Datasets:
AI4M
/

text
stringlengths
0
3.34M
-- -------------------------------------------------------------- [ Lens.idr ] -- Description : Idris port of Control.Applicative -- Copyright : (c) Huw Campbell -- --------------------------------------------------------------------- [ EOH ] module Control.Lens import public Control.Lens.At import public Control.Lens.Types import public Control.Lens.Const import public Control.Lens.First import public Control.Lens.Getter import public Control.Lens.Review import public Control.Lens.Setter import public Control.Lens.Prism import public Control.Lens.Tuple import public Control.Lens.Maths import public Control.Lens.Market import public Control.Lens.Iso import public Control.Lens.Lens import public Control.Monad.Identity import public Data.Bifunctor import public Data.Bitraversable import public Data.Contravariant import public Data.Curried import public Data.Profunctor import public Data.Tagged import public Data.Yoneda -- --------------------------------------------------------------------- [ EOF ]
#' Evaluate Function Calls on HPC Schedulers (LSF, SGE, SLURM) #' #' Provides the \code{Q} function to send arbitrary function calls to #' workers on HPC schedulers without relying on network-mounted storage. #' Allows using remote schedulers via SSH. #' #' Under the hood, this will submit a cluster job that connects to the master #' via TCP the master will then send the function and argument chunks to the #' worker and the worker will return the results to the master until everything #' is done and you get back your result #' #' Computations are done entirely on the network and without any temporary #' files on network-mounted storage, so there is no strain on the file system #' apart from starting up R once per job. This removes the biggest bottleneck #' in distributed computing. #' #' Using this approach, we can easily do load-balancing, i.e. workers that get #' their jobs done faster will also receive more function calls to work on. This #' is especially useful if not all calls return after the same time, or one #' worker has a high load. #' #' For more detailed usage instructions, see the documentation of the \code{Q} #' function. #' #' @name clustermq #' @docType package #' @useDynLib clustermq #' @import Rcpp NULL
import torch import torch.optim as optim from torch.autograd import Variable import numpy as np from rllab.misc.overrides import overrides from pytorchrl.reward_functions.airl_discriminator import AIRLDiscriminator from pytorchrl.irl.fusion_manager import RamFusionDistr from pytorchrl.irl.imitation_learning import SingleTimestepIRL from pytorchrl.misc.utils import TrainingIterator class AIRL(SingleTimestepIRL): """ Adversarial Inverse Reinforcement Learning Similar to GAN_GCL except operates on single timesteps. """ def __init__( self, env_spec, expert_trajs=None, discriminator_class=AIRLDiscriminator, discriminator_args={}, optimizer_class=optim.Adam, discriminator_lr=1e-3, l2_reg=0, discount=1.0, fusion=False, ): """ Parameters ---------- env_spec (): Environment expert_trajs (): The demonstration from experts, the trajectories sampled from experts policy, positive samples used to train discriminator discriminator_class (): Discriminator class optimizer_class (): Optimizer class discrmininator (float): learning rate for discriminator discriminator_args (dict): dict of arguments for discriminator l2_reg (float): L2 penalty for discriminator parameters discount (float): discount rate for reward fusion (boolean): whether use trajectories from old iterations to train. """ super(AIRL, self).__init__() self.obs_dim = env_spec.observation_space.flat_dim self.action_dim = env_spec.action_space.flat_dim # Get expert's trajectories self.expert_trajs = expert_trajs # expert_trajs_extracted will be a single matrix with N * dim # where N is the total sample number, and dim is the dimension of # action or state self.expert_trajs_extracted = self.extract_paths(expert_trajs) # Build energy model self.discriminator = discriminator_class( self.obs_dim, self.action_dim, **discriminator_args) self.optimizer = optimizer_class(self.discriminator.parameters(), lr=discriminator_lr, weight_decay=l2_reg) if fusion: self.fusion = RamFusionDistr(100, subsample_ratio=0.5) else: self.fusion = None def fit(self, trajs, policy=None, batch_size=32, max_itrs=100, logger=None, **kwargs): """ Train the AIRL Discriminator to distinguish expert from learner. Parameters ---------- trajs (list): trajectories sample from current policy batch_size (integer): How many positive sample or negative samples max_iters (integer): max iteration number for training discriminator kwargs (dict): Returns ------- mean_loss (numpy.ndarray): A scalar indicate the average discriminator loss (Binary Cross Entropy Loss) of total max_iters iterations """ if self.fusion is not None: # Get old trajectories old_trajs = self.fusion.sample_paths(n=len(trajs)) # Add new trajectories for future use self.fusion.add_paths(trajs) # Mix old and new trajectories trajs = trajs + old_trajs # Eval the prob of the trajectories under current policy # The result will be fill in part of the discriminator self.eval_trajectory_probs(trajs, policy, insert=True) self.eval_trajectory_probs(self.expert_trajs, policy, insert=True) obs, acts, trajs_probs = self.extract_paths(trajs, keys=('observations', 'actions', 'a_logprobs')) expert_obs, expert_acts, expert_probs = self.extract_paths(self.expert_trajs, keys=('observations', 'actions', 'a_logprobs')) # Train discriminator for it in TrainingIterator(max_itrs, heartbeat=5): # lprobs_batch is the prob of obs and act under current policy obs_batch, act_batch, lprobs_batch = \ self.sample_batch(obs, acts, trajs_probs, batch_size=batch_size) # expert_lprobs_batch is the experts' obs and act under current policy expert_obs_batch, expert_act_batch, expert_lprobs_batch = \ self.sample_batch(expert_obs, expert_acts, expert_probs, batch_size=batch_size) labels = np.zeros((batch_size*2, 1)) labels[batch_size:] = 1.0 obs_batch = np.concatenate([obs_batch, expert_obs_batch], axis=0) act_batch = np.concatenate([act_batch, expert_act_batch], axis=0) # obs_batch is of size N * obs_dim, act_batch is of size N * act_dim # where N is the batch size. However, lprobs_batch if of size N. # Thus, we need to use expand_dims to reshape it to N * 1 lprobs_batch = np.expand_dims( np.concatenate([lprobs_batch, expert_lprobs_batch], axis=0), axis=1).astype(np.float32) obs_var = Variable(torch.from_numpy(obs_batch)).type(torch.FloatTensor) act_var = Variable(torch.from_numpy(act_batch)).type(torch.FloatTensor) label_var = Variable(torch.from_numpy(labels)).type(torch.FloatTensor) lprobs_var = Variable(torch.from_numpy(lprobs_batch)).type(torch.FloatTensor) loss = self.discriminator(obs_var, act_var, lprobs_var, label_var) self.optimizer.zero_grad() loss.backward() self.optimizer.step() it.record('loss', loss.data.numpy()) if it.heartbeat: print(it.itr_message()) mean_loss = it.pop_mean('loss') print('\tLoss:%f' % mean_loss) if logger: reward = self.discriminator.prediction(obs, acts) logger.record_tabular('IRLAverageReward', np.mean(reward)) logger.record_tabular('IRLAverageLogQtau', np.mean(trajs_probs)) logger.record_tabular('IRLMedianLogQtau', np.median(trajs_probs)) reward = self.discriminator.prediction(expert_obs, expert_acts) logger.record_tabular('IRLAverageExpertReward', np.mean(reward)) logger.record_tabular('IRLAverageExpertLogQtau', np.mean(expert_probs)) logger.record_tabular('IRLMedianExpertLogQtau', np.median(expert_probs)) return mean_loss def eval(self, paths, **kwargs): """ Return the estimate reward of the paths. Parameters ---------- paths (list): See doc of eval_trajectory_probs method Returns ------- rewards (list): estimated reward arrange according to unpack method. """ obs, acts = self.extract_paths(paths) rewards = self.discriminator.prediction(obs, acts) rewards = rewards[:,0] return self.unpack(rewards, paths) def eval_trajectory_probs(self, paths, policy, insert=False): """ Evaluate probability of paths under current policy Parameters ---------- paths (list): Each element is a dict. Each dict represent a whole trajectory, contains observations, actions, rewards, env_infos, agent_infos. observations and actions is of size T * dim, where T is the length of the trajectory, and dim is the dimension of observation or action. rewards is a vector of length T. agent_infos contains other information about the policy. For example, when we have a Gaussian policy, it may contain the means and log_stds of the Gaussian policy at each step. policy (pytorchrl.policies.base.Policy): policy object used to evaluate the probabilities of trajectories. insert (boolean): Whether to insert the action probabilities back into the paths """ for path in paths: actions, agent_infos = policy.get_actions(path['observations']) path['agent_infos'] = agent_infos return self.compute_path_probs(paths, insert=insert) @overrides def get_params(self): """ Get the value of the model parameters in one flat Tensor Returns ------- params (torch.Tensor): A torch Tensor contains the parameter of the module. """ return self.discriminator.get_param_values() @overrides def set_params(self, params): """ Set the value of model parameter using parameters. Parameters ---------- params (torch.Tensor): A tensors, this new_parameters should have the same format as the return value of get_param_values method. """ self.discriminator.set_param_values(params)
(* Title: HOL/Auth/n_flash_lemma_on_inv__31.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_flash Protocol Case Study*} theory n_flash_lemma_on_inv__31 imports n_flash_base begin section{*All lemmas on causal relation between inv__31 and some rule r*} lemma n_PI_Remote_GetVsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_PI_Remote_Get src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_PI_Remote_Get src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_PI_Remote_GetXVsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_PI_Remote_GetX src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_PI_Remote_GetX src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_PI_Remote_PutXVsinv__31: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_PI_Remote_PutX dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_PI_Remote_PutX dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_PI_Remote_ReplaceVsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_PI_Remote_Replace src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_PI_Remote_Replace src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_NakVsinv__31: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Nak dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Nak dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_Nak__part__0Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__0 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Nak__part__0 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_Nak__part__1Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__1 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Nak__part__1 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_Nak__part__2Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__2 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Nak__part__2 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_Get__part__0Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Get__part__0 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Get__part__0 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_Get__part__1Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Get__part__1 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Get__part__1 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_Put_HeadVsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put_Head N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Put_Head N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_PutVsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Put src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_Get_Put_DirtyVsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put_Dirty src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Put_Dirty src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_Get_NakVsinv__31: assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Nak src dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Nak src dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_Get_PutVsinv__31: assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Put src dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Put src dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_Get_Put_HomeVsinv__31: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Get_Put_Home dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_Get_Put_Home dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_Nak__part__0Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__0 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__0 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_Nak__part__1Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__1 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__1 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_Nak__part__2Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__2 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__2 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_GetX__part__0Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__0 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__0 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_GetX__part__1Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__1 src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__1 src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_1Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_1 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_1 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_2Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_2 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_2 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_3Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_3 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_3 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_4Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_4 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_4 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_5Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_5 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_5 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_6Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_6 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_6 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_7__part__0Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__0 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__0 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_7__part__1Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__1 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__1 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_7_NODE_Get__part__0Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__0 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__0 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_7_NODE_Get__part__1Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__1 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__1 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_8_HomeVsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''HomeShrSet'')) (Const true)))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_8_Home_NODE_GetVsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home_NODE_Get N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home_NODE_Get N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''HomeShrSet'')) (Const true)))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_8Vsinv__31: assumes a1: "(\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8 N src pp)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src pp where a1:"src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8 N src pp" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>pp~=p__Inv4)\<or>(src~=p__Inv4\<and>pp=p__Inv4)\<or>(src~=p__Inv4\<and>pp~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>pp~=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_8_NODE_GetVsinv__31: assumes a1: "(\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8_NODE_Get N src pp)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src pp where a1:"src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8_NODE_Get N src pp" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>pp~=p__Inv4)\<or>(src~=p__Inv4\<and>pp=p__Inv4)\<or>(src~=p__Inv4\<and>pp~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>pp~=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_9__part__0Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__0 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__0 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_9__part__1Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__1 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__1 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_10_HomeVsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_10_Home N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_10_Home N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''HomeShrSet'')) (Const true)))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_10Vsinv__31: assumes a1: "(\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_10 N src pp)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src pp where a1:"src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_10 N src pp" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>pp~=p__Inv4)\<or>(src~=p__Inv4\<and>pp=p__Inv4)\<or>(src~=p__Inv4\<and>pp~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>pp~=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>pp~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Local_GetX_PutX_11Vsinv__31: assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_11 N src)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_11 N src" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Local'')) (Const true))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_GetX_NakVsinv__31: assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_Nak src dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_Nak src dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_GetX_PutXVsinv__31: assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_PutX src dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_PutX src dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') dst) ''CacheState'')) (Const CACHE_E))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_GetX_PutX_HomeVsinv__31: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_GetX_PutX_Home dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_GetX_PutX_Home dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_PutVsinv__31: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Put dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_Put dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "((formEval (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true)) s))\<or>((formEval (neg (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true))) s))" by auto moreover { assume c1: "((formEval (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true)) s))" have "?P1 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume c1: "((formEval (neg (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') p__Inv4) ''InvMarked'')) (Const true))) s))" have "?P1 s" proof(cut_tac a1 a2 b1 c1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately have "invHoldForRule s f r (invariants N)" by satx } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_Remote_PutXVsinv__31: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_PutX dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_PutX dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_NI_InvVsinv__31: assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Inv dst)" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Inv dst" apply fastforce done from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__31 p__Inv4" apply fastforce done have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(dst=p__Inv4)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(dst~=p__Inv4)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_PI_Local_GetX_PutX__part__0Vsinv__31: assumes a1: "r=n_PI_Local_GetX_PutX__part__0 " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_WbVsinv__31: assumes a1: "r=n_NI_Wb " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_StoreVsinv__31: assumes a1: "\<exists> src data. src\<le>N\<and>data\<le>N\<and>r=n_Store src data" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_3Vsinv__31: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_3 N src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_1Vsinv__31: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_1 N src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_GetX_GetX__part__1Vsinv__31: assumes a1: "r=n_PI_Local_GetX_GetX__part__1 " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_GetX_GetX__part__0Vsinv__31: assumes a1: "r=n_PI_Local_GetX_GetX__part__0 " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_Store_HomeVsinv__31: assumes a1: "\<exists> data. data\<le>N\<and>r=n_Store_Home data" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_ReplaceVsinv__31: assumes a1: "r=n_PI_Local_Replace " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_existsVsinv__31: assumes a1: "\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_InvAck_exists src pp" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_PutXVsinv__31: assumes a1: "r=n_PI_Local_PutX " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_Get_PutVsinv__31: assumes a1: "r=n_PI_Local_Get_Put " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_ShWbVsinv__31: assumes a1: "r=n_NI_ShWb N " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_GetX_PutX_HeadVld__part__0Vsinv__31: assumes a1: "r=n_PI_Local_GetX_PutX_HeadVld__part__0 N " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_ReplaceVsinv__31: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Replace src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Remote_GetX_Nak_HomeVsinv__31: assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_GetX_Nak_Home dst" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_PutXAcksDoneVsinv__31: assumes a1: "r=n_NI_Local_PutXAcksDone " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_GetX_PutX__part__1Vsinv__31: assumes a1: "r=n_PI_Local_GetX_PutX__part__1 " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Remote_Get_Nak_HomeVsinv__31: assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Get_Nak_Home dst" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_exists_HomeVsinv__31: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_exists_Home src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Replace_HomeVsinv__31: assumes a1: "r=n_NI_Replace_Home " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Local_PutVsinv__31: assumes a1: "r=n_NI_Local_Put " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Nak_ClearVsinv__31: assumes a1: "r=n_NI_Nak_Clear " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_Get_GetVsinv__31: assumes a1: "r=n_PI_Local_Get_Get " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_Nak_HomeVsinv__31: assumes a1: "r=n_NI_Nak_Home " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_InvAck_2Vsinv__31: assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_2 N src" and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_PI_Local_GetX_PutX_HeadVld__part__1Vsinv__31: assumes a1: "r=n_PI_Local_GetX_PutX_HeadVld__part__1 N " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_NI_FAckVsinv__31: assumes a1: "r=n_NI_FAck " and a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__31 p__Inv4)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done end
State Before: α : Type u β : Type u_1 γ : Type u_2 δ : Type ?u.19964 ε : Type ?u.19967 f : α → β → γ i : ℕ l : List α l' : List β h : i < length (zipWith f l l') ⊢ i < length l' State After: α : Type u β : Type u_1 γ : Type u_2 δ : Type ?u.19964 ε : Type ?u.19967 f : α → β → γ i : ℕ l : List α l' : List β h : i < length l ∧ i < length l' ⊢ i < length l' Tactic: rw [length_zipWith, lt_min_iff] at h State Before: α : Type u β : Type u_1 γ : Type u_2 δ : Type ?u.19964 ε : Type ?u.19967 f : α → β → γ i : ℕ l : List α l' : List β h : i < length l ∧ i < length l' ⊢ i < length l' State After: no goals Tactic: exact h.right
from stn import STN, loadSTNfromJSONfile from LP import * from relax import * from util import * from dispatch import * from probability import * import matplotlib.pyplot as plt from scipy.stats import norm import numpy as np import glob import json import os import random import math ## # \file empirical.py # \brief perform empirical analysis on degree of controllability metrics. # ------------------------------------------------------------------------- # Generating Results # ------------------------------------------------------------------------- def generate_DDC_result(data_path, sim_num, out_name, gauss, relaxed): data_list = glob.glob(os.path.join(data_path, '*.json')) result = {} for data in data_list: dispatch = simulate_file(data, sim_num, False, gauss, relaxed) ddc = prob_of_DC_file(data, gauss) path, name = os.path.split(data) result[name] = [ddc, dispatch] #return result # Save the results with open(out_name, 'w') as f: json.dump(result, f) def generate_result_relax(data_path, out_name): data_list = glob.glob(os.path.join(data_path, '*.json')) result = {} for data in data_list: STN = loadSTNfromJSONfile(data) _, count, _, _ = relaxSearch(STN) path, name = os.path.split(data) result[name] = count # return result # Save the results with open(out_name, 'w') as f: json.dump(result, f) def compute_corr(values:dict): pairs = list(values.items()) x_vals = [x[1][0] for x in pairs] y_vals = [x[1][1] for x in pairs] return np.corrcoef(x_vals,y_vals) def identify_outliers(values:dict, threshold): pairs = list(values.items()) x_vals = [x[1][0] for x in pairs] y_vals = [x[1][1] for x in pairs] outliers = [] for i in range(len(x_vals)): if abs(x_vals[i] - y_vals[i]) > threshold: outliers.append(pairs[i]) return outliers def plot_from_dict(values:dict): pairs = list(values.items()) x_vals = [x[1][0] for x in pairs] y_vals = [x[1][1] for x in pairs] plt.scatter(x_vals,y_vals) plt.xlabel("Degree of Controllability") plt.ylabel("Success Rate") plt.xticks(np.arange(0, 1, step=0.2)) plt.show() def sample_from_folder(folder_name, gauss=False, success='default', LP='original'): results = {} for filename in os.listdir(folder_name): print(filename) STN = loadSTNfromJSONfile(folder_name + filename) degree, success_rate = sample(STN, success, LP, gauss) results[filename] = (degree, success_rate) return results # ------------------------------------------------------------------------- # Strong controllability # ------------------------------------------------------------------------- ## # \fn newInterval(STN, epsilons) # \brief compute shrinked contingent intervals # # @param STN an input STN # @param epsilons a dictionary of epsilons returned by our LP # # @return Return a list of original contingent intervals and a list of shrinked # contingent intervals def newInterval(STN, epsilons): original = [] shrinked = [] for edge in list(STN.contingentEdges.values()): orig = (-edge.Cji, edge.Cij) original.append(orig) low, high = epsilons[(edge.j, '-')].varValue, epsilons[(edge.j, '+')].varValue new = (-edge.Cji+low, edge.Cij-high) shrinked.append(new) return original, shrinked ## # \fn calculateMetric(original, shrinked) # \brief Compute our degree of strong controllability # # @param original A list of original contingent intervals # @param shrinked A list of shrinked contingent intervals # # @return the value of degree of strong controllability def calculateMetric(original, shrinked, gauss=False): if not gauss: orig = 1 new = 1 for i in range(len(original)): x, y = original[i] orig *= y-x a, b = shrinked[i] new *= b-a return new, orig, float(new/orig) else: total = 1 for i in range(len(original)): x, y = original[i] mean = (x + y)/2 sd = (y - mean)/2 a, b = shrinked[i] prob_contained = norm.cdf(b, mean, sd) - norm.cdf(a, mean, sd) total *= prob_contained return total ## # \fn scheduleIsValid(network: STN, schedule: dict) -> STN # \brief Given an STNU and schedule, checks if the schedule is valid or not. # # @param network An input STNU # # @param schedule A dictionary whose keys are vertex IDs and whose values # are the times selected for those events. # # @return True/False if the schedule is valid/invalid. def scheduleIsValid(network: STN, schedule: dict) -> STN: ## Check that the schedule is actually defined on all relevant vertices # This number is arbitrary - any sufficiently small, positive constant works epsilon = 0.001 vertices = network.getAllVerts() for vertex in vertices: vertexID = vertex.nodeID assert vertexID in schedule # Check that the schedule is valid edges = network.getAllEdges() for edge in edges: # Loop through the constraints start = edge.i fin = edge.j uBound = edge.Cij lBound = -edge.Cji boundedAbove = (schedule[fin] - schedule[start]) <= uBound + epsilon boundedBelow = (schedule[fin] - schedule[start]) >= lBound - epsilon # Check if constraint is not satisfied if ((not boundedAbove) or (not boundedBelow)): return False return True # ------------------------------------------------------------------------- # Sample to get success rate # ------------------------------------------------------------------------- ## # \fn sampleOnce(original, shrinked) # \brief Check whether a randomly generated realization is inside strong # controllable region # # @param original A list of original contingent intervals # @param shrinked A list of shrinked contingent intervals # # @return Return True if the random realization falls into the strongly # controllable region. Return False otherwise def sampleOnce(original, shrinked, gauss=False): for i in range(len(original)): x,y = original[i] a,b = shrinked[i] if not gauss: real = random.uniform(x, y) else: real = random.normalvariate((x+y)/2, (y-x)/4) if real < a or real > b: return False return True ## # \fn getSchedule(STN, schedule) # \brief Construct a possible schedule for an STN given a fixed decision # # @param STN An STNU we want to test # @param schedule A dictionary with the fixed decision # # @return a schedule for the given STNU def getSchedule(STN, schedule, gauss): for edge in list(STN.contingentEdges.values()): start_time = schedule[edge.i] x = -edge.Cji y = edge.Cij if gauss: real = random.normalvariate((x+y)/2, (y-x)/4) else: real = random.uniform(x, y) time = start_time + real schedule[edge.j] = time return schedule ## # \fn altSampleOnce(STN, schedule) # \brief Another strategy of sampling to test strong controllability # # @param STN An STNU we want to test # @param schedule A dictionary with the fixed decision # # @return Return True if the schedule generate is valid. Return False otherwise def altSampleOnce(STN, schedule, gauss): s = getSchedule(STN, schedule, gauss) if scheduleIsValid(STN, s): return True return False ## # \fn sample(STN, success='default', LP='original') # \brief Compute the success rate of an STNU by randomly sample 50000 times # # \note There are three kinds of LPs we can use to compute the amount of # uncertainty removed from each contingent interval # # @param STN An STN to test # @param LP The type of LP we want to use # # @return The degree of controllability and the success rate for input STN def sample(STN, success='default', LP='original', gauss=False): if LP == 'original': _, bounds, epsilons = originalLP(STN.copy(), naiveObj=False) elif LP == 'proportion': _, _, bounds, epsilons = proportionLP(STN.copy()) else: _, _, bounds, epsilons = maxminLP(STN.copy()) original, shrinked = newInterval(STN, epsilons) if not gauss: degree = calculateMetric(original, shrinked)[2] else: degree = calculateMetric(original, shrinked, gauss) schedule = {} for i in list(STN.verts.keys()): if i not in STN.uncontrollables: time = (bounds[(i, '-')].varValue + bounds[(i, '+')].varValue)/2 schedule[i] = time # Collect the sample data. count = 0 for i in range(10000): if success=='default': result = sampleOnce(original, shrinked, gauss) else: result = altSampleOnce(STN, schedule.copy(), gauss) if result: count += 1 success = float(count/10000) return degree, success ## # \fn sampleAll(listOfFile, success='default', LP='original') # \brief Compute the success rate for a list of STNUs # # @param STN An STN to test # @param LP The type of LP we want to use # # @return a list of (degree, success) tuple for STNUs in the list def sampleAll(listOfFile, success='default', LP='original'): result = {} for fname in listOfFile: p, f = os.path.split(fname) print("Processing file: ", f) STN = loadSTNfromJSONfile(fname) degree, success = sample(STN, success=success, LP=LP) result[f] = (degree, success) return result # --------------------------------- # Analyze result from the solver # --------------------------------- ## # \fn actual_vol(result_name) # \brief Calculate the actual volume from solver's result # # @param result_name The path to json file that contains solver's result # # @return A dictionary in which keys are the name of the network and values are # the maximized volume that guarantees strong controllability def actual_vol(result_name): with open(result_name, 'r') as f: result = json.loads(f.read()) actual_Dict = {} for x in list(result.keys()): v = result[x] actual = math.exp(v) actual_Dict[x] = actual return actual_Dict ## # \fn compare(actual_Dict) # \brief Compute the actual and approximated degree of strong controllability # # @param actual_Dict A dictionary containing actual volume # # @return A dictionary in which keys are the name of the network and values are # (approximation, actual degree) def compare(actual_Dict): dynamic_folder = input("Please input directory with DC STNUs:\n") uncertain_folder = input("Please input directory with uncertain STNUs:\n") compare_Dict = {} for x in list(actual_Dict.keys()): actual_volume = actual_Dict[x] if x[:7] == 'dynamic': fname = os.path.join(dynamic_folder, x + '.json') else: fname = os.path.join(uncertain_folder, x + '.json') STN = loadSTNfromJSONfile(fname) _, _, epsilons = originalLP(STN.copy()) original, shrinked = newInterval(STN, epsilons) old, new, degree = calculateMetric(original, shrinked) actual = float(actual_volume / old) compare_Dict[x] = (degree, actual) return compare_Dict def plot(): # Plot actual vs approximated result_name = input("Please input path to result json file: \n") actual_Dict = actual_vol(result_name) compare_Dict = compare(actual_Dict) L = list(compare_Dict.values()) x = [d[0] for d in L] y = [d[1] for d in L] plt.plot(x,y,'o') plt.xlim(-0.04, 1.04) plt.ylim(-0.04, 1.04) plt.xlabel('Approximated degree of strong controllability') plt.ylabel('Actual degree of strong controllability') plt.title('Accuracy of Approximation Using DSC LP') out_folder = input("Please input the output directory:\n") fname = os.path.join(out_folder, 'accuracy.png') plt.savefig(fname, format='png') plt.close() # Plot success rate dynamic_folder = input("Please input directory with DC STNUs:\n") uncertain_folder = input("Please input directory with uncertain STNUs:\n") listOfFile = [] listOfFile += glob.glob(os.path.join(dynamic_folder, '*.json')) listOfFile += glob.glob(os.path.join(uncertain_folder, '*.json')) resultD_1= sampleAll(listOfFile, success='new') result_1 = list(resultD_1.values()) x_1 = [d[0] for d in result_1] y_1 = [d[1] for d in result_1] plt.plot(x_1, y_1, 'o') plt.xlim(-0.04, 1.04) plt.ylim(-0.04, 1.04) plt.xlabel("Approximated degree of strong controllability") plt.ylabel("Probabiliy of success") plt.title("Success rate of ...") out_folder = input("Please input the output directory:\n") fname = os.path.join(out_folder, 'success_rate.png') plt.savefig(fname, format='png') plt.close() # ------------------------------------------------------------------------- # Dynamic controllability # ------------------------------------------------------------------------- ## # \fn dynamicMetric(STN, new_STN) # \brief compute the degree of controllability # # @param STN An input STNU # @param new_STN Original STNU with contingent intervals shrinked to be DC # # @return degree of dynamic controllability def dynamicMetric(STN, new_STN): original = [(-e.Cji, e.Cij) for e in list(STN.contingentEdges.values())] shrinked = [(-e.Cji, e.Cij) for e in list(new_STN.contingentEdges.values())] return calculateMetric(original, shrinked) ## # \fn computeDynamic(nlp=True) # \brief compute degree of controllability for all uncontrollable STNUs we have # # @param nlp Flag indicating whether we want to use NLP # # @return A dictionary in which keys are names of the STNU json file and value # is the degree of controllability def computeDynamic(nlp=False): uncertain_folder = input("Please input uncertain STNUs folder:\n") chain_folder = input("Please input chain STNUs folde:\n") listOfFile = [] listOfFile += glob.glob(os.path.join(uncertain_folder, '*.json')) listOfFile += glob.glob(os.path.join(chain_folder, '*.json')) degree = {} for fname in listOfFile: p, f = os.path.split(fname) print("Processing: ", f) STN = loadSTNfromJSONfile(fname) new_STN, count = relaxSearch(STN.copy(), nlp=nlp) if not new_STN: degree[f] = 0 else: degree[f] = dynamicMetric(STN.copy(), new_STN.copy())[2] return degree ## # \fn generateData(num) # \brief generate uncontrollable STNUs with decent degree of dynamic # controllability # # @param num number of STNUs we want to generate def generateData(num): data_folder = input("Please input destination directory:\n") while num != 0: new = generateChain(50, 2500) result, conflicts, bounds, weight = DC_Checker(new.copy(), report=False) if result: print("Failed. Dynamically controllable...") continue new_STN, count = relaxSearch(new.copy(), nlp=False) if not new_STN: print("Failed. Not able to resolve conflict...") continue degree = dynamicMetric(new.copy(), new_STN.copy())[2] if degree >= 0.2: fname = 'new' + str(num) + '.json' print("\nGENERATED ONE SUCCESSFUL CHAIN!!!!!!\n") new.toJSON(fname, data_folder) num -= 1 else: print("Failed. Degree is too small....") ## # \fn readNeos(filename, json_folder) # \brief compute degree of dynamic controllability from the output file of # Neos Server # # @param filename The name of the input txt file # @json_folder The directory containing STNUs we generated # # @return an STNU's volume of Omega and Omega' and the computed degree of DC def readNeos(filename, json_folder): f = open(filename, 'r') for i in range(3): line = f.readline() obj_value = float(line[17:]) actual = math.exp(obj_value) p, f = os.path.split(filename) fname = f[:-4] + '.json' json_file = os.path.join(json_folder, fname) STN = loadSTNfromJSONfile(json_file) result, conflicts, bounds, weight = DC_Checker(STN.copy(), report=False) contingent = bounds['contingent'] total = 1 for (i,j) in list(STN.contingentEdges.keys()): edge = STN.contingentEdges[(i,j)] length = edge.Cij + edge.Cji total *= length if (i,j) not in contingent: actual *= length return actual, total, float(actual/total) ## # \fn processNeos() # \brief compute degree of dynamic controllability from the output file of # Neos Server for all new chains we generated # # @return A dictionary of dictionary with information about an STNU's # volume of Omega and Omega', and the computed degree of DC def processNeos(): txt_folder = input("Please input folder with txt Neos file:\n") json_folder = input("Please input folder with json file:\n") result = {} text_L = glob.glob(os.path.join(txt_folder, '*.txt')) for filename in text_L: p, f = os.path.split(filename) fname = f[:-4] + '.json' print("Processing: ", fname) new, orig, degree = readNeos(filename, json_folder) result[fname] = {} result[fname]['shrinked'] = new result[fname]['original'] = orig result[fname]['degree'] = degree output_folder = input("Please input output folder:\n") filename = os.path.join(output_folder, 'result_neos.json') with open(filename, 'w') as f: json.dump(result, f) return result ## # \fn processOptimal() # \brief compute degree of dynamic controllability using the optimal solution # for all new chains we generated # # @return A dictionary of dictionary with information about an STNU's # volume of Omega and Omega', and the computed degree of DC def processOptimal(): json_folder = input("Please input folder with json file:\n") json_list = glob.glob(os.path.join(json_folder, '*.json')) result = {} for fname in json_list: p, f = os.path.split(fname) print("Processing: ", f) STN = loadSTNfromJSONfile(fname) new_STN, count = relaxSearch(STN.copy()) new, orig, degree = dynamicMetric(STN.copy(), new_STN.copy()) result[f] = {} result[f]['shrinked'] = new result[f]['original'] = orig result[f]['degree'] = degree output_folder = input("Please input output folder:\n") filename = os.path.join(output_folder, 'result_optimal.json') with open(filename, 'w') as f: json.dump(result, f) return result # ------------------------------------------------------------------------- # Generate STNU # ------------------------------------------------------------------------- ## # \fn generateChain(task, free) # \brief generate a consistent STNUs in a chainlike structure # # \details The chainlike STNU is very common in real life application, such as # AUV need to drive to different sites and complete task at each site. # Driving to different cite is contingent, but the agent can decide # how long it takes to complete the task. # # @param task The number of tasks need to be completed # @param free The total length of the free constraint intervals we want # in the generated STNU # # @return Return the generated STNU def generateChain(task, free): totalEvent = 2 * (task+1) while True: new = STN() for i in range(totalEvent): new.addVertex(i) L = [random.randint(0, 100) for i in range(task)] s = sum(L) L = [int(x/s*free) for x in L] diff = free - sum(L) L[-1] += diff bounds = [] for i in range(totalEvent-1): type = 'stcu' if i % 2==0 else 'stc' if type == 'stcu': lowBound = random.randint(0,50) length = random.randint(1,50) bounds.append((lowBound, lowBound+length)) new.addEdge(i, i+1, lowBound, lowBound+length, type='stcu') else: lowBound = random.randint(0,100) length = L[int((i-1)/2)] bounds.append((lowBound, lowBound+length)) new.addEdge(i, i+1, lowBound, lowBound+length) low = sum([x[0] for x in bounds]) high = sum([x[1] for x in bounds]) S = sum([e.Cij+e.Cji for e in list(new.contingentEdges.values())]) # makespan = random.randint(int(0.5*low), low) makespan = low + int(0.6*S) print(low, makespan, high) new.addEdge(0,task*2+1, 0, makespan) if new.isConsistent(): return new def generateParallelChain(agent, task): total_event = ((2 * task) + 1) * agent + 1 while True: new = STN() new.addVertex(0) for i in range(total_event): new.addVertex(i+1) contingent = True for i in range(agent): start = ((2 * task) + 1) * i + 1 end = ((2 * task) + 1) * (i + 1) new.addEdge(0, start, 0, 15) for j in range(start, end): type = 'stcu' if contingent else 'stc' contingent = not contingent if type == 'stcu': # low = round(random.uniform(10, 20), 2) # high = round(random.uniform(30, 40), 2) low = random.randint(10, 20) high = random.randint(30, 40) new.addEdge(j, j+1, low, high, type='stcu') else: # low = round(random.uniform(5, 10), 2) # high = round(random.uniform(30, 35), 2) low = random.randint(5, 10) high = random.randint(35, 40) new.addEdge(j, j+1, low, high) new.addEdge(end, total_event, -10, 10) num_activity = (2 * task) + 1 max_length = max([e.Cij + e.Cji for e in list(new.edges.values())]) up_bound = max_length * num_activity # low = round(random.uniform(0.35*up_bound, 0.45*up_bound), 2) # high = round(random.uniform(0.5*up_bound, 0.6*up_bound), 2) low = random.randint(int(0.45*up_bound), int(0.53*up_bound)) high = random.randint(int(0.55*up_bound), int(0.65*up_bound)) new.addEdge(0, total_event, low, high) print("\n\nChecking consistensy...") if not new.isConsistent(): continue print("Checking Dynamic Controllability...") try: result, conflicts, bounds, weight = DC_Checker(new.copy(), report=False) except Exception: continue if result: return new # ------------------------------------------------------------------------- # Main function # ------------------------------------------------------------------------- if __name__ == '__main__': #plot() print("ran")
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-} ----------------------------------------------------------------------------- -- | -- Module : Statistics.Distribution.Beta -- Copyright : (C) 2012 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <[email protected]> -- Stability : provisional -- Portability : DeriveDataTypeable -- ---------------------------------------------------------------------------- module Statistics.Distribution.Beta ( BetaDistribution -- * Constructor , betaDistr , betaDistrE , improperBetaDistr , improperBetaDistrE -- * Accessors , bdAlpha , bdBeta ) where import Control.Applicative import Data.Aeson (FromJSON(..), ToJSON, Value(..), (.:)) import Data.Binary (Binary(..)) import Data.Data (Data, Typeable) import GHC.Generics (Generic) import Numeric.SpecFunctions ( incompleteBeta, invIncompleteBeta, logBeta, digamma, log1p) import Numeric.MathFunctions.Constants (m_NaN,m_neg_inf) import qualified Statistics.Distribution as D import Statistics.Internal -- | The beta distribution data BetaDistribution = BD { bdAlpha :: {-# UNPACK #-} !Double -- ^ Alpha shape parameter , bdBeta :: {-# UNPACK #-} !Double -- ^ Beta shape parameter } deriving (Eq, Typeable, Data, Generic) instance Show BetaDistribution where showsPrec n (BD a b) = defaultShow2 "improperBetaDistr" a b n instance Read BetaDistribution where readPrec = defaultReadPrecM2 "improperBetaDistr" improperBetaDistrE instance ToJSON BetaDistribution instance FromJSON BetaDistribution where parseJSON (Object v) = do a <- v .: "bdAlpha" b <- v .: "bdBeta" maybe (fail $ errMsgI a b) return $ improperBetaDistrE a b parseJSON _ = empty instance Binary BetaDistribution where put (BD a b) = put a >> put b get = do a <- get b <- get maybe (fail $ errMsgI a b) return $ improperBetaDistrE a b -- | Create beta distribution. Both shape parameters must be positive. betaDistr :: Double -- ^ Shape parameter alpha -> Double -- ^ Shape parameter beta -> BetaDistribution betaDistr a b = maybe (error $ errMsg a b) id $ betaDistrE a b -- | Create beta distribution. Both shape parameters must be positive. betaDistrE :: Double -- ^ Shape parameter alpha -> Double -- ^ Shape parameter beta -> Maybe BetaDistribution betaDistrE a b | a > 0 && b > 0 = Just (BD a b) | otherwise = Nothing errMsg :: Double -> Double -> String errMsg a b = "Statistics.Distribution.Beta.betaDistr: " ++ "shape parameters must be positive. Got a = " ++ show a ++ " b = " ++ show b -- | Create beta distribution. Both shape parameters must be -- non-negative. So it allows to construct improper beta distribution -- which could be used as improper prior. improperBetaDistr :: Double -- ^ Shape parameter alpha -> Double -- ^ Shape parameter beta -> BetaDistribution improperBetaDistr a b = maybe (error $ errMsgI a b) id $ improperBetaDistrE a b -- | Create beta distribution. Both shape parameters must be -- non-negative. So it allows to construct improper beta distribution -- which could be used as improper prior. improperBetaDistrE :: Double -- ^ Shape parameter alpha -> Double -- ^ Shape parameter beta -> Maybe BetaDistribution improperBetaDistrE a b | a >= 0 && b >= 0 = Just (BD a b) | otherwise = Nothing errMsgI :: Double -> Double -> String errMsgI a b = "Statistics.Distribution.Beta.betaDistr: " ++ "shape parameters must be non-negative. Got a = " ++ show a ++ " b = " ++ show b instance D.Distribution BetaDistribution where cumulative (BD a b) x | x <= 0 = 0 | x >= 1 = 1 | otherwise = incompleteBeta a b x complCumulative (BD a b) x | x <= 0 = 1 | x >= 1 = 0 -- For small x we use direct computation to avoid precision loss -- when computing (1-x) | x < 0.5 = 1 - incompleteBeta a b x -- Otherwise we use property of incomplete beta: -- > I(x,a,b) = 1 - I(1-x,b,a) | otherwise = incompleteBeta b a (1-x) instance D.Mean BetaDistribution where mean (BD a b) = a / (a + b) instance D.MaybeMean BetaDistribution where maybeMean = Just . D.mean instance D.Variance BetaDistribution where variance (BD a b) = a*b / (apb*apb*(apb+1)) where apb = a + b instance D.MaybeVariance BetaDistribution where maybeVariance = Just . D.variance instance D.Entropy BetaDistribution where entropy (BD a b) = logBeta a b - (a-1) * digamma a - (b-1) * digamma b + (a+b-2) * digamma (a+b) instance D.MaybeEntropy BetaDistribution where maybeEntropy = Just . D.entropy instance D.ContDistr BetaDistribution where density (BD a b) x | a <= 0 || b <= 0 = m_NaN | x <= 0 = 0 | x >= 1 = 0 | otherwise = exp $ (a-1)*log x + (b-1) * log1p (-x) - logBeta a b logDensity (BD a b) x | a <= 0 || b <= 0 = m_NaN | x <= 0 = m_neg_inf | x >= 1 = m_neg_inf | otherwise = (a-1)*log x + (b-1)*log1p (-x) - logBeta a b quantile (BD a b) p | p == 0 = 0 | p == 1 = 1 | p > 0 && p < 1 = invIncompleteBeta a b p | otherwise = error $ "Statistics.Distribution.Gamma.quantile: p must be in [0,1] range. Got: "++show p instance D.ContGen BetaDistribution where genContVar = D.genContinuous
If $c \neq 0$, then the order of the monomial $cx^n$ is $n$.
#include <boost/mpl/aux_/push_back_impl.hpp>
#' hot.to.df #' #' Converts the table data passed from the client-side into a data.frame #' #' @param b The input$hotable_id value. #' #' @export hot.to.df <- function(b) { # if theres is no data if (length(b$data) == 0) return() col.names <- unlist(b$colHeaders) i = 0 f <- function(x) { i <<- i + 1 # null.pos <- sapply(x,is.null) x[null.pos] <- NA xx <- data.frame(x, stringsAsFactors = F) colnames(xx) <- col.names xx } bb <- ldply(b$data, f) colnames(bb) <- col.names bb } #' hotable #' #' Creates a hotable (handsontable) #' #' @param id The id used to refer to the table input$id or output$id #' #' @export hotable <- function(id) { tagList( singleton(tags$head(tags$link(href = "shinysky/handsontable/0.10.3/jquery.handsontable.full.css", rel = "stylesheet"))), singleton(tags$head(tags$script(src = "shinysky/handsontable/0.10.3/jquery.handsontable.full.js"))), singleton(tags$head(tags$script(src = "shinysky/hotable.js"))), div(id = id, class = "hotable") ) } #' renderHotable #' #' Renders the hotable. #' #' @param expr The computation that leads to an output #' @param env The R environment in which to create the dataset #' @param quoted Pass to the exprToFunction #' @param options Pass to the exprToFunction #' @param readOnly A vector of TRUE/FALSE values to indicate which of the #' columns should be readonly. #' #' @export renderHotable <- function(expr, env = parent.frame(), quoted = FALSE, options = NULL, readOnly = TRUE) { func <- shiny::exprToFunction(expr, env, quoted) function() { df <- func() # the dataframe returned if (is.null(df)) { return() } if (nrow(df) == 0) { return() } json <- NULL json$colHeaders <- colnames(df) columns <- NULL types <- sapply(df, typeof) l <- length(types) readOnly <- rep(readOnly,length.out = l) for (i in 1:l) { if (i == 1) { columns[[i]] <- list(readOnly = readOnly[i]) } else if (types[i] == "double") { columns[[i]] <- list(type = "numeric", format = "0,0.00", readOnly = readOnly[i]) } else if (types[i] == "logical") { columns[[i]] <- list(type = "checkbox", readOnly = readOnly[i]) } else { columns[[i]] <- list(readOnly = readOnly[i]) } } json$columns <- columns json$data <- df json } }
module Control.Kan ||| left kan extension data Lan : (Type -> Type) -> Type -> Type where FMap : (x -> a) -> g x -> Lan g a ||| 'free' functor for any *->* Functor (Lan f) where map func (FMap g y) = FMap (func . g) y
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Mario Carneiro, Johan Commelin, Amelia Livingston, Anne Baanen -/ import group_theory.submonoid.inverses import ring_theory.finiteness import ring_theory.localization.basic import tactic.ring_exp /-! # Submonoid of inverses ## Main definitions * `is_localization.inv_submonoid M S` is the submonoid of `S = M⁻¹R` consisting of inverses of each element `x ∈ M` ## Implementation notes See `src/ring_theory/localization/basic.lean` for a design overview. ## Tags localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions -/ variables {R : Type*} [comm_ring R] (M : submonoid R) (S : Type*) [comm_ring S] variables [algebra R S] {P : Type*} [comm_ring P] open function open_locale big_operators namespace is_localization section inv_submonoid variables (M S) /-- The submonoid of `S = M⁻¹R` consisting of `{ 1 / x | x ∈ M }`. -/ def inv_submonoid : submonoid S := (M.map (algebra_map R S : R →* S)).left_inv variable [is_localization M S] lemma submonoid_map_le_is_unit : M.map (algebra_map R S : R →* S) ≤ is_unit.submonoid S := by { rintros _ ⟨a, ha, rfl⟩, exact is_localization.map_units S ⟨_, ha⟩ } /-- There is an equivalence of monoids between the image of `M` and `inv_submonoid`. -/ noncomputable abbreviation equiv_inv_submonoid : M.map (algebra_map R S : R →* S) ≃* inv_submonoid M S := ((M.map (algebra_map R S : R →* S)).left_inv_equiv (submonoid_map_le_is_unit M S)).symm /-- There is a canonical map from `M` to `inv_submonoid` sending `x` to `1 / x`. -/ noncomputable def to_inv_submonoid : M →* inv_submonoid M S := (equiv_inv_submonoid M S).to_monoid_hom.comp ((algebra_map R S : R →* S).submonoid_map M) lemma to_inv_submonoid_surjective : function.surjective (to_inv_submonoid M S) := function.surjective.comp (equiv.surjective _) (monoid_hom.submonoid_map_surjective _ _) @[simp] lemma to_inv_submonoid_mul (m : M) : (to_inv_submonoid M S m : S) * (algebra_map R S m) = 1 := submonoid.left_inv_equiv_symm_mul _ _ _ @[simp] lemma mul_to_inv_submonoid (m : M) : (algebra_map R S m) * (to_inv_submonoid M S m : S) = 1 := submonoid.mul_left_inv_equiv_symm _ _ ⟨_, _⟩ @[simp] lemma smul_to_inv_submonoid (m : M) : m • (to_inv_submonoid M S m : S) = 1 := by { convert mul_to_inv_submonoid M S m, rw ← algebra.smul_def, refl } variables {S} lemma surj' (z : S) : ∃ (r : R) (m : M), z = r • to_inv_submonoid M S m := begin rcases is_localization.surj M z with ⟨⟨r, m⟩, e : z * _ = algebra_map R S r⟩, refine ⟨r, m, _⟩, rw [algebra.smul_def, ← e, mul_assoc], simp, end lemma to_inv_submonoid_eq_mk' (x : M) : (to_inv_submonoid M S x : S) = mk' S 1 x := by { rw ← (is_localization.map_units S x).mul_left_inj, simp } lemma mem_inv_submonoid_iff_exists_mk' (x : S) : x ∈ inv_submonoid M S ↔ ∃ m : M, mk' S 1 m = x := begin simp_rw ← to_inv_submonoid_eq_mk', exact ⟨λ h, ⟨_, congr_arg subtype.val (to_inv_submonoid_surjective M S ⟨x, h⟩).some_spec⟩, λ h, h.some_spec ▸ (to_inv_submonoid M S h.some).prop⟩ end variables (S) lemma span_inv_submonoid : submodule.span R (inv_submonoid M S : set S) = ⊤ := begin rw eq_top_iff, rintros x -, rcases is_localization.surj' M x with ⟨r, m, rfl⟩, exact submodule.smul_mem _ _ (submodule.subset_span (to_inv_submonoid M S m).prop), end lemma finite_type_of_monoid_fg [monoid.fg M] : algebra.finite_type R S := begin have := monoid.fg_of_surjective _ (to_inv_submonoid_surjective M S), rw monoid.fg_iff_submonoid_fg at this, rcases this with ⟨s, hs⟩, refine ⟨⟨s, _⟩⟩, rw eq_top_iff, rintro x -, change x ∈ ((algebra.adjoin R _ : subalgebra R S).to_submodule : set S), rw [algebra.adjoin_eq_span, hs, span_inv_submonoid], trivial end end inv_submonoid end is_localization
module SocialSystems using StatsBase: weights, sample using Distributions: MvNormal, rand, Normal, cdf, pdf import Base: +, -, *, length, size, getindex, setindex!, start, done, next, show, dot # Utils Export export randSphere, gammasoc, phi, G # Types Export export MoralVector, Society, BasicSociety, DistrustSociety export agents, interactions, insertagent!, hamiltonian, magnetization, believeness, quadrupole, consensus export epssoc, rhosoc, gammasoc, cogcost # Dynamics Export export metropolisStep!, metropolis!, discreteStep!, discreteEvol!, societyHistory!, computeDeltas include("constants.jl") include("utils.jl") include("types/MoralVector.jl") include("types/Society.jl") include("types/BasicSociety.jl") include("types/DistrustSociety.jl") include("dynamics.jl") end #module
[STATEMENT] lemma conductor_le_iff: "conductor \<le> a \<longleftrightarrow> (\<exists>d\<le>a. induced_modulus d)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (conductor \<le> a) = (\<exists>d\<le>a. induced_modulus d) [PROOF STEP] unfolding conductor_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. (Min (Collect induced_modulus) \<le> a) = (\<exists>d\<le>a. induced_modulus d) [PROOF STEP] using conductor_fin induced_modulus_modulus [PROOF STATE] proof (prove) using this: finite (Collect induced_modulus) induced_modulus n goal (1 subgoal): 1. (Min (Collect induced_modulus) \<le> a) = (\<exists>d\<le>a. induced_modulus d) [PROOF STEP] by (subst Min_le_iff) auto
The enumeration of the empty set is the empty sequence.
