text
stringlengths 0
3.34M
|
---|
-- --------------------------------------------------------------- [ Utils.idr ]
--
-- Utilities
--
-- --------------------------------------------------------------------- [ EOH ]
module RFC.Utils
import System
%access public
||| Representation of String literals that are to be sent.
Literal : String -> Type
Literal str = (str' : String ** str' = str)
-- ----------------------------------------------------------------- [ DayTime ]
||| Simple Record for DayTime
record DayTime : Type where
MkDaytime : (y : Int)
-> (m : Int)
-> (d : Int)
-> (hh : Int)
-> (mm : Int)
-> (ss : Int)
-> DayTime
instance Show DayTime where
show date = unwords [show (y date), "-",
show (m date), "-",
show (d date), " ",
show (hh date), ":",
show (mm date), ":",
show (ss date) ]
-- --------------------------------------------------------------------- [ EOF ]
|
import Pkg
Pkg.activate("emergency_services")
# load all necessary packages and functions
include("functions/start_load_packages.jl")
# state the parts of the framework that should be executed
# stage 1: only the optimisation will be executed
# stage 2: only the simulation will be executed (requires at least one run of stage 1)
# both: both stages will be executed
framework = "both"::String
# state the name of the problem instance that should be solved, possible examples
# are "0510","1008","1508","2040" where the name corresponds to the number of BAs
problem = "2040"::String
# state the name of the subproblem that should be solved, for example "one_location",
# "basic", "two_locations", eg.
subproblem = "nine_locations"::String
# state the strength of the compactness and contiguity constraints
# C0 = no contiguity constraints (no compactness)
# C1 = solely contiguity constrains (no compactness)
# C2 = contiguity and normal ompactness constraints
# C3 = contiguity and strong compactness constraints
# For more details take a look at the article this program is based on
compactness = "C2"::String
# state the number of simulations that should be executed due to the variability of the driving time
sim_number = 100::Int64
# state the main input parameters for the optimisation (framework stage 1)
number_districts = 9::Int64 # number of districts that should be opened
max_drive = 30.0::Float64 # maximum driving distance (minutes) to district border
nearby_districts = 2::Int64 # minimal number of districts within nearby radius
nearby_radius = 30.0::Float64 # maximal driving time to nearby district center
fixed_locations = 0::Int64 # number of current locations that should not be moved
plot_district = true::Bool # state whether the resulting district should be plotted
# state the optimisation options
solver = "gurobi"
const GRB_ENV = Gurobi.Env()
const optcr = 0.000::Float64 # allowed gap
const reslim = 21600::Int64 # maximal duration of optimisation in seconds
const cores = 8::Int64 # number of CPU cores
const nodlim = 1000000::Int64 # maximal number of nodes
const iterlim = 100000000::Int64 # maximal number of iterations
const silent = false::Bool # state whether to surpress the optimisation log
# state the weight of each priority for the driving time
# important: the weight has to equal the number of priorities
# in the incident data stage
prio_weight = [1, 1, 1, 1, 1]
# state the main parameters for the simulation (framework stage 2)
const min_capacity = 2::Int64 # minimal capacity for each district during each weekhour
const exchange_prio = 5::Int64 # till which priority can cars be exchanged to foreign districts
const patrol_prio = 5::Int64 # till which priority can patrol cars be dispatched as backup
const patrol_ratio = 0.00::Float64 # which proportion of the ressources is assigned to be on patrol
const patrol_time = 5.00::Float64 # maximal driving time for a patrol car dispatch as help
const patrol_area = 5::Int64 # time spent patrolling per basic area
const backlog_max = 60::Int64 # maximal average backlog (minutes) per car in district for exchange
const max_queue = 80::Int64 # maximal length of the queue of incidents per district and priority
const real_capacity = false::Bool # state whether a predefined capacity plan should be loaded
const drop_incident = 360::Int64 # total number of minutes after which an incident
# will leave the queue even if it's not fully fulfilled
# state the main parameters for the capacity estimation if no capacity plan is given
const total_capacity = 50.0::Float64 # average capacity per hour in the area over the incident timeframe
const capacity_service = 0.90::Float64 # alpha service level for weekhour workload estimation
# state how many cars should be reserved for the own district per incident priority
# during exchanges to other districts this threshold will not be crossed
# important: the exchange_reserve has to equal the number of priorities
exchange_reserve = [0,0,0,0,0]
# state whether to save the plotted results
const save_plots = true::Bool # save the plots
# lock to avoid racing conditions during the simulation
ren_lock = ReentrantLock()
# load the input data
include("2_define_data.jl")
print("\n Input data sucessfully loaded.")
# prepare the input data for stage 1 (also neccessary for stage 2!)
# append the weekhour to the incident dataset
incidents.weekhour = epoch_weekhour.(incidents.epoch)
# prepare the workload for each BA if allocated to a potential center
if isfile("data/$problem/workload_$problem.csv")
workload = readdlm("data/$problem/workload_$problem.csv", Float64)
we = readdlm("data/$problem/weight_$problem.csv", Float64)[:,1]
print("\n Workload and weight recovered from saved file.")
else
dur = @elapsed workload, we = workload_calculation(incidents::DataFrame,
prio_weight::Vector{Int64},
drivingtime::Array{Float64,2},
traffic::Array{Float64,2},
size(airdist,1)::Int64)
workload = round.(workload, digits = 3)
writedlm("data/$problem/workload_$problem.csv", workload)
writedlm("data/$problem/weight_$problem.csv", we)
print("\n Finished workload and weight calculation after ",dur," seconds.")
end
# prepare the sets for the contiguity and compactness constraints
dur = @elapsed N, M, card_n, card_m = sets_m_n(airdist::Array{Float64,2}, size(airdist,1)::Int64)
print("\n Finished set calculation after ", dur," seconds.")
print("\n Input sucessfully prepared for both stages.")
# state which problem and constraints will be the aim of the framework
print("\n Framework will be applied to the problem ",subproblem," with the constraint set ", compactness,".")
# district optimisation (framework stage 1)
if framework != "stage 2"
print("\n Starting optimisation.")
# Create a Dataframe to save the main results
opt_out = DataFrame(prbl = String[], cmpct = String[], objv = Float64[], gp = Float64[], time = Float64[])
# Start the optimisation model
X, gap, objval, scnds = model_and_optimise(solver, number_districts, drivingtime, we,
workload, adjacent, N, M, card_n, card_m, max_drive,
compactness, potential_locations, nearby_radius,
nearby_districts, current_locations, fixed_locations)
districts = create_frame(X, size(airdist,1))
print("\n Duration of the optimisation: ", scnds, " seconds")
# Save the optimisation results and district layouts
CSV.write("results_stage1/$problem/district_layout_$(problem)_$(subproblem)_$(compactness).csv", districts)
push!(opt_out, (prbl = problem, cmpct = compactness, objv = objval, gp = gap, time = scnds))
CSV.write("results_stage1/$problem/optimisation_$(problem)_$(subproblem)_$(compactness).csv", opt_out)
print("\n Results from stage 1 written to file.")
# Plot the resulting district layout
if plot_district && hexshape !== nothing
district_plot = plot_generation(districts, hexshape)
display(district_plot)
if save_plots == 1
savefig("graphs/$problem/district_layout_$(problem)_$(subproblem)_$(compactness).pdf")
end
end
# End stage 1 of the framework
end
# emergency service simulation (framework stage 2)
if framework != "stage 1"
# prepare the input data for the simulation
# load the district layout in case solely stage 2 is executed
if isfile("results_stage1/$problem/district_layout_$(problem)_$(subproblem)_$(compactness).csv")
districts = CSV.read("results_stage1/$problem/district_layout_$(problem)_$(subproblem)_$(compactness).csv", DataFrame)
districts[!,:index] = convert.(Int64,districts[!,:index])
districts[!,:location] = convert.(Int64,districts[!,:location])
print("\n Districts loaded from file.")
else
error("Perform stage 1 first, to determine the district layouts.")
end
# prepare the input data for stage 2
sim_data = prepare_simulation_data(incidents, districts)
## simulation_capacity: apply a heuristic to derive the capacity of each location in each weekhour
simulation_capacity, capacity_plot = capacity_heuristic(incidents,sim_data,total_capacity,min_capacity)
## ressource_flow: fill the intial ressource flow matrix of the simulation
ressource_flow = ressource_flow_matrix(sim_data, incidents, simulation_capacity)
print("\n Input sucessfully prepared for simulation.")
print("\n Ressource matrix build.","\n")
# pepare the execution of multiple simulation runs
weekly_location = DataFrame()
weekly_priority = DataFrame()
capacity_status = DataFrame()
main_results = DataFrame()
# start the simulation
print("\n Starting ", sim_number," emergency service simulations.")
Threads.@threads for sim_run = 1:sim_number
rfw = copy(ressource_flow)
smd = copy(sim_data)
scnds = @elapsed smd,rfw = part2_simulation!(districts::DataFrame,
incidents::DataFrame,
smd::DataFrame,
rfw::Array{Int64,3},
drivingtime::Array{Float64,2},
traffic::Array{Float64,2},
max_drive::Float64,
drop_incident::Int64,
exchange_reserve::Vector{Int64})
main_results_local, weekly_location_local, weekly_priority_local,
capacity_status_local = evaluate_results(incidents, smd, rfw, simulation_capacity)
# save the results for later evaluation
weekly_location_local[:,:simulation_run] .= sim_run
weekly_priority_local[:,:simulation_run] .= sim_run
capacity_status_local[:,:simulation_run] .= sim_run
main_results_local[:,:simulation_run] .= sim_run
Threads.lock(ren_lock) do
append!(weekly_location, weekly_location_local)
append!(weekly_priority, weekly_priority_local)
append!(capacity_status, capacity_status_local)
append!(main_results, main_results_local)
end
print("\n Simulation ",nrow(main_results)," of ", sim_number," completed after ", scnds, " seconds on thread ",Threads.threadid())
end
# Aggregate the results of all simulations
weekly_location = groupby(weekly_location,[:location_responsible, :weekhour])
weekly_location = combine(weekly_location, [n => mean => n for n in names(weekly_location) if n != "simulation_run"])
weekly_location = round.(weekly_location, digits = 5)
weekly_priority = groupby(weekly_priority,[:weekhour,:priority])
weekly_priority = combine(weekly_priority, [n => mean => n for n in names(weekly_priority) if n != "simulation_run"])
weekly_priority = round.(weekly_priority, digits = 5)
capacity_status = groupby(capacity_status,[:weekhour,:variable])
capacity_status = combine(capacity_status, :value => mean => :value)
main_results = combine(main_results, [n => mean => n for n in names(main_results) if n != "simulation_run"])
main_results = round.(main_results, digits = 5)
main_priority = groupby(weekly_priority, :priority)
main_priority = combine(main_priority, [n => mean => n for n in names(main_priority) if n != "weekhour"])
main_priority = round.(main_priority, digits = 5)
print("\n\n Main results of simulation:")
print("\n Average dispatch time first car: ", main_results[1,:dispatch_time_first])
for prio = 1:nrow(main_priority)
print("\n Average dispatch time priority ", prio,": ", main_priority[prio,:dispatch_time_first])
end
print("\n Average dispatch time all cars: ", main_results[1,:dispatch_time_all])
print("\n Average response time first car: ", main_results[1,:response_time_first])
for prio = 1:nrow(main_priority)
print("\n Average response time priority ", prio,": ", main_priority[prio,:response_time_first])
end
print("\n Average response time all cars: ", main_results[1,:response_time_all])
print("\n Average exchange ratio: ", main_results[1,:exchange_ratio])
print("\n Average ratio undispatched cars: ", main_results[1,:ratio_cars_undispatched])
print("\n Unfullfilled calls for service: ", main_results[1,:incidents_unfulfilled])
# Plot the aggregated results
plot_simulation_results(weekly_location, weekly_priority, capacity_status, capacity_plot, subproblem, compactness)
# Save the main results of the simulation
CSV.write("results_stage2/$problem/simulation_$(problem)_$(subproblem)_$(compactness).csv", main_results)
print("\n Results from stage 2 written to file. Framework ended.")
print("\n")
end
print("\n") |
%!TEX root = ../main.tex
\subsection{Properties of Lines}
\objective{Classify linear and linear-like functions, and explain relationships of slopes.}
All non-vertical lines have slope, which is defined as rise over run, $\frac{\Delta x}{\Delta y}$
or $m$. The initial value
of a linear equation might not be zero, but an ordered pair of the form $(0,b)$. The variable
$b$ is called the $y-$intercept. All together, this is the famous $y=mx+b$ form of lines.
\marginfig[-0.1in]{\chapdir/pics/ceiling_function}{The ceiling function.}
However, that formula only makes sense when the origin is within view and we might become
concerned with the output-value when the input is 0. In calculus and other areas of mathematics,
we are more
often simply interested in the slope and some arbitrary point, $(x_1,y_1)$. Hence we find a majority
of time from here on out, the point-slope form of \index{linear!point-slope form}
linear equation is most helpful, $y-y_1=m(x-x_1)$,
a form which allows us to see the slope, and a (random?) point on the line very easily.
This form is nearly as easy to put in your TI-8* as your old friend slope-intercept: simply add $y_1$
to the other side, and you have a $y=$ form ready to be entered in your grapher.
\subsection{Parallel vs. Perpendicular}
If a line has slope expressed via the fraction in lowest terms $\frac{a}{b}$,
then any other fraction that reduces to the same ratio will produce a line parallel to the first.
Consider the sketch of how to make a line rotated $90^\circ$ clockwise or counterclockwise
to the first. They will have slopes of $\frac{-b}{a}$ or $\frac{b}{-a}$, which are the same
things. In short, perpendicular lines have opposite reciprocal slope.\index{linear!parallel}
\index{linear!perpendicular}
\subsection{Linear-like}
Several functions are linear in pieces, and are used in computer programming and other
systems of functions
\subsubsection{Ceiling, Floor, and Round}
Various forms of rounding are present in computer systems and your TI-8*. Rounding down
in all cases, rounding up in call cases, and the familiar rounding to the closest.
\marginfig[-1.0in]{\chapdir/pics/floor_function}{The floor function}
\subsubsection{Modulus}
The most used function in this respect, and the foundation of an entire species of mathematics
(called Modular Arithmetic) is the modulus function. It can be thought of as taking two arguments,
one is what to divide by, and the other is what to divide. The function returns the remainder. For
example, 10 mod 3 is 1, and 49 mod 7 is 0. Consider the graph of y=x mod 5.
\subsubsection{Rates of Change}
A constant function is one that never changes (by definition). \index{constant!derivative}
Algebraically, that means it is
of the form $y=c$, where $c$ is some numbers. The slope is always zero and the graph
is always a horizontal line. A vertical line is not a function and its slope is undefined. Every
other line has a constant rate of change, it's slope. In calculus terminology,
it's derivative is a constant.
|
Formal statement is: lemma bounded_connected_Compl_real: fixes S :: "real set" assumes "bounded S" and conn: "connected(- S)" shows "S = {}" Informal statement is: If $S$ is a bounded set and $-S$ is connected, then $S$ is empty. |
function [X12,x1,x2] = DigitalOscillator(f1,f2,Fs,t1)
% Function to simulate Digital Sinusodial Oscillator
% Input Variables
% f1 = first input analog frequency Suggested Range(697-1477)
% f2 = second input analog frequency Suggested Range(697-1477
% Fs = Sampling Frequency Default = 8000 cycles/sec
% t1 = Tone Length Default = .1 sec
%
% Output Variables
% Y = Sine Signal for two given frequencies
% x1 = Sine Signal for first frequency
% x2 = Sine Signal for second frequency
%
% Rajiv Singla DSP Final Project Fall 2005
%=====================================================================
% Checking for minimum number of arguments
if nargin < 2
error('Not enough input arguments');
end
% Setting Default values
if nargin == 2
Fs = 8000;
t1 = 0.1;
end
Ts=1/Fs; %Sampling Time
samples=t1/Ts; %Number of samples in the tone
%% Generating first Signal
w0=2*3.1416*f1/Fs;
A=1;
a1=-2*cos(w0);
Y1=0;
Y2=-A*sin(w0);
for n=1:samples
x1(n)=-a1*Y1-Y2;
Y2=Y1;
Y1=x1(n);
end
x1=[0 x1]; %appending zero in the beginning
%% Generating second Signal
w1=2*3.1416*f2/Fs;
A=1;
a2=-2*cos(w1);
P1=0;
P2=-A*sin(w1);
for n=1:samples
x2(n)=-a2*P1-P2;
P2=P1;
P1=x2(n);
end
x2=[0 x2]; %appending zero in the beginning
%% Combining both signal
X12 = .5*(x1 + x2);
|
-- exercises in "Type-Driven Development with Idris"
-- chapter 6
-- check that all functions are total
%default total
data Format = Number Format
| Doubble Format
| Str Format
| Chhar Format
| Lit String Format
| End
%name Format fmt, fmt1, fmt2, fmt3
PrintfType : Format -> Type
PrintfType (Number fmt) = (i : Int) -> PrintfType fmt
PrintfType (Doubble fmt) = (d : Double) -> PrintfType fmt
PrintfType (Str fmt) = (str : String) -> PrintfType fmt
PrintfType (Chhar fmt) = (car : Char) -> PrintfType fmt
PrintfType (Lit str fmt) = PrintfType fmt
PrintfType End = String
printFmt : (fmt : Format) -> (acc : String) -> PrintfType fmt
printFmt (Number fmt) acc = \i => printFmt fmt (acc ++ show i)
printFmt (Doubble fmt) acc = \d => printFmt fmt (acc ++ show d)
printFmt (Str fmt) acc = \str => printFmt fmt (acc ++ str)
printFmt (Chhar fmt) acc = \char => printFmt fmt (acc ++ show char)
printFmt (Lit str fmt) acc = printFmt fmt (acc ++ str)
printFmt End acc = acc
toFormat : (xs : List Char) -> Format
toFormat [] = End
toFormat ('%' :: 'd' :: chars) = Number (toFormat chars)
toFormat ('%' :: 'f' :: chars) = Doubble (toFormat chars)
toFormat ('%' :: 's' :: chars) = Str (toFormat chars)
toFormat ('%' :: 'c' :: chars) = Chhar (toFormat chars)
toFormat ('%' :: chars) = Lit "%" (toFormat chars)
toFormat (c :: chars) = case toFormat chars of
Lit str chars' => Lit (strCons c str) chars'
fmt => Lit (strCons c "") fmt
printf : (fmt : String) -> PrintfType (toFormat (unpack fmt))
printf fmt = printFmt _ ""
-- > :t printf "%s = %d"
-- printf "%s = %d" : String -> Int -> String
-- > :t printf "%c %f"
-- printf "%c %f" : Char -> Double -> String
-- > printf "%c %f" 'X' 24
-- "'X' 24.0" : String
|
If $d \leq e$, then the closed ball of radius $d$ centered at $x$ is contained in the closed ball of radius $e$ centered at $x$. |
theory Strict_Omega_Category
imports Globular_Set
begin
section \<open>Strict $\omega$-categories\<close>
text \<open>
First, we define a locale \<open>pre_strict_omega_category\<close> that holds the data of a strict
$\omega$-category without the associativity, unity and exchange axioms
\cite[Def 1.4.8 (a) - (b)]{Leinster2004}. We do this in order to set up convenient notation
before we state the remaining axioms.
\<close>
locale pre_strict_omega_category = globular_set +
fixes comp :: "nat \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a"
and i :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
assumes comp_fun: "is_composable_pair m n x' x \<Longrightarrow> comp m n x' x \<in> X m"
and i_fun: "i n \<in> X n \<rightarrow> X (Suc n)"
and s_comp_Suc: "is_composable_pair (Suc m) m x' x \<Longrightarrow> s m (comp (Suc m) m x' x) = s m x"
and t_comp_Suc: "is_composable_pair (Suc m) m x' x \<Longrightarrow> t m (comp (Suc m) m x' x) = t m x'"
and s_comp: "\<lbrakk>is_composable_pair (Suc m) n x' x; n < m\<rbrakk> \<Longrightarrow>
s m (comp (Suc m) n x' x) = comp m n (s m x') (s m x)"
and t_comp: "\<lbrakk>is_composable_pair (Suc m) n x' x; n < m\<rbrakk> \<Longrightarrow>
t m (comp (Suc m) n x' x) = comp m n (t m x') (s m x)"
and s_i: "x \<in> X n \<Longrightarrow> s n (i n x) = x"
and t_i: "x \<in> X n \<Longrightarrow> t n (i n x) = x"
begin
text \<open>Similar to the generalised source and target maps in \<open>globular_set\<close>, we defined a generalised
identity map. The first argument gives the dimension of the resulting identity cell, while the
second gives the dimension of the input cell.\<close>
fun i' :: "nat \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" where
"i' 0 0 = id" |
"i' 0 (Suc n) = undefined" |
"i' (Suc m) n = (if Suc m < n then undefined
else if Suc m = n then id
else i m \<circ> i' m n)"
lemma i'_n_n [simp]: "i' n n = id"
by (metis i'.elims i'.simps(1) less_irrefl_nat)
lemma i'_Suc_n_n [simp]: "i' (Suc n) n = i n"
by simp
lemma i'_Suc [simp]: "n \<le> m \<Longrightarrow> i' (Suc m) n = i m \<circ> i' m n"
by fastforce
lemma i'_Suc': "n < m \<Longrightarrow> i' m n = i' m (Suc n) \<circ> i n"
proof (induction m arbitrary: n)
case 0
then show ?case by blast
next
case (Suc m)
then show ?case by force
qed
lemma i'_fun: "n \<le> m \<Longrightarrow> i' m n \<in> X n \<rightarrow> X m"
proof (induction m arbitrary: n)
case 0
then show ?case by fastforce
next
case (Suc m)
thus ?case proof (cases "n = Suc m")
case True
then show ?thesis by auto
next
case False
hence "n \<le> m" using `n \<le> Suc m` by force
thus ?thesis using Suc.IH i_fun by auto
qed
qed
end
text \<open>Now we may define a strict $\omega$-category including the composition, unity and exchange
axioms \cite[Def 1.4.8 (c) - (f)]{Leinster2004}.\<close>
locale strict_omega_category = pre_strict_omega_category +
assumes comp_assoc: "\<lbrakk>is_composable_pair m n x' x; is_composable_pair m n x'' x'\<rbrakk> \<Longrightarrow>
comp m n (comp m n x'' x') x = comp m n x'' (comp m n x' x)"
and i_comp: "\<lbrakk>n < m; x \<in> X m\<rbrakk> \<Longrightarrow> comp m n (i' m n (t' m n x)) x = x"
and comp_i: "\<lbrakk>n < m; x \<in> X m\<rbrakk> \<Longrightarrow> comp m n x (i' m n (s' m n x)) = x"
and bin_interchange: "\<lbrakk>q < p; p < m;
is_composable_pair m p y' y; is_composable_pair m p x' x;
is_composable_pair m q y' x'; is_composable_pair m q y x\<rbrakk> \<Longrightarrow>
comp m q (comp m p y' y) (comp m p x' x) = comp m p (comp m q y' x') (comp m q y x)"
and null_interchange: "\<lbrakk>q < p; is_composable_pair p q x' x\<rbrakk> \<Longrightarrow>
comp (Suc p) q (i p x') (i p x) = i p (comp p q x' x)"
locale strict_omega_functor = globular_map +
source: strict_omega_category X s\<^sub>X t\<^sub>X comp\<^sub>X i\<^sub>X +
target: strict_omega_category Y s\<^sub>Y t\<^sub>Y comp\<^sub>Y i\<^sub>Y
for comp\<^sub>X i\<^sub>X comp\<^sub>Y i\<^sub>Y +
assumes commute_with_comp: "is_composable_pair m n x' x \<Longrightarrow>
\<phi> m (comp\<^sub>X m n x' x) = comp\<^sub>Y m n (\<phi> m x') (\<phi> m x)"
and commute_with_id: "x \<in> X n \<Longrightarrow> \<phi> (Suc n) (i\<^sub>X n x) = i\<^sub>Y n (\<phi> n x)"
end |
function [y,n] = ADEM_plaid(x,n)
% creates a Gaussian modulated n x n visual plaid stimulus
% FORMAT [y,n] = ADEM_plaid(x,[n])
% x(1) - horizontal displacement
% x(2) - vertical displacement
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: ADEM_plaid.m 3655 2009-12-23 20:15:34Z karl $
% default stimulus
%--------------------------------------------------------------------------
try
n;
catch
n = 4;
end
% stimulus
%--------------------------------------------------------------------------
sx = [1:n]';
sx = sx - n/2 - n*x(1)/8;
sy = [1:n] ;
sy = sy - n/2 - n*x(2)/8;
sx = exp(-sx.^2/(2*(n/6)^2)).*cos(2*pi*sx*2/n);
sy = exp(-sy.^2/(2*(n/6)^2)).*cos(2*pi*sy*2/n);
% vectorise under defaults
%--------------------------------------------------------------------------
if nargin > 1
y = sx*sy;
else
y = spm_vec(sx*sy);
end
|
Load LFindLoad.
From lfind Require Import LFind.
From QuickChick Require Import QuickChick.
From adtind Require Import goal33.
Derive Show for natural.
Derive Arbitrary for natural.
Instance Dec_Eq_natural : Dec_Eq natural.
Proof. dec_eq. Qed.
Lemma conj5synthconj5 : forall (lv0 : natural), (@eq natural (lv0) (plus lv0 Zero)).
Admitted.
QuickChick conj5synthconj5.
|
@testset "montecarlo" begin
end
|
(* Title: HOL/Library/Product_Lexorder.thy
Author: Norbert Voelker
*)
section \<open>Lexicographic order on product types\<close>
theory Product_Lexorder
imports MainRLT
begin
instantiation prod :: (ord, ord) ord
begin
definition
"x \<le> y \<longleftrightarrow> fst x < fst y \<or> fst x \<le> fst y \<and> snd x \<le> snd y"
definition
"x < y \<longleftrightarrow> fst x < fst y \<or> fst x \<le> fst y \<and> snd x < snd y"
instance ..
end
lemma less_eq_prod_simp [simp, code]:
"(x1, y1) \<le> (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 \<le> x2 \<and> y1 \<le> y2"
by (simp add: less_eq_prod_def)
lemma less_prod_simp [simp, code]:
"(x1, y1) < (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 \<le> x2 \<and> y1 < y2"
by (simp add: less_prod_def)
text \<open>A stronger version for partial orders.\<close>
lemma less_prod_def':
fixes x y :: "'a::order \<times> 'b::ord"
shows "x < y \<longleftrightarrow> fst x < fst y \<or> fst x = fst y \<and> snd x < snd y"
by (auto simp add: less_prod_def le_less)
instance prod :: (preorder, preorder) preorder
by standard (auto simp: less_eq_prod_def less_prod_def less_le_not_le intro: order_trans)
instance prod :: (order, order) order
by standard (auto simp add: less_eq_prod_def)
instance prod :: (linorder, linorder) linorder
by standard (auto simp: less_eq_prod_def)
instantiation prod :: (linorder, linorder) distrib_lattice
begin
definition
"(inf :: 'a \<times> 'b \<Rightarrow> _ \<Rightarrow> _) = min"
definition
"(sup :: 'a \<times> 'b \<Rightarrow> _ \<Rightarrow> _) = max"
instance
by standard (auto simp add: inf_prod_def sup_prod_def max_min_distrib2)
end
instantiation prod :: (bot, bot) bot
begin
definition
"bot = (bot, bot)"
instance ..
end
instance prod :: (order_bot, order_bot) order_bot
by standard (auto simp add: bot_prod_def)
instantiation prod :: (top, top) top
begin
definition
"top = (top, top)"
instance ..
end
instance prod :: (order_top, order_top) order_top
by standard (auto simp add: top_prod_def)
instance prod :: (wellorder, wellorder) wellorder
proof
fix P :: "'a \<times> 'b \<Rightarrow> bool" and z :: "'a \<times> 'b"
assume P: "\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x"
show "P z"
proof (induct z)
case (Pair a b)
show "P (a, b)"
proof (induct a arbitrary: b rule: less_induct)
case (less a\<^sub>1) note a\<^sub>1 = this
show "P (a\<^sub>1, b)"
proof (induct b rule: less_induct)
case (less b\<^sub>1) note b\<^sub>1 = this
show "P (a\<^sub>1, b\<^sub>1)"
proof (rule P)
fix p assume p: "p < (a\<^sub>1, b\<^sub>1)"
show "P p"
proof (cases "fst p < a\<^sub>1")
case True
then have "P (fst p, snd p)" by (rule a\<^sub>1)
then show ?thesis by simp
next
case False
with p have 1: "a\<^sub>1 = fst p" and 2: "snd p < b\<^sub>1"
by (simp_all add: less_prod_def')
from 2 have "P (a\<^sub>1, snd p)" by (rule b\<^sub>1)
with 1 show ?thesis by simp
qed
qed
qed
qed
qed
qed
text \<open>Legacy lemma bindings\<close>
lemmas prod_le_def = less_eq_prod_def
lemmas prod_less_def = less_prod_def
lemmas prod_less_eq = less_prod_def'
end
|
cc ------------ dpmjet3.4 - authors: S.Roesler, R.Engel, J.Ranft -------
cc -------- phojet1.12-40 - authors: S.Roesler, R.Engel, J.Ranft -------
cc - oct'13 -------
cc ----------- pythia-6.4 - authors: Torbjorn Sjostrand, Lund'10 -------
cc ---------------------------------------------------------------------
cc converted for use with FLUKA -------
cc - oct'13 -------
C...PYONOF
C...Switches on and off decay channel by search for match.
SUBROUTINE PYONOF(CHIN)
C...Double precision and integer declarations.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)
IMPLICIT INTEGER(I-N)
INTEGER PYCOMP
C...Commonblocks.
include 'inc/pydat1'
include 'inc/pydat3'
C...Local arrays and character variables.
INTEGER KFCMP(10),KFTMP(10)
CHARACTER CHIN*(*),CHTMP*104,CHFIX*104,CHMODE*10,CHCODE*8,
&CHALP(2)*26
DATA CHALP/'abcdefghijklmnopqrstuvwxyz',
&'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/
C...Determine length of character variable.
CHTMP=CHIN//' '
LBEG=0
100 LBEG=LBEG+1
IF(CHTMP(LBEG:LBEG).EQ.' ') GOTO 100
LEND=LBEG-1
105 LEND=LEND+1
IF(LEND.LE.100.AND.CHTMP(LEND:LEND).NE.'!') GOTO 105
110 LEND=LEND-1
IF(CHTMP(LEND:LEND).EQ.' ') GOTO 110
LEN=1+LEND-LBEG
CHFIX(1:LEN)=CHTMP(LBEG:LEND)
C...Find colon separator and particle code.
LCOLON=0
120 LCOLON=LCOLON+1
IF(CHFIX(LCOLON:LCOLON).NE.':') GOTO 120
CHCODE=' '
CHCODE(10-LCOLON:8)=CHFIX(1:LCOLON-1)
READ(CHCODE,'(I8)',ERR=300) KF
KC=PYCOMP(KF)
C...Done if unknown code or no decay channels.
IF(KC.EQ.0) THEN
CALL PYERRM(18,'(PYONOF:) unrecognized particle '//CHCODE)
RETURN
ENDIF
IDCBEG=MDCY(KC,2)
IDCLEN=MDCY(KC,3)
IF(IDCBEG.EQ.0.OR.IDCLEN.EQ.0) THEN
CALL PYERRM(18,'(PYONOF:) no decay channels for '//CHCODE)
RETURN
ENDIF
C...Find command name up to blank or equal sign.
LSEP=LCOLON
130 LSEP=LSEP+1
IF(LSEP.LE.LEN.AND.CHFIX(LSEP:LSEP).NE.' '.AND.
&CHFIX(LSEP:LSEP).NE.'=') GOTO 130
CHMODE=' '
LMODE=LSEP-LCOLON-1
CHMODE(1:LMODE)=CHFIX(LCOLON+1:LSEP-1)
C...Convert to uppercase.
DO 150 LCOM=1,LMODE
DO 140 LALP=1,26
IF(CHMODE(LCOM:LCOM).EQ.CHALP(1)(LALP:LALP))
& CHMODE(LCOM:LCOM)=CHALP(2)(LALP:LALP)
140 CONTINUE
150 CONTINUE
C...Identify command. Failed if not identified.
MODE=0
IF(CHMODE.EQ.'ALLOFF') MODE=1
IF(CHMODE.EQ.'ALLON') MODE=2
IF(CHMODE.EQ.'OFFIFANY') MODE=3
IF(CHMODE.EQ.'ONIFANY') MODE=4
IF(CHMODE.EQ.'OFFIFALL') MODE=5
IF(CHMODE.EQ.'ONIFALL') MODE=6
IF(CHMODE.EQ.'OFFIFMATCH') MODE=7
IF(CHMODE.EQ.'ONIFMATCH') MODE=8
IF(MODE.EQ.0) THEN
CALL PYERRM(18,'(PYONOF:) unknown command '//CHMODE)
RETURN
ENDIF
C...Simple cases when all on or all off.
IF(MODE.EQ.1.OR.MODE.EQ.2) THEN
WRITE(MSTU(11),1000) KF,CHMODE
DO 160 IDC=IDCBEG,IDCBEG+IDCLEN-1
IF(MDME(IDC,1).LT.0) GOTO 160
MDME(IDC,1)=MODE-1
160 CONTINUE
RETURN
ENDIF
C...Identify matching list.
NCMP=0
LBEG=LSEP
170 LBEG=LBEG+1
IF(LBEG.GT.LEN) GOTO 190
IF(LBEG.LT.LEN.AND.(CHFIX(LBEG:LBEG).EQ.' '.OR.
&CHFIX(LBEG:LBEG).EQ.'='.OR.CHFIX(LBEG:LBEG).EQ.',')) GOTO 170
LEND=LBEG-1
180 LEND=LEND+1
IF(LEND.LT.LEN.AND.CHFIX(LEND:LEND).NE.' '.AND.
&CHFIX(LEND:LEND).NE.'='.AND.CHFIX(LEND:LEND).NE.',') GOTO 180
IF(LEND.LT.LEN) LEND=LEND-1
CHCODE=' '
CHCODE(8-LEND+LBEG:8)=CHFIX(LBEG:LEND)
READ(CHCODE,'(I8)',ERR=300) KFREAD
NCMP=NCMP+1
KFCMP(NCMP)=ABS(KFREAD)
LBEG=LEND
IF(NCMP.LT.10) GOTO 170
190 CONTINUE
WRITE(MSTU(11),1100) KF,CHMODE,(KFCMP(ICMP),ICMP=1,NCMP)
C...Only one matching required.
IF(MODE.EQ.3.OR.MODE.EQ.4) THEN
DO 220 IDC=IDCBEG,IDCBEG+IDCLEN-1
IF(MDME(IDC,1).LT.0) GOTO 220
DO 210 IKF=1,5
KFNOW=ABS(KFDP(IDC,IKF))
IF(KFNOW.EQ.0) GOTO 210
DO 200 ICMP=1,NCMP
IF(KFCMP(ICMP).EQ.KFNOW) THEN
MDME(IDC,1)=MODE-3
GOTO 220
ENDIF
200 CONTINUE
210 CONTINUE
220 CONTINUE
RETURN
ENDIF
C...Multiple matchings required.
DO 260 IDC=IDCBEG,IDCBEG+IDCLEN-1
IF(MDME(IDC,1).LT.0) GOTO 260
NTMP=NCMP
DO 230 ITMP=1,NTMP
KFTMP(ITMP)=KFCMP(ITMP)
230 CONTINUE
NFIN=0
DO 250 IKF=1,5
KFNOW=ABS(KFDP(IDC,IKF))
IF(KFNOW.EQ.0) GOTO 250
NFIN=NFIN+1
DO 240 ITMP=1,NTMP
IF(KFTMP(ITMP).EQ.KFNOW) THEN
KFTMP(ITMP)=KFTMP(NTMP)
NTMP=NTMP-1
GOTO 250
ENDIF
240 CONTINUE
250 CONTINUE
IF(NTMP.EQ.0.AND.MODE.LE.6) MDME(IDC,1)=MODE-5
IF(NTMP.EQ.0.AND.NFIN.EQ.NCMP.AND.MODE.GE.7)
& MDME(IDC,1)=MODE-7
260 CONTINUE
RETURN
C...Error exit for impossible read of particle code.
300 CALL PYERRM(18,'(PYONOF:) could not interpret particle code '
&//CHCODE)
C...Formats for output.
1000 FORMAT(' Decays for',I8,' set ',A10)
1100 FORMAT(' Decays for',I8,' set ',A10,' if match',10I8)
RETURN
END
|
import System.Random
main : IO ()
main = do
value <- randomRIO (the Double 10, the Double 30.5)
printLn $ value > 10 |
proposition\<^marker>\<open>tag unimportant\<close> Cauchy_theorem_triangle_cofinite: assumes "continuous_on (convex hull {a,b,c}) f" and "finite S" and "(\<And>x. x \<in> interior(convex hull {a,b,c}) - S \<Longrightarrow> f field_differentiable (at x))" shows "(f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath c a)" |
Formal statement is: lemma continuous_on_iff: "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. \<forall>e>0. \<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)" Informal statement is: A function $f$ is continuous on a set $S$ if and only if for every $x \in S$ and every $\epsilon > 0$, there exists a $\delta > 0$ such that for every $x' \in S$, if $|x' - x| < \delta$, then $|f(x') - f(x)| < \epsilon$. |
/**
* Copyright (C) 2014 yvt <[email protected]>.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <boost/asio.hpp>
#include <string>
namespace mcore
{
std::pair<boost::asio::ip::address, int> parseEndpoint(const std::string&);
boost::asio::ip::tcp::endpoint parseTcpEndpoint(const std::string&);
template <class T>
void serializeDictionary(std::vector<char> &output, const T& dic)
{
for (const auto& ent: dic) {
};
}
template <class T>
std::vector<char> serializeDictionary(const T& dic)
{
std::vector<char> buffer;
buffer.reserve(512);
serializeDictionary(buffer, dic);
return buffer;
}
class CountingCombiner
{
public:
using result_type = std::size_t;
template <class Iterator>
result_type operator()(Iterator first, Iterator last) const
{
std::size_t count = 0;
while (first != last)
{
try
{
*first;
}
catch(const boost::signals2::expired_slot &) {}
++first;
++count;
}
return count;
}
};
}
|
Formal statement is: lemma setdist_neq_0_sing_1: "\<lbrakk>setdist {x} S = a; a \<noteq> 0\<rbrakk> \<Longrightarrow> S \<noteq> {} \<and> x \<notin> closure S" Informal statement is: If the distance between a point $x$ and a set $S$ is nonzero, then $S$ is nonempty and $x$ is not in the closure of $S$. |
Require Import Nat List Bool PeanoNat Orders.
Require Import Coq.Structures.OrdersFacts.
Require Import Coq.Relations.Relation_Definitions.
Require Import Coq.Sorting.Sorted.
Require Import Coq.Sorting.Permutation.
Require Import Sorticoq.SortedList.
Require Import Sorticoq.BinaryTree.
Import ListNotations.
Module TreeSort (Import O: UsualOrderedTypeFull').
(*
Module Bdefs := UsualOrderedTypeFull'_to_BinaryTree O.
Import Bdefs.
*)
Include (BinaryTree_over_OrderedType O).
Fixpoint makeBST (l: list A) : BinaryTree :=
match l with
| nil => BT_nil
| h::t => BST_Insert (makeBST t) h
end.
Lemma makeBST_ok: forall x (l: list A),
In_tree x (makeBST l) <-> In x l.
Proof.
split; intros; induction l; simpl in *;
[inversion H | idtac | inversion H | idtac ].
- apply In_tree_insert in H; intuition.
- apply In_insert_cond; intuition.
Qed.
Definition Treesort (l: list A) : list A :=
BT_get_list (makeBST l).
Lemma Treesort_is_LocallySorted: forall l,
LocallySorted lte (Treesort l).
Proof.
intros. apply BST_is_LocallySorted.
induction l; simpl; auto.
apply Insert_not_change_BSTSP. assumption.
Qed.
Lemma Treesort_Permutation: forall l,
Permutation l (Treesort l).
Proof.
induction l; simpl; auto.
unfold Treesort in *. simpl.
remember (BST_Insert _ a) as Tr. symmetry in HeqTr.
apply BST_Insert_emplace in HeqTr. destruct HeqTr as [e1 [e2 [H' H'']]].
rewrite <- H'. rewrite <- H'' in IHl.
simpl. apply Permutation_cons_app. auto.
Qed.
Theorem Treesort_is_sorting_algo:
is_sorting_algo lte Treesort.
Proof.
unfold is_sorting_algo. split.
- apply Treesort_Permutation.
- apply Sorted_LocallySorted_iff. apply Treesort_is_LocallySorted.
Qed.
End TreeSort.
|
lemma is_unit_monom_0: fixes a :: "'a::field" assumes "a \<noteq> 0" shows "is_unit (monom a 0)" |
import Control.Monad.State
data Tree a = Empty | Node (Tree a) a (Tree a)
testTree : Tree String
testTree = Node (Node (Node Empty "Jim" Empty) "Fred" (Node Empty "Sheila" Empty)) "Alice" (Node Empty "Bob" (Node Empty "Eve" Empty))
testStream : Stream Int
testStream = [1..]
flatten : Tree a -> List a
flatten Empty = []
flatten (Node left val right) = flatten left ++ (val :: flatten right)
labelTreeWith : Stream label -> Tree elem -> (Stream label, Tree (label, elem))
labelTreeWith lbls Empty = (lbls, Empty)
labelTreeWith lbls (Node l e r) =
let
(forThis :: forRight, lbldLeft) = labelTreeWith lbls l
(forNext, lbldRight) = labelTreeWith forRight r
in
(forNext, Node lbldLeft (forThis, e) lbldRight)
labelTreeWith2 : Tree a -> State (Stream label) (Tree (label, a))
labelTreeWith2 Empty = pure Empty
labelTreeWith2 (Node left elem right) =
do
lbldLeft <- labelTreeWith2 left
(this :: rest) <- get
put rest
lbldRight <- labelTreeWith2 right
pure (Node lbldLeft (this, elem) lbldRight)
deepFirst : Tree elem -> Tree (Int, elem)
deepFirst tree = snd (labelTreeWith testStream tree)
deepFirst2 : Tree elem -> Tree (Int, elem)
deepFirst2 tree = evalState (labelTreeWith2 tree) [1..]
countEmpty : Tree elem -> State Nat ()
countEmpty Empty =
do
curr <- get
put (S curr)
countEmpty (Node left _ right) =
do
countEmpty left
countEmpty right
countEmptyNode : Tree elem -> State (Nat, Nat) ()
countEmptyNode Empty =
do
(currEmpties, currFull) <- get
put (S currEmpties, currFull)
countEmptyNode (Node left _ right) =
do
countEmptyNode left
countEmptyNode right
(currEmpties, currFull) <- get
put (currEmpties, S currFull)
|
/*
* Copyright (c) 2016-2021 lymastee, All rights reserved.
* Contact: [email protected]
*
* This file is part of the gslib project.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#ifndef utilities_9904f6c1_3075_4335_b065_c7099f52e80b_h
#define utilities_9904f6c1_3075_4335_b065_c7099f52e80b_h
#include <ariel/type.h>
#include <gslib/std.h>
#include <gslib/string.h>
#include <gslib/file.h>
__ariel_begin__
/*
* Text format elements:
* [section] { ... }
* [section]:[notation] { ... }
*
* where sections could be nested
*/
extern bool io_bad_eof(const string& src, int32 curr);
extern int32 io_skip_blank_charactors(const string& src, int32 start);
extern int32 io_read_section_name(const string& src, string& name, int32 start);
extern int32 io_read_notation(const string& src, string& notation, int32 start);
extern int32 io_skip_section(const string& src, int32 start);
extern int32 io_enter_section(const string& src, int32 start, gchar st = _t('{'));
extern int32 io_read_line_of_section(const string& src, string& line, int32 start);
/*
* Binary format elements:
* #[uint32][string]@[uint32] section about length(in bytes)
* $[uint32][string] notation string(ASCII only)
*/
using gs::file;
class __gs_novtable io_binary_stream abstract
{
public:
typedef vector<int32> section_stack;
enum control_type
{
ctl_unknown,
ctl_section,
ctl_notation,
ctl_counter,
ctl_byte_stream_field,
ctl_word_stream_field,
ctl_dword_stream_field,
ctl_qword_stream_field,
};
public:
io_binary_stream(int32 size);
virtual ~io_binary_stream() {}
control_type read_control_type();
bool next_byte_valid() const { return next_n_bytes_valid(1); }
bool next_word_valid() const { return next_n_bytes_valid(2); }
bool next_dword_valid() const { return next_n_bytes_valid(4); }
bool next_qword_valid() const { return next_n_bytes_valid(8); }
bool next_n_bytes_valid(int32 bytes) const;
void seek_to(int32 bytes);
void seek_by(int32 bytes);
float read_float();
double read_double();
int32 read_nstring(string& str);
int32 read_string(string& str, const string& stopch);
void enter_section(int32 size) { _section_stack.push_back(size); }
bool exit_section();
bool skip_current_section();
bool skip_next_section();
protected:
int32 _size;
int32 _current;
section_stack _section_stack;
public:
virtual byte read_byte() = 0;
virtual word read_word() = 0;
virtual dword read_dword() = 0;
virtual qword read_qword() = 0;
virtual bool read_field_to_buf(void* ptr, int32 bytes) = 0;
virtual void rewind_to(int32 bytes) = 0;
virtual int32 current_dev_pos() const = 0;
protected:
void rewind_by(int32 bytes);
void take_next_n_bytes(int32 n);
bool section_stack_valid(int32 bytes) const;
};
class io_binary_memory:
public io_binary_stream
{
public:
io_binary_memory(const void* ptr, int32 size);
virtual byte read_byte() override;
virtual word read_word() override;
virtual dword read_dword() override;
virtual qword read_qword() override;
virtual bool read_field_to_buf(void* ptr, int32 bytes) override;
virtual void rewind_to(int32 bytes) override {}
virtual int32 current_dev_pos() const override { return _current; }
protected:
const byte* _mem;
};
class io_binary_file:
public io_binary_stream
{
public:
io_binary_file(file& pf);
virtual byte read_byte() override;
virtual word read_word() override;
virtual dword read_dword() override;
virtual qword read_qword() override;
virtual bool read_field_to_buf(void* ptr, int32 bytes) override;
virtual void rewind_to(int32 bytes) override { _file.seek(bytes, SEEK_SET); }
virtual int32 current_dev_pos() const override { return _file.current(); }
protected:
file& _file;
};
__ariel_end__
#endif
|
function K = covSM(Q, hyp, x, z, i)
% Gaussian Spectral Mixture covariance function. The covariance function
% parametrization depends on the sign of Q.
%
% Let t(Dx1) be an offset vector in dataspace e.g. t = x_i - z_j. Then w(DxP)
% are the weights and m(Dx|Q|) = 1/p, v(Dx|Q|) = (2*pi*ell)^-2 are spectral
% means (frequencies) and variances, where p is the period and ell the length
% scale of the Gabor function h(t2v,tm) given by the expression
% h(t2v,tm) = exp(-2*pi^2*t2v).*cos(2*pi*tm)
%
% Then, the two covariances are obtained as follows:
%
% SM, spectral mixture: Q>0 => P = 1
% k(x_i,z_j) = w'*h(v'*(t.*t),m'*t)
%
% SMP, spectral mixture product: Q<0 => P = D
% k(x_i,z_j) = prod(w'*h(T*T*v,T*m)), T = diag(t)
%
% The hyperparameters are:
%
% hyp = [ log(w(:))
% log(m(:))
% log(sqrt(v(:))) ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Note that the spectral density H(s) = F[ h(t) ] of covGaboriso is given by
% H(s) = N(s|m,v)/2 + N(s|-m,v)/2 where m=1/p is the mean and v=(2*pi*ell)^-2
% is the variance of a symmetric Gaussian mixture. Hence the covGaboriso
% covariance forms a basis for the class of stationary covariances since a
% weighted sum of covGaboriso covariances corresponds to an isotropic
% location-scale mixture of a symmetric Gaussian mixture in the spectral domain.
%
% Internally, covSM constructs a weighted sum of products of 1d covGaboriso
% covariances using covMask, covProd, covScale and covSum.
%
% For more details, see
% 1) Gaussian Process Kernels for Pattern Discovery and Extrapolation,
% ICML, 2013, by Andrew Gordon Wilson and Ryan Prescott Adams.
% 2) GPatt: Fast Multidimensional Pattern Extrapolation with Gaussian
% Processes, arXiv 1310.5288, 2013, by Andrew Gordon Wilson, Elad Gilboa,
% Arye Nehorai and John P. Cunningham, and
% http://mlg.eng.cam.ac.uk/andrew/pattern
%
% For Q>0, covSM corresponds to Eq. 12 in Ref (1)
% For Q<0, covSM corresponds to Eq. 14 in Ref (2) (but w here = w^2 in (14))
%
% Copyright (c) by Andrew Gordon Wilson and Hannes Nickisch, 2014-09-24.
%
% See also COVFUNCTIONS.M, COVGABORISO.M, COVGABORARD.M.
smp = Q<0; Q = abs(Q); % switch between covSM and covSMP mode
if nargin<3 % report no of parameters
if smp, K = '3*D*'; else K = '(1+2*D)*'; end, K = [K,sprintf('%d',Q)]; return
end
if nargin<4, z = []; end % make sure, z exists
D = size(x,2); P = smp*D+(1-smp); % dimensionality, P=D or P=1
lw = reshape(hyp( 1:P*Q) ,P,Q); % log mixture weights
lm = reshape(hyp(P*Q+ (1:D*Q)),D,Q); % log spectral means
ls = reshape(hyp(P*Q+D*Q+(1:D*Q)),D,Q); % log spectral standard deviations
% In the following, we construct nested cell arrays to finally obtain either
if smp % 1) the product of weighted sums of 1d covGabor covariance functions or
fac = cell(1,D);
for d=1:D
add = cell(1,Q); % a) addends for weighted sum of univariate Gabor functions
for q=1:Q, add{q} = {'covScale',{'covMask',{d,{'covGaboriso'}}}}; end
fac{d} = {'covSum',add}; % b) combine addends into sum
end
cov = {'covProd',fac}; % c) combine factors into product
else % 2) the weighted sum of multivariate covGaborard covariance functions.
% weighted sum of multivariate Gabor functions
add = cell(1,Q); for q=1:Q, add{q} = {'covScale',{'covGaborard'}}; end
cov = {'covSum',add}; % combine into sum
end
if smp % assemble hyp; covGabor is parametrised using -ls-log(2*pi) and -lm
hyp = [lw(:)'/2; -ls(:)'-log(2*pi); -lm(:)'];
else
hyp = [lw/2; -ls-log(2*pi); -lm ];
end
if nargin<5 % evaluation of the covariance
K = feval(cov{:},hyp(:),x,z);
else
% We compute the indices j in the new hyperparameter vector hyp. The
% correction constants c are needed because some hyperparameters in hyp are
% powers of hyperparameters accepted by covSM.
if i<=P*Q % derivatives w.r.t. w
c = 0.5;
if smp, j = 1+3*(i-1); else j = 1+(i-1)*(2*D+1); end
elseif i<=(P+ D)*Q % derivatives w.r.t. m
c = -1.0; j = i- P *Q; [j1,j2] = ind2sub([D,Q],j);
if smp, j = 3+3*(j-1); else j = 1+j1+D+(j2-1)*(2*D+1); end
elseif i<=(P+2*D)*Q % derivatives w.r.t. v
c = -1.0; j = i-(P+D)*Q; [j1,j2] = ind2sub([D,Q],j);
if smp, j = 2+3*(j-1); else j = 1+j1+ (j2-1)*(2*D+1); end
else
error('Unknown hyperparameter')
end
K = c*feval(cov{:},hyp(:),x,z,j);
end |
Nick Cutroneo is currently on faculty at Central Connecticut State University. There he is the adjunct professor of classical guitar teaching lessons for majors and non-majors.
Nick Cutroneo is currently accepting private students as well as offering remote (Skype/FaceTime/etc...) lessons. For those interested in taking lessons with Nick, please visit his teaching website: http://www.nickcutroneoguitarstudio.com.
NCGS is located out of Manchester, CT and services the Greater Hartford area of Connecticut as well as providing lessons nationally and internationally via remote lessons. |
State Before: F : Type ?u.474133
α : Type u_1
β : Type ?u.474139
γ : Type ?u.474142
inst✝³ : DecidableEq α
inst✝² : DecidableEq β
inst✝¹ : Monoid α
s t : Finset α
a : α
m n : ℕ
inst✝ : Fintype α
hn : n ≠ 0
⊢ ↑(univ ^ n) = ↑univ State After: no goals Tactic: rw [coe_pow, coe_univ, Set.univ_pow hn] |
[STATEMENT]
lemma states_Times [simp]: "states (Times fsm1 fsm2) = states fsm1 * states fsm2"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. states (Times fsm1 fsm2) = states fsm1 * states fsm2
[PROOF STEP]
by (simp add: Times_def) |
subroutine t_bx
use box_module
implicit none
type(box) :: bx
bx = allbox(2)
print *, bx
bx = allbox_grc(bx, grow = 2)
print *, bx
contains
function allbox_grc(bx, grow, refine, coarsen) result(r)
type(box) :: r
type(box), intent(in) :: bx
integer, intent(in), optional :: grow, refine, coarsen
integer :: dm
r = bx
dm = r%dim
if ( present(grow) ) then
else if ( present(refine) ) then
else if ( present(coarsen) ) then
end if
end function allbox_grc
end subroutine t_bx
subroutine t_ba_self_intersection
use bl_error_module
use ml_boxarray_module
use box_util_module
use layout_module
use bl_prof_module
implicit none
type(boxarray) :: ba
integer :: dm
integer :: ng
integer, allocatable, dimension(:) :: ext, plo, phi, vsz, crsn, vrng
type(ml_boxarray) :: mba
character(len=64) :: test_set
integer :: i, n, j, k, sz
type(box) :: bx, cbx
type(bl_prof_timer), save :: bpt, bpt_r, bpt_s, bpt_b
integer :: cnt, cnt1, cnt2, cnt3
integer(ll_t) :: vol, vol1, vol2, vol3
integer, pointer :: ipv(:)
integer :: mxsz
logical :: verbose
type(layout) :: la
type bin
integer, pointer :: iv(:) => Null()
end type bin
type(bin), allocatable, dimension(:,:,:) :: bins
call build(bpt, "t_ba_self_intersection")
verbose = .true.
ng = 1
test_set = "grids.5034"
test_set = "grids.1071"
test_set = "grids.213"
test_set = "grids.60"
call build(bpt_r, "ba_read")
call read_a_mglib_grid(mba, test_set)
call destroy(bpt_r)
ba = mba%bas(1)
call build(la, ba, pd = mba%pd(1))
dm = get_dim(ba)
allocate(ext(dm), plo(dm), phi(dm), vsz(dm), crsn(dm), vrng(dm))
cnt = 0; cnt1 = 0; cnt2 = 0; cnt3 = 0
vol = 0; vol1 = 0; vol2 = 0; vol3 = 0
crsn = 32
call init_box_hash_bin(la)
call build(bpt_b, "build hash")
bx = boxarray_bbox(ba)
cbx = coarsen(bx,crsn)
plo = lwb(cbx)
phi = upb(cbx)
vsz = -Huge(1)
do n = 1, nboxes(ba)
vsz = max(vsz,extent(get_box(ba,n)))
end do
print *, 'max extent', vsz
print *, 'crsn max extent', int_coarsen(vsz,crsn+1)
vrng = int_coarsen(vsz,crsn+1)
print *, 'vrng = ', vrng
allocate(bins(plo(1):phi(1),plo(2):phi(2),plo(3):phi(3)))
do k = plo(3), phi(3); do j = plo(2), phi(2); do i = plo(1), phi(1)
allocate(bins(i,j,k)%iv(0))
end do;end do; end do
do n = 1, nboxes(ba)
ext = int_coarsen(lwb(get_box(ba,n)),crsn)
if ( .not. contains(cbx, ext) ) then
call bl_error("Not Contained!")
end if
sz = size(bins(ext(1),ext(2),ext(3))%iv)
allocate(ipv(sz+1))
ipv(1:sz) = bins(ext(1),ext(2),ext(3))%iv(1:sz)
ipv(sz+1) = n
deallocate(bins(ext(1),ext(2),ext(3))%iv)
bins(ext(1),ext(2),ext(3))%iv => ipv
end do
call destroy(bpt_b)
if ( verbose ) then
call print(bx, 'bbox(ba) ')
call print(cbx, 'coarsen(bbox(ba),crsn) ')
print *, 'extents(bx)', extent(bx)
print *, 'extents(cbx)', extent(cbx)
print *, 'plo ', plo
print *, 'phi ', phi
mxsz = -Huge(1)
do k = plo(3), phi(3); do j = plo(2), phi(2); do i = plo(1), phi(1)
mxsz = max(mxsz, size(bins(i,j,k)%iv))
end do;end do; end do
print *, 'max bin sz ', mxsz
sz = Huge(1)
do k = plo(3), phi(3); do j = plo(2), phi(2); do i = plo(1), phi(1)
sz = min(sz, size(bins(i,j,k)%iv))
end do;end do; end do
print *, 'min bin sz ', sz
sz = 0
do k = plo(3), phi(3); do j = plo(2), phi(2); do i = plo(1), phi(1)
sz = sz + size(bins(i,j,k)%iv)
end do;end do; end do
print *, 'tot bins ', sz
if ( sz /= nboxes(ba) ) then
call bl_error("sz /= nboxes(ba): ", sz)
end if
end if
call build(bpt_s, "ba_s")
do i = 1, nboxes(ba)
bx = grow(get_box(ba,i), ng)
call self_intersection(bx, ba)
call self_intersection_1(bx, ba)
call la_chk_box(la, bx)
end do
call destroy(bpt_s)
! Just a check of the result
print *, 'cnt = ', cnt
print *, 'cnt1 = ', cnt1
print *, 'cnt2 = ', cnt2
print *, 'cnt3 = ', cnt3
print *, 'vol = ', vol
print *, 'vol1 = ', vol1
print *, 'vol2 = ', vol2
print *, 'vol3 = ', vol3
do k = plo(3), phi(3); do j = plo(2), phi(2); do i = plo(1), phi(1)
deallocate(bins(i,j,k)%iv)
end do;end do; end do
call destroy(la)
call destroy(mba)
call destroy(bpt)
contains
subroutine la_chk_box(la, bx)
type(layout), intent(inout) :: la
type(box), intent(in) :: bx
type(box_intersector), pointer :: bi(:)
integer :: i
type(bl_prof_timer), save :: bpt_h1
call build(bpt_h1, "ba_h1")
bi => layout_get_box_intersector(la, bx)
do i = 1, size(bi)
cnt3 = cnt3 + 1
vol3 = vol3 + volume(bi(i)%bx)
end do
deallocate(bi)
call destroy(bpt_h1)
end subroutine la_chk_box
subroutine self_intersection(bx, ba)
type(box), intent(in) :: bx
type(boxarray), intent(in) :: ba
integer :: i
type(bl_prof_timer), save :: bpt_i
type(box) :: bx1
call build(bpt_i, "ba_i")
do i = 1, nboxes(ba)
bx1 = intersection(bx, get_box(ba,i))
if ( empty(bx1) ) cycle
cnt = cnt + 1
vol = vol + volume(bx1)
end do
call destroy(bpt_i)
end subroutine self_intersection
subroutine self_intersection_1(bx, ba)
type(box), intent(in) :: bx
type(boxarray), intent(in) :: ba
integer :: i
type(bl_prof_timer), save :: bpt_i
type(box) :: bx1(nboxes(ba)),bx2(nboxes(ba))
logical :: is_empty(nboxes(ba))
call build(bpt_i, "ba_i1")
do i = 1, nboxes(ba)
bx2(i) = get_box(ba,i)
end do
call box_intersection_and_empty(bx1, is_empty, bx, bx2)
do i = 1, size(bx1)
if ( is_empty(i) ) cycle
vol1 = vol1 + volume(bx1(i))
end do
cnt1 = cnt1 + count(.not.is_empty)
call destroy(bpt_i)
end subroutine self_intersection_1
end subroutine t_ba_self_intersection
function log2(vin) result(r)
implicit none
integer :: r
integer, intent(in) :: vin
integer :: v
r = 0
v = vin
do
v = ishft(v, -1)
if ( v == 0 ) exit
r = r + 1
end do
end function log2
|
\section{Covariant approaches to quantum gravity} |
[STATEMENT]
lemma MAX:"Suc (max k m) \<le> n \<Longrightarrow> k \<le> n \<and> m \<le> n"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. Suc (max k m) \<le> n \<Longrightarrow> k \<le> n \<and> m \<le> n
[PROOF STEP]
by (simp add: max_def, case_tac "k \<le> m", simp+) |
1. Changed by pressure so as to be no longer straight; crooked; as, a bent pin; a bent lever.
2. Strongly inclined toward something, so as to be resolved, determined, set, etc.; said of the mind, character, disposition, desires, etc, and used with on; as, to be bent on going to college; he is bent on mischief.
3. <botany> A reedlike grass of the genus Agrostis, especially. Agrostis vulgaris, or redtop. The name is also used of many other grasses, esp. In America.
4. <agriculture> Any neglected field or broken ground; a common; a moor. "Bowmen bickered upon the bent."
Origin: AS. Beonet; akin to OHG. Pinuz, G. Binse, rush, bent grass; of unknown origin. |
State Before: 𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε δ : ℝ
h : ε ≤ δ
⊢ A f L r ε ⊆ A f L r δ State After: case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε δ : ℝ
h : ε ≤ δ
x : E
r' : ℝ
r'r : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
⊢ x ∈ A f L r δ Tactic: rintro x ⟨r', r'r, hr'⟩ State Before: case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε δ : ℝ
h : ε ≤ δ
x : E
r' : ℝ
r'r : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
⊢ x ∈ A f L r δ State After: case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε δ : ℝ
h : ε ≤ δ
x : E
r' : ℝ
r'r : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
y : E
hy : y ∈ ball x r'
z : E
hz : z ∈ ball x r'
⊢ 0 ≤ r Tactic: refine' ⟨r', r'r, fun y hy z hz => (hr' y hy z hz).trans (mul_le_mul_of_nonneg_right h _)⟩ State Before: case intro.intro
𝕜 : Type u_1
inst✝⁴ : NontriviallyNormedField 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
F : Type u_3
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace 𝕜 F
f : E → F
K : Set (E →L[𝕜] F)
L : E →L[𝕜] F
r ε δ : ℝ
h : ε ≤ δ
x : E
r' : ℝ
r'r : r' ∈ Ioc (r / 2) r
hr' : ∀ (y : E), y ∈ ball x r' → ∀ (z : E), z ∈ ball x r' → ‖f z - f y - ↑L (z - y)‖ ≤ ε * r
y : E
hy : y ∈ ball x r'
z : E
hz : z ∈ ball x r'
⊢ 0 ≤ r State After: no goals Tactic: linarith [mem_ball.1 hy, r'r.2, @dist_nonneg _ _ y x] |
module InsSort
import Data.Vect
%default total
insert : Ord a => a -> Vect n a -> Vect (S n) a
insert x [] = [x]
insert x (y :: ys) = case compare x y of
GT => y :: insert x ys
_ => x :: y :: ys
isort : Ord a => Vect n a -> Vect n a
isort [] = []
isort (x :: xs) = insert x (isort xs) |
------------------------------------------
-- Mathematical induction derived from Z
------------------------------------------
module sv20.assign2.SetTheory.PMI where
open import sv20.assign2.SetTheory.Logic
open import sv20.assign2.SetTheory.ZAxioms
open import sv20.assign2.SetTheory.Algebra
open import sv20.assign2.SetTheory.Subset
open import sv20.assign2.SetTheory.Pairs
-- Axiom of infinity
postulate
infinity : ∃ (λ I → ∅ ∈ I ∧ ∀ x → x ∈ I → x ∪ singleton x ∈ I)
succ : 𝓢 → 𝓢
succ x = x ∪ singleton x
-- Inductive property
Inductive : 𝓢 → Set
Inductive A = ∅ ∈ A ∧ ((x : 𝓢) → x ∈ A → succ x ∈ A)
-- An inductive set.
I : 𝓢
I = proj₁ infinity
formulaN : 𝓢 → Set
formulaN x = (A : 𝓢) → Inductive A → x ∈ A
fullN : ∃ (λ B → {z : 𝓢} → z ∈ B ⇔ z ∈ I ∧ formulaN z)
fullN = sub formulaN I
ℕ : 𝓢
ℕ = proj₁ fullN
x∈ℕ→x∈InductiveSet : (x : 𝓢) → x ∈ ℕ → (A : 𝓢) → Inductive A → x ∈ A
x∈ℕ→x∈InductiveSet x h = ∧-proj₂ (∧-proj₁ (proj₂ _ fullN) h)
-- PMI version from Ivorra Castillo (n.d.), Teorema 8.13.
PMI : (A : 𝓢) → A ⊆ ℕ → ∅ ∈ A → ((n : 𝓢) → n ∈ A → succ n ∈ A) → A ≡ ℕ
PMI A h₁ h₂ h₃ = equalitySubset A ℕ (prf₁ , prf₂)
where
prf₁ : (z : 𝓢) → z ∈ A → z ∈ ℕ
prf₁ z h = h₁ z h
inductiveA : Inductive A
inductiveA = h₂ , h₃
prf₂ : (z : 𝓢) → z ∈ ℕ → z ∈ A
prf₂ z h = x∈ℕ→x∈InductiveSet z h A inductiveA
-- References
--
-- Suppes, Patrick (1960). Axiomatic Set Theory.
-- The University Series in Undergraduate Mathematics.
-- D. Van Nostrand Company, inc.
--
-- Enderton, Herbert B. (1977). Elements of Set Theory.
-- Academic Press Inc.
--
-- Ivorra Castillo, Carlos (n.d.). Lógica y Teoría de
-- Conjuntos. https://www.uv.es/ivorra/
|
1
-- @@stderr --
dtrace: invalid probe specifier foofile: probe description foofile::: does not match any probes
|
#' Download BEA metadata into library/data folder if needed
#'
#' @param datasetList list of BEA datasets to update local metadata file for (e.g., list('NIPA', 'FixedAssets'))
#' @param beaKey Your API key
#' @keywords metadata search
#' @return Nothing. This updates local .RData files to be used in beaSearch.
#' @import httr data.table
#' @importFrom jsonlite fromJSON
#' @export
#' @examples
#' beaUpdateMetadata(list('RegionalData', 'NIPA'), beaKey = 'yourAPIkey')
beaUpdateMetadata <- function(datasetList, beaKey){
'Datasetname' <- NULL
'MetaDataUpdated' <- NULL
'DatasetName' <- NULL
'TableID' <- NULL
'Line' <- NULL
'.' <- NULL
'SeriesCode' <- NULL
'RowNumber' <- NULL
'LineDescription' <- NULL
'LineNumber' <- NULL
'ParentLineNumber' <- NULL
'Tier' <- NULL
'Path' <- NULL
'APITable' <- NULL
'TableName' <- NULL
'ReleaseDate' <- NULL
'NextReleaseDate' <- NULL
'Parameter' <- NULL
'ParamValue' <- NULL
#datasetList <- list('nipa','niunderlyingdetail','fixedassets','regionalproduct','regionalincome')
#update as of 2017-07-12: 'regionaldata' dataset removed from API, merged into regionalproduct and regionalincome
requireNamespace('data.table', quietly = TRUE)
requireNamespace('httr', quietly = TRUE)
requireNamespace('jsonlite', quietly = TRUE)
beaMetadataStore <- paste0(.libPaths()[1], '/beaR/data')
beaMetaSpecs <- list(
'UserID' = beaKey ,
'method' = 'GetData',
'datasetname' = 'APIDatasetMetaData',
'dataset' = paste(datasetList, collapse = ','),
'ResultFormat' = 'json'
)
#Get as httr response
beaResponse <- bea.R::beaGet(beaMetaSpecs, asList = FALSE, asTable = FALSE, isMeta = TRUE)
#Check to ensure it is httr response
if(class(beaResponse) != 'response'){
warning('API metadata not returned. Verify that you are using a valid API key, represented as a character string.')
return('API metadata not returned. Verify that you are using a valid API key, represented as a character string.')
}
lapply(datasetList, function(outdat){
try(suppressWarnings(file.remove(paste0(beaMetadataStore,'/', outdat, '.RData'))), silent = TRUE)
})
#Get JSON String
respStr <- httr::content(beaResponse, as = 'text')
#Actually, we can get this same info faster using GetParamValsList or something
#The line below should be suppressed if fixed - JSON was malformed due to missing commas
#respStr <- gsub('}{', '},{', respStr, fixed = TRUE)
metaList <-jsonlite::fromJSON(respStr)
metasetInfo <- data.table::as.data.table(metaList$BEAAPI$Datasets)
if(dim(metasetInfo)[1] == 0){
warning('API metadata not returned. Verify that you are using a valid API key, represented as a character string.')
return('API metadata not returned. Verify that you are using a valid API key, represented as a character string.')
}
#bind dataset metadata together
#This is a bit of a time drag, so we want to only do it if we need to
#And do it separately for each dataset
if('nipa' %in% tolower(datasetList)){try({
nipaMDU <- metasetInfo[tolower(Datasetname) == 'nipa', MetaDataUpdated]
nipaTabs <- data.table::rbindlist(metasetInfo[tolower(Datasetname) == 'nipa', APITable])
nipaTabs[, DatasetName := 'NIPA']
#TableIDN has become obsolete; we should no longer overwrite to rename
#setnames(nipaTabs, old = names(nipaTabs)[grepl('tableidn', tolower(names(nipaTabs)),fixed = T)], new = 'TableID')
#...however, there does appear to be an issue with capitalization
setnames(nipaTabs, old = names(nipaTabs)[tolower(names(nipaTabs)) == 'tableid'], new = 'TableID')
#Backend issue: Sometimes, NIPA table 38 has a NULL table for the line descriptions. Handle and warn the user.
handler <- c()
nipaRowList <- lapply(nipaTabs[, TableID], function(thisTab){
tabPart <- nipaTabs[TableID == thisTab, data.table::as.data.table(Line[[1]])]
tryCatch({tabPart[, TableID := thisTab]}, error = function(e){handler <<- c(handler, paste0(e, ': NIPA Table ', thisTab))})
return(tabPart)
})
nipaRows <- data.table::rbindlist(nipaRowList, use.names = TRUE)
data.table::setkey(nipaTabs, key = TableID)
data.table::setkey(nipaRows, key = TableID)
nipaIndex <- nipaTabs[nipaRows][,.(
SeriesCode,
RowNumber,
LineDescription,
LineNumber,
ParentLineNumber,
Tier,
Path,
TableID,
DatasetName,
TableName,
ReleaseDate,
NextReleaseDate,
MetaDataUpdated = nipaMDU
)]
save(nipaIndex, file=paste0(beaMetadataStore, '/NIPA.RData'))
})}
if('niunderlyingdetail' %in% tolower(datasetList)){try({
niudMDU <- metasetInfo[tolower(Datasetname) == 'niunderlyingdetail', MetaDataUpdated]
niudTabs <- data.table::rbindlist(metasetInfo[tolower(Datasetname) == 'niunderlyingdetail', APITable])
niudTabs[, DatasetName := 'NIUnderlyingDetail']
#TableIDN has become obsolete; we should no longer overwrite to rename
#setnames(niudTabs, old = names(niudTabs)[grepl('tableidn', tolower(names(niudTabs)),fixed = T)], new = 'TableID')
#...however, there does appear to be an issue with capitalization
setnames(niudTabs, old = names(niudTabs)[tolower(names(niudTabs)) == 'tableid'], new = 'TableID')
niudRows <- data.table::rbindlist(lapply(niudTabs[, TableID], function(thisTab){
tabPart <- niudTabs[TableID == thisTab, data.table::as.data.table(Line[[1]])]
tabPart[, TableID := thisTab]
return(tabPart)
}))
data.table::setkey(niudTabs, key = TableID)
data.table::setkey(niudRows, key = TableID)
niudIndex <- niudTabs[niudRows][,.(
SeriesCode,
RowNumber,
LineDescription,
LineNumber,
ParentLineNumber,
Tier,
Path,
TableID,
DatasetName,
TableName,
ReleaseDate,
NextReleaseDate,
MetaDataUpdated = niudMDU
)]
save(niudIndex, file=paste0(beaMetadataStore, '/NIUnderlyingDetail.RData'))
})}
if('fixedassets' %in% tolower(datasetList)){try({
fixaMDU <- metasetInfo[tolower(Datasetname) == 'fixedassets', MetaDataUpdated]
fixaTabs <- data.table::rbindlist(metasetInfo[tolower(Datasetname) == 'fixedassets', APITable])
fixaTabs[, DatasetName := 'FixedAssets']
#No TableIDN here
#setnames(fixaTabs, old = names(fixaTabs)[grepl('tableidn', tolower(names(fixaTabs)),fixed = T)], new = 'TableID')
#...however, there does appear to be an issue with capitalization
setnames(fixaTabs, old = names(fixaTabs)[tolower(names(fixaTabs)) == 'tableid'], new = 'TableID')
fixaRows <- data.table::rbindlist(lapply(fixaTabs[, TableID], function(thisTab){
tabPart <- fixaTabs[TableID == thisTab, data.table::as.data.table(Line[[1]])]
tabPart[, TableID := thisTab]
return(tabPart)
}))
data.table::setkey(fixaTabs, key = TableID)
data.table::setkey(fixaRows, key = TableID)
fixaIndex <- fixaTabs[fixaRows][,.(
SeriesCode,
RowNumber,
LineDescription,
LineNumber,
ParentLineNumber,
Tier,
Path,
TableID,
DatasetName,
TableName,
ReleaseDate,
NextReleaseDate,
MetaDataUpdated = fixaMDU
)]
save(fixaIndex, file=paste0(beaMetadataStore, '/FixedAssets.RData'))
})}
#Regional data: Treated differently from National data
#Set "RegionalData"
if('regionaldata' %in% tolower(datasetList)){
message('The RegionalData dataset has been removed from the API; please use RegionalIncome and RegionalProduct instead.');
return('The RegionalData dataset has been removed from the API; please use RegionalIncome and RegionalProduct instead.');
# try({
#
# rdatMDU <- metasetInfo[tolower(Datasetname) == 'regionaldata', MetaDataUpdated]
# rdatParam <- metaList$BEAAPI$Datasets$Parameter[[grep('regionaldata', tolower(metaList$BEAAPI$Datasets$Datasetname), fixed=T)]]
# #rbindlist(rdatParam[[1]])[ParamValue != 'NULL']
# rdatKeys <- as.data.table(rdatParam$Keycode$ParamValue[[1]])
# rdatKeys[, Parameter := 'Keycode']
# rdatFips <- as.data.table(rdatParam$GeoFIPS$ParamValue[[2]])
# rdatFips[, Parameter := 'GeoFIPS']
#
# rdatIndex <- rbindlist(list(rdatKeys, rdatFips), use.names = TRUE)
# rdatIndex[, DatasetName := 'RegionalData']
# rdatIndex[, MetaDataUpdated := rdatMDU]
#
# save(rdatIndex, file=paste0(beaMetadataStore, '/RegionalData.RData'))
# })
}
#Dataset "RegionalProduct"
if('regionalproduct' %in% tolower(datasetList)){try({
rprdMDU <- metasetInfo[tolower(Datasetname) == 'regionalproduct', MetaDataUpdated]
rprdParams <- metaList$BEAAPI$Datasets$Parameters[[grep('regionalproduct', tolower(metaList$BEAAPI$Datasets$Datasetname), fixed=T)]]
rprdParNms <- attributes(rprdParams)$names
rprdPages <- data.table::rbindlist(rprdParams)[ParamValue != 'NULL', ParamValue]
rprdIndex <- data.table::rbindlist(lapply(1:length(rprdPages), function(x){
rprdDT <- data.table::as.data.table(rprdPages[[x]])
rprdDT[, Parameter := rprdParNms[x]]
return(rprdDT)
}))
rprdIndex[, DatasetName := 'RegionalProduct']
rprdIndex[, MetaDataUpdated := rprdMDU]
save(rprdIndex, file=paste0(beaMetadataStore, '/RegionalProduct.RData'))
}, silent = TRUE)}
#Dataset "RegionalIncome"
if('regionalincome' %in% tolower(datasetList)){try({
rincMDU <- metasetInfo[tolower(Datasetname) == 'regionalincome', MetaDataUpdated]
rincParams <- metaList$BEAAPI$Datasets$Parameters[[grep('regionalincome', tolower(metaList$BEAAPI$Datasets$Datasetname), fixed=T)]]
rincParNms <- attributes(rincParams)$names
rincPages <- data.table::rbindlist(rincParams)[ParamValue != 'NULL', ParamValue]
rincIndex <- data.table::rbindlist(lapply(1:length(rincPages), function(x){
rincDT <- data.table::as.data.table(rincPages[[x]])
rincDT[, Parameter := rincParNms[x]]
return(rincDT)
}))
rincIndex[, DatasetName := 'RegionalIncome']
rincIndex[, MetaDataUpdated := rincMDU]
save(rincIndex, file=paste0(beaMetadataStore, '/RegionalIncome.RData'))
