text
stringlengths 0
3.34M
|
---|
[STATEMENT]
lemma supp_set_elem_finite:
assumes "finite S"
and "(m::'a::fs) \<in> S"
and "y \<in> supp m"
shows "y \<in> supp S"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. y \<in> supp S
[PROOF STEP]
using assms supp_of_finite_sets
[PROOF STATE]
proof (prove)
using this:
finite S
m \<in> S
y \<in> supp m
finite ?S \<Longrightarrow> supp ?S = \<Union> (supp ` ?S)
goal (1 subgoal):
1. y \<in> supp S
[PROOF STEP]
by auto |
theory Chap3_3
imports Main Chap3_1 Chap3_2
begin
datatype instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"
fun exec1 :: "instr \<Rightarrow> state \<Rightarrow> stack \<Rightarrow> stack" where
"exec1 (LOADI n) _ stk = n#stk"
| "exec1 (LOAD x) s stk = (s x)#stk"
| "exec1 ADD s (x#y#stk) = (y+x)#stk"
fun exec :: "instr list \<Rightarrow> state \<Rightarrow> stack \<Rightarrow> stack" where
"exec [] _ stk = stk"
| "exec (i#is) s stk = exec is s (exec1 i s stk)"
definition exec' :: "instr list \<Rightarrow> state \<Rightarrow> stack \<Rightarrow> stack" where
"exec' is s stk = fold (\<lambda>i stk'. exec1 i s stk') is stk"
definition exec'' :: "instr list \<Rightarrow> state \<Rightarrow> stack \<Rightarrow> stack" where
"exec'' is s stk = foldr (\<lambda>i stk'. exec1 i s stk') is stk"
lemma "exec is s stk = exec' is s stk"
apply (induction "is" arbitrary: stk)
unfolding exec'_def by simp+
lemma "exec is s stk = exec'' is s stk"
oops
fun comp :: "aexp \<Rightarrow> instr list" where
"comp (N n) = [LOADI n]"
| "comp (V x) = [LOAD x]"
| "comp (Plus e1 e2) = comp e1 @ comp e2 @ [ADD]"
lemma exec_concat:
"exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
apply (induction is1 arbitrary: stk)
by simp+
lemma "exec (comp a) s stk = aval a s # stk"
apply (induction a arbitrary: stk)
apply simp+
using exec_concat by simp
end |
From Hammer Require Import Hammer.
Require Import Decidable PeanoNat.
Require Eqdep_dec.
Local Open Scope nat_scope.
Implicit Types m n x y : nat.
Theorem O_or_S n : {m : nat | S m = n} + {0 = n}.
Proof. hammer_hook "Peano_dec" "Peano_dec.O_or_S".
induction n.
- now right.
- left; exists n; auto.
Defined.
Notation eq_nat_dec := Nat.eq_dec (compat "8.4").
Hint Resolve O_or_S eq_nat_dec: arith.
Theorem dec_eq_nat n m : decidable (n = m).
Proof. hammer_hook "Peano_dec" "Peano_dec.dec_eq_nat".
elim (Nat.eq_dec n m); [left|right]; trivial.
Defined.
Definition UIP_nat:= Eqdep_dec.UIP_dec Nat.eq_dec.
Import EqNotations.
Lemma le_unique: forall m n (le_mn1 le_mn2 : m <= n), le_mn1 = le_mn2.
Proof. hammer_hook "Peano_dec" "Peano_dec.le_unique".
intros m n.
generalize (eq_refl (S n)).
generalize n at -1.
induction (S n) as [|n0 IHn0]; try discriminate.
clear n; intros n [= <-] le_mn1 le_mn2.
pose (def_n2 := eq_refl n0); transitivity (eq_ind _ _ le_mn2 _ def_n2).
2: reflexivity.
generalize def_n2; revert le_mn1 le_mn2.
generalize n0 at 1 4 5 7; intros n1 le_mn1.
destruct le_mn1; intros le_mn2; destruct le_mn2.
+ now intros def_n0; rewrite (UIP_nat _ _ def_n0 eq_refl).
+ intros def_n0; generalize le_mn2; rewrite <-def_n0; intros le_mn0.
now destruct (Nat.nle_succ_diag_l _ le_mn0).
+ intros def_n0; generalize le_mn1; rewrite def_n0; intros le_mn0.
now destruct (Nat.nle_succ_diag_l _ le_mn0).
+ intros def_n0. injection def_n0 as ->.
rewrite (UIP_nat _ _ def_n0 eq_refl); simpl.
assert (H : le_mn1 = le_mn2).
now apply IHn0.
now rewrite H.
Qed.
Require Import Le Lt.
|
[STATEMENT]
lemma n_zero_L_zero:
"n(bot) * L = bot"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. n bot * L = bot
[PROOF STEP]
by (simp add: le_bot n_L_decreasing) |
[STATEMENT]
lemma zle:"((z::int) \<le> w) = (\<not> (w < z))"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (z \<le> w) = (\<not> w < z)
[PROOF STEP]
by auto |
theory T84
imports Main
begin
lemma "(
(\<forall> x::nat. \<forall> y::nat. meet(x, y) = meet(y, x)) &
(\<forall> x::nat. \<forall> y::nat. join(x, y) = join(y, x)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, meet(y, z)) = meet(meet(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(x, join(y, z)) = join(join(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. meet(x, join(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. join(x, meet(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, join(y, z)) = join(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(join(x, y), z) = join(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, over(join(mult(x, y), z), y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(y, undr(x, join(mult(x, y), z))) = y) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(over(x, y), y), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(y, undr(y, x)), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(meet(x, y), z) = meet(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(join(x, y), z) = join(over(x, z), over(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(meet(x, y), z) = join(undr(x, z), undr(y, z))) &
(\<forall> x::nat. \<forall> y::nat. invo(join(x, y)) = meet(invo(x), invo(y))) &
(\<forall> x::nat. \<forall> y::nat. invo(meet(x, y)) = join(invo(x), invo(y))) &
(\<forall> x::nat. invo(invo(x)) = x)
) \<longrightarrow>
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(x, join(y, z)) = join(undr(x, y), undr(x, z)))
"
nitpick[card nat=4,timeout=86400]
oops
end |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% QPSK demonstration packet-based transceiver for Chilipepper
% Toyon Research Corp.
% http://www.toyon.com/chilipepper.php
% Created 10/17/2012
% [email protected]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This file is the top level entry function for the receiver portion of the
% example. The entire receiver is designed to run at Rate=1 (one clock
% cycle per iteration of the core.
% We follow standard receive practice with frequency offset estimation,
% pulse-shape filtering, time estimateion, and correlation to determine
% tart of packet.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%#codegen
function [r_out, s_f_out, s_c_out, s_t_out, t_est_out, f_est_out] = ...
qpsk_rx(i_in, q_in, mu_foc_in, mu_toc_in)
% scale input data coming from the Chilipepper ADC to be purely
% fractional to avoid scaling issues
r_in = complex(i_in, q_in);
% frequency offset estimation. Note that time constant is input as
% integer
[s_f_i, s_f_q, fe] = qpsk_rx_foc(i_in, q_in, mu_foc_in);
% Square-root raised-cosine band-limited filtering
[s_c_i, s_c_q] = qpsk_rx_srrc(s_f_i, s_f_q);
% Time offset estimation. Output data changes at the symbol rate.
[s_t_i, s_t_q, tauh] = qpsk_rx_toc(s_c_i, s_c_q, mu_toc_in);
% estimation and correlation values
t_est_out = tauh;
f_est_out = fe;
% original signal out (real version)
r_out = real(r_in);
% incremental signal outputs after frequency estimation, filtering, and
% timining estimation
s_f_out = complex(s_f_i,s_f_q);
s_c_out = complex(s_c_i,s_c_q);
s_t_out = complex(s_t_i,s_t_q);
end |
{-# OPTIONS --without-K #-}
module Ch2-3 where
open import Level hiding (lift)
open import Ch2-1
open import Ch2-2
-- p
-- x ~~~~~~~~~ y
--
--
-- P x --------> P y
--
-- Lemma 2.3.1 (transport)
transport : ∀ {a b} {A : Set a} {x y : A}
→ (P : A → Set b)
→ (p : x ≡ y)
→ P x → P y
transport {a} {b} {A} {x} {y} P p = J A D d x y p P
-- J A D d x y p P
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set (a ⊔ suc b)
D x y p = (P : A → Set b) → P x → P y
-- base case
d : (x : A) → D x x refl
d x P y = y
open import Data.Product
-- proof
-- +-----+ p +-----+
-- | x ~~~~~~~~~~~~~~~~ y |
-- | | | |
-- | P x |~~~~~~~~~~~~| P y |
-- +-----+ * +-----+
--
-- Lemma 2.3.2 (path lifting property)
lift : ∀ {a b} {A : Set a}
→ (P : A → Set b)
→ (proof : Σ[ x ∈ A ] P x)
→ (y : A)
→ (p : proj₁ proof ≡ y)
→ proof ≡ (y , transport P p (proj₂ proof))
lift {a} {b} {A} P proof y p = J A D d (proj₁ proof) y p (proj₂ proof)
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set (a ⊔ b)
D x y p = (u : P x) → (x , u) ≡ (y , transport P p u)
-- base case
d : (x : A) → D x x refl
d x u = refl
-- A
-- +----------------------------------------------+
-- | p |
-- | x ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ y |
-- | + + |
-- +----------------------------------------------+
-- | |
-- P x | P y |
-- +-------+ +----------------------------------+
-- | v | | * v |
-- | f x +-------> transport P p (f x) ~~~~~ f y |
-- | | | |
-- +-------+ +----------------------------------+
--
-- Lemma 2.3.4 (dependent map)
apd : ∀ {a b} {A : Set a} {x y : A}
→ {P : A → Set b}
→ (f : (z : A) → P z)
→ (p : x ≡ y)
→ transport P p (f x) ≡ f y
apd {a} {b} {A} {x} {y} {P} f p = J A D d x y p P f
where
-- the predicate
D : (x y : A) (p : x ≡ y) → _
D x y p = (P : A → Set b) (f : (z : A) → P z) → transport P p (f x) ≡ f y
-- base case
d : (x : A) → D x x refl
d x P f = refl
open import Function using (const; _∘_)
-- Lemma 2.3.5
transportconst : ∀ {a ℓ} {A : Set a} {x y : A}
→ {B : Set ℓ}
→ (p : x ≡ y)
→ (b : B)
→ transport (const B) p b ≡ b
transportconst {a} {ℓ} {A} {x} {y} {B} p b = J A D d x y p B b
where
-- the predicate
D : (x y : A) (p : x ≡ y) → _
D x y p = (B : Set ℓ) (b : B) → transport (const B) p b ≡ b
-- base case
d : (x : A) → D x x refl
d x B b = refl
open import Ch2-2
-- Lemma 2.3.8
lemma-2-3-8 : ∀ {a ℓ} {A : Set a} {B : Set ℓ} {x y : A}
→ (f : A → B)
→ (p : x ≡ y)
→ apd f p ≡ transportconst p (f x) ∙ ap f p
lemma-2-3-8 {a} {ℓ} {A} {B} {x} {y} f p = J {a} {a ⊔ ℓ} A D d x y p f
where
-- the predicate
D : (x y : A) (p : x ≡ y) → _
D x y p = (f : A → B) → apd f p ≡ transportconst p (f x) ∙ ap f p
-- base case
d : (x : A) → D x x refl
d x f = refl
-- Lemma 2.3.9
lemma-2-3-9 : ∀ {a b} {A : Set a} {x y z : A}
→ (P : A → Set b)
→ (p : x ≡ y)
→ (q : y ≡ z)
→ (u : P x)
→ transport P q (transport P p u) ≡ transport P (p ∙ q) u
lemma-2-3-9 {a} {b} {A} {x} {y} {z} P p q u = J A D d x y p P z q u
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set _
D x y p = (P : A → Set b) (z : A) (q : y ≡ z) (u : P x)
→ transport P q (transport P p u) ≡ transport P (p ∙ q) u
-- base case
d : (x : A) → D x x refl
d x P z q u = J A E e x z q P u
where
-- the predicate
E : (x z : A) (q : x ≡ z) → Set _
E x z q = (P : A → Set b) (u : P x)
→ transport P q (transport P refl u) ≡ transport P (refl ∙ q) u
-- base case
e : (x : A) → E x x refl
e x P u = refl
-- Lemma 2.3.10
lemma-2-3-10 : ∀ {a b c} {A : Set a} {B : Set b} {x y : A}
→ (P : B → Set c)
→ (f : A → B)
→ (p : x ≡ y)
→ (u : P (f x))
→ transport (P ∘ f) p u ≡ transport P (ap f p) u
lemma-2-3-10 {a} {b} {c} {A} {B} {x} {y} P f p u = J A D d x y p P f u
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set _
D x y p = (P : B → Set c) (f : A → B) (u : P (f x))
→ transport (P ∘ f) p u ≡ transport P (ap f p) u
-- base case
d : (x : A) → D x x refl
d x P f u = refl
-- Lemma 2.3.11
lemma-2-3-11 : {a b c : Level} {A : Set a} {x y : A}
→ (P : A → Set b) (Q : A → Set c)
→ (f : (z : A) → P z → Q z)
→ (p : x ≡ y)
→ (u : P x)
→ transport Q p (f x u) ≡ f y (transport P p u)
lemma-2-3-11 {a} {b} {c} {A} {x} {y} P Q f p u = J A D d x y p P Q f u
-- J A D d x y p {! !} {! !} {! !} {! !}
where
-- the predicate
D : (x y : A) (p : x ≡ y) → Set _
D x y p = (P : A → Set b) (Q : A → Set c) (f : (z : A) → P z → Q z) (u : P x)
→ transport Q p (f x u) ≡ f y (transport P p u)
-- base case
d : (x : A) → D x x refl
d x P Q f u = refl
|
-- @@stderr --
dtrace: invalid probe specifier 4.56: probe identifier 4 not permitted when specifying functions
|
[STATEMENT]
lemma poly_sum_list: "poly (sum_list ps) x = sum_list (map (\<lambda> p. poly p x) ps)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. poly (sum_list ps) x = (\<Sum>p\<leftarrow>ps. poly p x)
[PROOF STEP]
by (induct ps, auto) |
module Coproduct
import Basic
import Unit
import Void
%default total
infixl 5 +
namespace Coproduct
public export
data (+) : Type -> Type -> Type where
Inl : a -> a + b
Inr : b -> a + b
public export
SumInduction : (p : a + b -> Type)
-> ((x : a) -> p (Inl x))
-> ((y : b) -> p (Inr y))
-> (z : a + b) -> p z
SumInduction p f g (Inl x) = f x
SumInduction p f g (Inr y) = g y
public export
SumRecursion : (p : Type)
-> ((x : a) -> p)
-> ((y : b) -> p)
-> (z : a + b) -> p
SumRecursion p = SumInduction (const p)
public export
Two : Type
Two = Unit + Unit
public export
TwoInduction : (p : Two -> Type)
-> p (Inl ())
-> p (Inr ())
-> (two : Two) -> p two
TwoInduction p pl pr = SumInduction p
(UnitInduction (p `compose` Inl) pl) (UnitInduction (p `compose` Inr) pr)
|
Formal statement is: lemma islimpt_Un_finite: fixes x :: "'a::t1_space" shows "finite s \<Longrightarrow> x islimpt (s \<union> t) \<longleftrightarrow> x islimpt t" Informal statement is: If $x$ is a limit point of $s \cup t$ and $s$ is finite, then $x$ is a limit point of $t$. |
The complex conjugate function is continuous. |
theory T151
imports Main
begin
lemma "(
(\<forall> x::nat. \<forall> y::nat. meet(x, y) = meet(y, x)) &
(\<forall> x::nat. \<forall> y::nat. join(x, y) = join(y, x)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, meet(y, z)) = meet(meet(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(x, join(y, z)) = join(join(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. meet(x, join(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. join(x, meet(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, join(y, z)) = join(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(join(x, y), z) = join(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, over(join(mult(x, y), z), y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(y, undr(x, join(mult(x, y), z))) = y) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(over(x, y), y), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(y, undr(y, x)), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, meet(y, z)) = meet(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(meet(x, y), z) = meet(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(join(x, y), z) = join(over(x, z), over(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(meet(x, y), z) = join(undr(x, z), undr(y, z))) &
(\<forall> x::nat. \<forall> y::nat. invo(join(x, y)) = meet(invo(x), invo(y))) &
(\<forall> x::nat. \<forall> y::nat. invo(meet(x, y)) = join(invo(x), invo(y))) &
(\<forall> x::nat. invo(invo(x)) = x)
) \<longrightarrow>
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(x, meet(y, z)) = join(over(x, y), over(x, z)))
"
nitpick[card nat=7,timeout=86400]
oops
end |
(*
Copyright (C) 2020 Susi Lehtola
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
*)
(* type: gga_exc *)
(* prefix:
gga_k_pg_params *params;
assert(p->params != NULL);
params = (gga_k_pg_params * )(p->params);
*)
pg_f0 := s -> 5/3*s^2 + exp(-params_a_pg_mu * s^2):
pg_f := x -> pg_f0(X2S*x):
f := (rs, z, xt, xs0, xs1) -> gga_kinetic(pg_f, rs, z, xs0, xs1):
|
module Control.Effect.Labelled
import Control.EffectAlgebra
||| Wrap an effect in a label.
||| This can help disambiguate between multiple identical effects and
||| lessen the number of type annotations.
public export
data Labelled : (label : k)
-> (sub : (Type -> Type) -> (Type -> Type))
-> (m : Type -> Type) -> (Type -> Type) where
MkLabelled : (eff : sub m a) -> Labelled label sub m a
public export
runLabelled : Labelled label sub m a -> sub m a
runLabelled (MkLabelled eff) = eff
public export
Functor (sub m) => Functor (Labelled label sub m) where
map f (MkLabelled x) = MkLabelled (map f x)
public export
Applicative (sub m) => Applicative (Labelled label sub m) where
pure x = MkLabelled (pure x)
(MkLabelled f) <*> (MkLabelled x) = MkLabelled (f <*> x)
public export
Monad (sub m) => Monad (Labelled label sub m) where
(MkLabelled x) >>= f = MkLabelled (x >>= runLabelled . f)
public export
Algebra (eff :+: sig) (sub m)
=> Algebra (Labelled label eff :+: sig)
(Labelled label sub m) where
alg ctxx hdl (Inl (MkLabelled x)) = MkLabelled $
alg {sig = eff :+: sig, m = sub m}
ctxx (runLabelled . hdl) (Inl x)
alg ctxx hdl (Inr x) = MkLabelled $
alg {sig = eff :+: sig, m = sub m}
ctxx (runLabelled . hdl) (Inr x)
||| Higher-order injections where signatures are inferred from the label.
public export
interface InjL (0 label : k)
(0 sub : (Type -> Type) -> (Type -> Type))
(0 sup : (Type -> Type) -> (Type -> Type)) | label where
constructor MkSubL
injLabelled : Labelled label sub m a -> sup m a
public export
[LabelAuto] Inj sub sup => InjL label sub sup where
injLabelled (MkLabelled x) = inj x
public export
Label : Inj sub sup -> InjL label sub sup
Label x = LabelAuto @{x}
public export
labelled : (label : k)
-> InjL label sub sig
=> Algebra sig m
=> sub m a -> m a
labelled label @{sub} x =
let y = injLabelled (MkLabelled {label} x) in
alg {ctx = id} () id y
|
#' Find the distance between locations specified by latitude/longitude in degrees.
#'
#' @param locs a matrix of locations, each row specifying two locations to find the distance between. The first two columns are the "from" longitude and latitude, respectively; the third and fourth columns are the "from" longitude and latitude, respectively.
#' @param dist logical: return the distances as a \code{\link{dist}} object (distance matrix)?
#'
#' @return either a matrix or a distance matrix containing the distances between all the points.
earth.dist = function (locs, dist=TRUE)
{
if (class(locs) == "SpatialPoints")
locs <- coordinates(locs)
name <- list(rownames(locs), rownames(locs))
n <- nrow(locs)
z <- matrix(0, n, n, dimnames = name)
z <- outer(1:n, 1:n, function(i, j) deg.dist(long1=locs[i,1], lat1=locs[i, 2], long2=locs[j, 1], lat2=locs[j,2]))
if (dist == TRUE)
z <- as.dist(z)
return(z)
} |
/-
Copyright (c) 2023 Tian Chen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Tian Chen
-/
import data.matrix.pequiv
noncomputable theory
open_locale big_operators matrix
namespace matrix
variables {n m α : Type*} [fintype n] [fintype m]
section
variables [has_zero α]
/-- A matrix as a finitely supported function -/
def finsupp (M : matrix n m α) : (n × m) →₀ α :=
finsupp.of_support_finite (function.uncurry M) (set.to_finite _)
lemma finsupp_apply {M : matrix n m α} (i j) : M.finsupp (i, j) = M i j := rfl
end
lemma curry_finsupp_apply [add_comm_monoid α] (M : matrix n m α) (i j) :
M.finsupp.curry i j = M i j :=
by rw [finsupp.curry_apply, finsupp_apply]
lemma mem_support_curry_finsupp [add_comm_monoid α] (M : matrix n m α) (i j) :
j ∈ (M.finsupp.curry i).support ↔ M i j ≠ 0 :=
by rw [finsupp.mem_support_iff, curry_finsupp_apply]
lemma finsupp_smul [add_monoid α] {R : Type*} [smul_zero_class R α] (M : matrix n m α) (x : R) :
(x • M).finsupp = x • M.finsupp :=
by ext ⟨i, j⟩; refl
namespace finsupp
variables [add_comm_monoid α] {M : matrix n m α}
lemma transpose :
M.finsupp.map_domain prod.swap = Mᵀ.finsupp :=
begin
ext ⟨j, i⟩,
exact finsupp.map_domain_apply prod.swap_injective _ (i, j)
end
lemma transpose' :
M.finsupp.equiv_map_domain (equiv.prod_comm n m) = Mᵀ.finsupp :=
begin
ext ⟨j, i⟩,
exact finsupp.equiv_map_domain_apply _ _ (j, i)
end
end finsupp
/-- The non-zero entries of `M` defined as the support of `M.finsupp`. -/
def support [has_zero α] (M : matrix n m α) : finset (n × m) := M.finsupp.support
section support
variable {M : matrix n m α}
section
variables [has_zero α]
lemma mem_support_iff' (a : n × m) : a ∈ M.support ↔ M a.1 a.2 ≠ 0 :=
finsupp.mem_support_iff
lemma mem_support_iff (i j) : (i, j) ∈ M.support ↔ M i j ≠ 0 :=
finsupp.mem_support_iff
lemma not_mem_support_iff (i j) : (i, j) ∉ M.support ↔ M i j = 0 :=
finsupp.not_mem_support_iff
lemma mem_support_transpose (i j) : (i, j) ∈ Mᵀ.support ↔ M j i ≠ 0 :=
mem_support_iff _ _
lemma support_transpose' :
M.support.map (equiv.prod_comm n m).to_embedding = Mᵀ.support :=
begin
ext ⟨i, j⟩,
rw [finset.mem_map_equiv, equiv.prod_comm_symm, equiv.prod_comm_apply,
prod.swap_prod_mk, mem_support_iff, mem_support_iff],
refl
end
lemma card_support_transpose :
Mᵀ.support.card = M.support.card :=
by rw [← support_transpose', finset.card_map]
lemma support_transpose [decidable_eq n] [decidable_eq m] :
M.support.image prod.swap = Mᵀ.support :=
begin
rw [← support_transpose', finset.map_eq_image], refl
end
end
variables [add_comm_monoid α]
lemma support_smul_eq {R : Type*} [semiring R] [module R α] [no_zero_smul_divisors R α]
{x : R} (hx : x ≠ 0) :
(x • M).support = M.support :=
by rw [support, finsupp_smul]; exact finsupp.support_smul_eq hx
lemma finsupp_eq_sum_row :
M.finsupp = ∑ i, (M.finsupp.curry i).map_domain (prod.mk i) :=
begin
classical,
ext ⟨i, j⟩,
have : ∑ i' in {i}ᶜ, (M.finsupp.curry i').map_domain (prod.mk i') (i, j) = 0,
{ apply finset.sum_eq_zero,
intros _ hi',
apply finsupp.map_domain_notin_range,
rintro ⟨_, h⟩,
rw [finset.mem_compl, finset.not_mem_singleton] at hi',
exact hi' (prod.mk.inj h).1 },
rw [finsupp.coe_finset_sum, finset.sum_apply, fintype.sum_eq_add_sum_compl i,
finsupp.map_domain_apply (prod.mk.inj_left i), finsupp.curry_apply, this, add_zero]
end
lemma support_card_eq_sum_row :
M.support.card = ∑ i, (M.finsupp.curry i).support.card :=
begin
classical,
conv_lhs { rw [support, finsupp_eq_sum_row] },
have : ∀ i₁ i₂, i₁ ≠ i₂ → disjoint
((M.finsupp.curry i₁).map_domain (prod.mk i₁)).support
((M.finsupp.curry i₂).map_domain (prod.mk i₂)).support,
{ intros x y h,
rw finset.disjoint_iff_ne,
rintros ⟨i₁, j₁⟩ h₁ ⟨i₂, j₂⟩ h₂ h',
rw [finsupp.map_domain_support_of_injective (prod.mk.inj_left _)] at h₁ h₂,
all_goals { try { apply_instance } },
rw [finset.mem_image] at h₁ h₂,
rcases h₁ with ⟨a, _, ha⟩,
rcases h₂ with ⟨b, _, hb⟩,
rw [← ha, ← hb] at h',
exact h (prod.mk.inj h').1 },
rw [finsupp.support_sum_eq_bUnion _ this, finset.card_bUnion],
apply finset.sum_congr rfl,
intros i _,
have h := prod.mk.inj_left i,
rw [finsupp.map_domain_support_of_injective h, finset.card_image_of_injective _ h],
{ intros, apply this, assumption }
end
variables [has_one α] [ne_zero (1 : α)] [decidable_eq m] [decidable_eq n]
lemma _root_.equiv.card_support_to_matrix (σ : m ≃ n) :
(σ.to_pequiv.to_matrix : matrix m n α).support.card = fintype.card m :=
begin
suffices h : σ.to_pequiv.to_matrix.support = finset.univ.image (λ i, (i, σ i)),
{ rw [h, finset.card_image_of_injective, fintype.card],
intros _ _ hp,
exact (prod.mk.inj hp).1 },
ext ⟨i, j⟩,
rw [mem_support_iff, pequiv.to_matrix, equiv.to_pequiv_apply, finset.mem_image],
simp_rw [option.mem_some_iff],
rw [ne.ite_ne_right_iff (one_ne_zero' α)],
simp_rw [prod.mk.inj_iff, finset.mem_univ, exists_true_left, exists_eq_left]
end
lemma _root_.equiv.card_support_to_matrix'
[has_one α] [ne_zero (1 : α)] [decidable_eq n] (σ : m ≃ n) :
(σ.to_pequiv.to_matrix : matrix m n α).support.card = fintype.card n :=
fintype.card_congr σ ▸ equiv.card_support_to_matrix σ
end support
end matrix
|
[STATEMENT]
lemma noFault_startn:
assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and t: "t\<noteq>Fault f"
shows "s\<noteq>Fault f"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. s \<noteq> Fault f
[PROOF STEP]
using execn t
[PROOF STATE]
proof (prove)
using this:
\<Gamma>\<turnstile> \<langle>c,s\<rangle> =n\<Rightarrow> t
t \<noteq> Fault f
goal (1 subgoal):
1. s \<noteq> Fault f
[PROOF STEP]
by (induct) auto |
Formal statement is: lemma translation_assoc: fixes a b :: "'a::ab_group_add" shows "(\<lambda>x. b + x) ` ((\<lambda>x. a + x) ` S) = (\<lambda>x. (a + b) + x) ` S" Informal statement is: For any set $S$ and any elements $a$ and $b$ of an abelian group, the set of all elements of the form $b + (a + x)$ for $x \in S$ is equal to the set of all elements of the form $(a + b) + x$ for $x \in S$. |
module Replica.Other.Validation
%default total
public export
data Validation : (err, a : Type) -> Type where
Valid : (x : a) -> Validation err a
Error : (e : err) -> Validation err a
export
Functor (Validation err) where
map f (Valid x) = Valid $ f x
map f (Error x) = Error x
export
(Semigroup err) => Applicative (Validation err) where
pure = Valid
(Valid f) <*> (Valid x) = Valid $ f x
(Valid _) <*> (Error e) = Error e
(Error e) <*> (Valid x) = Error e
(Error e1) <*> (Error e2) = Error $ e1 <+> e2
export
(Monoid err) => Alternative (Validation err) where
empty = Error neutral
(<|>) (Valid x) y = Valid x
(<|>) (Error e) (Valid y) = Valid y
(<|>) (Error e) (Error r) = Error $ e <+> r
export
fromEither : Applicative f => Either err a -> Validation (f err) a
fromEither = either (Error . pure) Valid
|
State Before: α : Type u_1
inst✝ : HeytingAlgebra α
a b : α
hb : IsRegular b
⊢ Disjoint a (bᶜ) ↔ a ≤ b State After: no goals Tactic: rw [← le_compl_iff_disjoint_right, hb.eq] |
-- Andreas, 2015-12-05 issue reported by Conor
-- {-# OPTIONS -v tc.cover.splittree:10 -v tc.cc:20 #-}
module Issue1734 where
infix 4 _≡_
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
record One : Set where constructor <>
data Two : Set where tt ff : Two
-- two : ∀{α}{A : Set α} → A → A → Two → A
two : (S T : Set) → Two → Set
two a b tt = a
two a b ff = b
record Sg (S : Set)(T : S -> Set) : Set where
constructor _,_
field
fst : S
snd : T fst
open Sg public
_+_ : Set -> Set -> Set
S + T = Sg Two (two S T)
data Twoey : Two -> Set where
ffey : Twoey ff
ttey : Twoey tt
postulate Thingy : Set
ThingyIf : Two -> Set
ThingyIf tt = Thingy
ThingyIf ff = One
thingy? : (b : Two) -> ThingyIf b -> Twoey b + One -> Thingy + One
thingy? .ff <> (tt , ffey) = ff , <>
thingy? .tt x (tt , ttey) = tt , x
thingy? _ _ _ = ff , <>
-- WORKS: thingy? _ _ (ff , _ ) = ff , <>
{- Correct split tree
split at 2
|
`- Issue1734.Sg._,_ -> split at 2
|
+- Issue1734.Two.tt -> split at 2
| |
| +- Issue1734.Twoey.ffey -> split at 1
| | |
| | `- Issue1734.One.<> -> done, 0 bindings
| |
| `- Issue1734.Twoey.ttey -> done, 1 bindings
|
`- Issue1734.Two.ff -> done, 3 bindings
but clause compiler deviated from it:
thingy? b x p =
case p of (y , z) ->
case y of
tt -> case x of
<> -> case z of
ffey -> ff , <>
ttey -> tt , <>
_ -> case z of
ttey -> tt , x
_ -> ff , <>
compiled clauses (still containing record splits)
case 2 of
Issue1734.Sg._,_ ->
case 2 of
Issue1734.Two.tt ->
case 1 of
Issue1734.One.<> ->
case 1 of
Issue1734.Twoey.ffey -> ff , <>
Issue1734.Twoey.ttey -> tt , <>
_ -> case 2 of
Issue1734.Twoey.ttey -> tt , x
_ -> ff , <>
-}
test1 : ∀ x → thingy? tt x (tt , ttey) ≡ tt , x
test1 = λ x → refl -- should pass!
first-eq-works : ∀ x → thingy? ff x (tt , ffey) ≡ ff , x
first-eq-works = λ x → refl
-- It's weird. I couldn't make it happen with Twoey b alone: I needed Twoey b + One.
-- I also checked that reordering the arguments made it go away. This...
thygni? : (b : Two) -> Twoey b + One -> ThingyIf b -> Thingy + One
thygni? .ff (tt , ffey) <> = ff , <>
thygni? .tt (tt , ttey) x = tt , x
thygni? _ _ _ = ff , <>
works : ∀ x → thygni? tt (tt , ttey) x ≡ tt , x
works = λ x → refl
-- Moreover, replacing the gratuitous <> pattern by a variable...
hingy? : (b : Two) -> ThingyIf b -> Twoey b + One -> Thingy + One
hingy? .ff x (tt , ffey) = ff , <>
hingy? .tt x (tt , ttey) = tt , x
hingy? _ _ _ = ff , <>
-- ...gives...
works2 : ∀ x → hingy? tt x (tt , ttey) ≡ tt , x
works2 = λ x -> refl
-- ...and it has to be a variable: an _ gives the same outcome as <>.
|
In the nights following the earthquake , many people in Haiti slept in the streets , on pavements , in their cars , or in makeshift shanty towns either because their houses had been destroyed , or they feared standing structures would not withstand aftershocks . Construction standards are low in Haiti ; the country has no building codes . Engineers have stated that it is unlikely many buildings would have stood through any kind of disaster . Structures are often raised wherever they can fit ; some buildings were built on slopes with insufficient foundations or steel supports . A representative of Catholic Relief Services has estimated that about two million Haitians lived as squatters on land they did not own . The country also suffered from shortages of fuel and potable water even before the disaster .
|
[STATEMENT]
lemma plus_fun_conv: "a + b = a ++ b"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. a + b = a ++ b
[PROOF STEP]
by (auto simp: plus_fun_def map_add_def split: option.splits) |
theory T59
imports Main
begin
lemma "(
(\<forall> x::nat. \<forall> y::nat. meet(x, y) = meet(y, x)) &
(\<forall> x::nat. \<forall> y::nat. join(x, y) = join(y, x)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, meet(y, z)) = meet(meet(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(x, join(y, z)) = join(join(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. meet(x, join(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. join(x, meet(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, join(y, z)) = join(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(join(x, y), z) = join(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, over(join(mult(x, y), z), y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(y, undr(x, join(mult(x, y), z))) = y) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(over(x, y), y), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(y, undr(y, x)), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, meet(y, z)) = meet(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(join(x, y), z) = join(over(x, z), over(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(x, meet(y, z)) = join(over(x, y), over(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(meet(x, y), z) = join(undr(x, z), undr(y, z))) &
(\<forall> x::nat. \<forall> y::nat. invo(join(x, y)) = meet(invo(x), invo(y))) &
(\<forall> x::nat. \<forall> y::nat. invo(meet(x, y)) = join(invo(x), invo(y))) &
(\<forall> x::nat. invo(invo(x)) = x)
) \<longrightarrow>
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(meet(x, y), z) = meet(mult(x, z), mult(y, z)))
"
nitpick[card nat=10,timeout=86400]
oops
end |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Example of a Quotient: ℤ as (ℕ × ℕ / ∼)
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Relation.Binary.HeterogeneousEquality.Quotients.Examples where
open import Relation.Binary.HeterogeneousEquality.Quotients
open import Level using (0ℓ)
open import Relation.Binary
open import Relation.Binary.HeterogeneousEquality hiding (isEquivalence)
import Relation.Binary.PropositionalEquality as ≡
open import Data.Nat
open import Data.Nat.Properties
open import Data.Product
open import Function
open ≅-Reasoning
ℕ² = ℕ × ℕ
_∼_ : ℕ² → ℕ² → Set
(x , y) ∼ (x' , y') = x + y' ≅ x' + y
infix 10 _∼_
∼-trans : ∀ {i j k} → i ∼ j → j ∼ k → i ∼ k
∼-trans {x₁ , y₁} {x₂ , y₂} {x₃ , y₃} p q =
≡-to-≅ $ +-cancelˡ-≡ y₂ $ ≅-to-≡ $ begin
y₂ + (x₁ + y₃) ≡⟨ ≡.sym (+-assoc y₂ x₁ y₃) ⟩
y₂ + x₁ + y₃ ≡⟨ ≡.cong (_+ y₃) (+-comm y₂ x₁) ⟩
x₁ + y₂ + y₃ ≅⟨ cong (_+ y₃) p ⟩
x₂ + y₁ + y₃ ≡⟨ ≡.cong (_+ y₃) (+-comm x₂ y₁) ⟩
y₁ + x₂ + y₃ ≡⟨ +-assoc y₁ x₂ y₃ ⟩
y₁ + (x₂ + y₃) ≅⟨ cong (y₁ +_) q ⟩
y₁ + (x₃ + y₂) ≡⟨ +-comm y₁ (x₃ + y₂) ⟩
x₃ + y₂ + y₁ ≡⟨ ≡.cong (_+ y₁) (+-comm x₃ y₂) ⟩
y₂ + x₃ + y₁ ≡⟨ +-assoc y₂ x₃ y₁ ⟩
y₂ + (x₃ + y₁) ∎
∼-isEquivalence : IsEquivalence _∼_
∼-isEquivalence = record
{ refl = refl
; sym = sym
; trans = λ {i} {j} {k} → ∼-trans {i} {j} {k}
}
ℕ²-∼-setoid : Setoid 0ℓ 0ℓ
ℕ²-∼-setoid = record { isEquivalence = ∼-isEquivalence }
module Integers (quot : Quotients 0ℓ 0ℓ) where
Int : Quotient ℕ²-∼-setoid
Int = quot _
open Quotient Int renaming (Q to ℤ)
_+²_ : ℕ² → ℕ² → ℕ²
(x₁ , y₁) +² (x₂ , y₂) = x₁ + x₂ , y₁ + y₂
+²-cong : ∀{a b a' b'} → a ∼ a' → b ∼ b' → a +² b ∼ a' +² b'
+²-cong {a₁ , b₁} {c₁ , d₁} {a₂ , b₂} {c₂ , d₂} ab∼cd₁ ab∼cd₂ = begin
(a₁ + c₁) + (b₂ + d₂) ≡⟨ ≡.cong (_+ (b₂ + d₂)) (+-comm a₁ c₁) ⟩
(c₁ + a₁) + (b₂ + d₂) ≡⟨ +-assoc c₁ a₁ (b₂ + d₂) ⟩
c₁ + (a₁ + (b₂ + d₂)) ≡⟨ ≡.cong (c₁ +_) (≡.sym (+-assoc a₁ b₂ d₂)) ⟩
c₁ + (a₁ + b₂ + d₂) ≅⟨ cong (λ n → c₁ + (n + d₂)) ab∼cd₁ ⟩
c₁ + (a₂ + b₁ + d₂) ≡⟨ ≡.cong (c₁ +_) (+-assoc a₂ b₁ d₂) ⟩
c₁ + (a₂ + (b₁ + d₂)) ≡⟨ ≡.cong (λ n → c₁ + (a₂ + n)) (+-comm b₁ d₂) ⟩
c₁ + (a₂ + (d₂ + b₁)) ≡⟨ ≡.sym (+-assoc c₁ a₂ (d₂ + b₁)) ⟩
(c₁ + a₂) + (d₂ + b₁) ≡⟨ ≡.cong (_+ (d₂ + b₁)) (+-comm c₁ a₂) ⟩
(a₂ + c₁) + (d₂ + b₁) ≡⟨ +-assoc a₂ c₁ (d₂ + b₁) ⟩
a₂ + (c₁ + (d₂ + b₁)) ≡⟨ ≡.cong (a₂ +_) (≡.sym (+-assoc c₁ d₂ b₁)) ⟩
a₂ + (c₁ + d₂ + b₁) ≅⟨ cong (λ n → a₂ + (n + b₁)) ab∼cd₂ ⟩
a₂ + (c₂ + d₁ + b₁) ≡⟨ ≡.cong (a₂ +_) (+-assoc c₂ d₁ b₁) ⟩
a₂ + (c₂ + (d₁ + b₁)) ≡⟨ ≡.cong (λ n → a₂ + (c₂ + n)) (+-comm d₁ b₁) ⟩
a₂ + (c₂ + (b₁ + d₁)) ≡⟨ ≡.sym (+-assoc a₂ c₂ (b₁ + d₁)) ⟩
(a₂ + c₂) + (b₁ + d₁) ∎
module _ (ext : ∀ {a b} {A : Set a} {B₁ B₂ : A → Set b} {f₁ : ∀ a → B₁ a}
{f₂ : ∀ a → B₂ a} → (∀ a → f₁ a ≅ f₂ a) → f₁ ≅ f₂) where
_+ℤ_ : ℤ → ℤ → ℤ
_+ℤ_ = Properties₂.lift₂ ext Int Int (λ i j → abs (i +² j))
$ λ {a} {b} {c} p p' → compat-abs (+²-cong {a} {b} {c} p p')
zero² : ℕ²
zero² = 0 , 0
zeroℤ : ℤ
zeroℤ = abs zero²
+²-identityʳ : (i : ℕ²) → (i +² zero²) ∼ i
+²-identityʳ (x , y) = begin
(x + 0) + y ≡⟨ ≡.cong (_+ y) (+-identityʳ x) ⟩
x + y ≡⟨ ≡.cong (x +_) (≡.sym (+-identityʳ y)) ⟩
x + (y + 0) ∎
+ℤ-on-abs≅abs-+₂ : ∀ a b → abs a +ℤ abs b ≅ abs (a +² b)
+ℤ-on-abs≅abs-+₂ = Properties₂.lift₂-conv ext Int Int _
$ λ {a} {b} {c} p p′ → compat-abs (+²-cong {a} {b} {c} p p′)
+ℤ-identityʳ : ∀ i → i +ℤ zeroℤ ≅ i
+ℤ-identityʳ = lift _ eq (≅-heterogeneous-irrelevantʳ _ _ ∘ compat-abs) where
eq : ∀ a → abs a +ℤ zeroℤ ≅ abs a
eq a = begin
abs a +ℤ zeroℤ ≡⟨⟩
abs a +ℤ abs zero² ≅⟨ +ℤ-on-abs≅abs-+₂ a zero² ⟩
abs (a +² zero²) ≅⟨ compat-abs (+²-identityʳ a) ⟩
abs a ∎
+²-identityˡ : (i : ℕ²) → (zero² +² i) ∼ i
+²-identityˡ i = refl
+ℤ-identityˡ : (i : ℤ) → zeroℤ +ℤ i ≅ i
+ℤ-identityˡ = lift _ eq (≅-heterogeneous-irrelevantʳ _ _ ∘ compat-abs) where
eq : ∀ a → zeroℤ +ℤ abs a ≅ abs a
eq a = begin
zeroℤ +ℤ abs a ≡⟨⟩
abs zero² +ℤ abs a ≅⟨ +ℤ-on-abs≅abs-+₂ zero² a ⟩
abs (zero² +² a) ≅⟨ compat-abs (+²-identityˡ a) ⟩
abs a ∎
+²-assoc : (i j k : ℕ²) → (i +² j) +² k ∼ i +² (j +² k)
+²-assoc (a , b) (c , d) (e , f) = begin
((a + c) + e) + (b + (d + f)) ≡⟨ ≡.cong (_+ (b + (d + f))) (+-assoc a c e) ⟩
(a + (c + e)) + (b + (d + f)) ≡⟨ ≡.cong ((a + (c + e)) +_) (≡.sym (+-assoc b d f)) ⟩
(a + (c + e)) + ((b + d) + f) ∎
+ℤ-assoc : ∀ i j k → (i +ℤ j) +ℤ k ≅ i +ℤ (j +ℤ k)
+ℤ-assoc = Properties₃.lift₃ ext Int Int Int eq compat₃ where
eq : ∀ i j k → (abs i +ℤ abs j) +ℤ abs k ≅ abs i +ℤ (abs j +ℤ abs k)
eq i j k = begin
(abs i +ℤ abs j) +ℤ abs k ≅⟨ cong (_+ℤ abs k) (+ℤ-on-abs≅abs-+₂ i j) ⟩
(abs (i +² j) +ℤ abs k) ≅⟨ +ℤ-on-abs≅abs-+₂ (i +² j) k ⟩
abs ((i +² j) +² k) ≅⟨ compat-abs (+²-assoc i j k) ⟩
abs (i +² (j +² k)) ≅⟨ sym (+ℤ-on-abs≅abs-+₂ i (j +² k)) ⟩
(abs i +ℤ abs (j +² k)) ≅⟨ cong (abs i +ℤ_) (sym (+ℤ-on-abs≅abs-+₂ j k)) ⟩
abs i +ℤ (abs j +ℤ abs k) ∎
compat₃ : ∀ {a a′ b b′ c c′} → a ∼ a′ → b ∼ b′ → c ∼ c′ → eq a b c ≅ eq a′ b′ c′
compat₃ p q r = ≅-heterogeneous-irrelevantˡ _ _
$ cong₂ _+ℤ_ (cong₂ _+ℤ_ (compat-abs p) (compat-abs q))
$ compat-abs r
|
Formal statement is: lemma prime_power_cancel: assumes "prime p" and eq: "m * (p ^ k) = m' * (p ^ k')" and "\<not> p dvd m" "\<not> p dvd m'" shows "k = k'" Informal statement is: If $p$ is prime, $m$ and $m'$ are not divisible by $p$, and $m p^k = m' p^{k'}$, then $k = k'$. |
The event will be held in the historic Naper Settlement at 523 S. Webster St. on Friday, September 18, and Saturday, September 19. If you are coming from downtown, the Metra will get you there quickly, and the stop is closeby. You can purchase tickets in advance for $25 through the website or by calling (847)382-1480. Tickets can also be purchase at the door for $30, and includes a souvenier glass, a Festival program, 10 tastes, and access to food, demos, and music. An additional 10 tastes can be purchased for $5, while designated drivers can enter for $10, with the same benefits, except their 10 tastes are replaced by 2 non alcoholic drinks. Groups of 15 or more receive a 10% discount. A portion of all proceeds benefits the Naperville Area Humane Society and Naper Settlement.
If you are not the biggest wine fan, you can still enjoy the fest. Not only will there be lots of food and entertainment, but a Belgian Beer Cafe will be onhand. It is sponsored by Stella Artois, and will also include Leffe and Hoegaarden beers. No matter what you like, I guarantee you will enjoy this trip to Naperville and its gorgeous riverwalk. Treat yourself to a day away from the big city with some wine and Naperville! |
% See how well partial Kalman filter updates work
seed = 0;
rand('state', seed);
randn('state', seed);
nlandmarks = 6;
T = 12;
[A,B,C,Q,R,Qbig,Rbig,init_x,init_V,robot_block,landmark_block,...
true_landmark_pos, true_robot_pos, true_data_assoc, ...
obs_rel_pos, ctrl_signal] = mk_linear_slam(...
'nlandmarks', nlandmarks, 'T', T, 'ctrl', 'leftright', 'data-assoc', 'cycle');
% exact
[xe, Ve] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ...
'model', true_data_assoc, 'u', ctrl_signal, 'B', B);
% approx
%k = nlandmarks-1; % exact
k = 3;
ndx = {};
for t=1:T
landmarks = unique(true_data_assoc(t:-1:max(t-k,1)));
tmp = [landmark_block(:, landmarks) robot_block'];
ndx{t} = tmp(:);
end
[xa, Va] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ...
'model', true_data_assoc, 'u', ctrl_signal, 'B', B, ...
'ndx', ndx);
nrows = 10;
stepsize = T/(2*nrows);
ts = 1:stepsize:T;
if 1 % plot
clim = [0 max(max(Va(:,:,end)))];
figure(2)
if 0
imagesc(Ve(1:2:end,1:2:end, T))
clim = get(gca,'clim');
else
i = 1;
for t=ts(:)'
subplot(nrows,2,i)
i = i + 1;
imagesc(Ve(1:2:end,1:2:end, t))
set(gca, 'clim', clim)
colorbar
end
end
suptitle('exact')
figure(3)
if 0
imagesc(Va(1:2:end,1:2:end, T))
set(gca,'clim', clim)
else
i = 1;
for t=ts(:)'
subplot(nrows,2,i)
i = i+1;
imagesc(Va(1:2:end,1:2:end, t))
set(gca, 'clim', clim)
colorbar
end
end
suptitle('approx')
figure(4)
i = 1;
for t=ts(:)'
subplot(nrows,2,i)
i = i+1;
Vd = Va(1:2:end,1:2:end, t) - Ve(1:2:end,1:2:end,t);
imagesc(Vd)
set(gca, 'clim', clim)
colorbar
end
suptitle('diff')
end % all plot
for t=1:T
%err(t)=rms(xa(:,t), xe(:,t));
err(t)=rms(xa(1:end-2,t), xe(1:end-2,t)); % exclude robot
end
figure(5);plot(err)
title('rms mean pos')
for t=1:T
i = 1:2*nlandmarks;
denom = Ve(i,i,t) + (Ve(i,i,t)==0);
Vd =(Va(i,i,t)-Ve(i,i,t)) ./ denom;
Verr(t) = max(Vd(:));
end
figure(6); plot(Verr)
title('max relative Verr')
|
Formal statement is: lemma finite_ball_include: fixes a :: "'a::metric_space" assumes "finite S" shows "\<exists>e>0. S \<subseteq> ball a e" Informal statement is: If $S$ is a finite set, then there exists a positive real number $e$ such that $S \subseteq B(a, e)$. |
------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Syntax definitions.
------------------------------------------------------------------------------
open import Data.Nat using ( ℕ )
module Data.PropFormula.Syntax ( n : ℕ ) where
------------------------------------------------------------------------------
open import Data.Bool
renaming ( _∧_ to _&&_; _∨_ to _||_ )
using ( Bool; true; false; not )
open import Data.Fin using ( Fin; #_ )
open import Data.List using ( List ; [] ; _∷_ ; _++_ ; [_] )
open import Relation.Binary.PropositionalEquality
using ( _≡_; refl; cong; trans; sym; subst)
------------------------------------------------------------------------------
-- Proposition data type.
data PropFormula : Set where
Var : Fin n → PropFormula
⊤ : PropFormula
⊥ : PropFormula
_∧_ _∨_ _⊃_ _⇔_ : (φ ψ : PropFormula) → PropFormula
¬_ : (φ : PropFormula) → PropFormula
infix 11 ¬_
infixl 8 _∧_ _∨_
infixr 7 _⊃_ _⇔_
-- Context is a list (set) of hypotesis and axioms.
Ctxt : Set
Ctxt = List PropFormula
infixl 5 _,_
_,_ : Ctxt → PropFormula → Ctxt
Γ , φ = Γ ++ [ φ ]
∅ : Ctxt
∅ = []
infix 30 _⨆_
_⨆_ : Ctxt → Ctxt → Ctxt
Γ ⨆ Δ = Γ ++ Δ
infix 4 _∈_
data _∈_ (φ : PropFormula) : Ctxt → Set where
here : ∀ {Γ} → φ ∈ Γ , φ
there : ∀ {Γ} → (ψ : PropFormula) → φ ∈ Γ → φ ∈ Γ , ψ
⨆-ext : ∀ {Γ} → (Δ : Ctxt) → φ ∈ Γ → φ ∈ Γ ⨆ Δ
_⊆_ : Ctxt → Ctxt → Set
Γ ⊆ Η = ∀ {φ} → φ ∈ Γ → φ ∈ Η
------------------------------------------------------------------------
-- Theorem data type.
infix 3 _⊢_
data _⊢_ : Ctxt → PropFormula → Set where
-- Hyp.
assume : ∀ {Γ} → (φ : PropFormula) → Γ , φ ⊢ φ
axiom : ∀ {Γ} → (φ : PropFormula) → φ ∈ Γ
→ Γ ⊢ φ
weaken : ∀ {Γ} {φ} → (ψ : PropFormula) → Γ ⊢ φ
→ Γ , ψ ⊢ φ
weaken₂ : ∀ {Γ} {φ} → (ψ : PropFormula) → Γ ⊢ φ
→ ψ ∷ Γ ⊢ φ
-- Top and Bottom.
