2 N HNpos Hq.1 Hq.2.1 Hsum,
-- by our strong induction on N (Hih2), we'll be done
apply Hih2 (N/q),
{
sorry,
},
{ -- Prove that N/q is non-negative
sorry },
{ assumption },
{ sorry },
{ apply lem_1_4 N q Hsum Hq.1 Hih1 Hq.2.1, }
}
end
theorem descent (p x y : ℕ) :
p ∣ x^2 + y^2 → gcd x y = 1 → ∃ z w, p = z^2 + w^2 :=
begin
intros Hp Hrel,
sorry
end
-- Reciprocity step
theorem reciprocity (p : ℕ) :
prime p → 1 ≡ p [MOD 4] → ∃ N, N > 0 ∧ p ∣ N ∧ is_sum_of_relprime_squares N :=
begin
intros Hprime Hpmod,
rw modeq.modeq_iff_dvd' at Hpmod,
swap,
{
sorry,
},
rcases Hpmod with ⟨k, Hpmod⟩,
have Hp : p = 4 * k + 1, {
unfold prime at Hprime,
rcases Hprime with ⟨Hpineq, _⟩,
sorry,
},
have h₁ : ∀ x, x ≠ 0 → (x^(2 * k) - 1) * (x^(2*k) + 1) ≡ 0 [MOD p],
{ sorry },
sorry
end
theorem fermat (p : ℕ) :
prime p → 1 ≡ p [MOD 4] → ∃ a b, p = a^2 + b^2 :=
begin
intros Hprime Hpmod,
rcases (reciprocity p Hprime Hpmod) with ⟨N, HNpos, Hdiv, Hsum⟩,
rcases (descent_wolog p N HNpos Hprime Hdiv Hsum) with ⟨a, b, Hsum, _⟩,
existsi a,
existsi b,
assumption
end
end fermat
|
<unk> <unk> Harvey , which originated in Australia and was first recorded by M. De Valera in 1939
|
[GOAL]
R : Type u_1
inst✝³ : Ring R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsSimpleModule R M
⊢ ∃ y, 0 ≠ y
[PROOFSTEP]
have h : (⊥ : Submodule R M) ≠ ⊤ := bot_ne_top
[GOAL]
R : Type u_1
inst✝³ : Ring R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsSimpleModule R M
h : ⊥ ≠ ⊤
⊢ ∃ y, 0 ≠ y
[PROOFSTEP]
contrapose! h
[GOAL]
R : Type u_1
inst✝³ : Ring R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsSimpleModule R M
h : ∀ (y : M), 0 = y
⊢ ⊥ = ⊤
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝³ : Ring R
M : Type u_2
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsSimpleModule R M
h : ∀ (y : M), 0 = y
x : M
⊢ x ∈ ⊥ ↔ x ∈ ⊤
[PROOFSTEP]
simp [Submodule.mem_bot, Submodule.mem_top, h x]
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ IsSimpleModule R { x // x ∈ m } ↔ IsAtom m
[PROOFSTEP]
rw [← Set.isSimpleOrder_Iic_iff_isAtom]
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ IsSimpleModule R { x // x ∈ m } ↔ IsSimpleOrder ↑(Set.Iic m)
[PROOFSTEP]
apply OrderIso.isSimpleOrder_iff
[GOAL]
case f
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ Submodule R { x // x ∈ m } ≃o ↑(Set.Iic m)
[PROOFSTEP]
exact Submodule.MapSubtype.relIso m
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ IsSimpleModule R (M ⧸ m) ↔ IsCoatom m
[PROOFSTEP]
rw [← Set.isSimpleOrder_Ici_iff_isCoatom]
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ IsSimpleModule R (M ⧸ m) ↔ IsSimpleOrder ↑(Set.Ici m)
[PROOFSTEP]
apply OrderIso.isSimpleOrder_iff
[GOAL]
case f
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ Submodule R (M ⧸ m) ≃o ↑(Set.Ici m)
[PROOFSTEP]
exact Submodule.comapMkQRelIso m
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
A B : Submodule R M
hAB : A ≤ B
⊢ A ⋖ B ↔ IsSimpleModule R ({ x // x ∈ B } ⧸ Submodule.comap (Submodule.subtype B) A)
[PROOFSTEP]
set f : Submodule R B ≃o Set.Iic B := Submodule.MapSubtype.relIso B with hf
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
A B : Submodule R M
hAB : A ≤ B
f : Submodule R { x // x ∈ B } ≃o ↑(Set.Iic B) := Submodule.MapSubtype.relIso B
hf : f = Submodule.MapSubtype.relIso B
⊢ A ⋖ B ↔ IsSimpleModule R ({ x // x ∈ B } ⧸ Submodule.comap (Submodule.subtype B) A)
[PROOFSTEP]
rw [covby_iff_coatom_Iic hAB, isSimpleModule_iff_isCoatom, ← OrderIso.isCoatom_iff f, hf]
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
A B : Submodule R M
hAB : A ≤ B
f : Submodule R { x // x ∈ B } ≃o ↑(Set.Iic B) := Submodule.MapSubtype.relIso B
hf : f = Submodule.MapSubtype.relIso B
⊢ IsCoatom { val := A, property := hAB } ↔
IsCoatom (↑(Submodule.MapSubtype.relIso B) (Submodule.comap (Submodule.subtype B) A))
[PROOFSTEP]
simp [-OrderIso.isCoatom_iff, Submodule.MapSubtype.relIso, Submodule.map_comap_subtype, inf_eq_right.2 hAB]
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
h : sSup {m | IsSimpleModule R { x // x ∈ m }} = ⊤
⊢ sSup {a | IsAtom a} = ⊤
[PROOFSTEP]
simp_rw [← h, isSimpleModule_iff_isAtom]
[GOAL]
R : Type u_1
inst✝⁵ : Ring R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
m : Submodule R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsSemisimpleModule R M
⊢ sSup {m | IsSimpleModule R { x // x ∈ m }} = ⊤
[PROOFSTEP]
simp_rw [isSimpleModule_iff_isAtom]
[GOAL]
R : Type u_1
inst✝⁵ : Ring R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
m : Submodule R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsSemisimpleModule R M
⊢ sSup {m | IsAtom m} = ⊤
[PROOFSTEP]
exact sSup_atoms_eq_top
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
⊢ IsSemisimpleModule R M → sSup {m | IsSimpleModule R { x // x ∈ m }} = ⊤
[PROOFSTEP]
intro
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
a✝ : IsSemisimpleModule R M
⊢ sSup {m | IsSimpleModule R { x // x ∈ m }} = ⊤
[PROOFSTEP]
exact IsSemisimpleModule.sSup_simples_eq_top
[GOAL]
R : Type u_1
inst✝⁵ : Ring R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
m : Submodule R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsSimpleModule R M
f : M →ₗ[R] N
⊢ Function.Injective ↑f ∨ f = 0
[PROOFSTEP]
rw [← ker_eq_bot, ← ker_eq_top]
[GOAL]
R : Type u_1
inst✝⁵ : Ring R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
m : Submodule R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsSimpleModule R M
f : M →ₗ[R] N
⊢ ker f = ⊥ ∨ ker f = ⊤
[PROOFSTEP]
apply eq_bot_or_eq_top
[GOAL]
R : Type u_1
inst✝⁵ : Ring R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
m : Submodule R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsSimpleModule R N
f : M →ₗ[R] N
⊢ Function.Surjective ↑f ∨ f = 0
[PROOFSTEP]
rw [← range_eq_top, ← range_eq_bot, or_comm]
[GOAL]
R : Type u_1
inst✝⁵ : Ring R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
m : Submodule R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsSimpleModule R N
f : M →ₗ[R] N
⊢ range f = ⊥ ∨ range f = ⊤
[PROOFSTEP]
apply eq_bot_or_eq_top
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : IsSimpleModule R M
inst✝ : IsSimpleModule R N
f : M →ₗ[R] N
⊢ Function.Bijective ↑f ∨ f = 0
[PROOFSTEP]
by_cases h : f = 0
[GOAL]
case pos
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : IsSimpleModule R M
inst✝ : IsSimpleModule R N
f : M →ₗ[R] N
h : f = 0
⊢ Function.Bijective ↑f ∨ f = 0
[PROOFSTEP]
right
[GOAL]
case pos.h
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : IsSimpleModule R M
inst✝ : IsSimpleModule R N
f : M →ₗ[R] N
h : f = 0
⊢ f = 0
[PROOFSTEP]
exact h
[GOAL]
case neg
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : IsSimpleModule R M
inst✝ : IsSimpleModule R N
f : M →ₗ[R] N
h : ¬f = 0
⊢ Function.Bijective ↑f ∨ f = 0
[PROOFSTEP]
exact Or.intro_left _ ⟨injective_of_ne_zero h, surjective_of_ne_zero h⟩
[GOAL]
R : Type u_1
inst✝⁵ : Ring R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
m : Submodule R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsSimpleModule R N
f : M →ₗ[R] N
hf : Function.Surjective ↑f
⊢ IsCoatom (ker f)
[PROOFSTEP]
rw [← isSimpleModule_iff_isCoatom]
[GOAL]
R : Type u_1
inst✝⁵ : Ring R
M : Type u_2
inst✝⁴ : AddCommGroup M
inst✝³ : Module R M
m : Submodule R M
N : Type u_3
inst✝² : AddCommGroup N
inst✝¹ : Module R N
inst✝ : IsSimpleModule R N
f : M →ₗ[R] N
hf : Function.Surjective ↑f
⊢ IsSimpleModule R (M ⧸ ker f)
[PROOFSTEP]
exact IsSimpleModule.congr (f.quotKerEquivOfSurjective hf)
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
⊢ 0 ≠ 1
[PROOFSTEP]
haveI := IsSimpleModule.nontrivial R M
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
this : Nontrivial M
⊢ 0 ≠ 1
[PROOFSTEP]
have h := exists_pair_ne M
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
this : Nontrivial M
h : ∃ x y, x ≠ y
⊢ 0 ≠ 1
[PROOFSTEP]
contrapose! h
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
this : Nontrivial M
h : 0 = 1
⊢ ∀ (x y : M), x = y
[PROOFSTEP]
intro x y
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
this : Nontrivial M
h : 0 = 1
x y : M
⊢ x = y
[PROOFSTEP]
simp_rw [ext_iff, one_apply, zero_apply] at h
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
this : Nontrivial M
x y : M
h : ∀ (x : M), 0 = x
⊢ x = y
[PROOFSTEP]
rw [← h x, h y]
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
⊢ ∀ (a : Module.End R M), a ≠ 0 → a * a⁻¹ = 1
[PROOFSTEP]
intro a a0
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
a : Module.End R M
a0 : a ≠ 0
⊢ a * a⁻¹ = 1
[PROOFSTEP]
change a * dite _ _ _ = 1
[GOAL]
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
a : Module.End R M
a0 : a ≠ 0
⊢ (a *
if h : a = 0 then 0
else
inverse a (Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).invFun
(_ :
Function.LeftInverse (Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).invFun
(Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).toFun)
(_ :
Function.RightInverse (Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).invFun
(Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).toFun)) =
1
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
a : Module.End R M
a0 : a ≠ 0
x : M
⊢ ↑(a *
if h : a = 0 then 0
else
inverse a (Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).invFun
(_ :
Function.LeftInverse (Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).invFun
(Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).toFun)
(_ :
Function.RightInverse (Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).invFun
(Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).toFun))
x =
↑1 x
[PROOFSTEP]
rw [dif_neg a0, mul_eq_comp, one_apply, comp_apply]
[GOAL]
case h
R : Type u_1
inst✝⁶ : Ring R
M : Type u_2
inst✝⁵ : AddCommGroup M
inst✝⁴ : Module R M
m : Submodule R M
N : Type u_3
inst✝³ : AddCommGroup N
inst✝² : Module R N
inst✝¹ : DecidableEq (Module.End R M)
inst✝ : IsSimpleModule R M
src✝ : Ring (Module.End R M) := Module.End.ring
a : Module.End R M
a0 : a ≠ 0
x : M
⊢ ↑a
(↑(inverse a (Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).invFun
(_ :
Function.LeftInverse (Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).invFun
(Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).toFun)
(_ :
Function.RightInverse (Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).invFun
(Equiv.ofBijective ↑a (_ : Function.Bijective ↑a)).toFun))
x) =
x
[PROOFSTEP]
exact (Equiv.ofBijective _ (bijective_of_ne_zero a0)).right_inv x
[GOAL]
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
X Y : Submodule R M
x✝ : X ⋖ X ⊔ Y
⊢ Iso (X, X ⊔ Y) (X ⊓ Y, Y)
[PROOFSTEP]
constructor
[GOAL]
case val
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
X Y : Submodule R M
x✝ : X ⋖ X ⊔ Y
⊢ ({ x // x ∈ (X, X ⊔ Y).snd } ⧸ Submodule.comap (Submodule.subtype (X, X ⊔ Y).snd) (X, X ⊔ Y).fst) ≃ₗ[R]
{ x // x ∈ (X ⊓ Y, Y).snd } ⧸ Submodule.comap (Submodule.subtype (X ⊓ Y, Y).snd) (X ⊓ Y, Y).fst
[PROOFSTEP]
rw [sup_comm, inf_comm]
[GOAL]
case val
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
X Y : Submodule R M
x✝ : X ⋖ X ⊔ Y
⊢ ({ x // x ∈ (X, Y ⊔ X).snd } ⧸ Submodule.comap (Submodule.subtype (X, Y ⊔ X).snd) (X, Y ⊔ X).fst) ≃ₗ[R]
{ x // x ∈ (Y ⊓ X, Y).snd } ⧸ Submodule.comap (Submodule.subtype (Y ⊓ X, Y).snd) (Y ⊓ X, Y).fst
[PROOFSTEP]
dsimp
[GOAL]
case val
R : Type u_1
inst✝⁴ : Ring R
M : Type u_2
inst✝³ : AddCommGroup M
inst✝² : Module R M
m : Submodule R M
N : Type u_3
inst✝¹ : AddCommGroup N
inst✝ : Module R N
X Y : Submodule R M
x✝ : X ⋖ X ⊔ Y
⊢ ({ x // x ∈ Y ⊔ X } ⧸ Submodule.comap (Submodule.subtype (Y ⊔ X)) X) ≃ₗ[R]
{ x // x ∈ Y } ⧸ Submodule.comap (Submodule.subtype Y) Y ⊓ Submodule.comap (Submodule.subtype Y) X
[PROOFSTEP]
exact (LinearMap.quotientInfEquivSupQuotient Y X).symm
|
Formal statement is: lemma pointwise_minimal_pointwise_maximal: fixes s :: "(nat \<Rightarrow> nat) set" assumes "finite s" and "s \<noteq> {}" and "\<forall>x\<in>s. \<forall>y\<in>s. x \<le> y \<or> y \<le> x" shows "\<exists>a\<in>s. \<forall>x\<in>s. a \<le> x" and "\<exists>a\<in>s. \<forall>x\<in>s. x \<le> a" Informal statement is: If $s$ is a finite set of functions from $\mathbb{N}$ to $\mathbb{N}$ such that for every $x, y \in s$, either $x \leq y$ or $y \leq x$, then there exists a function $a \in s$ such that for every $x \in s$, $a \leq x$, and there exists a function $a \in s$ such that for every $x \in s$, $x \leq a$. |
[GOAL]
as bs : List Char
⊢ length ({ data := as } ++ { data := bs }) = length { data := as } + length { data := bs }
[PROOFSTEP]
rw [congr_append]
[GOAL]
as bs : List Char
⊢ length { data := { data := as }.data ++ { data := bs }.data } = length { data := as } + length { data := bs }
[PROOFSTEP]
simp only [String.length]
[GOAL]
as bs : List Char
⊢ List.length (as ++ bs) = List.length as + List.length bs
[PROOFSTEP]
exact List.length_append as bs
[GOAL]
n : ℕ
c : Char
⊢ length (replicate n c) = n
[PROOFSTEP]
simp only [String.length, String.replicate, List.length_replicate]
[GOAL]
l : List Char
⊢ length { data := l } = List.length l
[PROOFSTEP]
simp only [String.length]
[GOAL]
n : ℕ
c : Char
s : List Char
⊢ length (leftpad n c { data := s }) = max n (length { data := s })
[PROOFSTEP]
simp only [leftpad, String.length, List.leftpad_length]
[GOAL]
n : ℕ
c : Char
l : List Char
⊢ isPrefix (replicate (n - length { data := l }) c) (leftpad n c { data := l })
[PROOFSTEP]
simp only [isPrefix, replicate, leftpad, String.length, List.leftpad_prefix]
[GOAL]
n : ℕ
c : Char
l : List Char
⊢ isSuffix { data := l } (leftpad n c { data := l })
[PROOFSTEP]
simp only [isSuffix, replicate, leftpad, String.length, List.leftpad_suffix]
|
#!/usr/bin/Rscript
# small sample that reads data from a CSV file and
# uses 'plot' for creating both a png and a pdf with the data plotted
# 'plot' documentation
# https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/plot
data <- read.csv("datafile.csv", header = TRUE) # Read from csv file
print(data) # Print the file contents.
print(data$x) # Print values for column X
print(data[2]) # Print values for column '2'
png("out/plotcsv.png") # Specify the png output file name
plot(data, type = "l") # Plot the values as a line = l
pdf("out/plotcsv.pdf") # Specify the pdf output file name
plot(data, type = "l") # Plot the values as a line = l
|
" You 're Gonna Love Tomorrow " received mostly positive reviews from television critics , most of whom agreed that the time jump refreshed the show . According to Nielsen ratings , the episode drew over 18 million viewers , making it the most @-@ watched show of the night and the second most @-@ watched program of the week across all networks .
|
theory NthRoot_Limits
imports Complex_Main "~~/src/HOL/Number_Theory/Binomial"
begin
text {*
This does not fit into @{text Complex_Main}, as it depends on @{text Binomial}
*}
lemma LIMSEQ_root: "(\<lambda>n. root n n) ----> 1"
proof -
def x \<equiv> "\<lambda>n. root n n - 1"
have "x ----> sqrt 0"
proof (rule tendsto_sandwich[OF _ _ tendsto_const])
show "(\<lambda>x. sqrt (2 / x)) ----> sqrt 0"
by (intro tendsto_intros tendsto_divide_0[OF tendsto_const] filterlim_mono[OF filterlim_real_sequentially])
(simp_all add: at_infinity_eq_at_top_bot)
{ fix n :: nat assume "2 < n"
have "1 + (real (n - 1) * n) / 2 * x n^2 = 1 + of_nat (n choose 2) * x n^2"
using `2 < n` unfolding gbinomial_def binomial_gbinomial
by (simp add: atLeast0AtMost atMost_Suc field_simps real_of_nat_diff numeral_2_eq_2 real_eq_of_nat[symmetric])
also have "\<dots> \<le> (\<Sum>k\<in>{0, 2}. of_nat (n choose k) * x n^k)"
by (simp add: x_def)
also have "\<dots> \<le> (\<Sum>k=0..n. of_nat (n choose k) * x n^k)"
using `2 < n` by (intro setsum_mono2) (auto intro!: mult_nonneg_nonneg zero_le_power simp: x_def le_diff_eq)
also have "\<dots> = (x n + 1) ^ n"
by (simp add: binomial_ring)
also have "\<dots> = n"
using `2 < n` by (simp add: x_def)
finally have "real (n - 1) * (real n / 2 * (x n)\<^sup>2) \<le> real (n - 1) * 1"
by simp
then have "(x n)\<^sup>2 \<le> 2 / real n"
using `2 < n` unfolding mult_le_cancel_left by (simp add: field_simps)
from real_sqrt_le_mono[OF this] have "x n \<le> sqrt (2 / real n)"
by simp }
then show "eventually (\<lambda>n. x n \<le> sqrt (2 / real n)) sequentially"
by (auto intro!: exI[of _ 3] simp: eventually_sequentially)
show "eventually (\<lambda>n. sqrt 0 \<le> x n) sequentially"
by (auto intro!: exI[of _ 1] simp: eventually_sequentially le_diff_eq x_def)
qed
from tendsto_add[OF this tendsto_const[of 1]] show ?thesis
by (simp add: x_def)
qed
lemma LIMSEQ_root_const:
assumes "0 < c"
shows "(\<lambda>n. root n c) ----> 1"
proof -
{ fix c :: real assume "1 \<le> c"
def x \<equiv> "\<lambda>n. root n c - 1"
have "x ----> 0"
proof (rule tendsto_sandwich[OF _ _ tendsto_const])
show "(\<lambda>n. c / n) ----> 0"
by (intro tendsto_divide_0[OF tendsto_const] filterlim_mono[OF filterlim_real_sequentially])
(simp_all add: at_infinity_eq_at_top_bot)
{ fix n :: nat assume "1 < n"
have "1 + x n * n = 1 + of_nat (n choose 1) * x n^1"
using `1 < n` unfolding gbinomial_def binomial_gbinomial by (simp add: real_eq_of_nat[symmetric])
also have "\<dots> \<le> (\<Sum>k\<in>{0, 1}. of_nat (n choose k) * x n^k)"
by (simp add: x_def)
also have "\<dots> \<le> (\<Sum>k=0..n. of_nat (n choose k) * x n^k)"
using `1 < n` `1 \<le> c` by (intro setsum_mono2) (auto intro!: mult_nonneg_nonneg zero_le_power simp: x_def le_diff_eq)
also have "\<dots> = (x n + 1) ^ n"
by (simp add: binomial_ring)
also have "\<dots> = c"
using `1 < n` `1 \<le> c` by (simp add: x_def)
finally have "x n \<le> c / n"
using `1 \<le> c` `1 < n` by (simp add: field_simps) }
then show "eventually (\<lambda>n. x n \<le> c / n) sequentially"
by (auto intro!: exI[of _ 3] simp: eventually_sequentially)
show "eventually (\<lambda>n. 0 \<le> x n) sequentially"
using `1 \<le> c` by (auto intro!: exI[of _ 1] simp: eventually_sequentially le_diff_eq x_def)
qed
from tendsto_add[OF this tendsto_const[of 1]] have "(\<lambda>n. root n c) ----> 1"
by (simp add: x_def) }
note ge_1 = this
show ?thesis
proof cases
assume "1 \<le> c" with ge_1 show ?thesis by blast
next
assume "\<not> 1 \<le> c"
with `0 < c` have "1 \<le> 1 / c"
by simp
then have "(\<lambda>n. 1 / root n (1 / c)) ----> 1 / 1"
by (intro tendsto_divide tendsto_const ge_1 `1 \<le> 1 / c` one_neq_zero)
then show ?thesis
by (rule filterlim_cong[THEN iffD1, rotated 3])
(auto intro!: exI[of _ 1] simp: eventually_sequentially real_root_divide)
qed
qed
end
|
// Copyright 2007 Matthew A. Kucenski
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _BOOST_LEXICAL_CAST_WRAPPER_HPP_
#define _BOOST_LEXICAL_CAST_WRAPPER_HPP_
#include <boost/lexical_cast.hpp>
#include "errMsgs.h"
template <typename TargetType, typename SourceType>
int boost_lexical_cast_wrapper(const SourceType& src, TargetType* ptarget) {
int rv = -1;
try {
*ptarget = boost::lexical_cast<TargetType>(src);
rv = 0;
} catch(boost::bad_lexical_cast&) {
DEBUG("boost_lexical_cast_wrapper() Caught exception on conversion.");
}
return rv;
}
template <typename TargetType, typename SourceType>
TargetType boost_lexical_cast_wrapper(const SourceType& src) {
TargetType target;
boost_lexical_cast_wrapper<TargetType>(src, &target);
return target;
}
#endif //_BOOST_LEXICAL_CAST_WRAPPER_HPP_
|
Require Import stdpp.list.
From Tweetnacl Require Export Libs.Lists_extended.
From Tweetnacl Require Import Libs.LibTactics.
Lemma Forall_nth_d: forall A (l:list A) (P:A -> Prop) d,
P d ->
Forall P l ->
forall i, P (nth i l d).
Proof.
intros A l P d Hd Hl.
induction l ; destruct i ; inv Hl ; go.
Qed.
Lemma Forall_nth_len: forall A (l:list A) (P:A -> Prop) d,
Forall P l ->
forall i, i < length l ->
P (nth i l d).
Proof.
intros A l P d Hl.
induction l; intros i Hi.
- simpl in Hi.
inv Hi.
- destruct i; inv Hl ; go.
Qed.
Lemma nth_Forall: forall A (l: list A) (P:A -> Prop) d,
(forall i, P (nth i l d)) ->
Forall P l.
Proof.
induction l ; go.
intros P d Hnth ; apply Forall_cons_2.
apply (Hnth 0).
eapply IHl.
intros i.
apply (Hnth (S i)).
Qed.
Lemma upd_nth_Forall: forall i A (l:list A) (P: A -> Prop) v,
Forall P l -> P v ->
Forall P (upd_nth i l v).
Proof.
induction i => A [|h q] P v Hl Hv ; simpl;
try solve[apply Forall_cons_2 ; go];
apply Forall_cons in Hl ; destruct Hl as [Ha Hl] ; apply Forall_cons_2 ; go.
Qed.
Lemma Forall_take_n_m : forall m n A (l:list A) (P: A -> Prop),
n <= m ->
Forall P (take m l) -> Forall P (take n l).
Proof.
induction m ; intros.
inv H.
rewrite firstn_O ; apply Forall_nil_2.
destruct n.
rewrite firstn_O ; apply Forall_nil_2.
destruct l.
simpl ; apply Forall_nil_2.
simpl.
simpl in H0.
apply Forall_cons in H0 ; destruct H0.
apply Forall_cons_2 ; go.
Qed.
Open Scope Z.
Lemma Forall_bounds_le_lt: forall a b l,
Forall (fun x => a < x < b) l ->
Forall (fun x => a <= x <= b) l.
Proof. intros; eapply Forall_impl ; eauto ; intros ; go. Qed.
Close Scope Z. |
/* Copyright (c) Facebook, Inc. and its affiliates.
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cblas.h>
#include <complex.h>
#defmacro DEFINE_SVV(TNAME, TYPE, OPNAME, OPTEXT)
#define OPER(a,b) OPTEXT
TYPE TNAME##Vector_##OPNAME(TYPE *a, TYPE *b, int n)
{
/* try cblas */
#if #TYPE == "float" && #OPNAME == "dot"
return cblas_sdot(n, a, 1, b, 1);
#elif #TYPE == "double" && #OPNAME == "dot"
return cblas_ddot(n, a, 1, b, 1);
#else
int i;
TYPE s = 0;
# pragma unroll(i)
for(i=0;i<n;i++)
s += OPER(a[i],b[i]);
return s;
#endif
}
#endmacro
#defmacro FORALLTYPES(macro,...)
macro(Int, int, __VA_ARGS__)
macro(Long, long, __VA_ARGS__)
macro(Float, float, __VA_ARGS__)
macro(Double, double, __VA_ARGS__)
macro(Complex, complex double, __VA_ARGS__)
#endmacro
FORALLTYPES(DEFINE_SVV,dot,(a)*(b));
FORALLTYPES(DEFINE_SVV,sqrdist,((a)-(b))*((a)-(b)))
#define DEFINE_TYPEINFO(TNAME,TYPE) { #TNAME, #TYPE },
struct { const char *tname, *type; } typeInfo[] = {
FORALLTYPES(DEFINE_TYPEINFO)
};
|
Require Import Coq.Strings.String Coq.Classes.RelationClasses.
Require Import Crypto.Compilers.Syntax.
Require Import Crypto.Compilers.Wf.
Require Import Crypto.Compilers.Relations.
Require Import Crypto.Util.Tuple.
Require Import Crypto.Util.Sigma.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.RewriteHyp.
Require Import Crypto.Util.Notations.
Local Open Scope ctype_scope.
Local Open Scope expr_scope.
Section language.
Context {base_type_code : Type}
{interp_base_type : base_type_code -> Type}
{op : flat_type base_type_code -> flat_type base_type_code -> Type}
(interp_op : forall src dst, op src dst -> interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst).
Local Notation exprf := (@exprf base_type_code op interp_base_type).
Local Notation expr := (@expr base_type_code op interp_base_type).
Local Notation Expr := (@Expr base_type_code op).
Local Notation interpf := (@interpf base_type_code interp_base_type op interp_op).
Local Notation interp := (@interp base_type_code interp_base_type op interp_op).
Local Notation Interp := (@Interp base_type_code interp_base_type op interp_op).
Lemma eq_in_flatten_binding_list
{t x x' T e}
(HIn : List.In (existT (fun t : base_type_code => (interp_base_type t * interp_base_type t)%type) t (x, x')%core)
(flatten_binding_list (t:=T) e e))
: x = x'.
Proof using Type.
induction T; simpl in *; [ | | rewrite List.in_app_iff in HIn ];
repeat first [ progress destruct_head or
| progress destruct_head False
| progress destruct_head and
| progress inversion_sigma
| progress inversion_prod
| progress subst
| solve [ eauto ] ].
Qed.
Local Hint Resolve List.in_app_or List.in_or_app eq_in_flatten_binding_list.
Section wf.
Lemma interpf_wff
{t} {e1 e2 : exprf t}
{G}
(HG : forall t x x',
List.In (existT (fun t : base_type_code => (interp_base_type t * interp_base_type t)%type) t (x, x')%core) G
-> x = x')
(Rwf : wff G e1 e2)
: interpf e1 = interpf e2.
Proof using Type.
induction Rwf; simpl; auto;
specialize_by auto; try congruence.
rewrite_hyp !*; auto.
repeat match goal with
| [ H : context[List.In _ (_ ++ _)] |- _ ]
=> setoid_rewrite List.in_app_iff in H
end.
match goal with
| [ H : _ |- _ ]
=> apply H; intros; destruct_head' or; solve [ eauto ]
end.
Qed.
Local Hint Resolve interpf_wff.
Lemma interp_wf
{t} {e1 e2 : expr t}
(Rwf : wf e1 e2)
: forall x, interp e1 x = interp e2 x.
Proof using Type.
destruct Rwf; simpl; eauto.
Qed.
End wf.
End language.
|
lemma uniformity_bot: "uniformity \<noteq> bot" |
import data.nat.prime
open nat
theorem infinitude_of_primes (n : ℕ) : ∃ (p : ℕ), prime p ∧ n ≤ p :=
-- For every natural number n,
-- there exists a number p, such that
-- n is less than or equal to p and p is prime
begin
let m := n.factorial + 1,
let p := min_fac m,
use p,
-- use the smallest prime factor of n! + 1.
have p_is_prime : prime p := min_fac_prime (ne_of_gt (succ_lt_succ (factorial_pos n))),
-- proof that p is prime
split,
-- break the "and" into two propositions
begin
-- proof that p is prime
exact p_is_prime,
end,
begin
-- proof that n is less than or equal to p
by_contradiction h, push_neg at h,
-- proof by contradiction
-- suppose instead that p is less than n
have p_dvd_n : p ∣ n.factorial := dvd_factorial (min_fac_pos _) (le_of_lt h),
-- then p divides n!
have p_dvd_one : p ∣ 1 := (nat.dvd_add_iff_right p_dvd_n).2 (min_fac_dvd _),
-- because p divides n! and n! + 1, p divides 1
exact p_is_prime.not_dvd_one p_dvd_one,
-- but this is not possible
end,
end
|
[STATEMENT]
lemma epigraph_subset_iff:
fixes f g :: "'a::metric_space \<Rightarrow> ereal"
shows "Epigraph UNIV f \<le> Epigraph UNIV g \<longleftrightarrow> (\<forall>x. g x \<le> f x)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
proof-
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
{
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
assume epi: "Epigraph UNIV f \<le> Epigraph UNIV g"
[PROOF STATE]
proof (state)
this:
Epigraph UNIV f \<subseteq> Epigraph UNIV g
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
{
[PROOF STATE]
proof (state)
this:
Epigraph UNIV f \<subseteq> Epigraph UNIV g
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
fix x
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
{
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
fix z
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
assume "f x \<le> ereal z"
[PROOF STATE]
proof (state)
this:
f x \<le> ereal z
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
hence "(x,z)\<in>Epigraph UNIV f"
[PROOF STATE]
proof (prove)
using this:
f x \<le> ereal z
goal (1 subgoal):
1. (x, z) \<in> Epigraph UNIV f
[PROOF STEP]
unfolding Epigraph_def
[PROOF STATE]
proof (prove)
using this:
f x \<le> ereal z
goal (1 subgoal):
1. (x, z) \<in> {xy. fst xy \<in> UNIV \<and> f (fst xy) \<le> ereal (snd xy)}
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
(x, z) \<in> Epigraph UNIV f
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
hence "(x,z)\<in>Epigraph UNIV g"
[PROOF STATE]
proof (prove)
using this:
(x, z) \<in> Epigraph UNIV f
goal (1 subgoal):
1. (x, z) \<in> Epigraph UNIV g
[PROOF STEP]
using epi
[PROOF STATE]
proof (prove)
using this:
(x, z) \<in> Epigraph UNIV f
Epigraph UNIV f \<subseteq> Epigraph UNIV g
goal (1 subgoal):
1. (x, z) \<in> Epigraph UNIV g
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
(x, z) \<in> Epigraph UNIV g
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
hence "g x \<le> ereal z"
[PROOF STATE]
proof (prove)
using this:
(x, z) \<in> Epigraph UNIV g
goal (1 subgoal):
1. g x \<le> ereal z
[PROOF STEP]
unfolding Epigraph_def
[PROOF STATE]
proof (prove)
using this:
(x, z) \<in> {xy. fst xy \<in> UNIV \<and> g (fst xy) \<le> ereal (snd xy)}
goal (1 subgoal):
1. g x \<le> ereal z
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
g x \<le> ereal z
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
}
[PROOF STATE]
proof (state)
this:
f x \<le> ereal ?z2 \<Longrightarrow> g x \<le> ereal ?z2
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
hence "g x \<le> f x"
[PROOF STATE]
proof (prove)
using this:
f x \<le> ereal ?z2 \<Longrightarrow> g x \<le> ereal ?z2
goal (1 subgoal):
1. g x \<le> f x
[PROOF STEP]
apply (subst ereal_le_real)
[PROOF STATE]
proof (prove)
goal (2 subgoals):
1. \<And>z. \<lbrakk>\<And>z. f x \<le> ereal z \<Longrightarrow> g x \<le> ereal z; f x \<le> ereal z\<rbrakk> \<Longrightarrow> g x \<le> ereal z
2. (\<And>z. f x \<le> ereal z \<Longrightarrow> g x \<le> ereal z) \<Longrightarrow> True
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
g x \<le> f x
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
}
[PROOF STATE]
proof (state)
this:
g ?x2 \<le> f ?x2
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
}
[PROOF STATE]
proof (state)
this:
Epigraph UNIV f \<subseteq> Epigraph UNIV g \<Longrightarrow> g ?x2 \<le> f ?x2
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
moreover
[PROOF STATE]
proof (state)
this:
Epigraph UNIV f \<subseteq> Epigraph UNIV g \<Longrightarrow> g ?x2 \<le> f ?x2
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
{
[PROOF STATE]
proof (state)
this:
Epigraph UNIV f \<subseteq> Epigraph UNIV g \<Longrightarrow> g ?x2 \<le> f ?x2
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
assume le: "\<forall>x. g x \<le> f x"
[PROOF STATE]
proof (state)
this:
\<forall>x. g x \<le> f x
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
{
[PROOF STATE]
proof (state)
this:
\<forall>x. g x \<le> f x
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
fix x y
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
assume "(x,y):Epigraph UNIV f"
[PROOF STATE]
proof (state)
this:
(x, y) \<in> Epigraph UNIV f
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
hence "f x \<le> ereal y"
[PROOF STATE]
proof (prove)
using this:
(x, y) \<in> Epigraph UNIV f
goal (1 subgoal):
1. f x \<le> ereal y
[PROOF STEP]
unfolding Epigraph_def
[PROOF STATE]
proof (prove)
using this:
(x, y) \<in> {xy. fst xy \<in> UNIV \<and> f (fst xy) \<le> ereal (snd xy)}
goal (1 subgoal):
1. f x \<le> ereal y
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
f x \<le> ereal y
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
moreover
[PROOF STATE]
proof (state)
this:
f x \<le> ereal y
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
have "g x \<le> f x"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. g x \<le> f x
[PROOF STEP]
using le
[PROOF STATE]
proof (prove)
using this:
\<forall>x. g x \<le> f x
goal (1 subgoal):
1. g x \<le> f x
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
g x \<le> f x
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
ultimately
[PROOF STATE]
proof (chain)
picking this:
f x \<le> ereal y
g x \<le> f x
[PROOF STEP]
have "g x \<le> ereal y"
[PROOF STATE]
proof (prove)
using this:
f x \<le> ereal y
g x \<le> f x
goal (1 subgoal):
1. g x \<le> ereal y
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
g x \<le> ereal y
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
hence "(x,y):Epigraph UNIV g"
[PROOF STATE]
proof (prove)
using this:
g x \<le> ereal y
goal (1 subgoal):
1. (x, y) \<in> Epigraph UNIV g
[PROOF STEP]
unfolding Epigraph_def
[PROOF STATE]
proof (prove)
using this:
g x \<le> ereal y
goal (1 subgoal):
1. (x, y) \<in> {xy. fst xy \<in> UNIV \<and> g (fst xy) \<le> ereal (snd xy)}
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
(x, y) \<in> Epigraph UNIV g
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
}
[PROOF STATE]
proof (state)
this:
(?x2, ?y2) \<in> Epigraph UNIV f \<Longrightarrow> (?x2, ?y2) \<in> Epigraph UNIV g
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
}
[PROOF STATE]
proof (state)
this:
\<lbrakk>\<forall>x. g x \<le> f x; (?x2, ?y2) \<in> Epigraph UNIV f\<rbrakk> \<Longrightarrow> (?x2, ?y2) \<in> Epigraph UNIV g
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
ultimately
[PROOF STATE]
proof (chain)
picking this:
Epigraph UNIV f \<subseteq> Epigraph UNIV g \<Longrightarrow> g ?x2 \<le> f ?x2
\<lbrakk>\<forall>x. g x \<le> f x; (?x2, ?y2) \<in> Epigraph UNIV f\<rbrakk> \<Longrightarrow> (?x2, ?y2) \<in> Epigraph UNIV g
[PROOF STEP]
show ?thesis
[PROOF STATE]
proof (prove)
using this:
Epigraph UNIV f \<subseteq> Epigraph UNIV g \<Longrightarrow> g ?x2 \<le> f ?x2
\<lbrakk>\<forall>x. g x \<le> f x; (?x2, ?y2) \<in> Epigraph UNIV f\<rbrakk> \<Longrightarrow> (?x2, ?y2) \<in> Epigraph UNIV g
goal (1 subgoal):
1. (Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
(Epigraph UNIV f \<subseteq> Epigraph UNIV g) = (\<forall>x. g x \<le> f x)
goal:
No subgoals!
[PROOF STEP]
qed |
import data.nat.modeq -- modular arithmetic
import topology.basic
example : 5 ≡ 8 [MOD 3] :=
begin
apply rfl,
end
#check nat.modeq.modeq_mul
example (a b c d m : ℕ) : a ≡ b [MOD m] → c ≡ d [MOD m] → a * c ≡ b * d [MOD m] :=
begin
apply nat.modeq.modeq_mul,
end
lemma cong_mul1 (a b c d m : ℕ) : a ≡ b [MOD m] → a * c ≡ b * c [MOD m] :=
begin
intro h1,
apply nat.modeq.modeq_mul h1, apply rfl,
end
theorem cong_product (a b c d m : ℕ) (h1: a ≡ b * c [MOD m]) (h2: c ≡ d [MOD m]) : a ≡ b * d [MOD m] :=
begin
have h3: b * c ≡ b * d [MOD m], from
begin
apply nat.modeq.modeq_mul, apply rfl, assumption
end,
apply nat.modeq.trans h1 h3,
end
lemma aaa (rr R R_INV a ar aar aaa n : ℕ) :
R * R_INV ≡ 1 [MOD n] →
rr ≡ R * R [MOD n] →
ar ≡ a * R_INV * rr [MOD n] →
aar ≡ ar * ar * R_INV [MOD n] →
aaa ≡ aar * a * R_INV [MOD n] →
aaa ≡ a * a * a [MOD n] :=
begin
intros h1 h2 h3 h4 h5,
have h: ar ≡ a * R_INV * R * R [MOD n], from
begin
rw [mul_assoc],
apply cong_product ar (a * R_INV) rr (R * R) n,
assumption,
assumption,
end,
have h: ar ≡ a * R * 1 [MOD n], from
begin
apply cong_product ar (a * R) (R_INV * R) 1 n,
rw [<- mul_assoc, mul_assoc a R, mul_comm R R_INV, <-mul_assoc],
assumption,
rw [mul_comm],
assumption,
end,
sorry
end |
#!/usr/bin/env python
#=========================================================================
#
# Extract texture features from a region-of-interest within a GBM dicom image
#
#
#=========================================================================
# log
#
# Test Dr. Ross Mitchell's algorithm on GBM data
# to find error on our code
#
import csv
import os
import matplotlib as mpl
import numpy as np
import GLCMTextureSecret
import TextureSecret
print mpl.get_cachedir()
# import SimpleITK as sitk
# from string import maketrans
rootDir = '/Users/yanzhexu/Desktop/Research/GBM/aCGH_whole_tumor_maps_for_Neuro-Onc_dataset/RWh_slices_only/slice17/'
outputDir = '/Users/yanzhexu/Desktop/Research/GBM/TestGLCM'
featuresOutFn = 'GBM_features_GLCM_test_X_Y_ym4xm4_yp4xp4_TestAlgorithm.csv'
featureCSVFn = os.path.join(outputDir,featuresOutFn)
grayScales = 256
ycoord = 126
xcoord = 161
rootFnImg = os.path.join(rootDir,'EPI+C_IM-0003-0017.dcm')
inputImage = TextureSecret.readDicomImage(rootFnImg)
subImage = inputImage[ycoord - 4: ycoord + 4,xcoord - 4:xcoord + 4 ]
print subImage
print np.min(subImage)
print np.max(subImage)
subImage = TextureSecret.scaleIntensity(subImage, 0, grayScales)
subImage = np.rint(subImage).astype(np.uint8)
print subImage
features = GLCMTextureSecret.computeFeatures(subImage)
featureTitle = GLCMTextureSecret._getGLCMFeatureNames()
print featureTitle
print len(featureTitle)
print features
print len(features)
rowfeature = list()
for eachtitle in featureTitle:
featurename = eachtitle +' Mean'
rowfeature.append(features[featurename])
print rowfeature
with open(featureCSVFn, 'wb') as featureCSVFile:
featureWriter = csv.writer(featureCSVFile, dialect='excel')
featureWriter.writerow(featureTitle)
featureWriter.writerow(rowfeature)
|
% GAUSS3D - generate a 3-dimensional gaussian matrix
%
% Usage:
% >> [ gaussmatrix ] = gauss2d( nX, nY, nZ);
% >> [ gaussmatrix ] = gauss2d( nX, nY, nZ, ...
% sigmaX, sigmaY, sigmaZ, ...
% centerX, centerY, centerZ, mask)
%
% Example:
% >> gauss3d(3,3,3); % generate a 3x3x3 gaussian matrix
%
% Inputs:
% nX - number of values in first dimension
% nY - number of values in second dimension
% nZ - number of values in third dimension
% sigmaX - width of standard deviation in first dim (default: nX/5)
% sigmaY - width of standard deviation in second dim (default: nY/5)
% sigmaZ - width of standard deviation in third dim (default: nZ/5)
% centerX - location of center (default: nX/2)
% centerY - location of center (default: nY/2)
% centerZ - location of center (default: nZ/2)
% mask - (0->1) percentage of low values in the matrix to mask
% with zeros (default: 0 or none)
%
% Output:
% gaussmatrix - 3-D gaussian matrix
%
% Author: Arnaud Delorme, 2009
% Copyright (C) 2009 Arnaud Delorme, Salk Institute, [email protected]
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function mat = gauss3d( sizeX, sizeY, sizeZ, sigmaX, sigmaY, sigmaZ, meanX, meanY, meanZ, cut);
if nargin < 2
help gauss2d
return;
end
if nargin < 4
sigmaX = sizeX/5;
end
if nargin < 5
sigmaY = sizeY/5;
end
if nargin < 6
sigmaZ = sizeZ/5;
end
if nargin < 7
meanX = (sizeX+1)/2;
end
if nargin < 8
meanY = (sizeY+1)/2;
end
if nargin < 9
meanZ = (sizeZ+1)/2;
end
if nargin < 10
cut = 0;
end
[X,Y,Z] = ndgrid(1:sizeX,1:sizeY,1:sizeZ);
mat = exp(-0.5*( ((X-meanX)/sigmaX).*((X-meanX)/sigmaX)...
+((Y-meanY)/sigmaY).*((Y-meanY)/sigmaY)...
+((Z-meanZ)/sigmaZ).*((Z-meanZ)/sigmaZ)))...
/((sigmaX*sigmaY*sigmaZ)^(0.5)*pi);
if cut > 0
maximum = max(mat(:))*cut;
I = find(mat < maximum);
mat(I) = 0;
end
return;
|
-- Exercise 1
--
-- Go back to the exercises in Chapter 3 and Chapter 4 and redo as many as you
-- can now with tactic proofs, using also rw and simp as appropriate.
-- NOTE: I had alreadty been doing this, so I don't think I need to go back and
-- do them again... oops.
-- Exercise 2
--
-- Use tactic combinators to obtain a one line proof of the following:
example (p q r : Prop) (hp : p) : (p ∨ q ∨ r) ∧ (q ∨ p ∨ r) ∧ (q ∨ r ∨ p) :=
by {
repeat {split},
repeat {
{
left,
assumption
} <|>
right <|>
assumption
}
}
|
/-
Alex Sanchez
This file formalizes the first ** problem in Herstein's
celebrated text, "Topics in Algebra".
-/
import tactic -- tactics
import group_theory.subgroup.basic -- subgroups
import group_theory.order_of_element -- elemental order
import data.nat.factorization.basic -- prime factorization
variables (G : Type) [comm_group G]
-- tests
example (a : ℕ) : nat.lcm (0 : ℕ) a = (0 : ℕ) :=
begin
exact nat.lcm_zero_left a,
end
-- proofs
theorem single_star (h h' : G) : ∃ g : G, order_of g = nat.lcm (order_of h) (order_of h') :=
begin
--break into cases with both nonzero, otherwise etc.
let m : ℕ := order_of h,
let n : ℕ := order_of h',
by_cases hyp : m = 0 ∨ n = 0, { --trivial case
cases hyp, {
use h,
conv
begin
congr, {
change m,
rw hyp,
}, {
congr, {
change m,
rw hyp,
}, {
change n,
}
}
end,
exact (nat.lcm_zero_left n).symm,
}, {
use h',
conv
begin
congr, {
change n,
rw hyp,
}, {
congr, {
change m,
}, {
change n,
rw hyp,
}
}
end,
exact (nat.lcm_zero_right m).symm,
},
}, { --nontrivial case
-- get nice forms of assumptions
-- refactor to get both
have fin_h : m > 0 :=
begin
have temp : ¬m=0 :=
begin
rw not_or_distrib at hyp,
exact hyp.left,
end,
have temp_two : m ≥ 0 := zero_le m,
have temp_three : m > 0 ∨ m = 0 :=
begin
have temp_temp : m > 0 ∨ m = 0 ∨ m < 0 := trichotomous m 0,
cases temp_temp with a b, {
left,
exact a,
}, {
cases b with c d, {
right,
exact c,
}, {
exfalso,
apply not_lt.mpr temp_two,
exact d,
},
},
end,
cases temp_three with a b, {
exact a,
}, {
exfalso,
exact temp b,
},
end,
let ps_m := nat.factorization m,
let ps_n := nat.factorization n,
-- find some way to identify the finite support
sorry,
},
end
theorem double_star (H H' : subgroup G) : ∃ H'' : subgroup G, nat.card H'' = nat.lcm (nat.card H) (nat.card H') :=
begin
sorry,
end |
MODULE m_eop_igu
! ----------------------------------------------------------------------
! MODULE: m_eop_igu.f03
! ----------------------------------------------------------------------
! Purpose:
! Module for calling the modified eop_igu subroutine
!
! ----------------------------------------------------------------------
! Author : Dr. Thomas Papanikolaou, Geoscience Australia
! Created: 28 August 2018
! ----------------------------------------------------------------------
IMPLICIT NONE
!SAVE
Contains
SUBROUTINE eop_igu (mjd, ERP_fname, ERP_days, EOP_days, EOP_Nint, EOP_int)
! ----------------------------------------------------------------------
! Subroutine: eop_igu.f90
! ----------------------------------------------------------------------
! Purpose:
! EOP data reading and processing by using:
! - ERP (Earth Rotation Parameters) data from the ultra-rapid products
! provided by the IGS (International GNSS Service).
! - Corrections to the precession-nutation model are obtained from the
! daily solutions (finals2000A.daily) provided by the International
! Earth Rotation Service and Reference Systems (IERS)
! Rapid Service/Prediction Center (RS/PC)
! ----------------------------------------------------------------------
! Input arguments:
! - mjd: Modified Julian Day number at the required epoch
! (including fraction of the day)
! - ERP_fname: IGS ultra-rapid ERP data file name e.g. igu18861_00.erp
! - EOP_days: EOP data array of the days (data points aplied for interpolation) based on IERS RS/PC EOP data
! - EOP_Nint: Number of points to use for interpolation
! - arc_length: Number of hours of arc to read from file
!
! Output arguments:
! - eop_int: EOP data array at the input epoch
! eop_int = [MJD xp yp UT1_UTC LOD dX dY]
! MJD: MJD at the input epoch (including fraction of the day)
! x,y: Polar motion coordinates (arcsec)
! UT1_UTC: Difference between UT1 and UTC (sec)
! dX,dY: Corrections to Precession-Nutation model (arcsec)
! ----------------------------------------------------------------------
! Dr. Thomas Papanikolaou, Geoscience Australia March 2016
! ----------------------------------------------------------------------
USE mdl_precision
USE mdl_num
use pod_yaml
IMPLICIT NONE
! ----------------------------------------------------------------------
! Dummy arguments declaration
! ----------------------------------------------------------------------
! IN
REAL (KIND = prec_d), INTENT(IN) :: mjd
CHARACTER (LEN=512), INTENT(IN) :: ERP_fname
REAL (KIND = prec_d), INTENT(IN), DIMENSION(:,:), ALLOCATABLE :: ERP_days, EOP_days
INTEGER, INTENT (IN) :: EOP_Nint
! OUT
REAL (KIND = prec_d), INTENT(OUT) :: EOP_int(EOP_MAX_ARRAY)
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! Local variables declaration
! ----------------------------------------------------------------------
REAL (KIND = prec_d) :: ERP_igu_data(EOP_Nint,EOP_MAX_ARRAY), ERP_int(EOP_MAX_ARRAY), mjd_t
LOGICAL :: igu_flag
INTEGER (KIND = prec_int8) :: mjd_UTC_day
REAL (KIND = prec_d) :: mjd_ar(EOP_Nint), Xpole_ar(EOP_Nint), Ypole_ar(EOP_Nint), UT1UTC_ar(EOP_Nint), LOD_ar(EOP_Nint)
REAL (KIND = prec_d) :: Xerr_ar(EOP_Nint), Yerr_ar(EOP_Nint), UT1err_ar(EOP_Nint), LODerr_ar(EOP_Nint)
REAL (KIND = prec_d) :: mjd_int, Xpole_int, Ypole_int, UT1UTC_int, LOD_int
REAL (KIND = prec_d) :: Xerr_int, Yerr_int, UT1err_int, LODerr_int
REAL (KIND = prec_d) :: dX_eop, dY_eop
INTEGER (KIND = prec_int4) :: i, j, sz1_EOP, sz2_EOP, EOP_nint_used, saved_row_count = 0
INTEGER (KIND = prec_int4) :: lo, hi, offset
INTEGER MAX_EOP_DATA
parameter (MAX_EOP_DATA = 30)
REAL (KIND = prec_d) :: ERP_read_data(MAX_EOP_DATA, EOP_MAX_ARRAY)
igu_flag = .false.
ERP_igu_data = 0.d0
! ----------------------------------------------------------------------
! check we don't have the required data already
if (allocated(ERP_days)) then
saved_row_count = SIZE(ERP_days, DIM=1)
do i = 1, saved_row_count
if (ERP_days(i,EOP_MJD) == 0.d0) then
saved_row_count = i-1
exit
end if
ERP_read_data(i,:) = ERP_days(i, :)
end do
DO i = 1, saved_row_count - 1
if ((ERP_read_data(i, EOP_MJD) <= mjd) .and. (mjd <= ERP_read_data(i+1, EOP_MJD))) then
igu_flag = .true.
if (i > (EOP_Nint / 2) .and. ((i + 1) <= (saved_row_count - EOP_Nint / 2))) then
if (MOD(EOP_Nint, 2) == 1) then
lo = i-EOP_Nint/2
hi = i+1+EOP_Nint/2
if (lo == 0) then
lo = lo + 1
hi = hi + 1
end if
else
lo = i-EOP_Nint/2+1
hi = i+EOP_Nint/2
end if
ERP_igu_data = ERP_read_data(lo:hi, :)
EOP_Nint_used = EOP_Nint
else if (i <= EOP_nint/2) then
ERP_igu_data = ERP_read_data(1:EOP_Nint,:)
EOP_Nint_used = EOP_nint
else if (i >= (saved_row_count - EOP_Nint/2)) then
ERP_igu_data = ERP_read_data(saved_row_count - EOP_Nint + 1:saved_row_count, :)
EOP_nint_used = EOP_Nint
end if
exit
end if
end do
if (.not. igu_flag) then
!print *, "mjd=", mjd, ", last row of data is mjd ", ERP_read_data(saved_row_count, EOP_MJD)
if (mjd < ERP_read_data(saved_row_count, EOP_MJD) + 1.0d0) then
igu_flag = .true.
