Datasets:
AI4M
/

text
stringlengths
0
3.34M
If $c < 0$, then $a \leq - \frac{b}{c}$ if and only if $-b \leq ca$.
theory Exercises2 imports Main begin (* Exercise 2.1 *) value "1 + (2::nat)" value "1 + (2::int)" value "1 - (2::nat)" value "1 - (2::int)" (* Exercise 2.2 *) fun add :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "add 0 n = n" | "add (Suc m) n = Suc (add m n)" lemma add_assoc[simp]: "add (add x y) z = add x (add y z)" apply (induction x) apply (auto) done lemma add_r_0[simp]: "add x 0 = x" apply (induction x) apply (auto) done lemma add_succ_1[simp]: "add x (Suc y) = Suc (add x y)" apply (induction x) apply (auto) done lemma add_commut[simp]: "add x y = add y x" apply (induction x) apply (auto) done (* Exercise 2.3 *) fun count :: "'a \<Rightarrow> 'a list \<Rightarrow> nat" where "count _ [] = 0" | "count x (y # ys) = (if (x = y) then 1 else 0) + (count x ys)" theorem count_lt_length[simp]: "count x xs \<le> length xs" apply (induction xs) apply (auto) done (* Exercise 2.4 *) fun snoc :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" where "snoc [] x = [x]"| "snoc (y#ys) x = y # (snoc ys x)" fun reverse :: "'a list \<Rightarrow> 'a list" where "reverse [] = []"| "reverse (x#xs) = snoc (reverse xs) x" theorem rev_snoc[simp]: "reverse (snoc xs x) = (x#(reverse xs))" apply (induction xs) apply (auto) done theorem rev_rev_id[simp] : "reverse (reverse x) = x" apply (induction x) apply (auto) done (* Exercise 2.5 *) fun sum_upto :: "nat \<Rightarrow> nat" where "sum_upto 0 = 0"| "sum_upto (Suc n) = (Suc n) + (sum_upto n)" theorem sum_upto_sol[simp]: "sum_upto n = n * (n + 1) div 2" apply (induction n) apply (auto) done (* Exercise 2.6 *) datatype 'a tree = Tip | Node "'a tree" 'a "'a tree" fun contents:: "'a tree \<Rightarrow> 'a list" where "contents Tip = Nil"| "contents (Node l a r) = [a] @ (contents l) @ (contents r)" fun sum_tree:: "nat tree \<Rightarrow> nat" where "sum_tree Tip = 0"| "sum_tree (Node l a r) = a + (sum_tree l) + (sum_tree r)" theorem sum_tree_thm[simp]: "sum_tree t = sum_list (contents t)" apply (induction t) apply (auto) done (* Exercise 2.7 *) datatype 'a tree2 = Leaf 'a | Node2 "'a tree2" 'a "'a tree2" fun mirror2 :: "'a tree2 \<Rightarrow> 'a tree2" where "mirror2 (Leaf x) = Leaf x"| "mirror2 (Node2 l a r) = (Node2 (mirror2 r) a (mirror2 l))" fun pre_order :: "'a tree2 \<Rightarrow> 'a list" where "pre_order (Leaf x) = [x]" | "pre_order (Node2 l a r) = a # (pre_order l @ pre_order r)" fun post_order :: "'a tree2 \<Rightarrow> 'a list" where "post_order (Leaf x) = [x]" | "post_order (Node2 l a r) = post_order l @ post_order r @ [a]" theorem rev_pre_is_pos[simp]: "pre_order (mirror2 t) = rev (post_order t)" apply (induction t rule: post_order.induct) apply (auto) done (* Exercise 2.8 *) fun intersperse:: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where "intersperse a [] = []"| "intersperse a [x] = [x]"| "intersperse a (x1 # x2 # xs) = x1 # a # x2 # (intersperse a xs)" theorem intersperse_map[simp]: "map f (intersperse a xs) = intersperse (f a) (map f xs)" apply (induction xs rule: intersperse.induct) apply (auto) done (* exercise 2.9 *) fun itadd:: "nat \<Rightarrow> nat \<Rightarrow> nat" where "itadd 0 n = n"| "itadd (Suc m) n = itadd m (Suc n)" lemma "itadd m n = add m n" apply (induction m arbitrary : n) apply (auto) done (* exercise 2.10 *) datatype tree0 = Nil0 | Node0 tree0 tree0 fun nodes::"tree0 \<Rightarrow> nat" where "nodes Nil0 = 1"| "nodes (Node0 l r) = 1 + (nodes l) + (nodes r)" fun explode :: "nat \<Rightarrow> tree0 \<Rightarrow> tree0" where "explode 0 t = t"| "explode (Suc n) t = explode n (Node0 t t)" definition explode_size :: "nat \<Rightarrow> tree0 \<Rightarrow> nat" where "explode_size n t = (2^n) * (1 + (nodes t)) - 1" lemma [simp] : "nodes (explode n (Node0 t t)) = 1 + 2 * nodes (explode n t)" apply (induction n arbitrary : t)ifexp=Bc2bool|If ifexp ifexp ifexp|Less2aexp aexp apply (auto) done lemma [simp] : "Suc (2 * 2 ^ n + nodes t * (2 * 2 ^ n) - Suc (Suc 0)) = 2 * 2 ^ n + nodes t * (2 * 2 ^ n) - Suc 0" apply (induction n) apply (auto) done lemma "(nodes (explode n t)) = explode_size n t" apply (induction n) apply (simp_all add : explode_size_def) apply (simp add : algebra_simps) done datatype exp=Var|Const int|Add exp exp|Mult exp exp value "(1 * (2::int))" fun eval :: "exp \<Rightarrow> int \<Rightarrow> int" where "eval Var x = x" | "eval (Const x) _ = x" | "eval (Add a b) x = (eval a x) + (eval b x)" | "eval (Mult a b) x = (eval a x) * (eval b x)" fun evalp :: "int list \<Rightarrow> int \<Rightarrow> int" where "evalp [] _ = 0"| "evalp (c#cs) x = c * (x^(length (c#cs))) + (evalp cs x)" fun degree :: "exp \<Rightarrow> int" where "degree (Mult Var Var) = 2"| "degree (Mult Var x) = 1 + (degree x)"| "degree (Mult x Var) = 1 + (degree x)"| "degree x = 0" fun factor :: "exp \<Rightarrow> int" where "factor (Mult x y) = (factor x) * (factor y)"| "factor (Const x) = x" fun coeffs :: "exp \<Rightarrow> int list" where "coeffs (Const x) = [x]"| "coeffs (Add a b) = (factor a) # (coeffs b)" theorem "evalp (coeffs e) x = eval e x" apply (induction e arbitrary : x rule : coeffs.induct) apply (simp_all) end
module Main import Data.Strings %default total %foreign "C:add,libcalc" add : Int -> Int -> Int %foreign "C:sub,libcalc" sub : Int -> Int -> Int %foreign "C:mul,libcalc" mul : Int -> Int -> Int %foreign "C:div,libcalc" div : Int -> Int -> Int %foreign "C:op_with_message,libcalc" prim_opWithMessage : String -> (Int -> Int -> Int) -> Int -> Int -> PrimIO Int opWithMessage : HasIO io => String -> (Int -> Int -> Int) -> Int -> Int -> io Int opWithMessage s f x y = primIO $ prim_opWithMessage s f x y readNum : HasIO io => io (Maybe Int) readNum = do putStr "Enter number: " ns <- getLine case all isDigit (unpack ns) of False => pure Nothing True => pure (Just (cast ns)) main : IO () main = do Just x <- readNum | Nothing => putStrLn "first number is invalid" Just y <- readNum | Nothing => putStrLn "second number is invalid" printLn (add x y) printLn (sub x y) printLn (mul x y) printLn (Main.div x y) opWithMessage "sum" add x y opWithMessage "diff" sub x y opWithMessage "prod" mul x y opWithMessage "quot" Main.div x y pure ()
According to Church teaching , respect for human life requires respect for one 's own body , precluding unhealthy behavior , the abuse of food , alcohol , medicines , illegal drugs , tattoos and piercings . The Church also warns against the opposite behavior of " excessive preoccupation with the health and welfare of the body that ' idolizes ' physical perfection , fitness , and success at sports . "
[STATEMENT] lemma unsynlr_sup: "unsynlr (sup x y) = unsynlr x \<union> unsynlr y" [PROOF STATE] proof (prove) goal (1 subgoal): 1. unsynlr (sup x y) = unsynlr x \<union> unsynlr y [PROOF STEP] unfolding sup_synlr_def [PROOF STATE] proof (prove) goal (1 subgoal): 1. unsynlr (mksynlr (unsynlr x \<union> unsynlr y)) = unsynlr x \<union> unsynlr y [PROOF STEP] by (simp add: admS_def synlr_def)
A Cheap Options Trade To Protect Your Portfolio Through August High Volatility, Options, Tariffs. Low volatility can be a difficult time to trade options, especially when options trading volume is also low. However, this summer may be different than what we’re used to. Most discount options brokers charge a flat fee, plus a per contract fee for options trades. The flat fee for most discount options brokers is between $4.95 and $12.99 per trade, with per contract charges of between $0.50 and $0.95 per contract. Some discount options brokers offer a flat rate on all trades.
function [x,P]=onePointCartInit(zCart,SRCart,higherDerivStdDev,matType) %%ONEPOINTCARTINIT This function implements single-point initialization for % target states that consist of components of position, % velocity, acceleration, etc. This function initializes % tracks from a single measurement by setting the position % components to Cartesian measurement value with its % associated covariance and then setting the diagonal elements % of the rest of the components based on fixed standard % deviations. For example, in [1] it is suggested to make the % standard deviation for velocity vMax/3 and in Chapter 3.2.2 % of [2], vMax/2. Similar ad-hoc values could be used for % higher moments. This function does not use Doppler/ range % rate. % %INPUTS: zCart A zDimXnumMeas set of Cartesian measurements for which % single-point differencing should be used to start tracks. % SRCart If matType is omitted or is 0, then this is a % zDimXzDimXnumMeas set of lower-triangular square root % covariance matrices associated with the measurements in % zCart. If all of the matrices are the same, then a single % zDimXzDim matrix can be passed. If matType=1, then this is a % set of covariance matrices. % higherDerivStdDev A numMomentsX1 or 1XnumMoments vector containing the % standard deviations to use for each of the moments % (position, velocity, etc) that cannot be estimated from the % data. As mentioned in [1] and in and in Chapter 3.2.2 % of [2], for velocity, this might be vMax/sqrt(2) or % vMax/sqrt(3). % matType An optional input specifying whether SRCart is a set of % lower-triangular square roots of the covariance matrix, or % whether it is the set of covariance matrices. Possible % values are: % 0 (The default if omitted or an empty matrix is passed) % SRCart holds lower-triangular square root covariance % matrices. % 1 SRCart holds covariance matrices. % %OUTPUTS: x The xDimXnumMeas set of target state estimates. All % non-position components are zero. xDim=zDim*(numMoments+1). The % components are arranged position, velocity, acceleration, etc. % For example, [x;y;z;xDot;yDot;zDot]. % P The xDimXxDimXnumMeas set of initial target state covariance % matrices associated with x. % %One-point differencing is discussed in [1] and Chapter 3.2.2 of [2]. % %REFERENCES: %[1] M. Mallick and B. La Scala, "Comparison of single-point and two-point % difference track initiation algorithms using position measurements". % Acta Automatica Sinica, vol.34, no. 3, pp 258-265, Mar. 2008. %[2] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion. % Storrs, CT: YBS Publishing, 2011. % %November 2016 David F. Crouse, Naval Research Laboratory, Washington D.C. %(UNCLASSIFIED) DISTRIBUTION STATEMENT A. Approved for public release. if(nargin<4||isempty(matType)) matType=0; end zDim=size(zCart,1); numMeas=size(zCart,2); if(size(SRCart,3)==1) SRCart=repmat(SRCart,1,1,numMeas); end numMoments=length(higherDerivStdDev); xDim=zDim*(numMoments+1); x=zeros(xDim,numMeas); P=zeros(xDim,xDim,numMeas); x(1:zDim,:)=zCart; switch(matType) case 0 for curMeas=1:numMeas P(1:zDim,1:zDim,curMeas)=SRCart(:,:,curMeas)*SRCart(:,:,curMeas)'; end case 1 for curMeas=1:numMeas P(1:zDim,1:zDim,curMeas)=SRCart(:,:,curMeas); end otherwise error('Unknown matrix type specified.') end sel=(zDim+1):xDim; P(sel,sel,:)=repmat(kron(diag(higherDerivStdDev(:).^2),eye(zDim,zDim)),1,1,numMeas); end %LICENSE: % %The source code is in the public domain and not licensed or under %copyright. The information and software may be used freely by the public. %As required by 17 U.S.C. 403, third parties producing copyrighted works %consisting predominantly of the material produced by U.S. government %agencies must provide notice with such work(s) identifying the U.S. %Government material incorporated and stating that such material is not %subject to copyright protection. % %Derived works shall not identify themselves in a manner that implies an %endorsement by or an affiliation with the Naval Research Laboratory. % %RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE %SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY THE NAVAL %RESEARCH LABORATORY FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE ACTIONS %OF RECIPIENT IN THE USE OF THE SOFTWARE.
<a href="https://colab.research.google.com/github/ebatty/MathToolsforNeuroscience/blob/master/Week2/Week2Tutorial1.ipynb" target="_parent"></a> # Week 2: Linear Algebra II # Tutorial 1 # [insert your name] **Important reminders**: Before starting, click "File -> Save a copy in Drive". Produce a pdf for submission by "File -> Print" and then choose "Save to PDF". To complete this tutorial, you should have watched Videos 2.1 through 2.6. **Credits:** The videos you watched for this week were from 3Blue1Brown. Some elements of this problem set are from or inspired by https://openedx.seas.gwu.edu/courses/course-v1:GW+EngComp4+2019/about. In particular, we are using their `plot_linear_transformation` and `plot_linear_transformations` functions, and the demonstration of the additional transformation of a matrix inverse (end of Exercise 2) ```python # Imports import numpy as np import matplotlib.pyplot as plt import matplotlib import scipy.linalg # Plotting parameters matplotlib.rcParams.update({'font.size': 22}) ``` ```python # @title Plotting functions import numpy from numpy.linalg import inv, eig from math import ceil from matplotlib import pyplot, ticker, get_backend, rc from mpl_toolkits.mplot3d import Axes3D from itertools import cycle _int_backends = ['GTK3Agg', 'GTK3Cairo', 'MacOSX', 'nbAgg', 'Qt4Agg', 'Qt4Cairo', 'Qt5Agg', 'Qt5Cairo', 'TkAgg', 'TkCairo', 'WebAgg', 'WX', 'WXAgg', 'WXCairo'] _backend = get_backend() # get current backend name # shrink figsize and fontsize when using %matplotlib notebook if _backend in _int_backends: fontsize = 4 fig_scale = 0.75 else: fontsize = 5 fig_scale = 1 grey = '#808080' gold = '#cab18c' # x-axis grid lightblue = '#0096d6' # y-axis grid green = '#008367' # x-axis basis vector red = '#E31937' # y-axis basis vector darkblue = '#004065' pink, yellow, orange, purple, brown = '#ef7b9d', '#fbd349', '#ffa500', '#a35cff', '#731d1d' quiver_params = {'angles': 'xy', 'scale_units': 'xy', 'scale': 1, 'width': 0.012} grid_params = {'linewidth': 0.5, 'alpha': 0.8} def set_rc(func): def wrapper(*args, **kwargs): rc('font', family='serif', size=fontsize) rc('figure', dpi=200) rc('axes', axisbelow=True, titlesize=5) rc('lines', linewidth=1) func(*args, **kwargs) return wrapper @set_rc def plot_vector(vectors, tails=None): ''' Draw 2d vectors based on the values of the vectors and the position of their tails. Parameters ---------- vectors : list. List of 2-element array-like structures, each represents a 2d vector. tails : list, optional. List of 2-element array-like structures, each represents the coordinates of the tail of the corresponding vector in vectors. If None (default), all tails are set at the origin (0,0). If len(tails) is 1, all tails are set at the same position. Otherwise, vectors and tails must have the same length. Examples -------- >>> v = [(1, 3), (3, 3), (4, 6)] >>> plot_vector(v) # draw 3 vectors with their tails at origin >>> t = [numpy.array((2, 2))] >>> plot_vector(v, t) # draw 3 vectors with their tails at (2,2) >>> t = [[3, 2], [-1, -2], [3, 5]] >>> plot_vector(v, t) # draw 3 vectors with 3 different tails ''' vectors = numpy.array(vectors) assert vectors.shape[1] == 2, "Each vector should have 2 elements." if tails is not None: tails = numpy.array(tails) assert tails.shape[1] == 2, "Each tail should have 2 elements." else: tails = numpy.zeros_like(vectors) # tile vectors or tails array if needed nvectors = vectors.shape[0] ntails = tails.shape[0] if nvectors == 1 and ntails > 1: vectors = numpy.tile(vectors, (ntails, 1)) elif ntails == 1 and nvectors > 1: tails = numpy.tile(tails, (nvectors, 1)) else: assert tails.shape == vectors.shape, "vectors and tail must have a same shape" # calculate xlimit & ylimit heads = tails + vectors limit = numpy.max(numpy.abs(numpy.hstack((tails, heads)))) limit = numpy.ceil(limit * 1.2) # add some margins figsize = numpy.array([2,2]) * fig_scale figure, axis = pyplot.subplots(figsize=figsize) axis.quiver(tails[:,0], tails[:,1], vectors[:,0], vectors[:,1], color=darkblue, angles='xy', scale_units='xy', scale=1) axis.set_xlim([-limit, limit]) axis.set_ylim([-limit, limit]) axis.set_aspect('equal') # if xticks and yticks of grid do not match, choose the finer one xticks = axis.get_xticks() yticks = axis.get_yticks() dx = xticks[1] - xticks[0] dy = yticks[1] - yticks[0] base = max(int(min(dx, dy)), 1) # grid interval is always an integer loc = ticker.MultipleLocator(base=base) axis.xaxis.set_major_locator(loc) axis.yaxis.set_major_locator(loc) axis.grid(True, **grid_params) # show x-y axis in the center, hide frames axis.spines['left'].set_position('center') axis.spines['bottom'].set_position('center') axis.spines['right'].set_color('none') axis.spines['top'].set_color('none') @set_rc def plot_transformation_helper(axis, matrix, *vectors, unit_vector=True, unit_circle=False, title=None): """ A helper function to plot the linear transformation defined by a 2x2 matrix. Parameters ---------- axis : class matplotlib.axes.Axes. The axes to plot on. matrix : class numpy.ndarray. The 2x2 matrix to visualize. *vectors : class numpy.ndarray. The vector(s) to plot along with the linear transformation. Each array denotes a vector's coordinates before the transformation and must have a shape of (2,). Accept any number of vectors. unit_vector : bool, optional. Whether to plot unit vectors of the standard basis, default to True. unit_circle: bool, optional. Whether to plot unit circle, default to False. title: str, optional. Title of the plot. """ assert matrix.shape == (2,2), "the input matrix must have a shape of (2,2)" grid_range = 20 x = numpy.arange(-grid_range, grid_range+1) X_, Y_ = numpy.meshgrid(x,x) I = matrix[:,0] J = matrix[:,1] X = I[0]*X_ + J[0]*Y_ Y = I[1]*X_ + J[1]*Y_ origin = numpy.zeros(1) # draw grid lines for i in range(x.size): axis.plot(X[i,:], Y[i,:], c=gold, **grid_params) axis.plot(X[:,i], Y[:,i], c=lightblue, **grid_params) # draw (transformed) unit vectors if unit_vector: axis.quiver(origin, origin, [I[0]], [I[1]], color=green, **quiver_params) axis.quiver(origin, origin, [J[0]], [J[1]], color=red, **quiver_params) # draw optional vectors color_cycle = cycle([pink, darkblue, orange, purple, brown]) if vectors: for vector in vectors: color = next(color_cycle) vector_ = matrix @ vector.reshape(-1,1) axis.quiver(origin, origin, [vector_[0]], [vector_[1]], color=color, **quiver_params) # draw optional unit circle if unit_circle: alpha = numpy.linspace(0, 2*numpy.pi, 41) circle = numpy.vstack((numpy.cos(alpha), numpy.sin(alpha))) circle_trans = matrix @ circle axis.plot(circle_trans[0], circle_trans[1], color=red, lw=0.8) # hide frames, set xlimit & ylimit, set title limit = 4 axis.spines['left'].set_position('center') axis.spines['bottom'].set_position('center') axis.spines['left'].set_linewidth(0.3) axis.spines['bottom'].set_linewidth(0.3) axis.spines['right'].set_color('none') axis.spines['top'].set_color('none') axis.set_xlim([-limit, limit]) axis.set_ylim([-limit, limit]) if title is not None: axis.set_title(title) @set_rc def plot_linear_transformation(matrix, *vectors, unit_vector=True, unit_circle=False): """ Plot the linear transformation defined by a 2x2 matrix using the helper function plot_transformation_helper(). It will create 2 subplots to visualize some vectors before and after the transformation. Parameters ---------- matrix : class numpy.ndarray. The 2x2 matrix to visualize. *vectors : class numpy.ndarray. The vector(s) to plot along with the linear transformation. Each array denotes a vector's coordinates before the transformation and must have a shape of (2,). Accept any number of vectors. unit_vector : bool, optional. Whether to plot unit vectors of the standard basis, default to True. unit_circle: bool, optional. Whether to plot unit circle, default to False. """ figsize = numpy.array([4,2]) * fig_scale figure, (axis1, axis2) = pyplot.subplots(1, 2, figsize=figsize) plot_transformation_helper(axis1, numpy.identity(2), *vectors, unit_vector=unit_vector, unit_circle=unit_circle, title='Before transformation') plot_transformation_helper(axis2, matrix, *vectors, unit_vector=unit_vector, unit_circle=unit_circle, title='After transformation') @set_rc def plot_linear_transformations(*matrices, unit_vector=True, unit_circle=False): """ Plot the linear transformation defined by a sequence of n 2x2 matrices using the helper function plot_transformation_helper(). It will create n+1 subplots to visualize some vectors before and after each transformation. Parameters ---------- *matrices : class numpy.ndarray. The 2x2 matrices to visualize. Accept any number of matrices. unit_vector : bool, optional. Whether to plot unit vectors of the standard basis, default to True. unit_circle: bool, optional. Whether to plot unit circle, default to False. """ nplots = len(matrices) + 1 nx = 2 ny = ceil(nplots/nx) figsize = numpy.array([2*nx, 2*ny]) * fig_scale figure, axes = pyplot.subplots(nx, ny, figsize=figsize) for i in range(nplots): # fig_idx if i == 0: matrix_trans = numpy.identity(2) title = 'Before transformation' else: matrix_trans = matrices[i-1] @ matrix_trans if i == 1: title = 'After {} transformation'.format(i) else: title = 'After {} transformations'.format(i) plot_transformation_helper(axes[i//nx, i%nx], matrix_trans, unit_vector=unit_vector, unit_circle=unit_circle, title=title) # hide axes of the extra subplot (only when nplots is an odd number) if nx*ny > nplots: axes[-1,-1].axis('off') ``` # Key concept review & coding tips ## Linear transformations and matrices * A matrix is basically a table of numbers. * We can represent matrices with numpy arrays, which we create as a list of rows: \begin{bmatrix} 4 & 1 & 2\\ 3 & 2 & 0\ \end{bmatrix} would be `np.array([[4, 1, 2], [3, 2, 0]])` * Linear transformations take in an input vector and outputs a transformed vector. Under a linear transformation, all grid line remain parallel and evenly spaced and the origin remains fixed (it must preserve vector addition and scalar multiplication). * Matrices represent linear transformations: each column corresponds to where the corresponding standard basis vector ends up after the transformation * We can think of the matrix vector multiplication $A\bar{x}=\bar{b}$ as a linear transformation where $A$ acts on $\bar{x}$ to produce $\bar{b}$. An alternate view is to think of it as solving a system of linear equations. * `np.linalg.solve` solves matrix vector equations like the above * As an example, solving $A\bar{x}=\bar{b}$ is equivalent to solving the system of linear equations: $$ \begin{align} 2x_1 + 3x_2 &= 6 \\ x_1 + 4x_2 &= 1 \end{align}$$ $$\text{if } A = \begin{bmatrix} 2 & 3 \\ 1 & 4\ \end{bmatrix}, \bar{b} =\begin{bmatrix} 6 \\ 1\ \end{bmatrix}$$ ## Matrix multiplication * We can envision matrix multiplication as the composition of transformations. If C = AB, element $c_{ij}$ (the element of C in the ith row and jth column) equals the dot product of the ith row of A and the jth column of B. * There are several ways to do matrix multiplication in Python: we can use `np.dot(A, B)`, `np.matmul(A, B)` or use a special operator @ so `A @ B` ## Determinants * The determinant of a matrix (det A) is a scalar value that can be viewed as describing the area changes induced by the corresponding linear transformation. It is negative if the linear transformation reverses the orientation of the space. * `np.linalg.det(A)` computes the determinant ## Inverse matrices, column space, and null space * We can sometimes take the inverse of a matrix so that $A^{-1}A = I$ where $I$ is the identity matrix (all zeros except for ones on the diagonal). * We can use `np.linalg.inv(A)` to compute $A^{-1}$ when it exists * `np.eye(d)` gives us the identity matrix of dimension d * The column space of a matrix is the span of the columns of the matrix. This is equivalent to the range of the linear transformation where, in informal language, the range is everywhere that can be "gotten to" by the transformation. In other words, the range is the set of all vectors that the linear transformation maps to. * The rank of a matrix is the dimension of the column space. * `np.linalg.matrix_rank(A)` computes the rank * The null space of a matrix is the set of all vectors that land on the origin after the resulting transformation. In other words, it is the set of all solutions of $A\bar{x} = \bar{0}$. * You can use `scipy.linalg.null_space` to find a basis for the null space of a matrix. * If the matrix A is $m$ x $n$, the null space must be a subspace of $R^n$ and the column space must be a subspace of $R^m$. # Exercise 1: Computation corner For each computation below, please calculate it 1) by-hand and 2) using code. Check that the answers match! For by-hand calculation, please show some work when possible. For example, for matrix multiplication, write out the computation of each element in the resulting matrix so it looks something like this: $$A = \begin{bmatrix} 5*2+4*1 & 3*5+1*2 \\ 0*1+1*2 & 3*2+4*5 \\ \end{bmatrix} $$ Note that these are completely made up numbers for demonstration purposes - the above numbers don't make sense for a matrix multiplication. ## A) Matrix multiplication Please compute C = AB where $$A = \begin{bmatrix} 5 & 3 \\ 0 & 2 \\ \end{bmatrix}, B = \begin{bmatrix} 1 & 5 \\ 4 & 3 \\ \end{bmatrix} $$ **Your math answer** $$C = \begin{bmatrix} 1 * 5 + 4 * 3 & 5*5 + 3 * 3 \\ 1 * 0 + 4 * 2 & 5*0 + 3 * 2 \\ \end{bmatrix}$$ ```python # Your code answer A = np.array([[5, 3], [0, 2]]) B = np.array([[1, 5], [4, 3]]) np.matmul(A,B) ``` ## B) Matrix multiplication Please compute Z = XY where $$X = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 7 \\ \end{bmatrix}, Y = \begin{bmatrix} 0 & 1 \\ 2 & 4 \\ 5 & 1 \\ \end{bmatrix} $$ Before computing, figure out what the dimensions of Z will be (no need to explicitly answer this) **Your math answer** The matrix will have row,col of X,Y, so 2 row by 2 col $$X = \begin{bmatrix} 3 * 0 + 2 * 2 + 1 * 5 & 3 * 1 + 2 * 4 + 1 * 1 \\ 1 * 0 + 2 * 2 + 5 * 7 & 1 * 1 + 2 * 4 + 1 * 7\\ \end{bmatrix}$$ ```python A = np.array([[3, 2, 1], [1, 2, 7]]) B = np.array([[0, 1], [2, 4], [5,1]]) np.matmul(A,B) ``` ## C) (Optional) Transpose **Please come back to this problem if you complete the rest of the tutorial during class time.** The **tranpose** of a matrix flips a matrix over its diagonal, changing the rows to columns and the columns to rows. We denote the transpose of matrix X with $X^T$. In numpy, we can get the transpose of an array X with `X.T`. First, write out the transpose of X from part B yourself and then produce it using code. **Your math answer** It's like computing Z = XY where $$X = \begin{bmatrix} 9 & 12 \\ 39 & 16 \\ \end{bmatrix}, Y = \begin{bmatrix} 0 & 1 \\ 2 & 4 \\ 5 & 1 \\ \end{bmatrix} $$ ```python # Your code answer np.matmul(A,B).T ``` ```python np.matmul(np.matmul(A,B) , np.array([[0, -1], [1,0]])) ``` You could not compute $X^TY$ - why not? **Your text answer** The shapes don't match along dimension 1 # Exercise 2: Thinking about transformations In the video *Linear transformations and matrices*, you learned that a matrix corresponding to a rotation by 90 degrees is $$X = \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ \end{bmatrix}$$ You also saw that one matrix for which the transformation is horizontal shear is $$X = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ \end{bmatrix}$$ In this exercise, we will think about some other types of transformations. We will use `plot_linear_transformation(X)` to see the grid before and after the transformation corresponding to matrix $X$. **Remember to think about where your basis vectors should end up! Then your matrix consists of the transformed basis vectors. Drawing out what you want to happen can help** ## A) Reflection across x2 axis Come up with a matrix $A$ for which the corresponding linear transformation is reflection through the $x_2$ axis (flipping across the $x_2$ axis). For example, $\bar{x} = \begin{bmatrix} 1 \\ 5 \\ \end{bmatrix}$ should become $\bar{b} = \begin{bmatrix} -1 \\ 5 \\ \end{bmatrix}$ when multiplied with $A$. ```python A = np.array([[1, 0], [0, -1]]) plot_linear_transformation(A) ``` Would you expect the determinant of A to be positive or negative? Why? Would you expect the absolute value of the determinant to be greater than 1, less than 1, or equal to 1. Why? **Your text answer** ## B) Projection onto x1 Come up with a matrix $A$ for which the corresponding linear transformation is projecting onto the $x_1$ axis. For example, $\bar{x} = \begin{bmatrix} 1 \\ 5 \\ \end{bmatrix}$ should become $\bar{b} = \begin{bmatrix} 1 \\ 0 \\ \end{bmatrix}$ when multiplied with $A$. ```python A = ... plot_linear_transformation(A) ``` Would you expect the determinant of A to be positive or negative? Why? Would you expect the absolute value of the determinant to be greater than 1, less than 1, or equal to 1. Why? **Your text answer** ## C) (Optional) Figuring out the transformation from a matrix **Please come back to this problem if you complete the rest of the tutorial during class time.** $$A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \\ \end{bmatrix}$$ Try to answer the below questions without looking at the plot of the transformation, but feel free to do so if you get stuck i) This matrix is a composition of two basic transformations, where possible basic transformations are reflection, contraction, expansion, horizontal shear, vertical shear, and projection. What are the two basic transformations it is a composition of? (Hint: does this matrix look at all like either of the two in the description below Exercise 2?) ii) Would you expect the determinant of A to be positive or negative? Why? Would you expect the absolute value of the determinant to be greater than 1, less than 1, or equal to 1. Why? iii) Rewrite A as a matrix multiplication of two matrices where each matrix corresponds to one of the basic transformations. **Your text answer** ```python A = np.array([[3, 1], [0, 3]]) #plot_linear_transformation(A) ``` ## Extra info: Matrix inverse transformation We know that the inverse of a matrix essentially "undoes" the transformation of the matrix. Let's see this in action. We will plot the transformation of A then the additional transformation of $A^{-1}$ - the resulting plot should look like the original. ```python A = np.array([[1,2], [2,1]]) A_inv = np.linalg.inv(M) plot_linear_transformations(A, A_inv) ``` # Exercise 3: Encoding model matrices Let's say we have a population of 3 visual neurons that respond to 3 pixel images. Each neural response is a weighted sum of the pixel image: we used this type of model in Week 1 Part 1 Exercise 2. We will now allow the pixels to have negative values. We will look at two different populations of 3 neurons with different weights from the pixels: population f and population g. Below, we have the system of linear equations that dictates the neuron models for each population. $x_1$, $x_2$, and $x_3$ correspond to the pixel values. $r_{f1}$, $r_{f2}$, and $r_{f3}$ correspond to the responses of neurons 1, 2, and 3 in population f. $r_{g1}$, $r_{g2}$, and $r_{g3}$ correspond to the responses of neurons 1, 2, and 3 in population g. Population f: $$\begin{align} x_1 + 3x_2 + 4x_3 &= r_{f1} \\ 2x_1 + x_2 + 4x_3 &= r_{f2} \\ x_1 + 5x_2 + 6x_3 &= r_{f3} \\ \end{align}$$ Population g: $$\begin{align} x_2 + x_3 &= r_{g1} \\ 6x_1 + 10x_2 &= r_{g2} \\ 3x_1 + 6x_2 + x_3 &= r_{g3} \\ \end{align}$$ ## A) Rewriting linear systems of equations to matrix equation We want to rewrite the above system of equations for each population in the matrix equation $F\bar{x} = \bar{r}_f$ where $\bar{x}$ is the image and $\bar{r}_f$ is the vector of neural responses in population f. What is F? We will do the same for population g: $G\bar{x} = \bar{r}_g$ where $\bar{r}_g$ is the vector of neural responses in population g. What is G? **Your math answer** F is the matrix of the coefficients such that $$F = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 1 & 4 \\ 1 & 5 & 6 \end{bmatrix}$$ We started with the linear system of equations view but, as always, we can think about this matrix equation in terms of a linear transformation. In particular matrices F and G are transforming vectors from a "pixel basis", where each element of a vector represents one pixel to a "neural basis" where each element represents the response of one neuron. ## B) Solving a matrix equation We will now try to solve the matrix equation to find $\bar{x}$ for a given $\bar{r}_f$. What does this correspond to in the neuroscience setting (aka what is $\bar{x}$ here)? **Your text answer** As stated above, $\bar{x}$ is the image, so here it would be the afferent weights of retinal ganglion cells Find $\bar{x}$ if $$\bar{r}_f = \begin{bmatrix} 1 \\ 1 \\ 2 \\ \end{bmatrix}$$ We will use two different coding methods: you will first use `np.linalg.inv`, and then `np.linalg.solve`. ```python np.linalg.solve? ``` ```python # Define F F = np.array([[1, 3, 4], [2, 1, 4], [1, 5, 6]]) # Define r_f r_f = np.array([1,1,2]) # Find x using np.linalg.inv x_using_inv = np.linalg.inv(F) # Find x using np.linalg.solve x_using_solve = np.linalg.solve(F, r_f) # Check each method resulted in the same x if np.all(np.isclose(x_using_inv, x_using_solve)): print('Solutions match') else: print('PROBLEM: Solutions do not match!') ``` PROBLEM: Solutions do not match! ```python x_using_solve ``` array([-2. , -1. , 1.5]) ```python x_using_inv ``` array([[ 7. , -1. , -4. ], [ 4. , -1. , -2. ], [-4.5, 1. , 2.5]]) ## C) Solving another matrix equation Try to repeat the steps in B for population g where $$\bar{r}_g = \begin{bmatrix} 1 \\ 1 \\ 2 \\ \end{bmatrix}$$ What problem do you run into? ```python # Define G G = ... # Define r_g r_g = ... # Find x using np.linalg.inv x_using_inv = ... # Find x using np.linalg.solve x_using_solve = ... # Check each method resulted in the same x if np.all(np.isclose(x_using_inv, x_using_solve)): print('Solutions match') else: print('PROBLEM: Solutions do not match!') ``` ## D) Calculate the rank of F/G First think: from the video *Inverse Matrices, column space, and null space*, we know that if a n x n matrix is invertible, the matrix is not "squishing" space: all of $R^n$ can be reached via the transformation. Based on this, what do you expect the ranks of F and G to be based on parts B/C? (no need to explicitly answer, just discuss) Now compute the rank of each below and see if you were right. ```python rank_F = ... rank_G = ... print('The rank of F is '+str(rank_F)) print('The rank of G is '+str(rank_G)) ``` ## E) Linearly independent or dependent columns Are the columns of F linearly dependent of independent? How do you know? How about the columns of G? How do you know? (Hint: use the words rank and column space in your answer) **Your text answer** ## F) Finding the null space Use `scipy.linalg.null_space` to find the basis of the null spaces for F and G. ```python F_null_space = ... G_null_space = ... ``` From the above computation, what is the dimension of the null space for F? For G? What does the null space correspond to in our neuroscience setting? **Your text answer** ## G) Describing the populations of neurons So what does all this matrix examination tell us about the neural processing in populations f and g? Obviously this is a toy system but let's think about it. i) What is the dimensionality of the population of neural responses in population f? How about in g? ii) If we wanted to decode images from the corresponding neural responses, would we always be able to completely recover the image when looking at population f? How about population g? What does this tell us about the information loss of the neural processing? iii) If the columns of a matrix are linearly dependent, then the rows also are. What does this mean for the neural weights in population g? **Your text answer** ## Extra info: Invertible matrix theorem You may have noticed that F and G have a lot of differences in terms of invertibility, the rank, the dimension of the null space, the linear dependence of columns, etc. There is a theorem that sums up a lot of these concepts: the **invertible matrix theorem**. This theorem essentially sorts square matrices into two types - invertible and not-invertible - and notes a whole bunch of qualities of each type. Take a look at the below theorem. If you have time and really want to consolidate your knowledge, think through for each statement why they're either all true or all false. A lot of the theorem stems from what you already know as it is based on definitions or basic concepts. You do not need to memorize this theorem but it is helpful to remember that these two types of matrices exist. The below is an informal, incomplete encapsulation of the invertible matrix theorem (aka I'm not including every single statement): ### **Invertible matrix theorem** Let $A$ be a square n x n matrix. The following statements are either all true or all false for this matrix: a) $A$ is an invertible matrix b) The equation $A\bar{x} = \bar{b}$ has only the trivial solution (aka only true if $\bar{x} = \bar{0}$). c) The columns of $A$ form a linearly independent set. d) The equation $A\bar{x} = \bar{b}$ has at least one solution for each $\bar{b}$ in $R^n$. e) The columns of A span $R^n$ f) $A^T$ is an invertible matrix g) The columns of A form a basis of $R^n$ h) Col A (the column space of A) = $R^n$ i) rank A = n j) Nul A (the null space of A) = {$\bar{0}$} k) dim Nul A (the dimension of the null space) = 0 l) The determinant of A is not 0
In Chestnut Park there is a roundhouse that serves as a mini community center for the neighborhood. Sadly it is often the target of vandalism.
