Datasets:
AI4M
/

text
stringlengths
0
3.34M
lemma example2 (x y : mynat) (h : y = x + 7) : 2 * y = 2 * (x + 7) := begin rw ← h, refl, end
[GOAL] ⊢ DecidableRel fun x x_1 => x < x_1 [PROOFSTEP] simp only [LT'] [GOAL] ⊢ DecidableRel fun s₁ s₂ => ltb (iter s₁) (iter s₂) = true [PROOFSTEP] infer_instance -- short-circuit type class inference [GOAL] c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ltb { s := { data := c :: cs₁ }, i := i₁ + c } { s := { data := c :: cs₂ }, i := i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ } { s := { data := cs₂ }, i := i₂ } [PROOFSTEP] apply ltb.inductionOn ⟨⟨cs₁⟩, i₁⟩ ⟨⟨cs₂⟩, i₂⟩ (motive := fun ⟨⟨cs₁⟩, i₁⟩ ⟨⟨cs₂⟩, i₂⟩ ↦ ltb ⟨⟨c :: cs₁⟩, i₁ + c⟩ ⟨⟨c :: cs₂⟩, i₂ + c⟩ = ltb ⟨⟨cs₁⟩, i₁⟩ ⟨⟨cs₂⟩, i₂⟩) [GOAL] case ind c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ∀ (s₁ s₂ : String) (i₁ i₂ : Pos), Iterator.hasNext { s := s₂, i := i₂ } = true → Iterator.hasNext { s := s₁, i := i₁ } = true → get s₁ i₁ = get s₂ i₂ → (match Iterator.next { s := s₁, i := i₁ } with | { s := { data := cs₁ }, i := i₁ } => match Iterator.next { s := s₂, i := i₂ } with | { s := { data := cs₂ }, i := i₂ } => ltb { s := { data := c :: cs₁ }, i := i₁ + c } { s := { data := c :: cs₂ }, i := i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ } { s := { data := cs₂ }, i := i₂ }) → match { s := s₁, i := i₁ } with | { s := { data := cs₁ }, i := i₁ } => match { s := s₂, i := i₂ } with | { s := { data := cs₂ }, i := i₂ } => ltb { s := { data := c :: cs₁ }, i := i₁ + c } { s := { data := c :: cs₂ }, i := i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ } { s := { data := cs₂ }, i := i₂ } [PROOFSTEP] simp [GOAL] case eq c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ∀ (s₁ s₂ : String) (i₁ i₂ : Pos), Iterator.hasNext { s := s₂, i := i₂ } = true → Iterator.hasNext { s := s₁, i := i₁ } = true → ¬get s₁ i₁ = get s₂ i₂ → match { s := s₁, i := i₁ } with | { s := { data := cs₁ }, i := i₁ } => match { s := s₂, i := i₂ } with | { s := { data := cs₂ }, i := i₂ } => ltb { s := { data := c :: cs₁ }, i := i₁ + c } { s := { data := c :: cs₂ }, i := i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ } { s := { data := cs₂ }, i := i₂ } [PROOFSTEP] simp [GOAL] case base₁ c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ∀ (s₁ s₂ : String) (i₁ i₂ : Pos), Iterator.hasNext { s := s₂, i := i₂ } = true → ¬Iterator.hasNext { s := s₁, i := i₁ } = true → match { s := s₁, i := i₁ } with | { s := { data := cs₁ }, i := i₁ } => match { s := s₂, i := i₂ } with | { s := { data := cs₂ }, i := i₂ } => ltb { s := { data := c :: cs₁ }, i := i₁ + c } { s := { data := c :: cs₂ }, i := i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ } { s := { data := cs₂ }, i := i₂ } [PROOFSTEP] simp [GOAL] case base₂ c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ∀ (s₁ s₂ : String) (i₁ i₂ : Pos), ¬Iterator.hasNext { s := s₂, i := i₂ } = true → match { s := s₁, i := i₁ } with | { s := { data := cs₁ }, i := i₁ } => match { s := s₂, i := i₂ } with | { s := { data := cs₂ }, i := i₂ } => ltb { s := { data := c :: cs₁ }, i := i₁ + c } { s := { data := c :: cs₂ }, i := i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ } { s := { data := cs₂ }, i := i₂ } [PROOFSTEP] simp [GOAL] case ind c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ∀ (s₁ s₂ : String) (i₁ i₂ : Pos), Iterator.hasNext { s := s₂, i := i₂ } = true → Iterator.hasNext { s := s₁, i := i₁ } = true → get s₁ i₁ = get s₂ i₂ → ltb { s := { data := c :: (Iterator.next { s := s₁, i := i₁ }).1.data }, i := (Iterator.next { s := s₁, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := s₂, i := i₂ }).1.data }, i := (Iterator.next { s := s₂, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := s₁, i := i₁ }).1.data }, i := (Iterator.next { s := s₁, i := i₁ }).i } { s := { data := (Iterator.next { s := s₂, i := i₂ }).1.data }, i := (Iterator.next { s := s₂, i := i₂ }).i } → ltb { s := { data := c :: s₁.data }, i := i₁ + c } { s := { data := c :: s₂.data }, i := i₂ + c } = ltb { s := { data := s₁.data }, i := i₁ } { s := { data := s₂.data }, i := i₂ } [PROOFSTEP] intro ⟨cs₁⟩ ⟨cs₂⟩ i₁ i₂ [GOAL] case eq c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ∀ (s₁ s₂ : String) (i₁ i₂ : Pos), Iterator.hasNext { s := s₂, i := i₂ } = true → Iterator.hasNext { s := s₁, i := i₁ } = true → ¬get s₁ i₁ = get s₂ i₂ → ltb { s := { data := c :: s₁.data }, i := i₁ + c } { s := { data := c :: s₂.data }, i := i₂ + c } = ltb { s := { data := s₁.data }, i := i₁ } { s := { data := s₂.data }, i := i₂ } [PROOFSTEP] intro ⟨cs₁⟩ ⟨cs₂⟩ i₁ i₂ [GOAL] case base₁ c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ∀ (s₁ s₂ : String) (i₁ i₂ : Pos), Iterator.hasNext { s := s₂, i := i₂ } = true → Iterator.hasNext { s := s₁, i := i₁ } = false → ltb { s := { data := c :: s₁.data }, i := i₁ + c } { s := { data := c :: s₂.data }, i := i₂ + c } = ltb { s := { data := s₁.data }, i := i₁ } { s := { data := s₂.data }, i := i₂ } [PROOFSTEP] intro ⟨cs₁⟩ ⟨cs₂⟩ i₁ i₂ [GOAL] case base₂ c : Char cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ ∀ (s₁ s₂ : String) (i₁ i₂ : Pos), Iterator.hasNext { s := s₂, i := i₂ } = false → ltb { s := { data := c :: s₁.data }, i := i₁ + c } { s := { data := c :: s₂.data }, i := i₂ + c } = ltb { s := { data := s₁.data }, i := i₁ } { s := { data := s₂.data }, i := i₂ } [PROOFSTEP] intro ⟨cs₁⟩ ⟨cs₂⟩ i₁ i₂ [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true → Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true → get { data := cs₁ } i₁ = get { data := cs₂ } i₂ → ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } → ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] intros [GOAL] case eq c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true → Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true → ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ → ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] intros [GOAL] case base₁ c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true → Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false → ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] intros [GOAL] case base₂ c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos ⊢ Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false → ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] intros [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } ⊢ ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] conv => lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } [PROOFSTEP] rw [ltb] [GOAL] case eq c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ⊢ ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] conv => lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } [PROOFSTEP] rw [ltb] [GOAL] case base₁ c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false ⊢ ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] conv => lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } [PROOFSTEP] rw [ltb] [GOAL] case base₂ c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false ⊢ ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] conv => lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] lhs [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false | ltb { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } [PROOFSTEP] rw [ltb] [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } ⊢ (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] conv => rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } | ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rw [ltb] [GOAL] case eq c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ⊢ (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] conv => rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ | ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rw [ltb] [GOAL] case base₁ c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false ⊢ (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] conv => rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false | ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rw [ltb] [GOAL] case base₂ c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false ⊢ (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] conv => rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs; rw [ltb] [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false | (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rhs [GOAL] c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false | ltb { s := { data := { data := cs₁ }.data }, i := i₁ } { s := { data := { data := cs₂ }.data }, i := i₂ } [PROOFSTEP] rw [ltb] [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } ⊢ (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = if Iterator.hasNext { s := { data := { data := cs₂ }.data }, i := i₂ } = true then if Iterator.hasNext { s := { data := { data := cs₁ }.data }, i := i₁ } = true then if Iterator.curr { s := { data := { data := cs₁ }.data }, i := i₁ } = Iterator.curr { s := { data := { data := cs₂ }.data }, i := i₂ } then ltb (Iterator.next { s := { data := { data := cs₁ }.data }, i := i₁ }) (Iterator.next { s := { data := { data := cs₂ }.data }, i := i₂ }) else decide (Iterator.curr { s := { data := { data := cs₁ }.data }, i := i₁ } < Iterator.curr { s := { data := { data := cs₂ }.data }, i := i₂ }) else true else false [PROOFSTEP] simp [Iterator.hasNext_cons_addChar, *] [GOAL] case eq c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ⊢ (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = if Iterator.hasNext { s := { data := { data := cs₂ }.data }, i := i₂ } = true then if Iterator.hasNext { s := { data := { data := cs₁ }.data }, i := i₁ } = true then if Iterator.curr { s := { data := { data := cs₁ }.data }, i := i₁ } = Iterator.curr { s := { data := { data := cs₂ }.data }, i := i₂ } then ltb (Iterator.next { s := { data := { data := cs₁ }.data }, i := i₁ }) (Iterator.next { s := { data := { data := cs₂ }.data }, i := i₂ }) else decide (Iterator.curr { s := { data := { data := cs₁ }.data }, i := i₁ } < Iterator.curr { s := { data := { data := cs₂ }.data }, i := i₂ }) else true else false [PROOFSTEP] simp [Iterator.hasNext_cons_addChar, *] [GOAL] case base₁ c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝¹ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = false ⊢ (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = if Iterator.hasNext { s := { data := { data := cs₂ }.data }, i := i₂ } = true then if Iterator.hasNext { s := { data := { data := cs₁ }.data }, i := i₁ } = true then if Iterator.curr { s := { data := { data := cs₁ }.data }, i := i₁ } = Iterator.curr { s := { data := { data := cs₂ }.data }, i := i₂ } then ltb (Iterator.next { s := { data := { data := cs₁ }.data }, i := i₁ }) (Iterator.next { s := { data := { data := cs₂ }.data }, i := i₂ }) else decide (Iterator.curr { s := { data := { data := cs₁ }.data }, i := i₁ } < Iterator.curr { s := { data := { data := cs₂ }.data }, i := i₂ }) else true else false [PROOFSTEP] simp [Iterator.hasNext_cons_addChar, *] [GOAL] case base₂ c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = false ⊢ (if Iterator.hasNext { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } = true then if Iterator.hasNext { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = true then if Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } = Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c }) (Iterator.next { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: { data := cs₁ }.data }, i := i₁ + c } < Iterator.curr { s := { data := c :: { data := cs₂ }.data }, i := i₂ + c }) else true else false) = if Iterator.hasNext { s := { data := { data := cs₂ }.data }, i := i₂ } = true then if Iterator.hasNext { s := { data := { data := cs₁ }.data }, i := i₁ } = true then if Iterator.curr { s := { data := { data := cs₁ }.data }, i := i₁ } = Iterator.curr { s := { data := { data := cs₂ }.data }, i := i₂ } then ltb (Iterator.next { s := { data := { data := cs₁ }.data }, i := i₁ }) (Iterator.next { s := { data := { data := cs₂ }.data }, i := i₂ }) else decide (Iterator.curr { s := { data := { data := cs₁ }.data }, i := i₁ } < Iterator.curr { s := { data := { data := cs₂ }.data }, i := i₂ }) else true else false [PROOFSTEP] simp [Iterator.hasNext_cons_addChar, *] [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝³ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝² : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝¹ : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ a✝ : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } ⊢ (if Iterator.curr { s := { data := c :: cs₁ }, i := i₁ + c } = Iterator.curr { s := { data := c :: cs₂ }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: cs₁ }, i := i₁ + c }) (Iterator.next { s := { data := c :: cs₂ }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: cs₁ }, i := i₁ + c } < Iterator.curr { s := { data := c :: cs₂ }, i := i₂ + c })) = if Iterator.curr { s := { data := cs₁ }, i := i₁ } = Iterator.curr { s := { data := cs₂ }, i := i₂ } then ltb (Iterator.next { s := { data := cs₁ }, i := i₁ }) (Iterator.next { s := { data := cs₂ }, i := i₂ }) else decide (Iterator.curr { s := { data := cs₁ }, i := i₁ } < Iterator.curr { s := { data := cs₂ }, i := i₂ }) [PROOFSTEP] rename_i h₂ h₁ heq ih [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos h₂ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true h₁ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true heq : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ih : ltb { s := { data := c :: (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i + c } { s := { data := c :: (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i + c } = ltb { s := { data := (Iterator.next { s := { data := cs₁ }, i := i₁ }).1.data }, i := (Iterator.next { s := { data := cs₁ }, i := i₁ }).i } { s := { data := (Iterator.next { s := { data := cs₂ }, i := i₂ }).1.data }, i := (Iterator.next { s := { data := cs₂ }, i := i₂ }).i } ⊢ (if Iterator.curr { s := { data := c :: cs₁ }, i := i₁ + c } = Iterator.curr { s := { data := c :: cs₂ }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: cs₁ }, i := i₁ + c }) (Iterator.next { s := { data := c :: cs₂ }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: cs₁ }, i := i₁ + c } < Iterator.curr { s := { data := c :: cs₂ }, i := i₂ + c })) = if Iterator.curr { s := { data := cs₁ }, i := i₁ } = Iterator.curr { s := { data := cs₂ }, i := i₂ } then ltb (Iterator.next { s := { data := cs₁ }, i := i₁ }) (Iterator.next { s := { data := cs₂ }, i := i₂ }) else decide (Iterator.curr { s := { data := cs₁ }, i := i₁ } < Iterator.curr { s := { data := cs₂ }, i := i₂ }) [PROOFSTEP] simp [Iterator.curr, get_cons_addChar, Iterator.next, next, *] at * [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos h₂ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true h₁ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true heq : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ih : ltb { s := { data := c :: cs₁ }, i := i₁ + get { data := cs₂ } i₂ + c } { s := { data := c :: cs₂ }, i := i₂ + get { data := cs₂ } i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } ⊢ ltb { s := { data := c :: cs₁ }, i := i₁ + c + get { data := cs₂ } i₂ } { s := { data := c :: cs₂ }, i := i₂ + c + get { data := cs₂ } i₂ } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } [PROOFSTEP] repeat rw [Pos.addChar_right_comm _ c] [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos h₂ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true h₁ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true heq : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ih : ltb { s := { data := c :: cs₁ }, i := i₁ + get { data := cs₂ } i₂ + c } { s := { data := c :: cs₂ }, i := i₂ + get { data := cs₂ } i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } ⊢ ltb { s := { data := c :: cs₁ }, i := i₁ + c + get { data := cs₂ } i₂ } { s := { data := c :: cs₂ }, i := i₂ + c + get { data := cs₂ } i₂ } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } [PROOFSTEP] rw [Pos.addChar_right_comm _ c] [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos h₂ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true h₁ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true heq : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ih : ltb { s := { data := c :: cs₁ }, i := i₁ + get { data := cs₂ } i₂ + c } { s := { data := c :: cs₂ }, i := i₂ + get { data := cs₂ } i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } ⊢ ltb { s := { data := c :: cs₁ }, i := i₁ + get { data := cs₂ } i₂ + c } { s := { data := c :: cs₂ }, i := i₂ + c + get { data := cs₂ } i₂ } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } [PROOFSTEP] rw [Pos.addChar_right_comm _ c] [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos h₂ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true h₁ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true heq : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ih : ltb { s := { data := c :: cs₁ }, i := i₁ + get { data := cs₂ } i₂ + c } { s := { data := c :: cs₂ }, i := i₂ + get { data := cs₂ } i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } ⊢ ltb { s := { data := c :: cs₁ }, i := i₁ + get { data := cs₂ } i₂ + c } { s := { data := c :: cs₂ }, i := i₂ + get { data := cs₂ } i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } [PROOFSTEP] rw [Pos.addChar_right_comm _ c] [GOAL] case ind c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos h₂ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true h₁ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true heq : get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ih : ltb { s := { data := c :: cs₁ }, i := i₁ + get { data := cs₂ } i₂ + c } { s := { data := c :: cs₂ }, i := i₂ + get { data := cs₂ } i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } ⊢ ltb { s := { data := c :: cs₁ }, i := i₁ + get { data := cs₂ } i₂ + c } { s := { data := c :: cs₂ }, i := i₂ + get { data := cs₂ } i₂ + c } = ltb { s := { data := cs₁ }, i := i₁ + get { data := cs₂ } i₂ } { s := { data := cs₂ }, i := i₂ + get { data := cs₂ } i₂ } [PROOFSTEP] exact ih [GOAL] case eq c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos a✝² : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true a✝¹ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true a✝ : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ⊢ (if Iterator.curr { s := { data := c :: cs₁ }, i := i₁ + c } = Iterator.curr { s := { data := c :: cs₂ }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: cs₁ }, i := i₁ + c }) (Iterator.next { s := { data := c :: cs₂ }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: cs₁ }, i := i₁ + c } < Iterator.curr { s := { data := c :: cs₂ }, i := i₂ + c })) = if Iterator.curr { s := { data := cs₁ }, i := i₁ } = Iterator.curr { s := { data := cs₂ }, i := i₂ } then ltb (Iterator.next { s := { data := cs₁ }, i := i₁ }) (Iterator.next { s := { data := cs₂ }, i := i₂ }) else decide (Iterator.curr { s := { data := cs₁ }, i := i₁ } < Iterator.curr { s := { data := cs₂ }, i := i₂ }) [PROOFSTEP] rename_i h₂ h₁ hne [GOAL] case eq c : Char cs₁✝ cs₂✝ : List Char i₁✝ i₂✝ : Pos cs₁ cs₂ : List Char i₁ i₂ : Pos h₂ : Iterator.hasNext { s := { data := cs₂ }, i := i₂ } = true h₁ : Iterator.hasNext { s := { data := cs₁ }, i := i₁ } = true hne : ¬get { data := cs₁ } i₁ = get { data := cs₂ } i₂ ⊢ (if Iterator.curr { s := { data := c :: cs₁ }, i := i₁ + c } = Iterator.curr { s := { data := c :: cs₂ }, i := i₂ + c } then ltb (Iterator.next { s := { data := c :: cs₁ }, i := i₁ + c }) (Iterator.next { s := { data := c :: cs₂ }, i := i₂ + c }) else decide (Iterator.curr { s := { data := c :: cs₁ }, i := i₁ + c } < Iterator.curr { s := { data := c :: cs₂ }, i := i₂ + c })) = if Iterator.curr { s := { data := cs₁ }, i := i₁ } = Iterator.curr { s := { data := cs₂ }, i := i₂ } then ltb (Iterator.next { s := { data := cs₁ }, i := i₁ }) (Iterator.next { s := { data := cs₂ }, i := i₂ }) else decide (Iterator.curr { s := { data := cs₁ }, i := i₁ } < Iterator.curr { s := { data := cs₂ }, i := i₂ }) [PROOFSTEP] simp [Iterator.curr, get_cons_addChar, *] [GOAL] s₁ s₂ : List Char ⊢ ltb { s := { data := s₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ s₁ < s₂ [PROOFSTEP] induction s₁ generalizing s₂ [GOAL] case nil s₂ : List Char ⊢ ltb { s := { data := [] }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ [] < s₂ [PROOFSTEP] cases s₂ [GOAL] case cons head✝ : Char tail✝ : List Char tail_ih✝ : ∀ (s₂ : List Char), ltb { s := { data := tail✝ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ tail✝ < s₂ s₂ : List Char ⊢ ltb { s := { data := head✝ :: tail✝ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ head✝ :: tail✝ < s₂ [PROOFSTEP] cases s₂ [GOAL] case nil.nil ⊢ ltb { s := { data := [] }, i := 0 } { s := { data := [] }, i := 0 } = true ↔ [] < [] [PROOFSTEP] simp [GOAL] case nil.cons head✝ : Char tail✝ : List Char ⊢ ltb { s := { data := [] }, i := 0 } { s := { data := head✝ :: tail✝ }, i := 0 } = true ↔ [] < head✝ :: tail✝ [PROOFSTEP] rename_i c₂ cs₂ [GOAL] case nil.cons c₂ : Char cs₂ : List Char ⊢ ltb { s := { data := [] }, i := 0 } { s := { data := c₂ :: cs₂ }, i := 0 } = true ↔ [] < c₂ :: cs₂ [PROOFSTEP] apply iff_of_true [GOAL] case nil.cons.ha c₂ : Char cs₂ : List Char ⊢ ltb { s := { data := [] }, i := 0 } { s := { data := c₂ :: cs₂ }, i := 0 } = true [PROOFSTEP] rw [ltb] [GOAL] case nil.cons.ha c₂ : Char cs₂ : List Char ⊢ (if Iterator.hasNext { s := { data := c₂ :: cs₂ }, i := 0 } = true then if Iterator.hasNext { s := { data := [] }, i := 0 } = true then if Iterator.curr { s := { data := [] }, i := 0 } = Iterator.curr { s := { data := c₂ :: cs₂ }, i := 0 } then ltb (Iterator.next { s := { data := [] }, i := 0 }) (Iterator.next { s := { data := c₂ :: cs₂ }, i := 0 }) else decide (Iterator.curr { s := { data := [] }, i := 0 } < Iterator.curr { s := { data := c₂ :: cs₂ }, i := 0 }) else true else false) = true [PROOFSTEP] simp [GOAL] case nil.cons.ha c₂ : Char cs₂ : List Char ⊢ Iterator.hasNext { s := { data := c₂ :: cs₂ }, i := 0 } = false → False [PROOFSTEP] apply ne_false_of_eq_true [GOAL] case nil.cons.ha.a c₂ : Char cs₂ : List Char ⊢ Iterator.hasNext { s := { data := c₂ :: cs₂ }, i := 0 } = true [PROOFSTEP] apply decide_eq_true [GOAL] case nil.cons.ha.a.a c₂ : Char cs₂ : List Char ⊢ 0.byteIdx < (endPos { data := c₂ :: cs₂ }).byteIdx [PROOFSTEP] simp [endPos, utf8ByteSize, utf8ByteSize.go, csize_pos] [GOAL] case nil.cons.hb c₂ : Char cs₂ : List Char ⊢ [] < c₂ :: cs₂ [PROOFSTEP] apply List.nil_lt_cons [GOAL] case cons.nil head✝ : Char tail✝ : List Char tail_ih✝ : ∀ (s₂ : List Char), ltb { s := { data := tail✝ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ tail✝ < s₂ ⊢ ltb { s := { data := head✝ :: tail✝ }, i := 0 } { s := { data := [] }, i := 0 } = true ↔ head✝ :: tail✝ < [] [PROOFSTEP] rename_i c₁ cs₁ ih [GOAL] case cons.nil c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ ⊢ ltb { s := { data := c₁ :: cs₁ }, i := 0 } { s := { data := [] }, i := 0 } = true ↔ c₁ :: cs₁ < [] [PROOFSTEP] apply iff_of_false [GOAL] case cons.nil.ha c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ ⊢ ¬ltb { s := { data := c₁ :: cs₁ }, i := 0 } { s := { data := [] }, i := 0 } = true [PROOFSTEP] rw [ltb] [GOAL] case cons.nil.ha c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ ⊢ ¬(if Iterator.hasNext { s := { data := [] }, i := 0 } = true then if Iterator.hasNext { s := { data := c₁ :: cs₁ }, i := 0 } = true then if Iterator.curr { s := { data := c₁ :: cs₁ }, i := 0 } = Iterator.curr { s := { data := [] }, i := 0 } then ltb (Iterator.next { s := { data := c₁ :: cs₁ }, i := 0 }) (Iterator.next { s := { data := [] }, i := 0 }) else decide (Iterator.curr { s := { data := c₁ :: cs₁ }, i := 0 } < Iterator.curr { s := { data := [] }, i := 0 }) else true else false) = true [PROOFSTEP] simp [GOAL] case cons.nil.hb c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ ⊢ ¬c₁ :: cs₁ < [] [PROOFSTEP] apply not_lt_of_lt [GOAL] case cons.nil.hb.a c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ ⊢ [] < c₁ :: cs₁ [PROOFSTEP] apply List.nil_lt_cons [GOAL] case cons.cons head✝¹ : Char tail✝¹ : List Char tail_ih✝ : ∀ (s₂ : List Char), ltb { s := { data := tail✝¹ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ tail✝¹ < s₂ head✝ : Char tail✝ : List Char ⊢ ltb { s := { data := head✝¹ :: tail✝¹ }, i := 0 } { s := { data := head✝ :: tail✝ }, i := 0 } = true ↔ head✝¹ :: tail✝¹ < head✝ :: tail✝ [PROOFSTEP] rename_i c₁ cs₁ ih c₂ cs₂ [GOAL] case cons.cons c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ c₂ : Char cs₂ : List Char ⊢ ltb { s := { data := c₁ :: cs₁ }, i := 0 } { s := { data := c₂ :: cs₂ }, i := 0 } = true ↔ c₁ :: cs₁ < c₂ :: cs₂ [PROOFSTEP] rw [ltb] [GOAL] case cons.cons c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ c₂ : Char cs₂ : List Char ⊢ (if Iterator.hasNext { s := { data := c₂ :: cs₂ }, i := 0 } = true then if Iterator.hasNext { s := { data := c₁ :: cs₁ }, i := 0 } = true then if Iterator.curr { s := { data := c₁ :: cs₁ }, i := 0 } = Iterator.curr { s := { data := c₂ :: cs₂ }, i := 0 } then ltb (Iterator.next { s := { data := c₁ :: cs₁ }, i := 0 }) (Iterator.next { s := { data := c₂ :: cs₂ }, i := 0 }) else decide (Iterator.curr { s := { data := c₁ :: cs₁ }, i := 0 } < Iterator.curr { s := { data := c₂ :: cs₂ }, i := 0 }) else true else false) = true ↔ c₁ :: cs₁ < c₂ :: cs₂ [PROOFSTEP] simp [Iterator.hasNext, endPos, utf8ByteSize, utf8ByteSize.go, csize_pos, Iterator.curr, get, utf8GetAux, Iterator.next, next] [GOAL] case cons.cons c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ c₂ : Char cs₂ : List Char ⊢ (if c₁ = c₂ then ltb { s := { data := c₁ :: cs₁ }, i := 0 + c₁ } { s := { data := c₂ :: cs₂ }, i := 0 + c₂ } = true else c₁ < c₂) ↔ c₁ :: cs₁ < c₂ :: cs₂ [PROOFSTEP] split_ifs with h [GOAL] case pos c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ c₂ : Char cs₂ : List Char h : c₁ = c₂ ⊢ ltb { s := { data := c₁ :: cs₁ }, i := 0 + c₁ } { s := { data := c₂ :: cs₂ }, i := 0 + c₂ } = true ↔ c₁ :: cs₁ < c₂ :: cs₂ [PROOFSTEP] subst c₂ [GOAL] case pos c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ cs₂ : List Char ⊢ ltb { s := { data := c₁ :: cs₁ }, i := 0 + c₁ } { s := { data := c₁ :: cs₂ }, i := 0 + c₁ } = true ↔ c₁ :: cs₁ < c₁ :: cs₂ [PROOFSTEP] suffices ltb ⟨⟨c₁ :: cs₁⟩, ⟨csize c₁⟩⟩ ⟨⟨c₁ :: cs₂⟩, ⟨csize c₁⟩⟩ = ltb ⟨⟨cs₁⟩, 0⟩ ⟨⟨cs₂⟩, 0⟩ by rw [Pos.zero_addChar_eq, this]; exact (ih cs₂).trans List.Lex.cons_iff.symm [GOAL] c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ cs₂ : List Char this : ltb { s := { data := c₁ :: cs₁ }, i := { byteIdx := csize c₁ } } { s := { data := c₁ :: cs₂ }, i := { byteIdx := csize c₁ } } = ltb { s := { data := cs₁ }, i := 0 } { s := { data := cs₂ }, i := 0 } ⊢ ltb { s := { data := c₁ :: cs₁ }, i := 0 + c₁ } { s := { data := c₁ :: cs₂ }, i := 0 + c₁ } = true ↔ c₁ :: cs₁ < c₁ :: cs₂ [PROOFSTEP] rw [Pos.zero_addChar_eq, this] [GOAL] c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ cs₂ : List Char this : ltb { s := { data := c₁ :: cs₁ }, i := { byteIdx := csize c₁ } } { s := { data := c₁ :: cs₂ }, i := { byteIdx := csize c₁ } } = ltb { s := { data := cs₁ }, i := 0 } { s := { data := cs₂ }, i := 0 } ⊢ ltb { s := { data := cs₁ }, i := 0 } { s := { data := cs₂ }, i := 0 } = true ↔ c₁ :: cs₁ < c₁ :: cs₂ [PROOFSTEP] exact (ih cs₂).trans List.Lex.cons_iff.symm [GOAL] case pos c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ cs₂ : List Char ⊢ ltb { s := { data := c₁ :: cs₁ }, i := { byteIdx := csize c₁ } } { s := { data := c₁ :: cs₂ }, i := { byteIdx := csize c₁ } } = ltb { s := { data := cs₁ }, i := 0 } { s := { data := cs₂ }, i := 0 } [PROOFSTEP] rw [← Pos.zero_addChar_eq] [GOAL] case pos c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ cs₂ : List Char ⊢ ltb { s := { data := c₁ :: cs₁ }, i := 0 + c₁ } { s := { data := c₁ :: cs₂ }, i := 0 + c₁ } = ltb { s := { data := cs₁ }, i := 0 } { s := { data := cs₂ }, i := 0 } [PROOFSTEP] apply ltb_cons_addChar [GOAL] case neg c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ c₂ : Char cs₂ : List Char h : ¬c₁ = c₂ ⊢ c₁ < c₂ ↔ c₁ :: cs₁ < c₂ :: cs₂ [PROOFSTEP] refine ⟨List.Lex.rel, fun e ↦ ?_⟩ [GOAL] case neg c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ c₂ : Char cs₂ : List Char h : ¬c₁ = c₂ e : c₁ :: cs₁ < c₂ :: cs₂ ⊢ c₁ < c₂ [PROOFSTEP] cases e [GOAL] case neg.cons c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ cs₂ : List Char h : ¬c₁ = c₁ h✝ : List.Lex (fun x x_1 => x < x_1) cs₁ cs₂ ⊢ c₁ < c₁ [PROOFSTEP] rename_i h' [GOAL] case neg.rel c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ c₂ : Char cs₂ : List Char h : ¬c₁ = c₂ h✝ : c₁ < c₂ ⊢ c₁ < c₂ [PROOFSTEP] rename_i h' [GOAL] case neg.cons c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ cs₂ : List Char h : ¬c₁ = c₁ h' : List.Lex (fun x x_1 => x < x_1) cs₁ cs₂ ⊢ c₁ < c₁ [PROOFSTEP] contradiction [GOAL] case neg.rel c₁ : Char cs₁ : List Char ih : ∀ (s₂ : List Char), ltb { s := { data := cs₁ }, i := 0 } { s := { data := s₂ }, i := 0 } = true ↔ cs₁ < s₂ c₂ : Char cs₂ : List Char h : ¬c₁ = c₂ h' : c₁ < c₂ ⊢ c₁ < c₂ [PROOFSTEP] assumption [GOAL] ⊢ DecidableRel fun x x_1 => x ≤ x_1 [PROOFSTEP] simp only [LE] [GOAL] ⊢ DecidableRel fun s₁ s₂ => ¬s₂ < s₁ [PROOFSTEP] infer_instance -- short-circuit type class inference [GOAL] s : List Char h : { data := s } ≠ "" ⊢ toList { data := s } = head { data := s } :: toList (drop { data := s } 1) [PROOFSTEP] cases s [GOAL] case nil h : { data := [] } ≠ "" ⊢ toList { data := [] } = head { data := [] } :: toList (drop { data := [] } 1) [PROOFSTEP] simp only at h [GOAL] case cons head✝ : Char tail✝ : List Char h : { data := head✝ :: tail✝ } ≠ "" ⊢ toList { data := head✝ :: tail✝ } = head { data := head✝ :: tail✝ } :: toList (drop { data := head✝ :: tail✝ } 1) [PROOFSTEP] rename_i c cs [GOAL] case cons c : Char cs : List Char h : { data := c :: cs } ≠ "" ⊢ toList { data := c :: cs } = head { data := c :: cs } :: toList (drop { data := c :: cs } 1) [PROOFSTEP] simp only [toList, List.cons.injEq] [GOAL] case cons c : Char cs : List Char h : { data := c :: cs } ≠ "" ⊢ c = head { data := c :: cs } ∧ cs = (drop { data := c :: cs } 1).data [PROOFSTEP] constructor <;> [rfl; simp [drop_eq]] [GOAL] case cons c : Char cs : List Char h : { data := c :: cs } ≠ "" ⊢ c = head { data := c :: cs } ∧ cs = (drop { data := c :: cs } 1).data [PROOFSTEP] constructor [GOAL] case cons.left c : Char cs : List Char h : { data := c :: cs } ≠ "" ⊢ c = head { data := c :: cs } [PROOFSTEP] rfl [GOAL] case cons.right c : Char cs : List Char h : { data := c :: cs } ≠ "" ⊢ cs = (drop { data := c :: cs } 1).data [PROOFSTEP] simp [drop_eq] [GOAL] a b c : String ⊢ a ≤ b → b ≤ c → a ≤ c [PROOFSTEP] simp only [le_iff_toList_le] [GOAL] a b c : String ⊢ toList a ≤ toList b → toList b ≤ toList c → toList a ≤ toList c [PROOFSTEP] apply le_trans [GOAL] a b : String ⊢ a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] simp only [lt_iff_toList_lt, le_iff_toList_le, lt_iff_le_not_le] [GOAL] a b : String ⊢ a ≤ b → b ≤ a → a = b [PROOFSTEP] simp only [le_iff_toList_le, ← toList_inj] [GOAL] a b : String ⊢ toList a ≤ toList b → toList b ≤ toList a → toList a = toList b [PROOFSTEP] apply le_antisymm [GOAL] a b : String ⊢ a ≤ b ∨ b ≤ a [PROOFSTEP] simp only [le_iff_toList_le] [GOAL] a b : String ⊢ toList a ≤ toList b ∨ toList b ≤ toList a [PROOFSTEP] apply le_total [GOAL] a b : String ⊢ compare a b = compareOfLessAndEq a b [PROOFSTEP] simp [compare, compareOfLessAndEq, toList, instLTString, List.instLTList, List.LT'] [GOAL] a