Datasets:
AI4M
/

text
stringlengths
0
3.34M
theory prop_07 imports Main "$HIPSTER_HOME/IsaHipster" begin datatype Nat = Z | S "Nat" fun plus :: "Nat => Nat => Nat" where "plus (Z) y = y" | "plus (S z) y = S (plus z y)" fun minus :: "Nat => Nat => Nat" where "minus (Z) y = Z" | "minus (S z) (Z) = S z" | "minus (S z) (S x2) = minus z x2" (*hipster plus minus *) (*hipster minus*) lemma lemma_a [thy_expl]: "minus x2 x2 = Z" by (hipster_induct_schemes minus.simps) lemma lemma_aa [thy_expl]: "minus x3 Z = x3" by (hipster_induct_schemes minus.simps) lemma lemma_ab [thy_expl]: "minus x2 (S x2) = Z" by (hipster_induct_schemes) lemma lemma_ac [thy_expl]: "minus (S x2) x2 = S Z" by (hipster_induct_schemes) lemma lemma_ad [thy_expl]: "minus (minus x3 y3) (minus y3 x3) = minus x3 y3" by (hipster_induct_schemes minus.simps) lemma lemma_ae [thy_expl]: "minus (minus x3 y3) (S Z) = minus x3 (S y3)" by (hipster_induct_schemes minus.simps) lemma lemma_af [thy_expl]: "minus (minus x4 y4) x4 = Z" by (hipster_induct_schemes minus.simps) theorem x0 : "(minus (plus n m) n) = m" by (tactic \<open>Subgoal.FOCUS_PARAMS (K (Tactic_Data.hard_tac @{context})) @{context} 1\<close>) end
[STATEMENT] lemma Exists_foldr_Disj: "Exists x (foldr Disj xs b) \<triangleq> foldr Disj (map (exists x) xs) (exists x b)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Exists x (foldr Disj xs b) \<triangleq> foldr Disj (map (exists x) xs) (exists x b) [PROOF STEP] by (auto simp: equiv_def)
theory bla imports Main begin definition bla :: "char \<Rightarrow> bool" where "bla val = (nat_of_char val \<le> 90)" declare bla_def [simp] lemma "\<exists>x::char . bla x = True" proof - { assume "\<not>(\<exists>x . bla x = True)" hence "\<forall>x . bla x \<noteq> True" by simp hence "bla CHR ''A'' \<noteq> True" by (rule allE) hence "False " by simp } thus ?thesis by auto qed lemma "\<exists>x::char . bla x " proof - have "bla CHR ''Z''" by simp thus "\<exists>x. bla x " by (rule exI) qed
Formal statement is: lemma bounded_bilinear_mult: "bounded_bilinear ((*) :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra)" Informal statement is: The multiplication operation is bounded bilinear.
[STATEMENT] lemma sup_left_top [simp]: "top \<squnion> x = top" [PROOF STATE] proof (prove) goal (1 subgoal): 1. top \<squnion> x = top [PROOF STEP] using sup_right_top sup.commute [PROOF STATE] proof (prove) using this: ?x \<squnion> top = top ?a \<squnion> ?b = ?b \<squnion> ?a goal (1 subgoal): 1. top \<squnion> x = top [PROOF STEP] by fastforce
The first quarter after Saprang was appointed Chairman , AoT profits plunged 90 % compared to the previous year , despite higher traffic volumes and increased passenger service charters and airline fees . Operating expenses surged 137 % , contributing to the AoT 's worst quarterly earnings report since it was listed on the Stock Exchange of Thailand .
[GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∀ (n : ℕ), (∀ (m : ℕ), m < n → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts) → ∃ conts, continuantsAux (of v) n = Pair.map Rat.cast conts [PROOFSTEP] clear n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K ⊢ ∀ (n : ℕ), (∀ (m : ℕ), m < n → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts) → ∃ conts, continuantsAux (of v) n = Pair.map Rat.cast conts [PROOFSTEP] let g := of v [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v ⊢ ∀ (n : ℕ), (∀ (m : ℕ), m < n → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts) → ∃ conts, continuantsAux (of v) n = Pair.map Rat.cast conts [PROOFSTEP] intro n IH [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < n → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) n = Pair.map Rat.cast conts [PROOFSTEP] rcases n with (_ | _ | n) -- n = 0 [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) Nat.zero = Pair.map Rat.cast conts [PROOFSTEP] suffices ∃ gp : Pair ℚ, Pair.mk (1 : K) 0 = gp.map (↑) by simpa [continuantsAux] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts this : ∃ gp, { a := 1, b := 0 } = Pair.map Rat.cast gp ⊢ ∃ conts, continuantsAux (of v) Nat.zero = Pair.map Rat.cast conts [PROOFSTEP] simpa [continuantsAux] [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ gp, { a := 1, b := 0 } = Pair.map Rat.cast gp [PROOFSTEP] use Pair.mk 1 0 [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ { a := 1, b := 0 } = Pair.map Rat.cast { a := 1, b := 0 } [PROOFSTEP] simp -- n = 1 [GOAL] case succ.zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.succ Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ Nat.zero) = Pair.map Rat.cast conts [PROOFSTEP] suffices ∃ conts : Pair ℚ, Pair.mk g.h 1 = conts.map (↑) by simpa [continuantsAux] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.succ Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts this : ∃ conts, { a := g.h, b := 1 } = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ Nat.zero) = Pair.map Rat.cast conts [PROOFSTEP] simpa [continuantsAux] [GOAL] case succ.zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.succ Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, { a := g.h, b := 1 } = Pair.map Rat.cast conts [PROOFSTEP] use Pair.mk ⌊v⌋ 1 [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v IH : ∀ (m : ℕ), m < Nat.succ Nat.zero → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ { a := g.h, b := 1 } = Pair.map Rat.cast { a := ↑⌊v⌋, b := 1 } [PROOFSTEP] simp -- 2 ≤ n [GOAL] case succ.succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] cases' IH (n + 1) <| lt_add_one (n + 1) with pred_conts pred_conts_eq [GOAL] case succ.succ.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] cases' s_ppred_nth_eq : g.s.get? n with gp_n [GOAL] case succ.succ.intro.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts s_ppred_nth_eq : Stream'.Seq.get? g.s n = none ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] use pred_conts [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts s_ppred_nth_eq : Stream'.Seq.get? g.s n = none ⊢ continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast pred_conts [PROOFSTEP] have : g.continuantsAux (n + 2) = g.continuantsAux (n + 1) := continuantsAux_stable_of_terminated (n + 1).le_succ s_ppred_nth_eq [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts s_ppred_nth_eq : Stream'.Seq.get? g.s n = none this : continuantsAux g (n + 2) = continuantsAux g (n + 1) ⊢ continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast pred_conts [PROOFSTEP] simp only [this, pred_conts_eq] -- option.some [GOAL] case succ.succ.intro.some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] cases' IH n <| lt_of_le_of_lt n.le_succ <| lt_add_one <| n + 1 with ppred_conts ppred_conts_eq [GOAL] case succ.succ.intro.some.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] obtain ⟨a_eq_one, z, b_eq_z⟩ : gp_n.a = 1 ∧ ∃ z : ℤ, gp_n.b = (z : K) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts ⊢ gp_n.a = 1 ∧ ∃ z, gp_n.b = ↑z case succ.succ.intro.some.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] exact of_part_num_eq_one_and_exists_int_part_denom_eq s_ppred_nth_eq [GOAL] case succ.succ.intro.some.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z ⊢ ∃ conts, continuantsAux (of v) (Nat.succ (Nat.succ n)) = Pair.map Rat.cast conts [PROOFSTEP] simp only [a_eq_one, b_eq_z, continuantsAux_recurrence s_ppred_nth_eq ppred_conts_eq pred_conts_eq] [GOAL] case succ.succ.intro.some.intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z ⊢ ∃ conts, { a := ↑z * (Pair.map Rat.cast pred_conts).a + 1 * (Pair.map Rat.cast ppred_conts).a, b := ↑z * (Pair.map Rat.cast pred_conts).b + 1 * (Pair.map Rat.cast ppred_conts).b } = Pair.map Rat.cast conts [PROOFSTEP] use nextContinuants 1 (z : ℚ) ppred_conts pred_conts [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n ppred_conts : Pair ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast ppred_conts a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z ⊢ { a := ↑z * (Pair.map Rat.cast pred_conts).a + 1 * (Pair.map Rat.cast ppred_conts).a, b := ↑z * (Pair.map Rat.cast pred_conts).b + 1 * (Pair.map Rat.cast ppred_conts).b } = Pair.map Rat.cast (nextContinuants 1 (↑z) ppred_conts pred_conts) [PROOFSTEP] cases ppred_conts [GOAL] case h.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts pred_conts : Pair ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast pred_conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z a✝ b✝ : ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast { a := a✝, b := b✝ } ⊢ { a := ↑z * (Pair.map Rat.cast pred_conts).a + 1 * (Pair.map Rat.cast { a := a✝, b := b✝ }).a, b := ↑z * (Pair.map Rat.cast pred_conts).b + 1 * (Pair.map Rat.cast { a := a✝, b := b✝ }).b } = Pair.map Rat.cast (nextContinuants 1 ↑z { a := a✝, b := b✝ } pred_conts) [PROOFSTEP] cases pred_conts [GOAL] case h.mk.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K g : GeneralizedContinuedFraction K := of v n : ℕ IH : ∀ (m : ℕ), m < Nat.succ (Nat.succ n) → ∃ conts, continuantsAux (of v) m = Pair.map Rat.cast conts gp_n : Pair K s_ppred_nth_eq : Stream'.Seq.get? g.s n = some gp_n a_eq_one : gp_n.a = 1 z : ℤ b_eq_z : gp_n.b = ↑z a✝¹ b✝¹ : ℚ ppred_conts_eq : continuantsAux (of v) n = Pair.map Rat.cast { a := a✝¹, b := b✝¹ } a✝ b✝ : ℚ pred_conts_eq : continuantsAux (of v) (n + 1) = Pair.map Rat.cast { a := a✝, b := b✝ } ⊢ { a := ↑z * (Pair.map Rat.cast { a := a✝, b := b✝ }).a + 1 * (Pair.map Rat.cast { a := a✝¹, b := b✝¹ }).a, b := ↑z * (Pair.map Rat.cast { a := a✝, b := b✝ }).b + 1 * (Pair.map Rat.cast { a := a✝¹, b := b✝¹ }).b } = Pair.map Rat.cast (nextContinuants 1 ↑z { a := a✝¹, b := b✝¹ } { a := a✝, b := b✝ }) [PROOFSTEP] simp [nextContinuants, nextNumerator, nextDenominator] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ conts, continuants (of v) n = Pair.map Rat.cast conts [PROOFSTEP] rw [nth_cont_eq_succ_nth_cont_aux] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ conts, continuantsAux (of v) (n + 1) = Pair.map Rat.cast conts [PROOFSTEP] exact exists_gcf_pair_rat_eq_of_nth_conts_aux v <| n + 1 [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ q, numerators (of v) n = ↑q [PROOFSTEP] rcases exists_gcf_pair_rat_eq_nth_conts v n with ⟨⟨a, _⟩, nth_cont_eq⟩ [GOAL] case intro.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a b✝ : ℚ nth_cont_eq : continuants (of v) n = Pair.map Rat.cast { a := a, b := b✝ } ⊢ ∃ q, numerators (of v) n = ↑q [PROOFSTEP] use a [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a b✝ : ℚ nth_cont_eq : continuants (of v) n = Pair.map Rat.cast { a := a, b := b✝ } ⊢ numerators (of v) n = ↑a [PROOFSTEP] simp [num_eq_conts_a, nth_cont_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ q, denominators (of v) n = ↑q [PROOFSTEP] rcases exists_gcf_pair_rat_eq_nth_conts v n with ⟨⟨_, b⟩, nth_cont_eq⟩ [GOAL] case intro.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a✝ b : ℚ nth_cont_eq : continuants (of v) n = Pair.map Rat.cast { a := a✝, b := b } ⊢ ∃ q, denominators (of v) n = ↑q [PROOFSTEP] use b [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ a✝ b : ℚ nth_cont_eq : continuants (of v) n = Pair.map Rat.cast { a := a✝, b := b } ⊢ denominators (of v) n = ↑b [PROOFSTEP] simp [denom_eq_conts_b, nth_cont_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ ⊢ ∃ q, convergents (of v) n = ↑q [PROOFSTEP] rcases exists_rat_eq_nth_numerator v n with ⟨Aₙ, nth_num_eq⟩ [GOAL] case intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ Aₙ : ℚ nth_num_eq : numerators (of v) n = ↑Aₙ ⊢ ∃ q, convergents (of v) n = ↑q [PROOFSTEP] rcases exists_rat_eq_nth_denominator v n with ⟨Bₙ, nth_denom_eq⟩ [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ Aₙ : ℚ nth_num_eq : numerators (of v) n = ↑Aₙ Bₙ : ℚ nth_denom_eq : denominators (of v) n = ↑Bₙ ⊢ ∃ q, convergents (of v) n = ↑q [PROOFSTEP] use Aₙ / Bₙ [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ Aₙ : ℚ nth_num_eq : numerators (of v) n = ↑Aₙ Bₙ : ℚ nth_denom_eq : denominators (of v) n = ↑Bₙ ⊢ convergents (of v) n = ↑(Aₙ / Bₙ) [PROOFSTEP] simp [nth_num_eq, nth_denom_eq, convergent_eq_num_div_denom] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ terminates : Terminates (of v) ⊢ ∃ q, v = ↑q [PROOFSTEP] obtain ⟨n, v_eq_conv⟩ : ∃ n, v = (of v).convergents n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n : ℕ terminates : Terminates (of v) ⊢ ∃ n, v = convergents (of v) n case intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n ⊢ ∃ q, v = ↑q [PROOFSTEP] exact of_correctness_of_terminates terminates [GOAL] case intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n ⊢ ∃ q, v = ↑q [PROOFSTEP] obtain ⟨q, conv_eq_q⟩ : ∃ q : ℚ, (of v).convergents n = (↑q : K) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n ⊢ ∃ q, convergents (of v) n = ↑q case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n q : ℚ conv_eq_q : convergents (of v) n = ↑q ⊢ ∃ q, v = ↑q [PROOFSTEP] exact exists_rat_eq_nth_convergent v n [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n q : ℚ conv_eq_q : convergents (of v) n = ↑q ⊢ ∃ q, v = ↑q [PROOFSTEP] have : v = (↑q : K) := Eq.trans v_eq_conv conv_eq_q [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K n✝ : ℕ terminates : Terminates (of v) n : ℕ v_eq_conv : v = convergents (of v) n q : ℚ conv_eq_q : convergents (of v) n = ↑q this : v = ↑q ⊢ ∃ q, v = ↑q [PROOFSTEP] use q, this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ mapFr Rat.cast (IntFractPair.of q) = IntFractPair.of v [PROOFSTEP] simp [IntFractPair.of, v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q Nat.zero) = IntFractPair.stream v Nat.zero case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case zero => -- Porting note: was -- simp [IntFractPair.stream, coe_of_rat_eq v_eq_q]simp only [IntFractPair.stream, Option.map_some', coe_of_rat_eq v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q Nat.zero) = IntFractPair.stream v Nat.zero [PROOFSTEP] case zero => -- Porting note: was -- simp [IntFractPair.stream, coe_of_rat_eq v_eq_q]simp only [IntFractPair.stream, Option.map_some', coe_of_rat_eq v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q Nat.zero) = IntFractPair.stream v Nat.zero [PROOFSTEP] simp only [IntFractPair.stream, Option.map_some', coe_of_rat_eq v_eq_q] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case succ => rw [v_eq_q] at IH cases' stream_q_nth_eq : IntFractPair.stream q n with ifp_n case none => simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] case some => cases' ifp_n with b fr cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero · simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] · replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n; · rwa [stream_q_nth_eq] at IH have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast have coe_of_fr := coe_of_rat_eq this simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case succ => rw [v_eq_q] at IH cases' stream_q_nth_eq : IntFractPair.stream q n with ifp_n case none => simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] case some => cases' ifp_n with b fr cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero · simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] · replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n; · rwa [stream_q_nth_eq] at IH have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast have coe_of_fr := coe_of_rat_eq this simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream v n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] rw [v_eq_q] at IH [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] cases' stream_q_nth_eq : IntFractPair.stream q n with ifp_n [GOAL] case none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n stream_q_nth_eq : IntFractPair.stream q n = none ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ifp_n : IntFractPair ℚ stream_q_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case none => simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n stream_q_nth_eq : IntFractPair.stream q n = none ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case none => simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n stream_q_nth_eq : IntFractPair.stream q n = none ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq] [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ifp_n : IntFractPair ℚ stream_q_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case some => cases' ifp_n with b fr cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero · simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] · replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n; · rwa [stream_q_nth_eq] at IH have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast have coe_of_fr := coe_of_rat_eq this simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ifp_n : IntFractPair ℚ stream_q_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] case some => cases' ifp_n with b fr cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero · simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] · replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n; · rwa [stream_q_nth_eq] at IH have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast have coe_of_fr := coe_of_rat_eq this simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n ifp_n : IntFractPair ℚ stream_q_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] cases' ifp_n with b fr [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] cases' Decidable.em (fr = 0) with fr_zero fr_ne_zero [GOAL] case mk.inl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_zero : fr = 0 ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] simp [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_zero] [GOAL] case mk.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] replace IH : some (IntFractPair.mk b (fr : K)) = IntFractPair.stream (↑q) n [GOAL] case IH K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ IH : Option.map (mapFr Rat.cast) (IntFractPair.stream q n) = IntFractPair.stream (↑q) n b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 ⊢ some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n [PROOFSTEP] rwa [stream_q_nth_eq] at IH [GOAL] case mk.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 IH : some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] have : (fr : K)⁻¹ = ((fr⁻¹ : ℚ) : K) := by norm_cast [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 IH : some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n ⊢ (↑fr)⁻¹ = ↑fr⁻¹ [PROOFSTEP] norm_cast [GOAL] case mk.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 IH : some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n this : (↑fr)⁻¹ = ↑fr⁻¹ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] have coe_of_fr := coe_of_rat_eq this [GOAL] case mk.inr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ b : ℤ fr : ℚ stream_q_nth_eq : IntFractPair.stream q n = some { b := b, fr := fr } fr_ne_zero : ¬fr = 0 IH : some { b := b, fr := ↑fr } = IntFractPair.stream (↑q) n this : (↑fr)⁻¹ = ↑fr⁻¹ coe_of_fr : mapFr Rat.cast (IntFractPair.of fr⁻¹) = IntFractPair.of (↑fr)⁻¹ ⊢ Option.map (mapFr Rat.cast) (IntFractPair.stream q (Nat.succ n)) = IntFractPair.stream v (Nat.succ n) [PROOFSTEP] simpa [IntFractPair.stream, IH.symm, v_eq_q, stream_q_nth_eq, fr_ne_zero] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Stream'.map (Option.map (mapFr Rat.cast)) (IntFractPair.stream q) = IntFractPair.stream v [PROOFSTEP] funext n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ ⊢ Stream'.map (Option.map (mapFr Rat.cast)) (IntFractPair.stream q) n = IntFractPair.stream v n [PROOFSTEP] exact IntFractPair.coe_stream_nth_rat_eq v_eq_q n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ ↑(of q).h = (of v).h [PROOFSTEP] unfold of IntFractPair.seq1 [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ ↑(match (IntFractPair.of q, Stream'.Seq.tail { val := IntFractPair.stream q, property := (_ : Stream'.IsSeq (IntFractPair.stream q)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h = (match (IntFractPair.of v, Stream'.Seq.tail { val := IntFractPair.stream v, property := (_ : Stream'.IsSeq (IntFractPair.stream v)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h [PROOFSTEP] rw [← IntFractPair.coe_of_rat_eq v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ ↑(match (IntFractPair.of q, Stream'.Seq.tail { val := IntFractPair.stream q, property := (_ : Stream'.IsSeq (IntFractPair.stream q)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h = (match (IntFractPair.mapFr Rat.cast (IntFractPair.of q), Stream'.Seq.tail { val := IntFractPair.stream v, property := (_ : Stream'.IsSeq (IntFractPair.stream v)) }) with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s }).h [PROOFSTEP] simp [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = Stream'.Seq.get? (of v).s n [PROOFSTEP] simp only [of, IntFractPair.seq1, Stream'.Seq.map_get?, Stream'.Seq.get?_tail] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.Seq.get? { val := IntFractPair.stream q, property := (_ : Stream'.IsSeq (IntFractPair.stream q)) } (n + 1))) = Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.Seq.get? { val := IntFractPair.stream v, property := (_ : Stream'.IsSeq (IntFractPair.stream v)) } (n + 1)) [PROOFSTEP] simp only [Stream'.Seq.get?] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) (IntFractPair.stream q (n + 1))) = Option.map (fun p => { a := 1, b := ↑p.b }) (IntFractPair.stream v (n + 1)) [PROOFSTEP] rw [← IntFractPair.coe_stream'_rat_eq v_eq_q] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) (IntFractPair.stream q (n + 1))) = Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.map (Option.map (IntFractPair.mapFr Rat.cast)) (IntFractPair.stream q) (n + 1)) [PROOFSTEP] rcases succ_nth_stream_eq : IntFractPair.stream q (n + 1) with (_ | ⟨_, _⟩) [GOAL] case none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ succ_nth_stream_eq : IntFractPair.stream q (n + 1) = none ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) none) = Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.map (Option.map (IntFractPair.mapFr Rat.cast)) (IntFractPair.stream q) (n + 1)) [PROOFSTEP] simp [Stream'.map, Stream'.nth, succ_nth_stream_eq] [GOAL] case some.mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ b✝ : ℤ fr✝ : ℚ succ_nth_stream_eq : IntFractPair.stream q (n + 1) = some { b := b✝, fr := fr✝ } ⊢ Option.map (Pair.map Rat.cast) (Option.map (fun p => { a := 1, b := ↑p.b }) (some { b := b✝, fr := fr✝ })) = Option.map (fun p => { a := 1, b := ↑p.b }) (Stream'.map (Option.map (IntFractPair.mapFr Rat.cast)) (IntFractPair.stream q) (n + 1)) [PROOFSTEP] simp [Stream'.map, Stream'.nth, succ_nth_stream_eq] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ Stream'.Seq.map (Pair.map Rat.cast) (of q).s = (of v).s [PROOFSTEP] ext n [GOAL] case h.a K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ a✝ : Pair K ⊢ a✝ ∈ Stream'.Seq.get? (Stream'.Seq.map (Pair.map Rat.cast) (of q).s) n ↔ a✝ ∈ Stream'.Seq.get? (of v).s n [PROOFSTEP] rw [← coe_of_s_get?_rat_eq v_eq_q] [GOAL] case h.a K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n✝ n : ℕ a✝ : Pair K ⊢ a✝ ∈ Stream'.Seq.get? (Stream'.Seq.map (Pair.map Rat.cast) (of q).s) n ↔ a✝ ∈ Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) [PROOFSTEP] rfl [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ ⊢ { h := ↑(of q).h, s := Stream'.Seq.map (Pair.map Rat.cast) (of q).s } = of v [PROOFSTEP] cases' gcf_v_eq : of v with h s [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : K s : Stream'.Seq (Pair K) gcf_v_eq : of v = { h := h, s := s } ⊢ { h := ↑(of q).h, s := Stream'.Seq.map (Pair.map Rat.cast) (of q).s } = { h := h, s := s } [PROOFSTEP] subst v [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ h : K s : Stream'.Seq (Pair K) gcf_v_eq : of ↑q = { h := h, s := s } ⊢ { h := ↑(of q).h, s := Stream'.Seq.map (Pair.map Rat.cast) (of q).s } = { h := h, s := s } [PROOFSTEP] obtain rfl : ↑⌊(q : K)⌋ = h := by injection gcf_v_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ h : K s : Stream'.Seq (Pair K) gcf_v_eq : of ↑q = { h := h, s := s } ⊢ ↑⌊↑q⌋ = h [PROOFSTEP] injection gcf_v_eq [GOAL] case mk K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ s : Stream'.Seq (Pair K) gcf_v_eq : of ↑q = { h := ↑⌊↑q⌋, s := s } ⊢ { h := ↑(of q).h, s := Stream'.Seq.map (Pair.map Rat.cast) (of q).s } = { h := ↑⌊↑q⌋, s := s } [PROOFSTEP] simp only [gcf_v_eq, Int.cast_inj, Rat.floor_cast, of_h_eq_floor, eq_self_iff_true, Rat.cast_coe_int, and_self, coe_of_h_rat_eq rfl, coe_of_s_rat_eq rfl] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q ⊢ Terminates (of v) ↔ Terminates (of q) [PROOFSTEP] constructor [GOAL] case mp K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q ⊢ Terminates (of v) → Terminates (of q) [PROOFSTEP] intro h [GOAL] case mpr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q ⊢ Terminates (of q) → Terminates (of v) [PROOFSTEP] intro h [GOAL] case mp K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q h : Terminates (of v) ⊢ Terminates (of q) [PROOFSTEP] cases' h with n h [GOAL] case mpr K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n : ℕ v : K q : ℚ v_eq_q : v = ↑q h : Terminates (of q) ⊢ Terminates (of v) [PROOFSTEP] cases' h with n h [GOAL] case mp.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.TerminatedAt (of v).s n ⊢ Terminates (of q) [PROOFSTEP] use n [GOAL] case mpr.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.TerminatedAt (of q).s n ⊢ Terminates (of v) [PROOFSTEP] use n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.TerminatedAt (of v).s n ⊢ Stream'.Seq.TerminatedAt (of q).s n [PROOFSTEP] simp only [Stream'.Seq.TerminatedAt, (coe_of_s_get?_rat_eq v_eq_q n).symm] at h ⊢ [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.TerminatedAt (of q).s n ⊢ Stream'.Seq.TerminatedAt (of v).s n [PROOFSTEP] simp only [Stream'.Seq.TerminatedAt, (coe_of_s_get?_rat_eq v_eq_q n).symm] at h ⊢ [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = none ⊢ Stream'.Seq.get? (of q).s n = none [PROOFSTEP] cases h' : (of q).s.get? n [GOAL] case h K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.get? (of q).s n = none ⊢ Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = none [PROOFSTEP] cases h' : (of q).s.get? n [GOAL] case h.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = none h' : Stream'.Seq.get? (of q).s n = none ⊢ none = none [PROOFSTEP] simp only [h'] at h [GOAL] case h.some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Option.map (Pair.map Rat.cast) (Stream'.Seq.get? (of q).s n) = none val✝ : Pair ℚ h' : Stream'.Seq.get? (of q).s n = some val✝ ⊢ some val✝ = none [PROOFSTEP] simp only [h'] at h [GOAL] case h.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h h' : Stream'.Seq.get? (of q).s n = none ⊢ Option.map (Pair.map Rat.cast) none = none [PROOFSTEP] simp only [h'] at h [GOAL] case h.some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h : Stream'.Seq.get? (of q).s n = none val✝ : Pair ℚ h' : Stream'.Seq.get? (of q).s n = some val✝ ⊢ Option.map (Pair.map Rat.cast) (some val✝) = none [PROOFSTEP] simp only [h'] at h [GOAL] case h.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h' : Stream'.Seq.get? (of q).s n = none h : Option.map (Pair.map Rat.cast) none = none ⊢ none = none [PROOFSTEP] trivial [GOAL] case h.some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ val✝ : Pair ℚ h' : Stream'.Seq.get? (of q).s n = some val✝ h : Option.map (Pair.map Rat.cast) (some val✝) = none ⊢ some val✝ = none [PROOFSTEP] trivial [GOAL] case h.none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K v✝ : K q✝ : ℚ v_eq_q✝ : v✝ = ↑q✝ n✝ : ℕ v : K q : ℚ v_eq_q : v = ↑q n : ℕ h' : Stream'.Seq.get? (of q).s n = none h : True ⊢ Option.map (Pair.map Rat.cast) none = none [PROOFSTEP] trivial [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] obtain ⟨ifp_n', stream_nth_eq', ifp_n_fract_ne_zero, IntFractPair.of_eq_ifp_succ_n⟩ : ∃ ifp_n', IntFractPair.stream q n = some ifp_n' ∧ ifp_n'.fr ≠ 0 ∧ IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ⊢ ∃ ifp_n', IntFractPair.stream q n = some ifp_n' ∧ ifp_n'.fr ≠ 0 ∧ IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n case intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ifp_n' : IntFractPair ℚ stream_nth_eq' : IntFractPair.stream q n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] exact succ_nth_stream_eq_some_iff.mp stream_succ_nth_eq [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ifp_n' : IntFractPair ℚ stream_nth_eq' : IntFractPair.stream q n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] have : ifp_n = ifp_n' := by injection Eq.trans stream_nth_eq.symm stream_nth_eq' [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ifp_n' : IntFractPair ℚ stream_nth_eq' : IntFractPair.stream q n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n ⊢ ifp_n = ifp_n' [PROOFSTEP] injection Eq.trans stream_nth_eq.symm stream_nth_eq' [GOAL] case intro.intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n ifp_n' : IntFractPair ℚ stream_nth_eq' : IntFractPair.stream q n = some ifp_n' ifp_n_fract_ne_zero : ifp_n'.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n'.fr⁻¹ = ifp_succ_n this : ifp_n = ifp_n' ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] cases this [GOAL] case intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n stream_nth_eq' : IntFractPair.stream q n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n ⊢ ifp_succ_n.fr.num < ifp_n.fr.num [PROOFSTEP] rw [← IntFractPair.of_eq_ifp_succ_n] [GOAL] case intro.intro.intro.refl K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n stream_nth_eq' : IntFractPair.stream q n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n ⊢ (IntFractPair.of ifp_n.fr⁻¹).fr.num < ifp_n.fr.num [PROOFSTEP] cases' nth_stream_fr_nonneg_lt_one stream_nth_eq with zero_le_ifp_n_fract ifp_n_fract_lt_one [GOAL] case intro.intro.intro.refl.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n stream_nth_eq' : IntFractPair.stream q n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n zero_le_ifp_n_fract : 0 ≤ ifp_n.fr ifp_n_fract_lt_one : ifp_n.fr < 1 ⊢ (IntFractPair.of ifp_n.fr⁻¹).fr.num < ifp_n.fr.num [PROOFSTEP] have : 0 < ifp_n.fr := lt_of_le_of_ne zero_le_ifp_n_fract <| ifp_n_fract_ne_zero.symm [GOAL] case intro.intro.intro.refl.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_n ifp_succ_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n stream_succ_nth_eq : IntFractPair.stream q (n + 1) = some ifp_succ_n stream_nth_eq' : IntFractPair.stream q n = some ifp_n ifp_n_fract_ne_zero : ifp_n.fr ≠ 0 IntFractPair.of_eq_ifp_succ_n : IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n zero_le_ifp_n_fract : 0 ≤ ifp_n.fr ifp_n_fract_lt_one : ifp_n.fr < 1 this : 0 < ifp_n.fr ⊢ (IntFractPair.of ifp_n.fr⁻¹).fr.num < ifp_n.fr.num [PROOFSTEP] exact of_inv_fr_num_lt_num_of_pos this [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] induction' n with n IH [GOAL] case zero K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q Nat.zero = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q (Nat.succ n) = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] case zero => intro ifp_zero stream_zero_eq have : IntFractPair.of q = ifp_zero := by injection stream_zero_eq simp [le_refl, this.symm] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q Nat.zero = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero [PROOFSTEP] case zero => intro ifp_zero stream_zero_eq have : IntFractPair.of q = ifp_zero := by injection stream_zero_eq simp [le_refl, this.symm] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q Nat.zero = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero [PROOFSTEP] intro ifp_zero stream_zero_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_zero : IntFractPair ℚ stream_zero_eq : IntFractPair.stream q Nat.zero = some ifp_zero ⊢ ifp_zero.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero [PROOFSTEP] have : IntFractPair.of q = ifp_zero := by injection stream_zero_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_zero : IntFractPair ℚ stream_zero_eq : IntFractPair.stream q Nat.zero = some ifp_zero ⊢ IntFractPair.of q = ifp_zero [PROOFSTEP] injection stream_zero_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n : ℕ ifp_zero : IntFractPair ℚ stream_zero_eq : IntFractPair.stream q Nat.zero = some ifp_zero this : IntFractPair.of q = ifp_zero ⊢ ifp_zero.fr.num ≤ (IntFractPair.of q).fr.num - ↑Nat.zero [PROOFSTEP] simp [le_refl, this.symm] [GOAL] case succ K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q (Nat.succ n) = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] case succ => intro ifp_succ_n stream_succ_nth_eq suffices ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - n by rw [Int.ofNat_succ, sub_add_eq_sub_sub] solve_by_elim [le_sub_right_of_add_le] rcases succ_nth_stream_eq_some_iff.mp stream_succ_nth_eq with ⟨ifp_n, stream_nth_eq, -⟩ have : ifp_succ_n.fr.num < ifp_n.fr.num := stream_succ_nth_fr_num_lt_nth_fr_num_rat stream_nth_eq stream_succ_nth_eq have : ifp_succ_n.fr.num + 1 ≤ ifp_n.fr.num := Int.add_one_le_of_lt this exact le_trans this (IH stream_nth_eq) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q (Nat.succ n) = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] case succ => intro ifp_succ_n stream_succ_nth_eq suffices ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - n by rw [Int.ofNat_succ, sub_add_eq_sub_sub] solve_by_elim [le_sub_right_of_add_le] rcases succ_nth_stream_eq_some_iff.mp stream_succ_nth_eq with ⟨ifp_n, stream_nth_eq, -⟩ have : ifp_succ_n.fr.num < ifp_n.fr.num := stream_succ_nth_fr_num_lt_nth_fr_num_rat stream_nth_eq stream_succ_nth_eq have : ifp_succ_n.fr.num + 1 ≤ ifp_n.fr.num := Int.add_one_le_of_lt this exact le_trans this (IH stream_nth_eq) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q (Nat.succ n) = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] intro ifp_succ_n stream_succ_nth_eq [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ⊢ ifp_succ_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] suffices ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - n by rw [Int.ofNat_succ, sub_add_eq_sub_sub] solve_by_elim [le_sub_right_of_add_le] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n this : ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ifp_succ_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑(Nat.succ n) [PROOFSTEP] rw [Int.ofNat_succ, sub_add_eq_sub_sub] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n this : ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n ⊢ ifp_succ_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n - 1 [PROOFSTEP] solve_by_elim [le_sub_right_of_add_le] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ⊢ ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] rcases succ_nth_stream_eq_some_iff.mp stream_succ_nth_eq with ⟨ifp_n, stream_nth_eq, -⟩ [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n ⊢ ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] have : ifp_succ_n.fr.num < ifp_n.fr.num := stream_succ_nth_fr_num_lt_nth_fr_num_rat stream_nth_eq stream_succ_nth_eq [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n this : ifp_succ_n.fr.num < ifp_n.fr.num ⊢ ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] have : ifp_succ_n.fr.num + 1 ≤ ifp_n.fr.num := Int.add_one_le_of_lt this [GOAL] case intro.intro K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q : ℚ n✝ n : ℕ IH : ∀ {ifp_n : IntFractPair ℚ}, IntFractPair.stream q n = some ifp_n → ifp_n.fr.num ≤ (IntFractPair.of q).fr.num - ↑n ifp_succ_n : IntFractPair ℚ stream_succ_nth_eq : IntFractPair.stream q (Nat.succ n) = some ifp_succ_n ifp_n : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp_n this✝ : ifp_succ_n.fr.num < ifp_n.fr.num this : ifp_succ_n.fr.num + 1 ≤ ifp_n.fr.num ⊢ ifp_succ_n.fr.num + 1 ≤ (IntFractPair.of q).fr.num - ↑n [PROOFSTEP] exact le_trans this (IH stream_nth_eq) [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n : ℕ q : ℚ ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] let fract_q_num := (Int.fract q).num [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] let n := fract_q_num.natAbs + 1 [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] cases' stream_nth_eq : IntFractPair.stream q n with ifp [GOAL] case none K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 stream_nth_eq : IntFractPair.stream q n = none ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] use n, stream_nth_eq [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] have ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - n := stream_nth_fr_num_le_fr_num_sub_n_rat stream_nth_eq [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] have : fract_q_num - n = -1 := by have : 0 ≤ fract_q_num := Rat.num_nonneg_iff_zero_le.mpr (Int.fract_nonneg q) -- Porting note: was -- simp [Int.natAbs_of_nonneg this, sub_add_eq_sub_sub_swap, sub_right_comm] simp only [Nat.cast_add, Int.natAbs_of_nonneg this, Nat.cast_one, sub_add_eq_sub_sub_swap, sub_right_comm, sub_self, zero_sub] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n ⊢ fract_q_num - ↑n = -1 [PROOFSTEP] have : 0 ≤ fract_q_num := Rat.num_nonneg_iff_zero_le.mpr (Int.fract_nonneg q) -- Porting note: was -- simp [Int.natAbs_of_nonneg this, sub_add_eq_sub_sub_swap, sub_right_comm] [GOAL] K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n this : 0 ≤ fract_q_num ⊢ fract_q_num - ↑n = -1 [PROOFSTEP] simp only [Nat.cast_add, Int.natAbs_of_nonneg this, Nat.cast_one, sub_add_eq_sub_sub_swap, sub_right_comm, sub_self, zero_sub] [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n this : fract_q_num - ↑n = -1 ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] have : 0 ≤ ifp.fr := (nth_stream_fr_nonneg_lt_one stream_nth_eq).left [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n this✝ : fract_q_num - ↑n = -1 this : 0 ≤ ifp.fr ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] have : 0 ≤ ifp.fr.num := Rat.num_nonneg_iff_zero_le.mpr this [GOAL] case some K : Type u_1 inst✝¹ : LinearOrderedField K inst✝ : FloorRing K q✝ : ℚ n✝ : ℕ q : ℚ fract_q_num : ℤ := (Int.fract q).num n : ℕ := Int.natAbs fract_q_num + 1 ifp : IntFractPair ℚ stream_nth_eq : IntFractPair.stream q n = some ifp ifp_fr_num_le_q_fr_num_sub_n : ifp.fr.num ≤ fract_q_num - ↑n this✝¹ : fract_q_num - ↑n = -1 this✝ : 0 ≤ ifp.fr this : 0 ≤ ifp.fr.num ⊢ ∃ n, IntFractPair.stream q n = none [PROOFSTEP] linarith
[GOAL] x : ℚ ⊢ 0 ≤ x ↔ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) [PROOFSTEP] refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≤ x`, we have `p q : ℕ`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) • (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat [GOAL] x : ℚ hx : x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ⊢ ∀ (x : ℚ), (x ∈ Set.range fun s => star s * s) → 0 ≤ x [PROOFSTEP] rintro - ⟨s, rfl⟩ [GOAL] case intro x : ℚ hx : x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) s : ℚ ⊢ 0 ≤ (fun s => star s * s) s [PROOFSTEP] exact mul_self_nonneg s [GOAL] x : ℚ hx : 0 ≤ x ⊢ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) [PROOFSTEP] suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const ℕ ((1 : ℚ) / x.den * ((1 : ℚ) / x.den))) = x by exact this ▸ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩ [GOAL] x : ℚ hx : 0 ≤ x this : Finset.sum (Finset.range (Int.natAbs x.num * x.den)) (Function.const ℕ (1 / ↑x.den * (1 / ↑x.den))) = x ⊢ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) [PROOFSTEP] exact this ▸ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩ [GOAL] x : ℚ hx : 0 ≤ x ⊢ Finset.sum (Finset.range (Int.natAbs x.num * x.den)) (Function.const ℕ (1 / ↑x.den * (1 / ↑x.den))) = x [PROOFSTEP] simp only [Function.const_apply, Finset.sum_const, Finset.card_range, nsmul_eq_mul] [GOAL] x : ℚ hx : 0 ≤ x ⊢ ↑(Int.natAbs x.num * x.den) * (1 / ↑x.den * (1 / ↑x.den)) = x [PROOFSTEP] rw [← Int.cast_ofNat, Int.ofNat_mul, Int.coe_natAbs, abs_of_nonneg (num_nonneg_iff_zero_le.mpr hx), Int.cast_mul, Int.cast_ofNat] [GOAL] x : ℚ hx : 0 ≤ x ⊢ ↑x.num * ↑x.den * (1 / ↑x.den * (1 / ↑x.den)) = x [PROOFSTEP] rw [← mul_assoc, mul_assoc (x.num : ℚ), mul_one_div_cancel (Nat.cast_ne_zero.mpr x.pos.ne'), mul_one, mul_one_div, Rat.num_div_den]
--- author: Nathan Carter ([email protected]) --- This answer assumes you have imported SymPy as follows. ```python from sympy import * # load all math functions init_printing( use_latex='mathjax' ) # use pretty math output ``` In SymPy, we tend to work with formulas (that is, mathematical expressions) rather than functions (like $f(x)$). So if we wish to compute the derivative of $f(x)=10x^2-16x+1$, we will focus on just the $10x^2-16x+1$ portion. ```python var( 'x' ) formula = 10*x**2 - 16*x + 1 formula ``` $\displaystyle 10 x^{2} - 16 x + 1$ We can compute its derivative by using the `diff` function. ```python diff( formula ) ``` $\displaystyle 20 x - 16$ If it had been a multi-variable function, we would need to specify the variable with respect to which we wanted to compute a derivative. ```python var( 'y' ) # introduce a new variable formula2 = x**2 - y**2 # consider the formula x^2 + y^2 diff( formula2, y ) # differentiate with respect to y ``` $\displaystyle - 2 y$ We can compute second or third derivatives by repeating the variable with respect to which we're differentiating. To do partial derivatives, use multiple variables. ```python diff( formula, x, x ) # second derivative with respect to x ``` $\displaystyle 20$ ```python diff( formula2, x, y ) # mixed partial derivative ``` $\displaystyle 0$
/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Robert Y. Lewis Ported by: Joël Riou ! This file was ported from Lean 3 source module algebra.group_power.ring ! leanprover-community/mathlib commit fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Algebra.GroupPower.Basic import Mathlib.Algebra.GroupWithZero.Commute import Mathlib.Algebra.Hom.Ring import Mathlib.Algebra.Ring.Commute import Mathlib.Algebra.GroupWithZero.Divisibility import Mathlib.Algebra.Ring.Divisibility import Mathlib.Data.Nat.Order.Basic /-! # Power operations on monoids with zero, semirings, and rings This file provides additional lemmas about the natural power operator on rings and semirings. Further lemmas about ordered semirings and rings can be found in `Algebra.GroupPower.Lemmas`. -/ variable {R S M : Type _} section MonoidWithZero variable [MonoidWithZero M] theorem zero_pow : ∀ {n : ℕ}, 0 < n → (0 : M) ^ n = 0 | n + 1, _ => by rw [pow_succ, zero_mul] #align zero_pow zero_pow @[simp] theorem zero_pow' : ∀ n : ℕ, n ≠ 0 → (0 : M) ^ n = 0 | 0, h => absurd rfl h | k + 1, _ => by rw [pow_succ] exact zero_mul _ #align zero_pow' zero_pow' theorem zero_pow_eq (n : ℕ) : (0 : M) ^ n = if n = 0 then 1 else 0 := by split_ifs with h · rw [h, pow_zero] · rw [zero_pow (Nat.pos_of_ne_zero h)] #align zero_pow_eq zero_pow_eq theorem pow_eq_zero_of_le {x : M} {n m : ℕ} (hn : n ≤ m) (hx : x ^ n = 0) : x ^ m = 0 := by rw [← tsub_add_cancel_of_le hn, pow_add, hx, mul_zero] #align pow_eq_zero_of_le pow_eq_zero_of_le theorem pow_eq_zero [NoZeroDivisors M] {x : M} {n : ℕ} (H : x ^ n = 0) : x = 0 := by induction' n with n ih · rw [pow_zero] at H rw [← mul_one x, H, mul_zero] · rw [pow_succ] at H exact Or.casesOn (mul_eq_zero.1 H) id ih #align pow_eq_zero pow_eq_zero @[simp] theorem pow_eq_zero_iff [NoZeroDivisors M] {a : M} {n : ℕ} (hn : 0 < n) : a ^ n = 0 ↔ a = 0 := by refine' ⟨pow_eq_zero, _⟩ rintro rfl exact zero_pow hn #align pow_eq_zero_iff pow_eq_zero_iff theorem pow_eq_zero_iff' [NoZeroDivisors M] [Nontrivial M] {a : M} {n : ℕ} : a ^ n = 0 ↔ a = 0 ∧ n ≠ 0 := by cases (zero_le n).eq_or_gt <;> simp [*, ne_of_gt] #align pow_eq_zero_iff' pow_eq_zero_iff' theorem pow_ne_zero_iff [NoZeroDivisors M] {a : M} {n : ℕ} (hn : 0 < n) : a ^ n ≠ 0 ↔ a ≠ 0 := (pow_eq_zero_iff hn).not #align pow_ne_zero_iff pow_ne_zero_iff theorem ne_zero_pow {a : M} {n : ℕ} (hn : n ≠ 0) : a ^ n ≠ 0 → a ≠ 0 := by contrapose! rintro rfl exact zero_pow' n hn #align ne_zero_pow ne_zero_pow @[field_simps] theorem pow_ne_zero [NoZeroDivisors M] {a : M} (n : ℕ) (h : a ≠ 0) : a ^ n ≠ 0 := mt pow_eq_zero h #align pow_ne_zero pow_ne_zero instance NeZero.pow [NoZeroDivisors M] {x : M} [NeZero x] {n : ℕ} : NeZero (x ^ n) := ⟨pow_ne_zero n NeZero.out⟩ #align ne_zero.pow NeZero.pow theorem sq_eq_zero_iff [NoZeroDivisors M] {a : M} : a ^ 2 = 0 ↔ a = 0 := pow_eq_zero_iff two_pos #align sq_eq_zero_iff sq_eq_zero_iff @[simp] theorem zero_pow_eq_zero [Nontrivial M] {n : ℕ} : (0 : M) ^ n = 0 ↔ 0 < n := by constructor <;> intro h · rw [pos_iff_ne_zero] rintro rfl simp at h · exact zero_pow' n h.ne.symm #align zero_pow_eq_zero zero_pow_eq_zero theorem Ring.inverse_pow (r : M) : ∀ n : ℕ, Ring.inverse r ^ n = Ring.inverse (r ^ n) | 0 => by rw [pow_zero, pow_zero, Ring.inverse_one] | n + 1 => by rw [pow_succ, pow_succ', Ring.mul_inverse_rev' ((Commute.refl r).pow_left n), Ring.inverse_pow r n] #align ring.inverse_pow Ring.inverse_pow end MonoidWithZero section CommMonoidWithZero variable [CommMonoidWithZero M] {n : ℕ} (hn : 0 < n) /-- We define `x ↦ x^n` (for positive `n : ℕ`) as a `MonoidWithZeroHom` -/ def powMonoidWithZeroHom : M →*₀ M := { powMonoidHom n with map_zero' := zero_pow hn } #align pow_monoid_with_zero_hom powMonoidWithZeroHom @[simp] theorem coe_powMonoidWithZeroHom : (powMonoidWithZeroHom hn : M → M) = fun x ↦ (x^n : M) := rfl #align coe_pow_monoid_with_zero_hom coe_powMonoidWithZeroHom @[simp] theorem powMonoidWithZeroHom_apply (a : M) : powMonoidWithZeroHom hn a = a ^ n := rfl #align pow_monoid_with_zero_hom_apply powMonoidWithZeroHom_apply end CommMonoidWithZero theorem pow_dvd_pow_iff [CancelCommMonoidWithZero R] {x : R} {n m : ℕ} (h0 : x ≠ 0) (h1 : ¬IsUnit x) : x ^ n ∣ x ^ m ↔ n ≤ m := by constructor · intro h rw [← not_lt] intro hmn apply h1 have : x ^ m * x ∣ x ^ m * 1 := by rw [← pow_succ', mul_one] exact (pow_dvd_pow _ (Nat.succ_le_of_lt hmn)).trans h rwa [mul_dvd_mul_iff_left, ← isUnit_iff_dvd_one] at this apply pow_ne_zero m h0 · apply pow_dvd_pow #align pow_dvd_pow_iff pow_dvd_pow_iff section Semiring variable [Semiring R] [Semiring S] protected theorem RingHom.map_pow (f : R →+* S) (a) : ∀ n : ℕ, f (a ^ n) = f a ^ n := map_pow f a #align ring_hom.map_pow RingHom.map_pow theorem min_pow_dvd_add {n m : ℕ} {a b c : R} (ha : c ^ n ∣ a) (hb : c ^ m ∣ b) : c ^ min n m ∣ a + b := by replace ha := (pow_dvd_pow c (min_le_left n m)).trans ha replace hb := (pow_dvd_pow c (min_le_right n m)).trans hb exact dvd_add ha hb #align min_pow_dvd_add min_pow_dvd_add end Semiring section CommSemiring variable [CommSemiring R] theorem add_sq (a b : R) : (a + b) ^ 2 = a ^ 2 + 2 * a * b + b ^ 2 := by simp only [sq, add_mul_self_eq] #align add_sq add_sq theorem add_sq' (a b : R) : (a + b) ^ 2 = a ^ 2 + b ^ 2 + 2 * a * b := by rw [add_sq, add_assoc, add_comm _ (b ^ 2), add_assoc] #align add_sq' add_sq' alias add_sq ← add_pow_two #align add_pow_two add_pow_two end CommSemiring section HasDistribNeg variable [Monoid R] [HasDistribNeg R] variable (R) theorem neg_one_pow_eq_or : ∀ n : ℕ, (-1 : R) ^ n = 1 ∨ (-1 : R) ^ n = -1 | 0 => Or.inl (pow_zero _) | n + 1 => (neg_one_pow_eq_or n).symm.imp (fun h ↦ by rw [pow_succ, h, neg_one_mul, neg_neg]) (fun h ↦ by rw [pow_succ, h, mul_one]) #align neg_one_pow_eq_or neg_one_pow_eq_or variable {R} theorem neg_pow (a : R) (n : ℕ) : (-a) ^ n = (-1) ^ n * a ^ n := neg_one_mul a ▸ (Commute.neg_one_left a).mul_pow n #align neg_pow neg_pow section set_option linter.deprecated false @[simp] theorem neg_pow_bit0 (a : R) (n : ℕ) : (-a) ^ bit0 n = a ^ bit0 n := by rw [pow_bit0', neg_mul_neg, pow_bit0'] #align neg_pow_bit0 neg_pow_bit0 @[simp] theorem neg_pow_bit1 (a : R) (n : ℕ) : (-a) ^ bit1 n = -a ^ bit1 n := by simp only [bit1, pow_succ, neg_pow_bit0, neg_mul_eq_neg_mul] #align neg_pow_bit1 neg_pow_bit1 end @[simp] theorem neg_sq (a : R) : (-a) ^ 2 = a ^ 2 := by simp [sq] #align neg_sq neg_sq -- Porting note: removed the simp attribute to please the simpNF linter theorem neg_one_sq : (-1 : R) ^ 2 = 1 := by simp [neg_sq, one_pow] #align neg_one_sq neg_one_sq alias neg_sq ← neg_pow_two #align neg_pow_two neg_pow_two alias neg_one_sq ← neg_one_pow_two #align neg_one_pow_two neg_one_pow_two end HasDistribNeg section Ring variable [Ring R] {a b : R} protected theorem Commute.sq_sub_sq (h : Commute a b) : a ^ 2 - b ^ 2 = (a + b) * (a - b) := by rw [sq, sq, h.mul_self_sub_mul_self_eq] #align commute.sq_sub_sq Commute.sq_sub_sq @[simp] theorem neg_one_pow_mul_eq_zero_iff {n : ℕ} {r : R} : (-1) ^ n * r = 0 ↔ r = 0 := by rcases neg_one_pow_eq_or R n with h | h <;> simp [h] #align neg_one_pow_mul_eq_zero_iff neg_one_pow_mul_eq_zero_iff @[simp] theorem mul_neg_one_pow_eq_zero_iff {n : ℕ} {r : R} : r * (-1) ^ n = 0 ↔ r = 0 := by rcases neg_one_pow_eq_or R n with h | h <;> simp [h] #align mul_neg_one_pow_eq_zero_iff mul_neg_one_pow_eq_zero_iff variable [NoZeroDivisors R] protected theorem Commute.sq_eq_sq_iff_eq_or_eq_neg (h : Commute a b) : a ^ 2 = b ^ 2 ↔ a = b ∨ a = -b := by rw [← sub_eq_zero, h.sq_sub_sq, mul_eq_zero, add_eq_zero_iff_eq_neg, sub_eq_zero, or_comm] #align commute.sq_eq_sq_iff_eq_or_eq_neg Commute.sq_eq_sq_iff_eq_or_eq_neg @[simp] theorem sq_eq_one_iff : a ^ 2 = 1 ↔ a = 1 ∨ a = -1 := by rw [← (Commute.one_right a).sq_eq_sq_iff_eq_or_eq_neg, one_pow] #align sq_eq_one_iff sq_eq_one_iff theorem sq_ne_one_iff : a ^ 2 ≠ 1 ↔ a ≠ 1 ∧ a ≠ -1 := sq_eq_one_iff.not.trans not_or #align sq_ne_one_iff sq_ne_one_iff end Ring section CommRing variable [CommRing R] theorem sq_sub_sq (a b : R) : a ^ 2 - b ^ 2 = (a + b) * (a - b) := (Commute.all a b).sq_sub_sq #align sq_sub_sq sq_sub_sq alias sq_sub_sq ← pow_two_sub_pow_two #align pow_two_sub_pow_two pow_two_sub_pow_two theorem sub_sq (a b : R) : (a - b) ^ 2 = a ^ 2 - 2 * a * b + b ^ 2 := by rw [sub_eq_add_neg, add_sq, neg_sq, mul_neg, ← sub_eq_add_neg] #align sub_sq sub_sq alias sub_sq ← sub_pow_two #align sub_pow_two sub_pow_two theorem sub_sq' (a b : R) : (a - b) ^ 2 = a ^ 2 + b ^ 2 - 2 * a * b := by rw [sub_eq_add_neg, add_sq', neg_sq, mul_neg, ← sub_eq_add_neg] #align sub_sq' sub_sq' variable [NoZeroDivisors R] {a b : R} theorem sq_eq_sq_iff_eq_or_eq_neg : a ^ 2 = b ^ 2 ↔ a = b ∨ a = -b := (Commute.all a b).sq_eq_sq_iff_eq_or_eq_neg #align sq_eq_sq_iff_eq_or_eq_neg sq_eq_sq_iff_eq_or_eq_neg theorem eq_or_eq_neg_of_sq_eq_sq (a b : R) : a ^ 2 = b ^ 2 → a = b ∨ a = -b := sq_eq_sq_iff_eq_or_eq_neg.1 #align eq_or_eq_neg_of_sq_eq_sq eq_or_eq_neg_of_sq_eq_sq -- Copies of the above CommRing lemmas for `Units R`. namespace Units protected theorem sq_eq_sq_iff_eq_or_eq_neg {a b : Rˣ} : a ^ 2 = b ^ 2 ↔ a = b ∨ a = -b := by simp_rw [ext_iff, val_pow_eq_pow_val, sq_eq_sq_iff_eq_or_eq_neg, Units.val_neg] #align units.sq_eq_sq_iff_eq_or_eq_neg Units.sq_eq_sq_iff_eq_or_eq_neg protected theorem eq_or_eq_neg_of_sq_eq_sq (a b : Rˣ) (h : a ^ 2 = b ^ 2) : a = b ∨ a = -b := Units.sq_eq_sq_iff_eq_or_eq_neg.1 h #align units.eq_or_eq_neg_of_sq_eq_sq Units.eq_or_eq_neg_of_sq_eq_sq end Units end CommRing
lemma primitive_part_fract_0 [simp]: "primitive_part_fract 0 = 0"
{-# OPTIONS --without-K --exact-split --safe #-} module 06-universes where import 05-identity-types open 05-identity-types public -------------------------------------------------------------------------------- -- Section 6.3 Observational equality on the natural numbers -- Definition 6.3.1 Eq-ℕ : ℕ → ℕ → UU lzero Eq-ℕ zero-ℕ zero-ℕ = 𝟙 Eq-ℕ zero-ℕ (succ-ℕ n) = 𝟘 Eq-ℕ (succ-ℕ m) zero-ℕ = 𝟘 Eq-ℕ (succ-ℕ m) (succ-ℕ n) = Eq-ℕ m n -- Lemma 6.3.2 refl-Eq-ℕ : (n : ℕ) → Eq-ℕ n n refl-Eq-ℕ zero-ℕ = star refl-Eq-ℕ (succ-ℕ n) = refl-Eq-ℕ n -- Proposition 6.3.3 Eq-ℕ-eq : {x y : ℕ} → Id x y → Eq-ℕ x y Eq-ℕ-eq {x} {.x} refl = refl-Eq-ℕ x eq-Eq-ℕ : (x y : ℕ) → Eq-ℕ x y → Id x y eq-Eq-ℕ zero-ℕ zero-ℕ e = refl eq-Eq-ℕ (succ-ℕ x) (succ-ℕ y) e = ap succ-ℕ (eq-Eq-ℕ x y e) -------------------------------------------------------------------------------- -- Section 6.4 Peano's seventh and eighth axioms -- Theorem 6.4.1 is-injective-succ-ℕ : (x y : ℕ) → Id (succ-ℕ x) (succ-ℕ y) → Id x y is-injective-succ-ℕ x y e = eq-Eq-ℕ x y (Eq-ℕ-eq e) Peano-7 : (x y : ℕ) → ((Id x y) → (Id (succ-ℕ x) (succ-ℕ y))) × ((Id (succ-ℕ x) (succ-ℕ y)) → (Id x y)) Peano-7 x y = pair (ap succ-ℕ) (is-injective-succ-ℕ x y) -- Theorem 6.4.2 Peano-8 : (x : ℕ) → ¬ (Id zero-ℕ (succ-ℕ x)) Peano-8 x p = Eq-ℕ-eq p -------------------------------------------------------------------------------- -- Exercises -- Exercise 6.1 -- Exercise 6.1 (a) is-injective-add-ℕ : (k m n : ℕ) → Id (add-ℕ m k) (add-ℕ n k) → Id m n is-injective-add-ℕ zero-ℕ m n = id is-injective-add-ℕ (succ-ℕ k) m n p = is-injective-add-ℕ k m n (is-injective-succ-ℕ (add-ℕ m k) (add-ℕ n k) p) -- Exercise 6.1 (b) is-injective-mul-ℕ : (k m n : ℕ) → Id (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → Id m n is-injective-mul-ℕ k zero-ℕ zero-ℕ p = refl is-injective-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = ap succ-ℕ ( is-injective-mul-ℕ k m n ( is-injective-add-ℕ ( succ-ℕ k) ( mul-ℕ m (succ-ℕ k)) ( mul-ℕ n (succ-ℕ k)) ( ( inv (left-successor-law-mul-ℕ m (succ-ℕ k))) ∙ ( ( p) ∙ ( left-successor-law-mul-ℕ n (succ-ℕ k)))))) -- Exercise 6.1 (c) neq-add-ℕ : (m n : ℕ) → ¬ (Id m (add-ℕ m (succ-ℕ n))) neq-add-ℕ (succ-ℕ m) n p = neq-add-ℕ m n ( ( is-injective-succ-ℕ m (add-ℕ (succ-ℕ m) n) p) ∙ ( left-successor-law-add-ℕ m n)) -- Exercise 6.1 (d) neq-mul-ℕ : (m n : ℕ) → ¬ (Id (succ-ℕ m) (mul-ℕ (succ-ℕ m) (succ-ℕ (succ-ℕ n)))) neq-mul-ℕ m n p = neq-add-ℕ ( succ-ℕ m) ( add-ℕ (mul-ℕ m (succ-ℕ n)) n) ( ( p) ∙ ( ( right-successor-law-mul-ℕ (succ-ℕ m) (succ-ℕ n)) ∙ ( ap (add-ℕ (succ-ℕ m)) (left-successor-law-mul-ℕ m (succ-ℕ n))))) -- Exercise 6.2 -- Exercise 6.2 (a) Eq-𝟚 : bool → bool → UU lzero Eq-𝟚 true true = unit Eq-𝟚 true false = empty Eq-𝟚 false true = empty Eq-𝟚 false false = unit -- Exercise 6.2 (b) reflexive-Eq-𝟚 : (x : bool) → Eq-𝟚 x x reflexive-Eq-𝟚 true = star reflexive-Eq-𝟚 false = star Eq-eq-𝟚 : {x y : bool} → Id x y → Eq-𝟚 x y Eq-eq-𝟚 {x = x} refl = reflexive-Eq-𝟚 x eq-Eq-𝟚 : {x y : bool} → Eq-𝟚 x y → Id x y eq-Eq-𝟚 {true} {true} star = refl eq-Eq-𝟚 {false} {false} star = refl -- Exercise 6.2 (c) neq-neg-𝟚 : (b : bool) → ¬ (Id b (neg-𝟚 b)) neq-neg-𝟚 true = Eq-eq-𝟚 neq-neg-𝟚 false = Eq-eq-𝟚 neq-false-true-𝟚 : ¬ (Id false true) neq-false-true-𝟚 = Eq-eq-𝟚 -- Exercise 6.3 -- Exercise 6.3 (a) leq-ℕ : ℕ → ℕ → UU lzero leq-ℕ zero-ℕ m = unit leq-ℕ (succ-ℕ n) zero-ℕ = empty leq-ℕ (succ-ℕ n) (succ-ℕ m) = leq-ℕ n m _≤_ = leq-ℕ -- Some trivialities that will be useful later leq-zero-ℕ : (n : ℕ) → leq-ℕ zero-ℕ n leq-zero-ℕ n = star eq-leq-zero-ℕ : (x : ℕ) → leq-ℕ x zero-ℕ → Id zero-ℕ x eq-leq-zero-ℕ zero-ℕ star = refl succ-leq-ℕ : (n : ℕ) → leq-ℕ n (succ-ℕ n) succ-leq-ℕ zero-ℕ = star succ-leq-ℕ (succ-ℕ n) = succ-leq-ℕ n concatenate-eq-leq-eq-ℕ : {x1 x2 x3 x4 : ℕ} → Id x1 x2 → leq-ℕ x2 x3 → Id x3 x4 → leq-ℕ x1 x4 concatenate-eq-leq-eq-ℕ refl H refl = H concatenate-leq-eq-ℕ : (m : ℕ) {n n' : ℕ} → leq-ℕ m n → Id n n' → leq-ℕ m n' concatenate-leq-eq-ℕ m H refl = H concatenate-eq-leq-ℕ : {m m' : ℕ} (n : ℕ) → Id m' m → leq-ℕ m n → leq-ℕ m' n concatenate-eq-leq-ℕ n refl H = H -- Exercise 6.3 (b) reflexive-leq-ℕ : (n : ℕ) → leq-ℕ n n reflexive-leq-ℕ zero-ℕ = star reflexive-leq-ℕ (succ-ℕ n) = reflexive-leq-ℕ n leq-eq-ℕ : (m n : ℕ) → Id m n → leq-ℕ m n leq-eq-ℕ m .m refl = reflexive-leq-ℕ m transitive-leq-ℕ : (n m l : ℕ) → (n ≤ m) → (m ≤ l) → (n ≤ l) transitive-leq-ℕ zero-ℕ m l p q = star transitive-leq-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-leq-ℕ n m l p q preserves-leq-succ-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ m (succ-ℕ n) preserves-leq-succ-ℕ m n p = transitive-leq-ℕ m n (succ-ℕ n) p (succ-leq-ℕ n) anti-symmetric-leq-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ n m → Id m n anti-symmetric-leq-ℕ zero-ℕ zero-ℕ p q = refl anti-symmetric-leq-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-leq-ℕ m n p q) -- Exercise 6.3 (c) decide-leq-ℕ : (m n : ℕ) → coprod (leq-ℕ m n) (leq-ℕ n m) decide-leq-ℕ zero-ℕ zero-ℕ = inl star decide-leq-ℕ zero-ℕ (succ-ℕ n) = inl star decide-leq-ℕ (succ-ℕ m) zero-ℕ = inr star decide-leq-ℕ (succ-ℕ m) (succ-ℕ n) = decide-leq-ℕ m n -- Exercise 6.3 (d) preserves-order-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) preserves-order-add-ℕ zero-ℕ m n = id preserves-order-add-ℕ (succ-ℕ k) m n = preserves-order-add-ℕ k m n reflects-order-add-ℕ : (k m n : ℕ) → leq-ℕ (add-ℕ m k) (add-ℕ n k) → leq-ℕ m n reflects-order-add-ℕ zero-ℕ m n = id reflects-order-add-ℕ (succ-ℕ k) m n = reflects-order-add-ℕ k m n -- Exercise 6.3 (e) preserves-order-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) preserves-order-mul-ℕ k zero-ℕ n p = star preserves-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = preserves-order-add-ℕ k ( mul-ℕ m k) ( mul-ℕ n k) ( preserves-order-mul-ℕ k m n p) reflects-order-mul-ℕ : (k m n : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → leq-ℕ m n reflects-order-mul-ℕ k zero-ℕ n p = star reflects-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = reflects-order-mul-ℕ k m n ( reflects-order-add-ℕ ( succ-ℕ k) ( mul-ℕ m (succ-ℕ k)) ( mul-ℕ n (succ-ℕ k)) ( p)) -- Exercise 6.3 (f) leq-min-ℕ : (k m n : ℕ) → leq-ℕ k m → leq-ℕ k n → leq-ℕ k (min-ℕ m n) leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H K = star leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H K = star leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H K = star leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-min-ℕ k m n H K leq-left-leq-min-ℕ : (k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k m leq-left-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star leq-left-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star leq-left-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-left-leq-min-ℕ k m n H leq-right-leq-min-ℕ : (k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k n leq-right-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star leq-right-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star leq-right-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-right-leq-min-ℕ k m n H leq-max-ℕ : (k m n : ℕ) → leq-ℕ m k → leq-ℕ n k → leq-ℕ (max-ℕ m n) k leq-max-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star leq-max-ℕ (succ-ℕ k) zero-ℕ zero-ℕ H K = star leq-max-ℕ (succ-ℕ k) zero-ℕ (succ-ℕ n) H K = K leq-max-ℕ (succ-ℕ k) (succ-ℕ m) zero-ℕ H K = H leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-max-ℕ k m n H K leq-left-leq-max-ℕ : (k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ m k leq-left-leq-max-ℕ k zero-ℕ zero-ℕ H = star leq-left-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = star leq-left-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = H leq-left-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-left-leq-max-ℕ k m n H leq-right-leq-max-ℕ : (k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ n k leq-right-leq-max-ℕ k zero-ℕ zero-ℕ H = star leq-right-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = H leq-right-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = star leq-right-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-right-leq-max-ℕ k m n H -- Exercise 6.4 -- Exercise 6.4 (a) -- We define a distance function on ℕ -- dist-ℕ : ℕ → ℕ → ℕ dist-ℕ zero-ℕ n = n dist-ℕ (succ-ℕ m) zero-ℕ = succ-ℕ m dist-ℕ (succ-ℕ m) (succ-ℕ n) = dist-ℕ m n dist-ℕ' : ℕ → ℕ → ℕ dist-ℕ' m n = dist-ℕ n m ap-dist-ℕ : {m n m' n' : ℕ} → Id m m' → Id n n' → Id (dist-ℕ m n) (dist-ℕ m' n') ap-dist-ℕ refl refl = refl {- We show that two natural numbers are equal if and only if their distance is zero. -} eq-dist-ℕ : (m n : ℕ) → Id zero-ℕ (dist-ℕ m n) → Id m n eq-dist-ℕ zero-ℕ zero-ℕ p = refl eq-dist-ℕ (succ-ℕ m) (succ-ℕ n) p = ap succ-ℕ (eq-dist-ℕ m n p) dist-eq-ℕ' : (n : ℕ) → Id zero-ℕ (dist-ℕ n n) dist-eq-ℕ' zero-ℕ = refl dist-eq-ℕ' (succ-ℕ n) = dist-eq-ℕ' n dist-eq-ℕ : (m n : ℕ) → Id m n → Id zero-ℕ (dist-ℕ m n) dist-eq-ℕ m .m refl = dist-eq-ℕ' m -- The distance function is symmetric -- symmetric-dist-ℕ : (m n : ℕ) → Id (dist-ℕ m n) (dist-ℕ n m) symmetric-dist-ℕ zero-ℕ zero-ℕ = refl symmetric-dist-ℕ zero-ℕ (succ-ℕ n) = refl symmetric-dist-ℕ (succ-ℕ m) zero-ℕ = refl symmetric-dist-ℕ (succ-ℕ m) (succ-ℕ n) = symmetric-dist-ℕ m n -- We compute the distance from zero -- left-zero-law-dist-ℕ : (n : ℕ) → Id (dist-ℕ zero-ℕ n) n left-zero-law-dist-ℕ zero-ℕ = refl left-zero-law-dist-ℕ (succ-ℕ n) = refl right-zero-law-dist-ℕ : (n : ℕ) → Id (dist-ℕ n zero-ℕ) n right-zero-law-dist-ℕ zero-ℕ = refl right-zero-law-dist-ℕ (succ-ℕ n) = refl -- We prove the triangle inequality -- ap-add-ℕ : {m n m' n' : ℕ} → Id m m' → Id n n' → Id (add-ℕ m n) (add-ℕ m' n') ap-add-ℕ refl refl = refl triangle-inequality-dist-ℕ : (m n k : ℕ) → leq-ℕ (dist-ℕ m n) (add-ℕ (dist-ℕ m k) (dist-ℕ k n)) triangle-inequality-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = star triangle-inequality-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = star triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = tr ( leq-ℕ (succ-ℕ n)) ( inv (left-unit-law-add-ℕ (succ-ℕ n))) ( reflexive-leq-ℕ (succ-ℕ n)) triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (left-zero-law-dist-ℕ n))) ( triangle-inequality-dist-ℕ zero-ℕ n k) ( ( ap (succ-ℕ ∘ (add-ℕ' (dist-ℕ k n))) (left-zero-law-dist-ℕ k)) ∙ ( inv (left-successor-law-add-ℕ k (dist-ℕ k n)))) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = reflexive-leq-ℕ (succ-ℕ m) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (right-zero-law-dist-ℕ m))) ( triangle-inequality-dist-ℕ m zero-ℕ k) ( ap (succ-ℕ ∘ (add-ℕ (dist-ℕ m k))) (right-zero-law-dist-ℕ k)) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = concatenate-leq-eq-ℕ ( dist-ℕ m n) ( transitive-leq-ℕ ( dist-ℕ m n) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( succ-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( transitive-leq-ℕ ( dist-ℕ m n) ( add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( triangle-inequality-dist-ℕ m n zero-ℕ) ( succ-leq-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( succ-leq-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))))) ( ( ap (succ-ℕ ∘ succ-ℕ) ( ap-add-ℕ (right-zero-law-dist-ℕ m) (left-zero-law-dist-ℕ n))) ∙ ( inv (left-successor-law-add-ℕ m (succ-ℕ n)))) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = triangle-inequality-dist-ℕ m n k -- We show that dist-ℕ x y is a solution to a simple equation. leq-dist-ℕ : (x y : ℕ) → leq-ℕ x y → Id (add-ℕ x (dist-ℕ x y)) y leq-dist-ℕ zero-ℕ zero-ℕ H = refl leq-dist-ℕ zero-ℕ (succ-ℕ y) star = left-unit-law-add-ℕ (succ-ℕ y) leq-dist-ℕ (succ-ℕ x) (succ-ℕ y) H = ( left-successor-law-add-ℕ x (dist-ℕ x y)) ∙ ( ap succ-ℕ (leq-dist-ℕ x y H)) rewrite-left-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id x (dist-ℕ y z) rewrite-left-add-dist-ℕ zero-ℕ zero-ℕ .zero-ℕ refl = refl rewrite-left-add-dist-ℕ zero-ℕ (succ-ℕ y) .(succ-ℕ (add-ℕ zero-ℕ y)) refl = ( dist-eq-ℕ' y) ∙ ( inv (ap (dist-ℕ (succ-ℕ y)) (left-unit-law-add-ℕ (succ-ℕ y)))) rewrite-left-add-dist-ℕ (succ-ℕ x) zero-ℕ .(succ-ℕ x) refl = refl rewrite-left-add-dist-ℕ (succ-ℕ x) (succ-ℕ y) .(succ-ℕ (add-ℕ (succ-ℕ x) y)) refl = rewrite-left-add-dist-ℕ (succ-ℕ x) y (add-ℕ (succ-ℕ x) y) refl rewrite-left-dist-add-ℕ : (x y z : ℕ) → leq-ℕ y z → Id x (dist-ℕ y z) → Id (add-ℕ x y) z rewrite-left-dist-add-ℕ .(dist-ℕ y z) y z H refl = ( commutative-add-ℕ (dist-ℕ y z) y) ∙ ( leq-dist-ℕ y z H) rewrite-right-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id y (dist-ℕ x z) rewrite-right-add-dist-ℕ x y z p = rewrite-left-add-dist-ℕ y x z (commutative-add-ℕ y x ∙ p) rewrite-right-dist-add-ℕ : (x y z : ℕ) → leq-ℕ x z → Id y (dist-ℕ x z) → Id (add-ℕ x y) z rewrite-right-dist-add-ℕ x .(dist-ℕ x z) z H refl = leq-dist-ℕ x z H -- We show that dist-ℕ is translation invariant translation-invariant-dist-ℕ : (k m n : ℕ) → Id (dist-ℕ (add-ℕ k m) (add-ℕ k n)) (dist-ℕ m n) translation-invariant-dist-ℕ zero-ℕ m n = ap-dist-ℕ (left-unit-law-add-ℕ m) (left-unit-law-add-ℕ n) translation-invariant-dist-ℕ (succ-ℕ k) m n = ( ap-dist-ℕ (left-successor-law-add-ℕ k m) (left-successor-law-add-ℕ k n)) ∙ ( translation-invariant-dist-ℕ k m n) -- We show that dist-ℕ is linear with respect to scalar multiplication linear-dist-ℕ : (m n k : ℕ) → Id (dist-ℕ (mul-ℕ k m) (mul-ℕ k n)) (mul-ℕ k (dist-ℕ m n)) linear-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = refl linear-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = linear-dist-ℕ zero-ℕ zero-ℕ k linear-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = ap (dist-ℕ' (mul-ℕ (succ-ℕ k) (succ-ℕ n))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = ap (dist-ℕ (mul-ℕ (succ-ℕ k) (succ-ℕ m))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = ( ap-dist-ℕ ( right-successor-law-mul-ℕ (succ-ℕ k) m) ( right-successor-law-mul-ℕ (succ-ℕ k) n)) ∙ ( ( translation-invariant-dist-ℕ ( succ-ℕ k) ( mul-ℕ (succ-ℕ k) m) ( mul-ℕ (succ-ℕ k) n)) ∙ ( linear-dist-ℕ m n (succ-ℕ k))) -- Exercise 6.6 {- In this exercise we were asked to define the relations ≤ and < on the integers. As a criterion of correctness, we were then also asked to show that the type of all integers l satisfying k ≤ l satisfy the induction principle of the natural numbers. -} diff-ℤ : ℤ → ℤ → ℤ diff-ℤ k l = add-ℤ (neg-ℤ k) l is-non-negative-ℤ : ℤ → UU lzero is-non-negative-ℤ (inl x) = empty is-non-negative-ℤ (inr k) = unit leq-ℤ : ℤ → ℤ → UU lzero leq-ℤ k l = is-non-negative-ℤ (diff-ℤ k l) reflexive-leq-ℤ : (k : ℤ) → leq-ℤ k k reflexive-leq-ℤ k = tr is-non-negative-ℤ (inv (left-inverse-law-add-ℤ k)) star is-non-negative-succ-ℤ : (k : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ (succ-ℤ k) is-non-negative-succ-ℤ (inr (inl star)) p = star is-non-negative-succ-ℤ (inr (inr x)) p = star is-non-negative-add-ℤ : (k l : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ l → is-non-negative-ℤ (add-ℤ k l) is-non-negative-add-ℤ (inr (inl star)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inl star)) (inr (inr n)) p q = star is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inl star)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inl star))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inl star)) star star) is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inr m)) star star = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inr m)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inr m))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inr m)) star star) triangle-diff-ℤ : (k l m : ℤ) → Id (add-ℤ (diff-ℤ k l) (diff-ℤ l m)) (diff-ℤ k m) triangle-diff-ℤ k l m = ( associative-add-ℤ (neg-ℤ k) l (diff-ℤ l m)) ∙ ( ap ( add-ℤ (neg-ℤ k)) ( ( inv (associative-add-ℤ l (neg-ℤ l) m)) ∙ ( ( ap (λ x → add-ℤ x m) (right-inverse-law-add-ℤ l)) ∙ ( left-unit-law-add-ℤ m)))) transitive-leq-ℤ : (k l m : ℤ) → leq-ℤ k l → leq-ℤ l m → leq-ℤ k m transitive-leq-ℤ k l m p q = tr is-non-negative-ℤ ( triangle-diff-ℤ k l m) ( is-non-negative-add-ℤ ( add-ℤ (neg-ℤ k) l) ( add-ℤ (neg-ℤ l) m) ( p) ( q)) succ-leq-ℤ : (k : ℤ) → leq-ℤ k (succ-ℤ k) succ-leq-ℤ k = tr is-non-negative-ℤ ( inv ( ( right-successor-law-add-ℤ (neg-ℤ k) k) ∙ ( ap succ-ℤ (left-inverse-law-add-ℤ k)))) ( star) leq-ℤ-succ-leq-ℤ : (k l : ℤ) → leq-ℤ k l → leq-ℤ k (succ-ℤ l) leq-ℤ-succ-leq-ℤ k l p = transitive-leq-ℤ k l (succ-ℤ l) p (succ-leq-ℤ l) is-positive-ℤ : ℤ → UU lzero is-positive-ℤ k = is-non-negative-ℤ (pred-ℤ k) le-ℤ : ℤ → ℤ → UU lzero le-ℤ (inl zero-ℕ) (inl x) = empty le-ℤ (inl zero-ℕ) (inr y) = unit le-ℤ (inl (succ-ℕ x)) (inl zero-ℕ) = unit le-ℤ (inl (succ-ℕ x)) (inl (succ-ℕ y)) = le-ℤ (inl x) (inl y) le-ℤ (inl (succ-ℕ x)) (inr y) = unit le-ℤ (inr x) (inl y) = empty le-ℤ (inr (inl star)) (inr (inl star)) = empty le-ℤ (inr (inl star)) (inr (inr x)) = unit le-ℤ (inr (inr x)) (inr (inl star)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr (succ-ℕ y))) = unit le-ℤ (inr (inr (succ-ℕ x))) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr (succ-ℕ x))) (inr (inr (succ-ℕ y))) = le-ℤ (inr (inr x)) (inr (inr y)) -- Extra material -- We show that ℕ is an ordered semi-ring left-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) left-law-leq-add-ℕ zero-ℕ m n = id left-law-leq-add-ℕ (succ-ℕ k) m n H = left-law-leq-add-ℕ k m n H right-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ k m) (add-ℕ k n) right-law-leq-add-ℕ k m n H = concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ k m) ( left-law-leq-add-ℕ k m n H) ( commutative-add-ℕ n k) preserves-leq-add-ℕ : {m m' n n' : ℕ} → leq-ℕ m m' → leq-ℕ n n' → leq-ℕ (add-ℕ m n) (add-ℕ m' n') preserves-leq-add-ℕ {m} {m'} {n} {n'} H K = transitive-leq-ℕ ( add-ℕ m n) ( add-ℕ m' n) ( add-ℕ m' n') ( left-law-leq-add-ℕ n m m' H) ( right-law-leq-add-ℕ m' n n' K) {- right-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ k m) (mul-ℕ k n) right-law-leq-mul-ℕ zero-ℕ m n H = star right-law-leq-mul-ℕ (succ-ℕ k) m n H = {!!} -} {- preserves-leq-add-ℕ { m = mul-ℕ k m} { m' = mul-ℕ k n} ( right-law-leq-mul-ℕ k m n H) H left-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) left-law-leq-mul-ℕ k m n H = concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ k m) ( commutative-mul-ℕ k n) ( right-law-leq-mul-ℕ k m n H) -} -- We show that ℤ is an ordered ring {- leq-add-ℤ : (m k l : ℤ) → leq-ℤ k l → leq-ℤ (add-ℤ m k) (add-ℤ m l) leq-add-ℤ (inl zero-ℕ) k l H = {!!} leq-add-ℤ (inl (succ-ℕ x)) k l H = {!!} leq-add-ℤ (inr m) k l H = {!!} -} -- Section 5.5 Identity systems succ-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) → (m n : ℕ) → Eq-ℕ m n → UU i succ-fam-Eq-ℕ R m n e = R (succ-ℕ m) (succ-ℕ n) e succ-refl-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) (ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → (n : ℕ) → (succ-fam-Eq-ℕ R n n (refl-Eq-ℕ n)) succ-refl-fam-Eq-ℕ R ρ n = ρ (succ-ℕ n) path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( m n : ℕ) (e : Eq-ℕ m n) → R m n e path-ind-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ path-ind-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () path-ind-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () path-ind-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = path-ind-Eq-ℕ ( λ m n e → R (succ-ℕ m) (succ-ℕ n) e) ( λ n → ρ (succ-ℕ n)) m n e comp-path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( n : ℕ) → Id (path-ind-Eq-ℕ R ρ n n (refl-Eq-ℕ n)) (ρ n) comp-path-ind-Eq-ℕ R ρ zero-ℕ = refl comp-path-ind-Eq-ℕ R ρ (succ-ℕ n) = comp-path-ind-Eq-ℕ ( λ m n e → R (succ-ℕ m) (succ-ℕ n) e) ( λ n → ρ (succ-ℕ n)) n {- -- Graphs Gph : (i : Level) → UU (lsuc i) Gph i = Σ (UU i) (λ X → (X → X → (UU i))) -- Reflexive graphs rGph : (i : Level) → UU (lsuc i) rGph i = Σ (UU i) (λ X → Σ (X → X → (UU i)) (λ R → (x : X) → R x x)) -} -- Exercise 3.7 {- With the construction of the divisibility relation we open the door to basic number theory. -} divides : (d n : ℕ) → UU lzero divides d n = Σ ℕ (λ m → Eq-ℕ (mul-ℕ d m) n) -- We prove some lemmas about inequalities -- leq-add-ℕ : (m n : ℕ) → leq-ℕ m (add-ℕ m n) leq-add-ℕ m zero-ℕ = reflexive-leq-ℕ m leq-add-ℕ m (succ-ℕ n) = transitive-leq-ℕ m (add-ℕ m n) (succ-ℕ (add-ℕ m n)) ( leq-add-ℕ m n) ( succ-leq-ℕ (add-ℕ m n)) leq-add-ℕ' : (m n : ℕ) → leq-ℕ m (add-ℕ n m) leq-add-ℕ' m n = concatenate-leq-eq-ℕ m (leq-add-ℕ m n) (commutative-add-ℕ m n) leq-leq-add-ℕ : (m n x : ℕ) → leq-ℕ (add-ℕ m x) (add-ℕ n x) → leq-ℕ m n leq-leq-add-ℕ m n zero-ℕ H = H leq-leq-add-ℕ m n (succ-ℕ x) H = leq-leq-add-ℕ m n x H leq-leq-add-ℕ' : (m n x : ℕ) → leq-ℕ (add-ℕ x m) (add-ℕ x n) → leq-ℕ m n leq-leq-add-ℕ' m n x H = leq-leq-add-ℕ m n x ( concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ m x) ( H) ( commutative-add-ℕ x n)) leq-leq-mul-ℕ : (m n x : ℕ) → leq-ℕ (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) → leq-ℕ m n leq-leq-mul-ℕ zero-ℕ zero-ℕ x H = star leq-leq-mul-ℕ zero-ℕ (succ-ℕ n) x H = star leq-leq-mul-ℕ (succ-ℕ m) zero-ℕ x H = ex-falso ( concatenate-leq-eq-ℕ ( mul-ℕ (succ-ℕ x) (succ-ℕ m)) ( H) ( right-zero-law-mul-ℕ (succ-ℕ x))) leq-leq-mul-ℕ (succ-ℕ m) (succ-ℕ n) x H = leq-leq-mul-ℕ m n x ( leq-leq-add-ℕ' (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) (succ-ℕ x) ( concatenate-eq-leq-eq-ℕ ( inv (right-successor-law-mul-ℕ (succ-ℕ x) m)) ( H) ( right-successor-law-mul-ℕ (succ-ℕ x) n))) leq-leq-mul-ℕ' : (m n x : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ x)) (mul-ℕ n (succ-ℕ x)) → leq-ℕ m n leq-leq-mul-ℕ' m n x H = leq-leq-mul-ℕ m n x ( concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ (succ-ℕ x) m) ( H) ( commutative-mul-ℕ n (succ-ℕ x))) {- succ-relation-ℕ : {i : Level} (R : ℕ → ℕ → UU i) → ℕ → ℕ → UU i succ-relation-ℕ R m n = R (succ-ℕ m) (succ-ℕ n) succ-reflexivity-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (n : ℕ) → succ-relation-ℕ R n n succ-reflexivity-ℕ R ρ n = ρ (succ-ℕ n) {- In the book we suggest that first the order of the variables should be swapped, in order to make the inductive hypothesis stronger. Agda's pattern matching mechanism allows us to bypass this step and give a more direct construction. -} least-reflexive-Eq-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (m n : ℕ) → Eq-ℕ m n → R m n least-reflexive-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ least-reflexive-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = least-reflexive-Eq-ℕ (succ-relation-ℕ R) (succ-reflexivity-ℕ R ρ) m n e -} -- The definition of < le-ℕ : ℕ → ℕ → UU lzero le-ℕ m zero-ℕ = empty le-ℕ zero-ℕ (succ-ℕ m) = unit le-ℕ (succ-ℕ n) (succ-ℕ m) = le-ℕ n m _<_ = le-ℕ anti-reflexive-le-ℕ : (n : ℕ) → ¬ (n < n) anti-reflexive-le-ℕ zero-ℕ = ind-empty anti-reflexive-le-ℕ (succ-ℕ n) = anti-reflexive-le-ℕ n transitive-le-ℕ : (n m l : ℕ) → (le-ℕ n m) → (le-ℕ m l) → (le-ℕ n l) transitive-le-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ l) p q = star transitive-le-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-le-ℕ n m l p q succ-le-ℕ : (n : ℕ) → le-ℕ n (succ-ℕ n) succ-le-ℕ zero-ℕ = star succ-le-ℕ (succ-ℕ n) = succ-le-ℕ n anti-symmetric-le-ℕ : (m n : ℕ) → le-ℕ m n → le-ℕ n m → Id m n anti-symmetric-le-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-le-ℕ m n p q) {- -------------------------------------------------------------------------------- data Fin-Tree : UU lzero where constr : (n : ℕ) → (Fin n → Fin-Tree) → Fin-Tree root-Fin-Tree : Fin-Tree root-Fin-Tree = constr zero-ℕ ex-falso succ-Fin-Tree : Fin-Tree → Fin-Tree succ-Fin-Tree t = constr one-ℕ (λ i → t) map-assoc-coprod : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} → coprod (coprod A B) C → coprod A (coprod B C) map-assoc-coprod (inl (inl x)) = inl x map-assoc-coprod (inl (inr x)) = inr (inl x) map-assoc-coprod (inr x) = inr (inr x) map-coprod-Fin : (m n : ℕ) → Fin (add-ℕ m n) → coprod (Fin m) (Fin n) map-coprod-Fin m zero-ℕ = inl map-coprod-Fin m (succ-ℕ n) = map-assoc-coprod ∘ (functor-coprod (map-coprod-Fin m n) (id {A = unit})) add-Fin-Tree : Fin-Tree → Fin-Tree → Fin-Tree add-Fin-Tree (constr n x) (constr m y) = constr (add-ℕ n m) ((ind-coprod (λ i → Fin-Tree) x y) ∘ (map-coprod-Fin n m)) -------------------------------------------------------------------------------- data labeled-Bin-Tree {l1 : Level} (A : UU l1) : UU l1 where leaf : A → labeled-Bin-Tree A constr : (bool → labeled-Bin-Tree A) → labeled-Bin-Tree A mul-leaves-labeled-Bin-Tree : {l1 : Level} {A : UU l1} (μ : A → (A → A)) → labeled-Bin-Tree A → A mul-leaves-labeled-Bin-Tree μ (leaf x) = x mul-leaves-labeled-Bin-Tree μ (constr f) = μ ( mul-leaves-labeled-Bin-Tree μ (f false)) ( mul-leaves-labeled-Bin-Tree μ (f true)) pick-list : {l1 : Level} {A : UU l1} → ℕ → list A → coprod A unit pick-list zero-ℕ nil = inr star pick-list zero-ℕ (cons a x) = inl a pick-list (succ-ℕ n) nil = inr star pick-list (succ-ℕ n) (cons a x) = pick-list n x -}