cc ------------ dpmjet3.4 - authors: S.Roesler, R.Engel, J.Ranft ------- cc -------- phojet1.12-40 - authors: S.Roesler, R.Engel, J.Ranft ------- cc - oct'13 ------- cc ----------- pythia-6.4 - authors: Torbjorn Sjostrand, Lund'10 ------- cc --------------------------------------------------------------------- cc converted for use with FLUKA ------- cc - oct'13 ------- C...PYTBBC C...Calculates the three-body decay of gluinos into C...charginos and third generation fermions. SUBROUTINE PYTBBC(I,NN,XMGLU,GAM) C...Double precision and integer declarations. IMPLICIT DOUBLE PRECISION(A-H, O-Z) IMPLICIT INTEGER(I-N) INTEGER PYCOMP C...Parameter statement to help give large particle numbers. PARAMETER (KSUSY1=1000000,KSUSY2=2000000,KTECHN=3000000, &KEXCIT=4000000,KDIMEN=5000000) C...Commonblocks. include 'inc/pydat1' include 'inc/pydat2' include 'inc/pymssm' include 'inc/pyssmt' C...Local variables. EXTERNAL PYSIMP,PYLAMF DOUBLE PRECISION PYSIMP,PYLAMF INTEGER I,NN,LIN DOUBLE PRECISION XMG,XMG2,XMB,XMB2,XMR,XMR2 DOUBLE PRECISION XMT,XMT2,XMST(4),XMSB(4) DOUBLE PRECISION ULR(2),VLR(2),XMQ2,XMQ4,AM,W,SBAR,SMIN,SMAX DOUBLE PRECISION SUMME(0:100),A(4,8) DOUBLE PRECISION COS2A,SIN2A,COS2C,SIN2C DOUBLE PRECISION GRS,XMQ3,XMGBTR,XMGTBR,ANT1,ANT2,ANB1,ANB2 DOUBLE PRECISION XMGLU,GAM DOUBLE PRECISION XX1(2),XX2(2),AAA(2),BBB(2),CCC(2), &DDD(2),EEE(2),FFF(2) SAVE XX1,XX2,AAA,BBB,CCC,DDD,EEE,FFF DOUBLE PRECISION ALPHAW,ALPHAS DOUBLE PRECISION AMC(2) SAVE AMC DOUBLE PRECISION AMBOT,AMSB(2),SINC,COSC DOUBLE PRECISION AMTOP,AMST(2),SINA,COSA SAVE AMSB,AMST LOGICAL IFIRST SAVE IFIRST DATA IFIRST/.TRUE./ TANB=RMSS(5) SINB=TANB/SQRT(1D0+TANB**2) COSB=SINB/TANB C unvar XW=PARU(102) AMW=PMAS(24,1) COSC=SFMIX(5,1) SINC=SFMIX(5,3) COSA=SFMIX(6,1) SINA=SFMIX(6,3) AMBOT=PYMRUN(5,XMGLU**2) AMTOP=PYMRUN(6,XMGLU**2) W2=SQRT(2D0) AMW=PMAS(24,1) FAKT1=AMBOT/W2/AMW/COSB FAKT2=AMTOP/W2/AMW/SINB IF(IFIRST) THEN AMC(1)=SMW(1) AMC(2)=SMW(2) DO 100 JJ=1,2 CCC(JJ)=FAKT1*UMIX(JJ,2)*SINC-UMIX(JJ,1)*COSC EEE(JJ)=FAKT2*VMIX(JJ,2)*COSC DDD(JJ)=FAKT1*UMIX(JJ,2)*COSC+UMIX(JJ,1)*SINC FFF(JJ)=FAKT2*VMIX(JJ,2)*SINC XX1(JJ)=FAKT2*VMIX(JJ,2)*SINA-VMIX(JJ,1)*COSA AAA(JJ)=FAKT1*UMIX(JJ,2)*COSA XX2(JJ)=FAKT2*VMIX(JJ,2)*COSA+VMIX(JJ,1)*SINA BBB(JJ)=FAKT1*UMIX(JJ,2)*SINA 100 CONTINUE AMST(1)=PMAS(PYCOMP(KSUSY1+6),1) AMST(2)=PMAS(PYCOMP(KSUSY2+6),1) AMSB(1)=PMAS(PYCOMP(KSUSY1+5),1) AMSB(2)=PMAS(PYCOMP(KSUSY2+5),1) IFIRST=.FALSE. ENDIF ULR(1)=XX1(I)*XX1(I)+AAA(I)*AAA(I) ULR(2)=XX2(I)*XX2(I)+BBB(I)*BBB(I) VLR(1)=CCC(I)*CCC(I)+EEE(I)*EEE(I) VLR(2)=DDD(I)*DDD(I)+FFF(I)*FFF(I) COS2A=COSA**2-SINA**2 SIN2A=SINA*COSA*2D0 COS2C=COSC**2-SINC**2 SIN2C=SINC*COSC*2D0 XMG=XMGLU XMT=PMAS(6,1) XMB=PMAS(5,1) XMR=AMC(I) XMG2=XMG*XMG ALPHAW=PYALEM(XMG2) ALPHAS=PYALPS(XMG2) XMT2=XMT*XMT XMB2=XMB*XMB XMR2=XMR*XMR XMQ2=XMG2+XMT2+XMB2+XMR2 XMQ4=XMG*XMT*XMB*XMR XMQ3=XMG2*XMR2+XMT2*XMB2 XMGBTR=(XMG2+XMB2)*(XMT2+XMR2) XMGTBR=(XMG2+XMT2)*(XMB2+XMR2) XMST(1)=AMST(1)*AMST(1) XMST(2)=AMST(1)*AMST(1) XMST(3)=AMST(2)*AMST(2) XMST(4)=AMST(2)*AMST(2) XMSB(1)=AMSB(1)*AMSB(1) XMSB(2)=AMSB(2)*AMSB(2) XMSB(3)=AMSB(1)*AMSB(1) XMSB(4)=AMSB(2)*AMSB(2) A(1,1)=-COSA*SINC*CCC(I)*AAA(I)-SINA*COSC*EEE(I)*XX1(I) A(1,2)=XMG*XMB*(COSA*COSC*CCC(I)*AAA(I)+SINA*SINC*EEE(I)*XX1(I)) A(1,3)=-XMG*XMR*(COSA*COSC*CCC(I)*XX1(I)+SINA*SINC*EEE(I)*AAA(I)) A(1,4)=XMB*XMR*(COSA*SINC*CCC(I)*XX1(I)+SINA*COSC*EEE(I)*AAA(I)) A(1,5)=XMG*XMT*(COSA*COSC*EEE(I)*XX1(I)+SINA*SINC*CCC(I)*AAA(I)) A(1,6)=-XMT*XMB*(COSA*SINC*EEE(I)*XX1(I)+SINA*COSC*CCC(I)*AAA(I)) A(1,7)=XMT*XMR*(COSA*SINC*EEE(I)*AAA(I)+SINA*COSC*CCC(I)*XX1(I)) A(1,8)=-XMQ4*(COSA*COSC*EEE(I)*AAA(I)+SINA*SINC*CCC(I)*XX1(I)) A(2,1)=-COSA*COSC*DDD(I)*AAA(I)-SINA*SINC*FFF(I)*XX1(I) A(2,2)=-XMG*XMB*(COSA*SINC*DDD(I)*AAA(I)+SINA*COSC*FFF(I)*XX1(I)) A(2,3)=XMG*XMR*(COSA*SINC*DDD(I)*XX1(I)+SINA*COSC*FFF(I)*AAA(I)) A(2,4)=XMB*XMR*(COSA*COSC*DDD(I)*XX1(I)+SINA*SINC*FFF(I)*AAA(I)) A(2,5)=XMG*XMT*(COSA*SINC*FFF(I)*XX1(I)+SINA*COSC*DDD(I)*AAA(I)) A(2,6)=XMT*XMB*(COSA*COSC*FFF(I)*XX1(I)+SINA*SINC*DDD(I)*AAA(I)) A(2,7)=-XMT*XMR*(COSA*COSC*FFF(I)*AAA(I)+SINA*SINC*DDD(I)*XX1(I)) A(2,8)=-XMQ4*(COSA*SINC*FFF(I)*AAA(I)+SINA*COSC*DDD(I)*XX1(I)) A(3,1)=-COSA*COSC*EEE(I)*XX2(I)-SINA*SINC*CCC(I)*BBB(I) A(3,2)=XMG*XMB*(COSA*SINC*EEE(I)*XX2(I)+SINA*COSC*CCC(I)*BBB(I)) A(3,3)=XMG*XMR*(COSA*SINC*EEE(I)*BBB(I)+SINA*COSC*CCC(I)*XX2(I)) A(3,4)=-XMB*XMR*(COSA*COSC*EEE(I)*BBB(I)+SINA*SINC*CCC(I)*XX2(I)) A(3,5)=-XMG*XMT*(COSA*SINC*CCC(I)*BBB(I)+SINA*COSC*EEE(I)*XX2(I)) A(3,6)=XMT*XMB*(COSA*COSC*CCC(I)*BBB(I)+SINA*SINC*EEE(I)*XX2(I)) A(3,7)=XMT*XMR*(COSA*COSC*CCC(I)*XX2(I)+SINA*SINC*EEE(I)*BBB(I)) A(3,8)=-XMQ4*(COSA*SINC*CCC(I)*XX2(I)+SINA*COSC*EEE(I)*BBB(I)) A(4,1)=-COSA*SINC*FFF(I)*XX2(I)-SINA*COSC*DDD(I)*BBB(I) A(4,2)=-XMG*XMB*(COSA*COSC*FFF(I)*XX2(I)+SINA*SINC*DDD(I)*BBB(I)) A(4,3)=-XMG*XMR*(COSA*COSC*FFF(I)*BBB(I)+SINA*SINC*DDD(I)*XX2(I)) A(4,4)=-XMB*XMR*(COSA*SINC*FFF(I)*BBB(I)+SINA*COSC*DDD(I)*XX2(I)) A(4,5)=-XMG*XMT*(COSA*COSC*DDD(I)*BBB(I)+SINA*SINC*FFF(I)*XX2(I)) A(4,6)=-XMT*XMB*(COSA*SINC*DDD(I)*BBB(I)+SINA*COSC*FFF(I)*XX2(I)) A(4,7)=-XMT*XMR*(COSA*SINC*DDD(I)*XX2(I)+SINA*COSC*FFF(I)*BBB(I)) A(4,8)=-XMQ4*(COSA*COSC*DDD(I)*XX2(I)+SINA*SINC*FFF(I)*BBB(I)) SMAX=(XMG-ABS(XMR))**2 SMIN=(XMB+XMT)**2+0.1D0 DO 120 LIN=0,NN-1 SBAR=SMIN+DBLE(LIN)*(SMAX-SMIN)/DBLE(NN) AM=(XMG2-XMR2)*(XMT2-XMB2)/2D0/SBAR GRS=SBAR-XMQ2 W=PYLAMF(SBAR,XMB2,XMT2)*PYLAMF(SBAR,XMG2,XMR2) W=SQRT(W)/2D0/SBAR ANT1=LOG(ABS((GRS/2D0+AM+XMST(1)-W)/(GRS/2D0+AM+XMST(1)+W))) ANT2=LOG(ABS((GRS/2D0+AM+XMST(3)-W)/(GRS/2D0+AM+XMST(3)+W))) ANB1=LOG(ABS((GRS/2D0-AM+XMSB(1)-W)/(GRS/2D0-AM+XMSB(1)+W))) ANB2=LOG(ABS((GRS/2D0-AM+XMSB(2)-W)/(GRS/2D0-AM+XMSB(2)+W))) SUMME(LIN)=-ULR(1)*W+(ULR(1)*(XMQ2/2D0-XMST(1)-XMG*XMT*SIN2A) & +2D0*XX1(I)*AAA(I)*XMR*XMB)*ANT1 & +(ULR(1)/2D0*(XMST(1)*(XMQ2-XMST(1))-XMGTBR & -2D0*XMG*XMT*SIN2A*(XMST(1)-XMB2-XMR2)) & +2D0*XX1(I)*AAA(I)*XMR*XMB*(XMST(1)-XMG2-XMT2) & +4D0*SIN2A*XX1(I)*AAA(I)*XMQ4) & *(1D0/(GRS/2D0+AM+XMST(1)-W)-1D0/(GRS/2D0+AM+XMST(1)+W)) SUMME(LIN)=SUMME(LIN)-ULR(2)*W & +(ULR(2)*(XMQ2/2D0-XMST(3)+XMG*XMT*SIN2A) & -2D0*XX2(I)*BBB(I)*XMR*XMB)*ANT2 & +(ULR(2)/2D0*(XMST(3)*(XMQ2-XMST(3))-XMGTBR & +2D0*XMG*XMT*SIN2A*(XMST(3)-XMB2-XMR2)) & -2D0*XX2(I)*BBB(I)*XMR*XMB*(XMST(3)-XMG2-XMT2) & +4D0*SIN2A*XX2(I)*BBB(I)*XMQ4) & *(1D0/(GRS/2D0+AM+XMST(3)-W)-1D0/(GRS/2D0+AM+XMST(3)+W)) SUMME(LIN)=SUMME(LIN)-VLR(1)*W & +(VLR(1)*(XMQ2/2D0-XMSB(1)-XMG*XMB*SIN2C) & +2D0*CCC(I)*EEE(I)*XMR*XMT)*ANB1 & +(VLR(1)/2D0*(XMSB(1)*(XMQ2-XMSB(1))-XMGBTR & -2D0*XMG*XMB*SIN2C*(XMSB(1)-XMT2-XMR2)) & +2D0*CCC(I)*EEE(I)*XMR*XMT*(XMSB(1)-XMG2-XMB2) & +4D0*SIN2C*CCC(I)*EEE(I)*XMQ4) & *(1D0/(GRS/2D0-AM+XMSB(1)-W)-1D0/(GRS/2D0-AM+XMSB(1)+W)) SUMME(LIN)=SUMME(LIN)-VLR(2)*W & +(VLR(2)*(XMQ2/2D0-XMSB(2)+XMG*XMB*SIN2C) & -2D0*DDD(I)*FFF(I)*XMR*XMT)*ANB2 & +(VLR(2)/2D0*(XMSB(2)*(XMQ2-XMSB(2))-XMGBTR & +2D0*XMG*XMB*SIN2C*(XMSB(2)-XMT2-XMR2)) & -2D0*DDD(I)*FFF(I)*XMR*XMT*(XMSB(2)-XMG2-XMB2) & +4D0*SIN2C*DDD(I)*FFF(I)*XMQ4) & *(1D0/(GRS/2D0-AM+XMSB(2)-W)-1D0/(GRS/2D0-AM+XMSB(2)+W)) SUMME(LIN)=SUMME(LIN)+2D0*XMG*XMT*COS2A/(XMST(3)-XMST(1)) & *((AAA(I)*BBB(I)-XX1(I)*XX2(I)) & *((XMST(3)-XMB2-XMR2)*ANT2-(XMST(1)-XMB2-XMR2)*ANT1) & +2D0*(AAA(I)*XX2(I)-XX1(I)*BBB(I))*XMB*XMR*(ANT2-ANT1)) SUMME(LIN)=SUMME(LIN)+2D0*XMG*XMB*COS2C/(XMSB(2)-XMSB(1)) & *((EEE(I)*FFF(I)-CCC(I)*DDD(I)) & *((XMSB(2)-XMT2-XMR2)*ANB2-(XMSB(1)-XMT2-XMR2)*ANB1) & +2D0*(EEE(I)*DDD(I)-CCC(I)*FFF(I))*XMT*XMR*(ANB2-ANB1)) DO 110 J=1,4 SUMME(LIN)=SUMME(LIN)-2D0*A(J,1)*W & +((-A(J,1)*(XMSB(J)*(GRS+XMSB(J))+XMQ3) & +A(J,2)*(XMSB(J)-XMT2-XMR2)+A(J,3)*(SBAR-XMB2-XMT2) & +A(J,4)*(XMSB(J)+SBAR-XMB2-XMR2) & -A(J,5)*(XMSB(J)+SBAR-XMG2-XMT2)+A(J,6)*(XMG2+XMR2-SBAR) & -A(J,7)*(XMSB(J)-XMG2-XMB2)+2D0*A(J,8)) & *LOG(ABS((GRS/2D0+XMSB(J)-AM-W)/(GRS/2D0+XMSB(J)-AM+W))) & -(A(J,1)*(XMST(J)*(GRS+XMST(J))+XMQ3) & +A(J,2)*(XMST(J)+SBAR-XMG2-XMB2)-A(J,3)*(SBAR-XMB2-XMT2) & +A(J,4)*(XMST(J)-XMG2-XMT2)-A(J,5)*(XMST(J)-XMR2-XMB2) & -A(J,6)*(XMG2+XMR2-SBAR) & -A(J,7)*(XMST(J)+SBAR-XMT2-XMR2)-2D0*A(J,8)) & *LOG(ABS((GRS/2D0+XMST(J)+AM-W)/(GRS/2D0+XMST(J)+AM+W)))) & /(GRS+XMSB(J)+XMST(J)) 110 CONTINUE 120 CONTINUE SUMME(NN)=0D0 GAM= ALPHAW * ALPHAS * PYSIMP(SUMME,SMIN,SMAX,NN) &/ (16D0 * PARU(1) * PARU(102) * XMGLU**3) RETURN END
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Int.Base where open import Cubical.Core.Everything open import Cubical.Data.Nat data Int : Typeβ‚€ where pos : (n : β„•) β†’ Int negsuc : (n : β„•) β†’ Int sucInt : Int β†’ Int sucInt (pos n) = pos (suc n) sucInt (negsuc zero) = pos zero sucInt (negsuc (suc n)) = negsuc n predInt : Int β†’ Int predInt (pos zero) = negsuc zero predInt (pos (suc n)) = pos n predInt (negsuc n) = negsuc (suc n)
using WeeklyMealPlanner using Test @testset "WeeklyMealPlanner.jl" begin # Write your own tests here. end
import numpy as np from lcc.utils.data_analysis import to_PAA, to_ekvi_PAA, compute_bins, fix_missing def test_to_PAA(): for _ in range(100): x = np.random.random_sample(np.random.randint(30, 700)) bins = np.random.randint(5, 30) assert len(to_PAA(x, bins)[0]) == bins def test_to_ekvi_PAA1(): n = 100 x = np.linspace(0, 1, n) y = np.random.random_sample(n) bins = np.random.randint(5, 30) x_ekv1, y_ekv1 = to_ekvi_PAA(x, y, bins) x_ekv2, y_ekv2 = to_ekvi_PAA(x, y, len(x)) x_ekv3, y_ekv3 = to_ekvi_PAA(x, y, 3 * len(x)) assert len(x_ekv1) == bins assert len(x_ekv2) == len(x) assert len(x_ekv3) == len(x) assert np.nan not in y_ekv1 assert np.nan not in y_ekv2 assert np.nan not in y_ekv3 assert (y_ekv3 == y).all() assert (y_ekv2 == y).all() for _ in range(100): n = np.random.randint(30, 700) x = np.random.random_sample(n) x1 = np.linspace(0, 1, n) y = np.random.random_sample(n) bins = np.random.randint(5, 30) x_ekv1, y_ekv1 = to_ekvi_PAA(x, y, bins) x_ekv2, y_ekv2 = to_ekvi_PAA(x, y, len(x)) x_ekv3, y_ekv3 = to_ekvi_PAA(x, y, 3 * len(x)) x_ekv4, y_ekv4 = to_ekvi_PAA(x1, y, len(x1)) assert len(x_ekv1) == bins assert len(x_ekv2) == len(x) assert len(x_ekv3) == len(x) assert np.nan not in y_ekv1 assert np.nan not in y_ekv2 assert np.nan not in y_ekv3 assert (y_ekv4 == y).all() thr = 0.1 assert abs(y_ekv1.mean() - y.mean()) / (y_ekv1.mean() + y.mean()) < thr assert abs(y_ekv2.mean() - y.mean()) / (y_ekv2.mean() + y.mean()) < thr assert abs(y_ekv3.mean() - y.mean()) / (y_ekv3.mean() + y.mean()) < thr def test_compute_bins(): x1 = [1, 2, 3, 8, 9, 10] x2 = [1, 2, 3, 4, 5, 6] assert compute_bins(x2, days_per_bin=1.9, set_min=2) == 3 assert compute_bins(x1, days_per_bin=3, set_min=2) == 3 def test_fix_missing(): x = np.linspace(0, 10, 20) y = x.copy() x[:5] = np.linspace(-15, -10, 5) xx, yy = to_ekvi_PAA(x, y) yy[0] = np.nan yy[-1] = np.nan res1 = fix_missing(xx, yy, replace_at_borders=False) assert len(res1[0]) == len(res1[1]) assert len(res1[0]) == len(xx) - 2 assert not np.isnan(res1[0]).any() assert not np.isnan(res1[1]).any() res2 = fix_missing(xx, yy, replace_at_borders=True) assert len(res2[0]) == len(res2[1]) assert len(res2[0]) == len(xx) assert not np.isnan(res2[0]).any() assert not np.isnan(res2[1]).any() assert res2[1][0] == res2[1][1] assert res2[1][-2] == res2[1][-1] # assert res1[0] == res2[0]
module HNSW using LinearAlgebra using Reexport @reexport using Distances export HierarchicalNSW export add_to_graph!, set_ef! export knn_search include("neighborset.jl") include("visited_lists.jl") include("layered_graphs.jl") include("interface.jl") include("algorithm.jl") end # module
%% Template for a preprint Letter or Article for submission %% to the journal Nature. %% Written by Peter Czoschke, 26 February 2004 %% \documentclass{nature} %% make sure you have the nature.cls and naturemag.bst files where %% LaTeX can find them \usepackage{graphicx} % Including figure files \usepackage{amsmath} % Advanced maths commands \usepackage{amssymb} % Extra maths symbols %\usepackage{natbib} \usepackage{hyperref} \usepackage{url} \usepackage{microtype} \usepackage{rotating} \usepackage{booktabs} \usepackage{threeparttable} \usepackage{tabularx} \title{How and Why to run a Hack Week} %% Notice placement of commas and superscripts and use of & %% in the author list \author{Daniela Huppenkothen$^1$, Anthony Arendt$^2$, David W. Hogg$^1$, Karthik Ram$^3$, Jake VanderPlas$^2$, and Ariel Rokem$^2$} \makeatletter \let\saved@includegraphics\includegraphics \AtBeginDocument{\let\includegraphics\saved@includegraphics} \renewenvironment*{figure}{\@float{figure}}{\end@float} \makeatother \begin{document} \maketitle \begin{affiliations} \item Center for Data Science, New York University \item The University of Washington eScience Institute \item The Berkeley Institute for Data Science, UC Berkeley \end{affiliations} \input{sections/abstract} \input{sections/intro} \input{sections/what} \input{sections/why} \input{sections/participants} \input{sections/themes} \input{sections/design} \input{sections/results} \input{sections/conclusions} %Spelling must be British English (Oxford English Dictionary) %In addition, a cover letter needs to be written with the %following: %\begin{enumerate} % \item A 100 word or less summary indicating on scientific grounds %why the paper should be considered for a wide-ranging journal like %\textsl{Nature} instead of a more narrowly focussed journal. % \item A 100 word or less summary aimed at a non-scientific audience, %written at the level of a national newspaper. It may be used for %\textsl{Nature}'s press release or other general publicity. % \item The cover letter should state clearly what is included as the %submission, including number of figures, supporting manuscripts %and any Supplementary Information (specifying number of items and %format). % \item The cover letter should also state the number of %words of text in the paper; the number of figures and parts of %figures (for example, 4 figures, comprising 16 separate panels in %total); a rough estimate of the desired final size of figures in %terms of number of pages; and a full current postal address, %telephone and fax numbers, and current e-mail address. %\end{enumerate} %See \textsl{Nature}'s website %(\texttt{http://www.nature.com/nature/submit/gta/index.html}) for %complete submission guidelines. %\begin{methods} %Put methods in here. If you are going to subsection it, use %\verb|\subsection| commands. Methods section should be less than %800 words and if it is less than 200 words, it can be incorporated %into the main text. %\end{methods} %% Put the bibliography here, most people will use BiBTeX in %% which case the environment below should be replaced with %% the \bibliography{} command. % \begin{thebibliography}{1} % \bibitem{dummy} Articles are restricted to 50 references, Letters % to 30. % \bibitem{dummyb} No compound references -- only one source per % reference. % \end{thebibliography} \section{References} \bibliographystyle{naturemag} \bibliography{paper} %% Here is the endmatter stuff: Supplementary Info, etc. %% Use \item's to separate, default label is "Acknowledgements" \begin{addendum} \item{The authors would like to thank Laura Nor\'{e}n (NYU) for help on ethics and IRB, Stuart Geiger for helping to formulate the questionnaires that served as the basis for the results presented here, Brittany Fiore-Gartland and Jason Yeatman for comments on the manuscript, and Tal Yarkoni for advice regarding automated selection procedures. This work was partially supported by the Moore-Sloan Data Science Environments at UC Berkeley, New York University, and the University of Washington. Neuro hack week is supported through a grant from the National Institute for Mental Health (1R25MH112480). Daniela Huppenkothen is partially supported by the James Arthur Postdoctoral Fellowship at NYU.} \item[Competing Interests]{The authors declare that they have no competing financial interests.} \item[Correspondence]{Correspondence and requests for materials should be addressed to D.Huppenkothen.~(email: [email protected]).} \end{addendum} %% %% TABLES %% %% If there are any tables, put them here. %% %\begin{table} %\centering %\caption{This is a table with scientific results.} %\medskip %\begin{tabular}{ccccc} %\hline %1 & 2 & 3 & 4 & 5\\ %\hline %aaa & bbb & ccc & ddd & eee\\ %aaaa & bbbb & cccc & dddd & eeee\\ %aaaaa & bbbbb & ccccc & ddddd & eeeee\\ %aaaaaa & bbbbbb & cccccc & dddddd & eeeeee\\ %1.000 & 2.000 & 3.000 & 4.000 & 5.000\\ %\hline %\end{tabular} %\end{table} \end{document}
(* Author: Norbert Schirmer Maintainer: Norbert Schirmer, norbert.schirmer at web de License: LGPL *) (* Title: StateSpace.thy Author: Norbert Schirmer, TU Muenchen Copyright (C) 2004-2008 Norbert Schirmer Some rights reserved, TU Muenchen This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) section {* State Space Template *} theory StateSpace imports Main begin record 'g state = "globals"::'g definition upd_globals:: "('g \<Rightarrow> 'g) \<Rightarrow> ('g,'z) state_scheme \<Rightarrow> ('g,'z) state_scheme" where "upd_globals upd s = s\<lparr>globals := upd (globals s)\<rparr>" record ('g, 'n, 'val) stateSP = "'g state" + locals :: "'n \<Rightarrow> 'val" lemma upd_globals_conv: "upd_globals f = (\<lambda>s. s\<lparr>globals := f (globals s)\<rparr>)" by (rule ext) (simp add: upd_globals_def) end
/* interpolation/interp_poly.c * * Copyright (C) 2001 DAN, HO-JIN * Copyright (C) 2013 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Modified for standalone use in polynomial directory, B.Gough 2001 */ #include <config.h> #include <gsl/gsl_errno.h> #include <gsl/gsl_poly.h> int gsl_poly_dd_init (double dd[], const double xa[], const double ya[], size_t size) { size_t i, j; /* Newton's divided differences */ dd[0] = ya[0]; for (j = size - 1; j >= 1; j--) { dd[j] = (ya[j] - ya[j - 1]) / (xa[j] - xa[j - 1]); } for (i = 2; i < size; i++) { for (j = size - 1; j >= i; j--) { dd[j] = (dd[j] - dd[j - 1]) / (xa[j] - xa[j - i]); } } return GSL_SUCCESS; } int gsl_poly_dd_taylor (double c[], double xp, const double dd[], const double xa[], size_t size, double w[]) { size_t i, j; for (i = 0; i < size; i++) { c[i] = 0.0; w[i] = 0.0; } w[size - 1] = 1.0; c[0] = dd[0]; for (i = size - 1; i-- > 0;) { w[i] = -w[i + 1] * (xa[size - 2 - i] - xp); for (j = i + 1; j < size - 1; j++) { w[j] = w[j] - w[j + 1] * (xa[size - 2 - i] - xp); } for (j = i; j < size; j++) { c[j - i] += w[j] * dd[size - i - 1]; } } return GSL_SUCCESS; } /* gsl_poly_dd_hermite_init() Compute divided difference representation of data for Hermite polynomial interpolation Inputs: dd - (output) array of size 2*size containing divided differences, dd[k] = f[z_0,z_1,...,z_k] za - (output) array of size 2*size containing z values xa - x data ya - y data dya - dy/dx data size - size of xa,ya,dya arrays Return: success */ int gsl_poly_dd_hermite_init (double dd[], double za[], const double xa[], const double ya[], const double dya[], const size_t size) { const size_t N = 2 * size; size_t i, j; /* Hermite divided differences */ dd[0] = ya[0]; /* compute: dd[j] = f[z_{j-1},z_j] for j \in [1,N-1] */ for (j = 0; j < size; ++j) { za[2*j] = xa[j]; za[2*j + 1] = xa[j]; if (j != 0) { dd[2*j] = (ya[j] - ya[j - 1]) / (xa[j] - xa[j - 1]); dd[2*j - 1] = dya[j - 1]; } } dd[N - 1] = dya[size - 1]; for (i = 2; i < N; i++) { for (j = N - 1; j >= i; j--) { dd[j] = (dd[j] - dd[j - 1]) / (za[j] - za[j - i]); } } return GSL_SUCCESS; } /* gsl_poly_dd_hermite_init() */
C Copyright(C) 1999-2020 National Technology & Engineering Solutions C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with C NTESS, the U.S. Government retains certain rights in this software. C C See packages/seacas/LICENSE for details C======================================================================= INTEGER FUNCTION INTADD (LENLST, INTLST) C======================================================================= C --*** INTADD *** (ETCLIB) Add all integers in list C -- Written by Amy Gilkey - revised 11/10/87 C -- C --INTADD returns the sum of all the integers in a list. C -- C --Parameters: C -- LENLST - IN - the number of integers in the list C -- INTLST - IN - the list of integers to be added INTEGER LENLST INTEGER INTLST(*) INTADD = 0 DO 100 I = 1, LENLST INTADD = INTADD + INTLST(I) 100 CONTINUE RETURN END
If $S$ is open, then $f$ is continuous on $S$ if and only if $f$ is continuous on each component of $S$.
# Marginal likelihood for Bayesian linear regression Author: [Zeel B Patel](https://patel-zeel.github.io/), [Nipun Batra](https://nipunbatra.github.io/) Bayesian linear regression is defined as below, \begin{align} \mathbf{y} &= X\boldsymbol{\theta} + \epsilon\\ \epsilon &\sim \mathcal{N}(0, \sigma_n^2)\\ \theta &\sim \mathcal{N}(\mathbf{m}_0, S_0) \end{align} For a Gaussian random variable $\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$, $A\mathbf{z} + \mathbf{b}$ is also a Gaussian random variable. \begin{align} \mathbf{y} = X\mathbf{\theta} + \boldsymbol{\epsilon} &\sim \mathcal{N}(\boldsymbol{\mu}', \Sigma')\\ \boldsymbol{\mu}' &= \mathbb{E}_{\theta, \epsilon}(X\mathbf{\theta}+\boldsymbol{\epsilon})\\ &= X\mathbb{E}(\mathbf{\theta}) + \mathbb{E}(\mathbf{\epsilon})\\ &= X\mathbf{m}_0\\ \\ \Sigma' &= V(X\mathbf{\theta}+\boldsymbol{\epsilon})\\ &= XV(\mathbf{\theta})X^T+V(\boldsymbol{\epsilon})\\ &= XS_0X^T + \sigma_n^2I \end{align} Marginal likelihood is $p(\mathbf{y})$ so, \begin{align} p(\mathbf{y}) &= \frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma'|^{\frac{1}{2}}}\exp\left[-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu}')^T\Sigma'^{-1}(\mathbf{y}-\boldsymbol{\mu}')\right]\\ &= \frac{1}{(2\pi)^{\frac{N}{2}}|XS_0X^T + \sigma_n^2I|^{\frac{1}{2}}}\exp\left[-\frac{1}{2}(\mathbf{y}-X\mathbf{m}_0)^T(XS_0X^T + \sigma_n^2I)^{-1}(\mathbf{y}-X\mathbf{m}_0)\right] \end{align} ## Multiplication of two Gaussians (work in progress) We need Gaussian pdf over same variables to evaluate their multiplication. Let us convert $y$ into $\theta$. \begin{align} \mathbf{y} &= X\theta + \boldsymbol{\epsilon}\\ \theta &= (X^TX)^{-1}X^T(\mathbf{y} - \boldsymbol{\epsilon})\\ \text{Deriving mean and covariance of }\theta\\ E(\theta) &= (X^TX)^{-1}X^T\mathbf{y}\\ V(\theta) &= \sigma_n^2\left[(X^TX)^{-1}X^T\right]\left[(X^TX)^{-1}X^T\right]^T\\ &= \sigma_n^2(X^TX)^{-1}X^TX(X^TX)^{-1}\\ &= \sigma_n^2(X^TX)^{-1} \end{align} Now, we have both $p(\mathbf{y}|\boldsymbol{\theta})$ and $p(\boldsymbol{\theta})$ in terms of $\boldsymbol{\theta}$. We can apply the rules from 6.5.2 of MML book. Writing our results in terminology of 6.5.2. \begin{align} \mathcal{N}(x|a, A) &== \mathcal{N}(\theta|(X^TX)^{-1}X^T\mathbf{y}, \sigma_n^2(X^TX)^{-1})\\ \mathcal{N}(x|b, B) &== \mathcal{N}(\theta|\mathbf{m}_0, S_0) \end{align} we know that, $$ c\mathcal{N}(\theta|\mathbf{c}, C) = \mathcal{N}(x|a, A)\mathcal{N}(x|b, B)\\ \mathcal{N}(\theta|\mathbf{c}, C) = \frac{\mathcal{N}(x|a, A)\mathcal{N}(x|b, B)}{c} $$ In the Bayesian setting, \begin{align} Prior &\sim \mathcal{N}(x|b, B) == \mathcal{N}(\theta|\mathbf{m}_0, S_0)\\ Likelihood &\sim \mathcal{N}(x|a, A) == \mathcal{N}(\theta|(X^TX)^{-1}X^T\mathbf{y}, \sigma_n^2(X^TX)^{-1})\\ Posterior &\sim \mathcal{N}(\theta|\mathbf{c}, C) == \mathcal{N}(\theta|\mathbf{m}_n, S_n)\\ \text{last but not the least}\\ Marginal\;likelihood &\sim c == \mathcal{N}(\mathbf{y}|\boldsymbol{\mu}, \Sigma) \end{align} Let us evaluate the posterior, \begin{align} Posterior &\sim \mathcal{N}(\theta|\mathbf{c}, C)\\ S_n = C &= (A^{-1} + B^{-1})^{-1}\\ &= \left(\frac{X^TX}{\sigma_n^2} + S_0^{-1}\right)^{-1}\\ \mathbf{m_n} = \mathbf{c} &= C(A^{-1}a + B^{-1}b)\\ &= S_n\left(\frac{X^TX}{\sigma_n^2}(X^TX)^{-1}X^T\mathbf{y} + S_0^{-1}\mathbf{m}_0\right)\\ &= S_n\left(\frac{X^T\mathbf{y}}{\sigma_n^2} + S_0^{-1}\mathbf{m}_0\right) \end{align} Now, we evaluate the marginal likelihood, \begin{align} c &= \mathcal{N}(\mathbf{y}|\boldsymbol{\mu}, \Sigma)\\ &= (2\pi)^{-\frac{D}{2}}|A+B|^{-\frac{1}{2}}\exp\left(-\frac{1}{2}(a-b)^T(A+B)^{-1}(a-b)\right)\\ &= (2\pi)^{-\frac{D}{2}}|\sigma_n^2(X^TX)^{-1}+S_0|^{-\frac{1}{2}}\exp\left(-\frac{1}{2}((X^TX)^{-1}X^T\mathbf{y}-\mathbf{m}_0)^T(\sigma_n^2(X^TX)^{-1}+S_0)^{-1}((X^TX)^{-1}X^T\mathbf{y}-\mathbf{m}_0)\right) \end{align} Another well-known formulation of marginal likelihood is the following, $$ p(\mathbf{y}) \sim \mathcal{N}(X\mathbf{m}_0, XS_0X^T + \sigma_n^2I) $$ Let us verify if both are the same, empirically, ```python import numpy as np import scipy.stats np.random.seed(0) def ML1(X, y, m0, S0, sigma_n): N = len(y) return scipy.stats.multivariate_normal.pdf(y.ravel(), (X@m0).squeeze(), X@[email protected] + np.eye(N)*sigma_n**2) def ML2(X, y, m0, S0, sigma_n): D = len(m0) a = np.linalg.inv(X.T@X)@X.T@y b = m0 A = np.linalg.inv(X.T@X)*sigma_n**2 B = S0 return scipy.stats.multivariate_normal.pdf(a.ravel(), b.ravel(), A+B) def ML3(X, y, m0, S0, sigma_n): N = len(y) Sn = np.linalg.inv((X.T@X)/(sigma_n**2) + np.linalg.inv(S0)) Mn = Sn@((X.T@y)/(sigma_n**2) + np.linalg.inv(S0)@m0) LML = -0.5*N*np.log(2*np.pi) - 0.5*N*np.log(sigma_n**2) - 0.5*np.log(np.linalg.det(S0)/np.linalg.det(Sn)) - 0.5*(y.T@y)/sigma_n**2 + 0.5*([email protected](Sn)@Mn) return np.exp(LML) X = np.random.rand(10,2) m0 = np.random.rand(2,1) s0 = np.random.rand(2,2) S0 = [email protected] sigma_n = 10 y = np.random.rand(10,1) ML1(X, y, m0, S0, sigma_n), ML2(X, y, m0, S0, sigma_n), ML3(X, y, m0, S0, sigma_n) ``` (9.577110083272389e-15, 0.0034284478634232078, array([[2.08309892e-14]])) ### Products of Gaussian PDFs (Work under progress) Product of two Gaussians $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_0, \Sigma_0)$ and $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_1, \Sigma_1)$ is an unnormalized Gaussian. \begin{align} f(\mathbf{x}) &= \frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma_0|^{\frac{1}{2}}}\exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_0)^T\Sigma_0^{-1}(\mathbf{x}-\boldsymbol{\mu}_0)\right]\\ g(\mathbf{x}) &= \frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma_1|^{\frac{1}{2}}}\exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_1)^T\Sigma_1^{-1}(\mathbf{x}-\boldsymbol{\mu}_1)\right]\\ \int h(x) = \frac{1}{c}\int f(\mathbf{x})g(\mathbf{x})d\mathbf{x} &= 1 \end{align} We need to find figure out value of $c$ to solve the integration. \begin{align} h(x) &= \frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}}\exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right] = \frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}}\exp\left[-\frac{1}{2}\left(\mathbf{x}^T\Sigma^{-1}\mathbf{x} - 2\boldsymbol{\mu}^T\Sigma^{-1}\mathbf{x} + \boldsymbol{\mu}^T\Sigma^{-1}\boldsymbol{\mu}\right)\right]\\ f(x)g(x) &= \frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma_0|^{\frac{1}{2}}(2\pi)^{\frac{N}{2}}|\Sigma_1|^{\frac{1}{2}}}\exp\left[ -\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_0)^T\Sigma_0^{-1}(\mathbf{x}-\boldsymbol{\mu}_0) -\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_1)^T\Sigma_1^{-1}(\mathbf{x}-\boldsymbol{\mu}_1)\right]\\ &= \frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma_0|^{\frac{1}{2}}(2\pi)^{\frac{N}{2}}|\Sigma_1|^{\frac{1}{2}}}\exp\left[ -\frac{1}{2}\left(\mathbf{x}^T(\Sigma_0^{-1}+\Sigma_1^{-1})\mathbf{x}- 2\boldsymbol{\mu}^T(\Sigma_0^{-1}+\Sigma_1^{-1})\mathbf{x} + \boldsymbol{\mu}^T(\Sigma_0^{-1}+\Sigma_1^{-1})\boldsymbol{\mu}\right) \right]\\ \end{align} We can compare the exponent terms directly. We get the following results by doing that \begin{align} \Sigma^{-1} &= \Sigma_0^{-1} + \Sigma_1^{-1}\\ \Sigma &= \left(\Sigma_0^{-1} + \Sigma_1^{-1}\right)^{-1}\\ \\ \boldsymbol{\mu}^T\Sigma^{-1}\mathbf{x} &= \boldsymbol{\mu_0}^T\Sigma_0^{-1}\mathbf{x} + \boldsymbol{\mu_1}^T\Sigma_1^{-1}\mathbf{x}\\ \left(\boldsymbol{\mu}^T\Sigma^{-1}\right)\mathbf{x} &= \left(\boldsymbol{\mu_0}^T\Sigma_0^{-1} + \boldsymbol{\mu_1}^T\Sigma_1^{-1}\right)\mathbf{x}\\ \boldsymbol{\mu}^T\Sigma^{-1} &= \boldsymbol{\mu_0}^T\Sigma_0^{-1} + \boldsymbol{\mu_1}^T\Sigma_1^{-1}\\ \text{Applying transpose on both sides,}\\ \Sigma^{-1}\boldsymbol{\mu} &= \Sigma_0^{-1}\boldsymbol{\mu}_0 + \Sigma_1^{-1}\boldsymbol{\mu}_1\\ \boldsymbol{\mu} &= \Sigma\left(\Sigma_0^{-1}\boldsymbol{\mu}_0 + \Sigma_1^{-1}\boldsymbol{\mu}_1\right) \end{align} Now, solving for the normalizing constant $c$, \begin{align} \frac{c}{(2\pi)^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} &= \frac{1}{(2\pi)^{\frac{N}{2}}|\Sigma_0|^{\frac{1}{2}}(2\pi)^{\frac{N}{2}}|\Sigma_1|^{\frac{1}{2}}}\\ c &= \frac{|\Sigma|^{\frac{1}{2}}}{(2\pi)^{\frac{N}{2}}|\Sigma_0|^{\frac{1}{2}}|\Sigma_1|^{\frac{1}{2}}} \end{align} If we have two Gaussians $\mathcal{N}(\mathbf{a}, A)$ and $\mathcal{N}(\mathbf{b}, B)$ for same random variable $\mathbf{x}$, Marginal likelihood can be given as, $$ c = (2\pi)^{-N/2}|A+B|^{-1/2}\exp -\frac{1}{2}\left[(\mathbf{a} - \mathbf{b})^T(A+B)^{-1}(\mathbf{a} - \mathbf{b})\right] $$ Here, we have two Gaussians $\mathcal{N}(0, \sigma^2I)$ and $\mathcal{N}((X^TX)^{-1}X^T\mathbf{y}, \frac{(X^TX)^{-1}}{\sigma_n^2} )$ for same random variable $\boldsymbol{\theta}$, Marginal likelihood can be given as, $$ $$ ```python import numpy as np import matplotlib.pyplot as plt import scipy.stats ``` ```python np.random.seed(0) N = 10 D = 5 sigma_n = 0.1 # noise sigma = 1 # variance in parameters m0 = np.random.rand(D) S0 = np.eye(D)*sigma**2 x = np.random.rand(N,D) theta = np.random.rand(D,1) y = x@theta + np.random.multivariate_normal(np.zeros(N), np.eye(N)*sigma_n**2, size=1).T plt.scatter(x[:,0], x[:,1], c=y) x.shape, theta.shape, y.shape ``` ```python a = np.linalg.inv(x.T@x)@x.T@y b = m0.reshape(-1,1) A = np.linalg.inv(x.T@x)/(sigma_n**2) B = S0 A_inv = np.linalg.inv(A) B_inv = np.linalg.inv(B) c_cov = np.linalg.inv(A_inv + B_inv) c_mean = c_cov@(A_inv@a + B_inv@b) a.shape, A.shape, b.shape, B.shape, c_mean.shape, c_cov.shape ``` ((5, 1), (5, 5), (5, 1), (5, 5), (5, 1), (5, 5)) ```python c_denom = 1/(((2*np.pi)**(D/2))*(np.linalg.det(c_cov)**0.5)) b_denom = 1/(((2*np.pi)**(D/2))*(np.linalg.det(B)**0.5)) a_denom = 1/(((2*np.pi)**(D/2))*(np.linalg.det(A)**0.5)) a_denom, b_denom, c_denom, 1/c_denom ``` (1.5040129154541655e-07, 0.010105326013811642, 0.0110028525380197, 90.88552232655665) ```python normalizer_c = (1/(((2*np.pi)**(D/2))*(np.linalg.det(A+B)**0.5)))*np.exp(-0.5*((a-b)[email protected](A+B)@(a-b))) norm_c_a_given_b = scipy.stats.multivariate_normal.pdf(a.squeeze(), b.squeeze(), A+B) norm_c_b_given_a = scipy.stats.multivariate_normal.pdf(b.squeeze(), a.squeeze(), A+B) normalizer_c, norm_c_a_given_b, norm_c_b_given_a, 1/normalizer_c ``` (array([[1.35765194e-07]]), 1.357651942204283e-07, 1.357651942204283e-07, array([[7365658.08152844]])) ```python a_pdf = scipy.stats.multivariate_normal.pdf(theta.squeeze(), a.squeeze(), A) b_pdf = scipy.stats.multivariate_normal.pdf(theta.squeeze(), b.squeeze(), B) c_pdf = scipy.stats.multivariate_normal.pdf(theta.squeeze(), c_mean.squeeze(), c_cov) a_pdf, b_pdf, c_pdf, np.allclose(a_pdf*b_pdf, normalizer_c*c_pdf) ``` (1.5039199356435742e-07, 0.008635160418150373, 0.00956547808509135, True) ```python K = x@[email protected] + np.eye(N)*sigma_n**2 marginal_Likelihood_closed_form = scipy.stats.multivariate_normal.pdf(y.squeeze(), (x@m0).squeeze(), K) marginal_Likelihood_closed_form, 1/normalizer_c ``` (1.8288404157840938, array([[7365658.08152844]])) ```python from sklearn.model_selection import KFold from sklearn.linear_model import LinearRegression splitter = KFold(n_splits=100) for train_ind, test_ind in splitter(x): train_x, train_y = x[train_ind], y[train_ind] test_x, test_y = x[test_ind], y[test_ind] model = LinearRegression() model.fit(train_x, train_y) ``` ## What is the relationship between marginal_Likelihood_closed_form and any calculations done in multiplications of two gaussians?