}, silent = TRUE)}
# if(length(datasetList) > length(metasetInfo[, Datasetname])){
# staleList <- datasetList[
# !(tolower(datasetList) %in% tolower(metasetInfo[, Datasetname]))
# ]
# message('beaR attempted to update metadata for the following dataset(s) which could not be returned from the API: ')
# message(paste(
# toupper(staleList),
# collapse = ', '
# ))
# message('Removing stale data from local storage...')
## return(staleList)
# }# else {return(list())}
}
|
subroutine Bamp_ppm(q,mc,ms,Bppm)
c--- u + g -> c + s + d (t-channel single-charm)
************************************************************************
* *
* AUTHORS: R. FREDERIX AND F. TRAMONTANO *
* DATE : 12/17/2008 *
* *
************************************************************************
implicit none
include 'constants.f'
include 'zprods_com.f'
include 'epinv.f'
include 'stopf1inc.f'
double precision q(mxpart,4),dot,cDs,gDs,cDg,mc,ms,
. mc2,ms2,u,xsn,xsd,xs
double complex trc,trg,trs,trsgc,zppm,Bppm
mc2=mc**2
ms2=ms**2
cDs=dot(q,3,4)+mc2*dot(q,4,2)/2d0/dot(q,3,2)
. +ms2*dot(q,3,2)/2d0/dot(q,4,2)
cDg=dot(q,3,2)
gDs=dot(q,4,2)
u=mc2+ms2+2d0*cDs
xsn=(1d0-dsqrt(1d0-4d0*ms*mc/(u-(ms-mc)**2)))
xsd=(1d0+dsqrt(1d0-4d0*ms*mc/(u-(ms-mc)**2)))
xs=-xsn/xsd
trg=2d0*za(5,2)*zb(2,1)
trs=2d0*za(5,4)*zb(4,1)+ms**2*za(5,2)*zb(2,1)/gDs
trc=2d0*za(5,3)*zb(3,1)+mc**2*za(5,2)*zb(2,1)/cDg
trsgc=2d0*zb(1,4)*za(4,2)*zb(2,3)*za(3,5)
zppm=za(2,3)**2*zb(4,3)
Bppm = mc*ms*(gDs+cDg)*(cDs*(-4*trc*gDs**4+2*(trsgc+mc2*trg-2*ms2
& *trc)*gDs**3+ms2*(-2*(trs+trg)*cDg+trsgc+3*mc2*trg)*gDs**2+ms2*
& cDg*(2*(trs+trg)*cDg-trsgc-ms2*trg)*gDs+2*ms2**2*trg*cDg**2)+ms
& 2*gDs*(cDg*(4*trc*gDs**2-2*(trsgc+mc2*trs-2*ms2*trc)*gDs+ms2*(m
& c2*trg-trsgc))+mc2*gDs*(2*trs*gDs-2*trg*gDs+trsgc-3*ms2*trg))+2
& *trg*cDs**2*gDs*(2*gDs*(gDs+ms2)-cDg*(2*gDs+3*ms2)))*tr5Xs/((cD
& s**2-mc2*ms2)*gDs**3)/2.0d+0
Bppm = mc*mc2*ms*(gDs+cDg)*(2*mc2*trg*cDs*gDs**2+cDg**2*(cDs*(-2*
& trc*gDs+trsgc+3*ms2*trg)+4*mc2*trs*gDs-2*ms2*trc*gDs+4*trg*cDs*
& *2+ms2*trsgc-3*mc2*ms2*trg)-cDg*gDs*(cDs*(-2*trc*gDs+trsgc+mc2*
& trg)+6*trg*cDs**2+mc2*(trsgc-ms2*trg))+2*cDg**3*(ms2*trc-2*trs*
& cDs))*tr5Xc/(cDg**2*(cDs**2-mc2*ms2)*gDs)/2.0d+0+Bppm
Bppm = mc*ms*(cDs*(4*trc*gDs**4-2*(trsgc+mc2*trg-2*ms2*trc)*gDs**
& 3+ms2*(2*(trs+trg)*cDg-trsgc-3*mc2*trg)*gDs**2+ms2*cDg*(-2*(trs
& +trg)*cDg+trsgc+ms2*trg)*gDs-2*ms2**2*trg*cDg**2)+ms2*gDs*(cDg*
& (-4*trc*gDs**2+2*(trsgc+mc2*trs-2*ms2*trc)*gDs+ms2*(trsgc-mc2*t
& rg))+mc2*gDs*(2*(trg-trs)*gDs-trsgc+3*ms2*trg))+2*trg*cDs**2*gD
& s*(cDg*(2*gDs+3*ms2)-2*gDs*(gDs+ms2)))*tr4Xs/((cDs**2-mc2*ms2)*
& gDs**2)/2.0d+0+Bppm
Bppm = mc*mc2*ms*(-2*mc2*trg*cDs*gDs**2-cDg**2*(cDs*(-2*trc*gDs+t
& rsgc+3*ms2*trg)+4*mc2*trs*gDs-2*ms2*trc*gDs+4*trg*cDs**2+ms2*tr
& sgc-3*mc2*ms2*trg)+cDg*gDs*(cDs*(-2*trc*gDs+trsgc+mc2*trg)+6*tr
& g*cDs**2+mc2*(trsgc-ms2*trg))+cDg**3*(4*trs*cDs-2*ms2*trc))*tr4
& Xc/(cDg*(cDs**2-mc2*ms2)*gDs)/2.0d+0+Bppm
Bppm = Bppm-mc*ms*(2*mc2**2*ms2*trg*gDs**2+cDg**2*(cDs*(4*mc2*tr
& s*gDs-2*ms2*trc*gDs+ms2*trsgc+mc2*ms2*trg)+mc2*ms2*(2*trg*gDs-2
& *trc*gDs+trsgc+3*ms2*trg)-2*trg*cDs**2*gDs)+cDg*gDs*(2*(trg*cDs
& **2+mc2*ms2*(trc-trg))*gDs-mc2*((trsgc+5*ms2*trg)*cDs+ms2*(trsg
& c+mc2*trg)))+2*ms2*cDg**3*(trc*cDs-2*mc2*trs))*tr3Xs/(cDg*(cDs*
& *2-mc**2*ms**2)*gDs)/2.0d+0
Bppm = Bppm-mc*ms*(cDg*gDs*(cDs*(4*trc*gDs**2-2*(trsgc+mc2*trs+2
& *mc2*trg-2*ms2*trc)*gDs-ms2*(trsgc+5*mc2*trg))-mc2*ms2*(2*(trs+
& trg)*gDs+trsgc+ms2*trg))+mc2*gDs**2*(-4*trc*gDs**2+2*((trs+trg)
& *cDs+trsgc+mc2*trg-2*ms2*trc)*gDs+trsgc*(cDs+ms2)+ms2*trg*(cDs+
& 3*mc2))+2*mc2*ms2*cDg**2*((trs+trg)*gDs+ms2*trg))*tr3Xc/((cDs-m
& c*ms)*(cDs+mc*ms)*gDs**2)/2.0d+0
Bppm = ms*(cDg**3*(cDs**2*(8*trc*gDs**3+2*(-trsgc+mc2*trs+3*ms2*t
& rc)*gDs**2-ms2*(trsgc+mc2*trg)*gDs-2*mc2*ms2**2*trc)+mc2*ms2*cD
& s*(2*(-trs-trg+trc)*gDs**2+ms2**2*trc)+mc2*ms2*gDs*(-4*trc*gDs*
& *2-4*(mc2*trs+ms2*trc)*gDs+ms2*(trsgc+mc2*trg))+2*ms2*trc*cDs**
& 4-ms2**2*trc*cDs**3)+mc2*cDg**2*gDs**2*(2*cDs*gDs*(-trc*(2*gDs+
& ms2)+trsgc+mc2*trs)+mc2*ms2*((2*trs+4*trg-2*trc)*gDs+trsgc-ms2*
& trs)-cDs**2*(2*trg*gDs+trsgc-ms2*trs))+mc2*(cDs-mc*ms)*(cDs+mc*
& ms)*gDs**4*((trg+trc)*(8*gDs-ms2)+trs*(2*gDs+2*cDs+ms2-mc2))+2*
& mc2*cDg*(cDs-mc*ms)*(cDs+mc*ms)*gDs**3*(trg*gDs-ms2*trs)+2*ms2*
& trc*cDg**4*cDs*(cDs-mc*ms)*(cDs+mc*ms))*lVs/(mc*cDg**2*(cDs-mc*
& ms)*(cDs+mc*ms)*gDs**3)/4.0d+0+Bppm
Bppm = Bppm-mc*(cDs**2*(2*(mc2*(trs+4*trg+4*trc)-trg*cDg)*gDs**5
& -(-2*trg*cDg**2+mc2**2*trs+mc2*ms2*(-trs+trg+trc))*gDs**4+cDg*(
& -4*trs*cDg**2-2*(-trsgc+2*mc2*trs+ms2*trc)*cDg+mc2*(trsgc-2*ms2
& *trs+ms2*trg))*gDs**3+ms2*cDg**2*(3*trg*cDg-3*trc*cDg+trsgc+mc2
& *trs+2*mc2*trg)*gDs**2-ms2**2*trc*cDg**3*gDs-2*mc2*ms2**2*trc*c
& Dg**3)+ms2*cDs*(2*mc2*trg*cDg*gDs**4-2*mc2**2*trs*gDs**4+cDg**3
& *(-4*trc*gDs**3+2*(trsgc+mc2*trs-ms2*trc)*gDs**2+mc2*ms2**2*trc
& )+2*mc2*(-trs-2*trg+trc)*cDg**2*gDs**3-2*mc2*ms2*trc*cDg**4)+cD
& s**3*(-2*trg*cDg*gDs**4+2*mc2*trs*gDs**4+2*trg*cDg**2*gDs**3+2*
& ms2*trc*cDg**4-ms2**2*trc*cDg**3)+mc2*ms2*gDs*(cDg**3*(4*trs*gD
& s**2+ms2*(2*trs-trg+trc)*gDs+ms2**2*trc)+cDg*gDs**2*(2*trg*gDs*
& *2-mc2*(trsgc+ms2*(trg-2*trs)))+cDg**2*gDs*((4*trc-2*trg)*gDs**
& 2+2*(-2*trsgc+mc2*trs+2*ms2*trc)*gDs-ms2*(trsgc+mc2*(trs+2*trg)
& ))+mc2*gDs**3*(-2*(trs+4*trg+4*trc)*gDs+mc2*trs+ms2*(-trs+trg+t
& rc)))+2*ms2*trc*cDg**3*cDs**4)*lVc/(ms*cDg**2*(cDs**2-mc**2*ms*
& *2)*gDs**3)/4.0d+0
Bppm = trg*xs*cDs*(mc2*gDs**2-2*cDg*cDs*gDs+ms2*cDg**2)*lRcs/((xs
& **2-1)*cDg*gDs**2)+Bppm
Bppm = (mc2*cDg**3*(-80*trs*gDs**4-cDs*(72*trs*gDs**3+4*ms2*(5*tr
& s+22*trg+30*trc)*gDs**2+2*ms2*(-17*mc2*trs+9*ms2*trg-26*mc2*trg
& +34*ms2*trc)*gDs+ms2**2*(-9*trsgc+mc2*(-8*trs-17*trg+3*trc)+5*m
& s2*trc))+4*ms2*(-9*trs-4*trg+37*trc)*gDs**3+ms2*(-66*trsgc+ms2*
& (88*trc-6*(trs+7*trg))+mc2*(158*trs-13*trg-3*trc))*gDs**2+9*(mc
& 2-2*ms2)*ms2*trsgc*gDs+mc2*ms2**2*(26*trs+17*trg+13*trc)*gDs+6*
& (mc-ms)*(ms+mc)*ms2*trc*cDs**2+mc2*ms2**2*(9*trsgc+ms2*(-8*trs+
& trg+8*trc)))+mc2*cDg**2*gDs*(4*(41*trg+32*trc)*gDs**4-12*(-6*tr
& g*cDs-3*trsgc+7*mc2*trs+3*ms2*(trc-2*trg))*gDs**3+2*(18*trg*cDs
& **2+2*(9*trsgc-27*mc2*trs+26*ms2*trg+17*ms2*trc)*cDs+ms2*(9*trs
& gc+6*ms2*trs-31*mc2*trs+8*mc2*trg+58*mc2*trc))*gDs**2-ms2*(2*(9
& *trsgc+5*mc2*trs+31*mc2*trg+13*mc2*trc)*cDs+mc2*(54*trsgc+3*ms2
& *trs-31*mc2*trs+39*ms2*trg+23*mc2*trg-44*ms2*trc))*gDs-9*mc2*ms
& 2*((trsgc+ms2*trg)*cDs+ms2*(trsgc+mc2*trg)))+mc2*cDg*gDs**2*(4*
& (23*trg+32*trc)*gDs**4+cDs*(8*(7*trg+16*trc)*gDs**3+12*(-ms2*tr
& s+mc2*trs+3*mc2*trg)*gDs**2+2*mc2*(18*trsgc-18*mc2*trs+35*ms2*t
& rg+17*ms2*trc)*gDs-9*mc2*ms2*(trsgc+mc2*trg))-2*(6*ms2*(trs+4*t
& rg+4*trc)+mc2*(-6*trs-trg+8*trc))*gDs**3+(4*mc2*(9*trsgc+3*ms2*
& trs+8*ms2*trg-19*ms2*trc)-12*mc2**2*trs+6*ms2**2*(-trs+trg+trc)
& )*gDs**2+18*trg*cDs**2*(mc2-2*gDs)*gDs+mc2*ms2*(27*trsgc+6*ms2*
& trs+mc2*(-22*trs+27*trg+18*trc))*gDs-9*mc2**2*ms2*(trsgc+ms2*tr
& g))+mc2**2*gDs**3*((46*trg+64*trc)*gDs**3+cDs*(4*(7*trg+16*trc)
& *gDs**2+6*(mc-ms)*(ms+mc)*trs*gDs+9*mc2*(trsgc+ms2*trg))+2*(mc2
& *(3*trs-20*(trg+trc))-3*ms2*(trs+4*(trg+trc)))*gDs**2-18*trg*cD
& s**2*gDs+(mc2*(9*trsgc+ms2*(6*trs-2*trg-29*trc))+5*mc2**2*trs+3
& *ms2**2*(-trs+trg+trc))*gDs+9*mc2*ms2*(trsgc+mc2*trg))+ms2*cDg*
& *4*(mc2*(-24*(-8*trs-3*trg+3*trc)*gDs**2+(36*trsgc+ms2*(52*trs+
& 70*trg-28*trc)-18*mc2*trs)*gDs+ms2*(27*trsgc-9*mc2*(2*trs+trg)+
& 2*ms2*(-8*trs+trg+8*trc)))-2*cDs*(68*trc*gDs**2+2*(-9*trsgc-17*
& mc2*trs-26*mc2*trg+34*ms2*trc)*gDs+ms2*(5*ms2*trc-9*trsgc)+mc2*
& ms2*(-8*trs-17*trg+6*trc)-3*mc2**2*trc)+12*(mc-ms)*(ms+mc)*trc*
& cDs**2)-6*ms2*cDg**5*(24*trc*gDs**2+6*(-trsgc+mc2*trs+3*ms2*trc
& )*gDs+2*(ms**2-mc**2)*trc*cDs+3*ms2*(-trsgc+2*mc2*trs+mc2*trg))
& )/(mc*ms*cDg**2*(2*cDg+mc2)*gDs**3)/1.2d+1+Bppm
Bppm = tr3s002ft*(3*mc*trs*(2*cDg+mc2)**2*gDs**2-3*mc*(trg+trc)*(
& 8*(2*cDg+mc2)*gDs**3+ms2*cDg**2*(gDs+cDs)))/(ms*cDg**2*gDs)+Bp
& pm
Bppm = B0cgsf*(cDg**3*(-4*(mc2*trs+2*ms2*trc)*gDs**3+ms2*cDs*(-8*
& trc*gDs**2+2*(trsgc+2*mc2*trs+3*mc2*trg-4*ms2*trc)*gDs+ms2*(trs
& gc+mc2*(trs+2*trg-trc)))+ms2*(2*trsgc+mc2*(5*trs+7*trg-3*trc)-6
& *ms2*trc)*gDs**2+ms2*(ms2+mc2)*trsgc*gDs+mc2*ms2**2*(3*trs+5*tr
& g+trc)*gDs+2*(mc-ms)*(ms+mc)*ms2*trc*cDs**2+mc2*ms2**2*(trsgc+m
& s2*(trc-trs)))+mc2*cDg**2*gDs*(2*(trg-2*trs)*gDs**3+cDs*(2*(trg
& -2*trs)*gDs**2-ms2*(trs+trg+3*trc)*gDs-ms2*(trsgc+ms2*trg))+(2*
& trsgc-3*ms2*trs-4*mc2*trs+5*ms2*trg+3*ms2*trc)*gDs**2+ms2*(-2*t
& rsgc-ms2*trs+4*mc2*trs+mc2*trg+5*ms2*trc)*gDs-ms2**2*(trsgc+mc2
& *trg))+mc2*gDs**3*((6*trg+8*trc)*gDs**3+cDs*(4*(trg+2*trc)*gDs*
& *2+2*(mc-ms)*(ms+mc)*trs*gDs+mc2*(trsgc+ms2*trg))+2*(mc2*trs-ms
& 2*(trs+4*(trg+trc)))*gDs**2-2*trg*cDs**2*gDs+mc2*trsgc*gDs+ms2*
& (ms2*(-trs+trg+trc)-mc2*(-2*trs+trg+4*trc))*gDs+mc2*ms2*(trsgc+
& mc2*trg))+mc2*cDg*gDs**2*(8*(trg+trc)*gDs**3+2*(trg*cDs+trsgc-m
& c2*trs+ms2*(trg-trc))*gDs**2+2*(trg*cDs**2+(-2*mc2*trs+3*ms2*tr
& g+2*ms2*trc)*cDs+ms2*(ms2*trs+mc2*(-2*trs+trg+trc)))*gDs+trsgc*
& (2*cDs+ms2+mc2)*gDs+ms2*(-mc2*trg*(cDs+ms2)-trsgc*(cDs+mc2)))-m
& s2*cDg**4*(8*trc*gDs**2+2*(-trsgc+mc2*trs+3*ms2*trc)*gDs+2*(ms*
& *2-mc**2)*trc*cDs+ms2*(-trsgc+2*mc2*trs+mc2*trg)))/(mc*ms*cDg**
& 2*gDs**3)/4.0d+0+Bppm
Bppm = Bppm-mc*tr3s00ft*(cDg*((26*trg+24*trc)*gDs**3+2*(2*trg*cD
& s+trsgc-3*mc2*trs+2*ms2*trg-ms2*trc)*gDs**2+(2*trg*cDs**2+2*(tr
& sgc-2*mc2*trs+5*ms2*trg+4*ms2*trc)*cDs+ms2*(trsgc+2*mc2*(-3*trs
& +trg+trc)))*gDs-ms2*((trsgc+mc2*trg)*cDs+mc2*(trsgc+ms2*trg)))+
& gDs*((22*trg+24*trc)*gDs**3+cDs*(4*(5*trg+6*trc)*gDs**2+mc2*(tr
& sgc+ms2*trg))-2*trg*cDs**2*gDs+mc2*(trsgc-2*ms2*trg-5*ms2*trc)*
& gDs+mc2*ms2*(trsgc+mc2*trg))-cDg**2*(8*trs*gDs**2+cDs*(4*trs*gD
& s+ms2*(-3*trs+4*trg+2*trc))+ms2*(9*trs-4*trc)*gDs+ms2*(3*trsgc-
& 4*mc2*trs+2*ms2*trg))+9*ms2*trs*cDg**3)/(ms*cDg**2*gDs)
Bppm = lc*mc*(cDg*(-4*trg*gDs**3+2*trg*(mc2-2*cDs)*gDs**2+2*mc2*(
& trg*cDs+2*trsgc-2*mc2*trs+ms2*(trc-2*trg))*gDs+mc2*ms2*(3*mc2*t
& rg-trsgc))+2*cDg**2*(2*trg*gDs**2+2*(trg*cDs+trsgc-3*mc2*trs+2*
& ms2*trc)*gDs-ms2*(2*trsgc+mc2*(trc-5*trg)))-mc2*trg*gDs*(2*gDs*
& (gDs+cDs)+mc2*ms2)+cDg**3*(6*ms2*(trg-trc)-8*trs*gDs)+mc2**2*tr
& sgc*gDs)/(ms*(2*cDg+mc2)**2*gDs)/2.0d+0+Bppm
Bppm = LsB2*mc*ms*(-2*mc2**2*trg*cDs*gDs**3+cDg**3*(cDs*(8*mc2*tr
& s*gDs-2*ms2*trc*gDs+ms2*trsgc-7*mc2*ms2*trg)+4*cDs**2*(-trc*gDs
& +trsgc+ms2*trg)+8*trg*cDs**3-mc2*ms2*(3*trsgc+ms2*trg))-2*cDg**
& 2*gDs*(2*mc2**2*(trs*gDs-ms2*trg)+mc2*cDs*(trsgc-trc*gDs)+cDs**
& 2*(-2*trc*gDs+trsgc+3*mc2*trg)+4*trg*cDs**3)+mc2*cDg*gDs**2*(cD
& s*(-2*trc*gDs+trsgc+mc2*trg)+8*trg*cDs**2+mc2*(trsgc-ms2*trg))+
& cDg**4*(-8*trs*cDs**2+2*ms2*trc*cDs+4*mc2*ms2*trs))/(cDg**2*(cD
& s**2-mc2*ms2)*gDs)+Bppm
Bppm = ms*tr3c00fs*(cDg*(cDs*(16*trc*gDs**2+2*(-trsgc-mc2*(trs+2*
& trg)+8*ms2*trc)*gDs+ms2*(-trsgc-mc2*trg+3*ms2*trc))-mc2*(2*(trs
& +2*trg)*gDs**2+(trsgc+ms2*(trg-trs))*gDs+ms2*(trsgc-3*ms2*trs-2
& *ms2*trg)))+cDg**2*(8*trc*gDs**2+2*(-trsgc+mc2*trs+3*ms2*trc)*g
& Ds+ms2*(mc2*(2*trs+trg)-trsgc))+mc2*gDs*(-10*trc*gDs**2+(2*(trs
& +trg)*cDs+trsgc+2*mc2*trg-7*ms2*trc)*gDs+trsgc*(cDs+ms2)+ms2*tr
& g*(cDs+mc2)))/(mc*gDs**3)+Bppm
Bppm = BfunX*(ms2*cDg**3*(mc2*((trs+trg-trc)*gDs**2+ms2*(trs+trg+
& trc)*gDs+ms2**2*(trs+trg+trc))+mc2*cDs*(2*(trs+trg)*gDs+ms2*(tr
& s+trg-trc))+2*trc*cDs**2*(2*gDs+mc2)+4*trc*cDs**3)+2*mc2*cDg*gD
& s**3*((trg+trc)*(4*gDs**2-ms2*(gDs+cDs))+trs*(gDs-ms2)*(2*(gDs+
& cDs)+ms2))+mc2*gDs**4*((trg+trc)*(8*gDs*(gDs+cDs)-2*ms2*(cDs-3*
& gDs)-ms2**2)+trs*(2*(gDs+cDs)+ms2)**2)+mc2*ms2*cDg**2*gDs**2*(t
& rs*(-gDs+cDs+ms2)-(trc-trg)*(gDs+cDs+ms2))+2*ms2*trc*cDg**4*cDs
& *(2*gDs+4*cDs+mc2)+4*ms2*trc*cDg**5*cDs)/(mc*ms*cDg**2*gDs**3)/
& 4.0d+0+Bppm
Bppm = LsB1*mc*ms*(-2*cDg*gDs**2*(cDs*(-4*trc*gDs**2+(2*trsgc+mc2
& *trs+3*mc2*trg-4*ms2*trc)*gDs+ms2*(trsgc+2*mc2*trg))+mc2*ms2*(2
& *trs*gDs+trsgc-ms2*trg)+2*trg*cDs**2*(gDs+ms2)+2*trg*cDs**3)+cD
& g**2*gDs*(-4*ms2*trc*gDs**2+2*(2*trg*cDs**2+ms2*((trs+trg)*cDs+
& trsgc+2*mc2*trs+mc2*trg)-2*ms2**2*trc)*gDs+ms2*(trg*(8*cDs**2+m
& s2*cDs-mc2*ms2)+trsgc*(cDs+ms2)))+gDs**3*(-4*mc2*trc*gDs**2+2*m
& c2*((trs+trg)*cDs+trsgc+mc2*trg-2*ms2*trc)*gDs+2*(mc2*trg-trsgc
& )*cDs**2+mc2*(trsgc+ms2*trg)*cDs+mc2*ms2*(3*trsgc+mc2*trg))-2*m
& s2*cDg**3*cDs*((trs+trg)*gDs+ms2*trg))/((cDs-mc*ms)*(cDs+mc*ms)
& *gDs**3)+Bppm
Bppm = B0csf*mc*ms*(mc2*(2*trc*gDs**2+(-trsgc-mc2*trs+ms2*(trg-tr
& s))*gDs+ms2*(ms2+mc2)*trg)+cDs*(2*trc*gDs**2+(-trsgc+mc2*(-2*tr
& s-trg+trc)+ms2*trc)*gDs+2*mc2*ms2*trg)+cDg*(ms2*(-trc*(2*gDs+ms
& 2+mc2)+trsgc+mc2*trg)+cDs*(-2*trc*gDs+trsgc+ms2*(trs+trg-2*trc)
& +mc2*trs)+2*trs*cDs**2)+cDs**2*(2*trc*gDs-trg*(2*gDs+ms2+mc2))-
& 2*trg*cDs**3)/((cDs-mc*ms)*(cDs+mc*ms)*gDs)/2.0d+0+Bppm
Bppm = ls*ms*(cDg*(-8*trc*gDs**2+2*(trsgc+mc2*trs-3*ms2*trc)*gDs+
& ms2*(trsgc-mc2*trg))+mc2*gDs*(-2*trs*gDs+4*trg*gDs-trsgc+3*ms2*
& trg))/(mc*gDs*(2*gDs+ms2))/2.0d+0+Bppm
Bppm = 3*mc*ms*tr3c002fs*(cDg*((trs+trg)*cDs+ms2*trc)*(2*gDs+ms2)
& -mc2*(trs+trg)*gDs**2)/gDs**3+Bppm
Bppm = 3*ms*tr3c001fs*(2*gDs+ms2)*(cDg*(trc*cDs*(2*gDs+ms2)+mc2*m
& s2*(trs+trg))-mc2*trc*gDs**2)/(mc*gDs**3)+Bppm
Bppm = epinv*trg*(4*lp*xs*cDs+mc*(ms-ms*xs**2))*(mc2*gDs**2-2*cDg
& *cDs*gDs+ms2*cDg**2)/((xs**2-1)*cDg*gDs**2)/4.0d+0+Bppm
Bppm = mc*ms*tr2fu*trg*cDs*(mc2*gDs**2-2*cDg*cDs*gDs+ms2*cDg**2)/
& (cDg*gDs**2)+Bppm
Bppm = 3*mc*tr3s001ft*((trg+trc)*gDs*(ms2*(mc2*gDs-2*cDg*cDs)-8*g
& Ds**2*(gDs+cDs))+ms2*trs*cDg*(3*cDg*gDs+2*mc2*gDs-cDg*cDs))/(ms
& *cDg**2*gDs)+Bppm
Bppm=Bppm/zppm
return
end
|
function lvmResultsClick(modelType, dataSet, number, dataType, varargin)
% LVMRESULTSCLICK Load a results file and visualise them with clicks
% FORMAT
% DESC loads results of a latent variable model and visualises them.
% ARG modelType : the type of model ran on the data set.
% ARG dataSet : the name of the data set to load.
% ARG number : the number of the run used.
% ARG dataType : the type of data to visualise.
% ARG arg1, arg2, arg3 ... : additional arguments to be passed to the
% lvmVisualise command.
%
% SEEALSO : lvmLoadResult, lvmVisualise
%
% COPYRIGHT : Neil D. Lawrence, 2008, 2009
% MLTOOLS
[model, lbls] = lvmLoadResult(modelType, dataSet, number);
% Visualise the results
switch size(model.X, 2)
case 2
lvmClickVisualise(model, lbls, [dataType 'Visualise'], [dataType 'Modify'], ...
varargin{:});
otherwise
lvmClickVisualise(model, lbls, [dataType 'Visualise'], [dataType 'Modify'], ...
varargin{:});
end
|
{-# OPTIONS --without-K --safe #-}
module Dodo.Unary.Equality where
-- Stdlib imports
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open import Level using (Level; _⊔_)
open import Function using (_∘_)
open import Relation.Unary using (Pred)
-- # Definitions
infix 4 _⊆₁'_ _⊆₁_ _⇔₁_
-- Binary relation subset helper. Generally, use `_⊆₁_` (below).
_⊆₁'_ : {a ℓ₁ ℓ₂ : Level} {A : Set a}
→ (P : Pred A ℓ₁)
→ (R : Pred A ℓ₂)
→ Set (a ⊔ ℓ₁ ⊔ ℓ₂)
_⊆₁'_ {A = A} P R = ∀ (x : A) → P x → R x
-- Somehow, Agda cannot infer P and R from `P ⇒ R`, and requires them explicitly passed.
-- For proof convenience, wrap the proof in this structure, which explicitly conveys P and R
-- to the type-checker.
data _⊆₁_ {a ℓ₁ ℓ₂ : Level} {A : Set a} (P : Pred A ℓ₁) (R : Pred A ℓ₂) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
⊆: : P ⊆₁' R → P ⊆₁ R
data _⇔₁_ {a ℓ₁ ℓ₂ : Level} {A : Set a} (P : Pred A ℓ₁) (R : Pred A ℓ₂) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
⇔: : P ⊆₁' R → R ⊆₁' P → P ⇔₁ R
-- # Helpers
⇔₁-intro : {a ℓ₁ ℓ₂ : Level} {A : Set a}
→ {P : Pred A ℓ₁} {R : Pred A ℓ₂}
→ P ⊆₁ R
→ R ⊆₁ P
→ P ⇔₁ R
⇔₁-intro (⊆: P⊆R) (⊆: R⊆P) = ⇔: P⊆R R⊆P
⇔₁-compose : ∀ {a b ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred B ℓ₃} {S : Pred B ℓ₄}
→ ( P ⊆₁ Q → R ⊆₁ S )
→ ( Q ⊆₁ P → S ⊆₁ R )
→ P ⇔₁ Q
→ R ⇔₁ S
⇔₁-compose ⊆-proof ⊇-proof (⇔: P⊆Q R⊆S) = ⇔₁-intro (⊆-proof (⊆: P⊆Q)) (⊇-proof (⊆: R⊆S))
-- # Properties
-- ## Properties: ⊆₁
module _ {a ℓ : Level} {A : Set a} {R : Pred A ℓ} where
⊆₁-refl : R ⊆₁ R
⊆₁-refl = ⊆: (λ _ Rx → Rx)
module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where
⊆₁-trans : P ⊆₁ Q → Q ⊆₁ R → P ⊆₁ R
⊆₁-trans (⊆: P⊆Q) (⊆: Q⊆R) = ⊆: (λ x Qx → Q⊆R x (P⊆Q x Qx))
-- ## Properties: ⇔₁
module _ {a ℓ : Level} {A : Set a} {R : Pred A ℓ} where
⇔₁-refl : R ⇔₁ R
⇔₁-refl = ⇔₁-intro ⊆₁-refl ⊆₁-refl
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {Q : Pred A ℓ₁} {R : Pred A ℓ₂} where
⇔₁-sym : Q ⇔₁ R → R ⇔₁ Q
-- WARNING: Do *NOT* use `Symmetric _⇔_`. It messes up the universe levels.
⇔₁-sym (⇔: Q⊆R R⊆Q) = ⇔: R⊆Q Q⊆R
module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where
⇔₁-trans : P ⇔₁ Q → Q ⇔₁ R → P ⇔₁ R
⇔₁-trans (⇔: P⊆Q Q⊆P) (⇔: Q⊆R R⊆Q) = ⇔₁-intro (⊆₁-trans (⊆: P⊆Q) (⊆: Q⊆R)) (⊆₁-trans (⊆: R⊆Q) (⊆: Q⊆P))
-- # Operations
-- ## Operations: ⇔₁ and ⊆₁ conversion
un-⊆₁ : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {R : Pred A ℓ₂}
→ P ⊆₁ R
→ P ⊆₁' R
un-⊆₁ (⊆: P⊆R) = P⊆R
unlift-⊆₁ : ∀ {a b ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred B ℓ₃} {S : Pred B ℓ₄}
→ ( P ⊆₁ Q → R ⊆₁ S )
→ ( P ⊆₁' Q → R ⊆₁' S )
unlift-⊆₁ f P⊆Q = un-⊆₁ (f (⊆: P⊆Q))
lift-⊆₁ : ∀ {a b ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred B ℓ₃} {S : Pred B ℓ₄}
→ ( P ⊆₁' Q → R ⊆₁' S )
→ ( P ⊆₁ Q → R ⊆₁ S )
lift-⊆₁ f (⊆: P⊆Q) = ⊆: (f P⊆Q)
⇔₁-to-⊆₁ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂}
→ P ⇔₁ Q
------
→ P ⊆₁ Q
⇔₁-to-⊆₁ (⇔: P⊆Q _) = ⊆: P⊆Q
⇔₁-to-⊇₁ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂}
→ P ⇔₁ Q
------
→ Q ⊆₁ P
⇔₁-to-⊇₁ (⇔: _ Q⊆P) = ⊆: Q⊆P
-- ## Operations: ⊆₁
⊆₁-apply : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂}
→ P ⊆₁ Q
→ {x : A}
→ P x
-------
→ Q x
⊆₁-apply (⊆: P⊆Q) {x} = P⊆Q x
⊆₁-substˡ : ∀ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} {x : A}
→ P ⇔₁ Q
→ P ⊆₁ R
------
→ Q ⊆₁ R
⊆₁-substˡ (⇔: _ Q⊆P) P⊆R = ⊆₁-trans (⊆: Q⊆P) P⊆R
⊆₁-substʳ : ∀ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃}
→ Q ⇔₁ R
→ P ⊆₁ Q
------
→ P ⊆₁ R
⊆₁-substʳ (⇔: Q⊆R _) P⊆Q = ⊆₁-trans P⊆Q (⊆: Q⊆R)
≡-to-⊆₁ : {a b ℓ : Level} {A : Set a}
{P : Pred A ℓ} {Q : Pred A ℓ}
→ P ≡ Q
------
→ P ⊆₁ Q
≡-to-⊆₁ refl = ⊆: (λ _ Px → Px)
-- ## Operations: ⇔₁
⇔₁-apply-⊆₁ : {a ℓ₁ ℓ₂ : Level} {A : Set a}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂}
→ P ⇔₁ Q
→ {x : A}
→ P x
-------
→ Q x
⇔₁-apply-⊆₁ = ⊆₁-apply ∘ ⇔₁-to-⊆₁
⇔₁-apply-⊇₁ : {a ℓ₁ ℓ₂ : Level} {A : Set a}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂}
→ P ⇔₁ Q
→ {x : A}
→ Q x
-------
→ P x
⇔₁-apply-⊇₁ = ⊆₁-apply ∘ ⇔₁-to-⊇₁
≡-to-⇔₁ : {a ℓ : Level} {A : Set a}
{P : Pred A ℓ} {Q : Pred A ℓ}
→ P ≡ Q
------
→ P ⇔₁ Q
≡-to-⇔₁ refl = ⇔₁-intro ⊆₁-refl ⊆₁-refl
-- # Reasoning
-- ## Reasoning: ⊆₁
module ⊆₁-Reasoning {a ℓ₁ : Level} {A : Set a} where
infix 3 _⊆₁∎
infixr 2 step-⊆₁
infix 1 begin⊆₁_
begin⊆₁_ : {ℓ₂ : Level} {P : Pred A ℓ₁} {Q : Pred A ℓ₂}
→ P ⊆₁ Q
------
→ P ⊆₁ Q
begin⊆₁_ P⊆Q = P⊆Q
step-⊆₁ : ∀ {ℓ₂ ℓ₃ : Level}
→ (P : Pred A ℓ₁)
→ {Q : Pred A ℓ₂}
→ {R : Pred A ℓ₃}
→ Q ⊆₁ R
→ P ⊆₁ Q
------
→ P ⊆₁ R
step-⊆₁ P Q⊆R P⊆Q = ⊆₁-trans P⊆Q Q⊆R
_⊆₁∎ : ∀ (P : Pred A ℓ₁) → P ⊆₁ P
_⊆₁∎ _ = ⊆₁-refl
syntax step-⊆₁ P Q⊆R P⊆Q = P ⊆₁⟨ P⊆Q ⟩ Q⊆R
-- ## Reasoning: ⇔₁
module ⇔₁-Reasoning {a ℓ₁ : Level} {A : Set a} where
infix 3 _⇔₁∎
infixr 2 _⇔₁⟨⟩_ step-⇔₁
infix 1 begin⇔₁_
begin⇔₁_ : {ℓ₂ : Level} {P : Pred A ℓ₁} {Q : Pred A ℓ₂}
→ P ⇔₁ Q
------
→ P ⇔₁ Q
begin⇔₁_ P⇔Q = P⇔Q
_⇔₁⟨⟩_ : {ℓ₂ : Level}
(P : Pred A ℓ₁)
→ {Q : Pred A ℓ₂}
→ P ⇔₁ Q
---------------
→ P ⇔₁ Q
_ ⇔₁⟨⟩ x≡y = x≡y
step-⇔₁ : ∀ {ℓ₂ ℓ₃ : Level}
→ (P : Pred A ℓ₁)
→ {Q : Pred A ℓ₂}
→ {R : Pred A ℓ₃}
→ Q ⇔₁ R
→ P ⇔₁ Q
---------------
→ P ⇔₁ R
step-⇔₁ _ Q⇔R P⇔Q = ⇔₁-trans P⇔Q Q⇔R
_⇔₁∎ : ∀ (P : Pred A ℓ₁) → P ⇔₁ P
_⇔₁∎ _ = ⇔₁-refl
syntax step-⇔₁ P Q⇔R P⇔Q = P ⇔₁⟨ P⇔Q ⟩ Q⇔R
|
{-
null
not null
-}
import CIL.FFI
putNullableStrLn : Nullable String -> IO ()
putNullableStrLn =
putStrLn . nullable "null" id
main : IO ()
main = do
putNullableStrLn null
putNullableStrLn (asNullable "not null")
-- Local Variables:
-- idris-load-packages: ("cil")
-- End:
|
Formal statement is: lemma prime_factor_nat: "n \<noteq> (1::nat) \<Longrightarrow> \<exists>p. prime p \<and> p dvd n" Informal statement is: If $n$ is a natural number greater than 1, then there exists a prime number $p$ that divides $n$. |
module C
import B
foo : BFunc x
foo1 : BFunc x
foo2 : BFunc x
foo3 : BFunc x
|
# Euler Problem 203
The binomial coefficients nCk can be arranged in triangular form, Pascal's triangle, like this:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
.........
It can be seen that the first eight rows of Pascal's triangle contain twelve distinct numbers:
1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35.
A positive integer n is called squarefree if no square of a prime divides n. Of the twelve distinct
numbers in the first eight rows of Pascal's triangle, all except 4 and 20 are squarefree. The sum of
the distinct squarefree numbers in the first eight rows is 105.
Find the sum of the distinct squarefree numbers in the first 51 rows of Pascal's triangle.
```python
N = 51
def binom(n, k):
if k > n // 2:
k = n - k
b = 1
for i in range(k):
b = (b * (n - i)) // (i + 1)
return b
```
```python
from sympy import primerange, nextprime
MAXIMUM_ROW_NUMBER = 100
smallprimes = list(primerange(2, MAXIMUM_ROW_NUMBER + 1))
```
```python
def squarefree_binom(n, k):
assert n <= MAXIMUM_ROW_NUMBER
for p in smallprimes:
if p > n:
return True
if binom_order(n, k, p) > 1:
return False
return True
```
The exponent of a prime $p$ in the prime factorization of $n!$ is equal to $(n-s)/(p-1)$, where $s$ is the sum of the base-$p$ digits of $n$. This is a consequence of [Legendre's formula](https://en.wikipedia.org/wiki/Legendre%27s_formula). We can use this formula to calculate the exponent of $p$ in the prime factorization of a binomial coefficient.
```python
def sum_of_digits(n, p):
return n if n < p else (n % p) + sum_of_digits(n // p, p)
def fact_order(n, p):
return (n - sum_of_digits(n, p)) // (p - 1)
def binom_order(n, k, p):
return fact_order(n, p) - fact_order(k, p) - fact_order(n-k, p)
```
```python
results = set()
for n in range(N):
for k in range(n//2 + 1):
if squarefree_binom(n, k):
results.add(binom(n, k))
print(sum(results))
```
34029210557338
|
\chapter{``A'' Standard Extension for Atomic Instructions, Version 2.0}
\label{atomics}
\begin{commentary}
This section is somewhat out of date as the RISC-V memory model is
currently under revision to ensure it can efficiently support current
programming language memory models. The revised base memory model
will contain further ordering constraints, including at least that
loads to the same address from the same hart cannot be reordered, and
that syntactic data dependencies between instructions are respected.
\end{commentary}
The standard atomic instruction extension is denoted by instruction
subset name ``A'', and contains instructions that atomically
read-modify-write memory to support synchronization between multiple
RISC-V harts running in the same memory space. The two forms of
atomic instruction provided are load-reserved/store-conditional
instructions and atomic fetch-and-op memory instructions. Both types
of atomic instruction support various memory consistency orderings
including unordered, acquire, release, and sequentially consistent
semantics. These instructions allow RISC-V to support the RCsc memory
consistency model~\cite{Gharachorloo90memoryconsistency}.
\begin{commentary}
After much debate, the language community and architecture community
appear to have finally settled on release consistency as the standard
memory consistency model and so the RISC-V atomic support is built
around this model.
\end{commentary}
\section{Specifying Ordering of Atomic Instructions}
The base RISC-V ISA has a relaxed memory model, with the FENCE
instruction used to impose additional ordering constraints. The
address space is divided by the execution environment into memory and
I/O domains, and the FENCE instruction provides options to order
accesses to one or both of these two address domains.
To provide more efficient support for release
consistency~\cite{Gharachorloo90memoryconsistency}, each atomic
instruction has two bits, {\em aq} and {\em rl}, used to specify
additional memory ordering constraints as viewed by other RISC-V
harts. The bits order accesses to one of the two address domains,
memory or I/O, depending on which address domain the atomic
instruction is accessing. No ordering constraint is implied to
accesses to the other domain, and a FENCE instruction should be used
to order across both domains.
If both bits are clear, no additional ordering constraints are imposed
on the atomic memory operation. If only the {\em aq} bit is set, the
atomic memory operation is treated as an {\em acquire} access, i.e.,
no following memory operations on this RISC-V hart can be observed
to take place before the acquire memory operation. If only the {\em
rl} bit is set, the atomic memory operation is treated as a {\em
release} access, i.e., the release memory operation can not be
observed to take place before any earlier memory operations on this
RISC-V hart. If both the {\em aq} and {\em rl} bits are set, the
atomic memory operation is {\em sequentially consistent} and cannot be
observed to happen before any earlier memory operations or after any
later memory operations in the same RISC-V hart, and can only be
observed by any other hart in the same global order of all
sequentially consistent atomic memory operations to the same address
domain.
\begin{commentary}
Theoretically, the definition of the {\em aq} and {\em rl} bits allows
for implementations without global store atomicity. When both {\em
aq} and {\em rl} bits are set, however, we require full sequential
consistency for the atomic operation which implies global store
atomicity in addition to both acquire and release semantics. In
practice, hardware systems are usually implemented with global store
atomicity, embodied in local processor ordering rules together with
single-writer cache coherence protocols.
\end{commentary}
\section{Load-Reserved/Store-Conditional Instructions}
\vspace{-0.2in}
\begin{center}
\begin{tabular}{R@{}W@{}W@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{27} &
\instbit{26} &
\instbit{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{aq} &
\multicolumn{1}{c|}{rl} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{funct3} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 1 & 1 & 5 & 5 & 3 & 5 & 7 \\
LR & \multicolumn{2}{c}{ordering} & 0 & addr & width & dest & AMO \\
SC & \multicolumn{2}{c}{ordering} & src & addr & width & dest & AMO \\
\end{tabular}
\end{center}
Complex atomic memory operations on a single memory word are performed
with the load-reserved (LR) and store-conditional (SC) instructions.
LR loads a word from the address in {\em rs1}, places the
sign-extended value in {\em rd}, and registers a reservation on the
memory address. SC writes a word in {\em rs2} to the address in {\em
rs1}, provided a valid reservation still exists on that address. SC
writes zero to {\em rd} on success or a nonzero code on failure.
\begin{commentary}
Both compare-and-swap (CAS) and LR/SC can be used to build lock-free
data structures. After extensive discussion, we opted for LR/SC for
several reasons: 1) CAS suffers from the ABA problem, which LR/SC
avoids because it monitors all accesses to the address rather than
only checking for changes in the data value; 2) CAS would also require
a new integer instruction format to support three source operands
(address, compare value, swap value) as well as a different memory
system message format, which would complicate microarchitectures; 3)
Furthermore, to avoid the ABA problem, other systems provide a
double-wide CAS (DW-CAS) to allow a counter to be tested and
incremented along with a data word. This requires reading five
registers and writing two in one instruction, and also a new larger
memory system message type, further complicating implementations; 4)
LR/SC provides a more efficient implementation of many primitives as
it only requires one load as opposed to two with CAS (one load before
the CAS instruction to obtain a value for speculative computation,
then a second load as part of the CAS instruction to check if value is
unchanged before updating).
The main disadvantage of LR/SC over CAS is livelock, which we avoid
with an architected guarantee of eventual forward progress as
described below. Another concern is whether the influence of the
current x86 architecture, with its DW-CAS, will complicate porting of
synchronization libraries and other software that assumes DW-CAS is
the basic machine primitive. A possible mitigating factor is the
recent addition of transactional memory instructions to x86, which
might cause a move away from DW-CAS.
\end{commentary}
The failure code with value 1 is reserved to encode an unspecified
failure. Other failure codes are reserved at this time, and portable
software should only assume the failure code will be non-zero.
\begin{commentary}
We reserve a failure code of 1 to mean ``unspecified'' so that simple
implementations may return this value using the existing mux required
for the SLT/SLTU instructions. More specific failure codes might be
defined in future versions or extensions to the ISA.
\end{commentary}
The execution environment may require that the address held in {\em rs1} be
naturally aligned to the size of the operand (i.e., eight-byte aligned for
64-bit words and four-byte aligned for 32-bit words). If, in such an
execution environment, an LR or SC address is not naturally aligned,
a misaligned address exception will be generated.
If the execution environment permits misaligned LR and SC addresses, then LR
and SC instructions using misaligned addresses execute atomically with respect
to other accesses to the same address and of the same size. In such
environments, regular loads and stores using misaligned addresses also execute
atomically with respect to other accesses to the same address and of the same
size.
\label{lrscseq}
In the standard A extension, certain constrained LR/SC sequences are
guaranteed to succeed eventually. The static code for the LR/SC
sequence plus the code to retry the sequence in case of failure must
comprise at most 16 integer instructions placed sequentially in
memory. For the sequence to be guaranteed to eventually succeed, the
dynamic code executed between the LR and SC instructions can only
contain other instructions from the base ``I'' subset, excluding
loads, stores, backward jumps or taken backward branches, FENCE,
FENCE.I, and SYSTEM instructions. The code to retry a failing LR/SC
sequence can contain backward jumps and/or branches to repeat the
LR/SC sequence, but otherwise has the same constraints. The SC must
be to the same address and of the same data size as the latest LR
executed. LR/SC sequences that do not meet these constraints might
complete on some attempts on some implementations, but there is no
guarantee of eventual success.
\begin{commentary}
One advantage of CAS is that it guarantees that some hart eventually
makes progress, whereas an LR/SC atomic sequence could livelock
indefinitely on some systems. To avoid this concern, we added an
architectural guarantee of forward progress to LR/SC atomic sequences.
The restrictions on LR/SC sequence contents allows an implementation
to capture a cache line on the LR and complete the LR/SC sequence by
holding off remote cache interventions for a bounded short
time. Interrupts and TLB misses might cause the reservation to be
lost, but eventually the atomic sequence can complete. We restricted
the length of LR/SC sequences to fit within 64 contiguous instruction
bytes in the base ISA to avoid undue restrictions on instruction cache
and TLB size and associativity. Similarly, we disallowed other loads
and stores within the sequences to avoid restrictions on data cache
associativity. The restrictions on branches and jumps limits the time
that can be spent in the sequence. Floating-point operations and
integer multiply/divide were disallowed to simplify the operating
system's emulation of these instructions on implementations lacking
appropriate hardware support.
Although software is not forbidden from using LR/SC sequences that do not meet
the forward-progress constraints, portable software must detect the case that
the sequence repeatedly fails, then fall back to an alternate code sequence
that does not run afoul of the forward-progress constraints.
\end{commentary}
An implementation can reserve an arbitrary subset of the memory space
on each LR and multiple LR reservations might be active simultaneously
for a single hart. An SC can succeed if no accesses from other harts
to the address can be observed to have occurred between the SC and
the last LR in this hart to reserve the address. Note this LR might
have had a different address argument, but reserved the SC's address
as part of the memory subset. Following this model, in systems with
memory translation, an SC is allowed to succeed if the earlier LR
reserved the same location using an alias with a different virtual
address, but is also allowed to fail if the virtual address is
different. The SC must fail if there is an observable memory access
from another hart to the address, or a preemptive context switch on
this hart, between the LR and the SC.
\begin{commentary}
The privileged architecture specifies the mechanism by which the
implementation yields a load reservation during a preemptive context switch.
Cooperative user-level context switches might not cause a load reservation
to be yielded, so user-level threads should generally avoid voluntary
context switches in the middle of an LR/SC sequence.
\end{commentary}
\begin{commentary}
The specification explicitly allows implementations to support more
powerful implementations with wider guarantees, provided they do not
void the atomicity guarantees for the constrained sequences.
\end{commentary}
LR/SC can be used to construct lock-free data structures. An example
using LR/SC to implement a compare-and-swap function is shown in
Figure~\ref{cas}. If inlined, compare-and-swap functionality need
only take three instructions.
\begin{figure}[h!]
\begin{center}
\begin{verbatim}
# a0 holds address of memory location
# a1 holds expected value
# a2 holds desired value
# a0 holds return value, 0 if successful, !0 otherwise
cas:
lr.w t0, (a0) # Load original value.
bne t0, a1, fail # Doesn't match, so fail.
sc.w a0, a2, (a0) # Try to update.
jr ra # Return.
fail:
li a0, 1 # Set return to failure.
jr ra # Return.
\end{verbatim}
\end{center}
\caption{Sample code for compare-and-swap function using LR/SC.}
\label{cas}
\end{figure}
An SC instruction can never be observed by another RISC-V hart
before the immediately preceding LR. Due to the atomic nature of the
LR/SC sequence, no memory operations from any hart can be observed
to have occurred between the LR and a successful SC. The LR/SC
sequence can be given acquire semantics by setting the {\em aq} bit on
the SC instruction. The LR/SC sequence can be given release semantics
by setting the {\em rl} bit on the LR instruction. Setting both {\em
aq} and {\em rl} bits on the LR instruction, and setting the {\em
aq} bit on the SC instruction makes the LR/SC sequence sequentially
consistent with respect to other sequentially consistent atomic
operations.
If neither bit is set on both LR and SC, the LR/SC sequence can be
observed to occur before or after surrounding memory operations from
the same RISC-V hart. This can be appropriate when the LR/SC
sequence is used to implement a parallel reduction operation.
\begin{commentary}
In general, a multi-word atomic primitive is desirable but there is
still considerable debate about what form this should take, and
guaranteeing forward progress adds complexity to a system. Our
current thoughts are to include a small limited-capacity transactional
memory buffer along the lines of the original transactional memory
proposals as an optional standard extension ``T''.
\end{commentary}
\section{Atomic Memory Operations}
\vspace{-0.2in}
\begin{center}
\begin{tabular}{O@{}W@{}W@{}R@{}R@{}F@{}R@{}R}
\\
\instbitrange{31}{27} &
\instbit{26} &
\instbit{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{aq} &
\multicolumn{1}{c|}{rl} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{funct3} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 1 & 1 & 5 & 5 & 3 & 5 & 7 \\
AMOSWAP.W/D & \multicolumn{2}{c}{ordering} & src & addr & width & dest & AMO \\
AMOADD.W/D & \multicolumn{2}{c}{ordering} & src & addr & width & dest & AMO \\
AMOAND.W/D & \multicolumn{2}{c}{ordering} & src & addr & width & dest & AMO \\
AMOOR.W/D & \multicolumn{2}{c}{ordering} & src & addr & width & dest & AMO \\
AMOXOR.W/D & \multicolumn{2}{c}{ordering} & src & addr & width & dest & AMO \\
AMOMAX[U].W/D & \multicolumn{2}{c}{ordering} & src & addr & width & dest & AMO \\
AMOMIN[U].W/D & \multicolumn{2}{c}{ordering} & src & addr & width & dest & AMO \\
\end{tabular}
\end{center}
\vspace{-0.1in} The atomic memory operation (AMO) instructions perform
read-modify-write operations for multiprocessor synchronization and
are encoded with an R-type instruction format. These AMO instructions
atomically load a data value from the address in {\em rs1}, place the
value into register {\em rd}, apply a binary operator to the loaded
value and the original value in {\em rs2}, then store the result back
to the address in {\em rs1}. AMOs can either operate on 64-bit (RV64
only) or 32-bit words in memory. For RV64, 32-bit AMOs always
sign-extend the value placed in {\em rd}.
The execution environment may require that the address held in {\em rs1} be
naturally aligned to the size of the operand (i.e., eight-byte aligned for
64-bit words and four-byte aligned for 32-bit words). If, in such an execution
environment, an AMO address is not naturally aligned, a misaligned address
exception will be generated.
If the execution environment permits misaligned AMO addresses, then AMO
instructions using misaligned addresses execute atomically with respect
to other accesses to the same address and of the same size. In such
environments, regular loads and stores using misaligned addresses also execute
atomically with respect to other accesses to the same address and of the same
size.
The operations supported are swap, integer add, logical AND, logical
OR, logical XOR, and signed and unsigned integer maximum and minimum.
Without ordering constraints, these AMOs can be used to implement
parallel reduction operations, where typically the return value would
be discarded by writing to {\tt x0}.
\begin{commentary}
We provided fetch-and-op style atomic primitives as they scale to
highly parallel systems better than LR/SC or CAS. A simple
microarchitecture can implement AMOs using the LR/SC primitives. More
complex implementations might also implement AMOs at memory
controllers, and can optimize away fetching the original value when
the destination is {\tt x0}.
The set of AMOs was chosen to support the C11/C++11 atomic memory
operations efficiently, and also to support parallel reductions in
memory. Another use of AMOs is to provide atomic updates to
memory-mapped device registers (e.g., setting, clearing, or toggling
bits) in the I/O space.
\end{commentary}
To help implement multiprocessor synchronization, the AMOs optionally
provide release consistency semantics. If the {\em aq} bit is set,
then no later memory operations in this RISC-V hart can be observed
to take place before the AMO.
Conversely, if the {\em rl} bit is set, then other
RISC-V harts will not observe the AMO before memory accesses
preceding the AMO in this RISC-V hart.
\begin{commentary}
The AMOs were designed to implement the C11 and C++11 memory models
efficiently. Although the FENCE R, RW instruction suffices to
implement the {\em acquire} operation and FENCE RW, W suffices to
implement {\em release}, both imply additional unnecessary ordering as
compared to AMOs with the corresponding {\em aq} or {\em rl} bit set.
\end{commentary}
An example code sequence for a critical section guarded by a
test-and-set spinlock is shown in Figure~\ref{critical}. Note the
first AMO is marked {\em aq} to order the lock acquisition before the
critical section, and the second AMO is marked {\em rl} to order
the critical section before the lock relinquishment.
\begin{figure}[h!]
\begin{center}
\begin{verbatim}
li t0, 1 # Initialize swap value.
again:
amoswap.w.aq t0, t0, (a0) # Attempt to acquire lock.
bnez t0, again # Retry if held.
# ...
# Critical section.
# ...
amoswap.w.rl x0, x0, (a0) # Release lock by storing 0.
\end{verbatim}
\end{center}
\caption{Sample code for mutual exclusion. {\tt a0} contains the address of the lock.}
\label{critical}
\end{figure}
\begin{commentary}
We recommend the use of the AMO Swap idiom shown above for both lock
acquire and release to simplify the implementation of speculative lock
elision~\cite{Rajwar:2001:SLE}.
At the risk of complicating the implementation of atomic operations,
microarchitectures can elide the store within the acquire swap if the
lock value matches the swap value, to avoid dirtying a cache line held
in a shared or exclusive clean state. The effect is similar to a
test-and-test-and-set lock but with shorter code paths.
\end{commentary}
The instructions in the ``A'' extension can also be used to provide
sequentially consistent loads and stores. A sequentially consistent load can
be implemented as an LR with both {\em aq} and {\em rl} set. A sequentially
consistent store can be implemented as an AMOSWAP that writes the old value to
x0 and has both {\em aq} and {\em rl} set.
|
using DiffEqJump, DiffEqBase
using Test
function regular_rate(out,u,p,t)
out[1] = (0.1/1000.0)*u[1]*u[2]
out[2] = 0.01u[2]
end
function regular_c(dc,u,p,t,mark)
dc[1,1] = -1
dc[2,1] = 1
dc[2,2] = -1
dc[3,2] = 1
end
dc = zeros(3,2)
rj = RegularJump(regular_rate,regular_c,dc;constant_c=true)
jumps = JumpSet(rj)
prob = DiscreteProblem([999.0,1.0,0.0],(0.0,250.0))
jump_prob = JumpProblem(prob,Direct(),rj)
sol = solve(jump_prob,SimpleTauLeaping();dt=1.0)
sol = solve(jump_prob,RegularSSA())
|
Though Townsend was proud of what he had accomplished so early in his career , he was discouraged by his experience with the music industry . " I was becoming a product of somebody else 's imagination , and it was mixing with my own personality , " he later reflected . " This combination was appalling . " He pushed to get his own projects off the ground . Despite getting notable touring gigs with other musicians , however , Townsend continued to face rejection of his own music . Relativity Records dropped Noisescapes from their label shortly after Townsend accepted Vai 's offer , seeing no commercial appeal in Townsend 's music . " I have a hunch they only offered me a deal to get me to sing with Steve , " he mused . While touring with the Wildhearts , Townsend received a phone call from an A & R representative for Roadrunner Records , expressing an interest in his demos and an intention to sign him . The offer was ultimately rescinded by the head of Roadrunner , who regarded Townsend 's recordings as " just noise " .
|
Require Export P05.
Theorem ins_relate:
forall k v t cts,
SearchTree t ->
Abs t cts ->
Abs (ins k v t) (t_update cts (int2Z k) v).
Proof. exact FILL_IN_HERE. Qed.
Theorem insert_relate:
forall k v t cts,
SearchTree t ->
Abs t cts ->
Abs (insert k v t) (t_update cts (int2Z k) v).
Proof.
intros.
unfold insert.
apply makeBlack_relate.
apply ins_relate; auto.
Qed.
(** * Final Correctness Theorem *)
Theorem redblack_correct: forall (l: list (key*D.V)) k,
lookup k (map_reduce (fun kv tr => insert (fst kv) (snd kv) tr) empty_tree l) =
(map_reduce (fun kv tm => t_update tm (int2Z (fst kv)) (snd kv)) (t_empty D.default) l) (int2Z k).
Proof.
assert (ABS: forall l,
SearchTree (map_reduce (fun kv tr => insert (fst kv) (snd kv) tr) empty_tree l) /\
Abs (map_reduce (fun kv tr => insert (fst kv) (snd kv) tr) empty_tree l)
(map_reduce (fun kv tm => t_update tm (int2Z (fst kv)) (snd kv)) (t_empty D.default) l)).
{ intros. induction l; simpl.
- eauto using empty_tree_SearchTree, empty_tree_relate.
- destruct IHl.
eauto using insert_SearchTree, insert_relate.
}
intros. eapply lookup_relate, ABS.
Qed.
|
% hohmann.m July 9, 2013
% Hohmann two impulse orbit transfer between
% planar and non-coplanar circular orbits
% includes three-dimensional orbit graphics
% and graphical primer vector analysis
% Orbital Mechanics with MATLAB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global rtd dtr pvi pvdi
global mu req hn1 hn2 hn3 dinc
% astrodynamic and utility constants
om_constants;
% Brent root-finding tolerance
rtol = 1.0e-8;
% request inputs
clc; home;
fprintf('\nHohmann Orbit Transfer Analysis\n');
while (1)
fprintf('\n\nplease input the initial altitude (kilometers)\n');
alt1 = input('? ');
if (alt1 > 0.0)
break;
end
end
while (1)
fprintf('\n\nplease input the final altitude (kilometers)\n');
alt2 = input('? ');
if (alt2 > 0.0)
break;
end
end
while (1)
fprintf('\n\nplease input the initial orbital inclination (degrees)');
fprintf('\n(0 <= inclination <= 180)\n');
inc1 = input('? ');
if (inc1 >= 0.0 && inc1 <= 180.0)
break;
end
end
while (1)
fprintf('\n\nplease input the final orbital inclination (degrees)');
fprintf('\n(0 <= inclination <= 180)\n');
inc2 = input('? ');
if (inc2 >= 0.0 && inc2 <= 180.0)
break;
end
end
% convert orbit inclinations to radians
inc1 = inc1 * dtr;
inc2 = inc2 * dtr;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% solve the orbit transfer problem %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calculate total inclination change (radians)
dinc = abs(inc2 - inc1);
% compute geocentric radii of initial and final orbits (kilometers)
r1 = req + alt1;
r2 = req + alt2;
% compute "normalized" radii
hn1 = sqrt(2.0 * r2 / (r2 + r1));
hn2 = sqrt(r1 / r2);
hn3 = sqrt(2.0 * r1 / (r2 + r1));
% compute "local circular velocity" of initial and final orbits (km/sec)
v1 = sqrt(mu / r1);
v2 = sqrt(mu / r2);
% compute transfer orbit semimajor axis (kilometers)
smat = 0.5 * (r1 + r2);
% compute transfer orbit eccentricity (non-dimensional)
ecct = (max(r1, r2) - min(r1, r2)) / (r1 + r2);
% compute transfer orbit perigee and apogee radii and velocities
rp = smat * (1.0 - ecct);
ra = smat * (1.0 + ecct);
vt1 = sqrt(2.0 * mu * ra / (rp * (rp + ra)));
vt2 = sqrt(2.0 * mu * rp / (ra * (rp + ra)));
% compute transfer orbit period (seconds)
taut = 2.0 * pi * sqrt(smat^3 / mu);
tof = 0.5 * taut;
if (abs(dinc) == 0)
% coplanar orbit transfer
if (r2 > r1)
% higher-to-lower transfer
dv1 = vt1 - v1;
dv2 = v2 - vt2;
else
% lower-to-higher transfer
dv1 = v1 - vt2;
dv2 = vt1 - v2;
end
dinc1 = 0;
dinc2 = 0;
inct = inc1;
else
% non-coplanar orbit transfer
[xroot, froot] = brent('hohmfunc', 0, dinc, rtol);
% calculate delta-v's
dinc1 = xroot;
dinc2 = dinc - dinc1;
dv1 = v1 * sqrt(1.0 + hn1 * hn1 - 2.0 * hn1 * cos(dinc1));
dv2 = v1 * sqrt(hn2 * hn2 * hn3 * hn3 + hn2 * hn2 ...
- 2.0 * hn2 * hn2 * hn3 * cos(dinc2));
if (inc2 > inc1)
inct = inc1 + dinc1;
else
inct = inc1 - dinc1;
end
end
% print results
clc; home;
fprintf('\nHohmann Orbit Transfer Analysis');
fprintf('\n-------------------------------\n\n');
fprintf('initial orbit altitude %10.4f kilometers \n\n', alt1);
fprintf('initial orbit radius %10.4f kilometers \n\n', alt1 + req);
fprintf('initial orbit inclination %10.4f degrees \n\n', inc1 * rtd);
fprintf('initial orbit velocity %10.4f meters/second \n\n\n', 1000.0 * v1);
fprintf('final orbit altitude %10.4f kilometers \n\n', alt2);
fprintf('final orbit radius %10.4f kilometers \n\n', alt2 + req);
fprintf('final orbit inclination %10.4f degrees \n\n', inc2 * rtd);
fprintf('final orbit velocity %10.4f meters/second \n', 1000.0 * v2);
fprintf('\n\nfirst inclination change %10.4f degrees\n\n', dinc1 * rtd);
fprintf('second inclination change %10.4f degrees\n\n', dinc2 * rtd);
fprintf('total inclination change %10.4f degrees\n\n\n', rtd * (dinc1 + dinc2));
fprintf('first delta-v %10.4f meters/second \n\n', 1000.0 * dv1);
fprintf('second delta-v %10.4f meters/second \n\n', 1000.0 * dv2);
fprintf('total delta-v %10.4f meters/second \n\n\n', 1000.0 * (dv1 + dv2));
fprintf('transfer orbit semimajor axis %10.4f kilometers \n\n', smat);
fprintf('transfer orbit eccentricity %10.8f \n\n', ecct);
fprintf('transfer orbit inclination %10.4f degrees \n\n', rtd * inct);
fprintf('transfer orbit perigee velocity %10.4f meters/second \n\n', 1000.0 * vt1);
fprintf('transfer orbit apogee velocity %10.4f meters/second \n\n', 1000.0 * vt2);
fprintf('transfer orbit coast time %10.4f seconds \n', tof);
fprintf(' %10.4f minutes \n', tof / 60.0);
fprintf(' %10.4f hours \n\n', tof / 3600.0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create trajectory graphics %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load orbital elements arrays, create state vectors and plot orbits
oevi(1) = r1;
oevi(2) = 0.0;
oevi(3) = inc1;
oevi(4) = 0.0;
oevi(5) = 0.0;
% determine correct true anomaly (radians)
if (alt2 > alt1)
oevi(6) = 0.0;
else
oevi(6) = 180.0 * dtr;
end
[ri, vi] = orb2eci(mu, oevi);
oevti(1) = smat;
oevti(2) = ecct;
oevti(3) = inct;
oevti(4) = 0.0;
oevti(5) = 0.0;
% determine correct true anomaly (radians)
if (alt2 > alt1)
oevti(6) = 0.0;
else
oevti(6) = 180.0 * dtr;
end
[rti, vti] = orb2eci(mu, oevti);
oevtf(1) = smat;
oevtf(2) = ecct;
oevtf(3) = inct;
oevtf(4) = 0.0;
oevtf(5) = 0.0;
% determine correct true anomaly (radians)
if (alt2 > alt1)
oevtf(6) = 180.0 * dtr;
else
oevtf(6) = 0.0;
end
[rtf, vtf] = orb2eci(mu, oevtf);
oevf(1) = r2;
oevf(2) = 0.0;
oevf(3) = inc2;
oevf(4) = 0.0;
oevf(5) = 0.0;
% determine correct true anomaly (radians)
if (alt2 > alt1)
oevf(6) = 180.0 * dtr;
else
oevf(6) = 0.0;
end
[rf, vf] = orb2eci(mu, oevf);
% compute orbital periods
period1 = 2.0 * pi * oevi(1) * sqrt(oevi(1) / mu);
period2 = 2.0 * pi * oevti(1) * sqrt(oevti(1) / mu);
period3 = 2.0 * pi * oevf(1) * sqrt(oevf(1) / mu);
deltat1 = period1 / 300;
simtime1 = -deltat1;
deltat2 = 0.5 * period2 / 300;
simtime2 = -deltat2;
deltat3 = period3 / 300;
simtime3 = -deltat3;
for i = 1:1:301
simtime1 = simtime1 + deltat1;
simtime2 = simtime2 + deltat2;
simtime3 = simtime3 + deltat3;
% compute initial orbit "normalized" position vector
[rwrk, vwrk] = twobody2 (mu, simtime1, ri, vi);
rp1_x(i) = rwrk(1) / req;
rp1_y(i) = rwrk(2) / req;
rp1_z(i) = rwrk(3) / req;
% compute transfer orbit position vector
[rwrk, vwrk] = twobody2 (mu, simtime2, rti, vti);
rp2_x(i) = rwrk(1) / req;
rp2_y(i) = rwrk(2) / req;
rp2_z(i) = rwrk(3) / req;
% compute final orbit position vector
[rwrk, vwrk] = twobody2 (mu, simtime3, rf, vf);
rp3_x(i) = rwrk(1) / req;
rp3_y(i) = rwrk(2) / req;
rp3_z(i) = rwrk(3) / req;
end
figure(1);
% create axes vectors
xaxisx = [1 1.5];
xaxisy = [0 0];
xaxisz = [0 0];
yaxisx = [0 0];
yaxisy = [1 1.5];
yaxisz = [0 0];
zaxisx = [0 0];
zaxisy = [0 0];
zaxisz = [1 1.5];
figure (1);
hold on;
grid on;
% plot earth
[x y z] = sphere(24);
h = surf(x, y, z);
colormap([127/255 1 222/255]);
set (h, 'edgecolor', [1 1 1]);
% plot coordinate system axes
plot3(xaxisx, xaxisy, xaxisz, '-g', 'LineWidth', 1);
plot3(yaxisx, yaxisy, yaxisz, '-r', 'LineWidth', 1);
plot3(zaxisx, zaxisy, zaxisz, '-b', 'LineWidth', 1);
% plot initial orbit
plot3(rp1_x, rp1_y, rp1_z, '-r', 'LineWidth', 1.5);
plot3(rp1_x(1), rp1_y(1), rp1_z(1), 'ob');
% plot transfer orbit
plot3(rp2_x, rp2_y, rp2_z, '-b', 'LineWidth', 1.5);
plot3(rp2_x(end), rp2_y(end), rp2_z(end), 'ob');
% plot final orbit
plot3(rp3_x, rp3_y, rp3_z, '-g', 'LineWidth', 1.5);
xlabel('X coordinate (ER)', 'FontSize', 12);
ylabel('Y coordinate (ER)', 'FontSize', 12);
zlabel('Z coordinate (ER)', 'FontSize', 12);
title('Hohmann Transfer: Initial, Transfer and Final Orbits', 'FontSize', 16);
axis equal;
view(50, 20);
rotate3d on;
print -depsc -tiff -r300 hohmann1.eps
%%%%%%%%%%%%%%%%%%%%%%%%
% create primer graphics
%%%%%%%%%%%%%%%%%%%%%%%%
dvi = (vti - vi)';
dvf = (vf - vtf)';
% perform primer vector initialization
pviniz(tof, rti, vti, dvi, dvf);
% number of graphic data points
npts = 300;
% plot behavior of primer vector magnitude
dt = tof / npts;
for i = 1:1:npts + 1
t = (i - 1) * dt;
if (t == 0)
% initial value of primer magnitude and derivative
pvm = norm(pvi);
pvdm = dot(pvi, pvdi) / pvm;
else
% primer vector and derivative magnitudes at time t
[pvm, pvdm] = pvector(rti, vti, t);
end
% load data array
x1(i) = t / 60.0;
y1(i) = pvm;
y2(i) = pvdm;
end
figure(2);
hold on;
plot(x1, y1, '-r', 'LineWidth', 1.5);
plot(x1(1), y1(1), 'or');
plot(x1(end), y1(end), 'or');
title('Primer Vector Analysis of the Hohmann Transfer', 'FontSize', 16);
xlabel('simulation time (minutes)', 'FontSize', 12);
ylabel('primer vector magnitude', 'FontSize', 12);
grid;
% create eps graphics file with tiff preview
print -depsc -tiff -r300 primer.eps;
% plot behavior of magnitude of primer derivative
figure(3);
hold on;
plot(x1, y2, '-r', 'LineWidth', 1.5);
plot(x1(1), y2(1), 'or');
plot(x1(end), y2(end), 'or');
title('Primer Vector Analysis of the Hohmann Transfer', 'FontSize', 16);
xlabel('simulation time (minutes)', 'FontSize', 12);
ylabel('primer derivative magnitude', 'FontSize', 12);
grid;
% create eps graphics file with tiff preview
print -depsc -tiff -r300 primer_der.eps;
|
module Category.FAM where
open import Level
open import Relation.Binary.PropositionalEquality
open import Function using (_∘_; id; _∘′_)
------------------------------------------------------------------------
-- Functors
record IsFunctor {ℓ} (F : Set ℓ → Set ℓ)
(_<$>_ : ∀ {A B} → (A → B) → F A → F B)
: Set (suc ℓ) where
field
identity : {A : Set ℓ} (a : F A) → id <$> a ≡ a
homo : ∀ {A B C} (f : B → C) (g : A → B) (a : F A)
→ (f ∘ g) <$> a ≡ f <$> (g <$> a)
record Functor {ℓ} (F : Set ℓ → Set ℓ) : Set (suc ℓ) where
infixl 4 _<$>_ _<$_
field
_<$>_ : ∀ {A B} → (A → B) → F A → F B
isFunctor : IsFunctor F _<$>_
-- An textual synonym of _<$>_
fmap : ∀ {A B} → (A → B) → F A → F B
fmap = _<$>_
-- Replace all locations in the input with the same value.
-- The default definition is fmap . const, but this may be overridden with a
-- more efficient version.
_<$_ : ∀ {A B} → A → F B → F A
x <$ y = Function.const x <$> y
open IsFunctor isFunctor public
-- open Functor {{...}} public
------------------------------------------------------------------------
-- Applicatives (not indexed)
record IsApplicative {ℓ} (F : Set ℓ → Set ℓ)
(pure : {A : Set ℓ} → A → F A)
(_⊛_ : {A B : Set ℓ} → (F (A → B)) → F A → F B)
: Set (suc ℓ) where
field
identity : {A : Set ℓ} (x : F A) → pure id ⊛ x ≡ x
compose : {A B C : Set ℓ} (f : F (B → C)) (g : F (A → B))
→ (x : F A)
→ ((pure _∘′_ ⊛ f) ⊛ g) ⊛ x ≡ f ⊛ (g ⊛ x)
homo : ∀ {A B} (f : A → B) (x : A)
→ pure f ⊛ pure x ≡ pure (f x)
interchange : ∀ {A B} (f : F (A → B)) (x : A)
→ f ⊛ pure x ≡ pure (λ f → f x) ⊛ f
record Applicative {ℓ} (F : Set ℓ → Set ℓ) : Set (suc ℓ) where
infixl 4 _⊛_ _<⊛_ _⊛>_
infix 4 _⊗_
field
pure : {A : Set ℓ} → A → F A
_⊛_ : {A B : Set ℓ} → (F (A → B)) → F A → F B
isApplicative : IsApplicative F pure _⊛_
open IsApplicative isApplicative public
_<⊛_ : ∀ {A B} → F A → F B → F A
x <⊛ y = x
_⊛>_ : ∀ {A B} → F A → F B → F B
x ⊛> y = y
functor : Functor F
functor = record
{ _<$>_ = λ f x → pure f ⊛ x
; isFunctor = record
{ identity = App.identity
; homo = λ {A} {B} {C} f g x →
begin
pure (f ∘ g) ⊛ x
≡⟨ cong (λ w → _⊛_ w x) (sym (App.homo (λ g → (f ∘ g)) g)) ⟩
(pure ((λ g → (f ∘ g))) ⊛ pure g) ⊛ x
≡⟨ cong (λ w → (w ⊛ pure g) ⊛ x) (sym (App.homo (λ f → _∘_ f) f)) ⟩
((pure (λ f → _∘_ f) ⊛ pure f) ⊛ pure g) ⊛ x
≡⟨ App.compose (pure f) (pure g) x ⟩
pure f ⊛ (pure g ⊛ x)
∎
}
}
where
open ≡-Reasoning
module App = IsApplicative isApplicative
instance
ApplicativeFunctor : Functor F
ApplicativeFunctor = functor
open import Data.Product
open Functor {{...}}
_⊗_ : ∀ {A B} → F A → F B → F (A × B)
x ⊗ y = _,_ <$> x ⊛ y
zipWith : ∀ {A B C} → (A → B → C) → F A → F B → F C
zipWith f x y = f <$> x ⊛ y
-- open Applicative {{...}} public
----------------------------------------------------------------------
-- Monad
record IsMonad {ℓ} (M : Set ℓ → Set ℓ)
(return : {A : Set ℓ} → A → M A)
(_>>=_ : {A B : Set ℓ} → M A → (A → M B) → M B)
: Set (suc ℓ) where
field
left-identity : {A B : Set ℓ} (x : A) (fs : A → M B) → return x >>= fs ≡ fs x
right-identity : {A : Set ℓ} (xs : M A) → xs >>= return ≡ xs
assoc : {A B C : Set ℓ} (x : M A) (fs : A → M B) (g : B → M C)
→ (x >>= fs) >>= g ≡ (x >>= λ x' → fs x' >>= g)
temp : {A B : Set ℓ} (x : A) (fs : M (A → B))
→ (fs >>= λ f → return x >>= (return ∘ f)) ≡ (fs >>= λ f → (return ∘ f) x)
record Monad {ℓ} (M : Set ℓ → Set ℓ) : Set (suc ℓ) where
infixl 1 _>>=_ _>>_ _>=>_
infixr 1 _=<<_ _<=<_
field
return : {A : Set ℓ} → A → M A
_>>=_ : {A B : Set ℓ} → M A → (A → M B) → M B
isMonad : IsMonad M return _>>=_
_>>_ : ∀ {A B} → M A → M B → M B
m₁ >> m₂ = m₁ >>= λ _ → m₂
_=<<_ : ∀ {A B} → (A → M B) → M A → M B
f =<< c = c >>= f
_>=>_ : ∀ {A : Set ℓ} {B C} → (A → M B) → (B → M C) → (A → M C)
f >=> g = _=<<_ g ∘ f
_<=<_ : ∀ {A : Set ℓ} {B C} → (B → M C) → (A → M B) → (A → M C)
g <=< f = f >=> g
join : ∀ {A} → M (M A) → M A
join m = m >>= id
congruence : ∀ {A B : Set ℓ} (fs : M A) (g h : A → M B)
→ (∀ f → g f ≡ h f)
→ (fs >>= g) ≡ (fs >>= h)
congruence fs g h prop =
begin
(fs >>= g)
≡⟨ sym (right-identity (fs >>= g)) ⟩
(fs >>= g >>= return)
≡⟨ assoc fs g return ⟩
(fs >>= (λ f → g f >>= return))
≡⟨ cong (λ w → fs >>= (λ f → w f >>= return)) {! !} ⟩
(fs >>= (λ f → h f >>= return))
≡⟨ sym (assoc fs h return) ⟩
(fs >>= h >>= return)
≡⟨ right-identity (fs >>= h) ⟩
(fs >>= h)
∎
where
open ≡-Reasoning
open IsMonad isMonad
-- (fs >>= (λ f → return x >>= return ∘ f))
-- (fs >>= (λ f → (return ∘ f) x))
applicative : Applicative M
applicative = record
{ pure = return
; _⊛_ = λ fs xs → fs >>= λ f → xs >>= return ∘′ f
; isApplicative = record
{ identity = λ xs → begin
(return id >>= λ f → xs >>= λ x → return (f x))
≡⟨ Mon.left-identity id (λ f → xs >>= λ x → return (f x)) ⟩
(xs >>= λ x → return (id x))
≡⟨ refl ⟩
(xs >>= λ x → return x)
≡⟨ refl ⟩
(xs >>= return)
≡⟨ Mon.right-identity xs ⟩
xs
∎
-- { identity = λ xs → begin
-- (do
-- f ← (return id)
-- x ← xs
-- (return (f x)))
-- ≡⟨ Mon.left-identity id (λ f → do
-- x ← xs
-- (return (f x)))
-- ⟩
-- (do
-- x ← xs
-- return (id x))
-- ≡⟨ refl ⟩
-- (do
-- x ← xs
-- return x)
-- ≡⟨ Mon.right-identity xs ⟩
-- xs
-- ∎
-- left-identity : {A B : Set ℓ} (x : A) (f : A → M B) → return x >>= f ≡ f x
-- right-identity : {A : Set ℓ} (xs : M A) → xs >>= return ≡ xs
-- → (x >>= f) >>= g ≡ (x >>= λ x' → f x' >>= g)
; compose = λ fs gs xs → begin
(return _∘′_ >>=
(λ flip → fs >>= return ∘′ flip) >>=
(λ f → gs >>= return ∘′ f) >>=
(λ f → xs >>= return ∘′ f))
≡⟨ cong (λ w → w >>=
(λ f → gs >>= return ∘′ f) >>=
(λ f → xs >>= return ∘′ f)) (Mon.left-identity _∘′_ (λ flip → fs >>= return ∘′ flip))
⟩
(fs >>= return ∘′ _∘′_ >>=
(λ f → gs >>= return ∘′ f) >>=
(λ f → xs >>= return ∘′ f))
≡⟨ Mon.assoc (fs >>= return ∘′ _∘′_) (λ f → gs >>= return ∘′ f) (λ f → xs >>= return ∘′ f) ⟩
((fs >>= return ∘′ _∘′_) >>= (λ h → gs >>= return ∘′ h >>= λ f → xs >>= return ∘′ f))
≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ cong (λ w → fs >>= λ r → {! !}) {! !} ⟩
(fs >>= (λ f → (gs >>= λ g → xs >>= return ∘′ g) >>= return ∘′ f))
∎
; homo = λ f x → begin
(return f >>= λ f' → return x >>= return ∘ f')
≡⟨ Mon.left-identity f (λ f' → return x >>= return ∘ f') ⟩
(return x >>= return ∘ f)
≡⟨ Mon.left-identity x (return ∘ f) ⟩
return (f x)
∎
-- left-identity : return x >>= f ≡ f x
-- right-identity : xs >>= return ≡ xs
-- assoc : (x >>= f) >>= g ≡ (x >>= λ x' → f x' >>= g)
; interchange = λ fs x →
begin
(fs >>= (λ f → return x >>= return ∘ f))
≡⟨ congruence fs (λ f → return x >>= return ∘ f) (λ f → (return ∘ f) x) (λ f → Mon.left-identity x (return ∘ f)) ⟩
(fs >>= (λ f → (return ∘ f) x))
≡⟨ sym (Mon.left-identity (λ f → f x) (λ f' → fs >>= (λ f → return (f' f)))) ⟩
(return (λ f → f x) >>= (λ f' → fs >>= (λ f → return (f' f))))
∎
}
}
-- -- ≡⟨ sym (Mon.right-identity (fs >>= (λ f → return x >>= return ∘ f))) ⟩
-- -- (fs >>= (λ f → return x >>= return ∘ f) >>= return)
-- -- ≡⟨ Mon.assoc fs (λ f → return x >>= return ∘ f) return ⟩
-- -- (fs >>= (λ f → return x >>= return ∘ f >>= return))
-- -- ≡⟨ cong (λ w → fs >>= λ f → w f >>= return) {! !} ⟩
-- ≡⟨ cong (λ w → w >>= (λ f → return x >>= return ∘ f)) (sym (Mon.right-identity fs)) ⟩
-- (fs >>= return >>= (λ f → return x >>= return ∘ f))
-- ≡⟨ Mon.assoc fs return (λ f → return x >>= return ∘ f) ⟩
-- (fs >>= λ f → return f >>= λ f → return x >>= return ∘ f)
-- ≡⟨ cong (λ w → fs >>= λ f → w f) {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- (fs >>= (λ f → (return ∘ f) x >>= return))
-- ≡⟨ sym (Mon.assoc fs (λ f → return (f x)) return) ⟩
-- ((fs >>= λ f → (return ∘ f) x) >>= return)
-- ≡⟨ Mon.right-identity (fs >>= λ f → return (f x)) ⟩
where
open ≡-Reasoning
open Applicative applicative
module Mon = IsMonad isMonad
--
-- lemma : {A B : Set ℓ} (x : A) → (λ f → return x >>= return ∘′ f) ≡ (λ f → return (f x))
-- lemma x = begin
-- (λ f → return x >>= return ∘′ f)
-- ≡⟨ cong (λ w f → w) (Mon.left-identity x (λ f → {! !})) ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- (λ f → return (f x))
-- ∎
-- begin
-- (return x >>= return ∘′ f)
-- ≡⟨ Mon.left-identity x (return ∘′ f) ⟩
-- return (f x)
-- ∎
-- lemma : {A B : Set ℓ} (x : A) (f : A → M B) → (return x >>= return ∘′ f) ≡ return (f x)
-- lemma x f = begin
-- (return x >>= return ∘′ f)
-- ≡⟨ Mon.left-identity x (return ∘′ f) ⟩
-- return (f x)
-- ∎
--
-- rawIApplicative : RawIApplicative M
-- rawIApplicative = record
-- { pure = return
-- ; _⊛_ = λ f x → f >>= λ f' → x >>= λ x' → return (f' x')
-- }
|
#ifndef GP_HPP_INCLUDED
#define GP_HPP_INCLUDED
#include <vector>
#include <memory>
#include <iostream>
#include <Eigen/Dense>
#include <Eigen/Cholesky>
namespace boat {
double normal_lnp(double x, double mean, double variance);
typedef enum { SQUARED_EXP, MATERN52 } kernel_t;
class GPParams{
public:
GPParams():mean_(0.0), amplitude_(1.0), default_noise_(0.1),
kernel_(MATERN52) {}
void amplitude(double amplitude) {
amplitude_ = amplitude;
}
void stdev(double stdev) {
amplitude_ = stdev * stdev;
}
void default_noise(double default_noise) {
assert(default_noise >= 0.0);
//default_noise_ = std::max(default_noise, 1e-4);
default_noise_ = default_noise;
}
void mean(double mean) {
mean_ = mean;
}
void linear_scales(const std::vector<double>& linear_scales){
linear_scales_ = linear_scales;
inv_linear_scales_ = Eigen::VectorXd::Map(linear_scales.data(), linear_scales.size())
.array()
.inverse();
}
void kernel(kernel_t kernel){
kernel_ = kernel;
}
double stdev() const {
return sqrt(amplitude_);
}
double amplitude() const {
return amplitude_;
}
double mean() const {
return mean_;
}
double default_noise() const {
return default_noise_;
}
const Eigen::VectorXd& inv_linear_scales() const {
return inv_linear_scales_;
}
const std::vector<double>& linear_scales() const {
return linear_scales_;
}
kernel_t kernel() const {
return kernel_;
}
private:
double mean_;
double amplitude_;
double default_noise_;
std::vector<double> linear_scales_;
Eigen::VectorXd inv_linear_scales_;
kernel_t kernel_;
};
struct GaussianDistrib {
double mu_;
double var_;
double mu() {
return mu_;
}
double var() {
return var_;
}
double stdev() {
return sqrt(var_);
}
};
class GP {
friend class TreedGPS;
public:
GP();
GP(GPParams params);
void set_params(GPParams params);
int num_dims() const;
double observe(const std::vector<double>& x_new, double y_new);
double observe(const std::vector<double>& x_new, double y_new, double noise);
double predict_mean(const std::vector<double>& x_new) const;
GaussianDistrib predict_distrib(const std::vector<double>& x_new) const;
void print() const;
//private:
double observe_i(const std::vector<double>& x_new,
double y_new, double noise_var);
void compute_cholesky() const;
int at_index(const Eigen::RowVectorXd& v) const;
void remove_observation(int i);
Eigen::MatrixXd covariance(const Eigen::MatrixXd& x1,
const Eigen::MatrixXd& x2) const;
void compute_cholesky_from_scratch() const;
// Parameters
GPParams params_;
// Processed data
Eigen::MatrixXd observed_x_;
Eigen::VectorXd observed_y_;
Eigen::VectorXd noise_var_;
mutable Eigen::MatrixXd covariance_cholesky_;
mutable Eigen::VectorXd alpha_;
};
class TreedGPS {
public:
TreedGPS();
TreedGPS(GPParams params, int observation_thresh = 64, int overlap = 3);
TreedGPS(const TreedGPS& other);
TreedGPS& operator=(const TreedGPS& other);
void set_params(GPParams params);
double observe(const std::vector<double>& x_new, double y_new);
double observe(const std::vector<double>& x_new, double y_new, double noise);
double predict_mean(const std::vector<double>& x_new) const;
GaussianDistrib predict_distrib(const std::vector<double>& x_new) const;
private:
bool side(const std::vector<double>& x_new) const;
//Lots of helpers for the splitting
std::pair<std::vector<int>, std::vector<int>> compute_thresh_and_divide(double max_diff);
std::pair<std::vector<int>, std::vector<int>> compute_thresh_props();
void check_thresh();
void copy_observation(bool s, int i);
void compute_children_cholesky();
int observation_thresh_;
int overlap_;
int thresh_dim_;
double thresh_;
double inv_ls_along_thresh_dim_;
std::unique_ptr<GP> gp_;
std::unique_ptr<TreedGPS> left_;
std::unique_ptr<TreedGPS> right_;
};
}
#endif // GP_HPP_INCLUDED
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
! This file was ported from Lean 3 source module init.algebra.order
! leanprover-community/mathlib commit c2bcdbcbe741ed37c361a30d38e179182b989f76
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
prelude
import Leanbin.Init.Logic
import Leanbin.Init.Classical
import Leanbin.Init.Meta.Name
import Leanbin.Init.Algebra.Classes
/- ./././Mathport/Syntax/Translate/Basic.lean:334:40: warning: unsupported option default_priority -/
/- Make sure instances defined in this file have lower priority than the ones
defined for concrete structures -/
/- Make sure instances defined in this file have lower priority than the ones
defined for concrete structures -/
set_option default_priority 100
universe u
variable {α : Type u}
/- ./././Mathport/Syntax/Translate/Basic.lean:334:40: warning: unsupported option auto_param.check_exists -/
set_option auto_param.check_exists false
section Preorder
/-!