module Square where import Genetics import qualified Neural import Utilities import qualified Numeric.LinearAlgebra ( cmap ) import Numeric.LinearAlgebra ( (<>) , (><) ) import System.Random newtype Phenotype = Network Double trainingSet :: TrainingSet trainingSet = [ ((1><3)[1, 1, 1], (6><1)[1, 1, 1, 0, 1, 1]) , ((1><3)[0, 0, 1], (6><1)[0, 0, 0, 0, 0, 1]) , ((1><3)[0, 1, 0], (6><1)[0, 0, 0, 1, 0, 0]) , ((1><3)[0, 1, 1], (6><1)[0, 0, 1, 0, 0, 1]) , ((1><3)[1, 0, 0], (6><1)[0, 1, 0, 0, 0, 0]) ] randompopulation :: IO [Genotype] randompopulation = do g <- getStdGen return $ map Neural.flatten $ take 10 $ randomNetworks g [3, 6] morphogenesis :: Genotype -> Phenotype morphogenesis g = Neural.fromList [3, 6] fit :: Genotype -> Double fit = (fitness trainingSet) . morphogenesis -- Iterates fitness and selection on a population, where the -- selection function uses randomness. iterations :: RandomGen g => g -> Population -> [Population] iterations g population = map fst $ iterate (mySelection fit) (population, g) maximums :: [Population] -> [Double] maximums populations = map maximum $ (map.map) fit $ populations -- example to see how well we are doing example :: IO [Double] example = do g <- newStdGen population <- randompopulation return $ maximums (iterations g population) fitness :: Neural.TrainingSet -> Neural.Network -> Double fitness training network = let xs = map fst training ys = concat (map (Neural.toList . Neural.flatten . snd) training) actual = concat (map (Neural.toList . Neural.flatten . (Neural.forward network)) xs) differences = zipWith (-) ys actual in (-1) * sqrt (sum (map (^2) differences))
[STATEMENT] theorem CYK_eq2 : assumes A: "i + j \<le> length w" and B: "1 < j" shows "CYK G w i j = {X | X A B k. (X, Branch A B) \<in> set G \<and> A \<in> CYK G w i k \<and> B \<in> CYK G w (i + k) (j - k) \<and> 1 \<le> k \<and> k < j}" [PROOF STATE] proof (prove) goal (1 subgoal): 1. CYK G w i j = {uu_. \<exists>X A B k. uu_ = X \<and> (X, Branch A B) \<in> set G \<and> A \<in> CYK G w i k \<and> B \<in> CYK G w (i + k) (j - k) \<and> 1 \<le> k \<and> k < j} [PROOF STEP] proof(rule set_eqI, rule iffI, simp_all add: CYK_def) [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>x. subword w i j \<in> Lang G x \<Longrightarrow> \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) 2. \<And>x. \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) \<Longrightarrow> subword w i j \<in> Lang G x [PROOF STEP] fix X [PROOF STATE] proof (state) goal (2 subgoals): 1. \<And>x. subword w i j \<in> Lang G x \<Longrightarrow> \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) 2. \<And>x. \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) \<Longrightarrow> subword w i j \<in> Lang G x [PROOF STEP] assume a: "subword w i j \<in> Lang G X" [PROOF STATE] proof (state) this: subword w i j \<in> Lang G X goal (2 subgoals): 1. \<And>x. subword w i j \<in> Lang G x \<Longrightarrow> \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) 2. \<And>x. \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) \<Longrightarrow> subword w i j \<in> Lang G x [PROOF STEP] show "\<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] proof - [PROOF STATE] proof (state) goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] have b: "1 < length(subword w i j)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. 1 < length (subword w i j) [PROOF STEP] by(subst subword_length, rule A, rule B) [PROOF STATE] proof (state) this: 1 < length (subword w i j) goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] note Lang_eq2[THEN iffD1, OF conjI, OF a b] [PROOF STATE] proof (state) this: \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>l r. subword w i j = l \<cdot> r \<and> l \<in> Lang G A \<and> r \<in> Lang G B) goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>l r. subword w i j = l \<cdot> r \<and> l \<in> Lang G A \<and> r \<in> Lang G B) [PROOF STEP] obtain A B l r where c: "(X, Branch A B) \<in> set G \<and> subword w i j = l \<cdot> r \<and> l \<in> Lang G A \<and> r \<in> Lang G B" [PROOF STATE] proof (prove) using this: \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>l r. subword w i j = l \<cdot> r \<and> l \<in> Lang G A \<and> r \<in> Lang G B) goal (1 subgoal): 1. (\<And>A B l r. (X, Branch A B) \<in> set G \<and> subword w i j = l \<cdot> r \<and> l \<in> Lang G A \<and> r \<in> Lang G B \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: (X, Branch A B) \<in> set G \<and> subword w i j = l \<cdot> r \<and> l \<in> Lang G A \<and> r \<in> Lang G B goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] note Lang_no_Nil[OF c[THEN conjunct2, THEN conjunct2, THEN conjunct1]] [PROOF STATE] proof (state) this: l \<noteq> [] goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] hence d: "0 < length l" [PROOF STATE] proof (prove) using this: l \<noteq> [] goal (1 subgoal): 1. 0 < length l [PROOF STEP] by(case_tac l, simp_all) [PROOF STATE] proof (state) this: 0 < length l goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] note Lang_no_Nil[OF c[THEN conjunct2, THEN conjunct2, THEN conjunct2]] [PROOF STATE] proof (state) this: r \<noteq> [] goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] hence e: "0 < length r" [PROOF STATE] proof (prove) using this: r \<noteq> [] goal (1 subgoal): 1. 0 < length r [PROOF STEP] by(case_tac r, simp_all) [PROOF STATE] proof (state) this: 0 < length r goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] note subword_split2[OF c[THEN conjunct2, THEN conjunct1], OF A, OF d, OF e] [PROOF STATE] proof (state) this: l = subword w i (length l) \<and> r = subword w (i + length l) (j - length l) goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] with c [PROOF STATE] proof (chain) picking this: (X, Branch A B) \<in> set G \<and> subword w i j = l \<cdot> r \<and> l \<in> Lang G A \<and> r \<in> Lang G B l = subword w i (length l) \<and> r = subword w (i + length l) (j - length l) [PROOF STEP] show ?thesis [PROOF STATE] proof (prove) using this: (X, Branch A B) \<in> set G \<and> subword w i j = l \<cdot> r \<and> l \<in> Lang G A \<and> r \<in> Lang G B l = subword w i (length l) \<and> r = subword w (i + length l) (j - length l) goal (1 subgoal): 1. \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] proof(rule_tac x=A in exI, rule_tac x=B in exI, simp, rule_tac x="length l" in exI, simp) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<lbrakk>subword w (i + length l) (j - length l) \<in> Lang G B; (X, Branch A B) \<in> set G \<and> subword w i j = l \<cdot> subword w (i + length l) (j - length l) \<and> l \<in> Lang G A; l = subword w i (length l) \<and> r = subword w (i + length l) (j - length l)\<rbrakk> \<Longrightarrow> Suc 0 \<le> length l \<and> length l < j [PROOF STEP] show "Suc 0 \<le> length l \<and> length l < j" (is "?A \<and> ?B") [PROOF STATE] proof (prove) goal (1 subgoal): 1. Suc 0 \<le> length l \<and> length l < j [PROOF STEP] proof [PROOF STATE] proof (state) goal (2 subgoals): 1. Suc 0 \<le> length l 2. length l < j [PROOF STEP] from d [PROOF STATE] proof (chain) picking this: 0 < length l [PROOF STEP] show "?A" [PROOF STATE] proof (prove) using this: 0 < length l goal (1 subgoal): 1. Suc 0 \<le> length l [PROOF STEP] by(case_tac l, simp_all) [PROOF STATE] proof (state) this: Suc 0 \<le> length l goal (1 subgoal): 1. length l < j [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. length l < j [PROOF STEP] note arg_cong[where f=length, OF c[THEN conjunct2, THEN conjunct1], THEN sym] [PROOF STATE] proof (state) this: length (l \<cdot> r) = length (subword w i j) goal (1 subgoal): 1. length l < j [PROOF STEP] also [PROOF STATE] proof (state) this: length (l \<cdot> r) = length (subword w i j) goal (1 subgoal): 1. length l < j [PROOF STEP] have "length(subword w i j) = j" [PROOF STATE] proof (prove) goal (1 subgoal): 1. length (subword w i j) = j [PROOF STEP] by(rule subword_length, rule A) [PROOF STATE] proof (state) this: length (subword w i j) = j goal (1 subgoal): 1. length l < j [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: length (l \<cdot> r) = j [PROOF STEP] have "length l + length r = j" [PROOF STATE] proof (prove) using this: length (l \<cdot> r) = j goal (1 subgoal): 1. length l + length r = j [PROOF STEP] by simp [PROOF STATE] proof (state) this: length l + length r = j goal (1 subgoal): 1. length l < j [PROOF STEP] with e [PROOF STATE] proof (chain) picking this: 0 < length r length l + length r = j [PROOF STEP] show ?B [PROOF STATE] proof (prove) using this: 0 < length r length l + length r = j goal (1 subgoal): 1. length l < j [PROOF STEP] by force [PROOF STATE] proof (state) this: length l < j goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: Suc 0 \<le> length l \<and> length l < j goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) goal (1 subgoal): 1. \<And>x. \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) \<Longrightarrow> subword w i j \<in> Lang G x [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) \<Longrightarrow> subword w i j \<in> Lang G x [PROOF STEP] fix X [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) \<Longrightarrow> subword w i j \<in> Lang G x [PROOF STEP] assume "\<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j)" [PROOF STATE] proof (state) this: \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) goal (1 subgoal): 1. \<And>x. \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) \<Longrightarrow> subword w i j \<in> Lang G x [PROOF STEP] then [PROOF STATE] proof (chain) picking this: \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) [PROOF STEP] obtain A B k where a: "(X, Branch A B) \<in> set G \<and> subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j" [PROOF STATE] proof (prove) using this: \<exists>A B. (X, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) goal (1 subgoal): 1. (\<And>A B k. (X, Branch A B) \<in> set G \<and> subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by blast [PROOF STATE] proof (state) this: (X, Branch A B) \<in> set G \<and> subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j goal (1 subgoal): 1. \<And>x. \<exists>A B. (x, Branch A B) \<in> set G \<and> (\<exists>k. subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j) \<Longrightarrow> subword w i j \<in> Lang G x [PROOF STEP] show "subword w i j \<in> Lang G X" [PROOF STATE] proof (prove) goal (1 subgoal): 1. subword w i j \<in> Lang G X [PROOF STEP] proof(rule Lang_eq2[THEN iffD2, THEN conjunct1], rule_tac x=A in exI, rule_tac x=B in exI, simp add: a, rule_tac x="subword w i k" in exI, rule_tac x="subword w (i + k) (j - k)" in exI, simp add: a, rule subword_split, rule A) [PROOF STATE] proof (state) goal (2 subgoals): 1. 0 < k 2. k < j [PROOF STEP] from a [PROOF STATE] proof (chain) picking this: (X, Branch A B) \<in> set G \<and> subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j [PROOF STEP] show "0 < k" [PROOF STATE] proof (prove) using this: (X, Branch A B) \<in> set G \<and> subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j goal (1 subgoal): 1. 0 < k [PROOF STEP] by force [PROOF STATE] proof (state) this: 0 < k goal (1 subgoal): 1. k < j [PROOF STEP] next [PROOF STATE] proof (state) goal (1 subgoal): 1. k < j [PROOF STEP] from a [PROOF STATE] proof (chain) picking this: (X, Branch A B) \<in> set G \<and> subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j [PROOF STEP] show "k < j" [PROOF STATE] proof (prove) using this: (X, Branch A B) \<in> set G \<and> subword w i k \<in> Lang G A \<and> subword w (i + k) (j - k) \<in> Lang G B \<and> Suc 0 \<le> k \<and> k < j goal (1 subgoal): 1. k < j [PROOF STEP] by simp [PROOF STATE] proof (state) this: k < j goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: subword w i j \<in> Lang G X goal: No subgoals! [PROOF STEP] qed
%default total data F : Type where MkFix : ((0 g : Type -> Type) -> g === Not -> g F) -> F yesF : Not F -> F yesF nf = MkFix (\ g, Refl => nf) notF : Not F notF (MkFix f) = let g = f Not Refl in g (yesF g) argh : Void argh = notF (yesF notF)
# This file was generated, do not modify it. # hide DecisionTreeClassifier = @load DecisionTreeClassifier pkg=DecisionTree tree_model = DecisionTreeClassifier()
module BitInformation export shave, set_one, groom, halfshave, shave!, set_one!, groom!, halfshave!, round! export bittranspose, bitbacktranspose, xor_delta, unxor_delta, xor_delta!, unxor_delta!, signed_exponent export bitinformation, mutual_information, redundancy, bitpattern_entropy, bitcount, bitcount_entropy, bitpaircount, bit_condprobability, bit_condentropy import StatsBase.entropy include("which_uint.jl") include("bitstring.jl") include("bittranspose.jl") include("round_nearest.jl") include("shave_set_groom.jl") include("xor_delta.jl") include("signed_exponent.jl") include("bit_information.jl") include("mutual_information.jl") include("bitpattern_entropy.jl") include("binomial.jl") end
Require Import Coq.Logic.ChoiceFacts. Require Import Notation. Require Import GeneralTactics. Require Import Truncations. Require Import Axioms.Classical. Require Import Axioms.Extensionality. (* "If `x: A` implies there exists some `B x`, then there exists some function `Π x: A, B x`". *) Axiom choice : Π (A: Type) (B: A -> Type), (Π x, ‖B x‖) -> ‖Π x, B x‖. (* Truncation commutes across Π-abstractions *) Corollary trunc_comm_forall : Π (A: Type) (B: A -> Type), (Π x, ‖B x‖) = ‖Π x, B x‖. Proof using. intros *. extensionality; split. - apply choice. - intros H *. now uninhabit H. Qed. (* Reduction rule on choice (trivialized by proof irrelevance) *) Lemma choice_red : forall (A: Type) (B: A -> Type) (b: Π a, B a), choice _ _ (λ x, |b x|) = |λ x, b x|. Proof using. intros *. apply proof_irrelevance. Qed. Lemma nondep_choice : forall A B, (A -> ‖B‖) -> ‖A -> B‖. Proof using. intros * f. now apply choice. Qed. Corollary trunc_comm_arrow : forall A B, (A -> ‖B‖) = ‖A -> B‖. Proof using. intros. apply trunc_comm_forall. Qed. Theorem trunc_distr_arrow : forall A B, (‖A‖ -> ‖B‖) = ‖A -> B‖ . Proof using. intros *. extensionality; split. - intros f. apply choice. intro a. applyc f. exists a. - intros [f] [a]. exists (f a). Qed. Lemma fun_choice : forall A B (R: A -> B -> Prop), (forall a, exists b, R a b) -> exists f: A -> B, forall a, R a (f a). Proof using. intros * Rltotal. transform Rltotal (Π x, ‖{y | R x y}‖) by (intros; now rewrite trunc_sig_eq_exists). apply choice in Rltotal. uninhabit Rltotal. define exists. - intro a. specialize (Rltotal a). now destruct Rltotal. - intros *. simpl. now destruct (Rltotal a). Qed. Corollary dependent_choice : forall (A: Type) (B: A -> Type) (R: forall a, B a -> Prop), (forall a, exists b, R a b) -> exists f: (forall a, B a), forall a, R a (f a). Proof using. apply non_dep_dep_functional_choice. exact fun_choice. Qed. (* Functional choice does not require an axiom when the proof of left-totalness is transparent/constructive *) Definition fun_choice_constructive : forall A B (R: A -> B -> Prop), (forall a, Σ b, R a b) -> Σ f: A -> B, forall a, R a (f a). Proof using. intros * Rltotal. exists (λ a, projT1 (Rltotal a)). intro a. now destruct (Rltotal a). Defined. Lemma rel_choice : forall A B (R: A -> B -> Prop), (forall x, exists y, R x y) -> exists R': A -> B -> Prop, subrelation R' R /\ forall x, exists! y, R' x y. Proof using. intros * Rltotal. transform Rltotal (Π x, ‖{y | R x y}‖) by (intros; now rewrite trunc_sig_eq_exists). apply choice in Rltotal. uninhabit Rltotal. define exists. - intro a. specialize (Rltotal a). destruct exists Rltotal b. exact (λ x, b = x). - simpl. split. + unfold subrelation. intros * ?. destruct (Rltotal x). now subst. + intros *. follows destruct (Rltotal x). Qed. Theorem exists_universal_decision_procedure : ‖Π P, {P} + {~P}‖. Proof using. apply choice. intro P. destruct classic P as H. - exists (left H). - exists (right H). Qed. (* Warning: this is known to conflict with impredicative set. *) Theorem double_neg_classic_set : (* ((Π P, {P} + {~P}) -> False) -> False. *) notT (notT (Π P, {P} + {~P})). Proof using. rewrite <- truncated_eq_double_neg. exact exists_universal_decision_procedure. Qed. Require Import Coq.Relations.Relation_Definitions. Require Import Coq.Classes.RelationClasses. Require Import Coq.Sets.Ensembles. Definition antisymmetric {A} (R: relation A) := forall x y, R x y -> R y x -> x = y. Definition strongly_connected {A} (R: relation A) := forall x y, R x y \/ R y x. Definition total_order {A} (R: relation A) := Reflexive R /\ Transitive R /\ antisymmetric R /\ strongly_connected R. Definition well_order {A} (R: relation A) := total_order R /\ forall subset: Ensemble A, Inhabited A subset -> exists least, forall x, In A subset x -> R least x. (* Theorem ex_well_ordering : forall A, exists R: relation A, well_order R. Proof using. *)
[STATEMENT] lemma prime_nth_prime [intro]: "prime (nth_prime n)" and card_less_nth_prime [simp]: "card {q. prime q \<and> q < nth_prime n} = n" [PROOF STATE] proof (prove) goal (1 subgoal): 1. prime (nth_prime n) &&& card {q. prime q \<and> q < nth_prime n} = n [PROOF STEP] using theI'[OF nth_prime_exists1[of n]] [PROOF STATE] proof (prove) using this: prime (THE x. prime x \<and> card {q. prime q \<and> q < x} = n) \<and> card {q. prime q \<and> q < (THE x. prime x \<and> card {q. prime q \<and> q < x} = n)} = n goal (1 subgoal): 1. prime (nth_prime n) &&& card {q. prime q \<and> q < nth_prime n} = n [PROOF STEP] by (simp_all add: nth_prime_def)
State Before: m : Type u_1 → Type u_2 α β : Type u_1 inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β x : m α ⊢ f <$> x = do let a ← x pure (f a) State After: no goals Tactic: rw [← bind_pure_comp]
/- Copyright (c) 2021 OpenAI. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kunhao Zheng, Stanislas Polu, David Renshaw, OpenAI GPT-f -/ import minif2f_import open_locale big_operators open_locale real open_locale nat open_locale topological_space theorem amc12a_2019_p21 (z : ℂ) (h₀ : z = (1 + complex.I) / real.sqrt 2) : (∑ k in finset.range 13 \ finset.range 1, (z^(k^2))) * (∑ k in finset.range 13 \ finset.range 1, (1 / z^(k^2))) = 36 := begin sorry end theorem amc12a_2015_p10 (x y : ℤ) (h₀ : 0 < y) (h₁ : y < x) (h₂ : x + y + (x * y) = 80) : x = 26 := begin sorry end theorem amc12a_2008_p8 (x y : ℝ) (h₀ : 0 < x ∧ 0 < y) (h₁ : y^3 = 1) (h₂ : 6 * x^2 = 2 * (6 * y^2)) : x^3 = 2 * real.sqrt 2 := begin sorry end theorem mathd_algebra_182 (y : ℂ) : 7 * (3 * y + 2) = 21 * y + 14 := begin ring_nf, end theorem aime_1984_p5 (a b : ℝ) (h₀ : real.log a / real.log 8 + real.log (b^2) / real.log 4 = 5) (h₁ : real.log b / real.log 8 + real.log (a^2) / real.log 4 = 7) : a * b = 512 := begin sorry end theorem mathd_numbertheory_780 (m x : ℕ) (h₀ : 10 ≤ m) (h₁ : m ≤ 99) (h₂ : (6 * x) % m = 1) (h₃ : (x - 6^2) % m = 0) : m = 43 := begin sorry end theorem mathd_algebra_116 (k x: ℝ) (h₀ : x = (13 - real.sqrt 131) / 4) (h₁ : 2 * x^2 - 13 * x + k = 0) : k = 19/4 := begin rw h₀ at h₁, rw eq_comm.mp (add_eq_zero_iff_neg_eq.mp h₁), norm_num, rw pow_two, rw mul_sub, rw [sub_mul, sub_mul], rw real.mul_self_sqrt _, ring, linarith, end theorem mathd_numbertheory_13 (u v : ℕ+) (h₀ : 14 * ↑u % 100 = 46) (h₁ : 14 * ↑v % 100 = 46) (h₂ : u < 50) (h₃ : v < 100) (h₄ : 50 < v) : ((u + v):ℕ) / 2 = 64 := begin sorry end theorem mathd_numbertheory_169 : nat.gcd (nat.factorial 20) 200000 = 40000 := begin sorry end theorem amc12a_2009_p9 (a b c : ℝ) (f : ℝ → ℝ) (h₀ : ∀ x, f (x + 3) = 3 * x^2 + 7 * x + 4) (h₁ : ∀ x, f x = a * x^2 + b * x + c) : a + b + c = 2 := begin sorry end theorem amc12a_2019_p9 (a : ℕ+ → ℚ) (h₀ : a 1 = 1) (h₁ : a 2 = 3 / 7) (h₂ : ∀ n, a (n + 2) = (a n * a (n + 1)) / (2 * a n - a (n + 1))) : ↑(a 2019).denom + (a 2019).num = 8078 := begin sorry end theorem mathd_algebra_13 (a b :ℝ) (h₀ : ∀ x, (x - 3 ≠ 0 ∧ x - 5 ≠ 0) → 4 * x / (x^2 - 8 * x + 15) = a / (x - 3) + b / (x - 5)) : a = -6 ∧ b = 10 := begin sorry end theorem induction_sum2kp1npqsqm1 (n : ℕ) : ↑∑ k in (finset.range n), 2 * k + 3 = ↑(n + 1)^2 - (1:ℤ) := begin sorry end theorem aime_1991_p6 (r : ℝ) (h₀ : ∑ k in finset.range 92 \ finset.range 19, (int.floor (r + k / 100)) = 546) : int.floor (100 * r) = 743 := begin sorry end theorem mathd_numbertheory_149 : ∑ k in (finset.filter (λ x, x % 8 = 5 ∧ x % 6 = 3) (finset.range 50)), k = 66 := begin sorry end theorem imo_1984_p2 (a b : ℕ) (h₀ : 0 < a ∧ 0 < b) (h₁ : ¬ 7 ∣ a) (h₂ : ¬ 7 ∣ b) (h₃ : ¬ 7 ∣ (a + b)) (h₄ : (7^7) ∣ ((a + b)^7 - a^7 - b^7)) : 19 ≤ a + b := begin sorry end theorem amc12a_2008_p4 : ∏ k in finset.range 502 \ finset.range 1, ((4:ℝ) * k + 4) / (4 * k) = 502 := begin sorry end theorem imo_2006_p6 (a b c : ℝ) : (a * b * (a^2 - b^2)) + (b * c * (b^2 - c^2)) + (c * a * (c^2 - a^2)) ≤ (9 * real.sqrt 2) / 32 * (a^2 + b^2 + c^2)^2 := begin sorry end theorem mathd_algebra_462 : (1 / 2 + 1 / 3) * (1 / 2 - 1 / 3) = 5 / 36 := begin norm_num, end theorem imo_1964_p1_2 (n : ℕ) : ¬ 7 ∣ (2^n + 1) := begin sorry end theorem mathd_numbertheory_221 (h₀ : fintype {x : ℕ | 0 < x ∧ x < 1000 ∧ x.divisors.card = 3}) : finset.card {x : ℕ | 0 < x ∧ x < 1000 ∧ finset.card (nat.divisors x) = 3}.to_finset = 11 := begin sorry end theorem mathd_numbertheory_64 : is_least { x : ℕ | 30 * x ≡ 42 [MOD 47] } 39 := begin fsplit, norm_num, dec_trivial!, rintro ⟨n, hn⟩, simp, dec_trivial, intros h, norm_num, contrapose! h, dec_trivial!, end theorem imo_1987_p4 (f : ℕ → ℕ) : ∃ n, f (f n) ≠ n + 1987 := begin sorry end theorem mathd_numbertheory_33 (n : ℕ) (h₀ : n < 398) (h₁ : (n * 7) % 398 = 1) : n = 57 := begin sorry end theorem amc12_2001_p9 (f : ℝ → ℝ) (h₀ : ∀ x > 0, ∀ y > 0, f (x * y) = f x / y) (h₁ : f 500 = 3) : f 600 = 5 / 2 := begin -- specialize h₀ 500 _ (6/5) _, -- rw h₁ at h₀, -- calc f 600 = f (500 * (6/5)) : by {congr, norm_num,} -- ... = 3 / (6 / 5) : by { exact h₀,} -- ... = 5 / 2 : by {norm_num,}, -- linarith, -- linarith, sorry end theorem imo_1965_p1 (x : ℝ) (h₀ : 0 ≤ x) (h₁ : x ≤ 2 * π) (h₂ : 2 * real.cos x ≤ abs (real.sqrt (1 + real.sin (2 * x)) - real.sqrt (1 - real.sin (2 * x)))) (h₃ : abs (real.sqrt (1 + real.sin (2 * x)) - real.sqrt (1 - real.sin (2 * x))) ≤ real.sqrt 2) : π / 4 ≤ x ∧ x ≤ 7 * π / 4 := begin sorry end theorem mathd_numbertheory_48 (b : ℕ) (h₀ : 0 < b) (h₁ : 3 * b^2 + 2 * b + 1 = 57) : b = 4 := begin nlinarith, end theorem numbertheory_sqmod4in01d (a : ℤ) : (a^2 % 4) = 0 ∨ (a^2 % 4) = 1 := begin sorry end theorem mathd_numbertheory_466 : (∑ k in (finset.range 11), k) % 9 = 1 := begin sorry end theorem mathd_algebra_48 (q e : ℂ) (h₀ : q = 9 - 4 * complex.I) (h₁ : e = -3 - 4 * complex.I) : q - e = 12 := begin rw [h₀, h₁], ring, end theorem amc12_2000_p15 (f : ℂ → ℂ) (h₀ : ∀ x, f (x / 3) = x^2 + x + 1) (h₁ : fintype (f ⁻¹' {7})) : ∑ y in (f⁻¹' {7}).to_finset, y / 3 = - 1 / 9 := begin sorry end theorem mathd_numbertheory_132 : 2004 % 12 = 0 := begin norm_num, end theorem amc12a_2009_p5 (x : ℝ) (h₀ : x^3 - (x + 1) * (x - 1) * x = 5) : x^3 = 125 := begin sorry end theorem mathd_numbertheory_188 : nat.gcd 180 168 = 12 := begin norm_num, end theorem mathd_algebra_224 (h₀ : fintype { n : ℕ | real.sqrt n < 7 / 2 ∧ 2 < real.sqrt n}) : finset.card { n : ℕ | real.sqrt n < 7 / 2 ∧ 2 < real.sqrt n}.to_finset = 8 := begin sorry end theorem induction_divisibility_3divnto3m2n (n : ℕ) : 3 ∣ n^3 + 2 * n := begin sorry end theorem induction_sum_1oktkp1 (n : ℕ) : ∑ k in (finset.range n), (1:ℝ) / ((k + 1) * (k + 2)) = n / (n + 1) := begin sorry end theorem mathd_numbertheory_32 (h₀ : fintype { n : ℕ | n ∣ 36}) : ∑ k in { n : ℕ | n ∣ 36}.to_finset, k = 91 := begin sorry end theorem mathd_algebra_422 (x : ℝ) (σ : equiv ℝ ℝ) (h₀ : ∀ x, σ.1 x = 5 * x - 12) (h₁ : σ.1 (x + 1) = σ.2 x) : x = 47 / 24 := begin field_simp [h₀, mul_add, add_mul, sub_add_cancel, mul_assoc, add_comm], have := congr_arg σ.to_fun h₁, rw h₀ at this, rw h₀ at this, symmetry, norm_num at this, linarith, end theorem amc12b_2002_p11 (a b : ℕ) (h₀ : nat.prime a) (h₁ : nat.prime b) (h₂ : nat.prime (a + b)) (h₃ : nat.prime (a - b)) : nat.prime (a + b + (a - b + (a + b))) := begin sorry end theorem mathd_algebra_73 (p q r x : ℂ) (h₀ : (x - p) * (x - q) = (r - p) * (r - q)) (h₁ : x ≠ r) : x = p + q - r := begin sorry end theorem mathd_numbertheory_109 (v : ℕ → ℕ) (h₀ : ∀ n, v n = 2 * n - 1) : (∑ k in (finset.erase (finset.range 101) 0), v k) % 7 = 4 := begin norm_num, simp [h₀], rw finset.sum_erase, swap, { simp, }, norm_num [finset.sum_range_succ, h₀], end theorem algebra_xmysqpymzsqpzmxsqeqxyz_xpypzp6dvdx3y3z3 (x y z : ℤ) (h₀ : (x - y)^2 + (y - z)^2 + (z - x)^2 = x * y * z) : (x + y + z + 6) ∣ (x^3 + y^3 + z^3) := begin sorry end theorem imo_1962_p4 (x : ℝ) (h₀ : (real.cos x)^2 + (real.cos (2 * x))^2 + (real.cos (3 * x))^2 = 1) : (∃ m : ℤ, x = π / 2 + m * π) ∨ (∃ m : ℤ, x = π / 4 + m * π / 2) ∨ (∃ m : ℤ, x = π / 6 + m * π / 3) := begin sorry end theorem mathd_numbertheory_236 : (1999^2000) % 5 = 1 := begin sorry end theorem mathd_numbertheory_24 : (∑ k in (finset.erase (finset.range 10) 0), 11^k) % 100 = 59 := begin norm_num, rw finset.sum_eq_multiset_sum, norm_num, end theorem algebra_amgm_prod1toneq1_sum1tongeqn (a : ℕ → nnreal) (n : ℕ) (h₀ : finset.prod (finset.range(n)) a = 1) : finset.sum (finset.range(n)) a ≥ n := begin sorry end theorem mathd_algebra_101 (x : ℝ) (h₀ : x^2 - 5 * x - 4 ≤ 10) : x ≥ -2 ∧ x ≤ 7 := begin split; nlinarith, end theorem mathd_numbertheory_257 (x : ℕ) (h₀ : 1 ≤ x ∧ x ≤ 100) (h₁ : 77∣(∑ k in (finset.range 101), k - x)) : x = 45 := begin sorry end theorem amc12_2000_p5 (x p : ℝ) (h₀ : x < 2) (h₁ : abs (x - 2) = p) : x - p = 2 - 2 * p := begin suffices : abs (x - 2) = -(x - 2), { rw h₁ at this, linarith, }, apply abs_of_neg, linarith, end theorem mathd_algebra_547 (x y : ℝ) (h₀ : x = 5) (h₁ : y = 2) : real.sqrt (x^3 - 2^y) = 11 := begin sorry end theorem mathd_numbertheory_200 : 139 % 11 = 7 := begin norm_num, end theorem mathd_algebra_510 (x y : ℝ) (h₀ : x + y = 13) (h₁ : x * y = 24) : real.sqrt (x^2 + y^2) = 11 := begin sorry end theorem mathd_algebra_140 (a b c : ℝ) (h₀ : 0 < a ∧ 0 < b ∧ 0 < c) (h₁ : ∀ x, 24 * x^2 - 19 * x - 35 = (((a * x) - 5) * ((2 * (b * x)) + c))) : a * b - 3 * c = -9 := begin have h₂ := h₁ 0, have h₂ := h₁ 1, have h₃ := h₁ (-1), linarith, end theorem mathd_algebra_455 (x : ℝ) (h₀ : 2 * (2 * (2 * (2 * x))) = 48) : x = 3 := begin linarith, end theorem mathd_numbertheory_45 : (nat.gcd 6432 132) + 11 = 23 := begin simp only [nat.gcd_comm], norm_num, end theorem aime_1994_p4 (n : ℕ) (h₀ : 0 < n) (h₀ : ∑ k in finset.range (n + 1) \ finset.range 1, int.floor (real.log k / real.log 2) = 1994) : n = 312 := begin sorry end theorem mathd_numbertheory_739 : (nat.factorial 9) % 10 = 0 := begin norm_num, end theorem mathd_algebra_245 (x : ℝ) (h₀ : x ≠ 0) : (4 / x)⁻¹ * ((3 * x^3) / x)^2 * ((1 / (2 * x))⁻¹)^3 = 18 * x^8 := begin field_simp [(show x ≠ 0, by simpa using h₀), mul_comm x]; ring, end theorem algebra_apb4leq8ta4pb4 (a b : ℝ) (h₀ : 0 < a ∧ 0 < b) : (a + b)^4 ≤ 8 * (a^4 + b^4) := begin sorry end theorem mathd_algebra_28 (c : ℝ) (f : ℝ → ℝ) (h₀ : ∀ x, f x = 2 * x^2 + 5 * x + c) (h₁ : ∃ x, f x ≤ 0) : c ≤ 25/8 := begin sorry end theorem mathd_numbertheory_543 : (∑ k in (nat.divisors (30^4)), 1) - 2 = 123 := begin sorry end theorem mathd_algebra_480 (f : ℝ → ℝ) (h₀ : ∀ x < 0, f x = -(x^2) - 1) (h₁ : ∀ x, 0 ≤ x ∧ x < 4 → f x = 2) (h₂ : ∀ x ≥ 4, f x = real.sqrt x) : f π = 2 := begin sorry end theorem mathd_algebra_69 (r s : ℕ+) (h₀ : ↑r * ↑s = (450:ℤ)) (h₁ : (↑r + 5) * (↑s - 3) = (450:ℤ)) : r = 25 := begin sorry end theorem mathd_algebra_433 (f : ℝ → ℝ) (h₀ : ∀ x, f x = 3 * real.sqrt (2 * x - 7) - 8) : f 8 = 1 := begin sorry end theorem mathd_algebra_126 (x y : ℝ) (h₀ : 2 * 3 = x - 9) (h₁ : 2 * (-5) = y + 1) : x = 15 ∧ y = -11 := begin split; linarith, end theorem aimeII_2020_p6 (t : ℕ+ → ℚ) (h₀ : t 1 = 20) (h₁ : t 2 = 21) (h₂ : ∀ n ≥ 3, t n = (5 * t (n - 1) + 1) / (25 * t (n - 2))) : ↑(t 2020).denom + (t 2020).num = 626 := begin sorry end theorem amc12a_2008_p2 (x : ℝ) (h₀ : x * (1 / 2 + 2 / 3) = 1) : x = 6 / 7 := begin linarith, end theorem mathd_algebra_35 (p q : ℝ → ℝ) (h₀ : ∀ x, p x = 2 - x^2) (h₁ : ∀ x≠0, q x = 6 / x) : p (q 2) = -7 := begin rw [h₀, h₁], ring, linarith, end theorem algebra_amgm_faxinrrp2msqrt2geq2mxm1div2x : ∀ x > 0, 2 - real.sqrt 2 ≥ 2 - x - 1 / (2 * x) := begin intros x h, suffices : real.sqrt 2 ≤ x + 1 / (2 * x), linarith, have h₀ := (nnreal.geom_mean_le_arith_mean2_weighted (1/2) (1/2) (real.to_nnreal x) (real.to_nnreal (1/(2 * x)))) _, norm_num at h₀, rw [← nnreal.mul_rpow, ← real.to_nnreal_mul] at h₀, have h₁ : x * (1 / (2 * x)) = 1 / 2, { rw [mul_div_comm, one_mul, div_eq_div_iff], ring, apply ne_of_gt, repeat {linarith,}, }, rw h₁ at h₀, have h₂ : real.to_nnreal (1/2)^((1:ℝ)/2) = real.to_nnreal ((1/2)^((1:ℝ)/2)), { refine nnreal.coe_eq.mp _, rw [real.coe_to_nnreal, nnreal.coe_rpow, real.coe_to_nnreal], linarith, apply le_of_lt, exact real.rpow_pos_of_pos (by norm_num) _, }, rw [h₂, ←nnreal.coe_le_coe, real.coe_to_nnreal, nnreal.coe_add, nnreal.coe_mul, nnreal.coe_mul, real.coe_to_nnreal, real.coe_to_nnreal] at h₀, have h₃ : 2 * ((1 / 2)^((1:ℝ) / 2)) ≤ 2 * (↑((1:nnreal) / 2) * x + ↑((1:nnreal) / 2) * (1 / (2 * x))), { refine (mul_le_mul_left _).mpr _, linarith, exact h₀, }, have h₄ : 2 * ((1 / 2)^((1:ℝ) / 2)) = real.sqrt 2, { rw [eq_comm, real.sqrt_eq_iff_mul_self_eq], calc (2:ℝ) * (1 / (2:ℝ))^(1 / (2:ℝ)) * ((2:ℝ) * (1 / (2:ℝ))^(1 / (2:ℝ))) = (2:ℝ) * (2:ℝ) * ((1 / (2:ℝ))^(1 / (2:ℝ)) * (1 / (2:ℝ))^(1 / (2:ℝ))) : by {ring,} ... = (2:ℝ) * (2:ℝ) * (1 / (2:ℝ))^((1 / (2:ℝ)) + (1 / (2:ℝ))) : by {rw real.rpow_add, linarith,} ... = (2:ℝ) * (2:ℝ) * (1 / (2:ℝ))^(1:ℝ) : by {congr', apply add_halves,} ... = (2:ℝ) * (2:ℝ) * (1 / (2:ℝ)) : by {simp,} ... = (2:ℝ) : by {norm_num,}, linarith, apply le_of_lt, norm_num, exact real.rpow_pos_of_pos (by norm_num) _, }, have h₅ : 2 * (↑((1:nnreal) / 2) * x + ↑((1:nnreal) / 2) * (1 / (2 * x))) = x + 1 / (2 * x), { rw [mul_add, ← mul_assoc, ← mul_assoc, nnreal.coe_div, nnreal.coe_one], have h₆ : ↑(2:nnreal) = (2:ℝ), exact rfl, rw h₆, ring, }, rwa [←h₄, ←h₅], apply div_nonneg_iff.mpr, left, split, repeat {linarith,}, apply le_of_lt, exact real.rpow_pos_of_pos (by norm_num) _, apply nnreal.add_halves, end theorem mathd_numbertheory_335 (n : ℕ) (h₀ : n % 7 = 5) : (5 * n) % 7 = 4 := begin sorry end theorem mathd_numbertheory_35 (h₀ : fintype { n : ℕ | n ∣ (nat.sqrt 196)}) : ∑ k in { n : ℕ | n ∣ (nat.sqrt 196)}.to_finset, k = 24 := begin sorry end theorem amc12a_2021_p7 (x : ℝ) (y : ℝ) : 1 ≤ ((x * y) - 1)^2 + (x + y)^2 := begin ring_nf, nlinarith, end theorem mathd_algebra_327 (a : ℝ) (h₀ : 1 / 5 * abs (9 + 2 * a) < 1) : -7 < a ∧ a < -2 := begin have h₁ := (mul_lt_mul_left (show 0 < (5:ℝ), by linarith)).mpr h₀, have h₂ : abs (9 + 2 * a) < 5, linarith, have h₃ := abs_lt.mp h₂, cases h₃ with h₃ h₄, split; nlinarith, end theorem aime_1984_p15 (x y z w : ℝ) (h₀ : (x^2 / (2^2 - 1)) + (y^2 / (2^2 - 3^2)) + (z^2 / (2^2 - 5^2)) + (w^2 / (2^2 - 7^2)) = 1) (h₁ : (x^2 / (4^2 - 1)) + (y^2 / (4^2 - 3^2)) + (z^2 / (4^2 - 5^2)) + (w^2 / (4^2 - 7^2)) = 1) (h₂ : (x^2 / (6^2 - 1)) + (y^2 / (6^2 - 3^2)) + (z^2 / (6^2 - 5^2)) + (w^2 / (6^2 - 7^2)) = 1) (h₃ : (x^2 / (8^2 - 1)) + (y^2 / (8^2 - 3^2)) + (z^2 / (8^2 - 5^2)) + (w^2 / (8^2 - 7^2)) = 1) : x^2 + y^2 + z^2 + w^2 = 36 := begin revert x y z w h₀ h₁ h₂ h₃, ring_nf, intros x y z w h, intros h, intros; linarith, end theorem algebra_amgm_sqrtxymulxmyeqxpy_xpygeq4 (x y : ℝ) (h₀ : 0 < x ∧ 0 < y) (h₁ : y ≤ x) (h₂ : real.sqrt (x * y) * (x - y) = (x + y)) : x + y ≥ 4 := begin sorry end theorem amc12a_2002_p21 (u : ℕ → ℕ) (h₀ : u 0 = 4) (h₁ : u 1 = 7) (h₂ : ∀ n ≥ 2, u (n + 2) = (u n + u (n + 1)) % 10) : ∀ n, ∑ k in finset.range(n), u k > 10000 → 1999 ≤ n := begin sorry end theorem mathd_algebra_192 (q e d : ℂ) (h₀ : q = 11 - (5 * complex.I)) (h₁ : e = 11 + (5 * complex.I)) (h₂ : d = 2 * complex.I) : q * e * d = 292 * complex.I := begin rw [h₀, h₁, h₂], ring_nf, rw [pow_two, complex.I_mul_I], ring, end theorem amc12b_2002_p6 (a b : ℝ) (h₀ : a ≠ 0 ∧ b ≠ 0) (h₁ : ∀ x, x^2 + a * x + b = (x - a) * (x - b)) : a = 1 ∧ b = -2 := begin have h₂ := h₁ a, have h₃ := h₁ b, have h₄ := h₁ 0, simp at *, have h₅ : b * (1 - a) = 0, linarith, simp at h₅, cases h₅ with h₅ h₆, exfalso, exact absurd h₅ h₀.2, have h₆ : a = 1, linarith, split, exact h₆, rw h₆ at h₂, linarith, end theorem mathd_numbertheory_102 : (2^8) % 5 = 1 := begin norm_num, end theorem amc12a_2010_p22 (x : ℝ) : 49 ≤ ∑ k in finset.range 120 \ finset.range 1, abs (↑k * x - 1) := begin sorry end theorem mathd_numbertheory_81 : 71 % 3 = 2 := begin norm_num, end theorem mathd_numbertheory_155 : finset.card (finset.filter (λ x, x % 19 = 7) (finset.range 1000 \ finset.range 100)) = 52 := begin sorry end theorem imo_1978_p5 (n : ℕ) (p : ℕ+ → ℕ+) (f : ℕ → ℕ+) (h₀ : function.injective p) (h₁ : ∀ n : ℕ+, f n = p n) (h₁ : 0 < n) : (∑ k in finset.range (n + 1) \ finset.range 1, (1:ℝ) / k) ≤ ∑ k in finset.range (n + 1) \ finset.range 1, (f k) / k^2 := begin sorry end theorem amc12a_2017_p7 (f : ℕ → ℝ) (h₀ : f 1 = 2) (h₁ : ∀ n, 1 < n ∧ even n → f n = f (n - 1) + 1) (h₂ : ∀ n, 1 < n ∧ odd n → f n = f (n - 2) + 2) : f 2017 = 2018 := begin sorry end theorem mathd_numbertheory_42 (u v : ℕ+) (h₀ : 27 * ↑u % 40 = 17) (h₁ : 27 * ↑v % 40 = 17) (h₂ : u < 40) (h₃ : v < 80) (h₄ : 40 < v) : (u + v) = 62 := begin sorry end theorem mathd_algebra_110 (q e : ℂ) (h₀ : q = 2 - 2 * complex.I) (h₁ : e = 5 + 5 * complex.I) : q * e = 20 := begin rw [h₀, h₁], ring_nf, rw [pow_two, complex.I_mul_I], ring, end theorem amc12b_2021_p21 (h₀ : fintype {x : ℝ | 0 < x ∧ x^((2:ℝ)^real.sqrt 2) = (real.sqrt 2)^((2:ℝ)^x)}) : ↑2 ≤ ∑ k in {x : ℝ | 0 < x ∧ x^((2:ℝ)^real.sqrt 2) = (real.sqrt 2)^((2:ℝ)^x)}.to_finset, k ∧ ∑ k in {x : ℝ | 0 < x ∧ x^((2:ℝ)^real.sqrt 2) = (real.sqrt 2)^((2:ℝ)^x)}.to_finset, k < 6 := begin sorry end theorem mathd_algebra_405 (x : ℕ) (h₀ : 0 < x) (h₁ : x^2 + 4 * x + 4 < 20) : x = 1 ∨ x = 2 := begin sorry end theorem numbertheory_sumkmulnckeqnmul2pownm1 (n : ℕ) (h₀ : 0 < n) : ∑ k in finset.range (n + 1) \ finset.range 1, (k * nat.choose n k) = n * 2^(n - 1) := begin sorry end theorem mathd_algebra_393 (σ : equiv ℝ ℝ) (h₀ : ∀ x, σ.1 x = 4 * x^3 + 1) : σ.2 33 = 2 := begin sorry end theorem amc12b_2004_p3 (x y : ℕ) (h₀ : 2^x * 3^y = 1296) : x + y = 8 := begin sorry end theorem mathd_numbertheory_303 (h₀ : fintype {n : ℕ | 2 ≤ n ∧ 171 ≡ 80 [MOD n] ∧ 468 ≡ 13 [MOD n]}) : ∑ k in {n : ℕ | 2 ≤ n ∧ 171 ≡ 80 [MOD n] ∧ 468 ≡ 13 [MOD n]}.to_finset, k = 111 := begin sorry end theorem mathd_algebra_151 : int.ceil (real.sqrt 27) - int.floor (real.sqrt 26) = 1 := begin sorry end theorem amc12a_2011_p18 (x y : ℝ) (h₀ : abs (x + y) + abs (x - y) = 2) : x^2 - 6 * x + y^2 ≤ 9 := begin sorry end theorem mathd_algebra_15 (s : ℕ+ → ℕ+ → ℕ+) (h₀ : ∀ a b, s a b = a^(b:ℕ) + b^(a:ℕ)) : s 2 6 = 100 := begin rw h₀, refl, end theorem mathd_numbertheory_211 : finset.card (finset.filter (λ n, 6 ∣ (4 * ↑n - (2:ℤ))) (finset.range 60)) = 20 := begin -- apply le_antisymm, -- -- haveI := classical.prop_decidable, -- swap, -- dec_trivial!, -- apply le_trans, -- swap, -- apply nat.le_of_dvd, -- { norm_num, }, -- -- haveI := classical.dec, -- simp, sorry end theorem mathd_numbertheory_640 : (91145 + 91146 + 91147 + 91148) % 4 = 2 := begin norm_num, end theorem amc12b_2003_p6 (a r : ℝ) (u : ℕ → ℝ) (h₀ : ∀ k, u k = a * r^k) (h₁ : u 1 = 2) (h₂ : u 3 = 6) : u 0 = 2 / real.sqrt 3 ∨ u 0 = - (2 / real.sqrt 3) := begin sorry end theorem algebra_2rootsintpoly_am10tap11eqasqpam110 (a : ℂ) : (a - 10) * (a + 11) = a^2 + a - 110 := begin ring, end theorem aime_1991_p1 (x y : ℕ) (h₀ : 0 < x ∧ 0 < y) (h₁ : x * y + (x + y) = 71) (h₂ : x^2 * y + x * y^2 = 880) : x^2 + y^2 = 146 := begin sorry end theorem mathd_algebra_43 (a b : ℝ) (f : ℝ → ℝ) (h₀ : ∀ x, f x = a * x + b) (h₁ : f 7 = 4) (h₂ : f 6 = 3) : f 3 = 0 := begin rw h₀ at *, linarith, end theorem imo_1988_p6 (a b : ℕ) (h₀ : 0 < a ∧ 0 < b) (h₁ : (a * b + 1) ∣ (a^2 + b^2)) : ∃ x : ℕ, (x^2:ℝ) = (a^2 + b^2) / (a*b + 1) := begin sorry end theorem aime_1996_p5 (a b c r s t : ℝ) (f g : ℝ → ℝ) (h₀ : ∀ x, f x = x^3 + 3 * x^2 + 4 * x - 11) (h₁ : ∀ x, g x = x^3 + r * x^2 + s * x + t) (h₂ : f a = 0) (h₃ : f b = 0) (h₄ : f c = 0) (h₅ : g (a + b) = 0) (h₆ : g (b + c) = 0) (h₇ : g (c + a) = 0) : t = 23 := begin sorry end theorem mathd_algebra_55 (q p : ℝ) (h₀ : q = 2 - 4 + 6 - 8 + 10 - 12 + 14) (h₁ : p = 3 - 6 + 9 - 12 + 15 - 18 + 21) : q / p = 2 / 3 := begin rw [h₀, h₁], ring, end theorem algebra_sqineq_2at2pclta2c2p41pc (a c : ℝ) : 2 * a * (2 + c) ≤ a^2 + c^2 + 4 * (1 + c) := begin suffices : 0 ≤ (c - a)^2 + 2^2 + 2 * 2 * (c - a), nlinarith, suffices : 0 ≤ (c - a + 2)^2, nlinarith, exact pow_two_nonneg (c - a + 2), end theorem mathd_numbertheory_43 (n : ℕ+) (h₀ : 15^(n:ℕ) ∣ nat.factorial 942) (h₁ : ∀ m, 15^(m:ℕ) ∣ nat.factorial 942 → m ≤ n) : n = 233 := begin sorry end theorem mathd_algebra_214 (a : ℝ) (f : ℝ → ℝ) (h₀ : ∀ x, f x = a * (x - 2)^2 + 3) (h₁ : f 4 = 4) : f 6 = 7 := begin revert h₁, simp [h₀], intro, nlinarith, end theorem mathd_algebra_96 (x y z a : ℝ) (h₀ : 0 < x ∧ 0 < y ∧ 0 < z ∧ 0 < a) (h₁ : real.log x - real.log y = a) (h₂ : real.log y - real.log z = 15) (h₃ : real.log z - real.log x = -7) : a = -8 := begin nlinarith [h₁, h₂, h₃], end theorem amc12_2001_p2 (a b n : ℕ) (h₀ : 1 ≤ a ∧ a ≤ 9) (h₁ : 0 ≤ b ∧ b ≤ 9) (h₂ : n = 10 * a + b) (h₃ : n = a * b + a + b) : b = 9 := begin rw h₂ at h₃, simp at h₃, have h₄ : 10 * a = (b + 1) * a, linarith, simp at h₄, cases h₄ with h₅ h₆, linarith, exfalso, simp [*, le_refl] at *, end theorem mathd_algebra_185 (s: finset ℤ) (f : ℤ → ℤ) (h₀ : ∀ x, f x = abs (x + 4)) (h₁ : ∀ x, x ∈ s ↔ f x < 9) : s.card = 17 := begin sorry end theorem algebra_binomnegdiscrineq_10alt28asqp1 (a : ℝ) : 10 * a ≤ 28 * a^2 + 1 := begin sorry end theorem mathd_numbertheory_284 (a b : ℕ) (h₀ : 1 ≤ a ∧ a ≤ 9 ∧ b ≤ 9) (h₁ : 10 * a + b = 2 * (a + b)) : 10 * a + b = 18 := begin sorry end theorem amc12a_2009_p2 : 1 + (1 / (1 + (1 / (1 + 1)))) = (5:ℝ) / 3 := begin norm_num, end theorem mathd_numbertheory_709 (n : ℕ+) (h₀ : finset.card (nat.divisors (2*n)) = 28) (h₁ : finset.card (nat.divisors (3*n)) = 30) : finset.card (nat.divisors (6*n)) = 35 := begin sorry end theorem amc12a_2013_p8 (x y : ℝ) (h₀ : x ≠ 0) (h₁ : y ≠ 0) (h₂ : x ≠ y) (h₃ : x + 2 / x = y + 2 / y) : x * y = 2 := begin sorry end theorem mathd_numbertheory_461 (n : ℕ) (h₀ : n = finset.card (finset.filter (λ x, gcd x 8 = 1) (finset.range 8 \ finset.range 1))) : (3^n) % 8 = 1 := begin sorry end theorem mathd_algebra_59 (b : ℝ) (h₀ : (4:ℝ)^b + 2^3 = 12) : b = 1 := begin have h₁ : (4:ℝ)^b = 4, linarith, by_contradiction h, clear h₀, change b ≠ 1 at h, by_cases b₀ : b < 1, have key₁ : (4:ℝ)^b < (4:ℝ)^(1:ℝ), { apply real.rpow_lt_rpow_of_exponent_lt _ _, linarith, exact b₀, }, simp at key₁, have key₂ : (4:ℝ)^b ≠ (4:ℝ), { exact ne_of_lt key₁, }, exact h (false.rec (b = 1) (key₂ h₁)), have key₃ : 1 < b, { refine h.symm.le_iff_lt.mp _, exact not_lt.mp b₀, }, have key₄ : (4:ℝ)^(1:ℝ) < (4:ℝ)^b, { apply real.rpow_lt_rpow_of_exponent_lt _ _, linarith, exact key₃, }, simp at key₄, have key₂ : (4:ℝ)^b ≠ (4:ℝ), { rw ne_comm, exact ne_of_lt key₄, }, exact h (false.rec (b = 1) (key₂ h₁)), end theorem mathd_algebra_234 (d : ℝ) (h₀ : 27 / 125 * d = 9 / 25) : 3 / 5 * d^3 = 25 / 9 := begin field_simp, rw [mul_right_comm, pow_succ, mul_comm], { nlinarith }, end theorem imo_1973_p3 (a b : ℝ) (h₀ : ∃ x, x^4 + a * x^3 + b * x^2 + a * x + 1 = 0) : 4 / 5 ≤ a^2 + b^2 := begin sorry end theorem amc12b_2020_p5 (a b : ℕ+) (h₀ : (5:ℝ) / 8 * b - 2 / 3 * a = 7) (h₁ : ↑b - (5:ℝ) / 8 * b - (a - 2 / 3 * a) = 7) : a = 42 := begin sorry end theorem numbertheory_sqmod3in01d (a : ℤ) : (a^2) % 3 = 0 ∨ (a^2) % 3 = 1 := begin sorry end theorem mathd_algebra_131 (a b : ℝ) (f : ℝ → ℝ) (h₀ : ∀ x, f x = 2 * x^2 - 7 * x + 2) (h₁ : f a = 0) (h₂ : f b = 0) (h₃ : a ≠ b) : 1 / (a - 1) + 1 / (b - 1) = -1 := begin sorry end theorem amc12b_2003_p17 (x y : ℝ) (h₀ : 0 < x ∧ 0 < y) (h₁ : real.log (x * y^3) = 1) (h₂ : real.log (x^2 * y) = 1) : real.log (x * y) = 3 / 5 := begin sorry end theorem mathd_algebra_536 : ↑3! * ((2:ℝ)^3 + real.sqrt 9) / 2 = (33:ℝ) := begin sorry end theorem mathd_algebra_22 : real.log (5^4) / real.log (5^2)= 2 := begin sorry end theorem numbertheory_xsqpysqintdenomeq (x y : ℚ) (h₀ : (x^2 + y^2).denom = 1) : x.denom = y.denom := begin sorry end theorem aimeI_2001_p3 (x : ℕ+ → ℤ) (h₀ : x 1 = 211) (h₂ : x 2 = 375) (h₃ : x 3 = 420) (h₄ : x 4 = 523) (h₆ : ∀ n ≥ 5, x n = x (n - 1) - x (n - 2) + x (n - 3) - x (n - 4)) : x 531 + x 753 + x 975 = 898 := begin sorry end theorem mathd_numbertheory_22 (b : ℕ) (h₀ : b < 10) (h₁ : nat.sqrt (10 * b + 6) * nat.sqrt (10 * b + 6) = 10 * b + 6) : b = 3 ∨ b = 1 := begin sorry end theorem aime_1987_p8 (n : ℕ) (h₀ : 0 < n) (h₁ : ∃! k, (8:ℝ) / 15 < n / (n + k) ∧ (n:ℝ) / (n + k) < 7 / 13) : n ≤ 112 := begin sorry end theorem mathd_numbertheory_136 (n : ℕ) (h₀ : 123 * n + 17 = 39500) : n = 321 := begin linarith, end theorem amc12_2000_p11 (a b : ℝ) (h₀ : a ≠ 0 ∧ b ≠ 0) (h₁ : a * b = a - b) : a / b + b / a - a * b = 2 := begin field_simp [h₀.1, h₀.2], simp only [h₁, mul_comm, mul_sub], ring, end theorem amc12b_2003_p9 (a b : ℝ) (f : ℝ → ℝ) (h₀ : ∀ x, f x = a * x + b) (h₁ : f 6 - f 2 = 12) : f 12 - f 2 = 30 := begin revert h₁, simp only [h₀], intro, linarith, end theorem algebra_2complexrootspoly_xsqp49eqxp7itxpn7i (x : ℂ) : x^2 + 49 = (x + (7 * complex.I)) * (x + (-7 * complex.I)) := begin ring_nf, ring_nf, rw [pow_two, pow_two, complex.I_mul_I], ring, end theorem mathd_numbertheory_198 : (5^2005) % 100 = 25 := begin sorry end theorem mathd_algebra_149 (f : ℝ → ℝ) (h₀ : ∀ x < -5, f x = x^2 + 5) (h₁ : ∀ x ≥ -5, f x = 3 * x -8) (h₂ : fintype (f⁻¹' {10})) : ∑ k in (f⁻¹' {10}).to_finset, k = 6 := begin sorry end theorem mathd_algebra_132 (x : ℝ) (f g : ℝ → ℝ) (h₀ : ∀ x, f x = x + 2) (h₁ : ∀ x, g x = x^2) (h₂ : f (g x) = g (f x)) : x = - 1/2 := begin norm_num, simp [*, -one_div] at *, field_simp [h₁], linarith, end theorem mathd_numbertheory_37 : (nat.lcm 9999 100001) = 90900909 := begin let e : empty → fin 1 → ℕ := λ _, 1, have : fintype.card (fin 1) = 1 := fintype.card_fin 1, unfold nat.lcm, have : fintype.card (fin 1) = 1 := fintype.card_fin 1, simp only [eq_comm] at this, rw this, simp [bit1], norm_num, end theorem aime_1983_p9 (x : ℝ) (h₀ : 0 < x ∧ x < real.pi) : 12 ≤ ((9 * (x^2 * (real.sin x)^2)) + 4) / (x * real.sin x) := begin let y := x * real.sin x, rw ← mul_pow, change 12 ≤ (9 * y^2 + 4) / y, refine (le_div_iff _).mpr _, apply mul_pos h₀.1, apply real.sin_pos_of_pos_of_lt_pi h₀.1 h₀.2, suffices : 0 ≤ (3 * y - 2)^2, nlinarith, exact pow_two_nonneg (3 * y - 2), end theorem mathd_algebra_37 (x y : ℝ) (h₀ : x + y = 7) (h₁ : 3 * x + y = 45) : x^2 - y^2 = 217 := begin nlinarith, end theorem mathd_numbertheory_458 (n : ℕ) (h₀ : n % 8 = 7) : n % 4 = 3 := begin sorry end theorem amc12a_2008_p15 (k : ℕ) (h₀ : k = 2008^2 + 2^2008) : (k^2 + 2^k) % 10 = 6 := begin sorry end theorem mathd_numbertheory_301 (j : ℕ+) : (3 * (7 * ↑j + 3)) % 7 = 2 := begin calc 3 * (7 * ↑j + 3) % 7 = (3 * 3 + (3 * ↑j) * 7) % 7 : by {ring_nf} ... = (3 * 3) % 7 : by {apply nat.add_mul_mod_self_right} ... = 2 : by {norm_num}, end theorem amc12a_2009_p15 (n : ℕ) (h₀ : 0 < n) (h₁ : ∑ k in finset.erase (finset.range (n + 1)) 0, (↑k * (complex.I^k)) = 48 + 49 * complex.I) : n = 97 := begin sorry end theorem algebra_sqineq_36azm9asqle36zsq (z a : ℝ) : 36 * (a * z) - 9 * a^2 ≤ 36 * z^2 := begin suffices : 4 * (a * z) - a^2 ≤ 4 * z^2, nlinarith, suffices : 0 ≤ (a - 2 * z)^2, nlinarith, exact pow_two_nonneg (a - 2 * z), end theorem amc12a_2013_p7 (s : ℕ → ℝ) (h₀: ∀ n, s (n + 2) = s (n + 1) + s n) (h₁ : s 9 = 110) (h₂ : s 7 = 42) : s 4 = 10 := begin sorry end theorem mathd_algebra_104 (x : ℝ) (h₀ : 125 / 8 = x / 12) : x = 375 / 2 := begin linarith, end theorem mathd_numbertheory_252 : (nat.factorial 7) % 23 = 3 := begin sorry end theorem amc12a_2020_p22 (h₀ : fintype {n : ℕ | 5∣n ∧ nat.lcm (nat.factorial 5) n = 5 * nat.gcd (nat.factorial 10) n}) : finset.card {n : ℕ | 5∣n ∧ nat.lcm (nat.factorial 5) n = 5 * nat.gcd (nat.factorial 10) n}.to_finset = 1 := begin sorry end theorem mathd_algebra_493 (f : ℝ → ℝ) (h₀ : ∀ x, f x = x^2 - 4 * real.sqrt x + 1) : f (f 4) = 70 := begin sorry end theorem numbertheory_nckeqnm1ckpnm1ckm1 (n k : ℕ) (h₀ : 0 < n ∧ 0 < k) (h₁ : k ≤ n) : nat.choose n k = nat.choose (n - 1) k + nat.choose (n - 1) (k - 1) := begin sorry end theorem algebra_3rootspoly_amdtamctambeqnasqmbpctapcbtdpasqmbpctapcbta (b c d a : ℂ) : (a-d) * (a-c) * (a-b) = -(((a^2 - (b+c) * a) + c * b) * d) + (a^2 - (b+c) * a + c * b) * a := begin ring, end theorem mathd_numbertheory_403 : ∑ k in (nat.proper_divisors 198), k = 270 := begin sorry end theorem mathd_algebra_190 : ((3:ℝ) / 8 + 7 / 8) / (4 / 5) = 25 / 16 := begin norm_num, end theorem mathd_numbertheory_269 : (2005^2 + 2005^0 + 2005^0 + 2005^5) % 100 = 52 := begin sorry end theorem aime_1990_p2 : (52 + 6 * real.sqrt 43)^((3:ℝ) / 2) - (52 - 6 * real.sqrt 43)^((3:ℝ) / 2) = 828 := begin sorry end theorem mathd_numbertheory_101 : (17 * 18) % 4 = 2 := begin norm_num, end theorem algebra_sqineq_4bap1lt4bsqpap1sq (a b : ℝ) : 4 * b * (a + 1) ≤ 4 * b^2 + (a + 1)^2 := begin suffices : 0 ≤ (2 * b - (a + 1))^2, nlinarith, exact pow_two_nonneg (2 * b - (a + 1)), end theorem mathd_numbertheory_156 (n : ℕ+) : nat.gcd (n + 7) (2 * n + 1) ≤ 13 := begin sorry end theorem mathd_algebra_451 (σ : equiv ℝ ℝ) (h₀ : σ.2 (-15) = 0) (h₁ : σ.2 0 = 3) (h₂ : σ.2 3 = 9) (h₃ : σ.2 9 = 20) : σ.1 (σ.1 9) = 0 := begin sorry end theorem mathd_algebra_144 (a b c d : ℕ+) (h₀ : (c:ℤ) - (b:ℤ) = (d:ℤ)) (h₁ : (b:ℤ) - (a:ℤ) = (d:ℤ)) (h₂ : a + b + c = 60) (h₃ : a + b > c) : d < 10 := begin sorry end theorem mathd_algebra_282 (f : ℝ → ℝ) (h₀ : ∀ x, (¬ irrational x) → f x = abs (int.floor x)) (h₁ : ∀ x, (irrational x) → f x = (int.ceil x)^2) : f (8^(1/3)) + f (-real.pi) + f (real.sqrt 50) + f (9/2) = 79 := begin sorry end theorem mathd_algebra_410 (x y : ℝ) (h₀ : y = x^2 - 6 * x + 13) : 4 ≤ y := begin sorry end theorem mathd_numbertheory_232 (x y z : zmod 31) (h₀ : x = 3⁻¹) (h₁ : y = 5⁻¹) (h₂ : z = (x + y)⁻¹) : z = 29 := begin sorry end theorem mathd_algebra_77 (a b : ℝ) (f : ℝ → ℝ) (h₀ : a ≠ 0 ∧ b ≠ 0) (h₁ : ∀ x, f x = x^2 + a * x + b) (h₂ : f a = 0) (h₃ : f b = 0) : a = 1 ∧ b = -2 := begin sorry end theorem imo_1974_p5 (a b c d s : ℝ) (h₀ : s = a / (a + b + d) + b / (a + b + c) + c / (b + c + d) + d / (a + c + d)) : 1 < s ∧ s < 2 := begin sorry end theorem aime_1988_p3 (x : ℝ) (h₀ : 0 < x) (h₁ : real.log (real.log x / real.log 8) / real.log 2 = real.log (real.log x / real.log 2) / real.log 8) : (real.log x / real.log 2)^2 = 27 := begin sorry end theorem mathd_numbertheory_530 (n k : ℕ+) (h₀ : ↑n / ↑k < (6:ℝ)) (h₁ : (5:ℝ) < ↑n / ↑k) : 22 ≤ (nat.lcm n k) / (nat.gcd n k) := begin sorry end theorem mathd_algebra_109 (a b : ℝ) (h₀ : 3 * a + 2 * b = 12) (h₁ : a = 4) : b = 0 := begin linarith, end theorem imo_1967_p3 (k m n : ℕ) (c : ℕ → ℕ) (h₀ : 0 < k ∧ 0 < m ∧ 0 < n) (h₁ : ∀ s, c s = s * (s + 1)) (h₂ : nat.prime (k + m + 1)) (h₃ : n + 1 < k + m + 1) : (∏ i in finset.range (n + 1) \ finset.range 1, c i) ∣ (∏ i in finset.range (n + 1) \ finset.range 1, (c (m + i) - c k)) := begin sorry end theorem mathd_algebra_11 (a b : ℝ) (h₀ : a ≠ b) (h₁ : a ≠ 2*b) (h₂ : (4 * a + 3 * b) / (a - 2 * b) = 5) : (a + 11 * b) / (a - b) = 2 := begin rw eq_comm, refine (eq_div_iff _).mpr _, exact sub_ne_zero_of_ne h₀, rw eq_comm at h₂, suffices : a = 13 * b, linarith, have key : 5 * (a - 2 * b) = (4 * a + 3 * b), rwa (eq_div_iff (sub_ne_zero_of_ne h₁)).mp, linarith, end theorem amc12a_2003_p1 (u v : ℕ → ℕ) (h₀ : ∀ n, u n = 2 * n + 2) (h₁ : ∀ n, v n = 2 * n + 1) : (∑ k in finset.range(2003), u k) - (∑ k in finset.range(2003), v k) = 2003 := begin sorry end theorem numbertheory_aneqprodakp4_anmsqrtanp1eq2 (a : ℕ → ℝ) (h₀ : a 0 = 1) (h₁ : ∀ n, a (n + 1) = (∏ k in finset.range (n + 1), (a k)) + 4) : ∀ n ≥ 1, a n - real.sqrt (a (n + 1)) = 2 := begin sorry end theorem algebra_2rootspoly_apatapbeq2asqp2ab (a b : ℂ) : (a + a) * (a + b) = 2 * a^2 + 2 * (a * b) := begin ring, end theorem induction_sum_odd (n : ℕ) : ∑ k in (finset.range n), 2 * k + 1 = n^2 := begin sorry end theorem mathd_algebra_568 (a : ℝ) : (a - 1) * (a + 1) * (a + 2) - (a - 2) * (a + 1) = a^3 + a^2 := begin linarith, end theorem mathd_algebra_616 (f g : ℝ → ℝ) (h₀ : ∀ x, f x = x^3 + 2 * x + 1) (h₁ : ∀ x, g x = x - 1) : f (g 1) = 1 := begin sorry end theorem mathd_numbertheory_690 : is_least {a : ℕ+ | a ≡ 2 [MOD 3] ∧ a ≡ 4 [MOD 5] ∧ a ≡ 6 [MOD 7] ∧ a ≡ 8 [MOD 9]} 314 := begin sorry end theorem amc12a_2016_p2 (x : ℝ) (h₀ : (10:ℝ)^x * 100^(2 * x) = 1000^5) : x = 3 := begin sorry end theorem mathd_numbertheory_405 (a b c : ℕ) (t : ℕ → ℕ) (h₀ : t 0 = 0) (h₁ : t 1 = 1) (h₂ : ∀ n > 1, t n = t (n - 2) + t (n - 1)) (h₃ : a ≡ 5 [MOD 16]) (h₄ : b ≡ 10 [MOD 16]) (h₅ : c ≡ 15 [MOD 16]) : (t a + t b + t c) % 7 = 5 := begin sorry end theorem mathd_numbertheory_110 (a b : ℕ) (h₀ : 0 < a ∧ 0 < b ∧ b ≤ a) (h₁ : (a + b) % 10 = 2) (h₂ : (2 * a + b) % 10 = 1) : (a - b) % 10 = 6 := begin sorry end theorem amc12a_2003_p25 (a b : ℝ) (f : ℝ → ℝ) (h₀ : 0 < b) (h₁ : ∀ x, f x = real.sqrt (a * x^2 + b * x)) (h₂ : {x | 0 ≤ f x} = f '' {x | 0 ≤ f x}) : a = 0 ∨ a = -4 := begin sorry end theorem amc12a_2010_p10 (p q : ℝ) (a : ℕ → ℝ) (h₀ : ∀ n, a (n + 2) - a (n + 1) = a (n + 1) - a n) (h₁ : a 1 = p) (h₂ : a 2 = 9) (h₃ : a 3 = 3 * p - q) (h₄ : a 4 = 3 * p + q) : a 2010 = 8041 := begin sorry end theorem mathd_algebra_509 : real.sqrt ((5 / real.sqrt 80 + real.sqrt 845 / 9 + real.sqrt 45) / real.sqrt 5) = 13 / 6 := begin sorry end theorem mathd_algebra_159 (b : ℝ) (f : ℝ → ℝ) (h₀ : ∀ x, f x = 3 * x^4 - 7 * x^3 + 2 * x^2 - b * x + 1) (h₁ : f 1 = 1) : b = -2 := begin rw h₀ at h₁, linarith, end theorem aime_1997_p12 (x : ℝ) (h₀ : x = (∑ n in finset.range 45 \ finset.range 1, real.cos (n * π / 180)) / (∑ n in finset.range 45 \ finset.range 1, real.sin (n * π / 180))) : int.floor (100 * x) = 241 := begin sorry end theorem aimeI_2000_p7 (x y z : ℝ) (m : ℚ) (h₀ : 0 < x ∧ 0 < y ∧ 0 < z) (h₁ : x * y * z = 1) (h₂ : x + 1 / z = 5) (h₃ : y + 1 / x = 29) (h₄ : z + 1 / y = m) (h₅ : 0 < m) : ↑m.denom + m.num = 5 := begin sorry end theorem aime_1988_p4 (n : ℕ) (a : ℕ → ℝ) (h₀ : ∀ n, abs (a n) < 1) (h₁ : ∑ k in finset.range n, (abs (a k)) = 19 + abs (∑ k in finset.range n, a k)) : 20 ≤ n := begin sorry end theorem induction_divisibility_9div10tonm1 (n : ℕ+) : 9 ∣(10^(n:ℕ) - 1) := begin sorry end theorem mathd_numbertheory_126 (x a : ℕ+) (h₀ : nat.gcd a 40 = x + 3) (h₁ : nat.lcm a 40 = x * (x + 3)) (h₂ : ∀ b : ℕ+, nat.gcd b 40 = x + 3 ∧ nat.lcm b 40 = x * (x + 3) → a ≤ b) : a = 8 := begin sorry end theorem mathd_algebra_323 (σ : equiv ℝ ℝ) (h : ∀ x, σ.1 x = x^3 - 8) : σ.2 (σ.1 (σ.2 19)) = 3 := begin revert h, simp, intro h, apply σ.injective, simp [h, σ.apply_symm_apply], norm_num, end theorem mathd_algebra_421 (a b c d : ℝ) (h₀ : b = a^2 + 4 * a + 6) (h₁ : b = 1 / 2 * a^2 + a + 6) (h₂ : d = c^2 + 4 * c + 6) (h₃ : d = 1 / 2 * c^2 + c + 6) (h₄ : a ≤ c) : c - a = 6 := begin sorry end theorem imo_1987_p6 (p : ℕ) (f : ℕ → ℕ) (h₀ : ∀ x, f x = x^2 + x + p) (h₀ : ∀ k : ℕ, k ≤ nat.floor (real.sqrt (p / 3)) → nat.prime (f k)) : ∀ i ≤ p - 2, nat.prime (f i) := begin sorry end theorem amc12a_2009_p25 (a : ℕ+ → ℝ) (h₀ : a 1 = 1) (h₁ : a 2 = 1 / real.sqrt 3) (h₂ : ∀ n, a (n + 2) = (a n + a (n + 1)) / (1 - a n * a (n + 1))) : abs (a 2009) = 0 := begin sorry end theorem imo_1961_p1 (x y z a b : ℝ) (h₀ : 0 < x ∧ 0 < y ∧ 0 < z) (h₁ : x ≠ y) (h₂ : y ≠ z) (h₃ : z ≠ x) (h₄ : x + y + z = a) (h₅ : x^2 + y^2 + z^2 = b^2) (h₆ : x * y = z^2) : 0 < a ∧ b^2 < a^2 ∧ a^2 < 3 * b^2 := begin sorry end theorem mathd_algebra_31 (x : nnreal) (u : ℕ → nnreal) (h₀ : ∀ n, u (n + 1) = nnreal.sqrt (x + u n)) (h₁ : filter.tendsto u filter.at_top (𝓝 9)) : 9 = nnreal.sqrt (x + 9) := begin sorry end theorem algebra_manipexpr_apbeq2cceqiacpbceqm2 (a b c : ℂ) (h₀ : a + b = 2 * c) (h₁ : c = complex.I) : a * c + b * c = -2 := begin rw [← add_mul, h₀, h₁, mul_assoc, complex.I_mul_I], ring, end theorem mathd_numbertheory_370 (n : ℕ) (h₀ : n % 7 = 3) : (2 * n + 1) % 7 = 0 := begin sorry end theorem mathd_algebra_437 (x y : ℝ) (n : ℤ) (h₀ : x^3 = -45) (h₁ : y^3 = -101) (h₂ : x < n) (h₃ : ↑n < y) : n = -4 := begin sorry end theorem imo_1966_p5 (x a : ℕ → ℝ) (h₀ : a 1 ≠ a 2) (h₁ : a 1 ≠ a 3) (h₂ : a 1 ≠ a 4) (h₃ : a 2 ≠ a 3) (h₄ : a 2 ≠ a 4) (h₅ : a 3 ≠ a 4) (h₆ : abs (a 1 - a 2) * x 2 + abs (a 1 - a 3) * x 3 + abs (a 1 - a 4) * x 4 = 1) (h₇ : abs (a 2 - a 1) * x 1 + abs (a 2 - a 3) * x 3 + abs (a 2 - a 4) * x 4 = 1) (h₈ : abs (a 3 - a 1) * x 1 + abs (a 3 - a 2) * x 2 + abs (a 3 - a 4) * x 4 = 1) (h₉ : abs (a 4 - a 1) * x 1 + abs (a 4 - a 2) * x 2 + abs (a 4 - a 3) * x 3 = 1) : x 2 = 0 ∧ x 3 = 0 ∧ x 1 = 1 / abs (a 1 - a 4) ∧ x 4 = 1 / abs (a 1 - a 4) := begin sorry end theorem mathd_algebra_89 (b : ℝ) (h₀ : b ≠ 0) : (7 * b^3)^2 * (4 * b^2)^(-(3:ℤ)) = 49 / 64 := begin ring_nf, field_simp, norm_cast, refine (div_eq_iff _).mpr _, { norm_num, assumption }, ring, end theorem imo_1966_p4 (n : ℕ) (x : ℝ) (h₀ : ∀ k : ℕ+, ∀ m : ℤ, x ≠ m * π / (2^(k:ℕ))) (h₁ : 0 < n) : ∑ k in finset.range (n + 1) \ finset.range 1, (1 / real.sin ((2^k) * x)) = 1 / real.tan x - 1 / real.tan ((2^n) * x) := begin sorry end theorem mathd_algebra_67 (f g : ℝ → ℝ) (h₀ : ∀ x, f x = 5 * x + 3) (h₁ : ∀ x, g x = x^2 - 2) : g (f (-1)) = 2 := begin rw [h₀, h₁], ring, end theorem mathd_numbertheory_326 (n : ℕ) (h₀ : (↑n - 1) * ↑n * (↑n + 1) = (720:ℤ)) : (n + 1) = 10 := begin sorry end theorem induction_divisibility_3div2tooddnp1 (n : ℕ) : 3 ∣ (2^(2 * n + 1) + 1) := begin sorry end theorem mathd_algebra_123 (a b : ℕ+) (h₀ : a + b = 20) (h₁ : a = 3 * b) : a - b = 10 := begin rw h₁ at h₀, rw h₁, have h₂ : 3 * (b:ℕ) + (b:ℕ) = (20:ℕ), { exact subtype.mk.inj h₀, }, have h₃ : (b:ℕ) = 5, linarith, have h₄ : b = 5, { exact pnat.eq h₃, }, rw h₄, calc (3:ℕ+) * 5 - 5 = 15 - 5 : by {congr,} ... = 10 : by {exact rfl}, end theorem algebra_2varlineareq_xpeeq7_2xpeeq3_eeq11_xeqn4 (x e : ℂ) (h₀ : x + e = 7) (h₁ : 2 * x + e = 3) : e = 11 ∧ x = -4 := begin sorry end theorem imo_1993_p5 : ∃ f : ℕ+ → ℕ+, (∀ a b, (a < b) ↔ f a < f b) ∧ f 1 = 2 ∧ ∀ n, f (f n) = f n + n := begin sorry end theorem numbertheory_prmdvsneqnsqmodpeq0 (n : ℤ) (p : ℕ) (h₀ : nat.prime p) : ↑p ∣ n ↔ (n^2) % p = 0 := begin simp [nat.dvd_prime_pow (show nat.prime p, from h₀), pow_succ], simp only [int.coe_nat_dvd_right, int.coe_nat_dvd_left, int.nat_abs_mul], rw nat.prime.dvd_mul, { tauto }, assumption, end theorem imo_1964_p1_1 (n : ℕ) (h₀ : 7 ∣ (2^n - 1)) : 3 ∣ n := begin sorry end theorem imo_1990_p3 (n : ℕ) (h₀ : 2 ≤ n) (h₁ : n^2 ∣ 2^n + 1) : n = 3 := begin sorry end theorem induction_ineq_nsqlefactn (n : ℕ) (h₀ : 4 ≤ n) : n^2 ≤ n! := begin simp only [sq], casesI n with n, exact dec_trivial, simp, apply nat.succ_le_of_lt, apply nat.lt_factorial_self, exact nat.succ_le_succ_iff.mp h₀, end theorem mathd_numbertheory_30 : (33818^2 + 33819^2 + 33820^2 + 33821^2 + 33822^2) % 17 = 0 := begin norm_num, end theorem mathd_algebra_267 (x : ℝ) (h₀ : x ≠ 1) (h₁ : x ≠ -2) (h₂ : (x + 1) / (x - 1) = (x - 2) / (x + 2)) : x = 0 := begin revert x h₀ h₁ h₂, norm_num, intros a ha, intros ha, intro h, rw ← sub_eq_zero at *, simp, field_simp at *, linarith, end theorem mathd_numbertheory_961 : 2003 % 11 = 1 := begin norm_num, end theorem induction_seq_mul2pnp1 (n : ℕ) (u : ℕ → ℕ) (h₀ : u 0 = 0) (h₁ : ∀ n, u (n + 1) = 2 * u n + (n + 1)) : u n = 2^(n + 1) - (n + 2) := begin sorry end theorem amc12a_2002_p12 (f : ℝ → ℝ) (k : ℝ) (h₀ : ∀ x, f x = x^2 - 63 * x + k) (h₁ : set.subset (f ⁻¹' {0}) { x : ℝ | ∃ n : ℕ, ↑n = x ∧ nat.prime n}) : k = 122 := begin sorry end theorem algebra_manipexpr_2erprsqpesqeqnrpnesq (e r : ℂ) : 2 * (e * r) + (e^2 + r^2) = (-r + (-e))^2 := begin ring, end theorem mathd_algebra_119 (d e : ℝ) (h₀ : 2 * d = 17 * e - 8) (h₁ : 2 * e = d - 9) : e = 2 := begin linarith, end theorem amc12a_2020_p13 (a b c : ℕ) (n : nnreal) (h₀ : n ≠ 1) (h₁ : 1 < a ∧ 1 < b ∧ 1 < c) (h₂ : (n * ((n * (n^(1 / c)))^(1 / b)))^(1 / a) = (n^25)^(1 / 36)) : b = 3 := begin sorry end theorem imo_1977_p5 (a b q r : ℕ) (h₀ : r < a + b) (h₁ : a^2 + b^2 = (a + b) * q + r) (h₂ : q^2 + r = 1977) : (abs ((a:ℤ) - 22) = 15 ∧ abs ((b:ℤ) - 22) = 28) ∨ (abs ((a:ℤ) - 22) = 28 ∧ abs ((b:ℤ) - 22) = 15) := begin sorry end theorem numbertheory_2dvd4expn (n : ℕ) (h₀ : n ≠ 0) : 2 ∣ 4^n := begin revert n h₀, rintros ⟨k, rfl⟩, { norm_num }, apply dvd_pow, norm_num, end theorem amc12a_2010_p11 (x b : ℝ) (h₀ : 0 < b) (h₁ : (7:ℝ)^(x + 7) = 8^x) (h₂ : x = real.log (7^7) / real.log b) : b = 8 / 7 := begin sorry end theorem amc12a_2003_p24 (a b : ℝ) (h₀ : b ≤ a) (h₁ : 1 < b) : real.log (a / b) / real.log a + real.log (b / a) / real.log b ≤ 0 := begin sorry end theorem amc12a_2002_p1 (f : ℂ → ℂ) (h₀ : ∀ x, f x = (2 * x + 3) * (x - 4) + (2 * x + 3) * (x - 6)) (h₁ : fintype (f ⁻¹' {0})) : ∑ y in (f⁻¹' {0}).to_finset, y = 7 / 2 := begin sorry end theorem mathd_algebra_206 (a b : ℝ) (f : ℝ → ℝ) (h₀ : ∀ x, f x = x^2 + a * x + b) (h₁ : 2 * a ≠ b) (h₂ : f (2 * a) = 0) (h₃ : f b = 0) : a + b = -1 := begin sorry end theorem mathd_numbertheory_92 (n : ℕ) (h₀ : (5 * n) % 17 = 8) : n % 17 = 5 := begin sorry end theorem mathd_algebra_482 (m n : ℕ) (k : ℝ) (f : ℝ → ℝ) (h₀ : nat.prime m) (h₁ : nat.prime n) (h₂ : ∀ x, f x = x^2 - 12 * x + k) (h₃ : f m = 0) (h₄ : f n = 0) (h₅ : m ≠ n) : k = 35 := begin sorry end theorem amc12b_2002_p3 (n : ℕ) (h₀ : 0 < n) -- note: we use this over (n^2 - 3 * n + 2) because nat subtraction truncates the latter at 1 and 2 (h₁ : nat.prime (n^2 + 2 - 3 * n)) : n = 3 := begin sorry end theorem mathd_numbertheory_668 (l r : zmod 7) (h₀ : l = (2 + 3)⁻¹) (h₁ : r = 2⁻¹ + 3⁻¹) : l - r = 1 := begin sorry end theorem mathd_algebra_251 (x : ℝ) (h₀ : x ≠ 0) (h₁ : 3 + 1 / x = 7 / x) : x = 2 := begin field_simp [h₀] at h₁, linarith, end theorem mathd_numbertheory_84 : int.floor ((9:ℝ) / 160 * 100) = 5 := begin rw int.floor_eq_iff, split, all_goals { norm_num }, end theorem mathd_numbertheory_412 (x y : ℕ) (h₀ : x % 19 = 4) (h₁ : y % 19 = 7) : ((x + 1)^2 * (y + 5)^3) % 19 = 13 := begin sorry end theorem mathd_algebra_181 (n : ℝ) (h₀ : n ≠ 3) (h₁ : (n + 5) / (n - 3) = 2) : n = 11 := begin rw div_eq_iff at h₁, linarith, exact sub_ne_zero.mpr h₀, end theorem amc12a_2016_p3 (f : ℝ → ℝ → ℝ) (h₀ : ∀ x, ∀ y ≠ 0, f x y = x - y * int.floor (x / y)) : f (3 / 8) (-(2 / 5)) = -(1 / 40) := begin sorry end theorem mathd_algebra_247 (t s : ℝ) (n : ℤ) (h₀ : t = 2 * s - s^2) (h₁ : s = n^2 - 2^n + 1) (n = 3) : t = 0 := begin sorry end theorem algebra_sqineq_2unitcircatblt1 (a b : ℝ) (h₀ : a^2 + b^2 = 2) : a * b ≤ 1 := begin have hu := sq_nonneg a, have hv := sq_nonneg b, have H₁ := add_nonneg hu hv, have H₂ : 0 ≤ (a - b) ^ 2 := by nlinarith, nlinarith, end theorem mathd_numbertheory_629 : is_least {t : ℕ+ | (nat.lcm 12 t)^3 = (12 * t)^2} 18 := begin sorry end theorem amc12a_2017_p2 (x y : ℝ) (h₀ : x ≠ 0) (h₁ : y ≠ 0) (h₂ : x + y = 4 * (x * y)) : 1 / x + 1 / y = 4 := begin sorry end theorem algebra_amgm_sumasqdivbsqgeqsumbdiva (a b c : ℝ) (h₀ : 0 < a ∧ 0 < b ∧ 0 < c) : a^2 / b^2 + b^2 / c^2 + c^2 / a^2 ≥ b / a + c / b + a / c := begin sorry end theorem mathd_numbertheory_202 : (19^19 + 99^99) % 10 = 8 := begin sorry end theorem imo_1979_p1 (p q : ℕ) (h₀ : 0 < q) (h₁ : ∑ k in finset.range 1320 \ finset.range 1, ((-1)^(k + 1) * ((1:ℝ) / k)) = p / q) : 1979 ∣ p := begin sorry end theorem mathd_algebra_51 (a b : ℝ) (h₀ : 0 < a ∧ 0 < b) (h₁ : a + b = 35) (h₂ : a = (2/5) * b) : b - a = 15 := begin linarith, end theorem mathd_algebra_10 : abs ((120:ℝ) / 100 * 30 - 130 / 100 * 20) = 10 := begin norm_num, end
Foil plaid lycra and spandex shortall with metallic slinky insets. Attached metallic elastic belt with O-ring. Headband included. Great hip hop or jazz dance costume. Made in the USA.
module UniDB.Morph.Sim where open import UniDB.Spec open import UniDB.Subst.Core open import UniDB.Morph.Depth import Level open import Relation.Binary.PropositionalEquality -------------------------------------------------------------------------------- record Sim (T : STX) (γ₁ γ₂ : Dom) : Set where constructor sim field lk-sim : (i : Ix γ₁) → T γ₂ open Sim public module _ {T : STX} where instance iLkSim : {{vrT : Vr T}} → Lk T (Sim T) lk {{iLkSim}} = lk-sim iWkSim : {{wkT : Wk T}} → {γ₁ : Dom} → Wk (Sim T γ₁) wk₁ {{iWkSim}} (sim f) = sim (wk₁ ∘ f) wk {{iWkSim}} δ (sim f) = sim (wk δ ∘ f) wk-zero {{iWkSim {{wkT}}}} (sim f) = cong sim (ext (wk-zero {T} ∘ f)) where postulate ext : Extensionality Level.zero Level.zero wk-suc {{iWkSim}} δ (sim f) = cong sim (ext (wk-suc {T} δ ∘ f)) where postulate ext : Extensionality Level.zero Level.zero iSnocSim : Snoc T (Sim T) snoc {{iSnocSim}} (sim f) t = sim λ { zero → t ; (suc i) → f i } iUpSim : {{vrT : Vr T}} {{wkT : Wk T}} → Up (Sim T) _↑₁ {{iUpSim}} ξ = snoc {T} {Sim T} (wk₁ ξ) (vr {T} zero) _↑_ {{iUpSim}} ξ 0 = ξ _↑_ {{iUpSim}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpSim}} ξ = refl ↑-suc {{iUpSim}} ξ δ⁺ = refl iIdmSim : {{vrT : Vr T}} → Idm (Sim T) idm {{iIdmSim}} γ = sim (vr {T}) iWkmSim : {{vrT : Vr T}} → Wkm (Sim T) wkm {{iWkmSim}} δ = sim (vr {T} ∘ wk δ) iBetaSim : {{vrT : Vr T}} → Beta T (Sim T) beta {{iBetaSim}} t = snoc {T} {Sim T} (idm {Sim T} _) t iCompSim : {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} → Comp (Sim T) lk-sim (_⊙_ {{iCompSim}} ξ ζ) i = ap {T} {T} {Sim T} ζ (lk {T} {Sim T} ξ i) iLkUpSim : {{vrT : Vr T}} {{wkT : Wk T}} → LkUp T (Sim T) lk-↑₁-zero {{iLkUpSim}} ξ = refl lk-↑₁-suc {{iLkUpSim}} ξ zero = refl lk-↑₁-suc {{iLkUpSim}} ξ (suc i) = refl iLkWkmSim : {{vrT : Vr T}} → LkWkm T (Sim T) lk-wkm {{iLkWkmSim}} δ i = refl iLkIdmSim : {{vrT : Vr T}} → LkIdm T (Sim T) lk-idm {{iLkIdmSim}} i = refl iLkCompSim : {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} → LkCompAp T (Sim T) lk-⊙-ap {{iLkCompSim}} ξ₁ ξ₂ i = refl -------------------------------------------------------------------------------- module SimIxInstances (T : STX) where instance iLkSimIx : {{vrT : Vr T}} → Lk T (Sim Ix) lk {{iLkSimIx}} ξ i = vr {T} (lk {Ix} {Sim Ix} ξ i) iLkUpSimIx : {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}} → LkUp T (Sim Ix) lk-↑₁-zero {{iLkUpSimIx}} ξ = refl lk-↑₁-suc {{iLkUpSimIx}} ξ i = sym (wk₁-vr {T} (lk {Ix} {Sim Ix} ξ i)) iLkWkmSimIx : {{vrT : Vr T}} → LkWkm T (Sim Ix) lk-wkm {{iLkWkmSimIx}} δ i = refl iLkIdmSimIx : {{vrT : Vr T}} → LkIdm T (Sim Ix) lk-idm {{iLkIdmSimIx}} i = refl iLkCompSimIx : {{vrT : Vr T}} {{apTT : Ap T T}} {{apVrT : ApVr T}} → LkCompAp T (Sim Ix) lk-⊙-ap {{iLkCompSimIx}} ξ₁ ξ₂ i = sym (ap-vr {T} {Sim Ix} ξ₂ (lk {Ix} {Sim Ix} ξ₁ i)) --------------------------------------------------------------------------------
(* Title: ZF/AC/AC18_AC19.thy Author: Krzysztof Grabczewski The proof of AC1 ==> AC18 ==> AC19 ==> AC1 *) theory AC18_AC19 imports AC_Equiv begin definition uu :: "i => i" where "uu(a) == {c \<union> {0}. c \<in> a}" (* ********************************************************************** *) (* AC1 ==> AC18 *) (* ********************************************************************** *) lemma PROD_subsets: "[| f \<in> (\<Prod>b \<in> {P(a). a \<in> A}. b); \<forall>a \<in> A. P(a)<=Q(a) |] ==> (\<lambda>a \<in> A. f`P(a)) \<in> (\<Prod>a \<in> A. Q(a))" by (rule lam_type, drule apply_type, auto) lemma lemma_AC18: "[| \<forall>A. 0 \<notin> A \<longrightarrow> (\<exists>f. f \<in> (\<Prod>X \<in> A. X)); A \<noteq> 0 |] ==> (\<Inter>a \<in> A. \<Union>b \<in> B(a). X(a, b)) \<subseteq> (\<Union>f \<in> \<Prod>a \<in> A. B(a). \<Inter>a \<in> A. X(a, f`a))" apply (rule subsetI) apply (erule_tac x = "{{b \<in> B (a) . x \<in> X (a,b) }. a \<in> A}" in allE) apply (erule impE, fast) apply (erule exE) apply (rule UN_I) apply (fast elim!: PROD_subsets) apply (simp, fast elim!: not_emptyE dest: apply_type [OF _ RepFunI]) done lemma AC1_AC18: "AC1 ==> PROP AC18" apply (unfold AC1_def) apply (rule AC18.intro) apply (fast elim!: lemma_AC18 apply_type intro!: equalityI INT_I UN_I) done (* ********************************************************************** *) (* AC18 ==> AC19 *) (* ********************************************************************** *) theorem (in AC18) AC19 apply (unfold AC19_def) apply (intro allI impI) apply (rule AC18 [of _ "%x. x", THEN mp], blast) done (* ********************************************************************** *) (* AC19 ==> AC1 *) (* ********************************************************************** *) lemma RepRep_conj: "[| A \<noteq> 0; 0 \<notin> A |] ==> {uu(a). a \<in> A} \<noteq> 0 & 0 \<notin> {uu(a). a \<in> A}" apply (unfold uu_def, auto) apply (blast dest!: sym [THEN RepFun_eq_0_iff [THEN iffD1]]) done lemma lemma1_1: "[|c \<in> a; x = c \<union> {0}; x \<notin> a |] ==> x - {0} \<in> a" apply clarify apply (rule subst_elem, assumption) apply (fast elim: notE subst_elem) done lemma lemma1_2: "[| f`(uu(a)) \<notin> a; f \<in> (\<Prod>B \<in> {uu(a). a \<in> A}. B); a \<in> A |] ==> f`(uu(a))-{0} \<in> a" apply (unfold uu_def, fast elim!: lemma1_1 dest!: apply_type) done lemma lemma1: "\<exists>f. f \<in> (\<Prod>B \<in> {uu(a). a \<in> A}. B) ==> \<exists>f. f \<in> (\<Prod>B \<in> A. B)" apply (erule exE) apply (rule_tac x = "\<lambda>a\<in>A. if (f` (uu(a)) \<in> a, f` (uu(a)), f` (uu(a))-{0})" in exI) apply (rule lam_type) apply (simp add: lemma1_2) done lemma lemma2_1: "a\<noteq>0 ==> 0 \<in> (\<Union>b \<in> uu(a). b)" by (unfold uu_def, auto) lemma lemma2: "[| A\<noteq>0; 0\<notin>A |] ==> (\<Inter>x \<in> {uu(a). a \<in> A}. \<Union>b \<in> x. b) \<noteq> 0" apply (erule not_emptyE) apply (rule_tac a = 0 in not_emptyI) apply (fast intro!: lemma2_1) done lemma AC19_AC1: "AC19 ==> AC1" apply (unfold AC19_def AC1_def, clarify) apply (case_tac "A=0", force) apply (erule_tac x = "{uu (a) . a \<in> A}" in allE) apply (erule impE) apply (erule RepRep_conj, assumption) apply (rule lemma1) apply (drule lemma2, assumption, auto) done end
\documentclass{article} \usepackage[T1]{fontenc} \usepackage{hyperref} \hypersetup{colorlinks} \usepackage{iftex} \title{The iftex package} \author{The \LaTeX\ Project Team\thanks{% \url{https://github.com/latex3/iftex}}} \date{\csname [email protected]\endcsname} \newcommand\cs[1]{{\ttfamily\textbackslash #1}} \renewcommand*\descriptionlabel[1]{\makebox[\dimexpr\textwidth][l]{% \normalfont\bfseries #1}} \begin{document} \maketitle \tableofcontents \section{Introduction} This original \textsf{iftex} was written as part of the \textsf{bidi} collection (by the Persian TeX Group / Vafa Khalighi) and provided checks for whether a document was being processed with PDF\TeX, or Xe\TeX, or Lua\TeX. This version recodes the package and incorporates similar tests from the \textsf{ifetex} package by Martin Scharrer, the \textsf{ifxetex} package by Will Robertson, the \textsf{ifluatex} and \textsf{ifvtex} packages from Heiko Oberdiek and parts of \textsf{ifptex} by Takayuki Yato. For each \TeX\ variant engine supported two commands are provided: \begin{itemize} \item a conditional, \verb|\iffootex| that is true if the \textsf(footex) engine (or a compatible extension) is being used. For compatibility with earlier packages which did not all use the same naming convention all these conditionals are provided in two forms, a lowercase name \verb|\iffootex| and a mixed case name \verb|\iffooTeX|. \item a command \verb|RequireFooTeX| which checks that \textsf{footex} is being used, and stops the run with an error message if a different engine is detected. \end{itemize} \section{Loading the package} The package can be loaded in the usual way in both Plain \TeX\ and \LaTeX. \subsection{Loading the package in plain \TeX} \begin{verbatim} \input iftex.sty \end{verbatim} \subsection{Loading the package in \LaTeX} \begin{verbatim} \usepackage{iftex} \end{verbatim} \subsection{Loading the package in ini\TeX} The package assumes no existing macros and may be loaded during format setup in a format without the plain \TeX\ or \LaTeX\ format being loaded. From an initial ini\TeX\ setup the package may be loaded as for plain \TeX. \section{Engine test conditionals} All the conditionals defined here are used in the same way: \begin{verbatim} \ifluatex luatex specific code \else code for other engines \fi \end{verbatim} \begin{description} \item[\cs{ifetex}, \cs{ifeTeX}] True if an e\TeX\ enabled format is in use. (This is necessarily true in all \LaTeX\ variants.) \item[\cs{ifpdftex}, \cs{ifPDFTeX}] True if PDF\TeX\ is in use (whether writing PDF or DVI), so this is true for documents processed with both the \textsf{latex} and \textsf{pdflatex} commands. \item[\cs{ifxetex}, \cs{ifXeTeX}] True if Xe\TeX\ is in use. \item[\cs{ifluatex}, \cs{ifLuaTeX}] True if Lua\TeX\ and extensions such as LuaHB\TeX\ are in use. \item[\cs{ifluahbtex}, \cs{ifLuaHBTeX}] True if the \textsf{luaharftex} Lua module is available. This will be true in \textsf{luahbtex} and may be true in \textsf{luatex} if a binary Lua \textsf{luaharftex} module has been compiled and is available in Lua's search path. \item[\cs{ifptex}, \cs{ifpTeX}] True if any of the p\TeX\ variants are in use. \item[\cs{ifuptex}, \cs{ifupTeX}] True if any of the up\TeX\ variants are in use. (\verb|\ifetex| could be used in addition to distinguish \textsf{uptex} and \textsf{euptex}.) \item[\cs{ifptexng}, \cs{ifpTeXng}] True if p\TeX-ng (Asiatic p\TeX) is in use. \item[\cs{ifvtex}, \cs{ifVTeX}] True if V\TeX\ is in use. \item[\cs{ifalephtex}, \cs{ifAlephTeX}] True if Aleph is in use. (The \textsf{aleph}-based \LaTeX\ command is \textsf{lamed}.) \item[\cs{iftutex}, \cs{ifTUTeX}] This is not strictly an engine variant, but it is true if \verb|\Umathchardef| is available, which essentially means that it is true for Lua\TeX\ and Xe\TeX, allowing constructs such as \begin{verbatim} \iftutex \usepackage{fontspec} \setmainfont{TeX Gyre Termes} \usepackage{unicode-math} \setmathfont{Stix Two Math} \else \usepackage{newtxtext,newtxmath} \fi \end{verbatim} \item[\cs{iftexpadtex}, \cs{ifTexpadTeX}] True if Texpad\TeX\ is in use. Please note that Texpad\TeX\ can run in two modes, one which uses Unicode and native fonts internally (similar to Xe\TeX\ and Lua\TeX), and one which uses 8-bit codepages internally (similar to PDF\TeX). This can be determined using \cs{iftutex}. \item[\cs{ifhint}, \cs{ifHINT}] True if Hi\TeX\ (HINT output format) is in use. \end{description} \section{Requiring specific engines} For each supported engine, the package provides a command \verb|\Require...| which checks that the document is being processed with a suitable engine, and stops with an error message if not. \begin{description} \item[\cs{RequireeTeX}] \item[\cs{RequirePDFTeX}] \item[\cs{RequireXeTeX}] \item[\cs{RequireLuaTeX}] \item[\cs{RequireLuaHBTeX}] \item[\cs{RequirepTeX}] \item[\cs{RequireupTeX}] \item[\cs{RequirepTeXng}] \item[\cs{RequireVTeX}] \item[\cs{RequireAlephTeX}] \item[\cs{RequireTUTeX}] \item[\cs{RequireTexpadTeX}] \item[\cs{RequireHINT}] \end{description} \section{Output mode conditional} This package also provides an \verb|\ifpdf| conditional that is true if the format is set up to output in PDF mode rather than DVI. This is equivalent to the test in the existing \textsf{ifpdf} package. Unlike the engine tests above this is defined as if by \verb|\newif| with user-documented commands \verb|\pdftrue| and \verb|\pdffalse| that can change the boolean value. These would be needed to reset the boolean if the output mode is reset (for example by setting \verb|\pdfoutput=0| in PDF\LaTeX). Unlike the original \textsf{ifpdf} package, the version here also detects PDF output mode if running in V\TeX. \section{Additional packages} This extended \textsf{iftex} is designed to replace the original \textsf{iftex} and also the packages \textsf{ifetex}, \textsf{ifluatex}, \textsf{ifvtex}, \textsf{ifxetex}, \textsf{ifpdf}. This collection includes small packages with these names that include the main \textsf{iftex} package, and in some cases define additional commands for increased compatibility. These packages should mean that authors do not need to change existing documents, although it is recommended that new documents use the \textsf{iftex} package directly. Note that while this package provides basic support for detecting p\TeX\ (Japanese \TeX) variants and is broadly compatible with the \textsf{ifptex} package, the \textsf{ifptex} package has many more detailed tests for p\TeX\ variants and this package does \emph{not} replace the \textsf{ifptex} (or \textsf{ifxptex}) packages, which are maintained by their original authors and recommended for Japanese documents that need fine control over the Japanese \TeX\ system in use. \section{Compatibility with \textsf{scrbase}} The \textsf{scrbase} package (which is automatically included in the popular \textsf{KOMA-Script} classes) by default defines \verb|\ifpdftex| and \verb|\ifVTeX| with a different syntax. If you use the \textsf{scrbase} option \verb|internalonly| then \textsf{scrbase} will not define these and the definitions as described here will take effect. This is recommended and will not affect any \textsf{scrbase} package code as internally \textsf{scrbase} uses private versions of those commands prefixed with \verb|\scr@|. However this package detects if the \textsf{scrbase} definitions are in effect and if so does not redefine them, for compatibility with existing documents. The \textsf{iftex} versions will still be available under the names \verb|\ifPDFTeX| and \verb|\ifvtex|. \end{document}
! { dg-do run } ! PR 20361 : We didn't check if a large equivalence actually fit on ! the stack, and therefore segfaulted at execution time subroutine test integer i(1000000), j equivalence (i(50), j) j = 1 if (i(50) /= j) STOP 1 end subroutine test call test end
Formal statement is: lemma cball_scale: assumes "a \<noteq> 0" shows "(\<lambda>x. a *\<^sub>R x) ` cball c r = cball (a *\<^sub>R c :: 'a :: real_normed_vector) (\<bar>a\<bar> * r)" Informal statement is: If $a \neq 0$, then the image of the closed ball of radius $r$ centered at $c$ under the map $x \mapsto a \cdot x$ is the closed ball of radius $\lvert a \rvert \cdot r$ centered at $a \cdot c$.