b : String ⊢ (if List.lt a.data b.data then Ordering.lt else if a = b then Ordering.eq else Ordering.gt) = if List.Lex (fun x x_1 => x < x_1) a.data b.data then Ordering.lt else if a = b then Ordering.eq else Ordering.gt [PROOFSTEP] split_ifs [GOAL] case pos a b : String h✝¹ : List.lt a.data b.data h✝ : List.Lex (fun x x_1 => x < x_1) a.data b.data ⊢ Ordering.lt = Ordering.lt [PROOFSTEP] simp [List.lt_iff_lex_lt] at * [GOAL] case pos a b : String h✝² : List.lt a.data b.data h✝¹ : ¬List.Lex (fun x x_1 => x < x_1) a.data b.data h✝ : a = b ⊢ False [PROOFSTEP] simp [List.lt_iff_lex_lt] at * [GOAL] case neg a b : String h✝² : List.lt a.data b.data h✝¹ : ¬List.Lex (fun x x_1 => x < x_1) a.data b.data h✝ : ¬a = b ⊢ False [PROOFSTEP] simp [List.lt_iff_lex_lt] at * [GOAL] case pos a b : String h✝² : ¬List.lt a.data b.data h✝¹ : a = b h✝ : List.Lex (fun x x_1 => x < x_1) a.data b.data ⊢ False [PROOFSTEP] simp [List.lt_iff_lex_lt] at * [GOAL] case neg a b : String h✝² : ¬List.lt a.data b.data h✝¹ : a = b h✝ : ¬List.Lex (fun x x_1 => x < x_1) a.data b.data ⊢ Ordering.eq = Ordering.eq [PROOFSTEP] simp [List.lt_iff_lex_lt] at * [GOAL] case pos a b : String h✝² : ¬List.lt a.data b.data h✝¹ : ¬a = b h✝ : List.Lex (fun x x_1 => x < x_1) a.data b.data ⊢ False [PROOFSTEP] simp [List.lt_iff_lex_lt] at * [GOAL] case neg a b : String h✝² : ¬List.lt a.data b.data h✝¹ : ¬a = b h✝ : ¬List.Lex (fun x x_1 => x < x_1) a.data b.data ⊢ Ordering.gt = Ordering.gt [PROOFSTEP] simp [List.lt_iff_lex_lt] at * [GOAL] case pos a b : String h✝² : ¬List.Lex (fun x x_1 => x < x_1) a.data b.data h✝¹ : a = b h✝ : List.Lex (fun x x_1 => x < x_1) a.data b.data ⊢ False [PROOFSTEP] contradiction [GOAL] case neg a b : String h✝² : ¬List.Lex (fun x x_1 => x < x_1) a.data b.data h✝¹ : ¬a = b h✝ : List.Lex (fun x x_1 => x < x_1) a.data b.data ⊢ False [PROOFSTEP] contradiction [GOAL] case pos a b : String h✝² : a = b h✝¹ : List.Lex (fun x x_1 => x < x_1) a.data b.data h✝ : ¬List.Lex (fun x x_1 => x < x_1) a.data b.data ⊢ False [PROOFSTEP] contradiction [GOAL] case pos a b : String h✝² : ¬a = b h✝¹ : List.Lex (fun x x_1 => x < x_1) a.data b.data h✝ : ¬List.Lex (fun x x_1 => x < x_1) a.data b.data ⊢ False [PROOFSTEP] contradiction [GOAL] l l' : List Char h : asString l = asString l' ⊢ l = l' [PROOFSTEP] rw [← toList_inv_asString l, ← toList_inv_asString l', toList_inj, h] [GOAL] l : List Char s : String ⊢ asString l = s ↔ l = toList s [PROOFSTEP] rw [← asString_inv_toList s, asString_inj, asString_inv_toList s]
informal statement If $G$ is a group and $a, x \in G$, prove that $C\left(x^{-1} a x\right)=x^{-1} C(a) x$formal statement theorem exercise_2_4_36 {a n : ℕ} (h : a > 1) : n ∣ (a ^ n - 1).totient :=
[GOAL] a b : ℕ ⊢ a ≠ b ↔ ↑a ≠ ↑b [PROOFSTEP] simp only [ne_eq, Int.cast_eq_cast_iff_Nat]
universes v /- matcher for the following patterns ``` | "hello" => _ | "world" => _ | a => _ ``` -/ def matchString (C : String → Sort v) (s : String) (h₁ : Unit → C "hello") (h₂ : Unit → C "world") (h₃ : ∀ s, C s) : C s := dite (s = "hello") (fun h => @Eq.ndrec _ _ (fun x => C x) (h₁ ()) _ h.symm) (fun _ => dite (s = "world") (fun h => @Eq.ndrec _ _ (fun x => C x) (h₂ ()) _ h.symm) (fun _ => h₃ s)) theorem matchString.Eq1 (C : String → Sort v) (h₁ : Unit → C "hello") (h₂ : Unit → C "world") (h₃ : ∀ s, C s) : matchString C "hello" h₁ h₂ h₃ = h₁ () := difPos rfl axiom neg1 : "world" ≠ "hello" theorem matchString.Eq2 (C : String → Sort v) (h₁ : Unit → C "hello") (h₂ : Unit → C "world") (h₃ : ∀ s, C s) : matchString C "world" h₁ h₂ h₃ = h₂ () := have aux₁ : matchString C "world" h₁ h₂ h₃ = if h : "world" = "world" then @Eq.rec _ _ (fun x _ => C x) (h₂ ()) _ h.symm else h₃ "world" from difNeg neg1; have aux₂ : (if h : "world" = "world" then @Eq.rec _ _ (fun x _ => C x) (h₂ ()) _ h.symm else h₃ "world" : C "world") = h₂ () from difPos rfl; Eq.trans aux₁ aux₂ theorem matchString.Eq3 (C : String → Sort v) (h₁ : Unit → C "hello") (h₂ : Unit → C "world") (h₃ : ∀ s, C s) (s : String) (n₁ : s ≠ "hello") (n₂ : s ≠ "world") : matchString C s h₁ h₂ h₃ = h₃ s := have aux₁ : matchString C s h₁ h₂ h₃ = if h : s = "world" then @Eq.rec _ _ (fun x _ => C x) (h₂ ()) _ h.symm else h₃ s from difNeg n₁; have aux₂ : (if h : s = "world" then @Eq.rec _ _ (fun x _ => C x) (h₂ ()) _ h.symm else h₃ s : C s) = h₃ s from difNeg n₂; Eq.trans aux₁ aux₂
import data.real.basic theorem challenge3 : (2 : ℝ) + 2 ≠ 5 := begin norm_num end
informal statement Let $X$ be a topological space and let $Y$ be a metric space. Let $f_{n}: X \rightarrow Y$ be a sequence of continuous functions. Let $x_{n}$ be a sequence of points of $X$ converging to $x$. Show that if the sequence $\left(f_{n}\right)$ converges uniformly to $f$, then $\left(f_{n}\left(x_{n}\right)\right)$ converges to $f(x)$.formal statement theorem exercise_22_2b {X : Type*} [topological_space X] {A : set X} (r : X → A) (hr : continuous r) (h : ∀ x : A, r x = x) : quotient_map r :=
import analysis.real tactic.norm_num algebra.group_power theorem Q5a1 (S : set ℝ) : (∃ x : ℝ, x ∈ lower_bounds S) ↔ (∃ y : ℝ, y ∈ upper_bounds {t : ℝ | ∃ s ∈ S, t = -s }) := sorry theorem Q5a2 (S : set ℝ) (x : ℝ) : is_glb S x ↔ is_lub {t : ℝ | ∃ s ∈ S, t = -s} (-x) := sorry lemma Q5bhelper (S : set ℝ) (x₁ x₂ : ℝ) : is_glb S x₁ ∧ is_glb S x₂ → x₁ ≤ x₂ := begin intro H, have Hglb1 := H.left, have Hlb1 := Hglb1.left, have Hglb2 := H.right, have H1 := Hglb2.right, exact H1 _ Hlb1, end theorem Q5b (S : set ℝ) (x₁ x₂ : ℝ) : is_glb S x₁ ∧ is_glb S x₂ → x₁ = x₂ := sorry theorem Q5c : (∀ S : set ℝ, (∃ w : ℝ, w ∈ S) → (∃ x : ℝ, x ∈ upper_bounds S) → ∃ y : ℝ, is_lub S y) → (∀ T : set ℝ, (∃ w₁ : ℝ, w₁ ∈ T) → (∃ x₁ : ℝ, x₁ ∈ lower_bounds T) → ∃ y₁ : ℝ, is_glb T y₁) := sorry
import data.real.basic lemma mp (p q : Prop) : p → (p → q) → q := λ hp hpq, hpq hp
informal statement Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.formal statement theorem exercise_3_1_3a {A : Type*} [comm_group A] (B : subgroup A) : ∀ a b : A ⧸ B, a*b = b*a :=
informal statement Prove that characteristic subgroups are normal.formal statement theorem exercise_4_4_6a {G : Type*} [group G] (H : subgroup G) [subgroup.characteristic H] : subgroup.normal H :=
import group_theory.subgroup theorem cpge_groupe_9_a {G1 : Type*} [group G1] {G2 : Type*} [group G2] (f : G1 →* G2) : ∀ (a : G1), ( (f a = 1) → (∀ (x : G1), f (x * a * x⁻¹) = 1)) := sorry
informal statement Prove that if an integer is the sum of two rational squares, then it is the sum of two integer squares.formal statement theorem exercise_8_3_6a {R : Type*} [ring R] (hR : R = (gaussian_int ⧸ ideal.span ({⟨0, 1⟩} : set gaussian_int))) : is_field R ∧ ∃ finR : fintype R, @card R finR = 2 :=
import data.real.basic tactic.ring tactic.tidy /- Definitions -/ definition double (n : ℕ) : ℕ := n + n #check double #check double ∘ double definition quadruple : ℕ → ℕ := double ∘ double definition FLT : Prop := ∀ n > 2, ∀ x y z, x^n + y^n = z^n → (x = 0 ∨ y = 0) theorem Wiles : FLT := begin unfold FLT, intros, sorry end --- --- --- --- --- --- --- --- --- --- --- --- --- --- lemma transitive_imply (P Q R : Prop) (P_imp_Q : P → Q) (Q_imp_R : Q → R) : P → R := begin intro P_is_true, apply Q_imp_R, apply P_imp_Q, assumption, end lemma transitive_imply' (P Q R : Prop) (P_imp_Q : P → Q) (Q_imp_R : Q → R) : P → R := Q_imp_R ∘ P_imp_Q
import linear_algebra.basic universes u v w x variables {R : Type u} [ring R] variables {M₁ : Type v} [add_comm_group M₁] [module R M₁] variables {M₂ : Type w} [add_comm_group M₂] [module R M₂] variables {M₃ : Type x} [add_comm_group M₃] [module R M₃] open linear_map open submodule lemma linear_map.ker_le_range_iff {f : M₁ →ₗ[R] M₂} {g : M₂ →ₗ[R] M₃} : g.ker ≤ f.range ↔ f.range.mkq.comp g.ker.subtype = 0 := by rw [←range_le_ker_iff, ker_mkq, range_subtype] /-⟨λ h, ker_eq_top.1 $ eq_top_iff'.2 $ λ x, mem_ker.2 $ by simpa using mem_range.1 (h x.2), λ h, begin rw ←range_le_ker_iff at h, rw ker_mkq at h, rw range_subtype at h, exact h, end- /-x hx, begin rw ←submodule.ker_mkq f.range, apply mem_ker.2, rw ←zero_apply x, rw ←h, --rw ←submodule.subtype_apply _ ⟨x, hx⟩, exact mem_ker.2 (@linear_map.congr _ _ _ _ _ _ _ _ (comp (mkq (range f)) (submodule.subtype (ker g))) 0 ⟨x, hx⟩ h),-/ end⟩-/
-- Andreas, 2017-01-14, issue #2405 reported by m0davis -- Instance not found due to regression introduced by -- parameter-refinement. -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.instance:70 #-} -- {-# OPTIONS -v tc.meta.assign:40 #-} -- {-# OPTIONS -v tc.conv:40 #-} -- {-# OPTIONS -v tc.sig.param:100 #-} postulate R : Set → Set S : (F : Set → Set) ⦃ _ : {A : Set} → R (F A) ⦄ → Set module M1 (X : Set) where postulate F : Set → Set instance Ri : {A : Set} → R (F A) Si-works : S F ⦃ Ri ⦄ Si-test : S F -- WAS: -- No instance of type R (F A) was found in scope. -} -- -- candidate: -- Ri X : (A : Set) → R (F X A) -- Ri 0 : Π Set λ A → R (F 1 0) -- Ri 0 _A : R (F 0 (_A 1 0)) -- goal: -- getMetaType -- ? : (X A : Set) → R (F X A) -- ? : Π Set λ X → Pi Set λ A → R (F 1 0) -- ? : R (F A) -- ? : R (F 1 0) -- Should succeed.
/- Copyright (c) 2021 Yourong Zang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yourong Zang -/ import analysis.calculus.conformal.normed_space import analysis.inner_product_space.conformal_linear_map /-! # Conformal maps between inner product spaces A function between inner product spaces is which has a derivative at `x` is conformal at `x` iff the derivative preserves inner products up to a scalar multiple. -/ noncomputable theory variables {E F : Type*} variables [normed_add_comm_group E] [normed_add_comm_group F] variables [inner_product_space ℝ E] [inner_product_space ℝ F] open_locale real_inner_product_space /-- A real differentiable map `f` is conformal at point `x` if and only if its differential `fderiv ℝ f x` at that point scales every inner product by a positive scalar. -/ lemma conformal_at_iff' {f : E → F} {x : E} : conformal_at f x ↔ ∃ (c : ℝ), 0 < c ∧ ∀ (u v : E), ⟪fderiv ℝ f x u, fderiv ℝ f x v⟫ = c * ⟪u, v⟫ := by rw [conformal_at_iff_is_conformal_map_fderiv, is_conformal_map_iff] /-- A real differentiable map `f` is conformal at point `x` if and only if its differential `f'` at that point scales every inner product by a positive scalar. -/ lemma conformal_at_iff {f : E → F} {x : E} {f' : E →L[ℝ] F} (h : has_fderiv_at f f' x) : conformal_at f x ↔ ∃ (c : ℝ), 0 < c ∧ ∀ (u v : E), ⟪f' u, f' v⟫ = c * ⟪u, v⟫ := by simp only [conformal_at_iff', h.fderiv] /-- The conformal factor of a conformal map at some point `x`. Some authors refer to this function as the characteristic function of the conformal map. -/ def conformal_factor_at {f : E → F} {x : E} (h : conformal_at f x) : ℝ := classical.some (conformal_at_iff'.mp h) lemma conformal_factor_at_pos {f : E → F} {x : E} (h : conformal_at f x) : 0 < conformal_factor_at h := (classical.some_spec $ conformal_at_iff'.mp h).1 lemma conformal_factor_at_inner_eq_mul_inner' {f : E → F} {x : E} (h : conformal_at f x) (u v : E) : ⟪(fderiv ℝ f x) u, (fderiv ℝ f x) v⟫ = (conformal_factor_at h : ℝ) * ⟪u, v⟫ := (classical.some_spec $ conformal_at_iff'.mp h).2 u v lemma conformal_factor_at_inner_eq_mul_inner {f : E → F} {x : E} {f' : E →L[ℝ] F} (h : has_fderiv_at f f' x) (H : conformal_at f x) (u v : E) : ⟪f' u, f' v⟫ = (conformal_factor_at H : ℝ) * ⟪u, v⟫ := (H.differentiable_at.has_fderiv_at.unique h) ▸ conformal_factor_at_inner_eq_mul_inner' H u v
opaque f : Nat → Nat opaque g : Nat → Nat namespace Foo @[scoped simp] axiom ax1 (x : Nat) : f (g x) = x @[scoped simp] axiom ax2 (x : Nat) : g (g x) = g x end Foo theorem ex1 : f (g (g (g x))) = x := by simp -- does not use ax1 and ax2 simp [Foo.ax1, Foo.ax2] theorem ex2 : f (g (g (g x))) = x := have h₁ : f (g (g (g x))) = f (g x) := by simp; /- try again with `Foo` scoped lemmas -/ open Foo in simp have h₂ : f (g x) = x := by simp; open Foo in simp Eq.trans h₁ h₂ -- open Foo in simp -- works theorem ex3 : f (g (g (g x))) = x := by simp simp [Foo.ax1, Foo.ax2] open Foo in theorem ex4 : f (g (g (g x))) = x := by simp theorem ex5 : f (g (g (g x))) = x ∧ f (g x) = x := by apply And.intro { simp; open Foo in simp } { simp; open Foo in simp }
theorem ex1 (p q r : Prop) (h1 : p ∨ q) (h2 : p → q) : q := by theorem ex2 (p q r : Prop) (h1 : p ∨ q) (h2 : p → q) : q := by cases h1 case inl =>
[STATEMENT] lemma ensures_simple: "\<lbrakk> \<turnstile> $P \<and> N \<longrightarrow> P` \<or> Q`; \<turnstile> ($P \<and> N) \<and> A \<longrightarrow> Q` \<rbrakk> \<Longrightarrow> \<turnstile> \<box>N \<and> \<box>\<diamond>A \<longrightarrow> (P \<leadsto> Q)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>\<turnstile> $P \<and> N \<longrightarrow> P$ \<or> Q$; \<turnstile> ($P \<and> N) \<and> A \<longrightarrow> Q$\<rbrakk> \<Longrightarrow> \<turnstile> \<box>N \<and> \<box>\<diamond>A \<longrightarrow> (P \<leadsto> Q) [PROOF STEP] apply clarsimp [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>sigma. \<lbrakk>\<turnstile> $P \<and> N \<longrightarrow> P$ \<or> Q$; \<turnstile> ($P \<and> N) \<and> A \<longrightarrow> Q$; sigma \<Turnstile> \<box>N; sigma \<Turnstile> \<box>\<diamond>A\<rbrakk> \<Longrightarrow> sigma \<Turnstile> P \<leadsto> Q [PROOF STEP] apply (erule (2) ensures [temp_use]) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<And>sigma. \<lbrakk>\<turnstile> ($P \<and> N) \<and> A \<longrightarrow> Q$; sigma \<Turnstile> \<box>N; sigma \<Turnstile> \<box>\<diamond>A\<rbrakk> \<Longrightarrow> sigma \<Turnstile> \<box>(\<box>P \<longrightarrow> \<diamond>A) [PROOF STEP] apply (force elim!: STL4E [temp_use]) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
import data.real.basic import data.polynomial.basic import data.polynomial.ring_division import data.complex.basic theorem USAMO_Problem_3_1977 (a b : ℂ): (a ∈ polynomial.roots ((polynomial.monomial 4 (1:ℂ ) ) + (polynomial.monomial 3 (1:ℂ) ) - 1) ∧ b ∈ polynomial.roots ((polynomial.monomial 4 (1:ℂ) ) + (polynomial.monomial 3 (1:ℂ) ) - 1)) → (a*b) ∈ polynomial.roots (polynomial.monomial 6 (1:ℂ ) + polynomial.monomial 4 (1:ℂ ) + polynomial.monomial 3 (1:ℂ ) - polynomial.monomial 2 (1:ℂ ) -1) := sorry
example : ∃ a : ℕ, 5 = a := begin apply exists.intro, reflexivity end
/- Copyright (c) 2022 Michael Stoll. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Stoll ! This file was ported from Lean 3 source module data.fin.tuple.bubble_sort_induction ! leanprover-community/mathlib commit 50832daea47b195a48b5b33b1c8b2162c48c3afc ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Data.Fin.Tuple.Sort import Mathbin.Data.Fintype.Perm import Mathbin.Order.WellFounded /-! # "Bubble sort" induction > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We implement the following induction principle `tuple.bubble_sort_induction` on tuples with values in a linear order `α`. Let `f : fin n → α` and let `P` be a predicate on `fin n → α`. Then we can show that `f ∘ sort f` satisfies `P` if `f` satisfies `P`, and whenever some `g : fin n → α` satisfies `P` and `g i > g j` for some `i < j`, then `g ∘ swap i j` also satisfies `P`. We deduce it from a stronger variant `tuple.bubble_sort_induction'`, which requires the assumption only for `g` that are permutations of `f`. The latter is proved by well-founded induction via `well_founded.induction_bot'` with respect to the lexicographic ordering on the finite set of all permutations of `f`. -/ namespace Tuple #print Tuple.bubble_sort_induction' /- /-- *Bubble sort induction*: Prove that the sorted version of `f` has some property `P` if `f` satsifies `P` and `P` is preserved on permutations of `f` when swapping two antitone values. -/ theorem bubble_sort_induction' {n : ℕ} {α : Type _} [LinearOrder α] {f : Fin n → α} {P : (Fin n → α) → Prop} (hf : P f) (h : ∀ (σ : Equiv.Perm (Fin n)) (i j : Fin n), i < j → (f ∘ σ) j < (f ∘ σ) i → P (f ∘ σ) → P (f ∘ σ ∘ Equiv.swap i j)) : P (f ∘ sort f) := by letI := @Preorder.lift _ (Lex (Fin n → α)) _ fun σ : Equiv.Perm (Fin n) => toLex (f ∘ σ) refine' @WellFounded.induction_bot' _ _ _ (@Finite.Preorder.wellFounded_lt (Equiv.Perm (Fin n)) _ _) (Equiv.refl _) (sort f) P (fun σ => f ∘ σ) (fun σ hσ hfσ => _) hf obtain ⟨i, j, hij₁, hij₂⟩ := antitone_pair_of_not_sorted' hσ exact ⟨σ * Equiv.swap i j, Pi.lex_desc hij₁ hij₂, h σ i j hij₁ hij₂ hfσ⟩ #align tuple.bubble_sort_induction' Tuple.bubble_sort_induction' -/ #print Tuple.bubble_sort_induction /- /-- *Bubble sort induction*: Prove that the sorted version of `f` has some property `P` if `f` satsifies `P` and `P` is preserved when swapping two antitone values. -/ theorem bubble_sort_induction {n : ℕ} {α : Type _} [LinearOrder α] {f : Fin n → α} {P : (Fin n → α) → Prop} (hf : P f) (h : ∀ (g : Fin n → α) (i j : Fin n), i < j → g j < g i → P g → P (g ∘ Equiv.swap i j)) : P (f ∘ sort f) := bubble_sort_induction' hf fun σ => h _ #align tuple.bubble_sort_induction Tuple.bubble_sort_induction -/ end Tuple