ERP_igu_data = ERP_read_data(saved_row_count - EOP_Nint + 1:saved_row_count, :)
EOP_Nint_used = EOP_Nint
else if (mjd < ERP_read_data(1, EOP_MJD)) then
igu_flag = .true.
ERP_igu_data = ERP_read_data(1:EOP_nint,:)
EOP_Nint_used = EOP_Nint
end if
end if
end if
! ----------------------------------------------------------------------
! ERP data reading
if (.not. igu_flag) then
if (MOD(EOP_Nint, 2) == 1) then
!EOP_Nint is odd, use Nint/2 points below if mjd is above 0.5, else Nint/2 + 1 points below
mjd_t = mjd - int(mjd)
if (mjd_t > 0.5) then
lo = int(mjd) - EOP_Nint/2 + 1
hi = INT(mjd) + EOP_Nint/2 + 1
else
lo = int(mjd) - EOP_Nint/2
hi = int(mjd) + EOP_Nint/2
end if
else
!EOP_nint is even use half above and half below precisely
lo = int(mjd) - EOP_Nint/2 + 1
hi = int(mjd) + EOP_Nint/2
end if
offset = 1
EOP_nint_used = 0
do i = hi, lo, -1
mjd_t = float(i)
CALL erp_igu (ERP_fname, mjd_t, ERP_int, igu_flag)
if (igu_flag) then
erp_igu_data (i - lo + offset, :) = ERP_int
if (EOP_Nint_used == 0) then
EOP_Nint_used = i - lo + offset
end if
else
offset = offset + 1
end if
end do
end if
if (.not. igu_flag .and. offset > 2 ) then
PRINT *,"--------------------------------------------------------"
PRINT *, "Warning error: Subroutine erp_igu.f90"
PRINT *, "Input epoch is out of the range covered by the IGS ultra-rapid ERP file"
PRINT *, "Check the input ", ERP_fname
PRINT *,"--------------------------------------------------------"
STOP ! END PROGRAM
end if
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! ERP interpolation
ERP_int = 0.d0
mjd_int = mjd
mjd_ar = ERP_igu_data(1:EOP_Nint_used,EOP_MJD)
Xpole_ar = ERP_igu_data(1:EOP_Nint_used,EOP_X)
Ypole_ar = ERP_igu_data(1:EOP_Nint_used,EOP_Y)
UT1UTC_ar = ERP_igu_data(1:EOP_Nint_used,EOP_UT1)
LOD_ar = ERP_igu_data(1:EOP_Nint_used,EOP_LOD)
Xerr_ar = ERP_igu_data(1:EOP_Nint_used,EOP_X_ERR)
Yerr_ar = ERP_igu_data(1:EOP_Nint_used,EOP_Y_ERR)
UT1err_ar = ERP_igu_data(1:EOP_Nint_used,EOP_UT1_ERR)
LODerr_ar = ERP_igu_data(1:EOP_Nint_used,EOP_LOD_ERR)
! do we need to correct, or should that have already been applied?
call interp_iers(mjd_ar, Xpole_ar, Ypole_ar, UT1UTC_ar, EOP_Nint_used, EOP_Nint_used, &
mjd_int, Xpole_int, Ypole_int, UT1UTC_int)
!CALL LAGINT(mjd_ar, Xpole_ar, EOP_Nint_used, EOP_Nint_used, mjd_int, Xpole_int)
!CALL LAGINT(mjd_ar, Ypole_ar, EOP_Nint_used, EOP_Nint_used, mjd_int, Ypole_int)
!CALL LAGINT(mjd_ar, UT1UTC_ar, EOP_Nint_used, EOP_Nint_used, mjd_int, UT1UTC_int)
CALL LAGINT(mjd_ar, LOD_ar, EOP_Nint_used, EOP_Nint_used, mjd_int, LOD_int)
CALL LAGINT(mjd_ar, Xerr_ar, EOP_Nint_used, EOP_Nint_used, mjd_int, Xerr_int)
CALL LAGINT(mjd_ar, Yerr_ar, EOP_Nint_used, EOP_Nint_used, mjd_int, Yerr_int)
CALL LAGINT(mjd_ar, UT1err_ar, EOP_Nint_used, EOP_Nint_used, mjd_int, UT1err_int)
CALL LAGINT(mjd_ar, LODerr_ar, EOP_Nint_used, EOP_Nint_used, mjd_int, LODerr_int)
ERP_int (EOP_MJD) = mjd_int
ERP_int (EOP_X) = Xpole_int
ERP_int (EOP_Y) = Ypole_int
ERP_int (EOP_UT1) = UT1UTC_int
ERP_int (EOP_LOD) = LOD_int
ERP_int (EOP_X_ERR) = Xerr_int
ERP_int (EOP_Y_ERR) = Yerr_int
ERP_int (EOP_UT1_ERR) = ut1err_int
ERP_int (EOP_LOD_ERR) = LODerr_int
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
! dX,dY : Corrections w.r.t Precession-Nutation model
!mjd_UTC_day = INT (mjd)
!CALL eop_finals2000A (EOP_fname, mjd_UTC_day , EOP_data)
!dX = EOP_data(6)
!dY = EOP_data(7)
!----------------------------------------------------------
! init next two var to something sensible
dX_eop = 0.d0
dY_eop = 0.d0
sz1_EOP = SIZE (EOP_days,DIM=1)
sz2_EOP = SIZE (EOP_days,DIM=2)
DO i = 1 , sz1_EOP
If (mjd_int == EOP_days(i,EOP_MJD) ) then
! dX,dY (arcsec)
dX_eop = EOP_days(i,EOP_DX)
dY_eop = EOP_days(i,EOP_DY)
End If
END DO
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
EOP_int (EOP_MJD) = mjd_int
EOP_int (EOP_X) = Xpole_int
EOP_int (EOP_Y) = Ypole_int
EOP_int (EOP_UT1) = UT1UTC_int
EOP_int (EOP_LOD) = LOD_int
! dX,dY : Precession-Nutation model corrections
EOP_int (EOP_DX) = dX_eop !EOP_data (6)
EOP_int (EOP_DY) = dY_eop !EOP_data (7)
! ----------------------------------------------------------------------
EOP_int (EOP_X_ERR) = Xerr_int
EOP_int (EOP_Y_ERR) = Yerr_int
EOP_int (EOP_UT1_ERR) = ut1err_int
EOP_int (EOP_LOD_ERR) = LODerr_int
! PRINT *,"--------------------------------------------------------"
! PRINT *, "ERP_igu_data"
! PRINT *, ERP_igu_data
! PRINT *, "ERP_int"
! PRINT *, ERP_int
! PRINT *,"--------------------------------------------------------"
END SUBROUTINE
END
|
module test_Plot3
import ..ModiaMath
using Test
using Unitful
t = range(0.0, stop=10.0, length=100)
result = Dict{AbstractString,Any}()
result["time"] = t
result["phi"] = sin.(t)u"rad"
result["phi2"] = 0.5 * sin.(t)u"rad"
result["w"] = cos.(t)u"rad/s"
result["phi_max"] = 1.1u"rad"
result["phi_max_int"] = 1
result["open"] = false
println("\n... Next plot should give a warning:")
ModiaMath.plot(result, (:phi_max, :phi_max_int, :open, :phi, :phi2, :w, :signalNotDefined), heading="Sine(time)", figure=1)
ModiaMath.plot(result, [:phi, :phi2, :w], heading="Sine(time)", figure=2)
ModiaMath.plot(result, :phi, xAxis=:w, heading="phi=f(w)", figure=3)
println("\n... Next plot should give a warning:")
ModiaMath.plot(result, :phi, xAxis=:xAxisNotDefined, heading="phi=f(w)", figure=4)
# Print result variables
println("\n... result variables = ", ModiaMath.resultTable(result))
# Add new simulation result
result["phi"] = 1.2*result["phi"]
result["phi2"] = 1.1*result["phi2"]
result["w"] = 0.5*result["w"]
ModiaMath.plot(result, (:phi, :phi2, :w), figure=1, prefix="Sim 2: ", reuse=true)
ModiaMath.plot(result, [:phi, :phi2, :w], figure=2, prefix="Sim 2: ", reuse=true)
end
|
section\<open>Preliminaries\<close>
(*
Session: Kneser_Cauchy_Davenport
Title: Kneser_Cauchy_Davenport_preliminaries.thy
Authors: Mantas Bakšys and Angeliki Koutsoukou-Argyraki
Affiliation: University of Cambridge
Date: September 2022.
*)
theory Kneser_Cauchy_Davenport_preliminaries
imports
Complex_Main
"Pluennecke_Ruzsa_Inequality.Pluennecke_Ruzsa_Inequality"
"HOL-Number_Theory.Prime_Powers"
begin
context subgroup_of_group
begin
interpretation left: left_translations_of_group ..
interpretation right: right_translations_of_group ..
interpretation transformation_group "left.translation ` H" G ..
lemma Right_Coset_eq_iff:
assumes "x \<in> G" and "y \<in> G"
shows "H |\<cdot> x = (H |\<cdot> y) \<longleftrightarrow> H |\<cdot> x \<inter> (H |\<cdot> y) \<noteq> {}"
using assms Right_Coset_is_orbit
by (metis Int_absorb orbit.disjoint orbit.natural.map_closed orbit.non_vacuous)
end
context additive_abelian_group
begin
subsection\<open>Elementary lemmas on sumsets \<close> (*this subsection can be moved to
Pluennecke_Ruzsa_Inequality. *)
lemma sumset_translate_eq_right:
assumes "A \<subseteq> G" and "B \<subseteq> G" and "x \<in> G"
shows "(sumset A {x} = sumset B {x}) \<longleftrightarrow> A = B" using assms
by (smt (verit, best) Diff_Int_distrib2 Diff_eq_empty_iff
Int_Un_eq(1) Int_absorb2 Un_Diff_cancel2 Un_commute insert_disjoint(2)
subset_refl sumset_is_empty_iff sumsetdiff_sing)
lemma sumset_translate_eq_left:
assumes "A \<subseteq> G" and "B \<subseteq> G" and "x \<in> G"
shows " (sumset {x} A = sumset {x} B) \<longleftrightarrow> A = B" using assms
by (simp add: sumset_commute sumset_translate_eq_right)
lemma differenceset_translate_eq_right:
assumes "A \<subseteq> G" and "B \<subseteq> G" and "x \<in> G"
shows "(differenceset A {x} = differenceset B {x}) \<longleftrightarrow> A = B" using assms
by (metis Int_absorb2 differenceset_commute minus_minusset minusset_subset_carrier
sumset_translate_eq_left)
lemma differenceset_translate_eq_left:
assumes "A \<subseteq> G" and "B \<subseteq> G" and "x \<in> G"
shows "(differenceset {x} A = differenceset {x} B) \<longleftrightarrow> A = B" using assms
by (metis differenceset_commute differenceset_translate_eq_right)
lemma sumset_inter_union_subset:
"sumset (A \<inter> B) (A \<union> B) \<subseteq> sumset A B"
by (metis Int_Diff_Un Int_Un_eq(2) Un_subset_iff sumset_commute sumset_subset_Un(2)
sumset_subset_Un2)
lemma differenceset_group_eq:
"G = differenceset G G"
using equalityE minusset_eq minusset_triv subset_antisym sumset_D(1) sumset_subset_carrier
sumset_mono image_mono Int_absorb by metis
lemma card_sumset_singleton_subset_eq:
assumes "a \<in> G" and "A \<subseteq> G"
shows "card (sumset {a} A) = card A"
using assms card_sumset_singleton_eq card.infinite card_sumset_0_iff' le_iff_inf sumset_commute
by metis
lemma card_differenceset_singleton_mem_eq:
assumes "a \<in> G" and "A \<subseteq> G"
shows "card A = card (differenceset A {a})"
using assms by (metis card_minusset' card_sumset_singleton_subset_eq differenceset_commute
minusset_subset_carrier)
lemma card_singleton_differenceset_eq:
assumes "a \<in> G" and "A \<subseteq> G"
shows "card A = card (differenceset {a} A)"
using assms by (metis card_minusset' card_sumset_singleton_subset_eq minusset_subset_carrier)
lemma sumset_eq_Union_left:
assumes "A \<subseteq> G"
shows "sumset A B = (\<Union> a \<in> A. sumset {a} B)"
proof
show "sumset A B \<subseteq> (\<Union> a \<in> A. sumset {a} B)"
using assms sumset.cases Int_absorb2 Int_iff UN_iff singletonI sumset.sumsetI
by (smt (verit, del_insts) subsetI)
next
show "(\<Union> a \<in> A. sumset {a} B) \<subseteq> sumset A B"
using sumset by auto
qed
lemma sumset_eq_Union_right:
assumes "B \<subseteq> G"
shows "sumset A B = (\<Union> b \<in> B. sumset A {b})"
using assms sumset_commute sumset_eq_Union_left by (metis (no_types, lifting) Sup.SUP_cong)
lemma sumset_singletons_eq:
assumes "a \<in> G" and "b \<in> G"
shows "sumset {a} {b} = {a \<oplus> b}"
using assms sumset.simps subset_antisym by auto
lemma sumset_eq_subset_differenceset:
assumes "K \<subseteq> G" and "K \<noteq> {}" and "A \<subseteq> G" and "sumset A K = sumset B K"
shows "A \<subseteq> differenceset (sumset B K) K"
proof
fix a assume ha: "a \<in> A"
obtain k where hk: "k \<in> K" using assms(2) by blast
then have "a \<oplus> k \<in> sumset B K" using assms sumset.sumsetI ha by blast
then have "a \<oplus> (k \<ominus> k) \<in> differenceset (sumset B K) K" using hk assms ha minusset.minussetI
subset_iff sumset.sumsetI by (smt (verit) associative composition_closed inverse_closed)
then show "a \<in> differenceset (sumset B K) K" using hk ha subsetD assms right_unit
by (metis invertible invertible_right_inverse)
qed
end
locale subgroup_of_additive_abelian_group =
subgroup_of_abelian_group H G "(\<oplus>)" \<zero> + additive_abelian_group G "(\<oplus>)" \<zero>
for H G and addition (infixl "\<oplus>" 65) and zero ("\<zero>")
begin
notation Left_Coset (infixl "\<cdot>|" 70)
lemma Left_Coset_eq_sumset:
assumes "x \<in> G"
shows "sumset {x} H = x \<cdot>| H"
using assms Left_Coset_memI sumset.simps by fastforce
lemma sumset_subgroup_eq_iff:
assumes "a \<in> G" and "b \<in> G"
shows "sumset {a} H = sumset {b} H \<longleftrightarrow>
(sumset {a} H) \<inter> (sumset {b} H) \<noteq> {}"
using Right_Coset_eq_iff assms Left_Coset_eq_sumset Left_equals_Right_coset by presburger
lemma card_divide_sumset:
assumes "A \<subseteq> G"
shows "card H dvd card (sumset A H)"
proof(cases "finite H \<and> finite A")
case hfin: True
then have hfinsum: "\<And> X. X \<in> ((\<lambda> a. sumset {a} H) ` A) \<Longrightarrow> finite X"
using finite_sumset by force
moreover have "pairwise disjnt ((\<lambda> a. sumset {a} H) ` A)"
using pairwise_imageI disjnt_def sumset_subgroup_eq_iff subset_eq assms by (smt (verit, best))
moreover have "card H dvd sum card ((\<lambda> a. sumset {a} H) ` A)"
proof(intro dvd_sum)
fix X assume "X \<in> (\<lambda> a. sumset {a} H) ` A"
then show "card H dvd card X" using dvd_refl
using Left_equals_Right_coset Right_Coset_cardinality assms Left_Coset_eq_sumset by auto
qed
ultimately show ?thesis using assms sumset_eq_Union_left card_Union_disjoint by metis
next
case False
then show ?thesis using assms card_sumset_0_iff by (metis card_eq_0_iff dvd_0_right sub subsetI)
qed
lemma sumset_subgroup_eq_Class_Union:
assumes "A \<subseteq> G"
shows "sumset A H = (\<Union> (Class ` A))"
proof
show "sumset A H \<subseteq> \<Union> (Class ` A)"
proof
fix x assume "x \<in> sumset A H"
then obtain a b where ha: "a \<in> A" and "b \<in> H" and "x = a \<oplus> b"
using sumset.cases by blast
then have "x \<in> Class a" using Left_Coset_Class_unit Left_Coset_eq_sumset assms by blast
thus "x \<in> \<Union> (Class ` A)" using ha by blast
qed
next
show "\<Union> (Class ` A) \<subseteq> sumset A H"
proof(intro Union_least)
fix X assume "X \<in> Class ` A"
then obtain a where "a \<in> A" and "X = Class a" by blast
moreover hence "{a} \<subseteq> A" by auto
ultimately show "X \<subseteq> sumset A H" using Left_Coset_Class_unit
Left_Coset_eq_sumset assms sumset_mono subset_refl in_mono by metis
qed
qed
lemma Class_image_sumset_subgroup_eq:
assumes "A \<subseteq> G"
shows "Class ` (sumset A H) = Class ` A"
proof
show "Class ` sumset A H \<subseteq> Class ` A"
proof
fix x assume "x \<in> Class ` sumset A H"
then obtain c where hc: "c \<in> sumset A H" and "x = Class c" by blast
moreover obtain a b where ha: "a \<in> A" and "b \<in> H" and "c = a \<oplus> b" using hc sumset.cases
by blast
ultimately show "x \<in> Class ` A" using ha Class_eq CongruenceI assms composition_closed
sumset.cases Partition_def commutative image_eqI left_unit sub unit_closed
by (smt (verit, ccfv_threshold) Block_self Class_cong Normal_def)
qed
next
show "Class ` A \<subseteq> Class ` sumset A H" using assms right_unit subsetD subsetI sumset.sumsetI
unit_closed by (smt (verit, del_insts) image_subset_iff sub_unit_closed)
qed
lemma Class_cover_imp_subset_or_disj:
assumes "A = (\<Union> (Class ` C))" and "x \<in> G" and "C \<subseteq> G"
shows "Class x \<subseteq> A \<or> Class x \<inter> A = {}"
proof(intro disjCI)
assume "Class x \<inter> A \<noteq> {}"
then obtain c where "c \<in> C" and "Class x \<inter> Class c \<noteq> {}" using assms by blast
then show "Class x \<subseteq> A" using assms not_disjoint_implies_equal Sup_upper imageI subset_iff
by blast
qed
end
context additive_abelian_group
begin
subsection\<open>Stabilizer and basic properties\<close>
text\<open>We define the stabilizer or group of periods of a nonempty subset of an abelian group.\<close>
definition stabilizer::"'a set \<Rightarrow> 'a set " where
"stabilizer S \<equiv> {x \<in> G. sumset {x} (S \<inter> G) = S \<inter> G}"
lemma stabilizer_is_subgroup: fixes S :: "'a set"
shows "subgroup (stabilizer S) G (\<oplus>) (\<zero>)"
proof (intro subgroupI)
show "stabilizer S \<subseteq> G" using stabilizer_def by auto
next
show "\<zero> \<in> stabilizer S" using stabilizer_def by (simp add: Int_absorb1 Int_commute)
next
fix a b assume haS: "a \<in> stabilizer S" and hbS: "b \<in> stabilizer S"
then have haG: "a \<in> G" and hbG: "b \<in> G" using stabilizer_def by auto
have "sumset {a \<oplus> b} (S \<inter> G) = sumset {a} (sumset {b} (S \<inter> G))"
proof
show "sumset {a \<oplus> b} (S \<inter> G) \<subseteq> sumset {a} (sumset {b} (S \<inter> G))" using haG hbG
empty_subsetI insert_subset subsetI sumset.simps sumset_assoc sumset_mono
by metis
show "sumset {a} (sumset {b} (S \<inter> G)) \<subseteq> sumset {a \<oplus> b} (S \<inter> G)"
using empty_iff insert_iff sumset.simps sumset_assoc by (smt (verit, best) subsetI)
qed
then show "a \<oplus> b \<in> stabilizer S" using haS hbS stabilizer_def by auto
next
fix g assume "g \<in> stabilizer S"
thus "invertible g" using stabilizer_def by auto
next
fix g assume hgS: "g \<in> stabilizer S"
then have hinvsum : "inverse g \<oplus> g = \<zero>" using stabilizer_def by simp
have "sumset {inverse g} (sumset {g} (S \<inter> G)) = (S \<inter> G)"
proof
show "sumset {inverse g} (sumset {g} (S \<inter> G)) \<subseteq> (S \<inter> G)" using
empty_iff insert_iff sumset.simps sumset_assoc subsetI left_unit hinvsum
by (smt (verit, ccfv_threshold))
show "(S \<inter> G) \<subseteq> sumset {inverse g} (sumset {g} (S \<inter> G))"
proof
fix s assume hs: "s \<in> (S \<inter> G)"
then have "inverse g \<oplus> g \<oplus> s \<in> sumset {inverse g} (sumset {g} (S \<inter> G))" using
hgS stabilizer_def additive_abelian_group.sumset.sumsetI
additive_abelian_group_axioms associative in_mono inverse_closed mem_Collect_eq singletonI
by (smt (z3) IntD2)
thus "s \<in> sumset {inverse g} (sumset {g} (S \<inter> G))" using hinvsum hs
by simp
qed
qed
thus "inverse g \<in> stabilizer S" using hgS stabilizer_def by auto
qed
interpretation subgroup_of_additive_abelian_group "stabilizer A" "G" "(\<oplus>)" "\<zero>"
using stabilizer_is_subgroup subgroup_of_abelian_group_def
by (metis abelian_group_axioms additive_abelian_group_axioms group_axioms
subgroup_of_additive_abelian_group_def subgroup_of_group_def)
lemma zero_mem_stabilizer: "\<zero> \<in> stabilizer A" ..
lemma stabilizer_is_nonempty:
shows "stabilizer S \<noteq> {}"
using sub_unit_closed by blast
lemma Left_Coset_eq_sumset_stabilizer:
assumes "x \<in> G"
shows "sumset {x} (stabilizer B) = x \<cdot>| (stabilizer B)"
by (simp add: Left_Coset_eq_sumset assms)
lemma stabilizer_subset_difference_singleton:
assumes "S \<subseteq> G" and "s \<in> S"
shows "stabilizer S \<subseteq> differenceset S {s}"
proof
fix x assume hx: "x \<in> stabilizer S"
then obtain t where ht: "t \<in> S" and "x \<oplus> s = t" using assms stabilizer_def by blast
then have "x = t \<ominus> s" using hx stabilizer_def assms associative
by (metis (no_types, lifting) in_mono inverse_closed invertible invertible_right_inverse sub
sub.right_unit)
thus "x \<in> differenceset S {s}" using ht assms
by (simp add: minusset.minussetI subsetD sumset.sumsetI)
qed
lemma stabilizer_subset_singleton_difference:
assumes "S \<subseteq> G" and "s \<in> S"
shows "stabilizer S \<subseteq> differenceset {s} S"
proof-
have "stabilizer S \<subseteq> minusset (stabilizer S)" using assms Int_absorb2 minusset_eq
subgroup.image_of_inverse submonoid.sub subset_eq
by (smt (verit) stabilizer_is_subgroup stabilizer_subset_difference_singleton
sumset_subset_carrier)
moreover have "minusset (stabilizer S) \<subseteq> minusset (differenceset S {s})"
proof
fix x assume hx1: "x \<in> minusset (stabilizer S)"
then have hx: "inverse x \<in> stabilizer S"
by (metis invertible invertible_inverse_inverse minusset.cases)
then obtain t where ht: "t \<in> S" and "inverse x \<oplus> s = t" using assms stabilizer_def by blast
then have hx2: "inverse x = t \<ominus> s" using hx stabilizer_def assms
by (smt (verit, ccfv_threshold) commutative in_mono inverse_closed invertible
invertible_left_inverse2 sub)
thus "x \<in> minusset (differenceset S {s})" using ht assms
by (smt (verit, best) hx1 additive_abelian_group.sumset.sumsetI additive_abelian_group_axioms
inverse_closed invertible invertible_inverse_inverse minusset.cases minusset.minussetI
singletonI subset_iff)
qed
ultimately show ?thesis using differenceset_commute assms by blast
qed
lemma stabilizer_subset_nempty:
assumes "S \<noteq> {}" and "S \<subseteq> G"
shows "stabilizer S \<subseteq> differenceset S S"
proof
fix x assume hx: "x \<in> stabilizer S"
then obtain s where hs: "s \<in> S \<inter> G" using assms by blast
then have "x \<oplus> s \<in> S \<inter> G" using stabilizer_def assms hx mem_Collect_eq singletonI
sumset.sumsetI sumset_Int_carrier by blast
then obtain t where ht: "t \<in> S" and "x \<oplus> s = t" by blast
then have "x = t \<ominus> s" using hx stabilizer_def assms(2) hs ht associative
by (metis IntD2 inverse_closed invertible invertible_right_inverse sub sub.right_unit)
thus "x \<in> differenceset S S" using ht hs using assms(2) by blast
qed
lemma stabilizer_coset_subset:
assumes "A \<subseteq> G" and "x \<in> A"
shows "sumset {x} (stabilizer A) \<subseteq> A"
proof
fix y assume "y \<in> sumset {x} (stabilizer A)"
moreover hence "stabilizer A \<subseteq> differenceset A {x}" using assms
stabilizer_subset_difference_singleton by auto
moreover have "sumset {x} (differenceset A {x}) \<subseteq> A"
proof
fix z assume "z \<in> sumset {x} (differenceset A {x})"
then obtain a where "a \<in> A" and "z = x \<oplus> (a \<ominus> x)"
using additive_abelian_group.sumset.cases additive_abelian_group_axioms singletonD
minusset.cases assms subsetD by (smt (verit, ccfv_SIG))
thus "z \<in> A" using assms
by (metis additive_abelian_group.inverse_closed additive_abelian_group_axioms
commutative in_mono invertible invertible_right_inverse2)
qed
ultimately show "y \<in> A" by (meson in_mono subset_singleton_iff sumset_mono)
qed
lemma stabilizer_subset_stabilizer_dvd:
assumes "stabilizer A \<subseteq> stabilizer B"
shows "card (stabilizer A) dvd card (stabilizer B)"
proof(cases "finite (stabilizer B)")
case hB: True
interpret H: subgroup_of_group "stabilizer A" "stabilizer B" "(\<oplus>)" "\<zero>"
proof(unfold_locales)
show "stabilizer A \<subseteq> stabilizer B" using assms by blast
next
show "\<And>a b. a \<in> stabilizer A \<Longrightarrow> b \<in> stabilizer A \<Longrightarrow> a \<oplus> b \<in> stabilizer A"
using stabilizer_is_subgroup group_axioms by simp
next
show "\<zero> \<in> stabilizer A" using sub_unit_closed by blast
qed
show ?thesis using H.lagrange hB by auto
next
case False
then show ?thesis by simp
qed
lemma stabilizer_coset_Un:
assumes "A \<subseteq> G"
shows "(\<Union> x \<in> A. sumset {x} (stabilizer A)) = A"
proof
show "(\<Union>x\<in>A. sumset {x} (stabilizer A)) \<subseteq> A"
using stabilizer_coset_subset assms by blast
next
show "A \<subseteq> (\<Union>x\<in>A. sumset {x} (stabilizer A))"
proof
fix x assume hx: "x \<in> A"
then have "x \<in> sumset {x} (stabilizer A)" using sub_unit_closed assms
by (metis in_mono right_unit singletonI sumset.sumsetI unit_closed)
thus "x \<in> (\<Union>x\<in>A. sumset {x} (stabilizer A))" using hx by blast
qed
qed
lemma stabilizer_empty: "stabilizer {} = G"
using sumset_empty Int_empty_left stabilizer_def subset_antisym
by (smt (verit, best) mem_Collect_eq subsetI sumset_Int_carrier_eq(1) sumset_commute)
lemma stabilizer_finite:
assumes "S \<subseteq> G" and "S \<noteq> {}" and "finite S"
shows "finite (stabilizer S)"
using stabilizer_subset_nempty assms
by (meson finite_minusset finite_sumset rev_finite_subset)
lemma stabilizer_subset_group:
shows "stabilizer S \<subseteq> G" using stabilizer_def by blast
lemma sumset_stabilizer_eq_iff:
assumes "a \<in> G" and "b \<in> G"
shows "sumset {a} (stabilizer A) = sumset {b} (stabilizer A) \<longleftrightarrow>
(sumset {a} (stabilizer A)) \<inter> (sumset {b} (stabilizer A)) \<noteq> {}"
by (simp add: assms sumset_subgroup_eq_iff)
lemma sumset_stabilizer_eq_Class_Union:
assumes "A \<subseteq> G"
shows "sumset A (stabilizer B) = (\<Union> (Class B ` A))"
by (simp add: assms sumset_subgroup_eq_Class_Union)
lemma card_stabilizer_divide_sumset:
assumes "A \<subseteq> G"
shows "card (stabilizer B) dvd card (sumset A (stabilizer B))"
by (simp add: assms card_divide_sumset)
lemma Class_image_sumset_stabilizer_eq:
assumes "A \<subseteq> G"
shows "Class B ` (sumset A (stabilizer B)) = Class B ` A"
by (simp add: Class_image_sumset_subgroup_eq assms)
lemma Class_cover_imp_subset_or_disj:
assumes "A = (\<Union> (Class B ` C))" and "x \<in> G" and "C \<subseteq> G"
shows "Class B x \<subseteq> A \<or> Class B x \<inter> A = {}"
by (simp add: Class_cover_imp_subset_or_disj assms)
lemma stabilizer_sumset_disjoint:
fixes S1 S2 :: "'a set"
assumes "stabilizer S1 \<inter> stabilizer S2 = {\<zero>}" and "S1 \<subseteq> G" and "S2 \<subseteq> G"
and "finite S1" and "finite S2" and "S1 \<noteq> {}" and "S2 \<noteq> {}"
shows "card (sumset (stabilizer S1) (stabilizer S2)) =
card (stabilizer S1) * card (stabilizer S2)"
proof-
have inj_on : "inj_on (\<lambda> (a, b). a \<oplus> b) (stabilizer S1 \<times> stabilizer S2)"
proof(intro inj_onI)
fix x y assume "x \<in> stabilizer S1 \<times> stabilizer S2" and "y \<in> stabilizer S1 \<times> stabilizer S2" and
"(case x of (a, b) \<Rightarrow> a \<oplus> b) = (case y of (a, b) \<Rightarrow> a \<oplus> b)"
then obtain a b c d where hx: "x = (a, b)" and hy: "y = (c, d)" and ha: "a \<in> stabilizer S1" and
hb: "b \<in> stabilizer S2" and hc: "c \<in> stabilizer S1" and hd: "d \<in> stabilizer S2" and
habcd: "a \<oplus> b = c \<oplus> d" by auto
then have haG: "a \<in> G" using stabilizer_def by blast
have hbG: "b \<in> G" using hb stabilizer_def by blast
have hcG: "c \<in> G" using hc stabilizer_def by blast
have hdG: "d \<in> G" using hd stabilizer_def by blast
then have "a \<ominus> c = d \<ominus> b" using habcd haG hbG hcG hdG
by (metis (full_types) associative commutative composition_closed inverse_equality invertible
invertible_def invertible_left_inverse2)
moreover have "a \<ominus> c \<in> stabilizer S1" using ha hc stabilizer_is_subgroup
subgroup.axioms(1) submonoid.sub_composition_closed
by (metis group.invertible group_axioms hcG subgroup.subgroup_inverse_iff)
moreover have "d \<ominus> b \<in> stabilizer S2" using hd hb stabilizer_is_subgroup
subgroup.axioms(1) submonoid.sub_composition_closed
by (metis group.invertible group_axioms hbG subgroup.subgroup_inverse_iff)
ultimately have "a \<ominus> c = \<zero>" and "d \<ominus> b = \<zero>" using assms(1) by auto
thus "x = y" using hx hy haG hbG hcG hdG
by (metis inverse_closed invertible invertible_right_cancel invertible_right_inverse)
qed
moreover have himage : "(\<lambda> (a, b). a \<oplus> b) ` (stabilizer S1 \<times> stabilizer S2) =
sumset (stabilizer S1) (stabilizer S2)"
proof
show "(\<lambda>(a, b). a \<oplus> b) ` (stabilizer S1 \<times> stabilizer S2) \<subseteq> sumset (stabilizer S1) (stabilizer S2)"
using stabilizer_subset_group by force
next
show "sumset (stabilizer S1) (stabilizer S2) \<subseteq> (\<lambda>(a, b). a \<oplus> b) ` (stabilizer S1 \<times> stabilizer S2)"
proof
fix x assume "x \<in> sumset (stabilizer S1) (stabilizer S2)"
then obtain s1 s2 where hs1: "s1 \<in> stabilizer S1" and hs2: "s2 \<in> stabilizer S2" and
"x = s1 \<oplus> s2" by (meson sumset.cases)
thus "x \<in> (\<lambda>(a, b). a \<oplus> b) ` (stabilizer S1 \<times> stabilizer S2)" using hs1 hs2 by auto
qed
qed
ultimately show ?thesis using card_image card_cartesian_product by fastforce
qed
lemma stabilizer_sub_sumset_left:
"stabilizer A \<subseteq> stabilizer (sumset A B)"
proof
fix x assume hx: "x \<in> stabilizer A"
then have "sumset {x} (sumset A B) = sumset A B" using stabilizer_def sumset_assoc
mem_Collect_eq by (smt (verit, del_insts) sumset_Int_carrier_eq(1) sumset_commute)
thus "x \<in> stabilizer (sumset A B)" using hx stabilizer_def
by (metis (mono_tags, lifting) mem_Collect_eq sumset_Int_carrier)
qed
lemma stabilizer_sub_sumset_right:
"stabilizer B \<subseteq> stabilizer (sumset A B)"
using stabilizer_sub_sumset_left sumset_commute by fastforce
lemma not_mem_stabilizer_obtain:
assumes "A \<noteq> {}" and "x \<notin> stabilizer A" and "x \<in> G" and "A \<subseteq> G" and "finite A"
obtains a where "a \<in> A" and "x \<oplus> a \<notin> A"
proof-
have "sumset {x} A \<noteq> A" using assms stabilizer_def
by (metis (mono_tags, lifting) inf.orderE mem_Collect_eq)
moreover have "card (sumset {x} A) = card A" using assms
by (metis card_sumset_singleton_eq inf.orderE sumset_commute)
ultimately obtain y where "y \<in> sumset {x} A" and "y \<notin> A" using assms
by (meson card_subset_eq subsetI)
then obtain a where "a \<in> A" and "x \<oplus> a \<notin> A" using assms
by (metis singletonD sumset.cases)
thus ?thesis using that by blast
qed
lemma sumset_eq_sub_stabilizer:
assumes "A \<subseteq> G" and "B \<subseteq> G" and "finite B"
shows "sumset A B = B \<Longrightarrow> A \<subseteq> stabilizer B"
proof
fix x assume hsum: "sumset A B = B" and hx: "x \<in> A"
have "sumset {x} B = B"
proof-
have "sumset {x} B \<subseteq> B" using hsum hx
by (metis empty_subsetI equalityE insert_subset sumset_mono)
moreover have "card (sumset {x} B) = card B" using assms
by (metis IntD1 Int_absorb1 card_sumset_singleton_eq hx inf_commute sumset_commute)
ultimately show ?thesis using card_subset_eq assms(3) by auto
qed
thus "x \<in> stabilizer B" using hx assms(1) stabilizer_def
by (metis (mono_tags, lifting) assms(2) inf.orderE mem_Collect_eq subsetD)
qed
lemma sumset_stabilizer_eq:
shows "sumset (stabilizer A) (stabilizer A) = stabilizer A"
proof
show "sumset (stabilizer A) (stabilizer A) \<subseteq> stabilizer A"
using stabilizer_is_subgroup subgroup.axioms(1) subsetI
by (metis (mono_tags, lifting) additive_abelian_group.sumset.simps additive_abelian_group_axioms
submonoid.sub_composition_closed)
next
show "stabilizer A \<subseteq> sumset (stabilizer A) (stabilizer A)"
using Left_Coset_eq_sumset stabilizer_is_nonempty
stabilizer_subset_group sub_unit_closed additive_abelian_group_axioms right_unit
subset_iff sumsetI by (smt (verit, best))
qed
lemma differenceset_stabilizer_eq:
shows "differenceset (stabilizer A) (stabilizer A) = stabilizer A"
proof
show "differenceset (stabilizer A) (stabilizer A) \<subseteq> stabilizer A"
proof
fix x assume "x \<in> differenceset (stabilizer A) (stabilizer A)"
then obtain a b where "a \<in> stabilizer A" and "b \<in> stabilizer A" and "x = a \<ominus> b"
by (metis minusset.cases sumset.cases)
thus "x \<in> stabilizer A" using stabilizer_is_subgroup subgroup.axioms(1)
by (smt (verit, ccfv_threshold) in_mono invertible stabilizer_subset_group
subgroup_inverse_iff sub_composition_closed)
qed
next
show "stabilizer A \<subseteq> differenceset (stabilizer A) (stabilizer A)"
proof
fix x assume hx: "x \<in> stabilizer A"
then have "x \<ominus> \<zero> \<in> differenceset (stabilizer A) (stabilizer A)" by blast
then show "x \<in> differenceset (stabilizer A) (stabilizer A)" using hx by simp
qed
qed
lemma stabilizer2_sub_stabilizer:
shows "stabilizer(stabilizer A) \<subseteq> stabilizer A"
proof(cases "A \<noteq> {}")
case True
then have "stabilizer(stabilizer A) \<subseteq> differenceset (stabilizer A) (stabilizer A)"
by (simp add: stabilizer_is_nonempty stabilizer_subset_group stabilizer_subset_nempty)
thus ?thesis using differenceset_stabilizer_eq by blast
next
case False
then show ?thesis by (simp add: stabilizer_empty stabilizer_subset_group)
qed
lemma stabilizer_left_sumset_invariant:
assumes "a \<in> G" and "A \<subseteq> G"
shows "stabilizer (sumset {a} A) = stabilizer A"
proof
show "stabilizer (sumset {a} A) \<subseteq> stabilizer A"
proof
fix x assume hx: "x \<in> stabilizer (sumset {a} A)"
then have hxG: "x \<in> G" using stabilizer_def by blast
have "sumset {x} (sumset {a} A) = sumset {a} A" using stabilizer_def hx
by (metis (mono_tags, lifting) mem_Collect_eq sumset_Int_carrier)
then have "sumset {x} A = A" using assms
by (metis (full_types) sumset_assoc sumset_commute sumset_subset_carrier
sumset_translate_eq_right)
thus "x \<in> stabilizer A" using hxG stabilizer_def
by (metis (mono_tags, lifting) mem_Collect_eq sumset_Int_carrier)
qed
next
show "stabilizer A \<subseteq> stabilizer (sumset {a} A)" using stabilizer_def
using stabilizer_sub_sumset_right by meson
qed
lemma stabilizer_right_sumset_invariant:
assumes "a \<in> G" and "A \<subseteq> G"
shows "stabilizer (sumset A {a}) = stabilizer A"
using sumset_commute stabilizer_left_sumset_invariant assms by simp
lemma stabilizer_right_differenceset_invariant:
assumes "b \<in> G" and "A \<subseteq> G"
shows "stabilizer (differenceset A {b}) = stabilizer A"
using assms minusset_eq stabilizer_right_sumset_invariant by auto
lemma stabilizer_unchanged:
assumes "a \<in> G" and "b \<in> G"
shows "stabilizer (sumset A B) = stabilizer (sumset A (sumset (differenceset B {b}) {a}))"
proof-
have "sumset A (sumset (differenceset B {b}) {a}) = sumset (differenceset (sumset A B) {b}) {a}"
by (simp add: sumset_assoc)
thus ?thesis using stabilizer_right_sumset_invariant
stabilizer_right_differenceset_invariant assms sumset_subset_carrier by simp
qed
lemma subset_stabilizer_of_subset_sumset:
assumes "A \<subseteq> sumset {x} (stabilizer B)" and "x \<in> G" and "A \<noteq> {}" and "A \<subseteq> G"
shows "stabilizer A \<subseteq> stabilizer B"
proof-
obtain a where ha: "a \<in> A" using assms by blast
moreover then obtain b where hb: "b \<in> stabilizer B" and haxb: "a = x \<oplus> b" using sumset.cases assms by blast
ultimately have "stabilizer A \<subseteq> differenceset A {a}" using assms sumset_subset_carrier
stabilizer_subset_difference_singleton by (meson subset_trans)
also have "... = sumset {inverse a} A" using sumset_commute ha assms(4) inverse_closed
subsetD minusset_eq by auto
also have "... \<subseteq> sumset {inverse x \<oplus> inverse b} (sumset {x} (stabilizer B))"
using assms sumset_mono haxb inverse_closed hb stabilizer_subset_group subsetD
commutative inverse_composition_commute by (metis invertible subset_singleton_iff)
also have "... = sumset {inverse b} (stabilizer B)" using sumset_singletons_eq commutative
assms sumset_assoc hb stabilizer_subset_group inverse_closed invertible
by (metis composition_closed invertible_right_inverse2 sub)
also have "... = stabilizer B" using hb Left_Coset_eq_sumset sub_unit_closed sub subset_iff
additive_abelian_group_axioms calculation disjoint_iff_not_equal factor_unit inverse_closed
sumset_subgroup_eq_iff by (smt (verit, del_insts))
finally show ?thesis .