(** * Logic: Logic in Coq *) Require Export MoreCoq. (** Coq's built-in logic is very small: the only primitives are [Inductive] definitions, universal quantification ([forall]), and implication ([->]), while all the other familiar logical connectives -- conjunction, disjunction, negation, existential quantification, even equality -- can be encoded using just these. This chapter explains the encodings and shows how the tactics we've seen can be used to carry out standard forms of logical reasoning involving these connectives. *) (* ########################################################### *) (** * Propositions *) (** In previous chapters, we have seen many examples of factual claims (_propositions_) and ways of presenting evidence of their truth (_proofs_). In particular, we have worked extensively with _equality propositions_ of the form [e1 = e2], with implications ([P -> Q]), and with quantified propositions ([forall x, P]). *) (** In Coq, the type of things that can (potentially) be proven is [Prop]. *) (** Here is an example of a provable proposition: *) Check (3 = 3). (* ===> Prop *) (** Here is an example of an unprovable proposition: *) Check (forall (n:nat), n = 2). (* ===> Prop *) (** Recall that [Check] asks Coq to tell us the type of the indicated expression. *) (* ########################################################### *) (** * Proofs and Evidence *) (** In Coq, propositions have the same status as other types, such as [nat]. Just as the natural numbers [0], [1], [2], etc. inhabit the type [nat], a Coq proposition [P] is inhabited by its _proofs_. We will refer to such inhabitants as _proof term_ or _proof object_ or _evidence_ for the truth of [P]. In Coq, when we state and then prove a lemma such as: Lemma silly : 0 * 3 = 0. Proof. reflexivity. Qed. the tactics we use within the [Proof]...[Qed] keywords tell Coq how to construct a proof term that inhabits the proposition. In this case, the proposition [0 * 3 = 0] is justified by a combination of the _definition_ of [mult], which says that [0 * 3] _simplifies_ to just [0], and the _reflexive_ principle of equality, which says that [0 = 0]. *) (** *** *) Lemma silly : 0 * 3 = 0. Proof. reflexivity. Qed. (** We can see which proof term Coq constructs for a given Lemma by using the [Print] directive: *) Print silly. (* ===> silly = eq_refl : 0 * 3 = 0 *) (** Here, the [eq_refl] proof term witnesses the equality. (More on equality later!)*) (** ** Implications _are_ functions *) (** Just as we can implement natural number multiplication as a function: [ mult : nat -> nat -> nat ] The _proof term_ for an implication [P -> Q] is a _function_ that takes evidence for [P] as input and produces evidence for [Q] as its output. *) Lemma silly_implication : (1 + 1) = 2 -> 0 * 3 = 0. Proof. intros H. reflexivity. Qed. (** We can see that the proof term for the above lemma is indeed a function: *) Print silly_implication. (* ===> silly_implication = fun _ : 1 + 1 = 2 => eq_refl : 1 + 1 = 2 -> 0 * 3 = 0 *) (** ** Defining propositions *) (** Just as we can create user-defined inductive types (like the lists, binary representations of natural numbers, etc., that we seen before), we can also create _user-defined_ propositions. Question: How do you define the meaning of a proposition? *) (** *** *) (** The meaning of a proposition is given by _rules_ and _definitions_ that say how to construct _evidence_ for the truth of the proposition from other evidence. - Typically, rules are defined _inductively_, just like any other datatype. - Sometimes a proposition is declared to be true without substantiating evidence. Such propositions are called _axioms_. In this, and subsequence chapters, we'll see more about how these proof terms work in more detail. *) (* ########################################################### *) (** * Conjunction (Logical "and") *) (** The logical conjunction of propositions [P] and [Q] can be represented using an [Inductive] definition with one constructor. *) Inductive and (P Q : Prop) : Prop := conj : P -> Q -> (and P Q). (** The intuition behind this definition is simple: to construct evidence for [and P Q], we must provide evidence for [P] and evidence for [Q]. More precisely: - [conj p q] can be taken as evidence for [and P Q] if [p] is evidence for [P] and [q] is evidence for [Q]; and - this is the _only_ way to give evidence for [and P Q] -- that is, if someone gives us evidence for [and P Q], we know it must have the form [conj p q], where [p] is evidence for [P] and [q] is evidence for [Q]. Since we'll be using conjunction a lot, let's introduce a more familiar-looking infix notation for it. *) Notation "P /\ Q" := (and P Q) : type_scope. (** (The [type_scope] annotation tells Coq that this notation will be appearing in propositions, not values.) *) (** Consider the "type" of the constructor [conj]: *) Check conj. (* ===> forall P Q : Prop, P -> Q -> P /\ Q *) (** Notice that it takes 4 inputs -- namely the propositions [P] and [Q] and evidence for [P] and [Q] -- and returns as output the evidence of [P /\ Q]. *) (** ** "Introducing" conjunctions *) (** Besides the elegance of building everything up from a tiny foundation, what's nice about defining conjunction this way is that we can prove statements involving conjunction using the tactics that we already know. For example, if the goal statement is a conjuction, we can prove it by applying the single constructor [conj], which (as can be seen from the type of [conj]) solves the current goal and leaves the two parts of the conjunction as subgoals to be proved separately. *) Theorem and_example : (0 = 0) /\ (4 = mult 2 2). Proof. apply conj. Case "left". reflexivity. Case "right". reflexivity. Qed. (** Just for convenience, we can use the tactic [split] as a shorthand for [apply conj]. *) Theorem and_example' : (0 = 0) /\ (4 = mult 2 2). Proof. split. Case "left". reflexivity. Case "right". reflexivity. Qed. (** ** "Eliminating" conjunctions *) (** Conversely, the [destruct] tactic can be used to take a conjunction hypothesis in the context, calculate what evidence must have been used to build it, and add variables representing this evidence to the proof context. *) Theorem proj1 : forall P Q : Prop, P /\ Q -> P. Proof. intros P Q H. destruct H as [HP HQ]. apply HP. Qed. (** **** Exercise: 1 star, optional (proj2) *) Theorem proj2 : forall P Q : Prop, P /\ Q -> Q. Proof. intros P Q H. destruct H as [π1 π2]. apply π2. Qed. (** [] *) Theorem and_commut : forall P Q : Prop, P /\ Q -> Q /\ P. Proof. (* WORKED IN CLASS *) intros P Q H. destruct H as [HP HQ]. split. Case "left". apply HQ. Case "right". apply HP. Qed. (** **** Exercise: 2 stars (and_assoc) *) (** In the following proof, notice how the _nested pattern_ in the [destruct] breaks the hypothesis [H : P /\ (Q /\ R)] down into [HP: P], [HQ : Q], and [HR : R]. Finish the proof from there: *) Theorem and_assoc : forall P Q R : Prop, P /\ (Q /\ R) -> (P /\ Q) /\ R. Proof. intros P Q R H. destruct H as [HP [HQ HR]]. split. split. apply HP. apply HQ. apply HR. Qed. (** [] *) (* ###################################################### *) (** * Iff *) (** The handy "if and only if" connective is just the conjunction of two implications. *) Definition iff (P Q : Prop) := (P -> Q) /\ (Q -> P). Notation "P <-> Q" := (iff P Q) (at level 95, no associativity) : type_scope. Theorem iff_implies : forall P Q : Prop, (P <-> Q) -> P -> Q. Proof. intros P Q H. destruct H as [HAB HBA]. apply HAB. Qed. Theorem iff_sym : forall P Q : Prop, (P <-> Q) -> (Q <-> P). Proof. (* WORKED IN CLASS *) intros P Q H. destruct H as [HAB HBA]. split. Case "->". apply HBA. Case "<-". apply HAB. Qed. (** **** Exercise: 1 star, optional (iff_properties) *) (** Using the above proof that [<->] is symmetric ([iff_sym]) as a guide, prove that it is also reflexive and transitive. *) Theorem iff_refl : forall P : Prop, P <-> P. Proof. intro p. split. apply self_implication. apply self_implication. Qed. Theorem iff_trans : forall P Q R : Prop, (P <-> Q) -> (Q <-> R) -> (P <-> R). Proof. intros P Q R bi1 bi2. inversion bi1 as [PQ QP]. inversion bi2 as [QR RQ]. split. intro HP. apply PQ in HP. apply QR in HP. apply HP. intro HR. apply RQ in HR. apply QP in HR. apply HR. Qed. (** Hint: If you have an iff hypothesis in the context, you can use [inversion] to break it into two separate implications. (Think about why this works.) *) (** [] *) (** Some of Coq's tactics treat [iff] statements specially, thus avoiding the need for some low-level manipulation when reasoning with them. In particular, [rewrite] can be used with [iff] statements, not just equalities. *) (* ############################################################ *) (** * Disjunction (Logical "or") *) (** ** Implementing disjunction *) (** Disjunction ("logical or") can also be defined as an inductive proposition. *) Inductive or (P Q : Prop) : Prop := | or_introl : P -> or P Q | or_intror : Q -> or P Q. Notation "P \/ Q" := (or P Q) : type_scope. (** Consider the "type" of the constructor [or_introl]: *) Check or_introl. (* ===> forall P Q : Prop, P -> P \/ Q *) (** It takes 3 inputs, namely the propositions [P], [Q] and evidence of [P], and returns, as output, the evidence of [P \/ Q]. Next, look at the type of [or_intror]: *) Check or_intror. (* ===> forall P Q : Prop, Q -> P \/ Q *) (** It is like [or_introl] but it requires evidence of [Q] instead of evidence of [P]. *) (** Intuitively, there are two ways of giving evidence for [P \/ Q]: - give evidence for [P] (and say that it is [P] you are giving evidence for -- this is the function of the [or_introl] constructor), or - give evidence for [Q], tagged with the [or_intror] constructor. *) (** *** *) (** Since [P \/ Q] has two constructors, doing [destruct] on a hypothesis of type [P \/ Q] yields two subgoals. *) Theorem or_commut : forall P Q : Prop, P \/ Q -> Q \/ P. Proof. intros P Q H. destruct H as [HP | HQ]. Case "left". apply or_intror. apply HP. Case "right". apply or_introl. apply HQ. Qed. (** From here on, we'll use the shorthand tactics [left] and [right] in place of [apply or_introl] and [apply or_intror]. *) Theorem or_commut' : forall P Q : Prop, P \/ Q -> Q \/ P. Proof. intros P Q H. destruct H as [HP | HQ]. Case "left". right. apply HP. Case "right". left. apply HQ. Qed. Theorem or_distributes_over_and_1 : forall P Q R : Prop, P \/ (Q /\ R) -> (P \/ Q) /\ (P \/ R). Proof. intros P Q R. intros H. destruct H as [HP | [HQ HR]]. Case "left". split. SCase "left". left. apply HP. SCase "right". left. apply HP. Case "right". split. SCase "left". right. apply HQ. SCase "right". right. apply HR. Qed. (** **** Exercise: 2 stars (or_distributes_over_and_2) *) Theorem or_distributes_over_and_2 : forall P Q R : Prop, (P \/ Q) /\ (P \/ R) -> P \/ (Q /\ R). Proof. intros P Q R H. destruct H as [[HP0 | HQ] [HP1 | HR]]. left. apply HP0. left. apply HP0. left. apply HP1. right. split. apply HQ. apply HR. Qed. (** [] *) (** **** Exercise: 1 star, optional (or_distributes_over_and) *) Theorem or_distributes_over_and : forall P Q R : Prop, P \/ (Q /\ R) <-> (P \/ Q) /\ (P \/ R). Proof. intros. split. apply or_distributes_over_and_1. apply or_distributes_over_and_2. Qed. (** [] *) (* ################################################### *) (** ** Relating [/\] and [\/] with [andb] and [orb] *) (** We've already seen several places where analogous structures can be found in Coq's computational ([Type]) and logical ([Prop]) worlds. Here is one more: the boolean operators [andb] and [orb] are clearly analogs of the logical connectives [/\] and [\/]. This analogy can be made more precise by the following theorems, which show how to translate knowledge about [andb] and [orb]'s behaviors on certain inputs into propositional facts about those inputs. *) Theorem andb_prop : forall b c, andb b c = true -> b = true /\ c = true. Proof. (* WORKED IN CLASS *) intros b c H. destruct b. Case "b = true". destruct c. SCase "c = true". apply conj. reflexivity. reflexivity. SCase "c = false". inversion H. Case "b = false". inversion H. Qed. Theorem andb_true_intro : forall b c, b = true /\ c = true -> andb b c = true. Proof. (* WORKED IN CLASS *) intros b c H. destruct H. rewrite H. rewrite H0. reflexivity. Qed. (** **** Exercise: 2 stars, optional (andb_false) *) Theorem andb_false : forall b c, andb b c = false -> b = false \/ c = false. Proof. intros b c H. destruct b,c. inversion H. right. reflexivity. left. reflexivity. left. reflexivity. Qed. (** **** Exercise: 2 stars, optional (orb_false) *) Theorem orb_prop : forall b c, orb b c = true -> b = true \/ c = true. Proof. intros b c H. destruct b, c. left. reflexivity. left. reflexivity. right. reflexivity. inversion H. Qed. (** **** Exercise: 2 stars, optional (orb_false_elim) *) Theorem orb_false_elim : forall b c, orb b c = false -> b = false /\ c = false. Proof. intros b c H. split. destruct b. inversion H. reflexivity. destruct c. destruct b. inversion H. inversion H. reflexivity. Qed. (** [] *) (* ################################################### *) (** * Falsehood *) (** Logical falsehood can be represented in Coq as an inductively defined proposition with no constructors. *) Inductive False : Prop := . (** Intuition: [False] is a proposition for which there is no way to give evidence. *) (** Since [False] has no constructors, inverting an assumption of type [False] always yields zero subgoals, allowing us to immediately prove any goal. *) Theorem False_implies_nonsense : False -> 2 + 2 = 5. Proof. intros contra. inversion contra. Qed. (** How does this work? The [inversion] tactic breaks [contra] into each of its possible cases, and yields a subgoal for each case. As [contra] is evidence for [False], it has _no_ possible cases, hence, there are no possible subgoals and the proof is done. *) (** *** *) (** Conversely, the only way to prove [False] is if there is already something nonsensical or contradictory in the context: *) Theorem nonsense_implies_False : 2 + 2 = 5 -> False. Proof. intros contra. inversion contra. Qed. (** Actually, since the proof of [False_implies_nonsense] doesn't actually have anything to do with the specific nonsensical thing being proved; it can easily be generalized to work for an arbitrary [P]: *) Theorem ex_falso_quodlibet : forall (P:Prop), False -> P. Proof. (* WORKED IN CLASS *) intros P contra. inversion contra. Qed. (** The Latin _ex falso quodlibet_ means, literally, "from falsehood follows whatever you please." This theorem is also known as the _principle of explosion_. *) (* #################################################### *) (** ** Truth *) (** Since we have defined falsehood in Coq, one might wonder whether it is possible to define truth in the same way. We can. *) (** **** Exercise: 2 stars, advanced (True) *) (** Define [True] as another inductively defined proposition. (The intution is that [True] should be a proposition for which it is trivial to give evidence.) *) Inductive True : Prop := Truth : True. (** [] *) (** However, unlike [False], which we'll use extensively, [True] is used fairly rarely. By itself, it is trivial (and therefore uninteresting) to prove as a goal, and it carries no useful information as a hypothesis. But it can be useful when defining complex [Prop]s using conditionals, or as a parameter to higher-order [Prop]s. *) (* #################################################### *) (** * Negation *) (** The logical complement of a proposition [P] is written [not P] or, for shorthand, [~P]: *) Definition not (P:Prop) := P -> False. (** The intuition is that, if [P] is not true, then anything at all (even [False]) follows from assuming [P]. *) Notation "~ x" := (not x) : type_scope. Check not. (* ===> Prop -> Prop *) (** It takes a little practice to get used to working with negation in Coq. Even though you can see perfectly well why something is true, it can be a little hard at first to get things into the right configuration so that Coq can see it! Here are proofs of a few familiar facts about negation to get you warmed up. *) Theorem not_False : ~ False. Proof. unfold not. intros H. inversion H. Qed. (** *** *) Theorem contradiction_implies_anything : forall P Q : Prop, (P /\ ~P) -> Q. Proof. (* WORKED IN CLASS *) intros P Q H. destruct H as [HP HNA]. unfold not in HNA. apply HNA in HP. inversion HP. Qed. Theorem double_neg : forall P : Prop, P -> ~~P. Proof. (* WORKED IN CLASS *) intros P H. unfold not. intros G. apply G. apply H. Qed. (** **** Exercise: 2 stars, advanced (double_neg_inf) *) (** Write an informal proof of [double_neg]: _Theorem_: [P] implies [~~P], for any proposition [P]. By definition of P this is the same thing as proving P -> ( P -> False) -> False By introducting P and applying it in P -> False, we have the hypothesis False from which we can prove anything. *) (** **** Exercise: 2 stars (contrapositive) *) Theorem contrapositive : forall P Q : Prop, (P -> Q) -> (~Q -> ~P). Proof. unfold not. intros. apply H in H1. apply H0 in H1. inversion H1. Qed. (** [] *) (** **** Exercise: 1 star (not_both_true_and_false) *) Theorem not_both_true_and_false : forall P : Prop, ~ (P /\ ~P). Proof. unfold not. intros. apply contradiction_implies_anything with (Q := False) in H. apply H. Qed. (** [] *) (** **** Exercise: 1 star, advanced (informal_not_PNP) *) (** Write an informal proof (in English) of the proposition [forall P : Prop, ~(P /\ ~P)]. *) (** We can unfold the proposition into (P /\ ~P) -> False from the Hypthesis we can conclude False by contradiction_implies_anything. *) (** *** Constructive logic *) (** Note that some theorems that are true in classical logic are _not_ provable in Coq's (constructive) logic. E.g., let's look at how this proof gets stuck... *) Theorem classic_double_neg : forall P : Prop, ~~P -> P. Proof. (* WORKED IN CLASS *) intros P H. unfold not in H. (* But now what? There is no way to "invent" evidence for [~P] from evidence for [P]. *) Abort. (** **** Exercise: 5 stars, advanced, optional (classical_axioms) *) (** For those who like a challenge, here is an exercise taken from the Coq'Art book (p. 123). The following five statements are often considered as characterizations of classical logic (as opposed to constructive logic, which is what is "built in" to Coq). We can't prove them in Coq, but we can consistently add any one of them as an unproven axiom if we wish to work in classical logic. Prove that these five propositions are equivalent. *) Definition peirce := forall P Q: Prop, ((P->Q)->P)->P. Definition classic := forall P:Prop, ~~P -> P. Definition excluded_middle := forall P:Prop, P \/ ~P. Definition de_morgan_not_and_not := forall P Q:Prop, ~(~P /\ ~Q) -> P\/Q. Definition implies_to_or := forall P Q:Prop, (P->Q) -> (~P\/Q). Theorem excluded_middle_classic: excluded_middle <-> classic. Proof. unfold classic. unfold excluded_middle. split. intros. destruct H with (P := P) as [PT | PF]. apply PT. apply H0 in PF. inversion PF. unfold not. intros. apply H. intros. apply H0. left. intros. apply H. intros. apply H0. right. apply H1. Qed. Theorem peirce_excluded_middle : peirce <-> excluded_middle. unfold peirce. unfold excluded_middle. split. intros. apply H with (Q := False). intros. right. unfold not. intros. apply H0. left. apply H1. intros EXC P. destruct EXC with (P := P) as [PT | PF]. intros. apply PT. intros. apply H. intros. apply PF in H0. inversion H0. Qed. Theorem classic_de_morgan : classic <-> de_morgan_not_and_not. Proof. unfold classic. unfold de_morgan_not_and_not. split. unfold not. intros CLS P. intros Q DMG. apply CLS. intros PDQ. destruct DMG. split. intro H. apply PDQ. left. apply H. intro H. apply PDQ. right. apply H. unfold not. intros DMG P NNP. destruct DMG with (P := P) (Q := P). intros H. destruct H as [H _]. apply NNP. apply H. apply H. apply H. Qed. Theorem excluded_middle_implies_to_or : excluded_middle <-> implies_to_or. Proof. unfold excluded_middle. unfold implies_to_or. unfold not. split. intros EXC P Q PQ. destruct EXC with (P := P) as [PT | PF]. right. apply PQ. apply PT. left. apply PF. intros IMP P. apply or_commut. apply IMP. intro H. apply H. Qed. (** [] *) (** **** Exercise: 3 stars (excluded_middle_irrefutable) *) (** This theorem implies that it is always safe to add a decidability axiom (i.e. an instance of excluded middle) for any _particular_ Prop [P]. Why? Because we cannot prove the negation of such an axiom; if we could, we would have both [~ (P \/ ~P)] and [~ ~ (P \/ ~P)], a contradiction. *) Theorem excluded_middle_irrefutable: forall (P:Prop), ~ ~ (P \/ ~ P). Proof. unfold not. intros P H. apply H. right. intro HP. apply H. left. apply HP. Qed. (* ########################################################## *) (** ** Inequality *) (** Saying [x <> y] is just the same as saying [~(x = y)]. *) Notation "x <> y" := (~ (x = y)) : type_scope. (** Since inequality involves a negation, it again requires a little practice to be able to work with it fluently. Here is one very useful trick. If you are trying to prove a goal that is nonsensical (e.g., the goal state is [false = true]), apply the lemma [ex_falso_quodlibet] to change the goal to [False]. This makes it easier to use assumptions of the form [~P] that are available in the context -- in particular, assumptions of the form [x<>y]. *) Theorem not_false_then_true : forall b : bool, b <> false -> b = true. Proof. intros b H. destruct b. Case "b = true". reflexivity. Case "b = false". unfold not in H. apply ex_falso_quodlibet. apply H. reflexivity. Qed. (** *** *) (** *** *) (** *** *) (** *** *) (** *** *) (** **** Exercise: 2 stars (false_beq_nat) *) Theorem false_beq_nat : forall n m : nat, n <> m -> beq_nat n m = false. Proof. intros n m Hnm. destruct (beq_nat n m) eqn:eq. unfold not in Hnm. apply ex_falso_quodlibet. apply Hnm. apply beq_nat_true in eq. apply eq. reflexivity. Qed. (** [] *) (** **** Exercise: 2 stars, optional (beq_nat_false) *) Theorem beq_nat_false : forall n m, beq_nat n m = false -> n <> m. Proof. unfold not. intros n m H0. destruct (beq_nat n m) eqn:eq. inversion H0. intro H1. rewrite H1 in eq. rewrite <- beq_nat_refl in eq. inversion eq. Qed. (** [] *) (** $Date: 2014-12-31 11:17:56 -0500 (Wed, 31 Dec 2014) $ *)
[GOAL] X Y : WalkingParallelPair f : WalkingParallelPairHom X Y ⊢ comp f (id Y) = f [PROOFSTEP] cases f [GOAL] case left ⊢ comp left (id one) = left [PROOFSTEP] rfl [GOAL] case right ⊢ comp right (id one) = right [PROOFSTEP] rfl [GOAL] case id X : WalkingParallelPair ⊢ comp (id X) (id X) = id X [PROOFSTEP] rfl [GOAL] X Y Z W : WalkingParallelPair f : WalkingParallelPairHom X Y g : WalkingParallelPairHom Y Z h : WalkingParallelPairHom Z W ⊢ comp (comp f g) h = comp f (comp g h) [PROOFSTEP] cases f [GOAL] case left Z W : WalkingParallelPair h : WalkingParallelPairHom Z W g : WalkingParallelPairHom one Z ⊢ comp (comp left g) h = comp left (comp g h) [PROOFSTEP] cases g [GOAL] case right Z W : WalkingParallelPair h : WalkingParallelPairHom Z W g : WalkingParallelPairHom one Z ⊢ comp (comp right g) h = comp right (comp g h) [PROOFSTEP] cases g [GOAL] case id X Z W : WalkingParallelPair h : WalkingParallelPairHom Z W g : WalkingParallelPairHom X Z ⊢ comp (comp (id X) g) h = comp (id X) (comp g h) [PROOFSTEP] cases g [GOAL] case left.id W : WalkingParallelPair h : WalkingParallelPairHom one W ⊢ comp (comp left (id one)) h = comp left (comp (id one) h) [PROOFSTEP] cases h [GOAL] case right.id W : WalkingParallelPair h : WalkingParallelPairHom one W ⊢ comp (comp right (id one)) h = comp right (comp (id one) h) [PROOFSTEP] cases h [GOAL] case id.left W : WalkingParallelPair h : WalkingParallelPairHom one W ⊢ comp (comp (id zero) left) h = comp (id zero) (comp left h) [PROOFSTEP] cases h [GOAL] case id.right W : WalkingParallelPair h : WalkingParallelPairHom one W ⊢ comp (comp (id zero) right) h = comp (id zero) (comp right h) [PROOFSTEP] cases h [GOAL] case id.id X W : WalkingParallelPair h : WalkingParallelPairHom X W ⊢ comp (comp (id X) (id X)) h = comp (id X) (comp (id X) h) [PROOFSTEP] cases h [GOAL] case left.id.id ⊢ comp (comp left (id one)) (id one) = comp left (comp (id one) (id one)) [PROOFSTEP] rfl [GOAL] case right.id.id ⊢ comp (comp right (id one)) (id one) = comp right (comp (id one) (id one)) [PROOFSTEP] rfl [GOAL] case id.left.id ⊢ comp (comp (id zero) left) (id one) = comp (id zero) (comp left (id one)) [PROOFSTEP] rfl [GOAL] case id.right.id ⊢ comp (comp (id zero) right) (id one) = comp (id zero) (comp right (id one)) [PROOFSTEP] rfl [GOAL] case id.id.left ⊢ comp (comp (id zero) (id zero)) left = comp (id zero) (comp (id zero) left) [PROOFSTEP] rfl [GOAL] case id.id.right ⊢ comp (comp (id zero) (id zero)) right = comp (id zero) (comp (id zero) right) [PROOFSTEP] rfl [GOAL] case id.id.id X : WalkingParallelPair ⊢ comp (comp (id X) (id X)) (id X) = comp (id X) (comp (id X) (id X)) [PROOFSTEP] rfl [GOAL] X : WalkingParallelPair ⊢ sizeOf (𝟙 X) = 1 + sizeOf X [PROOFSTEP] cases X [GOAL] case zero ⊢ sizeOf (𝟙 zero) = 1 + sizeOf zero [PROOFSTEP] rfl [GOAL] case one ⊢ sizeOf (𝟙 one) = 1 + sizeOf one [PROOFSTEP] rfl [GOAL] x : WalkingParallelPair ⊢ WalkingParallelPair [PROOFSTEP] cases x [GOAL] case zero ⊢ WalkingParallelPair case one ⊢ WalkingParallelPair [PROOFSTEP] exacts [one, zero] [GOAL] X✝ Y✝ : WalkingParallelPair f : X✝ ⟶ Y✝ ⊢ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X✝ ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y✝ [PROOFSTEP] cases f [GOAL] case left ⊢ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) one [PROOFSTEP] apply Quiver.Hom.op [GOAL] case right ⊢ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) one [PROOFSTEP] apply Quiver.Hom.op [GOAL] case id X✝ : WalkingParallelPair ⊢ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X✝ ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X✝ [PROOFSTEP] apply Quiver.Hom.op [GOAL] case left.f ⊢ WalkingParallelPair.casesOn (motive := fun t => one = t → WalkingParallelPair) one (fun h => (_ : zero = one) ▸ one) (fun h => (_ : one = one) ▸ zero) (_ : one = one) ⟶ WalkingParallelPair.casesOn (motive := fun t => zero = t → WalkingParallelPair) zero (fun h => (_ : zero = zero) ▸ one) (fun h => (_ : one = zero) ▸ zero) (_ : zero = zero) case right.f ⊢ WalkingParallelPair.casesOn (motive := fun t => one = t → WalkingParallelPair) one (fun h => (_ : zero = one) ▸ one) (fun h => (_ : one = one) ▸ zero) (_ : one = one) ⟶ WalkingParallelPair.casesOn (motive := fun t => zero = t → WalkingParallelPair) zero (fun h => (_ : zero = zero) ▸ one) (fun h => (_ : one = zero) ▸ zero) (_ : zero = zero) case id.f X✝ : WalkingParallelPair ⊢ WalkingParallelPair.casesOn (motive := fun t => X✝ = t → WalkingParallelPair) X✝ (fun h => (_ : zero = X✝) ▸ one) (fun h => (_ : one = X✝) ▸ zero) (_ : X✝ = X✝) ⟶ WalkingParallelPair.casesOn (motive := fun t => X✝ = t → WalkingParallelPair) X✝ (fun h => (_ : zero = X✝) ▸ one) (fun h => (_ : one = X✝) ▸ zero) (_ : X✝ = X✝) [PROOFSTEP] exacts [left, right, WalkingParallelPairHom.id _] [GOAL] ⊢ ∀ {X Y Z : WalkingParallelPair} (f : X ⟶ Y) (g : Y ⟶ Z), { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (f ≫ g) = { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map f ≫ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map g [PROOFSTEP] rintro _ _ _ (_ | _ | _) g [GOAL] case left Z✝ : WalkingParallelPair g : one ⟶ Z✝ ⊢ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (left ≫ g) = { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map left ≫ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map g [PROOFSTEP] cases g [GOAL] case right Z✝ : WalkingParallelPair g : one ⟶ Z✝ ⊢ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (right ≫ g) = { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map right ≫ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map g [PROOFSTEP] cases g [GOAL] case id X✝ Z✝ : WalkingParallelPair g : X✝ ⟶ Z✝ ⊢ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id X✝ ≫ g) = { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id X✝) ≫ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map g [PROOFSTEP] cases g [GOAL] case left.id ⊢ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (left ≫ WalkingParallelPairHom.id one) = { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map left ≫ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id one) [PROOFSTEP] rfl [GOAL] case right.id ⊢ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (right ≫ WalkingParallelPairHom.id one) = { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map right ≫ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id one) [PROOFSTEP] rfl [GOAL] case id.left ⊢ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id zero ≫ left) = { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id zero) ≫ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map left [PROOFSTEP] rfl [GOAL] case id.right ⊢ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id zero ≫ right) = { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id zero) ≫ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map right [PROOFSTEP] rfl [GOAL] case id.id X✝ : WalkingParallelPair ⊢ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id X✝ ≫ WalkingParallelPairHom.id X✝) = { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id X✝) ≫ { obj := fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x)), map := fun {X Y} f => WalkingParallelPairHom.casesOn (motive := fun a a_1 t => X = a → Y = a_1 → HEq f t → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) f (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f left → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : left = f) ▸ left.op) (_ : one = Y) f) (_ : zero = X) f) (fun h => Eq.ndrec (motive := fun {X} => (f : X ⟶ Y) → Y = one → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => Eq.ndrec (motive := fun {Y} => (f : zero ⟶ Y) → HEq f right → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) zero ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : right = f) ▸ right.op) (_ : one = Y) f) (_ : zero = X) f) (fun X_1 h => Eq.ndrec (motive := fun X_2 => Y = X_2 → HEq f (WalkingParallelPairHom.id X_2) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun h => Eq.ndrec (motive := fun {Y} => (f : X ⟶ Y) → HEq f (WalkingParallelPairHom.id X) → ((fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) X ⟶ (fun x => op (WalkingParallelPair.casesOn (motive := fun t => x = t → WalkingParallelPair) x (fun h => (_ : zero = x) ▸ one) (fun h => (_ : one = x) ▸ zero) (_ : x = x))) Y)) (fun f h => (_ : WalkingParallelPairHom.id X = f) ▸ (WalkingParallelPairHom.id (WalkingParallelPair.casesOn (motive := fun t => X = t → WalkingParallelPair) X (fun h => (_ : zero = X) ▸ one) (fun h => (_ : one = X) ▸ zero) (_ : X = X))).op) (_ : X = Y) f) h) (_ : X = X) (_ : Y = Y) (_ : HEq f f) }.map (WalkingParallelPairHom.id X✝) [PROOFSTEP] rfl [GOAL] j : WalkingParallelPair ⊢ (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j [PROOFSTEP] cases j [GOAL] case zero ⊢ (𝟭 WalkingParallelPair).obj zero = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj zero [PROOFSTEP] rfl [GOAL] case one ⊢ (𝟭 WalkingParallelPair).obj one = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj one [PROOFSTEP] rfl [GOAL] ⊢ ∀ {X Y : WalkingParallelPair} (f : X ⟶ Y), (𝟭 WalkingParallelPair).map f ≫ ((fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)) Y).hom = ((fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)) X).hom ≫ (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).map f [PROOFSTEP] rintro _ _ (_ | _ | _) [GOAL] case left ⊢ (𝟭 WalkingParallelPair).map left ≫ ((fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)) one).hom = ((fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)) zero).hom ≫ (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).map left [PROOFSTEP] simp [GOAL] case right ⊢ (𝟭 WalkingParallelPair).map right ≫ ((fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)) one).hom = ((fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)) zero).hom ≫ (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).map right [PROOFSTEP] simp [GOAL] case id X✝ : WalkingParallelPair ⊢ (𝟭 WalkingParallelPair).map (WalkingParallelPairHom.id X✝) ≫ ((fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)) X✝).hom = ((fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)) X✝).hom ≫ (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).map (WalkingParallelPairHom.id X✝) [PROOFSTEP] simp [GOAL] j : WalkingParallelPairᵒᵖ ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j [PROOFSTEP] induction' j with X [GOAL] case h X : WalkingParallelPair ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj (op X) = (𝟭 WalkingParallelPairᵒᵖ).obj (op X) [PROOFSTEP] cases X [GOAL] case h.zero ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj (op zero) = (𝟭 WalkingParallelPairᵒᵖ).obj (op zero) [PROOFSTEP] rfl [GOAL] case h.one ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj (op one) = (𝟭 WalkingParallelPairᵒᵖ).obj (op one) [PROOFSTEP] rfl [GOAL] i j : WalkingParallelPairᵒᵖ f : i ⟶ j ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map f ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) j).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) i).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map f [PROOFSTEP] induction' i with i [GOAL] case h i✝ j : WalkingParallelPairᵒᵖ f✝ : i✝ ⟶ j i : WalkingParallelPair f : op i ⟶ j ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map f ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) j).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op i)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map f [PROOFSTEP] induction' j with j [GOAL] case h.h i✝ j✝ : WalkingParallelPairᵒᵖ f✝² : i✝ ⟶ j✝ i : WalkingParallelPair f✝¹ : op i ⟶ j✝ j : WalkingParallelPair f✝ : i✝ ⟶ op j f : op i ⟶ op j ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map f ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op j)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op i)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map f [PROOFSTEP] let g := f.unop [GOAL] case h.h i✝ j✝ : WalkingParallelPairᵒᵖ f✝² : i✝ ⟶ j✝ i : WalkingParallelPair f✝¹ : op i ⟶ j✝ j : WalkingParallelPair f✝ : i✝ ⟶ op j f : op i ⟶ op j g : (op j).unop ⟶ (op i).unop := f.unop ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map f ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op j)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op i)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map f [PROOFSTEP] have : f = g.op := rfl [GOAL] case h.h i✝ j✝ : WalkingParallelPairᵒᵖ f✝² : i✝ ⟶ j✝ i : WalkingParallelPair f✝¹ : op i ⟶ j✝ j : WalkingParallelPair f✝ : i✝ ⟶ op j f : op i ⟶ op j g : (op j).unop ⟶ (op i).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map f ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op j)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op i)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map f [PROOFSTEP] rw [this] [GOAL] case h.h i✝ j✝ : WalkingParallelPairᵒᵖ f✝² : i✝ ⟶ j✝ i : WalkingParallelPair f✝¹ : op i ⟶ j✝ j : WalkingParallelPair f✝ : i✝ ⟶ op j f : op i ⟶ op j g : (op j).unop ⟶ (op i).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op j)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op i)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map g.op [PROOFSTEP] cases i [GOAL] case h.h.zero i j✝ : WalkingParallelPairᵒᵖ f✝² : i ⟶ j✝ j : WalkingParallelPair f✝¹ : i ⟶ op j f✝ : op zero ⟶ j✝ f : op zero ⟶ op j g : (op j).unop ⟶ (op zero).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op j)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op zero)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map g.op [PROOFSTEP] cases j [GOAL] case h.h.one i j✝ : WalkingParallelPairᵒᵖ f✝² : i ⟶ j✝ j : WalkingParallelPair f✝¹ : i ⟶ op j f✝ : op one ⟶ j✝ f : op one ⟶ op j g : (op j).unop ⟶ (op one).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op j)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op one)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map g.op [PROOFSTEP] cases j [GOAL] case h.h.zero.zero i j : WalkingParallelPairᵒᵖ f✝² : i ⟶ j f✝¹ : op zero ⟶ j f✝ : i ⟶ op zero f : op zero ⟶ op zero g : (op zero).unop ⟶ (op zero).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op zero)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op zero)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map g.op [PROOFSTEP] cases g [GOAL] case h.h.zero.one i j : WalkingParallelPairᵒᵖ f✝² : i ⟶ j f✝¹ : op zero ⟶ j f✝ : i ⟶ op one f : op zero ⟶ op one g : (op one).unop ⟶ (op zero).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op one)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op zero)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map g.op [PROOFSTEP] cases g [GOAL] case h.h.one.zero i j : WalkingParallelPairᵒᵖ f✝² : i ⟶ j f✝¹ : op one ⟶ j f✝ : i ⟶ op zero f : op one ⟶ op zero g : (op zero).unop ⟶ (op one).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op zero)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op one)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map g.op [PROOFSTEP] cases g [GOAL] case h.h.one.one i j : WalkingParallelPairᵒᵖ f✝² : i ⟶ j f✝¹ : op one ⟶ j f✝ : i ⟶ op one f : op one ⟶ op one g : (op one).unop ⟶ (op one).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op one)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op one)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map g.op [PROOFSTEP] cases g [GOAL] case h.h.zero.zero.id i j : WalkingParallelPairᵒᵖ f✝² : i ⟶ j f✝¹ : op zero ⟶ j f✝ : i ⟶ op zero f : op zero ⟶ op zero g : (op zero).unop ⟶ (op zero).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map (WalkingParallelPairHom.id (op zero).unop).op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op zero)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op zero)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map (WalkingParallelPairHom.id (op zero).unop).op [PROOFSTEP] rfl [GOAL] case h.h.one.zero.left i j : WalkingParallelPairᵒᵖ f✝² : i ⟶ j f✝¹ : op one ⟶ j f✝ : i ⟶ op zero f : op one ⟶ op zero g : (op zero).unop ⟶ (op one).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map left.op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op zero)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op one)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map left.op [PROOFSTEP] rfl [GOAL] case h.h.one.zero.right i j : WalkingParallelPairᵒᵖ f✝² : i ⟶ j f✝¹ : op one ⟶ j f✝ : i ⟶ op zero f : op one ⟶ op zero g : (op zero).unop ⟶ (op one).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map right.op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op zero)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op one)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map right.op [PROOFSTEP] rfl [GOAL] case h.h.one.one.id i j : WalkingParallelPairᵒᵖ f✝² : i ⟶ j f✝¹ : op one ⟶ j f✝ : i ⟶ op one f : op one ⟶ op one g : (op one).unop ⟶ (op one).unop := f.unop this : f = g.op ⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map (WalkingParallelPairHom.id (op one).unop).op ≫ ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op one)).hom = ((fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)) (op one)).hom ≫ (𝟭 WalkingParallelPairᵒᵖ).map (WalkingParallelPairHom.id (op one).unop).op [PROOFSTEP] rfl [GOAL] j : WalkingParallelPair ⊢ walkingParallelPairOp.map (NatTrans.app (NatIso.ofComponents fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)).hom j) ≫ NatTrans.app (NatIso.ofComponents fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)).hom (walkingParallelPairOp.obj j) = 𝟙 (walkingParallelPairOp.obj j) [PROOFSTEP] cases j [GOAL] case zero ⊢ walkingParallelPairOp.map (NatTrans.app (NatIso.ofComponents fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)).hom zero) ≫ NatTrans.app (NatIso.ofComponents fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)).hom (walkingParallelPairOp.obj zero) = 𝟙 (walkingParallelPairOp.obj zero) [PROOFSTEP] rfl [GOAL] case one ⊢ walkingParallelPairOp.map (NatTrans.app (NatIso.ofComponents fun j => eqToIso (_ : (𝟭 WalkingParallelPair).obj j = (walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)).hom one) ≫ NatTrans.app (NatIso.ofComponents fun j => eqToIso (_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j)).hom (walkingParallelPairOp.obj one) = 𝟙 (walkingParallelPairOp.obj one) [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ ∀ {X_1 Y_1 Z : WalkingParallelPair} (f_1 : X_1 ⟶ Y_1) (g_1 : Y_1 ⟶ Z), { obj := fun x => match x with | zero => X | one => Y, map := fun {X_2 Y_2} h => match X_2, Y_2, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (f_1 ≫ g_1) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_2 Y_2} h => match X_2, Y_2, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map f_1 ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_2 Y_2} h => match X_2, Y_2, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map g_1 [PROOFSTEP] rintro _ _ _ ⟨⟩ g [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g✝ : X ⟶ Y Z✝ : WalkingParallelPair g : one ⟶ Z✝ ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g✝ }.map (left ≫ g) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g✝ }.map left ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g✝ }.map g [PROOFSTEP] cases g [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g✝ : X ⟶ Y Z✝ : WalkingParallelPair g : one ⟶ Z✝ ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g✝ }.map (right ≫ g) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g✝ }.map right ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g✝ }.map g [PROOFSTEP] cases g [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g✝ : X ⟶ Y X✝ Z✝ : WalkingParallelPair g : X✝ ⟶ Z✝ ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g✝ }.map (WalkingParallelPairHom.id X✝ ≫ g) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g✝ }.map (WalkingParallelPairHom.id X✝) ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g✝ }.map g [PROOFSTEP] cases g [GOAL] case left.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (left ≫ WalkingParallelPairHom.id one) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map left ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id one) [PROOFSTEP] {dsimp; simp } [GOAL] case left.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (left ≫ WalkingParallelPairHom.id one) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map left ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id one) [PROOFSTEP] dsimp [GOAL] case left.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ (match zero, one, left ≫ 𝟙 one with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 (match x with | zero => X | one => Y) | .(zero), .(one), left => f | .(zero), .(one), right => g) = f ≫ 𝟙 Y [PROOFSTEP] simp [GOAL] case right.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (right ≫ WalkingParallelPairHom.id one) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map right ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id one) [PROOFSTEP] {dsimp; simp } [GOAL] case right.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (right ≫ WalkingParallelPairHom.id one) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map right ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id one) [PROOFSTEP] dsimp [GOAL] case right.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ (match zero, one, right ≫ 𝟙 one with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 (match x with | zero => X | one => Y) | .(zero), .(one), left => f | .(zero), .(one), right => g) = g ≫ 𝟙 Y [PROOFSTEP] simp [GOAL] case id.left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id zero ≫ left) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id zero) ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map left [PROOFSTEP] {dsimp; simp } [GOAL] case id.left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id zero ≫ left) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id zero) ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map left [PROOFSTEP] dsimp [GOAL] case id.left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ (match zero, one, 𝟙 zero ≫ left with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 (match x with | zero => X | one => Y) | .(zero), .(one), left => f | .(zero), .(one), right => g) = 𝟙 X ≫ f [PROOFSTEP] simp [GOAL] case id.right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id zero ≫ right) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id zero) ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map right [PROOFSTEP] {dsimp; simp } [GOAL] case id.right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id zero ≫ right) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id zero) ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map right [PROOFSTEP] dsimp [GOAL] case id.right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ (match zero, one, 𝟙 zero ≫ right with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 (match x with | zero => X | one => Y) | .(zero), .(one), left => f | .(zero), .(one), right => g) = 𝟙 X ≫ g [PROOFSTEP] simp [GOAL] case id.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y X✝ : WalkingParallelPair ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id X✝ ≫ WalkingParallelPairHom.id X✝) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id X✝) ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id X✝) [PROOFSTEP] {dsimp; simp } [GOAL] case id.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y X✝ : WalkingParallelPair ⊢ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id X✝ ≫ WalkingParallelPairHom.id X✝) = { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id X✝) ≫ { obj := fun x => match x with | zero => X | one => Y, map := fun {X_1 Y_1} h => match X_1, Y_1, h with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 ((fun x => match x with | zero => X | one => Y) x) | .(zero), .(one), left => f | .(zero), .(one), right => g }.map (WalkingParallelPairHom.id X✝) [PROOFSTEP] dsimp [GOAL] case id.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y X✝ : WalkingParallelPair ⊢ (match X✝, X✝, 𝟙 X✝ ≫ 𝟙 X✝ with | x, .(x), WalkingParallelPairHom.id .(x) => 𝟙 (match x with | zero => X | one => Y) | .(zero), .(one), left => f | .(zero), .(one), right => g) = 𝟙 (match X✝ with | zero => X | one => Y) ≫ 𝟙 (match X✝ with | zero => X | one => Y) [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C j : WalkingParallelPair ⊢ (parallelPair (F.map left) (F.map right)).obj j = F.obj j [PROOFSTEP] cases j [GOAL] case zero C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C ⊢ (parallelPair (F.map left) (F.map right)).obj zero = F.obj zero [PROOFSTEP] rfl [GOAL] case one C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C ⊢ (parallelPair (F.map left) (F.map right)).obj one = F.obj one [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C j : WalkingParallelPair ⊢ F.obj j = (parallelPair (F.map left) (F.map right)).obj j [PROOFSTEP] cases j [GOAL] case zero C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C ⊢ F.obj zero = (parallelPair (F.map left) (F.map right)).obj zero [PROOFSTEP] rfl [GOAL] case one C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C ⊢ F.obj one = (parallelPair (F.map left) (F.map right)).obj one [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C ⊢ ∀ {X Y : WalkingParallelPair} (f : X ⟶ Y), F.map f ≫ ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) Y).hom = ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) X).hom ≫ (parallelPair (F.map left) (F.map right)).map f [PROOFSTEP] rintro _ _ (_ | _ | _) [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C ⊢ F.map left ≫ ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) one).hom = ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) zero).hom ≫ (parallelPair (F.map left) (F.map right)).map left [PROOFSTEP] simp [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C ⊢ F.map right ≫ ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) one).hom = ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) zero).hom ≫ (parallelPair (F.map left) (F.map right)).map right [PROOFSTEP] simp [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C F : WalkingParallelPair ⥤ C X✝ : WalkingParallelPair ⊢ F.map (WalkingParallelPairHom.id X✝) ≫ ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) X✝).hom = ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) X✝).hom ≫ (parallelPair (F.map left) (F.map right)).map (WalkingParallelPairHom.id X✝) [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' ⊢ ∀ ⦃X_1 Y_1 : WalkingParallelPair⦄ (f_1 : X_1 ⟶ Y_1), (parallelPair f g).map f_1 ≫ (fun j => match j with | zero => p | one => q) Y_1 = (fun j => match j with | zero => p | one => q) X_1 ≫ (parallelPair f' g').map f_1 [PROOFSTEP] rintro _ _ ⟨⟩ [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' ⊢ (parallelPair f g).map left ≫ (fun j => match j with | zero => p | one => q) one = (fun j => match j with | zero => p | one => q) zero ≫ (parallelPair f' g').map left [PROOFSTEP] {dsimp; simp [wf, wg] } [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' ⊢ (parallelPair f g).map left ≫ (fun j => match j with | zero => p | one => q) one = (fun j => match j with | zero => p | one => q) zero ≫ (parallelPair f' g').map left [PROOFSTEP] dsimp [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' ⊢ f ≫ q = p ≫ f' [PROOFSTEP] simp [wf, wg] [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' ⊢ (parallelPair f g).map right ≫ (fun j => match j with | zero => p | one => q) one = (fun j => match j with | zero => p | one => q) zero ≫ (parallelPair f' g').map right [PROOFSTEP] {dsimp; simp [wf, wg] } [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' ⊢ (parallelPair f g).map right ≫ (fun j => match j with | zero => p | one => q) one = (fun j => match j with | zero => p | one => q) zero ≫ (parallelPair f' g').map right [PROOFSTEP] dsimp [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' ⊢ g ≫ q = p ≫ g' [PROOFSTEP] simp [wf, wg] [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' X✝ : WalkingParallelPair ⊢ (parallelPair f g).map (WalkingParallelPairHom.id X✝) ≫ (fun j => match j with | zero => p | one => q) X✝ = (fun j => match j with | zero => p | one => q) X✝ ≫ (parallelPair f' g').map (WalkingParallelPairHom.id X✝) [PROOFSTEP] {dsimp; simp [wf, wg] } [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' X✝ : WalkingParallelPair ⊢ (parallelPair f g).map (WalkingParallelPairHom.id X✝) ≫ (fun j => match j with | zero => p | one => q) X✝ = (fun j => match j with | zero => p | one => q) X✝ ≫ (parallelPair f' g').map (WalkingParallelPairHom.id X✝) [PROOFSTEP] dsimp [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y X' Y' : C f g : X ⟶ Y f' g' : X' ⟶ Y' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' X✝ : WalkingParallelPair ⊢ ((parallelPair f g).map (𝟙 X✝) ≫ match X✝ with | zero => p | one => q) = (match X✝ with | zero => p | one => q) ≫ (parallelPair f' g').map (𝟙 X✝) [PROOFSTEP] simp [wf, wg] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C F G : WalkingParallelPair ⥤ C zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one left : F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left right : F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right ⊢ (X : WalkingParallelPair) → F.obj X ≅ G.obj X [PROOFSTEP] rintro ⟨j⟩ [GOAL] case zero C : Type u inst✝ : Category.{v, u} C X Y : C F G : WalkingParallelPair ⥤ C zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one left : F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left right : F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right ⊢ F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero case one C : Type u inst✝ : Category.{v, u} C X Y : C F G : WalkingParallelPair ⥤ C zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one left : F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left right : F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right ⊢ F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one [PROOFSTEP] exacts [zero, one] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C F G : WalkingParallelPair ⥤ C zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one left : F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left right : F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right ⊢ ∀ {X Y : WalkingParallelPair} (f : X ⟶ Y), F.map f ≫ (WalkingParallelPair.casesOn Y zero one).hom = (WalkingParallelPair.casesOn X zero one).hom ≫ G.map f [PROOFSTEP] rintro _ _ ⟨_⟩ [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C F G : WalkingParallelPair ⥤ C zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one left : F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left right : F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right ⊢ F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ (WalkingParallelPair.casesOn CategoryTheory.Limits.WalkingParallelPair.one zero one).hom = (WalkingParallelPair.casesOn CategoryTheory.Limits.WalkingParallelPair.zero zero one).hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left [PROOFSTEP] simp [left, right] [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C F G : WalkingParallelPair ⥤ C zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one left : F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left right : F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right ⊢ F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ (WalkingParallelPair.casesOn CategoryTheory.Limits.WalkingParallelPair.one zero one).hom = (WalkingParallelPair.casesOn CategoryTheory.Limits.WalkingParallelPair.zero zero one).hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right [PROOFSTEP] simp [left, right] [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C F G : WalkingParallelPair ⥤ C zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one left : F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left right : F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom = zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right X✝ : WalkingParallelPair ⊢ F.map (WalkingParallelPairHom.id X✝) ≫ (WalkingParallelPair.casesOn X✝ zero one).hom = (WalkingParallelPair.casesOn X✝ zero one).hom ≫ G.map (WalkingParallelPairHom.id X✝) [PROOFSTEP] simp [left, right] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g f' g' : X ⟶ Y hf : f = f' hg : g = g' ⊢ (parallelPair f g).map left ≫ (Iso.refl ((parallelPair f g).obj one)).hom = (Iso.refl ((parallelPair f g).obj zero)).hom ≫ (parallelPair f' g').map left [PROOFSTEP] simp [hf] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g f' g' : X ⟶ Y hf : f = f' hg : g = g' ⊢ (parallelPair f g).map right ≫ (Iso.refl ((parallelPair f g).obj one)).hom = (Iso.refl ((parallelPair f g).obj zero)).hom ≫ (parallelPair f' g').map right [PROOFSTEP] simp [hg] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Fork f g ⊢ NatTrans.app s.π one = ι s ≫ f [PROOFSTEP] rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Fork f g ⊢ NatTrans.app s.π one = ι s ≫ g [PROOFSTEP] rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Cofork f g ⊢ NatTrans.app s.ι zero = f ≫ π s [PROOFSTEP] rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Cofork f g ⊢ NatTrans.app s.ι zero = g ≫ π s [PROOFSTEP] rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f g : X✝ ⟶ Y P : C ι : P ⟶ X✝ w : ι ≫ f = ι ≫ g X : WalkingParallelPair ⊢ ((Functor.const WalkingParallelPair).obj P).obj X ⟶ (parallelPair f g).obj X [PROOFSTEP] cases X [GOAL] case zero C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ ((Functor.const WalkingParallelPair).obj P).obj zero ⟶ (parallelPair f g).obj zero case one C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ ((Functor.const WalkingParallelPair).obj P).obj one ⟶ (parallelPair f g).obj one [PROOFSTEP] exact ι [GOAL] case one C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ ((Functor.const WalkingParallelPair).obj P).obj one ⟶ (parallelPair f g).obj one [PROOFSTEP] exact ι ≫ f [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : C f✝ g : X✝ ⟶ Y✝ P : C ι : P ⟶ X✝ w : ι ≫ f✝ = ι ≫ g X Y : WalkingParallelPair f : X ⟶ Y ⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫ (fun X => WalkingParallelPair.casesOn (motive := fun t => X = t → (((Functor.const WalkingParallelPair).obj P).obj X ⟶ (parallelPair f✝ g).obj X)) X (fun h => (_ : zero = X) ▸ ι) (fun h => (_ : one = X) ▸ ι ≫ f✝) (_ : X = X)) Y = (fun X => WalkingParallelPair.casesOn (motive := fun t => X = t → (((Functor.const WalkingParallelPair).obj P).obj X ⟶ (parallelPair f✝ g).obj X)) X (fun h => (_ : zero = X) ▸ ι) (fun h => (_ : one = X) ▸ ι ≫ f✝) (_ : X = X)) X ≫ (parallelPair f✝ g).map f [PROOFSTEP] cases X [GOAL] case zero C : Type u inst✝ : Category.{v, u} C X Y✝ : C f✝ g : X ⟶ Y✝ P : C ι : P ⟶ X w : ι ≫ f✝ = ι ≫ g Y : WalkingParallelPair f : zero ⟶ Y ⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) Y = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) zero ≫ (parallelPair f✝ g).map f [PROOFSTEP] cases Y [GOAL] case one C : Type u inst✝ : Category.{v, u} C X Y✝ : C f✝ g : X ⟶ Y✝ P : C ι : P ⟶ X w : ι ≫ f✝ = ι ≫ g Y : WalkingParallelPair f : one ⟶ Y ⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) Y = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) one ≫ (parallelPair f✝ g).map f [PROOFSTEP] cases Y [GOAL] case zero.zero C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f✝ = ι ≫ g f : zero ⟶ zero ⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) zero = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) zero ≫ (parallelPair f✝ g).map f [PROOFSTEP] cases f [GOAL] case zero.one C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f✝ = ι ≫ g f : zero ⟶ one ⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) one = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) zero ≫ (parallelPair f✝ g).map f [PROOFSTEP] cases f [GOAL] case one.zero C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f✝ = ι ≫ g f : one ⟶ zero ⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) zero = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) one ≫ (parallelPair f✝ g).map f [PROOFSTEP] cases f [GOAL] case one.one C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f✝ = ι ≫ g f : one ⟶ one ⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) one = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1)) one ≫ (parallelPair f✝ g).map f [PROOFSTEP] cases f [GOAL] case zero.zero.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ ((Functor.const WalkingParallelPair).obj P).map (WalkingParallelPairHom.id zero) ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1)) zero = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1)) zero ≫ (parallelPair f g).map (WalkingParallelPairHom.id zero) [PROOFSTEP] dsimp [GOAL] case zero.one.left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ ((Functor.const WalkingParallelPair).obj P).map left ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1)) one = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1)) zero ≫ (parallelPair f g).map left [PROOFSTEP] dsimp [GOAL] case zero.one.right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ ((Functor.const WalkingParallelPair).obj P).map right ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1)) one = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1)) zero ≫ (parallelPair f g).map right [PROOFSTEP] dsimp [GOAL] case one.one.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ ((Functor.const WalkingParallelPair).obj P).map (WalkingParallelPairHom.id one) ≫ (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1)) one = (fun X_1 => WalkingParallelPair.casesOn (motive := fun t => X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1 (fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1)) one ≫ (parallelPair f g).map (WalkingParallelPairHom.id one) [PROOFSTEP] dsimp [GOAL] case zero.zero.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ 𝟙 P ≫ ι = ι ≫ (parallelPair f g).map (𝟙 zero) [PROOFSTEP] simp [GOAL] case zero.one.left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ 𝟙 P ≫ ι ≫ f = ι ≫ f [PROOFSTEP] simp [GOAL] case zero.one.right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ 𝟙 P ≫ ι ≫ f = ι ≫ g [PROOFSTEP] simp [GOAL] case one.one.id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ 𝟙 P ≫ ι ≫ f = (ι ≫ f) ≫ (parallelPair f g).map (𝟙 one) [PROOFSTEP] simp [GOAL] case zero.one.right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C ι : P ⟶ X w : ι ≫ f = ι ≫ g ⊢ ι ≫ f = ι ≫ g [PROOFSTEP] assumption [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y P : C π : Y ⟶ P w : f✝ ≫ π = g ≫ π i j : WalkingParallelPair f : i ⟶ j ⊢ (parallelPair f✝ g).map f ≫ (fun X_1 => WalkingParallelPair.casesOn X_1 (f✝ ≫ π) π) j = (fun X_1 => WalkingParallelPair.casesOn X_1 (f✝ ≫ π) π) i ≫ ((Functor.const WalkingParallelPair).obj P).map f [PROOFSTEP] cases f [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C π : Y ⟶ P w : f ≫ π = g ≫ π ⊢ (parallelPair f g).map left ≫ (fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) one = (fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) zero ≫ ((Functor.const WalkingParallelPair).obj P).map left [PROOFSTEP] dsimp [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C π : Y ⟶ P w : f ≫ π = g ≫ π ⊢ (parallelPair f g).map right ≫ (fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) one = (fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) zero ≫ ((Functor.const WalkingParallelPair).obj P).map right [PROOFSTEP] dsimp [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C π : Y ⟶ P w : f ≫ π = g ≫ π i : WalkingParallelPair ⊢ (parallelPair f g).map (WalkingParallelPairHom.id i) ≫ (fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) i = (fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) i ≫ ((Functor.const WalkingParallelPair).obj P).map (WalkingParallelPairHom.id i) [PROOFSTEP] dsimp [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C π : Y ⟶ P w : f ≫ π = g ≫ π ⊢ f ≫ π = (f ≫ π) ≫ 𝟙 P [PROOFSTEP] simp [w] [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C π : Y ⟶ P w : f ≫ π = g ≫ π ⊢ g ≫ π = (f ≫ π) ≫ 𝟙 P [PROOFSTEP] simp [w] [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y P : C π : Y ⟶ P w : f ≫ π = g ≫ π i : WalkingParallelPair ⊢ (parallelPair f g).map (𝟙 i) ≫ WalkingParallelPair.rec (f ≫ π) π i = WalkingParallelPair.rec (f ≫ π) π i ≫ 𝟙 P [PROOFSTEP] simp [w] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Fork f g ⊢ ι t ≫ f = ι t ≫ g [PROOFSTEP] rw [← t.app_one_eq_ι_comp_left, ← t.app_one_eq_ι_comp_right] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Cofork f g ⊢ f ≫ π t = g ≫ π t [PROOFSTEP] rw [← t.app_zero_eq_comp_π_left, ← t.app_zero_eq_comp_π_right] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Fork f g W : C k l : W ⟶ s.pt h : k ≫ ι s = l ≫ ι s ⊢ k ≫ NatTrans.app s.π one = l ≫ NatTrans.app s.π one [PROOFSTEP] have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by simp only [← Category.assoc]; exact congrArg (· ≫ f) h [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Fork f g W : C k l : W ⟶ s.pt h : k ≫ ι s = l ≫ ι s ⊢ k ≫ ι s ≫ f = l ≫ ι s ≫ f [PROOFSTEP] simp only [← Category.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Fork f g W : C k l : W ⟶ s.pt h : k ≫ ι s = l ≫ ι s ⊢ (k ≫ ι s) ≫ f = (l ≫ ι s) ≫ f [PROOFSTEP] exact congrArg (· ≫ f) h [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Fork f g W : C k l : W ⟶ s.pt h : k ≫ ι s = l ≫ ι s this : k ≫ ι s ≫ f = l ≫ ι s ≫ f ⊢ k ≫ NatTrans.app s.π one = l ≫ NatTrans.app s.π one [PROOFSTEP] rw [s.app_one_eq_ι_comp_left, this] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Cofork f g W : C k l : s.pt ⟶ W h : π s ≫ k = π s ≫ l ⊢ NatTrans.app s.ι zero ≫ k = NatTrans.app s.ι zero ≫ l [PROOFSTEP] simp only [s.app_zero_eq_comp_π_left, Category.assoc, h] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Fork f g hs : IsLimit s W : C k : W ⟶ X h : k ≫ f = k ≫ g ⊢ lift hs k h ≫ ι s = k [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s : Cofork f g hs : IsColimit s W : C k : Y ⟶ W h : f ≫ k = g ≫ k ⊢ π s ≫ desc hs k h = k [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Fork f g lift : (s : Fork f g) → s.pt ⟶ t.pt fac : ∀ (s : Fork f g), lift s ≫ ι t = ι s uniq : ∀ (s : Fork f g) (m : s.pt ⟶ t.pt), m ≫ ι t = ι s → m = lift s s : Cone (parallelPair f g) j : WalkingParallelPair ⊢ lift s ≫ NatTrans.app t.π one = NatTrans.app s.π one [PROOFSTEP] erw [← s.w left, ← t.w left, ← Category.assoc, fac] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Fork f g lift : (s : Fork f g) → s.pt ⟶ t.pt fac : ∀ (s : Fork f g), lift s ≫ ι t = ι s uniq : ∀ (s : Fork f g) (m : s.pt ⟶ t.pt), m ≫ ι t = ι s → m = lift s s : Cone (parallelPair f g) j : WalkingParallelPair ⊢ ι s ≫ (parallelPair f g).map left = NatTrans.app s.π zero ≫ (parallelPair f g).map left [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Fork f g lift : (s : Fork f g) → s.pt ⟶ t.pt fac : ∀ (s : Fork f g), lift s ≫ ι t = ι s uniq : ∀ (s : Fork f g) (m : s.pt ⟶ t.pt), m ≫ ι t = ι s → m = lift s s : Cone (parallelPair f g) m : s.pt ⟶ t.pt j : ∀ (j : WalkingParallelPair), m ≫ NatTrans.app t.π j = NatTrans.app s.π j ⊢ m = lift s [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Cofork f g desc : (s : Cofork f g) → t.pt ⟶ s.pt fac : ∀ (s : Cofork f g), π t ≫ desc s = π s uniq : ∀ (s : Cofork f g) (m : t.pt ⟶ s.pt), π t ≫ m = π s → m = desc s s : Cocone (parallelPair f g) j : WalkingParallelPair ⊢ NatTrans.app t.ι zero ≫ desc s = NatTrans.app s.ι zero [PROOFSTEP] erw [← s.w left, ← t.w left, Category.assoc, fac] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Cofork f g desc : (s : Cofork f g) → t.pt ⟶ s.pt fac : ∀ (s : Cofork f g), π t ≫ desc s = π s uniq : ∀ (s : Cofork f g) (m : t.pt ⟶ s.pt), π t ≫ m = π s → m = desc s s : Cocone (parallelPair f g) j : WalkingParallelPair ⊢ (parallelPair f g).map left ≫ π s = (parallelPair f g).map left ≫ NatTrans.app s.ι one [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Cofork f g desc : (s : Cofork f g) → t.pt ⟶ s.pt fac : ∀ (s : Cofork f g), π t ≫ desc s = π s uniq : ∀ (s : Cofork f g) (m : t.pt ⟶ s.pt), π t ≫ m = π s → m = desc s ⊢ ∀ (s : Cocone (parallelPair f g)) (m : t.pt ⟶ s.pt), (∀ (j : WalkingParallelPair), NatTrans.app t.ι j ≫ m = NatTrans.app s.ι j) → m = desc s [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Fork f g hs : ∀ (s : Fork f g), ∃! l, l ≫ ι t = ι s ⊢ IsLimit t [PROOFSTEP] choose d hd hd' using hs [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Fork f g d : (s : Fork f g) → s.pt ⟶ t.pt hd : ∀ (s : Fork f g), (fun l => l ≫ ι t = ι s) (d s) hd' : ∀ (s : Fork f g) (y : s.pt ⟶ t.pt), (fun l => l ≫ ι t = ι s) y → y = d s ⊢ IsLimit t [PROOFSTEP] exact Fork.IsLimit.mk _ d hd fun s m hm => hd' _ _ hm [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Cofork f g hs : ∀ (s : Cofork f g), ∃! d, π t ≫ d = π s ⊢ IsColimit t [PROOFSTEP] choose d hd hd' using hs [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y t : Cofork f g d : (s : Cofork f g) → t.pt ⟶ s.pt hd : ∀ (s : Cofork f g), (fun d => π t ≫ d = π s) (d s) hd' : ∀ (s : Cofork f g) (y : t.pt ⟶ s.pt), (fun d => π t ≫ d = π s) y → y = d s ⊢ IsColimit t [PROOFSTEP] exact Cofork.IsColimit.mk _ d hd fun s m hm => hd' _ _ hm [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : C f✝ g✝ : X✝ ⟶ Y✝ X Y : C f g : X ⟶ Y t : Fork f g ht : IsLimit t Z : C k : Z ⟶ t.pt ⊢ (k ≫ ι t) ≫ f = (k ≫ ι t) ≫ g [PROOFSTEP] simp only [Category.assoc, t.condition] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : C f✝ g✝ : X✝ ⟶ Y✝ X Y : C f g : X ⟶ Y t : Cofork f g ht : IsColimit t Z : C k : t.pt ⟶ Z ⊢ f ≫ π t ≫ k = g ≫ π t ≫ k [PROOFSTEP] simp only [← Category.assoc, t.condition] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f g : X✝ ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) X : WalkingParallelPair ⊢ (parallelPair (F.map left) (F.map right)).obj X = F.obj X [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) ⊢ ∀ ⦃X Y : WalkingParallelPair⦄ (f : X ⟶ Y), ((Functor.const WalkingParallelPair).obj t.pt).map f ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) Y = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) X ≫ F.map f [PROOFSTEP] rintro _ _ (_ | _ | _) [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map left ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) one = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) zero ≫ F.map left [PROOFSTEP] {dsimp; simp [t.condition] } [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map left ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) one = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) zero ≫ F.map left [PROOFSTEP] dsimp [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) ⊢ 𝟙 t.pt ≫ NatTrans.app t.π one ≫ 𝟙 (F.obj one) = (Fork.ι t ≫ 𝟙 (F.obj zero)) ≫ F.map left [PROOFSTEP] simp [t.condition] [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map right ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) one = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) zero ≫ F.map right [PROOFSTEP] {dsimp; simp [t.condition] } [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map right ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) one = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) zero ≫ F.map right [PROOFSTEP] dsimp [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) ⊢ 𝟙 t.pt ≫ NatTrans.app t.π one ≫ 𝟙 (F.obj one) = (Fork.ι t ≫ 𝟙 (F.obj zero)) ≫ F.map right [PROOFSTEP] simp [t.condition] [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) X✝ : WalkingParallelPair ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map (WalkingParallelPairHom.id X✝) ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) X✝ = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) X✝ ≫ F.map (WalkingParallelPairHom.id X✝) [PROOFSTEP] {dsimp; simp [t.condition] } [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) X✝ : WalkingParallelPair ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map (WalkingParallelPairHom.id X✝) ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) X✝ = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X)) X✝ ≫ F.map (WalkingParallelPairHom.id X✝) [PROOFSTEP] dsimp [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) X✝ : WalkingParallelPair ⊢ 𝟙 t.pt ≫ NatTrans.app t.π X✝ ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X✝ = F.obj X✝) = (NatTrans.app t.π X✝ ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X✝ = F.obj X✝)) ≫ F.map (𝟙 X✝) [PROOFSTEP] simp [t.condition] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f g : X✝ ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) X : WalkingParallelPair ⊢ F.obj X = (parallelPair (F.map left) (F.map right)).obj X [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) ⊢ ∀ ⦃X Y : WalkingParallelPair⦄ (f : X ⟶ Y), F.map f ≫ (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) Y = (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) X ≫ ((Functor.const WalkingParallelPair).obj t.pt).map f [PROOFSTEP] rintro _ _ (_ | _ | _) [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) ⊢ F.map left ≫ (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) one = (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) zero ≫ ((Functor.const WalkingParallelPair).obj t.pt).map left [PROOFSTEP] {dsimp; simp [t.condition] } [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) ⊢ F.map left ≫ (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) one = (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) zero ≫ ((Functor.const WalkingParallelPair).obj t.pt).map left [PROOFSTEP] dsimp [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) ⊢ F.map left ≫ 𝟙 (F.obj one) ≫ Cofork.π t = (𝟙 (F.obj zero) ≫ NatTrans.app t.ι zero) ≫ 𝟙 t.pt [PROOFSTEP] simp [t.condition] [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) ⊢ F.map right ≫ (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) one = (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) zero ≫ ((Functor.const WalkingParallelPair).obj t.pt).map right [PROOFSTEP] {dsimp; simp [t.condition] } [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) ⊢ F.map right ≫ (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) one = (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) zero ≫ ((Functor.const WalkingParallelPair).obj t.pt).map right [PROOFSTEP] dsimp [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) ⊢ F.map right ≫ 𝟙 (F.obj one) ≫ Cofork.π t = (𝟙 (F.obj zero) ≫ NatTrans.app t.ι zero) ≫ 𝟙 t.pt [PROOFSTEP] simp [t.condition] [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) X✝ : WalkingParallelPair ⊢ F.map (WalkingParallelPairHom.id X✝) ≫ (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) X✝ = (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) X✝ ≫ ((Functor.const WalkingParallelPair).obj t.pt).map (WalkingParallelPairHom.id X✝) [PROOFSTEP] {dsimp; simp [t.condition] } [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) X✝ : WalkingParallelPair ⊢ F.map (WalkingParallelPairHom.id X✝) ≫ (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) X✝ = (fun X => eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X) ≫ NatTrans.app t.ι X) X✝ ≫ ((Functor.const WalkingParallelPair).obj t.pt).map (WalkingParallelPairHom.id X✝) [PROOFSTEP] dsimp [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) X✝ : WalkingParallelPair ⊢ F.map (𝟙 X✝) ≫ eqToHom (_ : F.obj X✝ = (parallelPair (F.map left) (F.map right)).obj X✝) ≫ NatTrans.app t.ι X✝ = (eqToHom (_ : F.obj X✝ = (parallelPair (F.map left) (F.map right)).obj X✝) ≫ NatTrans.app t.ι X✝) ≫ 𝟙 t.pt [PROOFSTEP] simp [t.condition] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Fork (F.map left) (F.map right) j : WalkingParallelPair ⊢ (parallelPair (F.map left) (F.map right)).obj j = F.obj j [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cofork (F.map left) (F.map right) j : WalkingParallelPair ⊢ F.obj j = (parallelPair (F.map left) (F.map right)).obj j [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f g : X✝ ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F X : WalkingParallelPair ⊢ F.obj X = (parallelPair (F.map left) (F.map right)).obj X [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F ⊢ ∀ ⦃X Y : WalkingParallelPair⦄ (f : X ⟶ Y), ((Functor.const WalkingParallelPair).obj t.pt).map f ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) Y = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) X ≫ (parallelPair (F.map left) (F.map right)).map f [PROOFSTEP] rintro _ _ (_ | _ | _) [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map left ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) one = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) zero ≫ (parallelPair (F.map left) (F.map right)).map left [PROOFSTEP] {dsimp; simp } [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map left ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) one = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) zero ≫ (parallelPair (F.map left) (F.map right)).map left [PROOFSTEP] dsimp [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F ⊢ 𝟙 t.pt ≫ NatTrans.app t.π one ≫ 𝟙 (F.obj one) = (NatTrans.app t.π zero ≫ 𝟙 (F.obj zero)) ≫ F.map left [PROOFSTEP] simp [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map right ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) one = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) zero ≫ (parallelPair (F.map left) (F.map right)).map right [PROOFSTEP] {dsimp; simp } [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map right ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) one = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) zero ≫ (parallelPair (F.map left) (F.map right)).map right [PROOFSTEP] dsimp [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F ⊢ 𝟙 t.pt ≫ NatTrans.app t.π one ≫ 𝟙 (F.obj one) = (NatTrans.app t.π zero ≫ 𝟙 (F.obj zero)) ≫ F.map right [PROOFSTEP] simp [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F X✝ : WalkingParallelPair ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map (WalkingParallelPairHom.id X✝) ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) X✝ = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) X✝ ≫ (parallelPair (F.map left) (F.map right)).map (WalkingParallelPairHom.id X✝) [PROOFSTEP] {dsimp; simp } [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F X✝ : WalkingParallelPair ⊢ ((Functor.const WalkingParallelPair).obj t.pt).map (WalkingParallelPairHom.id X✝) ≫ (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) X✝ = (fun X => NatTrans.app t.π X ≫ eqToHom (_ : F.obj X = (parallelPair (F.map left) (F.map right)).obj X)) X✝ ≫ (parallelPair (F.map left) (F.map right)).map (WalkingParallelPairHom.id X✝) [PROOFSTEP] dsimp [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F X✝ : WalkingParallelPair ⊢ 𝟙 t.pt ≫ NatTrans.app t.π X✝ ≫ eqToHom (_ : F.obj X✝ = (parallelPair (F.map left) (F.map right)).obj X✝) = (NatTrans.app t.π X✝ ≫ eqToHom (_ : F.obj X✝ = (parallelPair (F.map left) (F.map right)).obj X✝)) ≫ (parallelPair (F.map left) (F.map right)).map (𝟙 X✝) [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f g : X✝ ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F X : WalkingParallelPair ⊢ (parallelPair (F.map left) (F.map right)).obj X = F.obj X [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F ⊢ ∀ ⦃X Y : WalkingParallelPair⦄ (f : X ⟶ Y), (parallelPair (F.map left) (F.map right)).map f ≫ (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) Y = (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) X ≫ ((Functor.const WalkingParallelPair).obj t.pt).map f [PROOFSTEP] rintro _ _ (_ | _ | _) [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F ⊢ (parallelPair (F.map left) (F.map right)).map left ≫ (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) one = (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) zero ≫ ((Functor.const WalkingParallelPair).obj t.pt).map left [PROOFSTEP] {dsimp; simp } [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F ⊢ (parallelPair (F.map left) (F.map right)).map left ≫ (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) one = (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) zero ≫ ((Functor.const WalkingParallelPair).obj t.pt).map left [PROOFSTEP] dsimp [GOAL] case left C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F ⊢ F.map left ≫ 𝟙 (F.obj one) ≫ NatTrans.app t.ι one = (𝟙 (F.obj zero) ≫ NatTrans.app t.ι zero) ≫ 𝟙 t.pt [PROOFSTEP] simp [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F ⊢ (parallelPair (F.map left) (F.map right)).map right ≫ (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) one = (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) zero ≫ ((Functor.const WalkingParallelPair).obj t.pt).map right [PROOFSTEP] {dsimp; simp } [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F ⊢ (parallelPair (F.map left) (F.map right)).map right ≫ (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) one = (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) zero ≫ ((Functor.const WalkingParallelPair).obj t.pt).map right [PROOFSTEP] dsimp [GOAL] case right C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F ⊢ F.map right ≫ 𝟙 (F.obj one) ≫ NatTrans.app t.ι one = (𝟙 (F.obj zero) ≫ NatTrans.app t.ι zero) ≫ 𝟙 t.pt [PROOFSTEP] simp [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F X✝ : WalkingParallelPair ⊢ (parallelPair (F.map left) (F.map right)).map (WalkingParallelPairHom.id X✝) ≫ (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) X✝ = (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) X✝ ≫ ((Functor.const WalkingParallelPair).obj t.pt).map (WalkingParallelPairHom.id X✝) [PROOFSTEP] {dsimp; simp } [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F X✝ : WalkingParallelPair ⊢ (parallelPair (F.map left) (F.map right)).map (WalkingParallelPairHom.id X✝) ≫ (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) X✝ = (fun X => eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X = F.obj X) ≫ NatTrans.app t.ι X) X✝ ≫ ((Functor.const WalkingParallelPair).obj t.pt).map (WalkingParallelPairHom.id X✝) [PROOFSTEP] dsimp [GOAL] case id C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F X✝ : WalkingParallelPair ⊢ (parallelPair (F.map left) (F.map right)).map (𝟙 X✝) ≫ eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X✝ = F.obj X✝) ≫ NatTrans.app t.ι X✝ = (eqToHom (_ : (parallelPair (F.map left) (F.map right)).obj X✝ = F.obj X✝) ≫ NatTrans.app t.ι X✝) ≫ 𝟙 t.pt [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cone F j : WalkingParallelPair ⊢ F.obj j = (parallelPair (F.map left) (F.map right)).obj j [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y F : WalkingParallelPair ⥤ C t : Cocone F j : WalkingParallelPair ⊢ (parallelPair (F.map left) (F.map right)).obj j = F.obj j [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s t : Fork f g k : s.pt ⟶ t.pt w : k ≫ ι t = ι s ⊢ ∀ (j : WalkingParallelPair), k ≫ NatTrans.app t.π j = NatTrans.app s.π j [PROOFSTEP] rintro ⟨_ | _⟩ [GOAL] case zero C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s t : Fork f g k : s.pt ⟶ t.pt w : k ≫ ι t = ι s ⊢ k ≫ NatTrans.app t.π zero = NatTrans.app s.π zero [PROOFSTEP] exact w [GOAL] case one C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s t : Fork f g k : s.pt ⟶ t.pt w : k ≫ ι t = ι s ⊢ k ≫ NatTrans.app t.π one = NatTrans.app s.π one [PROOFSTEP] simp only [Fork.app_one_eq_ι_comp_left, ← Category.assoc] [GOAL] case one C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s t : Fork f g k : s.pt ⟶ t.pt w : k ≫ ι t = ι s ⊢ (k ≫ ι t) ≫ f = ι s ≫ f [PROOFSTEP] congr [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s t : Fork f g i : s.pt ≅ t.pt w : autoParam (i.hom ≫ ι t = ι s) _auto✝ ⊢ i.inv ≫ ι s = ι t [PROOFSTEP] rw [← w, Iso.inv_hom_id_assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g ⊢ c.pt ≅ (ofι (ι c) (_ : ι c ≫ f = ι c ≫ g)).pt [PROOFSTEP] simp only [Fork.ofι_pt, Functor.const_obj_obj] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g ⊢ c.pt ≅ c.pt [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g ⊢ (_root_.id (Iso.refl c.pt)).hom ≫ ι (ofι (ι c) (_ : ι c ≫ f = ι c ≫ g)) = ι c [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s t : Cofork f g k : s.pt ⟶ t.pt w : π s ≫ k = π t ⊢ ∀ (j : WalkingParallelPair), NatTrans.app s.ι j ≫ k = NatTrans.app t.ι j [PROOFSTEP] rintro ⟨_ | _⟩ [GOAL] case zero C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s t : Cofork f g k : s.pt ⟶ t.pt w : π s ≫ k = π t ⊢ NatTrans.app s.ι zero ≫ k = NatTrans.app t.ι zero [PROOFSTEP] simp [Cofork.app_zero_eq_comp_π_left, w] [GOAL] case one C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s t : Cofork f g k : s.pt ⟶ t.pt w : π s ≫ k = π t ⊢ NatTrans.app s.ι one ≫ k = NatTrans.app t.ι one [PROOFSTEP] exact w [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y s t : Fork f✝ g f : s ⟶ t ⊢ f.Hom ≫ ι t = ι s [PROOFSTEP] cases s [GOAL] case mk C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y t : Fork f✝ g pt✝ : C π✝ : (Functor.const WalkingParallelPair).obj pt✝ ⟶ parallelPair f✝ g f : { pt := pt✝, π := π✝ } ⟶ t ⊢ f.Hom ≫ ι t = ι { pt := pt✝, π := π✝ } [PROOFSTEP] cases t [GOAL] case mk.mk C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y pt✝¹ : C π✝¹ : (Functor.const WalkingParallelPair).obj pt✝¹ ⟶ parallelPair f✝ g pt✝ : C π✝ : (Functor.const WalkingParallelPair).obj pt✝ ⟶ parallelPair f✝ g f : { pt := pt✝¹, π := π✝¹ } ⟶ { pt := pt✝, π := π✝ } ⊢ f.Hom ≫ ι { pt := pt✝, π := π✝ } = ι { pt := pt✝¹, π := π✝¹ } [PROOFSTEP] cases f [GOAL] case mk.mk.mk C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y pt✝¹ : C π✝¹ : (Functor.const WalkingParallelPair).obj pt✝¹ ⟶ parallelPair f g pt✝ : C π✝ : (Functor.const WalkingParallelPair).obj pt✝ ⟶ parallelPair f g Hom✝ : { pt := pt✝¹, π := π✝¹ }.pt ⟶ { pt := pt✝, π := π✝ }.pt w✝ : ∀ (j : WalkingParallelPair), Hom✝ ≫ NatTrans.app { pt := pt✝, π := π✝ }.π j = NatTrans.app { pt := pt✝¹, π := π✝¹ }.π j ⊢ (ConeMorphism.mk Hom✝).Hom ≫ ι { pt := pt✝, π := π✝ } = ι { pt := pt✝¹, π := π✝¹ } [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y s t : Cofork f✝ g f : s ⟶ t ⊢ Cofork.π s ≫ f.Hom = Cofork.π t [PROOFSTEP] cases s [GOAL] case mk C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y t : Cofork f✝ g pt✝ : C ι✝ : parallelPair f✝ g ⟶ (Functor.const WalkingParallelPair).obj pt✝ f : { pt := pt✝, ι := ι✝ } ⟶ t ⊢ Cofork.π { pt := pt✝, ι := ι✝ } ≫ f.Hom = Cofork.π t [PROOFSTEP] cases t [GOAL] case mk.mk C : Type u inst✝ : Category.{v, u} C X Y : C f✝ g : X ⟶ Y pt✝¹ : C ι✝¹ : parallelPair f✝ g ⟶ (Functor.const WalkingParallelPair).obj pt✝¹ pt✝ : C ι✝ : parallelPair f✝ g ⟶ (Functor.const WalkingParallelPair).obj pt✝ f : { pt := pt✝¹, ι := ι✝¹ } ⟶ { pt := pt✝, ι := ι✝ } ⊢ Cofork.π { pt := pt✝¹, ι := ι✝¹ } ≫ f.Hom = Cofork.π { pt := pt✝, ι := ι✝ } [PROOFSTEP] cases f [GOAL] case mk.mk.mk C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y pt✝¹ : C ι✝¹ : parallelPair f g ⟶ (Functor.const WalkingParallelPair).obj pt✝¹ pt✝ : C ι✝ : parallelPair f g ⟶ (Functor.const WalkingParallelPair).obj pt✝ Hom✝ : { pt := pt✝¹, ι := ι✝¹ }.pt ⟶ { pt := pt✝, ι := ι✝ }.pt w✝ : ∀ (j : WalkingParallelPair), NatTrans.app { pt := pt✝¹, ι := ι✝¹ }.ι j ≫ Hom✝ = NatTrans.app { pt := pt✝, ι := ι✝ }.ι j ⊢ Cofork.π { pt := pt✝¹, ι := ι✝¹ } ≫ (CoconeMorphism.mk Hom✝).Hom = Cofork.π { pt := pt✝, ι := ι✝ } [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y s t : Cofork f g i : s.pt ≅ t.pt w : autoParam (π s ≫ i.hom = π t) _auto✝ ⊢ π t ≫ i.inv = π s [PROOFSTEP] rw [Iso.comp_inv_eq, w] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g ⊢ c.pt ≅ (ofπ (π c) (_ : f ≫ π c = g ≫ π c)).pt [PROOFSTEP] simp only [Cofork.ofπ_pt, Functor.const_obj_obj] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g ⊢ c.pt ≅ c.pt [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g ⊢ π c ≫ (_root_.id (Iso.refl c.pt)).hom = π (ofπ (π c) (_ : f ≫ π c = g ≫ π c)) [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g ⊢ π c ≫ 𝟙 c.pt = π c [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : C f g : X ⟶ Y inst✝ : HasEqualizer f g ⊢ (Iso.refl (limit.cone (parallelPair f g)).pt).hom ≫ Fork.ι (Fork.ofι (equalizer.ι f g) (_ : equalizer.ι f g ≫ f = equalizer.ι f g ≫ g)) = Fork.ι (limit.cone (parallelPair f g)) [PROOFSTEP] aesop [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y h✝ : f = g s : Fork f g m : s.pt ⟶ (idFork h✝).pt h : m ≫ Fork.ι (idFork h✝) = Fork.ι s ⊢ m = (fun s => Fork.ι s) s [PROOFSTEP] convert h [GOAL] case h.e'_2.h C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y h✝ : f = g s : Fork f g m : s.pt ⟶ (idFork h✝).pt h : m ≫ Fork.ι (idFork h✝) = Fork.ι s e_1✝ : (s.pt ⟶ (idFork h✝).pt) = (s.pt ⟶ (parallelPair f g).obj zero) ⊢ m = m ≫ Fork.ι (idFork h✝) [PROOFSTEP] exact (Category.comp_id _).symm [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ 𝟙 X ≫ f = 𝟙 X ≫ f [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ (isoSourceOfSelf f).inv = lift (𝟙 X) (_ : 𝟙 X ≫ f = 𝟙 X ≫ f) [PROOFSTEP] ext [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ (isoSourceOfSelf f).inv ≫ ι f f = lift (𝟙 X) (_ : 𝟙 X ≫ f = 𝟙 X ≫ f) ≫ ι f f [PROOFSTEP] simp [equalizer.isoSourceOfSelf] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : C f g : X ⟶ Y inst✝ : HasCoequalizer f g ⊢ Cofork.π (colimit.cocone (parallelPair f g)) ≫ (Iso.refl (colimit.cocone (parallelPair f g)).pt).hom = Cofork.π (Cofork.ofπ (coequalizer.π f g) (_ : f ≫ coequalizer.π f g = g ≫ coequalizer.π f g)) [PROOFSTEP] aesop [GOAL] C : Type u inst✝² : Category.{v, u} C X Y : C f g : X ⟶ Y inst✝¹ : HasCoequalizer f g X' Y' Z : C f' g' : X' ⟶ Y' inst✝ : HasCoequalizer f' g' p : X ⟶ X' q : Y ⟶ Y' wf : f ≫ q = p ≫ f' wg : g ≫ q = p ≫ g' h : Y' ⟶ Z wh : f' ≫ h = g' ≫ h ⊢ π f g ≫ colimMap (parallelPairHom f g f' g' p q wf wg) ≫ desc h wh = q ≫ h [PROOFSTEP] rw [ι_colimMap_assoc, parallelPairHom_app_one, coequalizer.