⊤-intro : ∀ {Γ} → Γ ⊢ ⊤
⊥-elim : ∀ {Γ} → (φ : PropFormula) → Γ ⊢ ⊥
→ Γ ⊢ φ
-- Negation.
¬-intro : ∀ {Γ} {φ} → Γ , φ ⊢ ⊥
→ Γ ⊢ ¬ φ
¬-elim : ∀ {Γ} {φ} → Γ ⊢ ¬ φ → Γ ⊢ φ
→ Γ ⊢ ⊥
-- Conjunction.
∧-intro : ∀ {Γ} {φ ψ} → Γ ⊢ φ → Γ ⊢ ψ
→ Γ ⊢ φ ∧ ψ
∧-proj₁ : ∀ {Γ} {φ ψ} → Γ ⊢ φ ∧ ψ
→ Γ ⊢ φ
∧-proj₂ : ∀ {Γ} {φ ψ} → Γ ⊢ φ ∧ ψ
→ Γ ⊢ ψ
-- Disjunction.
∨-intro₁ : ∀ {Γ} {φ} → (ψ : PropFormula) → Γ ⊢ φ
→ Γ ⊢ φ ∨ ψ
∨-intro₂ : ∀ {Γ} {ψ} → (φ : PropFormula) → Γ ⊢ ψ
→ Γ ⊢ φ ∨ ψ
∨-elim : ∀ {Γ} {φ ψ χ} → Γ , φ ⊢ χ
→ Γ , ψ ⊢ χ
→ Γ , φ ∨ ψ ⊢ χ
-- Implication.
⊃-intro : ∀ {Γ} {φ ψ} → Γ , φ ⊢ ψ
→ Γ ⊢ φ ⊃ ψ
⊃-elim : ∀ {Γ} {φ ψ} → Γ ⊢ φ ⊃ ψ → Γ ⊢ φ
→ Γ ⊢ ψ
-- Biconditional.
⇔-intro : ∀ {Γ} {φ ψ} → Γ , φ ⊢ ψ
→ Γ , ψ ⊢ φ
→ Γ ⊢ φ ⇔ ψ
⇔-elim₁ : ∀ {Γ} {φ ψ} → Γ ⊢ φ → Γ ⊢ φ ⇔ ψ
→ Γ ⊢ ψ
⇔-elim₂ : ∀ {Γ} {φ ψ} → Γ ⊢ ψ → Γ ⊢ φ ⇔ ψ
→ Γ ⊢ φ
------------------------------------------------------------------------
|
-- @@stderr --
dtrace: failed to compile script test/unittest/arithmetic/err.D_DIV_ZERO.modby0.d: [D_DIV_ZERO] line 20: expression contains division by zero
|
#redirect Davis Players Society
|
module 100-natural where
open import 010-false-true
open import 020-equivalence
record Natural
{N : Set}
(zero : N)
(suc : N -> N)
(_==_ : N -> N -> Set)
: Set1 where
-- axioms
field
equiv : Equivalence _==_
sucn!=zero : ∀ {r} -> suc r == zero -> False
sucinjective : ∀ {r s} -> suc r == suc s -> r == s
cong : ∀ {r s} -> r == s -> suc r == suc s
induction : (p : N -> Set) -> p zero -> (∀ n -> p n -> p (suc n)) -> (∀ n -> p n)
open Equivalence equiv public
|
module Main
import System
countdown : (secs : Nat) -> IO ()
countdown Z = putStrLn "Lift off!"
countdown (S secs) = do putStrLn (show (S secs))
usleep 1000000
countdown secs
|
Editor’s Note: A few weeks ago, we ran a provocative piece by Stephen Watts and Sean Mann in which they argued that in both its politics and in its development, Afghanistan is doing better than is commonly believed. Gary Owen, a civilian development worker who has spent the last several years working on the ground in Afghanistan, begs to differ. He paints a far gloomier picture of Afghanistan, arguing that the country and U.S. policy have a long way to go.
Many Americans are surprisingly bullish on Afghanistan, and this perspective showed up in a July Lawfare post on “Afghanistan After the Drawdown” by RAND analysts Stephen Watts and Sean Mann. Although the two authors offer some valid points, they miss many of the country’s problems and, in so doing, are wrongly optimistic about where Afghanistan is going.
After a decade and more of U.S. intervention, it can be difficult to pin down how things are going in Afghanistan. By some measures, things in Afghanistan are better: There are more children in school than there were under the Taliban, more Afghans have access to basic healthcare than before the 2001 invasion, and Internet access means more connections to the outside world than was ever possible during the time of the black turbans. Watts and Mann cite those cases as reasons to be optimistic about the country, and rightly so. Where they go wrong is in three key areas: relations with Pakistan, the current government as a symbol of Afghan unity, and the abilities of Afghan security forces.
Pakistan’s got plenty to worry about when it comes to sanctuaries within its own borders, a grim point made by last year’s school shooting in Peshawar. And recent revelations that Mullah Omar died in Pakistan, and his whereabouts were known to the ISI for years, don’t paint a picture of Afghanistan being used as a base to launch operations against Pakistan. Instead it speaks to Pakistan’s harboring of the Taliban with the government’s knowledge, something Islamabad is scrambling to correct as they look ahead to peace talks with the Taliban.
Or it’s just a case of Afghanistan following the American lead.
In the fall of 2014, after another runoff election threatened to bring the country’s democratic future to a grinding halt, Secretary of State John Kerry addressed a group made up of Abdullah’s leadership team. According to an administration official, Kerry told the group, “I have to emphasize to you that if you do not have an agreement, if you do not move to a unity government, the United States will not be able to support Afghanistan.” Aimed squarely at those who supported Abdullah to the point that they might take up arms in his name, Kerry’s statement was an offer neither Ghani nor Abdullah could possibly refuse. The current government isn’t a triumph of consensus so much as it is a case study in diplomatic extortion, and its survival is doubtful if the Americans stick with the current timeline for complete withdrawal by the end of 2016.
The current government isn’t a triumph of consensus so much as it is a case study in diplomatic extortion, and its survival is doubtful if the Americans stick with the current timeline for complete withdrawal by the end of 2016.
Thanks to advances by the Taliban in Faryab and Kunduz, influential politicians like Rashid Dostum (currently Ghani’s vice president) and Atta Noor (the powerful governor of Balkh province) have been pretty vocal in their thinking that Afghan forces alone can’t get the job done; that to tip the balance means more troops from somewhere—either the Americans (not out of the question completely, but unlikely), or some kind of militia. Since today’s anti-Taliban militia could be tomorrow’s coup attempt, it lays some troubling groundwork for widening existing divides in the country that the United States had hoped the Ghani/Abdullah deal would help bridge. Unless they can manage to bring the security situation that’s deteriorating faster than Iggy Azalea’s career back under control, Afghan troops could have some new bosses very soon. Their current performance doesn’t inspire much hope.
Actually, it’s pretty clear how those forces will perform. In a word? Badly.
Since the Afghans assumed control of the country’s security in 2014, more civilians have been killed, more soldiers have died, more Afghan troops have deserted than ever before, and security forces are still torturing one-third of their detainees. This is the force Watts and Mann describe as “passably capable” and “resilient.” If by “passably capable” they mean “doesn’t torture too many people,” then sure, I suppose they are “passably capable,” but I think we might want to aim just a bit higher.
According to the Americans, civilian casualties as a result of ground engagements between the Afghans and insurgents were up eight percent for the first three months of 2015 when compared to the same period in 2014. In June, Afghan Chief of Army Staff Gen. Qadam Shah Shaheem told his troops that using artillery and conducting night raids against the insurgents was just fine, and no one would be prosecuted as a result. Since most engagements occur among the population when one is countering an insurgency, this change in the rules of engagement means more innocent civilians are going to die as the result of actions by Afghan security forces. That’s borne out by the latest report on civilian casualties from UNAMA, which found that throughout the first half of 2015, Afghan forces caused more civilian casualties than the Taliban did.
And when they’re not busy leveling villages, Afghan forces are dying in record numbers. Throughout the first five months of 2015, security forces casualties were up 70 percent from the same period in 2014. Some of that’s attributable to increasing activity by the insurgents, but a “capable” force doesn’t see that kind of casualty increase unless its capabilities are less than optimal. Even so, the biggest cause of attrition for Afghan troops isn’t being killed in action (KIA). According to a June report by the Americans to Congress, the largest source for attrition is “dropped from rolls” (wherein a soldier stops showing up for work for more than a month so he’s no longer counted), and KIA is the smallest source for Afghan force attrition.
But when they do manage to not die and to show up for work, Afghan forces like to spend some quality time with their detainees. A February report by the United Nations Assistance Mission in Afghanistan (UNAMA) found that while torture is on the decrease, around 35 percent of all detainees surveyed reported being tortured in detention. Much of that alleged torture was at the hands of the National Directorate of Security (NDS), which is similar to the FBI, except that the FBI has better windbreakers and isn’t prone to hooking people up to car batteries unnecessarily. That probably explains why the Americans made it clear in June that no U.S. funds were going to the NDS, even though nearly every other aspect of Afghan defense operations comes directly from American coffers and internal defense is vital for the success of the counterinsurgency.
In an alternate-reality Afghanistan, civilians aren’t dying in greater numbers, the government isn’t on the verge of collapse, and the return on foreign investment is staggering. The Afghans would love it—because that’s the country the Americans promised them.
An American solution to Afghanistan’s problems faces the struggles of a dwindling security force to keep the Taliban at bay as they strike from sanctuaries in Pakistan, a government on the verge of collapse, and large numbers of civilians being victimized by their own government. And that’s without the growing threat of the Islamic State. In an alternate-reality Afghanistan, civilians aren’t dying in greater numbers, the government isn’t on the verge of collapse, and the return on foreign investment is staggering. The Afghans would love it—because that’s the country the Americans promised them.
The reality is that that Afghanistan’s future, while grim, is still better than it was. There is cause for cautious optimism. That does not mean that we shouldn’t be painfully honest about what’s happening in Afghanistan. Given the sacrifices made since 9/11, it’s tempting to do otherwise. But doing so means ignoring challenges the country faces, and the decisions about its future the Americans still need to make. |
/-
Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import order.bounds
/-!
# Intervals in Lattices
In this file, we provide instances of lattice structures on intervals within lattices.
Some of them depend on the order of the endpoints of the interval, and thus are not made
global instances. These are probably not all of the lattice instances that could be placed on these
intervals, but more can be added easily along the same lines when needed.
## Main definitions
In the following, `*` can represent either `c`, `o`, or `i`.
* `set.Ic*.order_bot`
* `set.Ii*.semillatice_inf`
* `set.I*c.order_top`
* `set.I*c.semillatice_inf`
* `set.I**.lattice`
* `set.Iic.bounded_order`, within an `order_bot`
* `set.Ici.bounded_order`, within an `order_top`
-/
variable {α : Type*}
namespace set
namespace Ico
variables {a b : α}
instance [semilattice_inf α] : semilattice_inf (Ico a b) :=
subtype.semilattice_inf (λ x y hx hy, ⟨le_inf hx.1 hy.1, lt_of_le_of_lt inf_le_left hx.2⟩)
/-- `Ico a b` has a bottom element whenever `a < b`. -/
@[reducible] protected def order_bot [partial_order α] (h : a < b) : order_bot (Ico a b) :=
(is_least_Ico h).order_bot
end Ico
namespace Iio
instance [semilattice_inf α] {a : α} : semilattice_inf (Iio a) :=
subtype.semilattice_inf (λ x y hx hy, lt_of_le_of_lt inf_le_left hx)
end Iio
namespace Ioc
variables {a b : α}
instance [semilattice_sup α] : semilattice_sup (Ioc a b) :=
subtype.semilattice_sup (λ x y hx hy, ⟨lt_of_lt_of_le hx.1 le_sup_left, sup_le hx.2 hy.2⟩)
/-- `Ioc a b` has a top element whenever `a < b`. -/
@[reducible] protected def order_top [partial_order α] (h : a < b) : order_top (Ioc a b) :=
(is_greatest_Ioc h).order_top
end Ioc
namespace Iio
instance [semilattice_sup α] {a : α} : semilattice_sup (Ioi a) :=
subtype.semilattice_sup (λ x y hx hy, lt_of_lt_of_le hx le_sup_left)
end Iio
namespace Iic
variables {a : α}
instance [semilattice_inf α] : semilattice_inf (Iic a) :=
subtype.semilattice_inf (λ x y hx hy, le_trans inf_le_left hx)
instance [semilattice_sup α] : semilattice_sup (Iic a) :=
subtype.semilattice_sup (λ x y hx hy, sup_le hx hy)
instance [lattice α] : lattice (Iic a) :=
{ .. Iic.semilattice_inf,
.. Iic.semilattice_sup }
instance [preorder α] : order_top (Iic a) :=
{ top := ⟨a, le_refl a⟩,
le_top := λ x, x.prop }
@[simp] lemma coe_top [partial_order α] {a : α} : ↑(⊤ : Iic a) = a := rfl
instance [preorder α] [order_bot α] : order_bot (Iic a) :=
{ bot := ⟨⊥, bot_le⟩,
bot_le := λ ⟨_,_⟩, subtype.mk_le_mk.2 bot_le }
@[simp] lemma coe_bot [preorder α] [order_bot α] {a : α} : ↑(⊥ : Iic a) = (⊥ : α) := rfl
instance [partial_order α] [no_min_order α] {a : α} : no_min_order (Iic a) :=
⟨λ x, let ⟨y, hy⟩ := exists_lt x.1 in ⟨⟨y, le_trans hy.le x.2⟩, hy⟩ ⟩
instance [preorder α] [order_bot α] : bounded_order (Iic a) :=
{ .. Iic.order_top,
.. Iic.order_bot }
end Iic
namespace Ici
variables {a : α}
instance [semilattice_inf α] : semilattice_inf (Ici a) :=
subtype.semilattice_inf (λ x y hx hy, le_inf hx hy)
instance [semilattice_sup α] : semilattice_sup (Ici a) :=
subtype.semilattice_sup (λ x y hx hy, le_trans hx le_sup_left)
instance [lattice α] : lattice (Ici a) :=
{ .. Ici.semilattice_inf,
.. Ici.semilattice_sup }
instance [preorder α] : order_bot (Ici a) :=
{ bot := ⟨a, le_refl a⟩,
bot_le := λ x, x.prop }
@[simp] lemma coe_bot [partial_order α] {a : α} : ↑(⊥ : Ici a) = a := rfl
instance [preorder α] [order_top α] : order_top (Ici a) :=
{ top := ⟨⊤, le_top⟩,
le_top := λ ⟨_,_⟩, subtype.mk_le_mk.2 le_top }
@[simp] lemma coe_top [preorder α] [order_top α] {a : α} : ↑(⊤ : Ici a) = (⊤ : α) := rfl
instance [partial_order α] [no_max_order α] {a : α} : no_max_order (Ici a) :=
⟨λ x, let ⟨y, hy⟩ := exists_gt x.1 in ⟨⟨y, le_trans x.2 hy.le⟩, hy⟩ ⟩
instance [preorder α] [order_top α] : bounded_order (Ici a) :=
{ .. Ici.order_top,
.. Ici.order_bot }
end Ici
namespace Icc
instance [semilattice_inf α] {a b : α} : semilattice_inf (Icc a b) :=
subtype.semilattice_inf (λ x y hx hy, ⟨le_inf hx.1 hy.1, le_trans inf_le_left hx.2⟩)
instance [semilattice_sup α] {a b : α} : semilattice_sup (Icc a b) :=
subtype.semilattice_sup (λ x y hx hy, ⟨le_trans hx.1 le_sup_left, sup_le hx.2 hy.2⟩)
instance [lattice α] {a b : α} : lattice (Icc a b) :=
{ .. Icc.semilattice_inf,
.. Icc.semilattice_sup }
/-- `Icc a b` has a bottom element whenever `a ≤ b`. -/
@[reducible] protected def order_bot [preorder α] {a b : α} (h : a ≤ b) : order_bot (Icc a b) :=
(is_least_Icc h).order_bot
/-- `Icc a b` has a top element whenever `a ≤ b`. -/
@[reducible] protected def order_top [preorder α] {a b : α} (h : a ≤ b) : order_top (Icc a b) :=
(is_greatest_Icc h).order_top
/-- `Icc a b` is a `bounded_order` whenever `a ≤ b`. -/
@[reducible] protected def bounded_order [preorder α] {a b : α} (h : a ≤ b) :
bounded_order (Icc a b) :=
{ .. Icc.order_top h,
.. Icc.order_bot h }
end Icc
end set
|
module Render
import Data.String
import VNode
import Attributes
-- Creates an empty node an returns a pointer to it
%foreign "browser:lambda: node => document.createElement(node)"
prim__makeNode : String -> PrimIO AnyPtr
-- Returns undefined
%foreign "browser:lambda: (node, attr, value) => node.setAttribute(attr, value)"
prim__setAttr : AnyPtr -> String -> String -> PrimIO AnyPtr
%foreign "browser:lambda: (parent, child) => parent.appendChild(child)"
prim__addNode : AnyPtr -> AnyPtr -> PrimIO AnyPtr
%foreign "browser:lambda: id => document.getElementById(id)"
prim__getRoot : String -> PrimIO AnyPtr
%foreign "browser:lambda: text => document.createTextNode(text)"
prim__madeText : String -> PrimIO AnyPtr
%foreign "browser:lambda: value => console.log(value)"
prim__consoleLog : AnyPtr -> PrimIO AnyPtr
%foreign "browser:lambda: value => console.log(value)"
prim__consoleString : String -> PrimIO AnyPtr
%foreign "browser:lambda: node => node.innerHTML = ''"
prim__clearNode : AnyPtr -> PrimIO AnyPtr
export
getRoot : String -> IO AnyPtr
getRoot id = primIO $ prim__getRoot id
export
consoleLog : Show a => a -> IO ()
consoleLog x = do
_ <- primIO $ prim__consoleString (show x)
pure ()
export
setAttributes : NodeRef -> List Attribute -> IO NodeRef
setAttributes node attrs = do
_ <- traverse (setAttribute node) attrs
pure node
where
setAttribute : NodeRef -> Attribute -> IO NodeRef
setAttribute node (Class xs) = primIO $ prim__setAttr node "class" (unwords xs)
setAttribute node (Accept x) = primIO $ prim__setAttr node "accept" x
setAttribute node (AcceptCharSet x) = primIO $ prim__setAttr node "accept-charset" x
setAttribute node (AcessKey x) = primIO $ prim__setAttr node "accesskey" x
setAttribute node (Action x) = primIO $ prim__setAttr node "action" x
setAttribute node Async = primIO $ prim__setAttr node "async" "" -- TODO Fix this
setAttribute node (Cols x) = primIO $ prim__setAttr node "cols" (show x)
setAttribute node (Attr x y) = primIO $ prim__setAttr node x y
setAttribute node (Id x) = primIO $ prim__setAttr node "id" x
makeNode : (Node V tagType) -> IO NodeRef
makeNode (Tag name attrs children) = do
node <- primIO $ prim__makeNode name
_ <- setAttributes node attrs
pure node
makeNode (Void name attrs) = do
node <- primIO $ prim__makeNode name
_ <- setAttributes node attrs
pure node
makeNode (Text text) = primIO $ prim__madeText text
attachNode : (parent : NodeRef) -> (child : NodeRef) -> IO ()
attachNode parent child = do
_ <- primIO $ prim__addNode parent child
pure ()
render' : (root : NodeRef) -> (vdom : DOM V) -> IO (DOM L)
render' root (VDOM meta node) = do
ref <- makeNode node
_ <- attachNode root ref
case node of
(Tag name attr children) => do
children <- traverse (render' ref) children
let liveNode = Tag name attr children
pure (LiveDOM meta liveNode ref)
(Text string) => pure (LiveDOM meta (Text string) ref)
(Void name attr) => pure (LiveDOM meta (Void name attr) ref)
export
render : (root : NodeRef) -> (vdom : DOM V) -> IO (DOM L)
render root vdom = do
_ <- primIO $ prim__clearNode root
render' root vdom
|
theory T14
imports Main
begin
lemma "(
(\<forall> x::nat. \<forall> y::nat. meet(x, y) = meet(y, x)) &
(\<forall> x::nat. \<forall> y::nat. join(x, y) = join(y, x)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, meet(y, z)) = meet(meet(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(x, join(y, z)) = join(join(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. meet(x, join(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. join(x, meet(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, join(y, z)) = join(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(join(x, y), z) = join(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, over(join(mult(x, y), z), y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(y, undr(x, join(mult(x, y), z))) = y) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(over(x, y), y), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(y, undr(y, x)), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(x, meet(y, z)) = join(over(x, y), over(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(meet(x, y), z) = join(undr(x, z), undr(y, z))) &
(\<forall> x::nat. \<forall> y::nat. invo(join(x, y)) = meet(invo(x), invo(y))) &
(\<forall> x::nat. \<forall> y::nat. invo(meet(x, y)) = join(invo(x), invo(y))) &
(\<forall> x::nat. invo(invo(x)) = x)
) \<longrightarrow>
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, meet(y, z)) = meet(mult(x, y), mult(x, z)))
"
nitpick[card nat=4,timeout=86400]
oops
end |
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import order.category.BddDistLat
import order.heyting.hom
/-!
# The category of Heyting algebras
This file defines `HeytAlg`, the category of Heyting algebras.
-/
universes u
open category_theory opposite order
/-- The category of Heyting algebras. -/
def HeytAlg := bundled heyting_algebra
namespace HeytAlg
instance : has_coe_to_sort HeytAlg Type* := bundled.has_coe_to_sort
instance (X : HeytAlg) : heyting_algebra X := X.str
/-- Construct a bundled `HeytAlg` from a `heyting_algebra`. -/
def of (α : Type*) [heyting_algebra α] : HeytAlg := bundled.of α
@[simp] lemma coe_of (α : Type*) [heyting_algebra α] : ↥(of α) = α := rfl
instance : inhabited HeytAlg := ⟨of punit⟩
instance bundled_hom : bundled_hom heyting_hom :=
{ to_fun := λ α β [heyting_algebra α] [heyting_algebra β],
by exactI (coe_fn : heyting_hom α β → α → β),
id := heyting_hom.id,
comp := @heyting_hom.comp,
hom_ext := λ α β [heyting_algebra α] [heyting_algebra β], by exactI fun_like.coe_injective }
attribute [derive [large_category, concrete_category]] HeytAlg
@[simps]
instance has_forget_to_Lat : has_forget₂ HeytAlg BddDistLat :=
{ forget₂ := { obj := λ X, BddDistLat.of X,
map := λ X Y f, (f : bounded_lattice_hom X Y) } }
/-- Constructs an isomorphism of Heyting algebras from an order isomorphism between them. -/
@[simps] def iso.mk {α β : HeytAlg.{u}} (e : α ≃o β) : α ≅ β :=
{ hom := e,
inv := e.symm,
hom_inv_id' := by { ext, exact e.symm_apply_apply _ },
inv_hom_id' := by { ext, exact e.apply_symm_apply _ } }
end HeytAlg
|
-- --------------------------------------------------------------- [ Model.idr ]
-- Description : The Model
-- Copyright : (c) Jan de Muijnck-Hughes
-- License : see LICENSE
-- --------------------------------------------------------------------- [ EOH ]
module Commons.Options.ArgParse.Model
%access public export
data Arg : Type where
Flag : String -> Arg
KeyValue : String -> String -> Arg
File : String -> Arg
Show Arg where
show (Flag f) = "[Flag " ++ show f ++ "]"
show (KeyValue k v) = "[KeyValue " ++ show k ++ " : " ++ show v ++ "]"
show (File fs) = "[File " ++ show fs ++ "]"
-- --------------------------------------------------------------------- [ EOF ]
|
theory T51
imports Main
begin
lemma "(
(\<forall> x::nat. \<forall> y::nat. meet(x, y) = meet(y, x)) &
(\<forall> x::nat. \<forall> y::nat. join(x, y) = join(y, x)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, meet(y, z)) = meet(meet(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(x, join(y, z)) = join(join(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. meet(x, join(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. join(x, meet(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, join(y, z)) = join(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(join(x, y), z) = join(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, over(join(mult(x, y), z), y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(y, undr(x, join(mult(x, y), z))) = y) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(over(x, y), y), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(y, undr(y, x)), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, meet(y, z)) = meet(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(x, meet(y, z)) = join(over(x, y), over(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(meet(x, y), z) = join(undr(x, z), undr(y, z))) &
(\<forall> x::nat. \<forall> y::nat. invo(join(x, y)) = meet(invo(x), invo(y))) &
(\<forall> x::nat. \<forall> y::nat. invo(meet(x, y)) = join(invo(x), invo(y))) &
(\<forall> x::nat. invo(invo(x)) = x)
) \<longrightarrow>
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(meet(x, y), z) = meet(mult(x, z), mult(y, z)))
"
nitpick[card nat=7,timeout=86400]
oops
end |
From Coq Require Import String Arith.
From Vyper Require Import Config Map.
From Vyper.L10 Require Import Base.
From Vyper.L50 Require Import Types AST Builtins DynError.
Local Open Scope list_scope.
(** Lookup all the names in the variable map and check types.
The names need not be distinct.
*)
Fixpoint get_vars_by_typenames {C: VyperConfig}
(typenames: list typename)
(vars: string_map dynamic_value)
: dynamic_error + list dynamic_value
:= match typenames with
| nil => inr nil
| (type, name) :: rest =>
match map_lookup vars name as z return (_ = z -> _) with
| None => fun _ => inl (DE_CannotResolveLocalVariable name)
| Some value => fun found =>
let t := projT1 value in
if yul_type_eq_dec type t
then match get_vars_by_typenames rest vars with
| inl err => inl err
| inr rest_results => inr (value :: rest_results)
end
else inl (DE_TypeMismatch type t)
end eq_refl
end.
(** Bind several variables. This happens to the function arguments right after a call
and also in a variable declaration with initializer.
The names must be distinct because shadowing is not allowed.
*)
Fixpoint bind_vars_to_values {C: VyperConfig}
(vars: list typename)
(init: list dynamic_value)
(loc: string_map dynamic_value)
: dynamic_error + string_map dynamic_value
:= match vars with
| nil =>
match init with
| nil => inr loc
| _ => inl DE_TooManyValues
end
| (vtype, vname) :: vtail =>
match init with
| nil => inl DE_TooFewValues
| (existT _ itype ivalue as ihead) :: itail =>
if yul_type_eq_dec vtype itype then
match map_lookup loc vname with
| Some _ => inl (DE_LocalNameShadowing vname)
| None => bind_vars_to_values vtail itail (map_insert loc vname ihead)
end
else inl (DE_TypeMismatch vtype itype)
end
end.
(** Bind several variables to zeros.
This happens to the function outputs right after a call
and also in a variable declaration without initializer.
The names must be distinct because shadowing is not allowed.
*)
Fixpoint bind_vars_to_zeros {C: VyperConfig}
(vars: list typename)
(loc: string_map dynamic_value)
: dynamic_error + string_map dynamic_value
:= match vars with
| nil => inr loc
| (vtype, vname) :: vtail =>
match map_lookup loc vname with
| Some _ => inl (DE_LocalNameShadowing vname)
| None => bind_vars_to_zeros vtail (map_insert loc vname (existT _ vtype (zero_value vtype)))
end
end.
(** Rebind several variables. This happens in assignments. *)
Fixpoint rebind_vars_to_values {C: VyperConfig}
(vars: list string)
(rhs: list dynamic_value)
(loc: string_map dynamic_value)
: dynamic_error + string_map dynamic_value
:= match vars with
| nil =>
match rhs with
| nil => inr loc
| _ => inl DE_TooManyValues
end
| vname :: vtail =>
match rhs with
| nil => inl DE_TooFewValues
| (existT _ rtype rvalue as rhead) :: rtail =>
match map_lookup loc vname with
| Some (existT _ vtype _) =>
if yul_type_eq_dec vtype rtype
then rebind_vars_to_values vtail rtail (map_insert loc vname rhead)
else inl (DE_TypeMismatch rtype vtype)
| None => inl (DE_CannotResolveLocalVariable vname)
end
end
end.
Fixpoint unbind_vars {C: VyperConfig}
(vars: list typename)
(loc: string_map dynamic_value)
: string_map dynamic_value
:= match vars with
| nil => loc
| h :: t => unbind_vars t (map_remove loc (snd h))
end.
Lemma unbind_vars_app {C: VyperConfig}
(a b: list typename)
(loc: string_map dynamic_value):
unbind_vars b (unbind_vars a loc) = unbind_vars (a ++ b) loc.
Proof.
revert loc. induction a as [|h]; intros. { easy. }
cbn. apply IHa.
Qed.
|
{-# OPTIONS --no-sized-types #-}
postulate
Size : Set
_^ : Size -> Size
∞ : Size
{-# BUILTIN SIZE Size #-}
{-# BUILTIN SIZESUC _^ #-}
{-# BUILTIN SIZEINF ∞ #-}
data Nat : {size : Size} -> Set where
zero : {size : Size} -> Nat {size ^}
suc : {size : Size} -> Nat {size} -> Nat {size ^}
weak : {i : Size} -> Nat {i} -> Nat {∞}
weak x = x
-- Should give error without sized types.
-- .i != ∞ of type Size
-- when checking that the expression x has type Nat
|
/-
Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import order.omega_complete_partial_order
import category_theory.limits.shapes.products
import category_theory.limits.shapes.equalizers
import category_theory.limits.constructions.limits_of_products_and_equalizers
import category_theory.concrete_category.bundled_hom
/-!
# Category of types with a omega complete partial order
In this file, we bundle the class `omega_complete_partial_order` into a
concrete category and prove that continuous functions also form
a `omega_complete_partial_order`.
## Main definitions
* `ωCPO`
* an instance of `category` and `concrete_category`
-/
open category_theory
universes u v
/-- The category of types with a omega complete partial order. -/
def ωCPO : Type (u+1) := bundled omega_complete_partial_order
namespace ωCPO
open omega_complete_partial_order
instance : bundled_hom @continuous_hom :=
{ to_fun := @continuous_hom.simps.apply,
id := @continuous_hom.id,
comp := @continuous_hom.comp,
hom_ext := @continuous_hom.coe_inj }
attribute [derive [large_category, concrete_category]] ωCPO
instance : has_coe_to_sort ωCPO Type* := bundled.has_coe_to_sort
/-- Construct a bundled ωCPO from the underlying type and typeclass. -/
def of (α : Type*) [omega_complete_partial_order α] : ωCPO := bundled.of α
@[simp] lemma coe_of (α : Type*) [omega_complete_partial_order α] : ↥(of α) = α := rfl
instance : inhabited ωCPO := ⟨of punit⟩
instance (α : ωCPO) : omega_complete_partial_order α := α.str
section
open category_theory.limits
namespace has_products
/-- The pi-type gives a cone for a product. -/
def product {J : Type v} (f : J → ωCPO.{v}) : fan f :=
fan.mk (of (Π j, f j)) (λ j, continuous_hom.of_mono (pi.eval_order_hom j) (λ c, rfl))
/-- The pi-type is a limit cone for the product. -/
def is_product (J : Type v) (f : J → ωCPO) : is_limit (product f) :=
{ lift := λ s,
⟨⟨λ t j, s.π.app ⟨j⟩ t, λ x y h j, (s.π.app ⟨j⟩).monotone h⟩,
λ x, funext (λ j, (s.π.app ⟨j⟩).continuous x)⟩,
uniq' := λ s m w,
begin
ext t j,
change m t j = s.π.app ⟨j⟩ t,
rw ← w ⟨j⟩,
refl,
end,
fac' := λ s j, by { cases j, tidy, } }.
instance (J : Type v) (f : J → ωCPO.{v}) : has_product f :=
has_limit.mk ⟨_, is_product _ f⟩
end has_products
instance omega_complete_partial_order_equalizer
{α β : Type*} [omega_complete_partial_order α] [omega_complete_partial_order β]
(f g : α →𝒄 β) : omega_complete_partial_order {a : α // f a = g a} :=
omega_complete_partial_order.subtype _ $ λ c hc,
begin
rw [f.continuous, g.continuous],
congr' 1,
ext,
apply hc _ ⟨_, rfl⟩,
end
namespace has_equalizers
/-- The equalizer inclusion function as a `continuous_hom`. -/
def equalizer_ι {α β : Type*} [omega_complete_partial_order α] [omega_complete_partial_order β]
(f g : α →𝒄 β) :
{a : α // f a = g a} →𝒄 α :=
continuous_hom.of_mono (order_hom.subtype.val _) (λ c, rfl)
/-- A construction of the equalizer fork. -/
def equalizer {X Y : ωCPO.{v}} (f g : X ⟶ Y) :
fork f g :=
@fork.of_ι _ _ _ _ _ _ (ωCPO.of {a // f a = g a}) (equalizer_ι f g)
(continuous_hom.ext _ _ (λ x, x.2))
/-- The equalizer fork is a limit. -/
def is_equalizer {X Y : ωCPO.{v}} (f g : X ⟶ Y) : is_limit (equalizer f g) :=
fork.is_limit.mk' _ $ λ s,
⟨{ to_fun := λ x, ⟨s.ι x, by apply continuous_hom.congr_fun s.condition⟩,
monotone' := λ x y h, s.ι.monotone h,
cont := λ x, subtype.ext (s.ι.continuous x) },
by { ext, refl },
λ m hm,
begin
ext,
apply continuous_hom.congr_fun hm,
end⟩
end has_equalizers
instance : has_products.{v} ωCPO.{v} :=
λ J, { has_limit := λ F, has_limit_of_iso discrete.nat_iso_functor.symm }
instance {X Y : ωCPO.{v}} (f g : X ⟶ Y) : has_limit (parallel_pair f g) :=
has_limit.mk ⟨_, has_equalizers.is_equalizer f g⟩
instance : has_equalizers ωCPO.{v} := has_equalizers_of_has_limit_parallel_pair _
instance : has_limits ωCPO.{v} := has_limits_of_has_equalizers_and_products
end
end ωCPO
|
(* Title: HOL/UNITY/UNITY.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
The basic UNITY theory (revised version, based upon the "co"
operator).
From Misra, "A Logic for Concurrent Programming", 1994.
*)
section \<open>The Basic UNITY Theory\<close>
theory UNITY imports Main begin
definition
"Program =
{(init:: 'a set, acts :: ('a * 'a)set set,
allowed :: ('a * 'a)set set). Id \<in> acts & Id \<in> allowed}"
typedef 'a program = "Program :: ('a set * ('a * 'a) set set * ('a * 'a) set set) set"
morphisms Rep_Program Abs_Program
unfolding Program_def by blast
definition Acts :: "'a program => ('a * 'a)set set" where
"Acts F == (%(init, acts, allowed). acts) (Rep_Program F)"
definition "constrains" :: "['a set, 'a set] => 'a program set" (infixl "co" 60) where
"A co B == {F. \<forall>act \<in> Acts F. act``A \<subseteq> B}"
definition unless :: "['a set, 'a set] => 'a program set" (infixl "unless" 60) where
"A unless B == (A-B) co (A \<union> B)"
definition mk_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
=> 'a program" where
"mk_program == %(init, acts, allowed).
Abs_Program (init, insert Id acts, insert Id allowed)"
definition Init :: "'a program => 'a set" where
"Init F == (%(init, acts, allowed). init) (Rep_Program F)"
definition AllowedActs :: "'a program => ('a * 'a)set set" where
"AllowedActs F == (%(init, acts, allowed). allowed) (Rep_Program F)"
definition Allowed :: "'a program => 'a program set" where
"Allowed F == {G. Acts G \<subseteq> AllowedActs F}"
definition stable :: "'a set => 'a program set" where
"stable A == A co A"
definition strongest_rhs :: "['a program, 'a set] => 'a set" where
"strongest_rhs F A == \<Inter>{B. F \<in> A co B}"
definition invariant :: "'a set => 'a program set" where
"invariant A == {F. Init F \<subseteq> A} \<inter> stable A"
definition increasing :: "['a => 'b::{order}] => 'a program set" where
\<comment> \<open>Polymorphic in both states and the meaning of \<open>\<le>\<close>\<close>
"increasing f == \<Inter>z. stable {s. z \<le> f s}"
subsubsection\<open>The abstract type of programs\<close>
lemmas program_typedef =
Rep_Program Rep_Program_inverse Abs_Program_inverse
Program_def Init_def Acts_def AllowedActs_def mk_program_def
lemma Id_in_Acts [iff]: "Id \<in> Acts F"
apply (cut_tac x = F in Rep_Program)
apply (auto simp add: program_typedef)
done
lemma insert_Id_Acts [iff]: "insert Id (Acts F) = Acts F"
by (simp add: insert_absorb)
lemma Acts_nonempty [simp]: "Acts F \<noteq> {}"
by auto
lemma Id_in_AllowedActs [iff]: "Id \<in> AllowedActs F"
apply (cut_tac x = F in Rep_Program)
apply (auto simp add: program_typedef)
done
lemma insert_Id_AllowedActs [iff]: "insert Id (AllowedActs F) = AllowedActs F"
by (simp add: insert_absorb)
subsubsection\<open>Inspectors for type "program"\<close>
lemma Init_eq [simp]: "Init (mk_program (init,acts,allowed)) = init"
by (simp add: program_typedef)
lemma Acts_eq [simp]: "Acts (mk_program (init,acts,allowed)) = insert Id acts"
by (simp add: program_typedef)
lemma AllowedActs_eq [simp]:
"AllowedActs (mk_program (init,acts,allowed)) = insert Id allowed"
by (simp add: program_typedef)
subsubsection\<open>Equality for UNITY programs\<close>
lemma surjective_mk_program [simp]:
"mk_program (Init F, Acts F, AllowedActs F) = F"
apply (cut_tac x = F in Rep_Program)
apply (auto simp add: program_typedef)
apply (drule_tac f = Abs_Program in arg_cong)+
apply (simp add: program_typedef insert_absorb)
done
lemma program_equalityI:
"[| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G |]
==> F = G"
apply (rule_tac t = F in surjective_mk_program [THEN subst])
apply (rule_tac t = G in surjective_mk_program [THEN subst], simp)
done
lemma program_equalityE:
"[| F = G;
[| Init F = Init G; Acts F = Acts G; AllowedActs F = AllowedActs G |]
==> P |] ==> P"
by simp
lemma program_equality_iff:
"(F=G) =
(Init F = Init G & Acts F = Acts G &AllowedActs F = AllowedActs G)"
by (blast intro: program_equalityI program_equalityE)
subsubsection\<open>co\<close>
lemma constrainsI:
"(!!act s s'. [| act \<in> Acts F; (s,s') \<in> act; s \<in> A |] ==> s' \<in> A')
==> F \<in> A co A'"
by (simp add: constrains_def, blast)
lemma constrainsD:
"[| F \<in> A co A'; act \<in> Acts F; (s,s') \<in> act; s \<in> A |] ==> s' \<in> A'"
by (unfold constrains_def, blast)
lemma constrains_empty [iff]: "F \<in> {} co B"
by (unfold constrains_def, blast)
lemma constrains_empty2 [iff]: "(F \<in> A co {}) = (A={})"
by (unfold constrains_def, blast)
lemma constrains_UNIV [iff]: "(F \<in> UNIV co B) = (B = UNIV)"
by (unfold constrains_def, blast)
lemma constrains_UNIV2 [iff]: "F \<in> A co UNIV"
by (unfold constrains_def, blast)
text\<open>monotonic in 2nd argument\<close>
lemma constrains_weaken_R:
"[| F \<in> A co A'; A'<=B' |] ==> F \<in> A co B'"
by (unfold constrains_def, blast)
text\<open>anti-monotonic in 1st argument\<close>
lemma constrains_weaken_L:
"[| F \<in> A co A'; B \<subseteq> A |] ==> F \<in> B co A'"
by (unfold constrains_def, blast)
lemma constrains_weaken:
"[| F \<in> A co A'; B \<subseteq> A; A'<=B' |] ==> F \<in> B co B'"
by (unfold constrains_def, blast)
subsubsection\<open>Union\<close>
lemma constrains_Un:
"[| F \<in> A co A'; F \<in> B co B' |] ==> F \<in> (A \<union> B) co (A' \<union> B')"
by (unfold constrains_def, blast)
lemma constrains_UN:
"(!!i. i \<in> I ==> F \<in> (A i) co (A' i))
==> F \<in> (\<Union>i \<in> I. A i) co (\<Union>i \<in> I. A' i)"
by (unfold constrains_def, blast)
lemma constrains_Un_distrib: "(A \<union> B) co C = (A co C) \<inter> (B co C)"
by (unfold constrains_def, blast)
lemma constrains_UN_distrib: "(\<Union>i \<in> I. A i) co B = (\<Inter>i \<in> I. A i co B)"
by (unfold constrains_def, blast)
lemma constrains_Int_distrib: "C co (A \<inter> B) = (C co A) \<inter> (C co B)"
by (unfold constrains_def, blast)
lemma constrains_INT_distrib: "A co (\<Inter>i \<in> I. B i) = (\<Inter>i \<in> I. A co B i)"
by (unfold constrains_def, blast)
subsubsection\<open>Intersection\<close>
lemma constrains_Int:
"[| F \<in> A co A'; F \<in> B co B' |] ==> F \<in> (A \<inter> B) co (A' \<inter> B')"
by (unfold constrains_def, blast)
lemma constrains_INT:
"(!!i. i \<in> I ==> F \<in> (A i) co (A' i))
==> F \<in> (\<Inter>i \<in> I. A i) co (\<Inter>i \<in> I. A' i)"
by (unfold constrains_def, blast)
lemma constrains_imp_subset: "F \<in> A co A' ==> A \<subseteq> A'"
by (unfold constrains_def, auto)
text\<open>The reasoning is by subsets since "co" refers to single actions
only. So this rule isn't that useful.\<close>
lemma constrains_trans:
"[| F \<in> A co B; F \<in> B co C |] ==> F \<in> A co C"
by (unfold constrains_def, blast)
lemma constrains_cancel:
"[| F \<in> A co (A' \<union> B); F \<in> B co B' |] ==> F \<in> A co (A' \<union> B')"
by (unfold constrains_def, clarify, blast)
subsubsection\<open>unless\<close>
lemma unlessI: "F \<in> (A-B) co (A \<union> B) ==> F \<in> A unless B"
by (unfold unless_def, assumption)
lemma unlessD: "F \<in> A unless B ==> F \<in> (A-B) co (A \<union> B)"
by (unfold unless_def, assumption)
subsubsection\<open>stable\<close>
lemma stableI: "F \<in> A co A ==> F \<in> stable A"
by (unfold stable_def, assumption)
lemma stableD: "F \<in> stable A ==> F \<in> A co A"
by (unfold stable_def, assumption)
lemma stable_UNIV [simp]: "stable UNIV = UNIV"
by (unfold stable_def constrains_def, auto)
subsubsection\<open>Union\<close>
lemma stable_Un:
"[| F \<in> stable A; F \<in> stable A' |] ==> F \<in> stable (A \<union> A')"
apply (unfold stable_def)
apply (blast intro: constrains_Un)
done
lemma stable_UN:
"(!!i. i \<in> I ==> F \<in> stable (A i)) ==> F \<in> stable (\<Union>i \<in> I. A i)"
apply (unfold stable_def)
apply (blast intro: constrains_UN)
done
lemma stable_Union:
"(!!A. A \<in> X ==> F \<in> stable A) ==> F \<in> stable (\<Union>X)"
by (unfold stable_def constrains_def, blast)
subsubsection\<open>Intersection\<close>
lemma stable_Int:
"[| F \<in> stable A; F \<in> stable A' |] ==> F \<in> stable (A \<inter> A')"
apply (unfold stable_def)
apply (blast intro: constrains_Int)
done
lemma stable_INT:
"(!!i. i \<in> I ==> F \<in> stable (A i)) ==> F \<in> stable (\<Inter>i \<in> I. A i)"
apply (unfold stable_def)
apply (blast intro: constrains_INT)
done
lemma stable_Inter:
"(!!A. A \<in> X ==> F \<in> stable A) ==> F \<in> stable (\<Inter>X)"
by (unfold stable_def constrains_def, blast)
lemma stable_constrains_Un:
"[| F \<in> stable C; F \<in> A co (C \<union> A') |] ==> F \<in> (C \<union> A) co (C \<union> A')"
by (unfold stable_def constrains_def, blast)
lemma stable_constrains_Int:
"[| F \<in> stable C; F \<in> (C \<inter> A) co A' |] ==> F \<in> (C \<inter> A) co (C \<inter> A')"
by (unfold stable_def constrains_def, blast)
(*[| F \<in> stable C; F \<in> (C \<inter> A) co A |] ==> F \<in> stable (C \<inter> A) *)
lemmas stable_constrains_stable = stable_constrains_Int[THEN stableI]
subsubsection\<open>invariant\<close>
lemma invariantI: "[| Init F \<subseteq> A; F \<in> stable A |] ==> F \<in> invariant A"
by (simp add: invariant_def)
text\<open>Could also say \<^term>\<open>invariant A \<inter> invariant B \<subseteq> invariant(A \<inter> B)\<close>\<close>
lemma invariant_Int:
"[| F \<in> invariant A; F \<in> invariant B |] ==> F \<in> invariant (A \<inter> B)"
by (auto simp add: invariant_def stable_Int)
subsubsection\<open>increasing\<close>
lemma increasingD:
"F \<in> increasing f ==> F \<in> stable {s. z \<subseteq> f s}"
by (unfold increasing_def, blast)
lemma increasing_constant [iff]: "F \<in> increasing (%s. c)"
by (unfold increasing_def stable_def, auto)
lemma mono_increasing_o:
"mono g ==> increasing f \<subseteq> increasing (g o f)"
apply (unfold increasing_def stable_def constrains_def, auto)
apply (blast intro: monoD order_trans)
done
(*Holds by the theorem (Suc m \<subseteq> n) = (m < n) *)
lemma strict_increasingD:
"!!z::nat. F \<in> increasing f ==> F \<in> stable {s. z < f s}"
by (simp add: increasing_def Suc_le_eq [symmetric])
(** The Elimination Theorem. The "free" m has become universally quantified!
Should the premise be !!m instead of \<forall>m ? Would make it harder to use
in forward proof. **)
lemma elimination:
"[| \<forall>m \<in> M. F \<in> {s. s x = m} co (B m) |]
==> F \<in> {s. s x \<in> M} co (\<Union>m \<in> M. B m)"
by (unfold constrains_def, blast)
text\<open>As above, but for the trivial case of a one-variable state, in which the
state is identified with its one variable.\<close>
lemma elimination_sing:
"(\<forall>m \<in> M. F \<in> {m} co (B m)) ==> F \<in> M co (\<Union>m \<in> M. B m)"
by (unfold constrains_def, blast)
subsubsection\<open>Theoretical Results from Section 6\<close>
lemma constrains_strongest_rhs:
"F \<in> A co (strongest_rhs F A )"
by (unfold constrains_def strongest_rhs_def, blast)
lemma strongest_rhs_is_strongest:
"F \<in> A co B ==> strongest_rhs F A \<subseteq> B"
by (unfold constrains_def strongest_rhs_def, blast)
subsubsection\<open>Ad-hoc set-theory rules\<close>
lemma Un_Diff_Diff [simp]: "A \<union> B - (A - B) = B"
by blast
lemma Int_Union_Union: "\<Union>B \<inter> A = \<Union>((%C. C \<inter> A)`B)"
by blast
text\<open>Needed for WF reasoning in WFair.thy\<close>
lemma Image_less_than [simp]: "less_than `` {k} = greaterThan k"
by blast
lemma Image_inverse_less_than [simp]: "less_than\<inverse> `` {k} = lessThan k"
by blast
subsection\<open>Partial versus Total Transitions\<close>
definition totalize_act :: "('a * 'a)set => ('a * 'a)set" where
"totalize_act act == act \<union> Id_on (-(Domain act))"
definition totalize :: "'a program => 'a program" where
"totalize F == mk_program (Init F,
totalize_act ` Acts F,
AllowedActs F)"
definition mk_total_program :: "('a set * ('a * 'a)set set * ('a * 'a)set set)
=> 'a program" where
"mk_total_program args == totalize (mk_program args)"
definition all_total :: "'a program => bool" where
"all_total F == \<forall>act \<in> Acts F. Domain act = UNIV"
lemma insert_Id_image_Acts: "f Id = Id ==> insert Id (f`Acts F) = f ` Acts F"
by (blast intro: sym [THEN image_eqI])
subsubsection\<open>Basic properties\<close>
lemma totalize_act_Id [simp]: "totalize_act Id = Id"
by (simp add: totalize_act_def)
lemma Domain_totalize_act [simp]: "Domain (totalize_act act) = UNIV"
by (auto simp add: totalize_act_def)
lemma Init_totalize [simp]: "Init (totalize F) = Init F"
by (unfold totalize_def, auto)
lemma Acts_totalize [simp]: "Acts (totalize F) = (totalize_act ` Acts F)"
by (simp add: totalize_def insert_Id_image_Acts)
lemma AllowedActs_totalize [simp]: "AllowedActs (totalize F) = AllowedActs F"
by (simp add: totalize_def)
lemma totalize_constrains_iff [simp]: "(totalize F \<in> A co B) = (F \<in> A co B)"
by (simp add: totalize_def totalize_act_def constrains_def, blast)
lemma totalize_stable_iff [simp]: "(totalize F \<in> stable A) = (F \<in> stable A)"
by (simp add: stable_def)
lemma totalize_invariant_iff [simp]:
"(totalize F \<in> invariant A) = (F \<in> invariant A)"
by (simp add: invariant_def)
lemma all_total_totalize: "all_total (totalize F)"
by (simp add: totalize_def all_total_def)
lemma Domain_iff_totalize_act: "(Domain act = UNIV) = (totalize_act act = act)"
by (force simp add: totalize_act_def)
lemma all_total_imp_totalize: "all_total F ==> (totalize F = F)"
apply (simp add: all_total_def totalize_def)
apply (rule program_equalityI)
apply (simp_all add: Domain_iff_totalize_act image_def)
done
lemma all_total_iff_totalize: "all_total F = (totalize F = F)"
apply (rule iffI)
apply (erule all_total_imp_totalize)
apply (erule subst)
apply (rule all_total_totalize)
done
lemma mk_total_program_constrains_iff [simp]:
"(mk_total_program args \<in> A co B) = (mk_program args \<in> A co B)"
by (simp add: mk_total_program_def)
subsection\<open>Rules for Lazy Definition Expansion\<close>
text\<open>They avoid expanding the full program, which is a large expression\<close>
lemma def_prg_Init:
"F = mk_total_program (init,acts,allowed) ==> Init F = init"
by (simp add: mk_total_program_def)
lemma def_prg_Acts:
"F = mk_total_program (init,acts,allowed)
==> Acts F = insert Id (totalize_act ` acts)"
by (simp add: mk_total_program_def)
lemma def_prg_AllowedActs:
"F = mk_total_program (init,acts,allowed)
==> AllowedActs F = insert Id allowed"
by (simp add: mk_total_program_def)
text\<open>An action is expanded if a pair of states is being tested against it\<close>
lemma def_act_simp:
"act = {(s,s'). P s s'} ==> ((s,s') \<in> act) = P s s'"
by (simp add: mk_total_program_def)
text\<open>A set is expanded only if an element is being tested against it\<close>
lemma def_set_simp: "A = B ==> (x \<in> A) = (x \<in> B)"
by (simp add: mk_total_program_def)
subsubsection\<open>Inspectors for type "program"\<close>
lemma Init_total_eq [simp]:
"Init (mk_total_program (init,acts,allowed)) = init"
by (simp add: mk_total_program_def)
lemma Acts_total_eq [simp]:
"Acts(mk_total_program(init,acts,allowed)) = insert Id (totalize_act`acts)"
by (simp add: mk_total_program_def)
lemma AllowedActs_total_eq [simp]:
"AllowedActs (mk_total_program (init,acts,allowed)) = insert Id allowed"
by (auto simp add: mk_total_program_def)
end
|
Formal statement is: lemma contour_integrable_lmul: "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. c * f x) contour_integrable_on g" Informal statement is: If $f$ is contour-integrable on a contour $g$, then $cf$ is contour-integrable on $g$. |
Formal statement is: lemma translation_eq_singleton_plus: "(\<lambda>x. a + x) ` T = {a} + T" Informal statement is: The image of a set $T$ under the translation map $x \mapsto a + x$ is equal to the set $a + T$. |
module Charsets
%default total
%access public export
data Charset : Type where
UTF8 : Charset
%name Charset charset
|
(* Attempt to do examples from the SEwB book *)
Require Import List.