### # transforms concs and dirality ### import NumericExtensions.negate!, NumericExtensions.divide!, NumericExtensions.add!, NumericExtensions.exp! function flow(Pot :: Matrix) d1, d2 = size(Pot) Flow = Array(Number8, d1, d2) for j in 1:d2 for i in 1:d1 west = j == 1 ? d2 : j-1 east = j == d2 ? 1 : j+1 north = i == d1 ? 1 : i+1 south = i == 1 ? d1 : i-1 ### # Calculate the probability of flow out of a cell based on the pot differnece p = Pot[i , j] ; psw = Pot[south,west] - p; psj = Pot[south,j ] - p; pse = Pot[south,east] - p; pie = Pot[i ,east] - p; pne = Pot[north,east] - p; pnj = Pot[north,j ] - p; pnw = Pot[north,west] - p; piw = Pot[i ,west] - p; ge = [psw, psj, pse, pie, pne, pnj, pnw, piw] ge2 = [psw, psj, pse, pie, pne, pnj, pnw, piw] ge = negate!(divide!(ge2, add!(negate!(exp!(ge)), 1))) # ### # Remove NaN ### ge_wo_na = Number8([isnan(x) ? 1.0 / 8.0 : x/8.0 for x in ge]) ### # Normalize by eight. ### Flow[i,j] = ge_wo_na end end return Flow end function diffusionJl!(Conc :: Matrix, pot :: Matrix, p_move :: Matrix) #concentration and direction d1, d2 = size(Conc) Flow = flow(pot) for j in 1:d2 for i in 1:d1 west = j == 1 ? d2 : j-1 east = j == d2 ? 1 : j+1 north = i == d1 ? 1 : i+1 south = i == 1 ? d1 : i-1 ### # Get the flow out of cell ij ### outflow = Conc[i,j] * sum(Flow[i,j]) ### # Calculate the inflow based on the outflow from other cells into this on. ### inflow = Conc[south, west] * Flow[south, west].s4 + Conc[south, j ] * Flow[south, j ].s5 + Conc[south, east] * Flow[south, east].s6 + Conc[i , east] * Flow[i , east].s7 + Conc[north, east] * Flow[north, east].s0 + Conc[north, j ] * Flow[north, j ].s1 + Conc[north, west] * Flow[north, west].s2 + Conc[i , west] * Flow[i , west].s3 ; ### # Inflow - outflow = change ### p_move[i,j] = inflow - outflow end end end
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor hiding (id) -- Cone over a Functor F (from shape category J into category C) module Categories.Diagram.Cone {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where open Category C open Functor F open import Level record Apex (N : Obj) : Set (ℓ′ ⊔ o′ ⊔ e ⊔ ℓ) where field ψ : (X : Category.Obj J) → (N ⇒ F₀ X) commute : ∀ {X Y} (f : J [ X , Y ]) → F₁ f ∘ ψ X ≈ ψ Y record Cone : Set (o ⊔ ℓ′ ⊔ o′ ⊔ e ⊔ ℓ) where field {N} : Obj apex : Apex N open Apex apex public open Apex open Cone record Cone⇒ (c c′ : Cone) : Set (ℓ ⊔ e ⊔ o′) where field arr : N c ⇒ N c′ commute : ∀ {X} → ψ c′ X ∘ arr ≈ ψ c X open Cone⇒
(* Property from Case-Analysis for Rippling and Inductive Proof, Moa Johansson, Lucas Dixon and Alan Bundy, ITP 2010. This Isabelle theory is produced using the TIP tool offered at the following website: https://github.com/tip-org/tools This file was originally provided as part of TIP benchmark at the following website: https://github.com/tip-org/benchmarks Yutaka Nagashima at CIIRC, CTU changed the TIP output theory file slightly to make it compatible with Isabelle2017.*) theory TIP_prop_33 imports "../../Test_Base" begin datatype Nat = Z | S "Nat" fun x :: "Nat => Nat => bool" where "x (Z) (Z) = True" | "x (Z) (S z2) = False" | "x (S x2) (Z) = False" | "x (S x2) (S y2) = x x2 y2" fun min :: "Nat => Nat => Nat" where "min (Z) z = Z" | "min (S z2) (Z) = Z" | "min (S z2) (S y1) = S (min z2 y1)" fun t2 :: "Nat => Nat => bool" where "t2 (Z) z = True" | "t2 (S z2) (Z) = False" | "t2 (S z2) (S x2) = t2 z2 x2" theorem property0 : "((x (min a b) a) = (t2 a b))" oops end
(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Loop-unrolling. *) Require Import Coqlib. Require Import Errors. Require Import Maps. Require Import Compopts. Require Import AST. Require Import Integers. Require Import Globalenvs. Require Import Switch. Require Import Op. Require Import Registers. Require Cminor. Require Import CminorSel. Require Compopts. Local Open Scope error_monad_scope. (** * iterated sequence *) Fixpoint iterseq (count: nat) (s1 s2:stmt) : stmt := match count with | 0%nat => s2 | S n => Sseq s1 (iterseq n s1 s2) end. (** * Loop-unrolling We perform loop-unrolling based on an external oracle that assigns the number of loop-unfolds for each loop. The transformation fails whenever one attempts to unfold a loop whose body has any label (but succeeds if the oracle leave those loop untouched). *) Definition unroll_flag n := andb (NPeano.Nat.eqb n O). Fixpoint unroll_stmt b (guess: positive -> nat) (s: stmt) (pos:positive): res stmt:= match s with | Sseq s1 s2 => do s1' <- unroll_stmt b guess s1 (xO pos); do s2' <- unroll_stmt b guess s2 (xI pos); OK (Sseq s1' s2') | Sifthenelse c s1 s2 => do s1' <- unroll_stmt b guess s1 (xO pos); do s2' <- unroll_stmt b guess s2 (xI pos); OK (Sifthenelse c s1' s2') | Sloop s => let guess_pos := guess pos in do s' <- unroll_stmt (unroll_flag guess_pos b) guess s (xO pos); OK (iterseq guess_pos s' (Sloop s')) | Sblock s => do s' <- unroll_stmt b guess s pos; OK (Sblock s') | Slabel i s => if b then (do s' <- unroll_stmt b guess s pos; OK (Slabel i s')) else Error (msg "LoopUnroll: trying to unfold loop body with labels") | _ => OK s end. (* [optim_loop_unroll_estimates] is the external oracle that assigns the number of unfolds for each loop (declared in [Compopts.v]) *) Definition unroll_function (ge: genv) (f: function) : res function := do body' <- unroll_stmt true (optim_loop_unroll_estimates f.(fn_body)) f.(fn_body) xH; OK (mkfunction f.(fn_sig) f.(fn_params) f.(fn_vars) f.(fn_stackspace) body'). Definition unroll_fundef (ge: genv) (f: fundef) : res fundef := transf_partial_fundef (unroll_function ge) f. (** Conversion of programs. *) Definition unroll_program (p: program) : res program := let ge := Genv.globalenv p in transform_partial_program (unroll_fundef ge) p.
Coot is for macromolecular model building, model completion and validation, particularly suitable for protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, real space refinement, manual rotation/translation, rigid-body fitting, ligand search, solvation, mutations, rotamers, Ramachandran plots, skeletonization, non-crystallographic symmetry and more. Mostly GPLv3, some GLPv2+, some LGPLv3.
Load LFindLoad. From lfind Require Import LFind. From QuickChick Require Import QuickChick. From adtind Require Import goal4. Derive Show for natural. Derive Arbitrary for natural. Instance Dec_Eq_natural : Dec_Eq natural. Proof. dec_eq. Qed. Derive Show for lst. Derive Arbitrary for lst. Instance Dec_Eq_lst : Dec_Eq lst. Proof. dec_eq. Qed. Lemma conj8synthconj5 : forall (lv0 : lst), (@eq natural (Succ (len (append lv0 lv0))) (Succ (len (append lv0 lv0)))). Admitted. QuickChick conj8synthconj5.
import Data.List import Data.Vect import Data.String.Parser import System.File Vec3 : Type Vec3 = Vect 3 Integer minusV : Vec3 -> Vec3 -> Vec3 minusV [x1,y1,z1] [x2,y2,z2] = [x1-x2,y1-y2,z1-z2] maxV : Vec3 -> Vec3 -> Vec3 maxV [x1,y1,z1] [x2,y2,z2] = [max x1 x2, max y1 y2, max z1 z2] minV : Vec3 -> Vec3 -> Vec3 minV [x1,y1,z1] [x2,y2,z2] = [min x1 x2, min y1 y2, min z1 z2] Cube : Type Cube = (Vec3, Vec3) isCorrect : Cube -> Maybe Cube isCorrect c@([x1,y1,z1], [x2,y2,z2]) = if x1 < x2 && y1 < y2 && z1 < z2 then Just c else Nothing intersect : Cube -> Cube -> Maybe Cube intersect (min1, max1) (min2, max2) = isCorrect (maxV min1 min2, minV max1 max2) volume : Cube -> Integer volume (min, max) = product $ (abs <$> minusV max min) data Command = On Cube | Off Cube isOn : Command -> Bool isOn (On _) = True isOn _ = False invert : Command -> Command invert (On c) = Off c invert (Off c) = On c getCube : Command -> Cube getCube (On c) = c getCube (Off c) = c Input : Type Input = List Command rangeParser : Parser (Integer, Integer) rangeParser = do skip letter skip $ char '=' min <- integer token ".." max <- integer pure (min, max + 1) commandParser : Parser Command commandParser = do cmd <- (token "on" $> On) <|> (token "off" $> Off) [(xmin, xmax),(ymin,ymax),(zmin,zmax)] <- commaSep rangeParser | _ => fail "no ranges" pure $ cmd ([xmin,ymin,zmin],[xmax,ymax,zmax]) parser : Parser Input parser = some (commandParser <* spaces) Cubes : Type Cubes = List Cube addCube' : List Command -> Cube -> (Integer, List Command) addCube' [] c = (0, []) addCube' ((On c) :: cs) b = case intersect b c of Nothing => addCube' cs b (Just overlap) => let (v, os) = addCube' cs b in (v - volume overlap, (Off overlap) :: os) addCube' ((Off c) :: cs) b = case intersect b c of Nothing => addCube' cs b (Just overlap) => let (v, os) = addCube' cs b in (v + volume overlap, (On overlap) :: os) addCube : List Command -> Cube -> (Integer, List Command) addCube cs c = case addCube' cs c of (vol, []) => (vol, cs) (vol, os) => (vol, os ++ cs) doCmd : (Integer, List Command) -> Command -> (Integer, List Command) doCmd (vol, cs) c@(On b) = let (v, cs) = addCube cs b in (v + vol + volume b, c :: cs) doCmd (vol, cs) (Off b) = mapFst ((+) vol) $ addCube cs b cmdInBounds : Cube -> Command -> Maybe Command cmdInBounds b (On c) = On <$> intersect b c cmdInBounds b (Off c) = Off <$> intersect b c part1 : Input -> IO String part1 a = let bound : Cube = ([-50,-50,-50], [51,51,51]) cs = catMaybes $ cmdInBounds bound <$> a in pure $ show $ fst $ foldl doCmd (0, []) cs part2 : Input -> IO String part2 a = pure $ show $ fst $ foldl doCmd (0, []) a main : IO () main = do Right input <- readFile "input.txt" | Left err => printLn err Right (a, _) <- pure $ parse parser input | Left err => printLn err part1 a >>= putStrLn part2 a >>= putStrLn
lemma tendsto_at_topI_sequentially_real: fixes f :: "real \<Rightarrow> real" assumes mono: "mono f" and limseq: "(\<lambda>n. f (real n)) \<longlonglongrightarrow> y" shows "(f \<longlongrightarrow> y) at_top"
(* Title: HOL/Auth/n_germanSymIndex_lemma_on_inv__46.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_germanSymIndex Protocol Case Study*} theory n_germanSymIndex_lemma_on_inv__46 imports n_germanSymIndex_base begin section{*All lemmas on causal relation between inv__46 and some rule r*} lemma n_SendInv__part__0Vsinv__46: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__0 i" apply fastforce done from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv0)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendInv__part__1Vsinv__46: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__1 i" apply fastforce done from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv0)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendInvAckVsinv__46: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInvAck i" apply fastforce done from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv0)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvInvAckVsinv__46: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvInvAck i" apply fastforce done from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv0)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendGntSVsinv__46: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntS i" apply fastforce done from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Ident ''ExGntd'')) (Const false)) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv0) ''Cmd'')) (Const GntE))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv0)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendGntEVsinv__46: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntE N i" apply fastforce done from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Ident ''ExGntd'')) (Const false)) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv0) ''Cmd'')) (Const GntE))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv0)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvGntSVsinv__46: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntS i" apply fastforce done from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv0)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvGntEVsinv__46: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntE i" apply fastforce done from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv0)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendReqE__part__1Vsinv__46: assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_StoreVsinv__46: assumes a1: "\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_RecvReqEVsinv__46: assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvReqE N i" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_SendReqE__part__0Vsinv__46: assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_SendReqSVsinv__46: assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendReqS i" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_RecvReqSVsinv__46: assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvReqS N i" and a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__46 p__Inv0 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done end
[STATEMENT] lemma get_child_nodes_new_shadow_root: "ptr' \<noteq> cast new_shadow_root_ptr \<Longrightarrow> h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr \<Longrightarrow> h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h' \<Longrightarrow> r \<in> get_child_nodes_locs ptr' \<Longrightarrow> r h h'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> get_child_nodes_locs ptr'\<rbrakk> \<Longrightarrow> r h h' [PROOF STEP] apply(auto simp add: get_child_nodes_locs_def)[1] [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> (if is_shadow_root_ptr_kind ptr' then {preserved (get_M\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t (the (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr')) RShadowRoot.child_nodes)} else {})\<rbrakk> \<Longrightarrow> r h h' 2. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> get_child_nodes_locs\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M ptr'\<rbrakk> \<Longrightarrow> r h h' [PROOF STEP] apply (metis document_ptr_casts_commute3 insert_absorb insert_not_empty is_document_ptr_kind_none new_shadow_root_get_M\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t option.case_eq_if shadow_root_ptr_casts_commute3 singletonD) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> get_child_nodes_locs\<^sub>C\<^sub>o\<^sub>r\<^sub>e\<^sub>_\<^sub>D\<^sub>O\<^sub>M ptr'\<rbrakk> \<Longrightarrow> r h h' [PROOF STEP] apply(auto simp add: CD.get_child_nodes_locs_def)[1] [PROOF STATE] proof (prove) goal (3 subgoals): 1. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r = preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr' RObject.nothing)\<rbrakk> \<Longrightarrow> preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr' RObject.nothing) h h' 2. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> (if is_element_ptr_kind\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr' then {preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t (the (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr')) RElement.child_nodes)} else {})\<rbrakk> \<Longrightarrow> r h h' 3. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> (if is_document_ptr_kind ptr' then {preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t (the (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr')) document_element)} else {})\<rbrakk> \<Longrightarrow> r h h' [PROOF STEP] using new_shadow_root_get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t [PROOF STATE] proof (prove) using this: \<lbrakk>?h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h ?h'; ?h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r ?new_shadow_root_ptr; ?ptr \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ?new_shadow_root_ptr\<rbrakk> \<Longrightarrow> preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ?ptr ?getter) ?h ?h' goal (3 subgoals): 1. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r = preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr' RObject.nothing)\<rbrakk> \<Longrightarrow> preserved (get_M\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t ptr' RObject.nothing) h h' 2. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> (if is_element_ptr_kind\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr' then {preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t (the (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr')) RElement.child_nodes)} else {})\<rbrakk> \<Longrightarrow> r h h' 3. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> (if is_document_ptr_kind ptr' then {preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t (the (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr')) document_element)} else {})\<rbrakk> \<Longrightarrow> r h h' [PROOF STEP] apply blast [PROOF STATE] proof (prove) goal (2 subgoals): 1. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> (if is_element_ptr_kind\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr' then {preserved (get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t (the (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>e\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr')) RElement.child_nodes)} else {})\<rbrakk> \<Longrightarrow> r h h' 2. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> (if is_document_ptr_kind ptr' then {preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t (the (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr')) document_element)} else {})\<rbrakk> \<Longrightarrow> r h h' [PROOF STEP] apply (metis empty_iff insertE new_shadow_root_get_M\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t) [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>ptr' \<noteq> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>r new_shadow_root_ptr; h \<turnstile> new\<^sub>S\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>R\<^sub>o\<^sub>o\<^sub>t_M \<rightarrow>\<^sub>h h'; r \<in> (if is_document_ptr_kind ptr' then {preserved (get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t (the (cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>d\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr')) document_element)} else {})\<rbrakk> \<Longrightarrow> r h h' [PROOF STEP] apply (metis empty_iff new_shadow_root_get_M\<^sub>D\<^sub>o\<^sub>c\<^sub>u\<^sub>m\<^sub>e\<^sub>n\<^sub>t singletonD) [PROOF STATE] proof (prove) goal: No subgoals! [PROOF STEP] done
library(dslabs) data(olive) head(olive) palmatic <- olive$palmitic palmitoleic <- olive$palmitoleic plot(palmatic, palmitoleic) boxplot(palmatic, palmitoleic) boxplot(palmatic~region, data=olive)
module Vsurfac13 use Vmeshes real(rprec), dimension(:), allocatable :: snx1, sny1, snz1, 1 dsur1 real(rprec) :: fla end module Vsurfac13
Updation of Child info along with Aadhaar number in child info website during 2016-17. All the DEOs in the state are informed that new admissions for the academic year 2016-17 are going on in all schools under all managements. in this connection, the following guidelines are issued for recording Aadhaar number of students in Admission Register and Transfer Certificate by the Headmaster of schools.
module Text.CSS.Declaration import Text.CSS.Color import Text.CSS.ListStyleType import Text.CSS.Property %default total public export record Declaration where constructor MkDeclaration property : Property tpe value : tpe infixl 8 .= export %inline (.=) : Property t -> t -> Declaration (.=) = MkDeclaration export %inline render : Declaration -> String render (MkDeclaration p v) = renderProp p v ++ ";"
Here are your morning links! Janczak looked solid in his second start since returning from injury. TCU broke through in the sixth inning with a pair of run. Jake Guenther and Alex Isola singled to open the inning. A wild pitch had both runners in scoring position and Johnny Rizer delivered a two-run single up the middle to make it a 6-2 ballgame. The Frogs didn’t go quietly, scoring a run on a Zach Humphreys groundout in the eighth. With two outs in the ninth, the Frogs put the tying run on base with walks to Josh Watson and Isola around a Guenther base hit. UTA closer Andrew Gross wiggled off the hook with a ground out to end the game. Jared Janczak (0-2) tossed 4 1/3 innings. He allowed six runs (two earned) on six hits, walked one and struck out two. Haylen Green and Matt Rudis allowed one combined runner over the last 3 2/3 innings of the game. The pair fanned seven. The defensive end position is loaded, name-wise, but not very experienced. This is a spot with a ton of turnover and, in turn, opportunities for new faces. Mathis, who some have compared to Jerry Hughes when it comes to potential, appears to be on his way to a starting role after continuing to earn rave reviews through spring. Patterson hinted that 2019 could finally be Bowen’s time too, so don’t take your eyes off the 6-foot-4 Byron Nelson High School product when fall camp arrives down the stretch. The cornerback would fill a massive need with Jeff Gladney and Julius Lewis set to graduate. Jenkins is getting recruited by Jeremy Modkins mostly because he’s the cornerbacks coach for the Frogs. However, Jenkins says he’s built a strong relationship with each of the coaches on staff. Jenkins was hosted on his visit by redshirt freshman Atanza Vongor. The four-star says he got along with the defensive back as well as the rest of the team. Equestrian has put together a solid season. TCU News: Joe Broadnax’s career is over, will Justin Rogers play this year?
The real number corresponding to an integer is the integer itself.
State Before: l : Type ?u.197342 m : Type ?u.197345 n : Type ?u.197348 o : Type u_5 p : Type ?u.197354 q : Type ?u.197357 m' : o → Type u_1 n' : o → Type u_2 p' : o → Type ?u.197372 R : Type ?u.197375 S : Type ?u.197378 α : Type u_3 β : Type u_4 inst✝² : DecidableEq o inst✝¹ : Zero α inst✝ : Zero β M : (i : o) → Matrix (m' i) (n' i) α f : α → β hf : f 0 = 0 ⊢ map (blockDiagonal' M) f = blockDiagonal' fun k => map (M k) f State After: case a.h l : Type ?u.197342 m : Type ?u.197345 n : Type ?u.197348 o : Type u_5 p : Type ?u.197354 q : Type ?u.197357 m' : o → Type u_1 n' : o → Type u_2 p' : o → Type ?u.197372 R : Type ?u.197375 S : Type ?u.197378 α : Type u_3 β : Type u_4 inst✝² : DecidableEq o inst✝¹ : Zero α inst✝ : Zero β M : (i : o) → Matrix (m' i) (n' i) α f : α → β hf : f 0 = 0 i✝ : (i : o) × m' i x✝ : (i : o) × n' i ⊢ map (blockDiagonal' M) f i✝ x✝ = blockDiagonal' (fun k => map (M k) f) i✝ x✝ Tactic: ext State Before: case a.h l : Type ?u.197342 m : Type ?u.197345 n : Type ?u.197348 o : Type u_5 p : Type ?u.197354 q : Type ?u.197357 m' : o → Type u_1 n' : o → Type u_2 p' : o → Type ?u.197372 R : Type ?u.197375 S : Type ?u.197378 α : Type u_3 β : Type u_4 inst✝² : DecidableEq o inst✝¹ : Zero α inst✝ : Zero β M : (i : o) → Matrix (m' i) (n' i) α f : α → β hf : f 0 = 0 i✝ : (i : o) × m' i x✝ : (i : o) × n' i ⊢ map (blockDiagonal' M) f i✝ x✝ = blockDiagonal' (fun k => map (M k) f) i✝ x✝ State After: case a.h l : Type ?u.197342 m : Type ?u.197345 n : Type ?u.197348 o : Type u_5 p : Type ?u.197354 q : Type ?u.197357 m' : o → Type u_1 n' : o → Type u_2 p' : o → Type ?u.197372 R : Type ?u.197375 S : Type ?u.197378 α : Type u_3 β : Type u_4 inst✝² : DecidableEq o inst✝¹ : Zero α inst✝ : Zero β M : (i : o) → Matrix (m' i) (n' i) α f : α → β hf : f 0 = 0 i✝ : (i : o) × m' i x✝ : (i : o) × n' i ⊢ f (if h : i✝.fst = x✝.fst then M i✝.fst i✝.snd (cast (_ : n' x✝.fst = n' i✝.fst) x✝.snd) else 0) = if h : i✝.fst = x✝.fst then f (M i✝.fst i✝.snd (cast (_ : n' x✝.fst = n' i✝.fst) x✝.snd)) else 0 Tactic: simp only [map_apply, blockDiagonal'_apply, eq_comm] State Before: case a.h l : Type ?u.197342 m : Type ?u.197345 n : Type ?u.197348 o : Type u_5 p : Type ?u.197354 q : Type ?u.197357 m' : o → Type u_1 n' : o → Type u_2 p' : o → Type ?u.197372 R : Type ?u.197375 S : Type ?u.197378 α : Type u_3 β : Type u_4 inst✝² : DecidableEq o inst✝¹ : Zero α inst✝ : Zero β M : (i : o) → Matrix (m' i) (n' i) α f : α → β hf : f 0 = 0 i✝ : (i : o) × m' i x✝ : (i : o) × n' i ⊢ f (if h : i✝.fst = x✝.fst then M i✝.fst i✝.snd (cast (_ : n' x✝.fst = n' i✝.fst) x✝.snd) else 0) = if h : i✝.fst = x✝.fst then f (M i✝.fst i✝.snd (cast (_ : n' x✝.fst = n' i✝.fst) x✝.snd)) else 0 State After: no goals Tactic: rw [apply_dite f, hf]
lemma interior_open: "open S \<Longrightarrow> interior S = S"
/- 2018-10-12T21:52:34 Locally nameless formulas, built off Floris' preterms ---Jesse I wanted to avoid the headache over shifts (at the cost of needing to define a well-formedness predicate on terms); my implementation of locally nameless formulas is based off Chargueraud's paper (thanks for the pointer Jeremy!). TODO: - finish writing the coercion for variable lists - finish writing the substitution functions - add a well-formedness predicate -/ structure Language := (relations : Π n : nat, Type) (functions : Π n : nat, Type) section parameter L : Language /- preterm n is a partially applied term. if applied to n terms, it becomes a term -/ inductive preterm : ℕ → Type | bvar : ℕ → preterm 0 | fvar : string → preterm 0 | func : ∀ {n : nat}, L.functions n → preterm n | apply : ∀ {n : nat}, preterm (n + 1) → preterm 0 → preterm n open preterm def term := preterm 0 -- /- raise_depth_term _ t n m raises variables in t which are at least m by n -/ -- def raise_depth_term : ∀ {l}, preterm l → ℕ → ℕ → preterm l -- | _ (var L k) n m := if m ≤ k then var (k+m) else var k -- | _ (func f) n m := func f -- | _ (apply t1 t2) n m := apply (raise_depth_term t1 n m) (raise_depth_term t2 n m) -- /- substitute_term t s n substitutes s for (var n) and reduces the level of all variables above n by 1 -/ -- def substitute_term : ∀ {l}, preterm l → term → ℕ → preterm l -- | _ (var L k) s n := if k < n then var k else if k > n then var (k-1) else s -- | _ (func f) s n := func f -- | _ (apply t1 t2) s n := apply (substitute_term t1 s n) (substitute_term t2 s n) /-- Given a preterm, return a list of free variables which occur in it--/ def free_vars_preterm : Π n : ℕ, preterm n → list string | _ (bvar L k) := [] | _ (fvar L s) := [s] | _ (@func L _ f) := [] | _ (@apply L n t1 t2) := (free_vars_preterm (n+1) t1 ∪ free_vars_preterm 0 t2) def free_vars_term : term → list string := free_vars_preterm 0 lemma free_var_preterm_coercionl (n : ℕ) (t1 : preterm (n+1)) (t2 : term) : {x : string // x ∈ (free_vars_preterm (n+1) t1)} → {x : string // x ∈ (free_vars_preterm n (apply t1 t2))} := sorry def substitute_preterm : Π n : ℕ, Π (t : preterm n), term → {x : string // x ∈ (free_vars_preterm n t)} → preterm n | _ (bvar L k) t x := (bvar k) | _ (fvar L s) t x := sorry | _ (@func L _ f) t x := (func f) | _ (@apply L n t1 t2) t x := sorry end section parameter L : Language /- preformula n is a partially applied formula. if applied to n terms, it becomes a formula -/ inductive preformula : ℕ → Type | true : preformula 0 | false : preformula 0 | equal : (term L) → (term L) → preformula 0 | rel : ∀ {n : nat}, L.relations n → preformula n | apprel : ∀ {n : nat}, preformula (n + 1) → (term L) → preformula n | imp : preformula 0 → preformula 0 → preformula 0 | all : preformula 0 → preformula 0 open preformula def formula := preformula 0 def free_vars_preformula : Π n : ℕ, preformula n → list string | _ (true L) := [] | _ (false L) := [] | _ (equal t1 t2) := free_vars_term L t1 ∪ free_vars_term L t2 | _ (@rel L n R) := [] | _ (@apprel L n ψ t) := free_vars_preformula _ ψ ∪ free_vars_term L t | _ (imp ϕ ψ) := free_vars_preformula _ ϕ ∪ free_vars_preformula _ ψ | _ (all ψ) := free_vars_preformula _ ψ def free_vars_formula : formula → list string := free_vars_preformula 0 -- def raise_depth_formula : ∀ {l}, preformula l → ℕ → ℕ → preformula l -- | _ (true L) n m := true -- | _ (false L) n m := false -- | _ (equal t1 t2) n m := equal (raise_depth_term t1 n m) (raise_depth_term t2 n m) -- | _ (rel R) n m := rel R -- | _ (apprel f t) n m := apprel (raise_depth_formula f n m) (raise_depth_term t n m) -- | _ (imp f1 f2) n m := imp (raise_depth_formula f1 n m) (raise_depth_formula f2 n m) -- | _ (all f) n m := all (raise_depth_formula f n (m+1)) def substitute_formula : ∀ {l}, preformula l → (term L) → ℕ → preformula l | _ (true L) s n := true | _ (false L) s n := false | _ (equal t1 t2) s n := equal (substitute_term L t1 s n) (substitute_term L t2 s n) | _ (rel R) s n := rel R | _ (apprel f t) s n := apprel (substitute_formula f s n) (substitute_term t s n) | _ (imp f1 f2) s n := imp (substitute_formula f1 s n) (substitute_formula f2 s n) | _ (all f) s n := all (substitute_formula f s (n+1)) def substitute_preformula : Π n : ℕ, Π (ψ : preformula n), term → {x : string // x ∈ (free_vars_preformula _ ψ)} → preformula n | _ (true L) t x := true | _ (false L) t x := false | _ (equal t1 t2) := equal (substitute_preformula _ _ _ _ t1) (substitute_preformula _ _ _ _ t2) end
Formal statement is: lemma convergent_LIMSEQ_iff: "convergent X \<longleftrightarrow> X \<longlonglongrightarrow> lim X" Informal statement is: A sequence $X$ converges if and only if $X$ converges to its limit.
\section{\module{token} --- Constants used with Python parse trees} \declaremodule{standard}{token} \modulesynopsis{Constants representing terminal nodes of the parse tree.} \sectionauthor{Fred L. Drake, Jr.}{[email protected]} This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens). Refer to the file \file{Grammar/Grammar} in the Python distribution for the definitions of the names in the context of the language grammar. The specific numeric values which the names map to may change between Python versions. This module also provides one data object and some functions. The functions mirror definitions in the Python C header files. \begin{datadesc}{tok_name} Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing more human-readable representation of parse trees to be generated. \end{datadesc} \begin{funcdesc}{ISTERMINAL}{x} Return true for terminal token values. \end{funcdesc} \begin{funcdesc}{ISNONTERMINAL}{x} Return true for non-terminal token values. \end{funcdesc} \begin{funcdesc}{ISEOF}{x} Return true if \var{x} is the marker indicating the end of input. \end{funcdesc} \begin{seealso} \seemodule{parser}{The second example for the \refmodule{parser} module shows how to use the \module{symbol} module.} \end{seealso}
(* Title: HOL/Auth/Guard/Guard_Public.thy Author: Frederic Blanqui, University of Cambridge Computer Laboratory Copyright 2002 University of Cambridge Lemmas on guarded messages for public protocols. *) theory Guard_Public imports Guard "../Public" Extensions begin subsection\<open>Extensions to Theory \<open>Public\<close>\<close> declare initState.simps [simp del] subsubsection\<open>signature\<close> definition sign :: "agent => msg => msg" where "sign A X == \<lbrace>Agent A, X, Crypt (priK A) (Hash X)\<rbrace>" lemma sign_inj [iff]: "(sign A X = sign A' X') = (A=A' & X=X')" by (auto simp: sign_def) subsubsection\<open>agent associated to a key\<close> definition agt :: "key => agent" where "agt K == @A. K = priK A | K = pubK A" lemma agt_priK [simp]: "agt (priK A) = A" by (simp add: agt_def) lemma agt_pubK [simp]: "agt (pubK A) = A" by (simp add: agt_def) subsubsection\<open>basic facts about @{term initState}\<close> lemma no_Crypt_in_parts_init [simp]: "Crypt K X ~:parts (initState A)" by (cases A, auto simp: initState.simps) lemma no_Crypt_in_analz_init [simp]: "Crypt K X ~:analz (initState A)" by auto lemma no_priK_in_analz_init [simp]: "A ~:bad ==> Key (priK A) ~:analz (initState Spy)" by (auto simp: initState.simps) lemma priK_notin_initState_Friend [simp]: "A ~= Friend C ==> Key (priK A) ~: parts (initState (Friend C))" by (auto simp: initState.simps) lemma keyset_init [iff]: "keyset (initState A)" by (cases A, auto simp: keyset_def initState.simps) subsubsection\<open>sets of private keys\<close> definition priK_set :: "key set => bool" where "priK_set Ks == ALL K. K:Ks --> (EX A. K = priK A)" lemma in_priK_set: "[| priK_set Ks; K:Ks |] ==> EX A. K = priK A" by (simp add: priK_set_def) lemma priK_set1 [iff]: "priK_set {priK A}" by (simp add: priK_set_def) lemma priK_set2 [iff]: "priK_set {priK A, priK B}" by (simp add: priK_set_def) subsubsection\<open>sets of good keys\<close> definition good :: "key set => bool" where "good Ks == ALL K. K:Ks --> agt K ~:bad" lemma in_good: "[| good Ks; K:Ks |] ==> agt K ~:bad" by (simp add: good_def) lemma good1 [simp]: "A ~:bad ==> good {priK A}" by (simp add: good_def) lemma good2 [simp]: "[| A ~:bad; B ~:bad |] ==> good {priK A, priK B}" by (simp add: good_def) subsubsection\<open>greatest nonce used in a trace, 0 if there is no nonce\<close> primrec greatest :: "event list => nat" where "greatest [] = 0" | "greatest (ev # evs) = max (greatest_msg (msg ev)) (greatest evs)" lemma greatest_is_greatest: "Nonce n:used evs ==> n <= greatest evs" apply (induct evs, auto simp: initState.simps) apply (drule used_sub_parts_used, safe) apply (drule greatest_msg_is_greatest, arith) by simp subsubsection\<open>function giving a new nonce\<close> definition new :: "event list => nat" where "new evs == Suc (greatest evs)" lemma new_isnt_used [iff]: "Nonce (new evs) ~:used evs" by (clarify, drule greatest_is_greatest, auto simp: new_def) subsection\<open>Proofs About Guarded Messages\<close> subsubsection\<open>small hack necessary because priK is defined as the inverse of pubK\<close> lemma pubK_is_invKey_priK: "pubK A = invKey (priK A)" by simp lemmas pubK_is_invKey_priK_substI = pubK_is_invKey_priK [THEN ssubst] lemmas invKey_invKey_substI = invKey [THEN ssubst] lemma "Nonce n:parts {X} ==> Crypt (pubK A) X:guard n {priK A}" apply (rule pubK_is_invKey_priK_substI, rule invKey_invKey_substI) by (rule Guard_Nonce, simp+) subsubsection\<open>guardedness results\<close> lemma sign_guard [intro]: "X:guard n Ks ==> sign A X:guard n Ks" by (auto simp: sign_def) lemma Guard_init [iff]: "Guard n Ks (initState B)" by (induct B, auto simp: Guard_def initState.simps) lemma Guard_knows_max': "Guard n Ks (knows_max' C evs) ==> Guard n Ks (knows_max C evs)" by (simp add: knows_max_def) lemma Nonce_not_used_Guard_spies [dest]: "Nonce n ~:used evs ==> Guard n Ks (spies evs)" by (auto simp: Guard_def dest: not_used_not_known parts_sub) lemma Nonce_not_used_Guard [dest]: "[| evs:p; Nonce n ~:used evs; Gets_correct p; one_step p |] ==> Guard n Ks (knows (Friend C) evs)" by (auto simp: Guard_def dest: known_used parts_trans) lemma Nonce_not_used_Guard_max [dest]: "[| evs:p; Nonce n ~:used evs; Gets_correct p; one_step p |] ==> Guard n Ks (knows_max (Friend C) evs)" by (auto simp: Guard_def dest: known_max_used parts_trans) lemma Nonce_not_used_Guard_max' [dest]: "[| evs:p; Nonce n ~:used evs; Gets_correct p; one_step p |] ==> Guard n Ks (knows_max' (Friend C) evs)" apply (rule_tac H="knows_max (Friend C) evs" in Guard_mono) by (auto simp: knows_max_def) subsubsection\<open>regular protocols\<close> definition regular :: "event list set => bool" where "regular p == ALL evs A. evs:p --> (Key (priK A):parts (spies evs)) = (A:bad)" lemma priK_parts_iff_bad [simp]: "[| evs:p; regular p |] ==> (Key (priK A):parts (spies evs)) = (A:bad)" by (auto simp: regular_def) lemma priK_analz_iff_bad [simp]: "[| evs:p; regular p |] ==> (Key (priK A):analz (spies evs)) = (A:bad)" by auto lemma Guard_Nonce_analz: "[| Guard n Ks (spies evs); evs:p; priK_set Ks; good Ks; regular p |] ==> Nonce n ~:analz (spies evs)" apply (clarify, simp only: knows_decomp) apply (drule Guard_invKey_keyset, simp+, safe) apply (drule in_good, simp) apply (drule in_priK_set, simp+, clarify) apply (frule_tac A=A in priK_analz_iff_bad) by (simp add: knows_decomp)+ end
-- @@stderr -- dtrace: failed to compile script test/unittest/probes/err.D_SYNTAX.declarein.d: [D_SYNTAX] line 21: expected predicate and/or actions following probe description
function cmp = MS_complexity(x,n,binHow) % Calculate the Lempel-Ziv complexity of the n-bit encoding of x. % % cmp is the normalised complexity, that is the number of distinct % symbol sequences in x, divided by the expected number of distinct % symbols for a noise sequence. % % Algorithm is implemented in complexitybs.c % % Michael Small % [email protected], http://school.maths.uwa.edu.au/~small/ % 7/10/04 % For further details, please see M. Small. Applied Nonlinear Time Series % Analysis: Applications in Physics, Physiology and Finance. Nonlinear Science % Series A, vol. 52. World Scientific, 2005. (ISBN 981-256-117-X) and the % references therein. if nargin < 2 n = 2; end if nargin < 3 binHow = 'equiprobable'; end %------------------------------------------------------------------------------- if length(n) > 1 % Can run with multiple values of the number of symbols, n: for ni = 1:length(n) cmp(ni) = MS_complexity(x,n(ni),binHow); end else % do the binning, with equiprobable bins switch binHow case 'equiprobable' x=x(:); nx=length(x); [xn,xi]=sort(x+eps*randn(size(x))); %introduce randomness for ties y=zeros(nx,1); y=1:nx; y=floor(y.*(n/(nx+1))); x(xi)=y; case 'equiwidth' % else, % %do binning with equal width bins x=x(:); nx=length(x); minx=min(x); maxx=max(x); stepx=(maxx-minx)/n; y=zeros(nx,1); while minx<maxx minx=minx+stepx; y=y+double(x<minx); end x=floor(y); end %compute complexity with complexitybs cmp = MS_complexitybs(x); end end
If $S$ is locally connected, then the connected component of $S$ containing $x$ is open in $S$.