/* multiset/gsl_multiset.h * based on combination/gsl_combination.h by Szymon Jaroszewicz * based on permutation/gsl_permutation.h by Brian Gough * * Copyright (C) 2009 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MULTISET_H__ #define __GSL_MULTISET_H__ #if !defined( GSL_FUN ) # if !defined( GSL_DLL ) # define GSL_FUN extern # elif defined( BUILD_GSL_DLL ) # define GSL_FUN extern __declspec(dllexport) # else # define GSL_FUN extern __declspec(dllimport) # endif #endif #include <stdlib.h> #include <gsl/gsl_errno.h> #include <gsl/gsl_types.h> #include <gsl/gsl_inline.h> #include <gsl/gsl_check_range.h> #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_multiset_struct { size_t n; size_t k; size_t *data; }; typedef struct gsl_multiset_struct gsl_multiset; GSL_FUN gsl_multiset *gsl_multiset_alloc (const size_t n, const size_t k); GSL_FUN gsl_multiset *gsl_multiset_calloc (const size_t n, const size_t k); GSL_FUN void gsl_multiset_init_first (gsl_multiset * c); GSL_FUN void gsl_multiset_init_last (gsl_multiset * c); GSL_FUN void gsl_multiset_free (gsl_multiset * c); GSL_FUN int gsl_multiset_memcpy (gsl_multiset * dest, const gsl_multiset * src); GSL_FUN int gsl_multiset_fread (FILE * stream, gsl_multiset * c); GSL_FUN int gsl_multiset_fwrite (FILE * stream, const gsl_multiset * c); GSL_FUN int gsl_multiset_fscanf (FILE * stream, gsl_multiset * c); GSL_FUN int gsl_multiset_fprintf (FILE * stream, const gsl_multiset * c, const char *format); GSL_FUN size_t gsl_multiset_n (const gsl_multiset * c); GSL_FUN size_t gsl_multiset_k (const gsl_multiset * c); GSL_FUN size_t * gsl_multiset_data (const gsl_multiset * c); GSL_FUN int gsl_multiset_valid (gsl_multiset * c); GSL_FUN int gsl_multiset_next (gsl_multiset * c); GSL_FUN int gsl_multiset_prev (gsl_multiset * c); GSL_FUN INLINE_DECL size_t gsl_multiset_get (const gsl_multiset * c, const size_t i); #ifdef HAVE_INLINE INLINE_FUN size_t gsl_multiset_get (const gsl_multiset * c, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= c->k)) /* size_t is unsigned, can't be negative */ { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return c->data[i]; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_MULTISET_H__ */
\ProvidesFile{sharedSetup.tex}[v1.0.0] \documentclass[letterpaper,titlepage,twoside,canadian]{book} % Using the British option gives dates in the form d-m-y % The Canadian option gives dates in the form m-d-y \usepackage{times} \usepackage{amsmath} \usepackage[useregional=text]{datetime2} \usepackage{enumerate} \usepackage{ifthen} \usepackage{alltt} \usepackage{calc} \usepackage{shortvrb} \usepackage{varioref} \usepackage{graphicx} \usepackage{color} \usepackage{makeidx} \usepackage{xspace} \usepackage{fancyhdr} \usepackage[section]{tocbibind} \usepackage{epstopdf} \usepackage{moreverb} % Control the code, depending on whether a hyper-linked PDF is being generated: \newboolean{generatingHyperPDF} \setboolean{generatingHyperPDF}{true} \newboolean{heveaActive} %HEVEA\setboolean{heveaActive}{true} %BEGIN LATEX \setboolean{heveaActive}{false} %END LATEX % If the package 'hyperref' is disabled by commenting out the following lines, % be sure to set the boolean 'generatingHyperPDF' to false. \ifthenelse{\boolean{generatingHyperPDF}}% {\ifthenelse{\boolean{heveaActive}}% {\usepackage{hyperref}} {\usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen, urlcolor=webblue, pdftitle={\docTitle}, pdfauthor={\docAuthor}, pdfkeywords={\docKeywords}, pdfsubject={\docSubject}, bookmarks, raiselinks=true, plainpages=false, bookmarksopen=true, pdfstartview=Fit, pdfpagemode=UseOutlines]{hyperref}}} {\newcommand{\hyperpage}[1]{#1}} \usepackage{mysects} % Adjust the paper edges: \setlength{\parindent}{0em} \setlength{\textwidth}{\paperwidth-144pt}% 2" \setlength{\marginparsep}{0pt} \setlength{\marginparwidth}{0pt} \setlength{\evensidemargin}{-18pt}% 0.25" \setlength{\oddsidemargin}{-18pt}% 0.25" % Some colours for the web: \definecolor{webgreen}{rgb}{0,0.5,0} \definecolor{webbrown}{rgb}{0.6,0,0} \definecolor{webblue}{rgb}{0,0,0.5} % Set the float behaviour: \setcounter{bottomnumber}{2} \setcounter{totalnumber}{4} \renewcommand{\thefigure}{\arabic{figure}} % This fixes a 'glitch' with Hevea! % Suppress the normal numbering of sections, et cetera: \setcounter{secnumdepth}{-3} \setcounter{tocdepth}{2} % A couple of useful commands to handle italic-to-normal transitions: \newcommand{\textitcorr}[1]{\textit{#1}\/} \newcommand{\emphcorr}[1]{\emph{#1}\/} % Some commands to make examples match actual output more closely: \ifthenelse{\boolean{heveaActive}}% {\newcommand{\pseudotab}{\textbf{ $\vdash$} }} {\newcommand{\pseudotab}{\thinspace\boldmath{$\vdash$}\thinspace}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\tabSymbol}{\texttt{\textbf{$\vdash$}}}} {\newcommand{\tabSymbol}{\texttt{\boldmath{$\vdash$}}}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\pseudotwotabs}{\textbf{ $\vdash$ $\vdash$ }}} {\newcommand{\pseudotwotabs}{\thinspace\boldmath{$\vdash$}\thinspace% \boldmath{$\vdash$}\thinspace}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\pseudothreetabs}{\textbf{ $\vdash$ $\vdash$ $\vdash$ }}} {\newcommand{\pseudothreetabs}{\thinspace\boldmath{$\vdash$}\thinspace% \boldmath{$\vdash$}\thinspace\boldmath{$\vdash$}\thinspace}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\fUS}{\textunderscore}} {\newcommand{\fUS}{\begin{Large}\textbf{\textunderscore}\end{Large}}} \newcommand{\clientName}{\fUS{}client\fUS} \newcommand{\dollarService}{\textdollar{}ervice} \newcommand{\serviceName}{\fUS{}service\fUS} \newcommand{\inputOutput}{Input~/~Output} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\openSq}{\textbf{[}}} {\newcommand{\openSq}{\boldmath{$\lbrack$}}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\closeSq}{\textbf{]}}} {\newcommand{\closeSq}{\boldmath{$\rbrack$}}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\sqPair}{\textbf{[ ]}}} {\newcommand{\sqPair}{\boldmath{$\lbrack\ \rbrack$}}} \newcommand{\TBD}{\textbf{\large{TBD}}} \newlength{\uL} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\argItem}[2]{\textbf{#1} #2}} {\newcommand{\argItem}[2]{\makebox[4em][l]{\textbf{#1}} #2}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\cmdItem}[2]{\textbf{#1} #2}} {\newcommand{\cmdItem}[2]{\makebox[1em][l]{\textbf{#1}} \parbox{40em}{#2}}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\optItem}[4]{\textbf{-#1} \textit{#2} | \textbf{--#3} \textit{#2} #4}} {\newcommand{\optItem}[4]{\makebox[2em][l]{\textbf{--#1} \textit{#2}} % \textbar{} \makebox[5.5em][l]{\textbf{{-}{-}#3} \textit{#2}} \parbox{35em}{#4}}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\longDash}{-}} {\newcommand{\longDash}{--}} \newcommand{\bigRightArrow}{$\Rightarrow$} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\exSp}{\ }} {\newcommand{\exSp}{}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\condPage}{\\}} {\newcommand{\condPage}{\newpage}} \newcommand*{\compLang}[1]{\emphcorr{#1}} % Use different graphics file formats for HTML versus PDF \ifthenelse{\boolean{heveaActive}}% {\newcommand*{\objImage}[1]{\imgsrc{#1.png}}} {\newcommand*{\objImage}[1]{\includegraphics{#1.eps}}} \ifthenelse{\boolean{heveaActive}}% {\newcommand*{\objScaledImage}[2]{\imgsrc{#2.png}}} {\newcommand*{\objScaledImage}[2]{\includegraphics[scale=#1]{#2.eps}}} \ifthenelse{\boolean{heveaActive}}% {\newcommand*{\objImageWithWidth}[2]{\imgsrc[width=#1]{#2.png}}} {\newcommand*{\objImageWithWidth}[2]{\includegraphics[width=#1]{#2.eps}}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\mpmLogo}{\objImageWithWidth{150}{mpm_images/m+m_tight_logo}}} {\newcommand{\mpmLogo}{\objImageWithWidth{5em}{mpm_images/m+m_tight_logo}}} \newcommand*{\objPicture}[1]{\begin{center}\objImage{#1}\end{center}} \newcommand*{\objScaledPicture}[2]{\begin{center}\objScaledImage{#2}{#1}\end{center}} \newcommand*{\objDiagram}[3]{\begin{figure}[!ht]\centering\objImage{#1}% \caption{#3\ }\label{diagram:#2}\end{figure}} \newcommand{\objScaledDiagram}[4]{\begin{figure}[!ht]\centering% \objScaledImage{#4}{#1}\caption{#3\ }\label{diagram:#2}\end{figure}} \newcommand*{\objDoubleScaledDiagram}[5]{\begin{figure}[!ht]\centering% \objScaledImage{#5}{#1}\hspace{3em}\objScaledImage{#5}{#2}\caption{#4\ }% \label{diagram:#3}\end{figure}} \newcommand*{\objDiagramRef}[1]{\ref{diagram:#1}} \newcommand{\stdAuthor}{H~Plus~Technologies~Ltd. and Simon~Fraser~University\\ Vancouver, British~Columbia, Canada} % First argument: index category % Second argument: index subcategory % Third argument: alternate index subcategory % Fourth argument: index name % Fifth argument: index suffix \ifthenelse{\boolean{heveaActive}}% {\newcommand{\multiindex}[5]{}} {\newcommand{\multiindex}[5]{% \ifthenelse{\equal{#2}{\default}}% {\index{#1!#4#5}}% {\index{#1!#2!#4#5}}}} % First argument: label category % Second argument: label subcategory % Third argument: alternate label subcategory % Fourth argument: label name \ifthenelse{\boolean{heveaActive}}% {\newcommand{\multilabel}[4]{}} {\newcommand{\multilabel}[4]{% \ifthenelse{\equal{#3}{\default}}% {\label{#1:#4}}% {\label{#1:#3:#4}}}} % First argument: reference category % Second argument: reference subcategory % Third argument: alternate reference subcategory % Fourth argument: reference name \ifthenelse{\boolean{heveaActive}}% {\newcommand{\multiref}[4]{}} {\newcommand{\multiref}[4]{% \ifthenelse{\equal{#3}{\default}}% {\ref{#1:#4}}% {\ref{#1:#3:#4}}}} % First argument: hyperlink/index category % Second argument: hyperlink/index name % Third argument: alternate hyperlink/index name \ifthenelse{\boolean{generatingHyperPDF}}% {\newcommand{\genTag}[3]{\hyperlink{hyper.#1.#2}{\textitcorr{#3}}}} {\newcommand{\genTag}[3]{\textitcorr{#3}}} % First argument: hyperlink/index category % Second argument: hyperlink/index name \ifthenelse{\boolean{generatingHyperPDF}}% {\newcommand{\genTarget}[2]{\hypertarget{hyper.#1.#2}{}}} {\newcommand{\genTarget}[2]{}} % The net effect is as follows: % generatingHyperPDF % 'D' \textitcorr{\color{webgreen}#3} \hypertarget{hyper.#2.#3}{}\label{#2:#3} {} % 'E' {} {} {} % 'M' {} \hypertarget{hyper.#2.#3}{}\label{#2:#3} {} % 'P' {} \hypertarget{hyper.#2.#3}{}\label{#2:#3} \index{#2!#3} % 'R' \hyperlink{hyper.#2.#3}{\textitcorr{#3}} \index{#2!#3} \ref{#2:#3} % 'S' \textitcorr{#3} \index{#2!#3} {} % 'X' \hyperlink{hyper.#2.#3}{\textitcorr{#3}} {} {} % not generatingHyperPDF % 'D' \textitcorr{\color{webgreen}#3} \index{#2!#3|(textbf}\label{#2:#3} {} % 'E' {} \index{#2!#3|)textbf} {} % 'M' {} \index{#2!#3|(textbf}\label{#2:#3} {} % 'P' {} \label{#2:#3} \index{#2!#3} % 'R' \textitcorr{#3} \index{#2!#3} \ref{#2:#3} % 'S' \textitcorr{#3} \index{#2!#3} {} % 'X' \textitcorr{#3} {} {} % D = Define the object (emphasize the index, create a label); % E = End of the object definition (close the index, no text); % M = Define the object (no visible text) % P = % R = Refer to the object in the index (the default); % S = Reference to a standard object and % X = Don't add a reference for the object to the index (any letter except D or % R could be used, X is preferred for mnemonic value) % First argument: hyperlink/index category % Second argument: hyperlink/index subcategory % Third argument: alternate hyperlink/index subcategory % Fourth argument: hyperlink/index name % Fifth argument: alternate hyperlink/index name \newcommand{\entityNameA}[5]{% \genTarget{#1}{#4}% \ifthenelse{\equal{#5}{\default}}% {\textitcorr{\color{webgreen}#4}\multiindex{#1}{#2}{#3}{#4}{|textbf}}% {\textitcorr{\color{webgreen}#5}\multiindex{#1}{#2}{#3}{#5}{|textbf}}% \multilabel{#1}{#2}{#3}{#4}} % First argument: hyperlink/index category % Second argument: hyperlink/index subcategory % Third argument: alternate hyperlink/index subcategory % Fourth argument: hyperlink/index name % Fifth argument: alternate hyperlink/index name \newcommand{\entityNameD}[5]{% \genTarget{#1}{#4}% \ifthenelse{\equal{#5}{\default}}% {\textitcorr{\color{webgreen}#4}\multiindex{#1}{#2}{#3}{#4}{|(textbf}}% {\textitcorr{\color{webgreen}#5}\multiindex{#1}{#2}{#3}{#5}{|(textbf}}% \multilabel{#1}{#2}{#3}{#4}} % First argument: hyperlink/index category % Second argument: hyperlink/index subcategory % Third argument: alternate hyperlink/index subcategory % Fourth argument: hyperlink/index name % Fifth argument: alternate hyperlink/index name \newcommand{\entityNameE}[5]{% \ifthenelse{\equal{#1}{#4}}% {}% if first and fourth argument match {\ifthenelse{\equal{#5}{\default}}% {\multiindex{#1}{#2}{#3}{#4}{|)textbf}}% {\multiindex{#1}{#2}{#3}{#5}{|)textbf}}}} % First argument: hyperlink/index category % Second argument: hyperlink/index subcategory % Third argument: alternate hyperlink/index subcategory % Fourth argument: hyperlink/index name % Fifth argument: alternate hyperlink/index name \newcommand{\entityNameM}[5]{% \genTarget{#1}{#4}% \ifthenelse{\equal{#5}{\default}}% {\multiindex{#1}{#2}{#3}{#4}{|(textbf}}% {\multiindex{#1}{#2}{#3}{#5}{|(textbf}}% \multilabel{#1}{#2}{#3}{#4}} % First argument: hyperlink/index category % Second argument: hyperlink/index subcategory % Third argument: alternate hyperlink/index subcategory % Fourth argument: hyperlink/index name % Fifth argument: alternate hyperlink/index name \newcommand{\entityNameP}[5]{% \genTarget{#1}{#4}% \ifthenelse{\equal{#5}{\default}}% {#4\multiindex{#1}{#2}{#3}{#4}{|(textbf}}% {#5\multiindex{#1}{#2}{#3}{#5}{|(textbf}}% \multilabel{#1}{#2}{#3}{#4}} % First argument: hyperlink/index category % Second argument: hyperlink/index subcategory % Third argument: alternate hyperlink/index subcategory % Fourth argument: hyperlink/index name % Fifth argument: alternate hyperlink/index name \newcommand{\entityNameR}[5]{% \ifthenelse{\equal{#5}{\default}}% {\genTag{#1}{#4}{#4}% \ifthenelse{\equal{#1}{#4}}% {}% if first and fourth argument match {\multiindex{#1}{#2}{#3}{#4}{}}}% {\genTag{#1}{#4}{#5}% \ifthenelse{\equal{#1}{#4}}% {}% if first and fourth argument match {\multiindex{#1}{#2}{#3}{#5}{}}}% \multiref{#1}{#2}{#3}{#4}} % First argument: hyperlink/index category % Second argument: hyperlink/index subcategory % Third argument: alternate hyperlink/index subcategory % Fourth argument: hyperlink/index name % Fifth argument: alternate hyperlink/index name \newcommand{\entityNameS}[5]{% \ifthenelse{\equal{#5}{\default}}% {\textitcorr{#4}}% {\textitcorr{#5}}% \ifthenelse{\equal{#1}{#4}}% {}% if first and fourth argument match {\multiindex{#1}{#2}{#3}{#4}{}}} % First argument: hyperlink/index category % Second argument: hyperlink/index subcategory % Third argument: alternate hyperlink/index subcategory % Fourth argument: hyperlink/index name % Fifth argument: alternate hyperlink/index name \newcommand{\entityNameX}[5]{% \ifthenelse{\equal{#5}{\default}}% {\genTag{#1}{#4}{#4}}% {\genTag{#1}{#4}{#5}}}% % First argument: hyperlink/index category % Second argument: hyperlink/index name \ifthenelse{\boolean{generatingHyperPDF}}% {\newcommand{\doVpage}[2]{}}% {\newcommand{\doVpage}[2]{ \vpageref[(][(]{#1:#2}}} % Use \entityReference, rather than \entityName, for the first mention of an object within % another object, so that page ranges will be present. \newcommand{\entityReference}[2]{\entityNameR{#1}{\default}{\default}{#2}{\default}% \doVpage{#1}{#2}}% command if generatingHyperPDF \ifthenelse{\boolean{generatingHyperPDF}}% {\newcommand{\companyReference}[2]{\href{#1}{#2}}}% {\newcommand{\companyReference}[2]{#2}}% % First argument [optional]: alternate name % Second argument: entity name \newcommand{\clientNameA}[2][\default]{\entityNameA{Clients}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\clientNameD}[2][\default]{\entityNameD{Clients}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\clientNameE}[2][\default]{\entityNameE{Clients}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\clientNameM}[2][\default]{\entityNameM{Clients}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\clientNameP}[2][\default]{\entityNameP{Clients}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\clientNameR}[2][\default]{\entityNameR{Clients}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\clientNameS}[2][\default]{\entityNameS{Clients}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\clientNameX}[2][\default]{\entityNameX{Clients}{\default}{\default}{#2}{#1}}% shortcut % First argument [optional]: alternate name % Second argument: entity name \newcommand{\serviceNameA}[2][\default]{\entityNameA{Services}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\serviceNameD}[2][\default]{\entityNameD{Services}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\serviceNameE}[2][\default]{\entityNameE{Services}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\serviceNameM}[2][\default]{\entityNameM{Services}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\serviceNameP}[2][\default]{\entityNameP{Services}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\serviceNameR}[2][\default]{\entityNameR{Services}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\serviceNameS}[2][\default]{\entityNameS{Services}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\serviceNameX}[2][\default]{\entityNameX{Services}{\default}{\default}{#2}{#1}}% shortcut % First argument [optional]: alternate name % Second argument: entity name \newcommand{\utilityNameA}[2][\default]{\entityNameA{Utilities}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\utilityNameD}[2][\default]{\entityNameD{Utilities}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\utilityNameE}[2][\default]{\entityNameE{Utilities}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\utilityNameM}[2][\default]{\entityNameM{Utilities}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\utilityNameP}[2][\default]{\entityNameP{Utilities}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\utilityNameR}[2][\default]{\entityNameR{Utilities}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\utilityNameS}[2][\default]{\entityNameS{Utilities}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\utilityNameX}[2][\default]{\entityNameX{Utilities}{\default}{\default}{#2}{#1}}% shortcut % First argument [optional]: alternate name % Second argument: Subcategory % Third argument: entity name \newcommand{\examplesNameA}[3][\default]{\entityNameA{Examples}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\examplesNameD}[3][\default]{\entityNameD{Examples}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\examplesNameE}[3][\default]{\entityNameE{Examples}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\examplesNameM}[3][\default]{\entityNameM{Examples}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\examplesNameP}[3][\default]{\entityNameP{Examples}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\examplesNameR}[3][\default]{\entityNameR{Examples}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\examplesNameS}[3][\default]{\entityNameS{Examples}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\examplesNameX}[3][\default]{\entityNameX{Examples}{#2}{#2}{#3}{#1}}% shortcut % First argument [optional]: alternate name % Second argument: Subcategory % Third argument: Alternate subcategory name % Fourth argument: entity name \newcommand{\requestsNameA}[4][\default]{\entityNameA{Requests}{#2}{#3}{#4}{#1}}% shortcut \newcommand{\requestsNameD}[4][\default]{\entityNameD{Requests}{#2}{#3}{#4}{#1}}% shortcut \newcommand{\requestsNameE}[4][\default]{\entityNameE{Requests}{#2}{#3}{#4}{#1}}% shortcut \newcommand{\requestsNameM}[4][\default]{\entityNameM{Requests}{#2}{#3}{#4}{#1}}% shortcut \newcommand{\requestsNameP}[4][\default]{\entityNameP{Requests}{#2}{#3}{#4}{#1}}% shortcut \newcommand{\requestsNameR}[4][\default]{\entityNameR{Requests}{#2}{#3}{#4}{#1}}% shortcut \newcommand{\requestsNameS}[4][\default]{\entityNameS{Requests}{#2}{#3}{#4}{#1}}% shortcut \newcommand{\requestsNameX}[4][\default]{\entityNameX{Requests}{#2}{#3}{#4}{#1}}% shortcut % First argument [optional]: alternate name % Second argument: Subcategory % Third argument: entity name \newcommand{\exemplarsNameA}[2][\default]{\entityNameA{Exemplars}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\exemplarsNameD}[2][\default]{\entityNameD{Exemplars}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\exemplarsNameE}[2][\default]{\entityNameE{Exemplars}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\exemplarsNameM}[2][\default]{\entityNameM{Exemplars}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\exemplarsNameP}[2][\default]{\entityNameP{Exemplars}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\exemplarsNameR}[2][\default]{\entityNameR{Exemplars}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\exemplarsNameS}[2][\default]{\entityNameS{Exemplars}{\default}{\default}{#2}{#1}}% shortcut \newcommand{\exemplarsNameX}[2][\default]{\entityNameX{Exemplars}{\default}{\default}{#2}{#1}}% shortcut % First argument [optional]: alternate name % Second argument: Subcategory % Third argument: entity name \newcommand{\classNameA}[3][\default]{\entityNameA{Classes}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\classNameD}[3][\default]{\entityNameD{Classes}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\classNameE}[3][\default]{\entityNameE{Classes}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\classNameM}[3][\default]{\entityNameM{Classes}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\classNameP}[3][\default]{\entityNameP{Classes}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\classNameR}[3][\default]{\entityNameR{Classes}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\classNameS}[3][\default]{\entityNameS{Classes}{#2}{#2}{#3}{#1}}% shortcut \newcommand{\classNameX}[3][\default]{\entityNameX{Classes}{#2}{#2}{#3}{#1}}% shortcut \newcommand*{\insertpart}[2]{\clearpage\renewcommand{\mymark}{#1}#2} % First argument [optional]: alternate hyperlink name % Second argument: section title % Third argument: hyperlink section % Fourth argument: simplified version of title % Fifth argument: prefix to display before title \ifthenelse{\boolean{heveaActive}}% {\newcommand*{\sectionStart}[5][\default]{\section{#5\texorpdfstring{#2}{#4}}% \renewcommand{\mymark}{#4}}} {\ifthenelse{\boolean{generatingHyperPDF}}% {\newcommand*{\sectionStart}[5][\default]{\clearpage\section{#5% \texorpdfstring{#2}{#4}}% \renewcommand{\mymark}{#4}% \ifthenelse{\equal{#1}{\default}}% {\hypertarget{hyper.#3.#4}{}}% {\hypertarget{hyper.#3.#1}{}}}}% {\newcommand*{\sectionStart}[5][\default]{\clearpage\section{#5#2}% \renewcommand{\mymark}{#4}}}} \newcommand*{\sectionEnd}[1]{#1} % just a notational convenience % First argument: hyperlink section % Second argument: hyperlink name % Third argument: simplified version of title \ifthenelse{\boolean{generatingHyperPDF}}% {\newcommand{\sectionRef}[3]{\hyperlink{hyper.#1.#2}{\textitcorr{#3}}}}% {\newcommand{\sectionRef}[3]{}} % First argument: [optional] alternate hypertarget name % Second argument: subsection title % Third argument: hypertarget section % Fourth argument: simplified version of title \ifthenelse{\boolean{heveaActive}}% {\newcommand*{\subsectionStart}[4][\default]{\subsection{\texorpdfstring{#2}{#4}}}} {\ifthenelse{\boolean{generatingHyperPDF}}% {\newcommand*{\subsectionStart}[4][\default]{\subsection{\texorpdfstring{#2}{#4}}% \ifthenelse{\equal{#1}{\default}}% {\hypertarget{hyper.#3.#4}{}}% {\hypertarget{hyper.#3.#1}{}}}}% {\newcommand*{\subsectionStart}[4][\default]{\subsection{#2}}}} \newcommand*{\subsectionEnd}[1]{#1} % just a notational convenience % First argument: [optional] alternate hypertarget name % Second argument: subsubsection title % Third argument: hypertarget section % Fourth argument: simplified version of title \ifthenelse{\boolean{heveaActive}}% {\newcommand*{\subsubsectionStart}[4][\default]{\subsubsection{% \texorpdfstring{#2}{#4}}}} {\ifthenelse{\boolean{generatingHyperPDF}}% {\newcommand*{\subsubsectionStart}[4][\default]{\subsubsection{% \texorpdfstring{#2}{#4}}% \ifthenelse{\equal{#1}{\default}}% {\hypertarget{hyper.#3.#4}{}}% {\hypertarget{hyper.#3.#1}{}}}}% {\newcommand*{\subsubsectionStart}[4][\default]{\subsubsection{#2}\index{#2}}}} \newcommand*{\subsubsectionEnd}[1]{#1} % just a notational convenience % First argument: [optional] alternate section name % Second argument: section title \newcommand*{\primaryStart}[2][\default]{% \sectionStart[#1]{#2}{Primary}{#2}{}} \newcommand*{\primaryEnd}[1]{#1} % just a notational convenience % First argument: section name % Second argument: link title \newcommand{\primaryRef}[2]{\sectionRef{Primary}{#1}{#2}} % First argument: [optional] alternate subsection name % Second argument: subsection title \newcommand*{\secondaryStart}[2][\default]{% \subsectionStart[#1]{#2}{Secondary}{#2}} \newcommand*{\secondaryEnd}[1]{#1} % just a notational convenience % First argument: subsection name % Second argument: link title \newcommand{\secondaryRef}[2]{\sectionRef{Secondary}{#1}{#2}} % First argument: [optional] alternate subsubsection name % Second argument: subsubsection title \newcommand*{\tertiaryStart}[2][\default]{% \subsubsectionStart[#1]{#2}{Tertiary}{#2}} \newcommand*{\tertiaryEnd}[1]{#1} % just a notational convenience % First argument: subsubsection name % Second argument: link title \newcommand{\tertiaryRef}[2]{\sectionRef{Tertiary}{#1}{#2}} % First argument: [optional] alternate appendix name % Second argument: appendix title \newcommand*{\appendixStart}[2][\default]{% \sectionStart[#1]{#2}{Appendix}{#2}{\appendixname{}:~}} \newcommand*{\appendixEnd}[1]{#1} % just a notational convenience % First argument: appendix name % Second argument: link title \newcommand{\appendixRef}[2]{\sectionRef{Appendix}{#1}{#2}} \ifthenelse{\boolean{heveaActive}}% {\newcommand{\maybeSpace}{}} {\newcommand{\maybeSpace}{\hspace\fill}} \newenvironment{histList} {\begin{list} {} {\setlength{\labelwidth}{108pt}% 1.5" \setlength{\leftmargin}{\labelwidth+\labelsep} \setlength{\rightmargin}{36pt}% 0.5" \setlength{\parsep}{0ex} \renewcommand{\makelabel}[1]{\textbf{##1}\maybeSpace}}} {\end{list}} \newcommand*{\histListBegin}{\begin{histList}} \newcommand*{\histListEnd}{\end{histList}} \newcommand{\histListItem}[1]{\item[#1]} \newcommand*{\outputBegin}{\begin{quote}\begin{ttfamily}\begin{small}} \newcommand*{\outputEnd}{\end{small}\end{ttfamily}\end{quote}} \newcommand*{\codeBegin}{\begin{ttfamily}\begin{small}} \newcommand*{\codeEnd}{\end{small}\end{ttfamily}} \newcommand*{\asCode}[1]{\codeBegin{}#1\codeEnd} \newcommand*{\asBoldCode}[1]{\textbf{\asCode{#1}}} \newcommand*{\asEmphCode}[1]{\textit{\asCode{#1}}} \newenvironment{tightItems}% {\begin{itemize}% \setlength{\leftmargin}{0pt}% \setlength{\itemsep}{0pt}% \setlength{\parsep}{0pt}% \setlength{\parskip}{0pt}}% {\end{itemize}} \newcommand{\insertFullClientParameters}{The application has five optional parameters: \begin{itemize} \item\optItem{h}{}{help}{display the list of optional parameters and arguments and leave} \item\exSp\optItem{i}{}{info}{display the type of the executable and a description of the executable and leave \longDash{} note that this option is primarily for use by the \emph{\MMMU} application} \item\exSp\optItem{j}{}{json}{generate \json\longDash{}formatted output} \item\exSp\optItem{t}{}{tabs}{generate output in a tab\longDash{}delimited format} \item\exSp\optItem{v}{}{vers}{display the version and copyright information and leave} \end{itemize} If neither \json{} format nor tab\longDash{}delimited format are specified, the output is written as simple text.} \newcommand{\insertShortClientParameters}{The application has three optional parameters: \begin{itemize} \item\optItem{h}{}{help}{display the list of optional parameters and arguments and leave} \item\exSp\optItem{i}{}{info}{display the type of the executable and a description of the executable and leave \longDash{} note that this option is primarily for use by the \emph{\MMMU} application} \item\exSp\optItem{v}{}{vers}{display the version and copyright information and leave} \end{itemize}} \newcommand{\insertFullUtilityParameters}{The application has five optional parameters: \begin{itemize} \item\optItem{h}{}{help}{display the list of optional parameters and arguments and leave} \item\exSp\optItem{i}{}{info}{display the type of the executable and a description of the executable and leave \longDash{} note that this option is primarily for use by the \emph{\MMMU} application} \item\exSp\optItem{j}{}{json}{generate \json\longDash{}formatted output} \item\exSp\optItem{t}{}{tabs}{generate output in a tab\longDash{}delimited format} \item\exSp\optItem{v}{}{vers}{display the version and copyright information and leave} \end{itemize} If neither \json{} format nor tab\longDash{}delimited format are specified, the output is written as simple text.} \newcommand{\insertShortUtilityParameters}{The application has three optional parameters: \begin{itemize} \item\optItem{h}{}{help}{display the list of optional parameters and arguments and leave} \item\exSp\optItem{i}{}{info}{display the type of the executable and a description of the executable and leave \longDash{} note that this option is primarily for use by the \emph{\MMMU} application} \item\exSp\optItem{v}{}{vers}{display the version and copyright information and leave} \end{itemize}} \newcommand{\insertAppParameters}{The application has eleven optional parameters: \begin{itemize} \item\optItem{a}{}{args}{display the argument descriptions for the executable and leave \longDash{} note that this option is primarily for use by the \emph{\MMMU} application} \item\exSp\optItem{c}{}{channel}{display the endpoint name after applying all other options and leave} \item\exSp\optItem{e}{v}{endpoint}{specifies an alternative endpoint name `\textit{v}' to be used} \item\exSp\optItem{g}{}{go}{indicates that the service is to be started immediately} \item\exSp\optItem{h}{}{help}{display the list of optional parameters and arguments and leave} \item\exSp\optItem{i}{}{info}{display the type of the executable, the valid options and a description of the executable and leave \longDash{} note that this option is primarily for use by the \emph{\MMMU} application} \item\exSp\optItem{m}{n}{mod}{specifies the number of bytes `\textit{n}' of the IPv4 address to be used to modify the tag} \item\exSp\optItem{p}{v}{port}{specifies the port number `\textit{v}' to be used, if a non\longDash{}default port is desired} \item\exSp\optItem{r}{}{report}{report the service metrics when the application exits} \item\exSp\optItem{t}{v}{tag}{specifies the tag `\textit{v}' to be used as part of the service name} \item\exSp\optItem{v}{}{vers}{display the version and copyright information and leave} \end{itemize}} \newcommand{\insertAutoAppParameters}{The application has ten optional parameters: \begin{itemize} \item\optItem{a}{}{args}{display the argument descriptions for the executable and leave \longDash{} note that this option is primarily for use by the \emph{\MMMU} application} \item\exSp\optItem{c}{}{channel}{display the endpoint name after applying the `tag' and `endpoint' options, if present, and leave} \item\optItem{e}{v}{endpoint}{specifies an alternative endpoint name `\textit{v}' to be used} \item\exSp\optItem{h}{}{help}{display the list of optional parameters and arguments and leave} \item\exSp\optItem{i}{}{info}{display the type of the executable, the valid options and a description of the executable and leave \longDash{} note that this option is primarily for use by the \emph{\MMMU} application} \item\exSp\optItem{m}{n}{mod}{specifies the number of bytes `\textit{n}' of the IPv4 address to be used to modify the tag} \item\exSp\optItem{p}{v}{port}{specifies the port number `\textit{v}' to be used, if a non\longDash{}default port is desired} \item\exSp\optItem{r}{}{report}{report the service metrics when the application exits} \item\exSp\optItem{t}{v}{tag}{specifies the tag `\textit{v}' to be used as part of the service name} \item\exSp\optItem{v}{}{vers}{display the version and copyright information and leave} \end{itemize}} \newcommand{\insertTagDescription}[1]{The tag is added to the standard name of the #1 service, so that more than one copy of the service can execute \longDash{} an \mplusm{} installation can support multiple copies of the #1 service, but the \emph{\MMMU} application cannot display them without a distinguishing `tag'. If the tag is not specified, the standard name of the service will be used.} \newcommand{\insertTagAndEndpointDescription}[4]{For details on the usage of the `endpoint', `mod' and `tag' options, see the \emph{\WTE} appendix in the \emph{\MMMU} manual. Once the options are set, an image similar to the following will appear in the \emph{\MMMU} window when the service has successfully started: \objScaledDiagram{#1}{#2}{#3}{#4}} \newcommand{\insertFilterServiceComment}{As well as the service name, the input and output stream names are modified if a tag is specified and the default endpoint is being used.} \newcommand{\insertInputServiceComment}{As well as the service name, the output stream name is modified if a tag is specified and the default endpoint is being used.} \newcommand{\insertOutputServiceComment}{As well as the service name, the input stream name is modified if a tag is specified and the default endpoint is being used.} \newcommand{\insertStandardAdapterCommands}{If the application is running from a terminal and has not been automatically started via the `\asCode{go}' option, the following commands are available: \begin{itemize} \item\cmdItem{?}{display this list} \item\exSp\cmdItem{b}{start (begin) the input and output streams} \item\exSp\cmdItem{c}{configure the adapter} \item\exSp\cmdItem{e}{stop (end) the input and output stream} \item\exSp\cmdItem{q}{quit the application} \item\exSp\cmdItem{r}{restart the input and output streams} \end{itemize}} \newcommand{\insertStandardServiceCommands}{If the application is running from a terminal and has not been automatically started via the `\asCode{go}' option, the following commands are available: \begin{itemize} \item\cmdItem{?}{display this list} \item\exSp\cmdItem{b}{start (begin) the input and output streams} \item\exSp\cmdItem{c}{configure the service} \item\exSp\cmdItem{e}{stop (end) the input and output stream} \item\exSp\cmdItem{q}{quit the application} \item\exSp\cmdItem{r}{restart the input and output streams} \end{itemize}} % Common layout stuff: % Set up the page layout: \pagestyle{fancyplain} \newcommand{\mymark}{} \lhead[]{\fancyplain{}{\textsc{\mymark}}} \chead[]{} \rhead[\fancyplain{}{\textsc{\mymark}}]{} \lfoot[Page \thepage]{\today} \rfoot[\today]{Page \thepage} \ifthenelse{\boolean{heveaActive}}% {} {\renewcommand{\headrulewidth}{0.5bp}} \pagenumbering{roman} \date{\MMV: \today} \author{\stdAuthor} \makeindex
If $S$ is a cone and $x \in S$, then $cx \in S$ for all $c \geq 0$.
# Differential rotation with `starry` In this notebook, we'll explain how to express the radial velocity field of a star at an arbitrary orientation on the sky in terms of spherical harmonics. This allows us to use `starry` to model the Rossiter-McLaughlin waveform **analytically**! First, let's import some stuff. We'll use `sympy` for the derivations. ```python import matplotlib.pyplot as pl %matplotlib notebook import numpy as np from IPython.display import display, Math import sympy from sympy import * from sympy.functions.special.tensor_functions import KroneckerDelta print("Using sympy version", sympy.__version__) # Initialize the session init_session(quiet=True) # Define our symbols x, y, z, mu, nu, l, m, j, k, p, q, n, A, B, C, alpha, omeq = symbols('x y z mu nu l m j k p q n A B C alpha \omega_{eq}') ``` Using sympy version 1.3 ## The radial velocity field of a star The polynomial describing the radial component of the velocity field on the projected disk of a star is given by ([Short et al. 2018](https://arxiv.org/abs/1810.09565)) $f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \omega_{eq}(A\mathbf{x} + B\mathbf{y})(1 - \alpha(-B\mathbf{x} + A\mathbf{y} + C\mathbf{z})^2)$ where $A = \sin(i)\cos(\lambda)$ $B = \sin(i)\sin(\lambda)$ $C = \cos(i)$ and $i$ and $\lambda$ are the stellar inclination and obliquity, respectively. The constant $\alpha$ is the shear due to differential rotation. We are assuming a simple linear shear according to the following equation: $\omega = \omega_{eq}(1 - \alpha \sin^2\theta)$, where $\omega$ is the angular rotational velocity at a point on the surface, $\omega_{eq}$ is the velocity at the equator, and $\theta$ is the polar angle (latitude). ## Let's expand this function If we expand all the products in $f$, we can write it as a dot product of a polynomial coefficient vector and the polynomial basis defined in Luger et al. (2018): ```python def poly_basis(n, x, y): """Return the n^th term in the polynomial basis.""" l = Rational(floor(sqrt(n))) m = Rational(n - l * l - l) mu = Rational(l - m) nu = Rational(l + m) if (nu % 2 == 0): i = Rational(mu, 2) j = Rational(nu, 2) k = Rational(0) else: i = Rational(mu - 1, 2) j = Rational(nu - 1, 2) k = Rational(1) return x ** i * y ** j * sqrt(1 - x ** 2 - y ** 2) ** k # Compute the polynomial basis basis = Matrix([poly_basis(n, x, y) for n in range(16)]).T ``` Here's what the polynomial basis looks like (recall that $z = \sqrt{1 - x^2 - y^2}$): ```python basis ``` And here's the function we wish to express: ```python f = omeq * (A * x + B * y) * (1 - alpha * (-B * x + A * y + C * sqrt(1 - x ** 2 - y ** 2)) ** 2) f ``` We can use `sympy` to figure out the (exact) representation of `f` in the polynomial basis: ```python def Coefficient(expression, term): """Return the coefficient multiplying `term` in `expression`.""" # Get the coefficient coeff = expression.coeff(term) # Set any non-constants in this coefficient to zero. If the coefficient # is not a constant, this is not the term we are interested in! coeff = coeff.subs(sqrt(1 - x ** 2 - y ** 2), 0).subs(x, 0).subs(y, 0) return coeff vec = Matrix([Coefficient(expand(f), term) for term in basis]) vec ``` We can check that dotting this vector with the polynomial basis yields the original function $f$: ```python simplify(factor(basis.dot(vec)) - f) == 0 ``` True ## Now let's represent it in terms of spherical harmonics Now that we have the vector of polynomial coefficients `vec`, we want to apply a change-of-basis transformation to figure out their (exact) representation in terms of spherical harmonics. As in Luger et al. (2018), let's compute the change of basis matrix from polynomials to spherical harmonic coefficients. This is the inverse of the $A_1$ matrix introduced in Luger et al. (2018). Note that it includes the normalization of $\frac{2}{\sqrt{\pi}}$ used internally by `starry`. ```python def SA(l, m): """A spherical harmonic normalization constant.""" return sqrt((2 - KroneckerDelta(m, 0)) * (2 * l + 1) * factorial(l - m) / (4 * pi * factorial(l + m))) def SB(l, m, j, k): """Another spherical harmonic normalization constant.""" try: ratio = factorial(Rational(l + m + k - 1, 2)) / factorial(Rational(-l + m + k - 1, 2)) except ValueError: ratio = 0 res = 2 ** l * Rational(factorial(m), (factorial(j) * factorial(k) * factorial(m - j) * factorial(l - m - k))) * ratio return simplify(res) def SC(p, q, k): """Return the binomial theorem coefficient `C`.""" res = factorial(Rational(k, 2)) / (factorial(Rational(q, 2)) * factorial(Rational(k - p, 2)) * factorial(Rational(p - q, 2))) return simplify(res) def Y(l, m, x, y): """Return the spherical harmonic of degree `l` and order `m`.""" res = 0 z = sqrt(1 - x ** 2 - y ** 2) if (m >= 0): for j in range(0, m + 1, 2): for k in range(0, l - m + 1, 2): for p in range(0, k + 1, 2): for q in range(0, p + 1, 2): res += (-1) ** ((j + p) // 2) * SA(l, m) * SB(l, m, j, k) * SC(p, q, k) * x ** (m - j + p - q) * y ** (j + q) for k in range(1, l - m + 1, 2): for p in range(0, k, 2): for q in range(0, p + 1, 2): res += (-1) ** ((j + p) // 2) * SA(l, m) * SB(l, m, j, k) * SC(p, q, k - 1) * x ** (m - j + p - q) * y ** (j + q) * z else: for j in range(1, abs(m) + 1, 2): for k in range(0, l - abs(m) + 1, 2): for p in range(0, k + 1, 2): for q in range(0, p + 1, 2): res += (-1) ** ((j + p - 1) // 2) * SA(l, abs(m)) * SB(l, abs(m), j, k) * SC(p, q, k) * x ** (abs(m) - j + p - q) * y ** (j + q) for k in range(1, l - abs(m) + 1, 2): for p in range(0, k, 2): for q in range(0, p + 1, 2): res += (-1) ** ((j + p - 1) // 2) * SA(l, abs(m)) * SB(l, abs(m), j, k) * SC(p, q, k - 1) * x ** (abs(m) - j + p - q) * y ** (j + q) * z return res def p_Y(l, m, lmax): """Return the polynomial basis representation of the spherical harmonic `Y_{lm}`.""" ylm = Y(l, m, x, y) res = [ylm.subs(sqrt(1 - x ** 2 - y ** 2), 0).subs(x, 0).subs(y, 0)] for n in range(1, (lmax + 1) ** 2): res.append(Coefficient(ylm, poly_basis(n, x, y))) return res def A1(lmax, norm = 2 / sqrt(pi)): """Return the change of basis matrix A1. The columns of this matrix are given by `p_Y`.""" res = zeros((lmax + 1) ** 2, (lmax + 1) ** 2) n = 0 for l in range(lmax + 1): for m in range(-l, l + 1): res[n] = p_Y(l, m, lmax) n += 1 return res * norm ``` We can now evaluate the change of basis matrix from spherical harmonic coefficients to polynomials, $A_1$ for $l_\mathrm{max} = 3$. We then take the inverse to go from polynomial coeffiecients to $Y_{lm}$ coefficients: ```python M = Matrix(A1(3)).inv() M ``` ## The end result We can finally compute the spherical harmonic coefficients of the function $f$: ```python ycoeffs = simplify(M * vec) ycoeffs ``` Note that this is the **exact** spherical harmonic representation of the function `f`. ## Important note about current `starry` implementation A few comments are in order regarding how exactly this is implemented in `starry`. This all happens behind the scenes, but it's useful to know if you're poking around in the code. - When setting the spherical harmonic coefficients in `starry`, it is necessary to normalize the vector above by dividing it by $\pi$. This is because in `starry`, fluxes are normalized so that the integral of $Y_{0,0}$ over the disk is **unity** (instead of $\pi$). - When limb darkening is present, `starry` requires the $Y_{0,0}$ coefficient of the map to be non-zero. But the spherical harmonic representation of the brightness-weighted velocity has $Y_{0,0} = 0$ (i.e., the star has zero net radial velocity). Overcoming this requires a bit of a *hack*. We set $Y_{0,0} = 1$ so we can limb-darken the map and compute the RM amplitude, but that means we have effectively computed $\int{(Iv + I)dS}$. We must therefore *subtract* $\int{IdS}$ to get the actual integrated brightness-weighted velocity. The RM effect amplitude is thus $\ \ \ \ \ \ \ \ \ \ \Delta v = \frac{\int{(Iv + I)dS} - \int{IdS}}{\int{IdS}}$ We therefore compute the `starry` flux using two different `Map` instances: one to compute the $Iv + I$ term, and a uniform, limb-darkened map to compute the $I$ term. ## Interactive visualization Below you can interactively see how different velocity profiles affect the Rossiter-McLaughlin waveform. We coded up a simple Jupyter widget to visualize the RM effect with `starry`. Try to find the parameters that best fit the measured RV data for the hot jupiter host HD 189733! ```python from viz import visualize visualize(); ``` interactive(children=(FloatSlider(value=0.1, continuous_update=False, description='$v_\\mathrm{eq}$ [km / s]:'… ## One possible solution The following values should get you a pretty good fit. They are close to the means of the posterior distributions when we do a full MCMC fit of the dataset, but they are probably not the "true" values. $v_{eq}$: 5.00 $\lambda$: -0.50 $i$: 80.0 $\alpha$: 0.65 $u_1$: 1.50 $u_2$: -0.54 $b$: -0.66 $r/R_\star$: 0.158
{-# OPTIONS --cubical #-} module n2o.N2O where open import proto.Base open import proto.Core open import proto.IO open import n2o.Network.WebSocket open import n2o.Network.Socket open import n2o.Network.Core open import n2o.Network.Internal -- open import Infinity.Proto postulate terminationCheck : IO ⊀ {-# FOREIGN GHC import Control.Concurrent (threadDelay) terminationCheck :: IO () terminationCheck = do putStrLn "sapere aude" threadDelay 1000000 terminationCheck #-} {-# COMPILE GHC terminationCheck = terminationCheck #-} data Example : Set where Greet : Example -- index Init = do -- updateText "system" "What is your name?" -- wire record { id_ = "send" , postback = Just Greet, source = "name" ∷ [] } -- index (Message Greet) = do -- Just name ← get "name" -- updateText "system" ("Hello, " <> jsEscape name) index : Event Example β†’ IO ⊀ index ev = putStrLn "Unknown event" -- TODO : monoids about : Event Example β†’ IO ⊀ about ev = putStrLn "Unknown event" -- route : Context N2OProto Example β†’ Context N2OProto Example -- route c with (unpack (Request.reqPath (Context.cxRequest c))) -- ... | "/ws/samples/static/index.html" = about -- ... | "/ws/samples/static/about.html" = about -- ... | _ = about -- router : Context N2OProto Example β†’ Context N2OProto Example -- router c = record c { handler = mkHandler route } -- protocols : -- cx : Cx Example -- cx = mkCx h r m p a d -- where h = ? -- r = ? -- m = route ∷ [] -- p = [] -- a = ? -- d = ? main : IO ⊀ main = do -- sock ← socket AF_INET Stream (+ 0) hPutStrLn stdout "asd" -- protoRun 0 protos terminationCheck putStrLn "[*] Done" -- main : IO ⊀ -- main = getLine >>= Ξ» s β†’ putStrLn s