qed
lemma sumset_stabilizer_eq_self:
assumes "A \<subseteq> G"
shows "sumset (stabilizer A) A = A"
using assms sumset_eq_Union_left[OF "stabilizer_subset_group"]
Int_absorb2 stabilizer_coset_Un sumset_commute sumset_eq_Union_left by presburger
lemma stabilizer_neq_subset_sumset:
assumes "A \<subseteq> sumset {x} (stabilizer B)" and "x \<in> A" and "\<not> sumset {x} (stabilizer B) \<subseteq> C" and
"A \<subseteq> C" and "C \<subseteq> G"
shows "stabilizer A \<noteq> stabilizer B"
proof
assume heq: "stabilizer A = stabilizer B"
obtain a where "a \<in> sumset {x} (stabilizer B)" and
"a \<notin> C" using assms by blast
moreover then obtain b where "b \<in> stabilizer B" and "a = x \<oplus> b" using sumset.cases by blast
ultimately have "b \<oplus> x \<notin> A" using commutative stabilizer_subset_group assms in_mono by metis
thus False using assms heq stabilizer_coset_subset subset_trans by metis
qed
lemma subset_stabilizer_Un:
shows "stabilizer A \<inter> stabilizer B \<subseteq> stabilizer (A \<union> B)"
proof
fix x assume hx: "x \<in> stabilizer A \<inter> stabilizer B"
then have "sumset {x} (A \<inter> G) = A \<inter> G" using stabilizer_def by blast
moreover have "sumset {x} (B \<inter> G) = (B \<inter> G)" using stabilizer_def hx by blast
ultimately have "sumset {x} ((A \<union> B) \<inter> G) = (A \<union> B) \<inter> G" using sumset_subset_Un2
boolean_algebra.conj_disj_distrib2 by auto
then show "x \<in> stabilizer (A \<union> B)" using hx stabilizer_subset_group stabilizer_def by blast
qed
lemma mem_stabilizer_Un_and_left_imp_right:
assumes "finite B" and "x \<in> stabilizer (A \<union> B)" and "x \<in> stabilizer A" and "disjnt A B"
shows "x \<in> stabilizer B"
proof-
have "(A \<inter> G) \<union> sumset {x} (B \<inter> G) = (A \<inter> G) \<union> (B \<inter> G)"
using assms(2) sumset_subset_Un2[of "{x}" "A \<inter> G" "B \<inter> G"] stabilizer_def[of "A \<union> B"]
Int_Un_distrib2[of "A" "B" "G"] assms(3) stabilizer_def
by (metis (mono_tags, lifting) mem_Collect_eq)
then have "B \<inter> G \<subseteq> sumset {x} (B \<inter> G)" using assms(4) disjnt_def Int_Un_distrib2 Int_commute
sumset_subset_Un1 by (smt (verit, del_insts) Int_assoc Un_Int_eq(2) inf.orderI insert_is_Un
sumset_empty(2))
then show "x \<in> stabilizer B" using stabilizer_def[of "B"] assms(1) assms(3) card_subset_eq
card_sumset_singleton_subset_eq finite.emptyI finite.insertI finite_Int finite_sumset
inf.cobounded2 stabilizer_subset_group subsetD by (smt (verit) mem_Collect_eq)
qed
lemma mem_stabilizer_Un_and_right_imp_left:
assumes "finite A" and "x \<in> stabilizer (A \<union> B)" and "x \<in> stabilizer B" and "disjnt A B"
shows "x \<in> stabilizer A"
using mem_stabilizer_Un_and_left_imp_right Un_commute assms disjnt_sym by metis
lemma Union_stabilizer_Class_eq:
assumes "A \<subseteq> G"
shows "A = (\<Union> (Class A ` A))" using assms sumset_commute sumset_subgroup_eq_Class_Union
sumset_stabilizer_eq_self by presburger
lemma card_stabilizer_sumset_divide_sumset:
"card (stabilizer (sumset A B)) dvd card (sumset A B)" using card_divide_sumset
sumset_commute sumset_stabilizer_eq_self sumset_subset_carrier by metis
lemma card_stabilizer_le:
assumes "A \<subseteq> G" and "finite A" and "A \<noteq> {}"
shows "card (stabilizer A) \<le> card A" using assms
by (metis card_le_sumset finite.cases insertCI insert_subset stabilizer_finite
stabilizer_subset_group sumset_commute sumset_stabilizer_eq_self)
lemma sumset_Inter_subset_sumset:
assumes "a \<in> G" and "b \<in> G"
shows "sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C)) \<subseteq>
sumset {a \<oplus> b} (stabilizer C)" (is "sumset ?A ?B \<subseteq> _")
proof
fix x assume "x \<in> sumset ?A ?B"
then obtain d1 d2 where "d1 \<in> sumset {a} (stabilizer C)" and
"d2 \<in> sumset {b} (stabilizer C)" and "x = d1 \<oplus> d2" by (meson IntD2 sumset.cases)
then obtain c1 c2 where hc1: "c1 \<in> stabilizer C" and hc2: "c2 \<in> stabilizer C" and
"x = (a \<oplus> c1) \<oplus> (b \<oplus> c2)" using sumset.simps by auto
then have "x = (a \<oplus> b) \<oplus> (c1 \<oplus> c2)" using hc1 hc2 assms associative commutative
stabilizer_subset_group by simp
thus "x \<in> sumset {a \<oplus> b} (stabilizer C)" using stabilizer_is_subgroup hc1 hc2
stabilizer_subset_group sumset.simps sumset_stabilizer_eq assms by blast
qed
subsection\<open>Convergent\<close>
(* I manually exclude the empty set from this definition as its stabilizer is too big *)
definition convergent :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
"convergent C A B \<equiv> C \<subseteq> sumset A B \<and> C \<noteq> {} \<and>
card C + card (stabilizer C) \<ge> card (A \<inter> B) + card (sumset (A \<union> B) (stabilizer C))"
definition convergent_set :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set set" where
"convergent_set A B = Collect (\<lambda> C. convergent C A B)"
lemma convergent_set_sub_powerset:
"convergent_set A B \<subseteq> Pow (sumset A B)" using convergent_set_def convergent_def by blast
lemma finite_convergent_set:
assumes "finite A" and "finite B"
shows "finite (convergent_set A B)"
using convergent_set_sub_powerset finite_Pow_iff finite_sumset assms finite_subset by metis
subsection\<open>Technical lemmas from DeVos's proof of Kneser's Theorem\<close>
text\<open>The following lemmas correspond to intermediate arguments in the proof of Kneser's Theorem
by DeVos that we will be following \cite{DeVos_Kneser}. \<close>
lemma stabilizer_sumset_psubset_stabilizer:
assumes "a \<in> G" and "b \<in> G" and "A \<inter> sumset {a} (stabilizer C) \<noteq> {}" and
"B \<inter> sumset {b} (stabilizer C) \<noteq> {}" and hnotsub: "\<not> sumset {a \<oplus> b} (stabilizer C) \<subseteq> sumset A B"
shows "stabilizer (sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C))) \<subset>
stabilizer C" (is "?H \<subset> _")
proof
have "sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C)) \<noteq> {}"
using assms by (simp add: inf_assoc)
then show "?H \<subseteq> stabilizer C"
by (meson assms(1) assms(2) composition_closed subset_stabilizer_of_subset_sumset sumset_Inter_subset_sumset sumset_subset_carrier)
next
obtain c1 c2 where "a \<oplus> c1 \<in> A" and "b \<oplus> c2 \<in> B" and hc1: "c1 \<in> stabilizer C" and hc2: "c2 \<in> stabilizer C"
using assms(1, 2, 3, 4) Left_Coset_eq_sumset_stabilizer by fastforce
then have hac1mem: "(a \<oplus> c1) \<in> A \<inter> sumset {a} (stabilizer C)" and hac1G: "a \<oplus> c1 \<in> G" and
hbc2mem: "(b \<oplus> c2) \<in> B \<inter> sumset {b} (stabilizer C)" and hbc2G: "b \<oplus> c2 \<in> G"
by (auto simp add: assms(1, 2) sumset.sumsetI)
have "(a \<oplus> c1) \<oplus> (b \<oplus> c2) \<in> sumset {a \<oplus> b} (stabilizer C)" using assms hc1 hc2
by (smt (verit) associative commutative composition_closed insertI1 sub sub_composition_closed sumset.sumsetI)
then have "sumset {a \<oplus> b} (stabilizer C) \<inter> sumset {(a \<oplus> c1) \<oplus> (b \<oplus> c2)} (stabilizer C) \<noteq> {}"
using zero_mem_stabilizer by (smt (verit, ccfv_threshold) composition_closed
disjoint_iff_not_equal hac1G hbc2G insertCI right_unit sumset.sumsetI unit_closed)
then have hsumeq: "sumset {a \<oplus> b} (stabilizer C) = sumset {(a \<oplus> c1) \<oplus> (b \<oplus> c2)} (stabilizer C)"
using sumset_stabilizer_eq_iff assms hac1G hbc2G composition_closed by presburger
have "(sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C))) \<subseteq> sumset {a \<oplus> b} (stabilizer C)"
by (simp add: assms(1, 2) sumset_Inter_subset_sumset)
have hsummem: "(a \<oplus> c1) \<oplus> (b \<oplus> c2) \<in> sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C))"
using hac1mem hbc2mem hac1G hbc2G sumset.sumsetI by blast
show "?H \<noteq> stabilizer C"
using stabilizer_neq_subset_sumset[OF _ hsummem] hnotsub hsumeq sumset_Inter_subset_sumset assms
sumset_subset_carrier composition_closed sumset_mono sumset.sumsetI zero_mem_stabilizer
inf.cobounded1 right_unit unit_closed by metis
qed
lemma stabilizer_eq_stabilizer_union:
assumes "a \<in> G" and "b \<in> G" and"A \<inter> sumset {a} (stabilizer C) \<noteq> {}" and
"B \<inter> sumset {b} (stabilizer C) \<noteq> {}" and hnotsub: "\<not> sumset {a \<oplus> b} (stabilizer C) \<subseteq> sumset A B" and
"C \<subseteq> sumset A B" and "finite C" and
"C \<inter> sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C)) = {}" and "C \<noteq> {}" and
"finite A" and "finite B"
shows "stabilizer (sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C))) =
stabilizer (C \<union> sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C)))" (is "stabilizer ?H = stabilizer ?K")
proof
show "stabilizer ?H \<subseteq> stabilizer ?K" using subset_stabilizer_Un Int_absorb1
stabilizer_sumset_psubset_stabilizer psubset_imp_subset assms by metis
next
have hCG : "C \<subseteq> G" using assms(6) sumset_subset_carrier by force
show "stabilizer ?K \<subseteq> stabilizer ?H"
proof
fix x assume hxC1: "x \<in> stabilizer ?K"
moreover have "x \<in> stabilizer C"
proof-
have hC_Un: "C = (\<Union> (Class C ` C))" using Union_stabilizer_Class_eq hCG by simp
have hCsumx: "sumset {x} C = (\<Union> y \<in> Class C ` C. sumset {x} y)"
proof
show "sumset {x} C \<subseteq> \<Union> (sumset {x} ` Class C ` C)"
proof
fix y assume hy: "y \<in> sumset {x} C"
then obtain c where hc: "c \<in> C" and hyxc: "y = x \<oplus> c" using sumset.cases by blast
then obtain K where hK: "K \<in> Class C ` C" and "c \<in> K" using hC_Un by blast
then have "y \<in> sumset {x} K" using hyxc hc by (metis sumset.cases
sumset.sumsetI hCG hy singletonD subset_iff)
then show "y \<in> \<Union> (sumset {x} ` Class C ` C)" using hK by auto
qed
next
show "\<Union> (sumset {x} ` Class C ` C) \<subseteq> sumset {x} C"
proof(intro Union_least)
fix X assume "X \<in> sumset {x} ` Class C ` C"
then obtain K where "K \<in> Class C ` C" and "X = sumset {x} K" by blast
then show "X \<subseteq> sumset {x} C" using sumset_mono[of "{x}" "{x}" "K" "C"]
hC_Un subset_refl by blast
qed
qed
have "x \<notin> stabilizer C \<Longrightarrow> False"
proof-
assume hxC: "x \<notin> stabilizer C"
then have hxG: "x \<in> G" using hxC1 stabilizer_subset_group by blast
then have hxCne: "sumset {x} C \<noteq> C" using stabilizer_def[of "C"] hCG Int_absorb2
hxC by (metis (mono_tags, lifting) mem_Collect_eq)
moreover have hxsplit: "sumset {x} C \<union> sumset {x} ?H = C \<union> ?H"
using hxC1 stabilizer_def[of "?K"] sumset_subset_carrier assms(6) sumset_subset_Un2 by force
have "sumset {x} C \<inter> ?H \<noteq> {}"
proof
assume "sumset {x} C \<inter> ?H = {}"
then have "sumset {x} C \<subset> C" using hxsplit hxCne by blast
thus "False" using hCG assms(6) assms(7) hxC1 stabilizer_subset_group psubset_card_mono
by (metis card_sumset_singleton_eq sumset_Int_carrier sumset_commute
sumset_stabilizer_eq_self hxG less_irrefl_nat)
qed
then obtain c where hc: "c \<in> C" and
hxcne: "sumset {x} (Class C c) \<inter> ?H \<noteq> {}" using hCsumx by blast
then have hxc: "sumset {x} (Class C c) = Class C (x \<oplus> c)"
using hxG assms(6) Left_Coset_Class_unit Left_Coset_eq_sumset_stabilizer sumset_assoc
sumset_singletons_eq composition_closed sumset.cases sumset_stabilizer_eq_self hCG by (smt (verit))
have hClassCempty: "Class C (x \<oplus> c) \<inter> C = {}"
proof-
have "\<not> Class C (x \<oplus> c) \<subseteq> C" using hxc hxcne assms(8) by blast
then show ?thesis using Class_cover_imp_subset_or_disj[OF hC_Un _ hCG]
by (meson composition_closed hCG hc hxG subsetD)
qed
have "Class C (x \<oplus> c) \<subseteq> sumset {x} C" using hCsumx hc hxc by blast
then have "Class C (x \<oplus> c) \<subseteq> ?H" using hClassCempty hxsplit by auto
moreover have "card (Class C (x \<oplus> c)) = card (stabilizer C)" using hxG hc hCG
composition_closed Right_Coset_Class_unit Right_Coset_cardinality sumset_Int_carrier
Class_cover_imp_subset_or_disj assms by auto
ultimately have "card (stabilizer C) \<le> card ?H" using card_mono finite_sumset assms(10, 11) finite_Int by metis
moreover have "card ?H < card (sumset {a \<oplus> b} (stabilizer C))"
proof (intro psubset_card_mono psubsetI sumset_Inter_subset_sumset assms(1) assms(2))
show "finite (sumset {a \<oplus> b} (stabilizer C))"
using stabilizer_finite assms finite_sumset by (simp add: hCG)
next
show "?H \<noteq> sumset {a \<oplus> b} (stabilizer C)"
using hnotsub sumset_mono by (metis Int_lower1)
qed
ultimately show "False"
using assms(1, 2) stabilizer_subset_group by (simp add: card_sumset_singleton_subset_eq)
qed
then show ?thesis by auto
qed
moreover have "finite ?H" using finite_sumset assms(10, 11) finite_Int by simp
ultimately show "x \<in> stabilizer ?H" using mem_stabilizer_Un_and_right_imp_left[of "?H" "x" "C"]
disjnt_def assms Un_commute by (metis disjoint_iff_not_equal)
qed
qed
lemma sumset_inter_ineq:
assumes "B \<inter> sumset {a} (stabilizer C) = {}" and "stabilizer (sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C))) \<subset> stabilizer C" and
"a \<in> A" and "a \<in> G" and "finite A" and "finite B" and "A \<noteq> {}" and "B \<noteq> {}" and "finite (stabilizer C)"
shows "int (card (sumset (A \<union> B) (stabilizer C))) - card (sumset (A \<union> B) (stabilizer (sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C))))) \<ge>
int (card (stabilizer C)) - card (sumset (A \<inter> sumset {a} (stabilizer C)) (stabilizer (sumset (A \<inter> sumset {a} (stabilizer C)) (B \<inter> sumset {b} (stabilizer C)))))"
(is "int (card (sumset (A \<union> B) (stabilizer C))) - card (sumset (A \<union> B) ?H1) \<ge>
int (card (stabilizer C)) - card (sumset ?A1 ?H1)")
proof-
have hfinsumH1:"finite (sumset (A \<union> B) ?H1)"
using finite_sumset assms by (meson finite_Un psubsetE rev_finite_subset)
have hsubsumH1: "sumset (A \<union> B) ?H1 \<subseteq> sumset (A \<union> B) (stabilizer C)"
using sumset.cases assms by (meson psubsetE subset_refl sumset_mono)
have hsumH1card_le: "card (sumset (A \<union> B) ?H1) \<le> card (sumset (A \<union> B) (stabilizer C))"
using card_mono finite_sumset stabilizer_finite assms
by (metis equalityE finite_UnI psubset_imp_subset sumset_mono)
have hsub: "sumset ?A1 ?H1 \<subseteq> sumset {a} (stabilizer C)"
proof
fix x assume "x \<in> sumset ?A1 ?H1"
then obtain h1 f where "h1 \<in> ?A1" and hf: "f \<in> ?H1" and
hx: "x = h1 \<oplus> f" by (meson sumset.cases)
then obtain c where hc: "c \<in> stabilizer C" and hac: "h1 = a \<oplus> c"
by (metis Int_iff empty_iff insert_iff sumset.cases)
then have hcf: "c \<oplus> f \<in> stabilizer C" using hf assms(2) stabilizer_is_subgroup
subgroup_def monoid_axioms Group_Theory.group.axioms(1)
Group_Theory.monoid_def subset_iff psubset_imp_subset
by (smt (verit) stabilizer_subset_group sumset.sumsetI sumset_stabilizer_eq)
have hcG: "c \<in> G" using hc stabilizer_subset_group by auto
have hfG: "f \<in> G" using hf stabilizer_subset_group by auto
show "x \<in> sumset {a} (stabilizer C)" using hx hac assms stabilizer_subset_group hcf
using Left_Coset_eq_sumset_stabilizer Left_Coset_memI associative hcG hfG by presburger
qed
moreover have "finite (sumset ?A1 ?H1)" using finite_sumset assms stabilizer_finite finite_subset
by (metis finite.simps hsub)
ultimately have "card (sumset {a} (stabilizer C)) - card (sumset ?A1 ?H1) =
card (sumset {a} (stabilizer C) - sumset ?A1 ?H1)"
using card_Diff_subset by metis
moreover have "card (sumset ?A1 ?H1) \<le> card (sumset {a} (stabilizer C))"
using card_mono hsub finite_sumset assms by (metis finite.simps)
ultimately have "int (card (sumset {a} (stabilizer C))) - card (sumset ?A1 ?H1) =
card (sumset {a} (stabilizer C) - sumset ?A1 ?H1)" by linarith
also have "... \<le> card ((sumset (A \<union> B) (stabilizer C)) - (sumset (A \<union> B) ?H1))"
proof-
have "sumset {a} (stabilizer C) - sumset ?A1 ?H1 \<subseteq> sumset (A \<union> B) (stabilizer C) - sumset (A \<union> B) ?H1"
proof
fix x assume hx: "x \<in> sumset {a} (stabilizer C) - sumset ?A1 ?H1"
then obtain c where hxac: "x = a \<oplus> c" and hc: "c \<in> stabilizer C" and hcG: "c \<in> G"
using sumset.cases by blast
then have "x \<in> sumset (A \<union> B) (stabilizer C)" using assms sumset.cases by blast
moreover have "x \<notin> sumset (A \<union> B) ?H1"
proof
assume "x \<in> sumset (A \<union> B) ?H1"
then obtain y h1 where hy: "y \<in> A \<union> B" and hyG: "y \<in> G" and hh1G: "h1 \<in> G"
and hh1: "h1 \<in> ?H1" and hxy: "x = y \<oplus> h1" by (meson sumset.cases)
then have "y = a \<oplus> (c \<oplus> inverse h1)" using hxac hxy assms associative commutative composition_closed
inverse_closed invertible invertible_left_inverse2 by (metis hcG)
moreover have "h1 \<in> stabilizer C" using hh1 assms by auto
moreover hence "c \<oplus> inverse h1 \<in> stabilizer C" using hc stabilizer_is_subgroup subgroup_def
group_axioms invertible subgroup.subgroup_inverse_iff submonoid.sub_composition_closed hh1G by metis
ultimately have "y \<in> sumset {a} (stabilizer C)"
using assms hcG hh1G by blast
moreover hence "y \<in> A" using assms(1) hy by auto
ultimately have "x \<in> sumset ?A1 ?H1" using hxy hh1
by (simp add: hyG hh1G sumset.sumsetI)
thus "False" using hx by auto
qed
ultimately show "x \<in> sumset (A \<union> B) (stabilizer C) - sumset (A \<union> B) ?H1"
by simp
qed
thus ?thesis using card_mono finite_Diff finite_sumset assms
by (metis finite_UnI nat_int_comparison(3))
qed
also have "... = int (card (sumset (A \<union> B) (stabilizer C))) -
card (sumset (A \<union> B) ?H1)"
using card_Diff_subset[OF hfinsumH1 hsubsumH1] hsumH1card_le by linarith
finally show "int (card (sumset (A \<union> B) (stabilizer C))) - card (sumset (A \<union> B) ?H1) \<ge>
int (card (stabilizer C)) - card (sumset ?A1 ?H1)"
using assms by (metis card_sumset_singleton_subset_eq stabilizer_subset_group)
qed
lemma exists_convergent_min_stabilizer:
assumes hind: "\<forall>m<n. \<forall>C D. C \<subseteq> G \<longrightarrow> D \<subseteq> G \<longrightarrow> finite C \<longrightarrow> finite D \<longrightarrow> C \<noteq> {} \<longrightarrow>
D \<noteq> {} \<longrightarrow> card (sumset C D) + card C = m \<longrightarrow>
card (sumset C (stabilizer (sumset C D))) + card (sumset D (stabilizer (sumset C D))) -
card ((stabilizer (sumset C D)))
\<le> card (sumset C D)" and hAG: "A \<subseteq> G" and hBG: "B \<subseteq> G" and hA: "finite A" and
hB: "finite B" and hAne: "A \<noteq> {}" and "A \<inter> B \<noteq> {}" and
hcardsum: "card (sumset A B) + card A = n" and hintercardA: "card (A \<inter> B) < card A"
obtains X where "convergent X A B" and "\<And> Y. Y \<in> convergent_set A B \<Longrightarrow>
card (stabilizer Y) \<ge> card (stabilizer X)"
proof-
let ?C0 = "sumset (A \<inter> B) (A \<union> B)"
have hC0ne: "?C0 \<noteq> {}" using assms by fast
moreover have "finite ?C0" using sumset_inter_union_subset finite_sumset assms by auto
ultimately have "finite (stabilizer ?C0)" using stabilizer_finite
using sumset_subset_carrier by presburger
then have hcard_sumset_le: "card (A \<inter> B) \<le> card (sumset (A \<inter> B) (stabilizer ?C0))"
using card_le_sumset sumset_commute sub_unit_closed assms
by (metis Int_Un_eq(3) Un_subset_iff finite_Int unit_closed)
have "card ?C0 \<le> card (sumset A B)"
using card_mono sumset_inter_union_subset finite_sumset assms
by (simp add: card_mono finite_sumset hA hB sumset_inter_union_subset)
then have "card ?C0 + card (A \<inter> B) < card (sumset A B) + card A"
using hintercardA by auto
then obtain m where "m < n" and "card ?C0 + card (A \<inter> B) = m" using hcardsum by auto
then have "card (sumset (A \<inter> B) (stabilizer ?C0)) +
card (sumset (A \<union> B) (stabilizer ?C0)) - card (stabilizer ?C0) \<le> card ?C0"
using assms finite_Un finite_Int
by (metis Int_Un_eq(4) Un_empty Un_subset_iff)
then have "card ?C0 + card (stabilizer ?C0) \<ge>
card (A \<inter> B) + card (sumset (A \<union> B) (stabilizer ?C0))" using hcard_sumset_le
by auto
then have "?C0 \<in> convergent_set A B" using convergent_set_def convergent_def
sumset_inter_union_subset hC0ne by auto
then have hconvergent_ne: "convergent_set A B \<noteq> {}" by auto
define KS where "KS \<equiv> (\<lambda> X. card (stabilizer X)) ` convergent_set A B"
define K where "K \<equiv> Min KS"
define C where "C \<equiv> @C. C \<in> convergent_set A B \<and> K = card (stabilizer C)"
obtain KS: "finite KS" "KS \<noteq> {}"
using hconvergent_ne finite_convergent_set assms KS_def by auto
then have "K \<in> KS" using K_def Min_in by blast
then have "\<exists> X. X \<in> convergent_set A B \<and> K = card (stabilizer X)"
using KS_def by auto
then obtain "C \<in> convergent_set A B" and Keq: "K = card (stabilizer C)"
by (metis (mono_tags, lifting) C_def someI_ex)
then have hC: "C \<subseteq> sumset A B" and hCne: "C \<noteq> {}" and
hCcard: "card C + card (stabilizer C) \<ge>
card (A \<inter> B) + card (sumset (A \<union> B) (stabilizer C))"
using convergent_set_def convergent_def by auto
have hCmin: "\<And> Y. Y \<in> convergent_set A B \<Longrightarrow>
card (stabilizer Y) \<ge> card (stabilizer C)"
using K_def KS_def Keq Min_le KS(1) by auto
show ?thesis using hCmin hC hCcard hCne local.convergent_def that by presburger
qed
end
context normal_subgroup
begin
subsection\<open> A function that picks coset representatives randomly\<close>
definition \<phi> :: "'a set \<Rightarrow> 'a" where
"\<phi> = (\<lambda> x. if x \<in> G // K then (SOME a. a \<in> G \<and> x = a \<cdot>| K) else undefined)"
definition quot_comp_alt :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where "quot_comp_alt a b = \<phi> ((a \<cdot> b) \<cdot>| K)"
lemma phi_eq_coset:
assumes "\<phi> x = a" and "a \<in> G" and "x \<in> G // K"
shows "x = a \<cdot>| K"
proof-
have "(SOME a. a \<in> G \<and> x = a \<cdot>| K) = a" using \<phi>_def assms by simp
then show ?thesis using some_eq_ex representant_exists Left_Coset_Class_unit assms
by (metis (mono_tags, lifting))
qed
lemma phi_coset_mem:
assumes "a \<in> G"
shows "\<phi> (a \<cdot>| K) \<in> a \<cdot>| K"
proof-
obtain x where hx: "x = \<phi> (a \<cdot>| K)" by auto
then have "x = (SOME x. x \<in> G \<and> a \<cdot>| K = x \<cdot>| K)" using \<phi>_def assms
Class_in_Partition Left_Coset_Class_unit by presburger
then show ?thesis using \<phi>_def Class_self Left_Coset_Class_unit hx assms
by (smt (verit, ccfv_SIG) tfl_some)
qed
lemma phi_coset_eq:
assumes "a \<in> G" and "\<phi> x = a" and "x \<in> G // K"
shows "\<phi> (a \<cdot>| K) = a" using phi_eq_coset assms by metis
lemma phi_inverse_right:
assumes "g \<in> G"
shows "quot_comp_alt g (\<phi> (inverse g \<cdot>| K)) = \<phi> K"
proof-
have "g \<cdot> (\<phi> (inverse g \<cdot>| K)) \<in> (g \<cdot> (inverse g) \<cdot>| K)"
using phi_coset_mem assms by (smt (z3) Left_Coset_memE factor_unit invertible invertible_right_inverse
invertible_inverse_closed invertible_inverse_inverse sub invertible_left_inverse2)
then have "g \<cdot> (\<phi> (inverse g \<cdot>| K)) \<cdot>| K = K"
using Block_self Left_Coset_Class_unit Normal_def quotient.unit_closed sub
by (metis assms composition_closed invertible invertible_inverse_closed invertible_right_inverse)
then show ?thesis using quot_comp_alt_def by auto
qed
lemma phi_inverse_left:
assumes "g \<in> G"
shows "quot_comp_alt (\<phi> (inverse g \<cdot>| K)) g = \<phi> K"
proof-
have "(\<phi> (inverse g \<cdot>| K)) \<cdot> g \<in> ((inverse g) \<cdot> g) \<cdot>| K" using phi_coset_mem assms
by (metis Left_Coset_memE factor_unit invertible invertible_inverse_closed invertible_left_inverse normal)
then have "(\<phi> (inverse g \<cdot>| K)) \<cdot> g \<cdot>| K = K" using Block_self Left_Coset_Class_unit Normal_def
quotient.unit_closed sub by (smt (verit, best) assms composition_closed invertible invertible_inverse_closed
invertible_left_inverse)
then show ?thesis using quot_comp_alt_def by auto
qed
lemma phi_mem_coset_eq:
assumes "a \<in> G // K" and "b \<in> G"
shows "\<phi> a \<in> b \<cdot>| K \<Longrightarrow> a = (b \<cdot>| K)"
proof-
assume "\<phi> a \<in> b \<cdot>| K"
then have "a \<inter> (b \<cdot>| K) \<noteq> {}"
by (metis Class_closed Class_is_Left_Coset Int_iff assms empty_iff phi_coset_mem phi_eq_coset)
then show "a = b \<cdot>| K" by (metis Class_in_Partition Class_is_Left_Coset assms disjoint)
qed
lemma forall_unique_repr:
"\<forall> x \<in> G // K. \<exists>! k \<in> \<phi> ` (G // K). x = k \<cdot>| K"
proof
fix x assume hx: "x \<in> G // K"
then have "\<phi> x \<cdot>| K = x"
by (metis Class_is_Left_Coset block_closed phi_coset_mem phi_eq_coset representant_exists)
then have hex: "\<exists> k \<in> \<phi> ` (G // K). x = k \<cdot>| K" using hx by blast
moreover have "\<And> a b. a \<in> \<phi> ` (G // K) \<Longrightarrow> x = a \<cdot>| K \<Longrightarrow> b \<in> \<phi> ` (G // K) \<Longrightarrow> x = b \<cdot>| K \<Longrightarrow>
a = b"
proof-
fix a b assume "a \<in> \<phi> ` (G // K)" and hxa: "x = a \<cdot>| K" and "b \<in> \<phi> ` (G // K)" and
hxb: "x = b \<cdot>| K"
then obtain z w where "a = \<phi> (z \<cdot>| K)" and "b = \<phi> (w \<cdot>| K)" and "z \<in> G" and "w \<in> G"
using representant_exists Left_Coset_Class_unit by force
then show "a = b" using hxa hxb
by (metis Class_in_Partition Class_is_Left_Coset block_closed phi_coset_mem phi_eq_coset)
qed
ultimately show "\<exists>! k \<in> \<phi> ` (G // K). x = k \<cdot>| K" by blast
qed
lemma phi_inj_on:
shows "inj_on \<phi> (G // K)"
proof(intro inj_onI)
fix x y assume "x \<in> G // K" and hy: "y \<in> G // K" and hxy: "\<phi> x = \<phi> y"
then obtain a b where "x = a \<cdot>| K" and "y = b \<cdot>| K" and "a \<in> G" and "b \<in> G"
using representant_exists Left_Coset_Class_unit by metis
then show "x = y" using hxy hy by (metis phi_coset_mem phi_mem_coset_eq)
qed
lemma phi_coset_eq_self:
assumes "a \<in> G // K"
shows "\<phi> a \<cdot>| K = a"
by (metis Class_closed Class_is_Left_Coset assms phi_coset_mem phi_eq_coset representant_exists)
lemma phi_coset_comp_eq:
assumes "a \<in> G // K" and "b \<in> G // K"
shows "\<phi> a \<cdot> \<phi> b \<cdot>| K = a [\<cdot>] b" using assms phi_coset_eq_self
by (metis Class_is_Left_Coset block_closed factor_composition phi_coset_mem representant_exists)
lemma phi_comp_eq:
assumes "a \<in> G // K" and "b \<in> G // K"
shows "\<phi> (a [\<cdot>] b) = quot_comp_alt (\<phi> a) (\<phi> b)"
using phi_coset_comp_eq quot_comp_alt_def assms by auto
lemma phi_image_subset:
"\<phi> ` (G // K) \<subseteq> G"
proof(intro image_subsetI, simp add: \<phi>_def)
fix x assume "x \<in> G // K"
then show "(SOME a. a \<in> G \<and> x = a \<cdot>| K) \<in> G"
using Left_Coset_Class_unit representant_exists someI_ex by (metis (mono_tags, lifting))
qed
lemma phi_image_group:
"Group_Theory.group (\<phi> ` (G // K)) quot_comp_alt (\<phi> K)"
proof-
have hmonoid: "Group_Theory.monoid (\<phi> ` (G // K)) quot_comp_alt (\<phi> K)"
proof
show "\<And>a b. a \<in> \<phi> ` (G // K) \<Longrightarrow> b \<in> \<phi> ` (G // K) \<Longrightarrow>
quot_comp_alt a b \<in> \<phi> ` (G // K)" using quot_comp_alt_def imageI phi_image_subset
by (metis Class_in_Partition Left_Coset_Class_unit composition_closed subset_iff)
next
show "(\<phi> K) \<in> \<phi> ` (G // K)" using \<phi>_def Left_Coset_Class_unit imageI Normal_def by blast
next
show "\<And>a b c. a \<in> \<phi> ` Partition \<Longrightarrow> b \<in> \<phi> ` Partition \<Longrightarrow> c \<in> \<phi> ` Partition \<Longrightarrow>
quot_comp_alt (quot_comp_alt a b) c = quot_comp_alt a (quot_comp_alt b c)"
proof-
fix a b c assume ha: "a \<in> \<phi> ` (G // K)" and hb: "b \<in> \<phi> ` (G // K)" and hc: "c \<in> \<phi> ` (G // K)"
have habc: "a \<cdot> b \<cdot> c \<in> G" using ha hb hc composition_closed phi_image_subset by (meson subsetD)
have hab: "quot_comp_alt a b \<in> (a \<cdot> b) \<cdot>| K" using phi_image_subset quot_comp_alt_def ha hb
by (metis composition_closed phi_coset_mem subsetD)
then have "quot_comp_alt (quot_comp_alt a b) c \<in> (a \<cdot> b \<cdot> c) \<cdot>| K" using quot_comp_alt_def phi_image_subset ha hb hc
by (smt (z3) Block_self Class_closed Class_in_Partition Left_Coset_Class_unit composition_closed
natural.commutes_with_composition phi_coset_mem subset_iff)
moreover have hbc: "quot_comp_alt b c \<in> (b \<cdot> c) \<cdot>| K" using hb hc phi_image_subset quot_comp_alt_def
by (metis composition_closed phi_coset_mem subset_iff)
moreover hence "quot_comp_alt a (quot_comp_alt b c) \<in> (a \<cdot> b \<cdot> c) \<cdot>| K" using quot_comp_alt_def phi_image_subset ha hb hc
by (smt (verit, del_insts) Block_self Class_closed Class_in_Partition Left_Coset_Class_unit
associative composition_closed natural.commutes_with_composition phi_coset_mem subset_iff)
moreover have "a \<cdot> (quot_comp_alt b c) \<cdot>| K \<in> G // K" using ha hb hc phi_image_subset
by (metis Class_closed Class_in_Partition Class_is_Left_Coset hbc composition_closed in_mono subset_eq)
moreover have "(quot_comp_alt a b) \<cdot> c \<cdot>| K \<in> G // K" using ha hb hc phi_image_subset
by (metis Class_closed Class_in_Partition Left_Coset_Class_unit hab composition_closed in_mono)
ultimately show "quot_comp_alt (quot_comp_alt a b) c = quot_comp_alt a (quot_comp_alt b c)"
using phi_mem_coset_eq[OF _ habc] quot_comp_alt_def by metis
qed
next
show "\<And>a. a \<in> \<phi> ` Partition \<Longrightarrow> quot_comp_alt (\<phi> K) a = a" using quot_comp_alt_def \<phi>_def
phi_image_subset image_iff phi_coset_eq subsetD by (smt (z3) Normal_def Partition_def
natural.image.sub_unit_closed phi_comp_eq quotient.left_unit)
next
show "\<And>a. a \<in> \<phi> ` Partition \<Longrightarrow> quot_comp_alt a (\<phi> K) = a" using quot_comp_alt_def \<phi>_def
phi_image_subset image_iff phi_coset_eq subsetD by (smt (verit) Normal_def
factor_composition factor_unit normal_subgroup.phi_coset_eq_self normal_subgroup_axioms
quotient.unit_closed right_unit unit_closed)
qed
moreover show "Group_Theory.group (\<phi> ` (G // K)) quot_comp_alt (\<phi> K)"
proof(simp add: group_def group_axioms_def hmonoid)
show "\<forall>u. u \<in> \<phi> ` Partition \<longrightarrow> monoid.invertible (\<phi> ` Partition) quot_comp_alt (\<phi> K) u"
proof(intro allI impI)
fix g assume hg: "g \<in> \<phi> ` (G // K)"
then have "quot_comp_alt g (\<phi> ((inverse g) \<cdot>| K)) = (\<phi> K)"
and "quot_comp_alt (\<phi> ((inverse g) \<cdot>| K)) g = (\<phi> K)"
using phi_image_subset phi_inverse_right phi_inverse_left by auto
moreover have "\<phi> ((inverse g) \<cdot>| K) \<in> \<phi> ` (G // K)" using imageI hg phi_image_subset
by (metis (no_types, opaque_lifting) Class_in_Partition Left_Coset_Class_unit in_mono
invertible invertible_inverse_closed)
ultimately show "monoid.invertible (\<phi> ` Partition) quot_comp_alt (\<phi> K) g"
using monoid.invertibleI[OF hmonoid] hg by presburger
qed
qed
qed
lemma phi_map: "Set_Theory.map \<phi> Partition (\<phi> ` Partition)"
by (auto simp add: Set_Theory.map_def \<phi>_def)
lemma phi_image_isomorphic:
"group_isomorphism \<phi> (G // K) ([\<cdot>]) (Class \<one>) (\<phi> ` (G // K)) quot_comp_alt (\<phi> K)"
proof -
have "bijective_map \<phi> Partition (\<phi> ` Partition)"
using bijective_map_def bijective_def bij_betw_def phi_inj_on phi_map by blast
moreover have "Group_Theory.monoid (\<phi> ` Partition) quot_comp_alt (\<phi> K)"
using phi_image_group group_def by metis
moreover have "\<phi> (Class \<one>) = \<phi> K" using Left_Coset_Class_unit Normal_def by auto
ultimately show ?thesis
by (auto simp add: group_isomorphism_def group_homomorphism_def monoid_homomorphism_def
phi_image_group quotient.monoid_axioms quotient.group_axioms monoid_homomorphism_axioms_def
phi_comp_eq phi_map)
qed
end
context subgroup_of_additive_abelian_group
begin
lemma Union_Coset_card_eq:
assumes hSG: "S \<subseteq> G" and hSU: "(\<Union> (Class ` S)) = S"
shows "card S = card H * card (Class ` S)"
proof(cases "finite H")
case hH: True
have hfin: "\<And>A. A \<in> Class ` S \<Longrightarrow> finite A" using hSG Right_Coset_Class_unit
Right_Coset_cardinality hH card_eq_0_iff empty_iff sub_unit_closed subsetD
by (smt (verit, del_insts) imageE)
have "card S = card H * card (Class ` S)" when hS: "finite S"
proof-
have hdisj: "pairwise (\<lambda>s t. disjnt s t) (Class ` S)"
proof (intro pairwiseI)
fix x y assume "x \<in> Class ` S" and "y \<in> Class ` S" and hxy: "x \<noteq> y"
then obtain a b where "x = Class a" and "y = Class b" and
"a \<in> S" and "b \<in> S" by blast
then show "disjnt x y" using disjnt_def hxy
by (smt (verit, ccfv_threshold) not_disjoint_implies_equal hSG subsetD)
qed
then have "card (\<Union> (Class ` S)) = sum card (Class ` S)" using card_Union_disjoint hfin by blast
moreover have "finite (Class ` S)" using hS by blast
ultimately have "card (\<Union> (Class ` S)) = (\<Sum> a \<in> Class ` S. card a)"
using sum_card_image hdisj by blast
moreover have "\<And> a. a \<in> Class ` S \<Longrightarrow> card a = card H"
using hSG Right_Coset_Class_unit Right_Coset_cardinality by auto
ultimately show "card S = card H * card (Class ` S)"
using hSU by simp
qed
moreover have "card S = card H * card (Class ` S)" when hS: "\<not> finite S"
using finite_Union hfin hS hSU by (metis card_eq_0_iff mult_0_right)
ultimately show ?thesis by blast
next
case hH: False
have "card S = card H * card (Class ` S)" when "S = {}"
by (simp add: that)
then have hinf: "\<And> A. A \<in> Class ` S \<Longrightarrow> infinite A" using hSG Right_Coset_Class_unit
Right_Coset_cardinality hH card_eq_0_iff empty_iff sub_unit_closed subsetD
by (smt (verit) Class_self imageE)
moreover have "card S = card H * card (Class ` S)" when "S \<noteq> {}" using hSU by (metis Class_closed2
Normal_def card.infinite card_sumset_0_iff hH hSG mult_is_0 sumset_subgroup_eq_Class_Union unit_closed)
ultimately show ?thesis by fastforce
qed
end
context subgroup_of_abelian_group
begin
interpretation GH: additive_abelian_group "G // H" "([\<cdot>])" "Class \<one>"
proof
fix x y assume "x \<in> G // H" and "y \<in> G // H"
then show "x [\<cdot>] y = y [\<cdot>] x" using Class_commutes_with_composition commutative representant_exists
by metis
qed
interpretation GH_repr: additive_abelian_group "\<phi> ` (G // H)" "quot_comp_alt" "\<phi> H"
proof(simp add: additive_abelian_group_def abelian_group_def phi_image_group
commutative_monoid_def commutative_monoid_axioms_def, intro conjI allI impI)
show "Group_Theory.monoid (\<phi> ` Partition) quot_comp_alt (\<phi> H)"
using phi_image_group group_def by metis
next
show "\<And> x y. x \<in> \<phi> ` Partition \<Longrightarrow> y \<in> \<phi> ` Partition \<Longrightarrow> quot_comp_alt x y = quot_comp_alt y x"
by (auto) (metis GH.commutative phi_comp_eq)
qed
lemma phi_image_sumset_eq:
assumes "A \<subseteq> G // H" and "B \<subseteq> G // H"
shows "\<phi> ` (GH.sumset A B) = GH_repr.sumset (\<phi> ` A) (\<phi> ` B)"
proof(intro subset_antisym image_subsetI subsetI)
fix x assume "x \<in> GH.sumset A B"
then obtain c d where "x = quotient_composition c d" and hc: "c \<in> A" and hd: "d \<in> B"
using GH.sumset.cases by blast
then have "\<phi> x = quot_comp_alt (\<phi> c) (\<phi> d)"
using phi_comp_eq assms subsetD by blast
then show "\<phi> x \<in> GH_repr.sumset (\<phi> ` A) (\<phi> ` B)"
using hc hd assms subsetD GH_repr.sumsetI imageI by auto
next
fix x assume "x \<in> GH_repr.sumset (\<phi> ` A) (\<phi> ` B)"
then obtain a b where "x = quot_comp_alt a b" and ha: "a \<in> \<phi> ` A" and hb: "b \<in> \<phi> ` B"
using GH_repr.sumset.cases by metis
moreover obtain c d where "a = \<phi> c" and "b = \<phi> d" and "c \<in> A" and "d \<in> B"
using ha hb by blast
ultimately show "x \<in> \<phi> ` GH.sumset A B" using phi_comp_eq assms imageI GH.sumsetI
by (smt (verit, del_insts) subsetD)
qed
lemma phi_image_stabilizer_eq:
assumes "A \<subseteq> G // H"
shows "\<phi> ` (GH.stabilizer A) = GH_repr.stabilizer (\<phi> ` A)"
proof(intro subset_antisym image_subsetI subsetI)
fix x assume "x \<in> GH.stabilizer A"
then have "GH.sumset {x} A = A" and hx: "x \<in> G // H" using GH.stabilizer_def assms by auto
then have "GH_repr.sumset (\<phi> ` {x}) (\<phi> ` A) = \<phi> ` A" using assms phi_image_sumset_eq
by (metis empty_subsetI insert_subset)
then show "\<phi> x \<in> GH_repr.stabilizer (\<phi> ` A)" using GH_repr.stabilizer_def assms
by (smt (z3) GH_repr.sumset_Int_carrier hx image_empty image_eqI image_insert mem_Collect_eq)
next
fix x assume "x \<in> GH_repr.stabilizer (\<phi> ` A)"
then have hstab: "GH_repr.sumset {x} (\<phi> ` A) = (\<phi> ` A)" and hx: "x \<in> \<phi> ` (G // H)"
using GH_repr.stabilizer_def assms phi_image_subset by auto
then obtain B where hB: "B \<in> G // H" and hBx: "\<phi> B = x" by blast
then have "GH_repr.sumset (\<phi> ` {B}) (\<phi> ` A) = \<phi> ` A" using hstab by auto
then have "GH.sumset {B} A = A" using phi_image_sumset_eq phi_inj_on assms hB
GH.sumset_subset_carrier by (smt (z3) GH.sumset_singletons_eq inj_on_image_eq_iff
quotient.right_unit quotient.unit_closed)
then show "x \<in> \<phi> ` (GH.stabilizer A)" using assms hBx GH.stabilizer_def
by (smt (z3) GH.sumset_Int_carrier hB image_iff mem_Collect_eq)
qed
end
subsection\<open>Useful group-theoretic results\<close>
lemma residue_group: "abelian_group {0..(m :: nat)-1} (\<lambda> x y. ((x + y) mod m)) (0 :: int)"
proof(cases "m > 1")
case hm: True
then have hmonoid: "Group_Theory.monoid {0..m-1} (\<lambda> x y. ((x + y) mod m)) (0 :: int)"
by (unfold_locales, auto simp add: of_nat_diff, presburger)
moreover have "monoid.invertible {0..int (m - 1)} (\<lambda>x y. (x + y) mod int m) 0 u" if "u \<in> {0..int (m - 1)}" for u
proof(cases "u = 0")
case True
then show ?thesis using monoid.invertible_def[OF hmonoid that] monoid.unit_invertible[OF hmonoid] by simp
next
case hx: False
then have "((m - u) + u) mod m = 0" and "(u + (m - u)) mod m = 0" and "m - u \<in> {0..int(m-1)}"
using atLeastAtMost_iff hx that by auto
then show ?thesis using monoid.invertible_def[OF hmonoid that] by metis
qed
moreover have "commutative_monoid {0..m-1} (\<lambda> x y. ((x + y) mod m)) (0 :: int)"
using hmonoid commutative_monoid_def commutative_monoid_axioms_def by (smt (verit))
ultimately show ?thesis by (simp add: abelian_group_def group_def group_axioms_def
hmonoid)
next
case hm: False
moreover have hmonoid: "Group_Theory.monoid {0} (\<lambda> x y. ((x + y) mod m)) (0 :: int)"
by (unfold_locales, auto)
moreover have "monoid.invertible {0} (\<lambda>x y. (x + y) mod int m) 0 0" using monoid.invertible_def[OF hmonoid]
monoid.unit_invertible[OF hmonoid] hm by simp
ultimately show ?thesis by (unfold_locales, auto)
qed
lemma (in subgroup_of_group) prime_order_simple:
assumes "prime (card G)"
shows "H = {\<one>} \<or> H = G"
proof-
have "card H dvd card G" using lagrange assms card.infinite dvdI not_prime_0 by fastforce
then have "card H = 1 \<or> card H = card G" using assms prime_nat_iff by blast
then show ?thesis using card_1_singletonE sub_unit_closed card.infinite card_subset_eq sub
assms not_prime_0 subsetI insertE empty_iff by metis
qed
lemma residue_group_simple:
assumes "prime p" and "subgroup H {0..(p :: nat)-1} (\<lambda> x y. ((x + y) mod p)) (0 :: int)"
shows "H = {0} \<or> H = {0..int(p-1)}"
proof-
have hprime: "prime (card {0..int(p-1)})" using card_atLeastAtMost_int assms int_ops by auto
moreover have hsub:"subgroup_of_group H {0..(p :: nat)-1} (\<lambda> x y. ((x + y) mod p)) (0 :: int)"
using subgroup_of_group_def assms abelian_group_def residue_group by fast
ultimately show ?thesis using assms subgroup_of_group.prime_order_simple[OF hsub hprime] by blast
qed
end
|
section \<open>Termination heuristics\<close>
text_raw \<open>\label{sec:termination}\<close>
theory Termination
imports "../Dict_Construction"
begin
text \<open>
As indicated in the introduction, the newly-defined functions must be proven terminating. In
general, we cannot reuse the original termination proof, as the following example illustrates:
\<close>
fun f :: "nat \<Rightarrow> nat" where
"f 0 = 0" |
"f (Suc n) = f n"
text \<open>
The invocation of @{theory_text \<open>declassify f\<close>} would fail, because @{const f}'s code equations
are not terminating.
Hence, in the general case where users have modified the code equations, we need to fall back
to an (automated) attempt to prove termination.
In the remainder of this section, we will illustrate the special case where the user has not
modified the code equations, i.e., the original termination proof should ``morally'' be still
applicable. For this, we will perform the dictionary construction manually.
\<close>
\<comment> \<open>Some ML incantations to ensure that the dictionary types are present\<close>
local_setup \<open>Class_Graph.ensure_class @{class plus} #> snd\<close>
local_setup \<open>Class_Graph.ensure_class @{class zero} #> snd\<close>
fun sum_list :: "'a::{plus,zero} list \<Rightarrow> 'a" where
"sum_list [] = 0" |
"sum_list (x # xs) = x + sum_list xs"
text \<open>
The above function carries two distinct class constraints, which are translated into two
dictionary parameters:
\<close>
function sum_list' where
"sum_list' d_plus d_zero [] = Groups_zero__class_zero__field d_zero" |
"sum_list' d_plus d_zero (x # xs) = Groups_plus__class_plus__field d_plus x (sum_list' d_plus d_zero xs)"
by pat_completeness auto
text \<open>
Now, we need to carry out the termination proof of @{const sum_list'}. The @{theory_text function}
package analyzes the function definition and discovers one recursive call. In pseudo-notation:
@{text [display] \<open>(d_plus, d_zero, x # xs) \<leadsto> (d_plus, d_zero, xs)\<close>}
The result of this analysis is captured in the inductive predicate @{const sum_list'_rel}. Its
introduction rules look as follows:
\<close>
thm sum_list'_rel.intros
\<comment> \<open>@{thm sum_list'_rel.intros}\<close>
text \<open>Compare this to the relation for @{const sum_list}:\<close>
thm sum_list_rel.intros
\<comment> \<open>@{thm sum_list_rel.intros}\<close>
text \<open>
Except for the additional (unchanging) dictionary arguments, these relations are more or less
equivalent to each other. There is an important difference, though: @{const sum_list_rel} has
sort constraints, @{const sum_list'_rel} does not. (This will become important later on.)
\<close>
context
notes [[show_sorts]]
begin
term sum_list_rel
\<comment> \<open>@{typ \<open>'a::{plus,zero} list \<Rightarrow> 'a::{plus,zero} list \<Rightarrow> bool\<close>}\<close>
term sum_list'_rel
\<comment> \<open>@{typ \<open>'a::type Groups_plus__dict \<times> 'a::type Groups_zero__dict \<times> 'a::type list \<Rightarrow> 'a::type Groups_plus__dict \<times> 'a::type Groups_zero__dict \<times> 'a::type list \<Rightarrow> bool\<close>}\<close>
end
text \<open>
Let us know discuss the rough concept of the termination proof for @{const sum_list'}. The goal is
to show that @{const sum_list'_rel} is well-founded. Usually, this is proved by specifying a
\<^emph>\<open>measure function\<close> that
\<^enum> maps the arguments to natural numbers
\<^enum> decreases for each recursive call.
\<close>
text \<open>
Here, however, we want to instead show that each recursive call in @{const sum_list'} has a
corresponding recursive call in @{const sum_list}. In other words, we want to show that the
existing proof of well-foundedness of @{const sum_list_rel} can be lifted to a proof of
well-foundedness of @{const sum_list'_rel}. This is what the theorem
@{thm [source=true] wfP_simulate_simple} states:
@{thm [display=true] wfP_simulate_simple}
Given any well-founded relation \<open>r\<close> and a function \<open>g\<close> that maps function arguments from \<open>r'\<close> to
\<open>r\<close>, we can deduce that \<open>r'\<close> is also well-founded.
For our example, we need to provide a function \<open>g\<close> of type
@{typ \<open>'b Groups_plus__dict \<times> 'b Groups_zero__dict \<times> 'b list \<Rightarrow> 'a list\<close>}.
Because the dictionary parameters are not changing, they can safely be dropped by \<open>g\<close>.
However, because of the sort constraint in @{const sum_list_rel}, the term @{term "snd \<circ> snd"}
is not a well-typed instantiation for \<open>g\<close>.
Instead (this is where the heuristic comes in), we assume that the original function
@{const sum_list} is parametric, i.e., termination does not depend on the elements of the list
passed to it, but only on the structure of the list. Additionally, we assume that all involved
type classes have at least one instantiation.
With this in mind, we can use @{term "map (\<lambda>_. undefined) \<circ> snd \<circ> snd"} as \<open>g\<close>:
\<close>
thm wfP_simulate_simple[where
r = sum_list_rel and
r' = sum_list'_rel and
g = "map (\<lambda>_. undefined) \<circ> snd \<circ> snd"]
text \<open>
Finally, we can prove the termination of @{const sum_list'}.
\<close>
termination sum_list'
proof -
have "wfP sum_list'_rel"
proof (rule wfP_simulate_simple)
\<comment> \<open>We first need to obtain the well-foundedness theorem for @{const sum_list_rel} from the ML
guts of the @{theory_text function} package.\<close>
show "wfP sum_list_rel"
apply (rule accp_wfPI)
apply (tactic \<open>resolve_tac @{context} [Function.get_info @{context} @{term sum_list} |> #totality |> the] 1\<close>)
done
define g :: "'b Groups_plus__dict \<times> 'b Groups_zero__dict \<times> 'b list \<Rightarrow> 'c::{plus,zero} list" where
"g = map (\<lambda>_. undefined) \<circ> snd \<circ> snd"
\<comment> \<open>Prove the simulation of @{const sum_list'_rel} by @{const sum_list_rel} by rule induction.\<close>
show "sum_list_rel (g x) (g y)" if "sum_list'_rel x y" for x y
using that
proof (induction x y rule: sum_list'_rel.induct)
case (1 d_plus d_zero x xs)
show ?case
\<comment> \<open>Unfold the constituent parts of @{term g}:\<close>
apply (simp only: g_def comp_apply snd_conv list.map)
\<comment> \<open>Use the corresponding introduction rule of @{const sum_list_rel} and hope for the best:\<close>
apply (rule sum_list_rel.intros(1))
done
qed
qed
\<comment> \<open>This is the goal that the @{theory_text function} package expects.\<close>
then show "\<forall>x. sum_list'_dom x"
by (rule wfP_implies_dom)
qed
text \<open>This can be automated with a special tactic:\<close>
experiment
begin
termination sum_list'
apply (tactic \<open>
Transfer_Termination.termination_tac
(Function.get_info @{context} @{term sum_list'})
(Function.get_info @{context} @{term sum_list})
@{context}
1\<close>; fail)
done
end
text \<open>
A similar technique can be used for making functions defined in locales executable when, for some
reason, the definition of a ``defs'' locale is not feasible.
\<close>
locale foo =
fixes A :: "nat"
assumes "A > 0"
begin
fun f where
"f 0 = A" |
"f (Suc n) = Suc (f n)"
\<comment> \<open>We carry out this proof in the locale for simplicity; a real implementation would probably
have to set up a local theory properly.\<close>
lemma f_total: "wfP f_rel"
apply (rule accp_wfPI)
apply (tactic \<open>resolve_tac @{context} [Function.get_info @{context} @{term f} |> #totality |> the] 1\<close>)
done
end
\<comment> \<open>The dummy interpretation serves the same purpose as the assumption that class constraints have
at least one instantiation.\<close>
interpretation dummy: foo 1 by standard simp
function f' where
"f' A 0 = A" |
"f' A (Suc n) = Suc (f' A n)"
by pat_completeness auto
termination f'
apply (rule wfP_implies_dom)
apply (rule wfP_simulate_simple[where g = "snd"])
apply (rule dummy.f_total)
subgoal for x y
apply (induction x y rule: f'_rel.induct)
subgoal
apply (simp only: snd_conv)
apply (rule dummy.f_rel.intros)
done
done
done
text \<open>Automatic:\<close>
experiment
begin
termination f'
apply (tactic \<open>
Transfer_Termination.termination_tac
(Function.get_info @{context} @{term f'})
(Function.get_info @{context} @{term dummy.f})
@{context}
1\<close>; fail)
done
end
end |
To see Jack 's paper plaster ;
|
To see Jack 's paper plaster ;
|
%
%
% Copyright (c) 2012 University of Crete - Computer Science Department (UOC-CSD)
%
% License
% This file is under the LGPL license, you can
% redistribute it and/or modify it under the terms of the GNU Lesser General
% Public License as published by the Free Software Foundation, either version 3
% of the License, or (at your option) any later version. This file is
% distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
% PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
% details.
%
% This function is part of the Covarep project: http://covarep.github.io/covarep
%
% Author
% Gilles Degottex <[email protected]>
%
function p = wrappednormpdf(x, m, s, N)
% N=10 gives a log error smaller than 1e-12 for s=8
% with s=8 distribution is "almost" uniform (std < 1e-12)
if nargin<4; N=10; end
p = 0;
for k=-N:N
p = p + normpdf(x+2.*pi.*k, m, s);
end
return
|
import .love09_hoare_logic_demo
/-! # LoVe Exercise 9: Hoare Logic -/
set_option pp.beta true
namespace LoVe
/-! ## Question 1: Program Verification
The following WHILE program is intended to compute the Gaussian sum up to `n`,
leaving the result in `r`. -/
def GAUSS : stmt :=
stmt.assign "r" (λs, 0) ;;
stmt.while (λs, s "n" ≠ 0)
(stmt.assign "r" (λs, s "r" + s "n") ;;
stmt.assign "n" (λs, s "n" - 1))
/-! The summation function: -/
def sum_upto : ℕ → ℕ
| 0 := 0
| (n + 1) := n + 1 + sum_upto n
/-! 1.1. Prove the correctness of `GAUSS` using `vcg`. The main challenge is to
figure out which invariant to use for the while loop. The invariant should
capture both the work that has been done already (the intermediate result) and
the work that remains to be done. -/
lemma GAUSS_correct (n₀ : ℕ) :
{* λs, s "n" = n₀ *} GAUSS {* λs, s "r" = sum_upto n₀ *} :=
show {* λs, s "n" = n₀ *}
stmt.assign "r" (λs, 0) ;;
stmt.while_inv (λ s, (sum_upto (s "n")) + s "r" == sum_upto n₀ )
(λs, s "n" ≠ 0)
(stmt.assign "r" (λs, s "r" + s "n") ;;
stmt.assign "n" (λs, s "n" - 1))
{* λs, s "r" = sum_upto n₀ *}, from
begin
vcg; simp {contextual := tt},
{
intros s hinv hloop,
rw <- hinv,
have h: (sum_upto (s "n" - 1)) + s "n" = sum_upto (s "n"), by {
cases (s "n"),
{ triv,},
{
have h2: sum_upto(n.succ - 1) == sum_upto n, by {
simp,
},
simp [h2, sum_upto],
have h3: (sum_upto n) + n.succ = (sum_upto n) + (n + 1), by {
have h4: n.succ = n + 1, by { simp },
simp [h4],
},
simp [h3],
cc,
}
},
rw <- h,
cc,
},
{
intros s hinv hloop,
rw <- hloop,
unfold sum_upto,
finish,
}
end
/-! 1.2. The following WHILE program is intended to compute the product of `n`
and `m`, leaving the result in `r`. Prove its correctness using `vcg`.
Hint: If a variable `x` does not change in a program, it might be useful to
record this in the invariant, by adding a conjunct `s "x" = x₀`. -/
def MUL : stmt :=
stmt.assign "r" (λs, 0) ;;
stmt.while (λs, s "n" ≠ 0)
(stmt.assign "r" (λs, s "r" + s "m") ;;
stmt.assign "n" (λs, s "n" - 1))
lemma MUL_correct (n₀ m₀ : ℕ) :
{* λs, s "n" = n₀ ∧ s "m" = m₀ *} MUL {* λs, s "r" = n₀ * m₀ *} :=
sorry
/-! ## Question 2: Hoare Triples for Total Correctness -/
def total_hoare (P : state → Prop) (S : stmt) (Q : state → Prop) : Prop :=
∀s, P s → ∃t, (S, s) ⟹ t ∧ Q t
#print total_hoare
notation `[* ` P : 1 ` *] ` S : 1 ` [* ` Q : 1 ` *]` :=
total_hoare P S Q
namespace total_hoare
/-! 2.1. Prove the consequence rule. -/
lemma consequence {P P' Q Q' : state → Prop} {S}
(hS : [* P *] S [* Q *]) (hP : ∀s, P' s → P s) (hQ : ∀s, Q s → Q' s) :
[* P' *] S [* Q' *] :=
begin
intro s,
intro hps,
cases hS s (hP s hps),
use w,
cases h,
tautology,
end
/-! 2.2. Prove the rule for `skip`. -/
lemma skip_intro {P} :
[* P *] stmt.skip [* P *] :=
sorry
/-! 2.3. Prove the rule for `assign`. -/
lemma assign_intro {P : state → Prop} {x} {a : state → ℕ} :
[* λs, P (s{x ↦ a s}) *] stmt.assign x a [* P *] :=
sorry
/-! 2.4. Prove the rule for `seq`. -/
lemma seq_intro {P Q R S T} (hS : [* P *] S [* Q *]) (hT : [* Q *] T [* R *]) :
[* P *] S ;; T [* R *] :=
sorry
/-! 2.5. Complete the proof of the rule for `ite`.
Hint: This requires a case distinction on the truth value of `b s`. -/
lemma ite_intro {b P Q : state → Prop} {S T}
(hS : [* λs, P s ∧ b s *] S [* Q *])
(hT : [* λs, P s ∧ ¬ b s *] T [* Q *]) :
[* P *] stmt.ite b S T [* Q *] :=
sorry
/-! 2.6 (**optional**). Try to prove the rule for `while`.
The rule is parameterized by a loop invariant `I` and by a variant `V` that
decreases with each iteration of the loop body.
Before we prove the desired lemma, we introduce an auxiliary lemma. Its proof
requires well-founded induction. When using `while_intro.aux` as induction
hypothesis we recommend to do it directly after proving that the argument is
less than `v₀`:
have ih : ∃u, (stmt.while b S, t) ⟹ u ∧ I u ∧ ¬ b u :=
have V t < v₀ :=
…,
while_intro.aux (V t) …,
Similarly to `ite`, the proof requires a case distinction on `b s ∨ ¬ b s`. -/
lemma while_intro.aux {b : state → Prop} (I : state → Prop) (V : state → ℕ) {S}
(h_inv : ∀v₀, [* λs, I s ∧ b s ∧ V s = v₀ *] S [* λs, I s ∧ V s < v₀ *]) :
∀v₀ s, V s = v₀ → I s → ∃t, (stmt.while b S, s) ⟹ t ∧ I t ∧ ¬ b t
| v₀ s V_eq hs :=
sorry
lemma while_intro {b : state → Prop} (I : state → Prop) (V : state → ℕ) {S}
(hinv : ∀v₀, [* λs, I s ∧ b s ∧ V s = v₀ *] S [* λs, I s ∧ V s < v₀ *]) :
[* I *] stmt.while b S [* λs, I s ∧ ¬ b s *] :=
sorry
end total_hoare
end LoVe
|
As a young surgeon , C. Everett Koop was part of the research team at the University of Pennsylvania School of Medicine . He related his experience with CPS test subjects :
|
Looking for a special holiday treat for your pup? This “nice cream” recipe is the perfect Thanksgiving dinner for the four-legged family members. It won food blogger and recipe developer Wendy Perry a ribbon at the Sweet Potato Festival a few years back. She says it’s “people edible, too” and with peanut butter and sweet potatoes it’s a healthy and nutritious treat for your pets.