(* Title: HOL/Auth/n_german_lemma_on_inv__23.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_german Protocol Case Study*} theory n_german_lemma_on_inv__23 imports n_german_base begin section{*All lemmas on causal relation between inv__23 and some rule r*} lemma n_SendInv__part__0Vsinv__23: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__0 i" apply fastforce done from a2 obtain p__Inv1 p__Inv2 where a2:"p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv1)\<or>(i~=p__Inv1\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv1)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv1\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendInv__part__1Vsinv__23: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__1 i" apply fastforce done from a2 obtain p__Inv1 p__Inv2 where a2:"p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv1)\<or>(i~=p__Inv1\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv1)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv1\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendInvAckVsinv__23: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInvAck i" apply fastforce done from a2 obtain p__Inv1 p__Inv2 where a2:"p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv1)\<or>(i~=p__Inv1\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv1)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv1\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendGntSVsinv__23: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntS i" apply fastforce done from a2 obtain p__Inv1 p__Inv2 where a2:"p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv1)\<or>(i~=p__Inv1\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv1)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Ident ''ExGntd'')) (Const false)) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv2) ''Cmd'')) (Const GntE))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv1\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendGntEVsinv__23: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntE N i" apply fastforce done from a2 obtain p__Inv1 p__Inv2 where a2:"p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv1)\<or>(i~=p__Inv1\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P3 s" apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv1) ''Cmd'')) (Const GntS)) (eqn (IVar (Para (Ident ''ShrSet'') p__Inv1)) (Const false))))" in exI, auto) done then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv1)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv1\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvGntSVsinv__23: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntS i" apply fastforce done from a2 obtain p__Inv1 p__Inv2 where a2:"p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv1)\<or>(i~=p__Inv1\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv1)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv1\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_RecvGntEVsinv__23: assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s") proof - from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntE i" apply fastforce done from a2 obtain p__Inv1 p__Inv2 where a2:"p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2" apply fastforce done have "(i=p__Inv2)\<or>(i=p__Inv1)\<or>(i~=p__Inv1\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done moreover { assume b1: "(i=p__Inv2)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i=p__Inv1)" have "?P1 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } moreover { assume b1: "(i~=p__Inv1\<and>i~=p__Inv2)" have "?P2 s" proof(cut_tac a1 a2 b1, auto) qed then have "invHoldForRule s f r (invariants N)" by auto } ultimately show "invHoldForRule s f r (invariants N)" by satx qed lemma n_SendReqE__part__1Vsinv__23: assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_StoreVsinv__23: assumes a1: "\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_RecvInvAckVsinv__23: assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvInvAck i" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_RecvReqEVsinv__23: assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvReqE N i" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_SendReqE__part__0Vsinv__23: assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_SendReqSVsinv__23: assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendReqS i" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done lemma n_RecvReqSVsinv__23: assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvReqS N i" and a2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" apply (rule noEffectOnRule, cut_tac a1 a2, auto) done end
section \<open>Operational Semantics\<close> theory RG_Tran imports RG_Com begin subsection \<open>Semantics of Component Programs\<close> subsubsection \<open>Environment transitions\<close> type_synonym 'a conf = "(('a com) option) \<times> 'a" inductive_set etran :: "('a conf \<times> 'a conf) set" and etran' :: "'a conf \<Rightarrow> 'a conf \<Rightarrow> bool" ("_ -e\<rightarrow> _" [81,81] 80) where "P -e\<rightarrow> Q \<equiv> (P,Q) \<in> etran" | Env: "(P, s) -e\<rightarrow> (P, t)" lemma etranE: "c -e\<rightarrow> c' \<Longrightarrow> (\<And>P s t. c = (P, s) \<Longrightarrow> c' = (P, t) \<Longrightarrow> Q) \<Longrightarrow> Q" by (induct c, induct c', erule etran.cases, blast) subsubsection \<open>Component transitions\<close> inductive_set ctran :: "('a conf \<times> 'a conf) set" and ctran' :: "'a conf \<Rightarrow> 'a conf \<Rightarrow> bool" ("_ -c\<rightarrow> _" [81,81] 80) and ctrans :: "'a conf \<Rightarrow> 'a conf \<Rightarrow> bool" ("_ -c*\<rightarrow> _" [81,81] 80) where "P -c\<rightarrow> Q \<equiv> (P,Q) \<in> ctran" | "P -c*\<rightarrow> Q \<equiv> (P,Q) \<in> ctran\<^sup>*" | Basic: "(Some(Basic f), s) -c\<rightarrow> (None, f s)" | Seq1: "(Some P0, s) -c\<rightarrow> (None, t) \<Longrightarrow> (Some(Seq P0 P1), s) -c\<rightarrow> (Some P1, t)" | Seq2: "(Some P0, s) -c\<rightarrow> (Some P2, t) \<Longrightarrow> (Some(Seq P0 P1), s) -c\<rightarrow> (Some(Seq P2 P1), t)" | CondT: "s\<in>b \<Longrightarrow> (Some(Cond b P1 P2), s) -c\<rightarrow> (Some P1, s)" | CondF: "s\<notin>b \<Longrightarrow> (Some(Cond b P1 P2), s) -c\<rightarrow> (Some P2, s)" | WhileF: "s\<notin>b \<Longrightarrow> (Some(While b P), s) -c\<rightarrow> (None, s)" | WhileT: "s\<in>b \<Longrightarrow> (Some(While b P), s) -c\<rightarrow> (Some(Seq P (While b P)), s)" | Await: "\<lbrakk>s\<in>b; (Some P, s) -c*\<rightarrow> (None, t)\<rbrakk> \<Longrightarrow> (Some(Await b P), s) -c\<rightarrow> (None, t)" monos "rtrancl_mono" subsection \<open>Semantics of Parallel Programs\<close> type_synonym 'a par_conf = "('a par_com) \<times> 'a" inductive_set par_etran :: "('a par_conf \<times> 'a par_conf) set" and par_etran' :: "['a par_conf,'a par_conf] \<Rightarrow> bool" ("_ -pe\<rightarrow> _" [81,81] 80) where "P -pe\<rightarrow> Q \<equiv> (P,Q) \<in> par_etran" | ParEnv: "(Ps, s) -pe\<rightarrow> (Ps, t)" inductive_set par_ctran :: "('a par_conf \<times> 'a par_conf) set" and par_ctran' :: "['a par_conf,'a par_conf] \<Rightarrow> bool" ("_ -pc\<rightarrow> _" [81,81] 80) where "P -pc\<rightarrow> Q \<equiv> (P,Q) \<in> par_ctran" | ParComp: "\<lbrakk>i<length Ps; (Ps!i, s) -c\<rightarrow> (r, t)\<rbrakk> \<Longrightarrow> (Ps, s) -pc\<rightarrow> (Ps[i:=r], t)" lemma par_ctranE: "c -pc\<rightarrow> c' \<Longrightarrow> (\<And>i Ps s r t. c = (Ps, s) \<Longrightarrow> c' = (Ps[i := r], t) \<Longrightarrow> i < length Ps \<Longrightarrow> (Ps ! i, s) -c\<rightarrow> (r, t) \<Longrightarrow> P) \<Longrightarrow> P" by (induct c, induct c', erule par_ctran.cases, blast) subsection \<open>Computations\<close> subsubsection \<open>Sequential computations\<close> type_synonym 'a confs = "'a conf list" inductive_set cptn :: "'a confs set" where CptnOne: "[(P,s)] \<in> cptn" | CptnEnv: "(P, t)#xs \<in> cptn \<Longrightarrow> (P,s)#(P,t)#xs \<in> cptn" | CptnComp: "\<lbrakk>(P,s) -c\<rightarrow> (Q,t); (Q, t)#xs \<in> cptn \<rbrakk> \<Longrightarrow> (P,s)#(Q,t)#xs \<in> cptn" definition cp :: "('a com) option \<Rightarrow> 'a \<Rightarrow> ('a confs) set" where "cp P s \<equiv> {l. l!0=(P,s) \<and> l \<in> cptn}" subsubsection \<open>Parallel computations\<close> type_synonym 'a par_confs = "'a par_conf list" inductive_set par_cptn :: "'a par_confs set" where ParCptnOne: "[(P,s)] \<in> par_cptn" | ParCptnEnv: "(P,t)#xs \<in> par_cptn \<Longrightarrow> (P,s)#(P,t)#xs \<in> par_cptn" | ParCptnComp: "\<lbrakk> (P,s) -pc\<rightarrow> (Q,t); (Q,t)#xs \<in> par_cptn \<rbrakk> \<Longrightarrow> (P,s)#(Q,t)#xs \<in> par_cptn" definition par_cp :: "'a par_com \<Rightarrow> 'a \<Rightarrow> ('a par_confs) set" where "par_cp P s \<equiv> {l. l!0=(P,s) \<and> l \<in> par_cptn}" subsection\<open>Modular Definition of Computation\<close> definition lift :: "'a com \<Rightarrow> 'a conf \<Rightarrow> 'a conf" where "lift Q \<equiv> \<lambda>(P, s). (if P=None then (Some Q,s) else (Some(Seq (the P) Q), s))" inductive_set cptn_mod :: "('a confs) set" where CptnModOne: "[(P, s)] \<in> cptn_mod" | CptnModEnv: "(P, t)#xs \<in> cptn_mod \<Longrightarrow> (P, s)#(P, t)#xs \<in> cptn_mod" | CptnModNone: "\<lbrakk>(Some P, s) -c\<rightarrow> (None, t); (None, t)#xs \<in> cptn_mod \<rbrakk> \<Longrightarrow> (Some P,s)#(None, t)#xs \<in>cptn_mod" | CptnModCondT: "\<lbrakk>(Some P0, s)#ys \<in> cptn_mod; s \<in> b \<rbrakk> \<Longrightarrow> (Some(Cond b P0 P1), s)#(Some P0, s)#ys \<in> cptn_mod" | CptnModCondF: "\<lbrakk>(Some P1, s)#ys \<in> cptn_mod; s \<notin> b \<rbrakk> \<Longrightarrow> (Some(Cond b P0 P1), s)#(Some P1, s)#ys \<in> cptn_mod" | CptnModSeq1: "\<lbrakk>(Some P0, s)#xs \<in> cptn_mod; zs=map (lift P1) xs \<rbrakk> \<Longrightarrow> (Some(Seq P0 P1), s)#zs \<in> cptn_mod" | CptnModSeq2: "\<lbrakk>(Some P0, s)#xs \<in> cptn_mod; fst(last ((Some P0, s)#xs)) = None; (Some P1, snd(last ((Some P0, s)#xs)))#ys \<in> cptn_mod; zs=(map (lift P1) xs)@ys \<rbrakk> \<Longrightarrow> (Some(Seq P0 P1), s)#zs \<in> cptn_mod" | CptnModWhile1: "\<lbrakk> (Some P, s)#xs \<in> cptn_mod; s \<in> b; zs=map (lift (While b P)) xs \<rbrakk> \<Longrightarrow> (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs \<in> cptn_mod" | CptnModWhile2: "\<lbrakk> (Some P, s)#xs \<in> cptn_mod; fst(last ((Some P, s)#xs))=None; s \<in> b; zs=(map (lift (While b P)) xs)@ys; (Some(While b P), snd(last ((Some P, s)#xs)))#ys \<in> cptn_mod\<rbrakk> \<Longrightarrow> (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs \<in> cptn_mod" subsection \<open>Equivalence of Both Definitions.\<close> lemma last_length: "((a#xs)!(length xs))=last (a#xs)" by (induct xs) auto lemma div_seq [rule_format]: "list \<in> cptn_mod \<Longrightarrow> (\<forall>s P Q zs. list=(Some (Seq P Q), s)#zs \<longrightarrow> (\<exists>xs. (Some P, s)#xs \<in> cptn_mod \<and> (zs=(map (lift Q) xs) \<or> ( fst(((Some P, s)#xs)!length xs)=None \<and> (\<exists>ys. (Some Q, snd(((Some P, s)#xs)!length xs))#ys \<in> cptn_mod \<and> zs=(map (lift (Q)) xs)@ys)))))" apply(erule cptn_mod.induct) apply simp_all apply clarify apply(force intro:CptnModOne) apply clarify apply(erule_tac x=Pa in allE) apply(erule_tac x=Q in allE) apply simp apply clarify apply(erule disjE) apply(rule_tac x="(Some Pa,t)#xsa" in exI) apply(rule conjI) apply clarify apply(erule CptnModEnv) apply(rule disjI1) apply(simp add:lift_def) apply clarify apply(rule_tac x="(Some Pa,t)#xsa" in exI) apply(rule conjI) apply(erule CptnModEnv) apply(rule disjI2) apply(rule conjI) apply(case_tac xsa,simp,simp) apply(rule_tac x="ys" in exI) apply(rule conjI) apply simp apply(simp add:lift_def) apply clarify apply(erule ctran.cases,simp_all) apply clarify apply(rule_tac x="xs" in exI) apply simp apply clarify apply(rule_tac x="xs" in exI) apply(simp add: last_length) done lemma cptn_onlyif_cptn_mod_aux [rule_format]: "\<forall>s Q t xs.((Some a, s), Q, t) \<in> ctran \<longrightarrow> (Q, t) # xs \<in> cptn_mod \<longrightarrow> (Some a, s) # (Q, t) # xs \<in> cptn_mod" supply [[simproc del: defined_all]] apply(induct a) apply simp_all \<comment> \<open>basic\<close> apply clarify apply(erule ctran.cases,simp_all) apply(rule CptnModNone,rule Basic,simp) apply clarify apply(erule ctran.cases,simp_all) \<comment> \<open>Seq1\<close> apply(rule_tac xs="[(None,ta)]" in CptnModSeq2) apply(erule CptnModNone) apply(rule CptnModOne) apply simp apply simp apply(simp add:lift_def) \<comment> \<open>Seq2\<close> apply(erule_tac x=sa in allE) apply(erule_tac x="Some P2" in allE) apply(erule allE,erule impE, assumption) apply(drule div_seq,simp) apply clarify apply(erule disjE) apply clarify apply(erule allE,erule impE, assumption) apply(erule_tac CptnModSeq1) apply(simp add:lift_def) apply clarify apply(erule allE,erule impE, assumption) apply(erule_tac CptnModSeq2) apply (simp add:last_length) apply (simp add:last_length) apply(simp add:lift_def) \<comment> \<open>Cond\<close> apply clarify apply(erule ctran.cases,simp_all) apply(force elim: CptnModCondT) apply(force elim: CptnModCondF) \<comment> \<open>While\<close> apply clarify apply(erule ctran.cases,simp_all) apply(rule CptnModNone,erule WhileF,simp) apply(drule div_seq,force) apply clarify apply (erule disjE) apply(force elim:CptnModWhile1) apply clarify apply(force simp add:last_length elim:CptnModWhile2) \<comment> \<open>await\<close> apply clarify apply(erule ctran.cases,simp_all) apply(rule CptnModNone,erule Await,simp+) done lemma cptn_onlyif_cptn_mod [rule_format]: "c \<in> cptn \<Longrightarrow> c \<in> cptn_mod" apply(erule cptn.induct) apply(rule CptnModOne) apply(erule CptnModEnv) apply(case_tac P) apply simp apply(erule ctran.cases,simp_all) apply(force elim:cptn_onlyif_cptn_mod_aux) done lemma lift_is_cptn: "c\<in>cptn \<Longrightarrow> map (lift P) c \<in> cptn" apply(erule cptn.induct) apply(force simp add:lift_def CptnOne) apply(force intro:CptnEnv simp add:lift_def) apply(force simp add:lift_def intro:CptnComp Seq2 Seq1 elim:ctran.cases) done lemma cptn_append_is_cptn [rule_format]: "\<forall>b a. b#c1\<in>cptn \<longrightarrow> a#c2\<in>cptn \<longrightarrow> (b#c1)!length c1=a \<longrightarrow> b#c1@c2\<in>cptn" apply(induct c1) apply simp apply clarify apply(erule cptn.cases,simp_all) apply(force intro:CptnEnv) apply(force elim:CptnComp) done lemma last_lift: "\<lbrakk>xs\<noteq>[]; fst(xs!(length xs - (Suc 0)))=None\<rbrakk> \<Longrightarrow> fst((map (lift P) xs)!(length (map (lift P) xs)- (Suc 0)))=(Some P)" by (cases "(xs ! (length xs - (Suc 0)))") (simp add:lift_def) lemma last_fst [rule_format]: "P((a#x)!length x) \<longrightarrow> \<not>P a \<longrightarrow> P (x!(length x - (Suc 0)))" by (induct x) simp_all lemma last_fst_esp: "fst(((Some a,s)#xs)!(length xs))=None \<Longrightarrow> fst(xs!(length xs - (Suc 0)))=None" apply(erule last_fst) apply simp done lemma last_snd: "xs\<noteq>[] \<Longrightarrow> snd(((map (lift P) xs))!(length (map (lift P) xs) - (Suc 0)))=snd(xs!(length xs - (Suc 0)))" by (cases "(xs ! (length xs - (Suc 0)))") (simp_all add:lift_def) lemma Cons_lift: "(Some (Seq P Q), s) # (map (lift Q) xs) = map (lift Q) ((Some P, s) # xs)" by (simp add:lift_def) lemma Cons_lift_append: "(Some (Seq P Q), s) # (map (lift Q) xs) @ ys = map (lift Q) ((Some P, s) # xs)@ ys " by (simp add:lift_def) lemma lift_nth: "i<length xs \<Longrightarrow> map (lift Q) xs ! i = lift Q (xs! i)" by (simp add:lift_def) lemma snd_lift: "i< length xs \<Longrightarrow> snd(lift Q (xs ! i))= snd (xs ! i)" by (cases "xs!i") (simp add:lift_def) lemma cptn_if_cptn_mod: "c \<in> cptn_mod \<Longrightarrow> c \<in> cptn" apply(erule cptn_mod.induct) apply(rule CptnOne) apply(erule CptnEnv) apply(erule CptnComp,simp) apply(rule CptnComp) apply(erule CondT,simp) apply(rule CptnComp) apply(erule CondF,simp) \<comment> \<open>Seq1\<close> apply(erule cptn.cases,simp_all) apply(rule CptnOne) apply clarify apply(drule_tac P=P1 in lift_is_cptn) apply(simp add:lift_def) apply(rule CptnEnv,simp) apply clarify apply(simp add:lift_def) apply(rule conjI) apply clarify apply(rule CptnComp) apply(rule Seq1,simp) apply(drule_tac P=P1 in lift_is_cptn) apply(simp add:lift_def) apply clarify apply(rule CptnComp) apply(rule Seq2,simp) apply(drule_tac P=P1 in lift_is_cptn) apply(simp add:lift_def) \<comment> \<open>Seq2\<close> apply(rule cptn_append_is_cptn) apply(drule_tac P=P1 in lift_is_cptn) apply(simp add:lift_def) apply simp apply(simp split: if_split_asm) apply(frule_tac P=P1 in last_lift) apply(rule last_fst_esp) apply (simp add:last_length) apply(simp add:Cons_lift lift_def split_def last_conv_nth) \<comment> \<open>While1\<close> apply(rule CptnComp) apply(rule WhileT,simp) apply(drule_tac P="While b P" in lift_is_cptn) apply(simp add:lift_def) \<comment> \<open>While2\<close> apply(rule CptnComp) apply(rule WhileT,simp) apply(rule cptn_append_is_cptn) apply(drule_tac P="While b P" in lift_is_cptn) apply(simp add:lift_def) apply simp apply(simp split: if_split_asm) apply(frule_tac P="While b P" in last_lift) apply(rule last_fst_esp,simp add:last_length) apply(simp add:Cons_lift lift_def split_def last_conv_nth) done theorem cptn_iff_cptn_mod: "(c \<in> cptn) = (c \<in> cptn_mod)" apply(rule iffI) apply(erule cptn_onlyif_cptn_mod) apply(erule cptn_if_cptn_mod) done section \<open>Validity of Correctness Formulas\<close> subsection \<open>Validity for Component Programs.\<close> type_synonym 'a rgformula = "'a com \<times> 'a set \<times> ('a \<times> 'a) set \<times> ('a \<times> 'a) set \<times> 'a set" definition assum :: "('a set \<times> ('a \<times> 'a) set) \<Rightarrow> ('a confs) set" where "assum \<equiv> \<lambda>(pre, rely). {c. snd(c!0) \<in> pre \<and> (\<forall>i. Suc i<length c \<longrightarrow> c!i -e\<rightarrow> c!(Suc i) \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> rely)}" definition comm :: "(('a \<times> 'a) set \<times> 'a set) \<Rightarrow> ('a confs) set" where "comm \<equiv> \<lambda>(guar, post). {c. (\<forall>i. Suc i<length c \<longrightarrow> c!i -c\<rightarrow> c!(Suc i) \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> guar) \<and> (fst (last c) = None \<longrightarrow> snd (last c) \<in> post)}" definition com_validity :: "'a com \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set \<Rightarrow> bool" ("\<Turnstile> _ sat [_, _, _, _]" [60,0,0,0,0] 45) where "\<Turnstile> P sat [pre, rely, guar, post] \<equiv> \<forall>s. cp (Some P) s \<inter> assum(pre, rely) \<subseteq> comm(guar, post)" subsection \<open>Validity for Parallel Programs.\<close> definition All_None :: "(('a com) option) list \<Rightarrow> bool" where "All_None xs \<equiv> \<forall>c\<in>set xs. c=None" definition par_assum :: "('a set \<times> ('a \<times> 'a) set) \<Rightarrow> ('a par_confs) set" where "par_assum \<equiv> \<lambda>(pre, rely). {c. snd(c!0) \<in> pre \<and> (\<forall>i. Suc i<length c \<longrightarrow> c!i -pe\<rightarrow> c!Suc i \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> rely)}" definition par_comm :: "(('a \<times> 'a) set \<times> 'a set) \<Rightarrow> ('a par_confs) set" where "par_comm \<equiv> \<lambda>(guar, post). {c. (\<forall>i. Suc i<length c \<longrightarrow> c!i -pc\<rightarrow> c!Suc i \<longrightarrow> (snd(c!i), snd(c!Suc i)) \<in> guar) \<and> (All_None (fst (last c)) \<longrightarrow> snd( last c) \<in> post)}" definition par_com_validity :: "'a par_com \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set \<Rightarrow> bool" ("\<Turnstile> _ SAT [_, _, _, _]" [60,0,0,0,0] 45) where "\<Turnstile> Ps SAT [pre, rely, guar, post] \<equiv> \<forall>s. par_cp Ps s \<inter> par_assum(pre, rely) \<subseteq> par_comm(guar, post)" subsection \<open>Compositionality of the Semantics\<close> subsubsection \<open>Definition of the conjoin operator\<close> definition same_length :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where "same_length c clist \<equiv> (\<forall>i<length clist. length(clist!i)=length c)" definition same_state :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where "same_state c clist \<equiv> (\<forall>i <length clist. \<forall>j<length c. snd(c!j) = snd((clist!i)!j))" definition same_program :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where "same_program c clist \<equiv> (\<forall>j<length c. fst(c!j) = map (\<lambda>x. fst(nth x j)) clist)" definition compat_label :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" where "compat_label c clist \<equiv> (\<forall>j. Suc j<length c \<longrightarrow> (c!j -pc\<rightarrow> c!Suc j \<and> (\<exists>i<length clist. (clist!i)!j -c\<rightarrow> (clist!i)! Suc j \<and> (\<forall>l<length clist. l\<noteq>i \<longrightarrow> (clist!l)!j -e\<rightarrow> (clist!l)! Suc j))) \<or> (c!j -pe\<rightarrow> c!Suc j \<and> (\<forall>i<length clist. (clist!i)!j -e\<rightarrow> (clist!i)! Suc j)))" definition conjoin :: "'a par_confs \<Rightarrow> ('a confs) list \<Rightarrow> bool" ("_ \<propto> _" [65,65] 64) where "c \<propto> clist \<equiv> (same_length c clist) \<and> (same_state c clist) \<and> (same_program c clist) \<and> (compat_label c clist)" subsubsection \<open>Some previous lemmas\<close> lemma list_eq_if [rule_format]: "\<forall>ys. xs=ys \<longrightarrow> (length xs = length ys) \<longrightarrow> (\<forall>i<length xs. xs!i=ys!i)" by (induct xs) auto lemma list_eq: "(length xs = length ys \<and> (\<forall>i<length xs. xs!i=ys!i)) = (xs=ys)" apply(rule iffI) apply clarify apply(erule nth_equalityI) apply simp+ done lemma nth_tl: "\<lbrakk> ys!0=a; ys\<noteq>[] \<rbrakk> \<Longrightarrow> ys=(a#(tl ys))" by (cases ys) simp_all lemma nth_tl_if [rule_format]: "ys\<noteq>[] \<longrightarrow> ys!0=a \<longrightarrow> P ys \<longrightarrow> P (a#(tl ys))" by (induct ys) simp_all lemma nth_tl_onlyif [rule_format]: "ys\<noteq>[] \<longrightarrow> ys!0=a \<longrightarrow> P (a#(tl ys)) \<longrightarrow> P ys" by (induct ys) simp_all lemma seq_not_eq1: "Seq c1 c2\<noteq>c1" by (induct c1) auto lemma seq_not_eq2: "Seq c1 c2\<noteq>c2" by (induct c2) auto lemma if_not_eq1: "Cond b c1 c2 \<noteq>c1" by (induct c1) auto lemma if_not_eq2: "Cond b c1 c2\<noteq>c2" by (induct c2) auto lemmas seq_and_if_not_eq [simp] = seq_not_eq1 seq_not_eq2 seq_not_eq1 [THEN not_sym] seq_not_eq2 [THEN not_sym] if_not_eq1 if_not_eq2 if_not_eq1 [THEN not_sym] if_not_eq2 [THEN not_sym] lemma prog_not_eq_in_ctran_aux: assumes c: "(P,s) -c\<rightarrow> (Q,t)" shows "P\<noteq>Q" using c by (induct x1 \<equiv> "(P,s)" x2 \<equiv> "(Q,t)" arbitrary: P s Q t) auto lemma prog_not_eq_in_ctran [simp]: "\<not> (P,s) -c\<rightarrow> (P,t)" apply clarify apply(drule prog_not_eq_in_ctran_aux) apply simp done lemma prog_not_eq_in_par_ctran_aux [rule_format]: "(P,s) -pc\<rightarrow> (Q,t) \<Longrightarrow> (P\<noteq>Q)" apply(erule par_ctran.induct) apply(drule prog_not_eq_in_ctran_aux) apply clarify apply(drule list_eq_if) apply simp_all apply force done lemma prog_not_eq_in_par_ctran [simp]: "\<not> (P,s) -pc\<rightarrow> (P,t)" apply clarify apply(drule prog_not_eq_in_par_ctran_aux) apply simp done lemma tl_in_cptn: "\<lbrakk> a#xs \<in>cptn; xs\<noteq>[] \<rbrakk> \<Longrightarrow> xs\<in>cptn" by (force elim: cptn.cases) lemma tl_zero[rule_format]: "P (ys!Suc j) \<longrightarrow> Suc j<length ys \<longrightarrow> ys\<noteq>[] \<longrightarrow> P (tl(ys)!j)" by (induct ys) simp_all subsection \<open>The Semantics is Compositional\<close> lemma aux_if [rule_format]: "\<forall>xs s clist. (length clist = length xs \<and> (\<forall>i<length xs. (xs!i,s)#clist!i \<in> cptn) \<and> ((xs, s)#ys \<propto> map (\<lambda>i. (fst i,s)#snd i) (zip xs clist)) \<longrightarrow> (xs, s)#ys \<in> par_cptn)" apply(induct ys) apply(clarify) apply(rule ParCptnOne) apply(clarify) apply(simp add:conjoin_def compat_label_def) apply clarify apply(erule_tac x="0" and P="\<lambda>j. H j \<longrightarrow> (P j \<or> Q j)" for H P Q in all_dupE, simp) apply(erule disjE) \<comment> \<open>first step is a Component step\<close> apply clarify apply simp apply(subgoal_tac "a=(xs[i:=(fst(clist!i!0))])") apply(subgoal_tac "b=snd(clist!i!0)",simp) prefer 2 apply(simp add: same_state_def) apply(erule_tac x=i in allE,erule impE,assumption, erule_tac x=1 and P="\<lambda>j. (H j) \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE, simp) prefer 2 apply(simp add:same_program_def) apply(erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (fst (s j))=(t j)" for H s t in allE,simp) apply(rule nth_equalityI,simp) apply clarify apply(case_tac "i=ia",simp,simp) apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE) apply(drule_tac t=i in not_sym,simp) apply(erule etranE,simp) apply(rule ParCptnComp) apply(erule ParComp,simp) \<comment> \<open>applying the induction hypothesis\<close> apply(erule_tac x="xs[i := fst (clist ! i ! 0)]" in allE) apply(erule_tac x="snd (clist ! i ! 0)" in allE) apply(erule mp) apply(rule_tac x="map tl clist" in exI,simp) apply(rule conjI,clarify) apply(case_tac "i=ia",simp) apply(rule nth_tl_if) apply(force simp add:same_length_def length_Suc_conv) apply simp apply(erule allE,erule impE,assumption,erule tl_in_cptn) apply(force simp add:same_length_def length_Suc_conv) apply(rule nth_tl_if) apply(force simp add:same_length_def length_Suc_conv) apply(simp add:same_state_def) apply(erule_tac x=ia in allE, erule impE, assumption, erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE) apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE) apply(drule_tac t=i in not_sym,simp) apply(erule etranE,simp) apply(erule allE,erule impE,assumption,erule tl_in_cptn) apply(force simp add:same_length_def length_Suc_conv) apply(simp add:same_length_def same_state_def) apply(rule conjI) apply clarify apply(case_tac j,simp,simp) apply(erule_tac x=ia in allE, erule impE, assumption, erule_tac x="Suc(Suc nat)" and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp) apply(force simp add:same_length_def length_Suc_conv) apply(rule conjI) apply(simp add:same_program_def) apply clarify apply(case_tac j,simp) apply(rule nth_equalityI,simp) apply clarify apply(case_tac "i=ia",simp,simp) apply(erule_tac x="Suc(Suc nat)" and P="\<lambda>j. H j \<longrightarrow> (fst (s j))=(t j)" for H s t in allE,simp) apply(rule nth_equalityI,simp,simp) apply(force simp add:length_Suc_conv) apply(rule allI,rule impI) apply(erule_tac x="Suc j" and P="\<lambda>j. H j \<longrightarrow> (I j \<or> J j)" for H I J in allE,simp) apply(erule disjE) apply clarify apply(rule_tac x=ia in exI,simp) apply(case_tac "i=ia",simp) apply(rule conjI) apply(force simp add: length_Suc_conv) apply clarify apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE,assumption) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE,assumption) apply simp apply(case_tac j,simp) apply(rule tl_zero) apply(erule_tac x=l in allE, erule impE, assumption, erule_tac x=1 and P="\<lambda>j. (H j) \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp) apply(force elim:etranE intro:Env) apply force apply force apply simp apply(rule tl_zero) apply(erule tl_zero) apply force apply force apply force apply force apply(rule conjI,simp) apply(rule nth_tl_if) apply force apply(erule_tac x=ia in allE, erule impE, assumption, erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE) apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE) apply(drule_tac t=i in not_sym,simp) apply(erule etranE,simp) apply(erule tl_zero) apply force apply force apply clarify apply(case_tac "i=l",simp) apply(rule nth_tl_if) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply simp apply(erule_tac P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE,assumption,erule impE,assumption) apply(erule tl_zero,force) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply(rule nth_tl_if) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply(erule_tac x=l in allE, erule impE, assumption, erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE, assumption,simp) apply(erule etranE,simp) apply(rule tl_zero) apply force apply force apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply(rule disjI2) apply(case_tac j,simp) apply clarify apply(rule tl_zero) apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j\<in>etran" for H I in allE,erule impE, assumption) apply(case_tac "i=ia",simp,simp) apply(erule_tac x=ia in allE, erule impE, assumption, erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE) apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE,erule impE, assumption,simp) apply(force elim:etranE intro:Env) apply force apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply simp apply clarify apply(rule tl_zero) apply(rule tl_zero,force) apply force apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply force apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) \<comment> \<open>first step is an environmental step\<close> apply clarify apply(erule par_etran.cases) apply simp apply(rule ParCptnEnv) apply(erule_tac x="Ps" in allE) apply(erule_tac x="t" in allE) apply(erule mp) apply(rule_tac x="map tl clist" in exI,simp) apply(rule conjI) apply clarify apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> I j \<in> cptn" for H I in allE,simp) apply(erule cptn.cases) apply(simp add:same_length_def) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply(simp add:same_state_def) apply(erule_tac x=i in allE, erule impE, assumption, erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> J j \<in>etran" for H J in allE,simp) apply(erule etranE,simp) apply(simp add:same_state_def same_length_def) apply(rule conjI,clarify) apply(case_tac j,simp,simp) apply(erule_tac x=i in allE, erule impE, assumption, erule_tac x="Suc(Suc nat)" and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp) apply(rule tl_zero) apply(simp) apply force apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply(rule conjI) apply(simp add:same_program_def) apply clarify apply(case_tac j,simp) apply(rule nth_equalityI,simp) apply clarify apply simp apply(erule_tac x="Suc(Suc nat)" and P="\<lambda>j. H j \<longrightarrow> (fst (s j))=(t j)" for H s t in allE,simp) apply(rule nth_equalityI,simp,simp) apply(force simp add:length_Suc_conv) apply(rule allI,rule impI) apply(erule_tac x="Suc j" and P="\<lambda>j. H j \<longrightarrow> (I j \<or> J j)" for H I J in allE,simp) apply(erule disjE) apply clarify apply(rule_tac x=i in exI,simp) apply(rule conjI) apply(erule_tac x=i and P="\<lambda>i. H i \<longrightarrow> J i \<in>etran" for H J in allE, erule impE, assumption) apply(erule etranE,simp) apply(erule_tac x=i in allE, erule impE, assumption, erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp) apply(rule nth_tl_if) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply simp apply(erule tl_zero,force) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply clarify apply(erule_tac x=l and P="\<lambda>i. H i \<longrightarrow> J i \<in>etran" for H J in allE, erule impE, assumption) apply(erule etranE,simp) apply(erule_tac x=l in allE, erule impE, assumption, erule_tac x=1 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp) apply(rule nth_tl_if) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply simp apply(rule tl_zero,force) apply force apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply(rule disjI2) apply simp apply clarify apply(case_tac j,simp) apply(rule tl_zero) apply(erule_tac x=i and P="\<lambda>i. H i \<longrightarrow> J i \<in>etran" for H J in allE, erule impE, assumption) apply(erule_tac x=i and P="\<lambda>i. H i \<longrightarrow> J i \<in>etran" for H J in allE, erule impE, assumption) apply(force elim:etranE intro:Env) apply force apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply simp apply(rule tl_zero) apply(rule tl_zero,force) apply force apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply force apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) done lemma aux_onlyif [rule_format]: "\<forall>xs s. (xs, s)#ys \<in> par_cptn \<longrightarrow> (\<exists>clist. (length clist = length xs) \<and> (xs, s)#ys \<propto> map (\<lambda>i. (fst i,s)#(snd i)) (zip xs clist) \<and> (\<forall>i<length xs. (xs!i,s)#(clist!i) \<in> cptn))" supply [[simproc del: defined_all]] apply(induct ys) apply(clarify) apply(rule_tac x="map (\<lambda>i. []) [0..<length xs]" in exI) apply(simp add: conjoin_def same_length_def same_state_def same_program_def compat_label_def) apply(rule conjI) apply(rule nth_equalityI,simp,simp) apply(force intro: cptn.intros) apply(clarify) apply(erule par_cptn.cases,simp) apply simp apply(erule_tac x="xs" in allE) apply(erule_tac x="t" in allE,simp) apply clarify apply(rule_tac x="(map (\<lambda>j. (P!j, t)#(clist!j)) [0..<length P])" in exI,simp) apply(rule conjI) prefer 2 apply clarify apply(rule CptnEnv,simp) apply(simp add:conjoin_def same_length_def same_state_def) apply (rule conjI) apply clarify apply(case_tac j,simp,simp) apply(rule conjI) apply(simp add:same_program_def) apply clarify apply(case_tac j,simp) apply(rule nth_equalityI,simp,simp) apply simp apply(rule nth_equalityI,simp,simp) apply(simp add:compat_label_def) apply clarify apply(case_tac j,simp) apply(simp add:ParEnv) apply clarify apply(simp add:Env) apply simp apply(erule_tac x=nat in allE,erule impE, assumption) apply(erule disjE,simp) apply clarify apply(rule_tac x=i in exI,simp) apply force apply(erule par_ctran.cases,simp) apply(erule_tac x="Ps[i:=r]" in allE) apply(erule_tac x="ta" in allE,simp) apply clarify apply(rule_tac x="(map (\<lambda>j. (Ps!j, ta)#(clist!j)) [0..<length Ps]) [i:=((r, ta)#(clist!i))]" in exI,simp) apply(rule conjI) prefer 2 apply clarify apply(case_tac "i=ia",simp) apply(erule CptnComp) apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (I j \<in> cptn)" for H I in allE,simp) apply simp apply(erule_tac x=ia in allE) apply(rule CptnEnv,simp) apply(simp add:conjoin_def) apply (rule conjI) apply(simp add:same_length_def) apply clarify apply(case_tac "i=ia",simp,simp) apply(rule conjI) apply(simp add:same_state_def) apply clarify apply(case_tac j, simp, simp (no_asm_simp)) apply(case_tac "i=ia",simp,simp) apply(rule conjI) apply(simp add:same_program_def) apply clarify apply(case_tac j,simp) apply(rule nth_equalityI,simp,simp) apply simp apply(rule nth_equalityI,simp,simp) apply(erule_tac x=nat and P="\<lambda>j. H j \<longrightarrow> (fst (a j))=((b j))" for H a b in allE) apply(case_tac nat) apply clarify apply(case_tac "i=ia",simp,simp) apply clarify apply(case_tac "i=ia",simp,simp) apply(simp add:compat_label_def) apply clarify apply(case_tac j) apply(rule conjI,simp) apply(erule ParComp,assumption) apply clarify apply(rule_tac x=i in exI,simp) apply clarify apply(rule Env) apply simp apply(erule_tac x=nat and P="\<lambda>j. H j \<longrightarrow> (P j \<or> Q j)" for H P Q in allE,simp) apply(erule disjE) apply clarify apply(rule_tac x=ia in exI,simp) apply(rule conjI) apply(case_tac "i=ia",simp,simp) apply clarify apply(case_tac "i=l",simp) apply(case_tac "l=ia",simp,simp) apply(erule_tac x=l in allE,erule impE,assumption,erule impE, assumption,simp) apply simp apply(erule_tac x=l in allE,erule impE,assumption,erule impE, assumption,simp) apply clarify apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (P j)\<in>etran" for H P in allE, erule impE, assumption) apply(case_tac "i=ia",simp,simp) done lemma one_iff_aux: "xs\<noteq>[] \<Longrightarrow> (\<forall>ys. ((xs, s)#ys \<in> par_cptn) = (\<exists>clist. length clist= length xs \<and> ((xs, s)#ys \<propto> map (\<lambda>i. (fst i,s)#(snd i)) (zip xs clist)) \<and> (\<forall>i<length xs. (xs!i,s)#(clist!i) \<in> cptn))) = (par_cp (xs) s = {c. \<exists>clist. (length clist)=(length xs) \<and> (\<forall>i<length clist. (clist!i) \<in> cp(xs!i) s) \<and> c \<propto> clist})" apply (rule iffI) apply(rule subset_antisym) apply(rule subsetI) apply(clarify) apply(simp add:par_cp_def cp_def) apply(case_tac x) apply(force elim:par_cptn.cases) apply simp apply(rename_tac a list) apply(erule_tac x="list" in allE) apply clarify apply simp apply(rule_tac x="map (\<lambda>i. (fst i, s) # snd i) (zip xs clist)" in exI,simp) apply(rule subsetI) apply(clarify) apply(case_tac x) apply(erule_tac x=0 in allE) apply(simp add:cp_def conjoin_def same_length_def same_program_def same_state_def compat_label_def) apply clarify apply(erule cptn.cases,force,force,force) apply(simp add:par_cp_def conjoin_def same_length_def same_program_def same_state_def compat_label_def) apply clarify apply(erule_tac x=0 and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in all_dupE) apply(subgoal_tac "a = xs") apply(subgoal_tac "b = s",simp) prefer 3 apply(erule_tac x=0 and P="\<lambda>j. H j \<longrightarrow> (fst (s j))=((t j))" for H s t in allE) apply (simp add:cp_def) apply(rule nth_equalityI,simp,simp) prefer 2 apply(erule_tac x=0 in allE) apply (simp add:cp_def) apply(erule_tac x=0 and P="\<lambda>j. H j \<longrightarrow> (\<forall>i. T i \<longrightarrow> (snd (d j i))=(snd (e j i)))" for H T d e in allE,simp) apply(erule_tac x=0 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp) apply(erule_tac x=list in allE) apply(rule_tac x="map tl clist" in exI,simp) apply(rule conjI) apply clarify apply(case_tac j,simp) apply(erule_tac x=i in allE, erule impE, assumption, erule_tac x="0" and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp) apply(erule_tac x=i in allE, erule impE, assumption, erule_tac x="Suc nat" and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp,simp) apply(rule conjI) apply clarify apply(rule nth_equalityI,simp,simp) apply(case_tac j) apply clarify apply(erule_tac x=i in allE) apply(simp add:cp_def) apply clarify apply simp apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp,simp) apply(thin_tac "H = (\<exists>i. J i)" for H J) apply(rule conjI) apply clarify apply(erule_tac x=j in allE,erule impE, assumption,erule disjE) apply clarify apply(rule_tac x=i in exI,simp) apply(case_tac j,simp) apply(rule conjI) apply(erule_tac x=i in allE) apply(simp add:cp_def) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp,simp) apply clarify apply(erule_tac x=l in allE) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE) apply clarify apply(simp add:cp_def) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!l",simp,simp) apply simp apply(rule conjI) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp,simp) apply clarify apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!l",simp,simp) apply clarify apply(erule_tac x=i in allE) apply(simp add:cp_def) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp) apply(rule nth_tl_if,simp,simp) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (P j)\<in>etran" for H P in allE, erule impE, assumption,simp) apply(simp add:cp_def) apply clarify apply(rule nth_tl_if) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp,simp) apply force apply force apply clarify apply(rule iffI) apply(simp add:par_cp_def) apply(erule_tac c="(xs, s) # ys" in equalityCE) apply simp apply clarify apply(rule_tac x="map tl clist" in exI) apply simp apply (rule conjI) apply(simp add:conjoin_def cp_def) apply(rule conjI) apply clarify apply(unfold same_length_def) apply clarify apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,simp) apply(rule conjI) apply(simp add:same_state_def) apply clarify apply(erule_tac x=i in allE, erule impE, assumption, erule_tac x=j and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE) apply(case_tac j,simp) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp,simp) apply(rule conjI) apply(simp add:same_program_def) apply clarify apply(rule nth_equalityI,simp,simp) apply(case_tac j,simp) apply clarify apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp,simp) apply clarify apply(simp add:compat_label_def) apply(rule allI,rule impI) apply(erule_tac x=j in allE,erule impE, assumption) apply(erule disjE) apply clarify apply(rule_tac x=i in exI,simp) apply(rule conjI) apply(erule_tac x=i in allE) apply(case_tac j,simp) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp,simp) apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!i",simp,simp) apply clarify apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> I j \<longrightarrow> J j" for H I J in allE) apply(erule_tac x=l and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE) apply(case_tac "clist!l",simp,simp) apply(erule_tac x=l in allE,simp) apply(rule disjI2) apply clarify apply(rule tl_zero) apply(case_tac j,simp,simp) apply(rule tl_zero,force) apply force apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply force apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (length (s j) = t)" for H s t in allE,force) apply clarify apply(erule_tac x=i in allE) apply(simp add:cp_def) apply(rule nth_tl_if) apply(simp add:conjoin_def) apply clarify apply(simp add:same_length_def) apply(erule_tac x=i in allE,simp) apply simp apply simp apply simp apply clarify apply(erule_tac c="(xs, s) # ys" in equalityCE) apply(simp add:par_cp_def) apply simp apply(erule_tac x="map (\<lambda>i. (fst i, s) # snd i) (zip xs clist)" in allE) apply simp apply clarify apply(simp add:cp_def) done theorem one: "xs\<noteq>[] \<Longrightarrow> par_cp xs s = {c. \<exists>clist. (length clist)=(length xs) \<and> (\<forall>i<length clist. (clist!i) \<in> cp(xs!i) s) \<and> c \<propto> clist}" apply(frule one_iff_aux) apply(drule sym) apply(erule iffD2) apply clarify apply(rule iffI) apply(erule aux_onlyif) apply clarify apply(force intro:aux_if) done end
n := 10; for i in [1 .. n] do Print(i); if i < n then Print(", "); else Print("\n"); fi; od;
module Data.Optics.Iso import Data.Optics.Prism ||| Isomorphism data Iso s a = ||| create an isomorphism between s and a MkIso (s -> a) (a -> s) %name Iso iso, iso1, iso2 %default total to: Iso s a -> s -> a to (MkIso f g) s = f s from: Iso s a -> a -> s from (MkIso f g) a = g a modify: (a -> a) -> (Iso s a) -> s -> s modify f (MkIso to from) s = (from . f . to ) s -- -- Compositions -- infixr 9 -:+ ||| compose two Isomorphisms (-:+): Iso a b -> Iso s a -> Iso s b x -:+ y = MkIso newTo newFrom where newTo: s -> b newTo = (to x . to y) newFrom: b -> s newFrom = (from y . from x) infixr 9 +:- (+:-) : (Iso s a) -> (Iso a b) -> (Iso s b) (+:-) = flip (-:+)
function T = tprod1(S, U, n) %TPROD1 Tensor Product of a tensor and a matrix % T = TPROD1(S, U, n) % % S - tensor (multidimensional array) % U - matrix compatible with the nth size of S ie. size(S,n)==size(U,1) % n - execute tprod in this dimension % % T - result of the product % % eg. tprod1(ones(2,3,4), [1 0 0; 0 1 0], 2) % % See also TPROD. % TODO: n > dimensions of S -> ndim_expand siz = size(S); siz(n) = size(U,1); H = ndim_unfold(S, n); T = ndim_fold(U*H, n, siz);
%% LaTeX Beamer presentation template (requires beamer package) %% see http://bitbucket.org/rivanvx/beamer/wiki/Home %% idea contributed by H. Turgut Uyar %% template based on a template by Till Tantau %% this template is still evolving - it might differ in future releases! \documentclass{beamer} \mode<presentation> { \usetheme{Singapore} \setbeamertemplate{footline}[frame number] \usefonttheme{serif} \setbeamertemplate{navigation symbols}{} \setbeamertemplate{caption}[numbered] % \setbeamercovered{transparent} } \usepackage{cancel} \usepackage{amsmath} \usepackage{graphics} \title{Tutorial for Mid-term Exam} % \author{Hengfeng Wei} \date{November 12, 2013} % Delete this, if you do not want the table of contents to pop up at % the beginning of each subsection: \AtBeginSubsection[] { \begin{frame}<beamer> \frametitle{Outline} \tableofcontents[currentsection] \end{frame} } \AtBeginSection[] { \begin{frame}<beamer> \frametitle{Outline} \tableofcontents[currentsection] \end{frame} } % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: %\beamerdefaultoverlayspecification{<+->} \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Outline} \tableofcontents % You might wish to add the option [pausesections] \end{frame} %%%%%%%%%%%%%%%%%%% \section{A Warm-up Function} \begin{frame} \frametitle{Growth of Function} \begin{Problem}[Growth of Function $\lbrack \textrm{\textbf{Test 1}} \rbrack$] $S(n) = 1^c + 2^c + 3^c + \ldots + n^c, c \in \mathbb{Z^{+}}.$ \begin{itemize} \item $S(n) \in O(n^{c+1})$; \item $S(n) \in \Omega(n^{c+1})$. \end{itemize} \end{Problem} \vspace{0.30cm} To prove: $\exists$ constants $a > 0, n_0 > 0$ such that $S(n) \geq a n^{c+1}, \forall n \geq n_0$. \[ S(n) \geq \underbrace{(\frac{n}{2})^{c} + (\frac{n}{2})^{c} + \ldots + (\frac{n}{2})^{c}}_{\# = \frac{n}{2}} = (\frac{n}{2})^{c} \cdot \frac{n}{2} = \underbrace{\frac{1}{2^{c+1}}}_{a}n^{c+1}. \] \begin{block}{Remark:} \begin{itemize} \item inductive on \emph{constant} $c$ % \item $\int_{0}^{1} (1-x)^3 dx; (-x^3 + 3x^2 - 3x + 1); (x^4 - 4x^3 + % 6x^2 - 4x + 1)$ \end{itemize} \end{block} \end{frame} %%%%%%%%%%%%%%%%%%% \section{Recurrences} \begin{frame} \frametitle{List of Recurrences} \begin{itemize} \setlength{\itemsep}{8pt} \item $T(n) = 2T(n-1) + O(1)$ \hfill $T(n) = O(2^n)$ Hanio tower \item $T(n) = 7T(\frac{n}{2}) + O(n^2)$ \\ \hfill $T(n) = O(n^{2.81})$ Strassen matrix multiplication \item $T(n) = 3T(\frac{n}{2}) + O(n)$ \\ \hfill $T(n) = O(n^{1.59})$ Gauss integer multiplication \item $T(n) = 2T(\frac{n}{2}) + O(n)$ \\ \hfill $T(n) = O(n \lg n)$ merge sort, median-quicksort \item $T(k) = 2T(\frac{k}{2}) + O(nk)$, $T(n,k) = 2T(\frac{n}{2}, \frac{k}{2}) + O(n)$ \hfill in exam \item $T(n) = T(\frac{n}{5}) + T(\frac{7n}{10}) + O(n)$ \hfill linear-time selection \item $T(n) = T(\frac{n}{2}) + O(1)$ \hfill $T(n) = O(\lg n)$ binary search \item $T(n) = 2T(\frac{n}{4}) + O(1)$ \hfill $T(n) = O(\sqrt{n})$ VLSI layout \end{itemize} \end{frame} \begin{frame} \frametitle{Solving Recurrences} \begin{Problem}[Solving Recurrences $\lbrack \textrm{\textbf{Test 2}} \rbrack$] \begin{itemize} \item $T(n) = 5T(\frac{n}{2}) + \Theta(n)$ \hfill \textcolor{blue}{$T(n) = \Theta(n^{\lg 5})$} \item $T(n) = 9T(\frac{n}{3}) + \Theta(n^2)$ \hfill \textcolor{blue}{$T(n) = \Theta(n^2 \lg n)$} \item $T(n) = 2T(n-1) + O(1)$ \hfill \textcolor{blue}{$T(n) = O(2^n)$} \end{itemize} \end{Problem} \begin{block}{Remark:} \begin{itemize} \item $T(n) = 2T(n-1) + O(1)$: unfolding; recursion tree; \\ $(1 + 2 + \ldots + 2^{n-1}) O(1) = (2^{n}-1) O(1)$; \\ The Tower of Hanio. \item which to choose? \end{itemize} \end{block} \end{frame} \begin{frame} \frametitle{Merge Sort} \begin{Problem}[Merge Sort $\lbrack \textrm{\textbf{Test 3}} \rbrack$] $k$ sorted arrays, each with $n$ elements; merge-sort them. \end{Problem} \begin{itemize} \item one by one: $2n + 3n + \ldots + kn = \frac{k^2 + k - 2}{2}n$ \item divide and conquer: $T(k) = 2T(\frac{k}{2}) + O(nk) = O(n \cdot k \lg k)$; \\ unfolding the recursion; dfs (post-order); \\ layer by layer; recursion tree. \end{itemize} \end{frame} \begin{frame} \frametitle{$k$-Sort} \begin{Problem}[$k$-Sort $\lbrack \textrm{\textbf{Test 6}} \rbrack$] $A[1 \ldots n]$, $k$ blocks, each of size $\frac{n}{k}$: \begin{itemize} \item sorted within each block \item \emph{fuzzy} sorted among blocks \end{itemize} E.g., $1\; 2\; 4\; 3; 7\; 6\; 8\; 5; 10\; 11\; 9\; 12; 15\; 13\; 16\; 14$ \end{Problem} \vspace{0.40cm} It is a \emph{unfinished} median-quicksort. \begin{itemize} \item recursion of ``median + partition'' \item $T(n,k) = 2T(\frac{n}{2}, \frac{k}{2}) + O(n)$ \item recursion tree; $\lg k$ layers \end{itemize} \end{frame} \begin{frame} \frametitle{VLSI Layout (1)} \begin{Problem}[VLSI Layout] Embed a complete binary tree with $n$ leaves into a grid with minimum area. \begin{itemize} \item VLSI: Very Large Scale Integration \item complete binary tree circuit: $\#layer = 3,5,7,\ldots$ \item $n$ leaves (\textcolor{red}{why only leaves?}) \item grid; vertex + edge (no crossing) \item area \item take 5-layer complete binary tree as an example \end{itemize} \end{Problem} \end{frame} \begin{frame} \frametitle{VLSI Layout (2)} \begin{itemize} \setlength{\itemsep}{0.50cm} \item Na\"{\i}ve embedding \[ H(n) = H(\frac{n}{2}) + \Theta(1) = \Theta(\lg n) \] \[ W(n) = 2W(\frac{n}{2}) + \Theta(1) = \Theta(n) \] \[ A(n) = \Theta(n \lg n) \] \item Smart (H-Layout) embedding \[ \Box \times \Box = n? \; 1 \times n;\; \frac{n}{\lg n} \times \lg n;\; \textcolor{blue}{\sqrt{n} \times \sqrt{n}} \] Goal: $H(n) = \Theta(\sqrt{n}); W(n) = \Theta(\sqrt{n}); A(n) = \Theta(n).$ \[ H(n) = \Box H(\frac{n}{\Box}) + O(\Box); H(n) = 2 H(\frac{n}{4}) + O(n^{\frac{1}{2} - \epsilon}) \] \[ H(n) = 2H(\frac{n}{4}) + \Theta(1) \] \centering \textcolor{blue}{Here it is: H-Layout} \end{itemize} \end{frame} \begin{frame} \frametitle{Median of Two Sorted Arrays (1)} \begin{Problem}[Median of Two Sorted Arrays $\lbrack {\bf P_{245}, 5.18} \rbrack$] $A[1 \ldots n], B[1 \ldots n]$; sorted, ascending order; distinct. find the median of the combined set of $A$ and $B$ ($O(\lg n)$). \end{Problem} \[ T(n) = T(\frac{n}{2}) + \Theta(1) \] \[A = 2,4,6,8,10 = \fbox{$A_1: (n-1)/2$}\; \fbox{$M_A: 1$}\; \fbox{$A_2: (n-1)/2$} \] \[B = 1,3,5,7,9 = \fbox{$B_1: (n-1)/2$}\; \fbox{$M_B: 1$}\; \fbox{$B_2: (n-1)/2$} \] \[ \fbox{$n$ \textrm{ is odd}} C = \fbox{$C_1: (n-1)$}\; \fbox{$M_C: 1$}\; \fbox{$C_2: (n-1)$} \] \[ M_A > M_B \Rightarrow \cancel{M_A + A_2; B_1} \Rightarrow (A_1 + M_1, M_2 + B_2) \] \textcolor{red}{why not $(A_1, M_2 + B_2)$?} and not finished yet $\ldots$ (\textcolor{red}{why?}) \end{frame} \begin{frame} \frametitle{Median of Two Sorted Arrays (2)} \textcolor{red}{To prove:} The median $M_C'$ of the subproblem $(A_1 + M_1, M_2 + B_2)$ is also the median $M_C$ of the original problem $(A,B)$. \vspace{0.50cm} \textcolor{blue}{Proof: \textcolor{red}{why?}} \[ M_C \in [M_B, M_A) \] \[ M_C' \in [M_B, M_A)\; \fbox{$\frac{n+1}{2}-1$}\; \fbox{$M_C': 1$}\; \fbox{$\frac{n+1}{2}-1$} \] \begin{block}{Extensions:} \begin{itemize} \item $A[1 \ldots n], B[1 \ldots n]$; not sorted; \item $A[1 \ldots n], B[1 \ldots n], C[1 \ldots n]$; sorted; median \item $A[1 \ldots n], B[1 \ldots n], \ldots$; sorted; median \item $A[1 \ldots n], B[1 \ldots n], \ldots$; sorted; $k$-th smallest \end{itemize} \end{block} \end{frame} \begin{frame} \frametitle{Two Stacks, One Queue (1)} \begin{Problem}[Two Stacks, One Queue $\lbrack \textrm{\textbf{Test 4}} \rbrack$] two stacks $\Rightarrow$ one queue; correctness proof; amortized analysis \begin{description} \item[\textsc{Enqueue}$(x)$:] \textsc{Push}$(S_1, x)$; \item[\textsc{Dequeue}$()$:] while $S_2 = \emptyset$, \textsc{Push}$(S_2, \textsc{Pop}(S_1))$; \textsc{Pop}$(S_2)$; \item[Ex:] \textsc{Enqueue}$(1,2,3)$, \textsc{Dequeue}$()$ \end{description} \end{Problem} \vspace{0.30cm} Simple observation: \fbox{$S_1$ to push; $S_2$ to pop.} \begin{align*} FIFO &\Leftrightarrow \\ &\forall \textsc{De}_1 \prec \textsc{De}_2: a = \textsc{De}_1, b = \textsc{De}_2 \Rightarrow \exists \textsc{En}_1(a) \prec \textsc{En}_2(b). \end{align*} \begin{itemize} \item Summation method: the sequence is (\uppercase{not}) known \item Accounting method: $\hat{c_i} = c_i + a_i$; $\sum_i^n \hat{c_i} \geq \sum_i^n c_i$; \fbox{$\sum_i^n a_i \geq 0, \forall n$} \end{itemize} \end{frame} \begin{frame} \frametitle{Two Stacks, One Queue (2)} \begin{table} \begin{tabular}{ccccc} item: & \textsc{Push} into $S_1$ & \textsc{Pop} from $S_1$ & \textsc{Push} into $S_2$ & \textsc{Pop} from $S_2$ \\ & 1 & 1 & 1 & 1 \end{tabular} \end{table} \begin{table} \begin{tabular}{cccc} & $\hat{c_i}$ & $c_i$ & $a_i$ \\ \textsc{Enqueue} & 3 & 2 & 1 \\ \textsc{Dequeue} & 2 & 2 & 0 \end{tabular} \end{table} Ex: \textsc{Enqueue}$(1,2,3)$, \textsc{Dequeue}$()$ \[ \sum a_i = \#S_1 \times 2 \geq 0.\] \end{frame} \begin{frame} \frametitle{Two Queues, One Stack (1)} \begin{Problem}[Two Queues, One Stack] implement/simulate a stack using two queues \end{Problem} Let's try [left: example; right: code]: \begin{itemize} \item push (1,2,3,4) \item pop (4) $\Rightarrow Q_1 \xrightarrow{(1,2,3)} Q_2$ [\textcolor{blue}{transfer}] \item pop (3) $\Rightarrow Q_2 \xrightarrow{(1,2)} Q_1$ \item push (5,6,7) \item pop 7 $\Rightarrow Q_1 \xrightarrow{(1,2,5,6)} Q_2$ \end{itemize} \vspace{0.50cm} $Q_1$ for push; $Q_2$ for pop: \begin{description} \item[Push$(x)$:] Enqueue$(Q_1,x)$ \item[Pop$()$:] $Q_1 \xrightarrow{transfer} Q_2$; swap $Q_1 \leftrightarrow Q_2$ \end{description} \end{frame} \begin{frame} \frametitle{Two Queues, One Stack (2)} Analysis: \[ Push^{n}(Push^1 Pop^1)^{n/2} \] \[ \sum c_i = n + (1 + (n+1)) \times \frac{n}{2} = n + (n+2) \times \frac{n}{2} = (n^2 + 4n)/2 \] \[ (\sum c_i)/n = (n+4)/2 = \Theta(n) \] \begin{block}{Remark: \textcolor{red}{Why so bad?}} \begin{itemize} \item only use \emph{one} queue: push (1,2,3,4); pop (4); [\textcolor{blue}{circulate}] \item one queue + \textcolor{blue}{circulate} \begin{description} \item [\textsc{Push$(x)$}:] \textsc{Enqueue$(Q_1,x)$}; circulate$(Q_1)$ \item [\textsc{Pop$()$}:] \textsc{Dequeue$(Q_1)$} \end{description} \item review of ``array doubling'': expensive, cheap, cheap, $\ldots$, expensive \item \textsc{Push}: \textcolor{red}{expensive, cheap, cheap, $\ldots$, expensive?} \end{itemize} \end{block} \end{frame} \begin{frame} \frametitle{Two Queues, One Stack (3)} Hey, $Q_2$: \begin{itemize} \item split the elements into $Q_2$ (cache vs. memory); \\ do not change \textsc{Pop} $\Rightarrow$ ``stack order'' \item $I_1$ [stack order]: $Q_1$ for top of stack; $Q_2$ for bottom of stack \begin{description} \item [\textsc{Push$(x)$}:] \textsc{Enqueue$(Q_1,x)$}; circulate$(Q_1)$ \item [\textsc{Pop$()$}:] if $Q_1 \neq \emptyset$ \textsc{Dequeue$(Q_1)$}; else \textsc{Dequeue$(Q_2)$} \end{description} \item $I_2$ [$\#Q_1 < \sqrt{\#Q_2}$]: keep $\#Q_1$ small \end{itemize} \vspace{0.50cm} Ex: \begin{itemize} \item \textsc{Push$(1,2,3,4,5,6)$} :$Q_1: 6$; $Q_2: 5,4,3,2,1$ (\textcolor{red}{why?}) \item \textsc{Push$(7,8)$} \textcolor{red}{how to [transfer] now?} \item $Q_2 \xrightarrow{transfer} Q_1$; swap $Q_1 \leftrightarrow Q_2$ \item \textsc{Push$(9,10,11)$} \end{itemize} \end{frame} \begin{frame} \frametitle{Two Queues, One Stack (4)} \begin{itemize} \setlength{\itemsep}{10pt} \item ultimate code: \begin{description} \item [\textsc{Push$(x)$}:] \textsc{Enqueue$(Q_1,x)$}; circulate$(Q_1)$; \\ if $\#Q_1 \geq \sqrt{\#Q_2}$ \\ $Q_2 \xrightarrow{transfer} Q_1$; swap $Q_1 \leftrightarrow Q_2$; \item [\textsc{Pop$()$}:] if $Q_1 \neq \emptyset$ \textsc{Dequeue$(Q_1)$}; else \textsc{Dequeue$(Q_2)$} \end{description} \item analysis: \textsc{Pop} ($O(1)$), \textsc{Push}: \begin{description} \item[cheap:] $\#Q_1 < \sqrt{\#Q_2} \Rightarrow O(\sqrt{n})$ \item[expensive:] $\#Q_1 \neq \sqrt{\#Q_2} \Rightarrow O(n)$ \item[amortized:] $E, \underbrace{C, C, \ldots, C}_{\# = O(\sqrt{n})}, E \Rightarrow O(\sqrt{n})$ \end{description} \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%% % \section{A Spare Adversary} % % \begin{frame} % \frametitle{01 Adversary} % % \begin{Problem}[01 Adversary $\lbrack {\bf P_{245}, 5.20} \rbrack$] % bit array $A[1 \ldots n]$; if it contains the substring $01$? \\ % can we answer this question without looking at every bit? % \end{Problem} % % \begin{itemize} % \item $n$ is odd ($n=9$): check each \emph{even} bit $A[2], A[4], \ldots % A[8]$ % \begin{itemize} % \item all 1: $A[n]$ % \item all 0: $A[1]$ % \item all 1 come before 0 (1\;1\;0\;0): $A[4], A[6]$ % \item $\exists i < j, A[i] = 0, A[j] = 1\; (A[2], A[6])$ % \end{itemize} % \item $n$ is even % \begin{itemize} % \item $1\;1\;1\;1\;1\;1\; \Box \Box \Box \Box \Box \Box\; 0\;0\;0\;0$ % \item Init: $l = 0; r = n + 1$ % \item Invariant: $r - l - 1$ is even % \item \textsc{Look($i$):} $i \leq l \Rightarrow 1$; $i \geq r % \Rightarrow 0$; \\ % $i-r$ is even $\Rightarrow (r \gets i; 0)$; \\ % $i-l$ is even $\Rightarrow (l \gets i; 1)$ % \end{itemize} % \end{itemize} % \end{frame} % %%%%%%%%%%%%%%%%%%% % \section*{Summary} %%%%%%%%%% \end{document}
library(readr) library(lubridate) library(chron) library(reshape2) grupos_municipios_prex11 <- MB_x11 View(grupos_municipios_prex11) cnbv_muns<-grupos_municipios_prex11 cnbv_muns$ENT<-substr(cnbv_muns$CVEMUN,start = 0,stop = 2) cnbv_muns_edo<-cnbv_muns %>% group_by(ENT,fecha) %>% summarise(bancomer=sum(bancomer), banamex=sum(banamex), valor=sum(valor), otros=sum(otros)) %>% filter(month(fecha)==12,year(fecha)>=2014) ggplot(cnbv_muns_edo, aes(fecha, bancomer,color=ENT)) + geom_line() ggplot(cnbv_muns_edo, aes(fecha, banamex,color=ENT)) + geom_line() ggplot(cnbv_muns_edo, aes(fecha, valor,color=ENT)) + geom_line() ggplot(cnbv_muns_edo, aes(fecha, otros,color=ENT)) + geom_line() cnbv_edo_bancomer<-cnbv_muns_edo %>% select(ENT,fecha,bancomer) %>% dcast(ENT~fecha) names(cnbv_edo_bancomer)<-c("CVEENT","bancomer_2014","bancomer_2015","bancomer_2016", "bancomer_2017","bancomer_2018","bancomer_2019") cnbv_edo_banamex<-cnbv_muns_edo %>% select(ENT,fecha,banamex) %>% dcast(ENT~fecha) names(cnbv_edo_banamex)<-c("CVEENT","banamex_2014","banamex_2015","banamex_2016", "banamex_2017","banamex_2018","banamex_2019") cnbv_edo_valor<-cnbv_muns_edo %>% select(ENT,fecha,valor) %>% dcast(ENT~fecha) names(cnbv_edo_valor)<-c("CVEENT","valor_2014","valor_2015","valor_2016", "valor_2017","valor_2018","valor_2019") cnbv_edo_otros<-cnbv_muns_edo %>% select(ENT,fecha,otros) %>% dcast(ENT~fecha) names(cnbv_edo_otros)<-c("CVEENT","otros_2014","otros_2015","otros_2016", "otros_2017","otros_2018","otros_2019") #Por municipios cnbv_muns<-cnbv_muns %>% group_by(ENT,CVEMUN,fecha) %>% summarise(bancomer=sum(bancomer), banamex=sum(banamex), valor=sum(valor), otros=sum(otros)) %>% filter(month(fecha)==12,year(fecha)>=2014) cnbv_muns_bancomer<-cnbv_muns %>% select(ENT,CVEMUN,fecha,bancomer) %>% dcast(CVEMUN~fecha) #names(cnbv_muns_bancomer)<-c("CVEENT","bancomer_2014","bancomer_2015","bancomer_2016") cnbv_muns_banamex<-cnbv_muns %>% select(ENT,CVEMUN,fecha,banamex) %>% dcast(CVEMUN~fecha) #names(cnbv_muns_banamex)<-c("CVEENT","banamex_2014","banamex_2015","banamex_2016") cnbv_muns_valor<-cnbv_muns %>% select(ENT,CVEMUN,fecha,valor) %>% dcast(CVEMUN~fecha) #names(cnbv_muns_valor)<-c("CVEENT","valor_2014","valor_2015","valor_2016") cnbv_muns_otros<-cnbv_muns %>% select(ENT,CVEMUN,fecha,otros) %>% dcast(CVEMUN~fecha) #names(cnbv_muns_otros)<-c("CVEENT","otros_2014","otros_2015","otros_2016")
Also serving communities of Stevens, Denver, New Holland. There are 32 Assisted Living Facilities in the Ephrata area, with 4 in Ephrata and 28 nearby. The average cost of assisted living in Ephrata is $4,137 per month. This is higher than the national median of $3,346. Cheaper nearby regions include Lititz with an average starting cost of $3,405. To help you with your search, browse the 66 reviews below for assisted living facilities in Ephrata. On average, consumers rate assisted living in Ephrata 4.2 out of 5 stars. Better rated regions include Lititz with an average rating of 4.3 out of 5 stars. Caring.com has helped thousands of families find high-quality senior care. To speak with one of our Family Advisors about assisted living options and costs in Ephrata, call (855) 863-8283. Promotion ends in 58 days! SPRING SPECIAL! $300 off rent for selected rooms & Community Fee discount for Veterans!!! Ephrata is a borough of about 14,000 people in Lancaster County, 38 miles southeast of Harrisburg. Its population grew rapidly from 1970 to 2000, although it has remained stable since then. The city's senior population is currently at 13.8 percent. Ephrata seniors will find 32 assisted living facilities in the Ephrata area, with four in the borough itself and the other 28 in nearby areas such as Lancaster and Lititz. Title 55, Chapter 2800 of the Pennsylvania State Code regulates assisted living residences in the state. In addition to providing a residence, these living facilities also provide seniors with assistance in daily living activities. Ephrata has mostly flat land with a moderate climate and steady rainfall throughout the year, making it suitable for farming. February has the most snow, with an average of 7.5 inches, although all months from November to April typically receive some snow. Seniors in Ephrata should be able to engage in outdoor activities throughout the majority of year. Ephrata’s overall cost of living is about three percent higher than the national average. Utilities and groceries are the biggest contributors to the higher cost of living, at 23 percent and 11.5 percent of the national average respectively. Seniors living in Ephrata will need to budget their expenses more carefully than they would in many other U.S. locations. The overall crime rate in Ephrata is lower than the average across the U.S. The crime rate in Ephrata is significantly lower than the rate for the entire state. This borough is therefore one of the safer areas for seniors in Pennsylvania. Red Rose Transit provides public transportation for Lancaster, with Route 11 serving Ephrata. Seniors ride for free at all times with the Senior Free Ride Program sponsored by the state lottery. Disabled passengers pay half fare during non-peak hours. The Ephrata Senior Center maintains a regular schedule for seniors which includes games, clubs, adult education and exercise. It also sponsors special events, including out-of-town trips. This senior center serves hot, buffet-style meals six days a week. The Ephrata area is home to world-class medical facilities, including Ephrata Community Hospital and Lancaster General Health Urgent Care, in the event of medical emergencies or illness. Assisted Living costs in Ephrata start around $4,137 per month on average, while the nationwide average cost of assisted living is $4,000 per month, according to the latest figures from Genworth’s Cost of Care Survey. It’s important to note that assisted living rates in Ephrata and the surrounding suburbs can vary widely based on factors such as location, the level of care needed, apartment size and the types of amenities offered at each community. Pennsylvania does not have any waivers to offset assisted living costs at this time, but the state does offer a supplement to SSI for residents in non-nursing residential care. Ephrata and the surrounding area are home to numerous government agencies and non-profit organizations offering help for seniors searching for or currently residing in an assisted living community. These organizations can also provide assistance in a number of other eldercare services such as geriatric care management, elder law advice, estate planning, finding home care and health and wellness programs. To see a list of free assisted living resources in Ephrata, please visit our Assisted Living in Pennsylvania page. Ephrata-area assisted living communities must adhere to the comprehensive set of state laws and regulations that all assisted living communities in Pennsylvania are required to follow. Visit our Assisted Living in Pennsylvania page for more information about these laws.