{-# OPTIONS --safe #-} open import Generics.Prelude hiding (lookup; pi; curry) open import Generics.Telescope open import Generics.Desc open import Generics.All open import Generics.HasDesc import Generics.Helpers as Helpers module Generics.Constructions.Fold {P I β„“} {A : Indexed P I β„“} (H : HasDesc {P} {I} {β„“} A) {p c} {X : Predβ€² I Ξ» i β†’ Set c} where open HasDesc H private variable V : ExTele P i : ⟦ I ⟧tel p v : ⟦ V ⟧tel p Xβ€² : ⟦ I ⟧tel p β†’ Set c Xβ€² i = unpredβ€² I _ X i ------------------------ -- Types of the algebra levelAlg : ConDesc P V I β†’ Level levelAlg (var _) = c levelAlg (Ο€ {β„“} _ _ C) = β„“ βŠ” levelAlg C levelAlg (A βŠ— B) = levelAlg A βŠ” levelAlg B AlgIndArg : (C : ConDesc P V I) β†’ ⟦ V ⟧tel p β†’ Set (levelAlg C) AlgIndArg (var f) v = Xβ€² (f (p , v)) AlgIndArg (Ο€ ia S C) v = Ξ < ia > (S (p , v)) Ξ» s β†’ AlgIndArg C (v , s) AlgIndArg (A βŠ— B) v = AlgIndArg A v Γ— AlgIndArg B v AlgCon : (C : ConDesc P V I) β†’ ⟦ V ⟧tel p β†’ Set (levelAlg C) AlgCon (var f) v = Xβ€² (f (p , v)) AlgCon (Ο€ ia S C) v = Ξ < ia > (S (p , v)) Ξ» s β†’ AlgCon C (v , s) AlgCon (A βŠ— B) v = AlgIndArg A v β†’ AlgCon B v Algebra : βˆ€ k β†’ Set (levelAlg (lookupCon D k)) Algebra k = AlgCon (lookupCon D k) tt ---------------- -- Generic fold module _ (algs : Els Algebra) where fold-wf : (x : Aβ€² (p , i)) β†’ Acc x β†’ Xβ€² i foldData-wf : (x : ⟦ D ⟧Data Aβ€² (p , i)) β†’ AllDataΟ‰ Acc D x β†’ Xβ€² i foldData-wf {i} (k , x) = foldCon (lookupCon D k) (algs k) x where foldIndArg : (C : ConDesc P V I) (x : ⟦ C ⟧IndArg Aβ€² (p , v)) β†’ AllIndArgΟ‰ Acc C x β†’ AlgIndArg C v foldIndArg (var f) x a = fold-wf x a foldIndArg (Ο€ ia S C) x a = fun< ia > Ξ» s β†’ foldIndArg C (app< ia > x s) (a s) foldIndArg (A βŠ— B) (xa , xb) (aa , ab) = foldIndArg A xa aa , foldIndArg B xb ab foldCon : (C : ConDesc P V I) (alg : AlgCon C v) (x : ⟦ C ⟧Con Aβ€² (p , v , i)) β†’ AllConΟ‰ Acc C x β†’ Xβ€² i foldCon (var _) alg refl _ = alg foldCon (Ο€ ia S C) alg (s , x) a = foldCon C (app< ia > alg s) x a foldCon (A βŠ— B) alg (xa , xb) (aa , ab) = foldCon B (alg (foldIndArg A xa aa)) xb ab fold-wf x (acc a) = foldData-wf (split x) a fold : Aβ€² (p , i) β†’ Xβ€² i fold x = fold-wf x (wf x) deriveFold : Arrows Algebra (Predβ€² I Ξ» i β†’ Aβ€² (p , i) β†’ Xβ€² i) deriveFold = curryβ‚™ Ξ» m β†’ predβ€² I _ Ξ» i β†’ fold m
[STATEMENT] lemma stream_times [simp]: "stream (t * t') = stream t * stream t'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. stream (t * t') = stream t * stream t' [PROOF STEP] by(simp add: times_stream_def times_tree_def)
State Before: Ξ± : Type u_1 Ξ² : Type u_2 f : Ξ± β†’ Option Ξ² p : Ξ² β†’ Bool l : List Ξ± ⊒ filter p (filterMap f l) = filterMap (fun x => Option.filter p (f x)) l State After: Ξ± : Type u_1 Ξ² : Type u_2 f : Ξ± β†’ Option Ξ² p : Ξ² β†’ Bool l : List Ξ± ⊒ filterMap (fun x => Option.bind (f x) (Option.guard fun x => p x = true)) l = filterMap (fun x => Option.filter p (f x)) l Tactic: rw [← filterMap_eq_filter, filterMap_filterMap] State Before: Ξ± : Type u_1 Ξ² : Type u_2 f : Ξ± β†’ Option Ξ² p : Ξ² β†’ Bool l : List Ξ± ⊒ filterMap (fun x => Option.bind (f x) (Option.guard fun x => p x = true)) l = filterMap (fun x => Option.filter p (f x)) l State After: case e_f Ξ± : Type u_1 Ξ² : Type u_2 f : Ξ± β†’ Option Ξ² p : Ξ² β†’ Bool l : List Ξ± ⊒ (fun x => Option.bind (f x) (Option.guard fun x => p x = true)) = fun x => Option.filter p (f x) Tactic: congr State Before: case e_f Ξ± : Type u_1 Ξ² : Type u_2 f : Ξ± β†’ Option Ξ² p : Ξ² β†’ Bool l : List Ξ± ⊒ (fun x => Option.bind (f x) (Option.guard fun x => p x = true)) = fun x => Option.filter p (f x) State After: case e_f.h Ξ± : Type u_1 Ξ² : Type u_2 f : Ξ± β†’ Option Ξ² p : Ξ² β†’ Bool l : List Ξ± x : Ξ± ⊒ Option.bind (f x) (Option.guard fun x => p x = true) = Option.filter p (f x) Tactic: funext x State Before: case e_f.h Ξ± : Type u_1 Ξ² : Type u_2 f : Ξ± β†’ Option Ξ² p : Ξ² β†’ Bool l : List Ξ± x : Ξ± ⊒ Option.bind (f x) (Option.guard fun x => p x = true) = Option.filter p (f x) State After: no goals Tactic: cases f x <;> simp [Option.filter, Option.guard]
// Copyright (C) 2013-2016 Internet Systems Consortium, Inc. ("ISC") // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. #include <config.h> #include <asiolink/asio_wrapper.h> #include <dhcp_ddns/dhcp_ddns_log.h> #include <dhcp_ddns/ncr_io.h> #include <boost/algorithm/string/predicate.hpp> namespace isc { namespace dhcp_ddns { NameChangeProtocol stringToNcrProtocol(const std::string& protocol_str) { if (boost::iequals(protocol_str, "UDP")) { return (NCR_UDP); } if (boost::iequals(protocol_str, "TCP")) { return (NCR_TCP); } isc_throw(BadValue, "Invalid NameChangeRequest protocol: " << protocol_str); } std::string ncrProtocolToString(NameChangeProtocol protocol) { switch (protocol) { case NCR_UDP: return ("UDP"); case NCR_TCP: return ("TCP"); default: break; } std::ostringstream stream; stream << "UNKNOWN(" << protocol << ")"; return (stream.str()); } //************************** NameChangeListener *************************** NameChangeListener::NameChangeListener(RequestReceiveHandler& recv_handler) : listening_(false), io_pending_(false), recv_handler_(recv_handler) { }; void NameChangeListener::startListening(isc::asiolink::IOService& io_service) { if (amListening()) { // This amounts to a programmatic error. isc_throw(NcrListenerError, "NameChangeListener is already listening"); } // Call implementation dependent open. try { open(io_service); } catch (const isc::Exception& ex) { stopListening(); isc_throw(NcrListenerOpenError, "Open failed: " << ex.what()); } // Set our status to listening. setListening(true); // Start the first asynchronous receive. try { receiveNext(); } catch (const isc::Exception& ex) { stopListening(); isc_throw(NcrListenerReceiveError, "doReceive failed: " << ex.what()); } } void NameChangeListener::receiveNext() { io_pending_ = true; doReceive(); } void NameChangeListener::stopListening() { try { // Call implementation dependent close. close(); } catch (const isc::Exception &ex) { // Swallow exceptions. If we have some sort of error we'll log // it but we won't propagate the throw. LOG_ERROR(dhcp_ddns_logger, DHCP_DDNS_NCR_LISTEN_CLOSE_ERROR) .arg(ex.what()); } // Set it false, no matter what. This allows us to at least try to // re-open via startListening(). setListening(false); } void NameChangeListener::invokeRecvHandler(const Result result, NameChangeRequestPtr& ncr) { // Call the registered application layer handler. // Surround the invocation with a try-catch. The invoked handler is // not supposed to throw, but in the event it does we will at least // report it. try { io_pending_ = false; recv_handler_(result, ncr); } catch (const std::exception& ex) { LOG_ERROR(dhcp_ddns_logger, DHCP_DDNS_UNCAUGHT_NCR_RECV_HANDLER_ERROR) .arg(ex.what()); } // Start the next IO layer asynchronous receive. // In the event the handler above intervened and decided to stop listening // we need to check that first. if (amListening()) { try { receiveNext(); } catch (const isc::Exception& ex) { // It is possible though unlikely, for doReceive to fail without // scheduling the read. While, unlikely, it does mean the callback // will not get called with a failure. A throw here would surface // at the IOService::run (or run variant) invocation. So we will // close the window by invoking the application handler with // a failed result, and let the application layer sort it out. LOG_ERROR(dhcp_ddns_logger, DHCP_DDNS_NCR_RECV_NEXT_ERROR) .arg(ex.what()); // Call the registered application layer handler. // Surround the invocation with a try-catch. The invoked handler is // not supposed to throw, but in the event it does we will at least // report it. NameChangeRequestPtr empty; try { io_pending_ = false; recv_handler_(ERROR, empty); } catch (const std::exception& ex) { LOG_ERROR(dhcp_ddns_logger, DHCP_DDNS_UNCAUGHT_NCR_RECV_HANDLER_ERROR) .arg(ex.what()); } } } } //************************* NameChangeSender ****************************** NameChangeSender::NameChangeSender(RequestSendHandler& send_handler, size_t send_queue_max) : sending_(false), send_handler_(send_handler), send_queue_max_(send_queue_max), io_service_(NULL) { // Queue size must be big enough to hold at least 1 entry. setQueueMaxSize(send_queue_max); } void NameChangeSender::startSending(isc::asiolink::IOService& io_service) { if (amSending()) { // This amounts to a programmatic error. isc_throw(NcrSenderError, "NameChangeSender is already sending"); } // Clear send marker. ncr_to_send_.reset(); // Call implementation dependent open. try { // Remember io service we're given. io_service_ = &io_service; open(io_service); } catch (const isc::Exception& ex) { stopSending(); isc_throw(NcrSenderOpenError, "Open failed: " << ex.what()); } // Set our status to sending. setSending(true); // If there's any queued already.. we'll start sending. sendNext(); } void NameChangeSender::stopSending() { // Set it send indicator to false, no matter what. This allows us to at // least try to re-open via startSending(). Also, setting it false now, // allows us to break sendNext() chain in invokeSendHandler. setSending(false); // If there is an outstanding IO to complete, attempt to process it. if (ioReady() && io_service_ != NULL) { try { runReadyIO(); } catch (const std::exception& ex) { // Swallow exceptions. If we have some sort of error we'll log // it but we won't propagate the throw. LOG_ERROR(dhcp_ddns_logger, DHCP_DDNS_NCR_FLUSH_IO_ERROR).arg(ex.what()); } } try { // Call implementation dependent close. close(); } catch (const isc::Exception &ex) { // Swallow exceptions. If we have some sort of error we'll log // it but we won't propagate the throw. LOG_ERROR(dhcp_ddns_logger, DHCP_DDNS_NCR_SEND_CLOSE_ERROR).arg(ex.what()); } io_service_ = NULL; } void NameChangeSender::sendRequest(NameChangeRequestPtr& ncr) { if (!amSending()) { isc_throw(NcrSenderError, "sender is not ready to send"); } if (!ncr) { isc_throw(NcrSenderError, "request to send is empty"); } if (send_queue_.size() >= send_queue_max_) { isc_throw(NcrSenderQueueFull, "send queue has reached maximum capacity: " << send_queue_max_ ); } // Put it on the queue. send_queue_.push_back(ncr); // Call sendNext to schedule the next one to go. sendNext(); } void NameChangeSender::sendNext() { if (ncr_to_send_) { // @todo Not sure if there is any risk of getting stuck here but // an interval timer to defend would be good. // In reality, the derivation should ensure they timeout themselves return; } // If queue isn't empty, then get one from the front. Note we leave // it on the front of the queue until we successfully send it. if (!send_queue_.empty()) { ncr_to_send_ = send_queue_.front(); // @todo start defense timer // If a send were to hang and we timed it out, then timeout // handler need to cycle thru open/close ? // Call implementation dependent send. doSend(ncr_to_send_); } } void NameChangeSender::invokeSendHandler(const NameChangeSender::Result result) { // @todo reset defense timer if (result == SUCCESS) { // It shipped so pull it off the queue. send_queue_.pop_front(); } // Invoke the completion handler passing in the result and a pointer // the request involved. // Surround the invocation with a try-catch. The invoked handler is // not supposed to throw, but in the event it does we will at least // report it. try { send_handler_(result, ncr_to_send_); } catch (const std::exception& ex) { LOG_ERROR(dhcp_ddns_logger, DHCP_DDNS_UNCAUGHT_NCR_SEND_HANDLER_ERROR) .arg(ex.what()); } // Clear the pending ncr pointer. ncr_to_send_.reset(); // Set up the next send try { if (amSending()) { sendNext(); } } catch (const isc::Exception& ex) { // It is possible though unlikely, for sendNext to fail without // scheduling the send. While, unlikely, it does mean the callback // will not get called with a failure. A throw here would surface // at the IOService::run (or run variant) invocation. So we will // close the window by invoking the application handler with // a failed result, and let the application layer sort it out. LOG_ERROR(dhcp_ddns_logger, DHCP_DDNS_NCR_SEND_NEXT_ERROR) .arg(ex.what()); // Invoke the completion handler passing in failed result. // Surround the invocation with a try-catch. The invoked handler is // not supposed to throw, but in the event it does we will at least // report it. try { send_handler_(ERROR, ncr_to_send_); } catch (const std::exception& ex) { LOG_ERROR(dhcp_ddns_logger, DHCP_DDNS_UNCAUGHT_NCR_SEND_HANDLER_ERROR).arg(ex.what()); } } } void NameChangeSender::skipNext() { if (!send_queue_.empty()) { // Discards the request at the front of the queue. send_queue_.pop_front(); } } void NameChangeSender::clearSendQueue() { if (amSending()) { isc_throw(NcrSenderError, "Cannot clear queue while sending"); } send_queue_.clear(); } void NameChangeSender::setQueueMaxSize(const size_t new_max) { if (new_max == 0) { isc_throw(NcrSenderError, "NameChangeSender:" " queue size must be greater than zero"); } send_queue_max_ = new_max; } const NameChangeRequestPtr& NameChangeSender::peekAt(const size_t index) const { if (index >= getQueueSize()) { isc_throw(NcrSenderError, "NameChangeSender::peekAt peek beyond end of queue attempted" << " index: " << index << " queue size: " << getQueueSize()); } return (send_queue_.at(index)); } void NameChangeSender::assumeQueue(NameChangeSender& source_sender) { if (source_sender.amSending()) { isc_throw(NcrSenderError, "Cannot assume queue:" " source sender is actively sending"); } if (amSending()) { isc_throw(NcrSenderError, "Cannot assume queue:" " target sender is actively sending"); } if (getQueueMaxSize() < source_sender.getQueueSize()) { isc_throw(NcrSenderError, "Cannot assume queue:" " source queue count exceeds target queue max"); } if (!send_queue_.empty()) { isc_throw(NcrSenderError, "Cannot assume queue:" " target queue is not empty"); } send_queue_.swap(source_sender.getSendQueue()); } int NameChangeSender::getSelectFd() { isc_throw(NotImplemented, "NameChangeSender::getSelectFd is not supported"); } void NameChangeSender::runReadyIO() { if (!io_service_) { isc_throw(NcrSenderError, "NameChangeSender::runReadyIO" " sender io service is null"); } // We shouldn't be here if IO isn't ready to execute. // By running poll we're gauranteed not to hang. /// @todo Trac# 3325 requests that asiolink::IOService provide a /// wrapper for poll(). io_service_->get_io_service().poll_one(); } } // namespace isc::dhcp_ddns } // namespace isc
\section{Technical Evaluation} \label{sec:technical_evaluation} The technical evaluation of this chapter includes several experiments that are carried out aiming to test the performance of the adaptation process. One of the most important developed modules of AdaptUI is the Pellet reasoning engine port for Android. This module requires special emphasis in the evaluation, as leads the whole adaptation process and manages the knowledge represented through the AdaptUIOnt ontology. Besides, several other experiments are presented. Thus, in the following sections these experiments and their results are detailed: % This section gathers several experiments regarding the technical part of the % evaluation. Within this section the following experiments are included: \begin{enumerate}[label=\alph*)] \item First, Section~\ref{sec:performance_evaluation} presents a series of experiments regarding the performance of \textit{Pellet4Android} in comparison with Pellet for Java. These experiments include the default AdaptUIOnt ontology and different versions of AdaptUIOnt with several modifications of the axioms sets. For more details of the \textit{Pellet4Android} mobile reasoning engine see Section~\ref{sec:pellet4android}. \item Secondly, AdaptUI is compared to another user adaptation solution: Imhotep. This framework is detailed in Section~\ref{sec:imhotep_comparison}. \item Next, several scenarios are presented to evaluate the adaptation process of AdaptUI. Besides, a comparison with Imhotep user adaptation framework is also performed. The scenarios and their details are given in Section~\ref{sec:scenarios}. \item Finally, 5 developers with experience in developing Android based applications have evaluated the provided \acs{api}. This experiment is detailed in Section~\ref{sec:developers}. \end{enumerate} \subsection{Performance Evaluation: Pellet and Pellet4Android} \label{sec:performance_evaluation} During this section different experiments are presented in order to discuss the results of using mobile reasoning engines. In this dissertation an evaluation of the reasoning performance of \textit{Pellet4Android}, the Android based version of Pellet ported for AdaptUI, is performed. To do so, this evaluation considers Pellet, the desktop Java based reasoning engine, to make a comparison between the performance results of both solutions. This evaluation has been divided into three different experiments: \begin{enumerate} \item The first experiment evaluates the AdaptUIOnt ontology version with both reasoning engines. When loading the ontology several rules are processed and triggered. As a result of this experiment the corresponding performance results are compared. \item For the second experiment the set of ABox axioms of the AdaptUIOnt ontology is increased. The ABox gathers the knowledge about the individuals, including concepts and roles assertions, and individuals equality and inequality~\citep{krotzsch_description_2012}. In other words, it describes the attributes of instances (or individuals), the roles between instances, and other assertions about instances regarding their class membership with the TBox concepts~\citep{abox_tbox}. The ABox, RBox and TBox belong to the \ac{owl} 2 Description Logic (DL). As for these experiments several modifications have been carried out in these axiom sets, a more concrete description of the concepts represented by each set is detailed in Table~\ref{tbl:dl_terminology}. Hence, increasing the number of individuals might result into difference performance results comparing both platforms. \item Next, the set of \ac{swrl} axioms of the AdaptUIOnt ontology is modified by increasing its amount of axioms. This axiom set collects axioms related to the rules included in the ontology. Therefore, this experiment focuses on the reasoning capabilities of each version of Pellet. \end{enumerate} \input{5_experiments_and_results/table_abox_tbox} % For these experiments several tables and the corresponding charts are included, % showing the results obtained during the tests. In these tables the ontology % triples, ABox and \ac{swrl} axioms sets, mean, median and deviation are shown. The % triples are obtained by a SPARQL query (see Listing~\ref{lst:fuseki}). On the % other hand the axioms are requested through the \ac{owl}-API. % % \lstset{label=lst:fuseki, language=java, basicstyle=\footnotesize, frame=single, % keywordstyle=\color{blue}, captionpos=b, caption={SPARQL query for obtaining the % number of triples of the ontology. Between the $WHERE$ braces there is: % $?s$, which represents the subject; $?p$, representing the predicate; and $?o$, % which represents the object.}, breakatwhitespace=false, breaklines=true} % \begin{lstlisting} % SELECT (COUNT(*) AS ?no) WHERE { ?s ?p ?o } % \end{lstlisting} The cited experiments have been performed using two different types of devices. The ones running Pellet have been launched using a desktop environment. On the contrary, as \textit{Pellet4Android} is an Android based version of the reasoning engine, several mobile devices have been tested. The characteristics of all the devices used for these experiments are detailed in Table~\ref{tbl:devices_specs}. \input{5_experiments_and_results/devices_specs} The mobile devices shown in the previous table have not been chosen arbitrarily. As can be seen in Figure~\ref{fig:android_market}, at February 2014 the global spread of Samsung devices represent the 65\% share of all Android devices. \begin{figure} \centering \includegraphics[width=0.75\textwidth]{android_market.pdf} \caption{Global Android share~\citep{samsung_share_2014}. As this pie chart illustrates, Samsung devices represent the 65\% of the Android worldwide market share.} \label{fig:android_market} \end{figure} According to the explanation of this section, in the following lines each experiment is described and evaluated. First, the default AdaptUIOnt reasoning performance comparing Pellet and \textit{Pellet4Android} is introduced in Section~\ref{sec:eval_default_ont}. Next, these reasoning engines are tested using a modification of the default ontology, increasing the ABox axioms set. This experiment is described in Section~\ref{sec:eval_abox}. Finally, the AdaptUIOnt default ontology's \ac{swrl} axioms set is increased to evaluate the performance of both reasoning engines when dealing with larger sets of rules (see Section~\ref{sec:eval_swrl}). \subsubsection{Using the Default AdaptUIOnt Ontology} \label{sec:eval_default_ont} In this experiment the default version of the AdaptUIOnt ontology is used as input of the reasoning engines in order to evaluate their performance. As AdaptUIOnt has been designed to be a lightweight ontology to be available to be used with mobile reasoning engines, this experiment shows how \textit{Pellet4Android} performs in comparison with the results obtained by Pellet in a desktop environment. These results are shown in Table~\ref{tbl:eval_default_ont}. \begin{table} \caption{Pellet and \textit{Pellet4Android} comparison loading the default AdaptUIOnt ontology.} \label{tbl:eval_default_ont} \footnotesize \centering \begin{tabular}{l l r r r r r r} \hline & & \multicolumn{2}{c}{\textbf{Axioms}} & \multicolumn{3}{c}{\textbf{Results}} \\ \textbf{Device} & \textbf{Triples}& \textbf{ABox} & \textbf{\ac{swrl}} & \textbf{Mean} & \textbf{Median} & \textbf{Deviation} \\ \hline Acer laptop & 2,779 & 37 & 13 & 0.946 & 0.951 & 0.017 \\ (Pellet) \\ Galaxy SIII Mini& 2,779& 37 & 13 & 2.764 & 2.737 & 0.127 \\ (\textit{Pellet4Android}) \\ Galaxy SIII & 2,779 & 37 & 13 & 1.649 & 1.652 & 0.076 \\ (\textit{Pellet4Android}) \\ Nexus 10 & 2,779 & 37 & 13 & 5.147 & 5.122 & 0.205 \\ (\textit{Pellet4Android}) \\ \hline \end{tabular} \end{table} Surprisingly Table~\ref{tbl:eval_default_ont} reveals that the Nexus 10 performs worse than the other two mobile devices. This is usually due to the available and allocated memory that Java estimates for launching the required reasoning tasks. Table~\ref{tbl:eval_abox} for instance shows a more usual behaviour of the Nexus 10, which matches its hardware specifications. Figure~\ref{fig:pellet_default} illustrates the differences of using Pellet or \textit{Pellet4Android} when loading the default ABox and \ac{swrl} axiom sets in AdaptUIOnt. As shown in Figure~\ref{fig:pellet_default} and in Table~\ref{tbl:eval_default_ont}, the performance of Pellet for Java environments is better in any case if we compare it with the Android based version. However, and although there are several differences depending on the used mobile device, the differences are small. This is specially remarkable in the case of the Samsung Galaxy SIII. This device performs a remarkable 1.649 seconds, which is just approximately 0.7 seconds slower than Pellet for Java. \begin{figure} \centering \includegraphics[width=0.50\textwidth]{pellet_default.pdf} \caption{Pellet and \textit{Pellet4Android} performance comparison using the default AdaptUIOnt ontology. See Table~\ref{tbl:eval_default_ont}.} \label{fig:pellet_default} \end{figure} \subsubsection{Incrementing the ABox Axioms Set} \label{sec:eval_abox} In this case the experiment consists in incrementing the ABox axioms set of the AdaptUIOnt ontology. As stated before, the ABox describes the attributes of instances, the roles between instances, and other assertions about instances regarding their class membership with the TBox concepts~\citep{abox_tbox}. The modification of the ABox has been carried out by incrementing the amount of instances in 5,000, 10,000, 15,000 and finally reaching 20,000 instances. Thus, with this experiment we want to evaluate how increasing the number of individuals might result into a performance penalization, specially in the case of \textit{Pellet4Android}. Table~\ref{tbl:eval_abox} shows the results of this experiment. \begin{table} \caption{Pellet and \textit{Pellet4Android} comparison loading the AdaptUIOnt ontology with an increment in the ABox axiom set.} \label{tbl:eval_abox} \footnotesize \centering \begin{tabular}{l l r r r r r r} \hline \textbf{Device} & & \multicolumn{2}{c}{\textbf{Axioms}} & \multicolumn{3}{c}{\textbf{Results}} \\ \textbf{(Reasoner)} & \textbf{Triples}& \textbf{ABox} & \textbf{\ac{swrl}} & \textbf{Mean} & \textbf{Median} & \textbf{Deviation} \\ \hline Acer laptop & 12,779 & 5,000 & 13 & 3.014 & 3.012 & 0.034 \\ (Pellet) & 22,779 & 10,000 & 13 & 3.903 & 3.905 & 0.052 \\ & 32,779 & 15,000 & 13 & 4.228 & 4.231 & 0.036 \\ & 42,779 & 20,000 & 13 & 4.539 & 4.541 & 0.042 \\ \hline Galaxy SIII Mini& 12,779& 5,000& 13& 59.412& 59.508& 0.708 \\ (\textit{Pellet4Android}) & 22,779 & 10,000 & 13 & 30.321 & 30.327 & 0.347 \\ & 32,779 & 15,000 & 13 & 87.957 & 87.018 & 1.108 \\ & 42,779 & 20,000 & 13 & 183.882&183.879 & 2.101 \\ \hline Galaxy SIII & 12,779 & 5,000 & 13 & 36.336 & 36.194 & 0.668 \\ (\textit{Pellet4Android})& 22,779 & 10,000 & 13 & 16.471 & 16.439 & 0.288\\ & 32,779 & 15,000 & 13 & 45.387 & 45.593 & 0.729\\ & 42,779 & 20,000 & 13 & 97.151 & 97.440 & 1.120\\ \hline Nexus 10 & 12,779 & 5,000 & 13 & 14.171 & 14.428 & 0.525\\ (\textit{Pellet4Android})& 22,779 & 10,000 & 13 & 9.024 & 9.065 & 0.291\\ & 32,779 & 15,000 & 13 & 17.944& 17.969 & 0.496\\ & 42,779 & 20,000 & 13 & 32.070 & 32.019 & 0.588\\ \hline \end{tabular} \end{table} Figure~\ref{fig:pellet_abox} illustrates the differences between Pellet and \textit{Pellet4Android} when loading the AdaptUIOnt ontology with an increment applied to the ABox axioms set. As shown in the chart (accordingly with Table~\ref{tbl:eval_abox}) the performance of Pellet for Java environments keeps being better in comparison with the Android based version. While Pellet maintains its performance under 5 seconds, Android devices require much more time to perform the same reasoning. In fact, specially the Samsung Galaxy SIII Mini mobile device requires more than 180 seconds to evaluate the corresponding 20,000 instances, while the Samsung Galaxy SIII needs approximately 97 seconds and the Nexus 10 not more than 32. \begin{figure} \centering \includegraphics[width=0.80\textwidth]{pellet_abox.pdf} \caption{Pellet and \textit{Pellet4Android} performance comparison using the AdaptUIOnt ontology increasing the ABox axioms set. See Table~\ref{tbl:eval_abox}.} \label{fig:pellet_abox} \end{figure} \subsubsection{Incrementing the \ac{swrl} Axioms Set} \label{sec:eval_swrl} Finally, this last experiment consists on incrementing the \ac{swrl} axioms set of the AdaptUIOnt ontology, which collects the axioms related to the rules included in the ontology. Using an amount of 5,000, 10,000, 15,000 and finally 20,000 rules we aim to evaluate how increasing the number of rules penalize the performance of Pellet, specially in the case of \textit{Pellet4Android}. Table~\ref{tbl:eval_swrl} shows the results of this experiment. \begin{table} \caption{Pellet and \textit{Pellet4Android} comparison loading the AdaptUIOnt ontology with an increment in the \ac{swrl} axiom set.} \label{tbl:eval_swrl} \footnotesize \centering \begin{tabular}{l l r r r r r r} \hline & & \multicolumn{2}{c}{\textbf{Axioms}} & \multicolumn{3}{c}{\textbf{Results}} \\ \textbf{Device} & \textbf{Triples}& \textbf{ABox} & \textbf{\ac{swrl}} & \textbf{Mean} & \textbf{Median} & \textbf{Deviation} \\ \hline Acer laptop & 82,779 & 37 & 5,013 & 4.770 & 4.732 & 0.141 \\ (Pellet) & 162,779 & 37 & 10,013 & 6.327 & 6.296 & 0.164 \\ & 242,779 & 37 & 15,013 & 7.427 & 7.194 & 0.444 \\ & 322,779 & 37 & 20,013 & 8.147 & 8.117 & 0.105 \\ \hline Galaxy SIII Mini& 82,779 & 37 & 5,013 & 96.878 & 96.988 & 0.109 \\ (\textit{Pellet4Android}) & 162,779& 37 & 10,013 & 101.656 & 101.899 & 0.322 \\ & 242,779 & 37 & 15,013 & 243.981 & 244.011 & 0.298 \\ & 322,779 & 37 & 20,013 & 331.433 & 331.894 & 0.110 \\ \hline Galaxy SIII & 82,779 & 37 & 5,013 & 84.121 & 84.121 & 0.869 \\ (\textit{Pellet4Android})& 162,779 & 37 & 10,013 & 74.248 & 74.103 & 0.250\\ & 242,779 & 37 & 15,013 & 209.431 & 208.628 & 1.699 \\ & 322,779 & 37 & 20,013 & 216.005 & 216.077 & 1.202 \\ \hline Nexus 10 & 82,779 & 37 & 5,013 & 22.317 & 22.471 & 0.333 \\ (\textit{Pellet4Android})& 162,779& 37 & 10,013& 45.193 & 44.736 & 1.312 \\ & 242,779& 37 & 15,013& 85.543 & 88.134 & 5.490 \\ & 322,779& 37 & 20,013& 107.151& 106.131& 2.749 \\ \hline \end{tabular} \end{table} Figure~\ref{fig:pellet_swrl} illustrates the differences between Pellet and \textit{Pellet4Android} when running the different sets of \ac{swrl} axioms of the AdaptUIOnt ontology. As shown in the chart, it takes more time to evaluate the set of rules than the instances. In fact, the scale of the Y axis reaches 350 seconds, while in Figure~\ref{fig:pellet_abox} the maximum mean value reaches less than 200 seconds. \begin{figure} \centering \includegraphics[width=0.80\textwidth]{pellet_swrl.pdf} \caption{Pellet and \textit{Pellet4Android} performance comparison using the AdaptUIOnt ontology increasing the \ac{swrl} axioms set. See Table~\ref{tbl:eval_swrl}.} \label{fig:pellet_swrl} \end{figure} \subsubsection{Discussion} \label{sec:performance_discussion} During these experiments, and as shown in Table~\ref{tbl:eval_default_ont}, Table~\ref{tbl:eval_abox} and Table~\ref{tbl:eval_swrl}, neither the TBox or RBox axioms sets have been modified. These collections belong to what is called the terminology knowledge in \ac{owl} 2, and it does not affect the performance of the reasoning process. Hence, the TBox and the RBox contain 266 and 22 axioms respectively during the experiments. On the contrary, sets of 5,000, 10,000, 15,000 and 20,000 axioms have been added to the ABox and \ac{swrl} axioms sets to demonstrate the performance penalization when using large axioms sets with the tested reasoning engine. These modifications of the AdaptUIOnt ontology instance set have been performed through several Python scripts, which have modified the corresponding default \textit{adaptui.owl} file. \subsubsection{Conclusions} \label{sec:performance_conclusions} These results demonstrate that, although managing semantics in mobile devices is possible, they are still far from the results obtained in a desktop environment when dealing with complex reasoning tasks. Nonetheless, \textit{Pellet4Android} is a good approximation of a reasoner to run on mobile devices. A native Pellet for Android port written in C++ would probably improve these results. But one of the AdaptUIOnt ontology's benefits is its lightness. Using less than 400 axioms, this ontology is able to model a full adaptation domain, considering the user and his/her capabilities, the surrounding environment and the device characteristics. The results shown in Table~\ref{tbl:eval_default_ont} show how \textit{Pellet4Android} responses properly when dealing with the AdaptUIOnt ontology. However, more efforts in mobile reasoners would benefit these systems. % Repasar bien Regarding the ABox collection of axioms, the first conclusion that is extracted from the results shown in Table~\ref{tbl:eval_abox} is that Pellet running in a PC has a very optimal response. For example, increasing the number of instances to almost 20,000 instances just reduces the response time in around 4 seconds (see Figure~\ref{fig:pellet_abox}). Increasing the ABox slows down the final performance, incrementing the number of seconds for loading the ontology. On the contrary, running this experiment in the mobile devices reveals a lack of efficiency. First, each device's hardware capabilities are taken into account. The first mobile device, the Samsung Galaxy SIII~Mini needs around 2.764 seconds for loading the default AdaptUI ontology, which consists of 37 ABox and 13 \ac{swrl} axioms. This same case takes 1.649 seconds in the Samsung Galaxy SIII and 5.147 seconds in the Nexus 10. Although these figures might appear to be enough considering we are dealing with limited hardware, by increasing them in the same way that it has been done with the Acer laptop results into unmanageable time responses. For instance, loading 5,032 ABox axioms takes 3.014 seconds for the laptop and Pellet, for the Samsung Galaxy SIII Mini it takes 59.412 seconds, 36.336 seconds for the Samsung Galaxy SIII and 14.171 seconds for the Nexus 10. Nevertheless, these differences are more significant when dealing with the \ac{swrl} axioms set. In this case, although Pellet's performance does not exceed 9 seconds, the differences with the ABox axioms set are much bigger regarding \textit{Pellet4Android}. In the best case, the Nexus 10 needs around 22 seconds to reason over 5,000 rules, while the Samsung Galaxy SIII Mini needs more than 90. This depicts the existing differences of performance depending on the Android device we choose. As a final conclusion, taking into account the presented results, \textit{Pellet4Android} presents promising performance results when dealing with the AdaptUIOnt. The lightness of the ontology (considering the amount of axioms) assures a more than acceptable performance.
module Builtin.Size where open import Agda.Builtin.Size public
Aston Villa 's arch @-@ rivals are Birmingham City , with games between the two clubs known as the Second City Derby . Historically though , West Bromwich Albion have arguably been Villa 's greatest rivals , a view highlighted in a fan survey , conducted in 2003 . The two teams contested three FA Cup finals in the late 19th century . Villa also enjoy less heated local rivalries with Wolverhampton Wanderers and Coventry City . Through the relegation of West Brom and Birmingham City , to the Football League Championship , in the 2005 – 06 season , at the start of 2006 – 07 Premiership season , Villa were the only Midlands club in that League . The nearest opposing team Villa faced during that season was Sheffield United , who played 62 miles ( 100 km ) away in South Yorkshire . For the 2010 – 11 season , West Bromwich Albion were promoted and joined Aston Villa , Wolverhampton Wanderers , and Birmingham City in the Premier League . This marked the first time that the " West Midlands ' Big Four " clubs have been in the Premier League at the same time , and the first time together in the top flight since the 1983 – 84 season . Birmingham were relegated at the end of the 2010 – 11 season , ending this period .
module Main %default total %logging declare.data.parameters 20 %logging eval.eta 10 -- explicit data Value : (value : Nat -> Type) -> Type where EmptyV : {0 value : Nat -> Type} -> Value (\ n => value n) data TValue : Nat -> Type where MkTupleV : Value (\n => TValue n) -> TValue n
(* * Copyright 2023, Proofcraft Pty Ltd * Copyright 2014, General Dynamics C4 Systems * * SPDX-License-Identifier: GPL-2.0-only *) (* Lemmas on arch get/set object etc *) theory ArchAcc_AI imports SubMonad_AI "Lib.Crunch_Instances_NonDet" begin context Arch begin global_naming ARM bundle unfold_objects = obj_at_def[simp] kernel_object.splits[split] arch_kernel_obj.splits[split] get_object_wp [wp] bundle unfold_objects_asm = obj_at_def[simp] kernel_object.split_asm[split] arch_kernel_obj.split_asm[split] definition "valid_asid asid s \<equiv> arm_asid_map (arch_state s) asid \<noteq> None" lemma get_asid_pool_wp [wp]: "\<lbrace>\<lambda>s. \<forall>pool. ko_at (ArchObj (ASIDPool pool)) p s \<longrightarrow> Q pool s\<rbrace> get_asid_pool p \<lbrace>Q\<rbrace>" apply (simp add: get_asid_pool_def get_object_def) apply (wp|wpc)+ apply (clarsimp simp: obj_at_def) done lemma set_asid_pool_typ_at [wp]: "set_asid_pool ptr pool \<lbrace>\<lambda>s. P (typ_at T p s)\<rbrace>" apply (simp add: set_asid_pool_def set_object_def get_object_def) apply wp including unfold_objects by clarsimp lemmas set_asid_pool_typ_ats [wp] = abs_typ_at_lifts [OF set_asid_pool_typ_at] lemma get_pd_wp [wp]: "\<lbrace>\<lambda>s. \<forall>pd. ko_at (ArchObj (PageDirectory pd)) p s \<longrightarrow> Q pd s\<rbrace> get_pd p \<lbrace>Q\<rbrace>" unfolding get_pd_def including unfold_objects by wpsimp lemma get_pde_wp: "\<lbrace>\<lambda>s. \<forall>pd. ko_at (ArchObj (PageDirectory pd)) (p && ~~ mask pd_bits) s \<longrightarrow> Q (pd (ucast (p && mask pd_bits >> 2))) s\<rbrace> get_pde p \<lbrace>Q\<rbrace>" by (simp add: get_pde_def) wp lemma get_pde_inv [wp]: "get_pde p \<lbrace>P\<rbrace>" by (wpsimp wp: get_pde_wp) bundle pagebits = pd_bits_def[simp] pt_bits_def[simp] pageBits_def[simp] mask_lower_twice[simp] and.assoc[where ?'a = \<open>'a::len word\<close>,symmetric,simp] obj_at_def[simp] pde.splits[split] pte.splits[split] lemma get_master_pde_wp: "\<lbrace>\<lambda>s. \<forall>pd. ko_at (ArchObj (PageDirectory pd)) (p && ~~ mask pd_bits) s \<longrightarrow> Q (case (pd (ucast (p && ~~ mask 6 && mask pd_bits >> 2))) of SuperSectionPDE x xa xb \<Rightarrow> pd (ucast (p && ~~ mask 6 && mask pd_bits >> 2)) | _ \<Rightarrow> pd (ucast (p && mask pd_bits >> 2))) s\<rbrace> get_master_pde p \<lbrace>Q\<rbrace>" apply (simp add: get_master_pde_def) apply (wp get_pde_wp | wpc)+ including pagebits by auto lemma store_pde_typ_at [wp]: "store_pde ptr pde \<lbrace>\<lambda>s. P (typ_at T p s)\<rbrace>" apply (simp add: store_pde_def set_pd_def set_object_def get_object_def) apply (wpsimp simp: obj_at_def a_type_def) done lemmas store_pde_typ_ats [wp] = abs_typ_at_lifts [OF store_pde_typ_at] lemma get_pt_wp [wp]: "\<lbrace>\<lambda>s. \<forall>pt. ko_at (ArchObj (PageTable pt)) p s \<longrightarrow> Q pt s\<rbrace> get_pt p \<lbrace>Q\<rbrace>" apply (simp add: get_pt_def get_object_def) apply (wpsimp simp: obj_at_def) done lemma get_pte_wp: "\<lbrace>\<lambda>s. \<forall>pt. ko_at (ArchObj (PageTable pt)) (p && ~~mask pt_bits) s \<longrightarrow> Q (pt (ucast (p && mask pt_bits >> 2))) s\<rbrace> get_pte p \<lbrace>Q\<rbrace>" by (simp add: get_pte_def) wp lemma get_pte_inv [wp]: "\<lbrace>P\<rbrace> get_pte p \<lbrace>\<lambda>_. P\<rbrace>" by (wpsimp wp: get_pte_wp) lemma get_master_pte_wp: "\<lbrace>\<lambda>s. \<forall>pt. ko_at (ArchObj (PageTable pt)) (p && ~~ mask pt_bits) s \<longrightarrow> Q (case pt (ucast (p && ~~ mask 6 && mask pt_bits >> 2)) of LargePagePTE x xa xb \<Rightarrow> pt (ucast (p && ~~ mask 6 && mask pt_bits >> 2)) | _ \<Rightarrow> pt (ucast (p && mask pt_bits >> 2))) s\<rbrace> get_master_pte p \<lbrace>Q\<rbrace>" apply (simp add: get_master_pte_def) apply (wp get_pte_wp | wpc)+ including pagebits by auto lemma store_pte_typ_at: "store_pte ptr pte \<lbrace>\<lambda>s. P (typ_at T p s)\<rbrace>" apply (simp add: store_pte_def set_pt_def set_object_def get_object_def) apply (wpsimp simp: obj_at_def a_type_def) done lemmas store_pte_typ_ats [wp] = abs_typ_at_lifts [OF store_pte_typ_at] lemma lookup_pt_slot_inv: "lookup_pt_slot pd vptr \<lbrace>P\<rbrace>" apply (simp add: lookup_pt_slot_def) apply (wp get_pde_wp|wpc)+ apply clarsimp done lemma lookup_pt_slot_inv_any: "\<lbrace>\<lambda>s. \<forall>x. Q x s\<rbrace> lookup_pt_slot pd vptr \<lbrace>Q\<rbrace>,-" "\<lbrace>E\<rbrace> lookup_pt_slot pd vptr -, \<lbrace>\<lambda>ft. E\<rbrace>" apply (simp_all add: lookup_pt_slot_def) apply (wpsimp wp: get_pde_wp)+ done crunch cte_wp_at[wp]: set_irq_state "\<lambda>s. P (cte_wp_at P' p s)" lemma set_pt_cte_wp_at: "set_pt ptr val \<lbrace>\<lambda>s. P (cte_wp_at P' p s)\<rbrace>" apply (simp add: set_pt_def) apply (wpsimp wp: set_object_wp_strong) apply (subst cte_wp_at_after_update') apply (clarsimp simp: a_type_def obj_at_def split: if_splits kernel_object.splits)+ done lemma set_pd_cte_wp_at: "set_pd ptr val \<lbrace>\<lambda>s. P (cte_wp_at P' p s)\<rbrace>" apply (simp add: set_pd_def) apply (wpsimp wp: set_object_wp_strong) apply (subst cte_wp_at_after_update') including unfold_objects apply (clarsimp simp: a_type_def split: if_splits)+ done lemma set_asid_pool_cte_wp_at: "set_asid_pool ptr val \<lbrace>\<lambda>s. P (cte_wp_at P' p s)\<rbrace>" apply (simp add: set_asid_pool_def) including unfold_objects_asm by (wpsimp wp: set_object_wp_strong simp: a_type_def cte_wp_at_after_update' split: if_splits) lemma set_pt_pred_tcb_at[wp]: "set_pt ptr val \<lbrace>pred_tcb_at proj P t\<rbrace>" apply (simp add: set_pt_def) apply (wpsimp wp: set_object_wp_strong) apply (clarsimp simp: pred_tcb_at_def obj_at_def) done lemma set_pd_pred_tcb_at[wp]: "set_pd ptr val \<lbrace>pred_tcb_at proj P t\<rbrace>" apply (simp add: set_pd_def) apply (wpsimp wp: set_object_wp_strong) apply (clarsimp simp: pred_tcb_at_def obj_at_def) done lemma set_asid_pool_pred_tcb_at[wp]: "set_asid_pool ptr val \<lbrace>pred_tcb_at proj P t\<rbrace>" apply (subst set_asid_pool_def) by (wpsimp wp: set_object_wp_strong simp: pred_tcb_at_def obj_at_def) lemma mask_pd_bits_inner_beauty: "is_aligned p 2 \<Longrightarrow> (p && ~~ mask pd_bits) + (ucast ((ucast (p && mask pd_bits >> 2))::12 word) << 2) = (p::word32)" by (rule mask_split_aligned; simp add: pd_bits_def pageBits_def) lemma more_pd_inner_beauty: fixes x :: "12 word" fixes p :: word32 assumes x: "x \<noteq> ucast (p && mask pd_bits >> 2)" shows "(p && ~~ mask pd_bits) + (ucast x << 2) = p \<Longrightarrow> False" by (rule mask_split_aligned_neg[OF _ _ x]; simp add: pd_bits_def pageBits_def) lemma mask_pt_bits_inner_beauty: "is_aligned p 2 \<Longrightarrow> (p && ~~ mask pt_bits) + (ucast ((ucast (p && mask pt_bits >> 2))::word8) << 2) = (p::word32)" by (rule mask_split_aligned; simp add: pt_bits_def pageBits_def) lemma more_pt_inner_beauty: fixes x :: "word8" fixes p :: word32 assumes x: "x \<noteq> ucast (p && mask pt_bits >> 2)" shows "(p && ~~ mask pt_bits) + (ucast x << 2) = p \<Longrightarrow> False" by (rule mask_split_aligned_neg[OF _ _ x]; simp add: pt_bits_def pageBits_def) lemma set_pd_aligned [wp]: "set_pd base pd \<lbrace>pspace_aligned\<rbrace>" by (wpsimp simp: set_pd_def) crunch aligned [wp]: store_pde pspace_aligned (wp: hoare_drop_imps) lemmas undefined_validE_R = hoare_FalseE_R[where f=undefined] lemma arch_derive_cap_valid_cap: "\<lbrace>valid_cap (cap.ArchObjectCap arch_cap)\<rbrace> arch_derive_cap arch_cap \<lbrace>valid_cap\<rbrace>, -" apply(simp