Section Resources.
Variable Elt : Set.
Definition Res := list Elt.
Variable eq_dec : forall (x y : Elt), {x = y} + {x <> y}.
Definition free :
forall (x:Elt) (rfree : Res),
~ In x rfree ->
{rfree' : Res | In x rfree' /\ forall (y:Elt), x <> y -> In y rfree -> In y rfree'}.
Proof.
refine
(fun (x : Elt) (rfree: Res) (p : ~In x rfree) =>
exist _ (x::rfree) _). firstorder.
Defined.
Fixpoint remove (a : Elt) (r : Res) {struct r} : Res :=
match r with
| nil => nil
| h::t =>
match eq_dec a h with
| left _ => remove a t
| right _ => h::(remove a t)
end
end.
Lemma remove_correct : forall (x : Elt) (r : Res),
~ In x (remove x r).
Proof.
simple induction r. firstorder.
intros. simpl. case (eq_dec x a). firstorder.
firstorder.
Defined.
Hint Resolve remove_correct.
Ltac case_eq_dec :=
match goal with
| [ _ : _ |- context[eq_dec ?x ?y] ] =>
case (eq_dec x y) ; firstorder ; try subst ; intros ; try congruence
end.
Hint Extern 1 (In _ _) => case_eq_dec.
Lemma remove_inv_neq : forall (x y : Elt) (r : Res),
x <> y -> In y r -> In y (remove x r).
Proof.
simple induction r ; simpl ; eauto.
Defined.
Hint Resolve remove_inv_neq.
Definition alloc :
forall (x:Elt) (rfree : Res),
In x rfree ->
{rfree' : Res | ~In x rfree' /\ forall (y:Elt), x <> y -> In y rfree -> In y rfree'}.
Proof.
refine
(fun (x : Elt) (rfree: Res) (p : In x rfree) =>
exist _ (remove x rfree) _). firstorder.
Defined.
End Resources.
Require Import Coq.Sets.Constructive_sets.
Section Res_Prop.
Variable Elt : Set.
Variable eq_dec : forall (x y : Elt), {x = y} + {x <> y}.
Definition ResSet := Ensemble Elt.
(* Implicit Arguments In [U]. *)
Definition freeRes :
forall (x:Elt) (rfree : ResSet),
~ In Elt rfree x -> sigT
(fun (rfree' : ResSet) =>
In Elt rfree' x /\ forall (y:Elt), x <> y -> In Elt rfree y -> In Elt rfree' y).
Proof.
firstorder. refine (existT _ (Add Elt rfree x) _). firstorder.
Defined.
Definition allocRes :
forall (x:Elt) (rfree : ResSet),
In Elt rfree x -> sigT
(fun (rfree' : ResSet) =>
~ In Elt rfree' x /\ forall (y:Elt), x <> y -> In Elt rfree y -> In Elt rfree' y).
Proof.
firstorder. refine (existT _ (Subtract Elt rfree x) _). firstorder.
Defined.
End Res_Prop.
Section.
End. |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Discrete where
-- Discrete Category.
-- https://ncatlab.org/nlab/show/discrete+category
-- says:
-- A category is discrete if it is both a groupoid and a preorder. That is,
-- every morphism should be invertible, any two parallel morphisms should be equal.
-- The idea is that in a discrete category, no two distinct (nonisomorphic) objects
-- are connectable by any path (morphism), and an object connects to itself only through
-- its identity morphism.
open import Level using (Level; suc; _⊔_)
open import Categories.Category using (Category)
open import Categories.Category.Groupoid using (IsGroupoid)
record IsDiscrete {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where
open Category C using (Obj; _⇒_; _≈_)
field
isGroupoid : IsGroupoid C
preorder : {A B : Obj} → (f g : A ⇒ B) → f ≈ g
record DiscreteCategory (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where
field
category : Category o ℓ e
isDiscrete : IsDiscrete category
open IsDiscrete isDiscrete public
|
|||
module Toolkit.Data.Graph.EdgeBounded.DegreeCommon
import Decidable.Equality
import Data.String
import Data.List.Elem
import Data.List.Quantifiers
import Toolkit.Decidable.Do
import Toolkit.Decidable.Informative
import Toolkit.Data.Nat
import Toolkit.Data.Pair
import Toolkit.Data.List.Size
import Toolkit.Data.List.Occurs.Does
%default total
namespace HasDegree
public export
data DegreeType = I | O
public export
record Error where
constructor MkError
vertexID : Nat
degType : DegreeType
values : Occurs.Error
-- [ EOF ]
|
-- --------------------------------------------------------------- [ State.idr ]
-- Module : Exercises.Test.State
-- Description : Test covering the Chapter 12 exercises in Edwin Brady's
-- book, "Type-Driven Development with Idris."
-- --------------------------------------------------------------------- [ EOH ]
module Exercises.Test.State
import Exercises.State
import Test.Helpers
import Control.Monad.State
import System
import Data.Vect
%hide Data.Vect.overLength
%access export
testIncrease : IO Bool
testIncrease =
"increase" `assertEqual'` ((), 94) $
runState (increase 5) 89
testCountEmpty : IO Bool
testCountEmpty =
"countEmpty" `assertEqual'` 7 $
execState (countEmpty testTree) 0
testCountEmptyNode : IO Bool
testCountEmptyNode =
"countEmptyNode" `assertEqual'` (7, 6) $
execState (countEmptyNode testTree) (0, 0)
testUpdateGameState : IO Bool
testUpdateGameState =
do let command = updateGameState addCorrect
rnds <- pure (randoms . fromInteger) <*> time
(_, _, st) <- runCommand rnds initState command
"updateGameState" `assertEqual'` 1 $
record { score->correct } st
goodSite : Article
goodSite = MkArticle "Good Page" "http://example.com/good" (MkVotes 101 7)
badSite : Article
badSite = MkArticle "Bad Page" "http://example.com/bad" (MkVotes 5 47)
testGetScore : (article : Article) -> (expected : Integer) -> IO Bool
testGetScore article expected =
("getScore " ++ title article) `assertEqual'` expected $
getScore article
testAddUpvote : IO Bool
testAddUpvote =
"addUpvote" `assertEqual'` 102 $
record { score->upvotes } $ addUpvote goodSite
testAddDownvote : IO Bool
testAddDownvote =
"addDownvote" `assertEqual'` 48 $
record { score->downvotes } $ addDownvote badSite
allTests : List (IO Bool)
allTests = [ testIncrease
, testCountEmpty
, testCountEmptyNode
, testUpdateGameState
, testGetScore goodSite 94
, testGetScore badSite (-42)
, testAddUpvote
, testAddDownvote
]
runTests : IO (Vect (length State.allTests) Bool)
runTests = testChapter "12: State" allTests
-- --------------------------------------------------------------------- [ EOF ]
|
p := 5;
# b(i) is the image in H_{2i}(QS^0) of the standard generator of H_{2i}(BC_p)
# This is zero unless i is divisible by p-1. An expression like b(8,4,6)
# represents the circle product of b(8), b(4) and b(6).
b := proc()
if map(mods,{0,args},p-1) <> {0} or min(0,args) < 0 then
return(0);
fi;
'b'(op(sort([args])));
end:
# Signature of permutations of {1,...,n}, represented as lists of values.
# Sends non-permutations to zero.
signature := proc(s)
local i,j,x;
x := 1;
for i from 1 to nops(s)-1 do
for j from i+1 to nops(s) do
if op(i,s) > op(j,s) then
x := -x;
elif op(i,s) = op(j,s) then
return(0);
fi;
od;
od;
x;
end:
# a(i) is the image in H_{2i+1}(QS^0) of the standard generator of H_{2i+1}(BC_p)
# This is zero unless i+1 is divisible by p-1. An expression like a(11,3,7)
# represents the circle product of a(11), a(3) and a(7).
a := proc()
if map(modp,{-1,args},p-1) <> {p-2} or min(0,args) < 0 then
return(0);
fi;
signature([args]) * 'a'(op(sort([args])));
end:
# The elements b(i) satisfy \sum b(i,j) s^i t^j=\sum b(i,j) s^i (s+t)^j.
# By expanding this out we see that b_rel(i,j) = 0 for all i and j,
# where b_rel(i, j) is as defined below.
b_rel := proc(i,j)
add(mods(binomial(i+j-u,j),p) * b(u,i+j-u),u=0..i-1);
end:
b_rels := proc(d) [seq(b_rel(i,d-i),i=0..d)]; end:
# The elements a(i) satisfy \sum a(i,j) s^i t^j=\sum a(i,j) s^i (s+t)^j.
# By expanding this out we see that a_rel(i,j) = 0 for all i and j,
# where a_rel(i, j) is as defined below.
a_rel := proc(i,j)
add(mods(binomial(i+j-u,j),p) * a(u,i+j-u),u=0..i-1);
end:
a_rels := proc(d) [seq(a_rel(i,d-i),i=0..d)]; end:
# Degree function for expressions in a's, b's, P's and Q's.
# Should be refactored to use apply_deg
# Not sure what the P's and Q's are
deg := proc(x)
local d,n;
if type(x,`+`) then
d := map(deg,{op(x)});
if nops(d) = 1 then
return(op(1,d));
else
error("inhomogeneous sum");
fi;
elif type(x,`*`) then
return(`+`(op(map(deg,[op(x)]))));
elif type(x,function) and op(0,x) = o then
return(`+`(op(map(deg,[op(x)]))));
elif type(x,integer) then
return(0);
elif type(x,function) and op(0,x) = a then
return(`+`(op(map(i->2*i+1,[op(x)]))));
elif type(x,function) and op(0,x) = b then
return(`+`(op(map(i->2*i,[op(x)]))));
elif type(x,function) and op(0,x) = P then
n := nops(x)/2;
return( -2*(p-1)*add(op(2*i,x),i=1..n) - add(op(2*i-1,x),i=1..n));
elif type(x,function) and op(0,x) = Q then
n := nops(x)/2;
return( 2*(p-1)*add(op(2*i,x),i=1..n) - add(op(2*i-1,x),i=1..n));
fi;
end:
# Circle product. Shoud be refactored to use apply_*
o := proc()
local xx;
xx := map(mods,[args],p);
if member(0,xx) then
return(0);
else
return('o'(op(xx)));
fi;
end:
# Bockstein operation. Recognises star and circle products, a's, b's and Q's
beta := proc(x)
local xx,n,s,y,i,j;
if type(x,`+`) then
return(map(beta,x));
elif type(x,`*`) then
xx := [op(x)];
n := nops(xx);
s := 1;
y := 0;
for i from 1 to n do
y := y + s * mul(xx[j],j=1..(i-1)) * beta(xx[i]) * mul(xx[j],j=i+1..n);
s := s * (-1)^deg(xx[i]);
od;
return(mods(expand(y),p));
elif type(x,function) and op(0,x) = o then
xx := [op(x)];
n := nops(xx);
s := 1;
y := 0;
for i from 1 to n do
y := y + s * o(seq(xx[j],j=1..(i-1)),beta(xx[i]),seq(xx[j],j=i+1..n));
s := s * (-1)^deg(xx[i]);
od;
return(mods(expand(y),p));
elif type(x,integer) then
return(0);
elif type(x,function) and op(0,x) = a then
return(0);
elif type(x,function) and op(0,x) = b then
xx := [op(x)];
n := nops(xx);
y := 0;
for i from 1 to n do
if xx[i] > 0 then
y := y + o(a(xx[i]-1),b(seq(xx[j],j=1..i-1),seq(xx[j],j=i+1..n)));
fi;
od;
return(mods(expand(y),p));
elif type(x,function) and op(0,x) = Q then
if nops(x) = 0 or op(1,x) = 1 then return(0); fi;
return(Q(1,op(2..-1,x)));
else
return('beta'(x));
fi;
end:
# Dyer-Lashof operation. Only knows linearity and the Cartan rule
QQ := proc(i,x)
local y,z;
if type(x,`+`) then
return(map2(QQ,i,x));
elif type(x,`*`) then
y := op(1,x);
z := `*`(op(2..-1,x));
if type(y,integer) then
return(mods(expand(y*QQ(i,z)),p));
else
return(mods(expand(add(QQ(j,y)*QQ(i-j,z),j=0..i)),p));
fi;
elif type(x,integer) then
if i = 0 then
return(x);
else
return(0);
fi;
else
return('QQ'(i,x));
fi;
end:
# Steenrod operation. Knows the Cartan rule for star and circle products,
# and behaviour on a's, b's and Q's.
PP := proc(i,x)
local y,z,j,s;
if i<0 then
return(0);
elif i=0 then
return(x);
elif type(x,`+`) then
return(map2(PP,i,x));
elif type(x,`*`) then
y := op(1,x);
z := `*`(op(2..-1,x));
if type(y,integer) then
return(mods(expand(y*PP(i,z)),p));
else
return(mods(expand(add(PP(j,y)*PP(i-j,z),j=0..i)),p));
fi;
elif type(x,function) and op(0,x) = o then
y := op(1,x);
z := o(op(2..-1,x));
if type(y,integer) then
return(mods(expand(y * PP(i,z)),p));
else
return(mods(expand(add(o(PP(j,y),PP(i-j,z)),j=0..i)),p));
fi;
elif type(x,integer) then
if i = 0 then
return(x);
else
return(0);
fi;
elif type(x,function) and op(0,x) = b then
j := op(1,x);
if nops(x) = 1 then
return(mods(binomial(j-(p-1)*i,i),p)*b(j-(p-1)*i));
else
z := b(op(2..-1,x));
return(mods(expand(add(binomial(j-(p-1)*k,k)*o(b(j-(p-1)*k),PP(i-k,z)),k=0..j/(p-1))),p));
fi;
elif type(x,function) and op(0,x) = a then
j := op(1,x);
if nops(x) = 1 then
return(mods(binomial(j-(p-1)*i,i),p)*a(j-(p-1)*i));
else
z := a(op(2..-1,x));
return(mods(expand(add(binomial(j-(p-1)*k,k)*o(a(j-(p-1)*k),PP(i-k,z)),k=0..j/(p-1))),p));
fi;
elif type(x,function) and op(0,x) = Q then
if nops(x) = 0 then
if i=0 then return(x) else return(0); fi;
fi;
s := op(2,x);
y := Q(op(3..-1,x));
if op(1,x) = 0 then
return(add((-1)^(i+k)*binomial((s-i)*(p-1),i-p*k)*oQ(Q(0,s-i+k),PP(k,y)),k=0..i/p));
else
return(zap(
add((-1)^(i+k)*binomial((s-i)*(p-1)-1,i-p*k)*oQ(Q(1,s-i+k),PP(k,y)),k=0..i/p) +
add((-1)^(i+k)*binomial((s-i)*(p-1)-1,i-p*k-1)*oQ(Q(0,s-i+k),PP(k,beta(y))),k=0..i/p)
));
fi;
else
return('PP'(i,x));
fi;
end:
# Length function for Steenrod or Dyer-Lashof words.
len := proc(x)
if type(x,function) and (op(0,x) = P or op(0,x) = Q) then
return(nops(x)/2);
else
return('len'(x));
fi;
end:
# Excess for Dyer-Lashof words
excess := proc(x)
local n;
if type(x,function) and op(0,x) = Q then
n := nops(x)/2;
if n = 0 then return(0); fi;
return(2*op(2,x) - op(1,x) - add(2*(p-1)*op(2*i,x)-op(2*i-1,x),i=2..n));
else
return('excess'(x));
fi;
end:
# Admissibility criterion for Dyer-Lashof words
is_admissible := proc(x)
local i,n;
if type(x,function) and op(0,x) = Q then
n := nops(x)/2;
if n = 0 then
return(true);
fi;
if op(2,x) < op(1,x) then
return(false);
fi;
for i from 2 to n do
if p*op(2*i,x) - op(2*i-1,x) < op(2*i-2,x) then
return(false);
fi;
od;
return(true);
else
return('is_admissible'(x));
fi;
end:
Q_adem := proc()
local i,j,u,ep,r,dl,s,v;
if nargs = 0 then
return(Q());
fi;
if args[2] < args[1] then
# (we must have args[1] = 1, args[2] = 0)
if nargs = 2 then
# error("naked beta");
return(Q(1,0));
fi;
if args[3] = 1 then
return(0);
else
return(Q(1,args[4..-1]));
fi;
fi;
for i from 2 to nargs/2 do
u := args[1..2*i-4];
ep := args[2*i-3];
r := args[2*i-2];
dl := args[2*i-1];
s := args[2*i ];
v := args[2*i+1..-1];
if r > p*s-dl then
if dl = 0 then
return(
mods(add(
(-1)^(r+j)*binomial((p-1)*(j-s)-1,p*j-r)*
Q(u,ep,r+s-j,0,j,v),
j=ceil(r/p)..(r-(p-1)*s-1)
),p)
);
else
if ep = 0 then
return(mods(add(
(-1)^(r+j)*binomial((p-1)*(j-s),p*j-r)*
Q(u,1,r+s-j,0,j,v),
j=ceil(r/p)..(r-(p-1)*s)
),p) -
mods(add(
(-1)^(r+j)*binomial((p-1)*(j-s)-1,p*j-r-1)*
Q(u,0,r+s-j,1,j,v),
j = ceil((r+1)/p)..(r-(p-1)*s)
),p));
else
return(mods(add(
(-1)^(r+j+1)*binomial((p-1)*(j-s)-1,p*j-r-1)*
Q(u,1,r+s-j,1,j,v),
j = ceil((r+1)/p)..(r-(p-1)*s)
),p));
fi;
fi;
fi;
od;
return(Q(args));
end:
Q_exc0 := proc()
if excess(Q(args)) < 0 then
return(0);
else
return(Q(args));
fi;
end:
Q_comp := proc(a,b)
local aa,bb,n,m,i,d;
aa := a;
bb := b;
if type(aa,`*`) then
aa := select(type,a,specfunc(integer,Q));
fi;
if type(bb,`*`) then
bb := select(type,b,specfunc(integer,Q));
fi;
if not(type([aa,bb],[specfunc(integer,Q)$2])) then
error("invalid arguments");
fi;
n := nops(aa)/2;
m := nops(bb)/2;
for i from 1 to min(n,m) do
d := 2*op(2*i,aa) - op(2*i-1,aa) - 2*op(2*i,bb) + op(2*i-1,bb);
if d < 0 then
return(true);
elif d > 0 then
return(false);
fi;
od;
if n<m then return(true); fi;
return(false);
end:
Q_terms := proc(x)
if type(x,specfunc(integer,Q)) then
return([x]);
elif type(x,`*`) then
return(select(type,[op(x)],specfunc(integer,Q)));
elif type(x,`+`) then
return(map(op,map(Q_terms,[op(x)])));
else
return([]);
fi;
end:
Q_bot := proc(x)
local t;
t := sort(Q_terms(x),Q_comp);
if t = [] then
return(0);
else
return(t[1]);
fi;
end:
Q_top := proc(x)
local t;
t := sort(Q_terms(x),Q_comp);
if t = [] then
return(0);
else
return(t[nops(t)]);
fi;
end:
oQ := proc(a,b)
local n,aa,bb;
if type(a,`+`) then
return(map(oQ,a,b));
elif type(b,`+`) then
return(map2(oQ,a,b));
fi;
if type(a,`*`) then
n,aa := selectremove(type,a,integer);
if n<>1 then
return(expand(n*oQ(aa,b)));
fi;
fi;
if type(b,`*`) then
n,bb := selectremove(type,b,integer);
if n<> 1 then
return(expand(n*oQ(a,bb)));
fi;
fi;
if type(a,integer) or type(b,integer) then
return(expand(a*b));
fi;
if type(a,specfunc(integer,Q)) and type(b,specfunc(integer,Q)) then
return(Q(op(a),op(b)));
fi;
end:
zap := proc(x) mods(eval(subs(Q=Q_exc0,eval(subs(Q = Q_adem,x)))),p); end:
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Yaël Dillies
-/
import data.set.pointwise
import order.filter.n_ary
import order.filter.ultrafilter
/-!
# Pointwise operations on filters
This file defines pointwise operations on filters. This is useful because usual algebraic operations
distribute over pointwise operations. For example,
* `(f₁ * f₂).map m = f₁.map m * f₂.map m`
* `𝓝 (x * y) = 𝓝 x * 𝓝 y`
## Main declarations
* `0` (`filter.has_zero`): Pure filter at `0 : α`, or alternatively principal filter at `0 : set α`.
* `1` (`filter.has_one`): Pure filter at `1 : α`, or alternatively principal filter at `1 : set α`.
* `f + g` (`filter.has_add`): Addition, filter generated by all `s + t` where `s ∈ f` and `t ∈ g`.
* `f * g` (`filter.has_mul`): Multiplication, filter generated by all `s * t` where `s ∈ f` and
`t ∈ g`.
* `-f` (`filter.has_neg`): Negation, filter of all `-s` where `s ∈ f`.
* `f⁻¹` (`filter.has_inv`): Inversion, filter of all `s⁻¹` where `s ∈ f`.
* `f - g` (`filter.has_sub`): Subtraction, filter generated by all `s - t` where `s ∈ f` and
`t ∈ g`.
* `f / g` (`filter.has_div`): Division, filter generated by all `s / t` where `s ∈ f` and `t ∈ g`.
* `f +ᵥ g` (`filter.has_vadd`): Scalar addition, filter generated by all `s +ᵥ t` where `s ∈ f` and
`t ∈ g`.
* `f -ᵥ g` (`filter.has_vsub`): Scalar subtraction, filter generated by all `s -ᵥ t` where `s ∈ f`
and `t ∈ g`.
* `f • g` (`filter.has_smul`): Scalar multiplication, filter generated by all `s • t` where
`s ∈ f` and `t ∈ g`.
* `a +ᵥ f` (`filter.has_vadd_filter`): Translation, filter of all `a +ᵥ s` where `s ∈ f`.
* `a • f` (`filter.has_smul_filter`): Scaling, filter of all `a • s` where `s ∈ f`.
For `α` a semigroup/monoid, `filter α` is a semigroup/monoid.
As an unfortunate side effect, this means that `n • f`, where `n : ℕ`, is ambiguous between
pointwise scaling and repeated pointwise addition. See note [pointwise nat action].
## Implementation notes
We put all instances in the locale `pointwise`, so that these instances are not available by
default. Note that we do not mark them as reducible (as argued by note [reducible non-instances])
since we expect the locale to be open whenever the instances are actually used (and making the
instances reducible changes the behavior of `simp`.
## Tags
filter multiplication, filter addition, pointwise addition, pointwise multiplication,
-/
open function set
open_locale filter pointwise
variables {F α β γ δ ε : Type*}
namespace filter
/-! ### `0`/`1` as filters -/
section has_one
variables [has_one α] {f : filter α} {s : set α}
/-- `1 : filter α` is defined as the filter of sets containing `1 : α` in locale `pointwise`. -/
@[to_additive "`0 : filter α` is defined as the filter of sets containing `0 : α` in locale
`pointwise`."]
protected def has_one : has_one (filter α) := ⟨pure 1⟩
localized "attribute [instance] filter.has_one filter.has_zero" in pointwise
@[simp, to_additive] lemma mem_one : s ∈ (1 : filter α) ↔ (1 : α) ∈ s := mem_pure
@[to_additive] lemma one_mem_one : (1 : set α) ∈ (1 : filter α) := mem_pure.2 one_mem_one
@[simp, to_additive] lemma pure_one : pure 1 = (1 : filter α) := rfl
@[simp, to_additive] lemma principal_one : 𝓟 1 = (1 : filter α) := principal_singleton _
@[to_additive] lemma one_ne_bot : (1 : filter α).ne_bot := filter.pure_ne_bot
@[simp, to_additive] protected lemma map_one' (f : α → β) : (1 : filter α).map f = pure (f 1) := rfl
@[simp, to_additive] lemma le_one_iff : f ≤ 1 ↔ (1 : set α) ∈ f := le_pure_iff
@[to_additive] protected lemma ne_bot.le_one_iff (h : f.ne_bot) : f ≤ 1 ↔ f = 1 := h.le_pure_iff
@[simp, to_additive] lemma eventually_one {p : α → Prop} : (∀ᶠ x in 1, p x) ↔ p 1 := eventually_pure
@[simp, to_additive] lemma tendsto_one {a : filter β} {f : β → α} :
tendsto f a 1 ↔ ∀ᶠ x in a, f x = 1 :=
tendsto_pure
/-- `pure` as a `one_hom`. -/
@[to_additive "`pure` as a `zero_hom`."]
def pure_one_hom : one_hom α (filter α) := ⟨pure, pure_one⟩
@[simp, to_additive] lemma coe_pure_one_hom : (pure_one_hom : α → filter α) = pure := rfl
@[simp, to_additive] lemma pure_one_hom_apply (a : α) : pure_one_hom a = pure a := rfl
variables [has_one β]
@[simp, to_additive]
protected lemma map_one [one_hom_class F α β] (φ : F) : map φ 1 = 1 :=
by rw [filter.map_one', map_one, pure_one]
end has_one
/-! ### Filter negation/inversion -/
section has_inv
variables [has_inv α] {f g : filter α} {s : set α} {a : α}
/-- The inverse of a filter is the pointwise preimage under `⁻¹` of its sets. -/
@[to_additive "The negation of a filter is the pointwise preimage under `-` of its sets."]
instance : has_inv (filter α) := ⟨map has_inv.inv⟩
@[simp, to_additive] protected lemma map_inv : f.map has_inv.inv = f⁻¹ := rfl
@[to_additive] lemma mem_inv : s ∈ f⁻¹ ↔ has_inv.inv ⁻¹' s ∈ f := iff.rfl
@[to_additive] protected lemma inv_le_inv (hf : f ≤ g) : f⁻¹ ≤ g⁻¹ := map_mono hf
@[simp, to_additive] lemma inv_pure : (pure a : filter α)⁻¹ = pure a⁻¹ := rfl
@[simp, to_additive] lemma inv_eq_bot_iff : f⁻¹ = ⊥ ↔ f = ⊥ := map_eq_bot_iff
@[simp, to_additive] lemma ne_bot_inv_iff : f⁻¹.ne_bot ↔ ne_bot f := map_ne_bot_iff _
@[to_additive] lemma ne_bot.inv : f.ne_bot → f⁻¹.ne_bot := λ h, h.map _
end has_inv
section has_involutive_inv
variables [has_involutive_inv α] {f : filter α} {s : set α}
@[to_additive] lemma inv_mem_inv (hs : s ∈ f) : s⁻¹ ∈ f⁻¹ := by rwa [mem_inv, inv_preimage, inv_inv]
/-- Inversion is involutive on `filter α` if it is on `α`. -/
@[to_additive "Negation is involutive on `filter α` if it is on `α`."]
protected def has_involutive_inv : has_involutive_inv (filter α) :=
{ inv_inv := λ f, map_map.trans $ by rw [inv_involutive.comp_self, map_id],
..filter.has_inv }
end has_involutive_inv
/-! ### Filter addition/multiplication -/
section has_mul
variables [has_mul α] [has_mul β] {f f₁ f₂ g g₁ g₂ h : filter α} {s t : set α} {a b : α}
/-- The filter `f * g` is generated by `{s * t | s ∈ f, t ∈ g}` in locale `pointwise`. -/
@[to_additive "The filter `f + g` is generated by `{s + t | s ∈ f, t ∈ g}` in locale `pointwise`."]
protected def has_mul : has_mul (filter α) :=
/- This is defeq to `map₂ (*) f g`, but the hypothesis unfolds to `t₁ * t₂ ⊆ s` rather than all the
way to `set.image2 (*) t₁ t₂ ⊆ s`. -/
⟨λ f g, { sets := {s | ∃ t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ * t₂ ⊆ s}, ..map₂ (*) f g }⟩
localized "attribute [instance] filter.has_mul filter.has_add" in pointwise
@[simp, to_additive] lemma map₂_mul : map₂ (*) f g = f * g := rfl
@[to_additive] lemma mem_mul : s ∈ f * g ↔ ∃ t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ * t₂ ⊆ s := iff.rfl
@[to_additive] lemma mul_mem_mul : s ∈ f → t ∈ g → s * t ∈ f * g := image2_mem_map₂
@[simp, to_additive] lemma bot_mul : ⊥ * g = ⊥ := map₂_bot_left
@[simp, to_additive] lemma mul_bot : f * ⊥ = ⊥ := map₂_bot_right
@[simp, to_additive] lemma mul_eq_bot_iff : f * g = ⊥ ↔ f = ⊥ ∨ g = ⊥ := map₂_eq_bot_iff
@[simp, to_additive] lemma mul_ne_bot_iff : (f * g).ne_bot ↔ f.ne_bot ∧ g.ne_bot := map₂_ne_bot_iff
@[to_additive] lemma ne_bot.mul : ne_bot f → ne_bot g → ne_bot (f * g) := ne_bot.map₂
@[to_additive] lemma ne_bot.of_mul_left : (f * g).ne_bot → f.ne_bot := ne_bot.of_map₂_left
@[to_additive] lemma ne_bot.of_mul_right : (f * g).ne_bot → g.ne_bot := ne_bot.of_map₂_right
@[simp, to_additive] lemma pure_mul : pure a * g = g.map ((*) a) := map₂_pure_left
@[simp, to_additive] lemma mul_pure : f * pure b = f.map (* b) := map₂_pure_right
@[simp, to_additive] lemma pure_mul_pure : (pure a : filter α) * pure b = pure (a * b) := map₂_pure
@[simp, to_additive] lemma le_mul_iff : h ≤ f * g ↔ ∀ ⦃s⦄, s ∈ f → ∀ ⦃t⦄, t ∈ g → s * t ∈ h :=
le_map₂_iff
@[to_additive] instance covariant_mul : covariant_class (filter α) (filter α) (*) (≤) :=
⟨λ f g h, map₂_mono_left⟩
@[to_additive] instance covariant_swap_mul : covariant_class (filter α) (filter α) (swap (*)) (≤) :=
⟨λ f g h, map₂_mono_right⟩
@[to_additive]
protected lemma map_mul [mul_hom_class F α β] (m : F) : (f₁ * f₂).map m = f₁.map m * f₂.map m :=
map_map₂_distrib $ map_mul m
/-- `pure` operation as a `mul_hom`. -/
@[to_additive "The singleton operation as an `add_hom`."]
def pure_mul_hom : α →ₙ* filter α := ⟨pure, λ a b, pure_mul_pure.symm⟩
@[simp, to_additive] lemma coe_pure_mul_hom : (pure_mul_hom : α → filter α) = pure := rfl
@[simp, to_additive] lemma pure_mul_hom_apply (a : α) : pure_mul_hom a = pure a := rfl
end has_mul
/-! ### Filter subtraction/division -/
section div
variables [has_div α] {f f₁ f₂ g g₁ g₂ h : filter α} {s t : set α} {a b : α}
/-- The filter `f / g` is generated by `{s / t | s ∈ f, t ∈ g}` in locale `pointwise`. -/
@[to_additive "The filter `f - g` is generated by `{s - t | s ∈ f, t ∈ g}` in locale `pointwise`."]
protected def has_div : has_div (filter α) :=
/- This is defeq to `map₂ (/) f g`, but the hypothesis unfolds to `t₁ / t₂ ⊆ s` rather than all the
way to `set.image2 (/) t₁ t₂ ⊆ s`. -/
⟨λ f g, { sets := {s | ∃ t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ / t₂ ⊆ s}, ..map₂ (/) f g }⟩
localized "attribute [instance] filter.has_div filter.has_sub" in pointwise
@[simp, to_additive] lemma map₂_div : map₂ (/) f g = f / g := rfl
@[to_additive] lemma mem_div : s ∈ f / g ↔ ∃ t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ / t₂ ⊆ s := iff.rfl
@[to_additive] lemma div_mem_div : s ∈ f → t ∈ g → s / t ∈ f / g := image2_mem_map₂
@[simp, to_additive] lemma bot_div : ⊥ / g = ⊥ := map₂_bot_left
@[simp, to_additive] lemma div_bot : f / ⊥ = ⊥ := map₂_bot_right
@[simp, to_additive] lemma div_eq_bot_iff : f / g = ⊥ ↔ f = ⊥ ∨ g = ⊥ := map₂_eq_bot_iff
@[simp, to_additive] lemma div_ne_bot_iff : (f / g).ne_bot ↔ f.ne_bot ∧ g.ne_bot := map₂_ne_bot_iff
@[to_additive] lemma ne_bot.div : ne_bot f → ne_bot g → ne_bot (f / g) := ne_bot.map₂
@[to_additive] lemma ne_bot.of_div_left : (f / g).ne_bot → f.ne_bot := ne_bot.of_map₂_left
@[to_additive] lemma ne_bot.of_div_right : (f / g).ne_bot → g.ne_bot := ne_bot.of_map₂_right
@[simp, to_additive] lemma pure_div : pure a / g = g.map ((/) a) := map₂_pure_left
@[simp, to_additive] lemma div_pure : f / pure b = f.map (/ b) := map₂_pure_right
@[simp, to_additive] lemma pure_div_pure : (pure a : filter α) / pure b = pure (a / b) := map₂_pure
@[to_additive] protected lemma div_le_div : f₁ ≤ f₂ → g₁ ≤ g₂ → f₁ / g₁ ≤ f₂ / g₂ := map₂_mono
@[to_additive] protected lemma div_le_div_left : g₁ ≤ g₂ → f / g₁ ≤ f / g₂ := map₂_mono_left
@[to_additive] protected lemma div_le_div_right : f₁ ≤ f₂ → f₁ / g ≤ f₂ / g := map₂_mono_right
@[simp, to_additive] protected lemma le_div_iff :
h ≤ f / g ↔ ∀ ⦃s⦄, s ∈ f → ∀ ⦃t⦄, t ∈ g → s / t ∈ h :=
le_map₂_iff
@[to_additive] instance covariant_div : covariant_class (filter α) (filter α) (/) (≤) :=
⟨λ f g h, map₂_mono_left⟩
@[to_additive] instance covariant_swap_div : covariant_class (filter α) (filter α) (swap (/)) (≤) :=
⟨λ f g h, map₂_mono_right⟩
end div
open_locale pointwise
/-- Repeated pointwise addition (not the same as pointwise repeated addition!) of a `filter`. See
Note [pointwise nat action].-/
protected def has_nsmul [has_zero α] [has_add α] : has_smul ℕ (filter α) := ⟨nsmul_rec⟩
/-- Repeated pointwise multiplication (not the same as pointwise repeated multiplication!) of a
`filter`. See Note [pointwise nat action]. -/
@[to_additive]
protected def has_npow [has_one α] [has_mul α] : has_pow (filter α) ℕ := ⟨λ s n, npow_rec n s⟩
/-- Repeated pointwise addition/subtraction (not the same as pointwise repeated
addition/subtraction!) of a `filter`. See Note [pointwise nat action]. -/
protected def has_zsmul [has_zero α] [has_add α] [has_neg α] : has_smul ℤ (filter α) :=
⟨zsmul_rec⟩
/-- Repeated pointwise multiplication/division (not the same as pointwise repeated
multiplication/division!) of a `filter`. See Note [pointwise nat action]. -/
@[to_additive] protected def has_zpow [has_one α] [has_mul α] [has_inv α] : has_pow (filter α) ℤ :=
⟨λ s n, zpow_rec n s⟩
localized "attribute [instance] filter.has_nsmul filter.has_npow filter.has_zsmul filter.has_zpow"
in pointwise
/-- `filter α` is a `semigroup` under pointwise operations if `α` is.-/
@[to_additive "`filter α` is an `add_semigroup` under pointwise operations if `α` is."]
protected def semigroup [semigroup α] : semigroup (filter α) :=
{ mul := (*),
mul_assoc := λ f g h, map₂_assoc mul_assoc }
/-- `filter α` is a `comm_semigroup` under pointwise operations if `α` is. -/
@[to_additive "`filter α` is an `add_comm_semigroup` under pointwise operations if `α` is."]
protected def comm_semigroup [comm_semigroup α] : comm_semigroup (filter α) :=
{ mul_comm := λ f g, map₂_comm mul_comm,
..filter.semigroup }
section mul_one_class
variables [mul_one_class α] [mul_one_class β]
/-- `filter α` is a `mul_one_class` under pointwise operations if `α` is. -/
@[to_additive "`filter α` is an `add_zero_class` under pointwise operations if `α` is."]
protected def mul_one_class : mul_one_class (filter α) :=
{ one := 1,
mul := (*),
one_mul := λ f, by simp only [←pure_one, ←map₂_mul, map₂_pure_left, one_mul, map_id'],
mul_one := λ f, by simp only [←pure_one, ←map₂_mul, map₂_pure_right, mul_one, map_id'] }
localized "attribute [instance] filter.semigroup filter.add_semigroup filter.comm_semigroup
filter.add_comm_semigroup filter.mul_one_class filter.add_zero_class" in pointwise
/-- If `φ : α →* β` then `map_monoid_hom φ` is the monoid homomorphism
`filter α →* filter β` induced by `map φ`. -/
@[to_additive "If `φ : α →+ β` then `map_add_monoid_hom φ` is the monoid homomorphism
`filter α →+ filter β` induced by `map φ`."]
def map_monoid_hom [monoid_hom_class F α β] (φ : F) : filter α →* filter β :=
{ to_fun := map φ,
map_one' := filter.map_one φ,
map_mul' := λ _ _, filter.map_mul φ }
-- The other direction does not hold in general
@[to_additive]
lemma comap_mul_comap_le [mul_hom_class F α β] (m : F) {f g : filter β} :
f.comap m * g.comap m ≤ (f * g).comap m :=
λ s ⟨t, ⟨t₁, t₂, ht₁, ht₂, t₁t₂⟩, mt⟩,
⟨m ⁻¹' t₁, m ⁻¹' t₂, ⟨t₁, ht₁, subset.rfl⟩, ⟨t₂, ht₂, subset.rfl⟩,
(preimage_mul_preimage_subset _).trans $ (preimage_mono t₁t₂).trans mt⟩
@[to_additive]
lemma tendsto.mul_mul [mul_hom_class F α β] (m : F) {f₁ g₁ : filter α} {f₂ g₂ : filter β} :
tendsto m f₁ f₂ → tendsto m g₁ g₂ → tendsto m (f₁ * g₁) (f₂ * g₂) :=
λ hf hg, (filter.map_mul m).trans_le $ mul_le_mul' hf hg
/-- `pure` as a `monoid_hom`. -/
@[to_additive "`pure` as an `add_monoid_hom`."]
def pure_monoid_hom : α →* filter α := { ..pure_mul_hom, ..pure_one_hom }
@[simp, to_additive] lemma coe_pure_monoid_hom : (pure_monoid_hom : α → filter α) = pure := rfl
@[simp, to_additive] lemma pure_monoid_hom_apply (a : α) : pure_monoid_hom a = pure a := rfl
end mul_one_class
section monoid
variables [monoid α] {f g : filter α} {s : set α} {a : α} {m n : ℕ}
/-- `filter α` is a `monoid` under pointwise operations if `α` is. -/
@[to_additive "`filter α` is an `add_monoid` under pointwise operations if `α` is."]
protected def monoid : monoid (filter α) :=
{ ..filter.mul_one_class, ..filter.semigroup, ..filter.has_npow }
localized "attribute [instance] filter.monoid filter.add_monoid" in pointwise
@[to_additive] lemma pow_mem_pow (hs : s ∈ f) : ∀ n : ℕ, s ^ n ∈ f ^ n
| 0 := by { rw pow_zero, exact one_mem_one }
| (n + 1) := by { rw pow_succ, exact mul_mem_mul hs (pow_mem_pow _) }
@[simp, to_additive nsmul_bot] lemma bot_pow {n : ℕ} (hn : n ≠ 0) : (⊥ : filter α) ^ n = ⊥ :=
by rw [←tsub_add_cancel_of_le (nat.succ_le_of_lt $ nat.pos_of_ne_zero hn), pow_succ, bot_mul]
@[to_additive] lemma mul_top_of_one_le (hf : 1 ≤ f) : f * ⊤ = ⊤ :=
begin
refine top_le_iff.1 (λ s, _),
simp only [mem_mul, mem_top, exists_and_distrib_left, exists_eq_left],
rintro ⟨t, ht, hs⟩,
rwa [mul_univ_of_one_mem (mem_one.1 $ hf ht), univ_subset_iff] at hs,
end
@[to_additive] lemma top_mul_of_one_le (hf : 1 ≤ f) : ⊤ * f = ⊤ :=
begin
refine top_le_iff.1 (λ s, _),
simp only [mem_mul, mem_top, exists_and_distrib_left, exists_eq_left],
rintro ⟨t, ht, hs⟩,
rwa [univ_mul_of_one_mem (mem_one.1 $ hf ht), univ_subset_iff] at hs,
end
@[simp, to_additive] lemma top_mul_top : (⊤ : filter α) * ⊤ = ⊤ := mul_top_of_one_le le_top
--TODO: `to_additive` trips up on the `1 : ℕ` used in the pattern-matching.
lemma nsmul_top {α : Type*} [add_monoid α] : ∀ {n : ℕ}, n ≠ 0 → n • (⊤ : filter α) = ⊤
| 0 := λ h, (h rfl).elim
| 1 := λ _, one_nsmul _
| (n + 2) := λ _, by { rw [succ_nsmul, nsmul_top n.succ_ne_zero, top_add_top] }
@[to_additive nsmul_top] lemma top_pow : ∀ {n : ℕ}, n ≠ 0 → (⊤ : filter α) ^ n = ⊤
| 0 := λ h, (h rfl).elim
| 1 := λ _, pow_one _
| (n + 2) := λ _, by { rw [pow_succ, top_pow n.succ_ne_zero, top_mul_top] }
@[to_additive] protected lemma _root_.is_unit.filter : is_unit a → is_unit (pure a : filter α) :=
is_unit.map (pure_monoid_hom : α →* filter α)
end monoid
/-- `filter α` is a `comm_monoid` under pointwise operations if `α` is. -/
@[to_additive "`filter α` is an `add_comm_monoid` under pointwise operations if `α` is."]
protected def comm_monoid [comm_monoid α] : comm_monoid (filter α) :=
{ ..filter.mul_one_class, ..filter.comm_semigroup }
open_locale pointwise
section division_monoid
variables [division_monoid α] {f g : filter α}
@[to_additive]
protected lemma mul_eq_one_iff : f * g = 1 ↔ ∃ a b, f = pure a ∧ g = pure b ∧ a * b = 1 :=
begin
refine ⟨λ hfg, _, _⟩,
{ obtain ⟨t₁, t₂, h₁, h₂, h⟩ : (1 : set α) ∈ f * g := hfg.symm.subst one_mem_one,
have hfg : (f * g).ne_bot := hfg.symm.subst one_ne_bot,
rw [(hfg.nonempty_of_mem $ mul_mem_mul h₁ h₂).subset_one_iff, set.mul_eq_one_iff] at h,
obtain ⟨a, b, rfl, rfl, h⟩ := h,
refine ⟨a, b, _, _, h⟩,
{ rwa [←hfg.of_mul_left.le_pure_iff, le_pure_iff] },
{ rwa [←hfg.of_mul_right.le_pure_iff, le_pure_iff] } },
{ rintro ⟨a, b, rfl, rfl, h⟩,
rw [pure_mul_pure, h, pure_one] }
end
/-- `filter α` is a division monoid under pointwise operations if `α` is. -/
@[to_additive subtraction_monoid "`filter α` is a subtraction monoid under pointwise
operations if `α` is."]
protected def division_monoid : division_monoid (filter α) :=
{ mul_inv_rev := λ s t, map_map₂_antidistrib mul_inv_rev,
inv_eq_of_mul := λ s t h, begin
obtain ⟨a, b, rfl, rfl, hab⟩ := filter.mul_eq_one_iff.1 h,
rw [inv_pure, inv_eq_of_mul_eq_one_right hab],
end,
div_eq_mul_inv := λ f g, map_map₂_distrib_right div_eq_mul_inv,
..filter.monoid, ..filter.has_involutive_inv, ..filter.has_div, ..filter.has_zpow }
@[to_additive] lemma is_unit_iff : is_unit f ↔ ∃ a, f = pure a ∧ is_unit a :=
begin
split,
{ rintro ⟨u, rfl⟩,
obtain ⟨a, b, ha, hb, h⟩ := filter.mul_eq_one_iff.1 u.mul_inv,
refine ⟨a, ha, ⟨a, b, h, pure_injective _⟩, rfl⟩,
rw [←pure_mul_pure, ←ha, ←hb],
exact u.inv_mul },
{ rintro ⟨a, rfl, ha⟩,
exact ha.filter }
end
end division_monoid
/-- `filter α` is a commutative division monoid under pointwise operations if `α` is. -/
@[to_additive subtraction_comm_monoid "`filter α` is a commutative subtraction monoid under
pointwise operations if `α` is."]
protected def division_comm_monoid [division_comm_monoid α] : division_comm_monoid (filter α) :=
{ ..filter.division_monoid, ..filter.comm_semigroup }
/-- `filter α` has distributive negation if `α` has. -/
protected def has_distrib_neg [has_mul α] [has_distrib_neg α] : has_distrib_neg (filter α) :=
{ neg_mul := λ _ _, map₂_map_left_comm neg_mul,
mul_neg := λ _ _, map_map₂_right_comm mul_neg,
..filter.has_involutive_neg }
localized "attribute [instance] filter.comm_monoid filter.add_comm_monoid filter.division_monoid
filter.subtraction_monoid filter.division_comm_monoid filter.subtraction_comm_monoid
filter.has_distrib_neg" in pointwise
section distrib
variables [distrib α] {f g h : filter α}
/-!
Note that `filter α` is not a `distrib` because `f * g + f * h` has cross terms that `f * (g + h)`
lacks.