Formal statement is: corollary closed_vimage_Int[continuous_intros]: assumes "closed s" and "continuous_on t f" and t: "closed t" shows "closed (f -` s \<inter> t)" Informal statement is: If $f$ is a continuous function from a closed set $t$ to a topological space $X$, and $s$ is a closed subset of $X$, then $f^{-1}(s) \cap t$ is closed in $t$.
Require Import List FJ.Base FJ.Semantics.AuxiliarDefinitions FJ.Syntax FJ.Typing.Subtyping FJ.Tactics. (* type rules for expressions *) Section TYPING. Variable CT : ClassTable. Reserved Notation "G '|--' e '::' C" (at level 58, e at next level). Inductive StupidWarning : Set := StupidCast : StupidWarning. Definition Gamma : Type := Map ClassName. Inductive ExpHasType (G : Gamma) : Exp -> ClassName -> Prop := | T_Var : forall v C, M.MapsTo v C G -> G |-- (EVar v) :: C | T_Field : forall e C fs fd fi n, G |-- e :: C -> fields CT n C fs -> M.MapsTo fi fd fs -> G |-- (EFieldAccess e fi) :: (fdtype fd) | T_Invoc : forall e C0 Ds es m n mt, G |-- e :: C0 -> m_type_lookup CT n m C0 mt -> Forall2 (ExpHasType G) es Ds -> Forall2 (Subtype CT) Ds (mtparams mt) -> G |-- EMethodInvoc e m es :: (mttype mt) | T_New : forall C Ds Cs fs es n, fields CT n C fs -> Ds = map fdtype (values fs) -> Forall2 (ExpHasType G) es Cs -> Forall2 (Subtype CT) Cs Ds -> G |-- (ENew C es) :: C | T_UCast : forall e D C n, G |-- e :: D -> BoundedSubtype CT n D C -> G |-- (ECast C e) :: C | T_DCast : forall e C D n, G |-- e :: D -> BoundedSubtype CT n C D -> C <> D -> G |-- (ECast C e) :: C | T_SCast : forall e D C n m, G |-- e :: D -> ~ (BoundedSubtype CT n D C) -> ~ (BoundedSubtype CT m C D) -> StupidWarning -> G |-- (ECast C e) :: C where "G '|--' e '::' C" := (ExpHasType G e C). Definition mkGamma (fargs : list FormalArg) : Gamma := fold_left (fun ac f => M.add (get_name f) (ftype f) ac) fargs (M.empty _). (* method typing *) Inductive MethodOk : ClassName -> Method -> Prop := | T_Method : forall CD C E0 MD n, M.MapsTo C CD CT -> mkGamma ((mkFormalArg this C) :: (margs MD)) |-- (mbody MD) :: E0 -> Subtype CT E0 (mtype MD) -> valid_override CT n (mname MD) (cextends CD) (mkMethodType (map ftype (margs MD)) (mtype MD)) -> MethodOk C MD. (* class typing *) Inductive ClassOk : ClassDecl -> Prop := | T_Class : forall C CD D n dfds ms K fs, M.MapsTo C CD CT -> CD = mkClassDecl C D fs K ms -> fields CT n D dfds -> Forall (MethodOk C) (values ms) -> ClassOk CD. End TYPING. Notation "CT ';' G '|--' e '::' C" := (ExpHasType CT G e C)(at level 58, e at next level). Hint Constructors StupidWarning. Hint Constructors ExpHasType. Hint Constructors MethodOk.
lemma (in -) assumes "filterlim f (nhds L) F" shows tendsto_imp_filterlim_at_right: "eventually (\<lambda>x. f x > L) F \<Longrightarrow> filterlim f (at_right L) F" and tendsto_imp_filterlim_at_left: "eventually (\<lambda>x. f x < L) F \<Longrightarrow> filterlim f (at_left L) F"
// Distributed under the MIT License. // See LICENSE.txt for details. #include "Framework/TestingFramework.hpp" #include <algorithm> #include <boost/iterator/transform_iterator.hpp> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <vector> #include "DataStructures/DataVector.hpp" #include "DataStructures/Tensor/TensorData.hpp" #include "IO/H5/AccessType.hpp" #include "IO/H5/File.hpp" #include "IO/H5/VolumeData.hpp" #include "NumericalAlgorithms/Spectral/Spectral.hpp" #include "NumericalAlgorithms/SphericalHarmonics/Strahlkorper.hpp" #include "NumericalAlgorithms/SphericalHarmonics/YlmSpherepack.hpp" #include "Utilities/Algorithm.hpp" #include "Utilities/ErrorHandling/Error.hpp" #include "Utilities/FileSystem.hpp" #include "Utilities/MakeString.hpp" #include "Utilities/Numeric.hpp" namespace { template <typename T> T multiply(const double obs_value, const T& component) { T result = component; for (auto& t : result) { t *= obs_value; } return result; } // Check that the volume data is correct template <typename DataType> void check_volume_data( const std::string& h5_file_name, const uint32_t version_number, const size_t observation_id, const double observation_value, const std::vector<DataType>& tensor_components_and_coords, const std::vector<std::string>& grid_names, const std::vector<std::vector<Spectral::Basis>>& bases, const std::vector<std::vector<Spectral::Quadrature>>& quadratures, const std::vector<std::vector<size_t>>& extents, const std::vector<std::string>& expected_components, const std::vector<std::vector<size_t>>& grid_data_orders) { h5::H5File<h5::AccessType::ReadOnly> file_read{h5_file_name}; const auto& volume_file = file_read.get<h5::VolumeData>("/element_data", version_number); CHECK(extents == volume_file.get_extents(observation_id)); CHECK(volume_file.get_observation_value(observation_id) == observation_value); // Check that all of the grid names were written correctly by checking their // equality of elements const std::vector<std::string> read_grid_names = volume_file.get_grid_names(observation_id); [&read_grid_names, &grid_names]() { auto sortable_grid_names = grid_names; auto sortable_read_grid_names = read_grid_names; std::sort(sortable_grid_names.begin(), sortable_grid_names.end(), std::less<>{}); std::sort(sortable_read_grid_names.begin(), sortable_read_grid_names.end(), std::less<>{}); REQUIRE(sortable_read_grid_names == sortable_grid_names); }(); // Find the order the grids were written in std::vector<size_t> grid_positions(read_grid_names.size()); for (size_t i = 0; i < grid_positions.size(); i++) { auto grid_name = grid_names[i]; auto position = std::find(read_grid_names.begin(), read_grid_names.end(), grid_name); // We know the grid name is in the read_grid_names because of the previous // so we know `position` is an actual pointer to an element grid_positions[i] = static_cast<size_t>(std::distance(read_grid_names.begin(), position)); } auto read_bases = volume_file.get_bases(observation_id); alg::sort(read_bases, std::less<>{}); auto read_quadratures = volume_file.get_quadratures(observation_id); alg::sort(read_quadratures, std::less<>{}); // We need non-const bases and quadratures in order to sort them, and we // need them in their string form, const auto& stringify = [](const auto& bases_or_quadratures) { std::vector<std::vector<std::string>> local_target_data{}; local_target_data.reserve(bases_or_quadratures.size() + 1); for (const auto& element_data : bases_or_quadratures) { std::vector<std::string> target_axis_data{}; target_axis_data.reserve(element_data.size() + 1); for (const auto& axis_datum : element_data) { target_axis_data.emplace_back(MakeString{} << axis_datum); } local_target_data.push_back(target_axis_data); } return local_target_data; }; auto target_bases = stringify(bases); alg::sort(target_bases, std::less<>{}); auto target_quadratures = stringify(quadratures); alg::sort(target_quadratures, std::less<>{}); CHECK(target_bases == read_bases); CHECK(target_quadratures == read_quadratures); const auto read_components = volume_file.list_tensor_components(observation_id); CHECK(alg::all_of(read_components, [&expected_components](const std::string& id) { return alg::found(expected_components, id); })); // Helper Function to get number of points on a particular grid const auto accumulate_extents = [](const std::vector<size_t>& grid_extents) { return alg::accumulate(grid_extents, 1, std::multiplies<>{}); }; const auto read_extents = volume_file.get_extents(observation_id); std::vector<size_t> element_num_points( boost::make_transform_iterator(read_extents.begin(), accumulate_extents), boost::make_transform_iterator(read_extents.end(), accumulate_extents)); const auto read_points_by_element = [&element_num_points]() { std::vector<size_t> read_points(element_num_points.size()); read_points[0] = 0; for (size_t index = 1; index < element_num_points.size(); index++) { read_points[index] = read_points[index - 1] + element_num_points[index - 1]; } return read_points; }(); // Given a DataType, corresponding to contiguous data read out of a // file, find the data which was written by the grid whose extents are // found at position `grid_index` in the vector of extents. const auto get_grid_data = [&element_num_points, &read_points_by_element]( const DataVector& all_data, const size_t grid_index) { DataType result(element_num_points[grid_index]); // clang-tidy: do not use pointer arithmetic std::copy(&all_data[read_points_by_element[grid_index]], &all_data[read_points_by_element[grid_index]] + // NOLINT element_num_points[grid_index], result.begin()); return result; }; // The tensor components can be written in any order to the file, we loop // over the expected components rather than the read components because they // are in a particular order. for (size_t i = 0; i < expected_components.size(); i++) { const auto& component = expected_components[i]; // for each grid for (size_t j = 0; j < grid_names.size(); j++) { CHECK(get_grid_data( volume_file.get_tensor_component(observation_id, component), grid_positions[j]) == multiply(observation_value, tensor_components_and_coords[grid_data_orders[j][i]])); } } } void test_strahlkorper() { constexpr size_t l_max = 12; constexpr size_t m_max = 12; constexpr double sphere_radius = 4.0; constexpr std::array<double, 3> center{{5.0, 6.0, 7.0}}; const Strahlkorper<Frame::Inertial> strahlkorper{l_max, m_max, sphere_radius, center}; const YlmSpherepack& ylm = strahlkorper.ylm_spherepack(); const std::array<DataVector, 2> theta_phi = ylm.theta_phi_points(); const DataVector theta = theta_phi[0]; const DataVector phi = theta_phi[1]; const DataVector sin_theta = sin(theta); const DataVector radius = ylm.spec_to_phys(strahlkorper.coefficients()); const std::string grid_name{"AhA"}; const std::vector<DataVector> tensor_and_coord_data{ radius * sin_theta * cos(phi), radius * sin_theta * sin(phi), radius * cos(theta), cos(2.0 * theta)}; const std::vector<TensorComponent> tensor_components{ {grid_name + "/InertialCoordinates_x", tensor_and_coord_data[0]}, {grid_name + "/InertialCoordinates_y", tensor_and_coord_data[1]}, {grid_name + "/InertialCoordinates_z", tensor_and_coord_data[2]}, {grid_name + "/TestScalar", tensor_and_coord_data[3]}}; const std::vector<size_t> observation_ids{4444}; const std::vector<double> observation_values{1.0}; const std::vector<Spectral::Basis> bases{2, Spectral::Basis::SphericalHarmonic}; const std::vector<Spectral::Quadrature> quadratures{ {Spectral::Quadrature::Gauss, Spectral::Quadrature::Equiangular}}; const std::string h5_file_name{"Unit.IO.H5.VolumeData.Strahlkorper.h5"}; const uint32_t version_number = 4; if (file_system::check_if_file_exists(h5_file_name)) { file_system::rm(h5_file_name, true); } const std::vector<size_t> extents{ {ylm.physical_extents()[0], ylm.physical_extents()[1]}}; { h5::H5File<h5::AccessType::ReadWrite> strahlkorper_file{h5_file_name}; auto& volume_file = strahlkorper_file.insert<h5::VolumeData>( "/element_data", version_number); volume_file.write_volume_data( observation_ids[0], observation_values[0], std::vector<ElementVolumeData>{ {extents, tensor_components, bases, quadratures}}); strahlkorper_file.close_current_object(); // Open the read volume file and check that the observation id and values // are correct. const auto& volume_file_read = strahlkorper_file.get<h5::VolumeData>("/element_data", version_number); const auto read_observation_ids = volume_file_read.list_observation_ids(); CHECK(read_observation_ids == std::vector<size_t>{4444}); CHECK(volume_file_read.get_observation_value(observation_ids[0]) == observation_values[0]); } check_volume_data(h5_file_name, version_number, observation_ids[0], observation_values[0], tensor_and_coord_data, {{grid_name}}, {bases}, {quadratures}, {extents}, {"InertialCoordinates_x", "InertialCoordinates_y", "InertialCoordinates_z", "TestScalar"}, {{0, 1, 2, 3}}); if (file_system::check_if_file_exists(h5_file_name)) { file_system::rm(h5_file_name, true); } } template <typename DataType> void test() { const std::string h5_file_name("Unit.IO.H5.VolumeData.h5"); const uint32_t version_number = 4; if (file_system::check_if_file_exists(h5_file_name)) { file_system::rm(h5_file_name, true); } h5::H5File<h5::AccessType::ReadWrite> my_file(h5_file_name); const std::vector<DataType> tensor_components_and_coords{ {8.9, 7.6, 3.9, 2.1, 18.9, 17.6, 13.9, 12.1}, {0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0}, {0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0}, {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0}, {-78.9, -7.6, -1.9, 8.1, 6.3, 8.7, 9.8, 0.2}, {-7.9, 7.6, 1.9, -8.1, -6.3, 2.7, 6.8, -0.2}, {17.9, 27.6, 21.9, -28.1, -26.3, 32.7, 26.8, -30.2}}; const std::vector<size_t> observation_ids{8435087234, size_t(-1)}; const std::vector<double> observation_values{8.0, 2.3}; const std::vector<std::string> grid_names{"[[2,3,4]]", "[[5,6,7]]"}; const std::vector<std::vector<Spectral::Basis>> bases{ {3, Spectral::Basis::Chebyshev}, {3, Spectral::Basis::Legendre}}; const std::vector<std::vector<Spectral::Quadrature>> quadratures{ {3, Spectral::Quadrature::Gauss}, {3, Spectral::Quadrature::GaussLobatto}}; { auto& volume_file = my_file.insert<h5::VolumeData>("/element_data", version_number); const auto write_to_file = [&volume_file, &tensor_components_and_coords, &grid_names, &bases, &quadratures](const size_t observation_id, const double observation_value) { std::string first_grid = grid_names.front(); std::string last_grid = grid_names.back(); volume_file.write_volume_data( observation_id, observation_value, std::vector<ElementVolumeData>{ {{2, 2, 2}, {TensorComponent{first_grid + "/S", multiply(observation_value, tensor_components_and_coords[0])}, TensorComponent{first_grid + "/x-coord", multiply(observation_value, tensor_components_and_coords[1])}, TensorComponent{first_grid + "/y-coord", multiply(observation_value, tensor_components_and_coords[2])}, TensorComponent{first_grid + "/z-coord", multiply(observation_value, tensor_components_and_coords[3])}, TensorComponent{first_grid + "/T_x", multiply(observation_value, tensor_components_and_coords[4])}, TensorComponent{first_grid + "/T_y", multiply(observation_value, tensor_components_and_coords[5])}, TensorComponent{first_grid + "/T_z", multiply(observation_value, tensor_components_and_coords[6])}}, bases.front(), quadratures.front()}, // Second Element Data {{2, 2, 2}, {TensorComponent{last_grid + "/S", multiply(observation_value, tensor_components_and_coords[1])}, TensorComponent{last_grid + "/x-coord", multiply(observation_value, tensor_components_and_coords[0])}, TensorComponent{last_grid + "/y-coord", multiply(observation_value, tensor_components_and_coords[5])}, TensorComponent{last_grid + "/z-coord", multiply(observation_value, tensor_components_and_coords[3])}, TensorComponent{last_grid + "/T_x", multiply(observation_value, tensor_components_and_coords[6])}, TensorComponent{last_grid + "/T_y", multiply(observation_value, tensor_components_and_coords[4])}, TensorComponent{last_grid + "/T_z", multiply(observation_value, tensor_components_and_coords[2])}}, bases.back(), quadratures.back()}}); }; for (size_t i = 0; i < observation_ids.size(); ++i) { write_to_file(observation_ids[i], observation_values[i]); } } // Open the read volume file and check that the observation id and values are // correct. const auto& volume_file = my_file.get<h5::VolumeData>("/element_data", version_number); const auto read_observation_ids = volume_file.list_observation_ids(); // The observation IDs should be sorted by their observation value CHECK(read_observation_ids == std::vector<size_t>{size_t(-1), 8435087234}); { INFO("Test find_observation_id"); std::vector<size_t> found_observation_ids(observation_values.size()); std::transform(observation_values.begin(), observation_values.end(), found_observation_ids.begin(), [&volume_file](const double observation_value) { return volume_file.find_observation_id(observation_value); }); CHECK(found_observation_ids == observation_ids); } for (size_t i = 0; i < observation_ids.size(); ++i) { check_volume_data( h5_file_name, version_number, observation_ids[i], observation_values[i], tensor_components_and_coords, grid_names, bases, quadratures, {{2, 2, 2}, {2, 2, 2}}, {"S", "x-coord", "y-coord", "z-coord", "T_x", "T_y", "T_z"}, {{0, 1, 2, 3, 4, 5, 6}, {1, 0, 5, 3, 6, 4, 2}}); } { INFO("offset_and_length_for_grid"); const size_t observation_id = observation_ids.front(); // [find_offset] const auto all_grid_names = volume_file.get_grid_names(observation_id); const auto all_extents = volume_file.get_extents(observation_id); const auto first_grid_offset_and_length = h5::offset_and_length_for_grid( grid_names.front(), all_grid_names, all_extents); // [find_offset] CHECK(first_grid_offset_and_length.first == 0); CHECK(first_grid_offset_and_length.second == 8); const auto last_grid_offset_and_length = h5::offset_and_length_for_grid( grid_names.back(), all_grid_names, all_extents); CHECK(last_grid_offset_and_length.first == 8); CHECK(last_grid_offset_and_length.second == 8); } if (file_system::check_if_file_exists(h5_file_name)) { file_system::rm(h5_file_name, true); } } } // namespace SPECTRE_TEST_CASE("Unit.IO.H5.VolumeData", "[Unit][IO][H5]") { test<DataVector>(); test<std::vector<float>>(); test_strahlkorper(); #ifdef SPECTRE_DEBUG CHECK_THROWS_WITH( []() { const std::string h5_file_name( "Unit.IO.H5.VolumeData.ComponentFormat.h5"); const uint32_t version_number = 4; if (file_system::check_if_file_exists(h5_file_name)) { file_system::rm(h5_file_name, true); } h5::H5File<h5::AccessType::ReadWrite> my_file(h5_file_name); auto& volume_file = my_file.insert<h5::VolumeData>("/element_data", version_number); volume_file.write_volume_data( 100, 10.0, {{{2}, {TensorComponent{"S", DataVector{1.0, 2.0}}}, {Spectral::Basis::Legendre}, {Spectral::Quadrature::Gauss}}}); }(), Catch::Contains( "The expected format of the tensor component names is " "'GROUP_NAME/COMPONENT_NAME' but could not find a '/' in")); CHECK_THROWS_WITH( []() { const std::string h5_file_name( "Unit.IO.H5.VolumeData.ComponentFormat1.h5"); const uint32_t version_number = 4; if (file_system::check_if_file_exists(h5_file_name)) { file_system::rm(h5_file_name, true); } h5::H5File<h5::AccessType::ReadWrite> my_file(h5_file_name); auto& volume_file = my_file.insert<h5::VolumeData>("/element_data", version_number); volume_file.write_volume_data( 100, 10.0, {{{2}, {TensorComponent{"A/S", DataVector{1.0, 2.0}}, TensorComponent{"S", DataVector{1.0, 2.0}}}, {Spectral::Basis::Legendre}, {Spectral::Quadrature::Gauss}}}); }(), Catch::Contains( "The expected format of the tensor component names is " "'GROUP_NAME/COMPONENT_NAME' but could not find a '/' in")); CHECK_THROWS_WITH( []() { const std::string h5_file_name("Unit.IO.H5.VolumeData.WriteTwice.h5"); const uint32_t version_number = 4; if (file_system::check_if_file_exists(h5_file_name)) { file_system::rm(h5_file_name, true); } h5::H5File<h5::AccessType::ReadWrite> my_file(h5_file_name); auto& volume_file = my_file.insert<h5::VolumeData>("/element_data", version_number); volume_file.write_volume_data( 100, 10.0, {{{2}, {TensorComponent{"A/S", DataVector{1.0, 2.0}}, TensorComponent{"A/S", DataVector{1.0, 2.0}}}, {Spectral::Basis::Legendre}, {Spectral::Quadrature::Gauss}}}); }(), Catch::Contains( "Trying to write tensor component 'S' which already exists in HDF5 " "file in group 'element_data.vol/ObservationId100'")); #endif CHECK_THROWS_WITH( []() { const std::string h5_file_name( "Unit.IO.H5.VolumeData.FindNoObservationId.h5"); const uint32_t version_number = 4; if (file_system::check_if_file_exists(h5_file_name)) { file_system::rm(h5_file_name, true); } h5::H5File<h5::AccessType::ReadWrite> h5_file(h5_file_name); auto& volume_file = h5_file.insert<h5::VolumeData>("/element_data", version_number); volume_file.write_volume_data( 100, 10.0, {{{2}, {TensorComponent{"A/S", DataVector{1.0, 2.0}}}, {Spectral::Basis::Legendre}, {Spectral::Quadrature::Gauss}}}); volume_file.find_observation_id(11.0); }(), Catch::Contains("No observation with value")); }
import data.real.basic import data.set.basic open finset -- We think of social states as type `σ` and inidividuals as type `ι` variables {σ ι : Type*} /-! ## Notes * "All individuals rank" refers to the rankings of each and every individual. * "Society ranks" refers to output of a social welfare function (e.g. the final result of an election process). * <Andrew: Can you please write something describing what a social welfare function is? Thanks!> ## Important Definitions -/ /-- A social welfare function satisfies the Weak Pareto criterion if, for any two social states `x` and `y`, every individual ranking `y` higher than `x` implies that society ranks `y` higher than `x`. -/ def weak_pareto (f : (ι → σ → ℝ) → σ → ℝ) (X : finset σ) : Prop := ∀ (x y ∈ X) (P : ι → σ → ℝ), (∀ i, P i x < P i y) → (f P) x < (f P) y /-- Suppose that for any two social states `x` and `y`, every individual's ranking of `x` and `y` remains unchanged between two rankings `P₁` and `P₂`. We say that a social welfare function is *independent of irrelevant alternatives* if society's ranking of `x` and `y` also remains unchanged between `P₁` and `P₂`. -/ def ind_of_irr_alts (f : (ι → σ → ℝ) → σ → ℝ) (X : finset σ) : Prop := ∀ (x y ∈ X) (P₁ P₂ : ι → σ → ℝ), (∀ i, P₁ i x < P₁ i y ↔ P₂ i x < P₂ i y) → (f P₁ x < f P₁ y ↔ f P₂ x < f P₂ y) /-- An individual is a *dictator* with respect to a given social welfare function if their ranking determines society's ranking of any two social states. -/ def is_dictator (f : (ι → σ → ℝ) → σ → ℝ) (X : finset σ) (i : ι) : Prop := ∀ (x y ∈ X) (P : ι → σ → ℝ), P i x < P i y → f P x < f P y /-- A social welfare function is called a *dictatorship* if there exists a dictator with respect to that function. -/ def is_dictatorship (f : (ι → σ → ℝ) → σ → ℝ) (X : finset σ) : Prop := ∃ i, is_dictator f X i /-- An individual is a dictator over all social states in a given set *except* `b` if they are a dictator over every pair of distinct alternatives not equal to `b`. -/ def is_dictator_except (f : (ι → σ → ℝ) → (σ → ℝ)) (X : finset σ) (i : ι) (b : σ) : Prop := ∀ a c ∈ X, a ≠ b → c ≠ b → ∀ P : ι → σ → ℝ, P i a < P i c → f P a < f P c /-- A social welfare function is called a dictatorship over all social states in a given set *except* `b` if there exists a dictator over every pair of distinct alternatives not equal to `b`. -/ def is_dictatorship_except (f : (ι → σ → ℝ) → (σ → ℝ)) (X : finset σ) (b : σ) : Prop := ∃ i, is_dictator_except f X i b /-- A social state `b` is *strictly worst* of a finite set of social states `X` with respect to a ranking `p` if `b` is ranked strictly lower than every other `a ∈ X`. -/ def is_strictly_worst (b : σ) (p : σ → ℝ) (X : finset σ) : Prop := ∀ a ∈ X, a ≠ b → p b < p a /-- A social state `b` is *strictly best* of a finite set of social states `X` with respect to a ranking `p` if `b` is ranked strictly higher than every other `a ∈ X`. -/ def is_strictly_best (b : σ) (p : σ → ℝ) (X : finset σ) : Prop := ∀ a ∈ X, a ≠ b → p a < p b /-- A social state `b` is *extremal* with respect to a finite set of social states `X` and a ranking `p` if `b` is either bottom or top of `X`. -/ def is_extremal (b : σ) (p : σ → ℝ) (X : finset σ) : Prop := is_strictly_worst b p X ∨ is_strictly_best b p X /-- Social sates `s₁`, `s₂`, `s₃`, and `s₄` have the *same order* with respect to two rankings `p₁` and `p₂` if `s₁` and `s₂` have the same ranking in `p₁` as `s₃` and `s₄` have in `p₂`. -/ def same_order (p₁ p₂ : σ → ℝ) (s₁ s₂ s₃ s₄ : σ) : Prop := (p₁ s₁ < p₁ s₂ ↔ p₂ s₃ < p₂ s₄) ∧ (p₁ s₂ < p₁ s₁ ↔ p₂ s₄ < p₂ s₃) /-- An individual `i` is *pivotal* with respect to a social welfare function and a social state `b` if there exist rankings `P` and `P'` such that: (1) all individuals except for `i` rank all social states in the same order in both rankings (2) all individuals place `b` in an extremal position in both rankings (3) `i` ranks `b` bottom of their rankings in `P`, but top of their rankings in `P'` (4) society ranks `b` bottom of its rankings in `P`, but top of its rankings in `P'` -/ def is_pivotal (f : (ι → σ → ℝ) → (σ → ℝ)) (X : finset σ) (i : ι) (b : σ) : Prop := ∃ (P P' : ι → σ → ℝ), (∀ j : ι, j ≠ i → ∀ x y ∈ X, same_order (P j) (P' j) x y x y) ∧ (∀ j : ι, is_extremal b (P j) X) ∧ (∀ j : ι, is_extremal b (P' j) X) ∧ (is_strictly_worst b (P i) X) ∧ (is_strictly_best b (P' i) X) ∧ (is_strictly_worst b (f P) X) ∧ (is_strictly_best b (f P') X) /-- A social welfare function has a *pivot* with respect to a social state `b` if there exists an individual who is pivotal with respect to that function and `b`. -/ def has_pivot (f : (ι → σ → ℝ) → (σ → ℝ)) (X : finset σ) (b : σ) : Prop := ∃ i, is_pivotal f X i b open function /-- Given an arbitary ranking `p`, social state `b`, and finite set of social states `X`, `maketop b p X` updates `p` so that `b` is now ranked at the top of `X`. -/ noncomputable def maketop [decidable_eq σ] (p : σ → ℝ) (b : σ) (X : finset σ) (hX : X.nonempty) : σ → ℝ := update p b $ ((X.image p).max' (hX.image p)) + 1 /-- Given an arbitary ranking `p`, social state `b`, and finite set of social states `X`, `makebot b p X` updates `p` so that `b` is now ranked at the bottom of `X`. -/ noncomputable def makebot [decidable_eq σ] (p : σ → ℝ) (b : σ) (X : finset σ) (hX : X.nonempty) : σ → ℝ := update p b $ ((X.image p).min' (hX.image p)) - 1 /-- Given an arbitary ranking `p` and social states `a`, `b`, and `c`, `makebetween p a b c` updates `p` so that `b` is now ranked between `a` and `c`. -/ noncomputable def makebetween [decidable_eq σ] (p : σ → ℝ) (a b c : σ) : σ → ℝ := update p b $ (p a + p c) / 2 -- ## Preliminary Lemmas variables {a b c d : σ} {p : σ → ℝ} {P : ι → σ → ℝ} {f : (ι → σ → ℝ) → σ → ℝ} {X : finset σ} lemma exists_second_distinct_mem (hX : 2 ≤ X.card) (a_in : a ∈ X) : ∃ b ∈ X, b ≠ a := begin classical, have hpos : 0 < (X.erase a).card, { rw card_erase_of_mem a_in, exact zero_lt_one.trans_le (nat.pred_le_pred hX) }, cases card_pos.mp hpos with b hb, cases mem_erase.mp hb with hne H, exact ⟨b, H, hne⟩, end lemma exists_third_distinct_mem (hX : 2 < X.card) (a_in : a ∈ X) (b_in : b ∈ X) (h : a ≠ b) : ∃ c ∈ X, c ≠ a ∧ c ≠ b := begin classical, have hpos : 0 < ((X.erase b).erase a).card, { simpa only [card_erase_of_mem, mem_erase_of_ne_of_mem h a_in, b_in] using nat.pred_le_pred (nat.pred_le_pred hX) }, cases card_pos.mp hpos with c hc, simp_rw mem_erase at hc, exact ⟨c, hc.2.2, hc.1, hc.2.1⟩, end lemma is_strictly_best.not_strictly_worst (htop : is_strictly_best b p X) (h : ∃ a ∈ X, a ≠ b) : ¬is_strictly_worst b p X := begin simp only [is_strictly_worst, not_forall, not_lt, exists_prop], rcases h with ⟨a, a_in, hab⟩, exact ⟨a, a_in, hab, (htop a a_in hab).le⟩, end lemma is_strictly_best.not_strictly_worst' (htop : is_strictly_best b p X) (hX : 2 ≤ X.card) (hb : b ∈ X) : ¬is_strictly_worst b p X := htop.not_strictly_worst $ exists_second_distinct_mem hX hb lemma is_strictly_worst.not_strictly_best (hbot : is_strictly_worst b p X) (h : ∃ a ∈ X, a ≠ b) : ¬is_strictly_best b p X := begin simp only [is_strictly_best, not_forall, not_lt, exists_prop], rcases h with ⟨a, a_in, hab⟩, exact ⟨a, a_in, hab, (hbot a a_in hab).le⟩, end lemma is_strictly_worst.not_strictly_best' (hbot : is_strictly_worst b p X) (hX : 2 ≤ X.card) (hb : b ∈ X) : ¬is_strictly_best b p X := hbot.not_strictly_best $ exists_second_distinct_mem hX hb lemma is_extremal.is_strictly_best (hextr : is_extremal b p X) (not_strictly_worst : ¬is_strictly_worst b p X) : is_strictly_best b p X := hextr.resolve_left not_strictly_worst lemma is_extremal.is_strictly_worst (hextr : is_extremal b p X) (not_strictly_best : ¬is_strictly_best b p X) : is_strictly_worst b p X := hextr.resolve_right not_strictly_best lemma is_strictly_worst.is_extremal (hbot : is_strictly_worst b p X) : is_extremal b p X := or.inl hbot lemma is_strictly_best.is_extremal (hbot : is_strictly_best b p X) : is_extremal b p X := or.inr hbot /-- If every individual ranks a social state `b` at the top of its rankings, then society must also rank `b` at the top of its rankings. -/ theorem is_strictly_best_of_forall_is_strictly_best (b_in : b ∈ X) (hwp : weak_pareto f X) (htop : ∀ i, is_strictly_best b (P i) X) : is_strictly_best b (f P) X := λ a a_in hab, hwp a b a_in b_in P $ λ i, htop i a a_in hab /-- If every individual ranks a social state `b` at the bottom of its rankings, then society must also rank `b` at the bottom of its rankings. -/ theorem is_strictly_worst_of_forall_is_strictly_worst (b_in : b ∈ X) (hwp : weak_pareto f X) (hbot : ∀ i, is_strictly_worst b (P i) X) : is_strictly_worst b (f P) X := λ a a_in hab, hwp b a b_in a_in P $ λ i, hbot i a a_in hab lemma exists_of_not_extremal (hX : 3 ≤ X.card) (hb : b ∈ X) (h : ¬ is_extremal b (f P) X): ∃ a c ∈ X, a ≠ b ∧ c ≠ b ∧ a ≠ c ∧ f P b ≤ f P a ∧ f P c ≤ f P b := begin unfold is_extremal is_strictly_worst is_strictly_best at h, push_neg at h, obtain ⟨⟨c, hc, hcb, hPc⟩, ⟨a, ha, hab, hPa⟩⟩ := h, obtain hac | rfl := ne_or_eq a c, { exact ⟨a, c, ha, hc, hab, hcb, hac, hPa, hPc⟩ }, obtain ⟨d, hd, hda, hdb⟩ := exists_third_distinct_mem hX ha hb hab, cases lt_or_le (f P b) (f P d), { exact ⟨d, a, hd, hc, hdb, hcb, hda, h.le, hPc⟩ }, { exact ⟨a, d, ha, hd, hab, hdb, hda.symm, hPa, h⟩ }, end lemma nonempty_of_mem {s : finset σ} {a : σ} (ha : a ∈ s) : s.nonempty := nonempty_of_ne_empty $ ne_empty_of_mem ha section make variable [decidable_eq σ] lemma maketop_noteq (p) (hab : a ≠ b) (hX : X.nonempty) : maketop p b X hX a = p a := update_noteq hab _ p lemma makebot_noteq (p) (hab : a ≠ b) (hX : X.nonempty) : makebot p b X hX a = p a := update_noteq hab _ p lemma makebetween_noteq (p) (hdb : d ≠ b) : makebetween p a b c d = p d := update_noteq hdb ((p a + p c) / 2) p lemma makebetween_eq (a b c : σ) (p) : makebetween p a b c b = (p a + p c) / 2 := update_same _ _ _ lemma maketop_lt_maketop (p) (hab : a ≠ b) (ha : a ∈ X) : maketop p b X (nonempty_of_mem ha) a < maketop p b X (nonempty_of_mem ha) b := by simpa [maketop, hab] using ((X.image p).le_max' _ (mem_image_of_mem p ha)).trans_lt (lt_add_one _) lemma makebot_lt_makebot (p) (hcb : c ≠ b) (hc : c ∈ X) : makebot p b X (nonempty_of_mem hc) b < makebot p b X (nonempty_of_mem hc) c := by simpa [makebot, hcb] using sub_lt_iff_lt_add'.mpr (((X.image p).min'_le (p c) (mem_image_of_mem p hc)).trans_lt (lt_one_add _)) lemma makebetween_lt_makebetween_top (hcb : c ≠ b) (hp : p a < p c) : makebetween p a b c b < makebetween p a b c c := begin simp only [makebetween, update_same, update_noteq hcb], linarith, end lemma makebetween_lt_makebetween_bot (hab : a ≠ b) (hp : p a < p c) : makebetween p a b c a < makebetween p a b c b := begin simp only [makebetween, update_same, update_noteq hab], linarith, end lemma top_of_maketop (b p) (hX : X.nonempty) : is_strictly_best b (maketop p b X hX) X := λ a ha hab, maketop_lt_maketop p hab ha end make -- ## The Proof /-- Let `f` be a SWF satisfying WP and IoIA, `P` be a preference ordering, `X` be a finite set containing at least 3 social states, and `b` be one of those social states. If every individial ranks `b` extremally, then society also ranks `b` extremally w.r.t. `f`. -/ lemma first_step (hwp : weak_pareto f X) (hind : ind_of_irr_alts f X) (hX : 3 ≤ X.card) (hb : b ∈ X) (hextr : ∀ i, is_extremal b (P i) X) : is_extremal b (f P) X := begin classical, by_contra hnot, obtain ⟨a, c, ha, hc, hab, hcb, hac, hPa, hPc⟩ := exists_of_not_extremal hX hb hnot, refine ((not_lt.mp ((not_congr (hind b c hb hc P _ (λ i, ⟨λ hP, _, λ hP', _⟩))).mp hPc.not_lt)).trans (not_lt.mp ((not_congr (hind a b ha hb P _ (λ i, ⟨λ hP, _, λ hP', _⟩))).mp hPa.not_lt))).not_lt (hwp a c ha hc _ (λ i, _)), { exact λ j, if is_strictly_best b (P j) X then makebetween (P j) a c b else update (P j) c (P j a + 1) }, { have h : ¬ is_strictly_best b (P i) X := λ h, asymm hP (h c hc hcb), convert lt_add_of_lt_of_pos ((hextr i).is_strictly_worst h a ha hab) _; simp [h, hcb.symm] }, { by_contra hP, have h : is_strictly_best b (P i) X := (hextr i).is_strictly_best (λ h, hP (h c hc hcb)), simp only at hP', simp only [if_pos h, makebetween_noteq _ hcb.symm, makebetween_eq] at hP', linarith [h a ha hab] }, { by_cases h : is_strictly_best b (P i) X; simpa [h, makebetween_noteq, hac, hcb.symm] }, { by_contra hP, have h : ¬ is_strictly_best b (P i) X := λ h, hP (h a ha hab), simp only at hP', simp [if_neg h, hac, hcb.symm] at hP', exact hP hP' }, { by_cases h : is_strictly_best b (P i) X, { simp [if_pos h, makebetween_lt_makebetween_bot hac (h a ha hab)] }, { simp [if_neg h, hac] } }, end /-- An auxiliary lemma for the second step, in which we perform induction on the finite set `D' := {i ∈ univ | is_strictly_worst b (P i) X}`. Its statement is formulated so strangely (involving `D'` and `P`) to allow for this induction. Essentially, what we are doing here is showing that, for a social welfare function `f` under the appropriate conditions, we can always a construct circumstances so that `f` has a pivot with respect to a given social state. -/ lemma second_step_aux [fintype ι] (hwp : weak_pareto f X) (hind : ind_of_irr_alts f X) (hX : 2 < X.card) (b_in : b ∈ X) {D' : finset ι} : ∀ {P : ι → σ → ℝ}, D' = {i ∈ univ | is_strictly_worst b (P i) X} → (∀ i, is_extremal b (P i) X) → is_strictly_worst b (f P) X → has_pivot f X b := begin classical, refine finset.induction_on D' (λ P h hextr hbot, absurd (is_strictly_best_of_forall_is_strictly_best b_in hwp (λ j, (hextr j).is_strictly_best _)) (hbot.not_strictly_best (exists_second_distinct_mem hX.le b_in))) (λ i D hi IH P h_insert hextr hbot, _), { simpa using eq_empty_iff_forall_not_mem.mp h.symm j }, { have hX' := nonempty_of_mem b_in, have hextr' : ∀ j, is_extremal b (ite (j = i) (maketop (P j) b X hX') (P j)) X, { intro j, by_cases hji : j = i, { refine or.inr (λ a a_in hab, _), simp only [if_pos hji, maketop_lt_maketop _ hab a_in] }, { simp only [if_neg hji, hextr j] } }, by_cases hP' : is_strictly_best b (f (λ j, ite (j = i) (maketop (P j) b X hX') (P j))) X, { refine ⟨i, P, _, λ j hj x y _ _, _, hextr, hextr', _, _, hbot, hP'⟩, { simp [same_order, if_neg hj] }, { have : i ∈ {j ∈ univ | is_strictly_worst b (P j) X}, { rw ← h_insert, exact mem_insert_self i D }, simpa }, { simp [top_of_maketop, hX'] } }, { refine IH _ hextr' ((first_step hwp hind hX b_in hextr').is_strictly_worst hP'), ext j, simp only [true_and, sep_def, mem_filter, mem_univ], split; intro hj, { suffices : j ∈ insert i D, { have hji : j ≠ i, { rintro rfl, exact hi hj }, rw h_insert at this, simpa [hji] }, exact mem_insert_of_mem hj }, { have hji : j ≠ i, { rintro rfl, obtain ⟨a, a_in, hab⟩ := exists_second_distinct_mem hX.le b_in, apply asymm (top_of_maketop b (P j) hX' a a_in hab), simpa using hj a a_in hab }, rw [← erase_insert hi, h_insert], simpa [hji] using hj } } }, end /-- Let `f` be a SWF satisfying WP and IoIA, and `X` be a finite set containing at least 3 social states. Then `f` has a pivot w.r.t. every social state in `X`. -/ lemma second_step [fintype ι] (hwp : weak_pareto f X) (hind : ind_of_irr_alts f X) (hX : 3 ≤ X.card) (b) (b_in : b ∈ X) : has_pivot f X b := begin classical, have hbot : is_strictly_worst b (λ x, ite (x = b) 0 1) X := λ _ _ h, by simp [h], exact second_step_aux hwp hind hX b_in rfl (λ i, hbot.is_extremal) (is_strictly_worst_of_forall_is_strictly_worst b_in hwp (λ i, hbot)), end /-- Let `f` be a SWF satisfying IoIA, `X` be a finite set of social states, and `b` be one of those social states. If an individual `i` is pivotal w.r.t. `f` and `b`, then `i` is a dictator over all social states in `X` except `b`. -/ lemma third_step (hind : ind_of_irr_alts f X) (hb : b ∈ X) {i : ι} (hpiv : is_pivotal f X i b) : is_dictator_except f X i b := begin intros a c ha hc hab hcb Q hyp, obtain ⟨P, P', hpiv⟩ := hpiv, have hX := nonempty_of_mem hb, classical, let Q' := λ j, if j = i then makebetween (Q j) a b c else if is_strictly_worst b (P j) X then makebot (Q j) b X hX else maketop (Q j) b X hX, refine (hind a c ha hc Q Q' (λ j, _)).mpr (((hind a b ha hb P' Q' (λ j, _)).mp (hpiv.2.2.2.2.2.2 a ha hab)).trans ((hind b c hb hc P Q' (λ j, _)).mp (hpiv.2.2.2.2.2.1 c hc hcb))), { suffices : ∀ d ≠ b, Q j d = Q' j d, { rw [this, this]; assumption }, intros d hdb, by_cases hj : j = i; simp only [Q', if_pos, hj, dite_eq_ite], { exact (makebetween_noteq (Q i) hdb).symm }, { by_cases hbot : is_strictly_worst b (P j) X; simp only [if_neg hj], { rw [← makebot_noteq (Q j) hdb hX, if_pos hbot] }, { rw [← maketop_noteq (Q j) hdb hX, if_neg hbot] } } }, { refine ⟨λ hP', _, λ hQ', _⟩; by_cases hj : j = i, { simpa [Q', if_pos, hj] using makebetween_lt_makebetween_bot hab hyp }, { have hbot : ¬ is_strictly_worst b (P j) X := λ h, asymm ((hpiv.1 j hj a b ha hb).1.2 hP') (h a ha hab), simpa [Q', if_neg, hj, hbot] using maketop_lt_maketop (Q j) hab ha }, { convert hpiv.2.2.2.2.1 a ha hab }, { refine (hpiv.1 j hj a b ha hb).1.1 ((hpiv.2.1 j).is_strictly_best (λ hbot, asymm (makebot_lt_makebot (Q j) hab ha) _) a ha hab), convert hQ'; simp [Q', if_neg hj, if_pos hbot] } }, { refine ⟨λ hP, _, λ hQ', _⟩; by_cases hj : j = i, { simpa [Q', if_pos, hj] using makebetween_lt_makebetween_top hcb hyp }, { have hbot : is_strictly_worst b (P j) X, { unfold is_strictly_worst, by_contra hbot, push_neg at hbot, obtain ⟨d, hd, hdb, h⟩ := hbot, cases hpiv.2.1 j with hbot htop, { exact (hbot d hd hdb).not_le h }, { exact (irrefl _) ((htop c hc hcb).trans hP) } }, simpa [Q', if_neg hj, if_pos hbot] using makebot_lt_makebot (Q j) hcb hc }, { convert hpiv.2.2.2.1 c hc hcb }, { by_contra hP, have hbot : ¬ is_strictly_worst b (P j) X := λ h, hP (h c hc hcb), apply asymm (maketop_lt_maketop (Q j) hcb hc), convert hQ'; simp [Q', if_neg, hbot, hj] } }, end /-- Let `f` be a SWF satisfying IoIA, and `X` be a finite set containing at least 3 social states. If `f` has a pivot for every social state in `X`, then `f` is a dictatorship. -/ lemma fourth_step (hind : ind_of_irr_alts f X) (hX : 3 ≤ X.card) (hpiv : ∀ b ∈ X, has_pivot f X b) : is_dictatorship f X := begin obtain ⟨b, hb⟩ := (card_pos.1 (zero_lt_two.trans hX)).bex, obtain ⟨i, ipiv⟩ := hpiv b hb, have h : ∀ a ∈ X, a ≠ b → ∀ Pᵢ : ι → σ → ℝ, (Pᵢ i a < Pᵢ i b → f Pᵢ a < f Pᵢ b) ∧ (Pᵢ i b < Pᵢ i a → f Pᵢ b < f Pᵢ a), -- we should have a better way of stating this that doesn't require the and (i.e. stated WLOG) { intros a ha hab Pᵢ, obtain ⟨c, hc, hca, hcb⟩ := exists_third_distinct_mem hX ha hb hab, obtain ⟨hac, hbc⟩ := ⟨hca.symm, hcb.symm⟩, obtain ⟨j, jpiv⟩ := hpiv c hc, obtain hdict := third_step hind hc jpiv, obtain rfl : j = i, { by_contra hji, obtain ⟨R, R', hso, hextr, -, -, -, hbot, htop⟩ := ipiv, refine asymm (htop a ha hab) (hdict b a hb ha hbc hac R' ((hso j hji a b ha hb).2.1 _)), by_contra hnot, have h := (hextr j).resolve_left, simp only [is_strictly_best, is_strictly_worst, and_imp, exists_imp_distrib, not_forall] at h, exact asymm (hbot a ha hab) (hdict a b ha hb hac hbc R (h a ha hab hnot a ha hab)) }, split; apply hdict; assumption }, refine ⟨i, λ x y hx hy Pᵢ hPᵢ, _⟩, rcases eq_or_ne b x with rfl | hbx; rcases eq_or_ne b y with rfl | hby, { exact ((irrefl _) hPᵢ).rec _ }, { exact (h y hy hby.symm Pᵢ).2 hPᵢ }, { exact (h x hx hbx.symm Pᵢ).1 hPᵢ }, { exact third_step hind hb ipiv x y hx hy hbx.symm hby.symm Pᵢ hPᵢ }, end /-- Arrow's Impossibility Theorem: Any social welfare function involving at least three social states that satisfies WP and IoIA is necessarily a dictatorship. -/ theorem arrow [fintype ι] (hwp : weak_pareto f X) (hind : ind_of_irr_alts f X) (hX : 3 ≤ X.card) : is_dictatorship f X := fourth_step hind hX $ second_step hwp hind hX
# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air, onnx, mindir models Suggest run as python export.py --file_name [file_name] --ckpt_files [ckpt path] --file_format [file format] """ import argparse import numpy as np import mindspore as ms from mindspore import context, Tensor from mindspore.train.serialization import export, load_checkpoint, load_param_into_net parser = argparse.ArgumentParser(description='post process for 310 inference') parser.add_argument("--backbone", type=str, required=True, default="densenet161", help="model backbone") parser.add_argument("--ckpt_path", type=str, required=True, help="checkpoint file path") parser.add_argument("--file_name", type=str, default="densenet161", help="file name") parser.add_argument("--file_format", type=str, default="MINDIR", choices=["MINDIR", "AIR"], help="file format") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"], help="device target") parser.add_argument("--device_id", type=int, default=0, help="device target") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def model_export(): '''main export func''' if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if args.backbone == "densenet121": from src.densenet121 import MainModel elif args.backbone == "densenet161": from src.densenet161 import MainModel elif args.backbone == "densenet169": from src.densenet169 import MainModel elif args.backbone == "densenet201": from src.densenet201 import MainModel net = MainModel() param_dict = load_checkpoint(args.ckpt_path) load_param_into_net(net, param_dict) input_arr = Tensor(np.zeros([1, 3, 224, 224]), ms.float32) export(net, input_arr, file_name=args.file_name, file_format=args.file_format) if __name__ == '__main__': model_export()
setret = function(x, vec=FALSE) { if (is_cpumat(x)) { if (vec) ret = cpuvec(type=x$get_type_str()) else ret = cpumat(type=x$get_type_str()) } else if (is_gpumat(x)) { if (vec) ret = gpuvec(x$get_card(), type=x$get_type_str()) else ret = gpumat(x$get_card(), type=x$get_type_str()) } else if (is_mpimat(x)) { if (vec) ret = cpuvec(type=x$get_type_str()) else { bfdim = x$bfdim() ret = mpimat(x$get_grid(), bf_rows=bfdim[1], bf_cols=bfdim[2], type=x$get_type_str()) } } ret }
cc ------------ dpmjet3.4 - authors: S.Roesler, R.Engel, J.Ranft ------- cc -------- phojet1.12-40 - authors: S.Roesler, R.Engel, J.Ranft ------- cc - oct'13 ------- cc ----------- pythia-6.4 - authors: Torbjorn Sjostrand, Lund'10 ------- cc --------------------------------------------------------------------- cc converted for use with FLUKA ------- cc - oct'13 ------- C...PYJOIN C...Connects a sequence of partons with colour flow indices, C...as required for subsequent shower evolution (or other operations). SUBROUTINE PYJOIN(NJOIN,IJOIN) C...Double precision and integer declarations. IMPLICIT DOUBLE PRECISION(A-H, O-Z) IMPLICIT INTEGER(I-N) INTEGER PYCOMP C...Commonblocks. include 'inc/pyjets' include 'inc/pydat1' include 'inc/pydat2' C...Local array. DIMENSION IJOIN(*) C...Check that partons are of right types to be connected. IF(NJOIN.LT.2) GOTO 120 KQSUM=0 DO 100 IJN=1,NJOIN I=IJOIN(IJN) IF(I.LE.0.OR.I.GT.N) GOTO 120 IF(K(I,1).LT.1.OR.K(I,1).GT.3) GOTO 120 KC=PYCOMP(K(I,2)) IF(KC.EQ.0) GOTO 120 KQ=KCHG(KC,2)*SIGN(1,K(I,2)) IF(KQ.EQ.0) GOTO 120 IF(IJN.NE.1.AND.IJN.NE.NJOIN.AND.KQ.NE.2) GOTO 120 IF(KQ.NE.2) KQSUM=KQSUM+KQ IF(IJN.EQ.1) KQS=KQ 100 CONTINUE IF(KQSUM.NE.0) GOTO 120 C...Connect the partons sequentially (closing for gluon loop). KCS=(9-KQS)/2 IF(KQS.EQ.2) KCS=INT(4.5D0+PYR(0)) DO 110 IJN=1,NJOIN I=IJOIN(IJN) K(I,1)=3 IF(IJN.NE.1) IP=IJOIN(IJN-1) IF(IJN.EQ.1) IP=IJOIN(NJOIN) IF(IJN.NE.NJOIN) IN=IJOIN(IJN+1) IF(IJN.EQ.NJOIN) IN=IJOIN(1) K(I,KCS)=MSTU(5)*IN K(I,9-KCS)=MSTU(5)*IP IF(IJN.EQ.1.AND.KQS.NE.2) K(I,9-KCS)=0 IF(IJN.EQ.NJOIN.AND.KQS.NE.2) K(I,KCS)=0 110 CONTINUE C...Error exit: no action taken. RETURN 120 CALL PYERRM(12, &'(PYJOIN:) given entries can not be joined by one string') RETURN END
Watson concludes that ( a ) " most moves have disadvantages as well as advantages , so an extra move is not always an unqualified blessing " ; ( b ) " with his extra information about what White is doing , Black can better react to the new situation " ; and ( c ) because a draw is likely to be more acceptable to Black than to White , White is apt to avoid lines that allow drawish simplifications , while Black may not object to such lines .