add: arch_derive_cap_def) apply(cases arch_cap, simp_all add: arch_derive_cap_def o_def) apply(rule hoare_pre, wpc?, wp+; clarsimp simp add: cap_aligned_def valid_cap_def split: option.splits)+ done lemma arch_derive_cap_inv: "arch_derive_cap arch_cap \<lbrace>P\<rbrace>" apply(simp add: arch_derive_cap_def, cases arch_cap, simp_all) apply(rule hoare_pre, wpc?, wp+; simp)+ done definition "valid_mapping_entries m \<equiv> case m of Inl (InvalidPTE, _) \<Rightarrow> \<top> | Inl (LargePagePTE _ _ _, xs) \<Rightarrow> \<lambda>s. \<forall>p \<in> set xs. pte_at p s | Inl (SmallPagePTE _ _ _, xs) \<Rightarrow> \<lambda>s. \<forall>p \<in> set xs. pte_at p s | Inr (InvalidPDE, _) \<Rightarrow> \<top> | Inr (PageTablePDE _ _ _, _) \<Rightarrow> \<bottom> | Inr (SectionPDE _ _ _ _, xs) \<Rightarrow> \<lambda>s. \<forall>p \<in> set xs. pde_at p s | Inr (SuperSectionPDE _ _ _, xs) \<Rightarrow> \<lambda>s. \<forall>p \<in> set xs. pde_at p s" definition "invalid_pte_at p \<equiv> obj_at (\<lambda>ko. \<exists>pt. ko = (ArchObj (PageTable pt)) \<and> pt (ucast (p && mask pt_bits) >> 2) = pte.InvalidPTE) (p && ~~ mask pt_bits)" definition "invalid_pde_at p \<equiv> obj_at (\<lambda>ko. \<exists>pd. ko = (ArchObj (PageDirectory pd)) \<and> pd (ucast (p && mask pd_bits) >> 2) = pde.InvalidPDE) (p && ~~ mask pd_bits)" definition "valid_slots m \<equiv> case m of Inl (pte, xs) \<Rightarrow> \<lambda>s. xs \<noteq> [] \<and> (\<forall>p \<in> set xs. (\<exists>\<rhd> (p && ~~ mask pt_bits) and pte_at p) s) \<and> wellformed_pte pte \<and> valid_pte pte s | Inr (pde, xs) \<Rightarrow> \<lambda>s. xs \<noteq> [] \<and> (\<forall>p \<in> set xs. (\<exists>\<rhd> (p && ~~ mask pd_bits) and pde_at p) s \<and> ucast (p && mask pd_bits >> 2) \<notin> kernel_mapping_slots) \<and> wellformed_pde pde \<and> valid_pde pde s" crunch inv[wp]: get_master_pte P crunch inv[wp]: get_master_pde P lemma ucast_mask_asid_low_bits [simp]: "ucast ((asid::word32) && mask asid_low_bits) = (ucast asid :: 10 word)" by (word_eqI_solve simp: asid_low_bits_def) lemma ucast_ucast_asid_high_bits [simp]: "ucast (ucast (asid_high_bits_of asid)::word32) = asid_high_bits_of asid" by word_eqI_solve lemma mask_asid_low_bits_ucast_ucast: "((asid::word32) && mask asid_low_bits) = ucast (ucast asid :: 10 word)" by (word_eqI_solve simp: asid_low_bits_def) lemma set_asid_pool_cur [wp]: "set_asid_pool p a \<lbrace>\<lambda>s. P (cur_thread s)\<rbrace>" unfolding set_asid_pool_def by (wpsimp wp: get_object_wp) lemma set_asid_pool_cur_tcb [wp]: "set_asid_pool p a \<lbrace>\<lambda>s. cur_tcb s\<rbrace>" unfolding cur_tcb_def by (rule hoare_lift_Pf [where f=cur_thread]; wp) crunch arch [wp]: set_asid_pool "\<lambda>s. P (arch_state s)" (wp: get_object_wp) lemma set_asid_pool_valid_arch [wp]: "set_asid_pool p a \<lbrace>valid_arch_state\<rbrace>" by (rule valid_arch_state_lift) (wp set_asid_pool_typ_at)+ lemma set_asid_pool_valid_objs [wp]: "set_asid_pool p a \<lbrace>valid_objs\<rbrace>" apply (simp add: set_asid_pool_def) apply (wp set_object_valid_objs get_object_wp) including unfold_objects by (clarsimp simp: a_type_def valid_obj_def arch_valid_obj_def) lemma pde_at_aligned_vptr: "\<lbrakk>x \<in> set [0 , 4 .e. 0x3C]; page_directory_at pd s; pspace_aligned s; is_aligned vptr 24 \<rbrakk> \<Longrightarrow> pde_at (x + lookup_pd_slot pd vptr) s" apply (clarsimp simp: lookup_pd_slot_def Let_def obj_at_def pde_at_def) apply (drule(1) pspace_alignedD[rotated]) apply (clarsimp simp: a_type_def split: kernel_object.split_asm arch_kernel_obj.split_asm if_split_asm cong: kernel_object.case_cong) apply (prop_tac "is_aligned x 2") subgoal apply (clarsimp simp: upto_enum_step_def word_shift_by_2) by (rule is_aligned_shiftl_self) apply (simp add: aligned_add_aligned word_bits_conv is_aligned_shiftl_self)+ apply (prop_tac "pd = (x + (pd + (vptr >> 20 << 2)) && ~~ mask pd_bits)") subgoal supply bit_simps[simp del] apply (subst mask_lower_twice[symmetric, where n=6]) apply (simp add: pd_bits_def pageBits_def) apply (subst add.commute, subst add_mask_lower_bits) apply (erule aligned_add_aligned) apply (intro is_aligned_shiftl is_aligned_shiftr) apply simp apply (simp add: word_bits_conv) apply simp apply (subst upper_bits_unset_is_l2p_32[unfolded word_bits_conv]) apply simp apply (clarsimp simp: upto_enum_step_def word_shift_by_2) apply (rule shiftl_less_t2n[where m=6, simplified]) apply (rule word_leq_minus_one_le) apply simp+ apply (rule sym, rule add_mask_lower_bits) apply (simp add: pd_bits_def pageBits_def) apply simp apply (subst upper_bits_unset_is_l2p_32[unfolded word_bits_conv]) apply (simp add: pd_bits_def pageBits_def) apply (rule shiftl_less_t2n) apply (rule shiftr_less_t2n') apply (simp add: pd_bits_def pageBits_def) by (simp add: pd_bits_def pageBits_def)+ apply simp done lemma pde_shifting: "\<lbrakk>is_aligned (vptr::word32) 24; x \<le> 0xF\<rbrakk> \<Longrightarrow> x + (vptr >> 20) < 0x1000" apply (rule order_less_le_trans) apply (subst upper_bits_unset_is_l2p_32 [where n=12, symmetric]) apply (clarsimp simp: word_bits_def) prefer 2 apply simp apply (clarsimp simp: word_bits_def) subgoal premises prems for n' proof - have H: "(0xF::word32) < 2 ^ 4" by simp from prems show ?thesis apply (subst (asm) word_plus_and_or_coroll) apply word_eqI subgoal for n apply (spec "20 + n") apply (simp add: word_size) apply (insert H) apply (drule (1) order_le_less_trans) apply (drule bang_is_le) apply (drule_tac z="2 ^ 4" in order_le_less_trans, assumption) apply (drule word_power_increasing) by simp+ apply (clarsimp simp: word_size nth_shiftl nth_shiftr is_aligned_nth) apply (erule disjE) apply (insert H)[1] apply (drule (1) order_le_less_trans) apply (drule bang_is_le) apply (drule order_le_less_trans[where z="2 ^ 4"], assumption) apply (drule word_power_increasing; simp) apply (spec "20 + n'") apply (frule test_bit_size) by (simp add: word_size) qed done lemma p_le_0xF_helper: "((p::word32) \<le> 0xF) = (\<forall>n'\<ge>4. n'< word_bits \<longrightarrow> \<not> p !! n')" apply (subst upper_bits_unset_is_l2p_32) apply (simp add: word_bits_def) apply (auto intro: plus_one_helper dest: plus_one_helper2) done lemma pd_shifting: "is_aligned (pd::word32) 14 \<Longrightarrow> pd + (vptr >> 20 << 2) && ~~ mask pd_bits = pd" apply (rule word_eqI[rule_format]) apply (subst word_plus_and_or_coroll) apply (rule word_eqI) subgoal for \<dots> na apply (clarsimp simp: word_size nth_shiftr nth_shiftl is_aligned_nth) apply (spec na) apply (simp add: linorder_not_less) apply (drule test_bit_size)+ by (simp add: word_size) subgoal for n apply (clarsimp simp: word_size nth_shiftr nth_shiftl is_aligned_nth word_ops_nth_size pd_bits_def pageBits_def linorder_not_less) apply (rule iffI) apply clarsimp apply (drule test_bit_size)+ apply (simp add: word_size) apply clarsimp apply (spec n) by simp done lemma pd_shifting_dual: "is_aligned (pd::word32) 14 \<Longrightarrow> pd + (vptr >> 20 << 2) && mask pd_bits = vptr >> 20 << 2" apply (simp add: pd_bits_def pageBits_def) apply (subst word_plus_and_or_coroll) apply (rule word_eqI) subgoal for n apply (clarsimp simp: word_size nth_shiftr nth_shiftl is_aligned_nth) apply (spec n) apply (simp add: linorder_not_less) apply (drule test_bit_size)+ by (simp add: word_size) apply (rule word_eqI) apply (clarsimp simp: word_size nth_shiftr nth_shiftl is_aligned_nth word_ops_nth_size pd_bits_def pageBits_def linorder_not_less) apply (rule iffI) apply clarsimp apply clarsimp apply (drule test_bit_size)+ apply (simp add: word_size) done lemma pd_shifting_at: "\<lbrakk> page_directory_at pd s; pspace_aligned s \<rbrakk> \<Longrightarrow> pd + (vptr >> 20 << 2) && ~~ mask pd_bits = pd" apply (rule pd_shifting) apply (clarsimp simp: pspace_aligned_def obj_at_def) apply (drule bspec, blast) including unfold_objects by (clarsimp simp: a_type_def) lemma kernel_mapping_slots_empty_pdeI: "\<lbrakk>equal_kernel_mappings s; valid_global_objs s; valid_arch_state s; kheap s p = Some (ArchObj (PageDirectory pd)); x \<in> kernel_mapping_slots\<rbrakk> \<Longrightarrow> (\<forall>r. pde_ref (pd x) = Some r \<longrightarrow> r \<in> set (second_level_tables (arch_state s))) \<and> valid_pde_mappings (pd x)" apply (clarsimp simp: invs_def valid_state_def equal_kernel_mappings_def valid_global_objs_def) apply (erule_tac x=p in allE, erule_tac x="arm_global_pd (arch_state s)" in allE) including unfold_objects apply clarsimp by (simp add: empty_table_def valid_arch_state_def a_type_def) lemma invs_valid_global_pts: "invs s \<Longrightarrow> valid_global_pts s" by (clarsimp simp: invs_def valid_state_def valid_arch_state_def) lemma is_aligned_pt: "page_table_at pt s \<Longrightarrow> pspace_aligned s \<Longrightarrow> is_aligned pt pt_bits" apply (clarsimp simp: obj_at_def) apply (drule(1) pspace_alignedD) apply (simp add: pt_bits_def pageBits_def) done lemma is_aligned_global_pt: "\<lbrakk>x \<in> set (arm_global_pts (arch_state s)); pspace_aligned s; valid_arch_state s\<rbrakk> \<Longrightarrow> is_aligned x pt_bits" by (metis valid_arch_state_def valid_global_pts_def is_aligned_pt) lemma data_at_aligned: "\<lbrakk> data_at sz p s; pspace_aligned s \<rbrakk> \<Longrightarrow> is_aligned p (pageBitsForSize sz)" by (erule pspace_alignedE[where x=p]; fastforce simp: data_at_def obj_at_def) lemma page_table_pte_at_diffE: "\<lbrakk> page_table_at p s; q - p = x << 2; x < 2^(pt_bits - 2); pspace_aligned s \<rbrakk> \<Longrightarrow> pte_at q s" apply (clarsimp simp: diff_eq_eq add.commute) apply (erule(2) page_table_pte_atI) done lemma pte_at_aligned_vptr: "\<lbrakk>x \<in> set [0 , 4 .e. 0x3C]; page_table_at pt s; pspace_aligned s; is_aligned vptr 16 \<rbrakk> \<Longrightarrow> pte_at (x + (pt + (((vptr >> 12) && 0xFF) << 2))) s" apply (erule page_table_pte_at_diffE[where x="(x >> 2) + ((vptr >> 12) && 0xFF)"];simp?) apply (simp add: word_shiftl_add_distrib upto_enum_step_def) apply (clarsimp simp: word_shift_by_2 shiftr_shiftl1 is_aligned_shift) apply (subst add.commute, rule is_aligned_add_less_t2n) apply (rule is_aligned_andI1[where n=4], rule is_aligned_shiftr, simp) apply (rule shiftr_less_t2n) apply (clarsimp dest!: upto_enum_step_subset[THEN subsetD]) apply (erule order_le_less_trans, simp) apply (simp add: pt_bits_def pageBits_def) apply (simp add: pt_bits_def pageBits_def) apply (rule order_le_less_trans, rule word_and_le1, simp) done lemma lookup_pt_slot_ptes_aligned_valid: "\<lbrace>valid_vspace_objs and valid_arch_state and equal_kernel_mappings and pspace_aligned and valid_global_objs and \<exists>\<rhd> pd and page_directory_at pd and K (is_aligned vptr 16)\<rbrace> lookup_pt_slot pd vptr \<lbrace>\<lambda>r s. is_aligned r 6 \<and> (\<forall>x\<in>set [0 , 4 .e. 0x3C]. pte_at (x + r) s)\<rbrace>, -" apply (simp add: lookup_pt_slot_def) apply (wp get_pde_wp|wpc)+ apply (clarsimp simp: lookup_pd_slot_def Let_def) apply (simp add: pd_shifting_at) apply (frule (2) valid_vspace_objsD) apply (clarsimp simp: ) subgoal for s _ _ x apply (prop_tac "page_table_at (ptrFromPAddr x) s") subgoal apply (bspec "(ucast (pd + (vptr >> 20 << 2) && mask pd_bits >> 2))";clarsimp) apply (frule kernel_mapping_slots_empty_pdeI) apply ((simp add: obj_at_def pte_at_def;fail)+)[4] by (clarsimp simp: pde_ref_def valid_global_pts_def valid_arch_state_def second_level_tables_def) apply (rule conjI) apply (rule is_aligned_add) apply (rule is_aligned_weaken, erule(1) is_aligned_pt) apply (simp add: pt_bits_def pageBits_def) apply (rule is_aligned_shiftl) apply (rule is_aligned_andI1) apply (rule is_aligned_shiftr, simp) apply clarsimp by (erule(1) pte_at_aligned_vptr, simp+) done lemma p_0x3C_shift: "is_aligned (p :: word32) 6 \<Longrightarrow> (\<forall>p\<in>set [p , p + 4 .e. p + 0x3C]. f p) = (\<forall>x\<in>set [0, 4 .e. 0x3C]. f (x + p))" apply (clarsimp simp: upto_enum_step_def add.commute) apply (frule is_aligned_no_overflow, simp add: word_bits_def) apply (simp add: linorder_not_le [symmetric]) apply (erule notE) apply (simp add: add.commute) apply (erule word_random) apply simp done lemma lookup_pt_slot_pte [wp]: "\<lbrace>pspace_aligned and valid_vspace_objs and valid_arch_state and equal_kernel_mappings and valid_global_objs and \<exists>\<rhd> pd and page_directory_at pd\<rbrace> lookup_pt_slot pd vptr \<lbrace>pte_at\<rbrace>,-" apply (simp add: lookup_pt_slot_def) apply (wp get_pde_wp|wpc)+ apply (clarsimp simp: lookup_pd_slot_def Let_def) apply (simp add: pd_shifting_at) apply (drule (2) valid_vspace_objsD) apply (clarsimp simp: ) apply (bspec "ucast (pd + (vptr >> 20 << 2) && mask pd_bits >> 2)") apply clarsimp apply (erule page_table_pte_atI, simp_all) apply (simp add: pt_bits_def pageBits_def) apply (rule order_le_less_trans, rule word_and_le1, simp) apply (frule kernel_mapping_slots_empty_pdeI) apply (simp add: obj_at_def)+ apply (clarsimp simp: pde_ref_def) apply (rule page_table_pte_atI, simp_all) apply (simp add: valid_arch_state_def valid_global_pts_def second_level_tables_def) apply (simp add: pt_bits_def pageBits_def) apply (rule order_le_less_trans, rule word_and_le1, simp) done lemma shiftr_w2p: "x < len_of TYPE('a) \<Longrightarrow> 2 ^ x = (2^(len_of TYPE('a) - 1) >> (len_of TYPE('a) - 1 - x) :: 'a :: len word)" apply simp apply (rule word_eqI) apply (auto simp: word_size nth_shiftr nth_w2p) done lemma vptr_shiftr_le_2p: "(vptr :: word32) >> 20 < 2 ^ pageBits" apply (rule le_less_trans[rotated]) apply (rule and_mask_less' [where w=max_word]) apply (simp add: pageBits_def) apply (rule word_leI) apply (simp add: word_size nth_shiftr) apply (drule test_bit_size) apply (simp add: pageBits_def word_size) done lemma page_directory_pde_at_lookupI: "\<lbrakk>page_directory_at pd s; pspace_aligned s\<rbrakk> \<Longrightarrow> pde_at (lookup_pd_slot pd vptr) s" apply (simp add: lookup_pd_slot_def Let_def) apply (erule (1) page_directory_pde_atI[rotated 2]) apply (rule vptr_shiftr_le_2p) done lemma vptr_shiftr_le_2pt: "((vptr :: word32) >> 12) && 0xFF < 2 ^ (pt_bits - 2)" apply (clarsimp simp: word_FF_is_mask pt_bits_def pageBits_def) apply (rule and_mask_less_size[where n=8, simplified]) apply (clarsimp simp: word_size) done lemma page_table_pte_at_lookupI: "\<lbrakk>page_table_at pt s; pspace_aligned s\<rbrakk> \<Longrightarrow> pte_at (lookup_pt_slot_no_fail pt vptr) s" apply (simp add: lookup_pt_slot_no_fail_def) apply (erule (1) page_table_pte_atI[rotated 2]) apply (rule vptr_shiftr_le_2pt) done lemmas lookup_pt_slot_ptes[wp] = lookup_pt_slot_ptes_aligned_valid [@ \<open>post_asm \<open>thin_tac "is_aligned x y" for x y\<close>\<close>] lemmas lookup_pt_slot_ptes2[wp] = lookup_pt_slot_ptes_aligned_valid [@ \<open>post_asm \<open>drule (1) p_0x3C_shift[THEN iffD2], thin_tac _\<close>\<close>] lemma create_mapping_entries_valid [wp]: "\<lbrace>pspace_aligned and valid_arch_state and valid_vspace_objs and equal_kernel_mappings and valid_global_objs and \<exists>\<rhd> pd and page_directory_at pd and K ((sz = ARMLargePage \<longrightarrow> is_aligned vptr 16) \<and> (sz = ARMSuperSection \<longrightarrow> is_aligned vptr 24)) \<rbrace> create_mapping_entries base vptr sz vm_rights attrib pd \<lbrace>\<lambda>m. valid_mapping_entries m\<rbrace>, -" apply (cases sz) apply (rule hoare_pre) apply (wp|simp add: valid_mapping_entries_def largePagePTE_offsets_def)+ apply clarsimp apply (erule (1) page_directory_pde_at_lookupI) apply (rule hoare_pre) apply (clarsimp simp add: valid_mapping_entries_def) apply wp apply (simp add: lookup_pd_slot_def Let_def) apply (prop_tac "is_aligned pd 14") apply (clarsimp simp: obj_at_def add.commute invs_def valid_state_def valid_pspace_def pspace_aligned_def) apply (drule bspec, blast) apply (clarsimp simp: a_type_def split: kernel_object.splits arch_kernel_obj.splits if_split_asm) apply (clarsimp simp: superSectionPDE_offsets_def) apply (clarsimp simp: upto_enum_step_def word_shift_by_2) apply (clarsimp simp: pde_at_def) apply (simp add: add.commute add.left_commute) apply (subst add_mask_lower_bits) apply (simp add: pd_bits_def pageBits_def) apply (clarsimp simp: pd_bits_def pageBits_def) apply (subst (asm) word_plus_and_or_coroll) prefer 2 apply (clarsimp simp: word_size nth_shiftr nth_shiftl is_aligned_nth p_le_0xF_helper word_bits_def) apply (drule test_bit_size)+ apply (simp add: word_size) apply (rule word_eqI) apply (clarsimp simp: word_size nth_shiftr nth_shiftl is_aligned_nth p_le_0xF_helper word_bits_def) apply (frule_tac w=vptr in test_bit_size) apply (simp add: word_size) apply (thin_tac "All _") subgoal for \<dots> n apply (spec "18+n") by simp apply (clarsimp simp: a_type_simps) apply (rule aligned_add_aligned is_aligned_shiftl_self | simp add: word_bits_conv)+ done lemma set_pt_distinct [wp]: "set_pt p pt \<lbrace>pspace_distinct\<rbrace>" apply (simp add: set_pt_def) apply (wpsimp wp: set_object_wp_strong) apply (clarsimp simp: obj_at_def a_type_def pspace_distinct_same_type split: kernel_object.splits arch_kernel_obj.splits if_splits) done lemma set_pd_distinct [wp]: "set_pd p pd \<lbrace>pspace_distinct\<rbrace>" apply (simp add: set_pd_def) apply (wp set_object_distinct[THEN hoare_set_object_weaken_pre] get_object_wp) apply (clarsimp simp: obj_at_def a_type_def split: kernel_object.splits arch_kernel_obj.splits) done lemma store_pte_valid_objs [wp]: "\<lbrace>(%s. wellformed_pte pte) and valid_objs\<rbrace> store_pte p pte \<lbrace>\<lambda>_. valid_objs\<rbrace>" apply (simp add: store_pte_def set_pt_def get_pt_def bind_assoc set_object_def get_object_def) apply (rule hoare_pre) apply (wp|wpc)+ apply (clarsimp simp: valid_objs_def dom_def simp del: fun_upd_apply) subgoal for \<dots> ptr _ apply (rule valid_obj_same_type) apply (cases "ptr = p && ~~ mask pt_bits") apply (erule allE, erule impE, blast) apply (clarsimp simp: valid_obj_def arch_valid_obj_def) apply clarsimp apply fastforce apply (erule allE, erule impE, blast) apply (clarsimp simp: valid_obj_def arch_valid_obj_def) apply assumption by (simp add: a_type_def) done lemma set_pt_caps_of_state [wp]: "set_pt p pt \<lbrace>\<lambda>s. P (caps_of_state s)\<rbrace>" apply (simp add: set_pt_def) apply (wpsimp wp: set_object_wp_strong simp: obj_at_def a_type_simps) apply (subst cte_wp_caps_of_lift) prefer 2 apply assumption apply (auto simp: cte_wp_at_cases a_type_def) done lemma set_pd_caps_of_state [wp]: "set_pd p pd \<lbrace>\<lambda>s. P (caps_of_state s)\<rbrace>" apply (simp add: set_pd_def bind_assoc) apply (wpsimp wp: set_object_wp_strong simp: obj_at_def) apply (subst cte_wp_caps_of_lift) prefer 2 apply assumption by (case_tac ko; simp add: cte_wp_at_cases a_type_simps split: if_splits) lemma store_pte_aligned [wp]: "store_pte pt p \<lbrace>pspace_aligned\<rbrace>" apply (simp add: store_pte_def set_pt_def) apply (wp set_object_aligned) including unfold_objects by (clarsimp simp: a_type_def) lemma store_pde_valid_objs [wp]: "\<lbrace>(%s. wellformed_pde pde) and valid_objs\<rbrace> store_pde p pde \<lbrace>\<lambda>_. valid_objs\<rbrace>" apply (simp add: store_pde_def set_pd_def get_pd_def bind_assoc set_object_def get_object_def) apply (rule hoare_pre) apply (wp|wpc)+ apply (clarsimp simp: valid_objs_def dom_def simp del: fun_upd_apply) subgoal for \<dots> ptr _ apply (rule valid_obj_same_type) apply (cases "ptr = p && ~~ mask pd_bits") apply (erule allE, erule impE, blast) apply (clarsimp simp: valid_obj_def arch_valid_obj_def) apply clarsimp apply fastforce apply (erule allE, erule impE, blast) apply (clarsimp simp: valid_obj_def arch_valid_obj_def) apply assumption by (simp add: a_type_def) done lemma set_asid_pool_aligned [wp]: "set_asid_pool p ptr \<lbrace>pspace_aligned\<rbrace>" apply (simp add: set_asid_pool_def) including unfold_objects apply (wpsimp wp: set_object_wp_strong pspace_aligned_obj_update[rotated]) done lemma set_asid_pool_distinct [wp]: "set_asid_pool p ptr \<lbrace>pspace_distinct\<rbrace>" apply (simp add: set_asid_pool_def) including unfold_objects by (wpsimp wp: set_object_wp_strong pspace_distinct_same_type) lemma store_pde_arch [wp]: "\<lbrace>\<lambda>s. P (arch_state s)\<rbrace> store_pde p pde \<lbrace>\<lambda>_ s. P (arch_state s)\<rbrace>" by (simp add: store_pde_def set_pd_def get_object_def) wpsimp lemma store_pte_valid_pte [wp]: "\<lbrace>valid_pte pt\<rbrace> store_pte p pte \<lbrace>\<lambda>_. valid_pte pt\<rbrace>" by (wp valid_pte_lift store_pte_typ_at) lemma store_pde_valid_pde [wp]: "\<lbrace>valid_pde pde\<rbrace> store_pde slot pde' \<lbrace>\<lambda>rv. valid_pde pde\<rbrace>" by (wp valid_pde_lift store_pde_typ_at) lemma set_pd_typ_at [wp]: "\<lbrace>\<lambda>s. P (typ_at T p s)\<rbrace> set_pd ptr pd \<lbrace>\<lambda>_ s. P (typ_at T p s)\<rbrace>" apply (simp add: set_pd_def) by (wpsimp wp: set_object_wp_strong simp: obj_at_def) lemma set_pd_valid_objs: "\<lbrace>(%s. \<forall>i. wellformed_pde (pd i)) and valid_objs\<rbrace> set_pd p pd \<lbrace>\<lambda>_. valid_objs\<rbrace>" apply (simp add: set_pd_def) by (wpsimp wp: set_object_valid_objs simp: valid_obj_def) lemma set_pd_iflive: "\<lbrace>\<lambda>s. if_live_then_nonz_cap s\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. if_live_then_nonz_cap s\<rbrace>" apply (subst set_pd_def) including unfold_objects by (wpsimp wp: set_object_iflive[THEN hoare_set_object_weaken_pre] simp: live_def hyp_live_def a_type_def) lemma set_pd_zombies: "\<lbrace>\<lambda>s. zombies_final s\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. zombies_final s\<rbrace>" apply (subst set_pd_def) apply (wp set_object_zombies[THEN hoare_set_object_weaken_pre]) including unfold_objects by (clarsimp simp: a_type_def) lemma set_pd_zombies_state_refs: "\<lbrace>\<lambda>s. P (state_refs_of s)\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. P (state_refs_of s)\<rbrace>" apply (subst set_pd_def) including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def) apply (erule rsubst [where P=P], rule ext) apply (simp add: state_refs_of_def) done lemma set_pd_zombies_state_hyp_refs: "\<lbrace>\<lambda>s. P (state_hyp_refs_of s)\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. P (state_hyp_refs_of s)\<rbrace>" apply (subst set_pd_def) including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def) apply (erule rsubst [where P=P], rule ext) apply (simp add: state_hyp_refs_of_def) done lemma set_pd_cdt: "\<lbrace>\<lambda>s. P (cdt s)\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. P (cdt s)\<rbrace>" unfolding set_pd_def by (wpsimp wp: get_object_wp) lemma set_pd_valid_mdb: "\<lbrace>\<lambda>s. valid_mdb s\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. valid_mdb s\<rbrace>" apply (rule valid_mdb_lift) by (wpsimp wp: set_pd_cdt set_object_wp simp: set_pd_def)+ lemma set_pd_valid_idle: "\<lbrace>\<lambda>s. valid_idle s\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. valid_idle s\<rbrace>" by (wpsimp wp: valid_idle_lift set_object_wp simp: set_pd_def) lemma set_pd_ifunsafe: "\<lbrace>\<lambda>s. if_unsafe_then_cap s\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. if_unsafe_then_cap s\<rbrace>" unfolding set_pd_def including unfold_objects by (wpsimp wp: set_object_ifunsafe[THEN hoare_set_object_weaken_pre] simp: a_type_def) lemma set_pd_reply_caps: "\<lbrace>\<lambda>s. valid_reply_caps s\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. valid_reply_caps s\<rbrace>" by (wp valid_reply_caps_st_cte_lift) lemma set_pd_reply_masters: "\<lbrace>valid_reply_masters\<rbrace> set_pd p pd \<lbrace>\<lambda>_. valid_reply_masters\<rbrace>" by (wp valid_reply_masters_cte_lift) lemma global_refs_kheap [simp]: "global_refs (kheap_update f s) = global_refs s" by (simp add: global_refs_def) crunch global_ref [wp]: set_pd "\<lambda>s. P (global_refs s)" (wp: crunch_wps) crunch arch [wp]: set_pd "\<lambda>s. P (arch_state s)" (wp: crunch_wps) crunch idle [wp]: set_pd "\<lambda>s. P (idle_thread s)" (wp: crunch_wps) crunch irq [wp]: set_pd "\<lambda>s. P (interrupt_irq_node s)" (wp: crunch_wps) lemma set_pd_valid_global: "\<lbrace>\<lambda>s. valid_global_refs s\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. valid_global_refs s\<rbrace>" by (wp valid_global_refs_cte_lift) lemma set_pd_valid_arch: "\<lbrace>\<lambda>s. valid_arch_state s\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. valid_arch_state s\<rbrace>" by (wp valid_arch_state_lift) lemma set_pd_cur: "\<lbrace>\<lambda>s. cur_tcb s\<rbrace> set_pd p pd \<lbrace>\<lambda>_ s. cur_tcb s\<rbrace>" apply (simp add: cur_tcb_def set_pd_def) including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_simps) apply (simp add: is_tcb_def) done crunch interrupt_states[wp]: set_pd "\<lambda>s. P (interrupt_states s)" (wp: crunch_wps) lemma set_pd_vspace_objs_unmap: "\<lbrace>valid_vspace_objs and (\<lambda>s. (\<exists>\<rhd>p) s \<longrightarrow> valid_vspace_obj (PageDirectory pd') s) and obj_at (\<lambda>ko. vs_refs (ArchObj (PageDirectory pd')) \<subseteq> vs_refs ko) p\<rbrace> set_pd p pd' \<lbrace>\<lambda>_. valid_vspace_objs\<rbrace>" apply (simp add: set_pd_def) apply (wpsimp wp: set_object_vspace_objs[THEN hoare_set_object_weaken_pre]) including unfold_objects apply (clarsimp simp: a_type_def) done declare graph_of_None_update[simp] declare graph_of_Some_update[simp] lemma set_pt_typ_at [wp]: "\<lbrace>\<lambda>s. P (typ_at T p s)\<rbrace> set_pt ptr pt \<lbrace>\<lambda>_ s. P (typ_at T p s)\<rbrace>" apply (simp add: set_pt_def) by (wpsimp wp: set_object_wp_strong simp: obj_at_def) lemma set_pt_valid_objs: "\<lbrace>(%s. \<forall>i. wellformed_pte (pt i)) and valid_objs\<rbrace> set_pt p pt \<lbrace>\<lambda>_. valid_objs\<rbrace>" apply (simp add: set_pt_def) apply (wp set_object_valid_objs) apply (clarsimp split: kernel_object.splits arch_kernel_obj.splits) apply (clarsimp simp: valid_obj_def obj_at_def a_type_def arch_valid_obj_def) done lemma set_pt_iflive: "\<lbrace>\<lambda>s. if_live_then_nonz_cap s\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. if_live_then_nonz_cap s\<rbrace>" unfolding set_pt_def including unfold_objects apply (wpsimp wp: set_object_iflive[THEN hoare_set_object_weaken_pre] simp: live_def hyp_live_def a_type_def) done lemma set_pt_zombies: "\<lbrace>\<lambda>s. zombies_final s\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. zombies_final s\<rbrace>" unfolding set_pt_def including unfold_objects apply (wpsimp wp: set_object_zombies[THEN hoare_set_object_weaken_pre] simp: a_type_def) done lemma set_pt_zombies_state_refs: "\<lbrace>\<lambda>s. P (state_refs_of s)\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. P (state_refs_of s)\<rbrace>" unfolding set_pt_def including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def) apply (erule rsubst [where P=P]) apply (rule ext) apply (clarsimp simp: state_refs_of_def) done lemma set_pt_zombies_state_hyp_refs: "\<lbrace>\<lambda>s. P (state_hyp_refs_of s)\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. P (state_hyp_refs_of s)\<rbrace>" unfolding set_pt_def including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def) apply (erule rsubst [where P=P]) apply (rule ext) apply (clarsimp simp: state_hyp_refs_of_def) done lemma set_pt_cdt: "\<lbrace>\<lambda>s. P (cdt s)\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. P (cdt s)\<rbrace>" unfolding set_pt_def including unfold_objects by wpsimp lemma set_pt_valid_mdb: "\<lbrace>\<lambda>s. valid_mdb s\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. valid_mdb s\<rbrace>" including unfold_objects by (wpsimp wp: set_pt_cdt valid_mdb_lift simp: set_pt_def set_object_def) lemma set_pt_valid_idle: "\<lbrace>\<lambda>s. valid_idle s\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. valid_idle s\<rbrace>" including unfold_objects by (wpsimp wp: valid_idle_lift simp: set_pt_def) lemma set_pt_ifunsafe: "\<lbrace>\<lambda>s. if_unsafe_then_cap s\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. if_unsafe_then_cap s\<rbrace>" including unfold_objects by (wpsimp wp: set_object_ifunsafe[THEN hoare_set_object_weaken_pre] simp: set_pt_def a_type_def) lemma set_pt_reply_caps: "\<lbrace>\<lambda>s. valid_reply_caps s\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. valid_reply_caps s\<rbrace>" by (wp valid_reply_caps_st_cte_lift) lemma set_pt_reply_masters: "\<lbrace>valid_reply_masters\<rbrace> set_pt p pt \<lbrace>\<lambda>_. valid_reply_masters\<rbrace>" by (wp valid_reply_masters_cte_lift) crunch global_ref [wp]: set_pt "\<lambda>s. P (global_refs s)" (wp: crunch_wps) crunch arch [wp]: set_pt "\<lambda>s. P (arch_state s)" (wp: crunch_wps) crunch idle [wp]: set_pt "\<lambda>s. P (idle_thread s)" (wp: crunch_wps) crunch irq [wp]: set_pt "\<lambda>s. P (interrupt_irq_node s)" (wp: crunch_wps) lemma set_pt_valid_global: "\<lbrace>\<lambda>s. valid_global_refs s\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. valid_global_refs s\<rbrace>" by (wp valid_global_refs_cte_lift) lemma set_pt_valid_arch_state[wp]: "\<lbrace>\<lambda>s. valid_arch_state s\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. valid_arch_state s\<rbrace>" by (wp valid_arch_state_lift) lemma set_pt_cur: "\<lbrace>\<lambda>s. cur_tcb s\<rbrace> set_pt p pt \<lbrace>\<lambda>_ s. cur_tcb s\<rbrace>" unfolding set_pt_def cur_tcb_def including unfold_objects by (wpsimp wp: set_object_wp_strong simp: a_type_def is_tcb) lemma set_pt_aligned [wp]: "\<lbrace>pspace_aligned\<rbrace> set_pt p pt \<lbrace>\<lambda>_. pspace_aligned\<rbrace>" unfolding set_pt_def including unfold_objects by (wpsimp wp: set_object_aligned[THEN hoare_set_object_weaken_pre]) crunch interrupt_states[wp]: set_pt "\<lambda>s. P (interrupt_states s)" (wp: crunch_wps) lemma set_pt_vspace_objs [wp]: "\<lbrace>valid_vspace_objs and (\<lambda>s. (\<exists>\<rhd>p) s \<longrightarrow> valid_vspace_obj (PageTable pt) s)\<rbrace> set_pt p pt \<lbrace>\<lambda>_. valid_vspace_objs\<rbrace>" unfolding set_pt_def including unfold_objects apply (wpsimp wp: set_object_vspace_objs[THEN hoare_set_object_weaken_pre] simp: a_type_def) by (simp add: vs_refs_def) lemma set_pt_vs_lookup [wp]: "\<lbrace>\<lambda>s. P (vs_lookup s)\<rbrace> set_pt p pt \<lbrace>\<lambda>x s. P (vs_lookup s)\<rbrace>" unfolding set_pt_def including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def) apply (erule rsubst [where P=P]) apply (rule order_antisym) apply (rule vs_lookup_sub) apply (clarsimp simp: vs_refs_def) prefer 3 apply (rule vs_lookup_sub) apply (clarsimp simp: vs_refs_def split: if_split_asm) apply blast+ apply auto done lemma store_pte_vs_lookup [wp]: "\<lbrace>\<lambda>s. P (vs_lookup s)\<rbrace> store_pte x pte \<lbrace>\<lambda>_ s. P (vs_lookup s)\<rbrace>" unfolding store_pte_def by wpsimp lemma unique_table_caps_ptD: "\<lbrakk> cs p = Some cap; cap_asid cap = None; cs p' = Some cap'; is_pt_cap cap; is_pt_cap cap'; obj_refs cap' = obj_refs cap; unique_table_caps cs\<rbrakk> \<Longrightarrow> p = p'" by (fastforce simp add: unique_table_caps_def) lemma unique_table_caps_pdD: "\<lbrakk> cs p = Some cap; cap_asid cap = None; cs p' = Some cap'; is_pd_cap cap; is_pd_cap cap'; obj_refs cap' = obj_refs cap; unique_table_caps cs\<rbrakk> \<Longrightarrow> p = p'" by (fastforce simp add: unique_table_caps_def) lemma valid_objs_caps: "valid_objs s \<Longrightarrow> valid_caps (caps_of_state s) s" apply (clarsimp simp: valid_caps_def) apply (erule (1) caps_of_state_valid_cap) done lemma simpler_set_pt_def: "set_pt p pt = (\<lambda>s. if \<exists>pt. kheap s p = Some (ArchObj (PageTable pt)) then ({((), s\<lparr>kheap := kheap s(p \<mapsto> ArchObj (PageTable pt))\<rparr>)}, False) else ({}, True))" apply (rule ext) apply (clarsimp simp: set_pt_def set_object_def get_object_def assert_def put_def get_def simpler_gets_def bind_def return_def fail_def) apply (rule conjI) apply (clarsimp simp: set_pt_def set_object_def get_object_def assert_def put_def get_def simpler_gets_def bind_def return_def fail_def a_type_def split: kernel_object.splits arch_kernel_obj.splits) using a_type_def aa_type_APageTableE apply fastforce done lemma valid_set_ptI: "(!!s opt. \<lbrakk>P s; kheap s p = Some (ArchObj (PageTable opt))\<rbrakk> \<Longrightarrow> Q () (s\<lparr>kheap := kheap s(p \<mapsto> ArchObj (PageTable pt))\<rparr>)) \<Longrightarrow> \<lbrace>P\<rbrace> set_pt p pt \<lbrace>Q\<rbrace>" by (rule validI) (clarsimp simp: simpler_set_pt_def split: if_split_asm) lemma set_pt_table_caps [wp]: "\<lbrace>valid_table_caps and (\<lambda>s. valid_caps (caps_of_state s) s) and (\<lambda>s. ((\<exists>slot. caps_of_state s slot = Some (ArchObjectCap (PageTableCap p None))) \<longrightarrow> pt = (\<lambda>x. InvalidPTE)) \<or> (\<forall>slot. \<exists>asid. caps_of_state s slot = Some (ArchObjectCap (PageTableCap p (Some asid)))))\<rbrace> set_pt p pt \<lbrace>\<lambda>rv. valid_table_caps\<rbrace>" unfolding valid_table_caps_def apply (rule valid_set_ptI) apply (intro allI impI, simp add: obj_at_def del: HOL.imp_disjL) apply (cut_tac s=s and val= "ArchObj (PageTable pt)" and p=p in caps_of_state_after_update[folded fun_upd_def]) apply (simp add: obj_at_def) apply (clarsimp simp del: HOL.imp_disjL) apply (thin_tac "ALL x. P x" for P) apply (case_tac cap, simp_all add: is_pd_cap_def is_pt_cap_def) apply (erule disjE) apply (simp add: valid_caps_def) apply ((drule spec)+, erule impE, assumption) apply (rename_tac arch_cap) apply (case_tac arch_cap, simp_all add: valid_cap_def obj_at_def aa_type_simps) apply clarsimp apply (erule impE, fastforce simp: cap_asid_def split: option.splits) apply (erule disjE, simp add: empty_table_def) apply (drule_tac x=a in spec, drule_tac x=b in spec) apply (clarsimp simp add: cap_asid_def split: option.splits) done lemma set_object_caps_of_state: "\<lbrace>(\<lambda>s. \<not>(tcb_at p s) \<and> \<not>(\<exists>n. cap_table_at n p s)) and K ((\<forall>x y. obj \<noteq> CNode x y) \<and> (\<forall>x. obj \<noteq> TCB x)) and (\<lambda>s. P (caps_of_state s))\<rbrace> set_object p obj \<lbrace>\<lambda>_ s. P (caps_of_state s)\<rbrace>" apply (wpsimp wp: set_object_wp_strong) apply (erule rsubst[where P=P]) apply (rule ext) apply (simp add: caps_of_state_cte_wp_at obj_at_def is_cap_table_def is_tcb_def) apply (auto simp: cte_wp_at_cases) done lemma set_pt_valid_vspace_objs[wp]: "valid (\<lambda>s. valid_vspace_objs s \<and> ((\<exists>\<rhd> p) s \<longrightarrow> (\<forall>x. valid_pte (pt x) s))) (set_pt p pt) (\<lambda>_. valid_vspace_objs)" apply (rule valid_set_ptI) apply (clarsimp simp: valid_vspace_objs_def) subgoal for s opt pa rs ao apply (spec pa) apply (prop_tac "(\<exists>\<rhd> pa) s") apply (rule exI[where x=rs]) apply (erule vs_lookupE) apply clarsimp apply (erule vs_lookupI) apply (erule rtrancl.induct, simp) subgoal for \<dots> b c apply (prop_tac "(b \<rhd>1 c) s") apply (thin_tac "_ : rtrancl _")+ apply (clarsimp simp add: vs_lookup1_def obj_at_def vs_refs_def split: if_split_asm) by simp apply simp apply (spec ao) apply (cases "pa = p") apply (clarsimp simp: obj_at_def) subgoal for _ x apply (drule_tac x=x in spec) by (cases "pt x"; clarsimp simp: data_at_def obj_at_def a_type_simps) apply (cases ao; simp add: obj_at_def a_type_simps) apply clarsimp apply (drule bspec, assumption, clarsimp) apply clarsimp subgoal for "fun" _ x apply (spec x) by (cases "fun x"; clarsimp simp: obj_at_def data_at_def a_type_simps) apply clarsimp apply (drule bspec,fastforce) subgoal for "fun" x by (cases "fun x"; clarsimp simp: data_at_def obj_at_def a_type_simps) done done lemma set_pt_valid_vs_lookup [wp]: "\<lbrace>\<lambda>s. valid_vs_lookup s \<and> valid_arch_state s \<and> valid_vspace_objs s \<and> ((\<exists>\<rhd> p) s \<longrightarrow> (\<forall>x. valid_pte (pt x) s)) \<and> (\<forall>ref. (ref \<unrhd> p) s \<longrightarrow> (\<forall>x p. pte_ref_pages (pt x) = Some p \<longrightarrow> (\<exists>p' cap. caps_of_state s p' = Some cap \<and> p \<in> obj_refs cap \<and> vs_cap_ref cap = Some (VSRef (ucast x) (Some APageTable) # ref))))\<rbrace> set_pt p pt \<lbrace>\<lambda>rv. valid_vs_lookup\<rbrace>" using set_pt_valid_vspace_objs[of p pt] set_pt_valid_arch_state[of p pt] apply (clarsimp simp: valid_def simpler_set_pt_def) apply (drule_tac x=s in spec)+ apply (clarsimp simp: valid_vs_lookup_def split: if_split_asm) apply (erule (1) vs_lookup_pagesE_alt) apply (clarsimp simp: valid_arch_state_def valid_asid_table_def fun_upd_def) apply (drule_tac x=pa in spec) apply (drule_tac x="[VSRef (ucast a) None]" in spec)+ apply simp apply (drule vs_lookup_pages_atI) apply simp apply (subst caps_of_state_after_update, simp add: obj_at_def) apply simp apply (drule_tac x=pa in spec) apply (drule_tac x="[VSRef (ucast b) (Some AASIDPool), VSRef (ucast a) None]" in spec)+ apply simp apply (drule vs_lookup_pages_apI) apply (simp split: if_split_asm) apply simp+ apply (subst caps_of_state_after_update, simp add: obj_at_def) apply simp apply (drule_tac x=pa in spec) apply (drule_tac x="[VSRef (ucast c) (Some APageDirectory), VSRef (ucast b) (Some AASIDPool), VSRef (ucast a) None]" in spec)+ apply simp apply (drule vs_lookup_pages_pdI) apply (simp split: if_split_asm)+ apply (subst caps_of_state_after_update, simp add: obj_at_def) apply fastforce apply (clarsimp simp: fun_upd_def split: if_split_asm) apply (thin_tac "valid_vspace_objs s" for s, thin_tac "valid_arch_state s" for s) apply (subst caps_of_state_after_update, simp add: obj_at_def) apply (thin_tac "\<forall>p ref. P p ref" for P) apply (drule_tac x="[VSRef (ucast c) (Some APageDirectory), VSRef (ucast b) (Some AASIDPool), VSRef (ucast a) None]" in spec) apply (thin_tac "valid_pte pte s" for pte s) apply (erule impE, fastforce intro: vs_lookup_pdI) apply (drule_tac x=d in spec) apply (erule impE) apply (erule (5) vs_lookup_pdI[THEN vs_lookup_pages_vs_lookupI]) apply (drule spec, drule spec, erule impE, assumption) apply assumption apply (thin_tac "valid_vspace_objs s" for s, thin_tac "valid_arch_state s" for s) apply (subst caps_of_state_after_update, simp add: obj_at_def) apply (thin_tac "\<forall>ref. (ref \<unrhd> p) s \<longrightarrow> P ref" for P) apply (drule_tac x=pa in spec) apply (drule_tac x="[VSRef (ucast d) (Some APageTable), VSRef (ucast c) (Some APageDirectory), VSRef (ucast b) (Some AASIDPool), VSRef (ucast a) None]" in spec) apply (thin_tac "(\<exists>\<rhd> p) s \<longrightarrow> P" for P) apply (erule impE, fastforce intro: vs_lookup_pages_ptI) apply simp done lemma set_pt_arch_caps [wp]: "\<lbrace>valid_arch_caps and valid_arch_state and valid_vspace_objs and (\<lambda>s. valid_caps (caps_of_state s) s) and (\<lambda>s. ((\<exists>slot. caps_of_state s slot = Some (ArchObjectCap (PageTableCap p None))) \<longrightarrow> pt = (\<lambda>x. InvalidPTE)) \<or> (\<forall>slot. \<exists>asid. caps_of_state s slot = Some (ArchObjectCap (PageTableCap p (Some asid))))) and (\<lambda>s. ((\<exists>\<rhd> p) s \<longrightarrow> (\<forall>x. valid_pte (pt x) s)) \<and> (\<forall>ref. (ref \<unrhd> p) s \<longrightarrow> (\<forall>x p. pte_ref_pages (pt x) = Some p \<longrightarrow> (\<exists>p' cap. caps_of_state s p' = Some cap \<and> p \<in> obj_refs cap \<and> vs_cap_ref cap = Some (VSRef (ucast x) (Some APageTable) # ref)))))\<rbrace> set_pt p pt \<lbrace>\<lambda>_. valid_arch_caps\<rbrace>" unfolding valid_arch_caps_def apply (rule hoare_pre) apply (wp set_pt_valid_vs_lookup) apply clarsimp done lemma valid_global_refsD2: "\<lbrakk> caps_of_state s ptr = Some cap; valid_global_refs s \<rbrakk> \<Longrightarrow> global_refs s \<inter> cap_range cap = {}" by (cases ptr, simp add: valid_global_refs_def valid_refs_def cte_wp_at_caps_of_state) lemma valid_global_refsD: "\<lbrakk> valid_global_refs s; cte_wp_at ((=) cap) ptr s; r \<in> global_refs s \<rbrakk> \<Longrightarrow> r \<notin> cap_range cap" apply (clarsimp simp: cte_wp_at_caps_of_state) apply (drule(1) valid_global_refsD2) apply fastforce done lemma set_pt_global_objs [wp]: "\<lbrace>valid_global_objs and valid_arch_state and (\<lambda>s. p \<in> set (arm_global_pts (arch_state s)) \<longrightarrow> (\<forall>x. aligned_pte (pt x)))\<rbrace> set_pt p pt \<lbrace>\<lambda>rv. valid_global_objs\<rbrace>" apply (rule valid_set_ptI) apply (clarsimp simp: valid_global_objs_def valid_arch_state_def valid_vspace_obj_def valid_vso_at_def obj_at_def empty_table_def) done crunch v_ker_map[wp]: set_pt "valid_kernel_mappings" (ignore: set_object wp: set_object_v_ker_map crunch_wps) lemma set_pt_asid_map [wp]: "\<lbrace>valid_asid_map\<rbrace> set_pt p pt \<lbrace>\<lambda>_. valid_asid_map\<rbrace>" apply (simp add: valid_asid_map_def vspace_at_asid_def) apply (rule hoare_lift_Pf2 [where f="arch_state"]) apply wp+ done lemma set_pt_only_idle [wp]: "\<lbrace>only_idle\<rbrace> set_pt p pt \<lbrace>\<lambda>_. only_idle\<rbrace>" by (wp only_idle_lift) lemma set_pt_equal_mappings [wp]: "\<lbrace>equal_kernel_mappings\<rbrace> set_pt p pt \<lbrace>\<lambda>rv. equal_kernel_mappings\<rbrace>" by (simp add: set_pt_def | wp set_object_equal_mappings get_object_wp)+ lemma set_pt_valid_global_vspace_mappings: "\<lbrace>\<lambda>s. valid_global_vspace_mappings s \<and> valid_global_objs s \<and> p \<notin> global_refs s\<rbrace> set_pt p pt \<lbrace>\<lambda>rv. valid_global_vspace_mappings\<rbrace>" unfolding set_pt_def including unfold_objects by (wpsimp wp: set_object_global_vspace_mappings) lemma set_pt_kernel_window[wp]: "\<lbrace>pspace_in_kernel_window\<rbrace> set_pt p pt \<lbrace>\<lambda>rv. pspace_in_kernel_window\<rbrace>" unfolding set_pt_def including unfold_objects by (wpsimp wp: set_object_pspace_in_kernel_window[THEN hoare_set_object_weaken_pre]) lemma set_pt_respects_device_region[wp]: "\<lbrace>pspace_respects_device_region\<rbrace> set_pt p pt \<lbrace>\<lambda>rv. pspace_respects_device_region\<rbrace>" unfolding set_pt_def including unfold_objects by (wpsimp wp: set_object_pspace_respects_device_region[THEN hoare_set_object_weaken_pre]) lemma set_pt_caps_in_kernel_window[wp]: "\<lbrace>cap_refs_in_kernel_window\<rbrace> set_pt p pt \<lbrace>\<lambda>rv. cap_refs_in_kernel_window\<rbrace>" unfolding set_pt_def including unfold_objects by (wpsimp wp: set_object_cap_refs_in_kernel_window[THEN hoare_set_object_weaken_pre] simp: a_type_def) lemma set_pt_caps_respects_device_region[wp]: "\<lbrace>cap_refs_respects_device_region\<rbrace> set_pt p pt \<lbrace>\<lambda>rv. cap_refs_respects_device_region\<rbrace>" unfolding set_pt_def including unfold_objects by (wpsimp wp: set_object_cap_refs_respects_device_region[THEN hoare_set_object_weaken_pre] simp: a_type_def) lemma set_pt_valid_ioc[wp]: "\<lbrace>valid_ioc\<rbrace> set_pt p pt \<lbrace>\<lambda>_. valid_ioc\<rbrace>" unfolding set_pt_def including unfold_objects by (wpsimp wp: set_object_valid_ioc_no_caps[THEN hoare_set_object_weaken_pre] simp: is_tcb is_cap_table) lemma valid_machine_stateE: assumes vm: "valid_machine_state s" assumes e: "\<lbrakk>in_user_frame p s \<or> underlying_memory (machine_state s) p = 0 \<rbrakk> \<Longrightarrow> E " shows E using vm apply (clarsimp simp: valid_machine_state_def) apply (drule_tac x = p in spec) apply (rule e) apply auto done lemma in_user_frame_same_type_upd: "\<lbrakk>typ_at type p s; type = a_type obj; in_user_frame q s\<rbrakk> \<Longrightarrow> in_user_frame q (s\<lparr>kheap := kheap s(p \<mapsto> obj)\<rparr>)" apply (clarsimp simp: in_user_frame_def obj_at_def) apply (rule_tac x=sz in exI) apply (auto simp: a_type_simps) done lemma in_device_frame_same_type_upd: "\<lbrakk>typ_at type p s; type = a_type obj ; in_device_frame q s\<rbrakk> \<Longrightarrow> in_device_frame q (s\<lparr>kheap := kheap s(p \<mapsto> obj)\<rparr>)" apply (clarsimp simp: in_device_frame_def obj_at_def) apply (rule_tac x=sz in exI) apply (auto simp: a_type_simps) done lemma store_word_offs_in_user_frame[wp]: "\<lbrace>\<lambda>s. in_user_frame p s\<rbrace> store_word_offs a x w \<lbrace>\<lambda>_ s. in_user_frame p s\<rbrace>" unfolding in_user_frame_def by (wp hoare_vcg_ex_lift) lemma store_word_offs_in_device_frame[wp]: "\<lbrace>\<lambda>s. in_device_frame p s\<rbrace> store_word_offs