-/
lemma mul_add_subset : f * (g + h) ≤ f * g + f * h := map₂_distrib_le_left mul_add
lemma add_mul_subset : (f + g) * h ≤ f * h + g * h := map₂_distrib_le_right add_mul
end distrib
section mul_zero_class
variables [mul_zero_class α] {f g : filter α}
/-! Note that `filter` is not a `mul_zero_class` because `0 * ⊥ ≠ 0`. -/
lemma ne_bot.mul_zero_nonneg (hf : f.ne_bot) : 0 ≤ f * 0 :=
le_mul_iff.2 $ λ t₁ h₁ t₂ h₂, let ⟨a, ha⟩ := hf.nonempty_of_mem h₁ in ⟨_, _, ha, h₂, mul_zero _⟩
lemma ne_bot.zero_mul_nonneg (hg : g.ne_bot) : 0 ≤ 0 * g :=
le_mul_iff.2 $ λ t₁ h₁ t₂ h₂, let ⟨b, hb⟩ := hg.nonempty_of_mem h₂ in ⟨_, _, h₁, hb, zero_mul _⟩
end mul_zero_class
section group
variables [group α] [division_monoid β] [monoid_hom_class F α β] (m : F) {f g f₁ g₁ : filter α}
{f₂ g₂ : filter β}
/-! Note that `filter α` is not a group because `f / f ≠ 1` in general -/
@[simp, to_additive] protected lemma one_le_div_iff : 1 ≤ f / g ↔ ¬ disjoint f g :=
begin
refine ⟨λ h hfg, _, _⟩,
{ obtain ⟨s, hs, t, ht, hst⟩ := hfg (mem_bot : ∅ ∈ ⊥),
exact set.one_mem_div_iff.1 (h $ div_mem_div hs ht) (disjoint_iff.2 hst.symm) },
{ rintro h s ⟨t₁, t₂, h₁, h₂, hs⟩,
exact hs (set.one_mem_div_iff.2 $ λ ht, h $ disjoint_of_disjoint_of_mem ht h₁ h₂) }
end
@[to_additive] lemma not_one_le_div_iff : ¬ 1 ≤ f / g ↔ disjoint f g :=
filter.one_le_div_iff.not_left
@[to_additive] lemma ne_bot.one_le_div (h : f.ne_bot) : 1 ≤ f / f :=
begin
rintro s ⟨t₁, t₂, h₁, h₂, hs⟩,
obtain ⟨a, ha₁, ha₂⟩ := set.not_disjoint_iff.1 (h.not_disjoint h₁ h₂),
rw [mem_one, ←div_self' a],
exact hs (set.div_mem_div ha₁ ha₂),
end
@[to_additive] lemma is_unit_pure (a : α) : is_unit (pure a : filter α) := (group.is_unit a).filter
@[simp] lemma is_unit_iff_singleton : is_unit f ↔ ∃ a, f = pure a :=
by simp only [is_unit_iff, group.is_unit, and_true]
include β
@[to_additive] lemma map_inv' : f⁻¹.map m = (f.map m)⁻¹ := map_comm (funext $ map_inv m) _
@[to_additive] lemma tendsto.inv_inv : tendsto m f₁ f₂ → tendsto m f₁⁻¹ f₂⁻¹ :=
λ hf, (filter.map_inv' m).trans_le $ filter.inv_le_inv hf
@[to_additive] protected lemma map_div : (f / g).map m = f.map m / g.map m :=
map_map₂_distrib $ map_div m
@[to_additive]
lemma tendsto.div_div : tendsto m f₁ f₂ → tendsto m g₁ g₂ → tendsto m (f₁ / g₁) (f₂ / g₂) :=
λ hf hg, (filter.map_div m).trans_le $ filter.div_le_div hf hg
end group
open_locale pointwise
section group_with_zero
variables [group_with_zero α] {f g : filter α}
lemma ne_bot.div_zero_nonneg (hf : f.ne_bot) : 0 ≤ f / 0 :=
filter.le_div_iff.2 $ λ t₁ h₁ t₂ h₂, let ⟨a, ha⟩ := hf.nonempty_of_mem h₁ in
⟨_, _, ha, h₂, div_zero _⟩
lemma ne_bot.zero_div_nonneg (hg : g.ne_bot) : 0 ≤ 0 / g :=
filter.le_div_iff.2 $ λ t₁ h₁ t₂ h₂, let ⟨b, hb⟩ := hg.nonempty_of_mem h₂ in
⟨_, _, h₁, hb, zero_div _⟩
end group_with_zero
/-! ### Scalar addition/multiplication of filters -/
section smul
variables [has_smul α β] {f f₁ f₂ : filter α} {g g₁ g₂ h : filter β} {s : set α} {t : set β}
{a : α} {b : β}
/-- The filter `f • g` is generated by `{s • t | s ∈ f, t ∈ g}` in locale `pointwise`. -/
@[to_additive filter.has_vadd
"The filter `f +ᵥ g` is generated by `{s +ᵥ t | s ∈ f, t ∈ g}` in locale `pointwise`."]
protected def has_smul : has_smul (filter α) (filter β) :=
/- This is defeq to `map₂ (•) f g`, but the hypothesis unfolds to `t₁ • t₂ ⊆ s` rather than all the
way to `set.image2 (•) t₁ t₂ ⊆ s`. -/
⟨λ f g, { sets := {s | ∃ t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ • t₂ ⊆ s}, ..map₂ (•) f g }⟩
localized "attribute [instance] filter.has_smul filter.has_vadd" in pointwise
@[simp, to_additive] lemma map₂_smul : map₂ (•) f g = f • g := rfl
@[to_additive] lemma mem_smul : t ∈ f • g ↔ ∃ t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ • t₂ ⊆ t := iff.rfl
@[to_additive] lemma smul_mem_smul : s ∈ f → t ∈ g → s • t ∈ f • g := image2_mem_map₂
@[simp, to_additive] lemma bot_smul : (⊥ : filter α) • g = ⊥ := map₂_bot_left
@[simp, to_additive] lemma smul_bot : f • (⊥ : filter β) = ⊥ := map₂_bot_right
@[simp, to_additive] lemma smul_eq_bot_iff : f • g = ⊥ ↔ f = ⊥ ∨ g = ⊥ := map₂_eq_bot_iff
@[simp, to_additive] lemma smul_ne_bot_iff : (f • g).ne_bot ↔ f.ne_bot ∧ g.ne_bot := map₂_ne_bot_iff
@[to_additive] lemma ne_bot.smul : ne_bot f → ne_bot g → ne_bot (f • g) := ne_bot.map₂
@[to_additive] lemma ne_bot.of_smul_left : (f • g).ne_bot → f.ne_bot := ne_bot.of_map₂_left
@[to_additive] lemma ne_bot.of_smul_right : (f • g).ne_bot → g.ne_bot := ne_bot.of_map₂_right
@[simp, to_additive] lemma pure_smul : (pure a : filter α) • g = g.map ((•) a) := map₂_pure_left
@[simp, to_additive] lemma smul_pure : f • pure b = f.map (• b) := map₂_pure_right
@[simp, to_additive] lemma pure_smul_pure :
(pure a : filter α) • (pure b : filter β) = pure (a • b) := map₂_pure
@[to_additive] lemma smul_le_smul : f₁ ≤ f₂ → g₁ ≤ g₂ → f₁ • g₁ ≤ f₂ • g₂ := map₂_mono
@[to_additive] lemma smul_le_smul_left : g₁ ≤ g₂ → f • g₁ ≤ f • g₂ := map₂_mono_left
@[to_additive] lemma smul_le_smul_right : f₁ ≤ f₂ → f₁ • g ≤ f₂ • g := map₂_mono_right
@[simp, to_additive] lemma le_smul_iff : h ≤ f • g ↔ ∀ ⦃s⦄, s ∈ f → ∀ ⦃t⦄, t ∈ g → s • t ∈ h :=
le_map₂_iff
@[to_additive] instance covariant_smul : covariant_class (filter α) (filter β) (•) (≤) :=
⟨λ f g h, map₂_mono_left⟩
end smul
/-! ### Scalar subtraction of filters -/
section vsub
variables [has_vsub α β] {f f₁ f₂ g g₁ g₂ : filter β} {h : filter α} {s t : set β} {a b : β}
include α
/-- The filter `f -ᵥ g` is generated by `{s -ᵥ t | s ∈ f, t ∈ g}` in locale `pointwise`. -/
protected def has_vsub : has_vsub (filter α) (filter β) :=
/- This is defeq to `map₂ (-ᵥ) f g`, but the hypothesis unfolds to `t₁ -ᵥ t₂ ⊆ s` rather than all
the way to `set.image2 (-ᵥ) t₁ t₂ ⊆ s`. -/
⟨λ f g, { sets := {s | ∃ t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ -ᵥ t₂ ⊆ s}, ..map₂ (-ᵥ) f g }⟩
localized "attribute [instance] filter.has_vsub" in pointwise
@[simp] lemma map₂_vsub : map₂ (-ᵥ) f g = f -ᵥ g := rfl
lemma mem_vsub {s : set α} : s ∈ f -ᵥ g ↔ ∃ t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ -ᵥ t₂ ⊆ s := iff.rfl
lemma vsub_mem_vsub : s ∈ f → t ∈ g → s -ᵥ t ∈ f -ᵥ g := image2_mem_map₂
@[simp] lemma bot_vsub : (⊥ : filter β) -ᵥ g = ⊥ := map₂_bot_left
@[simp] lemma vsub_bot : f -ᵥ (⊥ : filter β) = ⊥ := map₂_bot_right
@[simp] lemma vsub_eq_bot_iff : f -ᵥ g = ⊥ ↔ f = ⊥ ∨ g = ⊥ := map₂_eq_bot_iff
@[simp] lemma vsub_ne_bot_iff : (f -ᵥ g : filter α).ne_bot ↔ f.ne_bot ∧ g.ne_bot := map₂_ne_bot_iff
lemma ne_bot.vsub : ne_bot f → ne_bot g → ne_bot (f -ᵥ g) := ne_bot.map₂
lemma ne_bot.of_vsub_left : (f -ᵥ g : filter α).ne_bot → f.ne_bot := ne_bot.of_map₂_left
lemma ne_bot.of_vsub_right : (f -ᵥ g : filter α).ne_bot → g.ne_bot := ne_bot.of_map₂_right
@[simp] lemma pure_vsub : (pure a : filter β) -ᵥ g = g.map ((-ᵥ) a) := map₂_pure_left
@[simp] lemma vsub_pure : f -ᵥ pure b = f.map (-ᵥ b) := map₂_pure_right
@[simp] lemma pure_vsub_pure : (pure a : filter β) -ᵥ pure b = (pure (a -ᵥ b) : filter α) :=
map₂_pure
lemma vsub_le_vsub : f₁ ≤ f₂ → g₁ ≤ g₂ → f₁ -ᵥ g₁ ≤ f₂ -ᵥ g₂ := map₂_mono
lemma vsub_le_vsub_left : g₁ ≤ g₂ → f -ᵥ g₁ ≤ f -ᵥ g₂ := map₂_mono_left
lemma vsub_le_vsub_right : f₁ ≤ f₂ → f₁ -ᵥ g ≤ f₂ -ᵥ g := map₂_mono_right
@[simp] lemma le_vsub_iff : h ≤ f -ᵥ g ↔ ∀ ⦃s⦄, s ∈ f → ∀ ⦃t⦄, t ∈ g → s -ᵥ t ∈ h := le_map₂_iff
end vsub
/-! ### Translation/scaling of filters -/
section smul
variables [has_smul α β] {f f₁ f₂ : filter β} {s : set β} {a : α}
/-- `a • f` is the map of `f` under `a •` in locale `pointwise`. -/
@[to_additive filter.has_vadd_filter
"`a +ᵥ f` is the map of `f` under `a +ᵥ` in locale `pointwise`."]
protected def has_smul_filter : has_smul α (filter β) := ⟨λ a, map ((•) a)⟩
localized "attribute [instance] filter.has_smul_filter filter.has_vadd_filter" in pointwise
@[simp, to_additive] lemma map_smul : map (λ b, a • b) f = a • f := rfl
@[to_additive] lemma mem_smul_filter : s ∈ a • f ↔ (•) a ⁻¹' s ∈ f := iff.rfl
@[to_additive] lemma smul_set_mem_smul_filter : s ∈ f → a • s ∈ a • f := image_mem_map
@[simp, to_additive] lemma smul_filter_bot : a • (⊥ : filter β) = ⊥ := map_bot
@[simp, to_additive] lemma smul_filter_eq_bot_iff : a • f = ⊥ ↔ f = ⊥ := map_eq_bot_iff
@[simp, to_additive] lemma smul_filter_ne_bot_iff : (a • f).ne_bot ↔ f.ne_bot := map_ne_bot_iff _
@[to_additive] lemma ne_bot.smul_filter : f.ne_bot → (a • f).ne_bot := λ h, h.map _
@[to_additive] lemma ne_bot.of_smul_filter : (a • f).ne_bot → f.ne_bot := ne_bot.of_map
@[to_additive] lemma smul_filter_le_smul_filter (hf : f₁ ≤ f₂) : a • f₁ ≤ a • f₂ :=
map_mono hf
@[to_additive] instance covariant_smul_filter : covariant_class α (filter β) (•) (≤) :=
⟨λ f, map_mono⟩
end smul
open_locale pointwise
@[to_additive]
instance smul_comm_class_filter [has_smul α γ] [has_smul β γ] [smul_comm_class α β γ] :
smul_comm_class α β (filter γ) :=
⟨λ _ _ _, map_comm (funext $ smul_comm _ _) _⟩
@[to_additive]
instance smul_comm_class_filter' [has_smul α γ] [has_smul β γ] [smul_comm_class α β γ] :
smul_comm_class α (filter β) (filter γ) :=
⟨λ a f g, map_map₂_distrib_right $ smul_comm a⟩
@[to_additive]
instance smul_comm_class_filter'' [has_smul α γ] [has_smul β γ] [smul_comm_class α β γ] :
smul_comm_class (filter α) β (filter γ) :=
by haveI := smul_comm_class.symm α β γ; exact smul_comm_class.symm _ _ _
@[to_additive]
instance smul_comm_class [has_smul α γ] [has_smul β γ] [smul_comm_class α β γ] :
smul_comm_class (filter α) (filter β) (filter γ) :=
⟨λ f g h, map₂_left_comm smul_comm⟩
instance is_scalar_tower [has_smul α β] [has_smul α γ] [has_smul β γ]
[is_scalar_tower α β γ] :
is_scalar_tower α β (filter γ) :=
⟨λ a b f, by simp only [←map_smul, map_map, smul_assoc]⟩
instance is_scalar_tower' [has_smul α β] [has_smul α γ] [has_smul β γ]
[is_scalar_tower α β γ] :
is_scalar_tower α (filter β) (filter γ) :=
⟨λ a f g, by { refine (map_map₂_distrib_left $ λ _ _, _).symm, exact (smul_assoc a _ _).symm }⟩
instance is_scalar_tower'' [has_smul α β] [has_smul α γ] [has_smul β γ]
[is_scalar_tower α β γ] :
is_scalar_tower (filter α) (filter β) (filter γ) :=
⟨λ f g h, map₂_assoc smul_assoc⟩
instance is_central_scalar [has_smul α β] [has_smul αᵐᵒᵖ β] [is_central_scalar α β] :
is_central_scalar α (filter β) :=
⟨λ a f, congr_arg (λ m, map m f) $ by exact funext (λ _, op_smul_eq_smul _ _)⟩
/-- A multiplicative action of a monoid `α` on a type `β` gives a multiplicative action of
`filter α` on `filter β`. -/
@[to_additive "An additive action of an additive monoid `α` on a type `β` gives an additive action
of `filter α` on `filter β`"]
protected def mul_action [monoid α] [mul_action α β] : mul_action (filter α) (filter β) :=
{ one_smul := λ f, map₂_pure_left.trans $ by simp_rw [one_smul, map_id'],
mul_smul := λ f g h, map₂_assoc mul_smul }
/-- A multiplicative action of a monoid on a type `β` gives a multiplicative action on `filter β`.
-/
@[to_additive "An additive action of an additive monoid on a type `β` gives an additive action on
`filter β`."]
protected def mul_action_filter [monoid α] [mul_action α β] : mul_action α (filter β) :=
{ mul_smul := λ a b f, by simp only [←map_smul, map_map, function.comp, ←mul_smul],
one_smul := λ f, by simp only [←map_smul, one_smul, map_id'] }
localized "attribute [instance] filter.mul_action filter.add_action filter.mul_action_filter
filter.add_action_filter" in pointwise
/-- A distributive multiplicative action of a monoid on an additive monoid `β` gives a distributive
multiplicative action on `filter β`. -/
protected def distrib_mul_action_filter [monoid α] [add_monoid β] [distrib_mul_action α β] :
distrib_mul_action α (filter β) :=
{ smul_add := λ _ _ _, map_map₂_distrib $ smul_add _,
smul_zero := λ _, (map_pure _ _).trans $ by rw [smul_zero, pure_zero] }
/-- A multiplicative action of a monoid on a monoid `β` gives a multiplicative action on `set β`. -/
protected def mul_distrib_mul_action_filter [monoid α] [monoid β] [mul_distrib_mul_action α β] :
mul_distrib_mul_action α (set β) :=
{ smul_mul := λ _ _ _, image_image2_distrib $ smul_mul' _,
smul_one := λ _, image_singleton.trans $ by rw [smul_one, singleton_one] }
localized "attribute [instance] filter.distrib_mul_action_filter
filter.mul_distrib_mul_action_filter" in pointwise
section smul_with_zero
variables [has_zero α] [has_zero β] [smul_with_zero α β] {f : filter α} {g : filter β}
/-!
Note that we have neither `smul_with_zero α (filter β)` nor `smul_with_zero (filter α) (filter β)`
because `0 * ⊥ ≠ 0`.
-/
lemma ne_bot.smul_zero_nonneg (hf : f.ne_bot) : 0 ≤ f • (0 : filter β) :=
le_smul_iff.2 $ λ t₁ h₁ t₂ h₂, let ⟨a, ha⟩ := hf.nonempty_of_mem h₁ in
⟨_, _, ha, h₂, smul_zero' _ _⟩
lemma ne_bot.zero_smul_nonneg (hg : g.ne_bot) : 0 ≤ (0 : filter α) • g :=
le_smul_iff.2 $ λ t₁ h₁ t₂ h₂, let ⟨b, hb⟩ := hg.nonempty_of_mem h₂ in ⟨_, _, h₁, hb, zero_smul _ _⟩
lemma zero_smul_filter_nonpos : (0 : α) • g ≤ 0 :=
begin
refine λ s hs, mem_smul_filter.2 _,
convert univ_mem,
refine eq_univ_iff_forall.2 (λ a, _),
rwa [mem_preimage, zero_smul],
end
lemma zero_smul_filter (hg : g.ne_bot) : (0 : α) • g = 0 :=
zero_smul_filter_nonpos.antisymm $ le_map_iff.2 $ λ s hs, begin
simp_rw [set.image_eta, zero_smul, (hg.nonempty_of_mem hs).image_const],
exact zero_mem_zero,
end
end smul_with_zero
end filter
|
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
! This file was ported from Lean 3 source module data.nat.interval
! leanprover-community/mathlib commit a11f9106a169dd302a285019e5165f8ab32ff433
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathbin.Data.Finset.LocallyFinite
/-!
# Finite intervals of naturals
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file proves that `ℕ` is a `locally_finite_order` and calculates the cardinality of its
intervals as finsets and fintypes.
## TODO
Some lemmas can be generalized using `ordered_group`, `canonically_ordered_monoid` or `succ_order`
and subsequently be moved upstream to `data.finset.locally_finite`.
-/
open Finset Nat
instance : LocallyFiniteOrder ℕ
where
finsetIcc a b := ⟨List.range' a (b + 1 - a), List.nodup_range' _ _⟩
finsetIco a b := ⟨List.range' a (b - a), List.nodup_range' _ _⟩
finsetIoc a b := ⟨List.range' (a + 1) (b - a), List.nodup_range' _ _⟩
finsetIoo a b := ⟨List.range' (a + 1) (b - a - 1), List.nodup_range' _ _⟩
finset_mem_Icc a b x :=
by
rw [Finset.mem_mk, Multiset.mem_coe, List.mem_range']
cases le_or_lt a b
· rw [add_tsub_cancel_of_le (Nat.lt_succ_of_le h).le, Nat.lt_succ_iff]
· rw [tsub_eq_zero_iff_le.2 (succ_le_of_lt h), add_zero]
exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2)
finset_mem_Ico a b x :=
by
rw [Finset.mem_mk, Multiset.mem_coe, List.mem_range']
cases le_or_lt a b
· rw [add_tsub_cancel_of_le h]
· rw [tsub_eq_zero_iff_le.2 h.le, add_zero]
exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2.le)
finset_mem_Ioc a b x :=
by
rw [Finset.mem_mk, Multiset.mem_coe, List.mem_range']
cases le_or_lt a b
· rw [← succ_sub_succ, add_tsub_cancel_of_le (succ_le_succ h), Nat.lt_succ_iff, Nat.succ_le_iff]
· rw [tsub_eq_zero_iff_le.2 h.le, add_zero]
exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.le.trans hx.2)
finset_mem_Ioo a b x :=
by
rw [Finset.mem_mk, Multiset.mem_coe, List.mem_range', ← tsub_add_eq_tsub_tsub]
cases le_or_lt (a + 1) b
· rw [add_tsub_cancel_of_le h, Nat.succ_le_iff]
· rw [tsub_eq_zero_iff_le.2 h.le, add_zero]
exact iff_of_false (fun hx => hx.2.not_le hx.1) fun hx => h.not_le (hx.1.trans hx.2)
variable (a b c : ℕ)
namespace Nat
#print Nat.Icc_eq_range' /-
theorem Icc_eq_range' : Icc a b = ⟨List.range' a (b + 1 - a), List.nodup_range' _ _⟩ :=
rfl
#align nat.Icc_eq_range' Nat.Icc_eq_range'
-/
#print Nat.Ico_eq_range' /-
theorem Ico_eq_range' : Ico a b = ⟨List.range' a (b - a), List.nodup_range' _ _⟩ :=
rfl
#align nat.Ico_eq_range' Nat.Ico_eq_range'
-/
#print Nat.Ioc_eq_range' /-
theorem Ioc_eq_range' : Ioc a b = ⟨List.range' (a + 1) (b - a), List.nodup_range' _ _⟩ :=
rfl
#align nat.Ioc_eq_range' Nat.Ioc_eq_range'
-/
#print Nat.Ioo_eq_range' /-
theorem Ioo_eq_range' : Ioo a b = ⟨List.range' (a + 1) (b - a - 1), List.nodup_range' _ _⟩ :=
rfl
#align nat.Ioo_eq_range' Nat.Ioo_eq_range'
-/
#print Nat.Iio_eq_range /-
theorem Iio_eq_range : Iio = range := by
ext (b x)
rw [mem_Iio, mem_range]
#align nat.Iio_eq_range Nat.Iio_eq_range
-/
#print Nat.Ico_zero_eq_range /-
@[simp]
theorem Ico_zero_eq_range : Ico 0 = range := by rw [← bot_eq_zero, ← Iio_eq_Ico, Iio_eq_range]
#align nat.Ico_zero_eq_range Nat.Ico_zero_eq_range
-/
#print Finset.range_eq_Ico /-
theorem Finset.range_eq_Ico : range = Ico 0 :=
Ico_zero_eq_range.symm
#align finset.range_eq_Ico Finset.range_eq_Ico
-/
#print Nat.card_Icc /-
@[simp]
theorem card_Icc : (Icc a b).card = b + 1 - a :=
List.length_range' _ _
#align nat.card_Icc Nat.card_Icc
-/
#print Nat.card_Ico /-
@[simp]
theorem card_Ico : (Ico a b).card = b - a :=
List.length_range' _ _
#align nat.card_Ico Nat.card_Ico
-/
#print Nat.card_Ioc /-
@[simp]
theorem card_Ioc : (Ioc a b).card = b - a :=
List.length_range' _ _
#align nat.card_Ioc Nat.card_Ioc
-/
#print Nat.card_Ioo /-
@[simp]
theorem card_Ioo : (Ioo a b).card = b - a - 1 :=
List.length_range' _ _
#align nat.card_Ioo Nat.card_Ioo
-/
#print Nat.card_Iic /-
@[simp]
theorem card_Iic : (Iic b).card = b + 1 := by rw [Iic_eq_Icc, card_Icc, bot_eq_zero, tsub_zero]
#align nat.card_Iic Nat.card_Iic
-/
#print Nat.card_Iio /-
@[simp]
theorem card_Iio : (Iio b).card = b := by rw [Iio_eq_Ico, card_Ico, bot_eq_zero, tsub_zero]
#align nat.card_Iio Nat.card_Iio
-/
#print Nat.card_fintypeIcc /-
@[simp]
theorem card_fintypeIcc : Fintype.card (Set.Icc a b) = b + 1 - a := by
rw [Fintype.card_ofFinset, card_Icc]
#align nat.card_fintype_Icc Nat.card_fintypeIcc
-/
#print Nat.card_fintypeIco /-
@[simp]
theorem card_fintypeIco : Fintype.card (Set.Ico a b) = b - a := by
rw [Fintype.card_ofFinset, card_Ico]
#align nat.card_fintype_Ico Nat.card_fintypeIco
-/
#print Nat.card_fintypeIoc /-
@[simp]
theorem card_fintypeIoc : Fintype.card (Set.Ioc a b) = b - a := by
rw [Fintype.card_ofFinset, card_Ioc]
#align nat.card_fintype_Ioc Nat.card_fintypeIoc
-/
#print Nat.card_fintypeIoo /-
@[simp]
theorem card_fintypeIoo : Fintype.card (Set.Ioo a b) = b - a - 1 := by
rw [Fintype.card_ofFinset, card_Ioo]
#align nat.card_fintype_Ioo Nat.card_fintypeIoo
-/
#print Nat.card_fintypeIic /-
@[simp]
theorem card_fintypeIic : Fintype.card (Set.Iic b) = b + 1 := by
rw [Fintype.card_ofFinset, card_Iic]
#align nat.card_fintype_Iic Nat.card_fintypeIic
-/
#print Nat.card_fintypeIio /-
@[simp]
theorem card_fintypeIio : Fintype.card (Set.Iio b) = b := by rw [Fintype.card_ofFinset, card_Iio]
#align nat.card_fintype_Iio Nat.card_fintypeIio
-/
#print Nat.Icc_succ_left /-
-- TODO@Yaël: Generalize all the following lemmas to `succ_order`
theorem Icc_succ_left : Icc a.succ b = Ioc a b :=
by
ext x
rw [mem_Icc, mem_Ioc, succ_le_iff]
#align nat.Icc_succ_left Nat.Icc_succ_left
-/
#print Nat.Ico_succ_right /-
theorem Ico_succ_right : Ico a b.succ = Icc a b :=
by
ext x
rw [mem_Ico, mem_Icc, lt_succ_iff]
#align nat.Ico_succ_right Nat.Ico_succ_right
-/
#print Nat.Ico_succ_left /-
theorem Ico_succ_left : Ico a.succ b = Ioo a b :=
by
ext x
rw [mem_Ico, mem_Ioo, succ_le_iff]
#align nat.Ico_succ_left Nat.Ico_succ_left
-/
#print Nat.Icc_pred_right /-
theorem Icc_pred_right {b : ℕ} (h : 0 < b) : Icc a (b - 1) = Ico a b :=
by
ext x
rw [mem_Icc, mem_Ico, lt_iff_le_pred h]
#align nat.Icc_pred_right Nat.Icc_pred_right
-/
#print Nat.Ico_succ_succ /-
theorem Ico_succ_succ : Ico a.succ b.succ = Ioc a b :=
by
ext x
rw [mem_Ico, mem_Ioc, succ_le_iff, lt_succ_iff]
#align nat.Ico_succ_succ Nat.Ico_succ_succ
-/
#print Nat.Ico_succ_singleton /-
@[simp]
theorem Ico_succ_singleton : Ico a (a + 1) = {a} := by rw [Ico_succ_right, Icc_self]
#align nat.Ico_succ_singleton Nat.Ico_succ_singleton
-/
#print Nat.Ico_pred_singleton /-
@[simp]
theorem Ico_pred_singleton {a : ℕ} (h : 0 < a) : Ico (a - 1) a = {a - 1} := by
rw [← Icc_pred_right _ h, Icc_self]
#align nat.Ico_pred_singleton Nat.Ico_pred_singleton
-/
#print Nat.Ioc_succ_singleton /-
@[simp]
theorem Ioc_succ_singleton : Ioc b (b + 1) = {b + 1} := by rw [← Nat.Icc_succ_left, Icc_self]
#align nat.Ioc_succ_singleton Nat.Ioc_succ_singleton
-/
variable {a b c}
/- warning: nat.Ico_succ_right_eq_insert_Ico -> Nat.Ico_succ_right_eq_insert_Ico is a dubious translation:
lean 3 declaration is
forall {a : Nat} {b : Nat}, (LE.le.{0} Nat Nat.hasLe a b) -> (Eq.{1} (Finset.{0} Nat) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) b (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Insert.insert.{0, 0} Nat (Finset.{0} Nat) (Finset.hasInsert.{0} Nat (fun (a : Nat) (b : Nat) => Nat.decidableEq a b)) b (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder a b)))
but is expected to have type
forall {a : Nat} {b : Nat}, (LE.le.{0} Nat instLENat a b) -> (Eq.{1} (Finset.{0} Nat) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring a (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) b (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Insert.insert.{0, 0} Nat (Finset.{0} Nat) (Finset.instInsertFinset.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b)) b (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring a b)))
Case conversion may be inaccurate. Consider using '#align nat.Ico_succ_right_eq_insert_Ico Nat.Ico_succ_right_eq_insert_Icoₓ'. -/
theorem Ico_succ_right_eq_insert_Ico (h : a ≤ b) : Ico a (b + 1) = insert b (Ico a b) := by
rw [Ico_succ_right, ← Ico_insert_right h]
#align nat.Ico_succ_right_eq_insert_Ico Nat.Ico_succ_right_eq_insert_Ico
/- warning: nat.Ico_insert_succ_left -> Nat.Ico_insert_succ_left is a dubious translation:
lean 3 declaration is
forall {a : Nat} {b : Nat}, (LT.lt.{0} Nat Nat.hasLt a b) -> (Eq.{1} (Finset.{0} Nat) (Insert.insert.{0, 0} Nat (Finset.{0} Nat) (Finset.hasInsert.{0} Nat (fun (a : Nat) (b : Nat) => Nat.decidableEq a b)) a (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (Nat.succ a) b)) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder a b))
but is expected to have type
forall {a : Nat} {b : Nat}, (LT.lt.{0} Nat instLTNat a b) -> (Eq.{1} (Finset.{0} Nat) (Insert.insert.{0, 0} Nat (Finset.{0} Nat) (Finset.instInsertFinset.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b)) a (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (Nat.succ a) b)) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring a b))
Case conversion may be inaccurate. Consider using '#align nat.Ico_insert_succ_left Nat.Ico_insert_succ_leftₓ'. -/
theorem Ico_insert_succ_left (h : a < b) : insert a (Ico a.succ b) = Ico a b := by
rw [Ico_succ_left, ← Ioo_insert_left h]
#align nat.Ico_insert_succ_left Nat.Ico_insert_succ_left
/- warning: nat.image_sub_const_Ico -> Nat.image_sub_const_Ico is a dubious translation:
lean 3 declaration is
forall {a : Nat} {b : Nat} {c : Nat}, (LE.le.{0} Nat Nat.hasLe c a) -> (Eq.{1} (Finset.{0} Nat) (Finset.image.{0, 0} Nat Nat (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) (fun (x : Nat) => HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) x c) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder a b)) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) a c) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) b c)))
but is expected to have type
forall {a : Nat} {b : Nat} {c : Nat}, (LE.le.{0} Nat instLENat c a) -> (Eq.{1} (Finset.{0} Nat) (Finset.image.{0, 0} Nat Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) (fun (x : Nat) => HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) x c) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring a b)) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) a c) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) b c)))
Case conversion may be inaccurate. Consider using '#align nat.image_sub_const_Ico Nat.image_sub_const_Icoₓ'. -/
theorem image_sub_const_Ico (h : c ≤ a) : ((Ico a b).image fun x => x - c) = Ico (a - c) (b - c) :=
by
ext x
rw [mem_image]
constructor
· rintro ⟨x, hx, rfl⟩
rw [mem_Ico] at hx⊢
exact ⟨tsub_le_tsub_right hx.1 _, tsub_lt_tsub_right_of_le (h.trans hx.1) hx.2⟩
· rintro h
refine' ⟨x + c, _, add_tsub_cancel_right _ _⟩
rw [mem_Ico] at h⊢
exact ⟨tsub_le_iff_right.1 h.1, lt_tsub_iff_right.1 h.2⟩
#align nat.image_sub_const_Ico Nat.image_sub_const_Ico
/- warning: nat.Ico_image_const_sub_eq_Ico -> Nat.Ico_image_const_sub_eq_Ico is a dubious translation:
lean 3 declaration is
forall {a : Nat} {b : Nat} {c : Nat}, (LE.le.{0} Nat Nat.hasLe a c) -> (Eq.{1} (Finset.{0} Nat) (Finset.image.{0, 0} Nat Nat (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) (fun (x : Nat) => HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) c x) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder a b)) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) c (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) b) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) c (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a)))
but is expected to have type
forall {a : Nat} {b : Nat} {c : Nat}, (LE.le.{0} Nat instLENat a c) -> (Eq.{1} (Finset.{0} Nat) (Finset.image.{0, 0} Nat Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) (fun (x : Nat) => HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) c x) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring a b)) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) c (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) b) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) c (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a)))
Case conversion may be inaccurate. Consider using '#align nat.Ico_image_const_sub_eq_Ico Nat.Ico_image_const_sub_eq_Icoₓ'. -/
theorem Ico_image_const_sub_eq_Ico (hac : a ≤ c) :
((Ico a b).image fun x => c - x) = Ico (c + 1 - b) (c + 1 - a) :=
by
ext x
rw [mem_image, mem_Ico]
constructor
· rintro ⟨x, hx, rfl⟩
rw [mem_Ico] at hx
refine'
⟨_,
((tsub_le_tsub_iff_left hac).2 hx.1).trans_lt
((tsub_lt_tsub_iff_right hac).2 (Nat.lt_succ_self _))⟩
cases lt_or_le c b
· rw [tsub_eq_zero_iff_le.mpr (succ_le_of_lt h)]
exact zero_le _
· rw [← succ_sub_succ c]
exact (tsub_le_tsub_iff_left (succ_le_succ <| hx.2.le.trans h)).2 hx.2
· rintro ⟨hb, ha⟩
rw [lt_tsub_iff_left, lt_succ_iff] at ha
have hx : x ≤ c := (Nat.le_add_left _ _).trans ha
refine' ⟨c - x, _, tsub_tsub_cancel_of_le hx⟩
· rw [mem_Ico]
exact
⟨le_tsub_of_add_le_right ha,
(tsub_lt_iff_left hx).2 <| succ_le_iff.1 <| tsub_le_iff_right.1 hb⟩
#align nat.Ico_image_const_sub_eq_Ico Nat.Ico_image_const_sub_eq_Ico
/- warning: nat.Ico_succ_left_eq_erase_Ico -> Nat.Ico_succ_left_eq_erase_Ico is a dubious translation:
lean 3 declaration is
forall {a : Nat} {b : Nat}, Eq.{1} (Finset.{0} Nat) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (Nat.succ a) b) (Finset.erase.{0} Nat (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder a b) a)
but is expected to have type
forall {a : Nat} {b : Nat}, Eq.{1} (Finset.{0} Nat) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (Nat.succ a) b) (Finset.erase.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring a b) a)
Case conversion may be inaccurate. Consider using '#align nat.Ico_succ_left_eq_erase_Ico Nat.Ico_succ_left_eq_erase_Icoₓ'. -/
theorem Ico_succ_left_eq_erase_Ico : Ico a.succ b = erase (Ico a b) a :=
by
ext x
rw [Ico_succ_left, mem_erase, mem_Ico, mem_Ioo, ← and_assoc', ne_comm, and_comm' (a ≠ x),
lt_iff_le_and_ne]
#align nat.Ico_succ_left_eq_erase_Ico Nat.Ico_succ_left_eq_erase_Ico
#print Nat.mod_injOn_Ico /-
theorem mod_injOn_Ico (n a : ℕ) : Set.InjOn (· % a) (Finset.Ico n (n + a)) :=
by
induction' n with n ih
· simp only [zero_add, nat_zero_eq_zero, Ico_zero_eq_range]
rintro k hk l hl (hkl : k % a = l % a)
simp only [Finset.mem_range, Finset.mem_coe] at hk hl
rwa [mod_eq_of_lt hk, mod_eq_of_lt hl] at hkl
rw [Ico_succ_left_eq_erase_Ico, succ_add, Ico_succ_right_eq_insert_Ico le_self_add]
rintro k hk l hl (hkl : k % a = l % a)
have ha : 0 < a := by
by_contra ha
simp only [not_lt, nonpos_iff_eq_zero] at ha
simpa [ha] using hk
simp only [Finset.mem_coe, Finset.mem_insert, Finset.mem_erase] at hk hl
rcases hk with ⟨hkn, rfl | hk⟩ <;> rcases hl with ⟨hln, rfl | hl⟩
· rfl
· rw [add_mod_right] at hkl
refine' (hln <| ih hl _ hkl.symm).elim
simp only [lt_add_iff_pos_right, Set.left_mem_Ico, Finset.coe_Ico, ha]
· rw [add_mod_right] at hkl
suffices k = n by contradiction
refine' ih hk _ hkl
simp only [lt_add_iff_pos_right, Set.left_mem_Ico, Finset.coe_Ico, ha]
· refine' ih _ _ hkl <;> simp only [Finset.mem_coe, hk, hl]
#align nat.mod_inj_on_Ico Nat.mod_injOn_Ico
-/
/- warning: nat.image_Ico_mod -> Nat.image_Ico_mod is a dubious translation:
lean 3 declaration is
forall (n : Nat) (a : Nat), Eq.{1} (Finset.{0} Nat) (Finset.image.{0, 0} Nat Nat (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) (fun (_x : Nat) => HMod.hMod.{0, 0, 0} Nat Nat Nat (instHMod.{0} Nat Nat.hasMod) _x a) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n a))) (Finset.range a)
but is expected to have type
forall (n : Nat) (a : Nat), Eq.{1} (Finset.{0} Nat) (Finset.image.{0, 0} Nat Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) (fun (_x : Nat) => HMod.hMod.{0, 0, 0} Nat Nat Nat (instHMod.{0} Nat Nat.instModNat) _x a) (Finset.Ico.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n a))) (Finset.range a)
Case conversion may be inaccurate. Consider using '#align nat.image_Ico_mod Nat.image_Ico_modₓ'. -/
/-- Note that while this lemma cannot be easily generalized to a type class, it holds for ℤ as
well. See `int.image_Ico_mod` for the ℤ version. -/
theorem image_Ico_mod (n a : ℕ) : (Ico n (n + a)).image (· % a) = range a :=
by
obtain rfl | ha := eq_or_ne a 0
· rw [range_zero, add_zero, Ico_self, image_empty]
ext i
simp only [mem_image, exists_prop, mem_range, mem_Ico]
constructor
· rintro ⟨i, h, rfl⟩
exact mod_lt i ha.bot_lt
intro hia
have hn := Nat.mod_add_div n a
obtain hi | hi := lt_or_le i (n % a)
· refine' ⟨i + a * (n / a + 1), ⟨_, _⟩, _⟩
· rw [add_comm (n / a), mul_add, mul_one, ← add_assoc]
refine' hn.symm.le.trans (add_le_add_right _ _)
simpa only [zero_add] using add_le_add (zero_le i) (Nat.mod_lt n ha.bot_lt).le
· refine' lt_of_lt_of_le (add_lt_add_right hi (a * (n / a + 1))) _
rw [mul_add, mul_one, ← add_assoc, hn]
· rw [Nat.add_mul_mod_self_left, Nat.mod_eq_of_lt hia]
· refine' ⟨i + a * (n / a), ⟨_, _⟩, _⟩
· exact hn.symm.le.trans (add_le_add_right hi _)
· rw [add_comm n a]
refine' add_lt_add_of_lt_of_le hia (le_trans _ hn.le)
simp only [zero_le, le_add_iff_nonneg_left]
· rw [Nat.add_mul_mod_self_left, Nat.mod_eq_of_lt hia]
#align nat.image_Ico_mod Nat.image_Ico_mod
section Multiset
open Multiset
#print Nat.multiset_Ico_map_mod /-
theorem multiset_Ico_map_mod (n a : ℕ) : (Multiset.Ico n (n + a)).map (· % a) = range a :=
by
convert congr_arg Finset.val (image_Ico_mod n a)
refine' ((nodup_map_iff_inj_on (Finset.Ico _ _).Nodup).2 <| _).dedup.symm
exact mod_inj_on_Ico _ _
#align nat.multiset_Ico_map_mod Nat.multiset_Ico_map_mod
-/
end Multiset
end Nat
namespace Finset
/- warning: finset.range_image_pred_top_sub -> Finset.range_image_pred_top_sub is a dubious translation:
lean 3 declaration is
forall (n : Nat), Eq.{1} (Finset.{0} Nat) (Finset.image.{0, 0} Nat Nat (fun (a : Nat) (b : Nat) => Nat.decidableEq a b) (fun (j : Nat) => HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) j) (Finset.range n)) (Finset.range n)
but is expected to have type
forall (n : Nat), Eq.{1} (Finset.{0} Nat) (Finset.image.{0, 0} Nat Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) (fun (j : Nat) => HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) j) (Finset.range n)) (Finset.range n)
Case conversion may be inaccurate. Consider using '#align finset.range_image_pred_top_sub Finset.range_image_pred_top_subₓ'. -/
theorem range_image_pred_top_sub (n : ℕ) :
((Finset.range n).image fun j => n - 1 - j) = Finset.range n :=
by
cases n
· rw [range_zero, image_empty]
· rw [Finset.range_eq_Ico, Nat.Ico_image_const_sub_eq_Ico (zero_le _)]
simp_rw [succ_sub_succ, tsub_zero, tsub_self]
#align finset.range_image_pred_top_sub Finset.range_image_pred_top_sub
/- warning: finset.range_add_eq_union -> Finset.range_add_eq_union is a dubious translation:
lean 3 declaration is
forall (a : Nat) (b : Nat), Eq.{1} (Finset.{0} Nat) (Finset.range (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a b)) (Union.union.{0} (Finset.{0} Nat) (Finset.hasUnion.{0} Nat (fun (a : Nat) (b : Nat) => Nat.decidableEq a b)) (Finset.range a) (Finset.map.{0, 0} Nat Nat (addLeftEmbedding.{0} Nat (AddLeftCancelMonoid.toAddLeftCancelSemigroup.{0} Nat (AddCancelCommMonoid.toAddLeftCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) a) (Finset.range b)))
but is expected to have type
forall (a : Nat) (b : Nat), Eq.{1} (Finset.{0} Nat) (Finset.range (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a b)) (Union.union.{0} (Finset.{0} Nat) (Finset.instUnionFinset.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b)) (Finset.range a) (Finset.map.{0, 0} Nat Nat (addLeftEmbedding.{0} Nat (AddLeftCancelMonoid.toAddLeftCancelSemigroup.{0} Nat (AddCancelCommMonoid.toAddLeftCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) a) (Finset.range b)))
Case conversion may be inaccurate. Consider using '#align finset.range_add_eq_union Finset.range_add_eq_unionₓ'. -/
theorem range_add_eq_union : range (a + b) = range a ∪ (range b).map (addLeftEmbedding a) :=
by
rw [Finset.range_eq_Ico, map_eq_image]
convert(Ico_union_Ico_eq_Ico a.zero_le le_self_add).symm
exact image_add_left_Ico _ _ _
#align finset.range_add_eq_union Finset.range_add_eq_union
end Finset
section Induction
variable {P : ℕ → Prop} (h : ∀ n, P (n + 1) → P n)
include h
#print Nat.decreasing_induction_of_not_bddAbove /-
theorem Nat.decreasing_induction_of_not_bddAbove (hP : ¬BddAbove { x | P x }) (n : ℕ) : P n :=
let ⟨m, hm, hl⟩ := not_bddAbove_iff.1 hP n
decreasingInduction h hl.le hm
#align nat.decreasing_induction_of_not_bdd_above Nat.decreasing_induction_of_not_bddAbove
-/
#print Nat.decreasing_induction_of_infinite /-
theorem Nat.decreasing_induction_of_infinite (hP : { x | P x }.Infinite) (n : ℕ) : P n :=
Nat.decreasing_induction_of_not_bddAbove h (mt BddAbove.finite hP) n
#align nat.decreasing_induction_of_infinite Nat.decreasing_induction_of_infinite
-/
#print Nat.cauchy_induction' /-
theorem Nat.cauchy_induction' (seed : ℕ) (hs : P seed) (hi : ∀ x, seed ≤ x → P x → ∃ y, x < y ∧ P y)
(n : ℕ) : P n := by
apply Nat.decreasing_induction_of_infinite h fun hf => _
obtain ⟨m, hP, hm⟩ := hf.exists_maximal_wrt id _ ⟨seed, hs⟩
obtain ⟨y, hl, hy⟩ := hi m (le_of_not_lt fun hl => hl.Ne <| hm seed hs hl.le) hP
exact hl.ne (hm y hy hl.le)
#align nat.cauchy_induction' Nat.cauchy_induction'
-/
#print Nat.cauchy_induction /-
theorem Nat.cauchy_induction (seed : ℕ) (hs : P seed) (f : ℕ → ℕ)
(hf : ∀ x, seed ≤ x → P x → x < f x ∧ P (f x)) (n : ℕ) : P n :=
seed.cauchy_induction' h hs (fun x hl hx => ⟨f x, hf x hl hx⟩) n
#align nat.cauchy_induction Nat.cauchy_induction
-/
#print Nat.cauchy_induction_mul /-
theorem Nat.cauchy_induction_mul (k seed : ℕ) (hk : 1 < k) (hs : P seed.succ)
(hm : ∀ x, seed < x → P x → P (k * x)) (n : ℕ) : P n :=
by
apply Nat.cauchy_induction h _ hs ((· * ·) k) fun x hl hP => ⟨_, hm x hl hP⟩
convert(mul_lt_mul_right <| seed.succ_pos.trans_le hl).2 hk
rw [one_mul]
#align nat.cauchy_induction_mul Nat.cauchy_induction_mul
-/
#print Nat.cauchy_induction_two_mul /-
theorem Nat.cauchy_induction_two_mul (seed : ℕ) (hs : P seed.succ)
(hm : ∀ x, seed < x → P x → P (2 * x)) (n : ℕ) : P n :=
Nat.cauchy_induction_mul h 2 seed one_lt_two hs hm n
#align nat.cauchy_induction_two_mul Nat.cauchy_induction_two_mul
-/
end Induction
|
Require Import Memory Memimpl.
Require Import Unusedglobproof.
Module Mem.
Export Memimpl.Mem.
Export Unusedglobproof.Mem.
Local Existing Instances memory_model_ops memory_model_prf.
Local Instance memory_model_x_prf:
MemoryModelX mem.
Proof.
split.
exact Memimpl.Mem.zero_delta_inject.
Qed.
End Mem.
|
{-# OPTIONS --universe-polymorphism #-}
module TrustMe where
open import Common.Equality
postulate
A : Set
x : A
eq : x ≡ x
eq = primTrustMe
evaluates-to-refl : sym (sym eq) ≡ eq
evaluates-to-refl = refl
|
State Before: k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
⊢ ↑(direction s) = (fun x => x -ᵥ p) '' ↑s State After: k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
⊢ ↑s -ᵥ ↑s = (fun x => x -ᵥ p) '' ↑s Tactic: rw [coe_direction_eq_vsub_set ⟨p, hp⟩] State Before: k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
⊢ ↑s -ᵥ ↑s = (fun x => x -ᵥ p) '' ↑s State After: case refine'_1
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
⊢ ↑s -ᵥ ↑s ≤ (fun x => x -ᵥ p) '' ↑s
case refine'_2
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
⊢ (fun x => x -ᵥ p) '' ↑s ≤ ↑s -ᵥ ↑s Tactic: refine' le_antisymm _ _ State Before: case refine'_1
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
⊢ ↑s -ᵥ ↑s ≤ (fun x => x -ᵥ p) '' ↑s State After: case refine'_1.intro.intro.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
p1 p2 : P
hp1 : p1 ∈ ↑s
hp2 : p2 ∈ ↑s
⊢ (fun x x_1 => x -ᵥ x_1) p1 p2 ∈ (fun x => x -ᵥ p) '' ↑s Tactic: rintro v ⟨p1, p2, hp1, hp2, rfl⟩ State Before: case refine'_1.intro.intro.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
p1 p2 : P
hp1 : p1 ∈ ↑s
hp2 : p2 ∈ ↑s
⊢ (fun x x_1 => x -ᵥ x_1) p1 p2 ∈ (fun x => x -ᵥ p) '' ↑s State After: no goals Tactic: exact ⟨p1 -ᵥ p2 +ᵥ p, vadd_mem_of_mem_direction (vsub_mem_direction hp1 hp2) hp, vadd_vsub _ _⟩ State Before: case refine'_2
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
⊢ (fun x => x -ᵥ p) '' ↑s ≤ ↑s -ᵥ ↑s State After: case refine'_2.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
p2 : P
hp2 : p2 ∈ ↑s
⊢ (fun x => x -ᵥ p) p2 ∈ ↑s -ᵥ ↑s Tactic: rintro v ⟨p2, hp2, rfl⟩ State Before: case refine'_2.intro.intro
k : Type u_1
V : Type u_2
P : Type u_3
inst✝³ : Ring k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
s : AffineSubspace k P
p : P
hp : p ∈ s
p2 : P
hp2 : p2 ∈ ↑s
⊢ (fun x => x -ᵥ p) p2 ∈ ↑s -ᵥ ↑s State After: no goals Tactic: exact ⟨p2, p, hp2, hp, rfl⟩ |
{-# OPTIONS --without-K --safe #-}
module Categories.Comonad.Relative where
open import Level
open import Categories.Category using (Category)
open import Categories.Functor using (Functor; Endofunctor; _∘F_) renaming (id to idF)
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism hiding (_≃_)
open import Categories.NaturalTransformation.Equivalence
open NaturalIsomorphism
private
variable
o ℓ e o′ ℓ′ e′ : Level
C : Category o ℓ e
D : Category o′ ℓ′ e′
record Comonad {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (J : Functor C D) : Set (o ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module C = Category C
module D = Category D
module J = Functor J
open D using (_⇒_; _∘_; _≈_)
field
F₀ : C.Obj → D.Obj
counit : {c : C.Obj} → F₀ c ⇒ J.₀ c
cobind : {x y : C.Obj} → (F₀ x ⇒ J.₀ y) → F₀ x ⇒ F₀ y
identityʳ : {x y : C.Obj} { k : F₀ x ⇒ J.₀ y} → counit ∘ cobind k ≈ k
identityˡ : {x : C.Obj} → cobind {x} counit ≈ D.id
assoc : {x y z : C.Obj} {k : F₀ x ⇒ J.₀ y} {l : F₀ y ⇒ J.₀ z} →
cobind (l ∘ cobind k) ≈ cobind l ∘ cobind k
cobind-≈ : {x y : C.Obj} {k h : F₀ x ⇒ J.₀ y} → k ≈ h → cobind k ≈ cobind h
-- From a Relative Comonad, we can extract a functor
RComonad⇒Functor : {J : Functor C D} → Comonad J → Functor C D
RComonad⇒Functor {C = C} {D = D} {J = J} r = record
{ F₀ = F₀
; F₁ = λ f → cobind (J.₁ f ∘ counit)
; identity = identity′
; homomorphism = hom′
; F-resp-≈ = λ f≈g → cobind-≈ (∘-resp-≈ˡ (J.F-resp-≈ f≈g))
}
where
open Comonad r
module C = Category C
module D = Category D
module J = Functor J
open Category D hiding (identityˡ; identityʳ; assoc)
open HomReasoning
open MR D
identity′ : {c : C.Obj} → cobind {c} (J.₁ C.id ∘ counit) ≈ id
identity′ = begin
cobind (J.₁ C.id ∘ counit) ≈⟨ cobind-≈ (elimˡ J.identity) ⟩
cobind counit ≈⟨ identityˡ ⟩
id ∎
hom′ : {X Y Z : C.Obj} {f : X C.⇒ Y} {g : Y C.⇒ Z} →
cobind (J.₁ (g C.∘ f) ∘ counit) ≈ cobind (J.₁ g ∘ counit) ∘ cobind (J.₁ f ∘ counit)
hom′ {f = f} {g} = begin
cobind (J.₁ (g C.∘ f) ∘ counit) ≈⟨ cobind-≈ (pushˡ J.homomorphism) ⟩
cobind (J.₁ g ∘ J.₁ f ∘ counit) ≈⟨ cobind-≈ (pushʳ (⟺ identityʳ)) ⟩
cobind ((J.₁ g ∘ counit) ∘ (cobind (J.F₁ f ∘ counit))) ≈⟨ assoc ⟩
cobind (J.₁ g ∘ counit) ∘ cobind (J.F₁ f ∘ counit) ∎
|
Formal statement is: lemma LIMSEQ_offset: "(\<lambda>n. f (n + k)) \<longlonglongrightarrow> a \<Longrightarrow> f \<longlonglongrightarrow> a" Informal statement is: If the sequence $f(n + k)$ converges to $a$, then the sequence $f(n)$ converges to $a$. |
module Cat where
open import Agda.Builtin.Equality
{- A category is very much like a graph. It has vertices
named objects and vertices named arrows. Each arrow goes
from an object to an object (possibly the same!). -}
record Cat (obj : Set) (arr : obj -> obj -> Set) : Set where
constructor MkCat
field
{- For each object, there is an arrow called `id` which
goes from the object to itself. -}
id : {o : obj} -> arr o o
{- Given an arrow `f` from object `a` to `b` and an arrow
`g` from `b` to `c`. We can compose these arrow. The
result is an arrow from `a` to `c`. -}
compose : {a b c : obj} -> arr a b -> arr b c -> arr a c
-- Here comes some properties of `id` and `compose`
{- For any arrow `f`, compose id f = f -}
neutralLeft : {a b : obj} -> (f : arr a b) -> compose id f ≡ f
{- For any arrow `f`, compose f id = f -}
neutralRight : {a b : obj} -> (f : arr a b) -> compose f id ≡ f
{- For any arrows `f`, `g` and `h`,
composing f with g, and then the result with h
gives exatctly the same result as
composing f with the result of the composition of g and h
Which means, like string concatenation than we can commpose
the way we preserve the order of each element in the sequence.