informal statement Let $H \leq K \leq G$. Prove that $|G: H|=|G: K| \cdot|K: H|$ (do not assume $G$ is finite).formal statement theorem exercise_3_2_11 {G : Type*} [group G] {H K : subgroup G} (hHK : H ≤ K) : H.index = K.index * H.relindex K :=
universe u variable {α : Type u} def split : List α → List α × List α | [] => ([], []) | [a] => ([a], []) | a::b::as => (a :: (split as).1, b :: (split as).2) theorem ex1 : split [1, 2, 3, 4, 5] = ([1, 3, 5], [2, 4]) := rfl
{-# OPTIONS --erased-cubical #-} module Erased-cubical-Open-public.Erased (_ : Set₁) where postulate A : Set
theory Scratch imports Main begin lemma "1=1" by simp end
universes u v inductive Vec2 (α : Type u) (β : Type v) : Nat → Type (max u v) | nil : Vec2 α β 0 | cons : α → β → forall {n}, Vec2 α β n → Vec2 α β (n+1) inductive Fin2 : Nat → Type | zero (n : Nat) : Fin2 (n+1) | succ {n : Nat} (s : Fin2 n) : Fin2 (n+1) theorem test1 {α β} {n} (a₁ a₂ : α) (b₁ b₂ : β) (v w : Vec2 α β n) (h : Vec2.cons a₁ b₁ v = Vec2.cons a₂ b₂ w) : a₁ = a₂ := by { injection h; assumption } theorem test2 {α β} {n} (a₁ a₂ : α) (b₁ b₂ : β) (v w : Vec2 α β n) (h : Vec2.cons a₁ b₁ v = Vec2.cons a₂ b₂ w) : v = w := by { injection h with h1 h2 h3 h4; assumption } theorem test3 {α β} {n} (a₁ a₂ : α) (b₁ b₂ : β) (v w : Vec2 α β n) (h : Vec2.cons a₁ b₁ v = Vec2.cons a₂ b₂ w) : v = w := by { injection h with _ _ _ h4; exact h4 } theorem test4 {α} (v : Fin2 0) : α := by cases v def test5 {α β} {n} (v : Vec2 α β (n+1)) : α := by cases v with | cons h1 h2 n tail => exact h1 def test6 {α β} {n} (v : Vec2 α β (n+2)) : α := by cases v with | cons h1 h2 n tail => exact h1
def f (a : Array Nat) (i : Nat) (v : Nat) (h : i < a.size) : Array Nat := a.set ⟨i, h⟩ (a.get ⟨i, h⟩ + v) set_option pp.proofs true theorem ex1 (h₃ : i = j) : f a i (0 + v) h₁ = f a j v h₂ := by simp trace_state simp [h₃] theorem ex2 (h₃ : i = j) : f a (0 + i) (0 + v) h₁ = f a j v h₂ := by simp trace_state simp [h₃] theorem ex3 (h₃ : i = j) : f a (0 + i) (0 + v) h₁ = f a j v h₂ := by simp [h₃]
@[simp] theorem liftOn_mk (a : α) (f : α → γ) (h : ∀ a₁ a₂, r a₁ a₂ → f a₁ = f a₂) : Quot.liftOn (Quot.mk r a) f h = f a := rfl theorem eq_iff_true_of_subsingleton [Subsingleton α] (x y : α) : x = y ↔ True := iff_true _ ▸ Subsingleton.elim .. section attribute [simp] eq_iff_true_of_subsingleton end @[simp] theorem PUnit.default_eq_unit : (default : PUnit) = PUnit.unit := rfl set_option trace.Meta.Tactic.simp.discharge true set_option trace.Meta.Tactic.simp.unify true set_option trace.Meta.Tactic.simp.rewrite true example : (default : PUnit) = x := by simp
section {* \isaheader{Generic Compare Algorithms} *} theory Gen_Comp imports "../Intf/Intf_Comp" "../../../Automatic_Refinement/Automatic_Refinement" begin subsection {* Order for Product *} (* TODO: Optimization? Or only go via prod_cmp? *) lemma autoref_prod_cmp_dflt_id[autoref_rules_raw]: "(dflt_cmp op \<le> op <, dflt_cmp op \<le> op <) \<in> \<langle>Id,Id\<rangle>prod_rel \<rightarrow> \<langle>Id,Id\<rangle>prod_rel \<rightarrow> Id" by auto lemma gen_prod_cmp_dflt[autoref_rules_raw]: assumes PRIO_TAG_GEN_ALGO assumes "GEN_OP cmp1 (dflt_cmp op \<le> op <) (R1 \<rightarrow> R1 \<rightarrow> Id)" assumes "GEN_OP cmp2 (dflt_cmp op \<le> op <) (R2 \<rightarrow> R2 \<rightarrow> Id)" shows "(cmp_prod cmp1 cmp2, dflt_cmp op \<le> op <) \<in> \<langle>R1,R2\<rangle>prod_rel \<rightarrow> \<langle>R1,R2\<rangle>prod_rel \<rightarrow> Id" proof - have E: "dflt_cmp op \<le> op < = cmp_prod (dflt_cmp op \<le> op <) (dflt_cmp op \<le> op <)" by (auto simp: dflt_cmp_def prod_less_def prod_le_def intro!: ext) show ?thesis using assms unfolding autoref_tag_defs E by parametricity qed end
-- /- This example demonstratea that when we are using `nativeDecide`, we are also trusting the correctness of `implementedBy` annotations, foreign functions (i.e., `[extern]` annotations), etc. -/ def g (b : Bool) := false /- The following `implementedBy` is telling the compiler "trust me, `g` does implement `f`" which is clearly false in this example. -/ @[implementedBy g] def f (b : Bool) := b theorem fConst (b : Bool) : f b = false := match b with | true => /- The following `nativeDecide` is going to use `g` to evaluate `f` because of the `implementedBy` directive. -/ have : (f true) = false := by nativeDecide this | false => rfl theorem trueEqFalse : true = false := have h₁ : f true = true := rfl; have h₂ : f true = false := fConst true; Eq.trans h₁.symm h₂ /- We managed to prove `False` using the unsound annotation `implementedBy` above. -/ theorem unsound : False := Bool.noConfusion trueEqFalse #print axioms unsound -- axiom 'Lean.ofReduceBool' is listed
[GOAL] ⊢ DivisionRing ℚ [PROOFSTEP] infer_instance
informal statement Show that there are infinitely many primes congruent to $-1$ modulo 6 .formal statement theorem exercise_3_1 : infinite {p : primes // p ≡ -1 [ZMOD 6]} :=
/-| Hello World! -/ #print "Hello World!" /-| A literate comment! -/ theorem exampleTheorem (p q : Prop) (hp : p) (hq : q) : p ∧ q ∧ p := by apply And.intro . exact hp . sorry
class Preorder (α : Type u) extends LE α where le_refl (a : α) : a ≤ a le_trans {a b c : α} : a ≤ b → b ≤ c → a ≤ c instance {α : Type u} {β : α → Type v} [(a : α) → Preorder (β a)] : Preorder ((a : α) → β a) where le f g := ∀ a, f a ≤ g a le_refl f := fun a => Preorder.le_refl (f a) le_trans := fun h₁ h₂ a => Preorder.le_trans (h₁ a) (h₂ a) -- In Lean 3, we defined `monotone` using the strict implicit notation `{{ ... }}`. -- Implicit lambdas in Lean 4 allow us to use the regular `{...}` def Monotone [Preorder α] [Preorder β] (f : α → β) := ∀ {a b}, a ≤ b → f a ≤ f b theorem monotone_id [Preorder α] : Monotone (α := α) id := fun h => h theorem monotone_id' [Preorder α] : Monotone (α := α) id := @fun a b h => h -- `@` disables implicit lambdas theorem monotone_id'' [Preorder α] : Monotone (α := α) id := fun {a b} (h : a ≤ b) => h -- `{a b}` disables implicit lambdas theorem monotone_const [Preorder α] [Preorder β] (b : β) : Monotone (fun a : α => b) := fun _ => Preorder.le_refl b theorem monotone_comp [Preorder α] [Preorder β] [Preorder γ] {g : β → γ} {f : α → β} (m_g : Monotone g) (m_f : Monotone f) : Monotone (g ∘ f) := fun h => m_g (m_f h) theorem monotone_fun [Preorder α] [Preorder γ] {f : α → β → γ} (m : (b : β) → Monotone (fun a => f a b)) : Monotone f := fun h b => m b h theorem ex [Preorder α] {f g h : α → α} (m_h : Monotone h) (m_g : Monotone g) (m_f : Monotone f) : Monotone (h ∘ g ∘ f) := monotone_comp m_h (monotone_comp m_g m_f) -- implicit lambdas in action here
From stdpp Require Import base tactics. (** Test parsing of variants of [(≡)] notation. *) Lemma test_equiv_annot_sections `{!Equiv A, !Equivalence (≡@{A})} (x : A) : x ≡@{A} x ∧ (≡@{A}) x x ∧ (x ≡.) x ∧ (.≡ x) x ∧ ((x ≡@{A} x)) ∧ ((≡@{A})) x x ∧ ((x ≡.)) x ∧ ((.≡ x)) x ∧ ( x ≡@{A} x) ∧ ( x ≡.) x ∧ (x ≡@{A} x ) ∧ (≡@{A} ) x x ∧ (.≡ x ) x. Proof. naive_solver. Qed.
import LeanCodePrompts.FirstTacticFinder import Mathlib.Tactic.Basic import Mathlib.Tactic.Use import Mathlib -- example : ∀ n : ℕ, ∃ m : ℕ, n < 2 * m + 1 := by -- repeat (aide_lookahead) -- repeat (sorry) set_option trace.Translate.info true example : ∀ n : ℕ, ∃ m : ℕ, n < 2 * m + 1 := by show_tactic_prompt aide aide aide repeat (sorry)
informal statement Show that if $X$ is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.formal statement theorem exercise_32_1 {X : Type*} [topological_space X] (hX : normal_space X) (A : set X) (hA : is_closed A) : normal_space {x // x ∈ A} :=
theorem P_implies_P (P : Prop) : P → P := begin intro HP, exact HP end
import Mathlib.Data.Nat.Basic theorem rangeDecompose (start mid stop : ℕ) (hs : start ≤ mid ∧ mid ≤ stop) {f : ℕ → β → Id (ForInStep β)} : STD.forIn (mkRange' start stop) init f = STD.forIn (mkRange' mid stop) (Id.run (STD.forIn (mkRange' start mid) init f)) f := by sorry
import help data.nat.prime open nat theorem Euclid (n : ℕ) : ∃ p ≥ n, prime p := begin let N := n.fact + 1, let p := min_fac N, use_this p, have p_is_prime : prime p := min_fac_prime _, split, show p ≥ n, by_contradiction, have key_fact : p ∣ n.fact := dvd_fact _ _, have oops : p ∣ 1, all_goals { auto }, end
lemma lt_aux_one (a b : mynat) : a ≤ b ∧ ¬ (b ≤ a) → succ a ≤ b := begin intro h, cases h with h1 h2, cases h1 with c h1, cases c, rw add_zero at h1, rw h1 at h2, exfalso, exact h2 (le_refl a), rwa [h1, add_succ], apply succ_le_succ, use c, refl, end
(* Title: HOL/ex/PresburgerEx.thy Author: Amine Chaieb, TU Muenchen *) section {* Some examples for Presburger Arithmetic *} theory PresburgerEx imports Presburger begin lemma "\<And>m n ja ia. \<lbrakk>\<not> m \<le> j; \<not> (n::nat) \<le> i; (e::nat) \<noteq> 0; Suc j \<le> ja\<rbrakk> \<Longrightarrow> \<exists>m. \<forall>ja ia. m \<le> ja \<longrightarrow> (if j = ja \<and> i = ia then e else 0) = 0" by presburger lemma "(0::nat) < emBits mod 8 \<Longrightarrow> 8 + emBits div 8 * 8 - emBits = 8 - emBits mod 8" by presburger lemma "(0::nat) < emBits mod 8 \<Longrightarrow> 8 + emBits div 8 * 8 - emBits = 8 - emBits mod 8" by presburger theorem "(\<forall>(y::int). 3 dvd y) ==> \<forall>(x::int). b < x --> a \<le> x" by presburger theorem "!! (y::int) (z::int) (n::int). 3 dvd z ==> 2 dvd (y::int) ==> (\<exists>(x::int). 2*x = y) & (\<exists>(k::int). 3*k = z)" by presburger theorem "!! (y::int) (z::int) n. Suc(n::nat) < 6 ==> 3 dvd z ==> 2 dvd (y::int) ==> (\<exists>(x::int). 2*x = y) & (\<exists>(k::int). 3*k = z)" by presburger theorem "\<forall>(x::nat). \<exists>(y::nat). (0::nat) \<le> 5 --> y = 5 + x " by presburger text{*Slow: about 7 seconds on a 1.6GHz machine.*} theorem "\<forall>(x::nat). \<exists>(y::nat). y = 5 + x | x div 6 + 1= 2" by presburger theorem "\<exists>(x::int). 0 < x" by presburger theorem "\<forall>(x::int) y. x < y --> 2 * x + 1 < 2 * y" by presburger theorem "\<forall>(x::int) y. 2 * x + 1 \<noteq> 2 * y" by presburger theorem "\<exists>(x::int) y. 0 < x & 0 \<le> y & 3 * x - 5 * y = 1" by presburger theorem "~ (\<exists>(x::int) (y::int) (z::int). 4*x + (-6::int)*y = 1)" by presburger theorem "\<forall>(x::int). b < x --> a \<le> x" apply (presburger elim) oops theorem "~ (\<exists>(x::int). False)" by presburger theorem "\<forall>(x::int). (a::int) < 3 * x --> b < 3 * x" apply (presburger elim) oops theorem "\<forall>(x::int). (2 dvd x) --> (\<exists>(y::int). x = 2*y)" by presburger theorem "\<forall>(x::int). (2 dvd x) --> (\<exists>(y::int). x = 2*y)" by presburger theorem "\<forall>(x::int). (2 dvd x) = (\<exists>(y::int). x = 2*y)" by presburger theorem "\<forall>(x::int). ((2 dvd x) = (\<forall>(y::int). x \<noteq> 2*y + 1))" by presburger theorem "~ (\<forall>(x::int). ((2 dvd x) = (\<forall>(y::int). x \<noteq> 2*y+1) | (\<exists>(q::int) (u::int) i. 3*i + 2*q - u < 17) --> 0 < x | ((~ 3 dvd x) &(x + 8 = 0))))" by presburger theorem "~ (\<forall>(i::int). 4 \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i))" by presburger theorem "\<forall>(i::int). 8 \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i)" by presburger theorem "\<exists>(j::int). \<forall>i. j \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i)" by presburger theorem "~ (\<forall>j (i::int). j \<le> i --> (\<exists>x y. 0 \<le> x & 0 \<le> y & 3 * x + 5 * y = i))" by presburger text{*Slow: about 5 seconds on a 1.6GHz machine.*} theorem "(\<exists>m::nat. n = 2 * m) --> (n + 1) div 2 = n div 2" by presburger text{* This following theorem proves that all solutions to the recurrence relation $x_{i+2} = |x_{i+1}| - x_i$ are periodic with period 9. The example was brought to our attention by John Harrison. It does does not require Presburger arithmetic but merely quantifier-free linear arithmetic and holds for the rationals as well. Warning: it takes (in 2006) over 4.2 minutes! *} lemma "\<lbrakk> x3 = abs x2 - x1; x4 = abs x3 - x2; x5 = abs x4 - x3; x6 = abs x5 - x4; x7 = abs x6 - x5; x8 = abs x7 - x6; x9 = abs x8 - x7; x10 = abs x9 - x8; x11 = abs x10 - x9 \<rbrakk> \<Longrightarrow> x1 = x10 & x2 = (x11::int)" by arith end
informal statement Show that any subgroup of order $p^{n-1}$ in a group $G$ of order $p^n$ is normal in $G$.formal statement theorem exercise_4_1_19 : infinite {x : quaternion ℝ | x^2 = -1} :=
import tactic variable X : Type theorem reflexive_of_symmetric_transitive_and_connected (r : X → X → Prop) (h_symm : ∀ x y : X, r x y → r y x) (h_trans : ∀ x y z : X, r x y → r y z → r x z) (h_connected : ∀ x, ∃ y, r x y) : (∀ x : X, r x x) := begin sorry, end
module Main mutual %inline is_even : Int -> Int is_even n = if n == 0 then 1 else is_odd $ n-1 is_odd : Int -> Int is_odd n = if n == 0 then 0 else is_even $ n-1 main : JS_IO () main = do putStr' $ show $ is_even 100001
informal statement Define $\wedge(n)=\log p$ if $n$ is a power of $p$ and zero otherwise. Prove that $\sum_{A \mid n} \mu(n / d) \log d$ $=\wedge(n)$.formal statement theorem exercise_3_1 : infinite {p : primes // p ≡ -1 [ZMOD 6]} :=
lemma contrapositive2 (P Q : Prop) : (¬ Q → ¬ P) → (P → Q) := begin by_cases p : P; by_cases q : Q, intros h p2, exact q, repeat { tauto! }, end
informal statement If $C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0,$ where $C_{0}, \ldots, C_{n}$ are real constants, prove that the equation $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1.formal statement theorem exercise_5_6 {f : ℝ → ℝ} (hf1 : continuous f) (hf2 : ∀ x, differentiable_at ℝ f x) (hf3 : f 0 = 0) (hf4 : monotone (deriv f)) : monotone_on (λ x, f x / x) (set.Ioi 0) :=
theorem tst0 (x : Nat) : x + 0 = x + 0 := by { generalize x + 0 = y; exact (Eq.refl y) } theorem tst1 (x : Nat) : x + 0 = x + 0 := by { generalize h : x + 0 = y; exact (Eq.refl y) } theorem tst2 (x y w : Nat) (h : y = w) : (x + x) + w = (x + x) + y := by { generalize h' : x + x = z; subst y; exact Eq.refl $ z + w } theorem tst3 (x y w : Nat) (h : x + x = y) : (x + x) + (x+x) = (x + x) + y := by { generalize h' : x + x = z; subst z; subst y; exact rfl } theorem tst4 (x y w : Nat) (h : y = w) : (x + x) + w = (x + x) + y := by { generalize h' : x + y = z; -- just add equality subst h; exact rfl }
open import Relation.Binary.Core module TreeSort.Impl2.Correctness.Order {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBSTree _≤_ open import BBSTree.Properties _≤_ trans≤ open import Data.List open import Function using (_∘_) open import List.Sorted _≤_ open import TreeSort.Impl2 _≤_ tot≤ theorem-treeSort-sorted : (xs : List A) → Sorted (flatten (treeSort xs)) theorem-treeSort-sorted = lemma-bbst-sorted ∘ treeSort