a x w \<lbrace>\<lambda>_ s. in_device_frame p s\<rbrace>" unfolding in_device_frame_def by (wp hoare_vcg_ex_lift) lemma as_user_in_user_frame[wp]: "\<lbrace>\<lambda>s. in_user_frame p s\<rbrace> as_user t m \<lbrace>\<lambda>_ s. in_user_frame p s\<rbrace>" unfolding in_user_frame_def by (wp hoare_vcg_ex_lift) lemma as_user_in_device_frame[wp]: "\<lbrace>\<lambda>s. in_device_frame p s\<rbrace> as_user t m \<lbrace>\<lambda>_ s. in_device_frame p s\<rbrace>" unfolding in_device_frame_def by (wp hoare_vcg_ex_lift) crunch obj_at[wp]: load_word_offs "\<lambda>s. P (obj_at Q p s)" lemma load_word_offs_in_user_frame[wp]: "\<lbrace>\<lambda>s. in_user_frame p s\<rbrace> load_word_offs a x \<lbrace>\<lambda>_ s. in_user_frame p s\<rbrace>" unfolding in_user_frame_def by (wp hoare_vcg_ex_lift) lemma valid_machine_state_heap_updI: assumes vm : "valid_machine_state s" assumes tyat : "typ_at type p s" shows " a_type obj = type \<Longrightarrow> valid_machine_state (s\<lparr>kheap := kheap s(p \<mapsto> obj)\<rparr>)" apply (clarsimp simp: valid_machine_state_def) subgoal for p apply (rule valid_machine_stateE[OF vm,where p = p]) apply (elim disjE,simp_all) apply (drule(1) in_user_frame_same_type_upd[OF tyat]) apply simp+ done done lemma set_pt_vms[wp]: "\<lbrace>valid_machine_state\<rbrace> set_pt p pt \<lbrace>\<lambda>_. valid_machine_state\<rbrace>" unfolding set_pt_def including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def) apply (erule valid_machine_state_heap_updI) apply (fastforce simp: a_type_simps)+ done crunch valid_irq_states[wp]: set_pt "valid_irq_states" (wp: crunch_wps) crunch valid_irq_states[wp]: set_pd "valid_irq_states" (wp: crunch_wps) lemma set_pt_invs: "\<lbrace>invs and (\<lambda>s. \<forall>i. wellformed_pte (pt i)) and (\<lambda>s. (\<exists>\<rhd>p) s \<longrightarrow> valid_vspace_obj (PageTable pt) s) and (\<lambda>s. \<exists>slot asid. caps_of_state s slot = Some (cap.ArchObjectCap (arch_cap.PageTableCap p asid)) \<and> (pt = (\<lambda>x. InvalidPTE) \<or> asid \<noteq> None)) and (\<lambda>s. \<forall>ref. (ref \<unrhd> p) s \<longrightarrow> (\<forall>x p. pte_ref_pages (pt x) = Some p \<longrightarrow> (\<exists>p' cap. caps_of_state s p' = Some cap \<and> p \<in> obj_refs cap \<and> vs_cap_ref cap = Some (VSRef (ucast x) (Some APageTable) # ref))))\<rbrace> set_pt p pt \<lbrace>\<lambda>_. invs\<rbrace>" apply (simp add: invs_def valid_state_def valid_pspace_def) apply (rule hoare_pre) apply (wp set_pt_valid_objs set_pt_iflive set_pt_zombies set_pt_zombies_state_refs set_pt_zombies_state_hyp_refs set_pt_valid_mdb set_pt_valid_idle set_pt_ifunsafe set_pt_reply_caps set_pt_valid_arch_state set_pt_valid_global set_pt_cur set_pt_reply_masters valid_irq_node_typ valid_irq_handlers_lift set_pt_valid_global_vspace_mappings) apply (clarsimp dest!: valid_objs_caps) apply (rule conjI[rotated]) apply (subgoal_tac "p \<notin> global_refs s", simp add: global_refs_def) apply (frule (1) valid_global_refsD2) apply (clarsimp simp add: cap_range_def is_pt_cap_def) apply (thin_tac "ALL x. P x" for P)+ apply (clarsimp simp: valid_arch_caps_def unique_table_caps_def) apply (drule_tac x=aa in spec, drule_tac x=ba in spec) apply (drule_tac x=a in spec, drule_tac x=b in spec) apply (clarsimp simp: is_pt_cap_def cap_asid_def) done lemma vs_lookup_pages_pt_eq: "\<lbrakk>valid_vspace_objs s; \<forall>p\<in>ran (arm_asid_table (arch_state s)). asid_pool_at p s; page_table_at p s\<rbrakk> \<Longrightarrow> (ref \<unrhd> p) s = (ref \<rhd> p) s" apply (rule iffI[rotated]) apply (erule vs_lookup_pages_vs_lookupI) apply (erule (2) vs_lookup_pagesE_alt) apply (clarsimp simp: obj_at_def)+ apply (clarsimp simp: obj_at_def pde_ref_pages_def split: pde.splits) apply (erule (5) vs_lookup_pdI) apply (auto simp: obj_at_def pte_ref_pages_def data_at_def split: pte.splits) done (* NOTE: we use vs_lookup in the precondition because in this case, both are equivalent, but vs_lookup is generally preserved by store_pte while vs_lookup_pages might not. *) lemma store_pte_invs [wp]: "\<lbrace>invs and (\<lambda>s. (\<exists>\<rhd>(p && ~~ mask pt_bits)) s \<longrightarrow> valid_pte pte s) and (\<lambda>s. wellformed_pte pte) and (\<lambda>s. \<exists>slot asid. caps_of_state s slot = Some (ArchObjectCap (PageTableCap (p && ~~ mask pt_bits) asid)) \<and> (pte = InvalidPTE \<or> asid \<noteq> None)) and (\<lambda>s. \<forall>ref. (ref \<rhd> (p && ~~ mask pt_bits)) s \<longrightarrow> (\<forall>q. pte_ref_pages pte = Some q \<longrightarrow> (\<exists>p' cap. caps_of_state s p' = Some cap \<and> q \<in> obj_refs cap \<and> vs_cap_ref cap = Some (VSRef (p && mask pt_bits >> 2) (Some APageTable) # ref))))\<rbrace> store_pte p pte \<lbrace>\<lambda>_. invs\<rbrace>" apply (simp add: store_pte_def) apply (wp dmo_invs set_pt_invs) apply clarsimp apply (intro conjI) apply (drule invs_valid_objs) apply (fastforce simp: valid_objs_def dom_def obj_at_def valid_obj_def arch_valid_obj_def) apply clarsimp apply (drule (1) valid_vspace_objsD, fastforce) apply simp apply (thin_tac "All _") apply (rule exI)+ apply (rule conjI, assumption) subgoal premises prems for \<dots> asid proof (cases asid) case (Some a) from this show ?thesis by fastforce next case None from this prems show ?thesis apply clarsimp apply (rule ext) apply clarsimp apply (frule invs_pd_caps) apply (clarsimp simp add: valid_table_caps_def simp del: HOL.imp_disjL) apply (spec "p && ~~ mask pt_bits") apply (drule spec)+ apply (erule impE, assumption) by (simp add: is_pt_cap_def cap_asid_def empty_table_def obj_at_def) qed apply (clarsimp simp: obj_at_def) apply (intro impI conjI allI) apply (drule (2) vs_lookup_pages_pt_eq[OF invs_vspace_objs invs_ran_asid_table, THEN iffD1, rotated -1]) apply (clarsimp simp: obj_at_def a_type_simps) apply (drule spec, erule impE, assumption)+ apply (erule exEI)+ apply clarsimp apply (rule sym) apply (rule ucast_ucast_len) apply (rule shiftr_less_t2n) using and_mask_less'[of 10 p] apply (simp add: pt_bits_def pageBits_def) subgoal for \<dots> pa apply (thin_tac "All _", thin_tac "_ \<longrightarrow> _", thin_tac "_ \<or> _") apply (frule invs_valid_vs_lookup) apply (simp add: valid_vs_lookup_def) apply (spec pa) apply (drule spec, erule impE) apply (erule vs_lookup_pages_step) by (fastforce simp: vs_lookup_pages1_def obj_at_def vs_refs_pages_def graph_of_def image_def) simp done lemma set_asid_pool_iflive [wp]: "\<lbrace>\<lambda>s. if_live_then_nonz_cap s\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. if_live_then_nonz_cap s\<rbrace>" apply (simp add: set_asid_pool_def) including unfold_objects by (wpsimp wp: set_object_iflive[THEN hoare_set_object_weaken_pre] simp: a_type_def live_def hyp_live_def) lemma set_asid_pool_zombies [wp]: "\<lbrace>\<lambda>s. zombies_final s\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. zombies_final s\<rbrace>" unfolding set_asid_pool_def including unfold_objects by (wpsimp wp: set_object_zombies[THEN hoare_set_object_weaken_pre] simp: a_type_def) lemma set_asid_pool_zombies_state_refs [wp]: "\<lbrace>\<lambda>s. P (state_refs_of s)\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. P (state_refs_of s)\<rbrace>" unfolding set_asid_pool_def including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def) apply (erule rsubst [where P=P], rule ext) apply (clarsimp simp: state_refs_of_def) done lemma set_asid_pool_zombies_state_hyp_refs [wp]: "\<lbrace>\<lambda>s. P (state_hyp_refs_of s)\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. P (state_hyp_refs_of s)\<rbrace>" unfolding set_asid_pool_def including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def) apply (erule rsubst [where P=P], rule ext) apply (simp add: state_hyp_refs_of_def) done lemma set_asid_pool_cdt [wp]: "\<lbrace>\<lambda>s. P (cdt s)\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. P (cdt s)\<rbrace>" unfolding set_asid_pool_def including unfold_objects by wpsimp lemma set_asid_pool_caps_of_state [wp]: "\<lbrace>\<lambda>s. P (caps_of_state s)\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. P (caps_of_state s)\<rbrace>" unfolding set_asid_pool_def including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def) apply (subst cte_wp_caps_of_lift) prefer 2 apply assumption apply (clarsimp simp: cte_wp_at_cases) done lemma set_asid_pool_valid_mdb [wp]: "\<lbrace>\<lambda>s. valid_mdb s\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. valid_mdb s\<rbrace>" including unfold_objects by (wpsimp wp: valid_mdb_lift simp: set_asid_pool_def set_object_def) lemma set_asid_pool_valid_idle [wp]: "\<lbrace>\<lambda>s. valid_idle s\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. valid_idle s\<rbrace>" including unfold_objects by (wpsimp wp: valid_idle_lift simp: set_asid_pool_def) lemma set_asid_pool_ifunsafe [wp]: "\<lbrace>\<lambda>s. if_unsafe_then_cap s\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. if_unsafe_then_cap s\<rbrace>" unfolding set_asid_pool_def including unfold_objects by (wpsimp wp: set_object_ifunsafe[THEN hoare_set_object_weaken_pre] simp: a_type_def) lemma set_asid_pool_reply_caps [wp]: "\<lbrace>\<lambda>s. valid_reply_caps s\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. valid_reply_caps s\<rbrace>" by (wp valid_reply_caps_st_cte_lift) lemma set_asid_pool_reply_masters [wp]: "\<lbrace>valid_reply_masters\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_. valid_reply_masters\<rbrace>" by (wp valid_reply_masters_cte_lift) crunch global_ref [wp]: set_asid_pool "\<lambda>s. P (global_refs s)" (wp: crunch_wps) crunch idle [wp]: set_asid_pool "\<lambda>s. P (idle_thread s)" (wp: crunch_wps) crunch irq [wp]: set_asid_pool "\<lambda>s. P (interrupt_irq_node s)" (wp: crunch_wps) crunch valid_irq_states[wp]: set_asid_pool "valid_irq_states" (wp: crunch_wps) lemma set_asid_pool_valid_global [wp]: "\<lbrace>\<lambda>s. valid_global_refs s\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_ s. valid_global_refs s\<rbrace>" by (wp valid_global_refs_cte_lift) crunch interrupt_states[wp]: set_asid_pool "\<lambda>s. P (interrupt_states s)" (wp: crunch_wps) lemma set_asid_pool_vspace_objs_unmap': "\<lbrace>valid_vspace_objs and (\<lambda>s. (\<exists>\<rhd>p) s \<longrightarrow> valid_vspace_obj (ASIDPool ap) s) and obj_at (\<lambda>ko. \<exists>ap'. ko = ArchObj (ASIDPool ap') \<and> graph_of ap \<subseteq> graph_of ap') p\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_. valid_vspace_objs\<rbrace>" unfolding set_asid_pool_def including unfold_objects apply (wpsimp wp: set_object_vspace_objs simp: a_type_simps) apply (fastforce simp: vs_refs_def) done lemma set_asid_pool_vspace_objs_unmap: "\<lbrace>valid_vspace_objs and ko_at (ArchObj (ASIDPool ap)) p\<rbrace> set_asid_pool p (ap |` S) \<lbrace>\<lambda>_. valid_vspace_objs\<rbrace>" apply (wp set_asid_pool_vspace_objs_unmap') apply (clarsimp simp: obj_at_def graph_of_restrict_map) apply (drule valid_vspace_objsD, simp add: obj_at_def, assumption) apply simp by (auto simp: obj_at_def dest!: ran_restrictD) lemma set_asid_pool_table_caps [wp]: "\<lbrace>valid_table_caps\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_. valid_table_caps\<rbrace>" apply (rule valid_table_caps_lift) apply (rule set_asid_pool_caps_of_state) apply wpsimp unfolding set_asid_pool_def including unfold_objects apply (wpsimp wp: set_object_wp_strong simp: a_type_def empty_table_def) apply (metis kernel_object_exhaust) done lemma set_asid_pool_vs_lookup_unmap': "\<lbrace>valid_vs_lookup and obj_at (\<lambda>ko. \<exists>ap'. ko = ArchObj (ASIDPool ap') \<and> graph_of ap \<subseteq> graph_of ap') p\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_. valid_vs_lookup\<rbrace>" apply (simp add: valid_vs_lookup_def pred_conj_def) apply (rule hoare_lift_Pf2 [where f=caps_of_state];wp?) apply (simp add: set_asid_pool_def set_object_def) apply (wp get_object_wp) apply (clarsimp simp: obj_at_def simp del: fun_upd_apply del: disjCI split: kernel_object.splits arch_kernel_obj.splits) subgoal for \<dots> pa ref apply (spec pa) apply (spec ref) apply (erule impE) apply (erule vs_lookup_pages_stateI) by (clarsimp simp: obj_at_def vs_refs_pages_def split: if_split_asm) fastforce+ done lemma set_asid_pool_vs_lookup_unmap: "\<lbrace>valid_vs_lookup and ko_at (ArchObj (ASIDPool ap)) p\<rbrace> set_asid_pool p (ap |` S) \<lbrace>\<lambda>_. valid_vs_lookup\<rbrace>" apply (wp set_asid_pool_vs_lookup_unmap') by (clarsimp simp: obj_at_def elim!: subsetD [OF graph_of_restrict_map]) lemma valid_pte_typ_at: "(\<And>T p. typ_at (AArch T) p s = typ_at (AArch T) p s') \<Longrightarrow> valid_pte pte s = valid_pte pte s'" by (case_tac pte, auto simp add: data_at_def) lemma valid_pde_typ_at: "(\<And>T p. typ_at (AArch T) p s = typ_at (AArch T) p s') \<Longrightarrow> valid_pde pde s = valid_pde pde s'" by (case_tac pde, auto simp add: data_at_def) lemma valid_vspace_obj_same_type: "\<lbrakk>valid_vspace_obj ao s; kheap s p = Some ko; a_type ko' = a_type ko\<rbrakk> \<Longrightarrow> valid_vspace_obj ao (s\<lparr>kheap := kheap s(p \<mapsto> ko')\<rparr>)" apply (rule hoare_to_pure_kheap_upd[OF valid_vspace_obj_typ]) by (auto simp: obj_at_def) lemma set_asid_pool_global_objs [wp]: "\<lbrace>valid_global_objs and valid_arch_state\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_. valid_global_objs\<rbrace>" apply (simp add: set_asid_pool_def set_object_def a_type_def) apply (wp get_object_wp) apply (clarsimp simp del: fun_upd_apply split: kernel_object.splits arch_kernel_obj.splits) apply (clarsimp simp: valid_global_objs_def valid_vso_at_def) apply (rule conjI) apply (clarsimp simp: obj_at_def) apply (rule conjI) subgoal by (clarsimp simp: valid_arch_state_def obj_at_def a_type_def) apply clarsimp apply (erule (1) valid_vspace_obj_same_type) subgoal by (simp add: a_type_def) apply (rule conjI) subgoal by (clarsimp simp: obj_at_def valid_arch_state_def a_type_def) apply (clarsimp simp: obj_at_def) apply (drule (1) bspec) by clarsimp crunch v_ker_map[wp]: set_asid_pool "valid_kernel_mappings" (ignore: set_object wp: set_object_v_ker_map crunch_wps) lemma set_asid_pool_restrict_asid_map: "\<lbrace>valid_asid_map and ko_at (ArchObj (ASIDPool ap)) p and (\<lambda>s. \<forall>asid. asid \<le> mask asid_bits \<longrightarrow> ucast asid \<notin> S \<longrightarrow> arm_asid_table (arch_state s) (asid_high_bits_of asid) = Some p \<longrightarrow> arm_asid_map (arch_state s) asid = None)\<rbrace> set_asid_pool p (ap |` S) \<lbrace>\<lambda>_. valid_asid_map\<rbrace>" apply (simp add: set_asid_pool_def valid_asid_map_def set_object_def) apply (wp get_object_wp) apply (clarsimp split: kernel_object.splits arch_kernel_obj.splits simp del: fun_upd_apply) apply (drule(1) bspec) apply (clarsimp simp: vspace_at_asid_def obj_at_def graph_of_def) apply (drule subsetD, erule domI) apply simp apply (drule spec, drule(1) mp) apply simp apply (erule vs_lookupE) apply (rule vs_lookupI, simp) apply (clarsimp simp: vs_asid_refs_def graph_of_def) apply (drule rtranclD) apply (erule disjE, clarsimp) apply clarsimp apply (drule tranclD) apply clarsimp apply (rule r_into_rtrancl) apply (drule vs_lookup1D) apply clarsimp apply (subst vs_lookup1_def) apply (clarsimp simp: obj_at_def) apply (erule rtranclE) apply (clarsimp simp: vs_refs_def graph_of_def) apply (rule image_eqI[where x="(_, _)"]) apply (simp add: split_def) apply (clarsimp simp: restrict_map_def) apply (drule ucast_up_inj, simp) apply (simp add: mask_asid_low_bits_ucast_ucast) apply (drule ucast_up_inj, simp) apply clarsimp apply clarsimp apply (drule vs_lookup1_trans_is_append) apply clarsimp apply (drule vs_lookup1D) by clarsimp lemma set_asid_pool_asid_map_unmap: "\<lbrace>valid_asid_map and ko_at (ArchObj (ASIDPool ap)) p and (\<lambda>s. \<forall>asid. asid \<le> mask asid_bits \<longrightarrow> ucast asid = x \<longrightarrow> arm_asid_table (arch_state s) (asid_high_bits_of asid) = Some p \<longrightarrow> arm_asid_map (arch_state s) asid = None)\<rbrace> set_asid_pool p (ap(x := None)) \<lbrace>\<lambda>_. valid_asid_map\<rbrace>" using set_asid_pool_restrict_asid_map[where S="- {x}"] by (simp add: restrict_map_def fun_upd_def if_flip) lemma set_asid_pool_vspace_objs_unmap_single: "\<lbrace>valid_vspace_objs and ko_at (ArchObj (ASIDPool ap)) p\<rbrace> set_asid_pool p (ap(x := None)) \<lbrace>\<lambda>_. valid_vspace_objs\<rbrace>" using set_asid_pool_vspace_objs_unmap[where S="- {x}"] by (simp add: restrict_map_def fun_upd_def if_flip) lemma set_asid_pool_only_idle [wp]: "\<lbrace>only_idle\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_. only_idle\<rbrace>" by (wp only_idle_lift set_asid_pool_typ_at) lemma set_asid_pool_equal_mappings [wp]: "\<lbrace>equal_kernel_mappings\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>rv. equal_kernel_mappings\<rbrace>" by (simp add: set_asid_pool_def | wp set_object_equal_mappings get_object_wp)+ lemma set_asid_pool_valid_global_vspace_mappings[wp]: "\<lbrace>valid_global_vspace_mappings\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>rv. valid_global_vspace_mappings\<rbrace>" apply (simp add: set_asid_pool_def) apply (wp set_object_global_vspace_mappings[THEN hoare_set_object_weaken_pre]) including unfold_objects by (clarsimp simp: a_type_def) lemma set_asid_pool_kernel_window[wp]: "\<lbrace>pspace_in_kernel_window\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>rv. pspace_in_kernel_window\<rbrace>" unfolding set_asid_pool_def including unfold_objects by (wpsimp wp: set_object_pspace_in_kernel_window[THEN hoare_set_object_weaken_pre]) lemma set_asid_pool_pspace_respects_device_region[wp]: "\<lbrace>pspace_respects_device_region\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>rv. pspace_respects_device_region\<rbrace>" unfolding set_asid_pool_def including unfold_objects by (wpsimp wp: set_object_pspace_respects_device_region[THEN hoare_set_object_weaken_pre]) lemma set_asid_pool_caps_kernel_window[wp]: "\<lbrace>cap_refs_in_kernel_window\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>rv. cap_refs_in_kernel_window\<rbrace>" unfolding set_asid_pool_def including unfold_objects by (wpsimp wp: set_object_cap_refs_in_kernel_window[THEN hoare_set_object_weaken_pre] simp: a_type_def) lemma set_asid_pool_caps_respects_device_region[wp]: "\<lbrace>cap_refs_respects_device_region\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>rv. cap_refs_respects_device_region\<rbrace>" apply (simp add: set_asid_pool_def) apply (wp set_object_cap_refs_respects_device_region[THEN hoare_set_object_weaken_pre]) including unfold_objects by (simp add: a_type_def) lemma set_asid_pool_valid_ioc[wp]: "\<lbrace>valid_ioc\<rbrace> set_asid_pool p ap \<lbrace>\<lambda>_. valid_ioc\<rbrace>" apply (simp add: set_asid_pool_def) apply (wp set_object_valid_ioc_no_caps[THEN hoare_set_object_weaken_pre]) including unfold_objects by (clarsimp simp: valid_def get_object_def simpler_gets_def assert_def return_def fail_def bind_def a_type_simps is_tcb is_cap_table) lemma set_asid_pool_vms[wp]: "\<lbrace>valid_machine_state\<rbrace> set_asid_pool p S \<lbrace>\<lambda>_. valid_machine_state\<rbrace>" apply (simp add: set_asid_pool_def set_object_def) apply (wp get_object_wp) apply clarify apply (erule valid_machine_state_heap_updI) apply (fastforce simp: a_type_def obj_at_def split: kernel_object.splits arch_kernel_obj.splits)+ done lemma set_asid_pool_invs_restrict: "\<lbrace>invs and ko_at (ArchObj (ASIDPool ap)) p and (\<lambda>s. \<forall>asid. asid \<le> mask asid_bits \<longrightarrow> ucast asid \<notin> S \<longrightarrow> arm_asid_table (arch_state s) (asid_high_bits_of asid) = Some p \<longrightarrow> arm_asid_map (arch_state s) asid = None)\<rbrace> set_asid_pool p (ap |` S) \<lbrace>\<lambda>_. invs\<rbrace>" apply (simp add: invs_def valid_state_def valid_pspace_def valid_arch_caps_def) apply (wp valid_irq_node_typ set_asid_pool_typ_at set_asid_pool_vspace_objs_unmap valid_irq_handlers_lift set_asid_pool_vs_lookup_unmap set_asid_pool_restrict_asid_map) apply simp done lemmas set_asid_pool_cte_wp_at1[wp] = hoare_cte_wp_caps_of_state_lift [OF set_asid_pool_caps_of_state] lemma mdb_cte_at_set_asid_pool[wp]: "\<lbrace>\<lambda>s. mdb_cte_at (swp (cte_wp_at ((\<noteq>) cap.NullCap)) s) (cdt s)\<rbrace> set_asid_pool y pool \<lbrace>\<lambda>r s. mdb_cte_at (swp (cte_wp_at ((\<noteq>) cap.NullCap)) s) (cdt s)\<rbrace>" apply (clarsimp simp:mdb_cte_at_def) apply (simp only: imp_conv_disj) apply (wp hoare_vcg_disj_lift hoare_vcg_all_lift) done lemma set_asid_pool_invs_unmap: "\<lbrace>invs and ko_at (ArchObj (ASIDPool ap)) p and (\<lambda>s. \<forall>asid. asid \<le> mask asid_bits \<longrightarrow> ucast asid = x \<longrightarrow> arm_asid_table (arch_state s) (asid_high_bits_of asid) = Some p \<longrightarrow> arm_asid_map (arch_state s) asid = None)\<rbrace> set_asid_pool p (ap(x := None)) \<lbrace>\<lambda>_. invs\<rbrace>" using set_asid_pool_invs_restrict[where S="- {x}"] by (simp add: restrict_map_def fun_upd_def if_flip) lemma valid_slots_typ_at: assumes x: "\<And>T p. \<lbrace>typ_at (AArch T) p\<rbrace> f \<lbrace>\<lambda>rv. typ_at (AArch T) p\<rbrace>" assumes y: "\<And>p. \<lbrace>\<exists>\<rhd> p\<rbrace> f \<lbrace>\<lambda>rv. \<exists>\<rhd> p\<rbrace>" shows "\<lbrace>valid_slots m\<rbrace> f \<lbrace>\<lambda>rv. valid_slots m\<rbrace>" unfolding valid_slots_def by (cases m; clarsimp; wp x y hoare_vcg_const_Ball_lift valid_pte_lift valid_pde_lift pte_at_atyp pde_at_atyp) lemma ucast_ucast_id: "(len_of TYPE('a)) < (len_of TYPE('b)) \<Longrightarrow> ucast ((ucast (x::('a::len) word))::('b::len) word) = x" by (auto intro: ucast_up_ucast_id simp: is_up_def source_size_def target_size_def word_size) lemma kernel_base_kernel_mapping_slots: "x < kernel_base \<Longrightarrow> ucast (x >> 20) \<notin> kernel_mapping_slots" apply (simp add: kernel_mapping_slots_def kernel_base_def) apply (subst ucast_le_ucast[symmetric, where 'a=12 and 'b=32]) apply simp apply (subst ucast_ucast_mask) apply (simp add: ucast_def) apply (subst less_mask_eq) apply (rule vptr_shiftr_le_2p[unfolded pageBits_def]) apply (subst word_not_le) apply word_bitwise done lemma lookup_pt_slot_looks_up [wp]: "\<lbrace>ref \<rhd> pd and K (is_aligned pd 14 \<and> vptr < kernel_base) and valid_arch_state and valid_vspace_objs and equal_kernel_mappings and pspace_aligned and valid_global_objs\<rbrace> lookup_pt_slot pd vptr \<lbrace>\<lambda>pt_slot. (VSRef (vptr >> 20 << 2 >> 2) (Some APageDirectory) # ref) \<rhd> (pt_slot && ~~ mask pt_bits)\<rbrace>, -" apply (simp add: lookup_pt_slot_def) apply (wp get_pde_wp|wpc)+ apply clarsimp apply (rule vs_lookup_step, assumption) apply (clarsimp simp: vs_lookup1_def lookup_pd_slot_def Let_def pd_shifting pd_shifting_dual) apply (rule exI, rule conjI, assumption) subgoal for s _ x apply (prop_tac "ptrFromPAddr x + ((vptr >> 12) && 0xFF << 2) && ~~ mask pt_bits = ptrFromPAddr x") apply (prop_tac "is_aligned (ptrFromPAddr x) 10") apply (drule (2) valid_vspace_objsD) apply clarsimp apply (erule_tac x="ucast (vptr >> 20 << 2 >> 2)" in ballE) apply (thin_tac "obj_at P x s" for P x)+ apply (clarsimp simp: obj_at_def invs_def valid_state_def valid_pspace_def pspace_aligned_def) apply (drule bspec, blast) apply (clarsimp simp: a_type_def split: kernel_object.splits arch_kernel_obj.splits if_split_asm) apply (frule kernel_mapping_slots_empty_pdeI) apply ((simp add: obj_at_def)+)[4] apply (clarsimp simp: pde_ref_def second_level_tables_def) apply (erule is_aligned_global_pt[unfolded pt_bits_def pageBits_def, simplified]) apply simp+ apply (subgoal_tac "(vptr >> 12) && 0xFF << 2 < 2 ^ 10") apply (subst is_aligned_add_or, (simp add: pt_bits_def pageBits_def)+) apply (subst word_ao_dist) apply (subst mask_out_sub_mask [where x="(vptr >> 12) && 0xFF << 2"]) apply (subst less_mask_eq, simp) apply (subst is_aligned_neg_mask_eq, simp) apply (clarsimp simp: valid_arch_state_def valid_global_pts_def) apply (rule shiftl_less_t2n, simp) apply (rule and_mask_less'[where n=8, unfolded mask_def, simplified], (simp )+) apply (subst shiftl_shiftr_id) apply (simp add: word_bits_def)+ apply word_bitwise apply (subst (asm) shiftl_shiftr_id) apply (simp add: word_bits_def)+ apply word_bitwise apply (erule vs_refs_pdI) apply (erule kernel_base_kernel_mapping_slots) apply (intro allI impI) apply (simp add: nth_shiftr) apply (rule bang_big[simplified]) by (simp add: word_size) done lemma lookup_pt_slot_reachable [wp]: "\<lbrace>\<exists>\<rhd> pd and K (is_aligned pd 14 \<and> vptr < kernel_base) and valid_arch_state and valid_vspace_objs and equal_kernel_mappings and pspace_aligned and valid_global_objs\<rbrace> lookup_pt_slot pd vptr \<lbrace>\<lambda>pt_slot. \<exists>\<rhd> (pt_slot && ~~ mask pt_bits)\<rbrace>, -" apply (simp add: pred_conj_def ex_simps [symmetric] del: ex_simps) apply (rule hoare_vcg_ex_lift_R1) apply (rule hoare_pre) apply (rule hoare_post_imp_R) apply (rule lookup_pt_slot_looks_up) prefer 2 apply clarsimp apply assumption apply fastforce done lemma lookup_pt_slot_reachable2 [wp]: "\<lbrace>\<exists>\<rhd> pd and K (is_aligned pd 14 \<and> is_aligned vptr 16 \<and> vptr < kernel_base) and valid_arch_state and valid_vspace_objs and equal_kernel_mappings and pspace_aligned and valid_global_objs\<rbrace> lookup_pt_slot pd vptr \<lbrace>\<lambda>rv s. \<forall>x\<in>set [0 , 4 .e. 0x3C]. (\<exists>\<rhd> (x + rv && ~~ mask pt_bits)) s\<rbrace>, -" apply (simp add: lookup_pt_slot_def) apply (wp get_pde_wp|wpc)+ apply clarsimp apply (rule exI) apply (rule vs_lookup_step, assumption) apply (clarsimp simp: vs_lookup1_def lookup_pd_slot_def Let_def pd_shifting pd_shifting_dual add.commute add.left_commute) apply (rule exI, rule conjI, assumption) apply (rule_tac x="VSRef (vptr >> 20 << 2 >> 2) (Some APageDirectory)" in exI) apply (subgoal_tac "ptrFromPAddr x + (xa + ((vptr >> 12) && 0xFF << 2)) && ~~ mask pt_bits = ptrFromPAddr x") prefer 2 apply (subgoal_tac "is_aligned (ptrFromPAddr x) 10") prefer 2 apply (drule (2) valid_vspace_objsD) apply clarsimp apply (erule_tac x="ucast (vptr >> 20 << 2 >> 2)" in ballE) apply (thin_tac "obj_at P x s" for P x)+ apply (clarsimp simp: obj_at_def pspace_aligned_def) apply (drule bspec, blast) apply (clarsimp simp: a_type_def split: kernel_object.splits arch_kernel_obj.splits if_split_asm) apply (frule kernel_mapping_slots_empty_pdeI) apply (simp add: obj_at_def)+ apply clarsimp apply (erule_tac x="ptrFromPAddr x" in allE) apply (clarsimp simp: pde_ref_def second_level_tables_def) apply (rule is_aligned_global_pt[unfolded pt_bits_def pageBits_def, simplified]) apply simp+ apply (subst add_mask_lower_bits) apply (simp add: pt_bits_def pageBits_def) prefer 2 apply simp apply (clarsimp simp: pt_bits_def pageBits_def) apply (clarsimp simp: upto_enum_step_def word_shift_by_2 p_le_0xF_helper) apply (thin_tac "pda x = t" for x t) apply (subst (asm) word_plus_and_or_coroll) apply (rule word_eqI) apply (clarsimp simp: word_size word_bits_def nth_shiftr nth_shiftl is_aligned_nth word_FF_is_mask) apply (erule_tac x="n - 2" in allE) apply simp apply (clarsimp simp: word_size nth_shiftr nth_shiftl is_aligned_nth word_FF_is_mask word_bits_def) apply (rule conjI, rule refl) apply (simp add: add.commute add.left_commute) apply (rule vs_refs_pdI) prefer 3 apply (clarsimp simp: word_ops_nth_size word_size nth_shiftr nth_shiftl) apply (drule test_bit_size) apply (simp add: word_size) apply fastforce apply (subst shiftl_shiftr_id) apply (simp add: word_bits_def)+ apply word_bitwise apply (erule kernel_base_kernel_mapping_slots) done lemma lookup_pt_slot_reachable3 [wp]: "\<lbrace>\<exists>\<rhd> pd and K (is_aligned pd 14 \<and> is_aligned vptr 16 \<and> vptr < kernel_base) and valid_arch_state and valid_vspace_objs and equal_kernel_mappings and pspace_aligned and valid_global_objs\<rbrace> lookup_pt_slot pd vptr \<lbrace>\<lambda>p s. \<forall>x\<in>set [p, p + 4 .e. p + 0x3C]. (\<exists>\<rhd> (x && ~~ mask pt_bits)) s\<rbrace>, -" apply (simp add: lookup_pt_slot_def) apply (wp get_pde_wp|wpc)+ apply (clarsimp del: ballI) apply (clarsimp simp: lookup_pd_slot_def Let_def del: ballI) apply (simp add: pd_shifting) apply (frule (2) valid_vspace_objsD) apply (clarsimp del: ballI) apply (erule_tac x="(ucast (pd + (vptr >> 20 << 2) && mask pd_bits >> 2))" in ballE) apply (clarsimp del: ballI) apply (subgoal_tac "is_aligned (ptrFromPAddr x) 10") prefer 2 apply (thin_tac "ko_at P p s" for P p)+ apply (clarsimp simp: obj_at_def add.commute add.left_commute pspace_aligned_def) apply (drule bspec, blast) apply (clarsimp simp: a_type_def split: kernel_object.splits arch_kernel_obj.splits if_split_asm) apply (subst p_0x3C_shift) apply (rule aligned_add_aligned, assumption) apply (clarsimp intro!: is_aligned_andI1 is_aligned_shiftl is_aligned_shiftr) apply simp apply clarsimp apply (rule exI) apply (rule vs_lookup_step, assumption) apply (clarsimp simp: vs_lookup1_def lookup_pd_slot_def Let_def pd_shifting pd_shifting_dual add.commute add.left_commute) apply (rule exI, rule conjI, assumption) apply (rule_tac x="VSRef (vptr >> 20 << 2 >> 2) (Some APageDirectory)" in exI) apply (rule conjI, rule refl) apply (subgoal_tac "ptrFromPAddr x + (xc + ((vptr >> 12) && 0xFF << 2)) && ~~ mask pt_bits = ptrFromPAddr x") prefer 2 apply (subst add_mask_lower_bits) apply (simp add: pt_bits_def pageBits_def) prefer 2 apply simp apply (clarsimp simp: pt_bits_def pageBits_def) apply (clarsimp simp: upto_enum_step_def word_shift_by_2 p_le_0xF_helper) apply (thin_tac "pda x = t" for x t) apply (subst (asm) word_plus_and_or_coroll) apply (rule word_eqI) apply (clarsimp simp: word_size word_bits_def nth_shiftr nth_shiftl is_aligned_nth word_FF_is_mask) apply (erule_tac x="n - 2" in allE) apply simp apply (clarsimp simp: word_size nth_shiftr nth_shiftl is_aligned_nth word_FF_is_mask word_bits_def) apply (simp add: add.commute add.left_commute) apply (rule vs_refs_pdI) prefer 3 apply (clarsimp simp: word_ops_nth_size word_size nth_shiftr nth_shiftl) apply (drule test_bit_size) apply (simp add: word_size) apply fastforce apply (subst shiftl_shiftr_id) apply (simp add: word_bits_def)+ apply word_bitwise apply (erule kernel_base_kernel_mapping_slots) apply clarsimp apply (subst (asm) mask_add_aligned, simp add: pd_bits_def pageBits_def)+ apply (simp add: shiftr_over_and_dist) apply (subst (asm) shiftl_shiftr_id, (simp add: word_bits_conv)+, word_bitwise)+ apply (subst (asm) shiftr_mask2, (simp add: pd_bits_def pageBits_def)+)+ apply (simp add: shiftr_mask_eq[where x=vptr and n=20, unfolded word_size, simplified]) apply (drule kernel_base_kernel_mapping_slots, simp) done lemma pd_aligned: "\<lbrakk>pspace_aligned s; page_directory_at pd s\<rbrakk> \<Longrightarrow> is_aligned pd 14" apply (clarsimp simp: pspace_aligned_def obj_at_def) apply (drule bspec, blast) apply (clarsimp simp: a_type_def split: kernel_object.splits arch_kernel_obj.splits if_split_asm) done lemma shiftr_shiftl_mask_pd_bits: "(((vptr :: word32) >> 20) << 2) && mask pd_bits = (vptr >> 20) << 2" apply (rule iffD2 [OF mask_eq_iff_w2p]) apply (simp add: pd_bits_def pageBits_def word_size) apply (rule shiftl_less_t2n) apply (rule shiftr_less_t2n3, simp_all add: pd_bits_def word_bits_def pageBits_def) done lemma triple_shift_fun: "x >> 20 << 2 >> 2 = (x :: ('a :: len) word) >> 20" apply (rule word_eqI) apply (simp add: word_size nth_shiftr nth_shiftl) apply safe apply (drule test_bit_size) apply (simp add: word_size) done lemma shiftr_20_unat_ucast: "unat (ucast (x >> 20 :: word32) :: 12 word) = unat (x >> 20)" using vptr_shiftr_le_2p[where vptr=x] apply (simp only: unat_ucast) apply (rule mod_less) apply (rule unat_less_power) apply (simp add: word_bits_def) apply (simp add: pageBits_def) done lemma shiftr_20_less: "((ucast (x >> 20) :: 12 word) < ucast (y >> 20)) = ((x >> 20 :: word32) < y >> 20)" "((ucast (x >> 20) :: 12 word) \<le> ucast (y >> 20)) = ((x >> 20 :: word32) \<le> y >> 20)" by (simp add: word_less_nat_alt word_le_nat_alt shiftr_20_unat_ucast)+ lemma kernel_base_aligned_pageBits: "is_aligned kernel_base pageBits" by (simp add: is_aligned_def kernel_base_def pageBits_def) lemma kernel_base_ge_observation: "(kernel_base \<le> x) = (x && ~~ mask 29 = kernel_base)" apply (subst mask_in_range) apply (simp add: kernel_base_def is_aligned_def) apply (simp add: kernel_base_def) done lemma kernel_base_less_observation: "(x < kernel_base) = (x && ~~ mask 29 \<noteq> kernel_base)" apply (simp add: linorder_not_le[symmetric] kernel_base_ge_observation) done lemma vptr_shifting_helper_magic: "(x = 0) \<or> (x < 2 ^ 4 \<and> vmsz_aligned (vptr::word32) ARMSuperSection) \<Longrightarrow> (x << 2) + (vptr >> 20 << 2) = ((vptr + (x << 20)) >> 20 << 2)" apply (erule disjE, simp_all) apply (clarsimp simp: vmsz_aligned_def) apply (subst is_aligned_add_or, assumption) apply (rule shiftl_less_t2n) apply simp apply simp apply (simp add: shiftl_over_or_dist shiftr_over_or_dist) apply (subst shiftl_shiftr_id) apply (simp add: word_bits_def) apply (simp add: word_bits_def) apply unat_arith apply (subst field_simps, rule is_aligned_add_or[where n=6]) apply (intro is_aligned_shiftl is_aligned_shiftr) apply simp apply (rule shiftl_less_t2n, simp_all) done lemma less_kernel_base_mapping_slots_both: "\<lbrakk> vptr < kernel_base; is_aligned pd pd_bits; (x = 0) \<or> (x < 2 ^ 4 \<and> vmsz_aligned vptr ARMSuperSection) \<rbrakk> \<Longrightarrow> ucast ((x << 2) + lookup_pd_slot pd vptr && mask pd_bits >> 2) \<notin> kernel_mapping_slots" apply (simp add: lookup_pd_slot_def Let_def) apply (subst field_simps, subst mask_add_aligned, assumption) apply (subst vptr_shifting_helper_magic) apply simp apply (simp add: shiftr_shiftl_mask_pd_bits triple_shift_fun) apply (simp add: kernel_mapping_slots_def linorder_not_le shiftr_20_less) apply (rule le_m1_iff_lt[THEN iffD1,THEN iffD1]) apply (simp add:kernel_base_def) apply (erule disjE) apply (drule word_less_sub_1) apply simp apply (drule le_shiftr[where n=20]) apply (clarsimp simp :kernel_base_def vmsz_aligned_def)+ apply (drule(1) gap_between_aligned) apply (simp add:is_aligned_def) apply simp apply (rule order.trans[OF le_shiftr]) apply (rule word_plus_mono_right[OF _ is_aligned_no_wrap'[where off = "2^24-1"]]) apply (rule word_less_sub_1) apply (rule shiftl_less_t2n) apply simp+ apply (clarsimp dest!:word_less_sub_1) apply (erule order.trans[OF le_shiftr]) apply simp done lemmas less_kernel_base_mapping_slots = less_kernel_base_mapping_slots_both[where x=0, simplified] lemma is_aligned_lookup_pd_slot: "\<lbrakk>is_aligned vptr 24; is_aligned pd 6\<rbrakk> \<Longrightarrow> is_aligned (lookup_pd_slot pd vptr) 6" apply (clarsimp simp: lookup_pd_slot_def) apply (erule aligned_add_aligned) apply (rule is_aligned_shiftl) apply (rule is_aligned_shiftr) apply simp apply (simp add: word_bits_conv) done lemma lookup_pd_slot_eq: "is_aligned pd pd_bits \<Longrightarrow> (lookup_pd_slot pd vptr && ~~ mask pd_bits) = pd" apply (clarsimp simp: lookup_pd_slot_def) apply (erule conjunct2[OF is_aligned_add_helper]) apply (rule shiftl_less_t2n) apply (rule shiftr_less_t2n3) apply (simp_all add: pd_bits_def pageBits_def) done lemma is_aligned_lookup_pt_slot_no_fail: "\<lbrakk>is_aligned vptr 16; is_aligned pt 6\<rbrakk> \<Longrightarrow> is_aligned (lookup_pt_slot_no_fail pt vptr) 6" apply (clarsimp simp: lookup_pt_slot_no_fail_def) apply (erule aligned_add_aligned) apply (rule is_aligned_shiftl) apply (rule is_aligned_andI1) apply (rule is_aligned_shiftr) apply simp apply simp done lemma lookup_pt_slot_non_empty: "\<lbrace>valid_vspace_objs and \<exists>\<rhd> pd and page_directory_at pd and pspace_aligned and K (is_aligned vptr 16 \<and> vptr < kernel_base)\<rbrace> lookup_pt_slot pd vptr \<lbrace>\<lambda>rv s. [rv , rv + 4 .e. rv + 0x3C] \<noteq> []\<rbrace>, -" apply (simp add:lookup_pt_slot_def) apply (wp get_pde_wp| wpc | clarsimp)+ apply (simp add:valid_vspace_objs_def) apply (drule_tac x = "(lookup_pd_slot pd vptr && ~~ mask pd_bits)" in spec) apply (erule impE) apply (subst lookup_pd_slot_eq) apply (clarsimp simp: obj_at_def) apply (drule_tac p = pd in pspace_alignedD) apply simp apply (simp add:obj_bits_def pageBits_def pd_bits_def) apply fastforce apply (drule spec) apply (erule(1) impE) apply (clarsimp simp:) apply (drule_tac x = "(ucast (lookup_pd_slot pd vptr && mask pd_bits >> 2))" in bspec) apply (drule less_kernel_base_mapping_slots) apply (clarsimp simp: obj_at_def) apply (drule_tac p = pd in pspace_alignedD) apply simp apply (simp add:obj_bits_def pageBits_def pd_bits_def) apply simp apply (clarsimp simp: obj_at_def) apply (drule_tac p = "(ptrFromPAddr x)" in pspace_alignedD) apply simp apply (drule arg_cong[where f = length]) apply (subst (asm) length_upto_enum_step) apply (rule_tac sz = 6 in is_aligned_no_wrap'[rotated]) apply simp apply (erule aligned_add_aligned) apply (rule is_aligned_shiftl) apply (rule is_aligned_andI1[OF is_aligned_shiftr]) apply simp apply (simp add:word_bits_conv) apply (simp add:word_bits_conv) done (* FIXME: move *) lemma pd_bits: "pd_bits = 14" by (simp add: pd_bits_def pageBits_def) lemma word_shift_by_n: "x * (2^n) = (x::'a::len word) << n" by (simp add: shiftl_t2n) lemma create_mapping_entries_valid_slots [wp]: "\<lbrace>valid_arch_state and valid_vspace_objs and equal_kernel_mappings and pspace_aligned and valid_global_objs and \<exists>\<rhd> pd and page_directory_at pd and data_at sz (ptrFromPAddr base) and K (vmsz_aligned base sz \<and> vmsz_aligned vptr sz \<and> vptr < kernel_base \<and> vm_rights \<in> valid_vm_rights)\<rbrace> create_mapping_entries base vptr sz vm_rights attrib pd \<lbrace>\<lambda>m. valid_slots m\<rbrace>, -" apply (cases sz) apply (rule hoare_pre) apply (wp lookup_pt_slot_inv | simp add: valid_slots_def)+ apply (clarsimp simp: vmsz_aligned_def pd_aligned pageBits_def) apply (rule hoare_pre) apply (simp add: valid_slots_def largePagePTE_offsets_def pd_bits_def) apply (wpsimp wp: lookup_pt_slot_inv lookup_pt_slot_non_empty | simp add: valid_slots_def ball_conj_distrib largePagePTE_offsets_def)+ apply (clarsimp simp: pd_aligned vmsz_aligned_def upto_enum_def upto_enum_step_def is_aligned_weaken pageBits_def) apply (clarsimp simp add: valid_slots_def) apply (rule hoare_pre) apply wp apply (clarsimp simp: valid_slots_def) apply (rule conjI) apply (simp add: lookup_pd_slot_def Let_def) apply (fastforce simp: pd_shifting pd_aligned) apply (simp add: page_directory_pde_at_lookupI) apply (erule less_kernel_base_mapping_slots) apply (simp add: pd_aligned pd_bits) apply simp apply (clarsimp simp: superSectionPDE_offsets_def) apply (rule hoare_pre) apply (clarsimp simp add: valid_slots_def) apply wp apply simp apply (elim conjE) apply (thin_tac "vmsz_aligned base b" for b) apply (subgoal_tac "is_aligned pd 14") prefer 2 apply (clarsimp simp: pd_aligned) apply (clarsimp simp: upto_enum_step_def word_shift_by_2) apply (clarsimp simp: obj_at_def pde_at_def) apply (subgoal_tac "is_aligned pd pd_bits") prefer 2 apply (simp add: pd_bits) apply (rule conjI, simp add: upto_enum_def) apply (intro allI impI) apply (subst less_kernel_base_mapping_slots_both,assumption+) apply (simp add: word_leq_minus_one_le) apply (simp add: pd_bits vmsz_aligned_def) apply (frule (1) is_aligned_lookup_pd_slot [OF _ is_aligned_weaken[of _ 14 6, simplified]]) apply (subgoal_tac "(p<<2) + lookup_pd_slot pd vptr && ~~ mask 14 = pd") prefer 2 apply (subst add.commute add.left_commute) apply (subst and_not_mask_twice[where n=6 and m=14, simplified, symmetric]) apply (subst is_aligned_add_helper[THEN conjunct2], simp) apply (rule shiftl_less_t2n) apply (rule word_less_sub_le[THEN iffD1], simp+) apply (erule lookup_pd_slot_eq[simplified pd_bits]) apply (simp add: a_type_simps) apply (subst add.commute) apply (fastforce intro!: aligned_add_aligned is_aligned_shiftl_self) done lemma store_pde_lookup_pd: "\<lbrace>\<exists>\<rhd> pd and page_directory_at pd and valid_vspace_objs and (\<lambda>s. valid_asid_table (arm_asid_table (arch_state s)) s)\<rbrace> store_pde p pde \<lbrace>\<lambda>_. \<exists>\<rhd> pd\<rbrace>" apply (simp add: store_pde_def set_pd_def set_object_def) apply (wp get_object_wp) apply clarsimp apply (clarsimp simp: obj_at_def) apply (erule vs_lookupE) apply (clarsimp simp: vs_asid_refs_def graph_of_def) apply (drule rtranclD) apply (erule disjE) apply clarsimp apply (rule exI) apply (rule vs_lookup_atI) apply simp apply clarsimp apply (frule (1) valid_asid_tableD) apply (frule vs_lookup_atI) apply (frule (2) stronger_vspace_objsD) apply (clarsimp simp: obj_at_def a_type_def) apply (case_tac ao, simp_all, clarsimp) apply (drule tranclD) apply clarsimp apply (drule rtranclD) apply (erule disjE) apply clarsimp apply (rule_tac x=ref in exI) apply (rule vs_lookup_step) apply (rule vs_lookup_atI) apply simp apply (clarsimp simp: vs_lookup1_def) apply (clarsimp simp: obj_at_def vs_refs_def graph_of_def) apply clarsimp apply (drule (1) vs_lookup_step) apply (frule (2) stronger_vspace_objsD) apply clarsimp apply (drule vs_lookup1D) apply clarsimp apply (erule obj_atE)+ apply (clarsimp simp: vs_refs_def graph_of_def) apply (drule bspec, blast) apply (erule obj_atE)+ apply clarsimp apply (drule tranclD) apply clarsimp apply (drule rtranclD) apply clarsimp apply (drule vs_lookup1D) apply clarsimp apply (erule obj_atE)+ apply (clarsimp simp: vs_refs_def graph_of_def) apply (erule_tac x=ab in ballE) apply (case_tac "pdb ab", simp_all add: pde_ref_def split: if_split_asm) apply (erule obj_atE) apply clarsimp apply (erule disjE) apply (clarsimp simp: a_type_def) apply clarsimp apply (drule tranclD) apply clarsimp apply (drule vs_lookup1D) apply clarsimp apply (erule obj_atE)+ apply (clarsimp simp: vs_refs_def graph_of_def) done lemma store_pde_vspace_objs_unmap: "\<lbrace>valid_vspace_objs and valid_pde pde and K (pde_ref pde = None)\<rbrace> store_pde p pde \<lbrace>\<lambda>_. valid_vspace_objs\<rbrace>" apply (simp add: store_pde_def) apply (wp set_pd_vspace_objs_unmap) apply clarsimp apply (rule conjI) apply clarsimp apply (drule (1) valid_vspace_objsD, fastforce) apply (simp add:) apply (clarsimp simp add: obj_at_def vs_refs_def) apply (rule pair_imageI) apply (simp add: graph_of_def split: if_split_asm) done (* FIXME: remove magic numbers in other lemmas, use in pde_at_aligned_vptr et al *) lemma lookup_pd_slot_add_eq: "\<lbrakk> is_aligned pd pd_bits; is_aligned vptr 24; x \<in> set [0 , 4 .e. 0x3C] \<rbrakk> \<Longrightarrow> (x + lookup_pd_slot pd vptr && ~~ mask pd_bits) = pd" apply (simp add: pageBits_def add.commute add.left_commute lookup_pd_slot_def Let_def) apply (clarsimp simp: upto_enum_step_def word_shift_by_2) apply (erule add_mask_lower_bits2) apply (subgoal_tac "2 < pd_bits \<and> size vptr \<le> 18 + pd_bits") apply (simp add: and_mask_0_iff_le_mask le_mask_iff) apply (subst word_plus_and_or_coroll) apply (subst word_bw_comms) apply (rule aligned_mask_disjoint[where n=6]) apply (rule is_aligned_shiftl, rule is_aligned_shiftr, simp) apply (rule order.trans, rule leq_high_bits_shiftr_low_bits_leq_bits[where high_bits=4]) apply (clarsimp simp: mask_def, simp) apply (clarsimp simp: shiftr_over_or_dist word_or_zero) apply (intro conjI) apply (clarsimp simp: shiftl_shiftr3) apply (subgoal_tac "xa >> pd_bits - 2 = 0", simp) apply (rule shiftr_le_0, rule unat_less_helper) apply (erule order.strict_trans1, simp) apply (clarsimp simp: pd_bits_def pageBits_def) apply (clarsimp simp: shiftl_shiftr2 shiftr_shiftr shiftr_zero_size) apply (clarsimp simp: pd_bits_def pageBits_def word_bits_size word_bits_def) done lemma vs_lookup_arch_update: "arm_asid_table (f (arch_state s)) = arm_asid_table (arch_state s) \<Longrightarrow> vs_lookup (arch_state_update f s) = vs_lookup s" apply (rule order_antisym) apply (rule vs_lookup_sub) apply (clarsimp simp: obj_at_def) apply simp apply (rule vs_lookup_sub) apply (clarsimp simp: obj_at_def) apply simp done lemma vs_lookup_pages_arch_update: "arm_asid_table (f (arch_state s)) = arm_asid_table (arch_state