A predicate is a measurable function from a measurable space to the space of truth values.
{- Descriptor language for easily defining relational structures -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Structures.Relational.Macro where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Data.Sigma open import Cubical.Structures.Relational.Constant open import Cubical.Structures.Relational.Function open import Cubical.Structures.Relational.Maybe open import Cubical.Structures.Relational.Parameterized open import Cubical.Structures.Relational.Pointed open import Cubical.Structures.Relational.Product open import Cubical.Structures.Macro open import Cubical.Structures.Maybe data PosRelDesc (ℓ : Level) : Typeω where -- constant structure: X ↦ A constant : ∀ {ℓ'} → hSet ℓ' → PosRelDesc ℓ -- pointed structure: X ↦ X var : PosRelDesc ℓ -- product of structures S,T : X ↦ (S X × T X) _,_ : PosRelDesc ℓ → PosRelDesc ℓ → PosRelDesc ℓ -- Maybe on a structure S: X ↦ Maybe (S X) maybe : PosRelDesc ℓ → PosRelDesc ℓ data RelDesc (ℓ : Level) : Typeω where -- constant structure: X ↦ A constant : ∀ {ℓ'} → hSet ℓ' → RelDesc ℓ -- pointed structure: X ↦ X var : RelDesc ℓ -- product of structures S,T : X ↦ (S X × T X) _,_ : RelDesc ℓ → RelDesc ℓ → RelDesc ℓ -- structure S parameterized by constant A : X ↦ (A → S X) param : ∀ {ℓ'} → (A : Type ℓ') → RelDesc ℓ → RelDesc ℓ -- function from positive structure S to T: X ↦ (S X → T X) function+ : PosRelDesc ℓ → RelDesc ℓ → RelDesc ℓ -- Maybe on a structure S: X ↦ Maybe (S X) maybe : RelDesc ℓ → RelDesc ℓ infixr 4 _,_ posRelDesc→TranspDesc : ∀ {ℓ} → PosRelDesc ℓ → TranspDesc ℓ posRelDesc→TranspDesc (constant A) = constant (A .fst) posRelDesc→TranspDesc var = var posRelDesc→TranspDesc (d₀ , d₁) = posRelDesc→TranspDesc d₀ , posRelDesc→TranspDesc d₁ posRelDesc→TranspDesc (maybe d) = maybe (posRelDesc→TranspDesc d) posRelDesc→RelDesc : ∀ {ℓ} → PosRelDesc ℓ → RelDesc ℓ posRelDesc→RelDesc (constant A) = constant A posRelDesc→RelDesc var = var posRelDesc→RelDesc (d₀ , d₁) = posRelDesc→RelDesc d₀ , posRelDesc→RelDesc d₁ posRelDesc→RelDesc (maybe d) = maybe (posRelDesc→RelDesc d) relDesc→Desc : ∀ {ℓ} → RelDesc ℓ → Desc ℓ relDesc→Desc (constant A) = constant (A .fst) relDesc→Desc var = var relDesc→Desc (d₀ , d₁) = relDesc→Desc d₀ , relDesc→Desc d₁ relDesc→Desc (param A d) = function+ (constant A) (relDesc→Desc d) relDesc→Desc (function+ d₀ d₁) = function+ (posRelDesc→TranspDesc d₀) (relDesc→Desc d₁) relDesc→Desc (maybe d) = maybe (relDesc→Desc d) {- Universe level calculations -} posRelMacroStrLevel : ∀ {ℓ} → PosRelDesc ℓ → Level posRelMacroStrLevel d = transpMacroLevel (posRelDesc→TranspDesc d) relMacroStrLevel : ∀ {ℓ} → RelDesc ℓ → Level relMacroStrLevel d = macroStrLevel (relDesc→Desc d) posRelMacroRelLevel : ∀ {ℓ} → PosRelDesc ℓ → Level posRelMacroRelLevel (constant {ℓ'} A) = ℓ' posRelMacroRelLevel {ℓ} var = ℓ posRelMacroRelLevel (d₀ , d₁) = ℓ-max (posRelMacroRelLevel d₀) (posRelMacroRelLevel d₁) posRelMacroRelLevel (maybe d) = posRelMacroRelLevel d relMacroRelLevel : ∀ {ℓ} → RelDesc ℓ → Level relMacroRelLevel (constant {ℓ'} A) = ℓ' relMacroRelLevel {ℓ} var = ℓ relMacroRelLevel (d₀ , d₁) = ℓ-max (relMacroRelLevel d₀) (relMacroRelLevel d₁) relMacroRelLevel (param {ℓ'} A d) = ℓ-max ℓ' (relMacroRelLevel d) relMacroRelLevel (function+ d₀ d₁) = ℓ-max (posRelMacroStrLevel d₀) (ℓ-max (posRelMacroRelLevel d₀) (relMacroRelLevel d₁)) relMacroRelLevel (maybe d) = relMacroRelLevel d {- Definition of structure -} PosRelMacroStructure : ∀ {ℓ} (d : PosRelDesc ℓ) → Type ℓ → Type (posRelMacroStrLevel d) PosRelMacroStructure d = TranspMacroStructure (posRelDesc→TranspDesc d) RelMacroStructure : ∀ {ℓ} (d : RelDesc ℓ) → Type ℓ → Type (relMacroStrLevel d) RelMacroStructure d = MacroStructure (relDesc→Desc d) {- Notion of structured relation defined by a descriptor -} PosRelMacroRelStr : ∀ {ℓ} (d : PosRelDesc ℓ) → StrRel {ℓ} (PosRelMacroStructure d) (posRelMacroRelLevel d) PosRelMacroRelStr (constant A) = ConstantRelStr A PosRelMacroRelStr var = PointedRelStr PosRelMacroRelStr (d₀ , d₁) = ProductRelStr (PosRelMacroRelStr d₀) (PosRelMacroRelStr d₁) PosRelMacroRelStr (maybe d) = MaybeRelStr (PosRelMacroRelStr d) RelMacroRelStr : ∀ {ℓ} (d : RelDesc ℓ) → StrRel {ℓ} (RelMacroStructure d) (relMacroRelLevel d) RelMacroRelStr (constant A) = ConstantRelStr A RelMacroRelStr var = PointedRelStr RelMacroRelStr (d₀ , d₁) = ProductRelStr (RelMacroRelStr d₀) (RelMacroRelStr d₁) RelMacroRelStr (param A d) = ParamRelStr A (λ _ → RelMacroRelStr d) RelMacroRelStr (function+ d₀ d₁) = FunctionRelStr (PosRelMacroRelStr d₀) (RelMacroRelStr d₁) RelMacroRelStr (maybe d) = MaybeRelStr (RelMacroRelStr d) {- Proof that structure induced by descriptor is suitable or positive -} posRelMacroSuitableRel : ∀ {ℓ} (d : PosRelDesc ℓ) → SuitableStrRel _ (PosRelMacroRelStr d) posRelMacroSuitableRel (constant A) = constantSuitableRel A posRelMacroSuitableRel var = pointedSuitableRel posRelMacroSuitableRel (d₀ , d₁) = productSuitableRel (posRelMacroSuitableRel d₀) (posRelMacroSuitableRel d₁) posRelMacroSuitableRel (maybe d) = maybeSuitableRel (posRelMacroSuitableRel d) posRelMacroPositiveRel : ∀ {ℓ} (d : PosRelDesc ℓ) → PositiveStrRel (posRelMacroSuitableRel d) posRelMacroPositiveRel (constant A) = constantPositiveRel A posRelMacroPositiveRel var = pointedPositiveRel posRelMacroPositiveRel (d₀ , d₁) = productPositiveRel (posRelMacroPositiveRel d₀) (posRelMacroPositiveRel d₁) posRelMacroPositiveRel (maybe d) = maybePositiveRel (posRelMacroPositiveRel d) relMacroSuitableRel : ∀ {ℓ} (d : RelDesc ℓ) → SuitableStrRel _ (RelMacroRelStr d) relMacroSuitableRel (constant A) = constantSuitableRel A relMacroSuitableRel var = pointedSuitableRel relMacroSuitableRel (d₀ , d₁) = productSuitableRel (relMacroSuitableRel d₀) (relMacroSuitableRel d₁) relMacroSuitableRel (param A d) = paramSuitableRel A (λ _ → relMacroSuitableRel d) relMacroSuitableRel (function+ d₀ d₁) = functionSuitableRel (posRelMacroSuitableRel d₀) (posRelMacroPositiveRel d₀) (relMacroSuitableRel d₁) relMacroSuitableRel (maybe d) = maybeSuitableRel (relMacroSuitableRel d) {- Proof that structured relations and equivalences agree -} posRelMacroMatchesEquiv : ∀ {ℓ} (d : PosRelDesc ℓ) → StrRelMatchesEquiv (PosRelMacroRelStr d) (EquivAction→StrEquiv (transpMacroAction (posRelDesc→TranspDesc d))) posRelMacroMatchesEquiv (constant A) _ _ _ = idEquiv _ posRelMacroMatchesEquiv var _ _ _ = idEquiv _ posRelMacroMatchesEquiv (d₀ , d₁) = productRelMatchesTransp (PosRelMacroRelStr d₀) (transpMacroAction (posRelDesc→TranspDesc d₀)) (PosRelMacroRelStr d₁) (transpMacroAction (posRelDesc→TranspDesc d₁)) (posRelMacroMatchesEquiv d₀) (posRelMacroMatchesEquiv d₁) posRelMacroMatchesEquiv (maybe d) = maybeRelMatchesTransp (PosRelMacroRelStr d) (transpMacroAction (posRelDesc→TranspDesc d)) (posRelMacroMatchesEquiv d) relMacroMatchesEquiv : ∀ {ℓ} (d : RelDesc ℓ) → StrRelMatchesEquiv (RelMacroRelStr d) (MacroEquivStr (relDesc→Desc d)) relMacroMatchesEquiv (constant A) = constantRelMatchesEquiv A relMacroMatchesEquiv var = pointedRelMatchesEquiv relMacroMatchesEquiv (d₁ , d₂) = productRelMatchesEquiv (RelMacroRelStr d₁) (RelMacroRelStr d₂) (relMacroMatchesEquiv d₁) (relMacroMatchesEquiv d₂) relMacroMatchesEquiv (param A d) = paramRelMatchesEquiv A (λ _ → RelMacroRelStr d) (λ _ → relMacroMatchesEquiv d) relMacroMatchesEquiv (function+ d₀ d₁) = functionRelMatchesEquiv+ (PosRelMacroRelStr d₀) (transpMacroAction (posRelDesc→TranspDesc d₀)) (RelMacroRelStr d₁) (MacroEquivStr (relDesc→Desc d₁)) (posRelMacroMatchesEquiv d₀) (relMacroMatchesEquiv d₁) relMacroMatchesEquiv (maybe d) = maybeRelMatchesEquiv (RelMacroRelStr d) (relMacroMatchesEquiv d) -- Module for easy importing module RelMacro ℓ (d : RelDesc ℓ) where relation = RelMacroRelStr d suitable = relMacroSuitableRel d matches = relMacroMatchesEquiv d open Macro ℓ (relDesc→Desc d) public
library(Biostrings) library(stringr) options(scipen=999) # read in genome genome <- readDNAStringSet("camp.contigs.fasta") # get contig names and lengths genome_names <- genome@ranges@NAMES genome_lengths <- as.numeric(sapply(strsplit(sapply(strsplit(genome_names, " "), "[[", 2), "="), "[[", 2)) # sort by genome lengths genome <- genome[order(genome_lengths, decreasing=T)] # get names and lengths again genome_names <- genome@ranges@NAMES genome_lengths <- as.numeric(sapply(strsplit(sapply(strsplit(genome_names, " "), "[[", 2), "="), "[[", 2)) head(genome_lengths) # remake contig names to be simple genome@ranges@NAMES <- paste("contig", str_pad(seq(from=1, to=length(genome_names), by=1), 4, pad="0"), sep="") # remove contigs less than 10kb genome2 <- genome[genome@ranges@width >= 10000] # write output writeXStringSet(genome2, file="camponotus_reordered.fasta") # contig sizes for juicer: sizes <- cbind(genome@ranges@NAMES, genome_lengths) write.table(sizes, file="camponotus_reordered.contig.sizes", sep="\t", quote=F, row.names=F, col.names=F)
= = Distribution , habitat , and ecology = =
import algebra.pi_instances analysis.complex import .algebra_tensor .monoid_ring .field_extensions universes u v w instance subtype.comm_group {α : Type u} [comm_group α] (s : set α) [is_subgroup s] : comm_group s := by subtype_instance noncomputable theory local attribute [instance] classical.prop_decidable variables {R : Type u} {A : Type v} {B : Type w} variables [comm_ring R] [comm_ring A] [comm_ring B] variables (iA : algebra R A) (iB : algebra R B) open algebra.tensor_product class cogroup := (comul : iA →ₐ iA.tensor_product iA) (comul_assoc : (aassoc iA iA iA).comp ((amap comul (alg_hom.id iA)).comp comul) = (amap (alg_hom.id iA) comul).comp comul) (coone : iA →ₐ algebra.id R) (comul_coone : (tensor_id iA).comp ((amap (alg_hom.id iA) coone).comp comul) = alg_hom.id iA) (coinv : iA →ₐ iA) (comul_coinv : (arec (alg_hom.id iA) coinv).comp comul = iA.of_id.comp coone) open monoid_ring variables R set_option class.instance_max_depth 50 instance group_ring.cogroup (M : Type v) [add_comm_group M] : cogroup (monoid_ring.algebra R M) := { comul := eval _ _ _ (λ n, of_monoid R M n ⊗ₜ of_monoid R M n) $ ⟨λ _ _, by rw [of_monoid_add, tensor_product.mul_def], by rw is_add_monoid_monoid_hom.zero (of_monoid R M); refl⟩, coone := eval _ _ _ (λ n, 1) ⟨λ _ _, (mul_one 1).symm, rfl⟩, comul_assoc := monoid_ring.ext _ _ _ _ _ (λ m, by simp only [alg_hom.comp_apply, eval_of_monoid, amap_tmul, aassoc_tmul, alg_hom.id_apply]), comul_coone := monoid_ring.ext _ _ _ _ _ (λ m, by simp only [alg_hom.comp_apply, eval_of_monoid, amap_tmul, tensor_id_tmul, alg_hom.id_apply]; exact @one_smul R _ _ _ _ (of_monoid R M m)), coinv := eval _ _ _ (λ n, of_monoid R M (-n)) ⟨λ _ _, by rw [neg_add, of_monoid_add], by rw neg_zero; refl⟩, comul_coinv := monoid_ring.ext _ _ _ _ _ (λ m, by simp only [alg_hom.comp_apply, eval_of_monoid, arec_tmul, alg_hom.id_apply, algebra.of_id_apply]; rw [← of_monoid_add, add_neg_self]; refl) } set_option class.instance_max_depth 32 instance int.add_comm_group : add_comm_group ℤ := ring.to_add_comm_group ℤ def GL₁ⁿ (n : ℕ) : algebra R (monoid_ring R (fin n → ℤ)) := monoid_ring.algebra _ _ instance GL₁ⁿ.cogroup (n : ℕ) : cogroup (GL₁ⁿ R n) := group_ring.cogroup _ _ def GL₁ : algebra R (monoid_ring R ℤ) := monoid_ring.algebra _ _ instance GL₁.cogroup : cogroup (GL₁ R) := group_ring.cogroup _ _ variables {R} class is_cogroup_hom [cogroup iA] [cogroup iB] (f : iA →ₐ iB) : Prop := (comul : (cogroup.comul iB).comp f = (amap f f).comp (cogroup.comul iA)) section is_cogroup_hom -- f(1) -- = f(1) * 1 -- = f(1) * (f(1) * f(1)⁻¹) -- = (f(1) * f(1)) * f(1)⁻¹ -- = f(1 * 1) * f(1)⁻¹ -- = f(1) * f(1)⁻¹ -- = 1 /-theorem is_cogroup_hom.coone [cogroup iA] [cogroup iB] (f : @alg_hom R A B _ _ _ _ _) [is_cogroup_hom R A B f] : (cogroup.coone R B).comp f = cogroup.coone R A := have _ := cogroup.comul_coone R A, calc (cogroup.coone R B).comp f = ((cogroup.coone R B).comp f).comp ((alg_hom.tensor_ring _ _).comp ((tensor_a.map (alg_hom.id A) (cogroup.coone R A)).comp (cogroup.comul R A))) : by rw [cogroup.comul_coone R A]; simp ... = _ : _ ... = _ : _-/ end is_cogroup_hom def cogroup_hom [cogroup iA] [cogroup iB] := subtype (is_cogroup_hom iA iB) def GL₁.alg_hom : units iA.mod ≃ alg_hom (GL₁ R) iA := equiv.trans (show units A ≃ add_monoid_monoid_hom ℤ A, from { to_fun := λ u, ⟨λ n, ((u^n:units A):A), λ _ _, by simp [gpow_add], by simp⟩, inv_fun := λ f, ⟨f.1 1, f.1 (-1), by rw [← f.2.1, add_neg_self, f.2.2], by rw [← f.2.1, neg_add_self, f.2.2]⟩, left_inv := λ u, units.ext $ by simp; refl, right_inv := λ f, subtype.eq $ funext $ λ n, by apply int.induction_on n; intros; simp at *; simp [f.2.2, f.2.1, gpow_add, *]; refl}) (monoid_ring.UMP _ _ _) -- needs more lemmas about tensoring instance cogroup.base_change_left [cogroup iB] : cogroup (base_change_left iA iB) := sorry structure cogroup_iso [cogroup iA] [cogroup iB] := (to_fun : iA →ₐ iB) (inv_fun : iB →ₐ iA) (left_inverse : ∀ x, inv_fun (to_fun x) = x) (right_inverse : ∀ x, to_fun (inv_fun x) = x) [hom : is_cogroup_hom iA iB to_fun] def torus.is_split {F : Type u} [discrete_field F] {TR : Type v} [comm_ring TR] (T : algebra F TR) [cogroup T] (E : finite_Galois_extension F) (rank : ℕ) := cogroup_iso (GL₁ⁿ E.S rank) (base_change_left E.S.algebra T) structure torus {F : Type u} [discrete_field F] {TR : Type v} [comm_ring TR] (T : algebra F TR) [cogroup T] := (top : finite_Galois_extension F) (rank : ℕ) (splits : torus.is_split T top rank) variables {F : Type u} [discrete_field F] variables {TR : Type v} [comm_ring TR] {T : algebra F TR} [cogroup T] variables (ht : torus T) include ht def torus.base_change : algebra ht.top.S (ht.top.S.algebra.mod ⊗ T.mod) := base_change_left ht.top.S.algebra T instance torus.base_change.cogroup : cogroup ht.base_change := cogroup.base_change_left _ _ def torus.char : Type (max u v) := cogroup_hom (GL₁ ht.top.S) ht.base_change def torus.cochar : Type (max u v) := cogroup_hom ht.base_change (GL₁ ht.top.S) instance torus.char.add_comm_group : add_comm_group ht.char := sorry instance torus.cochar.add_comm_group : add_comm_group ht.cochar := sorry def torus.rat_pt : Type (max u v) := T →ₐ algebra.id F instance torus.rat_pt.topological_space : topological_space ht.rat_pt := sorry instance torus.rat_pt.group : group ht.rat_pt := sorry instance torus.rat_pt.topological_group : topological_group ht.rat_pt := sorry def torus.hat : Type (max u v) := add_monoid_monoid_hom ht.cochar (units ℂ) def torus.hat_to_fun : ht.hat → (ht.cochar → units ℂ) := subtype.val instance torus.hat.comm_group : comm_group ht.hat := @subtype.comm_group (ht.cochar → units ℂ) (@pi.comm_group _ _ $ λ _, units.comm_group) is_add_monoid_monoid_hom { mul_mem := λ f g hf hg, ⟨λ x y, show f (x + y) * g (x + y) = (f x * g x) * (f y * g y), by rw [hf.1, hg.1, mul_assoc, mul_assoc, mul_left_comm (f y)], show f 0 * g 0 = 1, by rw [hf.2, hg.2, mul_one]⟩, one_mem := ⟨λ _ _, (mul_one _).symm, rfl⟩, inv_mem := λ f hf, ⟨λ x y, show (f (x + y))⁻¹ = (f x)⁻¹ * (f y)⁻¹, by rw [hf.1, mul_inv], show (f 0)⁻¹ = 1, by rw [hf.2, one_inv]⟩ } instance torus.hat.topological_space : topological_space ht.hat := topological_space.induced subtype.val Pi.topological_space instance torus.hat.is_group_hom_hat_to_fun : is_group_hom ht.hat_to_fun := ⟨λ _ _, rfl⟩ instance torus.hat.topological_group {F : Type u} [discrete_field F] {TR : Type v} [comm_ring TR] {T : algebra F TR} [cogroup T] (ht : torus T) : topological_group ht.hat := @@topological_group.induced _ _ _ _ _ _ ht.hat_to_fun _ instance torus.hat.topological_add_group_additive {F : Type u} [discrete_field F] {TR : Type v} [comm_ring TR] {T : algebra F TR} [cogroup T] (ht : torus T) : topological_add_group (additive ht.hat) := additive.topological_add_group instance torus.hat.topological_space_additive {F : Type u} [discrete_field F] {TR : Type v} [comm_ring TR] {T : algebra F TR} [cogroup T] (ht : torus T) : topological_space (additive ht.hat) := additive.topological_space
(* (C) Copyright 2010, COQTAIL team Project Info: http://sourceforge.net/projects/coqtail/ This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *) Require Import Coq.omega.Omega. Require Import Rsequence_def. Require Import Morphisms Setoid. Require Import Lra. Open Scope R_scope. Open Scope Rseq_scope. (** printing ~ ~ *) (** ** Extensionnal equality. *) (** * Extensional equality is an equivalence relation. *) (**********) Lemma Rseq_eq_refl : forall Un, Un == Un. Proof. intros Un n; reflexivity. Qed. (**********) Lemma Rseq_eq_sym : forall Un Vn, Un == Vn -> Vn == Un. Proof. intros Un Vn Heq n. symmetry; apply Heq. Qed. (**********) Lemma Rseq_eq_trans : forall Un Vn Wn, Un == Vn -> Vn == Wn -> Un == Wn. Proof. intros Un Vn Wn Heq1 Heq2 n. transitivity (Vn n); [apply Heq1|apply Heq2]. Qed. (**********) Instance Rseq_eq_Equivalence : Equivalence Rseq_eq. Proof. split. exact Rseq_eq_refl. exact Rseq_eq_sym. exact Rseq_eq_trans. Qed. (** * Rseq_opp is involutive. *) Lemma Rseq_opp_invol : forall Un, - - Un == Un. Proof. intros Un n ; unfold Rseq_opp ; rewrite Ropp_involutive ; reflexivity. Qed. (** * Compatibility of extensional equality with convergence. *) (**********) Lemma Rseq_cv_eq_compat : forall Un Vn l, Un == Vn -> (Rseq_cv Un l <-> Rseq_cv Vn l). Proof. intros Un Vn l Heq ; split ; intros Hcv eps Heps ; destruct (Hcv eps Heps) as [N HN] ; exists N; intros n Hn ; [rewrite <- Heq | rewrite Heq] ; apply HN; assumption. Qed. (**********) Lemma Rseq_cv_pos_infty_eq_compat : forall Un Vn, Un == Vn -> Rseq_cv_pos_infty Un -> Rseq_cv_pos_infty Vn. Proof. intros Un Vn Heq Hdiv. intros m. destruct (Hdiv m) as [N HN]. exists N; intros n Hn. rewrite <- (Heq n). apply HN; assumption. Qed. (**********) Lemma Rseq_cv_neg_infty_eq_compat : forall Un Vn, Un == Vn -> Rseq_cv_neg_infty Un -> Rseq_cv_neg_infty Vn. Proof. intros Un Vn Heq Hdiv. intros m. destruct (Hdiv m) as [N HN]. exists N; intros n Hn. rewrite <- (Heq n). apply HN; assumption. Qed. (** * Compatibility of extensional equality with Laudau relations. *) (**********) Lemma Rseq_big_O_eq_compat : forall Un Vn Wn Xn, Un == Wn -> Vn == Xn -> Un = O(Vn) -> Wn = O(Xn). Proof. intros Un Vn Wn Xn Huw Hvx Huv. destruct Huv as [M [HM [N HN]]]. exists M; split. assumption. exists N; intros n Hn. rewrite <- Huw; rewrite <- Hvx. apply HN; assumption. Qed. (**********) Lemma Rseq_little_O_eq_compat : forall Un Vn Wn Xn, Un == Wn -> Vn == Xn -> Un = o(Vn) -> Wn = o(Xn). Proof. intros Un Vn Wn Xn Huw Hvx Huv. intros eps Heps. destruct (Huv eps Heps) as [N HN]. exists N; intros n Hn. rewrite <- Huw; rewrite <- Hvx. apply HN; assumption. Qed. (**********) Lemma Rseq_equiv_eq_compat : forall Un Vn Wn Xn, Un == Wn -> Vn == Xn -> Un ~ Vn -> Wn ~ Xn. Proof. intros Un Vn Wn Xn Huw Hvx Huv. intros eps Heps. destruct(Huv eps Heps) as [N HN]. exists N; intros n Hn. unfold Rseq_minus. rewrite <- Huw; rewrite <- Hvx. apply HN; apply Hn. Qed. (** ** Boundedness and subsequences *) Lemma even_odd_boundedness : forall (An : nat -> R) (M1 M2 : R), Rseq_bound (fun n => An (2 * n)%nat) M1 -> Rseq_bound (fun n => An (S (2 * n))) M2 -> Rseq_bound An (Rmax M1 M2). Proof. intros An M1 M2 HM1 HM2 n ; destruct (n_modulo_2 n) as [n_even | n_odd]. destruct n_even as [p Hp] ; rewrite Hp ; apply Rle_trans with M1 ; [apply HM1 | apply RmaxLess1]. destruct n_odd as [p Hp] ; rewrite Hp ; apply Rle_trans with M2 ; [apply HM2 | apply RmaxLess2]. Qed. (** ** Partial sequences. *) Section Rseq_partial. Variable Un : nat -> R. (**********) Lemma Rseq_partial_bound_max : forall N, exists M, forall n, (n <= N)%nat -> Un n <= M. Proof. induction N. exists (Un 0). intros n Hn; inversion Hn as [H|H]; apply Rle_refl. destruct IHN as [M IHN]. exists (Rmax M (Un (S N))). intros n Hn. destruct (le_lt_eq_dec n (S N)) as [He|He]; try assumption. eapply Rle_trans; [apply IHN|apply RmaxLess1]. apply lt_n_Sm_le; assumption. rewrite He; apply RmaxLess2. Qed. (**********) Lemma Rseq_partial_bound_min : forall N, exists m, forall n, (n <= N)%nat -> m <= Un n. Proof. induction N. exists (Un 0). intros n Hn; inversion Hn as [H|H]; apply Rle_refl. destruct IHN as [m IHN]. exists (Rmin m (Un (S N))). intros n Hn. destruct (le_lt_eq_dec n (S N)) as [He|He]; try assumption. eapply Rle_trans; [apply Rmin_l|apply IHN]. apply lt_n_Sm_le; assumption. rewrite He; apply Rmin_r. Qed. (**********) Lemma Rseq_partial_bound : forall N, exists M, forall n, (n <= N)%nat -> Rabs (Un n) <= M. Proof. intros N. destruct (Rseq_partial_bound_max N) as [M HM]. destruct (Rseq_partial_bound_min N) as [m Hm]. exists (Rmax (Rabs m) (Rabs M)). intros n Hn. apply RmaxAbs; [apply Hm|apply HM]; assumption. Qed. End Rseq_partial. (** ** Asymptotic properties. *) (**********) Definition Rseq_asymptotic P := forall (Q : Rseq -> Prop) Un, (forall Vn, Q Vn -> P Vn) -> Rseq_eventually Q Un -> P Un. (**********) Definition Rseq_asymptotic2 P := forall (Q : Rseq -> Rseq -> Prop) Un Vn, (forall Wn Xn, Q Wn Xn -> P Wn Xn) -> Rseq_eventually2 Q Un Vn -> P Un Vn. (** * Convergence is asymptotic. *) (**********) Lemma Rseq_cv_asymptotic : forall l, Rseq_asymptotic (fun Un => Rseq_cv Un l). Proof. intros l Q Un HQ He eps Heps. destruct He as [Ne HNe]. edestruct HQ as [N HN]; [eexact HNe|eexact Heps|]. exists (Ne + N)%nat; intros n Hn. assert (Hn0 : exists n0, (n = Ne + n0)%nat). induction Hn. exists N; reflexivity. destruct IHHn as [n0 H]; exists (S n0). rewrite <- plus_Snm_nSm; simpl; rewrite H; reflexivity. destruct Hn0 as [n0 Hn0]. rewrite Hn0; apply HN; omega. Qed. (**********) Lemma Rseq_cv_asymptotic_eq_compat : forall Un Vn l, (exists N, forall n : nat, (N <= n)%nat -> Un n = Vn n) -> Rseq_cv Un l -> Rseq_cv Vn l. Proof. intros Un Vn l [N HN] Hu eps Heps. destruct (Hu eps Heps) as [N' HN']. exists (N+N')%nat. intros n Hn; unfold R_dist. replace (Vn n -l)%R with ((Vn n - Un n) + (Un n -l))%R by ring. apply Rle_lt_trans with (Rabs (Vn n - Un n)+ Rabs(Un n -l))%R. apply Rabs_triang. rewrite HN at 1. unfold Rminus at 1. rewrite Rplus_opp_r, Rabs_R0, Rplus_0_l. apply HN'. intuition. intuition. Qed. (**********) Lemma Rseq_cv_pos_infty_asymptotic : Rseq_asymptotic Rseq_cv_pos_infty. Proof. intros Q Un HQ He M. destruct He as [Ne HNe]. edestruct HQ as [N HN]; [eexact HNe|]. exists (Ne + N)%nat; intros n Hn. assert (Hn0 : exists n0, (n = Ne + n0)%nat). induction Hn. exists N; reflexivity. destruct IHHn as [n0 H]; exists (S n0). rewrite <- plus_Snm_nSm; simpl; rewrite H; reflexivity. destruct Hn0 as [n0 Hn0]. rewrite Hn0; apply HN; omega. Qed. (**********) Lemma Rseq_cv_neg_infty_asymptotic : Rseq_asymptotic Rseq_cv_neg_infty. Proof. intros Q Un HQ He M. destruct He as [Ne HNe]. edestruct HQ as [N HN]; [eexact HNe|]. exists (Ne + N)%nat; intros n Hn. assert (Hn0 : exists n0, (n = Ne + n0)%nat). induction Hn. exists N; reflexivity. destruct IHHn as [n0 H]; exists (S n0). rewrite <- plus_Snm_nSm; simpl; rewrite H; reflexivity. destruct Hn0 as [n0 Hn0]. rewrite Hn0; apply HN; omega. Qed. (** * Landau relations are asymptotic. *) (**********) Lemma Rseq_big_O_asymptotic : Rseq_asymptotic2 Rseq_big_O. Proof. intros Q Un Vn HQ He. destruct He as [Ne HNe]. edestruct HQ as [M [HM [N HN]]]; [eexact HNe|]. exists M; split. assumption. exists (Ne + N)%nat; intros n Hn. assert (Hn0 : exists n0, (n = Ne + n0)%nat). induction Hn. exists N; reflexivity. destruct IHHn as [n0 H]; exists (S n0). rewrite <- plus_Snm_nSm; simpl; rewrite H; reflexivity. destruct Hn0 as [n0 Hn0]. rewrite Hn0; apply HN; omega. Qed. (**********) Lemma Rseq_little_O_asymptotic : Rseq_asymptotic2 Rseq_little_O. Proof. intros Q Un Vn HQ He. destruct He as [Ne HNe]. intros eps Heps. edestruct HQ as [N HN]; [eexact HNe|apply Heps|]. exists (Ne + N)%nat; intros n Hn. assert (Hn0 : exists n0, (n = Ne + n0)%nat). induction Hn. exists N; reflexivity. destruct IHHn as [n0 H]; exists (S n0). rewrite <- plus_Snm_nSm; simpl; rewrite H; reflexivity. destruct Hn0 as [n0 Hn0]. rewrite Hn0; apply HN; omega. Qed. (**********) Lemma Rseq_equiv_asymptotic : Rseq_asymptotic2 Rseq_equiv. Proof. intros Q Un Vn HQ He. destruct He as [Ne HNe]. intros eps Heps. edestruct HQ as [N HN]; [eexact HNe|apply Heps|]. exists (Ne + N)%nat; intros n Hn. assert (Hn0 : exists n0, (n = Ne + n0)%nat). induction Hn. exists N; reflexivity. destruct IHHn as [n0 H]; exists (S n0). rewrite <- plus_Snm_nSm; simpl; rewrite H; reflexivity. destruct Hn0 as [n0 Hn0]. unfold Rseq_minus in HN. rewrite Hn0; apply HN; omega. Qed.
module BackpropNeuralNet export # types NeuralNetwork, # functions init_network, train, net_eval include("neural_net.jl") end # module
module Prelude.Uninhabited import Builtin import Prelude.Basics %default total ||| A canonical proof that some type is empty. public export interface Uninhabited t where ||| If I have a t, I've had a contradiction. ||| @ t the uninhabited type uninhabited : t -> Void ||| The eliminator for the `Void` type. %extern public export void : (0 x : Void) -> a export Uninhabited Void where uninhabited = id ||| Use an absurd assumption to discharge a proof obligation. ||| @ t some empty type ||| @ a the goal type ||| @ h the contradictory hypothesis public export absurd : Uninhabited t => (h : t) -> a absurd h = void (uninhabited h) public export Uninhabited (True = False) where uninhabited Refl impossible public export Uninhabited (False = True) where uninhabited Refl impossible
If $S$ is an open connected set in $\mathbb{R}^n$ with $n \geq 2$ and $T$ is a countable set, then $S - T$ is path-connected.
[STATEMENT] lemma get_root_node_si_parent_child_a_host_shadow_root_rel: assumes "heap_is_wellformed h" and "known_ptrs h" and "type_wf h" assumes "h \<turnstile> get_root_node_si ptr \<rightarrow>\<^sub>r root" shows "(root, ptr) \<in> (parent_child_rel h \<union> a_host_shadow_root_rel h)\<^sup>*" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (root, ptr) \<in> (parent_child_rel h \<union> local.a_host_shadow_root_rel h)\<^sup>* [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: heap_is_wellformed h known_ptrs h type_wf h h \<turnstile> get_root_node_si ptr \<rightarrow>\<^sub>r root goal (1 subgoal): 1. (root, ptr) \<in> (parent_child_rel h \<union> local.a_host_shadow_root_rel h)\<^sup>* [PROOF STEP] using get_ancestors_si_parent_child_a_host_shadow_root_rel get_ancestors_si_never_empty [PROOF STATE] proof (prove) using this: heap_is_wellformed h known_ptrs h type_wf h h \<turnstile> get_root_node_si ptr \<rightarrow>\<^sub>r root \<lbrakk>heap_is_wellformed ?h; known_ptrs ?h; type_wf ?h; ?h \<turnstile> get_ancestors_si ?child \<rightarrow>\<^sub>r ?ancestors\<rbrakk> \<Longrightarrow> ((?ptr, ?child) \<in> (parent_child_rel ?h \<union> local.a_host_shadow_root_rel ?h)\<^sup>*) = (?ptr \<in> set ?ancestors) ?h \<turnstile> get_ancestors_si ?child \<rightarrow>\<^sub>r ?ancestors \<Longrightarrow> ?ancestors \<noteq> [] goal (1 subgoal): 1. (root, ptr) \<in> (parent_child_rel h \<union> local.a_host_shadow_root_rel h)\<^sup>* [PROOF STEP] by(auto simp add: get_root_node_si_def elim!: bind_returns_result_E2 intro!: bind_pure_returns_result_I)
Mac McCorkle runs a bar and helps out his partner, who is a agent with the CIA. When McCorkle took his life savings and began to open a small pub in Bonn, Germany, after being discharged from the army, he wasn't looking for a partner. That didn't stop Mike Padillo from dropping in, handing him a check for half the value of the place, and telling Mac he could either accept the offer or see the opening delayed forever in red tape. Knowing he really had no choice, McCorkle accepted gracefully, albeit unhappily. To his credit, Padillo, forced by his own superiors to make the extortion, had the decency to be embarrassed. So began the partnership between the two men, one that would quickly turn into a life-long friendship. Mike Padillo worked for the government (probably the CIA). When not on assignment, he helped run the bar, which grew over the years in success and made both a considerable amount of money. But every couple of months, he would show up, tell McCorkle he'd be gone for a while, and a week or a month would go by with him gone. Such was the basis for the series which probably was never meant to be one. The ending of the first book made it pretty clear that was it. Then the book won for Mr. Thomas an Edgar for the best first novel of 1966. I'm sure that's when the publishers began to demand a sequel. The sequel came the next year but this time Mr. Thomas apparently withstood the pressure for more and used his incredible talent on other ideas. Six books, including three in a different non-spy series followed before the pair of McCorkle and Padillo were heard from again. And then it would be 19 years more before the last in the series was written. Through the years, the two unwavering qualities of this series remained the close friendship between McCorkle and Padillo and the terrific writing skills of Ross Thomas. McCorkle discovers that his friend and partner has been sacrificed by his superiors in an exchange with the Soviets to get back two defectors. He realizes he is the only one willing to risk it all for Padillo. Happily married and living in Washington, McCorkle would have been happy to meet his old friend Padillo if McCorkle's wife had been kidnapped to force Padillo to kill someone. Long out of the game, both men are less than anxious to help protect the future king of a country rich with oil but Padillo owes a huge favor to the ones doing the asking. The death of a CIA agent didn't raise too much of a fuss until it is learned he wrote a tell-all book which someone wants buried, possibly along with the agent's son who might have it. The son asks Padillo and McCorkle for help. A fellow spy-fiction fan and friend of mine was almost jumping for joy when he got his hands on "The Backup Men" in 1972-3, shouting, "They're back! McCorkle and Padillo!" You would have thought I'd slapped him by his expression when I asked, "Who?" After having the first book literally thrust into my hands later and reading the first few pages, I knew I'd never have to ask that question again. I was as hooked as my friend (thank you, Bob Walker, wherever you are!). It isn't hard to understand why anyone who likes spy-fi would love this series. Mr. Thomas's skill as an author are without a doubt. The man won TWO Edgars. Most writers don't win any. He had two. And deserved them both handily. Furthermore, the characters are awesomely interesting and developed, the style is both exciting and wry, the locales are perfectly presented, and the plots just make sense. What more can you ask for, except more adventures. Unfortunately, Mr. Thomas' passing makes that impossible but I like to believe that McCorkle and Padillo are still out there, serving drinks and saving the day.