-}
associativity : {a b c d : obj} ->
(f : arr a b) -> (g : arr b c) -> (h : arr c d) ->
compose f (compose g h) ≡ compose (compose f g) h
open import Agda.Builtin.Nat
{- `LE n m` encode the property that `n ≤ m`
i.e. `n` is less or equal to `m` -}
data LE : Nat -> Nat -> Set where
LERefl : {n : Nat} -> LE n n
LENext : {n m : Nat} -> LE n m -> LE n (suc m)
{- Taking naturals as objects and `LE` as arrows,
this actually forms a category! -}
natPoset : Cat Nat LE
natPoset = ??? |
-- {-# OPTIONS -v tc.rec:100 -v tc.signature:20 #-}
module Issue414 where
record P : Set₁ where
field
q : Set
x : P
x = record { q = q }
-- Andreas 2011-05-19
-- record constructor should have been added to the signature
-- before record module is constructed! |
This method is very simple to implement for different photocurable resins to create 3D porous objects with complicated shapes. In addition, this new method has the advantages of self-supporting and can be used to print hollow components, especially the part with Droste effect (one object within another).
Georgia Tech is one university in the US that has embraced the utility of MakerSpaces for students. A number of the facilities have been opened by the university in specific schools, including one for Materials Science and Engineering in the Materials Innovation & Learning Lab.
In December 2016, 3D Printing Industry also reported on Georgia Tech’s development of personal 3D printed valves that can be used in planning for heart procedures.
To stay up to date on the latest research relating to 3D printing sign up to the 3D Printing Industry newsletter, and follow our active social media channels.
You can also vote now in the 1st annual 3D Printing Industry Awards. |
{-# LANGUAGE BangPatterns, DeriveDataTypeable, DeriveGeneric #-}
-- |
-- Module : Statistics.Resampling
-- Copyright : (c) 2009, 2010 Bryan O'Sullivan
-- License : BSD3
--
-- Maintainer : [email protected]
-- Stability : experimental
-- Portability : portable
--
-- Resampling statistics.
module Statistics.Resampling
(
Resample(..)
, jackknife
, jackknifeMean
, jackknifeVariance
, jackknifeVarianceUnb
, jackknifeStdDev
, resample
, estimate
, splitGen
) where
import Data.Aeson (FromJSON, ToJSON)
import Control.Concurrent (forkIO, newChan, readChan, writeChan)
import Control.Monad (forM_, liftM, replicateM, replicateM_)
import Data.Binary (Binary(..))
import Data.Data (Data, Typeable)
import Data.Vector.Algorithms.Intro (sort)
import Data.Vector.Binary ()
import Data.Vector.Generic (unsafeFreeze)
import Data.Word (Word32)
import GHC.Conc (numCapabilities)
import GHC.Generics (Generic)
import Numeric.Sum (Summation(..), kbn)
import Statistics.Function (indices)
import Statistics.Sample (mean, stdDev, variance, varianceUnbiased)
import Statistics.Types (Estimator(..), Sample)
import System.Random.MWC (GenIO, initialize, uniform, uniformVector)
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Unboxed.Mutable as MU
-- | A resample drawn randomly, with replacement, from a set of data
-- points. Distinct from a normal array to make it harder for your
-- humble author's brain to go wrong.
newtype Resample = Resample {
fromResample :: U.Vector Double
} deriving (Eq, Read, Show, Typeable, Data, Generic)
instance FromJSON Resample
instance ToJSON Resample
instance Binary Resample where
put = put . fromResample
get = fmap Resample get
-- | /O(e*r*s)/ Resample a data set repeatedly, with replacement,
-- computing each estimate over the resampled data.
--
-- This function is expensive; it has to do work proportional to
-- /e*r*s/, where /e/ is the number of estimation functions, /r/ is
-- the number of resamples to compute, and /s/ is the number of
-- original samples.
--
-- To improve performance, this function will make use of all
-- available CPUs. At least with GHC 7.0, parallel performance seems
-- best if the parallel garbage collector is disabled (RTS option
-- @-qg@).
resample :: GenIO
-> [Estimator] -- ^ Estimation functions.
-> Int -- ^ Number of resamples to compute.
-> Sample -- ^ Original sample.
-> IO [Resample]
resample gen ests numResamples samples = do
let !numSamples = U.length samples
ixs = scanl (+) 0 $
zipWith (+) (replicate numCapabilities q)
(replicate r 1 ++ repeat 0)
where (q,r) = numResamples `quotRem` numCapabilities
results <- mapM (const (MU.new numResamples)) ests
done <- newChan
gens <- splitGen numCapabilities gen
forM_ (zip3 ixs (tail ixs) gens) $ \ (start,!end,gen') -> do
forkIO $ do
let loop k ers | k >= end = writeChan done ()
| otherwise = do
re <- U.replicateM numSamples $ do
r <- uniform gen'
return (U.unsafeIndex samples (r `mod` numSamples))
forM_ ers $ \(est,arr) ->
MU.write arr k . est $ re
loop (k+1) ers
loop start (zip ests' results)
replicateM_ numCapabilities $ readChan done
mapM_ sort results
mapM (liftM Resample . unsafeFreeze) results
where
ests' = map estimate ests
-- | Run an 'Estimator' over a sample.
estimate :: Estimator -> Sample -> Double
estimate Mean = mean
estimate Variance = variance
estimate VarianceUnbiased = varianceUnbiased
estimate StdDev = stdDev
estimate (Function est) = est
-- | /O(n) or O(n^2)/ Compute a statistical estimate repeatedly over a
-- sample, each time omitting a successive element.
jackknife :: Estimator -> Sample -> U.Vector Double
jackknife Mean sample = jackknifeMean sample
jackknife Variance sample = jackknifeVariance sample
jackknife VarianceUnbiased sample = jackknifeVarianceUnb sample
jackknife StdDev sample = jackknifeStdDev sample
jackknife (Function est) sample
| G.length sample == 1 = singletonErr "jackknife"
| otherwise = U.map f . indices $ sample
where f i = est (dropAt i sample)
-- | /O(n)/ Compute the jackknife mean of a sample.
jackknifeMean :: Sample -> U.Vector Double
jackknifeMean samp
| len == 1 = singletonErr "jackknifeMean"
| otherwise = G.map (/l) $ G.zipWith (+) (pfxSumL samp) (pfxSumR samp)
where
l = fromIntegral (len - 1)
len = G.length samp
-- | /O(n)/ Compute the jackknife variance of a sample with a
-- correction factor @c@, so we can get either the regular or
-- \"unbiased\" variance.
jackknifeVariance_ :: Double -> Sample -> U.Vector Double
jackknifeVariance_ c samp
| len == 1 = singletonErr "jackknifeVariance"
| otherwise = G.zipWith4 go als ars bls brs
where
als = pfxSumL . G.map goa $ samp
ars = pfxSumR . G.map goa $ samp
goa x = v * v where v = x - m
bls = pfxSumL . G.map (subtract m) $ samp
brs = pfxSumR . G.map (subtract m) $ samp
m = mean samp
n = fromIntegral len
go al ar bl br = (al + ar - (b * b) / q) / (q - c)
where b = bl + br
q = n - 1
len = G.length samp
-- | /O(n)/ Compute the unbiased jackknife variance of a sample.
jackknifeVarianceUnb :: Sample -> U.Vector Double
jackknifeVarianceUnb = jackknifeVariance_ 1
-- | /O(n)/ Compute the jackknife variance of a sample.
jackknifeVariance :: Sample -> U.Vector Double
jackknifeVariance = jackknifeVariance_ 0
-- | /O(n)/ Compute the jackknife standard deviation of a sample.
jackknifeStdDev :: Sample -> U.Vector Double
jackknifeStdDev = G.map sqrt . jackknifeVarianceUnb
pfxSumL :: U.Vector Double -> U.Vector Double
pfxSumL = G.map kbn . G.scanl add zero
pfxSumR :: U.Vector Double -> U.Vector Double
pfxSumR = G.tail . G.map kbn . G.scanr (flip add) zero
-- | Drop the /k/th element of a vector.
dropAt :: U.Unbox e => Int -> U.Vector e -> U.Vector e
dropAt n v = U.slice 0 n v U.++ U.slice (n+1) (U.length v - n - 1) v
singletonErr :: String -> a
singletonErr func = error $
"Statistics.Resampling." ++ func ++ ": singleton input"
-- | Split a generator into several that can run independently.
splitGen :: Int -> GenIO -> IO [GenIO]
splitGen n gen
| n <= 0 = return []
| otherwise =
fmap (gen:) . replicateM (n-1) $
initialize =<< (uniformVector gen 256 :: IO (U.Vector Word32))
|
The convex hull of a set $p$ is the set of all points $x$ that can be written as a convex combination of at most $n + 1$ points in $p$, where $n$ is the dimension of the space. |
#include <bunsan/process/executor.hpp>
#include <bunsan/process/native_executor.hpp>
#include <mutex>
#include <boost/assert.hpp>
namespace bunsan::process {
static std::mutex global_lock;
static executor_ptr global_instance;
static void register_native_unlocked() {
global_instance = std::make_shared<native_executor>();
}
executor::~executor() {}
void executor::register_native() {
const std::lock_guard<std::mutex> lk(global_lock);
register_native_unlocked();
BOOST_ASSERT(global_instance);
}
void executor::register_instance(std::shared_ptr<executor> impl) {
BOOST_ASSERT(impl);
const std::lock_guard<std::mutex> lk(global_lock);
global_instance = impl;
}
executor_ptr executor::instance() {
const std::lock_guard<std::mutex> lk(global_lock);
if (!global_instance) register_native_unlocked();
BOOST_ASSERT(global_instance);
return global_instance;
}
} // namespace bunsan::process
|
State Before: α : Type u
n : ℕ
f : Fin n → α
⊢ ofFn f = [] ↔ n = 0 State After: no goals Tactic: cases n <;> simp only [ofFn_zero, ofFn_succ, eq_self_iff_true, Nat.succ_ne_zero] |
import analysis.special_functions.exp
open real
variables a b c d e : ℝ
#check le_refl
#check add_lt_add_of_lt_of_le
#check add_lt_add_of_le_of_lt
#check exp_lt_exp.mpr
-- BEGIN
example (h₀ : a ≤ b) (h₁ : c < d) : a + exp c + e < b + exp d + e :=
begin
apply add_lt_add_of_lt_of_le,
{ sorry, },
sorry,
end
-- END |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.Examples where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.RingSolver.ReflectionSolving
private
variable
ℓ : Level
module Test (R : CommRing {ℓ}) where
open CommRingStr (snd R)
_ : 1r · (1r + 0r)
≡ (1r · 0r) + 1r
_ = solve R
_ : 1r · 0r + (1r - 1r)
≡ 0r - 0r
_ = solve R
_ : (x : fst R) → x ≡ x
_ = solve R
_ : (x y : fst R) → x ≡ x
_ = solve R
_ : (x y : fst R) → x + y ≡ y + x
_ = solve R
_ : (x y : fst R) → (x + y) · (x - y) ≡ x · x - y · y
_ = solve R
{-
A bigger example, copied from the other example files:
-}
_ : (x y z : (fst R)) → (x + y) · (x + y) · (x + y) · (x + y)
≡ x · x · x · x + (fromℤ R 4) · x · x · x · y + (fromℤ R 6) · x · x · y · y
+ (fromℤ R 4) · x · y · y · y + y · y · y · y
_ = solve R
{-
Keep in mind, that the solver can lead to wrong error locations.
For example, the commented code below tries to solve an equation that does not hold,
with the result of an error at the wrong location.
_ : (x y : (fst R)) → x ≡ y
_ = solve R
-}
|
Formal statement is: lemma islimpt_sequential: fixes x :: "'a::first_countable_topology" shows "x islimpt S \<longleftrightarrow> (\<exists>f. (\<forall>n::nat. f n \<in> S - {x}) \<and> (f \<longlongrightarrow> x) sequentially)" (is "?lhs = ?rhs") Informal statement is: A point $x$ is a limit point of a set $S$ if and only if there exists a sequence of points in $S$ that converges to $x$. |
[STATEMENT]
lemma parent_upper_bound: "parent l c < c \<longleftrightarrow> l \<le> c"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (parent l c < c) = (l \<le> c)
[PROOF STEP]
unfolding parent_def
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (l + (c - l - 1) div 2 < c) = (l \<le> c)
[PROOF STEP]
by auto |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Algebra.Magma
module Cubical.Algebra.Magma.Construct.Opposite {ℓ} (M : Magma ℓ) where
open import Cubical.Foundations.Prelude
open Magma M
_•ᵒᵖ_ : Op₂ Carrier
y •ᵒᵖ x = x • y
Op-isMagma : IsMagma Carrier _•ᵒᵖ_
Op-isMagma = record { is-set = is-set }
Mᵒᵖ : Magma ℓ
Mᵒᵖ = record { isMagma = Op-isMagma }
|
State Before: α : Type u_1
inst✝ : LinearOrder α
s t : Set α
x y z : α
⊢ y ∈ ordConnectedComponent s x ↔ x ∈ ordConnectedComponent s y State After: no goals Tactic: rw [mem_ordConnectedComponent, mem_ordConnectedComponent, uIcc_comm] |
library(rstan)
args_line <- as.list(commandArgs(trailingOnly=TRUE))
if(length(args_line) > 0)
{
stopifnot(args_line[[1]]=='-csv_file')
stopifnot(args_line[[3]]=='-rda_file')
args <- list()
args[['csv_file']] <- args_line[[2]]
args[['rda_file']] <- args_line[[4]]
}
# convert to stanfit object and save
fit <- rstan::read_stan_csv(args$csv_file)
save(fit, file=args$rda_file)
|
{-# OPTIONS --cubical --safe #-}
module Data.List.Smart where
open import Prelude
open import Data.Nat.Properties using (_≡ᴮ_; complete-==)
infixr 5 _∷′_ _++′_
data List {a} (A : Type a) : Type a where
[]′ : List A
_∷′_ : A → List A → List A
_++′_ : List A → List A → List A
sz′ : List A → ℕ → ℕ
sz′ []′ k = k
sz′ (x ∷′ xs) k = k
sz′ (xs ++′ ys) k = suc (sz′ xs (sz′ ys k))
sz : List A → ℕ
sz []′ = zero
sz (x ∷′ xs) = zero
sz (xs ++′ ys) = sz′ xs (sz ys)
_HasSize_ : List A → ℕ → Type
xs HasSize n = T (sz xs ≡ᴮ n)
data ListView {a} (A : Type a) : Type a where
Nil : ListView A
Cons : A → List A → ListView A
viewˡ : List A → ListView A
viewˡ xs = go xs (sz xs) (complete-== (sz xs))
where
go : (xs : List A) → (n : ℕ) → xs HasSize n → ListView A
go []′ n p = Nil
go (x ∷′ xs) n p = Cons x xs
go ((x ∷′ xs) ++′ ys) n p = Cons x (xs ++′ ys)
go ([]′ ++′ ys) n p = go ys n p
go ((xs ++′ ys) ++′ zs) (suc n) p = go (xs ++′ (ys ++′ zs)) n p
|
Require Import util.
Require Import Fourier.
Require Export flow.
Set Implicit Arguments.
Open Local Scope R_scope.
Require Import Coq.Reals.Reals.
Section function_properties.
Variable f: R -> R.
Definition strongly_increasing: Prop :=
forall x x', x < x' -> f x < f x'.
Definition strongly_decreasing: Prop :=
forall x x', x < x' -> f x' < f x.
Lemma mildly_increasing:
strongly_increasing -> forall x x', x <= x' -> f x <= f x'.
Proof with auto with real.
intros.
destruct H0...
subst...
Qed.
Lemma mildly_decreasing:
strongly_decreasing -> forall x x', x <= x' -> f x' <= f x.
Proof with auto with real.
intros.
destruct H0...
subst...
Qed.
Lemma strongly_increasing_rev: strongly_increasing -> forall x x', f x < f x' -> x < x'.
Proof with auto with real.
unfold strongly_increasing.
intros.
destruct (Rlt_le_dec x x')...
destruct (Rle_lt_or_eq_dec x' x r).
elimtype False...
apply (Rlt_asym _ _ H0)...
subst.
elimtype False.
apply (Rlt_irrefl _ H0).
Qed.
Lemma strongly_decreasing_rev: strongly_decreasing -> forall x x', f x < f x' -> x' < x.
Proof with auto with real.
unfold strongly_decreasing.
intros.
destruct (Rlt_le_dec x x').
elimtype False...
apply (Rlt_asym _ _ H0)...
destruct (Rle_lt_or_eq_dec x' x r)...
subst.
elimtype False.
apply (Rlt_irrefl _ H0).
Qed.
Definition monotonic: Set := { strongly_increasing } + { strongly_decreasing }.
Lemma mono_eq: monotonic -> forall x x', f x = f x' <-> x = x'.
Proof with auto.
split.
intros.
destruct (Rle_lt_dec x x').
destruct r...
elimtype False.
destruct H; set (s _ _ H1); rewrite H0 in r; apply Rlt_irrefl with (f x')...
elimtype False.
destruct H; set (s _ _ r); rewrite H0 in r0; apply Rlt_irrefl with (f x')...
intros. subst...
Qed.
End function_properties.
Section single_inverses.
Variable f: Flow R.
Definition mono: Set :=
{ forall x, strongly_increasing (f x) } +
{ forall x, strongly_decreasing (f x) }.
Variable fmono: mono.
Lemma purify_mono: forall x, monotonic (f x).
Proof.
intros.
unfold monotonic.
destruct fmono; set (s x); [left | right]; assumption.
Qed.
Definition mle (x x': R): Prop := if fmono then x <= x' else x' <= x.
Definition mlt (x x': R): Prop := if fmono then x < x' else x' < x.
Lemma mle_refl x: mle x x.
Proof. unfold mle. destruct fmono; simpl; auto with real. Qed.
Lemma mle_trans x y z: mle x y -> mle y z -> mle x z.
Proof.
unfold mle.
destruct fmono; simpl; intros; apply Rle_trans with y; assumption.
Qed.
Lemma mlt_le x x': mlt x x' -> mle x x'.
Proof. unfold mlt, mle. destruct fmono; simpl; auto with real. Qed.
Lemma mle_lt_or_eq_dec x x':
mle x x' -> { mlt x x' } + { x = x' }.
Proof with auto with real.
unfold mle, mlt.
destruct fmono; simpl; intros.
apply Rle_lt_or_eq_dec...
destruct (Rle_lt_or_eq_dec _ _ H)...
Qed.
Lemma mono_opp v t t': t' <= t -> mle (f v t') (f v t).
Proof with auto with real.
unfold mle.
destruct fmono.
intros.
set (s v).
unfold strongly_increasing in s0.
destruct H...
subst...
intros.
set (s v).
unfold strongly_increasing in s0.
destruct H...
subst...
Qed.
Variables
(inv: R -> R -> Time)
(inv_correct: forall x x', f x (inv x x') = x').
Definition f_eq x t t': f x t = f x t' <-> t = t'
:= mono_eq (purify_mono x) t t'.
Lemma inv_correct' x t: inv x (f x t) = t.
Proof.
intros.
destruct (f_eq x (inv x (f x t)) t).
clear H0. apply H.
rewrite inv_correct. reflexivity.
Qed.
Lemma inv_plus x y z: inv x z = inv x y + inv y z.
Proof with auto.
intros. destruct (f_eq x (inv x z) (inv x y + inv y z)).
clear H0. apply H.
rewrite flow_additive...
repeat rewrite inv_correct...
Qed.
Lemma inv_refl x: inv x x = 0.
Proof with auto.
intros. destruct (f_eq x (inv x x) 0).
clear H0. apply H.
repeat rewrite inv_correct...
rewrite flow_zero...
Qed.
Lemma f_lt x t t': mlt (f x t) (f x t') -> t < t'.
Proof with auto with real.
unfold mlt.
destruct fmono; intros.
apply strongly_increasing_rev with (f x)...
apply strongly_decreasing_rev with (f x)...
Qed.
Lemma f_le x t t': mle (f x t) (f x t') -> t <= t'.
Proof with auto with real.
unfold mle.
intros.
set (f_lt x t t'). clearbody r.
unfold mlt in r.
destruct fmono; destruct H.
apply Rlt_le...
right. destruct (f_eq x t t')...
apply Rlt_le...
right. destruct (f_eq x t t')...
Qed.
Lemma inv_lt_right a x x': inv a x < inv a x' <-> mlt x x'.
Proof with auto.
unfold mlt.
split; intros.
replace x with (f a (inv a x))...
replace x' with (f a (inv a x'))...
destruct fmono; apply s...
set f_lt. clearbody r.
unfold mlt in r.
destruct fmono; apply r with a; repeat rewrite inv_correct...
Qed.
Lemma inv_pos x x': 0 < inv x x' <-> mlt x x'.
Proof with auto with real.
unfold mlt.
split; intros.
set f_lt. clearbody r.
intros.
replace x with (f x 0)...
replace x' with (f x (inv x x'))...
destruct fmono; apply s...
rewrite flow_zero...
rewrite <- inv_refl with x.
destruct (inv_lt_right x x x')...
Qed.
Lemma inv_very_correct t x: inv (f x t) x = -t.
Proof with auto with real.
intros.
assert (inv x x = 0).
apply inv_refl.
rewrite (inv_plus x (f x t) x) in H.
rewrite inv_correct' in H.
replace (-t) with (0-t)...
rewrite <- H.
unfold Rminus.
rewrite Rplus_comm.
rewrite <- Rplus_assoc.
rewrite Rplus_opp_l...
Qed.
Lemma inv_inv x y: inv x y = - inv y x.
Proof with auto with real.
intros.
set (inv_very_correct (inv y x) y).
rewrite inv_correct in e...
Qed.
Lemma inv_uniq_0 x x': inv x x' = - inv 0 x + inv 0 x'.
Proof.
intros.
rewrite (inv_plus x 0 x').
rewrite (inv_inv x 0).
auto with real.
Qed.
(* hm, this shows that inv is uniquely determined by the values it
takes with 0 as first argument. perhaps the reason we don't
just take inv as a unary function is that it is problematic
for flow functions with singularities at 0? *)
Lemma inv_le a x x': mle x x' -> inv a x <= inv a x'.
Proof with auto.
intros.
set f_le. clearbody r.
apply r with a.
do 2 rewrite inv_correct...
Qed.
Lemma inv_nonneg x x': 0 <= inv x x' <-> mle x x'.
Proof with auto with real.
unfold mle.
split; intros.
set f_le. clearbody r.
intros.
replace x with (f x 0)...
replace x' with (f x (inv x x'))...
apply mono_opp...
apply flow_zero.
rewrite <- inv_refl with x.
apply inv_le...
Qed.
Lemma inv_zero x x': inv x x' = 0 <-> x = x'.
Proof with auto.
split; intros.
replace x' with (f x (inv x x'))...
rewrite H.
rewrite flow_zero...
subst.
rewrite inv_refl...
Qed.
Lemma f_lt_left x x' t: x < x' <-> f x t < f x' t.
Proof with auto with real.
split.
intros.
replace x' with (f x (inv x x'))...
rewrite <- flow_additive...
destruct (inv_pos x x').
destruct (inv_pos x' x).
unfold mlt in *.
destruct fmono.
apply s.
set (H1 H).
fourier.
apply s.
rewrite inv_inv.
set (H3 H).
fourier.
set f_lt. set inv_pos. clearbody r i.
unfold mlt in r, i.
destruct fmono; intros.
replace (f x' t) with (f (f x (inv x x')) t) in H...
rewrite <- flow_additive in H...
set (r _ _ _ H).
assert (0 < inv x x') by fourier.
destruct (i x x').
apply H1...
rewrite inv_correct...
replace (f x t) with (f (f x' (inv x' x)) t) in H...
rewrite <- flow_additive in H...
set (r _ _ _ H).
assert (0 < inv x' x) by fourier.
destruct (i x' x).
apply H1...
rewrite inv_correct...
Qed.
Lemma f_eq_left x x' t: f x t = f x' t <-> x = x'.
Proof with auto with real.
intros.
split; intros.
intros.
destruct (Rlt_le_dec x x').
elimtype False.
destruct (f_lt_left x x' t).
set (H0 r).
rewrite H in r0.
apply (Rlt_asym _ _ r0)...
destruct (Rle_lt_or_eq_dec _ _ r)...
elimtype False.
destruct (f_lt_left x' x t).
set (H0 r0).
rewrite H in r1.
apply (Rlt_asym _ _ r1)...
subst...
Qed.
Lemma f_le_left x x' t: x <= x' <-> f x t <= f x' t.
Proof with auto with real.
intros.
destruct (f_lt_left x x' t).
split; intro.
destruct H1...
subst...
destruct H1.
destruct (f_lt_left x x' t)...
replace x' with x...
destruct (f_eq_left x x' t)...
Qed.
Lemma inv_lt_left a x x': mlt x x' <-> inv x' a < inv x a.
Proof with auto with real.
unfold mlt.
intros.
rewrite (inv_inv x' a).
rewrite (inv_inv x a).
destruct (inv_lt_right a x x').
split...
intros.
apply H...
Qed.
Lemma inv_le_left a x x': mle x x' -> inv x' a <= inv x a.
Proof with auto with real.
unfold mle. intros.
destruct (inv_lt_left a x x').
unfold mlt in *.
destruct fmono; intros; destruct H; subst...
Qed.
Lemma inv_eq_right a x x': inv a x = inv a x' <-> x = x'.
Proof with auto with real.
split.
intros.
replace x with (f a (inv a x))...
replace x' with (f a (inv a x'))...
intros...
Qed.
Lemma inv_le_right a x x': inv a x <= inv a x' <-> mle x x'.
Proof with auto with real.
intros.
destruct (inv_lt_right a x x').
split; intro.
destruct H1.
apply mlt_le...
rewrite (conj_fst (inv_eq_right a x x') H1).
apply mle_refl.
destruct (mle_lt_or_eq_dec _ _ H1)...
subst...
Qed.
Lemma mle_flow t x: 0 <= t -> mle x (f x t).
Proof with auto.
intros.
apply mle_trans with (f x 0).
rewrite flow_zero...
apply mle_refl.
apply mono_opp...
Qed.
End single_inverses.
|
[STATEMENT]
lemma domains_simp:
assumes "arr f"
shows "domains f = {dom f}"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. domains f = {local.dom f}
[PROOF STEP]
using assms dom_in_domains has_domain_iff_arr domain_unique
[PROOF STATE]
proof (prove)
using this:
arr f
domains ?f \<noteq> {} \<Longrightarrow> local.dom ?f \<in> domains ?f
(domains ?f \<noteq> {}) = arr ?f
\<lbrakk>?a \<in> domains ?f; ?a' \<in> domains ?f\<rbrakk> \<Longrightarrow> ?a = ?a'
goal (1 subgoal):
1. domains f = {local.dom f}
[PROOF STEP]
by auto |
-- Conmutatividad de la conjunción
-- ===============================
-- Demostrar que
-- P ∧ Q → Q ∧ P
import tactic
variables (P Q R : Prop)
-- 1ª demostración
-- ===============
example : P ∧ Q → Q ∧ P :=
begin
intro h,
cases h with hP hQ,
split,
{ exact hQ },
{ exact hP },
end
-- 2ª demostración
-- ===============
example : P ∧ Q → Q ∧ P :=
begin
rintro ⟨hP, hQ⟩,
exact ⟨hQ, hP⟩,
end
-- 3ª demostración
-- ===============
example : P ∧ Q → Q ∧ P :=
λ ⟨hP, hQ⟩, ⟨hQ, hP⟩
-- 4ª demostración
-- ===============
example : P ∧ Q → Q ∧ P :=
and.comm.mp
-- 5ª demostración
-- ===============
example : P ∧ Q → Q ∧ P :=
begin
assume h : P ∧ Q,
have hP : P := h.left,
have hQ : Q := h.right,
show Q ∧ P, from ⟨hQ, hP⟩,
end
-- 6ª demostración
-- ===============
example : P ∧ Q → Q ∧ P :=
begin
assume h : P ∧ Q,
show Q ∧ P, from ⟨h.2, h.1⟩,
end
example : P ∧ Q → Q ∧ P :=
λ h, ⟨h.2, h.1⟩
-- 7ª demostración
-- ===============
example : P ∧ Q → Q ∧ P :=
by tauto
-- 8ª demostración
-- ===============
example : P ∧ Q → Q ∧ P :=
by finish
|
theory T34
imports Main
begin
lemma "(
(\<forall> x::nat. \<forall> y::nat. meet(x, y) = meet(y, x)) &
(\<forall> x::nat. \<forall> y::nat. join(x, y) = join(y, x)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, meet(y, z)) = meet(meet(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(x, join(y, z)) = join(join(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. meet(x, join(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. join(x, meet(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, join(y, z)) = join(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(join(x, y), z) = join(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, over(join(mult(x, y), z), y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(y, undr(x, join(mult(x, y), z))) = y) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(over(x, y), y), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(y, undr(y, x)), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(x, meet(y, z)) = join(over(x, y), over(x, z))) &
(\<forall> x::nat. \<forall> y::nat. invo(join(x, y)) = meet(invo(x), invo(y))) &
(\<forall> x::nat. \<forall> y::nat. invo(meet(x, y)) = join(invo(x), invo(y))) &
(\<forall> x::nat. invo(invo(x)) = x)
) \<longrightarrow>
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(meet(x, y), z) = meet(mult(x, z), mult(y, z)))
"
nitpick[card nat=4,timeout=86400]
oops
end |
/-
Copyright (c) 2019 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Scott Morrison, Simon Hudon
! This file was ported from Lean 3 source module category_theory.endomorphism
! leanprover-community/mathlib commit 32253a1a1071173b33dc7d6a218cf722c6feb514
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Algebra.Hom.Equiv.Basic
import Mathlib.CategoryTheory.Groupoid
import Mathlib.CategoryTheory.Opposites
import Mathlib.GroupTheory.GroupAction.Defs
/-!
# Endomorphisms
Definition and basic properties of endomorphisms and automorphisms of an object in a category.
For each `X : C`, we provide `CategoryTheory.End X := X ⟶ X` with a monoid structure,
and `CategoryTheory.Aut X := X ≅ X ` with a group structure.
-/
universe v v' u u'
namespace CategoryTheory
/-- Endomorphisms of an object in a category. Arguments order in multiplication agrees with
`Function.comp`, not with `CategoryTheory.CategoryStruct.comp`. -/
def End {C : Type u} [CategoryStruct.{v} C] (X : C) := X ⟶ X
#align category_theory.End CategoryTheory.End
namespace End
section Struct
variable {C : Type u} [CategoryStruct.{v} C] (X : C)
protected instance one : One (End X) := ⟨𝟙 X⟩
#align category_theory.End.has_one CategoryTheory.End.one
protected instance inhabited : Inhabited (End X) := ⟨𝟙 X⟩
#align category_theory.End.inhabited CategoryTheory.End.inhabited
/-- Multiplication of endomorphisms agrees with `Function.comp`, not with
`CategoryTheory.CategoryStruct.comp`. -/
protected instance mul : Mul (End X) := ⟨fun x y => y ≫ x⟩
#align category_theory.End.has_mul CategoryTheory.End.mul
variable {X}
/-- Assist the typechecker by expressing a morphism `X ⟶ X` as a term of `CategoryTheory.End X`. -/
def of (f : X ⟶ X) : End X := f
#align category_theory.End.of CategoryTheory.End.of
/-- Assist the typechecker by expressing an endomorphism `f : CategoryTheory.End X` as a term of
`X ⟶ X`. -/
def asHom (f : End X) : X ⟶ X := f
#align category_theory.End.as_hom CategoryTheory.End.asHom
@[simp] -- porting note: todo: use `of`/`asHom`?
theorem one_def : (1 : End X) = 𝟙 X := rfl
#align category_theory.End.one_def CategoryTheory.End.one_def
@[simp] -- porting note: todo: use `of`/`asHom`?
theorem mul_def (xs ys : End X) : xs * ys = ys ≫ xs := rfl
#align category_theory.End.mul_def CategoryTheory.End.mul_def
end Struct
/-- Endomorphisms of an object form a monoid -/
instance monoid {C : Type u} [Category.{v} C] {X : C} : Monoid (End X) where
mul_one := Category.id_comp
one_mul := Category.comp_id
mul_assoc := fun x y z => (Category.assoc z y x).symm
#align category_theory.End.monoid CategoryTheory.End.monoid
section MulAction
variable {C : Type u} [Category.{v} C]
open Opposite
instance mulActionRight {X Y : C} : MulAction (End Y) (X ⟶ Y) where
smul r f := f ≫ r
one_smul := Category.comp_id
mul_smul _ _ _ := Eq.symm <| Category.assoc _ _ _
#align category_theory.End.mul_action_right CategoryTheory.End.mulActionRight
instance mulActionLeft {X : Cᵒᵖ} {Y : C} : MulAction (End X) (unop X ⟶ Y) where
smul r f := r.unop ≫ f
one_smul := Category.id_comp
mul_smul _ _ _ := Category.assoc _ _ _
#align category_theory.End.mul_action_left CategoryTheory.End.mulActionLeft
theorem smul_right {X Y : C} {r : End Y} {f : X ⟶ Y} : r • f = f ≫ r :=
rfl
#align category_theory.End.smul_right CategoryTheory.End.smul_right
theorem smul_left {X : Cᵒᵖ} {Y : C} {r : End X} {f : unop X ⟶ Y} : r • f = r.unop ≫ f :=
rfl
#align category_theory.End.smul_left CategoryTheory.End.smul_left
end MulAction
/-- In a groupoid, endomorphisms form a group -/
instance group {C : Type u} [Groupoid.{v} C] (X : C) : Group (End X) where
mul_left_inv := Groupoid.comp_inv
inv := Groupoid.inv
#align category_theory.End.group CategoryTheory.End.group
end End
theorem isUnit_iff_isIso {C : Type u} [Category.{v} C] {X : C} (f : End X) :
IsUnit (f : End X) ↔ IsIso f :=
⟨fun h => { out := ⟨h.unit.inv, ⟨h.unit.inv_val, h.unit.val_inv⟩⟩ }, fun h =>
⟨⟨f, inv f, by simp, by simp⟩, rfl⟩⟩
#align category_theory.is_unit_iff_is_iso CategoryTheory.isUnit_iff_isIso
variable {C : Type u} [Category.{v} C] (X : C)
/-- Automorphisms of an object in a category.
The order of arguments in multiplication agrees with
`Function.comp`, not with `CategoryTheory.CategoryStruct.comp`.
-/
def Aut (X : C) := X ≅ X
set_option linter.uppercaseLean3 false in
#align category_theory.Aut CategoryTheory.Aut
namespace Aut
protected instance inhabited : Inhabited (Aut X) := ⟨Iso.refl X⟩
set_option linter.uppercaseLean3 false in
#align category_theory.Aut.inhabited CategoryTheory.Aut.inhabited
instance : Group (Aut X) where
one := Iso.refl X
inv := Iso.symm
mul x y := Iso.trans y x
mul_assoc _ _ _ := (Iso.trans_assoc _ _ _).symm
one_mul := Iso.trans_refl
mul_one := Iso.refl_trans
mul_left_inv := Iso.self_symm_id
theorem Aut_mul_def (f g : Aut X) : f * g = g.trans f := rfl
set_option linter.uppercaseLean3 false in
#align category_theory.Aut.Aut_mul_def CategoryTheory.Aut.Aut_mul_def
theorem Aut_inv_def (f : Aut X) : f⁻¹ = f.symm := rfl
set_option linter.uppercaseLean3 false in
#align category_theory.Aut.Aut_inv_def CategoryTheory.Aut.Aut_inv_def
/-- Units in the monoid of endomorphisms of an object
are (multiplicatively) equivalent to automorphisms of that object.
-/
def unitsEndEquivAut : (End X)ˣ ≃* Aut X where
toFun f := ⟨f.1, f.2, f.4, f.3⟩
invFun f := ⟨f.1, f.2, f.4, f.3⟩
left_inv := fun ⟨f₁, f₂, f₃, f₄⟩ => rfl
right_inv := fun ⟨f₁, f₂, f₃, f₄⟩ => rfl
map_mul' f g := by cases f; cases g; rfl
set_option linter.uppercaseLean3 false in
#align category_theory.Aut.units_End_equiv_Aut CategoryTheory.Aut.unitsEndEquivAut
/-- Isomorphisms induce isomorphisms of the automorphism group -/
def autMulEquivOfIso {X Y : C} (h : X ≅ Y) : Aut X ≃* Aut Y where
toFun x := ⟨h.inv ≫ x.hom ≫ h.hom, h.inv ≫ x.inv ≫ h.hom, _, _⟩
invFun y := ⟨h.hom ≫ y.hom ≫ h.inv, h.hom ≫ y.inv ≫ h.inv, _, _⟩
left_inv _ := by aesop_cat
right_inv _ := by aesop_cat
map_mul' := by simp [Aut_mul_def]
set_option linter.uppercaseLean3 false in
#align category_theory.Aut.Aut_mul_equiv_of_iso CategoryTheory.Aut.autMulEquivOfIso
end Aut
namespace Functor
variable {D : Type u'} [Category.{v'} D] (f : C ⥤ D)
/-- `f.map` as a monoid hom between endomorphism monoids. -/
@[simps]
def mapEnd : End X →* End (f.obj X) where
toFun := f.map
map_mul' x y := f.map_comp y x
map_one' := f.map_id X
#align category_theory.functor.map_End CategoryTheory.Functor.mapEnd
/-- `f.mapIso` as a group hom between automorphism groups. -/
def mapAut : Aut X →* Aut (f.obj X) where
toFun := f.mapIso
map_mul' x y := f.mapIso_trans y x
map_one' := f.mapIso_refl X
set_option linter.uppercaseLean3 false in
#align category_theory.functor.map_Aut CategoryTheory.Functor.mapAut
end Functor
end CategoryTheory
|
open import Function using () renaming ( _∘′_ to _∘_ )
open import Relation.Binary.PropositionalEquality using
( _≡_ ; refl ; sym ; cong ; cong₂ ; subst )
open import AssocFree.Util using ( subst-natural )
import AssocFree.STLambdaC.Typ
open Relation.Binary.PropositionalEquality.≡-Reasoning using ( begin_ ; _≡⟨_⟩_ ; _∎ )
module AssocFree.STLambdaC.Exp
(TConst : Set)
(Const : AssocFree.STLambdaC.Typ.Typ TConst → Set) where
open module Typ = AssocFree.STLambdaC.Typ TConst using
( Typ ; Var ; Ctxt ; const ; _⇝_
; [] ; [_] ; _++_ ; _∷_ ; _∈_ ; _≪_ ; _≫_ ; _⋙_ ; uniq ; singleton
; Case ; case ; inj₁ ; inj₂ ; inj₃ ; case-≪ ; case-≫ ; case-⋙
; Case₃ ; case₃ ; caseˡ ; caseʳ ; caseˡ₃ ; caseʳ₃ ; case⁻¹ ; case-iso )
-- Syntax
data Exp (Γ : Ctxt) : Typ → Set where
const : ∀ {T} → Const T → Exp Γ T
abs : ∀ T {U} → Exp (T ∷ Γ) U → Exp Γ (T ⇝ U)
app : ∀ {T U} → Exp Γ (T ⇝ U) → Exp Γ T → Exp Γ U
var : ∀ {T} → (T ∈ Γ) → Exp Γ T
-- Shorthand
var₀ : ∀ {Γ T} → Exp (T ∷ Γ) T
var₀ {Γ} {T} = var (singleton T ≪ Γ)
var₁ : ∀ {Γ T U} → Exp (U ∷ (T ∷ Γ)) T
var₁ {Γ} {T} {U} = var ([ U ] ≫ singleton T ≪ Γ)
var₂ : ∀ {Γ T U V} → Exp (V ∷ (U ∷ (T ∷ Γ))) T
var₂ {Γ} {T} {U} {V} = var ([ V ] ≫ [ U ] ≫ singleton T ≪ Γ)
-- Andreas Abel suggested defining substitution and renaming together, citing:
--
-- Conor McBride
-- Type Preserving Renaming and Substitution
--
-- Thorsten Altenkirch and Bernhard Reus
-- Monadic Presentations of Lambda Terms Using Generalized Inductive Types
--
-- http://www2.tcs.ifi.lmu.de/~abel/ParallelSubstitution.agda
-- The idea is to define two kinds, for expressions and variables,
-- such that the kind of variables is contained in the kind of
-- expressions (so admits recursion).