s) \<Longrightarrow> vs_lookup_pages (arch_state_update f s) = vs_lookup_pages s" apply (rule order_antisym) apply (rule vs_lookup_pages_sub) apply (clarsimp simp: obj_at_def) apply simp apply (rule vs_lookup_pages_sub) apply (clarsimp simp: obj_at_def) apply simp done lemma vs_lookup_asid_map [iff]: "vs_lookup (s\<lparr>arch_state := arm_asid_map_update f (arch_state s)\<rparr>) = vs_lookup s" by (simp add: vs_lookup_arch_update) lemma vs_lookup_hwasid_table [iff]: "vs_lookup (s\<lparr>arch_state := arm_hwasid_table_update f (arch_state s)\<rparr>) = vs_lookup s" by (simp add: vs_lookup_arch_update) lemma vs_lookup_next_asid [iff]: "vs_lookup (s\<lparr>arch_state := arm_next_asid_update f (arch_state s)\<rparr>) = vs_lookup s" by (simp add: vs_lookup_arch_update) lemma vs_lookup_pages_asid_map[iff]: "vs_lookup_pages (s\<lparr>arch_state := arm_asid_map_update f (arch_state s)\<rparr>) = vs_lookup_pages s" by (simp add: vs_lookup_pages_arch_update) lemma vs_lookup_pages_hwasid_table[iff]: "vs_lookup_pages (s\<lparr>arch_state := arm_hwasid_table_update f (arch_state s)\<rparr>) = vs_lookup_pages s" by (simp add: vs_lookup_pages_arch_update) lemma vs_lookup_pages_next_asid[iff]: "vs_lookup_pages (s\<lparr>arch_state := arm_next_asid_update f (arch_state s)\<rparr>) = vs_lookup_pages s" by (simp add: vs_lookup_pages_arch_update) lemma valid_vspace_objs_arch_update: "arm_asid_table (f (arch_state s)) = arm_asid_table (arch_state s) \<Longrightarrow> valid_vspace_objs (arch_state_update f s) = valid_vspace_objs s" apply (rule iffI) apply (erule valid_vspace_objs_stateI) apply (clarsimp simp: obj_at_def) apply simp apply simp apply (erule valid_vspace_objs_stateI) apply (clarsimp simp: obj_at_def) apply simp apply simp done lemma store_pte_valid_vspace_objs[wp]: "\<lbrace>valid_vspace_objs and valid_pte pte\<rbrace> store_pte p pte \<lbrace>\<lambda>_. (valid_vspace_objs)\<rbrace>" unfolding store_pte_def apply wp apply clarsimp apply (unfold valid_vspace_objs_def) apply (erule_tac x="p && ~~ mask pt_bits" in allE) apply auto done crunch valid_arch [wp]: store_pte valid_arch_state lemma set_pd_vs_lookup_unmap: "\<lbrace>valid_vs_lookup and obj_at (\<lambda>ko. vs_refs_pages (ArchObj (PageDirectory pd)) \<subseteq> vs_refs_pages ko) p\<rbrace> set_pd p pd \<lbrace>\<lambda>_. valid_vs_lookup\<rbrace>" apply (simp add: valid_vs_lookup_def pred_conj_def) apply (rule hoare_lift_Pf2 [where f=caps_of_state]) prefer 2 apply wp apply (simp add: set_pd_def set_object_def) apply (wp get_object_wp) apply (clarsimp simp del: fun_upd_apply del: disjCI split: kernel_object.splits arch_kernel_obj.splits) apply (erule allE)+ apply (erule impE) apply (erule vs_lookup_pages_stateI) apply (clarsimp simp: obj_at_def split: if_split_asm) apply simp apply simp done lemma unique_table_caps_pdE: "\<lbrakk> unique_table_caps cs; cs p = Some cap; cap_asid cap = None; cs p' = Some cap'; cap_asid cap' = Some v; is_pd_cap cap; is_pd_cap cap'; obj_refs cap' = obj_refs cap \<rbrakk> \<Longrightarrow> P" apply (frule(6) unique_table_caps_pdD[where cs=cs]) apply simp done lemma set_pd_table_caps [wp]: "\<lbrace>valid_table_caps and (\<lambda>s. (obj_at (empty_table (set (second_level_tables (arch_state s)))) p s \<longrightarrow> empty_table (set (second_level_tables (arch_state s))) (ArchObj (PageDirectory pd))) \<or> (\<exists>slot cap. caps_of_state s slot = Some cap \<and> is_pd_cap cap \<and> p \<in> obj_refs cap \<and> cap_asid cap \<noteq> None) \<and> valid_caps (caps_of_state s) s \<and> unique_table_caps (caps_of_state s))\<rbrace> set_pd p pd \<lbrace>\<lambda>_. valid_table_caps\<rbrace>" unfolding valid_table_caps_def apply (simp add: pred_conj_def del: split_paired_All split_paired_Ex imp_disjL) apply (rule hoare_lift_Pf2 [where f=caps_of_state]) prefer 2 apply wp apply (unfold set_pd_def set_object_def) apply (wp get_object_wp) apply (rule allI, intro impI) apply (elim exE conjE) apply (elim allEI) apply (intro impI, simp) apply (clarsimp simp: obj_at_def) apply (erule disjE) apply (erule(6) unique_table_caps_pdE) apply (clarsimp simp: is_arch_cap_simps) apply (simp add: valid_caps_def) apply (erule_tac x=a in allE, erule allE, erule allE, erule (1) impE) apply (clarsimp simp: is_arch_cap_simps valid_cap_def) apply (clarsimp simp: obj_at_def) done lemma set_pd_global_objs[wp]: "\<lbrace>valid_global_objs and valid_global_refs and valid_arch_state and (\<lambda>s. (obj_at (empty_table (set (second_level_tables (arch_state s)))) p s \<longrightarrow> empty_table (set (second_level_tables (arch_state s))) (ArchObj (PageDirectory pd))) \<or> (\<exists>slot. cte_wp_at (\<lambda>cap. p \<in> obj_refs cap) slot s))\<rbrace> set_pd p pd \<lbrace>\<lambda>rv. valid_global_objs\<rbrace>" apply (simp add: set_pd_def second_level_tables_def) apply (wpsimp wp: set_object_wp_strong) apply (clarsimp simp add: valid_global_objs_def valid_vso_at_def cte_wp_at_caps_of_state second_level_tables_def) apply (intro conjI) apply (clarsimp simp: obj_at_def simp del: valid_vspace_obj.simps) apply (intro conjI impI) apply (clarsimp simp del: valid_vspace_obj.simps) apply (erule disjE) apply (drule(1) empty_table_is_valid)+ apply (rule valid_vspace_obj_same_type, (simp add: valid_vspace_obj_def)+) apply (clarsimp simp: a_type_def) apply (drule (1) valid_global_refsD2) apply (simp add: cap_range_def global_refs_def) apply (rule valid_vspace_obj_same_type, simp+) apply (simp add: a_type_def) apply (clarsimp simp: obj_at_def) apply (drule (1) valid_global_refsD2) apply (simp add: cap_range_def global_refs_def) apply clarsimp apply (clarsimp simp: obj_at_def simp del: valid_vspace_obj.simps) apply (drule(1) bspec, clarsimp simp: a_type_def) done lemma eq_ucast_word12[simp]: "((ucast (x :: 12 word) :: word32) = ucast y) = (x = y)" apply safe apply (drule_tac f="ucast :: (word32 \<Rightarrow> 12 word)" in arg_cong) apply (simp add: ucast_up_ucast_id is_up_def source_size_def target_size_def word_size) done lemma set_pd_unmap_mappings: "\<lbrace>valid_kernel_mappings and obj_at (\<lambda>ko. vs_refs (ArchObj (PageDirectory pd)) \<subseteq> vs_refs ko) p and obj_at (\<lambda>ko. \<exists>pd'. ko = ArchObj (PageDirectory pd') \<and> (\<forall>x \<in> kernel_mapping_slots. pd x = pd' x)) p\<rbrace> set_pd p pd \<lbrace>\<lambda>rv. valid_kernel_mappings\<rbrace>" apply (simp add: set_pd_def) apply (wp set_object_v_ker_map get_object_wp) apply (clarsimp simp: obj_at_def split: kernel_object.split_asm arch_kernel_obj.split_asm) apply (simp add: vs_refs_def) subgoal premises prems for s x r x3 apply (cases "x \<in> kernel_mapping_slots") proof goal_cases case False with prems show ?thesis apply - apply (drule subsetD) apply (rule image_eqI[rotated]) apply (rule pde_graph_ofI[rotated, rotated]) apply ((simp;fail)+)[4] apply (clarsimp simp: valid_kernel_mappings_def dest!: graph_ofD) apply (drule bspec, erule ranI) by (simp add: valid_kernel_mappings_if_pd_def) next case True with prems show ?thesis apply clarsimp apply (bspec x) apply (clarsimp simp: valid_kernel_mappings_def ran_def valid_kernel_mappings_if_pd_def) apply (erule allE[where x="ArchObj (PageDirectory x3)"]) apply clarsimp apply (erule impE) apply (erule exI[where x=p]) apply (erule allE[where x=x], erule allE[where x=r]) by clarsimp+ qed done lemma set_pd_asid_map [wp]: "\<lbrace>valid_asid_map\<rbrace> set_pd p pd \<lbrace>\<lambda>_. valid_asid_map\<rbrace>" apply (simp add: set_pd_def set_object_def) apply (wp get_object_wp) apply (clarsimp simp: a_type_def simp del: fun_upd_apply split: kernel_object.splits arch_kernel_obj.splits) apply (clarsimp simp: valid_asid_map_def) apply (drule bspec, blast) apply (clarsimp simp: vspace_at_asid_def obj_at_def) apply (erule vs_lookupE) apply (rule vs_lookupI, simp) apply (clarsimp simp: vs_asid_refs_def dest!: graph_ofD) apply (frule vs_lookup1_trans_is_append) apply clarsimp apply (drule rtranclD) apply clarsimp apply (drule tranclD) apply clarsimp apply (drule vs_lookup1D) apply clarsimp apply (rule rtrancl_trans) apply (rule r_into_rtrancl) apply (rule vs_lookup1I) apply (clarsimp simp: obj_at_def) apply (rule conjI, clarsimp) prefer 2 apply clarsimp apply (rule refl) apply clarsimp apply (clarsimp simp: vs_refs_def) apply (drule vs_lookup1_trans_is_append) apply clarsimp apply assumption apply (rule refl) apply (frule vs_lookup1_trans_is_append, clarsimp) apply (drule rtranclD) apply (erule disjE, clarsimp) apply clarsimp apply (drule tranclD) apply clarsimp apply (drule vs_lookup1D) apply clarsimp apply (drule vs_lookup1_trans_is_append, clarsimp) done lemma set_pd_only_idle [wp]: "\<lbrace>only_idle\<rbrace> set_pd p pd \<lbrace>\<lambda>_. only_idle\<rbrace>" by (wp only_idle_lift) lemma set_pd_equal_kernel_mappings_triv: "\<lbrace>obj_at (\<lambda>ko. \<exists>pd'. ko = (ArchObj (PageDirectory pd')) \<and> (\<forall>x \<in> kernel_mapping_slots. pd x = pd' x)) p and equal_kernel_mappings\<rbrace> set_pd p pd \<lbrace>\<lambda>rv. equal_kernel_mappings\<rbrace>" apply (simp add: set_pd_def) apply (wp set_object_equal_mappings get_object_wp) apply (clarsimp simp: obj_at_def) apply (simp add: equal_kernel_mappings_def obj_at_def) done lemma set_pd_global_mappings[wp]: "\<lbrace>\<lambda>s. valid_global_vspace_mappings s \<and> valid_global_objs s \<and> p \<notin> global_refs s\<rbrace> set_pd p pd \<lbrace>\<lambda>rv. valid_global_vspace_mappings\<rbrace>" apply (simp add: set_pd_def) apply (wp set_object_global_vspace_mappings get_object_wp) apply simp done lemma set_pd_kernel_window[wp]: "\<lbrace>pspace_in_kernel_window\<rbrace> set_pd p pd \<lbrace>\<lambda>rv. pspace_in_kernel_window\<rbrace>" apply (simp add: set_pd_def) including unfold_objects apply (wpsimp wp: set_object_pspace_in_kernel_window[THEN hoare_set_object_weaken_pre]) done lemma set_pd_device_region[wp]: "\<lbrace>pspace_respects_device_region\<rbrace> set_pd p pd \<lbrace>\<lambda>rv. pspace_respects_device_region\<rbrace>" apply (simp add: set_pd_def) including unfold_objects apply (wpsimp wp: set_object_pspace_respects_device_region[THEN hoare_set_object_weaken_pre]) done lemma set_pd_caps_kernel_window[wp]: "\<lbrace>cap_refs_in_kernel_window\<rbrace> set_pd p pd \<lbrace>\<lambda>rv. cap_refs_in_kernel_window\<rbrace>" apply (simp add: set_pd_def) including unfold_objects apply (wpsimp wp: set_object_cap_refs_in_kernel_window[THEN hoare_set_object_weaken_pre] simp: a_type_def) done lemma set_pd_caps_respects_device_region[wp]: "\<lbrace>cap_refs_respects_device_region\<rbrace> set_pd p pd \<lbrace>\<lambda>rv. cap_refs_respects_device_region\<rbrace>" apply (simp add: set_pd_def) including unfold_objects apply (wpsimp wp: set_object_cap_refs_respects_device_region[THEN hoare_set_object_weaken_pre] simp: a_type_def) done lemma set_pd_valid_ioc[wp]: "\<lbrace>valid_ioc\<rbrace> set_pd p pt \<lbrace>\<lambda>_. valid_ioc\<rbrace>" apply (simp add: set_pd_def) including unfold_objects apply (wpsimp wp: set_object_valid_ioc_no_caps[THEN hoare_set_object_weaken_pre] simp: a_type_def is_tcb is_cap_table) done lemma set_pd_vms[wp]: "\<lbrace>valid_machine_state\<rbrace> set_pd p pt \<lbrace>\<lambda>_. valid_machine_state\<rbrace>" apply (simp add: set_pd_def) apply (wp set_object_wp_strong) apply clarify apply (erule valid_machine_state_heap_updI) apply (fastforce simp: a_type_def obj_at_def split: Structures_A.kernel_object.splits arch_kernel_obj.splits)+ done lemma vs_refs_pages_subset2: "\<lbrakk>vs_refs_pages ko \<subseteq> vs_refs_pages ko'; (\<forall>ao. (ko = ArchObj ao) \<longrightarrow> valid_vspace_obj ao s); (\<forall>ao'. (ko' = ArchObj ao') \<longrightarrow> valid_vspace_obj ao' s)\<rbrakk> \<Longrightarrow> vs_refs ko \<subseteq> vs_refs ko'" apply clarsimp apply (drule (1) subsetD[OF _ subsetD[OF vs_refs_pages_subset]]) apply (case_tac ko; simp add: vs_refs_def) subgoal for fstref b arch_kernel_obj apply (cases arch_kernel_obj; simp add: vs_refs_def) apply (cases ko'; simp add: vs_refs_pages_def) subgoal for \<dots> arch_kernel_obja by (cases arch_kernel_obja;clarsimp) apply (cases ko'; simp add: vs_refs_pages_def) subgoal for \<dots> arch_kernel_obja apply (cases arch_kernel_obja; clarsimp) apply (clarsimp simp: graph_of_def split: if_splits) subgoal for "fun" a apply (cut_tac imageI[where A="{(x, y). (if x \<in> kernel_mapping_slots then None else pde_ref (fun x)) = Some y}" and f="(\<lambda>(r, y). (VSRef (ucast r) (Some APageDirectory), y))" and x="(a,b)"]) apply simp apply (clarsimp simp: pde_ref_def pde_ref_pages_def split: pde.splits) apply (drule bspec,simp)+ apply (simp add: valid_pde_def) apply (clarsimp simp: data_at_def obj_at_def a_type_def) apply (drule bspec, simp split: if_splits)+ by (clarsimp simp: obj_at_def a_type_def data_at_def) done done done lemma set_pd_invs_unmap: "\<lbrace>invs and (\<lambda>s. \<forall>i. wellformed_pde (pd i)) and (\<lambda>s. (\<exists>\<rhd>p) s \<longrightarrow> valid_vspace_obj (PageDirectory pd) s) and obj_at (\<lambda>ko. vs_refs_pages (ArchObj (PageDirectory pd)) \<subseteq> vs_refs_pages ko) p and obj_at (\<lambda>ko. vs_refs (ArchObj (PageDirectory pd)) \<subseteq> vs_refs ko) p and obj_at (\<lambda>ko. \<exists>pd'. ko = ArchObj (PageDirectory pd') \<and> (\<forall>x \<in> kernel_mapping_slots. pd x = pd' x)) p and (\<lambda>s. p \<notin> global_refs s) and (\<lambda>s. (obj_at (empty_table (set (second_level_tables (arch_state s)))) p s \<longrightarrow> empty_table (set (second_level_tables (arch_state s))) (ArchObj (PageDirectory pd))))\<rbrace> set_pd p pd \<lbrace>\<lambda>_. invs\<rbrace>" apply (simp add: invs_def valid_state_def valid_pspace_def valid_arch_caps_def) apply (rule hoare_pre) apply (wp set_pd_valid_objs set_pd_iflive set_pd_zombies set_pd_zombies_state_refs set_pd_valid_mdb set_pd_valid_idle set_pd_ifunsafe set_pd_reply_caps set_pd_valid_arch set_pd_valid_global set_pd_cur set_pd_reply_masters valid_irq_node_typ set_pd_zombies_state_hyp_refs set_pd_vspace_objs_unmap set_pd_vs_lookup_unmap valid_irq_handlers_lift set_pd_unmap_mappings set_pd_equal_kernel_mappings_triv) apply (clarsimp simp: cte_wp_at_caps_of_state valid_arch_caps_def del: disjCI) done lemma store_pde_invs_unmap: "\<lbrace>invs and valid_pde pde and (\<lambda>s. wellformed_pde pde) and K (ucast (p && mask pd_bits >> 2) \<notin> kernel_mapping_slots) and (\<lambda>s. p && ~~ mask pd_bits \<notin> global_refs s) and K (pde = InvalidPDE)\<rbrace> store_pde p pde \<lbrace>\<lambda>_. invs\<rbrace>" apply (simp add: store_pde_def del: split_paired_Ex) apply (wp set_pd_invs_unmap) apply (clarsimp simp del: split_paired_Ex del: exE) apply (rule conjI) apply (drule invs_valid_objs) apply (fastforce simp: valid_objs_def dom_def obj_at_def valid_obj_def) apply (rule conjI) apply clarsimp apply (drule (1) valid_vspace_objsD, fastforce) apply simp apply (rule conjI) apply (clarsimp intro!: pair_imageI simp: obj_at_def vs_refs_def vs_refs_pages_def map_conv_upd graph_of_def pde_ref_def pde_ref_pages_def split: if_split_asm)+ apply (clarsimp simp: empty_table_def) apply (cases pde, (auto simp: pde_ref_def valid_pde_mappings_def split:if_split_asm)) done lemma store_pde_state_refs_of: "\<lbrace>\<lambda>s. P (state_refs_of s)\<rbrace> store_pde ptr val \<lbrace>\<lambda>rv s. P (state_refs_of s)\<rbrace>" apply (simp add: store_pde_def set_pd_def set_object_def) apply (wp get_object_wp) apply (clarsimp elim!: rsubst[where P=P] intro!: ext) apply (clarsimp simp: state_refs_of_def obj_at_def) done lemma store_pde_state_hyp_refs_of: "\<lbrace>\<lambda>s. P (state_hyp_refs_of s)\<rbrace> store_pde ptr val \<lbrace>\<lambda>rv s. P (state_hyp_refs_of s)\<rbrace>" apply (simp add: store_pde_def set_pd_def set_object_def) apply (wp get_object_wp) apply (clarsimp elim!: rsubst[where P=P] intro!: ext) apply (clarsimp simp: state_hyp_refs_of_def obj_at_def) done lemma valid_asid_map_next_asid [iff]: "valid_asid_map (s\<lparr>arch_state := arm_next_asid_update f (arch_state s)\<rparr>) = valid_asid_map s" by (simp add: valid_asid_map_def vspace_at_asid_def) lemma pspace_respects_device_region_dmo: assumes valid_f: "\<And>P. \<lbrace>\<lambda>ms. P (device_state ms)\<rbrace> f \<lbrace>\<lambda>r ms. P (device_state ms)\<rbrace>" shows "\<lbrace>pspace_respects_device_region\<rbrace>do_machine_op f\<lbrace>\<lambda>r. pspace_respects_device_region\<rbrace>" apply (clarsimp simp: do_machine_op_def gets_def select_f_def simpler_modify_def bind_def valid_def get_def return_def) apply (drule_tac P1 = "(=) (device_state (machine_state s))" in use_valid[OF _ valid_f]) apply auto done lemma cap_refs_respects_device_region_dmo: assumes valid_f: "\<And>P. \<lbrace>\<lambda>ms. P (device_state ms)\<rbrace> f \<lbrace>\<lambda>r ms. P (device_state ms)\<rbrace>" shows "\<lbrace>cap_refs_respects_device_region\<rbrace>do_machine_op f\<lbrace>\<lambda>r. cap_refs_respects_device_region\<rbrace>" apply (clarsimp simp: do_machine_op_def gets_def select_f_def simpler_modify_def bind_def valid_def get_def return_def) apply (drule_tac P1 = "(=) (device_state (machine_state s))" in use_valid[OF _ valid_f]) apply auto done lemma machine_op_lift_device_state[wp]: "\<lbrace>\<lambda>ms. P (device_state ms)\<rbrace> machine_op_lift f \<lbrace>\<lambda>_ ms. P (device_state ms)\<rbrace>" by (clarsimp simp: machine_op_lift_def NonDetMonadVCG.valid_def bind_def machine_rest_lift_def gets_def simpler_modify_def get_def return_def select_def ignore_failure_def select_f_def split: if_splits) crunches invalidateLocalTLB_ASID, invalidateLocalTLB_VAASID, setHardwareASID, isb, dsb, set_current_pd, storeWord, cleanByVA_PoU, cleanL2Range for device_state_inv[wp]: "\<lambda>ms. P (device_state ms)" (simp: writeTTBR0_def ignore_del: invalidateLocalTLB_ASID invalidateLocalTLB_VAASID setHardwareASID isb dsb storeWord cleanByVA_PoU cleanL2Range) lemma as_user_inv: assumes x: "\<And>P. \<lbrace>P\<rbrace> f \<lbrace>\<lambda>x. P\<rbrace>" shows "\<lbrace>P\<rbrace> as_user t f \<lbrace>\<lambda>x. P\<rbrace>" proof - have P: "\<And>a b input. (a, b) \<in> fst (f input) \<Longrightarrow> b = input" by (rule use_valid [OF _ x], assumption, rule refl) have Q: "\<And>s ps. ps (kheap s) = kheap s \<Longrightarrow> kheap_update ps s = s" by simp show ?thesis apply (simp add: as_user_def gets_the_def assert_opt_def set_object_def get_object_def split_def) apply wp apply (clarsimp dest!: P) apply (subst Q) prefer 2 apply assumption apply (rule ext) apply (simp add: get_tcb_def) apply (case_tac "kheap s t"; simp) apply (case_tac a; simp) apply (clarsimp simp: arch_tcb_context_set_def arch_tcb_context_get_def) done qed crunches getRegister for inv[wp]: P (simp: getRegister_def) lemmas user_getreg_inv[wp] = as_user_inv[OF getRegister_inv] end end
devtools::revdep_check() devtools::revdep_check_save_summary() devtools::revdep_check_print_problems()
[STATEMENT] lemma is_semialgebraicE: assumes "is_semialgebraic n S" shows "S \<in> semialg_sets n" [PROOF STATE] proof (prove) goal (1 subgoal): 1. S \<in> semialg_sets n [PROOF STEP] using assms is_semialgebraic_def [PROOF STATE] proof (prove) using this: is_semialgebraic n S is_semialgebraic ?n ?S = (?S \<in> semialg_sets ?n) goal (1 subgoal): 1. S \<in> semialg_sets n [PROOF STEP] by blast
theory Chap2_2 imports Main begin datatype nat = Z | Suc nat fun add :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "add Z n = n" | "add (Suc m) n = Suc (add m n)" lemma add_b: "add n Z = n" apply (induction n) apply (rule add.simps(1)) apply (subst add.simps(2)) apply (subst nat.inject) apply assumption done lemma add_i: assumes f1: "\<And>m. add m n = add n m" shows "add m (Suc n) = add (Suc n) m" apply (induction m) apply (subst add.simps(1)) apply (rule add_b[symmetric]) apply (subst (1 2) add.simps(2)) apply (subst nat.inject) apply (subst f1[symmetric]) apply (subst add.simps(2)) apply (subst f1) apply (subst add.simps(2)[symmetric]) by assumption lemma add_comm: "add m n = add n m" apply (induction n arbitrary: m) apply (subst add.simps(1)) apply (rule add_b) apply (erule add_i) done value "1 + (2::Nat.nat)" value "1 + (2::int)" value "1 - (2::Nat.nat)" value "1 - (2::int)" fun double :: "nat \<Rightarrow> nat" where "double Z = Z" | "double (Suc n) = Suc (Suc (double n))" lemma double_add: "double n = add n n" apply (induction n) apply simp+ apply (subst (2) add_comm) by simp fun count :: "'a list \<Rightarrow> 'a \<Rightarrow> Nat.nat" where "count [] y = 0" | "count (x#xs) y = (if x = y then 1 else 0) + count xs y" lemma count_leq_len: "count xs y \<le> length xs" apply (induction xs) by simp+ fun snoc :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" where "snoc [] y = [y]" | "snoc (x#xs) y = x#(snoc xs y)" fun rev :: "'a list \<Rightarrow> 'a list" where "rev [] = []" | "rev (x#xs) = snoc (rev xs) x" lemma rev_snoc: "rev (snoc xs x) = x#(rev xs)" apply (induction xs) apply simp apply (subst snoc.simps) apply (subst rev.simps) apply (rule_tac a="rev (snoc xs x)" and b="x#rev xs" in forw_subst) apply assumption apply (subst snoc.simps) apply (subst rev.simps) by (rule refl) lemma rev_inv: "rev (rev xs) = xs" apply (induction xs) apply simp by (simp add: rev_snoc) fun sum_upto :: "Nat.nat \<Rightarrow> Nat.nat" where "sum_upto 0 = 0" | "sum_upto (Nat.Suc n) = n + 1 + sum_upto n" lemma "sum_upto n = n * (n + 1) div 2" apply (induction n) apply simp apply (subst sum_upto.simps) apply (rule_tac a="sum_upto n" and b="n * (n+1) div 2" in forw_subst) by simp+ end
Formal statement is: proposition homotopic_loops_imp_path: "homotopic_loops s p q \<Longrightarrow> path p \<and> path q" Informal statement is: If two loops are homotopic, then they are both paths.
-- ------------------------------------------------------------ [ Literals.idr ] ||| Module : Literals.idr ||| Copyright : (c) Jan de Muijnck-Hughes ||| License : see LICENSE ||| ||| Deal with literal values at the type-level. module Commons.Data.Literals %default total %access public export ||| Proof that the given value level `b` of type `ty` has value `a`. data Literal : (ty : Type) -> (a : ty) -> Type where MkLiteral : (b : ty) -> (prf : b = a) -> Literal ty a newLiteral : (b : ty) -> Literal ty b newLiteral b = MkLiteral b Refl ||| Representation of String literals. LitString : String -> Type LitString str = Literal String str ||| Proof that the given natural `o` is the successor of `n`. data Next : (n : Nat) -> Type where MkNext : (o : Nat) -> (prf : o = S n) -> Next n newNext : (o,n : Nat) -> (prf : o = S n) -> Next n newNext o _ prf = MkNext o prf -- --------------------------------------------------------------------- [ EOF ]
import category_theory.abelian.ext import for_mathlib.derived_functor noncomputable theory universe variables uα΅£ v u open category_theory opposite namespace Ext variables (R : Type uα΅£) [ring R] {C : Type u} [category.{v} C] [abelian C] [linear R C] [enough_projectives C] local notation `Ext` i `,` A `,` B := ((Ext R C i).obj (op A)).obj B def Ξ΄ (n : β„•) (A : short_exact_sequence C) (B : C) : (Ext n , A.1 , B) ⟢ (Ext (n+1) , A.3 , B) := let E := (((linear_yoneda R C).obj B).right_op.left_derived n), E' := (((linear_yoneda R C).obj B).right_op.left_derived (n+1)) in quiver.hom.unop (show E'.obj A.3 ⟢ E.obj A.1, from functor.left_derived.Ξ΄ _ _ _) lemma six_term_exact_seq (n : β„•) (A : short_exact_sequence C) (B : C) : exact_seq (Module.{v} R) [ ((Β«ExtΒ» R C n).map A.g.op).app B, ((Β«ExtΒ» R C n).map A.f.op).app B, Ξ΄ R n A B, ((Β«ExtΒ» R C (n+1)).map A.g.op).app B, ((Β«ExtΒ» R C (n+1)).map A.f.op).app B ] := begin apply exact_seq.of_op, exact functor.left_derived.six_term_exact_seq _ n A, end end Β«ExtΒ»
/* // Copyright (c) 2000-2009, Texas Engineering Experiment Station (TEES), a // component of the Texas A&M University System. // All rights reserved. // The information and source code contained herein is the exclusive // property of TEES and may not be disclosed, examined or reproduced // in whole or in part without explicit written authorization from TEES. */ #include <iostream> #include <stapl/utility/tuple.hpp> #include <stapl/domains/indexed.hpp> #include <stapl/views/vector_view.hpp> #include <stapl/containers/vector/vector.hpp> #include <stapl/views/array_view.hpp> #include <stapl/containers/array/array.hpp> #include <stapl/views/map_view.hpp> #include <stapl/containers/map/map.hpp> #include <stapl/containers/unordered_multiset/unordered_multiset.hpp> #include <stapl/skeletons/serial.hpp> #include <stapl/algorithms/algorithm.hpp> #include <stapl/algorithms/functional.hpp> #include <stapl/runtime.hpp> #include <stapl/stream.hpp> #include <sstream> #include <boost/bind.hpp> #include <boost/program_options.hpp> #include <boost/property_tree/ptree.hpp> #include "json_parser.hpp" using namespace std; #include "testutil.hpp" #include "rel_alpha_data.h" // #define BIG_FILES // Uncomment when big and huge files are present // #define TRIPLE_MAP_REDUCE // Uncomment when the bug is fixed // Disable some tests by commenting the defines below: // 2-lvl tests: #define TEST_SET_2LVL_01 #define TEST_SET_2LVL_02 #define TEST_SET_2LVL_03 // #define TEST_SET_2LVL_04 // COMPILES BUT DOESN'T RUN : MAP BUG #define TEST_SET_2LVL_05 #define TEST_SET_2LVL_06 // 3-lvl tests: #define TEST_SET_3LVL_01 // #define TEST_SET_3LVL_02 // #ifdef TRIPLE_MAP_REDUCE // #define TEST_SET_3LVL_03 // #ifdef TRIPLE_MAP_REDUCE // #define TEST_SET_3LVL_04 // #ifdef TRIPLE_MAP_REDUCE // #define TEST_SET_3LVL_05 // MAP BUG // #define TEST_SET_3LVL_06 // MAP BUG /*=========================================================================*/ #ifdef TEST_SET_2LVL_01 size_t nestpar_unordered_multiset_01(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_2LVL_02 size_t nestpar_unordered_multiset_02(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_2LVL_03 size_t nestpar_unordered_multiset_03(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_2LVL_04 size_t nestpar_unordered_multiset_04(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_2LVL_05 size_t nestpar_unordered_multiset_05(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_2LVL_06 size_t nestpar_unordered_multiset_06(size_t, stapl::stream<ifstream>&, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_3LVL_01 size_t nestpar_unordered_multiset_10(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_3LVL_02 size_t nestpar_unordered_multiset_11(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_3LVL_03 size_t nestpar_unordered_multiset_12(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_3LVL_04 size_t nestpar_unordered_multiset_13(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_3LVL_05 size_t nestpar_unordered_multiset_14(size_t, stapl::stream<ofstream>& ); #endif #ifdef TEST_SET_3LVL_06 size_t nestpar_unordered_multiset_15(size_t, stapl::stream<ofstream>& ); #endif /*=========================================================================*/ extern int prime100k[]; extern int rand100k[]; int fibo[20] = { 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946 }; /*=========================================================================*/ typedef stapl::unordered_multiset<int> set_int_tp; // -- 2-lvl set : -- typedef stapl::vector< set_int_tp > vec_set_int_tp; typedef stapl::vector_view<vec_set_int_tp> vec_set_int_vw_tp; typedef stapl::array< set_int_tp > ary_set_int_tp; typedef stapl::array_view<ary_set_int_tp> ary_set_int_vw_tp; typedef stapl::map< int, set_int_tp > map_set_int_tp; typedef stapl::map_view<map_set_int_tp> map_set_int_vw_tp; // 3 level : // vec<vec<set>> typedef stapl::vector<vec_set_int_tp> vec_vec_set_int_tp; typedef stapl::vector_view<vec_vec_set_int_tp> vec_vec_set_int_vw_tp; // ary<vec<set>> typedef stapl::array<vec_set_int_tp> ary_vec_set_int_tp; typedef stapl::array_view<ary_vec_set_int_tp> ary_vec_set_int_vw_tp; // vec<ary<set>> typedef stapl::vector<ary_set_int_tp> vec_ary_set_int_tp; typedef stapl::vector_view<vec_ary_set_int_tp> vec_ary_set_int_vw_tp; // vec<map<set>> typedef stapl::vector<map_set_int_tp> vec_map_set_int_tp; typedef stapl::vector_view<vec_map_set_int_tp> vec_map_set_int_vw_tp; // map<ary<set>> typedef stapl::map< int, ary_set_int_tp > map_ary_set_int_tp; typedef stapl::map_view<map_ary_set_int_tp> map_ary_set_int_vw_tp; // ----------------- typedef stapl::array<size_t> ary_sz_tp; typedef stapl::array_view<ary_sz_tp> ary_sz_vw_tp; typedef stapl::indexed_domain<int> ndx_dom_tp; /*=========================================================================*/ typedef stapl::identity<int> id_int_wf; typedef stapl::identity<size_t> id_un_wf; typedef stapl::negate<int> neg_int_wf; typedef stapl::plus<int> add_int_wf; typedef stapl::minus<int> sub_int_wf; typedef stapl::min<int> min_int_wf; typedef stapl::max<int> max_int_wf; typedef stapl::bit_xor<size_t> xor_un_wf; typedef stapl::bit_or<size_t> ior_un_wf; typedef stapl::bit_and<size_t> and_un_wf; /*=========================================================================*/ void open_zin(int model, int test, stapl::stream<ifstream>& zin) { switch ( model ) { case 1: switch( test ) { case 1: zin.open("tiny_factors.zin"); break; default: zin.open("tiny_primes.zin"); break; } break; case 100: switch( test ) { case 1: zin.open("data/small_factors.zin"); break; default: zin.open("data/small_primes.zin"); break; } break; case 10000: switch( test ) { case 1: zin.open("data/medium_factors.zin"); break; default: zin.open("data/medium_primes.zin"); break; } break; #ifdef BIG_FILES case 1000000: switch( test ) { case 1: zin.open("data/big_factors.zin"); break; default: zin.open("data/big_primes.zin"); break; } break; case 100000000: switch( test ) { case 1: zin.open("data/huge_factors.zin"); break; default: zin.open("data/huge_primes.zin"); break; } break; #endif } } struct put_val_wf { private: // pointer to p_object is necessary to allow work function serialization. stapl::stream<ofstream> m_zout; public: typedef void result_type; put_val_wf(stapl::stream<ofstream> const& zout) : m_zout(zout) { } template <typename Ref> void operator()(Ref val) { m_zout << val << " "; } void define_type(stapl::typer& t) { t.member(m_zout); } }; struct nestpar_cksum_wf { typedef size_t result_type; template<typename Ref1> size_t operator()(Ref1 v1) { return stapl::map_reduce(id_un_wf(), xor_un_wf(), v1); } }; struct map_set_cksum_wf { typedef int result_type; template<typename Element> int operator()(Element elem) const { return stapl::map_reduce(id_int_wf(), xor_un_wf(), elem.second); } }; struct map_outer_3lvl_cksum_wf { typedef int result_type; template<typename Element> int operator()(Element elem) const { return stapl::map_reduce(nestpar_cksum_wf(), xor_un_wf(), elem.second); } }; struct map_middle_3lvl_cksum_wf { typedef int result_type; template<typename Element> int operator()(Element elem) const { return stapl::map_reduce(map_set_cksum_wf(), xor_un_wf(), elem); } }; struct inner_set_show_wf { private: // pointer to p_object is necessary to allow work function serialization. stapl::stream<ofstream> m_zout; public: typedef void result_type; inner_set_show_wf(stapl::stream<ofstream> const& zout) : m_zout(zout) { } template<typename Element> void operator()(Element elem) { //FIXME, ss shouldn't be necessary stringstream ss; ss << "{" << elem << "}" << endl; m_zout << ss.str(); } void define_type(stapl::typer& t) { t.member(m_zout); } }; struct outer_map_show_inn_set_wf { private: // pointer to p_object is necessary to allow work function serialization. stapl::stream<ofstream> m_zout; public: typedef void result_type; outer_map_show_inn_set_wf(stapl::stream<ofstream> const& zout) : m_zout(zout) { } template<typename Element> void operator()(Element elem) { stapl::serial_io(inner_set_show_wf(m_zout), elem.second); } void define_type(stapl::typer& t) { t.member(m_zout); } }; struct roll_wf { typedef void result_type; template <typename View1, typename View2> void operator()(View1 length, View2 & limit) const { length = limit; } }; /*=========================================================================*/ int opt_test = -1; char *opt_data = 0; stapl::exit_code stapl_main(int argc, char **argv) { stapl::stream<ifstream> zin; stapl::stream<ofstream> zout; char *temp = 0; for ( int argi = 1; argi < argc; ) { char * opt = argv[argi++]; if ('-' == opt[0] ) { switch ( opt[1] ) { case 'h': cerr << "Specify the data size with -d $X \n" << "With $X = "<< endl << " t for tiny" << endl << " s for small" << endl << " m for medium" << endl; break; case 'd': opt_data = argv[argi++]; break; } } else { cerr << "unknown command line argument " << opt << endl; } } int model = -1; switch ( opt_data[0] ) { case 't': model = 1; break; case 's': model = 100; break; case 'm': model = 10000; break; case 'b': model = 10000000; break; case 'h': model = 100000000; break; default: cerr << "opt_data " << opt_data << endl; break; } if (model == -1) { std::cerr << "usage: exe -d [t|s|m]\n"; exit(1); } int first_test = 1; int last_test = 36; if (opt_test != -1 ) { first_test = opt_test; last_test = opt_test; } bool ok = true; first_test = 1; last_test = 12; if ( stapl::get_location_id() == 0 ) std::cout << "Nested Parallel Set " << endl; for ( int test=first_test; test<=last_test; test++ ) { if ( stapl::get_location_id() == 0 ) std::cerr << "Test #" << test << ": "; size_t result = 0; bool disabled = false; switch ( test) { case 1: #ifdef TEST_SET_2LVL_01 result = nestpar_unordered_multiset_01(model, zout); #else disabled = true; #endif break; case 2: #ifdef TEST_SET_2LVL_02 result = nestpar_unordered_multiset_02(model, zout); #else disabled = true; #endif break; case 3: #ifdef TEST_SET_2LVL_03 result = nestpar_unordered_multiset_03(model, zout); #else disabled = true; #endif break; case 4: #ifdef TEST_SET_2LVL_04 result = nestpar_unordered_multiset_04(model, zout); #else disabled = true; #endif break; case 5: #ifdef TEST_SET_2LVL_05 result = nestpar_unordered_multiset_05(model, zout); #else disabled = true; #endif break; case 6: #ifdef TEST_SET_2LVL_06 result = nestpar_unordered_multiset_06(model, zin, zout); #else disabled = true; #endif break; case 7: #ifdef TEST_SET_3LVL_01 result = nestpar_unordered_multiset_10(model, zout); #else disabled = true; #endif break; case 8: #ifdef TEST_SET_3LVL_02 result = nestpar_unordered_multiset_11(model, zout); #else disabled = true; #endif break; case 9: #ifdef TEST_SET_3LVL_03 result = nestpar_unordered_multiset_12(model, zout); #else disabled = true; #endif break; case 10: #ifdef TEST_SET_3LVL_04 result = nestpar_unordered_multiset_13(model, zout); #else disabled = true; #endif break; case 11: #ifdef TEST_SET_3LVL_05 result = nestpar_unordered_multiset_14(model, zout); #else disabled = true; #endif break; case 12: #ifdef TEST_SET_3LVL_06 result = nestpar_unordered_multiset_15(model, zout); #else disabled = true; #endif break; default: std::cerr << endl << "-- test " << test << " not yet implemented --" << endl; break; } bool passed; passed = (result == 0); if ( stapl::get_location_id() == 0) { if (disabled) std::cerr << "Disabled" << endl; else { if (passed) std::cerr << "[PASSED] " << endl; else std::cerr << "[FAILED] " << endl; } } } return EXIT_SUCCESS; } /*========================================================================= * heterogeneous nested structures *=========================================================================*/ // -------------- // ---- Fill ---- // -------------- struct insert_wf { typedef void result_type; size_t m_size; insert_wf(size_t sz) : m_size(sz) { } template <typename T,typename View> void operator()(T i,View& vw) { if ( m_size <= 100000 ) vw.insert(rand_nums[i]); else { size_t k = i % 10000; vw.insert( prime_nums[k] * prime_nums[10000-k] ); } } void define_type(stapl::typer& t) { t.member(m_size); } }; struct nestpar_inner_set_fill_wf { typedef void result_type; size_t m_size; nestpar_inner_set_fill_wf(size_t sz) : m_size(sz) { } template <typename View1> void operator()(View1 vw1) //FIXME: View1 & vw1 should work. { insert_wf insertwf(m_size); stapl::map_func(insertwf, stapl::counting_view<size_t>(m_size), stapl::make_repeat_view(vw1)); } void define_type(stapl::typer& t) { t.member(m_size); } }; struct nestpar_inner_set_fill_fromfile_wf { private: size_t m_size; // pointer to p_object is necessary to allow work function serialization. stapl::stream<ifstream> m_zin; public: typedef void result_type; nestpar_inner_set_fill_fromfile_wf(size_t sz, stapl::stream<ifstream> const& zin) : m_size(sz),m_zin(zin) { } template <typename ViewOverSet> void operator()(ViewOverSet vw_set)//FIXME: ViewOverSet & vw_set should work. { typename ViewOverSet::value_type t; for ( size_t i = 0; i < m_size; i++ ) { m_zin >> t; vw_set.insert(t); } } void define_type(stapl::typer& t) { t.member(m_size); t.member(m_zin); } }; // -------------- // ---- Show ---- // -------------- struct nestpar_inner_set_show_wf { private: // pointer to p_object is necessary to allow work function serialization. stapl::stream<ofstream> m_zout; public: typedef void result_type; nestpar_inner_set_show_wf(stapl::stream<ofstream> const& zout) : m_zout(zout) { } template <typename View1> void operator()(View1 const &vw1) { stapl::serial_io(put_val_wf(m_zout), vw1); } void define_type(stapl::typer& t) { t.member(m_zout); } }; struct nestpar_outer_cksum_wf { typedef size_t result_type; template<typename Ref1> size_t operator()(Ref1 v1) { return stapl::map_reduce(nestpar_cksum_wf(), xor_un_wf(), v1); } }; // ------------- // -- Process -- // ------------- struct nestpar_size_process_wf { typedef long int result_type; template <typename View1> long int operator()(View1 const &vw1) { return vw1.size(); } }; struct nestpar_map_reduce_process_wf { typedef long int result_type; template <typename View1> long int operator()(View1 const &vw1) { return stapl::map_reduce( id_int_wf(), add_int_wf(), vw1); } }; template<typename NestedContainer, typename NestedContainerView, typename FillWF = nestpar_inner_set_fill_wf > class two_lvl_test_wrapper { public: template <typename Filename,typename ProcessWF> size_t run_test(size_t model, Filename output_filename, ProcessWF & proc_wf, stapl::stream<ofstream>& zout) { size_t size = 100 * model; size_t limit = 100 * model; set_random_seed(); zout.open(output_filename); stapl::counter<stapl::default_timer> ctr; ctr.start(); NestedContainer a(size); NestedContainerView a_vw(a); stapl::map_func(FillWF(model*2), a_vw ); stapl::map_func(proc_wf, a_vw ); stapl::serial_io(nestpar_inner_set_show_wf(zout), a_vw ); ctr.stop(); double time1 = ctr.value(); zout.close(); size_t result = stapl::map_reduce(nestpar_cksum_wf(), xor_un_wf(), a_vw); return result; } template <typename Filename,typename ProcessWF> size_t run_test(size_t model, Filename output_filename, ProcessWF & proc_wf, stapl::stream<ifstream>& zin, stapl::stream<ofstream>& zout) { size_t size = 100 * model; size_t limit = 100 * model; set_random_seed(); zout.open(output_filename); stapl::counter<stapl::default_timer> ctr; ctr.start(); NestedContainer a(size); NestedContainerView a_vw(a); stapl::map_func(FillWF(model*2,zin), a_vw ); stapl::map_func(proc_wf, a_vw ); stapl::serial_io(nestpar_inner_set_show_wf(zout), a_vw ); ctr.stop(); double time1 = ctr.value(); zout.close(); size_t result = stapl::map_reduce(nestpar_cksum_wf(), xor_un_wf(), a_vw); return result; } }; template<typename NestedContainer, typename NestedContainerView> class two_lvl_test_wrapper_mapreduce { public: template <typename Filename,typename ProcessWF> size_t run_test(size_t model, Filename output_filename, ProcessWF & proc_wf, stapl::stream<ofstream>& zout) { size_t size = 100 * model; size_t limit = 100 * model; set_random_seed(); zout.open(output_filename); stapl::counter<stapl::default_timer> ctr; ctr.start(); NestedContainer a(size); NestedContainerView a_vw(a); stapl::map_func(nestpar_inner_set_fill_wf(model*2), a_vw ); add_int_wf::result_type res=stapl::map_reduce( proc_wf, add_int_wf(), a_vw); if (stapl::get_location_id() == 0) { //FIXME, ss shouldn't be necessary stringstream ss; ss << "map_reduce result (accumulate all elements from all sets):" << res << endl; zout << ss.str(); } stapl::serial_io(nestpar_inner_set_show_wf(zout), a_vw ); ctr.stop(); double time1 = ctr.value(); zout.close(); return stapl::map_reduce(nestpar_cksum_wf(), xor_un_wf(), a_vw); } }; // -------------------------- // - 3-level-deep functions - // -------------------------- // -------------- // ---- Fill ---- // -------------- template <typename FillWF> struct nestpar_outer_fill_wf { typedef void result_type; size_t m_size; nestpar_outer_fill_wf(size_t sz) : m_size(sz) { } template <typename View1> void operator()(View1 const& vw1) { stapl::map_func(FillWF(m_size), vw1); } void define_type(stapl::typer& t) { t.member(m_size); } }; struct middle_insert_wf { typedef void result_type; size_t m_size; middle_insert_wf(size_t sz) : m_size(sz) { } template <typename T,typename View> void operator()(T i,View& vw) { if ( m_size <= 100000 ) { for ( size_t j = 0; j < m_size; j++ ) { vw[ prime_nums[i] ].insert(rand_nums[j]); } } else { for ( size_t j = 0; j < m_size; j+=10000 ) { for ( size_t k = 0; k < 10000; k++ ) vw[ prime_nums[i%10000] * prime_nums[10000-(i%10000)] ].insert( rand_nums[k] * rand_nums[10000-k]); } } } void define_type(stapl::typer& t) { t.member(m_size); } }; struct nestpar_middlemap_set_fill_wf { typedef void result_type; size_t m_size; nestpar_middlemap_set_fill_wf(size_t sz) : m_size(sz) { } template <typename View1> void operator()(View1 const& map_set_vw1) { middle_insert_wf insertwf(m_size); stapl::map_func(insertwf, stapl::counting_view<size_t>(m_size), stapl::make_repeat_view(map_set_vw1)); } void define_type(stapl::typer& t) { t.member(m_size); } }; // -------------- // ---- Show ---- // -------------- struct nestpar_outer_show_wf { private: // pointer to p_object is necessary to allow work function serialization. stapl::stream<ofstream> m_zout; public: typedef void result_type; nestpar_outer_show_wf(stapl::stream<ofstream> const& zout) : m_zout(zout) { } template <typename View1> void operator()(View1 const& vw1) { stapl::serial_io(nestpar_inner_set_show_wf(m_zout), vw1); } void define_type(stapl::typer& t) { t.member(m_zout); } }; struct outer_map_3lvl_show_inn_set_wf { private: // pointer to p_object is necessary to allow work function serialization. stapl::stream<ofstream> m_zout; public: typedef void result_type; outer_map_3lvl_show_inn_set_wf(stapl::stream<ofstream> const& zout) : m_zout(zout) { } template<typename Element> void operator()(Element elem) { stapl::serial_io(nestpar_inner_set_show_wf(m_zout), elem.second); } void define_type(stapl::typer& t) { t.member(m_zout); } }; struct nestpar_middle_map_show_wf { private: // pointer to p_object is necessary to allow work function serialization. stapl::stream<ofstream> m_zout; public: typedef void result_type; nestpar_middle_map_show_wf(stapl::stream<ofstream> const& zout) : m_zout(zout) { } template <typename View1> void operator()(View1 const& vw1) { stapl::serial_io(outer_map_show_inn_set_wf(m_zout), vw1); } void define_type(stapl::typer& t) { t.member(m_zout); } }; // ------------- // -- Process -- // ------------- template <typename InnerProcWF> struct nestpar_outer_process_wf { typedef void result_type; InnerProcWF m_proc; nestpar_outer_process_wf(InnerProcWF proc) : m_proc(proc) { } template <typename View1> void operator()(View1 const& vw1) { stapl::map_func(m_proc, vw1); } void define_type(stapl::typer& t) { t.member(m_proc); } }; struct nestpar_outerMap_process_wf { typedef void result_type; template <typename View1> void operator()(View1 const& vw1) { stapl::map_func(nestpar_map_reduce_process_wf(), vw1.second); } }; struct nestpar_middle_map_reduce_process_wf { typedef int result_type; template <typename View1> int operator()(View1 const &vw1) { return stapl::map_reduce(nestpar_map_reduce_process_wf(), add_int_wf(), vw1); } }; struct nestpar_3lvl_cksum_wf { typedef size_t result_type; template<typename Ref1> size_t operator()(Ref1 