### Definition of `preorder` and lemmas about types with a `preorder`
-/
#print Preorder /-
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic order_laws_tac -/
/-- A preorder is a reflexive, transitive relation `≤` with `a < b` defined in the obvious way. -/
class Preorder (α : Type u) extends LE α, LT α where
le_refl : ∀ a : α, a ≤ a
le_trans : ∀ a b c : α, a ≤ b → b ≤ c → a ≤ c
lt := fun a b => a ≤ b ∧ ¬b ≤ a
lt_iff_le_not_le : ∀ a b : α, a < b ↔ a ≤ b ∧ ¬b ≤ a := by
run_tac
order_laws_tac
#align preorder Preorder
-/
variable [Preorder α]
#print le_refl /-
/-- The relation `≤` on a preorder is reflexive. -/
@[refl]
theorem le_refl : ∀ a : α, a ≤ a :=
Preorder.le_refl
#align le_refl le_refl
-/
#print le_trans /-
/-- The relation `≤` on a preorder is transitive. -/
@[trans]
theorem le_trans : ∀ {a b c : α}, a ≤ b → b ≤ c → a ≤ c :=
Preorder.le_trans
#align le_trans le_trans
-/
#print lt_iff_le_not_le /-
theorem lt_iff_le_not_le : ∀ {a b : α}, a < b ↔ a ≤ b ∧ ¬b ≤ a :=
Preorder.lt_iff_le_not_le
#align lt_iff_le_not_le lt_iff_le_not_le
-/
#print lt_of_le_not_le /-
theorem lt_of_le_not_le : ∀ {a b : α}, a ≤ b → ¬b ≤ a → a < b
| a, b, hab, hba => lt_iff_le_not_le.mpr ⟨hab, hba⟩
#align lt_of_le_not_le lt_of_le_not_le
-/
#print le_not_le_of_lt /-
theorem le_not_le_of_lt : ∀ {a b : α}, a < b → a ≤ b ∧ ¬b ≤ a
| a, b, hab => lt_iff_le_not_le.mp hab
#align le_not_le_of_lt le_not_le_of_lt
-/
#print le_of_eq /-
theorem le_of_eq {a b : α} : a = b → a ≤ b := fun h => h ▸ le_refl a
#align le_of_eq le_of_eq
-/
#print ge_trans /-
@[trans]
theorem ge_trans : ∀ {a b c : α}, a ≥ b → b ≥ c → a ≥ c := fun a b c h₁ h₂ => le_trans h₂ h₁
#align ge_trans ge_trans
-/
#print lt_irrefl /-
theorem lt_irrefl : ∀ a : α, ¬a < a
| a, haa =>
match le_not_le_of_lt haa with
| ⟨h1, h2⟩ => False.ndrec _ (h2 h1)
#align lt_irrefl lt_irrefl
-/
#print gt_irrefl /-
theorem gt_irrefl : ∀ a : α, ¬a > a :=
lt_irrefl
#align gt_irrefl gt_irrefl
-/
#print lt_trans /-
@[trans]
theorem lt_trans : ∀ {a b c : α}, a < b → b < c → a < c
| a, b, c, hab, hbc =>
match le_not_le_of_lt hab, le_not_le_of_lt hbc with
| ⟨hab, hba⟩, ⟨hbc, hcb⟩ => lt_of_le_not_le (le_trans hab hbc) fun hca => hcb (le_trans hca hab)
#align lt_trans lt_trans
-/
#print gt_trans /-
@[trans]
theorem gt_trans : ∀ {a b c : α}, a > b → b > c → a > c := fun a b c h₁ h₂ => lt_trans h₂ h₁
#align gt_trans gt_trans
-/
#print ne_of_lt /-
theorem ne_of_lt {a b : α} (h : a < b) : a ≠ b := fun he => absurd h (he ▸ lt_irrefl a)
#align ne_of_lt ne_of_lt
-/
#print ne_of_gt /-
theorem ne_of_gt {a b : α} (h : b < a) : a ≠ b := fun he => absurd h (he ▸ lt_irrefl a)
#align ne_of_gt ne_of_gt
-/
#print lt_asymm /-
theorem lt_asymm {a b : α} (h : a < b) : ¬b < a := fun h1 : b < a => lt_irrefl a (lt_trans h h1)
#align lt_asymm lt_asymm
-/
#print le_of_lt /-
theorem le_of_lt : ∀ {a b : α}, a < b → a ≤ b
| a, b, hab => (le_not_le_of_lt hab).left
#align le_of_lt le_of_lt
-/
#print lt_of_lt_of_le /-
@[trans]
theorem lt_of_lt_of_le : ∀ {a b c : α}, a < b → b ≤ c → a < c
| a, b, c, hab, hbc =>
let ⟨hab, hba⟩ := le_not_le_of_lt hab
lt_of_le_not_le (le_trans hab hbc) fun hca => hba (le_trans hbc hca)
#align lt_of_lt_of_le lt_of_lt_of_le
-/
#print lt_of_le_of_lt /-
@[trans]
theorem lt_of_le_of_lt : ∀ {a b c : α}, a ≤ b → b < c → a < c
| a, b, c, hab, hbc =>
let ⟨hbc, hcb⟩ := le_not_le_of_lt hbc
lt_of_le_not_le (le_trans hab hbc) fun hca => hcb (le_trans hca hab)
#align lt_of_le_of_lt lt_of_le_of_lt
-/
#print gt_of_gt_of_ge /-
@[trans]
theorem gt_of_gt_of_ge {a b c : α} (h₁ : a > b) (h₂ : b ≥ c) : a > c :=
lt_of_le_of_lt h₂ h₁
#align gt_of_gt_of_ge gt_of_gt_of_ge
-/
#print gt_of_ge_of_gt /-
@[trans]
theorem gt_of_ge_of_gt {a b c : α} (h₁ : a ≥ b) (h₂ : b > c) : a > c :=
lt_of_lt_of_le h₂ h₁
#align gt_of_ge_of_gt gt_of_ge_of_gt
-/
#print not_le_of_gt /-
theorem not_le_of_gt {a b : α} (h : a > b) : ¬a ≤ b :=
(le_not_le_of_lt h).right
#align not_le_of_gt not_le_of_gt
-/
#print not_lt_of_ge /-
theorem not_lt_of_ge {a b : α} (h : a ≥ b) : ¬a < b := fun hab => not_le_of_gt hab h
#align not_lt_of_ge not_lt_of_ge
-/
#print le_of_lt_or_eq /-
theorem le_of_lt_or_eq : ∀ {a b : α}, a < b ∨ a = b → a ≤ b
| a, b, Or.inl hab => le_of_lt hab
| a, b, Or.inr hab => hab ▸ le_refl _
#align le_of_lt_or_eq le_of_lt_or_eq
-/
#print le_of_eq_or_lt /-
theorem le_of_eq_or_lt {a b : α} (h : a = b ∨ a < b) : a ≤ b :=
Or.elim h le_of_eq le_of_lt
#align le_of_eq_or_lt le_of_eq_or_lt
-/
/-- `<` is decidable if `≤` is. -/
def decidableLtOfDecidableLe [@DecidableRel α (· ≤ ·)] : @DecidableRel α (· < ·)
| a, b =>
if hab : a ≤ b then
if hba : b ≤ a then isFalse fun hab' => not_le_of_gt hab' hba
else isTrue <| lt_of_le_not_le hab hba
else isFalse fun hab' => hab (le_of_lt hab')
#align decidable_lt_of_decidable_le decidableLtOfDecidableLe
end Preorder
section PartialOrder
/-!
### Definition of `partial_order` and lemmas about types with a partial order
-/
#print PartialOrder /-
/-- A partial order is a reflexive, transitive, antisymmetric relation `≤`. -/
class PartialOrder (α : Type u) extends Preorder α where
le_antisymm : ∀ a b : α, a ≤ b → b ≤ a → a = b
#align partial_order PartialOrder
-/
variable [PartialOrder α]
#print le_antisymm /-
theorem le_antisymm : ∀ {a b : α}, a ≤ b → b ≤ a → a = b :=
PartialOrder.le_antisymm
#align le_antisymm le_antisymm
-/
#print le_antisymm_iff /-
theorem le_antisymm_iff {a b : α} : a = b ↔ a ≤ b ∧ b ≤ a :=
⟨fun e => ⟨le_of_eq e, le_of_eq e.symm⟩, fun ⟨h1, h2⟩ => le_antisymm h1 h2⟩
#align le_antisymm_iff le_antisymm_iff
-/
#print lt_of_le_of_ne /-
theorem lt_of_le_of_ne {a b : α} : a ≤ b → a ≠ b → a < b := fun h₁ h₂ =>
lt_of_le_not_le h₁ <| mt (le_antisymm h₁) h₂
#align lt_of_le_of_ne lt_of_le_of_ne
-/
/-- Equality is decidable if `≤` is. -/
def decidableEqOfDecidableLe [@DecidableRel α (· ≤ ·)] : DecidableEq α
| a, b =>
if hab : a ≤ b then
if hba : b ≤ a then isTrue (le_antisymm hab hba) else isFalse fun heq => hba (HEq ▸ le_refl _)
else isFalse fun heq => hab (HEq ▸ le_refl _)
#align decidable_eq_of_decidable_le decidableEqOfDecidableLe
namespace Decidable
variable [@DecidableRel α (· ≤ ·)]
#print Decidable.lt_or_eq_of_le /-
theorem lt_or_eq_of_le {a b : α} (hab : a ≤ b) : a < b ∨ a = b :=
if hba : b ≤ a then Or.inr (le_antisymm hab hba) else Or.inl (lt_of_le_not_le hab hba)
#align decidable.lt_or_eq_of_le Decidable.lt_or_eq_of_le
-/
#print Decidable.eq_or_lt_of_le /-
theorem eq_or_lt_of_le {a b : α} (hab : a ≤ b) : a = b ∨ a < b :=
(lt_or_eq_of_le hab).symm
#align decidable.eq_or_lt_of_le Decidable.eq_or_lt_of_le
-/
#print Decidable.le_iff_lt_or_eq /-
theorem le_iff_lt_or_eq {a b : α} : a ≤ b ↔ a < b ∨ a = b :=
⟨lt_or_eq_of_le, le_of_lt_or_eq⟩
#align decidable.le_iff_lt_or_eq Decidable.le_iff_lt_or_eq
-/
end Decidable
attribute [local instance] Classical.propDecidable
#print lt_or_eq_of_le /-
theorem lt_or_eq_of_le {a b : α} : a ≤ b → a < b ∨ a = b :=
Decidable.lt_or_eq_of_le
#align lt_or_eq_of_le lt_or_eq_of_le
-/
#print le_iff_lt_or_eq /-
theorem le_iff_lt_or_eq {a b : α} : a ≤ b ↔ a < b ∨ a = b :=
Decidable.le_iff_lt_or_eq
#align le_iff_lt_or_eq le_iff_lt_or_eq
-/
end PartialOrder
section LinearOrder
/-!
### Definition of `linear_order` and lemmas about types with a linear order
-/
#print maxDefault /-
/-- Default definition of `max`. -/
def maxDefault {α : Type u} [LE α] [DecidableRel ((· ≤ ·) : α → α → Prop)] (a b : α) :=
if a ≤ b then b else a
#align max_default maxDefault
-/
#print minDefault /-
/-- Default definition of `min`. -/
def minDefault {α : Type u} [LE α] [DecidableRel ((· ≤ ·) : α → α → Prop)] (a b : α) :=
if a ≤ b then a else b
#align min_default minDefault
-/
#print LinearOrder /-
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic tactic.interactive.reflexivity -/
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic tactic.interactive.reflexivity -/
/-- A linear order is reflexive, transitive, antisymmetric and total relation `≤`.
We assume that every linear ordered type has decidable `(≤)`, `(<)`, and `(=)`. -/
class LinearOrder (α : Type u) extends PartialOrder α where
le_total : ∀ a b : α, a ≤ b ∨ b ≤ a
decidableLe : DecidableRel (· ≤ ·)
DecidableEq : DecidableEq α := @decidableEqOfDecidableLe _ _ decidable_le
decidableLt : DecidableRel ((· < ·) : α → α → Prop) := @decidableLtOfDecidableLe _ _ decidable_le
max : α → α → α := @maxDefault α _ _
max_def : max = @maxDefault α _ decidable_le := by
run_tac
tactic.interactive.reflexivity
min : α → α → α := @minDefault α _ _
min_def : min = @minDefault α _ decidable_le := by
run_tac
tactic.interactive.reflexivity
#align linear_order LinearOrder
-/
variable [LinearOrder α]
attribute [local instance] LinearOrder.decidableLe
#print le_total /-
theorem le_total : ∀ a b : α, a ≤ b ∨ b ≤ a :=
LinearOrder.le_total
#align le_total le_total
-/
#print le_of_not_ge /-
theorem le_of_not_ge {a b : α} : ¬a ≥ b → a ≤ b :=
Or.resolve_left (le_total b a)
#align le_of_not_ge le_of_not_ge
-/
#print le_of_not_le /-
theorem le_of_not_le {a b : α} : ¬a ≤ b → b ≤ a :=
Or.resolve_left (le_total a b)
#align le_of_not_le le_of_not_le
-/
#print not_lt_of_gt /-
theorem not_lt_of_gt {a b : α} (h : a > b) : ¬a < b :=
lt_asymm h
#align not_lt_of_gt not_lt_of_gt
-/
#print lt_trichotomy /-
theorem lt_trichotomy (a b : α) : a < b ∨ a = b ∨ b < a :=
Or.elim (le_total a b)
(fun h : a ≤ b =>
Or.elim (Decidable.lt_or_eq_of_le h) (fun h : a < b => Or.inl h) fun h : a = b =>
Or.inr (Or.inl h))
fun h : b ≤ a =>
Or.elim (Decidable.lt_or_eq_of_le h) (fun h : b < a => Or.inr (Or.inr h)) fun h : b = a =>
Or.inr (Or.inl h.symm)
#align lt_trichotomy lt_trichotomy
-/
#print le_of_not_lt /-
theorem le_of_not_lt {a b : α} (h : ¬b < a) : a ≤ b :=
match lt_trichotomy a b with
| Or.inl hlt => le_of_lt hlt
| Or.inr (Or.inl HEq) => HEq ▸ le_refl a
| Or.inr (Or.inr hgt) => absurd hgt h
#align le_of_not_lt le_of_not_lt
-/
#print le_of_not_gt /-
theorem le_of_not_gt {a b : α} : ¬a > b → a ≤ b :=
le_of_not_lt
#align le_of_not_gt le_of_not_gt
-/
#print lt_of_not_ge /-
theorem lt_of_not_ge {a b : α} (h : ¬a ≥ b) : a < b :=
lt_of_le_not_le ((le_total _ _).resolve_right h) h
#align lt_of_not_ge lt_of_not_ge
-/
#print lt_or_le /-
theorem lt_or_le (a b : α) : a < b ∨ b ≤ a :=
if hba : b ≤ a then Or.inr hba else Or.inl <| lt_of_not_ge hba
#align lt_or_le lt_or_le
-/
#print le_or_lt /-
theorem le_or_lt (a b : α) : a ≤ b ∨ b < a :=
(lt_or_le b a).symm
#align le_or_lt le_or_lt
-/
#print lt_or_ge /-
theorem lt_or_ge : ∀ a b : α, a < b ∨ a ≥ b :=
lt_or_le
#align lt_or_ge lt_or_ge
-/
#print le_or_gt /-
theorem le_or_gt : ∀ a b : α, a ≤ b ∨ a > b :=
le_or_lt
#align le_or_gt le_or_gt
-/
#print lt_or_gt_of_ne /-
theorem lt_or_gt_of_ne {a b : α} (h : a ≠ b) : a < b ∨ a > b :=
match lt_trichotomy a b with
| Or.inl hlt => Or.inl hlt
| Or.inr (Or.inl HEq) => absurd HEq h
| Or.inr (Or.inr hgt) => Or.inr hgt
#align lt_or_gt_of_ne lt_or_gt_of_ne
-/
#print ne_iff_lt_or_gt /-
theorem ne_iff_lt_or_gt {a b : α} : a ≠ b ↔ a < b ∨ a > b :=
⟨lt_or_gt_of_ne, fun o => Or.elim o ne_of_lt ne_of_gt⟩
#align ne_iff_lt_or_gt ne_iff_lt_or_gt
-/
#print lt_iff_not_ge /-
theorem lt_iff_not_ge (x y : α) : x < y ↔ ¬x ≥ y :=
⟨not_le_of_gt, lt_of_not_ge⟩
#align lt_iff_not_ge lt_iff_not_ge
-/
#print not_lt /-
@[simp]
theorem not_lt {a b : α} : ¬a < b ↔ b ≤ a :=
⟨le_of_not_gt, not_lt_of_ge⟩
#align not_lt not_lt
-/
#print not_le /-
@[simp]
theorem not_le {a b : α} : ¬a ≤ b ↔ b < a :=
(lt_iff_not_ge _ _).symm
#align not_le not_le
-/
instance (a b : α) : Decidable (a < b) :=
LinearOrder.decidableLt a b
instance (a b : α) : Decidable (a ≤ b) :=
LinearOrder.decidableLe a b
instance (a b : α) : Decidable (a = b) :=
LinearOrder.decidableEq a b
#print eq_or_lt_of_not_lt /-
theorem eq_or_lt_of_not_lt {a b : α} (h : ¬a < b) : a = b ∨ b < a :=
if h₁ : a = b then Or.inl h₁ else Or.inr (lt_of_not_ge fun hge => h (lt_of_le_of_ne hge h₁))
#align eq_or_lt_of_not_lt eq_or_lt_of_not_lt
-/
instance : IsTotalPreorder α (· ≤ ·)
where
trans := @le_trans _ _
Total := le_total
-- TODO(Leo): decide whether we should keep this instance or not
instance isStrictWeakOrder_of_linearOrder : IsStrictWeakOrder α (· < ·) :=
isStrictWeakOrder_of_isTotalPreorder lt_iff_not_ge
#align is_strict_weak_order_of_linear_order isStrictWeakOrder_of_linearOrder
-- TODO(Leo): decide whether we should keep this instance or not
instance isStrictTotalOrder_of_linearOrder : IsStrictTotalOrder α (· < ·)
where trichotomous := lt_trichotomy
#align is_strict_total_order_of_linear_order isStrictTotalOrder_of_linearOrder
/-- Perform a case-split on the ordering of `x` and `y` in a decidable linear order. -/
def ltByCases (x y : α) {P : Sort _} (h₁ : x < y → P) (h₂ : x = y → P) (h₃ : y < x → P) : P :=
if h : x < y then h₁ h
else if h' : y < x then h₃ h' else h₂ (le_antisymm (le_of_not_gt h') (le_of_not_gt h))
#align lt_by_cases ltByCases
/- warning: le_imp_le_of_lt_imp_lt -> le_imp_le_of_lt_imp_lt is a dubious translation:
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {β : Type.{u2}} [_inst_2 : Preorder.{u1} α] [_inst_3 : LinearOrder.{u2} β] {a : α} {b : α} {c : β} {d : β}, ((LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (LinearOrder.toPartialOrder.{u2} β _inst_3))) d c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_2) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_2) a b) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (LinearOrder.toPartialOrder.{u2} β _inst_3))) c d)
but is expected to have type
forall {α : Type.{u2}} {_inst_1 : Type.{u1}} [β : Preorder.{u2} α] [_inst_2 : LinearOrder.{u1} _inst_1] {_inst_3 : α} {a : α} {b : _inst_1} {c : _inst_1}, ((LT.lt.{u1} _inst_1 (Preorder.toLT.{u1} _inst_1 (PartialOrder.toPreorder.{u1} _inst_1 (LinearOrder.toPartialOrder.{u1} _inst_1 _inst_2))) c b) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α β) a _inst_3)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α β) _inst_3 a) -> (LE.le.{u1} _inst_1 (Preorder.toLE.{u1} _inst_1 (PartialOrder.toPreorder.{u1} _inst_1 (LinearOrder.toPartialOrder.{u1} _inst_1 _inst_2))) b c)
Case conversion may be inaccurate. Consider using '#align le_imp_le_of_lt_imp_lt le_imp_le_of_lt_imp_ltₓ'. -/
theorem le_imp_le_of_lt_imp_lt {β} [Preorder α] [LinearOrder β] {a b : α} {c d : β}
(H : d < c → b < a) (h : a ≤ b) : c ≤ d :=
le_of_not_lt fun h' => not_le_of_gt (H h') h
#align le_imp_le_of_lt_imp_lt le_imp_le_of_lt_imp_lt
end LinearOrder
|
Formal statement is: lemma convex_sum: fixes C :: "'a::real_vector set" assumes "finite S" and "convex C" and "(\<Sum> i \<in> S. a i) = 1" assumes "\<And>i. i \<in> S \<Longrightarrow> a i \<ge> 0" and "\<And>i. i \<in> S \<Longrightarrow> y i \<in> C" shows "(\<Sum> j \<in> S. a j *\<^sub>R y j) \<in> C" Informal statement is: If $C$ is a convex set, $S$ is a finite set, and $y_i \in C$ for all $i \in S$, then $\sum_{i \in S} a_i y_i \in C$ for any $a_i \geq 0$ such that $\sum_{i \in S} a_i = 1$. |
// =-=-=-=-=-=-=-
#include "apiHeaderAll.hpp"
#include "msParam.hpp"
#include "reGlobalsExtern.hpp"
#include "irods_ms_plugin.hpp"
// =-=-=-=-=-=-=-
// STL/boost Includes
#include <string>
#include <iostream>
#include <vector>
#include <boost/algorithm/string.hpp>
#include <ImageMagick/Magick++.h>
std::string convertCompressTypeToStr(const MagickCore::CompressionType& t);
std::string convertColorSpaceTypeToStr(const MagickCore::ColorspaceType& t);
using namespace Magick;
extern "C" {
// =-=-=-=-=-=-=-
// Returns the meta data as a string for the image. Example: CompressionType=JPEG%Width=10%Height=20
int msiget_image_meta(msParam_t* _in, msParam_t* _out, ruleExecInfo_t* rei) {
using std::cout;
using std::endl;
using std::string;
char *filePath = parseMspForStr( _in );
if( !filePath ) {
cout << "msiget_image_meta - null filePath parameter" << endl;
return SYS_INVALID_INPUT_PARAM;
}
cout << "File Path: " << filePath << endl;
InitializeMagick((const char*)0);
Image imgObj;
imgObj.read(filePath);
std::stringstream metaData;
metaData << "ImageDepth=" << imgObj.modulusDepth() << "%Width=" << imgObj.columns()
<< "%Height=" << imgObj.rows() << "%CompressionType=" << convertCompressTypeToStr(imgObj.compressType())
<< "%Format=" << imgObj.format() << "%Colorspace=" << convertColorSpaceTypeToStr(imgObj.colorSpace());
fillStrInMsParam(_out, metaData.str().c_str());
// Done
return 0;
}
// =-=-=-=-=-=-=-
// 2. Create the plugin factory function which will return a microservice
// table entry
irods::ms_table_entry* plugin_factory() {
// =-=-=-=-=-=-=-
// 3. allocate a microservice plugin which takes the number of function
// params as a parameter to the constructor
irods::ms_table_entry* msvc = new irods::ms_table_entry(2);
// =-=-=-=-=-=-=-
// 4. add the microservice function as an operation to the plugin
// the first param is the name / key of the operation, the second
// is the name of the function which will be the microservice
msvc->add_operation("msiget_image_meta", "msiget_image_meta");
// =-=-=-=-=-=-=-
// 5. return the newly created microservice plugin
return msvc;
}
} // extern "C"
std::string convertCompressTypeToStr(const MagickCore::CompressionType& t) {
switch (t) {
case UndefinedCompression:
return "undefined";
case NoCompression:
return "none";
case FaxCompression:
return "FAX";
case Group4Compression:
return "GROUP4";
case JPEGCompression:
return "JPEG";
case LZWCompression:
return "LZW";
case RLECompression:
return "RLE";
case LZMACompression:
return "LZMA";
default:
return "undefined";
}
}
std::string convertColorSpaceTypeToStr(const MagickCore::ColorspaceType& t) {
switch (t) {
case UndefinedColorspace:
return "undefined";
case RGBColorspace:
return "RGB";
case GRAYColorspace:
return "GRAY";
case TransparentColorspace:
return "TRANSPARENT";
case OHTAColorspace:
return "OHTA";
case XYZColorspace:
return "XYZ";
case YCbCrColorspace:
return "YCbCr";
case YCCColorspace:
return "YCC";
case YIQColorspace:
return "YIQ";
case YPbPrColorspace:
return "YPbPr";
case YUVColorspace:
return "YUV";
case CMYKColorspace:
return "CMYK";
case sRGBColorspace:
return "sRGB";
case HSLColorspace:
return "HSL";
case HWBColorspace:
return "HWB";
case Rec601LumaColorspace:
return "REC601Luma";
case Rec709LumaColorspace:
return "REC709";
case LogColorspace:
return "LOG";
default:
return "undefined";
}
}
|
Parameters p1 p2 t1 t2 : Prop.
Definition aff1 := (p1 \/ p2).
Definition aff2 := t1.
Definition k := (aff1 /\ aff2) \/ (~aff1 /\ ~aff2).
Definition h1 := ~(p1 /\ t1) /\ ~(p2 /\ t2).
Definition h2 := (p1 \/ t1) /\ (p2 \/ t2).
Lemma epreuve_2 : h1 /\ h2 /\ k -> t1 /\ p2.
Proof.
unfold k, h1, h2.
unfold aff1, aff2.
intros.
destruct H.
destruct H.
destruct H0.
destruct H0.
destruct H2.
destruct H2.
split; try assumption.
destruct H3; try assumption.
destruct H2; try assumption.
elimtype False.
auto.
destruct H2.
destruct H0.
elimtype False.
auto.
elimtype False.
auto.
Qed.
|
# Author: Karl Stratos ([email protected])
import dynet as dy
import numpy as np
import os
import pickle
import random
import time
from common_architecture import CommonArchitecture
from model import Model
from window import Window
class PartOfSpeechInducer(Model):
def __init__(self, cmd=""):
self.common = CommonArchitecture(self)
super(PartOfSpeechInducer, self).__init__(cmd)
def config(self, arch, loss_type, zsize, wdim, cdim, jdim, width, swap,
pseudocount, metric, verbose=False):
self.arch = arch
self.loss_type = loss_type
self.zsize = zsize
self.wdim = wdim
self.cdim = cdim
self.jdim = jdim
self.width = width
self.swap = swap
self.pseudocount = pseudocount
self.metric = metric
self._verbose = verbose
def init_parameters(self, wembs):
crep_dim = self.common.init_common_parameters(wembs)
if self.arch == "default":
assert self.wdim > 0
self.W_X = self.m.add_parameters((self.zsize,
2 * self.wdim * self.width))
self.W_Y = self.m.add_parameters((self.zsize, self.wdim + crep_dim))
elif self.arch == "default-char":
assert crep_dim > 0
self.W_X = self.m.add_parameters((self.zsize,
2 * crep_dim * self.width))
self.W_Y = self.m.add_parameters((self.zsize, crep_dim))
elif self.arch == "brown":
assert self.wdim > 0
self.W = self.m.add_parameters((self.zsize, self.wdim))
elif self.arch == "brown-sep":
assert self.wdim > 0
self.W_X = self.m.add_parameters((self.zsize, self.wdim))
self.W_Y = self.m.add_parameters((self.zsize, self.wdim))
elif self.arch == "widen1":
assert self.wdim > 0
self.W_X = self.m.add_parameters((self.zsize,
2 * self.wdim * self.width))
self.W_Y = self.m.add_parameters((self.zsize,
2 * self.wdim + crep_dim))
elif self.arch == "widen2":
assert self.wdim > 0
self.W_X = self.m.add_parameters((self.zsize,
2 * self.wdim * self.width))
self.W_Y = self.m.add_parameters((self.zsize,
3 * self.wdim + crep_dim))
elif self.arch == "lstm":
assert self.wdim > 0
self.context_lstm1 = dy.LSTMBuilder(1, self.wdim, self.wdim, self.m)
self.context_lstm2 = dy.LSTMBuilder(1, self.wdim, self.wdim, self.m)
self.W_X = self.m.add_parameters((self.zsize, 2 * self.wdim))
self.W_Y = self.m.add_parameters((self.zsize, self.wdim + crep_dim))
else:
raise ValueError("unknown architecture: {0}".format(self.arch))
def compute_qp_pairs(self, wseqs, batch):
dy.renew_cg()
def assert_sentence_batch(wseqs, batch):
(i, j) = batch[0]
assert j == 0
assert len(batch) == len(wseqs[i])
for (i_next, j_next) in batch[1:]:
assert i_next == i
assert j_next == j + 1
j = j_next
return i
if self.arch == "lstm":
i = assert_sentence_batch(wseqs, batch)
return self.compute_qp_pairs_lstm(wseqs[i])
if self.arch == "default":
compute_qp_pair = self.compute_qp_pair_default
elif self.arch == "default-char":
compute_qp_pair = self.compute_qp_pair_default_char
elif self.arch == "brown":
compute_qp_pair = self.compute_qp_pair_brown
elif self.arch == "brown-sep":
compute_qp_pair = self.compute_qp_pair_brown_sep
elif self.arch == "widen1":
compute_qp_pair = self.compute_qp_pair_widen1
elif self.arch == "widen2":
compute_qp_pair = self.compute_qp_pair_widen2
else:
raise ValueError("unknown self.architecture: {0}".format(self.arch))
qp_pairs = []
for (i, j) in batch:
(qZ_X, pZ_Y) = compute_qp_pair(wseqs[i], j)
qp_pairs.append((pZ_Y, qZ_X) if self.swap else (qZ_X, pZ_Y))
return qp_pairs
def compute_qp_pair_default(self, wseq, j):
window = Window(wseq, self._BUF)
X = window.left(j, self.width) + window.right(j, self.width)
v_X = [self.common.get_wemb(w) for w in X]
qZ_X = dy.softmax(self.W_X * dy.concatenate(v_X))
v_Y = [v for v in [self.common.get_wemb(wseq[j]),
self.common.get_crep(wseq[j])] if v]
pZ_Y = dy.softmax(self.W_Y * dy.concatenate(v_Y))
return qZ_X, pZ_Y
def compute_qp_pair_default_char(self, wseq, j):
window = Window(wseq, self._BUF)
X = window.left(j, self.width) + window.right(j, self.width)
v_X = [self.common.get_crep(w) for w in X]
qZ_X = dy.softmax(self.W_X * dy.concatenate(v_X))
v_Y = [self.common.get_crep(wseq[j])]
pZ_Y = dy.softmax(self.W_Y * dy.concatenate(v_Y))
return qZ_X, pZ_Y
def compute_qp_pair_brown(self, wseq, j):
window = Window(wseq, self._BUF)
X = window.left(j, 1)
v_X = [self.common.get_wemb(w) for w in X]
qZ_X = dy.softmax(self.W * dy.concatenate(v_X))
Y = [wseq[j]]
v_Y = [self.common.get_wemb(w) for w in Y]
pZ_Y = dy.softmax(self.W * dy.concatenate(v_Y))
return qZ_X, pZ_Y
def compute_qp_pair_brown_sep(self, wseq, j):
window = Window(wseq, self._BUF)
X = window.left(j, 1)
v_X = [self.common.get_wemb(w) for w in X]
qZ_X = dy.softmax(self.W_X * dy.concatenate(v_X))
Y = [wseq[j]]
v_Y = [self.common.get_wemb(w) for w in Y]
pZ_Y = dy.softmax(self.W_Y * dy.concatenate(v_Y))
return qZ_X, pZ_Y
def compute_qp_pair_widen1(self, wseq, j):
window = Window(wseq, self._BUF)
X = window.left(max(0, j - 1), self.width)
X += window.right(j, self.width)
v_X = [self.common.get_wemb(w) for w in X]
qZ_X = dy.softmax(self.W_X * dy.concatenate(v_X))
Y = window.left(j, 1)
Y += [wseq[j]]
v_Y = [v for v in [self.common.get_wemb(w) for w in Y] +
[self.common.get_crep(wseq[j])] if v]
pZ_Y = dy.softmax(self.W_Y * dy.concatenate(v_Y))
return qZ_X, pZ_Y
def compute_qp_pair_widen2(self, wseq, j):
window = Window(wseq, self._BUF)
X = window.left(max(0, j - 1), self.width)
X += window.right(min(len(wseq) - 1, j + 1), self.width)
v_X = [self.common.get_wemb(w) for w in X]
qZ_X = dy.softmax(self.W_X * dy.concatenate(v_X))
Y = window.left(j, 1)
Y += [wseq[j]]
Y += window.right(j, 1)
v_Y = [v for v in [self.common.get_wemb(w) for w in Y] +
[self.common.get_crep(wseq[j])] if v]
pZ_Y = dy.softmax(self.W_Y * dy.concatenate(v_Y))
return qZ_X, pZ_Y
def compute_qp_pairs_lstm(self, wseq):
# <*> <-> the <-> dog <-> saw <-> the <-> cat <-> <*>
inputs = [self.common.get_wemb(w)
for w in [self._BUF] + wseq + [self._BUF]]
outputs1, outputs2 = self.common.run_bilstm(inputs,
self.context_lstm1,
self.context_lstm2)
qp_pairs = []
for j in xrange(len(wseq)):
v_X = self.common.get_bilstm_left_right_from_outputs(outputs1,
outputs2,
j + 1, j + 1)
qZ_X = dy.softmax(self.W_X * v_X)
v_Y = [v for v in [self.common.get_wemb(wseq[j]),
self.common.get_crep(wseq[j])] if v]
pZ_Y = dy.softmax(self.W_Y * dy.concatenate(v_Y))
qp_pairs.append((qZ_X, pZ_Y))
return qp_pairs
def prepare_batches(self, wseqs, batch_size):
if batch_size == 0: # sentence-level batching
inds = [i for i in xrange(len(wseqs))]
random.shuffle(inds)
batches = [[(i, j) for j in xrange(len(wseqs[i]))]
for i in inds]
else:
pairs = []
for i in xrange(len(wseqs)):
for j in xrange(len(wseqs[i])):
pairs.append((i, j))
random.shuffle(pairs)
batches = []
for i in xrange(0, len(pairs), batch_size):
batches.append(pairs[i:min(i + batch_size, len(pairs))])
return batches
def _enable_lstm_dropout(self, drate):
if self.arch == "lstm":
self.context_lstm1.set_dropout(drate)
self.context_lstm2.set_dropout(drate)
def _disable_lstm_dropout(self):
if self.arch == "lstm":
self.context_lstm1.disable_dropout()
self.context_lstm2.disable_dropout()
def measure_mi(self, wseqs):
assert not self._is_training
num_samples = 0
joint = np.zeros((self.zsize, self.zsize))
batches = self.prepare_batches(wseqs, 0)
for batch in batches:
qp_pairs = self.compute_qp_pairs(wseqs, batch)
for (qZ_X, pZ_Y) in qp_pairs:
num_samples += 1
outer = qZ_X * dy.transpose(pZ_Y)
joint += outer.value()
joint /= num_samples
mi = self.evaluator.mi_zero(joint)
return mi
def train(self, model_path, wseqs, lrate, drate, epochs, batch_size,
wemb_path, tseqs=[]):
wembs = self.read_wembs(wemb_path, self.wdim)
self.m = dy.ParameterCollection()
self._prepare_model_directory(model_path)
self.build_dicts(wseqs, tseqs, wembs)
self.init_parameters(wembs)
trainer = dy.AdamTrainer(self.m, lrate)
self._train_report(lrate, drate, epochs, batch_size)
self.common.turn_on_training(drate)
perf_best = 0.0
for epoch in xrange(epochs):
self._log("Epoch {0:2d} ".format(epoch + 1), False)
epoch_start_time = time.time()
batches = self.prepare_batches(wseqs, batch_size)
total_batch_loss = 0.0
for batch in batches:
qp_pairs = self.compute_qp_pairs(wseqs, batch)
batch_loss = self.common.get_loss(qp_pairs)
total_batch_loss += batch_loss.value()
batch_loss.backward()
trainer.update()
avg_loss = total_batch_loss / len(batches)
self._log("updates: {0} ".format(len(batches)), False)
self._log("loss: {0:.2f} ".format(avg_loss), False)
self._log("({0:.1f}s) ".format(time.time() -
epoch_start_time), False)
if tseqs:
self.common.turn_off_training()
zseqs_X, zseqs_Y, zseqs_XY, infer_time = self.tag_all(wseqs)
perf_max = self.common.evaluator_report(wseqs, tseqs, zseqs_X,
zseqs_Y, zseqs_XY,
infer_time,
self.measure_mi(wseqs),
self.metric)
self.common.turn_on_training(drate)
if perf_max > perf_best:
perf_best = perf_max
self._log("new best {0:.2f} - saving ".format(perf_best),
False)
self.save(model_path)
else:
self.save(model_path)
self._log("")
def save(self, model_path):
self.m.save(os.path.join(model_path, "model"))
with open(os.path.join(model_path, "info.pickle"), 'w') as outf:
pickle.dump(
(self._w2i,
self._c2i,
self._jamo2i,
self.arch,
self.loss_type,
self.zsize,
self.wdim,
self.cdim,
self.jdim,
self.width,
self.swap,
self.pseudocount),
outf)
def load_and_populate(self, model_path):
self.m = dy.ParameterCollection()
with open(os.path.join(model_path, "info.pickle")) as inf:
(self._w2i,
self._c2i,
self._jamo2i,
self.arch,
self.loss_type,
self.zsize,
self.wdim,
self.cdim,
self.jdim,
self.width,
self.swap,
self.pseudocount) = pickle.load(inf)
self.init_parameters(wembs={})
self.m.populate(os.path.join(model_path, "model"))
def _train_report(self, lrate, drate, epochs, batch_size):
self._log("___Data___")
self._log(" # sents: {0}".format(self.num_seqs))
self._log(" # words: {0}".format(self.num_words))
self._log(" # pretrained wembs: {0}".format(self.num_pretrained_wembs))
self._log(" # distinct words: {0}".format(self.wsize()))
self._log(" # distinct chars: {0}".format(self.csize()))
self._log(" # distinct jamos: {0}".format(self.jamo_size()))
self._log("")
self._log("___Model___")
self._log(" arch: {0}".format(self.arch))
self._log(" loss type: {0}".format(self.loss_type))
self._log(" zsize: {0}".format(self.zsize))
self._log(" wdim: {0}".format(self.wdim))
self._log(" cdim: {0}".format(self.cdim))
self._log(" jdim: {0}".format(self.jdim))
self._log(" width: {0}".format(self.width))
self._log(" swap: {0}".format(self.swap))
self._log(" pseudocount: {0}".format(self.pseudocount))
self._log("")
self._log("___Training___")
self._log(" lrate: {0}".format(lrate))
self._log(" drate: {0}".format(drate))
self._log(" epochs: {0}".format(epochs))
self._log(" batch size: {0}".format(batch_size))
self._log(" metric: {0}".format(self.metric))
self._log("")
def tag(self, wseq):
"""
LB: I(Z; X) MI: I(Z_Y; Z_X)
Z Z_X Z_Y
q/|p q| |p
/ | | |
X Y X Y
"""
assert not self._is_training
qp_pairs = self.compute_qp_pairs([wseq],
[(0, j) for j in xrange(len(wseq))])
zseq_X = []
zseq_Y = []
zseq_XY = []
for (qZ_X, pZ_Y) in qp_pairs:
zseq_X.append(np.argmax(qZ_X.npvalue()))
zseq_Y.append(np.argmax(pZ_Y.npvalue()))
if self.loss_type == "lb":
zseq_XY.append(np.argmax(dy.cmult(qZ_X, pZ_Y).npvalue()))
return zseq_X, zseq_Y, zseq_XY
def tag_all(self, wseqs):
infer_start_time = time.time()
zseqs_X = []
zseqs_Y = []
zseqs_XY = []
for wseq in wseqs:
zseq_X, zseq_Y, zseq_XY = self.tag(wseq)
zseqs_X.append(zseq_X)
zseqs_Y.append(zseq_Y)
if zseq_XY: zseqs_XY.append(zseq_XY)
return zseqs_X, zseqs_Y, zseqs_XY, time.time() - infer_start_time
|
(* Title: HOL/Auth/n_flash_lemma_on_inv__30.thy
Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
*)
header{*The n_flash Protocol Case Study*}
theory n_flash_lemma_on_inv__30 imports n_flash_base
begin
section{*All lemmas on causal relation between inv__30 and some rule r*}
lemma n_PI_Remote_GetVsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_PI_Remote_Get src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_PI_Remote_Get src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_PI_Remote_GetXVsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_PI_Remote_GetX src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_PI_Remote_GetX src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_NakVsinv__30:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Nak dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Nak dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_Get_Nak__part__0Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__0 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Nak__part__0 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_Get_Nak__part__1Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__1 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Nak__part__1 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_Get_Nak__part__2Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Nak__part__2 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Nak__part__2 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_Get_Get__part__0Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Get__part__0 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Get__part__0 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_Get_Get__part__1Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Get__part__1 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Get__part__1 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_Get_Put_HeadVsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put_Head N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Put_Head N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_Get_PutVsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Put src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_Get_Put_DirtyVsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_Get_Put_Dirty src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_Get_Put_Dirty src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_Get_NakVsinv__30:
assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Nak src dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Nak src dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_Get_PutVsinv__30:
assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Put src dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_Get_Put src dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_Nak__part__0Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__0 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__0 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_Nak__part__1Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__1 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__1 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_Nak__part__2Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__2 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_Nak__part__2 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_GetX__part__0Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__0 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__0 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_GetX__part__1Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__1 src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_GetX__part__1 src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_1Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_1 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_1 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_2Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_2 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_2 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_3Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_3 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_3 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_4Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_4 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_4 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_5Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_5 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_5 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_6Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_6 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_6 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_7__part__0Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__0 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__0 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_7__part__1Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__1 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7__part__1 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_7_NODE_Get__part__0Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__0 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__0 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_7_NODE_Get__part__1Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__1 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_7_NODE_Get__part__1 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_8_HomeVsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_8_Home_NODE_GetVsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home_NODE_Get N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_8_Home_NODE_Get N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_8Vsinv__30:
assumes a1: "(\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8 N src pp)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src pp where a1:"src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8 N src pp" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4\<and>pp~=p__Inv4)\<or>(src~=p__Inv4\<and>pp=p__Inv4)\<or>(src~=p__Inv4\<and>pp~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4\<and>pp~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>pp=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>pp~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_8_NODE_GetVsinv__30:
assumes a1: "(\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8_NODE_Get N src pp)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src pp where a1:"src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_8_NODE_Get N src pp" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4\<and>pp~=p__Inv4)\<or>(src~=p__Inv4\<and>pp=p__Inv4)\<or>(src~=p__Inv4\<and>pp~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4\<and>pp~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>pp=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>pp~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_9__part__0Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__0 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__0 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_9__part__1Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__1 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_9__part__1 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_10_HomeVsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_10_Home N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_10_Home N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_10Vsinv__30:
assumes a1: "(\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_10 N src pp)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src pp where a1:"src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_Local_GetX_PutX_10 N src pp" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4\<and>pp~=p__Inv4)\<or>(src~=p__Inv4\<and>pp=p__Inv4)\<or>(src~=p__Inv4\<and>pp~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4\<and>pp~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>pp=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>pp~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Local_GetX_PutX_11Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_Local_GetX_PutX_11 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_Local_GetX_PutX_11 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_GetX_NakVsinv__30:
assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_Nak src dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_Nak src dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_GetX_PutXVsinv__30:
assumes a1: "(\<exists> src dst. src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_PutX src dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src dst where a1:"src\<le>N\<and>dst\<le>N\<and>src~=dst\<and>r=n_NI_Remote_GetX_PutX src dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4\<and>dst~=p__Inv4)\<or>(src~=p__Inv4\<and>dst=p__Inv4)\<or>(src~=p__Inv4\<and>dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4\<and>dst~=p__Inv4)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''Proc'') dst) ''CacheState'')) (Const CACHE_E)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Local'')) (Const true))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4\<and>dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_PutVsinv__30:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Put dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_Put dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_Remote_PutXVsinv__30:
assumes a1: "(\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_PutX dst)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain dst where a1:"dst\<le>N\<and>r=n_NI_Remote_PutX dst" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(dst=p__Inv4)\<or>(dst~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(dst=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(dst~=p__Inv4)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_NI_InvAck_1Vsinv__30:
assumes a1: "(\<exists> src. src\<le>N\<and>r=n_NI_InvAck_1 N src)" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain src where a1:"src\<le>N\<and>r=n_NI_InvAck_1 N src" apply fastforce done
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "(src=p__Inv4)\<or>(src~=p__Inv4)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(src=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(src~=p__Inv4)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_PI_Local_Get_PutVsinv__30:
assumes a1: "(r=n_PI_Local_Get_Put )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "?P3 s"
apply (cut_tac a1 a2 , simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''UniMsg'') p__Inv4) ''Cmd'')) (Const UNI_PutX)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_PI_Local_GetX_PutX_HeadVld__part__0Vsinv__30:
assumes a1: "(r=n_PI_Local_GetX_PutX_HeadVld__part__0 N )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "?P3 s"
apply (cut_tac a1 a2 , simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''UniMsg'') p__Inv4) ''Cmd'')) (Const UNI_PutX)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_PI_Local_GetX_PutX_HeadVld__part__1Vsinv__30:
assumes a1: "(r=n_PI_Local_GetX_PutX_HeadVld__part__1 N )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "?P3 s"
apply (cut_tac a1 a2 , simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''UniMsg'') p__Inv4) ''Cmd'')) (Const UNI_PutX)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_PI_Local_GetX_PutX__part__0Vsinv__30:
assumes a1: "(r=n_PI_Local_GetX_PutX__part__0 )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "?P3 s"
apply (cut_tac a1 a2 , simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''UniMsg'') p__Inv4) ''Cmd'')) (Const UNI_PutX)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_PI_Local_GetX_PutX__part__1Vsinv__30:
assumes a1: "(r=n_PI_Local_GetX_PutX__part__1 )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "?P3 s"
apply (cut_tac a1 a2 , simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''UniMsg'') p__Inv4) ''Cmd'')) (Const UNI_PutX)) (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Dirty'')) (Const false))))" in exI, auto) done
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_PI_Local_PutXVsinv__30:
assumes a1: "(r=n_PI_Local_PutX )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "((formEval (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Pending'')) (Const true)) s))\<or>((formEval (neg (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Pending'')) (Const true))) s))" by auto
moreover {
assume c1: "((formEval (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Pending'')) (Const true)) s))"
have "?P2 s"
proof(cut_tac a1 a2 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (neg (eqn (IVar (Field (Field (Ident ''Sta'') ''Dir'') ''Pending'')) (Const true))) s))"
have "?P1 s"
proof(cut_tac a1 a2 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_PI_Local_ReplaceVsinv__30:
assumes a1: "(r=n_PI_Local_Replace )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "?P1 s"
proof(cut_tac a1 a2 , auto) qed
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_NI_Local_PutVsinv__30:
assumes a1: "(r=n_NI_Local_Put )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "?P3 s"
apply (cut_tac a1 a2 , simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''UniMsg'') p__Inv4) ''Cmd'')) (Const UNI_PutX)) (eqn (IVar (Field (Field (Ident ''Sta'') ''HomeUniMsg'') ''Cmd'')) (Const UNI_Put))))" in exI, auto) done
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_NI_Local_PutXAcksDoneVsinv__30:
assumes a1: "(r=n_NI_Local_PutXAcksDone )" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a2 obtain p__Inv4 where a2:"p__Inv4\<le>N\<and>f=inv__30 p__Inv4" apply fastforce done
have "?P3 s"
apply (cut_tac a1 a2 , simp, rule_tac x="(neg (andForm (eqn (IVar (Field (Para (Field (Ident ''Sta'') ''UniMsg'') p__Inv4) ''Cmd'')) (Const UNI_PutX)) (eqn (IVar (Field (Field (Ident ''Sta'') ''HomeUniMsg'') ''Cmd'')) (Const UNI_PutX))))" in exI, auto) done
then show "invHoldForRule s f r (invariants N)" by auto
qed
lemma n_NI_Remote_GetX_PutX_HomeVsinv__30:
assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_GetX_PutX_Home dst" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_WbVsinv__30:
assumes a1: "r=n_NI_Wb " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_StoreVsinv__30:
assumes a1: "\<exists> src data. src\<le>N\<and>data\<le>N\<and>r=n_Store src data" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvAck_3Vsinv__30:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_3 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_GetX_GetX__part__1Vsinv__30:
assumes a1: "r=n_PI_Local_GetX_GetX__part__1 " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_GetX_GetX__part__0Vsinv__30:
assumes a1: "r=n_PI_Local_GetX_GetX__part__0 " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Remote_ReplaceVsinv__30:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_PI_Remote_Replace src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_Store_HomeVsinv__30:
assumes a1: "\<exists> data. data\<le>N\<and>r=n_Store_Home data" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvAck_existsVsinv__30:
assumes a1: "\<exists> src pp. src\<le>N\<and>pp\<le>N\<and>src~=pp\<and>r=n_NI_InvAck_exists src pp" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Remote_PutXVsinv__30:
assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_PI_Remote_PutX dst" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Remote_Get_Put_HomeVsinv__30:
assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Get_Put_Home dst" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvVsinv__30:
assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Inv dst" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_ShWbVsinv__30:
assumes a1: "r=n_NI_ShWb N " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_ReplaceVsinv__30:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_Replace src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Remote_GetX_Nak_HomeVsinv__30:
assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_GetX_Nak_Home dst" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Remote_Get_Nak_HomeVsinv__30:
assumes a1: "\<exists> dst. dst\<le>N\<and>r=n_NI_Remote_Get_Nak_Home dst" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvAck_exists_HomeVsinv__30:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_exists_Home src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Replace_HomeVsinv__30:
assumes a1: "r=n_NI_Replace_Home " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Nak_ClearVsinv__30:
assumes a1: "r=n_NI_Nak_Clear " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_PI_Local_Get_GetVsinv__30:
assumes a1: "r=n_PI_Local_Get_Get " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_Nak_HomeVsinv__30:
assumes a1: "r=n_NI_Nak_Home " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_InvAck_2Vsinv__30:
assumes a1: "\<exists> src. src\<le>N\<and>r=n_NI_InvAck_2 N src" and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_NI_FAckVsinv__30:
assumes a1: "r=n_NI_FAck " and
a2: "(\<exists> p__Inv4. p__Inv4\<le>N\<and>f=inv__30 p__Inv4)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
end
|
(* Title: HOL/Auth/n_moesi_lemma_on_inv__3.thy
Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
*)
header{*The n_moesi Protocol Case Study*}
theory n_moesi_lemma_on_inv__3 imports n_moesi_base
begin
section{*All lemmas on causal relation between inv__3 and some rule r*}
lemma n_rule_t1Vsinv__3:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_rule_t1 i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_rule_t1 i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_rule_t2Vsinv__3:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_rule_t2 N i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_rule_t2 N i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "((formEval (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)) s))\<or>((formEval (andForm (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))\<or>((formEval (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))" by auto
moreover {
assume c1: "((formEval (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately have "invHoldForRule s f r (invariants N)" by satx
}
moreover {
assume b1: "(i=p__Inv0)"
have "((formEval (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)) s))\<or>((formEval (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) s))\<or>((formEval (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) s))" by auto
moreover {
assume c1: "((formEval (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately have "invHoldForRule s f r (invariants N)" by satx
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "((formEval (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E))) s))\<or>((formEval (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E))) s))\<or>((formEval (andForm (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E))) s))\<or>((formEval (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))\<or>((formEval (andForm (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))\<or>((formEval (andForm (andForm (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))\<or>((formEval (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))\<or>((formEval (andForm (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))\<or>((formEval (andForm (andForm (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))" by auto
moreover {
assume c1: "((formEval (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (andForm (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (andForm (andForm (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M)) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))"
have "?P1 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume c1: "((formEval (andForm (andForm (andForm (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const M))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv2)) (Const E)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const M)))) (neg (eqn (IVar (Para (Ident ''a'') p__Inv0)) (Const E)))) s))"
have "?P2 s"
proof(cut_tac a1 a2 b1 c1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately have "invHoldForRule s f r (invariants N)" by satx
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_rul_t3Vsinv__3:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_rul_t3 N i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_rul_t3 N i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_rul_t4Vsinv__3:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_rul_t4 N i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_rul_t4 N i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_rul_t5Vsinv__3:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_rul_t5 N i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_rul_t5 N i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__3 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
end
|
module Collections.BSTree.Map.Quantifiers
import Collections.BSTree.Map.Core
import Collections.Util.Bnd
import Decidable.Order.Strict
||| A proof that a tree is non-empty.
public export
data NonEmpty : BST pre tot vTy mn mx -> Type where
IsNode : {pre : StrictPreorder kTy sto} ->
{tot : StrictOrdered kTy sto} ->
{l : BST pre tot vTy mn (Mid k)} ->
{r : BST pre tot vTy (Mid k) mx} ->
NonEmpty (Node k v l r)
|
!>
!! \brief This module contains basic size parameter definitions
!!
!! Module for Capreole
!!
!! \b Author: Garrelt Mellema
!!
!! \b Date: 2010-02-04
!!
!! This module is also accepted by the F compiler (Dec 9, 2003)
module sizes
private
integer,public,parameter :: nrOfDim=3 !< number of dimensions
integer,public,parameter :: mbc=2 !< number of ghost cells
integer,public,parameter :: neuler=2+NrOfDim !< number of Euler equations
integer,public,parameter :: neq=neuler+2 !< number of equations (Euler + advected quantities)
! Indices of state array
integer,public,parameter :: RHO=1 !< Indices of state array: density
integer,public,parameter :: RHVX=2 !< Indices of state array: x momentum density
integer,public,parameter :: RHVY=3 !< Indices of state array: y momentum density
integer,public,parameter :: RHVZ=4 !< Indices of state array: z momentum density
integer,public,parameter :: EN=5 !< Indices of state array: energy density
!integer,public,parameter :: TRACER1=6
integer,public,parameter :: XHI=6 !< Indices of state array: neutral hydrogen fraction
integer,public,parameter :: XHII=7 !< Indices of state array: ionized hydrogen fraction
! The following define constants for identifying the coordinate system
integer,public,parameter :: CART =1 !< constant for defining cartesian coordinate system
integer,public,parameter :: CYL =2 !< constant for defining cylindrical coordinate system
integer,public,parameter :: SPHER=3 !< constant for defining spherical coordinate system
end module sizes
|
/-
Copyright (c) 2019 Abhimanyu Pallavi Sudhir. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Abhimanyu Pallavi Sudhir, Yury Kudryashov
! This file was ported from Lean 3 source module order.filter.filter_product
! leanprover-community/mathlib commit 2738d2ca56cbc63be80c3bd48e9ed90ad94e947d
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Order.Filter.Ultrafilter
import Mathlib.Order.Filter.Germ
/-!
# Ultraproducts
If `φ` is an ultrafilter, then the space of germs of functions `f : α → β` at `φ` is called
the *ultraproduct*. In this file we prove properties of ultraproducts that rely on `φ` being an
ultrafilter. Definitions and properties that work for any filter should go to `Order.Filter.Germ`.
## Tags
ultrafilter, ultraproduct
-/
universe u v
variable {α : Type u} {β : Type v} {φ : Ultrafilter α}
open Classical
namespace Filter
local notation3"∀* "(...)", "r:(scoped p => Filter.Eventually p φ) => r
namespace Germ
open Ultrafilter
local notation "β*" => Germ (φ : Filter α) β
instance divisionSemiring [DivisionSemiring β] : DivisionSemiring β* :=
{ Germ.semiring, Germ.divInvMonoid,
Germ.nontrivial with
mul_inv_cancel := fun f =>
inductionOn f fun f hf =>
coe_eq.2 <|
(φ.em fun y => f y = 0).elim (fun H => (hf <| coe_eq.2 H).elim) fun H =>
H.mono fun x => mul_inv_cancel
inv_zero := coe_eq.2 <| by
simp only [Function.comp, inv_zero]
exact EventuallyEq.refl _ fun _ => 0}
instance divisionRing [DivisionRing β] : DivisionRing β* :=
{ Germ.ring, Germ.divisionSemiring with }
instance semifield [Semifield β] : Semifield β* :=
{ Germ.commSemiring, Germ.divisionSemiring with }
instance field [Field β] : Field β* :=
{ Germ.commRing, Germ.divisionRing with }
theorem coe_lt [Preorder β] {f g : α → β} : (f : β*) < g ↔ ∀* x, f x < g x := by
simp only [lt_iff_le_not_le, eventually_and, coe_le, eventually_not, EventuallyLE]
#align filter.germ.coe_lt Filter.Germ.coe_lt
theorem coe_pos [Preorder β] [Zero β] {f : α → β} : 0 < (f : β*) ↔ ∀* x, 0 < f x :=
coe_lt
#align filter.germ.coe_pos Filter.Germ.coe_pos
theorem const_lt [Preorder β] {x y : β} : x < y → (↑x : β*) < ↑y :=
coe_lt.mpr ∘ liftRel_const
#align filter.germ.const_lt Filter.Germ.const_lt
@[simp, norm_cast]
theorem lt_def [Preorder β] : ((· < ·) : β* → β* → Prop) = LiftRel (· < ·) := by
ext (⟨f⟩⟨g⟩)
exact coe_lt
#align filter.germ.lt_def Filter.Germ.lt_def
instance sup [Sup β] : Sup β* :=
⟨map₂ (· ⊔ ·)⟩
instance inf [Inf β] : Inf β* :=
⟨map₂ (· ⊓ ·)⟩
@[simp, norm_cast]
theorem const_sup [Sup β] (a b : β) : ↑(a ⊔ b) = (↑a ⊔ ↑b : β*) :=
rfl
#align filter.germ.const_sup Filter.Germ.const_sup
@[simp, norm_cast]
theorem const_inf [Inf β] (a b : β) : ↑(a ⊓ b) = (↑a ⊓ ↑b : β*) :=
rfl
#align filter.germ.const_inf Filter.Germ.const_inf
instance semilatticeSup [SemilatticeSup β] : SemilatticeSup β* :=
{ Germ.partialOrder with
sup := (· ⊔ ·)
le_sup_left := fun f g =>
inductionOn₂ f g fun _f _g => eventually_of_forall fun _x => le_sup_left
le_sup_right := fun f g =>
inductionOn₂ f g fun _f _g => eventually_of_forall fun _x => le_sup_right
sup_le := fun f₁ f₂ g =>
inductionOn₃ f₁ f₂ g fun _f₁ _f₂ _g h₁ h₂ => h₂.mp <| h₁.mono fun _x => sup_le }
instance semilatticeInf [SemilatticeInf β] : SemilatticeInf β* :=
{ Germ.partialOrder with
inf := (· ⊓ ·)
inf_le_left := fun f g =>
inductionOn₂ f g fun _f _g => eventually_of_forall fun _x => inf_le_left
inf_le_right := fun f g =>
inductionOn₂ f g fun _f _g => eventually_of_forall fun _x => inf_le_right
le_inf := fun f₁ f₂ g =>
inductionOn₃ f₁ f₂ g fun _f₁ _f₂ _g h₁ h₂ => h₂.mp <| h₁.mono fun _x => le_inf }
instance lattice [Lattice β] : Lattice β* :=
{ Germ.semilatticeSup, Germ.semilatticeInf with }
instance distribLattice [DistribLattice β] : DistribLattice β* :=
{ Germ.semilatticeSup, Germ.semilatticeInf with
le_sup_inf := fun f g h =>
inductionOn₃ f g h fun _f _g _h => eventually_of_forall fun _ => le_sup_inf }
instance isTotal [LE β] [IsTotal β (· ≤ ·)] : IsTotal β* (· ≤ ·) :=
⟨fun f g =>
inductionOn₂ f g fun _f _g => eventually_or.1 <| eventually_of_forall fun _x => total_of _ _ _⟩
/-- If `φ` is an ultrafilter then the ultraproduct is a linear order. -/
noncomputable instance linearOrder [LinearOrder β] : LinearOrder β* :=
Lattice.toLinearOrder _
@[to_additive]
instance orderedCommMonoid [OrderedCommMonoid β] : OrderedCommMonoid β* :=
{ Germ.partialOrder, Germ.commMonoid with
mul_le_mul_left := fun f g =>
inductionOn₂ f g fun _f _g H h =>
inductionOn h fun _h => H.mono fun _x H => mul_le_mul_left' H _ }
@[to_additive]
instance orderedCancelCommMonoid [OrderedCancelCommMonoid β] :
OrderedCancelCommMonoid β* :=
{ Germ.orderedCommMonoid with
le_of_mul_le_mul_left := fun f g h =>
inductionOn₃ f g h fun _f _g _h H => H.mono fun _x => le_of_mul_le_mul_left' }
@[to_additive]
instance orderedCommGroup [OrderedCommGroup β] : OrderedCommGroup β* :=
{ Germ.orderedCancelCommMonoid, Germ.commGroup with }
@[to_additive]
noncomputable instance linearOrderedCommGroup [LinearOrderedCommGroup β] :
LinearOrderedCommGroup β* :=
{ Germ.orderedCommGroup, Germ.linearOrder with }
instance orderedSemiring [OrderedSemiring β] : OrderedSemiring β* :=
{ Germ.semiring,
Germ.orderedAddCommMonoid with
zero_le_one := const_le zero_le_one
mul_le_mul_of_nonneg_left := fun x y z =>
inductionOn₃ x y z fun _f _g _h hfg hh =>
hh.mp <| hfg.mono fun _a => mul_le_mul_of_nonneg_left
mul_le_mul_of_nonneg_right := fun x y z =>
inductionOn₃ x y z fun _f _g _h hfg hh =>
hh.mp <| hfg.mono fun _a => mul_le_mul_of_nonneg_right }
instance orderedCommSemiring [OrderedCommSemiring β] : OrderedCommSemiring β* :=
{ Germ.orderedSemiring, Germ.commSemiring with }
instance orderedRing [OrderedRing β] : OrderedRing β* :=
{ Germ.ring,
Germ.orderedAddCommGroup with
zero_le_one := const_le zero_le_one
mul_nonneg := fun x y =>
inductionOn₂ x y fun _f _g hf hg => hg.mp <| hf.mono fun _a => mul_nonneg }
instance orderedCommRing [OrderedCommRing β] : OrderedCommRing β* :=
{ Germ.orderedRing, Germ.orderedCommSemiring with }
instance strictOrderedSemiring [StrictOrderedSemiring β] : StrictOrderedSemiring β* :=
{ Germ.orderedSemiring, Germ.orderedAddCancelCommMonoid,
Germ.nontrivial with
mul_lt_mul_of_pos_left := fun x y z =>
inductionOn₃ x y z fun _f _g _h hfg hh =>
coe_lt.2 <| (coe_lt.1 hh).mp <| (coe_lt.1 hfg).mono fun _a => mul_lt_mul_of_pos_left
mul_lt_mul_of_pos_right := fun x y z =>
inductionOn₃ x y z fun _f _g _h hfg hh =>
coe_lt.2 <| (coe_lt.1 hh).mp <| (coe_lt.1 hfg).mono fun _a => mul_lt_mul_of_pos_right }
instance strictOrderedCommSemiring [StrictOrderedCommSemiring β] : StrictOrderedCommSemiring β* :=
{ Germ.strictOrderedSemiring, Germ.orderedCommSemiring with }
instance strictOrderedRing [StrictOrderedRing β] : StrictOrderedRing β* :=
{ Germ.ring,
Germ.strictOrderedSemiring with
zero_le_one := const_le zero_le_one
mul_pos := fun x y =>
inductionOn₂ x y fun _f _g hf hg =>
coe_pos.2 <| (coe_pos.1 hg).mp <| (coe_pos.1 hf).mono fun _x => mul_pos }
instance strictOrderedCommRing [StrictOrderedCommRing β] : StrictOrderedCommRing β* :=
{ Germ.strictOrderedRing, Germ.orderedCommRing with }
noncomputable instance linearOrderedRing [LinearOrderedRing β] : LinearOrderedRing β* :=
{ Germ.strictOrderedRing, Germ.linearOrder with }
noncomputable instance linearOrderedField [LinearOrderedField β] : LinearOrderedField β* :=
{ Germ.linearOrderedRing, Germ.field with }
noncomputable instance linearOrderedCommRing [LinearOrderedCommRing β] : LinearOrderedCommRing β* :=
{ Germ.linearOrderedRing, Germ.commMonoid with }
theorem max_def [LinearOrder β] (x y : β*) : max x y = map₂ max x y :=
inductionOn₂ x y fun a b => by
cases' le_total (a : β*) b with h h
· rw [max_eq_right h, map₂_coe, coe_eq]
exact h.mono fun i hi => (max_eq_right hi).symm
· rw [max_eq_left h, map₂_coe, coe_eq]
exact h.mono fun i hi => (max_eq_left hi).symm
#align filter.germ.max_def Filter.Germ.max_def
theorem min_def [K : LinearOrder β] (x y : β*) : min x y = map₂ min x y :=
inductionOn₂ x y fun a b => by
cases' le_total (a : β*) b with h h
· rw [min_eq_left h, map₂_coe, coe_eq]
exact h.mono fun i hi => (min_eq_left hi).symm
· rw [min_eq_right h, map₂_coe, coe_eq]
exact h.mono fun i hi => (min_eq_right hi).symm
#align filter.germ.min_def Filter.Germ.min_def
theorem abs_def [LinearOrderedAddCommGroup β] (x : β*) : |x| = map abs x :=
inductionOn x fun _a => rfl
#align filter.germ.abs_def Filter.Germ.abs_def
@[simp]
theorem const_max [LinearOrder β] (x y : β) : (↑(max x y : β) : β*) = max ↑x ↑y := by
rw [max_def, map₂_const]
#align filter.germ.const_max Filter.Germ.const_max
@[simp]
theorem const_min [LinearOrder β] (x y : β) : (↑(min x y : β) : β*) = min ↑x ↑y := by
rw [min_def, map₂_const]
#align filter.germ.const_min Filter.Germ.const_min
@[simp]
theorem const_abs [LinearOrderedAddCommGroup β] (x : β) : (↑(|x|) : β*) = |↑x| := by
rw [abs_def, map_const]
#align filter.germ.const_abs Filter.Germ.const_abs
end Germ
end Filter
|
import Numeric.LinearAlgebra
import Graphics.Plot
vector l = fromList l :: Vector Double
matrix ls = fromLists ls :: Matrix Double
diagl = diag . vector
f = matrix [[1,0,0,0],
[1,1,0,0],
[0,0,1,0],
[0,0,0,1]]
h = matrix [[0,-1,1,0],
[0,-1,0,1]]
q = diagl [1,1,0,0]
r = diagl [2,2]
s0 = State (vector [0, 0, 10, -10]) (diagl [10,0, 100, 100])
data System = System {kF, kH, kQ, kR :: Matrix Double}
data State = State {sX :: Vector Double , sP :: Matrix Double}
type Measurement = Vector Double
kalman :: System -> State -> Measurement -> State
kalman (System f h q r) (State x p) z = State x' p' where
px = f <> x -- prediction
pq = f <> p <> trans f + q -- its covariance
y = z - h <> px -- residue
cy = h <> pq <> trans h + r -- its covariance
k = pq <> trans h <> inv cy -- kalman gain
x' = px + k <> y -- new state
p' = (ident (dim x) - k <> h) <> pq -- its covariance
sys = System f h q r
zs = [vector [15-k,-20-k] | k <- [0..]]
xs = s0 : zipWith (kalman sys) xs zs
des = map (sqrt.takeDiag.sP) xs
evolution n (xs,des) =
vector [1.. fromIntegral n]:(toColumns $ fromRows $ take n (zipWith (-) (map sX xs) des)) ++
(toColumns $ fromRows $ take n (zipWith (+) (map sX xs) des))
main = do
print $ fromRows $ take 10 (map sX xs)
mapM_ (print . sP) $ take 10 xs
mplot (evolution 20 (xs,des))
|
What Can You Benefit When You Find the Best Source of Planners?
If you are looking forward to the New Year, you may feel a great deal of excitement, as you might be planning a lot of things for it. You might, then, want to do everything that you can that will help you to stay organized, to keep your plans in your mind and before you as you meet the brand new year that is before you. One will be glad to know that doing this is easy when he or she is able to find a good source of planners. If one is able to find a good source of planers, then, he or she can be sure that when this is accomplished, a lot of wonderful benefits and advantages can be gained altogether.
Finding a good source of planners is definitely something that will be beneficial to you in a lot of ways, one of which is the fact that when you do so, you can be sure that you can find many beautiful items for sale there. You can be sure that when you are able to find a good source like this, you can find beautiful calendars, as well as oversize planners, planners that will make it so much easier for you to organize yourself. It will be possible, then, to find something that is very inspiring, and one can be sure that when he or she buys at this source, making plans for the New Year will become something that is very enjoyable altogether. Visit oversizeplanner.com for more info.
One who finds a good source of planners will also be glad to know that when he or she does so, it will be possible to give the perfect gifts to friends and to loved-ones. One who loves the holiday season might be very excited, as it is certainly just around the corner, and he or she might already be looking for the best presents that will bring joy to his or her friends and family members. They will be glad to know that when they are able to find the best source of planners, they can be sure that they will have a very good gift to give to people they care about.
One who finds a good source of oversize planners will also be glad to know that when he or she does so, it will be possible to use the planners and calendars bought there the whole year. They can be sure that these items will be made out of very good quality materials, which will assure them that they will remain beautiful and attractive throughout time.
One who finds the best source of planners, then, can be sure that when he or she does so, a lot of wonderful benefits can be gained.
For more tips, check out http://www.youtube.com/watch?v=vWUh77KOi-0. |
On this page you can set alarm for 2:02 AM at night. This is free and simple online alarm for specific time - alarm for two hours and two minutes AM. Just click on the button "Start alarm" and this online alarm clock will start. If you like to sleep and think on wake me up at 2:02 AM, this online alarm clock page is right for you. Set alarm at 2:02 AM and an alarm wakes you in time. Take look on instructions on "Online alarm clock" page for more information. |
Sant Satguru Sadhu Ram in a talk/satsang given this evening, New Delhi, India time, quoted his Guru, Sant Satguru Ajaib Singh ji: This (spiritual) path is sharper than the edge of sword.
Then Sadhu Ram ji said: It’s easier to climb on (get on) the cross than to carry on with love (It’s more difficult to maintain living this life with love.) (Yet) Love is very close by, within.
Satguru’s Court is more beautiful than everything else. There is no other door like this one. Satguru’s Court is more beautiful than everything else.
He puts the forgetful ones on the straight path. He makes the lost souls meet the Creator. Come, those who want to make their life successful.
He has made the likes of the dirt of the alleys successful. I, the lowly one, am embraced by the Higher Ones. One will not find such a Master.
Ajaib Ji has cast His gracious sight. He has filled the empty jholi of Sadhu Ram. I will never lose the gifts You have given me.
So please, why not throw something into my begging bowl?
Why is Rumi begging from His پیر? Because this physical reality is too harsh, even for Saints like Rumi as they compose poems. We don’t know what’s behind all this “Maya” or illusion unless the Guru پیر and the “Word” or “Naam” put us in the state of consciousness where we simply absorb true knowledge and feel the love that has created and sustains all.
We’re dyed in the color of this world but the ones who are initiated by a perfect master, Guru مرشد کامل، پیر learn how dyed their mind in the color of Naam. It comes in Gurubani that it is only by getting dyed in the color of Naam we can reach salvation. So we pray that we may be intoxicated with Naam so we can be one with uOu.
Poem above is by Rumi and آرش تبرستانی has given his interpretation of the poem in Persian. Basically they are saying that most people don’t see this world as reality and don’t look behind the invisible curtain. And the ones who do look and see are either considered mad, crazy or mentally disoriented. But Rumi is saying wait a second اوست دیوانه که دیوانه نشد ‘the one who hasn’t gone mad is the mad one’.
Your body is the temple of God, O man, Satguru is sitting inside. You will not find anything outside, everything is inside you, O man.
You clean and sweep the temples made of stones and bricks, you ring bells and conch every day, you burn incense to add fragrance. What benefit does outer bathing do, inside you the ocean is flowing, O man.
You read Vedas, Puranas and Granths, but you have never practiced. His will is understood by those who have won over the mind and the world. Even after winning the entire world, Sikandar (Alexander the Conqueror) left empty handed, O man.
I meditated on Satguru Ajaib’s Naam and I saw God. Sadhu Ram woke up in the ambrosial hour and took a dip within. The body and the mind became pure, I became intoxicated and carefree, O man.
Mind, the very essence of Kal, has wrecked the garden through force, violence and hierarchy in religion.
When will this mind surrender and when will this ego leave me be?
Satguru ji, ای مرشد کامل, please take these coverings off my soul by showering your grace.
You’re the light of all lights Master, ای پیر من, my salvation in your hands.
Let’s cover up my faults behind this wine stained initiation rope for, uOu, my Guru پیر، is coming. And I might get a chance to be forgiven, I’m sure I will, by the shower of uOs grace I’ll be cleansed once again even for just a moment.
If you know some Persian Google the poem in Persian and enjoy reading the whole poem.
I don’t care if you call me an infidel. I’ll be an infidel of Love if I don’t worship Shamms.
He’s openly referring to his deep devotion to his پیر Master. But حافظ Hafez is more loved in Iran, his book of poetry in almost every house, because the codes he used such “pray” in the verse above can be interpreted in many ways; give me a good job, a good spouse, etc, to give me a taste of your Divine Love for that is all I need.
حافظ Hafez means the one who has memorised all of Quran/Koran. حافظ comes from حفظ memory, something we all have as well as the potential to memorize a whole book line by line. So when in a last verse we hear the word حافظ Hafez, especially in Persian, we don’t just think about the poet, the mystic, the Master who wrote the poem, we hear that potential within us to be حافظ Hafez. The last line of the stanza where حافظ Hafez often uses his name as if reminding himself is in fact a message to us, at the level of our individual capacity to be with the Divine.
Hey gardener what’s going on?
Why are you giving me so much trouble?
If I’ve taken some of your grapes you’re taking away my stomach.
The Ocean of Love or The Anurag Sagar of Kabir is epic poem which “centers around the impact of Time on Eternity and Eternity’s response. It is Eternity which is the anurag sagar, or “ocean of love,” and it’s Time’s perversion of that part of Eternity which it touches which produces the bhav sagar, “ocean of the world” – the only reality most of us know, the mock world we are trapped in.
The creator of the bhava sagar, “ the butcher Kal” (Kal means, literally, Time) is mad: one of the sons of Eternity (San Purush, Ture or Original Person), Kal or Time was unable to handle the separation from his father that the creation process demanded, and went mad. Ignoring the wishes of Eternity, he misused the tools of creation entrusted to him and, through his impatience and megalomania, created a sewer where a garden was intended. Convinced that he is God, demanding to be worshiped as God, and setting up a Law so stringent that no one can keep it,he presides to his day over a closed-circuit universe that would be utterly without hope if it were not for the fact that, as the poet Blake puts it, “Eternity is ever in love with the product of Time.” Because Eternity does love those of us caught in the trap of Time, It has set up a series of invasions in which the true Reality enters into the mock universe and illumines it, awakening those who are ready to gasp the truth and showing the the way out.
How much my body has suffered, only True Satguru knows. If you meet a Perfect Master only then the soul reaches the true destination.
May my body and mind become a mirror so I could have the Darshan of my Master.
Not even after dying, could I forget the favors of my Master.
I could never feel satisfied looking at Him, His Darshan to me is like millions of pilgrimages. I bow down to pay respect to my Satguru.
For Whom this life is suffering, only He knows what is in my heart. No one has the medicine for this ailment; my affliction is for my Master.
The sleep does not come into my eyes, Your remembrance torments me. Even today these two eyes are only waiting for the Master.
In the end, Ajaib will save Sadhu Ram and take him across. The court of the Master never disappears from my eyes.
Repeat the Unrepeated and with the grace of the Perfect Master, test it.
Keeping the wing of mind at rest, see the Shabda; and climbing the mind, finish you Karma.
Merging into the Essential Shabda, go to the world of immortality.
To die while still alive, to reach the state of Samati, has been the goal and the message of the Masters. Rumi is talking about the kind of death which erases his sense of ego and the desire to die in that sense, he says, has kept him alive and now old.
Then he uses the metaphor of a wheat grain which has the potential to be sowed and turned into a plant and more wheat produced from it which shows the ego of the seed, no matter how small to us human beings, nevertheless an identity and ego of a seed. But once it enters the mills and gets crushed into flour it loses its identity as a seed. It has the potential to become part of a loaf of bread but it’s individual seed ego is no longer recognizable. It can become one with the bread. And once a Master enters the state of Samati and loses the ego, uOu becomes one with the Beloved, the Creator, the all Compassionate and Merciful. Finally the Master comes back from the state of Samati and fully occupies the body with all it’s worldly senses (touch, smell, taste, sight, etc.) and gets the minimal ego needed to identity with the body. The Master may not enjoy this “normal state” as much as the state of samati but the disciples are elated to be in presence of the One who has been drenched with love and compassion in the field beyond the ideas of right-doing and wrong-doing and has come to shower them with that grace.
The Persian word شیر means milk as well as lion. One who reads this verse in Persian could on a subliminal level think of the hair as the metaphor for part the person, the strength of a person. Hence Rumi might also be saying; If I become as daring and strong as a lion then I could enter the state of Samati.
The more practical part of our brain will say that Rumi is talking about getting old so of course he’s talking about the color of milk and hair turning white as we age. However just the fact that this idea crossed my mind that he might also be referring to lion, shows me the power of Rumi’s poetry if read in a delightful Persian language and especially if we get lucky to have a day or even an especial hour to contemplate on one or two of His verses.
From a talk, Satsang, given by Sant Sadhu Ram on January 01, 2004 in New Delhi, India.
Saints and Masters have in one way or another tried to say the same thing but in different languages and ways according to their circumstances and the way they were assigned to give that message. From the word of mouth and the translations this is what Jesus said, “I’m the gate; whoever enters through me will be saved” – while He was alive, in the body. Jesus wasn’t afraid to die and neither was Hafez. The Middle Eastern folks has shown that they’re into martyrdom and it’s a blessing if “God” is willing. Hafez was to write poetry in a delicate way instead of having his head chopped off by the clergy – and to write in such a beautiful way in such a beautiful language to reveal the secret behind the curtain in a way that the clergy couldn’t accuse Him of blasphemy even though some tried. And Jesse had another mission before He was put on the cross and returned to His Father’s Home at such young age. |
[STATEMENT]
lemma product_language[simp]: "c.language (product A B) = a.language A \<inter> b.language B"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. c.language (product A B) = a.language A \<inter> b.language B
[PROOF STEP]
by force |
function img = read_pfm(filename, bPhotoshopCompatibility)
%
%
% img = read_pfm(filename, bPhotoshopCompatibility)
%
% Input:
% -filename: the name of the file to open
% -bPhotoshopCompatibility: a flag for enabling compability with
% Adobe Photoshop. If it is set to 1 the compability is on.
%
% Output:
% -img: the opened image
%
% Copyright (C) 2011-14 Francesco Banterle
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
if(~exist('bPhotoshopCompatibility', 'var'))
bPhotoshopCompatibility = 0;
end
%by default PFM files are open in little-endian format
fid = fopen(filename, 'r', 'l');
%reading the header
str = fscanf(fid, '%c', 3);
channels = 3;
iValid = 0;
if(str(1) == 'P')
iValid = 1;
end
if(str(2) == 'f')
channels = 1;
iValid = iValid + 1;
end
if(str(2) == 'F')
iValid = iValid + 1;
end
if(iValid ~= 2)
fclose(fid);
error('This is not a valid PFM file.');
end
%image size
m = fscanf(fid,'%d',1);
fscanf(fid,'%c',1);
n = fscanf(fid,'%d',1);
fscanf(fid,'%c',1);
endian_selector = fscanf(fid,'%f',1);
fscanf(fid,'%c',1);
%we have a big-endian encoded file
if(endian_selector > 0.0)
fclose(fid);
%reopen the file in big-endian mode
fid = fopen(filename, 'r', 'b');
fscanf(fid,'%c',3);
m = fscanf(fid,'%d',1);
fscanf(fid,'%c',1);
n = fscanf(fid,'%d',1);
fscanf(fid,'%c',1);
endian_selector = fscanf(fid,'%f',1);
fscanf(fid,'%c',1);
end
img = zeros([m, n, channels]);
total = n * m * channels;
tmpImg = fread(fid, total, 'float');
for i=1:channels
tmpC = i:channels:total;
img(:,:,i) = reshape(tmpImg(tmpC), m, n);
end
img = imrotate(img, 90, 'nearest');
if(bPhotoshopCompatibility)
for i=1:channels
img(:,:,i) = flipud(img(:,:,i));
end
end
fclose(fid);
end |
(* Title: HOL/Auth/n_germanSymIndex_lemma_on_inv__49.thy
Author: Yongjian Li and Kaiqiang Duan, State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
Copyright 2016 State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
*)
header{*The n_germanSymIndex Protocol Case Study*}
theory n_germanSymIndex_lemma_on_inv__49 imports n_germanSymIndex_base
begin
section{*All lemmas on causal relation between inv__49 and some rule r*}
lemma n_RecvReqSVsinv__49:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqS N i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvReqS N i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Ident ''CurCmd'')) (Const Empty)) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv2) ''Cmd'')) (Const Inv))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Ident ''CurCmd'')) (Const Empty)) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv2) ''Cmd'')) (Const Inv))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (eqn (IVar (Ident ''CurCmd'')) (Const Empty)) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv2) ''Cmd'')) (Const Inv))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_RecvReqEVsinv__49:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvReqE N i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvReqE N i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_SendInv__part__0Vsinv__49:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__0 i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__0 i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_SendInv__part__1Vsinv__49:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInv__part__1 i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInv__part__1 i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (andForm (eqn (IVar (Ident ''CurCmd'')) (Const ReqS)) (eqn (IVar (Para (Ident ''InvSet'') p__Inv2)) (Const true))) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv0) ''Cmd'')) (Const Inv))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P3 s"
apply (cut_tac a1 a2 b1, simp, rule_tac x="(neg (andForm (andForm (eqn (IVar (Ident ''CurCmd'')) (Const ReqS)) (eqn (IVar (Para (Ident ''InvSet'') p__Inv0)) (Const true))) (eqn (IVar (Field (Para (Ident ''Chan2'') p__Inv2) ''Cmd'')) (Const Inv))))" in exI, auto) done
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_SendInvAckVsinv__49:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendInvAck i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_SendInvAck i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_SendGntSVsinv__49:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntS i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntS i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_SendGntEVsinv__49:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_SendGntE N i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_SendGntE N i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_RecvGntSVsinv__49:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntS i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntS i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_RecvGntEVsinv__49:
assumes a1: "(\<exists> i. i\<le>N\<and>r=n_RecvGntE i)" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)" (is "?P1 s \<or> ?P2 s \<or> ?P3 s")
proof -
from a1 obtain i where a1:"i\<le>N\<and>r=n_RecvGntE i" apply fastforce done
from a2 obtain p__Inv0 p__Inv2 where a2:"p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2" apply fastforce done
have "(i=p__Inv2)\<or>(i=p__Inv0)\<or>(i~=p__Inv0\<and>i~=p__Inv2)" apply (cut_tac a1 a2, auto) done
moreover {
assume b1: "(i=p__Inv2)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i=p__Inv0)"
have "?P1 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
moreover {
assume b1: "(i~=p__Inv0\<and>i~=p__Inv2)"
have "?P2 s"
proof(cut_tac a1 a2 b1, auto) qed
then have "invHoldForRule s f r (invariants N)" by auto
}
ultimately show "invHoldForRule s f r (invariants N)" by satx
qed
lemma n_SendReqE__part__1Vsinv__49:
assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendReqE__part__1 i" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_StoreVsinv__49:
assumes a1: "\<exists> i d. i\<le>N\<and>d\<le>N\<and>r=n_Store i d" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_RecvInvAckVsinv__49:
assumes a1: "\<exists> i. i\<le>N\<and>r=n_RecvInvAck i" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_SendReqE__part__0Vsinv__49:
assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendReqE__part__0 i" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
lemma n_SendReqSVsinv__49:
assumes a1: "\<exists> i. i\<le>N\<and>r=n_SendReqS i" and
a2: "(\<exists> p__Inv0 p__Inv2. p__Inv0\<le>N\<and>p__Inv2\<le>N\<and>p__Inv0~=p__Inv2\<and>f=inv__49 p__Inv0 p__Inv2)"
shows "invHoldForRule s f r (invariants N)"
apply (rule noEffectOnRule, cut_tac a1 a2, auto) done
end
|
"abc" <- 1
1 -> "abc"
"odd name"("strange tag" = 5, y)
"zz":::qq()
"c"::a()
|
# The MIT License (MIT)
#
# Copyright (c) <2016> <Haruka Ozaki>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# version 1.7
options(stringsAsFactors = F)
args=(commandArgs(TRUE))
if(length(args)==0){
print("No arguments supplied.")