abbrev M := ExceptT String <| StateT Nat Id def f (xs : List Nat) : M Unit := do for x in xs do if x == 0 then throw "contains zero" #eval f [1, 2, 3] |>.run' 0 #eval f [1, 0, 3] |>.run' 0 theorem ex1 : (f [1, 2, 3] |>.run' 0) = Except.ok () := rfl theorem ex2 : (f [1, 0, 3] |>.run' 0) = Except.error "contains zero" := rfl universe u abbrev N := ExceptT (ULift.{u} String) Id def idM {α : Type u} (a : α) : N α := pure a def checkEq {α : Type u} [BEq α] [ToString α] (a b : α) : N PUnit := do unless a == b do throw (ULift.up s!"{a} is not equal to {b}") def g {α : Type u} [BEq α] [ToString α] (xs : List α) (a : α) : N PUnit := do for x in xs do let a ← idM a checkEq x a #eval g [1, (2:Nat), 3] 1 |>.run
lemma zero_le (a : mynat) : 0 ≤ a := begin rw le_iff_exists_add, use a, rwa zero_add, end
/- # Advanced proposition world. ## Level 3: and_trans. -/ /- Lemma If $P$, $Q$ and $R$ are true/false statements, then $P\land Q$ and $Q\land R$ together imply $P\land R$. -/ lemma and_trans (P Q R : Prop) : P ∧ Q → Q ∧ R → P ∧ R := begin intro hpq, intro hqr, cases hpq with p q, cases hqr with q' r, split, assumption, assumption, end
informal statement Show that $\int_0^1 \log(\sin \pi x) dx = - \log 2$.formal statement theorem exercise_3_9 : ∫ x in 0..1, real.log (real.sin (real.pi * x)) = - real.log 2 :=
module ModusPonens where modusPonens : ∀ {P Q : Set} → (P → Q) → P → Q modusPonens x = x
[STATEMENT] lemma HIm_nth [simp]: "HIm x $ 1 = Im1 x" "HIm x $ 2 = Im2 x" "HIm x $ 3 = Im3 x" "HIm x $ 4 = Im4 x" "HIm x $ 5 = Im5 x" "HIm x $ 6 = Im6 x" "HIm x $ 7 = Im7 x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (HIm x $ 1 = Im1 x &&& HIm x $ 2 = Im2 x &&& HIm x $ 3 = Im3 x) &&& (HIm x $ 4 = Im4 x &&& HIm x $ 5 = Im5 x) &&& HIm x $ 6 = Im6 x &&& HIm x $ 7 = Im7 x [PROOF STEP] by (simp_all add: HIm_def)
/- Copyright (c) 2021 OpenAI. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kunhao Zheng, Stanislas Polu, David Renshaw, OpenAI GPT-f -/ import mathzoo.imports.miniF2F open_locale nat rat real big_operators topological_space /-- Suppose that $f(x+3)=3x^2 + 7x + 4$ and $f(x)=ax^2 + bx + c$. What is $a+b+c$? Answer: $2$ --/ theorem amc12a_2009_p9 (a b c : ℝ) (f : ℝ → ℝ) (h₀ : ∀ x, f (x + 3) = 3 * x^2 + 7 * x + 4) (h₁ : ∀ x, f x = a * x^2 + b * x + c) : a + b + c = 2 := begin simp [*, pow_succ'] at *, linarith [h₀ 0, h₀ 1, h₀ 2], end
theorem tst1 (x y z : Nat) : y = z → x = x → x = y → x = z := by { intros h1 h2 h3; revert h2; intro h2; exact Eq.trans h3 h1 } theorem tst2 (x y z : Nat) : y = z → x = x → x = y → x = z := by { intros h1 h2 h3; revert y; intros y hb ha; exact Eq.trans ha hb } theorem tst3 (x y z : Nat) : y = z → x = x → x = y → x = z := by intros revert ‹x = y› intro ha exact Eq.trans ha ‹y = z›
universe u theorem instForAll {A : Type u} {f : A → Prop} {a : A} : (forall a' : A, f a') → f a := by intro h exact h a theorem instEqual₁ {A : Type u} {P : A → Prop} {t : A} : (forall x : A, x = t → P x) → P t := by intro h exact h t rfl theorem instEqual₂ {A : Type u} {P : A → Prop} {t : A} : P t → (forall x : A, x = t → P x) := by intros h x r rewrite [r] exact h theorem instEqual {A : Type u} {P : A → Prop} {t : A} : (forall x : A, x = t → P x) ↔ P t := ⟨instEqual₁, instEqual₂⟩
lemma ne_succ_self (n : ℕ) : n ≠ nat.succ n := begin end
import data.real.basic import data.set.intervals.unordered_interval theorem USAMO_Problem_3_1993 (f : ℝ -> ℝ) [f ≥ 0] [f(1) = 1]: (∀ x y : ℝ, (x ∈ (set.interval (0 : ℝ) (1: ℝ)) ∧ y ∈ (set.interval (0 : ℝ) (1: ℝ))) → x+y ∈ (set.interval (0 : ℝ) (1: ℝ)) → f(x) + f(y) ≤ f(x+y)) → (∀ x : ℝ, x ∈ (set.interval (0 : ℝ) (1: ℝ)) → f(x) >= 2*x) ∧ (¬ (∃ c : ℝ, c < 2 ∧ (∀ x : ℝ, x ∈ (set.interval (0 : ℝ) (1: ℝ)) → f(x) >= c*x))) := sorry
informal statement Prove that $\cos 1^{\circ}$ is algebraic over $\mathbb{Q}$.formal statement theorem exercise_5_3_10 : is_algebraic ℚ (cos (real.pi / 180)) :=
lemma convex_prod: assumes "\<And>i. i \<in> Basis \<Longrightarrow> convex {x. P i x}" shows "convex {x. \<forall>i\<in>Basis. P i (x\<bullet>i)}"
section variables (P Q : Prop) theorem my_theorem : P ∧ Q → Q ∧ P := assume h : P ∧ Q, have P, from and.left h, have Q, from and.right h, show Q ∧ P, from and.intro ‹Q› ‹P› end
informal statement Let $F = \mathbb{Z}_p$ be the field of integers $\mod p$, where $p$ is a prime, and let $q(x) \in F[x]$ be irreducible of degree $n$. Show that $F[x]/(q(x))$ is a field having at exactly $p^n$ elements.formal statement theorem exercise_4_5_25 {p : ℕ} (hp : nat.prime p) : irreducible (∑ i : finset.range p, X ^ p : polynomial ℚ) :=
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kenny Lau -/ import data.finset.basic /-! # Finsets of ordered types -/ universes u v w variables {α : Type u} theorem directed.finset_le {r : α → α → Prop} [is_trans α r] {ι} [hι : nonempty ι] {f : ι → α} (D : directed r f) (s : finset ι) : ∃ z, ∀ i ∈ s, r (f i) (f z) := show ∃ z, ∀ i ∈ s.1, r (f i) (f z), from multiset.induction_on s.1 (let ⟨z⟩ := hι in ⟨z, λ _, false.elim⟩) $ λ i s ⟨j, H⟩, let ⟨k, h₁, h₂⟩ := D i j in ⟨k, λ a h, or.cases_on (multiset.mem_cons.1 h) (λ h, h.symm ▸ h₁) (λ h, trans (H _ h) h₂)⟩ theorem finset.exists_le {α : Type u} [nonempty α] [directed_order α] (s : finset α) : ∃ M, ∀ i ∈ s, i ≤ M := directed.finset_le directed_order.directed s
lemma of_real_0 [simp]: "of_real 0 = 0"
import PnP2023.Lec_01_25.Answer namespace Waffle theorem Answer.eq_of_le_le (a b : Answer) : a ≤ b → b ≤ a → a = b := by sorry
example : ∀ a b c : ℕ, a = b → a = c → c = b := begin intros, transitivity, symmetry, assumption, assumption end
lemma reflect_poly_0 [simp]: "reflect_poly 0 = 0"
lemma frontier_empty [simp]: "frontier {} = {}"
/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis, Jeremy Avigad The square root function. -/ import .ivt open analysis real classical topology noncomputable theory private definition sqr_lb (x : ℝ) : ℝ := 0 private theorem sqr_lb_is_lb (x : ℝ) (H : x ≥ 0) : (sqr_lb x) * (sqr_lb x) ≤ x := by rewrite [↑sqr_lb, zero_mul]; assumption private definition sqr_ub (x : ℝ) : ℝ := x + 1 private theorem sqr_ub_is_ub (x : ℝ) (H : x ≥ 0) : (sqr_ub x) * (sqr_ub x) ≥ x := begin rewrite [↑sqr_ub, left_distrib, mul_one, right_distrib, one_mul, {x + 1}add.comm, -*add.assoc], apply le_add_of_nonneg_left, repeat apply add_nonneg, apply mul_nonneg, repeat assumption, apply zero_le_one end private theorem lb_le_ub (x : ℝ) (H : x ≥ 0) : sqr_lb x ≤ sqr_ub x := begin rewrite [↑sqr_lb, ↑sqr_ub], apply add_nonneg, assumption, apply zero_le_one end private lemma sqr_cts : continuous (λ x : ℝ, x * x) := continuous_mul_of_continuous continuous_id continuous_id definition sqrt (x : ℝ) : ℝ := if H : x ≥ 0 then some (intermediate_value_incr_weak sqr_cts (lb_le_ub x H) (sqr_lb_is_lb x H) (sqr_ub_is_ub x H)) else 0 private theorem sqrt_spec {x : ℝ} (H : x ≥ 0) : sqrt x * sqrt x = x ∧ sqrt x ≥ 0 := begin rewrite [↑sqrt, dif_pos H], note Hs := some_spec (intermediate_value_incr_weak sqr_cts (lb_le_ub x H) (sqr_lb_is_lb x H) (sqr_ub_is_ub x H)), cases Hs with Hs1 Hs2, cases Hs2 with Hs2a Hs2b, exact and.intro Hs2b Hs1 end theorem sqrt_mul_self {x : ℝ} (H : x ≥ 0) : sqrt x * sqrt x = x := and.left (sqrt_spec H) theorem sqrt_nonneg (x : ℝ) : sqrt x ≥ 0 := if H : x ≥ 0 then and.right (sqrt_spec H) else by rewrite [↑sqrt, dif_neg H]; exact le.refl 0 theorem sqrt_squared {x : ℝ} (H : x ≥ 0) : (sqrt x)^2 = x := by krewrite [pow_two, sqrt_mul_self H] theorem sqrt_zero : sqrt (0 : ℝ) = 0 := have sqrt 0 * sqrt 0 = 0, from sqrt_mul_self !le.refl, or.elim (eq_zero_or_eq_zero_of_mul_eq_zero this) (λ H, H) (λ H, H) theorem sqrt_squared_of_nonneg {x : ℝ} (H : x ≥ 0) : sqrt (x^2) = x := have sqrt (x^2)^2 = x^2, from sqrt_squared (squared_nonneg x), eq_of_squared_eq_squared_of_nonneg (sqrt_nonneg (x^2)) H this theorem sqrt_squared' (x : ℝ) : sqrt (x^2) = abs x := have x^2 = (abs x)^2, by krewrite [+pow_two, -abs_mul, abs_mul_self], using this, by rewrite [this, sqrt_squared_of_nonneg (abs_nonneg x)] theorem sqrt_mul {x y : ℝ} (Hx : x ≥ 0) (Hy : y ≥ 0) : sqrt (x * y) = sqrt x * sqrt y := have (sqrt (x * y))^2 = (sqrt x * sqrt y)^2, from calc (sqrt (x * y))^2 = x * y : by rewrite [sqrt_squared (mul_nonneg Hx Hy)] ... = (sqrt x)^2 * (sqrt y)^2 : by rewrite [sqrt_squared Hx, sqrt_squared Hy] ... = (sqrt x * sqrt y)^2 : by krewrite [*pow_two]; rewrite [*mul.assoc, mul.left_comm (sqrt y)], eq_of_squared_eq_squared_of_nonneg !sqrt_nonneg (mul_nonneg !sqrt_nonneg !sqrt_nonneg) this
def g (x : Nat) (b : Bool) := if b then x - 1 else x + 1 theorem g_eq (x : Nat) (h : ¬ x = 0) : g x (x > 0) = x - 1 ∧ g x false = x + 1 := by have : x > 0 := by match x with | 0 => contradiction | x+1 => apply Nat.zero_lt_succ simp [g, this] macro_rules | `(tactic| decreasing_tactic) => `(tactic| (simp [invImage, InvImage, Prod.lex, sizeOfWFRel, measure, Nat.lt_wfRel, WellFoundedRelation.rel, g_eq, *] apply Nat.pred_lt; assumption)) def f (x : Nat) : Nat := if h : x = 0 then 1 else f (g x (x > 0)) + 2 termination_by f x => x
/- lemma divides_p_times (r : ℕ) (n : ℕ) : p^r ∣ n ↔ p^(r+1) ∣ (p * n) := calc p^r ∣ n ↔ (p * p^r) ∣ (p * n) : (nat.mul_dvd_mul_iff_left (gt_zero hp)).symm ... = (p^r * p ∣ p * n) : by rw mul_comm lemma exactly_divides_p_times (r : ℕ) (n : ℕ) : p^r ∣∣ n ↔ p^(r+1) ∣∣ (p * n) := have eq : (p * n) / p^(r+1) = n / p^r, from calc (p * n) / p^(r+1) = (p * n) / (p^r * p) : rfl ... = (p * n) / (p * p^r) : by rw mul_comm (p^r) p ... = (p * n) / p / p^r : by rw nat.div_div_eq_div_mul ... = n / p^r : by rw (nat.mul_div_cancel_left n (gt_zero hp)), -- : congr_arg (λ m, m / p^r) (nat.mul_div_cancel_left n gt_zero), and_congr (divides_p_times hp r n) (by rw eq) lemma exactly_divides' {r : ℕ} {n : ℕ} : p^r ∣∣ n → (∀ i, p^i ∣ n ↔ i ≤ r) := begin intros prn i, apply iff.intro, { intro pin, apply (le_or_gt _ _).resolve_right, intro i_gt_r, have := calc p^r * p = p^(r+1) : rfl ... ∣ p^i : pow_dvd_pow p i_gt_r ... ∣ n : pin, exact absurd (dvd_div_of_mul_dvd (pos_pow_of_pos r (gt_zero hp)) this) prn.right, }, { intro i_le_r, exact dvd.trans (pow_dvd_pow p i_le_r) (and.left prn) } end -/ /- lemma exactly_divides_mul (r s a b : ℕ) : p^r ∣∣ a → p^s ∣∣ b → p^(r+s) ∣∣ a*b := begin intros pra psb, split, { rw nat.pow_add, exact mul_dvd_mul pra.left psb.left }, let a' := a / p^r, have ha : p^r * a' = a := nat.mul_div_cancel' pra.left, let b' := b / p^s, have hb : p^s * b' = b := nat.mul_div_cancel' psb.left, have : (a * b) / (p^(r+s)) = (a / p^r) * (b / p^s) := calc (a * b) / (p^(r+s)) = ((p^r * a') * (p^s * b')) / (p^r * p^s) : by rw [ha, hb, pow_add] ... = ((p^r * p^s) * (a' * b')) / (p^r * p^s) : by ac_refl ... = a' * b' : by rw nat.mul_div_cancel_left _ (mul_pos (pos_pow_of_pos r (gt_zero hp)) (pos_pow_of_pos s (gt_zero hp))) ... = (a / p^r) * (b / p^s) : rfl, rw this, exact prime.not_dvd_mul hp pra.right psb.right end -/
section variables (x y z : ℕ) variables (h₁ : x = y) (h₂ : y = z) include h₁ h₂ theorem foo : x = z := begin rw [h₁, h₂] end omit h₁ h₂ theorem bar : x = z := eq.trans h₁ h₂ theorem baz : x = x := rfl #check @foo #check @bar #check baz end
/- Copyright (c) Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel, Yourong Zang ! This file was ported from Lean 3 source module analysis.complex.real_deriv ! leanprover-community/mathlib commit e9be2fa75faa22892937c275e27a91cd558cf8c0 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Analysis.Calculus.ContDiff import Mathbin.Analysis.Complex.Conformal import Mathbin.Analysis.Calculus.Conformal.NormedSpace /-! # Real differentiability of complex-differentiable functions `has_deriv_at.real_of_complex` expresses that, if a function on `ℂ` is differentiable (over `ℂ`), then its restriction to `ℝ` is differentiable over `ℝ`, with derivative the real part of the complex derivative. `differentiable_at.conformal_at` states that a real-differentiable function with a nonvanishing differential from the complex plane into an arbitrary complex-normed space is conformal at a point if it's holomorphic at that point. This is a version of Cauchy-Riemann equations. `conformal_at_iff_differentiable_at_or_differentiable_at_comp_conj` proves that a real-differential function with a nonvanishing differential between the complex plane is conformal at a point if and only if it's holomorphic or antiholomorphic at that point. ## TODO * The classical form of Cauchy-Riemann equations * On a connected open set `u`, a function which is `conformal_at` each point is either holomorphic throughout or antiholomorphic throughout. ## Warning We do NOT require conformal functions to be orientation-preserving in this file. -/ section RealDerivOfComplex /-! ### Differentiability of the restriction to `ℝ` of complex functions -/ open Complex variable {e : ℂ → ℂ} {e' : ℂ} {z : ℝ} /-- If a complex function is differentiable at a real point, then the induced real function is also differentiable at this point, with a derivative equal to the real part of the complex derivative. -/ theorem HasStrictDerivAt.real_of_complex (h : HasStrictDerivAt e e' z) : HasStrictDerivAt (fun x : ℝ => (e x).re) e'.re z := by have A : HasStrictFderivAt (coe : ℝ → ℂ) of_real_clm z := of_real_clm.has_strict_fderiv_at have B : HasStrictFderivAt e ((ContinuousLinearMap.smulRight 1 e' : ℂ →L[ℂ] ℂ).restrictScalars ℝ) (of_real_clm z) := h.has_strict_fderiv_at.restrict_scalars ℝ have C : HasStrictFderivAt re re_clm (e (of_real_clm z)) := re_clm.has_strict_fderiv_at simpa using (C.comp z (B.comp z A)).HasStrictDerivAt #align has_strict_deriv_at.real_of_complex HasStrictDerivAt.real_of_complex /-- If a complex function `e` is differentiable at a real point, then the function `ℝ → ℝ` given by the real part of `e` is also differentiable at this point, with a derivative equal to the real part of the complex derivative. -/ theorem HasDerivAt.real_of_complex (h : HasDerivAt e e' z) : HasDerivAt (fun x : ℝ => (e x).re) e'.re z := by have A : HasFderivAt (coe : ℝ → ℂ) of_real_clm z := of_real_clm.has_fderiv_at have B : HasFderivAt e ((ContinuousLinearMap.smulRight 1 e' : ℂ →L[ℂ] ℂ).restrictScalars ℝ) (of_real_clm z) := h.has_fderiv_at.restrict_scalars ℝ have C : HasFderivAt re re_clm (e (of_real_clm z)) := re_clm.has_fderiv_at simpa using (C.comp z (B.comp z A)).HasDerivAt #align has_deriv_at.real_of_complex HasDerivAt.real_of_complex theorem ContDiffAt.real_of_complex {n : ℕ∞} (h : ContDiffAt ℂ n e z) : ContDiffAt ℝ n (fun x : ℝ => (e x).re) z := by have A : ContDiffAt ℝ n (coe : ℝ → ℂ) z := of_real_clm.cont_diff.cont_diff_at have B : ContDiffAt ℝ n e z := h.restrict_scalars ℝ have C : ContDiffAt ℝ n re (e z) := re_clm.cont_diff.cont_diff_at exact C.comp z (B.comp z A) #align cont_diff_at.real_of_complex ContDiffAt.real_of_complex theorem ContDiff.real_of_complex {n : ℕ∞} (h : ContDiff ℂ n e) : ContDiff ℝ n fun x : ℝ => (e x).re := contDiff_iff_contDiffAt.2 fun x => h.ContDiffAt.real_of_complex #align cont_diff.real_of_complex ContDiff.real_of_complex variable {E : Type _} [NormedAddCommGroup E] [NormedSpace ℂ E] theorem HasStrictDerivAt.complexToReal_fderiv' {f : ℂ → E} {x : ℂ} {f' : E} (h : HasStrictDerivAt f f' x) : HasStrictFderivAt f (reClm.smul_right f' + I • imClm.smul_right f') x := by simpa only [Complex.restrictScalars_one_smul_right'] using h.has_strict_fderiv_at.restrict_scalars ℝ #align has_strict_deriv_at.complex_to_real_fderiv' HasStrictDerivAt.complexToReal_fderiv' theorem HasDerivAt.complexToReal_fderiv' {f : ℂ → E} {x : ℂ} {f' : E} (h : HasDerivAt f f' x) : HasFderivAt f (reClm.smul_right f' + I • imClm.smul_right f') x := by simpa only [Complex.restrictScalars_one_smul_right'] using h.has_fderiv_at.restrict_scalars ℝ #align has_deriv_at.complex_to_real_fderiv' HasDerivAt.complexToReal_fderiv' theorem HasDerivWithinAt.complexToReal_fderiv' {f : ℂ → E} {s : Set ℂ} {x : ℂ} {f' : E} (h : HasDerivWithinAt f f' s x) : HasFderivWithinAt f (reClm.smul_right f' + I • imClm.smul_right f') s x := by simpa only [Complex.restrictScalars_one_smul_right'] using h.has_fderiv_within_at.restrict_scalars ℝ #align has_deriv_within_at.complex_to_real_fderiv' HasDerivWithinAt.complexToReal_fderiv' theorem HasStrictDerivAt.complexToReal_fderiv {f : ℂ → ℂ} {f' x : ℂ} (h : HasStrictDerivAt f f' x) : HasStrictFderivAt f (f' • (1 : ℂ →L[ℝ] ℂ)) x := by simpa only [Complex.restrictScalars_one_smulRight] using h.has_strict_fderiv_at.restrict_scalars ℝ #align has_strict_deriv_at.complex_to_real_fderiv HasStrictDerivAt.complexToReal_fderiv theorem HasDerivAt.complexToReal_fderiv {f : ℂ → ℂ} {f' x : ℂ} (h : HasDerivAt f f' x) : HasFderivAt f (f' • (1 : ℂ →L[ℝ] ℂ)) x := by simpa only [Complex.restrictScalars_one_smulRight] using h.has_fderiv_at.restrict_scalars ℝ #align has_deriv_at.complex_to_real_fderiv HasDerivAt.complexToReal_fderiv theorem HasDerivWithinAt.complexToReal_fderiv {f : ℂ → ℂ} {s : Set ℂ} {f' x : ℂ} (h : HasDerivWithinAt f f' s x) : HasFderivWithinAt f (f' • (1 : ℂ →L[ℝ] ℂ)) s x := by simpa only [Complex.restrictScalars_one_smulRight] using h.has_fderiv_within_at.restrict_scalars ℝ #align has_deriv_within_at.complex_to_real_fderiv HasDerivWithinAt.complexToReal_fderiv /-- If a complex function `e` is differentiable at a real point, then its restriction to `ℝ` is differentiable there as a function `ℝ → ℂ`, with the same derivative. -/ theorem HasDerivAt.comp_of_real (hf : HasDerivAt e e' ↑z) : HasDerivAt (fun y : ℝ => e ↑y) e' z := by simpa only [of_real_clm_apply, of_real_one, mul_one] using hf.comp z of_real_clm.has_deriv_at #align has_deriv_at.comp_of_real HasDerivAt.comp_of_real /-- If a function `f : ℝ → ℝ` is differentiable at a (real) point `x`, then it is also differentiable as a function `ℝ → ℂ`. -/ theorem HasDerivAt.of_real_comp {f : ℝ → ℝ} {u : ℝ} (hf : HasDerivAt f u z) : HasDerivAt (fun y : ℝ => ↑(f y) : ℝ → ℂ) u z := by simpa only [of_real_clm_apply, of_real_one, real_smul, mul_one] using of_real_clm.has_deriv_at.scomp z hf #align has_deriv_at.of_real_comp HasDerivAt.of_real_comp end RealDerivOfComplex section Conformality /-! ### Conformality of real-differentiable complex maps -/ open Complex ContinuousLinearMap open ComplexConjugate variable {E : Type _} [NormedAddCommGroup E] [NormedSpace ℂ E] {z : ℂ} {f : ℂ → E} /-- A real differentiable function of the complex plane into some complex normed space `E` is conformal at a point `z` if it is holomorphic at that point with a nonvanishing differential. This is a version of the Cauchy-Riemann equations. -/ theorem DifferentiableAt.conformalAt (h : DifferentiableAt ℂ f z) (hf' : deriv f z ≠ 0) : ConformalAt f z := by rw [conformalAt_iff_isConformalMap_fderiv, (h.has_fderiv_at.restrict_scalars ℝ).fderiv] apply isConformalMap_complex_linear simpa only [Ne.def, ext_ring_iff] #align differentiable_at.conformal_at DifferentiableAt.conformalAt /-- A complex function is conformal if and only if the function is holomorphic or antiholomorphic with a nonvanishing differential. -/ theorem conformalAt_iff_differentiableAt_or_differentiableAt_comp_conj {f : ℂ → ℂ} {z : ℂ} : ConformalAt f z ↔ (DifferentiableAt ℂ f z ∨ DifferentiableAt ℂ (f ∘ conj) (conj z)) ∧ fderiv ℝ f z ≠ 0 := by rw [conformalAt_iff_isConformalMap_fderiv] rw [isConformalMap_iff_is_complex_or_conj_linear] apply and_congr_left intro h have h_diff := h.imp_symm fderiv_zero_of_not_differentiableAt apply or_congr · rw [differentiableAt_iff_restrictScalars ℝ h_diff] rw [← conj_conj z] at h_diff rw [differentiableAt_iff_restrictScalars ℝ (h_diff.comp _ conj_cle.differentiable_at)] refine' exists_congr fun g => rfl.congr _ have : fderiv ℝ conj (conj z) = _ := conj_cle.fderiv simp [fderiv.comp _ h_diff conj_cle.differentiable_at, this, conj_conj] #align conformal_at_iff_differentiable_at_or_differentiable_at_comp_conj conformalAt_iff_differentiableAt_or_differentiableAt_comp_conj end Conformality
/- Copyright (c) 2020 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Eric Wieser -/ import algebra.char_p.basic import algebra.ring_quot /-! # Characteristic of quotients rings -/ universes u v namespace char_p theorem quotient (R : Type u) [comm_ring R] (p : ℕ) [hp1 : fact p.prime] (hp2 : ↑p ∈ nonunits R) : char_p (ideal.span {p} : ideal R).quotient p := have hp0 : (p : (ideal.span {p} : ideal R).quotient) = 0, from (ideal.quotient.mk (ideal.span {p} : ideal R)).map_nat_cast p ▸ ideal.quotient.eq_zero_iff_mem.2 (ideal.subset_span $ set.mem_singleton _), ring_char.of_eq $ or.resolve_left ((nat.dvd_prime hp1.1).1 $ ring_char.dvd hp0) $ λ h1, hp2 $ is_unit_iff_dvd_one.2 $ ideal.mem_span_singleton.1 $ ideal.quotient.eq_zero_iff_mem.1 $ @@subsingleton.elim (@@char_p.subsingleton _ $ ring_char.of_eq h1) _ _ /-- If an ideal does not contain any coercions of natural numbers other than zero, then its quotient inherits the characteristic of the underlying ring. -/ lemma quotient' {R : Type*} [comm_ring R] (p : ℕ) [char_p R p] (I : ideal R) (h : ∀ x : ℕ, (x : R) ∈ I → (x : R) = 0) : char_p I.quotient p := ⟨λ x, begin rw [←cast_eq_zero_iff R p x, ←(ideal.quotient.mk I).map_nat_cast], refine quotient.eq'.trans (_ : ↑x - 0 ∈ I ↔ _), rw sub_zero, exact ⟨h x, λ h', h'.symm ▸ I.zero_mem⟩, end⟩ end char_p
State Before: α : Type u m : OuterMeasure α s✝ s₁ s₂ : Set α s : ℕ → Set α h : ∀ (i : ℕ), IsCaratheodory m (s i) hd : Pairwise (Disjoint on s) t : Set α ⊢ ∑ i in Finset.range 0, ↑m (t ∩ s i) = ↑m (t ∩ ⋃ (i : ℕ) (_ : i < 0), s i) State After: no goals Tactic: simp [Nat.not_lt_zero, m.empty] State Before: α : Type u m : OuterMeasure α s✝ s₁ s₂ : Set α s : ℕ → Set α h : ∀ (i : ℕ), IsCaratheodory m (s i) hd : Pairwise (Disjoint on s) t : Set α n : ℕ ⊢ ∑ i in Finset.range (Nat.succ n), ↑m (t ∩ s i) = ↑m (t ∩ ⋃ (i : ℕ) (_ : i < Nat.succ n), s i) State After: α : Type u m : OuterMeasure α s✝ s₁ s₂ : Set α s : ℕ → Set α h : ∀ (i : ℕ), IsCaratheodory m (s i) hd : Pairwise (Disjoint on s) t : Set α n : ℕ ⊢ (s n ∩ ⋃ (k : ℕ) (_ : k < n), s k) ⊆ ∅ Tactic: rw [biUnion_lt_succ, Finset.sum_range_succ, Set.union_comm, isCaratheodory_sum h hd, m.measure_inter_union _ (h n), add_comm] State Before: α : Type u m : OuterMeasure α s✝ s₁ s₂ : Set α s : ℕ → Set α h : ∀ (i : ℕ), IsCaratheodory m (s i) hd : Pairwise (Disjoint on s) t : Set α n : ℕ ⊢ (s n ∩ ⋃ (k : ℕ) (_ : k < n), s k) ⊆ ∅ State After: α : Type u m : OuterMeasure α s✝ s₁ s₂ : Set α s : ℕ → Set α h : ∀ (i : ℕ), IsCaratheodory m (s i) hd : Pairwise (Disjoint on s) t : Set α n : ℕ a : α ⊢ (a ∈ s n ∩ ⋃ (k : ℕ) (_ : k < n), s k) → a ∈ ∅ Tactic: intro a State Before: α : Type u m : OuterMeasure α s✝ s₁ s₂ : Set α s : ℕ → Set α h : ∀ (i : ℕ), IsCaratheodory m (s i) hd : Pairwise (Disjoint on s) t : Set α n : ℕ a : α ⊢ (a ∈ s n ∩ ⋃ (k : ℕ) (_ : k < n), s k) → a ∈ ∅ State After: no goals Tactic: simpa using fun (h₁ : a ∈ s n) i (hi : i < n) h₂ => (hd (ne_of_gt hi)).le_bot ⟨h₁, h₂⟩
From iris.proofmode Require Import tactics. From aneris.aneris_lang Require Import network adequacy. From aneris.aneris_lang.program_logic Require Export aneris_weakestpre. Definition aneris_adequate (e :expr) (ip : ip_address) (σ : state) (φ : val → Prop) := adequate NotStuck (mkExpr ip e) σ (λ v _, ∃ w, v = mkVal ip w ∧ φ w). Theorem adequacy `{anerisPreG Σ Mdl} IPs A B lbls obs_send_sas obs_rec_sas e ip σ φ : aneris_model_rel_finitary Mdl → (∀ `{anerisG Mdl Σ}, ⊢ |={⊤}=> ∃ (f : socket_address → socket_interp Σ), fixed A -∗ ([∗ set] a ∈ A, a ⤇ (f a)) -∗ ([∗ set] b ∈ B, b ⤳[bool_decide (b ∈ obs_send_sas), bool_decide (b ∈ obs_rec_sas)] (∅, ∅)) -∗ frag_st Mdl.(model_state_initial) -∗ ([∗ set] i ∈ IPs, free_ip i) -∗ ([∗ set] lbl ∈ lbls, alloc_evs lbl []) -∗ ([∗ set] sa ∈ obs_send_sas, sendon_evs sa []) -∗ ([∗ set] sa ∈ obs_rec_sas, receiveon_evs sa []) -∗ observed_send obs_send_sas -∗ observed_receive obs_rec_sas -∗ WP e @[ip] ⊤ {{ v, ⌜φ v⌝ }}) → ip ∉ IPs → dom (gset ip_address) (state_ports_in_use σ) = IPs → (∀ ip, ip ∈ IPs → state_ports_in_use σ !! ip = Some ∅) → (∀ a, a ∈ A → ip_of_address a ∈ IPs) → state_heaps σ = {[ip:=∅]} → state_sockets σ = {[ip:=∅]} → state_ms σ = ∅ → aneris_adequate e ip σ φ. Proof. intros HMdlfin Hwp Hipdom Hpiiu Hip Hfixdom Hste Hsce Hmse. eapply adequacy; [done| |done|done|done|done|done|done|done]. intros dg. iMod (Hwp dg) as (f) "Hwp". iModIntro. iExists _. iIntros "??????????? /=". rewrite !aneris_wp_unfold /aneris_wp_def. iSpecialize ("Hwp" with "[$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$]"). iApply (wp_wand with "Hwp"). eauto. Qed. Theorem adequacy_hoare `{anerisPreG Σ Mdl} IPs A B lbls obs_send_sas obs_rec_sas e σ φ ip : aneris_model_rel_finitary Mdl → (∀ `{anerisG Mdl Σ}, ⊢ ∃ (f : socket_address → socket_interp Σ), {{{ fixed A ∗ ([∗ set] a ∈ A, a ⤇ (f a)) ∗ ([∗ set] b ∈ B, b ⤳[bool_decide (b ∈ obs_send_sas), bool_decide (b ∈ obs_rec_sas)] (∅, ∅)) ∗ frag_st Mdl.(model_state_initial) ∗ ([∗ set] ip ∈ IPs, free_ip ip) ∗ ([∗ set] lbl ∈ lbls, alloc_evs lbl []) ∗ ([∗ set] sa ∈ obs_send_sas, sendon_evs sa []) ∗ ([∗ set] sa ∈ obs_rec_sas, receiveon_evs sa []) ∗ observed_send obs_send_sas ∗ observed_receive obs_rec_sas }}} e @[ip] {{{ v, RET v; ⌜φ v⌝ }}}) → ip ∉ IPs → dom (gset ip_address) (state_ports_in_use σ) = IPs → (∀ i, i ∈ IPs → state_ports_in_use σ !! i = Some ∅) → (∀ a, a ∈ A → ip_of_address a ∈ IPs) → state_heaps σ = {[ip:=∅]} → state_sockets σ = {[ip:=∅]} → state_ms σ = ∅ → aneris_adequate e ip σ φ. Proof. intros ? Hwp ???????. eapply adequacy; eauto. intros ?. iModIntro. iDestruct Hwp as (f) "#Hwp". iExists f. iIntros "??????????". iApply ("Hwp" with "[$]"); auto. Qed.
Class inhabited(A: Type): Type := mk_inhabited { default: A }. Global Arguments mk_inhabited {_} _. Global Hint Mode inhabited + : typeclass_instances. Global Hint Extern 1 (inhabited _) => simple refine (mk_inhabited _); constructor : typeclass_instances. Module InhabitedTests. Goal inhabited nat. typeclasses eauto. Abort. Goal inhabited (list nat). typeclasses eauto. Abort. Goal forall A, inhabited (option A). typeclasses eauto. Abort. Inductive test_foo: Type := | C1(x: False) | C2 | C3(x: False). Goal inhabited test_foo. typeclasses eauto. Abort. End InhabitedTests. (* TODO move code below to specific files *) Require Import coqutil.Word.Interface. Global Instance word_inhabited{width: BinInt.Z}{word: word.word width}: inhabited word := mk_inhabited (word.of_Z BinInt.Z0). Require Import coqutil.Map.Interface. Global Instance map_inhabited{key value: Type}{map: map.map key value}: inhabited map := mk_inhabited map.empty. Module Option. Definition force{A: Type}{i: inhabited A}(o: option A): A := match o with | Some a => a | None => default end. End Option.
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Yury Kudryashov -/ import data.real.sqrt import tactic.interval_cases import ring_theory.algebraic import data.rat.sqrt import ring_theory.int.basic /-! # Irrational real numbers In this file we define a predicate `irrational` on `ℝ`, prove that the `n`-th root of an integer number is irrational if it is not integer, and that `sqrt q` is irrational if and only if `rat.sqrt q * rat.sqrt q ≠ q ∧ 0 ≤ q`. We also provide dot-style constructors like `irrational.add_rat`, `irrational.rat_sub` etc. -/ open rat real multiplicity /-- A real number is irrational if it is not equal to any rational number. -/ def irrational (x : ℝ) := x ∉ set.range (coe : ℚ → ℝ) lemma irrational_iff_ne_rational (x : ℝ) : irrational x ↔ ∀ a b : ℤ, x ≠ a / b := by simp only [irrational, rat.forall, cast_mk, not_exists, set.mem_range, cast_coe_int, cast_div, eq_comm] /-- A transcendental real number is irrational. -/ lemma transcendental.irrational {r : ℝ} (tr : transcendental ℚ r) : irrational r := by { rintro ⟨a, rfl⟩, exact tr (is_algebraic_algebra_map a) } /-! ### Irrationality of roots of integer and rational numbers -/ /-- If `x^n`, `n > 0`, is integer and is not the `n`-th power of an integer, then `x` is irrational. -/ theorem irrational_nrt_of_notint_nrt {x : ℝ} (n : ℕ) (m : ℤ) (hxr : x ^ n = m) (hv : ¬ ∃ y : ℤ, x = y) (hnpos : 0 < n) : irrational x := begin rintros ⟨⟨N, D, P, C⟩, rfl⟩, rw [← cast_pow] at hxr, have c1 : ((D : ℤ) : ℝ) ≠ 0, { rw [int.cast_ne_zero, int.coe_nat_ne_zero], exact ne_of_gt P }, have c2 : ((D : ℤ) : ℝ) ^ n ≠ 0 := pow_ne_zero _ c1, rw [num_denom', cast_pow, cast_mk, div_pow, div_eq_iff_mul_eq c2, ← int.cast_pow, ← int.cast_pow, ← int.cast_mul, int.cast_inj] at hxr, have hdivn : ↑D ^ n ∣ N ^ n := dvd.intro_left m hxr, rw [← int.dvd_nat_abs, ← int.coe_nat_pow, int.coe_nat_dvd, int.nat_abs_pow, nat.pow_dvd_pow_iff hnpos] at hdivn, obtain rfl : D = 1 := by rw [← nat.gcd_eq_right hdivn, C.gcd_eq_one], refine hv ⟨N, _⟩, rw [num_denom', int.coe_nat_one, mk_eq_div, int.cast_one, div_one, cast_coe_int] end /-- If `x^n = m` is an integer and `n` does not divide the `multiplicity p m`, then `x` is irrational. -/ theorem irrational_nrt_of_n_not_dvd_multiplicity {x : ℝ} (n : ℕ) {m : ℤ} (hm : m ≠ 0) (p : ℕ) [hp : fact p.prime] (hxr : x ^ n = m) (hv : (multiplicity (p : ℤ) m).get (finite_int_iff.2 ⟨hp.1.ne_one, hm⟩) % n ≠ 0) : irrational x := begin rcases nat.eq_zero_or_pos n with rfl | hnpos, { rw [eq_comm, pow_zero, ← int.cast_one, int.cast_inj] at hxr, simpa [hxr, multiplicity.one_right (mt is_unit_iff_dvd_one.1 (mt int.coe_nat_dvd.1 hp.1.not_dvd_one)), nat.zero_mod] using hv }, refine irrational_nrt_of_notint_nrt _ _ hxr _ hnpos, rintro ⟨y, rfl⟩, rw [← int.cast_pow, int.cast_inj] at hxr, subst m, have : y ≠ 0, { rintro rfl, rw zero_pow hnpos at hm, exact hm rfl }, erw [multiplicity.pow' (nat.prime_iff_prime_int.1 hp.1) (finite_int_iff.2 ⟨hp.1.ne_one, this⟩), nat.mul_mod_right] at hv, exact hv rfl end theorem irrational_sqrt_of_multiplicity_odd (m : ℤ) (hm : 0 < m) (p : ℕ) [hp : fact p.prime] (Hpv : (multiplicity (p : ℤ) m).get (finite_int_iff.2 ⟨hp.1.ne_one, (ne_of_lt hm).symm⟩) % 2 = 1) : irrational (sqrt m) := @irrational_nrt_of_n_not_dvd_multiplicity _ 2 _ (ne.symm (ne_of_lt hm)) p hp (sq_sqrt (int.cast_nonneg.2 $ le_of_lt hm)) (by rw Hpv; exact one_ne_zero) theorem nat.prime.irrational_sqrt {p : ℕ} (hp : nat.prime p) : irrational (sqrt p) := @irrational_sqrt_of_multiplicity_odd p (int.coe_nat_pos.2 hp.pos) p ⟨hp⟩ $ by simp [multiplicity_self (mt is_unit_iff_dvd_one.1 (mt int.coe_nat_dvd.1 hp.not_dvd_one) : _)]; refl /-- **Irrationality of the Square Root of 2** -/ theorem irrational_sqrt_two : irrational (sqrt 2) := by simpa using nat.prime_two.irrational_sqrt theorem irrational_sqrt_rat_iff (q : ℚ) : irrational (sqrt q) ↔ rat.sqrt q * rat.sqrt q ≠ q ∧ 0 ≤ q := if H1 : rat.sqrt q * rat.sqrt q = q then iff_of_false (not_not_intro ⟨rat.sqrt q, by rw [← H1, cast_mul, sqrt_mul_self (cast_nonneg.2 $ rat.sqrt_nonneg q), sqrt_eq, abs_of_nonneg (rat.sqrt_nonneg q)]⟩) (λ h, h.1 H1) else if H2 : 0 ≤ q then iff_of_true (λ ⟨r, hr⟩, H1 $ (exists_mul_self _).1 ⟨r, by rwa [eq_comm, sqrt_eq_iff_mul_self_eq (cast_nonneg.2 H2), ← cast_mul, rat.cast_inj] at hr; rw [← hr]; exact real.sqrt_nonneg _⟩) ⟨H1, H2⟩ else iff_of_false (not_not_intro ⟨0, by rw cast_zero; exact (sqrt_eq_zero_of_nonpos (rat.cast_nonpos.2 $ le_of_not_le H2)).symm⟩) (λ h, H2 h.2) instance (q : ℚ) : decidable (irrational (sqrt q)) := decidable_of_iff' _ (irrational_sqrt_rat_iff q) /-! ### Dot-style operations on `irrational` #### Coercion of a rational/integer/natural number is not irrational -/ namespace irrational variable {x : ℝ} /-! #### Irrational number is not equal to a rational/integer/natural number -/ theorem ne_rat (h : irrational x) (q : ℚ) : x ≠ q := λ hq, h ⟨q, hq.symm⟩ theorem ne_int (h : irrational x) (m : ℤ) : x ≠ m := by { rw ← rat.cast_coe_int, exact h.ne_rat _ } theorem ne_nat (h : irrational x) (m : ℕ) : x ≠ m := h.ne_int m theorem ne_zero (h : irrational x) : x ≠ 0 := by exact_mod_cast h.ne_nat 0 theorem ne_one (h : irrational x) : x ≠ 1 := by simpa only [nat.cast_one] using h.ne_nat 1 end irrational @[simp] lemma rat.not_irrational (q : ℚ) : ¬irrational q := λ h, h ⟨q, rfl⟩ @[simp] lemma int.not_irrational (m : ℤ) : ¬irrational m := λ h, h.ne_int m rfl @[simp] lemma nat.not_irrational (m : ℕ) : ¬irrational m := λ h, h.ne_nat m rfl namespace irrational variables (q : ℚ) {x y : ℝ} /-! #### Addition of rational/integer/natural numbers -/ /-- If `x + y` is irrational, then at least one of `x` and `y` is irrational. -/ theorem add_cases : irrational (x + y) → irrational x ∨ irrational y := begin delta irrational, contrapose!, rintros ⟨⟨rx, rfl⟩, ⟨ry, rfl⟩⟩, exact ⟨rx + ry, cast_add rx ry⟩ end theorem of_rat_add (h : irrational (q + x)) : irrational x := h.add_cases.resolve_left q.not_irrational theorem rat_add (h : irrational x) : irrational (q + x) := of_rat_add (-q) $ by rwa [cast_neg, neg_add_cancel_left] theorem of_add_rat : irrational (x + q) → irrational x := add_comm ↑q x ▸ of_rat_add q theorem add_rat (h : irrational x) : irrational (x + q) := add_comm ↑q x ▸ h.rat_add q theorem of_int_add (m : ℤ) (h : irrational (m + x)) : irrational x := by { rw ← cast_coe_int at h, exact h.of_rat_add m } theorem of_add_int (m : ℤ) (h : irrational (x + m)) : irrational x := of_int_add m $ add_comm x m ▸ h theorem int_add (h : irrational x) (m : ℤ) : irrational (m + x) := by { rw ← cast_coe_int, exact h.rat_add m } theorem add_int (h : irrational x) (m : ℤ) : irrational (x + m) := add_comm ↑m x ▸ h.int_add m theorem of_nat_add (m : ℕ) (h : irrational (m + x)) : irrational x := h.of_int_add m theorem of_add_nat (m : ℕ) (h : irrational (x + m)) : irrational x := h.of_add_int m theorem nat_add (h : irrational x) (m : ℕ) : irrational (m + x) := h.int_add m theorem add_nat (h : irrational x) (m : ℕ) : irrational (x + m) := h.add_int m /-! #### Negation -/ theorem of_neg (h : irrational (-x)) : irrational x := λ ⟨q, hx⟩, h ⟨-q, by rw [cast_neg, hx]⟩ protected theorem neg (h : irrational x) : irrational (-x) := of_neg $ by rwa neg_neg /-! #### Subtraction of rational/integer/natural numbers -/ theorem sub_rat (h : irrational x) : irrational (x - q) := by simpa only [sub_eq_add_neg, cast_neg] using h.add_rat (-q) theorem rat_sub (h : irrational x) : irrational (q - x) := by simpa only [sub_eq_add_neg] using h.neg.rat_add q theorem of_sub_rat (h : irrational (x - q)) : irrational x := (of_add_rat (-q) $ by simpa only [cast_neg, sub_eq_add_neg] using h) theorem of_rat_sub (h : irrational (q - x)) : irrational x := of_neg (of_rat_add q (by simpa only [sub_eq_add_neg] using h)) theorem sub_int (h : irrational x) (m : ℤ) : irrational (x - m) := by simpa only [rat.cast_coe_int] using h.sub_rat m theorem int_sub (h : irrational x) (m : ℤ) : irrational (m - x) := by simpa only [rat.cast_coe_int] using h.rat_sub m theorem of_sub_int (m : ℤ) (h : irrational (x - m)) : irrational x := of_sub_rat m $ by rwa rat.cast_coe_int theorem of_int_sub (m : ℤ) (h : irrational (m - x)) : irrational x := of_rat_sub m $ by rwa rat.cast_coe_int theorem sub_nat (h : irrational x) (m : ℕ) : irrational (x - m) := h.sub_int m theorem nat_sub (h : irrational x) (m : ℕ) : irrational (m - x) := h.int_sub m theorem of_sub_nat (m : ℕ) (h : irrational (x - m)) : irrational x := h.of_sub_int m theorem of_nat_sub (m : ℕ) (h : irrational (m - x)) : irrational x := h.of_int_sub m /-! #### Multiplication by rational numbers -/ theorem mul_cases : irrational (x * y) → irrational x ∨ irrational y := begin delta irrational, contrapose!, rintros ⟨⟨rx, rfl⟩, ⟨ry, rfl⟩⟩, exact ⟨rx * ry, cast_mul rx ry⟩ end theorem of_mul_rat (h : irrational (x * q)) : irrational x := h.mul_cases.resolve_right q.not_irrational theorem mul_rat (h : irrational x) {q : ℚ} (hq : q ≠ 0) : irrational (x * q) := of_mul_rat q⁻¹ $ by rwa [mul_assoc, ← cast_mul, mul_inv_cancel hq, cast_one, mul_one] theorem of_rat_mul : irrational (q * x) → irrational x := mul_comm x q ▸ of_mul_rat q theorem rat_mul (h : irrational x) {q : ℚ} (hq : q ≠ 0) : irrational (q * x) := mul_comm x q ▸ h.mul_rat hq theorem of_mul_int (m : ℤ) (h : irrational (x * m)) : irrational x := of_mul_rat m $ by rwa cast_coe_int theorem of_int_mul (m : ℤ) (h : irrational (m * x)) : irrational x := of_rat_mul m $ by rwa cast_coe_int theorem mul_int (h : irrational x) {m : ℤ} (hm : m ≠ 0) : irrational (x * m) := by { rw ← cast_coe_int, refine h.mul_rat _, rwa int.cast_ne_zero } theorem int_mul (h : irrational x) {m : ℤ} (hm : m ≠ 0) : irrational (m * x) := mul_comm x m ▸ h.mul_int hm theorem of_mul_nat (m : ℕ) (h : irrational (x * m)) : irrational x := h.of_mul_int m theorem of_nat_mul (m : ℕ) (h : irrational (m * x)) : irrational x := h.of_int_mul m theorem mul_nat (h : irrational x) {m : ℕ} (hm : m ≠ 0) : irrational (x * m) := h.mul_int $ int.coe_nat_ne_zero.2 hm theorem nat_mul (h : irrational x) {m : ℕ} (hm : m ≠ 0) : irrational (m * x) := h.int_mul $ int.coe_nat_ne_zero.2 hm /-! #### Inverse -/ theorem of_inv (h : irrational x⁻¹) : irrational x := λ ⟨q, hq⟩, h $ hq ▸ ⟨q⁻¹, q.cast_inv⟩ protected theorem inv (h : irrational x) : irrational x⁻¹ := of_inv $ by rwa inv_inv /-! #### Division -/ theorem div_cases (h : irrational (x / y)) : irrational x ∨ irrational y := h.mul_cases.imp id of_inv theorem of_rat_div (h : irrational (q / x)) : irrational x := (h.of_rat_mul q).of_inv theorem of_div_rat (h : irrational (x / q)) : irrational x := h.div_cases.resolve_right q.not_irrational theorem rat_div (h : irrational x) {q : ℚ} (hq : q ≠ 0) : irrational (q / x) := h.inv.rat_mul hq theorem div_rat (h : irrational x) {q : ℚ} (hq : q ≠ 0) : irrational (x / q) := by { rw [div_eq_mul_inv, ← cast_inv], exact h.mul_rat (inv_ne_zero hq) } theorem of_int_div (m : ℤ) (h : irrational (m / x)) : irrational x := h.div_cases.resolve_left m.not_irrational theorem of_div_int (m : ℤ) (h : irrational (x / m)) : irrational x := h.div_cases.resolve_right m.not_irrational theorem int_div (h : irrational x) {m : ℤ} (hm : m ≠ 0) : irrational (m / x) := h.inv.int_mul hm theorem div_int (h : irrational x) {m : ℤ} (hm : m ≠ 0) : irrational (x / m) := by { rw ← cast_coe_int, refine h.div_rat _, rwa int.cast_ne_zero } theorem of_nat_div (m : ℕ) (h : irrational (m / x)) : irrational x := h.of_int_div m theorem of_div_nat (m : ℕ) (h : irrational (x / m)) : irrational x := h.of_div_int m theorem nat_div (h : irrational x) {m : ℕ} (hm : m ≠ 0) : irrational (m / x) := h.inv.nat_mul hm theorem div_nat (h : irrational x) {m : ℕ} (hm : m ≠ 0) : irrational (x / m) := h.div_int $ by rwa int.coe_nat_ne_zero theorem of_one_div (h : irrational (1 / x)) : irrational x := of_rat_div 1 $ by rwa [cast_one] /-! #### Natural and integerl power -/ theorem of_mul_self (h : irrational (x * x)) : irrational x := h.mul_cases.elim id id theorem of_pow : ∀ n : ℕ, irrational (x^n) → irrational x | 0 := λ h, by { rw pow_zero at h, exact (h ⟨1, cast_one⟩).elim } | (n+1) := λ h, by { rw pow_succ at h, exact h.mul_cases.elim id (of_pow n) } theorem of_zpow : ∀ m : ℤ, irrational (x^m) → irrational x | (n:ℕ) := λ h, by { rw zpow_coe_nat at h, exact h.of_pow _ } | -[1+n] := λ h, by { rw zpow_neg_succ_of_nat at h, exact h.of_inv.of_pow _ } end irrational section polynomial open polynomial open_locale polynomial variables (x : ℝ) (p : ℤ[X]) lemma one_lt_nat_degree_of_irrational_root (hx : irrational x) (p_nonzero : p ≠ 0) (x_is_root : aeval x p = 0) : 1 < p.nat_degree := begin by_contra rid, rcases exists_eq_X_add_C_of_nat_degree_le_one (not_lt.1 rid) with ⟨a, b, rfl⟩, clear rid, have : (a : ℝ) * x = -b, by simpa [eq_neg_iff_add_eq_zero] using x_is_root, rcases em (a = 0) with (rfl|ha), { obtain rfl : b = 0, by simpa, simpa using p_nonzero }, { rw [mul_comm, ← eq_div_iff_mul_eq, eq_comm] at this, refine hx ⟨-b / a, _⟩, assumption_mod_cast, assumption_mod_cast } end end polynomial section variables {q : ℚ} {m : ℤ} {n : ℕ} {x : ℝ} open irrational /-! ### Simplification lemmas about operations -/ @[simp] theorem irrational_rat_add_iff : irrational (q + x) ↔ irrational x := ⟨of_rat_add q, rat_add q⟩ @[simp] theorem irrational_int_add_iff : irrational (m + x) ↔ irrational x := ⟨of_int_add m, λ h, h.int_add m⟩ @[simp] theorem irrational_nat_add_iff : irrational (n + x) ↔ irrational x := ⟨of_nat_add n, λ h, h.nat_add n⟩ @[simp] theorem irrational_add_rat_iff : irrational (x + q) ↔ irrational x := ⟨of_add_rat q, add_rat q⟩ @[simp] theorem irrational_add_int_iff : irrational (x + m) ↔ irrational x := ⟨of_add_int m, λ h, h.add_int m⟩ @[simp] theorem irrational_add_nat_iff : irrational (x + n) ↔ irrational x := ⟨of_add_nat n, λ h, h.add_nat n⟩ @[simp] theorem irrational_rat_sub_iff : irrational (q - x) ↔ irrational x := ⟨of_rat_sub q, rat_sub q⟩ @[simp] theorem irrational_int_sub_iff : irrational (m - x) ↔ irrational x := ⟨of_int_sub m, λ h, h.int_sub m⟩ @[simp] theorem irrational_nat_sub_iff : irrational (n - x) ↔ irrational x := ⟨of_nat_sub n, λ h, h.nat_sub n⟩ @[simp] theorem irrational_sub_rat_iff : irrational (x - q) ↔ irrational x := ⟨of_sub_rat q, sub_rat q⟩ @[simp] theorem irrational_sub_int_iff : irrational (x - m) ↔ irrational x := ⟨of_sub_int m, λ h, h.sub_int m⟩ @[simp] theorem irrational_sub_nat_iff : irrational (x - n) ↔ irrational x := ⟨of_sub_nat n, λ h, h.sub_nat n⟩ @[simp] theorem irrational_neg_iff : irrational (-x) ↔ irrational x := ⟨of_neg, irrational.neg⟩ @[simp] theorem irrational_inv_iff : irrational x⁻¹ ↔ irrational x := ⟨of_inv, irrational.inv⟩ @[simp] theorem irrational_rat_mul_iff : irrational (q * x) ↔ q ≠ 0 ∧ irrational x := ⟨λ h, ⟨rat.cast_ne_zero.1 $ left_ne_zero_of_mul h.ne_zero, h.of_rat_mul q⟩, λ h, h.2.rat_mul h.1⟩ @[simp] theorem irrational_mul_rat_iff : irrational (x * q) ↔ q ≠ 0 ∧ irrational x := by rw [mul_comm, irrational_rat_mul_iff] @[simp] theorem irrational_int_mul_iff : irrational (m * x) ↔ m ≠ 0 ∧ irrational x := by rw [← cast_coe_int, irrational_rat_mul_iff, int.cast_ne_zero] @[simp] theorem irrational_mul_int_iff : irrational (x * m) ↔ m ≠ 0 ∧ irrational x := by rw [← cast_coe_int, irrational_mul_rat_iff, int.cast_ne_zero] @[simp] theorem irrational_nat_mul_iff : irrational (n * x) ↔ n ≠ 0 ∧ irrational x := by rw [← cast_coe_nat, irrational_rat_mul_iff, nat.cast_ne_zero] @[simp] theorem irrational_mul_nat_iff : irrational (x * n) ↔ n ≠ 0 ∧ irrational x := by rw [← cast_coe_nat, irrational_mul_rat_iff, nat.cast_ne_zero] @[simp] theorem irrational_rat_div_iff : irrational (q / x) ↔ q ≠ 0 ∧ irrational x := by simp [div_eq_mul_inv] @[simp] theorem irrational_div_rat_iff : irrational (x / q) ↔ q ≠ 0 ∧ irrational x := by rw [div_eq_mul_inv, ← cast_inv, irrational_mul_rat_iff, ne.def, inv_eq_zero] @[simp] theorem irrational_int_div_iff : irrational (m / x) ↔ m ≠ 0 ∧ irrational x := by simp [div_eq_mul_inv] @[simp] theorem irrational_div_int_iff : irrational (x / m) ↔ m ≠ 0 ∧ irrational x := by rw [← cast_coe_int, irrational_div_rat_iff, int.cast_ne_zero] @[simp] theorem irrational_nat_div_iff : irrational (n / x) ↔ n ≠ 0 ∧ irrational x := by simp [div_eq_mul_inv] @[simp] theorem irrational_div_nat_iff : irrational (x / n) ↔ n ≠ 0 ∧ irrational x := by rw [← cast_coe_nat, irrational_div_rat_iff, nat.cast_ne_zero] /-- There is an irrational number `r` between any two reals `x < r < y`. -/ theorem exists_irrational_btwn {x y : ℝ} (h : x < y) : ∃ r, irrational r ∧ x < r ∧ r < y := let ⟨q, ⟨hq1, hq2⟩⟩ := (exists_rat_btwn ((sub_lt_sub_iff_right (real.sqrt 2)).mpr h)) in ⟨q + real.sqrt 2, irrational_sqrt_two.rat_add _, sub_lt_iff_lt_add.mp hq1, lt_sub_iff_add_lt.mp hq2⟩ end
lemma coeffs_map_poly [code abstract]: "coeffs (map_poly f p) = strip_while ((=) 0) (map f (coeffs p))"
informal statement Let $V$ be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of $V$ is finite or countably infinite.formal statement theorem exercise_6_1_14 (G : Type*) [group G] (hG : is_cyclic $ G ⧸ (center G)) : center G = ⊤ :=
theorem very_easy : true := begin sorry end
/- Copyright (c) 2021 Ashvni Narayanan. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ashvni Narayanan -/ import tendsto_zero_of_sum_even_char --import p_adic_L_function_def -- import general_bernoulli_number.basic -- import topology.algebra.nonarchimedean.bases -- import chinese_remainder_units /-! # A convergence property regarding (ℤ/dp^n ℤ)ˣ This file proves the third sum in the proof of Theorem 12.2 in Introduction to Cyclotomic Fields, Washington. It gives a convergence property relating to generalized Bernoulli numbers. # Main Theorems * `W` ## Tags p-adic, L-function, Bernoulli measure, Dirichlet character -/ open_locale big_operators local attribute [instance] zmod.topological_space open filter dirichlet_character open_locale topological_space open_locale big_operators variables {p : ℕ} [fact (nat.prime p)] {d : ℕ} [fact (0 < d)] {R : Type*} [normed_comm_ring R] (m : ℕ) (hd : d.gcd p = 1) (χ : dirichlet_character R (d*(p^m))) {c : ℕ} (hc : c.gcd p = 1) (hc' : c.gcd d = 1) (na : ∀ (n : ℕ) (f : ℕ → R), ∥ ∑ (i : ℕ) in finset.range n, f i∥ ≤ ⨆ (i : zmod n), ∥f i.val∥) variables (p d R) [complete_space R] [char_zero R] open continuous_map variables [normed_algebra ℚ_[p] R] [fact (0 < m)] variable [fact (0 < d)] open dirichlet_character variable (hd) open zmod variable (c) variables (hc) (hc') lemma W [no_zero_divisors R] [algebra ℚ R] [norm_one_class R] (hd : d.coprime p) (hp : 2 < p) (na' : ∀ (n : ℕ) (f : (zmod n)ˣ → R), ∥∑ i : (zmod n)ˣ, f i∥ ≤ ⨆ (i : (zmod n)ˣ), ∥f i∥) (na : ∀ (n : ℕ) (f : ℕ → R), ∥∑ i in finset.range n, f i∥ ≤ ⨆ (i : zmod n), ∥f i.val∥) (n : ℕ) (hn : 1 < n) (hχ : χ.is_even) : filter.tendsto (λ j : ℕ, ∑ (x : (zmod (d * p ^ j))ˣ), ((asso_dirichlet_character (χ.mul (teichmuller_character_mod_p' p R^n)) x : R) * ((((x : zmod (d * p^j))).val)^(n - 1) : R)) • (algebra_map ℚ R) ((↑c - 1) / 2)) filter.at_top (nhds 0) := begin simp_rw [smul_eq_mul, ← finset.sum_mul], conv { congr, skip, skip, congr, rw ← zero_mul ((algebra_map ℚ R) ((↑c - 1) / 2)), }, apply tendsto.mul_const, simp_rw zmod.nat_cast_val, simp_rw ← coe_coe, convert (tendsto_congr' _).1 (sum_even_character_tendsto_zero_of_units na' hn hχ hp), rw eventually_eq, rw eventually_at_top, refine ⟨m, λ y hy, _⟩, apply finset.sum_congr rfl, intros z hz, conv_lhs { congr, rw coe_coe, rw ← zmod.nat_cast_val, }, rw zmod.nat_cast_val, rw ← coe_coe, end
import .affine_space_type import .affine_frame import data.real.basic def reals_as_affine_space := affine_space_type ℝ ℝ ℝ #check reals_as_affine_space def reals_as_affine_space_1 : reals_as_affine_space := ⟨⟩ def reals_as_affine_space_2 : reals_as_affine_space := ⟨⟩ example : reals_as_affine_space_1 = reals_as_affine_space_2 := rfl def a_frame : affine_frame ℝ ℝ ℝ (fin 1) := ⟨(0 : ℝ), (λ (n : fin 1), 1), sorry ⟩ /- A few things to note: (1) We can specialize our generic affine_space_type definition (2) We can't instantiate disjoint affine space of the same type (3) Can we express news points and vectors in terms of this frame? -/
[STATEMENT] lemma min_enat_simps [simp]: "min (enat m) (enat n) = enat (min m n)" "min q 0 = 0" "min 0 q = 0" "min q (\<infinity>::enat) = q" "min (\<infinity>::enat) q = q" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (min (enat m) (enat n) = enat (min m n) &&& min q 0 = 0) &&& min 0 q = 0 &&& min q \<infinity> = q &&& min \<infinity> q = q [PROOF STEP] by (auto simp add: min_def)