North Carolina is ranked no. 1 in sweet potato production in the United States. With nearly 60% of the nation’s supply, North Carolina harvested almost 95,000 acres of sweet potatoes in 2016. Remember, it’s always best to grab these sweet vegetables locally to support our N.C. farmers and agribusiness! |
Formal statement is: lemma (in sigma_algebra) restriction_in_sets: fixes A :: "nat \<Rightarrow> 'a set" assumes "S \<in> M" and *: "range A \<subseteq> (\<lambda>A. S \<inter> A) ` M" (is "_ \<subseteq> ?r") shows "range A \<subseteq> M" "(\<Union>i. A i) \<in> (\<lambda>A. S \<inter> A) ` M" Informal statement is: If $S$ is a measurable set and $A_i$ is a sequence of measurable sets such that $A_i \cap S$ is measurable for all $i$, then $A_i$ is measurable for all $i$ and $\bigcup_i A_i$ is measurable. |
import UncertainData:
AbstractUncertainValue,
AbstractUncertainValueDataset,
AbstractUncertainIndexValueDataset,
resample
function get_random_segment(source, target, seq::RandomSequences)
seq_length = seq.sequence_length
N = length(source)
if seq_length isa Int
idx_start = rand(1:(length(source) - seq_length))
r = idx_start:(idx_start + seq_length)
elseif seq_length isa AbstractVector{Int}
# seq_length is now something we can sample directly from
seqlen = rand(seq_length)
idx_start = rand(1:(N + 1 - seqlen))
r = idx_start:(idx_start + seqlen - 1)
else
throw(ArgumentError("`resampling.sequence_length`must be an integer or a collection of integers"))
end
return r
end
"""
resample_and_subset(x, r::AbstractVector{Int})
Resample `x` assuming the points in `x` are independent,
then return the points with indices `r`.
"""
function resample_and_subset(x, r::AbstractVector{Int})
v = zeros(Float64, length(r))
if x isa AbstractVector
v[:] = x[r]
elseif typeof(x) <: Union{Vector{<:AbstractUncertainValue}, AbstractUncertainValueDataset}
v[:] = resample(x)[r]
elseif typeof(x) <: AbstractUncertainIndexValueDataset
v[:] = resample(x)[2][r]
end
return v
end
"""
causality(source, target, test::RandomSequencesTest)
Apply a causality test on random, consecutive chunks of `x` and `y`.
The chunk length can be fixed (an integer) or a collection of
chunk lengths.
Works on any inputs `x` and `y`, both scalar vectors and
uncertain datasets.
## Example
For scalar valued vectors:
```julia
x, y = rand(100), rand(100)
# Use a cross-mapping test with default parameters (not recommended,
# make sure you understand the parameters!)
cm_test = CrossMappingTest()
# A random sequences test that applies the cross mapping test
# to 150 different random chunks of the data of lengths 80 to 90
n_realisations, chunk_lengths = 150, 80:90
rs = RandomSequences(n_realisations, chunk_lengths)
# Combine to a RandomSequencesTest
rs_test = RandomSequencesTest(cm_test, chunk_lengths)
# Compute causality statistic
causality(x, y, rs_test)
```
This also works on uncertain data, or any combination of scalar vectors
and uncertain data:
```julia
# Some example data
N = 300
sys = ar1_unidir(c_xy = 0.8)
X, Y = example_uncertain_indexvalue_datasets(sys, N, (1, 2),
d_xval = Uniform(0.001, 0.05), d_yval = Uniform(0.001, 0.05));
# Apply cross mapping test on 100 different randomly selected chunks
# of lengths 75 to 90
r = RandomSequences(100, 75:90)
rs_test = RandomSequencesTest(CrossMappingTest(), r)
causality(X, Y, rs_test)
```
"""
function causality(
source::Union{AbstractVector, Vector{<:AbstractUncertainValue}, AbstractUncertainValueDataset, AbstractUncertainIndexValueDataset},
target::Union{AbstractVector, Vector{<:AbstractUncertainValue}, AbstractUncertainValueDataset, AbstractUncertainIndexValueDataset},
test::RandomSequencesTest)
n_sequences = test.sequences_resampling.n
# Get the return type of the causality test
causality_test = test.test
RT = get_return_type(causality_test)
results = Vector{RT}(undef, n_sequences)
for i = 1:n_sequences
r = get_random_segment(source, target, test.sequences_resampling)
source_segment = resample_and_subset(source, r)
target_segment = resample_and_subset(target, r)
results[i] = causality(source_segment, target_segment, causality_test)
end
return results
end
function causality(
source::Union{AbstractVector, Vector{<:AbstractUncertainValue}, AbstractUncertainValueDataset, AbstractUncertainIndexValueDataset},
target::Union{AbstractVector, Vector{<:AbstractUncertainValue}, AbstractUncertainValueDataset, AbstractUncertainIndexValueDataset},
cond::Union{AbstractVector, Vector{<:AbstractUncertainValue}, AbstractUncertainValueDataset, AbstractUncertainIndexValueDataset},
test::RandomSequencesTest)
n_sequences = test.sequences_resampling.n
# Get the return type of the causality test
causality_test = test.test
RT = get_return_type(causality_test)
results = Vector{RT}(undef, n_sequences)
for i = 1:n_sequences
r = get_random_segment(source, target, test.sequences_resampling)
source_segment = resample_and_subset(source, r)
target_segment = resample_and_subset(target, r)
cond_segment = resample_and_subset(cond, r)
results[i] = causality(source_segment, target_segment, cond_segment, causality_test)
end
return results
end
export causality, resample_and_subset |
using ACSF
using Test, LinearAlgebra, BenchmarkTools
using JuLIP, JuLIP.Testing
using ACSF: acsf
@testset "ACSF.jl" begin
include("test.jl")
#include("test2.jl")
end
|
import action group_theory.quotient_group
open quotient_group mul_action
section
parameter {α : Type}
parameters (H : set (free_group α)) [is_subgroup H]
def Q := quotient H
def r : Q := mk 1
lemma r_mk_one : r = mk 1 := rfl
instance mul_act : mul_action (free_group α) Q := mul_action.mul_action H
lemma mul_mk (g g') : g • (mk g' : Q) = mk (g * g') := rfl
lemma smul_r (g : free_group α) : g • r = mk g
:= by rw [r_mk_one, mul_mk, mul_one]
lemma trans_act : orbit (free_group α) r = set.univ
:= set.ext $ λ q, (quot.ind $ λ a, (iff_true _).mpr (⟨a, smul_r a⟩)) q
lemma mk_eq_iff (g g') : (mk g : Q) = mk g' ↔ g⁻¹ * g' ∈ H
:= quotient_group.eq
lemma h_is_stab : H = stabilizer _ r := set.ext $ λ x, begin
simp,
rw [smul_r, r_mk_one, mk_eq_iff, mul_one],
symmetry,
exact is_subgroup.inv_mem_iff H,
end
def h_isom : H ≃* stabilizer (free_group α) r
:= ⟨λ ⟨x, h⟩, ⟨x, h_is_stab ▸ h⟩,
λ ⟨x, h⟩, ⟨x, h_is_stab.symm ▸ h⟩,
λ ⟨_, _⟩, rfl, λ ⟨_, _⟩, rfl, λ ⟨_, _⟩ ⟨_, _⟩, rfl⟩
theorem nielsen_schreier : ∃ (R : Type), nonempty (H ≃* free_group R) ∧ nonempty (Q × α ⊕ unit ≃ Q ⊕ R)
:= ⟨R Q r trans_act, ⟨mul_equiv.trans h_isom $ isom _ _ _⟩, ⟨index_equiv _ _ _⟩⟩
end |
# ---
# title: 1475. Final Prices With a Special Discount in a Shop
# id: problem1475
# author: Tian Jun
# date: 2020-10-31
# difficulty: Easy
# categories: Array
# link: <https://leetcode.com/problems/final-prices-with-a-special-discount-in-a-shop/description/>
# hidden: true
# ---
#
# Given the array `prices` where `prices[i]` is the price of the `ith` item in a
# shop. There is a special discount for items in the shop, if you buy the `ith`
# item, then you will receive a discount equivalent to `prices[j]` where `j` is
# the **minimum** index such that `j > i` and `prices[j] <= prices[i]`,
# otherwise, you will not receive any discount at all.
#
# _Return an array where the`ith` element is the final price you will pay for
# the `ith` item of the shop considering the special discount._
#
#
#
# **Example 1:**
#
#
#
# Input: prices = [8,4,6,2,3]
# Output: [4,2,4,2,3]
# Explanation:
# For item 0 with price[0]=8 you will receive a discount equivalent to prices[1]=4, therefore, the final price you will pay is 8 - 4 = 4.
# For item 1 with price[1]=4 you will receive a discount equivalent to prices[3]=2, therefore, the final price you will pay is 4 - 2 = 2.
# For item 2 with price[2]=6 you will receive a discount equivalent to prices[3]=2, therefore, the final price you will pay is 6 - 2 = 4.
# For items 3 and 4 you will not receive any discount at all.
#
#
# **Example 2:**
#
#
#
# Input: prices = [1,2,3,4,5]
# Output: [1,2,3,4,5]
# Explanation: In this case, for all items, you will not receive any discount at all.
#
#
# **Example 3:**
#
#
#
# Input: prices = [10,1,1,6]
# Output: [9,0,1,6]
#
#
#
#
# **Constraints:**
#
# * `1 <= prices.length <= 500`
# * `1 <= prices[i] <= 10^3`
#
#
## @lc code=start
using LeetCode
## add your code here:
## @lc code=end
|
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
x✝ : Set C(α, β)
⊢ x✝ ∈ {m | ∃ s x u x, m = CompactOpen.gen s u} ↔ x✝ ∈ image2 CompactOpen.gen {s | IsCompact s} {t | IsOpen t}
[PROOFSTEP]
simp [eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
hs : IsCompact s
u : Set β
hu : IsOpen u
⊢ CompactOpen.gen s u ∈ {m | ∃ s x u x, m = CompactOpen.gen s u}
[PROOFSTEP]
dsimp [mem_setOf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
hs : IsCompact s
u : Set β
hu : IsOpen u
⊢ ∃ s_1 x u_1 x, CompactOpen.gen s u = CompactOpen.gen s_1 u_1
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g : C(β, γ)
s : Set α
u : Set γ
⊢ comp g ⁻¹' CompactOpen.gen s u = CompactOpen.gen s (↑g ⁻¹' u)
[PROOFSTEP]
ext ⟨f, _⟩
[GOAL]
case h.mk
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g : C(β, γ)
s : Set α
u : Set γ
f : α → β
continuous_toFun✝ : Continuous f
⊢ mk f ∈ comp g ⁻¹' CompactOpen.gen s u ↔ mk f ∈ CompactOpen.gen s (↑g ⁻¹' u)
[PROOFSTEP]
change g ∘ f '' s ⊆ u ↔ f '' s ⊆ g ⁻¹' u
[GOAL]
case h.mk
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g : C(β, γ)
s : Set α
u : Set γ
f : α → β
continuous_toFun✝ : Continuous f
⊢ ↑g ∘ f '' s ⊆ u ↔ f '' s ⊆ ↑g ⁻¹' u
[PROOFSTEP]
rw [image_comp, image_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g : C(β, γ)
m : Set C(α, γ)
x✝ : m ∈ {m | ∃ s x u x, m = CompactOpen.gen s u}
s : Set α
hs : IsCompact s
u : Set γ
hu : IsOpen u
hm : m = CompactOpen.gen s u
⊢ IsOpen (comp g ⁻¹' m)
[PROOFSTEP]
rw [hm, preimage_gen g]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g : C(β, γ)
m : Set C(α, γ)
x✝ : m ∈ {m | ∃ s x u x, m = CompactOpen.gen s u}
s : Set α
hs : IsCompact s
u : Set γ
hu : IsOpen u
hm : m = CompactOpen.gen s u
⊢ IsOpen (CompactOpen.gen s (↑g ⁻¹' u))
[PROOFSTEP]
exact ContinuousMap.isOpen_gen hs (hu.preimage g.2)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g : C(β, γ)
hg : Inducing ↑g
⊢ compactOpen = TopologicalSpace.induced (comp g) compactOpen
[PROOFSTEP]
simp only [compactOpen_eq, induced_generateFrom_eq, image_image2, preimage_gen, hg.setOf_isOpen, image2_image_right]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
s : Set α
x✝¹ : IsCompact s
u : Set γ
x✝ : IsOpen u
⊢ (fun g => comp g f) ⁻¹' CompactOpen.gen s u = CompactOpen.gen (↑f '' s) u
[PROOFSTEP]
ext ⟨g, _⟩
[GOAL]
case h.mk
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g✝ : C(β, γ)
f : C(α, β)
s : Set α
x✝¹ : IsCompact s
u : Set γ
x✝ : IsOpen u
g : β → γ
continuous_toFun✝ : Continuous g
⊢ mk g ∈ (fun g => comp g f) ⁻¹' CompactOpen.gen s u ↔ mk g ∈ CompactOpen.gen (↑f '' s) u
[PROOFSTEP]
change g ∘ f '' s ⊆ u ↔ g '' (f '' s) ⊆ u
[GOAL]
case h.mk
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g✝ : C(β, γ)
f : C(α, β)
s : Set α
x✝¹ : IsCompact s
u : Set γ
x✝ : IsOpen u
g : β → γ
continuous_toFun✝ : Continuous g
⊢ g ∘ ↑f '' s ⊆ u ↔ g '' (↑f '' s) ⊆ u
[PROOFSTEP]
rw [Set.image_comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
m : Set C(α, γ)
x✝ : m ∈ {m | ∃ s x u x, m = CompactOpen.gen s u}
s : Set α
hs : IsCompact s
u : Set γ
hu : IsOpen u
hm : m = CompactOpen.gen s u
⊢ IsOpen ((fun g => comp g f) ⁻¹' m)
[PROOFSTEP]
rw [hm, image_gen f hs hu]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
m : Set C(α, γ)
x✝ : m ∈ {m | ∃ s x u x, m = CompactOpen.gen s u}
s : Set α
hs : IsCompact s
u : Set γ
hu : IsOpen u
hm : m = CompactOpen.gen s u
⊢ IsOpen (CompactOpen.gen (↑f '' s) u)
[PROOFSTEP]
exact ContinuousMap.isOpen_gen (hs.image f.2) hu
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
⊢ ∀ (s : Set C(α, γ)), s ∈ {m | ∃ s x u x, m = CompactOpen.gen s u} → IsOpen ((fun x => comp x.snd x.fst) ⁻¹' s)
[PROOFSTEP]
rintro M ⟨K, hK, U, hU, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
⊢ IsOpen ((fun x => comp x.snd x.fst) ⁻¹' CompactOpen.gen K U)
[PROOFSTEP]
conv =>
congr
rw [CompactOpen.gen, preimage_setOf_eq]
--congr
ext; dsimp [setOf]
rw [image_comp, image_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
| IsOpen ((fun x => comp x.snd x.fst) ⁻¹' CompactOpen.gen K U)
[PROOFSTEP]
congr
rw [CompactOpen.gen, preimage_setOf_eq]
--congr
ext; dsimp [setOf]
rw [image_comp, image_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
| IsOpen ((fun x => comp x.snd x.fst) ⁻¹' CompactOpen.gen K U)
[PROOFSTEP]
congr
rw [CompactOpen.gen, preimage_setOf_eq]
--congr
ext; dsimp [setOf]
rw [image_comp, image_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
| IsOpen ((fun x => comp x.snd x.fst) ⁻¹' CompactOpen.gen K U)
[PROOFSTEP]
congr
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
| (fun x => comp x.snd x.fst) ⁻¹' CompactOpen.gen K U
[PROOFSTEP]
rw [CompactOpen.gen, preimage_setOf_eq]
--congr
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
| {a | ↑(comp a.snd a.fst) '' K ⊆ U}
[PROOFSTEP]
ext
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
x✝ : C(α, β) × C(β, γ)
| setOf (fun a => ↑(comp a.snd a.fst) '' K ⊆ U) x✝
[PROOFSTEP]
dsimp [setOf]
[GOAL]
case a.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
x✝ : C(α, β) × C(β, γ)
| ↑x✝.snd ∘ ↑x✝.fst '' K ⊆ U
[PROOFSTEP]
rw [image_comp, image_subset_iff]
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
⊢ IsOpen fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U
[PROOFSTEP]
rw [isOpen_iff_forall_mem_open]
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
⊢ ∀ (x : C(α, β) × C(β, γ)),
(x ∈ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U) → ∃ t, (t ⊆ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U) ∧ IsOpen t ∧ x ∈ t
[PROOFSTEP]
rintro ⟨φ₀, ψ₀⟩ H
[GOAL]
case intro.intro.intro.intro.mk
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
φ₀ : C(α, β)
ψ₀ : C(β, γ)
H : (φ₀, ψ₀) ∈ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U
⊢ ∃ t, (t ⊆ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U) ∧ IsOpen t ∧ (φ₀, ψ₀) ∈ t
[PROOFSTEP]
obtain ⟨L, hL, hKL, hLU⟩ := exists_compact_between (hK.image φ₀.2) (hU.preimage ψ₀.2) H
[GOAL]
case intro.intro.intro.intro.mk.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
φ₀ : C(α, β)
ψ₀ : C(β, γ)
H : (φ₀, ψ₀) ∈ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U
L : Set β
hL : IsCompact L
hKL : φ₀.toFun '' K ⊆ interior L
hLU : L ⊆ ψ₀.toFun ⁻¹' U
⊢ ∃ t, (t ⊆ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U) ∧ IsOpen t ∧ (φ₀, ψ₀) ∈ t
[PROOFSTEP]
use{φ : C(α, β) | φ '' K ⊆ interior L} ×ˢ
{ψ : C(β, γ) | ψ '' L ⊆ U}
-- porting note: typing hint `: φ '' K ⊆ interior L` wasn't previously required
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
φ₀ : C(α, β)
ψ₀ : C(β, γ)
H : (φ₀, ψ₀) ∈ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U
L : Set β
hL : IsCompact L
hKL : φ₀.toFun '' K ⊆ interior L
hLU : L ⊆ ψ₀.toFun ⁻¹' U
⊢ ({φ | ↑φ '' K ⊆ interior L} ×ˢ {ψ | ↑ψ '' L ⊆ U} ⊆ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U) ∧
IsOpen ({φ | ↑φ '' K ⊆ interior L} ×ˢ {ψ | ↑ψ '' L ⊆ U}) ∧
(φ₀, ψ₀) ∈ {φ | ↑φ '' K ⊆ interior L} ×ˢ {ψ | ↑ψ '' L ⊆ U}
[PROOFSTEP]
use fun ⟨φ, ψ⟩ ⟨(hφ : φ '' K ⊆ interior L), hψ⟩ => subset_trans hφ (interior_subset.trans <| image_subset_iff.mp hψ)
[GOAL]
case right
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
φ₀ : C(α, β)
ψ₀ : C(β, γ)
H : (φ₀, ψ₀) ∈ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U
L : Set β
hL : IsCompact L
hKL : φ₀.toFun '' K ⊆ interior L
hLU : L ⊆ ψ₀.toFun ⁻¹' U
⊢ IsOpen ({φ | ↑φ '' K ⊆ interior L} ×ˢ {ψ | ↑ψ '' L ⊆ U}) ∧ (φ₀, ψ₀) ∈ {φ | ↑φ '' K ⊆ interior L} ×ˢ {ψ | ↑ψ '' L ⊆ U}
[PROOFSTEP]
use(ContinuousMap.isOpen_gen hK isOpen_interior).prod (ContinuousMap.isOpen_gen hL hU)
[GOAL]
case right
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
g : C(β, γ)
f : C(α, β)
inst✝ : LocallyCompactSpace β
K : Set α
hK : IsCompact K
U : Set γ
hU : IsOpen U
φ₀ : C(α, β)
ψ₀ : C(β, γ)
H : (φ₀, ψ₀) ∈ fun x => ↑x.fst '' K ⊆ ↑x.snd ⁻¹' U
L : Set β
hL : IsCompact L
hKL : φ₀.toFun '' K ⊆ interior L
hLU : L ⊆ ψ₀.toFun ⁻¹' U
⊢ (φ₀, ψ₀) ∈ {φ | ↑φ '' K ⊆ interior L} ×ˢ {ψ | ↑ψ '' L ⊆ U}
[PROOFSTEP]
exact mem_prod.mpr ⟨hKL, image_subset_iff.mpr hLU⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : LocallyCompactSpace α
x✝ : C(α, β) × α
n : Set β
f : C(α, β)
x : α
hn : n ∈ 𝓝 (↑(f, x).fst (f, x).snd)
v : Set β
vn : v ⊆ n
vo : IsOpen v
fxv : ↑(f, x).fst (f, x).snd ∈ v
this✝² : v ∈ 𝓝 (↑f x)
s : Set α
hs : s ∈ 𝓝 x
sv : s ⊆ ↑f ⁻¹' v
sc : IsCompact s
u : Set α
us : u ⊆ s
uo : IsOpen u
xu : x ∈ u
w : Set (C(α, β) × α) := CompactOpen.gen s v ×ˢ u
this✝¹ : w ⊆ (fun p => ↑p.fst p.snd) ⁻¹' n
this✝ : IsOpen w
this : (f, x) ∈ w
⊢ w ⊆ (fun p => ↑p.fst p.snd) ⁻¹' n
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : LocallyCompactSpace α
x✝ : C(α, β) × α
n : Set β
f : C(α, β)
x : α
hn : n ∈ 𝓝 (↑(f, x).fst (f, x).snd)
v : Set β
vn : v ⊆ n
vo : IsOpen v
fxv : ↑(f, x).fst (f, x).snd ∈ v
this✝² : v ∈ 𝓝 (↑f x)
s : Set α
hs : s ∈ 𝓝 x
sv : s ⊆ ↑f ⁻¹' v
sc : IsCompact s
u : Set α
us : u ⊆ s
uo : IsOpen u
xu : x ∈ u
w : Set (C(α, β) × α) := CompactOpen.gen s v ×ˢ u
this✝¹ : w ⊆ (fun p => ↑p.fst p.snd) ⁻¹' n
this✝ : IsOpen w
this : (f, x) ∈ w
⊢ IsOpen w
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : LocallyCompactSpace α
x✝ : C(α, β) × α
n : Set β
f : C(α, β)
x : α
hn : n ∈ 𝓝 (↑(f, x).fst (f, x).snd)
v : Set β
vn : v ⊆ n
vo : IsOpen v
fxv : ↑(f, x).fst (f, x).snd ∈ v
this✝² : v ∈ 𝓝 (↑f x)
s : Set α
hs : s ∈ 𝓝 x
sv : s ⊆ ↑f ⁻¹' v
sc : IsCompact s
u : Set α
us : u ⊆ s
uo : IsOpen u
xu : x ∈ u
w : Set (C(α, β) × α) := CompactOpen.gen s v ×ˢ u
this✝¹ : w ⊆ (fun p => ↑p.fst p.snd) ⁻¹' n
this✝ : IsOpen w
this : (f, x) ∈ w
⊢ (f, x) ∈ w
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
a : α
⊢ Continuous fun f => ↑f a
[PROOFSTEP]
refine continuous_def.2 fun U hU ↦ ?_
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
a : α
U : Set ((fun x => β) a)
hU : IsOpen U
⊢ IsOpen ((fun f => ↑f a) ⁻¹' U)
[PROOFSTEP]
convert ContinuousMap.isOpen_gen (isCompact_singleton (a := a)) hU using 1
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
a : α
U : Set ((fun x => β) a)
hU : IsOpen U
⊢ (fun f => ↑f a) ⁻¹' U = CompactOpen.gen {a} U
[PROOFSTEP]
ext
[GOAL]
case h.e'_3.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
a : α
U : Set ((fun x => β) a)
hU : IsOpen U
x✝ : C(α, β)
⊢ x✝ ∈ (fun f => ↑f a) ⁻¹' U ↔ x✝ ∈ CompactOpen.gen {a} U
[PROOFSTEP]
simp [CompactOpen.gen]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
⊢ compactOpen ≤ TopologicalSpace.induced (restrict s) compactOpen
[PROOFSTEP]
simp only [induced_generateFrom_eq, ContinuousMap.compactOpen]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
⊢ TopologicalSpace.generateFrom {m | ∃ s x u x, m = CompactOpen.gen s u} ≤
TopologicalSpace.generateFrom (preimage (restrict s) '' {m | ∃ s_1 x u x, m = CompactOpen.gen s_1 u})
[PROOFSTEP]
apply TopologicalSpace.generateFrom_anti
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
⊢ preimage (restrict s) '' {m | ∃ s_1 x u x, m = CompactOpen.gen s_1 u} ⊆ {m | ∃ s x u x, m = CompactOpen.gen s u}
[PROOFSTEP]
rintro b ⟨a, ⟨c, hc, u, hu, rfl⟩, rfl⟩
[GOAL]
case h.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
c : Set ↑s
hc : IsCompact c
u : Set β
hu : IsOpen u
⊢ restrict s ⁻¹' CompactOpen.gen c u ∈ {m | ∃ s x u x, m = CompactOpen.gen s u}
[PROOFSTEP]
refine' ⟨(↑) '' c, hc.image continuous_subtype_val, u, hu, _⟩
[GOAL]
case h.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
c : Set ↑s
hc : IsCompact c
u : Set β
hu : IsOpen u
⊢ restrict s ⁻¹' CompactOpen.gen c u = CompactOpen.gen (Subtype.val '' c) u
[PROOFSTEP]
ext f
[GOAL]
case h.intro.intro.intro.intro.intro.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
c : Set ↑s
hc : IsCompact c
u : Set β
hu : IsOpen u
f : C(α, β)
⊢ f ∈ restrict s ⁻¹' CompactOpen.gen c u ↔ f ∈ CompactOpen.gen (Subtype.val '' c) u
[PROOFSTEP]
simp only [CompactOpen.gen, mem_setOf_eq, mem_preimage, ContinuousMap.coe_restrict]
[GOAL]
case h.intro.intro.intro.intro.intro.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
c : Set ↑s
hc : IsCompact c
u : Set β
hu : IsOpen u
f : C(α, β)
⊢ (fun a => (↑f ∘ Subtype.val) a) '' c ⊆ u ↔ (fun a => ↑f a) '' (Subtype.val '' c) ⊆ u
[PROOFSTEP]
rw [image_comp f ((↑) : s → α)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
⊢ compactOpen = ⨅ (s : Set α) (_ : IsCompact s), TopologicalSpace.induced (restrict s) compactOpen
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
⊢ compactOpen ≤ ⨅ (s : Set α) (_ : IsCompact s), TopologicalSpace.induced (restrict s) compactOpen
[PROOFSTEP]
refine' le_iInf₂ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
⊢ ∀ (i : Set α), IsCompact i → compactOpen ≤ TopologicalSpace.induced (restrict i) compactOpen
[PROOFSTEP]
exact fun s _ => compactOpen_le_induced s
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
⊢ ⨅ (s : Set α) (_ : IsCompact s), TopologicalSpace.induced (restrict s) compactOpen ≤ compactOpen
[PROOFSTEP]
simp only [← generateFrom_iUnion, induced_generateFrom_eq, ContinuousMap.compactOpen]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
⊢ TopologicalSpace.generateFrom
(⋃ (i : Set α) (_ : IsCompact i), preimage (restrict i) '' {m | ∃ s x u x, m = CompactOpen.gen s u}) ≤
TopologicalSpace.generateFrom {m | ∃ s x u x, m = CompactOpen.gen s u}
[PROOFSTEP]
apply TopologicalSpace.generateFrom_anti
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
⊢ {m | ∃ s x u x, m = CompactOpen.gen s u} ⊆
⋃ (i : Set α) (_ : IsCompact i), preimage (restrict i) '' {m | ∃ s x u x, m = CompactOpen.gen s u}
[PROOFSTEP]
rintro _ ⟨s, hs, u, hu, rfl⟩
[GOAL]
case refine'_2.h.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
hs : IsCompact s
u : Set β
hu : IsOpen u
⊢ CompactOpen.gen s u ∈
⋃ (i : Set α) (_ : IsCompact i), preimage (restrict i) '' {m | ∃ s x u x, m = CompactOpen.gen s u}
[PROOFSTEP]
rw [mem_iUnion₂]
[GOAL]
case refine'_2.h.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
hs : IsCompact s
u : Set β
hu : IsOpen u
⊢ ∃ i j, CompactOpen.gen s u ∈ preimage (restrict i) '' {m | ∃ s x u x, m = CompactOpen.gen s u}
[PROOFSTEP]
refine' ⟨s, hs, _, ⟨univ, isCompact_iff_isCompact_univ.mp hs, u, hu, rfl⟩, _⟩
[GOAL]
case refine'_2.h.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
hs : IsCompact s
u : Set β
hu : IsOpen u
⊢ restrict s ⁻¹' CompactOpen.gen univ u = CompactOpen.gen s u
[PROOFSTEP]
ext f
[GOAL]
case refine'_2.h.intro.intro.intro.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
hs : IsCompact s
u : Set β
hu : IsOpen u
f : C(α, β)
⊢ f ∈ restrict s ⁻¹' CompactOpen.gen univ u ↔ f ∈ CompactOpen.gen s u
[PROOFSTEP]
simp only [CompactOpen.gen, mem_setOf_eq, mem_preimage, ContinuousMap.coe_restrict]
[GOAL]
case refine'_2.h.intro.intro.intro.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
hs : IsCompact s
u : Set β
hu : IsOpen u
f : C(α, β)
⊢ (fun a => (↑f ∘ Subtype.val) a) '' univ ⊆ u ↔ (fun a => ↑f a) '' s ⊆ u
[PROOFSTEP]
rw [image_comp f ((↑) : s → α)]
[GOAL]
case refine'_2.h.intro.intro.intro.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
hs : IsCompact s
u : Set β
hu : IsOpen u
f : C(α, β)
⊢ ↑f '' (Subtype.val '' univ) ⊆ u ↔ (fun a => ↑f a) '' s ⊆ u
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
⊢ Continuous fun F => restrict s F
[PROOFSTEP]
rw [continuous_iff_le_induced]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
⊢ compactOpen ≤ TopologicalSpace.induced (fun F => restrict s F) compactOpen
[PROOFSTEP]
exact compactOpen_le_induced s
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
f : C(α, β)
⊢ 𝓝 f = ⨅ (s : Set α) (_ : IsCompact s), Filter.comap (restrict s) (𝓝 (restrict s f))
[PROOFSTEP]
rw [compactOpen_eq_sInf_induced]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
f : C(α, β)
⊢ 𝓝 f = ⨅ (s : Set α) (_ : IsCompact s), Filter.comap (restrict s) (𝓝 (restrict s f))
[PROOFSTEP]
simp [nhds_iInf, nhds_induced]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
ι : Type u_4
l : Filter ι
F : ι → C(α, β)
f : C(α, β)
⊢ Filter.Tendsto F l (𝓝 f) ↔
∀ (s : Set α), IsCompact s → Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (restrict s f))
[PROOFSTEP]
rw [compactOpen_eq_sInf_induced]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
ι : Type u_4
l : Filter ι
F : ι → C(α, β)
f : C(α, β)
⊢ Filter.Tendsto F l (𝓝 f) ↔
∀ (s : Set α), IsCompact s → Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (restrict s f))
[PROOFSTEP]
simp [nhds_iInf, nhds_induced, Filter.tendsto_comap_iff, Function.comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
⊢ (∃ f, Filter.Tendsto F l (𝓝 f)) ↔ ∀ (s : Set α), IsCompact s → ∃ f, Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 f)
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
⊢ (∃ f, Filter.Tendsto F l (𝓝 f)) → ∀ (s : Set α), IsCompact s → ∃ f, Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 f)
[PROOFSTEP]
rintro ⟨f, hf⟩ s _
[GOAL]
case mp.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : C(α, β)
hf : Filter.Tendsto F l (𝓝 f)
s : Set α
hs✝ : IsCompact s
⊢ ∃ f, Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 f)
[PROOFSTEP]
exact ⟨f.restrict s, tendsto_compactOpen_restrict hf s⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
⊢ (∀ (s : Set α), IsCompact s → ∃ f, Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 f)) → ∃ f, Filter.Tendsto F l (𝓝 f)
[PROOFSTEP]
intro h
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
h : ∀ (s : Set α), IsCompact s → ∃ f, Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 f)
⊢ ∃ f, Filter.Tendsto F l (𝓝 f)
[PROOFSTEP]
choose f hf using h
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
⊢ ∃ f, Filter.Tendsto F l (𝓝 f)
[PROOFSTEP]
have h :
∀ (s₁) (hs₁ : IsCompact s₁) (s₂) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
f s₁ hs₁ ⟨x, hxs₁⟩ = f s₂ hs₂ ⟨x, hxs₂⟩ :=
by
rintro s₁ hs₁ s₂ hs₂ x hxs₁ hxs₂
haveI := isCompact_iff_compactSpace.mp hs₁
haveI := isCompact_iff_compactSpace.mp hs₂
have h₁ := (continuous_eval_const (⟨x, hxs₁⟩ : s₁)).continuousAt.tendsto.comp (hf s₁ hs₁)
have h₂ := (continuous_eval_const (⟨x, hxs₂⟩ : s₂)).continuousAt.tendsto.comp (hf s₂ hs₂)
exact tendsto_nhds_unique h₁ h₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
⊢ ∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
[PROOFSTEP]
rintro s₁ hs₁ s₂ hs₂ x hxs₁ hxs₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
s₁ : Set α
hs₁ : IsCompact s₁
s₂ : Set α
hs₂ : IsCompact s₂
x : α
hxs₁ : x ∈ s₁
hxs₂ : x ∈ s₂
⊢ ↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
[PROOFSTEP]
haveI := isCompact_iff_compactSpace.mp hs₁
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
s₁ : Set α
hs₁ : IsCompact s₁
s₂ : Set α
hs₂ : IsCompact s₂
x : α
hxs₁ : x ∈ s₁
hxs₂ : x ∈ s₂
this : CompactSpace ↑s₁
⊢ ↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
[PROOFSTEP]
haveI := isCompact_iff_compactSpace.mp hs₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
s₁ : Set α
hs₁ : IsCompact s₁
s₂ : Set α
hs₂ : IsCompact s₂
x : α
hxs₁ : x ∈ s₁
hxs₂ : x ∈ s₂
this✝ : CompactSpace ↑s₁
this : CompactSpace ↑s₂
⊢ ↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
[PROOFSTEP]
have h₁ := (continuous_eval_const (⟨x, hxs₁⟩ : s₁)).continuousAt.tendsto.comp (hf s₁ hs₁)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
s₁ : Set α
hs₁ : IsCompact s₁
s₂ : Set α
hs₂ : IsCompact s₂
x : α
hxs₁ : x ∈ s₁
hxs₂ : x ∈ s₂
this✝ : CompactSpace ↑s₁
this : CompactSpace ↑s₂
h₁ :
Filter.Tendsto ((fun f => ↑f { val := x, property := hxs₁ }) ∘ fun i => restrict s₁ (F i)) l
(𝓝 (↑(f s₁ hs₁) { val := x, property := hxs₁ }))
⊢ ↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
[PROOFSTEP]
have h₂ := (continuous_eval_const (⟨x, hxs₂⟩ : s₂)).continuousAt.tendsto.comp (hf s₂ hs₂)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
s₁ : Set α
hs₁ : IsCompact s₁
s₂ : Set α
hs₂ : IsCompact s₂
x : α
hxs₁ : x ∈ s₁
hxs₂ : x ∈ s₂
this✝ : CompactSpace ↑s₁
this : CompactSpace ↑s₂
h₁ :
Filter.Tendsto ((fun f => ↑f { val := x, property := hxs₁ }) ∘ fun i => restrict s₁ (F i)) l
(𝓝 (↑(f s₁ hs₁) { val := x, property := hxs₁ }))
h₂ :
Filter.Tendsto ((fun f => ↑f { val := x, property := hxs₂ }) ∘ fun i => restrict s₂ (F i)) l
(𝓝 (↑(f s₂ hs₂) { val := x, property := hxs₂ }))
⊢ ↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
[PROOFSTEP]
exact tendsto_nhds_unique h₁ h₂
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
⊢ ∃ f, Filter.Tendsto F l (𝓝 f)
[PROOFSTEP]
have hs : ∀ x : α, ∃ (s : _), IsCompact s ∧ s ∈ 𝓝 x := by
intro x
obtain ⟨s, hs, hs'⟩ := exists_compact_mem_nhds x
exact ⟨s, hs, hs'⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
⊢ ∀ (x : α), ∃ s, IsCompact s ∧ s ∈ 𝓝 x
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
x : α
⊢ ∃ s, IsCompact s ∧ s ∈ 𝓝 x
[PROOFSTEP]
obtain ⟨s, hs, hs'⟩ := exists_compact_mem_nhds x
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
x : α
s : Set α
hs : IsCompact s
hs' : s ∈ 𝓝 x
⊢ ∃ s, IsCompact s ∧ s ∈ 𝓝 x
[PROOFSTEP]
exact ⟨s, hs, hs'⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
hs : ∀ (x : α), ∃ s, IsCompact s ∧ s ∈ 𝓝 x
⊢ ∃ f, Filter.Tendsto F l (𝓝 f)
[PROOFSTEP]
refine ⟨liftCover' _ _ h hs, ?_⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
hs : ∀ (x : α), ∃ s, IsCompact s ∧ s ∈ 𝓝 x
⊢ Filter.Tendsto F l
(𝓝
(liftCover'
(fun s => ∀ ⦃f : Filter α⦄ [inst : Filter.NeBot f], f ≤ Filter.principal s → ∃ a, a ∈ s ∧ ClusterPt a f)
(fun s hs => f s hs) h hs))
[PROOFSTEP]
rw [tendsto_compactOpen_iff_forall]
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
hs : ∀ (x : α), ∃ s, IsCompact s ∧ s ∈ 𝓝 x
⊢ ∀ (s : Set α),
IsCompact s →
Filter.Tendsto (fun i => restrict s (F i)) l
(𝓝
(restrict s
(liftCover'
(fun s => ∀ ⦃f : Filter α⦄ [inst : Filter.NeBot f], f ≤ Filter.principal s → ∃ a, a ∈ s ∧ ClusterPt a f)
(fun s hs => f s hs) h hs)))
[PROOFSTEP]
intro s hs
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
hs✝ : ∀ (x : α), ∃ s, IsCompact s ∧ s ∈ 𝓝 x
s : Set α
hs : IsCompact s
⊢ Filter.Tendsto (fun i => restrict s (F i)) l
(𝓝
(restrict s
(liftCover'
(fun s => ∀ ⦃f : Filter α⦄ [inst : Filter.NeBot f], f ≤ Filter.principal s → ∃ a, a ∈ s ∧ ClusterPt a f)
(fun s hs => f s hs) h hs✝)))
[PROOFSTEP]
rw [liftCover_restrict']
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
hs✝ : ∀ (x : α), ∃ s, IsCompact s ∧ s ∈ 𝓝 x
s : Set α
hs : IsCompact s
⊢ Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s ?m.52935))
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁵ : TopologicalSpace α
inst✝⁴ : TopologicalSpace β
inst✝³ : TopologicalSpace γ
inst✝² : LocallyCompactSpace α
inst✝¹ : T2Space β
ι : Type u_4
l : Filter ι
inst✝ : Filter.NeBot l
F : ι → C(α, β)
f : (s : Set α) → IsCompact s → C(↑s, β)
hf : ∀ (s : Set α) (hs : IsCompact s), Filter.Tendsto (fun i => restrict s (F i)) l (𝓝 (f s hs))
h :
∀ (s₁ : Set α) (hs₁ : IsCompact s₁) (s₂ : Set α) (hs₂ : IsCompact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂),
↑(f s₁ hs₁) { val := x, property := hxs₁ } = ↑(f s₂ hs₂) { val := x, property := hxs₂ }
hs✝ : ∀ (x : α), ∃ s, IsCompact s ∧ s ∈ 𝓝 x
s : Set α
hs : IsCompact s
⊢ s ∈ fun s => ∀ ⦃f : Filter α⦄ [inst : Filter.NeBot f], f ≤ Filter.principal s → ∃ a, a ∈ s ∧ ClusterPt a f
[PROOFSTEP]
exact hf s hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
y : β
s : Set α
⊢ ↑(coev α β y) '' s = {y} ×ˢ s
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
⊢ ∀ (s : Set C(α, β × α)), s ∈ {m | ∃ s x u x, m = CompactOpen.gen s u} → IsOpen (coev α β ⁻¹' s)
[PROOFSTEP]
rintro _ ⟨s, sc, u, uo, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
⊢ IsOpen (coev α β ⁻¹' CompactOpen.gen s u)
[PROOFSTEP]
rw [isOpen_iff_forall_mem_open]
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
⊢ ∀ (x : β), x ∈ coev α β ⁻¹' CompactOpen.gen s u → ∃ t, t ⊆ coev α β ⁻¹' CompactOpen.gen s u ∧ IsOpen t ∧ x ∈ t
[PROOFSTEP]
intro y hy
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
y : β
hy : y ∈ coev α β ⁻¹' CompactOpen.gen s u
⊢ ∃ t, t ⊆ coev α β ⁻¹' CompactOpen.gen s u ∧ IsOpen t ∧ y ∈ t
[PROOFSTEP]
have hy' : (↑(coev α β y) '' s ⊆ u) := hy
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
y : β
hy : y ∈ coev α β ⁻¹' CompactOpen.gen s u
hy' : ↑(coev α β y) '' s ⊆ u
⊢ ∃ t, t ⊆ coev α β ⁻¹' CompactOpen.gen s u ∧ IsOpen t ∧ y ∈ t
[PROOFSTEP]
rw [image_coev s] at hy'
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
y : β
hy : y ∈ coev α β ⁻¹' CompactOpen.gen s u
hy' : {y} ×ˢ s ⊆ u
⊢ ∃ t, t ⊆ coev α β ⁻¹' CompactOpen.gen s u ∧ IsOpen t ∧ y ∈ t
[PROOFSTEP]
rcases generalized_tube_lemma isCompact_singleton sc uo hy' with ⟨v, w, vo, _, yv, sw, vwu⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
y : β
hy : y ∈ coev α β ⁻¹' CompactOpen.gen s u
hy' : {y} ×ˢ s ⊆ u
v : Set β
w : Set α
vo : IsOpen v
left✝ : IsOpen w
yv : {y} ⊆ v
sw : s ⊆ w
vwu : v ×ˢ w ⊆ u
⊢ ∃ t, t ⊆ coev α β ⁻¹' CompactOpen.gen s u ∧ IsOpen t ∧ y ∈ t
[PROOFSTEP]
refine' ⟨v, _, vo, singleton_subset_iff.mp yv⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
y : β
hy : y ∈ coev α β ⁻¹' CompactOpen.gen s u
hy' : {y} ×ˢ s ⊆ u
v : Set β
w : Set α
vo : IsOpen v
left✝ : IsOpen w
yv : {y} ⊆ v
sw : s ⊆ w
vwu : v ×ˢ w ⊆ u
⊢ v ⊆ coev α β ⁻¹' CompactOpen.gen s u
[PROOFSTEP]
intro y' hy'
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
y : β
hy : y ∈ coev α β ⁻¹' CompactOpen.gen s u
hy'✝ : {y} ×ˢ s ⊆ u
v : Set β
w : Set α
vo : IsOpen v
left✝ : IsOpen w
yv : {y} ⊆ v
sw : s ⊆ w
vwu : v ×ˢ w ⊆ u
y' : β
hy' : y' ∈ v
⊢ y' ∈ coev α β ⁻¹' CompactOpen.gen s u
[PROOFSTEP]
change coev α β y' '' s ⊆ u
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
y : β
hy : y ∈ coev α β ⁻¹' CompactOpen.gen s u
hy'✝ : {y} ×ˢ s ⊆ u
v : Set β
w : Set α
vo : IsOpen v
left✝ : IsOpen w
yv : {y} ⊆ v
sw : s ⊆ w
vwu : v ×ˢ w ⊆ u
y' : β
hy' : y' ∈ v
⊢ ↑(coev α β y') '' s ⊆ u
[PROOFSTEP]
rw [image_coev s]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
s : Set α
sc : IsCompact s
u : Set (β × α)
uo : IsOpen u
y : β
hy : y ∈ coev α β ⁻¹' CompactOpen.gen s u
hy'✝ : {y} ×ˢ s ⊆ u
v : Set β
w : Set α
vo : IsOpen v
left✝ : IsOpen w
yv : {y} ⊆ v
sw : s ⊆ w
vwu : v ×ˢ w ⊆ u
y' : β
hy' : y' ∈ v
⊢ {y'} ×ˢ s ⊆ u
[PROOFSTEP]
exact (prod_mono (singleton_subset_iff.mpr hy') sw).trans vwu
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
f : C(α × β, γ)
⊢ curry' f = comp f ∘ coev β α
[PROOFSTEP]
ext
[GOAL]
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : TopologicalSpace α
inst✝¹ : TopologicalSpace β
inst✝ : TopologicalSpace γ
f : C(α × β, γ)
x✝ : α
a✝ : β
⊢ ↑(curry' f x✝) a✝ = ↑((comp f ∘ coev β α) x✝) a✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : LocallyCompactSpace (α × β)
⊢ Continuous curry
[PROOFSTEP]
apply continuous_of_continuous_uncurry
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : LocallyCompactSpace (α × β)
⊢ Continuous (Function.uncurry fun x y => ↑(curry x) y)
[PROOFSTEP]
apply continuous_of_continuous_uncurry
[GOAL]
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : LocallyCompactSpace (α × β)
⊢ Continuous (Function.uncurry fun x y => ↑(Function.uncurry (fun x y => ↑(curry x) y) x) y)
[PROOFSTEP]
rw [← (Homeomorph.prodAssoc _ _ _).symm.comp_continuous_iff']
[GOAL]
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : LocallyCompactSpace (α × β)
⊢ Continuous
((Function.uncurry fun x y => ↑(Function.uncurry (fun x y => ↑(curry x) y) x) y) ∘
↑(Homeomorph.symm (Homeomorph.prodAssoc C(α × β, γ) α β)))
[PROOFSTEP]
exact continuous_eval'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : TopologicalSpace α
inst✝³ : TopologicalSpace β
inst✝² : TopologicalSpace γ
inst✝¹ : LocallyCompactSpace α
inst✝ : LocallyCompactSpace β
⊢ Continuous uncurry
[PROOFSTEP]
apply continuous_of_continuous_uncurry
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : TopologicalSpace α
inst✝³ : TopologicalSpace β
inst✝² : TopologicalSpace γ
inst✝¹ : LocallyCompactSpace α
inst✝ : LocallyCompactSpace β
⊢ Continuous (Function.uncurry fun x y => ↑(uncurry x) y)
[PROOFSTEP]
rw [← (Homeomorph.prodAssoc _ _ _).comp_continuous_iff']
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : TopologicalSpace α
inst✝³ : TopologicalSpace β
inst✝² : TopologicalSpace γ
inst✝¹ : LocallyCompactSpace α
inst✝ : LocallyCompactSpace β
⊢ Continuous ((Function.uncurry fun x y => ↑(uncurry x) y) ∘ ↑(Homeomorph.prodAssoc C(α, C(β, γ)) α β))
[PROOFSTEP]
apply continuous_eval'.comp (continuous_eval'.prod_map continuous_id)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : TopologicalSpace α
inst✝³ : TopologicalSpace β
inst✝² : TopologicalSpace γ
inst✝¹ : LocallyCompactSpace α
inst✝ : LocallyCompactSpace β
⊢ Function.LeftInverse uncurry ContinuousMap.curry
[PROOFSTEP]
intro
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : TopologicalSpace α
inst✝³ : TopologicalSpace β
inst✝² : TopologicalSpace γ
inst✝¹ : LocallyCompactSpace α
inst✝ : LocallyCompactSpace β
x✝ : C(α × β, γ)
⊢ uncurry (ContinuousMap.curry x✝) = x✝
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : TopologicalSpace α
inst✝³ : TopologicalSpace β
inst✝² : TopologicalSpace γ
inst✝¹ : LocallyCompactSpace α
inst✝ : LocallyCompactSpace β
x✝ : C(α × β, γ)
a✝ : α × β
⊢ ↑(uncurry (ContinuousMap.curry x✝)) a✝ = ↑x✝ a✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : TopologicalSpace α
inst✝³ : TopologicalSpace β
inst✝² : TopologicalSpace γ
inst✝¹ : LocallyCompactSpace α
inst✝ : LocallyCompactSpace β
⊢ Function.RightInverse uncurry ContinuousMap.curry
[PROOFSTEP]
intro
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : TopologicalSpace α
inst✝³ : TopologicalSpace β
inst✝² : TopologicalSpace γ
inst✝¹ : LocallyCompactSpace α
inst✝ : LocallyCompactSpace β
x✝ : C(α, C(β, γ))
⊢ ContinuousMap.curry (uncurry x✝) = x✝
[PROOFSTEP]
ext
[GOAL]
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : TopologicalSpace α
inst✝³ : TopologicalSpace β
inst✝² : TopologicalSpace γ
inst✝¹ : LocallyCompactSpace α
inst✝ : LocallyCompactSpace β
x✝ : C(α, C(β, γ))
a✝¹ : α
a✝ : β
⊢ ↑(↑(ContinuousMap.curry (uncurry x✝)) a✝¹) a✝ = ↑(↑x✝ a✝¹) a✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : Unique α
f : C(α, β)
⊢ const α ((fun f => ↑f default) f) = f
[PROOFSTEP]
ext a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : Unique α
f : C(α, β)
a : α
⊢ ↑(const α ((fun f => ↑f default) f)) a = ↑f a
[PROOFSTEP]
rw [Unique.eq_default a]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : TopologicalSpace α
inst✝² : TopologicalSpace β
inst✝¹ : TopologicalSpace γ
inst✝ : Unique α
f : C(α, β)
a : α
⊢ ↑(const α ((fun f => ↑f default) f)) default = ↑f default
[PROOFSTEP]
rfl
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
⊢ Continuous g
[PROOFSTEP]
let Gf : C(X₀, C(Y, Z)) := ContinuousMap.curry ⟨_, hg⟩
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
Gf : C(X₀, C(Y, Z)) := curry (mk fun p => g (f p.fst, p.snd))
⊢ Continuous g
[PROOFSTEP]
have h : ∀ x : X, Continuous fun y => g (x, y) := by
intro x
obtain ⟨x₀, rfl⟩ := hf.surjective x
exact (Gf x₀).continuous
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
Gf : C(X₀, C(Y, Z)) := curry (mk fun p => g (f p.fst, p.snd))
⊢ ∀ (x : X), Continuous fun y => g (x, y)
[PROOFSTEP]
intro x
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
Gf : C(X₀, C(Y, Z)) := curry (mk fun p => g (f p.fst, p.snd))
x : X
⊢ Continuous fun y => g (x, y)
[PROOFSTEP]
obtain ⟨x₀, rfl⟩ := hf.surjective x
[GOAL]
case intro
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
Gf : C(X₀, C(Y, Z)) := curry (mk fun p => g (f p.fst, p.snd))
x₀ : X₀
⊢ Continuous fun y => g (f x₀, y)
[PROOFSTEP]
exact (Gf x₀).continuous
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
Gf : C(X₀, C(Y, Z)) := curry (mk fun p => g (f p.fst, p.snd))
h : ∀ (x : X), Continuous fun y => g (x, y)
⊢ Continuous g
[PROOFSTEP]
let G : X → C(Y, Z) := fun x => ⟨_, h x⟩
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
Gf : C(X₀, C(Y, Z)) := curry (mk fun p => g (f p.fst, p.snd))
h : ∀ (x : X), Continuous fun y => g (x, y)
G : X → C(Y, Z) := fun x => mk fun y => g (x, y)
⊢ Continuous g
[PROOFSTEP]
have : Continuous G := by
rw [hf.continuous_iff]
exact Gf.continuous
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
Gf : C(X₀, C(Y, Z)) := curry (mk fun p => g (f p.fst, p.snd))
h : ∀ (x : X), Continuous fun y => g (x, y)
G : X → C(Y, Z) := fun x => mk fun y => g (x, y)
⊢ Continuous G
[PROOFSTEP]
rw [hf.continuous_iff]
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
Gf : C(X₀, C(Y, Z)) := curry (mk fun p => g (f p.fst, p.snd))
h : ∀ (x : X), Continuous fun y => g (x, y)
G : X → C(Y, Z) := fun x => mk fun y => g (x, y)
⊢ Continuous (G ∘ f)
[PROOFSTEP]
exact Gf.continuous
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : X × Y → Z
hg : Continuous fun p => g (f p.fst, p.snd)
Gf : C(X₀, C(Y, Z)) := curry (mk fun p => g (f p.fst, p.snd))
h : ∀ (x : X), Continuous fun y => g (x, y)
G : X → C(Y, Z) := fun x => mk fun y => g (x, y)
this : Continuous G
⊢ Continuous g
[PROOFSTEP]
exact ContinuousMap.continuous_uncurry_of_continuous ⟨G, this⟩
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : Y × X → Z
hg : Continuous fun p => g (p.fst, f p.snd)
⊢ Continuous g
[PROOFSTEP]
have : Continuous fun p : X₀ × Y => g ((Prod.swap p).1, f (Prod.swap p).2) := hg.comp continuous_swap
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : Y × X → Z
hg : Continuous fun p => g (p.fst, f p.snd)
this : Continuous fun p => g ((Prod.swap p).fst, f (Prod.swap p).snd)
⊢ Continuous g
[PROOFSTEP]
have : Continuous fun p : X₀ × Y => (g ∘ Prod.swap) (f p.1, p.2) := this
[GOAL]
X₀ : Type u_1
X : Type u_2
Y : Type u_3
Z : Type u_4
inst✝⁴ : TopologicalSpace X₀
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : LocallyCompactSpace Y
f : X₀ → X
hf : QuotientMap f
g : Y × X → Z
hg : Continuous fun p => g (p.fst, f p.snd)
this✝ : Continuous fun p => g ((Prod.swap p).fst, f (Prod.swap p).snd)
this : Continuous fun p => (g ∘ Prod.swap) (f p.fst, p.snd)
⊢ Continuous g
[PROOFSTEP]
exact (hf.continuous_lift_prod_left this).comp continuous_swap
|
lemma in_bigo_zero_iff [simp]: "f \<in> O[F](\<lambda>_. 0) \<longleftrightarrow> eventually (\<lambda>x. f x = 0) F" |
From mathcomp Require Import ssreflect ssrfun eqtype seq ssrint.