}else{
for(i in 1:length(args)){
eval(parse(text=args[[i]]))
}
}
print("Visualizing MOCCS result...")
sprintf("file: %s", file)
sprintf("file2: %s", file2)
sprintf("label: %s", label)
sprintf("len: %s", len)
sprintf("k: %s", k)
# Universal colors
cols <- c("#000000", "#ff2800","#faf500","#35a16b","#0041ff","#66ccff","#ff99a0","#ff9900","#9a0079","#663300")
crf <- read.table(gzfile(file), header=T, stringsAsFactors=F, check.names=F, row.names=1)
crf <- as.data.frame(t(apply(crf, 1, function(x){x/x[length(x)]})))
d.auc <- read.table(file2, header=T, stringsAsFactors=F, row.names=1)
auc <- d.auc$auc
names(auc) <- rownames(d.auc)
auc <- auc[ order(auc, decreasing=T) ]
xlab <- "Distance from peak center [bp]"
ylab <- "Cumulative relative freqency"
end <- as.numeric(colnames(crf)[ncol(crf)])
print(sprintf("x-axis: [0, %d]", end))
# make roc-like curve plot of auc for top 10 k-mers
# auc <- auc[1:10]
crf2 <- crf[names(auc),]
pdfname <- paste0(label, "_", k, "-mer_auc_plot", ".pdf")
sprintf("outfile: %s", pdfname)
pdf(pdfname)
matplot(t(crf2), type="n", col="gray", lwd=0.5, main=label, lty=1,
sub=paste0("Top ", k, "-mers based on AUC"), xlab=xlab, ylab=ylab, axes=F)
box()
# axis(1, 1:ncol(crf2), 0:end)
axis(1, seq(1, ncol(crf2), by=50), seq(0, end, by = 50))
axis(2)
# i.max <- ifelse(length(auc)<10, length(auc), 10)
i.max = min(length(auc), 10)
for(i in i.max:1){
matpoints(t(crf2[grep(names(auc)[i],rownames(crf2)),]), type="l", col=cols[i], lwd=1, lty=1)
}
legend("bottomright", legend=names(auc[1:i.max]), col=cols[1:i.max], lwd=1)
dev.off()
#################################
# Top 10 k-mers based on MOCCS2score
##################################################################
# Top 10 k-mers based on MOCCS2score
MOCCS2score <- d.auc$MOCCS2score
names(MOCCS2score) <- rownames(d.auc)
MOCCS2score <- MOCCS2score[ order(MOCCS2score, decreasing=T) ]
xlab <- "Distance from peak center [bp]"
ylab <- "Cumulative relative freqency"
end <- as.numeric(colnames(crf)[ncol(crf)])
print(sprintf("x-axis: [0, %d]", end))
# make roc-like curve plot of MOCCS2score for top 10 k-mers
# MOCCS2score <- MOCCS2score[1:10]
crf2 <- crf[names(MOCCS2score),]
pdfname <- paste0(label, "_", k, "-mer_MOCCS2score_plot", ".pdf")
sprintf("outfile: %s", pdfname)
pdf(pdfname)
matplot(t(crf2), type="n", col="gray", lwd=0.5, main=label, lty=1,
sub=paste0("Top ", k, "-mers based on MOCCS2score"), xlab=xlab, ylab=ylab, axes=F)
box()
# axis(1, 1:ncol(crf2), 0:end)
axis(1, seq(1, ncol(crf2), by=50), seq(0, end, by = 50))
axis(2)
# i.max <- ifelse(length(MOCCS2score)<10, length(MOCCS2score), 10)
i.max = min(length(MOCCS2score), 10)
for(i in i.max:1){
matpoints(t(crf2[grep(names(MOCCS2score)[i],rownames(crf2)),]), type="l", col=cols[i], lwd=1, lty=1)
}
legend("bottomright", legend=names(MOCCS2score[1:i.max]), col=cols[1:i.max], lwd=1)
dev.off()
#################################
print("Visualized MOCCS result")
sessionInfo()
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Package where
open import Light.Level using (Setω)
record Meta : Setω where
field Dependencies : Setω
field Library : Dependencies → Setω
record Package (meta : Meta) : Setω where
instance constructor package
open Meta meta
field ⦃ dependencies ⦄ : Dependencies
field ⦃ library ⦄ : Library dependencies
open Package ⦃ ... ⦄ public
|
[STATEMENT]
lemma lfinite_prepend[simp]: "lfinite (prepend xs ys) \<longleftrightarrow> lfinite ys"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. lfinite (prepend xs ys) = lfinite ys
[PROOF STEP]
by (induct xs) auto |
subroutine scanin
!***********************************************************************
! Copyright, 1993, 2004, The Regents of the University of California.
! This program was prepared by the Regents of the University of
! California at Los Alamos National Laboratory (the University) under
! contract No. W-7405-ENG-36 with the U.S. Department of Energy (DOE).
! All rights in the program are reserved by the DOE and the University.
! Permission is granted to the public to copy and use this software
! without charge, provided that this Notice and any statement of
! authorship are reproduced on all copies. Neither the U.S. Government
! nor the University makes any warranty, express or implied, or
! assumes any liability or responsibility for the use of this software.
C***********************************************************************
CD1
CD1 PURPOSE
CD1
CD1 Scan input file for parameters needed prior to data input.
CD1
C***********************************************************************
CD2
CD2 REVISION HISTORY
CD2
CD2 Revision ECD
CD2 Date Programmer Number Comments
CD2
CD2 13-JAN-94 Z. Dash 22 Initial implementation.
CD2
CD2 $Log: /pvcs.config/fehm90/src/scanin.f_a $
CD2
!D2
!D2 Rev 2.5 06 Jan 2004 10:43:50 pvcs
!D2 FEHM Version 2.21, STN 10086-2.21-00, Qualified October 2003
!D2
!D2 Rev 2.4 29 Jan 2003 09:15:06 pvcs
!D2 FEHM Version 2.20, STN 10086-2.20-00
!D2
!D2 Rev 2.3 14 Nov 2001 13:12:22 pvcs
!D2 FEHM Version 2.12, STN 10086-2.12-00
!D2
!D2 Rev 2.2 06 Jun 2001 13:26:26 pvcs
!D2 FEHM Version 2.11, STN 10086-2.11-00
!D2
!D2 Rev 2.1 30 Nov 2000 12:07:20 pvcs
!D2 FEHM Version 2.10, STN 10086-2.10-00
!D2
!D2 Rev 2.0 Fri May 07 14:45:12 1999 pvcs
!D2 FEHM Version 2.0, SC-194 (Fortran 90)
CD2
CD2 Rev 1.12 Wed Jun 12 15:21:20 1996 zvd
CD2 Modified optional input file routines and reduced number of calls
CD2
CD2 Rev 1.11 Mon Jun 03 11:18:34 1996 hend
CD2 Added macro name & comment capabi. to new input
CD2
CD2 Rev 1.10 Fri May 31 10:59:28 1996 hend
CD2 Added optional input from specified file
CD2
CD2 Rev 1.9 Wed Feb 07 12:13:28 1996 gaz
CD2 checked for bous macro
CD2
CD2 Rev 1.8 Thu Feb 01 16:05:08 1996 hend
CD2 Updated Requirements Traceability
CD2
CD2 Rev 1.7 Tue Jan 09 14:08:20 1996 llt
CD2 gaz changes
CD2
CD2 Rev 1.6 12/13/95 10:30:24 robinson
CD2 Incorporated new zeolite hydration module
CD2
CD2 Rev 1.5 12/13/95 08:47:00 gaz
CD2 changes to accodate variable rlp number of data
CD2
CD2 Rev 1.4 04/25/95 10:11:20 llt
CD2 retrieved lost log history information
CD2
CD2 Rev 1.3 01/31/95 16:24:42 llt
CD2 addition to the modification for the new particle tracking module
CD2
CD2 Rev 1.2 01/28/95 14:03:58 llt
CD2 modified for new particle tracking module
CD2
CD2 Rev 1.1 03/18/94 16:03:54 gaz
CD2 Added solve_new and cleaned up memory management.
CD2
CD2 Rev 1.0 01/20/94 10:27:26 pvcs
CD2 original version in process of being certified
CD2
C***********************************************************************
CD3
CD3 INTERFACES
CD3
CD3 Formal Calling Parameters
CD3
CD3 None
CD3
CD3 Interface Tables
CD3
CD3 None
CD3
CD3 Files
CD3
CD3 Name Use Description
CD3
CD3 inpt I Main input data file.
CD3
C***********************************************************************
CD4
CD4 GLOBAL OBJECTS
CD4
CD4 Global Constants
CD4
CD4 None
CD4
CD4 Global Types
CD4
CD4 None
CD4
CD4 Global Variables
c add grouping stuff 8/1/94
CD4 max_groups, ngroups, group, pos, n_couple_species, mdof_sol
CD4 num_particles
CD4
CD4 COMMON
CD4 Identifier Type Block Description
CD4
CD4 icnl INT faai Problem dimension
CD4 idpdp INT faai Parameter which indicates if the double
CD4 porosity / double permeability
CD4 solution is enabled
CD4 idualp INT faai Parameter which indicates if the dual
CD4 porosity solution is enabled
CD4 inpt INT faai Unit number for input file
CD4 neq INT faai Number of nodes, not including dual
CD4 nspeci INT fdd1i Number of species for tracer solution
CD4 wdd1 CHAR faac Alternate character input string
c add grouping stuff 8/1/94
CD4 ngroups int comrxni.h The number of groups of
CD4 coupled species
CD4 group int comrxni.h Array indicating the coupling
CD4 between species
CD4 pos int comrxni.h Array containing the species
CD4 numbers of the coupled species
CD4 in each group
CD4 n_couple_species int comrxni.h Array containg the number of
CD4 coupled species contained in
CD4 each grouping
CD4 mdof_sol int comrxni.h The maximum number of degrees
CD4 of freedom necessary to solve
CD4 the tracer solution
CD4
CD4 Global Subprograms
CD4
CD4 None
CD4
C***********************************************************************
CD5
CD5 LOCAL IDENTIFIERS
CD5
CD5 Local Constants
CD5
CD5 None
CD5
CD5 Local Types
CD5
CD5 None
CD5
CD5 Local variables
CD5
CD5 Identifier Type Description
CD5
CD5 adumm REAL*8 Dummy real variable for input
CD5 cdumm CHAR Dummy character variable for input
CD5 idumm INT Dummy integer variable for input
CD5 ja INT Loop index input
CD5 jb INT Loop index input
CD5 jc INT Loop index input
CD5 macro CHAR Current macro being read
c changed to incorporate coupling 8/4/94
CD5 igrp INT Do loop index indicating the current
CD5 group number
CD5 pos_index INT Index denoting the position of a
CD5 coupled species in a grouping
CD5 trac_flag INT Flag to search for group macro
CD5 only if the rxn macro has been read
CD5 ispecies INT Species number for variable we are
CD5 computing rate contribution for
CD5
CD5
CD5 Local Subprograms
CD5
CD5 None
CD5
C***********************************************************************
CD6
CD6 FUNCTIONAL DESCRIPTION
CD6
CD6
CD6
C***********************************************************************
CD7
CD7 ASSUMPTIONS AND LIMITATIONS
CD7
CD7 None
CD7
C***********************************************************************
CD8
CD8 SPECIAL COMMENTS
CD8
CD8 Requirements from SDN: 10086-RD-2.20-00
CD8 SOFTWARE REQUIREMENTS DOCUMENT (RD) for the
CD8 FEHM Application Version 2.20
CD8
C***********************************************************************
CD9
CD9 REQUIREMENTS TRACEABILITY
CD9
CD9 2.6 Provide Input/Output Data Files
CD9 3.0 INPUT AND OUTPUT REQUIREMENTS
CD9 2.8 Provide Multiple Realization Option
CD9
C***********************************************************************
CDA
CDA REFERENCES
CDA
CDA None
CDA
C***********************************************************************
CPS
CPS PSEUDOCODE
CPS
CPS BEGIN scanin
CPS
CPS rewind input tape
CPS
CPS REPEAT
CPS read input line
CPS EXIT IF macro read is stop
CPS ELSE IF macro read is alti
CPS read number of nodes
CPS ELSE IF macro read is coor
CPS read number of nodes
CPS ELSE IF macro read is ctrl
CPS read a line
CPS REPEAT
CPS read a line
CPS UNTIL null line is found
CPS read two lines
CPS read geometry parameter
CPS ELSE IF macro read is dual
CPS set idualp to 1
CPS ELSE IF macro read is dpdp
CPS set idpdp to 1
CPS ELSE IF macro read is trac
CPS read 3 lines
CPS read number of tracer species
CPS ELSE IF macro read is rxn
CPS read keyword
CPS IF keyword is gr
CPS read in the number of groupings
CPS read in grouping indicator which indicates the coupling
CPS ... between species
CPS FOR each group
CPS FOR each species
CPS IF the ith species is to be included in the ...
CPS ... current group THEN
CPS set up position array to indicate the species ...
CPS ... number to be coupled
CPS deterimine the number of coupled species in a group
CPS determine the maximum # of degrees of freedom ...
CPS ... needed to solve the tracer equations
CPS ENDIF
CPS ENDFOR each species
CPS ENDFOR each group
c end change
CPS
CPS ELSE IF macro read is ptrk
CPS set nspeci to 1
CPS Read in the number of particles
CPS END IF
CPS UNTIL end of input file is found
CPS
CPS rewind input file
CPS IF grup was not read then set variables to solve for each
CPS species separately
CPS set the total number of coupled groups to the total
CPS number of species in the system
CPS FOR each group
CPS construct default grouping information
CPS ENDFOR
CPS ENDIF
CPS
CPS END scanin
CPS
C***********************************************************************
use comai
use combi
use comchem
use comco2
use comcouple
use comdi
use comdti
use compart
use comriv
use comrlp, only: rlpnew, ntable, ntblines,nphases,rlp_phase,
+ rlp_group
use comrxni
use comsi
use comsk
use comsplitts
use comsptr
use comwellphys
use comwt
use comxi, only : nmfil, cform
use comzeoli
use davidi
use trxnvars
implicit none
logical blank
integer ith, iscan, isorp
logical null1, opened, done, ok, null_new
integer idumm, ja, jb, jc, numtime
character* 4 cdumm, macro, ctmp
real*8 adumm, rdum1
integer igrp,pos_index,trac_flag,ispeci
integer ic2
integer, allocatable :: group_mat(:,:)
integer matnum,itemp,jj,ii,idum
character*80 dumstring
character*100 dummy_line, filename
integer msg(20)
integer nwds
real*8 xmsg(20)
integer imsg(20)
character*32 cmsg(20)
integer kz,iz2,iz2p,i1,i2,ipivt,sehindexl,sehindexv,neqp1
integer ireaddum, inptread, open_file
integer locunitnum, kk, j
integer ngdpm_models, nsize_layer
integer, allocatable :: itemporary(:)
integer idum1, idum2, ilines, i
integer icount, tprp_num
integer jjj, isimnum, realization_num,maxrp
logical nulldum, found_end
c logical gdkm_new
real*8 rflag
maxrp = 30
if(.not.allocated (rlp_phase)) then
allocate (rlp_phase(20, maxrp),rlp_group(20))
endif
c**** read startup parameters ****
rewind inpt
iccen = 0
ice = 0
ico2 = 0
icarb = 0
c gaz 112817
iwater_table = 0
icgts = 0
idoff = 1
ihead = 0
irlp_fac = 0
iflxc = 0
iflux_ts = 0
istrs = 0
isalt = 0
iread_rcoll = 0
total_colloids = 0
total_daughters = 0
total_irrev = 0
total_rev = 0
maxprobdivs = 0
ianpe = 0
ivboun = 0
nflxt = 0
nspeci = 0
numd = 0
numsorp = 0
numtime = 0
ncplx = 0
numrxn = 0
numvcon = 0
nriver = 0
rlp_flag = 0
rxn_flag = 0
ipermstr1 = 0
ipermstr2 = 0
ipermstr3 = 0
ipermstr4 = 0
ipermstr5 = 0
ipermstr6 = 0
ipermstr8 = 0
ipermstr11 = 0
ipermstr31 = 0
iactive = 0
c zvd 17-Aug-09 move boun flag initializations here
iqa=0
ixa = 0
iha = 0
ipha = 0
itha = 0
iqw=0
iqf=0
iqenth=0
isatb=0
ienth=0
itempb=0
ipresa=0
ipresw=0
imped=0
its=0
ifd=0
isf=0
ixperm = 0
iyperm = 0
izperm = 0
i_init = 0
c new initial value stuff 12/3/98 GAZ
itempb_ini=0
ipresa_ini=0
ipresw_ini=0
isatb_ini=0
icm=0
iwght = 1
isty = 0
icoef_neg = 0
nflxz = 0
sv_hex_tet = .false.
ipr_tets = 0
c gaz 100118 set nrlp here to enable mulpiple rlp macros
nrlp = 0
c zvd 17-Aug-09 move boun flag initializations here
if(allocated(izone_free_nodes)) izone_free_nodes = 0
if(allocated(move_type)) move_type=0
compute_flow = .true.
reverse_flow = .false.
pod_flag = .false.
omr_flag = .false.
save_omr = .false.
sptr_flag = .false.
fperm_flag = .false.
c gaz 070619 variables used in newer itfc
nitf_use = .false.
ncol_use = .false.
10 continue
filename = ''
read (inpt, '(a80)', END = 50) dumstring
if (dumstring(1:1) .eq. '#') go to 10
read (dumstring, '(a4)') macro
call parse_string2(dumstring,imsg,msg,xmsg,cmsg,nwds)
if (nwds .gt. 1) then
c Check for "OFF" keyword for skipping macro
found_end = .false.
do i = 2, nwds
if (msg(i) .eq. 3) then
if (cmsg(i) .eq. 'off' .or. cmsg(i) .eq. 'OFF') then
call skip_macro (macro, inpt, found_end)
exit
end if
end if
end do
if (found_end) goto 10
end if
if (macro.eq.'stop') then
go to 40
else if(macro.eq.'file') then
! Read filename to ensure we skip this line and don't interpret start
! of filename as a macro
read (inpt, '(a100)') filename
else if (macro .eq. 'cden') then
if (nwds .gt. 1) then
if (cmsg(2) .eq. 'multi' .or. cmsg(2) .eq. 'table') then
cden_flag = 1
else if (cmsg(2) .eq. 'co2') then
cden_flag = 2
if (nwds .gt. 2 .and. msg(3) .eq. 3) then
cden_spnam = cmsg(3)
else
cden_spnam = 'Na'
end if
end if
end if
else if (macro .eq. 'cont') then
call start_macro(inpt, locunitnum, macro)
! Read over keywords if avs, tecplot or surfer
read (locunitnum, '(a3)', END = 50) macro
if(macro(1:3) .eq. 'avs' .or. macro(1:3) .eq. 'tec' .or.
& macro(1:3) .eq. 'sur' .or. macro .eq. 'csv') then
ok = .false.
do
read (locunitnum, *, END = 60) dumstring
if (dumstring(1:1) .eq. 'e' .or. dumstring(1:1) .eq.
& 'E') then
ok = .true.
exit
! Check for other macros that may use 'end' keyword
else if (dumstring(1:4) .eq. 'boun' .or. dumstring(1:4)
& .eq. 'hist' .or. dumstring(1:4) .eq. 'rest'
& .or. dumstring(1:4) .eq. 'stea' .or.
& dumstring(1:4) .eq. 'rlpm' .or. dumstring(1:4)
& .eq. 'trxn') then
exit
end if
end do
60 if (.not. ok) then
write (ierr, 55) 'ENDAVS'
write (ierr, 56) 'cont'
if (iptty .ne. 0) then
write (iptty, 55) 'ENDAVS'
write (iptty, 56) 'cont'
end if
stop
end if
end if
call done_macro(locunitnum)
else if(macro .eq. 'hist') then
call start_macro(inpt, locunitnum, macro)
! Read through keywords so no conflict with actual macro names
ok = .false.
do
read (locunitnum, '(a3)', END = 70) dumstring
if (dumstring(1:3) .eq. 'end' .or. dumstring(1:3) .eq.
& 'END') then
ok = .true.
exit
! Check for other macros that may use 'end' keyword
else if (dumstring(1:4) .eq. 'boun' .or. dumstring(1:4)
& .eq. 'cont' .or. dumstring(1:4) .eq. 'rest' .or.
& dumstring(1:4) .eq. 'stea' .or. dumstring(1:4)
& .eq. 'rlpm' .or. dumstring(1:4) .eq. 'trxn') then
exit
end if
end do
70 if (.not. ok) then
write (ierr, 55) 'END'
write (ierr, 56) 'hist'
if (iptty .ne. 0) then
write (iptty, 55) 'END'
write (iptty, 56) 'hist'
end if
stop
end if
call done_macro(locunitnum)
else if(macro.eq.'zone') then
call start_macro(inpt, locunitnum, macro)
call done_macro(locunitnum)
else if(macro.eq.'zonn') then
call start_macro(inpt, locunitnum, macro)
call done_macro(locunitnum)
else if(macro.eq.'rflo') then
compute_flow = .false.
backspace inpt
read (inpt, *) dumstring
if (dumstring(1:5) .eq. 'rflor') reverse_flow = .true.
else if (macro.eq.'hcon') then
idoff = -1
else if (macro .eq. 'flxz') then
call start_macro(inpt, locunitnum, macro)
read (locunitnum, *) nflxz
c Read zones to name flxz output files in inhist if necessary
if(.not.allocated(iflxz)) allocate(iflxz(max(1,nflxz)))
read (locunitnum, *)(iflxz(i),i=1,nflxz)
call done_macro(locunitnum)
else if (macro .eq. 'iter') then
call start_macro(inpt, locunitnum, macro)
read (locunitnum,*)g1, g2, g3, tmch, overf
read (locunitnum, *) irdof, islord, iback, icoupl, rnmax
if (ihead .eq. 1 .and. irdof .ne. 13) then
irdof = 13
end if
call done_macro(locunitnum)
else if (macro.eq.'sol ') then
call start_macro(inpt, locunitnum, macro)
read(locunitnum,*) idoff, intg
if (idoff .le. 0) idoff = -1
call done_macro(locunitnum)
else if (macro .eq. 'time') then
numtime = numtime + 1
if (numtime .gt. 1) then
write (ierr,*) 'More than one time macro in input file'
write (ierr,*) 'STOPPING'
if (iptty .ne. 0) then
write (iptty,*)
& 'More than one time macro in input file'
write (iptty,*) 'STOPPING'
end if
stop
end if
call start_macro(inpt, locunitnum, macro)
read(locunitnum, *)
5 read(locunitnum, '(a)') dummy_line
if (.not. null1(dummy_line)) then
icgts = icgts + 1
goto 5
end if
call done_macro(locunitnum)
else if (macro .eq. 'phys'.or. macro .eq. 'ndph') then
c find number of wellphysics or non darcy models models
c eg drift flux
iwellp_flag = 1
call start_macro(inpt, locunitnum, macro)
nwellphy = 0
111 continue
read(locunitnum,'(a80)') wdd1
if(.not. null1(wdd1)) then
backspace locunitnum
read(locunitnum,*) idumm
backspace locunitnum
nwellphy = nwellphy + 1
if(idumm.eq.1.or.idumm.eq.2) then
read(locunitnum,*) idumm,(adumm,ja=1,6)
elseif(idumm.eq.-1) then
end if
else
go to 211
endif
go to 111
211 continue
call done_macro(locunitnum)
else if (macro.eq.'rlp ') then
c old model
c find number of relative perm models
c use nrlp (comai.h) to transfer size of rlp arrays
c no longer use variable ichng so value can be saved
c check for read from other file
rlp_flag = 1
call start_macro(inpt, locunitnum, macro)
c gaz 100118 will set nrlp = 0 at start on routine so multiple rlp macros can be used
c nrlp = 0
11 continue
read(locunitnum,'(a80)') wdd1
if(.not. null1(wdd1)) then
backspace locunitnum
read(locunitnum,*) idumm
backspace locunitnum
ichng=ichng+1
nrlp = nrlp + 1
if(idumm.eq.1) then
read(locunitnum,*) idumm,(adumm,ja=1,6)
elseif(idumm.eq.-1) then
read(locunitnum,*) idumm,(adumm,ja=1,4)
elseif(idumm.eq.2) then
read(locunitnum,*) idumm,(adumm,ja=1,4)
elseif(idumm.eq.3) then
read(locunitnum,*) idumm,(adumm,ja=1,6)
elseif(idumm.eq.-4) then
read(locunitnum,*) idumm,(adumm,ja=1,15)
elseif(idumm.eq.4) then
read(locunitnum,*) idumm,(adumm,ja=1,15)
elseif(idumm.eq.5) then
read(locunitnum,*) idumm,(adumm,ja=1,6)
elseif(idumm.eq.6) then
read(locunitnum,*) idumm,(adumm,ja=1,15)
elseif(idumm.eq.7) then
read(locunitnum,*) idumm,(adumm,ja=1,16)
elseif(idumm.eq.8) then
read(locunitnum,*) idumm,(adumm,ja=1,6)
elseif(idumm.eq.9) then
read(locunitnum,*) idumm,(adumm,ja=1,10)
elseif(idumm.eq.10) then
read(locunitnum,*) idumm,(adumm,ja=1,8)
elseif(idumm.eq.11) then
read(locunitnum,*) idumm,(adumm,ja=1,6)
elseif(idumm.eq.12) then
read(locunitnum,*) idumm,(adumm,ja=1,10)
elseif(idumm.eq.13) then
read(locunitnum,*) idumm,(adumm,ja=1,10)
c elseif(idumm.eq.14) then
c read(locunitnum,*) idumm,(adumm,ja=1,6)
c elseif(idumm.eq.15) then
c read(locunitnum,*) idumm,(adumm,ja=1,6)
c temma add 2005/11/07
elseif(idumm.eq.14) then
read(locunitnum,*) idumm,(adumm,ja=1,12)
elseif(idumm.eq.15) then
read(locunitnum,*) idumm,(adumm,ja=1,12)
elseif(idumm.eq.16) then
read(locunitnum,*) idumm,(adumm,ja=1,12)
elseif(idumm.eq.17) then
read(locunitnum,*) idumm,(adumm,ja=1,14)
nphases(nrlp)=3
rlp_phase(nrlp,1)=20
rlp_phase(nrlp,2)=21
rlp_phase(nrlp,3)=22
rlp_group(nrlp)=nrlp
elseif(idumm.eq.18) then
read(locunitnum,*) idumm,(adumm,ja=1,14)
elseif(idumm.eq.19) then
read(locunitnum,*) idumm,(adumm,ja=1,7)
elseif(idumm.eq.20) then
read(locunitnum,*) idumm,(adumm,ja=1,16)
elseif(idumm.eq.21) then
read(locunitnum,*) idumm,(adumm,ja=1,6)
c temma add 2005/11/07
c elseif(idumm.eq.14) then
c read(locunitnum,*) idumm,(adumm,ja=1,12)
c elseif(idumm.eq.15) then
c read(locunitnum,*) idumm,(adumm,ja=1,12)
c elseif(idumm.eq.18) then
c read(locunitnum,*) idumm,(adumm,ja=1,14)
c elseif(idumm.eq.19) then
c read(locunitnum,*) idumm,(adumm,ja=1,14)
c elseif(idumm.eq.20) then
c read(locunitnum,*) idumm,(adumm,ja=1,16)
else
c Undefined rlp model, stop
write (ierr, 12) nrlp, idumm
if (iout .ne. 0) write (iout, 12) nrlp, idumm
if (iptty .ne. 0) write (iptty, 12) nrlp, idumm
stop
end if
else
go to 21
endif
go to 11
12 format ('STOP: Error in rlp macro at entry', i3,
& 'Invalid model specified: ', i3)
21 continue
call done_macro(locunitnum)
else if (macro .eq. 'rlpm') then
call start_macro(inpt, locunitnum, macro)
if (.not. rlpnew) nrlp = 0
rlp_flag = 1
rlpnew = .true.
idum2 = 0
do
read (locunitnum, '(a80)') dumstring
if (null1(dumstring) .or. dumstring(1:3) .eq. 'end' .or.
& dumstring(1:3) .eq. 'END') then
exit
else if (dumstring(1:5) .eq. 'group' .or. dumstring(1:5)
& .eq. 'GROUP') then
nrlp = nrlp + 1
else if (dumstring(1:3) .eq. 'tab' .or. dumstring(1:3)
& .eq. 'TAB') then
c Count number of tables that will be read,
c and number of entries in each table
ntable = ntable + 1
read (locunitnum, '(a80)') dumstring
if (dumstring(1:4) .eq. 'file') then
read (locunitnum, '(a80)') filename
idum = open_file (filename, 'old')
do
read (idum, '(a80)', end = 24) dumstring
if (null_new(dumstring) .or. dumstring(1:3) .eq.
& 'end' .or. dumstring(1:3) .eq. 'END') exit
call parse_string2(dumstring, imsg, msg, xmsg,
& cmsg, nwds)
c Don't count header lines (header lines should start with a character)
if (msg(1) .ne. 3) ntblines = ntblines + 1
end do
24 close (idum)
else
backspace (locunitnum)
do
read (locunitnum, '(a80)') dumstring
if (null_new(dumstring) .or. dumstring(1:3) .eq.
& 'end' .or. dumstring(1:3) .eq. 'END') exit
ntblines = ntblines + 1
end do
end if
end if
end do
call done_macro(locunitnum)
else if (macro.eq.'boun') then
c find number of boun models
c
c check for read from other file
call start_macro(inpt, locunitnum, macro)
31 continue
c read(locunitnum,'(a80)') wdd1
c if(.not. null1(wdd1)) then
c backspace locunitnum
read(locunitnum,'(a80)') wdd1(1:80)
if(wdd1(1:4).eq.'mode') then
maxmodel=maxmodel+1
else if(wdd1(1:2).eq.'cy') then
read(locunitnum,*) idumm
maxtimes=max(maxtimes,idumm)
else if(wdd1(1:2).eq.'ti') then
read(locunitnum,*) idumm, rdum1
if (rdum1 .ne. 0.0) then
maxtimes=max(maxtimes,idumm+1)
else
maxtimes=max(maxtimes,idumm)
end if
else if(wdd1(1:3).eq.'huf') then
iha=1
else if(wdd1(1:2).eq.'hu') then
iha=1
else if(wdd1(1:2).eq.'ph') then
ipha=1
else if(wdd1(1:2).eq.'th') then
itha=1
else if(wdd1(1:3).eq.'chm') then
icm=1
else if(wdd1(1:2).eq.'sa') then
iqa=1
else if(wdd1(1:3).eq.'fxa') then
ixa=1
else if(wdd1(1:3).eq.'swf') then
iqf=1
else if(wdd1(1:2).eq.'sw') then
iqw=1
else if(wdd1(1:4).eq.'sco2') then
iqco2=1
else if(wdd1(1:3).eq.'sfh') then
isf=1
else if(wdd1(1:2).eq.'sf') then
isf=1
else if(wdd1(1:2).eq.'fd') then
ifd=1
else if(wdd1(1:3).eq.'dfd') then
ifd=1
else if(wdd1(1:2).eq.'se') then
iqenth=1
else if(wdd1(1:3).eq.'dsa') then
iqa=1
else if(wdd1(1:3).eq.'dsw') then
iqw=1
else if(wdd1(1:5).eq.'dsco2') then
iqco2=1
else if(wdd1(1:3).eq.'dse') then
iqenth=1
else if(wdd1(1:2).eq.'si') then
isatb_ini=1
else if(wdd1(1:2).eq.'s ') then
isatb=1
else if(wdd1(1:3).eq.'pwi') then
ipresw_ini=1
else if(wdd1(1:3).eq.'pwo') then
ipresw=1
isatb=1
else if(wdd1(1:2).eq.'pw') then
ipresw=1
isatb=1
else if(wdd1(1:3).eq.'pai') then
ipresa_ini=1
else if(wdd1(1:3).eq.'pao') then
ipresa=1
isatb=1
else if(wdd1(1:2).eq.'pa') then
ipresa=1
isatb=1
else if(wdd1(1:4).eq.'tran') then
isty=1
else if(wdd1(1:3).eq.'tmi') then
itempb_ini=1
else if(wdd1(1:2).eq.'tc') then
itempb2=1
else if(wdd1(1:2).eq.'ts') then
its=1
else if(wdd1(1:2).eq.'t') then
itempb=1
else if(wdd1(1:2).eq.'hd') then
itempb=1
else if(wdd1(1:3).eq.'hdo') then
itempb=1
else if(wdd1(1:1).eq.'h') then
isatb=1
else if(wdd1(1:2).eq.'hu') then
iha=1
else if(wdd1(1:2).eq.'ph') then
ipha=1
else if(wdd1(1:2).eq.'th') then
itha=1
else if(wdd1(1:4).eq.'wgtp') then
iwght=2
else if(wdd1(1:4).eq.'wgtu') then
iwght=3
else if(wdd1(1:3).eq.'wgt') then
iwght=1
else if(wdd1(1:2).eq.'if') then
imped=1
else if(wdd1(1:2).eq.'en' .and. wdd1(1:3).ne.'end') then
ienth=1
else if(wdd1(1:2).eq.'ft') then
ienth=1
else if(wdd1(1:3).eq.'fen') then
ienth=1
else if(wdd1(1:2).eq.'kx') then
ixperm=1
else if(wdd1(1:2).eq.'ky') then
iyperm=1
else if(wdd1(1:2).eq.'kz') then
izperm=1
else if(wdd1(1:20).eq.' ') then
if(null1(wdd1)) go to 41
else if(wdd1(1:3).eq.'end') then
go to 41
endif
go to 31
c end if
41 continue
call done_macro(locunitnum)
else if (macro .eq. 'alti') then
c**** We need to know number of nodes if alternate geometry data is used ****
call start_macro(inpt, locunitnum, macro)
read (locunitnum, *) cdumm, neq
call done_macro(locunitnum)
else if (macro(1:3) .eq. 'nap' .or. macro .eq. 'szna') then
c need to know if napl-water is envoked
ico2 = -3
c gaz 112817
else if (macro(1:3) .eq. 'eos') then
c need to know if a table with water props is read
call start_macro(inpt, locunitnum, macro)
read(locunitnum,'(a80)') wdd1(1:80)
call done_macro(locunitnum)
if(wdd1(1:5).eq.'table') iwater_table = 1
else if (macro(1:3) .eq. 'air') then
c need to know if air-water is envoked
ico2 = -2
else if (macro .eq. 'ice ' .or. macro .eq. 'meth') then
ice = 1
c RJP added carbon flag
else if (macro .eq. 'carb') then
icarb = 1
else if (macro .eq. 'boun') then
c need to know if boussinesq approx is envoked
iboun = 1
else if (macro .eq. 'head') then
c need to know if head input instead of pressures
c airwater isothermal
c bous automatically enabled
ihead = 1
icons = 100000
irdof = 13
else if (macro .eq. 'wtsi') then
c need to know if simplified water table is invoked
ifree = 1
else if (macro .eq. 'salt') then
c DRH 1/2/2013: need to know if modeling salt
isalt = 1
else if (macro .eq. 'coor') then
c**** We need to know number of nodes if coor is in inpt ****
call start_macro(inpt, locunitnum, macro)
read (locunitnum, *) neq
call done_macro(locunitnum)
else if (macro .eq. 'elem') then
c**** We need to know number of elements if elem is in inpt ****
call start_macro(inpt, locunitnum, macro)
read (locunitnum, *) idumm,nei
call done_macro(locunitnum)
else if (macro .eq. 'ctrl') then
call start_macro(inpt,locunitnum, macro)
read (locunitnum, *) idumm, rdum1, north
maxor = north + 1
igauss = 1
20 continue
read (locunitnum, '(a80)') wdd1
if (null1(wdd1)) go to 30
backspace locunitnum
read (locunitnum, *) ja, jb, jc, idumm
igauss = max (igauss, idumm)
if(ja .eq. 0) go to 30
go to 20
30 read (locunitnum, *) adumm
read (locunitnum, *) idumm
c**** We need to know problem geometry ****
read (locunitnum, *) icnl
call done_macro(locunitnum)
c**** We need to know if dual porosity or
c**** dual porosity/dual permeability problem ****
else if(macro .eq. 'dual') then
idualp = 1
else if (macro .eq. 'fper') then
c need to know if fperms are being used
fperm_flag = .true.
else if (macro .eq. 'frlp') then
c need to know if rel perm factor is used
irlp_fac = 1
else if (macro .eq. 'flxo') then
iflxc = iflxc +1
call start_macro(inpt, locunitnum, macro)
read(locunitnum,*) nflx
ivelo = 1
nflxt = nflxt + nflx
call done_macro(locunitnum)
else if (macro .eq. 'dvel') then
iflxc = iflxc +1
call start_macro(inpt, locunitnum, macro)
read(locunitnum,*) nflx
ivelo = -1
nflxt = nflxt + nflx
call done_macro(locunitnum)
else if (macro .eq. 'dpdp') then
idpdp = 1
c Section for determining Generalized Dual Porosity Model (GDPM)
c and Generalized Dual Permeability Model (GDKM) parameters
else if(macro .eq. 'gdpm' .or. macro .eq. 'gdkm') then
if(macro .eq. 'gdkm') then
gdkm_flag = 1
backspace locunitnum
read(locunitnum,'(a80)') dumstring
gdkm_new = .false.
c----------------------------------------
c Shaoping add, 10/23/2017
c do i = 1, 80
do i = 1, 78
c----------------------------------------
if(dumstring(i:i+2).eq.'new') then
gdkm_new =.true.
go to 690
endif
enddo
endif
690 call start_macro(inpt, locunitnum, macro)
if(.not.gdkm_new) then
read (locunitnum, *) gdpm_flag, ngdpmnodes
else
ngdpmnodes = -999
endif
if(gdkm_flag.eq.1) then
gdpm_flag = 1
endif
maxgdpmlayers = 0
ngdpm_models = 0
c Code scans the file to determine the number of models and the
c maximum number of node points in the matrix so that array
c sizes can be set and arrays allocated in allocmem
1000 continue
read(locunitnum,'(a80)') dumstring
if (.not.null1(dumstring)) then
backspace locunitnum
ngdpm_models = ngdpm_models + 1
c gaz 091516
if(gdkm_flag.eq.0) then
read(locunitnum,*) nsize_layer,adumm,(adumm,i=1,
& nsize_layer)
else
read(locunitnum,*) nsize_layer,adumm
nsize_layer = 1
endif
maxgdpmlayers = max(nsize_layer,maxgdpmlayers)
goto 1000
end if
c At this point, we have the number of models in the gdpm
c formulation (ngdpm_models), and the maximum number of layers
c in any of the models
c Allocate arrays needed for gdpm
ngdpm_models = max(1,ngdpm_models)
maxgdpmlayers = max(1,maxgdpmlayers)
if(.not.allocated(ngdpm_layers)) then
allocate(ngdpm_layers(0:ngdpm_models))
allocate(vfrac_primary(0:ngdpm_models))
allocate(gdpm_x(0:ngdpm_models,maxgdpmlayers))
allocate(gdpm_vol(0:ngdpm_models,maxgdpmlayers))
allocate(wgt_length(ngdpm_models))
ngdpm_layers = 0
vfrac_primary = 0.
gdpm_x = 0.
end if
if(gdkm_flag.ne.0) then
if(.not.allocated(gdkm_dir)) then
allocate(gdkm_dir(0:ngdpm_models))
gdkm_dir = 0
endif
endif
call done_macro(locunitnum)
else if (macro .eq. 'rare') then
c**** over write area/d terms and volumes ****
c**** can be used with gdkm and gdpm models *****
c**** need to count entries
call start_macro(inpt, locunitnum, macro)
icoef_replace = 1
call coef_replace_ctr(-1)
call done_macro(locunitnum)
c Section for determining Element enrichment
else if(macro .eq. 'enri') then
call start_macro(inpt, locunitnum, macro)
read (locunitnum, *) enri_flag, nenrinodes
maxenrichlayers = 0
ienrich_models = 0
c Code scans the file to determine the number of models and the
c maximum number of node points in the matrix so that array
c sizes can be set and arrays allocated in allocmem
1010 continue
read(locunitnum,'(a80)') dumstring
if (.not.null1(dumstring)) then
backspace locunitnum
ienrich_models = ienrich_models + 1
read(locunitnum,*) nsize_layer,adumm,(adumm,i=1,
& nsize_layer)
maxenrichlayers = max(nsize_layer,maxenrichlayers)
goto 1010
end if
c
c Allocate arrays needed for enri
c
call done_macro(locunitnum)
c RJP 12/14/06 added following for river/wellbore
c Section for determining implicit river or well model (riv )
c parameters
else if(macro .eq. 'rive'.or. macro .eq. 'well') then
call start_macro(inpt, locunitnum, macro)
785 read (locunitnum, '(a9)') dumstring(1:9)
if (dumstring(1:1) .eq. '#') go to 785
if (dumstring(1:9) .eq. 'wellmodel') then
read (locunitnum, *) nriver,iriver
if(iriver.eq.1) then
npoint_riv = 0
do i = 1,nriver
read (locunitnum, *) idum1,ii,jj
idum = ii
do kk = 1,jj
npoint_riv = npoint_riv + 1
do j = 1,idum
npoint_riv = npoint_riv + 1
enddo
enddo
do ii = 1,jj+1
read(locunitnum,'(a80)') wdd1
if(null1(wdd1)) goto 441
backspace locunitnum
read (locunitnum, *) idum1
if (idum1 .lt. 0) goto 441
enddo
441 continue
enddo
else if(iriver.eq.2) then
c
allocate(coor_dum(nriver,3))
do i = 1,nriver
read (locunitnum, *) ii,
& coor_dum(ii,1),coor_dum(ii,2),coor_dum(ii,3)
enddo
read(locunitnum,*) n_well_seg
allocate(iwell_seg(n_well_seg,2))
allocate(well_rad(n_well_seg))
allocate(well_dz(n_well_seg))
do i = 1,n_well_seg
read(locunitnum,*) j,iwell_seg(j,1),iwell_seg(j,2),
& well_rad(j),well_dz(j)
enddo
npoint_riv = 0
max_seg_div = 0
do j = 1,n_well_seg
ii = iwell_seg(j,1)
kk = iwell_seg(j,2)
adumm = (coor_dum(ii,1)-coor_dum(kk,1))**2 +
& (coor_dum(ii,2)-coor_dum(kk,2))**2 +
& (coor_dum(ii,3)-coor_dum(kk,3))**2
adumm = sqrt(adumm)
jj = adumm/well_dz(j) + 1
max_seg_div = max(max_seg_div,jj)
npoint_riv = npoint_riv + jj
nnelm_riv = nnelm_riv + (jj-1)
enddo
deallocate(coor_dum,iwell_seg,well_rad,well_dz)
endif
endif
call done_macro(locunitnum)
else if (macro .eq. 'init') then
i_init = 1
else if (macro .eq. 'itfc') then
call start_macro(inpt, locunitnum, macro)
opened = .false.
interface_flag = 1
nitfcpairs = 0
ncoldpairs = 0
nitfcitfc = 0
nitfcsizes = 0
c Flow interface portion of input
kk = 0
6000 continue
read(locunitnum,'(a80)') dummy_line
if(null1(dummy_line)) then
goto 6001
else
nitfcpairs = nitfcpairs + 1
end if
goto 6000
c Transport part of interface input
6001 continue
read(locunitnum,'(a80)') dummy_line
if(null1(dummy_line)) goto 6002
6003 continue
read(locunitnum,'(a80)') dummy_line
if(null1(dummy_line)) then
goto 6002
else
kk = kk+1
backspace locunitnum
read(locunitnum,*) idum1, idum2, rflag
if(rflag.lt.0) then
nitfcitfc = nitfcitfc + 1
ilines = 0
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).eq.'file') then
read(locunitnum,'(a100)') filename
inptread = open_file(filename,'old')
opened = .true.
else
backspace locunitnum
inptread = locunitnum
opened = .false.
end if
7001 continue
read(inptread,'(a80)') dummy_line
if(null1(dummy_line)) then
goto 7002
else
ilines = ilines + 1
goto 7001
end if
end if
7002 continue
if(opened) then
close (inptread)
opened = .false.
end if
nitfcsizes = max(ilines,nitfcsizes)
end if
goto 6003
6002 continue
if(nitfcpairs.gt.0) nitf_use = .true.
if(kk.gt.0) ncol_use = .true.
nitfcpairs = max(1,nitfcpairs)
ncoldpairs = max(1,kk)
call done_macro(locunitnum)
else if (macro .eq. 'ngas') then
c need to know if noncondensible present
ico2 = 3
else if (macro .eq. 'trac') then
iccen = 1
call start_macro(inpt, locunitnum, macro)
c--------- Hari added 6/10/04
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:3).eq.'rip') then
read(locunitnum,'(a80)') dummy_line
else
backspace(locunitnum)
end if
c---------------------- Hari
read (locunitnum, '(a5)') dumstring
if (dumstring(1:5) .eq. 'userc') then
c check for file keyword, and read past filename if present
read (locunitnum, '(a4)') dumstring
if (dumstring(1:4) .eq. 'file') then
read (locunitnum, *)
else
backspace locunitnum
end if
end if
read (locunitnum, *)
read (locunitnum, *)
read (locunitnum, '(a4)')dumstring
if(dumstring(1:4).eq.'tpor')then
tpor_flag = .TRUE.
do
read(locunitnum,'(a80)') dumstring
if (null1(dumstring)) exit
enddo
else
tpor_flag = .FALSE.
backspace locunitnum
endif
read (locunitnum, *) nspeci
if(.not.allocated(species)) allocate (species(nspeci))
species=' '
trac_flag=1
read(locunitnum,'(a4)') dumstring
if (dumstring(1:4).eq.'ldsp') then
! longitudinal and transverse dispersion coefficients keyword was read
! read another line
read(locunitnum,'(a4)') dumstring
endif
if ((dumstring(1:4).ne.'dspl').and.(dumstring(1:4)
& .ne.'dspb').and.(dumstring(1:4).ne.'dspb')) then
! Same dispersivity and diffusivity are not used for all liquid / vapor
! calculations
backspace locunitnum
else
do
read(locunitnum,'(a80)') dumstring
if (null1(dumstring)) exit
! Count number of regions with same dispersivity and diffusivity
numd = numd + 1
enddo
do
read(locunitnum,'(a80)') dumstring
if (null1(dumstring)) exit
enddo
endif
ncpnt = 0
nimm = 0
nvap = 0
do ii = 1,nspeci
read(locunitnum,*) ispeci
if(ispeci.eq.1.or.abs(ispeci).eq.2)then
ncpnt = ncpnt + 1
elseif(ispeci.eq.0)then
nimm = nimm + 1
else
nvap = nvap + 1
endif
isorp = 0
if (ispeci.eq.0) then
! Solid, do nothing
continue
else
do
read(locunitnum,'(a80)') dumstring
if(null1(dumstring)) exit
! Count number of sorption models for this species
isorp = isorp + 1
! Liquid or vapor, abs(ispeci).eq.1, do nothing else
if (abs(ispeci).eq.2) then
! Henry's law species read additional input line if data is on two lines
call parse_string(dumstring, imsg, msg, xmsg,
& cmsg, nwds)
if ((numd .eq. 0 .and. nwds .lt. 16) .or.
& (numd .gt. 0 .and. nwds .lt. 8)) then
read(locunitnum,*)
end if
endif
end do
do
read(locunitnum,'(a80)') dumstring
if (null1(dumstring)) exit
enddo
if (abs(ispeci).eq.2) then
! Henry's law species, model parameters
read (locunitnum,*) idum
if (idum.eq.1 .or. idum.eq.2 .or. idum.eq.3) then
continue
else
write(ierr,*)' ** Using Old Input '
write(ierr,*)' Enter Temperature Dependency '
write(ierr,*)' Model Number: 1 - Van Hoff '
write(ierr,*)' 2 - awwa model, see manual'
write(ierr,*)' for details **'
if (iptty .gt. 0) then
write(iptty,*)' Using Old Input '
write(iptty,*)' Enter Temperature Dependency '
write(iptty,*)' Model Number: 1 - Van Hoff '
write(iptty,*)' 2 - awwa model, see manual'
write(iptty,*)' for details **'
end if
stop
endif
endif
endif
do
read(locunitnum,'(a80)') dumstring
if (null1(dumstring)) exit
enddo
do
read(locunitnum,'(a80)') dumstring
if (null1(dumstring)) exit
enddo
! maximum number of sorption models for any species
numsorp = max (isorp, numsorp)
enddo
call done_macro(locunitnum)
else if(macro(1:3) .eq. 'rxn') then
call start_macro( inpt, locunitnum, macro)
rxn_flag = 1
read(locunitnum,*)
read(locunitnum,*)ncplx,numrxn
read (locunitnum, *)
read (locunitnum, *)ngroups
allocate(group_mat(ncpnt,ncpnt))
group_mat = 0
if(irun.eq.1) then
if (ngroups .ne. 0) then
allocate(group(ngroups,ncpnt),pos(ngroups,ncpnt))
allocate(n_couple_species(ngroups),fzero(ngroups))
end if
end if
group = 0
pos = 0
n_couple_species = 0
do igrp = 1, ngroups
read(locunitnum, *)(group(igrp,ic),ic = 1,ncpnt)
enddo
c add grouping stuff 8/1/94
mdof_sol = 0
do igrp = 1, ngroups
pos_index = 0
do ic = 1, ncpnt
if(group(igrp,ic).ne.0)then
do ic2 = 1, ncpnt
if(group(igrp,ic2).ne.0)then
group_mat(ic,ic2)=1
else
group_mat(ic,ic2)=0
endif
enddo
pos_index = pos_index + 1
pos(igrp,pos_index)= ic
n_couple_species(igrp)=n_couple_species(igrp)+1
mdof_sol = max(n_couple_species(igrp),
2 mdof_sol)
endif
enddo
enddo
dimdrc = 0
matnum = 0
do ic = 1, ncpnt
itemp = 0
do ic2 = 1,ncpnt
matnum = matnum + 1
if(group_mat(ic,ic2).ne.0)then
dimdrc=dimdrc+1
matpos(matnum)=dimdrc
itemp = itemp + 1
drcpos(ic,itemp)=ic2
endif
enddo
nderivs(ic)=itemp
enddo
call done_macro(locunitnum)
else if (macro .eq. 'trxn') then
iccen = 1
call start_macro(inpt, locunitnum, 'trxn')
inpttmp = inpt
inpt = locunitnum
call trxninit
inpt = inpttmp
call done_macro(locunitnum)
if(rxn_flag .eq. 0) then
if (iout .ne. 0) write (iout, 8000)
if (iptty .ne. 0) write(iptty, 8000)
endif
8000 format ('Reactions disabled for this simulation.')
if(rxn_flag .eq. 1) then
allocate(group_mat(ncpnt, ncpnt))
group_mat = 0
do igrp = 1, ngroups
pos_index = 0
do ic = 1, ncpnt
if(group(igrp,ic).ne.0)then
do ic2 = 1, ncpnt
if(group(igrp,ic2).ne.0)then
group_mat(ic,ic2)=1
else
group_mat(ic,ic2)=0
endif
enddo
pos_index = pos_index + 1
pos(igrp,pos_index)= ic
n_couple_species(igrp)=n_couple_species(igrp)+1
mdof_sol = max(n_couple_species(igrp),
2 mdof_sol)
endif
enddo
enddo
dimdrc = 0
matnum = 0
do ic = 1, ncpnt
itemp = 0
do ic2 = 1,ncpnt
matnum = matnum + 1
if(group_mat(ic,ic2).ne.0)then
dimdrc=dimdrc+1
matpos(matnum)=dimdrc
itemp = itemp + 1
drcpos(ic,itemp)=ic2
endif
enddo
nderivs(ic)=itemp
enddo
endif
else if (macro .eq. 'mptr') then
ptrak=.true.
ctmp=macro
call start_macro(inpt, locunitnum, macro)
read (locunitnum, *) nspeci,maxlayers,max_particles
c Line with pout
read(locunitnum,*) idum1
c Read past group with tcurve
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:6).eq.'tcurve') then
read(locunitnum,'(a80)') dummy_line
read(locunitnum,'(a80)') dummy_line
else
backspace(locunitnum)
endif
c Read past group with zptr
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).eq.'zptr') then
read(locunitnum,*) ipzone
allocate(itemporary(ipzone))
read(locunitnum,*) (itemporary(i),i=1,ipzone)
deallocate(itemporary)
else
backspace(locunitnum)
end if
c read rseed line
read(locunitnum,*) idum1
c*** water table rise modification
c Read past group with wtri
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).eq.'wtri') then
read(locunitnum,*)water_table
wtrise_flag = .true.
else
wtrise_flag = .false.
water_table = -1.d+10
backspace(locunitnum)
end if
c*** water table rise modification
c read daycs line
read(locunitnum,*) rdum1
c read file name if this option is used
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).eq.'file') then
read(locunitnum,'(a80)') dummy_line
else
backspace(locunitnum)
end if
c Read afm if it exists
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:3).ne.'afm') then
backspace(locunitnum)
end if
c zvd 02/28/07 Add for free water diffusion coefficient and tortuosity
c Read dfree keyword if it exists
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).ne.'dfre') then
backspace(locunitnum)
end if
c read until next black line to get past dispersivities
blank = .false.
do while(.not.blank)
read(locunitnum,'(a80)') dummy_line
if(null1(dummy_line)) blank = .true.
end do
c read until next blank line to get past itrc lines
blank = .false.
do while(.not.blank)
read(locunitnum,'(a80)') dummy_line
if(null1(dummy_line)) blank = .true.
end do
c Loop through each species, read ith, determine if the
c particles have a size distribution
ncolspec = 0
ncolsizes = 0
do i = 1, nspeci
read(locunitnum,*) ith
c Ready to look for size distribution, count the number
c of species with size distributions, count the number
c of entries, record the maximum number of entries
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).eq.'size') then
ncolspec = ncolspec + 1
jj = 0
2991 continue
read(locunitnum,'(a80)') dummy_line
if (null1(dummy_line)) then
goto 2992
else
jj = jj + 1
goto 2991
end if
2992 continue
ncolsizes = max(jj,ncolsizes)
else
backspace(locunitnum)
end if
CHari 01-Nov-06 read in parameters for the colloid diversity model
c find max_probdivs
read(locunitnum,'(a80)') wdd1
if(wdd1(1:4).eq.'dive') then
! Flag for non-colloid daughter products
read(locunitnum,*) idum
if (idum.eq.0) then
total_colloids = total_colloids + 1
else
total_daughters = total_daughters + 1
goto 18933
endif
read(locunitnum,'(a80)') dummy_line
if (dummy_line(1:4) .eq. 'file') then
do icount = 1, 80
filename(icount:icount) = ' '
enddo
read(locunitnum,'(a80)') filename
if(total_colloids.eq. 1)then
iread_rcoll = open_file(filename,'old')
endif
else
backspace locunitnum
end if
read(locunitnum,'(a80)') dummy_line
call parse_string(dummy_line,imsg,msg,xmsg,cmsg,nwds)
tprp_num = imsg(1)
! Use multiple simulation number - irun for GoldSim or msim run
isimnum = int(irun+0.01)
if(isimnum<=0) isimnum = 1
if (ripfehm .eq. 0 .and. nwds .ge. 2) isimnum = imsg(2)
! if(tprp_num.ge.11.and.tprp_num.le.14.and.
! 2 total_colloids.eq.1) then
if(tprp_num.ge.11.and.tprp_num.le.14) then
if(tprp_num.lt.13) then
if(iread_rcoll .eq. 0) then
write (ierr, 18929)
if (iout .ne. 0) write (iptty, 18929)
if (iptty .ne. 0) write (iptty, 18929)
stop
end if
18929 format ('STOP - CDF table data must be input using ',
& 'an external data file -- check mptr macro.')
read(iread_rcoll,'(a80)',end=18928) dummy_line
read(iread_rcoll,*,end=18928)idum
do while (idum.ne.isimnum)
nulldum=.false.
do while(.not.nulldum)
read(iread_rcoll,'(a80)',end=18928)dummy_line
nulldum=null1(dummy_line)
enddo
read(iread_rcoll,*,end=18928)idum
enddo
18928 if (idum .ne. isimnum) then
write(ierr,18930) tprp_num, isimnum,
& trim(filename)
if (iout .ne. 0) write(iout, 18930) tprp_num,
& isimnum, trim(filename)
if (iptty .ne. 0) write(iptty, 18930) tprp_num,
& isimnum, trim(filename)
stop
end if
18930 format ('STOP - Error in inmptr for tprpflag = ', i2,
& ' realization_num ', i4, ' not found in ', a)
jjj=0
read(iread_rcoll,'(a80)',end=18931) dummy_line
nulldum=null1(dummy_line)
do while(.not.nulldum)
jjj=jjj+1
read(iread_rcoll,'(a80)',end=18931) dummy_line
nulldum=null1(dummy_line)
enddo
18931 if (jjj .lt. 2) then
write(ierr,18932) tprp_num, isimnum,
& trim(filename)
if (iout .ne. 0) write(iout, 18932) tprp_num,
& isimnum, trim(filename)
if (iptty .ne. 0) write(iptty, 18932) tprp_num,
& isimnum, trim(filename)
stop
end if
18932 format ('STOP - Error in inmptr for tprpflag = ',
& i2, ' realization_num ', i4,
& ' data not found in ', a)
maxprobdivs = max(jjj,maxprobdivs)
rewind(iread_rcoll)
else
if(iread_rcoll .eq. 0) read(locunitnum,'(a80)') wdd1
endif
endif
read(locunitnum,'(a80)') wdd1
cHari setup pointer arrays for reversible and irreversible colloids
if(wdd1(1:4).eq.'irre')then
total_irrev = total_irrev +1
elseif(wdd1(1:4).eq.'reve')then
total_rev = total_rev+1
else
write(ierr,*)'must specify irre or reve in mptr'
if(iout.ne.0)then
write(iout,*)'must specify irre or reve in mptr'
endif
if(iptty.ne.0)then
write(iptty,*)'must specify irre or reve in mptr'
endif
endif
else
backspace(locunitnum)
endif
c read past transport parameter information
18933 continue
read(locunitnum, *) idum1
do iscan = 1, idum1
read(locunitnum,'(a80)') dummy_line
end do
c read past source information
read(locunitnum, *) idum1
do iscan = 1, idum1
c read until next black line to get past current source
blank = .false.
do while(.not.blank)
read(locunitnum,'(a80)') dummy_line
if(null1(dummy_line)) blank = .true.
end do
end do
c Ready to loop back to the next species
end do
call done_macro(locunitnum)
else if (macro .eq. 'ptrk') then
ptrak=.true.
call start_macro(inpt, locunitnum, macro)
read (locunitnum, *) max_particles
nspeci = 1
c maxlayers = n0
c Determine actual number of transport maylayers there are
c*** water table rise modification
c Read past group with wtri
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).eq.'wtri') then
read(locunitnum,*)water_table
else
backspace(locunitnum)
end if
c*** water table rise modification
c Read 'rip' string
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:3).eq.'rip') then
read(locunitnum,'(a80)') dummy_line
end if
read(locunitnum,'(a80)') dummy_line
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:6).eq.'tcurve') then
read(locunitnum,'(a80)') dummy_line
read(locunitnum,'(a80)') dummy_line
else
backspace(locunitnum)
endif
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).eq.'zptr') then
read(locunitnum,*) ipzone
allocate(itemporary(ipzone))
read(locunitnum,*) (itemporary(i),i=1,ipzone)
deallocate(itemporary)
else
backspace(locunitnum)
end if
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).eq.'file') then
read(locunitnum,'(a80)') dummy_line
else
backspace(locunitnum)
end if
c Get past afm keyword if it exists
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:3).ne.'afm') then
backspace(locunitnum)
end if
c zvd 02/28/07 Add for free water diffusion coefficient and tortuosity
c Get past dfree keyword if it exists
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).ne.'dfre') then
backspace(locunitnum)
end if
c Look for colloid size information
read(locunitnum,'(a80)') dummy_line
if(dummy_line(1:4).eq.'size') then
ncolspec = 1
jj = 0
1991 continue
read(locunitnum,'(a80)') dummy_line
if (null1(dummy_line)) then
goto 1992
else
jj = jj + 1
goto 1991
end if
1992 continue
ncolsizes = jj
else
backspace(locunitnum)
end if
CHari 01-Nov-06 read in parameters for the colloid diversity model
c find max_probdivs
read(locunitnum,'(a80)') wdd1
if(wdd1(1:4).eq.'dive') then
total_colloids = 1
read(locunitnum,'(a80)') dummy_line
if (dummy_line(1:4) .eq. 'file') then
do icount = 1, 80
filename(icount:icount) = ' '
enddo
read(locunitnum,'(a80)') filename
if(total_colloids.eq. 1)then
iread_rcoll = open_file(filename,'old')
endif
else
backspace locunitnum
end if
read(locunitnum,'(a80)') dummy_line
call parse_string(dummy_line,imsg,msg,xmsg,cmsg,nwds)
tprp_num = imsg(1)
! Use multiple simulation number - irun for GoldSim or msim run
isimnum = int(irun+0.01)
if(isimnum<=0) isimnum = 1
if (ripfehm .eq. 0 .and. nwds .ge. 2) isimnum = imsg(2)
if(tprp_num.ge.11.and.tprp_num.le.14.and.
2 total_colloids.eq.1) then
maxprobdivs = 1
if(tprp_num.lt.13) then
if(iread_rcoll .eq. 0) then
write (ierr, 17929)
if (iout .ne. 0) write (iptty, 17929)
if (iptty .ne. 0) write (iptty, 17929)
stop
end if
17929 format ('STOP - CDF table data must be input using ',
& 'an external data file -- check ptrk macro.')
read(iread_rcoll,'(a80)',end=17928) dummy_line
read(iread_rcoll,*,end=17928)idum
do while (idum.ne.isimnum)
nulldum=.false.
do while(.not.nulldum)
read(iread_rcoll,'(a80)',end=17928)dummy_line
nulldum=null1(dummy_line)
enddo
read(iread_rcoll,*,end=17928)idum
enddo
17928 if (idum .ne. isimnum) then
write(ierr,17930) tprp_num, isimnum,
& trim(filename)
if (iout .ne. 0) write(iout, 17930) tprp_num,
& isimnum, trim(filename)
if (iptty .ne. 0) write(iptty, 17930) tprp_num,
& isimnum, trim(filename)
stop
end if
17930 format ('STOP - Error in inptrk for tprpflag = ', i2,
& ' realization_num ', i4, ' not found in ', a)
jjj=0
read(iread_rcoll,'(a80)',end=17931) dummy_line
nulldum=null1(dummy_line)
do while(.not.nulldum)
jjj=jjj+1
read(iread_rcoll,'(a80)',end=17931) dummy_line
nulldum=null1(dummy_line)
enddo
17931 if (jjj .lt. 2) then
write(ierr,17932) tprp_num, isimnum,
& trim(filename)
if (iout .ne. 0) write(iout, 17932) tprp_num,
& isimnum, trim(filename)
if (iptty .ne. 0) write(iptty, 17932) tprp_num,
& isimnum, trim(filename)
stop
end if
17932 format ('STOP - Error in inptrk for tprpflag = ', i2,
& ' realization_num ', i4, ' data not found in ',
& a)
maxprobdivs = jjj
rewind(iread_rcoll)
else
if(iread_rcoll .eq. 0) read(locunitnum,'(a80)') wdd1
endif
endif
read(locunitnum,'(a80)') wdd1
cHari setup pointer arrays for reversible and irreversible colloids
if(wdd1(1:4).eq.'irre')then
total_irrev = 1
elseif(wdd1(1:4).eq.'reve')then
total_rev = 1
else
write(ierr,*)'must specify irre or reve in ptrk'
if(iout.ne.0)then
write(iout,*)'must specify irre or reve in ptrk'
endif
if(iptty.ne.0)then
write(iptty,*)'must specify irre or reve in ptrk'
endif
endif
else
backspace(locunitnum)
endif
c We are now at the point where we can count the
c number of maxlayers
maxlayers = 0
991 continue
read(locunitnum,'(a80)') dummy_line
if(null1(dummy_line)) then
goto 99
else
maxlayers = maxlayers + 1
end if
goto 991
99 continue
maxlayers = max(1,maxlayers)
call done_macro(locunitnum)
c***********sptr***groemer 5/1/98***************************************
else if (macro .eq. 'sptr') then
nspeci = 1
sptrak=.true.
nzbtc = 0
nsize_tprp = 0
nplum = 0
itensor = -999
call start_macro(inpt, locunitnum, macro)
read (locunitnum,'(a80)') dummy_line
c Section to read past keywords
done=.false.
do while(.not.done)
done=.true.
read(locunitnum,'(a80)') dummy_line
read_flags:select case(dummy_line(1:2))
case('tc', 'TC')
! If tcurve data is to be input read two more lines, zvd 18-Nov-02
done = .false.
read(locunitnum,'(a80)') dummy_line
read(locunitnum,'(a80)') dummy_line
! If omr grid is being used
case ('om', 'OM')
done = .false.
omr_flag = .true.
read(locunitnum,'(i8)') omr_nodes
read (locunitnum,'(a80)') dummy_line
if (dummy_line(1:4).eq.'file') then
save_omr = .TRUE.
read (locunitnum,'(a100)') nmfil(23)
read (locunitnum,'(a11)') cform(23)
else
save_omr = .FALSE.
backspace (locunitnum)
end if
case('po', 'PO')
done = .false.
! If POD basis funtion derivatives are needed, zvd 16-Aug-04
if (dummy_line(3:3) .eq. 'd' .or.
& dummy_line(3:3) .eq. 'D') then
pod_flag = .true.
! Else po represents porosity
end if
case ('tp', 'TP')
done = .false.
if (dummy_line(3:3) .eq. 'o' .or.
& dummy_line(3:3) .eq. 'O') then
! We are reading transport porosities 'tpor'
tpor_flag = .TRUE.
read(locunitnum,'(a80)') dumstring
if (dumstring(1:4) .ne. 'file') then
do
if (null1(dumstring)) exit
read(locunitnum,'(a80)') dumstring
enddo
else
read(locunitnum,'(a80)') dumstring
end if
else
! Else we are reading the transport property 'tprp' models
if (itensor .eq. 0) itensor = 5
do
read(locunitnum,'(a80)') dummy_line
if(null1(dummy_line)) exit
nsize_tprp = nsize_tprp + 1
read(dummy_line, *) tprp_num
if(tprp_num.ge.11.and.tprp_num.le.14) then
div_flag=.true.
read(locunitnum,'(a80)') dummy_line
if (dummy_line(1:4) .eq. 'file') then
backspace(locunitnum)
backspace(locunitnum)
read(locunitnum,*) tprp_num,realization_num
read(locunitnum,'(a80)') dummy_line
else
c We are reading eqn parameters from tprp line
backspace(locunitnum)
end if
if (dummy_line(1:4) .eq. 'file') then
do icount = 1, 80
filename(icount:icount) = ' '
enddo
read(locunitnum,'(a80)') filename
iread_rcoll = open_file(filename,'old')
maxprobdivs = 1
end if
if(tprp_num.lt.13) then
if(iread_rcoll .eq. 0) then
write (ierr, 19929)
if (iout .ne. 0) write (iptty, 19929)
if (iptty .ne. 0) write (iptty, 19929)
stop
end if
19929 format('STOP - CDF table data must be ',
& 'input using an external data file -- ',
& 'check sptr macro.')
read(iread_rcoll,'(a80)', end=19928)
& dummy_line
read(iread_rcoll,*,end=19928)idum
do while (idum.ne.realization_num)
nulldum=.false.
do while(.not.nulldum)
read(iread_rcoll,'(a80)',end=19928)
& dummy_line
nulldum=null1(dummy_line)
enddo
read(iread_rcoll,*,end=19928)idum
enddo
19928 if (idum .ne. realization_num) then
write(ierr,19930) tprp_num,
& realization_num, trim(filename)
if (iout .ne. 0) write(iout, 19930)
& tprp_num, realization_num,
& trim(filename)
if (iptty .ne. 0) write(iptty, 19930)
& tprp_num, realization_num,
& trim(filename)
stop
end if
19930 format ('STOP - Error in insptr for ',
& 'tprpflag = ', i2, ' realization_num ',
& i4, ' not found in ', a)
jjj=0
read(iread_rcoll,'(a80)', end=19931)
& dummy_line
nulldum=null1(dummy_line)
do while(.not.nulldum)
jjj=jjj+1
read(iread_rcoll,'(a80)',end=19931)
& dummy_line
nulldum=null1(dummy_line)
enddo
19931 if (jjj .lt. 2) then
write(ierr,19932) tprp_num,
& realization_num, trim(filename)
if (iout .ne. 0) write(iout, 19932)
& tprp_num, realization_num,
& trim(filename)
if (iptty .ne. 0) write(iptty, 19932)
& tprp_num, realization_num,
& trim(filename)
stop
end if
19932 format ('STOP - Error in insptr for ',
& 'tprpflag = ', i2, ' realization_num ',
& i4, ' data not found in ', a)
maxprobdivs = jjj
rewind(iread_rcoll)
c exit
endif
exit
end if
end do
c Read past the itrc group (model assignment)
do
read(locunitnum,'(a80)') dummy_line
if(null1(dummy_line)) exit
end do
end if
case('sa', 'SA')
done = .false.
case('pe', 'PE')
done = .false.
case('de', 'DE')
done = .false.
case('pr', 'PR')
done = .false.
case('te', 'TE')
done = .false.
case('zo', 'ZO')
done = .false.
case('id', 'ID')
done = .false.
case('wt', 'WT')
done = .false.
case('vo','VO')
done = .false.
case('xy','XY')
done = .false.
case ('ip', 'IP')
done = .false.
case ('tr', 'TR')
done = .false.
case ('in', 'IN')
done = .false.
case ('ex', 'EX')
done = .false.
case ('ou', 'OU')
done = .false.
case('zb','ZB')
done = .false.
read(locunitnum,*) ireaddum
if(ireaddum.gt.0) then
read(locunitnum,'(a80)') dummy_line
nzbtc = ireaddum
else
nzbtc = 0
end if
case('pl','PL')
c march 14, 02 s kelkar, from /scratch/ymp/kelkar/fehmv2.12.......
c Read past plum input
done = .false.
read(locunitnum,*) ireaddum
if(ireaddum.gt.0) then
read(locunitnum,'(a80)') dummy_line
nplum = ireaddum
else
nplum = 0
end if
case('cl','CL')
c Jan 5, 06 S kelkar read past keyword cliff
done = .false.
if (dummy_line(1:6).eq.'cliffg') then
read(locunitnum,'(a80)') dummy_line
read(locunitnum,'(a80)') dummy_line
read(locunitnum,'(a80)') dummy_line
else if (dummy_line(1:6).eq.'cliffr') then
read(locunitnum,'(a80)') dummy_line
end if
case('co','CO')
c Jan 27, 06 S kelkar read past keyword corner
done = .false.
case('ca','CA')
c Jan 13, 05 S kelkar read past capture node list
done = .false.
do
read(locunitnum,'(a80)') wdd1
if (wdd1(1:4) .eq. 'file') then
read (locunitnum,'(a80)') wdd1
exit
else if (null1(wdd1)) then
exit
end if
end do
case('sp','SP')
c Jan 27, 05 S kelkar read past "spring" node list
done = .false.
do
read(locunitnum,'(a80)') wdd1
if (wdd1(1:4) .eq. 'file') then
read (locunitnum,'(a80)') wdd1
exit
else if (null1(wdd1)) then
exit
end if
end do
case default
! The first non-character line read should contain courant factor, etc.
if (itensor .eq. -999) then
done = .false.
call parse_string(dummy_line, imsg, msg, xmsg, cmsg,
& nwds)
if(nwds.ge.3) then
itensor = imsg(3)
else
itensor = 0
end if
else if (itensor .eq. 0) then
! We are done with keywords and haven't ready any transport properties
! This is really old style input, so we needed to read past the
! transport property line
nsize_tprp = max(1,nsize_tprp)
else
backspace (locunitnum)
end if
end select read_flags
end do
c...................................................................
read (locunitnum, '(a80)') dumstring
call parse_string(dumstring, imsg, msg, xmsg, cmsg, nwds)
if (msg(2).eq.1) then
ist=imsg(2)
else
ist=xmsg(2)
end if
if (nwds .gt. 2) then
do i = 3, nwds
if (msg(i) .eq. 3) then
if (cmsg(i)(1:4) .eq. 'save') sptr_flag = .true.
end if
end do
end if
read (locunitnum, *) nx,ny,nz
read (locunitnum,'(a80)') dummy_line
read (locunitnum,'(a80)') dummy_line
read (locunitnum,'(a80)') dummy_line
num_part = 0
if(ist.eq.2) then
if(.not. null1(dummy_line)) then
! There shouldn't be any more data for sptr macro
write (ierr, 110) ist
if (iptty .ne. 0) write(iptty, 110) ist
stop
else
if(icnl.ne.0) nz = 1
num_part=nx*ny*nz
end if
else if (ist .eq. 0 .or. abs(ist) .eq. 1 .or. ist .eq. 3) then
if(null1(dummy_line)) then
! There should be more data for sptr macro
write (ierr, 120) ist
if (iptty .ne. 0) write(iptty, 120) ist
stop
else
if (dummy_line(1:4) .eq. 'file') then
read(locunitnum,'(a100)') filename
inptread = open_file(filename,'old')
opened = .true.
read (inptread,'(a80)') dummy_line
if (dummy_line(1:4) .eq. 'FEHM') then
! This file was generated by FEHM and the title, last seed and
! ending time were written to the file
read(inptread,'(a80)') dummy_line
read(inptread,'(a80)') dummy_line
else
backspace inptread
end if
else
backspace locunitnum
inptread = locunitnum
opened = .false.
end if
do
read (inptread,'(a80)') dummy_line
if (dummy_line(1:4) .eq. 'zbtc' .or.
& null1(dummy_line)) exit
num_part = num_part + 1
end do
if (opened) then
close (inptread)
opened = .false.
end if
end if
else
write(ierr,130) ist
if (iptty .ne. 0) write(iptty, 130) ist
stop
end if
110 format ('Error at end of sptr macro, input not terminated',
& ' with blank line, ist = ', i2)
120 format ('Error at end of sptr macro, no particle position',
& ' input for ist = ', i2)
130 format ('Error in sptr macro, illegal value for ist:', i2)
call done_macro(locunitnum)
c***********sptr***groemer 5/1/98***************************************
else if (macro .eq. 'ppor') then
c need porosity model
call start_macro(inpt, locunitnum, macro)
read (locunitnum,*) iporos
call done_macro(locunitnum)
else if (macro .eq. 'vcon') then
! need number of variable conductivity models
call start_macro(inpt, locunitnum, macro)
do
read(locunitnum,'(a80)') dumstring
if (null1(dumstring)) exit
numvcon = numvcon + 1
enddo
call done_macro(locunitnum)
else if (macro .eq. 'vbou') then
ivboun = 1
else if (macro .eq. 'zeol') then
izeolites = 1
else if (macro .eq. 'strs') then
call start_macro(inpt, locunitnum, macro)
read(locunitnum,*) istrs, ihms
i = 0
do
read(locunitnum,'(a80)') dumstring
if(dumstring(1:9).eq.'stressend' .or. dumstring(1:8) .eq.
& 'end strs' .or. dumstring(1:7) .eq. 'endstrs') exit
if(dumstring(1:9).eq.'permmodel') then
do
read(locunitnum,'(a80)') dumstring
if (null1(dumstring)) exit
read(dumstring,*) idumm
backspace locunitnum
i = i + 1
if(idumm.eq.1) then
read(locunitnum,*) idumm
c else if (idumm .eq. 2 .or. idumm .eq. 4) then
else if (idumm .eq. 2) then
read(locunitnum,*) idumm, (adumm, ja = 1, 9)
else if (idumm .eq. 3) then
read(locunitnum,*) idumm, (adumm, ja = 1, 9)
else if (idumm .eq. 4) then
read(locunitnum,*) idumm, (adumm, ja = 1, 14)
else if(idumm.eq.5) then
read(locunitnum,*) idumm,(adumm,ja=1,6)
else if(idumm.eq.6) then
read(locunitnum,*) idumm,(adumm,ja=1,11)
else if(idumm.eq.7) then
read(locunitnum,*) idumm,(adumm,ja=1,6)
else if(idumm.eq.8) then
read(locunitnum,*) idumm,(adumm,ja=1,9)
else if(idumm.eq.11) then
read(locunitnum,*) idumm,(adumm,ja=1,3)
else if(idumm.eq.21) then
read(locunitnum,*) idumm,(adumm,ja=1,13)
else if(idumm.eq.22) then
read(locunitnum,*) idumm,(adumm,ja=1,10)
else if(idumm.eq.222) then
read(locunitnum,*) idumm,(adumm,ja=1,9)
read(locunitnum,*) (adumm,ja=1,10)
else if(idumm.eq.31) then
read(locunitnum,*) idumm,(adumm,ja=1,2)
else if(idumm.eq.91) then
c open(unit=97,file='debug_permmodel_91.dat')
read(locunitnum,*)
read(locunitnum,*)
else
read(locunitnum,*) idumm
endif
enddo
endif
enddo
if(i.ge.1) then
allocate(ispmt(i))
allocate(spm1f(i),spm2f(i),spm3f(i),spm4f(i),spm5f(i))
allocate(spm6f(i),spm7f(i),spm8f(i),spm9f(i),spm10f(i))
allocate(spm11f(i),spm12f(i),spm13f(i),spm14f(i))
allocate(spm1f222(i),spm2f222(i),spm3f222(i),spm4f222(i))
allocate(spm5f222(i),spm6f222(i),spm7f222(i),spm8f222(i))
allocate(spm9f222(i),spm10f222(i))
ispmt = 0
spm1f = 0.
spm2f = 0.
spm3f = 0.
spm4f = 0.
spm5f = 0.
spm6f = 0.
spm7f = 0.
spm8f = 0.
spm9f = 0.
spm10f = 0.
spm11f = 0.
spm12f = 0.
spm13f = 0.
spm14f = 0.
spm1f222 = 0.
spm2f222 = 0.
spm3f222 = 0.
spm4f222 = 0.
spm5f222 = 0.
spm6f222 = 0.
spm7f222 = 0.
spm8f222 = 0.
spm9f222 = 0.
spm10f222 = 0.
endif
call done_macro(locunitnum)
end if
go to 10
40 rewind locunitnum
if(ngroups.eq.0)then
ngroups=ncpnt
if(irun.eq.1) then
allocate(fzero(max(ngroups,1)))
allocate(group(max(ngroups,1),ncpnt))
allocate(pos(max(ngroups,1),ncpnt))
allocate(n_couple_species(max(ngroups,1)))
end if
mdof_sol = 1
n_couple_species = 0
do igrp = 1, ngroups
pos(igrp,1)= igrp
n_couple_species(igrp)=1
enddo
endif
if(idpdp.ne.0)mdof_sol=mdof_sol*2
if(allocated(group_mat)) deallocate(group_mat)
if ((iccen.eq.1).and.ptrak) then
write(ierr,*) 'ERROR: Can not have both particle tracking'
write(ierr,*) '(ptrk) and tracer input (trac).'
write(ierr,*) 'Code Aborted in scanin'
if (iatty.ne.0) then
write(iatty,*) 'ERROR: Can not have both particle tracking'
write(iatty,*) '(ptrk) and tracer input (trac).'
write(iatty,*) 'Code Aborted in scanin'
endif
stop
endif
c gaz added 112014
if (iccen.eq.1 .and. rxn_flag .eq. 0) then
c Check that no solid species are used without reaction
if (nimm .ne. 0) then
write(ierr,*) 'ERROR: Can not using solid species in trac',
& ' without rxn'
write(ierr,*) 'Code Aborted in scanin'
if (iatty.ne.0) then
write(iatty,*) 'ERROR: Can not using solid species in ',
& 'trac without rxn'
write(iatty,*) 'Code Aborted in scanin'
end if
stop
end if
end if
return
50 write (ierr, 55) 'STOP'
if (iptty .ne. 0)
& write (iptty, 55) 'STOP'
stop
55 format ("Missing '", a, "' statement in input. STOPPING")
56 format ("Check macro: ", a)
end subroutine scanin
|
C
C *** LAST REVISED ON 20-AUG-1987 16:47:03.07
C *** SOURCE FILE: [DL.GRAPHICS.LONGLIB]REFTERM.FOR
C
PROGRAM REFTERM
C
C THIS PROGRAM PLOTS A RAMTEK EMULATION FILE INTO THE LONGLIB
C PLOT PACKAGE
C WRITTEN: NOV 1986 DGL
C
C THIS PROGRAM USING THE VAX FORTRAN "BYTE" VARIABLE TYPE
C
BYTE B(1280)
INTEGER PEN
CHARACTER*70 FNAME
C
C PROMPT USER FOR FILE INPUT
C
35 WRITE(*,15)
15 FORMAT('$Enter Ramtek Emulation File Name: ')
READ(*,20) FNAME
20 FORMAT(A70)
WRITE(*,25)
25 FORMAT(' Note: Select only one output graphics device')
C
C OPEN GRAPHICS PACKAGE
C
CALL FRAME(0,0,0.,0.,1.)
C
C OUTPUT RAMTEK EMULATION ARRAY TO SELECTED DEVICE
C OPEN REF FILE ASSUMING LARGE RAMTEK
C
IXWIDE=1280
IYWIDE=1024
OPEN(UNIT=2,FILE=FNAME,ACCESS='DIRECT',STATUS='UNKNOWN',
$ RECL=IXWIDE,FORM='FORMATTED',ERR=199)
C
C DETERMINE WHICH GRAPHICS DEVICE IS OPEN
C
65 IXW=IXWIDE
IF (IXWIDE.EQ.512) IXW=512
C
C CHECK TERMINAL, RAMTEK, AND METAFILE
C
CALL WHEREVT(XS,YS,XS,YS,RX,RY,ILU,IY,IX,IX,IY)
RX=RX*4
RY=RY*4
IF (ILU.LE.0) THEN
CALL WHERERM(XS,YS,XS,YS,RX,RY,IY,IX,IX,ILU)
IF (ILU.LE.0) THEN
CALL WHEREPR(XS,YS,XS,YS,XS,YS,RX,RY,ILU,IY,IX,IX)
RX=RX*5./3.
RY=RY*5./3.