{- This module defines the basic opens of the Zariski lattice and proves that they're a basis of the lattice. It also contains the construction of the structure presheaf and a proof of the sheaf property on basic opens, using the theory developed in the module PreSheafFromUniversalProp and its toSheaf.lemma. Note that the structure sheaf is a functor into R-algebras and not just commutative rings. -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.ZariskiLattice.StructureSheaf where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Powerset using (ℙ ; ⊆-refl-consequence) renaming (_∈_ to _∈ₚ_ ; subst-∈ to subst-∈ₚ) import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm ; ·-identityʳ to ·ℕ-rid) open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Data.Unit open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.BinomialThm open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.RadicalIdeal open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.CommRing.Localisation.InvertingElements open import Cubical.Algebra.CommRing.Localisation.PullbackSquare open import Cubical.Algebra.CommAlgebra.Base open import Cubical.Algebra.CommAlgebra.Properties open import Cubical.Algebra.CommAlgebra.Localisation open import Cubical.Algebra.CommAlgebra.Instances.Unit open import Cubical.Algebra.RingSolver.Reflection open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.DistLattice open import Cubical.Algebra.DistLattice.Basis open import Cubical.Algebra.DistLattice.BigOps open import Cubical.Algebra.ZariskiLattice.Base open import Cubical.Algebra.ZariskiLattice.UniversalProperty open import Cubical.Categories.Category.Base hiding (_[_,_]) open import Cubical.Categories.Functor open import Cubical.Categories.Limits.Pullback open import Cubical.Categories.Instances.CommAlgebras open import Cubical.Categories.Instances.DistLattice open import Cubical.Categories.Instances.Semilattice open import Cubical.Categories.DistLatticeSheaf open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso open BinaryRelation open isEquivRel private variable ℓ ℓ' : Level module _ (R' : CommRing ℓ) where open CommRingStr ⦃...⦄ open RingTheory (CommRing→Ring R') open CommIdeal R' open isCommIdeal open ZarLat R' open ZarLatUniversalProp R' open IsZarMap open Join ZariskiLattice open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice ZariskiLattice)) open IsBasis private R = fst R' instance _ = snd R' ⟨_⟩ : R → CommIdeal ⟨ f ⟩ = ⟨ replicateFinVec 1 f ⟩[ R' ] ⟨_⟩ₚ : R × R → CommIdeal -- p is for pair ⟨ f , g ⟩ₚ = ⟨ replicateFinVec 1 f ++Fin replicateFinVec 1 g ⟩[ R' ] BasicOpens : ℙ ZL BasicOpens 𝔞 = (∃[ f ∈ R ] (D f ≡ 𝔞)) , isPropPropTrunc BO : Type (ℓ-suc ℓ) BO = Σ[ 𝔞 ∈ ZL ] (𝔞 ∈ₚ BasicOpens) basicOpensAreBasis : IsBasis ZariskiLattice BasicOpens contains1 basicOpensAreBasis = ∣ 1r , isZarMapD .pres1 ∣ ∧lClosed basicOpensAreBasis 𝔞 𝔟 = map2 λ (f , Df≡𝔞) (g , Dg≡𝔟) → (f · g) , isZarMapD .·≡∧ f g ∙ cong₂ (_∧z_) Df≡𝔞 Dg≡𝔟 ⋁Basis basicOpensAreBasis = elimProp (λ _ → isPropPropTrunc) Σhelper where Σhelper : (a : Σ[ n ∈ ℕ ] FinVec R n) → ∃[ n ∈ ℕ ] Σ[ α ∈ FinVec ZL n ] (∀ i → α i ∈ₚ BasicOpens) × (⋁ α ≡ [ a ]) Σhelper (n , α) = ∣ n , (D ∘ α) , (λ i → ∣ α i , refl ∣) , path ∣ where path : ⋁ (D ∘ α) ≡ [ n , α ] path = funExt⁻ (cong fst ZLUniversalPropCorollary) _ -- The structure presheaf on BO ZariskiCat = DistLatticeCategory ZariskiLattice BOCat : Category (ℓ-suc ℓ) (ℓ-suc ℓ) BOCat = ΣPropCat ZariskiCat BasicOpens private P : ZL → Type _ P 𝔞 = Σ[ f ∈ R ] (D f ≡ 𝔞) -- the untruncated defining property 𝓕 : Σ ZL P → CommAlgebra R' _ 𝓕 (_ , f , _) = R[1/ f ]AsCommAlgebra -- D(f) ↦ R[1/f] uniqueHom : ∀ (x y : Σ ZL P) → (fst x) ≤ (fst y) → isContr (CommAlgebraHom (𝓕 y) (𝓕 x)) uniqueHom (𝔞 , f , p) (𝔟 , g , q) = contrHoms 𝔞 𝔟 f g p q where open InvertingElementsBase R' contrHoms : (𝔞 𝔟 : ZL) (f g : R) (p : D f ≡ 𝔞) (q : D g ≡ 𝔟) → 𝔞 ≤ 𝔟 → isContr (CommAlgebraHom R[1/ g ]AsCommAlgebra R[1/ f ]AsCommAlgebra) contrHoms 𝔞 𝔟 f g p q 𝔞≤𝔟 = R[1/g]HasAlgUniversalProp R[1/ f ]AsCommAlgebra λ s s∈[gⁿ|n≥0] → subst-∈ₚ (R[1/ f ]AsCommRing ˣ) (sym (·Rid (s /1))) --can't apply the lemma directly as we get mult with 1 somewhere (RadicalLemma.toUnit R' f g f∈√⟨g⟩ s s∈[gⁿ|n≥0]) where open AlgLoc R' [ g ⁿ|n≥0] (powersFormMultClosedSubset g) renaming (S⁻¹RHasAlgUniversalProp to R[1/g]HasAlgUniversalProp) open S⁻¹RUniversalProp R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) using (_/1) open RadicalIdeal R' private instance _ = snd R[1/ f ]AsCommRing Df≤Dg : D f ≤ D g Df≤Dg = subst2 _≤_ (sym p) (sym q) 𝔞≤𝔟 radicalHelper : √ ⟨ f , g ⟩ₚ ≡ √ ⟨ g ⟩ radicalHelper = isEquivRel→effectiveIso (λ _ _ → isSetCommIdeal _ _) ∼EquivRel _ _ .fun Df≤Dg f∈√⟨g⟩ : f ∈ √ ⟨ g ⟩ f∈√⟨g⟩ = subst (f ∈_) radicalHelper (∈→∈√ _ _ (indInIdeal _ _ zero)) open PreSheafFromUniversalProp ZariskiCat P 𝓕 uniqueHom BasisStructurePShf : Functor (BOCat ^op) (CommAlgebrasCategory R') BasisStructurePShf = universalPShf -- now prove the sheaf properties open SheafOnBasis ZariskiLattice (CommAlgebrasCategory R' {ℓ' = ℓ}) (TerminalCommAlgebra R') BasicOpens basicOpensAreBasis isSheafBasisStructurePShf : isDLBasisSheaf BasisStructurePShf fst isSheafBasisStructurePShf 0∈BO = transport (λ i → F-ob (0z , canonical0∈BO≡0∈BO i) ≡ UnitCommAlgebra R') R[1/0]≡0 where open Functor ⦃...⦄ instance _ = BasisStructurePShf canonical0∈BO : 0z ∈ₚ BasicOpens canonical0∈BO = ∣ 0r , isZarMapD .pres0 ∣ canonical0∈BO≡0∈BO : canonical0∈BO ≡ 0∈BO canonical0∈BO≡0∈BO = BasicOpens 0z .snd _ _ R[1/0]≡0 : R[1/ 0r ]AsCommAlgebra ≡ UnitCommAlgebra R' R[1/0]≡0 = uaCommAlgebra (e , eIsRHom) where open InvertingElementsBase R' using (isContrR[1/0]) open IsAlgebraHom e : R[1/ 0r ]AsCommAlgebra .fst ≃ UnitCommAlgebra R' .fst e = isContr→Equiv isContrR[1/0] isContrUnit* eIsRHom : IsCommAlgebraEquiv (R[1/ 0r ]AsCommAlgebra .snd) e (UnitCommAlgebra R' .snd) pres0 eIsRHom = refl pres1 eIsRHom = refl pres+ eIsRHom _ _ = refl pres· eIsRHom _ _ = refl pres- eIsRHom _ = refl pres⋆ eIsRHom _ _ = refl snd isSheafBasisStructurePShf (𝔞 , 𝔞∈BO) (𝔟 , 𝔟∈BO) 𝔞∨𝔟∈BO = curriedHelper 𝔞 𝔟 𝔞∈BO 𝔟∈BO 𝔞∨𝔟∈BO where open condSquare {- here: BFsq (𝔞 , 𝔞∈BO) (𝔟 , 𝔟∈BO) 𝔞∨𝔟∈BO BasisStructurePShf = 𝓞 (𝔞∨𝔟) → 𝓞 (𝔞) ↓ ↓ 𝓞 (𝔟) → 𝓞 (𝔞∧𝔟) -} curriedHelper : (𝔞 𝔟 : ZL) (𝔞∈BO : 𝔞 ∈ₚ BasicOpens) (𝔟∈BO : 𝔟 ∈ₚ BasicOpens) (𝔞∨𝔟∈BO : 𝔞 ∨z 𝔟 ∈ₚ BasicOpens) → isPullback (CommAlgebrasCategory R') _ _ _ (BFsq (𝔞 , 𝔞∈BO) (𝔟 , 𝔟∈BO) 𝔞∨𝔟∈BO BasisStructurePShf) curriedHelper 𝔞 𝔟 = elim3 (λ 𝔞∈BO 𝔟∈BO 𝔞∨𝔟∈BO → isPropIsPullback _ _ _ _ (BFsq (𝔞 , 𝔞∈BO) (𝔟 , 𝔟∈BO) 𝔞∨𝔟∈BO BasisStructurePShf)) Σhelper where -- write everything explicitly so things can type-check thePShfCospan : (a : Σ[ f ∈ R ] D f ≡ 𝔞) (b : Σ[ g ∈ R ] D g ≡ 𝔟) → Cospan (CommAlgebrasCategory R') Cospan.l (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-ob (𝔟 , ∣ g , Dg≡𝔟 ∣) Cospan.m (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-ob (𝔞 ∧z 𝔟 , basicOpensAreBasis .∧lClosed 𝔞 𝔟 ∣ f , Df≡𝔞 ∣ ∣ g , Dg≡𝔟 ∣) Cospan.r (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-ob (𝔞 , ∣ f , Df≡𝔞 ∣) Cospan.s₁ (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-hom {x = (𝔟 , ∣ g , Dg≡𝔟 ∣)} {y = (𝔞 ∧z 𝔟 , basicOpensAreBasis .∧lClosed 𝔞 𝔟 ∣ f , Df≡𝔞 ∣ ∣ g , Dg≡𝔟 ∣)} (hom-∧₂ ZariskiLattice (CommAlgebrasCategory R' {ℓ' = ℓ}) (TerminalCommAlgebra R') 𝔞 𝔟) Cospan.s₂ (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-hom {x = (𝔞 , ∣ f , Df≡𝔞 ∣)} {y = (𝔞 ∧z 𝔟 , basicOpensAreBasis .∧lClosed 𝔞 𝔟 ∣ f , Df≡𝔞 ∣ ∣ g , Dg≡𝔟 ∣)} (hom-∧₁ ZariskiLattice (CommAlgebrasCategory R' {ℓ' = ℓ}) (TerminalCommAlgebra R') 𝔞 𝔟) Σhelper : (a : Σ[ f ∈ R ] D f ≡ 𝔞) (b : Σ[ g ∈ R ] D g ≡ 𝔟) (c : Σ[ h ∈ R ] D h ≡ 𝔞 ∨z 𝔟) → isPullback (CommAlgebrasCategory R') (thePShfCospan a b) _ _ (BFsq (𝔞 , ∣ a ∣) (𝔟 , ∣ b ∣) ∣ c ∣ BasisStructurePShf) Σhelper (f , Df≡𝔞) (g , Dg≡𝔟) (h , Dh≡𝔞∨𝔟) = toSheaf.lemma (𝔞 ∨z 𝔟 , ∣ h , Dh≡𝔞∨𝔟 ∣) (𝔞 , ∣ f , Df≡𝔞 ∣) (𝔟 , ∣ g , Dg≡𝔟 ∣) (𝔞 ∧z 𝔟 , basicOpensAreBasis .∧lClosed 𝔞 𝔟 ∣ f , Df≡𝔞 ∣ ∣ g , Dg≡𝔟 ∣) (Bsq (𝔞 , ∣ f , Df≡𝔞 ∣) (𝔟 , ∣ g , Dg≡𝔟 ∣) ∣ h , Dh≡𝔞∨𝔟 ∣) theAlgebraCospan theAlgebraPullback refl gPath fPath fgPath where open Exponentiation R' open RadicalIdeal R' open InvertingElementsBase R' open DoubleLoc R' h open S⁻¹RUniversalProp R' [ h ⁿ|n≥0] (powersFormMultClosedSubset h) open CommIdeal R[1/ h ]AsCommRing using () renaming (CommIdeal to CommIdealₕ ; _∈_ to _∈ₕ_) instance _ = snd R[1/ h ]AsCommRing ⟨_⟩ₕ : R[1/ h ] × R[1/ h ] → CommIdealₕ ⟨ x , y ⟩ₕ = ⟨ replicateFinVec 1 x ++Fin replicateFinVec 1 y ⟩[ R[1/ h ]AsCommRing ] -- the crucial algebraic fact: radicalPath : √ ⟨ h ⟩ ≡ √ ⟨ f , g ⟩ₚ radicalPath = isEquivRel→effectiveIso (λ _ _ → isSetCommIdeal _ _) ∼EquivRel _ _ .fun DHelper where DHelper : D h ≡ D f ∨z D g DHelper = Dh≡𝔞∨𝔟 ∙ cong₂ (_∨z_) (sym Df≡𝔞) (sym Dg≡𝔟) f∈√⟨h⟩ : f ∈ √ ⟨ h ⟩ f∈√⟨h⟩ = subst (f ∈_) (sym radicalPath) (∈→∈√ _ _ (indInIdeal _ _ zero)) g∈√⟨h⟩ : g ∈ √ ⟨ h ⟩ g∈√⟨h⟩ = subst (g ∈_) (sym radicalPath) (∈→∈√ _ _ (indInIdeal _ _ (suc zero))) fg∈√⟨h⟩ : (f · g) ∈ √ ⟨ h ⟩ fg∈√⟨h⟩ = √ ⟨ h ⟩ .snd .·Closed f g∈√⟨h⟩ 1∈fgIdeal : 1r ∈ₕ ⟨ (f /1) , (g /1) ⟩ₕ 1∈fgIdeal = helper1 (subst (h ∈_) radicalPath (∈→∈√ _ _ (indInIdeal _ _ zero))) where helper1 : h ∈ √ ⟨ f , g ⟩ₚ → 1r ∈ₕ ⟨ (f /1) , (g /1) ⟩ₕ helper1 = PT.rec isPropPropTrunc (uncurry helper2) where helper2 : (n : ℕ) → h ^ n ∈ ⟨ f , g ⟩ₚ → 1r ∈ₕ ⟨ (f /1) , (g /1) ⟩ₕ helper2 n = map helper3 where helper3 : Σ[ α ∈ FinVec R 2 ] h ^ n ≡ linearCombination R' α (λ { zero → f ; (suc zero) → g }) → Σ[ β ∈ FinVec R[1/ h ] 2 ] 1r ≡ linearCombination R[1/ h ]AsCommRing β λ { zero → f /1 ; (suc zero) → g /1 } helper3 (α , p) = β , path where β : FinVec R[1/ h ] 2 β zero = [ α zero , h ^ n , ∣ n , refl ∣ ] β (suc zero) = [ α (suc zero) , h ^ n , ∣ n , refl ∣ ] path : 1r ≡ linearCombination R[1/ h ]AsCommRing β λ { zero → f /1 ; (suc zero) → g /1 } path = eq/ _ _ ((1r , ∣ 0 , refl ∣) , bigPath) ∙ cong (β zero · (f /1) +_) (sym (+Rid (β (suc zero) · (g /1)))) where useSolver1 : ∀ hn → 1r · 1r · ((hn · 1r) · (hn · 1r)) ≡ hn · hn useSolver1 = solve R' useSolver2 : ∀ az f hn as g → hn · (az · f + (as · g + 0r)) ≡ 1r · (az · f · (hn · 1r) + as · g · (hn · 1r)) · 1r useSolver2 = solve R' bigPath : 1r · 1r · ((h ^ n · 1r) · (h ^ n · 1r)) ≡ 1r · (α zero · f · (h ^ n · 1r) + α (suc zero) · g · (h ^ n · 1r)) · 1r bigPath = useSolver1 (h ^ n) ∙ cong (h ^ n ·_) p ∙ useSolver2 _ _ _ _ _ {- We get the following pullback square in CommRings R[1/h] → R[1/h][1/f] ⌟ ↓ ↓ R[1/h][1/g] → R[1/h][1/fg] this lifts to a pullback in R-Algebras using PullbackFromCommRing as all for rings have canonical morphisms coming from R and all the triangles commute. Then using toSheaf.lemma we get the desired square R[1/h] → R[1/f] ⌟ ↓ ↓ R[1/g] → R[1/fg] by only providing paths between the corresponding vertices of the square. These paths are constructed using S⁻¹RAlgCharEquiv, which gives an equivalent characterization of the universal property of localization that can be found in e.g. Cor 3.2 of Atiyah-MacDonald -} theRingCospan = fgCospan R[1/ h ]AsCommRing (f /1) (g /1) theRingPullback = fgPullback R[1/ h ]AsCommRing (f /1) (g /1) 1∈fgIdeal R[1/h][1/f] = InvertingElementsBase.R[1/_] R[1/ h ]AsCommRing (f /1) R[1/h][1/f]AsCommRing = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing (f /1) R[1/h][1/g] = InvertingElementsBase.R[1/_] R[1/ h ]AsCommRing (g /1) R[1/h][1/g]AsCommRing = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing (g /1) R[1/h][1/fg] = InvertingElementsBase.R[1/_] R[1/ h ]AsCommRing ((f /1) · (g /1)) R[1/h][1/fg]AsCommRing = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing ((f /1) · (g /1)) open IsRingHom /1/1AsCommRingHomFG : CommRingHom R' R[1/h][1/fg]AsCommRing fst /1/1AsCommRingHomFG r = [ [ r , 1r , ∣ 0 , refl ∣ ] , 1r , ∣ 0 , refl ∣ ] pres0 (snd /1/1AsCommRingHomFG) = refl pres1 (snd /1/1AsCommRingHomFG) = refl pres+ (snd /1/1AsCommRingHomFG) x y = cong [_] (≡-× (cong [_] (≡-× (cong₂ _+_ (useSolver x) (useSolver y)) (Σ≡Prop (λ _ → isPropPropTrunc) (useSolver 1r)))) (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·Rid 1r)))) where useSolver : ∀ a → a ≡ a · 1r · (1r · 1r) useSolver = solve R' pres· (snd /1/1AsCommRingHomFG) x y = cong [_] (≡-× (cong [_] (≡-× refl (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·Rid 1r))))) (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·Rid 1r)))) pres- (snd /1/1AsCommRingHomFG) x = refl open Cospan open Pullback open RingHoms isRHomR[1/h]→R[1/h][1/f] : theRingPullback .pbPr₂ ∘r /1AsCommRingHom ≡ /1/1AsCommRingHom f isRHomR[1/h]→R[1/h][1/f] = RingHom≡ (funExt (λ x → refl)) isRHomR[1/h]→R[1/h][1/g] : theRingPullback .pbPr₁ ∘r /1AsCommRingHom ≡ /1/1AsCommRingHom g isRHomR[1/h]→R[1/h][1/g] = RingHom≡ (funExt (λ x → refl)) isRHomR[1/h][1/f]→R[1/h][1/fg] : theRingCospan .s₂ ∘r /1/1AsCommRingHom f ≡ /1/1AsCommRingHomFG isRHomR[1/h][1/f]→R[1/h][1/fg] = RingHom≡ (funExt (λ x → cong [_] (≡-× (cong [_] (≡-× (cong (x ·_) (transportRefl 1r) ∙ ·Rid x) (Σ≡Prop (λ _ → isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·Rid 1r)))) (Σ≡Prop (λ _ → isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·Rid 1r))))) isRHomR[1/h][1/g]→R[1/h][1/fg] : theRingCospan .s₁ ∘r /1/1AsCommRingHom g ≡ /1/1AsCommRingHomFG isRHomR[1/h][1/g]→R[1/h][1/fg] = RingHom≡ (funExt (λ x → cong [_] (≡-× (cong [_] (≡-× (cong (x ·_) (transportRefl 1r) ∙ ·Rid x) (Σ≡Prop (λ _ → isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·Rid 1r)))) (Σ≡Prop (λ _ → isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·Rid 1r))))) open PullbackFromCommRing R' theRingCospan theRingPullback /1AsCommRingHom (/1/1AsCommRingHom f) (/1/1AsCommRingHom g) /1/1AsCommRingHomFG theAlgebraCospan = algCospan isRHomR[1/h]→R[1/h][1/f] isRHomR[1/h]→R[1/h][1/g] isRHomR[1/h][1/f]→R[1/h][1/fg] isRHomR[1/h][1/g]→R[1/h][1/fg] theAlgebraPullback = algPullback isRHomR[1/h]→R[1/h][1/f] isRHomR[1/h]→R[1/h][1/g] isRHomR[1/h][1/f]→R[1/h][1/fg] isRHomR[1/h][1/g]→R[1/h][1/fg] --and the three remaining paths fPath : theAlgebraCospan .r ≡ R[1/ f ]AsCommAlgebra fPath = doubleLocCancel f∈√⟨h⟩ where open DoubleAlgLoc R' h f gPath : theAlgebraCospan .l ≡ R[1/ g ]AsCommAlgebra gPath = doubleLocCancel g∈√⟨h⟩ where open DoubleAlgLoc R' h g fgPath : theAlgebraCospan .m ≡ R[1/ (f · g) ]AsCommAlgebra fgPath = path ∙ doubleLocCancel fg∈√⟨h⟩ where open DoubleAlgLoc R' h (f · g) open CommAlgChar R' R[1/h][1/fg]AsCommRing' = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing ((f · g) /1) path : toCommAlg (R[1/h][1/fg]AsCommRing , /1/1AsCommRingHomFG) ≡ toCommAlg (R[1/h][1/fg]AsCommRing' , /1/1AsCommRingHom (f · g)) path = cong toCommAlg (ΣPathP (p , q)) where eqInR[1/h] : (f /1) · (g /1) ≡ (f · g) /1 eqInR[1/h] = sym (/1AsCommRingHom .snd .pres· f g) p : R[1/h][1/fg]AsCommRing ≡ R[1/h][1/fg]AsCommRing' p i = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing (eqInR[1/h] i) q : PathP (λ i → CommRingHom R' (p i)) /1/1AsCommRingHomFG (/1/1AsCommRingHom (f · g)) q = toPathP (RingHom≡ (funExt ( λ x → cong [_] (≡-× (cong [_] (≡-× (transportRefl _ ∙ transportRefl x) (Σ≡Prop (λ _ → isPropPropTrunc) (transportRefl 1r)))) (Σ≡Prop (λ _ → isPropPropTrunc) (transportRefl 1r))))))
(* Title: HOL/Auth/n_german_lemma_inv__27_on_rules.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_german Protocol Case Study*} theory n_german_lemma_inv__27_on_rules imports n_german_lemma_on_inv__27 begin section{*All lemmas on causal relation between inv__27*} lemma lemma_inv__27_on_rules: assumes b1: "r \<in> rules N" and b2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__27 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" proof - have c1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" apply (cut_tac b1, auto) done moreover { assume d1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_StoreVsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqSVsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__0Vsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__1Vsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqSVsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqEVsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__0Vsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__1Vsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInvAckVsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvInvAckVsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntSVsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntEVsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntSVsinv__27) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntEVsinv__27) done } ultimately show "invHoldForRule s f r (invariants N)" by satx qed end
/- Copyright (c) 2021 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser ! This file was ported from Lean 3 source module linear_algebra.tensor_algebra.to_tensor_power ! leanprover-community/mathlib commit d97a0c9f7a7efe6d76d652c5a6b7c9c634b70e0a ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathbin.LinearAlgebra.TensorAlgebra.Basic import Mathbin.LinearAlgebra.TensorPower /-! # Tensor algebras as direct sums of tensor powers In this file we show that `tensor_algebra R M` is isomorphic to a direct sum of tensor powers, as `tensor_algebra.equiv_direct_sum`. -/ open DirectSum TensorProduct variable {R M : Type _} [CommSemiring R] [AddCommMonoid M] [Module R M] namespace TensorPower /-- The canonical embedding from a tensor power to the tensor algebra -/ def toTensorAlgebra {n} : (⨂[R]^n) M →ₗ[R] TensorAlgebra R M := PiTensorProduct.lift (TensorAlgebra.tprod R M n) #align tensor_power.to_tensor_algebra TensorPower.toTensorAlgebra @[simp] theorem toTensorAlgebra_tprod {n} (x : Fin n → M) : TensorPower.toTensorAlgebra (PiTensorProduct.tprod R x) = TensorAlgebra.tprod R M n x := PiTensorProduct.lift.tprod _ #align tensor_power.to_tensor_algebra_tprod TensorPower.toTensorAlgebra_tprod @[simp] theorem toTensorAlgebra_ghasOne : (@GradedMonoid.GOne.one _ (fun n => (⨂[R]^n) M) _ _).toTensorAlgebra = 1 := TensorPower.toTensorAlgebra_tprod _ #align tensor_power.to_tensor_algebra_ghas_one TensorPower.toTensorAlgebra_ghasOne @[simp] theorem toTensorAlgebra_ghasMul {i j} (a : (⨂[R]^i) M) (b : (⨂[R]^j) M) : (@GradedMonoid.GMul.mul _ (fun n => (⨂[R]^n) M) _ _ _ _ a b).toTensorAlgebra = a.toTensorAlgebra * b.toTensorAlgebra := by -- change `a` and `b` to `tprod R a` and `tprod R b` rw [TensorPower.ghasMul_eq_coe_linearMap, ← LinearMap.compr₂_apply, ← @LinearMap.mul_apply' R, ← LinearMap.compl₂_apply, ← LinearMap.comp_apply] refine' LinearMap.congr_fun (LinearMap.congr_fun _ a) b clear a b ext (a b) simp only [LinearMap.compr₂_apply, LinearMap.mul_apply', LinearMap.compl₂_apply, LinearMap.comp_apply, LinearMap.compMultilinearMap_apply, PiTensorProduct.lift.tprod, TensorPower.tprod_mul_tprod, TensorPower.toTensorAlgebra_tprod, TensorAlgebra.tprod_apply, ← ghas_mul_eq_coe_linear_map] refine' Eq.trans _ List.prod_append congr rw [← List.map_ofFn _ (TensorAlgebra.ι R), ← List.map_ofFn _ (TensorAlgebra.ι R), ← List.map_ofFn _ (TensorAlgebra.ι R), ← List.map_append, List.ofFn_fin_append] #align tensor_power.to_tensor_algebra_ghas_mul TensorPower.toTensorAlgebra_ghasMul @[simp] theorem toTensorAlgebra_galgebra_toFun (r : R) : (@DirectSum.Galgebra.toFun _ R (fun n => (⨂[R]^n) M) _ _ _ _ _ _ _ r).toTensorAlgebra = algebraMap _ _ r := by rw [TensorPower.galgebra_toFun_def, TensorPower.algebraMap₀_eq_smul_one, LinearMap.map_smul, TensorPower.toTensorAlgebra_ghasOne, Algebra.algebraMap_eq_smul_one] #align tensor_power.to_tensor_algebra_galgebra_to_fun TensorPower.toTensorAlgebra_galgebra_toFun end TensorPower namespace TensorAlgebra /-- The canonical map from a direct sum of tensor powers to the tensor algebra. -/ def ofDirectSum : (⨁ n, (⨂[R]^n) M) →ₐ[R] TensorAlgebra R M := DirectSum.toAlgebra _ _ (fun n => TensorPower.toTensorAlgebra) TensorPower.toTensorAlgebra_ghasOne (fun i j => TensorPower.toTensorAlgebra_ghasMul) TensorPower.toTensorAlgebra_galgebra_toFun #align tensor_algebra.of_direct_sum TensorAlgebra.ofDirectSum @[simp] theorem ofDirectSum_of_tprod {n} (x : Fin n → M) : ofDirectSum (DirectSum.of _ n (PiTensorProduct.tprod R x)) = tprod R M n x := (DirectSum.toAddMonoid_of _ _ _).trans (TensorPower.toTensorAlgebra_tprod _) #align tensor_algebra.of_direct_sum_of_tprod TensorAlgebra.ofDirectSum_of_tprod /-- The canonical map from the tensor algebra to a direct sum of tensor powers. -/ def toDirectSum : TensorAlgebra R M →ₐ[R] ⨁ n, (⨂[R]^n) M := TensorAlgebra.lift R <| DirectSum.lof R ℕ (fun n => (⨂[R]^n) M) _ ∘ₗ (LinearEquiv.symm <| PiTensorProduct.subsingletonEquiv (0 : Fin 1) : M ≃ₗ[R] _).toLinearMap #align tensor_algebra.to_direct_sum TensorAlgebra.toDirectSum @[simp] theorem toDirectSum_ι (x : M) : toDirectSum (ι R x) = DirectSum.of (fun n => (⨂[R]^n) M) _ (PiTensorProduct.tprod R fun _ : Fin 1 => x) := TensorAlgebra.lift_ι_apply _ _ #align tensor_algebra.to_direct_sum_ι TensorAlgebra.toDirectSum_ι theorem ofDirectSum_comp_toDirectSum : ofDirectSum.comp toDirectSum = AlgHom.id R (TensorAlgebra R M) := by ext simp [DirectSum.lof_eq_of, tprod_apply] #align tensor_algebra.of_direct_sum_comp_to_direct_sum TensorAlgebra.ofDirectSum_comp_toDirectSum @[simp] theorem ofDirectSum_toDirectSum (x : TensorAlgebra R M) : ofDirectSum x.toDirectSum = x := AlgHom.congr_fun ofDirectSum_comp_toDirectSum x #align tensor_algebra.of_direct_sum_to_direct_sum TensorAlgebra.ofDirectSum_toDirectSum @[simp] theorem mk_reindex_cast {n m : ℕ} (h : n = m) (x : (⨂[R]^n) M) : GradedMonoid.mk m (PiTensorProduct.reindex R M (Equiv.cast <| congr_arg Fin h) x) = GradedMonoid.mk n x := Eq.symm (PiTensorProduct.gradedMonoid_eq_of_reindex_cast h rfl) #align tensor_algebra.mk_reindex_cast TensorAlgebra.mk_reindex_cast @[simp] theorem mk_reindex_fin_cast {n m : ℕ} (h : n = m) (x : (⨂[R]^n) M) : GradedMonoid.mk m (PiTensorProduct.reindex R M (Fin.cast h).toEquiv x) = GradedMonoid.mk n x := by rw [Fin.cast_to_equiv, mk_reindex_cast h] #align tensor_algebra.mk_reindex_fin_cast TensorAlgebra.mk_reindex_fin_cast /-- The product of tensor products made of a single vector is the same as a single product of all the vectors. -/ theorem TensorPower.list_prod_gradedMonoid_mk_single (n : ℕ) (x : Fin n → M) : ((List.finRange n).map fun a => (GradedMonoid.mk _ (PiTensorProduct.tprod R fun i : Fin 1 => x a) : GradedMonoid fun n => (⨂[R]^n) M)).Prod = GradedMonoid.mk n (PiTensorProduct.tprod R x) := by refine' Fin.consInduction _ _ x <;> clear x · rw [List.finRange_zero, List.map_nil, List.prod_nil] rfl · intro n x₀ x ih rw [List.finRange_succ_eq_map, List.map_cons, List.prod_cons, List.map_map, Function.comp] simp_rw [Fin.cons_zero, Fin.cons_succ] rw [ih, GradedMonoid.mk_mul_mk, TensorPower.tprod_mul_tprod] refine' TensorPower.gradedMonoid_eq_of_cast (add_comm _ _) _ dsimp only [GradedMonoid.mk] rw [TensorPower.cast_tprod] simp_rw [Fin.append_left_eq_cons, Function.comp] congr 1 with i congr 1 rw [Fin.cast_trans, Fin.cast_refl, OrderIso.refl_apply] #align tensor_power.list_prod_graded_monoid_mk_single TensorPower.list_prod_gradedMonoid_mk_single theorem toDirectSum_tensorPower_tprod {n} (x : Fin n → M) : toDirectSum (tprod R M n x) = DirectSum.of _ n (PiTensorProduct.tprod R x) := by rw [tprod_apply, AlgHom.map_list_prod, List.map_ofFn, Function.comp] simp_rw [to_direct_sum_ι] dsimp only rw [DirectSum.list_prod_ofFn_of_eq_dProd] apply DirectSum.of_eq_of_gradedMonoid_eq rw [GradedMonoid.mk_list_dProd] rw [TensorPower.list_prod_gradedMonoid_mk_single] #align tensor_algebra.to_direct_sum_tensor_power_tprod TensorAlgebra.toDirectSum_tensorPower_tprod theorem toDirectSum_comp_ofDirectSum : toDirectSum.comp ofDirectSum = AlgHom.id R (⨁ n, (⨂[R]^n) M) := by ext simp [DirectSum.lof_eq_of, -tprod_apply, to_direct_sum_tensor_power_tprod] #align tensor_algebra.to_direct_sum_comp_of_direct_sum TensorAlgebra.toDirectSum_comp_ofDirectSum @[simp] theorem toDirectSum_ofDirectSum (x : ⨁ n, (⨂[R]^n) M) : (ofDirectSum x).toDirectSum = x := AlgHom.congr_fun toDirectSum_comp_ofDirectSum x #align tensor_algebra.to_direct_sum_of_direct_sum TensorAlgebra.toDirectSum_ofDirectSum /-- The tensor algebra is isomorphic to a direct sum of tensor powers. -/ @[simps] def equivDirectSum : TensorAlgebra R M ≃ₐ[R] ⨁ n, (⨂[R]^n) M := AlgEquiv.ofAlgHom toDirectSum ofDirectSum toDirectSum_comp_ofDirectSum ofDirectSum_comp_toDirectSum #align tensor_algebra.equiv_direct_sum TensorAlgebra.equivDirectSum end TensorAlgebra
/* ode-initval/gsl_odeiv.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_ODEIV_H__ #define __GSL_ODEIV_H__ #if !defined( GSL_FUN ) # if !defined( GSL_DLL ) # define GSL_FUN extern # elif defined( BUILD_GSL_DLL ) # define GSL_FUN extern __declspec(dllexport) # else # define GSL_FUN extern __declspec(dllimport) # endif #endif #include <stdio.h> #include <stdlib.h> #include <gsl/gsl_types.h> #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Description of a system of ODEs. * * y' = f(t,y) = dydt(t, y) * * The system is specified by giving the right-hand-side * of the equation and possibly a jacobian function. * * Some methods require the jacobian function, which calculates * the matrix dfdy and the vector dfdt. The matrix dfdy conforms * to the GSL standard, being a continuous range of floating point * values, in row-order. * * As with GSL function objects, user-supplied parameter * data is also present. */ typedef struct { int (* function) (double t, const double y[], double dydt[], void * params); int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params); size_t dimension; void * params; } gsl_odeiv_system; #define GSL_ODEIV_FN_EVAL(S,t,y,f) (*((S)->function))(t,y,f,(S)->params) #define GSL_ODEIV_JA_EVAL(S,t,y,dfdy,dfdt) (*((S)->jacobian))(t,y,dfdy,dfdt,(S)->params) /* General stepper object. * * Opaque object for stepping an ODE system from t to t+h. * In general the object has some state which facilitates * iterating the stepping operation. */ typedef struct { const char * name; int can_use_dydt_in; int gives_exact_dydt_out; void * (*alloc) (size_t dim); int (*apply) (void * state, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * dydt); int (*reset) (void * state, size_t dim); unsigned int (*order) (void * state); void (*free) (void * state); } gsl_odeiv_step_type; typedef struct { const gsl_odeiv_step_type * type; size_t dimension; void * state; } gsl_odeiv_step; /* Available stepper types. * * rk2 : embedded 2nd(3rd) Runge-Kutta * rk4 : 4th order (classical) Runge-Kutta * rkck : embedded 4th(5th) Runge-Kutta, Cash-Karp * rk8pd : embedded 8th(9th) Runge-Kutta, Prince-Dormand * rk2imp : implicit 2nd order Runge-Kutta at Gaussian points * rk4imp : implicit 4th order Runge-Kutta at Gaussian points * gear1 : M=1 implicit Gear method * gear2 : M=2 implicit Gear method */ GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk4; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rkf45; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rkck; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk8pd; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2imp; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2simp; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk4imp; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_bsimp; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_gear1; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_gear2; /* Constructor for specialized stepper objects. */ GSL_FUN gsl_odeiv_step * gsl_odeiv_step_alloc(const gsl_odeiv_step_type * T, size_t dim); GSL_FUN int gsl_odeiv_step_reset(gsl_odeiv_step * s); GSL_FUN void gsl_odeiv_step_free(gsl_odeiv_step * s); /* General stepper object methods. */ GSL_FUN const char * gsl_odeiv_step_name(const gsl_odeiv_step * s); GSL_FUN unsigned int gsl_odeiv_step_order(const gsl_odeiv_step * s); GSL_FUN int gsl_odeiv_step_apply(gsl_odeiv_step * s, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * dydt); /* General step size control object. * * The hadjust() method controls the adjustment of * step size given the result of a step and the error. * Valid hadjust() methods must return one of the codes below. * * The general data can be used by specializations * to store state and control their heuristics. */ typedef struct { const char * name; void * (*alloc) (void); int (*init) (void * state, double eps_abs, double eps_rel, double a_y, double a_dydt); int (*hadjust) (void * state, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double * h); void (*free) (void * state); } gsl_odeiv_control_type; typedef struct { const gsl_odeiv_control_type * type; void * state; } gsl_odeiv_control; /* Possible return values for an hadjust() evolution method. */ #define GSL_ODEIV_HADJ_INC 1 /* step was increased */ #define GSL_ODEIV_HADJ_NIL 0 /* step unchanged */ #define GSL_ODEIV_HADJ_DEC (-1) /* step decreased */ GSL_FUN gsl_odeiv_control * gsl_odeiv_control_alloc(const gsl_odeiv_control_type * T); GSL_FUN int gsl_odeiv_control_init(gsl_odeiv_control * c, double eps_abs, double eps_rel, double a_y, double a_dydt); GSL_FUN void gsl_odeiv_control_free(gsl_odeiv_control * c); GSL_FUN int gsl_odeiv_control_hadjust (gsl_odeiv_control * c, gsl_odeiv_step * s, const double y[], const double yerr[], const double dydt[], double * h); GSL_FUN const char * gsl_odeiv_control_name(const gsl_odeiv_control * c); /* Available control object constructors. * * The standard control object is a four parameter heuristic * defined as follows: * D0 = eps_abs + eps_rel * (a_y |y| + a_dydt h |y'|) * D1 = |yerr| * q = consistency order of method (q=4 for 4(5) embedded RK) * S = safety factor (0.9 say) * * / (D0/D1)^(1/(q+1)) D0 >= D1 * h_NEW = S h_OLD * | * \ (D0/D1)^(1/q) D0 < D1 * * This encompasses all the standard error scaling methods. * * The y method is the standard method with a_y=1, a_dydt=0. * The yp method is the standard method with a_y=0, a_dydt=1. */ GSL_FUN gsl_odeiv_control * gsl_odeiv_control_standard_new(double eps_abs, double eps_rel, double a_y, double a_dydt); GSL_FUN gsl_odeiv_control * gsl_odeiv_control_y_new(double eps_abs, double eps_rel); GSL_FUN gsl_odeiv_control * gsl_odeiv_control_yp_new(double eps_abs, double eps_rel); /* This controller computes errors using different absolute errors for * each component * * D0 = eps_abs * scale_abs[i] + eps_rel * (a_y |y| + a_dydt h |y'|) */ GSL_FUN gsl_odeiv_control * gsl_odeiv_control_scaled_new(double eps_abs, double eps_rel, double a_y, double a_dydt, const double scale_abs[], size_t dim); /* General evolution object. */ typedef struct { size_t dimension; double * y0; double * yerr; double * dydt_in; double * dydt_out; double last_step; unsigned long int count; unsigned long int failed_steps; } gsl_odeiv_evolve; /* Evolution object methods. */ GSL_FUN gsl_odeiv_evolve * gsl_odeiv_evolve_alloc(size_t dim); GSL_FUN int gsl_odeiv_evolve_apply(gsl_odeiv_evolve * e, gsl_odeiv_control * con, gsl_odeiv_step * step, const gsl_odeiv_system * dydt, double * t, double t1, double * h, double y[]); GSL_FUN int gsl_odeiv_evolve_reset(gsl_odeiv_evolve * e); GSL_FUN void gsl_odeiv_evolve_free(gsl_odeiv_evolve * e); __END_DECLS #endif /* __GSL_ODEIV_H__ */
[STATEMENT] lemma res_mult_eq: "x \<otimes> y = (x * y) mod m" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x \<otimes> y = x * y mod m [PROOF STEP] by (auto simp: R_m_def residue_ring_def)
[STATEMENT] lemma sync_commute: "(P \<lbrakk> A \<rbrakk> Q) = (Q \<lbrakk> A \<rbrakk> P)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (P \<lbrakk>A\<rbrakk> Q) = (Q \<lbrakk>A\<rbrakk> P) [PROOF STEP] by (simp add: Process_eq_spec mono_D_syn mono_F_syn)
theory T91 imports Main begin lemma "( (\<forall> x::nat. \<forall> y::nat. meet(x, y) = meet(y, x)) & (\<forall> x::nat. \<forall> y::nat. join(x, y) = join(y, x)) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, meet(y, z)) = meet(meet(x, y), z)) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(x, join(y, z)) = join(join(x, y), z)) & (\<forall> x::nat. \<forall> y::nat. meet(x, join(x, y)) = x) & (\<forall> x::nat. \<forall> y::nat. join(x, meet(x, y)) = x) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, join(y, z)) = join(mult(x, y), mult(x, z))) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(join(x, y), z) = join(mult(x, z), mult(y, z))) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, over(join(mult(x, y), z), y)) = x) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(y, undr(x, join(mult(x, y), z))) = y) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(over(x, y), y), x) = x) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(y, undr(y, x)), x) = x) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(meet(x, y), z) = meet(mult(x, z), mult(y, z))) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(join(x, y), z) = join(over(x, z), over(y, z))) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(x, meet(y, z)) = join(over(x, y), over(x, z))) & (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(meet(x, y), z) = join(undr(x, z), undr(y, z))) & (\<forall> x::nat. \<forall> y::nat. invo(join(x, y)) = meet(invo(x), invo(y))) & (\<forall> x::nat. \<forall> y::nat. invo(meet(x, y)) = join(invo(x), invo(y))) & (\<forall> x::nat. invo(invo(x)) = x) ) \<longrightarrow> (\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(x, join(y, z)) = join(undr(x, y), undr(x, z))) " nitpick[card nat=4,timeout=86400] oops end
lemma arg_unique: assumes "sgn z = cis x" and "-pi < x" and "x \<le> pi" shows "arg z = x"
{- This file contains: - Definition of functions of the equivalence between FreeGroup and the FundamentalGroup - Definition of encode decode functions - Proof that for all x : Bouquet A → p : base ≡ x → decode x (encode x p) ≡ p (no truncations) - Proof of the truncated versions of encodeDecode and of right-homotopy - Definition of truncated encode decode functions - Proof of the truncated versions of decodeEncode and encodeDecode - Proof that π₁Bouquet ≡ FreeGroup A -} {-# OPTIONS --safe #-} module Cubical.HITs.Bouquet.FundamentalGroupProof where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws renaming (assoc to pathAssoc) open import Cubical.HITs.SetTruncation hiding (rec2) open import Cubical.HITs.PropositionalTruncation hiding (map ; elim) renaming (rec to propRec) open import Cubical.Algebra.Group open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.Loopspace open import Cubical.HITs.Bouquet.Base open import Cubical.HITs.FreeGroup.Base open import Cubical.HITs.FreeGroupoid private variable ℓ : Level A : Type ℓ -- Pointed versions of the non truncated types ΩBouquet : {A : Type ℓ} → Pointed ℓ ΩBouquet {A = A} = Ω (Bouquet∙ A) FreeGroupoid∙ : {A : Type ℓ} → Pointed ℓ FreeGroupoid∙ {A = A} = FreeGroupoid A , ε -- Functions without using the truncated forms of types looping : FreeGroupoid A → typ ΩBouquet looping (η a) = loop a looping (g1 · g2) = looping g1 ∙ looping g2 looping ε = refl looping (inv g) = sym (looping g) looping (assoc g1 g2 g3 i) = pathAssoc (looping g1) (looping g2) (looping g3) i looping (idr g i) = rUnit (looping g) i looping (idl g i) = lUnit (looping g) i looping (invr g i) = rCancel (looping g) i looping (invl g i) = lCancel (looping g) i looping∙ : FreeGroupoid∙ →∙ ΩBouquet {A = A} looping∙ = looping , refl code : {A : Type ℓ} → (Bouquet A) → Type ℓ code {A = A} base = (FreeGroupoid A) code (loop a i) = pathsInU (η a) i winding : typ ΩBouquet → FreeGroupoid A winding l = subst code l ε winding∙ : ΩBouquet →∙ FreeGroupoid∙ {A = A} winding∙ = winding , refl -- Functions using the truncated forms of types π₁Bouquet : {A : Type ℓ} → Type ℓ π₁Bouquet {A = A} = π 1 (Bouquet∙ A) loopingT : ∥ FreeGroupoid A ∥₂ → π₁Bouquet loopingT = map looping windingT : π₁Bouquet → ∥ FreeGroupoid A ∥₂ windingT = map winding -- Utility proofs substPathsR : {C : Type ℓ}{y z : C} → (x : C) → (p : y ≡ z) → subst (λ y → x ≡ y) p ≡ λ q → q ∙ p substPathsR {y = y} x p = funExt homotopy where homotopy : ∀ q → subst (λ y → x ≡ y) p q ≡ q ∙ p homotopy q = J P d p where P : ∀ z' → y ≡ z' → Type _ P z' p' = subst (λ y → x ≡ y) p' q ≡ q ∙ p' d : P y refl d = subst (λ y → x ≡ y) refl q ≡⟨ substRefl {B = λ y → x ≡ y} q ⟩ q ≡⟨ rUnit q ⟩ q ∙ refl ∎ substFunctions : {B C : A → Type ℓ}{x y : A} → (p : x ≡ y) → (f : B x → C x) → subst (λ z → (B z → C z)) p f ≡ subst C p ∘ f ∘ subst B (sym p) substFunctions {B = B} {C = C} {x = x} p f = J P d p where auxC : idfun (C x) ≡ subst C refl auxC = funExt (λ c → sym (substRefl {B = C} c)) auxB : idfun (B x) ≡ subst B refl auxB = funExt (λ b → sym (substRefl {B = B} b)) P : ∀ y' → x ≡ y' → Type _ P y' p' = subst (λ z → (B z → C z)) p' f ≡ subst C p' ∘ f ∘ subst B (sym p') d : P x refl d = subst (λ z → (B z → C z)) refl f ≡⟨ substRefl {B = λ z → (B z → C z)} f ⟩ f ≡⟨ cong (λ h → h ∘ f ∘ idfun (B x)) auxC ⟩ subst C refl ∘ f ∘ idfun (B x) ≡⟨ cong (λ h → subst C refl ∘ f ∘ h) auxB ⟩ subst C refl ∘ f ∘ subst B (sym refl) ∎ -- Definition of the encode - decode functions over the family of types Π(x : W A) → code x encode : (x : Bouquet A) → base ≡ x → code x encode x l = subst code l ε decode : {A : Type ℓ}(x : Bouquet A) → code x → base ≡ x decode {A = A} base = looping decode {A = A} (loop a i) = path i where pathover : PathP (λ i → (code (loop a i) → base ≡ (loop a i))) looping (subst (λ z → (code z → base ≡ z)) (loop a) looping) pathover = subst-filler (λ z → (code z → base ≡ z)) (loop a) looping aux : (a : A) → subst code (sym (loop a)) ≡ action (inv (η a)) aux a = funExt homotopy where homotopy : ∀ (g : FreeGroupoid A) → subst code (sym (loop a)) g ≡ action (inv (η a)) g homotopy g = subst code (sym (loop a)) g ≡⟨ cong (λ x → transport x g) (sym (invPathsInUNaturality (η a))) ⟩ transport (pathsInU (inv (η a))) g ≡⟨ uaβ (equivs (inv (η a))) g ⟩ action (inv (η a)) g ∎ calculations : ∀ (a : A) → ∀ g → looping (g · (inv (η a))) ∙ loop a ≡ looping g calculations a g = looping (g · (inv (η a))) ∙ loop a ≡⟨ sym (pathAssoc (looping g) (sym (loop a)) (loop a)) ⟩ looping g ∙ (sym (loop a) ∙ loop a) ≡⟨ cong (λ x → looping g ∙ x) (lCancel (loop a)) ⟩ looping g ∙ refl ≡⟨ sym (rUnit (looping g)) ⟩ looping g ∎ path' : subst (λ z → (code z → base ≡ z)) (loop a) looping ≡ looping path' = subst (λ z → (code z → base ≡ z)) (loop a) looping ≡⟨ substFunctions {B = code} {C = λ z → base ≡ z} (loop a) looping ⟩ subst (λ z → base ≡ z) (loop a) ∘ looping ∘ subst code (sym (loop a)) ≡⟨ cong (λ x → x ∘ looping ∘ subst code (sym (loop a))) (substPathsR base (loop a)) ⟩ (λ p → p ∙ loop a) ∘ looping ∘ subst code (sym (loop a)) ≡⟨ cong (λ x → (λ p → p ∙ loop a) ∘ looping ∘ x) (aux a) ⟩ (λ p → p ∙ loop a) ∘ looping ∘ action (inv (η a)) ≡⟨ funExt (calculations a) ⟩ looping ∎ path'' : PathP (λ i → code ((loop a ∙ refl) i) → base ≡ ((loop a ∙ refl) i)) looping looping path'' = compPathP' {A = Bouquet A} {B = λ z → code z → base ≡ z} pathover path' p''≡p : PathP (λ i → code ((loop a ∙ refl) i) → base ≡ ((loop a ∙ refl) i)) looping looping ≡ PathP (λ i → code (loop a i) → base ≡ (loop a i)) looping looping p''≡p = cong (λ x → PathP (λ i → code (x i) → base ≡ (x i)) looping looping) (sym (rUnit (loop a))) path : PathP (λ i → code (loop a i) → base ≡ (loop a i)) looping looping path = transport p''≡p path'' -- Non truncated Left Homotopy decodeEncode : (x : Bouquet A) → (p : base ≡ x) → decode x (encode x p) ≡ p decodeEncode x p = J P d p where P : (x' : Bouquet A) → base ≡ x' → Type _ P x' p' = decode x' (encode x' p') ≡ p' d : P base refl d = decode base (encode base refl) ≡⟨ cong (λ e' → looping e') (transportRefl ε) ⟩ refl ∎ left-homotopy : ∀ (l : typ (ΩBouquet {A = A})) → looping (winding l) ≡ l left-homotopy l = decodeEncode base l -- Truncated proofs of right homotopy of winding/looping functions truncatedPathEquality : (g : FreeGroupoid A) → ∥ cong code (looping g) ≡ ua (equivs g) ∥₁ truncatedPathEquality = elimProp Bprop (λ a → ∣ η-ind a ∣₁) (λ g1 g2 → λ ∣ind1∣₁ ∣ind2∣₁ → rec2 squash₁ (λ ind1 ind2 → ∣ ·-ind g1 g2 ind1 ind2 ∣₁) ∣ind1∣₁ ∣ind2∣₁) ∣ ε-ind ∣₁ (λ g → λ ∣ind∣₁ → propRec squash₁ (λ ind → ∣ inv-ind g ind ∣₁) ∣ind∣₁) where B : ∀ g → Type _ B g = cong code (looping g) ≡ ua (equivs g) Bprop : ∀ g → isProp ∥ B g ∥₁ Bprop g = squash₁ η-ind : ∀ a → B (η a) η-ind a = refl ·-ind : ∀ g1 g2 → B g1 → B g2 → B (g1 · g2) ·-ind g1 g2 ind1 ind2 = cong code (looping (g1 · g2)) ≡⟨ cong (λ x → x ∙ cong code (looping g2)) ind1 ⟩ pathsInU g1 ∙ cong code (looping g2) ≡⟨ cong (λ x → pathsInU g1 ∙ x) ind2 ⟩ pathsInU g1 ∙ pathsInU g2 ≡⟨ sym (multPathsInUNaturality g1 g2) ⟩ pathsInU (g1 · g2) ∎ ε-ind : B ε ε-ind = cong code (looping ε) ≡⟨ sym idPathsInUNaturality ⟩ pathsInU ε ∎ inv-ind : ∀ g → B g → B (inv g) inv-ind g ind = cong code (looping (inv g)) ≡⟨ cong sym ind ⟩ sym (pathsInU g) ≡⟨ sym (invPathsInUNaturality g) ⟩ ua (equivs (inv g)) ∎ truncatedRight-homotopy : (g : FreeGroupoid A) → ∥ winding (looping g) ≡ g ∥₁ truncatedRight-homotopy g = propRec squash₁ recursion (truncatedPathEquality g) where recursion : cong code (looping g) ≡ ua (equivs g) → ∥ winding (looping g) ≡ g ∥₁ recursion hyp = ∣ aux ∣₁ where aux : winding (looping g) ≡ g aux = winding (looping g) ≡⟨ cong (λ x → transport x ε) hyp ⟩ transport (ua (equivs g)) ε ≡⟨ uaβ (equivs g) ε ⟩ ε · g ≡⟨ sym (idl g) ⟩ g ∎ right-homotopyInTruncatedGroupoid : (g : FreeGroupoid A) → ∣ winding (looping g) ∣₂ ≡ ∣ g ∣₂ right-homotopyInTruncatedGroupoid g = Iso.inv PathIdTrunc₀Iso (truncatedRight-homotopy g) -- Truncated encodeDecode over all fibrations truncatedEncodeDecode : (x : Bouquet A) → (g : code x) → ∥ encode x (decode x g) ≡ g ∥₁ truncatedEncodeDecode base = truncatedRight-homotopy truncatedEncodeDecode (loop a i) = isProp→PathP prop truncatedRight-homotopy truncatedRight-homotopy i where prop : ∀ i → isProp (∀ (g : code (loop a i)) → ∥ encode (loop a i) (decode (loop a i) g) ≡ g ∥₁) prop i f g = funExt pointwise where pointwise : (x : code (loop a i)) → PathP (λ _ → ∥ encode (loop a i) (decode (loop a i) x) ≡ x ∥₁) (f x) (g x) pointwise x = isProp→PathP (λ i → squash₁) (f x) (g x) encodeDecodeInTruncatedGroupoid : (x : Bouquet A) → (g : code x) → ∣ encode x (decode x g) ∣₂ ≡ ∣ g ∣₂ encodeDecodeInTruncatedGroupoid x g = Iso.inv PathIdTrunc₀Iso (truncatedEncodeDecode x g) -- Encode Decode over the truncated versions of the types encodeT : (x : Bouquet A) → ∥ base ≡ x ∥₂ → ∥ code x ∥₂ encodeT x = map (encode x) decodeT : (x : Bouquet A) → ∥ code x ∥₂ → ∥ base ≡ x ∥₂ decodeT x = map (decode x) decodeEncodeT : (x : Bouquet A) → (p : ∥ base ≡ x ∥₂) → decodeT x (encodeT x p) ≡ p decodeEncodeT x g = elim sethood induction g where sethood : (q : ∥ base ≡ x ∥₂) → isSet (decodeT x (encodeT x q) ≡ q) sethood q = isProp→isSet (squash₂ (decodeT x (encodeT x q)) q) induction : (l : base ≡ x) → ∣ decode x (encode x l) ∣₂ ≡ ∣ l ∣₂ induction l = cong (λ l' → ∣ l' ∣₂) (decodeEncode x l) encodeDecodeT : (x : Bouquet A) → (g : ∥ code x ∥₂) → encodeT x (decodeT x g) ≡ g encodeDecodeT x g = elim sethood induction g where sethood : (z : ∥ code x ∥₂) → isSet (encodeT x (decodeT x z) ≡ z) sethood z = isProp→isSet (squash₂ (encodeT x (decodeT x z)) z) induction : (a : code x) → ∣ encode x (decode x a) ∣₂ ≡ ∣ a ∣₂ induction a = encodeDecodeInTruncatedGroupoid x a -- Final equivalences TruncatedFamiliesIso : (x : Bouquet A) → Iso ∥ base ≡ x ∥₂ ∥ code x ∥₂ Iso.fun (TruncatedFamiliesIso x) = encodeT x Iso.inv (TruncatedFamiliesIso x) = decodeT x Iso.rightInv (TruncatedFamiliesIso x) = encodeDecodeT x Iso.leftInv (TruncatedFamiliesIso x) = decodeEncodeT x TruncatedFamiliesEquiv : (x : Bouquet A) → ∥ base ≡ x ∥₂ ≃ ∥ code x ∥₂ TruncatedFamiliesEquiv x = isoToEquiv (TruncatedFamiliesIso x) TruncatedFamilies≡ : (x : Bouquet A) → ∥ base ≡ x ∥₂ ≡ ∥ code x ∥₂ TruncatedFamilies≡ x = ua (TruncatedFamiliesEquiv x) π₁Bouquet≡∥FreeGroupoid∥₂ : π₁Bouquet ≡ ∥ FreeGroupoid A ∥₂ π₁Bouquet≡∥FreeGroupoid∥₂ = TruncatedFamilies≡ base π₁Bouquet≡FreeGroup : {A : Type ℓ} → π₁Bouquet ≡ FreeGroup A π₁Bouquet≡FreeGroup {A = A} = π₁Bouquet ≡⟨ π₁Bouquet≡∥FreeGroupoid∥₂ ⟩ ∥ FreeGroupoid A ∥₂ ≡⟨ sym freeGroupTruncIdempotent ⟩ FreeGroup A ∎
State Before: F : Type ?u.55319 α : Type u_3 β : Type u_1 γ : Type u_2 ι : Type ?u.55331 κ : Type ?u.55334 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s✝ s₁ s₂ : Finset β f✝ g : β → α a : α s : Finset β t : Finset γ f : β × γ → α ⊢ sup (s ×ˢ t) f = sup s fun i => sup t fun i' => f (i, i') State After: F : Type ?u.55319 α : Type u_3 β : Type u_1 γ : Type u_2 ι : Type ?u.55331 κ : Type ?u.55334 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s✝ s₁ s₂ : Finset β f✝ g : β → α a : α s : Finset β t : Finset γ f : β × γ → α ⊢ (∀ (a : β) (b : γ), a ∈ s → b ∈ t → f (a, b) ≤ sup s fun i => sup t fun i' => f (i, i')) ∧ ∀ (b : β), b ∈ s → ∀ (b_1 : γ), b_1 ∈ t → f (b, b_1) ≤ sup (s ×ˢ t) f Tactic: simp only [le_antisymm_iff, Finset.sup_le_iff, mem_product, and_imp, Prod.forall] State Before: F : Type ?u.55319 α : Type u_3 β : Type u_1 γ : Type u_2 ι : Type ?u.55331 κ : Type ?u.55334 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s✝ s₁ s₂ : Finset β f✝ g : β → α a : α s : Finset β t : Finset γ f : β × γ → α ⊢ (∀ (a : β) (b : γ), a ∈ s → b ∈ t → f (a, b) ≤ sup s fun i => sup t fun i' => f (i, i')) ∧ ∀ (b : β), b ∈ s → ∀ (b_1 : γ), b_1 ∈ t → f (b, b_1) ≤ sup (s ×ˢ t) f State After: case refine_1 F : Type ?u.55319 α : Type u_3 β : Type u_1 γ : Type u_2 ι : Type ?u.55331 κ : Type ?u.55334 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s✝ s₁ s₂ : Finset β f✝ g : β → α a : α s : Finset β t : Finset γ f : β × γ → α b : β c : γ hb : b ∈ s hc : c ∈ t ⊢ f (b, c) ≤ sup s fun i => sup t fun i' => f (i, i') case refine_2 F : Type ?u.55319 α : Type u_3 β : Type u_1 γ : Type u_2 ι : Type ?u.55331 κ : Type ?u.55334 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s✝ s₁ s₂ : Finset β f✝ g : β → α a : α s : Finset β t : Finset γ f : β × γ → α b : β hb : b ∈ s c : γ hc : c ∈ t ⊢ f (b, c) ≤ sup (s ×ˢ t) f Tactic: refine ⟨fun b c hb hc => ?_, fun b hb c hc => ?_⟩ State Before: case refine_1 F : Type ?u.55319 α : Type u_3 β : Type u_1 γ : Type u_2 ι : Type ?u.55331 κ : Type ?u.55334 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s✝ s₁ s₂ : Finset β f✝ g : β → α a : α s : Finset β t : Finset γ f : β × γ → α b : β c : γ hb : b ∈ s hc : c ∈ t ⊢ f (b, c) ≤ sup s fun i => sup t fun i' => f (i, i') State After: case refine_1 F : Type ?u.55319 α : Type u_3 β : Type u_1 γ : Type u_2 ι : Type ?u.55331 κ : Type ?u.55334 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s✝ s₁ s₂ : Finset β f✝ g : β → α a : α s : Finset β t : Finset γ f : β × γ → α b : β c : γ hb : b ∈ s hc : c ∈ t ⊢ f (b, c) ≤ sup t fun i' => f (b, i') Tactic: refine (le_sup hb).trans' ?_ State Before: case refine_1 F : Type ?u.55319 α : Type u_3 β : Type u_1 γ : Type u_2 ι : Type ?u.55331 κ : Type ?u.55334 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s✝ s₁ s₂ : Finset β f✝ g : β → α a : α s : Finset β t : Finset γ f : β × γ → α b : β c : γ hb : b ∈ s hc : c ∈ t ⊢ f (b, c) ≤ sup t fun i' => f (b, i') State After: no goals Tactic: exact @le_sup _ _ _ _ _ (fun c => f (b, c)) c hc State Before: case refine_2 F : Type ?u.55319 α : Type u_3 β : Type u_1 γ : Type u_2 ι : Type ?u.55331 κ : Type ?u.55334 inst✝¹ : SemilatticeSup α inst✝ : OrderBot α s✝ s₁ s₂ : Finset β f✝ g : β → α a : α s : Finset β t : Finset γ f : β × γ → α b : β hb : b ∈ s c : γ hc : c ∈ t ⊢ f (b, c) ≤ sup (s ×ˢ t) f State After: no goals Tactic: exact le_sup <| mem_product.2 ⟨hb, hc⟩
-- {-# OPTIONS -v tc.conv:10 #-} -- 2013-11-03 Reported by sanzhiyan module Issue933 where record RGraph : Set₁ where field O : Set R : Set refl : O -> R module Families (Γ : RGraph) where module Γ = RGraph Γ record RG-Fam : Set₁ where field O : Γ.O -> Set refl : ∀ {γo} -> (o : O γo) → O (Γ.refl γo) -- "O (Γ.refl γo)" should be a type error. -- Andreas: Fixed. SyntacticEquality wrongly just skipped projections.