/- Copyright (c) 2021 Alain Verberkmoes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Alain Verberkmoes -/ import data.int.basic /-! # IMO 2011 Q5 Let `f` be a function from the set of integers to the set of positive integers. Suppose that, for any two integers `m` and `n`, the difference `f(m) − f(n)` is divisible by `f(m − n)`. Prove that, for all integers `m` and `n` with `f(m) ≤ f(n)`, the number `f(n)` is divisible by `f(m)`. -/ open int theorem imo2011_q5 (f : ℤ → ℤ) (hpos : ∀ n : ℤ, 0 < f n) (hdvd : ∀ m n : ℤ, f (m - n) ∣ f m - f n) : ∀ m n : ℤ, f m ≤ f n → f m ∣ f n := begin intros m n h_fm_le_fn, cases lt_or_eq_of_le h_fm_le_fn with h_fm_lt_fn h_fm_eq_fn, { -- m < n let d := f m - f (m - n), have h_fn_dvd_d : f n ∣ d, { rw ←sub_sub_self m n, exact hdvd m (m - n) }, have h_d_lt_fn : d < f n, { calc d < f m : sub_lt_self _ (hpos (m - n)) ... < f n : h_fm_lt_fn }, have h_neg_d_lt_fn : -d < f n, { calc -d = f (m - n) - f m : neg_sub _ _ ... < f (m - n) : sub_lt_self _ (hpos m) ... ≤ f n - f m : le_of_dvd (sub_pos.mpr h_fm_lt_fn) _ ... < f n : sub_lt_self _ (hpos m), -- ⊢ f (m - n) ∣ f n - f m rw [←dvd_neg, neg_sub], exact hdvd m n }, have h_d_eq_zero : d = 0, { obtain (hd | hd | hd) : d > 0 ∨ d = 0 ∨ d < 0 := trichotomous d 0, { -- d > 0 have h₁ : f n ≤ d, from le_of_dvd hd h_fn_dvd_d, have h₂ : ¬ f n ≤ d, from not_le.mpr h_d_lt_fn, contradiction }, { -- d = 0 exact hd }, { -- d < 0 have h₁ : f n ≤ -d, from le_of_dvd (neg_pos.mpr hd) ((dvd_neg _ _).mpr h_fn_dvd_d), have h₂ : ¬ f n ≤ -d, from not_le.mpr h_neg_d_lt_fn, contradiction } }, have h₁ : f m = f (m - n), from sub_eq_zero.mp h_d_eq_zero, have h₂ : f (m - n) ∣ f m - f n, from hdvd m n, rw ←h₁ at h₂, exact (dvd_iff_dvd_of_dvd_sub h₂).mp dvd_rfl }, { -- m = n rw h_fm_eq_fn } end
import Mathlib.Data.Rat.Order import Mathlib.Tactic.Ring /- 4 points -/ theorem problem1 {x : ℚ} (hx : x = 2/3) : 3 * x ≠ 1 := by apply ne_of_gt calc 3 * x = 3 * (2 / 3) := by rw [hx] _ > 1 := by rfl /- 5 points -/ theorem problem2 {x y : ℚ} (h : x = 1 ∨ y = -1) : x * y + x = y + 1 := by cases' h with hx hy . calc x * y + x = 1 * y + 1 := by rw [hx] _ = y + 1 := by ring . calc x * y + x = x * -1 + x := by rw [hy] _ = -1 + 1 := by ring _ = y + 1 := by rw [hy] /- 1 point -/ theorem problem3 {x : ℚ} (hx : 2 * x + 1 = 5) : 2 * x = 2 ∨ 2 * x = 4 := by right calc 2 * x = (2 * x + 1) - 1 := by ring _ = 5 - 1 := by rw [hx] _ = 4 := by norm_num
{-# OPTIONS --rewriting #-} postulate _↦_ : {A : Set} → A → A → Set idr : {A : Set} {a : A} → a ↦ a {-# BUILTIN REWRITE _↦_ #-} record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B postulate A B C : Set g : A → B → C f : A × B → C f (x , y) = g x y postulate D : Set P : (A → B → C) → D res : D rew : P (λ x y → g x y) ↦ res {-# REWRITE rew #-} test : P (λ x y → f (x , y)) ↦ res test = idr
/- Description : Formalization of islanders problem for two people. Copyright : (c) Daniel Selsam, 2018 License : GPL-3 -/ import .util .knows .problem theorem islanders_n2 : islanders 2 := assume everyone_sees : ∀ (d₁ d₂ : day) (p₁ p₂ : person), p₂ ≠ p₁ → common_knowledge (is_marked p₂ → knows d₂ p₁ (is_marked p₂)) d₁ ∧ common_knowledge (¬ is_marked p₂ → knows d₂ p₁ (¬ is_marked p₂)) d₁, assume oracle : ∀ (d : day) (p : person) (k : ℕ), common_knowledge (knows (d+1) p (reduce_or (list.map is_marked (list.range 2)))) (d+1+k), assume nobody_leaves : ∀ (d : day) (p : person), d+1 < 2 → common_knowledge (¬ knows (d+1) p (is_marked p)) (d+2), have H1 : knows 1 1 (¬ is_marked 1 → knows 1 0 (is_marked 0 ∨ is_marked 1)), from knows_lam 1 1 1 [] (λ _, oracle 0 0 0 [1]), have H2 : knows 1 1 (¬ is_marked 1 → knows 1 0 (¬ is_marked 1)), from and.right (everyone_sees 1 1 0 1 (ne.symm nat.zero_ne_one)) [1], have H3 : knows 1 1 (¬ is_marked 1) → knows 1 1 (knows 1 0 (is_marked 0)), from assume h1 : knows 1 1 (¬ is_marked 1), show knows 1 1 (knows 1 0 (is_marked 0)), from have h2 : knows 1 1 (knows 1 0 (is_marked 0 ∨ is_marked 1)), from knows_mp 0 1 1 1 [] [] H1 h1, have h3 : knows 1 1 (knows 1 0 (¬ is_marked 1)), from knows_mp 0 1 1 1 [] [] H2 h1, knows_cancel_or 0 _ _ _ [1] [] h2 h3, have H4 : knows 2 1 (¬ is_marked 1 → knows 1 0 (is_marked 0)), from knows_persists 0 1 1 [] (knows_lam 0 1 1 [] H3), have H5 : knows 2 1 (¬ knows 1 0 (is_marked 0)), from nobody_leaves 0 0 (nat.lt_succ_self 1) [1], show knows 2 1 (is_marked 1), from knows_dneg 0 _ _ [] (knows_cancel_imp 0 0 _ _ [] [] H4 H5)
lemma of_real_1 [simp]: "of_real 1 = 1"
/- Copyright (c) 2020 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Eric Wieser -/ import algebra.char_p.basic import ring_theory.ideal.quotient /-! # Characteristic of quotients rings -/ universes u v namespace char_p theorem quotient (R : Type u) [comm_ring R] (p : ℕ) [hp1 : fact p.prime] (hp2 : ↑p ∈ nonunits R) : char_p (R ⧸ (ideal.span {p} : ideal R)) p := have hp0 : (p : R ⧸ (ideal.span {p} : ideal R)) = 0, from (ideal.quotient.mk (ideal.span {p} : ideal R)).map_nat_cast p ▸ ideal.quotient.eq_zero_iff_mem.2 (ideal.subset_span $ set.mem_singleton _), ring_char.of_eq $ or.resolve_left ((nat.dvd_prime hp1.1).1 $ ring_char.dvd hp0) $ λ h1, hp2 $ is_unit_iff_dvd_one.2 $ ideal.mem_span_singleton.1 $ ideal.quotient.eq_zero_iff_mem.1 $ @@subsingleton.elim (@@char_p.subsingleton _ $ ring_char.of_eq h1) _ _ /-- If an ideal does not contain any coercions of natural numbers other than zero, then its quotient inherits the characteristic of the underlying ring. -/ lemma quotient' {R : Type*} [comm_ring R] (p : ℕ) [char_p R p] (I : ideal R) (h : ∀ x : ℕ, (x : R) ∈ I → (x : R) = 0) : char_p (R ⧸ I) p := ⟨λ x, begin rw [←cast_eq_zero_iff R p x, ←(ideal.quotient.mk I).map_nat_cast], refine quotient.eq'.trans (_ : ↑x - 0 ∈ I ↔ _), rw sub_zero, exact ⟨h x, λ h', h'.symm ▸ I.zero_mem⟩, end⟩ end char_p
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Yury Kudryashov -/ import data.real.sqrt import data.rat.sqrt import ring_theory.int.basic import data.polynomial.eval import data.polynomial.degree import tactic.interval_cases import ring_theory.algebraic /-! # Irrational real numbers In this file we define a predicate `irrational` on `ℝ`, prove that the `n`-th root of an integer number is irrational if it is not integer, and that `sqrt q` is irrational if and only if `rat.sqrt q * rat.sqrt q ≠ q ∧ 0 ≤ q`. We also provide dot-style constructors like `irrational.add_rat`, `irrational.rat_sub` etc. -/ open rat real multiplicity /-- A real number is irrational if it is not equal to any rational number. -/ def irrational (x : ℝ) := x ∉ set.range (coe : ℚ → ℝ) lemma irrational_iff_ne_rational (x : ℝ) : irrational x ↔ ∀ a b : ℤ, x ≠ a / b := by simp only [irrational, rat.forall, cast_mk, not_exists, set.mem_range, cast_coe_int, cast_div, eq_comm] /-- A transcendental real number is irrational. -/ lemma transcendental.irrational {r : ℝ} (tr : transcendental ℚ r) : irrational r := by { rintro ⟨a, rfl⟩, exact tr (is_algebraic_algebra_map a) } /-! ### Irrationality of roots of integer and rational numbers -/ /-- If `x^n`, `n > 0`, is integer and is not the `n`-th power of an integer, then `x` is irrational. -/ theorem irrational_nrt_of_notint_nrt {x : ℝ} (n : ℕ) (m : ℤ) (hxr : x ^ n = m) (hv : ¬ ∃ y : ℤ, x = y) (hnpos : 0 < n) : irrational x := begin rintros ⟨⟨N, D, P, C⟩, rfl⟩, rw [← cast_pow] at hxr, have c1 : ((D : ℤ) : ℝ) ≠ 0, { rw [int.cast_ne_zero, int.coe_nat_ne_zero], exact ne_of_gt P }, have c2 : ((D : ℤ) : ℝ) ^ n ≠ 0 := pow_ne_zero _ c1, rw [num_denom', cast_pow, cast_mk, div_pow, div_eq_iff_mul_eq c2, ← int.cast_pow, ← int.cast_pow, ← int.cast_mul, int.cast_inj] at hxr, have hdivn : ↑D ^ n ∣ N ^ n := dvd.intro_left m hxr, rw [← int.dvd_nat_abs, ← int.coe_nat_pow, int.coe_nat_dvd, int.nat_abs_pow, nat.pow_dvd_pow_iff hnpos] at hdivn, have hD : D = 1 := by rw [← nat.gcd_eq_right hdivn, C.gcd_eq_one], subst D, refine hv ⟨N, _⟩, rw [num_denom', int.coe_nat_one, mk_eq_div, int.cast_one, div_one, cast_coe_int] end /-- If `x^n = m` is an integer and `n` does not divide the `multiplicity p m`, then `x` is irrational. -/ theorem irrational_nrt_of_n_not_dvd_multiplicity {x : ℝ} (n : ℕ) {m : ℤ} (hm : m ≠ 0) (p : ℕ) [hp : fact p.prime] (hxr : x ^ n = m) (hv : (multiplicity (p : ℤ) m).get (finite_int_iff.2 ⟨hp.1.ne_one, hm⟩) % n ≠ 0) : irrational x := begin rcases nat.eq_zero_or_pos n with rfl | hnpos, { rw [eq_comm, pow_zero, ← int.cast_one, int.cast_inj] at hxr, simpa [hxr, multiplicity.one_right (mt is_unit_iff_dvd_one.1 (mt int.coe_nat_dvd.1 hp.1.not_dvd_one)), nat.zero_mod] using hv }, refine irrational_nrt_of_notint_nrt _ _ hxr _ hnpos, rintro ⟨y, rfl⟩, rw [← int.cast_pow, int.cast_inj] at hxr, subst m, have : y ≠ 0, { rintro rfl, rw zero_pow hnpos at hm, exact hm rfl }, erw [multiplicity.pow' (nat.prime_iff_prime_int.1 hp.1) (finite_int_iff.2 ⟨hp.1.ne_one, this⟩), nat.mul_mod_right] at hv, exact hv rfl end theorem irrational_sqrt_of_multiplicity_odd (m : ℤ) (hm : 0 < m) (p : ℕ) [hp : fact p.prime] (Hpv : (multiplicity (p : ℤ) m).get (finite_int_iff.2 ⟨hp.1.ne_one, (ne_of_lt hm).symm⟩) % 2 = 1) : irrational (sqrt m) := @irrational_nrt_of_n_not_dvd_multiplicity _ 2 _ (ne.symm (ne_of_lt hm)) p hp (sq_sqrt (int.cast_nonneg.2 $ le_of_lt hm)) (by rw Hpv; exact one_ne_zero) theorem nat.prime.irrational_sqrt {p : ℕ} (hp : nat.prime p) : irrational (sqrt p) := @irrational_sqrt_of_multiplicity_odd p (int.coe_nat_pos.2 hp.pos) p ⟨hp⟩ $ by simp [multiplicity_self (mt is_unit_iff_dvd_one.1 (mt int.coe_nat_dvd.1 hp.not_dvd_one) : _)]; refl theorem irrational_sqrt_two : irrational (sqrt 2) := by simpa using nat.prime_two.irrational_sqrt theorem irrational_sqrt_rat_iff (q : ℚ) : irrational (sqrt q) ↔ rat.sqrt q * rat.sqrt q ≠ q ∧ 0 ≤ q := if H1 : rat.sqrt q * rat.sqrt q = q then iff_of_false (not_not_intro ⟨rat.sqrt q, by rw [← H1, cast_mul, sqrt_mul_self (cast_nonneg.2 $ rat.sqrt_nonneg q), sqrt_eq, abs_of_nonneg (rat.sqrt_nonneg q)]⟩) (λ h, h.1 H1) else if H2 : 0 ≤ q then iff_of_true (λ ⟨r, hr⟩, H1 $ (exists_mul_self _).1 ⟨r, by rwa [eq_comm, sqrt_eq_iff_mul_self_eq (cast_nonneg.2 H2), ← cast_mul, rat.cast_inj] at hr; rw [← hr]; exact real.sqrt_nonneg _⟩) ⟨H1, H2⟩ else iff_of_false (not_not_intro ⟨0, by rw cast_zero; exact (sqrt_eq_zero_of_nonpos (rat.cast_nonpos.2 $ le_of_not_le H2)).symm⟩) (λ h, H2 h.2) instance (q : ℚ) : decidable (irrational (sqrt q)) := decidable_of_iff' _ (irrational_sqrt_rat_iff q) /-! ### Adding/subtracting/multiplying by rational numbers -/ lemma rat.not_irrational (q : ℚ) : ¬irrational q := λ h, h ⟨q, rfl⟩ namespace irrational variables (q : ℚ) {x y : ℝ} open_locale classical theorem add_cases : irrational (x + y) → irrational x ∨ irrational y := begin delta irrational, contrapose!, rintros ⟨⟨rx, rfl⟩, ⟨ry, rfl⟩⟩, exact ⟨rx + ry, cast_add rx ry⟩ end theorem of_rat_add (h : irrational (q + x)) : irrational x := h.add_cases.elim (λ h, absurd h q.not_irrational) id theorem rat_add (h : irrational x) : irrational (q + x) := of_rat_add (-q) $ by rwa [cast_neg, neg_add_cancel_left] theorem of_add_rat : irrational (x + q) → irrational x := add_comm ↑q x ▸ of_rat_add q theorem add_rat (h : irrational x) : irrational (x + q) := add_comm ↑q x ▸ h.rat_add q theorem of_neg (h : irrational (-x)) : irrational x := λ ⟨q, hx⟩, h ⟨-q, by rw [cast_neg, hx]⟩ protected theorem neg (h : irrational x) : irrational (-x) := of_neg $ by rwa neg_neg theorem sub_rat (h : irrational x) : irrational (x - q) := by simpa only [sub_eq_add_neg, cast_neg] using h.add_rat (-q) theorem rat_sub (h : irrational x) : irrational (q - x) := by simpa only [sub_eq_add_neg] using h.neg.rat_add q theorem of_sub_rat (h : irrational (x - q)) : irrational x := (of_add_rat (-q) $ by simpa only [cast_neg, sub_eq_add_neg] using h) theorem of_rat_sub (h : irrational (q - x)) : irrational x := of_neg (of_rat_add q (by simpa only [sub_eq_add_neg] using h)) theorem mul_cases : irrational (x * y) → irrational x ∨ irrational y := begin delta irrational, contrapose!, rintros ⟨⟨rx, rfl⟩, ⟨ry, rfl⟩⟩, exact ⟨rx * ry, cast_mul rx ry⟩ end theorem of_mul_rat (h : irrational (x * q)) : irrational x := h.mul_cases.elim id (λ h, absurd h q.not_irrational) theorem mul_rat (h : irrational x) {q : ℚ} (hq : q ≠ 0) : irrational (x * q) := of_mul_rat q⁻¹ $ by rwa [mul_assoc, ← cast_mul, mul_inv_cancel hq, cast_one, mul_one] theorem of_rat_mul : irrational (q * x) → irrational x := mul_comm x q ▸ of_mul_rat q theorem rat_mul (h : irrational x) {q : ℚ} (hq : q ≠ 0) : irrational (q * x) := mul_comm x q ▸ h.mul_rat hq theorem of_mul_self (h : irrational (x * x)) : irrational x := h.mul_cases.elim id id theorem of_inv (h : irrational x⁻¹) : irrational x := λ ⟨q, hq⟩, h $ hq ▸ ⟨q⁻¹, q.cast_inv⟩ protected theorem inv (h : irrational x) : irrational x⁻¹ := of_inv $ by rwa inv_inv' theorem div_cases (h : irrational (x / y)) : irrational x ∨ irrational y := h.mul_cases.imp id of_inv theorem of_rat_div (h : irrational (q / x)) : irrational x := (h.of_rat_mul q).of_inv theorem of_one_div (h : irrational (1 / x)) : irrational x := of_rat_div 1 $ by rwa [cast_one] theorem of_pow : ∀ n : ℕ, irrational (x^n) → irrational x | 0 := λ h, by { rw pow_zero at h, exact (h ⟨1, cast_one⟩).elim } | (n+1) := λ h, by { rw pow_succ at h, exact h.mul_cases.elim id (of_pow n) } theorem of_fpow : ∀ m : ℤ, irrational (x^m) → irrational x | (n:ℕ) := of_pow n | -[1+n] := λ h, by { rw gpow_neg_succ_of_nat at h, exact h.of_inv.of_pow _ } end irrational section polynomial open polynomial variables (x : ℝ) (p : polynomial ℤ) lemma one_lt_nat_degree_of_irrational_root (hx : irrational x) (p_nonzero : p ≠ 0) (x_is_root : aeval x p = 0) : 1 < p.nat_degree := begin by_contra rid, rcases exists_eq_X_add_C_of_nat_degree_le_one (not_lt.1 rid) with ⟨a, b, rfl⟩, clear rid, have : (a : ℝ) * x = -b, by simpa [eq_neg_iff_add_eq_zero] using x_is_root, rcases em (a = 0) with (rfl|ha), { obtain rfl : b = 0, by simpa, simpa using p_nonzero }, { rw [mul_comm, ← eq_div_iff_mul_eq, eq_comm] at this, refine hx ⟨-b / a, _⟩, assumption_mod_cast, assumption_mod_cast } end end polynomial section variables {q : ℚ} {x : ℝ} open irrational @[simp] theorem irrational_rat_add_iff : irrational (q + x) ↔ irrational x := ⟨of_rat_add q, rat_add q⟩ @[simp] theorem irrational_add_rat_iff : irrational (x + q) ↔ irrational x := ⟨of_add_rat q, add_rat q⟩ @[simp] theorem irrational_rat_sub_iff : irrational (q - x) ↔ irrational x := ⟨of_rat_sub q, rat_sub q⟩ @[simp] theorem irrational_sub_rat_iff : irrational (x - q) ↔ irrational x := ⟨of_sub_rat q, sub_rat q⟩ @[simp] theorem irrational_neg_iff : irrational (-x) ↔ irrational x := ⟨of_neg, irrational.neg⟩ @[simp] theorem irrational_inv_iff : irrational x⁻¹ ↔ irrational x := ⟨of_inv, irrational.inv⟩ end
informal statement If $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}} \quad(n=1,2,3, \ldots),$ prove that $\left\{s_{n}\right\}$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.formal statement theorem exercise_3_6a : tendsto (λ (n : ℕ), (∑ i in finset.range n, g i)) at_top at_top :=
lemmas has_derivative_Im [derivative_intros] = bounded_linear.has_derivative[OF bounded_linear_Im]
informal statement Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that $f(E)$ is dense in $f(X)$.formal statement theorem exercise_4_4a {α : Type} [metric_space α] {β : Type} [metric_space β] (f : α → β) (s : set α) (h₁ : continuous f) (h₂ : dense s) : f '' set.univ ⊆ closure (f '' s) :=
import tactic -- the next two lines let us use the law of the excluded middle without trouble noncomputable theory open_locale classical --BEGIN-- /-------------------------------------------------------------------------- Delete the ``sorry,`` below and replace them with a legitimate proof. --------------------------------------------------------------------------/ -- camper is a type. -- If x : camper then x is a camper in the main lounge. -- singing(x) is inhabited if x is singing theorem math_campers_singing_paradox (camper : Type) (singing : camper → Prop) (alice : camper) -- making sure that there is at least one camper in the lounge : ∃ x : camper, (singing x → (∀ y : camper, singing y)) := begin sorry, end --END--