mutual
data Kind : Set where
var : Kind
exp : ∀ {k} → IsVar k → Kind
data IsVar : Kind → Set where
var : IsVar var
Thing : Kind → Ctxt → Typ → Set
Thing var Γ T = (T ∈ Γ)
Thing (exp var) Γ T = Exp Γ T
Substn : Kind → Ctxt → Ctxt → Set
Substn k Γ Δ = ∀ {T} → (T ∈ Δ) → Thing k Γ T
-- Convert between variables, things and expressions
thing : ∀ {k Γ T} → (T ∈ Γ) → Thing k Γ T
thing {var} x = x
thing {exp var} x = var x
expr : ∀ {k Γ T} → Thing k Γ T → Exp Γ T
expr {var} x = var x
expr {exp var} M = M
-- Extensional equivalence on substitutions (note: not assuming extensionality)
_≈_ : ∀ {k Γ Δ} → Substn k Γ Δ → Substn k Γ Δ → Set
ρ ≈ σ = ∀ {T} x → ρ {T} x ≡ σ {T} x
-- Identity substitution
id : ∀ {k} Γ → Substn k Γ Γ
id {var} Γ x = x
id {exp var} Γ x = var x
-- Product structure of substitutions
fst : ∀ Γ Δ → Substn var (Γ ++ Δ) Γ
fst Γ Δ x = x ≪ Δ
snd : ∀ Γ Δ → Substn var (Γ ++ Δ) Δ
snd Γ Δ x = Γ ≫ x
choose : ∀ {k Γ Δ E T} → Substn k Γ Δ → Substn k Γ E → (Case T Δ E) → Thing k Γ T
choose ρ σ (inj₁ x) = ρ x
choose ρ σ (inj₂ x) = σ x
_&&&_ : ∀ {k Γ Δ E} → Substn k Γ Δ → Substn k Γ E → Substn k Γ (Δ ++ E)
(ρ &&& σ) = choose ρ σ ∘ case _ _
-- Singleton substitution
⟨_⟩ : ∀ {k Γ T} → Thing k Γ T → Substn k Γ [ T ]
⟨ M ⟩ x = subst (Thing _ _) (uniq x) M
-- Cons on substitutions
_◁_ : ∀ {k Γ Δ T} → Thing k Γ T → Substn k Γ Δ → Substn k Γ (T ∷ Δ)
M ◁ σ = ⟨ M ⟩ &&& σ
-- Applying a substitution
mutual
substn+ : ∀ {k} B Γ Δ → Substn k Γ Δ → ∀ {T} → Exp (B ++ Δ) T → Exp (B ++ Γ) T
substn+ B Γ Δ σ (const c) = const c
substn+ B Γ Δ σ (abs T M) = abs T (substn+ (T ∷ B) Γ Δ σ M)
substn+ B Γ Δ σ (app M N) = app (substn+ B Γ Δ σ M) (substn+ B Γ Δ σ N)
substn+ B Γ Δ σ (var x) = expr (xsubstn+ B Γ Δ σ (case B Δ x))
xsubstn+ : ∀ {k} B Γ Δ → Substn k Γ Δ → ∀ {T} → (Case T B Δ) → Thing k (B ++ Γ) T
xsubstn+ B Γ Δ σ (inj₁ x) = thing (x ≪ Γ)
xsubstn+ {var} B Γ Δ σ (inj₂ x) = B ≫ σ x
xsubstn+ {exp var} B Γ Δ σ (inj₂ x) = substn+ [] (B ++ Γ) Γ (snd B Γ) (σ x) -- weaken* B (σ x)
-- Shorthands
substn* : ∀ {k Γ Δ} → Substn k Γ Δ → ∀ {T} → Exp Δ T → Exp Γ T
substn* {k} {Γ} {Δ} = substn+ [] Γ Δ
substn : ∀ {Γ T U} → Exp Γ T → Exp (T ∷ Γ) U → Exp Γ U
substn {Γ} M = substn* (M ◁ id Γ)
xweaken+ : ∀ B Γ Δ {T} → (T ∈ (B ++ Δ)) → (T ∈ (B ++ Γ ++ Δ))
xweaken+ B Γ Δ x = xsubstn+ B (Γ ++ Δ) Δ (snd Γ Δ) (case B Δ x)
weaken+ : ∀ B Γ Δ {T} → Exp (B ++ Δ) T → Exp (B ++ Γ ++ Δ) T
weaken+ B Γ Δ = substn+ B (Γ ++ Δ) Δ (snd Γ Δ)
weaken* : ∀ Γ {Δ T} → Exp Δ T → Exp (Γ ++ Δ) T
weaken* Γ {Δ} = weaken+ [] Γ Δ
weakens* : ∀ {Γ Δ} E → Substn (exp var) Γ Δ → Substn (exp var) (E ++ Γ) Δ
weakens* E σ x = weaken* E (σ x)
weaken*ʳ : ∀ {Γ} Δ {T} → Exp Γ T → Exp (Γ ++ Δ) T
weaken*ʳ {Γ} Δ = weaken+ Γ Δ []
weaken : ∀ {Γ} T {U} → Exp Γ U → Exp (T ∷ Γ) U
weaken T = weaken* [ T ]
-- Composition of substitutions
_⊔_ : Kind → Kind → Kind
k ⊔ var = k
k ⊔ exp var = exp var
_∙_ : ∀ {k l Γ Δ E} → Substn k Γ Δ → Substn l Δ E → Substn (k ⊔ l) Γ E
_∙_ {k} {var} ρ σ = ρ ∘ σ
_∙_ {k} {exp var} ρ σ = substn* ρ ∘ σ
-- Functorial action of ++ on substitutions
par : ∀ {k Γ Δ Φ Ψ T} → Substn k Γ Φ → Substn k Δ Ψ → (Case T Φ Ψ) → Thing k (Γ ++ Δ) T
par {var} {Γ} {Δ} ρ σ (inj₁ x) = ρ x ≪ Δ
par {var} {Γ} {Δ} ρ σ (inj₂ x) = Γ ≫ σ x
par {exp var} {Γ} {Δ} ρ σ (inj₁ x) = weaken*ʳ Δ (ρ x)
par {exp var} {Γ} {Δ} ρ σ (inj₂ x) = weaken* Γ (σ x)
_+++_ : ∀ {k Γ Δ Φ Ψ} → Substn k Γ Δ → Substn k Φ Ψ → Substn k (Γ ++ Φ) (Δ ++ Ψ)
(ρ +++ σ) = par ρ σ ∘ case _ _
-- Weakening a variable is a variable
weaken*-var : ∀ Γ {Δ T} (x : T ∈ Δ) →
weaken* Γ (var x) ≡ var (Γ ≫ x)
weaken*-var Γ {Δ} x = cong (expr ∘ xsubstn+ [] (Γ ++ Δ) Δ (snd Γ Δ)) (case-≫ [] x)
weaken*ʳ-var : ∀ {Γ} Δ {T} (x : T ∈ Γ) →
weaken*ʳ Δ (var x) ≡ var (x ≪ Δ)
weaken*ʳ-var {Γ} Δ x = cong (expr ∘ xsubstn+ Γ Δ [] (snd Δ [])) (case-≪ x [])
weaken+-var₀ : ∀ B Γ Δ {T} →
weaken+ (T ∷ B) Γ Δ (var₀ {B ++ Δ}) ≡ var₀ {B ++ Γ ++ Δ}
weaken+-var₀ B Γ Δ {T} =
cong (var ∘ xsubstn+ (T ∷ B) (Γ ++ Δ) Δ (snd Γ Δ)) (case-≪ (singleton T ≪ B) Δ)
-- Substitution respects extensional equality
substn+-cong : ∀ {k} B Γ Δ {σ : Substn k Γ Δ} {ρ : Substn k Γ Δ} →
(σ ≈ ρ) → ∀ {T} M → substn+ B Γ Δ σ {T} M ≡ substn+ B Γ Δ ρ M
substn+-cong B Γ Δ σ≈ρ (const c) = refl
substn+-cong B Γ Δ σ≈ρ (abs T M) = cong (abs {B ++ Γ} T) (substn+-cong (T ∷ B) Γ Δ σ≈ρ M)
substn+-cong B Γ Δ σ≈ρ (app M N) = cong₂ app (substn+-cong B Γ Δ σ≈ρ M) (substn+-cong B Γ Δ σ≈ρ N)
substn+-cong B Γ Δ σ≈ρ (var x) = cong expr (xsubstn+-cong B Γ Δ σ≈ρ (case B Δ x)) where
xsubstn+-cong : ∀ {k} B Γ Δ {σ : Substn k Γ Δ} {ρ : Substn k Γ Δ} →
(σ ≈ ρ) → ∀ {T} x → xsubstn+ B Γ Δ σ {T} x ≡ xsubstn+ B Γ Δ ρ x
xsubstn+-cong {var} B Γ Δ σ≈ρ (inj₁ x) = refl
xsubstn+-cong {exp var} B Γ Δ σ≈ρ (inj₁ x) = refl
xsubstn+-cong {var} B Γ Δ σ≈ρ (inj₂ x) = cong (_≫_ B) (σ≈ρ x)
xsubstn+-cong {exp var} B Γ Δ σ≈ρ (inj₂ x) = cong (substn+ [] (B ++ Γ) Γ (snd B Γ)) (σ≈ρ x)
substn*-cong : ∀ {k Γ Δ} {σ : Substn k Γ Δ} {ρ : Substn k Γ Δ} →
(σ ≈ ρ) → ∀ {T} M → substn* σ {T} M ≡ substn* ρ M
substn*-cong {k} {Γ} {Δ} = substn+-cong [] Γ Δ
-- Identity of substitutions
xsubstn+-id : ∀ {k} B Γ {T} (x : Case T B Γ) →
expr (xsubstn+ B Γ Γ (id {k} Γ) x) ≡ var (case⁻¹ x)
xsubstn+-id {var} B Γ (inj₁ x) = refl
xsubstn+-id {exp var} B Γ (inj₁ x) = refl
xsubstn+-id {var} B Γ (inj₂ x) = refl
xsubstn+-id {exp var} B Γ (inj₂ x) = weaken*-var B x
substn+-id : ∀ {k} B Γ {T} (M : Exp (B ++ Γ) T) → substn+ B Γ Γ (id {k} Γ) M ≡ M
substn+-id B Γ (const c) = refl
substn+-id B Γ (abs T M) = cong (abs {B ++ Γ} T) (substn+-id (T ∷ B) Γ M)
substn+-id B Γ (app M N) = cong₂ app (substn+-id B Γ M) (substn+-id B Γ N)
substn+-id {k} B Γ (var x) =
begin
substn+ B Γ Γ (id {k} Γ) (var x)
≡⟨ xsubstn+-id {k} B Γ (case B Γ x) ⟩
var (case⁻¹ (case B Γ x))
≡⟨ cong var (case-iso B Γ x) ⟩
var x
∎
substn*-id : ∀ {k Γ T} (M : Exp Γ T) → substn* (id {k} Γ) M ≡ M
substn*-id {k} {Γ} = substn+-id [] Γ
weaken*-[] : ∀ {Γ T} (M : Exp Γ T) → weaken* [] M ≡ M
weaken*-[] M = substn*-id M
mutual
-- Composition of substitutions
substn+-∙ : ∀ {k l} B Γ Δ E (σ : Substn k Γ Δ) (ρ : Substn l Δ E) {T} (M : Exp (B ++ E) T) →
(substn+ B Γ Δ σ (substn+ B Δ E ρ M) ≡ substn+ B Γ E (σ ∙ ρ) M)
substn+-∙ B Γ Δ E ρ σ (const c) = refl
substn+-∙ B Γ Δ E ρ σ (abs T M) = cong (abs {B ++ Γ} T) (substn+-∙ (T ∷ B) Γ Δ E ρ σ M)
substn+-∙ B Γ Δ E ρ σ (app M N) = cong₂ app (substn+-∙ B Γ Δ E ρ σ M) (substn+-∙ B Γ Δ E ρ σ N)
substn+-∙ B Γ Δ E ρ σ (var x) = xsubstn+-∙ B Γ Δ E ρ σ (case B E x) where
xsubstn+-∙ : ∀ {k l} B Γ Δ E (σ : Substn k Γ Δ) (ρ : Substn l Δ E) {T} (x : Case T B E) →
(substn+ B Γ Δ σ (expr (xsubstn+ B Δ E ρ x)) ≡ expr (xsubstn+ B Γ E (σ ∙ ρ) x))
xsubstn+-∙ {k} {var} B Γ Δ E σ ρ (inj₁ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≪ x Δ)
xsubstn+-∙ {var} {exp var} B Γ Δ E σ ρ (inj₁ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≪ x Δ)
xsubstn+-∙ {exp var} {exp var} B Γ Δ E σ ρ (inj₁ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≪ x Δ)
xsubstn+-∙ {var} {var} B Γ Δ E σ ρ (inj₂ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≫ B (ρ x))
xsubstn+-∙ {exp var} {var} B Γ Δ E σ ρ (inj₂ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≫ B (ρ x))
xsubstn+-∙ {var} {exp var} B Γ Δ E σ ρ (inj₂ x) =
begin
substn+ B Γ Δ σ (weaken* B (ρ x))
≡⟨ substn+* B Γ Δ σ (weaken* B (ρ x)) ⟩
substn* (id B +++ σ) (weaken* B (ρ x))
≡⟨ substn+-∙ [] (B ++ Γ) (B ++ Δ) Δ (id B +++ σ) (snd B Δ) (ρ x) ⟩
substn* ((id B +++ σ) ∙ snd B Δ) (ρ x)
≡⟨ substn*-cong (λ y → cong (par (id B) σ) (case-≫ B y)) (ρ x) ⟩
substn* (snd B Γ ∙ σ) (ρ x)
≡⟨ sym (substn+-∙ [] (B ++ Γ) Γ Δ (snd B Γ) σ (ρ x)) ⟩
weaken* B (substn* σ (ρ x))
∎
xsubstn+-∙ {exp var} {exp var} B Γ Δ E σ ρ (inj₂ x) =
begin
substn+ B Γ Δ σ (weaken* B (ρ x))
≡⟨ substn+* B Γ Δ σ (weaken* B (ρ x)) ⟩
substn* (id B +++ σ) (weaken* B (ρ x))
≡⟨ substn+-∙ [] (B ++ Γ) (B ++ Δ) Δ (id B +++ σ) (snd B Δ) (ρ x) ⟩
substn* ((id B +++ σ) ∙ snd B Δ) (ρ x)
≡⟨ substn*-cong (λ y → cong (par (id B) σ) (case-≫ B y))(ρ x) ⟩
substn* (snd B Γ ∙ σ) (ρ x)
≡⟨ sym (substn+-∙ [] (B ++ Γ) Γ Δ (snd B Γ) σ (ρ x)) ⟩
weaken* B (substn* σ (ρ x))
∎
substn*-∙ : ∀ {k l Γ Δ E} (σ : Substn k Γ Δ) (ρ : Substn l Δ E) {T} (M : Exp E T) →
(substn* σ (substn* ρ M) ≡ substn* (σ ∙ ρ) M)
substn*-∙ {k} {l} {Γ} {Δ} {E} = substn+-∙ [] Γ Δ E
-- Proof uses the fact that substn+ is an instance of substn*
substn++ : ∀ {k} A B Γ Δ (σ : Substn k Γ Δ) {T} (M : Exp (A ++ B ++ Δ) T) →
substn+ (A ++ B) Γ Δ σ M ≡ substn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) M
substn++ A B Γ Δ σ (const c) = refl
substn++ A B Γ Δ σ (abs T M) = cong (abs {A ++ B ++ Γ} T) (substn++ (T ∷ A) B Γ Δ σ M)
substn++ A B Γ Δ σ (app M N) = cong₂ app (substn++ A B Γ Δ σ M) (substn++ A B Γ Δ σ N)
substn++ A B Γ Δ σ (var x) = cong expr (begin
xsubstn+ (A ++ B) Γ Δ σ (case (A ++ B) Δ x)
≡⟨ cong (xsubstn+ (A ++ B) Γ Δ σ) (sym (caseˡ₃ A B Δ x)) ⟩
xsubstn+ (A ++ B) Γ Δ σ (caseˡ (case₃ A B Δ x))
≡⟨ xsubstn++ A B Γ Δ σ (case₃ A B Δ x) ⟩
xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) (caseʳ (case₃ A B Δ x))
≡⟨ cong (xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ)) (caseʳ₃ A B Δ x) ⟩
xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) (case A (B ++ Δ) x)
∎) where
xsubstn++ : ∀ {k} A B Γ Δ (σ : Substn k Γ Δ) {T} (x : Case₃ T A B Δ) →
xsubstn+ (A ++ B) Γ Δ σ (caseˡ x) ≡ xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) (caseʳ x)
xsubstn++ A B Γ Δ σ (inj₁ x) = refl
xsubstn++ {var} A B Γ Δ σ (inj₂ x) = cong (λ X → A ≫ par (id B) σ X) (sym (case-≪ x Δ))
xsubstn++ {exp var} A B Γ Δ σ (inj₂ x) =
begin
var (A ≫ x ≪ Γ)
≡⟨ sym (weaken*-var A (x ≪ Γ)) ⟩
weaken* A (var (x ≪ Γ))
≡⟨ cong (weaken* A) (sym (weaken*ʳ-var Γ x)) ⟩
weaken* A (weaken*ʳ Γ (var x))
≡⟨ cong (weaken* A ∘ par (id B) σ) (sym (case-≪ x Δ)) ⟩
weaken* A ((id B +++ σ) (x ≪ Δ))
∎
xsubstn++ {var} A B Γ Δ σ (inj₃ x) = cong (λ X → A ≫ par (id B) σ X) (sym (case-≫ B x))
xsubstn++ {exp var} A B Γ Δ σ (inj₃ x) =
begin
weaken* (A ++ B) (σ x)
≡⟨ sym (substn*-∙ (snd A (B ++ Γ)) (snd B Γ) (σ x)) ⟩
weaken* A (weaken* B (σ x))
≡⟨ cong (weaken* A ∘ par (id B) σ) (sym (case-≫ B x)) ⟩
weaken* A ((id B +++ σ) (B ≫ x))
∎
substn+* : ∀ {k} B Γ Δ (σ : Substn k Γ Δ) {T} (M : Exp (B ++ Δ) T) →
substn+ B Γ Δ σ M ≡ substn* (id B +++ σ) M
substn+* = substn++ []
-- Weakening of weakening is weakening
weaken*-++ : ∀ A B Γ {T} (M : Exp Γ T) →
weaken* A (weaken* B M) ≡ weaken* (A ++ B) M
weaken*-++ A B Γ = substn*-∙ (snd A (B ++ Γ)) (snd B Γ)
-- Weakening commutes with weakening
weaken*-comm : ∀ A B Γ Δ {U} (M : Exp (B ++ Δ) U) →
weaken* A (weaken+ B Γ Δ M)
≡ weaken+ (A ++ B) Γ Δ (weaken* A M)
weaken*-comm A B Γ Δ M =
begin
weaken* A (weaken+ B Γ Δ M)
≡⟨ cong (substn* (snd A (B ++ Γ ++ Δ))) (substn+* B (Γ ++ Δ) Δ (snd Γ Δ) M) ⟩
substn* (snd A (B ++ Γ ++ Δ)) (substn* (id B +++ snd Γ Δ) M)
≡⟨ substn*-∙ (snd A (B ++ Γ ++ Δ)) (id B +++ snd Γ Δ) M ⟩
substn* (snd A (B ++ Γ ++ Δ) ∙ (id B +++ snd Γ Δ)) M
≡⟨ substn*-cong lemma₂ M ⟩
substn* ((id (A ++ B) +++ snd Γ Δ) ∙ snd A (B ++ Δ)) M
≡⟨ sym (substn*-∙ (id (A ++ B) +++ snd Γ Δ) (snd A (B ++ Δ)) M) ⟩
substn* (id (A ++ B) +++ snd Γ Δ) (substn* (snd A (B ++ Δ)) M)
≡⟨ sym (substn+* (A ++ B) (Γ ++ Δ) Δ (snd Γ Δ) (substn* (snd A (B ++ Δ)) M)) ⟩
weaken+ (A ++ B) Γ Δ (weaken* A M)
∎ where
lemma₁ : ∀ {T} (x : Case T B Δ) →
snd A (B ++ Γ ++ Δ) (par (id B) (snd Γ Δ) x)
≡ (par (id (A ++ B)) (snd Γ Δ) (A ⋙ x))
lemma₁ (inj₁ x) = refl
lemma₁ (inj₂ x) = refl
lemma₂ : (snd A (B ++ Γ ++ Δ) ∙ (id B +++ snd Γ Δ)) ≈ ((id (A ++ B) +++ snd Γ Δ) ∙ snd A (B ++ Δ))
lemma₂ {T} x =
begin
snd A (B ++ Γ ++ Δ) (par (id B) (snd Γ Δ) (case B Δ x))
≡⟨ lemma₁ (case B Δ x) ⟩
par (id (A ++ B)) (snd Γ Δ) (A ⋙ (case B Δ x))
≡⟨ cong (par (id (A ++ B)) (snd Γ Δ)) (case-⋙ A B Δ x) ⟩
par (id (A ++ B)) (snd Γ Δ) (case (A ++ B) Δ (A ≫ x))
∎
weaken-comm : ∀ T B Γ Δ {U} (M : Exp (B ++ Δ) U) →
weaken T (weaken+ B Γ Δ M)
≡ weaken+ (T ∷ B) Γ Δ (weaken T M)
weaken-comm T = weaken*-comm [ T ]
-- Weakening distributes through susbtn
weaken-substn : ∀ B Γ Δ {T U} (M : Exp (B ++ Δ) T) (N : Exp (T ∷ B ++ Δ) U) →
substn (weaken+ B Γ Δ M) (weaken+ (T ∷ B) Γ Δ N)
≡ weaken+ B Γ Δ (substn M N)
weaken-substn B Γ Δ {T} M N = begin
substn (weaken+ B Γ Δ M) (weaken+ (T ∷ B) Γ Δ N)
≡⟨ cong₂ substn (substn+* B (Γ ++ Δ) Δ (snd Γ Δ) M) (substn+* (T ∷ B) (Γ ++ Δ) Δ (snd Γ Δ) N) ⟩
substn (substn* (id B +++ snd Γ Δ) M) (substn* (id (T ∷ B) +++ snd Γ Δ) N)
≡⟨ substn*-∙ (substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) (id (T ∷ B) +++ snd Γ Δ) N ⟩
substn* ((substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ∙ (id (T ∷ B) +++ snd Γ Δ)) N
≡⟨ substn*-cong lemma₂ N ⟩
substn* ((id B +++ snd Γ Δ) ∙ (M ◁ id (B ++ Δ))) N
≡⟨ sym (substn*-∙ (id B +++ snd Γ Δ) (M ◁ id (B ++ Δ)) N) ⟩
substn* (id B +++ snd Γ Δ) (substn M N)
≡⟨ sym (substn+* B (Γ ++ Δ) Δ (snd Γ Δ) (substn M N)) ⟩
weaken+ B Γ Δ (substn M N)
∎ where
lemma₁ : ∀ {S} (x : Case₃ S [ T ] B Δ) →
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ))
(par (id (T ∷ B)) (snd Γ Δ) (caseˡ x))
≡ substn* (id B +++ snd Γ Δ)
(choose ⟨ M ⟩ (id (B ++ Δ)) (caseʳ x))
lemma₁ (inj₁ x) = begin
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) (x ≪ B ≪ Γ ≪ Δ)
≡⟨ cong (choose ⟨ substn* (id B +++ snd Γ Δ) M ⟩ (id (B ++ Γ ++ Δ))) (case-≪ x (B ++ Γ ++ Δ)) ⟩
⟨ substn* (id B +++ snd Γ Δ) M ⟩ x
≡⟨ subst-natural (uniq x) (substn* (id B +++ snd Γ Δ)) M ⟩
substn* (id B +++ snd Γ Δ) (⟨ M ⟩ x)
∎
lemma₁ (inj₂ x) = begin
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ([ T ] ≫ x ≪ Γ ≪ Δ)
≡⟨ cong (choose ⟨ substn* (id B +++ snd Γ Δ) M ⟩ (id (B ++ Γ ++ Δ))) (case-≫ [ T ] (x ≪ Γ ≪ Δ)) ⟩
var (x ≪ Γ ≪ Δ)
≡⟨ cong (var ∘ par (id B) (snd Γ Δ)) (sym (case-≪ x Δ)) ⟩
var ((id B +++ snd Γ Δ) (x ≪ Δ))
≡⟨ cong (var ∘ xsubstn+ [] (B ++ Γ ++ Δ) (B ++ Δ) (id B +++ snd Γ Δ)) (sym (case-≫ [] (x ≪ Δ))) ⟩
substn* (id B +++ snd Γ Δ) (var (x ≪ Δ))
∎
lemma₁ (inj₃ x) = begin
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ([ T ] ≫ B ≫ Γ ≫ x)
≡⟨ cong (choose ⟨ substn* (id B +++ snd Γ Δ) M ⟩ (id (B ++ Γ ++ Δ))) (case-≫ [ T ] (B ≫ Γ ≫ x)) ⟩
var (B ≫ Γ ≫ x)
≡⟨ cong (var ∘ par (id B) (snd Γ Δ)) (sym (case-≫ B x)) ⟩
var ((id B +++ snd Γ Δ) (B ≫ x))
≡⟨ cong (var ∘ xsubstn+ [] (B ++ Γ ++ Δ) (B ++ Δ) (id B +++ snd Γ Δ)) (sym (case-≫ [] (B ≫ x))) ⟩
substn* (id B +++ snd Γ Δ) (var (B ≫ x))
∎
lemma₂ : ((substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ∙ (id (T ∷ B) +++ snd Γ Δ))
≈ ((id B +++ snd Γ Δ) ∙ (M ◁ id (B ++ Δ)))
lemma₂ {S} x = begin
((substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ∙ (id (T ∷ B) +++ snd Γ Δ)) x
≡⟨ cong (substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ) ∘ par (id (T ∷ B)) (snd Γ Δ))
(sym (caseˡ₃ [ T ] B Δ x)) ⟩
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ))
(par (id (T ∷ B)) (snd Γ Δ) (caseˡ (case₃ [ T ] B Δ x)))
≡⟨ lemma₁ (case₃ [ T ] B Δ x) ⟩
substn* (id B +++ snd Γ Δ)
(choose ⟨ M ⟩ (id (B ++ Δ)) (caseʳ (case₃ [ T ] B Δ x)))
≡⟨ cong (substn* (id B +++ snd Γ Δ) ∘ choose ⟨ M ⟩ (id (B ++ Δ)))
(caseʳ₃ [ T ] B Δ x) ⟩
((id B +++ snd Γ Δ) ∙ (M ◁ id (B ++ Δ))) x
∎
-- Substitution into weakening discards the substitution
substn-weaken : ∀ {Γ T U} (M : Exp Γ U) (N : Exp Γ T) →
substn N (weaken T M) ≡ M
substn-weaken {Γ} {T} M N =
begin
substn N (weaken T M)
≡⟨ substn*-∙ (N ◁ id Γ) (snd [ T ] Γ) M ⟩
substn* ((N ◁ id Γ) ∙ snd [ T ] Γ) M
≡⟨ substn*-cong (λ x → cong (choose ⟨ N ⟩ (id Γ)) (case-≫ [ T ] x)) M ⟩
substn* (id Γ) M
≡⟨ substn*-id M ⟩
M
∎
-- Substitution + weakening respects ◁
substn*-◁ : ∀ Γ Δ E {T U} (M : Exp (T ∷ Γ) U) (N : Exp (E ++ Δ) T) (σ : Substn (exp var) Δ Γ) →
substn* (N ◁ weakens* E σ) M
≡ substn N (weaken+ [ T ] E Δ (substn+ [ T ] Δ Γ σ M))
substn*-◁ Γ Δ E {T} M N σ =
begin
substn* (N ◁ weakens* E σ) M
≡⟨ substn*-cong (λ x → lemma (case [ T ] Γ x)) M ⟩
substn* ((N ◁ id (E ++ Δ)) ∙ (id [ T ] +++ (snd E Δ ∙ σ))) M
≡⟨ sym (substn*-∙ (N ◁ id (E ++ Δ)) (id [ T ] +++ (snd E Δ ∙ σ)) M) ⟩
substn N (substn* (id [ T ] +++ (snd E Δ ∙ σ)) M)
≡⟨ cong (substn N) (sym (substn+* [ T ] (E ++ Δ) Γ (snd E Δ ∙ σ) M)) ⟩
substn N (substn+ [ T ] (E ++ Δ) Γ (snd E Δ ∙ σ) M)
≡⟨ cong (substn N) (sym (substn+-∙ [ T ] (E ++ Δ) Δ Γ (snd E Δ) σ M)) ⟩
substn N (weaken+ [ T ] E Δ (substn+ [ T ] Δ Γ σ M))
∎ where
lemma : ∀ {U} (x : Case U [ T ] Γ) →
choose ⟨ N ⟩ (weakens* E σ) x
≡ substn N (par (id [ T ]) (snd E Δ ∙ σ) x)
lemma (inj₁ x) =
begin
subst (Exp (E ++ Δ)) (uniq x) N
≡⟨ cong (choose ⟨ N ⟩ (id (E ++ Δ))) (sym (case-≪ x (E ++ Δ))) ⟩
(N ◁ id (E ++ Δ)) (x ≪ E ≪ Δ)
≡⟨ sym (weaken*-[] ((N ◁ id (E ++ Δ)) (x ≪ E ≪ Δ))) ⟩
weaken* [] ((N ◁ id (E ++ Δ)) (x ≪ E ≪ Δ))
≡⟨ cong (xsubstn+ [] (E ++ Δ) ([ T ] ++ E ++ Δ) (N ◁ id (E ++ Δ)))
(sym (case-≫ [] (x ≪ E ≪ Δ))) ⟩
substn N (var (x ≪ E ≪ Δ))
≡⟨ cong (substn N) (sym (weaken*ʳ-var (E ++ Δ) x)) ⟩
substn N (weaken*ʳ (E ++ Δ) (var x))
∎
lemma (inj₂ x) = sym (substn-weaken (weaken* E (σ x)) N)
|
State Before: α : Type u_1
β : Type ?u.10223
γ : Type ?u.10226
δ : Type ?u.10229
ι : Type ?u.10232
inst✝ : MeasurableSpace α
μ μ₁ μ₂ : Measure α
s s₁ s₂ t : Set α
⊢ μ₁ = μ₂ → ∀ (s : Set α), MeasurableSet s → ↑↑μ₁ s = ↑↑μ₂ s State After: α : Type u_1
β : Type ?u.10223
γ : Type ?u.10226
δ : Type ?u.10229
ι : Type ?u.10232
inst✝ : MeasurableSpace α
μ μ₁ : Measure α
s✝ s₁ s₂ t s : Set α
_hs : MeasurableSet s
⊢ ↑↑μ₁ s = ↑↑μ₁ s Tactic: rintro rfl s _hs State Before: α : Type u_1
β : Type ?u.10223
γ : Type ?u.10226
δ : Type ?u.10229
ι : Type ?u.10232
inst✝ : MeasurableSpace α
μ μ₁ : Measure α
s✝ s₁ s₂ t s : Set α
_hs : MeasurableSet s
⊢ ↑↑μ₁ s = ↑↑μ₁ s State After: no goals Tactic: rfl |
module Core.Metadata
import Core.Binary
import Core.Context
import Core.Context.Log
import Core.Core
import Core.Directory
import Core.Env
import Core.FC
import Core.Normalise
import Core.Options
import Core.TT
import Core.TTC
import Data.List
import System.File
import Libraries.Data.PosMap
import Libraries.Utils.Binary
%default covering
public export
data Decoration : Type where
Typ : Decoration
Function : Decoration
Data : Decoration
Keyword : Decoration
Bound : Decoration
Namespace : Decoration
Postulate : Decoration
Module : Decoration
export
nameDecoration : Name -> NameType -> Decoration
nameDecoration nm nt
= ifThenElse (isUnsafeBuiltin nm) Postulate (nameTypeDecoration nt)
where
nameTypeDecoration : NameType -> Decoration
nameTypeDecoration Bound = Bound
nameTypeDecoration Func = Function
nameTypeDecoration (DataCon _ _) = Data
nameTypeDecoration (TyCon _ _ ) = Typ
public export
ASemanticDecoration : Type
ASemanticDecoration = (NonEmptyFC, Decoration, Maybe Name)
public export
SemanticDecorations : Type
SemanticDecorations = List ASemanticDecoration
public export
Eq Decoration where
Typ == Typ = True
Function == Function = True
Data == Data = True
Keyword == Keyword = True
Bound == Bound = True
Namespace == Namespace = True
Postulate == Postulate = True
Module == Module = True
_ == _ = False
-- CAREFUL: this instance is used in SExpable Decoration. If you change
-- it then you need to fix the SExpable implementation in order not to
-- break the IDE mode.
public export
Show Decoration where
show Typ = "type"
show Function = "function"
show Data = "data"
show Keyword = "keyword"
show Bound = "bound"
show Namespace = "namespace"
show Postulate = "postulate"
show Module = "module"
TTC Decoration where
toBuf b Typ = tag 0
toBuf b Function = tag 1
toBuf b Data = tag 2
toBuf b Keyword = tag 3
toBuf b Bound = tag 4
toBuf b Namespace = tag 5
toBuf b Postulate = tag 6
toBuf b Module = tag 7
fromBuf b
= case !getTag of
0 => pure Typ
1 => pure Function
2 => pure Data
3 => pure Keyword
4 => pure Bound
5 => pure Namespace
6 => pure Postulate
7 => pure Module
_ => corrupt "Decoration"
public export
record Metadata where
constructor MkMetadata
-- Mapping from source annotation (location, typically) to
-- the LHS defined at that location. Also record the outer environment
-- length, since we don't want to case split on these.
lhsApps : List (NonEmptyFC, (Nat, ClosedTerm))
-- Mapping from annotation to the name defined with that annotation,
-- and its type (so, giving the ability to get the types of locally
-- defined names)
-- The type is abstracted over the whole environment; the Nat gives
-- the number of names which were in the environment at the time.
names : List (NonEmptyFC, (Name, Nat, ClosedTerm))
-- Mapping from annotation to the name that's declared there and
-- its type; the Nat is as above
tydecls : List (NonEmptyFC, (Name, Nat, ClosedTerm))
-- Current lhs, if applicable, and a mapping from hole names to the
-- lhs they're under. This is for expression search, to ensure that
-- recursive calls have a smaller value as an argument.
-- Also use this to get the name of the function being defined (i.e.
-- to know what the recursive call is, if applicable)
currentLHS : Maybe ClosedTerm
holeLHS : List (Name, ClosedTerm)
nameLocMap : PosMap (NonEmptyFC, Name)
sourceIdent : OriginDesc
-- Semantic Highlighting
-- Posmap of known semantic decorations
semanticHighlighting : PosMap ASemanticDecoration
-- Posmap of aliases (in `with` clauses the LHS disapear during
-- elaboration after making sure that they match their parents'
semanticAliases : PosMap (NonEmptyFC, NonEmptyFC)
semanticDefaults : PosMap ASemanticDecoration
Show Metadata where
show (MkMetadata apps names tydecls currentLHS holeLHS nameLocMap
fname semanticHighlighting semanticAliases semanticDefaults)
= "Metadata:\n" ++
" lhsApps: " ++ show apps ++ "\n" ++
" names: " ++ show names ++ "\n" ++
" type declarations: " ++ show tydecls ++ "\n" ++
" current LHS: " ++ show currentLHS ++ "\n" ++
" holes: " ++ show holeLHS ++ "\n" ++
" nameLocMap: " ++ show nameLocMap ++ "\n" ++
" sourceIdent: " ++ show fname ++
" semanticHighlighting: " ++ show semanticHighlighting ++
" semanticAliases: " ++ show semanticAliases ++
" semanticDefaults: " ++ show semanticDefaults
export
initMetadata : OriginDesc -> Metadata
initMetadata finfo = MkMetadata
{ lhsApps = []
, names = []
, tydecls = []
, currentLHS = Nothing
, holeLHS = []
, nameLocMap = empty
, sourceIdent = finfo
, semanticHighlighting = empty
, semanticAliases = empty
, semanticDefaults = empty
}
-- A label for metadata in the global state
export
data MD : Type where
TTC Metadata where
toBuf b m
= do toBuf b (lhsApps m)
toBuf b (names m)
toBuf b (tydecls m)
toBuf b (holeLHS m)
toBuf b (nameLocMap m)
toBuf b (sourceIdent m)
toBuf b (semanticHighlighting m)
toBuf b (semanticAliases m)
toBuf b (semanticDefaults m)
fromBuf b
= do apps <- fromBuf b
ns <- fromBuf b
tys <- fromBuf b
hlhs <- fromBuf b
dlocs <- fromBuf b
fname <- fromBuf b
semhl <- fromBuf b
semal <- fromBuf b
semdef <- fromBuf b
pure (MkMetadata apps ns tys Nothing hlhs dlocs fname semhl semal semdef)
export
addLHS : {vars : _} ->
{auto c : Ref Ctxt Defs} ->
{auto m : Ref MD Metadata} ->
FC -> Nat -> Env Term vars -> Term vars -> Core ()
addLHS loc outerenvlen env tm
= do meta <- get MD
tm' <- toFullNames (bindEnv loc (toPat env) tm)
-- Put the lhs on the metadata if it's not empty
whenJust (isNonEmptyFC loc) $ \ neloc =>
put MD $ record { lhsApps $= ((neloc, outerenvlen, tm') ::) } meta
where
toPat : Env Term vs -> Env Term vs
toPat (Lam fc c p ty :: bs) = PVar fc c p ty :: toPat bs
toPat (b :: bs) = b :: toPat bs
toPat [] = []
-- For giving local variable names types, just substitute the name
-- rather than storing the whole environment, otherwise we'll repeatedly
-- store the environment and it'll get big.
-- We'll need to rethink a bit if we want interactive editing to show
-- the whole environment - perhaps store each environment just once
-- along with its source span?
-- In any case, one could always look at the other names to get their
-- types directly!
substEnv : {vars : _} ->
FC -> Env Term vars -> (tm : Term vars) -> ClosedTerm
substEnv loc [] tm = tm
substEnv {vars = x :: _} loc (b :: env) tm
= substEnv loc env (subst (Ref loc Bound x) tm)
export
addNameType : {vars : _} ->
{auto c : Ref Ctxt Defs} ->
{auto m : Ref MD Metadata} ->
FC -> Name -> Env Term vars -> Term vars -> Core ()
addNameType loc n env tm
= do meta <- get MD
n' <- getFullName n
-- Add the name to the metadata if the file context is not empty
whenJust (isNonEmptyFC loc) $ \ neloc => do
put MD $ record { names $= ((neloc, (n', 0, substEnv loc env tm)) ::) } meta
log "metadata.names" 7 $ show n' ++ " at line " ++ show (1 + startLine neloc)
export
addTyDecl : {vars : _} ->
{auto c : Ref Ctxt Defs} ->
{auto m : Ref MD Metadata} ->
FC -> Name -> Env Term vars -> Term vars -> Core ()
addTyDecl loc n env tm
= do meta <- get MD
n' <- getFullName n
-- Add the type declaration to the metadata if the file context is not empty
whenJust (isNonEmptyFC loc) $ \ neloc =>
put MD $ record { tydecls $= ( (neloc, (n', length env, bindEnv loc env tm)) ::) } meta
export
addNameLoc : {auto m : Ref MD Metadata} ->
{auto c : Ref Ctxt Defs} ->
FC -> Name -> Core ()
addNameLoc loc n
= do meta <- get MD
n' <- getFullName n
whenJust (isNonEmptyFC loc) $ \neloc =>
put MD $ record { nameLocMap $= insert (neloc, n') } meta
export
setHoleLHS : {auto m : Ref MD Metadata} ->
ClosedTerm -> Core ()
setHoleLHS tm
= do meta <- get MD
put MD (record { currentLHS = Just tm } meta)
export
clearHoleLHS : {auto m : Ref MD Metadata} ->
Core ()
clearHoleLHS
= do meta <- get MD
put MD (record { currentLHS = Nothing } meta)
export
withCurrentLHS : {auto c : Ref Ctxt Defs} ->
{auto m : Ref MD Metadata} ->
Name -> Core ()
withCurrentLHS n
= do meta <- get MD
n' <- getFullName n
maybe (pure ())
(\lhs => put MD (record { holeLHS $= ((n', lhs) ::) } meta))
(currentLHS meta)
findEntryWith : (NonEmptyFC -> a -> Bool) -> List (NonEmptyFC, a) -> Maybe (NonEmptyFC, a)
findEntryWith = find . uncurry
export
findLHSAt : {auto m : Ref MD Metadata} ->
(NonEmptyFC -> ClosedTerm -> Bool) ->
Core (Maybe (NonEmptyFC, Nat, ClosedTerm))
findLHSAt p
= do meta <- get MD
pure (findEntryWith (\ loc, tm => p loc (snd tm)) (lhsApps meta))
export
findTypeAt : {auto m : Ref MD Metadata} ->
(NonEmptyFC -> (Name, Nat, ClosedTerm) -> Bool) ->
Core (Maybe (Name, Nat, ClosedTerm))
findTypeAt p
= do meta <- get MD
pure (map snd (findEntryWith p (names meta)))
export
findTyDeclAt : {auto m : Ref MD Metadata} ->
(NonEmptyFC -> (Name, Nat, ClosedTerm) -> Bool) ->
Core (Maybe (NonEmptyFC, Name, Nat, ClosedTerm))
findTyDeclAt p
= do meta <- get MD
pure (findEntryWith p (tydecls meta))
export
findHoleLHS : {auto m : Ref MD Metadata} ->
Name -> Core (Maybe ClosedTerm)
findHoleLHS hn
= do meta <- get MD
pure (lookupBy (\x, y => dropNS x == dropNS y) hn (holeLHS meta))
export
addSemanticDefault : {auto m : Ref MD Metadata} ->
ASemanticDecoration -> Core ()
addSemanticDefault asem
= do meta <- get MD
put MD $ { semanticDefaults $= insert asem } meta
export
addSemanticAlias : {auto m : Ref MD Metadata} ->
NonEmptyFC -> NonEmptyFC -> Core ()
addSemanticAlias from to
= do meta <- get MD
put MD $ { semanticAliases $= insert (from, to) } meta
export
addSemanticDecorations : {auto m : Ref MD Metadata} ->
{auto c : Ref Ctxt Defs} ->
SemanticDecorations -> Core ()
addSemanticDecorations decors
= do meta <- get MD
defs <- get Ctxt
let posmap = meta.semanticHighlighting
let (newDecors,droppedDecors) =
span
( (meta.sourceIdent ==)
. Builtin.fst
. Builtin.fst )
decors
unless (isNil droppedDecors)
$ log "ide-mode.highlight" 19 $ "ignored adding decorations to "
++ show meta.sourceIdent ++ ": " ++ show droppedDecors
put MD $ record {semanticHighlighting
= (fromList newDecors) `union` posmap} meta
-- Normalise all the types of the names, since they might have had holes
-- when added and the holes won't necessarily get saved
normaliseTypes : {auto m : Ref MD Metadata} ->
{auto c : Ref Ctxt Defs} ->
Core ()
normaliseTypes
= do meta <- get MD
defs <- get Ctxt
ns' <- traverse (nfType defs) (names meta)
put MD (record { names = ns' } meta)
where
nfType : Defs -> (NonEmptyFC, (Name, Nat, ClosedTerm)) ->
Core (NonEmptyFC, (Name, Nat, ClosedTerm))
nfType defs (loc, (n, len, ty))
= pure (loc, (n, len, !(normaliseArgHoles defs [] ty)))
record TTMFile where
constructor MkTTMFile
version : Int
metadata : Metadata
TTC TTMFile where
toBuf b file
= do toBuf b "TTM"
toBuf b (version file)
toBuf b (metadata file)
fromBuf b
= do hdr <- fromBuf b
when (hdr /= "TTM") $ corrupt "TTM header"
ver <- fromBuf b
checkTTCVersion "" ver ttcVersion -- maybe change the interface to get the filename
md <- fromBuf b
pure (MkTTMFile ver md)
HasNames Metadata where
full gam md
= pure $ record { lhsApps = !(traverse fullLHS $ md.lhsApps)
, names = !(traverse fullTy $ md.names)
, tydecls = !(traverse fullTy $ md.tydecls)
, currentLHS = Nothing
, holeLHS = !(traverse fullHLHS $ md.holeLHS)
, nameLocMap = fromList !(traverse fullDecls (toList $ md.nameLocMap))
} md
where
fullLHS : (NonEmptyFC, (Nat, ClosedTerm)) -> Core (NonEmptyFC, (Nat, ClosedTerm))
fullLHS (fc, (i, tm)) = pure (fc, (i, !(full gam tm)))
fullTy : (NonEmptyFC, (Name, Nat, ClosedTerm)) -> Core (NonEmptyFC, (Name, Nat, ClosedTerm))
fullTy (fc, (n, i, tm)) = pure (fc, (!(full gam n), i, !(full gam tm)))
fullHLHS : (Name, ClosedTerm) -> Core (Name, ClosedTerm)
fullHLHS (n, tm) = pure (!(full gam n), !(full gam tm))
fullDecls : (NonEmptyFC, Name) -> Core (NonEmptyFC, Name)
fullDecls (fc, n) = pure (fc, !(full gam n))
resolved gam (MkMetadata lhs ns tys clhs hlhs dlocs fname semhl semal semdef)
= pure $ MkMetadata !(traverse resolvedLHS lhs)
!(traverse resolvedTy ns)
!(traverse resolvedTy tys)
Nothing
!(traverse resolvedHLHS hlhs)
(fromList !(traverse resolvedDecls (toList dlocs)))
fname
semhl
semal
semdef
where
resolvedLHS : (NonEmptyFC, (Nat, ClosedTerm)) -> Core (NonEmptyFC, (Nat, ClosedTerm))
resolvedLHS (fc, (i, tm)) = pure (fc, (i, !(resolved gam tm)))
resolvedTy : (NonEmptyFC, (Name, Nat, ClosedTerm)) -> Core (NonEmptyFC, (Name, Nat, ClosedTerm))
resolvedTy (fc, (n, i, tm)) = pure (fc, (!(resolved gam n), i, !(resolved gam tm)))
resolvedHLHS : (Name, ClosedTerm) -> Core (Name, ClosedTerm)
resolvedHLHS (n, tm) = pure (!(resolved gam n), !(resolved gam tm))
resolvedDecls : (NonEmptyFC, Name) -> Core (NonEmptyFC, Name)
resolvedDecls (fc, n) = pure (fc, !(resolved gam n))
export
writeToTTM : {auto c : Ref Ctxt Defs} ->
{auto m : Ref MD Metadata} ->
(fname : String) ->
Core ()
writeToTTM fname
= do normaliseTypes
buf <- initBinary
meta <- get MD
defs <- get Ctxt
toBuf buf (MkTTMFile ttcVersion !(full (gamma defs) meta))
Right ok <- coreLift $ writeToFile fname !(get Bin)
| Left err => throw (InternalError (fname ++ ": " ++ show err))
pure ()
export
readFromTTM : {auto m : Ref MD Metadata} ->
(fname : String) ->
Core ()
readFromTTM fname
= do Right buf <- coreLift $ readFromFile fname
| Left err => throw (InternalError (fname ++ ": " ++ show err))
bin <- newRef Bin buf
ttm <- fromBuf bin
put MD (metadata ttm)
||| Read Metadata from given file
export
readMetadata : (fname : String) -> Core Metadata
readMetadata fname
= do Right buf <- coreLift $ readFromFile fname
| Left err => throw (InternalError (fname ++ ": " ++ show err))
bin <- newRef Bin buf
MkTTMFile _ md <- fromBuf bin
pure md
||| Dump content of a .ttm file in human-readable format
export
dumpTTM : (filename : String) -> Core ()
dumpTTM fname
= do md <- readMetadata fname
coreLift $ putStrLn $ show md
|
For any two vectors $a$ and $b$ and any scalar $u$, $b + ua = a + ub$ if and only if $a = b$ or $u = 1$. |
variable {p : Prop}
variable {q : Prop}
section hrm
-- theorems involving only `→` can be proved w lambda
-- `theorem` command intrduces new theorem - basically a version of `def` command (kernel sees it the same)
theorem t1 : p → q → p := fun hp : p => fun hq : q => hp
#print t1
-- this is like definition of constant function, but using args of `Prop` rather than `Type`
-- intuitively, it assumes `p` and `q` are true, & uses first hypothesis (trivially) to establish conclusion `p` is true
-- `theorem` - basically a version of `def` command (kernel sees it the same)
-- but there's a few pragmatic diffs:
-- in normal circumstances - not necessary to unfold def of a theorem
-- lean tags proofs as irreducible - hint to not unfold
-- lean also able to process & check proofs in parallel (since assissing correctness of proof does not require knowing details of another)
/- I THINK THIS IS THE IMPORTANT PART -/
-- lambda abstractions `hp : p` and `hq : q` can be viewed as temporary assumptions in proof of `t2`
-- lean allows us to specify type of final term `hp` with `show` statement
-- adding this extra info can improve clarity of a proof and help detect errors.
-- `show` does nothing more than annotate the type
-- internally, all presentations of `t2` produce same term
theorem t2 : p → q → p :=
fun hp : p =>
fun hq : q =>
show p from hp
#print t2
-- can move lambda abs variables to left of the colon:
theorem t3 (hp : p) (hq : q) : p := hp
#print t3 -- p → q → p
-- then apply theorem t4 as func application
axiom hp : p
theorem t4 : q → p := t1 hp
-- here `axiom` declaration postulates existence of element of given type (& may compromise logical consistency)
-- ie can use to postulate empty type `False` has an element
axiom unsound : False
-- Everything follows from false
theorem ex : 1 = 0 :=
False.elim unsound
-- thus declaring an axiom `hp : p` is tantamount to declaring that `p` is true as witnessed by `hp`
-- applying theorem `t4 : p → q → p` to fact that `hp : p` that `p` is ture yields `t1 hp : q → p`
-- type of t1,2,3,4 is now `∀ {p q : Prop}, p → q → p`
-- can read this as, "for every pair of props `p q`, we hv `p → q → p`"
-- ie can move all parameters to right of colon
theorem t5 : ∀ {p q : Prop}, p → q → p :=
fun {p q : Prop} (hp : p) (hq : q) => hp
-- (if p and q has been delcared as variables, lean can generalize)
variable {p q : Prop}
theorem t6 : p → q → p := fun (hp : p) (hq : q) => hp
-- THEN by props-as-types correspondence, we can declare the assumption `hp` that `p` holds, as another variable
-- lean detects it uses `hp` and automatically adds `hp : p` as premise
variable {p q : Prop}
variable (hp : p)
theorem t7 : q → p := fun (hq : q) => hp
#print t7
end hrm
/- generalizing t -/
-- applies to all variables
section bruv
theorem t0 (p q : Prop) (hp : p) (hq : q) : p := hp
variable (p q r s : Prop)
#check t0 p q -- p → q → p
#check t0 r s -- r → s → r
#check t0 (r → s) (s → r) -- (r → s) → (s → r) → r → s
variable (h : r → s)
-- variable `h` of type `r → s` can be views as hypothesis or premise that `r → s` holds
#check t0 (r → s) (s → r) h -- (s → r) → r → s
/- this is composition func from chapter 2 but using props instead of types-/
variable (p q r s : Prop)
theorem t01 (h₁ : q → r) (h₂ : p → q) : p → r :=
fun h₃ : p =>
show r from h₁ (h₂ h₃)
-- t01 says fun of h₁ and h₂ defined above composes idk
end bruv |
library(tidyr)
library(dplyr)
library(plyr)
library(reshape)
library(ggplot2)
setwd(".")
############################
# Read the dataCollapsed
############################
dataCollapsed = read.csv("./dataCollapsed.csv", stringsAsFactors = TRUE)
# dataCollapsed = na.omit(dataCollapsed)
data = read.csv("./data.csv", stringsAsFactors = TRUE)
############################
# Reshape the dataCollapsed
############################
##### RQ1
venues <- data %>%
gather("venue", "value", c("conference", "journal", "workshop", "bookChapter"), na.rm = TRUE, convert = TRUE) %>%
dplyr::filter(grepl("x",value)) %>% dplyr::rename(ID = X) %>% select(ID, venue)
venues$venue <- as.factor(venues$venue)
researchTypes <- data %>%
gather("researchType", "value", c("validation", "evaluation", "solutionProposal", "experience"), na.rm = FALSE, convert = TRUE) %>%
dplyr::filter(grepl("x",value)) %>% dplyr::rename(ID = X) %>% select(ID, researchType)
researchTypes$researchType <- as.factor(researchTypes$researchType)
contributionTypes <- data %>%
gather("contributionType", "value", c("model", "method", "metric", "tool", "openItems"), na.rm = FALSE, convert = TRUE) %>%
dplyr::filter(grepl("x",value)) %>% dplyr::rename(ID = X) %>% select(ID, contributionType)
contributionTypes$contributionType <- as.factor(contributionTypes$contributionType)
##### RQ2
robotTypesApproach <- dataCollapsed %>%
gather("robotTypeApproach", "value", c("terrestrialApproach", "aerialApproach", "spatialApproach", "genericApproach"), na.rm = FALSE, convert = TRUE) %>%
dplyr::filter(grepl("x",value)) %>% select(ID, robotTypeApproach)
robotTypesApproach$robotTypeApproach <- as.factor(robotTypesApproach$robotTypeApproach)
multiRobotBoolApproach <- ifelse(dataCollapsed$multiRobotApproach=="x",TRUE,FALSE)
multiRobotApproach <- cbind(dataCollapsed, multiRobotBoolApproach) %>% select(ID, multiRobotBoolApproach)
colnames(multiRobotApproach)[colnames(multiRobotApproach)=="multiRobotBoolApproach"] <- "multiRobotApproach"
years <- dataCollapsed %>% select(ID, year)
##### RQ3
languages <- dataCollapsed %>%
gather("language", "value", c("dsl", "uml"), na.rm = FALSE, convert = TRUE) %>%
dplyr::filter(grepl("x",value)) %>% select(ID, language)
languages$language <- as.factor(languages$language)
automationTypes <- dataCollapsed %>%
gather("automation", "value", c("transformation", "codeGeneration", "modelsRuntime", "analysis"), na.rm = FALSE, convert = TRUE) %>%
dplyr::filter(grepl("x",value)) %>% select(ID, automation)
automationTypes$automation <- as.factor(automationTypes$automation)
aspects <- dataCollapsed %>%
gather("aspect", "value", c("behaviour", "navigation", "structure"), na.rm = FALSE, convert = TRUE) %>%
dplyr::filter(grepl("x",value)) %>% select(ID, aspect)
aspects$aspect <- as.factor(aspects$aspect)
##### RQ4.1
validationTypes <- dataCollapsed %>%
gather("validationType", "value", c("experiment", "caseStudy", "example", "realProject", "simulation"), na.rm = FALSE, convert = TRUE) %>%
dplyr::filter(grepl("x",value)) %>% select(ID, validationType)
validationTypes$validationType <- as.factor(validationTypes$validationType)
##### RQ4.2
robotTypesEval <- dataCollapsed %>%
gather("robotTypeEval", "value", c("terrestrialEval", "aerialEval", "aquaticEval", "spatialEval", "genericEval"), na.rm = FALSE, convert = TRUE) %>%
dplyr::filter(grepl("x",value)) %>% select(ID, robotTypeEval)
robotTypesEval$robotTypeEval <- as.factor(robotTypesEval$robotTypeEval)
multiRobotBoolEval <- ifelse(dataCollapsed$multiRobotEval=="x",TRUE,FALSE)
multiRobotEval <- cbind(dataCollapsed, multiRobotBoolEval) %>% select(ID, multiRobotBoolEval)
colnames(multiRobotEval)[colnames(multiRobotEval)=="multiRobotBoolEval"] <- "multiRobotEval"
############################
# It's plotting time!
############################
plot <- function(var, fileName, labels, width, height, leftMargin) {
filePath <- paste("./output/", fileName, ".pdf", sep="")
pdf(filePath, width=width, height=height)
par(mar=c(3, leftMargin, 1, 1))
par(mfrow=c(1, 1))
par(las=1)
var <- as.factor(var)
levels(var) <- labels
dataToPlot <- table(var)
dataToPlot <- dataToPlot[order(dataToPlot, decreasing=FALSE)]
plot <- barplot(dataToPlot, main="", cex.main=1, xlim=c(0, nrow(data) + 5), cex=1.5, cex.names=1.5, las=1, horiz=TRUE)
text(x=as.numeric(dataToPlot) + 3, y = plot, label = dataToPlot, cex = 1.5, col = "black")
dev.off()
}
# RQ1
plot(venues$venue, "RQ1_venues", c("Book chapter", "Conference", "Journal", "Workshop"), 10, 5, 13)
plot(researchTypes$researchType, "RQ1_researchTypes", c( "Evaluation research", "Experience paper", "Solution proposal", "Validation research"), 10, 5, 13)
plot(contributionTypes$contributionType, "RQ1_contributionTypes", c("Method", "Metric", "Model", "Open items", "Tool"), 10, 5, 13)
# RQ2
plot(robotTypesApproach$robotTypeApproach, "RQ2_robotTypesApproach", c("Aerial robots", "Generic robots", "Space robots", "Terrestrial robots", "Aquatic robots"), 10, 5, 13)
plot(multiRobotApproach$multiRobotApproach, "RQ2_multiRobotApproach", c("Single robot", "Multiple robots"), 10, 5, 13)
# RQ3
umlDialects <- dataCollapsed$umlDialect[which(dataCollapsed$umlDialect != "")]
umlDialects <- droplevels(umlDialects)
plot(languages$language, "RQ3_1_languages", c("DSL", "UML"), 10, 5, 13)
plot(umlDialects, "RQ3_1_umlDialects", levels(umlDialects), 10, 5, 13)
plot(automationTypes$automation, "RQ3_1_automationTypes", c("Analysis", "Code generation", "Models at runtime", "Transformation"), 10, 5, 13)
plot(aspects$aspect, "RQ3_2_aspects", c("Behaviour", "Navigation", "Structure"), 10, 5, 13)
# RQ4.1
plot(validationTypes$validationType, "RQ4_1_validationTypes", c( "Case study", "Example", "Experiment", "Real project", "Simulation"), 10, 5, 13)
# RQ4.2
plot(robotTypesEval$robotTypeEval, "RQ4_2_robotTypesEval", c("Aerial robots", "Aquatic robots", "Generic robots", "Space robots", "Terrestrial robots"), 10, 5, 13)
plot(multiRobotEval$multiRobotEval, "RQ4_2_multiRobotEval", c("Single robot", "Multiple robots"), 10, 5, 13)
# RQ5
lwb <- dataCollapsed$languageWorkbench[which(dataCollapsed$languageWorkbench != "")]
lwb <- droplevels(lwb)
plot(lwb, "RQ5_lwbs", levels(lwb), 10, 5, 13)
# Horizontal analysis
pdf("./output/horizontals.pdf", width=6, height=4)
par(mar=c(5, 5, 5, 5))
par(mfrow=c(1, 1))
par(las=1)
plotBubbles <- function(var1, var2, var1Label, var2Label, var1Labels, var2Labels, plotTitle) {
currentData <- merge(var1, var2, by="ID", all = T)
currentData <- na.omit(currentData)
var1Name <- names(currentData)[2]
var2Name <- names(currentData)[3]
counts <- count(currentData, c(var1Name, var2Name))
# print(counts)
if(var1Label == "" && var2Label == "") {
var1Label = var1Name
var2Label = var2Name
}
if(plotTitle != "") {
plotTitle = paste(var1Name, "___", var2Name)
}
plot <- ggplot(counts, aes(counts[,2], counts[,1], color=freq, alpha = 0.7)) + geom_point(aes(size = freq)) +
theme_bw() +
scale_color_gradient2(low="white", high="gray13", name="freq") +
scale_size_continuous(range=c(0, 30)) + geom_text(aes(label = freq), color="black") +
theme(legend.position = "none") +
# labs(x=var2Name, y=var1Name) +
# ggtitle(paste(var1Name, "___", var2Name))
labs(x=var2Label, y=var1Label) +
ggtitle(plotTitle)
if(var1Labels != "" && var2Labels != "") {
plot <- plot + scale_y_discrete(labels= var1Labels)
plot <- plot + scale_x_discrete(labels= var2Labels)
}
print(plot)
}
plotBubbles(contributionTypes, venues, "", "", "", "", "")
plotBubbles(researchTypes, venues, "", "", "", "", "")
plotBubbles(robotTypesEval, venues, "", "", "", "", "")
plotBubbles(multiRobotEval, venues, "", "", "", "", "")
plotBubbles(multiRobotApproach, venues, "", "", "", "", "")
plotBubbles(languages, venues, "", "", "", "", "")
plotBubbles(automationTypes, venues, "", "", "", "", "")
plotBubbles(aspects, venues, "", "", "", "", "")
plotBubbles(researchTypes, contributionTypes, "Research type (RQ1)", "Contribution type (RQ1)", c( "Evaluation research", "Experience paper", "Solution proposal", "Validation research"), c("Method", "Metric", "Model", "Open items", "Tool"), "")
plotBubbles(robotTypesEval, contributionTypes, "", "", "", "", "")
plotBubbles(multiRobotEval, contributionTypes, "", "", "", "", "")
plotBubbles(languages, contributionTypes, "Type of modelling language (RQ3)", "Contribution type (RQ1)", c("DSL", "UML"), c("Method", "Metric", "Model", "Open items", "Tool"), "")
plotBubbles(automationTypes, contributionTypes, "", "", "", "", "")
plotBubbles(aspects, contributionTypes, "", "", "", "", "")
plotBubbles(robotTypesEval, researchTypes, "", "", "", "", "")
plotBubbles(multiRobotEval, researchTypes, "", "", "", "", "")
plotBubbles(languages, researchTypes, "", "", "", "", "")
plotBubbles(automationTypes, researchTypes, "", "", "", "", "")
plotBubbles(aspects, researchTypes, "", "", "", "", "")
plotBubbles(multiRobotEval, robotTypesEval, "Cardinality of robots (RQ4)", "Robot type (RQ4)", c("Single robot", "Multiple robots"), c("Aerial robots", "Aquatic robots", "Generic robots", "Space robots", "Terrestrial robots"), "")
plotBubbles(multiRobotApproach, robotTypesApproach, "Cardinality of robots (RQ4)", "Robot type (RQ4)", c("Single robot", "Multiple robots"), c("Aerial robots", "Generic robots", "Space robots", "Terrestrial robots"), "")
plotBubbles(languages, robotTypesEval, "", "", "", "", "")
plotBubbles(automationTypes, robotTypesEval, "", "", "", "", "")
plotBubbles(aspects, robotTypesEval, "", "", "", "", "")
plotBubbles(multiRobotApproach, robotTypesApproach, "", "", "", "", "")
plotBubbles(languages, robotTypesApproach, "", "", "", "", "")
plotBubbles(automationTypes, robotTypesApproach, "", "", "", "", "")
plotBubbles(aspects, robotTypesApproach, "", "", "", "", "")
plotBubbles(languages, multiRobotApproach, "", "", "", "", "")
plotBubbles(automationTypes, multiRobotApproach, "", "", "", "", "")
plotBubbles(aspects, multiRobotApproach, "", "", "", "", "")
plotBubbles(years, multiRobotApproach, "", "", "", "", "")
plotBubbles(automationTypes, languages, "", "", "", "", "")
plotBubbles(aspects, languages, "Engineered aspect (RQ3)", "Modelling language (RQ3)", c("Behaviour", "Navigation", "Structure"), c("DSL", "UML"), "")
plotBubbles(aspects, automationTypes, "Engineered aspect (RQ3)", "Automation (RQ3)", c("Behaviour", "Navigation", "Structure"), c("Analysis", "Code generation", "Models at runtime", "Transformation"), "")
dev.off()
|
module Collections.BSTree.Set
import Collections.BSTree.Map as M
import Collections.BSTree.Set.Core
import Collections.BSTree.Set.Quantifiers
import Collections.Util.Bnd
import Data.Nat
import Data.Nat.Order.Strict
import Decidable.Order.Strict
import public Collections.BSTree.Set.Core
------------------
-- CONSTRUCTION --
------------------
||| The empty tree.
public export
empty : {0 sto : kTy -> kTy -> Type} ->
{auto pre : StrictPreorder kTy sto} ->
{auto tot : StrictOrdered kTy sto} ->
BSTree sto {pre} {tot}
empty = M.empty
||| A tree with a single element.
public export
singleton : {0 sto : kTy -> kTy -> Type} ->
{auto pre : StrictPreorder kTy sto} ->
{auto tot : StrictOrdered kTy sto} ->
(k : kTy) ->
BSTree sto {pre} {tot}
singleton k = M.singleton k ()
---------------
-- INSERTION --
---------------
||| Insert an element in a tree. If the tree already contains an element equal to the given value,
||| it is replaced with the new value.
export
insert : {0 sto : kTy -> kTy -> Type} ->
{pre : StrictPreorder kTy sto} ->
{tot : StrictOrdered kTy sto} ->
(k : kTy) ->
BSTree sto {pre} {tot} ->
BSTree sto {pre} {tot}
insert k t = M.insert k () t
--------------
-- QUERYING --
--------------
||| Is the tree empty?
export
null : BSTree sto {pre} {tot} -> Bool
null = M.null
||| The number of elements in the tree.
export
size : BSTree sto {pre} {tot} -> Nat
size = M.size
||| Is the element in the tree?
export
member : {0 sto : kTy -> kTy -> Type} ->
{pre : StrictPreorder kTy sto} ->
{tot : StrictOrdered kTy sto} ->
(k : kTy) ->
BSTree sto {pre} {tot} ->
Bool
member = M.member
-----------------------
-- DELETION / UPDATE --
-----------------------
||| Delete an element from a tree. When the element is not in the tree, the original tree is
||| returned.
export
delete : {0 sto : kTy -> kTy -> Type} ->
{pre : StrictPreorder kTy sto} ->
{tot : StrictOrdered kTy sto} ->
(k : kTy) ->
BSTree sto {pre} {tot} ->
BSTree sto {pre} {tot}
delete = M.delete
|
Inductive even : nat -> Prop :=
|EvenO : even 0
|EvenSS : forall n : nat, even n -> even(S(S n)).