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core open import Categories.Object.Zero -- Normal Mono and Epimorphisms -- https://ncatlab.org/nlab/show/normal+monomorphism module Categories.Morphism.Normal {o ℓ e} (𝒞 : Category o ℓ e) (𝒞-Zero : Zero 𝒞) where open import Level open import Categories.Object.Kernel 𝒞-Zero open import Categories.Object.Kernel.Properties 𝒞-Zero open import Categories.Morphism 𝒞 open Category 𝒞 record IsNormalMonomorphism {A K : Obj} (k : K ⇒ A) : Set (o ⊔ ℓ ⊔ e) where field {B} : Obj arr : A ⇒ B isKernel : IsKernel k arr open IsKernel isKernel public mono : Mono k mono = Kernel-Mono (IsKernel⇒Kernel isKernel) record NormalMonomorphism (K A : Obj) : Set (o ⊔ ℓ ⊔ e) where field mor : K ⇒ A isNormalMonomorphism : IsNormalMonomorphism mor open IsNormalMonomorphism isNormalMonomorphism public
lemma hol_pal_lem1: assumes "convex S" "open S" and abc: "a \<in> S" "b \<in> S" "c \<in> S" "d \<noteq> 0" and lek: "d \<bullet> a \<le> k" "d \<bullet> b \<le> k" "d \<bullet> c \<le> k" and holf1: "f holomorphic_on {z. z \<in> S \<and> d \<bullet> z < k}" and contf: "continuous_on S f" shows "contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c a) f = 0"
# <span style='font-family:Marker Felt;font-weight:bold'>LINEAR MODELS FOR REGRESSION</span> --- In this chapter we start to learn some fundamental algorithms behind the most common and simple machine learning tools. To do it, we will use some simple mathematic equations that require basic knowledge of statistics and probability. <p align="center"> </p> ## <span style='font-family:Marker Felt;font-weight:bold'>Linear models</span> --- The goal of a regression problem is to learn a mapping from a given $D$-dimensional vector **x** of input variables to one or more continuous target variables **t**. Some examples of regression problems are the prediction of a stock market price, the prediction of future emissions of $CO_2$, the effect of an actuation in robotics and so on. The simplest form of regression is given by **linear models** which are models linear in their weights, not necessarily in the inputs. The advantages of these models are many: * Can be solved analytically. This means, as you will see later, that the associated optimization problem can be solved in _closed form_. We will always obtain the minimum of the approximation loss on the data we have. If the model fails to properly approximate the phenomenon then the problem is for sure related to the hypothesis space, so on the model we are using. * They are the core concepts of more complex machine learning algorithms. * Their approximation capability is not limited to linear function: they can approximate any complex function provided the correct input space is considered. The simplest linear model, is obviously, the one that involves a linear combination of the input variables: \begin{align} y(\textbf{x}, \textbf{w}) = w_0 + \sum_{j=1}^{D-1}w_j x_j = \textbf{w}^T\textbf{x} \end{align} where $w_0$ is nothing but the offset of the model at zero. ### <span style='font-family:Marker Felt;font-weight:bold'>Loss function</span> How can we state if this model is sufficiently accurate for our system? We need to define a loss function, also called the _error function_. Generally speaking a loss function can be defined as: $$ \begin{align}\mathbb{E}[\mathcal{L}] = \int\int L(t, y(\textbf{x}))p(\textbf{x},t)d\textbf{x} dt \end{align} $$ where $p(\textbf{x}, t)$ represents the probability to see that particular combination of input and output; this probability acts as a weight on the loss. Since the distribution of this probability is unknown we have to estimate it with the data points we have. In regression, a common choice of loss function is the **squared loss function**: $$ \begin{align} \mathbb{E}[\mathcal{L}] = \int\int (t - y(\textbf{x}))^2 p(\textbf{x},t)d\textbf{x}dt \end{align} $$ Deriving this loss function w.r.t. $y$ and setting the derivative to zero we obtain that the optimal solution is the conditional mean of $t$ conditioned on $\textbf{x}$, also called *regression function*: $$ \begin{align} y(\textbf{x}) = \int t p(t|\textbf{x})dt = \mathbb{E}[t|\textbf{x}] \end{align} $$ <p align="center"> </p> There are situations in which the squared loss function doesn't produce any good result, as in the case where $p(t|\textbf{x})$ is multi-modal. The generalization of the squared loss is the *Minkowski loss* defined as: $$ \begin{align} \mathbb{E}[\mathcal{L}] = \int\int (t - y(\textbf{x}))^q p(\textbf{x},t)d\textbf{x}dt \end{align} $$ Up to now we have only looked at linear functions of weights and inputs. In order to approximate more complex non-linear functions we can use *non-linear basis functions*. In this way the model still remains linear in the weights but it will be non linear in the input features. $$ \begin{align} y(\textbf{x}, \textbf{w}) = w_0 + \sum_{j=1}^{M-1}w_j\phi_j(\textbf{x}) = \textbf{w}^T \bf{\phi}(x) \end{align} $$ Thanks to $\bf{\phi}$ we transform the original input space into another one. By using nonlinear basis functions, we allow the function $y(\textbf{x}, \textbf{w})$ to be a nonlinear function of the input vector. In this way we can exploit also our domain knowledge by providing a specific transformation of the inputs. Some examples of basis functions are: * Polynomial * Gaussian * Sigmoidal * Fourier basis The pictures below show the Gaussian basis functions and the Sigmoid ones. <p align="center"> </p> <div class="alert alert-block alert-info"> <span style='color:DodgerBlue;font-weight:bold'>REGRESSION APPROACHES</span> <span style='font-style:italic;font-weight:bold'>Generative</span>: these are the models that explicitly model the distribution of the inputs as well as the outputs. Probabilistically speaking they model also $p(\textbf{x},t)$ <span style='font-style:italic;font-weight:bold'>Discriminative</span>: they directly model the posterior probability $p(t|\textbf{x})$. <span style='font-style:italic;font-weight:bold'>Direct</span>: they directly find a mapping function from each input to the output </span> </div> ## <span style='font-family:Marker Felt;font-weight:bold'>Minimizing Least Squares</span> --- Let's consider a data set of inputs $\textbf{X}=\{\textbf{x}_1,...,\textbf{x}_N\}$ with the associated target values $t_1,...,t_N$. The error function is defined as the *sum of squared estimate of errors (SSE)*: $$ \begin{align} SSE(\textbf{w}) = \mathcal{L}(\textbf{w}) = \frac{1}{2} \sum_{n=1}^N(y(\textbf{x}_n, \textbf{w}) - t_n)^2 \end{align} $$ The loss can also be written in terms of the $l_2$ norm of the residual errors, known as *residual sum of squares (RSS)*: $$ \begin{align} RSS(\textbf{w}) = \left\lVert \epsilon \right\rVert ^2_2 = \sum^N_{n=1} \epsilon_n^2 \end{align} $$ Note that if we have an high number $N$ of samples the approximation will be very good otherwise, if $N$ is small, the loss will be very noisy. This is because, without the knowledge of $p(\textbf x, t)$ we have to approximate it with a finite number of points and, higher is the number of points and better is the approximation. In matrix form the RSS becomes: $$ \begin{align} \mathcal{L}(\textbf{w}) = \frac{1}{2}(\textbf{t} - \bf{\Phi}\textbf{w})^T(\textbf{t} - \bf{\Phi}\textbf{w} \end{align} $$ where: $$ \begin{align} \bf{\Phi} = (\phi(\textbf{x}_1), ...,\phi(\textbf{x}_N))^T \end{align} $$ To obtain the minimum of the loss we calculate its the first and the second derivatives w.r.t. the weights: $$ \begin{align} \frac{\partial \mathcal{L}(\textbf{w})}{\partial \textbf{w}} = -\bf{\Phi}^T(\textbf{t} - \bf{\Phi}\textbf{w}) \end{align} $$ $$ \begin{align} \frac{\partial^2 \mathcal{L}(\textbf{w})}{\partial \textbf{w}\partial \textbf{w}} = \bf{\Phi}^T\bf{\Phi} \end{align} $$ Providing that the Gram matrix (or Gramian matrix, or *Gramian*) $\bf{\Phi}^T\bf{\Phi}$ is nonsingular, the solution of the *ordinary least squares (OLS)* is: $$ \begin{align} \hat{\textbf{w}}_{OLS} = (\bf{\Phi}^T\bf{\Phi})^{-1}\bf{\Phi}^T\textbf{t} \end{align} $$ This set of equations are known as *normal equations* for the least squares problem. The inversion of the Gram matrix can be performed with Singular Values Decomposition (SVD) at the complexity cost of $\mathcal{O}(NM^2 + M^3)$, where $M$ is the number of features. ### <span style='font-family:Marker Felt;font-weight:bold'>Sequential learning</span> Batch techniques can be computationally expensive when dealing with big data. In order to solve this problem we can rely on sequential algorithms, also known as *online algorithms*. This type of updates are also helpful for real-time applications where the data arrives in a continuous stream. Since the total loss can be expressed as the sum of the loss in each data point we can update the parameters with **stochastic gradient descent (SGD)** as follow: $$ \begin{align} \textbf{w}^{k+1} = \textbf{w}^{k} - \alpha^{k+1}\nabla\mathcal{L}(x_n) \end{align} $$ where k represents the iteration number and $\alpha$ is called the learning rate. The value of $\alpha$ needs to satisfy certain conditions for convergence: $$ \begin{align} \sum^{\infty}_{k=0}\alpha^k = + \infty \end{align} $$ $$ \begin{align} \sum^{\infty}_{k=0}(\alpha^k)^2 < + \infty \end{align} $$ ### <span style='font-family:Marker Felt;font-weight:bold'>Geometric interpretation</span> Let's consider an $N$-dimensional space which axes are given by the $t_n$. Each basis function can also be represented as a vector in the same space. Define $\varphi_j$ the $j^{th}$ column of $\Phi$. If the number $M$ of basis functions is smaller than the number $N$ of data points, then the $\varphi_j$ will span just a linear subspace of dimensionality $M$. Since $\textbf{y}$ is defined as a linear combination of the vectors $\varphi_j$ it lives in the same space of dimension $M$. The least squares solution for $\textbf{w}$ corresponds to the solution $\hat{\textbf t}$ ($\textbf{y}$ in the picture below) that is closest to $\textbf{t}$ in the subspace. $$ \begin{align} \hat{\textbf{t}} = \bf{\Phi}\hat{\textbf{w}} = \bf{\Phi}(\bf{\Phi}^T\bf{\Phi})^{-1}\bf{\Phi}^T \textbf{t} \end{align} $$ The solution corresponds to the projection of $\textbf{t}$ in the subspace of dimensionality $M$ through a projection matrix called the *hat matrix*: $$ \begin{align} H = \bf{\Phi}(\bf{\Phi}^T\bf{\Phi})^{-1}\bf{\Phi}^T \end{align} $$ <p align="center"> </p> ### <span style='font-family:Marker Felt;font-weight:bold'>Maximum likelihood</span> Let's consider the relationship between the least squares approach and the maximum likelihood approach. We assume that the target $t$ is in a deterministic relationship with $\textbf{x}$ and $\textbf{w}$ contaminated with additive noise: $$ \begin{align} t = y(\textbf{x},\textbf{w}) + \epsilon \end{align} $$ We assume a Gaussian model for the noise function $\epsilon \sim \mathcal{N}(0, \sigma^2) = \mathcal{N}(0, \beta^{-1}) $ where $\sigma^2$ is the variance and $\beta$ is the precision. Given N samples independent and identically distributed (iid) we can write the *likelihood function* <a name="likelihood"></a>: $$ \begin{align} p(\textbf{t}|\textbf{X},\textbf{w},\sigma^2) = \prod^N_{n=1}\mathcal{N}(t_n|\textbf{w}^T\phi(\textbf{x}_n), \sigma^2) \end{align} $$ <div class="alert alert-block alert-warning"> <b>NOTE:</b> $$ \begin{align} \mathcal{N}(x| \mu, \sigma^2) = \frac{1}{(2 \pi \sigma)^{1/2}} \exp\Big\{-\frac{1}{2\sigma^2}(x- \mu)^2\Big\} \end{align} $$ </div> Taking the logarithm of the likelihood function: $$ \begin{align} \ell(\textbf{w}) = \ln p(\textbf{t}|\textbf{X},\textbf{w},\sigma^2) = \sum^N_{n=1}\ln p(t_n|\textbf{w},\textbf{x}_n, \sigma^2) \\ =- \frac{N}{2}\log (2 \pi \sigma^2) -\frac{1}{2 \sigma^2} RSS(\textbf{w}) \end{align} $$ To find the maximum likelihood we just have to set to zero the derivative of the likelihood w.r.t. the weights: $$ \begin{align} \nabla \ell(\textbf{w}) = \sum^N_{n=1}t_n \phi(\textbf{x}_n)^T - \textbf{w}^T \sum^N_{n=1} \phi(\textbf{x}_n) \phi(\textbf{x}_n)^T = 0 \end{align} $$ from which we obtain the *maximum likelihood* of the weights: $$ \begin{align} \textbf{w}_{ML} = (\bf{\Phi}^T \bf{\Phi})^{-1} \bf{\Phi}^T \textbf{t} \end{align} $$ Notice that the maximum likelihood values of the parameters don't depend on the variance of the additive noise. Assuming that the observation $t_i$ are uncorrelated and with constant variance $\sigma^2$ and that the $x_i$ are non random, the variance of the least squares estimate is: $$ \begin{align} Var(\hat{ \textbf{w} }_{OLS}) = (\bf{\Phi}^T \bf{\Phi})^{-1} \sigma^2 \end{align} $$ We can notice that the value of the variance decreases as the eigenvalues of $(\bf{\Phi}^T \bf{\Phi})$ increase. The inverse produces low values when the eigenvalues of $\bf{\Phi}^T \bf{\Phi} $ are high so when the features are linearly independent and the number of samples is high. <div class="alert alert-block alert-warning"> <b>NOTE:</b> $$ \begin{align} A = diag(\lambda_i) \rightarrow A^{-1} = diag(\lambda_i^{-1}) \end{align} $$ </div> Usually the variance is estimated as: $$ \begin{align} \hat{\sigma}^2 = \frac{1}{N-M-1} \sum^N_{n=1}(t_n - \hat{\textbf{w}}^T \phi(\textbf{x}_n))^2 \end{align} $$ So, we obtain that: $$ \begin{align} \hat{\textbf{w}} \sim \mathcal{N}(\textbf{w}, (\bf{\Phi}^T \bf{\Phi})^{-1} \sigma^2) \end{align} $$ <div class="alert alert-block alert-info"> <span style='color:DodgerBlue;font-weight:bold'>GAUSS-MARKOV THEOREM</span> *The least squares estimate of $\textbf{w}$ has the smallest variance among all linear unbiased estimates.* </div> This theorem tells us that the least squares estimator has the lowest Mean Squared Error (MSE) among all the linear estimators with no bias. However, there may exists a biased estimator with smaller MSE. *An unbiased estimator is not always the best choice.* ### <span style='font-family:Marker Felt;font-weight:bold'>Multiple outputs</span> Let's now consider the case of multiple outputs. In this case we have the possibility to use different sets of basis functions for each output, obtaining different and independent regression problems. However, the most common approach is to use the same set of basis functions to model all the components of the target vector. $$ \begin{align} \textbf{y(x,w)} = \textbf{W}^T\phi(\textbf{x}) \end{align} $$ where $\textbf{y}$ is a $K$-dimensional column vector, $\textbf{W}$ is an $M \times K$ matrix and $\phi(\textbf{x})$ is an $M$-dimensional column vector. With the same procedure seen before, the maximum likelihood approach, we obtain the values of the parameters: $$ \begin{align} \hat{\textbf{W}}_{ML} = (\bf{\Phi}^T \bf{\Phi})^{-1} \bf{\Phi}^T \textbf{T} \end{align} $$ For each output $t_k$ we have: $$ \begin{align} \hat{\textbf{w}}_{k} = (\bf{\Phi}^T \bf{\Phi})^{-1} \bf{\Phi}^T \textbf{t}_k = \bf{\Phi}^{\dagger} \textbf{t}_k \end{align} $$ where $\bf{\Phi}^{\dagger}$ is called the *Moore-Penrose pseudo-inverse* and needs to be computed only once. ## <span style='font-family:Marker Felt;font-weight:bold'>Regularization</span> --- In order to have a clear idea of what is and why we need regularization the best way is considering an example: the polynomial curve fitting. Let's consider the function $sin(2 \pi x)$ and draw 10 samples of this function with random noise included. Now we want to fit these points with a polynomial function of the form: $$y(x, \textbf{w}) = w_0 + w_1 x + ... + w_M x^M = \sum_{j=0}^M w_j x^j $$ $M$ represents the order of the polynomial. For various values of $M$ we obtain different fitting of the data points: <p align="center"> </p> The problem is choosing the value of M: this is a very important concept called **model selection**. With a low order polynomial what we obtain is an **underfitting** of the data while, with an high order polynomial, we obtain an **overfitting**. In this last case the model starts to learn the *idiosyncratic* noise of the data set at hand. * <span style='color:SlateBlue;font-style:italic;font-weight:bold'> Overfitting: </span>the model is too strong and learn the position of the data points inside the training set without discovering the underlying function. * <span style='color:SlateBlue;font-style:italic;font-weight:bold'> Underfitting: </span>the model is too weak and is not able to approximate well the points inside the training set. Since the objective of regression, and in general of ML, is the generalization to unseen samples we need a model in the middle of the two extremes. In order to evaluate the overfitting we generate another set composed by $100$ samples, taken from the same distribution of the $10$ samples generate before. To have some quantitative insight into the generalization performance we evaluate the loss both on the initial data set, called *training set*, and also on the new one, called *test set*. In this case we evaluate the Root Mean Square (RMS) error since it allows to account for the difference in size of the two bunch of points. $$ \begin{align} E_{RMS} = \sqrt{\frac{2 \cdot RSS}{N}} \end{align} $$ <p align="center"> </p> The *test set error* is a measure of how well the model will behave on unseen samples. We can see from the above pictures that for $M=9$ the train error goes to zero but the error on the test set increases considerably. <p align="center"> </p> This is because as $M$ increases the magnitude of the coefficients gets larger, producing wiggling curves. Wiggling curves can be perfectly tuned to pass through all the points of the training set, as in the case of $M=9$, but that's not we want. We know that the points used to optimize the coefficient derive from a function soiled with noise so, we prefer a function that does not interpolate precisely the training points encouraging a smoother interpolation. Below are reported the values of the parameters for various order of the polynomial model. <p align="center"> </p> One possibility to overcome overfitting problems is to introduce a regularization term inside the loss function which prevents the coefficients to reach too high values. ### <span style='font-family:Marker Felt;font-weight:bold'>Ridge regression</span> In ridge regression the loss is modified as follows: $$ \begin{align} \mathcal{L}(\textbf{w}) &= \frac{1}{2} \sum_{n=1}^N(y(\textbf{x}_n, \textbf{w}) - t_n)^2 + \frac{\lambda}{2} \left\lVert \textbf{w} \right\rVert_2^2 = \\ &= \mathcal{L}_D(\textbf{w}) + \lambda \mathcal{L}_W(\textbf{w}) \end{align} $$ where the first term is nothing but the standard RSS while the second term affects the complexity of the model. In ML this choice of regularizer is known as *weights decay*. In statistics this is an example of *parameters shrinkage* since it shrinks the parameter values toward zero. We see that the magnitude of the weights enter directly in the loss function, since we want to minimize the loss we need to converge to a solution with small values of $\textbf w$. The advantage of this technique is that the loss function remains quadratic on the weights and a closed form solution is possible: $$ \begin{align} \textbf w = (\lambda \textbf I + \bf \Phi ^T \bf \Phi)^{-1} \bf \Phi^T \textbf t \end{align} $$ The effect of $\lambda$ is to virtually reduce the hypothesis space. In this case the matrix is always invertible if the regularization term is not null and it gives a lowerbound on the eigenvalues. We can have two cases: * $\lambda=0$: we have the OLS which is unbiased but has high variance * $\lambda \ne 0$: we introduce a bias but the variance is reduced It is important to remark that the bias is necessary when we don't have enough data in order to prevent from overfitting. We can see from the pictures below that as $\lambda$ increases the shape of the approximating function becomes smoother. <p align="center"> </p> We can quantify the effect of the regularization by looking at the loss on the train and on the test set. <p align="center"> </p> ### <span style='font-family:Marker Felt;font-weight:bold'>Lasso regression</span> Lasso is another popular technique in which the loss is modified as: $$ \begin{align} \mathcal{L}(\textbf{w}) = \frac{1}{2} \sum_{n=1}^N(y(\textbf{x}_n, \textbf{w}) - t_n)^2 + \frac{\lambda}{2} \left\lVert \textbf{w} \right\rVert_1 \end{align} $$ The important effect of Lasso is that if $\lambda$ is sufficiently large some parameters goes to zero producing a sparse model (easier to interpret) and can be used also for features selection. We can see this by thinking that the Lasso method can be seen as an unregularized minimization problem subjected to the constraint: $$ \begin{align} \sum^M_{j=1} \left\lVert w_j \right\rVert < \eta \end{align} $$ The origin of the sparsity of Lasso can be better understand by looking at the following pictures <p align="center"> </p> The red circles are the isolines of the unregularized loss function while the light blue parts are the regions of the weights-space that satisfy the constraints. In the Ridge regression technique the $l_2$ norm squared distance produces an hyper-sphere region (that is a circle in the 2D space) centered in the origin. Reducing $\lambda$ the circle radius reduces as well. In the Lasso technique the constraint is a polytope (that is a rhomboid in the 2D space). Reducing $\lambda$ the constraint space will reduce as well, but differently from Ridge Regression, $w^*$ can be located exactly on one axis (so that we will have a weight equal to 0). Regularization allows to train complex models also with few data without obtaining severe overfitting. The problem of determining the maximum number of the polynomial degree is translated into determining the best value of the regularization parameter. ## <span style='font-family:Marker Felt;font-weight:bold'>Bayesian linear regression</span> --- What we have seen so far was the frequentist approach to linear regression. We have data and we want to find the parameters that better explain the data. In the Bayesian approach the perspective changes. Here the parameters are **uncertain** and they become random variables. We can specify our knowledge on the parameters by specifying a prior distribution based on what we know about the problem. We start from a **prior** distribution, we observe data and this data will change our prior distribution. Combining prior and data we obtain a new probability over parameters called **posterior**. We change our knowledge by observing the real world. The posterior can be used to make predictions and, differently from the frequentist approach where the output is a single value for each weights, here we obtain a probability distribution over all the parameters. In this case we can account for uncertainties and the presence of the uncertainties helps to make decisions about the results. The posterior can be found by combining the prior with the [likelihood](#likelihood) of the parameters (given data) through the **Bayes' Rule**: $$ \begin{align} p(parameters|data) = \frac{p(data|parameters)p(parameters)}{p(data)} \end{align} $$ $$ \begin{align} p(parameters|data) = \frac{p(data|parameters)p(parameters)}{p(data)} \end{align} $$ $$ \begin{align} posterior = \frac{likelihood\times prior}{marginal} \end{align} $$ $$ \begin{align} p(\textbf w | D) = \frac{p( \mathcal D | \textbf w)p(\textbf w)}{p(\mathcal D)} \end{align} $$ where $\textbf w$ are the weights of the model and $ \mathcal D$ represents the observed data. If we don't have a priori knowledge about parameters distribution we can provide an uninformative prior. This prior is nothing but a uniform probability over all the parameters space. Since the denominator is just a normalizing term we can write that the posterior is proportional to product between the likelihood and the prior: $$ \begin{align} posterior \propto likelihood \times prior \end{align} $$ If we want to have a single output from our Bayesian model we can take the most probable value of $\textbf w$ given the data, i.e. the mode of the posterior. This approach is called **maximum a posteriori (MAP)** estimate. The Bayesian approach is another method that allows to avoid overfitting since the prior on the parameters acts as a regularizer. The stronger the prior, the less chance the parameters have of moving in the design space. We can imagine the prior like a spring centered in the mean of the distribution with a stiffness constant $k$ proportional to the variance. The drawback is that if our prior is wrong we add an high bias to the model. Assuming a multivariate Gaussian prior distribution $ p(\textbf w) = \mathcal{N}( \textbf w | \textbf w_0, \textbf S_0)$ we are specifying that from what we know the mean of the parameters is given by $\textbf w_0$ with a covariance matrix given by $ \textbf S_0$. If also the likelihood is Gaussian then the posterior will be Gaussian too (this is true only for Gaussian probability distributions). $$ \begin{align} p(\textbf w | \textbf t , \bf \Phi, \sigma^2) \propto \mathcal N (\textbf w | \textbf w_0, \textbf S_0) \mathcal N (\textbf t| \bf \Phi \textbf w, \sigma^2 \textbf I_N) = \mathcal N (\textbf w | \textbf w_N, \textbf S_N) \end{align} $$ $$ \begin{align} \textbf w_N = \textbf S_N \Big( \textbf S_0^{-1} \textbf w_0 + \frac{\bf \Phi^T \textbf t}{\sigma^2} \Big) \end{align} $$ $$ \begin{align} \textbf S_N^{-1} = \textbf S_0^{-1} + \frac{\bf \Phi^T \bf \Phi}{\sigma^2} \end{align} $$ Let's analyze the results. If we consider the uninformative prior, so $ \textbf S_0 \rightarrow \infty $, and substitute it into the equations before we obtain that the MAP is equal to the maximum likelihood solution of the previous sections. Since the MAP of a Gaussian is equal to the mean: $$ \begin{align} \lim_{\textbf S_0 \to \infty} \textbf w_{MAP} = (\bf \Phi^T \bf \Phi)^{-1} \bf \Phi^T \textbf t = \textbf w_{ML} \end{align} $$ If then someone will provide us other data, as in an online sequential case, the just computed posterior will act as a prior for the new model. What if the mean is $0$? Consider a case in which the prior is defined by a single parameter $\tau^2$: $$ \begin{align} p(\textbf w| \tau^2) = \mathcal N (\textbf w | \textbf 0, \tau^2 \textbf I) \end{align} $$ we have that the corresponding posterior will have mean and covariance: $$ \begin{align} \textbf m_N = \frac{\textbf S_N \bf \Phi^T \textbf t}{\sigma^2} \end{align} $$ $$ \begin{align} \textbf S_N^{-1} = \tau^{-2} \textbf I + \sigma^{-2} \bf \Phi^T \bf \Phi \end{align} $$ from which we can compute the log of the posterior: $$ \begin{align} \ln p(\textbf w |\textbf t) = -\frac{1}{2 \sigma^2} \sum_{n=1}^N(t_n - \textbf w^T \phi(\textbf x_n))^2 - \frac{1}{2 \tau^2} \left\lVert \textbf w \right\rVert_2^2 \end{align} $$ We obtain a result very similar to the case of linear regression with regularization. Also here we are searching for parameters that are around zero and the role of $\lambda$ is played by the covariance matrix of the prior. The maximization of the log of the posterior distribution w.r.t $\textbf w$ is therefore equivalent to the minimization of the sum-of-squares-error with the addition of a quadratic regularization term with $\lambda = \frac{\sigma^2}{\tau^2}$. Let's consider the example of a single input variable $x$ and a single target variable $t$ given by a linear model of the form $ y(x, \textbf w) = w_0 + w_1 x$. We can generate synthetic data from the function $ y(x, \textbf a) = a_0 + a_1 x$ with for the example $a_0 = -0.3$ and $a_1 = 0.5$ following three steps: 1. Draw $x_n$ from the uniform distribution $U(x|-1,1)$ 2. Evaluate $f(x_n, \textbf a)$ 3. Add Gaussian noise to obtain $y(x_n, \textbf a)$ At this point our goal is to recover $a_0$ and $a_1$ from the data and we will do that following a Bayesian approach. The first line of the figure below represents the situation before data are obtained. In the central column is plotted the prior over the parameters while in the right column some functions drawn from the prior. In the second line we see the situation after having observed a single point, the blue dot in the right column. Since now we have data we can plot on the left column the likelihood. By multiplying this likelihood with the prior of the previous line, and normalizing, we obtain the posterior distribution in the central column of the second raw. We go on in the same way for all the data. This is also an example of sequential learning. <p align="center"> </p> We can see in the fourth row that as the number of samples increases, the posterior becomes more narrow and in the limit of an infinite number of points it would be a delta function centered on the true value of the parameters. By taking only the MAP, we are throwing away all the informations about the uncertainty on the weights which are the the very advantage offered by a Bayesian approach. It is better to consider the **posterior predictive distribution** $$ \begin{align} p(t| \textbf x, \mathcal D, \sigma^2) = \int \mathcal N(t| \textbf w^T \phi(\textbf x), \sigma^2) \mathcal N (\textbf w| \textbf w_N, \textbf S_N) d\textbf w \\ = \mathcal N(t| \textbf w_N^T \phi(\textbf x), \sigma^2_N(\textbf x)) \end{align} $$ $$ \begin{align} \sigma^2_N(\textbf x) = \sigma^2 + \phi(\textbf x)^T \textbf S_N \phi(\textbf x) \end{align} $$ The variance term is composed by the irreducible noise inside the data and a term related to the uncertainty about the parameters. The first term is fixed and we cannot act on it but, as $N \rightarrow \infty$ the second term goes to zero. By considering again the example with the sinusoidal function we can illustrate the predictive distribution for Bayesian linear regression. For each plot on the left column below, the solid red curve represents the mean of the Gaussian predictive distribution and the shaded region spans one standard deviation either side of the mean. On the right column we have functions drawn from the posterior distribution. As we can see increasing the number of samples, the shaded region decreases and the functions drawn from the posterior become more compact. The shaded region is also narrow near the blue dots since they are observed point and, the only uncertainty we have is the noise on the data. <p align="center"> </p> <p align="center"> </p> <p align="center"> </p> <p align="center"> </p> When we face a Bayesian linear model we have two challenges: 1. Specify a suitable model, able to describe well the likelihood 2. Provide a suitable prior In the frequentist approach we just have to face the first problem. The prior is what makes the Bayesian approach strong and at the same time risky. Another aspect related to the Bayesian treatment is associated to the computational issue of the posterior distribution. We have a closed form solution just with Gaussian distributions and so with unimodal problems. When we need to apply other distributions we lose the closed form solution and we need to rely on: * Analytical integration * Gaussian (Laplace) approximation * Monte Carlo integration * Variational approximation So, what we have to remember from this last section? <p align="center"> </p> <span style='font-family:Marker Felt;font-size:20pt;color:DarkCyan;font-weight:bold'>References:</span> 1. *Restelli M., Machine Learning - course slides* 2. *Bishop C.M., "Pattern Recognition and Machine Learning", chapters: 1.1, 1.2, 1.3, 3.1, 3.3*
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.data.list.lemmas import Mathlib.Lean3Lib.init.wf universes u_1 namespace Mathlib namespace list -- Note: we can't use the equation compiler here because -- init.meta.well_founded_tactics uses this file def qsort.F {α : Type u_1} (lt : α → α → Bool) (x : List α) : ((y : List α) → length y < length x → List α) → List α := sorry /- This is based on the minimalist Haskell "quicksort". Remark: this is *not* really quicksort since it doesn't partition the elements in-place -/ def qsort {α : Type u_1} (lt : α → α → Bool) : List α → List α := well_founded.fix sorry sorry @[simp] theorem qsort_nil {α : Type u_1} (lt : α → α → Bool) : qsort lt [] = [] := sorry @[simp] theorem qsort_cons {α : Type u_1} (lt : α → α → Bool) (h : α) (t : List α) : qsort lt (h :: t) = (fun (_a : List α × List α) => prod.cases_on _a fun (fst snd : List α) => idRhs (List α) (qsort lt snd ++ h :: qsort lt fst)) (partition (fun (x : α) => lt h x = tt) t) := sorry
State Before: α : Type u_2 β : Type u_1 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f g : β → α hf : UniformContinuous f hg : UniformContinuous g ⊢ UniformContinuous fun x => f x * g x State After: α : Type u_2 β : Type u_1 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f g : β → α hf : UniformContinuous f hg : UniformContinuous g this : UniformContinuous fun x => f x / (g x)⁻¹ ⊢ UniformContinuous fun x => f x * g x Tactic: have : UniformContinuous fun x => f x / (g x)⁻¹ := hf.div hg.inv State Before: α : Type u_2 β : Type u_1 inst✝³ : UniformSpace α inst✝² : Group α inst✝¹ : UniformGroup α inst✝ : UniformSpace β f g : β → α hf : UniformContinuous f hg : UniformContinuous g this : UniformContinuous fun x => f x / (g x)⁻¹ ⊢ UniformContinuous fun x => f x * g x State After: no goals Tactic: simp_all
(* Title: HOL/Auth/n_german_lemma_inv__23_on_rules.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_german Protocol Case Study*} theory n_german_lemma_inv__23_on_rules imports n_german_lemma_on_inv__23 begin section{*All lemmas on causal relation between inv__23*} lemma lemma_inv__23_on_rules: assumes b1: "r \<in> rules N" and b2: "(\<exists> p__Inv1 p__Inv2. p__Inv1\<le>N\<and>p__Inv2\<le>N\<and>p__Inv1~=p__Inv2\<and>f=inv__23 p__Inv1 p__Inv2)" shows "invHoldForRule s f r (invariants N)" proof - have c1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" apply (cut_tac b1, auto) done moreover { assume d1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_StoreVsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqSVsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__0Vsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__1Vsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqSVsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqEVsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__0Vsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__1Vsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInvAckVsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvInvAckVsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntSVsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntEVsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntSVsinv__23) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntEVsinv__23) done } ultimately show "invHoldForRule s f r (invariants N)" by satx qed end
If $p$ is a prime number and $m$ is a positive integer, then there exist a positive integer $k$ and a positive integer $n$ that is not divisible by $p$ such that $m = n \cdot p^k$.