From CoqUtils Require Import fmap fset word.
Require Extraction.
Require extraction.ExtrOcamlString.
Require Import Intermediate.Machine.
Require Import Common.Definitions.
Require Import MicroPolicies.Instance.
Require Import MicroPolicies.Printer.
Require Import I2MP.Encode.
Require Import I2MP.Linearize.
Require Import MicroPolicies.Utils.
Import DoNotation.
Definition test_program : Intermediate.program :=
let c0 := [fmap (0, [:: ICall 1 0; IReturn])] in
let c0_i := Component.mkCompInterface
fset0
(fset [:: (1, 0)]) in
let c1 := [fmap (0, [:: IConst (IInt 5) R_COM; IReturn])] in
let c1_i := Component.mkCompInterface
(fset [:: 0])
fset0 in
Intermediate.mkProg
[fmap (0, c0_i); (1, c1_i)] (* Interface: nothing imported/exported*)
[fmap (0, c0); (1, c1)] (* code *)
(emptym) (* Pre-allocated buffers *)
(Some 0). (* Main procedure idtac *)
Definition test_alloc : Intermediate.program :=
let c0 := [fmap (0, [:: IConst (IInt 5) R_ONE ; IAlloc R_COM R_ONE; IReturn])] in
let c0_i := Component.mkCompInterface fset0 fset0 in
Intermediate.mkProg
emptym (* Interface: nothing imported/exported*)
[fmap (0, c0)] (* code *)
(emptym) (* Pre-allocated buffers *)
(Some 0). (* Main procedure idtac *)
Definition test_program_machine := load (encode (linearize test_program)).
Definition test_alloc_machine := load (encode (linearize test_alloc)).
Extraction "/tmp/tl_test.ml" coqstring_of_state test_program_machine test_alloc_machine stepf.
|
If $f$ is a function from sets to a commutative monoid with identity $0$, then $\sum_{n=0}^\infty f(A \cup B^n) = f(A) + f(B)$. |
Formal statement is: lemma measurable_Max_nat[measurable (raw)]: fixes P :: "nat \<Rightarrow> 'a \<Rightarrow> bool" assumes [measurable]: "\<And>i. Measurable.pred M (P i)" shows "(\<lambda>x. Max {i. P i x}) \<in> measurable M (count_space UNIV)" Informal statement is: If $P_i$ is a measurable predicate for each $i$, then the function $x \mapsto \max\{i \mid P_i(x)\}$ is measurable. |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Delta-observational equivalence - support for equational reasoning
------------------------------------------------------------------------
module Base.Change.Equivalence.EqReasoning where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
open import Function
open import Base.Change.Equivalence.Base public
module _ {a} {A : Set a} {{ca : ChangeAlgebra A}} {x : A} where
------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
import Relation.Binary.EqReasoning as EqR
module ≙-Reasoning where
open EqR (≙-setoid {x = x}) public
renaming (_≈⟨_⟩_ to _≙⟨_⟩_)
|
[STATEMENT]
lemma SN_on_weakening:
assumes "SN_on R1 A"
shows "SN_on (R1 \<inter> R2) A"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. SN_on (R1 \<inter> R2) A
[PROOF STEP]
proof -
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. SN_on (R1 \<inter> R2) A
[PROOF STEP]
{
[PROOF STATE]
proof (state)
goal (1 subgoal):
1. SN_on (R1 \<inter> R2) A
[PROOF STEP]
assume "\<exists>S. S 0 \<in> A \<and> chain (R1 \<inter> R2) S"
[PROOF STATE]
proof (state)
this:
\<exists>S. S 0 \<in> A \<and> (\<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2)
goal (1 subgoal):
1. SN_on (R1 \<inter> R2) A
[PROOF STEP]
then
[PROOF STATE]
proof (chain)
picking this:
\<exists>S. S 0 \<in> A \<and> (\<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2)
[PROOF STEP]
obtain S where
S0: "S 0 \<in> A" and
SN: "chain (R1 \<inter> R2) S"
[PROOF STATE]
proof (prove)
using this:
\<exists>S. S 0 \<in> A \<and> (\<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2)
goal (1 subgoal):
1. (\<And>S. \<lbrakk>S 0 \<in> A; \<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
S 0 \<in> A
\<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2
goal (1 subgoal):
1. SN_on (R1 \<inter> R2) A
[PROOF STEP]
from SN
[PROOF STATE]
proof (chain)
picking this:
\<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2
[PROOF STEP]
have SN': "chain R1 S"
[PROOF STATE]
proof (prove)
using this:
\<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2
goal (1 subgoal):
1. \<forall>i. (S i, S (Suc i)) \<in> R1
[PROOF STEP]
by simp
[PROOF STATE]
proof (state)
this:
\<forall>i. (S i, S (Suc i)) \<in> R1
goal (1 subgoal):
1. SN_on (R1 \<inter> R2) A
[PROOF STEP]
with S0 and assms
[PROOF STATE]
proof (chain)
picking this:
S 0 \<in> A
SN_on R1 A
\<forall>i. (S i, S (Suc i)) \<in> R1
[PROOF STEP]
have "False"
[PROOF STATE]
proof (prove)
using this:
S 0 \<in> A
SN_on R1 A
\<forall>i. (S i, S (Suc i)) \<in> R1
goal (1 subgoal):
1. False
[PROOF STEP]
by auto
[PROOF STATE]
proof (state)
this:
False
goal (1 subgoal):
1. SN_on (R1 \<inter> R2) A
[PROOF STEP]
}
[PROOF STATE]
proof (state)
this:
\<exists>S. S 0 \<in> A \<and> (\<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2) \<Longrightarrow> False
goal (1 subgoal):
1. SN_on (R1 \<inter> R2) A
[PROOF STEP]
then
[PROOF STATE]
proof (chain)
picking this:
\<exists>S. S 0 \<in> A \<and> (\<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2) \<Longrightarrow> False
[PROOF STEP]
show ?thesis
[PROOF STATE]
proof (prove)
using this:
\<exists>S. S 0 \<in> A \<and> (\<forall>i. (S i, S (Suc i)) \<in> R1 \<inter> R2) \<Longrightarrow> False
goal (1 subgoal):
1. SN_on (R1 \<inter> R2) A
[PROOF STEP]
by force
[PROOF STATE]
proof (state)
this:
SN_on (R1 \<inter> R2) A
goal:
No subgoals!
[PROOF STEP]
qed |
/-
Copyright (c) 2019 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Scott Morrison
! This file was ported from Lean 3 source module set_theory.surreal.basic
! leanprover-community/mathlib commit ee02a30e209a2a77b93eac1254e8c66e76192f54
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathbin.Algebra.Order.Hom.Monoid
import Mathbin.SetTheory.Game.Ordinal
/-!
# Surreal numbers
The basic theory of surreal numbers, built on top of the theory of combinatorial (pre-)games.
A pregame is `numeric` if all the Left options are strictly smaller than all the Right options, and
all those options are themselves numeric. In terms of combinatorial games, the numeric games have
"frozen"; you can only make your position worse by playing, and Left is some definite "number" of
moves ahead (or behind) Right.
A surreal number is an equivalence class of numeric pregames.
In fact, the surreals form a complete ordered field, containing a copy of the reals (and much else
besides!) but we do not yet have a complete development.
## Order properties
Surreal numbers inherit the relations `≤` and `<` from games (`surreal.has_le` and
`surreal.has_lt`), and these relations satisfy the axioms of a partial order.
## Algebraic operations
We show that the surreals form a linear ordered commutative group.
One can also map all the ordinals into the surreals!
### Multiplication of surreal numbers
The proof that multiplication lifts to surreal numbers is surprisingly difficult and is currently
missing in the library. A sample proof can be found in Theorem 3.8 in the second reference below.
The difficulty lies in the length of the proof and the number of theorems that need to proven
simultaneously. This will make for a fun and challenging project.
The branch `surreal_mul` contains some progress on this proof.
### Todo
- Define the field structure on the surreals.
## References
* [Conway, *On numbers and games*][conway2001]
* [Schleicher, Stoll, *An introduction to Conway's games and numbers*][schleicher_stoll]
-/
universe u
open Pgame
namespace Pgame
/-- A pre-game is numeric if everything in the L set is less than everything in the R set,
and all the elements of L and R are also numeric. -/
def Numeric : Pgame → Prop
| ⟨l, r, L, R⟩ => (∀ i j, L i < R j) ∧ (∀ i, numeric (L i)) ∧ ∀ j, numeric (R j)
#align pgame.numeric Pgame.Numeric
theorem numeric_def {x : Pgame} :
Numeric x ↔
(∀ i j, x.moveLeft i < x.moveRight j) ∧
(∀ i, Numeric (x.moveLeft i)) ∧ ∀ j, Numeric (x.moveRight j) :=
by
cases x
rfl
#align pgame.numeric_def Pgame.numeric_def
namespace Numeric
theorem mk {x : Pgame} (h₁ : ∀ i j, x.moveLeft i < x.moveRight j) (h₂ : ∀ i, Numeric (x.moveLeft i))
(h₃ : ∀ j, Numeric (x.moveRight j)) : Numeric x :=
numeric_def.2 ⟨h₁, h₂, h₃⟩
#align pgame.numeric.mk Pgame.Numeric.mk
theorem left_lt_right {x : Pgame} (o : Numeric x) (i : x.LeftMoves) (j : x.RightMoves) :
x.moveLeft i < x.moveRight j := by
cases x
exact o.1 i j
#align pgame.numeric.left_lt_right Pgame.Numeric.left_lt_right
theorem moveLeft {x : Pgame} (o : Numeric x) (i : x.LeftMoves) : Numeric (x.moveLeft i) :=
by
cases x
exact o.2.1 i
#align pgame.numeric.move_left Pgame.Numeric.moveLeft
theorem moveRight {x : Pgame} (o : Numeric x) (j : x.RightMoves) : Numeric (x.moveRight j) :=
by
cases x
exact o.2.2 j
#align pgame.numeric.move_right Pgame.Numeric.moveRight
end Numeric
@[elab_as_elim]
theorem numeric_rec {C : Pgame → Prop}
(H :
∀ (l r) (L : l → Pgame) (R : r → Pgame),
(∀ i j, L i < R j) →
(∀ i, Numeric (L i)) →
(∀ i, Numeric (R i)) → (∀ i, C (L i)) → (∀ i, C (R i)) → C ⟨l, r, L, R⟩) :
∀ x, Numeric x → C x
| ⟨l, r, L, R⟩, ⟨h, hl, hr⟩ =>
H _ _ _ _ h hl hr (fun i => numeric_rec _ (hl i)) fun i => numeric_rec _ (hr i)
#align pgame.numeric_rec Pgame.numeric_rec
theorem Relabelling.numeric_imp {x y : Pgame} (r : x ≡r y) (ox : Numeric x) : Numeric y :=
by
induction' x using Pgame.moveRecOn with x IHl IHr generalizing y
apply numeric.mk (fun i j => _) (fun i => _) fun j => _
· rw [← lt_congr (r.move_left_symm i).Equiv (r.move_right_symm j).Equiv]
apply ox.left_lt_right
· exact IHl _ (ox.move_left _) (r.move_left_symm i)
· exact IHr _ (ox.move_right _) (r.move_right_symm j)
#align pgame.relabelling.numeric_imp Pgame.Relabelling.numeric_imp
/-- Relabellings preserve being numeric. -/
theorem Relabelling.numeric_congr {x y : Pgame} (r : x ≡r y) : Numeric x ↔ Numeric y :=
⟨r.numeric_imp, r.symm.numeric_imp⟩
#align pgame.relabelling.numeric_congr Pgame.Relabelling.numeric_congr
theorem lf_asymm {x y : Pgame} (ox : Numeric x) (oy : Numeric y) : x ⧏ y → ¬y ⧏ x :=
by
refine' numeric_rec (fun xl xr xL xR hx oxl oxr IHxl IHxr => _) x ox y oy
refine' numeric_rec fun yl yr yL yR hy oyl oyr IHyl IHyr => _
rw [mk_lf_mk, mk_lf_mk]; rintro (⟨i, h₁⟩ | ⟨j, h₁⟩) (⟨i, h₂⟩ | ⟨j, h₂⟩)
· exact IHxl _ _ (oyl _) (h₁.move_left_lf _) (h₂.move_left_lf _)
· exact (le_trans h₂ h₁).not_gf (lf_of_lt (hy _ _))
· exact (le_trans h₁ h₂).not_gf (lf_of_lt (hx _ _))
· exact IHxr _ _ (oyr _) (h₁.lf_move_right _) (h₂.lf_move_right _)
#align pgame.lf_asymm Pgame.lf_asymm
theorem le_of_lf {x y : Pgame} (h : x ⧏ y) (ox : Numeric x) (oy : Numeric y) : x ≤ y :=
not_lf.1 (lf_asymm ox oy h)
#align pgame.le_of_lf Pgame.le_of_lf
alias le_of_lf ← lf.le
#align pgame.lf.le Pgame.Lf.le
theorem lt_of_lf {x y : Pgame} (h : x ⧏ y) (ox : Numeric x) (oy : Numeric y) : x < y :=
(lt_or_fuzzy_of_lf h).resolve_right (not_fuzzy_of_le (h.le ox oy))
#align pgame.lt_of_lf Pgame.lt_of_lf
alias lt_of_lf ← lf.lt
#align pgame.lf.lt Pgame.Lf.lt
theorem lf_iff_lt {x y : Pgame} (ox : Numeric x) (oy : Numeric y) : x ⧏ y ↔ x < y :=
⟨fun h => h.lt ox oy, lf_of_lt⟩
#align pgame.lf_iff_lt Pgame.lf_iff_lt
/-- Definition of `x ≤ y` on numeric pre-games, in terms of `<` -/
theorem le_iff_forall_lt {x y : Pgame} (ox : x.Numeric) (oy : y.Numeric) :
x ≤ y ↔ (∀ i, x.moveLeft i < y) ∧ ∀ j, x < y.moveRight j := by
refine' le_iff_forall_lf.trans (and_congr _ _) <;>
refine' forall_congr' fun i => lf_iff_lt _ _ <;>
apply_rules [numeric.move_left, numeric.move_right]
#align pgame.le_iff_forall_lt Pgame.le_iff_forall_lt
/-- Definition of `x < y` on numeric pre-games, in terms of `≤` -/
theorem lt_iff_exists_le {x y : Pgame} (ox : x.Numeric) (oy : y.Numeric) :
x < y ↔ (∃ i, x ≤ y.moveLeft i) ∨ ∃ j, x.moveRight j ≤ y := by
rw [← lf_iff_lt ox oy, lf_iff_exists_le]
#align pgame.lt_iff_exists_le Pgame.lt_iff_exists_le
theorem lt_of_exists_le {x y : Pgame} (ox : x.Numeric) (oy : y.Numeric) :
((∃ i, x ≤ y.moveLeft i) ∨ ∃ j, x.moveRight j ≤ y) → x < y :=
(lt_iff_exists_le ox oy).2
#align pgame.lt_of_exists_le Pgame.lt_of_exists_le
/-- The definition of `x < y` on numeric pre-games, in terms of `<` two moves later. -/
theorem lt_def {x y : Pgame} (ox : x.Numeric) (oy : y.Numeric) :
x < y ↔
(∃ i, (∀ i', x.moveLeft i' < y.moveLeft i) ∧ ∀ j, x < (y.moveLeft i).moveRight j) ∨
∃ j, (∀ i, (x.moveRight j).moveLeft i < y) ∧ ∀ j', x.moveRight j < y.moveRight j' :=
by
rw [← lf_iff_lt ox oy, lf_def]
refine' or_congr _ _ <;> refine' exists_congr fun x_1 => _ <;> refine' and_congr _ _ <;>
refine' forall_congr' fun i => lf_iff_lt _ _ <;>
apply_rules [numeric.move_left, numeric.move_right]
#align pgame.lt_def Pgame.lt_def
theorem not_fuzzy {x y : Pgame} (ox : Numeric x) (oy : Numeric y) : ¬Fuzzy x y := fun h =>
not_lf.2 ((lf_of_fuzzy h).le ox oy) h.2
#align pgame.not_fuzzy Pgame.not_fuzzy
theorem lt_or_equiv_or_gt {x y : Pgame} (ox : Numeric x) (oy : Numeric y) :
x < y ∨ (x ≈ y) ∨ y < x :=
((lf_or_equiv_or_gf x y).imp fun h => h.lt ox oy) <| Or.imp_right fun h => h.lt oy ox
#align pgame.lt_or_equiv_or_gt Pgame.lt_or_equiv_or_gt
theorem numeric_of_isEmpty (x : Pgame) [IsEmpty x.LeftMoves] [IsEmpty x.RightMoves] : Numeric x :=
Numeric.mk isEmptyElim isEmptyElim isEmptyElim
#align pgame.numeric_of_is_empty Pgame.numeric_of_isEmpty
theorem numeric_of_isEmpty_leftMoves (x : Pgame) [IsEmpty x.LeftMoves] :
(∀ j, Numeric (x.moveRight j)) → Numeric x :=
Numeric.mk isEmptyElim isEmptyElim
#align pgame.numeric_of_is_empty_left_moves Pgame.numeric_of_isEmpty_leftMoves
theorem numeric_of_isEmpty_rightMoves (x : Pgame) [IsEmpty x.RightMoves]
(H : ∀ i, Numeric (x.moveLeft i)) : Numeric x :=
Numeric.mk (fun _ => isEmptyElim) H isEmptyElim
#align pgame.numeric_of_is_empty_right_moves Pgame.numeric_of_isEmpty_rightMoves
theorem numeric_zero : Numeric 0 :=
numeric_of_isEmpty 0
#align pgame.numeric_zero Pgame.numeric_zero
theorem numeric_one : Numeric 1 :=
numeric_of_isEmpty_rightMoves 1 fun _ => numeric_zero
#align pgame.numeric_one Pgame.numeric_one
theorem Numeric.neg : ∀ {x : Pgame} (o : Numeric x), Numeric (-x)
| ⟨l, r, L, R⟩, o =>
⟨fun j i => neg_lt_neg_iff.2 (o.1 i j), fun j => (o.2.2 j).neg, fun i => (o.2.1 i).neg⟩
#align pgame.numeric.neg Pgame.Numeric.neg
namespace Numeric
theorem moveLeft_lt {x : Pgame} (o : Numeric x) (i) : x.moveLeft i < x :=
(moveLeft_lf i).lt (o.moveLeft i) o
#align pgame.numeric.move_left_lt Pgame.Numeric.moveLeft_lt
theorem moveLeft_le {x : Pgame} (o : Numeric x) (i) : x.moveLeft i ≤ x :=
(o.moveLeft_lt i).le
#align pgame.numeric.move_left_le Pgame.Numeric.moveLeft_le
theorem lt_moveRight {x : Pgame} (o : Numeric x) (j) : x < x.moveRight j :=
(lf_moveRight j).lt o (o.moveRight j)
#align pgame.numeric.lt_move_right Pgame.Numeric.lt_moveRight
theorem le_moveRight {x : Pgame} (o : Numeric x) (j) : x ≤ x.moveRight j :=
(o.lt_moveRight j).le
#align pgame.numeric.le_move_right Pgame.Numeric.le_moveRight
theorem add : ∀ {x y : Pgame} (ox : Numeric x) (oy : Numeric y), Numeric (x + y)
| ⟨xl, xr, xL, xR⟩, ⟨yl, yr, yL, yR⟩, ox, oy =>
⟨by
rintro (ix | iy) (jx | jy)
· exact add_lt_add_right (ox.1 ix jx) _
·
exact
(add_lf_add_of_lf_of_le (lf_mk _ _ ix) (oy.le_move_right jy)).lt
((ox.move_left ix).add oy) (ox.add (oy.move_right jy))
·
exact
(add_lf_add_of_lf_of_le (mk_lf _ _ jx) (oy.move_left_le iy)).lt (ox.add (oy.move_left iy))
((ox.move_right jx).add oy)
· exact add_lt_add_left (oy.1 iy jy) ⟨xl, xr, xL, xR⟩,
by
constructor
· rintro (ix | iy)
· exact (ox.move_left ix).add oy
· exact ox.add (oy.move_left iy)
· rintro (jx | jy)
· apply (ox.move_right jx).add oy
· apply ox.add (oy.move_right jy)⟩decreasing_by
pgame_wf_tac
#align pgame.numeric.add Pgame.Numeric.add
theorem sub {x y : Pgame} (ox : Numeric x) (oy : Numeric y) : Numeric (x - y) :=
ox.add oy.neg
#align pgame.numeric.sub Pgame.Numeric.sub
end Numeric
/-- Pre-games defined by natural numbers are numeric. -/
theorem numeric_nat : ∀ n : ℕ, Numeric n
| 0 => numeric_zero
| n + 1 => (numeric_nat n).add numeric_one
#align pgame.numeric_nat Pgame.numeric_nat
/-- Ordinal games are numeric. -/
theorem numeric_toPgame (o : Ordinal) : o.toPgame.Numeric :=
by
induction' o using Ordinal.induction with o IH
apply numeric_of_is_empty_right_moves
simpa using fun i => IH _ (Ordinal.toLeftMovesToPgame_symm_lt i)
#align pgame.numeric_to_pgame Pgame.numeric_toPgame
end Pgame
open Pgame
/-- The type of surreal numbers. These are the numeric pre-games quotiented
by the equivalence relation `x ≈ y ↔ x ≤ y ∧ y ≤ x`. In the quotient,
the order becomes a total order. -/
def Surreal :=
Quotient (Subtype.setoid Numeric)
#align surreal Surreal
namespace Surreal
/-- Construct a surreal number from a numeric pre-game. -/
def mk (x : Pgame) (h : x.Numeric) : Surreal :=
⟦⟨x, h⟩⟧
#align surreal.mk Surreal.mk
instance : Zero Surreal :=
⟨mk 0 numeric_zero⟩
instance : One Surreal :=
⟨mk 1 numeric_one⟩
instance : Inhabited Surreal :=
⟨0⟩
/-- Lift an equivalence-respecting function on pre-games to surreals. -/
def lift {α} (f : ∀ x, Numeric x → α)
(H : ∀ {x y} (hx : Numeric x) (hy : Numeric y), x.Equiv y → f x hx = f y hy) : Surreal → α :=
Quotient.lift (fun x : { x // Numeric x } => f x.1 x.2) fun x y => H x.2 y.2
#align surreal.lift Surreal.lift
/-- Lift a binary equivalence-respecting function on pre-games to surreals. -/
def lift₂ {α} (f : ∀ x y, Numeric x → Numeric y → α)
(H :
∀ {x₁ y₁ x₂ y₂} (ox₁ : Numeric x₁) (oy₁ : Numeric y₁) (ox₂ : Numeric x₂) (oy₂ : Numeric y₂),
x₁.Equiv x₂ → y₁.Equiv y₂ → f x₁ y₁ ox₁ oy₁ = f x₂ y₂ ox₂ oy₂) :
Surreal → Surreal → α :=
lift (fun x ox => lift (fun y oy => f x y ox oy) fun y₁ y₂ oy₁ oy₂ => H _ _ _ _ equiv_rfl)
fun x₁ x₂ ox₁ ox₂ h => funext <| Quotient.ind fun ⟨y, oy⟩ => H _ _ _ _ h equiv_rfl
#align surreal.lift₂ Surreal.lift₂
instance : LE Surreal :=
⟨lift₂ (fun x y _ _ => x ≤ y) fun x₁ y₁ x₂ y₂ _ _ _ _ hx hy => propext (le_congr hx hy)⟩
instance : LT Surreal :=
⟨lift₂ (fun x y _ _ => x < y) fun x₁ y₁ x₂ y₂ _ _ _ _ hx hy => propext (lt_congr hx hy)⟩
/-- Addition on surreals is inherited from pre-game addition:
the sum of `x = {xL | xR}` and `y = {yL | yR}` is `{xL + y, x + yL | xR + y, x + yR}`. -/
instance : Add Surreal :=
⟨Surreal.lift₂ (fun (x y : Pgame) ox oy => ⟦⟨x + y, ox.add oy⟩⟧) fun x₁ y₁ x₂ y₂ _ _ _ _ hx hy =>
Quotient.sound (add_congr hx hy)⟩
/-- Negation for surreal numbers is inherited from pre-game negation:
the negation of `{L | R}` is `{-R | -L}`. -/
instance : Neg Surreal :=
⟨Surreal.lift (fun x ox => ⟦⟨-x, ox.neg⟩⟧) fun _ _ _ _ a =>
Quotient.sound (neg_equiv_neg_iff.2 a)⟩
instance : OrderedAddCommGroup Surreal where
add := (· + ·)
add_assoc := by
rintro ⟨_⟩ ⟨_⟩ ⟨_⟩
exact Quotient.sound add_assoc_equiv
zero := 0
zero_add := by
rintro ⟨_⟩
exact Quotient.sound (zero_add_equiv a)
add_zero := by
rintro ⟨_⟩
exact Quotient.sound (add_zero_equiv a)
neg := Neg.neg
add_left_neg := by
rintro ⟨_⟩
exact Quotient.sound (add_left_neg_equiv a)
add_comm := by
rintro ⟨_⟩ ⟨_⟩
exact Quotient.sound add_comm_equiv
le := (· ≤ ·)
lt := (· < ·)
le_refl := by
rintro ⟨_⟩
apply @le_rfl Pgame
le_trans := by
rintro ⟨_⟩ ⟨_⟩ ⟨_⟩
apply @le_trans Pgame
lt_iff_le_not_le := by
rintro ⟨_, ox⟩ ⟨_, oy⟩
apply @lt_iff_le_not_le Pgame
le_antisymm := by
rintro ⟨_⟩ ⟨_⟩ h₁ h₂
exact Quotient.sound ⟨h₁, h₂⟩
add_le_add_left := by
rintro ⟨_⟩ ⟨_⟩ hx ⟨_⟩
exact @add_le_add_left Pgame _ _ _ _ _ hx _
noncomputable instance : LinearOrderedAddCommGroup Surreal :=
{
Surreal.orderedAddCommGroup with
le_total := by
rintro ⟨⟨x, ox⟩⟩ ⟨⟨y, oy⟩⟩ <;> classical skip <;>
exact or_iff_not_imp_left.2 fun h => (Pgame.not_le.1 h).le oy ox
decidableLe := Classical.decRel _ }
instance : AddMonoidWithOne Surreal :=
AddMonoidWithOne.unary
/-- Casts a `surreal` number into a `game`. -/
def toGame : Surreal →+o Game
where
toFun := lift (fun x _ => ⟦x⟧) fun x y ox oy => Quot.sound
map_zero' := rfl
map_add' := by
rintro ⟨_, _⟩ ⟨_, _⟩
rfl
monotone' := by
rintro ⟨_, _⟩ ⟨_, _⟩
exact id
#align surreal.to_game Surreal.toGame
theorem zero_toGame : toGame 0 = 0 :=
rfl
#align surreal.zero_to_game Surreal.zero_toGame
@[simp]
theorem one_toGame : toGame 1 = 1 :=
rfl
#align surreal.one_to_game Surreal.one_toGame
@[simp]
theorem nat_toGame : ∀ n : ℕ, toGame n = n :=
map_natCast' _ one_toGame
#align surreal.nat_to_game Surreal.nat_toGame
end Surreal
open Surreal
namespace Ordinal
/-- Converts an ordinal into the corresponding surreal. -/
noncomputable def toSurreal : Ordinal ↪o Surreal
where
toFun o := mk _ (numeric_toPgame o)
inj' a b h := toPgame_equiv_iff.1 (Quotient.exact h)
map_rel_iff' := @toPgame_le_iff
#align ordinal.to_surreal Ordinal.toSurreal
end Ordinal
|
Formal statement is: lemma measure_UNION: assumes measurable: "range A \<subseteq> sets M" "disjoint_family A" assumes finite: "emeasure M (\<Union>i. A i) \<noteq> \<infinity>" shows "(\<lambda>i. measure M (A i)) sums (measure M (\<Union>i. A i))" Informal statement is: If $A_1, A_2, \ldots$ is a disjoint family of measurable sets, then $\sum_{i=1}^\infty \mu(A_i) = \mu(\bigcup_{i=1}^\infty A_i)$. |
function pascal_to_i4_test ( )
%*****************************************************************************80
%
%% PASCAL_TO_I4_TEST tests PASCAL_TO_I4.
%
% Location:
%
% http://people.sc.fsu.edu/~jburkardt/m_src/triangle_integrals/pascal_to_i4.m
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 13 April 2015
%
% Author:
%
% John Burkardt
%
fprintf ( 1, '\n' );
fprintf ( 1, 'PASCAL_TO_I4_TEST\n' );
fprintf ( 1, ' PASCAL_TO_I4 converts Pascal triangle indices to a\n' );
fprintf ( 1, ' linear index.\n' );
fprintf ( 1, '\n' );
fprintf ( 1, ' I J => K\n' );
fprintf ( 1, '\n' );
for d = 0 : 4
for i = d : -1 : 0
j = d - i;
k = pascal_to_i4 ( i, j );
fprintf ( 1, ' %4d %4d %4d\n', i, j, k );
end
fprintf ( 1, '\n' );
end
return
end
|
'''
MLSS: Machine Learning with Spark Streaming
Dataset: Tweet Sentiment Analysis
Submission by: Team BD_078_460_474_565
Course: Big Data, Fall 2021
'''
import numpy as np
from pyspark.mllib.linalg import Vectors
def LRLearning(X, y, spark, classifier, model_version):
"""
Perform logistic regression on the dataframe with incremental learning
"""
# Fit the LR classifier
classifier.partial_fit(X, y, classes=np.unique(y))
predictions = classifier.predict(X)
accuracy = np.count_nonzero(np.array(predictions) == y)/y.shape[0]
print(f"Accuracy of LR_{model_version}:", accuracy)
with open(f'./model_accuracies/lr_{model_version}.txt', "a") as ma:
ma.write(str(accuracy)+'\n')
return classifier
|
(* Consider the following two inductively defined types. *)
Inductive mumble : Type :=
| a
| b (x : mumble) (y : nat)
| c.
Inductive grumble (X:Type) : Type :=
| d (m : mumble)
| e (x : X).
(* Which of the following are well-typed elements of grumble X for some type X? (Add YES or NO to each line.) *)
(*
d (b a 5) YES
d mumble (b a 5) YES
d bool (b a 5) YES
e bool true YES
e mumble (b c 0) YES
e bool (b c 0) NO
c YES
*) |
[STATEMENT]
lemma C4_a [simp]: "-r (-l x) = x"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. -r (-l x) = x
[PROOF STEP]
apply (unfold C3_b [THEN sym] C3_a [THEN sym])
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (x l\<rightarrow> (0::'a)) r\<rightarrow> (0::'a) = x
[PROOF STEP]
apply (subst W2a)
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. ((0::'a) l\<rightarrow> x) r\<rightarrow> x = x
[PROOF STEP]
by simp |
import numpy as np
from scipy.optimize import fsolve
def rotation_x(theta):
"""Matrix of rotation about x axis."""
return np.matrix([[ 1, 0, 0],
[ 0, np.cos(theta), -np.sin(theta)],
[ 0, np.sin(theta), np.cos(theta)]])
def rotation_y(theta):
"""Matrix of rotation about y axis."""
return np.matrix([[ np.cos(theta), 0, np.sin(theta)],
[ 0, 1, 0],
[-np.sin(theta), 0, np.cos(theta)]])
def rotation_z(theta):
"""Matrix of rotation about z axis."""
return np.matrix([[ np.cos(theta), -np.sin(theta), 0],
[ np.sin(theta), np.cos(theta), 0],
[ 0, 0, 1]])
def rotation_fixed_angle(gamma, beta, alpha):
"""Matrix for X-Y-Z fixed angle rotation."""
return rotation_z(alpha) * rotation_y(beta) * rotation_x(gamma)
def trisphere_forward_kinematics(j_p, j_np, c_np,
c_p0=np.zeros(3),
c_r0=np.zeros(3)):
"""Forward kinematics of the Tri-sphere 6D system.
:param tuple: jacks' target positions (j1_p, j2_p, j3_p) relative to
their respective null positions.
:param tuple j_np: null positions of the jacks (j1_np, j2_np, j3_np).
:param numpy.array c_np: null position (x, y, z) of the control point.
:param numpy.array c_p0: current position (x, y, z) of the control
point relative to its null position.
:param numpy.array c_r0: current rotation (gamma, beta, alpha) of the
control point.
:return: target of the position (x, y, z) and rotation (gamma, beta,
alpha) of the control point.
Note: c_p0 and c_r0 are simply used as a starting point for solving
the forward kinematics.
"""
if j_p[0][0] != 0 or j_p[1][2] !=0 or j_p[2][2] != 0:
raise ValueError("Invalid jacks' target position!")
def obj_func(x):
ret, _ = trisphere_inverse_kinematics(x[:3], x[3:], c_np, j_np)
# z1, y1, x2, y2, x3, y3
return np.array([ret[0][2] - j_p[0][2], ret[0][1] - j_p[0][1],
ret[1][0] - j_p[1][0], ret[1][1] - j_p[1][1],
ret[2][0] - j_p[2][0], ret[2][1] - j_p[2][1]])
x0 = np.concatenate((c_p0, c_r0))
ret = fsolve(obj_func, x0)
# c_p and c_r
return ret[:3], ret[3:]
def trisphere_inverse_kinematics(c_p, c_r, c_np, j_np):
"""Inverse kinematics of the Tri-sphere 6D system.
:param numpy.array c_p: target position (x, y, z) of the control point
relative to its null position.
:param numpy.array c_r: target rotation (gamma, beta, alpha) of the
control point.
:param numpy.array c_np: null position of the control point.
:param tuple j_np: null positions of the jacks (j1_np, j2_np, j3_np).
:return: jacks' target positions (j1_p, j2_p, j3_p) relative to their
respective null position and "transformed null positions"
(j1_tnp, j2_tnp, j3_tnp). The latter is used for testing and
debugging.
"""
j1_np, j2_np, j3_np = j_np
gamma, beta, alpha = c_r
# calculate rotation matrix
rt_matrix = rotation_fixed_angle(gamma, beta, alpha)
# calculate transformed null positions
j1_tnp = ((j1_np - c_np) * rt_matrix.T).getA()[0] + c_np + c_p
j2_tnp = ((j2_np - c_np) * rt_matrix.T).getA()[0] + c_np + c_p
j3_tnp = ((j3_np - c_np) * rt_matrix.T).getA()[0] + c_np + c_p
# calculate jacks' new positions
j1_p = j1_tnp - j1_np
dx = j1_np[0] - j1_tnp[0]
j1_p[0] = 0
j1_p[1] += np.tan(alpha) * dx
j1_p[2] += -np.tan(beta)/np.cos(alpha) * dx
j2_p = j2_tnp - j2_np
dz = j2_np[2] - j2_tnp[2]
j2_p[0] += (np.tan(beta)*np.cos(alpha)
+ np.sin(alpha)*np.tan(gamma)/np.cos(beta)) * dz
j2_p[1] += -(np.tan(gamma)/np.cos(beta)*np.cos(alpha)
- np.tan(beta)*np.sin(alpha)) * dz
j2_p[2] = 0
j3_p = j3_tnp - j3_np
dz = j3_np[2] - j3_tnp[2]
j3_p[0] += (np.tan(beta)*np.cos(alpha)
+ np.sin(alpha)*np.tan(gamma)/np.cos(beta)) * dz
j3_p[1] += -(np.tan(gamma)/np.cos(beta)*np.cos(alpha)
- np.tan(beta)*np.sin(alpha)) * dz
j3_p[2] = 0
return (j1_p, j2_p, j3_p), (j1_tnp, j2_tnp, j3_tnp)
|
import math
import numpy
import tensorflow as tf
def BatchClipByL2norm(t, upper_bound, name=None):
assert upper_bound > 0
saved_shape = tf.shape(t)
#batch_size = tf.slice(saved_shape, [0], [1])
batch_size = tf.constant(1.0)
shape = tf.concat(0, [[tf.constant(128)], [-1]])
t2 = tf.reshape(t, shape)
upper_bound_inv = tf.fill(tf.slice(saved_shape, [0], [1]),
tf.constant(1.0/upper_bound))
# Add a small number to avoid divide by 0
l2norm_inv = tf.math.rsqrt(tf.reduce_sum(t2 * t2, [1]) + 0.000001)
scale = tf.minimum(l2norm_inv, upper_bound_inv) * upper_bound
clipped_t = tf.matmul(tf.diag(scale), t2)
clipped_t = tf.reshape(clipped_t, saved_shape, name=name)
return clipped_t
def AddGaussianNoise(t, sigma, name=None):
noisy_t = t + tf.random.normal(tf.shape(t), stddev=sigma)
return noisy_t
def GetTensorOpName(x):
t = x.name.rsplit(":", 1)
if len(t) == 1:
return x.name
else:
return t[0]
|
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
hs : x ∈ (chartAt H c).toLocalEquiv.source
hd : dist (↑(extChartAt I c) x) (↑(extChartAt I c) c) ≤ f.rIn
⊢ ↑f x = 1
[PROOFSTEP]
simp only [f.eqOn_source hs, (· ∘ ·), f.one_of_mem_closedBall hd]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ support ↑f = (chartAt H c).toLocalEquiv.source ∩ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) f.rOut
[PROOFSTEP]
rw [coe_def, support_indicator, support_comp_eq_preimage, ← extChartAt_source I, ←
(extChartAt I c).symm_image_target_inter_eq', ← (extChartAt I c).symm_image_target_inter_eq', f.support_eq]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ IsOpen (support ↑f)
[PROOFSTEP]
rw [support_eq_inter_preimage]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ IsOpen ((chartAt H c).toLocalEquiv.source ∩ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) f.rOut)
[PROOFSTEP]
exact isOpen_extChartAt_preimage I c isOpen_ball
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ support ↑f = ↑(LocalEquiv.symm (extChartAt I c)) '' (ball (↑(extChartAt I c) c) f.rOut ∩ range ↑I)
[PROOFSTEP]
rw [f.support_eq_inter_preimage, ← extChartAt_source I, ← (extChartAt I c).symm_image_target_inter_eq', inter_comm,
ball_inter_range_eq_ball_inter_target]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ support ↑f ⊆ (chartAt H c).toLocalEquiv.source
[PROOFSTEP]
rw [f.support_eq_inter_preimage, ← extChartAt_source I]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ (extChartAt I c).source ∩ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) f.rOut ⊆ (extChartAt I c).source
[PROOFSTEP]
exact inter_subset_left _ _
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hs : s ⊆ support ↑f
⊢ ↑(extChartAt I c) '' s =
closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I ∩ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s
[PROOFSTEP]
rw [support_eq_inter_preimage, subset_inter_iff, ← extChartAt_source I, ← image_subset_iff] at hs
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hs : s ⊆ (extChartAt I c).source ∧ ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
⊢ ↑(extChartAt I c) '' s =
closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I ∩ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s
[PROOFSTEP]
cases' hs with hse hsf
[GOAL]
case intro
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hse : s ⊆ (extChartAt I c).source
hsf : ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
⊢ ↑(extChartAt I c) '' s =
closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I ∩ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s
[PROOFSTEP]
apply Subset.antisymm
[GOAL]
case intro.h₁
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hse : s ⊆ (extChartAt I c).source
hsf : ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
⊢ ↑(extChartAt I c) '' s ⊆
closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I ∩ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s
[PROOFSTEP]
refine' subset_inter (subset_inter (hsf.trans ball_subset_closedBall) _) _
[GOAL]
case intro.h₁.refine'_1
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hse : s ⊆ (extChartAt I c).source
hsf : ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
⊢ ↑(extChartAt I c) '' s ⊆ range ↑I
[PROOFSTEP]
rintro _ ⟨x, -, rfl⟩
[GOAL]
case intro.h₁.refine'_1.intro.intro
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x✝ : M
s : Set M
hse : s ⊆ (extChartAt I c).source
hsf : ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
x : M
⊢ ↑(extChartAt I c) x ∈ range ↑I
[PROOFSTEP]
exact mem_range_self _
[GOAL]
case intro.h₁.refine'_2
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hse : s ⊆ (extChartAt I c).source
hsf : ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
⊢ ↑(extChartAt I c) '' s ⊆ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s
[PROOFSTEP]
rw [(extChartAt I c).image_eq_target_inter_inv_preimage hse]
[GOAL]
case intro.h₁.refine'_2
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hse : s ⊆ (extChartAt I c).source
hsf : ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
⊢ (extChartAt I c).target ∩ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s ⊆ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s
[PROOFSTEP]
exact inter_subset_right _ _
[GOAL]
case intro.h₂
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hse : s ⊆ (extChartAt I c).source
hsf : ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
⊢ closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I ∩ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s ⊆
↑(extChartAt I c) '' s
[PROOFSTEP]
refine' Subset.trans (inter_subset_inter_left _ f.closedBall_subset) _
[GOAL]
case intro.h₂
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hse : s ⊆ (extChartAt I c).source
hsf : ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
⊢ (extChartAt I c).target ∩ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s ⊆ ↑(extChartAt I c) '' s
[PROOFSTEP]
rw [(extChartAt I c).image_eq_target_inter_inv_preimage hse]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ ↑f x ∈ Icc 0 1
[PROOFSTEP]
have : f x = 0 ∨ f x = _ := indicator_eq_zero_or_self _ _ _
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
this : ↑f x = 0 ∨ ↑f x = (↑f.toContDiffBump ∘ ↑(extChartAt I c)) x
⊢ ↑f x ∈ Icc 0 1
[PROOFSTEP]
cases' this with h h
[GOAL]
case inl
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
h : ↑f x = 0
⊢ ↑f x ∈ Icc 0 1
[PROOFSTEP]
rw [h]
[GOAL]
case inr
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
h : ↑f x = (↑f.toContDiffBump ∘ ↑(extChartAt I c)) x
⊢ ↑f x ∈ Icc 0 1
[PROOFSTEP]
rw [h]
[GOAL]
case inl
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
h : ↑f x = 0
⊢ 0 ∈ Icc 0 1
case inr
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
h : ↑f x = (↑f.toContDiffBump ∘ ↑(extChartAt I c)) x
⊢ (↑f.toContDiffBump ∘ ↑(extChartAt I c)) x ∈ Icc 0 1
[PROOFSTEP]
exacts [left_mem_Icc.2 zero_le_one, ⟨f.nonneg, f.le_one⟩]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
hs : x ∈ (chartAt H c).toLocalEquiv.source
hd : dist (↑(extChartAt I c) x) (↑(extChartAt I c) c) < f.rIn
⊢ ↑f =ᶠ[𝓝 x] 1
[PROOFSTEP]
filter_upwards [IsOpen.mem_nhds (isOpen_extChartAt_preimage I c isOpen_ball) ⟨hs, hd⟩]
[GOAL]
case h
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
hs : x ∈ (chartAt H c).toLocalEquiv.source
hd : dist (↑(extChartAt I c) x) (↑(extChartAt I c) c) < f.rIn
⊢ ∀ (a : M),
a ∈ (chartAt H c).toLocalEquiv.source ∩ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) f.rIn →
↑f a = OfNat.ofNat 1 a
[PROOFSTEP]
rintro z ⟨hzs, hzd⟩
[GOAL]
case h.intro
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
hs : x ∈ (chartAt H c).toLocalEquiv.source
hd : dist (↑(extChartAt I c) x) (↑(extChartAt I c) c) < f.rIn
z : M
hzs : z ∈ (chartAt H c).toLocalEquiv.source
hzd : z ∈ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) f.rIn
⊢ ↑f z = OfNat.ofNat 1 z
[PROOFSTEP]
exact f.one_of_dist_le hzs <| le_of_lt hzd
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ dist (↑(extChartAt I c) c) (↑(extChartAt I c) c) < f.rIn
[PROOFSTEP]
rw [dist_self]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ 0 < f.rIn
[PROOFSTEP]
exact f.rIn_pos
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x✝ x : M
hx : ↑f x = OfNat.ofNat 1 x
⊢ ↑f x ≠ 0
[PROOFSTEP]
rw [hx]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x✝ x : M
hx : ↑f x = OfNat.ofNat 1 x
⊢ OfNat.ofNat 1 x ≠ 0
[PROOFSTEP]
exact one_ne_zero
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ HasBasis (𝓝[range ↑I] ↑(extChartAt I c) c) (fun x => True) fun f => closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I
[PROOFSTEP]
refine'
((nhdsWithin_hasBasis nhds_basis_closedBall _).restrict_subset (extChartAt_target_mem_nhdsWithin _ _)).to_has_basis' _
_
[GOAL]
case refine'_1
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ ∀ (i : ℝ),
0 < i ∧ closedBall (↑(extChartAt I c) c) i ∩ range ↑I ⊆ (extChartAt I c).target →
∃ i', True ∧ closedBall (↑(extChartAt I c) c) i'.rOut ∩ range ↑I ⊆ closedBall (↑(extChartAt I c) c) i ∩ range ↑I
[PROOFSTEP]
rintro R ⟨hR0, hsub⟩
[GOAL]
case refine'_1.intro
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
R : ℝ
hR0 : 0 < R
hsub : closedBall (↑(extChartAt I c) c) R ∩ range ↑I ⊆ (extChartAt I c).target
⊢ ∃ i', True ∧ closedBall (↑(extChartAt I c) c) i'.rOut ∩ range ↑I ⊆ closedBall (↑(extChartAt I c) c) R ∩ range ↑I
[PROOFSTEP]
exact ⟨⟨⟨R / 2, R, half_pos hR0, half_lt_self hR0⟩, hsub⟩, trivial, Subset.rfl⟩
[GOAL]
case refine'_2
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
⊢ ∀ (i' : SmoothBumpFunction I c),
True → closedBall (↑(extChartAt I c) c) i'.rOut ∩ range ↑I ∈ 𝓝[range ↑I] ↑(extChartAt I c) c
[PROOFSTEP]
exact fun f _ => inter_mem (mem_nhdsWithin_of_mem_nhds <| closedBall_mem_nhds _ f.rOut_pos) self_mem_nhdsWithin
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hsc : IsClosed s
hs : s ⊆ support ↑f
⊢ IsClosed (↑(extChartAt I c) '' s)
[PROOFSTEP]
rw [f.image_eq_inter_preimage_of_subset_support hs]
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hsc : IsClosed s
hs : s ⊆ support ↑f
⊢ IsClosed (closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I ∩ ↑(LocalEquiv.symm (extChartAt I c)) ⁻¹' s)
[PROOFSTEP]
refine' ContinuousOn.preimage_closed_of_closed ((continuousOn_extChartAt_symm _ _).mono f.closedBall_subset) _ hsc
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hsc : IsClosed s
hs : s ⊆ support ↑f
⊢ IsClosed (closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I)
[PROOFSTEP]
exact IsClosed.inter isClosed_ball I.closed_range
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hsc : IsClosed s
hs : s ⊆ support ↑f
⊢ ∃ r, r ∈ Ioo 0 f.rOut ∧ s ⊆ (chartAt H c).toLocalEquiv.source ∩ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) r
[PROOFSTEP]
set e := extChartAt I c
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hsc : IsClosed s
hs : s ⊆ support ↑f
e : LocalEquiv M E := extChartAt I c
⊢ ∃ r, r ∈ Ioo 0 f.rOut ∧ s ⊆ (chartAt H c).toLocalEquiv.source ∩ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) r
[PROOFSTEP]
have : IsClosed (e '' s) := f.isClosed_image_of_isClosed hsc hs
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hsc : IsClosed s
hs : s ⊆ support ↑f
e : LocalEquiv M E := extChartAt I c
this : IsClosed (↑e '' s)
⊢ ∃ r, r ∈ Ioo 0 f.rOut ∧ s ⊆ (chartAt H c).toLocalEquiv.source ∩ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) r
[PROOFSTEP]
rw [support_eq_inter_preimage, subset_inter_iff, ← image_subset_iff] at hs
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hsc : IsClosed s
hs : s ⊆ (chartAt H c).toLocalEquiv.source ∧ ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
e : LocalEquiv M E := extChartAt I c
this : IsClosed (↑e '' s)
⊢ ∃ r, r ∈ Ioo 0 f.rOut ∧ s ⊆ (chartAt H c).toLocalEquiv.source ∩ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) r
[PROOFSTEP]
rcases exists_pos_lt_subset_ball f.rOut_pos this hs.2 with ⟨r, hrR, hr⟩
[GOAL]
case intro.intro
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
s : Set M
hsc : IsClosed s
hs : s ⊆ (chartAt H c).toLocalEquiv.source ∧ ↑(extChartAt I c) '' s ⊆ ball (↑(extChartAt I c) c) f.rOut
e : LocalEquiv M E := extChartAt I c
this : IsClosed (↑e '' s)
r : ℝ
hrR : r ∈ Ioo 0 f.rOut
hr : ↑e '' s ⊆ ball (↑(extChartAt I c) c) r
⊢ ∃ r, r ∈ Ioo 0 f.rOut ∧ s ⊆ (chartAt H c).toLocalEquiv.source ∩ ↑(extChartAt I c) ⁻¹' ball (↑(extChartAt I c) c) r
[PROOFSTEP]
exact ⟨r, hrR, subset_inter hs.1 (image_subset_iff.1 hr)⟩
[GOAL]
E : Type uE
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : FiniteDimensional ℝ E
H : Type uH
inst✝³ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝² : TopologicalSpace M
inst✝¹ : ChartedSpace H M
inst✝ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
r : ℝ
hr : r ∈ Ioo 0 f.rOut
⊢ support ↑(updateRIn f r hr) = support ↑f
[PROOFSTEP]
simp only [support_eq_inter_preimage, updateRIn_rOut]
[GOAL]
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : FiniteDimensional ℝ E
H : Type uH
inst✝⁴ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝³ : TopologicalSpace M
inst✝² : ChartedSpace H M
inst✝¹ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
inst✝ : T2Space M
⊢ tsupport ↑f ⊆ ↑(LocalEquiv.symm (extChartAt I c)) '' (closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I)
[PROOFSTEP]
rw [tsupport, support_eq_symm_image]
[GOAL]
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : FiniteDimensional ℝ E
H : Type uH
inst✝⁴ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝³ : TopologicalSpace M
inst✝² : ChartedSpace H M
inst✝¹ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
inst✝ : T2Space M
⊢ closure (↑(LocalEquiv.symm (extChartAt I c)) '' (ball (↑(extChartAt I c) c) f.rOut ∩ range ↑I)) ⊆
↑(LocalEquiv.symm (extChartAt I c)) '' (closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I)
[PROOFSTEP]
exact
closure_minimal (image_subset _ <| inter_subset_inter_left _ ball_subset_closedBall) f.isClosed_symm_image_closedBall
[GOAL]
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : FiniteDimensional ℝ E
H : Type uH
inst✝⁴ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝³ : TopologicalSpace M
inst✝² : ChartedSpace H M
inst✝¹ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
inst✝ : T2Space M
⊢ tsupport ↑f ⊆ (chartAt H c).toLocalEquiv.source
[PROOFSTEP]
simpa only [extChartAt_source] using f.tsupport_subset_extChartAt_source
[GOAL]
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : FiniteDimensional ℝ E
H : Type uH
inst✝⁴ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝³ : TopologicalSpace M
inst✝² : ChartedSpace H M
inst✝¹ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
inst✝ : T2Space M
⊢ HasBasis (𝓝 c) (fun x => True) fun f => tsupport ↑f
[PROOFSTEP]
have :
(𝓝 c).HasBasis (fun _ : SmoothBumpFunction I c => True) fun f =>
(extChartAt I c).symm '' (closedBall (extChartAt I c c) f.rOut ∩ range I) :=
by
rw [← map_extChartAt_symm_nhdsWithin_range I c]
exact nhdsWithin_range_basis.map _
[GOAL]
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : FiniteDimensional ℝ E
H : Type uH
inst✝⁴ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝³ : TopologicalSpace M
inst✝² : ChartedSpace H M
inst✝¹ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
inst✝ : T2Space M
⊢ HasBasis (𝓝 c) (fun x => True) fun f =>
↑(LocalEquiv.symm (extChartAt I c)) '' (closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I)
[PROOFSTEP]
rw [← map_extChartAt_symm_nhdsWithin_range I c]
[GOAL]
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : FiniteDimensional ℝ E
H : Type uH
inst✝⁴ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝³ : TopologicalSpace M
inst✝² : ChartedSpace H M
inst✝¹ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
inst✝ : T2Space M
⊢ HasBasis (map (↑(LocalEquiv.symm (extChartAt I c))) (𝓝[range ↑I] ↑(extChartAt I c) c)) (fun x => True) fun f =>
↑(LocalEquiv.symm (extChartAt I c)) '' (closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I)
[PROOFSTEP]
exact nhdsWithin_range_basis.map _
[GOAL]
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℝ E
inst✝⁵ : FiniteDimensional ℝ E
H : Type uH
inst✝⁴ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝³ : TopologicalSpace M
inst✝² : ChartedSpace H M
inst✝¹ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
inst✝ : T2Space M
this :
HasBasis (𝓝 c) (fun x => True) fun f =>
↑(LocalEquiv.symm (extChartAt I c)) '' (closedBall (↑(extChartAt I c) c) f.rOut ∩ range ↑I)
⊢ HasBasis (𝓝 c) (fun x => True) fun f => tsupport ↑f
[PROOFSTEP]
refine'
this.to_has_basis' (fun f _ => ⟨f, trivial, f.tsupport_subset_symm_image_closedBall⟩) fun f _ => f.tsupport_mem_nhds
[GOAL]
E : Type uE
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : FiniteDimensional ℝ E
H : Type uH
inst✝⁵ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁴ : TopologicalSpace M
inst✝³ : ChartedSpace H M
inst✝² : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
inst✝¹ : T2Space M
inst✝ : SmoothManifoldWithCorners I M
⊢ Smooth I 𝓘(ℝ, ℝ) ↑f
[PROOFSTEP]
refine' contMDiff_of_support fun x hx => _
[GOAL]
E : Type uE
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : FiniteDimensional ℝ E
H : Type uH
inst✝⁵ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁴ : TopologicalSpace M
inst✝³ : ChartedSpace H M
inst✝² : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x✝ : M
inst✝¹ : T2Space M
inst✝ : SmoothManifoldWithCorners I M
x : M
hx : x ∈ tsupport ↑f
⊢ ContMDiffAt I 𝓘(ℝ, ℝ) ⊤ (↑f) x
[PROOFSTEP]
have : x ∈ (chartAt H c).source := f.tsupport_subset_chartAt_source hx
[GOAL]
E : Type uE
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : FiniteDimensional ℝ E
H : Type uH
inst✝⁵ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁴ : TopologicalSpace M
inst✝³ : ChartedSpace H M
inst✝² : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x✝ : M
inst✝¹ : T2Space M
inst✝ : SmoothManifoldWithCorners I M
x : M
hx : x ∈ tsupport ↑f
this : x ∈ (chartAt H c).toLocalEquiv.source
⊢ ContMDiffAt I 𝓘(ℝ, ℝ) ⊤ (↑f) x
[PROOFSTEP]
refine'
ContMDiffAt.congr_of_eventuallyEq _ <|
f.eqOn_source.eventuallyEq_of_mem <| IsOpen.mem_nhds (chartAt H c).open_source this
[GOAL]
E : Type uE
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : FiniteDimensional ℝ E
H : Type uH
inst✝⁵ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁴ : TopologicalSpace M
inst✝³ : ChartedSpace H M
inst✝² : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x✝ : M
inst✝¹ : T2Space M
inst✝ : SmoothManifoldWithCorners I M
x : M
hx : x ∈ tsupport ↑f
this : x ∈ (chartAt H c).toLocalEquiv.source
⊢ ContMDiffAt I 𝓘(ℝ, ℝ) ⊤ (↑f.toContDiffBump ∘ ↑(extChartAt I c)) x
[PROOFSTEP]
exact f.contDiffAt.contMDiffAt.comp _ (contMDiffAt_extChartAt' this)
[GOAL]
E : Type uE
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace ℝ E
inst✝⁸ : FiniteDimensional ℝ E
H : Type uH
inst✝⁷ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁶ : TopologicalSpace M
inst✝⁵ : ChartedSpace H M
inst✝⁴ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x : M
inst✝³ : T2Space M
inst✝² : SmoothManifoldWithCorners I M
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
g : M → G
hg : SmoothOn I 𝓘(ℝ, G) g (chartAt H c).toLocalEquiv.source
⊢ Smooth I 𝓘(ℝ, G) fun x => ↑f x • g x
[PROOFSTEP]
refine contMDiff_of_support fun x hx => ?_
[GOAL]
E : Type uE
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace ℝ E
inst✝⁸ : FiniteDimensional ℝ E
H : Type uH
inst✝⁷ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁶ : TopologicalSpace M
inst✝⁵ : ChartedSpace H M
inst✝⁴ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x✝ : M
inst✝³ : T2Space M
inst✝² : SmoothManifoldWithCorners I M
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
g : M → G
hg : SmoothOn I 𝓘(ℝ, G) g (chartAt H c).toLocalEquiv.source
x : M
hx : x ∈ tsupport fun x => ↑f x • g x
⊢ ContMDiffAt I 𝓘(ℝ, G) ⊤ (fun x => ↑f x • g x) x
[PROOFSTEP]
have : x ∈ (chartAt H c).source
[GOAL]
case this
E : Type uE
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace ℝ E
inst✝⁸ : FiniteDimensional ℝ E
H : Type uH
inst✝⁷ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁶ : TopologicalSpace M
inst✝⁵ : ChartedSpace H M
inst✝⁴ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x✝ : M
inst✝³ : T2Space M
inst✝² : SmoothManifoldWithCorners I M
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
g : M → G
hg : SmoothOn I 𝓘(ℝ, G) g (chartAt H c).toLocalEquiv.source
x : M
hx : x ∈ tsupport fun x => ↑f x • g x
⊢ x ∈ (chartAt H c).toLocalEquiv.source
[PROOFSTEP]
exact f.tsupport_subset_chartAt_source <| tsupport_smul_subset_left _ _ hx
[GOAL]
E : Type uE
inst✝¹⁰ : NormedAddCommGroup E
inst✝⁹ : NormedSpace ℝ E
inst✝⁸ : FiniteDimensional ℝ E
H : Type uH
inst✝⁷ : TopologicalSpace H
I : ModelWithCorners ℝ E H
M : Type uM
inst✝⁶ : TopologicalSpace M
inst✝⁵ : ChartedSpace H M
inst✝⁴ : SmoothManifoldWithCorners I M
c : M
f : SmoothBumpFunction I c
x✝ : M
inst✝³ : T2Space M
inst✝² : SmoothManifoldWithCorners I M
G : Type u_1
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
g : M → G
hg : SmoothOn I 𝓘(ℝ, G) g (chartAt H c).toLocalEquiv.source
x : M
hx : x ∈ tsupport fun x => ↑f x • g x
this : x ∈ (chartAt H c).toLocalEquiv.source
⊢ ContMDiffAt I 𝓘(ℝ, G) ⊤ (fun x => ↑f x • g x) x
[PROOFSTEP]
exact f.smoothAt.smul ((hg _ this).contMDiffAt <| IsOpen.mem_nhds (chartAt _ _).open_source this)