IDEV=2
ELSE
ICHAN=IRMCHAN(IDDEV)
IDEV=1
ENDIF
ELSE
IDEV=0
ENDIF
C
C SEE IF ANY DEVICE IS IN USE, EXIT IF NOT
C
IF (ILU.LE.0) CALL EXIT
C
C READ EACH LINE OF IMAGE AND PLOT IT OUT
C
LPEN=-3
DO 250 IY1=1,IYWIDE
IY=IYWIDE-IY1
IF (IXW.EQ.512) THEN
READ(2'IY1,260,ERR=97) (B(II),II=1,512)
260 FORMAT(512A1)
ELSE
READ(2'IY1,261,ERR=97) B
261 FORMAT(1280A1)
ENDIF
IF (IDEV.NE.1) THEN
C
C OUTPUT DIRECTLY TO RAMTEK USING IMAGE MODE WRITE
C
CALL RMSTART(ICHAN,IY1,0,IERR)
CALL RMWRITEBYTE(ICHAN,B,IXW,IERR)
ELSE
C
C CONVERT PIXEL ROW INTO SCAN LINES FOR METAFILE AND TERMINAL
C
PEN=-1
DO 305 IX=0,IXWIDE
II=B(IX+1).AND.255
IF (IX.EQ.IXWIDE) II=-2
IF (II.NE.PEN) THEN
IF (PEN.NE.-1.AND.PEN.NE.0) THEN
XS=(IX0+0.5)*RX
XS1=(IX-0.5)*RX
YS=(IY+0.5)*RX
IF (LPEN.NE.PEN)
$ CALL PLOT(FLOAT(PEN),0.,0)
CALL PLOT(XS,YS,3)
CALL PLOT(XS1,YS,2)
ENDIF
LPEN=PEN
PEN=II
IX0=IX
ENDIF
305 CONTINUE
ENDIF
250 CONTINUE
C
350 CALL PLOT(0.,0.,3)
CALL CTERM(2)
CALL PLOTND
C
STOP
C
199 CONTINUE
C
C IF WE GET TO HERE WE GOT AN ERROR OPENING REF FILE
C MAY BE IT WAS A 512 SIZE FILE, TRY AGAIN
C
IXWIDE=512
IYWIDE=512
OPEN(UNIT=2,FILE=FNAME,ACCESS='DIRECT',STATUS='UNKNOWN',
$ RECL=IXWIDE,FORM='FORMATTED',ERR=99)
GOTO 65
C
99 WRITE(*,98)
98 FORMAT(' *** ERROR OPENING RAMTEK EMULATION FILE ***')
GOTO 35
C
97 WRITE(*,96) IY1
96 FORMAT(' *** ERROR READING RAMTEK EMULATION FILE ***',I5)
GOTO 350
END
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import data.finset.fold
import data.multiset.lattice
import order.order_dual
import order.complete_lattice
/-!
# Lattice operations on finsets
-/
variables {α β γ : Type*}
namespace finset
open multiset order_dual
/-! ### sup -/
section sup
variables [semilattice_sup_bot α]
/-- Supremum of a finite set: `sup {a, b, c} f = f a ⊔ f b ⊔ f c` -/
def sup (s : finset β) (f : β → α) : α := s.fold (⊔) ⊥ f
variables {s s₁ s₂ : finset β} {f : β → α}
lemma sup_def : s.sup f = (s.1.map f).sup := rfl
@[simp] lemma sup_empty : (∅ : finset β).sup f = ⊥ :=
fold_empty
@[simp] lemma sup_cons {b : β} (h : b ∉ s) : (cons b s h).sup f = f b ⊔ s.sup f :=
fold_cons h
@[simp] lemma sup_insert [decidable_eq β] {b : β} : (insert b s : finset β).sup f = f b ⊔ s.sup f :=
fold_insert_idem
lemma sup_image [decidable_eq β] (s : finset γ) (f : γ → β) (g : β → α):
(s.image f).sup g = s.sup (g ∘ f) :=
fold_image_idem
@[simp] lemma sup_map (s : finset γ) (f : γ ↪ β) (g : β → α) :
(s.map f).sup g = s.sup (g ∘ f) :=
fold_map
@[simp] lemma sup_singleton {b : β} : ({b} : finset β).sup f = f b :=
sup_singleton
lemma sup_union [decidable_eq β] : (s₁ ∪ s₂).sup f = s₁.sup f ⊔ s₂.sup f :=
finset.induction_on s₁ (by rw [empty_union, sup_empty, bot_sup_eq]) $ λ a s has ih,
by rw [insert_union, sup_insert, sup_insert, ih, sup_assoc]
theorem sup_congr {f g : β → α} (hs : s₁ = s₂) (hfg : ∀a∈s₂, f a = g a) : s₁.sup f = s₂.sup g :=
by subst hs; exact finset.fold_congr hfg
@[simp] lemma sup_le_iff {a : α} : s.sup f ≤ a ↔ (∀b ∈ s, f b ≤ a) :=
begin
apply iff.trans multiset.sup_le,
simp only [multiset.mem_map, and_imp, exists_imp_distrib],
exact ⟨λ k b hb, k _ _ hb rfl, λ k a' b hb h, h ▸ k _ hb⟩,
end
lemma sup_const {s : finset β} (h : s.nonempty) (c : α) : s.sup (λ _, c) = c :=
eq_of_forall_ge_iff $ λ b, sup_le_iff.trans h.forall_const
lemma sup_le {a : α} : (∀b ∈ s, f b ≤ a) → s.sup f ≤ a :=
sup_le_iff.2
lemma le_sup {b : β} (hb : b ∈ s) : f b ≤ s.sup f :=
sup_le_iff.1 (le_refl _) _ hb
lemma sup_mono_fun {g : β → α} (h : ∀b∈s, f b ≤ g b) : s.sup f ≤ s.sup g :=
sup_le (λ b hb, le_trans (h b hb) (le_sup hb))
lemma sup_mono (h : s₁ ⊆ s₂) : s₁.sup f ≤ s₂.sup f :=
sup_le $ assume b hb, le_sup (h hb)
@[simp] lemma sup_lt_iff [is_total α (≤)] {a : α} (ha : ⊥ < a) : s.sup f < a ↔ (∀ b ∈ s, f b < a) :=
⟨(λ hs b hb, lt_of_le_of_lt (le_sup hb) hs), finset.cons_induction_on s (λ _, ha)
(λ c t hc, by simpa only [sup_cons, sup_lt_iff, mem_cons, forall_eq_or_imp] using and.imp_right)⟩
@[simp] lemma le_sup_iff [is_total α (≤)] {a : α} (ha : ⊥ < a) : a ≤ s.sup f ↔ (∃ b ∈ s, a ≤ f b) :=
by { rw [←not_iff_not, not_bex], simp only [@not_le (as_linear_order α), sup_lt_iff ha], }
@[simp] lemma lt_sup_iff [is_total α (≤)] {a : α} : a < s.sup f ↔ (∃ b ∈ s, a < f b) :=
by { rw [←not_iff_not, not_bex], simp only [@not_lt (as_linear_order α), sup_le_iff], }
lemma comp_sup_eq_sup_comp [semilattice_sup_bot γ] {s : finset β}
{f : β → α} (g : α → γ) (g_sup : ∀ x y, g (x ⊔ y) = g x ⊔ g y) (bot : g ⊥ = ⊥) :
g (s.sup f) = s.sup (g ∘ f) :=
finset.cons_induction_on s bot (λ c t hc ih, by rw [sup_cons, sup_cons, g_sup, ih])
lemma comp_sup_eq_sup_comp_of_is_total [is_total α (≤)] {γ : Type} [semilattice_sup_bot γ]
(g : α → γ) (mono_g : monotone g) (bot : g ⊥ = ⊥) : g (s.sup f) = s.sup (g ∘ f) :=
comp_sup_eq_sup_comp g mono_g.map_sup bot
/-- Computating `sup` in a subtype (closed under `sup`) is the same as computing it in `α`. -/
lemma sup_coe {P : α → Prop}
{Pbot : P ⊥} {Psup : ∀{{x y}}, P x → P y → P (x ⊔ y)}
(t : finset β) (f : β → {x : α // P x}) :
(@sup _ _ (subtype.semilattice_sup_bot Pbot Psup) t f : α) = t.sup (λ x, f x) :=
by { rw [comp_sup_eq_sup_comp coe]; intros; refl }
@[simp] lemma sup_to_finset {α β} [decidable_eq β]
(s : finset α) (f : α → multiset β) :
(s.sup f).to_finset = s.sup (λ x, (f x).to_finset) :=
comp_sup_eq_sup_comp multiset.to_finset to_finset_union rfl
theorem subset_range_sup_succ (s : finset ℕ) : s ⊆ range (s.sup id).succ :=
λ n hn, mem_range.2 $ nat.lt_succ_of_le $ le_sup hn
theorem exists_nat_subset_range (s : finset ℕ) : ∃n : ℕ, s ⊆ range n :=
⟨_, s.subset_range_sup_succ⟩
lemma sup_induction {p : α → Prop} (hb : p ⊥) (hp : ∀ (a₁ a₂ : α), p a₁ → p a₂ → p (a₁ ⊔ a₂))
(hs : ∀ b ∈ s, p (f b)) : p (s.sup f) :=
begin
induction s using finset.cons_induction with c s hc ih,
{ exact hb, },
{ rw sup_cons,
apply hp,
{ exact hs c (mem_cons.2 (or.inl rfl)), },
{ exact ih (λ b h, hs b (mem_cons.2 (or.inr h))), }, },
end
lemma sup_le_of_le_directed {α : Type*} [semilattice_sup_bot α] (s : set α)
(hs : s.nonempty) (hdir : directed_on (≤) s) (t : finset α):
(∀ x ∈ t, ∃ y ∈ s, x ≤ y) → ∃ x, x ∈ s ∧ t.sup id ≤ x :=
begin
classical,
apply finset.induction_on t,
{ simpa only [forall_prop_of_true, and_true, forall_prop_of_false, bot_le, not_false_iff,
sup_empty, forall_true_iff, not_mem_empty], },
{ intros a r har ih h,
have incs : ↑r ⊆ ↑(insert a r), by { rw finset.coe_subset, apply finset.subset_insert, },
-- x ∈ s is above the sup of r
obtain ⟨x, ⟨hxs, hsx_sup⟩⟩ := ih (λ x hx, h x $ incs hx),
-- y ∈ s is above a
obtain ⟨y, hys, hay⟩ := h a (finset.mem_insert_self a r),
-- z ∈ s is above x and y
obtain ⟨z, hzs, ⟨hxz, hyz⟩⟩ := hdir x hxs y hys,
use [z, hzs],
rw [sup_insert, id.def, _root_.sup_le_iff],
exact ⟨le_trans hay hyz, le_trans hsx_sup hxz⟩, },
end
-- If we acquire sublattices
-- the hypotheses should be reformulated as `s : subsemilattice_sup_bot`
lemma sup_mem
(s : set α) (w₁ : ⊥ ∈ s) (w₂ : ∀ x y ∈ s, x ⊔ y ∈ s)
{ι : Type*} (t : finset ι) (p : ι → α) (h : ∀ i ∈ t, p i ∈ s) :
t.sup p ∈ s :=
@sup_induction _ _ _ _ _ (∈ s) w₁ w₂ h
end sup
lemma sup_eq_supr [complete_lattice β] (s : finset α) (f : α → β) : s.sup f = (⨆a∈s, f a) :=
le_antisymm
(finset.sup_le $ assume a ha, le_supr_of_le a $ le_supr _ ha)
(supr_le $ assume a, supr_le $ assume ha, le_sup ha)
lemma sup_eq_Sup [complete_lattice α] (s : finset α) : s.sup id = Sup s :=
by simp [Sup_eq_supr, sup_eq_supr]
/-! ### inf -/
section inf
variables [semilattice_inf_top α]
/-- Infimum of a finite set: `inf {a, b, c} f = f a ⊓ f b ⊓ f c` -/
def inf (s : finset β) (f : β → α) : α := s.fold (⊓) ⊤ f
variables {s s₁ s₂ : finset β} {f : β → α}
lemma inf_def : s.inf f = (s.1.map f).inf := rfl
@[simp] lemma inf_empty : (∅ : finset β).inf f = ⊤ :=
fold_empty
@[simp] lemma inf_cons {b : β} (h : b ∉ s) : (cons b s h).inf f = f b ⊓ s.inf f :=
@sup_cons (order_dual α) _ _ _ _ _ h
@[simp] lemma inf_insert [decidable_eq β] {b : β} : (insert b s : finset β).inf f = f b ⊓ s.inf f :=
fold_insert_idem
lemma inf_image [decidable_eq β] (s : finset γ) (f : γ → β) (g : β → α):
(s.image f).inf g = s.inf (g ∘ f) :=
fold_image_idem
@[simp] lemma inf_map (s : finset γ) (f : γ ↪ β) (g : β → α) :
(s.map f).inf g = s.inf (g ∘ f) :=
fold_map
@[simp] lemma inf_singleton {b : β} : ({b} : finset β).inf f = f b :=
inf_singleton
lemma inf_union [decidable_eq β] : (s₁ ∪ s₂).inf f = s₁.inf f ⊓ s₂.inf f :=
@sup_union (order_dual α) _ _ _ _ _ _
theorem inf_congr {f g : β → α} (hs : s₁ = s₂) (hfg : ∀a∈s₂, f a = g a) : s₁.inf f = s₂.inf g :=
by subst hs; exact finset.fold_congr hfg
lemma le_inf_iff {a : α} : a ≤ s.inf f ↔ ∀ b ∈ s, a ≤ f b :=
@sup_le_iff (order_dual α) _ _ _ _ _
lemma inf_le {b : β} (hb : b ∈ s) : s.inf f ≤ f b :=
le_inf_iff.1 (le_refl _) _ hb
lemma le_inf {a : α} : (∀b ∈ s, a ≤ f b) → a ≤ s.inf f :=
le_inf_iff.2
lemma inf_mono_fun {g : β → α} (h : ∀b∈s, f b ≤ g b) : s.inf f ≤ s.inf g :=
le_inf (λ b hb, le_trans (inf_le hb) (h b hb))
lemma inf_mono (h : s₁ ⊆ s₂) : s₂.inf f ≤ s₁.inf f :=
le_inf $ assume b hb, inf_le (h hb)
@[simp] lemma lt_inf_iff [is_total α (≤)] {a : α} (ha : a < ⊤) : a < s.inf f ↔ (∀ b ∈ s, a < f b) :=
@sup_lt_iff (order_dual α) _ _ _ _ _ _ ha
@[simp] lemma inf_le_iff [is_total α (≤)] {a : α} (ha : a < ⊤) : s.inf f ≤ a ↔ (∃ b ∈ s, f b ≤ a) :=
@le_sup_iff (order_dual α) _ _ _ _ _ _ ha
@[simp] lemma inf_lt_iff [is_total α (≤)] {a : α} : s.inf f < a ↔ (∃ b ∈ s, f b < a) :=
@lt_sup_iff (order_dual α) _ _ _ _ _ _
lemma comp_inf_eq_inf_comp [semilattice_inf_top γ] {s : finset β}
{f : β → α} (g : α → γ) (g_inf : ∀ x y, g (x ⊓ y) = g x ⊓ g y) (top : g ⊤ = ⊤) :
g (s.inf f) = s.inf (g ∘ f) :=
@comp_sup_eq_sup_comp (order_dual α) _ (order_dual γ) _ _ _ _ _ g_inf top
lemma comp_inf_eq_inf_comp_of_is_total [h : is_total α (≤)] {γ : Type} [semilattice_inf_top γ]
(g : α → γ) (mono_g : monotone g) (top : g ⊤ = ⊤) : g (s.inf f) = s.inf (g ∘ f) :=
comp_inf_eq_inf_comp g mono_g.map_inf top
/-- Computating `inf` in a subtype (closed under `inf`) is the same as computing it in `α`. -/
lemma inf_coe {P : α → Prop}
{Ptop : P ⊤} {Pinf : ∀{{x y}}, P x → P y → P (x ⊓ y)}
(t : finset β) (f : β → {x : α // P x}) :
(@inf _ _ (subtype.semilattice_inf_top Ptop Pinf) t f : α) = t.inf (λ x, f x) :=
@sup_coe (order_dual α) _ _ _ Ptop Pinf t f
lemma inf_induction {p : α → Prop} (ht : p ⊤) (hp : ∀ (a₁ a₂ : α), p a₁ → p a₂ → p (a₁ ⊓ a₂))
(hs : ∀ b ∈ s, p (f b)) : p (s.inf f) :=
@sup_induction (order_dual α) _ _ _ _ _ ht hp hs
lemma inf_mem
(s : set α) (w₁ : ⊤ ∈ s) (w₂ : ∀ x y ∈ s, x ⊓ y ∈ s)
{ι : Type*} (t : finset ι) (p : ι → α) (h : ∀ i ∈ t, p i ∈ s) :
t.inf p ∈ s :=
@inf_induction _ _ _ _ _ (∈ s) w₁ w₂ h
end inf
lemma inf_eq_infi [complete_lattice β] (s : finset α) (f : α → β) : s.inf f = (⨅a∈s, f a) :=
@sup_eq_supr _ (order_dual β) _ _ _
lemma inf_eq_Inf [complete_lattice α] (s : finset α) : s.inf id = Inf s :=
by simp [Inf_eq_infi, inf_eq_infi]
section sup'
variables [semilattice_sup α]
lemma sup_of_mem {s : finset β} (f : β → α) {b : β} (h : b ∈ s) :
∃ (a : α), s.sup (coe ∘ f : β → with_bot α) = ↑a :=
Exists.imp (λ a, Exists.fst) (@le_sup (with_bot α) _ _ _ _ _ h (f b) rfl)
/-- Given nonempty finset `s` then `s.sup' H f` is the supremum of its image under `f` in (possibly
unbounded) join-semilattice `α`, where `H` is a proof of nonemptiness. If `α` has a bottom element
you may instead use `finset.sup` which does not require `s` nonempty. -/
def sup' (s : finset β) (H : s.nonempty) (f : β → α) : α :=
option.get $ let ⟨b, hb⟩ := H in option.is_some_iff_exists.2 (sup_of_mem f hb)
variables {s : finset β} (H : s.nonempty) (f : β → α)
@[simp] lemma coe_sup' : ((s.sup' H f : α) : with_bot α) = s.sup (coe ∘ f) :=
by rw [sup', ←with_bot.some_eq_coe, option.some_get]
@[simp] lemma sup'_cons {b : β} {hb : b ∉ s} {h : (cons b s hb).nonempty} :
(cons b s hb).sup' h f = f b ⊔ s.sup' H f :=
by { rw ←with_bot.coe_eq_coe, simp only [coe_sup', sup_cons, with_bot.coe_sup], }
@[simp] lemma sup'_insert [decidable_eq β] {b : β} {h : (insert b s).nonempty} :
(insert b s).sup' h f = f b ⊔ s.sup' H f :=
by { rw ←with_bot.coe_eq_coe, simp only [coe_sup', sup_insert, with_bot.coe_sup], }
@[simp] lemma sup'_singleton {b : β} {h : ({b} : finset β).nonempty} :
({b} : finset β).sup' h f = f b := rfl
lemma sup'_le {a : α} (hs : ∀ b ∈ s, f b ≤ a) : s.sup' H f ≤ a :=
by { rw [←with_bot.coe_le_coe, coe_sup'], exact sup_le (λ b h, with_bot.coe_le_coe.2 $ hs b h), }
lemma le_sup' {b : β} (h : b ∈ s) : f b ≤ s.sup' ⟨b, h⟩ f :=
by { rw [←with_bot.coe_le_coe, coe_sup'], exact le_sup h, }
@[simp] lemma sup'_const (a : α) : s.sup' H (λ b, a) = a :=
begin
apply le_antisymm,
{ apply sup'_le, intros, apply le_refl, },
{ apply le_sup' (λ b, a) H.some_spec, }
end
@[simp] lemma sup'_le_iff {a : α} : s.sup' H f ≤ a ↔ ∀ b ∈ s, f b ≤ a :=
iff.intro (λ h b hb, trans (le_sup' f hb) h) (sup'_le H f)
@[simp] lemma sup'_lt_iff [is_total α (≤)] {a : α} : s.sup' H f < a ↔ (∀ b ∈ s, f b < a) :=
begin
rw [←with_bot.coe_lt_coe, coe_sup', sup_lt_iff (with_bot.bot_lt_coe a)],
exact ball_congr (λ b hb, with_bot.coe_lt_coe),
end
@[simp] lemma le_sup'_iff [is_total α (≤)] {a : α} : a ≤ s.sup' H f ↔ (∃ b ∈ s, a ≤ f b) :=
begin
rw [←with_bot.coe_le_coe, coe_sup', le_sup_iff (with_bot.bot_lt_coe a)],
exact bex_congr (λ b hb, with_bot.coe_le_coe),
end
@[simp] lemma lt_sup'_iff [is_total α (≤)] {a : α} : a < s.sup' H f ↔ (∃ b ∈ s, a < f b) :=
begin
rw [←with_bot.coe_lt_coe, coe_sup', lt_sup_iff],
exact bex_congr (λ b hb, with_bot.coe_lt_coe),
end
lemma comp_sup'_eq_sup'_comp [semilattice_sup γ] {s : finset β} (H : s.nonempty)
{f : β → α} (g : α → γ) (g_sup : ∀ x y, g (x ⊔ y) = g x ⊔ g y) :
g (s.sup' H f) = s.sup' H (g ∘ f) :=
begin
rw [←with_bot.coe_eq_coe, coe_sup'],
let g' : with_bot α → with_bot γ := with_bot.rec_bot_coe ⊥ (λ x, ↑(g x)),
show g' ↑(s.sup' H f) = s.sup (λ a, g' ↑(f a)),
rw coe_sup',
refine comp_sup_eq_sup_comp g' _ rfl,
intros f₁ f₂,
cases f₁,
{ rw [with_bot.none_eq_bot, bot_sup_eq], exact bot_sup_eq.symm, },
{ cases f₂, refl,
exact congr_arg coe (g_sup f₁ f₂), },
end
lemma sup'_induction {p : α → Prop} (hp : ∀ (a₁ a₂ : α), p a₁ → p a₂ → p (a₁ ⊔ a₂))
(hs : ∀ b ∈ s, p (f b)) : p (s.sup' H f) :=
begin
show @with_bot.rec_bot_coe α (λ _, Prop) true p ↑(s.sup' H f),
rw coe_sup',
refine sup_induction trivial _ hs,
intros a₁ a₂ h₁ h₂,
cases a₁,
{ rw [with_bot.none_eq_bot, bot_sup_eq], exact h₂, },
{ cases a₂, exact h₁, exact hp a₁ a₂ h₁ h₂, },
end
lemma exists_mem_eq_sup' [is_total α (≤)] : ∃ b, b ∈ s ∧ s.sup' H f = f b :=
begin
induction s using finset.cons_induction with c s hc ih,
{ exact false.elim (not_nonempty_empty H), },
{ rcases s.eq_empty_or_nonempty with rfl | hs,
{ exact ⟨c, mem_singleton_self c, rfl⟩, },
{ rcases ih hs with ⟨b, hb, h'⟩,
rw [sup'_cons hs, h'],
cases total_of (≤) (f b) (f c) with h h,
{ exact ⟨c, mem_cons.2 (or.inl rfl), sup_eq_left.2 h⟩, },
{ exact ⟨b, mem_cons.2 (or.inr hb), sup_eq_right.2 h⟩, }, }, },
end
lemma sup'_mem
(s : set α) (w : ∀ x y ∈ s, x ⊔ y ∈ s)
{ι : Type*} (t : finset ι) (H : t.nonempty) (p : ι → α) (h : ∀ i ∈ t, p i ∈ s) :
t.sup' H p ∈ s :=
sup'_induction H p w h
end sup'
section inf'
variables [semilattice_inf α]
lemma inf_of_mem {s : finset β} (f : β → α) {b : β} (h : b ∈ s) :
∃ (a : α), s.inf (coe ∘ f : β → with_top α) = ↑a :=
@sup_of_mem (order_dual α) _ _ _ f _ h
/-- Given nonempty finset `s` then `s.inf' H f` is the infimum of its image under `f` in (possibly
unbounded) meet-semilattice `α`, where `H` is a proof of nonemptiness. If `α` has a top element you
may instead use `finset.inf` which does not require `s` nonempty. -/
def inf' (s : finset β) (H : s.nonempty) (f : β → α) : α :=
@sup' (order_dual α) _ _ s H f
variables {s : finset β} (H : s.nonempty) (f : β → α)
@[simp] lemma coe_inf' : ((s.inf' H f : α) : with_top α) = s.inf (coe ∘ f) :=
@coe_sup' (order_dual α) _ _ _ H f
@[simp] lemma inf'_cons {b : β} {hb : b ∉ s} {h : (cons b s hb).nonempty} :
(cons b s hb).inf' h f = f b ⊓ s.inf' H f :=
@sup'_cons (order_dual α) _ _ _ H f _ _ _
@[simp] lemma inf'_insert [decidable_eq β] {b : β} {h : (insert b s).nonempty} :
(insert b s).inf' h f = f b ⊓ s.inf' H f :=
@sup'_insert (order_dual α) _ _ _ H f _ _ _
@[simp] lemma inf'_singleton {b : β} {h : ({b} : finset β).nonempty} :
({b} : finset β).inf' h f = f b := rfl
lemma le_inf' {a : α} (hs : ∀ b ∈ s, a ≤ f b) : a ≤ s.inf' H f :=
@sup'_le (order_dual α) _ _ _ H f _ hs
lemma inf'_le {b : β} (h : b ∈ s) : s.inf' ⟨b, h⟩ f ≤ f b :=
@le_sup' (order_dual α) _ _ _ f _ h
@[simp] lemma inf'_const (a : α) : s.inf' H (λ b, a) = a :=
@sup'_const (order_dual α) _ _ _ _ _
@[simp] lemma le_inf'_iff {a : α} : a ≤ s.inf' H f ↔ ∀ b ∈ s, a ≤ f b :=
@sup'_le_iff (order_dual α) _ _ _ H f _
@[simp] lemma lt_inf'_iff [is_total α (≤)] {a : α} : a < s.inf' H f ↔ (∀ b ∈ s, a < f b) :=
@sup'_lt_iff (order_dual α) _ _ _ H f _ _
@[simp] lemma inf'_le_iff [is_total α (≤)] {a : α} : s.inf' H f ≤ a ↔ (∃ b ∈ s, f b ≤ a) :=
@le_sup'_iff (order_dual α) _ _ _ H f _ _
@[simp] lemma inf'_lt_iff [is_total α (≤)] {a : α} : s.inf' H f < a ↔ (∃ b ∈ s, f b < a) :=
@lt_sup'_iff (order_dual α) _ _ _ H f _ _
lemma comp_inf'_eq_inf'_comp [semilattice_inf γ] {s : finset β} (H : s.nonempty)
{f : β → α} (g : α → γ) (g_inf : ∀ x y, g (x ⊓ y) = g x ⊓ g y) :
g (s.inf' H f) = s.inf' H (g ∘ f) :=
@comp_sup'_eq_sup'_comp (order_dual α) _ (order_dual γ) _ _ _ H f g g_inf
lemma inf'_induction {p : α → Prop} (hp : ∀ (a₁ a₂ : α), p a₁ → p a₂ → p (a₁ ⊓ a₂))
(hs : ∀ b ∈ s, p (f b)) : p (s.inf' H f) :=
@sup'_induction (order_dual α) _ _ _ H f _ hp hs
lemma exists_mem_eq_inf' [is_total α (≤)] : ∃ b, b ∈ s ∧ s.inf' H f = f b :=
@exists_mem_eq_sup' (order_dual α) _ _ _ H f _
lemma inf'_mem (s : set α) (w : ∀ x y ∈ s, x ⊓ y ∈ s)
{ι : Type*} (t : finset ι) (H : t.nonempty) (p : ι → α) (h : ∀ i ∈ t, p i ∈ s) :
t.inf' H p ∈ s :=
inf'_induction H p w h
end inf'
section sup
variable [semilattice_sup_bot α]
lemma sup'_eq_sup {s : finset β} (H : s.nonempty) (f : β → α) : s.sup' H f = s.sup f :=
le_antisymm (sup'_le H f (λ b, le_sup)) (sup_le (λ b, le_sup' f))
lemma sup_closed_of_sup_closed {s : set α} (t : finset α) (htne : t.nonempty) (h_subset : ↑t ⊆ s)
(h : ∀⦃a b⦄, a ∈ s → b ∈ s → a ⊔ b ∈ s) : t.sup id ∈ s :=
sup'_eq_sup htne id ▸ sup'_induction _ _ h h_subset
lemma exists_mem_eq_sup [is_total α (≤)] (s : finset β) (h : s.nonempty) (f : β → α) :
∃ b, b ∈ s ∧ s.sup f = f b :=
sup'_eq_sup h f ▸ exists_mem_eq_sup' h f
end sup
section inf
variable [semilattice_inf_top α]
lemma inf'_eq_inf {s : finset β} (H : s.nonempty) (f : β → α) : s.inf' H f = s.inf f :=
@sup'_eq_sup (order_dual α) _ _ _ H f
lemma inf_closed_of_inf_closed {s : set α} (t : finset α) (htne : t.nonempty) (h_subset : ↑t ⊆ s)
(h : ∀⦃a b⦄, a ∈ s → b ∈ s → a ⊓ b ∈ s) : t.inf id ∈ s :=
@sup_closed_of_sup_closed (order_dual α) _ _ t htne h_subset h
lemma exists_mem_eq_inf [is_total α (≤)] (s : finset β) (h : s.nonempty) (f : β → α) :
∃ a, a ∈ s ∧ s.inf f = f a :=
@exists_mem_eq_sup (order_dual α) _ _ _ _ h f
end inf
section sup
variables {C : β → Type*} [Π (b : β), semilattice_sup_bot (C b)]
@[simp]
protected lemma sup_apply (s : finset α) (f : α → Π (b : β), C b) (b : β) :
s.sup f b = s.sup (λ a, f a b) :=
comp_sup_eq_sup_comp (λ x : Π b : β, C b, x b) (λ i j, rfl) rfl
end sup
section inf
variables {C : β → Type*} [Π (b : β), semilattice_inf_top (C b)]
@[simp]
protected lemma inf_apply (s : finset α) (f : α → Π (b : β), C b) (b : β) :
s.inf f b = s.inf (λ a, f a b) :=
@finset.sup_apply _ _ (λ b, order_dual (C b)) _ s f b
end inf
section sup'
variables {C : β → Type*} [Π (b : β), semilattice_sup (C b)]
@[simp]
protected lemma sup'_apply {s : finset α} (H : s.nonempty) (f : α → Π (b : β), C b) (b : β) :
s.sup' H f b = s.sup' H (λ a, f a b) :=
comp_sup'_eq_sup'_comp H (λ x : Π b : β, C b, x b) (λ i j, rfl)
end sup'
section inf'
variables {C : β → Type*} [Π (b : β), semilattice_inf (C b)]
@[simp]
protected lemma inf'_apply {s : finset α} (H : s.nonempty) (f : α → Π (b : β), C b) (b : β) :
s.inf' H f b = s.inf' H (λ a, f a b) :=
@finset.sup'_apply _ _ (λ b, order_dual (C b)) _ _ H f b
end inf'
/-! ### max and min of finite sets -/
section max_min
variables [linear_order α]
/-- Let `s` be a finset in a linear order. Then `s.max` is the maximum of `s` if `s` is not empty,
and `none` otherwise. It belongs to `option α`. If you want to get an element of `α`, see
`s.max'`. -/
protected def max : finset α → option α :=
fold (option.lift_or_get max) none some
theorem max_eq_sup_with_bot (s : finset α) :
s.max = @sup (with_bot α) α _ s some := rfl
@[simp] theorem max_empty : (∅ : finset α).max = none := rfl
@[simp] theorem max_insert {a : α} {s : finset α} :
(insert a s).max = option.lift_or_get max (some a) s.max := fold_insert_idem
@[simp] theorem max_singleton {a : α} : finset.max {a} = some a :=
by { rw [← insert_emptyc_eq], exact max_insert }
theorem max_of_mem {s : finset α} {a : α} (h : a ∈ s) : ∃ b, b ∈ s.max :=
(@le_sup (with_bot α) _ _ _ _ _ h _ rfl).imp $ λ b, Exists.fst
theorem max_of_nonempty {s : finset α} (h : s.nonempty) : ∃ a, a ∈ s.max :=
let ⟨a, ha⟩ := h in max_of_mem ha
theorem max_eq_none {s : finset α} : s.max = none ↔ s = ∅ :=
⟨λ h, s.eq_empty_or_nonempty.elim id
(λ H, let ⟨a, ha⟩ := max_of_nonempty H in by rw h at ha; cases ha),
λ h, h.symm ▸ max_empty⟩
theorem mem_of_max {s : finset α} : ∀ {a : α}, a ∈ s.max → a ∈ s :=
finset.induction_on s (λ _ H, by cases H)
(λ b s _ (ih : ∀ {a}, a ∈ s.max → a ∈ s) a (h : a ∈ (insert b s).max),
begin
by_cases p : b = a,
{ induction p, exact mem_insert_self b s },
{ cases option.lift_or_get_choice max_choice (some b) s.max with q q;
rw [max_insert, q] at h,
{ cases h, cases p rfl },
{ exact mem_insert_of_mem (ih h) } }
end)
theorem le_max_of_mem {s : finset α} {a b : α} (h₁ : a ∈ s) (h₂ : b ∈ s.max) : a ≤ b :=
by rcases @le_sup (with_bot α) _ _ _ _ _ h₁ _ rfl with ⟨b', hb, ab⟩;
cases h₂.symm.trans hb; assumption
/-- Let `s` be a finset in a linear order. Then `s.min` is the minimum of `s` if `s` is not empty,
and `none` otherwise. It belongs to `option α`. If you want to get an element of `α`, see
`s.min'`. -/
protected def min : finset α → option α :=
fold (option.lift_or_get min) none some
theorem min_eq_inf_with_top (s : finset α) :
s.min = @inf (with_top α) α _ s some := rfl
@[simp] theorem min_empty : (∅ : finset α).min = none := rfl
@[simp] theorem min_insert {a : α} {s : finset α} :
(insert a s).min = option.lift_or_get min (some a) s.min :=
fold_insert_idem
@[simp] theorem min_singleton {a : α} : finset.min {a} = some a :=
by { rw ← insert_emptyc_eq, exact min_insert }
theorem min_of_mem {s : finset α} {a : α} (h : a ∈ s) : ∃ b, b ∈ s.min :=
(@inf_le (with_top α) _ _ _ _ _ h _ rfl).imp $ λ b, Exists.fst
theorem min_of_nonempty {s : finset α} (h : s.nonempty) : ∃ a, a ∈ s.min :=
let ⟨a, ha⟩ := h in min_of_mem ha
theorem min_eq_none {s : finset α} : s.min = none ↔ s = ∅ :=
⟨λ h, s.eq_empty_or_nonempty.elim id
(λ H, let ⟨a, ha⟩ := min_of_nonempty H in by rw h at ha; cases ha),
λ h, h.symm ▸ min_empty⟩
theorem mem_of_min {s : finset α} : ∀ {a : α}, a ∈ s.min → a ∈ s :=
@mem_of_max (order_dual α) _ s
theorem min_le_of_mem {s : finset α} {a b : α} (h₁ : b ∈ s) (h₂ : a ∈ s.min) : a ≤ b :=
by rcases @inf_le (with_top α) _ _ _ _ _ h₁ _ rfl with ⟨b', hb, ab⟩;
cases h₂.symm.trans hb; assumption
/-- Given a nonempty finset `s` in a linear order `α `, then `s.min' h` is its minimum, as an
element of `α`, where `h` is a proof of nonemptiness. Without this assumption, use instead `s.min`,
taking values in `option α`. -/
def min' (s : finset α) (H : s.nonempty) : α :=
@option.get _ s.min $
let ⟨k, hk⟩ := H in
let ⟨b, hb⟩ := min_of_mem hk in by simp at hb; simp [hb]
/-- Given a nonempty finset `s` in a linear order `α `, then `s.max' h` is its maximum, as an
element of `α`, where `h` is a proof of nonemptiness. Without this assumption, use instead `s.max`,
taking values in `option α`. -/
def max' (s : finset α) (H : s.nonempty) : α :=
@option.get _ s.max $
let ⟨k, hk⟩ := H in
let ⟨b, hb⟩ := max_of_mem hk in by simp at hb; simp [hb]
variables (s : finset α) (H : s.nonempty)
theorem min'_mem : s.min' H ∈ s := mem_of_min $ by simp [min']
theorem min'_le (x) (H2 : x ∈ s) : s.min' ⟨x, H2⟩ ≤ x := min_le_of_mem H2 $ option.get_mem _
theorem le_min' (x) (H2 : ∀ y ∈ s, x ≤ y) : x ≤ s.min' H := H2 _ $ min'_mem _ _
theorem is_least_min' : is_least ↑s (s.min' H) := ⟨min'_mem _ _, min'_le _⟩
@[simp] lemma le_min'_iff {x} : x ≤ s.min' H ↔ ∀ y ∈ s, x ≤ y :=
le_is_glb_iff (is_least_min' s H).is_glb
/-- `{a}.min' _` is `a`. -/
@[simp] lemma min'_singleton (a : α) :
({a} : finset α).min' (singleton_nonempty _) = a :=
by simp [min']
theorem max'_mem : s.max' H ∈ s := mem_of_max $ by simp [max']
theorem le_max' (x) (H2 : x ∈ s) : x ≤ s.max' ⟨x, H2⟩ := le_max_of_mem H2 $ option.get_mem _
theorem max'_le (x) (H2 : ∀ y ∈ s, y ≤ x) : s.max' H ≤ x := H2 _ $ max'_mem _ _
theorem is_greatest_max' : is_greatest ↑s (s.max' H) := ⟨max'_mem _ _, le_max' _⟩
@[simp] lemma max'_le_iff {x} : s.max' H ≤ x ↔ ∀ y ∈ s, y ≤ x :=
is_lub_le_iff (is_greatest_max' s H).is_lub
/-- `{a}.max' _` is `a`. -/
@[simp] lemma max'_singleton (a : α) :
({a} : finset α).max' (singleton_nonempty _) = a :=
by simp [max']
theorem min'_lt_max' {i j} (H1 : i ∈ s) (H2 : j ∈ s) (H3 : i ≠ j) :
s.min' ⟨i, H1⟩ < s.max' ⟨i, H1⟩ :=
is_glb_lt_is_lub_of_ne (s.is_least_min' _).is_glb (s.is_greatest_max' _).is_lub H1 H2 H3
/--
If there's more than 1 element, the min' is less than the max'. An alternate version of
`min'_lt_max'` which is sometimes more convenient.
-/
lemma min'_lt_max'_of_card (h₂ : 1 < card s) :
s.min' (finset.card_pos.mp $ lt_trans zero_lt_one h₂) <
s.max' (finset.card_pos.mp $ lt_trans zero_lt_one h₂) :=
begin
rcases one_lt_card.1 h₂ with ⟨a, ha, b, hb, hab⟩,
exact s.min'_lt_max' ha hb hab
end
lemma max'_eq_of_dual_min' {s : finset α} (hs : s.nonempty) :
max' s hs = of_dual (min' (image to_dual s) (nonempty.image hs to_dual)) :=
begin
rw [of_dual, to_dual, equiv.coe_fn_mk, equiv.coe_fn_symm_mk, id.def],
simp_rw (@image_id (order_dual α) (s : finset (order_dual α))),
refl,
end
lemma min'_eq_of_dual_max' {s : finset α} (hs : s.nonempty) :
min' s hs = of_dual (max' (image to_dual s) (nonempty.image hs to_dual)) :=
begin
rw [of_dual, to_dual, equiv.coe_fn_mk, equiv.coe_fn_symm_mk, id.def],
simp_rw (@image_id (order_dual α) (s : finset (order_dual α))),
refl,
end
@[simp] lemma of_dual_max_eq_min_of_dual {a b : α} :
of_dual (max a b) = min (of_dual a) (of_dual b) := rfl
@[simp] lemma of_dual_min_eq_max_of_dual {a b : α} :
of_dual (min a b) = max (of_dual a) (of_dual b) := rfl
lemma max'_subset {s t : finset α} (H : s.nonempty) (hst : s ⊆ t) :
s.max' H ≤ t.max' (H.mono hst) :=
le_max' _ _ (hst (s.max'_mem H))
lemma min'_subset {s t : finset α} (H : s.nonempty) (hst : s ⊆ t) :
t.min' (H.mono hst) ≤ s.min' H :=
min'_le _ _ (hst (s.min'_mem H))
lemma max'_insert (a : α) (s : finset α) (H : s.nonempty) :
(insert a s).max' (s.insert_nonempty a) = max (s.max' H) a :=
(is_greatest_max' _ _).unique $
by { rw [coe_insert, max_comm], exact (is_greatest_max' _ _).insert _ }
lemma min'_insert (a : α) (s : finset α) (H : s.nonempty) :
(insert a s).min' (s.insert_nonempty a) = min (s.min' H) a :=
(is_least_min' _ _).unique $
by { rw [coe_insert, min_comm], exact (is_least_min' _ _).insert _ }
/-- Induction principle for `finset`s in a linearly ordered type: a predicate is true on all
`s : finset α` provided that:
* it is true on the empty `finset`,
* for every `s : finset α` and an element `a` strictly greater than all elements of `s`, `p s`
implies `p (insert a s)`. -/
@[elab_as_eliminator]
lemma induction_on_max [decidable_eq α] {p : finset α → Prop} (s : finset α) (h0 : p ∅)
(step : ∀ a s, (∀ x ∈ s, x < a) → p s → p (insert a s)) : p s :=
begin
induction hn : s.card with n ihn generalizing s,
{ rwa [card_eq_zero.1 hn] },
{ have A : s.nonempty, from card_pos.1 (hn.symm ▸ n.succ_pos),
have B : s.max' A ∈ s, from max'_mem s A,
rw [← insert_erase B],
refine step _ _ (λ x hx, _) (ihn _ _),
{ rw [mem_erase] at hx, exact (le_max' s x hx.2).lt_of_ne hx.1 },
{ rw [card_erase_of_mem B, hn, nat.pred_succ] } }
end
/-- Induction principle for `finset`s in a linearly ordered type: a predicate is true on all
`s : finset α` provided that:
* it is true on the empty `finset`,
* for every `s : finset α` and an element `a` strictly less than all elements of `s`, `p s`
implies `p (insert a s)`. -/
@[elab_as_eliminator]
lemma induction_on_min [decidable_eq α] {p : finset α → Prop} (s : finset α) (h0 : p ∅)
(step : ∀ a s, (∀ x ∈ s, a < x) → p s → p (insert a s)) : p s :=
@induction_on_max (order_dual α) _ _ _ s h0 step
end max_min
section exists_max_min
variables [linear_order α]
lemma exists_max_image (s : finset β) (f : β → α) (h : s.nonempty) :
∃ x ∈ s, ∀ x' ∈ s, f x' ≤ f x :=
begin
cases max_of_nonempty (h.image f) with y hy,
rcases mem_image.mp (mem_of_max hy) with ⟨x, hx, rfl⟩,
exact ⟨x, hx, λ x' hx', le_max_of_mem (mem_image_of_mem f hx') hy⟩,
end
lemma exists_min_image (s : finset β) (f : β → α) (h : s.nonempty) :
∃ x ∈ s, ∀ x' ∈ s, f x ≤ f x' :=
@exists_max_image (order_dual α) β _ s f h
end exists_max_min
end finset
namespace multiset
lemma count_sup [decidable_eq β] (s : finset α) (f : α → multiset β) (b : β) :
count b (s.sup f) = s.sup (λa, count b (f a)) :=
begin
letI := classical.dec_eq α,
refine s.induction _ _,
{ exact count_zero _ },
{ assume i s his ih,
rw [finset.sup_insert, sup_eq_union, count_union, finset.sup_insert, ih],
refl }
end
lemma mem_sup {α β} [decidable_eq β] {s : finset α} {f : α → multiset β}
{x : β} : x ∈ s.sup f ↔ ∃ v ∈ s, x ∈ f v :=
begin
classical,
apply s.induction_on,
{ simp },
{ intros a s has hxs,
rw [finset.sup_insert, multiset.sup_eq_union, multiset.mem_union],
split,
{ intro hxi,
cases hxi with hf hf,
{ refine ⟨a, _, hf⟩,
simp only [true_or, eq_self_iff_true, finset.mem_insert] },
{ rcases hxs.mp hf with ⟨v, hv, hfv⟩,
refine ⟨v, _, hfv⟩,
simp only [hv, or_true, finset.mem_insert] } },
{ rintros ⟨v, hv, hfv⟩,
rw [finset.mem_insert] at hv,
rcases hv with rfl | hv,
{ exact or.inl hfv },
{ refine or.inr (hxs.mpr ⟨v, hv, hfv⟩) } } },
end
end multiset
namespace finset
lemma mem_sup {α β} [decidable_eq β] {s : finset α} {f : α → finset β}
{x : β} : x ∈ s.sup f ↔ ∃ v ∈ s, x ∈ f v :=
begin
change _ ↔ ∃ v ∈ s, x ∈ (f v).val,
rw [←multiset.mem_sup, ←multiset.mem_to_finset, sup_to_finset],
simp_rw [val_to_finset],
end
lemma sup_eq_bUnion {α β} [decidable_eq β] (s : finset α) (t : α → finset β) :
s.sup t = s.bUnion t :=
by { ext, rw [mem_sup, mem_bUnion], }
end finset
section lattice
variables {ι : Type*} {ι' : Sort*} [complete_lattice α]
/-- Supremum of `s i`, `i : ι`, is equal to the supremum over `t : finset ι` of suprema
`⨆ i ∈ t, s i`. This version assumes `ι` is a `Type*`. See `supr_eq_supr_finset'` for a version
that works for `ι : Sort*`. -/
lemma supr_eq_supr_finset (s : ι → α) :
(⨆i, s i) = (⨆t:finset ι, ⨆i∈t, s i) :=
begin
classical,
exact le_antisymm
(supr_le $ assume b, le_supr_of_le {b} $ le_supr_of_le b $ le_supr_of_le
(by simp) $ le_refl _)
(supr_le $ assume t, supr_le $ assume b, supr_le $ assume hb, le_supr _ _)
end
/-- Supremum of `s i`, `i : ι`, is equal to the supremum over `t : finset ι` of suprema
`⨆ i ∈ t, s i`. This version works for `ι : Sort*`. See `supr_eq_supr_finset` for a version
that assumes `ι : Type*` but has no `plift`s. -/
lemma supr_eq_supr_finset' (s : ι' → α) :
(⨆i, s i) = (⨆t:finset (plift ι'), ⨆i∈t, s (plift.down i)) :=
by rw [← supr_eq_supr_finset, ← equiv.plift.surjective.supr_comp]; refl
/-- Infimum of `s i`, `i : ι`, is equal to the infimum over `t : finset ι` of infima
`⨆ i ∈ t, s i`. This version assumes `ι` is a `Type*`. See `infi_eq_infi_finset'` for a version
that works for `ι : Sort*`. -/
lemma infi_eq_infi_finset (s : ι → α) :
(⨅i, s i) = (⨅t:finset ι, ⨅i∈t, s i) :=
@supr_eq_supr_finset (order_dual α) _ _ _
/-- Infimum of `s i`, `i : ι`, is equal to the infimum over `t : finset ι` of infima
`⨆ i ∈ t, s i`. This version works for `ι : Sort*`. See `infi_eq_infi_finset` for a version
that assumes `ι : Type*` but has no `plift`s. -/
lemma infi_eq_infi_finset' (s : ι' → α) :
(⨅i, s i) = (⨅t:finset (plift ι'), ⨅i∈t, s (plift.down i)) :=
@supr_eq_supr_finset' (order_dual α) _ _ _
end lattice
namespace set
variables {ι : Type*} {ι' : Sort*}
/-- Union of an indexed family of sets `s : ι → set α` is equal to the union of the unions
of finite subfamilies. This version assumes `ι : Type*`. See also `Union_eq_Union_finset'` for
a version that works for `ι : Sort*`. -/
lemma Union_eq_Union_finset (s : ι → set α) :
(⋃i, s i) = (⋃t:finset ι, ⋃i∈t, s i) :=
supr_eq_supr_finset s
/-- Union of an indexed family of sets `s : ι → set α` is equal to the union of the unions
of finite subfamilies. This version works for `ι : Sort*`. See also `Union_eq_Union_finset` for
a version that assumes `ι : Type*` but avoids `plift`s in the right hand side. -/
lemma Union_eq_Union_finset' (s : ι' → set α) :
(⋃i, s i) = (⋃t:finset (plift ι'), ⋃i∈t, s (plift.down i)) :=
supr_eq_supr_finset' s
/-- Intersection of an indexed family of sets `s : ι → set α` is equal to the intersection of the
intersections of finite subfamilies. This version assumes `ι : Type*`. See also
`Inter_eq_Inter_finset'` for a version that works for `ι : Sort*`. -/
lemma Inter_eq_Inter_finset (s : ι → set α) :
(⋂i, s i) = (⋂t:finset ι, ⋂i∈t, s i) :=
infi_eq_infi_finset s
/-- Intersection of an indexed family of sets `s : ι → set α` is equal to the intersection of the
intersections of finite subfamilies. This version works for `ι : Sort*`. See also
`Inter_eq_Inter_finset` for a version that assumes `ι : Type*` but avoids `plift`s in the right
hand side. -/
lemma Inter_eq_Inter_finset' (s : ι' → set α) :
(⋂i, s i) = (⋂t:finset (plift ι'), ⋂i∈t, s (plift.down i)) :=
infi_eq_infi_finset' s
end set
namespace finset
open function
/-! ### Interaction with big lattice/set operations -/
section lattice
lemma supr_coe [has_Sup β] (f : α → β) (s : finset α) :
(⨆ x ∈ (↑s : set α), f x) = ⨆ x ∈ s, f x :=
rfl
lemma infi_coe [has_Inf β] (f : α → β) (s : finset α) :
(⨅ x ∈ (↑s : set α), f x) = ⨅ x ∈ s, f x :=
rfl
variables [complete_lattice β]
theorem supr_singleton (a : α) (s : α → β) : (⨆ x ∈ ({a} : finset α), s x) = s a :=
by simp
theorem infi_singleton (a : α) (s : α → β) : (⨅ x ∈ ({a} : finset α), s x) = s a :=
by simp
lemma supr_option_to_finset (o : option α) (f : α → β) :
(⨆ x ∈ o.to_finset, f x) = ⨆ x ∈ o, f x :=
by { congr, ext, rw [option.mem_to_finset] }
lemma infi_option_to_finset (o : option α) (f : α → β) :
(⨅ x ∈ o.to_finset, f x) = ⨅ x ∈ o, f x :=
@supr_option_to_finset _ (order_dual β) _ _ _
variables [decidable_eq α]
theorem supr_union {f : α → β} {s t : finset α} :
(⨆ x ∈ s ∪ t, f x) = (⨆x∈s, f x) ⊔ (⨆x∈t, f x) :=
by simp [supr_or, supr_sup_eq]
theorem infi_union {f : α → β} {s t : finset α} :
(⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ (⨅ x ∈ t, f x) :=
by simp [infi_or, infi_inf_eq]
lemma supr_insert (a : α) (s : finset α) (t : α → β) :
(⨆ x ∈ insert a s, t x) = t a ⊔ (⨆ x ∈ s, t x) :=
by { rw insert_eq, simp only [supr_union, finset.supr_singleton] }
lemma infi_insert (a : α) (s : finset α) (t : α → β) :
(⨅ x ∈ insert a s, t x) = t a ⊓ (⨅ x ∈ s, t x) :=
by { rw insert_eq, simp only [infi_union, finset.infi_singleton] }
lemma supr_finset_image {f : γ → α} {g : α → β} {s : finset γ} :
(⨆ x ∈ s.image f, g x) = (⨆ y ∈ s, g (f y)) :=
by rw [← supr_coe, coe_image, supr_image, supr_coe]
lemma sup_finset_image {β γ : Type*} [semilattice_sup_bot β]
(f : γ → α) (g : α → β) (s : finset γ) :
(s.image f).sup g = s.sup (g ∘ f) :=
begin
classical,
apply finset.induction_on s,
{ simp },
{ intros a s' ha ih,
rw [sup_insert, image_insert, sup_insert, ih] }
end
lemma infi_finset_image {f : γ → α} {g : α → β} {s : finset γ} :
(⨅ x ∈ s.image f, g x) = (⨅ y ∈ s, g (f y)) :=
by rw [← infi_coe, coe_image, infi_image, infi_coe]
lemma supr_insert_update {x : α} {t : finset α} (f : α → β) {s : β} (hx : x ∉ t) :
(⨆ (i ∈ insert x t), function.update f x s i) = (s ⊔ ⨆ (i ∈ t), f i) :=
begin
simp only [finset.supr_insert, update_same],
rcongr i hi, apply update_noteq, rintro rfl, exact hx hi
end
lemma infi_insert_update {x : α} {t : finset α} (f : α → β) {s : β} (hx : x ∉ t) :
(⨅ (i ∈ insert x t), update f x s i) = (s ⊓ ⨅ (i ∈ t), f i) :=
@supr_insert_update α (order_dual β) _ _ _ _ f _ hx
lemma supr_bUnion (s : finset γ) (t : γ → finset α) (f : α → β) :
(⨆ y ∈ s.bUnion t, f y) = ⨆ (x ∈ s) (y ∈ t x), f y :=
calc (⨆ y ∈ s.bUnion t, f y) = ⨆ y (hy : ∃ x ∈ s, y ∈ t x), f y :
congr_arg _ $ funext $ λ y, by rw [mem_bUnion]
... = _ : by simp only [supr_exists, @supr_comm _ α]
lemma infi_bUnion (s : finset γ) (t : γ → finset α) (f : α → β) :
(⨅ y ∈ s.bUnion t, f y) = ⨅ (x ∈ s) (y ∈ t x), f y :=
@supr_bUnion _ (order_dual β) _ _ _ _ _ _
end lattice
@[simp] theorem set_bUnion_coe (s : finset α) (t : α → set β) :
(⋃ x ∈ (↑s : set α), t x) = ⋃ x ∈ s, t x :=
rfl
@[simp] theorem set_bInter_coe (s : finset α) (t : α → set β) :
(⋂ x ∈ (↑s : set α), t x) = ⋂ x ∈ s, t x :=
rfl
@[simp] theorem set_bUnion_singleton (a : α) (s : α → set β) :
(⋃ x ∈ ({a} : finset α), s x) = s a :=
supr_singleton a s
@[simp] theorem set_bInter_singleton (a : α) (s : α → set β) :
(⋂ x ∈ ({a} : finset α), s x) = s a :=
infi_singleton a s
@[simp] lemma set_bUnion_preimage_singleton (f : α → β) (s : finset β) :
(⋃ y ∈ s, f ⁻¹' {y}) = f ⁻¹' ↑s :=
set.bUnion_preimage_singleton f ↑s
@[simp] lemma set_bUnion_option_to_finset (o : option α) (f : α → set β) :
(⋃ x ∈ o.to_finset, f x) = ⋃ x ∈ o, f x :=
supr_option_to_finset o f
@[simp] lemma set_bInter_option_to_finset (o : option α) (f : α → set β) :
(⋂ x ∈ o.to_finset, f x) = ⋂ x ∈ o, f x :=
infi_option_to_finset o f
variables [decidable_eq α]
lemma set_bUnion_union (s t : finset α) (u : α → set β) :
(⋃ x ∈ s ∪ t, u x) = (⋃ x ∈ s, u x) ∪ (⋃ x ∈ t, u x) :=
supr_union
lemma set_bInter_inter (s t : finset α) (u : α → set β) :
(⋂ x ∈ s ∪ t, u x) = (⋂ x ∈ s, u x) ∩ (⋂ x ∈ t, u x) :=
infi_union
@[simp] lemma set_bUnion_insert (a : α) (s : finset α) (t : α → set β) :
(⋃ x ∈ insert a s, t x) = t a ∪ (⋃ x ∈ s, t x) :=
supr_insert a s t
@[simp] lemma set_bInter_insert (a : α) (s : finset α) (t : α → set β) :
(⋂ x ∈ insert a s, t x) = t a ∩ (⋂ x ∈ s, t x) :=
infi_insert a s t
@[simp] lemma set_bUnion_finset_image {f : γ → α} {g : α → set β} {s : finset γ} :
(⋃x ∈ s.image f, g x) = (⋃y ∈ s, g (f y)) :=
supr_finset_image
@[simp] lemma set_bInter_finset_image {f : γ → α} {g : α → set β} {s : finset γ} :
(⋂ x ∈ s.image f, g x) = (⋂ y ∈ s, g (f y)) :=
infi_finset_image
lemma set_bUnion_insert_update {x : α} {t : finset α} (f : α → set β) {s : set β} (hx : x ∉ t) :
(⋃ (i ∈ insert x t), @update _ _ _ f x s i) = (s ∪ ⋃ (i ∈ t), f i) :=
supr_insert_update f hx
lemma set_bInter_insert_update {x : α} {t : finset α} (f : α → set β) {s : set β} (hx : x ∉ t) :
(⋂ (i ∈ insert x t), @update _ _ _ f x s i) = (s ∩ ⋂ (i ∈ t), f i) :=
infi_insert_update f hx
@[simp] lemma set_bUnion_bUnion (s : finset γ) (t : γ → finset α) (f : α → set β) :
(⋃ y ∈ s.bUnion t, f y) = ⋃ (x ∈ s) (y ∈ t x), f y :=
supr_bUnion s t f
@[simp] lemma set_bInter_bUnion (s : finset γ) (t : γ → finset α) (f : α → set β) :
(⋂ y ∈ s.bUnion t, f y) = ⋂ (x ∈ s) (y ∈ t x), f y :=
infi_bUnion s t f
end finset
|
#ifndef ASSOCIATIVE_TEST_BENCH_HPP
#define ASSOCIATIVE_TEST_BENCH_HPP
#include <string>
#include <boost/optional.hpp>
#include "../util/parameters.hpp"
#include "../env/environment.hpp"
namespace associative
{
namespace test
{
class TestParameters
{
private:
static Parameters* parameters;
public:
static Parameters& get();
static bool parseCommandLine(int argc, char** argv);
};
class Bench
{
public:
boost::shared_ptr<Logger> logger;
boost::shared_ptr<Process> process;
boost::shared_ptr<Connection> conn;
boost::shared_ptr<VFS> vfs;
Environment env;
Bench(const Parameters& parameters);
virtual ~Bench();
Bench& operator=(Bench&) = delete;
Bench(Bench&) = delete;
};
}
}
#endif |
import numpy as np
import cPickle as pickle
import scipy
import combo
from Objectives.ObjFunc import IndTimeModel
from IPython import embed
import os, sys
# from pyDOE import lhs
# objective_model = IndTimeModel(problemID="QU_GR",noisy=True)
# from scipy.stats.qmc import LatinHypercube
if len(sys.argv)!=2:
sys.exit("Script needs an integer argument to be used as the batch index.")
else:
batch = int(sys.argv[1])
print("Running batch "+str(batch))
class simulator:
def __init__(self):
self.objective_model = IndTimeModel(problemID="QU_GR",noisy=True)
b = self.objective_model.bounds
Ngrid = 25
x = []; lengthscales = []; m= []; n = []
for i in range(b.shape[0]):
x.append(np.linspace(b[i][0],b[i][1],Ngrid))
lengthscales.append(abs(b[i][1]-b[i][0])/10.)