π_desc] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y h✝ : f = g s : Cofork f g m : (idCofork h✝).pt ⟶ s.pt h : Cofork.π (idCofork h✝) ≫ m = Cofork.π s ⊢ m = (fun s => Cofork.π s) s [PROOFSTEP] convert h [GOAL] case h.e'_2.h C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y h✝ : f = g s : Cofork f g m : (idCofork h✝).pt ⟶ s.pt h : Cofork.π (idCofork h✝) ≫ m = Cofork.π s e_1✝ : ((idCofork h✝).pt ⟶ s.pt) = ((parallelPair f g).obj one ⟶ s.pt) ⊢ m = Cofork.π (idCofork h✝) ≫ m [PROOFSTEP] exact (Category.id_comp _).symm [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ f ≫ 𝟙 Y = f ≫ 𝟙 Y [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ (isoTargetOfSelf f).hom = desc (𝟙 Y) (_ : f ≫ 𝟙 Y = f ≫ 𝟙 Y) [PROOFSTEP] ext [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y ⊢ π f f ≫ (isoTargetOfSelf f).hom = π f f ≫ desc (𝟙 Y) (_ : f ≫ 𝟙 Y = f ≫ 𝟙 Y) [PROOFSTEP] simp [coequalizer.isoTargetOfSelf] [GOAL] C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasEqualizer f g inst✝ : HasEqualizer (G.map f) (G.map g) ⊢ G.map (equalizer.ι f g) ≫ G.map f = G.map (equalizer.ι f g) ≫ G.map g [PROOFSTEP] simp only [← G.map_comp] [GOAL] C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasEqualizer f g inst✝ : HasEqualizer (G.map f) (G.map g) ⊢ G.map (equalizer.ι f g ≫ f) = G.map (equalizer.ι f g ≫ g) [PROOFSTEP] rw [equalizer.condition] [GOAL] C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasEqualizer f g inst✝ : HasEqualizer (G.map f) (G.map g) Z : C h : Z ⟶ X w : h ≫ f = h ≫ g ⊢ G.map h ≫ G.map f = G.map h ≫ G.map g [PROOFSTEP] simp only [← G.map_comp, w] [GOAL] C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasEqualizer f g inst✝ : HasEqualizer (G.map f) (G.map g) Z : C h : Z ⟶ X w : h ≫ f = h ≫ g ⊢ G.map (equalizer.lift h w) ≫ equalizerComparison f g G = equalizer.lift (G.map h) (_ : G.map h ≫ G.map f = G.map h ≫ G.map g) [PROOFSTEP] apply equalizer.hom_ext [GOAL] case h C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasEqualizer f g inst✝ : HasEqualizer (G.map f) (G.map g) Z : C h : Z ⟶ X w : h ≫ f = h ≫ g ⊢ (G.map (equalizer.lift h w) ≫ equalizerComparison f g G) ≫ equalizer.ι (G.map f) (G.map g) = equalizer.lift (G.map h) (_ : G.map h ≫ G.map f = G.map h ≫ G.map g) ≫ equalizer.ι (G.map f) (G.map g) [PROOFSTEP] simp [← G.map_comp] [GOAL] C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasCoequalizer f g inst✝ : HasCoequalizer (G.map f) (G.map g) ⊢ G.map f ≫ G.map (coequalizer.π f g) = G.map g ≫ G.map (coequalizer.π f g) [PROOFSTEP] simp only [← G.map_comp] [GOAL] C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasCoequalizer f g inst✝ : HasCoequalizer (G.map f) (G.map g) ⊢ G.map (f ≫ coequalizer.π f g) = G.map (g ≫ coequalizer.π f g) [PROOFSTEP] rw [coequalizer.condition] [GOAL] C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasCoequalizer f g inst✝ : HasCoequalizer (G.map f) (G.map g) Z : C h : Y ⟶ Z w : f ≫ h = g ≫ h ⊢ G.map f ≫ G.map h = G.map g ≫ G.map h [PROOFSTEP] simp only [← G.map_comp, w] [GOAL] C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasCoequalizer f g inst✝ : HasCoequalizer (G.map f) (G.map g) Z : C h : Y ⟶ Z w : f ≫ h = g ≫ h ⊢ coequalizerComparison f g G ≫ G.map (coequalizer.desc h w) = coequalizer.desc (G.map h) (_ : G.map f ≫ G.map h = G.map g ≫ G.map h) [PROOFSTEP] apply coequalizer.hom_ext [GOAL] case h C : Type u inst✝³ : Category.{v, u} C X Y : C f g : X ⟶ Y D : Type u₂ inst✝² : Category.{v₂, u₂} D G : C ⥤ D inst✝¹ : HasCoequalizer f g inst✝ : HasCoequalizer (G.map f) (G.map g) Z : C h : Y ⟶ Z w : f ≫ h = g ≫ h ⊢ coequalizer.π (G.map f) (G.map g) ≫ coequalizerComparison f g G ≫ G.map (coequalizer.desc h w) = coequalizer.π (G.map f) (G.map g) ≫ coequalizer.desc (G.map h) (_ : G.map f ≫ G.map h = G.map g ≫ G.map h) [PROOFSTEP] simp [← G.map_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : C f g : X ⟶ Y inst✝ : IsSplitMono f ⊢ f ≫ 𝟙 Y = f ≫ retraction f ≫ f [PROOFSTEP] simp [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ : C f✝ g : X✝ ⟶ Y✝ inst✝¹ : IsSplitMono f✝ X Y : C f : X ⟶ Y inst✝ : IsSplitMono f s : Fork (𝟙 Y) (retraction f ≫ f) ⊢ (Fork.ι s ≫ retraction f) ≫ Fork.ι (coneOfIsSplitMono f) = Fork.ι s [PROOFSTEP] dsimp [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ : C f✝ g : X✝ ⟶ Y✝ inst✝¹ : IsSplitMono f✝ X Y : C f : X ⟶ Y inst✝ : IsSplitMono f s : Fork (𝟙 Y) (retraction f ≫ f) ⊢ (Fork.ι s ≫ retraction f) ≫ f = Fork.ι s [PROOFSTEP] rw [Category.assoc, ← s.condition] [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ : C f✝ g : X✝ ⟶ Y✝ inst✝¹ : IsSplitMono f✝ X Y : C f : X ⟶ Y inst✝ : IsSplitMono f s : Fork (𝟙 Y) (retraction f ≫ f) ⊢ Fork.ι s ≫ 𝟙 Y = Fork.ι s [PROOFSTEP] apply Category.comp_id [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ : C f✝ g : X✝ ⟶ Y✝ inst✝¹ : IsSplitMono f✝ X Y : C f : X ⟶ Y inst✝ : IsSplitMono f s : Fork (𝟙 Y) (retraction f ≫ f) m✝ : ((Functor.const WalkingParallelPair).obj s.pt).obj zero ⟶ ((Functor.const WalkingParallelPair).obj (coneOfIsSplitMono f).pt).obj zero hm : m✝ ≫ Fork.ι (coneOfIsSplitMono f) = Fork.ι s ⊢ m✝ = Fork.ι s ≫ retraction f [PROOFSTEP] simp [← hm] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g i : IsLimit c Z : C h : Y ⟶ Z hm : Mono h ⊢ Fork.ι c ≫ f ≫ h = Fork.ι c ≫ g ≫ h [PROOFSTEP] simp only [← Category.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g i : IsLimit c Z : C h : Y ⟶ Z hm : Mono h ⊢ (Fork.ι c ≫ f) ≫ h = (Fork.ι c ≫ g) ≫ h [PROOFSTEP] exact congrArg (· ≫ h) c.condition [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g i : IsLimit c Z : C h : Y ⟶ Z hm : Mono h this : Fork.ι c ≫ f ≫ h = Fork.ι c ≫ g ≫ h ⊢ Fork.ι c ≫ f ≫ h = Fork.ι c ≫ g ≫ h [PROOFSTEP] simp [this] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g i : IsLimit c Z : C h : Y ⟶ Z hm : Mono h s : Fork (f ≫ h) (g ≫ h) ⊢ Fork.ι s ≫ f = Fork.ι s ≫ g [PROOFSTEP] apply hm.right_cancellation [GOAL] case a C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g i : IsLimit c Z : C h : Y ⟶ Z hm : Mono h s : Fork (f ≫ h) (g ≫ h) ⊢ (Fork.ι s ≫ f) ≫ h = (Fork.ι s ≫ g) ≫ h [PROOFSTEP] simp [s.condition] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g i : IsLimit c Z : C h : Y ⟶ Z hm✝ : Mono h s : Fork (f ≫ h) (g ≫ h) s' : Fork f g := Fork.ofι (Fork.ι s) (_ : Fork.ι s ≫ f = Fork.ι s ≫ g) l : { l // l ≫ Fork.ι c = Fork.ι s' } := Fork.IsLimit.lift' i (Fork.ι s') (_ : Fork.ι s' ≫ f = Fork.ι s' ≫ g) m✝ : ((Functor.const WalkingParallelPair).obj s.pt).obj zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι (Fork.ι c) (_ : Fork.ι c ≫ f ≫ h = Fork.ι c ≫ g ≫ h)).pt).obj zero hm : m✝ ≫ Fork.ι (Fork.ofι (Fork.ι c) (_ : Fork.ι c ≫ f ≫ h = Fork.ι c ≫ g ≫ h)) = Fork.ι s ⊢ m✝ = ↑l [PROOFSTEP] apply Fork.IsLimit.hom_ext i [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g i : IsLimit c Z : C h : Y ⟶ Z hm✝ : Mono h s : Fork (f ≫ h) (g ≫ h) s' : Fork f g := Fork.ofι (Fork.ι s) (_ : Fork.ι s ≫ f = Fork.ι s ≫ g) l : { l // l ≫ Fork.ι c = Fork.ι s' } := Fork.IsLimit.lift' i (Fork.ι s') (_ : Fork.ι s' ≫ f = Fork.ι s' ≫ g) m✝ : ((Functor.const WalkingParallelPair).obj s.pt).obj zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι (Fork.ι c) (_ : Fork.ι c ≫ f ≫ h = Fork.ι c ≫ g ≫ h)).pt).obj zero hm : m✝ ≫ Fork.ι (Fork.ofι (Fork.ι c) (_ : Fork.ι c ≫ f ≫ h = Fork.ι c ≫ g ≫ h)) = Fork.ι s ⊢ m✝ ≫ Fork.ι c = ↑l ≫ Fork.ι c [PROOFSTEP] rw [Fork.ι_ofι] at hm [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g i : IsLimit c Z : C h : Y ⟶ Z hm✝ : Mono h s : Fork (f ≫ h) (g ≫ h) s' : Fork f g := Fork.ofι (Fork.ι s) (_ : Fork.ι s ≫ f = Fork.ι s ≫ g) l : { l // l ≫ Fork.ι c = Fork.ι s' } := Fork.IsLimit.lift' i (Fork.ι s') (_ : Fork.ι s' ≫ f = Fork.ι s' ≫ g) m✝ : ((Functor.const WalkingParallelPair).obj s.pt).obj zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι (Fork.ι c) (_ : Fork.ι c ≫ f ≫ h = Fork.ι c ≫ g ≫ h)).pt).obj zero hm : m✝ ≫ Fork.ι c = Fork.ι s ⊢ m✝ ≫ Fork.ι c = ↑l ≫ Fork.ι c [PROOFSTEP] rw [hm] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Fork f g i : IsLimit c Z : C h : Y ⟶ Z hm✝ : Mono h s : Fork (f ≫ h) (g ≫ h) s' : Fork f g := Fork.ofι (Fork.ι s) (_ : Fork.ι s ≫ f = Fork.ι s ≫ g) l : { l // l ≫ Fork.ι c = Fork.ι s' } := Fork.IsLimit.lift' i (Fork.ι s') (_ : Fork.ι s' ≫ f = Fork.ι s' ≫ g) m✝ : ((Functor.const WalkingParallelPair).obj s.pt).obj zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι (Fork.ι c) (_ : Fork.ι c ≫ f ≫ h = Fork.ι c ≫ g ≫ h)).pt).obj zero hm : m✝ ≫ Fork.ι c = Fork.ι s ⊢ Fork.ι s = ↑l ≫ Fork.ι c [PROOFSTEP] exact l.2.symm [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f✝ g : X✝ ⟶ Y X : C f : X ⟶ X hf : f ≫ f = f c : Fork (𝟙 X) f i : IsLimit c ⊢ f ≫ 𝟙 X = f ≫ f [PROOFSTEP] simp [hf] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f✝ g : X✝ ⟶ Y X : C f : X ⟶ X hf : f ≫ f = f c : Fork (𝟙 X) f i : IsLimit c ⊢ Fork.ι c ≫ IsLimit.lift i (Fork.ofι f (_ : f ≫ 𝟙 X = f ≫ f)) = 𝟙 (((Functor.const WalkingParallelPair).obj c.pt).obj zero) [PROOFSTEP] letI := mono_of_isLimit_fork i [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f✝ g : X✝ ⟶ Y X : C f : X ⟶ X hf : f ≫ f = f c : Fork (𝟙 X) f i : IsLimit c this : Mono (Fork.ι c) := mono_of_isLimit_fork i ⊢ Fork.ι c ≫ IsLimit.lift i (Fork.ofι f (_ : f ≫ 𝟙 X = f ≫ f)) = 𝟙 (((Functor.const WalkingParallelPair).obj c.pt).obj zero) [PROOFSTEP] rw [← cancel_mono_id c.ι, Category.assoc, Fork.IsLimit.lift_ι, Fork.ι_ofι, ← c.condition] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f✝ g : X✝ ⟶ Y X : C f : X ⟶ X hf : f ≫ f = f c : Fork (𝟙 X) f i : IsLimit c this : Mono (Fork.ι c) := mono_of_isLimit_fork i ⊢ Fork.ι c ≫ 𝟙 X = Fork.ι c [PROOFSTEP] exact Category.comp_id c.ι [GOAL] C : Type u inst✝¹ : Category.{v, u} C X Y : C f g : X ⟶ Y inst✝ : IsSplitEpi f ⊢ 𝟙 X ≫ f = (f ≫ section_ f) ≫ f [PROOFSTEP] simp [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ : C f✝ g : X✝ ⟶ Y✝ inst✝¹ : IsSplitEpi f✝ X Y : C f : X ⟶ Y inst✝ : IsSplitEpi f s : Cofork (𝟙 X) (f ≫ section_ f) ⊢ Cofork.π (coconeOfIsSplitEpi f) ≫ section_ f ≫ Cofork.π s = Cofork.π s [PROOFSTEP] dsimp [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ : C f✝ g : X✝ ⟶ Y✝ inst✝¹ : IsSplitEpi f✝ X Y : C f : X ⟶ Y inst✝ : IsSplitEpi f s : Cofork (𝟙 X) (f ≫ section_ f) ⊢ f ≫ section_ f ≫ Cofork.π s = Cofork.π s [PROOFSTEP] rw [← Category.assoc, ← s.condition, Category.id_comp] [GOAL] C : Type u inst✝² : Category.{v, u} C X✝ Y✝ : C f✝ g : X✝ ⟶ Y✝ inst✝¹ : IsSplitEpi f✝ X Y : C f : X ⟶ Y inst✝ : IsSplitEpi f s : Cofork (𝟙 X) (f ≫ section_ f) m✝ : ((Functor.const WalkingParallelPair).obj (coconeOfIsSplitEpi f).pt).obj one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj one hm : Cofork.π (coconeOfIsSplitEpi f) ≫ m✝ = Cofork.π s ⊢ m✝ = section_ f ≫ Cofork.π s [PROOFSTEP] simp [← hm] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g i : IsColimit c W : C h : W ⟶ X hm : Epi h ⊢ (h ≫ f) ≫ Cofork.π c = (h ≫ g) ≫ Cofork.π c [PROOFSTEP] simp only [Category.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g i : IsColimit c W : C h : W ⟶ X hm : Epi h ⊢ h ≫ f ≫ Cofork.π c = h ≫ g ≫ Cofork.π c [PROOFSTEP] exact congrArg (h ≫ ·) c.condition [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g i : IsColimit c W : C h : W ⟶ X hm : Epi h s : Cofork (h ≫ f) (h ≫ g) ⊢ f ≫ Cofork.π s = g ≫ Cofork.π s [PROOFSTEP] apply hm.left_cancellation [GOAL] case a C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g i : IsColimit c W : C h : W ⟶ X hm : Epi h s : Cofork (h ≫ f) (h ≫ g) ⊢ h ≫ f ≫ Cofork.π s = h ≫ g ≫ Cofork.π s [PROOFSTEP] simp_rw [← Category.assoc, s.condition] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g i : IsColimit c W : C h : W ⟶ X hm✝ : Epi h s : Cofork (h ≫ f) (h ≫ g) s' : Cofork f g := Cofork.ofπ (Cofork.π s) (_ : f ≫ Cofork.π s = g ≫ Cofork.π s) l : { l // Cofork.π c ≫ l = Cofork.π s' } := Cofork.IsColimit.desc' i (Cofork.π s') (_ : f ≫ Cofork.π s' = g ≫ Cofork.π s') m✝ : ((Functor.const WalkingParallelPair).obj (Cofork.ofπ (Cofork.π c) (_ : (h ≫ f) ≫ Cofork.π c = (h ≫ g) ≫ Cofork.π c)).pt).obj one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj one hm : Cofork.π (Cofork.ofπ (Cofork.π c) (_ : (h ≫ f) ≫ Cofork.π c = (h ≫ g) ≫ Cofork.π c)) ≫ m✝ = Cofork.π s ⊢ m✝ = ↑l [PROOFSTEP] apply Cofork.IsColimit.hom_ext i [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g i : IsColimit c W : C h : W ⟶ X hm✝ : Epi h s : Cofork (h ≫ f) (h ≫ g) s' : Cofork f g := Cofork.ofπ (Cofork.π s) (_ : f ≫ Cofork.π s = g ≫ Cofork.π s) l : { l // Cofork.π c ≫ l = Cofork.π s' } := Cofork.IsColimit.desc' i (Cofork.π s') (_ : f ≫ Cofork.π s' = g ≫ Cofork.π s') m✝ : ((Functor.const WalkingParallelPair).obj (Cofork.ofπ (Cofork.π c) (_ : (h ≫ f) ≫ Cofork.π c = (h ≫ g) ≫ Cofork.π c)).pt).obj one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj one hm : Cofork.π (Cofork.ofπ (Cofork.π c) (_ : (h ≫ f) ≫ Cofork.π c = (h ≫ g) ≫ Cofork.π c)) ≫ m✝ = Cofork.π s ⊢ Cofork.π c ≫ m✝ = Cofork.π c ≫ ↑l [PROOFSTEP] rw [Cofork.π_ofπ] at hm [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g i : IsColimit c W : C h : W ⟶ X hm✝ : Epi h s : Cofork (h ≫ f) (h ≫ g) s' : Cofork f g := Cofork.ofπ (Cofork.π s) (_ : f ≫ Cofork.π s = g ≫ Cofork.π s) l : { l // Cofork.π c ≫ l = Cofork.π s' } := Cofork.IsColimit.desc' i (Cofork.π s') (_ : f ≫ Cofork.π s' = g ≫ Cofork.π s') m✝ : ((Functor.const WalkingParallelPair).obj (Cofork.ofπ (Cofork.π c) (_ : (h ≫ f) ≫ Cofork.π c = (h ≫ g) ≫ Cofork.π c)).pt).obj one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj one hm : Cofork.π c ≫ m✝ = Cofork.π s ⊢ Cofork.π c ≫ m✝ = Cofork.π c ≫ ↑l [PROOFSTEP] rw [hm] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : C f g : X ⟶ Y c : Cofork f g i : IsColimit c W : C h : W ⟶ X hm✝ : Epi h s : Cofork (h ≫ f) (h ≫ g) s' : Cofork f g := Cofork.ofπ (Cofork.π s) (_ : f ≫ Cofork.π s = g ≫ Cofork.π s) l : { l // Cofork.π c ≫ l = Cofork.π s' } := Cofork.IsColimit.desc' i (Cofork.π s') (_ : f ≫ Cofork.π s' = g ≫ Cofork.π s') m✝ : ((Functor.const WalkingParallelPair).obj (Cofork.ofπ (Cofork.π c) (_ : (h ≫ f) ≫ Cofork.π c = (h ≫ g) ≫ Cofork.π c)).pt).obj one ⟶ ((Functor.const WalkingParallelPair).obj s.pt).obj one hm : Cofork.π c ≫ m✝ = Cofork.π s ⊢ Cofork.π s = Cofork.π c ≫ ↑l [PROOFSTEP] exact l.2.symm [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f✝ g : X✝ ⟶ Y X : C f : X ⟶ X hf : f ≫ f = f c : Cofork (𝟙 X) f i : IsColimit c ⊢ 𝟙 X ≫ f = f ≫ f [PROOFSTEP] simp [hf] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f✝ g : X✝ ⟶ Y X : C f : X ⟶ X hf : f ≫ f = f c : Cofork (𝟙 X) f i : IsColimit c ⊢ IsColimit.desc i (Cofork.ofπ f (_ : 𝟙 X ≫ f = f ≫ f)) ≫ Cofork.π c = 𝟙 (((Functor.const WalkingParallelPair).obj c.pt).obj one) [PROOFSTEP] letI := epi_of_isColimit_cofork i [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f✝ g : X✝ ⟶ Y X : C f : X ⟶ X hf : f ≫ f = f c : Cofork (𝟙 X) f i : IsColimit c this : Epi (Cofork.π c) := epi_of_isColimit_cofork i ⊢ IsColimit.desc i (Cofork.ofπ f (_ : 𝟙 X ≫ f = f ≫ f)) ≫ Cofork.π c = 𝟙 (((Functor.const WalkingParallelPair).obj c.pt).obj one) [PROOFSTEP] rw [← cancel_epi_id c.π, ← Category.assoc, Cofork.IsColimit.π_desc, Cofork.π_ofπ, ← c.condition] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y : C f✝ g : X✝ ⟶ Y X : C f : X ⟶ X hf : f ≫ f = f c : Cofork (𝟙 X) f i : IsColimit c this : Epi (Cofork.π c) := epi_of_isColimit_cofork i ⊢ 𝟙 X ≫ Cofork.π c = Cofork.π c [PROOFSTEP] exact Category.id_comp _
% LRR | ROSL | Robust Orthonormal Subspace Learning (Shu et al. 2014) % process_video('LRR', 'ROSL', 'dataset/demo.avi', 'output/demo_LRR-ROSL.avi'); K = 1; % The initialiation of the subspace dimension tol = 1e-5; maxIter = 30; lambda = 1e-1; %2e-3; [~,~,E_hat,A_hat] = inexact_alm_rosl(M,K,lambda,tol,maxIter); L = A_hat; S = E_hat;
[STATEMENT] lemma \<psi>T_W : assumes "T \<in> GRepHomSet (\<star>) W" shows "\<psi> T ` indV \<subseteq> W" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<psi> T ` indV \<subseteq> W [PROOF STEP] proof (rule image_subsetI) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] from assms [PROOF STATE] proof (chain) picking this: T \<in> GRepHomSet (\<star>) W [PROOF STEP] have T: "VectorSpaceHom induced_smult.fsmult indV fsmult' (\<psi> T)" [PROOF STATE] proof (prove) using this: T \<in> GRepHomSet (\<star>) W goal (1 subgoal): 1. VectorSpaceHom (\<currency>\<currency>) indV (\<sharp>\<star>) (\<psi> T) [PROOF STEP] using \<psi>D_VectorSpaceHom [PROOF STATE] proof (prove) using this: T \<in> GRepHomSet (\<star>) W ?T \<in> GRepHomSet (\<star>) W \<Longrightarrow> VectorSpaceHom (\<currency>\<currency>) indV (\<sharp>\<star>) (\<psi> ?T) goal (1 subgoal): 1. VectorSpaceHom (\<currency>\<currency>) indV (\<sharp>\<star>) (\<psi> T) [PROOF STEP] by fast [PROOF STATE] proof (state) this: VectorSpaceHom (\<currency>\<currency>) indV (\<sharp>\<star>) (\<psi> T) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] fix f [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] assume "f \<in> indV" [PROOF STATE] proof (state) this: f \<in> indV goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] from this [PROOF STATE] proof (chain) picking this: f \<in> indV [PROOF STEP] obtain cs where cs:"length cs = length (concat indVfbasis)" "f = cs \<bullet>\<currency>\<currency> (concat indVfbasis)" [PROOF STATE] proof (prove) using this: f \<in> indV goal (1 subgoal): 1. (\<And>cs. \<lbrakk>length cs = length (concat indVfbasis); f = cs \<bullet>\<currency>\<currency> concat indVfbasis\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using indVfbasis scalar_mult.in_Span_obtain_same_length_coeffs [PROOF STATE] proof (prove) using this: f \<in> indV set (concat indVfbasis) \<subseteq> indV \<and> indV = R_scalar_mult.RSpan UNIV (\<currency>\<currency>) (concat indVfbasis) \<and> R_scalar_mult.R_lin_independent UNIV (\<currency>\<currency>) (concat indVfbasis) ?n \<in> R_scalar_mult.RSpan UNIV ?smult ?ms \<Longrightarrow> \<exists>rs. set rs \<subseteq> UNIV \<and> length rs = length ?ms \<and> ?n = scalar_mult.lincomb ?smult rs ?ms goal (1 subgoal): 1. (\<And>cs. \<lbrakk>length cs = length (concat indVfbasis); f = cs \<bullet>\<currency>\<currency> concat indVfbasis\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by fast [PROOF STATE] proof (state) this: length cs = length (concat indVfbasis) f = cs \<bullet>\<currency>\<currency> concat indVfbasis goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] from cs(1) [PROOF STATE] proof (chain) picking this: length cs = length (concat indVfbasis) [PROOF STEP] obtain css where css: "cs = concat css" "list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis" [PROOF STATE] proof (prove) using this: length cs = length (concat indVfbasis) goal (1 subgoal): 1. (\<And>css. \<lbrakk>cs = concat css; list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using match_concat [PROOF STATE] proof (prove) using this: length cs = length (concat indVfbasis) \<forall>as. length as = length (concat ?bss) \<longrightarrow> (\<exists>css. as = concat css \<and> list_all2 (\<lambda>xs ys. length xs = length ys) css ?bss) goal (1 subgoal): 1. (\<And>css. \<lbrakk>cs = concat css; list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by fast [PROOF STATE] proof (state) this: cs = concat css list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] from assms cs(2) css [PROOF STATE] proof (chain) picking this: T \<in> GRepHomSet (\<star>) W f = cs \<bullet>\<currency>\<currency> concat indVfbasis cs = concat css list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis [PROOF STEP] have "\<psi> T f = \<psi> T (\<Sum>(cs,hfvs)\<leftarrow>zip css indVfbasis. cs \<bullet>\<currency>\<currency> hfvs)" [PROOF STATE] proof (prove) using this: T \<in> GRepHomSet (\<star>) W f = cs \<bullet>\<currency>\<currency> concat indVfbasis cs = concat css list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis goal (1 subgoal): 1. \<psi> T f = \<psi> T (sum_list (map2 (\<bullet>\<currency>\<currency>) css indVfbasis)) [PROOF STEP] using VectorSpace.lincomb_concat[OF fVectorSpace_indspace] [PROOF STATE] proof (prove) using this: T \<in> GRepHomSet (\<star>) W f = cs \<bullet>\<currency>\<currency> concat indVfbasis cs = concat css list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis list_all2 (\<lambda>rs ms. length rs = length ms) ?rss ?mss \<Longrightarrow> concat ?rss \<bullet>\<currency>\<currency> concat ?mss = sum_list (map2 (\<bullet>\<currency>\<currency>) ?rss ?mss) goal (1 subgoal): 1. \<psi> T f = \<psi> T (sum_list (map2 (\<bullet>\<currency>\<currency>) css indVfbasis)) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<psi> T f = \<psi> T (sum_list (map2 (\<bullet>\<currency>\<currency>) css indVfbasis)) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] also [PROOF STATE] proof (state) this: \<psi> T f = \<psi> T (sum_list (map2 (\<bullet>\<currency>\<currency>) css indVfbasis)) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] have "\<dots> = (\<Sum>(cs,hfvs)\<leftarrow>zip css indVfbasis. \<psi> T (cs \<bullet>\<currency>\<currency> hfvs))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<psi> T (sum_list (map2 (\<bullet>\<currency>\<currency>) css indVfbasis)) = sum_list (map2 (\<lambda>cs hfvs. \<psi> T (cs \<bullet>\<currency>\<currency> hfvs)) css indVfbasis) [PROOF STEP] using set_zip_rightD[of _ _ css indVfbasis] indVfbasis_indV VectorSpace.lincomb_closed[OF GRep.fVectorSpace_indspace] VectorSpaceHom.im_sum_list_prod[OF T] [PROOF STATE] proof (prove) using this: (?x, ?y) \<in> set (zip css indVfbasis) \<Longrightarrow> ?y \<in> set indVfbasis ?hfvs \<in> set indVfbasis \<Longrightarrow> set ?hfvs \<subseteq> indV \<lbrakk>set ?rs \<subseteq> UNIV; set ?ms \<subseteq> indV\<rbrakk> \<Longrightarrow> ?rs \<bullet>\<currency>\<currency> ?ms \<in> indV set (map (\<lambda>(x, y). ?f x y) ?xys) \<subseteq> indV \<Longrightarrow> \<psi> T (\<Sum>(x, y)\<leftarrow>?xys. ?f x y) = (\<Sum>(x, y)\<leftarrow>?xys. \<psi> T (?f x y)) goal (1 subgoal): 1. \<psi> T (sum_list (map2 (\<bullet>\<currency>\<currency>) css indVfbasis)) = sum_list (map2 (\<lambda>cs hfvs. \<psi> T (cs \<bullet>\<currency>\<currency> hfvs)) css indVfbasis) [PROOF STEP] by force [PROOF STATE] proof (state) this: \<psi> T (sum_list (map2 (\<bullet>\<currency>\<currency>) css indVfbasis)) = sum_list (map2 (\<lambda>cs hfvs. \<psi> T (cs \<bullet>\<currency>\<currency> hfvs)) css indVfbasis) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] finally [PROOF STATE] proof (chain) picking this: \<psi> T f = sum_list (map2 (\<lambda>cs hfvs. \<psi> T (cs \<bullet>\<currency>\<currency> hfvs)) css indVfbasis) [PROOF STEP] have "\<psi> T f = (\<Sum>(cs,\<psi>Thfvs)\<leftarrow>zip css (map (map (\<psi> T)) indVfbasis). cs \<bullet>\<sharp>\<star> \<psi>Thfvs)" [PROOF STATE] proof (prove) using this: \<psi> T f = sum_list (map2 (\<lambda>cs hfvs. \<psi> T (cs \<bullet>\<currency>\<currency> hfvs)) css indVfbasis) goal (1 subgoal): 1. \<psi> T f = sum_list (map2 (\<bullet>\<sharp>\<star>) css (map (map (\<psi> T)) indVfbasis)) [PROOF STEP] using set_zip_rightD[of _ _ css indVfbasis] indVfbasis_indV VectorSpaceHom.distrib_lincomb[OF T] sum_list_prod_cong[of "zip css indVfbasis" "\<lambda>cs hfvs. \<psi> T (cs \<bullet>\<currency>\<currency> hfvs)" "\<lambda>cs hfvs. cs \<bullet>\<sharp>\<star> (map (\<psi> T) hfvs)" ] sum_list_prod_map2[of "\<lambda>cs \<psi>Thfvs. cs \<bullet>\<sharp>\<star> \<psi>Thfvs" css "map (\<psi> T)"] [PROOF STATE] proof (prove) using this: \<psi> T f = sum_list (map2 (\<lambda>cs hfvs. \<psi> T (cs \<bullet>\<currency>\<currency> hfvs)) css indVfbasis) (?x, ?y) \<in> set (zip css indVfbasis) \<Longrightarrow> ?y \<in> set indVfbasis ?hfvs \<in> set indVfbasis \<Longrightarrow> set ?hfvs \<subseteq> indV \<lbrakk>set ?rs \<subseteq> UNIV; set ?ms \<subseteq> indV\<rbrakk> \<Longrightarrow> \<psi> T (?rs \<bullet>\<currency>\<currency> ?ms) = ?rs \<bullet>\<sharp>\<star> map (\<psi> T) ?ms \<forall>(x, y)\<in>set (zip css indVfbasis). \<psi> T (x \<bullet>\<currency>\<currency> y) = x \<bullet>\<sharp>\<star> map (\<psi> T) y \<Longrightarrow> sum_list (map2 (\<lambda>x y. \<psi> T (x \<bullet>\<currency>\<currency> y)) css indVfbasis) = sum_list (map2 (\<lambda>x y. x \<bullet>\<sharp>\<star> map (\<psi> T) y) css indVfbasis) sum_list (map2 (\<bullet>\<sharp>\<star>) css (map (map (\<psi> T)) ?bs)) = sum_list (map2 (\<lambda>a b. a \<bullet>\<sharp>\<star> map (\<psi> T) b) css ?bs) goal (1 subgoal): 1. \<psi> T f = sum_list (map2 (\<bullet>\<sharp>\<star>) css (map (map (\<psi> T)) indVfbasis)) [PROOF STEP] by fastforce [PROOF STATE] proof (state) this: \<psi> T f = sum_list (map2 (\<bullet>\<sharp>\<star>) css (map (map (\<psi> T)) indVfbasis)) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] moreover [PROOF STATE] proof (state) this: \<psi> T f = sum_list (map2 (\<bullet>\<sharp>\<star>) css (map (map (\<psi> T)) indVfbasis)) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] from css(2) [PROOF STATE] proof (chain) picking this: list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis [PROOF STEP] have "list_all2 (\<lambda>xs ys. length xs = length ys) css (map (map (\<psi> T)) indVfbasis)" [PROOF STATE] proof (prove) using this: list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis goal (1 subgoal): 1. list_all2 (\<lambda>xs ys. length xs = length ys) css (map (map (\<psi> T)) indVfbasis) [PROOF STEP] using list_all2_iff[of _ css indVfbasis] set_zip_map2 list_all2_iff[of _ css "map (map (\<psi> T)) indVfbasis"] [PROOF STATE] proof (prove) using this: list_all2 (\<lambda>xs ys. length xs = length ys) css indVfbasis list_all2 ?P css indVfbasis = (length css = length indVfbasis \<and> (\<forall>(x, y)\<in>set (zip css indVfbasis). ?P x y)) (?a, ?z) \<in> set (zip ?xs (map ?f ?ys)) \<Longrightarrow> \<exists>b. (?a, b) \<in> set (zip ?xs ?ys) \<and> ?z = ?f b list_all2 ?P css (map (map (\<psi> T)) indVfbasis) = (length css = length (map (map (\<psi> T)) indVfbasis) \<and> (\<forall>(x, y)\<in>set (zip css (map (map (\<psi> T)) indVfbasis)). ?P x y)) goal (1 subgoal): 1. list_all2 (\<lambda>xs ys. length xs = length ys) css (map (map (\<psi> T)) indVfbasis) [PROOF STEP] by force [PROOF STATE] proof (state) this: list_all2 (\<lambda>xs ys. length xs = length ys) css (map (map (\<psi> T)) indVfbasis) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: \<psi> T f = sum_list (map2 (\<bullet>\<sharp>\<star>) css (map (map (\<psi> T)) indVfbasis)) list_all2 (\<lambda>xs ys. length xs = length ys) css (map (map (\<psi> T)) indVfbasis) [PROOF STEP] have "\<psi> T f = (concat css) \<bullet>\<sharp>\<star> (concat (negHorbit_homVfbasis T))" [PROOF STATE] proof (prove) using this: \<psi> T f = sum_list (map2 (\<bullet>\<sharp>\<star>) css (map (map (\<psi> T)) indVfbasis)) list_all2 (\<lambda>xs ys. length xs = length ys) css (map (map (\<psi> T)) indVfbasis) goal (1 subgoal): 1. \<psi> T f = concat css \<bullet>\<sharp>\<star> concat (negHorbit_homVfbasis T) [PROOF STEP] using HRep.flincomb_concat map_concat[of "\<psi> T"] \<psi>D_im[OF assms] [PROOF STATE] proof (prove) using this: \<psi> T f = sum_list (map2 (\<bullet>\<sharp>\<star>) css (map (map (\<psi> T)) indVfbasis)) list_all2 (\<lambda>xs ys. length xs = length ys) css (map (map (\<psi> T)) indVfbasis) list_all2 (\<lambda>rs ms. length rs = length ms) ?rss ?mss \<Longrightarrow> concat ?rss \<bullet>\<sharp>\<star> concat ?mss = sum_list (map2 (\<bullet>\<sharp>\<star>) ?rss ?mss) map (\<psi> T) (concat ?xs) = concat (map (map (\<psi> T)) ?xs) map (map (\<psi> T)) indVfbasis = negHorbit_homVfbasis T goal (1 subgoal): 1. \<psi> T f = concat css \<bullet>\<sharp>\<star> concat (negHorbit_homVfbasis T) [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<psi> T f = concat css \<bullet>\<sharp>\<star> concat (negHorbit_homVfbasis T) goal (1 subgoal): 1. \<And>x. x \<in> indV \<Longrightarrow> \<psi> T x \<in> W [PROOF STEP] thus "\<psi> T f \<in> W" [PROOF STATE] proof (prove) using this: \<psi> T f = concat css \<bullet>\<sharp>\<star> concat (negHorbit_homVfbasis T) goal (1 subgoal): 1. \<psi> T f \<in> W [PROOF STEP] using assms negHorbit_HomSet_indVfbasis_W HRep.flincomb_closed [PROOF STATE] proof (prove) using this: \<psi> T f = concat css \<bullet>\<sharp>\<star> concat (negHorbit_homVfbasis T) T \<in> GRepHomSet (\<star>) W ?T \<in> GRepHomSet (\<star>) W \<Longrightarrow> set (concat (negHorbit_homVfbasis ?T)) \<subseteq> W \<lbrakk>set ?rs \<subseteq> UNIV; set ?ms \<subseteq> W\<rbrakk> \<Longrightarrow> ?rs \<bullet>\<sharp>\<star> ?ms \<in> W goal (1 subgoal): 1. \<psi> T f \<in> W [PROOF STEP] by simp [PROOF STATE] proof (state) this: \<psi> T f \<in> W goal: No subgoals! [PROOF STEP] qed
module Tactic.Reflection.Quote where open import Prelude open import Builtin.Reflection open import Builtin.Float open import Tactic.Reflection.Quote.Class public open import Tactic.Deriving.Quotable open import Container.Traversable --- Instances --- private QuoteLit : {A : Set} → (A → Literal) → Quotable A ` {{QuoteLit f}} x = lit (f x) -- Primitive types -- instance QuotableNat = QuoteLit nat QuotableWord64 = QuoteLit word64 QuotableFloat = QuoteLit float QuotableString = QuoteLit string QuotableChar = QuoteLit char QuotableName = QuoteLit name -- Standard data types -- unquoteDecl QuotableBool = deriveQuotable QuotableBool (quote Bool) unquoteDecl QuotableList = deriveQuotable QuotableList (quote List) unquoteDecl QuotableMaybe = deriveQuotable QuotableMaybe (quote Maybe) unquoteDecl QuotableEither = deriveQuotable QuotableEither (quote Either) instance QuotableΣ : ∀ {a b} {A : Set a} {B : A → Set b} {{_ : Quotable A}} {{_ : {x : A} → Quotable (B x)}} → Quotable (Σ A λ a → B a) QuotableΣ = record { ` = λ { (x , y) → con (quote _,_) ((vArg (` x)) ∷ vArg (` y) ∷ [])} } unquoteDecl Quotable⊤ = deriveQuotable Quotable⊤ (quote ⊤) unquoteDecl Quotable⊥ = deriveQuotable Quotable⊥ (quote ⊥) unquoteDecl Quotable≡ = deriveQuotable Quotable≡ (quote _≡_) unquoteDecl QuotableComparison = deriveQuotable QuotableComparison (quote Comparison) unquoteDecl QuotableLessNat = deriveQuotable QuotableLessNat (quote LessNat) unquoteDecl QuotableInt = deriveQuotable QuotableInt (quote Int) -- The reflection machinery can't deal with computational irrelevance (..) -- unquoteDecl QuotableFin = deriveQuotable QuotableFin (quote Fin) -- unquoteDecl QuotableVec = deriveQuotable QuotableVec (quote Vec) instance QuotableFin : ∀ {n} → Quotable (Fin n) ` {{QuotableFin}} zero = con (quote Fin.zero) [] ` {{QuotableFin}} (suc i) = con (quote Fin.suc) (vArg (` i) ∷ []) QuotableVec : ∀ {a} {A : Set a} {n} {{_ : Quotable A}} → Quotable (Vec A n) ` {{QuotableVec}} [] = con (quote Vec.[]) [] ` {{QuotableVec}} (x ∷ xs) = con (quote Vec._∷_) (vArg (` x) ∷ vArg (` xs) ∷ []) -- Reflection types -- instance QuotableMeta : Quotable Meta ` {{QuotableMeta}} x = lit (meta x) private deriveQuotableTermTypes : Vec Name _ → TC ⊤ deriveQuotableTermTypes is = do let ts : Vec Name _ ts = quote Term ∷ quote Clause ∷ quote Sort ∷ [] its = ⦇ is , ts ⦈ traverse (uncurry declareQuotableInstance) its traverse (uncurry defineQuotableInstance) its pure _ unquoteDecl QuotableVisibility QuotableRelevance QuotableArgInfo QuotableArg QuotableAbs QuotableLiteral = do deriveQuotable QuotableVisibility (quote Visibility) deriveQuotable QuotableRelevance (quote Relevance) deriveQuotable QuotableArgInfo (quote ArgInfo) deriveQuotable QuotableArg (quote Arg) deriveQuotable QuotableAbs (quote Abs) deriveQuotable QuotableLiteral (quote Literal) {-# TERMINATING #-} unquoteDecl QuotablePattern QuotableTerm QuotableClause QuotableSort = do deriveQuotable QuotablePattern (quote Pattern) deriveQuotableTermTypes (QuotableTerm ∷ QuotableClause ∷ QuotableSort ∷ []) quoteList : List Term → Term quoteList = foldr (λ x xs → con (quote List._∷_) (vArg x ∷ vArg xs ∷ [])) (con (quote List.[]) [])
import LMT variable {I} [Nonempty I] {E} [Nonempty E] [Nonempty (A I E)] example {a1 a2 a3 : A I E} : ((a3).write i1 (v3)) = ((a3).write i1 (v1)) → (v1) ≠ (v3) → False := by arr
module API import Test.API import Test.API3 import Test.API2
[GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y : Kleisli T f : X ⟶ Y ⊢ 𝟙 X ≫ f = f [PROOFSTEP] dsimp -- Porting note: unfold comp [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y : Kleisli T f : X ⟶ Y ⊢ NatTrans.app (Monad.η T) X ≫ T.map f ≫ NatTrans.app (Monad.μ T) Y = f [PROOFSTEP] rw [← T.η.naturality_assoc f, T.left_unit] [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y : Kleisli T f : X ⟶ Y ⊢ (𝟭 C).map f ≫ 𝟙 (T.obj Y) = f [PROOFSTEP] apply Category.comp_id [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C W✝ X✝ Y✝ Z✝ : Kleisli T f : W✝ ⟶ X✝ g : X✝ ⟶ Y✝ h : Y✝ ⟶ Z✝ ⊢ (f ≫ g) ≫ h = f ≫ g ≫ h [PROOFSTEP] simp only [Functor.map_comp, Category.assoc, Monad.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C W✝ X✝ Y✝ Z✝ : Kleisli T f : W✝ ⟶ X✝ g : X✝ ⟶ Y✝ h : Y✝ ⟶ Z✝ ⊢ f ≫ T.map g ≫ NatTrans.app (Monad.μ T) Y✝ ≫ T.map h ≫ NatTrans.app (Monad.μ T) Z✝ = f ≫ T.map g ≫ T.map (T.map h) ≫ NatTrans.app (Monad.μ T) (T.obj Z✝) ≫ NatTrans.app (Monad.μ T) Z✝ [PROOFSTEP] erw [T.μ.naturality_assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y Z : C f : X ⟶ Y g : Y ⟶ Z ⊢ { obj := fun X => X, map := fun {X Y} f => f ≫ NatTrans.app (Monad.η T) Y }.map (f ≫ g) = { obj := fun X => X, map := fun {X Y} f => f ≫ NatTrans.app (Monad.η T) Y }.map f ≫ { obj := fun X => X, map := fun {X Y} f => f ≫ NatTrans.app (Monad.η T) Y }.map g [PROOFSTEP] change _ = (f ≫ (Monad.η T).app Y) ≫ T.map (g ≫ (Monad.η T).app Z) ≫ T.μ.app Z [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y Z : C f : X ⟶ Y g : Y ⟶ Z ⊢ { obj := fun X => X, map := fun {X Y} f => f ≫ NatTrans.app (Monad.η T) Y }.map (f ≫ g) = (f ≫ NatTrans.app (Monad.η T) Y) ≫ T.map (g ≫ NatTrans.app (Monad.η T) Z) ≫ NatTrans.app (Monad.μ T) Z [PROOFSTEP] simp [← T.η.naturality g] [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y Z : Kleisli T f : X ⟶ Y g : Y ⟶ Z ⊢ { obj := fun X => T.obj X, map := fun {x Y} f => T.map f ≫ NatTrans.app (Monad.μ T) Y }.map (f ≫ g) = { obj := fun X => T.obj X, map := fun {x Y} f => T.map f ≫ NatTrans.app (Monad.μ T) Y }.map f ≫ { obj := fun X => T.obj X, map := fun {x Y} f => T.map f ≫ NatTrans.app (Monad.μ T) Y }.map g [PROOFSTEP] change T.map (f ≫ T.map g ≫ T.μ.app Z) ≫ T.μ.app Z = _ [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y Z : Kleisli T f : X ⟶ Y g : Y ⟶ Z ⊢ T.map (f ≫ T.map g ≫ NatTrans.app (Monad.μ T) Z) ≫ NatTrans.app (Monad.μ T) Z = { obj := fun X => T.obj X, map := fun {x Y} f => T.map f ≫ NatTrans.app (Monad.μ T) Y }.map f ≫ { obj := fun X => T.obj X, map := fun {x Y} f => T.map f ≫ NatTrans.app (Monad.μ T) Y }.map g [PROOFSTEP] simp only [Functor.map_comp, Category.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y Z : Kleisli T f : X ⟶ Y g : Y ⟶ Z ⊢ T.map f ≫ T.map (T.map g) ≫ T.map (NatTrans.app (Monad.μ T) Z) ≫ NatTrans.app (Monad.μ T) Z = T.map f ≫ NatTrans.app (Monad.μ T) Y ≫ T.map g ≫ NatTrans.app (Monad.μ T) Z [PROOFSTEP] erw [← T.μ.naturality_assoc g, T.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y Z : Kleisli T f : X ⟶ Y g : Y ⟶ Z ⊢ T.map f ≫ T.map (T.map g) ≫ NatTrans.app (Monad.μ T) (T.obj Z) ≫ NatTrans.app (Monad.μ T) Z = T.map f ≫ (T.toFunctor ⋙ T.toFunctor).map g ≫ NatTrans.app (Monad.μ T) (T.obj Z) ≫ NatTrans.app (Monad.μ T) Z [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y : C Z : Kleisli T f : X ⟶ Y g : Y ⟶ (fromKleisli T).obj Z ⊢ ↑((fun X Y => Equiv.refl (X ⟶ T.obj Y)) X Z).symm (f ≫ g) = (toKleisli T).map f ≫ ↑((fun X Y => Equiv.refl (X ⟶ T.obj Y)) Y Z).symm g [PROOFSTEP] change f ≫ g = (f ≫ T.η.app Y) ≫ T.map g ≫ T.μ.app Z [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y : C Z : Kleisli T f : X ⟶ Y g : Y ⟶ (fromKleisli T).obj Z ⊢ f ≫ g = (f ≫ NatTrans.app (Monad.η T) Y) ≫ T.map g ≫ NatTrans.app (Monad.μ T) Z [PROOFSTEP] rw [Category.assoc, ← T.η.naturality_assoc g, Functor.id_map] [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y : C Z : Kleisli T f : X ⟶ Y g : Y ⟶ (fromKleisli T).obj Z ⊢ f ≫ g = f ≫ g ≫ NatTrans.app (Monad.η T) ((fromKleisli T).obj Z) ≫ NatTrans.app (Monad.μ T) Z [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C T : Monad C X Y : C Z : Kleisli T f : X ⟶ Y g : Y ⟶ (fromKleisli T).obj Z ⊢ f ≫ g = f ≫ g ≫ NatTrans.app (Monad.η T) (T.obj Z) ≫ NatTrans.app (Monad.μ T) Z [PROOFSTEP] simp [Monad.left_unit] [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X✝ Y✝ : Cokleisli U f : X✝ ⟶ Y✝ ⊢ 𝟙 X✝ ≫ f = f [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X✝ Y✝ : Cokleisli U f : X✝ ⟶ Y✝ ⊢ NatTrans.app (Comonad.δ U) X✝ ≫ U.map (NatTrans.app (Comonad.ε U) X✝) ≫ f = f [PROOFSTEP] rw [U.right_counit_assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X Y Z W : Cokleisli U f : X ⟶ Y g : Y ⟶ Z h : Z ⟶ W ⊢ (f ≫ g) ≫ h = f ≫ g ≫ h [PROOFSTEP] change U.δ.app X ≫ U.map (U.δ.app X ≫ U.map f ≫ g) ≫ h = U.δ.app X ≫ U.map f ≫ (U.δ.app Y ≫ U.map g ≫ h) -- Porting note: something was broken here and was easier just to redo from scratch [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X Y Z W : Cokleisli U f : X ⟶ Y g : Y ⟶ Z h : Z ⟶ W ⊢ NatTrans.app (Comonad.δ U) X ≫ U.map (NatTrans.app (Comonad.δ U) X ≫ U.map f ≫ g) ≫ h = NatTrans.app (Comonad.δ U) X ≫ U.map f ≫ NatTrans.app (Comonad.δ U) Y ≫ U.map g ≫ h [PROOFSTEP] simp only [Functor.map_comp, ← Category.assoc, eq_whisker] [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X Y Z W : Cokleisli U f : X ⟶ Y g : Y ⟶ Z h : Z ⟶ W ⊢ (((NatTrans.app (Comonad.δ U) X ≫ U.map (NatTrans.app (Comonad.δ U) X)) ≫ U.map (U.map f)) ≫ U.map g) ≫ h = (((NatTrans.app (Comonad.δ U) X ≫ U.map f) ≫ NatTrans.app (Comonad.δ U) Y) ≫ U.map g) ≫ h [PROOFSTEP] simp only [Category.assoc, U.δ.naturality, Functor.comp_map, U.coassoc_assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X Y x✝ : C f : X ⟶ Y g : Y ⟶ x✝ ⊢ { obj := fun X => X, map := fun {X x} f => NatTrans.app (Comonad.ε U) X ≫ f }.map (f ≫ g) = { obj := fun X => X, map := fun {X x} f => NatTrans.app (Comonad.ε U) X ≫ f }.map f ≫ { obj := fun X => X, map := fun {X x} f => NatTrans.app (Comonad.ε U) X ≫ f }.map g [PROOFSTEP] change U.ε.app X ≫ f ≫ g = U.δ.app X ≫ U.map (U.ε.app X ≫ f) ≫ U.ε.app Y ≫ g [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X Y x✝ : C f : X ⟶ Y g : Y ⟶ x✝ ⊢ NatTrans.app (Comonad.ε U) X ≫ f ≫ g = NatTrans.app (Comonad.δ U) X ≫ U.map (NatTrans.app (Comonad.ε U) X ≫ f) ≫ NatTrans.app (Comonad.ε U) Y ≫ g [PROOFSTEP] simp [← U.ε.naturality g] [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X Y x✝ : Cokleisli U f : X ⟶ Y g : Y ⟶ x✝ ⊢ { obj := fun X => U.obj X, map := fun {X x} f => NatTrans.app (Comonad.δ U) X ≫ U.map f }.map (f ≫ g) = { obj := fun X => U.obj X, map := fun {X x} f => NatTrans.app (Comonad.δ U) X ≫ U.map f }.map f ≫ { obj := fun X => U.obj X, map := fun {X x} f => NatTrans.app (Comonad.δ U) X ≫ U.map f }.map g [PROOFSTEP] change U.δ.app X ≫ U.map (U.δ.app X ≫ U.map f ≫ g) = (U.δ.app X ≫ U.map f) ≫ (U.δ.app Y ≫ U.map g) [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X Y x✝ : Cokleisli U f : X ⟶ Y g : Y ⟶ x✝ ⊢ NatTrans.app (Comonad.δ U) X ≫ U.map (NatTrans.app (Comonad.δ U) X ≫ U.map f ≫ g) = (NatTrans.app (Comonad.δ U) X ≫ U.map f) ≫ NatTrans.app (Comonad.δ U) Y ≫ U.map g [PROOFSTEP] simp only [Functor.map_comp, ← Category.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X Y x✝ : Cokleisli U f : X ⟶ Y g : Y ⟶ x✝ ⊢ ((NatTrans.app (Comonad.δ U) X ≫ U.map (NatTrans.app (Comonad.δ U) X)) ≫ U.map (U.map f)) ≫ U.map g = ((NatTrans.app (Comonad.δ U) X ≫ U.map f) ≫ NatTrans.app (Comonad.δ U) Y) ≫ U.map g [PROOFSTEP] rw [Comonad.coassoc] [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X Y x✝ : Cokleisli U f : X ⟶ Y g : Y ⟶ x✝ ⊢ ((NatTrans.app (Comonad.δ U) X ≫ NatTrans.app (Comonad.δ U) (U.obj X)) ≫ U.map (U.map f)) ≫ U.map g = ((NatTrans.app (Comonad.δ U) X ≫ U.map f) ≫ NatTrans.app (Comonad.δ U) Y) ≫ U.map g [PROOFSTEP] simp only [Category.assoc, NatTrans.naturality, Functor.comp_map] [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X : Cokleisli U Y x✝ : C f : (fromCokleisli U).obj X ⟶ Y g : Y ⟶ x✝ ⊢ ↑((fun X Y => Equiv.refl (U.obj X ⟶ Y)) X x✝) (f ≫ g) = ↑((fun X Y => Equiv.refl (U.obj X ⟶ Y)) X Y) f ≫ (toCokleisli U).map g [PROOFSTEP] change f ≫ g = U.δ.app X ≫ U.map f ≫ U.ε.app Y ≫ g [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X : Cokleisli U Y x✝ : C f : (fromCokleisli U).obj X ⟶ Y g : Y ⟶ x✝ ⊢ f ≫ g = NatTrans.app (Comonad.δ U) X ≫ U.map f ≫ NatTrans.app (Comonad.ε U) Y ≫ g [PROOFSTEP] erw [← Category.assoc (U.map f), U.ε.naturality] [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X : Cokleisli U Y x✝ : C f : (fromCokleisli U).obj X ⟶ Y g : Y ⟶ x✝ ⊢ f ≫ g = NatTrans.app (Comonad.δ U) X ≫ (NatTrans.app (Comonad.ε U) ((fromCokleisli U).obj X) ≫ (𝟭 C).map f) ≫ g [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C U : Comonad C X : Cokleisli U Y x✝ : C f : (fromCokleisli U).obj X ⟶ Y g : Y ⟶ x✝ ⊢ f ≫ g = NatTrans.app (Comonad.δ U) X ≫ (NatTrans.app (Comonad.ε U) (U.obj X) ≫ f) ≫ g [PROOFSTEP] simp only [← Category.assoc, Comonad.left_counit, Category.id_comp]
function my_diary_flush() tmp_status=get(0,'Diary'); if strcmp(tmp_status, 'on') diary off diary on end end
[GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] letI := B.uniformSpace [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this : UniformSpace G := AddGroupFilterBasis.uniformSpace B ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] haveI := B.uniformAddGroup [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this : UniformAddGroup G ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] suffices F ×ˢ F ≤ uniformity G ↔ ∀ U ∈ B, ∃ M ∈ F, ∀ (x) (_ : x ∈ M) (y) (_ : y ∈ M), y - x ∈ U by constructor <;> rintro ⟨h', h⟩ <;> refine' ⟨h', _⟩ <;> [rwa [← this]; rwa [this]] [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] constructor <;> rintro ⟨h', h⟩ <;> refine' ⟨h', _⟩ <;> [rwa [← this]; rwa [this]] [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ Cauchy F ↔ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] constructor [GOAL] case mp G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ Cauchy F → NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] rintro ⟨h', h⟩ [GOAL] case mpr G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ (NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U) → Cauchy F [PROOFSTEP] rintro ⟨h', h⟩ [GOAL] case mp.intro G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U h' : NeBot F h : F ×ˢ F ≤ uniformity G ⊢ NeBot F ∧ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] refine' ⟨h', _⟩ [GOAL] case mpr.intro G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U h' : NeBot F h : ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ Cauchy F [PROOFSTEP] refine' ⟨h', _⟩ [GOAL] case mp.intro G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U h' : NeBot F h : F ×ˢ F ≤ uniformity G ⊢ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] rwa [← this] [GOAL] case mpr.intro G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝¹ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this✝ : UniformAddGroup G this : F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U h' : NeBot F h : ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U ⊢ F ×ˢ F ≤ uniformity G [PROOFSTEP] rwa [this] [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this : UniformAddGroup G ⊢ F ×ˢ F ≤ uniformity G ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] rw [uniformity_eq_comap_nhds_zero G, ← map_le_iff_le_comap] [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this : UniformAddGroup G ⊢ map (fun x => x.snd - x.fst) (F ×ˢ F) ≤ nhds 0 ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] change Tendsto _ _ _ ↔ _ [GOAL] G : Type u_1 inst✝ : AddCommGroup G B : AddGroupFilterBasis G F : Filter G this✝ : UniformSpace G := AddGroupFilterBasis.uniformSpace B this : UniformAddGroup G ⊢ Tendsto (fun x => x.snd - x.fst) (F ×ˢ F) (nhds 0) ↔ ∀ (U : Set G), U ∈ B → ∃ M, M ∈ F ∧ ∀ (x : G), x ∈ M → ∀ (y : G), y ∈ M → y - x ∈ U [PROOFSTEP] simp [(basis_sets F).prod_self.tendsto_iff B.nhds_zero_hasBasis, @forall_swap (_ ∈ _) G]
#include "Day05-HydrothermalVenture.h" #include "LineSegment.h" #include "HydrothermalVentAnalyzer.h" #include <AdventOfCodeCommon/DisableLibraryWarningsMacros.h> __BEGIN_LIBRARIES_DISABLE_WARNINGS #include <boost/algorithm/string.hpp> #include <unordered_map> __END_LIBRARIES_DISABLE_WARNINGS namespace AdventOfCode { namespace Year2021 { namespace Day05 { Vector2D parseCoordinatesString(const std::string& coordinatesString) { std::vector<std::string> tokens; boost::split(tokens, coordinatesString, boost::is_any_of(",")); return Vector2D{std::stoi(tokens.at(0)), std::stoi(tokens.at(1))}; } LineSegment parseVentLine(const std::string& ventLine) { std::vector<std::string> tokens; boost::split(tokens, ventLine, boost::is_any_of(" ->"), boost::token_compress_on); Vector2D start = parseCoordinatesString(tokens.at(0)); Vector2D end = parseCoordinatesString(tokens.at(1)); return LineSegment{std::move(start), std::move(end)}; } std::vector<LineSegment> parseVentLines(const std::vector<std::string>& ventLines) { std::vector<LineSegment> ventLineSegments; for (const auto& line : ventLines) { LineSegment ventLineSegment = parseVentLine(line); ventLineSegments.push_back(std::move(ventLineSegment)); } return ventLineSegments; } int numPointsWhereHorizontalOrVerticalLinesOverlap(const std::vector<std::string>& ventLines) { std::vector<LineSegment> ventLineSegments = parseVentLines(ventLines); std::vector<LineSegment> axisParallelVentLineSegments; std::copy_if(ventLineSegments.cbegin(), ventLineSegments.cend(), std::back_inserter(axisParallelVentLineSegments), [](const auto& lineSegment) { return lineSegment.isAxisParallel(); }); HydrothermalVentAnalyzer hydrothermalVentAnalyzer{axisParallelVentLineSegments}; hydrothermalVentAnalyzer.analyzeOverlaps(); return hydrothermalVentAnalyzer.getNumPointsWithOverlap(); } int numPointsWhereLinesOverlap(const std::vector<std::string>& ventLines) { std::vector<LineSegment> ventLineSegments = parseVentLines(ventLines); HydrothermalVentAnalyzer hydrothermalVentAnalyzer{ventLineSegments}; hydrothermalVentAnalyzer.analyzeOverlaps(); return hydrothermalVentAnalyzer.getNumPointsWithOverlap(); } } } }
{-# OPTIONS --warning=ignore #-} module Issue2596 where {-# REWRITE #-}
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Definition module Numbers.Integers.Definition where data ℤ : Set where nonneg : ℕ → ℤ negSucc : ℕ → ℤ {-# BUILTIN INTEGER ℤ #-} {-# BUILTIN INTEGERPOS nonneg #-} {-# BUILTIN INTEGERNEGSUC negSucc #-} nonnegInjective : {a b : ℕ} → nonneg a ≡ nonneg b → a ≡ b nonnegInjective refl = refl negSuccInjective : {a b : ℕ} → negSucc a ≡ negSucc b → a ≡ b negSuccInjective refl = refl ℤDecideEquality : (a b : ℤ) → ((a ≡ b) || ((a ≡ b) → False)) ℤDecideEquality (nonneg x) (nonneg y) with ℕDecideEquality x y ℤDecideEquality (nonneg x) (nonneg y) | inl eq = inl (applyEquality nonneg eq) ℤDecideEquality (nonneg x) (nonneg y) | inr non = inr λ i → non (nonnegInjective i) ℤDecideEquality (nonneg x) (negSucc y) = inr λ () ℤDecideEquality (negSucc x) (nonneg x₁) = inr λ () ℤDecideEquality (negSucc x) (negSucc y) with ℕDecideEquality x y ℤDecideEquality (negSucc x) (negSucc y) | inl eq = inl (applyEquality negSucc eq) ℤDecideEquality (negSucc x) (negSucc y) | inr non = inr λ i → non (negSuccInjective i)
theory NN_is_countable imports Countable ETCS_Ordinal_Inequalities begin lemma nonzero_to_any_power: assumes "a \<in>\<^sub>c \<nat>\<^sub>c" "b \<in>\<^sub>c \<nat>\<^sub>c" "a \<noteq> zero" shows "a ^\<^sub>\<nat> b \<noteq> zero" by (simp add: assms(1) assms(2) assms(3) exp_order_preserving1 nonzero_to_k_nonzero) lemma RENAME_ME: assumes "a \<in>\<^sub>c \<nat>\<^sub>c" "b \<in>\<^sub>c \<nat>\<^sub>c" assumes "a \<noteq> successor \<circ>\<^sub>c zero" shows "(b = zero) = (a ^\<^sub>\<nat> b = successor \<circ>\<^sub>c zero)" proof(auto) show "b = zero \<Longrightarrow> a ^\<^sub>\<nat> zero = successor \<circ>\<^sub>c zero" by (simp add: assms(1) exp_respects_Zero_Left) show "a ^\<^sub>\<nat> b = successor \<circ>\<^sub>c zero \<Longrightarrow> b = zero" by (smt (verit, best) add_respects_zero_on_right assms(1) assms(2) assms(3) cfunc_type_def comp_type exists_implies_leq_true exp_closure exp_order_preserving1 exp_order_preserving_converse exp_respects_Zero_Left exp_respects_one_left exp_respects_successor lqe_antisymmetry nonzero_is_succ s0_is_right_id zero_type) qed lemma exp_cancellative: assumes "a \<in>\<^sub>c \<nat>\<^sub>c" "b \<in>\<^sub>c \<nat>\<^sub>c" "c \<in>\<^sub>c \<nat>\<^sub>c" "a \<noteq> zero" "a \<noteq> successor \<circ>\<^sub>c zero" shows "(a ^\<^sub>\<nat> b = a ^\<^sub>\<nat> c) = (b = c)" proof(auto) assume "(a ^\<^sub>\<nat> b = a ^\<^sub>\<nat> c)" have "a ^\<^sub>\<nat> b \<noteq> zero" by (simp add: assms(1) assms(2) assms(4) nonzero_to_any_power) show "b = c" proof(cases "leq \<circ>\<^sub>c \<langle>b, c\<rangle> = \<t>") assume "leq \<circ>\<^sub>c \<langle>b, c\<rangle> = \<t>" then obtain k where k_type[type_rule]: "k \<in>\<^sub>c \<nat>\<^sub>c" and k_def: "k +\<^sub>\<nat> b = c" by (meson assms(2) assms(3) leq_true_implies_exists) then have "a ^\<^sub>\<nat> b = (a ^\<^sub>\<nat> k) \<cdot>\<^sub>\<nat> (a ^\<^sub>\<nat> b)" using \<open>a ^\<^sub>\<nat> b = a ^\<^sub>\<nat> c\<close> assms(1) assms(2) exp_right_dist by force then have "successor \<circ>\<^sub>c zero = a ^\<^sub>\<nat> k" by (typecheck_cfuncs, metis \<open>a ^\<^sub>\<nat> b = a ^\<^sub>\<nat> c\<close> \<open>a ^\<^sub>\<nat> b \<noteq> zero\<close> assms(1) assms(3) exp_closure l_mult_cancellative mult_commutative s0_is_right_id) then have "k = zero" using assms(1) assms(5) k_type RENAME_ME by force then show "b = c" using add_respects_zero_on_left assms(2) k_def by presburger next assume "leq \<circ>\<^sub>c \<langle>b,c\<rangle> \<noteq> \<t>" then have "leq \<circ>\<^sub>c \<langle>c,b\<rangle> = \<t>" using \<open>leq \<circ>\<^sub>c \<langle>b,c\<rangle> \<noteq> \<t>\<close> assms(2) assms(3) lqe_connexity by blast then obtain k where k_type[type_rule]: "k \<in>\<^sub>c \<nat>\<^sub>c" and k_def: "k +\<^sub>\<nat> c = b" by (meson assms(2) assms(3) leq_true_implies_exists) then have "a ^\<^sub>\<nat> b = (a ^\<^sub>\<nat> k) \<cdot>\<^sub>\<nat> (a ^\<^sub>\<nat> c)" using assms(1) assms(3) exp_right_dist by force then have "successor \<circ>\<^sub>c zero = a ^\<^sub>\<nat> k" by (typecheck_cfuncs, metis \<open>a ^\<^sub>\<nat> b = a ^\<^sub>\<nat> c\<close> \<open>a ^\<^sub>\<nat> b \<noteq> zero\<close> assms(1) assms(3) exp_closure l_mult_cancellative mult_commutative s0_is_right_id) then have "k = zero" using assms(1) assms(5) k_type RENAME_ME by force then show "b = c" using add_respects_zero_on_left assms(3) k_def by force qed qed (* lemma exp_cancellative2: assumes "a \<in>\<^sub>c \<nat>\<^sub>c" "b \<in>\<^sub>c \<nat>\<^sub>c" "c \<in>\<^sub>c \<nat>\<^sub>c" "a \<noteq> zero" shows "(b ^\<^sub>\<nat> a = c ^\<^sub>\<nat> a) = (b = c)" proof(auto) *) (* proof(auto) assume "b ^\<^sub>\<nat> a = c ^\<^sub>\<nat> a" obtain k where k_type[type_rule]: "k \<in>\<^sub>c \<nat>\<^sub>c" and k_def: "successor \<circ>\<^sub>c k = a" using assms(1) assms(4) nonzero_is_succ by blast then have "b ^\<^sub>\<nat> ((successor \<circ>\<^sub>c zero) +\<^sub>\<nat> k) = c ^\<^sub>\<nat> ((successor \<circ>\<^sub>c zero) +\<^sub>\<nat> k)" using \<open>b ^\<^sub>\<nat> a = c ^\<^sub>\<nat> a\<close> add_respects_succ3 add_respects_zero_on_left k_def by (typecheck_cfuncs, presburger) then have "(b ^\<^sub>\<nat> (successor \<circ>\<^sub>c zero)) \<cdot>\<^sub>\<nat> (b ^\<^sub>\<nat> k) = (c ^\<^sub>\<nat> (successor \<circ>\<^sub>c zero)) \<cdot>\<^sub>\<nat> (c ^\<^sub>\<nat> k)" by (typecheck_cfuncs, metis \<open>b ^\<^sub>\<nat> a = c ^\<^sub>\<nat> a\<close> assms(2) assms(3) exp_respects_one_right exp_respects_successor k_def) then have "b \<cdot>\<^sub>\<nat> (b ^\<^sub>\<nat> k) = c \<cdot>\<^sub>\<nat> (c ^\<^sub>\<nat> k)" by (metis \<open>b ^\<^sub>\<nat> a = c ^\<^sub>\<nat> a\<close> assms(2) assms(3) exp_respects_successor k_def k_type) show "b = c" proof(cases "leq \<circ>\<^sub>c \<langle>b ^\<^sub>\<nat> k,c ^\<^sub>\<nat> k\<rangle> = \<t>") assume "leq \<circ>\<^sub>c \<langle>b ^\<^sub>\<nat> k,c ^\<^sub>\<nat> k\<rangle> = \<t>" then obtain j where j_type[type_rule]: "j \<in>\<^sub>c \<nat>\<^sub>c" and j_def: "(b ^\<^sub>\<nat> k) +\<^sub>\<nat> j = c ^\<^sub>\<nat> k" by (metis add_commutes assms(2) assms(3) exp_closure k_type leq_true_implies_exists) have "j = zero" proof(rule ccontr) oops *) (*Proposition 2.6.10*) lemma NxN_is_countable: "countable(\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c)" proof - obtain \<phi> where \<phi>_def: " \<phi> = mult2 \<circ>\<^sub>c \<langle>exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>(\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c)\<^esub>, left_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle> , exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>(\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c)\<^esub>, right_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle> \<rangle>" by auto have \<phi>_type[type_rule]: "\<phi> : \<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c \<rightarrow> \<nat>\<^sub>c" unfolding \<phi>_def by typecheck_cfuncs have \<phi>_injective: "injective(\<phi>)" proof(unfold injective_def, auto) fix mn st assume mn_type: "mn \<in>\<^sub>c domain \<phi>" assume st_type: "st \<in>\<^sub>c domain \<phi>" assume equals: "\<phi> \<circ>\<^sub>c mn = \<phi> \<circ>\<^sub>c st" have mn_type2: "mn \<in>\<^sub>c \<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c" using \<phi>_type cfunc_type_def mn_type by force have st_type2: "st \<in>\<^sub>c \<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c" using \<phi>_type cfunc_type_def st_type by force obtain m and n where m_type[type_rule]: "m \<in>\<^sub>c \<nat>\<^sub>c" and n_type[type_rule]: "n \<in>\<^sub>c \<nat>\<^sub>c" and mn_def: "mn = \<langle>m,n\<rangle>" using cart_prod_decomp mn_type2 by blast obtain s and t where s_type[type_rule]: "s \<in>\<^sub>c \<nat>\<^sub>c" and t_type[type_rule]: "t \<in>\<^sub>c \<nat>\<^sub>c" and st_def: "st = \<langle>s,t\<rangle>" using cart_prod_decomp st_type2 by blast have simplify: "\<And> u v. u \<in>\<^sub>c \<nat>\<^sub>c \<Longrightarrow> v \<in>\<^sub>c \<nat>\<^sub>c \<Longrightarrow> \<phi> \<circ>\<^sub>c \<langle>u,v\<rangle> = ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> u) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> v)" proof(unfold \<phi>_def) fix u v assume u_type[type_rule]: "u \<in>\<^sub>c \<nat>\<^sub>c" assume v_type[type_rule]: "v \<in>\<^sub>c \<nat>\<^sub>c" have "(mult2 \<circ>\<^sub>c \<langle>exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub>,left_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle>, exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub>,right_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle>\<rangle>) \<circ>\<^sub>c \<langle>u,v\<rangle> = mult2 \<circ>\<^sub>c \<langle>exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub>,left_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle>, exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub>,right_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle>\<rangle> \<circ>\<^sub>c \<langle>u,v\<rangle>" by (typecheck_cfuncs, smt (z3) comp_associative2) also have "... = mult2 \<circ>\<^sub>c \<langle>exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub>,left_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle> \<circ>\<^sub>c \<langle>u,v\<rangle>, exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub>,right_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle> \<circ>\<^sub>c \<langle>u,v\<rangle>\<rangle>" by (typecheck_cfuncs, smt (z3) cfunc_prod_comp comp_associative2) also have "... = mult2 \<circ>\<^sub>c \<langle>exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c (\<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub> \<circ>\<^sub>c \<langle>u,v\<rangle>),left_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c \<circ>\<^sub>c \<langle>u,v\<rangle>\<rangle> , exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c (\<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub> \<circ>\<^sub>c \<langle>u,v\<rangle>),right_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c \<circ>\<^sub>c \<langle>u,v\<rangle> \<rangle> \<rangle>" by (typecheck_cfuncs, smt (z3) cfunc_prod_comp comp_associative2) also have "... = mult2 \<circ>\<^sub>c \<langle>exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c (id one),left_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c \<circ>\<^sub>c \<langle>u,v\<rangle>\<rangle> , exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c (id one),right_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c \<circ>\<^sub>c \<langle>u,v\<rangle>\<rangle> \<rangle>" by (typecheck_cfuncs, metis (full_types) one_unique_element) also have "... = mult2 \<circ>\<^sub>c \<langle>exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) ,left_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c \<circ>\<^sub>c \<langle>u,v\<rangle>\<rangle> , exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) ,right_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c \<circ>\<^sub>c \<langle>u,v\<rangle>\<rangle> \<rangle>" by (typecheck_cfuncs, metis id_right_unit2) also have "... = mult2 \<circ>\<^sub>c \<langle>exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) , u \<rangle> , exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) ,v\<rangle> \<rangle>" using left_cart_proj_cfunc_prod mn_def right_cart_proj_cfunc_prod by (typecheck_cfuncs, auto) also have "... =((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> u) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> v)" by (metis exp_def mult_def) then show "(mult2 \<circ>\<^sub>c \<langle>exp_uncurried \<circ>\<^sub>c\<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub>,left_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle>,exp_uncurried \<circ>\<^sub>c \<langle>(successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) \<circ>\<^sub>c \<beta>\<^bsub>\<nat>\<^sub>c \<times>\<^sub>c \<nat>\<^sub>c\<^esub>,right_cart_proj \<nat>\<^sub>c \<nat>\<^sub>c\<rangle>\<rangle>) \<circ>\<^sub>c \<langle>u,v\<rangle> = (successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) ^\<^sub>\<nat> u \<cdot>\<^sub>\<nat> (successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero) ^\<^sub>\<nat> v" by (metis calculation) qed have equals2: "((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> m) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> n) = ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> s) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> t)" using equals m_type mn_def n_type s_type simplify st_def t_type by force show "mn = st" proof(cases "leq \<circ>\<^sub>c \<langle>m, s\<rangle> = \<t>") assume "leq \<circ>\<^sub>c \<langle>m,s\<rangle> = \<t>" then obtain k where k_type[type_rule]: "k \<in>\<^sub>c \<nat>\<^sub>c" and k_def: "k +\<^sub>\<nat> m = s" by (meson leq_true_implies_exists m_type s_type) then have "((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> m) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> n) = ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> m) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> k) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> t)" by (typecheck_cfuncs, metis add_commutes equals2 exp_right_dist k_def) then have f1: "((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> n) = ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> k) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> t)" by (typecheck_cfuncs, metis exp_closure l_mult_cancellative m_type mult_associative nonzero_to_any_power zero_is_not_successor) show ?thesis proof(cases "k = zero") assume "k = zero" then have "n=t" by (metis exp_cancellative exp_closure exp_respects_Zero_Left f1 n_type s0_is_left_id succ_inject succ_n_type t_type zero_is_not_successor zero_type) then show ?thesis using \<open>k = zero\<close> add_respects_zero_on_left k_def m_type mn_def st_def by auto next assume "k \<noteq> zero" then have even: "is_even \<circ>\<^sub>c ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> n) = \<t>" using exp_closure exp_def f1 k_type mult_evens_is_even2 powers_of_two_are_even succ_n_type t_type zero_type by force have "is_odd \<circ>\<^sub>c ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> n) = \<t>" by (metis even exp_def exp_respects_Zero_Left mult_evens_is_even2 n_type not_even_and_odd powers_of_three_are_odd s0_is_left_id succ_n_type three_is_odd) then have False using even exp_closure n_type not_even_and_odd succ_n_type zero_type by auto then show ?thesis by simp (*Now repeat with s \<le> m *) qed next assume "leq \<circ>\<^sub>c \<langle>m,s\<rangle> \<noteq> \<t>" then have "leq \<circ>\<^sub>c \<langle>s,m\<rangle> = \<t>" using lqe_connexity m_type s_type by blast then obtain p where p_type[type_rule]: "p \<in>\<^sub>c \<nat>\<^sub>c" and p_def: "m = p +\<^sub>\<nat> s" using leq_true_implies_exists m_type s_type by blast then have "((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> p) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> s) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> n) = ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> s) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> t)" by (typecheck_cfuncs, metis equals2 exp_right_dist p_def) then have "((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> s) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> p) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> n) = ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> s) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> t)" using mult_commutative by (typecheck_cfuncs, presburger) then have f1: "((successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> p) \<cdot>\<^sub>\<nat> ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> n) = ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> t)" by (typecheck_cfuncs, metis exp_closure l_mult_cancellative mult_associative nonzero_to_any_power s_type zero_is_not_successor) show ?thesis proof(cases "p = zero") assume "p = zero" then have "n=t" using \<open>leq \<circ>\<^sub>c \<langle>m,s\<rangle> \<noteq> \<t>\<close> \<open>leq \<circ>\<^sub>c \<langle>s,m\<rangle> = \<t>\<close> add_respects_zero_on_left p_def s_type by auto then show ?thesis by (simp add: \<open>p = zero\<close> add_respects_zero_on_left mn_def p_def s_type st_def) next assume "p \<noteq> zero" then have even: "is_even \<circ>\<^sub>c ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> t) = \<t>" by (metis exp_closure exp_def f1 mult_evens_is_even2 n_type p_type powers_of_two_are_even succ_n_type zero_type) have "is_odd \<circ>\<^sub>c ((successor \<circ>\<^sub>c successor \<circ>\<^sub>c successor \<circ>\<^sub>c zero)^\<^sub>\<nat> t) = \<t>" by (typecheck_cfuncs, metis comp_associative2 exp_def exp_respects_Zero_Left is_even_def2 is_even_not_is_odd is_odd_def2 powers_of_three_are_odd) then have False using even exp_closure not_even_and_odd succ_n_type t_type zero_type by auto then show ?thesis by simp qed qed qed then show ?thesis using \<phi>_type countable_def injective_imp_monomorphism by blast qed end
import data.real.irrational import topology.basic import algebra.order.floor --OUTPUT 1 theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 := begin have h1 : ∀ i j : ℤ, i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff, hα_irrat, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff, int.fract_eq_iff end --Needs more than 2000 tokens! --OUTPUT 2 theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 := begin have h1 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from begin assume (i j : ℤ) (h1 : i ≠ j), assume h2 : int.fract (α * ↑i) = int.fract (α * ↑j), have h3 : α * ↑i - int.floor (α * ↑i) = int.fract (α * ↑i), from by auto [int.fract_eq_iff_of_nonneg], have h4 : α * ↑j - int.floor (α * ↑j) = int.fract (α * ↑j), from by auto [int.fract_eq_iff_of_nonneg], have h5 : α = (int.floor (α * ↑i) - int.floor (α * ↑j))/(i - j), from by auto [h2, h3, h4], have h6 : (i - j) ≠ 0, from by auto [h1], have h7 : (int.floor (α * ↑i) - int.floor (α * ↑j))/(i - j) ∈ ℚ, from by auto [h5, h6], show false, from by auto [hα_irrat, h7], end, have h2 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h1], have h3 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h2], have h4 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h3], have h5 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h4], have h6 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h5], have h7 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h6], have h8 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h7], have h9 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h8], have h10 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h9], have h11 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h10], have h12 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h11], have h13 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h12], have h14 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h13], have h15 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h14], have h16 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h15], have h17 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h16], have h18 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h17], have h19 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h18], have h20 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h19], have h21 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h20], have h22 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h21], have h23 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h22], have h24 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h23], have h25 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h24], have h26 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h25], have h27 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h26], have h28 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h27], have h29 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h28], have h30 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h29], have h31 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h30], have h32 : ∀ (i j : ℤ), (i ≠ j) → (int.fract (α * ↑i) ≠ int.fract (α * ↑j)), from by auto [h31], have h33 : ∀ (i j : ℤ), (i ≠ j) → end --Needs more than 2000 tokens! --OUTPUT 3 theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 := begin have h1 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h2 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h3 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h4 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h5 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h6 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h7 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h8 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h9 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h10 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h11 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h12 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h13 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h14 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h15 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h16 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h17 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h18 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h19 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h20 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h21 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h22 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of_mul_int_eq_int_add_one_mul_fract, hα_irrat], have h23 : ∀ (i j : ℤ), i ≠ j → int.fract (α * ↑i) ≠ int.fract (α * ↑j), from by auto [int.fract_eq_iff_eq_of end --Needs more than 2000 tokens! /- FEW SHOT PROMPTS TO CODEX(START) /--`theorem` Power Set is Closed under Intersection Let $S$ be a set. Let $\powerset S$ be the power set of $S$. Then: :$\forall A, B \in \powerset S: A \cap B \in \powerset S$ `proof` Let $A, B \in \powerset S$. Then by the definition of power set, $A \subseteq S$ and $B \subseteq S$. From Intersection is Subset we have that $A \cap B \subseteq A$. It follows from Subset Relation is Transitive that $A \cap B \subseteq S$. Thus $A \cap B \in \powerset S$ and closure is proved. {{qed}} -/ theorem power_set_intersection_closed {α : Type*} (S : set α) : ∀ A B ∈ 𝒫 S, (A ∩ B) ∈ 𝒫 S := begin assume (A : set α) (hA : A ∈ 𝒫 S) (B : set α) (hB : B ∈ 𝒫 S), have h1 : (A ⊆ S) ∧ (B ⊆ S), from by auto [set.subset_of_mem_powerset, set.subset_of_mem_powerset], have h2 : (A ∩ B) ⊆ A, from by auto [set.inter_subset_left], have h3 : (A ∩ B) ⊆ S, from by auto [set.subset.trans], show (A ∩ B) ∈ 𝒫 S, from by auto [set.mem_powerset], end /--`theorem` Square of Sum :$\forall x, y \in \R: \paren {x + y}^2 = x^2 + 2 x y + y^2$ `proof` Follows from the distribution of multiplication over addition: {{begin-eqn}} {{eqn | l = \left({x + y}\right)^2 | r = \left({x + y}\right) \cdot \left({x + y}\right) }} {{eqn | r = x \cdot \left({x + y}\right) + y \cdot \left({x + y}\right) | c = Real Multiplication Distributes over Addition }} {{eqn | r = x \cdot x + x \cdot y + y \cdot x + y \cdot y | c = Real Multiplication Distributes over Addition }} {{eqn | r = x^2 + 2xy + y^2 | c = }} {{end-eqn}} {{qed}} -/ theorem square_of_sum (x y : ℝ) : (x + y)^2 = (x^2 + 2*x*y + y^2) := begin calc (x + y)^2 = (x+y)*(x+y) : by auto [sq] ... = x*(x+y) + y*(x+y) : by auto [add_mul] ... = x*x + x*y + y*x + y*y : by auto [mul_comm, add_mul] using [ring] ... = x^2 + 2*x*y + y^2 : by auto [sq, mul_comm] using [ring] end /--`theorem` Identity of Group is Unique Let $\struct {G, \circ}$ be a group. Then there is a unique identity element $e \in G$. `proof` From Group has Latin Square Property, there exists a unique $x \in G$ such that: :$a x = b$ and there exists a unique $y \in G$ such that: :$y a = b$ Setting $b = a$, this becomes: There exists a unique $x \in G$ such that: :$a x = a$ and there exists a unique $y \in G$ such that: :$y a = a$ These $x$ and $y$ are both $e$, by definition of identity element. {{qed}} -/ theorem group_identity_unique {G : Type*} [group G] : ∃! e : G, ∀ a : G, e * a = a ∧ a * e = a := begin have h1 : ∀ a b : G, ∃! x : G, a * x = b, from by auto using [use (a⁻¹ * b)], have h2 : ∀ a b : G, ∃! y : G, y * a = b, from by auto using [use b * a⁻¹], have h3 : ∀ a : G, ∃! x : G, a * x = a, from by auto [h1], have h4 : ∀ a : G, ∃! y : G, y * a = a, from by auto [h2], have h5 : ∀ a : G, classical.some (h3 a).exists = (1 : G), from by auto [exists_unique.unique, h3, classical.some_spec, exists_unique.exists, mul_one], have h6 : ∀ a : G, classical.some (h4 a).exists = (1 : G), from by auto [exists_unique.unique, h4, classical.some_spec, exists_unique.exists, one_mul], show ∃! e : G, ∀ a : G, e * a = a ∧ a * e = a, from by auto [h3, h4, exists_unique.unique, classical.some_spec, exists_unique.exists] using [use (1 : G)], end /--`theorem` Squeeze Theorem for Real Numbers Let $\sequence {x_n}$, $\sequence {y_n}$ and $\sequence {z_n}$ be sequences in $\R$. Let $\sequence {y_n}$ and $\sequence {z_n}$ both be convergent to the following limit: :$\ds \lim_{n \mathop \to \infty} y_n = l, \lim_{n \mathop \to \infty} z_n = l$ Suppose that: :$\forall n \in \N: y_n \le x_n \le z_n$ Then: :$x_n \to l$ as $n \to \infty$ that is: :$\ds \lim_{n \mathop \to \infty} x_n = l$ `proof` From Negative of Absolute Value: :$\size {x - l} < \epsilon \iff l - \epsilon < x < l + \epsilon$ Let $\epsilon > 0$. We need to prove that: :$\exists N: \forall n > N: \size {x_n - l} < \epsilon$ As $\ds \lim_{n \mathop \to \infty} y_n = l$ we know that: :$\exists N_1: \forall n > N_1: \size {y_n - l} < \epsilon$ As $\ds \lim_{n \mathop \to \infty} z_n = l$ we know that: :$\exists N_2: \forall n > N_2: \size {z_n - l} < \epsilon$ Let $N = \max \set {N_1, N_2}$. Then if $n > N$, it follows that $n > N_1$ and $n > N_2$. So: :$\forall n > N: l - \epsilon < y_n < l + \epsilon$ :$\forall n > N: l - \epsilon < z_n < l + \epsilon$ But: :$\forall n \in \N: y_n \le x_n \le z_n$ So: :$\forall n > N: l - \epsilon < y_n \le x_n \le z_n < l + \epsilon$ and so: :$\forall n > N: l - \epsilon < x_n < l + \epsilon$ So: :$\forall n > N: \size {x_n - l} < \epsilon$ Hence the result. {{qed}} -/ theorem squeeze_theorem_real_numbers (x y z : ℕ → ℝ) (l : ℝ) : let seq_limit : (ℕ → ℝ) → ℝ → Prop := λ (u : ℕ → ℝ) (l : ℝ), ∀ ε > 0, ∃ N, ∀ n > N, |u n - l| < ε in seq_limit y l → seq_limit z l → (∀ n : ℕ, (y n) ≤ (x n) ∧ (x n) ≤ (z n)) → seq_limit x l := begin assume seq_limit (h2 : seq_limit y l) (h3 : seq_limit z l) (h4 : ∀ (n : ℕ), y n ≤ x n ∧ x n ≤ z n) (ε), have h5 : ∀ x, |x - l| < ε ↔ (((l - ε) < x) ∧ (x < (l + ε))), from by auto [abs_sub_lt_iff] using [linarith], assume (h7 : ε > 0), cases h2 ε h7 with N1 h8, cases h3 ε h7 with N2 h9, let N := max N1 N2, use N, have h10 : ∀ n > N, n > N1 ∧ n > N2 := by auto [lt_of_le_of_lt, le_max_left, le_max_right], have h11 : ∀ n > N, (((l - ε) < (y n)) ∧ ((y n) ≤ (x n))) ∧ (((x n) ≤ (z n)) ∧ ((z n) < l+ε)), from by auto [h8, h10, h5, h9], have h15 : ∀ n > N, ((l - ε) < (x n)) ∧ ((x n) < (l+ε)), from by auto [h11] using [linarith], show ∀ (n : ℕ), n > N → |x n - l| < ε, from by auto [h5, h15], end /--`theorem` Density of irrational orbit The fractional parts of the integer multiples of an irrational number form a dense subset of the unit interval `proof` Let $\alpha$ be an irrational number. Then for distinct $i, j \in \mathbb{Z}$, we must have $\{i \alpha\} \neq\{j \alpha\}$. If this were not true, then $$ i \alpha-\lfloor i \alpha\rfloor=\{i \alpha\}=\{j \alpha\}=j \alpha-\lfloor j \alpha\rfloor, $$ which yields the false statement $\alpha=\frac{\lfloor i \alpha\rfloor-\lfloor j \alpha\rfloor}{i-j} \in \mathbb{Q}$. Hence, $$ S:=\{\{i \alpha\} \mid i \in \mathbb{Z}\} $$ is an infinite subset of $\left[0,1\right]$. By the Bolzano-Weierstrass theorem, $S$ has a limit point in $[0, 1]$. One can thus find pairs of elements of $S$ that are arbitrarily close. Since (the absolute value of) the difference of any two elements of $S$ is also an element of $S$, it follows that $0$ is a limit point of $S$. To show that $S$ is dense in $[0, 1]$, consider $y \in[0,1]$, and $\epsilon>0$. Then by selecting $x \in S$ such that $\{x\}<\epsilon$ (which exists as $0$ is a limit point), and $N$ such that $N \cdot\{x\} \leq y<(N+1) \cdot\{x\}$, we get: $|y-\{N x\}|<\epsilon$. QED -/ theorem irrational_orbit_dense {α : ℝ} (hα_irrat : irrational α) : closure ((λ m : ℤ, int.fract (α * ↑m)) '' (@set.univ ℤ)) = set.Icc 0 1 := FEW SHOT PROMPTS TO CODEX(END)-/
(* File reduced by coq-bug-finder from original input, then from 14990 lines to 70 lines, then from 44 lines to 29 lines *) (* coqc version trunk (September 2014) compiled on Sep 17 2014 0:22:30 with OCaml 4.01.0 coqtop version cagnode16:/afs/csail.mit.edu/u/j/jgross/coq-trunk,trunk (d34e1eed232c84590ddb80d70db9f7f7cf13584a) *) Set Primitive Projections. Set Implicit Arguments. Record sigT {A} P := existT { pr1 : A ; pr2 : P pr1 }. Notation "{ x : A & P }" := (sigT (A := A) (fun x : A => P)) : type_scope. Notation "x .1" := (pr1 x) (at level 3, format "x '.1'"). Notation "x .2" := (pr2 x) (at level 3, format "x '.2'"). Record Equiv A B := { equiv_fun :> A -> B }. Notation "A <~> B" := (Equiv A B) (at level 85). Inductive Bool : Type := true | false. Definition negb (b : Bool) := if b then false else true. Axiom eval_bool_isequiv : forall (f : Bool -> Bool), f false = negb (f true). Lemma bool_map_equiv_not_idmap (f : { f : Bool <~> Bool & ~(forall x, f x = x) }) : forall b, ~(f.1 b = b). Proof. intro b. intro H''. apply f.2. intro b'. pose proof (eval_bool_isequiv f.1) as H. destruct b', b. Fail match type of H with | _ = negb (f.1 true) => fail 1 "no f.1 true" end. (* Error: No matching clauses for match. *) destruct (f.1 true). simpl in *. Fail match type of H with | _ = negb ?T => unify T (f.1 true); fail 1 "still has f.1 true" end. (* Error: Tactic failure: still has f.1 true. *)
theorem ex1 : True := by refine ?a refine ?a refine ?a exact True.intro axiom ax.{u} {α : Sort u} (a : α) : α theorem ex2 : True := by refine ?a refine ax ?a -- Error trying to assign `?a := ax ?a`
{-# OPTIONS --rewriting #-} open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} postulate A : Set f g : A → A f≡g : ∀ a → f a ≡ g a {-# REWRITE f≡g #-} -- Adding the same rule again would make Agda loop postulate f≡g' : ∀ a → f a ≡ g a {-# REWRITE f≡g' #-} goal : ∀ {a} → f a ≡ g a goal = refl
program selectCaseProg implicit none !local variable declaration integer, parameter :: a = 1008 select case (a) case (1) print *, "Number is 1" case (2) print *, "Number is 2" case (3) print *, "Number is 3" case (4) print *, "Number is 4" case (5) print *, "Number is 5" case default print *, "Some other number", a end select end program selectCaseProg
import os os.environ["CUDA_VISIBLE_DEVICES"] = "4" import json import pickle import argparse import numpy as np import tensorflow as tf from midi_generator import generate_midi from train_classifier import encode_sentence from train_classifier import get_activated_neurons from train_generative import build_generative_model GEN_MIN = -1 GEN_MAX = 1 # Directory where trained model will be saved TRAIN_DIR = "./trained" def mutation(individual, mutation_rate): for i in range(len(individual)): if np.random.uniform(0, 1) < mutation_rate: individual[i] = np.random.uniform(GEN_MIN, GEN_MAX) def crossover(parent_a, parent_b, ind_size): # Averaging crossover return (parent_a + parent_b)/2 def reproduce(mating_pool, new_population_size, ind_size, mutation_rate): new_population = np.zeros((new_population_size, ind_size)) for i in range(new_population_size): a = np.random.randint(len(mating_pool)); b = np.random.randint(len(mating_pool)); new_population[i] = crossover(mating_pool[a], mating_pool[b], ind_size); # Mutate new children np.apply_along_axis(mutation, 1, new_population, mutation_rate) return new_population; def roulette_wheel(population, fitness_pop): # Normalize fitnesses norm_fitness_pop = fitness_pop/np.sum(fitness_pop) # Here all the fitnesses sum up to 1 r = np.random.uniform(0, 1) fitness_so_far = 0 for i in range(len(population)): fitness_so_far += norm_fitness_pop[i] if r < fitness_so_far: return population[i] return population[-1] def select(population, fitness_pop, mating_pool_size, ind_size, elite_rate): mating_pool = np.zeros((mating_pool_size, ind_size)) # Apply roulete wheel to select mating_pool_size individuals for i in range(mating_pool_size): mating_pool[i] = roulette_wheel(population, fitness_pop) # Apply elitism assert elite_rate >= 0 and elite_rate <= 1 elite_size = int(np.ceil(elite_rate * len(population))) elite_idxs = np.argsort(-fitness_pop) for i in range(elite_size): r = np.random.randint(0, mating_pool_size) mating_pool[r] = elite_idxs[i] return mating_pool def calc_fitness(individual, gen_model, cls_model, char2idx, idx2char, layer_idx, sentiment, runs=30): encoding_size = gen_model.layers[layer_idx].units generated_midis = np.zeros((runs, encoding_size)) # Get activated neurons sentneuron_ixs = get_activated_neurons(cls_model) assert len(individual) == len(sentneuron_ixs) # Use individual gens to override model neurons override = {} for i, ix in enumerate(sentneuron_ixs): override[ix] = individual[i] # Generate pieces and encode them using the cell state of the generative model for i in range(runs): midi_text = generate_midi(gen_model, char2idx, idx2char, seq_len=64, layer_idx=layer_idx, override=override) generated_midis[i] = encode_sentence(gen_model, midi_text, char2idx, layer_idx) midis_sentiment = cls_model.predict(generated_midis).clip(min=0) return 1.0 - np.sum(np.abs(midis_sentiment - sentiment))/runs def evaluate(population, gen_model, cls_model, char2idx, idx2char, layer_idx, sentiment): fitness = np.zeros((len(population), 1)) for i in range(len(population)): fitness[i] = calc_fitness(population[i], gen_model, cls_model, char2idx, idx2char, layer_idx, sentiment) return fitness def evolve(pop_size, ind_size, mut_rate, elite_rate, epochs): # Create initial population population = np.random.uniform(GEN_MIN, GEN_MAX, (pop_size, ind_size)) # Evaluate initial population fitness_pop = evaluate(population, gen_model, cls_model, char2idx, idx2char, opt.cellix, sent) print("--> Fitness: \n", fitness_pop) for i in range(epochs): print("-> Epoch", i) # Select individuals via roulette wheel to form a mating pool mating_pool = select(population, fitness_pop, pop_size, ind_size, elite_rate) # Reproduce matin pool with crossover and mutation to form new population population = reproduce(mating_pool, pop_size, ind_size, mut_rate) # Calculate fitness of each individual of the population fitness_pop = evaluate(population, gen_model, cls_model, char2idx, idx2char, opt.cellix, sent) print("--> Fitness: \n", fitness_pop) return population, fitness_pop if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description='evolve_generative.py') parser.add_argument('--genmodel', type=str, default='./trained', help="Generative model to evolve.") parser.add_argument('--clsmodel', type=str, default='./trained/classifier_ckpt.p', help="Classifier model to calculate fitness.") parser.add_argument('--ch2ix', type=str, default='./trained/char2idx.json', help="JSON file with char2idx encoding.") parser.add_argument('--embed', type=int, default=256, help="Embedding size.") parser.add_argument('--units', type=int, default=512, help="LSTM units.") parser.add_argument('--layers', type=int, default=4, help="LSTM layers.") parser.add_argument('--cellix', type=int, default=4, help="LSTM layer to use as encoder.") #parser.add_argument('--sent', type=int, default=2, help="Desired sentiment.") parser.add_argument('--popsize', type=int, default=10, help="Population size.") parser.add_argument('--epochs', type=int, default=10, help="Epochs to run.") parser.add_argument('--mrate', type=float, default=0.1, help="Mutation rate.") parser.add_argument('--elitism', type=float, default=0.1, help="Elitism in percentage.") opt = parser.parse_args() # Load char2idx dict from json file with open(opt.ch2ix) as f: char2idx = json.load(f) # Create idx2char from char2idx dict idx2char = {idx:char for char,idx in char2idx.items()} # Calculate vocab_size from char2idx dict vocab_size = len(char2idx) # Rebuild generative model from checkpoint gen_model = build_generative_model(vocab_size, opt.embed, opt.units, opt.layers, batch_size=1) gen_model.load_weights(tf.train.latest_checkpoint(opt.genmodel)) gen_model.build(tf.TensorShape([1, None])) # Load classifier model with open(opt.clsmodel, "rb") as f: cls_model = pickle.load(f) # Set individual size to the number of activated neurons sentneuron_ixs = get_activated_neurons(cls_model) ind_size = len(sentneuron_ixs) # Evolve for Positive(1)/Negative(1) sents = [1, 2, 3, 4] for sent in sents: print('evolving for {}'.format(sent)) population, fitness_pop = evolve(opt.popsize, ind_size, opt.mrate, opt.elitism, opt.epochs) # Get best individual best_idx = np.argmax(fitness_pop) best_individual = population[best_idx] # Use best individual gens to create a dictionary with cell values neurons = {} for i, ix in enumerate(sentneuron_ixs): neurons[str(ix)] = best_individual[i] # Persist dictionary with cell values if sent == 1: sent = 'Q1' elif sent == 2: sent = 'Q2' elif sent == 3: sent = 'Q3' else: sent = 'Q4' with open(os.path.join(TRAIN_DIR, "neurons_" + sent + ".json"), "w") as f: json.dump(neurons, f)
State Before: ι : Type u_2 κ : Type ?u.62135 α : Type u_1 inst✝³ : LinearOrderedAddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : CompleteSpace α f : ι → α s : Set ι := {x | 0 ≤ f x} h1 : ∀ (x : ↑s), abs (f ↑x) = f ↑x h2 : ∀ (x : ↑(sᶜ)), abs (f ↑x) = -f ↑x ⊢ ((Summable fun x => abs (f ↑x)) ∧ Summable fun x => abs (f ↑x)) ↔ (Summable fun x => f ↑x) ∧ Summable fun x => -f ↑x State After: no goals Tactic: simp only [h1, h2] State Before: ι : Type u_2 κ : Type ?u.62135 α : Type u_1 inst✝³ : LinearOrderedAddCommGroup α inst✝² : UniformSpace α inst✝¹ : UniformAddGroup α inst✝ : CompleteSpace α f : ι → α s : Set ι := {x | 0 ≤ f x} h1 : ∀ (x : ↑s), abs (f ↑x) = f ↑x h2 : ∀ (x : ↑(sᶜ)), abs (f ↑x) = -f ↑x ⊢ ((Summable fun x => f ↑x) ∧ Summable fun x => -f ↑x) ↔ Summable f State After: no goals Tactic: simp only [summable_neg_iff, summable_subtype_and_compl]
Add LoadPath "." as CoqDirectory. Load partie2. (* Cette partie met quelques notions en place, rien de très extravagant *) (* Question 2 *) (* NB : on a remplacé les blocs d(instruction par des listes chaînées directement embedded dans les termes car Coq refusait de définir certains opérateurs de point fixe car il n'arrivait pas à prouver leur terminaison *) Inductive Instruction := | Access : nat -> Instruction | Grab : Instruction -> Instruction | Push : Instruction -> Instruction -> Instruction . Inductive Stack_type : Type := | Nil : Stack_type | Stack : (Instruction * Stack_type) -> Stack_type -> Stack_type . Definition Environment : Type := Stack_type. Definition State : Type := (Instruction * Environment * Stack_type). Inductive StateOption := | None : StateOption | Some : State -> StateOption . (* Question 3 *) Definition step_krivine (state: State) : StateOption := match state with | ((Access 0), Stack (c0, e0) _, s) => Some ((c0, e0, s)) | ((Access (S n)), Stack (_, _) e, s) => Some (((Access n), e, s)) | ((Push cp c), e, s) => Some ((c, e, Stack (cp, e) s)) | (Grab c, e, Stack (c0, e0) s) => Some (c, Stack (c0, e0) e, s) | _ => None end . Definition is_state (s: StateOption) := match s with | None => False | Some _ => True end . (* Encore le même genre de lemme... *) Lemma some_truc : forall (s1 s2: State), Some s1 = Some s2 <-> s1 = s2 . Proof. move => s1 s2. split. case. trivial. move => H. rewrite H. reflexivity. Qed.
module Oscar.Property.Extensionality where open import Oscar.Level record Extensionality {a} {A : Set a} {b} {B : A → Set b} {ℓ₁} (_≤₁_ : (x : A) → B x → Set ℓ₁) {c} {C : A → Set c} {d} {D : ∀ {x} → B x → Set d} {ℓ₂} (_≤₂_ : ∀ {x} → C x → ∀ {y : B x} → D y → Set ℓ₂) (μ₁ : (x : A) → C x) (μ₂ : ∀ {x} → (y : B x) → D y) : Set (a ⊔ ℓ₁ ⊔ b ⊔ ℓ₂) where field extensionality : ∀ {x} {y : B x} → x ≤₁ y → μ₁ x ≤₂ μ₂ y open Extensionality ⦃ … ⦄ public extension : ∀ {a} {A : Set a} {b} {B : A → Set b} {ℓ₁} {_≤₁_ : (x : A) → B x → Set ℓ₁} {c} {C : A → Set c} {d} {D : ∀ {x} → B x → Set d} {ℓ₂} (_≤₂_ : ∀ {x} → C x → ∀ {y : B x} → D y → Set ℓ₂) {μ₁ : (x : A) → C x} {μ₂ : ∀ {x} → (y : B x) → D y} ⦃ _ : Extensionality _≤₁_ _≤₂_ μ₁ μ₂ ⦄ {x} {y : B x} → x ≤₁ y → μ₁ x ≤₂ μ₂ y extension _≤₂_ = extensionality {_≤₂_ = _≤₂_}
As the infection spreads , Israel abandons the Palestinian territories and initiates a nationwide quarantine , closing its borders to everyone except uninfected Jews and Palestinians . Its military then puts down an ultra @-@ Orthodox uprising , which is later referred to as an Israeli civil war . The United States does little to prepare because it is overconfident in its ability to suppress any threat . Although special forces teams contain initial outbreaks , a widespread effort never starts : the nation is deprived of political will by " <unk> wars " , and a widely distributed and marketed placebo vaccine creates a false sense of security .