|
lemma convex_empty[intro,simp]: "convex {}" |
# -*- coding: utf-8 -*-
# Created on Sat Jun 05 2021
# Last modified on Mon Jun 07 2021
# Copyright (c) CaMOS Development Team. All Rights Reserved.
# Distributed under a MIT License. See LICENSE for more info.
import numpy as np
from collections import defaultdict
from camos.tasks.analysis import Analysis
from camos.utils.generategui import (
DatasetInput,
NumericInput,
)
from .heatmap import ISIHeatmap
class InterspikeIntervalMask(Analysis):
analysis_name = "Interspike Interval"
def __init__(self, model=None, parent=None, signal=None):
super(InterspikeIntervalMask, self).__init__(
model, parent, signal, name=self.analysis_name
)
self.plotter = ISIHeatmap
self.colname = "ISI"
def _run(
self,
electrode_x: NumericInput("Number of electrodes along one axis", 64),
_i_data: DatasetInput("Source Dataset", 0),
):
output_type = [("CellID", "int"), ("ISI", "float")]
self.plotter = ISIHeatmap(electrode_n=electrode_x)
# data should be provided in format of peaks
data = self.signal.data[_i_data]
self.dataname = self.signal.names[_i_data]
if not ("Active" in data.dtype.names):
return
ROIs = np.unique(data[:]["CellID"])
# Create the output matrix
self.output = np.zeros(shape=(len(ROIs), 1), dtype=output_type)
# Save Cell IDs in the output matrix
self.output[:]["CellID"] = ROIs.reshape(-1, 1)
# Calculate a dictionary of the input, faster computation
IDs_all = data[:]["CellID"]
dict_events = defaultdict(list)
# This explores all events
if type(IDs_all[0]) == np.ndarray:
for i in range(len(IDs_all)):
dict_events[IDs_all[i][0]] += [data[i]["Active"][0]]
self.intReady.emit(i * 100 / len(IDs_all))
else:
for i in range(len(IDs_all)):
dict_events[IDs_all[i]] += [data[i]["Active"]]
self.intReady.emit(i * 100 / len(IDs_all))
ISI = np.zeros(len(ROIs))
for i, ROI in enumerate(ROIs):
ISI[i] = np.average(np.diff(dict_events[ROI]))
self.output[:]["ISI"] = ISI.reshape(-1, 1)
|
[STATEMENT]
lemma erfc_real_less_cancel [simp]: "(erfc (a :: real) < erfc b) \<longleftrightarrow> a > b"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (erfc a < erfc b) = (b < a)
[PROOF STEP]
by (simp add: erfc_def) |
Bitcoin is a currency, used to exchange goods and services. However, a difference of other currencies, Bitcoin is an electronic currency that presents new features and stands out for its efficiency, security and ease of exchange.
- ✓The buyer must provide: logo and address of his web or slogan or words that he wants to put under the logo. |
subroutine r1(x, y, n, f1)
integer n
real*8 x(n), y(n)
external f1
call f1(x, y, n)
return
end
subroutine r2(x, y, n, f2)
integer n
real*8 x(n), y(n)
external f2
call r1(x, y, n, f2)
return
end
|
%!TEX TS-program = lualatex
%!TEX encoding = UTF-8 Unicode
\documentclass[12pt]{exam}
\usepackage{graphicx}
\graphicspath{{/Users/goby/Pictures/teach/163/lab/}
{img/}} % set of paths to search for images
\usepackage{geometry}
\geometry{letterpaper, left=1.5in, bottom=1in}
%\geometry{landscape} % Activate for for rotated page geometry
%\usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent
\usepackage{amssymb, amsmath}
%\usepackage{mathtools}
% \everymath{\displaystyle}
\usepackage{fontspec}
\setmainfont[Ligatures={TeX}, BoldFont={* Bold}, ItalicFont={* Italic}, BoldItalicFont={* BoldItalic}, Numbers={OldStyle}]{Linux Libertine O}
\setsansfont[Scale=MatchLowercase,Ligatures=TeX, Numbers={OldStyle}]{Linux Biolinum O}
\usepackage{microtype}
%\usepackage{unicode-math}
%\setmathfont[Scale=MatchLowercase]{Asana Math}
%\setmathfont[Scale=MatchLowercase]{XITS Math}
% To define fonts for particular uses within a document. For example,
% This sets the Libertine font to use tabular number format for tables.
%\newfontfamily{\tablenumbers}[Numbers={Monospaced}]{Linux Libertine O}
%\newfontfamily{\libertinedisplay}{Linux Libertine Display O}
\usepackage{booktabs}
\usepackage{multicol}
\usepackage[normalem]{ulem}
\usepackage{longtable}
%\usepackage{siunitx}
\usepackage{array}
\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}p{#1}}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}p{#1}}
\usepackage{enumitem}
\setlist[enumerate]{font=\normalfont\scshape}
\setlist[enumerate,1]{leftmargin=*}
\usepackage{stmaryrd}
\usepackage{hyperref}
%\usepackage{placeins} %PRovides \FloatBarrier to flush all floats before a certain point.
\usepackage{hanging}
\usepackage[sc]{titlesec}
\makeatletter
\def\SetTotalwidth{\advance\linewidth by \@totalleftmargin
\@totalleftmargin=0pt}
\makeatother
\pagestyle{headandfoot}
\firstpageheader{BI 063: Evolution and Ecology}{}{\ifprintanswers\textbf{KEY}\else Name: \enspace \makebox[2.5in]{\hrulefill}\fi}
\runningheader{}{}{\footnotesize{pg. \thepage}}
\footer{}{}{}
\runningheadrule
\begin{document}
\subsection*{Depicting your hypothesis as a phylogenetic tree}
Below is a table of 21 organisms. If you do not know what some of the
organisms are, try looking them up in a dictionary, your text, or on the
internet (Google, as usual, is a good place to start). You will use this
list to to make a hypothesis that shows how these organisms are or
are not related to each other. Your hypothesis must take the form of
a phylogenetic tree or trees. Your hypothesis should reflect \textit{your}
ideas about whether the organisms are related in any way to each other.
You cannot make an incorrect hypothesis, as long as you follow the simple rules
outlined below. Do not copy a tree from the internet or
from a friend. You can make as many or as few trees as
needed to convey your idea. Below, I give you few tips to help
you make a good hypothesis with correctly drawn trees.
\begin{longtable}[c]{@{}L{1in}L{0.6in}|L{1in}L{0.6in}|L{1in}L{0.6in}@{}}
\toprule
\multicolumn{2}{c|}{Organism} &
\multicolumn{2}{c|}{Organism} &
\multicolumn{2}{c}{Organism}\tabularnewline
%
alligator & \includegraphics[width=0.5in]{alligator_small} &
\emph{E. coli} & \includegraphics[width=0.5in]{ecoli_small} &
marine worm & \includegraphics[width=0.5in]{marine_worm}\tabularnewline
%
bass & \includegraphics[width=0.5in]{bass} &
frog & \includegraphics[width=0.5in]{frog} &
\emph{Paramecium} & \includegraphics[width=0.5in]{paramecium}\tabularnewline
%
bat & \includegraphics[width=0.5in]{bat} &
fungus & \includegraphics[width=0.4in]{fungus} &
pigeon & \includegraphics[width=0.5in]{pigeon}\tabularnewline
%
bison & \includegraphics[width=0.5in]{bison} &
\emph{Homo sapiens} & \includegraphics[width=0.5in]{human} &
praying mantis & \includegraphics[width=0.4in]{praying_mantis}\tabularnewline
%
cactus & \includegraphics[width=0.35in]{cactus} &
land snail & \includegraphics[width=0.5in]{land_snail} &
snake & \includegraphics[width=0.4in]{snake}\tabularnewline
%
cat & \includegraphics[width=0.4in]{cat} &
macaque & \includegraphics[width=0.5in]{macaque} &
wasp & \includegraphics[width=0.5in]{wasp}\tabularnewline
%
chimpanzee & \includegraphics[width=0.5in]{chimpanzee} &
maple tree & \includegraphics[width=0.4in]{maple_tree} &
whale & \includegraphics[width=0.6in]{whale}\tabularnewline
%
\bottomrule
\end{longtable}
\vspace*{\baselineskip}
\noindent\textsc{General tips}
\begin{enumerate}
\item
Your hypothesis needs to account for all 21
organisms listed above. This means that you \emph{must} include
all 21 on your tree.
\item
An easy way to start is put all the organisms across the top, grouping
them by any relationships you will be drawing. All 21 of those are
alive today, so all 21 had better be at the top of the tree, because
that is the present time.
%\end{enumerate}
\begin{longtable}[c]{@{}ll@{}}
First draw them: & Then draw the lines:\tabularnewline
%
\includegraphics[width=0.33\textwidth]{draw_step1} &
\includegraphics[width=0.33\textwidth]{draw_step2} \tabularnewline
%
\end{longtable}
%\begin{enumerate}
\item
The vertical (Y) axis represents time. Present time is at the top. Farther
down the tree or page represents farther back in time. The oldest
organism is thus the farthest back, or at the bottom of your tree. If
the first organism or organisms are among the 21 listed above,
you can put their names at the bottom too, but you do not have to. In
fact, I recommend that you do not. Just starting a line is okay, as
shown in earlier exercises. Obviously, if your first organisms are
not among the 21, you will just have to start with lines at the bottom.
\item The horizontal (X) axis does not represent anything in most phylogenetic trees.
\item
A line (branch) indicates an ancestor to descendant relationship, where
successive generations would be the (invisible) points that make up
the line leading from the start of life at the bottom to the present
day at the top. Of course, if you want an organism to start sometime
later, just do not start its line all the way down at the bottom. A
fork in the line indicates a lineage splitting, as you saw in the
Phylogenetic Forest exercise.
\item
You \emph{must} include a time scale labeled along the Y-axis. Do
not simply write Present and Past. You must have a specific time
scale, but the actual units (e.g, thousands of years, millions of
years) is part of your hypothesis.
\item
Only two organisms can branch from one point. That is, you should get
a split like a “goal post” (preferred) or {\Large$\Ydown$} with one kind of
organism on one branch, a
different organism on the other. This means that two groups of individuals
from the same species got separated and one of the groups changed
enough that they are no longer the same species. It would not happen
that three groups would all do this at precisely the same moment.
Hence,
\newpage
\begin{longtable}[c]{@{}lL{0.2in}lL{0.2in}l@{}}
this is possible, & &
this is \emph{not}, & &
but this is!\tabularnewline
%
\includegraphics[height=2in]{03d_possible1} & &
\includegraphics[height=2in]{03d_possible_not} & &
\includegraphics[height=2in]{03d_possible2}\tabularnewline
%
\end{longtable}
\item
The image below shows nine examples of tree drawing, with explanations of each tree. Some trees show common mistakes made when drawing the trees (\textsc{b}--\textsc{e}).
The other trees show a few things that are okay (\textsc{a, f--i}).\\[1\baselineskip] \textit{Do not do \textsc{b, c, d,} or \textsc{e}!}
\end{enumerate}
\noindent\includegraphics[width=\textwidth]{03d_example_do_dont}
\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\item
This shows a \emph{Paramecium} giving rise first to \emph{E. coli} and
then to \emph{Amoeba}. All three are alive today—they are
\emph{extant}. This is okay, and a testable
hypothesis.
\item
This shows a \emph{Paramecium} giving rise first to \emph{E. coli} and
\emph{Amoeba}. The \emph{Paramecium} is not alive today, though,
according to this hypothesis. It is extinct. How do I know? It
is not represented as a branch leading to the top of the tree. What
this says is that it evolved into something else, but no
\emph{Paramecium} line lasted to the present. You would not want to do
this because \emph{Paramecium} is a living organism
today.
\item
This shows \emph{Paramecium} giving rise first to \emph{E. coli} and
then \emph{Amoeba}. The \emph{E. coli} went extinct a little less
than 2 million years ago (\textsc{mya}), the other two are extant. How do I
know this? The \emph{E. coli} line branches off about 3 \textsc{mya} but
stops less than 2 \textsc{mya}; this is when it became extinct.
Again, \emph{E. coli} is a modern organism, so you cannot do
this.
\item
This is probably impossible. It shows \emph{Amoeba} and \textit{Paramecium}
merging to become one organism. Other than a few rare cases with
plants, this just does not happen. \emph{E. coli} is shown joining
them later. Again, this is highly unlikely.
Now, you may be thinking that some organisms are formed by having two different
species mate to produce a new species. In fact, one definition of a
species in biology is a group of organisms that can mate with each
other and produce fertile offspring, but \emph{cannot} mate with
members of another species to produce fertile offspring.
Horses and donkeys are two species; they
can mate, but the offspring are mules and are sterile. This method
of producing new species just does not work, except in a few instances
involving \emph{very} closely related animals, or slightly less closely
related plants. Usually, with animals, such matings only work with closely
related species within the same genus, and not always then.
On the other hand, members of a species \emph{can} become so different
from the rest of the species that they can no longer mate with the
others and produce fertile offspring. We then say that they constitute
a new species. So, diagrams like \textsc{a}, \textsc{b}, and \textsc{c} can happen—we have
actually observed the process of new species forming in the laboratory.
But the process shown in \textsc{d} has only been observed in a few cases with
closely related organisms.
\item
This is a common mistake when drawing a tree. What this shows is that
\emph{Paramecium} evolved into \emph{Amoeba} which evolved into
\emph{E. coli}. This says that only \emph{E. coli} is alive today,
the other two organisms are extinct, and of course, they actually
are not.
\item
This says that \emph{Paramecium} is now as it always has been and that
it did not evolve into anything or evolve from anything. This is a
plausible, testable hypothesis.
\item
This shows the same thing as \textsc{f}. You do not need to put the name at the
bottom. This is okay.
\item
This shows that \emph{Paramecium} just appeared on Earth very
recently. This is also okay.
\item
This shows that \emph{Paramecium} appeared on Earth a little more than
2 \textsc{mya}. Again, this is okay.
\end{enumerate}
\noindent\textbf{N\textsc{ote}: Use \emph{only} the 21 organisms listed on the first page
of this assignment. Do not include the other organisms, such as
\emph{Amoeba}, dog or gorilla, used in the examples above, or extinct organisms like dinosaurs.}
\end{document} |
Formal statement is: lemma Re_divide_Reals [simp]: "r \<in> \<real> \<Longrightarrow> Re (z / r) = Re z / Re r" Informal statement is: If $r$ is a real number, then $\frac{\text{Re}(z)}{\text{Re}(r)} = \text{Re}(\frac{z}{r})$. |
Hurrah! A cooperative worldwide effort to rescue Thailand children trapped in a flooded cave rescued them all in less than 3 weeks from the time they entered the cave to the time of their rescue.
It should be much easier, shouldn’t even take a heroic effort, to rescue children trapped in separation from their families at the Mexican border. These things are possible, but this week, the administration did not even meet the first deadline to get all the children below 5 years old reunited with their families.
It should even be logistically possible with a cooperative world wide effort to develop economic systems that could rescue all the hungry children everywhere living in poverty.
In the U.S. alone, 1 in 5 children live in poverty, according to a recently released United Nations report.
Such inequality and poverty is a direct result of economic policies that are chosen by elected leaders. The solution is to elect different leaders than the ones in power now. Please consider carefully when you vote this November. |
function fields = TmodelFields()
% Returns the field names of the `Tmodel` structure. This is
% to help alleviate control between different scripts.
% Called by `cleanTmodel`, `readCbTmodel`, `verifyModel`, `organizeModelCool`, `TmodelStats`, `orderModelFieldsBorg`.
%
% USAGE:
%
% fields = TmodelFields()
%
% OUTPUTS:
% Fields: A column cell array that contains the following in order:
%
% * rxnFields
% * rNumField
% * metFields
% * mNumFields
% * allFields
%
% Please cite:
% `Sauls, J. T., & Buescher, J. M. (2014). Assimilating genome-scale
% metabolic reconstructions with modelBorgifier. Bioinformatics
% (Oxford, England), 30(7), 1036?8`. http://doi.org/10.1093/bioinformatics/btt747
%
% ..
% Edit the above text to modify the response to help addMetInfo
% Last Modified by GUIDE v2.5 06-Dec-2013 14:19:28
% This file is published under Creative Commons BY-NC-SA.
%
% Correspondance:
% [email protected]
%
% Developed at:
% BRAIN Aktiengesellschaft
% Microbial Production Technologies Unit
% Quantitative Biology and Sequencing Platform
% Darmstaeter Str. 34-36
% 64673 Zwingenberg, Germany
% www.brain-biotech.de
fields = cell(4,1) ; % Declare fields
% Reaction related fields that are cell arrays.
rxnFields = {'rxns' 'rxnID' 'rxnNames' 'subSystems' 'rxnECNumbers' ...
'rxnKEGGID' 'rxnSEEDID' 'rxnEquations' ...
'rxnReferences' 'rxnNotes' 'grRules'}' ;
fields{1,1} = rxnFields ;
% Reaction related fields that are numeric arrays.
rNumFields = {'lb' 'ub' 'c'}' ;
fields{2,1} = rNumFields ;
% Metabolite related fields that are cell arrays
metFields = {'mets' 'metID' 'metNames' 'metFormulas' ...
'metKEGGID' 'metSEEDID' ...
'metChEBIID' 'metPubChemID' 'metInChIString'}' ;
fields{3,1} = metFields ;
% Metabolite related fields that are numeric arrays.
mNumFields = {'metCharge'} ;
fields{4,1} = mNumFields ;
% All field names in correct order (27 fields).
allFields = {'rxns' 'mets' 'S' 'lb' 'ub' 'c' ...
'rxnID' 'rxnNames' 'subSystems' 'rxnEquations' ...
'rxnECNumbers' 'rxnKEGGID' 'rxnSEEDID' ...
'rxnReferences' 'rxnNotes' 'grRules' ...
'metID' 'metNames' 'metFormulas' 'metCharge' ...
'metKEGGID' 'metSEEDID' 'metChEBIID' 'metPubChemID' ...
'metInChIString' ...
'genes' 'description'}' ;
fields{5,1} = allFields ;
|
Require Import Coq.Program.Basics.
Require Import Coq.Logic.FunctionalExtensionality.
Require Import Coq.Program.Combinators.
Require Import Setoid.
Require Import ZArith.
Require Import Psatz.
Require Import FinProof.Common.
Require Import FinProof.CommonInstances.
Require Import FinProof.StateMonad2.
Require Import FinProof.StateMonadInstances.
Require Import FinProof.ProgrammingWith.
Local Open Scope struct_scope.
Require Import FinProof.CommonProofs.
Require Import depoolContract.ProofEnvironment.
Require Import depoolContract.DePoolClass.
Require Import depoolContract.SolidityNotations.
Require Import depoolContract.NewProofs.ProofHelpers.
Require Import depoolContract.DePoolFunc.
(* Set Typeclasses Iterative Deepening.
Set Typeclasses Depth 100. *)
Require Import depoolContract.Lib.CommonModelProofs.
Module CommonModelProofs := CommonModelProofs StateMonadSig.
Import CommonModelProofs.
Require Import depoolContract.Lib.Tactics.
Require Import depoolContract.Lib.ErrorValueProofs.
Require Import depoolContract.Lib.CommonCommon.
(* Require Import MultiSigWallet.Proofs.tvmFunctionsProofs. *)
Import DePoolSpec.LedgerClass.SolidityNotations.
Local Open Scope struct_scope.
Local Open Scope Z_scope.
Local Open Scope solidity_scope.
Require Import Lists.List.
Import ListNotations.
Local Open Scope list_scope.
Require Import depoolContract.DePoolConsts.
Module DePoolContract_Ф_updateRound2 (dc : DePoolConstsTypesSig XTypesSig StateMonadSig).
Module DePoolFuncs := DePoolFuncs XTypesSig StateMonadSig dc.
Module ProofHelpers := ProofHelpers dc.
Import dc.
Import ProofHelpers.
Import DePoolFuncs.
Import DePoolSpec.
Import LedgerClass.
Opaque Z.eqb Z.add Z.sub Z.div Z.mul hmapLookup hmapInsert Z.ltb Z.geb Z.leb Z.gtb Z.modulo.
Opaque DePoolContract_Ф_startRoundCompleting ProxyBase_Ф__recoverStake.
Lemma DePoolContract_Ф_updateRound2_exec : forall ( Л_round2 : RoundsBase_ι_Round )
( Л_prevValidatorHash : XInteger256 )
( Л_curValidatorHash : XInteger256 )
( Л_validationStart : XInteger32 )
(l: Ledger) ,
let round2 := Л_round2 in
let if1 : bool := eqb ( round2 ->> RoundsBase_ι_Round_ι_step ) RoundsBase_ι_RoundStepP_ι_WaitingValidatorRequest in
let if2 : bool := eqb ( round2 ->> RoundsBase_ι_Round_ι_completionReason ) RoundsBase_ι_CompletionReasonP_ι_Undefined in
let if3 : bool := eqb (round2 ->> RoundsBase_ι_Round_ι_step ) RoundsBase_ι_RoundStepP_ι_Completing in
let round2 := if if1 then
if if2 then {$ round2 with (RoundsBase_ι_Round_ι_step, RoundsBase_ι_RoundStepP_ι_WaitingUnfreeze);
(RoundsBase_ι_Round_ι_completionReason, RoundsBase_ι_CompletionReasonP_ι_NoValidatorRequest);
(RoundsBase_ι_Round_ι_unfreeze, 0) $}
else {$ round2 with (RoundsBase_ι_Round_ι_step, RoundsBase_ι_RoundStepP_ι_WaitingUnfreeze);
(RoundsBase_ι_Round_ι_unfreeze, 0) $}
else round2 in
let oldMessages := VMState_ι_messages ( Ledger_ι_VMState l ) in
let oldEvents := VMState_ι_events ( Ledger_ι_VMState l ) in
let newMessage := {| contractAddress := 0 ;
contractFunction := DePoolContract_Ф_completeRoundWithChunkF round2->>RoundsBase_ι_Round_ι_id 1 ;
contractMessage := {| messageValue := 0 ;
messageFlag := 0 ;
messageBounce := false
|} |} in
let l' := if if1 then l
else if if3 then {$ l With (VMState_ι_messages, newMessage :: oldMessages ) $}
else l
in
let if4 : bool := ( ( negb ( eqb ( round2 ->> RoundsBase_ι_Round_ι_vsetHashInElectionPhase ) Л_curValidatorHash ) ) &&
( negb ( eqb ( round2 ->> RoundsBase_ι_Round_ι_vsetHashInElectionPhase ) Л_prevValidatorHash ) ) &&
( eqb (round2 ->> RoundsBase_ι_Round_ι_unfreeze) DePoolLib_ι_MAX_TIME ) )%bool in
let round2 := if if4 then {$ round2 with (RoundsBase_ι_Round_ι_unfreeze, Л_validationStart + round2->>RoundsBase_ι_Round_ι_stakeHeldFor) $}
else round2 in
let if5 : bool := ( eval_state tvm_now l ) >=? ( (round2 ->> RoundsBase_ι_Round_ι_unfreeze) +
DePoolLib_ι_ELECTOR_UNFREEZE_LAG ) in
let if6 : bool := (( eqb (round2 ->> RoundsBase_ι_Round_ι_step) RoundsBase_ι_RoundStepP_ι_WaitingUnfreeze ) &&
negb ( eqb (round2 ->> RoundsBase_ι_Round_ι_completionReason) RoundsBase_ι_CompletionReasonP_ι_Undefined ))%bool in
(* let if7 : bool := ( round2 ->> RoundsBase_ι_Round_ι_participantQty ) =? 0 in *)
let if8 : bool := ( ( eqb (round2 ->> RoundsBase_ι_Round_ι_step) RoundsBase_ι_RoundStepP_ι_WaitingValidationStart ) ||
( eqb (round2 ->> RoundsBase_ι_Round_ι_step) RoundsBase_ι_RoundStepP_ι_WaitingUnfreeze ))%bool in
(* let round2' := if if5 then
if if6 then
eval_state ( ↓ DePoolContract_Ф_startRoundCompleting round2 round2 ->> RoundsBase_ι_Round_ι_completionReason) l'
else if if8 then {$ round2 with (RoundsBase_ι_Round_ι_step, RoundsBase_ι_RoundStepP_ι_WaitingReward) $}
else round2
else round2 in *)
let l'' := if if5 then if if6 then exec_state ( ↓ DePoolContract_Ф_startRoundCompleting round2 round2 ->> RoundsBase_ι_Round_ι_completionReason) l'
else if if8 then exec_state ( ↓ ProxyBase_Ф__recoverStake round2 ->> RoundsBase_ι_Round_ι_proxy
round2 ->> RoundsBase_ι_Round_ι_id
round2 ->> RoundsBase_ι_Round_ι_elector ) l'
else l'
else l' in
exec_state ( ↓ DePoolContract_Ф_updateRound2 Л_round2 Л_prevValidatorHash Л_curValidatorHash Л_validationStart ) l = l''.
Proof.
intros.
destructLedger l.
destruct Л_round2.
compute. idtac.
Time do 3 destructIf_solve. idtac.
-
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (0 =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
time repeat destructIf_solve. idtac.
destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (0 =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (0 =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (0 =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (RoundsBase_ι_Round_ι_unfreeze =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (RoundsBase_ι_Round_ι_unfreeze =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (RoundsBase_ι_Round_ι_unfreeze =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (RoundsBase_ι_Round_ι_unfreeze =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
Qed.
Lemma DePoolContract_Ф_updateRound2_eval : forall ( Л_round2 : RoundsBase_ι_Round )
( Л_prevValidatorHash : XInteger256 )
( Л_curValidatorHash : XInteger256 )
( Л_validationStart : XInteger32 )
(l: Ledger) ,
let round2 := Л_round2 in
let if1 : bool := eqb ( round2 ->> RoundsBase_ι_Round_ι_step ) RoundsBase_ι_RoundStepP_ι_WaitingValidatorRequest in
let if2 : bool := eqb ( round2 ->> RoundsBase_ι_Round_ι_completionReason ) RoundsBase_ι_CompletionReasonP_ι_Undefined in
let if3 : bool := eqb (round2 ->> RoundsBase_ι_Round_ι_step ) RoundsBase_ι_RoundStepP_ι_Completing in
let round2 := if if1 then
if if2 then {$ round2 with (RoundsBase_ι_Round_ι_step, RoundsBase_ι_RoundStepP_ι_WaitingUnfreeze);
(RoundsBase_ι_Round_ι_completionReason, RoundsBase_ι_CompletionReasonP_ι_NoValidatorRequest);
(RoundsBase_ι_Round_ι_unfreeze, 0) $}
else {$ round2 with (RoundsBase_ι_Round_ι_step, RoundsBase_ι_RoundStepP_ι_WaitingUnfreeze);
(RoundsBase_ι_Round_ι_unfreeze, 0) $}
else round2 in
let oldMessages := VMState_ι_messages ( Ledger_ι_VMState l ) in
let newMessage := {| contractAddress := 0 ;
contractFunction := DePoolContract_Ф_completeRoundWithChunkF round2->>RoundsBase_ι_Round_ι_id 1 ;
contractMessage := {| messageValue := 0 ;
messageFlag := 0 ;
messageBounce := false
|} |} in
let l' := if if1 then l
else if if3 then {$ l With (VMState_ι_messages, newMessage :: oldMessages ) $}
else l
in
let if4 : bool := (( negb ( eqb ( round2 ->> RoundsBase_ι_Round_ι_vsetHashInElectionPhase ) Л_curValidatorHash ) ) &&
( negb ( eqb ( round2 ->> RoundsBase_ι_Round_ι_vsetHashInElectionPhase ) Л_prevValidatorHash ) ) &&
( eqb (round2 ->> RoundsBase_ι_Round_ι_unfreeze) DePoolLib_ι_MAX_TIME ) )%bool in
let round2 := if if4 then {$ round2 with (RoundsBase_ι_Round_ι_unfreeze, Л_validationStart + round2->>RoundsBase_ι_Round_ι_stakeHeldFor) $}
else round2 in
let if5 : bool := ( eval_state tvm_now l ) >=? ( (round2 ->> RoundsBase_ι_Round_ι_unfreeze) +
DePoolLib_ι_ELECTOR_UNFREEZE_LAG ) in
let if6 : bool := (( eqb (round2 ->> RoundsBase_ι_Round_ι_step) RoundsBase_ι_RoundStepP_ι_WaitingUnfreeze ) &&
negb ( eqb (round2 ->> RoundsBase_ι_Round_ι_completionReason) RoundsBase_ι_CompletionReasonP_ι_Undefined ))%bool in
let if8 : bool := ( ( eqb (round2 ->> RoundsBase_ι_Round_ι_step) RoundsBase_ι_RoundStepP_ι_WaitingValidationStart ) ||
( eqb (round2 ->> RoundsBase_ι_Round_ι_step) RoundsBase_ι_RoundStepP_ι_WaitingUnfreeze ))%bool in
let round2 := if if5 then
if if6 then
eval_state ( ↓ DePoolContract_Ф_startRoundCompleting round2 round2 ->> RoundsBase_ι_Round_ι_completionReason) l'
else if if8 then {$ round2 with (RoundsBase_ι_Round_ι_step, RoundsBase_ι_RoundStepP_ι_WaitingReward) $}
else round2
else round2 in
eval_state ( ↓ DePoolContract_Ф_updateRound2 Л_round2 Л_prevValidatorHash Л_curValidatorHash Л_validationStart ) l = round2.
Proof.
intros.
destructLedger l.
destruct Л_round2.
compute. idtac.
Time do 3 destructIf_solve. idtac.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (0 =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
time repeat destructIf_solve. idtac.
destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (0 =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (0 =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (0 =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (RoundsBase_ι_Round_ι_unfreeze =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (RoundsBase_ι_Round_ι_unfreeze =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (RoundsBase_ι_Round_ι_unfreeze =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
- idtac.
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_curValidatorHash);
destruct (RoundsBase_ι_Round_ι_vsetHashInElectionPhase =? Л_prevValidatorHash);
destruct (RoundsBase_ι_Round_ι_unfreeze =? DePoolLib_ι_MAX_TIME);
try discriminate. idtac.
all: time repeat destructIf_solve. idtac.
all: destructFunction2 DePoolContract_Ф_startRoundCompleting; auto.
Qed.
End DePoolContract_Ф_updateRound2. |
[GOAL]
α : Type u_1
F : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup F
f : α → ℝ
h : Memℒp f 2
⊢ Integrable fun x => f x ^ 2
[PROOFSTEP]
simpa [← memℒp_one_iff_integrable] using h.norm_rpow two_ne_zero ENNReal.two_ne_top
[GOAL]
α : Type u_1
F : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup F
f : α → F
hf : AEStronglyMeasurable f μ
⊢ Memℒp f 2 ↔ Integrable fun x => ‖f x‖ ^ 2
[PROOFSTEP]
rw [← memℒp_one_iff_integrable]
[GOAL]
α : Type u_1
F : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup F
f : α → F
hf : AEStronglyMeasurable f μ
⊢ Memℒp f 2 ↔ Memℒp (fun x => ‖f x‖ ^ 2) 1
[PROOFSTEP]
convert (memℒp_norm_rpow_iff hf two_ne_zero ENNReal.two_ne_top).symm
[GOAL]
case h.e'_2.h.e'_5.h
α : Type u_1
F : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup F
f : α → F
hf : AEStronglyMeasurable f μ
x✝ : α
⊢ ‖f x✝‖ ^ 2 = ‖f x✝‖ ^ ENNReal.toReal 2
[PROOFSTEP]
simp
[GOAL]
case h.e'_2.h.e'_6
α : Type u_1
F : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup F
f : α → F
hf : AEStronglyMeasurable f μ
⊢ 1 = 2 / 2
[PROOFSTEP]
rw [div_eq_mul_inv, ENNReal.mul_inv_cancel two_ne_zero ENNReal.two_ne_top]
[GOAL]
α : Type u_1
F : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup F
f : α → ℝ
hf : AEStronglyMeasurable f μ
⊢ Memℒp f 2 ↔ Integrable fun x => f x ^ 2
[PROOFSTEP]
convert memℒp_two_iff_integrable_sq_norm hf using 3
[GOAL]
case h.e'_2.h.e'_5.h
α : Type u_1
F : Type u_2
m : MeasurableSpace α
μ : Measure α
inst✝ : NormedAddCommGroup F
f : α → ℝ
hf : AEStronglyMeasurable f μ
x✝ : α
⊢ f x✝ ^ 2 = ‖f x✝‖ ^ 2
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
m : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
E : Type u_2
𝕜 : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace 𝕜 E
f : α → E
hf : Memℒp f p
c : E
x : α
⊢ ‖inner (f x) c‖ ≤ ?m.29677 hf c * ‖f x‖
[PROOFSTEP]
rw [mul_comm]
[GOAL]
α : Type u_1
m : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
E : Type u_2
𝕜 : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace 𝕜 E
f : α → E
hf : Memℒp f p
c : E
x : α
⊢ ‖inner (f x) c‖ ≤ ‖f x‖ * ?m.29677 hf c
α : Type u_1
m : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
E : Type u_2
𝕜 : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace 𝕜 E
⊢ {f : α → E} → Memℒp f p → E → ℝ
[PROOFSTEP]
exact norm_inner_le_norm _ _
[GOAL]
α : Type u_1
m : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
E : Type u_2
𝕜 : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace 𝕜 E
f : α → E
c : E
hf : Integrable f
⊢ Integrable fun x => inner c (f x)
[PROOFSTEP]
rw [← memℒp_one_iff_integrable] at hf ⊢
[GOAL]
α : Type u_1
m : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
E : Type u_2
𝕜 : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace 𝕜 E
f : α → E
c : E
hf : Memℒp f 1
⊢ Memℒp (fun x => inner c (f x)) 1
[PROOFSTEP]
exact hf.const_inner c
[GOAL]
α : Type u_1
m : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
E : Type u_2
𝕜 : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace 𝕜 E
f : α → E
hf : Integrable f
c : E
⊢ Integrable fun x => inner (f x) c
[PROOFSTEP]
rw [← memℒp_one_iff_integrable] at hf ⊢
[GOAL]
α : Type u_1
m : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
E : Type u_2
𝕜 : Type u_3
inst✝² : IsROrC 𝕜
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace 𝕜 E
f : α → E
hf : Memℒp f 1
c : E
⊢ Memℒp (fun x => inner (f x) c) 1
[PROOFSTEP]
exact hf.inner_const c
[GOAL]
α : Type u_1
m : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
E : Type u_2
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
f✝ : α → E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℝ E
f : α → E
hf : Integrable f
hf_int : ∀ (c : E), ∫ (x : α), inner c (f x) ∂μ = 0
⊢ ∫ (x : α), f x ∂μ = 0
[PROOFSTEP]
specialize hf_int (∫ x, f x ∂μ)
[GOAL]
α : Type u_1
m : MeasurableSpace α
p : ℝ≥0∞
μ : Measure α
E : Type u_2
𝕜 : Type u_3
inst✝⁴ : IsROrC 𝕜
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
f✝ : α → E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℝ E
f : α → E
hf : Integrable f
hf_int : ∫ (x : α), inner (∫ (x : α), f x ∂μ) (f x) ∂μ = 0
⊢ ∫ (x : α), f x ∂μ = 0
[PROOFSTEP]
rwa [integral_inner hf, inner_self_eq_zero] at hf_int
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp F 2 }
⊢ snorm (fun x => ‖↑↑f x‖ ^ 2) 1 μ < ⊤
[PROOFSTEP]
have h_two : ENNReal.ofReal (2 : ℝ) = 2 := by simp [zero_le_one]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp F 2 }
⊢ ENNReal.ofReal 2 = 2
[PROOFSTEP]
simp [zero_le_one]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp F 2 }
h_two : ENNReal.ofReal 2 = 2
⊢ snorm (fun x => ‖↑↑f x‖ ^ 2) 1 μ < ⊤
[PROOFSTEP]
rw [snorm_norm_rpow f zero_lt_two, one_mul, h_two]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp F 2 }
h_two : ENNReal.ofReal 2 = 2
⊢ snorm (↑↑f) 2 μ ^ 2 < ⊤
[PROOFSTEP]
exact ENNReal.rpow_lt_top_of_nonneg zero_le_two (Lp.snorm_ne_top f)
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
⊢ snorm (fun x => inner (↑↑f x) (↑↑g x)) 1 μ < ⊤
[PROOFSTEP]
have h : ∀ x, ‖⟪f x, g x⟫‖ ≤ ‖‖f x‖ ^ (2 : ℝ) + ‖g x‖ ^ (2 : ℝ)‖ :=
by
intro x
rw [← @Nat.cast_two ℝ, Real.rpow_nat_cast, Real.rpow_nat_cast]
calc
‖⟪f x, g x⟫‖ ≤ ‖f x‖ * ‖g x‖ := norm_inner_le_norm _ _
_ ≤ 2 * ‖f x‖ * ‖g x‖ :=
(mul_le_mul_of_nonneg_right (le_mul_of_one_le_left (norm_nonneg _) one_le_two) (norm_nonneg _))
_ ≤ ‖‖f x‖ ^ 2 + ‖g x‖ ^ 2‖ := (two_mul_le_add_sq _ _).trans (le_abs_self _)
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
⊢ ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
x : α
⊢ ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖
[PROOFSTEP]
rw [← @Nat.cast_two ℝ, Real.rpow_nat_cast, Real.rpow_nat_cast]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
x : α
⊢ ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖
[PROOFSTEP]
calc
‖⟪f x, g x⟫‖ ≤ ‖f x‖ * ‖g x‖ := norm_inner_le_norm _ _
_ ≤ 2 * ‖f x‖ * ‖g x‖ :=
(mul_le_mul_of_nonneg_right (le_mul_of_one_le_left (norm_nonneg _) one_le_two) (norm_nonneg _))
_ ≤ ‖‖f x‖ ^ 2 + ‖g x‖ ^ 2‖ := (two_mul_le_add_sq _ _).trans (le_abs_self _)
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
h : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖
⊢ snorm (fun x => inner (↑↑f x) (↑↑g x)) 1 μ < ⊤
[PROOFSTEP]
refine' (snorm_mono_ae (ae_of_all _ h)).trans_lt ((snorm_add_le _ _ le_rfl).trans_lt _)
[GOAL]
case refine'_1
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
h : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖
⊢ AEStronglyMeasurable (fun a => ‖↑↑f a‖ ^ 2) μ
[PROOFSTEP]
exact ((Lp.aestronglyMeasurable f).norm.aemeasurable.pow_const _).aestronglyMeasurable
[GOAL]
case refine'_2
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
h : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖
⊢ AEStronglyMeasurable (fun a => ‖↑↑g a‖ ^ 2) μ
[PROOFSTEP]
exact ((Lp.aestronglyMeasurable g).norm.aemeasurable.pow_const _).aestronglyMeasurable
[GOAL]
case refine'_3
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
h : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖
⊢ snorm (fun a => ‖↑↑f a‖ ^ 2) 1 μ + snorm (fun a => ‖↑↑g a‖ ^ 2) 1 μ < ⊤
[PROOFSTEP]
rw [ENNReal.add_lt_top]
[GOAL]
case refine'_3
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
h : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖
⊢ snorm (fun a => ‖↑↑f a‖ ^ 2) 1 μ < ⊤ ∧ snorm (fun a => ‖↑↑g a‖ ^ 2) 1 μ < ⊤
[PROOFSTEP]
exact ⟨snorm_rpow_two_norm_lt_top f, snorm_rpow_two_norm_lt_top g⟩
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ ∫ (a : α), inner (↑↑f a) (↑↑f a) ∂μ = ↑(ENNReal.toReal (∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ))
[PROOFSTEP]
simp_rw [inner_self_eq_norm_sq_to_K]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ ∫ (a : α), ↑‖↑↑f a‖ ^ 2 ∂μ = ↑(ENNReal.toReal (∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ))
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ ∫ (a : α), ‖↑↑f a‖ ^ 2 ∂μ = ENNReal.toReal (∫⁻ (a : α), ↑(‖↑↑f a‖₊ ^ 2) ∂μ)
[PROOFSTEP]
rw [integral_eq_lintegral_of_nonneg_ae]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ ENNReal.toReal (∫⁻ (a : α), ENNReal.ofReal (‖↑↑f a‖ ^ 2) ∂μ) = ENNReal.toReal (∫⁻ (a : α), ↑(‖↑↑f a‖₊ ^ 2) ∂μ)
case hf
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ 0 ≤ᵐ[μ] fun a => ‖↑↑f a‖ ^ 2
case hfm
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ AEStronglyMeasurable (fun a => ‖↑↑f a‖ ^ 2) μ
[PROOFSTEP]
rotate_left
[GOAL]
case hf
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ 0 ≤ᵐ[μ] fun a => ‖↑↑f a‖ ^ 2
[PROOFSTEP]
exact Filter.eventually_of_forall fun x => sq_nonneg _
[GOAL]
case hfm
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ AEStronglyMeasurable (fun a => ‖↑↑f a‖ ^ 2) μ
[PROOFSTEP]
exact ((Lp.aestronglyMeasurable f).norm.aemeasurable.pow_const _).aestronglyMeasurable
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ ENNReal.toReal (∫⁻ (a : α), ENNReal.ofReal (‖↑↑f a‖ ^ 2) ∂μ) = ENNReal.toReal (∫⁻ (a : α), ↑(‖↑↑f a‖₊ ^ 2) ∂μ)
[PROOFSTEP]
congr
[GOAL]
case e_a.e_f
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ (fun a => ENNReal.ofReal (‖↑↑f a‖ ^ 2)) = fun a => ↑(‖↑↑f a‖₊ ^ 2)
[PROOFSTEP]
ext1 x
[GOAL]
case e_a.e_f.h
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
x : α
⊢ ENNReal.ofReal (‖↑↑f x‖ ^ 2) = ↑(‖↑↑f x‖₊ ^ 2)
[PROOFSTEP]
have h_two : (2 : ℝ) = ((2 : ℕ) : ℝ) := by simp
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
x : α
⊢ 2 = ↑2
[PROOFSTEP]
simp
[GOAL]
case e_a.e_f.h
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
x : α
h_two : 2 = ↑2
⊢ ENNReal.ofReal (‖↑↑f x‖ ^ 2) = ↑(‖↑↑f x‖₊ ^ 2)
[PROOFSTEP]
rw [← Real.rpow_nat_cast _ 2, ← h_two, ← ENNReal.ofReal_rpow_of_nonneg (norm_nonneg _) zero_le_two,
ofReal_norm_eq_coe_nnnorm]
[GOAL]
case e_a.e_f.h
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
x : α
h_two : 2 = ↑2
⊢ ↑‖↑↑f x‖₊ ^ 2 = ↑(‖↑↑f x‖₊ ^ 2)
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ ‖f‖ ^ 2 = ↑IsROrC.re (inner f f)
[PROOFSTEP]
have h_two : (2 : ℝ≥0∞).toReal = 2 := by simp
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
⊢ ENNReal.toReal 2 = 2
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
h_two : ENNReal.toReal 2 = 2
⊢ ‖f‖ ^ 2 = ↑IsROrC.re (inner f f)
[PROOFSTEP]
rw [inner_def, integral_inner_eq_sq_snorm, norm_def, ← ENNReal.toReal_pow, IsROrC.ofReal_re,
ENNReal.toReal_eq_toReal (ENNReal.pow_ne_top (Lp.snorm_ne_top f)) _]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
h_two : ENNReal.toReal 2 = 2
⊢ snorm (↑↑f) 2 μ ^ 2 = ∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ
[PROOFSTEP]
rw [← ENNReal.rpow_nat_cast, snorm_eq_snorm' two_ne_zero ENNReal.two_ne_top, snorm', ← ENNReal.rpow_mul, one_div, h_two]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
h_two : ENNReal.toReal 2 = 2
⊢ (∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ) ^ (2⁻¹ * ↑2) = ∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
h_two : ENNReal.toReal 2 = 2
⊢ ∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ ≠ ⊤
[PROOFSTEP]
refine' (lintegral_rpow_nnnorm_lt_top_of_snorm'_lt_top zero_lt_two _).ne
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
h_two : ENNReal.toReal 2 = 2
⊢ snorm' (fun a => ↑↑f a) 2 μ < ⊤
[PROOFSTEP]
rw [← h_two, ← snorm_eq_snorm' two_ne_zero ENNReal.two_ne_top]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f : { x // x ∈ Lp E 2 }
h_two : ENNReal.toReal 2 = 2
⊢ snorm (fun a => ↑↑f a) 2 μ < ⊤
[PROOFSTEP]
exact Lp.snorm_lt_top f
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
⊢ AEEqFun.mk (fun x => inner (↑↑f x) (↑↑g x)) (_ : AEStronglyMeasurable (fun x => inner (↑↑f x) (↑↑g x)) μ) ∈ Lp 𝕜 1
[PROOFSTEP]
simp_rw [mem_Lp_iff_snorm_lt_top, snorm_aeeqFun]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
⊢ snorm (fun x => inner (↑↑f x) (↑↑g x)) 1 μ < ⊤
[PROOFSTEP]
exact snorm_inner_lt_top f g
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f f' g : { x // x ∈ Lp E 2 }
⊢ inner (f + f') g = inner f g + inner f' g
[PROOFSTEP]
simp_rw [inner_def, ← integral_add (integrable_inner f g) (integrable_inner f' g), ← inner_add_left]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f f' g : { x // x ∈ Lp E 2 }
⊢ ∫ (a : α), inner (↑↑(f + f') a) (↑↑g a) ∂μ = ∫ (a : α), inner (↑↑f a + ↑↑f' a) (↑↑g a) ∂μ
[PROOFSTEP]
refine'
integral_congr_ae
((coeFn_add f f').mono fun x hx => _)
-- Porting note: was
-- congr
-- rwa [Pi.add_apply] at hx
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f f' g : { x // x ∈ Lp E 2 }
x : α
hx : ↑↑(f + f') x = (↑↑f + ↑↑f') x
⊢ (fun a => inner (↑↑(f + f') a) (↑↑g a)) x = (fun a => inner (↑↑f a + ↑↑f' a) (↑↑g a)) x
[PROOFSTEP]
simp only
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f f' g : { x // x ∈ Lp E 2 }
x : α
hx : ↑↑(f + f') x = (↑↑f + ↑↑f') x
⊢ inner (↑↑(f + f') x) (↑↑g x) = inner (↑↑f x + ↑↑f' x) (↑↑g x)
[PROOFSTEP]
rw [hx, Pi.add_apply]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
r : 𝕜
⊢ inner (r • f) g = ↑(starRingEnd 𝕜) r * inner f g
[PROOFSTEP]
rw [inner_def, inner_def, ← smul_eq_mul, ← integral_smul]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
r : 𝕜
⊢ ∫ (a : α), inner (↑↑(r • f) a) (↑↑g a) ∂μ = ∫ (a : α), ↑(starRingEnd 𝕜) r • inner (↑↑f a) (↑↑g a) ∂μ
[PROOFSTEP]
refine' integral_congr_ae ((coeFn_smul r f).mono fun x hx => _)
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
r : 𝕜
x : α
hx : ↑↑(r • f) x = (r • ↑↑f) x
⊢ (fun a => inner (↑↑(r • f) a) (↑↑g a)) x = (fun a => ↑(starRingEnd 𝕜) r • inner (↑↑f a) (↑↑g a)) x
[PROOFSTEP]
simp only
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
f g : { x // x ∈ Lp E 2 }
r : 𝕜
x : α
hx : ↑↑(r • f) x = (r • ↑↑f) x
⊢ inner (↑↑(r • f) x) (↑↑g x) = ↑(starRingEnd 𝕜) r • inner (↑↑f x) (↑↑g x)
[PROOFSTEP]
rw [smul_eq_mul, ← inner_smul_left, hx, Pi.smul_apply]
-- Porting note: was
-- rw [smul_eq_mul, ← inner_smul_left]
-- congr
-- rwa [Pi.smul_apply] at hx
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
x✝¹ x✝ : { x // x ∈ Lp E 2 }
⊢ ↑(starRingEnd 𝕜) (inner x✝ x✝¹) = inner x✝¹ x✝
[PROOFSTEP]
simp_rw [inner_def, ← integral_conj, inner_conj_symm]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
⊢ inner (indicatorConstLp 2 hs hμs c) f = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
[PROOFSTEP]
rw [inner_def, ← integral_add_compl hs (L2.integrable_inner _ f)]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
⊢ ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ +
∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ =
∫ (x : α) in s, inner c (↑↑f x) ∂μ
[PROOFSTEP]
have h_left : (∫ x in s, ⟪(indicatorConstLp 2 hs hμs c) x, f x⟫ ∂μ) = ∫ x in s, ⟪c, f x⟫ ∂μ :=
by
suffices h_ae_eq : ∀ᵐ x ∂μ, x ∈ s → ⟪indicatorConstLp 2 hs hμs c x, f x⟫ = ⟪c, f x⟫
exact set_integral_congr_ae hs h_ae_eq
have h_indicator : ∀ᵐ x : α ∂μ, x ∈ s → indicatorConstLp 2 hs hμs c x = c := indicatorConstLp_coeFn_mem
refine' h_indicator.mono fun x hx hxs => _
congr
exact hx hxs
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
⊢ ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
[PROOFSTEP]
suffices h_ae_eq : ∀ᵐ x ∂μ, x ∈ s → ⟪indicatorConstLp 2 hs hμs c x, f x⟫ = ⟪c, f x⟫
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_ae_eq : ∀ᵐ (x : α) ∂μ, x ∈ s → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = inner c (↑↑f x)
⊢ ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
case h_ae_eq
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
⊢ ∀ᵐ (x : α) ∂μ, x ∈ s → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = inner c (↑↑f x)
[PROOFSTEP]
exact set_integral_congr_ae hs h_ae_eq
[GOAL]
case h_ae_eq
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
⊢ ∀ᵐ (x : α) ∂μ, x ∈ s → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = inner c (↑↑f x)
[PROOFSTEP]
have h_indicator : ∀ᵐ x : α ∂μ, x ∈ s → indicatorConstLp 2 hs hμs c x = c := indicatorConstLp_coeFn_mem
[GOAL]
case h_ae_eq
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_indicator : ∀ᵐ (x : α) ∂μ, x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = c
⊢ ∀ᵐ (x : α) ∂μ, x ∈ s → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = inner c (↑↑f x)
[PROOFSTEP]
refine' h_indicator.mono fun x hx hxs => _
[GOAL]
case h_ae_eq
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_indicator : ∀ᵐ (x : α) ∂μ, x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = c
x : α
hx : x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = c
hxs : x ∈ s
⊢ inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = inner c (↑↑f x)
[PROOFSTEP]
congr
[GOAL]
case h_ae_eq.e_a
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_indicator : ∀ᵐ (x : α) ∂μ, x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = c
x : α
hx : x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = c
hxs : x ∈ s
⊢ ↑↑(indicatorConstLp 2 hs hμs c) x = c
[PROOFSTEP]
exact hx hxs
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
⊢ ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ +
∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ =
∫ (x : α) in s, inner c (↑↑f x) ∂μ
[PROOFSTEP]
have h_right : (∫ x in sᶜ, ⟪(indicatorConstLp 2 hs hμs c) x, f x⟫ ∂μ) = 0 :=
by
suffices h_ae_eq : ∀ᵐ x ∂μ, x ∉ s → ⟪indicatorConstLp 2 hs hμs c x, f x⟫ = 0
· simp_rw [← Set.mem_compl_iff] at h_ae_eq
suffices h_int_zero : (∫ x in sᶜ, inner (indicatorConstLp 2 hs hμs c x) (f x) ∂μ) = ∫ _ in sᶜ, (0 : 𝕜) ∂μ
· rw [h_int_zero]
simp
exact set_integral_congr_ae hs.compl h_ae_eq
have h_indicator : ∀ᵐ x : α ∂μ, x ∉ s → indicatorConstLp 2 hs hμs c x = 0 := indicatorConstLp_coeFn_nmem
refine' h_indicator.mono fun x hx hxs => _
rw [hx hxs]
exact inner_zero_left _
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
⊢ ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = 0
[PROOFSTEP]
suffices h_ae_eq : ∀ᵐ x ∂μ, x ∉ s → ⟪indicatorConstLp 2 hs hμs c x, f x⟫ = 0
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
h_ae_eq : ∀ᵐ (x : α) ∂μ, ¬x ∈ s → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = 0
⊢ ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = 0
[PROOFSTEP]
simp_rw [← Set.mem_compl_iff] at h_ae_eq
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
h_ae_eq : ∀ᵐ (x : α) ∂μ, x ∈ sᶜ → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = 0
⊢ ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = 0
[PROOFSTEP]
suffices h_int_zero : (∫ x in sᶜ, inner (indicatorConstLp 2 hs hμs c x) (f x) ∂μ) = ∫ _ in sᶜ, (0 : 𝕜) ∂μ
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
h_ae_eq : ∀ᵐ (x : α) ∂μ, x ∈ sᶜ → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = 0
h_int_zero : ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in sᶜ, 0 ∂μ
⊢ ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = 0
[PROOFSTEP]
rw [h_int_zero]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
h_ae_eq : ∀ᵐ (x : α) ∂μ, x ∈ sᶜ → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = 0
h_int_zero : ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in sᶜ, 0 ∂μ
⊢ ∫ (x : α) in sᶜ, 0 ∂μ = 0
[PROOFSTEP]
simp
[GOAL]
case h_int_zero
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
h_ae_eq : ∀ᵐ (x : α) ∂μ, x ∈ sᶜ → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = 0
⊢ ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in sᶜ, 0 ∂μ
[PROOFSTEP]
exact set_integral_congr_ae hs.compl h_ae_eq
[GOAL]
case h_ae_eq
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
⊢ ∀ᵐ (x : α) ∂μ, ¬x ∈ s → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = 0
[PROOFSTEP]
have h_indicator : ∀ᵐ x : α ∂μ, x ∉ s → indicatorConstLp 2 hs hμs c x = 0 := indicatorConstLp_coeFn_nmem
[GOAL]
case h_ae_eq
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
h_indicator : ∀ᵐ (x : α) ∂μ, ¬x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = 0
⊢ ∀ᵐ (x : α) ∂μ, ¬x ∈ s → inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = 0
[PROOFSTEP]
refine' h_indicator.mono fun x hx hxs => _
[GOAL]
case h_ae_eq
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
h_indicator : ∀ᵐ (x : α) ∂μ, ¬x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = 0
x : α
hx : ¬x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = 0
hxs : ¬x ∈ s
⊢ inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) = 0
[PROOFSTEP]
rw [hx hxs]
[GOAL]
case h_ae_eq
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
h_indicator : ∀ᵐ (x : α) ∂μ, ¬x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = 0
x : α
hx : ¬x ∈ s → ↑↑(indicatorConstLp 2 hs hμs c) x = 0
hxs : ¬x ∈ s
⊢ inner 0 (↑↑f x) = 0
[PROOFSTEP]
exact inner_zero_left _
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
f : { x // x ∈ Lp E 2 }
hs : MeasurableSet s
c : E
hμs : ↑↑μ s ≠ ⊤
h_left : ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = ∫ (x : α) in s, inner c (↑↑f x) ∂μ
h_right : ∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ = 0
⊢ ∫ (x : α) in s, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ +
∫ (x : α) in sᶜ, inner (↑↑(indicatorConstLp 2 hs hμs c) x) (↑↑f x) ∂μ =
∫ (x : α) in s, inner c (↑↑f x) ∂μ
[PROOFSTEP]
rw [h_left, h_right, add_zero]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁶ : IsROrC 𝕜
inst✝⁵ : MeasurableSpace α
μ : Measure α
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
inst✝² : NormedAddCommGroup F
s : Set α
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℝ E
hs : MeasurableSet s
hμs : ↑↑μ s ≠ ⊤
c : E
f : { x // x ∈ Lp E 2 }
⊢ inner (indicatorConstLp 2 hs hμs c) f = inner c (∫ (x : α) in s, ↑↑f x ∂μ)
[PROOFSTEP]
rw [← integral_inner (integrableOn_Lp_of_measure_ne_top f fact_one_le_two_ennreal.elim hμs),
L2.inner_indicatorConstLp_eq_set_integral_inner]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
hs : MeasurableSet s
hμs : ↑↑μ s ≠ ⊤
f : { x // x ∈ Lp 𝕜 2 }
⊢ inner (indicatorConstLp 2 hs hμs 1) f = ∫ (x : α) in s, ↑↑f x ∂μ
[PROOFSTEP]
rw [L2.inner_indicatorConstLp_eq_inner_set_integral 𝕜 hs hμs (1 : 𝕜) f]
[GOAL]
α : Type u_1
E : Type u_2
F : Type u_3
𝕜 : Type u_4
inst✝⁴ : IsROrC 𝕜
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace 𝕜 E
inst✝ : NormedAddCommGroup F
s : Set α
hs : MeasurableSet s
hμs : ↑↑μ s ≠ ⊤
f : { x // x ∈ Lp 𝕜 2 }
⊢ inner 1 (∫ (x : α) in s, ↑↑f x ∂μ) = ∫ (x : α) in s, ↑↑f x ∂μ
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝⁴ : TopologicalSpace α
inst✝³ : MeasureSpace α
inst✝² : BorelSpace α
𝕜 : Type u_2
inst✝¹ : IsROrC 𝕜
μ : Measure α
inst✝ : IsFiniteMeasure μ
f g : α →ᵇ 𝕜
⊢ inner (↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) (↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) =
∫ (x : α), ↑(starRingEnd ((fun a => 𝕜) x)) (↑f x) * ↑g x ∂μ
[PROOFSTEP]
apply integral_congr_ae
[GOAL]
case h
α : Type u_1
inst✝⁴ : TopologicalSpace α
inst✝³ : MeasureSpace α
inst✝² : BorelSpace α
𝕜 : Type u_2
inst✝¹ : IsROrC 𝕜
μ : Measure α
inst✝ : IsFiniteMeasure μ
f g : α →ᵇ 𝕜
⊢ (fun a =>