m.append(max(b[i][0],b[i][1]))
n.append(min(b[i][0],b[i][1]))
self.lengthscales = np.array(lengthscales)
r = np.meshgrid(*x)
action_size = Ngrid**b.shape[0]
X = np.empty((action_size,b.shape[0]))
for i in range(b.shape[0]):
X[:,[i]] = r[i].reshape(-1,1)
# engine = LatinHypercube(d=b.shape[0])
# sample = engine.random(n=action_size)
# embed()
# sample = np.array(n).reshape((1,b.shape[0]))+np.dot(np.random.rand(action_size,b.shape[0]),np.diag(np.array(m)-np.array(n)))# lhs(action_size, [samples, criterion, iterations])
self.X = X
# self.X = sample
def getsamples(self,Ngrid = 25):
b = self.objective_model.bounds
m= []; n = []; action_size = Ngrid**b.shape[0]
for i in range(b.shape[0]):
m.append(max(b[i][0],b[i][1]))
n.append(min(b[i][0],b[i][1]))
return np.array(n).reshape((1,b.shape[0]))+np.dot(np.random.rand(action_size,b.shape[0]),np.diag(np.array(m)-np.array(n)))
def __call__(self,action):
r = self.X[action,:]
# embed()
x = self.objective_model.evaluate(r)
return -x[0][0]
def compute_regret(self,action_best,policy):
# embed()
x = policy.test.X[action_best.astype(int).tolist(),:]
y = self.objective_model.evaluate_true(x)
return y - self.objective_model.f_opt
sim = simulator()
X = sim.X #combo.misc.centering( sim.X )
model = combo.gp.core.model(cov = combo.gp.cov.gauss( num_dim = None, ard = False ), mean = combo.gp.mean.const(), lik = combo.gp.lik.gauss())
# params are taken by combo as [noise_std_dev,prior_mean,kernel_var_scale,kernel_len_scale_inv] for the sq. exp kernel (kernel_var_scale^2)*e^{-0.5*(x-y)^2*kernel_len_scale_inv^2}
params = np.array([1,0,1,np.min(sim.lengthscales)**(-1)])
model.set_params(params)
predictor = combo.gp.predictor(config=None, model = model)
policy = combo.search.discrete.policy(test_X=X)
# policy.set_seed( 0 )
res = policy.random_search(max_num_probes=1, simulator=sim)
# embed()
# res = policy.bayes_search(max_num_probes=200, simulator=sim, score='EI',
# interval=10,num_search_each_probe=1,num_rand_basis=5000) #predictor=predictor
# embed()
Bs= 2000/10
x_comp = np.empty((0,X.shape[1]))
regrets = np.empty((0,1))
for i in range(Bs):
# policy = combo.search.discrete.policy(test_X=sim.getsamples())
policy.test = policy._set_test(np.vstack((x_comp,sim.getsamples())))
res = policy.bayes_search(max_num_probes=10, simulator=sim, score='EI',
interval=-1,num_search_each_probe=1, predictor=predictor)
best_fx, best_action = res.export_all_sequence_best_fx()
x_comp = policy.test.X #[best_action[-1].astype(int).tolist(),:]
# regrets = np.vstack((regrets,sim.compute_regret(best_action,policy)))
# embed()
print 'f(x)='
print -res.fx[0:res.total_num_search]
best_fx, best_action = res.export_all_sequence_best_fx()
print 'current best'
print -best_fx
print 'current best action='
print best_action
print 'history of chosed actions='
print res.chosed_actions[0:res.total_num_search]
# embed()
basedir = os.path.join('results_GP12','batch'+str(batch))
if not os.path.exists(basedir):
os.makedirs(basedir)
regrets = sim.compute_regret(best_action,policy)
np.save(os.path.join(basedir,'com_regrets.npy'),regrets)
res.save(os.path.join(basedir,'results.npz'))
del res
# load the results
# res = combo.search.discrete.results.history()
# res.load('test.npz')
# embed()
|
(* Title: Small-Gain Theorem
Author: Omar A. Jasim <[email protected]>, Sandor M. Veres <[email protected]>
Maintainer: Omar A. Jasim <[email protected]>, Sandor M. Veres <[email protected]>
*)
theory Small_Gain_Theorem
imports
"~~/src/HOL/Probability/Analysis"
"~~/src/HOL/Probability/Probability"
"~~/src/HOL/Library/Function_Algebras"
"~~/L2Norm_Integral"
begin
section \<open> Definitions of Signals\<close>
text \<open>Time Interval Definition\<close>
definition T :: "real set"
where "T ={t. (0\<le>t \<and> t<\<infinity>)}"
definition T\<^sub>\<tau> :: "real set"
where "T\<^sub>\<tau> ={t. (\<forall>\<tau>\<in>T. 0\<le>t \<and> t\<le>\<tau> )}"
lemma T\<^sub>\<tau>_subset_T: "T\<^sub>\<tau> \<subseteq> T"
using T\<^sub>\<tau>_def T_def by auto
text \<open>Signal Range Definition\<close>
definition R :: "real set"
where "R ={r. (-\<infinity><r \<and> r<\<infinity>)}"
text \<open>Signal Definition\<close>
definition Signal ::"(real \<Rightarrow> real) \<Rightarrow> bool"
where "Signal u = (\<forall>t\<in>T. \<exists>!x\<in>R. x = u t \<and> u:T\<rightarrow>R \<and> u t\<in> u ` T \<and> u piecewise_differentiable_on T
\<and> continuous_on T u)"
lemma signal_integration_bound:
fixes M
assumes "Signal u"
and "set_integrable M T u"
shows "(LINT t:T|M. (u t)\<^sup>2) < \<infinity>"
using assms by simp
lemma sig1: "Signal u \<Longrightarrow> \<forall>t\<in>T. u t \<in> range (\<lambda>t\<in>T. u t)"
by auto
lemma sig2: "Signal u \<Longrightarrow> \<forall>t\<in>T. u t \<in> R"
using Signal_def by blast
lemma sig3: "Signal u \<Longrightarrow> range (\<lambda>t\<in>T. u t) \<subseteq> R"
unfolding Signal_def by (simp add:R_def)
lemma sig4: "Signal u \<Longrightarrow>\<forall> A. range (\<lambda>t\<in>T. u t) = (\<lambda>t\<in>T. u t) ` A \<Longrightarrow> A\<subseteq>T "
using Signal_def by blast
section \<open>Definitions of Signals Space\<close>
consts
signal_prod :: " real \<Rightarrow> 'a \<Rightarrow> 'a " (infixl "\<cdot>" 70)
text \<open>\<open>Domain Space Definition\<close>\<close>
locale Domain_Space =
fixes D :: "(real \<Rightarrow> real) set"
assumes non_empty_D [iff, intro?]: "D \<noteq> {}"
and spaceD_mem [iff]: "range (\<lambda>t\<in>T. u t)\<subseteq>R \<Longrightarrow>\<lbrakk>range (\<lambda>t\<in>T. u t) = (\<lambda>t\<in>T. u t)`A \<Longrightarrow>A\<subseteq>T\<rbrakk>\<Longrightarrow>(\<lambda>t\<in>T. u t)\<in>D"
and spaceD_add1[iff]: "u\<in>D \<Longrightarrow> s\<in>D \<Longrightarrow> u + s \<in> D"
and spaceD_add2[simp]:"u\<in>D \<Longrightarrow> s\<in>D \<Longrightarrow> u + s = (\<lambda>t\<in>T. u t + s t)"
and spaceD_add3 : "u\<in>D \<Longrightarrow> s\<in>D \<Longrightarrow> u + s = s + u"
and spaceD_add_assoc: "u\<in>D \<Longrightarrow> s\<in>D \<Longrightarrow> g\<in>D \<Longrightarrow> (u + s) + g = u + (s + g) "
and spaceD_pointwise[simp]:"u\<in>D \<Longrightarrow> s\<in>D \<Longrightarrow>\<forall>t\<in>T. (u + s)t = u t + s t"
and spaceD_sub[iff]: "u\<in>D \<Longrightarrow> s\<in>D \<Longrightarrow> u - s \<in> D"
and spaceD_mult1[iff]: "u\<in>D \<Longrightarrow>a\<in>\<real>\<Longrightarrow> (a \<cdot> u) \<in>D"
and spaceD_mult2: "u\<in>D \<Longrightarrow>a\<in>\<real>\<Longrightarrow>\<forall>t\<in>T. (a \<cdot> u)t = a * u t"
and spaceD_mult_distr1: "u\<in>D \<Longrightarrow> s\<in>D \<Longrightarrow>a\<in>\<real>\<Longrightarrow> a \<cdot> (u + s) = a \<cdot> u + a \<cdot> s"
and spaceD_mult_distr2: "u\<in>D \<Longrightarrow> s\<in>D \<Longrightarrow>a\<in>\<real>\<Longrightarrow>\<forall>t\<in>T. a \<cdot> (u + s)t = a * u t + a * s t"
and spaceD_mult_distr3: "u\<in>D \<Longrightarrow>a\<in>\<real>\<Longrightarrow>b\<in>\<real>\<Longrightarrow> (a + b) \<cdot> u = a \<cdot> u + b \<cdot> u"
and spaceD_mult_assoc: "u\<in>D \<Longrightarrow>a\<in>\<real>\<Longrightarrow>b\<in>\<real>\<Longrightarrow> (a * b) \<cdot> u = a \<cdot> (b \<cdot> u)"
text \<open>\<open>Range Space Definition\<close>\<close>
locale Range_Space =
fixes G :: "(real \<Rightarrow> real) set"
assumes non_empty_G [iff, intro?]: "G \<noteq> {}"
and spaceG_mem[iff]: "range (\<lambda>t\<in>T. y t)\<subseteq>R \<Longrightarrow> \<lbrakk>range (\<lambda>t\<in>T. y t) = (\<lambda>t\<in>T. y t)`B \<Longrightarrow>B\<subseteq>T\<rbrakk> \<Longrightarrow> (\<lambda>t\<in>T. y t)\<in>G"
and spaceG_add1[iff]: "y\<in>G \<Longrightarrow> z\<in>G \<Longrightarrow> y + z \<in>G"
and spaceG_add2[simp]:"y\<in>G \<Longrightarrow> z\<in>G \<Longrightarrow> y + z = (\<lambda>t\<in>T. y t + z t)"
and spaceG_add3 : "y\<in>G \<Longrightarrow> z\<in>G \<Longrightarrow> y + z = z + y"
and spaceG_add_assoc: "y\<in>G \<Longrightarrow> z\<in>G \<Longrightarrow> j\<in>G \<Longrightarrow> (y + z) + j = y + (z + j) "
and spaceG_pointwise[simp]:"y\<in>G \<Longrightarrow> z\<in>G \<Longrightarrow>\<forall>t\<in>T. (y + z)t = y t + z t"
and spaceG_mult1[iff]: "y\<in>G \<Longrightarrow>a\<in>\<real>\<Longrightarrow> (a \<cdot> y) \<in>G"
and spaceG_mult2 : "y\<in>G \<Longrightarrow>a\<in>\<real>\<Longrightarrow>\<forall>t\<in>T. (a \<cdot> y)t = a * y t"
and spaceG_mult_distr1 : "y\<in>G \<Longrightarrow> z\<in>G \<Longrightarrow>a\<in>\<real>\<Longrightarrow> a \<cdot> (y + z) = a \<cdot> y + a \<cdot> z"
and spaceG_mult_distr2 : "y\<in>G \<Longrightarrow> z\<in>G \<Longrightarrow>a\<in>\<real>\<Longrightarrow>\<forall>t\<in>T. a \<cdot> (y + z)t = a * y t + a * z t"
and spaceG_mult_distr3 : "y\<in>G \<Longrightarrow>a\<in>\<real>\<Longrightarrow>b\<in>\<real>\<Longrightarrow> (a + b) \<cdot> y = a \<cdot> y + b \<cdot> y"
and spaceG_mult_assoc : "y\<in>G \<Longrightarrow>a\<in>\<real>\<Longrightarrow>b\<in>\<real>\<Longrightarrow> (a * b) \<cdot> y = a \<cdot> (b \<cdot> y)"
text \<open>\<open>Operator Space Definition\<close>\<close>
locale Operator_Space =
fixes OP :: "((real \<Rightarrow> real) \<Rightarrow> (real \<Rightarrow> real)) set"
assumes non_empty_OP [iff, intro?]: "OP \<noteq> {}"
and spaceG_mem [iff]:"Domain_Space D \<Longrightarrow> Range_Space G \<Longrightarrow> H\<in>OP"
and asm_op1 [iff] : "H\<in>OP \<Longrightarrow>Domain_Space D\<Longrightarrow>Range_Space G\<Longrightarrow> H: D\<rightarrow>G "
and asm_op2 [iff] : "H\<in>OP \<Longrightarrow>Domain_Space D\<Longrightarrow>Range_Space G\<Longrightarrow> H: G\<rightarrow>D "
and asm_op3 [iff] : "H\<in>OP \<Longrightarrow>range H \<subseteq> T\<rightarrow>R"
and asm_op4 [iff] : "H\<in>OP \<Longrightarrow>Domain_Space D\<Longrightarrow>Range_Space G\<Longrightarrow> H: D\<rightarrow>G \<Longrightarrow>range H = H`D \<Longrightarrow>D \<subseteq> T\<rightarrow>R "
and asm_op5 [iff] : "H\<in>OP \<Longrightarrow>Domain_Space D\<Longrightarrow>Range_Space G\<Longrightarrow> H: G\<rightarrow>D \<Longrightarrow>range H = H`G \<Longrightarrow>G \<subseteq> T\<rightarrow>R "
and asm_op6 : "H\<in>OP \<Longrightarrow> Domain_Space D \<Longrightarrow> Range_Space G \<Longrightarrow> s\<in>D \<Longrightarrow> z\<in>G \<Longrightarrow> z= H(s)"
definition Signal_Y :: "(real \<Rightarrow> real) \<Rightarrow> ((real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real) \<Rightarrow> (real \<Rightarrow> real) \<Rightarrow> ((real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real) set \<Rightarrow> bool"
where "Signal_Y y H e OP = (\<forall>a. \<exists>!b. (a=e \<and> b=y \<and>Operator_Space OP \<and> H\<in>OP \<and> range y \<subseteq> R ) \<longrightarrow> y = H e )"
(* signal truncation *)
definition trunc :: "(real \<Rightarrow> real) \<Rightarrow> (real \<Rightarrow> real) \<Rightarrow> real set \<Rightarrow> real set \<Rightarrow> bool"
where "trunc u u\<^sub>\<tau> U U\<^sub>\<tau> = (Signal u \<and> u ` T = U \<and> (\<forall>\<tau>\<in>T. \<forall>t\<in>T. if t\<le>\<tau> then ((u t\<in>U \<longrightarrow> u t\<in>U\<^sub>\<tau>) \<and> u t = u\<^sub>\<tau> t)
else ((u t\<in>U \<longrightarrow> 0\<in>U\<^sub>\<tau>) \<and> u\<^sub>\<tau> t=0 )))"
text \<open>\<open>Truncation Space Definition\<close>\<close>
locale TR_Space =
fixes TR :: "(real \<Rightarrow> real) set"
assumes non_empty_TR [iff, intro?]: "TR \<noteq> {}"
and spaceTR_mem [iff]: "trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> (\<lambda>t\<in>T\<^sub>\<tau>. u\<^sub>\<tau> t)\<in>TR"
and spaceTR_1: "trunc u u\<^sub>\<tau> U U\<^sub>\<tau>\<Longrightarrow> u\<^sub>\<tau>\<in>TR \<Longrightarrow> U\<^sub>\<tau> \<inter> U = u\<^sub>\<tau> ` T\<^sub>\<tau>"
and spaceTR_2[iff]: "trunc u\<^sub>1 u\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau>\<Longrightarrow>trunc u\<^sub>2 u\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau>\<Longrightarrow> e\<^sub>1\<^sub>\<tau>= u\<^sub>1\<^sub>\<tau> - (H\<^sub>2 e\<^sub>2\<^sub>\<tau>)
\<Longrightarrow> e\<^sub>2\<^sub>\<tau>= u\<^sub>2\<^sub>\<tau> + (H\<^sub>1 e\<^sub>1\<^sub>\<tau>) \<Longrightarrow>u\<^sub>1\<^sub>\<tau>\<in>TR\<Longrightarrow>u\<^sub>2\<^sub>\<tau>\<in>TR\<Longrightarrow>e\<^sub>1\<^sub>\<tau>\<in>TR"
and spaceTR_3[iff]: "trunc u\<^sub>1 u\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau>\<Longrightarrow>trunc u\<^sub>2 u\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau>\<Longrightarrow> e\<^sub>1\<^sub>\<tau>= u\<^sub>1\<^sub>\<tau> - (H\<^sub>2 e\<^sub>2\<^sub>\<tau>)
\<Longrightarrow> e\<^sub>2\<^sub>\<tau>= u\<^sub>2\<^sub>\<tau> + (H\<^sub>1 e\<^sub>1\<^sub>\<tau>) \<Longrightarrow>u\<^sub>1\<^sub>\<tau>\<in>TR\<Longrightarrow>u\<^sub>2\<^sub>\<tau>\<in>TR\<Longrightarrow>e\<^sub>2\<^sub>\<tau>\<in>TR"
and spaceTR_4[iff]: "trunc u\<^sub>1 u\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau>\<Longrightarrow>trunc u\<^sub>2 u\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau>\<Longrightarrow> e\<^sub>1\<^sub>\<tau>= u\<^sub>1\<^sub>\<tau> - (H\<^sub>2 e\<^sub>2\<^sub>\<tau>) \<Longrightarrow> e\<^sub>2\<^sub>\<tau>= u\<^sub>2\<^sub>\<tau> + (H\<^sub>1 e\<^sub>1\<^sub>\<tau>)
\<Longrightarrow> Signal_Y y\<^sub>1\<^sub>\<tau> H\<^sub>1 e\<^sub>1\<^sub>\<tau> OP \<Longrightarrow>u\<^sub>1\<^sub>\<tau>\<in>TR\<Longrightarrow>u\<^sub>2\<^sub>\<tau>\<in>TR\<Longrightarrow>e\<^sub>1\<^sub>\<tau>\<in>TR\<Longrightarrow> e\<^sub>2\<^sub>\<tau>\<in>TR \<Longrightarrow> y\<^sub>1\<^sub>\<tau>\<in>TR "
and spaceTR_5[iff]: "trunc u\<^sub>1 u\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau>\<Longrightarrow>trunc u\<^sub>2 u\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau>\<Longrightarrow> e\<^sub>1\<^sub>\<tau>= u\<^sub>1\<^sub>\<tau> - (H\<^sub>2 e\<^sub>2\<^sub>\<tau>) \<Longrightarrow> e\<^sub>2\<^sub>\<tau>= u\<^sub>2\<^sub>\<tau> + (H\<^sub>1 e\<^sub>1\<^sub>\<tau>)
\<Longrightarrow> Signal_Y y\<^sub>2\<^sub>\<tau> H\<^sub>2 e\<^sub>2\<^sub>\<tau> OP
\<Longrightarrow>u\<^sub>1\<^sub>\<tau>\<in>TR\<Longrightarrow>u\<^sub>2\<^sub>\<tau>\<in>TR\<Longrightarrow>e\<^sub>1\<^sub>\<tau>\<in>TR\<Longrightarrow> e\<^sub>2\<^sub>\<tau>\<in>TR \<Longrightarrow> y\<^sub>2\<^sub>\<tau>\<in>TR "
and spaceTR_6 : "trunc u u\<^sub>\<tau> U U\<^sub>\<tau>\<Longrightarrow>Signal_Y y H e OP\<Longrightarrow> Signal_Y y\<^sub>\<tau> H e\<^sub>\<tau> OP\<Longrightarrow> e\<^sub>\<tau>\<in>TR \<Longrightarrow> y\<^sub>\<tau>\<in>TR
\<Longrightarrow> y\<^sub>\<tau> ` T\<^sub>\<tau> \<subseteq> range y\<^sub>\<tau> \<inter> range y"
(* Some lemmas for truncation definition *)
lemma tr1:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> \<exists>t\<in>T. u\<^sub>\<tau> t\<in>U\<^sub>\<tau> "
unfolding trunc_def using T_def by force
lemma tr1a:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> \<forall>t\<in>T\<^sub>\<tau>. u\<^sub>\<tau> t\<in>U\<^sub>\<tau> "
unfolding trunc_def using T\<^sub>\<tau>_subset_T subset_eq by fastforce
lemma tr1b:" trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow>\<forall>\<tau>\<in>T. \<forall>t\<in>T. t>\<tau> \<longrightarrow> 0\<in>U\<^sub>\<tau> "
unfolding trunc_def using T_def by force
lemma tr1c:" trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow>\<forall>\<tau>\<in>T. \<forall>t\<in>T. t>\<tau> \<and> t\<notin>T\<^sub>\<tau> \<longrightarrow> 0\<in>U\<^sub>\<tau> "
unfolding trunc_def using T_def by fastforce
lemma tr1d:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> u\<^sub>\<tau> ` T\<^sub>\<tau> \<subseteq> U\<^sub>\<tau>"
unfolding trunc_def using T\<^sub>\<tau>_subset_T by force
lemma tr1e:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> u\<^sub>\<tau> ` T\<^sub>\<tau> \<subseteq> U"
unfolding trunc_def using T\<^sub>\<tau>_subset_T by force
lemma tr1f:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> u\<^sub>\<tau> ` T\<^sub>\<tau> \<subseteq> u ` T"
unfolding trunc_def using T\<^sub>\<tau>_subset_T image_iff image_subsetI subsetCE by fastforce
lemma tr1g:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> u ` T\<^sub>\<tau> = u\<^sub>\<tau> ` T\<^sub>\<tau>"
unfolding trunc_def using T\<^sub>\<tau>_subset_T by force
lemma tr3:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow>\<forall>\<tau>\<in>T. \<forall>t\<in>T. t>\<tau> \<longrightarrow> u\<^sub>\<tau> t\<in>U\<^sub>\<tau> \<and> u\<^sub>\<tau> t=0 "
unfolding trunc_def by force
lemma tr6:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> \<forall>\<tau>\<in>T. \<forall>t\<in>T. t>\<tau> \<Longrightarrow> \<forall>t\<in>T\<^sub>\<tau>. \<not>(u\<^sub>\<tau> ` T\<^sub>\<tau> \<subseteq> U) "
using T\<^sub>\<tau>_subset_T by fast
lemma tr7:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> T = T\<^sub>\<tau> \<Longrightarrow> u ` T = u\<^sub>\<tau> ` T\<^sub>\<tau> "
using trunc_def by (metis tr1g)
lemma tr8:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> (\<lambda>t\<in>T\<^sub>\<tau>. u t) = (\<lambda>t\<in>T\<^sub>\<tau>. u\<^sub>\<tau> t) "
using trunc_def T\<^sub>\<tau>_def T\<^sub>\<tau>_subset_T by force
lemma tr9:"trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> u\<^sub>\<tau> ` T\<^sub>\<tau> \<subseteq> U\<^sub>\<tau> \<inter> U "
by (simp add: tr1d tr1e)
lemma tr10:" trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow>\<forall>\<tau>\<in>T. \<forall>t\<in>T. t\<le>\<tau> \<longrightarrow> u t\<in>U\<^sub>\<tau> "
unfolding trunc_def by fastforce
lemma tr11:" trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow>\<forall>\<tau>\<in>T. \<forall>t\<in>T. t\<le>\<tau> \<longrightarrow> u\<^sub>\<tau> t\<in>U\<^sub>\<tau> "
unfolding trunc_def by fastforce
lemma tr12:" trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow>\<forall>\<tau>\<in>T. \<forall>t\<in>T. t\<le>\<tau> \<longrightarrow> u\<^sub>\<tau> t \<in> U\<^sub>\<tau> \<inter> U "
unfolding trunc_def by force
(*some lemmas for output signal y*)
lemma sig_Y1: "Signal_Y y H e OP \<Longrightarrow> (\<lambda>t\<in>T. y t) = H (\<lambda>t\<in>T. e t)"
using Signal_Y_def by metis
lemma sig_Y3: "trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow> Signal_Y y\<^sub>\<tau> H e\<^sub>\<tau> OP\<Longrightarrow> (\<lambda>t\<in>T\<^sub>\<tau>. y\<^sub>\<tau> t) = H(\<lambda>t\<in>T\<^sub>\<tau>. e\<^sub>\<tau> t) "
using Signal_Y_def by metis
definition Causality :: "(real \<Rightarrow> real)\<Rightarrow> (real \<Rightarrow> real)\<Rightarrow> (real \<Rightarrow> real) \<Rightarrow> (real \<Rightarrow> real)
\<Rightarrow> real set \<Rightarrow> real set \<Rightarrow> ((real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real) \<Rightarrow> ((real \<Rightarrow> real)
\<Rightarrow> real \<Rightarrow> real) set \<Rightarrow> (real \<Rightarrow> real) set \<Rightarrow> bool"
where "Causality u u\<^sub>\<tau> e e\<^sub>\<tau> U U\<^sub>\<tau> H OP TR = ((Operator_Space OP \<and> H\<in>OP \<and> trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<and> TR_Space TR \<and> u\<^sub>\<tau>\<in>TR \<and> e\<^sub>\<tau>\<in>TR)
\<longrightarrow> H (\<lambda>t\<in>T\<^sub>\<tau>. e t) = H (\<lambda>t\<in>T\<^sub>\<tau>. e\<^sub>\<tau> t))"
lemma Caus1: "Operator_Space OP \<Longrightarrow>H\<in>OP \<Longrightarrow>TR_Space TR\<Longrightarrow>u\<^sub>\<tau>\<in>TR \<and> e\<^sub>\<tau>\<in>TR\<Longrightarrow>trunc u u\<^sub>\<tau> U U\<^sub>\<tau> \<Longrightarrow>Causality u u\<^sub>\<tau> e e\<^sub>\<tau> U U\<^sub>\<tau> H OP TR
\<Longrightarrow> H (\<lambda>t\<in>T\<^sub>\<tau>. e t) = H (\<lambda>t\<in>T\<^sub>\<tau>. e\<^sub>\<tau> t)" using Causality_def by blast
lemma sig_Y_tr:"Signal_Y y H e OP\<Longrightarrow> Causality u u\<^sub>\<tau> e e\<^sub>\<tau> U U\<^sub>\<tau> H OP TR \<Longrightarrow> (\<lambda>t\<in>T\<^sub>\<tau>. y t) = H(\<lambda>t\<in>T\<^sub>\<tau>. e\<^sub>\<tau> t)"
using Signal_Y_def by metis
lemma sig_Y_tr1:"Signal_Y y H e OP\<Longrightarrow> Causality u u\<^sub>\<tau> e e\<^sub>\<tau> U U\<^sub>\<tau> H OP TR \<Longrightarrow> (\<lambda>t\<in>T\<^sub>\<tau>. y\<^sub>\<tau> t) = H(\<lambda>t\<in>T\<^sub>\<tau>. e\<^sub>\<tau> t)"
using Signal_Y_def by metis
definition Stability :: "(real \<Rightarrow> real) \<Rightarrow> (real \<Rightarrow> real) \<Rightarrow> (real \<Rightarrow> real)\<Rightarrow> (real \<Rightarrow> real) \<Rightarrow> real set \<Rightarrow> real set \<Rightarrow> real \<Rightarrow> real
\<Rightarrow> ((real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real) \<Rightarrow> real measure \<Rightarrow> ((real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real) set \<Rightarrow> (real \<Rightarrow> real) set \<Rightarrow> bool"
where "Stability u u\<^sub>\<tau> e e\<^sub>\<tau> U U\<^sub>\<tau> \<gamma> \<beta> H M OP TR = ((Causality u u\<^sub>\<tau> e e\<^sub>\<tau> U U\<^sub>\<tau> H OP TR) \<longrightarrow> (\<exists>a. \<exists>b. a\<in>T \<and> b\<in>T \<and> \<gamma>=a \<and> \<beta>=b
\<and> ((L2norm M (\<lambda>t. (H e) t) T\<^sub>\<tau>) \<le> \<gamma> * (L2norm M (\<lambda>t. e\<^sub>\<tau> t) T\<^sub>\<tau>) + \<beta>)))"
lemma stb1: "Causality u u\<^sub>\<tau> e e\<^sub>\<tau> U U\<^sub>\<tau> H OP TR \<Longrightarrow> Stability u u\<^sub>\<tau> e e\<^sub>\<tau> U U\<^sub>\<tau> \<gamma> \<beta> H M OP TR \<Longrightarrow>(\<exists>\<gamma>. \<gamma>\<in>T) \<Longrightarrow> (\<exists>\<beta>. \<beta>\<in>T)
\<Longrightarrow> (L2norm M (\<lambda>t. (H e) t) T\<^sub>\<tau> \<le> \<gamma> * (L2norm M (\<lambda>t. e\<^sub>\<tau> t) T\<^sub>\<tau>) + \<beta>)" using Stability_def by blast
lemma stb2: "Signal_Y y H e OP\<Longrightarrow>Stability u u\<^sub>\<tau> e e\<^sub>\<tau> U U\<^sub>\<tau> \<gamma> \<beta> H M OP TR\<Longrightarrow>(\<exists>\<gamma>. \<gamma>\<in>T) \<Longrightarrow> (\<exists>\<beta>. \<beta>\<in>T)
\<Longrightarrow> (L2norm M (\<lambda>t. y t) T\<^sub>\<tau> \<le> \<gamma> * (L2norm M (\<lambda>t. e\<^sub>\<tau> t) T\<^sub>\<tau>) + \<beta>)"
using Stability_def Signal_Y_def by (metis (mono_tags, hide_lams) add_le_imp_le_right order_refl)
section \<open>\<open>Small-Gain Theorem Definitions\<close>\<close>
text \<open>Closed feedback loop interconnection\<close>
lemma e1:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "Domain_Space D"
and "Range_Space G"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> H\<^sub>2 e\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> H\<^sub>1 e\<^sub>1\<in>G"
and "e\<^sub>2 = u\<^sub>2 + (H\<^sub>1 e\<^sub>1)"
shows "e\<^sub>1 = u\<^sub>1 - (H\<^sub>2 e\<^sub>2)"
using assms Operator_Space.asm_op6 Operator_Space.spaceG_mem eq_iff_diff_eq_0 by fastforce
lemma e2:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "Domain_Space D"
and "Range_Space G"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> H\<^sub>2 e\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> H\<^sub>1 e\<^sub>1\<in>G"
and "e\<^sub>1 = u\<^sub>1 - (H\<^sub>2 e\<^sub>2)"
shows "e\<^sub>2 = u\<^sub>2 + (H\<^sub>1 e\<^sub>1)"
using assms Operator_Space.asm_op6 Operator_Space.spaceG_mem eq_iff_diff_eq_0 by fastforce
lemma e1_1:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "Domain_Space D"
and "Range_Space G"
and "Signal_Y y\<^sub>1 H\<^sub>1 e\<^sub>1 OP"
and "Signal_Y y\<^sub>2 H\<^sub>2 e\<^sub>2 OP"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> y\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> y\<^sub>1\<in>G"
and "e\<^sub>2 = u\<^sub>2 + y\<^sub>1"
shows "e\<^sub>1 = u\<^sub>1 - y\<^sub>2"
using assms by (metis Signal_Y_def)
lemma e2_2:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "Domain_Space D"
and "Range_Space G"
and "Signal_Y y\<^sub>1 H\<^sub>1 e\<^sub>1 OP"
and "Signal_Y y\<^sub>2 H\<^sub>2 e\<^sub>2 OP"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> y\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> y\<^sub>1\<in>G"
and "e\<^sub>1 = u\<^sub>1 - y\<^sub>2"
shows "e\<^sub>2 = u\<^sub>2 + y\<^sub>1"
using assms by (metis Signal_Y_def)
lemma e1_11:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "Domain_Space D"
and "Range_Space G"
and "Signal_Y y\<^sub>1 H\<^sub>1 e\<^sub>1 OP"
and "Signal_Y y\<^sub>2 H\<^sub>2 e\<^sub>2 OP"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> y\<^sub>2\<in>D \<and> H\<^sub>2 e\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> y\<^sub>1\<in>G \<and> H\<^sub>1 e\<^sub>1\<in>G"
and "(e\<^sub>2 = u\<^sub>2 + y\<^sub>1) "
and "(e\<^sub>2 = u\<^sub>2 + (H\<^sub>1 e\<^sub>1))"
shows "(e\<^sub>1 = u\<^sub>1 - y\<^sub>2) \<longleftrightarrow> (e\<^sub>1 = u\<^sub>1 - (H\<^sub>2 e\<^sub>2))"
using assms by (metis (full_types) Signal_Y_def)
lemma e2_22:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "Domain_Space D"
and "Range_Space G"
and "Signal_Y y\<^sub>1 H\<^sub>1 e\<^sub>1 OP"
and "Signal_Y y\<^sub>2 H\<^sub>2 e\<^sub>2 OP"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> y\<^sub>2\<in>D \<and> H\<^sub>2 e\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> y\<^sub>1\<in>G \<and> H\<^sub>1 e\<^sub>1\<in>G"
and "e\<^sub>1 = u\<^sub>1 - y\<^sub>2"
and "e\<^sub>1 = u\<^sub>1 - (H\<^sub>2 e\<^sub>2) "
shows "(e\<^sub>2 = u\<^sub>2 + y\<^sub>1) \<longleftrightarrow> (e\<^sub>2 = u\<^sub>2 + (H\<^sub>1 e\<^sub>1))"
using assms by (metis (full_types) Signal_Y_def)
(* With truncation*)
lemma tr_e1:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "trunc u\<^sub>1 u\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau>"
and "trunc u\<^sub>2 u\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau>"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "TR_Space TR"
and "u\<^sub>1\<^sub>\<tau>\<in>TR \<and> u\<^sub>2\<^sub>\<tau>\<in>TR \<and> e\<^sub>1\<^sub>\<tau>\<in>TR \<and> e\<^sub>2\<^sub>\<tau>\<in>TR \<and> y\<^sub>1\<^sub>\<tau>\<in>TR \<and> y\<^sub>2\<^sub>\<tau>\<in>TR"
and "Domain_Space D"
and "Range_Space G"
and "Causality u\<^sub>1 u\<^sub>1\<^sub>\<tau> e\<^sub>1 e\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau> H\<^sub>1 OP TR"
and "Causality u\<^sub>2 u\<^sub>2\<^sub>\<tau> e\<^sub>2 e\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau> H\<^sub>2 OP TR"
and "Signal_Y y\<^sub>1 H\<^sub>1 e\<^sub>1 OP"
and "Signal_Y y\<^sub>2 H\<^sub>2 e\<^sub>2 OP"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> y\<^sub>2\<in>D \<and> H\<^sub>2 e\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> y\<^sub>1\<in>G \<and> H\<^sub>1 e\<^sub>1\<in>G"
and "(e\<^sub>2\<^sub>\<tau> = u\<^sub>2\<^sub>\<tau> + (\<lambda>t\<in>T\<^sub>\<tau>. (H\<^sub>1 e\<^sub>1)t))"
shows "e\<^sub>1\<^sub>\<tau> = u\<^sub>1\<^sub>\<tau> - (\<lambda>t\<in>T\<^sub>\<tau>. (H\<^sub>2 e\<^sub>2)t)"
using assms by (metis Signal_Y_def)
lemma tr_e2:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "trunc u\<^sub>1 u\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau>"
and "trunc u\<^sub>2 u\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau>"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "TR_Space TR"
and "u\<^sub>1\<^sub>\<tau>\<in>TR \<and> u\<^sub>2\<^sub>\<tau>\<in>TR \<and> e\<^sub>1\<^sub>\<tau>\<in>TR \<and> e\<^sub>2\<^sub>\<tau>\<in>TR \<and> y\<^sub>1\<^sub>\<tau>\<in>TR \<and> y\<^sub>2\<^sub>\<tau>\<in>TR"
and "Domain_Space D"
and "Range_Space G"
and "Causality u\<^sub>1 u\<^sub>1\<^sub>\<tau> e\<^sub>1 e\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau> H\<^sub>1 OP TR"
and "Causality u\<^sub>2 u\<^sub>2\<^sub>\<tau> e\<^sub>2 e\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau> H\<^sub>2 OP TR"
and "Signal_Y y\<^sub>1 H\<^sub>1 e\<^sub>1 OP"
and "Signal_Y y\<^sub>2 H\<^sub>2 e\<^sub>2 OP"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> y\<^sub>2\<in>D \<and> H\<^sub>2 e\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> y\<^sub>1\<in>G \<and> H\<^sub>1 e\<^sub>1\<in>G"
and "e\<^sub>1\<^sub>\<tau> = u\<^sub>1\<^sub>\<tau> - (\<lambda>t\<in>T\<^sub>\<tau>. (H\<^sub>2 e\<^sub>2)t)"
shows "e\<^sub>2\<^sub>\<tau> = u\<^sub>2\<^sub>\<tau> + (\<lambda>t\<in>T\<^sub>\<tau>. (H\<^sub>1 e\<^sub>1)t)"
using assms by (metis Signal_Y_def)
lemma tr_e1_11:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "trunc u\<^sub>1 u\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau>"
and "trunc u\<^sub>2 u\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau>"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "TR_Space TR"
and "u\<^sub>1\<^sub>\<tau>\<in>TR \<and> u\<^sub>2\<^sub>\<tau>\<in>TR \<and> e\<^sub>1\<^sub>\<tau>\<in>TR \<and> e\<^sub>2\<^sub>\<tau>\<in>TR \<and> y\<^sub>1\<^sub>\<tau>\<in>TR \<and> y\<^sub>2\<^sub>\<tau>\<in>TR"
and "Domain_Space D"
and "Range_Space G"
and "Causality u\<^sub>1 u\<^sub>1\<^sub>\<tau> e\<^sub>1 e\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau> H\<^sub>1 OP TR"
and "Causality u\<^sub>2 u\<^sub>2\<^sub>\<tau> e\<^sub>2 e\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau> H\<^sub>2 OP TR"
and "Signal_Y y\<^sub>1 H\<^sub>1 e\<^sub>1 OP"
and "Signal_Y y\<^sub>2 H\<^sub>2 e\<^sub>2 OP"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> y\<^sub>2\<in>D \<and> H\<^sub>2 e\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> y\<^sub>1\<in>G \<and> H\<^sub>1 e\<^sub>1\<in>G"
and "(e\<^sub>2\<^sub>\<tau> = u\<^sub>2\<^sub>\<tau> + (\<lambda>t\<in>T\<^sub>\<tau>. y\<^sub>1 t)) "
and "(e\<^sub>2\<^sub>\<tau> = u\<^sub>2\<^sub>\<tau> + (\<lambda>t\<in>T\<^sub>\<tau>. (H\<^sub>1 e\<^sub>1)t))"
shows "(e\<^sub>1\<^sub>\<tau> = u\<^sub>1\<^sub>\<tau> - (\<lambda>t\<in>T\<^sub>\<tau>. y\<^sub>2 t)) \<longleftrightarrow> (e\<^sub>1\<^sub>\<tau> = u\<^sub>1\<^sub>\<tau> - (\<lambda>t\<in>T\<^sub>\<tau>. (H\<^sub>2 e\<^sub>2)t))"
using assms by (metis (full_types) sig_Y_tr1)
lemma tr_e2_22:
assumes "Signal u\<^sub>1"
and "Signal u\<^sub>2"
and "trunc u\<^sub>1 u\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau>"
and "trunc u\<^sub>2 u\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau>"
and "Operator_Space OP"
and "H\<^sub>1\<in>OP"
and "H\<^sub>2\<in>OP"
and "TR_Space TR"
and "u\<^sub>1\<^sub>\<tau>\<in>TR \<and> u\<^sub>2\<^sub>\<tau>\<in>TR \<and> e\<^sub>1\<^sub>\<tau>\<in>TR \<and> e\<^sub>2\<^sub>\<tau>\<in>TR \<and> y\<^sub>1\<^sub>\<tau>\<in>TR \<and> y\<^sub>2\<^sub>\<tau>\<in>TR"
and "Domain_Space D"
and "Range_Space G"
and "Causality u\<^sub>1 u\<^sub>1\<^sub>\<tau> e\<^sub>1 e\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau> H\<^sub>1 OP TR"
and "Causality u\<^sub>2 u\<^sub>2\<^sub>\<tau> e\<^sub>2 e\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau> H\<^sub>2 OP TR"
and "Signal_Y y\<^sub>1 H\<^sub>1 e\<^sub>1 OP"
and "Signal_Y y\<^sub>2 H\<^sub>2 e\<^sub>2 OP"
and "u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> y\<^sub>2\<in>D \<and> H\<^sub>2 e\<^sub>2\<in>D"
and "u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> y\<^sub>1\<in>G \<and> H\<^sub>1 e\<^sub>1\<in>G"
and "e\<^sub>1\<^sub>\<tau> = u\<^sub>1\<^sub>\<tau> - (\<lambda>t\<in>T\<^sub>\<tau>. y\<^sub>2 t)"
and "e\<^sub>1\<^sub>\<tau> = u\<^sub>1\<^sub>\<tau> - (\<lambda>t\<in>T\<^sub>\<tau>. (H\<^sub>2 e\<^sub>2)t)"
shows "(e\<^sub>2\<^sub>\<tau> = u\<^sub>2\<^sub>\<tau> + (\<lambda>t\<in>T\<^sub>\<tau>. y\<^sub>1 t)) \<longleftrightarrow> (e\<^sub>2\<^sub>\<tau> = u\<^sub>2\<^sub>\<tau> + (\<lambda>t\<in>T\<^sub>\<tau>. (H\<^sub>1 e\<^sub>1)t))"
using assms by (metis sig_Y_tr1)
theorem Small_Gain_Theorem:
assumes "\<And>\<tau>. \<tau>\<in>T" and "\<And>t. t\<in>T\<^sub>\<tau>" and "Signal u\<^sub>1 \<and> Signal u\<^sub>2"
and "trunc u\<^sub>1 u\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau> \<and> trunc u\<^sub>2 u\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau>"and "Operator_Space OP \<Longrightarrow>H\<^sub>1:D\<rightarrow>G \<and> H\<^sub>1\<in>OP \<and> H\<^sub>2:G\<rightarrow>D \<and>H\<^sub>2\<in>OP"
and "Domain_Space D \<Longrightarrow> u\<^sub>1\<in>D \<and> e\<^sub>1\<in>D \<and> y\<^sub>2\<in>D \<and> H\<^sub>2 e\<^sub>2\<in>D \<and> u\<^sub>1\<^sub>\<tau>\<in>D \<and> e\<^sub>1\<^sub>\<tau>\<in>D \<and> y\<^sub>2\<^sub>\<tau>\<in>D"
and "Range_Space G \<Longrightarrow> u\<^sub>2\<in>G \<and> e\<^sub>2\<in>G \<and> y\<^sub>1\<in>G \<and> H\<^sub>1 e\<^sub>1\<in>G \<and> u\<^sub>2\<^sub>\<tau>\<in>G \<and> e\<^sub>2\<^sub>\<tau>\<in>G \<and> y\<^sub>1\<^sub>\<tau>\<in>G"
and "Causality u\<^sub>1 u\<^sub>1\<^sub>\<tau> e\<^sub>1 e\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau> H\<^sub>1 OP TR " and " Causality u\<^sub>2 u\<^sub>2\<^sub>\<tau> e\<^sub>2 e\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau> H\<^sub>2 OP TR"
and "TR_Space TR \<Longrightarrow> u\<^sub>1\<^sub>\<tau>\<in>TR \<and> e\<^sub>1\<^sub>\<tau>\<in>TR \<and> y\<^sub>2\<^sub>\<tau>\<in>TR \<and> u\<^sub>2\<^sub>\<tau>\<in>TR \<and> e\<^sub>2\<^sub>\<tau>\<in>TR \<and> y\<^sub>1\<^sub>\<tau>\<in>TR"
and "e\<^sub>1 = u\<^sub>1 - y\<^sub>2" and "e\<^sub>1 = u\<^sub>1 - (H\<^sub>2 e\<^sub>2)"and "e\<^sub>2 = u\<^sub>2 + y\<^sub>1" and "e\<^sub>2 = u\<^sub>2 + (H\<^sub>1 e\<^sub>1)"
and "\<And>t. t\<in>T\<^sub>\<tau> \<Longrightarrow>e\<^sub>1\<^sub>\<tau> = u\<^sub>1\<^sub>\<tau> - (\<lambda>t. y\<^sub>2 t)" and "\<And>t. t\<in>T\<^sub>\<tau> \<Longrightarrow>e\<^sub>1\<^sub>\<tau> = u\<^sub>1\<^sub>\<tau> - (\<lambda>t. (H\<^sub>2 e\<^sub>2)t)"
and "\<And>t. t\<in>T\<^sub>\<tau> \<Longrightarrow>e\<^sub>2\<^sub>\<tau> = u\<^sub>2\<^sub>\<tau> + (\<lambda>t. y\<^sub>1 t)" and "\<And>t. t\<in>T\<^sub>\<tau> \<Longrightarrow>e\<^sub>2\<^sub>\<tau> = u\<^sub>2\<^sub>\<tau> + (\<lambda>t. (H\<^sub>1 e\<^sub>1)t)"
and "Stability u\<^sub>1 u\<^sub>1\<^sub>\<tau> e\<^sub>1 e\<^sub>1\<^sub>\<tau> U\<^sub>1 U\<^sub>1\<^sub>\<tau> \<gamma>\<^sub>1 \<beta>\<^sub>1 H\<^sub>1 M OP TR" and "Stability u\<^sub>2 u\<^sub>2\<^sub>\<tau> e\<^sub>2 e\<^sub>2\<^sub>\<tau> U\<^sub>2 U\<^sub>2\<^sub>\<tau> \<gamma>\<^sub>2 \<beta>\<^sub>2 H\<^sub>2 M OP TR"
and "set_integrable M T\<^sub>\<tau> u\<^sub>1\<^sub>\<tau>" "set_integrable M T\<^sub>\<tau> u\<^sub>2\<^sub>\<tau>" "set_integrable M T\<^sub>\<tau> e\<^sub>1\<^sub>\<tau>" "set_integrable M T\<^sub>\<tau> e\<^sub>2\<^sub>\<tau>"
and "set_integrable M T\<^sub>\<tau> y\<^sub>1\<^sub>\<tau>" "set_integrable M T\<^sub>\<tau> y\<^sub>2\<^sub>\<tau>" "set_integrable M T\<^sub>\<tau> (\<lambda>t. (H\<^sub>1 e\<^sub>1)t)"
and "set_integrable M T\<^sub>\<tau> (\<lambda>t. (H\<^sub>2 e\<^sub>2)t)" and "set_integrable M T\<^sub>\<tau> (\<lambda>t. (u\<^sub>1\<^sub>\<tau> t)\<^sup>2)"
and "set_integrable M T\<^sub>\<tau> (\<lambda>t. ((H\<^sub>2 e\<^sub>2)t)\<^sup>2)"and "set_integrable M T\<^sub>\<tau> (\<lambda>t. u\<^sub>1\<^sub>\<tau> t * (H\<^sub>2 e\<^sub>2)t )"
and "set_integrable M T\<^sub>\<tau> (\<lambda>t. (u\<^sub>2\<^sub>\<tau> t)\<^sup>2)" and "set_integrable M T\<^sub>\<tau> (\<lambda>t. ((H\<^sub>1 e\<^sub>1)t)\<^sup>2)"
and "set_integrable M T\<^sub>\<tau> (\<lambda>t. u\<^sub>2\<^sub>\<tau> t *(H\<^sub>1 e\<^sub>1)t)" and "set_integrable M T\<^sub>\<tau> (\<lambda>t. (e\<^sub>1\<^sub>\<tau> t)\<^sup>2)"
and "set_integrable M T\<^sub>\<tau> (\<lambda>t. (e\<^sub>2\<^sub>\<tau> t)\<^sup>2)" and "set_integrable M T\<^sub>\<tau> (\<lambda>t. e\<^sub>1\<^sub>\<tau> t * e\<^sub>2\<^sub>\<tau> t )"
and "(LINT t:T\<^sub>\<tau>|M. (( H\<^sub>2 e\<^sub>2 )t)\<^sup>2 )>0" and "(LINT t:T\<^sub>\<tau>|M. (( H\<^sub>1 e\<^sub>1 )t)\<^sup>2 )>0"
and "(LINT t:T\<^sub>\<tau>|M. (e\<^sub>2\<^sub>\<tau> t)\<^sup>2 )>0" and " \<gamma>\<^sub>1 * \<gamma>\<^sub>2 <1"
shows "(L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) \<le> ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 *(L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2 + \<gamma>\<^sub>2 * \<beta>\<^sub>1 )/(1 - \<gamma>\<^sub>1 * \<gamma>\<^sub>2)"
and "(L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) \<le> ((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>1 *(L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1 + \<gamma>\<^sub>1 * \<beta>\<^sub>2 )/(1 - \<gamma>\<^sub>1 * \<gamma>\<^sub>2)"
and "(L2norm M (\<lambda>t. e\<^sub>1 t + e\<^sub>2 t) T\<^sub>\<tau>) \<le> (L2norm M e\<^sub>1 T\<^sub>\<tau>) + (L2norm M e\<^sub>2 T\<^sub>\<tau>)"
proof -
from assms have asm_e1_1:"(L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) = (L2norm M (\<lambda>t. u\<^sub>1\<^sub>\<tau> t + - (H\<^sub>2 e\<^sub>2)t) T\<^sub>\<tau>)"
by (metis minus_apply minus_real_def)
then have asm_e1_2:"(L2norm M (\<lambda>t. u\<^sub>1\<^sub>\<tau> t + -( H\<^sub>2 e\<^sub>2 )t ) T\<^sub>\<tau>) \<le> (L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (L2norm M (H\<^sub>2 e\<^sub>2) T\<^sub>\<tau>)"
using assms L2norm_triangle_ineq_nq by auto
from asm_e1_1 asm_e1_2 have "(L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) \<le> (L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (L2norm M (H\<^sub>2 e\<^sub>2) T\<^sub>\<tau>)"
by presburger
note step_e1_1 =this
have "(L2norm M (\<lambda>t. (H\<^sub>2 e\<^sub>2) t) T\<^sub>\<tau> \<le> \<gamma>\<^sub>2 * (L2norm M (\<lambda>t. e\<^sub>2\<^sub>\<tau> t) T\<^sub>\<tau>) + \<beta>\<^sub>2)"
using assms Stability_def by auto
from this step_e1_1 have "(L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (L2norm M (H\<^sub>2 e\<^sub>2) T\<^sub>\<tau>) \<le> ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>2 * (L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2))"
by simp
from this step_e1_1 have e1:"(L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) \<le> ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>2 * (L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2))"
by force
note step_e1_2 =this
have e2_1:"(L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) = (L2norm M (\<lambda>t. u\<^sub>2\<^sub>\<tau> t + (H\<^sub>1 e\<^sub>1)t) T\<^sub>\<tau>)"
using assms by (metis plus_fun_apply)
then have e2_2:"(L2norm M (\<lambda>t. u\<^sub>2\<^sub>\<tau> t + ( H\<^sub>1 e\<^sub>1 )t ) T\<^sub>\<tau>) \<le> (L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (L2norm M (H\<^sub>1 e\<^sub>1) T\<^sub>\<tau>)"
using assms L2norm_triangle_ineq by meson
have "(L2norm M (\<lambda>t. (H\<^sub>1 e\<^sub>1) t) T\<^sub>\<tau> \<le> \<gamma>\<^sub>1 * (L2norm M (\<lambda>t. e\<^sub>1\<^sub>\<tau> t) T\<^sub>\<tau>) + \<beta>\<^sub>1)"
using assms Stability_def by auto
from this e2_2 have e2_3:"(L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (L2norm M (H\<^sub>1 e\<^sub>1) T\<^sub>\<tau>) \<le> (L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1)"
by simp
from this e2_1 e2_2 have e2_4:"(L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>)\<le> ((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1))"
by linarith
from this step_e1_2 have "((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>2 * (L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2))
\<le> ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>2 * ((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1)) + \<beta>\<^sub>2))"
using T\<^sub>\<tau>_def assms(1) assms(2) by fastforce
note step_e1_3 =this
then have asm_e1_3: "((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>2 * ((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1)) + \<beta>\<^sub>2))
= ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 *(L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>1 * \<gamma>\<^sub>2 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 * \<beta>\<^sub>1 + \<beta>\<^sub>2)"
by algebra
then have asm_e1_4:"((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 *(L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>1 * \<gamma>\<^sub>2 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 * \<beta>\<^sub>1 + \<beta>\<^sub>2)
= \<gamma>\<^sub>1 * \<gamma>\<^sub>2 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 *(L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2 + \<gamma>\<^sub>2 * \<beta>\<^sub>1 )"
by linarith
then have "(L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) \<le> \<gamma>\<^sub>1 * \<gamma>\<^sub>2 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 *(L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2 + \<gamma>\<^sub>2 * \<beta>\<^sub>1 )"
using step_e1_1 step_e1_2 step_e1_3 asm_e1_3 by linarith
then have "(L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) - \<gamma>\<^sub>1 * \<gamma>\<^sub>2 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) \<le> ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 *(L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2 + \<gamma>\<^sub>2 * \<beta>\<^sub>1 )"
by force
then have "(L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>)*(1 - \<gamma>\<^sub>1 * \<gamma>\<^sub>2 )\<le> ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 *(L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2 + \<gamma>\<^sub>2 * \<beta>\<^sub>1 )"
by (metis linordered_field_class.sign_simps(24) real_scaleR_def real_vector.scale_right_diff_distrib
semiring_normalization_rules(12))
with \<open>\<gamma>\<^sub>1 * \<gamma>\<^sub>2 <1\<close> this show "(L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>)\<le> ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>2 *(L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2 + \<gamma>\<^sub>2 * \<beta>\<^sub>1 )/(1 - \<gamma>\<^sub>1 * \<gamma>\<^sub>2 )"
by (simp add: less_diff_eq pos_le_divide_eq)
note sig_e1 =this
(* For Signal e2 *)
from e2_4 e1 have e2_5:"((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1)) \<le>
((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>2 * (L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2)) + \<beta>\<^sub>1))"
using T\<^sub>\<tau>_def assms(1) assms(2) by fastforce
then have "((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * ((L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>2 * (L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>2)) + \<beta>\<^sub>1))
= \<gamma>\<^sub>1 * \<gamma>\<^sub>2 * (L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>)+((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * (L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1 + \<gamma>\<^sub>1 *\<beta>\<^sub>2))"
by algebra
then have "(L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) \<le> \<gamma>\<^sub>1 * \<gamma>\<^sub>2 * (L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>)+((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * (L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1 + \<gamma>\<^sub>1 *\<beta>\<^sub>2 ))"
using e2_4 e2_5 by linarith
then have "(L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) - \<gamma>\<^sub>1 * \<gamma>\<^sub>2 * (L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) \<le> ((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * (L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1 + \<gamma>\<^sub>1 *\<beta>\<^sub>2 ))"
by force
then have "(L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>)*(1 - \<gamma>\<^sub>1 * \<gamma>\<^sub>2) \<le> ((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + (\<gamma>\<^sub>1 * (L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1 + \<gamma>\<^sub>1 *\<beta>\<^sub>2 ))"
by (metis linordered_field_class.sign_simps(24) real_scaleR_def real_vector.scale_right_diff_distrib
semiring_normalization_rules(12))
with \<open>\<gamma>\<^sub>1 * \<gamma>\<^sub>2 <1\<close> this show "(L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) \<le> ((L2norm M u\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>) + \<gamma>\<^sub>1 * (L2norm M u\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + \<beta>\<^sub>1 + \<gamma>\<^sub>1 *\<beta>\<^sub>2 )/(1 - \<gamma>\<^sub>1 * \<gamma>\<^sub>2)"
by (simp add: less_diff_eq pos_le_divide_eq)
note sig_e2 =this
from sig_e1 sig_e2 have "(L2norm M (\<lambda>t. e\<^sub>1\<^sub>\<tau> t + e\<^sub>2\<^sub>\<tau> t) T\<^sub>\<tau>) \<le> (L2norm M e\<^sub>1\<^sub>\<tau> T\<^sub>\<tau>) + (L2norm M e\<^sub>2\<^sub>\<tau> T\<^sub>\<tau>)"
using assms L2norm_triangle_ineq by meson
then show "(L2norm M (\<lambda>t. e\<^sub>1 t + e\<^sub>2 t) T\<^sub>\<tau>) \<le> (L2norm M e\<^sub>1 T\<^sub>\<tau>) + (L2norm M e\<^sub>2 T\<^sub>\<tau>)"
using assms L2norm_triangle_ineq by (metis T_def diff_add_cancel le_add_same_cancel2 mem_Collect_eq)
qed
end
|
#include "cudaSirecon.h"
#include "cudaSireconImpl.h"
#include "SIM_reconstructor.hpp"
#include "cudasireconConfig.h"
#include <boost/filesystem.hpp>
#ifdef MRC
#include "mrc.h"
#endif
std::string version_number = std::to_string(cudasirecon_VERSION_MAJOR) + "." +
std::to_string(cudasirecon_VERSION_MINOR) + "." +
std::to_string(cudasirecon_VERSION_PATCH);
void SetDefaultParams(ReconParams *pParams)
{
pParams->k0startangle = 1.57193;
pParams->linespacing = 0.177;
pParams->na = 1.36;
pParams->nimm = 1.515;
pParams->ndirs = 3;
pParams->nphases = 3;
pParams->phaseSteps = 0;
pParams->norders_output = 0;
pParams->bTwolens = 0;
pParams->bFastSIM = 0;
pParams->bBessel = 0;
pParams->BesselNA = 0.45;
pParams->zoomfact = 2;
pParams->z_zoom = 1;
pParams->nzPadTo = 0;
pParams->explodefact= 1.0;
pParams->bFilteroverlaps = 1;
pParams->recalcarrays = 1; //! whether to calculate the overlaping regions between bands just once or always; used in fitk0andmodamps()
pParams->napodize = 10;
pParams->forceamp.assign(1, 0.f);
// pParams->k0angles = NULL;
pParams->bSearchforvector = 1;
pParams->bUseTime0k0 = 1; /* default to use time 0's k0 fit for the rest in a time series data */
pParams->apodizeoutput = 0; /* 0-no apodize; 1-cosine apodize; 2-triangle apodize; used in filterbands() */
pParams->bSuppress_singularities = 1; /* whether to dampen the OTF values near band centers; used in filterbands() */
pParams->suppression_radius = 10; /* if suppress_singularities is 1, the range within which suppresion is applied; used in filterbands() */
pParams->bDampenOrder0 = 0; /* whether to dampen order 0 contribution; used in filterbands() */
pParams->bFitallphases = 1;
pParams->do_rescale=1; /* fading correction method: 0-no correction; 1-with correction */
pParams->equalizez = 0;
pParams->equalizet = 0;
pParams->bNoKz0 = 0;
pParams->bRadAvgOTF = 0; /* default to use non-radially averaged OTFs */
pParams->bOneOTFperAngle = 0; /* default to use one OTF for all SIM angles */
pParams->bFixdrift = 0;
pParams->drift_filter_fact = 0.0;
pParams->constbkgd = 0.0;
pParams->bBgInExtHdr = 0;
pParams->bUsecorr = 0;
pParams->electrons_per_bit = 0.6528;
pParams->readoutNoiseVar = 32.42; // electron^2
pParams->bMakemodel = 0;
pParams->bSaveAlignedRaw = 0;
pParams->bSaveSeparated = 0;
pParams->bSaveOverlaps = 0;
pParams->bWriteTitle = 0;
pParams -> bTIFF = false;
}
// Functions for dealing with images
bool notGoodDimension(unsigned num)
// Good dimension is defined as one that can be fatorized into 2s, 3s, 5s, and 7s
// According to CUFFT manual, such dimension would warranty fast FFT
{
if (num==2 || num==3 || num==5 || num==7)
return false;
else if (num % 2 == 0) return notGoodDimension(num / 2);
else if (num % 3 == 0) return notGoodDimension(num / 3);
else if (num % 5 == 0) return notGoodDimension(num / 5);
else if (num % 7 == 0) return notGoodDimension(num / 7);
else
return true;
}
unsigned findOptimalDimension(unsigned inSize, int step=-1)
{
unsigned outSize = inSize;
while (notGoodDimension(outSize))
outSize += step;
return outSize;
}
void allocateOTFs(ReconParams* pParams, int sizeOTF,
std::vector<std::vector<GPUBuffer> >& otfs)
{
otfs.clear();
unsigned short nDirsOTF = 1;
if (pParams->bOneOTFperAngle)
nDirsOTF = pParams->ndirs;
otfs.resize(nDirsOTF);
for (int dir = 0; dir< nDirsOTF; dir++)
for (int i = 0; i < pParams->norders; ++i) {
GPUBuffer buff;
buff.resize(sizeOTF * sizeof(cuFloatComplex));
otfs[dir].push_back(buff);
}
}
void allocateImageBuffers(const ReconParams& params,
const ImageParams& imgParams, ReconData* data)
{
data->savedBands.clear();
data->savedBands.reserve(params.ndirs);
for (int i = 0; i < params.ndirs; ++i) {
data->savedBands.push_back(std::vector<GPUBuffer>());
data->savedBands[i].reserve(params.nphases);
for (int j = 0; j < params.nphases; ++j) {
data->savedBands[i].push_back(GPUBuffer(
(imgParams.nx / 2 + 1) * imgParams.ny * imgParams.nz0 *
sizeof(cuFloatComplex), 0));
}
}
for (int i = 0; i < params.ndirs; ++i) {
for (int j = 0; j < params.nphases; ++j) {
data->savedBands[i][j].setToZero();
}
}
}
void bgAndSlope(const ReconParams& myParams,
const ImageParams& imgParams, ReconData* reconData)
{
reconData->background.resize(sizeof(float) * imgParams.nx *
imgParams.ny);
reconData->slope.resize(sizeof(float) * imgParams.nx *
imgParams.ny);
if (myParams.bUsecorr) {
// flatfield correction of measured data using calibration data
printf("loading CCD calibration file\n");
getbg_and_slope(myParams.corrfiles.c_str(),
(float*)reconData->background.getPtr(),
(float*)reconData->slope.getPtr(), imgParams.nx, imgParams.ny);
} else {
for (int i = 0; i < imgParams.nx * imgParams.ny; i++) {
/* use the constant background value given by user */
((float*)(reconData->background.getPtr()))[i] = myParams.constbkgd;
((float*)(reconData->slope.getPtr()))[i] = 1.0;
}
}
reconData->backgroundExtra = 0;
}
void getbg_and_slope(const char *corrfiles, float *background,
float *slope, int nx, int ny)
{
int cstream_no=10;
int ixyz[3], mxyz[3], pixeltype; /* variables for IMRdHdr call */
float min, max, mean; /* variables for IMRdHdr call */
#ifdef MRC
IW_MRC_HEADER header;
if (IMOpen(cstream_no, corrfiles, "ro")) {
fprintf(stderr, "File %s does not exist\n", corrfiles);
exit(-1);
}
IMRdHdr(cstream_no, ixyz, mxyz, &pixeltype, &min, &max, &mean);
IMGetHdr(cstream_no, &header);
if (header.nx != nx || header.ny != ny) {
fprintf(stderr,
"calibration file %s has different dimension than data file",
corrfiles);
exit(-1);
}
IMAlCon(cstream_no, 0);
IMRdSec(cstream_no, background);
IMRdSec(cstream_no, slope);
IMClose(cstream_no);
#endif
}
void findModulationVectorsAndPhasesForAllDirections(
int zoffset, ReconParams* params, const ImageParams& imgParams,
DriftParams* driftParams, ReconData* data)
{
// Apodize (or edge softening) every 2D slice:
apodizationDriver(zoffset, params, imgParams, driftParams, data);
// 2D FFT every 2D slice:
transformXYSlice(zoffset, params, imgParams, driftParams, data);
float dkx = 1./(imgParams.dxy * imgParams.nx);
float dky = 1./(imgParams.dxy * imgParams.ny);
float k0magguess = 1.0 / params->linespacing;
for (int direction = 0; direction < params->ndirs; ++direction) {
std::vector<GPUBuffer>* rawImages = &(data->savedBands[direction]);
std::vector<GPUBuffer>* bands = &(data->savedBands[direction]);
std::vector<float> phaseList(params->nphases);
if (params->phaseSteps != 0) {
// User specified the non-ideal (i.e., not 2pi/5) phase steps for
// each orientation. Under this circumstance, calculate the
// non-ideal sepMatrix:
for (int i = 0; i < params->nphases; ++i) {
phaseList[i] = i * params->phaseSteps[direction];
}
makematrix(params->nphases, params->norders, direction,
&(phaseList[0]), (&data->sepMatrix[0]),
&(data->noiseVarFactors[0]));
}
// Unmixing info components in real or reciprocal space:
separate(imgParams.nx, imgParams.ny, imgParams.nz,
direction, params->nphases, params->norders,
rawImages, &data->sepMatrix[0]);
#ifndef NDEBUG
for (int phase = 0; phase < params->nphases; ++phase) {
assert(rawImages->at(phase).hasNaNs(true) == false);
std::cout << "Phase " << phase << "ok." << std::endl;
}
#endif
if (imgParams.nz > 1) {
// 1D FFT of a stack of 2D FFTs to obtain equivalent of 3D FFT
cufftHandle fftplan1D;
int fftN[1] = {imgParams.nz0};
int stride = (imgParams.nx / 2 + 1) * imgParams.ny;
int dist = 1;
cufftResult cuFFTErr = cufftPlanMany(&fftplan1D, 1, fftN,
fftN, stride, dist,
fftN, stride, dist,
CUFFT_C2C,
(imgParams.nx / 2 + 1) * imgParams.ny);
if (cuFFTErr != CUFFT_SUCCESS) {
throw std::runtime_error("CUFFT plan creation failed");
}
for (int i = 0; i < params->nphases; ++i) {
cufftExecC2C(fftplan1D, (cuFloatComplex*)((*bands)[i]).getPtr(),
(cuFloatComplex*)((*bands)[i]).getPtr(), CUFFT_FORWARD);
}
cufftDestroy(fftplan1D);
}
if (params->bMakemodel) {
/* Use the OTF to simulate an ideal point source; replace bands
* with simulated data
* DM: k0 is not initialized but has memory allocate at this point.
* k0 initialization code is near lines 430ff in sirecon.c */
makemodeldata(imgParams.nx, imgParams.ny, imgParams.nz0, bands,
params->norders, data->k0[direction], imgParams.dxy, imgParams.dz,
&data->otf[0], imgParams.wave[0], params);
}
/* save the separated raw if requested */
if (params->bTIFF && params->bSaveSeparated) {
// TO-DO
std::cout << "No unmixed raw images were saved in TIFF mode\n";
}
#ifdef MRC
else if (!params->bTIFF && params->bSaveSeparated) {
CPUBuffer tmp((*rawImages)[0].getSize());
for (int phase = 0; phase < params->nphases; ++ phase) {
(*rawImages)[phase].set(&tmp, 0, tmp.getSize(), 0);
for (int z = 0; z < imgParams.nz; ++z) {
float* imgPtr = (float*)tmp.getPtr();
IMWrSec(separated_stream_no,
imgPtr + (z + zoffset) * (imgParams.nx/2 + 1)*2 * imgParams.ny);
}
}
continue; // skip the k0 search and modamp fitting
}
#endif
/* After separation and FFT, the std::vector rawImages, now referred to as
* the std::vector bands, contains the center band (bands[0])
* , the real (bands[1], bands[3], etc.) and
* imaginary part (bands[2], bands[4], etc.) bands
* of the different orders */
if (! (imgParams.ntimes > 1 && imgParams.curTimeIdx > 0
&& params->bUseTime0k0) ) {
data->k0[direction] = data->k0guess[direction];
printf("k0guess[direction %d] = (%f, %f) pixels\n", direction,
data->k0guess[direction].x/dkx, data->k0guess[direction].y/dky);
}
// Now to fix 3D drift between dirs estimated by determinedrift_3D()
if (direction != 0 && params->bFixdrift) {
fixdrift_bt_dirs(bands, params->norders, driftParams->drift_bt_dirs[direction],
imgParams.nx, imgParams.ny, imgParams.nz0);
}
/* assume k0 vector not well known, so fit for it */
cuFloatComplex amp_inv;
cuFloatComplex amp_combo;
// dir_ is used in upcoming calls involving data->otf, to differentiate the cases
// of common OTF and dir-specific OTF
int dir_=0;
if (params->bOneOTFperAngle)
dir_ = direction;
if (params->bSearchforvector &&
!(imgParams.ntimes > 1 && imgParams.curTimeIdx > 0 && params->bUseTime0k0)) {
/* In time series, can choose to use the time 0 k0 fit for the
* rest of the series.
* Find initial estimate of modulation wave vector k0 by
* cross-correlation. */
findk0(bands, &data->overlap0, &data->overlap1, imgParams.nx,
imgParams.ny, imgParams.nz0, params->norders,
&(data->k0[direction]), imgParams.dxy, imgParams.dz, &(data->otf[dir_]),
imgParams.wave[0], params);
if (params->bSaveOverlaps) {
// output the overlaps
if (params->bTIFF) {
CPUBuffer tmp0(data->overlap0.getSize()*2);
data->overlap0.set(&tmp0, 0, data->overlap0.getSize(), 0);
data->overlap1.set(&tmp0, 0, data->overlap1.getSize(), data->overlap0.getSize());
CImg<> ovlp0((float* )tmp0.getPtr(), imgParams.nx*2, imgParams.ny, imgParams.nz*2, 1,
true); // ovlp0 shares buffer with tmp0 (hence "true" in the final parameter)
ovlp0.save_tiff(params->fileOverlaps.c_str());
}
#ifdef MRC
else {
CPUBuffer tmp0(data->overlap0.getSize());
data->overlap0.set(&tmp0, 0, tmp0.getSize(), 0);
CPUBuffer tmp1(data->overlap1.getSize());
data->overlap1.set(&tmp1, 0, tmp1.getSize(), 0);
cuFloatComplex* ol0Ptr = (cuFloatComplex*)tmp0.getPtr();
cuFloatComplex* ol1Ptr = (cuFloatComplex*)tmp1.getPtr();
for (int z = 0; z < imgParams.nz0; ++z) {
IMWrSec(overlaps_stream_no, ol0Ptr + z * imgParams.nx * imgParams.ny);
IMWrSec(overlaps_stream_no, ol1Ptr + z * imgParams.nx * imgParams.ny);
}
}
#endif
}
printf("Initial guess by findk0() of k0[direction %d] = (%f,%f) pixels\n",
direction, data->k0[direction].x/dkx, data->k0[direction].y/dky);
/* refine the cross-corr estimate of k0 by a search for best k0
* vector direction and magnitude using real space waves*/
printf("before fitk0andmodamp\n");
/* if (myParams.recalcarrays==0 && dist>1.0) */
params->recalcarrays = 1;
/* if k0 is very close to the guess, we can save time by not
* recalculating the overlap arrays */
fitk0andmodamps(bands, &data->overlap0, &data->overlap1, imgParams.nx,
imgParams.ny, imgParams.nz0, params->norders, &(data->k0[direction]),
imgParams.dxy, imgParams.dz, &(data->otf[dir_]), imgParams.wave[0],
&data->amp[direction][0], params);
if (imgParams.curTimeIdx == 0) {
data->k0_time0[direction] = data->k0[direction];
}
/* check if the k0 vector found is reasonably close to the guess */
vector deltak0;
deltak0.x = data->k0[direction].x - data->k0guess[direction].x;
deltak0.y = data->k0[direction].y - data->k0guess[direction].y;
float dist = sqrt(deltak0.x * deltak0.x + deltak0.y * deltak0.y);
if (dist/k0magguess > K0_WARNING_THRESH) {
printf("WARNING: ");
}
printf("best fit for k0 is %.3f%% from expected value.\n", dist/k0magguess*100);
if (imgParams.ntimes > 1 && imgParams.curTimeIdx > 0
&& dist > 2*K0_WARNING_THRESH) {
data->k0[direction] = data->k0_time0[direction];
printf("k0 estimate of time point 0 is used instead\n");
for (int order = 1; order < params->norders; ++order) {
float corr_coeff;
if (imgParams.nz0>1)
corr_coeff = findrealspacemodamp(bands, &data->overlap0,
&data->overlap1, imgParams.nx, imgParams.ny, imgParams.nz0,
0, order, data->k0[direction], imgParams.dxy, imgParams.dz,
&(data->otf[dir_]), imgParams.wave[0], &data->amp[direction][order],
&_inv, &_combo, 1, params);
else
corr_coeff = findrealspacemodamp(bands, &data->overlap0,
&data->overlap1, imgParams.nx, imgParams.ny, imgParams.nz0,
order-1, order, data->k0[direction], imgParams.dxy, imgParams.dz,
&(data->otf[dir_]), imgParams.wave[0], &data->amp[direction][order],
&_inv, &_combo, 1, params);
printf("modamp mag=%f, phase=%f\n, correlation coeff=%f\n\n",
cmag(data->amp[direction][order]),
atan2(data->amp[direction][order].y, data->amp[direction][order].x),
corr_coeff);
}
}
} else {
/* assume k0 vector known, so just fit for the modulation amplitude and phase */
printf("known k0 for direction %d = (%f, %f) pixels \n", direction,
data->k0[direction].x/dkx, data->k0[direction].y/dky);
for (int order = 1; order < params->norders; ++order) {
float corr_coeff = findrealspacemodamp(bands, &data->overlap0,
&data->overlap1, imgParams.nx, imgParams.ny, imgParams.nz0,
0, order, data->k0[direction], imgParams.dxy, imgParams.dz,
&(data->otf[dir_]), imgParams.wave[0], &data->amp[direction][order],
&_inv, &_combo, 1, params);
printf("modamp mag=%f, phase=%f\n",
cmag(data->amp[direction][order]),
atan2(data->amp[direction][order].y, data->amp[direction][order].x));
printf("reverse modamp mag=%f, phase=%f\n", 1.0f / cmag(amp_inv),
-atan2(amp_inv.y, amp_inv.x));
printf("combined modamp mag=%f, phase=%f\n",
cmag(amp_combo), atan2(amp_combo.y, amp_combo.x));
printf("correlation coeff=%f\n\n", corr_coeff);
if (params->bTIFF) {
// To-DO
std::cout << "No overlaps were saved in TIFF mode";
}
#ifdef MRC
else if (!params->bTIFF && order == 1 && params->bSaveOverlaps) {// output the overlaps
// output the overlaps
CPUBuffer tmp0(data->overlap0.getSize());
data->overlap0.set(&tmp0, 0, tmp0.getSize(), 0);
CPUBuffer tmp1(data->overlap1.getSize());
data->overlap1.set(&tmp1, 0, tmp1.getSize(), 0);
float* ol0Ptr = (float*)tmp0.getPtr();
float* ol1Ptr = (float*)tmp1.getPtr();
for (int z = 0; z < imgParams.nz0; ++z) {
IMWrSec(overlaps_stream_no, ol0Ptr + z * imgParams.nx * imgParams.ny);
IMWrSec(overlaps_stream_no, ol1Ptr + z * imgParams.nx * imgParams.ny);
}
}
#endif
}
} /* if(searchforvector) ... else ... */
if (imgParams.nz == 1) {
/* In 2D SIM, amp stores modamp's between each adjacent pair of
* bands. We want to convert this to modamp w.r.t. order 0 */
for (int order = 2; order < params->norders; ++order) {
data->amp[direction][order] = cmul(data->amp[direction][order],
data->amp[direction][order - 1]);
}
}
if (params->forceamp[0] > 0.0) {
/* force modamp's amplitude to be a value user provided (ideally
* should be 1) */
for (int order = 1; order < params->norders; ++order) {
float a = cmag(data->amp[direction][order]);
if (a < params->forceamp[order-1]) {
float ampfact = params->forceamp[order-1] / a;
data->amp[direction][order].x *= ampfact;
data->amp[direction][order].y *= ampfact;
printf("modamp mag=%f, phase=%f \n",
cmag(data->amp[direction][order]),
atan2(data->amp[direction][order].y, data->amp[direction][order].x));
}
}
}
/* In 2D NLSIM, we often don't trust the modamp fit between neighboring high-order components; */
/* only if fitallphases is True do all fitted modamps get actually used; */
/* otherwise, order 2 and above's global phase is inferred from order 1's phase. */
if (!params->bFitallphases) {
float base_phase = get_phase(data->amp[direction][1]);
cuFloatComplex expiphi;
cuFloatComplex amplitude;
float phi;
for (int order = 2; order < params->norders; ++order) {
amplitude.x = cmag(data->amp[direction][order]);
amplitude.y = 0;
phi = order * base_phase /*+ M_PI*(order-1)*/;
/* sign flip for every other order happens only in saturation case? */
expiphi.x = cos(phi);
expiphi.y = sin(phi);
data->amp[direction][order] = cmul(amplitude, expiphi);
}
}
} /* end for (dir) */ /* done finding the modulation vectors and phases for all directions */
}
void apodizationDriver(int zoffset, ReconParams* params,
const ImageParams& imgParams, DriftParams* driftParams, ReconData* data)
{
for (int direction = 0; direction < params->ndirs; ++direction) {
/* data assumed taken with z changing fast, direction changing
* slowly */
std::vector<GPUBuffer>* rawImages = &(data->savedBands[direction]);
std::vector<GPUBuffer>* bands = &(data->savedBands[direction]);
for (int z = 0; z < imgParams.nz; ++z) {
for (int phase = 0; phase < params->nphases; ++phase) {
if (params->napodize >= 0) {
// Goes through here
apodize(params->napodize, imgParams.nx, imgParams.ny,
&(rawImages->at(phase)),
(z + zoffset) * (imgParams.nx/2 + 1)*2 * imgParams.ny);
} else if (params->napodize == -1) {
cosapodize(imgParams.nx, imgParams.ny, &(*rawImages)[phase],
(z + zoffset) * imgParams.nx * imgParams.ny);
}
} /* end for (phase), loading, flatfielding, and apodizing raw images */
}
} /* end for (dir) */
}
void rescaleDriver(int it, int iw, int zoffset, ReconParams* params,
const ImageParams& imgParams, DriftParams* driftParams, ReconData* data)
{
for (int direction = 0; direction < params->ndirs; ++direction) {
/* data assumed taken with z changing fast, direction changing
* slowly */
std::vector<GPUBuffer>* rawImages = &(data->savedBands[direction]);
std::vector<GPUBuffer>* bands = &(data->savedBands[direction]);
for (int z = 0; z < imgParams.nz; ++z)
if (params->do_rescale) {
// Goes through here
rescale(imgParams.nx, imgParams.ny, imgParams.nz, z, zoffset,
direction, iw, it, params->nphases, rawImages, params->equalizez,
params->equalizet, &data->sum_dir0_phase0[0]);
}
#ifndef NDEBUG
std::cout<< "rescaleDriver(): " << cudaGetErrorString(cudaGetLastError()) << std::endl;
#endif
}
}
void transformXYSlice(int zoffset, ReconParams* params,
const ImageParams& imgParams, DriftParams* driftParams, ReconData* data)
{
cufftHandle rfftplanGPU;
int fftN[2] = {imgParams.ny, imgParams.nx};
int inembed[2] = {imgParams.nx * imgParams.ny, (imgParams.nx/2 + 1)*2};
int istride = 1;
int idist = (imgParams.nx/2 + 1)*2 * imgParams.ny;
int onembed[2] = {imgParams.nx * imgParams.ny, imgParams.nx /2 +1};
int ostride = 1;
int odist = (imgParams.nx / 2 + 1) * imgParams.ny;
cufftResult cuFFTErr = cufftPlanMany(&rfftplanGPU, 2, &fftN[0],
inembed, istride, idist,
onembed, istride, odist,
CUFFT_R2C, imgParams.nz);
if (cuFFTErr != CUFFT_SUCCESS) {
std::cout << "Error code: " << cuFFTErr << " at " __FILE__ << ":" << __LINE__ << std::endl;
throw std::runtime_error("cufftPlanMany() failed.");
}
for (int direction = 0; direction < params->ndirs; ++direction) {
for (int phase = 0; phase < params->nphases; ++phase) {
cuFFTErr = cufftExecR2C(rfftplanGPU,
(float*)data->savedBands[direction][phase].getPtr(),
(cuFloatComplex*)data->savedBands[direction][phase].getPtr());
if (cuFFTErr != CUFFT_SUCCESS) {
std::cout << "Line:" << __LINE__ ;
throw std::runtime_error("cufft failed.");
}
}
}
cufftDestroy(rfftplanGPU);
if (cuFFTErr != CUFFT_SUCCESS) {
std::cout << "Error code: " << cuFFTErr << " at " __FILE__ << ":" << __LINE__<< std::endl;
throw std::runtime_error("cufftDestroy() failed.");
}
}
/***************************** makematrix ************************************/
/* generates the matrix that is to be used to separate the raw indata */
/* into the different bands of sample information. */
/* Two cases:
1. If arrPhases is NULL, we're certain that phases are equally spaced within 2Pi range;
2. Else, user supplies a list of phases actually used (e.g, when there is drift or
non-ideal SLM patterns are used), and noise variance amplification factors for each
order and direction is calculated based on the non-ideal separation matrix
*/
/*****************************************************************************/
void makematrix(int nphases, int norders, int dir, float *arrPhases,
float *sepMatrix, float * noiseVarFactors)
{
std::cout << "In makematrix." << std::endl;
/*
norders is not necessarily nphases/2+1, in cases such as nonlinear SIM
where the number of output orders can be smaller.
*/
int j, order;
float phi, sqrt_nphases, sqrt_2;
sqrt_nphases = sqrt((float)nphases);
sqrt_2 = sqrt(2.);
// norders could be less than (nphases+1)/2
if (arrPhases == 0) { /* phase values equally spaced between 0 and 2Pi */
phi = 2.0 * M_PI / nphases;
for (j = 0; j < nphases; ++j) {
sepMatrix[0 * nphases + j] = 1.0;
for (order = 1; order < norders; ++order) {
/* With this definition, bandplus = bandre + i bandim
* has coefficient exp() with unit normalization */
sepMatrix[(2 * order - 1) * nphases + j] = cos(j * order * phi);
sepMatrix[2 * order * nphases + j] = sin(j * order * phi);
}
}
}
else {/* User supplied phase values in arrPhases */
int *ipvt, info, i, nCols;
float *workspace, *forwardM, *A_t_A, unit=1., zero=0.;
/* Here we differentiate between 2 options: */
/* 1. use direct matrix inversion; */
/* 2. use least-square solution. */
nCols = 2 * norders - 1;
if (nCols < nphases) { // use least-square
ipvt = (int*)malloc(nCols * sizeof(int));
forwardM = (float*)malloc(nphases*nCols*sizeof(float));
A_t_A = (float*)malloc(nCols*nCols*sizeof(float));
/* First construct the forward matrix*/
for (i=0; i<nphases; i++) {
forwardM[i] = 1.0 / nphases;
for (order=1; order<norders; order++) {
forwardM[i+(2*order-1)*nphases] = 2 * cos(order*arrPhases[i]) / nphases;
forwardM[i+2*order*nphases] = 2 * sin(order*arrPhases[i]) / nphases;
}
}
/* print_matrix("forward matrix:", nphases, nCols, forwardM, nphases); */
/* multiply transposed forward matrix with forward matrix */
sgemm_("T", "N", &nCols, &nCols, &nphases, &unit, forwardM, &nphases,
forwardM, &nphases, &zero, A_t_A, &nCols);
/* print_matrix("A transpose times A:", nCols, nCols, A_t_A, nCols); */
/* Then invert the forward matrix to form the sep matrix*/
sgetrf_(&nCols, &nCols, A_t_A, &nCols, ipvt, &info);
if (info==0) { // successful factorization
workspace = (float*)malloc(nCols*sizeof(float));
sgetri_(&nCols, A_t_A, &nCols, ipvt, workspace, &nCols, &info);
free(workspace);
}
else
printf("WARNING: sgetri() returns non 0.\n");
if (info!=0)
printf("WARNING: sgetrf() returns non 0.\n");
// multiply inverse A_t_A with transposed forward matrix
sgemm_("N", "T", &nCols, &nphases, &nCols, &unit, A_t_A, &nCols,
forwardM, &nphases, &zero, sepMatrix, &nCols);
/* print_matrix("Separation Matrix:", nCols, nphases, sepMatrix, nCols); */
/* transpose back to C-style matrix */
matrix_transpose(sepMatrix, nphases, nCols);
free(ipvt);
free(forwardM);
free(A_t_A);
}
else { // use direct inversion
ipvt = (int*)malloc(nphases*sizeof(int));
/* First construct the forward matrix (in C-style storage convention ) */
for (i=0; i<nphases; i++) {
sepMatrix[i*nphases] = 1.0 / nphases;
for (order=1; order<norders; order++) {
sepMatrix[i*nphases+(2*order-1)] = 2 * cos(order*arrPhases[i]) / nphases;
sepMatrix[i*nphases+2*order] = 2 * sin(order*arrPhases[i]) / nphases;
}
}
/* Then invert the forward matrix to form the sep matrix*/
sgetrf_(&nphases, &nphases, sepMatrix, &nphases, ipvt, &info);
if (info==0) { // successful factorization
workspace = (float*)malloc(nphases*sizeof(float));
sgetri_(&nphases, sepMatrix, &nphases, ipvt, workspace, &nphases, &info);
free(workspace);
}
else
printf("WARNING: sgetri() returns non 0.\n");
if (info!=0)
printf("WARNING: sgetrf() returns non 0.\n");
free(ipvt);
}
/* Report noise factors */
for (order=0;order<norders;order++) noiseVarFactors[dir*norders+order] = 0.0;
for (j=0;j<nphases;j++) {
noiseVarFactors[dir*norders+0] += pow(sepMatrix[0*nphases+j], 2);
for (order=1;order<norders;order++)
noiseVarFactors[dir*norders+order] += pow(sepMatrix[(2*order-1)*nphases+j], 2) + pow(sepMatrix[2*order*nphases+j], 2);
}
printf(" Separation noise factors: ");
for (order=0;order<norders;order++) {
noiseVarFactors[dir*norders+order] /= nphases;
printf(" Order %d: %.3f,",order, sqrt(noiseVarFactors[dir*norders+order]));
}
printf("\n");
}
printf("Separation matrix:\n");
for (j=0;j<norders*2-1;j++) {
int i;
for (i=0; i<nphases; i++)
printf("%9.5f ", sepMatrix[j*nphases+i]);
printf("\n");
}
printf("\n");
}
void allocSepMatrixAndNoiseVarFactors(const ReconParams& params, ReconData* reconData)
{
reconData->sepMatrix.resize(params.nphases * (params.norders * 2 - 1));
reconData->noiseVarFactors.resize(params.ndirs * params.norders, 1.0f);
}
void matrix_transpose(float* mat, int nRows, int nCols)
{
int i, j;
float* tmpmat = (float*)malloc(nRows*nCols*sizeof(float));
for (i=0; i<nRows; i++)
for (j=0; j<nCols; j++)
tmpmat[j*nRows+i] = mat[i*nCols+j];
memcpy(mat, tmpmat, nRows*nCols*sizeof(float));
free(tmpmat);
}
float get_phase(cuFloatComplex b)
{
return atan2(b.y, b.x);
}
float cmag(cuFloatComplex a)
{
return (sqrt(a.x*a.x+a.y*a.y));
}
cuFloatComplex cmul(cuFloatComplex a, cuFloatComplex b)
{
cuFloatComplex result;
result.x = a.x * b.x - a.y * b.y;
result.y = a.x * b.y + a.y * b.x;
return result;
}
void dumpBands(std::vector<GPUBuffer>* bands, int nx, int ny, int nz0)
{
int n = 0;
for (auto i = bands->begin(); i != bands->end(); ++i) {
std::stringstream s;
s << "band" << n << ".tif";
CPUBuffer buf(nx*ny*nz0*sizeof(float));
i->set(&buf, 0, buf.getSize(), 0);
CImg<> band_tiff((float *) buf.getPtr(), nx, ny, nz0, 1, true);
band_tiff.save_tiff(s.str().c_str());
std::stringstream ss;
ss << "band" << n << ".dat";
std::ofstream os(ss.str().c_str());
i->dump(os, nx, 0, nx * ny * sizeof(float));
++n;
}
}
template<class T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)
{
copy(v.begin(), v.end(), std::ostream_iterator<T>(std::cout, " "));
return os;
}
// IMPLEMENTATION OF CLASS SIM_RECONSTRUCTOR FOLLOWS:
SIM_Reconstructor::SIM_Reconstructor(int argc, char **argv)
{
// Call this constructor from a command-line based program
m_argc = argc;
m_argv = argv;
SetDefaultParams(&m_myParams);
// define all the commandline and config file options
setupProgramOptions();
po::positional_options_description p;
p.add("input-file", 1);
p.add("output-file", 1);
p.add("otf-file", 1);
// parse the commandline
store(po::command_line_parser(argc, argv).
options(m_progopts).positional(p).run(), m_varsmap);
if (m_varsmap.count("help")) {
std::cout << "cudasirecon v" + version_number + " -- Written by Lin Shao. All rights reserved.\n" << "\n";
std::cout << m_progopts << "\n";
exit(0);
}
if (m_varsmap.count("version")) {
std::cout << "Version " << version_number << std::endl;
exit(0);
}
notify(m_varsmap);
if (m_config_file != "") {
std::ifstream ifs(m_config_file.c_str());
if (!ifs) {
std::cout << "can not open config file: " << m_config_file << "\n";
std::cout << "proceed without it\n";
}
else {
// parse config file
store(parse_config_file(ifs, m_progopts), m_varsmap);
notify(m_varsmap);
}
}
// fill in m_myParams fields that have not been set yet
setParams();
printf("nphases=%d, ndirs=%d\n", m_myParams.nphases, m_myParams.ndirs);
// In TIFF mode, m_myParams.ifiles refers to the name of the folder raw data resides in;
// and m_myParams.ofiles refers to a pattern in all the raw data file names.
// To help decide if input is in TIFF or MRC format, gather all TIFF files with
// matching names under the same folder:
if (boost::filesystem::is_directory(m_myParams.ifiles)) {
m_all_matching_files = gatherMatchingFiles(m_myParams.ifiles, m_myParams.ofiles);
// If there is no name-matching TIFF files, then presumably input is MRC
m_myParams.bTIFF = (m_all_matching_files.size() > 0);
}
if (m_myParams.bTIFF) {
// Suppress "unknown field" warnings
TIFFSetWarningHandler(NULL);
m_imgParams.ntimes = m_all_matching_files.size();
} else {
#ifndef MRC
throw std::runtime_error("No tiff files found, and program was not compiled with MRC support.");
#endif
}
m_OTFfile_valid = false;
openFiles();
// deviceMemoryUsage();
setup();
#ifdef MRC
if (!m_myParams.bTIFF)
::setOutputHeader(m_myParams, m_imgParams, m_in_out_header);
#endif
//! Load flat-field correction data
bgAndSlope(m_myParams, m_imgParams, &m_reconData);
}
//! used by shared library
SIM_Reconstructor::SIM_Reconstructor(int nx, int ny,
int nimages, // number of raw images per volume
std::string configFileName)
{
SetDefaultParams(&m_myParams);
// define all the commandline and config file options
setupProgramOptions();
std::ifstream ifs(configFileName.c_str());
if (ifs) {
// parse config file
store(parse_config_file(ifs, m_progopts), m_varsmap);
notify(m_varsmap);
}
// fill in m_myParams fields that have not been set yet
setParams();
// TODO: allow more direct access
// will throw CImgIOException if file cannot be opened
m_otf_tiff.assign(m_myParams.otffiles.c_str());
m_OTFfile_valid = true;
m_myParams.bTIFF = true; // not really: but we don't want it to use MRC stuff
std::cout << "zoomz: " << m_myParams.zoomfact << std::endl;
setup(nx, ny, nimages, 1);
bgAndSlope(m_myParams, m_imgParams, &m_reconData);
}
SIM_Reconstructor::~SIM_Reconstructor()
{
}
int SIM_Reconstructor::setupProgramOptions()
{
// Declare a group of options that will be
// allowed both on command line and in a config file
m_progopts.add_options()
("input-file", po::value<std::string>(), "input file (or data folder in TIFF mode)")
("output-file", po::value<std::string>(), "output file (or filename pattern in TIFF mode)")
("otf-file", po::value<std::string>()->required(), "OTF file")
("usecorr", po::value<std::string>(), "use the flat-field correction file provided")
("ndirs", po::value<int>(&m_myParams.ndirs)->default_value(3),
"number of directions")
("nphases", po::value<int>(&m_myParams.nphases)->default_value(5),
"number of phases per direction")
("nordersout", po::value<int>(&m_myParams.norders_output)->default_value(0),
"number of output orders; must be <= norders")
("angle0", po::value<float>(&m_myParams.k0startangle)->default_value(1.648),
"angle of the first direction in radians")
("ls", po::value<float>(&m_myParams.linespacing)->default_value(0.172),
"line spacing of SIM pattern in microns")
("na", po::value<float>(&m_myParams.na)->default_value(1.2),
"Detection numerical aperture")
("nimm", po::value<float>(&m_myParams.nimm)->default_value(1.33),
"refractive index of immersion medium")
("zoomfact", po::value<float>(&m_myParams.zoomfact)->default_value(2.),
"lateral zoom factor")
("explodefact", po::value<float>(&m_myParams.explodefact)->default_value(1.),
"artificially exploding the reciprocal-space distance between orders by this factor")
("zzoom", po::value<int>(&m_myParams.z_zoom)->default_value(1),
"axial zoom factor")
("nofilteroverlaps", po::value<int>(&m_myParams.bFilteroverlaps)->implicit_value(false),
"do not filter the overlaping region between bands usually used in trouble shooting")
("background", po::value<float>(&m_myParams.constbkgd)->default_value(0.),
"camera readout background")
("wiener", po::value<float>(&m_myParams.wiener)->default_value(0.01),
"Wiener constant")
("forcemodamp", po::value< std::vector<float> >()->multitoken(),
"modamps forced to these values")
("k0angles", po::value< std::string >(), //po::value< std::vector<float> >()->multitoken(),
"user given pattern vector k0 angles for all directions")
("otfRA", po::value<int>(&m_myParams.bRadAvgOTF)->implicit_value(true),
"using rotationally averaged OTF")
("otfPerAngle", po::value<int>(&m_myParams.bOneOTFperAngle)->implicit_value(true),
"using one OTF per SIM angle")
("fastSI", po::value<int>(&m_myParams.bFastSIM)->implicit_value(true),
"SIM data is organized in Z->Angle->Phase order; default being Angle->Z->Phase")
("k0searchAll", po::value<int>(&m_myParams.bUseTime0k0)->implicit_value(false),
"search for k0 at all time points")
("norescale", po::value<int>(&m_myParams.do_rescale)->implicit_value(false),
"bleach correcting for z")
("equalizez", po::value<int>(&m_myParams.equalizez)->implicit_value(true),
"bleach correcting for z")
("equalizet", po::value<int>(&m_myParams.equalizet)->implicit_value(true),
"bleach correcting for time")
("dampenOrder0", po::value<int>(&m_myParams.bDampenOrder0)->implicit_value(true),
"dampen order-0 in final assembly")
("nosuppress", po::value<int>(&m_myParams.bSuppress_singularities)->implicit_value(false),
"do not suppress DC singularity in final assembly (good idea for 2D/TIRF data)")
("nokz0", po::value<int>(&m_myParams.bNoKz0)->implicit_value(true),
"do not use kz=0 plane of the 0th order in the final assembly")
("gammaApo", po::value<float>(&m_myParams.apoGamma)->default_value(1.f),
"output apodization gamma; 1.0 means triangular apo")
("saveprefiltered", po::value<std::string>(),
"save separated bands (half Fourier space) into a file and exit")
("savealignedraw", po::value<std::string>(),
"save drift-fixed raw data (half Fourier space) into a file and exit")
("saveoverlaps", po::value<std::string>(),
"save overlap0 and overlap1 (real-space complex data) into a file and exit")
("config,c", po::value<std::string>(&m_config_file)->default_value(""),
"name of a file of a configuration.")
("2lenses", po::value<int>(&m_myParams.bTwolens)->implicit_value(true), "I5S data")
("bessel", po::value<int>(&m_myParams.bBessel)->implicit_value(1), "bessel-SIM data")
("besselExWave", po::value<float>(&m_myParams.BesselLambdaEx)->default_value(0.488f),
"Bessel SIM excitation wavelength in microns")
("besselNA", po::value<float>(&m_myParams.BesselNA)->default_value(0.144f),
"Bessel SIM excitation NA)")
("deskew", po::value<float>(&m_myParams.deskewAngle)->default_value(0.0f),
"Deskew angle; if not 0.0 then perform deskewing before processing")
("deskewshift", po::value<int>(&m_myParams.extraShift)->default_value(0),
"If deskewed, the output image's extra shift in X (positive->left)")
("noRecon", po::bool_switch(&m_myParams.bNoRecon)->default_value(false),
"No reconstruction will be performed; useful when combined with --deskew")
("cropXY", po::value<unsigned>(&m_myParams.cropXYto)->default_value(0),
"Crop the X-Y dimension to this number; 0 means no cropping")
("xyres", po::value<float>(&m_imgParams.dxy)->default_value(0.1),
"x-y pixel size (only used for TIFF files)")
("zres", po::value<float>(&m_imgParams.dz)->default_value(0.2),
"z pixel size (only used for TIFF files)")
("zresPSF", po::value<float>(&m_myParams.dzPSF)->default_value(0.15),
"z pixel size used in PSF TIFF files)")
("wavelength", po::value<short>(&m_imgParams.wave[0])->default_value(530),
"emission wavelength (only used for TIFF files)")
("writeTitle", po::value<int>(&m_myParams.bWriteTitle)->implicit_value(true),
"Write command line to image header (may cause issues with bioformats)")
("help,h", "produce help message")
("version", "show version")
;
return 0;
}
int SIM_Reconstructor::setParams()
{
// "otf-file" is required argument
if (m_varsmap.count("input-file")) {
m_myParams.ifiles = m_varsmap["input-file"].as<std::string>();
}
if (m_varsmap.count("output-file")) {
m_myParams.ofiles = m_varsmap["output-file"].as<std::string>();
}
if (m_varsmap.count("otf-file")) {
m_myParams.otffiles = m_varsmap["otf-file"].as<std::string>();
}
if (m_varsmap.count("usecorr")) {
m_myParams.corrfiles = m_varsmap["usecorr"].as<std::string>();
m_myParams.bUsecorr = 1;
}
if (m_varsmap.count("forcemodamp")) {
m_myParams.forceamp = m_varsmap["forcemodamp"].as< std::vector<float> >();
}
if (m_varsmap.count("wiener")) {
std::cout<< "wiener=" << m_myParams.wiener << std::endl;
}
if (m_varsmap.count("gammaApo")) {
// because "gammaApo" has a default value set, this block is always entered;
// and therefore, "apodizeoutput" is always 2 (triangular or gamma apo)
m_myParams.apodizeoutput = 2;
std::cout << "gamma = " << m_myParams.apoGamma << std::endl;
}
if (m_varsmap.count("saveprefiltered")) {
m_myParams.fileSeparated = m_varsmap["saveprefiltered"].as<std::string>();
m_myParams.bSaveSeparated = 1;
}
if (m_varsmap.count("savealignedraw")) {
m_myParams.fileRawAligned = m_varsmap["savealignedraw"].as<std::string>();
m_myParams.bSaveAlignedRaw = 1;
}
if (m_varsmap.count("saveoverlaps")) {
m_myParams.fileOverlaps = m_varsmap["saveoverlaps"].as<std::string>();
m_myParams.bSaveOverlaps = 1;
}
if (m_varsmap.count("k0angles")) {
boost::char_separator<char> sep(",");
boost::tokenizer<boost::char_separator<char>> tokens(m_varsmap["k0angles"].as< std::string >(), sep);
for ( auto it = tokens.begin(); it != tokens.end(); ++it)
m_myParams.k0angles.push_back(strtod(it->c_str(), NULL));
// std::cout << m_myParams.k0angles << std::endl;
}
return 0;
}
void SIM_Reconstructor::openFiles() {
if (!m_myParams.ifiles.size() || !m_myParams.ofiles.size())
throw std::runtime_error(
"Calling openFiles() but no input or output files were specified");
#ifdef MRC
if (!m_myParams.bTIFF && IMOpen(istream_no, m_myParams.ifiles.c_str(), "ro"))
// TIFF files are not opened till loadAndRescaleImage()
throw std::runtime_error("No matching input TIFF or MRC files not found");
// Create output file in MRC mode;
// in TIFF mode, output files are not created until writeResult() is called
if (!m_myParams.bTIFF)
if (IMOpen(ostream_no, m_myParams.ofiles.c_str(), "new")) {
std::cerr << "File " << m_myParams.ofiles << " can not be created.\n";
throw std::runtime_error("Error creating output file");
}
#endif
if (m_myParams.bTIFF) {
// will throw CImgIOException if file cannot be opened
m_otf_tiff.assign(m_myParams.otffiles.c_str());
m_OTFfile_valid = true;
}
#ifdef MRC
else if (IMOpen(otfstream_no, m_myParams.otffiles.c_str(), "ro"))
throw std::runtime_error("OTF file not found");
else
m_OTFfile_valid = true;
#endif
}
void SIM_Reconstructor::setup(unsigned nx, unsigned ny, unsigned nImages, unsigned nChannels)
// for mem buffer inputs
{
m_imgParams.nx = nx;
m_imgParams.nx_raw = nx;
m_imgParams.ny = ny;
m_imgParams.nz = nImages;
m_imgParams.nwaves = nChannels;
m_imgParams.nz /= m_imgParams.nwaves * m_myParams.nphases * m_myParams.ndirs;
setup_common();
}
//! Find out memory requirements and call setup_common allocate memory
void SIM_Reconstructor::setup()
{
if (m_myParams.bTIFF) {
CImg<> tiff0(m_all_matching_files[0].c_str());
m_imgParams.nx = 0;
m_imgParams.nx_raw = tiff0.width();
m_imgParams.ny = tiff0.height();
m_imgParams.nz = tiff0.depth();
m_imgParams.nwaves = tiff0.spectrum(); // multi-color not supported yet
m_imgParams.nz /= m_imgParams.nwaves * m_myParams.nphases * m_myParams.ndirs;
}
#ifdef MRC
else
::loadHeader(m_myParams, &m_imgParams, m_in_out_header);
#endif
printf("nx_raw=%d, ny=%d, nz=%d\n",
m_imgParams.nx_raw, m_imgParams.ny, m_imgParams.nz);
setup_common();
}
void SIM_Reconstructor::setup_common()
{
// Do we need to keep this?? -lin
// if (m_myParams.bTIFF)
// m_imgParams.nz0 = ::findOptimalDimension(m_imgParams.nz);
m_zoffset = 0;
if (m_myParams.nzPadTo) { // 'nzPadTo' ~never used
m_imgParams.nz0 = m_myParams.nzPadTo;
m_zoffset = (m_imgParams.nz0 - m_imgParams.nz) / 2;
} else {
m_imgParams.nz0 = m_imgParams.nz;
}
//! Deskewing, if requested, will be performed after this function returns;
// "nx" is altered to be equal to "ny" and "dz" is multiplied by sin(deskewAngle)
if (fabs(m_myParams.deskewAngle) > 0.) {
if (m_myParams.deskewAngle <0) m_myParams.deskewAngle += 180.;
m_imgParams.nx = findOptimalDimension(m_imgParams.nx_raw + m_imgParams.nz0 * fabs(cos(m_myParams.deskewAngle*M_PI/180.)) * m_imgParams.dz / m_imgParams.dxy);
// m_imgParams.nx = m_imgParams.ny;
m_imgParams.dz_raw = m_imgParams.dz;
m_imgParams.dz *= fabs(sin(m_myParams.deskewAngle * M_PI/180.));
}
else {
m_imgParams.nx = m_imgParams.nx_raw;
m_imgParams.dz_raw = 0;
}
//! If cropping is requested, change nx, ny accordingly: (does this work or make sense?)
if (m_myParams.cropXYto > 0 && m_myParams.cropXYto < m_imgParams.nx) {
m_imgParams.nx = m_myParams.cropXYto;
// m_imgParams.ny = m_myParams.cropXYto;
}
printf("nx=%d, ny=%d, nz=%d, nz0 = %d, nwaves=%d\n",
m_imgParams.nx, m_imgParams.ny, m_imgParams.nz,
m_imgParams.nz0, m_imgParams.nwaves);
printf("dxy=%f, dz=%f um\n", m_imgParams.dxy, m_imgParams.dz);
#ifdef MRC
// // Initialize headers for intermediate output files if requested
if (!m_myParams.bTIFF) {
if (m_myParams.bSaveAlignedRaw) {
memcpy(&aligned_header, &m_in_out_header, sizeof(m_in_out_header));
IMOpen(aligned_stream_no, m_myParams.fileRawAligned.c_str(), "new");
aligned_header.mode = IW_FLOAT;
aligned_header.nx = m_imgParams.nx;
aligned_header.inbsym = 0;
IMPutHdr(aligned_stream_no, &aligned_header);
}
if (m_myParams.bSaveSeparated) {
memcpy(&sep_header, &m_in_out_header, sizeof(m_in_out_header));
IMOpen(separated_stream_no, m_myParams.fileSeparated.c_str(), "new");
sep_header.nx = m_imgParams.nx/2+1; // saved will be separated FFTs
sep_header.mode = IW_COMPLEX;
sep_header.inbsym = 0;
IMPutHdr(separated_stream_no, &sep_header);
}
if (m_myParams.bSaveOverlaps) {
memcpy(&overlaps_header, &m_in_out_header, sizeof(m_in_out_header));
IMOpen(overlaps_stream_no, m_myParams.fileOverlaps.c_str(), "new");
overlaps_header.nz = m_imgParams.nz*2*m_myParams.ndirs*m_imgParams.ntimes*m_imgParams.nwaves;
overlaps_header.nx = m_imgParams.nx;
overlaps_header.num_waves = 2; // save overlap 0 and 1 as wave 0 and 1 respectively
overlaps_header.interleaved = WZT_SEQUENCE;
overlaps_header.mode = IW_COMPLEX; // saved will be full-complex overlaps in real space
overlaps_header.inbsym = 0;
IMPutHdr(overlaps_stream_no, &overlaps_header);
}
}
#endif
m_myParams.norders = 0;
if (m_myParams.norders_output != 0) {
m_myParams.norders = m_myParams.norders_output;
} else {
m_myParams.norders = m_myParams.nphases / 2 + 1;
}
std::cout << "nphases=" << m_myParams.nphases << ", norders=" <<
m_myParams.norders << ", ndirs=" << m_myParams.ndirs << std::endl;
if (m_OTFfile_valid)
setupOTFsFromFile();
::allocSepMatrixAndNoiseVarFactors(m_myParams, &m_reconData);
::makematrix(m_myParams.nphases, m_myParams.norders, 0, 0,
&(m_reconData.sepMatrix[0]), &(m_reconData.noiseVarFactors[0]));
::allocateImageBuffers(m_myParams, m_imgParams, &m_reconData);
m_imgParams.inscale = 1.0 / (m_imgParams.nx * m_imgParams.ny * m_imgParams.nz0 *
m_myParams.zoomfact * m_myParams.zoomfact * m_myParams.z_zoom * m_myParams.ndirs);
m_reconData.k0 = std::vector<vector>(m_myParams.ndirs);
m_reconData.k0_time0 = std::vector<vector>(m_myParams.ndirs);
m_reconData.k0guess = std::vector<vector>(m_myParams.ndirs);
float delta_angle = M_PI / m_myParams.ndirs;
float k0magguess = 1.0 / m_myParams.linespacing; // in 1/um, not assuming square images sizes
if (m_imgParams.nz > 1) {
int nordersIn = m_myParams.nphases / 2 + 1;
k0magguess /= nordersIn - 1;
}
for (int i = 0; i < m_myParams.ndirs; ++i) {
float k0angleguess;
if (m_myParams.k0angles.size() < m_myParams.ndirs) {
k0angleguess = m_myParams.k0startangle + i * delta_angle;
} else {
k0angleguess = m_myParams.k0angles[i];
}
m_reconData.k0guess[i].x = k0magguess * cos(k0angleguess); // in 1/um
m_reconData.k0guess[i].y = k0magguess * sin(k0angleguess); // in 1/um
}
m_reconData.sum_dir0_phase0 = std::vector<double>(m_imgParams.nz * m_imgParams.nwaves);
m_reconData.amp = std::vector<std::vector<cuFloatComplex> >(
m_myParams.ndirs, std::vector<cuFloatComplex>(m_myParams.norders));
for (int i = 0; i < m_myParams.ndirs; ++i) {
m_reconData.amp[i][0].x = 1.0f;
m_reconData.amp[i][0].y = 0.0f;
}
}
int SIM_Reconstructor::processOneVolume()
{
// process one SIM volume (i.e., for the time point timeIdx)
m_reconData.bigbuffer.resize(0);
m_reconData.outbuffer.resize(0);
m_reconData.overlap0.resize(m_imgParams.nx * m_imgParams.ny * m_imgParams.nz *
sizeof(cuFloatComplex));
m_reconData.overlap0.setToZero();
m_reconData.overlap1.resize(m_imgParams.nx * m_imgParams.ny * m_imgParams.nz *
sizeof(cuFloatComplex));
m_reconData.overlap1.setToZero();
findModulationVectorsAndPhasesForAllDirections(m_zoffset,
&m_myParams, m_imgParams, &m_driftParams, &m_reconData);
m_reconData.overlap0.resize(0);
m_reconData.overlap1.resize(0);
// deviceMemoryUsage();
#ifdef MRC
if (saveIntermediateDataForDebugging(m_myParams))
return 0;
#endif
m_reconData.bigbuffer.resize((m_myParams.zoomfact * m_imgParams.nx) *
(m_myParams.zoomfact * m_imgParams.ny) * (m_myParams.z_zoom * m_imgParams.nz0) *
sizeof(cuFloatComplex));
m_reconData.bigbuffer.setToZero();
m_reconData.outbuffer.resize((m_myParams.zoomfact * m_imgParams.nx) *
(m_myParams.zoomfact * m_imgParams.ny) * (m_myParams.z_zoom * m_imgParams.nz0) *
sizeof(float));
m_reconData.outbuffer.setToZero();
// deviceMemoryUsage();
for (int direction = 0; direction < m_myParams.ndirs; ++direction) {
// dir_ is used in upcoming calls involving otf, to differentiate the cases
// of common OTF and dir-specific OTF
int dir_ = 0;
if (m_myParams.bOneOTFperAngle) dir_ = direction;
filterbands(direction, &m_reconData.savedBands[direction], m_reconData.k0,
m_myParams.ndirs, m_myParams.norders, m_reconData.otf[dir_],
m_imgParams.dxy, m_imgParams.dz, m_reconData.amp,
m_reconData.noiseVarFactors, m_imgParams.nx, m_imgParams.ny,
m_imgParams.nz0, m_imgParams.wave[0], &m_myParams);
assemblerealspacebands(
direction, &m_reconData.outbuffer, &m_reconData.bigbuffer,
&m_reconData.savedBands[direction], m_myParams.ndirs,
m_myParams.norders, m_reconData.k0, m_imgParams.nx, m_imgParams.ny,
m_imgParams.nz0, m_imgParams.dxy, m_myParams.zoomfact,
m_myParams.z_zoom, m_myParams.explodefact);
}
return 1;
}
void SIM_Reconstructor::loadAndRescaleImage(int timeIdx, int waveIdx)
{
if (m_myParams.bBessel && m_myParams.bNoRecon) return;
::rescaleDriver(timeIdx, waveIdx, m_zoffset, &m_myParams, m_imgParams,
&m_driftParams, &m_reconData);
}
void SIM_Reconstructor::setRaw(CImg<> &input, int it, int iw)
{
rawImage.assign(input);
loadImageData(it, iw);
}
void SIM_Reconstructor::setFile(int it, int iw)
{
if (m_myParams.bTIFF) {
rawImage.assign(m_all_matching_files[it].c_str());
}
#ifdef MRC
else {
rawImage.assign(m_imgParams.nx_raw, m_imgParams.ny, m_imgParams.nz * m_myParams.nphases * m_myParams.ndirs);
for (unsigned sec=0; sec<rawImage.depth(); sec++) {
IMPosnZWT(istream_no, sec, iw, it);
IMRdSec(istream_no, rawImage.data(0, 0, sec));
}
}
#endif
loadImageData(it, iw);
}
void SIM_Reconstructor::loadImageData(int it, int iw) {
float dskewA = m_myParams.deskewAngle;
// if ( dskewA<0) dskewA += 180.; already done in setup_common()
float deskewFactor = 0;
if (fabs(dskewA) > 0.0)
deskewFactor =
cos(dskewA * M_PI / 180.) * m_imgParams.dz_raw / m_imgParams.dxy;
for (int direction = 0; direction < m_myParams.ndirs; ++direction) {
// What does "PinnedCPUBuffer" really do? Using it here messes things up.