import tactic.tidy import evaluation namespace baseline section tidy_proof_search meta def tidy_default_tactics : list string := [ "refl" , "exact dec_trivial" , "assumption" , "tactic.intros1" , "tactic.auto_cases" , "apply_auto_param" , "dsimp at *" , "simp at *" , "ext1" , "fsplit" , "injections_and_clear" , "solve_by_elim" , "norm_cast" ] meta def tidy_api : ModelAPI := -- simulates logic of tidy, baseline (deterministic) model let fn : json → io json := λ msg, do { pure $ json.array $ json.of_string <$> tidy_default_tactics } in ⟨fn⟩ meta def tidy_greedy_proof_search_core (fuel : ℕ := 1000) (verbose := ff) : state_t GreedyProofSearchState tactic unit := greedy_proof_search_core tidy_api (λ _, pure json.null) (λ msg n, run_best_beam_candidate (unwrap_lm_response $ some "[tidy_greedy_proof_search]") msg n) fuel -- TODO(jesse): run against `tidy` test suite to confirm reproduction of `tidy` logic meta def tidy_greedy_proof_search (fuel : ℕ := 1000) (verbose := ff) : tactic unit := greedy_proof_search tidy_api (λ _, pure json.null) (λ msg n, run_best_beam_candidate (unwrap_lm_response $ some "[tidy_greedy_proof_search]") msg n) fuel verbose end tidy_proof_search section playground -- example : true := -- begin -- tidy_greedy_proof_search 5 tt, -- end -- open nat -- universe u -- example : ∀ {α : Type u} {s₁ s₂ t₁ t₂ : list α}, -- s₁ ++ t₁ = s₂ ++ t₂ → s₁.length = s₂.length → s₁ = s₂ ∧ t₁ = t₂ := -- begin -- intros, -- tidy_greedy_proof_search -- end -- open nat -- example {p q r : Prop} (h₁ : p) (h₂ : q) : p ∧ q := -- begin -- tidy_greedy_proof_search 3 tt -- end -- run_cmd do {set_show_eval_trace tt *> do env ← tactic.get_env, tactic.set_env_core env} -- example {p q r : Prop} (h₁ : p) (h₂ : q) : p ∧ q := -- begin -- tidy_greedy_proof_search 2 ff -- should only try one iteration before halting end playground end baseline
lemma kuhn_simplex_lemma: assumes "\<forall>s. ksimplex p (Suc n) s \<longrightarrow> rl ` s \<subseteq> {.. Suc n}" and "odd (card {f. \<exists>s a. ksimplex p (Suc n) s \<and> a \<in> s \<and> (f = s - {a}) \<and> rl ` f = {..n} \<and> ((\<exists>j\<le>n. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<le>n. \<forall>x\<in>f. x j = p))})" shows "odd (card {s. ksimplex p (Suc n) s \<and> rl ` s = {..Suc n}})"
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro ! This file was ported from Lean 3 source module topology.algebra.monoid ! leanprover-community/mathlib commit 6efec6bb9fcaed3cf1baaddb2eaadd8a2a06679c ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.Order.Filter.Pointwise import Mathlib.Topology.Algebra.MulAction import Mathlib.Algebra.BigOperators.Pi import Mathlib.Topology.ContinuousFunction.Basic /-! # Theory of topological monoids In this file we define mixin classes `ContinuousMul` and `ContinuousAdd`. While in many applications the underlying type is a monoid (multiplicative or additive), we do not require this in the definitions. -/ universe u v open Classical Set Filter TopologicalSpace open Classical Topology BigOperators Pointwise variable {ι α X M N : Type _} [TopologicalSpace X] @[to_additive (attr := continuity)] theorem continuous_one [TopologicalSpace M] [One M] : Continuous (1 : X → M) := @continuous_const _ _ _ _ 1 #align continuous_one continuous_one #align continuous_zero continuous_zero /-- Basic hypothesis to talk about a topological additive monoid or a topological additive semigroup. A topological additive monoid over `M`, for example, is obtained by requiring both the instances `AddMonoid M` and `ContinuousAdd M`. Continuity in only the left/right argument can be stated using `ContinuousConstVAdd α α`/`ContinuousConstVAdd αᵐᵒᵖ α`. -/ class ContinuousAdd (M : Type u) [TopologicalSpace M] [Add M] : Prop where continuous_add : Continuous fun p : M × M => p.1 + p.2 #align has_continuous_add ContinuousAdd /-- Basic hypothesis to talk about a topological monoid or a topological semigroup. A topological monoid over `M`, for example, is obtained by requiring both the instances `Monoid M` and `ContinuousMul M`. Continuity in only the left/right argument can be stated using `ContinuousConstSMul α α`/`ContinuousConstSMul αᵐᵒᵖ α`. -/ @[to_additive] class ContinuousMul (M : Type u) [TopologicalSpace M] [Mul M] : Prop where continuous_mul : Continuous fun p : M × M => p.1 * p.2 #align has_continuous_mul ContinuousMul -- #align has_continuous_add ContinuousAdd section ContinuousMul variable [TopologicalSpace M] [Mul M] [ContinuousMul M] @[to_additive] instance : ContinuousMul Mᵒᵈ := ‹ContinuousMul M› @[to_additive (attr := continuity)] theorem continuous_mul : Continuous fun p : M × M => p.1 * p.2 := ContinuousMul.continuous_mul #align continuous_mul continuous_mul #align continuous_add continuous_add @[to_additive] instance ContinuousMul.to_continuousSMul : ContinuousSMul M M := ⟨continuous_mul⟩ #align has_continuous_mul.to_has_continuous_smul ContinuousMul.to_continuousSMul #align has_continuous_add.to_has_continuous_vadd ContinuousAdd.to_continuousVAdd @[to_additive] instance ContinuousMul.to_continuousSMul_op : ContinuousSMul Mᵐᵒᵖ M := ⟨show Continuous ((fun p : M × M => p.1 * p.2) ∘ Prod.swap ∘ Prod.map MulOpposite.unop id) from continuous_mul.comp <| continuous_swap.comp <| Continuous.prod_map MulOpposite.continuous_unop continuous_id⟩ #align has_continuous_mul.to_has_continuous_smul_op ContinuousMul.to_continuousSMul_op #align has_continuous_add.to_has_continuous_vadd_op ContinuousAdd.to_continuousVAdd_op @[to_additive (attr := continuity)] theorem Continuous.mul {f g : X → M} (hf : Continuous f) (hg : Continuous g) : Continuous fun x => f x * g x := continuous_mul.comp (hf.prod_mk hg : _) #align continuous.mul Continuous.mul #align continuous.add Continuous.add @[to_additive (attr := continuity)] theorem continuous_mul_left (a : M) : Continuous fun b : M => a * b := continuous_const.mul continuous_id #align continuous_mul_left continuous_mul_left #align continuous_add_left continuous_add_left @[to_additive (attr := continuity)] theorem continuous_mul_right (a : M) : Continuous fun b : M => b * a := continuous_id.mul continuous_const #align continuous_mul_right continuous_mul_right #align continuous_add_right continuous_add_right @[to_additive] theorem ContinuousOn.mul {f g : X → M} {s : Set X} (hf : ContinuousOn f s) (hg : ContinuousOn g s) : ContinuousOn (fun x => f x * g x) s := (continuous_mul.comp_continuousOn (hf.prod hg) : _) #align continuous_on.mul ContinuousOn.mul #align continuous_on.add ContinuousOn.add @[to_additive] theorem tendsto_mul {a b : M} : Tendsto (fun p : M × M => p.fst * p.snd) (𝓝 (a, b)) (𝓝 (a * b)) := continuous_iff_continuousAt.mp ContinuousMul.continuous_mul (a, b) #align tendsto_mul tendsto_mul #align tendsto_add tendsto_add @[to_additive] theorem Filter.Tendsto.mul {f g : α → M} {x : Filter α} {a b : M} (hf : Tendsto f x (𝓝 a)) (hg : Tendsto g x (𝓝 b)) : Tendsto (fun x => f x * g x) x (𝓝 (a * b)) := tendsto_mul.comp (hf.prod_mk_nhds hg) #align filter.tendsto.mul Filter.Tendsto.mul #align filter.tendsto.add Filter.Tendsto.add @[to_additive] theorem Filter.Tendsto.const_mul (b : M) {c : M} {f : α → M} {l : Filter α} (h : Tendsto (fun k : α => f k) l (𝓝 c)) : Tendsto (fun k : α => b * f k) l (𝓝 (b * c)) := tendsto_const_nhds.mul h #align filter.tendsto.const_mul Filter.Tendsto.const_mul #align filter.tendsto.const_add Filter.Tendsto.const_add @[to_additive] theorem Filter.Tendsto.mul_const (b : M) {c : M} {f : α → M} {l : Filter α} (h : Tendsto (fun k : α => f k) l (𝓝 c)) : Tendsto (fun k : α => f k * b) l (𝓝 (c * b)) := h.mul tendsto_const_nhds #align filter.tendsto.mul_const Filter.Tendsto.mul_const #align filter.tendsto.add_const Filter.Tendsto.add_const @[to_additive] theorem le_nhds_mul (a b : M) : 𝓝 a * 𝓝 b ≤ 𝓝 (a * b) := by rw [← map₂_mul, ← map_uncurry_prod, ← nhds_prod_eq] exact continuous_mul.tendsto _ #align le_nhds_mul le_nhds_mul #align le_nhds_add le_nhds_add @[to_additive (attr := simp)] theorem nhds_one_mul_nhds {M} [MulOneClass M] [TopologicalSpace M] [ContinuousMul M] (a : M) : 𝓝 (1 : M) * 𝓝 a = 𝓝 a := ((le_nhds_mul _ _).trans_eq <| congr_arg _ (one_mul a)).antisymm <| le_mul_of_one_le_left' <| pure_le_nhds 1 #align nhds_one_mul_nhds nhds_one_mul_nhds #align nhds_zero_add_nhds nhds_zero_add_nhds @[to_additive (attr := simp)] theorem nhds_mul_nhds_one {M} [MulOneClass M] [TopologicalSpace M] [ContinuousMul M] (a : M) : 𝓝 a * 𝓝 1 = 𝓝 a := ((le_nhds_mul _ _).trans_eq <| congr_arg _ (mul_one a)).antisymm <| le_mul_of_one_le_right' <| pure_le_nhds 1 #align nhds_mul_nhds_one nhds_mul_nhds_one #align nhds_add_nhds_zero nhds_add_nhds_zero section tendsto_nhds variable {𝕜 : Type _} [Preorder 𝕜] [Zero 𝕜] [Mul 𝕜] [TopologicalSpace 𝕜] [ContinuousMul 𝕜] {l : Filter α} {f : α → 𝕜} {b c : 𝕜} (hb : 0 < b) theorem Filter.TendstoNhdsWithinIoi.const_mul [PosMulStrictMono 𝕜] [PosMulReflectLT 𝕜] (h : Tendsto f l (𝓝[>] c)) : Tendsto (fun a => b * f a) l (𝓝[>] (b * c)) := tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ ((tendsto_nhds_of_tendsto_nhdsWithin h).const_mul b) <| (tendsto_nhdsWithin_iff.mp h).2.mono fun _ => (mul_lt_mul_left hb).mpr #align filter.tendsto_nhds_within_Ioi.const_mul Filter.TendstoNhdsWithinIoi.const_mul theorem Filter.TendstoNhdsWithinIio.const_mul [PosMulStrictMono 𝕜] [PosMulReflectLT 𝕜] (h : Tendsto f l (𝓝[<] c)) : Tendsto (fun a => b * f a) l (𝓝[<] (b * c)) := tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ ((tendsto_nhds_of_tendsto_nhdsWithin h).const_mul b) <| (tendsto_nhdsWithin_iff.mp h).2.mono fun _ => (mul_lt_mul_left hb).mpr #align filter.tendsto_nhds_within_Iio.const_mul Filter.TendstoNhdsWithinIio.const_mul theorem Filter.TendstoNhdsWithinIoi.mul_const [MulPosStrictMono 𝕜] [MulPosReflectLT 𝕜] (h : Tendsto f l (𝓝[>] c)) : Tendsto (fun a => f a * b) l (𝓝[>] (c * b)) := tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ ((tendsto_nhds_of_tendsto_nhdsWithin h).mul_const b) <| (tendsto_nhdsWithin_iff.mp h).2.mono fun _ => (mul_lt_mul_right hb).mpr #align filter.tendsto_nhds_within_Ioi.mul_const Filter.TendstoNhdsWithinIoi.mul_const theorem Filter.TendstoNhdsWithinIio.mul_const [MulPosStrictMono 𝕜] [MulPosReflectLT 𝕜] (h : Tendsto f l (𝓝[<] c)) : Tendsto (fun a => f a * b) l (𝓝[<] (c * b)) := tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ ((tendsto_nhds_of_tendsto_nhdsWithin h).mul_const b) <| (tendsto_nhdsWithin_iff.mp h).2.mono fun _ => (mul_lt_mul_right hb).mpr #align filter.tendsto_nhds_within_Iio.mul_const Filter.TendstoNhdsWithinIio.mul_const end tendsto_nhds /-- Construct a unit from limits of units and their inverses. -/ @[to_additive (attr := simps) "Construct an additive unit from limits of additive units and their negatives."] def Filter.Tendsto.units [TopologicalSpace N] [Monoid N] [ContinuousMul N] [T2Space N] {f : ι → Nˣ} {r₁ r₂ : N} {l : Filter ι} [l.NeBot] (h₁ : Tendsto (fun x => ↑(f x)) l (𝓝 r₁)) (h₂ : Tendsto (fun x => ↑(f x)⁻¹) l (𝓝 r₂)) : Nˣ where val := r₁ inv := r₂ val_inv := by symm simpa using h₁.mul h₂ inv_val := by symm simpa using h₂.mul h₁ #align filter.tendsto.units Filter.Tendsto.units #align filter.tendsto.add_units Filter.Tendsto.addUnits @[to_additive] theorem ContinuousAt.mul {f g : X → M} {x : X} (hf : ContinuousAt f x) (hg : ContinuousAt g x) : ContinuousAt (fun x => f x * g x) x := Filter.Tendsto.mul hf hg #align continuous_at.mul ContinuousAt.mul #align continuous_at.add ContinuousAt.add @[to_additive] theorem ContinuousWithinAt.mul {f g : X → M} {s : Set X} {x : X} (hf : ContinuousWithinAt f s x) (hg : ContinuousWithinAt g s x) : ContinuousWithinAt (fun x => f x * g x) s x := Filter.Tendsto.mul hf hg #align continuous_within_at.mul ContinuousWithinAt.mul #align continuous_within_at.add ContinuousWithinAt.add @[to_additive] instance [TopologicalSpace N] [Mul N] [ContinuousMul N] : ContinuousMul (M × N) := ⟨(continuous_fst.fst'.mul continuous_fst.snd').prod_mk (continuous_snd.fst'.mul continuous_snd.snd')⟩ @[to_additive] instance Pi.continuousMul {C : ι → Type _} [∀ i, TopologicalSpace (C i)] [∀ i, Mul (C i)] [∀ i, ContinuousMul (C i)] : ContinuousMul (∀ i, C i) where continuous_mul := continuous_pi fun i => (continuous_apply i).fst'.mul (continuous_apply i).snd' #align pi.has_continuous_mul Pi.continuousMul #align pi.has_continuous_add Pi.continuousAdd /-- A version of `pi.continuousMul` for non-dependent functions. It is needed because sometimes Lean 3 fails to use `pi.continuousMul` for non-dependent functions. -/ @[to_additive "A version of `pi.continuousAdd` for non-dependent functions. It is needed because sometimes Lean fails to use `pi.continuousAdd` for non-dependent functions."] instance Pi.continuousMul' : ContinuousMul (ι → M) := Pi.continuousMul #align pi.has_continuous_mul' Pi.continuousMul' #align pi.has_continuous_add' Pi.continuousAdd' @[to_additive] instance (priority := 100) continuousMul_of_discreteTopology [TopologicalSpace N] [Mul N] [DiscreteTopology N] : ContinuousMul N := ⟨continuous_of_discreteTopology⟩ #align has_continuous_mul_of_discrete_topology continuousMul_of_discreteTopology #align has_continuous_add_of_discrete_topology continuousAdd_of_discreteTopology open Filter open Function @[to_additive] theorem ContinuousMul.of_nhds_one {M : Type u} [Monoid M] [TopologicalSpace M] (hmul : Tendsto (uncurry ((· * ·) : M → M → M)) (𝓝 1 ×ᶠ 𝓝 1) <| 𝓝 1) (hleft : ∀ x₀ : M, 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1)) (hright : ∀ x₀ : M, 𝓝 x₀ = map (fun x => x * x₀) (𝓝 1)) : ContinuousMul M := ⟨by rw [continuous_iff_continuousAt] rintro ⟨x₀, y₀⟩ have key : (fun p : M × M => x₀ * p.1 * (p.2 * y₀)) = ((fun x => x₀ * x) ∘ fun x => x * y₀) ∘ uncurry (· * ·) := by ext p simp [uncurry, mul_assoc] have key₂ : ((fun x => x₀ * x) ∘ fun x => y₀ * x) = fun x => x₀ * y₀ * x := by ext x simp [mul_assoc] calc map (uncurry (· * ·)) (𝓝 (x₀, y₀)) = map (uncurry (· * ·)) (𝓝 x₀ ×ᶠ 𝓝 y₀) := by rw [nhds_prod_eq] _ = map (fun p : M × M => x₀ * p.1 * (p.2 * y₀)) (𝓝 1 ×ᶠ 𝓝 1) := by simp_rw [uncurry, hleft x₀, hright y₀, prod_map_map_eq, Filter.map_map, Function.comp] -- Porting note: `rw` was able to prove this _ = map ((fun x => x₀ * x) ∘ fun x => x * y₀) (map (uncurry (· * ·)) (𝓝 1 ×ᶠ 𝓝 1)) := by rw [key, ← Filter.map_map] _ ≤ map ((fun x : M => x₀ * x) ∘ fun x => x * y₀) (𝓝 1) := map_mono hmul _ = 𝓝 (x₀ * y₀) := by rw [← Filter.map_map, ← hright, hleft y₀, Filter.map_map, key₂, ← hleft] ⟩ #align has_continuous_mul.of_nhds_one ContinuousMul.of_nhds_one #align has_continuous_add.of_nhds_zero ContinuousAdd.of_nhds_zero @[to_additive] theorem continuousMul_of_comm_of_nhds_one (M : Type u) [CommMonoid M] [TopologicalSpace M] (hmul : Tendsto (uncurry ((· * ·) : M → M → M)) (𝓝 1 ×ᶠ 𝓝 1) (𝓝 1)) (hleft : ∀ x₀ : M, 𝓝 x₀ = map (fun x => x₀ * x) (𝓝 1)) : ContinuousMul M := by apply ContinuousMul.of_nhds_one hmul hleft intro x₀ simp_rw [mul_comm, hleft x₀] #align has_continuous_mul_of_comm_of_nhds_one continuousMul_of_comm_of_nhds_one #align has_continuous_add_of_comm_of_nhds_zero continuousAdd_of_comm_of_nhds_zero end ContinuousMul section PointwiseLimits variable (M₁ M₂ : Type _) [TopologicalSpace M₂] [T2Space M₂] @[to_additive] theorem isClosed_setOf_map_one [One M₁] [One M₂] : IsClosed { f : M₁ → M₂ | f 1 = 1 } := isClosed_eq (continuous_apply 1) continuous_const #align is_closed_set_of_map_one isClosed_setOf_map_one #align is_closed_set_of_map_zero isClosed_setOf_map_zero @[to_additive] theorem isClosed_setOf_map_mul [Mul M₁] [Mul M₂] [ContinuousMul M₂] : IsClosed { f : M₁ → M₂ | ∀ x y, f (x * y) = f x * f y } := by simp only [setOf_forall] exact isClosed_interᵢ fun x => isClosed_interᵢ fun y => isClosed_eq (continuous_apply _) -- Porting note: proof was: -- `((continuous_apply _).mul (continuous_apply _))` (by continuity) #align is_closed_set_of_map_mul isClosed_setOf_map_mul #align is_closed_set_of_map_add isClosed_setOf_map_add -- porting note: split variables command over two lines, can't change explicitness at the same time -- as declaring new variables. variable {M₁ M₂} variable [MulOneClass M₁] [MulOneClass M₂] [ContinuousMul M₂] {F : Type _} [MonoidHomClass F M₁ M₂] {l : Filter α} /-- Construct a bundled monoid homomorphism `M₁ →* M₂` from a function `f` and a proof that it belongs to the closure of the range of the coercion from `M₁ →* M₂` (or another type of bundled homomorphisms that has a `MonoidHomClass` instance) to `M₁ → M₂`. -/ @[to_additive (attr := simps (config := .asFn)) "Construct a bundled additive monoid homomorphism `M₁ →+ M₂` from a function `f` and a proof that it belongs to the closure of the range of the coercion from `M₁ →+ M₂` (or another type of bundled homomorphisms that has a `add_monoid_hom_class` instance) to `M₁ → M₂`."] def monoidHomOfMemClosureRangeCoe (f : M₁ → M₂) (hf : f ∈ closure (range fun (f : F) (x : M₁) => f x)) : M₁ →* M₂ where toFun := f map_one' := (isClosed_setOf_map_one M₁ M₂).closure_subset_iff.2 (range_subset_iff.2 map_one) hf map_mul' := (isClosed_setOf_map_mul M₁ M₂).closure_subset_iff.2 (range_subset_iff.2 map_mul) hf #align monoid_hom_of_mem_closure_range_coe monoidHomOfMemClosureRangeCoe #align add_monoid_hom_of_mem_closure_range_coe addMonoidHomOfMemClosureRangeCoe /-- Construct a bundled monoid homomorphism from a pointwise limit of monoid homomorphisms. -/ @[to_additive (attr := simps! (config := .asFn)) "Construct a bundled additive monoid homomorphism from a pointwise limit of additive monoid homomorphisms"] def monoidHomOfTendsto (f : M₁ → M₂) (g : α → F) [l.NeBot] (h : Tendsto (fun a x => g a x) l (𝓝 f)) : M₁ →* M₂ := monoidHomOfMemClosureRangeCoe f <| mem_closure_of_tendsto h <| eventually_of_forall fun _ => mem_range_self _ #align monoid_hom_of_tendsto monoidHomOfTendsto #align add_monoid_hom_of_tendsto addMonoidHomOfTendsto variable (M₁ M₂) @[to_additive] theorem MonoidHom.isClosed_range_coe : IsClosed (Set.range ((↑) : (M₁ →* M₂) → M₁ → M₂)) := isClosed_of_closure_subset fun f hf => ⟨monoidHomOfMemClosureRangeCoe f hf, rfl⟩ #align monoid_hom.is_closed_range_coe MonoidHom.isClosed_range_coe #align add_monoid_hom.is_closed_range_coe AddMonoidHom.isClosed_range_coe end PointwiseLimits @[to_additive] theorem Inducing.continuousMul {M N F : Type _} [Mul M] [Mul N] [MulHomClass F M N] [TopologicalSpace M] [TopologicalSpace N] [ContinuousMul N] (f : F) (hf : Inducing f) : ContinuousMul M := ⟨hf.continuous_iff.2 <| by simpa only [(· ∘ ·), map_mul f] using hf.continuous.fst'.mul hf.continuous.snd'⟩ #align inducing.has_continuous_mul Inducing.continuousMul #align inducing.has_continuous_add Inducing.continuousAdd @[to_additive] theorem continuousMul_induced {M N F : Type _} [Mul M] [Mul N] [MulHomClass F M N] [TopologicalSpace N] [ContinuousMul N] (f : F) : @ContinuousMul M (induced f ‹_›) _ := letI := induced f ‹_› Inducing.continuousMul f ⟨rfl⟩ #align has_continuous_mul_induced continuousMul_induced #align has_continuous_add_induced continuousAdd_induced @[to_additive] instance Subsemigroup.continuousMul [TopologicalSpace M] [Semigroup M] [ContinuousMul M] (S : Subsemigroup M) : ContinuousMul S := Inducing.continuousMul (⟨(↑), fun _ _ => rfl⟩ : MulHom S M) ⟨rfl⟩ #align subsemigroup.has_continuous_mul Subsemigroup.continuousMul #align add_subsemigroup.has_continuous_add AddSubsemigroup.continuousAdd @[to_additive] instance Submonoid.continuousMul [TopologicalSpace M] [Monoid M] [ContinuousMul M] (S : Submonoid M) : ContinuousMul S := S.toSubsemigroup.continuousMul #align submonoid.has_continuous_mul Submonoid.continuousMul #align add_submonoid.has_continuous_add AddSubmonoid.continuousAdd section ContinuousMul variable [TopologicalSpace M] [Monoid M] [ContinuousMul M] @[to_additive] theorem Submonoid.top_closure_mul_self_subset (s : Submonoid M) : _root_.closure (s : Set M) * _root_.closure s ⊆ _root_.closure s := image2_subset_iff.2 fun _ hx _ hy => map_mem_closure₂ continuous_mul hx hy fun _ ha _ hb => s.mul_mem ha hb #align submonoid.top_closure_mul_self_subset Submonoid.top_closure_mul_self_subset #align add_submonoid.top_closure_add_self_subset AddSubmonoid.top_closure_add_self_subset @[to_additive] theorem Submonoid.top_closure_mul_self_eq (s : Submonoid M) : _root_.closure (s : Set M) * _root_.closure s = _root_.closure s := Subset.antisymm s.top_closure_mul_self_subset fun x hx => ⟨x, 1, hx, _root_.subset_closure s.one_mem, mul_one _⟩ #align submonoid.top_closure_mul_self_eq Submonoid.top_closure_mul_self_eq #align add_submonoid.top_closure_add_self_eq AddSubmonoid.top_closure_add_self_eq /-- The (topological-space) closure of a submonoid of a space `M` with `ContinuousMul` is itself a submonoid. -/ @[to_additive "The (topological-space) closure of an additive submonoid of a space `M` with `ContinuousAdd` is itself an additive submonoid."] def Submonoid.topologicalClosure (s : Submonoid M) : Submonoid M where carrier := _root_.closure (s : Set M) one_mem' := _root_.subset_closure s.one_mem mul_mem' ha hb := s.top_closure_mul_self_subset ⟨_, _, ha, hb, rfl⟩ #align submonoid.topological_closure Submonoid.topologicalClosure #align add_submonoid.topological_closure AddSubmonoid.topologicalClosure -- Porting note: new lemma @[to_additive] theorem Submonoid.coe_topologicalClosure (s : Submonoid M) : (s.topologicalClosure : Set M) = _root_.closure (s : Set M) := by rfl @[to_additive] theorem Submonoid.le_topologicalClosure (s : Submonoid M) : s ≤ s.topologicalClosure := _root_.subset_closure #align submonoid.le_topological_closure Submonoid.le_topologicalClosure #align add_submonoid.le_topological_closure AddSubmonoid.le_topologicalClosure @[to_additive] theorem Submonoid.isClosed_topologicalClosure (s : Submonoid M) : IsClosed (s.topologicalClosure : Set M) := isClosed_closure #align submonoid.is_closed_topological_closure Submonoid.isClosed_topologicalClosure #align add_submonoid.is_closed_topological_closure AddSubmonoid.isClosed_topologicalClosure @[to_additive] theorem Submonoid.topologicalClosure_minimal (s : Submonoid M) {t : Submonoid M} (h : s ≤ t) (ht : IsClosed (t : Set M)) : s.topologicalClosure ≤ t := closure_minimal h ht #align submonoid.topological_closure_minimal Submonoid.topologicalClosure_minimal #align add_submonoid.topological_closure_minimal AddSubmonoid.topologicalClosure_minimal /-- If a submonoid of a topological monoid is commutative, then so is its topological closure. -/ @[to_additive "If a submonoid of an additive topological monoid is commutative, then so is its topological closure."] def Submonoid.commMonoidTopologicalClosure [T2Space M] (s : Submonoid M) (hs : ∀ x y : s, x * y = y * x) : CommMonoid s.topologicalClosure := { s.topologicalClosure.toMonoid with mul_comm := have : ∀ x ∈ s, ∀ y ∈ s, x * y = y * x := fun x hx y hy => congr_arg Subtype.val (hs ⟨x, hx⟩ ⟨y, hy⟩) fun ⟨x, hx⟩ ⟨y, hy⟩ => Subtype.ext <| eqOn_closure₂ this continuous_mul (continuous_snd.mul continuous_fst) x hx y hy } #align submonoid.comm_monoid_topological_closure Submonoid.commMonoidTopologicalClosure #align add_submonoid.add_comm_monoid_topological_closure AddSubmonoid.addCommMonoidTopologicalClosure @[to_additive exists_open_nhds_zero_half] theorem exists_open_nhds_one_split {s : Set M} (hs : s ∈ 𝓝 (1 : M)) : ∃ V : Set M, IsOpen V ∧ (1 : M) ∈ V ∧ ∀ v ∈ V, ∀ w ∈ V, v * w ∈ s := by have : (fun a : M × M => a.1 * a.2) ⁻¹' s ∈ 𝓝 ((1, 1) : M × M) := tendsto_mul (by simpa only [one_mul] using hs) simpa only [prod_subset_iff] using exists_nhds_square this #align exists_open_nhds_one_split exists_open_nhds_one_split #align exists_open_nhds_zero_half exists_open_nhds_zero_half @[to_additive exists_nhds_zero_half] theorem exists_nhds_one_split {s : Set M} (hs : s ∈ 𝓝 (1 : M)) : ∃ V ∈ 𝓝 (1 : M), ∀ v ∈ V, ∀ w ∈ V, v * w ∈ s := let ⟨V, Vo, V1, hV⟩ := exists_open_nhds_one_split hs ⟨V, IsOpen.mem_nhds Vo V1, hV⟩ #align exists_nhds_one_split exists_nhds_one_split #align exists_nhds_zero_half exists_nhds_zero_half @[to_additive exists_nhds_zero_quarter] theorem exists_nhds_one_split4 {u : Set M} (hu : u ∈ 𝓝 (1 : M)) : ∃ V ∈ 𝓝 (1 : M), ∀ {v w s t}, v ∈ V → w ∈ V → s ∈ V → t ∈ V → v * w * s * t ∈ u := by rcases exists_nhds_one_split hu with ⟨W, W1, h⟩ rcases exists_nhds_one_split W1 with ⟨V, V1, h'⟩ use V, V1 intro v w s t v_in w_in s_in t_in simpa only [mul_assoc] using h _ (h' v v_in w w_in) _ (h' s s_in t t_in) #align exists_nhds_one_split4 exists_nhds_one_split4 #align exists_nhds_zero_quarter exists_nhds_zero_quarter /-- Given a neighborhood `U` of `1` there is an open neighborhood `V` of `1` such that `VV ⊆ U`. -/ @[to_additive "Given a open neighborhood `U` of `0` there is a open neighborhood `V` of `0` such that `V + V ⊆ U`."] theorem exists_open_nhds_one_mul_subset {U : Set M} (hU : U ∈ 𝓝 (1 : M)) : ∃ V : Set M, IsOpen V ∧ (1 : M) ∈ V ∧ V * V ⊆ U := by rcases exists_open_nhds_one_split hU with ⟨V, Vo, V1, hV⟩ use V, Vo, V1 rintro _ ⟨x, y, hx, hy, rfl⟩ exact hV _ hx _ hy #align exists_open_nhds_one_mul_subset exists_open_nhds_one_mul_subset #align exists_open_nhds_zero_add_subset exists_open_nhds_zero_add_subset @[to_additive] theorem IsCompact.mul {s t : Set M} (hs : IsCompact s) (ht : IsCompact t) : IsCompact (s * t) := by rw [← image_mul_prod] exact (hs.prod ht).image continuous_mul #align is_compact.mul IsCompact.mul #align is_compact.add IsCompact.add @[to_additive] theorem tendsto_list_prod {f : ι → α → M} {x : Filter α} {a : ι → M} : ∀ l : List ι, (∀ i ∈ l, Tendsto (f i) x (𝓝 (a i))) → Tendsto (fun b => (l.map fun c => f c b).prod) x (𝓝 (l.map a).prod) | [], _ => by simp [tendsto_const_nhds] | f::l, h => by simp only [List.map_cons, List.prod_cons] exact (h f (List.mem_cons_self _ _)).mul (tendsto_list_prod l fun c hc => h c (List.mem_cons_of_mem _ hc)) #align tendsto_list_prod tendsto_list_prod #align tendsto_list_sum tendsto_list_sum @[to_additive (attr := continuity)] theorem continuous_list_prod {f : ι → X → M} (l : List ι) (h : ∀ i ∈ l, Continuous (f i)) : Continuous fun a => (l.map fun i => f i a).prod := continuous_iff_continuousAt.2 fun x => tendsto_list_prod l fun c hc => continuous_iff_continuousAt.1 (h c hc) x #align continuous_list_prod continuous_list_prod #align continuous_list_sum continuous_list_sum @[to_additive] theorem continuousOn_list_prod {f : ι → X → M} (l : List ι) {t : Set X} (h : ∀ i ∈ l, ContinuousOn (f i) t) : ContinuousOn (fun a => (l.map fun i => f i a).prod) t := by intro x hx rw [continuousWithinAt_iff_continuousAt_restrict _ hx] refine' tendsto_list_prod _ fun i hi => _ specialize h i hi x hx rw [continuousWithinAt_iff_continuousAt_restrict _ hx] at h exact h #align continuous_on_list_prod continuousOn_list_prod #align continuous_on_list_sum continuousOn_list_sum @[to_additive (attr := continuity)] theorem continuous_pow : ∀ n : ℕ, Continuous fun a : M => a ^ n | 0 => by simpa using continuous_const | k + 1 => by simp only [pow_succ] exact continuous_id.mul (continuous_pow _) #align continuous_pow continuous_pow #align continuous_nsmul continuous_nsmul instance AddMonoid.continuousConstSMul_nat {A} [AddMonoid A] [TopologicalSpace A] [ContinuousAdd A] : ContinuousConstSMul ℕ A := ⟨continuous_nsmul⟩ #align add_monoid.has_continuous_const_smul_nat AddMonoid.continuousConstSMul_nat instance AddMonoid.continuousSMul_nat {A} [AddMonoid A] [TopologicalSpace A] [ContinuousAdd A] : ContinuousSMul ℕ A := ⟨continuous_uncurry_of_discreteTopology continuous_nsmul⟩ #align add_monoid.has_continuous_smul_nat AddMonoid.continuousSMul_nat @[to_additive (attr := continuity)] theorem Continuous.pow {f : X → M} (h : Continuous f) (n : ℕ) : Continuous fun b => f b ^ n := (continuous_pow n).comp h #align continuous.pow Continuous.pow #align continuous.nsmul Continuous.nsmul @[to_additive] theorem continuousOn_pow {s : Set M} (n : ℕ) : ContinuousOn (fun (x : M) => x ^ n) s := (continuous_pow n).continuousOn #align continuous_on_pow continuousOn_pow #align continuous_on_nsmul continuousOn_nsmul @[to_additive] theorem continuousAt_pow (x : M) (n : ℕ) : ContinuousAt (fun (x : M) => x ^ n) x := (continuous_pow n).continuousAt #align continuous_at_pow continuousAt_pow #align continuous_at_nsmul continuousAt_nsmul @[to_additive] theorem Filter.Tendsto.pow {l : Filter α} {f : α → M} {x : M} (hf : Tendsto f l (𝓝 x)) (n : ℕ) : Tendsto (fun x => f x ^ n) l (𝓝 (x ^ n)) := (continuousAt_pow _ _).tendsto.comp hf #align filter.tendsto.pow Filter.Tendsto.pow #align filter.tendsto.nsmul Filter.Tendsto.nsmul @[to_additive] theorem ContinuousWithinAt.pow {f : X → M} {x : X} {s : Set X} (hf : ContinuousWithinAt f s x) (n : ℕ) : ContinuousWithinAt (fun x => f x ^ n) s x := Filter.Tendsto.pow hf n #align continuous_within_at.pow ContinuousWithinAt.pow #align continuous_within_at.nsmul ContinuousWithinAt.nsmul @[to_additive] theorem ContinuousAt.pow {f : X → M} {x : X} (hf : ContinuousAt f x) (n : ℕ) : ContinuousAt (fun x => f x ^ n) x := Filter.Tendsto.pow hf n #align continuous_at.pow ContinuousAt.pow #align continuous_at.nsmul ContinuousAt.nsmul @[to_additive] theorem ContinuousOn.pow {f : X → M} {s : Set X} (hf : ContinuousOn f s) (n : ℕ) : ContinuousOn (fun x => f x ^ n) s := fun x hx => (hf x hx).pow n #align continuous_on.pow ContinuousOn.pow #align continuous_on.nsmul ContinuousOn.nsmul /-- Left-multiplication by a left-invertible element of a topological monoid is proper, i.e., inverse images of compact sets are compact. -/ theorem Filter.tendsto_cocompact_mul_left {a b : M} (ha : b * a = 1) : Filter.Tendsto (fun x : M => a * x) (Filter.cocompact M) (Filter.cocompact M) := by refine Filter.Tendsto.of_tendsto_comp ?_ (Filter.comap_cocompact_le (continuous_mul_left b)) simp only [comp_mul_left, ha, one_mul] exact Filter.tendsto_id -- Porting note: changed proof, original proof was: /-refine' Filter.Tendsto.of_tendsto_comp _ (Filter.comap_cocompact_le (continuous_mul_left b)) convert Filter.tendsto_id ext x simp [ha]-/ #align filter.tendsto_cocompact_mul_left Filter.tendsto_cocompact_mul_left /-- Right-multiplication by a right-invertible element of a topological monoid is proper, i.e., inverse images of compact sets are compact. -/ theorem Filter.tendsto_cocompact_mul_right {a b : M} (ha : a * b = 1) : Filter.Tendsto (fun x : M => x * a) (Filter.cocompact M) (Filter.cocompact M) := by refine Filter.Tendsto.of_tendsto_comp ?_ (Filter.comap_cocompact_le (continuous_mul_right b)) simp only [comp_mul_right, ha, mul_one] exact Filter.tendsto_id -- Porting note: changed proof #align filter.tendsto_cocompact_mul_right Filter.tendsto_cocompact_mul_right /-- If `R` acts on `A` via `A`, then continuous multiplication implies continuous scalar multiplication by constants. Notably, this instances applies when `R = A`, or when `[Algebra R A]` is available. -/ @[to_additive "If `R` acts on `A` via `A`, then continuous addition implies continuous affine addition by constants."] instance (priority := 100) IsScalarTower.continuousConstSMul {R A : Type _} [Monoid A] [SMul R A] [IsScalarTower R A A] [TopologicalSpace A] [ContinuousMul A] : ContinuousConstSMul R A where continuous_const_smul q := by simp (config := { singlePass := true }) only [← smul_one_mul q (_ : A)] exact continuous_const.mul continuous_id #align is_scalar_tower.has_continuous_const_smul IsScalarTower.continuousConstSMul #align vadd_assoc_class.has_continuous_const_vadd VAddAssocClass.continuousConstVAdd /-- If the action of `R` on `A` commutes with left-multiplication, then continuous multiplication implies continuous scalar multiplication by constants. Notably, this instances applies when `R = Aᵐᵒᵖ`.-/ @[to_additive "If the action of `R` on `A` commutes with left-addition, then continuous addition implies continuous affine addition by constants. Notably, this instances applies when `R = Aᵃᵒᵖ`."] instance (priority := 100) SMulCommClass.continuousConstSMul {R A : Type _} [Monoid A] [SMul R A] [SMulCommClass R A A] [TopologicalSpace A] [ContinuousMul A] : ContinuousConstSMul R A where continuous_const_smul q := by simp (config := { singlePass := true }) only [← mul_smul_one q (_ : A)] exact continuous_id.mul continuous_const #align smul_comm_class.has_continuous_const_smul SMulCommClass.continuousConstSMul #align vadd_comm_class.has_continuous_const_vadd VAddCommClass.continuousConstVAdd end ContinuousMul namespace MulOpposite /-- If multiplication is continuous in `α`, then it also is in `αᵐᵒᵖ`. -/ @[to_additive "If addition is continuous in `α`, then it also is in `αᵃᵒᵖ`."] instance [TopologicalSpace α] [Mul α] [ContinuousMul α] : ContinuousMul αᵐᵒᵖ := ⟨continuous_op.comp (continuous_unop.snd'.mul continuous_unop.fst')⟩ end MulOpposite namespace Units open MulOpposite variable [TopologicalSpace α] [Monoid α] [ContinuousMul α] /-- If multiplication on a monoid is continuous, then multiplication on the units of the monoid, with respect to the induced topology, is continuous. Inversion is also continuous, but we register this in a later file, `Topology.Algebra.Group`, because the predicate `ContinuousInv` has not yet been defined. -/ @[to_additive "If addition on an additive monoid is continuous, then addition on the additive units of the monoid, with respect to the induced topology, is continuous. Negation is also continuous, but we register this in a later file, `topology.algebra.group`, because the predicate `has_continuous_neg` has not yet been defined."] instance : ContinuousMul αˣ := inducing_embedProduct.continuousMul (embedProduct α) end Units @[to_additive] theorem Continuous.units_map [Monoid M] [Monoid N] [TopologicalSpace M] [TopologicalSpace N] (f : M →* N) (hf : Continuous f) : Continuous (Units.map f) := Units.continuous_iff.2 ⟨hf.comp Units.continuous_val, hf.comp Units.continuous_coe_inv⟩ #align continuous.units_map Continuous.units_map #align continuous.add_units_map Continuous.addUnits_map section variable [TopologicalSpace M] [CommMonoid M] @[to_additive] theorem Submonoid.mem_nhds_one (S : Submonoid M) (oS : IsOpen (S : Set M)) : (S : Set M) ∈ 𝓝 (1 : M) := IsOpen.mem_nhds oS S.one_mem #align submonoid.mem_nhds_one Submonoid.mem_nhds_one #align add_submonoid.mem_nhds_zero AddSubmonoid.mem_nhds_zero variable [ContinuousMul M] @[to_additive] theorem tendsto_multiset_prod {f : ι → α → M} {x : Filter α} {a : ι → M} (s : Multiset ι) : (∀ i ∈ s, Tendsto (f i) x (𝓝 (a i))) → Tendsto (fun b => (s.map fun c => f c b).prod) x (𝓝 (s.map a).prod) := by rcases s with ⟨l⟩ simpa using tendsto_list_prod l #align tendsto_multiset_prod tendsto_multiset_prod #align tendsto_multiset_sum tendsto_multiset_sum @[to_additive] theorem tendsto_finset_prod {f : ι → α → M} {x : Filter α} {a : ι → M} (s : Finset ι) : (∀ i ∈ s, Tendsto (f i) x (𝓝 (a i))) → Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a c)) := tendsto_multiset_prod _ #align tendsto_finset_prod tendsto_finset_prod #align tendsto_finset_sum tendsto_finset_sum @[to_additive (attr := continuity)] theorem continuous_multiset_prod {f : ι → X → M} (s : Multiset ι) : (∀ i ∈ s, Continuous (f i)) → Continuous fun a => (s.map fun i => f i a).prod := by rcases s with ⟨l⟩ simpa using continuous_list_prod l #align continuous_multiset_prod continuous_multiset_prod #align continuous_multiset_sum continuous_multiset_sum @[to_additive] theorem continuousOn_multiset_prod {f : ι → X → M} (s : Multiset ι) {t : Set X} : (∀ i ∈ s, ContinuousOn (f i) t) → ContinuousOn (fun a => (s.map fun i => f i a).prod) t := by rcases s with ⟨l⟩ simpa using continuousOn_list_prod l #align continuous_on_multiset_prod continuousOn_multiset_prod #align continuous_on_multiset_sum continuousOn_multiset_sum @[to_additive (attr := continuity)] theorem continuous_finset_prod {f : ι → X → M} (s : Finset ι) : (∀ i ∈ s, Continuous (f i)) → Continuous fun a => ∏ i in s, f i a := continuous_multiset_prod _ #align continuous_finset_prod continuous_finset_prod #align continuous_finset_sum continuous_finset_sum @[to_additive] theorem continuousOn_finset_prod {f : ι → X → M} (s : Finset ι) {t : Set X} : (∀ i ∈ s, ContinuousOn (f i) t) → ContinuousOn (fun a => ∏ i in s, f i a) t := continuousOn_multiset_prod _ #align continuous_on_finset_prod continuousOn_finset_prod #align continuous_on_finset_sum continuousOn_finset_sum @[to_additive] theorem eventuallyEq_prod {X M : Type _} [CommMonoid M] {s : Finset ι} {l : Filter X} {f g : ι → X → M} (hs : ∀ i ∈ s, f i =ᶠ[l] g i) : (∏ i in s, f i) =ᶠ[l] ∏ i in s, g i := by replace hs : ∀ᶠ x in l, ∀ i ∈ s, f i x = g i x · rwa [eventually_all_finset] filter_upwards [hs]with x hx simp only [Finset.prod_apply, Finset.prod_congr rfl hx] #align eventually_eq_prod eventuallyEq_prod #align eventually_eq_sum eventuallyEq_sum open Function @[to_additive] theorem LocallyFinite.exists_finset_mulSupport {M : Type _} [CommMonoid M] {f : ι → X → M} (hf : LocallyFinite fun i => mulSupport <| f i) (x₀ : X) : ∃ I : Finset ι, ∀ᶠ x in 𝓝 x₀, (mulSupport fun i => f i x) ⊆ I := by rcases hf x₀ with ⟨U, hxU, hUf⟩ refine' ⟨hUf.toFinset, mem_of_superset hxU fun y hy i hi => _⟩ rw [hUf.coe_toFinset] exact ⟨y, hi, hy⟩ #align locally_finite.exists_finset_mul_support LocallyFinite.exists_finset_mulSupport #align locally_finite.exists_finset_support LocallyFinite.exists_finset_support @[to_additive] theorem finprod_eventually_eq_prod {M : Type _} [CommMonoid M] {f : ι → X → M} (hf : LocallyFinite fun i => mulSupport (f i)) (x : X) : ∃ s : Finset ι, ∀ᶠ y in 𝓝 x, (∏ᶠ i, f i y) = ∏ i in s, f i y := let ⟨I, hI⟩ := hf.exists_finset_mulSupport x ⟨I, hI.mono fun _ hy => finprod_eq_prod_of_mulSupport_subset _ fun _ hi => hy hi⟩ #align finprod_eventually_eq_prod finprod_eventually_eq_prod #align finsum_eventually_eq_sum finsum_eventually_eq_sum @[to_additive] theorem continuous_finprod {f : ι → X → M} (hc : ∀ i, Continuous (f i)) (hf : LocallyFinite fun i => mulSupport (f i)) : Continuous fun x => ∏ᶠ i, f i x := by refine' continuous_iff_continuousAt.2 fun x => _ rcases finprod_eventually_eq_prod hf x with ⟨s, hs⟩ refine' ContinuousAt.congr _ (EventuallyEq.symm hs) exact tendsto_finset_prod _ fun i _ => (hc i).continuousAt #align continuous_finprod continuous_finprod #align continuous_finsum continuous_finsum @[to_additive] theorem continuous_finprod_cond {f : ι → X → M} {p : ι → Prop} (hc : ∀ i, p i → Continuous (f i)) (hf : LocallyFinite fun i => mulSupport (f i)) : Continuous fun x => ∏ᶠ (i) (_h : p i), f i x := by simp only [← finprod_subtype_eq_finprod_cond] exact continuous_finprod (fun i => hc i i.2) (hf.comp_injective Subtype.coe_injective) #align continuous_finprod_cond continuous_finprod_cond #align continuous_finsum_cond continuous_finsum_cond end instance [TopologicalSpace M] [Mul M] [ContinuousMul M] : ContinuousAdd (Additive M) where continuous_add := @continuous_mul M _ _ _ instance [TopologicalSpace M] [Add M] [ContinuousAdd M] : ContinuousMul (Multiplicative M) where continuous_mul := @continuous_add M _ _ _ section LatticeOps variable {ι' : Sort _} [Mul M] @[to_additive] theorem continuousMul_infₛ {ts : Set (TopologicalSpace M)} (h : ∀ t ∈ ts, @ContinuousMul M t _) : @ContinuousMul M (infₛ ts) _ := letI := infₛ ts { continuous_mul := continuous_infₛ_rng.2 fun t ht => continuous_infₛ_dom₂ ht ht (@ContinuousMul.continuous_mul M t _ (h t ht)) } #align has_continuous_mul_Inf continuousMul_infₛ #align has_continuous_add_Inf continuousAdd_infₛ @[to_additive] theorem continuousMul_infᵢ {ts : ι' → TopologicalSpace M} (h' : ∀ i, @ContinuousMul M (ts i) _) : @ContinuousMul M (⨅ i, ts i) _ := by rw [← infₛ_range] exact continuousMul_infₛ (Set.forall_range_iff.mpr h') #align has_continuous_mul_infi continuousMul_infᵢ #align has_continuous_add_infi continuousAdd_infᵢ @[to_additive] theorem continuousMul_inf {t₁ t₂ : TopologicalSpace M} (h₁ : @ContinuousMul M t₁ _) (h₂ : @ContinuousMul M t₂ _) : @ContinuousMul M (t₁ ⊓ t₂) _ := by rw [inf_eq_infᵢ] refine' continuousMul_infᵢ fun b => _ cases b <;> assumption #align has_continuous_mul_inf continuousMul_inf #align has_continuous_add_inf continuousAdd_inf end LatticeOps namespace ContinuousMap variable [Mul X] [ContinuousMul X] /-- The continuous map `fun y => y * x` -/ @[to_additive "The continuous map `fun y => y + x"] protected def mulRight (x : X) : C(X, X) := mk _ (continuous_mul_right x) #align continuous_map.mul_right ContinuousMap.mulRight #align continuous_map.add_right ContinuousMap.addRight @[to_additive, simp] theorem coe_mulRight (x : X) : ⇑(ContinuousMap.mulRight x) = fun y => y * x := rfl #align continuous_map.coe_mul_right ContinuousMap.coe_mulRight #align continuous_map.coe_add_right ContinuousMap.coe_addRight /-- The continuous map `fun y => x * y` -/ @[to_additive "The continuous map `fun y => x + y"] protected def mulLeft (x : X) : C(X, X) := mk _ (continuous_mul_left x) #align continuous_map.mul_left ContinuousMap.mulLeft #align continuous_map.add_left ContinuousMap.addLeft @[to_additive, simp] theorem coe_mulLeft (x : X) : ⇑(ContinuousMap.mulLeft x) = fun y => x * y := rfl #align continuous_map.coe_mul_left ContinuousMap.coe_mulLeft #align continuous_map.coe_add_left ContinuousMap.coe_addLeft end ContinuousMap
\documentclass[main.tex]{subfiles} \begin{document} \chapter{Choice of priors} \marginpar{Tuesday\\ 2020-12-15, \\ compiled \\ \today} If we have a location parameter \(\theta \), such that % \begin{align} \mathcal{L}_\theta (x) = \mathcal{L} (x-\theta ) \,, \end{align} % then it makes sense to use a uniform prior \(\pi (\theta ) = \const\), which is invariant under shifts in the form \(\theta \to \theta + X\). On the other hand, if we have a scaling parameter % \begin{align} \mathcal{L}_\theta = \frac{1}{\theta } \mathcal{L}_\theta (x / \theta ) \,, \end{align} % the requirements are different: we want \(\theta \) to be invariant under rescalings in the form \(\theta \to \theta/C = \phi \); so we ask % \begin{align} \pi (\theta ) \dd{\theta } = \pi (\phi ) \dd{\phi } \\ \pi (\theta ) &= \frac{1}{C} \pi \qty(\theta / C) \,, \end{align} % which is satisfied by \(\pi (\theta ) \propto 1/\theta \). This prior is called a \emph{log-uniform}: it is flat when plotted on a log scale, since if we set \(\rho = \log \theta \) we have % \begin{align} \pi (\rho ) = \pi (\theta ) \abs{\dv{\theta }{\rho }} = \frac{e^{\rho }}{\theta } = 1 \,. \end{align} \subsection{Jeffreys prior} In general, if we want to perform a change of variables from \(\theta \) to \(\phi \) then the Fisher matrix becomes % \begin{align} F(\phi ) &= - \expval{\dv[2]{\log \mathcal{L}(\vec{x} | \phi )}{\phi}} \\ &= - \expval{ \dv[2]{\log \mathcal{L}(\vec{x} | \theta )}{\theta} \qty(\dv{\theta }{\phi })^2 + \dv{\log \mathcal{L}(\vec{x} | \theta )}{\theta } \dv[2]{\theta }{\phi }} \\ &= - \expval{\dv[2]{\log \mathcal{L}(\vec{x} | \theta )}{\theta }} \qty(\dv{\theta }{\phi })^2 - \expval{\dv{\log \mathcal{L}(\vec{x} | \theta )}{\theta }} \dv[2]{\theta }{\phi } \\ &= \underbrace{\expval{\dv[2]{\log \mathcal{L}(\vec{x} | \theta )}{\theta }}}_{F(\theta )} \qty(\dv{\theta }{\phi })^2 \,. \end{align} The prior is defined as the square root of the Fisher information matrix: % \begin{align} \sqrt{F(\phi )} &= \sqrt{I(\theta )} \abs{\dv{\theta }{\phi }} \\ \pi (\phi ) &= \pi (\theta ) \abs{\dv{\theta }{\phi }} \,. \end{align} If we use this definition, we get the correct law for the change of variable. We can apply this to a univariate Gaussian with fixed \(\sigma \): we get % \begin{align} \dv[2]{\log \mathcal{L}}{\mu } = - \frac{1}{\sigma^2} \,, \end{align} % therefore \(F(\mu )\) is a constant, meaning that the Jeffreys prior \(\pi_J (\mu )\) is also a constant. Suppose instead that we also let \(\sigma \) vary: then % \begin{align} \dv{\log \mathcal{L}}{\sigma } &= \dv{}{\sigma } \qty( \log \sigma - \frac{1}{2} \frac{(x - \mu )^2}{\sigma^2}) \dv[2]{\log \mathcal{L}}{\sigma } &= \frac{1}{\sigma^2} - \frac{3 (x - \mu )^2}{\sigma^{4}} \\ F(\sigma ) = -\expval{\dv[2]{\log \mathcal{L}}{\sigma }} &= - \frac{1}{\sigma^2} + \frac{3 \sigma^2}{\sigma^{4}} = \frac{2}{\sigma^2} \,. \end{align} Therefore, \(F(\sigma ) \propto 1 / \sigma^2\), meaning that \(\pi_J (\sigma ) \propto 1/ \sigma \). Uniform priors may pose an issue in high-dimensional space: especially if the mean \(\vec{\mu} \) is high-dimensional, a uniform prior on its entries gives a lot of weight to high-length vector. Often people resort to information-theory based criteria. We discuss \textcite[]{lahavBayesianHyperparametersApproach2000}. \end{document}
/- # References 1. Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego: Harcourt/Academic Press, 2001. -/ import Bookshelf.Tuple /-- The following describes a so-called "generic" tuple. Like in `Bookshelf.Tuple`, an `n`-tuple is defined recursively like so: `⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩` Unlike `Bookshelf.Tuple`, a "generic" tuple bends the syntax above further. For example, both tuples above are equivalent to: `⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩` for some `1 ≤ m ≤ n`. This distinction is purely syntactic, but necessary to prove certain theorems found in [1] (e.g. `lemma_0a`). In general, prefer `Bookshelf.Tuple`. -/ inductive XTuple : (α : Type u) → (size : Nat × Nat) → Type u where | nil : XTuple α (0, 0) | snoc : XTuple α (p, q) → Tuple α r → XTuple α (p + q, r) syntax (priority := high) "x[" term,* "]" : term macro_rules | `(x[]) => `(XTuple.nil) | `(x[$x]) => `(XTuple.snoc x[] t[$x]) | `(x[x[$xs:term,*], $ys:term,*]) => `(XTuple.snoc x[$xs,*] t[$ys,*]) | `(x[$x, $xs:term,*]) => `(XTuple.snoc x[] t[$x, $xs,*]) namespace XTuple open scoped Tuple /- ------------------------------------- - Normalization - -------------------------------------/ /-- Converts an `XTuple` into "normal form". -/ def norm : XTuple α (m, n) → Tuple α (m + n) | x[] => t[] | snoc is ts => Tuple.concat is.norm ts /-- Normalization of an empty `XTuple` yields an empty `Tuple`. -/ theorem norm_nil_eq_nil : @norm α 0 0 nil = Tuple.nil := rfl /-- Normalization of a pseudo-empty `XTuple` yields an empty `Tuple`. -/ theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc x[] t[]) = t[] := by unfold norm norm rfl /-- Normalization elimates `snoc` when the `snd` component is `nil`. -/ theorem norm_snoc_nil_elim {t : XTuple α (p, q)} : norm (snoc t t[]) = norm t := XTuple.casesOn t (motive := fun _ t => norm (snoc t t[]) = norm t) (by simp; unfold norm norm; rfl) (fun tf tl => by simp conv => lhs; unfold norm) /-- Normalization eliminates `snoc` when the `fst` component is `nil`. -/ theorem norm_nil_snoc_elim {ts : Tuple α n} : norm (snoc x[] ts) = cast (by simp) ts := by unfold norm norm rw [Tuple.nil_concat_self_eq_self] /-- Normalization distributes across `Tuple.snoc` calls. -/ theorem norm_snoc_snoc_norm : norm (snoc as (Tuple.snoc bs b)) = Tuple.snoc (norm (snoc as bs)) b := by unfold norm rw [←Tuple.concat_snoc_snoc_concat] /-- Normalizing an `XTuple` is equivalent to concatenating the normalized `fst` component with the `snd`. -/ theorem norm_snoc_eq_concat {t₁ : XTuple α (p, q)} {t₂ : Tuple α n} : norm (snoc t₁ t₂) = Tuple.concat t₁.norm t₂ := by conv => lhs; unfold norm /- ------------------------------------- - Equality - -------------------------------------/ /-- Implements Boolean equality for `XTuple α n` provided `α` has decidable equality. -/ instance BEq [DecidableEq α] : BEq (XTuple α n) where beq t₁ t₂ := t₁.norm == t₂.norm /- ------------------------------------- - Basic API - -------------------------------------/ /-- Returns the number of entries in the `XTuple`. -/ def size (_ : XTuple α n) := n /-- Returns the number of entries in the "shallowest" portion of the `XTuple`. For example, the length of `x[x[1, 2], 3, 4]` is `3`, despite its size being `4`. -/ def length : XTuple α n → Nat | x[] => 0 | snoc x[] ts => ts.size | snoc _ ts => 1 + ts.size /-- Returns the first component of our `XTuple`. For example, the first component of tuple `x[x[1, 2], 3, 4]` is `t[1, 2]`. -/ def fst : XTuple α (m, n) → Tuple α m | x[] => t[] | snoc ts _ => ts.norm /-- Given `XTuple α (m, n)`, the `fst` component is equal to an initial segment of size `k` of the tuple in normal form. -/ theorem self_fst_eq_norm_take (t : XTuple α (m, n)) : t.fst = t.norm.take m := match t with | x[] => by unfold fst; rw [Tuple.self_take_zero_eq_nil]; simp | snoc tf tl => by unfold fst conv => rhs; unfold norm rw [Tuple.eq_take_concat] simp /-- If the normal form of an `XTuple` is equal to a `Tuple`, the `fst` component must be a prefix of the `Tuple`. -/ theorem norm_eq_fst_eq_take {t₁ : XTuple α (m, n)} {t₂ : Tuple α (m + n)} : (t₁.norm = t₂) → (t₁.fst = t₂.take m) := fun h => by rw [self_fst_eq_norm_take, h] /-- Returns the first component of our `XTuple`. For example, the first component of tuple `x[x[1, 2], 3, 4]` is `t[3, 4]`. -/ def snd : XTuple α (m, n) → Tuple α n | x[] => t[] | snoc _ ts => ts /- ------------------------------------- - Lemma 0A - -------------------------------------/ section variable {k m n : Nat} variable (p : 1 ≤ m) variable (q : n + (m - 1) = m + k) namespace Lemma_0a lemma n_eq_succ_k : n = k + 1 := let ⟨m', h⟩ := Nat.exists_eq_succ_of_ne_zero $ show m ≠ 0 by intro h have ff : 1 ≤ 0 := h ▸ p ring_nf at ff exact ff.elim calc n = n + (m - 1) - (m - 1) := by rw [Nat.add_sub_cancel] _ = m' + 1 + k - (m' + 1 - 1) := by rw [q, h] _ = m' + 1 + k - m' := by simp _ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm] _ = 1 + k := by simp _ = k + 1 := by rw [Nat.add_comm] lemma n_pred_eq_k : n - 1 = k := by have h : k + 1 - 1 = k + 1 - 1 := rfl conv at h => lhs; rw [←n_eq_succ_k p q] simp at h exact h lemma n_geq_one : 1 ≤ n := by rw [n_eq_succ_k p q] simp lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 := Nat.recOn k (by simp; exact p) (fun k' ih => calc min (m + (k' + 1)) (k' + 1 + 1) = min (m + k' + 1) (k' + 1 + 1) := by conv => rw [Nat.add_assoc] _ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1) _ = k' + 1 + 1 := by rw [ih]) lemma n_eq_min_comm_succ : n = min (m + k) (k + 1) := by rw [min_comm_succ_eq p] exact n_eq_succ_k p q lemma n_pred_m_eq_m_k : n + (m - 1) = m + k := by rw [←Nat.add_sub_assoc p, Nat.add_comm, Nat.add_sub_assoc (n_geq_one p q)] conv => lhs; rw [n_pred_eq_k p q] def cast_norm : XTuple α (n, m - 1) → Tuple α (m + k) | xs => cast (by rw [q]) xs.norm def cast_fst : XTuple α (n, m - 1) → Tuple α (k + 1) | xs => cast (by rw [n_eq_succ_k p q]) xs.fst def cast_take (ys : Tuple α (m + k)) := cast (by rw [min_comm_succ_eq p]) (ys.take (k + 1)) end Lemma_0a open Lemma_0a /--[1] Assume that ⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩. Then x₁ = ⟨y₁, ..., yₖ₊₁⟩. -/ theorem lemma_0a (xs : XTuple α (n, m - 1)) (ys : Tuple α (m + k)) : (cast_norm q xs = ys) → (cast_fst p q xs = cast_take p ys) := by intro h suffices HEq (cast (_ : Tuple α n = Tuple α (k + 1)) (fst xs)) (cast (_ : Tuple α (min (m + k) (k + 1)) = Tuple α (k + 1)) (Tuple.take ys (k + 1))) from eq_of_heq this congr · exact n_eq_min_comm_succ p q · rfl · exact n_eq_min_comm_succ p q · exact HEq.rfl · exact Eq.recOn (motive := fun _ h => HEq (_ : n + (n - 1) = n + k) (cast h (show n + (n - 1) = n + k by rw [n_pred_eq_k p q]))) (show (n + (n - 1) = n + k) = (min (m + k) (k + 1) + (n - 1) = n + k) by rw [n_eq_min_comm_succ p q]) HEq.rfl · exact n_geq_one p q · exact n_pred_eq_k p q · exact Eq.symm (n_eq_min_comm_succ p q) · exact n_pred_eq_k p q · rw [self_fst_eq_norm_take] unfold cast_norm at h simp at h rw [←h, ←n_eq_succ_k p q] have h₂ := Eq.recOn (motive := fun x h => HEq (Tuple.take xs.norm n) (Tuple.take (cast (show Tuple α (n + (m - 1)) = Tuple α x by rw [h]) xs.norm) n)) (show n + (m - 1) = m + k by rw [n_pred_m_eq_m_k p q]) HEq.rfl exact Eq.recOn (motive := fun x h => HEq (cast h (Tuple.take xs.norm n)) (Tuple.take (cast (_ : Tuple α (n + (m - 1)) = Tuple α (m + k)) xs.norm) n)) (show Tuple α (min (n + (m - 1)) n) = Tuple α n by simp) h₂ end end XTuple
# # University: Universidad de Valladolid # Degree: Grado en Estadística # Subject: Análisis de Datos # Year: 2017/18 # Teacher: Miguel Alejandro Fernández Temprano # Author: Sergio García Prado (garciparedes.me) # Name: Análisis de Componentes Principales - Práctica 01 # # rm(list = ls()) library(ggplot2) suppressMessages(library(gdata)) DATA <- read.xls('./../../../datasets/olympic-2016.xls') print(DATA) A <- as.matrix(DATA[,1:10]) # print(A) X <- t((t(A) - colMeans(A)) / apply(A, 2, sd)) X_start = (t(X) %*% X ) / (dim(X)[1] - 1) # print(X_start) X_lambda <- eigen(X_start)$values X_u <- eigen(X_start)$vector # print(X_u) S <- X %*% X_u scores = as.data.frame(S) # print(scores) ggplot(data = scores, aes(x=V1, y=V2, label=DATA[,12])) + geom_point() + geom_text()
theorem fermats_last_theorem (n : ℕ) (n_gt_2 : n > 2) : ¬ (∃ x y z : ℕ, (x^n + y^n = z^n) ∧ (x ≠ 0) ∧ (y ≠ 0) ∧ (z ≠ 0)) := begin sorry, end
data Nat : Set where zero : Nat suc : Nat → Nat plus : Nat → Nat → Nat plus zero b = b plus (suc a) b = suc (plus a b) infixl 6 _+_ _+_ = plus {-# DISPLAY suc n = 1 + n #-} {-# DISPLAY plus a b = a + b #-} postulate T : {A : Set} → A → Set test₁ : ∀ a b → T (plus (suc a) b) test₁ a b = {!!} data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) data List A : Set where [] : List A _∷_ : A → List A → List A infixr 4 _∷_ [_] : ∀ {A} → A → Vec A (suc zero) [ x ] = x ∷ [] {-# DISPLAY Vec._∷_ x Vec.[] = [ x ] #-} test₂ : (n : Nat) → T (n Vec.∷ []) test₂ n = {!!} append : ∀ {A : Set} {n m} → Vec A n → Vec A m → Vec A (n + m) append [] ys = ys append (x ∷ xs) ys = x ∷ append xs ys infixr 4 _++_ _++_ = append {-# DISPLAY append xs ys = xs ++ ys #-} {-# DISPLAY append xs (y Vec.∷ ys) = xs ++ [ y ] ++ ys #-} test₃ : ∀ {n} (xs ys : Vec Nat n) → T (append xs (n ∷ ys)) test₃ {n} xs ys = {!!}
/- Copyright (c) 2022 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import Init.Data.Array.Basic import Init.Data.Nat.Linear import Init.Data.List.BasicAux theorem List.sizeOf_get_lt [SizeOf α] (as : List α) (i : Fin as.length) : sizeOf (as.get i) < sizeOf as := by match as, i with | [], i => apply Fin.elim0 i | a::as, ⟨0, _⟩ => simp_arith [get] | a::as, ⟨i+1, h⟩ => simp [get] have h : i < as.length := Nat.lt_of_succ_lt_succ h have ih := sizeOf_get_lt as ⟨i, h⟩ exact Nat.lt_of_lt_of_le ih (Nat.le_add_left ..) namespace Array instance [DecidableEq α] : Membership α (Array α) where mem a as := as.contains a theorem sizeOf_get_lt [SizeOf α] (as : Array α) (i : Fin as.size) : sizeOf (as.get i) < sizeOf as := by cases as; rename_i as simp [get] have ih := List.sizeOf_get_lt as i exact Nat.lt_trans ih (by simp_arith) theorem sizeOf_lt_of_mem [DecidableEq α] [SizeOf α] {as : Array α} (h : a ∈ as) : sizeOf a < sizeOf as := by simp [Membership.mem, contains, any, Id.run, BEq.beq, anyM] at h let rec aux (j : Nat) (h : anyM.loop (m := Id) (fun b => decide (a = b)) as as.size (Nat.le_refl ..) j = true) : sizeOf a < sizeOf as := by unfold anyM.loop at h split at h · simp [Bind.bind, pure] at h; split at h next he => subst a; apply sizeOf_get_lt next => have ih := aux (j+1) h; assumption · contradiction apply aux 0 h termination_by aux j _ => as.size - j @[simp] theorem sizeOf_get [SizeOf α] (as : Array α) (i : Fin as.size) : sizeOf (as.get i) < sizeOf as := by cases as simp [get] apply Nat.lt_trans (List.sizeOf_get ..) simp_arith /-- This tactic, added to the `decreasing_trivial` toolbox, proves that `sizeOf arr[i] < sizeOf arr`, which is useful for well founded recursions over a nested inductive like `inductive T | mk : Array T → T`. -/ macro "array_get_dec" : tactic => `(tactic| first | apply sizeOf_get | apply Nat.lt_trans (sizeOf_get ..); simp_arith) macro_rules | `(tactic| decreasing_trivial) => `(tactic| array_get_dec) end Array
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import Mathlib.Init.Function import Mathlib.Logic.Function.Basic import Mathlib.Tactic.Basic import Mathlib.Tactic.Coe import Mathlib.Tactic.Ext open Function namespace Subtype variable {α : Sort _} {β : Sort _} {γ : Sort _} {p : α → Prop} {q : α → Prop} def simps.coe (x: Subtype p) : α := x /-- A version of `x.property` or `x.2` where `p` is syntactically applied to the coercion of `x` instead of `x.1`. A similar result is `Subtype.mem` in `data.set.basic`. -/ lemma prop (x : Subtype p) : p x := x.2 @[simp] protected theorem «forall» {q : {a // p a} → Prop} : (∀ x, q x) ↔ (∀ a b, q ⟨a, b⟩) := ⟨λ h a b => h ⟨a, b⟩, λ h ⟨a, b⟩ => h a b⟩ /-- An alternative version of `Subtype.forall`. This one is useful if Lean cannot figure out `q` when using `Subtype.forall` from right to left. -/ protected theorem forall' {q : ∀x, p x → Prop} : (∀ x h, q x h) ↔ (∀ x : {a // p a}, q x x.2) := (@Subtype.forall _ _ (λ x => q x.1 x.2)).symm @[simp] protected theorem «exists» {q : {a // p a} → Prop} : (∃ x, q x) ↔ (∃ a b, q ⟨a, b⟩) := ⟨λ ⟨⟨a, b⟩, h⟩ => ⟨a, b, h⟩, λ ⟨a, b, h⟩ => ⟨⟨a, b⟩, h⟩⟩ protected lemma ext : ∀ {a1 a2 : {x // p x}}, (a1 : α) = (a2 : α) → a1 = a2 | ⟨x, h1⟩, ⟨y, h2⟩, hz => by simp [hz] lemma ext_iff {a1 a2 : {x // p x}} : a1 = a2 ↔ (a1 : α) = (a2 : α) := ⟨congrArg _, Subtype.ext⟩ lemma heq_iff_coe_eq (h : ∀ x, p x ↔ q x) {a1 : {x // p x}} {a2 : {x // q x}} : HEq a1 a2 ↔ (a1 : α) = (a2 : α) := Eq.rec (motive := λ (pp: (α → Prop)) _ => ∀ a2' : {x // pp x}, HEq a1 a2' ↔ (a1 : α) = (a2' : α)) (λ a2' => heq_iff_eq.trans ext_iff) (funext $ λ x => propext (h x)) a2 lemma heq_iff_coe_heq {α β : Sort _} {p : α → Prop} {q : β → Prop} {a : {x // p x}} {b : {y // q y}} (h : α = β) (h' : HEq p q) : HEq a b ↔ HEq (a : α) (b : β) := by subst h have hpq : p = q := heq_iff_eq.1 h' subst hpq rw [heq_iff_eq, heq_iff_eq, ext_iff] lemma ext_val {a1 a2 : {x // p x}} : a1.1 = a2.1 → a1 = a2 := Subtype.ext lemma ext_iff_val {a1 a2 : {x // p x}} : a1 = a2 ↔ a1.1 = a2.1 := ext_iff @[simp] theorem coe_eta (a : {a // p a}) (h : p (a : α)) : mk (a : α) h = a := Subtype.ext rfl theorem coe_mk (a h) : (@mk α p a h : α) = a := rfl theorem mk_eq_mk {a h a' h'} : @mk α p a h = @mk α p a' h' ↔ a = a' := ext_iff theorem coe_eq_iff {a : {a // p a}} {b : α} : ↑a = b ↔ ∃ h, a = ⟨b, h⟩ := ⟨λ h => h ▸ ⟨a.2, (coe_eta _ _).symm⟩, λ ⟨hb, ha⟩ => ha.symm ▸ rfl⟩ theorem coe_injective : injective ((↑·) : Subtype p → α) := by intros a b hab exact Subtype.ext hab theorem val_injective : injective (@val _ p) := coe_injective /-- Restrict a (dependent) function to a subtype -/ def restrict {α} {β : α → Type _} (f : ∀x, β x) (p : α → Prop) (x : Subtype p) : β x.1 := f x lemma restrict_apply {α} {β : α → Type _} (f : ∀x, β x) (p : α → Prop) (x : Subtype p) : restrict f p x = f x.1 := rfl lemma restrict_def {α β} (f : α → β) (p : α → Prop) : restrict f p = f ∘ (↑) := rfl lemma restrict_injective {α β} {f : α → β} (p : α → Prop) (h : injective f) : injective (restrict f p) := h.comp coe_injective /-- Defining a map into a subtype, this can be seen as an "coinduction principle" of `Subtype`-/ def coind {α β} (f : α → β) {p : β → Prop} (h : ∀a, p (f a)) : α → Subtype p := λ a => ⟨f a, h a⟩ theorem coind_injective {α β} {f : α → β} {p : β → Prop} (h : ∀a, p (f a)) (hf : injective f) : injective (coind f h) := by intros x y hxy refine hf ?_ apply congrArg Subtype.val hxy theorem coind_surjective {α β} {f : α → β} {p : β → Prop} (h : ∀a, p (f a)) (hf : surjective f) : surjective (coind f h) := λ x => let ⟨a, ha⟩ := hf x ⟨a, coe_injective ha⟩ theorem coind_bijective {α β} {f : α → β} {p : β → Prop} (h : ∀a, p (f a)) (hf : bijective f) : bijective (coind f h) := ⟨coind_injective h hf.1, coind_surjective h hf.2⟩ /-- Restriction of a function to a function on subtypes. -/ def map {p : α → Prop} {q : β → Prop} (f : α → β) (h : ∀a, p a → q (f a)) : Subtype p → Subtype q := λ x => ⟨f x, h x x.prop⟩ theorem map_comp {p : α → Prop} {q : β → Prop} {r : γ → Prop} {x : Subtype p} (f : α → β) (h : ∀a, p a → q (f a)) (g : β → γ) (l : ∀a, q a → r (g a)) : map g l (map f h x) = map (g ∘ f) (λ a ha => l (f a) $ h a ha) x := rfl theorem map_id {p : α → Prop} {h : ∀a, p a → p (id a)} : map (@id α) h = id := funext $ λ ⟨v, h⟩ => rfl lemma map_injective {p : α → Prop} {q : β → Prop} {f : α → β} (h : ∀a, p a → q (f a)) (hf : injective f) : injective (map f h) := coind_injective _ $ hf.comp coe_injective lemma map_involutive {p : α → Prop} {f : α → α} (h : ∀a, p a → p (f a)) (hf : involutive f) : involutive (map f h) := λ x => Subtype.ext (hf x) instance [HasEquiv α] (p : α → Prop) : HasEquiv (Subtype p) := ⟨λ s t => (s : α) ≈ (t : α)⟩ /- Port note: we need explicit universes here because in Lean 3 we have has_equiv.equiv : Π {α : Sort u} [c : has_equiv α], α → α → Prop but in Lean 4 `HasEquiv.Equiv` is additionally parameteric over the universe of the result. I.e HasEquiv.Equiv.{u, v} : {α : Sort u} → [self : HasEquiv α] → α → α → Sort v -/ theorem equiv_iff [HasEquiv.{u_1, 0} α] {p : α → Prop} {s t : Subtype p} : HasEquiv.Equiv.{max 1 u_1, 0} s t ↔ HasEquiv.Equiv.{u_1, 0} (s : α) (t : α) := Iff.rfl variable [Setoid α] protected theorem refl (s : Subtype p) : s ≈ s := Setoid.refl (s : α) protected theorem symm {s t : Subtype p} (h : s ≈ t) : t ≈ s := Setoid.symm h protected theorem trans {s t u : Subtype p} (h₁ : s ≈ t) (h₂ : t ≈ u) : s ≈ u := Setoid.trans h₁ h₂ theorem equivalence (p : α → Prop) : Equivalence (@HasEquiv.Equiv (Subtype p) _) := ⟨Subtype.refl, @Subtype.symm _ p _, @Subtype.trans _ p _⟩ instance (p : α → Prop) : Setoid (Subtype p) := Setoid.mk (·≈·) (equivalence p) end Subtype namespace Subtype /-! Some facts about sets, which require that `α` is a type. -/ variable {α : Type _} {β : Type _} {γ : Type _} {p : α → Prop} -- ∈-notation is reducible in Lean 4, so this won't trigger as a simp-lemma lemma val_prop {S : Set α} (a : {a // a ∈ S}) : a.val ∈ S := a.property end Subtype
-- anything after two minus signs like this is a comment. variables P Q R : Prop -- P, Q, R are now true/false statements. -- Reminder : ∧ means "and". theorem basic_logic : (P → Q) ∧ (Q → R) → (P → R) := begin admit end
universe u v inductive Imf {α : Type u} {β : Type v} (f : α → β) : β → Type (max u v) | mk : (a : α) → Imf f (f a) def h {α β} {f : α → β} : {b : β} → Imf f b → α | _, Imf.mk a => a #print h theorem ex : ∀ {α β : Sort u} (h : α = β) (a : α), cast h a ≅ a | α, _, rfl, a => HEq.refl a #print ex
open import Agda.Primitive open import Agda.Builtin.Nat Type : (i : Level) -> Set (lsuc i) Type i = Set i postulate P : (i : Level) (A : Type i) → A → Type i postulate lemma : (a : Nat) -> P _ _ a
# ############################################################################# # Generate sample data import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors from models import knn if __name__ == "__main__": np.random.seed(0) X = np.sort(5 * np.random.rand(40, 1), axis=0) T = np.linspace(0, 5, 500)[:, np.newaxis] y = np.sin(X).ravel() # Add noise to targets y[::5] += 1 * (0.5 - np.random.rand(8)) # ############################################################################# # Fit regression model n_neighbors = 10 # ------ KNN with scikit-learn ------ knn_sk = neighbors.KNeighborsRegressor(n_neighbors) model_sk = knn_sk.fit(X, y) y_sk = model_sk.predict(T) # ------ KNN with NumPy ------ knn_np = knn.KNeighborsRegressor(k=n_neighbors) model_np = knn_np.fit(X, y) y_np = model_np.predict(T) # ------ COMPARISON ------ y_comp = np.dstack([y_sk, y_np]) RMSE = np.sqrt(np.mean((y_sk - y_np) ** 2)) print(f"RMSE between sklearn and numpy model: {RMSE}") # ------ Plotting ------ plt.scatter(X, y, color='blue', label='data') plt.plot(T, y_sk, color='green', label='sklearn prediction') plt.plot(T, y_np, color='red', linestyle='--', label='NumPy prediction') plt.legend() plt.title("KNeighborsRegressor") plt.show()
-- Lucas Moschen -- Teorema de Cantor import data.set variables X Y: Type def surjective {X: Type} {Y: Type} (f : X → Y) : Prop := ∀ y, ∃ x, f x = y theorem Cantor : ∀ (A: set X), ¬ ∃ (f: A → set A), surjective f := begin intro A, intro h, cases h with f h1, have h2: ∃ x, f x = {t : A | ¬ (t ∈ f t)}, from h1 {t : A | ¬ (t ∈ f t)}, cases h2 with x h3, apply or.elim (classical.em (x ∈ {t : A | ¬ (t ∈ f t)})), intro h4, have h5: ¬ (x ∈ f x), from h4, rw (eq.symm h3) at h4, apply h5 h4, intro h4, rw (eq.symm h3) at h4, have h5: x ∈ {t : A | ¬ (t ∈ f t)}, from h4, rw (eq.symm h3) at h5, apply h4 h5, end
header{*V-Sets, Epsilon Closure, Ranks*} theory Rank imports Ordinal begin section{*V-sets*} text{*Definition 4.1*} definition Vset :: "hf \<Rightarrow> hf" where "Vset x = ord_rec 0 HPow (\<lambda>z. 0) x" lemma Vset_0 [simp]: "Vset 0 = 0" by (simp add: Vset_def) lemma Vset_succ [simp]: "Ord k \<Longrightarrow> Vset (succ k) = HPow (Vset k)" by (simp add: Vset_def) lemma Vset_non [simp]: "~ Ord x \<Longrightarrow> Vset x = 0" by (simp add: Vset_def) text{*Theorem 4.2(a)*} lemma Vset_mono_strict: assumes "Ord m" "n <: m" shows "Vset n < Vset m" proof - have n: "Ord n" by (metis Ord_in_Ord assms) hence "Ord m \<Longrightarrow> n <: m \<Longrightarrow> Vset n < Vset m" proof (induct n arbitrary: m rule: Ord_induct2) case 0 thus ?case by (metis HPow_iff Ord_cases Vset_0 Vset_succ hemptyE le_imp_less_or_eq zero_le) next case (succ n) then show ?case using `Ord m` by (metis Ord_cases hemptyE HPow_mono_strict_iff Vset_succ mem_succ_iff) qed thus ?thesis using assms . qed lemma Vset_mono: "\<lbrakk>Ord m; n \<le> m\<rbrakk> \<Longrightarrow> Vset n \<le> Vset m" by (metis Ord_linear2 Vset_mono_strict Vset_non assms order.order_iff_strict order_class.order.antisym zero_le) text{*Theorem 4.2(b)*} lemma Vset_Transset: "Ord m \<Longrightarrow> Transset (Vset m)" by (induct rule: Ord_induct2) (auto simp: Transset_def) lemma Ord_sup [simp]: "Ord k \<Longrightarrow> Ord l \<Longrightarrow> Ord (k \<squnion> l)" by (metis Ord_linear_le le_iff_sup sup_absorb1) lemma Ord_inf [simp]: "Ord k \<Longrightarrow> Ord l \<Longrightarrow> Ord (k \<sqinter> l)" by (metis Ord_linear_le inf_absorb2 le_iff_inf) text{*Theorem 4.3*} lemma Vset_universal: "\<exists>n. Ord n & x \<^bold>\<in> Vset n" proof (induct x rule: hf_induct) case 0 thus ?case by (metis HPow_iff Ord_0 Ord_succ Vset_succ zero_le) next case (hinsert a b) then obtain na nb where nab: "Ord na" "a \<^bold>\<in> Vset na" "Ord nb" "b \<^bold>\<in> Vset nb" by blast hence "b \<le> Vset nb" using Vset_Transset [of nb] by (auto simp: Transset_def) also have "... \<le> Vset (na \<squnion> nb)" using nab by (metis Ord_sup Vset_mono sup_ge2) finally have "b \<triangleleft> a \<^bold>\<in> Vset (succ (na \<squnion> nb))" using nab by simp (metis Ord_sup Vset_mono sup_ge1 rev_hsubsetD) thus ?case using nab by (metis Ord_succ Ord_sup) qed section{*Least Ordinal Operator*} text{*Definition 4.4. For every x, let rank(x) be the least ordinal n such that...*} lemma Ord_minimal: "Ord k \<Longrightarrow> P k \<Longrightarrow> \<exists>n. Ord n & P n & (\<forall>m. Ord m & P m \<longrightarrow> n \<le> m)" by (induct k rule: Ord_induct) (metis Ord_linear2) lemma OrdLeastI: "Ord k \<Longrightarrow> P k \<Longrightarrow> P(LEAST n. Ord n & P n)" by (metis (lifting, no_types) Least_equality Ord_minimal) lemma OrdLeast_le: "Ord k \<Longrightarrow> P k \<Longrightarrow> (LEAST n. Ord n & P n) \<le> k" by (metis (lifting, no_types) Least_equality Ord_minimal) lemma OrdLeast_Ord: assumes "Ord k" "P k"shows "Ord(LEAST n. Ord n & P n)" proof - obtain n where "Ord n" "P n" "\<forall>m. Ord m & P m \<longrightarrow> n \<le> m" by (metis Ord_minimal assms) thus ?thesis by (metis (lifting) Least_equality) qed section{*Rank Function*} definition rank :: "hf \<Rightarrow> hf" where "rank x = (LEAST n. Ord n & x \<^bold>\<in> Vset (succ n))" lemma in_Vset_rank: "a \<^bold>\<in> Vset(succ(rank a))" proof - from Vset_universal [of a] obtain na where na: "Ord na" "a \<^bold>\<in> Vset (succ na)" by (metis Ord_Union Ord_in_Ord Ord_pred Vset_0 hempty_iff) thus ?thesis by (unfold rank_def) (rule OrdLeastI) qed lemma Ord_rank [simp]: "Ord (rank a)" by (metis Ord_succ_iff Vset_non hemptyE in_Vset_rank) lemma le_Vset_rank: "a \<le> Vset(rank a)" by (metis HPow_iff Ord_succ_iff Vset_non Vset_succ hemptyE in_Vset_rank) lemma VsetI: "succ(rank a) \<le> k \<Longrightarrow> Ord k \<Longrightarrow> a \<^bold>\<in> Vset k" by (metis Vset_mono hsubsetCE in_Vset_rank) lemma Vset_succ_rank_le: "Ord k \<Longrightarrow> a \<^bold>\<in> Vset (succ k) \<Longrightarrow> rank a \<le> k" by (unfold rank_def) (rule OrdLeast_le) lemma Vset_rank_lt: assumes a: "a \<^bold>\<in> Vset k" shows "rank a < k" proof - { assume k: "Ord k" hence ?thesis proof (cases k rule: Ord_cases) case 0 thus ?thesis using a by simp next case (succ l) thus ?thesis using a by (metis Ord_lt_succ_iff_le Ord_succ_iff Vset_non Vset_succ_rank_le hemptyE in_Vset_rank) qed } thus ?thesis using a by (metis Vset_non hemptyE) qed text{*Theorem 4.5*} theorem rank_lt: "a \<^bold>\<in> b \<Longrightarrow> rank(a) < rank(b)" by (metis Vset_rank_lt hsubsetD le_Vset_rank) lemma rank_mono: "x \<le> y \<Longrightarrow> rank x \<le> rank y" by (metis HPow_iff Ord_rank Vset_succ Vset_succ_rank_le dual_order.trans le_Vset_rank) lemma rank_sup [simp]: "rank (a \<squnion> b) = rank a \<squnion> rank b" proof (rule antisym) have o: "Ord (rank a \<squnion> rank b)" by simp thus "rank (a \<squnion> b) \<le> rank a \<squnion> rank b" apply (rule Vset_succ_rank_le, simp) apply (metis le_Vset_rank order_trans Vset_mono sup_ge1 sup_ge2 o) done next show "rank a \<squnion> rank b \<le> rank (a \<squnion> b)" by (metis le_supI le_supI1 le_supI2 order_eq_refl rank_mono) qed lemma rank_singleton [simp]: "rank \<lbrace>a\<rbrace> = succ(rank a)" proof - have oba: "Ord (succ (rank a))" by simp show ?thesis proof (rule antisym) show "rank \<lbrace>a\<rbrace> \<le> succ (rank a)" by (metis Vset_succ_rank_le HPow_iff Vset_succ in_Vset_rank less_eq_insert1_iff oba zero_le) next show "succ (rank a) \<le> rank\<lbrace>a\<rbrace>" by (metis Ord_linear_le Ord_lt_succ_iff_le rank_lt Ord_rank hmem_hinsert less_le_not_le oba) qed qed lemma rank_hinsert [simp]: "rank (b \<triangleleft> a) = rank b \<squnion> succ(rank a)" by (metis hinsert_eq_sup rank_singleton rank_sup) text{*Definition 4.6. The transitive closure of @{term x} is the minimal transitive set @{term y} such that @{term"x\<le>y"}.*} section{*Epsilon Closure*} definition eclose :: "hf \<Rightarrow> hf" where "eclose X = \<Sqinter> \<lbrace>Y \<^bold>\<in> HPow(Vset (rank X)). Transset Y & X\<le>Y\<rbrace>" lemma eclose_facts: shows Transset_eclose: "Transset (eclose X)" and le_eclose: "X \<le> eclose X" proof - have nz: "\<lbrace>Y \<^bold>\<in> HPow(Vset (rank X)). Transset Y & X\<le>Y\<rbrace> \<noteq> 0" by (simp add: eclose_def hempty_iff) (metis Ord_rank Vset_Transset le_Vset_rank order_refl) show "Transset (eclose X)" "X \<le> eclose X" using HInter_iff [OF nz] by (auto simp: eclose_def Transset_def) qed lemma eclose_minimal: assumes Y: "Transset Y" "X\<le>Y" shows "eclose X \<le> Y" proof - have "\<lbrace>Y \<^bold>\<in> HPow(Vset (rank X)). Transset Y & X\<le>Y\<rbrace> \<noteq> 0" by (simp add: eclose_def hempty_iff) (metis Ord_rank Vset_Transset le_Vset_rank order_refl) moreover have "Transset (Y \<sqinter> Vset (rank X))" by (metis Ord_rank Transset_inf Vset_Transset Y(1)) moreover have "X \<le> Y \<sqinter> Vset (rank X)" by (metis Y(2) le_Vset_rank le_inf_iff) ultimately show "eclose X \<le> Y" apply (auto simp: eclose_def) apply (metis hinter_iff le_inf_iff order_refl) done qed lemma eclose_0 [simp]: "eclose 0 = 0" by (metis Ord_0 Vset_0 Vset_Transset eclose_minimal less_eq_hempty) lemma eclose_sup [simp]: "eclose (a \<squnion> b) = eclose a \<squnion> eclose b" proof (rule order_antisym) show "eclose (a \<squnion> b) \<le> eclose a \<squnion> eclose b" by (metis Transset_eclose Transset_sup eclose_minimal le_eclose sup_mono) next show "eclose a \<squnion> eclose b \<le> eclose (a \<squnion> b)" by (metis Transset_eclose eclose_minimal le_eclose le_sup_iff) qed lemma eclose_singleton [simp]: "eclose \<lbrace>a\<rbrace> = (eclose a) \<triangleleft> a" proof (rule order_antisym) show "eclose \<lbrace>a\<rbrace> \<le> eclose a \<triangleleft> a" by (metis eclose_minimal Transset_eclose Transset_hinsert le_eclose less_eq_insert1_iff order_refl zero_le) next show "eclose a \<triangleleft> a \<le> eclose \<lbrace>a\<rbrace>" by (metis Transset_def Transset_eclose eclose_minimal le_eclose less_eq_insert1_iff) qed lemma eclose_hinsert [simp]: "eclose (b \<triangleleft> a) = eclose b \<squnion> (eclose a \<triangleleft> a)" by (metis eclose_singleton eclose_sup hinsert_eq_sup) lemma eclose_succ [simp]: "eclose (succ a) = eclose a \<triangleleft> a" by (auto simp: succ_def) lemma fst_in_eclose [simp]: "x \<^bold>\<in> eclose \<langle>x, y\<rangle>" by (metis eclose_hinsert hmem_hinsert hpair_def hunion_iff) lemma snd_in_eclose [simp]: "y \<^bold>\<in> eclose \<langle>x, y\<rangle>" by (metis eclose_hinsert hmem_hinsert hpair_def hunion_iff) text{*Theorem 4.7. rank(x) = rank(cl(x)).*} lemma rank_eclose [simp]: "rank (eclose x) = rank x" proof (induct x rule: hf_induct) case 0 thus ?case by simp next case (hinsert a b) thus ?case by simp (metis hinsert_eq_sup succ_def sup.left_idem) qed section{*Epsilon-Recursion*} text{*Theorem 4.9. Definition of a function by recursion on rank.*} lemma hmem_induct [case_names step]: assumes ih: "\<And>x. (\<And>y. y \<^bold>\<in> x \<Longrightarrow> P y) \<Longrightarrow> P x" shows "P x" proof - have "\<And>y. y \<^bold>\<in> x \<Longrightarrow> P y" proof (induct x rule: hf_induct) case 0 thus ?case by simp next case (hinsert a b) thus ?case by (metis assms hmem_hinsert) qed thus ?thesis by (metis ih) qed definition hmem_rel :: "(hf * hf) set" where "hmem_rel = trancl {(x,y). x <: y}" lemma wf_hmem_rel: "wf hmem_rel" proof - have "wf {(x,y). x <: y}" by (metis (full_types) hmem_induct wfPUNIVI wfP_def) thus ?thesis by (metis hmem_rel_def wf_trancl) qed lemma hmem_eclose_le: "y \<^bold>\<in> x \<Longrightarrow> eclose y \<le> eclose x" by (metis Transset_def Transset_eclose eclose_minimal hsubsetD le_eclose) lemma hmem_rel_iff_hmem_eclose: "(x,y) \<in> hmem_rel \<longleftrightarrow> x <: eclose y" proof (unfold hmem_rel_def, rule iffI) assume "(x, y) \<in> trancl {(x, y). x \<^bold>\<in> y}" thus "x \<^bold>\<in> eclose y" proof (induct rule: trancl_induct) case (base y) thus ?case by (metis hsubsetCE le_eclose mem_Collect_eq split_conv) next case (step y z) thus ?case by (metis hmem_eclose_le hsubsetD mem_Collect_eq split_conv) qed next have "Transset \<lbrace>x \<^bold>\<in> eclose y. (x, y) \<in> hmem_rel\<rbrace>" using Transset_eclose by (auto simp: Transset_def hmem_rel_def intro: trancl_trans) hence "eclose y \<le> \<lbrace>x \<^bold>\<in> eclose y. (x, y) \<in> hmem_rel\<rbrace>" by (rule eclose_minimal) (auto simp: le_HCollect_iff le_eclose hmem_rel_def) moreover assume "x \<^bold>\<in> eclose y" ultimately show "(x, y) \<in> trancl {(x, y). x \<^bold>\<in> y}" by (metis HCollect_iff hmem_rel_def hsubsetD) qed definition hmemrec :: "((hf \<Rightarrow> 'a) \<Rightarrow> hf \<Rightarrow> 'a) \<Rightarrow> hf \<Rightarrow> 'a" where "hmemrec G \<equiv> wfrec hmem_rel G" definition ecut :: "(hf \<Rightarrow> 'a) \<Rightarrow> hf \<Rightarrow> hf \<Rightarrow> 'a" where "ecut f x \<equiv> (\<lambda>y. if y \<^bold>\<in> eclose x then f y else undefined)" lemma hmemrec: "hmemrec G a = G (ecut (hmemrec G) a) a" by (simp add: cut_def ecut_def hmem_rel_iff_hmem_eclose def_wfrec [OF hmemrec_def wf_hmem_rel]) text{*This form avoids giant explosions in proofs.*} lemma def_hmemrec: "f \<equiv> hmemrec G \<Longrightarrow> f a = G (ecut (hmemrec G) a) a" by (metis hmemrec) lemma ecut_apply: "y \<^bold>\<in> eclose x \<Longrightarrow> ecut f x y = f y" by (metis ecut_def) lemma RepFun_ecut: "y \<le> z \<Longrightarrow> RepFun y (ecut f z) = RepFun y f" apply (auto simp: hf_ext) apply (metis ecut_def hsubsetD le_eclose) apply (metis ecut_apply le_eclose hsubsetD) done text{*Now, a stronger induction rule, for the transitive closure of membership*} lemma hmem_rel_induct [case_names step]: assumes ih: "\<And>x. (\<And>y. (y,x) \<in> hmem_rel \<Longrightarrow> P y) \<Longrightarrow> P x" shows "P x" proof - have "\<And>y. (y,x) \<in> hmem_rel \<Longrightarrow> P y" proof (induct x rule: hf_induct) case 0 thus ?case by (metis eclose_0 hmem_hempty hmem_rel_iff_hmem_eclose) next case (hinsert a b) thus ?case by (metis assms eclose_hinsert hmem_hinsert hmem_rel_iff_hmem_eclose hunion_iff) qed thus ?thesis by (metis assms) qed lemma rank_HUnion_less: "x \<noteq> 0 \<Longrightarrow> rank (\<Squnion>x) < rank x" apply (induct x rule: hf_induct, auto) apply (metis hmem_hinsert rank_hinsert rank_lt) apply (metis HUnion_hempty Ord_lt_succ_iff_le Ord_rank hunion_hempty_right less_supI1 less_supI2 rank_sup sup.cobounded2) done corollary Sup_ne: "x \<noteq> 0 \<Longrightarrow> \<Squnion>x \<noteq> x" by (metis less_irrefl rank_HUnion_less) end
Formal statement is: lemma cis_inverse [simp]: "inverse (cis a) = cis (- a)" Informal statement is: The inverse of $e^{ia}$ is $e^{-ia}$.