inner (↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) a) (↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) a)) =ᵐ[μ]
fun a => ↑(starRingEnd ((fun a => 𝕜) a)) (↑f a) * ↑g a
[PROOFSTEP]
have hf_ae := f.coeFn_toLp 2 μ 𝕜
[GOAL]
case h
α : Type u_1
inst✝⁴ : TopologicalSpace α
inst✝³ : MeasureSpace α
inst✝² : BorelSpace α
𝕜 : Type u_2
inst✝¹ : IsROrC 𝕜
μ : Measure α
inst✝ : IsFiniteMeasure μ
f g : α →ᵇ 𝕜
hf_ae : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) =ᵐ[μ] ↑f
⊢ (fun a =>
inner (↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) a) (↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) a)) =ᵐ[μ]
fun a => ↑(starRingEnd ((fun a => 𝕜) a)) (↑f a) * ↑g a
[PROOFSTEP]
have hg_ae := g.coeFn_toLp 2 μ 𝕜
[GOAL]
case h
α : Type u_1
inst✝⁴ : TopologicalSpace α
inst✝³ : MeasureSpace α
inst✝² : BorelSpace α
𝕜 : Type u_2
inst✝¹ : IsROrC 𝕜
μ : Measure α
inst✝ : IsFiniteMeasure μ
f g : α →ᵇ 𝕜
hf_ae : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) =ᵐ[μ] ↑f
hg_ae : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) =ᵐ[μ] ↑g
⊢ (fun a =>
inner (↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) a) (↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) a)) =ᵐ[μ]
fun a => ↑(starRingEnd ((fun a => 𝕜) a)) (↑f a) * ↑g a
[PROOFSTEP]
filter_upwards [hf_ae, hg_ae] with _ hf hg
[GOAL]
case h
α : Type u_1
inst✝⁴ : TopologicalSpace α
inst✝³ : MeasureSpace α
inst✝² : BorelSpace α
𝕜 : Type u_2
inst✝¹ : IsROrC 𝕜
μ : Measure α
inst✝ : IsFiniteMeasure μ
f g : α →ᵇ 𝕜
hf_ae : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) =ᵐ[μ] ↑f
hg_ae : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) =ᵐ[μ] ↑g
a✝ : α
hf : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) a✝ = ↑f a✝
hg : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) a✝ = ↑g a✝
⊢ inner (↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) a✝) (↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) a✝) =
↑(starRingEnd 𝕜) (↑f a✝) * ↑g a✝
[PROOFSTEP]
rw [hf, hg]
[GOAL]
case h
α : Type u_1
inst✝⁴ : TopologicalSpace α
inst✝³ : MeasureSpace α
inst✝² : BorelSpace α
𝕜 : Type u_2
inst✝¹ : IsROrC 𝕜
μ : Measure α
inst✝ : IsFiniteMeasure μ
f g : α →ᵇ 𝕜
hf_ae : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) =ᵐ[μ] ↑f
hg_ae : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) =ᵐ[μ] ↑g
a✝ : α
hf : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) f) a✝ = ↑f a✝
hg : ↑↑(↑(BoundedContinuousFunction.toLp 2 μ 𝕜) g) a✝ = ↑g a✝
⊢ inner (↑f a✝) (↑g a✝) = ↑(starRingEnd 𝕜) (↑f a✝) * ↑g a✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝⁵ : TopologicalSpace α
inst✝⁴ : MeasureSpace α
inst✝³ : BorelSpace α
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : CompactSpace α
f g : C(α, 𝕜)
⊢ inner (↑(ContinuousMap.toLp 2 μ 𝕜) f) (↑(ContinuousMap.toLp 2 μ 𝕜) g) =
∫ (x : α), ↑(starRingEnd ((fun x => 𝕜) x)) (↑f x) * ↑g x ∂μ
[PROOFSTEP]
apply integral_congr_ae
[GOAL]
case h
α : Type u_1
inst✝⁵ : TopologicalSpace α
inst✝⁴ : MeasureSpace α
inst✝³ : BorelSpace α
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : CompactSpace α
f g : C(α, 𝕜)
⊢ (fun a => inner (↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) a) (↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) g) a)) =ᵐ[μ] fun a =>
↑(starRingEnd ((fun x => 𝕜) a)) (↑f a) * ↑g a
[PROOFSTEP]
have hf_ae := f.coeFn_toLp (p := 2) (𝕜 := 𝕜) μ
[GOAL]
case h
α : Type u_1
inst✝⁵ : TopologicalSpace α
inst✝⁴ : MeasureSpace α
inst✝³ : BorelSpace α
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : CompactSpace α
f g : C(α, 𝕜)
hf_ae : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) =ᵐ[μ] ↑f
⊢ (fun a => inner (↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) a) (↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) g) a)) =ᵐ[μ] fun a =>
↑(starRingEnd ((fun x => 𝕜) a)) (↑f a) * ↑g a
[PROOFSTEP]
have hg_ae := g.coeFn_toLp (p := 2) (𝕜 := 𝕜) μ
[GOAL]
case h
α : Type u_1
inst✝⁵ : TopologicalSpace α
inst✝⁴ : MeasureSpace α
inst✝³ : BorelSpace α
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : CompactSpace α
f g : C(α, 𝕜)
hf_ae : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) =ᵐ[μ] ↑f
hg_ae : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) g) =ᵐ[μ] ↑g
⊢ (fun a => inner (↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) a) (↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) g) a)) =ᵐ[μ] fun a =>
↑(starRingEnd ((fun x => 𝕜) a)) (↑f a) * ↑g a
[PROOFSTEP]
filter_upwards [hf_ae, hg_ae] with _ hf hg
[GOAL]
case h
α : Type u_1
inst✝⁵ : TopologicalSpace α
inst✝⁴ : MeasureSpace α
inst✝³ : BorelSpace α
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : CompactSpace α
f g : C(α, 𝕜)
hf_ae : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) =ᵐ[μ] ↑f
hg_ae : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) g) =ᵐ[μ] ↑g
a✝ : α
hf : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) a✝ = ↑f a✝
hg : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) g) a✝ = ↑g a✝
⊢ inner (↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) a✝) (↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) g) a✝) = ↑(starRingEnd 𝕜) (↑f a✝) * ↑g a✝
[PROOFSTEP]
rw [hf, hg]
[GOAL]
case h
α : Type u_1
inst✝⁵ : TopologicalSpace α
inst✝⁴ : MeasureSpace α
inst✝³ : BorelSpace α
𝕜 : Type u_2
inst✝² : IsROrC 𝕜
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
inst✝ : CompactSpace α
f g : C(α, 𝕜)
hf_ae : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) =ᵐ[μ] ↑f
hg_ae : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) g) =ᵐ[μ] ↑g
a✝ : α
hf : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) f) a✝ = ↑f a✝
hg : ↑↑(↑(ContinuousMap.toLp 2 μ 𝕜) g) a✝ = ↑g a✝
⊢ inner (↑f a✝) (↑g a✝) = ↑(starRingEnd 𝕜) (↑f a✝) * ↑g a✝
[PROOFSTEP]
simp
|
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
⊢ Inhabited (ColimitType F)
[PROOFSTEP]
dsimp [ColimitType]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
⊢ Inhabited (Quotient (colimitSetoid F))
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
⊢ Monoid (ColimitType F)
[PROOFSTEP]
infer_instance
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
⊢ F.map f ≫ coconeMorphism F j' = coconeMorphism F j
[PROOFSTEP]
ext
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
x✝ : ↑(F.obj j)
⊢ ↑(F.map f ≫ coconeMorphism F j') x✝ = ↑(coconeMorphism F j) x✝
[PROOFSTEP]
apply Quot.sound
[GOAL]
case w.a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
x✝ : ↑(F.obj j)
⊢ Setoid.r (Prequotient.of j' (↑(F.map f) x✝)) (Prequotient.of j x✝)
[PROOFSTEP]
apply Relation.map
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(coconeMorphism F j) x
[PROOFSTEP]
rw [← cocone_naturality F f]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
j j' : J
f : j ⟶ j'
x : ↑(F.obj j)
⊢ ↑(coconeMorphism F j') (↑(F.map f) x) = ↑(F.map f ≫ coconeMorphism F j') x
[PROOFSTEP]
rfl
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
⊢ ColimitType F → ↑s.pt
[PROOFSTEP]
fapply Quot.lift
[GOAL]
case f
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
⊢ Prequotient F → ↑s.pt
[PROOFSTEP]
exact descFunLift F s
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
⊢ ∀ (a b : Prequotient F), Setoid.r a b → descFunLift F s a = descFunLift F s b
[PROOFSTEP]
intro x y r
[GOAL]
case a
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
r : Setoid.r x y
⊢ descFunLift F s x = descFunLift F s y
[PROOFSTEP]
induction' r with _ _ _ _ h _ _ _ _ _ h₁ h₂ _ _ f x _ _ _ _ _ _ _ _ h _ _ _ _ h
[GOAL]
case a.refl
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.refl
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s x✝ = descFunLift F s x✝
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ : Prequotient F
x✝ : Relation F x✝¹ y✝
h : descFunLift F s x✝¹ = descFunLift F s y✝
⊢ descFunLift F s y✝ = descFunLift F s x✝¹
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ : Prequotient F
x✝ : Relation F x✝¹ y✝
h : descFunLift F s x✝¹ = descFunLift F s y✝
⊢ descFunLift F s y✝ = descFunLift F s x✝¹
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝² y✝ z✝ : Prequotient F
x✝¹ : Relation F x✝² y✝
x✝ : Relation F y✝ z✝
h₁ : descFunLift F s x✝² = descFunLift F s y✝
h₂ : descFunLift F s y✝ = descFunLift F s z✝
⊢ descFunLift F s x✝² = descFunLift F s z✝
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝² y✝ z✝ : Prequotient F
x✝¹ : Relation F x✝² y✝
x✝ : Relation F y✝ z✝
h₁ : descFunLift F s x✝² = descFunLift F s y✝
h₂ : descFunLift F s y✝ = descFunLift F s z✝
⊢ descFunLift F s x✝² = descFunLift F s z✝
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x✝ y : Prequotient F
j✝ j'✝ : J
f : j✝ ⟶ j'✝
x : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j'✝ (↑(F.map f) x)) = descFunLift F s (Prequotient.of j✝ x)
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x✝ y : Prequotient F
j✝ j'✝ : J
f : j✝ ⟶ j'✝
x : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j'✝ (↑(F.map f) x)) = descFunLift F s (Prequotient.of j✝ x)
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
j✝ : J
x✝ y✝ : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j✝ (x✝ * y✝)) = descFunLift F s (mul (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝))
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
j✝ : J
x✝ y✝ : ↑(F.obj j✝)
⊢ descFunLift F s (Prequotient.of j✝ (x✝ * y✝)) = descFunLift F s (mul (Prequotient.of j✝ x✝) (Prequotient.of j✝ y✝))
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
j✝ : J
⊢ descFunLift F s (Prequotient.of j✝ 1) = descFunLift F s one
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : Prequotient F
j✝ : J
⊢ descFunLift F s (Prequotient.of j✝ 1) = descFunLift F s one
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ x'✝ y✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
h : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x'✝ y✝)
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ x'✝ y✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
h : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x'✝ y✝)
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ y'✝ : Prequotient F
x✝ : Relation F y✝ y'✝
h : descFunLift F s y✝ = descFunLift F s y'✝
⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x✝¹ y'✝)
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ y'✝ : Prequotient F
x✝ : Relation F y✝ y'✝
h : descFunLift F s y✝ = descFunLift F s y'✝
⊢ descFunLift F s (mul x✝¹ y✝) = descFunLift F s (mul x✝¹ y'✝)
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s (mul (mul x✝ y✝) z✝) = descFunLift F s (mul x✝ (mul y✝ z✝))
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s (mul (mul x✝ y✝) z✝) = descFunLift F s (mul x✝ (mul y✝ z✝))
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.one_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (mul one x✝) = descFunLift F s x✝
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.one_mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (mul one x✝) = descFunLift F s x✝
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.mul_one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (mul x✝ one) = descFunLift F s x✝
[PROOFSTEP]
try
simp
-- symm
[GOAL]
case a.mul_one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ : Prequotient F
⊢ descFunLift F s (mul x✝ one) = descFunLift F s x✝
[PROOFSTEP]
simp
-- symm
[GOAL]
case a.symm
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ : Prequotient F
x✝ : Relation F x✝¹ y✝
h : descFunLift F s x✝¹ = descFunLift F s y✝
⊢ descFunLift F s y✝ = descFunLift F s x✝¹
[PROOFSTEP]
exact h.symm
[GOAL]
case a.trans
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝² y✝ z✝ : Prequotient F
x✝¹ : Relation F x✝² y✝
x✝ : Relation F y✝ z✝
h₁ : descFunLift F s x✝² = descFunLift F s y✝
h₂ : descFunLift F s y✝ = descFunLift F s z✝
⊢ descFunLift F s x✝² = descFunLift F s z✝
[PROOFSTEP]
exact h₁.trans h₂
[GOAL]
case a.map
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x✝ y : Prequotient F
j✝ j'✝ : J
f : j✝ ⟶ j'✝
x : ↑(F.obj j✝)
⊢ ↑(NatTrans.app s.ι j'✝) (↑(F.map f) x) = ↑(NatTrans.app s.ι j✝) x
[PROOFSTEP]
exact s.w_apply f x
[GOAL]
case a.mul_1
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ x'✝ y✝ : Prequotient F
x✝ : Relation F x✝¹ x'✝
h : descFunLift F s x✝¹ = descFunLift F s x'✝
⊢ descFunLift F s x✝¹ * descFunLift F s y✝ = descFunLift F s x'✝ * descFunLift F s y✝
[PROOFSTEP]
rw [h]
-- mul_2
[GOAL]
case a.mul_2
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝¹ y✝ y'✝ : Prequotient F
x✝ : Relation F y✝ y'✝
h : descFunLift F s y✝ = descFunLift F s y'✝
⊢ descFunLift F s x✝¹ * descFunLift F s y✝ = descFunLift F s x✝¹ * descFunLift F s y'✝
[PROOFSTEP]
rw [h]
-- mul_assoc
[GOAL]
case a.mul_assoc
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y x✝ y✝ z✝ : Prequotient F
⊢ descFunLift F s x✝ * descFunLift F s y✝ * descFunLift F s z✝ =
descFunLift F s x✝ * (descFunLift F s y✝ * descFunLift F s z✝)
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
x y : ↑(colimit F)
⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (x * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } x *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y
[PROOFSTEP]
induction x using Quot.inductionOn
[GOAL]
case h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
y : ↑(colimit F)
a✝ : Prequotient F
⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝ * y) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝) *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } y
[PROOFSTEP]
induction y using Quot.inductionOn
[GOAL]
case h.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
a✝¹ a✝ : Prequotient F
⊢ OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) }
(Quot.mk Setoid.r a✝¹ * Quot.mk Setoid.r a✝) =
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝¹) *
OneHom.toFun { toFun := descFun F s, map_one' := (_ : descFun F s 1 = descFun F s 1) } (Quot.mk Setoid.r a✝)
[PROOFSTEP]
dsimp [descFun]
[GOAL]
case h.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
a✝¹ a✝ : Prequotient F
⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y)
(Quot.mk Setoid.r a✝¹ * Quot.mk Setoid.r a✝) =
descFunLift F s a✝¹ * descFunLift F s a✝
[PROOFSTEP]
rw [← quot_mul]
[GOAL]
case h.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
a✝¹ a✝ : Prequotient F
⊢ Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y)
(Quot.mk Setoid.r (mul a✝¹ a✝)) =
descFunLift F s a✝¹ * descFunLift F s a✝
[PROOFSTEP]
simp only [descFunLift]
[GOAL]
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ m = (fun s => descMorphism F s) s
[PROOFSTEP]
ext x
[GOAL]
case w
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : ↑(colimitCocone F).pt
⊢ ↑m x = ↑((fun s => descMorphism F s) s) x
[PROOFSTEP]
induction' x using Quot.inductionOn with x
[GOAL]
case w.h
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x : Prequotient F
⊢ ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
[PROOFSTEP]
induction' x with j x x y hx hy
[GOAL]
case w.h.of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (Prequotient.of j x))
[PROOFSTEP]
change _ = s.ι.app j _
[GOAL]
case w.h.of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(NatTrans.app s.ι j) x
[PROOFSTEP]
rw [← w j]
[GOAL]
case w.h.of
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
j : J
x : ↑(F.obj j)
⊢ ↑m (Quot.mk Setoid.r (Prequotient.of j x)) = ↑(NatTrans.app (colimitCocone F).ι j ≫ m) x
[PROOFSTEP]
rfl
[GOAL]
case w.h.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ ↑m (Quot.mk Setoid.r one) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r one)
[PROOFSTEP]
rw [quot_one, map_one]
[GOAL]
case w.h.one
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
⊢ 1 = ↑((fun s => descMorphism F s) s) 1
[PROOFSTEP]
rfl
[GOAL]
case w.h.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
hx : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
hy : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ ↑m (Quot.mk Setoid.r (mul x y)) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r (mul x y))
[PROOFSTEP]
rw [quot_mul, map_mul, hx, hy]
[GOAL]
case w.h.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
hx : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
hy : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x) * ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y) =
↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x * Quot.mk Setoid.r y)
[PROOFSTEP]
dsimp [descMorphism, FunLike.coe, descFun]
[GOAL]
case w.h.mul
J : Type v
inst✝ : SmallCategory J
F : J ⥤ MonCat
s : Cocone F
m : (colimitCocone F).pt ⟶ s.pt
w : ∀ (j : J), NatTrans.app (colimitCocone F).ι j ≫ m = NatTrans.app s.ι j
x y : Prequotient F
hx : ↑m (Quot.mk Setoid.r x) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r x)
hy : ↑m (Quot.mk Setoid.r y) = ↑((fun s => descMorphism F s) s) (Quot.mk Setoid.r y)
⊢ descFunLift F s x * descFunLift F s y =
Quot.lift (descFunLift F s) (_ : ∀ (x y : Prequotient F), Setoid.r x y → descFunLift F s x = descFunLift F s y)
(Quot.mk Setoid.r x * Quot.mk Setoid.r y)
[PROOFSTEP]
simp only [← quot_mul, descFunLift]
|
The basic imports and the variables we'll be using:
```python
from __future__ import division
import sympy
from sympy import *
from sympy import Rational as frac
import simpletensors
from simpletensors import Vector, TensorProduct, SymmetricTensorProduct, Tensor
init_printing()
var('vartheta, varphi')
var('nu, m, delta, c, t')
# These are related scalar functions of time
var('r, v, Omega', cls=Function)
r = r(t)
v = v(t)
Omega = Omega(t)
# These get redefined momentarily, but have to exist first
var('nHat, lambdaHat, ellHat', cls=Function)
# And now we define them as vector functions of time
nHat = Vector('nHat', r'\hat{n}', [cos(Omega*t),sin(Omega*t),0,])(t)
lambdaHat = Vector('lambdaHat', r'\hat{\lambda}', [-sin(Omega*t),cos(Omega*t),0,])(t)
ellHat = Vector('ellHat', r'\hat{\ell}', [0,0,1,])(t)
# These are the spin functions -- first, the individual components as regular sympy.Function objects; then the vectors themselves
var('S_n, S_lambda, S_ell', cls=Function)
var('Sigma_n, Sigma_lambda, Sigma_ell', cls=Function)
SigmaVec = Vector('SigmaVec', r'\vec{\Sigma}', [Sigma_n(t), Sigma_lambda(t), Sigma_ell(t)])(t)
SVec = Vector('S', r'\vec{S}', [S_n(t), S_lambda(t), S_ell(t)])(t)
```
## Examples and tests
```python
nHat
```
```python
diff(nHat, t)
```
```python
diff(lambdaHat, t)
```
```python
diff(lambdaHat, t).components
```
```python
diff(lambdaHat, t).subs(t,0).components
```
```python
diff(lambdaHat, t, 2).components
```
```python
diff(lambdaHat, t, 2).subs(t,0).components
```
```python
diff(ellHat, t)
```
```python
diff(nHat, t, 2)
```
```python
diff(nHat,t, 3)
```
```python
diff(nHat,t, 4)
```
```python
diff(SigmaVec,t, 0)
```
```python
SigmaVec.fdiff()
```
```python
diff(SigmaVec,t, 1)
```
```python
diff(SigmaVec,t, 2)
```
```python
diff(SigmaVec,t, 2) | nHat
```
```python
T1 = TensorProduct(SigmaVec, SigmaVec, ellHat, coefficient=1)
T2 = TensorProduct(SigmaVec, nHat, lambdaHat, coefficient=1)
tmp = Tensor(T1,T2)
display(T1, T2, tmp)
```
```python
diff(tmp, t, 1)
```
```python
T1+T2
```
```python
T2*ellHat
```
```python
ellHat*T2
```
```python
T1.trace(0,1)
```
```python
T2*ellHat
```
```python
for k in range(1,4):
display((T2*ellHat).trace(0,k))
```
```python
for k in range(1,4):
display((T2*ellHat).trace(0,k).subs(t,0))
```
```python
T1.trace(0,1) * T2
```
Sympy can be a little tricky because it caches things, which means that the first implementation of this code silently changed tensors in place, without meaning to. Let's just check that our variables haven't changed:
```python
display(T1, T2)
```
```python
T3 = SymmetricTensorProduct(SigmaVec, SigmaVec, ellHat, coefficient=1)
display(T3)
T3.trace(0,1)
```
```python
diff(T3, t, 1)
```
```python
T3.symmetric
```
True
```python
T3*ellHat
```
```python
ellHat*T3
```
```python
T1+T3
```
```python
T1 = SymmetricTensorProduct(SigmaVec, SigmaVec, ellHat, nHat, coefficient=1)
display(T1)
display(T1.trace())
```
```python
T1*T2
```
```python
type(_)
```
simpletensors.TensorProductFunction_73
```python
import simpletensors
isinstance(__, simpletensors.TensorProductFunction)
```
True
```python
SymmetricTensorProduct(nHat, nHat, nHat).trace()
```
```python
diff(T1.trace(), t, 1)
```
```python
diff(T1.trace(), t, 2)
```
```python
diff(T1.trace(), t, 2).subs(t,0)
```
```python
```
|
import YatimaStdLib.Algebra
import YatimaStdLib.Nat
import YatimaStdLib.Int
namespace Fin
def ofInt {n : Nat} (a : Int) : Fin n.succ :=
⟨a.modToNat n.succ, Int.modToNat_le⟩
/- This is copied from core since it is private -/
theorem mlt {b : Nat} : {a : Nat} → a < n → b % n < n
| 0 , h => Nat.mod_lt _ h
| _+1, h => Nat.mod_lt _ (Nat.lt_trans (Nat.zero_lt_succ _) h)
def inv : Fin n → Fin n
| ⟨a, h⟩ => ⟨(Int.modToNat (Nat.GCD.gcdA a n) n) % n, mlt h⟩
instance : YatimaStdLib.Inv (Fin n) where
inv a := Fin.inv a
end Fin
|
module calculates
implicit none
contains
real(kind=8) function determinant(A)
real(kind=8), dimension(3,3), intent(in) :: A
determinant = A(1,1)*(A(2,2)*A(3,3)-A(2,3)*A(3,2)) - A(1,2)*(A(2,1)*A(3,3)-A(2,3)*A(3,1))&
+ A(1,3)*(A(2,1)*A(3,2)-A(2,2)*A(3,1))
end function determinant
subroutine writes (A)
real(kind=8), dimension(3,3), intent(in) :: A
integer :: i, j
do i = 1, 3
write(*,'(20F8.3)') (A(i,j), j = 1, 3)
end do
write(*,*)
end subroutine writes
end module calculates
|
! <output_citychem_ase.for - A component of the City-scale
! Chemistry Transport Model EPISODE-CityChem>
!*****************************************************************************!
!*
!* CITY-scale CHEMistry Transport Extension
!*
!* Copyright (C) 2018 Matthias Steffen Karl
!*
!* Contact Information:
!* Institute of Coastal Research
!* Helmholtz-Zentrum Geesthacht
!* Max-Planck-Str. 1
!* 21502 Geesthacht
!* Germany
!* email: [email protected]
!*
!* EPISODE-CityChem, developed at Helmholtz-Zentrum Geesthacht (HZG) is designed
!* for treating complex atmospheric chemistry in urban areas (Karl, 2018). The model
!* is an extension of the EPISODE dispersion model to enable chemistry/transport
!* simulations of reactive pollutants on city scale. EPISODE is an Eulerian dispersion
!* model developed at the Norwegian Institute for Air Research (NILU) appropriate for
!* air quality studies at the local scale (Slørdal et al. 2003 &2008). The model is an
!* open source code subject to the Reciprocal Public License ("RPL") Version 1.5,
!* https://opensource.org/licenses/RPL-1.5.
!*
!* Reference:
!* Karl, M. (2018): Development of the city-scale chemistry transport model
!* CityChem-EPISODE and its application to the city of Hamburg,
!* Geosci. Model Dev. Discuss.,
!* https://doi.org/10.5194/gmd-2018-8, 2018.
!*
!*
!* Unless explicitly acquired and licensed from Licensor under another license,
!* the contents of this file are subject to the Reciprocal Public License ("RPL")
!* Version 1.5, https://opensource.org/licenses/RPL-1.5 or subsequent versions as
!* allowed by the RPL, and You may not copy or use this file in either source code
!* or executable form, except in compliance with the terms and conditions of the RPL.
!*
!* All software distributed under the RPL is provided strictly on an "AS IS" basis,
!* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, AND LICENSOR HEREBY
!* DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF
!* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, OR NON-INFRINGEMENT.
!* See the RPL for specific language governing rights and limitations under the RPL.
!*
!*****************************************************************************!
!
!***********************************************************************
!***
!*** UECT
!*** Urban Emission Conversion Tool
!***
!***********************************************************************
subroutine output_citychem_ase(nhours,nps,ase_snap,xi,yi, &
ase_src_param,ase_src_qemhour)
!***********************************************************************
!*** Subroutine output_citychem_ase writes output for area sources
!*** in CityChem format:
!*** one file with emission values for each compound
!*** for 3 different CityChem emission categories
!*** 1 Residential Heating (=SNAP 2 )
!*** 2 Commercial and Industrial sources (=SNAP 1,3,4,5,9)
!*** 3 Solvent Use and Traffic (=SNAP 6,7,10 )
!*** (4 Shipping is not applied in UECT)
!*** The routine will stop for area sources with a different SNAP
!*** EMEP vertical profiles:
!*** 1 0.0 0.00 0.15 0.40 0.30 0.15 0.00 ! SNAP1
!*** 2 1.0 0.00 0.00 0.00 0.00 0.00 0.0 ! SNAP2
!*** 3 0.1 0.10 0.15 0.30 0.30 0.05 0.0 ! SNAP3
!*** 4 0.9 0.10 0.00 0.00 0.00 0.00 0.0 ! SNAP4
!*** 5 0.9 0.10 0.00 0.00 0.00 0.00 0.0 ! SNAP5
!*** 6 1.0 0.00 0.00 0.00 0.00 0.00 0.0 ! SNAP6
!*** 7 1.0 0.00 0.00 0.00 0.00 0.00 0.0 ! SNAP7
!*** 8 1.0 0.00 0.00 0.00 0.00 0.00 0.0 ! SNAP8
!*** 9 0.1 0.15 0.40 0.35 0.00 0.00 0.0 ! SNAP9
!*** 10 1.0 0.00 0.00 0.00 0.00 0.00 0.0 ! SNAP10
!*** 11 1.0 0.00 0.00 0.00 0.00 0.00 0.0 ! SNAP11
!***********************************************************************
!
! Modification change log
! -----------------------
! 14.06.2018 M.Karl(HZG) new netcdf output for SNAP8 (ship emission)
!***********************************************************************
! Declarations of variables by using the MODULES feature:
use module_uect_io
use module_uect_exe
use module_uect_time
use module_writenc
implicit none
!***********************************************************************
integer, intent(in) :: nhours
integer, intent(in) :: nps
integer, dimension(nps),intent(in) :: ase_snap
real, dimension(nps,ncomp,nhours),intent(in) :: ase_src_qemhour
real, dimension(nps,n_ase_params),intent(in) :: ase_src_param
integer, dimension(nps), intent(in) :: xi
integer, dimension(nps), intent(in) :: yi
! Local declarations:
integer :: i,n,p,h
integer :: jx,jy
integer :: hourc
integer :: narea_dome
integer :: narea_solv
integer :: narea_othe
integer :: narea_ship
integer :: yy, mony
integer :: daynn, dayne
integer :: hournn
integer :: yeai
integer :: daymm
integer, dimension(12), parameter :: monlen = (/ 31, 28, 31, 30, 31, 30, &
31, 31, 30, 31, 30, 31 /)
character(len=60) :: startdate_out
character(len=60) :: enddate_out
character(len=10) :: yyout, mmout
character(len=10) :: ddout, deout
character(len=48) :: line
character(len=43) :: comm1
character (len=256) :: fname_area_loc1
character (len=256) :: fname_area_loc2
character (len=256) :: fname_area_loc3
character (len=256) :: fname_area_loc4
character(len=10) :: txt1
character(len=10) :: txt2
character (len=256) :: epsgn_u
! *** Emission: hourly compound emission amount per category, in g/s
real, dimension(:,:,:,:), allocatable :: ase_src_dome
real, dimension(:,:,:,:), allocatable :: ase_src_solv
real, dimension(:,:,:,:), allocatable :: ase_src_othe
real, dimension(:,:,:,:), allocatable :: ase_src_ship
real, allocatable :: axm_i(:,:)
real, allocatable :: axm_j(:,:)
real, allocatable :: z(:)
double precision, allocatable :: field2D_1(:,:)
double precision, allocatable :: field2D_2(:,:)
double precision, allocatable :: field2D_3(:,:)
double precision, allocatable :: field2D_4(:,:)
!***********************************************************************
! Content of subroutine:
! *** ALLOCATE
if (.not. allocated(ase_src_dome)) allocate( ase_src_dome(n_nx,n_ny,nhours,nccout) )
if (.not. allocated(ase_src_solv)) allocate( ase_src_solv(n_nx,n_ny,nhours,nccout) )
if (.not. allocated(ase_src_othe)) allocate( ase_src_othe(n_nx,n_ny,nhours,nccout) )
if (.not. allocated(ase_src_ship)) allocate( ase_src_ship(n_nx,n_ny,nhours,nccout) )
if (.not. allocated(axm_i) ) allocate( axm_i(n_nx,n_ny) )
if (.not. allocated(axm_j) ) allocate( axm_j(n_nx,n_ny) )
if (.not. allocated(z) ) allocate( z(n_nz) )
if (.not. allocated(field2D_1) ) allocate( field2D_1(n_ny,n_nx) )
if (.not. allocated(field2D_2) ) allocate( field2D_2(n_ny,n_nx) )
if (.not. allocated(field2D_3) ) allocate( field2D_3(n_ny,n_nx) )
if (.not. allocated(field2D_4) ) allocate( field2D_4(n_ny,n_nx) )
! *** CITYCHEM compound names
!nccout: all citychem output species
cpnameo( 1) = 'no '
cpnameo( 2) = 'no2 '
cpnameo( 3) = 'so2 '
cpnameo( 4) = 'co '
cpnameo( 5) = 'c2h6 '
cpnameo( 6) = 'hcho '
cpnameo( 7) = 'ch3cho '
cpnameo( 8) = 'c2h4 '
cpnameo( 9) = 'nc4h10 '
cpnameo(10) = 'ch3coc2h5 '
cpnameo(11) = 'c3h6 '
cpnameo(12) = 'oxylen '
cpnameo(13) = 'pm2.5 '
cpnameo(14) = 'pm10 '
cpnameo(15) = 'isoprene '
cpnameo(16) = 'apinene '
cpnameo(17) = 'limonene '
! *** Open the area source output emission value files:
do i=1,nccout
fname_area_loc1 = trim(fname_outpath)//'/asrc_domestic_'
fname_area_loc2 = trim(fname_outpath)//'/asrc_solvent_'
fname_area_loc3 = trim(fname_outpath)//'/asrc_other_'
fname_area_loc4 = trim(fname_outpath)//'/asrc_ships_'
fname_out_adome_emis(i) = trim(fname_area_loc1)//trim(cpnameo(i))//'_'//trim(startdate)//'_'//trim(enddate)//'.txt'
funit_out_adome_emis(i) = nextun()
open (funit_out_adome_emis(i), file = fname_out_adome_emis(i), status = 'unknown', form = 'formatted', action = 'write')
fname_out_asolv_emis(i) = trim(fname_area_loc2)//trim(cpnameo(i))//'_'//trim(startdate)//'_'//trim(enddate)//'.txt'
funit_out_asolv_emis(i) = nextun()
open (funit_out_asolv_emis(i), file = fname_out_asolv_emis(i), status = 'unknown', form = 'formatted', action = 'write')
fname_out_aothe_emis(i) = trim(fname_area_loc3)//trim(cpnameo(i))//'_'//trim(startdate)//'_'//trim(enddate)//'.txt'
funit_out_aothe_emis(i) = nextun()
open (funit_out_aothe_emis(i), file = fname_out_aothe_emis(i), status = 'unknown', form = 'formatted', action = 'write')
fname_out_aship_emis(i) = trim(fname_area_loc4)//trim(cpnameo(i))//'_'//trim(startdate)//'_'//trim(enddate)//'.txt'
funit_out_aship_emis(i) = nextun()
open (funit_out_aship_emis(i), file = fname_out_aship_emis(i), status = 'unknown', form = 'formatted', action = 'write')
enddo
! *** Write header for area source emission files
! *** Set date
yy = year
mony = mnth
daynn = daym
dayne = edat(3)
write (yyout,'(I4)') yy
write (mmout,'(I2)') mony
write (ddout,'(I2)') daynn
write (deout,'(I2)') dayne
startdate_out = trim(yyout)//' '//trim(mmout)//' '//trim(ddout)//' 0'
enddate_out = trim(yyout)//' '//trim(mmout)//' '//trim(deout)//' 23'
! *** Set comment lines
line = '* ----------------------------------------------'
comm1 = '* Hourly average gridded area emission file'
! *** Write header lines
do i=1,nccout
write (funit_out_adome_emis(i),'(A38)' ) simid
write (funit_out_asolv_emis(i),'(A38)' ) simid
write (funit_out_aothe_emis(i),'(A38)' ) simid
write (funit_out_aship_emis(i),'(A38)' ) simid
write (funit_out_adome_emis(i),'(A48)' ) line
write (funit_out_asolv_emis(i),'(A48)' ) line
write (funit_out_aothe_emis(i),'(A48)' ) line
write (funit_out_aship_emis(i),'(A48)' ) line
write (funit_out_adome_emis(i),'(A43)' ) comm1
write (funit_out_asolv_emis(i),'(A43)' ) comm1
write (funit_out_aothe_emis(i),'(A43)' ) comm1
write (funit_out_aship_emis(i),'(A43)' ) comm1
write (funit_out_adome_emis(i),'(A33)' ) '* Compound: '//trim(cpnameo(i))//' '
write (funit_out_asolv_emis(i),'(A33)' ) '* Compound: '//trim(cpnameo(i))//' '
write (funit_out_aothe_emis(i),'(A33)' ) '* Compound: '//trim(cpnameo(i))//' '
write (funit_out_aship_emis(i),'(A33)' ) '* Compound: '//trim(cpnameo(i))//' '
write (funit_out_adome_emis(i),'(A20)' ) '* Units: g/s'
write (funit_out_asolv_emis(i),'(A20)' ) '* Units: g/s'
write (funit_out_aothe_emis(i),'(A20)' ) '* Units: g/s'
write (funit_out_aship_emis(i),'(A20)' ) '* Units: g/s'
write (funit_out_adome_emis(i),'(A17,A14)') '* Starting date: ',trim(startdate_out)
write (funit_out_asolv_emis(i),'(A17,A14)') '* Starting date: ',trim(startdate_out)
write (funit_out_aothe_emis(i),'(A17,A14)') '* Starting date: ',trim(startdate_out)
write (funit_out_aship_emis(i),'(A17,A14)') '* Starting date: ',trim(startdate_out)
write (funit_out_adome_emis(i),'(A17,A14)') '* Ending date: ',trim(enddate_out)
write (funit_out_asolv_emis(i),'(A17,A14)') '* Ending date: ',trim(enddate_out)
write (funit_out_aothe_emis(i),'(A17,A14)') '* Ending date: ',trim(enddate_out)
write (funit_out_aship_emis(i),'(A17,A14)') '* Ending date: ',trim(enddate_out)
write (funit_out_adome_emis(i),'(A48)' ) line
write (funit_out_asolv_emis(i),'(A48)' ) line
write (funit_out_aothe_emis(i),'(A48)' ) line
write (funit_out_aship_emis(i),'(A48)' ) line
enddo
! *** Write hourly emission values
! hour counter
hourc = 1
! source counter
narea_dome = 0
narea_solv = 0
narea_othe = 0
narea_ship = 0
!Initialize emission output fields
ase_src_dome( :,:,:,: ) = 0.0
ase_src_solv( :,:,:,: ) = 0.0
ase_src_othe( :,:,:,: ) = 0.0
ase_src_ship( :,:,:,: ) = 0.0
do h = 1, nhours
do n = 1, nps
! print *,'out_ase snap',n,ase_snap(n),ase_src_qemhour(n, 8,h)
select case (ase_snap(n))
case(1)
! combustion for energy production
! call stopit('SNAP 1 not allowed for area sources')
! now attributed to 'other'
ase_src_othe(xi(n),yi(n),h,1 ) = ase_src_othe(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_othe(xi(n),yi(n),h,2 ) = ase_src_othe(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_othe(xi(n),yi(n),h,3 ) = ase_src_othe(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_othe(xi(n),yi(n),h,4 ) = ase_src_othe(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_othe(xi(n),yi(n),h,5 ) = ase_src_othe(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_othe(xi(n),yi(n),h,6 ) = ase_src_othe(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_othe(xi(n),yi(n),h,7 ) = ase_src_othe(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_othe(xi(n),yi(n),h,8 ) = ase_src_othe(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_othe(xi(n),yi(n),h,9 ) = ase_src_othe(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_othe(xi(n),yi(n),h,10) = ase_src_othe(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_othe(xi(n),yi(n),h,11) = ase_src_othe(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_othe(xi(n),yi(n),h,12) = ase_src_othe(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_othe(xi(n),yi(n),h,13) = ase_src_othe(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_othe(xi(n),yi(n),h,14) = ase_src_othe(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_othe = narea_othe +1
case(2)
! domestic heating
ase_src_dome(xi(n),yi(n),h,1 ) = ase_src_dome(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_dome(xi(n),yi(n),h,2 ) = ase_src_dome(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_dome(xi(n),yi(n),h,3 ) = ase_src_dome(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_dome(xi(n),yi(n),h,4 ) = ase_src_dome(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_dome(xi(n),yi(n),h,5 ) = ase_src_dome(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_dome(xi(n),yi(n),h,6 ) = ase_src_dome(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_dome(xi(n),yi(n),h,7 ) = ase_src_dome(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_dome(xi(n),yi(n),h,8 ) = ase_src_dome(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_dome(xi(n),yi(n),h,9 ) = ase_src_dome(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_dome(xi(n),yi(n),h,10) = ase_src_dome(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_dome(xi(n),yi(n),h,11) = ase_src_dome(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_dome(xi(n),yi(n),h,12) = ase_src_dome(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_dome(xi(n),yi(n),h,13) = ase_src_dome(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_dome(xi(n),yi(n),h,14) = ase_src_dome(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_dome = narea_dome +1
case(3)
! Commercial and Industrial sources
ase_src_othe(xi(n),yi(n),h,1 ) = ase_src_othe(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_othe(xi(n),yi(n),h,2 ) = ase_src_othe(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_othe(xi(n),yi(n),h,3 ) = ase_src_othe(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_othe(xi(n),yi(n),h,4 ) = ase_src_othe(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_othe(xi(n),yi(n),h,5 ) = ase_src_othe(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_othe(xi(n),yi(n),h,6 ) = ase_src_othe(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_othe(xi(n),yi(n),h,7 ) = ase_src_othe(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_othe(xi(n),yi(n),h,8 ) = ase_src_othe(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_othe(xi(n),yi(n),h,9 ) = ase_src_othe(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_othe(xi(n),yi(n),h,10) = ase_src_othe(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_othe(xi(n),yi(n),h,11) = ase_src_othe(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_othe(xi(n),yi(n),h,12) = ase_src_othe(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_othe(xi(n),yi(n),h,13) = ase_src_othe(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_othe(xi(n),yi(n),h,14) = ase_src_othe(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_othe = narea_othe +1
case(4)
! Industry production
ase_src_othe(xi(n),yi(n),h,1 ) = ase_src_othe(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_othe(xi(n),yi(n),h,2 ) = ase_src_othe(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_othe(xi(n),yi(n),h,3 ) = ase_src_othe(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_othe(xi(n),yi(n),h,4 ) = ase_src_othe(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_othe(xi(n),yi(n),h,5 ) = ase_src_othe(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_othe(xi(n),yi(n),h,6 ) = ase_src_othe(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_othe(xi(n),yi(n),h,7 ) = ase_src_othe(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_othe(xi(n),yi(n),h,8 ) = ase_src_othe(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_othe(xi(n),yi(n),h,9 ) = ase_src_othe(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_othe(xi(n),yi(n),h,10) = ase_src_othe(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_othe(xi(n),yi(n),h,11) = ase_src_othe(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_othe(xi(n),yi(n),h,12) = ase_src_othe(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_othe(xi(n),yi(n),h,13) = ase_src_othe(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_othe(xi(n),yi(n),h,14) = ase_src_othe(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_othe = narea_othe +1
!print *,'ase_othe ',h,n,ase_src_qemhour(n, 7,h),ase_src_othe(xi(n),yi(n),h,14),xi(n),yi(n)
case(5)
! Distribution of fossil fuels
ase_src_othe(xi(n),yi(n),h,1 ) = ase_src_othe(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_othe(xi(n),yi(n),h,2 ) = ase_src_othe(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_othe(xi(n),yi(n),h,3 ) = ase_src_othe(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_othe(xi(n),yi(n),h,4 ) = ase_src_othe(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_othe(xi(n),yi(n),h,5 ) = ase_src_othe(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_othe(xi(n),yi(n),h,6 ) = ase_src_othe(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_othe(xi(n),yi(n),h,7 ) = ase_src_othe(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_othe(xi(n),yi(n),h,8 ) = ase_src_othe(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_othe(xi(n),yi(n),h,9 ) = ase_src_othe(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_othe(xi(n),yi(n),h,10) = ase_src_othe(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_othe(xi(n),yi(n),h,11) = ase_src_othe(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_othe(xi(n),yi(n),h,12) = ase_src_othe(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_othe(xi(n),yi(n),h,13) = ase_src_othe(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_othe(xi(n),yi(n),h,14) = ase_src_othe(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_othe = narea_othe +1
!print *,'5', ase_src_qemhour(n,7,h),ase_src_qemhour(n,11,h),ase_src_qemhour(n,13,h),ase_src_qemhour(n,17,h)
case(6)
! Solvent Use
ase_src_solv(xi(n),yi(n),h,1 ) = ase_src_solv(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_solv(xi(n),yi(n),h,2 ) = ase_src_solv(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_solv(xi(n),yi(n),h,3 ) = ase_src_solv(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_solv(xi(n),yi(n),h,4 ) = ase_src_solv(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_solv(xi(n),yi(n),h,5 ) = ase_src_solv(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_solv(xi(n),yi(n),h,6 ) = ase_src_solv(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_solv(xi(n),yi(n),h,7 ) = ase_src_solv(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_solv(xi(n),yi(n),h,8 ) = ase_src_solv(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_solv(xi(n),yi(n),h,9 ) = ase_src_solv(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_solv(xi(n),yi(n),h,10) = ase_src_solv(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_solv(xi(n),yi(n),h,11) = ase_src_solv(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_solv(xi(n),yi(n),h,12) = ase_src_solv(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_solv(xi(n),yi(n),h,13) = ase_src_solv(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_solv(xi(n),yi(n),h,14) = ase_src_solv(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_solv = narea_solv +1
case(7)
! Traffic on small roads
!call stopit('SNAP 7 not allowed for area sources')
! now attributed to 'solvents'
ase_src_solv(xi(n),yi(n),h,1 ) = ase_src_solv(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_solv(xi(n),yi(n),h,2 ) = ase_src_solv(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_solv(xi(n),yi(n),h,3 ) = ase_src_solv(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_solv(xi(n),yi(n),h,4 ) = ase_src_solv(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_solv(xi(n),yi(n),h,5 ) = ase_src_solv(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_solv(xi(n),yi(n),h,6 ) = ase_src_solv(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_solv(xi(n),yi(n),h,7 ) = ase_src_solv(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_solv(xi(n),yi(n),h,8 ) = ase_src_solv(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_solv(xi(n),yi(n),h,9 ) = ase_src_solv(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_solv(xi(n),yi(n),h,10) = ase_src_solv(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_solv(xi(n),yi(n),h,11) = ase_src_solv(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_solv(xi(n),yi(n),h,12) = ase_src_solv(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_solv(xi(n),yi(n),h,13) = ase_src_solv(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_solv(xi(n),yi(n),h,14) = ase_src_solv(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_solv = narea_solv +1
case(8)
! Shipping traffic = ship
ase_src_ship(xi(n),yi(n),h,1 ) = ase_src_ship(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_ship(xi(n),yi(n),h,2 ) = ase_src_ship(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_ship(xi(n),yi(n),h,3 ) = ase_src_ship(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_ship(xi(n),yi(n),h,4 ) = ase_src_ship(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_ship(xi(n),yi(n),h,5 ) = ase_src_ship(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_ship(xi(n),yi(n),h,6 ) = ase_src_ship(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_ship(xi(n),yi(n),h,7 ) = ase_src_ship(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_ship(xi(n),yi(n),h,8 ) = ase_src_ship(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_ship(xi(n),yi(n),h,9 ) = ase_src_ship(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_ship(xi(n),yi(n),h,10) = ase_src_ship(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_ship(xi(n),yi(n),h,11) = ase_src_ship(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_ship(xi(n),yi(n),h,12) = ase_src_ship(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_ship(xi(n),yi(n),h,13) = ase_src_ship(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_ship(xi(n),yi(n),h,14) = ase_src_ship(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_ship = narea_ship +1
case(9)
! Waste incineration
call stopit('SNAP 9 not allowed for area sources')
ase_src_othe(xi(n),yi(n),h,1 ) = ase_src_othe(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_othe(xi(n),yi(n),h,2 ) = ase_src_othe(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_othe(xi(n),yi(n),h,3 ) = ase_src_othe(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_othe(xi(n),yi(n),h,4 ) = ase_src_othe(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_othe(xi(n),yi(n),h,5 ) = ase_src_othe(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_othe(xi(n),yi(n),h,6 ) = ase_src_othe(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_othe(xi(n),yi(n),h,7 ) = ase_src_othe(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_othe(xi(n),yi(n),h,8 ) = ase_src_othe(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_othe(xi(n),yi(n),h,9 ) = ase_src_othe(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_othe(xi(n),yi(n),h,10) = ase_src_othe(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_othe(xi(n),yi(n),h,11) = ase_src_othe(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_othe(xi(n),yi(n),h,12) = ase_src_othe(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_othe(xi(n),yi(n),h,13) = ase_src_othe(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_othe(xi(n),yi(n),h,14) = ase_src_othe(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_othe = narea_othe +1
case(10)
! Agriculture => solvent/traffic
ase_src_solv(xi(n),yi(n),h,1 ) = ase_src_solv(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_solv(xi(n),yi(n),h,2 ) = ase_src_solv(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_solv(xi(n),yi(n),h,3 ) = ase_src_solv(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_solv(xi(n),yi(n),h,4 ) = ase_src_solv(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_solv(xi(n),yi(n),h,5 ) = ase_src_solv(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_solv(xi(n),yi(n),h,6 ) = ase_src_solv(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_solv(xi(n),yi(n),h,7 ) = ase_src_solv(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_solv(xi(n),yi(n),h,8 ) = ase_src_solv(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_solv(xi(n),yi(n),h,9 ) = ase_src_solv(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_solv(xi(n),yi(n),h,10) = ase_src_solv(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_solv(xi(n),yi(n),h,11) = ase_src_solv(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_solv(xi(n),yi(n),h,12) = ase_src_solv(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_solv(xi(n),yi(n),h,13) = ase_src_solv(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_solv(xi(n),yi(n),h,14) = ase_src_solv(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
if (h==1) narea_solv = narea_solv +1
case(11)
! Natural = other
ase_src_othe(xi(n),yi(n),h,1 ) = ase_src_othe(xi(n),yi(n),h,1 ) + ase_src_qemhour(n, 8,h) ! NO
ase_src_othe(xi(n),yi(n),h,2 ) = ase_src_othe(xi(n),yi(n),h,2 ) + ase_src_qemhour(n, 9,h) ! NO2
ase_src_othe(xi(n),yi(n),h,3 ) = ase_src_othe(xi(n),yi(n),h,3 ) + ase_src_qemhour(n, 4,h) ! SO2
ase_src_othe(xi(n),yi(n),h,4 ) = ase_src_othe(xi(n),yi(n),h,4 ) + ase_src_qemhour(n, 3,h) ! CO
ase_src_othe(xi(n),yi(n),h,5 ) = ase_src_othe(xi(n),yi(n),h,5 ) + ase_src_qemhour(n,12,h) ! c2h6
ase_src_othe(xi(n),yi(n),h,6 ) = ase_src_othe(xi(n),yi(n),h,6 ) + ase_src_qemhour(n,11,h) ! hcho
ase_src_othe(xi(n),yi(n),h,7 ) = ase_src_othe(xi(n),yi(n),h,7 ) + ase_src_qemhour(n,13,h) ! ch3cho
ase_src_othe(xi(n),yi(n),h,8 ) = ase_src_othe(xi(n),yi(n),h,8 ) + ase_src_qemhour(n,15,h) ! c2h4
ase_src_othe(xi(n),yi(n),h,9 ) = ase_src_othe(xi(n),yi(n),h,9 ) + ase_src_qemhour(n,14,h) ! nc4h10
ase_src_othe(xi(n),yi(n),h,10) = ase_src_othe(xi(n),yi(n),h,10) + ase_src_qemhour(n,18,h) ! ch3coc2h5
ase_src_othe(xi(n),yi(n),h,11) = ase_src_othe(xi(n),yi(n),h,11) + ase_src_qemhour(n,16,h) ! c3h6
ase_src_othe(xi(n),yi(n),h,12) = ase_src_othe(xi(n),yi(n),h,12) + ase_src_qemhour(n,17,h) ! oxylen
ase_src_othe(xi(n),yi(n),h,13) = ase_src_othe(xi(n),yi(n),h,13) + ase_src_qemhour(n, 6,h) ! pm25
ase_src_othe(xi(n),yi(n),h,14) = ase_src_othe(xi(n),yi(n),h,14) + ase_src_qemhour(n, 7,h) ! pm10
! BVOC emission (EF*FD)
ase_src_othe(xi(n),yi(n),h,15) = ase_src_othe(xi(n),yi(n),h,15) + ase_src_qemhour(n,19,h) ! isoprene
ase_src_othe(xi(n),yi(n),h,16) = ase_src_othe(xi(n),yi(n),h,16) + ase_src_qemhour(n,20,h) ! apinene
ase_src_othe(xi(n),yi(n),h,17) = ase_src_othe(xi(n),yi(n),h,17) + ase_src_qemhour(n,21,h) ! limonene
if (h==1) narea_othe = narea_othe +1
case DEFAULT
call stopit('Area source has no valid SNAP code')
end select
enddo ! n sources
! *** Write Area Source datalines
!stop
write(txt1,'(A6,I4)') ' H:',h
write(txt2,'(A10)') ' no_index'
do i = 1, nccout
if(narea_dome>0) call write_2dfield(n_nx,n_ny,txt1,txt2,funit_out_adome_emis(i),EP_fm, ase_src_dome( :,:,h,i ))
if(narea_solv>0) call write_2dfield(n_nx,n_ny,txt1,txt2,funit_out_asolv_emis(i),EP_fm, ase_src_solv( :,:,h,i ))
if(narea_othe>0) call write_2dfield(n_nx,n_ny,txt1,txt2,funit_out_aothe_emis(i),EP_fm, ase_src_othe( :,:,h,i ))
if(narea_ship>0) call write_2dfield(n_nx,n_ny,txt1,txt2,funit_out_aship_emis(i),EP_fm, ase_src_ship( :,:,h,i ))
enddo
! *** Change date by one hour
! print *,hourc,daynn,mony
hourc = hourc + 1
if ( hourc == 24 ) then
write(6, '(A27,I4)') 'Finished writing for day: ',daynn
hourc = 0
daynn = daynn + 1
endif
if ( daynn > monlen(mony) ) then
daynn = 1
if (mony==12) then
mony=1
else
mony=mony+1
endif
endif
enddo ! h hours
! *** Write number of category sources to LOG
if (fe_log) then
write(funit_log,'(1X,A56,I7)') &
'domestic heating area sources: ', narea_dome
write(funit_log,'(1X,A56,I7)') &
'solvents area sources: ', narea_solv
write(funit_log,'(1X,A56,I7)') &
'industrial/commercial/agric. area sources: ',narea_othe
write(funit_log,'(1X,A56,I7)') &
'shipping traffic area sources: ',narea_ship
endif
! *** Optional: Create netCDF output of the 2D area emission fields for checking
! *** Set netCDF output files for area emission 2D-fields
! *** The nccout chemical species will be written to the file
if (NC_out==1) then
write(6, '(A29)') 'Write ASE to netCDF files ...'