CPUBuffer nxExtendedBuff(sizeof(float) * (m_imgParams.nx / 2 + 1) * 2 *
m_imgParams.ny);
std::vector<GPUBuffer>* rawImages = &(m_reconData.savedBands[direction]);
int z = 0;
for (z = 0; z < m_imgParams.nz; ++z) {
CImg<> rawSection(m_imgParams.nx_raw, m_imgParams.ny);
int zsec;
// First determine which section of the raw data to load
if (m_myParams.bFastSIM) {
// data organized into (nz, ndirs, nphases)
zsec = (z * m_myParams.ndirs * m_myParams.nphases +
direction * m_myParams.nphases);
} else {
// data organized into (ndirs, nz, nphases)
zsec = direction * m_imgParams.nz * m_myParams.nphases +
z * m_myParams.nphases;
}
for (int phase = 0; phase < m_myParams.nphases; ++phase) {
#ifdef MRC
if (m_myParams.bBgInExtHdr) {
/* subtract the background value of each exposure stored in MRC files'
extended header, indexed by the section number. */
int extInts;
float extFloats[3];
IMRtExHdrZWT(istream_no, zsec, iw, it, &extInts, extFloats);
m_reconData.backgroundExtra = extFloats[2];
}
#endif
load_and_flatfield(rawImage, zsec, rawSection.data(),
(float*)m_reconData.background.getPtr(),
m_reconData.backgroundExtra,
(float*)m_reconData.slope.getPtr(),
m_imgParams.inscale);
// if deskewFactor > 0, then do deskew for current z; otherwise, simply
// transfer from "rawSection" to "nxExtendedBuff". In either case,
// "nxExtendedBuff" holds result of current z.
deskewOneSection(rawSection, (float*)nxExtendedBuff.getPtr(), z,
m_imgParams.nz, m_imgParams.nx, deskewFactor,
m_myParams.extraShift);
// Transfer the data from nxExtendedBuff to device buffer previously
// allocated (see m_reconData.savedBands) std::cout << "z=" << z;
nxExtendedBuff.set(
&(rawImages->at(phase)), 0,
(m_imgParams.nx / 2 + 1) * 2 * m_imgParams.ny * sizeof(float),
(z + m_zoffset) * (m_imgParams.nx / 2 + 1) * 2 * m_imgParams.ny *
sizeof(float));
// std::cout << ", phase=" << phase << std::endl;
++zsec;
} // end for (phase)
} // end for (z)
#ifndef NDEBUG
for (auto i = rawImages->begin(); i != rawImages->end(); ++i)
assert(i->hasNaNs() == false);
#endif
//!
if (fabs(m_myParams.deskewAngle) > 0. && m_myParams.bNoRecon) {
// To-do: add code to off load rawImages into rawtiff_uint16
// if (m_myParams.bNoRecon) {
// CImg<unsigned short> rawtiff_uint16;
// rawtiff_uint16.save_tiff(makeOutputFilePath(m_all_matching_files[it],
// std::string("_deskewed")).c_str());
// std::cout << "Deskewed images written\n";
// return;
// }
}
} // end for (direction)
}
void SIM_Reconstructor::setupOTFsFromFile()
{
determine_otf_dimensions();
::allocateOTFs(&m_myParams, m_reconData.sizeOTF, m_reconData.otf);
loadOTFs();
}
void SIM_Reconstructor::determine_otf_dimensions()
{
if (m_myParams.bTIFF) {
uint32_t nxotf, nyotf, nzotf;
nxotf = m_otf_tiff.width()/2; // "/2" because of real and imaginary parts
nyotf = m_otf_tiff.height();
nzotf = m_otf_tiff.depth();
/* determine nzotf, nxotf, nyotf, dkrotf, dkzotf based on dataset being 2D/3D and
flags bRadAvgOTF and bOneOTFperAngle */
if (m_imgParams.nz == 1) { // 2D
m_myParams.nxotf = nxotf;
if (m_myParams.bRadAvgOTF)
m_myParams.nyotf = 1;
else
m_myParams.nyotf = nyotf;
m_myParams.nzotf = 1;
// m_myParams.dkrotf = xres; // dkrotf's unit is 1/micron
m_myParams.dkrotf = 1/(m_imgParams.dxy * (nxotf-1)*2); // dkrotf's unit is 1/micron
m_myParams.dkzotf = 1;
}
else { // 3D
if (m_myParams.bRadAvgOTF) {
m_myParams.nzotf = nxotf;
m_myParams.nxotf = nyotf;
m_myParams.nyotf = 1;
m_myParams.dkzotf = 1/(m_myParams.dzPSF * m_myParams.nzotf);
m_myParams.dkrotf = 1/(m_imgParams.dxy * (m_myParams.nxotf-1)*2);
}
else {
m_myParams.nzotf = nzotf / m_myParams.norders; // each order has a 3D OTF stack (non-negative kx half of Fourier space)
m_myParams.nxotf = nxotf;
m_myParams.nyotf = nyotf;
m_myParams.dkzotf = 1/(m_myParams.dzPSF * m_myParams.nzotf);
m_myParams.dkrotf = 1/(m_imgParams.dxy * m_myParams.nxotf);
}
}
}
#ifdef MRC
else {
int ixyz[3], mxyz[3], pixeltype;
float min, max, mean;
IW_MRC_HEADER otfheader;
/* Retrieve OTF file header info */
IMRdHdr(otfstream_no, ixyz, mxyz, &pixeltype, &min, &max, &mean);
IMGetHdr(otfstream_no, &otfheader);
IMAlCon(otfstream_no, 0);
/* determine nzotf, nxotf, nyotf, dkrotf, dkzotf based on dataset
* being 2D/3D and flags bRadAvgOTF and bOneOTFperAngle */
if (m_imgParams.nz == 1) { // 2D, ignore bOneOTFperAngle
m_myParams.nxotf = otfheader.nx;
if (m_myParams.bRadAvgOTF)
m_myParams.nyotf = 1;
else
m_myParams.nyotf = otfheader.ny;
m_myParams.nzotf = 1;
m_myParams.dkrotf = otfheader.xlen; // dkrotf's unit is 1/micron
m_myParams.dkzotf = 1;
} else { // 3D, take into account bOneOTFperAngle
if (m_myParams.bRadAvgOTF) {
m_myParams.nzotf = otfheader.nx;
m_myParams.nxotf = otfheader.ny;
m_myParams.nyotf = 1;
m_myParams.dkzotf = otfheader.xlen;
m_myParams.dkrotf = otfheader.ylen;
} else {
// each order has a 3D OTF stack (non-negative kx half of Fourier
// space)
m_myParams.nzotf = otfheader.nz / m_myParams.norders;
if (m_myParams.bOneOTFperAngle)
m_myParams.nzotf /= m_myParams.ndirs;
m_myParams.nxotf = otfheader.nx;
m_myParams.nyotf = otfheader.ny;
m_myParams.dkzotf = otfheader.zlen;
m_myParams.dkrotf = otfheader.xlen;
}
}
}
#endif
printf("nzotf=%d, dkzotf=%f, nxotf=%d, nyotf=%d, dkrotf=%f\n",
m_myParams.nzotf, m_myParams.dkzotf, m_myParams.nxotf, m_myParams.nyotf,
m_myParams.dkrotf);
//! sizeOTF are determined so that correct memory can be allocated for otf
m_reconData.sizeOTF = m_myParams.nzotf*m_myParams.nxotf*m_myParams.nyotf;
}
int SIM_Reconstructor::loadOTFs()
{
// If one OTF per direction is used, then load all dirs of OTF
unsigned short nDirsOTF = 1;
if (m_myParams.bOneOTFperAngle)
nDirsOTF = m_myParams.ndirs;
// Load OTF data, no matter 2D, 3D, radially averaged or not.
if (m_myParams.bTIFF) {
size_t nzotf = m_otf_tiff.depth();
cuFloatComplex * otfTmp;
CPUBuffer otfTmpBuffer(m_reconData.sizeOTF * sizeof(cuFloatComplex));
for (int dir = 0; dir < nDirsOTF; dir++) {
for (int i=0; i<m_myParams.norders; i++) {
// If OTF file has multiple sections, then read them into otf[i]
if (m_imgParams.nz == 1 || m_myParams.bRadAvgOTF) {
if (nzotf > i + dir*m_myParams.norders) {
// each section in OTF file is OTF of one order; so load that section into otf[dir][i]
otfTmp = (cuFloatComplex *) m_otf_tiff.data(0, 0, i);
otfTmpBuffer.setFrom((void*) otfTmp, 0, m_reconData.sizeOTF * sizeof(cuFloatComplex), 0);
m_reconData.otf[dir][i].setFrom(otfTmpBuffer, 0, m_reconData.sizeOTF
* sizeof(cuFloatComplex), 0);
}
else // If there's just 1 OTF image, do not read any more and just duplicate otf[0][0] into otf[*][i]
m_reconData.otf[0][0].set(&(m_reconData.otf[dir][i]), 0,
m_reconData.otf[0][0].getSize(), 0);
}
else { // non-radially averaged 3D OTF
otfTmp = (cuFloatComplex *) m_otf_tiff.data(0, 0, i * m_myParams.nzotf);
otfTmpBuffer.setFrom((void*) otfTmp, 0, m_reconData.sizeOTF * sizeof(cuFloatComplex), 0);
m_reconData.otf[dir][i].setFrom(otfTmpBuffer, 0,
m_reconData.sizeOTF * sizeof(cuFloatComplex),
0);
}
}
}
}
#ifdef MRC
else {
int ixyz[3], mxyz[3], pixeltype;
float min, max, mean;
IW_MRC_HEADER otfheader;
/* Retrieve OTF file header info */
IMRdHdr(otfstream_no, ixyz, mxyz, &pixeltype, &min, &max, &mean);
IMGetHdr(otfstream_no, &otfheader);
CPUBuffer otfTmp(m_reconData.sizeOTF * sizeof(cuFloatComplex));
for (int dir = 0; dir< nDirsOTF; dir++) {
for (int i = 0; i < m_myParams.norders; i++) {
/* If OTF file has multiple sections, then read them into otf[i]; */
if (m_imgParams.nz == 1 || m_myParams.bRadAvgOTF) {
if (otfheader.nz > i + dir*m_myParams.norders) {
// each section in OTF file is OTF of one order; so load that section into otf[dir][i]
IMRdSec(otfstream_no, otfTmp.getPtr());
otfTmp.set(&(m_reconData.otf[dir][i]), 0, otfTmp.getSize(), 0);
} else {
/* If it's 2D image, do not read any more and just
* duplicate otf[0][0] into otf[*][i] */
m_reconData.otf[0][0].set(&(m_reconData.otf[dir][i]), 0,
m_reconData.otf[0][0].getSize(), 0);
}
} else { // non-radially averaged 3D OTF
for (int z = 0; z < m_myParams.nzotf; ++z) {
IMRdSec(otfstream_no, otfTmp.getPtr());
otfTmp.set(&(m_reconData.otf[dir][i]),
0, m_myParams.nxotf * m_myParams.nyotf * sizeof(cuFloatComplex),
z * m_myParams.nxotf * m_myParams.nyotf * sizeof(cuFloatComplex));
}
}
}
}
IMClose(otfstream_no);
}
#endif
#ifndef NDEBUG
for (int dir = 0; dir < nDirsOTF; dir++)
for (auto i = m_reconData.otf[dir].begin();
i != m_reconData.otf[dir].end(); ++i)
assert(i->hasNaNs() == false);
#endif
return 1;
}
// Transfer m_reconData from GPU to result buffer
void SIM_Reconstructor::getResult(float * result) {
CPUBuffer outbufferHost((m_myParams.zoomfact * m_imgParams.nx) *
(m_myParams.zoomfact * m_imgParams.ny) *
(m_myParams.z_zoom * m_imgParams.nz0) *
sizeof(float));
m_reconData.outbuffer.set(&outbufferHost, 0, outbufferHost.getSize(), 0);
CImg<> outCimg(
(float*)outbufferHost.getPtr(), m_myParams.zoomfact * m_imgParams.nx,
m_myParams.zoomfact * m_imgParams.ny, m_myParams.z_zoom * m_imgParams.nz0,
true);
memcpy(result, outCimg.data(), outCimg.size() * sizeof(float));
}
void SIM_Reconstructor::writeResult(int it, int iw)
{
CPUBuffer outbufferHost(
(m_myParams.zoomfact * m_imgParams.nx) *
(m_myParams.zoomfact * m_imgParams.ny) *
(m_myParams.z_zoom * m_imgParams.nz0) *
sizeof(float));
// if (it==0)
// computeAminAmax(&reconData.outbuffer, m_myParams.zoomfact * m_imgParams.nx,
// m_myParams.zoomfact * m_imgParams.ny, m_myParams.z_zoom * m_imgParams.nz,
// &minval, &maxval);
m_reconData.outbuffer.set(&outbufferHost, 0, outbufferHost.getSize(), 0);
#ifndef __clang__
double t1 = omp_get_wtime();
#endif
if (m_myParams.bTIFF) {
CImg<> outCimg((float*) outbufferHost.getPtr(),
m_myParams.zoomfact * m_imgParams.nx,
m_myParams.zoomfact * m_imgParams.ny,
m_myParams.z_zoom * m_imgParams.nz0, true); // "true" means outCimg does not allocate host memory
outCimg.save(makeOutputFilePath(m_all_matching_files[it], std::string("_proc")).c_str());
}
#ifdef MRC
else {
float maxval = -FLT_MAX;
float minval = FLT_MAX;
float* ptr = ((float*)outbufferHost.getPtr()) +
(int)(m_zoffset * m_myParams.z_zoom * m_imgParams.nx * m_imgParams.ny *
m_myParams.zoomfact * m_myParams.zoomfact);
for (int i = 0; i < m_imgParams.nz * m_myParams.z_zoom; ++i) {
IMWrSec(ostream_no, ptr);
if (it == 0) {
for (int j = 0;
j < (int)(m_imgParams.nx * m_imgParams.ny *
m_myParams.zoomfact * m_myParams.zoomfact);
++j) {
if (ptr[j] > maxval) {
maxval = ptr[j];
} else if (ptr[j] < minval) {
minval = ptr[j];
}
}
}
ptr += (int)(m_myParams.zoomfact * m_imgParams.nx *
m_myParams.zoomfact * m_imgParams.ny);
}
if (it == 0 && iw == 0) {
m_in_out_header.amin = minval;
m_in_out_header.amax = maxval;
}
}
#endif
#ifndef __clang__
double t2 = omp_get_wtime();
printf("amin, amax took: %f s\n", t2 - t1);
#endif
printf("Time point %d, wave %d done\n", it, iw);
}
void SIM_Reconstructor::closeFiles()
{
if (m_myParams.bTIFF)
{}
else {
#ifdef MRC
::IMClose(istream_no);
::saveCommandLineToHeader(m_argc, m_argv, m_in_out_header, m_myParams);
::IMClose(ostream_no);
#endif
}
}
void load_and_flatfield(CImg<> &cimg, int section_no, float *bufDestiny,
float *background, float backgroundExtra,
float *slope, float inscale)
{
float *buffer = cimg.data(0, 0, section_no);
int nx = cimg.width();
int ny = cimg.height();
unsigned extraX = 0;
#pragma omp parallel for
for (int l=0; l<ny; l++) {
for (int k=0; k<nx; k++) {
bufDestiny[l*(nx+extraX) + k] = (buffer[l*nx+k] - background[l*nx+k] - backgroundExtra) * slope[l*nx+k] * inscale;
}
for(int k=nx; k<nx+extraX; k++)
bufDestiny[l*(nx+extraX) + k] = 0.0;
}
}
void deskewOneSection(CImg<> &rawSection, float* nxp2OutBuff, int z, int nz,
int nx_out, float deskewFactor, int extraShift)
{
unsigned nx_in = rawSection.width();
unsigned ny_in = rawSection.height();
float *in = rawSection.data();
int nx_out_ext = (nx_out/2+1)*2;
// std::cout << "In deskewOneSection, deskewFactor=" << deskewFactor << std::endl;
#pragma omp parallel for
for (auto xout=0; xout<nx_out_ext; xout++) {
float xin = xout;
if (fabs(deskewFactor) > 0)
xin = xout - nx_out/2. + extraShift - deskewFactor*(z-nz/2.) + nx_in/2.;
for (int y=0; y<ny_in; y++) {
unsigned indout = y * nx_out_ext + xout;
if (xin >= 0 && xin < nx_in-1) {
unsigned indin = y * nx_in + (unsigned int) floor(xin);
float offset = xin - floor(xin);
nxp2OutBuff[indout] = (1-offset) * in[indin] + offset * in[indin+1];
}
else
nxp2OutBuff[indout] = 0.;
}
}
}
|
[STATEMENT]
lemma dropWhile_eq_drop: "dropWhile P xs = drop (length (takeWhile P xs)) xs"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. dropWhile P xs = drop (length (takeWhile P xs)) xs
[PROOF STEP]
by (induct xs) auto |
-- import SciLean.Core.Data.Curry
import SciLean.Mathlib.Convenient.Basic
-- import SciLean.Core.New.IsSmooth
import SciLean.Core.TensorProduct
import SciLean.Core.FinVec
import SciLean.Core.SmoothMap
namespace SciLean
--TODO: Question?
-- Should linearity include smoothness? Are there usefull linear
-- functions that are not smooth?
-- In finite dimension every linear function is smooth but in infitite
-- dimensional spaces it does not have to be the case.
/-- Function `f : X₁ → ... Xₙ → Y'` is a linear as a function `X₁ × ... × Xₙ → Y'`.
Where `X = X₁` and `Y = X₂ → ... → Xₙ → Y'`
Transitive closure of `IsLinNT`
-/
class IsLinNT {X Y : Type} {Xs Y' : Type} [Vec Xs] [Vec Y']
(n : Nat) (f : X → Y) [Prod.Uncurry n (X → Y) Xs Y'] : Prop where
is_lin : TensorProduct.is_linear (uncurryN n f)
is_smooth : IsSmoothT (uncurryN n f)
/-- Function `f : X₁ → ... Xₙ → Y'` is a linear as a function `X₁ × ... × Xₙ → Y'`.
Where `X = X₁` and `Y = X₂ → ... → Xₙ → Y'`
-/
class IsLinN {X Y : Type} {Xs Y' : Type} [Vec Xs] [Vec Y']
(n : Nat) (f : X → Y) [Prod.Uncurry n (X → Y) Xs Y'] extends IsLinNT n f : Prop
/-- `IsLin f` says that `f : X → Y` is linear.
Abbreviation for `IsLinN 1 f`
-/
abbrev IsLin {X Y} [Vec X] [Vec Y] (f : X → Y) : Prop := IsLinN 1 f
/-- `IsLinT f` says that `f : X → Y` is linear.
Abbreviation for `IsLinNT 1 f`.
`IsLinT` is transitive closure of `IsLin`.
-/
abbrev IsLinT {X Y} [Vec X] [Vec Y] (f : X → Y) : Prop := IsLinNT 1 f
structure LinMap (X Y : Type) [Vec X] [Vec Y] where
val : X → Y
[property : IsLinT val]
/-- `X --o Y` is the space of all linear maps between `X` and `Y`.
The notation `X ⊸ Y` is prefered, but this fixes pure ASCII equivalent. -/
infixr:25 " --o " => LinMap
/-- `X ⊸ Y` is the space of all linear maps between `X` and `Y` -/
infixr:25 " ⊸ " => LinMap
-- Lambda notation
open Lean.TSyntax.Compat in
macro "λ" xs:Lean.explicitBinders " ⊸ " b:term : term =>
Lean.expandExplicitBinders `SciLean.LinMap.mk xs b
variable {X Y Z W: Type} [Vec X] [Vec Y] [Vec Z] [Vec W]
instance : CoeFun (X⊸Y) (λ _ => X→Y) := ⟨λ f => f.1⟩
instance LinMap.val.arg_x.isLin {X Y} [Vec X] [Vec Y] (f : X ⊸ Y)
: IsLinT f.1 := f.2
abbrev LinMap.mk' {X Y} [Vec X] [Vec Y] (f : X → Y) (_ : IsLinT f) : X⊸Y := λ x ⊸ f x
@[ext]
theorem LinMap.ext {X Y} [Vec X] [Vec Y] (f g : X ⊸ Y) : (∀ x, f x = g x) → f = g := by sorry
@[simp, diff_simp]
theorem LinMap.eta_reduction {X Y} [Vec X] [Vec Y] (f : X ⊸ Y)
: (λ (x : X) ⊸ f x) = f := by rfl; done
theorem show_is_lin_via {X Y} [Vec X] [Vec Y] {f : X → Y} (g : X ⊸ Y) : (f = g) → IsLinT f :=
by
intro p
have q : f = g := by apply p
rw[q]; infer_instance
namespace Lin
variable {Z : Type} [Vec Z] {α : Type}
def comp' : (Y⊸Z) → (X⊸Y) → (X⊸Z) := λ f g =>
LinMap.mk' (λ x => f (g x)) sorry
def prodMap' : (X⊸Y) → (X⊸Z) → (X ⊸ Y×Z) := λ f g =>
LinMap.mk' (λ x => (f x, g x)) sorry
def zeroFun : Y⊸X :=
LinMap.mk' (λ y => (0 : X)) sorry
def swap : X⊗Y → Y⊗X := (λ xy => xy.map' (λ (x : X) (y : Y) => y⊗x) sorry)
@[simp] theorem comp'_eval (f : Y ⊸ Z) (g : X⊸Y) (x : X) : comp' f g x = f (g x) := by simp[comp']
@[simp] theorem prodMap'_eval (f : X ⊸ Y) (g : X⊸Z) (x : X) : prodMap' f g x = (f x, g x) := by simp[prodMap']
@[simp] theorem zeroFun_eval (y : Y) : zeroFun y = (0 : X) := by simp[zeroFun]
def neg : X ⊸ X := LinMap.mk' (λ x => -x) sorry
def add' : X×X ⊸ X := LinMap.mk' (λ (x,y) => x+y) sorry
def sub' : X×X ⊸ X := LinMap.mk' (λ (x,y) => x-y) sorry
def mul' : ℝ×ℝ ⊸ ℝ := LinMap.mk' (λ (x,y) => x*y) sorry
-- def tassocl :
-- def tassocr :
def unit' : ℝ → X ⊸ ℝ⊗X := λ r => LinMap.mk' (λ x => r⊗x) sorry
def counit : ℝ⊗X ⊸ X := LinMap.mk' ((λ rx => rx.map' (λ r x => r • x) sorry)) sorry
@[simp] theorem unit'_eval (r : ℝ) (x : X) : unit' r x = r⊗x := by simp[unit']
@[simp] theorem counit_eval (r : ℝ) (x : X) : counit (r⊗x) = r•x := by simp[counit]
instance : Neg (X⊸Y) := ⟨λ f => LinMap.mk' (λ x => -f x)
(show_is_lin_via (comp' neg f) (by funext; simp[neg]))⟩
instance : Add (X⊸Y) := ⟨λ f g => LinMap.mk' (λ x => f x + g x)
(show_is_lin_via (comp' add' (prodMap' f g)) (by funext; simp[add']))⟩
instance : Sub (X⊸Y) := ⟨λ f g => LinMap.mk' (λ x => f x - g x)
(show_is_lin_via (comp' sub' (prodMap' f g)) (by funext; simp[sub']))⟩
instance : Mul (X⊸ℝ) := ⟨λ f g => LinMap.mk' (λ x => f x * g x)
(show_is_lin_via (comp' mul' (prodMap' f g)) (by funext; simp[mul']))⟩
instance : SMul ℝ (X⊸Y) := ⟨λ r f => LinMap.mk' (λ x => r • f x)
(show_is_lin_via (comp' counit (comp' (unit' r) f)) (by funext; simp))⟩
instance : Zero (X ⊸ Y) := ⟨zeroFun⟩
-- !!!THIS USES SORRY!!!
instance : Vec (X ⊸ Y) := Vec.mkSorryProofs
end Lin
def TensorProduct.map (f : X ⊸ Y ⊸ Z) (xy : X⊗Y) : Z := xy.map' (λ x y => f x y) sorry_proof
namespace Lin
@[infer_tc_goals_rl]
instance {X ι} [Enumtype ι] [FinVec X ι] [Hilbert Y] : Inner (X ⊸ Y) where
-- This should be the correct version of the inner product
-- It looks assymetrical but it is a consequence of `inner_proj_dualproj`
-- ⟪x, y⟫ = ∑ i, 𝕡 i x * 𝕡' i y
-- which also appears assymetrical
inner f g := ∑ i, ⟪f (𝕖 i), g (𝕖' i)⟫
@[infer_tc_goals_rl]
instance {X ι} [Enumtype ι] [FinVec X ι] [Hilbert Y] : TestFunctions (X ⊸ Y) where
TestFun _ := True
@[infer_tc_goals_rl]
instance {X ι} [Enumtype ι] [FinVec X ι] [Hilbert Y] : SemiHilbert (X ⊸ Y) := SemiHilbert.mkSorryProofs
@[infer_tc_goals_rl]
instance {X ι} [Enumtype ι] [FinVec X ι] [Hilbert Y] : Hilbert (X ⊸ Y) := Hilbert.mkSorryProofs
@[infer_tc_goals_rl]
instance {X ι κ} [Enumtype ι] [Enumtype κ] [FinVec X ι] [FinVec Y κ] : Basis (X ⊸ Y) (ι×κ) ℝ where
basis := λ (i,j) => LinMap.mk' (λ x => 𝕡 i x • 𝕖[Y] j) sorry_proof
proj := λ (i,j) f => 𝕡 j (f (𝕖 i))
@[infer_tc_goals_rl]
instance {X ι κ} [Enumtype ι] [Enumtype κ] [FinVec X ι] [FinVec Y κ] : DualBasis (X ⊸ Y) (ι×κ) ℝ where
dualBasis := λ (i,j) => LinMap.mk' (λ x => 𝕡' i x • 𝕖'[Y] j) sorry_proof
dualProj := λ (i,j) f => 𝕡' j (f (𝕖' i))
open BasisDuality in
@[infer_tc_goals_rl]
instance {X ι κ} [Enumtype ι] [Enumtype κ] [FinVec X ι] [FinVec Y κ] : BasisDuality (X ⊸ Y) where
toDual := λ f => LinMap.mk' (λ x => toDual (f (fromDual x))) sorry_proof
fromDual := λ f => LinMap.mk' (λ x => fromDual (f (toDual x))) sorry_proof
@[infer_tc_goals_rl]
instance {X ι κ} [Enumtype ι] [Enumtype κ] [FinVec X ι] [FinVec Y κ] : FinVec (X ⊸ Y) (ι×κ) where
is_basis := sorry_proof
duality :=
by
intro (i,j) (i',j'); simp[Basis.basis, DualBasis.dualBasis, Inner.inner];
-- This should be:
-- ∑ i_i, ⟪[[i=i_]] * 𝕖 j, [[i'=i_1]] 𝕖' j'⟫
-- [[i=i']] * ⟪𝕖 j, 𝕖' j'⟫
-- [[i=i']] * [[j=j']]
sorry_proof
to_dual :=
by
simp [BasisDuality.toDual, Basis.proj, DualBasis.dualBasis]
intro f; ext x;
simp[FinVec.to_dual,FinVec.from_dual]
-- Now the goal is:
-- ∑ j, 𝕡 j (f (∑ i, 𝕡' i x * 𝕖 i)) * 𝕖' j
-- =
-- ∑ (i,j), 𝕡 j (f (𝕖 i)) * 𝕡' i x * 𝕖' j
sorry_proof
from_dual :=
by
simp [BasisDuality.fromDual, DualBasis.dualProj, Basis.basis]
intro f; ext x;
simp[FinVec.to_dual,FinVec.from_dual]
-- Now the goal is:
-- ∑ j, 𝕡' j (f (∑ i, 𝕡 i x * 𝕖' i)) * 𝕖 j
-- =
-- ∑ (i,j), 𝕡' j (f (𝕖' i)) * 𝕡' i x * 𝕖 j
sorry_proof
--------------------------------------------------------------------
def curry' (f : X ⊗ Y ⊸ Z) : (X ⊸ Y ⊸ Z) :=
LinMap.mk' (λ x =>
LinMap.mk' (λ y => f (x ⊗ y))
sorry_proof)
sorry_proof
def uncurry' (f : X ⊸ Y ⊸ Z) : (X ⊗ Y ⊸ Z) :=
LinMap.mk' (λ xy => xy.map' (λ x y => f x y) sorry_proof) sorry_proof
def id : X ⊸ X := LinMap.mk' (λ x => x) sorry_proof
def fst : X×Y ⊸ X := LinMap.mk' (λ (x,_) => x) sorry_proof
def snd : X×Y ⊸ Y := LinMap.mk' (λ (_,y) => y) sorry_proof
@[simp] theorem curry'_eval (f : X⊗Y ⊸ Z) (x : X) (y : Y) : curry' f x y = f (x⊗y) := by simp[curry']
@[simp] theorem uncurry'_eval (f : X ⊸ Y ⊸ Z) (xy : X⊗Y) : uncurry' f xy = xy.map f := by simp[uncurry',TensorProduct.map]
@[simp] theorem id_eval (x : X) : id x = x := by simp[id]
@[simp] theorem fst_eval (xy : X×Y) : fst xy = xy.1 := by simp[fst]
@[simp] theorem snd_eval (xy : X×Y) : snd xy = xy.2 := by simp[snd]
def tprod : X ⊸ Y ⊸ X⊗Y :=
LinMap.mk' (λ x =>
LinMap.mk' (λ y => x⊗y)
(show_is_lin_via (curry' id x) (by ext y; simp)))
(show_is_lin_via (curry' id) (by ext x y; simp))
-- noncomputable
-- def tpmap : (X⊸Y) ⊸ (X⊸Z) ⊸ (X⊸Y⊗Z) := ⟨λ f => ⟨λ g => ⟨λ x => (f x ⊗ g x), sorry_proof⟩, sorry_proof⟩, sorry_proof⟩
-- noncomputable
-- def tfmap : (X⊸Z) ⊸ (Y⊸W) ⊸ (X⊗Y⊸Z⊗W) := ⟨λ f => ⟨λ g => ⟨λ xy =>
-- let ⟨_,x,y⟩ := xy.repr
-- ∑ i, f (x i) ⊗ g (y i), sorry_proof⟩, sorry_proof⟩, sorry_proof⟩
-- def pmap : (X⊸Y) × (X⊸Z) ⊸ (X⊸Y×Z) := ⟨λ (f,g) => ⟨λ x => (f x, g x), sorry_proof⟩, sorry_proof⟩
-- def fmap : (X⊸Z) × (Y⊸W) ⊸ (X×Y⊸Z×W) := ⟨λ (f,g) =>⟨λ (x,y) => (f x, g y), sorry_proof⟩, sorry_proof⟩
-- def fmap' : (X→Z) × (Y→W) ⊸ (X×Y→Z×W) := ⟨λ (f,g) => λ (x,y) => (f x, g y), sorry_proof⟩
-- def pmap' : (X→Y) × (X→Z) ⊸ (X→Y×Z) := ⟨λ (f,g) => λ x => (f x, g x), sorry_proof⟩
-- -- I don't think this is a valid map
-- -- noncomputable
-- -- def tfmap' : (X→Z) ⊸ (Y→W) ⊸ (X⊗Y→Z⊗W) := ⟨λ f => ⟨ λ g => λ xy =>
-- -- let ⟨_,x,y⟩ := xy.repr
-- -- ∑ i, f (x i) ⊗ g (y i), sorry_proof⟩, sorry_proof⟩
-- noncomputable
-- def tpmap' : (X→Y) ⊸ (X→Z) ⊸ (X→Y⊗Z) := ⟨λ f => ⟨λ g => λ x => f x ⊗ g x, sorry_proof⟩, sorry_proof⟩
-- -- Does this one work?
-- def comp'' : (Y ⊸ Z) ⊸ (X → Y) ⊸ (X → Z) := ⟨λ f => ⟨λ g => λ x => f (g x), sorry_proof⟩, sorry_proof⟩
-- noncomputable
-- def teval : ((X⊸Y)⊗X) ⊸ Y := uncurry' id
-- noncomputable
-- def tpair : X⊸Y⊸X⊗Y := curry' id
-- def assocl : X×(Y×Z) ⊸ (X×Y)×Z :=
-- let F : X×(Y×Z) ⊸ (X×Y)×Z := pmap ((pmap (fst, (comp' fst snd))), (comp' snd snd))
-- ⟨λ (x,(y,z)) => ((x,y),z),
-- by
-- have h : (λ (x,(y,z)) => ((x,y),z)) = F.1 := by simp[pmap, comp', fst, snd]
-- rw[h]
-- apply F.2⟩
-- def assocr : (X×Y)×Z ⊸ X×(Y×Z) :=
-- let F : (X×Y)×Z ⊸ X×(Y×Z) := pmap ((comp' fst fst), (pmap ((comp' snd fst), snd)))
-- ⟨λ ((x,y),z) => (x,(y,z)),
-- by
-- have h : (λ ((x,y),z) => (x,(y,z))) = F.1 := by simp[pmap, comp', fst, snd]
-- rw[h]
-- apply F.2⟩
-- @[simp]
-- theorem assocl_eval (xyz : X×(Y×Z)) : assocl xyz = ((xyz.1,xyz.2.1),xyz.2.2) := rfl
-- @[simp]
-- theorem assocr_eval (xyz : (X×Y)×Z) : assocr xyz = (xyz.1.1,(xyz.1.2,xyz.2)) := rfl
-- noncomputable
-- def tassocl : X⊗(Y⊗Z) ⊸ (X⊗Y)⊗Z := ⟨λ xyz =>
-- let ⟨_,x,yz⟩ := xyz.repr
-- let y := λ i => (yz i).repr.snd.fst
-- let z := λ i => (yz i).repr.snd.snd
-- ∑ i j, (x i ⊗ y i j) ⊗ z i j,
-- sorry_proof⟩
-- noncomputable
-- def tassocr : (X⊗Y)⊗Z ⊸ X⊗(Y⊗Z) := ⟨λ xyz =>
-- let ⟨_,xy,z⟩ := xyz.repr
-- let x := λ i => (xy i).repr.snd.fst
-- let y := λ i => (xy i).repr.snd.snd
-- ∑ i j, x i j ⊗ (y i j ⊗ z i),
-- sorry_proof⟩
-- def swap : (X×Y) ⊸ (Y×X) := pmap (snd, fst)
-- @[simp]
-- theorem swap_eval (xy : (X×Y)) : swap xy = (xy.2, xy.1) := rfl
-- noncomputable
-- def tswap : (X⊗Y) ⊸ (Y⊗X) := ⟨λ xy =>
-- let ⟨_,x,y⟩ := xy.repr
-- ∑ i, y i ⊗ x i,
-- sorry_proof⟩
-- def rot132 : (X×Y)×Z ⊸ (X×Z)×Y := comp' assocl (comp' (fmap (id, swap)) assocr)
-- @[simp]
-- theorem rot132_eval (xyz : (X×Y)×Z) : rot132 xyz = ((xyz.1.1, xyz.2), xyz.1.2) := rfl
-- noncomputable
-- def trot132 : (X⊗Y)⊗Z ⊸ (X⊗Z)⊗Y := comp' tassocl (comp' (tfmap id tswap) tassocr)
-- @[simp]
-- theorem trot132_eval (x : X) (y : Y) (z : Z) : trot132 ((x⊗y)⊗z) = (x⊗z)⊗y := sorry_proof
-- -- TODO: This function is perfectly computable, make it so
-- -- only the proof of linearity goes via noncomputable tensor product
-- noncomputable
-- def comp : (Y ⊸ Z) ⊸ (X ⊸ Y) ⊸ (X ⊸ Z) :=
-- let F₁ : (Y⊸Z)⊗((X⊸Y)⊗X) ⊸ Z := comp' teval (tfmap id teval)
-- curry' (curry' (comp' F₁ tassocr))
-- @[simp]
-- theorem comp_eval (f : Y⊸Z) (g : X ⊸ Y) (x : X) : comp f g x = f (g x) := sorry_proof
-- -- def const : X⊸Y⊸X := curry' fst
-- -- @[simp]
-- -- theorem const_eval (f : Y⊸Z) (g : X ⊸ Y) (x : X) : comp f g x = f (g x) := rfl
-- noncomputable
-- def uncurry : (X ⊸ Y ⊸ Z) ⊸ (X⊗Y ⊸ Z) :=
-- let F : ((X⊸Y⊸Z)⊗X)⊗Y ⊸ Z := comp teval (tfmap teval id)
-- let G₁ : (X⊗Y ⊸ (X⊸Y⊸Z)⊗(X⊗Y)) ⊸ (X⊗Y ⊸ Z) := comp (comp' F tassocl)
-- let G₂ : (X⊸Y⊸Z) ⊸ (X⊗Y ⊸ (X⊸Y⊸Z)⊗(X⊗Y)) := tpair
-- comp' G₁ G₂
-- -- @[simp]
-- -- theorem Smooth.uncurry_eval (f : X ⊸ Y ⊸ Z) (xy : X×Y) : Smooth.uncurry f xy = f xy.1 xy.2 := by rfl
-- noncomputable
-- def curry : (X ⊗ Y ⊸ Z) ⊸ (X ⊸ Y ⊸ Z) :=
-- let G : ((X⊗Y⊸Z)⊗Y)⊗X ⊸ Z := comp (comp (uncurry' id) (tfmap id tswap)) tassocr
-- let H : (Y ⊸ (X⊗Y⊸Z)⊗Y)⊗X ⊸ (Y ⊸ ((X⊗Y⊸Z)⊗Y)⊗X) := curry' (comp (tfmap teval id) trot132)
-- let F₁ : (X⊗Y⊸Z) ⊸ (Y ⊸ (X⊗Y⊸Z)⊗Y) := tpair
-- let F₂ : (Y ⊸ (X⊗Y⊸Z)⊗Y) ⊸ (X ⊸ (Y ⊸ (X⊗Y⊸Z)⊗Y)⊗X) := tpair
-- let F₃ : (X ⊸ (Y ⊸ (X⊗Y⊸Z)⊗Y)⊗X) ⊸ (X ⊸ (Y ⊸ ((X⊗Y⊸Z)⊗Y)⊗X)) := comp H
-- comp (comp (comp G)) (comp F₃ (comp F₂ F₁))
-- -- @[simp]
-- -- theorem Smooth.curry_eval (f : X×Y ⊸ Z) (x : X) (y : Y) : Smooth.curry f x y = f (x,y) := by rfl
-- -- TODO: make it computable
-- noncomputable
-- def prod : (X → Y ⊸ Z) ⊸ (X→Y) ⊸ (X→Z) :=
-- let F : (X → Y ⊸ Z) ⊸ (X→Y) ⊸ (X → Y ⊸ Z)⊗(X→Y) := tpair
-- let G₁ : (X → Y ⊸ Z)⊗(X→Y) ⊸ (X → (Y⊸Z)⊗Y) := uncurry tpmap'
-- let G₂ : (X → (Y⊸Z)⊗Y) ⊸ (X→Z) := comp'' teval
-- comp (comp (comp G₂ G₁)) F
-- @[simp]
-- theorem prod_eval (f : X → Y ⊸ Z) : prod f (λ _ => y) x = f x y := sorry_proof
-- -- def scomb : (X⊸Y⊸Z) ⊸ (X⊸Y) ⊸ X ⊸ Z :=
-- -- let F₁ : (X⊸Y⊸Z)⊗(X⊸Y)⊗X ⊸ (X⊗Y⊸Z)⊗(X⊗Y) := tfmap uncurry (tpmap snd teval)
-- -- comp (curry) (curry (comp eval F₁))
-- -- variable {ι κ : Type} {E F G : ι → Type} {E' : κ → Type} [∀ i, Vec (E i)] [∀ i, Vec (F i)] [∀ i, Vec (G i)] [∀ j, Vec (E' j)]
-- -- instance [∀ i, Vec (F i)] : Vec ((i : ι) → (F i)) := sorry
-- -- def Smooth.pmapDep : ((i : ι)→(E i)) ⊸ ((i : ι)→(F i)) ⊸ ((i : ι)→(E i)×(F i)) := ⟨λ f => ⟨λ g => λ x => (f x, g x), sorry⟩, sorry⟩
-- -- def Smooth.fmapDep : ((i : ι)→(E i)) ⊸ ((j : κ)→(E' j)) ⊸ ((ij : (ι×κ))→(E ij.1)×(E' ij.2)) := ⟨λ f => ⟨λ g => λ (i,j) => (f i, g j), sorry⟩, sorry⟩
-- -- def Smooth.prodDep : ((i : ι) → E i ⊸ F i) ⊸ ((i : ι) → E i) ⊸ ((i : ι) → F i) := sorry
-- end Linear
|
-- | authors: Connor Ford, Jake Hauser
module Persistence where
import Data.List (intercalate)
import Numeric.LinearAlgebra
import Data.List.HT (mapAdjacent)
import ExplicitSimplexStream
-- Betti Vector
-- This data type is equivalent to a list of Ints. It represents the betti vector.
-- For a betti vector of length n, all betti numbers b_i such that i >= n are assumed to be 0.
data BettiVector = BettiVector [Int] deriving (Eq)
instance Show BettiVector where
show (BettiVector []) = "()"
show (BettiVector vs) = "(" ++ intercalate ", " (map show vs) ++ ")"
-- getBoundaryMapHelper (see: getBoundaryMap)
-- First argument is SimplexListByDegree representing C_k
-- Second argument is SimplexListByDegree representing C_k+1
-- Third argument should initially be the length of the x in (x:xs) for C_k+1. It it a counter for removing elements from x.
-- Fourth argument should initially be zero. It is a counter for the index of x in (x:xs).
-- Fifth argument should be the zero matrix for _correct_ boundary map calculations.
getBoundaryMapHelper :: (Ord a) => SimplexListByDegree a -> SimplexListByDegree a -> Int -> Int -> Matrix Double -> Matrix Double
getBoundaryMapHelper _ (SimplexListByDegree _ []) _ _ mat = mat
getBoundaryMapHelper list1 (SimplexListByDegree n (_:xs)) 0 k mat = getBoundaryMapHelper list1 (SimplexListByDegree n (xs)) n (k+1) mat
getBoundaryMapHelper list1 (SimplexListByDegree n (x:xs)) m k mat =
let
x_dim = indexOfSimplex (Simplex (removeSimplexElement x (m-1))) list1
y_dim = k
val = (-1)^(m-1)
updatedMatrix = accum mat (\a _ -> a) [((x_dim,y_dim), val)] -- use accumulator to change values of matrix
in
getBoundaryMapHelper list1 (SimplexListByDegree n (x:xs)) (m-1) k updatedMatrix
-- getBoundaryMap
-- First argument C_k
-- Second argument C_k+1
-- return matrix dimensions: len(C_k) = num rows, len(C_k+1) = num cols
-- algorithm:
-- Given element of C_k+1, y, remove i'th element from y (starting with index zero) to get element in C_k called x.
-- Then the value in the matrix at row idxOf(x) and column idxOf(y) is (-1)^i.
getBoundaryMap :: (Ord a) => SimplexListByDegree a -> SimplexListByDegree a -> Matrix Double
getBoundaryMap list1@(SimplexListByDegree _ simps1) list2@(SimplexListByDegree n simps2) =
let
zero_matrix = matrix (length simps2) (replicate ((length simps1)*(length simps2)) 0)
in
getBoundaryMapHelper list1 list2 n 0 zero_matrix
-- getHomologyDimension
-- first arg is D_i+1
-- second arg is D_i
-- third argument k (or i in the below illustration)
-- want to find: dim ker D_i - dim im D_i+1
-- algorithm to find ker and im:
-- (i) rref matrix
-- (ii) # of non-zero rows correspond to rnk of original matrix.
-- (iii) # of columns with leading 1’s correspond to the columns of original matrix that span image.
-- (iv) dim ker = (ii) - (iii)
getHomologyDimension :: Matrix Double -> Matrix Double -> Int -> Int
getHomologyDimension m1 m2 k =
let
m1_rank = rank m1
m2_columns = cols m2
m2_rank = rank m2
m2_nullity = m2_columns - m2_rank
in
if k > 0 then
m2_nullity - m1_rank
else
m2_columns - m1_rank
-- persistenceHelper (see: persistence)
-- First argument is a list of matrices representing a sequence of boundary maps.
-- Second argument is k representing the k'th homology.
persistenceHelper :: [Matrix Double] -> Int -> [Int]
persistenceHelper [] _ = []
persistenceHelper [x] k = [getHomologyDimension ((ident 1) - (ident 1)) x k] -- base case for last boundary map
persistenceHelper (x:y:xs) k = (getHomologyDimension y x k):(persistenceHelper (y:xs) (k+1))
-- persistence
-- The persistence algorithm computes the BettiVector for s simplex stream. The algorithm is as follows:
-- Given a simplex stream, and a field coefficient p corresponding to Z/pZ we will return betti numbers (b_0, b_1, ..., b_n) where n+1 equals the degree of the highest order simplex in the stream.
-- (1) Get simplex lists ordered by the degree of simplices
-- (2) Get boundary maps D_0, ..., D_{n-1} such that:
-- 0 <-- C_0 <-- C_1 <-- ... <-- C_{n-1} <-- C_n <-- 0
-- D_{-1} D_0 D_1 D_{n-1}
-- (3) Compute dimensions of the Homologies:
-- dim H_0 = dim Ker 0 - dim Im D_0
-- dim H_1 = dim Ker D_0 - dim Im D_1
-- ...
-- dim H_n = dim Ker D_{n-1} - dim Im 0
-- (4) return betti profile (dim H_0, dim H_1, ..., dim H_n)
-- TODO: implement with rref mod p where Field = Z/pZ.
persistence :: (Ord a) => Stream a -> Int -> BettiVector
persistence stream field =
let
(OrderedSimplexList l) = streamToOrderedSimplexList stream
in
BettiVector $ persistenceHelper (mapAdjacent getBoundaryMap l) 0 |
theory Values imports
Main Archi AST BinNums Integers Floats
begin
(** This module defines the type of values that is used in the dynamic
semantics of all our intermediate languages. *)
type_synonym block = positive
(** A value is either:
- a machine integer;
- a floating-point number;
- a pointer: a pair of a memory address and an integer offset with respect
to this address;
- the [Vundef] value denoting an arbitrary bit pattern, such as the
value of an uninitialized variable.
*)
datatype val =
Vundef
| Vint m_int
| Vlong m_int64
| Vfloat float64
| Vsingle float32
| Vptr block m_ptrofs
definition "Vtrue \<equiv> Vint 1"
definition "Vfalse \<equiv> Vint 0"
definition "Vnullptr \<equiv> Vlong 0" (* only valid on 64-bit arch *)
definition Vptrofs :: "m_ptrofs \<Rightarrow> val" where
"Vptrofs n \<equiv> Vlong n" (* only valid on 64-bit arch *)
lemma vptrofs_equ[iff]: "Vptrofs n = Vptrofs n' \<longleftrightarrow> n = n'"
unfolding Vptrofs_def by simp
section \<open>Operations over values\<close>
(** The module [Val] defines a number of arithmetic and logical operations
over type [val]. Most of these operations are straightforward extensions
of the corresponding integer or floating-point operations. *)
locale Val'
begin
fun has_type :: "val \<Rightarrow> type \<Rightarrow> bool" where
"has_type v t =
(case (v, t) of
(Vundef, _) \<Rightarrow> True
| (Vint _, Tint) \<Rightarrow> True
| (Vlong _, Tlong) \<Rightarrow> True
| (Vfloat _, Tfloat) \<Rightarrow> True
| (Vsingle _, Tsingle) \<Rightarrow> True
| (Vptr _ _, Tint) \<Rightarrow> Archi.ptr64 = False
| (Vptr _ _, Tlong) \<Rightarrow> Archi.ptr64 = True
| (Vint _, Tany32) \<Rightarrow> True
| (Vsingle _, Tany32) \<Rightarrow> True
| (Vptr _ _, Tany32) \<Rightarrow> Archi.ptr64 = False
| (_, Tany64) \<Rightarrow> True
| (_, _) \<Rightarrow> False
)"
fun has_rettype :: "val \<Rightarrow> rettype \<Rightarrow> bool" where
"has_rettype v (Tret t) = has_type v t"
| "has_rettype (Vint n) Tint8signed = (n = Int.sign_ext TYPE(8) n)"
| "has_rettype (Vint n) Tint8unsigned = (n = Int.zero_ext TYPE(8) n)"
| "has_rettype (Vint n) Tint16signed = (n = Int.sign_ext TYPE(16) n)"
| "has_rettype (Vint n) Tint16unsigned = (n = Int.zero_ext TYPE(16) n)"
| "has_rettype Vundef _ = True"
| "has_rettype _ _ = False"
(** Truth values. Non-zero integers are treated as [True].
The integer 0 (also used to represent the null pointer) is [False].
Other values are neither true nor false. *)
fun bool_to_val where
"bool_to_val False = Vfalse"
| "bool_to_val True = Vtrue"
inductive bool_of_val :: "val \<Rightarrow> bool \<Rightarrow> bool" where
bool_of_val_int: "(n \<noteq> 0) = b \<Longrightarrow> bool_of_val (Vint n) b"
lemma bool_of_val_one: "bool_of_val v False \<Longrightarrow> bool_of_val v True \<Longrightarrow> P"
by (metis bool_of_val.cases val.inject(1))
fun bool_of_val_func :: "val \<Rightarrow> bool option" where
"bool_of_val_func (Vint n) = (if n = 0 then Some False else Some True)"
| "bool_of_val_func _ = None"
(** Arithmetic operations *)
fun neg :: "val \<Rightarrow> val" where
"neg (Vint n) = Vint (- n)"
| "neg _ = Vundef"
fun negf :: "val \<Rightarrow> val" where
"negf (Vfloat f) = Vfloat (- f)"
| "negf _ = Vundef"
fun absf :: "val \<Rightarrow> val" where
"absf (Vfloat f) = Vfloat (abs f)"
| "absf _ = Vundef"
fun negfs :: "val \<Rightarrow> val" where
"negfs (Vsingle f) = Vsingle (- f)"
| "negfs _ = Vundef"
fun absfs :: "val \<Rightarrow> val" where
"absfs (Vsingle f) = Vsingle (abs f)"
| "absfs _ = Vundef"
(* fun intoffloat :: "val \<Rightarrow> (val option)" where
"intoffloat (Vfloat f) = map_option Vint (Float.to_int f)"
| "intoffloat _ = None"
fun intuoffloat :: "val \<Rightarrow> (val option)" where
"intuoffloat (Vfloat f) = map_option Vint (Float.to_intu f)"
| "intuoffloat _ = None"
fun floatofint :: "val \<Rightarrow> (val option)" where
"floatofint (Vint n) = Some (Vfloat (Float.of_int n))"
| "floatofint _ = None"
fun floatofintu :: "val \<Rightarrow> (val option)" where
"floatofintu (Vint n) = Some (Vfloat (Float.of_intu n))"
| "floatofintu _ = None"
fun intofsingle :: "val \<Rightarrow> (val option)" where
"intofsingle (Vsingle f) = map_option Vint (Float32.to_int f)"
| "intofsingle _ = None"
fun intuofsingle :: "val \<Rightarrow> (val option)" where
"intuofsingle (Vsingle f) = map_option Vint (Float32.to_intu f)"
| "intuofsingle _ = None"
fun singleofint :: "val \<Rightarrow> (val option)" where
"singleofint (Vint n) = Some (Vsingle (Float32.of_int n))"
| "singleofint _ = None"
fun singleofintu :: "val \<Rightarrow> (val option)" where
"singleofintu (Vint n) = Some (Vsingle (Float32.of_intu n))"
| "singleofintu _ = None" *)
fun negint :: "val \<Rightarrow> val" where
"negint (Vint n) = Vint (- n)"
| "negint _ = Vundef"
fun notint :: "val \<Rightarrow> val" where
"notint (Vint n) = Vint (not n)"
| "notint _ = Vundef"
fun of_bool :: "bool \<Rightarrow> val" where
"of_bool True = Vtrue"
| "of_bool False = Vfalse"
fun boolval :: "val \<Rightarrow> val" where
"boolval (Vint n) = of_bool (n \<noteq> 0)"
| "boolval (Vptr b ofs) = Vtrue"
| "boolval _ = Vundef"
fun notbool :: "val \<Rightarrow> val" where
"notbool (Vint n) = of_bool (n = 0)"
| "notbool (Vptr b ofs) = Vfalse"
| "notbool _ = Vundef"
fun zero_ext :: "'l::len itself \<Rightarrow> val \<Rightarrow> val" where
"zero_ext nbits (Vint n) = Vint(Int.zero_ext nbits n)"
| "zero_ext nbits _ = Vundef"
fun sign_ext :: "'l::len itself \<Rightarrow> val \<Rightarrow> val" where
"sign_ext nbits (Vint n) = Vint(Int.sign_ext nbits n)"
| "sign_ext nbits _ = Vundef"
(* fun singleoffloat :: "val \<Rightarrow> val" where
"singleoffloat (Vfloat f) = Vsingle (Float.to_single f)"
| "singleoffloat _ = Vundef"
fun floatofsingle :: "val \<Rightarrow> val" where
"floatofsingle (Vsingle f) = Vfloat (Float.of_single f)"
| "floatofsingle _ = Vundef" *)
fun add :: "val \<Rightarrow> val \<Rightarrow> val" where
"add (Vint n1) (Vint n2) = Vint(Int.add n1 n2)"
| "add (Vptr b1 ofs1) (Vint n2) = (if Archi.ptr64 then Vundef else Vptr b1 (Ptrofs.add ofs1 (Ptrofs.of_int n2)))"
| "add (Vint n1) (Vptr b2 ofs2) = (if Archi.ptr64 then Vundef else Vptr b2 (Ptrofs.add ofs2 (Ptrofs.of_int n1)))"
| "add _ _ = Vundef"
fun sub :: "val \<Rightarrow> val \<Rightarrow> val" where
"sub v1 v2 =
(case (v1, v2) of
(Vint n1, Vint n2) \<Rightarrow> Vint (Int.sub n1 n2)
| (Vptr b1 ofs1, Vint n2) \<Rightarrow> if Archi.ptr64 then Vundef else Vptr b1 (Ptrofs.sub ofs1 (Ptrofs.of_int n2))
| (Vptr b1 ofs1, Vptr b2 ofs2) \<Rightarrow>
if Archi.ptr64 then Vundef else
if b1 = b2 then Vint(Ptrofs.to_int (Ptrofs.sub ofs1 ofs2)) else Vundef
| (_, _) \<Rightarrow> Vundef
)"
fun mul :: "val \<Rightarrow> val \<Rightarrow> val" where
"mul (Vint n1) (Vint n2) = Vint(Int.mul n1 n2)"
| "mul _ _ = Vundef"
(* fun mulhs :: "val \<Rightarrow> val \<Rightarrow> val" where
"mulhs (Vint n1) (Vint n2) = Vint(Int.mulhs n1 n2)"
| "mulhs _ _ = Vundef"
fun mulhu :: "val \<Rightarrow> val \<Rightarrow> val" where
"mulhu (Vint n1) (Vint n2) = Vint(Int.mulhu n1 n2)"
| "mulhu _ _ = Vundef" *)
fun divs :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"divs v1 v2 =
(case (v1, v2) of
(Vint n1, Vint n2) \<Rightarrow>
if n2 = 0
\<or> n1 = (Int.repr Int.min_signed) \<and> n2 = Int.mone
then None
else Some(Vint(Int.divs n1 n2))
| (_, _) \<Rightarrow> None
)"
fun mods :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"mods v1 v2 =
(case (v1, v2) of
(Vint n1, Vint n2) \<Rightarrow>
if n2 = 0
\<or> n1 = (Int.repr Int.min_signed) \<and> n2 = Int.mone
then None
else Some(Vint(Int.mods n1 n2))
| (_, _) \<Rightarrow> None
)"
fun divu :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"divu (Vint n1) (Vint n2) = (if n2 = 0 then None else Some(Vint(Int.divu n1 n2)))"
| "divu _ _ = None"
fun modu :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"modu (Vint n1) (Vint n2) = (if n2 = 0 then None else Some(Vint(Int.modu n1 n2)))"
| "modu _ _ = None"
(* fun add_carry :: "val \<Rightarrow> val \<Rightarrow> val \<Rightarrow> val" where
"add_carry (Vint n1) (Vint n2) (Vint c) = Vint(Int.add_carry n1 n2 c)"
| "add_carry _ _ _ = Vundef"
fun sub_overflow :: "val \<Rightarrow> val \<Rightarrow> val" where
"sub_overflow (Vint n1) (Vint n2) = Vint(Int.sub_overflow n1 n2 Int.zero)"
| "sub_overflow _ _ = Vundef"
fun negative :: "val \<Rightarrow> val" where
"negative (Vint n) = Vint (Int.negative n)"
| "negative _ = Vundef" *)
fun and' :: "val \<Rightarrow> val \<Rightarrow> val" where
"and' (Vint n1) (Vint n2) = Vint(Int.and' n1 n2)"
| "and' _ _ = Vundef"
fun or :: "val \<Rightarrow> val \<Rightarrow> val" where
"or (Vint n1) (Vint n2) = Vint(Int.or n1 n2)"
| "or _ _ = Vundef"
fun xor' :: "val \<Rightarrow> val \<Rightarrow> val" where
"xor' (Vint n1) (Vint n2) = Vint(Int.xor n1 n2)"
| "xor' _ _ = Vundef"
fun shl :: "val \<Rightarrow> val \<Rightarrow> val" where
"shl v1 v2 =
(case (v1, v2) of
(Vint n1, Vint n2) \<Rightarrow>
if Int.ltu n2 Int.iwordsize
then Vint(Int.shl n1 n2)
else Vundef
| (_, _) \<Rightarrow> Vundef
)"
fun shr :: "val \<Rightarrow> val \<Rightarrow> val" where
"shr v1 v2 =
(case (v1, v2) of
(Vint n1, Vint n2) \<Rightarrow>
if Int.ltu n2 Int.iwordsize
then Vint(Int.shr n1 n2)
else Vundef
| (_, _) \<Rightarrow> Vundef
)"
(* fun shr_carry :: "val \<Rightarrow> val \<Rightarrow> val" where
"shr_carry v1 v2 =
(case v1, v2 of
Vint n1, Vint n2 \<Rightarrow>
if Int.ltu n2 Int.iwordsize
then Vint(Int.shr_carry n1 n2)
else Vundef
| _, _ \<Rightarrow> Vundef
)" *)
(* fun shrx :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"shrx v1 v2 =
(case v1, v2 of
Vint n1, Vint n2 \<Rightarrow>
if Int.ltu n2 (Int.repr 31)
then Some(Vint(Int.shrx n1 n2))
else None
| _, _ \<Rightarrow> None
)" *)
fun shru :: "val \<Rightarrow> val \<Rightarrow> val" where
"shru v1 v2 =
(case (v1, v2) of
(Vint n1, Vint n2) \<Rightarrow>
if Int.ltu n2 Int.iwordsize
then Vint(Int.shru n1 n2)
else Vundef
| (_, _) \<Rightarrow> Vundef
)"
fun rol :: "val \<Rightarrow> val \<Rightarrow> val" where
"rol (Vint n1) (Vint n2) = Vint(Int.rol n1 n2)"
| "rol _ _ = Vundef"
(* fun rolm :: "val \<Rightarrow> int \<Rightarrow> int \<Rightarrow> val" where
"rolm (Vint n) amount mask = Vint(Int.rolm n amount mask)"
| "rolm _ amount mask = Vundef" *)
fun ror :: "val \<Rightarrow> val \<Rightarrow> val" where
"ror (Vint n1) (Vint n2) = Vint(Int.ror n1 n2)"
| "ror _ _ = Vundef"
fun addf :: "val \<Rightarrow> val \<Rightarrow> val" where
"addf (Vfloat f1) (Vfloat f2) = Vfloat(Float.add f1 f2)"
| "addf _ _ = Vundef"
fun subf :: "val \<Rightarrow> val \<Rightarrow> val" where
"subf (Vfloat f1) (Vfloat f2) = Vfloat(Float.sub f1 f2)"
| "subf _ _ = Vundef"
fun mulf :: "val \<Rightarrow> val \<Rightarrow> val" where
"mulf (Vfloat f1) (Vfloat f2) = Vfloat(Float.mul f1 f2)"
| "mulf _ _ = Vundef"
fun divf :: "val \<Rightarrow> val \<Rightarrow> val" where
"divf (Vfloat f1) (Vfloat f2) = Vfloat(Float.div' f1 f2)"
| "divf _ _ = Vundef"
(* fun floatofwords :: "val \<Rightarrow> val \<Rightarrow> val" where
"floatofwords (Vint n1) (Vint n2) = Vfloat (Float.from_words n1 n2)"
| "floatofwords _ _ = Vundef" *)
fun addfs :: "val \<Rightarrow> val \<Rightarrow> val" where
"addfs (Vsingle f1) (Vsingle f2) = Vsingle(Float32.add f1 f2)"
| "addfs _ _ = Vundef"
fun subfs :: "val \<Rightarrow> val \<Rightarrow> val" where
"subfs (Vsingle f1) (Vsingle f2) = Vsingle(Float32.sub f1 f2)"
| "subfs _ _ = Vundef"
fun mulfs :: "val \<Rightarrow> val \<Rightarrow> val" where
"mulfs (Vsingle f1) (Vsingle f2) = Vsingle(Float32.mul f1 f2)"
| "mulfs _ _ = Vundef"
fun divfs :: "val \<Rightarrow> val \<Rightarrow> val" where
"divfs (Vsingle f1) (Vsingle f2) = Vsingle(Float32.div' f1 f2)"
| "divfs _ _ = Vundef"
(** Operations on 64-bit integers *)
fun longofwords :: "val \<Rightarrow> val \<Rightarrow> val" where
"longofwords (Vint n1) (Vint n2) = Vlong (Int64.ofwords n1 n2)"
| "longofwords _ _ = Vundef"
fun loword :: "val \<Rightarrow> val" where
"loword (Vlong n) = Vint (Int64.loword n)"
| "loword _ = Vundef"
fun hiword :: "val \<Rightarrow> val" where
"hiword (Vlong n) = Vint (Int64.hiword n)"
| "hiword _ = Vundef"
fun negl :: "val \<Rightarrow> val" where
"negl (Vlong n) = Vlong (Int64.neg n)"
| "negl _ = Vundef"
fun notl :: "val \<Rightarrow> val" where
"notl (Vlong n) = Vlong (Int64.not n)"
| "notl _ = Vundef"
fun longofint :: "val \<Rightarrow> val" where
"longofint (Vint n) = Vlong (Int64.repr (Int.signed n))"
| "longofint _ = Vundef"
fun longofintu :: "val \<Rightarrow> val" where
"longofintu (Vint n) = Vlong (Int64.repr (Int.unsigned n))"
| "longofintu _ = Vundef"
(* fun longoffloat :: "val \<Rightarrow> (val option)" where
"longoffloat (Vfloat f) = map_option Vlong (Float.to_long f)"
| "longoffloat _ = None"
fun longuoffloat :: "val \<Rightarrow> (val option)" where
"longuoffloat (Vfloat f) = map_option Vlong (Float.to_longu f)"
| "longuoffloat _ = None"
fun longofsingle :: "val \<Rightarrow> (val option)" where
"longofsingle (Vsingle f) = map_option Vlong (Float32.to_long f)"
| "longofsingle _ = None"
fun longuofsingle :: "val \<Rightarrow> (val option)" where
"longuofsingle (Vsingle f) = map_option Vlong (Float32.to_longu f)"
| "longuofsingle _ = None"
fun floatoflong :: "val \<Rightarrow> (val option)" where
"floatoflong (Vlong n) = Some (Vfloat (Float.of_long n))"
| "floatoflong _ = None"
fun floatoflongu :: "val \<Rightarrow> (val option)" where
"floatoflongu (Vlong n) = Some (Vfloat (Float.of_longu n))"
| "floatoflongu _ = None"
fun singleoflong :: "val \<Rightarrow> (val option)" where
"singleoflong (Vlong n) = Some (Vsingle (Float32.of_long n))"
| "singleoflong _ = None"
fun singleoflongu :: "val \<Rightarrow> (val option)" where
"singleoflongu (Vlong n) = Some (Vsingle (Float32.of_longu n))"
| "singleoflongu _ = None" *)
fun addl :: "val \<Rightarrow> val \<Rightarrow> val" where
"addl (Vlong n1) (Vlong n2) = Vlong(Int64.add n1 n2)"
| "addl (Vptr b1 ofs1) (Vlong n2) = (if Archi.ptr64 then Vptr b1 (Ptrofs.add ofs1 (Ptrofs.of_int64 n2)) else Vundef)"
| "addl (Vlong n1) (Vptr b2 ofs2) = (if Archi.ptr64 then Vptr b2 (Ptrofs.add ofs2 (Ptrofs.of_int64 n1)) else Vundef)"
| "addl _ _ = Vundef"
fun subl :: "val \<Rightarrow> val \<Rightarrow> val" where
"subl v1 v2 =
(case (v1, v2) of
(Vlong n1, Vlong n2) \<Rightarrow> Vlong(Int64.sub n1 n2)
| (Vptr b1 ofs1, Vlong n2) \<Rightarrow>
if Archi.ptr64 then Vptr b1 (Ptrofs.sub ofs1 (Ptrofs.of_int64 n2)) else Vundef
| (Vptr b1 ofs1, Vptr b2 ofs2) \<Rightarrow>
if \<not>Archi.ptr64 then Vundef else
if b1 = b2 then Vlong(Ptrofs.to_int64 (Ptrofs.sub ofs1 ofs2)) else Vundef
| (_, _) \<Rightarrow> Vundef
)"
fun mull :: "val \<Rightarrow> val \<Rightarrow> val" where
"mull (Vlong n1) (Vlong n2) = Vlong(Int64.mul n1 n2)"
| "mull _ _ = Vundef"
(* fun mull' :: "val \<Rightarrow> val \<Rightarrow> val" where
"mull' (Vint n1) (Vint n2) = Vlong(Int64.mul' n1 n2)"
| "mull' _ _ = Vundef"
fun mullhs :: "val \<Rightarrow> val \<Rightarrow> val" where
"mullhs (Vlong n1) (Vlong n2) = Vlong(Int64.mulhs n1 n2)"
| "mullhs _ _ = Vundef"
fun mullhu :: "val \<Rightarrow> val \<Rightarrow> val" where
"mullhu (Vlong n1) (Vlong n2) = Vlong(Int64.mulhu n1 n2)"
| "mullhu _ _ = Vundef" *)
fun divls :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"divls v1 v2 =
(case (v1, v2) of
(Vlong n1, Vlong n2) \<Rightarrow>
if Int64.eq n2 Int64.zero
\<or> Int64.eq n1 (Int64.repr Int64.min_signed) \<and> Int64.eq n2 Int64.mone
then None
else Some(Vlong(Int64.divs n1 n2))
| (_, _) \<Rightarrow> None
)"
fun modls :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"modls v1 v2 =
(case (v1, v2) of
(Vlong n1, Vlong n2) \<Rightarrow>
if Int64.eq n2 Int64.zero
\<or> Int64.eq n1 (Int64.repr Int64.min_signed) \<and> Int64.eq n2 Int64.mone
then None
else Some(Vlong(Int64.mods n1 n2))
| (_, _) \<Rightarrow> None
)"
fun divlu :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"divlu (Vlong n1) (Vlong n2) = (if Int64.eq n2 Int64.zero then None else Some(Vlong(Int64.divu n1 n2)))"
| "divlu _ _ = None"
fun modlu :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"modlu (Vlong n1) (Vlong n2) = (if Int64.eq n2 Int64.zero then None else Some(Vlong(Int64.modu n1 n2)))"
| "modlu _ _ = None"
(* fun addl_carry :: "val \<Rightarrow> val \<Rightarrow> val \<Rightarrow> val" where
"addl_carry (Vlong n1) (Vlong n2) (Vlong c) = Vlong(Int64.add_carry n1 n2 c)"
| "addl_carry _ _ _ = Vundef"
fun subl_overflow :: "val \<Rightarrow> val \<Rightarrow> val" where
"subl_overflow (Vlong n1) (Vlong n2) = Vint (Int.repr (Int64.unsigned (Int64.sub_overflow n1 n2 Int64.zero)))"
| "subl_overflow _ _ = Vundef"
fun negativel :: "val \<Rightarrow> val" where
"negativel (Vlong n) = Vint (Int.repr (Int64.unsigned (Int64.negative n)))"
| "negativel _ = Vundef" *)
fun andl :: "val \<Rightarrow> val \<Rightarrow> val" where
"andl (Vlong n1) (Vlong n2) = Vlong(Int64.and' n1 n2)"
| "andl _ _ = Vundef"
fun orl :: "val \<Rightarrow> val \<Rightarrow> val" where
"orl (Vlong n1) (Vlong n2) = Vlong(Int64.or n1 n2)"
| "orl _ _ = Vundef"
fun xorl :: "val \<Rightarrow> val \<Rightarrow> val" where
"xorl (Vlong n1) (Vlong n2) = Vlong(Int64.xor n1 n2)"
| "xorl _ _ = Vundef"
fun shll :: "val \<Rightarrow> val \<Rightarrow> val" where
"shll v1 v2 =
(case (v1, v2) of
(Vlong n1, Vint n2) \<Rightarrow>
if Int.ltu n2 Int64.iwordsize'
then Vlong(Int64.shl' n1 n2)
else Vundef
| (_, _) \<Rightarrow> Vundef
)"
fun shrl :: "val \<Rightarrow> val \<Rightarrow> val" where
"shrl v1 v2 =
(case (v1, v2) of
(Vlong n1, Vint n2) \<Rightarrow>
if Int.ltu n2 Int64.iwordsize'
then Vlong(Int64.shr' n1 n2)
else Vundef
| (_, _) \<Rightarrow> Vundef
)"
fun shrlu :: "val \<Rightarrow> val \<Rightarrow> val" where
"shrlu v1 v2 =
(case (v1, v2) of
(Vlong n1, Vint n2) \<Rightarrow>
if Int.ltu n2 Int64.iwordsize'
then Vlong(Int64.shru' n1 n2)
else Vundef
| (_, _) \<Rightarrow> Vundef
)"
(* fun shrxl :: "val \<Rightarrow> val \<Rightarrow> (val option)" where
"shrxl v1 v2 =
(case v1, v2 of
Vlong n1, Vint n2 \<Rightarrow>
if Int.ltu n2 (Int.repr 63)
then Some(Vlong(Int64.shrx' n1 n2))
else None
| _, _ \<Rightarrow> None
)"
fun shrl_carry :: "val \<Rightarrow> val \<Rightarrow> val" where
"shrl_carry v1 v2 =
(case v1, v2 of
Vlong n1, Vint n2 \<Rightarrow>
if Int.ltu n2 Int64.iwordsize'
then Vlong(Int64.shr_carry' n1 n2)
else Vundef
| _, _ \<Rightarrow> Vundef
)" *)
fun roll :: "val \<Rightarrow> val \<Rightarrow> val" where
"roll (Vlong n1) (Vint n2) = Vlong(Int64.rol n1 (Int64.repr (Int.unsigned n2)))"
| "roll _ _ = Vundef"
fun rorl :: "val \<Rightarrow> val \<Rightarrow> val" where
"rorl (Vlong n1) (Vint n2) = Vlong(Int64.ror n1 (Int64.repr (Int.unsigned n2)))"
| "rorl _ _ = Vundef"
(* fun rolml :: "val \<Rightarrow> int \<Rightarrow> int64 \<Rightarrow> val" where
"rolml (Vlong n) amount mask = Vlong(Int64.rolm n (Int64.repr (Int.unsigned amount)) mask)"
| "rolml _ amount mask = Vundef" *)
fun zero_ext_l :: "'l::len itself \<Rightarrow> val \<Rightarrow> val" where
"zero_ext_l nbits (Vlong n) = Vlong(Int64.zero_ext nbits n)"
| "zero_ext_l nbits _ = Vundef"
fun sign_ext_l :: "'l::len itself \<Rightarrow> val \<Rightarrow> val" where
"sign_ext_l nbits (Vlong n) = Vlong(Int64.sign_ext nbits n)"
| "sign_ext_l nbits _ = Vundef"
section \<open>Comparisons\<close>
fun cmp_bool :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> (bool option)" where
"cmp_bool c (Vint n1) (Vint n2) = Some (Int.cmp c n1 n2)"
| "cmp_bool c _ _ = None"
fun cmp_different_blocks :: "comparison \<Rightarrow> (bool option)" where
"cmp_different_blocks Ceq = Some False"
| "cmp_different_blocks Cne = Some True"
| "cmp_different_blocks _ = None"
fun cmpf_bool :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> (bool option)" where
"cmpf_bool c (Vfloat f1) (Vfloat f2) = Some (Float.cmp c f1 f2)"
| "cmpf_bool c _ _ = None"
fun cmpfs_bool :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> (bool option)" where
"cmpfs_bool c (Vsingle f1) (Vsingle f2) = Some (Float32.cmp c f1 f2)"
| "cmpfs_bool c _ _ = None"
fun cmpl_bool :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> (bool option)" where
"cmpl_bool c (Vlong n1) (Vlong n2) = Some (Int64.cmp c n1 n2)"
| "cmpl_bool c _ _ = None"
fun of_optbool :: "(bool option) \<Rightarrow> val" where
"of_optbool (Some True) = Vtrue"
| "of_optbool (Some False) = Vfalse"
| "of_optbool None = Vundef"
fun cmp :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> val" where
"cmp c v1 v2 = of_optbool (cmp_bool c v1 v2)"
fun cmpf :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> val" where
"cmpf c v1 v2 = of_optbool (cmpf_bool c v1 v2)"
fun cmpfs :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> val" where
"cmpfs c v1 v2 = of_optbool (cmpfs_bool c v1 v2)"
fun cmpl :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> (val option)" where
"cmpl c v1 v2 = map_option of_bool (cmpl_bool c v1 v2)"
context
fixes valid_ptr :: "block \<Rightarrow> Z \<Rightarrow> bool"
begin
definition "weak_valid_ptr b ofs \<equiv> valid_ptr b ofs \<or> valid_ptr b (ofs - 1)"
fun cmpu_bool :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> (bool option)" where
"cmpu_bool c v1 v2 =
(case (v1, v2) of
(Vint n1, Vint n2) \<Rightarrow>
Some (Int.cmpu c n1 n2)
| (Vint n1, Vptr b2 ofs2) \<Rightarrow>
if Archi.ptr64 then None else
if Int.eq n1 Int.zero \<and> weak_valid_ptr b2 (Ptrofs.unsigned ofs2)
then cmp_different_blocks c
else None
| (Vptr b1 ofs1, Vptr b2 ofs2) \<Rightarrow>
if Archi.ptr64 then None else
if b1 = b2 then
if weak_valid_ptr b1 (Ptrofs.unsigned ofs1)
\<and> weak_valid_ptr b2 (Ptrofs.unsigned ofs2)
then Some (Ptrofs.cmpu c ofs1 ofs2)
else None
else
if valid_ptr b1 (Ptrofs.unsigned ofs1)
\<and> valid_ptr b2 (Ptrofs.unsigned ofs2)
then cmp_different_blocks c
else None
| (Vptr b1 ofs1, Vint n2) \<Rightarrow>
if Archi.ptr64 then None else
if Int.eq n2 Int.zero \<and> weak_valid_ptr b1 (Ptrofs.unsigned ofs1)
then cmp_different_blocks c
else None
| (_, _) \<Rightarrow> None
)"
fun cmpu :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> val" where
"cmpu c v1 v2 = of_optbool (cmpu_bool c v1 v2)"
fun cmplu_bool :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> (bool option)" where
"cmplu_bool c v1 v2 =
(case (v1, v2) of
(Vlong n1, Vlong n2) \<Rightarrow> Some (Int64.cmpu c n1 n2)
| (Vlong n1, Vptr b2 ofs2) \<Rightarrow>
if \<not>Archi.ptr64 then None else
if Int64.eq n1 Int64.zero \<and> weak_valid_ptr b2 (Ptrofs.unsigned ofs2)
then cmp_different_blocks c
else None
| (Vptr b1 ofs1, Vptr b2 ofs2) \<Rightarrow>
if \<not>Archi.ptr64 then None else
if b1 = b2 then
if weak_valid_ptr b1 (Ptrofs.unsigned ofs1)
\<and> weak_valid_ptr b2 (Ptrofs.unsigned ofs2)
then Some (Ptrofs.cmpu c ofs1 ofs2)
else None
else
if valid_ptr b1 (Ptrofs.unsigned ofs1)
\<and> valid_ptr b2 (Ptrofs.unsigned ofs2)
then cmp_different_blocks c
else None
| (Vptr b1 ofs1, Vlong n2) \<Rightarrow>
if \<not>Archi.ptr64 then None else
if Int64.eq n2 Int64.zero \<and> weak_valid_ptr b1 (Ptrofs.unsigned ofs1)
then cmp_different_blocks c
else None
| (_, _) \<Rightarrow> None
)"
fun cmplu :: "comparison \<Rightarrow> val \<Rightarrow> val \<Rightarrow> (val option)" where
"cmplu c v1 v2 = map_option of_bool (cmplu_bool c v1 v2)"
end
(** Add the given offset to the given pointer. *)
fun offset_ptr :: "val \<Rightarrow> m_ptrofs \<Rightarrow> val" where
"offset_ptr (Vptr b ofs) delta = Vptr b (ofs + delta)"
| "offset_ptr _ delta = Vundef"
(** [load_result] reflects the effect of storing a value with a given
memory chunk, then reading it back with the same chunk. Depending
on the chunk and the type of the value, some normalization occurs.
For instance, consider storing the integer value [0xFFF] on 1 byte
at a given address, and reading it back. If it is read back with
chunk [Mint8unsigned], zero-extension must be performed, resulting
in [0xFF]. If it is read back as a [Mint8signed], sign-extension is
performed and [0xFFFFFFFF] is returned. *)
fun load_result :: "memory_chunk \<Rightarrow> val \<Rightarrow> val" where
"load_result Mint8signed (Vint n) = Vint (Int.sign_ext TYPE(8) n)"
| "load_result Mint8unsigned (Vint n) = Vint (Int.zero_ext TYPE(8) n)"
| "load_result Mint16signed (Vint n) = Vint (Int.sign_ext TYPE(16) n)"
| "load_result Mint16unsigned (Vint n) = Vint (Int.zero_ext TYPE(16) n)"
| "load_result Mint32 (Vint n) = Vint n"
| "load_result Mint32 (Vptr b ofs) = (if Archi.ptr64 then Vundef else Vptr b ofs)"
| "load_result Mint64 (Vlong n) = Vlong n"
| "load_result Mint64 (Vptr b ofs) = (if Archi.ptr64 then Vptr b ofs else Vundef)"
| "load_result Mfloat32 (Vsingle f) = Vsingle f"
| "load_result Mfloat64 (Vfloat f) = Vfloat f"
| "load_result Many32 (Vint n) = Vint n"
| "load_result Many32 (Vsingle f) = Vsingle f"
| "load_result Many32 (Vptr b ofs) = (if Archi.ptr64 then Vundef else Vptr b ofs)"
| "load_result Many64 v = v"
| "load_result _ _ = Vundef"
(** The ``is less defined'' relation between values.