Theorem even_0 : even 0.
Proof.
apply EvenO.
Qed.
Theorem even_4 : even 4.
Proof.
apply EvenSS.
apply EvenSS.
apply EvenO.
Qed.
Theorem even_4_1 : even 4.
Proof.
constructor. constructor. constructor.
Qed.
(*
Hint Resolve EvenO.
Hint Resolve EvenSS.
*)
Hint Constructors even.
Theorem even_4_2 : even 4.
Proof.
auto.
Qed.
|
[STATEMENT]
lemma iTrigger_iSince_conv: "(P t'. t' \<T> t I. Q t) = ((\<box> t I. Q t) \<or> (Q t'. t' \<S> t I. (Q t \<and> P t)))"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. (P t'. t' \<T> t I. Q t) = ((\<box> t I. Q t) \<or> (Q t'. t' \<S> t I. Q t \<and> P t))
[PROOF STEP]
by (fastforce simp: iTrigger_iWeakSince_conv iWeakSince_iSince_conv) |
State Before: α : Type u_1
β : Type ?u.728649
γ : Type ?u.728652
δ : Type ?u.728655
ι : Type ?u.728658
R : Type ?u.728661
R' : Type ?u.728664
m0 : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
μ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α
s s' t : Set α
μ : Measure α
inst✝ : SigmaFinite μ
x : α
n : ℕ
⊢ spanningSetsIndex μ x = n ↔ x ∈ disjointed (spanningSets μ) n State After: no goals Tactic: convert Set.ext_iff.1 (preimage_spanningSetsIndex_singleton μ n) x |
(* Author: Tobias Nipkow, Max Haslbeck *)
subsection "The Variables in an Expression"
theory Vars imports Com
begin
text\<open>We need to collect the variables in both arithmetic and boolean
expressions. For a change we do not introduce two functions, e.g.\ \<open>avars\<close> and \<open>bvars\<close>, but we overload the name \<open>vars\<close>
via a \emph{type class}, a device that originated with Haskell:\<close>
class vars =
fixes vars :: "'a \<Rightarrow> vname set"
text\<open>This defines a type class ``vars'' with a single
function of (coincidentally) the same name. Then we define two separated
instances of the class, one for @{typ aexp} and one for @{typ bexp}:\<close>
instantiation aexp :: vars
begin
fun vars_aexp :: "aexp \<Rightarrow> vname set" where
"vars (N n) = {}" |
"vars (V x) = {x}" |
"vars (Plus a\<^sub>1 a\<^sub>2) = vars a\<^sub>1 \<union> vars a\<^sub>2" |
"vars (Times a\<^sub>1 a\<^sub>2) = vars a\<^sub>1 \<union> vars a\<^sub>2" |
"vars (Div a\<^sub>1 a\<^sub>2) = vars a\<^sub>1 \<union> vars a\<^sub>2"
instance ..
end
value "vars (Plus (V ''x'') (V ''y''))"
instantiation bexp :: vars
begin
fun vars_bexp :: "bexp \<Rightarrow> vname set" where
"vars (Bc v) = {}" |
"vars (Not b) = vars b" |
"vars (And b\<^sub>1 b\<^sub>2) = vars b\<^sub>1 \<union> vars b\<^sub>2" |
"vars (Less a\<^sub>1 a\<^sub>2) = vars a\<^sub>1 \<union> vars a\<^sub>2"
instance ..
end
value "vars (Less (Plus (V ''z'') (V ''y'')) (V ''x''))"
abbreviation
eq_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool"
("(_ =/ _/ on _)" [50,0,50] 50) where
"f = g on X == \<forall> x \<in> X. f x = g x"
lemma aval_eq_if_eq_on_vars[simp]:
"s\<^sub>1 = s\<^sub>2 on vars a \<Longrightarrow> aval a s\<^sub>1 = aval a s\<^sub>2"
apply(induction a)
apply simp_all
done
lemma bval_eq_if_eq_on_vars:
"s\<^sub>1 = s\<^sub>2 on vars b \<Longrightarrow> bval b s\<^sub>1 = bval b s\<^sub>2"
proof(induction b)
case (Less a1 a2)
hence "aval a1 s\<^sub>1 = aval a1 s\<^sub>2" and "aval a2 s\<^sub>1 = aval a2 s\<^sub>2" by simp_all
thus ?case by simp
qed simp_all
fun lvars :: "com \<Rightarrow> vname set" where
"lvars SKIP = {}" |
"lvars (x::=e) = {x}" |
"lvars (c1;;c2) = lvars c1 \<union> lvars c2" |
"lvars (IF b THEN c1 ELSE c2) = lvars c1 \<union> lvars c2" |
"lvars (WHILE b DO c) = lvars c"
fun rvars :: "com \<Rightarrow> vname set" where
"rvars SKIP = {}" |
"rvars (x::=e) = vars e" |
"rvars (c1;;c2) = rvars c1 \<union> rvars c2" |
"rvars (IF b THEN c1 ELSE c2) = vars b \<union> rvars c1 \<union> rvars c2" |
"rvars (WHILE b DO c) = vars b \<union> rvars c"
instantiation com :: vars
begin
definition "vars_com c = lvars c \<union> rvars c"
instance ..
end
lemma vars_com_simps[simp]:
"vars SKIP = {}"
"vars (x::=e) = {x} \<union> vars e"
"vars (c1;;c2) = vars c1 \<union> vars c2"
"vars (IF b THEN c1 ELSE c2) = vars b \<union> vars c1 \<union> vars c2"
"vars (WHILE b DO c) = vars b \<union> vars c"
by(auto simp: vars_com_def)
end
|
// Copyright 2017 Rodeo FX. All rights reserved.
#include "rdoCustomResource.h"
#include <boost/algorithm/string.hpp>
#include <boost/filesystem.hpp>
#include <pxr/base/plug/plugin.h>
#include <pxr/base/tf/fileUtils.h>
#include <pxr/base/tf/token.h>
#include <pxr/usd/sdf/layer.h>
#include <string>
#include <unordered_map>
#include <fstream>
#include <sstream>
PXR_NAMESPACE_USING_DIRECTIVE
std::unordered_map<std::string, const char*> resource;
// Split the given path and return the vector of directories.
std::vector<std::string> splitPath(const boost::filesystem::path &src)
{
std::vector<std::string> elements;
for (const auto &p : src)
{
elements.push_back(p.c_str());
}
return elements;
}
void setResource(const char* filename, const char* contents)
{
std::vector<std::string> pathVect = splitPath(filename);
while (!pathVect.empty())
{
std::string joined = boost::algorithm::join(pathVect, "/");
resource[joined] = contents;
pathVect.erase(pathVect.begin());
}
}
const char* getResource(const char* filename)
{
std::vector<std::string> pathVect = splitPath(filename);
while (!pathVect.empty())
{
std::string joined = boost::algorithm::join(pathVect, "/");
auto it = resource.find(joined);
if (it != resource.end())
{
return it->second;
}
pathVect.erase(pathVect.begin());
}
return nullptr;
}
// USD overrides
extern "C"
TfToken _GetShaderPath(char const* shader)
{
return TfToken(shader);
}
extern "C"
std::istream* _GetFileStream(const char* filename)
{
// Try to search in the saved resources first.
const char* data = getResource(filename);
if (data)
{
return new std::istringstream(data);
}
return new std::ifstream(filename);
}
extern "C"
SdfLayerRefPtr _GetGeneratedSchema(const PlugPluginPtr &plugin)
{
// Look for generatedSchema in Resources.
const std::string filename = TfStringCatPaths(
plugin->GetResourcePath(),
"generatedSchema.usda");
const char* data = getResource(filename.c_str());
if (data)
{
SdfLayerRefPtr layer = SdfLayer::CreateAnonymous(filename);
if (layer->ImportFromString(data))
{
return layer;
}
}
return TfIsFile(filename) ? SdfLayer::OpenAsAnonymous(filename) : TfNullPtr;
}
|
State Before: α : Type u_3
β : Type u_2
ι : Type ?u.1474570
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝³ : DecidablePred fun x => x ∈ s
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
a : α
g : β → E
t : Set β
⊢ (∫ (b : β) in t, g b ∂↑(piecewise hs κ η) a) = if a ∈ s then ∫ (b : β) in t, g b ∂↑κ a else ∫ (b : β) in t, g b ∂↑η a State After: α : Type u_3
β : Type u_2
ι : Type ?u.1474570
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝³ : DecidablePred fun x => x ∈ s
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
a : α
g : β → E
t : Set β
⊢ (∫ (b : β) in t, g b ∂if a ∈ s then ↑κ a else ↑η a) =
if a ∈ s then ∫ (b : β) in t, g b ∂↑κ a else ∫ (b : β) in t, g b ∂↑η a Tactic: simp_rw [piecewise_apply] State Before: α : Type u_3
β : Type u_2
ι : Type ?u.1474570
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝³ : DecidablePred fun x => x ∈ s
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
a : α
g : β → E
t : Set β
⊢ (∫ (b : β) in t, g b ∂if a ∈ s then ↑κ a else ↑η a) =
if a ∈ s then ∫ (b : β) in t, g b ∂↑κ a else ∫ (b : β) in t, g b ∂↑η a State After: no goals Tactic: split_ifs <;> rfl |
(** * Hoare2: Hoare Logic, Part II *)
Require Import Coq.Bool.Bool.
Require Import Coq.Arith.Arith.
Require Import Coq.Arith.EqNat.
Require Import Coq.omega.Omega.
Require Import SfLib.
Require Import Maps.
Require Import Imp.
Require Import Hoare.
(* ################################################################# *)
(** * Decorated Programs *)
(** The beauty of Hoare Logic is that it is _compositional_: the
structure of proofs exactly follows the structure of programs.
This suggests that we can record the essential ideas of a proof
informally (leaving out some low-level calculational details) by
decorating a program with appropriate assertions on each of its
commands. Such a _decorated program_ carries with it
an (informal) proof of its own correctness.
For example, here is a complete decorated program: *)
(**
{{ True }} ->>
{{ m = m }}
X ::= m;;
{{ X = m }} ->>
{{ X = m /\ p = p }}
Z ::= p;
{{ X = m /\ Z = p }} ->>
{{ Z - X = p - m }}
WHILE X <> 0 DO
{{ Z - X = p - m /\ X <> 0 }} ->>
{{ (Z - 1) - (X - 1) = p - m }}
Z ::= Z - 1;;
{{ Z - (X - 1) = p - m }}
X ::= X - 1
{{ Z - X = p - m }}
END;
{{ Z - X = p - m /\ ~ (X <> 0) }} ->>
{{ Z = p - m }}
*)
(** Concretely, a decorated program consists of the program text
interleaved with assertions (either a single assertion or possibly
two assertions separated by an implication). To check that a
decorated program represents a valid proof, we check that each
individual command is _locally consistent_ with its nearby
assertions in the following sense: *)
(** - [SKIP] is locally consistent if its precondition and
postcondition are the same:
{{ P }}
SKIP
{{ P }}
*)
(** - The sequential composition of [c1] and [c2] is locally
consistent (with respect to assertions [P] and [R]) if [c1] is
locally consistent (with respect to [P] and [Q]) and [c2] is
locally consistent (with respect to [Q] and [R]):
{{ P }}
c1;;
{{ Q }}
c2
{{ R }}
*)
(** - An assignment is locally consistent if its precondition is
the appropriate substitution of its postcondition:
{{ P [X |-> a] }}
X ::= a
{{ P }}
*)
(** - A conditional is locally consistent (with respect to assertions
[P] and [Q]) if the assertions at the top of its "then" and
"else" branches are exactly [P /\ b] and [P /\ ~b] and if its "then"
branch is locally consistent (with respect to [P /\ b] and [Q])
and its "else" branch is locally consistent (with respect to
[P /\ ~b] and [Q]):
{{ P }}
IFB b THEN
{{ P /\ b }}
c1
{{ Q }}
ELSE
{{ P /\ ~b }}
c2
{{ Q }}
FI
{{ Q }}
*)
(** - A while loop with precondition [P] is locally consistent if its
postcondition is [P /\ ~b], if the pre- and postconditions of
its body are exactly [P /\ b] and [P], and if its body is locally
consistent:
{{ P }}
WHILE b DO
{{ P /\ b }}
c1
{{ P }}
END
{{ P /\ ~b }}
*)
(** - A pair of assertions separated by [->>] is locally consistent if
the first implies the second (in all states):
{{ P }} ->>
{{ P' }}
This corresponds to the application of [hoare_consequence] and
is the only place in a decorated program where checking if
decorations are correct is not fully mechanical and syntactic,
but rather may involve logical and/or arithmetic reasoning. *)
(** The above essentially describes a procedure for _verifying_
the correctness of a given proof involves checking that every
single command is locally consistent with the accompanying
assertions. If we are instead interested in _finding_ a proof for
a given specification, we need to discover the right assertions.
This can be done in an almost mechanical way, with the exception
of finding loop invariants, which is the subject of the next
section. In the remainder of this section we explain in detail how
to construct decorations for several simple programs that don't
involve non-trivial loop invariants. *)
(* ================================================================= *)
(** ** Example: Swapping Using Addition and Subtraction *)
(** Here is a program that swaps the values of two variables using
addition and subtraction (instead of by assigning to a temporary
variable).
X ::= X + Y;;
Y ::= X - Y;;
X ::= X - Y
We can prove using decorations that this program is correct --
i.e., it always swaps the values of variables [X] and [Y]. *)
(**
(1) {{ X = m /\ Y = n }} ->>
(2) {{ (X + Y) - ((X + Y) - Y) = n /\ (X + Y) - Y = m }}
X ::= X + Y;;
(3) {{ X - (X - Y) = n /\ X - Y = m }}
Y ::= X - Y;;
(4) {{ X - Y = n /\ Y = m }}
X ::= X - Y
(5) {{ X = n /\ Y = m }}
*)
(** These decorations can be constructed as follows:
- We begin with the undecorated program (the unnumbered lines).
- We then add the specification -- i.e., the outer
precondition (1) and postcondition (5). In the precondition we
use auxiliary variables (parameters) [m] and [n] to remember
the initial values of variables [X] and respectively [Y], so
that we can refer to them in the postcondition (5).
- We work backwards mechanically, starting from (5) and
proceeding until we get to (2). At each step, we obtain the
precondition of the assignment from its postcondition by
substituting the assigned variable with the right-hand-side of
the assignment. For instance, we obtain (4) by substituting
[X] with [X - Y] in (5), and (3) by substituting [Y] with [X -
Y] in (4).
- Finally, we verify that (1) logically implies (2) -- i.e.,
that the step from (1) to (2) is a valid use of the law of
consequence. For this we substitute [X] by [m] and [Y] by [n]
and calculate as follows:
(m + n) - ((m + n) - n) = n /\ (m + n) - n = m
(m + n) - m = n /\ m = m
n = n /\ m = m
Note that, since we are working with natural numbers, not
fixed-width machine integers, we don't need to worry about the
possibility of arithmetic overflow anywhere in this argument.
This makes life quite a bit simpler! *)
(* ================================================================= *)
(** ** Example: Simple Conditionals *)
(** Here is a simple decorated program using conditionals:
(1) {{True}}
IFB X <= Y THEN
(2) {{True /\ X <= Y}} ->>
(3) {{(Y - X) + X = Y \/ (Y - X) + Y = X}}
Z ::= Y - X
(4) {{Z + X = Y \/ Z + Y = X}}
ELSE
(5) {{True /\ ~(X <= Y) }} ->>
(6) {{(X - Y) + X = Y \/ (X - Y) + Y = X}}
Z ::= X - Y
(7) {{Z + X = Y \/ Z + Y = X}}
FI
(8) {{Z + X = Y \/ Z + Y = X}}
These decorations were constructed as follows:
- We start with the outer precondition (1) and postcondition (8).
- We follow the format dictated by the [hoare_if] rule and copy the
postcondition (8) to (4) and (7). We conjoin the precondition (1)
with the guard of the conditional to obtain (2). We conjoin (1)
with the negated guard of the conditional to obtain (5).
- In order to use the assignment rule and obtain (3), we substitute
[Z] by [Y - X] in (4). To obtain (6) we substitute [Z] by [X - Y]
in (7).
- Finally, we verify that (2) implies (3) and (5) implies (6). Both
of these implications crucially depend on the ordering of [X] and
[Y] obtained from the guard. For instance, knowing that [X <= Y]
ensures that subtracting [X] from [Y] and then adding back [X]
produces [Y], as required by the first disjunct of (3). Similarly,
knowing that [~ (X <= Y)] ensures that subtracting [Y] from [X] and
then adding back [Y] produces [X], as needed by the second
disjunct of (6). Note that [n - m + m = n] does _not_ hold for
arbitrary natural numbers [n] and [m] (for example, [3 - 5 + 5 =
5]). *)
(** **** Exercise: 2 stars (if_minus_plus_reloaded) *)
(** Fill in valid decorations for the following program:
{{ True }}
IFB X <= Y THEN
{{ }} ->>
{{ }}
Z ::= Y - X
{{ }}
ELSE
{{ }} ->>
{{ }}
Y ::= X + Z
{{ }}
FI
{{ Y = X + Z }}
*)
(** [] *)
(* ================================================================= *)
(** ** Example: Reduce to Zero *)
(** Here is a [WHILE] loop that is so simple it needs no
invariant (i.e., the invariant [True] will do the job).
(1) {{ True }}
WHILE X <> 0 DO
(2) {{ True /\ X <> 0 }} ->>
(3) {{ True }}
X ::= X - 1
(4) {{ True }}
END
(5) {{ True /\ X = 0 }} ->>
(6) {{ X = 0 }}
The decorations can be constructed as follows:
- Start with the outer precondition (1) and postcondition (6).
- Following the format dictated by the [hoare_while] rule, we copy
(1) to (4). We conjoin (1) with the guard to obtain (2) and with
the negation of the guard to obtain (5). Note that, because the
outer postcondition (6) does not syntactically match (5), we need a
trivial use of the consequence rule from (5) to (6).
- Assertion (3) is the same as (4), because [X] does not appear in
[4], so the substitution in the assignment rule is trivial.
- Finally, the implication between (2) and (3) is also trivial. *)
(** From this informal proof, it is easy to read off a formal proof
using the Coq versions of the Hoare rules. Note that we do _not_
unfold the definition of [hoare_triple] anywhere in this proof --
the idea is to use the Hoare rules as a "self-contained" logic for
reasoning about programs. *)
Definition reduce_to_zero' : com :=
WHILE BNot (BEq (AId X) (ANum 0)) DO
X ::= AMinus (AId X) (ANum 1)
END.
Theorem reduce_to_zero_correct' :
{{fun st => True}}
reduce_to_zero'
{{fun st => st X = 0}}.
Proof.
unfold reduce_to_zero'.
(* First we need to transform the postcondition so
that hoare_while will apply. *)
eapply hoare_consequence_post.
apply hoare_while.
- (* Loop body preserves invariant *)
(* Need to massage precondition before [hoare_asgn] applies *)
eapply hoare_consequence_pre. apply hoare_asgn.
(* Proving trivial implication (2) ->> (3) *)
intros st [HT Hbp]. unfold assn_sub. apply I.
- (* Invariant and negated guard imply postcondition *)
intros st [Inv GuardFalse].
unfold bassn in GuardFalse. simpl in GuardFalse.
(* SearchAbout helps to find the right lemmas *)
SearchAbout [not true].
rewrite not_true_iff_false in GuardFalse.
SearchAbout [negb false].
rewrite negb_false_iff in GuardFalse.
SearchAbout [beq_nat true].
apply beq_nat_true in GuardFalse.
apply GuardFalse. Qed.
(* ================================================================= *)
(** ** Example: Division *)
(** The following Imp program calculates the integer quotient and
remainder of two numbers [m] and [n] that are arbitrary constants
in the program.
X ::= m;;
Y ::= 0;;
WHILE n <= X DO
X ::= X - n;;
Y ::= Y + 1
END;
In we replace [m] and [n] by concrete numbers and execute the program,
it will terminate with the variable [X] set to the remainder when [m]
is divided by [n] and [Y] set to the quotient. *)
(** In order to give a specification to this program we need to
remember that dividing [m] by [n] produces a reminder [X] and a
quotient [Y] such that [n * Y + X = m /\ X < n].
It turns out that we get lucky with this program and don't have to
think very hard about the loop invariant: the invariant is just the
first conjunct [n * Y + X = m], and we can use this to decorate
the program.
(1) {{ True }} ->>
(2) {{ n * 0 + m = m }}
X ::= m;;
(3) {{ n * 0 + X = m }}
Y ::= 0;;
(4) {{ n * Y + X = m }}
WHILE n <= X DO
(5) {{ n * Y + X = m /\ n <= X }} ->>
(6) {{ n * (Y + 1) + (X - n) = m }}
X ::= X - n;;
(7) {{ n * (Y + 1) + X = m }}
Y ::= Y + 1
(8) {{ n * Y + X = m }}
END
(9) {{ n * Y + X = m /\ X < n }}
Assertions (4), (5), (8), and (9) are derived mechanically from
the invariant and the loop's guard. Assertions (8), (7), and (6)
are derived using the assignment rule going backwards from (8) to
(6). Assertions (4), (3), and (2) are again backwards applications
of the assignment rule.
Now that we've decorated the program it only remains to check that
the two uses of the consequence rule are correct -- i.e., that (1)
implies (2) and that (5) implies (6). This is indeed the case, so
we have a valid decorated program. *)
(* ################################################################# *)
(** * Finding Loop Invariants *)
(** Once the outermost precondition and postcondition are
chosen, the only creative part in verifying programs using Hoare
Logic is finding the right loop invariants. The reason this is
difficult is the same as the reason that inductive mathematical
proofs are: strengthening the loop invariant (or the induction
hypothesis) means that you have a stronger assumption to work with
when trying to establish the postcondition of the loop body (or
complete the induction step of the proof), but it also means that
the loop body postcondition itself (or the statement being proved
inductively) is stronger and thus harder to prove!
This section shows how to approach the challenge of finding loop
invariants through a series of examples and exercises. *)
(* ================================================================= *)
(** ** Example: Slow Subtraction *)
(** The following program subtracts the value of [X] from the value of
[Y] by repeatedly decrementing both [X] and [Y]. We want to verify its
correctness with respect to the following specification:
{{ X = m /\ Y = n }}
WHILE X <> 0 DO
Y ::= Y - 1;;
X ::= X - 1
END
{{ Y = n - m }}
To verify this program, we need to find an invariant [I] for the
loop. As a first step we can leave [I] as an unknown and build a
_skeleton_ for the proof by applying (backward) the rules for local
consistency. This process leads to the following skeleton:
(1) {{ X = m /\ Y = n }} ->> (a)
(2) {{ I }}
WHILE X <> 0 DO
(3) {{ I /\ X <> 0 }} ->> (c)
(4) {{ I [X |-> X-1] [Y |-> Y-1] }}
Y ::= Y - 1;;
(5) {{ I [X |-> X-1] }}
X ::= X - 1
(6) {{ I }}
END
(7) {{ I /\ ~ (X <> 0) }} ->> (b)
(8) {{ Y = n - m }}
By examining this skeleton, we can see that any valid [I] will
have to respect three conditions:
- (a) it must be weak enough to be implied by the loop's
precondition, i.e., (1) must imply (2);
- (b) it must be strong enough to imply the loop's postcondition,
i.e., (7) must imply (8);
- (c) it must be preserved by one iteration of the loop, i.e., (3)
must imply (4). *)
(** These conditions are actually independent of the particular
program and specification we are considering. Indeed, every loop
invariant has to satisfy them. One way to find an invariant that
simultaneously satisfies these three conditions is by using an
iterative process: start with a "candidate" invariant (e.g., a
guess or a heuristic choice) and check the three conditions above;
if any of the checks fails, try to use the information that we get
from the failure to produce another -- hopefully better -- candidate
invariant, and repeat the process.
For instance, in the reduce-to-zero example above, we saw that,
for a very simple loop, choosing [True] as an invariant did the
job. So let's try instantiating [I] with [True] in the skeleton
above see what we get...
(1) {{ X = m /\ Y = n }} ->> (a - OK)
(2) {{ True }}
WHILE X <> 0 DO
(3) {{ True /\ X <> 0 }} ->> (c - OK)
(4) {{ True }}
Y ::= Y - 1;;
(5) {{ True }}
X ::= X - 1
(6) {{ True }}
END
(7) {{ True /\ X = 0 }} ->> (b - WRONG!)
(8) {{ Y = n - m }}
While conditions (a) and (c) are trivially satisfied,
condition (b) is wrong, i.e., it is not the case that (7) [True /\
X = 0] implies (8) [Y = n - m]. In fact, the two assertions are
completely unrelated, so it is very easy to find a counterexample
to the implication (say, [Y = X = m = 0] and [n = 1]).
If we want (b) to hold, we need to strengthen the invariant so
that it implies the postcondition (8). One simple way to do
this is to let the invariant _be_ the postcondition. So let's
return to our skeleton, instantiate [I] with [Y = n - m], and
check conditions (a) to (c) again.
(1) {{ X = m /\ Y = n }} ->> (a - WRONG!)
(2) {{ Y = n - m }}
WHILE X <> 0 DO
(3) {{ Y = n - m /\ X <> 0 }} ->> (c - WRONG!)
(4) {{ Y - 1 = n - m }}
Y ::= Y - 1;;
(5) {{ Y = n - m }}
X ::= X - 1
(6) {{ Y = n - m }}
END
(7) {{ Y = n - m /\ X = 0 }} ->> (b - OK)
(8) {{ Y = n - m }}
This time, condition (b) holds trivially, but (a) and (c) are
broken. Condition (a) requires that (1) [X = m /\ Y = n]
implies (2) [Y = n - m]. If we substitute [Y] by [n] we have to
show that [n = n - m] for arbitrary [m] and [n], which is not
the case (for instance, when [m = n = 1]). Condition (c) requires
that [n - m - 1 = n - m], which fails, for instance, for [n = 1]
and [m = 0]. So, although [Y = n - m] holds at the end of the loop,
it does not hold from the start, and it doesn't hold on each
iteration; it is not a correct invariant.
This failure is not very surprising: the variable [Y] changes
during the loop, while [m] and [n] are constant, so the assertion
we chose didn't have much chance of being an invariant!
To do better, we need to generalize (8) to some statement that is
equivalent to (8) when [X] is [0], since this will be the case
when the loop terminates, and that "fills the gap" in some
appropriate way when [X] is nonzero. Looking at how the loop
works, we can observe that [X] and [Y] are decremented together
until [X] reaches [0]. So, if [X = 2] and [Y = 5] initially,
after one iteration of the loop we obtain [X = 1] and [Y = 4];
after two iterations [X = 0] and [Y = 3]; and then the loop stops.
Notice that the difference between [Y] and [X] stays constant
between iterations: initially, [Y = n] and [X = m], and the
difference is always [n - m]. So let's try instantiating [I] in
the skeleton above with [Y - X = n - m].
(1) {{ X = m /\ Y = n }} ->> (a - OK)
(2) {{ Y - X = n - m }}
WHILE X <> 0 DO
(3) {{ Y - X = n - m /\ X <> 0 }} ->> (c - OK)
(4) {{ (Y - 1) - (X - 1) = n - m }}
Y ::= Y - 1;;
(5) {{ Y - (X - 1) = n - m }}
X ::= X - 1
(6) {{ Y - X = n - m }}
END
(7) {{ Y - X = n - m /\ X = 0 }} ->> (b - OK)
(8) {{ Y = n - m }}
Success! Conditions (a), (b) and (c) all hold now. (To
verify (c), we need to check that, under the assumption that [X <>
0], we have [Y - X = (Y - 1) - (X - 1)]; this holds for all
natural numbers [X] and [Y].) *)
(* ================================================================= *)
(** ** Exercise: Slow Assignment *)
(** **** Exercise: 2 stars (slow_assignment) *)
(** A roundabout way of assigning a number currently stored in [X] to
the variable [Y] is to start [Y] at [0], then decrement [X] until
it hits [0], incrementing [Y] at each step. Here is a program that
implements this idea:
{{ X = m }}
Y ::= 0;;
WHILE X <> 0 DO
X ::= X - 1;;
Y ::= Y + 1
END
{{ Y = m }}
Write an informal decorated program showing that this procedure
is correct. *)
(* FILL IN HERE *)
(** [] *)
(* ================================================================= *)
(** ** Exercise: Slow Addition *)
(** **** Exercise: 3 stars, optional (add_slowly_decoration) *)
(** The following program adds the variable X into the variable Z
by repeatedly decrementing X and incrementing Z.
WHILE X <> 0 DO
Z ::= Z + 1;;
X ::= X - 1
END
Following the pattern of the [subtract_slowly] example above, pick
a precondition and postcondition that give an appropriate
specification of [add_slowly]; then (informally) decorate the
program accordingly. *)
(* FILL IN HERE *)
(** [] *)
(* ================================================================= *)
(** ** Example: Parity *)
(** Here is a cute little program for computing the parity of the
value initially stored in [X] (due to Daniel Cristofani).
{{ X = m }}
WHILE 2 <= X DO
X ::= X - 2
END
{{ X = parity m }}
The mathematical [parity] function used in the specification is
defined in Coq as follows: *)
Fixpoint parity x :=
match x with
| 0 => 0
| 1 => 1
| S (S x') => parity x'
end.
(** The postcondition does not hold at the beginning of the loop,
since [m = parity m] does not hold for an arbitrary [m], so we
cannot use that as an invariant. To find an invariant that works,
let's think a bit about what this loop does. On each iteration it
decrements [X] by [2], which preserves the parity of [X]. So the
parity of [X] does not change, i.e., it is invariant. The initial
value of [X] is [m], so the parity of [X] is always equal to the
parity of [m]. Using [parity X = parity m] as an invariant we
obtain the following decorated program:
{{ X = m }} ->> (a - OK)
{{ parity X = parity m }}
WHILE 2 <= X DO
{{ parity X = parity m /\ 2 <= X }} ->> (c - OK)
{{ parity (X-2) = parity m }}
X ::= X - 2
{{ parity X = parity m }}
END
{{ parity X = parity m /\ X < 2 }} ->> (b - OK)
{{ X = parity m }}
With this invariant, conditions (a), (b), and (c) are all
satisfied. For verifying (b), we observe that, when [X < 2], we
have [parity X = X] (we can easily see this in the definition of
[parity]). For verifying (c), we observe that, when [2 <= X], we
have [parity X = parity (X-2)]. *)
(** **** Exercise: 3 stars, optional (parity_formal) *)
(** Translate this proof to Coq. Refer to the reduce-to-zero example
for ideas. You may find the following two lemmas useful: *)
Lemma parity_ge_2 : forall x,
2 <= x ->
parity (x - 2) = parity x.
Proof.
induction x; intro. reflexivity.
destruct x. inversion H. inversion H1.
simpl. rewrite <- minus_n_O. reflexivity.
Qed.
Lemma parity_lt_2 : forall x,
~ 2 <= x ->
parity (x) = x.
Proof.
intros. induction x. reflexivity. destruct x. reflexivity.
exfalso. apply H. omega.
Qed.
Theorem parity_correct : forall m,
{{ fun st => st X = m }}
WHILE BLe (ANum 2) (AId X) DO
X ::= AMinus (AId X) (ANum 2)
END
{{ fun st => st X = parity m }}.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ================================================================= *)
(** ** Example: Finding Square Roots *)
(** The following program computes the square root of [X]
by naive iteration:
{{ X=m }}
Z ::= 0;;
WHILE (Z+1)*(Z+1) <= X DO
Z ::= Z+1
END
{{ Z*Z<=m /\ m<(Z+1)*(Z+1) }}
*)
(** As above, we can try to use the postcondition as a candidate
invariant, obtaining the following decorated program:
(1) {{ X=m }} ->> (a - second conjunct of (2) WRONG!)
(2) {{ 0*0 <= m /\ m<1*1 }}
Z ::= 0;;
(3) {{ Z*Z <= m /\ m<(Z+1)*(Z+1) }}
WHILE (Z+1)*(Z+1) <= X DO
(4) {{ Z*Z<=m /\ (Z+1)*(Z+1)<=X }} ->> (c - WRONG!)
(5) {{ (Z+1)*(Z+1)<=m /\ m<(Z+2)*(Z+2) }}
Z ::= Z+1
(6) {{ Z*Z<=m /\ m<(Z+1)*(Z+1) }}
END
(7) {{ Z*Z<=m /\ m<(Z+1)*(Z+1) /\ X<(Z+1)*(Z+1) }} ->> (b - OK)
(8) {{ Z*Z<=m /\ m<(Z+1)*(Z+1) }}
This didn't work very well: conditions (a) and (c) both failed.
Looking at condition (c), we see that the second conjunct of (4)
is almost the same as the first conjunct of (5), except that (4)
mentions [X] while (5) mentions [m]. But note that [X] is never
assigned in this program, so we should always have [X=m], but we
didn't propagate this information from (1) into the loop invariant.
Also, looking at the second conjunct of (8), it seems quite
hopeless as an invariant; fortunately and we don't even need it,
since we can obtain it from the negation of the guard -- the third
conjunct in (7) -- again under the assumption that [X=m].
So we now try [X=m /\ Z*Z <= m] as the loop invariant:
{{ X=m }} ->> (a - OK)
{{ X=m /\ 0*0 <= m }}
Z ::= 0;
{{ X=m /\ Z*Z <= m }}
WHILE (Z+1)*(Z+1) <= X DO
{{ X=m /\ Z*Z<=m /\ (Z+1)*(Z+1)<=X }} ->> (c - OK)
{{ X=m /\ (Z+1)*(Z+1)<=m }}
Z ::= Z+1
{{ X=m /\ Z*Z<=m }}
END
{{ X=m /\ Z*Z<=m /\ X<(Z+1)*(Z+1) }} ->> (b - OK)
{{ Z*Z<=m /\ m<(Z+1)*(Z+1) }}
This works, since conditions (a), (b), and (c) are now all
trivially satisfied.
Very often, even if a variable is used in a loop in a read-only
fashion (i.e., it is referred to by the program or by the
specification and it is not changed by the loop), it is necessary
to add the fact that it doesn't change to the loop invariant. *)
(* ================================================================= *)
(** ** Example: Squaring *)
(** Here is a program that squares [X] by repeated addition:
{{ X = m }}
Y ::= 0;;
Z ::= 0;;
WHILE Y <> X DO
Z ::= Z + X;;
Y ::= Y + 1
END
{{ Z = m*m }}
*)
(** The first thing to note is that the loop reads [X] but doesn't
change its value. As we saw in the previous example, it is a good idea
in such cases to add [X = m] to the invariant. The other thing
that we know is often useful in the invariant is the postcondition,
so let's add that too, leading to the invariant candidate
[Z = m * m /\ X = m].
{{ X = m }} ->> (a - WRONG)
{{ 0 = m*m /\ X = m }}
Y ::= 0;;
{{ 0 = m*m /\ X = m }}
Z ::= 0;;
{{ Z = m*m /\ X = m }}
WHILE Y <> X DO
{{ Z = Y*m /\ X = m /\ Y <> X }} ->> (c - WRONG)
{{ Z+X = m*m /\ X = m }}
Z ::= Z + X;;
{{ Z = m*m /\ X = m }}
Y ::= Y + 1
{{ Z = m*m /\ X = m }}
END
{{ Z = m*m /\ X = m /\ Y = X }} ->> (b - OK)
{{ Z = m*m }}
Conditions (a) and (c) fail because of the [Z = m*m] part. While
[Z] starts at [0] and works itself up to [m*m], we can't expect
[Z] to be [m*m] from the start. If we look at how [Z] progesses
in the loop, after the 1st iteration [Z = m], after the 2nd
iteration [Z = 2*m], and at the end [Z = m*m]. Since the variable
[Y] tracks how many times we go through the loop, this leads us to
derive a new invariant candidate: [Z = Y*m /\ X = m].
{{ X = m }} ->> (a - OK)
{{ 0 = 0*m /\ X = m }}
Y ::= 0;;
{{ 0 = Y*m /\ X = m }}
Z ::= 0;;
{{ Z = Y*m /\ X = m }}
WHILE Y <> X DO
{{ Z = Y*m /\ X = m /\ Y <> X }} ->> (c - OK)
{{ Z+X = (Y+1)*m /\ X = m }}
Z ::= Z + X;
{{ Z = (Y+1)*m /\ X = m }}
Y ::= Y + 1
{{ Z = Y*m /\ X = m }}
END
{{ Z = Y*m /\ X = m /\ Y = X }} ->> (b - OK)
{{ Z = m*m }}
This new invariant makes the proof go through: all three
conditions are easy to check.
It is worth comparing the postcondition [Z = m*m] and the [Z =
Y*m] conjunct of the invariant. It is often the case that one has
to replace auxiliary variabes (parameters) with variables -- or
with expressions involving both variables and parameters, like
[m - Y] -- when going from postconditions to invariants. *)
(* ================================================================= *)
(** ** Exercise: Factorial *)
(** **** Exercise: 3 stars (factorial) *)
(** Recall that [n!] denotes the factorial of [n] (i.e., [n! =
1*2*...*n]). Here is an Imp program that calculates the factorial
of the number initially stored in the variable [X] and puts it in
the variable [Y]:
{{ X = m }}
Y ::= 1 ;;
WHILE X <> 0
DO
Y ::= Y * X ;;
X ::= X - 1
END
{{ Y = m! }}
Fill in the blanks in following decorated program:
{{ X = m }} ->>
{{ }}
Y ::= 1;;
{{ }}
WHILE X <> 0
DO {{ }} ->>
{{ }}
Y ::= Y * X;;
{{ }}
X ::= X - 1
{{ }}
END
{{ }} ->>
{{ Y = m! }}
*)
(** [] *)
(* ================================================================= *)
(** ** Exercise: Min *)
(** **** Exercise: 3 stars (Min_Hoare) *)
(** Fill in valid decorations for the following program.
For the [=>] steps in your annotations, you may rely (silently)
on the following facts about min
Lemma lemma1 : forall x y,
(x=0 \/ y=0) -> min x y = 0.
Lemma lemma2 : forall x y,
min (x-1) (y-1) = (min x y) - 1.
plus standard high-school algebra, as always.
{{ True }} ->>
{{ }}
X ::= a;;
{{ }}
Y ::= b;;
{{ }}
Z ::= 0;;
{{ }}
WHILE (X <> 0 /\ Y <> 0) DO
{{ }} ->>
{{ }}
X := X - 1;;
{{ }}
Y := Y - 1;;
{{ }}
Z := Z + 1
{{ }}
END
{{ }} ->>
{{ Z = min a b }}
*)
(** [] *)
(** **** Exercise: 3 stars (two_loops) *)
(** Here is a very inefficient way of adding 3 numbers:
X ::= 0;;
Y ::= 0;;
Z ::= c;;
WHILE X <> a DO
X ::= X + 1;;
Z ::= Z + 1
END;;
WHILE Y <> b DO
Y ::= Y + 1;;
Z ::= Z + 1
END
Show that it does what it should by filling in the blanks in the
following decorated program.
{{ True }} ->>
{{ }}
X ::= 0;;
{{ }}
Y ::= 0;;
{{ }}
Z ::= c;;
{{ }}
WHILE X <> a DO
{{ }} ->>
{{ }}
X ::= X + 1;;
{{ }}
Z ::= Z + 1
{{ }}
END;;
{{ }} ->>
{{ }}
WHILE Y <> b DO
{{ }} ->>
{{ }}
Y ::= Y + 1;;
{{ }}
Z ::= Z + 1
{{ }}
END
{{ }} ->>
{{ Z = a + b + c }}
*)
(** [] *)
(* ================================================================= *)
(** ** Exercise: Power Series *)
(** **** Exercise: 4 stars, optional (dpow2_down) *)
(** Here is a program that computes the series:
[1 + 2 + 2^2 + ... + 2^m = 2^(m+1) - 1]
X ::= 0;;
Y ::= 1;;
Z ::= 1;;
WHILE X <> m DO
Z ::= 2 * Z;;
Y ::= Y + Z;;
X ::= X + 1
END
Write a decorated program for this. *)
(* FILL IN HERE *)
(* ################################################################# *)
(** * Weakest Preconditions (Optional) *)
(** Some Hoare triples are more interesting than others.
For example,
{{ False }} X ::= Y + 1 {{ X <= 5 }}
is _not_ very interesting: although it is perfectly valid, it
tells us nothing useful. Since the precondition isn't satisfied
by any state, it doesn't describe any situations where we can use
the command [X ::= Y + 1] to achieve the postcondition [X <= 5].
By contrast,
{{ Y <= 4 /\ Z = 0 }} X ::= Y + 1 {{ X <= 5 }}
is useful: it tells us that, if we can somehow create a situation
in which we know that [Y <= 4 /\ Z = 0], then running this command
will produce a state satisfying the postcondition. However, this
triple is still not as useful as it could be, because the [Z = 0]
clause in the precondition actually has nothing to do with the
postcondition [X <= 5]. The _most_ useful triple (for this
command and postcondition) is this one:
{{ Y <= 4 }} X ::= Y + 1 {{ X <= 5 }}
In other words, [Y <= 4] is the _weakest_ valid precondition of
the command [X ::= Y + 1] for the postcondition [X <= 5]. *)
(** In general, we say that "[P] is the weakest precondition of
command [c] for postcondition [Q]" if [{{P}} c {{Q}}] and if,
whenever [P'] is an assertion such that [{{P'}} c {{Q}}], it is
the case that [P' st] implies [P st] for all states [st]. *)
Definition is_wp P c Q :=
{{P}} c {{Q}} /\
forall P', {{P'}} c {{Q}} -> (P' ->> P).
(** That is, [P] is the weakest precondition of [c] for [Q]
if (a) [P] _is_ a precondition for [Q] and [c], and (b) [P] is the
_weakest_ (easiest to satisfy) assertion that guarantees that
[Q] will hold after executing [c]. *)
(** **** Exercise: 1 star, optional (wp) *)
(** What are the weakest preconditions of the following commands
for the following postconditions?
1) {{ ? }} SKIP {{ X = 5 }}
2) {{ ? }} X ::= Y + Z {{ X = 5 }}
3) {{ ? }} X ::= Y {{ X = Y }}
4) {{ ? }}
IFB X == 0 THEN Y ::= Z + 1 ELSE Y ::= W + 2 FI
{{ Y = 5 }}
5) {{ ? }}
X ::= 5
{{ X = 0 }}
6) {{ ? }}
WHILE True DO X ::= 0 END
{{ X = 0 }}
*)
(* FILL IN HERE *)
(** [] *)
(** **** Exercise: 3 stars, advanced, optional (is_wp_formal) *)
(** Prove formally, using the definition of [hoare_triple], that [Y <= 4]
is indeed the weakest precondition of [X ::= Y + 1] with respect to
postcondition [X <= 5]. *)
Theorem is_wp_example :
is_wp (fun st => st Y <= 4)
(X ::= APlus (AId Y) (ANum 1)) (fun st => st X <= 5).
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars, advanced, optional (hoare_asgn_weakest) *)
(** Show that the precondition in the rule [hoare_asgn] is in fact the
weakest precondition. *)
Theorem hoare_asgn_weakest : forall Q X a,
is_wp (Q [X |-> a]) (X ::= a) Q.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars, advanced, optional (hoare_havoc_weakest) *)
(** Show that your [havoc_pre] rule from the [himp_hoare] exercise
in the [Hoare] chapter returns the weakest precondition. *)
Module Himp2.
Import Himp.
Lemma hoare_havoc_weakest : forall (P Q : Assertion) (X : id),
{{ P }} HAVOC X {{ Q }} ->
P ->> havoc_pre X Q.
Proof.
(* FILL IN HERE *) Admitted.
End Himp2.
(** [] *)
(* ################################################################# *)
(** * Formal Decorated Programs (Optional) *)
(** Our informal conventions for decorated programs amount to a
way of displaying Hoare triples, in which commands are annotated
with enough embedded assertions that checking the validity of a
triple is reduced to simple logical and algebraic calculations
showing that some assertions imply others. In this section, we
show that this informal presentation style can actually be made
completely formal and indeed that checking the validity of
decorated programs can mostly be automated. *)
(* ================================================================= *)
(** ** Syntax *)
(** The first thing we need to do is to formalize a variant of the
syntax of commands with embedded assertions. We call the new
commands _decorated commands_, or [dcom]s. *)
Inductive dcom : Type :=
| DCSkip : Assertion -> dcom
| DCSeq : dcom -> dcom -> dcom
| DCAsgn : id -> aexp -> Assertion -> dcom
| DCIf : bexp -> Assertion -> dcom -> Assertion -> dcom
-> Assertion-> dcom
| DCWhile : bexp -> Assertion -> dcom -> Assertion -> dcom
| DCPre : Assertion -> dcom -> dcom
| DCPost : dcom -> Assertion -> dcom.
Notation "'SKIP' {{ P }}"
:= (DCSkip P)
(at level 10) : dcom_scope.
Notation "l '::=' a {{ P }}"
:= (DCAsgn l a P)
(at level 60, a at next level) : dcom_scope.
Notation "'WHILE' b 'DO' {{ Pbody }} d 'END' {{ Ppost }}"
:= (DCWhile b Pbody d Ppost)
(at level 80, right associativity) : dcom_scope.
Notation "'IFB' b 'THEN' {{ P }} d 'ELSE' {{ P' }} d' 'FI' {{ Q }}"
:= (DCIf b P d P' d' Q)
(at level 80, right associativity) : dcom_scope.
Notation "'->>' {{ P }} d"
:= (DCPre P d)
(at level 90, right associativity) : dcom_scope.
Notation "{{ P }} d"
:= (DCPre P d)
(at level 90) : dcom_scope.
Notation "d '->>' {{ P }}"
:= (DCPost d P)
(at level 80, right associativity) : dcom_scope.