[STATEMENT] lemma strip_all_body_unchanged_iff_strip_all_single_body_unchanged: "strip_all_body B = B \<longleftrightarrow> strip_all_single_body B = B" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (strip_all_body B = B) = (strip_all_single_body B = B) [PROOF STEP] by (metis not_Cons_self2 not_None_eq not_is_all_imp_strip_all_body_unchanged strip_all_body_single_simp' strip_all_single_var_is_all strip_all_vars_step)
module Statistics.GModeling.Models.LDA ( ) where import Statistics.GModeling.DSL data LDALabels = Alpha | Beta | Topics | Topic | Doc | Symbols | Symbol lda :: Network LDALabels lda = [ Only Alpha :-> Topics , Only Beta :-> Symbols , (Topics :@ Doc) :-> Topic , (Symbols :@ Topic) :-> Symbol ]
(*<*) theory Syntax imports "Nominal2.Nominal2" "Nominal-Utils" begin (*>*) chapter \<open>Syntax\<close> text \<open>Syntax of MiniSail programs and the contexts we use in judgements.\<close> section \<open>Program Syntax\<close> subsection \<open>AST Datatypes\<close> type_synonym num_nat = nat atom_decl x (* Immutable variables*) atom_decl u (* Mutable variables *) atom_decl bv (* Basic-type variables *) type_synonym f = string (* Function name *) type_synonym dc = string (* Data constructor *) type_synonym tyid = string text \<open>Basic types. Types without refinement constraints\<close> nominal_datatype "b" = B_int | B_bool | B_id tyid | B_pair b b ("[ _ , _ ]\<^sup>b") | B_unit | B_bitvec | B_var bv | B_app tyid b nominal_datatype bit = BitOne | BitZero text \<open> Literals \<close> nominal_datatype "l" = L_num "int" | L_true | L_false | L_unit | L_bitvec "bit list" text \<open> Values. We include a type identifier, tyid, in the literal for constructors to make typing and well-formedness checking easier \<close> nominal_datatype "v" = V_lit "l" ( "[ _ ]\<^sup>v") | V_var "x" ( "[ _ ]\<^sup>v") | V_pair "v" "v" ( "[ _ , _ ]\<^sup>v") | V_cons tyid dc "v" | V_consp tyid dc b "v" text \<open> Binary Operations \<close> nominal_datatype "opp" = Plus ( "plus") | LEq ("leq") | Eq ("eq") text \<open> Expressions \<close> nominal_datatype "e" = AE_val "v" ( "[ _ ]\<^sup>e" ) | AE_app "f" "v" ( "[ _ ( _ ) ]\<^sup>e" ) | AE_appP "f" "b" "v" ( "[_ [ _ ] ( _ )]\<^sup>e" ) | AE_op "opp" "v" "v" ( "[ _ _ _ ]\<^sup>e" ) | AE_concat v v ( "[ _ @@ _ ]\<^sup>e" ) | AE_fst "v" ( "[#1_ ]\<^sup>e" ) | AE_snd "v" ( "[#2_ ]\<^sup>e" ) | AE_mvar "u" ( "[ _ ]\<^sup>e" ) | AE_len "v" ( "[| _ |]\<^sup>e" ) | AE_split "v" "v" ( "[ _ / _ ]\<^sup>e" ) text \<open> Expressions for constraints\<close> nominal_datatype "ce" = CE_val "v" ( "[ _ ]\<^sup>c\<^sup>e" ) | CE_op "opp" "ce" "ce" ( "[ _ _ _ ]\<^sup>c\<^sup>e" ) | CE_concat ce ce ( "[ _ @@ _ ]\<^sup>c\<^sup>e" ) | CE_fst "ce" ( "[#1_]\<^sup>c\<^sup>e" ) | CE_snd "ce" ( "[#2_]\<^sup>c\<^sup>e" ) | CE_len "ce" ( "[| _ |]\<^sup>c\<^sup>e" ) text \<open> Constraints \<close> nominal_datatype "c" = C_true ( "TRUE" [] 50 ) | C_false ( "FALSE" [] 50 ) | C_conj "c" "c" ("_ AND _ " [50, 50] 50) | C_disj "c" "c" ("_ OR _ " [50,50] 50) | C_not "c" ( "\<not> _ " [] 50 ) | C_imp "c" "c" ("_ IMP _ " [50, 50] 50) | C_eq "ce" "ce" ("_ == _ " [50, 50] 50) text \<open> Refined types \<close> nominal_datatype "\<tau>" = T_refined_type x::x b c::c binds x in c ("\<lbrace> _ : _ | _ \<rbrace>" [50, 50] 1000) text \<open> Statements \<close> nominal_datatype s = AS_val v ( "[_]\<^sup>s") | AS_let x::x e s::s binds x in s ( "(LET _ = _ IN _)") | AS_let2 x::x \<tau> s s::s binds x in s ( "(LET _ : _ = _ IN _)") | AS_if v s s ( "(IF _ THEN _ ELSE _)" [0, 61, 0] 61) | AS_var u::u \<tau> v s::s binds u in s ( "(VAR _ : _ = _ IN _)") | AS_assign u v ( "(_ ::= _)") | AS_match v branch_list ( "(MATCH _ WITH { _ })") | AS_while s s ( "(WHILE _ DO { _ } )" [0, 0] 61) | AS_seq s s ( "( _ ;; _ )" [1000, 61] 61) | AS_assert c s ( "(ASSERT _ IN _ )" ) and branch_s = AS_branch dc x::x s::s binds x in s ( "( _ _ \<Rightarrow> _ )") and branch_list = AS_final branch_s ( "{ _ }" ) | AS_cons branch_s branch_list ( "( _ | _ )") text \<open> Function and union type definitions \<close> nominal_datatype "fun_typ" = AF_fun_typ x::x "b" c::c \<tau>::\<tau> s::s binds x in c \<tau> s nominal_datatype "fun_typ_q" = AF_fun_typ_some bv::bv ft::fun_typ binds bv in ft | AF_fun_typ_none fun_typ nominal_datatype "fun_def" = AF_fundef f fun_typ_q nominal_datatype "type_def" = AF_typedef string "(string * \<tau>) list" | AF_typedef_poly string bv::bv dclist::"(string * \<tau>) list" binds bv in dclist lemma check_typedef_poly: "AF_typedef_poly ''option'' bv [ (''None'', \<lbrace> zz : B_unit | TRUE \<rbrace>), (''Some'', \<lbrace> zz : B_var bv | TRUE \<rbrace>) ] = AF_typedef_poly ''option'' bv2 [ (''None'', \<lbrace> zz : B_unit | TRUE \<rbrace>), (''Some'', \<lbrace> zz : B_var bv2 | TRUE \<rbrace>) ]" by auto nominal_datatype "var_def" = AV_def u \<tau> v text \<open> Programs \<close> nominal_datatype "p" = AP_prog "type_def list" "fun_def list" "var_def list" "s" ("PROG _ _ _ _") declare l.supp [simp] v.supp [simp] e.supp [simp] s_branch_s_branch_list.supp [simp] \<tau>.supp [simp] c.supp [simp] b.supp[simp] subsection \<open>Lemmas\<close> text \<open>These lemmas deal primarily with freshness and alpha-equivalence\<close> subsubsection \<open>Atoms\<close> lemma x_not_in_u_atoms[simp]: fixes u::u and x::x and us::"u set" shows "atom x \<notin> atom`us" by (simp add: image_iff) lemma x_fresh_u[simp]: fixes u::u and x::x shows "atom x \<sharp> u" by auto lemma x_not_in_b_set[simp]: fixes x::x and bs::"bv fset" shows "atom x \<notin> supp bs" by(induct bs,auto, simp add: supp_finsert supp_at_base) lemma x_fresh_b[simp]: fixes x::x and b::b shows "atom x \<sharp> b" apply (induct b rule: b.induct, auto simp: pure_supp) using pure_supp fresh_def by blast+ lemma x_fresh_bv[simp]: fixes x::x and bv::bv shows "atom x \<sharp> bv" using fresh_def supp_at_base by auto lemma u_not_in_x_atoms[simp]: fixes u::u and x::x and xs::"x set" shows "atom u \<notin> atom`xs" by (simp add: image_iff) lemma bv_not_in_x_atoms[simp]: fixes bv::bv and x::x and xs::"x set" shows "atom bv \<notin> atom`xs" by (simp add: image_iff) lemma u_not_in_b_atoms[simp]: fixes b :: b and u::u shows "atom u \<notin> supp b" by (induct b rule: b.induct,auto simp: pure_supp supp_at_base) lemma u_not_in_b_set[simp]: fixes u::u and bs::"bv fset" shows "atom u \<notin> supp bs" by(induct bs, auto simp add: supp_at_base supp_finsert) lemma u_fresh_b[simp]: fixes x::u and b::b shows "atom x \<sharp> b" by(induct b rule: b.induct, auto simp: pure_fresh ) lemma supp_b_v_disjoint: fixes x::x and bv::bv shows "supp (V_var x) \<inter> supp (B_var bv) = {}" by (simp add: supp_at_base) lemma supp_b_u_disjoint[simp]: fixes b::b and u::u shows "supp u \<inter> supp b = {}" by(nominal_induct b rule:b.strong_induct,(auto simp add: pure_supp b.supp supp_at_base)+) lemma u_fresh_bv[simp]: fixes u::u and b::bv shows "atom u \<sharp> b" using fresh_at_base by simp subsubsection \<open>Basic Types\<close> nominal_function b_of :: "\<tau> \<Rightarrow> b" where "b_of \<lbrace> z : b | c \<rbrace> = b" apply(auto,simp add: eqvt_def b_of_graph_aux_def ) by (meson \<tau>.exhaust) nominal_termination (eqvt) by lexicographic_order lemma supp_b_empty[simp]: fixes b :: b and x::x shows "atom x \<notin> supp b" by (induct b rule: b.induct, auto simp: pure_supp supp_at_base x_not_in_b_set) lemma flip_b_id[simp]: fixes x::x and b::b shows "(x \<leftrightarrow> x') \<bullet> b = b" by(rule flip_fresh_fresh, auto simp add: fresh_def) lemma flip_x_b_cancel[simp]: fixes x::x and y::x and b::b and bv::bv shows "(x \<leftrightarrow> y) \<bullet> b = b" and "(x \<leftrightarrow> y) \<bullet> bv = bv" using flip_b_id apply simp by (metis b.eq_iff(7) b.perm_simps(7) flip_b_id) lemma flip_bv_x_cancel[simp]: fixes bv::bv and z::bv and x::x shows "(bv \<leftrightarrow> z) \<bullet> x = x" using flip_fresh_fresh[of bv x z] fresh_at_base by auto lemma flip_bv_u_cancel[simp]: fixes bv::bv and z::bv and x::u shows "(bv \<leftrightarrow> z) \<bullet> x = x" using flip_fresh_fresh[of bv x z] fresh_at_base by auto subsubsection \<open>Literals\<close> lemma supp_bitvec_empty: fixes bv::"bit list" shows "supp bv = {}" proof(induct bv) case Nil then show ?case using supp_Nil by auto next case (Cons a bv) then show ?case using supp_Cons bit.supp by (metis (mono_tags, opaque_lifting) bit.strong_exhaust l.supp(5) sup_bot.right_neutral) qed lemma bitvec_pure[simp]: fixes bv::"bit list" and x::x shows "atom x \<sharp> bv" using fresh_def supp_bitvec_empty by auto lemma supp_l_empty[simp]: fixes l:: l shows "supp (V_lit l) = {}" by(nominal_induct l rule: l.strong_induct, auto simp add: l.strong_exhaust pure_supp v.fv_defs supp_bitvec_empty) lemma type_l_nosupp[simp]: fixes x::x and l::l shows "atom x \<notin> supp (\<lbrace> z : b | [[z]\<^sup>v]\<^sup>c\<^sup>e == [[l]\<^sup>v]\<^sup>c\<^sup>e \<rbrace>)" using supp_at_base supp_l_empty ce.supp(1) c.supp \<tau>.supp by force lemma flip_bitvec0: fixes x::"bit list" assumes "atom c \<sharp> (z, x, z')" shows "(z \<leftrightarrow> c) \<bullet> x = (z' \<leftrightarrow> c) \<bullet> x" proof - have "atom z \<sharp> x" and "atom z' \<sharp> x" using flip_fresh_fresh assms supp_bitvec_empty fresh_def by blast+ moreover have "atom c \<sharp> x" using supp_bitvec_empty fresh_def by auto ultimately show ?thesis using assms flip_fresh_fresh by metis qed lemma flip_bitvec: assumes "atom c \<sharp> (z, L_bitvec x, z')" shows "(z \<leftrightarrow> c) \<bullet> x = (z' \<leftrightarrow> c) \<bullet> x" proof - have "atom z \<sharp> x" and "atom z' \<sharp> x" using flip_fresh_fresh assms supp_bitvec_empty fresh_def by blast+ moreover have "atom c \<sharp> x" using supp_bitvec_empty fresh_def by auto ultimately show ?thesis using assms flip_fresh_fresh by metis qed lemma type_l_eq: shows "\<lbrace> z : b | [[z]\<^sup>v]\<^sup>c\<^sup>e == [V_lit l]\<^sup>c\<^sup>e \<rbrace> = (\<lbrace> z' : b | [[z']\<^sup>v]\<^sup>c\<^sup>e == [V_lit l]\<^sup>c\<^sup>e \<rbrace>)" by(auto,nominal_induct l rule: l.strong_induct,auto, metis permute_pure, auto simp add: flip_bitvec) lemma flip_l_eq: fixes x::l shows "(z \<leftrightarrow> c) \<bullet> x = (z' \<leftrightarrow> c) \<bullet> x" proof - have "atom z \<sharp> x" and "atom c \<sharp> x" and "atom z' \<sharp> x" using flip_fresh_fresh fresh_def supp_l_empty by fastforce+ thus ?thesis using flip_fresh_fresh by metis qed lemma flip_l_eq1: fixes x::l assumes "(z \<leftrightarrow> c) \<bullet> x = (z' \<leftrightarrow> c) \<bullet> x'" shows "x' = x" proof - have "atom z \<sharp> x" and "atom c \<sharp> x'" and "atom c \<sharp> x" and "atom z' \<sharp> x'" using flip_fresh_fresh fresh_def supp_l_empty by fastforce+ thus ?thesis using flip_fresh_fresh assms by metis qed subsubsection \<open>Types\<close> lemma flip_base_eq: fixes b::b and x::x and y::x shows "(x \<leftrightarrow> y) \<bullet> b = b" using b.fresh by (simp add: flip_fresh_fresh fresh_def) text \<open> Obtain an alpha-equivalent type where the bound variable is fresh in some term t \<close> lemma has_fresh_z0: fixes t::"'b::fs" shows "\<exists>z. atom z \<sharp> (c',t) \<and> (\<lbrace>z' : b | c' \<rbrace>) = (\<lbrace> z : b | (z \<leftrightarrow> z' ) \<bullet> c' \<rbrace>)" proof - obtain z::x where fr: "atom z \<sharp> (c',t)" using obtain_fresh by blast moreover hence "(\<lbrace> z' : b | c' \<rbrace>) = (\<lbrace> z : b | (z \<leftrightarrow> z') \<bullet> c' \<rbrace>)" using \<tau>.eq_iff Abs1_eq_iff by (metis flip_commute flip_fresh_fresh fresh_PairD(1)) ultimately show ?thesis by fastforce qed lemma has_fresh_z: fixes t::"'b::fs" shows "\<exists>z b c. atom z \<sharp> t \<and> \<tau> = \<lbrace> z : b | c \<rbrace>" proof - obtain z' and b and c' where teq: "\<tau> = (\<lbrace> z' : b | c' \<rbrace>)" using \<tau>.exhaust by blast obtain z::x where fr: "atom z \<sharp> (t,c')" using obtain_fresh by blast hence "(\<lbrace> z' : b | c' \<rbrace>) = (\<lbrace> z : b | (z \<leftrightarrow> z') \<bullet> c' \<rbrace>)" using \<tau>.eq_iff Abs1_eq_iff flip_commute flip_fresh_fresh fresh_PairD(1) by (metis fresh_PairD(2)) hence "atom z \<sharp> t \<and> \<tau> = (\<lbrace> z : b | (z \<leftrightarrow> z') \<bullet> c' \<rbrace>)" using fr teq by force thus ?thesis using teq fr by fast qed lemma obtain_fresh_z: fixes t::"'b::fs" obtains z and b and c where "atom z \<sharp> t \<and> \<tau> = \<lbrace> z : b | c \<rbrace>" using has_fresh_z by blast lemma has_fresh_z2: fixes t::"'b::fs" shows "\<exists>z c. atom z \<sharp> t \<and> \<tau> = \<lbrace> z : b_of \<tau> | c \<rbrace>" proof - obtain z and b and c where "atom z \<sharp> t \<and> \<tau> = \<lbrace> z : b | c \<rbrace>" using obtain_fresh_z by metis moreover then have "b_of \<tau> = b" using \<tau>.eq_iff by simp ultimately show ?thesis using obtain_fresh_z \<tau>.eq_iff by auto qed lemma obtain_fresh_z2: fixes t::"'b::fs" obtains z and c where "atom z \<sharp> t \<and> \<tau> = \<lbrace> z : b_of \<tau> | c \<rbrace>" using has_fresh_z2 by blast subsubsection \<open>Values\<close> lemma u_notin_supp_v[simp]: fixes u::u and v::v shows "atom u \<notin> supp v" proof(nominal_induct v rule: v.strong_induct) case (V_lit l) then show ?case using supp_l_empty by auto next case (V_var x) then show ?case by (simp add: supp_at_base) next case (V_pair v1 v2) then show ?case by auto next case (V_cons tyid list v) then show ?case using pure_supp by auto next case (V_consp tyid list b v) then show ?case using pure_supp by auto qed lemma u_fresh_xv[simp]: fixes u::u and x::x and v::v shows "atom u \<sharp> (x,v)" proof - have "atom u \<sharp> x" using fresh_def by fastforce moreover have "atom u \<sharp> v" using fresh_def u_notin_supp_v by metis ultimately show ?thesis using fresh_prod2 by auto qed text \<open> Part of an effort to make the proofs across inductive cases more uniform by distilling the non-uniform parts into lemmas like this\<close> lemma v_flip_eq: fixes v::v and va::v and x::x and c::x assumes "atom c \<sharp> (v, va)" and "atom c \<sharp> (x, xa, v, va)" and "(x \<leftrightarrow> c) \<bullet> v = (xa \<leftrightarrow> c) \<bullet> va" shows "((v = V_lit l \<longrightarrow> (\<exists>l'. va = V_lit l' \<and> (x \<leftrightarrow> c) \<bullet> l = (xa \<leftrightarrow> c) \<bullet> l'))) \<and> ((v = V_var y \<longrightarrow> (\<exists>y'. va = V_var y' \<and> (x \<leftrightarrow> c) \<bullet> y = (xa \<leftrightarrow> c) \<bullet> y'))) \<and> ((v = V_pair vone vtwo \<longrightarrow> (\<exists>v1' v2'. va = V_pair v1' v2' \<and> (x \<leftrightarrow> c) \<bullet> vone = (xa \<leftrightarrow> c) \<bullet> v1' \<and> (x \<leftrightarrow> c) \<bullet> vtwo = (xa \<leftrightarrow> c) \<bullet> v2'))) \<and> ((v = V_cons tyid dc vone \<longrightarrow> (\<exists>v1'. va = V_cons tyid dc v1'\<and> (x \<leftrightarrow> c) \<bullet> vone = (xa \<leftrightarrow> c) \<bullet> v1'))) \<and> ((v = V_consp tyid dc b vone \<longrightarrow> (\<exists>v1'. va = V_consp tyid dc b v1'\<and> (x \<leftrightarrow> c) \<bullet> vone = (xa \<leftrightarrow> c) \<bullet> v1')))" using assms proof(nominal_induct v rule:v.strong_induct) case (V_lit l) then show ?case using assms v.perm_simps empty_iff flip_def fresh_def fresh_permute_iff supp_l_empty swap_fresh_fresh v.fresh by (metis permute_swap_cancel2 v.distinct) next case (V_var x) then show ?case using assms v.perm_simps empty_iff flip_def fresh_def fresh_permute_iff supp_l_empty swap_fresh_fresh v.fresh by (metis permute_swap_cancel2 v.distinct) next case (V_pair v1 v2) have " (V_pair v1 v2 = V_pair vone vtwo \<longrightarrow> (\<exists>v1' v2'. va = V_pair v1' v2' \<and> (x \<leftrightarrow> c) \<bullet> vone = (xa \<leftrightarrow> c) \<bullet> v1' \<and> (x \<leftrightarrow> c) \<bullet> vtwo = (xa \<leftrightarrow> c) \<bullet> v2'))" proof assume "V_pair v1 v2= V_pair vone vtwo" thus "(\<exists>v1' v2'. va = V_pair v1' v2' \<and> (x \<leftrightarrow> c) \<bullet> vone = (xa \<leftrightarrow> c) \<bullet> v1' \<and> (x \<leftrightarrow> c) \<bullet> vtwo = (xa \<leftrightarrow> c) \<bullet> v2')" using V_pair assms by (metis (no_types, opaque_lifting) flip_def permute_swap_cancel v.perm_simps(3)) qed thus ?case using V_pair by auto next case (V_cons tyid dc v1) have " (V_cons tyid dc v1 = V_cons tyid dc vone \<longrightarrow> (\<exists> v1'. va = V_cons tyid dc v1' \<and> (x \<leftrightarrow> c) \<bullet> vone = (xa \<leftrightarrow> c) \<bullet> v1'))" proof assume as: "V_cons tyid dc v1 = V_cons tyid dc vone" hence "(x \<leftrightarrow> c) \<bullet> (V_cons tyid dc vone) = V_cons tyid dc ((x \<leftrightarrow> c) \<bullet> vone)" proof - have "(x \<leftrightarrow> c) \<bullet> dc = dc" using pure_permute_id by metis moreover have "(x \<leftrightarrow> c) \<bullet> tyid = tyid" using pure_permute_id by metis ultimately show ?thesis using v.perm_simps(4) by simp qed then obtain v1' where "(xa \<leftrightarrow> c) \<bullet> va = V_cons tyid dc v1' \<and> (x \<leftrightarrow> c) \<bullet> vone = v1'" using assms V_cons using as by fastforce hence " va = V_cons tyid dc ((xa \<leftrightarrow> c) \<bullet> v1') \<and> (x \<leftrightarrow> c) \<bullet> vone = v1'" using permute_flip_cancel empty_iff flip_def fresh_def supp_b_empty swap_fresh_fresh by (metis pure_fresh v.perm_simps(4)) thus "(\<exists>v1'. va = V_cons tyid dc v1' \<and> (x \<leftrightarrow> c) \<bullet> vone = (xa \<leftrightarrow> c) \<bullet> v1')" using V_cons assms by simp qed thus ?case using V_cons by auto next case (V_consp tyid dc b v1) have " (V_consp tyid dc b v1 = V_consp tyid dc b vone \<longrightarrow> (\<exists> v1'. va = V_consp tyid dc b v1' \<and> (x \<leftrightarrow> c) \<bullet> vone = (xa \<leftrightarrow> c) \<bullet> v1'))" proof assume as: "V_consp tyid dc b v1 = V_consp tyid dc b vone" hence "(x \<leftrightarrow> c) \<bullet> (V_consp tyid dc b vone) = V_consp tyid dc b ((x \<leftrightarrow> c) \<bullet> vone)" proof - have "(x \<leftrightarrow> c) \<bullet> dc = dc" using pure_permute_id by metis moreover have "(x \<leftrightarrow> c) \<bullet> tyid = tyid" using pure_permute_id by metis ultimately show ?thesis using v.perm_simps(4) by simp qed then obtain v1' where "(xa \<leftrightarrow> c) \<bullet> va = V_consp tyid dc b v1' \<and> (x \<leftrightarrow> c) \<bullet> vone = v1'" using assms V_consp using as by fastforce hence " va = V_consp tyid dc b ((xa \<leftrightarrow> c) \<bullet> v1') \<and> (x \<leftrightarrow> c) \<bullet> vone = v1'" using permute_flip_cancel empty_iff flip_def fresh_def supp_b_empty swap_fresh_fresh pure_fresh v.perm_simps by (metis (mono_tags, opaque_lifting)) thus "(\<exists>v1'. va = V_consp tyid dc b v1' \<and> (x \<leftrightarrow> c) \<bullet> vone = (xa \<leftrightarrow> c) \<bullet> v1')" using V_consp assms by simp qed thus ?case using V_consp by auto qed lemma flip_eq: fixes x::x and xa::x and s::"'a::fs" and sa::"'a::fs" assumes "(\<forall>c. atom c \<sharp> (s, sa) \<longrightarrow> atom c \<sharp> (x, xa, s, sa) \<longrightarrow> (x \<leftrightarrow> c) \<bullet> s = (xa \<leftrightarrow> c) \<bullet> sa)" and "x \<noteq> xa" shows "(x \<leftrightarrow> xa) \<bullet> s = sa" proof - have " ([[atom x]]lst. s = [[atom xa]]lst. sa)" using assms Abs1_eq_iff_all by simp hence "(xa = x \<and> sa = s \<or> xa \<noteq> x \<and> sa = (xa \<leftrightarrow> x) \<bullet> s \<and> atom xa \<sharp> s)" using assms Abs1_eq_iff[of xa sa x s] by simp thus ?thesis using assms by (metis flip_commute) qed lemma swap_v_supp: fixes v::v and d::x and z::x assumes "atom d \<sharp> v" shows "supp ((z \<leftrightarrow> d ) \<bullet> v) \<subseteq> supp v - { atom z } \<union> { atom d}" using assms proof(nominal_induct v rule:v.strong_induct) case (V_lit l) then show ?case using l.supp by (metis supp_l_empty empty_subsetI l.strong_exhaust pure_supp supp_eqvt v.supp) next case (V_var x) hence "d \<noteq> x" using fresh_def by fastforce thus ?case apply(cases "z = x") using supp_at_base V_var \<open>d\<noteq>x\<close> by fastforce+ next case (V_cons tyid dc v) show ?case using v.supp(4) pure_supp using V_cons.hyps V_cons.prems fresh_def by auto next case (V_consp tyid dc b v) show ?case using v.supp(4) pure_supp using V_consp.hyps V_consp.prems fresh_def by auto qed(force+) subsubsection \<open>Expressions\<close> lemma swap_e_supp: fixes e::e and d::x and z::x assumes "atom d \<sharp> e" shows "supp ((z \<leftrightarrow> d ) \<bullet> e) \<subseteq> supp e - { atom z } \<union> { atom d}" using assms proof(nominal_induct e rule:e.strong_induct) case (AE_val v) then show ?case using swap_v_supp by simp next case (AE_app f v) then show ?case using swap_v_supp by (simp add: pure_supp) next case (AE_appP b f v) hence df: "atom d \<sharp> v" using fresh_def e.supp by force have "supp ((z \<leftrightarrow> d ) \<bullet> (AE_appP b f v)) = supp (AE_appP b f ((z \<leftrightarrow> d ) \<bullet> v))" using e.supp by (metis b.eq_iff(3) b.perm_simps(3) e.perm_simps(3) flip_b_id) also have "... = supp b \<union> supp f \<union> supp ((z \<leftrightarrow> d ) \<bullet> v)" using e.supp by auto also have "... \<subseteq> supp b \<union> supp f \<union> supp v - { atom z } \<union> { atom d}" using swap_v_supp[OF df] pure_supp by auto finally show ?case using e.supp by auto next case (AE_op opp v1 v2) hence df: "atom d \<sharp> v1 \<and> atom d \<sharp> v2" using fresh_def e.supp by force have "((z \<leftrightarrow> d ) \<bullet> (AE_op opp v1 v2)) = AE_op opp ((z \<leftrightarrow> d ) \<bullet> v1) ((z \<leftrightarrow> d ) \<bullet> v2)" using e.perm_simps flip_commute opp.perm_simps AE_op opp.strong_exhaust pure_supp by (metis (full_types)) hence "supp ((z \<leftrightarrow> d) \<bullet> AE_op opp v1 v2) = supp (AE_op opp ((z \<leftrightarrow> d) \<bullet>v1) ((z \<leftrightarrow> d) \<bullet>v2))" by simp also have "... = supp ((z \<leftrightarrow> d) \<bullet>v1) \<union> supp ((z \<leftrightarrow> d) \<bullet>v2)" using e.supp by (metis (mono_tags, opaque_lifting) opp.strong_exhaust opp.supp sup_bot.left_neutral) also have "... \<subseteq> (supp v1 - { atom z } \<union> { atom d}) \<union> (supp v2 - { atom z } \<union> { atom d})" using swap_v_supp AE_op df by blast finally show ?case using e.supp opp.supp by blast next case (AE_fst v) then show ?case using swap_v_supp by auto next case (AE_snd v) then show ?case using swap_v_supp by auto next case (AE_mvar u) then show ?case using Diff_empty Diff_insert0 Un_upper1 atom_x_sort flip_def flip_fresh_fresh fresh_def set_eq_subset supp_eqvt swap_set_in_eq by (metis sort_of_atom_eq) next case (AE_len v) then show ?case using swap_v_supp by auto next case (AE_concat v1 v2) then show ?case using swap_v_supp by auto next case (AE_split v1 v2) then show ?case using swap_v_supp by auto qed lemma swap_ce_supp: fixes e::ce and d::x and z::x assumes "atom d \<sharp> e" shows "supp ((z \<leftrightarrow> d ) \<bullet> e) \<subseteq> supp e - { atom z } \<union> { atom d}" using assms proof(nominal_induct e rule:ce.strong_induct) case (CE_val v) then show ?case using swap_v_supp ce.fresh ce.supp by simp next case (CE_op opp v1 v2) hence df: "atom d \<sharp> v1 \<and> atom d \<sharp> v2" using fresh_def e.supp by force have "((z \<leftrightarrow> d ) \<bullet> (CE_op opp v1 v2)) = CE_op opp ((z \<leftrightarrow> d ) \<bullet> v1) ((z \<leftrightarrow> d ) \<bullet> v2)" using ce.perm_simps flip_commute opp.perm_simps CE_op opp.strong_exhaust x_fresh_b pure_supp by (metis (full_types)) hence "supp ((z \<leftrightarrow> d) \<bullet> CE_op opp v1 v2) = supp (CE_op opp ((z \<leftrightarrow> d) \<bullet>v1) ((z \<leftrightarrow> d) \<bullet>v2))" by simp also have "... = supp ((z \<leftrightarrow> d) \<bullet>v1) \<union> supp ((z \<leftrightarrow> d) \<bullet>v2)" using ce.supp by (metis (mono_tags, opaque_lifting) opp.strong_exhaust opp.supp sup_bot.left_neutral) also have "... \<subseteq> (supp v1 - { atom z } \<union> { atom d}) \<union> (supp v2 - { atom z } \<union> { atom d})" using swap_v_supp CE_op df by blast finally show ?case using ce.supp opp.supp by blast next case (CE_fst v) then show ?case using ce.supp ce.fresh swap_v_supp by auto next case (CE_snd v) then show ?case using ce.supp ce.fresh swap_v_supp by auto next case (CE_len v) then show ?case using ce.supp ce.fresh swap_v_supp by auto next case (CE_concat v1 v2) then show ?case using ce.supp ce.fresh swap_v_supp ce.perm_simps proof - have "\<forall>x v xa. \<not> atom (x::x) \<sharp> (v::v) \<or> supp ((xa \<leftrightarrow> x) \<bullet> v) \<subseteq> supp v - {atom xa} \<union> {atom x}" by (meson swap_v_supp) (* 0.0 ms *) then show ?thesis using CE_concat ce.supp by auto qed qed lemma swap_c_supp: fixes c::c and d::x and z::x assumes "atom d \<sharp> c" shows "supp ((z \<leftrightarrow> d ) \<bullet> c) \<subseteq> supp c - { atom z } \<union> { atom d}" using assms proof(nominal_induct c rule:c.strong_induct) case (C_eq e1 e2) then show ?case using swap_ce_supp by auto qed(auto+) lemma type_e_eq: assumes "atom z \<sharp> e" and "atom z' \<sharp> e" shows "\<lbrace> z : b | [[z]\<^sup>v]\<^sup>c\<^sup>e == e \<rbrace> = (\<lbrace> z' : b | [[z']\<^sup>v]\<^sup>c\<^sup>e == e \<rbrace>)" by (auto,metis (full_types) assms(1) assms(2) flip_fresh_fresh fresh_PairD(1) fresh_PairD(2)) lemma type_e_eq2: assumes "atom z \<sharp> e" and "atom z' \<sharp> e" and "b=b'" shows "\<lbrace> z : b | [[z]\<^sup>v]\<^sup>c\<^sup>e == e \<rbrace> = (\<lbrace> z' : b' | [[z']\<^sup>v]\<^sup>c\<^sup>e == e \<rbrace>)" using assms type_e_eq by fast lemma e_flip_eq: fixes e::e and ea::e assumes "atom c \<sharp> (e, ea)" and "atom c \<sharp> (x, xa, e, ea)" and "(x \<leftrightarrow> c) \<bullet> e = (xa \<leftrightarrow> c) \<bullet> ea" shows "(e = AE_val w \<longrightarrow> (\<exists>w'. ea = AE_val w' \<and> (x \<leftrightarrow> c) \<bullet> w = (xa \<leftrightarrow> c) \<bullet> w')) \<or> (e = AE_op opp v1 v2 \<longrightarrow> (\<exists>v1' v2'. ea = AS_op opp v1' v2' \<and> (x \<leftrightarrow> c) \<bullet> v1 = (xa \<leftrightarrow> c) \<bullet> v1') \<and> (x \<leftrightarrow> c) \<bullet> v2 = (xa \<leftrightarrow> c) \<bullet> v2') \<or> (e = AE_fst v \<longrightarrow> (\<exists>v'. ea = AE_fst v' \<and> (x \<leftrightarrow> c) \<bullet> v = (xa \<leftrightarrow> c) \<bullet> v')) \<or> (e = AE_snd v \<longrightarrow> (\<exists>v'. ea = AE_snd v' \<and> (x \<leftrightarrow> c) \<bullet> v = (xa \<leftrightarrow> c) \<bullet> v')) \<or> (e = AE_len v \<longrightarrow> (\<exists>v'. ea = AE_len v' \<and> (x \<leftrightarrow> c) \<bullet> v = (xa \<leftrightarrow> c) \<bullet> v')) \<or> (e = AE_concat v1 v2 \<longrightarrow> (\<exists>v1' v2'. ea = AS_concat v1' v2' \<and> (x \<leftrightarrow> c) \<bullet> v1 = (xa \<leftrightarrow> c) \<bullet> v1') \<and> (x \<leftrightarrow> c) \<bullet> v2 = (xa \<leftrightarrow> c) \<bullet> v2') \<or> (e = AE_app f v \<longrightarrow> (\<exists>v'. ea = AE_app f v' \<and> (x \<leftrightarrow> c) \<bullet> v = (xa \<leftrightarrow> c) \<bullet> v'))" by (metis assms e.perm_simps permute_flip_cancel2) lemma fresh_opp_all: fixes opp::opp shows "z \<sharp> opp" using e.fresh opp.exhaust opp.fresh by metis lemma fresh_e_opp_all: shows "(z \<sharp> v1 \<and> z \<sharp> v2) = z \<sharp> AE_op opp v1 v2" using e.fresh opp.exhaust opp.fresh fresh_opp_all by simp lemma fresh_e_opp: fixes z::x assumes "atom z \<sharp> v1 \<and> atom z \<sharp> v2" shows "atom z \<sharp> AE_op opp v1 v2" using e.fresh opp.exhaust opp.fresh opp.supp by (metis assms) subsubsection \<open>Statements\<close> lemma branch_s_flip_eq: fixes v::v and va::v assumes "atom c \<sharp> (v, va)" and "atom c \<sharp> (x, xa, v, va)" and "(x \<leftrightarrow> c) \<bullet> s = (xa \<leftrightarrow> c) \<bullet> sa" shows "(s = AS_val w \<longrightarrow> (\<exists>w'. sa = AS_val w' \<and> (x \<leftrightarrow> c) \<bullet> w = (xa \<leftrightarrow> c) \<bullet> w')) \<or> (s = AS_seq s1 s2 \<longrightarrow> (\<exists>s1' s2'. sa = AS_seq s1' s2' \<and> (x \<leftrightarrow> c) \<bullet> s1 = (xa \<leftrightarrow> c) \<bullet> s1') \<and> (x \<leftrightarrow> c) \<bullet> s2 = (xa \<leftrightarrow> c) \<bullet> s2') \<or> (s = AS_if v s1 s2 \<longrightarrow> (\<exists>v' s1' s2'. sa = AS_if seq s1' s2' \<and> (x \<leftrightarrow> c) \<bullet> s1 = (xa \<leftrightarrow> c) \<bullet> s1') \<and> (x \<leftrightarrow> c) \<bullet> s2 = (xa \<leftrightarrow> c) \<bullet> s2' \<and> (x \<leftrightarrow> c) \<bullet> c = (xa \<leftrightarrow> c) \<bullet> v')" by (metis assms s_branch_s_branch_list.perm_simps permute_flip_cancel2) section \<open>Context Syntax\<close> subsection \<open>Datatypes\<close> text \<open>Type and function/type definition contexts\<close> type_synonym \<Phi> = "fun_def list" type_synonym \<Theta> = "type_def list" type_synonym \<B> = "bv fset" datatype \<Gamma> = GNil | GCons "x*b*c" \<Gamma> (infixr "#\<^sub>\<Gamma>" 65) datatype \<Delta> = DNil ("[]\<^sub>\<Delta>") | DCons "u*\<tau>" \<Delta> (infixr "#\<^sub>\<Delta>" 65) subsection \<open>Functions and Lemmas\<close> lemma \<Gamma>_induct [case_names GNil GCons] : "P GNil \<Longrightarrow> (\<And>x b c \<Gamma>'. P \<Gamma>' \<Longrightarrow> P ((x,b,c) #\<^sub>\<Gamma> \<Gamma>')) \<Longrightarrow> P \<Gamma>" proof(induct \<Gamma> rule:\<Gamma>.induct) case GNil then show ?case by auto next case (GCons x1 x2) then obtain x and b and c where "x1=(x,b,c)" using prod_cases3 by blast then show ?case using GCons by presburger qed instantiation \<Delta> :: pt begin primrec permute_\<Delta> where DNil_eqvt: "p \<bullet> DNil = DNil" | DCons_eqvt: "p \<bullet> (x #\<^sub>\<Delta> xs) = p \<bullet> x #\<^sub>\<Delta> p \<bullet> (xs::\<Delta>)" instance by standard (induct_tac [!] x, simp_all) end lemmas [eqvt] = permute_\<Delta>.simps lemma \<Delta>_induct [case_names DNil DCons] : "P DNil \<Longrightarrow> (\<And>u t \<Delta>'. P \<Delta>' \<Longrightarrow> P ((u,t) #\<^sub>\<Delta> \<Delta>')) \<Longrightarrow> P \<Delta>" proof(induct \<Delta> rule: \<Delta>.induct) case DNil then show ?case by auto next case (DCons x1 x2) then obtain u and t where "x1=(u,t)" by fastforce then show ?case using DCons by presburger qed lemma \<Phi>_induct [case_names PNil PConsNone PConsSome] : "P [] \<Longrightarrow> (\<And>f x b c \<tau> s' \<Phi>'. P \<Phi>' \<Longrightarrow> P ((AF_fundef f (AF_fun_typ_none (AF_fun_typ x b c \<tau> s'))) # \<Phi>')) \<Longrightarrow> (\<And>f bv x b c \<tau> s' \<Phi>'. P \<Phi>' \<Longrightarrow> P ((AF_fundef f (AF_fun_typ_some bv (AF_fun_typ x b c \<tau> s'))) # \<Phi>')) \<Longrightarrow> P \<Phi>" proof(induct \<Phi> rule: list.induct) case Nil then show ?case by auto next case (Cons x1 x2) then obtain f and t where ft: "x1 = (AF_fundef f t)" by (meson fun_def.exhaust) then show ?case proof(nominal_induct t rule:fun_typ_q.strong_induct) case (AF_fun_typ_some bv ft) then show ?case using Cons ft by (metis fun_typ.exhaust) next case (AF_fun_typ_none ft) then show ?case using Cons ft by (metis fun_typ.exhaust) qed qed lemma \<Theta>_induct [case_names TNil AF_typedef AF_typedef_poly] : "P [] \<Longrightarrow> (\<And>tid dclist \<Theta>'. P \<Theta>' \<Longrightarrow> P ((AF_typedef tid dclist) # \<Theta>')) \<Longrightarrow> (\<And>tid bv dclist \<Theta>'. P \<Theta>' \<Longrightarrow> P ((AF_typedef_poly tid bv dclist ) # \<Theta>')) \<Longrightarrow> P \<Theta>" proof(induct \<Theta> rule: list.induct) case Nil then show ?case by auto next case (Cons td T) show ?case by(cases td rule: type_def.exhaust, (simp add: Cons)+) qed instantiation \<Gamma> :: pt begin primrec permute_\<Gamma> where GNil_eqvt: "p \<bullet> GNil = GNil" | GCons_eqvt: "p \<bullet> (x #\<^sub>\<Gamma> xs) = p \<bullet> x #\<^sub>\<Gamma> p \<bullet> (xs::\<Gamma>)" instance by standard (induct_tac [!] x, simp_all) end lemmas [eqvt] = permute_\<Gamma>.simps lemma G_cons_eqvt[simp]: fixes \<Gamma>::\<Gamma> shows "p \<bullet> ((x,b,c) #\<^sub>\<Gamma> \<Gamma>) = ((p \<bullet> x, p \<bullet> b , p \<bullet> c) #\<^sub>\<Gamma> (p \<bullet> \<Gamma> ))" (is "?A = ?B" ) using Cons_eqvt triple_eqvt supp_b_empty by simp lemma G_cons_flip[simp]: fixes x::x and \<Gamma>::\<Gamma> shows "(x\<leftrightarrow>x') \<bullet> ((x'',b,c) #\<^sub>\<Gamma> \<Gamma>) = (((x\<leftrightarrow>x') \<bullet> x'', b , (x\<leftrightarrow>x') \<bullet> c) #\<^sub>\<Gamma> ((x\<leftrightarrow>x') \<bullet> \<Gamma> ))" using Cons_eqvt triple_eqvt supp_b_empty by auto lemma G_cons_flip_fresh[simp]: fixes x::x and \<Gamma>::\<Gamma> assumes "atom x \<sharp> (c,\<Gamma>)" and "atom x' \<sharp> (c,\<Gamma>)" shows "(x\<leftrightarrow>x') \<bullet> ((x',b,c) #\<^sub>\<Gamma> \<Gamma>) = ((x, b , c) #\<^sub>\<Gamma> \<Gamma> )" using G_cons_flip flip_fresh_fresh assms by force lemma G_cons_flip_fresh2[simp]: fixes x::x and \<Gamma>::\<Gamma> assumes "atom x \<sharp> (c,\<Gamma>)" and "atom x' \<sharp> (c,\<Gamma>)" shows "(x\<leftrightarrow>x') \<bullet> ((x,b,c) #\<^sub>\<Gamma> \<Gamma>) = ((x', b , c) #\<^sub>\<Gamma> \<Gamma> )" using G_cons_flip flip_fresh_fresh assms by force lemma G_cons_flip_fresh3[simp]: fixes x::x and \<Gamma>::\<Gamma> assumes "atom x \<sharp> \<Gamma>" and "atom x' \<sharp> \<Gamma>" shows "(x\<leftrightarrow>x') \<bullet> ((x',b,c) #\<^sub>\<Gamma> \<Gamma>) = ((x, b , (x\<leftrightarrow>x') \<bullet> c) #\<^sub>\<Gamma> \<Gamma> )" using G_cons_flip flip_fresh_fresh assms by force lemma neq_GNil_conv: "(xs \<noteq> GNil) = (\<exists>y ys. xs = y #\<^sub>\<Gamma> ys)" by (induct xs) auto nominal_function toList :: "\<Gamma> \<Rightarrow> (x*b*c) list" where "toList GNil = []" | "toList (GCons xbc G) = xbc#(toList G)" apply (auto, simp add: eqvt_def toList_graph_aux_def ) using neq_GNil_conv surj_pair by metis nominal_termination (eqvt) by lexicographic_order nominal_function toSet :: "\<Gamma> \<Rightarrow> (x*b*c) set" where "toSet GNil = {}" | "toSet (GCons xbc G) = {xbc} \<union> (toSet G)" apply (auto,simp add: eqvt_def toSet_graph_aux_def ) using neq_GNil_conv surj_pair by metis nominal_termination (eqvt) by lexicographic_order nominal_function append_g :: "\<Gamma> \<Rightarrow> \<Gamma> \<Rightarrow> \<Gamma>" (infixr "@" 65) where "append_g GNil g = g" | "append_g (xbc #\<^sub>\<Gamma> g1) g2 = (xbc #\<^sub>\<Gamma> (g1@g2))" apply (auto,simp add: eqvt_def append_g_graph_aux_def ) using neq_GNil_conv surj_pair by metis nominal_termination (eqvt) by lexicographic_order nominal_function dom :: "\<Gamma> \<Rightarrow> x set" where "dom \<Gamma> = (fst` (toSet \<Gamma>))" apply auto unfolding eqvt_def dom_graph_aux_def lfp_eqvt toSet.eqvt by simp nominal_termination (eqvt) by lexicographic_order text \<open> Use of this is sometimes mixed in with use of freshness and support for the context however it makes it clear that for immutable variables, the context is `self-supporting'\<close> nominal_function atom_dom :: "\<Gamma> \<Rightarrow> atom set" where "atom_dom \<Gamma> = atom`(dom \<Gamma>)" apply auto unfolding eqvt_def atom_dom_graph_aux_def lfp_eqvt toSet.eqvt by simp nominal_termination (eqvt) by lexicographic_order subsection \<open>Immutable Variable Context Lemmas\<close> lemma append_GNil[simp]: "GNil @ G = G" by simp lemma append_g_toSetU [simp]: "toSet (G1@G2) = toSet G1 \<union> toSet G2" by(induct G1, auto+) lemma supp_GNil: shows "supp GNil = {}" by (simp add: supp_def) lemma supp_GCons: fixes xs::\<Gamma> shows "supp (x #\<^sub>\<Gamma> xs) = supp x \<union> supp xs" by (simp add: supp_def Collect_imp_eq Collect_neg_eq) lemma atom_dom_eq[simp]: fixes G::\<Gamma> shows "atom_dom ((x, b, c) #\<^sub>\<Gamma> G) = atom_dom ((x, b, c') #\<^sub>\<Gamma> G)" using atom_dom.simps toSet.simps by simp lemma dom_append[simp]: "atom_dom (\<Gamma>@\<Gamma>') = atom_dom \<Gamma> \<union> atom_dom \<Gamma>'" using image_Un append_g_toSetU atom_dom.simps dom.simps by metis lemma dom_cons[simp]: "atom_dom ((x,b,c) #\<^sub>\<Gamma> G) = { atom x } \<union> atom_dom G" using image_Un append_g_toSetU atom_dom.simps by auto lemma fresh_GNil[ms_fresh]: shows "a \<sharp> GNil" by (simp add: fresh_def supp_GNil) lemma fresh_GCons[ms_fresh]: fixes xs::\<Gamma> shows "a \<sharp> (x #\<^sub>\<Gamma> xs) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> xs" by (simp add: fresh_def supp_GCons) lemma dom_supp_g[simp]: "atom_dom G \<subseteq> supp G" apply(induct G rule: \<Gamma>_induct,simp) using supp_at_base supp_Pair atom_dom.simps supp_GCons by fastforce lemma fresh_append_g[ms_fresh]: fixes xs::\<Gamma> shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys" by (induct xs) (simp_all add: fresh_GNil fresh_GCons) lemma append_g_assoc: fixes xs::\<Gamma> shows "(xs @ ys) @ zs = xs @ (ys @ zs)" by (induct xs) simp_all lemma append_g_inside: fixes xs::\<Gamma> shows "xs @ (x #\<^sub>\<Gamma> ys) = (xs @ (x #\<^sub>\<Gamma> GNil)) @ ys" by(induct xs,auto+) lemma finite_\<Gamma>: "finite (toSet \<Gamma>)" by(induct \<Gamma> rule: \<Gamma>_induct,auto) lemma supp_\<Gamma>: "supp \<Gamma> = supp (toSet \<Gamma>)" proof(induct \<Gamma> rule: \<Gamma>_induct) case GNil then show ?case using supp_GNil toSet.simps by (simp add: supp_set_empty) next case (GCons x b c \<Gamma>') then show ?case using supp_GCons toSet.simps finite_\<Gamma> supp_of_finite_union using supp_of_finite_insert by fastforce qed lemma supp_of_subset: fixes G::"('a::fs set)" assumes "finite G" and "finite G'" and "G \<subseteq> G'" shows "supp G \<subseteq> supp G'" using supp_of_finite_sets assms by (metis subset_Un_eq supp_of_finite_union) lemma supp_weakening: assumes "toSet G \<subseteq> toSet G'" shows "supp G \<subseteq> supp G'" using supp_\<Gamma> finite_\<Gamma> by (simp add: supp_of_subset assms) lemma fresh_weakening[ms_fresh]: assumes "toSet G \<subseteq> toSet G'" and "x \<sharp> G'" shows "x \<sharp> G" proof(rule ccontr) assume "\<not> x \<sharp> G" hence "x \<in> supp G" using fresh_def by auto hence "x \<in> supp G'" using supp_weakening assms by auto thus False using fresh_def assms by auto qed instance \<Gamma> :: fs by (standard, induct_tac x, simp_all add: supp_GNil supp_GCons finite_supp) lemma fresh_gamma_elem: fixes \<Gamma>::\<Gamma> assumes "a \<sharp> \<Gamma>" and "e \<in> toSet \<Gamma>" shows "a \<sharp> e" using assms by(induct \<Gamma>,auto simp add: fresh_GCons) lemma fresh_gamma_append: fixes xs::\<Gamma> shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys" by (induct xs, simp_all add: fresh_GNil fresh_GCons) lemma supp_triple[simp]: shows "supp (x, y, z) = supp x \<union> supp y \<union> supp z" proof - have "supp (x,y,z) = supp (x,(y,z))" by auto hence "supp (x,y,z) = supp x \<union> (supp y \<union> supp z)" using supp_Pair by metis thus ?thesis by auto qed lemma supp_append_g: fixes xs::\<Gamma> shows "supp (xs @ ys) = supp xs \<union> supp ys" by(induct xs,auto simp add: supp_GNil supp_GCons ) lemma fresh_in_g[simp]: fixes \<Gamma>::\<Gamma> and x'::x shows "atom x' \<sharp> \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> = (atom x' \<notin> supp \<Gamma>' \<union> supp x \<union> supp b0 \<union> supp c0 \<union> supp \<Gamma>)" proof - have "atom x' \<sharp> \<Gamma>' @ (x, b0, c0) #\<^sub>\<Gamma> \<Gamma> = (atom x' \<notin> supp (\<Gamma>' @((x,b0,c0) #\<^sub>\<Gamma> \<Gamma>)))" using fresh_def by auto also have "... = (atom x' \<notin> supp \<Gamma>' \<union> supp ((x,b0,c0) #\<^sub>\<Gamma> \<Gamma>))" using supp_append_g by fast also have "... = (atom x' \<notin> supp \<Gamma>' \<union> supp x \<union> supp b0 \<union> supp c0 \<union> supp \<Gamma>)" using supp_GCons supp_append_g supp_triple by auto finally show ?thesis by fast qed lemma fresh_suffix[ms_fresh]: fixes \<Gamma>::\<Gamma> assumes "atom x \<sharp> \<Gamma>'@\<Gamma>" shows "atom x \<sharp> \<Gamma>" using assms by(induct \<Gamma>' rule: \<Gamma>_induct, auto simp add: append_g.simps fresh_GCons) lemma not_GCons_self [simp]: fixes xs::\<Gamma> shows "xs \<noteq> x #\<^sub>\<Gamma> xs" by (induct xs) auto lemma not_GCons_self2 [simp]: fixes xs::\<Gamma> shows "x #\<^sub>\<Gamma> xs \<noteq> xs" by (rule not_GCons_self [symmetric]) lemma fresh_restrict: fixes y::x and \<Gamma>::\<Gamma> assumes "atom y \<sharp> (\<Gamma>' @ (x, b, c) #\<^sub>\<Gamma> \<Gamma>)" shows "atom y \<sharp> (\<Gamma>'@\<Gamma>)" using assms by(induct \<Gamma>' rule: \<Gamma>_induct, auto simp add:fresh_GCons fresh_GNil ) lemma fresh_dom_free: assumes "atom x \<sharp> \<Gamma>" shows "(x,b,c) \<notin> toSet \<Gamma>" using assms proof(induct \<Gamma> rule: \<Gamma>_induct) case GNil then show ?case by auto next case (GCons x' b' c' \<Gamma>') hence "x\<noteq>x'" using fresh_def fresh_GCons fresh_Pair supp_at_base by blast moreover have "atom x \<sharp> \<Gamma>'" using fresh_GCons GCons by auto ultimately show ?case using toSet.simps GCons by auto qed lemma \<Gamma>_set_intros: "x \<in> toSet ( x #\<^sub>\<Gamma> xs)" and "y \<in> toSet xs \<Longrightarrow> y \<in> toSet (x #\<^sub>\<Gamma> xs)" by simp+ lemma fresh_dom_free2: assumes "atom x \<notin> atom_dom \<Gamma>" shows "(x,b,c) \<notin> toSet \<Gamma>" using assms proof(induct \<Gamma> rule: \<Gamma>_induct) case GNil then show ?case by auto next case (GCons x' b' c' \<Gamma>') hence "x\<noteq>x'" using fresh_def fresh_GCons fresh_Pair supp_at_base by auto moreover have "atom x \<notin> atom_dom \<Gamma>'" using fresh_GCons GCons by auto ultimately show ?case using toSet.simps GCons by auto qed subsection \<open>Mutable Variable Context Lemmas\<close> lemma supp_DNil: shows "supp DNil = {}" by (simp add: supp_def) lemma supp_DCons: fixes xs::\<Delta> shows "supp (x #\<^sub>\<Delta> xs) = supp x \<union> supp xs" by (simp add: supp_def Collect_imp_eq Collect_neg_eq) lemma fresh_DNil[ms_fresh]: shows "a \<sharp> DNil" by (simp add: fresh_def supp_DNil) lemma fresh_DCons[ms_fresh]: fixes xs::\<Delta> shows "a \<sharp> (x #\<^sub>\<Delta> xs) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> xs" by (simp add: fresh_def supp_DCons) instance \<Delta> :: fs by (standard, induct_tac x, simp_all add: supp_DNil supp_DCons finite_supp) subsection \<open>Lookup Functions\<close> nominal_function lookup :: "\<Gamma> \<Rightarrow> x \<Rightarrow> (b*c) option" where "lookup GNil x = None" | "lookup ((x,b,c)#\<^sub>\<Gamma>G) y = (if x=y then Some (b,c) else lookup G y)" by (auto,simp add: eqvt_def lookup_graph_aux_def, metis neq_GNil_conv surj_pair) nominal_termination (eqvt) by lexicographic_order nominal_function replace_in_g :: "\<Gamma> \<Rightarrow> x \<Rightarrow> c \<Rightarrow> \<Gamma>" ("_[_\<longmapsto>_]" [1000,0,0] 200) where "replace_in_g GNil _ _ = GNil" | "replace_in_g ((x,b,c)#\<^sub>\<Gamma>G) x' c' = (if x=x' then ((x,b,c')#\<^sub>\<Gamma>G) else (x,b,c)#\<^sub>\<Gamma>(replace_in_g G x' c'))" apply(auto,simp add: eqvt_def replace_in_g_graph_aux_def) using surj_pair \<Gamma>.exhaust by metis nominal_termination (eqvt) by lexicographic_order text \<open> Functions for looking up data-constructors in the Pi context \<close> nominal_function lookup_fun :: "\<Phi> \<Rightarrow> f \<Rightarrow> fun_def option" where "lookup_fun [] g = None" | "lookup_fun ((AF_fundef f ft)#\<Pi>) g = (if (f=g) then Some (AF_fundef f ft) else lookup_fun \<Pi> g)" apply(auto,simp add: eqvt_def lookup_fun_graph_aux_def ) by (metis fun_def.exhaust neq_Nil_conv) nominal_termination (eqvt) by lexicographic_order nominal_function lookup_td :: "\<Theta> \<Rightarrow> string \<Rightarrow> type_def option" where "lookup_td [] g = None" | "lookup_td ((AF_typedef s lst ) # (\<Theta>::\<Theta>)) g = (if (s = g) then Some (AF_typedef s lst ) else lookup_td \<Theta> g)" | "lookup_td ((AF_typedef_poly s bv lst ) # (\<Theta>::\<Theta>)) g = (if (s = g) then Some (AF_typedef_poly s bv lst ) else lookup_td \<Theta> g)" apply(auto,simp add: eqvt_def lookup_td_graph_aux_def ) by (metis type_def.exhaust neq_Nil_conv) nominal_termination (eqvt) by lexicographic_order nominal_function name_of_type ::"type_def \<Rightarrow> f " where "name_of_type (AF_typedef f _ ) = f" | "name_of_type (AF_typedef_poly f _ _) = f" apply(auto,simp add: eqvt_def name_of_type_graph_aux_def ) using type_def.exhaust by blast nominal_termination (eqvt) by lexicographic_order nominal_function name_of_fun ::"fun_def \<Rightarrow> f " where "name_of_fun (AF_fundef f ft) = f" apply(auto,simp add: eqvt_def name_of_fun_graph_aux_def ) using fun_def.exhaust by blast nominal_termination (eqvt) by lexicographic_order nominal_function remove2 :: "'a::pt \<Rightarrow> 'a list \<Rightarrow> 'a list" where "remove2 x [] = []" | "remove2 x (y # xs) = (if x = y then xs else y # remove2 x xs)" by (simp add: eqvt_def remove2_graph_aux_def,auto+,meson list.exhaust) nominal_termination (eqvt) by lexicographic_order nominal_function base_for_lit :: "l \<Rightarrow> b" where "base_for_lit (L_true) = B_bool " | "base_for_lit (L_false) = B_bool " | "base_for_lit (L_num n) = B_int " | "base_for_lit (L_unit) = B_unit " | "base_for_lit (L_bitvec v) = B_bitvec" apply (auto simp: eqvt_def base_for_lit_graph_aux_def ) using l.strong_exhaust by blast nominal_termination (eqvt) by lexicographic_order lemma neq_DNil_conv: "(xs \<noteq> DNil) = (\<exists>y ys. xs = y #\<^sub>\<Delta> ys)" by (induct xs) auto nominal_function setD :: "\<Delta> \<Rightarrow> (u*\<tau>) set" where "setD DNil = {}" | "setD (DCons xbc G) = {xbc} \<union> (setD G)" apply (auto,simp add: eqvt_def setD_graph_aux_def ) using neq_DNil_conv surj_pair by metis nominal_termination (eqvt) by lexicographic_order lemma eqvt_triple: fixes y::"'a::at" and ya::"'a::at" and xa::"'c::at" and va::"'d::fs" and s::s and sa::s and f::"s*'c*'d \<Rightarrow> s" assumes "atom y \<sharp> (xa, va)" and "atom ya \<sharp> (xa, va)" and "\<forall>c. atom c \<sharp> (s, sa) \<longrightarrow> atom c \<sharp> (y, ya, s, sa) \<longrightarrow> (y \<leftrightarrow> c) \<bullet> s = (ya \<leftrightarrow> c) \<bullet> sa" and "eqvt_at f (s,xa,va)" and "eqvt_at f (sa,xa,va)" and "atom c \<sharp> (s, va, xa, sa)" and "atom c \<sharp> (y, ya, f (s, xa, va), f (sa, xa, va))" shows "(y \<leftrightarrow> c) \<bullet> f (s, xa, va) = (ya \<leftrightarrow> c) \<bullet> f (sa, xa, va)" proof - have " (y \<leftrightarrow> c) \<bullet> f (s, xa, va) = f ( (y \<leftrightarrow> c) \<bullet> (s,xa,va))" using assms eqvt_at_def by metis also have "... = f ( (y \<leftrightarrow> c) \<bullet> s, (y \<leftrightarrow> c) \<bullet> xa ,(y \<leftrightarrow> c) \<bullet> va)" by auto also have "... = f ( (ya \<leftrightarrow> c) \<bullet> sa, (ya \<leftrightarrow> c) \<bullet> xa ,(ya \<leftrightarrow> c) \<bullet> va)" proof - have " (y \<leftrightarrow> c) \<bullet> s = (ya \<leftrightarrow> c) \<bullet> sa" using assms Abs1_eq_iff_all by auto moreover have "((y \<leftrightarrow> c) \<bullet> xa) = ((ya \<leftrightarrow> c) \<bullet> xa)" using assms flip_fresh_fresh fresh_prodN by metis moreover have "((y \<leftrightarrow> c) \<bullet> va) = ((ya \<leftrightarrow> c) \<bullet> va)" using assms flip_fresh_fresh fresh_prodN by metis ultimately show ?thesis by auto qed also have "... = f ( (ya \<leftrightarrow> c) \<bullet> (sa,xa,va))" by auto finally show ?thesis using assms eqvt_at_def by metis qed section \<open>Functions for bit list/vectors\<close> inductive split :: "int \<Rightarrow> bit list \<Rightarrow> bit list * bit list \<Rightarrow> bool" where "split 0 xs ([], xs)" | "split m xs (ys,zs) \<Longrightarrow> split (m+1) (x#xs) ((x # ys), zs)" equivariance split nominal_inductive split . lemma split_concat: assumes "split n v (v1,v2)" shows "v = append v1 v2" using assms proof(induct "(v1,v2)" arbitrary: v1 v2 rule: split.inducts) case 1 then show ?case by auto next case (2 m xs ys zs x) then show ?case by auto qed lemma split_n: assumes "split n v (v1,v2)" shows "0 \<le> n \<and> n \<le> int (length v)" using assms proof(induct rule: split.inducts) case (1 xs) then show ?case by auto next case (2 m xs ys zs x) then show ?case by auto qed lemma split_length: assumes "split n v (v1,v2)" shows "n = int (length v1)" using assms proof(induct "(v1,v2)" arbitrary: v1 v2 rule: split.inducts) case (1 xs) then show ?case by auto next case (2 m xs ys zs x) then show ?case by auto qed lemma obtain_split: assumes "0 \<le> n" and "n \<le> int (length bv)" shows "\<exists> bv1 bv2. split n bv (bv1 , bv2)" using assms proof(induct bv arbitrary: n) case Nil then show ?case using split.intros by auto next case (Cons b bv) show ?case proof(cases "n = 0") case True then show ?thesis using split.intros by auto next case False then obtain m where m:"n=m+1" using Cons by (metis add.commute add_minus_cancel) moreover have "0 \<le> m" using False m Cons by linarith then obtain bv1 and bv2 where "split m bv (bv1 , bv2)" using Cons m by force hence "split n (b # bv) ((b#bv1), bv2)" using m split.intros by auto then show ?thesis by auto qed qed end
module RTN where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN SUC suc #-} {-# BUILTIN ZERO zero #-}
TYPE PERSON SEQUENCE CHARACTER*1 GENDER ! Offset 0 INTEGER(4) AGE ! Offset 1 CHARACTER(30) NAME ! Offset 5 INTEGER(8) LONG_AGE ! Offset 36 INTEGER(1) BYTE_AGE ! Offset 44 INTEGER(2) SHORT_AGE ! Offset 45 CHARACTER CHAR_GENDER ! Offset 47 REAL(4) SHORT_FLOAT ! Offset 48 END TYPE PERSON END
print(1, 2, b = 2)
#include <stdio.h> #include <gsl/gsl_min.h> #include <gsl/gsl_multimin.h>
theory NameRemoval imports "../02Typed/Typechecking" BigStep "../00Utils/AssocList" begin fun convert' :: "var list \<Rightarrow> texpr \<Rightarrow> dexpr" where "convert' \<Phi> (TVar x) = DVar (the (idx_of \<Phi> x))" | "convert' \<Phi> (TConst k) = DConst k" | "convert' \<Phi> (TLam x t e) = DLam t (convert' (insert_at 0 x \<Phi>) e)" | "convert' \<Phi> (TApp e\<^sub>1 e\<^sub>2) = DApp (convert' \<Phi> e\<^sub>1) (convert' \<Phi> e\<^sub>2)" definition convert :: "texpr \<Rightarrow> dexpr" where "convert e = convert' [] e" theorem typesafend [simp]: "Map.empty \<turnstile>\<^sub>n e : t \<Longrightarrow> [] \<turnstile>\<^sub>d convert e : t" proof (unfold convert_def) define \<Gamma> where "\<Gamma> = ([] :: (var \<times> ty) list)" define \<Phi> where "\<Phi> = ([] :: var list)" assume "Map.empty \<turnstile>\<^sub>n e : t" hence "map_of \<Gamma> \<turnstile>\<^sub>n e : t" by (simp add: \<Gamma>_def) moreover have "mset (map fst \<Gamma>) = mset \<Phi>" by (simp add: \<Gamma>_def \<Phi>_def) moreover have "distinct \<Phi>" by (simp add: \<Phi>_def) ultimately have "listify \<Gamma> \<Phi> \<turnstile>\<^sub>d convert' \<Phi> e : t" by simp thus "[] \<turnstile>\<^sub>d convert' [] e : t" by (simp add: \<Gamma>_def \<Phi>_def) qed lemma [simp]: "valt e \<Longrightarrow> vald (convert' \<Phi> e)" by (induction e) (simp_all add: Let_def) lemma [simp]: "y \<notin> all_varst e \<Longrightarrow> x \<le> length \<Phi> \<Longrightarrow> free_varst e \<subseteq> set \<Phi> \<Longrightarrow> convert' (insert_at x y \<Phi>) e = incrd x (convert' \<Phi> e)" proof (induction e arbitrary: x \<Phi>) case (TVar z) moreover then obtain w where "idx_of \<Phi> z = Some w" by fastforce ultimately show ?case by simp next case (TLam z t e) moreover hence "free_varst e \<subseteq> set (insert_at 0 z \<Phi>)" by auto ultimately show ?case by simp qed simp_all lemma [simp]: "x' \<notin> all_varst e \<Longrightarrow> a \<le> length \<Phi> \<Longrightarrow> \<not> (a precedes x in \<Phi>) \<Longrightarrow> convert' (insert_at a x \<Phi>) e = convert' (insert_at a x' \<Phi>) e" by (induction e arbitrary: a \<Phi>) (auto simp add: incr_min split: option.splits) lemma [simp]: "y \<le> length \<Phi> \<Longrightarrow> y precedes x in \<Phi> \<Longrightarrow> y precedes x' in \<Phi> \<Longrightarrow> x' \<notin> all_varst e \<Longrightarrow> free_varst e \<subseteq> insert x (set \<Phi>) \<Longrightarrow> convert' (insert_at y x' \<Phi>) (subst_vart x x' e) = convert' (insert_at y x \<Phi>) e" proof (induction e arbitrary: y \<Phi>) case (TLam z t e) thus ?case proof (cases "x = z") case False with TLam have X: "Suc y precedes x in insert_at 0 z \<Phi>" by (simp split: option.splits) from TLam have Y: "Suc y precedes x' in insert_at 0 z \<Phi>" by (simp split: option.splits) from TLam have "free_varst e \<subseteq> insert x (set (insert_at 0 z \<Phi>))" by auto with TLam False X Y show ?thesis by simp qed (simp_all split: option.splits) qed (auto split: option.splits) lemma convert_subst [simp]: "y \<le> length \<Phi> \<Longrightarrow> x \<notin> set \<Phi> \<Longrightarrow> free_varst e \<subseteq> insert x (set \<Phi>) \<Longrightarrow> free_varst e' \<subseteq> set \<Phi> \<Longrightarrow> convert' \<Phi> (substt x e' e) = substd y (convert' \<Phi> e') (convert' (insert_at y x \<Phi>) e)" proof (induction x e' e arbitrary: \<Phi> y rule: substt.induct) case (1 x e' z) thus ?case proof (cases "idx_of \<Phi> z") case (Some w) have "y \<noteq> incr y w" by (metis incr_not_eq) with 1 Some show ?thesis by auto qed simp_all next case (3 x e' z t e) let ?z' = "fresh (all_varst e' \<union> all_varst e \<union> {x, z})" have "finite (all_varst e' \<union> all_varst e \<union> {x, z})" by simp hence Z: "?z' \<notin> all_varst e' \<union> all_varst e \<union> {x, z}" by (metis fresh_is_fresh) from 3 Z have X: "free_varst e' \<subseteq> set (insert_at 0 ?z' \<Phi>)" by auto from 3 have "free_varst e \<subseteq> insert z (insert x (set \<Phi>))" by auto with Z have "free_varst (subst_vart z ?z' e) \<subseteq> insert ?z' (insert x (set \<Phi>))" by auto hence "free_varst (subst_vart z ?z' e) \<subseteq> insert x (set (insert_at 0 ?z' \<Phi>))" by auto with 3 X Z have H: "convert' (insert_at 0 ?z' \<Phi>) (substt x e' (subst_vart z ?z' e)) = substd (Suc y) (convert' (insert_at 0 ?z' \<Phi>) e') (convert' (insert_at (Suc y) x (insert_at 0 ?z' \<Phi>)) (subst_vart z ?z' e))" by fastforce from 3 have "free_varst e \<subseteq> insert z (set (insert_at y x \<Phi>))" by auto with Z have "convert' (insert_at 0 ?z' (insert_at y x \<Phi>)) (subst_vart z ?z' e) = convert' (insert_at 0 z (insert_at y x \<Phi>)) e" by simp with 3 Z H show ?case by (simp add: Let_def) qed simp_all theorem correctnd [simp]: "e \<Down>\<^sub>t v \<Longrightarrow> free_varst e = {} \<Longrightarrow> convert e \<Down>\<^sub>d convert v" proof (induction e v rule: evalt.induct) case (evt_app e\<^sub>1 x t e\<^sub>1' e\<^sub>2 v\<^sub>2 v) hence "e\<^sub>1 \<Down>\<^sub>t TLam x t e\<^sub>1'" by simp moreover from evt_app have "free_varst e\<^sub>1 = {}" by simp ultimately have "free_varst (TLam x t e\<^sub>1') = {}" by (metis free_vars_evalt) hence X: "free_varst e\<^sub>1' \<subseteq> insert x (set [])" by simp moreover from evt_app have Y: "free_varst v\<^sub>2 \<subseteq> set []" by simp ultimately have "free_varst (substt x v\<^sub>2 e\<^sub>1') \<subseteq> set []" by (metis free_vars_substt) with evt_app X Y show ?case by (simp add: convert_def) qed (simp_all add: convert_def) lemma [simp]: "vald (convert' \<Phi> e) \<Longrightarrow> valt e" by (induction e) (simp_all add: Let_def) lemma convert_val_back: "vald (convert e) \<Longrightarrow> valt e" by (simp add: convert_def) lemma [dest]: "DApp e\<^sub>d\<^sub>1 e\<^sub>d\<^sub>2 = convert e\<^sub>n \<Longrightarrow> \<exists>e\<^sub>n\<^sub>1 e\<^sub>n\<^sub>2. e\<^sub>n = TApp e\<^sub>n\<^sub>1 e\<^sub>n\<^sub>2 \<and> e\<^sub>d\<^sub>1 = convert e\<^sub>n\<^sub>1 \<and> e\<^sub>d\<^sub>2 = convert e\<^sub>n\<^sub>2" by (cases e\<^sub>n) (simp_all add: convert_def) lemma [dest]: "DLam t e\<^sub>d = convert e\<^sub>n \<Longrightarrow> \<exists>x e\<^sub>n'. e\<^sub>n = TLam x t e\<^sub>n' \<and> e\<^sub>d = convert' [x] e\<^sub>n'" by (cases e\<^sub>n) (simp_all add: convert_def) theorem completend [simp]: "convert e\<^sub>n \<Down>\<^sub>d v\<^sub>d \<Longrightarrow> free_varst e\<^sub>n = {} \<Longrightarrow> \<exists>v\<^sub>n. e\<^sub>n \<Down>\<^sub>t v\<^sub>n \<and> v\<^sub>d = convert v\<^sub>n" proof (induction "convert e\<^sub>n" v\<^sub>d arbitrary: e\<^sub>n rule: big_evald.induct) case (bevd_const k) hence "e\<^sub>n \<Down>\<^sub>t TConst k \<and> DConst k = convert (TConst k)" by (cases e\<^sub>n) (simp_all add: convert_def) thus ?case by fastforce next case (bevd_lam t e) then obtain x e' where "e\<^sub>n = TLam x t e' \<and> e = convert' [x] e'" by (cases e\<^sub>n) (simp_all add: convert_def) hence "e\<^sub>n \<Down>\<^sub>t TLam x t e' \<and> DLam t e = convert (TLam x t e')" by (simp add: convert_def) thus ?case by fastforce next case (bevd_app e\<^sub>1 t e\<^sub>1' e\<^sub>2 v\<^sub>2 v) then obtain e\<^sub>n\<^sub>1 e\<^sub>n\<^sub>2 where E: "e\<^sub>n = TApp e\<^sub>n\<^sub>1 e\<^sub>n\<^sub>2 \<and> e\<^sub>1 = convert e\<^sub>n\<^sub>1 \<and> e\<^sub>2 = convert e\<^sub>n\<^sub>2" by (cases e\<^sub>n) (simp_all add: convert_def) with bevd_app obtain v\<^sub>n\<^sub>1 where V1: "e\<^sub>n\<^sub>1 \<Down>\<^sub>t v\<^sub>n\<^sub>1 \<and> DLam t e\<^sub>1' = convert v\<^sub>n\<^sub>1" by fastforce then obtain x e\<^sub>n\<^sub>1' where X: "v\<^sub>n\<^sub>1 = TLam x t e\<^sub>n\<^sub>1' \<and> e\<^sub>1' = convert' [x] e\<^sub>n\<^sub>1'" by (cases v\<^sub>n\<^sub>1) (simp_all add: convert_def) from bevd_app E obtain v\<^sub>n\<^sub>2 where V2: "e\<^sub>n\<^sub>2 \<Down>\<^sub>t v\<^sub>n\<^sub>2 \<and> v\<^sub>2 = convert v\<^sub>n\<^sub>2" by fastforce from bevd_app E have "free_varst e\<^sub>n\<^sub>1 = {}" by simp with V1 X have "free_varst (TLam x t e\<^sub>n\<^sub>1') = {}" by (metis free_vars_evalt) hence Y: "free_varst e\<^sub>n\<^sub>1' \<subseteq> {x}" by simp from bevd_app E have "free_varst e\<^sub>n\<^sub>2 = {}" by simp with V2 have Z: "free_varst v\<^sub>n\<^sub>2 = {}" by auto with Y have "free_varst (substt x v\<^sub>n\<^sub>2 e\<^sub>n\<^sub>1') = {}" by (metis free_vars_substt subset_empty) with bevd_app X V2 Y Z have "\<exists>v\<^sub>n. substt x v\<^sub>n\<^sub>2 e\<^sub>n\<^sub>1' \<Down>\<^sub>t v\<^sub>n \<and> v = convert v\<^sub>n" by (simp add: convert_def) then obtain v\<^sub>n where "substt x v\<^sub>n\<^sub>2 e\<^sub>n\<^sub>1' \<Down>\<^sub>t v\<^sub>n \<and> v = convert v\<^sub>n" by fastforce with V1 X V2 have "TApp e\<^sub>n\<^sub>1 e\<^sub>n\<^sub>2 \<Down>\<^sub>t v\<^sub>n \<and> v = convert v\<^sub>n" by fastforce with E show ?case by fastforce qed (* Now we can finish the deferred progress lemma from 01Source/Named and 02Typed/Typed *) theorem progresst [simp]: "Map.empty \<turnstile>\<^sub>n e : t \<Longrightarrow> \<exists>v. e \<Down>\<^sub>t v" proof - assume X: "Map.empty \<turnstile>\<^sub>n e : t" hence "[] \<turnstile>\<^sub>d convert e : t" by simp then obtain v\<^sub>d where "vald v\<^sub>d \<and> convert e \<Down>\<^sub>d v\<^sub>d" by fastforce with X obtain v\<^sub>n where "e \<Down>\<^sub>t v\<^sub>n \<and> v\<^sub>d = convert v\<^sub>n" by fastforce thus ?thesis by fastforce qed theorem progressn [simp]: "Map.empty \<turnstile>\<^sub>n e : t \<Longrightarrow> \<exists>v. erase e \<Down> v" proof - assume X: "Map.empty \<turnstile>\<^sub>n e : t" then obtain v\<^sub>t where "e \<Down>\<^sub>t v\<^sub>t" by fastforce hence "erase e \<Down> erase v\<^sub>t" by simp thus ?thesis by fastforce qed end
[STATEMENT] lemma finite_gpv_parametric [transfer_rule]: "(rel_\<I> C (=) ===> rel_gpv A C ===> (=)) finite_gpv finite_gpv" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (rel_\<I> C (=) ===> rel_gpv A C ===> (=)) finite_gpv finite_gpv [PROOF STEP] using finite_gpv_parametric'[of C "(=)" A] [PROOF STATE] proof (prove) using this: (rel_\<I> C (=) ===> rel_gpv'' A C (=) ===> (=)) finite_gpv finite_gpv goal (1 subgoal): 1. (rel_\<I> C (=) ===> rel_gpv A C ===> (=)) finite_gpv finite_gpv [PROOF STEP] by(simp add: rel_gpv_conv_rel_gpv'')
Formal statement is: lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u. 0 \<le> u \<and> u \<le> 1}" Informal statement is: The convex hull of two points is the line segment between them.
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro ! This file was ported from Lean 3 source module data.char ! leanprover-community/mathlib commit c4658a649d216f57e99621708b09dcb3dcccbd23 ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Data.UInt import Mathlib.Init.Algebra.Order /-! # More `Char` instances This file provides a `LinearOrder` instance on `Char`. `Char` is the type of Unicode scalar values. Provides an additional definition to truncate a `Char` to `UInt8` and a theorem on conversion to `Nat`. -/ /-- Convert a character into a `UInt8`, by truncating (reducing modulo 256) if necessary. -/ def Char.toUInt8 (n : Char) : UInt8 := n.1.toUInt8 theorem Char.utf8Size_pos (c : Char) : 0 < c.utf8Size := by simp only [utf8Size] repeat (split; decide) decide theorem String.csize_pos : (c : Char) → 0 < String.csize c := Char.utf8Size_pos /-- Provides a `LinearOrder` instance on `Char`. `Char` is the type of Unicode scalar values. -/ instance : LinearOrder Char where le_refl := fun _ => @le_refl ℕ _ _ le_trans := fun _ _ _ => @le_trans ℕ _ _ _ _ le_antisymm := fun _ _ h₁ h₂ => Char.eq_of_val_eq <| UInt32.eq_of_val_eq <| Fin.ext <| @le_antisymm ℕ _ _ _ h₁ h₂ lt_iff_le_not_le := fun _ _ => @lt_iff_le_not_le ℕ _ _ _ le_total := fun _ _ => @le_total ℕ _ _ _ min := fun a b => if a ≤ b then a else b max := fun a b => if a ≤ b then b else a decidable_le := inferInstance theorem Char.ofNat_toNat {c : Char} (h : isValidCharNat c.toNat) : Char.ofNat c.toNat = c := by rw [Char.ofNat, dif_pos h] rfl #align char.of_nat_to_nat Char.ofNat_toNat
Formal statement is: lemma complex_i_not_neg_numeral [simp]: "\<i> \<noteq> - numeral w" Informal statement is: $i$ is not equal to $-1$.