A value is less defined than itself, and [Vundef] is
less defined than any value. *)
inductive lessdef :: "val \<Rightarrow> val \<Rightarrow> bool" where
lessdef_refl: "lessdef v v"
| lessdef_undef: "lessdef Vundef v"
inductive lessdef_list :: "val list \<Rightarrow> val list \<Rightarrow> bool" where
lessdef_list_nil:
"lessdef_list [] []"
| lessdef_list_cons:
"lessdef v1 v2 \<Longrightarrow> lessdef_list vl1 vl2 \<Longrightarrow>
lessdef_list (v1 # vl1) (v2 # vl2)"
section \<open>Values and memory injections\<close>
(** A memory injection [f] is a function from addresses to either [None]
or [Some] of an address and an offset. It defines a correspondence
between the blocks of two memory states [m1] and [m2]:
- if [f b = None], the block [b] of [m1] has no equivalent in [m2];
- if [f b = Some(b', ofs)], the block [b] of [m2] corresponds to
a sub-block at offset [ofs] of the block [b'] in [m2].
*)
type_synonym meminj = "block \<Rightarrow> (block * Z) option"
(** A memory injection defines a relation between values that is the
identity relation, except for pointer values which are shifted
as prescribed by the memory injection. Moreover, [Vundef] values
inject into any other value. *)
inductive inject :: "meminj \<Rightarrow> val \<Rightarrow> val \<Rightarrow> bool" where
inject_int:
"inject mi (Vint i) (Vint i)"
| inject_long:
"inject mi (Vlong i) (Vlong i)"
| inject_float:
"inject mi (Vfloat f) (Vfloat f)"
| inject_single:
"inject mi (Vsingle f) (Vsingle f)"
| inject_ptr:
"mi b1 = Some (b2, delta) \<Longrightarrow>
ofs2 = ofs1 + (Int64.repr delta) \<Longrightarrow>
inject mi (Vptr b1 ofs1) (Vptr b2 ofs2)"
| val_inject_undef:
"inject mi Vundef v"
inductive inject_list :: "meminj \<Rightarrow> val list \<Rightarrow> val list \<Rightarrow> bool" where
inject_list_nil:
"inject_list mi [] []"
| inject_list_cons:
"inject mi v v' \<Longrightarrow> inject_list mi vl vl' \<Longrightarrow>
inject_list mi (v # vl) (v' # vl')"
end (* locale Val' *)
interpretation Val: Val' .
type_synonym meminj = Val.meminj
(** Monotone evolution of a memory injection. *)
definition inject_incr :: "meminj \<Rightarrow> meminj \<Rightarrow> bool" where
"inject_incr f1 f2 \<equiv> \<forall> b b' delta. f1 b = Some(b', delta) \<longrightarrow> f2 b = Some(b', delta)"
(** The identity injection gives rise to the "less defined than" relation. *)
definition inject_id :: meminj where
"inject_id b \<equiv> Some (b, 0)"
end |
\section{Single determinant wavefunctions}
\label{sec:singledeterminant}
Placing a single determinant for each spin is the most used ansatz for the antisymmetric part of a trial wavefunction.
The input xml block for \texttt{slaterdeterminant} is give in Listing~\ref{listing:singledet}. A list of options is given in
Table~\ref{table:singledet}
\begin{table}[h]
\begin{center}
\begin{tabularx}{\textwidth}{l l l l l l }
\hline
\multicolumn{6}{l}{\texttt{slaterdeterminant} element} \\
\hline
\multicolumn{2}{l}{parent elements:} & \multicolumn{4}{l}{\texttt{determinantset}}\\
\multicolumn{2}{l}{child elements:} & \multicolumn{4}{l}{\texttt{determinant}}\\
\multicolumn{2}{l}{attribute :} & \multicolumn{4}{l}{}\\
& \bfseries name & \bfseries datatype & \bfseries values & \bfseries default & \bfseries description \\
& \texttt{delay\_rank} & integer & >0 & 1 & The number of delayed updates. \\
& \texttt{optimize} & text & yes/no & yes & Enable orbital optimization. \\
\hline
\end{tabularx}
\end{center}
\caption{Options for the \texttt{slaterdeterminant} xml-block.}
\label{table:singledet}
\end{table}
\begin{lstlisting}[style=XML,caption=slaterdeterminant set XML element.\label{listing:singledet}]
<slaterdeterminant delay_rank="32">
<determinant id="updet" size="208">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
<determinant id="downdet" size="208">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
</slaterdeterminant>
\end{lstlisting}
Additional information:
\begin{itemize}
\item \texttt{delay\_rank}. This option enables the delayed updates of Slater matrix inverse when particle-by-particle move is used.
By default, \texttt{delay\_rank=1} uses the Fahy's variant~\cite{Fahy1990} of the Sherman-Morrison rank-1 update which is mostly using memory bandwidth bound BLAS-2 calls.
With \texttt{delay\_rank>1}, the delayed update algorithm~\cite{Luo2018delayedupdate,McDaniel2017} turns most of the computation to compute bound BLAS-3 calls.
Tuning this parameter is highly recommended to gain the best performance on medium to large problem sizes ($>200$ electrons).
We have seen up to an order of magnitude speed-up on large problem sizes.
When studying the performance of QMCPACK, a scan of this parameter is required and we recommend to start from 32.
The best \texttt{delay\_rank} giving the maximal speed-up depends the problem size.
Usually the larger \texttt{delay\_rank} corresponds to a larger problem size.
On CPUs, \texttt{delay\_rank} must be chosen a multiple of SIMD vector length for good performance of BLAS libraries.
The best \texttt{delay\_rank} depends on the processor micro architecture.
The GPU support is currently under development.
\end{itemize}
|
-- Andreas, 2011-10-02
{-# OPTIONS --show-implicit #-}
module Issue483a where
data _≡_ {A : Set}(a : A) : A → Set where
refl : a ≡ a
data Empty : Set where
postulate A : Set
abort : .Empty → A
abort ()
test : let X : .Set1 → A
X = _
in (x : Empty) → X Set ≡ abort x
test x = refl
-- this should fail with message like
--
-- Cannot instantiate the metavariable _16 to abort x since it
-- contains the variable x which is not in scope of the metavariable
-- when checking that the expression refl has type _16 _ ≡ abort x
--
-- a solution like X = λ _ → abort x : Set1 → A
-- would be invalid even though x is irrelevant, because there is no
-- term of type Set1 → A
|
theory Chapter08_2_Typechecking
imports Chapter08_1_Language
begin
inductive typecheck :: "type env => expr => type => bool"
where tc_var [simp]: "lookup gam x = Some t ==> typecheck gam (Var x) t"
| tc_str [simp]: "typecheck gam (Str s) StrType"
| tc_num [simp]: "typecheck gam (Num n) NumType"
| tc_plus [simp]: "typecheck gam e1 NumType ==> typecheck gam e2 NumType ==>
typecheck gam (Plus e1 e2) NumType"
| tc_times [simp]: "typecheck gam e1 NumType ==> typecheck gam e2 NumType ==>
typecheck gam (Times e1 e2) NumType"
| tc_cat [simp]: "typecheck gam e1 StrType ==> typecheck gam e2 StrType ==>
typecheck gam (Cat e1 e2) StrType"
| tc_len [simp]: "typecheck gam e StrType ==> typecheck gam (Len e) NumType"
| tc_let [simp]: "typecheck gam e1 t1 ==> typecheck (extend gam t1) e2 t2 ==>
typecheck gam (Let e1 e2) t2"
| tc_lam [simp]: "typecheck (extend gam t1) e t2 ==> typecheck gam (Lam t1 e) (Arrow t1 t2)"
| tc_appl [simp]: "typecheck gam e1 (Arrow t2 t) ==> typecheck gam e2 t2 ==>
typecheck gam (Appl e1 e2) t"
inductive_cases [elim!]: "typecheck gam (Var x) t"
inductive_cases [elim!]: "typecheck gam (Str s) t"
inductive_cases [elim!]: "typecheck gam (Num n) t"
inductive_cases [elim!]: "typecheck gam (Plus e1 e2) t"
inductive_cases [elim!]: "typecheck gam (Times e1 e2) t"
inductive_cases [elim!]: "typecheck gam (Cat e1 e2) t"
inductive_cases [elim!]: "typecheck gam (Len e) t"
inductive_cases [elim!]: "typecheck gam (Let e1 e2) t"
inductive_cases [elim!]: "typecheck gam (Lam t1 e) t"
inductive_cases [elim!]: "typecheck gam (Appl e1 e2) t"
lemma [simp]: "typecheck (extend_at n gam t') e t ==> n in gam ==> typecheck gam e' t' ==>
typecheck gam (subst e' n e) t"
by (induction "extend_at n gam t'" e t arbitrary: n gam t' e' rule: typecheck.induct, fastforce+)
end
|
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
hb : b ∈ doset a ↑H ↑K
⊢ doset b ↑H ↑K = doset a ↑H ↑K
[PROOFSTEP]
obtain ⟨_, k, ⟨h, a, hh, rfl : _ = _, rfl⟩, hk, rfl⟩ := hb
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
k h a : G
hh : h ∈ ↑H
hk : k ∈ ↑K
⊢ doset ((fun x x_1 => x * x_1) ((fun x x_1 => x * x_1) h a) k) ↑H ↑K = doset a ↑H ↑K
[PROOFSTEP]
rw [doset, doset, ← Set.singleton_mul_singleton, ← Set.singleton_mul_singleton, mul_assoc, mul_assoc,
Subgroup.singleton_mul_subgroup hk, ← mul_assoc, ← mul_assoc, Subgroup.subgroup_mul_singleton hh]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ¬Disjoint (doset a ↑H ↑K) (doset b ↑H ↑K)
⊢ b ∈ doset a ↑H ↑K
[PROOFSTEP]
rw [Set.not_disjoint_iff] at h
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ∃ x, x ∈ doset a ↑H ↑K ∧ x ∈ doset b ↑H ↑K
⊢ b ∈ doset a ↑H ↑K
[PROOFSTEP]
simp only [mem_doset] at *
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ∃ x, (∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y) ∧ ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * b * y
⊢ ∃ x, x ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ b = x * a * y
[PROOFSTEP]
obtain ⟨x, ⟨l, hl, r, hr, hrx⟩, y, hy, ⟨r', hr', rfl⟩⟩ := h
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b l : G
hl : l ∈ ↑H
r : G
hr : r ∈ ↑K
y : G
hy : y ∈ ↑H
r' : G
hr' : r' ∈ ↑K
hrx : y * b * r' = l * a * r
⊢ ∃ x, x ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ b = x * a * y
[PROOFSTEP]
refine' ⟨y⁻¹ * l, H.mul_mem (H.inv_mem hy) hl, r * r'⁻¹, K.mul_mem hr (K.inv_mem hr'), _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b l : G
hl : l ∈ ↑H
r : G
hr : r ∈ ↑K
y : G
hy : y ∈ ↑H
r' : G
hr' : r' ∈ ↑K
hrx : y * b * r' = l * a * r
⊢ b = y⁻¹ * l * a * (r * r'⁻¹)
[PROOFSTEP]
rwa [mul_assoc, mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc, eq_mul_inv_iff_mul_eq]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ¬Disjoint (doset a ↑H ↑K) (doset b ↑H ↑K)
⊢ doset a ↑H ↑K = doset b ↑H ↑K
[PROOFSTEP]
rw [disjoint_comm] at h
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ¬Disjoint (doset b ↑H ↑K) (doset a ↑H ↑K)
⊢ doset a ↑H ↑K = doset b ↑H ↑K
[PROOFSTEP]
have ha : a ∈ doset b H K := mem_doset_of_not_disjoint h
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : ¬Disjoint (doset b ↑H ↑K) (doset a ↑H ↑K)
ha : a ∈ doset b ↑H ↑K
⊢ doset a ↑H ↑K = doset b ↑H ↑K
[PROOFSTEP]
apply doset_eq_of_mem ha
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ Setoid.Rel (setoid ↑⊥ ↑H) = Setoid.Rel (QuotientGroup.leftRel H)
[PROOFSTEP]
ext a b
[GOAL]
case h.h.a
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ Setoid.Rel (setoid ↑⊥ ↑H) a b ↔ Setoid.Rel (QuotientGroup.leftRel H) a b
[PROOFSTEP]
rw [rel_iff, Setoid.Rel, QuotientGroup.leftRel_apply]
[GOAL]
case h.h.a
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ (∃ a_1, a_1 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_1 * a * b_1) ↔ a⁻¹ * b ∈ H
[PROOFSTEP]
constructor
[GOAL]
case h.h.a.mp
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ (∃ a_1, a_1 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_1 * a * b_1) → a⁻¹ * b ∈ H
[PROOFSTEP]
rintro ⟨a, rfl : a = 1, b, hb, rfl⟩
[GOAL]
case h.h.a.mp.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
hb : b ∈ H
⊢ a⁻¹ * (1 * a * b) ∈ H
[PROOFSTEP]
change a⁻¹ * (1 * a * b) ∈ H
[GOAL]
case h.h.a.mp.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
hb : b ∈ H
⊢ a⁻¹ * (1 * a * b) ∈ H
[PROOFSTEP]
rwa [one_mul, inv_mul_cancel_left]
[GOAL]
case h.h.a.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ a⁻¹ * b ∈ H → ∃ a_2, a_2 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_2 * a * b_1
[PROOFSTEP]
rintro (h : a⁻¹ * b ∈ H)
[GOAL]
case h.h.a.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
h : a⁻¹ * b ∈ H
⊢ ∃ a_1, a_1 ∈ ⊥ ∧ ∃ b_1, b_1 ∈ H ∧ b = a_1 * a * b_1
[PROOFSTEP]
exact ⟨1, rfl, a⁻¹ * b, h, by rw [one_mul, mul_inv_cancel_left]⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
h : a⁻¹ * b ∈ H
⊢ b = 1 * a * (a⁻¹ * b)
[PROOFSTEP]
rw [one_mul, mul_inv_cancel_left]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ Setoid.Rel (setoid ↑H ↑⊥) = Setoid.Rel (QuotientGroup.rightRel H)
[PROOFSTEP]
ext a b
[GOAL]
case h.h.a
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ Setoid.Rel (setoid ↑H ↑⊥) a b ↔ Setoid.Rel (QuotientGroup.rightRel H) a b
[PROOFSTEP]
rw [rel_iff, Setoid.Rel, QuotientGroup.rightRel_apply]
[GOAL]
case h.h.a
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ (∃ a_1, a_1 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_1 * a * b_1) ↔ b * a⁻¹ ∈ H
[PROOFSTEP]
constructor
[GOAL]
case h.h.a.mp
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ (∃ a_1, a_1 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_1 * a * b_1) → b * a⁻¹ ∈ H
[PROOFSTEP]
rintro ⟨b, hb, a, rfl : a = 1, rfl⟩
[GOAL]
case h.h.a.mp.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
hb : b ∈ H
⊢ b * a * 1 * a⁻¹ ∈ H
[PROOFSTEP]
change b * a * 1 * a⁻¹ ∈ H
[GOAL]
case h.h.a.mp.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
hb : b ∈ H
⊢ b * a * 1 * a⁻¹ ∈ H
[PROOFSTEP]
rwa [mul_one, mul_inv_cancel_right]
[GOAL]
case h.h.a.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
⊢ b * a⁻¹ ∈ H → ∃ a_2, a_2 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_2 * a * b_1
[PROOFSTEP]
rintro (h : b * a⁻¹ ∈ H)
[GOAL]
case h.h.a.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
h : b * a⁻¹ ∈ H
⊢ ∃ a_1, a_1 ∈ H ∧ ∃ b_1, b_1 ∈ ⊥ ∧ b = a_1 * a * b_1
[PROOFSTEP]
exact ⟨b * a⁻¹, h, 1, rfl, by rw [mul_one, inv_mul_cancel_right]⟩
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a b : G
h : b * a⁻¹ ∈ H
⊢ b = b * a⁻¹ * a * 1
[PROOFSTEP]
rw [mul_one, inv_mul_cancel_right]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
⊢ mk H K a = mk H K b ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ b = h * a * k
[PROOFSTEP]
rw [Quotient.eq'']
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
⊢ Setoid.r a b ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ b = h * a * k
[PROOFSTEP]
apply rel_iff
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k
[PROOFSTEP]
have := eq H K (mk H K g : Quotient ↑H ↑K).out' g
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
this : mk H K (Quotient.out' (mk H K g)) = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k
⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k
[PROOFSTEP]
rw [out_eq'] at this
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
this : mk H K g = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k
⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k
[PROOFSTEP]
obtain ⟨h, h_h, k, hk, T⟩ := this.1 rfl
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
this : mk H K g = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k
h : G
h_h : h ∈ H
k : G
hk : k ∈ K
T : g = h * Quotient.out' (mk H K g) * k
⊢ ∃ h k, h ∈ H ∧ k ∈ K ∧ Quotient.out' (mk H K g) = h * g * k
[PROOFSTEP]
refine' ⟨h⁻¹, k⁻¹, H.inv_mem h_h, K.inv_mem hk, eq_mul_inv_of_mul_eq (eq_inv_mul_of_mul_eq _)⟩
[GOAL]
case intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g✝ : G
H K : Subgroup G
g : G
this : mk H K g = mk H K g ↔ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ g = h * Quotient.out' (mk H K g) * k
h : G
h_h : h ∈ H
k : G
hk : k ∈ K
T : g = h * Quotient.out' (mk H K g) * k
⊢ h * (Quotient.out' (mk H K g) * k) = g
[PROOFSTEP]
rw [← mul_assoc, ← T]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : doset a ↑H ↑K = doset b ↑H ↑K
⊢ mk H K a = mk H K b
[PROOFSTEP]
rw [eq]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : G
h : doset a ↑H ↑K = doset b ↑H ↑K
⊢ ∃ h, h ∈ H ∧ ∃ k, k ∈ K ∧ b = h * a * k
[PROOFSTEP]
exact mem_doset.mp (h.symm ▸ mem_doset_self H K b)
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : Quotient ↑H.toSubmonoid ↑K
⊢ a ≠ b → Disjoint (doset (Quotient.out' a) ↑H ↑K) (doset (Quotient.out' b) ↑H ↑K)
[PROOFSTEP]
contrapose!
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : Quotient ↑H.toSubmonoid ↑K
⊢ ¬Disjoint (doset (Quotient.out' a) ↑H ↑K) (doset (Quotient.out' b) ↑H ↑K) → a = b
[PROOFSTEP]
intro h
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a b : Quotient ↑H.toSubmonoid ↑K
h : ¬Disjoint (doset (Quotient.out' a) ↑H ↑K) (doset (Quotient.out' b) ↑H ↑K)
⊢ a = b
[PROOFSTEP]
simpa [out_eq'] using mk_eq_of_doset_eq (eq_of_not_disjoint h)
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
⊢ ⋃ (q : Quotient ↑H ↑K), quotToDoset H K q = Set.univ
[PROOFSTEP]
ext x
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x : G
⊢ x ∈ ⋃ (q : Quotient ↑H ↑K), quotToDoset H K q ↔ x ∈ Set.univ
[PROOFSTEP]
simp only [Set.mem_iUnion, quotToDoset, mem_doset, SetLike.mem_coe, exists_prop, Set.mem_univ, iff_true_iff]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x : G
⊢ ∃ i x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * Quotient.out' i * y
[PROOFSTEP]
use mk H K x
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x : G
⊢ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * Quotient.out' (mk H K x) * y
[PROOFSTEP]
obtain ⟨h, k, h3, h4, h5⟩ := mk_out'_eq_mul H K x
[GOAL]
case h.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x h k : G
h3 : h ∈ H
h4 : k ∈ K
h5 : Quotient.out' (mk H K x) = h * x * k
⊢ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * Quotient.out' (mk H K x) * y
[PROOFSTEP]
refine' ⟨h⁻¹, H.inv_mem h3, k⁻¹, K.inv_mem h4, _⟩
[GOAL]
case h.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
x h k : G
h3 : h ∈ H
h4 : k ∈ K
h5 : Quotient.out' (mk H K x) = h * x * k
⊢ x = h⁻¹ * Quotient.out' (mk H K x) * k⁻¹
[PROOFSTEP]
simp only [h5, Subgroup.coe_mk, ← mul_assoc, one_mul, mul_left_inv, mul_inv_cancel_right]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a : G
⊢ ⋃ (k : { x // x ∈ K }), rightCoset (↑H) (a * ↑k) = doset a ↑H ↑K
[PROOFSTEP]
ext x
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ x ∈ ⋃ (k : { x // x ∈ K }), rightCoset (↑H) (a * ↑k) ↔ x ∈ doset a ↑H ↑K
[PROOFSTEP]
simp only [mem_rightCoset_iff, exists_prop, mul_inv_rev, Set.mem_iUnion, mem_doset, Subgroup.mem_carrier,
SetLike.mem_coe]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ i, x * ((↑i)⁻¹ * a⁻¹) ∈ H) ↔ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y
[PROOFSTEP]
constructor
[GOAL]
case h.mp
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ i, x * ((↑i)⁻¹ * a⁻¹) ∈ H) → ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y
[PROOFSTEP]
rintro ⟨y, h_h⟩
[GOAL]
case h.mp.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
y : { x // x ∈ K }
h_h : x * ((↑y)⁻¹ * a⁻¹) ∈ H
⊢ ∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y
[PROOFSTEP]
refine' ⟨x * (y⁻¹ * a⁻¹), h_h, y, y.2, _⟩
[GOAL]
case h.mp.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
y : { x // x ∈ K }
h_h : x * ((↑y)⁻¹ * a⁻¹) ∈ H
⊢ x = x * (↑y⁻¹ * a⁻¹) * a * ↑y
[PROOFSTEP]
simp only [← mul_assoc, Subgroup.coe_mk, inv_mul_cancel_right, SubgroupClass.coe_inv]
[GOAL]
case h.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ x_1, x_1 ∈ H ∧ ∃ y, y ∈ K ∧ x = x_1 * a * y) → ∃ i, x * ((↑i)⁻¹ * a⁻¹) ∈ H
[PROOFSTEP]
rintro ⟨x, hx, y, hy, hxy⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x✝ x : G
hx : x ∈ H
y : G
hy : y ∈ K
hxy : x✝ = x * a * y
⊢ ∃ i, x✝ * ((↑i)⁻¹ * a⁻¹) ∈ H
[PROOFSTEP]
refine' ⟨⟨y, hy⟩, _⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x✝ x : G
hx : x ∈ H
y : G
hy : y ∈ K
hxy : x✝ = x * a * y
⊢ x✝ * ((↑{ val := y, property := hy })⁻¹ * a⁻¹) ∈ H
[PROOFSTEP]
simp only [hxy, ← mul_assoc, hx, mul_inv_cancel_right, Subgroup.coe_mk]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a : G
⊢ ⋃ (h : { x // x ∈ H }), leftCoset (↑h * a) ↑K = doset a ↑H ↑K
[PROOFSTEP]
ext x
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ x ∈ ⋃ (h : { x // x ∈ H }), leftCoset (↑h * a) ↑K ↔ x ∈ doset a ↑H ↑K
[PROOFSTEP]
simp only [mem_leftCoset_iff, mul_inv_rev, Set.mem_iUnion, mem_doset]
[GOAL]
case h
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ i, a⁻¹ * (↑i)⁻¹ * x ∈ ↑K) ↔ ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y
[PROOFSTEP]
constructor
[GOAL]
case h.mp
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ i, a⁻¹ * (↑i)⁻¹ * x ∈ ↑K) → ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y
[PROOFSTEP]
rintro ⟨y, h_h⟩
[GOAL]
case h.mp.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
y : { x // x ∈ H }
h_h : a⁻¹ * (↑y)⁻¹ * x ∈ ↑K
⊢ ∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y
[PROOFSTEP]
refine' ⟨y, y.2, a⁻¹ * y⁻¹ * x, h_h, _⟩
[GOAL]
case h.mp.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
y : { x // x ∈ H }
h_h : a⁻¹ * (↑y)⁻¹ * x ∈ ↑K
⊢ x = ↑y * a * (a⁻¹ * ↑y⁻¹ * x)
[PROOFSTEP]
simp only [← mul_assoc, one_mul, mul_right_inv, mul_inv_cancel_right, SubgroupClass.coe_inv]
[GOAL]
case h.mpr
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x : G
⊢ (∃ x_1, x_1 ∈ ↑H ∧ ∃ y, y ∈ ↑K ∧ x = x_1 * a * y) → ∃ i, a⁻¹ * (↑i)⁻¹ * x ∈ ↑K
[PROOFSTEP]
rintro ⟨x, hx, y, hy, hxy⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x✝ x : G
hx : x ∈ ↑H
y : G
hy : y ∈ ↑K
hxy : x✝ = x * a * y
⊢ ∃ i, a⁻¹ * (↑i)⁻¹ * x✝ ∈ ↑K
[PROOFSTEP]
refine' ⟨⟨x, hx⟩, _⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H K : Subgroup G
a x✝ x : G
hx : x ∈ ↑H
y : G
hy : y ∈ ↑K
hxy : x✝ = x * a * y
⊢ a⁻¹ * (↑{ val := x, property := hx })⁻¹ * x✝ ∈ ↑K
[PROOFSTEP]
simp only [hxy, ← mul_assoc, hy, one_mul, mul_left_inv, Subgroup.coe_mk, inv_mul_cancel_right]
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ Quotient ↑⊥.toSubmonoid ↑H = (G ⧸ H)
[PROOFSTEP]
unfold Quotient
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ _root_.Quotient (setoid ↑⊥.toSubmonoid ↑H) = (G ⧸ H)
[PROOFSTEP]
congr
[GOAL]
case e_s
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ setoid ↑⊥.toSubmonoid ↑H = QuotientGroup.leftRel H
[PROOFSTEP]
ext
[GOAL]
case e_s.H
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a✝ b✝ : G
⊢ Setoid.Rel (setoid ↑⊥.toSubmonoid ↑H) a✝ b✝ ↔ Setoid.Rel (QuotientGroup.leftRel H) a✝ b✝
[PROOFSTEP]
simp_rw [← bot_rel_eq_leftRel H]
[GOAL]
case e_s.H
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a✝ b✝ : G
⊢ Setoid.Rel (setoid ↑⊥.toSubmonoid ↑H) a✝ b✝ ↔ Setoid.Rel (setoid ↑⊥ ↑H) a✝ b✝
[PROOFSTEP]
rfl
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ Quotient ↑H.toSubmonoid ↑⊥ = _root_.Quotient (QuotientGroup.rightRel H)
[PROOFSTEP]
unfold Quotient
[GOAL]
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ _root_.Quotient (setoid ↑H.toSubmonoid ↑⊥) = _root_.Quotient (QuotientGroup.rightRel H)
[PROOFSTEP]
congr
[GOAL]
case e_s
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
⊢ setoid ↑H.toSubmonoid ↑⊥ = QuotientGroup.rightRel H
[PROOFSTEP]
ext
[GOAL]
case e_s.H
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a✝ b✝ : G
⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (QuotientGroup.rightRel H) a✝ b✝
[PROOFSTEP]
simp_rw [← rel_bot_eq_right_group_rel H]
[GOAL]
case e_s.H
G : Type u_1
inst✝¹ : Group G
α : Type u_2
inst✝ : Mul α
J : Subgroup G
g : G
H : Subgroup G
a✝ b✝ : G
⊢ Setoid.Rel (setoid ↑H.toSubmonoid ↑⊥) a✝ b✝ ↔ Setoid.Rel (setoid ↑H ↑⊥) a✝ b✝
[PROOFSTEP]
rfl
|
State Before: α : Type u
β : Type v
γ : Type w
δ : Type ?u.255463
ι : Sort x
f f₁ f₂ : Filter α
g g₁ g₂ : Filter β
m✝ : α → β
m' : β → γ
s✝ : Set α
t : Set β
s : Set (Filter β)
m : α → β
⊢ comap m (sSup s) = ⨆ (f : Filter β) (_ : f ∈ s), comap m f State After: no goals Tactic: simp only [sSup_eq_iSup, comap_iSup, eq_self_iff_true] |
[STATEMENT]
lemma lookup_functional:
assumes "lookup l f = o1"
and "lookup l f = o2"
shows "o1 = o2"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. o1 = o2
[PROOF STEP]
using assms
[PROOF STATE]
proof (prove)
using this:
lookup l f = o1
lookup l f = o2
goal (1 subgoal):
1. o1 = o2
[PROOF STEP]
by (induct l) auto |
[STATEMENT]
lemma product_language[simp]: "c.language (product A B) = a.language A \<inter> b.language B"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. c.language (product A B) = a.language A \<inter> b.language B
[PROOF STEP]
by force |
[STATEMENT]
lemma poly_of_pm_sum: "poly_of_pm x (sum f I) = (\<Sum>i\<in>I. poly_of_pm x (f i))"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. poly_of_pm x (sum f I) = (\<Sum>i\<in>I. poly_of_pm x (f i))
[PROOF STEP]
by (induct I rule: infinite_finite_induct) (simp_all add: poly_of_pm_plus) |
#ifndef TEST_PERIOR_TREE_AABB_TYPE_HPP
#define TEST_PERIOR_TREE_AABB_TYPE_HPP
#include <periortree/aabb_traits.hpp>
#include <test/point_type.hpp>
#include <boost/array.hpp>
#include <boost/mpl/int.hpp>
namespace perior
{
namespace test
{
struct aabb
{
aabb(const xyz& lw, const xyz& up)
: lower(lw), upper(up)
{}
aabb() {}
~aabb(){}
aabb(const aabb& rhs) : lower(rhs.lower), upper(rhs.upper){}
aabb& operator=(const aabb& rhs)
{
upper = rhs.upper;
lower = rhs.lower;
return *this;
}
xyz lower, upper;
};
}// test
}// perior
namespace perior
{
namespace traits
{
template<> struct tag<perior::test::aabb> {typedef aabb_tag type;};
template<> struct dimension_of<perior::test::aabb>: boost::mpl::int_<3>{};
template<> struct point_type_of<perior::test::aabb>{typedef perior::test::xyz type;};
template<> struct coordinate_type_of<perior::test::aabb>{typedef double type;};
template<std::size_t D>
struct box_access<perior::test::aabb, max_corner, D>
{
typedef perior::test::aabb box_type;
typedef typename point_type_of<box_type>::type point_type;
typedef typename coordinate_type_of<box_type>::type coordinate_type;
BOOST_FORCEINLINE
static coordinate_type get(const box_type& b)
BOOST_NOEXCEPT_IF(
noexcept(point_access<point_type, D>::get(b.upper))
)
{
return point_access<point_type, D>::get(b.upper);
}
BOOST_FORCEINLINE
static void set(box_type& b, coordinate_type x)
BOOST_NOEXCEPT_IF(
noexcept(point_access<point_type, D>::set(b.upper, x))
)
{
return point_access<point_type, D>::set(b.upper, x);
}
};
template<std::size_t D>
struct box_access<perior::test::aabb, min_corner, D>
{
typedef perior::test::aabb box_type;
typedef typename point_type_of<box_type>::type point_type;
typedef typename coordinate_type_of<box_type>::type coordinate_type;
BOOST_FORCEINLINE
static coordinate_type get(const box_type& b)
BOOST_NOEXCEPT_IF(
noexcept(point_access<point_type, D>::get(b.lower))
)
{
return point_access<point_type, D>::get(b.lower);
}
BOOST_FORCEINLINE
static void set(box_type& b, coordinate_type x)
BOOST_NOEXCEPT_IF(
noexcept(point_access<point_type, D>::set(b.lower, x))
)
{
return point_access<point_type, D>::set(b.lower, x);
}
};
template<std::size_t D>
struct box_range_access<perior::test::aabb, D>
{
typedef perior::test::aabb box_type;
typedef typename point_type_of<box_type>::type point_type;
typedef typename coordinate_type_of<box_type>::type coordinate_type;
BOOST_FORCEINLINE
static coordinate_type get(const box_type& b)
BOOST_NOEXCEPT_IF(
noexcept(point_access<point_type, D>::get(b.lower))
)
{
return point_access<point_type, D>::get(b.upper) -
point_access<point_type, D>::get(b.lower);
}
};
}// traits
}// perior
#endif//TEST_PERIOR_TREE_AABB_TYPE_HPP
|
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
##set random seed
import numpy as np
np.random.seed(26)
import tensorflow as tf
tf.set_random_seed(26)
import collections
import csv
import pandas as pd
import os,sys
import modeling
from tensorflow.contrib.layers.python.layers import initializers
import optimization
# import optimization_layerwise as optimization
# import accoptimization as optimization
import tokenization
import pickle
import codecs
from sklearn import metrics
from sklearn.externals import joblib
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string("task_name", None, "The name of the task to train.")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
## Other parameters
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_bool(
"do_lower_case", False,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_bool(
"do_predict", False,
"Whether to run the model in inference mode on the test set.")
flags.DEFINE_bool("clean", True, "Whether to clean last training files.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_float("num_train_epochs", 3.0,
"Total number of training epochs to perform.")
flags.DEFINE_float(
"warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, start_labels=None, end_labels=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.start_labels = start_labels
self.end_labels = end_labels
class PaddingInputExample(object):
"""Fake example so the num input examples is a multiple of the batch size.
When running eval/predict on the TPU, we need to pad the number of examples
to be a multiple of the batch size, because the TPU requires a fixed batch
size. The alternative is to drop the last batch, which is bad because it means
the entire output data won't be generated.
We use this class instead of `None` because treating `None` as padding
battches could cause silent errors.
"""
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids,
input_mask,
segment_ids,
start_labels_ids,
end_labels_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.start_labels_ids = start_labels_ids
self.end_labels_ids = end_labels_ids
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.gfile.Open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class NerProcessor(DataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train_raw.out")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev_raw.out")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev_raw.out")), "test")
def get_labels(self):
"""See base class."""
labels = ['0','1']
return labels
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
# if i == 0:
# continue
# if set_type == 'train':
# if i > len(lines) * 0.01:
# continue
# if set_type == 'dev': # filter unclear class
# if i > len(lines) * 0.01:
# continue
# if set_type == 'test': # filter unclear class
# if i > len(lines) * 0.01:
# continue
## xy:先pad句子,再pad query
guid = "%s-%s" % (set_type, i)
text_a = tokenization.convert_to_unicode(line[1].strip())
text_b = tokenization.convert_to_unicode(line[0].strip())
# start_labels = line[2].strip()
# end_labels = line[3].strip()
start_labels = tokenization.convert_to_unicode(line[2].strip())
end_labels = tokenization.convert_to_unicode(line[3].strip())
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, start_labels=start_labels, end_labels=end_labels))
return examples
def convert_single_example(ex_index, example, label_map, max_seq_length,
tokenizer):
"""Converts a single `InputExample` into a single `InputFeatures`."""
all_start_labels = []
all_end_labels = []
text_a = example.text_a.split(' ')
text_b = example.text_b
start_labels = example.start_labels.split(' ')
end_labels = example.end_labels.split(' ')
# text_a_start_labels = []
# text_a_end_labels = []
tokens = []
segment_ids = []
tokens.append("[CLS]")
all_start_labels.append(0)
all_end_labels.append(0)
segment_ids.append(0)
# print('**'*30)
# print(len(text_a))
# print(len(text_b))
# print(len(start_labels))
# print(len(end_labels))
for i, word in enumerate(text_a):
# 分词,如果是中文,就是分字,但是对于一些不在BERT的vocab.txt中得字符会被进行WordPice处理(例如中文的引号),可以将所有的分字操作替换为list(input)
token = tokenizer.tokenize(word)
tokens.extend(token)
tmp_s_label = start_labels[i]
tmp_e_label = end_labels[i]
## 熊英:?? 对每个token处理是否存在问题?不应该是还要判断start和end吗
## xy revise
for m in range(len(token)):
if m == 0:
all_start_labels.append(tmp_s_label)
all_end_labels.append(0) # 不管怎样end都填0,如果是实体被token开,再最后判断把最后一个改成1
segment_ids.append(0)
else: # 一般不会出现else
all_start_labels.append(0)
all_end_labels.append(0)
segment_ids.append(0)
if tmp_e_label == '1':
# print('##################yyyyy################')
all_end_labels[-1] = 1
tokens.append("[SEP]")
all_start_labels.append(0)
all_end_labels.append(0)
segment_ids.append(0)
tokens_b = tokenizer.tokenize(text_b)
for token in tokens_b:
tokens.append(token)
all_start_labels.append(0)
all_end_labels.append(0)
segment_ids.append(1)
# all_start_labels.extend(text_a_start_labels)
# all_end_labels.extend(text_a_end_labels)
# 序列截断
# 熊英:暴力截断会存在问题的吧?如果end_label为1,截断就没有对应的了??
if len(tokens) >= max_seq_length - 1:
tokens = tokens[:(max_seq_length - 1)] # -2 的原因是因为序列需要加一个句首和句尾标志
all_start_labels = all_start_labels[:(max_seq_length - 1)]
all_end_labels = all_end_labels[:(max_seq_length - 1)]
segment_ids = segment_ids[:(max_seq_length - 1)]
tokens.append("[SEP]")
all_start_labels.append(0)
all_end_labels.append(0)
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
# we don't concerned about it!
all_start_labels.append(0)
all_end_labels.append(0)
all_start_labels_ids = [label_map[str(i)] for i in all_start_labels]
all_end_labels_ids = [label_map[str(i)] for i in all_end_labels]
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(all_start_labels_ids) == max_seq_length
assert len(all_end_labels_ids) == max_seq_length
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("start_labels_ids: %s" % " ".join([str(x) for x in all_start_labels_ids]))
tf.logging.info("end_labels_ids: %s" % " ".join([str(x) for x in all_end_labels_ids]))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
start_labels_ids=all_start_labels_ids,
end_labels_ids=all_end_labels_ids)
return feature
def file_based_convert_examples_to_features(
examples, label_map, max_seq_length, tokenizer, output_file):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_map,
max_seq_length, tokenizer)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["start_labels_ids"] = create_int_feature(feature.start_labels_ids)
features["end_labels_ids"] = create_int_feature(feature.end_labels_ids)
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"start_labels_ids": tf.FixedLenFeature([seq_length], tf.int64),
"end_labels_ids": tf.FixedLenFeature([seq_length], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
# d = d.repeat(1)
d = d.shuffle(buffer_size=500)
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn
def focal_loss(logits,labels,mask,num_labels,one_hot=True,lambda_param=1.5):
probs = tf.nn.softmax(logits,axis=-1)
pos_probs = probs[:,:,1]
prob_label_pos = tf.where(tf.equal(labels,1),pos_probs,tf.ones_like(pos_probs))
prob_label_neg = tf.where(tf.equal(labels,0),pos_probs,tf.zeros_like(pos_probs))
loss = tf.pow(1. - prob_label_pos,lambda_param)*tf.log(prob_label_pos + 1e-7) + \
tf.pow(prob_label_neg,lambda_param)*tf.log(1. - prob_label_neg + 1e-7)
loss = -loss * tf.cast(mask,tf.float32)
loss = tf.reduce_sum(loss,axis=-1,keepdims=True)
# loss = loss/tf.cast(tf.reduce_sum(mask,axis=-1),tf.float32)
loss = tf.reduce_mean(loss)
return loss
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
start_labels_ids, end_labels_ids, num_labels, use_one_hot_embeddings):
"""Creates a classification model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
output_layer = model.get_sequence_output()
hidden_size = output_layer.shape[-1].value
max_seq_length = output_layer.shape[1].value
##add CRF layer and biLSTM layer
if is_training:
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
hidden = tf.reshape(output_layer, shape=[-1, hidden_size])
with tf.variable_scope("start_logits"):
start_W = tf.get_variable("start_W", shape=[hidden_size, num_labels],
dtype=tf.float32, initializer=initializers.xavier_initializer())
start_b = tf.get_variable("start_b", shape=[num_labels], dtype=tf.float32,
initializer=tf.zeros_initializer())
start_pred = tf.nn.xw_plus_b(hidden, start_W, start_b)
with tf.variable_scope("end_logits"):
end_W = tf.get_variable("end_W", shape=[hidden_size, num_labels],
dtype=tf.float32, initializer=initializers.xavier_initializer())
end_b = tf.get_variable("end_b", shape=[num_labels], dtype=tf.float32,
initializer=tf.zeros_initializer())
end_pred = tf.nn.xw_plus_b(hidden, end_W, end_b)
with tf.variable_scope("start_loss"):
logits = tf.reshape(start_pred, [-1, max_seq_length, num_labels])
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(start_labels_ids, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
start_loss = tf.reduce_mean(per_example_loss)
probabilities = tf.nn.softmax(logits, axis=-1)
start_pred_ids = tf.argmax(probabilities,axis=-1)
with tf.variable_scope("end_start_loss"):
logits = tf.reshape(end_pred, [-1, max_seq_length, num_labels])
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(end_labels_ids, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
end_loss = tf.reduce_mean(per_example_loss)
probabilities = tf.nn.softmax(logits, axis=-1)
end_pred_ids = tf.argmax(probabilities,axis=-1)
total_loss = start_loss + end_loss
return (total_loss, logits, start_pred_ids, end_pred_ids)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
start_labels_ids = features["start_labels_ids"]
end_labels_ids = features["end_labels_ids"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
# 使用参数构建模型,input_idx 就是输入的样本idx表示,label_ids 就是标签的idx表示
(total_loss, logits, start_pred_ids, end_pred_ids) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, start_labels_ids,
end_labels_ids, num_labels, use_one_hot_embeddings)
pred_ids = tf.stack([start_pred_ids,end_pred_ids],axis=1)
print('-*'*30)
print(pred_ids)
tvars = tf.trainable_variables()
scaffold_fn = None
# 加载BERT模型
if init_checkpoint:
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
'''
tf.logging.info("**** Trainable Variables ****")
# 打印加载模型的参数
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
'''
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
scaffold_fn=scaffold_fn) #
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions=pred_ids,
scaffold_fn=scaffold_fn
)
return output_spec
return model_fn
def labeltoid(label_list):
label_map = {}
# 1表示从1开始对label进行index化
for (i, label) in enumerate(label_list):
label_map[label] = i
# 保存label->index 的map
with codecs.open(os.path.join(FLAGS.output_dir, 'label2id.pkl'), 'wb') as w:
pickle.dump(label_map, w)
return label_map
def save_best_model(cur_ckpt_path,best_model_path):
cmd1 = 'cp '+cur_ckpt_path+'.index '+best_model_path+'.index'
cmd2 = 'cp '+cur_ckpt_path+'.meta '+best_model_path+'.meta'
cmd3 = 'cp '+cur_ckpt_path+'.data-00000-of-00001 '+best_model_path+'.data-00000-of-00001'
os.system(cmd1)
os.system(cmd2)
os.system(cmd3)
def get_pred_metric(result, eval_input_ids, tokenizer):
all_pred_ent = []
# print(len(result))
# print(len(eval_input_ids))
# print(result)
for i in range(len(result)):
# print(i)
tmp_input_ids = eval_input_ids[i]
start_preds = result[i][0]
end_preds = result[i][1]
start_inds = []
end_inds = []
# print(start_preds)
# print(end_preds)
for ind in range(len(start_preds)):
if(start_preds[ind]==1):
start_inds.append(ind)
for ind in range(len(end_preds)):
if(end_preds[ind]==1):
end_inds.append(ind)
if(len(start_inds)==0):
all_pred_ent.append('')
else:
ans = []
def back(start_inds, end_inds):
# global ans
if(len(start_inds)==0 or len(end_inds)==0):
return
while(len(end_inds)>0 and end_inds[0]<start_inds[0]):
end_inds = end_inds[1:]
if(len(end_inds)>0):
while(len(start_inds)>1 and (end_inds[0]-start_inds[1])>0 and ((end_inds[0]-start_inds[0])>(end_inds[0]-start_inds[1]))):
start_inds = start_inds[1:]
ans.append((start_inds[0],end_inds[0]))
back(start_inds[1:],end_inds[1:])
back(start_inds, end_inds)
if(len(ans)==0):
all_pred_ent.append('')
else:
all_tmp_ent = []
for item in ans:
s_ind = item[0]
e_ind = item[1]
# print(s_ind, e_ind)
tmp_ent = ' '.join(tokenizer.convert_ids_to_tokens(tmp_input_ids[s_ind:e_ind+1])).replace(' ##','')
end_str = ''
e_ind += 1
while((e_ind<len(tmp_input_ids)-1) and ('##' in tokenizer.convert_ids_to_tokens([tmp_input_ids[e_ind]])[0])):
end_str += tokenizer.convert_ids_to_tokens([tmp_input_ids[e_ind]])[0].replace('##','')
e_ind += 1
tmp_ent += end_str
all_tmp_ent.append(tmp_ent)
# print(all_tmp_ent)
all_pred_ent.append(all_tmp_ent)
# print(' '.join(tokenizer.convert_ids_to_tokens(tmp_input_ids)))
# print(all_tmp_ent)
# print(all_pred_ent)
# print(len(all_pred_ent))
## save result in file
with open(os.path.join(FLAGS.output_dir, 'dev_pred_answer.txt'), 'w') as f:
for entities in all_pred_ent:
if len(entities) == 0:
f.write('\n')
else:
f.write('\t'.join(entities) + '\n')
with open(os.path.join(FLAGS.data_dir, 'dev_answer.txt'), 'r') as f:
gold = f.readlines()
all_pred = 0
for item in all_pred_ent:
if(item==''):
continue
else:
for i in item:
all_pred += 1
tp = 0
all_ann = 0
for i in range(len(gold)):
if(len(gold[i].strip())!=0):
# print(gold[i])
for k in gold[i].strip().split('\t'):
all_ann += 1
for i in range(len(gold)):
if(all_pred_ent[i]!=''):
for j in all_pred_ent[i]:
for e in gold[i].strip().split('\t'):
if j.lower() == e.lower():
tp += 1
break
p = tp/all_pred
r = tp/all_ann
f = (2*p*r)/(p+r)
f1 = f
print(tp,all_pred,all_ann)
print(p,r,f)
# print(all_pred_ent)
return f1
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
processors = {
"ner": NerProcessor,
}
tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
FLAGS.init_checkpoint)
if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
raise ValueError(
"At least one of `do_train`, `do_eval` or `do_predict' must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
## del last training file
if(FLAGS.do_train and FLAGS.clean):
if os.path.exists(FLAGS.output_dir):
def del_file(path):
ls = os.listdir(path)
for i in ls:
c_path = os.path.join(path, i)
if os.path.isdir(c_path):
del_file(c_path)
else:
os.remove(c_path)
try:
del_file(FLAGS.output_dir)
except Exception as e:
print(e)
print('pleace remove the files of output dir and data.conf')
exit(-1)
tf.gfile.MakeDirs(FLAGS.output_dir)
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
label_map = labeltoid(label_list)
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
print(tokenizer.convert_ids_to_tokens([101, 2424, 1996, 15316, 4668, 1997, 5423, 15660, 102 ]))
# sys.exit(0)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=None,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
train_examples = None
num_train_steps = None
num_warmup_steps = None
if FLAGS.do_train:
train_examples = processor.get_train_examples(FLAGS.data_dir)
num_train_steps = int(
len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
model_fn = model_fn_builder(
bert_config=bert_config,
num_labels=len(label_list),
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
model_dir=FLAGS.output_dir,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.predict_batch_size)
if FLAGS.do_train:
train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
file_based_convert_examples_to_features(
train_examples, label_map, FLAGS.max_seq_length, tokenizer, train_file)
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", len(train_examples))
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
drop_remainder=True)
if FLAGS.do_eval:
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
eval_input_ids = []
for (ex_index, example) in enumerate(eval_examples):
feature = convert_single_example(ex_index, example, label_map,
FLAGS.max_seq_length, tokenizer)
eval_input_ids.append(feature.input_ids)
num_actual_eval_examples = len(eval_examples)
eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
file_based_convert_examples_to_features(
eval_examples, label_map, FLAGS.max_seq_length, tokenizer, eval_file)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(eval_examples), num_actual_eval_examples,
len(eval_examples) - num_actual_eval_examples)
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=False)
## Get id2label
with codecs.open(os.path.join(FLAGS.output_dir, 'label2id.pkl'), 'rb') as rf:
label2id = pickle.load(rf)
id2label = {value: key for key, value in label2id.items()}
best_result = 0
all_results = []
if FLAGS.do_train:
for i in range(int(FLAGS.num_train_epochs)):
print('**'*40)
print('Train {} epoch'.format(i+1))
estimator.train(input_fn=train_input_fn)
## Do Dev
# result = estimator.predict(input_fn=eval_input_fn)
# result = list(result)
# for i in range(len(result)):
# tmp_input_ids = eval_input_ids[i]
# start_preds = result[i][0]
# end_preds = result[i][1]
# start_ind = 0
# end_ind = 0
# for ind in range(len(start_preds)):
# if(start_preds[ind]==1):
# start_ind = ind
# break
# for ind in range(len(end_preds)):
# if(end_preds[ind]==1):
# end_ind = ind
# break
# pred_ids = tmp_input_ids[start_ind:end_ind+1]
# print('-*-'*30)
# print(pred_ids)
# print(tokenizer.convert_ids_to_tokens(pred_ids))
# pred = np.array(pred)
# output_dev_file = os.path.join(FLAGS.output_dir, "label_dev.txt")
# tmp_result = report_metric(eval_examples, pred, output_dev_file, id2label, probs)
# print('Tmp result (macro F1) : ',tmp_result)
# all_results.append(tmp_result)
# if(tmp_result>best_result):
# print('**'*40)
# print('Found better model, saved!')
# best_result = tmp_result
# cur_ckpt_path = estimator.latest_checkpoint()
# best_model_path = '/'.join(cur_ckpt_path.split('/')[:-1]+['model.ckpt-best'])
# save_best_model(cur_ckpt_path,best_model_path)
# print('**'*40)
# print('Training completed!')
# print('all_results: ',all_results)
# print('Best result: ',np.max(all_results))
# print('Avg result: ',np.mean(all_results))
# import sys
# sys.exit(0)
if FLAGS.do_predict:
print('***********************Running Prediction************************')
# print('Use model which perform best on dev data')
cur_ckpt_path = estimator.latest_checkpoint()
print('Use model which restore from last ckpt')
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
model_dir=None,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.predict_batch_size,
warm_start_from=cur_ckpt_path)
predict_examples = processor.get_test_examples(FLAGS.data_dir)
num_actual_predict_examples = len(predict_examples)
predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
file_based_convert_examples_to_features(predict_examples, label_map,
FLAGS.max_seq_length, tokenizer,
predict_file)
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(predict_examples), num_actual_predict_examples,
len(predict_examples) - num_actual_predict_examples)
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=False)
result = estimator.predict(input_fn=predict_input_fn)
result = list(result)
print(get_pred_metric(result, eval_input_ids, tokenizer))
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()
|
(** * Functoriality of composition of natural transformations *)
Require Import Category.Core Functor.Core NaturalTransformation.Core.
Require Import FunctorCategory.Core Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws.
Set Universe Polymorphism.
Set Implicit Arguments.
Generalizable All Variables.
Set Asymmetric Patterns.
Local Open Scope functor_scope.
Section functorial_composition.
Context `{Funext}.
Variables C D E : PreCategory.
Local Open Scope natural_transformation_scope.
(** ** whiskering on the left is a functor *)
Definition whiskerL_functor (F : (D -> E)%category)
: ((C -> D) -> (C -> E))%category
:= Build_Functor
(C -> D) (C -> E)
(fun G => F o G)%functor
(fun _ _ T => F oL T)
(fun _ _ _ _ _ => composition_of_whisker_l _ _ _)
(fun _ => whisker_l_right_identity _ _).
(** ** whiskering on the right is a functor *)
Definition whiskerR_functor (G : (C -> D)%category)
: ((D -> E) -> (C -> E))%category
:= Build_Functor
(D -> E) (C -> E)
(fun F => F o G)%functor
(fun _ _ T => T oR G)
(fun _ _ _ _ _ => composition_of_whisker_r _ _ _)
(fun _ => whisker_r_left_identity _ _).
End functorial_composition.
|
using Test
using CollectiveSpins.effective_interaction
using CollectiveSpins.effective_interaction_simple
@testset "effective-interaction" begin
a = 0.3
b = 0.7
c = 0.4
eps = 1e-12
Ωeff0, Γeff0 = effective_interaction_simple.triangle_orthogonal(a)
Ωeff1, Γeff1 = effective_interaction.triangle_orthogonal(a)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.square_orthogonal(a)
Ωeff1, Γeff1 = effective_interaction.square_orthogonal(a)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.rectangle_orthogonal(a, b)
Ωeff1, Γeff1 = effective_interaction.rectangle_orthogonal(a, b)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.cube_orthogonal(a)
Ωeff1, Γeff1 = effective_interaction.cube_orthogonal(a)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.box_orthogonal(a, b, c)
Ωeff1, Γeff1 = effective_interaction.box_orthogonal(a, b, c)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.chain(a, 0.21, 5)
Ωeff1, Γeff1 = effective_interaction.chain(a, 0.21, 5)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.chain_orthogonal(a, 5)
Ωeff1, Γeff1 = effective_interaction.chain_orthogonal(a, 5)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.squarelattice_orthogonal(a, 5)
Ωeff1, Γeff1 = effective_interaction.squarelattice_orthogonal(a, 5)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.hexagonallattice_orthogonal(a, 5)
Ωeff1, Γeff1 = effective_interaction.hexagonallattice_orthogonal(a, 5)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.cubiclattice_orthogonal(a, 3)
Ωeff1, Γeff1 = effective_interaction.cubiclattice_orthogonal(a, 3)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.tetragonallattice_orthogonal(a, 1.2*a, 3)
Ωeff1, Γeff1 = effective_interaction.tetragonallattice_orthogonal(a, 1.2*a, 3)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
Ωeff0, Γeff0 = effective_interaction_simple.hexagonallattice3d_orthogonal(a, b, 4)
Ωeff1, Γeff1 = effective_interaction.hexagonallattice3d_orthogonal(a, b, 4)
@test abs(Ωeff0-Ωeff1)<eps
@test abs(Γeff0-Γeff1)<eps
end # testset
|
/-
Copyright (c) 2021 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import analysis.analytic.basic
/-!
# Linear functions are analytic
In this file we prove that a `continuous_linear_map` defines an analytic function with
the formal power series `f x = f a + f (x - a)`.
-/
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{F : Type*} [normed_group F] [normed_space 𝕜 F]
{G : Type*} [normed_group G] [normed_space 𝕜 G]
open_locale topological_space classical big_operators nnreal ennreal
open set filter asymptotics
noncomputable theory
namespace continuous_linear_map
/-- Formal power series of a continuous linear map `f : E →L[𝕜] F` at `x : E`:
`f y = f x + f (y - x)`. -/
@[simp] def fpower_series (f : E →L[𝕜] F) (x : E) : formal_multilinear_series 𝕜 E F
| 0 := continuous_multilinear_map.curry0 𝕜 _ (f x)
| 1 := (continuous_multilinear_curry_fin1 𝕜 E F).symm f
| _ := 0
@[simp] lemma fpower_series_apply_add_two (f : E →L[𝕜] F) (x : E) (n : ℕ) :
f.fpower_series x (n + 2) = 0 := rfl
@[simp] lemma fpower_series_radius (f : E →L[𝕜] F) (x : E) : (f.fpower_series x).radius = ∞ :=
(f.fpower_series x).radius_eq_top_of_forall_image_add_eq_zero 2 $ λ n, rfl
protected theorem has_fpower_series_on_ball (f : E →L[𝕜] F) (x : E) :
has_fpower_series_on_ball f (f.fpower_series x) x ∞ :=
{ r_le := by simp,
r_pos := ennreal.coe_lt_top,
has_sum := λ y _, (has_sum_nat_add_iff' 2).1 $
by simp [finset.sum_range_succ, ← sub_sub, has_sum_zero] }
protected theorem has_fpower_series_at (f : E →L[𝕜] F) (x : E) :
has_fpower_series_at f (f.fpower_series x) x :=
⟨∞, f.has_fpower_series_on_ball x⟩
protected theorem analytic_at (f : E →L[𝕜] F) (x : E) : analytic_at 𝕜 f x :=
(f.has_fpower_series_at x).analytic_at
/-- Reinterpret a bilinear map `f : E →L[𝕜] F →L[𝕜] G` as a multilinear map
`(E × F) [×2]→L[𝕜] G`. This multilinear map is the second term in the formal
multilinear series expansion of `uncurry f`. It is given by
`f.uncurry_bilinear ![(x, y), (x', y')] = f x y'`. -/
def uncurry_bilinear (f : E →L[𝕜] F →L[𝕜] G) : (E × F) [×2]→L[𝕜] G :=
@continuous_linear_map.uncurry_left 𝕜 1 (λ _, E × F) G _ _ _ _ _ $
(↑(continuous_multilinear_curry_fin1 𝕜 (E × F) G).symm : (E × F →L[𝕜] G) →L[𝕜] _).comp $
f.bilinear_comp (fst _ _ _) (snd _ _ _)
@[simp] lemma uncurry_bilinear_apply (f : E →L[𝕜] F →L[𝕜] G) (m : fin 2 → E × F) :
f.uncurry_bilinear m = f (m 0).1 (m 1).2 :=
rfl
/-- Formal multilinear series expansion of a bilinear function `f : E →L[𝕜] F →L[𝕜] G`. -/
@[simp] def fpower_series_bilinear (f : E →L[𝕜] F →L[𝕜] G) (x : E × F) :
formal_multilinear_series 𝕜 (E × F) G
| 0 := continuous_multilinear_map.curry0 𝕜 _ (f x.1 x.2)
| 1 := (continuous_multilinear_curry_fin1 𝕜 (E × F) G).symm (f.deriv₂ x)
| 2 := f.uncurry_bilinear
| _ := 0
@[simp] lemma fpower_series_bilinear_radius (f : E →L[𝕜] F →L[𝕜] G) (x : E × F) :
(f.fpower_series_bilinear x).radius = ∞ :=
(f.fpower_series_bilinear x).radius_eq_top_of_forall_image_add_eq_zero 3 $ λ n, rfl
protected
protected theorem has_fpower_series_at_bilinear (f : E →L[𝕜] F →L[𝕜] G) (x : E × F) :
has_fpower_series_at (λ x : E × F, f x.1 x.2) (f.fpower_series_bilinear x) x :=
⟨∞, f.has_fpower_series_on_ball_bilinear x⟩
protected theorem analytic_at_bilinear (f : E →L[𝕜] F →L[𝕜] G) (x : E × F) :
analytic_at 𝕜 (λ x : E × F, f x.1 x.2) x :=
(f.has_fpower_series_at_bilinear x).analytic_at
end continuous_linear_map
|
#############################################################################
##
#W utils.gi automgrp package Yevgen Muntyan
## Dmytro Savchuk
##
#Y Copyright (C) 2003 - 2018 Yevgen Muntyan, Dmytro Savchuk
##
#############################################################################
##
## AG_PermFromTransformation( <tr> )
##
InstallGlobalFunction(AG_PermFromTransformation,
function(tr)
if IsPerm(tr) then
return tr;
elif tr^-1=fail then
Error(tr, " is not invertible");
else
return AsPermutation(tr);
fi;
end);
#############################################################################
##
## AG_PrintTransformation( <tr> )
##
InstallGlobalFunction(AG_PrintTransformation,
function(tr)
local list, i;
if IsPerm(tr) then
Print(tr);
else
list := ImageListOfTransformation(tr);
Print("[");
for i in [1..Length(list)] do
if i <> 1 then
Print(",");
fi;
Print(list[i]);
od;
Print("]");
fi;
end);
#############################################################################
##
## AG_TransformationString( <tr> )
##
InstallGlobalFunction(AG_TransformationString,
function(tr)
local list, i, str;
if IsPerm(tr) then
return String(tr);
else
list := ImageListOfTransformation(tr);
str:="[";
for i in [1..Length(list)] do
if i <> 1 then
Append(str, ",");
fi;
Append(str, String(list[i]));
od;
Append(str, "]");
fi;
return str;
end);
InstallGlobalFunction(AG_TrCmp,
function(p1, p2, d)
local l1, l2, getlist;
if IsIdenticalObj(p1, p2) then
return 0;
fi;
getlist := function(p)
local l;
if IsTransformation(p) then
return ImageListOfTransformation(p);
else
return Permuted([1..d],p);
fi;
end;
l1 := getlist(p1);
l2 := getlist(p2);
if l1 = l2 then
return 0;
elif l1 < l2 then
return -1;
else
return 1;
fi;
end);
#############################################################################
##
## AG_CalculateWord(<word>, <list>)
##
# XXX do not use this
InstallMethod(AG_CalculateWord, [IsAssocWord, IsList],
function(w, dom)
local result, i;
result := One(dom[1]);
for i in [1..NumberSyllables(w)] do
result := result * dom[GeneratorSyllable(w, i)]^ExponentSyllable(w, i);
od;
return result;
end);
#############################################################################
##
## AG_CalculateWords(<words_list>, <list>)
##
InstallMethod(AG_CalculateWords, [IsList, IsList],
function(words, domain)
local result, i;
result := [];
for i in [1..Length(words)] do
result[i] := AG_CalculateWord(words[i], domain);
od;
return result;
end);
###############################################################################
##
## AG_ReducedSphericalIndex(<ind>)
##
InstallGlobalFunction("AG_ReducedSphericalIndex",
function(M)
local beg, per, beg_len, per_len, i;
if IsEmpty(M.period) then return StructuralCopy(M); fi;
beg := StructuralCopy(M.start);
per := StructuralCopy(M.period);
beg_len := Length(beg);
per_len := Length(per);
for i in Difference(DivisorsInt(per_len), [per_len]) do
if per = Concatenation(List([1..per_len/i], j -> per{[1..i]})) then
per := per{[1..i]};
per_len := i;
break;
fi;
od;
while Length(beg) <> 0 and beg[beg_len] = per[per_len] do
per := Concatenation([per[per_len]], per{[1..per_len-1]});
beg := beg{[1..beg_len-1]};
beg_len := beg_len - 1;
od;
return rec(start := beg, period := per);
end);
###############################################################################
##
## AG_IsEqualSphericalIndex(<ind1>, <ind2>)
##
InstallGlobalFunction("AG_IsEqualSphericalIndex",
function(M1, M2)
return AG_ReducedSphericalIndex(M1) = AG_ReducedSphericalIndex(M2);
end);
###############################################################################
##
## AG_TopDegreeInSphericalIndex(<ind>)
##
InstallGlobalFunction("AG_TopDegreeInSphericalIndex",
function(M)
if not IsEmpty(M.start) then return M.start[1];
else return M.period[1]; fi;
end);
###############################################################################
##
## AG_DegreeOfLevelInSphericalIndex(<ind>)
##
InstallGlobalFunction("AG_DegreeOfLevelInSphericalIndex",
function(M, k)
local i;
if Length(M.start) >= k then return M.start[k]; fi;
i := RemInt(k-Length(M.start), Length(M.period));
if i = 0 then i := Length(M.period); fi;
return M.period[i];
end);
###############################################################################
##
## AG_TreeLevelTuples(<ind>)
## AG_TreeLevelTuples(<ind>, <n>)
## AG_TreeLevelTuples(<start>, <period>, <n>)
##
InstallGlobalFunction("AG_TreeLevelTuples",
function(arg)
local n, m, args, ind, start, period;
if Length(arg) = 1 and IsList(arg[1]) then
ind := arg[1];
n := Length(ind);
args := List([1..n], i -> [1..ind[i]]);
Add(args, function(arg) return arg; end);
return CallFuncList(ListX, args);
elif Length(arg) = 2 and IsRecord(arg[1]) and IsPosInt(arg[2]) then
return AG_TreeLevelTuples(arg[1].start, arg[1].period, arg[2]);
elif Length(arg) = 3 and IsList(arg[1]) and IsList(arg[2]) and IsPosInt(arg[3]) then
start := arg[1];
period := arg[2];
n := arg[3];
m := n;
ind := [];
if Length(start) <> 0 then
if n <= Length(start) then
ind := start{[1..n]};
m := 0;
else
ind := start;
m := n - Length(start);
fi;
fi;
if m > 0 then
# TODO: why Append doesn't work???
# Append(ind, Concatenation(List([1..Int(m/Length(period))], i -> period)));
# Append(ind, period{[1..m-Int(m/Length(period))]});
ind := Concatenation(ind,
Concatenation(List([1..Int(m/Length(period))], i -> period)));
ind := Concatenation(ind, period{[1..m-Int(m/Length(period))]});
fi;
args := List([1..n], i -> [1..ind[i]]);
Add(args, function(arg) return arg; end);
return CallFuncList(ListX, args);
else
Error("in AG_TreeLevelTuples\n",
" usage: AG_TreeLevelTuples([n_1, n_2, ..., n_k])\n",
" AG_TreeLevelTuples(<spher_ind>, k)\n",
" AG_TreeLevelTuples(start, period, k)\n");
fi;
end);
#############################################################################
##
## AG_AbelImageX
## AG_AbelImageSpherTrans
##
InstallGlobalFunction(AG_AbelImageX,
function()
if not IsReadOnlyGlobal("AG_AbelImageXvar") then
AG_AbelImageXvar := Indeterminate(GF(2),"x");
MakeReadOnlyGlobal("AG_AbelImageXvar");
fi;
return AG_AbelImageXvar;
end);
InstallGlobalFunction(AG_AbelImageSpherTrans,
function()
return One(AG_AbelImageX())/ (One(AG_AbelImageX()) + AG_AbelImageX());
end);
#############################################################################
##
## AG_AbelImageAutomatonInList(<list>)
##
InstallGlobalFunction(AG_AbelImageAutomatonInList,
function(list)
local zero, one, x, m, mk, e, n, d, s, i, k, det, detk, result;
n := Length(list);
d := Length(list[1]) - 1;
x := AG_AbelImageX();
m := IdentityMat(n, x);
e := [];
zero := 0*x;
one := x^0;
for s in [1..n] do
for i in [1..d] do
# if the family is defined by wreath recursion
if IsList(list[s][i]) then
for k in [1..Length(list[s][i])] do
m[s][AbsInt(list[s][i][k])] := m[s][AbsInt(list[s][i][k])] + x;
od;
# if the family is defined by automaton
else
m[s][list[s][i]] := m[s][list[s][i]] + x;
fi;
od;
if SignPerm(list[s][d+1]) = 1 then e[s] := zero;
else e[s] := one; fi;
od;
result := [];
det := Determinant(m);
for s in [1..n] do
mk := StructuralCopy(m);
for i in [1..n] do
mk[i][s] := e[i];
od;
detk := Determinant(mk);
result[s] := detk / det;
od;
return result;
end);
#E
|
#' Standardized plotting function that can be passed to the plotfunction arguments in the \code{\link{createTopicBrowser}} function.
#'
#' One of the standardized plotting function used in the Topicbrowser package to manage how topics and additional information are visualized.
#' This specific function plots a wordcloud below a graph showing the number of words assigned to the topic per time period
#'
#' @param info The output of the \code{\link{clusterinfo}} function
#' @param topic_nr the index number of a topic
#' @param date_interval if not NULL, a string indicating what interval to use for plotting the time/date graph. Can be 'year', 'month', 'week' and 'day'. If NULL, the date_interval will be chosen based on the number of days in the analysis.
#' @param date_label a string indicating what the date object is in the meta data.
#' @return nothing, only plots
#' @export
plot_wordcloud_time <- function(clusterinfo, topic_nr, ...) {
par(mar = c(4.5, 3, 2, 1), cex.axis = 1.7)
layout(matrix(c(1, 1, 2, 2), 2, 2, byrow = TRUE), widths = c(2.5, 1.5), heights = c(1, 2))
plot_time(clusterinfo=clusterinfo, topic_nr=topic_nr, ...)
par(mar=c(0,0,0,0))
plot_wordcloud(clusterinfo=clusterinfo, topic_nr=topic_nr)
par(mfrow = c(1, 1), mar=c(5,4,4,2) + 0.1) # reset to default
}
plot_topicdistribution <- function(clusterinfo, topic_nr, ...){
topic_pct_per_document = clusterinfo$topics_per_doc[topic_nr,] / colSums(clusterinfo$topics_per_doc)
par(mar=c(5,6,1,4)) # Set the most suitable margins
hist(topic_pct_per_document, main='', xlab='% of document assignments', ylab='Number of documents')
par(mar=c(5,4,4,2) + 0.1) # reset to default
}
## dependency based plotfunction defaults
#' Standardized plotting function that can be passed to the plotfunction arguments in the \code{\link{createTopicBrowser}} function.
#'
#' One of the standardized plotting function used in the Topicbrowser package to manage how topics and additional information are visualized.
#' This specific function plots a wordcloud below a graph showing the number of words assigned to the topic per time period
#'
#' @param info The output of the \code{\link{clusterinfo}} function
#' @param topic_nr the index number of a topic
#' @return nothing, only plots
#' @export
plot_semnet <- function(clusterinfo, topic_nr, backbone_alpha=0.01, nwords=100, wordsimilarity.measure='conprob', clustering_directed=F, ...) {
require(semnet)
dtm = createTopicDtm(clusterinfo$topics_per_term, clusterinfo$wordassignments, topic_nr, nwords)
g = coOccurenceNetwork(dtm, measure=wordsimilarity.measure)
g = getBackboneNetwork(g, alpha=backbone_alpha)
if(vcount(g) > 0 & ecount(g) > 0){
V(g)$cluster = edge.betweenness.community(g, directed=clustering_directed)$membership
g = setNetworkAttributes(g, V(g)$freq, V(g)$cluster)
V(g)$label.cex = V(g)$label.cex * 1.5
par(mar=c(0,0,0,0))
plot(g)
par(mar=c(5,4,4,2) + 0.1) # reset to default}
} else plot(1, type="n", axes=F, xlab="", ylab="")
}
createTopicDtm <- function(topics_per_term, wordassignments, topic_nr, nwords){
wordfreq = topics_per_term[topic_nr,]
wordfreq = wordfreq[order(-wordfreq)][1:nwords]
words = names(wordfreq)
wa = wordassignments[wordassignments$topic == topic_nr,]
wa = wa[wa$term %in% words,]
docs = unique(wa$aid)
terms = unique(wa$term)
dtm = spMatrix(nrow=length(docs), ncol=length(terms), i = match(wa$aid, docs), j = match(wa$term, terms), rep(1, nrow(wa)))
colnames(dtm) = terms
dtm
}
### Basic plotting functions
selectTimeInterval <- function(time_var){
ndays = abs(as.numeric(difftime(min(time_var), max(time_var), units='days')))
if(ndays < 20*30) return("month")
if(ndays < 20*7) return('week')
if(ndays < 20) return('day')
"year"
}
prepare.time.var <- function(time_var, date_interval){
if(class(time_var) == 'Date'){
if(date_interval == 'day') time_var = as.Date(format(time_var, '%Y-%m-%d'))
if(date_interval == 'month') time_var = as.Date(paste(format(time_var, '%Y-%m'),'-01',sep=''))
if(date_interval == 'week') time_var = as.Date(paste(format(time_var, '%Y-%W'),1), '%Y-%W %u')
if(date_interval == 'year') time_var = as.Date(paste(format(time_var, '%Y'),'-01-01',sep=''))
}
time_var
}
#' Add empty values for pretty plotting
#'
#' When plotting a timeline, gaps in date_intervals are ignored. For the attention for topics gaps should be considered as having value 0.
#'
#' @param d A data.frame with the columns 'time' (Date) and 'value' (numeric)
#' @param date_interval The date_interval is required to know what the gaps are
#' @return A data.frame with the columns 'time' (Date) and 'value' (numeric)
#' @export
fill.time.gaps <- function(d, time_interval){
if(class(d$time) == 'numeric') time_sequence = min(d$time):max(d$time)
if(class(d$time) == 'Date') time_sequence = seq.Date(from=min(d$time), to=max(d$time), by=time_interval)
emptytime = time_sequence[!time_sequence %in% d$time]
if(length(emptytime) > 0) d = rbind(d, data.frame(time=emptytime, value=0))
d[order(d$time),]
}
prepare.plot.values <- function(document_topic_matrix, break_var, topic_nr, pct=F, value='total', filter=NULL){
hits = document_topic_matrix[topic_nr,]
d = aggregate(hits, by=list(break_var=break_var), FUN='sum')
if(value == 'relative'){
total_hits = colSums(document_topic_matrix)
totals = aggregate(total_hits, by=list(break_var=break_var), FUN='sum')
d$x = d$x / totals$x
}
if(pct == T) d$x = d$x / sum(d$x)
d
}
#' Standardized plotting function that can be passed to the plotfunction arguments in the \code{\link{createTopicBrowser}} function.
#'
#' One of the standardized plotting function used in the Topicbrowser package to manage how topics and additional information are visualized.
#' This specific function plots a graph showing the number of words assigned to the topic per time period
#'
#' @param info The output of the \code{\link{clusterinfo}} function
#' @param topic_nr the index number of a topic
#' @param time_interval a string indicating what interval to use for plotting the time/date graph. Can be 'year', 'month', 'week' and 'day'. If 'auto', the date_interval will be chosen based on the number of days in the analysis.
#' @param time_var either a vector containing the date for each document, or the column name of the date variable in the metadata stored in the clusterinfo object
#' @return nothing, only plots
#' @export
plot_time <- function(lda_model=NULL, document_topic_matrix=NULL, clusterinfo=NULL, topic_nr, time_var='date', time_interval='auto', pct=F, value='total', ...) {
if (is.null(document_topic_matrix)) {
if (is.null(clusterinfo)) {
if (is.null(lda_model)) stop("Either lda_model, document_topic_matrix, or clusterinfo needs to be specified")
clusterinfo = clusterinfo(lda_model)
}
document_topic_matrix = clusterinfo$topics_per_doc
}
if (is.character(time_var) & length(time_var) == 1) {
if (is.null(clusterinfo)) stop("Time var is a column name, but clusterinfo not specified")
if (is.null(clusterinfo$meta)) stop("Time var is a column name, but clusterinfo metadata is not specified")
time_var = clusterinfo$meta[,time_var]
}
if (time_interval == 'auto') time_interval = selectTimeInterval(time_var)
par(mar=c(3,3,3,1))
time_var = prepare.time.var(time_var, time_interval)
d = prepare.plot.values(document_topic_matrix, break_var=time_var, topic_nr=topic_nr, pct=pct, value=value)
colnames(d) = c('time','value')
d = fill.time.gaps(d, time_interval)
plot(d$time, d$value, type='l', xlab='', main='', ylab='', xlim=c(min(d$time), max(d$time)), ylim=c(0, max(d$value)), bty='L', lwd=5, col='darkgrey')
par(mar=c(3,3,3,3))
invisible(d)
}
#' Function to plot a word cloud for a given topic
#'
#' Can be passed to the plotfunction arguments in the \code{\link{createTopicBrowser}} function.
#'
#' One of the standardized plotting function used in the Topicbrowser package to manage how topics and additional information are visualized.
#' This specific function plots a wordcloud
#'
#' One of lda_model, topic_term_matrix, or topicinfo needs to be specified
#'
#' @param lda_model An lda model fitted using topicmodels::LDA
#' @param topic_term_matrix a matrix of topics per term
#' @param clusterinfo The output of the \code{\link{clusterinfo}} function
#' @param topic_nr the index number of a topic
#' @param wordsize_scale a scale for the word sizes
#' @param relative_to_term_total make word sizes relative
#' @return nothing, only plots
#' @export
plot_wordcloud <- function(lda_model=NULL, topic_term_matrix=NULL, clusterinfo=NULL, topic_nr, wordsize_scale=0.75, relative_to_term_total=F, ...){
if (is.null(topic_term_matrix)) {
if (is.null(clusterinfo)) {
if (is.null(lda_model)) stop("Either lda_model, topic_term_matrix, or topicinfo needs to be specified")
clusterinfo = clusterinfo(lda_model)
}
topic_term_matrix = clusterinfo$topics_per_term
}
x = topic_term_matrix[topic_nr,]
if(relative_to_term_total==T) {
x = x / colSums(topic_term_matrix)
x = x / sum(x)
}
x = sort(x, decreasing=T)[1:50]
x = x[!is.na(x)]
names = sub("/.*", "", names(x))
freqs = x^wordsize_scale
pal <- brewer.pal(6,"YlGnBu")
par(mar=c(0,0,0,0))
wordcloud(names, freqs, scale=c(3,.5), min.freq=1, max.words=50, random.order=FALSE, rot.per=.15, colors=pal)
par(mar=c(5,4,4,2) + 0.1) # reset to default
}
plot_category <- function(document_sums, topic_nr, category_var, pct=T, value='relative', ...){
p = par(mar=c(3,3,3,1))
d = prepare.topics.plot.values(document_sums, break_var=as.character(category_var), topic_nr=topic_nr, pct=pct, value=value)
colnames(d) = c('category','value')
barplot(as.matrix(t(d[,c('value')])), main='', beside=TRUE,horiz=FALSE,
density=NA,
col='darkgrey',
xlab='',
ylab="",
axes=T, names.arg=d$category, cex.names=1, cex.axis=0.7, adj=1, las=2)
par(mar=c(5,4,4,2) + 0.1) # reset to default
}
plot_topics_network <- function(clusterinfo) {
docs = clusterinfo$topics_per_doc
t = terms(m, 2)
labels = paste(t[1,], 1:nrow(docs), t[2,], sep='\n')
g = semnet::adjacencyGraph(t(docs))
g = getBackboneNetwork(g, alpha=0.1, delete.isolates = F)
E(g)$width = E(g)$weight*10
V(g)$size = rescale(V(g)$occurence, to = c(5,10))
V(g)$label.cex = rescale(V(g)$occurence, to = c(0.5,1))
V(g)$label = labels
paste(1:nrow(docs), apply(terms(m, 3), 2, paste, collapse='\n'), sep=': ')
V(g)$cluster = edge.betweenness.community(g, directed = F)$membership
g = semnet:::setVertexColors(g, 'cluster')
plot(g)
}
|
If $0 \leq x \leq 1$, then the sequence $x^n$ is bounded. |
\name{anno_enriched}
\alias{anno_enriched}
\title{
Annotation Function to Show the Enrichment
}
\description{
Annotation Function to Show the Enrichment
}
\usage{
anno_enriched(gp = gpar(col = "red"), pos_line = NULL, pos_line_gp = NULL,
ylim = NULL, value = c("mean", "sum", "abs_mean", "abs_sum"),
yaxis = TRUE, axis = yaxis, axis_param = list(side = "right"),
show_error = FALSE, height = unit(2, "cm"), ...)
}
\arguments{
\item{gp}{Graphic parameters. There are two non-standard parameters: \code{neg_col} and \code{pos_col}. If these two parameters are defined, the positive signals and negatie signals are visualized separatedly. The graphic parameters can be set as vectors when the heatmap or heatmap list is split into several row clusters.}
\item{pos_line}{Whether draw vertical lines which represent positions of \code{target}?}
\item{pos_line_gp}{Graphic parameters for the position lines.}
\item{ylim}{Ranges on y-axis. By default it is inferred from the data.}
\item{value}{The method to summarize signals from columns of the normalized matrix.}
\item{yaxis}{Deprecated, use \code{axis} instead.}
\item{axis}{Whether show axis?}
\item{axis_param}{parameters for controlling axis. See \code{\link[ComplexHeatmap]{default_axis_param}} for all possible settings and default parameters.}
\item{show_error}{Whether show error regions which are one standard error to the mean value? Color of error area is same as the corresponding lines with 75 percent transparency.}
\item{height}{Height of the annotation.}
\item{...}{Other arguments.}
}
\details{
This annotation functions shows mean values (or depends on the method set in \code{value} argument) of columns in the normalized matrix
which summarises the enrichment of the signals to the targets.
If rows are splitted, the enriched lines are calculated for each row cluster and there will also be multiple lines in this annotation viewport.
It should only be placed as column annotation of the enriched heatmap.
}
\value{
A column annotation function which should be set to \code{top_annotation} argument in \code{\link{EnrichedHeatmap}}.
}
\author{
Zuguang Gu <[email protected]>
}
\examples{
load(system.file("extdata", "chr21_test_data.RData", package = "EnrichedHeatmap"))
tss = promoters(genes, upstream = 0, downstream = 1)
mat1 = normalizeToMatrix(H3K4me3, tss, value_column = "coverage",
extend = 5000, mean_mode = "w0", w = 50, keep = c(0, 0.99))
EnrichedHeatmap(mat1, col = c("white", "red"), name = "H3K4me3",
top_annotation = HeatmapAnnotation(lines = anno_enriched(gp = gpar(col = 2:4))),
km = 3, row_title_rot = 0)
}
|
From Babel Require Import FQP.premises.
From Babel Require Import TerminalDogma.Sequence.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Require ComplexTheories.
Require VectorSpaceTheories.
Module HilbertSpaceTheory.
Export ComplexTheories.ComplexTheory.
Export VectorSpaceTheories.VectorSpaceTheory.
(** Definition 2.1.2 (complex inner product space) *)
Record CIP_space := build_ipspace {
Vs :> vspace ℂ_field;
Vsdot : Vs -> Vs -> ℂ;
(** dot non-negative *)
Vsdot_realc : forall u : Vs, realc (Vsdot u u);
Vsdot_pos_def : forall u : Vs, Vsdot_realc u >= 0;
Vsdot_pos_0 : forall u : Vs, ((Vsdot_realc u) = 0%R :> R) <-> u = 𝟎;
(** dot conjugate *)
Vsdot_conj : forall u v : Vs, (Vsdot u v)^* = Vsdot v u;
(** dot linearity *)
Vsdot_linear : forall (c1 c2 : ℂ) (u v1 v2 : Vs),
Vsdot u (Vadd (@Vscal _ Vs c1 v1) (@Vscal _ Vs c2 v2)) =
(c1 * (Vsdot u v1) + c2 * (Vsdot u v2))%ℂ;
}.
(** Note : The level for a ∗ b is 30, and we want
a ∗ u ∙ v to
to mean
a ∗ (u ∙ v),
so level 35 is appropriate. *)
Notation " u '∙' v " := (Vsdot u v) (at level 35) : Vspace_scope.
(** Dirac Notation *)
Notation " <[ u | v ]> " := (Vsdot u v) : Vspace_scope.
(** orthogonal *)
Definition orthogonal (CIPs : CIP_space) (u v : CIPs) := <[ u | v ]> = 0.
Notation " u '⊥' v " := (orthogonal u v) (at level 20) : Vspace_scope.
(** [] *)
Definition f_norm (CIPs : CIP_space) (u : CIPs) := √ (Vsdot_realc u).
Notation " |[ u ]| " := (f_norm u) : Vspace_scope.
Definition unit_vector (CIPs : CIP_space) (u : CIPs) : Prop := |[ u ]| = 1%R.
(** Definition 2.1.3 *)
Record v_Cauchy_seq (H : CIP_space) := mk_v_Cauchy_seq {
f_v_seq :> infSeq H;
seq_conv_proof :
forall e : { r : R | r > 0 },
exists N : nat, forall m n : { n : nat | (n > N)%nat },
|[ (f_v_seq (proj1_sig m)) + (- (f_v_seq (proj1_sig n))) ]| < proj1_sig e;
}.
Definition seq_lim (H : CIP_space) (f : infSeq H) (psi : H) :=
forall e : { r : R | r > 0 },
exists N : nat, forall n : { n : nat | (n > N)%nat },
|[ (f (proj1_sig n)) + (- psi) ]| < proj1_sig e.
(** Definition 2.1.4 *)
Record Hilbert_space := build_Hspace {
H :> CIP_space;
H_complete : forall s : v_Cauchy_seq H, exists psi, seq_lim s psi;
}.
(** Definition 2.1.5 *)
Definition is_ortho_basis (H : Hilbert_space) (s : Seque H) : Prop :=
forall i j : index s, s i ⊥ s j.
Record ortho_basis (H : Hilbert_space) := build_ortho_basis {
ortho_basis_obj :> Seque H;
ortho_basis_proof : is_ortho_basis ortho_basis_obj;
}.
Definition in_linear_comb (H : Hilbert_space) (s : Seque H) (psi : H) :=
exists
End HilbertSpaceTheory. |
If $x$ is an integer, then $x^n$ is an $n$th power. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.