Notation " d ;; d' "
:= (DCSeq d d')
(at level 80, right associativity) : dcom_scope.
Delimit Scope dcom_scope with dcom.
(** To avoid clashing with the existing [Notation] definitions
for ordinary [com]mands, we introduce these notations in a special
scope called [dcom_scope], and we wrap examples with the
declaration [% dcom] to signal that we want the notations to be
interpreted in this scope.
Careful readers will note that we've defined two notations for the
[DCPre] constructor, one with and one without a [->>]. The
"without" version is intended to be used to supply the initial
precondition at the very top of the program. *)
Example dec_while : dcom := (
{{ fun st => True }}
WHILE (BNot (BEq (AId X) (ANum 0)))
DO
{{ fun st => True /\ st X <> 0}}
X ::= (AMinus (AId X) (ANum 1))
{{ fun _ => True }}
END
{{ fun st => True /\ st X = 0}} ->>
{{ fun st => st X = 0 }}
) % dcom.
(** It is easy to go from a [dcom] to a [com] by erasing all
annotations. *)
Fixpoint extract (d:dcom) : com :=
match d with
| DCSkip _ => SKIP
| DCSeq d1 d2 => (extract d1 ;; extract d2)
| DCAsgn X a _ => X ::= a
| DCIf b _ d1 _ d2 _ => IFB b THEN extract d1 ELSE extract d2 FI
| DCWhile b _ d _ => WHILE b DO extract d END
| DCPre _ d => extract d
| DCPost d _ => extract d
end.
(** The choice of exactly where to put assertions in the definition of
[dcom] is a bit subtle. The simplest thing to do would be to
annotate every [dcom] with a precondition and postcondition. But
this would result in very verbose programs with a lot of repeated
annotations: for example, a program like [SKIP;SKIP] would have to
be annotated as
{{P}} ({{P}} SKIP {{P}}) ;; ({{P}} SKIP {{P}}) {{P}},
with pre- and post-conditions on each [SKIP], plus identical pre-
and post-conditions on the semicolon!
Instead, the rule we've followed is this:
- The _post_-condition expected by each [dcom] [d] is embedded
in [d].
- The _pre_-condition is supplied by the context. *)
(** In other words, the invariant of the representation is that a
[dcom] [d] together with a precondition [P] determines a Hoare
triple [{{P}} (extract d) {{post d}}], where [post] is defined as
follows: *)
Fixpoint post (d:dcom) : Assertion :=
match d with
| DCSkip P => P
| DCSeq d1 d2 => post d2
| DCAsgn X a Q => Q
| DCIf _ _ d1 _ d2 Q => Q
| DCWhile b Pbody c Ppost => Ppost
| DCPre _ d => post d
| DCPost c Q => Q
end.
(** Similarly, we can extract the "initial precondition" from a
decorated program. *)
Fixpoint pre (d:dcom) : Assertion :=
match d with
| DCSkip P => fun st => True
| DCSeq c1 c2 => pre c1
| DCAsgn X a Q => fun st => True
| DCIf _ _ t _ e _ => fun st => True
| DCWhile b Pbody c Ppost => fun st => True
| DCPre P c => P
| DCPost c Q => pre c
end.
(** This function is not doing anything sophisticated like calculating
a weakest precondition; it just recursively searches for an
explicit annotation at the very beginning of the program,
returning default answers for programs that lack an explicit
precondition (like a bare assignment or [SKIP]). *)
(** Using [pre] and [post], and assuming that we adopt the convention
of always supplying an explicit precondition annotation at the
very beginning of our decorated programs, we can express what it
means for a decorated program to be correct as follows: *)
Definition dec_correct (d:dcom) :=
{{pre d}} (extract d) {{post d}}.
(** To check whether this Hoare triple is _valid_, we need a way to
extract the "proof obligations" from a decorated program. These
obligations are often called _verification conditions_, because
they are the facts that must be verified to see that the
decorations are logically consistent and thus add up to a complete
proof of correctness. *)
(* ================================================================= *)
(** ** Extracting Verification Conditions *)
(** The function [verification_conditions] takes a [dcom] [d] together
with a precondition [P] and returns a _proposition_ that, if it
can be proved, implies that the triple [{{P}} (extract d) {{post d}}]
is valid. *)
(** It does this by walking over [d] and generating a big
conjunction including all the "local checks" that we listed when
we described the informal rules for decorated programs. (Strictly
speaking, we need to massage the informal rules a little bit to
add some uses of the rule of consequence, but the correspondence
should be clear.) *)
Fixpoint verification_conditions (P : Assertion) (d:dcom)
: Prop :=
match d with
| DCSkip Q =>
(P ->> Q)
| DCSeq d1 d2 =>
verification_conditions P d1
/\ verification_conditions (post d1) d2
| DCAsgn X a Q =>
(P ->> Q [X |-> a])
| DCIf b P1 d1 P2 d2 Q =>
((fun st => P st /\ bassn b st) ->> P1)
/\ ((fun st => P st /\ ~ (bassn b st)) ->> P2)
/\ (Q <<->> post d1) /\ (Q <<->> post d2)
/\ verification_conditions P1 d1
/\ verification_conditions P2 d2
| DCWhile b Pbody d Ppost =>
(* post d is the loop invariant and the initial precondition *)
(P ->> post d)
/\ (Pbody <<->> (fun st => post d st /\ bassn b st))
/\ (Ppost <<->> (fun st => post d st /\ ~(bassn b st)))
/\ verification_conditions Pbody d
| DCPre P' d =>
(P ->> P') /\ verification_conditions P' d
| DCPost d Q =>
verification_conditions P d /\ (post d ->> Q)
end.
(** And now the key theorem, stating that [verification_conditions]
does its job correctly. Not surprisingly, we need to use each of
the Hoare Logic rules at some point in the proof. *)
Theorem verification_correct : forall d P,
verification_conditions P d -> {{P}} (extract d) {{post d}}.
Proof.
induction d; intros P H; simpl in *.
- (* Skip *)
eapply hoare_consequence_pre.
apply hoare_skip.
assumption.
- (* Seq *)
inversion H as [H1 H2]. clear H.
eapply hoare_seq.
apply IHd2. apply H2.
apply IHd1. apply H1.
- (* Asgn *)
eapply hoare_consequence_pre.
apply hoare_asgn.
assumption.
- (* If *)
inversion H as [HPre1 [HPre2 [[Hd11 Hd12]
[[Hd21 Hd22] [HThen HElse]]]]].
clear H.
apply IHd1 in HThen. clear IHd1.
apply IHd2 in HElse. clear IHd2.
apply hoare_if.
eapply hoare_consequence_pre; eauto.
eapply hoare_consequence_post; eauto.
eapply hoare_consequence_pre; eauto.
eapply hoare_consequence_post; eauto.
- (* While *)
inversion H as [Hpre [[Hbody1 Hbody2] [[Hpost1 Hpost2] Hd]]];
subst; clear H.
eapply hoare_consequence_pre; eauto.
eapply hoare_consequence_post; eauto.
apply hoare_while.
eapply hoare_consequence_pre; eauto.
- (* Pre *)
inversion H as [HP Hd]; clear H.
eapply hoare_consequence_pre. apply IHd. apply Hd. assumption.
- (* Post *)
inversion H as [Hd HQ]; clear H.
eapply hoare_consequence_post. apply IHd. apply Hd. assumption.
Qed.
(** (If you expand the proof, you'll see that it uses an
unfamiliar idiom: [simpl in *]. We have used [...in...] variants
of several tactics before, to apply them to values in the context
rather than the goal. The syntax [tactic in *] extends this idea,
applying [tactic] in the goal and every hypothesis in the
context.) *)
(* ================================================================= *)
(** ** Automation *)
(** The propositions generated by [verification_conditions] are fairly
big, and they contain many conjuncts that are essentially trivial. *)
Eval simpl in (verification_conditions (fun st => True) dec_while).
(**
==>
(((fun _ : state => True) ->> (fun _ : state => True)) /\
((fun _ : state => True) ->> (fun _ : state => True)) /\
(fun st : state => True /\ bassn (BNot (BEq (AId X) (ANum 0))) st) =
(fun st : state => True /\ bassn (BNot (BEq (AId X) (ANum 0))) st) /\
(fun st : state => True /\ ~ bassn (BNot (BEq (AId X) (ANum 0))) st) =
(fun st : state => True /\ ~ bassn (BNot (BEq (AId X) (ANum 0))) st) /\
(fun st : state => True /\ bassn (BNot (BEq (AId X) (ANum 0))) st) ->>
(fun _ : state => True) [X |-> AMinus (AId X) (ANum 1)]) /\
(fun st : state => True /\ ~ bassn (BNot (BEq (AId X) (ANum 0))) st) ->>
(fun st : state => st X = 0)
*)
(** In principle, we could work with such propositions using just the
tactics we have so far, but we can make things much smoother with
a bit of automation. We first define a custom [verify] tactic
that uses [split] repeatedly to turn all the conjunctions into
separate subgoals and then uses [omega] and [eauto] (a handy
general-purpose automation tactic that we'll discuss in detail
later) to deal with as many of them as possible. *)
Tactic Notation "verify" :=
apply verification_correct;
repeat split;
simpl; unfold assert_implies;
unfold bassn in *; unfold beval in *; unfold aeval in *;
unfold assn_sub; intros;
repeat rewrite t_update_eq;
repeat (rewrite t_update_neq; [| (intro X; inversion X)]);
simpl in *;
repeat match goal with [H : _ /\ _ |- _] => destruct H end;
repeat rewrite not_true_iff_false in *;
repeat rewrite not_false_iff_true in *;
repeat rewrite negb_true_iff in *;
repeat rewrite negb_false_iff in *;
repeat rewrite beq_nat_true_iff in *;
repeat rewrite beq_nat_false_iff in *;
repeat rewrite leb_iff in *;
repeat rewrite leb_iff_conv in *;
try subst;
repeat
match goal with
[st : state |- _] =>
match goal with
[H : st _ = _ |- _] => rewrite -> H in *; clear H
| [H : _ = st _ |- _] => rewrite <- H in *; clear H
end
end;
try eauto; try omega.
(** What's left after [verify] does its thing is "just the interesting
parts" of checking that the decorations are correct. For very
simple examples [verify] immediately solves the goal (provided
that the annotations are correct). *)
Theorem dec_while_correct :
dec_correct dec_while.
Proof. verify. Qed.
(** Another example (formalizing a decorated program we've seen
before): *)
Example subtract_slowly_dec (m:nat) (p:nat) : dcom := (
{{ fun st => st X = m /\ st Z = p }} ->>
{{ fun st => st Z - st X = p - m }}
WHILE BNot (BEq (AId X) (ANum 0))
DO {{ fun st => st Z - st X = p - m /\ st X <> 0 }} ->>
{{ fun st => (st Z - 1) - (st X - 1) = p - m }}
Z ::= AMinus (AId Z) (ANum 1)
{{ fun st => st Z - (st X - 1) = p - m }} ;;
X ::= AMinus (AId X) (ANum 1)
{{ fun st => st Z - st X = p - m }}
END
{{ fun st => st Z - st X = p - m /\ st X = 0 }} ->>
{{ fun st => st Z = p - m }}
) % dcom.
Theorem subtract_slowly_dec_correct : forall m p,
dec_correct (subtract_slowly_dec m p).
Proof. intros m p. verify. (* this grinds for a bit! *) Qed.
(** **** Exercise: 3 stars, advanced (slow_assignment_dec) *)
(** In the [slow_assignment] exercise above, we saw a roundabout way
of assigning a number currently stored in [X] to the variable [Y]:
start [Y] at [0], then decrement [X] until it hits [0],
incrementing [Y] at each step. Write a formal version of this
decorated program and prove it correct. *)
Example slow_assignment_dec (m:nat) : dcom :=
(* FILL IN HERE *) admit.
Theorem slow_assignment_dec_correct : forall m,
dec_correct (slow_assignment_dec m).
Proof. (* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 4 stars, advanced (factorial_dec) *)
(** Remember the factorial function we worked with before: *)
Fixpoint real_fact (n:nat) : nat :=
match n with
| O => 1
| S n' => n * (real_fact n')
end.
(** Following the pattern of [subtract_slowly_dec], write a decorated
program [factorial_dec] that implements the factorial function and
prove it correct as [factorial_dec_correct]. *)
(* FILL IN HERE *)
(** [] *)
(* ================================================================= *)
(** ** Examples *)
(** In this section, we use the automation developed above to verify
formal decorated programs corresponding to most of the informal
ones we have seen. *)
(* ----------------------------------------------------------------- *)
(** *** Swapping Using Addition and Subtraction *)
Definition swap : com :=
X ::= APlus (AId X) (AId Y);;
Y ::= AMinus (AId X) (AId Y);;
X ::= AMinus (AId X) (AId Y).
Definition swap_dec m n : dcom :=
({{ fun st => st X = m /\ st Y = n}} ->>
{{ fun st => (st X + st Y) - ((st X + st Y) - st Y) = n
/\ (st X + st Y) - st Y = m }}
X ::= APlus (AId X) (AId Y)
{{ fun st => st X - (st X - st Y) = n /\ st X - st Y = m }};;
Y ::= AMinus (AId X) (AId Y)
{{ fun st => st X - st Y = n /\ st Y = m }};;
X ::= AMinus (AId X) (AId Y)
{{ fun st => st X = n /\ st Y = m}})%dcom.
Theorem swap_correct : forall m n,
dec_correct (swap_dec m n).
Proof. intros; verify. Qed.
(* ----------------------------------------------------------------- *)
(** *** Simple Conditionals *)
Definition if_minus_plus_com :=
IFB (BLe (AId X) (AId Y))
THEN (Z ::= AMinus (AId Y) (AId X))
ELSE (Y ::= APlus (AId X) (AId Z))
FI.
Definition if_minus_plus_dec :=
({{fun st => True}}
IFB (BLe (AId X) (AId Y)) THEN
{{ fun st => True /\ st X <= st Y }} ->>
{{ fun st => st Y = st X + (st Y - st X) }}
Z ::= AMinus (AId Y) (AId X)
{{ fun st => st Y = st X + st Z }}
ELSE
{{ fun st => True /\ ~(st X <= st Y) }} ->>
{{ fun st => st X + st Z = st X + st Z }}
Y ::= APlus (AId X) (AId Z)
{{ fun st => st Y = st X + st Z }}
FI
{{fun st => st Y = st X + st Z}})%dcom.
Theorem if_minus_plus_correct :
dec_correct if_minus_plus_dec.
Proof. intros; verify. Qed.
Definition if_minus_dec :=
( {{fun st => True}}
IFB (BLe (AId X) (AId Y)) THEN
{{fun st => True /\ st X <= st Y }} ->>
{{fun st => (st Y - st X) + st X = st Y
\/ (st Y - st X) + st Y = st X}}
Z ::= AMinus (AId Y) (AId X)
{{fun st => st Z + st X = st Y \/ st Z + st Y = st X}}
ELSE
{{fun st => True /\ ~(st X <= st Y) }} ->>
{{fun st => (st X - st Y) + st X = st Y
\/ (st X - st Y) + st Y = st X}}
Z ::= AMinus (AId X) (AId Y)
{{fun st => st Z + st X = st Y \/ st Z + st Y = st X}}
FI
{{fun st => st Z + st X = st Y \/ st Z + st Y = st X}})%dcom.
Theorem if_minus_correct :
dec_correct if_minus_dec.
Proof. verify. Qed.
(* ----------------------------------------------------------------- *)
(** *** Division *)
Definition div_mod_dec (a b : nat) : dcom := (
{{ fun st => True }} ->>
{{ fun st => b * 0 + a = a }}
X ::= ANum a
{{ fun st => b * 0 + st X = a }};;
Y ::= ANum 0
{{ fun st => b * st Y + st X = a }};;
WHILE (BLe (ANum b) (AId X)) DO
{{ fun st => b * st Y + st X = a /\ b <= st X }} ->>
{{ fun st => b * (st Y + 1) + (st X - b) = a }}
X ::= AMinus (AId X) (ANum b)
{{ fun st => b * (st Y + 1) + st X = a }};;
Y ::= APlus (AId Y) (ANum 1)
{{ fun st => b * st Y + st X = a }}
END
{{ fun st => b * st Y + st X = a /\ ~(b <= st X) }} ->>
{{ fun st => b * st Y + st X = a /\ (st X < b) }}
)%dcom.
Theorem div_mod_dec_correct : forall a b,
dec_correct (div_mod_dec a b).
Proof. intros a b. verify.
rewrite mult_plus_distr_l. omega.
Qed.
(* ----------------------------------------------------------------- *)
(** *** Parity *)
Definition find_parity : com :=
WHILE (BLe (ANum 2) (AId X)) DO
X ::= AMinus (AId X) (ANum 2)
END.
(** There are actually several ways to phrase the loop invariant for
this program. Here is one natural one, which leads to a rather
long proof: *)
Inductive ev : nat -> Prop :=
| ev_0 : ev O
| ev_SS : forall n:nat, ev n -> ev (S (S n)).
Definition find_parity_dec m : dcom :=
({{ fun st => st X = m}} ->>
{{ fun st => st X <= m /\ ev (m - st X) }}
WHILE (BLe (ANum 2) (AId X)) DO
{{ fun st => (st X <= m /\ ev (m - st X)) /\ 2 <= st X }} ->>
{{ fun st => st X - 2 <= m /\ (ev (m - (st X - 2))) }}
X ::= AMinus (AId X) (ANum 2)
{{ fun st => st X <= m /\ ev (m - st X) }}
END
{{ fun st => (st X <= m /\ ev (m - st X)) /\ st X < 2 }} ->>
{{ fun st => st X=0 <-> ev m }})%dcom.
Lemma l1 : forall m n p,
p <= n ->
n <= m ->
m - (n - p) = m - n + p.
Proof. intros. omega. Qed.
Lemma l2 : forall m,
ev m ->
ev (m + 2).
Proof. intros. rewrite plus_comm. simpl. constructor. assumption. Qed.
Lemma l3' : forall m,
ev m ->
~ev (S m).
Proof. induction m; intros H1 H2. inversion H2. apply IHm.
inversion H2; subst; assumption. assumption. Qed.
Lemma l3 : forall m,
1 <= m ->
ev m ->
ev (m - 1) ->
False.
Proof. intros. apply l2 in H1.
assert (G : m - 1 + 2 = S m). clear H0 H1. omega.
rewrite G in H1. apply l3' in H0. apply H0. assumption. Qed.
Theorem find_parity_correct : forall m,
dec_correct (find_parity_dec m).
Proof.
intro m. verify;
(* simplification too aggressive ... reverting a bit *)
fold (leb 2 (st X)) in *;
try rewrite leb_iff in *;
try rewrite leb_iff_conv in *; eauto; try omega.
- (* invariant holds initially *)
rewrite minus_diag. constructor.
- (* invariant preserved *)
rewrite l1; try assumption.
apply l2; assumption.
- (* invariant strong enough to imply conclusion
(-> direction) *)
rewrite <- minus_n_O in H2. assumption.
- (* invariant strong enough to imply conclusion
(<- direction) *)
destruct (st X) as [| [| n]]. (* by H1 X can only be 0 or 1 *)
+ (* st X = 0 *)
reflexivity.
+ (* st X = 1 *)
apply l3 in H; try assumption. inversion H.
+ (* st X = 2 *)
clear H0 H2. (* omega confused otherwise *)
omega.
Qed.
(** Here is a more intuitive way of writing the invariant: *)
Definition find_parity_dec' m : dcom :=
({{ fun st => st X = m}} ->>
{{ fun st => ev (st X) <-> ev m }}
WHILE (BLe (ANum 2) (AId X)) DO
{{ fun st => (ev (st X) <-> ev m) /\ 2 <= st X }} ->>
{{ fun st => (ev (st X - 2) <-> ev m) }}
X ::= AMinus (AId X) (ANum 2)
{{ fun st => (ev (st X) <-> ev m) }}
END
{{ fun st => (ev (st X) <-> ev m) /\ ~(2 <= st X) }} ->>
{{ fun st => st X=0 <-> ev m }})%dcom.
Lemma l4 : forall m,
2 <= m ->
(ev (m - 2) <-> ev m).
Proof.
induction m; intros. split; intro; constructor.
destruct m. inversion H. inversion H1. simpl in *.
rewrite <- minus_n_O in *. split; intro.
constructor. assumption.
inversion H0. assumption.
Qed.
Theorem find_parity_correct' : forall m,
dec_correct (find_parity_dec' m).
Proof.
intros m. verify;
(* simplification too aggressive ... reverting a bit *)
fold (leb 2 (st X)) in *;
try rewrite leb_iff in *;
try rewrite leb_iff_conv in *; intuition; eauto; try omega.
- (* invariant preserved (part 1) *)
rewrite l4 in H0; eauto.
- (* invariant preserved (part 2) *)
rewrite l4; eauto.
- (* invariant strong enough to imply conclusion
(-> direction) *)
apply H0. constructor.
- (* invariant strong enough to imply conclusion
(<- direction) *)
destruct (st X) as [| [| n]]. (* by H1 X can only be 0 or 1 *)
+ (* st X = 0 *)
reflexivity.
+ (* st X = 1 *)
inversion H.
+ (* st X = 2 *)
clear H0 H H3. (* omega confused otherwise *)
omega.
Qed.
(** Here is the simplest invariant we've found for this program: *)
Definition parity_dec m : dcom :=
({{ fun st => st X = m}} ->>
{{ fun st => parity (st X) = parity m }}
WHILE (BLe (ANum 2) (AId X)) DO
{{ fun st => parity (st X) = parity m /\ 2 <= st X }} ->>
{{ fun st => parity (st X - 2) = parity m }}
X ::= AMinus (AId X) (ANum 2)
{{ fun st => parity (st X) = parity m }}
END
{{ fun st => parity (st X) = parity m /\ ~(2 <= st X) }} ->>
{{ fun st => st X = parity m }})%dcom.
Theorem parity_dec_correct : forall m,
dec_correct (parity_dec m).
Proof.
intros. verify;
(* simplification too aggressive ... reverting a bit *)
fold (leb 2 (st X)) in *;
try rewrite leb_iff in *;
try rewrite leb_iff_conv in *; eauto; try omega.
- (* invariant preserved *)
rewrite <- H. apply parity_ge_2. assumption.
- (* invariant strong enough *)
rewrite <- H. symmetry. apply parity_lt_2. assumption.
Qed.
(* ----------------------------------------------------------------- *)
(** *** Square Roots *)
Definition sqrt_dec m : dcom := (
{{ fun st => st X = m }} ->>
{{ fun st => st X = m /\ 0*0 <= m }}
Z ::= ANum 0
{{ fun st => st X = m /\ st Z*st Z <= m }};;
WHILE BLe (AMult (APlus (AId Z) (ANum 1))
(APlus (AId Z) (ANum 1)))
(AId X) DO
{{ fun st => (st X = m /\ st Z*st Z<=m)
/\ (st Z + 1)*(st Z + 1) <= st X }} ->>
{{ fun st => st X = m /\ (st Z+1)*(st Z+1)<=m }}
Z ::= APlus (AId Z) (ANum 1)
{{ fun st => st X = m /\ st Z*st Z<=m }}
END
{{ fun st => (st X = m /\ st Z*st Z<=m)
/\ ~((st Z + 1)*(st Z + 1) <= st X) }} ->>
{{ fun st => st Z*st Z<=m /\ m<(st Z+1)*(st Z+1) }})%dcom.
Theorem sqrt_correct : forall m,
dec_correct (sqrt_dec m).
Proof. intro m. verify. Qed.
(* ----------------------------------------------------------------- *)
(** *** Squaring *)
(** Again, there are several ways of annotating the squaring program.
The simplest variant we've found, [square_simpler_dec], is given
last. *)
Definition square_dec (m : nat) : dcom := (
{{ fun st => st X = m }}
Y ::= AId X
{{ fun st => st X = m /\ st Y = m }};;
Z ::= ANum 0
{{ fun st => st X = m /\ st Y = m /\ st Z = 0}};;
{{ fun st => st Z + st X * st Y = m * m }}
WHILE BNot (BEq (AId Y) (ANum 0)) DO
{{ fun st => st Z + st X * st Y = m * m /\ st Y <> 0 }} ->>
{{ fun st => (st Z + st X) + st X * (st Y - 1) = m * m }}
Z ::= APlus (AId Z) (AId X)
{{ fun st => st Z + st X * (st Y - 1) = m * m }};;
Y ::= AMinus (AId Y) (ANum 1)
{{ fun st => st Z + st X * st Y = m * m }}
END
{{ fun st => st Z + st X * st Y = m * m /\ st Y = 0 }} ->>
{{ fun st => st Z = m * m }}
)%dcom.
Theorem square_dec_correct : forall m,
dec_correct (square_dec m).
Proof.
intro n. verify.
- (* invariant preserved *)
destruct (st Y) as [| y']. apply False_ind. apply H0.
reflexivity.
simpl. rewrite <- minus_n_O.
assert (G : forall n m, n * S m = n + n * m). {
clear. intros. induction n. reflexivity. simpl.
rewrite IHn. omega. }
rewrite <- H. rewrite G. rewrite plus_assoc. reflexivity.
Qed.
Definition square_dec' (n : nat) : dcom := (
{{ fun st => True }}
X ::= ANum n
{{ fun st => st X = n }};;
Y ::= AId X
{{ fun st => st X = n /\ st Y = n }};;
Z ::= ANum 0
{{ fun st => st X = n /\ st Y = n /\ st Z = 0 }};;
{{ fun st => st Z = st X * (st X - st Y)
/\ st X = n /\ st Y <= st X }}
WHILE BNot (BEq (AId Y) (ANum 0)) DO
{{ fun st => (st Z = st X * (st X - st Y)
/\ st X = n /\ st Y <= st X)
/\ st Y <> 0 }}
Z ::= APlus (AId Z) (AId X)
{{ fun st => st Z = st X * (st X - (st Y - 1))
/\ st X = n /\ st Y <= st X }};;
Y ::= AMinus (AId Y) (ANum 1)
{{ fun st => st Z = st X * (st X - st Y)
/\ st X = n /\ st Y <= st X }}
END
{{ fun st => (st Z = st X * (st X - st Y)
/\ st X = n /\ st Y <= st X)
/\ st Y = 0 }} ->>
{{ fun st => st Z = n * n }}
)%dcom.
Theorem square_dec'_correct : forall n,
dec_correct (square_dec' n).
Proof.
intro n. verify.
- (* invariant holds initially *)
rewrite minus_diag. omega.
- (* invariant preserved *) subst.
rewrite mult_minus_distr_l.
repeat rewrite mult_minus_distr_l. rewrite mult_1_r.
assert (G : forall n m p, m <= n -> p <= m -> n - (m - p) = n - m + p).
intros. omega.
rewrite G. reflexivity. apply mult_le_compat_l. assumption.
destruct (st Y). apply False_ind. apply H0. reflexivity.
clear. rewrite mult_succ_r. rewrite plus_comm.
apply le_plus_l.
- (* invarint + negation of guard imply desired postcondition *)
rewrite <- minus_n_O. reflexivity.
Qed.
Definition square_simpler_dec (m : nat) : dcom := (
{{ fun st => st X = m }} ->>
{{ fun st => 0 = 0*m /\ st X = m }}
Y ::= ANum 0
{{ fun st => 0 = (st Y)*m /\ st X = m }};;
Z ::= ANum 0
{{ fun st => st Z = (st Y)*m /\ st X = m }};;
{{ fun st => st Z = (st Y)*m /\ st X = m }}
WHILE BNot (BEq (AId Y) (AId X)) DO
{{ fun st => (st Z = (st Y)*m /\ st X = m)
/\ st Y <> st X }} ->>
{{ fun st => st Z + st X = ((st Y) + 1)*m /\ st X = m }}
Z ::= APlus (AId Z) (AId X)
{{ fun st => st Z = ((st Y) + 1)*m /\ st X = m }};;
Y ::= APlus (AId Y) (ANum 1)
{{ fun st => st Z = (st Y)*m /\ st X = m }}
END
{{ fun st => (st Z = (st Y)*m /\ st X = m) /\ st Y = st X }} ->>
{{ fun st => st Z = m*m }}
)%dcom.
Theorem square_simpler_dec_correct : forall m,
dec_correct (square_simpler_dec m).
Proof.
intro m. verify.
rewrite mult_plus_distr_r. simpl. rewrite <- plus_n_O.
reflexivity.
Qed.
(* ----------------------------------------------------------------- *)
(** *** Two loops *)
Definition two_loops_dec (a b c : nat) :=
( {{ fun st => True }} ->>
{{ fun st => c = 0 + c /\ 0 = 0 }}
X ::= ANum 0
{{ fun st => c = st X + c /\ 0 = 0 }};;
Y ::= ANum 0
{{ fun st => c = st X + c /\ st Y = 0 }};;
Z ::= ANum c
{{ fun st => st Z = st X + c /\ st Y = 0 }};;
WHILE BNot (BEq (AId X) (ANum a)) DO
{{ fun st => (st Z = st X + c /\ st Y = 0) /\ st X <> a }} ->>
{{ fun st => st Z + 1 = st X + 1 + c /\ st Y = 0 }}
X ::= APlus (AId X) (ANum 1)
{{ fun st => st Z + 1 = st X + c /\ st Y = 0 }};;
Z ::= APlus (AId Z) (ANum 1)
{{ fun st => st Z = st X + c /\ st Y = 0 }}
END
{{ fun st => (st Z = st X + c /\ st Y = 0) /\ st X = a }} ->>
{{ fun st => st Z = a + st Y + c }};;
WHILE BNot (BEq (AId Y) (ANum b)) DO
{{ fun st => st Z = a + st Y + c /\ st Y <> b }} ->>
{{ fun st => st Z + 1 = a + st Y + 1 + c }}
Y ::= APlus (AId Y) (ANum 1)
{{ fun st => st Z + 1 = a + st Y + c }};;
Z ::= APlus (AId Z) (ANum 1)
{{ fun st => st Z = a + st Y + c }}
END
{{ fun st => (st Z = a + st Y + c) /\ st Y = b }} ->>
{{ fun st => st Z = a + b + c }}
)%dcom.
Theorem two_loops_correct : forall a b c,
dec_correct (two_loops_dec a b c).
Proof. intros a b c. verify. Qed.
(* ----------------------------------------------------------------- *)
(** *** Power series *)
Fixpoint pow2 n :=
match n with
| 0 => 1
| S n' => 2 * (pow2 n')
end.
Definition dpow2_down n :=
( {{ fun st => True }} ->>
{{ fun st => 1 = (pow2 (0 + 1))-1 /\ 1 = pow2 0 }}
X ::= ANum 0
{{ fun st => 1 = (pow2 (0 + 1))-1 /\ 1 = pow2 (st X) }};;
Y ::= ANum 1
{{ fun st => st Y = (pow2 (st X + 1))-1 /\ 1 = pow2 (st X) }};;
Z ::= ANum 1
{{ fun st => st Y = (pow2 (st X + 1))-1 /\ st Z = pow2 (st X) }};;
WHILE BNot (BEq (AId X) (ANum n)) DO
{{ fun st => (st Y = (pow2 (st X + 1))-1 /\ st Z = pow2 (st X))
/\ st X <> n }} ->>
{{ fun st => st Y + 2 * st Z = (pow2 (st X + 2))-1
/\ 2 * st Z = pow2 (st X + 1) }}
Z ::= AMult (ANum 2) (AId Z)
{{ fun st => st Y + st Z = (pow2 (st X + 2))-1
/\ st Z = pow2 (st X + 1) }};;
Y ::= APlus (AId Y) (AId Z)
{{ fun st => st Y = (pow2 (st X + 2))-1
/\ st Z = pow2 (st X + 1) }};;
X ::= APlus (AId X) (ANum 1)
{{ fun st => st Y = (pow2 (st X + 1))-1
/\ st Z = pow2 (st X) }}
END
{{ fun st => (st Y = (pow2 (st X + 1))-1 /\ st Z = pow2 (st X))
/\ st X = n }} ->>
{{ fun st => st Y = pow2 (n+1) - 1 }}
)%dcom.
Lemma pow2_plus_1 : forall n,
pow2 (n+1) = pow2 n + pow2 n.
Proof. induction n; simpl. reflexivity. omega. Qed.
Lemma pow2_le_1 : forall n, pow2 n >= 1.
Proof. induction n. simpl. constructor. simpl. omega. Qed.
Theorem dpow2_down_correct : forall n,
dec_correct (dpow2_down n).
Proof.
intro m. verify.
- (* 1 *)
rewrite pow2_plus_1. rewrite <- H0. reflexivity.
- (* 2 *)
rewrite <- plus_n_O.
rewrite <- pow2_plus_1. remember (st X) as n.
replace (pow2 (n + 1) - 1 + pow2 (n + 1))
with (pow2 (n + 1) + pow2 (n + 1) - 1) by omega.
rewrite <- pow2_plus_1.
replace (n + 1 + 1) with (n + 2) by omega.
reflexivity.
- (* 3 *)
rewrite <- plus_n_O. rewrite <- pow2_plus_1.
reflexivity.
- (* 4 *)
replace (st X + 1 + 1) with (st X + 2) by omega.
reflexivity.
Qed.
(** $Date: 2016-05-26 16:17:19 -0400 (Thu, 26 May 2016) $ *)
|
make_fgl_Lazard := proc(d)
global a,m,ma,am;
local T,u,x,y,q,i,k,Fm,sol;
T := table();
T["degree"] := d;
Order := d+2;
T["log_m"] := unapply(x + add(m[i]*x^(i+1),i=1..d-1),x);
T["exp_m"] :=
unapply(
convert(
solve(x = series(T["log_m"](y) + sin(y)^(d+1),y=0,d+1),y),
polynom,x
),
x
);
T["sum_m"] :=
unapply(
subs(u=1,expand(convert(series(T["exp_m"](T["log_m"](u*x)+T["log_m"](u*y)),u=0,d+1),polynom,u))),
x,y
):
Fm := T["sum_m"](x,y);
am[1] := m[1];
for k from 2 to d-1 do
q := igcd_alt([seq(binomial(k+1,i),i=1..k)])[2];
am[k] := -add(q[i]*coeff(coeff(Fm,x,i),y,k+1-i),i=1..k);
od:
sol := solve({seq(a[i]=am[i],i=1..d-1)},{seq(m[i],i=1..d-1)}):
for i from 1 to d-1 do ma[i] := subs(sol,m[i]); od:
T["log_a"] := unapply(collect(expand(eval(subs(m = ma,T["log_m"](x)))),x),x);
T["exp_a"] := unapply(collect(expand(eval(subs(m = ma,T["exp_m"](x)))),x),x);
T["sum_a"] := unapply(collect(expand(eval(subs(m = ma,T["sum_m"](x,y)))),{x,y}),x,y);
return eval(T);
end:
|
Require Import CompCert.Events.
Require Import CompCert.Smallstep.
Require Import CompCert.Behaviors.
Require Import Common.Definitions.
Require Import Common.Util.
Require Import Common.Linking.
Require Import Common.Memory.
Require Import Common.Traces.
Require Import Common.CompCertExtensions.
Require Import Intermediate.Machine.
Require Import Intermediate.GlobalEnv.
Require Import Lib.Extra.
Require Import Lib.Monads.
Require Import Intermediate.CS.
Import CS.
From mathcomp Require ssreflect ssrfun ssrbool eqtype.
Set Bullet Behavior "Strict Subproofs".
Module CS.
Import Intermediate.
(* A similar result is used above. Here is a weaker formulation. *)
Lemma initial_state_stack_state0 p s :
initial_state p s ->
stack_state_of s = Traces.stack_state0.
Proof.
intros Hini.
unfold initial_state, initial_machine_state in Hini.
destruct (prog_main p) as [mainP |]; simpl in Hini.
- destruct (prepare_procedures p (prepare_initial_memory p))
as [[mem dummy] entrypoints].
destruct (EntryPoint.get Component.main mainP entrypoints).
+ subst. reflexivity.
+ subst. reflexivity.
- subst. reflexivity.
Qed.
Lemma comes_from_initial_state_mergeable_sym :
forall s iface1 iface2,
Linking.mergeable_interfaces iface1 iface2 ->
comes_from_initial_state s (unionm iface1 iface2) ->
comes_from_initial_state s (unionm iface2 iface1).
Proof.
intros s iface1 iface2 [[_ Hdisjoint] _] Hfrom_initial.
rewrite <- (unionmC Hdisjoint).
exact Hfrom_initial.
Qed.
(* RB: NOTE: Consider possible alternatives on [CS.comes_from_initial_state]
complemented instead by, say, [PS.step] based on what we usually have in
the context, making for more direct routes. *)
Lemma comes_from_initial_state_step_trans p s t s' :
CS.comes_from_initial_state s (prog_interface p) ->
CS.step (prepare_global_env p) s t s' ->
CS.comes_from_initial_state s' (prog_interface p).
Admitted. (* Grade 2. *)
(* RB: TODO: These domain lemmas should now be renamed to reflect their
operation on linked programs. *)
Section ProgramLink.
Variables p c : program.
Hypothesis Hwfp : well_formed_program p.
Hypothesis Hwfc : well_formed_program c.
Hypothesis Hmergeable_ifaces :
mergeable_interfaces (prog_interface p) (prog_interface c).
Hypothesis Hprog_is_closed : closed_program (program_link p c).
Import ssreflect.
(* RB: NOTE: Check with existing results (though currently unused). *)
Lemma star_stack_cons_domm {s frame gps mem regs pc t} :
initial_state (program_link p c) s ->
Star (sem (program_link p c)) s t (frame :: gps, mem, regs, pc) ->
Pointer.component frame \in domm (prog_interface p) \/
Pointer.component frame \in domm (prog_interface c).
Proof.
intros Hini Hstar.
assert (H : Pointer.component frame \in domm (prog_interface (program_link p c))).
{ eapply CS.comes_from_initial_state_stack_cons_domm.
destruct (cprog_main_existence Hprog_is_closed) as [i [_ [? _]]].
exists (program_link p c), i, s, t.
split; first (destruct Hmergeable_ifaces; now apply linking_well_formedness).
repeat split; eauto. }
move: H. simpl. rewrite domm_union. now apply /fsetUP.
Qed.
End ProgramLink.
End CS.
|
(*
Copyright (C) 2017 M.A.L. Marques
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
*)
(* type: work_gga_x *)
a1 := 199.81:
a2 := 4.3476:
c1 := 0.8524:
c2 := 1.2264:
# This is Eq. (40) of the paper.
f0 := s -> c1*(1 - exp(-a1*s^2)) + c2*(1 - exp(-a2*s^4)):
f := x -> f0(X2S*x): |
{-# OPTIONS --cubical --safe #-}
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Agda.Primitive using (lzero)
module Cubical.Data.DescendingList.Strict.Properties
(A : Type₀)
(_>_ : A → A → Type₀)
where
open import Cubical.Data.DescendingList.Strict A _>_
open import Cubical.HITs.ListedFiniteSet renaming (_∈_ to _∈ʰ_)
import Cubical.Data.Empty as Empty
open Empty using (⊥-elim)
open import Cubical.Relation.Nullary.DecidableEq
open import Cubical.Relation.Nullary using (Dec; Discrete) renaming (¬_ to Type¬_)
unsort : SDL → LFSet A
unsort [] = []
unsort (cons x xs x>xs) = x ∷ unsort xs
module _ where
open import Cubical.Relation.Nullary
data Tri (A B C : Set) : Set where
tri-< : A → ¬ B → ¬ C → Tri A B C
tri-≡ : ¬ A → B → ¬ C → Tri A B C
tri-> : ¬ A → ¬ B → C → Tri A B C
module IsoToLFSet
(A-discrete : Discrete A)
(>-isProp : ∀ {x y} → isProp (x > y))
(tri : ∀ x y → Tri (y > x) (x ≡ y) (x > y))
(>-trans : ∀ {x y z} → x > y → y > z → x > z)
(>-irreflexive : ∀ {x} → Type¬ x > x)
where
Tri' : A → A → Set
Tri' x y = Tri (y > x) (x ≡ y) (x > y)
open import Cubical.Foundations.Logic
open import Cubical.HITs.PropositionalTruncation
-- Membership is defined via `LFSet`.
-- This computes just as well as a direct inductive definition,
-- and additionally lets us use the extra `comm` and `dup` paths to prove
-- things about membership.
_∈ˡ_ : A → SDL → hProp lzero
a ∈ˡ l = a ∈ʰ unsort l
Memˡ : SDL → A → hProp lzero
Memˡ l a = a ∈ˡ l
Memʰ : LFSet A → A → hProp lzero
Memʰ l a = a ∈ʰ l
>ᴴ-trans : ∀ x y zs → x > y → y >ᴴ zs → x >ᴴ zs
>ᴴ-trans x y [] x>y y>zs = >ᴴ[]
>ᴴ-trans x y (cons z zs _) x>y (>ᴴcons y>z) = >ᴴcons (>-trans x>y y>z)
≡ₚ-sym : ∀ {A : Set} {x y : A} → [ x ≡ₚ y ] → [ y ≡ₚ x ]
≡ₚ-sym p = recPropTrunc squash (λ p → ∣ sym p ∣) p
>-all : ∀ x l → x >ᴴ l → ∀ a → [ a ∈ˡ l ] → x > a
>-all x (cons y zs y>zs) (>ᴴcons x>y) a a∈l =
⊔-elim (a ≡ₚ y) (a ∈ˡ zs) (λ _ → (x > a) , >-isProp {x} {a})
(λ a≡ₚy → substₚ (λ q → x > q , >-isProp) (≡ₚ-sym a≡ₚy) x>y)
(λ a∈zs → >-all x zs (>ᴴ-trans x y zs x>y y>zs) a a∈zs)
a∈l
>-absent : ∀ x l → x >ᴴ l → [ ¬ (x ∈ˡ l) ]
>-absent x l x>l x∈l = ⊥-elim (>-irreflexive (>-all x l x>l x x∈l))
>ᴴ-isProp : ∀ x xs → isProp (x >ᴴ xs)
>ᴴ-isProp x _ >ᴴ[] >ᴴ[] = refl
>ᴴ-isProp x _ (>ᴴcons p) (>ᴴcons q) = cong >ᴴcons (>-isProp p q)
SDL-isSet : isSet SDL
SDL-isSet = isSetDL.isSetDL A _>_ >-isProp A-discrete where
open import Cubical.Data.DescendingList.Properties
insert : A → SDL → SDL
>ᴴinsert : {x y : A} {u : SDL} → y >ᴴ u → (y > x) → y >ᴴ insert x u
insert x [] = cons x [] >ᴴ[]
insert x (cons y zs good) with tri x y
insert x (cons y zs good) | tri-< x<y _ _ = cons y (insert x zs) (>ᴴinsert good x<y)
insert x (cons y zs good) | tri-≡ _ x≡y _ = cons y zs good
insert x (cons y zs good) | tri-> _ _ x>y = cons x (cons y zs good) (>ᴴcons x>y)
>ᴴinsert >ᴴ[] y>x = >ᴴcons y>x
>ᴴinsert {x} (>ᴴcons {y} y>ys) y>x with tri x y
>ᴴinsert {x} {y} (>ᴴcons {z} z>zs) y>x | tri-< _ _ e = >ᴴcons z>zs
>ᴴinsert {x} (>ᴴcons {y} y>ys) y>x | tri-≡ _ _ e = >ᴴcons y>ys
>ᴴinsert {x} (>ᴴcons {y} y>ys) y>x | tri-> _ _ _ = >ᴴcons y>x
insert-correct : ∀ x ys → unsort (insert x ys) ≡ (x ∷ unsort ys)
insert-correct x [] = refl
insert-correct x (cons y zs y>zs) with tri x y
... | tri-< _ _ _ =
y ∷ unsort (insert x zs) ≡⟨ (λ i → y ∷ (insert-correct x zs i)) ⟩
y ∷ x ∷ unsort zs ≡⟨ comm _ _ _ ⟩
x ∷ y ∷ unsort zs ∎
... | tri-≡ _ x≡y _ = sym (dup y (unsort zs)) ∙ (λ i → (x≡y (~ i)) ∷ y ∷ unsort zs)
... | tri-> _ _ _ = refl
insert-correct₂ : ∀ x y zs → unsort (insert x (insert y zs)) ≡ (x ∷ y ∷ unsort zs)
insert-correct₂ x y zs =
insert-correct x (insert y zs)
∙ cong (λ q → x ∷ q) (insert-correct y zs)
abstract
-- for some reason, making [exclude] non-abstract makes
-- typechecking noticeably slower
exclude : A → (A → hProp lzero) → (A → hProp lzero)
exclude x h a = ¬ a ≡ₚ x ⊓ h a
>-excluded : ∀ x xs → x >ᴴ xs → exclude x (Memʰ (x ∷ unsort xs)) ≡ Memˡ xs
>-excluded x xs x>xs = funExt (λ a → ⇔toPath (to a) (from a)) where
import Cubical.Data.Prod as D
import Cubical.Data.Sum as D
from : ∀ a → [ a ∈ˡ xs ] → [ ¬ a ≡ₚ x ⊓ (a ≡ₚ x ⊔ a ∈ˡ xs) ]
from a a∈xs = (recPropTrunc (snd ⊥) a≢x) D., inr a∈xs where
a≢x : Type¬ (a ≡ x)
a≢x = λ a≡x → (>-absent x xs x>xs (transport (λ i → [ a≡x i ∈ˡ xs ]) a∈xs ))
to : ∀ a → [ ¬ a ≡ₚ x ⊓ (a ≡ₚ x ⊔ a ∈ˡ xs) ] → [ a ∈ˡ xs ]
to a (a≢x D., x) = recPropTrunc (snd (a ∈ˡ xs)) (λ {
(D.inl a≡x) → ⊥-elim (a≢x a≡x);
(D.inr x) → x }) x
cons-eq : ∀ x xs x>xs y ys y>ys → x ≡ y → xs ≡ ys → cons x xs x>xs ≡ cons y ys y>ys
cons-eq x xs x>xs y ys y>ys x≡y xs≡ys i = cons (x≡y i) (xs≡ys i)
(>ᴴ-isProp (x≡y i) (xs≡ys i)
(transp (λ j → (x≡y (i ∧ j)) >ᴴ (xs≡ys) (i ∧ j)) (~ i) x>xs)
(transp (λ j → (x≡y (i ∨ ~ j)) >ᴴ (xs≡ys) (i ∨ ~ j)) i y>ys)
i)
Memˡ-inj-cons : ∀ x xs x>xs y ys y>ys → x ≡ y → Memˡ (cons x xs x>xs) ≡ Memˡ (cons y ys y>ys) → Memˡ xs ≡ Memˡ ys
Memˡ-inj-cons x xs x>xs y ys y>ys x≡y e =
Memˡ xs ≡⟨
sym (>-excluded x xs x>xs)
⟩ exclude x (Memʰ (x ∷ unsort xs)) ≡⟨
(λ i → exclude (x≡y i) (e i))
⟩ exclude y (Memʰ (y ∷ unsort ys)) ≡⟨
(>-excluded y ys y>ys)
⟩ Memˡ ys ∎
Memˡ-inj : ∀ l₁ l₂ → Memˡ l₁ ≡ Memˡ l₂ → l₁ ≡ l₂
Memˡ-inj [] [] eq = refl
Memˡ-inj [] (cons y ys y>ys) eq = ⊥-elim (transport (λ i → [ eq (~ i) y ]) (inl ∣ refl ∣))
Memˡ-inj (cons y ys y>ys) [] eq = ⊥-elim (transport (λ i → [ eq i y ]) (inl ∣ refl ∣))
Memˡ-inj (cons x xs x>xs) (cons y ys y>ys) e =
⊔-elim (x ≡ₚ y) (x ∈ʰ unsort ys)
(λ _ → ((cons x xs x>xs) ≡ (cons y ys y>ys)) , SDL-isSet _ _)
(recPropTrunc (SDL-isSet _ _) with-x≡y)
(⊥-elim ∘ x∉ys)
(transport (λ i → [ e i x ]) (inl ∣ refl ∣)) where
xxs = cons x xs x>xs
x∉ys : [ ¬ x ∈ˡ ys ]
x∉ys x∈ys = ⊥-elim (>-irreflexive y>y) where
y>x : y > x
y>x = (>-all y ys y>ys x x∈ys)
y∈xxs : [ y ∈ˡ (cons x xs x>xs) ]
y∈xxs = (transport (λ i → [ e (~ i) y ]) (inl ∣ refl ∣))
y>y : y > y
y>y = >-all y xxs (>ᴴcons y>x) y y∈xxs
with-x≡y : x ≡ y → (cons x xs x>xs) ≡ (cons y ys y>ys)
with-x≡y x≡y = cons-eq x xs x>xs y ys y>ys x≡y r where
r : xs ≡ ys
r = Memˡ-inj _ _ (Memˡ-inj-cons x xs x>xs y ys y>ys x≡y e)
unsort-inj : ∀ x y → unsort x ≡ unsort y → x ≡ y
unsort-inj x y e = Memˡ-inj x y λ i a → a ∈ʰ (e i)
insert-swap : (x y : A) (zs : SDL) → insert x (insert y zs) ≡ insert y (insert x zs)
insert-swap x y zs =
unsort-inj (insert x (insert y zs)) (insert y (insert x zs))
(unsort (insert x (insert y zs))
≡⟨ (λ i → insert-correct₂ x y zs i) ⟩
x ∷ y ∷ unsort zs
≡⟨ (λ i → comm x y (unsort zs) i) ⟩
y ∷ x ∷ unsort zs
≡⟨ (λ i → insert-correct₂ y x zs (~ i)) ⟩
unsort (insert y (insert x zs)) ∎)
insert-dup : (x : A) (ys : SDL) → insert x (insert x ys) ≡ insert x ys
insert-dup x ys = unsort-inj (insert x (insert x ys)) (insert x ys)
(
unsort (insert x (insert x ys))
≡⟨ (λ i → insert-correct₂ x x ys i) ⟩
x ∷ x ∷ unsort ys
≡⟨ dup x (unsort ys) ⟩
x ∷ unsort ys
≡⟨ (λ i → insert-correct x ys (~ i)) ⟩
unsort (insert x ys) ∎
)
sort : LFSet A → SDL
sort = LFSetRec.f [] insert insert-swap insert-dup SDL-isSet
unsort∘sort : ∀ x → unsort (sort x) ≡ x
unsort∘sort =
LFPropElim.f (λ x → unsort (sort x) ≡ x)
refl
(λ x {ys} ys-hyp → insert-correct x (sort ys) ∙ cong (λ q → x ∷ q) ys-hyp)
(λ xs → trunc (unsort (sort xs)) xs)
sort∘unsort : ∀ x → sort (unsort x) ≡ x
sort∘unsort x = unsort-inj (sort (unsort x)) x (unsort∘sort (unsort x))
SDL-LFSet-iso : Iso SDL (LFSet A)
SDL-LFSet-iso = (iso unsort sort unsort∘sort sort∘unsort)
SDL≡LFSet : SDL ≡ LFSet A
SDL≡LFSet = ua (isoToEquiv SDL-LFSet-iso)
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.