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE OverloadedLabels #-} {-# OPTIONS_GHC -Wall #-} -- | Quantile chart patterns. module Chart.Quantile ( -- * quantile chart patterns quantileChart, histChart, -- * testing qua, qLines, ) where import Chart import Optics.Core import Data.Foldable import Data.Maybe import Data.Text (Text) import Prelude hiding (abs) import Statistics.Distribution.Normal import Statistics.Distribution import Data.Bool -- * charts -- | Chart template for quantile data. quantileChart :: [Text] -> [LineStyle] -> [AxisOptions] -> [[Double]] -> ChartSvg quantileChart names ls as xs = mempty & #charts .~ chart0 & #hudOptions .~ hudOptions' where hudOptions' :: HudOptions hudOptions' = defaultHudOptions & ( #legends .~ [(12, defaultLegendOptions & #textStyle % #size .~ 0.1 & #vgap .~ 0.05 & #innerPad .~ 0.2 & #place .~ PlaceRight & #content .~ zip names (fmap (\l -> LineChart l [[Point 0 0, Point 1 1]]) ls) )] ) & set #axes ((5,) <$> as) chart0 = unnamed $ zipWith (\s d -> LineChart s [d]) ls (zipWith Point [0 ..] <$> xs) -- | histogram chart histChart :: Range Double -> Int -> [Double] -> ChartSvg histChart r g xs = barChart defaultBarOptions barData' where barData' = BarData [freqs] xs'' [] hcuts = grid OuterPos r g h = fill hcuts xs counts = (\(Rect _ _ _ w) -> w) <$> makeRects (IncludeOvers (width r / fromIntegral g)) h freqs = (/sum counts) <$> counts xs' = (\(Rect x x' _ _) -> (x + x') / 2) <$> makeRects (IncludeOvers (width r / fromIntegral g)) h xs'' = ["unders"] <> take (length xs' - 2) (drop 1 (comma (Just 2) <$> xs')) <> ["overs"] qua :: Double -> Double -> Double -> Double -> Double qua u s t p | t <= 0 = u*t | otherwise = Statistics.Distribution.quantile (normalDistr (u*t) (s*sqrt t)) p qLines :: Double -> Int -> Colour -> [LineStyle] qLines s n c = (\x -> defaultLineStyle & #color .~ x & #size .~ s) <$> cqs n c cqs :: Int -> Colour -> [Colour] cqs n c = fmap (\x -> mix x c (greyed c)) xs where xs = (\t -> fmap (\x -> fromIntegral (abs (x-(t `div` 2)-bool 0 1 (x>(t `div`2) && 1==t `mod` 2))) / fromIntegral (t `div` 2)) [0..t]) (n - 1)
/* randist/nbinomial.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <config.h> #include <math.h> #include <gsl/gsl_rng.h> #include <gsl/gsl_randist.h> #include <gsl/gsl_sf_gamma.h> /* The negative binomial distribution has the form, prob(k) = Gamma(n + k)/(Gamma(n) Gamma(k + 1)) p^n (1-p)^k for k = 0, 1, ... . Note that n does not have to be an integer. This is the Leger's algorithm (given in the answers in Knuth) */ unsigned int gsl_ran_negative_binomial (const gsl_rng * r, double p, double n) { double X = gsl_ran_gamma (r, n, 1.0) ; unsigned int k = gsl_ran_poisson (r, X*(1-p)/p) ; return k ; } double gsl_ran_negative_binomial_pdf (const unsigned int k, const double p, double n) { double P; double f = gsl_sf_lngamma (k + n) ; double a = gsl_sf_lngamma (n) ; double b = gsl_sf_lngamma (k + 1.0) ; P = exp(f-a-b) * pow (p, n) * pow (1 - p, (double)k); return P; }
/- Copyright (c) 2014-15 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Partially ported from Coq HoTT Theorems about pi-types (dependent function spaces) -/ import .sigma hott.arity hott.cubical.square universe u hott_theory namespace hott open hott.eq hott.equiv hott.is_equiv hott.funext hott.sigma hott.is_trunc unit namespace pi variables {A : Type _} {A' : Type _} {B : A → Type _} {B' : A' → Type _} {C : Πa, B a → Type _} {D : Πa b, C a b → Type _} {a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a} /- Paths -/ /- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x = g x], or concisely, [H : f ~ g]. This is developed in init.funext. -/ /- homotopy.symm is an equivalence -/ @[hott] def is_equiv_homotopy_symm : is_equiv (homotopy.symm : f ~ g → g ~ f) := begin apply adjointify homotopy.symm homotopy.symm, { intro p, apply eq_of_homotopy, intro a, apply eq.inv_inv }, { intro p, apply eq_of_homotopy, intro a, apply eq.inv_inv } end /- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/ @[hott] def pi_eq_equiv (f g : Πx, B x) : (f = g) ≃ (f ~ g) := eq_equiv_homotopy f g @[hott,instance] def is_equiv_eq_of_homotopy (f g : Πx, B x) : is_equiv (eq_of_homotopy : f ~ g → f = g) := is_equiv_inv _ @[hott] def homotopy_equiv_eq (f g : Πx, B x) : (f ~ g) ≃ (f = g) := equiv.mk eq_of_homotopy (by apply_instance) /- Transport -/ @[hott] def pi_transport (p : a = a') (f : Π(b : B a), C a b) : (transport (λa, Π(b : B a), C a b) p f) ~ (λb, tr_inv_tr p b ▸ (p ▸D f (p⁻¹ ▸ b))) := by induction p; reflexivity /- A special case of [transport_pi] where the type [B] does not depend on [A], and so it is just a fixed type [B]. -/ @[hott] def pi_transport_constant {C : A → A' → Type _} (p : a = a') (f : Π(b : A'), C a b) (b : A') : (transport _ p f) b = @transport A (λa, C a b) _ _ p (f b) := --fix by induction p; reflexivity /- Pathovers -/ @[hott] def pi_pathover' {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'} (r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[apd011 C p q; λX, X] g b') : f =[p; λa, Πb, C a b] g := begin induction p, apply pathover_idp_of_eq, apply eq_of_homotopy, intro b, let z := eq_of_pathover_idp (r b b idpo), exact z --fix end @[hott] def pi_pathover_left' {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'} (r : Π(b : B a), f b =[apd011 C p (pathover_tr _ _); λX, X] g (p ▸ b)) : f =[p; λa, Πb, C a b] g := begin induction p, apply pathover_idp_of_eq, apply eq_of_homotopy, hintro b, let z := eq_of_pathover_idp (r b), exact z --fix end @[hott] def pi_pathover_right' {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'} (r : Π(b' : B a'), f (p⁻¹ ▸ b') =[apd011 C p (tr_pathover _ _); λX, X] g b') : f =[p; λa, Πb, C a b] g := begin induction p, apply pathover_idp_of_eq, apply eq_of_homotopy, hintro b, dsimp [apd011, tr_pathover] at r, let z := eq_of_pathover_idp (r b), exact z --fix end @[hott] def pi_pathover_constant {C : A → A' → Type _} {f : Π(b : A'), C a b} {g : Π(b : A'), C a' b} {p : a = a'} (r : Π(b : A'), f b =[p; λa, C a b] g b) : f =[p; λa, Πb, C a b] g := begin induction p, apply pathover_idp_of_eq, apply eq_of_homotopy, hintro b, let z := eq_of_pathover_idp (r b), exact z --fix end -- a version where C is uncurried, but where the conclusion of r is still a proper pathover -- instead of a heterogenous equality @[hott] def pi_pathover {C : (Σa, B a) → Type _} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩} {p : a = a'} (r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[dpair_eq_dpair p q] g b') : f =[p; λa, Πb, C ⟨a, b⟩] g := begin induction p, apply pathover_idp_of_eq, apply eq_of_homotopy, hintro b, apply (@eq_of_pathover_idp _ C), exact (r b b (pathover.idpatho b)), end @[hott] def pi_pathover_left {C : (Σa, B a) → Type _} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩} {p : a = a'} (r : Π(b : B a), f b =[dpair_eq_dpair p (pathover_tr _ _)] g (p ▸ b)) : f =[p; λa, Πb, C ⟨a, b⟩] g := begin induction p, apply pathover_idp_of_eq, apply eq_of_homotopy, hintro b, apply eq_of_pathover_idp, exact pathover_ap _ _ (r b) end @[hott] def pi_pathover_right {C : (Σa, B a) → Type _} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩} {p : a = a'} (r : Π(b' : B a'), f (p⁻¹ ▸ b') =[dpair_eq_dpair p (tr_pathover _ _)] g b') : f =[p; λa, Πb, C ⟨a, b⟩] g := begin induction p, apply pathover_idp_of_eq, apply eq_of_homotopy, hintro b, apply eq_of_pathover_idp, exact pathover_ap _ _ (r b) end /- Maps on paths -/ /- The action of maps given by lambda. -/ @[hott] def ap_lambdaD {C : A' → Type _} (p : a = a') (f : Πa b, C b) : ap (λa b, f a b) p = eq_of_homotopy (λb, ap (λa, f a b) p) := begin apply (eq.rec_on p), apply inverse, apply eq_of_homotopy_idp end /- Dependent paths -/ /- with more implicit arguments the conclusion of the following theorem is (Π(b : B a), transportD B C p b (f b) = g (transport B p b)) ≃ (transport (λa, Π(b : B a), C a b) p f = g) -/ @[hott] def heq_piD (p : a = a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b') : (Π(b : B a), p ▸D (f b) = g (p ▸ b)) ≃ (p ▸ f = g) := eq.rec_on p (λg, homotopy_equiv_eq _ _) g @[hott] def heq_pi {C : A → Type _} (p : a = a') (f : Π(b : B a), C a) (g : Π(b' : B a'), C a') : (Π(b : B a), p ▸ (f b) = g (p ▸ b)) ≃ (p ▸ f = g) := eq.rec_on p (λg, homotopy_equiv_eq _ _) g section /- more implicit arguments: (Π(b : B a), transport C (sigma_eq p idp) (f b) = g (p ▸ b)) ≃ (Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (transport B p b)) -/ @[hott] def heq_pi_sigma {C : (Σa, B a) → Type _} (p : a = a') (f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) : (Π(b : B a), (dpair_eq_dpair p (pathover_tr p b)) ▸ (f b) = g (p ▸ b)) ≃ (Π(b : B a), transportD (λa b, C ⟨a, b⟩) p _ (f b) = g (p ▸ b)) := by induction p; refl end /- Functorial action -/ variables (f0 : A' → A) (f1 : Π(a':A'), B (f0 a') → B' a') /- The functoriality of [forall] is slightly subtle: it is contravariant in the domain type and covariant in the codomain, but the codomain is dependent on the domain. -/ @[hott] def pi_functor : (Π(a:A), B a) → (Π(a':A'), B' a') := λg a', f1 a' (g (f0 a')) @[hott] def pi_functor_left (B : A → Type _) : (Π(a:A), B a) → (Π(a':A'), B (f0 a')) := pi_functor f0 (λa, id) @[hott] def pi_functor_right {B' : A → Type _} (f1 : Π(a:A), B a → B' a) : (Π(a:A), B a) → (Π(a:A), B' a) := pi_functor id f1 @[hott] def pi_iff_pi {B' : A → Type _} (f : Πa, B a ↔ B' a) : (Π(a:A), B a) ↔ (Π(a:A), B' a) := ⟨pi_functor id (λa, (f a).1), pi_functor id (λa, (f a).2)⟩ @[hott,hsimp] def pi_functor_eq (g : Πa, B a) (a' : A') : pi_functor f0 f1 g a' = f1 a' (g (f0 a')) := by refl @[hott] def ap_pi_functor {g g' : Π(a:A), B a} (h : g ~ g') : ap (pi_functor f0 f1) (eq_of_homotopy h) = eq_of_homotopy (λ(a' : A'), (ap (f1 a') (h (f0 a')))) := begin apply is_equiv_rect (@apd10 A B g g') (λh, ap (pi_functor f0 f1) (eq_of_homotopy h) = eq_of_homotopy (λa':A', (ap (f1 a') (h (f0 a'))))), intro p, clear h, induction p, refine (ap (ap (pi_functor f0 f1)) (eq_of_homotopy_idp g)) ⬝ _, symmetry, apply eq_of_homotopy_idp end /- Equivalences -/ /-@[hott] def pi_equiv_pi (f0 : A' ≃ A) (f1 : Πa', (B (to_fun f0 a') ≃ B' a')) : (Πa, B a) ≃ (Πa', B' a') := begin fapply equiv.MK, exact pi_functor f0 f1, (pi_functor f0⁻¹ᶠ (λ(a : A) (b' : B' (f0⁻¹ᶠ a)), transport B (right_inv f0 a) ((f1 (f0⁻¹ᶠ a))⁻¹ᶠ b'))) end-/ @[hott, instance] def is_equiv_pi_functor [H0 : is_equiv f0] [H1 : Πa', is_equiv (f1 a')] : is_equiv (pi_functor f0 f1) := adjointify (pi_functor f0 f1) (pi_functor f0⁻¹ᶠ (λ(a : A) (b' : B' (f0⁻¹ᶠ a)), transport B (right_inv f0 a) ((f1 (f0⁻¹ᶠ a))⁻¹ᶠ b'))) begin intro h, apply eq_of_homotopy, intro a', dsimp, rwr [adj f0 a', hott.eq.inverse (tr_compose B f0 (left_inv f0 a') _), fn_tr_eq_tr_fn _ f1 _, right_inv (f1 _)], --fix apply apdt end begin intro h, apply eq_of_homotopy, intro a, dsimp, rwr [left_inv (f1 _)], apply apdt end @[hott] def pi_equiv_pi_of_is_equiv [H : is_equiv f0] [H1 : Πa', is_equiv (f1 a')] : (Πa, B a) ≃ (Πa', B' a') := equiv.mk (pi_functor f0 f1) (by apply_instance) @[hott] def pi_equiv_pi (f0 : A' ≃ A) (f1 : Πa', (B (f0 a') ≃ B' a')) : (Πa, B a) ≃ (Πa', B' a') := pi_equiv_pi_of_is_equiv f0 (λa', f1 a') @[hott] def pi_equiv_pi_right {P Q : A → Type _} (g : Πa, P a ≃ Q a) : (Πa, P a) ≃ (Πa, Q a) := pi_equiv_pi equiv.rfl g /- Equivalence if one of the types is contractible -/ variable (B) @[hott] def pi_equiv_of_is_contr_left [H : is_contr A] : (Πa, B a) ≃ B (center A) := begin fapply equiv.MK, { intro f, exact f (center A)}, { intros b a, exact center_eq a ▸ b}, { intro b, dsimp, rwr [prop_eq_of_is_contr (center_eq (center A)) idp]}, { intro f, apply eq_of_homotopy, intro a, dsimp, induction (center_eq a), refl } end @[hott] def pi_equiv_of_is_contr_right [H : Πa, is_contr (B a)] : (Πa, B a) ≃ unit := begin fapply equiv.MK, { intro f, exact star }, { intros u a, exact center _ }, { intro u, induction u, reflexivity }, { intro f, apply eq_of_homotopy, intro a, apply is_prop.elim } end variable {B} /- Interaction with other type constructors -/ -- most of these are in the file of the other type constructor @[hott] def pi_empty_left (B : empty → Type _) : (Πx, B x) ≃ unit := begin fapply equiv.MK, { intro f, exact star }, { intros x y, exact empty.elim y }, { intro x, induction x, reflexivity }, { intro f, apply eq_of_homotopy, intro y, exact empty.elim y } end @[hott] def pi_unit_left (B : unit → Type _) : (Πx, B x) ≃ B star := pi_equiv_of_is_contr_left _ @[hott] def pi_bool_left (B : bool → Type _) : (Πx, B x) ≃ B ff × B tt := begin fapply equiv.MK, { intro f, exact (f ff, f tt) }, { intros x b, induction x, induction b, all_goals {assumption}}, { intro x, induction x, reflexivity }, { intro f, apply eq_of_homotopy, intro b, induction b, all_goals {reflexivity}}, end /- Truncatedness: any dependent product of n-types is an n-type -/ @[hott, instance, priority 1520] theorem is_trunc_pi (B : A → Type _) (n : trunc_index) [H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) := begin unfreezeI, induction n with n IH generalizing B H; resetI, { fapply is_contr.mk, intro a, apply center, intro f, apply eq_of_homotopy, intro x, apply (center_eq (f x)) }, { apply is_trunc_succ_intro, intros f g, exact is_trunc_equiv_closed_rev n (eq_equiv_homotopy f g) (by apply_instance) } end @[hott] theorem is_trunc_pi_eq (n : trunc_index) (f g : Πa, B a) [H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) := is_trunc_equiv_closed_rev n (eq_equiv_homotopy f g) (by apply_instance) @[hott, instance] theorem is_trunc_not (n : trunc_index) (A : Type _) : is_trunc (n.+1) ¬A := by dsimp [not]; apply_instance @[hott] theorem is_prop_pi_eq (a : A) : is_prop (Π(a' : A), a = a') := is_prop_of_imp_is_contr ( assume (f : Πa', a = a'), have is_contr A, from is_contr.mk a f, by unfreezeI; apply_instance) @[hott] theorem is_prop_neg (A : Type _) : is_prop (¬A) := by apply_instance @[hott] theorem is_prop_ne {A : Type _} (a b : A) : is_prop (a ≠ b) := by apply_instance @[hott] def is_contr_pi_of_neg {A : Type _} (B : A → Type _) (H : ¬ A) : is_contr (Πa, B a) := begin apply is_contr.mk (λa, empty.elim (H a)), intro f, apply eq_of_homotopy, intro x, exact empty.elim (H x) end /- Symmetry of Π -/ @[hott] def pi_flip {P : A → A' → Type _} (f : Πa b, P a b) (b : A') (a : A) : P a b := f a b @[hott, instance] def is_equiv_flip {P : A → A' → Type _} : is_equiv (@pi_flip A A' P) := begin fapply is_equiv.mk, exact (@pi_flip _ _ (pi_flip P)), all_goals {intro f; refl} end @[hott] def pi_comm_equiv {P : A → A' → Type _} : (Πa b, P a b) ≃ (Πb a, P a b) := equiv.mk (@pi_flip _ _ P) (by apply_instance) /- Dependent functions are equivalent to nondependent functions into the total space together with a homotopy -/ @[hott] def pi_equiv_arrow_sigma_right {A : Type _} {B : A → Type _} (f : Πa, B a) : Σ(f : A → Σa, B a), sigma.fst ∘ f ~ id := ⟨λa, ⟨a, f a⟩, λa, idp⟩ @[hott] def pi_equiv_arrow_sigma_left (v : Σ(f : A → Σa, B a), sigma.fst ∘ f ~ id) (a : A) : B a := transport B (v.2 a) (v.1 a).2 open funext @[hott] def pi_equiv_arrow_sigma : (Πa, B a) ≃ Σ(f : A → Σa, B a), sigma.fst ∘ f ~ id := begin fapply equiv.MK, { exact pi_equiv_arrow_sigma_right }, { exact pi_equiv_arrow_sigma_left }, { intro v, induction v with f p, fapply sigma_eq, { apply eq_of_homotopy, intro a, fapply sigma_eq, { exact (p a)⁻¹ }, { apply inverseo, apply pathover_tr }}, { apply pi_pathover_constant, intro a, apply eq_pathover_constant_right, refine ap_compose (λf : A → A, f a) _ _ ⬝ph _, refine ap02 _ (compose_eq_of_homotopy (@sigma.fst A B) _) ⬝ph _, refine ap_eq_apd10 _ _ ⬝ph _, refine apd10 (right_inv apd10 _) a ⬝ph _, refine sigma_eq_fst _ _ ⬝ph _, apply square_of_eq, exact (con.left_inv _)⁻¹ }}, { intro a, reflexivity } end end pi namespace pi /- pointed pi types -/ open pointed @[hott, instance] def pointed_pi {A : Type _} (P : A → Type _) [H : Πx, pointed (P x)] : pointed (Πx, P x) := pointed.mk (λx, pt) end pi end hott
import LeanUtils open Nat -- first theorem theorem square_mod_3 (q : Nat) : (¬divisible 3 q) → (q^2 % 3 = 1) := by intros h₁ apply mod_rewrite.mpr have h2 : q % 3 = 0 ∨ q % 3 = 1 ∨ q % 3 = 2 := mod_3_poss _ -- divide cases into 3 goals rcases h2 with h2 | h2 | h2 contradiction have ⟨k, h3⟩ : ∃ (k : Nat), q = 3 * k + 1 := by simp_all have q_square : q^2 = 3 * (3 * k^2 + 2 * k) + 1 := by calc q^2 = (3 * k + 1)^2 := by repeat (first | ring | simp_all) _ = 9 * k^2 + 6 * k + 1 := by repeat (first | ring | simp_all) _ = 3 * (3 * k^2 + 2 * k) + 1 := by repeat (first | ring | simp_all) exact ⟨_, by assumption⟩ have ⟨k, h3⟩ : ∃ (k : Nat), q = 3 * k + 2 := by simp_all have q_square : q^2 = 3 * (3 * k^2 + 4 * k + 1) + 1 := by calc q^2 = (3 * k + 2)^2 := by repeat (first | ring | simp_all) _ = 3 * (3 * k^2 + 4 * k + 1) + 1 := by repeat (first | ring | simp_all) exact ⟨_, by assumption⟩ -- second using the first theorem square_of_q_divisible_by_3_means_q_is_divisible_by_3 (q : Nat) (h₁ : divisible 3 (q^2)) : divisible 3 q := by revert h₁ rw [not_imp_not.symm] repeat rw [not_not] intro h₁ have h₂ : q^2 % 3 = 1 := by repeat (first | ring | simp_all [square_mod_3]) simp_all
/- Copyright (c) 2021 Ashvni Narayanan. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ashvni Narayanan, David Loeffler ! This file was ported from Lean 3 source module number_theory.bernoulli_polynomials ! leanprover-community/mathlib commit ca3d21f7f4fd613c2a3c54ac7871163e1e5ecb3a ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.Data.Polynomial.AlgebraMap import Mathbin.Data.Polynomial.Derivative import Mathbin.Data.Nat.Choose.Cast import Mathbin.NumberTheory.Bernoulli /-! # Bernoulli polynomials The [Bernoulli polynomials](https://en.wikipedia.org/wiki/Bernoulli_polynomials) are an important tool obtained from Bernoulli numbers. ## Mathematical overview The $n$-th Bernoulli polynomial is defined as $$ B_n(X) = ∑_{k = 0}^n {n \choose k} (-1)^k B_k X^{n - k} $$ where $B_k$ is the $k$-th Bernoulli number. The Bernoulli polynomials are generating functions, $$ \frac{t e^{tX} }{ e^t - 1} = ∑_{n = 0}^{\infty} B_n(X) \frac{t^n}{n!} $$ ## Implementation detail Bernoulli polynomials are defined using `bernoulli`, the Bernoulli numbers. ## Main theorems - `sum_bernoulli`: The sum of the $k^\mathrm{th}$ Bernoulli polynomial with binomial coefficients up to `n` is `(n + 1) * X^n`. - `polynomial.bernoulli_generating_function`: The Bernoulli polynomials act as generating functions for the exponential. ## TODO - `bernoulli_eval_one_neg` : $$ B_n(1 - x) = (-1)^n B_n(x) $$ -/ noncomputable section open BigOperators open Nat Polynomial open Nat Finset namespace Polynomial /-- The Bernoulli polynomials are defined in terms of the negative Bernoulli numbers. -/ def bernoulli (n : ℕ) : ℚ[X] := ∑ i in range (n + 1), Polynomial.monomial (n - i) (bernoulli i * choose n i) #align polynomial.bernoulli Polynomial.bernoulli theorem bernoulli_def (n : ℕ) : bernoulli n = ∑ i in range (n + 1), Polynomial.monomial i (bernoulli (n - i) * choose n i) := by rw [← sum_range_reflect, add_succ_sub_one, add_zero, bernoulli] apply sum_congr rfl rintro x hx rw [mem_range_succ_iff] at hx; rw [choose_symm hx, tsub_tsub_cancel_of_le hx] #align polynomial.bernoulli_def Polynomial.bernoulli_def /- ### examples -/ section Examples @[simp] theorem bernoulli_zero : bernoulli 0 = 1 := by simp [bernoulli] #align polynomial.bernoulli_zero Polynomial.bernoulli_zero @[simp] theorem bernoulli_eval_zero (n : ℕ) : (bernoulli n).eval 0 = bernoulli n := by rw [bernoulli, eval_finset_sum, sum_range_succ] have : (∑ x : ℕ in range n, _root_.bernoulli x * n.choose x * 0 ^ (n - x)) = 0 := by apply sum_eq_zero fun x hx => _ have h : 0 < n - x := tsub_pos_of_lt (mem_range.1 hx) simp [h] simp [this] #align polynomial.bernoulli_eval_zero Polynomial.bernoulli_eval_zero @[simp] theorem bernoulli_eval_one (n : ℕ) : (bernoulli n).eval 1 = bernoulli' n := by simp only [bernoulli, eval_finset_sum] simp only [← succ_eq_add_one, sum_range_succ, mul_one, cast_one, choose_self, (_root_.bernoulli _).mul_comm, sum_bernoulli, one_pow, mul_one, eval_C, eval_monomial] by_cases h : n = 1 · norm_num [h] · simp [h] exact bernoulli_eq_bernoulli'_of_ne_one h #align polynomial.bernoulli_eval_one Polynomial.bernoulli_eval_one end Examples theorem derivative_bernoulli_add_one (k : ℕ) : (bernoulli (k + 1)).derivative = (k + 1) * bernoulli k := by simp_rw [bernoulli, derivative_sum, derivative_monomial, Nat.sub_sub, Nat.add_sub_add_right] -- LHS sum has an extra term, but the coefficient is zero: rw [range_add_one, sum_insert not_mem_range_self, tsub_self, cast_zero, MulZeroClass.mul_zero, map_zero, zero_add, mul_sum] -- the rest of the sum is termwise equal: refine' sum_congr (by rfl) fun m hm => _ conv_rhs => rw [← Nat.cast_one, ← Nat.cast_add, ← C_eq_nat_cast, C_mul_monomial, mul_comm] rw [mul_assoc, mul_assoc, ← Nat.cast_mul, ← Nat.cast_mul] congr 3 rw [(choose_mul_succ_eq k m).symm, mul_comm] #align polynomial.derivative_bernoulli_add_one Polynomial.derivative_bernoulli_add_one theorem derivative_bernoulli (k : ℕ) : (bernoulli k).derivative = k * bernoulli (k - 1) := by cases k · rw [Nat.cast_zero, MulZeroClass.zero_mul, bernoulli_zero, derivative_one] · exact_mod_cast derivative_bernoulli_add_one k #align polynomial.derivative_bernoulli Polynomial.derivative_bernoulli @[simp] theorem sum_bernoulli (n : ℕ) : (∑ k in range (n + 1), ((n + 1).choose k : ℚ) • bernoulli k) = monomial n (n + 1 : ℚ) := by simp_rw [bernoulli_def, Finset.smul_sum, Finset.range_eq_Ico, ← Finset.sum_Ico_Ico_comm, Finset.sum_Ico_eq_sum_range] simp only [add_tsub_cancel_left, tsub_zero, zero_add, LinearMap.map_add] simp_rw [smul_monomial, mul_comm (_root_.bernoulli _) _, smul_eq_mul, ← mul_assoc] conv_lhs => apply_congr skip conv => apply_congr skip rw [← Nat.cast_mul, choose_mul ((le_tsub_iff_left <| mem_range_le H).1 <| mem_range_le H_1) (le.intro rfl), Nat.cast_mul, add_comm x x_1, add_tsub_cancel_right, mul_assoc, mul_comm, ← smul_eq_mul, ← smul_monomial] rw [← sum_smul] rw [sum_range_succ_comm] simp only [add_right_eq_self, mul_one, cast_one, cast_add, add_tsub_cancel_left, choose_succ_self_right, one_smul, _root_.bernoulli_zero, sum_singleton, zero_add, LinearMap.map_add, range_one] apply sum_eq_zero fun x hx => _ have f : ∀ x ∈ range n, ¬n + 1 - x = 1 := by rintro x H rw [mem_range] at H rw [eq_comm] exact ne_of_lt (Nat.lt_of_lt_of_le one_lt_two (le_tsub_of_add_le_left (succ_le_succ H))) rw [sum_bernoulli] have g : ite (n + 1 - x = 1) (1 : ℚ) 0 = 0 := by simp only [ite_eq_right_iff, one_ne_zero] intro h₁ exact (f x hx) h₁ rw [g, zero_smul] #align polynomial.sum_bernoulli Polynomial.sum_bernoulli /-- Another version of `polynomial.sum_bernoulli`. -/ theorem bernoulli_eq_sub_sum (n : ℕ) : (n.succ : ℚ) • bernoulli n = monomial n (n.succ : ℚ) - ∑ k in Finset.range n, ((n + 1).choose k : ℚ) • bernoulli k := by rw [Nat.cast_succ, ← sum_bernoulli n, sum_range_succ, add_sub_cancel', choose_succ_self_right, Nat.cast_succ] #align polynomial.bernoulli_eq_sub_sum Polynomial.bernoulli_eq_sub_sum /-- Another version of `bernoulli.sum_range_pow`. -/ theorem sum_range_pow_eq_bernoulli_sub (n p : ℕ) : ((p + 1 : ℚ) * ∑ k in range n, (k : ℚ) ^ p) = (bernoulli p.succ).eval n - bernoulli p.succ := by rw [sum_range_pow, bernoulli_def, eval_finset_sum, ← sum_div, mul_div_cancel' _ _] · simp_rw [eval_monomial] symm rw [← sum_flip _, sum_range_succ] simp only [tsub_self, tsub_zero, choose_zero_right, cast_one, mul_one, pow_zero, add_tsub_cancel_right] apply sum_congr rfl fun x hx => _ apply congr_arg₂ _ (congr_arg₂ _ _ _) rfl · rw [Nat.sub_sub_self (mem_range_le hx)] · rw [← choose_symm (mem_range_le hx)] · norm_cast apply succ_ne_zero _ #align polynomial.sum_range_pow_eq_bernoulli_sub Polynomial.sum_range_pow_eq_bernoulli_sub /-- Rearrangement of `polynomial.sum_range_pow_eq_bernoulli_sub`. -/ theorem bernoulli_succ_eval (n p : ℕ) : (bernoulli p.succ).eval n = bernoulli p.succ + (p + 1 : ℚ) * ∑ k in range n, (k : ℚ) ^ p := by apply eq_add_of_sub_eq' rw [sum_range_pow_eq_bernoulli_sub] #align polynomial.bernoulli_succ_eval Polynomial.bernoulli_succ_eval theorem bernoulli_eval_one_add (n : ℕ) (x : ℚ) : (bernoulli n).eval (1 + x) = (bernoulli n).eval x + n * x ^ (n - 1) := by apply Nat.strong_induction_on n fun d hd => _ have nz : ((d.succ : ℕ) : ℚ) ≠ 0 := by norm_cast exact d.succ_ne_zero apply (mul_right_inj' nz).1 rw [← smul_eq_mul, ← eval_smul, bernoulli_eq_sub_sum, mul_add, ← smul_eq_mul, ← eval_smul, bernoulli_eq_sub_sum, eval_sub, eval_finset_sum] conv_lhs => congr skip apply_congr skip rw [eval_smul, hd x_1 (mem_range.1 H)] rw [eval_sub, eval_finset_sum] simp_rw [eval_smul, smul_add] rw [sum_add_distrib, sub_add, sub_eq_sub_iff_sub_eq_sub, _root_.add_sub_sub_cancel] conv_rhs => congr skip congr rw [succ_eq_add_one, ← choose_succ_self_right d] rw [Nat.cast_succ, ← smul_eq_mul, ← sum_range_succ _ d, eval_monomial_one_add_sub] simp_rw [smul_eq_mul] #align polynomial.bernoulli_eval_one_add Polynomial.bernoulli_eval_one_add open PowerSeries variable {A : Type _} [CommRing A] [Algebra ℚ A] -- TODO: define exponential generating functions, and use them here -- This name should probably be updated afterwards /-- The theorem that $(e^X - 1) * ∑ Bₙ(t)* X^n/n! = Xe^{tX}$ -/ theorem bernoulli_generating_function (t : A) : (mk fun n => aeval t ((1 / n ! : ℚ) • bernoulli n)) * (exp A - 1) = PowerSeries.x * rescale t (exp A) := by -- check equality of power series by checking coefficients of X^n ext n -- n = 0 case solved by `simp` cases n; · simp -- n ≥ 1, the coefficients is a sum to n+2, so use `sum_range_succ` to write as -- last term plus sum to n+1 rw [coeff_succ_X_mul, coeff_rescale, coeff_exp, PowerSeries.coeff_mul, nat.sum_antidiagonal_eq_sum_range_succ_mk, sum_range_succ] -- last term is zero so kill with `add_zero` simp only [RingHom.map_sub, tsub_self, constant_coeff_one, constant_coeff_exp, coeff_zero_eq_constant_coeff, MulZeroClass.mul_zero, sub_self, add_zero] -- Let's multiply both sides by (n+1)! (OK because it's a unit) have hnp1 : IsUnit ((n + 1)! : ℚ) := IsUnit.mk0 _ (by exact_mod_cast factorial_ne_zero (n + 1)) rw [← (hnp1.map (algebraMap ℚ A)).mul_right_inj] -- do trivial rearrangements to make RHS (n+1)*t^n rw [mul_left_comm, ← RingHom.map_mul] change _ = t ^ n * algebraMap ℚ A (((n + 1) * n ! : ℕ) * (1 / n !)) rw [cast_mul, mul_assoc, mul_one_div_cancel (show (n ! : ℚ) ≠ 0 from cast_ne_zero.2 (factorial_ne_zero n)), mul_one, mul_comm (t ^ n), ← aeval_monomial, cast_add, cast_one] -- But this is the RHS of `sum_bernoulli_poly` rw [← sum_bernoulli, Finset.mul_sum, AlgHom.map_sum] -- and now we have to prove a sum is a sum, but all the terms are equal. apply Finset.sum_congr rfl -- The rest is just trivialities, hampered by the fact that we're coercing -- factorials and binomial coefficients between ℕ and ℚ and A. intro i hi -- deal with coefficients of e^X-1 simp only [Nat.cast_choose ℚ (mem_range_le hi), coeff_mk, if_neg (mem_range_sub_ne_zero hi), one_div, AlgHom.map_smul, PowerSeries.coeff_one, coeff_exp, sub_zero, LinearMap.map_sub, Algebra.smul_mul_assoc, Algebra.smul_def, mul_right_comm _ ((aeval t) _), ← mul_assoc, ← RingHom.map_mul, succ_eq_add_one, ← Polynomial.C_eq_algebraMap, Polynomial.aeval_mul, Polynomial.aeval_C] -- finally cancel the Bernoulli polynomial and the algebra_map congr apply congr_arg rw [mul_assoc, div_eq_mul_inv, ← mul_inv] #align polynomial.bernoulli_generating_function Polynomial.bernoulli_generating_function end Polynomial
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Yury Kudryashov. -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.real.sqrt import Mathlib.data.rat.sqrt import Mathlib.ring_theory.int.basic import Mathlib.data.polynomial.eval import Mathlib.data.polynomial.degree.default import Mathlib.tactic.interval_cases import Mathlib.PostPort namespace Mathlib /-! # Irrational real numbers In this file we define a predicate `irrational` on `ℝ`, prove that the `n`-th root of an integer number is irrational if it is not integer, and that `sqrt q` is irrational if and only if `rat.sqrt q * rat.sqrt q ≠ q ∧ 0 ≤ q`. We also provide dot-style constructors like `irrational.add_rat`, `irrational.rat_sub` etc. -/ /-- A real number is irrational if it is not equal to any rational number. -/ def irrational (x : ℝ) := ¬x ∈ set.range coe theorem irrational_iff_ne_rational (x : ℝ) : irrational x ↔ ∀ (a b : ℤ), x ≠ ↑a / ↑b := sorry /-! ### Irrationality of roots of integer and rational numbers -/ /-- If `x^n`, `n > 0`, is integer and is not the `n`-th power of an integer, then `x` is irrational. -/ theorem irrational_nrt_of_notint_nrt {x : ℝ} (n : ℕ) (m : ℤ) (hxr : x ^ n = ↑m) (hv : ¬∃ (y : ℤ), x = ↑y) (hnpos : 0 < n) : irrational x := sorry /-- If `x^n = m` is an integer and `n` does not divide the `multiplicity p m`, then `x` is irrational. -/ theorem irrational_nrt_of_n_not_dvd_multiplicity {x : ℝ} (n : ℕ) {m : ℤ} (hm : m ≠ 0) (p : ℕ) [hp : fact (nat.prime p)] (hxr : x ^ n = ↑m) (hv : roption.get (multiplicity (↑p) m) (iff.mpr multiplicity.finite_int_iff { left := nat.prime.ne_one hp, right := hm }) % n ≠ 0) : irrational x := sorry theorem irrational_sqrt_of_multiplicity_odd (m : ℤ) (hm : 0 < m) (p : ℕ) [hp : fact (nat.prime p)] (Hpv : roption.get (multiplicity (↑p) m) (iff.mpr multiplicity.finite_int_iff { left := nat.prime.ne_one hp, right := ne.symm (ne_of_lt hm) }) % bit0 1 = 1) : irrational (real.sqrt ↑m) := sorry theorem nat.prime.irrational_sqrt {p : ℕ} (hp : nat.prime p) : irrational (real.sqrt ↑p) := sorry theorem irrational_sqrt_two : irrational (real.sqrt (bit0 1)) := sorry theorem irrational_sqrt_rat_iff (q : ℚ) : irrational (real.sqrt ↑q) ↔ rat.sqrt q * rat.sqrt q ≠ q ∧ 0 ≤ q := sorry protected instance irrational.decidable (q : ℚ) : Decidable (irrational (real.sqrt ↑q)) := decidable_of_iff' (rat.sqrt q * rat.sqrt q ≠ q ∧ 0 ≤ q) (irrational_sqrt_rat_iff q) /-! ### Adding/subtracting/multiplying by rational numbers -/ theorem rat.not_irrational (q : ℚ) : ¬irrational ↑q := fun (h : irrational ↑q) => h (Exists.intro q rfl) namespace irrational theorem add_cases {x : ℝ} {y : ℝ} : irrational (x + y) → irrational x ∨ irrational y := sorry theorem of_rat_add (q : ℚ) {x : ℝ} (h : irrational (↑q + x)) : irrational x := or.elim (add_cases h) (fun (h : irrational ↑q) => absurd h (rat.not_irrational q)) id theorem rat_add (q : ℚ) {x : ℝ} (h : irrational x) : irrational (↑q + x) := of_rat_add (-q) (eq.mpr (id (Eq._oldrec (Eq.refl (irrational (↑(-q) + (↑q + x)))) (rat.cast_neg q))) (eq.mpr (id (Eq._oldrec (Eq.refl (irrational (-↑q + (↑q + x)))) (neg_add_cancel_left (↑q) x))) h)) theorem of_add_rat (q : ℚ) {x : ℝ} : irrational (x + ↑q) → irrational x := add_comm (↑q) x ▸ of_rat_add q theorem add_rat (q : ℚ) {x : ℝ} (h : irrational x) : irrational (x + ↑q) := add_comm (↑q) x ▸ rat_add q h theorem of_neg {x : ℝ} (h : irrational (-x)) : irrational x := sorry protected theorem neg {x : ℝ} (h : irrational x) : irrational (-x) := of_neg (eq.mpr (id (Eq._oldrec (Eq.refl (irrational ( --x))) (neg_neg x))) h) theorem sub_rat (q : ℚ) {x : ℝ} (h : irrational x) : irrational (x - ↑q) := sorry theorem rat_sub (q : ℚ) {x : ℝ} (h : irrational x) : irrational (↑q - x) := eq.mpr (id ((fun (x x_1 : ℝ) (e_1 : x = x_1) => congr_arg irrational e_1) (↑q - x) (↑q + -x) (sub_eq_add_neg (↑q) x))) (eq.mp (Eq.refl (irrational (↑q + -x))) (rat_add q (irrational.neg h))) theorem of_sub_rat (q : ℚ) {x : ℝ} (h : irrational (x - ↑q)) : irrational x := sorry theorem of_rat_sub (q : ℚ) {x : ℝ} (h : irrational (↑q - x)) : irrational x := sorry theorem mul_cases {x : ℝ} {y : ℝ} : irrational (x * y) → irrational x ∨ irrational y := sorry theorem of_mul_rat (q : ℚ) {x : ℝ} (h : irrational (x * ↑q)) : irrational x := or.elim (mul_cases h) id fun (h : irrational ↑q) => absurd h (rat.not_irrational q) theorem mul_rat {x : ℝ} (h : irrational x) {q : ℚ} (hq : q ≠ 0) : irrational (x * ↑q) := sorry theorem of_rat_mul (q : ℚ) {x : ℝ} : irrational (↑q * x) → irrational x := mul_comm x ↑q ▸ of_mul_rat q theorem rat_mul {x : ℝ} (h : irrational x) {q : ℚ} (hq : q ≠ 0) : irrational (↑q * x) := mul_comm x ↑q ▸ mul_rat h hq theorem of_mul_self {x : ℝ} (h : irrational (x * x)) : irrational x := or.elim (mul_cases h) id id theorem of_inv {x : ℝ} (h : irrational (x⁻¹)) : irrational x := sorry protected theorem inv {x : ℝ} (h : irrational x) : irrational (x⁻¹) := of_inv (eq.mpr (id (Eq._oldrec (Eq.refl (irrational (x⁻¹⁻¹))) (inv_inv' x))) h) theorem div_cases {x : ℝ} {y : ℝ} (h : irrational (x / y)) : irrational x ∨ irrational y := or.imp id of_inv (mul_cases h) theorem of_rat_div (q : ℚ) {x : ℝ} (h : irrational (↑q / x)) : irrational x := of_inv (of_rat_mul q h) theorem of_one_div {x : ℝ} (h : irrational (1 / x)) : irrational x := of_rat_div 1 (eq.mpr (id (Eq._oldrec (Eq.refl (irrational (↑1 / x))) rat.cast_one)) h) theorem of_pow {x : ℝ} (n : ℕ) : irrational (x ^ n) → irrational x := sorry theorem of_fpow {x : ℝ} (m : ℤ) : irrational (x ^ m) → irrational x := sorry end irrational theorem one_lt_nat_degree_of_irrational_root (x : ℝ) (p : polynomial ℤ) (hx : irrational x) (p_nonzero : p ≠ 0) (x_is_root : coe_fn (polynomial.aeval x) p = 0) : 1 < polynomial.nat_degree p := sorry @[simp] theorem irrational_rat_add_iff {q : ℚ} {x : ℝ} : irrational (↑q + x) ↔ irrational x := { mp := irrational.of_rat_add q, mpr := irrational.rat_add q } @[simp] theorem irrational_add_rat_iff {q : ℚ} {x : ℝ} : irrational (x + ↑q) ↔ irrational x := { mp := irrational.of_add_rat q, mpr := irrational.add_rat q } @[simp] theorem irrational_rat_sub_iff {q : ℚ} {x : ℝ} : irrational (↑q - x) ↔ irrational x := { mp := irrational.of_rat_sub q, mpr := irrational.rat_sub q } @[simp] theorem irrational_sub_rat_iff {q : ℚ} {x : ℝ} : irrational (x - ↑q) ↔ irrational x := { mp := irrational.of_sub_rat q, mpr := irrational.sub_rat q } @[simp] theorem irrational_neg_iff {x : ℝ} : irrational (-x) ↔ irrational x := { mp := irrational.of_neg, mpr := irrational.neg } @[simp] theorem irrational_inv_iff {x : ℝ} : irrational (x⁻¹) ↔ irrational x := { mp := irrational.of_inv, mpr := irrational.inv }
: foo ." foo" CR ;
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.RibbonCover module experimental.CoverClassification2 {i} (X : Ptd i) (A-conn : is-connected 0 (de⊙ X)) where private A = de⊙ X a = pt X open Cover open import homotopy.CoverClassification X A-conn {- Universality of the covering generated by the fundamental group itself. -} -- FIXME What's the established terminology for this? canonical-gset : Gset (πS 0 X) i canonical-gset = record { El = a =₀ a ; El-level = Trunc-level ; gset-struct = record { act = _∙₀_ ; unit-r = ∙₀-unit-r ; assoc = ∙₀-assoc } } -- FIXME What's the established terminology for this? canonical-cover : Cover A i canonical-cover = gset-to-cover canonical-gset {- private module CanonicalIsUniversal where open covering canonical-covering open gset canonical-gset center′ : ∀ a → Σ A fiber center′ a = (a , trace {gs = act} refl₀ refl₀) center : τ ⟨1⟩ (Σ A fiber) center = proj center′ private -- An ugly lemma for this development only trans-fiber≡cst-proj-Σ-eq : ∀ {i} (P : Set i) (Q : P → Set i) (a : P) (c : Σ P Q) {b₁ b₂} (p : b₁ ≡ b₂) (q : a ≡ π₁ c) (r : transport Q q b₁ ≡ π₂ c) → transport (λ r → (a , r) ≡₀ c) p (proj $ Σ-eq q r) ≡ proj (Σ-eq q (ap (transport Q q) (! p) ∘ r)) trans-fiber≡cst-proj-Σ-eq P Q a c refl q r = refl abstract path-trace-fiber : ∀ {a₂} y (p : a ≡ a₂) → transport fiber (! p ∘ ! y) (trace (proj y) (proj p)) ≡ trace refl₀ refl₀ path-trace-fiber y refl = transport fiber (! y) (trace (proj y) refl₀) ≡⟨ trans-trace act (! y) (proj y) refl₀ ⟩ trace (proj y) (proj $ ! y) ≡⟨ paste refl₀ (proj y) (proj $ ! y) ⟩ trace refl₀ (proj $ y ∘ ! y) ≡⟨ ap (trace refl₀ ◯ proj) $ opposite-right-inverse y ⟩∎ trace refl₀ refl₀ ∎ path-trace : ∀ {a₂} y p → (a₂ , trace {act = act} y p) ≡₀ center′ path-trace {a₂} = π₀-extend ⦃ λ y → Π-is-set λ p → π₀-is-set ((a₂ , trace y p) ≡ center′) ⦄ (λ y → π₀-extend ⦃ λ p → π₀-is-set ((a₂ , trace (proj y) p) ≡ center′) ⦄ (λ p → proj $ Σ-eq (! p ∘ ! y) (path-trace-fiber y p))) abstract path-paste′ : ∀ {a₂} y loop p → transport (λ r → (a₂ , r) ≡₀ center′) (paste (proj y) (proj loop) (proj p)) (path-trace (proj $ y ∘ loop) (proj p)) ≡ path-trace (proj y) (proj $ loop ∘ p) path-paste′ y loop refl = transport (λ r → (a , r) ≡₀ center′) (paste (proj y) (proj loop) refl₀) (proj $ Σ-eq (! (y ∘ loop)) (path-trace-fiber (y ∘ loop) refl)) ≡⟨ trans-fiber≡cst-proj-Σ-eq A fiber a center′ (paste (proj y) (proj loop) refl₀) (! (y ∘ loop)) (path-trace-fiber (y ∘ loop) refl) ⟩ proj (Σ-eq (! (y ∘ loop)) _) ≡⟨ ap proj $ ap2 (λ p q → Σ-eq p q) (! (y ∘ loop) ≡⟨ opposite-concat y loop ⟩ ! loop ∘ ! y ≡⟨ ap (λ x → ! x ∘ ! y) $ ! $ refl-right-unit loop ⟩∎ ! (loop ∘ refl) ∘ ! y ∎) (prop-has-all-paths (ribbon-is-set a _ _) _ _) ⟩∎ proj (Σ-eq (! (loop ∘ refl) ∘ ! y) (path-trace-fiber y (loop ∘ refl))) ∎ abstract path-paste : ∀ {a₂} y loop p → transport (λ r → (a₂ , r) ≡₀ center′) (paste y loop p) (path-trace (y ∘₀ loop) p) ≡ path-trace y (loop ∘₀ p) path-paste {a₂} = π₀-extend ⦃ λ y → Π-is-set λ loop → Π-is-set λ p → ≡-is-set $ π₀-is-set _ ⦄ (λ y → π₀-extend ⦃ λ loop → Π-is-set λ p → ≡-is-set $ π₀-is-set _ ⦄ (λ loop → π₀-extend ⦃ λ p → ≡-is-set $ π₀-is-set _ ⦄ (λ p → path-paste′ y loop p))) path′ : (y : Σ A fiber) → proj {n = ⟨1⟩} y ≡ center path′ y = τ-path-equiv-path-τ-S {n = ⟨0⟩} ☆ ribbon-rec {act = act} (π₁ y) (λ r → (π₁ y , r) ≡₀ center′) ⦃ λ r → π₀-is-set ((π₁ y , r) ≡ center′) ⦄ path-trace path-paste (π₂ y) path : (y : τ ⟨1⟩ (Σ A fiber)) → y ≡ center path = τ-extend {n = ⟨1⟩} ⦃ λ _ → ≡-is-truncated ⟨1⟩ $ τ-is-truncated ⟨1⟩ _ ⦄ path′ canonical-covering-is-universal : is-universal canonical-covering canonical-covering-is-universal = Universality.center , Universality.path -- The other direction: If a covering is universal, then the fiber -- is equivalent to the fundamental group. module _ (cov : covering) (cov-is-universal : is-universal cov) where open covering cov open action (covering⇒action cov) -- We need a point! module GiveMeAPoint (center : fiber a) where -- Goal: fiber a <-> fundamental group fiber-a⇒fg : fiber a → a ≡₀ a fiber-a⇒fg y = ap₀ π₁ $ connected-has-all-τ-paths cov-is-universal (a , center) (a , y) fg⇒fiber-a : a ≡₀ a → fiber a fg⇒fiber-a = tracing cov center fg⇒fiber-a⇒fg : ∀ p → fiber-a⇒fg (fg⇒fiber-a p) ≡ p fg⇒fiber-a⇒fg = π₀-extend ⦃ λ _ → ≡-is-set $ π₀-is-set _ ⦄ λ p → ap₀ π₁ (connected-has-all-τ-paths cov-is-universal (a , center) (a , transport fiber p center)) ≡⟨ ap (ap₀ π₁) $ ! $ π₂ (connected-has-connected-paths cov-is-universal _ _) (proj $ Σ-eq p refl) ⟩ ap₀ π₁ (proj $ Σ-eq p refl) ≡⟨ ap proj $ base-path-Σ-eq p refl ⟩∎ proj p ∎ fiber-a⇒fg⇒fiber-a : ∀ y → fg⇒fiber-a (fiber-a⇒fg y) ≡ y fiber-a⇒fg⇒fiber-a y = π₀-extend ⦃ λ p → ≡-is-set {x = tracing cov center (ap₀ π₁ p)} {y = y} $ fiber-is-set a ⦄ (λ p → transport fiber (base-path p) center ≡⟨ trans-base-path p ⟩∎ y ∎) (connected-has-all-τ-paths cov-is-universal (a , center) (a , y)) fiber-a≃fg : fiber a ≃ (a ≡₀ a) fiber-a≃fg = fiber-a⇒fg , iso-is-eq _ fg⇒fiber-a fg⇒fiber-a⇒fg fiber-a⇒fg⇒fiber-a -- This is the best we can obtain, because there is no continuous -- choice of the center. [center] : [ fiber a ] [center] = τ-extend-nondep ⦃ prop-is-gpd []-is-prop ⦄ (λ y → []-extend-nondep ⦃ []-is-prop ⦄ (proj ◯ λ p → transport fiber p (π₂ y)) (connected-has-all-τ-paths A⋆-is-conn (π₁ y) a)) (π₁ cov-is-universal) -- [ isomorphism between the fiber and the fundamental group ] -- This is the best we can obtain, because there is no continuous -- choice of the center. [fiber-a≃fg] : [ fiber a ≃ (a ≡₀ a) ] [fiber-a≃fg] = []-extend-nondep ⦃ []-is-prop ⦄ (proj ◯ GiveMeAPoint.fiber-a≃fg) [center] -}
------------------------------------------------------------------------ -- Well-typed substitutions -- From ------------------------------------------------------------------------ module Extensions.Fin.TypedSubstitution where import Category.Applicative.Indexed as Applicative open import Data.Fin using (Fin; zero; suc) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Fin.Substitution.ExtraLemmas open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Vec as Vec using (Vec; []; _∷_; map) open import Data.Vec.All using (All₂; []; _∷_; map₂; gmap₂; gmap₂₁; gmap₂₂) open import Data.Vec.Properties using (lookup-morphism) open import Function using (_∘_; flip) open import Relation.Binary.PropositionalEquality as PropEq hiding (trans) open PropEq.≡-Reasoning ------------------------------------------------------------------------ -- Abstract typing contexts and well-typedness relations -- Abstract typing contexts over T-types. -- -- A typing context Ctx n maps n free variables to types containing up -- to n free variables each. module Context where infixr 5 _∷_ -- Typing contexts. data Ctx (T : ℕ → Set) : ℕ → Set where [] : Ctx T 0 _∷_ : ∀ {n} → T (1 + n) → Ctx T n → Ctx T (1 + n) -- Operations on context that require weakening of types. record WeakenOps (T : ℕ → Set) : Set where -- Weakening of types. field weaken : ∀ {n} → T n → T (1 + n) infixr 5 _i∷_ -- Convert a context to its vector representation. toVec : ∀ {n} → Ctx T n → Vec (T n) n toVec [] = [] toVec (a ∷ Γ) = a ∷ map weaken (toVec Γ) -- Shorthand for extending contexts with variables that are typed -- independently of themselves. _i∷_ : ∀ {n} → T n → Ctx T n → Ctx T (1 + n) a i∷ Γ = weaken a ∷ Γ -- Lookup the type of a variable in a context. lookup : ∀ {n} → Fin n → Ctx T n → T n lookup x = Vec.lookup x ∘ toVec open Context -- Abstract typings. -- -- An abtract typing _⊢_∈_ : Typing Tp₁ Tm Tp₂ is a ternary relation -- which, in a given Tp₂-context, relates Tm-terms to their Tp₁-types. Typing : (ℕ → Set) → (ℕ → Set) → (ℕ → Set) → Set₁ Typing Tp₁ Tm Tp₂ = ∀ {n} → Ctx Tp₁ n → Tm n → Tp₂ n → Set ------------------------------------------------------------------------ -- Abstract well-typed substitutions (i.e. substitution lemmas) -- Abstract typed substitutions. record TypedSub (Tp₁ Tp₂ Tm : ℕ → Set) : Set₁ where infix 4 _⊢_∈_ field _⊢_∈_ : Typing Tp₂ Tm Tp₁ -- the associated typing -- Application of Tm-substitutions to (source) Tp₁-types application : Application Tp₁ Tm -- Operations on the (source) Tp₁-context. weakenOps : WeakenOps Tp₁ open Application application public using (_/_) open WeakenOps weakenOps using (toVec) infix 4 _⇒_⊢_ -- Typed substitutions. -- -- A typed substitution Γ ⇒ Δ ⊢ σ is a substitution σ which, when -- applied to something that is well-typed in a source context Γ, -- yields something well-typed in a target context Δ. _⇒_⊢_ : ∀ {m n} → Ctx Tp₁ m → Ctx Tp₂ n → Sub Tm m n → Set Γ ⇒ Δ ⊢ σ = All₂ (λ t a → Δ ⊢ t ∈ (a / σ)) σ (toVec Γ) -- Abstract extensions of substitutions. record ExtensionTyped {Tp₁ Tp₂ Tm} (simple : Simple Tm) (typedSub : TypedSub Tp₁ Tp₂ Tm) : Set where open TypedSub typedSub private module S = SimpleExt simple module L₀ = Lemmas₀ (record { simple = simple }) module C = WeakenOps weakenOps open C using (_i∷_) field -- Weakens well-typed Ts. weaken : ∀ {n} {Δ : Ctx Tp₂ n} {t a b} → Δ ⊢ t ∈ a → b ∷ Δ ⊢ S.weaken t ∈ C.weaken a -- Weakening commutes with other substitutions. wk-commutes : ∀ {m n} {σ : Sub Tm m n} {t} a → a / σ / S.wk ≡ a / S.wk / (t S./∷ σ) -- Relates weakening of types to weakening of Ts. /-wk : ∀ {n} {a : Tp₁ n} → a / S.wk ≡ C.weaken a -- A helper lemma. weaken-/ : ∀ {m n} {σ : Sub Tm m n} {t} a → C.weaken (a / σ) ≡ C.weaken a / (t S./∷ σ) weaken-/ {σ = σ} {t} a = begin C.weaken (a / σ) ≡⟨ sym /-wk ⟩ a / σ / S.wk ≡⟨ wk-commutes a ⟩ a / S.wk / (t S./∷ σ) ≡⟨ cong₂ _/_ /-wk refl ⟩ C.weaken a / (t S./∷ σ) ∎ infixr 5 _/∷_ _/i∷_ -- Extension. _/∷_ : ∀ {m n} {Γ : Ctx Tp₁ m} {Δ : Ctx Tp₂ n} {t a b σ} → b ∷ Δ ⊢ t ∈ a / (t S./∷ σ) → Γ ⇒ Δ ⊢ σ → a ∷ Γ ⇒ b ∷ Δ ⊢ (t S./∷ σ) t∈a/t∷σ /∷ σ-wt = t∈a/t∷σ ∷ gmap₂ (subst (_⊢_∈_ _ _) (weaken-/ _) ∘ weaken) σ-wt -- A variant of extension tailored to _i∷_. _/i∷_ : ∀ {m n} {Γ : Ctx Tp₁ m} {Δ : Ctx Tp₂ n} {t a b σ} → b ∷ Δ ⊢ t ∈ C.weaken (a / σ) → Γ ⇒ Δ ⊢ σ → a i∷ Γ ⇒ b ∷ Δ ⊢ (t S./∷ σ) t∈a/σ /i∷ σ-wt = (subst (_⊢_∈_ _ _) (weaken-/ _) t∈a/σ) /∷ σ-wt -- Abstract simple typed substitutions. record SimpleTyped {Tp Tm} (simple : Simple Tm) (typedSub : TypedSub Tp Tp Tm) : Set where field extensionTyped : ExtensionTyped simple typedSub open TypedSub typedSub open ExtensionTyped extensionTyped public private module S = SimpleExt simple module L₀ = Lemmas₀ (record { simple = simple }) module C = WeakenOps weakenOps open C using (_i∷_) field -- Takes variables to well-typed Ts. var : ∀ {n} {Γ : Ctx Tp n} (x : Fin n) → Γ ⊢ S.var x ∈ C.lookup x Γ -- Types are invariant under the identity substitution. id-vanishes : ∀ {n} (a : Tp n) → a / S.id ≡ a -- Single-variable substitution is a left-inverse of weakening. wk-sub-vanishes : ∀ {n b} (a : Tp n) → a / S.wk / S.sub b ≡ a infix 10 _↑ _↑i -- Lifting. _↑ : ∀ {m n} {Γ : Ctx Tp m} {Δ : Ctx Tp n} {σ} → Γ ⇒ Δ ⊢ σ → ∀ {a} → a ∷ Γ ⇒ a / σ S.↑ ∷ Δ ⊢ (σ S.↑) σ-wt ↑ = var zero /∷ σ-wt -- A variant of lifting tailored to _i∷_. _↑i : ∀ {m n} {Γ : Ctx Tp m} {Δ : Ctx Tp n} {σ} → Γ ⇒ Δ ⊢ σ → ∀ {a} → a i∷ Γ ⇒ a / σ i∷ Δ ⊢ σ S.↑ σ-wt ↑i = var zero /i∷ σ-wt -- The identity substitution. id : ∀ {n} {Γ : Ctx Tp n} → Γ ⇒ Γ ⊢ S.id id {zero} = [] id {suc n} {a ∷ Γ} = subst₂ (λ Δ σ → a ∷ Γ ⇒ Δ ⊢ σ) (cong (flip _∷_ Γ) (id-vanishes a)) (L₀.id-↑⋆ 1) (id ↑) where id-vanishes′ : ∀ {n} (a : Tp (1 + n)) → a / S.id S.↑ ≡ a id-vanishes′ a = begin a / S.id S.↑ ≡⟨ cong (_/_ a) (L₀.id-↑⋆ 1) ⟩ a / S.id ≡⟨ id-vanishes a ⟩ a ∎ -- Weakening. wk : ∀ {n} {Γ : Ctx Tp n} {a} → Γ ⇒ a ∷ Γ ⊢ S.wk wk {n} {Γ = Γ} {a = a} = gmap₂₁ (weaken′ ∘ subst (_⊢_∈_ _ _) (id-vanishes _)) id where weaken′ : ∀ {n} {Γ : Ctx Tp n} {t a b} → Γ ⊢ t ∈ a → b ∷ Γ ⊢ S.weaken t ∈ a / S.wk weaken′ = subst (_⊢_∈_ _ _) (sym /-wk) ∘ weaken private wk-sub-vanishes′ : ∀ {n a} {t : Tm n} → a ≡ C.weaken a / S.sub t wk-sub-vanishes′ {a = a} {t} = begin a ≡⟨ sym (wk-sub-vanishes a) ⟩ a / S.wk / S.sub t ≡⟨ cong (flip _/_ _) /-wk ⟩ C.weaken a / S.sub t ∎ id-wk-sub-vanishes : ∀ {n a} {t : Tm n} → a / S.id ≡ C.weaken a / S.sub t id-wk-sub-vanishes {a = a} {t} = begin a / S.id ≡⟨ id-vanishes a ⟩ a ≡⟨ wk-sub-vanishes′ ⟩ C.weaken a / S.sub t ∎ -- A substitution which only replaces the first variable. sub : ∀ {n} {Γ : Ctx Tp n} {t a} → Γ ⊢ t ∈ a → a i∷ Γ ⇒ Γ ⊢ S.sub t sub t∈a = t∈a′ ∷ gmap₂₂ (subst (_⊢_∈_ _ _) id-wk-sub-vanishes) id where t∈a′ = subst (_⊢_∈_ _ _) wk-sub-vanishes′ t∈a -- A variant of single-variable substitution that handles -- self-dependently typed variables. sub′ : ∀ {n} {Γ : Ctx Tp n} {t a} → Γ ⊢ t ∈ a / S.sub t → a ∷ Γ ⇒ Γ ⊢ S.sub t sub′ t∈a[/t] = t∈a[/t] ∷ gmap₂₂ (subst (_⊢_∈_ _ _) id-wk-sub-vanishes) id -- A substitution which only changes the type of the first variable. tsub : ∀ {n} {Γ : Ctx Tp n} {a b} → b ∷ Γ ⊢ S.var zero ∈ a → a ∷ Γ ⇒ b ∷ Γ ⊢ S.id tsub z∈a = z∈a′ ∷ gmap₂ (subst (_⊢_∈_ _ _) (weaken-/ _) ∘ weaken) id where z∈a′ = subst (_⊢_∈_ _ _) (sym (id-vanishes _)) z∈a -- Abstract typed liftings from Tm₁ to Tm₂. record LiftTyped {Tp Tm₁ Tm₂} (l : Lift Tm₁ Tm₂) (typedSub : TypedSub Tp Tp Tm₁) (_⊢₂_∈_ : Typing Tp Tm₂ Tp) : Set where open TypedSub typedSub renaming (_⊢_∈_ to _⊢₁_∈_) private module L = Lift l -- The underlying well-typed simple Tm₁-substitutions. field simpleTyped : SimpleTyped L.simple typedSub open SimpleTyped simpleTyped public -- Lifts well-typed Tm₁-terms to well-typed Tm₂-terms. field lift : ∀ {n} {Γ : Ctx Tp n} {t a} → Γ ⊢₁ t ∈ a → Γ ⊢₂ (L.lift t) ∈ a -- Abstract variable typings. module VarTyping {Tp} (weakenOps : Context.WeakenOps Tp) where open WeakenOps weakenOps infix 4 _⊢Var_∈_ -- Abstract variable typings. data _⊢Var_∈_ {n} (Γ : Ctx Tp n) : Fin n → Tp n → Set where var : ∀ x → Γ ⊢Var x ∈ lookup x Γ -- Abstract typed variable substitutions (α-renamings). record TypedVarSubst (Tp : ℕ → Set) : Set where field application : Application Tp Fin weakenOps : WeakenOps Tp open VarTyping weakenOps public typedSub : TypedSub Tp Tp Fin typedSub = record { _⊢_∈_ = _⊢Var_∈_ ; application = application ; weakenOps = weakenOps } open TypedSub typedSub public using () renaming (_⇒_⊢_ to _⇒_⊢α_) open Application application using (_/_) open Lemmas₄ VarLemmas.lemmas₄ using (id; wk; _⊙_) private module C = WeakenOps weakenOps field /-wk : ∀ {n} {a : Tp n} → a / wk ≡ C.weaken a id-vanishes : ∀ {n} (a : Tp n) → a / id ≡ a /-⊙ : ∀ {m n k} {σ₁ : Sub Fin m n} {σ₂ : Sub Fin n k} a → a / σ₁ ⊙ σ₂ ≡ a / σ₁ / σ₂ appLemmas : AppLemmas Tp Fin appLemmas = record { application = application ; lemmas₄ = VarLemmas.lemmas₄ ; id-vanishes = id-vanishes ; /-⊙ = /-⊙ } open ExtAppLemmas appLemmas hiding (var; weaken; /-wk; id-vanishes; subst) -- Extensions of renamings. extensionTyped : ExtensionTyped VarLemmas.simple typedSub extensionTyped = record { weaken = weaken ; wk-commutes = wk-commutes ; /-wk = /-wk } where open Applicative.Morphism using (op-<$>) weaken : ∀ {n} {Γ : Ctx Tp n} {x a b} → Γ ⊢Var x ∈ a → b ∷ Γ ⊢Var suc x ∈ C.weaken a weaken (var x) = subst (_⊢Var_∈_ _ _) (op-<$> (lookup-morphism x) _ _) (var (suc x)) -- Simple typed renamings. simpleTyped : SimpleTyped VarLemmas.simple typedSub simpleTyped = record { extensionTyped = extensionTyped ; var = var ; id-vanishes = id-vanishes ; wk-sub-vanishes = wk-sub-vanishes } open SimpleTyped simpleTyped public hiding (extensionTyped; var; /-wk; id-vanishes; wk-sub-vanishes) -- Context-replacing substitutions. record ContextSub (Tp₁ Tp₂ Tm : ℕ → Set) : Set₁ where infix 4 _⊢_∈_ field _⊢_∈_ : Typing Tp₂ Tm Tp₁ -- the associated typing -- Simple Tm-substitutions (e.g. id). simple : Simple Tm -- Operations on the (source) Tp₁-context. weakenOps : WeakenOps Tp₁ open Simple simple using (id) open WeakenOps weakenOps using (toVec) infix 4 _⇒_⊢-id -- Context-replacing substitutions. -- -- An alternative representation for substitutions that only change -- the context of a well-typed Tm-term, i.e. where the underlying -- untyped substitution is the identity. _⇒_⊢-id : ∀ {n} → Ctx Tp₁ n → Ctx Tp₂ n → Set Γ ⇒ Δ ⊢-id = All₂ (λ t a → Δ ⊢ t ∈ a) id (toVec Γ) -- Equivalences between (simple) typed substitutions and their -- context-replacing counterparts. record Equivalence {Tp₁ Tp₂ Tm} (simple : Simple Tm) (typedSub : TypedSub Tp₁ Tp₂ Tm) : Set where open Simple simple open TypedSub typedSub -- The type of context substitutions participating in this -- equivalence. contextSub : ContextSub Tp₁ Tp₂ Tm contextSub = record { _⊢_∈_ = _⊢_∈_ ; simple = simple ; weakenOps = weakenOps } open ContextSub contextSub hiding (_⊢_∈_; simple) -- Types are invariant under the identity substitution. field id-vanishes : ∀ {n} (a : Tp₁ n) → a / id ≡ a -- There is a context substitution for every typed identity -- substitution. sound : ∀ {n} {Γ : Ctx Tp₁ n} {Δ : Ctx Tp₂ n} → Γ ⇒ Δ ⊢-id → Γ ⇒ Δ ⊢ id sound ρ = map₂ (subst (_⊢_∈_ _ _) (sym (id-vanishes _))) ρ -- There is a context substitution for every typed identity -- substitution. complete : ∀ {n} {Γ : Ctx Tp₁ n} {Δ : Ctx Tp₂ n} → Γ ⇒ Δ ⊢ id → Γ ⇒ Δ ⊢-id complete σ-wt = map₂ (subst (_⊢_∈_ _ _) (id-vanishes _)) σ-wt -- Variants of some simple typed substitutions. record ContextSimple {Tp Tm} (simple : Simple Tm) (typedSub : TypedSub Tp Tp Tm) : Set where field simpleTyped : SimpleTyped simple typedSub open TypedSub typedSub hiding (_⊢_∈_) private module U = SimpleExt simple module C = WeakenOps weakenOps module S = SimpleTyped simpleTyped open C using (_i∷_) equivalence : Equivalence simple typedSub equivalence = record { id-vanishes = S.id-vanishes } open Equivalence equivalence public open ContextSub contextSub public infixr 5 _/∷_ infix 10 _↑ -- Extension. _/∷_ : ∀ {n} {Γ : Ctx Tp n} {Δ : Ctx Tp n} {a b} → b ∷ Δ ⊢ U.var zero ∈ a → Γ ⇒ Δ ⊢-id → a ∷ Γ ⇒ b ∷ Δ ⊢-id z∈a /∷ σ-wt = z∈a ∷ gmap₂ S.weaken σ-wt -- Lifting. _↑ : ∀ {n} {Γ : Ctx Tp n} {Δ : Ctx Tp n} → Γ ⇒ Δ ⊢-id → ∀ {a} → a ∷ Γ ⇒ a ∷ Δ ⊢-id ρ ↑ = S.var zero /∷ ρ -- The identity substitution. id : ∀ {n} {Γ : Ctx Tp n} → Γ ⇒ Γ ⊢-id id = complete S.id
(* ***********************************************************************) (* *) (* Synchronously executed Interpreted Time Petri Nets (SITPNs) *) (* *) (* *) (* Copyright Université de Montpellier, contributor(s): Vincent *) (* Iampietro, David Andreu, David Delahaye (May 2020) *) (* *) (* This software is governed by the CeCILL-C license under French law *) (* and abiding by the rules of distribution of free software. You can *) (* use, modify and/ or redistribute the software under the terms of *) (* the CeCILL-C license as circulated by CEA, CNRS and INRIA at the *) (* following URL "http://www.cecill.info". The fact that you are *) (* presently reading this means that you have had knowledge of the *) (* CeCILL-C license and that you accept its terms. *) (* *) (* ***********************************************************************) (* Import Sitpn material. *) Require Import simpl.Sitpn. Require Import simpl.SitpnTokenPlayer. Require Import simpl.SitpnSemantics. (* Import Sitpn tactics, and misc. lemmas. *) Require Import simpl.SitpnTactics. (* Import lemmas about marking and well-definition. *) Require Import simpl.SitpnWellDefMarking. (* Import tertium non datur *) Require Import Classical_Prop. (** * Lemmas on [modify_m] and its spec. *) Section ModifyM. (** Correctness proof for [modify_m]. Needed in update_marking_pre_aux_correct. *) Lemma modify_m_correct : forall (marking : list (Place * nat)) (p : Place) (op : nat -> nat -> nat) (nboftokens : nat) (final_marking : list (Place * nat)), NoDup (fst (split marking)) -> modify_m marking p op nboftokens = Some final_marking -> forall n : nat, In (p, n) marking -> In (p, op n nboftokens) final_marking. Proof. intros marking p op nboftokens; functional induction (modify_m marking p op nboftokens) using modify_m_ind; intros final_marking Hnodup Hfun n' Hin_n'_m. (* ERROR CASE *) - inversion Hfun. (* INDUCTION CASE *) (* CASE p = hd. *) - inversion_clear Hin_n'_m as [Heq_pn'_p'n | Hin_pn'_tl]. (* Case (p, n') = (p', n) *) + injection Heq_pn'_p'n as Heq_p'p Heqnn'. rewrite <- Heqnn'; injection Hfun as Hfun; rewrite <- Hfun; apply in_eq. (* Case (p, n') ∈ tl *) + rewrite fst_split_cons_app in Hnodup. simpl in Hnodup. deduce_nodup_hd_not_in. apply in_fst_split in Hin_pn'_tl. rewrite (beq_nat_true p' p e1) in Hnot_in_tl. contradiction. (* CASE p <> hd ∧ rec = Some m'. *) - inversion_clear Hin_n'_m as [Heq_pn'_p'n | Hin_pn'_tl]. (* Case (p, n') = (p', n) *) + injection Heq_pn'_p'n as Heq_p'p Heqnn'. apply beq_nat_false in e1. contradiction. (* Case (p, n') ∈ tl *) + rewrite fst_split_cons_app in Hnodup; simpl in Hnodup; rewrite NoDup_cons_iff in Hnodup; apply proj2 in Hnodup. injection Hfun as Hfun; rewrite <- Hfun; apply in_cons. apply (IHo m' Hnodup e2 n' Hin_pn'_tl). (* ERROR CASE, rec = None *) - inversion Hfun. Qed. Lemma modify_m_in_if_diff : forall (marking : list (Place * nat)) (p : Place) (op : nat -> nat -> nat) (nboftokens : nat) (final_marking : list (Place * nat)), modify_m marking p op nboftokens = Some final_marking -> forall (p' : Place) (n : nat), p <> p' -> In (p', n) marking <-> In (p', n) final_marking. Proof. intros marking p op nboftokens; functional induction (modify_m marking p op nboftokens) using modify_m_ind; intros final_marking Hfun p'' n' Hdiff_pp. (* ERROR CASE *) - inversion Hfun. (* CASE p = hd *) - injection Hfun as Hfun. apply not_eq_sym in Hdiff_pp. specialize (fst_diff_pair_diff p'' p Hdiff_pp n' n) as Hdiff_nn0. specialize (fst_diff_pair_diff p'' p Hdiff_pp n' (op n nboftokens)) as Hdiff_nnb. split. + intros Hin_p''n'. inversion_clear Hin_p''n' as [Heq_p''n'_p'n | Hin_tl]. -- symmetry in Heq_p''n'_p'n. rewrite (beq_nat_true p' p e1) in Heq_p''n'_p'n. contradiction. -- rewrite <- Hfun; apply in_cons; assumption. + intros Hin_p''n'_fm. rewrite <- Hfun in Hin_p''n'_fm. inversion_clear Hin_p''n'_fm as [Heq_p''n'_pop | Hin_tl]. -- symmetry in Heq_p''n'_pop; contradiction. -- apply in_cons; assumption. (* CASE p <> hd ∧ rec = Some m' *) - injection Hfun as Hfun. split. + intros Hin_p''n'. inversion_clear Hin_p''n' as [Heq_p''n'_p'n | Hin_tl]. -- rewrite <- Hfun; rewrite <- Heq_p''n'_p'n; apply in_eq. -- specialize (IHo m' e2 p'' n' Hdiff_pp) as Heq. rewrite <- Hfun; apply in_cons. rewrite <- Heq. assumption. + intros Hin_p''n'. rewrite <- Hfun in Hin_p''n'. inversion_clear Hin_p''n' as [Heq_p''n'_p'n | Hin_tl]. -- rewrite <- Heq_p''n'_p'n; apply in_eq. -- specialize (IHo m' e2 p'' n' Hdiff_pp) as Heq. apply in_cons. rewrite Heq. assumption. (* ERROR CASE *) - inversion Hfun. Qed. (** No error lemma for modify_m. *) Lemma modify_m_no_error : forall (m : list (Place * nat)) (p : Place) (op : nat -> nat -> nat) (nboftokens : nat), In p (fst (split m)) -> exists m' : list (Place * nat), modify_m m p op nboftokens = Some m'. Proof. intros m p op nboftokens; functional induction (modify_m m p op nboftokens) using modify_m_ind; intros Hin_p_fs. (* BASE CASE *) - simpl in Hin_p_fs; inversion Hin_p_fs. (* CASE p = hd *) - exists ((p, op n nboftokens) :: tl); reflexivity. (* CASE p <> hd ∧ rec = Some m' *) - exists ((p', n) :: m'); reflexivity. (* CASE p <> hd ∧ rec = None *) - rewrite fst_split_cons_app in Hin_p_fs; simpl in Hin_p_fs. inversion_clear Hin_p_fs as [Heq_p'p | Hin_p_fs_tl]. + apply beq_nat_false in e1; contradiction. + specialize (IHo Hin_p_fs_tl) as Hex_modif. inversion_clear Hex_modif as (m' & Hmodif). rewrite e2 in Hmodif; inversion Hmodif. Qed. End ModifyM. (** Lemmas on update_marking_pre and update_marking_post functions, and their mapped versions. *) Section SitpnUpdateMarking. (** Needed to prove update_marking_pre_aux_correct. *) Lemma update_marking_pre_aux_not_in_pre_places : forall (sitpn : Sitpn) (m : list (Place * nat)) (t : Trans) (pre_places : list Place) (m' : list (Place * nat)), update_marking_pre_aux sitpn m t pre_places = Some m' -> forall (p : Place), ~In p pre_places -> forall (n : nat), In (p, n) m <-> In (p, n) m'. Proof. intros sitpn m t pre_places; functional induction (update_marking_pre_aux sitpn m t pre_places) using update_marking_pre_aux_ind; intros fm Hfun p' Hnot_in_pre n. (* BASE CASE *) - injection Hfun as Hfun. rewrite Hfun; reflexivity. (* GENERAL CASE *) - apply not_in_cons in Hnot_in_pre. elim Hnot_in_pre; intros Hdiff_pp' Hnot_in_tl. apply not_eq_sym in Hdiff_pp'. specialize (modify_m_in_if_diff marking p Nat.sub (pre sitpn t p) m' e0 p' n Hdiff_pp') as Hequiv. rewrite Hequiv. apply (IHo fm Hfun p' Hnot_in_tl n). (* ERROR CASE *) - inversion Hfun. Qed. (** Correctness proof for [update_marking_pre_aux]. Express the structure of the returned [m'] regarding the structure of [m]. Needed to prove update_marking_pre_correct. *) Lemma update_marking_pre_aux_correct : forall (sitpn : Sitpn) (m : list (Place * nat)) (t : Trans) (pre_places : list Place) (m' : list (Place * nat)), IsWellDefinedSitpn sitpn -> NoDup (fst (split m)) -> NoDup pre_places -> incl pre_places (pre_pl (lneighbours sitpn t)) -> update_marking_pre_aux sitpn m t pre_places = Some m' -> forall (p : Place) (n : nat), In p pre_places -> In (p, n) m -> In (p, n - (pre sitpn t p)) m'. Proof. intros sitpn m t pre_places; functional induction (update_marking_pre_aux sitpn m t pre_places) using update_marking_pre_aux_ind; intros fm Hwell_def_sitpn Hnodup_m Hnodup_pre_pl Hincl_pre_pl Hfun p' n Hin_pre_pl Hin_resid. (* BASE CASE, pre_places = []. *) - inversion Hin_pre_pl. (* GENERAL CASE *) - inversion Hin_pre_pl as [Heq_pp' | Hin_p'_tail]. (* First subcase, p = p'. *) + rewrite <- Heq_pp' in Hin_pre_pl. rewrite <- Heq_pp' in Hin_resid. specialize (modify_m_correct marking p Nat.sub (pre sitpn t p) m' Hnodup_m e0 n Hin_resid) as Hin_resid'. apply NoDup_cons_iff in Hnodup_pre_pl. elim Hnodup_pre_pl; intros Hnot_in_tl Hnodup_tl. rewrite Heq_pp' in Hnot_in_tl. specialize (update_marking_pre_aux_not_in_pre_places sitpn m' t tail fm Hfun p' Hnot_in_tl (n - pre sitpn t p)) as Hin_equiv'. rewrite Heq_pp' in Hin_resid'. rewrite Heq_pp' in Hin_equiv'. rewrite Hin_equiv' in Hin_resid'; assumption. (* Second subcase, In p' tail, then apply induction hypothesis. *) (* But we need to show NoDup (fst (split residual')) first. *) + specialize (modify_m_same_struct marking p Nat.sub (pre sitpn t p) m' e0) as Hsame_struct. unfold MarkingHaveSameStruct in Hsame_struct. rewrite Hsame_struct in Hnodup_m. (* Builds the other hypotheses, needed to specialize IHo. *) apply NoDup_cons_iff in Hnodup_pre_pl; elim Hnodup_pre_pl; intros Hnot_in_tl Hnodup_tl. apply incl_cons_inv in Hincl_pre_pl. (* Then specializes the induction hypothesis. *) specialize (IHo fm Hwell_def_sitpn Hnodup_m Hnodup_tl Hincl_pre_pl Hfun p' n Hin_p'_tail) as Himpl. specialize (not_in_in_diff p p' tail (conj Hnot_in_tl Hin_p'_tail)) as Hdiff_pp. specialize (modify_m_in_if_diff marking p Nat.sub (pre sitpn t p) m' e0 p' n Hdiff_pp) as Hequiv'. rewrite <- Hequiv' in Himpl. apply (Himpl Hin_resid). (* ERROR CASE *) - inversion Hfun. Qed. (** No error lemma for update_marking_pre_aux. *) Lemma update_marking_pre_aux_no_error : forall (sitpn : Sitpn) (t : Trans) (pre_places : list Place) (m : list (Place * nat)), incl pre_places (fst (split m)) -> exists m' : list (Place * nat), update_marking_pre_aux sitpn m t pre_places = Some m'. Proof. intros sitpn t; induction pre_places; intros residual_marking Hincl_pre. (* BASE CASE *) - simpl; exists residual_marking; reflexivity. (* INDUCTION CASE *) - simpl. assert (Hin_eq : In a (a :: pre_places)) by apply in_eq. specialize (Hincl_pre a Hin_eq) as Hin_a_res. specialize (modify_m_no_error residual_marking a Nat.sub (pre sitpn t a) Hin_a_res) as Hmodify_ex. inversion_clear Hmodify_ex as (m' & Hmodify). rewrite Hmodify. apply incl_cons_inv in Hincl_pre. specialize (modify_m_same_struct residual_marking a Nat.sub (pre sitpn t a) m' Hmodify) as Hsame_struct. rewrite Hsame_struct in Hincl_pre. apply (IHpre_places m' Hincl_pre). Qed. (** Correctness proof for [update_marking_pre]. Needed to prove GENERAL CASE in sitpn_fire_aux_sens_by_residual. *) Lemma update_marking_pre_correct : forall (sitpn : Sitpn) (marking : list (Place * nat)) (t : Trans) (final_marking : list (Place * nat)), IsWellDefinedSitpn sitpn -> NoDup (fst (split marking)) -> In t (transs sitpn) -> update_marking_pre sitpn marking (lneighbours sitpn t) t = Some final_marking -> forall (p : Place) (n : nat), In (p, n) marking -> In (p, n - (pre sitpn t p)) final_marking. Proof. intros sitpn marking t; functional induction (update_marking_pre sitpn marking (lneighbours sitpn t) t) using update_marking_pre_ind; intros final_marking Hwell_def_sitpn Hnodup_resm Hin_t_transs Hfun p n Hin_resm. (* GENERAL CASE *) - (* Two cases, either p ∈ (pre_pl neigh_of_t), or p ∉ (pre_pl neigh_of_t). *) assert (Hvee_in_pre_pl := classic (In p (pre_pl (lneighbours sitpn t)))). inversion_clear Hvee_in_pre_pl as [Hin_p_pre | Hnotin_p_pre]. (* First case, p ∈ pre_pl, then applies update_marking_pre_aux_correct. *) + explode_well_defined_sitpn. (* Builds NoDup pre_pl. *) assert (Hin_flat : In p (flatten_neighbours (lneighbours sitpn t))) by (unfold flatten_neighbours; apply in_or_app; left; assumption). unfold NoDupInNeighbours in Hnodup_neigh. specialize (Hnodup_neigh t Hin_t_transs) as Hnodup_flat. apply proj1 in Hnodup_flat; apply nodup_app in Hnodup_flat; apply proj1 in Hnodup_flat. (* Then, applies update_marking_pre_aux_correct. *) apply (update_marking_pre_aux_correct sitpn marking t (pre_pl (lneighbours sitpn t)) final_marking Hwell_def_sitpn Hnodup_resm Hnodup_flat (incl_refl (pre_pl (lneighbours sitpn t))) Hfun p n Hin_p_pre Hin_resm). (* Second case, p ∉ pre_pl, then applies update_marking_pre_aux_not_in_pre_places. *) + explode_well_defined_sitpn. unfold AreWellDefinedPreEdges in Hwell_def_pre. specialize (Hwell_def_pre t p Hin_t_transs) as Hw_pre_edges. apply proj2 in Hw_pre_edges; specialize (Hw_pre_edges Hnotin_p_pre). rewrite Hw_pre_edges; rewrite Nat.sub_0_r. specialize (update_marking_pre_aux_not_in_pre_places sitpn marking t (pre_pl (lneighbours sitpn t)) final_marking Hfun p Hnotin_p_pre n) as Hequiv. rewrite <- Hequiv; assumption. Qed. (** No error lemma for [update_marking_pre]. *) Lemma update_marking_pre_no_error : forall (sitpn : Sitpn) (marking : list (Place * nat)) (t : Trans), IsWellDefinedSitpn sitpn -> incl (flatten_neighbours (lneighbours sitpn t)) (fst (split marking)) -> exists final_marking : list (Place * nat), update_marking_pre sitpn marking (lneighbours sitpn t) t = Some final_marking. Proof. intros sitpn marking t Hwell_def_sitpn Hincl_flat. explode_well_defined_sitpn. unfold NoDupTranss in Hnodup_transs. unfold update_marking_pre. assert (Hincl_prepl : incl (pre_pl (lneighbours sitpn t)) (fst (split marking))). { intros x Hin_x_pre. apply or_introl with (B := In x ((test_pl (lneighbours sitpn t)) ++ (inhib_pl (lneighbours sitpn t)) ++ (post_pl (lneighbours sitpn t)))) in Hin_x_pre. apply in_or_app in Hin_x_pre. apply (Hincl_flat x Hin_x_pre). } apply (update_marking_pre_aux_no_error sitpn t (pre_pl (lneighbours sitpn t)) marking Hincl_prepl). Qed. (** * Correctness lemma for [map_update_marking_pre]. * * map_update_marking_pre sitpn m fired = m' ⇒ m' = m - ∑ pre(t), ∀ t ∈ fired * * [map_update_marking_pre] substracts tokens in the pre-places * of all transitions ∈ fired. * *) Lemma map_update_marking_pre_sub_pre : forall (sitpn : Sitpn) (m : list (Place * nat)) (fired : list Trans) (m' : list (Place * nat)), IsWellDefinedSitpn sitpn -> NoDup (fst (split m)) -> incl fired (transs sitpn) -> map_update_marking_pre sitpn m fired = Some m' -> forall (p : Place) (n : nat), In (p, n) m -> In (p, n - pre_sum sitpn p fired) m'. Proof. intros sitpn m fired; functional induction (map_update_marking_pre sitpn m fired) using map_update_marking_pre_ind; intros fm Hwell_def_sitpn Hnodup_m Hincl_transs Hfun p n Hin_m. (* BASE CASE *) - injection Hfun as Heq_marking; rewrite <- Heq_marking. simpl; rewrite Nat.sub_0_r; assumption. (* GENERAL CASE *) - specialize (Hincl_transs t (in_eq t tail)) as Hin_t_transs. simpl. rewrite Nat.sub_add_distr. specialize (update_marking_pre_correct sitpn marking t m' Hwell_def_sitpn Hnodup_m Hin_t_transs e0 p n Hin_m) as Hin_m'. apply update_marking_pre_same_marking in e0; unfold MarkingHaveSameStruct in e0; rewrite e0 in Hnodup_m. apply (IHo fm Hwell_def_sitpn Hnodup_m (incl_cons_inv t tail (transs sitpn) Hincl_transs) Hfun p (n - pre sitpn t p) Hin_m'). (* ERROR CASE *) - inversion Hfun. Qed. (** No error lemma for [map_update_marking_pre]. *) Lemma map_update_marking_pre_no_error : forall (sitpn : Sitpn) (fired : list Trans) (m : list (Place * nat)), IsWellDefinedSitpn sitpn -> (forall (t : Trans), In t fired -> incl (flatten_neighbours (lneighbours sitpn t)) (fst (split m))) -> exists m' : list (Place * nat), map_update_marking_pre sitpn m fired = Some m'. Proof. intros sitpn; induction fired; intros m Hwell_def_sitpn Hincl_fl_m. (* BASE CASE *) - simpl; exists m; reflexivity. (* INDUCTION CASE *) - simpl. assert (Hin_eq : In a (a :: fired)) by apply in_eq. specialize (Hincl_fl_m a Hin_eq) as Hincl_flat. specialize (update_marking_pre_no_error sitpn m a Hwell_def_sitpn Hincl_flat) as Hupdate_pre_ex. inversion_clear Hupdate_pre_ex as ( final_marking & Hupdate_pre ). rewrite Hupdate_pre. specialize (update_marking_pre_same_marking sitpn m a final_marking Hupdate_pre) as Hsame_struct. rewrite Hsame_struct in Hincl_fl_m. assert (Hincl_fl_tl : forall t : Trans, In t fired -> incl (flatten_neighbours (lneighbours sitpn t)) (fst (split final_marking))). { intros t Hin_t_fired; apply (in_cons a) in Hin_t_fired; apply (Hincl_fl_m t Hin_t_fired). } apply (IHfired final_marking Hwell_def_sitpn Hincl_fl_tl). Qed. (** Needed to prove update_marking_post_aux_correct. *) Lemma update_marking_post_aux_not_in_post_places : forall (sitpn : Sitpn) (m : list (Place * nat)) (t : Trans) (post_places : list Place) (m' : list (Place * nat)), update_marking_post_aux sitpn m t post_places = Some m' -> forall (p : Place), ~In p post_places -> forall (n : nat), In (p, n) m <-> In (p, n) m'. Proof. intros sitpn m t post_places; functional induction (update_marking_post_aux sitpn m t post_places) using update_marking_post_aux_ind; intros fm Hfun p' Hnot_in_post n. (* BASE CASE *) - injection Hfun as Hfun. rewrite Hfun; reflexivity. (* GENERAL CASE *) - apply not_in_cons in Hnot_in_post. elim Hnot_in_post; intros Hdiff_pp' Hnot_in_tl. apply not_eq_sym in Hdiff_pp'. specialize (modify_m_in_if_diff marking p Nat.add (post sitpn t p) m' e0 p' n Hdiff_pp') as Hequiv. rewrite Hequiv. apply (IHo fm Hfun p' Hnot_in_tl n). (* ERROR CASE *) - inversion Hfun. Qed. (** Correctness proof for [update_marking_post_aux]. Expostss the structure of the returned [m'] regarding the structure of [m]. Needed to prove update_marking_post_correct. *) Lemma update_marking_post_aux_correct : forall (sitpn : Sitpn) (m : list (Place * nat)) (t : Trans) (post_places : list Place) (m' : list (Place * nat)), IsWellDefinedSitpn sitpn -> NoDup (fst (split m)) -> NoDup post_places -> incl post_places (post_pl (lneighbours sitpn t)) -> update_marking_post_aux sitpn m t post_places = Some m' -> forall (p : Place) (n : nat), In p post_places -> In (p, n) m -> In (p, n + (post sitpn t p)) m'. Proof. intros sitpn m t post_places; functional induction (update_marking_post_aux sitpn m t post_places) using update_marking_post_aux_ind; intros fm Hwell_def_sitpn Hnodup_m Hnodup_post_pl Hincl_post_pl Hfun p' n Hin_post_pl Hin_resid. (* BASE CASE, post_places = []. *) - inversion Hin_post_pl. (* GENERAL CASE *) - inversion Hin_post_pl as [Heq_pp' | Hin_p'_tail]. (* First subcase, p = p'. *) + rewrite <- Heq_pp' in Hin_post_pl. rewrite <- Heq_pp' in Hin_resid. specialize (modify_m_correct marking p Nat.add (post sitpn t p) m' Hnodup_m e0 n Hin_resid) as Hin_resid'. apply NoDup_cons_iff in Hnodup_post_pl. elim Hnodup_post_pl; intros Hnot_in_tl Hnodup_tl. rewrite Heq_pp' in Hnot_in_tl. specialize (update_marking_post_aux_not_in_post_places sitpn m' t tail fm Hfun p' Hnot_in_tl (n + post sitpn t p)) as Hin_equiv'. rewrite Heq_pp' in Hin_resid'. rewrite Heq_pp' in Hin_equiv'. rewrite Hin_equiv' in Hin_resid'; assumption. (* Second subcase, In p' tail, then apply induction hypothesis. *) (* But we need to show NoDup (fst (split residual')) first. *) + specialize (modify_m_same_struct marking p Nat.add (post sitpn t p) m' e0) as Hsame_struct. unfold MarkingHaveSameStruct in Hsame_struct. rewrite Hsame_struct in Hnodup_m. (* Builds the other hypotheses, needed to specialize IHo. *) apply NoDup_cons_iff in Hnodup_post_pl; elim Hnodup_post_pl; intros Hnot_in_tl Hnodup_tl. apply incl_cons_inv in Hincl_post_pl. (* Then specializes the induction hypothesis. *) specialize (IHo fm Hwell_def_sitpn Hnodup_m Hnodup_tl Hincl_post_pl Hfun p' n Hin_p'_tail) as Himpl. specialize (not_in_in_diff p p' tail (conj Hnot_in_tl Hin_p'_tail)) as Hdiff_pp. specialize (@modify_m_in_if_diff marking p Nat.add (post sitpn t p) m' e0 p' n Hdiff_pp) as Hequiv'. rewrite <- Hequiv' in Himpl. apply (Himpl Hin_resid). (* ERROR CASE *) - inversion Hfun. Qed. (** No error lemma for update_marking_post_aux. *) Lemma update_marking_post_aux_no_error : forall (sitpn : Sitpn) (t : Trans) (post_places : list Place) (m : list (Place * nat)), incl post_places (fst (split m)) -> exists m' : list (Place * nat), update_marking_post_aux sitpn m t post_places = Some m'. Proof. intros sitpn t; induction post_places; intros residual_marking Hincl_post. (* BASE CASE *) - simpl; exists residual_marking; reflexivity. (* INDUCTION CASE *) - simpl. assert (Hin_eq : In a (a :: post_places)) by apply in_eq. specialize (Hincl_post a Hin_eq) as Hin_a_res. specialize (modify_m_no_error residual_marking a Nat.add (post sitpn t a) Hin_a_res) as Hmodify_ex. inversion_clear Hmodify_ex as (m' & Hmodify). rewrite Hmodify. apply incl_cons_inv in Hincl_post. specialize (@modify_m_same_struct residual_marking a Nat.add (post sitpn t a) m' Hmodify) as Hsame_struct. rewrite Hsame_struct in Hincl_post. apply (IHpost_places m' Hincl_post). Qed. (** Correctness proof for [update_marking_post]. Needed to prove GENERAL CASE in sitpn_fire_aux_sens_by_residual. *) Lemma update_marking_post_correct : forall (sitpn : Sitpn) (marking : list (Place * nat)) (t : Trans) (final_marking : list (Place * nat)), IsWellDefinedSitpn sitpn -> NoDup (fst (split marking)) -> In t (transs sitpn) -> update_marking_post sitpn marking (lneighbours sitpn t) t = Some final_marking -> forall (p : Place) (n : nat), In (p, n) marking -> In (p, n + (post sitpn t p)) final_marking. Proof. intros sitpn marking t; functional induction (update_marking_post sitpn marking (lneighbours sitpn t) t) using update_marking_post_ind; intros final_marking Hwell_def_sitpn Hnodup_resm Hin_t_transs Hfun p n Hin_resm. (* GENERAL CASE *) - (* Two cases, either p ∈ (post_pl neigh_of_t), or p ∉ (post_pl neigh_of_t). *) assert (Hvee_in_post_pl := classic (In p (post_pl (lneighbours sitpn t)))). inversion_clear Hvee_in_post_pl as [Hin_p_post | Hnotin_p_post]. (* First case, p ∈ post_pl, then applies update_marking_post_aux_correct. *) + explode_well_defined_sitpn. (* Builds NoDup post_pl. *) assert (Hin_flat : In p (flatten_neighbours (lneighbours sitpn t))) by (unfold flatten_neighbours; do 3 (apply in_or_app; right); assumption). unfold NoDupInNeighbours in Hnodup_neigh. specialize (Hnodup_neigh t Hin_t_transs) as Hnodup_flat. apply proj2 in Hnodup_flat. (* Then, applies update_marking_post_aux_correct. *) apply (@update_marking_post_aux_correct sitpn marking t (post_pl (lneighbours sitpn t)) final_marking Hwell_def_sitpn Hnodup_resm Hnodup_flat (incl_refl (post_pl (lneighbours sitpn t))) Hfun p n Hin_p_post Hin_resm). (* Second case, p ∉ post_pl, then applies update_marking_post_aux_not_in_post_places. *) + explode_well_defined_sitpn. unfold AreWellDefinedPostEdges in Hwell_def_post. specialize (Hwell_def_post t p Hin_t_transs) as Hw_post_edges. apply proj2 in Hw_post_edges; specialize (Hw_post_edges Hnotin_p_post). rewrite Hw_post_edges. rewrite <- plus_n_O. specialize (update_marking_post_aux_not_in_post_places sitpn marking t (post_pl (lneighbours sitpn t)) final_marking Hfun p Hnotin_p_post n) as Hequiv. rewrite <- Hequiv; assumption. Qed. (** No error lemma for [update_marking_post]. *) Lemma update_marking_post_no_error : forall (sitpn : Sitpn) (marking : list (Place * nat)) (t : Trans), IsWellDefinedSitpn sitpn -> incl (flatten_neighbours (lneighbours sitpn t)) (fst (split marking)) -> exists final_marking : list (Place * nat), update_marking_post sitpn marking (lneighbours sitpn t) t = Some final_marking. Proof. intros sitpn marking t Hwell_def_sitpn Hincl_flat. explode_well_defined_sitpn. unfold NoDupTranss in Hnodup_transs. unfold update_marking_post. assert (Hincl_postpl : incl (post_pl (lneighbours sitpn t)) (fst (split marking))). { intros x Hin_x_post. apply or_intror with (A := In x (pre_pl (lneighbours sitpn t) ++ test_pl (lneighbours sitpn t) ++ inhib_pl (lneighbours sitpn t))) in Hin_x_post. apply in_or_app in Hin_x_post. rewrite <- app_assoc in Hin_x_post. rewrite <- app_assoc in Hin_x_post. apply (Hincl_flat x Hin_x_post). } apply (update_marking_post_aux_no_error sitpn t (post_pl (lneighbours sitpn t)) marking Hincl_postpl). Qed. (** * Correctness lemma for [map_update_marking_post]. * * map_update_marking_post sitpn m fired = m' ⇒ m' = m - ∑ post(t), ∀ t ∈ fired * * [map_update_marking_post] substracts tokens in the post-places * of all transitions ∈ fired. * *) Lemma map_update_marking_post_add_post : forall (sitpn : Sitpn) (m : list (Place * nat)) (fired : list Trans) (m' : list (Place * nat)), IsWellDefinedSitpn sitpn -> NoDup (fst (split m)) -> incl fired (transs sitpn) -> map_update_marking_post sitpn m fired = Some m' -> forall (p : Place) (n : nat), In (p, n) m -> In (p, n + post_sum sitpn p fired) m'. Proof. intros sitpn m fired; functional induction (map_update_marking_post sitpn m fired) using map_update_marking_post_ind; intros fm Hwell_def_sitpn Hnodup_m Hincl_transs Hfun p n Hin_m. (* BASE CASE *) - injection Hfun as Heq_marking; rewrite <- Heq_marking. simpl; rewrite <- (plus_n_O n); assumption. (* GENERAL CASE *) - specialize (Hincl_transs t (in_eq t tail)) as Hin_t_transs. simpl. rewrite <- plus_assoc_reverse. specialize (@update_marking_post_correct sitpn marking t m' Hwell_def_sitpn Hnodup_m Hin_t_transs e0 p n Hin_m) as Hin_m'. apply update_marking_post_same_marking in e0; unfold MarkingHaveSameStruct in e0; rewrite e0 in Hnodup_m. apply (IHo fm Hwell_def_sitpn Hnodup_m (incl_cons_inv t tail (transs sitpn) Hincl_transs) Hfun p (n + post sitpn t p) Hin_m'). (* ERROR CASE *) - inversion Hfun. Qed. (** No error lemma for [map_update_marking_post]. *) Lemma map_update_marking_post_no_error : forall (sitpn : Sitpn) (fired : list Trans) (m : list (Place * nat)), IsWellDefinedSitpn sitpn -> (forall (t : Trans), In t fired -> incl (flatten_neighbours (lneighbours sitpn t)) (fst (split m))) -> exists m' : list (Place * nat), map_update_marking_post sitpn m fired = Some m'. Proof. intros sitpn; induction fired; intros m Hwell_def_sitpn Hincl_fl_m. (* BASE CASE *) - simpl; exists m; reflexivity. (* INDUCTION CASE *) - simpl. assert (Hin_eq : In a (a :: fired)) by apply in_eq. specialize (Hincl_fl_m a Hin_eq) as Hincl_flat. specialize (@update_marking_post_no_error sitpn m a Hwell_def_sitpn Hincl_flat) as Hupdate_post_ex. inversion_clear Hupdate_post_ex as ( final_marking & Hupdate_post ). rewrite Hupdate_post. specialize (@update_marking_post_same_marking sitpn m a final_marking Hupdate_post) as Hsame_struct. rewrite Hsame_struct in Hincl_fl_m. assert (Hincl_fl_tl : forall t : Trans, In t fired -> incl (flatten_neighbours (lneighbours sitpn t)) (fst (split final_marking))). { intros t Hin_t_fired; apply (in_cons a) in Hin_t_fired; apply (Hincl_fl_m t Hin_t_fired). } apply (IHfired final_marking Hwell_def_sitpn Hincl_fl_tl). Qed. End SitpnUpdateMarking. (** * Lemmas on [sitpn_rising_edge] and new marking computation. *) Section SitpnRisingEdgeSubPreAddPost. (** Marking at state [s'] is obtained by firing all transitions in (fired s) list. [s'] is the state returned by [sitpn_rising_edge]. *) Lemma sitpn_rising_edge_sub_pre_add_post : forall (sitpn : Sitpn) (s s' : SitpnState), IsWellDefinedSitpn sitpn -> IsWellDefinedSitpnState sitpn s -> sitpn_rising_edge sitpn s = Some s' -> forall (p : Place) (n : nat), In (p, n) (marking s) -> In (p, n - (pre_sum sitpn p s.(fired)) + (post_sum sitpn p s.(fired))) (marking s'). Proof. intros sitpn s; functional induction (sitpn_rising_edge sitpn s) using sitpn_rising_edge_ind; intros s' Hwell_def_sitpn Hwell_def_s Hfun p n Hin_ms; (* GENERAL CASE *) ( (* Builds premises to specialize map_update_marking_pre_sub_pre. *) deduce_nodup_state_marking; explode_well_defined_sitpn_state Hwell_def_s; assert (Hincl_s_fired_transs := Hincl_state_fired_transs); clear_well_defined_sitpn_state; (* Specializes map_update_marking_pre_sub_pre. *) specialize (map_update_marking_pre_sub_pre sitpn (marking s) (fired s) transient_marking Hwell_def_sitpn Hnodup_fs_ms Hincl_state_fired_transs e) as Hsub_pre; (* Builds premises to specialize map_update_marking_post_add_post. *) specialize (map_update_marking_pre_same_marking sitpn (marking s) (fired s) transient_marking e) as Heq_ms_tm; assert (Hnodup_fs_tm : NoDup (fst (split transient_marking))) by (rewrite <- Heq_ms_tm; assumption); (* Specializes map_update_marking_post_add_post. *) specialize (map_update_marking_post_add_post sitpn transient_marking (fired s) final_marking Hwell_def_sitpn Hnodup_fs_tm Hincl_state_fired_transs e2) as Hadd_post; (* Specializes Hsub_pre then Hadd_post, then rewrite the goal to obtain an assumption. *) specialize (Hsub_pre p n Hin_ms) as Hin_tm; specialize (Hadd_post p (n - pre_sum sitpn p (fired s)) Hin_tm) as Hin_fm; injection Hfun as Hfun; rewrite <- Hfun; simpl; assumption ) (* ERROR CASES *) || inversion Hfun. Qed. End SitpnRisingEdgeSubPreAddPost.
[GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ s ∈ nonMemberSubfamily a 𝒜 ↔ s ∈ 𝒜 ∧ ¬a ∈ s [PROOFSTEP] simp [nonMemberSubfamily] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ s ∈ memberSubfamily a 𝒜 ↔ insert a s ∈ 𝒜 ∧ ¬a ∈ s [PROOFSTEP] simp_rw [memberSubfamily, mem_image, mem_filter] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ (∃ a_1, (a_1 ∈ 𝒜 ∧ a ∈ a_1) ∧ erase a_1 a = s) ↔ insert a s ∈ 𝒜 ∧ ¬a ∈ s [PROOFSTEP] refine' ⟨_, fun h => ⟨insert a s, ⟨h.1, by simp⟩, erase_insert h.2⟩⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α h : insert a s ∈ 𝒜 ∧ ¬a ∈ s ⊢ a ∈ insert a s [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ (∃ a_1, (a_1 ∈ 𝒜 ∧ a ∈ a_1) ∧ erase a_1 a = s) → insert a s ∈ 𝒜 ∧ ¬a ∈ s [PROOFSTEP] rintro ⟨s, ⟨hs1, hs2⟩, rfl⟩ [GOAL] case intro.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) a : α s : Finset α hs1 : s ∈ 𝒜 hs2 : a ∈ s ⊢ insert a (erase s a) ∈ 𝒜 ∧ ¬a ∈ erase s a [PROOFSTEP] rw [insert_erase hs2] [GOAL] case intro.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) a : α s : Finset α hs1 : s ∈ 𝒜 hs2 : a ∈ s ⊢ s ∈ 𝒜 ∧ ¬a ∈ erase s a [PROOFSTEP] exact ⟨hs1, not_mem_erase _ _⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ✝ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 ℬ : Finset (Finset α) ⊢ memberSubfamily a (𝒜 ∩ ℬ) = memberSubfamily a 𝒜 ∩ memberSubfamily a ℬ [PROOFSTEP] unfold memberSubfamily [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ✝ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 ℬ : Finset (Finset α) ⊢ image (fun s => erase s a) (filter (fun s => a ∈ s) (𝒜 ∩ ℬ)) = image (fun s => erase s a) (filter (fun s => a ∈ s) 𝒜) ∩ image (fun s => erase s a) (filter (fun s => a ∈ s) ℬ) [PROOFSTEP] rw [filter_inter_distrib, image_inter_of_injOn _ _ ((erase_injOn' _).mono _)] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ✝ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 ℬ : Finset (Finset α) ⊢ ↑(filter (fun s => a ∈ s) 𝒜) ∪ ↑(filter (fun s => a ∈ s) ℬ) ⊆ {s | a ∈ s} [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ✝ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 ℬ : Finset (Finset α) ⊢ memberSubfamily a (𝒜 ∪ ℬ) = memberSubfamily a 𝒜 ∪ memberSubfamily a ℬ [PROOFSTEP] simp_rw [memberSubfamily, filter_union, image_union] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ card (memberSubfamily a 𝒜) + card (nonMemberSubfamily a 𝒜) = card 𝒜 [PROOFSTEP] rw [memberSubfamily, nonMemberSubfamily, card_image_of_injOn] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ card (filter (fun s => a ∈ s) 𝒜) + card (filter (fun s => ¬a ∈ s) 𝒜) = card 𝒜 [PROOFSTEP] conv_rhs => rw [← filter_card_add_filter_neg_card_eq_card (fun s => (a ∈ s))] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) | card 𝒜 [PROOFSTEP] rw [← filter_card_add_filter_neg_card_eq_card (fun s => (a ∈ s))] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) | card 𝒜 [PROOFSTEP] rw [← filter_card_add_filter_neg_card_eq_card (fun s => (a ∈ s))] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) | card 𝒜 [PROOFSTEP] rw [← filter_card_add_filter_neg_card_eq_card (fun s => (a ∈ s))] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ Set.InjOn (fun s => erase s a) ↑(filter (fun s => a ∈ s) 𝒜) [PROOFSTEP] apply (erase_injOn' _).mono [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ ↑(filter (fun s => a ∈ s) 𝒜) ⊆ {s | a ∈ s} [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ memberSubfamily a 𝒜 ∪ nonMemberSubfamily a 𝒜 = image (fun s => erase s a) 𝒜 [PROOFSTEP] ext s [GOAL] case a α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α ⊢ s ∈ memberSubfamily a 𝒜 ∪ nonMemberSubfamily a 𝒜 ↔ s ∈ image (fun s => erase s a) 𝒜 [PROOFSTEP] simp only [mem_union, mem_memberSubfamily, mem_nonMemberSubfamily, mem_image, exists_prop] [GOAL] case a α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α ⊢ insert a s ∈ 𝒜 ∧ ¬a ∈ s ∨ s ∈ 𝒜 ∧ ¬a ∈ s ↔ ∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s [PROOFSTEP] constructor [GOAL] case a.mp α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α ⊢ insert a s ∈ 𝒜 ∧ ¬a ∈ s ∨ s ∈ 𝒜 ∧ ¬a ∈ s → ∃ a_2, a_2 ∈ 𝒜 ∧ erase a_2 a = s [PROOFSTEP] rintro (h | h) [GOAL] case a.mp.inl α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α h : insert a s ∈ 𝒜 ∧ ¬a ∈ s ⊢ ∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s [PROOFSTEP] exact ⟨_, h.1, erase_insert h.2⟩ [GOAL] case a.mp.inr α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α h : s ∈ 𝒜 ∧ ¬a ∈ s ⊢ ∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s [PROOFSTEP] exact ⟨_, h.1, erase_eq_of_not_mem h.2⟩ [GOAL] case a.mpr α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α ⊢ (∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s) → insert a s ∈ 𝒜 ∧ ¬a ∈ s ∨ s ∈ 𝒜 ∧ ¬a ∈ s [PROOFSTEP] rintro ⟨s, hs, rfl⟩ [GOAL] case a.mpr.intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α hs : s ∈ 𝒜 ⊢ insert a (erase s a) ∈ 𝒜 ∧ ¬a ∈ erase s a ∨ erase s a ∈ 𝒜 ∧ ¬a ∈ erase s a [PROOFSTEP] by_cases ha : a ∈ s [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α hs : s ∈ 𝒜 ha : a ∈ s ⊢ insert a (erase s a) ∈ 𝒜 ∧ ¬a ∈ erase s a ∨ erase s a ∈ 𝒜 ∧ ¬a ∈ erase s a [PROOFSTEP] exact Or.inl ⟨by rwa [insert_erase ha], not_mem_erase _ _⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α hs : s ∈ 𝒜 ha : a ∈ s ⊢ insert a (erase s a) ∈ 𝒜 [PROOFSTEP] rwa [insert_erase ha] [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α hs : s ∈ 𝒜 ha : ¬a ∈ s ⊢ insert a (erase s a) ∈ 𝒜 ∧ ¬a ∈ erase s a ∨ erase s a ∈ 𝒜 ∧ ¬a ∈ erase s a [PROOFSTEP] exact Or.inr ⟨by rwa [erase_eq_of_not_mem ha], not_mem_erase _ _⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α hs : s ∈ 𝒜 ha : ¬a ∈ s ⊢ erase s a ∈ 𝒜 [PROOFSTEP] rwa [erase_eq_of_not_mem ha] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ memberSubfamily a (memberSubfamily a 𝒜) = ∅ [PROOFSTEP] ext [GOAL] case a α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α a✝ : Finset α ⊢ a✝ ∈ memberSubfamily a (memberSubfamily a 𝒜) ↔ a✝ ∈ ∅ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ memberSubfamily a (nonMemberSubfamily a 𝒜) = ∅ [PROOFSTEP] ext [GOAL] case a α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α a✝ : Finset α ⊢ a✝ ∈ memberSubfamily a (nonMemberSubfamily a 𝒜) ↔ a✝ ∈ ∅ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ nonMemberSubfamily a (memberSubfamily a 𝒜) = memberSubfamily a 𝒜 [PROOFSTEP] ext [GOAL] case a α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α a✝ : Finset α ⊢ a✝ ∈ nonMemberSubfamily a (memberSubfamily a 𝒜) ↔ a✝ ∈ memberSubfamily a 𝒜 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ nonMemberSubfamily a (nonMemberSubfamily a 𝒜) = nonMemberSubfamily a 𝒜 [PROOFSTEP] ext [GOAL] case a α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α a✝ : Finset α ⊢ a✝ ∈ nonMemberSubfamily a (nonMemberSubfamily a 𝒜) ↔ a✝ ∈ nonMemberSubfamily a 𝒜 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α h₁ : s ∈ filter (fun s => erase s a ∈ 𝒜) 𝒜 h₂ : s ∈ filter (fun s => ¬s ∈ 𝒜) (image (fun s => erase s a) 𝒜) ⊢ False [PROOFSTEP] have := (mem_filter.1 h₂).2 [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α h₁ : s ∈ filter (fun s => erase s a ∈ 𝒜) 𝒜 h₂ : s ∈ filter (fun s => ¬s ∈ 𝒜) (image (fun s => erase s a) 𝒜) this : ¬s ∈ 𝒜 ⊢ False [PROOFSTEP] exact this (mem_filter.1 h₁).1 [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ s ∈ 𝓓 a 𝒜 ↔ s ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ ¬s ∈ 𝒜 ∧ insert a s ∈ 𝒜 [PROOFSTEP] simp_rw [compression, mem_disjUnion, mem_filter, mem_image, and_comm (a := (¬s ∈ 𝒜))] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ s ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ (∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s) ∧ ¬s ∈ 𝒜 ↔ s ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ insert a s ∈ 𝒜 ∧ ¬s ∈ 𝒜 [PROOFSTEP] refine' or_congr_right (and_congr_left fun hs => ⟨_, fun h => ⟨_, h, erase_insert <| insert_ne_self.1 <| ne_of_mem_of_not_mem h hs⟩⟩) [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α hs : ¬s ∈ 𝒜 ⊢ (∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s) → insert a s ∈ 𝒜 [PROOFSTEP] rintro ⟨t, ht, rfl⟩ [GOAL] case intro.intro α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) a : α t : Finset α ht : t ∈ 𝒜 hs : ¬erase t a ∈ 𝒜 ⊢ insert a (erase t a) ∈ 𝒜 [PROOFSTEP] rwa [insert_erase (erase_ne_self.1 (ne_of_mem_of_not_mem ht hs).symm)] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α hs : s ∈ 𝒜 ⊢ erase s a ∈ 𝓓 a 𝒜 [PROOFSTEP] simp_rw [mem_compression, erase_idem, and_self_iff] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α hs : s ∈ 𝒜 ⊢ erase s a ∈ 𝒜 ∨ ¬erase s a ∈ 𝒜 ∧ insert a (erase s a) ∈ 𝒜 [PROOFSTEP] refine' (em _).imp_right fun h => ⟨h, _⟩ [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α hs : s ∈ 𝒜 h : ¬erase s a ∈ 𝒜 ⊢ insert a (erase s a) ∈ 𝒜 [PROOFSTEP] rwa [insert_erase (erase_ne_self.1 (ne_of_mem_of_not_mem hs h).symm)] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ s ∈ 𝓓 a 𝒜 → erase s a ∈ 𝓓 a 𝒜 [PROOFSTEP] simp_rw [mem_compression, erase_idem] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α ⊢ s ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ ¬s ∈ 𝒜 ∧ insert a s ∈ 𝒜 → erase s a ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ ¬erase s a ∈ 𝒜 ∧ insert a (erase s a) ∈ 𝒜 [PROOFSTEP] refine' Or.imp (fun h => ⟨h.2, h.2⟩) fun h => _ [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α h : ¬s ∈ 𝒜 ∧ insert a s ∈ 𝒜 ⊢ ¬erase s a ∈ 𝒜 ∧ insert a (erase s a) ∈ 𝒜 [PROOFSTEP] rwa [erase_eq_of_not_mem (insert_ne_self.1 <| ne_of_mem_of_not_mem h.2 h.1)] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α h : insert a s ∈ 𝓓 a 𝒜 ⊢ s ∈ 𝓓 a 𝒜 [PROOFSTEP] by_cases ha : a ∈ s [GOAL] case pos α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α h : insert a s ∈ 𝓓 a 𝒜 ha : a ∈ s ⊢ s ∈ 𝓓 a 𝒜 [PROOFSTEP] rwa [insert_eq_of_mem ha] at h [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α h : insert a s ∈ 𝓓 a 𝒜 ha : ¬a ∈ s ⊢ s ∈ 𝓓 a 𝒜 [PROOFSTEP] rw [← erase_insert ha] [GOAL] case neg α : Type u_1 inst✝ : DecidableEq α 𝒜 ℬ : Finset (Finset α) s : Finset α a : α h : insert a s ∈ 𝓓 a 𝒜 ha : ¬a ∈ s ⊢ erase (insert a s) a ∈ 𝓓 a 𝒜 [PROOFSTEP] exact erase_mem_compression_of_mem_compression h [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ 𝓓 a (𝓓 a 𝒜) = 𝓓 a 𝒜 [PROOFSTEP] ext s [GOAL] case a α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α ⊢ s ∈ 𝓓 a (𝓓 a 𝒜) ↔ s ∈ 𝓓 a 𝒜 [PROOFSTEP] refine' mem_compression.trans ⟨_, fun h => Or.inl ⟨h, erase_mem_compression_of_mem_compression h⟩⟩ [GOAL] case a α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α ⊢ s ∈ 𝓓 a 𝒜 ∧ erase s a ∈ 𝓓 a 𝒜 ∨ ¬s ∈ 𝓓 a 𝒜 ∧ insert a s ∈ 𝓓 a 𝒜 → s ∈ 𝓓 a 𝒜 [PROOFSTEP] rintro (h | h) [GOAL] case a.inl α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α h : s ∈ 𝓓 a 𝒜 ∧ erase s a ∈ 𝓓 a 𝒜 ⊢ s ∈ 𝓓 a 𝒜 [PROOFSTEP] exact h.1 [GOAL] case a.inr α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α h : ¬s ∈ 𝓓 a 𝒜 ∧ insert a s ∈ 𝓓 a 𝒜 ⊢ s ∈ 𝓓 a 𝒜 [PROOFSTEP] cases h.1 (mem_compression_of_insert_mem_compression h.2) [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ card (𝓓 a 𝒜) = card 𝒜 [PROOFSTEP] rw [compression, card_disjUnion, image_filter, card_image_of_injOn ((erase_injOn' _).mono fun s hs => _), ← card_disjoint_union] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ card (filter (fun s => erase s a ∈ 𝒜) 𝒜 ∪ filter ((fun s => ¬s ∈ 𝒜) ∘ fun s => erase s a) 𝒜) = card 𝒜 [PROOFSTEP] conv_rhs => rw [← filter_union_filter_neg_eq (fun s => (erase s a ∈ 𝒜)) 𝒜] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) | card 𝒜 [PROOFSTEP] rw [← filter_union_filter_neg_eq (fun s => (erase s a ∈ 𝒜)) 𝒜] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) | card 𝒜 [PROOFSTEP] rw [← filter_union_filter_neg_eq (fun s => (erase s a ∈ 𝒜)) 𝒜] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) | card 𝒜 [PROOFSTEP] rw [← filter_union_filter_neg_eq (fun s => (erase s a ∈ 𝒜)) 𝒜] [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ Disjoint (filter (fun s => erase s a ∈ 𝒜) 𝒜) (filter ((fun s => ¬s ∈ 𝒜) ∘ fun s => erase s a) 𝒜) [PROOFSTEP] exact disjoint_filter_filter_neg 𝒜 𝒜 (fun s => (erase s a ∈ 𝒜)) [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s : Finset α a✝ a : α 𝒜 : Finset (Finset α) ⊢ ∀ (s : Finset α), s ∈ ↑(filter ((fun s => ¬s ∈ 𝒜) ∘ fun s => erase s a) 𝒜) → s ∈ {s | a ∈ s} [PROOFSTEP] intro s hs [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α hs : s ∈ ↑(filter ((fun s => ¬s ∈ 𝒜) ∘ fun s => erase s a) 𝒜) ⊢ s ∈ {s | a ∈ s} [PROOFSTEP] rw [mem_coe, mem_filter, Function.comp_apply] at hs [GOAL] α : Type u_1 inst✝ : DecidableEq α 𝒜✝ ℬ : Finset (Finset α) s✝ : Finset α a✝ a : α 𝒜 : Finset (Finset α) s : Finset α hs : s ∈ 𝒜 ∧ ¬erase s a ∈ 𝒜 ⊢ s ∈ {s | a ∈ s} [PROOFSTEP] exact not_imp_comm.1 erase_eq_of_not_mem (ne_of_mem_of_not_mem hs.1 hs.2).symm
import tactic open set lemma useful2 (Y : set ℕ) : (∀ (x : ℕ), ∃ (y : ℕ), x ≤ y ∧ y ∈ Y) → Y.infinite := begin intros h hY, obtain ⟨N, hN⟩ : bdd_above Y := finite.bdd_above hY, obtain ⟨y, hNy, hyY⟩ : ∃ (y : ℕ), N + 1 ≤ y ∧ y ∈ Y := h (N + 1), specialize hN hyY, linarith, end
C02W82DBHV2R:~ i847419$ coqtop Welcome to Coq 8.8.0 (April 2018) Coq < Require Import Classical. Coq < Theorem exp015 : (forall P Q : Prop, ((P -> Q) /\ ~Q) -> ~P). 1 subgoal ============================ forall P Q : Prop, (P -> Q) /\ ~ Q -> ~ P exp015 < intros. 1 subgoal P, Q : Prop H : (P -> Q) /\ ~ Q ============================ ~ P exp015 < destruct H. 1 subgoal P, Q : Prop H : P -> Q H0 : ~ Q ============================ ~ P exp015 < tauto. No more subgoals. exp015 < Qed. exp015 is defined
import data.real.basic import data.int.parity /- In this file, we learn how to handle the ∃ quantifier. In order to prove `∃ x, P x`, we give some x₀ using tactic `use x₀` and then prove `P x₀`. This x₀ can be an object from the local context or a more complicated expression. -/ example : ∃ n : ℕ, 8 = 2*n := begin use 4, refl, -- this is the tactic analogue of the rfl proof term end /- In order to use `h : ∃ x, P x`, we use the `cases` tactic to fix one x₀ that works. Again h can come straight from the local context or can be a more complicated expression. -/ example (n : ℕ) (h : ∃ k : ℕ, n = k + 1) : n > 0 := begin -- Let's fix k₀ such that n = k₀ + 1. cases h with k₀ hk₀, -- It now suffices to prove k₀ + 1 > 0. rw hk₀, -- and we have a lemma about this exact nat.succ_pos k₀, end /- The next exercises use divisibility in ℤ (beware the ∣ symbol which is not ASCII). By definition, a ∣ b ↔ ∃ k, b = a*k, so you can prove a ∣ b using the `use` tactic. -/ -- Until the end of this file, a, b and c will denote integers, unless -- explicitly stated otherwise variables a b c : ℤ -- 0029 example (h₁ : a ∣ b) (h₂ : b ∣ c) : a ∣ c := begin cases h₁ with x₁ hx₁, cases h₂ with x₂ hx₂, use x₁ * x₂, rw [hx₂, hx₁, mul_assoc], end /- A very common pattern is to have an assumption or lemma asserting h : ∃ x, y = ... and this is used through the combo: cases h with x hx, rw hx at ... The tactic `rcases` allows us to do recursive `cases`, as indicated by its name, and also simplifies the above combo when the name hx is replaced by the special name `rfl`, as in the following example. It uses the anonymous constructor angle brackets syntax. -/ example (h1 : a ∣ b) (h2 : a ∣ c) : a ∣ b+c := begin rcases h1 with ⟨k, rfl⟩, rcases h2 with ⟨l, rfl⟩, use k+l, ring, end /- You can use the same `rfl` trick with the `rintros` tactic. -/ example : a ∣ b → a ∣ c → a ∣ b+c := begin rintros ⟨k, rfl⟩ ⟨l, rfl⟩, use k+l, ring, end -- 0030 example : 0 ∣ a ↔ a = 0 := begin split; intro h, show a = 0, by { rcases h with ⟨n, rfl⟩, ring }, show 0 ∣ a, by { use 0, rw h, refl } end /- We can now start combining quantifiers, using the definition surjective (f : X → Y) := ∀ y, ∃ x, f x = y -/ open function -- In the remaining of this file, f and g will denote functions from -- ℝ to ℝ. variables (f g : ℝ → ℝ) -- 0031 example (h : surjective (g ∘ f)) : surjective g := begin intro y, rcases h y with ⟨x, rfl⟩, use f x, end /- The above exercise can be done in three lines. Try to do the next exercise in four lines. -/ -- 0032 example (hf : surjective f) (hg : surjective g) : surjective (g ∘ f) := begin intro z, rcases hg z with ⟨y, rfl⟩, rcases hf y with ⟨z, rfl⟩, use z, end
record Album where constructor MkAlbum artist : String title : String year : Integer help : Album help = MkAlbum "The Beatles" "Help" 1965 rubbersoul : Album rubbersoul = MkAlbum "The Beatles" "Rubber Soul" 1965 clouds : Album clouds = MkAlbum "Joni Mitchell" "Clouds" 1969 hunkydory : Album hunkydory = MkAlbum "David Bowie" "Hunky Dory" 1971 heroes : Album heroes = MkAlbum "David Bowie" "Heroes" 1977 collection : List Album collection = [help, rubbersoul, clouds, hunkydory, heroes] Eq Album where (==) (MkAlbum artist1 title1 year1) (MkAlbum artist2 title2 year2) = artist1 == artist2 && title1 == title2 && year1 == year2 Ord Album where compare (MkAlbum artist1 title1 year1) (MkAlbum artist2 title2 year2) = case compare artist1 artist2 of EQ => case compare title1 title2 of EQ => compare year1 year2 diff_title => diff_title diff_artist => diff_artist Show Album where show (MkAlbum artist title year) = title ++ " by " ++ artist ++ " (released " ++ show year ++ ")"
(* Author: Jose Divasón Email: [email protected] *) section \<open>Some theorems about rings and ideals\<close> theory Rings2_Extended imports Echelon_Form.Rings2 "HOL-Types_To_Sets.Types_To_Sets" begin subsection \<open>Missing properties on ideals\<close> lemma ideal_generated_subset2: assumes "\<forall>b\<in>B. b \<in> ideal_generated A" shows "ideal_generated B \<subseteq> ideal_generated A" by (metis (mono_tags, lifting) InterE assms ideal_generated_def ideal_ideal_generated mem_Collect_eq subsetI) context comm_ring_1 begin lemma ideal_explicit: "ideal_generated S = {y. \<exists>f U. finite U \<and> U \<subseteq> S \<and> (\<Sum>i\<in>U. f i * i) = y}" by (simp add: ideal_generated_eq_left_ideal left_ideal_explicit) end lemma ideal_generated_minus: assumes a: "a \<in> ideal_generated (S-{a})" shows "ideal_generated S = ideal_generated (S-{a})" proof (cases "a \<in> S") case True note a_in_S = True show ?thesis proof show "ideal_generated S \<subseteq> ideal_generated (S - {a})" proof (rule ideal_generated_subset2, auto) fix b assume b: "b \<in> S" show "b \<in> ideal_generated (S - {a})" proof (cases "b = a") case True then show ?thesis using a by auto next case False then show ?thesis using b by (simp add: ideal_generated_in) qed qed show "ideal_generated (S - {a}) \<subseteq> ideal_generated S" by (rule ideal_generated_subset, auto) qed next case False then show ?thesis by simp qed lemma ideal_generated_dvd_eq: assumes a_dvd_b: "a dvd b" and a: "a \<in> S" and a_not_b: "a \<noteq> b" shows "ideal_generated S = ideal_generated (S - {b})" proof show "ideal_generated S \<subseteq> ideal_generated (S - {b})" proof (rule ideal_generated_subset2, auto) fix x assume x: "x \<in> S" show "x \<in> ideal_generated (S - {b})" proof (cases "x = b") case True obtain k where b_ak: "b = a * k" using a_dvd_b unfolding dvd_def by blast let ?f = "\<lambda>c. k" have "(\<Sum>i\<in>{a}. i * ?f i) = x" using True b_ak by auto moreover have "{a} \<subseteq> S - {b}" using a_not_b a by auto moreover have "finite {a}" by auto ultimately show ?thesis unfolding ideal_def by (metis True b_ak ideal_def ideal_generated_in ideal_ideal_generated insert_subset right_ideal_def) next case False then show ?thesis by (simp add: ideal_generated_in x) qed qed show "ideal_generated (S - {b}) \<subseteq> ideal_generated S" by (rule ideal_generated_subset, auto) qed lemma ideal_generated_dvd_eq_diff_set: assumes i_in_I: "i\<in>I" and i_in_J: "i \<notin> J" and i_dvd_j: "\<forall>j\<in>J. i dvd j" and f: "finite J" shows "ideal_generated I = ideal_generated (I - J)" using f i_in_J i_dvd_j i_in_I proof (induct J arbitrary: I) case empty then show ?case by auto next case (insert x J) have "ideal_generated I = ideal_generated (I-{x})" by (rule ideal_generated_dvd_eq[of i], insert insert.prems , auto) also have "... = ideal_generated ((I-{x}) - J)" by (rule insert.hyps, insert insert.prems insert.hyps, auto) also have "... = ideal_generated (I - insert x J)" using Diff_insert2[of I x J] by auto finally show ?case . qed context comm_ring_1 begin lemma ideal_generated_singleton_subset: assumes d: "d \<in> ideal_generated S" and fin_S: "finite S" shows "ideal_generated {d} \<subseteq> ideal_generated S" proof fix x assume x: "x \<in> ideal_generated {d}" obtain k where x_kd: "x = k*d " using x using obtain_sum_ideal_generated[OF x] by (metis finite.emptyI finite.insertI sum_singleton) show "x \<in> ideal_generated S" using d ideal_eq_right_ideal ideal_ideal_generated right_ideal_def mult_commute x_kd by auto qed lemma ideal_generated_singleton_dvd: assumes i: "ideal_generated S = ideal_generated {d}" and x: "x \<in> S" shows "d dvd x" by (metis i x finite.intros dvd_ideal_generated_singleton ideal_generated_in ideal_generated_singleton_subset) lemma ideal_generated_UNIV_insert: assumes "ideal_generated S = UNIV" shows "ideal_generated (insert a S) = UNIV" using assms using local.ideal_generated_subset by blast lemma ideal_generated_UNIV_union: assumes "ideal_generated S = UNIV" shows "ideal_generated (A \<union> S) = UNIV" using assms local.ideal_generated_subset by (metis UNIV_I Un_subset_iff equalityI subsetI) lemma ideal_explicit2: assumes "finite S" shows "ideal_generated S = {y. \<exists>f. (\<Sum>i\<in>S. f i * i) = y}" by (smt Collect_cong assms ideal_explicit obtain_sum_ideal_generated mem_Collect_eq subsetI) lemma ideal_generated_unit: assumes u: "u dvd 1" shows "ideal_generated {u} = UNIV" proof - have "x \<in> ideal_generated {u}" for x proof - obtain inv_u where inv_u: "inv_u * u = 1" using u unfolding dvd_def using local.mult_ac(2) by blast have "x = x * inv_u * u" using inv_u by (simp add: local.mult_ac(1)) also have "... \<in> {k * u |k. k \<in> UNIV}" by auto also have "... = ideal_generated {u}" unfolding ideal_generated_singleton by simp finally show ?thesis . qed thus ?thesis by auto qed lemma ideal_generated_dvd_subset: assumes x: "\<forall>x \<in> S. d dvd x" and S: "finite S" shows "ideal_generated S \<subseteq> ideal_generated {d}" proof fix x assume "x\<in> ideal_generated S" from this obtain f where f: "(\<Sum>i\<in>S. f i * i) = x" using ideal_explicit2[OF S] by auto have "d dvd (\<Sum>i\<in>S. f i * i)" by (rule dvd_sum, insert x, auto) thus "x \<in> ideal_generated {d}" using f dvd_ideal_generated_singleton' ideal_generated_in singletonI by blast qed lemma ideal_generated_mult_unit: assumes f: "finite S" and u: "u dvd 1" shows "ideal_generated ((\<lambda>x. u*x)` S) = ideal_generated S" using f proof (induct S) case empty then show ?case by auto next case (insert x S) obtain inv_u where inv_u: "inv_u * u = 1" using u unfolding dvd_def using mult_ac by blast have f: "finite (insert (u*x) ((\<lambda>x. u*x)` S))" using insert.hyps by auto have f2: "finite (insert x S)" by (simp add: insert(1)) have f3: "finite S" by (simp add: insert) have f4: "finite ((*) u ` S)" by (simp add: insert) have inj_ux: "inj_on (\<lambda>x. u*x) S" unfolding inj_on_def by (auto, metis inv_u local.mult_1_left local.semiring_normalization_rules(18)) have "ideal_generated ((\<lambda>x. u*x)` (insert x S)) = ideal_generated (insert (u*x) ((\<lambda>x. u*x)` S))" by auto also have "... = {y. \<exists>f. (\<Sum>i\<in>insert (u*x) ((\<lambda>x. u*x)` S). f i * i) = y}" using ideal_explicit2[OF f] by auto also have "... = {y. \<exists>f. (\<Sum>i\<in>(insert x S). f i * i) = y}" (is "?L = ?R") proof - have "a \<in> ?L" if a: "a \<in> ?R" for a proof - obtain f where sum_rw: "(\<Sum>i\<in>(insert x S). f i * i) = a" using a by auto define b where "b=(\<Sum>i\<in>S. f i * i)" have "b \<in> ideal_generated S" unfolding b_def ideal_explicit2[OF f3] by auto hence "b \<in> ideal_generated ((*) u ` S)" using insert.hyps(3) by auto from this obtain g where "(\<Sum>i\<in>((*) u ` S). g i * i) = b" unfolding ideal_explicit2[OF f4] by auto hence sum_rw2: "(\<Sum>i\<in>S. f i * i) = (\<Sum>i\<in>((*) u ` S). g i * i)" unfolding b_def by auto let ?g = "\<lambda>i. if i = u*x then f x * inv_u else g i" have sum_rw3: "sum ((\<lambda>i. g i * i) \<circ> (\<lambda>x. u*x)) S = sum ((\<lambda>i. ?g i * i) \<circ> (\<lambda>x. u*x)) S" by (rule sum.cong, auto, metis inv_u local.insert(2) local.mult_1_right local.mult_ac(2) local.semiring_normalization_rules(18)) have sum_rw4: "(\<Sum>i\<in>(\<lambda>x. u*x)` S. g i * i) = sum ((\<lambda>i. g i * i) \<circ> (\<lambda>x. u*x)) S" by (rule sum.reindex[OF inj_ux]) have "a = f x * x + (\<Sum>i\<in>S. f i * i)" using sum_rw local.insert(1) local.insert(2) by auto also have "... = f x * x + (\<Sum>i\<in>(\<lambda>x. u*x)` S. g i * i)" using sum_rw2 by auto also have "... = ?g (u * x) * (u * x) + (\<Sum>i\<in>(\<lambda>x. u*x)` S. g i * i)" using inv_u by (smt local.mult_1_right local.mult_ac(1)) also have "... = ?g (u * x) * (u * x) + sum ((\<lambda>i. g i * i) \<circ> (\<lambda>x. u*x)) S" using sum_rw4 by auto also have "... = ((\<lambda>i. ?g i * i) \<circ> (\<lambda>x. u*x)) x + sum ((\<lambda>i. g i * i) \<circ> (\<lambda>x. u*x)) S" by auto also have "... = ((\<lambda>i. ?g i * i) \<circ> (\<lambda>x. u*x)) x + sum ((\<lambda>i. ?g i * i) \<circ> (\<lambda>x. u*x)) S" using sum_rw3 by auto also have "... = sum ((\<lambda>i. ?g i * i) \<circ> (\<lambda>x. u*x)) (insert x S)" by (rule sum.insert[symmetric], auto simp add: insert) also have "... = (\<Sum>i\<in>insert (u * x) ((\<lambda>x. u*x)` S). ?g i * i)" by (smt abel_semigroup.commute f2 image_insert inv_u mult.abel_semigroup_axioms mult_1_right semiring_normalization_rules(18) sum.reindex_nontrivial) also have "... = (\<Sum>i\<in>(\<lambda>x. u*x)` (insert x S). ?g i * i)" by auto finally show ?thesis by auto qed moreover have "a \<in> ?R" if a: "a \<in> ?L" for a proof - obtain f where sum_rw: "(\<Sum>i\<in>(insert (u * x) ((*) u ` S)). f i * i) = a" using a by auto have ux_notin: "u*x \<notin> ((*) u ` S)" by (metis UNIV_I inj_on_image_mem_iff inj_on_inverseI inv_u local.insert(2) local.mult_1_left local.semiring_normalization_rules(18) subsetI) let ?f = "(\<lambda>x. f x * x)" have "sum ?f ((*) u ` S) \<in> ideal_generated ((*) u ` S)" unfolding ideal_explicit2[OF f4] by auto from this obtain g where sum_rw1: "sum (\<lambda>i. g i * i) S = sum ?f (((*) u ` S))" using insert.hyps(3) unfolding ideal_explicit2[OF f3] by blast let ?g = "(\<lambda>i. if i = x then (f (u*x) *u) * x else g i * i)" let ?g' = "\<lambda>i. if i = x then f (u*x) * u else g i" have sum_rw2: "sum (\<lambda>i. g i * i) S = sum ?g S" by (rule sum.cong, insert inj_ux ux_notin, auto) have "a = (\<Sum>i\<in>(insert (u * x) ((*) u ` S)). f i * i)" using sum_rw by simp also have "... = ?f (u*x) + sum ?f (((*) u ` S))" by (rule sum.insert[OF f4], insert inj_ux) (metis UNIV_I inj_on_image_mem_iff inj_on_inverseI inv_u local.insert(2) local.mult_1_left local.semiring_normalization_rules(18) subsetI) also have "... = ?f (u*x) + sum (\<lambda>i. g i * i) S" unfolding sum_rw1 by auto also have "... = ?g x + sum ?g S" unfolding sum_rw2 using mult.assoc by auto also have "... = sum ?g (insert x S)" by (rule sum.insert[symmetric, OF f3 insert.hyps(2)]) also have "... = sum (\<lambda>i. ?g' i * i) (insert x S)" by (rule sum.cong, auto) finally show ?thesis by fast qed ultimately show ?thesis by blast qed also have "... = ideal_generated (insert x S)" using ideal_explicit2[OF f2] by auto finally show ?case by auto qed corollary ideal_generated_mult_unit2: assumes u: "u dvd 1" shows "ideal_generated {u*a,u*b} = ideal_generated {a,b}" proof - let ?S = "{a,b}" have "ideal_generated {u*a,u*b} = ideal_generated ((\<lambda>x. u*x)` {a,b})" by auto also have "... = ideal_generated {a,b}" by (rule ideal_generated_mult_unit[OF _ u], simp) finally show ?thesis . qed lemma ideal_generated_1[simp]: "ideal_generated {1} = UNIV" by (metis ideal_generated_unit dvd_ideal_generated_singleton order_refl) lemma ideal_generated_pair: "ideal_generated {a,b} = {p*a+q*b | p q. True}" proof - have i: "ideal_generated {a,b} = {y. \<exists>f. (\<Sum>i\<in>{a,b}. f i * i) = y}" using ideal_explicit2 by auto show ?thesis proof (cases "a=b") case True show ?thesis using True i by (auto, metis mult_ac(2) semiring_normalization_rules) (metis (no_types, opaque_lifting) add_minus_cancel mult_ac ring_distribs semiring_normalization_rules) next case False have 1: "\<exists>p q. (\<Sum>i\<in>{a, b}. f i * i) = p * a + q * b" for f by (rule exI[of _ "f a"], rule exI[of _ "f b"], rule sum_two_elements[OF False]) moreover have "\<exists>f. (\<Sum>i\<in>{a, b}. f i * i) = p * a + q * b" for p q by (rule exI[of _ "\<lambda>i. if i=a then p else q"], unfold sum_two_elements[OF False], insert False, auto) ultimately show ?thesis using i by auto qed qed lemma ideal_generated_pair_exists_pq1: assumes i: "ideal_generated {a,b} = (UNIV::'a set)" shows "\<exists>p q. p*a + q*b = 1" using i unfolding ideal_generated_pair by (smt iso_tuple_UNIV_I mem_Collect_eq) lemma ideal_generated_pair_UNIV: assumes sa_tb_u: "s*a+t*b = u" and u: "u dvd 1" shows "ideal_generated {a,b} = UNIV" proof - have f: "finite {a,b}" by simp obtain inv_u where inv_u: "inv_u * u = 1" using u unfolding dvd_def by (metis mult.commute) have "x \<in> ideal_generated {a,b}" for x proof (cases "a = b") case True then show ?thesis by (metis UNIV_I dvd_def dvd_ideal_generated_singleton' ideal_generated_unit insert_absorb2 mult.commute sa_tb_u semiring_normalization_rules(34) subsetI subset_antisym u) next case False note a_not_b = False let ?f = "\<lambda>y. if y = a then inv_u * x * s else inv_u * x * t" have "(\<Sum>i\<in>{a,b}. ?f i * i) = ?f a * a + ?f b * b" by (rule sum_two_elements[OF a_not_b]) also have "... = x" using a_not_b sa_tb_u inv_u by (auto, metis mult_ac(1) mult_ac(2) ring_distribs(1) semiring_normalization_rules(12)) finally show ?thesis unfolding ideal_explicit2[OF f] by auto qed thus ?thesis by auto qed lemma ideal_generated_pair_exists: assumes l: "(ideal_generated {a,b} = ideal_generated {d})" shows "(\<exists> p q. p*a+q*b = d)" proof - have d: "d \<in> ideal_generated {d}" by (simp add: ideal_generated_in) hence "d \<in> ideal_generated {a,b}" using l by auto from this obtain p q where "d = p*a+q*b" using ideal_generated_pair[of a b] by auto thus ?thesis by auto qed lemma obtain_ideal_generated_pair: assumes "c \<in> ideal_generated {a,b}" obtains p q where "p*a+q*b=c" proof - have "c \<in> {p * a + q * b |p q. True}" using assms ideal_generated_pair by auto thus ?thesis using that by auto qed lemma ideal_generated_pair_exists_UNIV: shows "(ideal_generated {a,b} = ideal_generated {1}) = (\<exists>p q. p*a+q*b = 1)" (is "?lhs = ?rhs") proof assume r: ?rhs have "x \<in> ideal_generated {a,b}" for x proof (cases "a=b") case True then show ?thesis by (metis UNIV_I r dvd_ideal_generated_singleton finite.intros ideal_generated_1 ideal_generated_pair_UNIV ideal_generated_singleton_subset) next case False have f: "finite {a,b}" by simp have 1: "1 \<in> ideal_generated {a,b}" using ideal_generated_pair_UNIV local.one_dvd r by blast hence i: "ideal_generated {a,b} = {y. \<exists>f. (\<Sum>i\<in>{a,b}. f i * i) = y}" using ideal_explicit2[of "{a,b}"] by auto from this obtain f where f: "f a * a + f b * b = 1" using sum_two_elements 1 False by auto let ?f = "\<lambda>y. if y = a then x * f a else x * f b" have "(\<Sum>i\<in>{a,b}. ?f i * i) = x" unfolding sum_two_elements[OF False] using f False using mult_ac(1) ring_distribs(1) semiring_normalization_rules(12) by force thus ?thesis unfolding i by auto qed thus ?lhs by auto next assume ?lhs thus ?rhs using ideal_generated_pair_exists[of a b 1] by auto qed corollary ideal_generated_UNIV_obtain_pair: assumes "ideal_generated {a,b} = ideal_generated {1}" shows " (\<exists>p q. p*a+q*b = d)" proof - obtain x y where "x*a+y*b = 1" using ideal_generated_pair_exists_UNIV assms by auto hence "d*x*a+d*y*b=d" using local.mult_ac(1) local.ring_distribs(1) local.semiring_normalization_rules(12) by force thus ?thesis by auto qed lemma sum_three_elements: shows "\<exists>x y z::'a. (\<Sum>i\<in>{a,b,c}. f i * i) = x * a + y * b + z * c" proof (cases "a \<noteq> b \<and> b \<noteq> c \<and> a \<noteq> c") case True then show ?thesis by (auto, metis add.assoc) next case False have 1: "\<exists>x y z. f c * c = x * c + y * c + z * c" by (rule exI[of _ 0],rule exI[of _ 0], rule exI[of _ "f c"], auto) have 2: "\<exists>x y z. f b * b + f c * c = x * b + y * b + z * c" by (rule exI[of _ 0],rule exI[of _ "f b"], rule exI[of _ "f c"], auto) have 3: "\<exists>x y z. f a * a + f c * c = x * a + y * c + z * c" by (rule exI[of _ "f a"],rule exI[of _ 0], rule exI[of _ "f c"], auto) have 4: "\<exists>x y z. (\<Sum>i\<in>{c, b, c}. f i * i) = x * c + y * b + z * c" if a: "a = c" and b: "b \<noteq> c" by (rule exI[of _ 0],rule exI[of _ "f b"], rule exI[of _ "f c"], insert a b, auto simp add: insert_commute) show ?thesis using False by (cases "b=c", cases "a=c", auto simp add: 1 2 3 4) qed lemma sum_three_elements': shows "\<exists>f::'a\<Rightarrow>'a. (\<Sum>i\<in>{a,b,c}. f i * i) = x * a + y * b + z * c" proof (cases "a \<noteq> b \<and> b \<noteq> c \<and> a \<noteq> c") case True let ?f = "\<lambda>i. if i = a then x else if i = b then y else if i = c then z else 0" show ?thesis by (rule exI[of _ "?f"], insert True mult.assoc, auto simp add: local.add_ac) next case False have 1: "\<exists>f. f c * c = x * c + y * c + z * c" by (rule exI[of _ "\<lambda>i. if i = c then x+y+z else 0"], auto simp add: local.ring_distribs) have 2: "\<exists>f. f a * a + f c * c = x * a + y * c + z * c" if bc: " b = c" and ac: "a \<noteq> c" by (rule exI[of _ "\<lambda>i. if i = a then x else y+z"], insert ac bc add_ac ring_distribs, auto) have 3: "\<exists>f. f b * b + f c * c = x * b + y * b + z * c" if bc: " b \<noteq> c" and ac: "a = b" by (rule exI[of _ "\<lambda>i. if i = a then x+y else z"], insert ac bc add_ac ring_distribs, auto) have 4: "\<exists>f. (\<Sum>i\<in>{c, b, c}. f i * i) = x * c + y * b + z * c" if a: "a = c" and b: "b \<noteq> c" by (rule exI[of _ "\<lambda>i. if i = c then x+z else y"], insert a b add_ac ring_distribs, auto simp add: insert_commute) show ?thesis using False by (cases "b=c", cases "a=c", auto simp add: 1 2 3 4) qed (*This is generalizable to arbitrary sets.*) lemma ideal_generated_triple_pair_rewrite: assumes i1: "ideal_generated {a, b, c} = ideal_generated {d}" and i2: "ideal_generated {a, b} = ideal_generated {d'}" shows "ideal_generated{d',c} = ideal_generated {d}" proof have d': "d' \<in> ideal_generated {a,b}" using i2 by (simp add: ideal_generated_in) show "ideal_generated {d', c} \<subseteq> ideal_generated {d}" proof fix x assume x: "x \<in> ideal_generated {d', c}" obtain f1 f2 where f: "f1*d' + f2*c = x" using obtain_ideal_generated_pair[OF x] by auto obtain g1 g2 where g: "g1*a + g2*b = d'" using obtain_ideal_generated_pair[OF d'] by blast have 1: "f1*g1*a + f1*g2*b + f2*c = x" using f g local.ring_distribs(1) local.semiring_normalization_rules(18) by auto have "x \<in> ideal_generated {a, b, c}" proof - obtain f where "(\<Sum>i\<in>{a,b,c}. f i * i) = f1*g1*a + f1*g2*b + f2*c" using sum_three_elements' 1 by blast moreover have "ideal_generated {a,b,c} = {y. \<exists>f. (\<Sum>i\<in>{a,b,c}. f i * i) = y}" using ideal_explicit2[of "{a,b,c}"] by simp ultimately show ?thesis using 1 by auto qed thus "x \<in> ideal_generated {d}" using i1 by auto qed show "ideal_generated {d} \<subseteq> ideal_generated {d', c}" proof (rule ideal_generated_singleton_subset) obtain f1 f2 f3 where f: "f1*a + f2*b + f3*c = d" proof - have "d \<in> ideal_generated {a,b,c}" using i1 by (simp add: ideal_generated_in) from this obtain f where d: "(\<Sum>i\<in>{a,b,c}. f i * i) = d" using ideal_explicit2[of "{a,b,c}"] by auto obtain x y z where "(\<Sum>i\<in>{a,b,c}. f i * i) = x * a + y * b + z * c" using sum_three_elements by blast thus ?thesis using d that by auto qed obtain k where k: "f1*a + f2*b = k*d'" proof - have "f1*a + f2*b \<in> ideal_generated{a,b}" using ideal_generated_pair by blast also have "... = ideal_generated {d'}" using i2 by simp also have "... = {k*d' |k. k\<in>UNIV}" using ideal_generated_singleton by auto finally show ?thesis using that by auto qed have "k*d'+f3*c=d" using f k by auto thus "d \<in> ideal_generated {d', c}" using ideal_generated_pair by blast qed (simp) qed lemma ideal_generated_dvd: assumes i: "ideal_generated {a,b::'a} = ideal_generated{d} " and a: "d' dvd a" and b: "d' dvd b" shows "d' dvd d" proof - obtain p q where "p*a+q*b = d" using i ideal_generated_pair_exists by blast thus ?thesis using a b by auto qed lemma ideal_generated_dvd2: assumes i: "ideal_generated S = ideal_generated{d::'a} " and "finite S" and x: "\<forall>x\<in>S. d' dvd x" shows "d' dvd d" by (metis assms dvd_ideal_generated_singleton ideal_generated_dvd_subset) end subsection \<open>An equivalent characterization of B\'ezout rings\<close> text \<open>The goal of this subsection is to prove that a ring is B\'ezout ring if and only if every finitely generated ideal is principal.\<close> definition "finitely_generated_ideal I = (ideal I \<and> (\<exists>S. finite S \<and> ideal_generated S = I))" context assumes "SORT_CONSTRAINT('a::comm_ring_1)" begin lemma sum_two_elements': fixes d::'a assumes s: "(\<Sum>i\<in>{a,b}. f i * i) = d" obtains p and q where "d = p * a + q * b" proof (cases "a=b") case True then show ?thesis by (metis (no_types, lifting) add_diff_cancel_left' emptyE finite.emptyI insert_absorb2 left_diff_distrib' s sum.insert sum_singleton that) next case False show ?thesis using s unfolding sum_two_elements[OF False] using that by auto qed text \<open>This proof follows Theorem 6-3 in "First Course in Rings and Ideals" by Burton\<close> lemma all_fin_gen_ideals_are_principal_imp_bezout: assumes all: "\<forall>I::'a set. finitely_generated_ideal I \<longrightarrow> principal_ideal I" shows "OFCLASS ('a, bezout_ring_class)" proof (intro_classes) fix a b::'a obtain d where ideal_d: "ideal_generated {a,b} = ideal_generated {d}" using all unfolding finitely_generated_ideal_def by (metis finite.emptyI finite_insert ideal_ideal_generated principal_ideal_def) have a_in_d: "a \<in> ideal_generated {d}" using ideal_d ideal_generated_subset_generator by blast have b_in_d: "b \<in> ideal_generated {d}" using ideal_d ideal_generated_subset_generator by blast have d_in_ab: "d \<in> ideal_generated {a,b}" using ideal_d ideal_generated_subset_generator by auto obtain f where "(\<Sum>i\<in>{a,b}. f i * i) = d" using obtain_sum_ideal_generated[OF d_in_ab] by auto from this obtain p q where d_eq: "d = p*a + q*b" using sum_two_elements' by blast moreover have d_dvd_a: "d dvd a" by (metis dvd_ideal_generated_singleton ideal_d ideal_generated_subset insert_commute subset_insertI) moreover have "d dvd b" by (metis dvd_ideal_generated_singleton ideal_d ideal_generated_subset subset_insertI) moreover have "d' dvd d" if d'_dvd: "d' dvd a \<and> d' dvd b" for d' proof - obtain s1 s2 where s1_dvd: "a = s1*d'" and s2_dvd: "b = s2*d'" using mult.commute d'_dvd unfolding dvd_def by auto have "d = p*a + q*b" using d_eq . also have "...= p * s1 * d' + q * s2 *d'" unfolding s1_dvd s2_dvd by auto also have "... = (p * s1 + q * s2) * d'" by (simp add: ring_class.ring_distribs(2)) finally show "d' dvd d" using mult.commute unfolding dvd_def by auto qed ultimately show "\<exists>p q d. p * a + q * b = d \<and> d dvd a \<and> d dvd b \<and> (\<forall>d'. d' dvd a \<and> d' dvd b \<longrightarrow> d' dvd d)" by auto qed end context bezout_ring begin lemma exists_bezout_extended: assumes S: "finite S" and ne: "S \<noteq> {}" shows "\<exists>f d. (\<Sum>a\<in>S. f a * a) = d \<and> (\<forall>a\<in>S. d dvd a) \<and> (\<forall>d'. (\<forall>a\<in>S. d' dvd a) \<longrightarrow> d' dvd d)" using S ne proof (induct S) case empty then show ?case by auto next case (insert x S) show ?case proof (cases "S={}") case True let ?f = "\<lambda>x. 1" show ?thesis by (rule exI[of _ ?f], insert True, auto) next case False note ne = False note x_notin_S = insert.hyps(2) obtain f d where sum_eq_d: "(\<Sum>a\<in>S. f a * a) = d" and d_dvd_each_a: "(\<forall>a\<in>S. d dvd a)" and d_is_gcd: "(\<forall>d'. (\<forall>a\<in>S. d' dvd a) \<longrightarrow> d' dvd d)" using insert.hyps(3)[OF ne] by auto have "\<exists>p q d'. p * d + q * x = d' \<and> d' dvd d \<and> d' dvd x \<and> (\<forall>c. c dvd d \<and> c dvd x \<longrightarrow> c dvd d')" using exists_bezout by auto from this obtain p q d' where pd_qx_d': "p*d + q*x = d'" and d'_dvd_d: "d' dvd d" and d'_dvd_x: "d' dvd x" and d'_dvd: "\<forall>c. (c dvd d \<and> c dvd x) \<longrightarrow> c dvd d'" by blast let ?f = "\<lambda>a. if a = x then q else p * f a" have "(\<Sum>a\<in>insert x S. ?f a * a) = d'" proof - have "(\<Sum>a\<in>insert x S. ?f a * a) = (\<Sum>a\<in>S. ?f a * a) + ?f x * x" by (simp add: add_commute insert.hyps(1) insert.hyps(2)) also have "... = p * (\<Sum>a\<in>S. f a * a) + q * x" unfolding sum_distrib_left by (auto, rule sum.cong, insert x_notin_S, auto simp add: mult.semigroup_axioms semigroup.assoc) finally show ?thesis using pd_qx_d' sum_eq_d by auto qed moreover have "(\<forall>a\<in>insert x S. d' dvd a)" by (metis d'_dvd_d d'_dvd_x d_dvd_each_a insert_iff local.dvdE local.dvd_mult_left) moreover have " (\<forall>c. (\<forall>a\<in>insert x S. c dvd a) \<longrightarrow> c dvd d')" by (simp add: d'_dvd d_is_gcd) ultimately show ?thesis by auto qed qed end lemma ideal_generated_empty: "ideal_generated {} = {0}" unfolding ideal_generated_def using ideal_generated_0 by (metis empty_subsetI ideal_generated_def ideal_generated_subset ideal_ideal_generated ideal_not_empty subset_singletonD) lemma bezout_imp_all_fin_gen_ideals_are_principal: fixes I::"'a :: bezout_ring set" assumes fin: "finitely_generated_ideal I" shows "principal_ideal I" proof - obtain S where fin_S: "finite S" and ideal_gen_S: "ideal_generated S = I" using fin unfolding finitely_generated_ideal_def by auto show ?thesis proof (cases "S = {}") case True then show ?thesis using ideal_gen_S unfolding True using ideal_generated_empty ideal_generated_0 principal_ideal_def by fastforce next case False note ne = False obtain d f where sum_S_d: "(\<Sum>i\<in>S. f i * i) = d" and d_dvd_a: "(\<forall>a\<in>S. d dvd a)" and d_is_gcd: "(\<forall>d'. (\<forall>a\<in>S. d' dvd a) \<longrightarrow> d' dvd d)" using exists_bezout_extended[OF fin_S ne] by auto have d_in_S: "d \<in> ideal_generated S" by (metis fin_S ideal_def ideal_generated_subset_generator ideal_ideal_generated sum_S_d sum_left_ideal) have "ideal_generated {d} \<subseteq> ideal_generated S" by (rule ideal_generated_singleton_subset[OF d_in_S fin_S]) moreover have "ideal_generated S \<subseteq> ideal_generated {d}" proof fix x assume x_in_S: "x \<in> ideal_generated S" obtain f where sum_S_x: "(\<Sum>a\<in>S. f a * a) = x" using fin_S obtain_sum_ideal_generated x_in_S by blast have d_dvd_each_a: "\<exists>k. a = k * d" if "a \<in> S" for a by (metis d_dvd_a dvdE mult.commute that) let ?g = "\<lambda>a. SOME k. a = k*d" have "x = (\<Sum>a\<in>S. f a * a)" using sum_S_x by simp also have "... = (\<Sum>a\<in>S. f a * (?g a * d))" proof (rule sum.cong) fix a assume a_in_S: "a \<in> S" obtain k where a_kd: "a = k * d" using d_dvd_each_a a_in_S by auto have "a = ((SOME k. a = k * d) * d)" by (rule someI_ex, auto simp add: a_kd) thus "f a * a = f a * ((SOME k. a = k * d) * d)" by auto qed (simp) also have "... = (\<Sum>a\<in>S. f a * ?g a * d)" by (rule sum.cong, auto) also have "... = (\<Sum>a\<in>S. f a * ?g a)*d" using sum_distrib_right[of _ S d] by auto finally show "x \<in> ideal_generated {d}" by (meson contra_subsetD dvd_ideal_generated_singleton' dvd_triv_right ideal_generated_in singletonI) qed ultimately show ?thesis unfolding principal_ideal_def using ideal_gen_S by auto qed qed text \<open>Now we have the required lemmas to prove the theorem that states that a ring is B\'ezout ring if and only if every finitely generated ideal is principal. They are the following ones. \begin{itemize} \item @{text "all_fin_gen_ideals_are_principal_imp_bezout"} \item @{text "bezout_imp_all_fin_gen_ideals_are_principal"} \end{itemize} However, in order to prove the final lemma, we need the lemmas with no type restrictions. For instance, we need a version of theorem @{text "bezout_imp_all_fin_gen_ideals_are_principal"} as @{text "OFCLASS('a,bezout_ring) \<Longrightarrow>"} the theorem with generic types (i.e., @{text "'a"} with no type restrictions) or as @{text "class.bezout_ring _ _ _ _ \<Longrightarrow>"} the theorem with generic types (i.e., @{text "'a"} with no type restrictions) \<close> (*A possible workaround is to adapt the proof*) (* lemma bezout_imp_all_fin_gen_ideals_are_principal_unsatisfactory: assumes a1: "class.bezout_ring ( * ) (1::'a::comm_ring_1) (+) 0 (-) uminus" (*Me da igual esto que OFCLASS*) shows "\<forall>I::'a set. finitely_generated_ideal I \<longrightarrow> principal_ideal I" proof (rule allI, rule impI) fix I::"'a set" assume fin: "finitely_generated_ideal I" interpret a: bezout_ring "( * )" "(1::'a)" "(+)" 0 "(-)" uminus using a1 . interpret dvd "( * )::'a\<Rightarrow>'a\<Rightarrow>'a" . interpret b: comm_monoid_add "(+)" "(0::'a)" using a1 by intro_locales have c: " class.comm_monoid_add (+) (0::'a)" using a1 by intro_locales have [simp]: "(dvd.dvd ( * ) d a) = (d dvd a)" for d a::'a by (auto simp add: dvd.dvd_def dvd_def) have [simp]: "comm_monoid_add.sum (+) 0 (\<lambda>a. f a * a) S = sum (\<lambda>a. f a * a) S" for f and S::"'a set" unfolding sum_def unfolding comm_monoid_add.sum_def[OF c] .. obtain S where fin_S: "finite S" and ideal_gen_S: "ideal_generated S = I" using fin unfolding finitely_generated_ideal_def by auto show "principal_ideal I" proof (cases "S = {}") case True then show ?thesis using ideal_gen_S unfolding True using ideal_generated_empty ideal_generated_0 principal_ideal_def by fastforce next case False note ne = False obtain d f where sum_S_d: "(\<Sum>i\<in>S. f i * i) = d" and d_dvd_a: "(\<forall>a\<in>S. d dvd a)" and d_is_gcd: "(\<forall>d'. (\<forall>a\<in>S. d' dvd a) \<longrightarrow> d' dvd d)" using a.exists_bezout_extended[OF fin_S ne] by auto have d_in_S: "d \<in> ideal_generated S" by (metis fin_S ideal_def ideal_generated_subset_generator ideal_ideal_generated sum_S_d sum_left_ideal) have "ideal_generated {d} \<subseteq> ideal_generated S" by (rule ideal_generated_singleton_subset[OF d_in_S fin_S]) moreover have "ideal_generated S \<subseteq> ideal_generated {d}" proof fix x assume x_in_S: "x \<in> ideal_generated S" obtain f where sum_S_x: "(\<Sum>a\<in>S. f a * a) = x" using fin_S obtain_sum_ideal_generated x_in_S by blast have d_dvd_each_a: "\<exists>k. a = k * d" if "a \<in> S" for a by (metis d_dvd_a dvdE mult.commute that) let ?g = "\<lambda>a. SOME k. a = k*d" have "x = (\<Sum>a\<in>S. f a * a)" using sum_S_x by simp also have "... = (\<Sum>a\<in>S. f a * (?g a * d))" proof (rule sum.cong) fix a assume a_in_S: "a \<in> S" obtain k where a_kd: "a = k * d" using d_dvd_each_a a_in_S by auto have "a = ((SOME k. a = k * d) * d)" by (rule someI_ex, auto simp add: a_kd) thus "f a * a = f a * ((SOME k. a = k * d) * d)" by auto qed (simp) also have "... = (\<Sum>a\<in>S. f a * ?g a * d)" by (rule sum.cong, auto) also have "... = (\<Sum>a\<in>S. f a * ?g a)*d" using sum_distrib_right[of _ S d] by auto finally show "x \<in> ideal_generated {d}" by (meson contra_subsetD dvd_ideal_generated_singleton' dvd_triv_right ideal_generated_in singletonI) qed ultimately show ?thesis unfolding principal_ideal_def using ideal_gen_S by auto qed qed *) text \<open>Thanks to local type definitions, we can obtain it automatically by means of @{text "internalize-sort"}.\<close> lemma bezout_imp_all_fin_gen_ideals_are_principal_unsatisfactory: assumes a1: "class.bezout_ring (*) (1::'b::comm_ring_1) (+) 0 (-) uminus" (*It is algo possible to prove it using OFCLASS*) shows "\<forall>I::'b set. finitely_generated_ideal I \<longrightarrow> principal_ideal I" using bezout_imp_all_fin_gen_ideals_are_principal[internalize_sort "'a::bezout_ring"] using a1 by auto text \<open>The standard library does not connect @{text "OFCLASS"} and @{text "class.bezout_ring"} in both directions. Here we show that @{text "OFCLASS \<Longrightarrow> class.bezout_ring"}. \<close> lemma OFCLASS_bezout_ring_imp_class_bezout_ring: assumes "OFCLASS('a::comm_ring_1,bezout_ring_class)" shows "class.bezout_ring ((*)::'a\<Rightarrow>'a\<Rightarrow>'a) 1 (+) 0 (-) uminus" using assms unfolding bezout_ring_class_def class.bezout_ring_def using conjunctionD2[of "OFCLASS('a, comm_ring_1_class)" "class.bezout_ring_axioms ((*)::'a\<Rightarrow>'a\<Rightarrow>'a) (+)"] by (auto, intro_locales) text \<open>The other implication can be obtained by thm @{text "Rings2.class.Rings2.bezout_ring.of_class.intro"} \<close> thm Rings2.class.Rings2.bezout_ring.of_class.intro (*OFCLASS is a proposition (Prop), and then the following statement is not valid.*) (* lemma shows "(\<forall>I::'a::comm_ring_1 set. finitely_generated_ideal I \<longrightarrow> principal_ideal I) = OFCLASS('a, bezout_ring_class)" *) (*Thus, we use the meta-equality and the meta universal quantifier.*) text \<open>Final theorem (with OFCLASS)\<close> lemma bezout_ring_iff_fin_gen_principal_ideal: "(\<And>I::'a::comm_ring_1 set. finitely_generated_ideal I \<Longrightarrow> principal_ideal I) \<equiv> OFCLASS('a, bezout_ring_class)" proof show "(\<And>I::'a::comm_ring_1 set. finitely_generated_ideal I \<Longrightarrow> principal_ideal I) \<Longrightarrow> OFCLASS('a, bezout_ring_class)" using all_fin_gen_ideals_are_principal_imp_bezout [where ?'a='a] by auto show "\<And>I::'a::comm_ring_1 set. OFCLASS('a, bezout_ring_class) \<Longrightarrow> finitely_generated_ideal I \<Longrightarrow> principal_ideal I" using bezout_imp_all_fin_gen_ideals_are_principal_unsatisfactory[where ?'b='a] using OFCLASS_bezout_ring_imp_class_bezout_ring[where ?'a='a] by auto qed text \<open>Final theorem (with @{text "class.bezout_ring"})\<close> lemma bezout_ring_iff_fin_gen_principal_ideal2: "(\<forall>I::'a::comm_ring_1 set. finitely_generated_ideal I \<longrightarrow> principal_ideal I) = (class.bezout_ring ((*)::'a\<Rightarrow>'a\<Rightarrow>'a) 1 (+) 0 (-) uminus)" proof show "\<forall>I::'a::comm_ring_1 set. finitely_generated_ideal I \<longrightarrow> principal_ideal I \<Longrightarrow> class.bezout_ring (*) 1 (+) (0::'a) (-) uminus" using all_fin_gen_ideals_are_principal_imp_bezout[where ?'a='a] using OFCLASS_bezout_ring_imp_class_bezout_ring[where ?'a='a] by auto show "class.bezout_ring (*) 1 (+) (0::'a) (-) uminus \<Longrightarrow> \<forall>I::'a set. finitely_generated_ideal I \<longrightarrow> principal_ideal I" using bezout_imp_all_fin_gen_ideals_are_principal_unsatisfactory by auto qed end
The document collection we work with comes directly from webscraping various Czech news servers, and does not have any special structure. The documents consist only of headlines, bodies and publication days. Furthermore, there are some noisy words such as residual HTML entities, typos, words cut in the middle, etc. To make the most of the collection, we preprocess the documents to remove as many of these errors as possible, and also to gain some additional information about the text. We first employ some NLP (Natural Language Processing) methods to gain insight into the data. Then, we train a model to obtain word embeddings, which we discuss next. Our event detection method is keyword-based --- the events will be represented by groups of keywords related in the temporal as well as semantic domain. To be able to measure the semantic similarity, we need to obtain a representation of the individual words that retains as much semantic information as possible while supporting similarity queries. There is a number of ways to do so --- a simple TFIDF (Term Frequency-Inverse Document Frequency) representation \citep{tfidf, information-retrieval} which represents the words by weighted counts of their appearance in the document collection. More complicated methods, such as Latent Semantic Indexing \citep{lsi} attempt to discover latent structure within words to also reveal topical relations between them. This idea is further pursued by probabilistic topical models, such as Latent Dirichlet Allocation \citep{lda}. In this thesis, we use the Word2Vec model introduced by \cite{word2vec, distributed-representations, linguistic-regularities}, which uses a shallow neural network to project the words from a predetermined vocabulary into a vector space. Vectors in this space have interesting semantical properties, such as vector arithmetics preserving semantic relations, or semantically related words forming clusters. A useful property of the Word2Vec model is that it supports online learning, meaning that the training can be stopped and resumed as needed. We can then train the model on one document collection, and only perform small updates when we receive new documents with different vocabulary. Later on, we will need some sort of word similarity measure. This will come up several times in the course of the thesis --- in the event detection itself, later when querying the document collection to obtain document representation of the events detected, and finally when generating human-readable summaries. The Word2Vec model is fit for all of these uses, as opposed to the other approaches mentioned above, some of which are designed only to measure document similarity, or, on the other hand, do not support document similarity queries very well. \section{Preprocessing} Some of the documents contain residual HTML entities from errors during web scraping, which we filter out using a manually constructed stopwords list. We used the MorphoDiTa tagger \citep{morphodita} to perform tokenization, lemmatization and parts of speech tagging. Our whole analysis is applied to these lemmatized texts; we revert to the full forms only at the end when annotating the events in a human-readable way. \section{Word embeddings} \label{word-embeddings} Next, we train the previously mentioned Word2Vec model. Although the training is time-consuming \footnote{See \autoref{chap:evaluation} for computation times.}, the word vectors can be pre-trained on a large document collection and then reused in following runs. In case the vocabulary used in these new documents differs, the model can be simply updated with the new words. For the training, we only discard punctuation marks and words denoted as unknown parts of speech by the tagger. Such words are mostly typos not important for our analysis. We also discard words appearing in less than 10 documents. The thesis was implemented using the Gensim \citep{gensim} library. The project contains memory efficient, easy to use Python implementations of various topic modeling algorithms, Word2Vec included. In addition, we used the SciPy toolkit \citep{scipy} and Scikit-Learn \citep{scikit-learn} for various machine learning-related computations. We use the skip-gram model defined in \cite{word2vec}, which was shown in \cite{distributed-representations} to learn high quality word embeddings well capturing semantic properties. After experimenting with different settings on a smaller subset of the documents, we decided to embed the words in a 100-dimensional vector space and to allow 5 passes over the document collection. Allowing more passes slows down the training, while not improving the quality very much. Setting higher dimensionality also does not lead to significant quality improvement, and slows down the training as well as requires more memory. In the thesis, we refer to the vector embedding of a word $w$ as $\embed_{w} \in \R^{100}$. \section{Document collection} The dataset used is a collection of Czech news documents from various sources accumulated over a period from January 1, 2014 to January 31, 2015. The collection contains 2,078,774 documents averaging at 260 words each, with 2,058,316 unique word tokens in total. However, majority of the words are rare words or typos of no importance, so the number of unique real words is much lower. This is confirmed after discarding the words appearing in less than 10 documents, with only 351,136 unique words remaining. These words are further processed in the following chapter, where we uncover a small subset of words possibly representative of an event, and discard the rest. \section{Document stream formally} Formally, the input to the algorithm is a collection of $\doccount$ news documents containing full text articles along with their publication days and headlines. If we denote $t_{i}$ as the publication day of a document $d_{i}$, the collection can be understood as a stream $\left\{ (d_{1}, t_{1}), (d_{2}, t_{2}), \dots, (d_{\doccount}, t_{\doccount}) \right\}$ with $t_{i} \leq t_{j}$ for $i < j$. Furthermore, we define $\streamlen$ to be the length of the stream (in days), and we normalize the document publication days to be relative to the document stream start; that is $t_{1} = 1$ and $t_{\doccount} = \streamlen$.
(** * Logic: Logic in Coq *) Require Export Tactics. Require Export Basics. (** In previous chapters, we have seen many examples of factual claims (_propositions_) and ways of presenting evidence of their truth (_proofs_). In particular, we have worked extensively with _equality propositions_ of the form [e1 = e2], with implications ([P -> Q]), and with quantified propositions ([forall x, P]). In this chapter, we will see how Coq can be used to carry out other familiar forms of logical reasoning. Before diving into details, let's talk a bit about the status of mathematical statements in Coq. Recall that Coq is a _typed_ language, which means that every sensible expression in its world has an associated type. Logical claims are no exception: any statement we might try to prove in Coq has a type, namely [Prop], the type of _propositions_. We can see this with the [Check] command: *) Check 3 = 3. (* ===> Prop *) Check forall n m : nat, n + m = m + n. (* ===> Prop *) (** Note that all well-formed propositions have type [Prop] in Coq, regardless of whether they are true or not. Simply _being_ a proposition is one thing; being _provable_ is something else! *) Check forall n : nat, n = 2. (* ===> Prop *) Check 3 = 4. (* ===> Prop *) (** Indeed, propositions don't just have types: they are _first-class objects_ that can be manipulated in the same ways as the other entities in Coq's world. So far, we've seen one primary place that propositions can appear: in [Theorem] (and [Lemma] and [Example]) declarations. *) Theorem plus_2_2_is_4 : 2 + 2 = 4. Proof. reflexivity. Qed. (** But propositions can be used in many other ways. For example, we can give a name to a proposition using a [Definition], just as we have given names to expressions of other sorts. *) Definition plus_fact : Prop := 2 + 2 = 4. Check plus_fact. (* ===> plus_fact : Prop *) (** We can later use this name in any situation where a proposition is expected -- for example, as the claim in a [Theorem] declaration. *) Theorem plus_fact_is_true : plus_fact. Proof. reflexivity. Qed. (** We can also write _parameterized_ propositions -- that is, functions that take arguments of some type and return a proposition. For instance, the following function takes a number and returns a proposition asserting that this number is equal to three: *) Definition is_three (n : nat) : Prop := n = 3. Check is_three. (* ===> nat -> Prop *) (** In Coq, functions that return propositions are said to define _properties_ of their arguments. For instance, here's a polymorphic property defining the familiar notion of an _injective function_. *) Definition injective {A B} (f : A -> B) := forall x y : A, f x = f y -> x = y. Lemma succ_inj : injective S. Proof. intros n m H. inversion H. reflexivity. Qed. (** The equality operator [=] that we have been using so far is also just a function that returns a [Prop]. The expression [n = m] is just syntactic sugar for [eq n m], defined using Coq's [Notation] mechanism. Because [=] can be used with elements of any type, it is also polymorphic: *) Check @eq. (* ===> forall A : Type, A -> A -> Prop *) (** (Notice that we wrote [@eq] instead of [eq]: The type argument [A] to [eq] is declared as implicit, so we need to turn off implicit arguments to see the full type of [eq].) *) (* ################################################################# *) (** * Logical Connectives *) (* ================================================================= *) (** ** Conjunction *) (** The _conjunction_ or _logical and_ of propositions [A] and [B] is written [A /\ B], denoting the claim that both [A] and [B] are true. *) Example and_example : 3 + 4 = 7 /\ 2 * 2 = 4. (** To prove a conjunction, use the [split] tactic. Its effect is to generate two subgoals, one for each part of the statement: *) Proof. split. - (* 3 + 4 = 7 *) reflexivity. - (* 2 + 2 = 4 *) reflexivity. Qed. (** More generally, the following principle works for any two propositions [A] and [B]: *) Lemma and_intro : forall A B : Prop, A -> B -> A /\ B. Proof. intros A B HA HB. split. - apply HA. - apply HB. Qed. (** A logical statement with multiple arrows is just a theorem that has several hypotheses. Here, [and_intro] says that, for any propositions [A] and [B], if we assume that [A] is true and we assume that [B] is true, then [A /\ B] is also true. Since applying a theorem with hypotheses to some goal has the effect of generating as many subgoals as there are hypotheses for that theorem, we can, apply [and_intro] to achieve the same effect as [split]. *) Example and_example' : 3 + 4 = 7 /\ 2 * 2 = 4. Proof. apply and_intro. - (* 3 + 4 = 7 *) reflexivity. - (* 2 + 2 = 4 *) reflexivity. Qed. Lemma plus_O_lem : forall n m, n + m = 0 -> n = 0. Proof. induction n. - intros. reflexivity. - intros. simpl in H. inversion H. Qed. (** **** Exercise: 2 stars (and_exercise) *) Example and_exercise : forall n m : nat, n + m = 0 -> n = 0 /\ m = 0. Proof. intros. split. - apply (plus_O_lem _ _ H). - rewrite plus_comm in H. apply (plus_O_lem _ _ H). Qed. (** So much for proving conjunctive statements. To go in the other direction -- i.e., to _use_ a conjunctive hypothesis to prove something else -- we employ the [destruct] tactic. If the proof context contains a hypothesis [H] of the form [A /\ B], writing [destruct H as [HA HB]] will remove [H] from the context and add two new hypotheses: [HA], stating that [A] is true, and [HB], stating that [B] is true. For instance: *) Lemma and_example2 : forall n m : nat, n = 0 /\ m = 0 -> n + m = 0. Proof. intros n m H. destruct H as [Hn Hm]. rewrite Hn. rewrite Hm. reflexivity. Qed. (** As usual, we can also destruct [H] when we introduce it instead of introducing and then destructing it: *) Lemma and_example2' : forall n m : nat, n = 0 /\ m = 0 -> n + m = 0. Proof. intros n m [Hn Hm]. rewrite Hn. rewrite Hm. reflexivity. Qed. (** You may wonder why we bothered packing the two hypotheses [n = 0] and [m = 0] into a single conjunction, since we could have also stated the theorem with two separate premises: *) Lemma and_example2'' : forall n m : nat, n = 0 -> m = 0 -> n + m = 0. Proof. intros n m Hn Hm. rewrite Hn. rewrite Hm. reflexivity. Qed. (** In this case, there is not much difference between the two theorems. But it is often necessary to explicitly decompose conjunctions that arise from intermediate steps in proofs, especially in bigger developments. Here's a simplified example: *) Lemma and_example3 : forall n m : nat, n + m = 0 -> n * m = 0. Proof. intros n m H. assert (H' : n = 0 /\ m = 0). { apply and_exercise. apply H. } destruct H' as [Hn Hm]. rewrite Hn. reflexivity. Qed. (** Another common situation with conjunctions is that we know [A /\ B] but in some context we need just [A] (or just [B]). The following lemmas are useful in such cases: *) Lemma proj1 : forall P Q : Prop, P /\ Q -> P. Proof. intros P Q [HP HQ]. apply HP. Qed. (** **** Exercise: 1 star, optional (proj2) *) Lemma proj2 : forall P Q : Prop, P /\ Q -> Q. Proof. intros. destruct H. assumption. Qed. (** [] *) (** Finally, we sometimes need to rearrange the order of conjunctions and/or the grouping of conjuncts in multi-way conjunctions. The following commutativity and associativity theorems come in handy in such cases. *) Theorem and_commut : forall P Q : Prop, P /\ Q -> Q /\ P. Proof. (* WORKED IN CLASS *) intros P Q [HP HQ]. split. - (* left *) apply HQ. - (* right *) apply HP. Qed. (** **** Exercise: 2 stars (and_assoc) *) (** (In the following proof of associativity, notice how the _nested_ intro pattern breaks the hypothesis [H : P /\ (Q /\ R)] down into [HP : P], [HQ : Q], and [HR : R]. Finish the proof from there.) *) Theorem and_assoc : forall P Q R : Prop, P /\ (Q /\ R) -> (P /\ Q) /\ R. Proof. intros P Q R [HP [HQ HR]]. - apply and_intro. apply (and_intro _ _ HP HQ). assumption. Qed. (** [] *) (** By the way, the infix notation [/\] is actually just syntactic sugar for [and A B]. That is, [and] is a Coq operator that takes two propositions as arguments and yields a proposition. *) Check and. (* ===> and : Prop -> Prop -> Prop *) (* ================================================================= *) (** ** Disjunction *) (** Another important connective is the _disjunction_, or _logical or_ of two propositions: [A \/ B] is true when either [A] or [B] is. (Alternatively, we can write [or A B], where [or : Prop -> Prop -> Prop].) To use a disjunctive hypothesis in a proof, we proceed by case analysis, which, as for [nat] or other data types, can be done with [destruct] or [intros]. Here is an example: *) Lemma or_example : forall n m : nat, n = 0 \/ m = 0 -> n * m = 0. Proof. (* This pattern implicitly does case analysis on [n = 0 \/ m = 0] *) intros n m [Hn | Hm]. - (* Here, [n = 0] *) rewrite Hn. reflexivity. - (* Here, [m = 0] *) rewrite Hm. rewrite <- mult_n_O. reflexivity. Qed. (** We can see in this example that, when we perform case analysis on a disjunction [A \/ B], we must satisfy two proof obligations, each showing that the conclusion holds under a different assumption -- [A] in the first subgoal and [B] in the second. Note that the case analysis pattern ([Hn | Hm]) allows us to name the hypothesis that is generated in each subgoal. Conversely, to show that a disjunction holds, we need to show that one of its sides does. This is done via two tactics, [left] and [right]. As their names imply, the first one requires proving the left side of the disjunction, while the second requires proving its right side. Here is a trivial use... *) Lemma or_intro : forall A B : Prop, A -> A \/ B. Proof. intros A B HA. left. apply HA. Qed. (** ... and a slightly more interesting example requiring the use of both [left] and [right]: *) Lemma zero_or_succ : forall n : nat, n = 0 \/ n = S (pred n). Proof. intros [|n]. - left. reflexivity. - right. reflexivity. Qed. (** **** Exercise: 1 star (mult_eq_0) *) Lemma mult_eq_0 : forall n m, n * m = 0 -> n = 0 \/ m = 0. Proof. intros n m. destruct n. - intros. left. reflexivity. - intros. simpl in H. right. pose proof (and_exercise _ _ H) as H0. destruct H0. assumption. Qed. (** [] *) Lemma or_intro_r : forall A B : Prop, B -> A \/ B. Proof. intros A B HB. right. apply HB. Qed. (** **** Exercise: 1 star (or_commut) *) Theorem or_commut : forall P Q : Prop, P \/ Q -> Q \/ P. Proof. intros P Q []. - intros. apply (or_intro_r _ _ H). - intros. apply (or_intro _ _ H). Qed. (** [] *) (* ================================================================= *) (** ** Falsehood and Negation *) (** So far, we have mostly been concerned with proving that certain things are _true_ -- addition is commutative, appending lists is associative, etc. Of course, we may also be interested in _negative_ results, showing that certain propositions are _not_ true. In Coq, such negative statements are expressed with the negation operator [~]. To see how negation works, recall the discussion of the _principle of explosion_ from the [Tactics] chapter; it asserts that, if we assume a contradiction, then any other proposition can be derived. Following this intuition, we could define [~ P] ("not [P]") as [forall Q, P -> Q]. Coq actually makes a slightly different choice, defining [~ P] as [P -> False], where [False] is a _particular_ contradictory proposition defined in the standard library. *) Module MyNot. Definition not (P:Prop) := P -> False. Notation "~ x" := (not x) : type_scope. Check not. (* ===> Prop -> Prop *) End MyNot. (** Since [False] is a contradictory proposition, the principle of explosion also applies to it. If we get [False] into the proof context, we can [destruct] it to complete any goal: *) Theorem ex_falso_quodlibet : forall (P:Prop), False -> P. Proof. (* WORKED IN CLASS *) intros P contra. destruct contra. Qed. (** The Latin _ex falso quodlibet_ means, literally, "from falsehood follows whatever you like"; this is another common name for the principle of explosion. *) (** **** Exercise: 2 stars, optional (not_implies_our_not) *) (** Show that Coq's definition of negation implies the intuitive one mentioned above: *) Fact not_implies_our_not : forall (P:Prop), ~ P -> (forall (Q:Prop), P -> Q). Proof. intros. unfold not in H. apply (ex_falso_quodlibet _ (H H0)). Qed. (** [] *) (** This is how we use [not] to state that [0] and [1] are different elements of [nat]: *) Theorem zero_not_one : ~(0 = 1). Proof. intros contra. inversion contra. Qed. (** Such inequality statements are frequent enough to warrant a special notation, [x <> y]: *) Check (0 <> 1). (* ===> Prop *) Theorem zero_not_one' : 0 <> 1. Proof. intros H. inversion H. Qed. (** It takes a little practice to get used to working with negation in Coq. Even though you can see perfectly well why a statement involving negation is true, it can be a little tricky at first to get things into the right configuration so that Coq can understand it! Here are proofs of a few familiar facts to get you warmed up. *) Theorem not_False : ~ False. Proof. unfold not. intros H. destruct H. Qed. Theorem contradiction_implies_anything : forall P Q : Prop, (P /\ ~P) -> Q. Proof. (* WORKED IN CLASS *) intros P Q [HP HNA]. unfold not in HNA. apply HNA in HP. destruct HP. Qed. Theorem double_neg : forall P : Prop, P -> ~~P. Proof. (* WORKED IN CLASS *) intros P H. unfold not. intros G. apply G. apply H. Qed. (** **** Exercise: 2 stars, advanced, recommended (double_neg_inf) *) (** Write an informal proof of [double_neg]: _Theorem_: [P] implies [~~P], for any proposition [P]. _Proof_: Since ~P expands to (P -> _|_) what we need to prove is H:P -> (G:P -> _|_) -> _|_ Since we assume H which is a proof of P, we can apply G to obtain _|_ and we're done. [] *) (** **** Exercise: 2 stars, recommended (contrapositive) *) Theorem contrapositive : forall P Q : Prop, (P -> Q) -> (~Q -> ~P). Proof. intros. unfold not in *. intros. apply (H0 (H H1)). Qed. (** [] *) (** **** Exercise: 1 star (not_both_true_and_false) *) Theorem not_both_true_and_false : forall P : Prop, ~ (P /\ ~P). Proof. unfold not. intros P []. intros. apply (H0 H). Qed. (** [] *) (** **** Exercise: 1 star, advanced (informal_not_PNP) *) (** Write an informal proof (in English) of the proposition [forall P : Prop, ~(P /\ ~P)]. *) (* We have to prove (P /\ (P -> _|_)) -> _|_. We can assume H:(P /\ (P -> _|_)). Using and elimination we can also assume H1:P and H2:P -> _|_. Applying H with H1 we get _|_ and we're done. *) (** [] *) (** Similarly, since inequality involves a negation, it requires a little practice to be able to work with it fluently. Here is one useful trick. If you are trying to prove a goal that is nonsensical (e.g., the goal state is [false = true]), apply [ex_falso_quodlibet] to change the goal to [False]. This makes it easier to use assumptions of the form [~P] that may be available in the context -- in particular, assumptions of the form [x<>y]. *) Theorem not_true_is_false : forall b : bool, b <> true -> b = false. Proof. intros [] H. - (* b = true *) unfold not in H. apply ex_falso_quodlibet. apply H. reflexivity. - (* b = false *) reflexivity. Qed. (** Since reasoning with [ex_falso_quodlibet] is quite common, Coq provides a built-in tactic, [exfalso], for applying it. *) Theorem not_true_is_false' : forall b : bool, b <> true -> b = false. Proof. intros [] H. - (* b = false *) unfold not in H. exfalso. (* <=== *) apply H. reflexivity. - (* b = true *) reflexivity. Qed. (* ================================================================= *) (** ** Truth *) (** Besides [False], Coq's standard library also defines [True], a proposition that is trivially true. To prove it, we use the predefined constant [I : True]: *) (* NOTE: Since I used I for the binary exercise, I need to qualify it. *) Lemma True_is_true : True. Proof. apply Logic.I. Qed. (** Unlike [False], which is used extensively, [True] is used quite rarely, since it is trivial (and therefore uninteresting) to prove as a goal, and it carries no useful information as a hypothesis. But it can be quite useful when defining complex [Prop]s using conditionals or as a parameter to higher-order [Prop]s. We will see some examples such uses of [True] later on. *) (* ================================================================= *) (** ** Logical Equivalence *) (** The handy "if and only if" connective, which asserts that two propositions have the same truth value, is just the conjunction of two implications. *) Module MyIff. Definition iff (P Q : Prop) := (P -> Q) /\ (Q -> P). Notation "P <-> Q" := (iff P Q) (at level 95, no associativity) : type_scope. End MyIff. Theorem iff_sym : forall P Q : Prop, (P <-> Q) -> (Q <-> P). Proof. (* WORKED IN CLASS *) intros P Q [HAB HBA]. split. - (* -> *) apply HBA. - (* <- *) apply HAB. Qed. Lemma not_true_iff_false : forall b, b <> true <-> b = false. Proof. (* WORKED IN CLASS *) intros b. split. - (* -> *) apply not_true_is_false. - (* <- *) intros H. rewrite H. intros H'. inversion H'. Qed. (** **** Exercise: 1 star, optional (iff_properties) *) (** Using the above proof that [<->] is symmetric ([iff_sym]) as a guide, prove that it is also reflexive and transitive. *) Theorem iff_refl : forall P : Prop, P <-> P. Proof. intros. unfold iff. split. - intros. assumption. - intros. assumption. Qed. Theorem iff_trans : forall P Q R : Prop, (P <-> Q) -> (Q <-> R) -> (P <-> R). Proof. unfold iff. intros P Q R [] []. intros. split. - intros. apply (H1 (H H3)). - intros. apply (H0 (H2 H3)). Qed. (** [] *) (** **** Exercise: 3 stars (or_distributes_over_and) *) Theorem or_distributes_over_and : forall P Q R : Prop, P \/ (Q /\ R) <-> (P \/ Q) /\ (P \/ R). Proof. unfold iff. intros. split. - intros []. intros. split. + apply (or_intro _ _ H). + apply (or_intro _ _ H). + destruct H. split. * apply (or_intro_r _ _ H). * apply (or_intro_r _ _ H0). - intros [ [] [] ]. + intros. left. assumption. + intros. left. assumption. + intros. left. assumption. + intros. right. apply (and_intro _ _ H H0). Qed. (** [] *) (** Some of Coq's tactics treat [iff] statements specially, avoiding the need for some low-level proof-state manipulation. In particular, [rewrite] and [reflexivity] can be used with [iff] statements, not just equalities. To enable this behavior, we need to import a special Coq library that allows rewriting with other formulas besides equality: *) Require Import Coq.Setoids.Setoid. (** Here is a simple example demonstrating how these tactics work with [iff]. First, let's prove a couple of basic iff equivalences: *) Lemma mult_0 : forall n m, n * m = 0 <-> n = 0 \/ m = 0. Proof. split. - apply mult_eq_0. - apply or_example. Qed. Lemma or_assoc : forall P Q R : Prop, P \/ (Q \/ R) <-> (P \/ Q) \/ R. Proof. intros P Q R. split. - intros [H | [H | H]]. + left. left. apply H. + left. right. apply H. + right. apply H. - intros [[H | H] | H]. + left. apply H. + right. left. apply H. + right. right. apply H. Qed. (** We can now use these facts with [rewrite] and [reflexivity] to give smooth proofs of statements involving equivalences. Here is a ternary version of the previous [mult_0] result: *) Lemma mult_0_3 : forall n m p, n * m * p = 0 <-> n = 0 \/ m = 0 \/ p = 0. Proof. intros n m p. rewrite mult_0. rewrite mult_0. rewrite or_assoc. reflexivity. Qed. (** The [apply] tactic can also be used with [<->]. When given an equivalence as its argument, [apply] tries to guess which side of the equivalence to use. *) Lemma apply_iff_example : forall n m : nat, n * m = 0 -> n = 0 \/ m = 0. Proof. intros n m H. apply mult_0. apply H. Qed. (* ================================================================= *) (** ** Existential Quantification *) (** Another important logical connective is _existential quantification_. To say that there is some [x] of type [T] such that some property [P] holds of [x], we write [exists x : T, P]. As with [forall], the type annotation [: T] can be omitted if Coq is able to infer from the context what the type of [x] should be. To prove a statement of the form [exists x, P], we must show that [P] holds for some specific choice of value for [x], known as the _witness_ of the existential. This is done in two steps: First, we explicitly tell Coq which witness [t] we have in mind by invoking the tactic [exists t]; then we prove that [P] holds after all occurrences of [x] are replaced by [t]. Here is an example: *) Lemma four_is_even : exists n : nat, 4 = n + n. Proof. exists 2. reflexivity. Qed. (** Conversely, if we have an existential hypothesis [exists x, P] in the context, we can destruct it to obtain a witness [x] and a hypothesis stating that [P] holds of [x]. *) Theorem exists_example_2 : forall n, (exists m, n = 4 + m) -> (exists o, n = 2 + o). Proof. intros n [m Hm]. exists (2 + m). apply Hm. Qed. (** **** Exercise: 1 star (dist_not_exists) *) (** Prove that "[P] holds for all [x]" implies "there is no [x] for which [P] does not hold." *) Theorem dist_not_exists : forall (X:Type) (P : X -> Prop), (forall x, P x) -> ~ (exists x, ~ P x). Proof. intros. unfold not. intros. destruct H0. apply (H0 (H x)). Qed. (** [] *) (** **** Exercise: 2 stars (dist_exists_or) *) (** Prove that existential quantification distributes over disjunction. *) Theorem dist_exists_or : forall (X:Type) (P Q : X -> Prop), (exists x, P x \/ Q x) <-> (exists x, P x) \/ (exists x, Q x). Proof. intros. split. - intros. destruct H. destruct H. + left. exists x. assumption. + right. exists x. assumption. - intros. destruct H. + destruct H. exists x. left. assumption. + destruct H. exists x. right. assumption. Qed. (** [] *) (* ################################################################# *) (** * Programming with Propositions *) (** The logical connectives that we have seen provide a rich vocabulary for defining complex propositions from simpler ones. To illustrate, let's look at how to express the claim that an element [x] occurs in a list [l]. Notice that this property has a simple recursive structure: - If [l] is the empty list, then [x] cannot occur on it, so the property "[x] appears in [l]" is simply false. - Otherwise, [l] has the form [x' :: l']. In this case, [x] occurs in [l] if either it is equal to [x'] or it occurs in [l']. *) (** We can translate this directly into a straightforward Coq function, [In]. (It can also be found in the Coq standard library.) *) Require Import Coq.Lists.List. Import ListNotations. Open Scope list_scope. Fixpoint In {A : Type} (x : A) (l : list A) : Prop := match l with | [] => False | x' :: l' => x' = x \/ In x l' end. (** When [In] is applied to a concrete list, it expands into a concrete sequence of nested conjunctions. *) Example In_example_1 : In 4 [3; 4; 5]. Proof. simpl. right. left. reflexivity. Qed. Example In_example_2 : forall n, In n [2; 4] -> exists n', n = 2 * n'. Proof. simpl. intros n [H | [H | []]]. - exists 1. rewrite <- H. reflexivity. - exists 2. rewrite <- H. reflexivity. Qed. (** (Notice the use of the empty pattern to discharge the last case _en passant_.) *) (** We can also prove more generic, higher-level lemmas about [In]. Note, in the next, how [In] starts out applied to a variable and only gets expanded when we do case analysis on this variable: *) Lemma In_map : forall (A B : Type) (f : A -> B) (l : list A) (x : A), In x l -> In (f x) (map f l). Proof. intros A B f l x. induction l as [|x' l' IHl']. - (* l = nil, contradiction *) simpl. intros []. - (* l = x' :: l' *) simpl. intros [H | H]. + rewrite H. left. reflexivity. + right. apply IHl'. apply H. Qed. (** This way of defining propositions, though convenient in some cases, also has some drawbacks. In particular, it is subject to Coq's usual restrictions regarding the definition of recursive functions, e.g., the requirement that they be "obviously terminating." In the next chapter, we will see how to define propositions _inductively_, a different technique with its own set of strengths and limitations. *) (** **** Exercise: 2 stars (In_map_iff) *) Lemma In_map_iff : forall (A B : Type) (f : A -> B) (l : list A) (y : B), In y (map f l) <-> exists x, f x = y /\ In x l. Proof. induction l. - simpl. intros. unfold iff. split. + intros. contradict H. + intros. destruct H. destruct H. assumption. - simpl. intros. unfold iff. split. + intros. destruct H. * {exists x. split. - assumption. - left. reflexivity. } * { pose proof (IHl y). rewrite H0 in H. destruct H. - exists x0. split. + destruct H. assumption. + destruct H. right. assumption. } + intros. destruct H. * { destruct H. destruct H0. - left. rewrite <- H0 in H. assumption. - right. pose proof (IHl y). rewrite H1. exists x0. split. + assumption. + assumption. } Qed. (** [] *) (** **** Exercise: 2 stars (in_app_iff) *) Lemma in_app_iff : forall A l l' (a:A), In a (l++l') <-> In a l \/ In a l'. Proof. intros. split. - generalize dependent l'. induction l. + simpl. intros. right. assumption. + simpl. intros. destruct H. * left. left. assumption. * rewrite <- or_assoc. right. apply (IHl _ H). - intros. generalize dependent l'. induction l. + simpl. intros. destruct H. * contradiction H. * assumption. + simpl. intros. rewrite <- or_assoc in H. destruct H. * left. assumption. * right. apply (IHl _ H). Qed. (** [] *) (** **** Exercise: 3 stars (All) *) (** Recall that functions returning propositions can be seen as _properties_ of their arguments. For instance, if [P] has type [nat -> Prop], then [P n] states that property [P] holds of [n]. Drawing inspiration from [In], write a recursive function [All] stating that some property [P] holds of all elements of a list [l]. To make sure your definition is correct, prove the [All_In] lemma below. (Of course, your definition should _not_ just restate the left-hand side of [All_In].) *) Fixpoint All {T} (P : T -> Prop) (l : list T) : Prop := match l with | [] => True | x :: xs => P x /\ All P xs end. Lemma All_In : forall T (P : T -> Prop) (l : list T), (forall x, In x l -> P x) <-> All P l. Proof. intros. induction l. - simpl. unfold iff. split. + intros. apply Logic.I. + intros. contradict H0. - simpl. split. + intros. split. * apply H. left. reflexivity. * apply IHl. intros. apply H. right. assumption. + intros. destruct H. destruct H0. * rewrite <- H0. assumption. * rewrite <- IHl in H1. apply H1. assumption. Qed. (** [] *) (** **** Exercise: 3 stars (combine_odd_even) *) (** Complete the definition of the [combine_odd_even] function below. It takes as arguments two properties of numbers, [Podd] and [Peven], and it should return a property [P] such that [P n] is equivalent to [Podd n] when [n] is odd and equivalent to [Peven n] otherwise. *) Definition combine_odd_even (Podd Peven : nat -> Prop) : nat -> Prop := fun (n:nat) => if (oddb n) then Podd n else Peven n. (** To test your definition, prove the following facts: *) Theorem combine_odd_even_intro : forall (Podd Peven : nat -> Prop) (n : nat), (oddb n = true -> Podd n) -> (oddb n = false -> Peven n) -> combine_odd_even Podd Peven n. Proof. intros. simpl. unfold combine_odd_even. destruct (oddb n). - apply H. reflexivity. - apply H0. reflexivity. Qed. Theorem combine_odd_even_elim_odd : forall (Podd Peven : nat -> Prop) (n : nat), combine_odd_even Podd Peven n -> oddb n = true -> Podd n. Proof. intros. unfold combine_odd_even in H. rewrite H0 in H. assumption. Qed. Theorem combine_odd_even_elim_even : forall (Podd Peven : nat -> Prop) (n : nat), combine_odd_even Podd Peven n -> oddb n = false -> Peven n. Proof. intros. unfold combine_odd_even in H. rewrite H0 in H. assumption. Qed. (** [] *) (* ################################################################# *) (** * Applying Theorems to Arguments *) (** One feature of Coq that distinguishes it from many other proof assistants is that it treats _proofs_ as first-class objects. There is a great deal to be said about this, but it is not necessary to understand it in detail in order to use Coq. This section gives just a taste, while a deeper exploration can be found in the optional chapters [ProofObjects] and [IndPrinciples]. *) (** We have seen that we can use the [Check] command to ask Coq to print the type of an expression. We can also use [Check] to ask what theorem a particular identifier refers to. *) Check plus_comm. (* ===> forall n m : nat, n + m = m + n *) (** Coq prints the _statement_ of the [plus_comm] theorem in the same way that it prints the _type_ of any term that we ask it to [Check]. Why? The reason is that the identifier [plus_comm] actually refers to a _proof object_ -- a data structure that represents a logical derivation establishing of the truth of the statement [forall n m : nat, n + m = m + n]. The type of this object _is_ the statement of the theorem that it is a proof of. Intuitively, this makes sense because the statement of a theorem tells us what we can use that theorem for, just as the type of a computational object tells us what we can do with that object -- e.g., if we have a term of type [nat -> nat -> nat], we can give it two [nat]s as arguments and get a [nat] back. Similarly, if we have an object of type [n = m -> n + n = m + m] and we provide it an "argument" of type [n = m], we can derive [n + n = m + m]. Operationally, this analogy goes even further: by applying a theorem, as if it were a function, to hypotheses with matching types, we can specialize its result without having to resort to intermediate assertions. For example, suppose we wanted to prove the following result: *) Lemma plus_comm3 : forall n m p, n + (m + p) = (p + m) + n. (** It appears at first sight that we ought to be able to prove this by rewriting with [plus_comm] twice to make the two sides match. The problem, however, is that the second [rewrite] will undo the effect of the first. *) Proof. intros n m p. rewrite plus_comm. rewrite plus_comm. (* We are back where we started... *) (** One simple way of fixing this problem, using only tools that we already know, is to use [assert] to derive a specialized version of [plus_comm] that can be used to rewrite exactly where we want. *) rewrite plus_comm. assert (H : m + p = p + m). { rewrite plus_comm. reflexivity. } rewrite H. reflexivity. Qed. (** A more elegant alternative is to apply [plus_comm] directly to the arguments we want to instantiate it with, in much the same way as we apply a polymorphic function to a type argument. *) Lemma plus_comm3_take2 : forall n m p, n + (m + p) = (p + m) + n. Proof. intros n m p. rewrite plus_comm. rewrite (plus_comm m). reflexivity. Qed. (** You can "use theorems as functions" in this way with almost all tactics that take a theorem name as an argument. Note also that theorem application uses the same inference mechanisms as function application; thus, it is possible, for example, to supply wildcards as arguments to be inferred, or to declare some hypotheses to a theorem as implicit by default. These features are illustrated in the proof below. *) Example lemma_application_ex : forall {n : nat} {ns : list nat}, In n (map (fun m => m * 0) ns) -> n = 0. Proof. intros n ns H. destruct (proj1 _ _ (In_map_iff _ _ _ _ _) H) as [m [Hm _]]. rewrite mult_0_r in Hm. rewrite <- Hm. reflexivity. Qed. (** We will see many more examples of the idioms from this section in later chapters. *) (* ################################################################# *) (** * Coq vs. Set Theory *) (** Coq's logical core, the _Calculus of Inductive Constructions_, differs in some important ways from other formal systems that are used by mathematicians for writing down precise and rigorous proofs. For example, in the most popular foundation for mainstream paper-and-pencil mathematics, Zermelo-Fraenkel Set Theory (ZFC), a mathematical object can potentially be a member of many different sets; a term in Coq's logic, on the other hand, is a member of at most one type. This difference often leads to slightly different ways of capturing informal mathematical concepts, though these are by and large quite natural and easy to work with. For example, instead of saying that a natural number [n] belongs to the set of even numbers, we would say in Coq that [ev n] holds, where [ev : nat -> Prop] is a property describing even numbers. However, there are some cases where translating standard mathematical reasoning into Coq can be either cumbersome or sometimes even impossible, unless we enrich the core logic with additional axioms. We conclude this chapter with a brief discussion of some of the most significant differences between the two worlds. *) (** ** Functional Extensionality The equality assertions that we have seen so far mostly have concerned elements of inductive types ([nat], [bool], etc.). But since Coq's equality operator is polymorphic, these are not the only possibilities -- in particular, we can write propositions claiming that two _functions_ are equal to each other: *) Example function_equality_ex : plus 3 = plus (pred 4). Proof. reflexivity. Qed. (** In common mathematical practice, two functions [f] and [g] are considered equal if they produce the same outputs: (forall x, f x = g x) -> f = g This is known as the principle of _functional extensionality_. Informally speaking, an "extensional property" is one that pertains to an object's observable behavior. Thus, functional extensionality simply means that a function's identity is completely determined by what we can observe from it -- i.e., in Coq terms, the results we obtain after applying it. Functional extensionality is not part of Coq's basic axioms: the only way to show that two functions are equal is by simplification (as we did in the proof of [function_equality_ex]). But we can add it to Coq's core logic using the [Axiom] command. *) Axiom functional_extensionality : forall {X Y: Type} {f g : X -> Y}, (forall (x:X), f x = g x) -> f = g. (** Using [Axiom] has the same effect as stating a theorem and skipping its proof using [Admitted], but it alerts the reader that this isn't just something we're going to come back and fill in later! We can now invoke functional extensionality in proofs: *) Lemma plus_comm_ext : plus = fun n m => m + n. Proof. apply functional_extensionality. intros n. apply functional_extensionality. intros m. apply plus_comm. Qed. (** Naturally, we must be careful when adding new axioms into Coq's logic, as they may render it inconsistent -- that is, it may become possible to prove every proposition, including [False]! Unfortunately, there is no simple way of telling whether an axiom is safe: hard work is generally required to establish the consistency of any particular combination of axioms. Fortunately, it is known that adding functional extensionality, in particular, _is_ consistent. Note that it is possible to check whether a particular proof relies on any additional axioms, using the [Print Assumptions] command. For instance, if we run it on [plus_comm_ext], we see that it uses [functional_extensionality]: *) Print Assumptions plus_comm_ext. (* ===> Axioms: functional_extensionality : forall (X Y : Type) (f g : X -> Y), (forall x : X, f x = g x) -> f = g *) (** **** Exercise: 5 stars (tr_rev) *) (** One problem with the definition of the list-reversing function [rev] that we have is that it performs a call to [app] on each step; running [app] takes time asymptotically linear in the size of the list, which means that [rev] has quadratic running time. We can improve this with the following definition: *) Fixpoint rev_append {X} (l1 l2 : list X) : list X := match l1 with | [] => l2 | x :: l1' => rev_append l1' (x :: l2) end. Definition tr_rev {X} (l : list X) : list X := rev_append l []. (** This version is said to be _tail-recursive_, because the recursive call to the function is the last operation that needs to be performed (i.e., we don't have to execute [++] after the recursive call); a decent compiler will generate very efficient code in this case. Prove that both definitions are indeed equivalent. *) Lemma rev_append_app : forall {X : Type} (l1 : list X) (l2 : list X), rev_append l1 l2 = rev_append l1 [] ++ l2. Proof. induction l1. - reflexivity. - simpl. intros. rewrite (IHl1 (x :: l2)). rewrite (IHl1 [x]). rewrite <- app_assoc. reflexivity. Qed. Lemma tr_rev_correct : forall X, @tr_rev X = @rev X. intros. apply functional_extensionality. intros l. induction l. - reflexivity. - simpl. rewrite <- IHl. unfold tr_rev. simpl. rewrite rev_append_app. reflexivity. Qed. (** [] *) (* ================================================================= *) (** ** Propositions and Booleans *) (** We've seen that Coq has two different ways of encoding logical facts: with _booleans_ (of type [bool]), and with _propositions_ (of type [Prop]). For instance, to claim that a number [n] is even, we can say either (1) that [evenb n] returns [true] or (2) that there exists some [k] such that [n = double k]. Indeed, these two notions of evenness are equivalent, as can easily be shown with a couple of auxiliary lemmas (one of which is left as an exercise). We often say that the boolean [evenb n] _reflects_ the proposition [exists k, n = double k]. *) Theorem evenb_double : forall k, evenb (double k) = true. Proof. intros k. induction k as [|k' IHk']. - reflexivity. - simpl. apply IHk'. Qed. (** **** Exercise: 3 stars (evenb_double_conv) *) Theorem evenb_double_conv : forall n, exists k, n = if evenb n then double k else S (double k). Proof. intros. induction n. - simpl. exists 0. reflexivity. - destruct IHn. destruct (evenb n). + rewrite evenb_S. rewrite H. exists x. rewrite evenb_double. simpl. reflexivity. + rewrite H. simpl. rewrite evenb_double. exists (S x). reflexivity. Qed. (** [] *) Theorem even_bool_prop : forall n, evenb n = true <-> exists k, n = double k. Proof. intros n. split. - intros H. destruct (evenb_double_conv n) as [k Hk]. rewrite Hk. rewrite H. exists k. reflexivity. - intros [k Hk]. rewrite Hk. apply evenb_double. Qed. (** Similarly, to state that two numbers [n] and [m] are equal, we can say either (1) that [beq_nat n m] returns [true] or (2) that [n = m]. These two notions are equivalent. *) Theorem beq_nat_true_iff : forall n1 n2 : nat, beq_nat n1 n2 = true <-> n1 = n2. Proof. intros n1 n2. split. - apply beq_nat_true. - intros H. rewrite H. rewrite <- beq_nat_refl. reflexivity. Qed. (** However, while the boolean and propositional formulations of a claim are equivalent from a purely logical perspective, we have also seen that they need not be equivalent _operationally_. Equality provides an extreme example: knowing that [beq_nat n m = true] is generally of little help in the middle of a proof involving [n] and [m]; however, if we convert the statement to the equivalent form [n = m], we can rewrite with it. The case of even numbers is also interesting. Recall that, when proving the backwards direction of [even_bool_prop] ([evenb_double], going from the propositional to the boolean claim), we used a simple induction on [k]). On the other hand, the converse (the [evenb_double_conv] exercise) required a clever generalization, since we can't directly prove [(exists k, n = double k) -> evenb n = true]. For these examples, the propositional claims were more useful than their boolean counterparts, but this is not always the case. For instance, we cannot test whether a general proposition is true or not in a function definition; as a consequence, the following code fragment is rejected: *) Fail Definition is_even_prime n := if n = 2 then true else false. (** Coq complains that [n = 2] has type [Prop], while it expects an elements of [bool] (or some other inductive type with two elements). The reason for this error message has to do with the _computational_ nature of Coq's core language, which is designed so that every function that it can express is computable and total. One reason for this is to allow the extraction of executable programs from Coq developments. As a consequence, [Prop] in Coq does _not_ have a universal case analysis operation telling whether any given proposition is true or false, since such an operation would allow us to write non-computable functions. Although general non-computable properties cannot be phrased as boolean computations, it is worth noting that even many _computable_ properties are easier to express using [Prop] than [bool], since recursive function definitions are subject to significant restrictions in Coq. For instance, the next chapter shows how to define the property that a regular expression matches a given string using [Prop]. Doing the same with [bool] would amount to writing a regular expression matcher, which would be more complicated, harder to understand, and harder to reason about. Conversely, an important side benefit of stating facts using booleans is enabling some proof automation through computation with Coq terms, a technique known as _proof by reflection_. Consider the following statement: *) Example even_1000 : exists k, 1000 = double k. (** The most direct proof of this fact is to give the value of [k] explicitly. *) Proof. exists 500. reflexivity. Qed. (** On the other hand, the proof of the corresponding boolean statement is even simpler: *) Example even_1000' : evenb 1000 = true. Proof. reflexivity. Qed. (** What is interesting is that, since the two notions are equivalent, we can use the boolean formulation to prove the other one without mentioning 500 explicitly: *) Example even_1000'' : exists k, 1000 = double k. Proof. apply even_bool_prop. reflexivity. Qed. (** Although we haven't gained much in terms of proof size in this case, larger proofs can often be made considerably simpler by the use of reflection. As an extreme example, the Coq proof of the famous _4-color theorem_ uses reflection to reduce the analysis of hundreds of different cases to a boolean computation. We won't cover reflection in great detail, but it serves as a good example showing the complementary strengths of booleans and general propositions. *) (** **** Exercise: 2 stars (logical_connectives) *) (** The following lemmas relate the propositional connectives studied in this chapter to the corresponding boolean operations. *) Lemma andb_true_iff : forall b1 b2:bool, b1 && b2 = true <-> b1 = true /\ b2 = true. Proof. intros. split. - intros. split. + rewrite andb_commutative in H. apply (andb_true_elim2 _ _ H). + apply (andb_true_elim2 _ _ H). - intros. destruct H. rewrite H. rewrite H0. reflexivity. Qed. Lemma orb_true_iff : forall b1 b2, b1 || b2 = true <-> b1 = true \/ b2 = true. Proof. intros. split. - intros. destruct b1. + left. reflexivity. + destruct b2. * right. reflexivity. * inversion H. - intros. destruct H. + rewrite H. reflexivity. + rewrite H. destruct b1. * reflexivity. * reflexivity. Qed. (** [] *) (** **** Exercise: 1 star (beq_nat_false_iff) *) (** The following theorem is an alternate "negative" formulation of [beq_nat_true_iff] that is more convenient in certain situations (we'll see examples in later chapters). *) Theorem beq_nat_false_iff : forall x y : nat, beq_nat x y = false <-> x <> y. Proof. intros. split. - intros. unfold not. intros. rewrite H0 in H. assert (forall n, beq_nat n n = true). + induction n. * reflexivity. * simpl. rewrite IHn. reflexivity. + rewrite (H1 y) in H. inversion H. - unfold not. intros. destruct (beq_nat x y) eqn:H0. + pose proof (beq_nat_true x y H0). contradiction (H H1). + reflexivity. Qed. (** [] *) (** **** Exercise: 3 stars (beq_list) *) (** Given a boolean operator [beq] for testing equality of elements of some type [A], we can define a function [beq_list beq] for testing equality of lists with elements in [A]. Complete the definition of the [beq_list] function below. To make sure that your definition is correct, prove the lemma [beq_list_true_iff]. *) Fixpoint beq_list {A} (beq : A -> A -> bool) (l1 l2 : list A) : bool := match l1, l2 with | [], [] => true | x :: xs, y :: ys => beq x y && beq_list beq xs ys | _ , _ => false end. Lemma beq_list_true_iff : forall A (beq : A -> A -> bool), (forall a1 a2, beq a1 a2 = true <-> a1 = a2) -> forall l1 l2, beq_list beq l1 l2 = true <-> l1 = l2. Proof. intros A beq H l1. unfold iff. induction l1. - split. + intros. destruct l2. * reflexivity. * inversion H0. + intros. destruct l2. * reflexivity. * inversion H0. - split. + intros. destruct l2. * inversion H0. * simpl in H0. rewrite andb_commutative in H0. pose proof (andb_true_elim2 _ _ H0). rewrite (H x a) in H1. rewrite <- H1. apply f_equal. rewrite andb_commutative in H0. pose proof (andb_true_elim2 _ _ H0). pose proof (IHl1 l2) as H3. destruct H3. apply (H3 H2). + intros. rewrite <- H0. pose proof IHl1 (l1) as H1. destruct H1. simpl. rewrite H2. * {assert (beq x x = true). - rewrite H. reflexivity. - rewrite H3. reflexivity. } * reflexivity. Qed. (** [] *) (** **** Exercise: 2 stars, recommended (All_forallb) *) (** Recall the function [forallb], from the exercise [forall_exists_challenge] in chapter [Tactics]: *) Fixpoint forallb {X : Type} (test : X -> bool) (l : list X) : bool := match l with | [] => true | x :: l' => andb (test x) (forallb test l') end. (** Prove the theorem below, which relates [forallb] to the [All] property of the above exercise. *) Theorem forallb_true_iff : forall X test (l : list X), forallb test l = true <-> All (fun x => test x = true) l. Proof. intros. induction l. - split. + intros. reflexivity. + intros. reflexivity. - split. + simpl. intros. split. * rewrite andb_commutative in H. apply (andb_true_elim2 _ _ H). * pose proof (andb_true_elim2 _ _ H). rewrite IHl in H0. apply H0. + simpl. intros. destruct H. rewrite H. rewrite IHl. apply H0. Qed. (** Are there any important properties of the function [forallb] which are not captured by your specification? *) (* FILL IN HERE *) (** [] *) (* ================================================================= *) (** ** Classical vs. Constructive Logic *) (** We have seen that it is not possible to test whether or not a proposition [P] holds while defining a Coq function. You may be surprised to learn that a similar restriction applies to _proofs_! In other words, the following intuitive reasoning principle is not derivable in Coq: *) Definition excluded_middle := forall P : Prop, P \/ ~ P. (** To understand operationally why this is the case, recall that, to prove a statement of the form [P \/ Q], we use the [left] and [right] tactics, which effectively require knowing which side of the disjunction holds. However, the universally quantified [P] in [excluded_middle] is an _arbitrary_ proposition, which we know nothing about. We don't have enough information to choose which of [left] or [right] to apply, just as Coq doesn't have enough information to mechanically decide whether [P] holds or not inside a function. On the other hand, if we happen to know that [P] is reflected in some boolean term [b], then knowing whether it holds or not is trivial: we just have to check the value of [b]. This leads to the following theorem: *) Theorem restricted_excluded_middle : forall P b, (P <-> b = true) -> P \/ ~ P. Proof. intros P [] H. - left. rewrite H. reflexivity. - right. rewrite H. intros contra. inversion contra. Qed. (** In particular, the excluded middle is valid for equations [n = m], between natural numbers [n] and [m]. You may find it strange that the general excluded middle is not available by default in Coq; after all, any given claim must be either true or false. Nonetheless, there is an advantage in not assuming the excluded middle: statements in Coq can make stronger claims than the analogous statements in standard mathematics. Notably, if there is a Coq proof of [exists x, P x], it is possible to explicitly exhibit a value of [x] for which we can prove [P x] -- in other words, every proof of existence is necessarily _constructive_. Because of this, logics like Coq's, which do not assume the excluded middle, are referred to as _constructive logics_. More conventional logical systems such as ZFC, in which the excluded middle does hold for arbitrary propositions, are referred to as _classical_. The following example illustrates why assuming the excluded middle may lead to non-constructive proofs: *) (** _Claim_: There exist irrational numbers [a] and [b] such that [a ^ b] is rational. _Proof_: It is not difficult to show that [sqrt 2] is irrational. If [sqrt 2 ^ sqrt 2] is rational, it suffices to take [a = b = sqrt 2] and we are done. Otherwise, [sqrt 2 ^ sqrt 2] is irrational. In this case, we can take [a = sqrt 2 ^ sqrt 2] and [b = sqrt 2], since [a ^ b = sqrt 2 ^ (sqrt 2 * sqrt 2) = sqrt 2 ^ 2 = 2]. [] Do you see what happened here? We used the excluded middle to consider separately the cases where [sqrt 2 ^ sqrt 2] is rational and where it is not, without knowing which one actually holds! Because of that, we wind up knowing that such [a] and [b] exist but we cannot determine what their actual values are (at least, using this line of argument). As useful as constructive logic is, it does have its limitations: There are many statements that can easily be proven in classical logic but that have much more complicated constructive proofs, and there are some that are known to have no constructive proof at all! Fortunately, like functional extensionality, the excluded middle is known to be compatible with Coq's logic, allowing us to add it safely as an axiom. However, we will not need to do so in this book: the results that we cover can be developed entirely within constructive logic at negligible extra cost. It takes some practice to understand which proof techniques must be avoided in constructive reasoning, but arguments by contradiction, in particular, are infamous for leading to non-constructive proofs. Here's a typical example: suppose that we want to show that there exists [x] with some property [P], i.e., such that [P x]. We start by assuming that our conclusion is false; that is, [~ exists x, P x]. From this premise, it is not hard to derive [forall x, ~ P x]. If we manage to show that this intermediate fact results in a contradiction, we arrive at an existence proof without ever exhibiting a value of [x] for which [P x] holds! The technical flaw here, from a constructive standpoint, is that we claimed to prove [exists x, P x] using a proof of [~ ~ exists x, P x]. However, allowing ourselves to remove double negations from arbitrary statements is equivalent to assuming the excluded middle, as shown in one of the exercises below. Thus, this line of reasoning cannot be encoded in Coq without assuming additional axioms. *) (** **** Exercise: 3 stars (excluded_middle_irrefutable) *) (** The consistency of Coq with the general excluded middle axiom requires complicated reasoning that cannot be carried out within Coq itself. However, the following theorem implies that it is always safe to assume a decidability axiom (i.e., an instance of excluded middle) for any _particular_ Prop [P]. Why? Because we cannot prove the negation of such an axiom; if we could, we would have both [~ (P \/ ~P)] and [~ ~ (P \/ ~P)], a contradiction. *) Theorem excluded_middle_irrefutable: forall (P:Prop), ~ ~ (P \/ ~ P). Proof. unfold not. intros. apply H. right. intros. apply H. apply (or_intro _ _ H0). Qed. (** [] *) (** **** Exercise: 3 stars, optional (not_exists_dist) *) (** It is a theorem of classical logic that the following two assertions are equivalent: ~ (exists x, ~ P x) forall x, P x The [dist_not_exists] theorem above proves one side of this equivalence. Interestingly, the other direction cannot be proved in constructive logic. Your job is to show that it is implied by the excluded middle. *) Theorem not_exists_dist : excluded_middle -> forall (X:Type) (P : X -> Prop), ~ (exists x, ~ P x) -> (forall x, P x). Proof. intros. unfold excluded_middle in H. unfold not in H0. destruct (H (P x)). - apply H1. - unfold not in H1. exfalso. apply H0. exists x. apply H1. Qed. (** [] *) (** **** Exercise: 5 stars, advanced, optional (classical_axioms) *) (** For those who like a challenge, here is an exercise taken from the Coq'Art book by Bertot and Casteran (p. 123). Each of the following four statements, together with [excluded_middle], can be considered as characterizing classical logic. We can't prove any of them in Coq, but we can consistently add any one of them as an axiom if we wish to work in classical logic. Prove that all five propositions (these four plus [excluded_middle]) are equivalent. *) Definition peirce := forall P Q: Prop, ((P->Q)->P)->P. Definition double_negation_elimination := forall P:Prop, ~~P -> P. Definition de_morgan_not_and_not := forall P Q:Prop, ~(~P /\ ~Q) -> P\/Q. Definition implies_to_or := forall P Q:Prop, (P->Q) -> (~P\/Q). Theorem em_peirce : excluded_middle -> peirce. Proof. unfold excluded_middle. unfold peirce. intros. unfold not in H. destruct (H P). - assumption. - apply H0. intros. exfalso. apply H1. apply H2. Qed. Theorem peirce_dne : peirce -> double_negation_elimination. Proof. unfold peirce. unfold double_negation_elimination. intros. unfold not in H0. apply (H P False). intros. exfalso. apply H0. intros. apply (H1 H2). Qed. Theorem dne_de_morgan : double_negation_elimination -> de_morgan_not_and_not. Proof. unfold double_negation_elimination. unfold de_morgan_not_and_not. unfold not. intros. apply H. intros. apply H0. split. + intros. apply H1. left. assumption. + intros. apply H1. right. assumption. Qed. Theorem de_morgan_implies_to_or : de_morgan_not_and_not -> implies_to_or. Proof. unfold de_morgan_not_and_not. unfold implies_to_or. unfold not. intros. apply H. intros. destruct H1. apply H1. intros. apply H2. apply (H0 H3). Qed. Theorem implies_to_or_excluded_middle : implies_to_or -> excluded_middle. Proof. unfold implies_to_or. unfold excluded_middle. unfold not. intros. apply or_commut. apply H. intros. assumption. Qed. (** [] *) (** $Date: 2015-08-11 12:03:04 -0400 (Tue, 11 Aug 2015) $ *)
# These test cases check that interweave # works for a variety of situations a <- 1 # Comment after an expression b <- 2 { a b } # Here is a comment which should be followed # by two new lines { print(a) # comment in a block print(b) } a; b a; b # Comment
You can upload up to 12 photos with us. Use a high resolution - our software will resize them appropriately. Your photos should be a JPEG, GIF or PNG format. These are the only formats supported on the internet. You cannot upload photos inside a Microsoft Word, PDF or other kind of document. You can upload all the photos at the same time during the process of creating your advert. If you do not have your photos ready now, you can still create your advert and add the photos at any point in the future. You are also able to add/amend the photos at any point in the future after the advert is live. Hand held cameras are great for taking spur of the moment pictures, but a tripod will give you the stability to take clearer, sharper photographs. Even during the day, having all the lights on in your home will instantly make it look warmer and more appealing. Dark corners don’t do your home any favours online, but simple lighting equipment will help you illuminate them. A flash will help, as will a reflector and even a light stand. Sometimes called staging, preparing a room is a way of showing how best it can be used. This is very often done by temporarily repositioning furniture in a room and putting lamps on tables and flowers in vases, or setting a table for dinner. To prevent your pictures looking wonky, use a bubble spirit level to ensure your camera is perfectly angled for each room. Getting up a dawn isn’t everyone’s idea of fun, but it’s the ideal time of day to get the best photographs of the outside of a property: dawn light is better and there are fewer people around. At different times of the day, and at different times of year, the light will change how your house looks. Take some time to stand outside and see how it looks on different days. Today processing is a term for how the image is put through photography software before it is ready to be used. This helps to soften, sharpen and generally tidy up any imperfections. There are photography courses run at adult education centres all over the country, and are the best place to start learning about taking better pictures. Hiring a professional is very cost effective. They are not expensive and can make the difference between the house selling/renting quickly or not. If you’re thinking of renting your property, then with a one-time investment in professional photographs, you can re-use them each time you come to let the property. Contact us if you'd like a quote.