[STATEMENT] lemma strictly_precise: "strictly_exact P \<Longrightarrow> precise P" [PROOF STATE] proof (prove) goal (1 subgoal): 1. strictly_exact P \<Longrightarrow> precise P [PROOF STEP] by (metis precise_def strictly_exactD)
module SlurpTypes import ...PatternStructure.Trees: SlurpHead export SlurpHead, LazySlurp, GreedySlurp, GenericGreedySlurp, GenericLazySlurp, SimpleLastSlurp, SimpleGreedySlurpUntil, SimpleLazySlurpUntil, SimpleSlurp abstract type LazySlurp <: SlurpHead end abstract type GreedySlurp <: SlurpHead end struct GenericLazySlurp <: LazySlurp end struct GenericGreedySlurp <: GreedySlurp end #----------------------------------------------------------------------------------- # Simple: slurp is composed of one single binding name, e.g. *{a} #----------------------------------------------------------------------------------- abstract type SimpleGreedySlurp <: GreedySlurp end abstract type SimpleLazySlurp <: LazySlurp end struct SimpleLastSlurp <: SimpleGreedySlurp post::Int end struct SimpleGreedySlurpUntil <: SimpleGreedySlurp until::Vector index::Int end struct SimpleLazySlurpUntil <: SimpleLazySlurp until::Vector index::Int end const SimpleSlurp = Union{SimpleGreedySlurp, SimpleLazySlurp} end
(* Title: HOL/Auth/n_german_lemma_inv__7_on_rules.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_german Protocol Case Study*} theory n_german_lemma_inv__7_on_rules imports n_german_lemma_on_inv__7 begin section{*All lemmas on causal relation between inv__7*} lemma lemma_inv__7_on_rules: assumes b1: "r \<in> rules N" and b2: "(\<exists> p__Inv2. p__Inv2\<le>N\<and>f=inv__7 p__Inv2)" shows "invHoldForRule s f r (invariants N)" proof - have c1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" apply (cut_tac b1, auto) done moreover { assume d1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_StoreVsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqSVsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__0Vsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendReqE__part__1Vsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqSVsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqEVsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__0Vsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__1Vsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInvAckVsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvInvAckVsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntSVsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntEVsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntSVsinv__7) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntEVsinv__7) done } ultimately show "invHoldForRule s f r (invariants N)" by satx qed end
(* Title: HOL/Auth/n_germanSimp_lemma_inv__42_on_rules.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_germanSimp Protocol Case Study*} theory n_germanSimp_lemma_inv__42_on_rules imports n_germanSimp_lemma_on_inv__42 begin section{*All lemmas on causal relation between inv__42*} lemma lemma_inv__42_on_rules: assumes b1: "r \<in> rules N" and b2: "(\<exists> p__Inv3 p__Inv4. p__Inv3\<le>N\<and>p__Inv4\<le>N\<and>p__Inv3~=p__Inv4\<and>f=inv__42 p__Inv3 p__Inv4)" shows "invHoldForRule s f r (invariants N)" proof - have c1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__0 N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__1 N i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" apply (cut_tac b1, auto) done moreover { assume d1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_StoreVsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqSVsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__0 N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqE__part__0Vsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__1 N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqE__part__1Vsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__0Vsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__1Vsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInvAckVsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvInvAckVsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntSVsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntEVsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntSVsinv__42) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntEVsinv__42) done } ultimately show "invHoldForRule s f r (invariants N)" by satx qed end
(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Relational specification of expression simplification. *) Require Import Coqlib. Require Import Errors. Require Import Maps. Require Import Integers. Require Import Floats. Require Import Values. Require Import Memory. Require Import AST. Require Import Csyntax. Require Cstrategy. Require Import Clight. Require Import SimplExpr. Section SPEC. Local Open Scope gensym_monad_scope. (** * Relational specification of the translation. *) (** ** Translation of expressions *) (** This specification covers: - all cases of [transl_lvalue] and [transl_rvalue]; - two additional cases for [C.Eparen], so that reductions of [C.Econdition] expressions are properly tracked; - three additional cases allowing [C.Eval v] C expressions to match any Clight expression [a] that evaluates to [v] in any environment matching the given temporary environment [le]. *) Definition final (dst: destination) (a: expr) : list statement := match dst with | For_val => nil | For_effects => nil | For_test tyl s1 s2 => makeif (fold_left Ecast tyl a) s1 s2 :: nil end. Inductive tr_rvalof: type -> expr -> list statement -> expr -> list ident -> Prop := | tr_rvalof_nonvol: forall ty a tmp, type_is_volatile ty = false -> tr_rvalof ty a nil a tmp | tr_rvalof_vol: forall ty a t tmp, type_is_volatile ty = true -> In t tmp -> tr_rvalof ty a (Svolread t a :: nil) (Etempvar t ty) tmp. Inductive tr_expr: temp_env -> destination -> C.expr -> list statement -> expr -> list ident -> Prop := | tr_var: forall le dst id ty tmp, tr_expr le dst (C.Evar id ty) (final dst (Evar id ty)) (Evar id ty) tmp | tr_deref: forall le dst e1 ty sl1 a1 tmp, tr_expr le For_val e1 sl1 a1 tmp -> tr_expr le dst (C.Ederef e1 ty) (sl1 ++ final dst (Ederef a1 ty)) (Ederef a1 ty) tmp | tr_field: forall le dst e1 f ty sl1 a1 tmp, tr_expr le For_val e1 sl1 a1 tmp -> tr_expr le dst (C.Efield e1 f ty) (sl1 ++ final dst (Efield a1 f ty)) (Efield a1 f ty) tmp | tr_val_effect: forall le v ty any tmp, tr_expr le For_effects (C.Eval v ty) nil any tmp | tr_val_value: forall le v ty a tmp, typeof a = ty -> (forall tge e le' m, (forall id, In id tmp -> le'!id = le!id) -> eval_expr tge e le' m a v) -> tr_expr le For_val (C.Eval v ty) nil a tmp | tr_val_test: forall le tyl s1 s2 v ty a any tmp, typeof a = ty -> (forall tge e le' m, (forall id, In id tmp -> le'!id = le!id) -> eval_expr tge e le' m a v) -> tr_expr le (For_test tyl s1 s2) (C.Eval v ty) (makeif (fold_left Ecast tyl a) s1 s2 :: nil) any tmp | tr_sizeof: forall le dst ty' ty tmp, tr_expr le dst (C.Esizeof ty' ty) (final dst (Esizeof ty' ty)) (Esizeof ty' ty) tmp | tr_alignof: forall le dst ty' ty tmp, tr_expr le dst (C.Ealignof ty' ty) (final dst (Ealignof ty' ty)) (Ealignof ty' ty) tmp | tr_valof: forall le dst e1 ty tmp sl1 a1 tmp1 sl2 a2 tmp2, tr_expr le For_val e1 sl1 a1 tmp1 -> tr_rvalof (C.typeof e1) a1 sl2 a2 tmp2 -> list_disjoint tmp1 tmp2 -> incl tmp1 tmp -> incl tmp2 tmp -> tr_expr le dst (C.Evalof e1 ty) (sl1 ++ sl2 ++ final dst a2) a2 tmp | tr_addrof: forall le dst e1 ty tmp sl1 a1, tr_expr le For_val e1 sl1 a1 tmp -> tr_expr le dst (C.Eaddrof e1 ty) (sl1 ++ final dst (Eaddrof a1 ty)) (Eaddrof a1 ty) tmp | tr_unop: forall le dst op e1 ty tmp sl1 a1, tr_expr le For_val e1 sl1 a1 tmp -> tr_expr le dst (C.Eunop op e1 ty) (sl1 ++ final dst (Eunop op a1 ty)) (Eunop op a1 ty) tmp | tr_binop: forall le dst op e1 e2 ty sl1 a1 tmp1 sl2 a2 tmp2 tmp, tr_expr le For_val e1 sl1 a1 tmp1 -> tr_expr le For_val e2 sl2 a2 tmp2 -> list_disjoint tmp1 tmp2 -> incl tmp1 tmp -> incl tmp2 tmp -> tr_expr le dst (C.Ebinop op e1 e2 ty) (sl1 ++ sl2 ++ final dst (Ebinop op a1 a2 ty)) (Ebinop op a1 a2 ty) tmp | tr_cast: forall le dst e1 ty sl1 a1 tmp, tr_expr le For_val e1 sl1 a1 tmp -> tr_expr le dst (C.Ecast e1 ty) (sl1 ++ final dst (Ecast a1 ty)) (Ecast a1 ty) tmp | tr_condition_simple: forall le dst e1 e2 e3 ty sl1 a1 tmp1 sl2 a2 tmp2 sl3 a3 tmp3 tmp, Cstrategy.simple e2 = true -> Cstrategy.simple e3 = true -> tr_expr le For_val e1 sl1 a1 tmp1 -> tr_expr le For_val e2 sl2 a2 tmp2 -> tr_expr le For_val e3 sl3 a3 tmp3 -> list_disjoint tmp1 tmp2 -> list_disjoint tmp1 tmp3 -> incl tmp1 tmp -> incl tmp2 tmp -> incl tmp3 tmp -> tr_expr le dst (C.Econdition e1 e2 e3 ty) (sl1 ++ final dst (Econdition a1 a2 a3 ty)) (Econdition a1 a2 a3 ty) tmp | tr_condition_val: forall le e1 e2 e3 ty sl1 a1 tmp1 sl2 a2 tmp2 sl3 a3 tmp3 t tmp, Cstrategy.simple e2 = false \/ Cstrategy.simple e3 = false -> tr_expr le For_val e1 sl1 a1 tmp1 -> tr_expr le For_val e2 sl2 a2 tmp2 -> tr_expr le For_val e3 sl3 a3 tmp3 -> list_disjoint tmp1 tmp2 -> list_disjoint tmp1 tmp3 -> incl tmp1 tmp -> incl tmp2 tmp -> incl tmp3 tmp -> In t tmp -> ~In t tmp1 -> tr_expr le For_val (C.Econdition e1 e2 e3 ty) (sl1 ++ makeif a1 (Ssequence (makeseq sl2) (Sset t (Ecast a2 ty))) (Ssequence (makeseq sl3) (Sset t (Ecast a3 ty))) :: nil) (Etempvar t ty) tmp | tr_condition_effects: forall le dst e1 e2 e3 ty sl1 a1 tmp1 sl2 a2 tmp2 sl3 a3 tmp3 any tmp, Cstrategy.simple e2 = false \/ Cstrategy.simple e3 = false -> dst <> For_val -> tr_expr le For_val e1 sl1 a1 tmp1 -> tr_expr le (cast_destination ty dst) e2 sl2 a2 tmp2 -> tr_expr le (cast_destination ty dst) e3 sl3 a3 tmp3 -> list_disjoint tmp1 tmp2 -> list_disjoint tmp1 tmp3 -> incl tmp1 tmp -> incl tmp2 tmp -> incl tmp3 tmp -> tr_expr le dst (C.Econdition e1 e2 e3 ty) (sl1 ++ makeif a1 (makeseq sl2) (makeseq sl3) :: nil) any tmp | tr_assign_effects: forall le e1 e2 ty sl1 a1 tmp1 sl2 a2 tmp2 any tmp, tr_expr le For_val e1 sl1 a1 tmp1 -> tr_expr le For_val e2 sl2 a2 tmp2 -> list_disjoint tmp1 tmp2 -> incl tmp1 tmp -> incl tmp2 tmp -> tr_expr le For_effects (C.Eassign e1 e2 ty) (sl1 ++ sl2 ++ Sassign a1 a2 :: nil) any tmp | tr_assign_val: forall le dst e1 e2 ty sl1 a1 tmp1 sl2 a2 tmp2 t tmp ty1 ty2, tr_expr le For_val e1 sl1 a1 tmp1 -> tr_expr le For_val e2 sl2 a2 tmp2 -> incl tmp1 tmp -> incl tmp2 tmp -> list_disjoint tmp1 tmp2 -> In t tmp -> ~In t tmp1 -> ~In t tmp2 -> ty1 = C.typeof e1 -> ty2 = C.typeof e2 -> tr_expr le dst (C.Eassign e1 e2 ty) (sl1 ++ sl2 ++ Sset t a2 :: Sassign a1 (Etempvar t ty2) :: final dst (Ecast (Etempvar t ty2) ty1)) (Ecast (Etempvar t ty2) ty1) tmp | tr_assignop_effects: forall le op e1 e2 tyres ty ty1 sl1 a1 tmp1 sl2 a2 tmp2 sl3 a3 tmp3 any tmp, tr_expr le For_val e1 sl1 a1 tmp1 -> tr_expr le For_val e2 sl2 a2 tmp2 -> ty1 = C.typeof e1 -> tr_rvalof ty1 a1 sl3 a3 tmp3 -> list_disjoint tmp1 tmp2 -> list_disjoint tmp1 tmp3 -> list_disjoint tmp2 tmp3 -> incl tmp1 tmp -> incl tmp2 tmp -> incl tmp3 tmp -> tr_expr le For_effects (C.Eassignop op e1 e2 tyres ty) (sl1 ++ sl2 ++ sl3 ++ Sassign a1 (Ebinop op a3 a2 tyres) :: nil) any tmp | tr_assignop_val: forall le dst op e1 e2 tyres ty sl1 a1 tmp1 sl2 a2 tmp2 sl3 a3 tmp3 t tmp ty1, tr_expr le For_val e1 sl1 a1 tmp1 -> tr_expr le For_val e2 sl2 a2 tmp2 -> tr_rvalof ty1 a1 sl3 a3 tmp3 -> list_disjoint tmp1 tmp2 -> list_disjoint tmp1 tmp3 -> list_disjoint tmp2 tmp3 -> incl tmp1 tmp -> incl tmp2 tmp -> incl tmp3 tmp -> In t tmp -> ~In t tmp1 -> ~In t tmp2 -> ~In t tmp3 -> ty1 = C.typeof e1 -> tr_expr le dst (C.Eassignop op e1 e2 tyres ty) (sl1 ++ sl2 ++ sl3 ++ Sset t (Ebinop op a3 a2 tyres) :: Sassign a1 (Etempvar t tyres) :: final dst (Ecast (Etempvar t tyres) ty1)) (Ecast (Etempvar t tyres) ty1) tmp | tr_postincr_effects: forall le id e1 ty ty1 sl1 a1 tmp1 sl2 a2 tmp2 any tmp, tr_expr le For_val e1 sl1 a1 tmp1 -> tr_rvalof ty1 a1 sl2 a2 tmp2 -> ty1 = C.typeof e1 -> incl tmp1 tmp -> incl tmp2 tmp -> list_disjoint tmp1 tmp2 -> tr_expr le For_effects (C.Epostincr id e1 ty) (sl1 ++ sl2 ++ Sassign a1 (transl_incrdecr id a2 ty1) :: nil) any tmp | tr_postincr_val: forall le dst id e1 ty sl1 a1 tmp1 t ty1 tmp, tr_expr le For_val e1 sl1 a1 tmp1 -> incl tmp1 tmp -> In t tmp -> ~In t tmp1 -> ty1 = C.typeof e1 -> tr_expr le dst (C.Epostincr id e1 ty) (sl1 ++ make_set t a1 :: Sassign a1 (transl_incrdecr id (Etempvar t ty1) ty1) :: final dst (Etempvar t ty1)) (Etempvar t ty1) tmp | tr_comma: forall le dst e1 e2 ty sl1 a1 tmp1 sl2 a2 tmp2 tmp, tr_expr le For_effects e1 sl1 a1 tmp1 -> tr_expr le dst e2 sl2 a2 tmp2 -> list_disjoint tmp1 tmp2 -> incl tmp1 tmp -> incl tmp2 tmp -> tr_expr le dst (C.Ecomma e1 e2 ty) (sl1 ++ sl2) a2 tmp | tr_call_effects: forall le e1 el2 ty sl1 a1 tmp1 sl2 al2 tmp2 any tmp, tr_expr le For_val e1 sl1 a1 tmp1 -> tr_exprlist le el2 sl2 al2 tmp2 -> list_disjoint tmp1 tmp2 -> incl tmp1 tmp -> incl tmp2 tmp -> tr_expr le For_effects (C.Ecall e1 el2 ty) (sl1 ++ sl2 ++ Scall None a1 al2 :: nil) any tmp | tr_call_val: forall le dst e1 el2 ty sl1 a1 tmp1 sl2 al2 tmp2 t tmp, dst <> For_effects -> tr_expr le For_val e1 sl1 a1 tmp1 -> tr_exprlist le el2 sl2 al2 tmp2 -> list_disjoint tmp1 tmp2 -> In t tmp -> incl tmp1 tmp -> incl tmp2 tmp -> tr_expr le dst (C.Ecall e1 el2 ty) (sl1 ++ sl2 ++ Scall (Some t) a1 al2 :: final dst (Etempvar t ty)) (Etempvar t ty) tmp | tr_paren_val: forall le e1 ty sl1 a1 tmp1 t tmp, tr_expr le For_val e1 sl1 a1 tmp1 -> incl tmp1 tmp -> In t tmp -> tr_expr le For_val (C.Eparen e1 ty) (sl1 ++ Sset t (Ecast a1 ty) :: nil) (Etempvar t ty) tmp | tr_paren_effects: forall le dst e1 ty sl1 a1 tmp any, dst <> For_val -> tr_expr le (cast_destination ty dst) e1 sl1 a1 tmp -> tr_expr le dst (C.Eparen e1 ty) sl1 any tmp with tr_exprlist: temp_env -> C.exprlist -> list statement -> list expr -> list ident -> Prop := | tr_nil: forall le tmp, tr_exprlist le C.Enil nil nil tmp | tr_cons: forall le e1 el2 sl1 a1 tmp1 sl2 al2 tmp2 tmp, tr_expr le For_val e1 sl1 a1 tmp1 -> tr_exprlist le el2 sl2 al2 tmp2 -> list_disjoint tmp1 tmp2 -> incl tmp1 tmp -> incl tmp2 tmp -> tr_exprlist le (C.Econs e1 el2) (sl1 ++ sl2) (a1 :: al2) tmp. Scheme tr_expr_ind2 := Minimality for tr_expr Sort Prop with tr_exprlist_ind2 := Minimality for tr_exprlist Sort Prop. Combined Scheme tr_expr_exprlist from tr_expr_ind2, tr_exprlist_ind2. (** Useful invariance properties. *) Lemma tr_expr_invariant: forall le dst r sl a tmps, tr_expr le dst r sl a tmps -> forall le', (forall x, In x tmps -> le'!x = le!x) -> tr_expr le' dst r sl a tmps with tr_exprlist_invariant: forall le rl sl al tmps, tr_exprlist le rl sl al tmps -> forall le', (forall x, In x tmps -> le'!x = le!x) -> tr_exprlist le' rl sl al tmps. Proof. induction 1; intros; econstructor; eauto. intros. apply H0. intros. transitivity (le'!id); auto. intros. apply H0. auto. intros. transitivity (le'!id); auto. induction 1; intros; econstructor; eauto. Qed. Lemma tr_rvalof_monotone: forall ty a sl b tmps, tr_rvalof ty a sl b tmps -> forall tmps', incl tmps tmps' -> tr_rvalof ty a sl b tmps'. Proof. induction 1; intros; econstructor; unfold incl in *; eauto. Qed. Lemma tr_expr_monotone: forall le dst r sl a tmps, tr_expr le dst r sl a tmps -> forall tmps', incl tmps tmps' -> tr_expr le dst r sl a tmps' with tr_exprlist_monotone: forall le rl sl al tmps, tr_exprlist le rl sl al tmps -> forall tmps', incl tmps tmps' -> tr_exprlist le rl sl al tmps'. Proof. specialize tr_rvalof_monotone. intros RVALOF. induction 1; intros; econstructor; unfold incl in *; eauto. induction 1; intros; econstructor; unfold incl in *; eauto. Qed. (** ** Top-level translation *) (** The "top-level" translation is equivalent to [tr_expr] above for source terms. It brings additional flexibility in the matching between C values and Cminor expressions: in the case of [tr_expr], the Cminor expression must not depend on memory, while in the case of [tr_top] it can depend on the current memory state. This special case is extended to values occurring under one or several [C.Eparen]. *) Section TR_TOP. Variable ge: genv. Variable e: env. Variable le: temp_env. Variable m: mem. Inductive tr_top: destination -> C.expr -> list statement -> expr -> list ident -> Prop := | tr_top_val_val: forall v ty a tmp, typeof a = ty -> eval_expr ge e le m a v -> tr_top For_val (C.Eval v ty) nil a tmp | tr_top_val_test: forall tyl s1 s2 v ty a any tmp, typeof a = ty -> eval_expr ge e le m a v -> tr_top (For_test tyl s1 s2) (C.Eval v ty) (makeif (fold_left Ecast tyl a) s1 s2 :: nil) any tmp | tr_top_base: forall dst r sl a tmp, tr_expr le dst r sl a tmp -> tr_top dst r sl a tmp | tr_top_paren_test: forall tyl s1 s2 r ty sl a tmp, tr_top (For_test (ty :: tyl) s1 s2) r sl a tmp -> tr_top (For_test tyl s1 s2) (C.Eparen r ty) sl a tmp. End TR_TOP. (** ** Translation of statements *) Inductive tr_expression: C.expr -> statement -> expr -> Prop := | tr_expression_intro: forall r sl a tmps, (forall ge e le m, tr_top ge e le m For_val r sl a tmps) -> tr_expression r (makeseq sl) a. Inductive tr_expr_stmt: C.expr -> statement -> Prop := | tr_expr_stmt_intro: forall r sl a tmps, (forall ge e le m, tr_top ge e le m For_effects r sl a tmps) -> tr_expr_stmt r (makeseq sl). Inductive tr_if: C.expr -> statement -> statement -> statement -> Prop := | tr_if_intro: forall r s1 s2 sl a tmps, (forall ge e le m, tr_top ge e le m (For_test nil s1 s2) r sl a tmps) -> tr_if r s1 s2 (makeseq sl). Inductive tr_stmt: C.statement -> statement -> Prop := | tr_skip: tr_stmt C.Sskip Sskip | tr_do: forall r s, tr_expr_stmt r s -> tr_stmt (C.Sdo r) s | tr_seq: forall s1 s2 ts1 ts2, tr_stmt s1 ts1 -> tr_stmt s2 ts2 -> tr_stmt (C.Ssequence s1 s2) (Ssequence ts1 ts2) | tr_ifthenelse_big: forall r s1 s2 s' a ts1 ts2, tr_expression r s' a -> tr_stmt s1 ts1 -> tr_stmt s2 ts2 -> tr_stmt (C.Sifthenelse r s1 s2) (Ssequence s' (Sifthenelse a ts1 ts2)) | tr_ifthenelse_small: forall r s1 s2 ts1 ts2 ts, tr_stmt s1 ts1 -> tr_stmt s2 ts2 -> small_stmt ts1 = true -> small_stmt ts2 = true -> tr_if r ts1 ts2 ts -> tr_stmt (C.Sifthenelse r s1 s2) ts | tr_while: forall r s1 s' ts1, tr_if r Sskip Sbreak s' -> tr_stmt s1 ts1 -> tr_stmt (C.Swhile r s1) (Swhile expr_true (Ssequence s' ts1)) | tr_dowhile: forall r s1 s' ts1, tr_if r Sskip Sbreak s' -> tr_stmt s1 ts1 -> tr_stmt (C.Sdowhile r s1) (Sfor' expr_true s' ts1) | tr_for_1: forall r s3 s4 s' ts3 ts4, tr_if r Sskip Sbreak s' -> tr_stmt s3 ts3 -> tr_stmt s4 ts4 -> tr_stmt (C.Sfor C.Sskip r s3 s4) (Sfor' expr_true ts3 (Ssequence s' ts4)) | tr_for_2: forall s1 r s3 s4 s' ts1 ts3 ts4, tr_if r Sskip Sbreak s' -> s1 <> C.Sskip -> tr_stmt s1 ts1 -> tr_stmt s3 ts3 -> tr_stmt s4 ts4 -> tr_stmt (C.Sfor s1 r s3 s4) (Ssequence ts1 (Sfor' expr_true ts3 (Ssequence s' ts4))) | tr_break: tr_stmt C.Sbreak Sbreak | tr_continue: tr_stmt C.Scontinue Scontinue | tr_return_none: tr_stmt (C.Sreturn None) (Sreturn None) | tr_return_some: forall r s' a, tr_expression r s' a -> tr_stmt (C.Sreturn (Some r)) (Ssequence s' (Sreturn (Some a))) | tr_switch: forall r ls s' a tls, tr_expression r s' a -> tr_lblstmts ls tls -> tr_stmt (C.Sswitch r ls) (Ssequence s' (Sswitch a tls)) | tr_label: forall lbl s ts, tr_stmt s ts -> tr_stmt (C.Slabel lbl s) (Slabel lbl ts) | tr_goto: forall lbl, tr_stmt (C.Sgoto lbl) (Sgoto lbl) with tr_lblstmts: C.labeled_statements -> labeled_statements -> Prop := | tr_default: forall s ts, tr_stmt s ts -> tr_lblstmts (C.LSdefault s) (LSdefault ts) | tr_case: forall n s ls ts tls, tr_stmt s ts -> tr_lblstmts ls tls -> tr_lblstmts (C.LScase n s ls) (LScase n ts tls). (** * Correctness proof with respect to the specification. *) (** ** Properties of the monad *) Remark bind_inversion: forall (A B: Type) (f: mon A) (g: A -> mon B) (y: B) (z1 z3: generator) I, bind f g z1 = Res y z3 I -> exists x, exists z2, exists I1, exists I2, f z1 = Res x z2 I1 /\ g x z2 = Res y z3 I2. Proof. intros until I. unfold bind. destruct (f z1). congruence. caseEq (g a g'); intros; inv H0. econstructor; econstructor; econstructor; econstructor; eauto. Qed. Remark bind2_inversion: forall (A B C: Type) (f: mon (A*B)) (g: A -> B -> mon C) (y: C) (z1 z3: generator) I, bind2 f g z1 = Res y z3 I -> exists x1, exists x2, exists z2, exists I1, exists I2, f z1 = Res (x1,x2) z2 I1 /\ g x1 x2 z2 = Res y z3 I2. Proof. unfold bind2. intros. exploit bind_inversion; eauto. intros [[x1 x2] [z2 [I1 [I2 [P Q]]]]]. simpl in Q. exists x1; exists x2; exists z2; exists I1; exists I2; auto. Qed. Ltac monadInv1 H := match type of H with | (Res _ _ _ = Res _ _ _) => inversion H; clear H; try subst | (@ret _ _ _ = Res _ _ _) => inversion H; clear H; try subst | (@error _ _ _ = Res _ _ _) => inversion H | (bind ?F ?G ?Z = Res ?X ?Z' ?I) => let x := fresh "x" in ( let z := fresh "z" in ( let I1 := fresh "I" in ( let I2 := fresh "I" in ( let EQ1 := fresh "EQ" in ( let EQ2 := fresh "EQ" in ( destruct (bind_inversion _ _ F G X Z Z' I H) as [x [z [I1 [I2 [EQ1 EQ2]]]]]; clear H; try (monadInv1 EQ2))))))) | (bind2 ?F ?G ?Z = Res ?X ?Z' ?I) => let x := fresh "x" in ( let y := fresh "y" in ( let z := fresh "z" in ( let I1 := fresh "I" in ( let I2 := fresh "I" in ( let EQ1 := fresh "EQ" in ( let EQ2 := fresh "EQ" in ( destruct (bind2_inversion _ _ _ F G X Z Z' I H) as [x [y [z [I1 [I2 [EQ1 EQ2]]]]]]; clear H; try (monadInv1 EQ2)))))))) end. Ltac monadInv H := match type of H with | (@ret _ _ _ = Res _ _ _) => monadInv1 H | (@error _ _ _ = Res _ _ _) => monadInv1 H | (bind ?F ?G ?Z = Res ?X ?Z' ?I) => monadInv1 H | (bind2 ?F ?G ?Z = Res ?X ?Z' ?I) => monadInv1 H | (?F _ _ _ _ _ _ _ _ = Res _ _ _) => ((progress simpl in H) || unfold F in H); monadInv1 H | (?F _ _ _ _ _ _ _ = Res _ _ _) => ((progress simpl in H) || unfold F in H); monadInv1 H | (?F _ _ _ _ _ _ = Res _ _ _) => ((progress simpl in H) || unfold F in H); monadInv1 H | (?F _ _ _ _ _ = Res _ _ _) => ((progress simpl in H) || unfold F in H); monadInv1 H | (?F _ _ _ _ = Res _ _ _) => ((progress simpl in H) || unfold F in H); monadInv1 H | (?F _ _ _ = Res _ _ _) => ((progress simpl in H) || unfold F in H); monadInv1 H | (?F _ _ = Res _ _ _) => ((progress simpl in H) || unfold F in H); monadInv1 H | (?F _ = Res _ _ _) => ((progress simpl in H) || unfold F in H); monadInv1 H end. (** ** Freshness and separation properties. *) Definition within (id: ident) (g1 g2: generator) : Prop := Ple (gen_next g1) id /\ Plt id (gen_next g2). Lemma gensym_within: forall ty g1 id g2 I, gensym ty g1 = Res id g2 I -> within id g1 g2. Proof. intros. monadInv H. split. apply Ple_refl. apply Plt_succ. Qed. Lemma within_widen: forall id g1 g2 g1' g2', within id g1 g2 -> Ple (gen_next g1') (gen_next g1) -> Ple (gen_next g2) (gen_next g2') -> within id g1' g2'. Proof. intros. destruct H. split. eapply Ple_trans; eauto. unfold Plt, Ple in *. omega. Qed. Definition contained (l: list ident) (g1 g2: generator) : Prop := forall id, In id l -> within id g1 g2. Lemma contained_nil: forall g1 g2, contained nil g1 g2. Proof. intros; red; intros; contradiction. Qed. Lemma contained_widen: forall l g1 g2 g1' g2', contained l g1 g2 -> Ple (gen_next g1') (gen_next g1) -> Ple (gen_next g2) (gen_next g2') -> contained l g1' g2'. Proof. intros; red; intros. eapply within_widen; eauto. Qed. Lemma contained_cons: forall id l g1 g2, within id g1 g2 -> contained l g1 g2 -> contained (id :: l) g1 g2. Proof. intros; red; intros. simpl in H1; destruct H1. subst id0. auto. auto. Qed. Lemma contained_app: forall l1 l2 g1 g2, contained l1 g1 g2 -> contained l2 g1 g2 -> contained (l1 ++ l2) g1 g2. Proof. intros; red; intros. destruct (in_app_or _ _ _ H1); auto. Qed. Lemma contained_disjoint: forall g1 l1 g2 l2 g3, contained l1 g1 g2 -> contained l2 g2 g3 -> list_disjoint l1 l2. Proof. intros; red; intros. red; intro; subst y. exploit H; eauto. intros [A B]. exploit H0; eauto. intros [C D]. elim (Plt_strict x). apply Plt_Ple_trans with (gen_next g2); auto. Qed. Lemma contained_notin: forall g1 l g2 id g3, contained l g1 g2 -> within id g2 g3 -> ~In id l. Proof. intros; red; intros. exploit H; eauto. intros [C D]. destruct H0 as [A B]. elim (Plt_strict id). apply Plt_Ple_trans with (gen_next g2); auto. Qed. Hint Resolve gensym_within within_widen contained_widen contained_cons contained_app contained_disjoint contained_notin contained_nil incl_refl incl_tl incl_app incl_appl incl_appr in_eq in_cons Ple_trans Ple_refl: gensym. (** ** Correctness of the translation functions *) Lemma finish_meets_spec_1: forall dst sl a sl' a', finish dst sl a = (sl', a') -> sl' = sl ++ final dst a. Proof. intros. destruct dst; simpl in *; inv H. apply app_nil_end. apply app_nil_end. auto. Qed. Lemma finish_meets_spec_2: forall dst sl a sl' a', finish dst sl a = (sl', a') -> a' = a. Proof. intros. destruct dst; simpl in *; inv H; auto. Qed. Ltac UseFinish := match goal with | [ H: finish _ _ _ = (_, _) |- _ ] => try (rewrite (finish_meets_spec_2 _ _ _ _ _ H)); try (rewrite (finish_meets_spec_1 _ _ _ _ _ H)); repeat rewrite app_ass end. Lemma transl_valof_meets_spec: forall ty a g sl b g' I, transl_valof ty a g = Res (sl, b) g' I -> exists tmps, tr_rvalof ty a sl b tmps /\ contained tmps g g'. Proof. unfold transl_valof; intros. destruct (type_is_volatile ty) as []_eqn; monadInv H. exists (x :: nil); split; eauto with gensym. econstructor; eauto with coqlib. exists (@nil ident); split; eauto with gensym. constructor; auto. (* destruct (access_mode ty) as []_eqn. destruct (Csem.type_is_volatile ty) as []_eqn; monadInv H. exists (x :: nil); split; eauto with gensym. econstructor; eauto with coqlib. exists (@nil ident); split; eauto with gensym. constructor; auto. monadInv H. exists (@nil ident); split; eauto with gensym. constructor; auto. monadInv H. exists (@nil ident); split; eauto with gensym. constructor; auto. *) Qed. Scheme expr_ind2 := Induction for C.expr Sort Prop with exprlist_ind2 := Induction for C.exprlist Sort Prop. Combined Scheme expr_exprlist_ind from expr_ind2, exprlist_ind2. Lemma transl_meets_spec: (forall r dst g sl a g' I, transl_expr dst r g = Res (sl, a) g' I -> exists tmps, (forall le, tr_expr le dst r sl a tmps) /\ contained tmps g g') /\ (forall rl g sl al g' I, transl_exprlist rl g = Res (sl, al) g' I -> exists tmps, (forall le, tr_exprlist le rl sl al tmps) /\ contained tmps g g'). Proof. apply expr_exprlist_ind; intros. (* val *) simpl in H. destruct v; monadInv H; exists (@nil ident); split; auto with gensym. Opaque makeif. intros. destruct dst; simpl in H1; inv H1. constructor. auto. intros; constructor. constructor. constructor. auto. intros; constructor. intros. destruct dst; simpl in H1; inv H1. constructor. auto. intros; constructor. constructor. constructor. auto. intros; constructor. (* var *) monadInv H; econstructor; split; auto with gensym. UseFinish. constructor. (* field *) monadInv H0. exploit H; eauto. intros [tmp [A B]]. UseFinish. econstructor; split; eauto. constructor; auto. (* valof *) monadInv H0. exploit H; eauto. intros [tmp1 [A B]]. exploit transl_valof_meets_spec; eauto. intros [tmp2 [C D]]. UseFinish. exists (tmp1 ++ tmp2); split. econstructor; eauto with gensym. eauto with gensym. (* deref *) monadInv H0. exploit H; eauto. intros [tmp [A B]]. UseFinish. econstructor; split; eauto. constructor; auto. (* addrof *) monadInv H0. exploit H; eauto. intros [tmp [A B]]. UseFinish. econstructor; split; eauto. econstructor; eauto. (* unop *) monadInv H0. exploit H; eauto. intros [tmp [A B]]. UseFinish. econstructor; split; eauto. constructor; auto. (* binop *) monadInv H1. exploit H; eauto. intros [tmp1 [A B]]. exploit H0; eauto. intros [tmp2 [C D]]. UseFinish. exists (tmp1 ++ tmp2); split. econstructor; eauto with gensym. eauto with gensym. (* cast *) monadInv H0. exploit H; eauto. intros [tmp [A B]]. UseFinish. econstructor; split; eauto. constructor; auto. (* condition *) simpl in H2. destruct (Cstrategy.simple r2 && Cstrategy.simple r3) as []_eqn. (* simple *) monadInv H2. exploit H; eauto. intros [tmp1 [A B]]. exploit H0; eauto. intros [tmp2 [C D]]. exploit H1; eauto. intros [tmp3 [E F]]. UseFinish. destruct (andb_prop _ _ Heqb). exists (tmp1 ++ tmp2 ++ tmp3); split. intros; eapply tr_condition_simple; eauto with gensym. apply contained_app. eauto with gensym. apply contained_app; eauto with gensym. (* not simple *) monadInv H2. exploit H; eauto. intros [tmp1 [A B]]. exploit H0; eauto. intros [tmp2 [C D]]. exploit H1; eauto. intros [tmp3 [E F]]. rewrite andb_false_iff in Heqb. destruct dst; monadInv EQ3. (* for value *) exists (x2 :: tmp1 ++ tmp2 ++ tmp3); split. intros; eapply tr_condition_val; eauto with gensym. apply contained_cons. eauto with gensym. apply contained_app. eauto with gensym. apply contained_app; eauto with gensym. (* for effects *) exists (tmp1 ++ tmp2 ++ tmp3); split. intros; eapply tr_condition_effects; eauto with gensym. congruence. apply contained_app; eauto with gensym. (* for test *) exists (tmp1 ++ tmp2 ++ tmp3); split. intros; eapply tr_condition_effects; eauto with gensym. congruence. apply contained_app; eauto with gensym. (* sizeof *) monadInv H. UseFinish. exists (@nil ident); split; auto with gensym. constructor. (* alignof *) monadInv H. UseFinish. exists (@nil ident); split; auto with gensym. constructor. (* assign *) monadInv H1. exploit H; eauto. intros [tmp1 [A B]]. exploit H0; eauto. intros [tmp2 [C D]]. destruct dst; monadInv EQ2. (* for value *) exists (x1 :: tmp1 ++ tmp2); split. intros. eapply tr_assign_val with (dst := For_val); eauto with gensym. apply contained_cons. eauto with gensym. apply contained_app; eauto with gensym. (* for effects *) exists (tmp1 ++ tmp2); split. econstructor; eauto with gensym. apply contained_app; eauto with gensym. (* for test *) exists (x1 :: tmp1 ++ tmp2); split. repeat rewrite app_ass. simpl. intros. eapply tr_assign_val with (dst := For_test tyl s1 s2); eauto with gensym. apply contained_cons. eauto with gensym. apply contained_app; eauto with gensym. (* assignop *) monadInv H1. exploit H; eauto. intros [tmp1 [A B]]. exploit H0; eauto. intros [tmp2 [C D]]. exploit transl_valof_meets_spec; eauto. intros [tmp3 [E F]]. destruct dst; monadInv EQ3. (* for value *) exists (x2 :: tmp1 ++ tmp2 ++ tmp3); split. intros. eapply tr_assignop_val with (dst := For_val); eauto with gensym. apply contained_cons. eauto with gensym. apply contained_app; eauto with gensym. (* for effects *) exists (tmp1 ++ tmp2 ++ tmp3); split. econstructor; eauto with gensym. apply contained_app; eauto with gensym. (* for test *) exists (x2 :: tmp1 ++ tmp2 ++ tmp3); split. repeat rewrite app_ass. simpl. intros. eapply tr_assignop_val with (dst := For_test tyl s1 s2); eauto with gensym. apply contained_cons. eauto with gensym. apply contained_app; eauto with gensym. (* postincr *) monadInv H0. exploit H; eauto. intros [tmp1 [A B]]. destruct dst; monadInv EQ0. (* for value *) exists (x0 :: tmp1); split. econstructor; eauto with gensym. apply contained_cons; eauto with gensym. (* for effects *) exploit transl_valof_meets_spec; eauto. intros [tmp2 [C D]]. exists (tmp1 ++ tmp2); split. econstructor; eauto with gensym. eauto with gensym. (* for test *) repeat rewrite app_ass; simpl. exists (x0 :: tmp1); split. econstructor; eauto with gensym. apply contained_cons; eauto with gensym. (* comma *) monadInv H1. exploit H; eauto. intros [tmp1 [A B]]. exploit H0; eauto. intros [tmp2 [C D]]. exists (tmp1 ++ tmp2); split. econstructor; eauto with gensym. apply contained_app; eauto with gensym. (* call *) monadInv H1. exploit H; eauto. intros [tmp1 [A B]]. exploit H0; eauto. intros [tmp2 [C D]]. destruct dst; monadInv EQ2. (* for value *) exists (x1 :: tmp1 ++ tmp2); split. econstructor; eauto with gensym. congruence. apply contained_cons. eauto with gensym. apply contained_app; eauto with gensym. (* for effects *) exists (tmp1 ++ tmp2); split. econstructor; eauto with gensym. apply contained_app; eauto with gensym. (* for test *) exists (x1 :: tmp1 ++ tmp2); split. repeat rewrite app_ass. econstructor; eauto with gensym. congruence. apply contained_cons. eauto with gensym. apply contained_app; eauto with gensym. (* loc *) monadInv H. (* paren *) monadInv H0. (* nil *) monadInv H; exists (@nil ident); split; auto with gensym. constructor. (* cons *) monadInv H1. exploit H; eauto. intros [tmp1 [A B]]. exploit H0; eauto. intros [tmp2 [C D]]. exists (tmp1 ++ tmp2); split. econstructor; eauto with gensym. eauto with gensym. Qed. Lemma transl_expr_meets_spec: forall r dst g sl a g' I, transl_expr dst r g = Res (sl, a) g' I -> exists tmps, forall ge e le m, tr_top ge e le m dst r sl a tmps. Proof. intros. exploit (proj1 transl_meets_spec); eauto. intros [tmps [A B]]. exists tmps; intros. apply tr_top_base. auto. Qed. Lemma transl_expression_meets_spec: forall r g s a g' I, transl_expression r g = Res (s, a) g' I -> tr_expression r s a. Proof. intros. monadInv H. exploit transl_expr_meets_spec; eauto. intros [tmps A]. econstructor; eauto. Qed. Lemma transl_expr_stmt_meets_spec: forall r g s g' I, transl_expr_stmt r g = Res s g' I -> tr_expr_stmt r s. Proof. intros. monadInv H. exploit transl_expr_meets_spec; eauto. intros [tmps A]. econstructor; eauto. Qed. Lemma transl_if_meets_spec: forall r s1 s2 g s g' I, transl_if r s1 s2 g = Res s g' I -> tr_if r s1 s2 s. Proof. intros. monadInv H. exploit transl_expr_meets_spec; eauto. intros [tmps A]. econstructor; eauto. Qed. Lemma transl_stmt_meets_spec: forall s g ts g' I, transl_stmt s g = Res ts g' I -> tr_stmt s ts with transl_lblstmt_meets_spec: forall s g ts g' I, transl_lblstmt s g = Res ts g' I -> tr_lblstmts s ts. Proof. generalize transl_expression_meets_spec transl_expr_stmt_meets_spec transl_if_meets_spec; intros T1 T2 T3. Opaque transl_expression transl_expr_stmt. clear transl_stmt_meets_spec. induction s; simpl; intros until I; intros TR; try (monadInv TR); try (constructor; eauto). remember (small_stmt x && small_stmt x0). destruct b. exploit andb_prop; eauto. intros [A B]. eapply tr_ifthenelse_small; eauto. monadInv EQ2. eapply tr_ifthenelse_big; eauto. destruct (is_Sskip s1); monadInv EQ4. apply tr_for_1; eauto. apply tr_for_2; eauto. destruct o; monadInv TR; constructor; eauto. clear transl_lblstmt_meets_spec. induction s; simpl; intros until I; intros TR; monadInv TR; constructor; eauto. Qed. Theorem transl_function_spec: forall f tf, transl_function f = OK tf -> tr_stmt f.(C.fn_body) tf.(fn_body) /\ fn_return tf = C.fn_return f /\ fn_params tf = C.fn_params f /\ fn_vars tf = C.fn_vars f. Proof. intros until tf. unfold transl_function. case_eq (transl_stmt (C.fn_body f) initial_generator); intros; inv H0. simpl. intuition. eapply transl_stmt_meets_spec; eauto. Qed. End SPEC.
{-# OPTIONS --safe #-} module Cubical.Algebra.Field.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Relation.Nullary open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Data.Empty open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring hiding (_$_) open import Cubical.Algebra.CommRing open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Reflection.RecordEquiv open Iso private variable ℓ ℓ' : Level record IsField {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (_[_]⁻¹ : (x : R) → ¬ (x ≡ 0r) → R) : Type ℓ where constructor isfield field isCommRing : IsCommRing 0r 1r _+_ _·_ -_ ·⁻¹≡1 : (x : R) (≢0 : ¬ (x ≡ 0r)) → x · (x [ ≢0 ]⁻¹) ≡ 1r 0≢1 : ¬ (0r ≡ 1r) open IsCommRing isCommRing public record FieldStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor fieldstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A _[_]⁻¹ : (x : A) → ¬ (x ≡ 0r) → A isField : IsField 0r 1r _+_ _·_ -_ _[_]⁻¹ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsField isField public Field : ∀ ℓ → Type (ℓ-suc ℓ) Field ℓ = TypeWithStr ℓ FieldStr isSetField : (R : Field ℓ) → isSet ⟨ R ⟩ isSetField R = R .snd .FieldStr.isField .IsField.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsField : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} {_[_]⁻¹ : (x : R) → ¬ (x ≡ 0r) → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) (·⁻¹≡1 : (x : R) (≢0 : ¬ (x ≡ 0r)) → x · (x [ ≢0 ]⁻¹) ≡ 1r) (0≢1 : ¬ (0r ≡ 1r)) → IsField 0r 1r _+_ _·_ -_ _[_]⁻¹ makeIsField {_+_ = _+_} is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm ·⁻¹≡1 0≢1 = isfield (makeIsCommRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm) ·⁻¹≡1 0≢1 makeField : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (_[_]⁻¹ : (x : R) → ¬ (x ≡ 0r) → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) (·⁻¹≡1 : (x : R) (≢0 : ¬ (x ≡ 0r)) → x · (x [ ≢0 ]⁻¹) ≡ 1r) (0≢1 : ¬ (0r ≡ 1r)) → Field ℓ makeField 0r 1r _+_ _·_ -_ _[_]⁻¹ is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm ·⁻¹≡1 0≢1 = _ , fieldstr _ _ _ _ _ _ (makeIsField is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm ·⁻¹≡1 0≢1) FieldStr→CommRingStr : {A : Type ℓ} → FieldStr A → CommRingStr A FieldStr→CommRingStr (fieldstr _ _ _ _ _ _ H) = commringstr _ _ _ _ _ (IsField.isCommRing H) Field→CommRing : Field ℓ → CommRing ℓ Field→CommRing (_ , fieldstr _ _ _ _ _ _ H) = _ , commringstr _ _ _ _ _ (IsField.isCommRing H) record IsFieldHom {A : Type ℓ} {B : Type ℓ'} (R : FieldStr A) (f : A → B) (S : FieldStr B) : Type (ℓ-max ℓ ℓ') where -- Shorter qualified names private module R = FieldStr R module S = FieldStr S field pres0 : f R.0r ≡ S.0r pres1 : f R.1r ≡ S.1r pres+ : (x y : A) → f (x R.+ y) ≡ f x S.+ f y pres· : (x y : A) → f (x R.· y) ≡ f x S.· f y pres- : (x : A) → f (R.- x) ≡ S.- (f x) pres⁻¹ : (x : A) (≢0 : ¬ (x ≡ R.0r)) (f≢0 : ¬ (f x ≡ S.0r)) → f (x R.[ ≢0 ]⁻¹) ≡ ((f x) S.[ f≢0 ]⁻¹) unquoteDecl IsFieldHomIsoΣ = declareRecordIsoΣ IsFieldHomIsoΣ (quote IsFieldHom) FieldHom : (R : Field ℓ) (S : Field ℓ') → Type (ℓ-max ℓ ℓ') FieldHom R S = Σ[ f ∈ (⟨ R ⟩ → ⟨ S ⟩) ] IsFieldHom (R .snd) f (S .snd) IsFieldEquiv : {A : Type ℓ} {B : Type ℓ'} (R : FieldStr A) (e : A ≃ B) (S : FieldStr B) → Type (ℓ-max ℓ ℓ') IsFieldEquiv R e S = IsFieldHom R (e .fst) S FieldEquiv : (R : Field ℓ) (S : Field ℓ') → Type (ℓ-max ℓ ℓ') FieldEquiv R S = Σ[ e ∈ (R .fst ≃ S .fst) ] IsFieldEquiv (R .snd) e (S .snd) _$_ : {R S : Field ℓ} → (φ : FieldHom R S) → (x : ⟨ R ⟩) → ⟨ S ⟩ φ $ x = φ .fst x FieldEquiv→FieldHom : {A B : Field ℓ} → FieldEquiv A B → FieldHom A B FieldEquiv→FieldHom (e , eIsHom) = e .fst , eIsHom isPropIsField : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (_[_]⁻¹ : (x : R) → ¬ (x ≡ 0r) → R) → isProp (IsField 0r 1r _+_ _·_ -_ _[_]⁻¹) isPropIsField 0r 1r _+_ _·_ -_ _[_]⁻¹ (isfield RR RC RD) (isfield SR SC SD) = λ i → isfield (isPropIsCommRing _ _ _ _ _ RR SR i) (isPropInv RC SC i) (isProp→⊥ RD SD i) where isSetR : isSet _ isSetR = RR .IsCommRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set isPropInv : isProp ((x : _) → (≢0 : ¬ (x ≡ 0r)) → x · (x [ ≢0 ]⁻¹) ≡ 1r) isPropInv = isPropΠ2 λ _ _ → isSetR _ _ isProp→⊥ : ∀ {A : Type ℓ} → isProp (A → ⊥) isProp→⊥ = isPropΠ λ _ → isProp⊥
dotstackGrob <- function( x = unit(0.5, "npc"), # x pos of the dotstack's origin y = unit(0.5, "npc"), # y pos of the dotstack's origin stackaxis = "y", dotdia = unit(1, "npc"), # Dot diameter in the non-stack axis, should be in npc stackposition = 0, # Position of each dot in the stack, relative to origin stackratio = 1, # Stacking height of dots (.75 means 25% dot overlap) default.units = "npc", name = NULL, gp = gpar(), vp = NULL) { if (!is.unit(x)) x <- unit(x, default.units) if (!is.unit(y)) y <- unit(y, default.units) if (!is.unit(dotdia)) dotdia <- unit(dotdia, default.units) if (!is_npc(dotdia)) warn("Unit type of dotdia should be 'npc'") grob(x = x, y = y, stackaxis = stackaxis, dotdia = dotdia, stackposition = stackposition, stackratio = stackratio, name = name, gp = gp, vp = vp, cl = "dotstackGrob") } # Only cross-version reliable way to check the unit of a unit object is_npc <- function(x) isTRUE(grepl('^[^+^-^\\*]*[^s]npc$', as.character(x))) #' @export makeContext.dotstackGrob <- function(x, recording = TRUE) { # Need absolute coordinates because when using npc coords with circleGrob, # the radius is in the _smaller_ of the two axes. We need the radius # to instead be defined in terms of the non-stack axis. xmm <- convertX(x$x, "mm", valueOnly = TRUE) ymm <- convertY(x$y, "mm", valueOnly = TRUE) if (x$stackaxis == "x") { dotdiamm <- convertY(x$dotdia, "mm", valueOnly = TRUE) xpos <- xmm + dotdiamm * (x$stackposition * x$stackratio + (1 - x$stackratio) / 2) ypos <- ymm } else if (x$stackaxis == "y") { dotdiamm <- convertX(x$dotdia, "mm", valueOnly = TRUE) xpos <- xmm ypos <- ymm + dotdiamm * (x$stackposition * x$stackratio + (1 - x$stackratio) / 2) } circleGrob( x = xpos, y = ypos, r = dotdiamm / 2, default.units = "mm", name = x$name, gp = x$gp, vp = x$vp ) }
(* Title: HOL/Auth/n_germanSimp_lemma_inv__24_on_rules.thy Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences *) header{*The n_germanSimp Protocol Case Study*} theory n_germanSimp_lemma_inv__24_on_rules imports n_germanSimp_lemma_on_inv__24 begin section{*All lemmas on causal relation between inv__24*} lemma lemma_inv__24_on_rules: assumes b1: "r \<in> rules N" and b2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__24 p__Inv4)" shows "invHoldForRule s f r (invariants N)" proof - have c1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__0 N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__1 N i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_SendGntE N i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntS i)\<or> (\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" apply (cut_tac b1, auto) done moreover { assume d1: "(\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_StoreVsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqSVsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__0 N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqE__part__0Vsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE__part__1 N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvReqE__part__1Vsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__0Vsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInv__part__1Vsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendInvAckVsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvInvAck i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvInvAckVsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntSVsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_SendGntEVsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntSVsinv__24) done } moreover { assume d1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" have "invHoldForRule s f r (invariants N)" apply (cut_tac b2 d1, metis n_RecvGntEVsinv__24) done } ultimately show "invHoldForRule s f r (invariants N)" by satx qed end
function [blocks,idx] = my_im2col(I,blkSize,slidingDis); if (slidingDis==1) blocks = im2col(I,blkSize,'sliding'); idx = [1:size(blocks,2)]; return end idxMat = zeros(size(I)-blkSize+1); idxMat([[1:slidingDis:end-1],end],[[1:slidingDis:end-1],end]) = 1; % take blocks in distances of 'slidingDix', but always take the first and last one (in each row and column). idx = find(idxMat); [rows,cols] = ind2sub(size(idxMat),idx); blocks = zeros(prod(blkSize),length(idx)); for i = 1:length(idx) currBlock = I(rows(i):rows(i)+blkSize(1)-1,cols(i):cols(i)+blkSize(2)-1); blocks(:,i) = currBlock(:); end
open import FRP.JS.Bool using ( not ) open import FRP.JS.Nat using ( ) renaming ( _≟_ to _≟n_ ) open import FRP.JS.String using ( _≟_ ; _≤_ ; _<_ ; length ) open import FRP.JS.QUnit using ( TestSuite ; ok ; test ; _,_ ) module FRP.JS.Test.String where tests : TestSuite tests = ( test "≟" ( ok "abc ≟ abc" ("abc" ≟ "abc") , ok "ε ≟ abc" (not ("" ≟ "abc")) , ok "a ≟ abc" (not ("a" ≟ "abc")) , ok "abc ≟ ABC" (not ("abc" ≟ "ABC")) ) , test "length" ( ok "length ε" (length "" ≟n 0) , ok "length a" (length "a" ≟n 1) , ok "length ab" (length "ab" ≟n 2) , ok "length abc" (length "abc" ≟n 3) , ok "length \"\\\"" (length "\"\\\"" ≟n 3) , ok "length åäö⊢ξ∀" (length "åäö⊢ξ∀" ≟n 6) , ok "length ⟨line-terminators⟩" (length "\r\n\x2028\x2029" ≟n 4) ) , test "≤" ( ok "abc ≤ abc" ("abc" ≤ "abc") , ok "abc ≤ ε" (not ("abc" ≤ "")) , ok "abc ≤ a" (not ("abc" ≤ "a")) , ok "abc ≤ ab" (not ("abc" ≤ "a")) , ok "abc ≤ ABC" (not ("abc" ≤ "ABC")) , ok "ε ≤ abc" ("" ≤ "abc") , ok "a ≤ abc" ("a" ≤ "abc") , ok "ab ≤ abc" ("a" ≤ "abc") , ok "ABC ≤ abc" ("ABC" ≤ "abc") ) , test "<" ( ok "abc < abc" (not ("abc" < "abc")) , ok "abc < ε" (not ("abc" < "")) , ok "abc < a" (not ("abc" < "a")) , ok "abc < ab" (not ("abc" < "a")) , ok "abc < ABC" (not ("abc" < "ABC")) , ok "ε < abc" ("" < "abc") , ok "a < abc" ("a" < "abc") , ok "ab < abc" ("a" < "abc") , ok "ABC < abc" ("ABC" < "abc") ) )
The limit of a sequence $a_n$ as $n$ goes to infinity is $L$ if and only if for every $\epsilon > 0$, there exists an $N$ such that for all $n > N$, we have $|a_n - L| < \epsilon$.
[STATEMENT] lemma "(x::nat) < y & y < z ==> x < z" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x < y \<and> y < z \<Longrightarrow> x < z [PROOF STEP] by linarith
module Hedgehog.Internal.Util import Data.DPair import Data.List import Data.Colist %default total -------------------------------------------------------------------------------- -- SafeDiv -------------------------------------------------------------------------------- ||| Interface providing a safe (total) division operation ||| by proving that the divisor is non-zero. public export interface Neg a => SafeDiv (0 a : Type) (0 pred : a -> Type) | a where total safeDiv' : (n,d : a) -> (0 prf : pred d) -> a public export SafeDiv Int (\d => d == 0 = False) where safeDiv' n d _ = n `div` d public export SafeDiv Integer (\d => d == 0 = False) where safeDiv' n d _ = n `div` d public export SafeDiv Double (\d => d == 0 = False) where safeDiv' n d _ = n / d public export total safeDiv : SafeDiv a pred => (n,d : a) -> {auto 0 ok : pred d} -> a safeDiv n d = safeDiv' n d ok public export total fromPred : (a -> Bool) -> a -> Maybe a fromPred p a = guard (p a) $> a -------------------------------------------------------------------------------- -- ToInteger -------------------------------------------------------------------------------- public export interface Num a => ToInteger a where toInteger : a -> Integer toNat : a -> Nat toNat = integerToNat . toInteger public export ToInteger Integer where toInteger = id public export ToInteger Int8 where toInteger = cast public export ToInteger Int16 where toInteger = cast public export ToInteger Int32 where toInteger = cast public export ToInteger Int64 where toInteger = cast public export ToInteger Int where toInteger = cast public export ToInteger Bits8 where toInteger = cast public export ToInteger Bits16 where toInteger = cast public export ToInteger Bits32 where toInteger = cast public export ToInteger Bits64 where toInteger = cast public export ToInteger Nat where toInteger = cast toNat = id public export ToInteger Double where toInteger = cast public export fromIntegral : ToInteger a => Num b => a -> b fromIntegral = fromInteger . toInteger public export round : Num a => Double -> a round v = let f = floor v v' = if v - f < 0.5 then f else ceiling v in fromInteger $ cast v' -------------------------------------------------------------------------------- -- (Lazy) List Utilities -------------------------------------------------------------------------------- public export iterateBefore : (p : a -> Bool) -> (a -> a) -> (v : a) -> Colist a iterateBefore p f = takeBefore p . iterate f public export iterateBefore0 : Eq a => Num a => (a -> a) -> (start : a) -> Colist a iterateBefore0 = iterateBefore (0 ==) ||| Prepends the first list in reverse order to the ||| second list. public export prepRev : List a -> List a -> List a prepRev [] ys = ys prepRev (x :: xs) ys = prepRev xs (x :: ys) public export signum : Ord a => Neg a => a -> a signum x = if x < 0 then (-1) else if x == 0 then 0 else 1 -------------------------------------------------------------------------------- -- Colists -------------------------------------------------------------------------------- ||| Cons an element on to the front of a list unless it is already there. public export total consNub : Eq a => a -> Colist a -> Colist a consNub x [] = [x] consNub x l@(y :: xs) = if x == y then l else x :: l public export concatColist : Colist (Colist a) -> Colist a concatColist ((x :: xs) :: ys) = x :: concatColist (xs :: ys) concatColist ([] :: (x :: xs) :: ys) = x :: concatColist (xs :: ys) concatColist _ = [] public export concatMapColist : (a -> Colist b) -> Colist a -> Colist b concatMapColist f = concatColist . map f public export fromFoldable : Foldable f => f a -> Colist a fromFoldable = fromList . toList -------------------------------------------------------------------------------- -- Numeric Utilities -------------------------------------------------------------------------------- public export IsInUnit : Double -> Bool IsInUnit d = 0.0 < d && d < 1.0 public export 0 InUnit : Type InUnit = Subset Double (\x => IsInUnit x = True) export recipBits64 : Subset Bits64 (\x => x >= 2 = True) -> InUnit recipBits64 (Element v _) = Element (1.0 / fromInteger (cast v)) (believe_me (Refl {x = True} )) -- Algorithm taken from -- https://web.archive.org/web/20151110174102/http://home.online.no/~pjacklam/notes/invnorm/ -- Accurate to about one part in 10^9. -- -- The 'erf' package uses the same algorithm, but with an extra step -- to get a fully accurate result, which we skip because it requires -- the 'erfc' function. export invnormcdf : (p : InUnit) -> Double invnormcdf (Element p _) = let a1 = -3.969683028665376e+01 a2 = 2.209460984245205e+02 a3 = -2.759285104469687e+02 a4 = 1.383577518672690e+02 a5 = -3.066479806614716e+01 a6 = 2.506628277459239e+00 b1 = -5.447609879822406e+01 b2 = 1.615858368580409e+02 b3 = -1.556989798598866e+02 b4 = 6.680131188771972e+01 b5 = -1.328068155288572e+01 c1 = -7.784894002430293e-03 c2 = -3.223964580411365e-01 c3 = -2.400758277161838e+00 c4 = -2.549732539343734e+00 c5 = 4.374664141464968e+00 c6 = 2.938163982698783e+00 d1 = 7.784695709041462e-03 d2 = 3.224671290700398e-01 d3 = 2.445134137142996e+00 d4 = 3.754408661907416e+00 p_low = 0.02425 p_high = 1 - p_low q = sqrt(-2*log(p)) in if p < p_low then (((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q+c6) / ((((d1*q+d2)*q+d3)*q+d4)*q+1) else if p <= p_high then let q = p - 0.5 r = q*q in (((((a1*r+a2)*r+a3)*r+a4)*r+a5)*r+a6)*q / (((((b1*r+b2)*r+b3)*r+b4)*r+b5)*r+1) else let q = sqrt(-2*log(1-p)) in -(((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q+c6) / ((((d1*q+d2)*q+d3)*q+d4)*q+1)
# About This notebook was created to follow the sympy code generation tutorial at [this link](http://www.sympy.org/scipy-2017-codegen-tutorial/) ```python import sympy as sym sym.init_printing() x, y = sym.symbols('x y') expr = 3*x**2 + sym.log(x**2 + y**2 + 1) expr ``` ```python expr.subs({x: 17, y: 42}).evalf() % timeit expr.subs({x: 17, y: 42}).evalf() ``` 221 µs ± 948 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each) ```python import math f = lambda x, y: 3*x**2 + math.log(x**2 + y**2 + 1) %timeit f(17, 42) ``` 917 ns ± 2.67 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) ```python g = sym.lambdify([x, y], expr, modules=['math']) g(17, 42) ``` ```python %timeit g(17, 42) ``` 906 ns ± 1.64 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) ```python import numpy as np xarr = np.linspace(17,18,5) h = sym.lambdify([x, y], expr) out = h(xarr, 42) out ``` array([ 874.62754439, 900.31920442, 926.38590757, 952.82765322, 979.64444076]) lambdify constructs string representation of python code and uses python eval to compile ```python z = z1, z2, z3 = sym.symbols('z:3') ``` ```python expr2 = x*y*(z1+z2+z3) func2 = sym.lambdify([x, y, z], expr2) func2(1,2, (3,4,5)) # Vector arguments can be done as tuples when using odeint... (see video/example) ``` ```python # How to efficiently deal with matrices without preconverting? # Or just save as M, C, etc... What about pars? Third argument. Can it be dict or must it be tuple? # How to efficiently save, ``` # Chemistry... In example, dict is converted to tuple, both for the constants used to define the lambda, and for the tuple for evaluation. So they are in the same order