write(6, '(A29)') 'This can take several minutes'
fname_nc_adome_emis = trim(fname_outpath)//'/asrc_domestic_'//trim(startdate)//'_'//trim(enddate)//'.nc'
fname_nc_asolv_emis = trim(fname_outpath)//'/asrc_solvent_'//trim(startdate)//'_'//trim(enddate)//'.nc'
fname_nc_aothe_emis = trim(fname_outpath)//'/asrc_other_'//trim(startdate)//'_'//trim(enddate)//'.nc'
fname_nc_aship_emis = trim(fname_outpath)//'/asrc_ships_'//trim(startdate)//'_'//trim(enddate)//'.nc'
! *** 14.06.2017 Define EPSGN code
epsgn_u = trim('326'//utmzone(1:2))
! *** Create a grid with the x- and y- coordinates of the grid centre-points
do jx = 1, n_nx
do jy = 1, n_ny
axm_i(jy,jx) = sitex0 + (jx-1)*dxout
axm_j(jy,jx) = sitey0 + (jy-1)*dxout
enddo
enddo
z(1) = 10
call CreateNCfileGrid(fname_nc_adome_emis,n_nx,n_ny,1,axm_i,axm_j,z,dxout,utmzone,epsgn_u,sitex0,sitey0)
call CreateNCfileGrid(fname_nc_asolv_emis,n_nx,n_ny,1,axm_i,axm_j,z,dxout,utmzone,epsgn_u,sitex0,sitey0)
call CreateNCfileGrid(fname_nc_aothe_emis,n_nx,n_ny,1,axm_i,axm_j,z,dxout,utmzone,epsgn_u,sitex0,sitey0)
call CreateNCfileGrid(fname_nc_aship_emis,n_nx,n_ny,1,axm_i,axm_j,z,dxout,utmzone,epsgn_u,sitex0,sitey0)
! *** Write the netCDF output file of all species,
! *** Area source emissions hourly 2D field [instantaneous, QA()]
unitname = "g/s"
validity = 'averaged'
dopacking = .false.
dofloat = .true.
domirror = .true.
! *** houd - hour of day (1-24) h=1 is first hour
! *** dayw - day of week (1-7 )
! *** mony - month of year (1-12)
! hour counter
hourc = 1
daymm = daym
mony = mnth
yeai = year
! for now: write only 3 days
do h = 1, 24*3 !nhours
! one time step
Nhh_in = 1
! current simulation date
mdate(1,Nhh_in) = yeai
mdate(2,Nhh_in) = mony
mdate(3,Nhh_in) = daymm
mdate(4,Nhh_in) = hourc
do i = 1, nccout
!07.08.2019: initialize the output fields
field2D_1(:,:) = 0.0
field2D_2(:,:) = 0.0
field2D_3(:,:) = 0.0
field2D_4(:,:) = 0.0
namefield = cpnameo(i)
if (trim(cpnameo(i)).eq."pm2.5") then
namefield = "pm25 "
endif
do jx = 1,n_nx
do jy = 1,n_ny
field2D_1(jy,jx) = dble( ase_src_dome(jx,jy,h,i) )
field2D_2(jy,jx) = dble( ase_src_solv(jx,jy,h,i) )
field2D_3(jy,jx) = dble( ase_src_othe(jx,jy,h,i) )
field2D_4(jy,jx) = dble( ase_src_ship(jx,jy,h,i) )
enddo
enddo
call writeconcfield(fname_nc_adome_emis,namefield,unitname, &
field2D_1(1:n_ny,1:n_nx), n_ny, n_nx, 1, &
Nhh_in, mdate, validity, dopacking, dofloat, domirror)
call writeconcfield(fname_nc_asolv_emis,namefield,unitname, &
field2D_2(1:n_ny,1:n_nx), n_ny, n_nx, 1, &
Nhh_in, mdate, validity, dopacking, dofloat, domirror)
call writeconcfield(fname_nc_aothe_emis,namefield,unitname, &
field2D_3(1:n_ny,1:n_nx), n_ny, n_nx, 1, &
Nhh_in, mdate, validity, dopacking, dofloat, domirror)
!07.08.2019: field2D_4 has the ship area emissions
call writeconcfield(fname_nc_aship_emis,namefield,unitname, &
field2D_4(1:n_ny,1:n_nx), n_ny, n_nx, 1, &
Nhh_in, mdate, validity, dopacking, dofloat, domirror)
enddo ! i compounds
! *** Change date by one hour
hourc = hourc + 1
if (hourc == 25 ) then
write(6, '(A36,I4)') 'Finished writing nc files for day: ',daymm
hourc = 1
daymm = daymm + 1
! *** Check if new month?
if ( daymm > NDAY(mony) ) then
daymm = 1
mony = mony + 1
endif
if (mony == 13) then
mony = 1
if (hourc==1) yeai = yeai +1
endif
endif
enddo ! h hours
endif
! *** End Writing netCDF files
! *** Close files, free memory
do i = 1, nccout
close (funit_out_adome_emis(i) )
close (funit_out_asolv_emis(i) )
close (funit_out_aothe_emis(i) )
close (funit_out_aship_emis(i) )
enddo
! Deallocate
if (allocated(axm_i)) deallocate(axm_i)
if (allocated(axm_j)) deallocate(axm_j)
if (allocated(z)) deallocate(z)
if (allocated(ase_src_dome) ) deallocate(ase_src_dome )
if (allocated(ase_src_solv) ) deallocate(ase_src_solv )
if (allocated(ase_src_othe) ) deallocate(ase_src_othe )
if (allocated(ase_src_ship) ) deallocate(ase_src_ship )
if (allocated(field2D_1) ) deallocate(field2D_1 )
if (allocated(field2D_2) ) deallocate(field2D_2 )
if (allocated(field2D_3) ) deallocate(field2D_3 )
if (allocated(field2D_4) ) deallocate(field2D_4 )
return
2000 format(I6 ,1X, 8F11.1, I6)
end subroutine output_citychem_ase
|
MODULE dist2_I
INTERFACE
!...Generated by Pacific-Sierra Research 77to90 4.4G 09:34:29 03/16/06
REAL(KIND(0.0D0)) FUNCTION dist2 (A, B)
USE vast_kind_param,ONLY: DOUBLE
REAL(DOUBLE), DIMENSION(3), INTENT(IN) :: A
REAL(DOUBLE), DIMENSION(3), INTENT(IN) :: B
END FUNCTION
END INTERFACE
END MODULE
|
Meanwhile , Angela Martin ( Angela Kinsey ) is evicted from her studio apartment after her cats were taken away by Animal Control . She considers living in a tent in the woods , prompting Oscar Martinez ( Oscar Nunez ) to offer her to stay with him until she gets back on her feet . She finally accepts with gratitude . As they set off to take Angela 's things to Oscar 's place , Oscar mentions her marriage to Robert Lipton and she breaks down into tears , saying " I love him . " However , she denies she still has feelings for Robert and claims she was talking about Dwight .
|
“Beth McCullough serves as our volunteer marketing manager for SolarTech, a Photovoltaic (PV) industry consortium focused on creating a Solar Center of Excellence in the Silicon Valley. In 2009 she helped us update the graphics on our website, and created an internal communications guide for outbound communication consistency across the consortium. This year Beth is responsible for writing content, implementing our email campaigns and distributing press announcements; these are all critical components in managing relationships and communicating with our partner companies and sponsors.
“While I was CEO of the Chase Group, I hired Beth to run the numerous day-to-day functions of event and tradeshow planning. I knew she could hit the ground running because of her industry background; I got to see her firsthand while she was a client at SEMI. Very detailed-oriented and conscientious, Beth helped eBay – one of our biggest clients – save over $100,000 on a custom tradeshow kiosk. This project required custom fabrication as well as overcoming unique shipping challenges using industry knowledge and connections.
During the pre-planning for our Power Seller Awards Dinner for eBay and Paypal, Beth used her diplomatic skills to successfully negotiate with eight of the top restaurants in San Francisco. Great at follow through, she arranged multiple menus ensuring high quality while keeping costs within budget and delivering everything on time.
“I’ve known Beth for 10 years when we did work at IDEMA and for eBay at The Chase Group. She’s amazing with details, deadlines and event management. She makes sure that nothing falls through the cracks and there are no surprises onsite.
Most recently, we managed a chapter event for the International Association of Exhibitions and Events. Taking initiative for all the social media communication for our event, Beth wrote all the messaging including invitations, curriculum, and background information to draw the 20+ attendees.
“I’ve hired Beth many times over the years at SEMI because of her skill and knowledge. Our division focuses on environmental health, safety and sustainability issues, supporting 2000 corporate clients worldwide. Responsible communicating with over 5,000 professionals in our membership, Beth also managed our contact database and event coordination for our tradeshows. She’s done everything related to logistics, ensuring we have everything needed for specific seminars or programs, to pre- and post-planning.
“I’ve known Beth for years and she helped IDEMA with the DISKCON USA Tradeshow in 2009. Her background with tradeshow and event management is impressive. Always reliable, Beth knows exactly what needs to be done. When I was unexpectedly ill the day before our event, Beth stepped in. Because she’s cool under pressure and keeps a strategic head on her shoulders, I didn’t worry about anything. I knew I could rely on her to take care of everything. |
theory week03B_demo_automation imports Main begin
definition
xor :: "bool \<Rightarrow> bool \<Rightarrow> bool" where
"xor A B \<equiv> (A \<and> \<not>B) \<or> (\<not>A \<and> B)"
thm xor_def
lemma xorI [intro!]:
"\<lbrakk> \<lbrakk>A; B\<rbrakk> \<Longrightarrow> False; \<not>B \<Longrightarrow> A \<rbrakk> \<Longrightarrow> xor A B"
apply (unfold xor_def)
apply blast
done
lemma xorE [elim!]:
"\<lbrakk> xor A B; \<lbrakk>A; \<not>B\<rbrakk> \<Longrightarrow> R; \<lbrakk>\<not>A; B\<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R"
apply (unfold xor_def)
apply blast
done
lemma "xor A A = False" by blast
(* declare xorE [elim!] *)
lemma "xor A B = xor B A" by blast
lemma "\<not>\<not>x \<longrightarrow> x"
apply (rule impI)
apply (rule ccontr)
apply (erule notE)
apply assumption
end |
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2020 Jijoong Moon <[email protected]>
*
* @file blas_interface.h
* @date 28 Aug 2020
* @see https://github.com/nnstreamer/nntrainer
* @author Jijoong Moon <[email protected]>
* @bug No known bugs except for NYI items
* @brief This is dummy header for blas support
*
*/
#ifndef __BLAS_INTERFACE_H_
#define __BLAS_INTERFACE_H_
#ifdef __cplusplus
#ifdef USE_BLAS
extern "C" {
#include <cblas.h>
}
#else
enum CBLAS_ORDER { CblasRowMajor = 101, CblasColMajor = 102 };
enum CBLAS_TRANSPOSE {
CblasNoTrans = 111,
CblasTrans = 112,
CblasConjTrans = 113
};
#endif
#ifdef USE_CUBLAS
#include <helper_cuda.h>
#include <helper_functions.h>
#endif
namespace nntrainer {
void sscal(const int N, const float alpha, float *X, const int incX);
float snrm2(const int N, const float *X, const int incX);
void scopy(const unsigned int N, const float *X, const int incX, float *Y,
const int intY);
float sdot(const unsigned int N, const float *X, const unsigned int incX,
const float *Y, const unsigned int incY);
void saxpy(const unsigned int N, const float alpha, const float *X,
const int incX, float *Y, const int incY);
void sgemm(CBLAS_ORDER order, CBLAS_TRANSPOSE TransA, CBLAS_TRANSPOSE TransB,
const unsigned int M, const unsigned int N, const unsigned int K,
const float alpha, const float *A, const unsigned int lda,
const float *B, const unsigned int ldb, const float beta, float *C,
const unsigned int ldc);
void sgemv(CBLAS_ORDER order, CBLAS_TRANSPOSE TransA, const unsigned int M,
const unsigned int N, const float alpha, const float *A,
const unsigned int lda, const float *X, const int incX,
const float beta, float *Y, const int incY);
unsigned int isamax(const unsigned int N, const float *X, const int incX);
} /* namespace nntrainer */
#endif /* __cplusplus */
#endif /* __BLAS_INTERFACE_H__ */
|
[STATEMENT]
lemma (in subsemicategory) subdg_op_smc_smcf_inc[smc_op_simps]:
"op_smcf (smcf_inc \<BB> \<CC>) = smcf_inc (op_smc \<BB>) (op_smc \<CC>)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. op_smcf (dghm_inc \<BB> \<CC>) = dghm_inc (op_smc \<BB>) (op_smc \<CC>)
[PROOF STEP]
by
(
rule smcf_eqI[of \<alpha> \<open>op_smc \<BB>\<close> \<open>op_smc \<CC>\<close>],
unfold smc_op_simps dghm_inc_components
)
(
auto simp:
is_ft_semifunctorD
subsemicategory_smcf_inc_op_smc_is_semifunctor
inc.is_semifunctor_op
) |
import set_theory.surreal
open pgame
universe u
local infix ` ≈ ` := pgame.equiv
#check numeric
-- def numeric : pgame → Prop
-- | ⟨l, r, L, R⟩ :=
-- (∀ i j, L i < R j) ∧ (∀ i, numeric (L i)) ∧ (∀ i, numeric (R i))
lemma numeric_aux (x : pgame) :
(∀ i, x.move_left i < x ∧ numeric (x.move_left i)) ∧
(∀ i, x < x.move_right i ∧ numeric (x.move_right i)) → x.numeric := sorry
#check @le_def_lt
-- ⊢ ∀ {x y : pgame},
-- x ≤ y ↔
-- ∀ (i : x.left_moves), x.move_left i < y ∧
-- ∀ (j : y.right_moves), x < y.move_right j
theorem zero_le' {x : pgame} : 0 ≤ x ↔
(∀ j : x.right_moves, 0 < x.move_right j) :=
begin
rw le_def_lt,
split,
rintros ⟨hi,hj⟩ j,
exact hj j,
rintros hj,
split,
rintros ⟨⟩,
exact hj,
end
-- theorem le_def_lt {x y : pgame} : x ≤ y ↔
-- (∀ i : x.left_moves, x.move_left i < y) ∧
-- (∀ j : y.right_moves, x < y.move_right j) :=
-- by { cases x, cases y, refl }
theorem le_zero' {x : pgame} : x ≤ 0 ↔
(∀ i : x.left_moves, x.move_left i < 0) :=
begin
rw le_def_lt,
split,
rintros ⟨hi,hj⟩ i,
exact hi i,
rintros hj,
split,
exact hj,
rintros ⟨⟩,
end
theorem zero_lt' {x : pgame} : 0 < x ↔
(∃ i : x.left_moves, 0 ≤ x.move_left i) :=
by {rw lt_def_le, dsimp, simp[forall_pempty] }
-- (xL i < (mk xl xr xL xR)) ∧ ((mk xl xr xL xR) < xR j) ∧ numeric (xL i) ∧ numeric (xR j) → (mk xl xr xL xR).numeric := sorry
example ( a b : ℤ ) : (0 < a) → (0 < b) → (0 < a * b) :=
begin
exact mul_pos,
end
theorem foo (x : pgame) (ox : numeric x) : ¬ (x ≈ 0) → (0 < x) ∨ (x < 0) := sorry
theorem numeric_mul_pos : Π {x y z w : pgame} (ox : numeric x) (oy : numeric y) (oz : numeric z) (ow : numeric w),
(0 < x → 0 < y → 0 < x * y) ∧
(w ≈ 0 → w * z ≈ 0)
| (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) (mk wl wr wL wR) ox oy oz ow :=
begin
set x := mk xl xr xL xR with hx,
set y := mk yl yr yL yR with hy,
set w := mk wl wr wL wR with hw,
split,
intros pos_x pos_y,
rw zero_lt',
cases zero_lt'.1 pos_x with i hi,
cases zero_lt'.1 pos_y with j hj,
dsimp at *,
use sum.inl (i,j),
dsimp,
rw ←hx at *,
rw ←hy at *,
by_cases h : xL i ≈ 0,
sorry,
cases foo (xL i) (ox.2.1 i) h,
sorry,
sorry,
intro hw,
split,
rw le_zero',
rintros (⟨i,j⟩|⟨i,j⟩),
dsimp,
rw ←hx at *,
sorry,
dsimp,
sorry,
rw zero_le',
rintros (⟨i,j⟩|⟨i,j⟩),
dsimp,
sorry,
dsimp,
sorry,
end
theorem numeric_mul_pos' : Π {x y : pgame} (ox : numeric x) (oy : numeric y) (oxy : numeric (x * y)) (neg_x : x < 0) (neg_y : y < 0), 0 < x * y := sorry
theorem numeric_mul_neg : Π {x y : pgame} (ox : numeric x) (oy : numeric y) (oxy : numeric (x * y)) (pos_x : 0 < x) (neg_y : y < 0), x * y < 0 := sorry
theorem numeric_sub : Π {x y : pgame} (ox : numeric x) (oy : numeric y), numeric (x - y)
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ ox oy := sorry
theorem numeric_mul : Π {x y z : pgame} (ox : x.numeric) (oy : y.numeric),
((x * y).numeric ) ∧
((x ≈ y) → ⟦x * z⟧ = ⟦y * z⟧) ∧
(Π {a b A B : pgame} (oA : numeric A) (oB : numeric B) (oa : numeric a) (ob : numeric b), a < A → b < B → a * B + b * A < a * b + A * B )
| (mk xl xr xL xR) (mk yl yr yL yR)
:=
begin
set x := mk xl xr xL xR with hx,
set y := mk yl yr yL yR with hy,
split,
{
intros ox oy,
fsplit,
rintro (⟨i, j⟩ | ⟨i, j⟩) (⟨k, l⟩ | ⟨j_fst, j_snd⟩),
{
change xL i * y + x * yL j - xL i * yL j < xL k * y + x * yR l - xL k * yR l,
}, sorry, sorry, sorry, sorry,
},
end
|
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory Sep_Cancel_Set
imports Separation_Algebra Sep_Tactic_Helpers
begin
ML {*
structure SepCancel_Rules = Named_Thms (
val name = @{binding "sep_cancel"}
val description = "sep_cancel rules"
)
*}
setup SepCancel_Rules.setup
lemma refl_imp: "P \<Longrightarrow> P" by assumption
declare refl_imp[sep_cancel]
declare sep_conj_empty[sep_cancel]
lemmas sep_conj_empty' = sep_conj_empty[simplified sep_conj_commute[symmetric]]
declare sep_conj_empty'[sep_cancel]
end
|
[GOAL]
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
⊢ Subalgebra.restrictScalars C (adjoin D S) =
Subalgebra.restrictScalars C (adjoin { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } S)
[PROOFSTEP]
suffices Set.range (algebraMap D E) = Set.range (algebraMap ((⊤ : Subalgebra C D).map (IsScalarTower.toAlgHom C D E)) E)
by
ext x
change x ∈ Subsemiring.closure (_ ∪ S) ↔ x ∈ Subsemiring.closure (_ ∪ S)
rw [this]
[GOAL]
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
this :
Set.range ↑(algebraMap D E) = Set.range ↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E)
⊢ Subalgebra.restrictScalars C (adjoin D S) =
Subalgebra.restrictScalars C (adjoin { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } S)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
this :
Set.range ↑(algebraMap D E) = Set.range ↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E)
x : E
⊢ x ∈ Subalgebra.restrictScalars C (adjoin D S) ↔
x ∈ Subalgebra.restrictScalars C (adjoin { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } S)
[PROOFSTEP]
change x ∈ Subsemiring.closure (_ ∪ S) ↔ x ∈ Subsemiring.closure (_ ∪ S)
[GOAL]
case h
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
this :
Set.range ↑(algebraMap D E) = Set.range ↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E)
x : E
⊢ x ∈ Subsemiring.closure (Set.range ↑(algebraMap D E) ∪ S) ↔
x ∈ Subsemiring.closure (Set.range ↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E) ∪ S)
[PROOFSTEP]
rw [this]
[GOAL]
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
⊢ Set.range ↑(algebraMap D E) = Set.range ↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E)
[PROOFSTEP]
ext x
[GOAL]
case h
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
x : E
⊢ x ∈ Set.range ↑(algebraMap D E) ↔
x ∈ Set.range ↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
x : E
⊢ x ∈ Set.range ↑(algebraMap D E) →
x ∈ Set.range ↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E)
[PROOFSTEP]
rintro ⟨y, hy⟩
[GOAL]
case h.mp.intro
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
x : E
y : D
hy : ↑(algebraMap D E) y = x
⊢ x ∈ Set.range ↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E)
[PROOFSTEP]
exact ⟨⟨algebraMap D E y, ⟨y, ⟨Algebra.mem_top, rfl⟩⟩⟩, hy⟩
[GOAL]
case h.mpr
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
x : E
⊢ x ∈ Set.range ↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E) →
x ∈ Set.range ↑(algebraMap D E)
[PROOFSTEP]
rintro ⟨⟨y, ⟨z, ⟨h0, h1⟩⟩⟩, h2⟩
[GOAL]
case h.mpr.intro.mk.intro.intro
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
inst✝⁶ : CommSemiring C
inst✝⁵ : CommSemiring D
inst✝⁴ : CommSemiring E
inst✝³ : Algebra C D
inst✝² : Algebra C E
inst✝¹ : Algebra D E
inst✝ : IsScalarTower C D E
S : Set E
x y : E
z : D
h0 : z ∈ ↑⊤.toSubsemiring
h1 : ↑↑(IsScalarTower.toAlgHom C D E) z = y
h2 :
↑(algebraMap { x // x ∈ Subalgebra.map (IsScalarTower.toAlgHom C D E) ⊤ } E)
{ val := y, property := (_ : ∃ a, a ∈ ↑⊤.toSubsemiring ∧ ↑↑(IsScalarTower.toAlgHom C D E) a = y) } =
x
⊢ x ∈ Set.range ↑(algebraMap D E)
[PROOFSTEP]
exact ⟨z, Eq.trans h1 h2⟩
[GOAL]
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
C : Type u_1
D : Type u_2
E : Type u_3
F : Type u_4
inst✝¹⁰ : CommSemiring C
inst✝⁹ : CommSemiring D
inst✝⁸ : CommSemiring E
inst✝⁷ : CommSemiring F
inst✝⁶ : Algebra C D
inst✝⁵ : Algebra C E
inst✝⁴ : Algebra C F
inst✝³ : Algebra D F
inst✝² : Algebra E F
inst✝¹ : IsScalarTower C D F
inst✝ : IsScalarTower C E F
S : Set D
T : Set E
hS : adjoin C S = ⊤
hT : adjoin C T = ⊤
⊢ Subalgebra.restrictScalars C (adjoin E (↑(algebraMap D F) '' S)) =
Subalgebra.restrictScalars C (adjoin D (↑(algebraMap E F) '' T))
[PROOFSTEP]
rw [adjoin_restrictScalars C E, adjoin_restrictScalars C D, ← hS, ← hT, ← Algebra.adjoin_image, ← Algebra.adjoin_image,
← AlgHom.coe_toRingHom, ← AlgHom.coe_toRingHom, IsScalarTower.coe_toAlgHom, IsScalarTower.coe_toAlgHom, ←
adjoin_union_eq_adjoin_adjoin, ← adjoin_union_eq_adjoin_adjoin, Set.union_comm]
[GOAL]
R✝ : Type u
S✝ : Type v
A✝ : Type w
B : Type u₁
R : Type u_1
S : Type u_2
A : Type u_3
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring S
inst✝⁴ : CommSemiring A
inst✝³ : Algebra R S
inst✝² : Algebra S A
inst✝¹ : Algebra R A
inst✝ : IsScalarTower R S A
hRS : Subalgebra.FG ⊤
hSA : Subalgebra.FG ⊤
s : Finset S
hs : adjoin R ↑s = ⊤
t : Finset A
ht : adjoin S ↑t = ⊤
⊢ adjoin R ↑(Finset.image (↑(algebraMap S A)) s ∪ t) = ⊤
[PROOFSTEP]
rw [Finset.coe_union, Finset.coe_image, Algebra.adjoin_union_eq_adjoin_adjoin, Algebra.adjoin_algebraMap, hs,
Algebra.map_top, IsScalarTower.adjoin_range_toAlgHom, ht, Subalgebra.restrictScalars_top]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
hAC : Subalgebra.FG ⊤
hBC : FG ⊤
⊢ ∃ B₀, Subalgebra.FG B₀ ∧ FG ⊤
[PROOFSTEP]
cases' hAC with x hx
[GOAL]
case intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
hBC : FG ⊤
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
⊢ ∃ B₀, Subalgebra.FG B₀ ∧ FG ⊤
[PROOFSTEP]
cases' hBC with y hy
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
⊢ ∃ B₀, Subalgebra.FG B₀ ∧ FG ⊤
[PROOFSTEP]
have := hy
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy this : span B ↑y = ⊤
⊢ ∃ B₀, Subalgebra.FG B₀ ∧ FG ⊤
[PROOFSTEP]
simp_rw [eq_top_iff', mem_span_finset] at this
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
this : ∀ (x : C), ∃ f, (Finset.sum y fun i => f i • i) = x
⊢ ∃ B₀, Subalgebra.FG B₀ ∧ FG ⊤
[PROOFSTEP]
choose f hf using this
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
⊢ ∃ B₀, Subalgebra.FG B₀ ∧ FG ⊤
[PROOFSTEP]
let s : Finset B := Finset.image₂ f (x ∪ y * y) y
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
⊢ ∃ B₀, Subalgebra.FG B₀ ∧ FG ⊤
[PROOFSTEP]
have hxy : ∀ xi ∈ x, xi ∈ span (Algebra.adjoin A (↑s : Set B)) (↑(insert 1 y : Finset C) : Set C) := fun xi hxi =>
hf xi ▸
sum_mem fun yj hyj =>
smul_mem (span (Algebra.adjoin A (↑s : Set B)) (↑(insert 1 y : Finset C) : Set C))
⟨f xi yj, Algebra.subset_adjoin <| mem_image₂_of_mem (mem_union_left _ hxi) hyj⟩
(subset_span <| mem_insert_of_mem hyj)
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ ∃ B₀, Subalgebra.FG B₀ ∧ FG ⊤
[PROOFSTEP]
have hyy :
span (Algebra.adjoin A (↑s : Set B)) (↑(insert 1 y : Finset C) : Set C) *
span (Algebra.adjoin A (↑s : Set B)) (↑(insert 1 y : Finset C) : Set C) ≤
span (Algebra.adjoin A (↑s : Set B)) (↑(insert 1 y : Finset C) : Set C) :=
by
rw [span_mul_span, span_le, coe_insert]
rintro _ ⟨yi, yj, rfl | hyi, rfl | hyj, rfl⟩ <;> dsimp
· rw [mul_one]
exact subset_span (Set.mem_insert _ _)
· rw [one_mul]
exact subset_span (Set.mem_insert_of_mem _ hyj)
· rw [mul_one]
exact subset_span (Set.mem_insert_of_mem _ hyi)
· rw [← hf (yi * yj)]
exact
SetLike.mem_coe.2
(sum_mem fun yk hyk =>
smul_mem (span (Algebra.adjoin A (↑s : Set B)) (insert 1 ↑y : Set C))
⟨f (yi * yj) yk, Algebra.subset_adjoin <| mem_image₂_of_mem (mem_union_right _ <| mul_mem_mul hyi hyj) hyk⟩
(subset_span <| Set.mem_insert_of_mem _ hyk : yk ∈ _))
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) * span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) ≤
span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
[PROOFSTEP]
rw [span_mul_span, span_le, coe_insert]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ insert 1 ↑y * insert 1 ↑y ⊆ ↑(span { x // x ∈ Algebra.adjoin A ↑s } (insert 1 ↑y))
[PROOFSTEP]
rintro _ ⟨yi, yj, rfl | hyi, rfl | hyj, rfl⟩
[GOAL]
case intro.intro.intro.inl.intro.inl
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ (fun x x_1 => x * x_1) 1 1 ∈ ↑(span { x // x ∈ Algebra.adjoin A ↑s } (insert 1 ↑y))
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.inl.intro.inr
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
yj : C
hyj : yj ∈ ↑y
⊢ (fun x x_1 => x * x_1) 1 yj ∈ ↑(span { x // x ∈ Algebra.adjoin A ↑s } (insert 1 ↑y))
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.inr.intro.inl
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
yi : C
hyi : yi ∈ ↑y
⊢ (fun x x_1 => x * x_1) yi 1 ∈ ↑(span { x // x ∈ Algebra.adjoin A ↑s } (insert 1 ↑y))
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.inr.intro.inr
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
yi yj : C
hyi : yi ∈ ↑y
hyj : yj ∈ ↑y
⊢ (fun x x_1 => x * x_1) yi yj ∈ ↑(span { x // x ∈ Algebra.adjoin A ↑s } (insert 1 ↑y))
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.inl.intro.inl
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ 1 * 1 ∈ ↑(span { x_1 // x_1 ∈ Algebra.adjoin A ↑(image₂ f (x ∪ y * y) y) } (insert 1 ↑y))
[PROOFSTEP]
rw [mul_one]
[GOAL]
case intro.intro.intro.inl.intro.inl
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ 1 ∈ ↑(span { x_1 // x_1 ∈ Algebra.adjoin A ↑(image₂ f (x ∪ y * y) y) } (insert 1 ↑y))
[PROOFSTEP]
exact subset_span (Set.mem_insert _ _)
[GOAL]
case intro.intro.intro.inl.intro.inr
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
yj : C
hyj : yj ∈ ↑y
⊢ 1 * yj ∈ ↑(span { x_1 // x_1 ∈ Algebra.adjoin A ↑(image₂ f (x ∪ y * y) y) } (insert 1 ↑y))
[PROOFSTEP]
rw [one_mul]
[GOAL]
case intro.intro.intro.inl.intro.inr
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
yj : C
hyj : yj ∈ ↑y
⊢ yj ∈ ↑(span { x_1 // x_1 ∈ Algebra.adjoin A ↑(image₂ f (x ∪ y * y) y) } (insert 1 ↑y))
[PROOFSTEP]
exact subset_span (Set.mem_insert_of_mem _ hyj)
[GOAL]
case intro.intro.intro.inr.intro.inl
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
yi : C
hyi : yi ∈ ↑y
⊢ yi * 1 ∈ ↑(span { x_1 // x_1 ∈ Algebra.adjoin A ↑(image₂ f (x ∪ y * y) y) } (insert 1 ↑y))
[PROOFSTEP]
rw [mul_one]
[GOAL]
case intro.intro.intro.inr.intro.inl
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
yi : C
hyi : yi ∈ ↑y
⊢ yi ∈ ↑(span { x_1 // x_1 ∈ Algebra.adjoin A ↑(image₂ f (x ∪ y * y) y) } (insert 1 ↑y))
[PROOFSTEP]
exact subset_span (Set.mem_insert_of_mem _ hyi)
[GOAL]
case intro.intro.intro.inr.intro.inr
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
yi yj : C
hyi : yi ∈ ↑y
hyj : yj ∈ ↑y
⊢ yi * yj ∈ ↑(span { x_1 // x_1 ∈ Algebra.adjoin A ↑(image₂ f (x ∪ y * y) y) } (insert 1 ↑y))
[PROOFSTEP]
rw [← hf (yi * yj)]
[GOAL]
case intro.intro.intro.inr.intro.inr
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
yi yj : C
hyi : yi ∈ ↑y
hyj : yj ∈ ↑y
⊢ (Finset.sum y fun i => f (yi * yj) i • i) ∈
↑(span { x_1 // x_1 ∈ Algebra.adjoin A ↑(image₂ f (x ∪ y * y) y) } (insert 1 ↑y))
[PROOFSTEP]
exact
SetLike.mem_coe.2
(sum_mem fun yk hyk =>
smul_mem (span (Algebra.adjoin A (↑s : Set B)) (insert 1 ↑y : Set C))
⟨f (yi * yj) yk, Algebra.subset_adjoin <| mem_image₂_of_mem (mem_union_right _ <| mul_mem_mul hyi hyj) hyk⟩
(subset_span <| Set.mem_insert_of_mem _ hyk : yk ∈ _))
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
hyy :
span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) * span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) ≤
span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ ∃ B₀, Subalgebra.FG B₀ ∧ FG ⊤
[PROOFSTEP]
refine' ⟨Algebra.adjoin A (↑s : Set B), Subalgebra.fg_adjoin_finset _, insert 1 y, _⟩
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
hyy :
span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) * span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) ≤
span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) = ⊤
[PROOFSTEP]
refine' restrictScalars_injective A (Algebra.adjoin A s) C _
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
hyy :
span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) * span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) ≤
span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ restrictScalars A (span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)) = restrictScalars A ⊤
[PROOFSTEP]
rw [restrictScalars_top, eq_top_iff, ← Algebra.top_toSubmodule, ← hx, Algebra.adjoin_eq_span, span_le]
[GOAL]
case intro.intro
R : Type u
S : Type v
A : Type w
B : Type u₁
C : Type u_1
inst✝⁶ : CommSemiring A
inst✝⁵ : CommSemiring B
inst✝⁴ : Semiring C
inst✝³ : Algebra A B
inst✝² : Algebra B C
inst✝¹ : Algebra A C
inst✝ : IsScalarTower A B C
x : Finset C
hx : Algebra.adjoin A ↑x = ⊤
y : Finset C
hy : span B ↑y = ⊤
f : C → C → B
hf : ∀ (x : C), (Finset.sum y fun i => f x i • i) = x
s : Finset B := image₂ f (x ∪ y * y) y
hxy : ∀ (xi : C), xi ∈ x → xi ∈ span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
hyy :
span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) * span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y) ≤
span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)
⊢ ↑(Submonoid.closure ↑x) ⊆ ↑(restrictScalars A (span { x // x ∈ Algebra.adjoin A ↑s } ↑(insert 1 y)))
[PROOFSTEP]
refine' fun r hr =>
Submonoid.closure_induction hr (fun c hc => hxy c hc) (subset_span <| mem_insert_self _ _) fun p q hp hq =>
hyy <| Submodule.mul_mem_mul hp hq
|
module Extra.OpenSSL.FFI
public export
libcrypto : String -> String
libcrypto func = "C:" <+> func <+> ",libcrypto"
|
If the constant coefficient of a polynomial $p$ is nonzero, then the polynomial obtained by reflecting $p$ about the $y$-axis is $p$ itself. |
=begin
本文
=end
|
module SimpleNet where
import System.Random
import Numeric.LinearAlgebra
import NeuralNetwork
newtype SimpleNet = SimpleNet { unSimpleNet :: Matrix R }
deriving (Eq, Show)
makeRandomNet :: Int -> Int -> IO SimpleNet
makeRandomNet rows cols = SimpleNet <$> rand rows cols
-- |
-- >>> net = SimpleNet $ (2 >< 3) [0.47355232, 0.99773930, 0.84668094, 0.85557411, 0.03563661, 0.69422093]
-- >>> x = vector [0.6, 0.9]
-- >>> predict net x
-- [1.054148091,0.630716529,1.132807401]
predict :: SimpleNet -> Vector R -> Vector R
predict (SimpleNet w) x = x <# w
-- |
-- >>> net = SimpleNet $ (2 >< 3) [0.47355232, 0.99773930, 0.84668094, 0.85557411, 0.03563661, 0.69422093]
-- >>> x = vector [0.6, 0.9]
-- >>> t = vector [0, 0, 1]
-- >>> loss net x t
-- 9.746346258628767
loss :: SimpleNet -> Vector R -> Vector R -> Double
loss net@(SimpleNet w) x t = crossEntropyError y t
where
z = predict net x
y = softmax z
|
= = Third stage = =
|
Formal statement is: lemma homotopic_with_canon_on_empty [simp]: "homotopic_with_canon (\<lambda>x. True) {} t f g" Informal statement is: The identity map on the empty set is homotopic to any other map. |
The set of points in $\mathbb{R}^n$ that are orthogonal to a given basis vector $k$ is the span of the remaining basis vectors. |
(*
Title: Strong-Security
Authors: Sylvia Grewe, Alexander Lux, Heiko Mantel, Jens Sauer
*)
theory Type_System_example
imports Type_System Expr Domain_example
begin
\<comment> \<open>When interpreting, we have to instantiate the type for domains.\<close>
\<comment> \<open>As an example, we take a type containing 'low' and 'high' as domains.\<close>
consts DA :: "('id,Dom) DomainAssignment"
consts BMap :: "'val \<Rightarrow> bool"
abbreviation d_indistinguishable' :: "('id,'val) Expr \<Rightarrow> Dom
\<Rightarrow> ('id,'val) Expr \<Rightarrow> bool"
( "(_ \<equiv>\<^bsub>_\<^esub> _)" )
where
"e1 \<equiv>\<^bsub>d\<^esub> e2
\<equiv> Strongly_Secure_Programs.d_indistinguishable ExprEval DA d e1 e2"
abbreviation relatedbyUSdB' :: "(('id,'val) Expr, 'id) MWLfCom list
\<Rightarrow> Dom \<Rightarrow> (('id,'val) Expr, 'id) MWLfCom list \<Rightarrow> bool" (infixr "\<approx>\<^bsub>_\<^esub>" 65)
where "V \<approx>\<^bsub>d\<^esub> V' \<equiv> (V,V') \<in> Strong_Security.USdB
(MWLf_semantics.MWLfSteps_det ExprEval BMap) DA d"
\<comment> \<open>Security typing rules for expressions - will be part of a side condition\<close>
inductive
ExprSecTyping :: "('id, 'val) Expr \<Rightarrow> Dom set \<Rightarrow> bool"
("\<turnstile>\<^bsub>\<E>\<^esub> _ : _")
where
Consts: "\<turnstile>\<^bsub>\<E>\<^esub> (Const v) : {d}" |
Vars: "\<turnstile>\<^bsub>\<E>\<^esub> (Var x) : {DA x}" |
Ops: "\<forall>i < length arglist. \<turnstile>\<^bsub>\<E>\<^esub> (arglist!i) : (dl!i)
\<Longrightarrow> \<turnstile>\<^bsub>\<E>\<^esub> (Op f arglist) : (\<Union>{d. (\<exists>i < length arglist. d = (dl!i))})"
definition synAssignSC :: "'id \<Rightarrow> ('id, 'val) Expr \<Rightarrow> bool"
where
"synAssignSC x e \<equiv> \<exists>D. (\<turnstile>\<^bsub>\<E>\<^esub> e : D \<and> (\<forall>d \<in> D. (d \<le> DA x)))"
definition synWhileSC :: "('id, 'val) Expr \<Rightarrow> bool"
where
"synWhileSC e \<equiv> \<exists>D. (\<turnstile>\<^bsub>\<E>\<^esub> e : D \<and> (\<forall>d\<in>D. \<forall>d'. d \<le> d'))"
definition synIfSC :: "('id, 'val) Expr \<Rightarrow> (('id, 'val) Expr, 'id) MWLfCom
\<Rightarrow> (('id, 'val) Expr, 'id) MWLfCom \<Rightarrow> bool"
where
"synIfSC e c1 c2 \<equiv>
\<forall>d. (\<not> (e \<equiv>\<^bsub>d\<^esub> e) \<longrightarrow> [c1] \<approx>\<^bsub>d\<^esub> [c2])"
lemma ExprTypable_with_smallerD_implies_d_indistinguishable:
"\<lbrakk> \<turnstile>\<^bsub>\<E>\<^esub> e : D'; \<forall>d' \<in> D'. d' \<le> d \<rbrakk> \<Longrightarrow> e \<equiv>\<^bsub>d\<^esub> e"
proof (induct rule: ExprSecTyping.induct,
simp_all add: Strongly_Secure_Programs.d_indistinguishable_def
Strong_Security.d_equal_def, auto)
fix dl and arglist::"(('id, 'val) Expr) list" and f::"'val list \<Rightarrow> 'val"
and m1::"('id,'val) State" and m2::"('id,'val) State"
assume main: "\<forall>i < length arglist. \<turnstile>\<^bsub>\<E>\<^esub> arglist!i : dl!i \<and>
((\<forall>d' \<in> (dl!i). d' \<le> d) \<longrightarrow>
(\<forall>m m'. (\<forall>x. DA x \<le> d \<longrightarrow> m x = m' x)
\<longrightarrow> ExprEval (arglist!i) m = ExprEval (arglist!i) m'))"
assume smaller: "\<forall>D. (\<exists>i < length arglist. D = (dl!i))
\<longrightarrow> (\<forall>d'\<in>D. d' \<le> d)"
assume eqstate: "\<forall>x. DA x \<le> d \<longrightarrow> m1 x = m2 x"
from smaller have irangesubst:
"\<forall>i < length arglist. \<forall>d' \<in> (dl!i). d' \<le> d"
by auto
with eqstate main have
"\<forall>i < length arglist. ExprEval (arglist!i) m1
= ExprEval (arglist!i) m2"
by force
hence substmap: "(ExprEvalL arglist m1) = (ExprEvalL arglist m2)"
by (induct arglist, auto, force)
show "f (ExprEvalL arglist m1) = f (ExprEvalL arglist m2)"
by (subst substmap, auto)
qed
interpretation Type_System_example: Type_System ExprEval BMap DA
synAssignSC synWhileSC synIfSC
by (unfold_locales, simp add: synAssignSC_def,
metis ExprTypable_with_smallerD_implies_d_indistinguishable,
simp add: synWhileSC_def,
metis ExprTypable_with_smallerD_implies_d_indistinguishable,
simp add: synIfSC_def, metis)
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.