v1) { return stapl::map_reduce(nestpar_outer_cksum_wf(), xor_un_wf(), v1); } }; template<typename NestedContainer, typename NestedContainerView, typename FillWF = nestpar_inner_set_fill_wf> class three_lvl_test_wrapper { public: template <typename Filename,typename ProcessWF> size_t run_test(size_t model, Filename output_filename, ProcessWF & proc_wf, stapl::stream<ofstream>& zout) { size_t size = 100 * model; size_t limit = 100 * model; set_random_seed(); zout.open(output_filename); stapl::counter<stapl::default_timer> ctr; ctr.start(); //Array which specifies the size of the 2nd-lvl container: ary_sz_tp len_1(model * 10); ary_sz_vw_tp len_1_vw(len_1); stapl::map_func(roll_wf(), len_1_vw, stapl::make_repeat_view(limit)); NestedContainer a(len_1_vw); NestedContainerView a_vw(a); stapl::map_func(nestpar_outer_fill_wf<FillWF>(model*2), a_vw ); stapl::map_func(nestpar_outer_process_wf<ProcessWF>(proc_wf), a_vw ); stapl::serial_io(nestpar_outer_show_wf(zout), a_vw); ctr.stop(); double time1 = ctr.value(); zout.close(); #ifdef TRIPLE_MAP_REDUCE size_t cksum = stapl::map_reduce(nestpar_3lvl_cksum_wf(), xor_un_wf(), a_vw); return cksum; #else return 0; #endif } }; template<typename NestedContainer, typename NestedContainerView, typename FillWF = nestpar_inner_set_fill_wf> class three_lvl_test_wrapper_mapreduce { public: template <typename Filename,typename ProcessWF> size_t run_test(size_t model, Filename output_filename, ProcessWF & proc_wf, stapl::stream<ofstream>& zout) { size_t size = 100 * model; size_t limit = 100 * model; set_random_seed(); zout.open(output_filename); stapl::counter<stapl::default_timer> ctr; ctr.start(); //Array which specifies the size of the 2nd-lvl container: ary_sz_tp len_1(model * 10); ary_sz_vw_tp len_1_vw(len_1); stapl::map_func(roll_wf(), len_1_vw, stapl::make_repeat_view(limit)); NestedContainer a(len_1_vw); NestedContainerView a_vw(a); stapl::map_func(nestpar_outer_fill_wf<FillWF>(model*2), a_vw ); add_int_wf::result_type res = stapl::map_reduce( proc_wf, add_int_wf(), a_vw); stringstream ss; ss << "map_reduce result (accumulate all elements from all sets):" << res << endl; zout << ss.str(); stapl::serial_io(nestpar_outer_show_wf(zout), a_vw); ctr.stop(); double time1 = ctr.value(); zout.close(); #ifdef TRIPLE_MAP_REDUCE size_t cksum = stapl::map_reduce(nestpar_3lvl_cksum_wf(), xor_un_wf(), a_vw); return cksum; #else return 0; #endif } }; ////////////////////////////////////////////////////////////////////// // nested parallelism : vec(unordered_multiset(int)) // construct vector with generator, traverse with serial ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_2LVL_01 size_t nestpar_unordered_multiset_01(size_t model,stapl::stream<ofstream>& zout) { two_lvl_test_wrapper <vec_set_int_tp, vec_set_int_vw_tp> test_case; nestpar_size_process_wf proc; return test_case.run_test(model, "np_unordered_multiset_01.zout", proc, zout); } #endif ////////////////////////////////////////////////////////////////////// // nested parallelism : vec(unordered_multiset(int)) // construct vector with generator, traverse with mapreduce ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_2LVL_02 size_t nestpar_unordered_multiset_02(size_t model,stapl::stream<ofstream>& zout) { two_lvl_test_wrapper <vec_set_int_tp, vec_set_int_vw_tp> test_case; nestpar_map_reduce_process_wf proc; return test_case.run_test(model, "np_unordered_multiset_02.zout", proc, zout); } #endif ////////////////////////////////////////////////////////////////////// // nested parallelism : ary(unordered_multiset(int)) // construct array with generator, traverse with mapreduce ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_2LVL_03 size_t nestpar_unordered_multiset_03(size_t model,stapl::stream<ofstream>& zout) { two_lvl_test_wrapper <ary_set_int_tp, ary_set_int_vw_tp> test_case; nestpar_map_reduce_process_wf proc; return test_case.run_test(model, "np_unordered_multiset_03.zout", proc, zout); } #endif ////////////////////////////////////////////////////////////////////// // nested parallelism : map(unordered_multiset(int)) // construct map data from C arrays, traverse with mapreduce ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_2LVL_04 struct nestpar_set_04_process_wf { typedef int result_type; template <typename Element> int operator()(Element elem) { return stapl::map_reduce( id_int_wf(), add_int_wf(), elem.second); } }; size_t nestpar_unordered_multiset_04(size_t model,stapl::stream<ofstream>& zout) { size_t size = 100 * model; size_t limit = 100 * model; set_random_seed(); zout.open("np_unordered_multiset_04.zout"); stapl::counter<stapl::default_timer> ctr; ctr.start(); ary_sz_tp len(size); ary_sz_vw_tp len_vw(len); stapl::map_func(roll_wf(), len_vw, stapl::make_repeat_view(limit)); ndx_dom_tp map_dom(0, 100000); map_set_int_tp a(map_dom); map_set_int_vw_tp a_vw(a); if ( stapl::get_location_id() == 0 ) { if ( size <= 100000 ) { for ( size_t i = 0; i < size; i++ ) { for ( size_t j = 0; j < limit; j++ ) { a[ prime_nums[i] ].insert(rand_nums[j]); } } } else { for ( size_t i = 0; i < size; i += 10000 ) { for ( size_t k = 0; k < 10000; k++ ) { for ( size_t jj = 0; jj < limit; jj += 10000 ) for ( size_t j = 0; j < 10000; j++ ) { a[ prime_nums[k] * prime_nums[10000-k] ].insert( rand_nums[j] * rand_nums[10000-j]); } } } } } stapl::rmi_fence(); stapl::map_func(nestpar_set_04_process_wf(), a_vw ); stapl::serial_io(outer_map_show_inn_set_wf(zout), a_vw ); ctr.stop(); double time1 = ctr.value(); zout.close(); return stapl::map_reduce(map_set_cksum_wf(), xor_un_wf(), a_vw); } #endif ////////////////////////////////////////////////////////////////////// // nested parallelism : vec(unordered_multiset(int)) // construct vector with generator, process with stapl algorithm // apply unary function in data parallel manner ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_2LVL_05 struct nestpar_set_05_process_wf { typedef int result_type; template <typename View1> int operator()(View1 const &vw1) { return stapl::accumulate(vw1, -2000000); } }; size_t nestpar_unordered_multiset_05(size_t model,stapl::stream<ofstream>& zout) { two_lvl_test_wrapper_mapreduce <vec_set_int_tp, vec_set_int_vw_tp> test_case; nestpar_set_05_process_wf proc; return test_case.run_test(model, "np_unordered_multiset_05.zout", proc, zout); } #endif #ifdef TEST_SET_2LVL_06 ////////////////////////////////////////////////////////////////////// // nested parallelism : vec(ary(int)) // construct vector with serial I/O, // process with map_reduce / work function, display with counting view ////////////////////////////////////////////////////////////////////// size_t nestpar_unordered_multiset_06(size_t model, stapl::stream<ifstream>& zin, stapl::stream<ofstream>& zout) { open_zin(model,2,zin); two_lvl_test_wrapper <vec_set_int_tp, vec_set_int_vw_tp, nestpar_inner_set_fill_fromfile_wf> test_case; nestpar_map_reduce_process_wf proc; return test_case.run_test( model, "np_unordered_multiset_06.zout", proc, zin, zout); } #endif ////////////////////////////////////////////////////////////////////// // nested parallelism : vec(vec(unordered_multiset(int)) // construct array with serial I/O, // process with mapreduce / work function, display with serial ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_3LVL_01 size_t nestpar_unordered_multiset_10(size_t model,stapl::stream<ofstream>& zout) { three_lvl_test_wrapper <vec_vec_set_int_tp, vec_vec_set_int_vw_tp> test_case; nestpar_size_process_wf proc; return test_case.run_test(model, "np_unordered_multiset_10.zout", proc, zout); } #endif ////////////////////////////////////////////////////////////////////// // nested parallelism : vec(vec(unordered_multiset(int)) // construct vector with serial I/O, // process with stapl algorithm, display with serial ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_3LVL_02 struct nestpar_set_11_process_wf { typedef long int result_type; template <typename View1> long int operator()(View1 const &vw1) { return stapl::accumulate(vw1, -2000000); } }; struct nestpar_set_11_middle_process_wf { typedef long int result_type; template <typename View1> long int operator()(View1 const &vw1) { return stapl::map_reduce(nestpar_set_11_process_wf(), add_int_wf(), vw1); } }; size_t nestpar_unordered_multiset_11(size_t model,stapl::stream<ofstream>& zout) { three_lvl_test_wrapper_mapreduce <vec_vec_set_int_tp, vec_vec_set_int_vw_tp> test_case; nestpar_set_11_middle_process_wf proc; return test_case.run_test(model, "np_unordered_multiset_11.zout", proc, zout); } #endif ////////////////////////////////////////////////////////////////////// // nested parallelism of various containers // construct vector with serial I/O, // process with map_reduce, display with serial ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// // vec<ary<unordered_multiset <int> > > ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_3LVL_03 size_t nestpar_unordered_multiset_12(size_t model,stapl::stream<ofstream>& zout) { three_lvl_test_wrapper <vec_ary_set_int_tp, vec_ary_set_int_vw_tp> test_case; nestpar_map_reduce_process_wf proc; return test_case.run_test(model, "np_unordered_multiset_12.zout", proc, zout); } #endif ////////////////////////////////////////////////////////////////////// // ary<vec<unordered_multiset <int> > > ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_3LVL_04 size_t nestpar_unordered_multiset_13(size_t model,stapl::stream<ofstream>& zout) { three_lvl_test_wrapper <ary_vec_set_int_tp, ary_vec_set_int_vw_tp> test_case; nestpar_map_reduce_process_wf proc; return test_case.run_test(model, "np_unordered_multiset_13.zout", proc, zout); } #endif ////////////////////////////////////////////////////////////////////// // vec<map<unordered_multiset <int> > > ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_3LVL_05 struct nestpar_set_14_process_wf { typedef int result_type; template <typename Element> int operator()(Element elem) { return stapl::map_reduce( id_int_wf(), add_int_wf(), elem.second); } }; size_t nestpar_unordered_multiset_14(size_t model,stapl::stream<ofstream>& zout) { size_t size = 100 * model; size_t limit = 100 * model; set_random_seed(); zout.open("np_unordered_multiset_14.zout"); stapl::counter<stapl::default_timer> ctr; ctr.start(); vec_map_set_int_tp a(model * 10); vec_map_set_int_vw_tp a_vw(a); stapl::map_func(nestpar_middlemap_set_fill_wf(model*2), a_vw ); nestpar_set_14_process_wf proc_wf; stapl::map_func(nestpar_outer_process_wf<nestpar_set_14_process_wf>(proc_wf), a_vw ); stapl::serial_io(nestpar_middle_map_show_wf(zout), a_vw); ctr.stop(); double time1 = ctr.value(); zout.close(); return stapl::map_reduce(map_middle_3lvl_cksum_wf(), xor_un_wf(), a_vw); } #endif ////////////////////////////////////////////////////////////////////// // map<ary<unordered_multiset <int> > > ////////////////////////////////////////////////////////////////////// #ifdef TEST_SET_3LVL_06 size_t nestpar_unordered_multiset_15(size_t model,stapl::stream<ofstream>& zout) { size_t size = 100 * model; size_t limit = 100 * model; set_random_seed(); zout.open("np_unordered_multiset_15.zout"); stapl::counter<stapl::default_timer> ctr; ctr.start(); ndx_dom_tp map_dom(0, 16277216); map_ary_set_int_tp a(map_dom); map_ary_set_int_vw_tp a_vw(a); ary_sz_tp len(size); ary_sz_vw_tp len_vw(len); stapl::map_func(roll_wf(), len_vw, stapl::make_repeat_view(limit)); if ( stapl::get_location_id() == 0 ) { if ( size <= 100000 ) { for ( size_t i = 0; i < size; i++ ) { a[ prime_nums[i]].resize(len_vw[i]); } for ( size_t i = 0; i < size; i++ ) { for ( size_t j = 0; j < len_vw[i]; j++ ) { int val = rand_nums[j]; a[ prime_nums[i] ][ val ].insert(rand_nums[j]); } } } else { for ( size_t i = 0; i < size; i += 10000 ) { a[ prime_nums[i] ].resize(len_vw[i]); } for ( size_t i = 0; i < size; i += 10000 ) { for ( size_t j = 0; j < len_vw[i]; j++ ) { for ( size_t k = 0; k < 10000; k++ ) { int val = rand_nums[j]; a[ prime_nums[k] * prime_nums[10000-k] ][ val ].insert( rand_nums[j]); } } } } } stapl::rmi_fence(); stapl::map_func(nestpar_outerMap_process_wf(), a_vw ); stapl::serial_io(outer_map_3lvl_show_inn_set_wf(zout), a_vw); ctr.stop(); double time1 = ctr.value(); zout.close(); return stapl::map_reduce(map_outer_3lvl_cksum_wf(), xor_un_wf(), a_vw); } #endif
using Statistics using LinearAlgebra using Distributions include(string(pwd(),"/src/gensys.jl")) include(string(pwd(),"/hmc/diffs_estrut_v3.jl")) include(string(pwd(),"/misc/matrix_no_kalman.jl")) # See Scjmitt-GrohΓ© paper on evaluating likelihoods without the Kalman filter to get the notation function dSx(h,Sx,dh,dQ) m = size(h,1) Kmm = commutation_matrix(m,m) D = duplication_matrix(m) b1 = (I(m^2) - kron(h,h)) b2 = kron(h*Sx,I(m)) + kron(I(m),h*Sx)*Kmm res = -inv(b1)*(b2*dh' - D*dQ') return res end function kron_and_sum(M,k) res = zeros(size(M).^2) for j in 1:k term = kron(M^(k-j),(M')^j) res += term end return res end function dSy(g,h,Sx,dSx,dh,j) #j is the power of h m = size(h,1) Kmm = commutation_matrix(m,m) h_pow = h^j ks = kron_and_sum(h,j) b1 = kron(g,g*h*Sx)*ks b2 = kron(g*h_pow*Sx,g) b3 = kron(g*h_pow,g*h) res = (b1*Kmm+b2)*dh' + b3*dSx return res end function diff_ll(P,y,dP) P_inv = inv(P) return -1/2*vec(P_inv)'*dP + 1/2*kron(y'*P_inv,y'*P_inv)*dP end function log_like_dsge(par,data;kalman_tol = 1e-10) #order to par #alfa #beta #epsilon #theta #sig #sigma: this is the std dev of the innovation #phi #phi_pi #phi_y #rho_v #data will have t x p dimension: lines are periods p are variables alfa = par[1] bet = par[2] epsilon = par[3] theta = par[4] sig = par[5] #par 6 is coded bellow see line 56 phi = par[7] phi_pi = par[8] phi_y = par[9] rho_v = par[10] THETA = (1-alfa)/(1-alfa+alfa*epsilon) lamb = (1-theta)*(1-bet*theta)/theta*THETA kappa = lamb*(sig+(phi+alfa)/(1-alfa)) nobs = size(data,1) l = size(data,2) GAMMA_0 = [bet 0 0 0; 1 sig 0 0; 0 0 0 0; 0 0 0 1] GAMMA_1 = [ 1 -kappa 0 0; 0 sig 1 0; -phi_pi -phi_y 1 -1; 0 0 0 rho_v] PSI = [0; 0; 0; 1] PI = [bet 0; 1 sig; 0 0; 0 0] p = size(GAMMA_1,1) #number of endogenous vars sol = gensys(GAMMA_0,GAMMA_1,PSI,PI; verbose = false) if sum(sol.eu) != 2 return -Inf, repeat([0],length(par)) end #Sig = zeros(p,p) #Sig[4,4] = par[6] G = zeros(1,p) G[1,2] = 1 A = sol.Theta1 R = [0] .+ 1e-8 Q = par[6]^2*sol.Theta2*sol.Theta2' dA,dB = diff_mod(par) #dB = dB[1:4,:] dA = dA'*I dG = zeros(10,4) dQ = (kron(sol.Theta2,I(p)) + kron(I(p),sol.Theta2)*commutation_matrix(4,1))*dB dQ = pinv(duplication_matrix(4))*dQ dQ = dQ' dR = zeros(size(par,1),1) Sx = solve_lyapunov_vec(A,Q) S = build_variance(G,A,Q,nobs) S = copy(S) dSx_mat = dSx(A,Q,dA,dQ) dSy_foo(j) = dSy(G,A,Sx,dSx_mat,dA,j) d_vecS = map(dSy_foo,1:(nobs)) sel_mat = Toeplitz(1:nobs,1:nobs) sel_mat = Int.(sel_mat) dS_mat = d_vecS[sel_mat] dS_mat = vec(dS_mat) dS_mat = mapreduce(x->dS_mat[x],vcat,1:nobs^2) dll = diff_ll(S,data,dS_mat) dist = MvNormal(S) llh = logpdf(dist,data) return llh,dll end
module Flexidisc.Transformation.TransHeader import Flexidisc.Dec.IsYes import Flexidisc.Header.Type import Flexidisc.OrdList import Flexidisc.Transformation.Type %default total %access public export data TransHeader : (k : Type) -> Type where T : (o : Ord k) => OrdList k o MapValue -> TransHeader k Nil : Ord k => TransHeader k Nil = T [] (::) : (k, MapValue) -> TransHeader k -> TransHeader k (::) x (T h) = T (insert x h) IsFresh : (DecEq label) => (l : label) -> (xs : TransHeader label) -> Type IsFresh l (T xs) = IsYes (decFresh l xs) toLabels : TransHeader k -> List k toLabels (T xs) = toLabels xs toSource : TransHeader k -> Header k toSource (T xs) = H (toSource xs) toTarget : TransHeader k -> Header k toTarget (T xs) = H (toTarget xs)
The corn crake breeds from Britain and Ireland east through Europe to central Siberia . Although it has vanished from much of its historic range , this bird was once found in suitable habitats in Eurasia everywhere between latitudes 41 Β° N and 62 Β° N. There is also a sizable population in western China , but this species nests only rarely in northern Spain and in Turkey . Old claims of breeding in South Africa are incorrect , and result from misidentification of eggs in a museum collection which are actually those of the African rail .
[STATEMENT] lemma partn_lst_less: assumes M: "partn_lst r B \<alpha> n" and eq: "length \<alpha>' = length \<alpha>" and "List.set \<alpha>' \<subseteq> ON" and le: "\<And>i. i < length \<alpha> \<Longrightarrow> \<alpha>'!i \<le> \<alpha>!i " and r: "wf r" "trans r" "total_on B r" and "small B" shows "partn_lst r B \<alpha>' n" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Partitions.partn_lst r B \<alpha>' n [PROOF STEP] proof (clarsimp simp: partn_lst_def) [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>f. f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} \<Longrightarrow> \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] fix f [PROOF STATE] proof (state) goal (1 subgoal): 1. \<And>f. f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} \<Longrightarrow> \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] assume "f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'}" [PROOF STATE] proof (state) this: f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} goal (1 subgoal): 1. \<And>f. f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} \<Longrightarrow> \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] then [PROOF STATE] proof (chain) picking this: f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} [PROOF STEP] obtain i H where "i < length \<alpha>" and "H \<subseteq> B" "small H" and H: "ordertype H r = (\<alpha>!i)" and fi: "f ` nsets H n \<subseteq> {i}" [PROOF STATE] proof (prove) using this: f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} goal (1 subgoal): 1. (\<And>i H. \<lbrakk>i < length \<alpha>; H \<subseteq> B; small H; ordertype H r = \<alpha> ! i; f ` [H]\<^bsup>n\<^esup> \<subseteq> {i}\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} Partitions.partn_lst r B \<alpha> n length \<alpha>' = length \<alpha> list.set \<alpha>' \<subseteq> ON ?i < length \<alpha> \<Longrightarrow> \<alpha>' ! ?i \<le> \<alpha> ! ?i wf r trans r total_on B r small B goal (1 subgoal): 1. (\<And>i H. \<lbrakk>i < length \<alpha>; H \<subseteq> B; small H; ordertype H r = \<alpha> ! i; f ` [H]\<^bsup>n\<^esup> \<subseteq> {i}\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis [PROOF STEP] by (auto simp: partn_lst_def smaller_than_small) [PROOF STATE] proof (state) this: i < length \<alpha> H \<subseteq> B small H ordertype H r = \<alpha> ! i f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} goal (1 subgoal): 1. \<And>f. f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} \<Longrightarrow> \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] then [PROOF STATE] proof (chain) picking this: i < length \<alpha> H \<subseteq> B small H ordertype H r = \<alpha> ! i f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] have bij: "bij_betw (ordermap H r) H (elts (\<alpha>!i))" [PROOF STATE] proof (prove) using this: i < length \<alpha> H \<subseteq> B small H ordertype H r = \<alpha> ! i f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} goal (1 subgoal): 1. bij_betw (ordermap H r) H (elts (\<alpha> ! i)) [PROOF STEP] using ordermap_bij [of r H] [PROOF STATE] proof (prove) using this: i < length \<alpha> H \<subseteq> B small H ordertype H r = \<alpha> ! i f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} \<lbrakk>wf r; total_on H r; small H\<rbrakk> \<Longrightarrow> bij_betw (ordermap H r) H (elts (ordertype H r)) goal (1 subgoal): 1. bij_betw (ordermap H r) H (elts (\<alpha> ! i)) [PROOF STEP] by (smt assms(8) in_mono r(1) r(3) smaller_than_small total_on_def) [PROOF STATE] proof (state) this: bij_betw (ordermap H r) H (elts (\<alpha> ! i)) goal (1 subgoal): 1. \<And>f. f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} \<Longrightarrow> \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] define H' where "H' = inv_into H (ordermap H r) ` (elts (\<alpha>'!i))" [PROOF STATE] proof (state) this: H' = inv_into H (ordermap H r) ` elts (\<alpha>' ! i) goal (1 subgoal): 1. \<And>f. f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} \<Longrightarrow> \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] have "H' \<subseteq> H" [PROOF STATE] proof (prove) goal (1 subgoal): 1. H' \<subseteq> H [PROOF STEP] using bij \<open>i < length \<alpha>\<close> bij_betw_imp_surj_on le [PROOF STATE] proof (prove) using this: bij_betw (ordermap H r) H (elts (\<alpha> ! i)) i < length \<alpha> bij_betw ?f ?A ?B \<Longrightarrow> ?f ` ?A = ?B ?i < length \<alpha> \<Longrightarrow> \<alpha>' ! ?i \<le> \<alpha> ! ?i goal (1 subgoal): 1. H' \<subseteq> H [PROOF STEP] by (force simp: H'_def image_subset_iff intro: inv_into_into) [PROOF STATE] proof (state) this: H' \<subseteq> H goal (1 subgoal): 1. \<And>f. f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} \<Longrightarrow> \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] moreover [PROOF STATE] proof (state) this: H' \<subseteq> H goal (1 subgoal): 1. \<And>f. f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} \<Longrightarrow> \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] have ot: "ordertype H' r = (\<alpha>'!i)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ordertype H' r = \<alpha>' ! i [PROOF STEP] proof (subst ordertype_eq_iff) [PROOF STATE] proof (state) goal (6 subgoals): 1. Ord (\<alpha>' ! i) 2. wf r 3. small H' 4. total_on H' r 5. trans r 6. \<exists>f. bij_betw f H' (elts (\<alpha>' ! i)) \<and> (\<forall>x\<in>H'. \<forall>y\<in>H'. (f x < f y) = ((x, y) \<in> r)) [PROOF STEP] show "Ord (\<alpha>' ! i)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. Ord (\<alpha>' ! i) [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: Partitions.partn_lst r B \<alpha> n length \<alpha>' = length \<alpha> list.set \<alpha>' \<subseteq> ON ?i < length \<alpha> \<Longrightarrow> \<alpha>' ! ?i \<le> \<alpha> ! ?i wf r trans r total_on B r small B goal (1 subgoal): 1. Ord (\<alpha>' ! i) [PROOF STEP] by (simp add: \<open>i < length \<alpha>\<close> subset_eq) [PROOF STATE] proof (state) this: Ord (\<alpha>' ! i) goal (5 subgoals): 1. wf r 2. small H' 3. total_on H' r 4. trans r 5. \<exists>f. bij_betw f H' (elts (\<alpha>' ! i)) \<and> (\<forall>x\<in>H'. \<forall>y\<in>H'. (f x < f y) = ((x, y) \<in> r)) [PROOF STEP] show "small H'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. small H' [PROOF STEP] by (simp add: H'_def) [PROOF STATE] proof (state) this: small H' goal (4 subgoals): 1. wf r 2. total_on H' r 3. trans r 4. \<exists>f. bij_betw f H' (elts (\<alpha>' ! i)) \<and> (\<forall>x\<in>H'. \<forall>y\<in>H'. (f x < f y) = ((x, y) \<in> r)) [PROOF STEP] show "\<exists>f. bij_betw f H' (elts (\<alpha>' ! i)) \<and> (\<forall>x\<in>H'. \<forall>y\<in>H'. (f x < f y) = ((x, y) \<in> r))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<exists>f. bij_betw f H' (elts (\<alpha>' ! i)) \<and> (\<forall>x\<in>H'. \<forall>y\<in>H'. (f x < f y) = ((x, y) \<in> r)) [PROOF STEP] proof (intro exI conjI ballI) [PROOF STATE] proof (state) goal (2 subgoals): 1. bij_betw ?f H' (elts (\<alpha>' ! i)) 2. \<And>x y. \<lbrakk>x \<in> H'; y \<in> H'\<rbrakk> \<Longrightarrow> (?f x < ?f y) = ((x, y) \<in> r) [PROOF STEP] show "bij_betw (ordermap H r) H' (elts (\<alpha>' ! i))" [PROOF STATE] proof (prove) goal (1 subgoal): 1. bij_betw (ordermap H r) H' (elts (\<alpha>' ! i)) [PROOF STEP] using \<open>H' \<subseteq> H\<close> [PROOF STATE] proof (prove) using this: H' \<subseteq> H goal (1 subgoal): 1. bij_betw (ordermap H r) H' (elts (\<alpha>' ! i)) [PROOF STEP] by (metis H'_def \<open>i < length \<alpha>\<close> bij bij_betw_inv_into_RIGHT bij_betw_subset le less_eq_V_def) [PROOF STATE] proof (state) this: bij_betw (ordermap H r) H' (elts (\<alpha>' ! i)) goal (1 subgoal): 1. \<And>x y. \<lbrakk>x \<in> H'; y \<in> H'\<rbrakk> \<Longrightarrow> (ordermap H r x < ordermap H r y) = ((x, y) \<in> r) [PROOF STEP] show "(ordermap H r x < ordermap H r y) = ((x, y) \<in> r)" if "x \<in> H'" "y \<in> H'" for x y [PROOF STATE] proof (prove) goal (1 subgoal): 1. (ordermap H r x < ordermap H r y) = ((x, y) \<in> r) [PROOF STEP] proof (intro iffI ordermap_mono_less) [PROOF STATE] proof (state) goal (7 subgoals): 1. ordermap H r x < ordermap H r y \<Longrightarrow> (x, y) \<in> r 2. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> r 3. (x, y) \<in> r \<Longrightarrow> wf r 4. (x, y) \<in> r \<Longrightarrow> trans r 5. (x, y) \<in> r \<Longrightarrow> x \<in> H 6. (x, y) \<in> r \<Longrightarrow> y \<in> H 7. (x, y) \<in> r \<Longrightarrow> small H [PROOF STEP] assume "ordermap H r x < ordermap H r y" [PROOF STATE] proof (state) this: ordermap H r x < ordermap H r y goal (7 subgoals): 1. ordermap H r x < ordermap H r y \<Longrightarrow> (x, y) \<in> r 2. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> r 3. (x, y) \<in> r \<Longrightarrow> wf r 4. (x, y) \<in> r \<Longrightarrow> trans r 5. (x, y) \<in> r \<Longrightarrow> x \<in> H 6. (x, y) \<in> r \<Longrightarrow> y \<in> H 7. (x, y) \<in> r \<Longrightarrow> small H [PROOF STEP] then [PROOF STATE] proof (chain) picking this: ordermap H r x < ordermap H r y [PROOF STEP] show "(x, y) \<in> r" [PROOF STATE] proof (prove) using this: ordermap H r x < ordermap H r y goal (1 subgoal): 1. (x, y) \<in> r [PROOF STEP] by (metis \<open>H \<subseteq> B\<close> assms(8) calculation in_mono leD ordermap_mono_le r smaller_than_small that total_on_def) [PROOF STATE] proof (state) this: (x, y) \<in> r goal (6 subgoals): 1. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> r 2. (x, y) \<in> r \<Longrightarrow> wf r 3. (x, y) \<in> r \<Longrightarrow> trans r 4. (x, y) \<in> r \<Longrightarrow> x \<in> H 5. (x, y) \<in> r \<Longrightarrow> y \<in> H 6. (x, y) \<in> r \<Longrightarrow> small H [PROOF STEP] qed (use assms that \<open>H' \<subseteq> H\<close> \<open>small H\<close> in auto) [PROOF STATE] proof (state) this: \<lbrakk>?x \<in> H'; ?y \<in> H'\<rbrakk> \<Longrightarrow> (ordermap H r ?x < ordermap H r ?y) = ((?x, ?y) \<in> r) goal: No subgoals! [PROOF STEP] qed [PROOF STATE] proof (state) this: \<exists>f. bij_betw f H' (elts (\<alpha>' ! i)) \<and> (\<forall>x\<in>H'. \<forall>y\<in>H'. (f x < f y) = ((x, y) \<in> r)) goal (3 subgoals): 1. wf r 2. total_on H' r 3. trans r [PROOF STEP] show "total_on H' r" [PROOF STATE] proof (prove) goal (1 subgoal): 1. total_on H' r [PROOF STEP] using r [PROOF STATE] proof (prove) using this: wf r trans r total_on B r goal (1 subgoal): 1. total_on H' r [PROOF STEP] by (meson \<open>H \<subseteq> B\<close> \<open>H' \<subseteq> H\<close> subsetD total_on_def) [PROOF STATE] proof (state) this: total_on H' r goal (2 subgoals): 1. wf r 2. trans r [PROOF STEP] qed (use r in auto) [PROOF STATE] proof (state) this: ordertype H' r = \<alpha>' ! i goal (1 subgoal): 1. \<And>f. f \<in> [B]\<^bsup>n\<^esup> \<rightarrow> {..<length \<alpha>'} \<Longrightarrow> \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] ultimately [PROOF STATE] proof (chain) picking this: H' \<subseteq> H ordertype H' r = \<alpha>' ! i [PROOF STEP] show "\<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i}" [PROOF STATE] proof (prove) using this: H' \<subseteq> H ordertype H' r = \<alpha>' ! i goal (1 subgoal): 1. \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] using \<open>H \<subseteq> B\<close> \<open>i < length \<alpha>\<close> fi assms [PROOF STATE] proof (prove) using this: H' \<subseteq> H ordertype H' r = \<alpha>' ! i H \<subseteq> B i < length \<alpha> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} Partitions.partn_lst r B \<alpha> n length \<alpha>' = length \<alpha> list.set \<alpha>' \<subseteq> ON ?i < length \<alpha> \<Longrightarrow> \<alpha>' ! ?i \<le> \<alpha> ! ?i wf r trans r total_on B r small B goal (1 subgoal): 1. \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} [PROOF STEP] by (metis image_mono nsets_mono subset_trans) [PROOF STATE] proof (state) this: \<exists>i<length \<alpha>'. \<exists>H\<subseteq>B. ordertype H r = \<alpha>' ! i \<and> f ` [H]\<^bsup>n\<^esup> \<subseteq> {i} goal: No subgoals! [PROOF STEP] qed
IsLeapYear := function(n) return (n mod 4 = 0) and ((n mod 100 <> 0) or (n mod 400 = 0)); end; # alternative using built-in function IsLeapYear := function(n) return DaysInYear(n) = 366; end;
(* @TAG(OTHER_LGPL) *) (* Author: Norbert Schirmer Maintainer: Norbert Schirmer, norbert.schirmer at web de License: LGPL *) (* Title: Semantic.thy Author: Norbert Schirmer, TU Muenchen Copyright (C) 2004-2008 Norbert Schirmer Some rights reserved, TU Muenchen This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) section {* Big-Step Semantics for Simpl *} theory Semantic imports Language begin notation restrict_map ("_|\<^bsub>_\<^esub>" [90, 91] 90) datatype ('s,'f) xstate = Normal 's | Abrupt 's | Fault 'f | Stuck definition isAbr::"('s,'f) xstate \<Rightarrow> bool" where "isAbr S = (\<exists>s. S=Abrupt s)" lemma isAbr_simps [simp]: "isAbr (Normal s) = False" "isAbr (Abrupt s) = True" "isAbr (Fault f) = False" "isAbr Stuck = False" by (auto simp add: isAbr_def) lemma isAbrE [consumes 1, elim?]: "\<lbrakk>isAbr S; \<And>s. S=Abrupt s \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" by (auto simp add: isAbr_def) lemma not_isAbrD: "\<not> isAbr s \<Longrightarrow> (\<exists>s'. s=Normal s') \<or> s = Stuck \<or> (\<exists>f. s=Fault f)" by (cases s) auto definition isFault:: "('s,'f) xstate \<Rightarrow> bool" where "isFault S = (\<exists>f. S=Fault f)" lemma isFault_simps [simp]: "isFault (Normal s) = False" "isFault (Abrupt s) = False" "isFault (Fault f) = True" "isFault Stuck = False" by (auto simp add: isFault_def) lemma isFaultE [consumes 1, elim?]: "\<lbrakk>isFault s; \<And>f. s=Fault f \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" by (auto simp add: isFault_def) lemma not_isFault_iff: "(\<not> isFault t) = (\<forall>f. t \<noteq> Fault f)" by (auto elim: isFaultE) (* ************************************************************************* *) subsection {* Big-Step Execution: @{text "\<Gamma>\<turnstile>\<langle>c, s\<rangle> \<Rightarrow> t"} *} (* ************************************************************************* *) text {* The procedure environment *} type_synonym ('s,'p,'f) body = "'p \<Rightarrow> ('s,'p,'f) com option" inductive "exec"::"[('s,'p,'f) body,('s,'p,'f) com,('s,'f) xstate,('s,'f) xstate] \<Rightarrow> bool" ("_\<turnstile> \<langle>_,_\<rangle> \<Rightarrow> _" [60,20,98,98] 89) for \<Gamma>::"('s,'p,'f) body" where Skip: "\<Gamma>\<turnstile>\<langle>Skip,Normal s\<rangle> \<Rightarrow> Normal s" | Guard: "\<lbrakk>s\<in>g; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> \<Rightarrow> t" | GuardFault: "s\<notin>g \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> \<Rightarrow> Fault f" | FaultProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> \<Rightarrow> Fault f" | Basic: "\<Gamma>\<turnstile>\<langle>Basic f,Normal s\<rangle> \<Rightarrow> Normal (f s)" | Spec: "(s,t) \<in> r \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> \<Rightarrow> Normal t" | SpecStuck: "\<forall>t. (s,t) \<notin> r \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> \<Rightarrow> Stuck" | Seq: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> \<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>c\<^sub>2,s'\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Seq c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t" | CondTrue: "\<lbrakk>s \<in> b; \<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Cond b c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t" | CondFalse: "\<lbrakk>s \<notin> b; \<Gamma>\<turnstile>\<langle>c\<^sub>2,Normal s\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Cond b c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t" | WhileTrue: "\<lbrakk>s \<in> b; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow> t" | WhileFalse: "\<lbrakk>s \<notin> b\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow> Normal s" | Call: "\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow> t" | CallUndefined: "\<lbrakk>\<Gamma> p=None\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow> Stuck" | StuckProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> \<Rightarrow> Stuck" | DynCom: "\<lbrakk>\<Gamma>\<turnstile>\<langle>(c s),Normal s\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> \<Rightarrow> t" | Throw: "\<Gamma>\<turnstile>\<langle>Throw,Normal s\<rangle> \<Rightarrow> Abrupt s" | AbruptProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> \<Rightarrow> Abrupt s" | CatchMatch: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> \<Rightarrow> Abrupt s'; \<Gamma>\<turnstile>\<langle>c\<^sub>2,Normal s'\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Catch c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t" | CatchMiss: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> \<Rightarrow> t; \<not>isAbr t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Catch c\<^sub>1 c\<^sub>2,Normal s\<rangle> \<Rightarrow> t" inductive_cases exec_elim_cases [cases set]: "\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Skip,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Guard f g c,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Basic f,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Spec r,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Cond b c1 c2,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>While b c,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Call p,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>DynCom c,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Throw,s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Catch c1 c2,s\<rangle> \<Rightarrow> t" inductive_cases exec_Normal_elim_cases [cases set]: "\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Skip,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Basic f,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Cond b c1 c2,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Throw,Normal s\<rangle> \<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> \<Rightarrow> t" lemma exec_block: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Normal t; \<Gamma>\<turnstile>\<langle>c s t,Normal (return s t)\<rangle> \<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> u" apply (unfold block_def) by (fastforce intro: exec.intros) lemma exec_blockAbrupt: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Abrupt t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> Abrupt (return s t)" apply (unfold block_def) by (fastforce intro: exec.intros) lemma exec_blockFault: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Fault f\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> Fault f" apply (unfold block_def) by (fastforce intro: exec.intros) lemma exec_blockStuck: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Stuck\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> Stuck" apply (unfold block_def) by (fastforce intro: exec.intros) lemma exec_call: "\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Normal t; \<Gamma>\<turnstile>\<langle>c s t,Normal (return s t)\<rangle> \<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> u" apply (simp add: call_def) apply (rule exec_block) apply (erule (1) Call) apply assumption done lemma exec_callAbrupt: "\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Abrupt t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> Abrupt (return s t)" apply (simp add: call_def) apply (rule exec_blockAbrupt) apply (erule (1) Call) done lemma exec_callFault: "\<lbrakk>\<Gamma> p=Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Fault f\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> Fault f" apply (simp add: call_def) apply (rule exec_blockFault) apply (erule (1) Call) done lemma exec_callStuck: "\<lbrakk>\<Gamma> p=Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Stuck\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> Stuck" apply (simp add: call_def) apply (rule exec_blockStuck) apply (erule (1) Call) done lemma exec_callUndefined: "\<lbrakk>\<Gamma> p=None\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> Stuck" apply (simp add: call_def) apply (rule exec_blockStuck) apply (erule CallUndefined) done lemma Fault_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and s: "s=Fault f" shows "t=Fault f" using exec s by (induct) auto lemma Stuck_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and s: "s=Stuck" shows "t=Stuck" using exec s by (induct) auto lemma Abrupt_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and s: "s=Abrupt s'" shows "t=Abrupt s'" using exec s by (induct) auto lemma exec_Call_body_aux: "\<Gamma> p=Some bdy \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Call p,s\<rangle> \<Rightarrow> t = \<Gamma>\<turnstile>\<langle>bdy,s\<rangle> \<Rightarrow> t" apply (rule) apply (fastforce elim: exec_elim_cases ) apply (cases s) apply (cases t) apply (auto intro: exec.intros dest: Fault_end Stuck_end Abrupt_end) done lemma exec_Call_body': "p \<in> dom \<Gamma> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Call p,s\<rangle> \<Rightarrow> t = \<Gamma>\<turnstile>\<langle>the (\<Gamma> p),s\<rangle> \<Rightarrow> t" apply clarsimp by (rule exec_Call_body_aux) lemma exec_block_Normal_elim [consumes 1]: assumes exec_block: "\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> \<Rightarrow> t" assumes Normal: "\<And>t'. \<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Normal t'; \<Gamma>\<turnstile>\<langle>c s t',Normal (return s t')\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> P" assumes Abrupt: "\<And>t'. \<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Abrupt t'; t = Abrupt (return s t')\<rbrakk> \<Longrightarrow> P" assumes Fault: "\<And>f. \<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Fault f; t = Fault f\<rbrakk> \<Longrightarrow> P" assumes Stuck: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Stuck; t = Stuck\<rbrakk> \<Longrightarrow> P" assumes "\<lbrakk>\<Gamma> p = None; t = Stuck\<rbrakk> \<Longrightarrow> P" shows "P" using exec_block apply (unfold block_def) apply (elim exec_Normal_elim_cases) apply simp_all apply (case_tac s') apply simp_all apply (elim exec_Normal_elim_cases) apply simp apply (drule Abrupt_end) apply simp apply (erule exec_Normal_elim_cases) apply simp apply (rule Abrupt,assumption+) apply (drule Fault_end) apply simp apply (erule exec_Normal_elim_cases) apply simp apply (drule Stuck_end) apply simp apply (erule exec_Normal_elim_cases) apply simp apply (case_tac s') apply simp_all apply (elim exec_Normal_elim_cases) apply simp apply (rule Normal, assumption+) apply (drule Fault_end) apply simp apply (rule Fault,assumption+) apply (drule Stuck_end) apply simp apply (rule Stuck,assumption+) done lemma exec_call_Normal_elim [consumes 1]: assumes exec_call: "\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> \<Rightarrow> t" assumes Normal: "\<And>bdy t'. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Normal t'; \<Gamma>\<turnstile>\<langle>c s t',Normal (return s t')\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> P" assumes Abrupt: "\<And>bdy t'. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Abrupt t'; t = Abrupt (return s t')\<rbrakk> \<Longrightarrow> P" assumes Fault: "\<And>bdy f. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Fault f; t = Fault f\<rbrakk> \<Longrightarrow> P" assumes Stuck: "\<And>bdy. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> \<Rightarrow> Stuck; t = Stuck\<rbrakk> \<Longrightarrow> P" assumes Undef: "\<lbrakk>\<Gamma> p = None; t = Stuck\<rbrakk> \<Longrightarrow> P" shows "P" using exec_call apply (unfold call_def) apply (cases "\<Gamma> p") apply (erule exec_block_Normal_elim) apply (elim exec_Normal_elim_cases) apply simp apply simp apply (elim exec_Normal_elim_cases) apply simp apply simp apply (elim exec_Normal_elim_cases) apply simp apply simp apply (elim exec_Normal_elim_cases) apply simp apply (rule Undef,assumption,assumption) apply (rule Undef,assumption+) apply (erule exec_block_Normal_elim) apply (elim exec_Normal_elim_cases) apply simp apply (rule Normal,assumption+) apply simp apply (elim exec_Normal_elim_cases) apply simp apply (rule Abrupt,assumption+) apply simp apply (elim exec_Normal_elim_cases) apply simp apply (rule Fault, assumption+) apply simp apply (elim exec_Normal_elim_cases) apply simp apply (rule Stuck,assumption,assumption,assumption) apply simp apply (rule Undef,assumption+) done lemma exec_dynCall: "\<lbrakk>\<Gamma>\<turnstile>\<langle>call init (p s) return c,Normal s\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>dynCall init p return c,Normal s\<rangle> \<Rightarrow> t" apply (simp add: dynCall_def) by (rule DynCom) lemma exec_dynCall_Normal_elim: assumes exec: "\<Gamma>\<turnstile>\<langle>dynCall init p return c,Normal s\<rangle> \<Rightarrow> t" assumes call: "\<Gamma>\<turnstile>\<langle>call init (p s) return c,Normal s\<rangle> \<Rightarrow> t \<Longrightarrow> P" shows "P" using exec apply (simp add: dynCall_def) apply (erule exec_Normal_elim_cases) apply (rule call,assumption) done lemma exec_Seq': "\<lbrakk>\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>c2,s'\<rangle> \<Rightarrow> s''\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow> s''" apply (cases s) apply (fastforce intro: exec.intros) apply (fastforce dest: Abrupt_end) apply (fastforce dest: Fault_end) apply (fastforce dest: Stuck_end) done lemma exec_assoc: "\<Gamma>\<turnstile>\<langle>Seq c1 (Seq c2 c3),s\<rangle> \<Rightarrow> t = \<Gamma>\<turnstile>\<langle>Seq (Seq c1 c2) c3,s\<rangle> \<Rightarrow> t" by (blast elim!: exec_elim_cases intro: exec_Seq' ) (* ************************************************************************* *) subsection {* Big-Step Execution with Recursion Limit: @{text "\<Gamma>\<turnstile>\<langle>c, s\<rangle> =n\<Rightarrow> t"} *} (* ************************************************************************* *) inductive "execn"::"[('s,'p,'f) body,('s,'p,'f) com,('s,'f) xstate,nat,('s,'f) xstate] \<Rightarrow> bool" ("_\<turnstile> \<langle>_,_\<rangle> =_\<Rightarrow> _" [60,20,98,65,98] 89) for \<Gamma>::"('s,'p,'f) body" where Skip: "\<Gamma>\<turnstile>\<langle>Skip,Normal s\<rangle> =n\<Rightarrow> Normal s" | Guard: "\<lbrakk>s\<in>g; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> =n\<Rightarrow> t" | GuardFault: "s\<notin>g \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> =n\<Rightarrow> Fault f" | FaultProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> =n\<Rightarrow> Fault f" | Basic: "\<Gamma>\<turnstile>\<langle>Basic f,Normal s\<rangle> =n\<Rightarrow> Normal (f s)" | Spec: "(s,t) \<in> r \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> =n\<Rightarrow> Normal t" | SpecStuck: "\<forall>t. (s,t) \<notin> r \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> =n\<Rightarrow> Stuck" | Seq: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> =n\<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>c\<^sub>2,s'\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Seq c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t" | CondTrue: "\<lbrakk>s \<in> b; \<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Cond b c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t" | CondFalse: "\<lbrakk>s \<notin> b; \<Gamma>\<turnstile>\<langle>c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Cond b c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t" | WhileTrue: "\<lbrakk>s \<in> b; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> =n\<Rightarrow> t" | WhileFalse: "\<lbrakk>s \<notin> b\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> =n\<Rightarrow> Normal s" | Call: "\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Call p ,Normal s\<rangle> =Suc n\<Rightarrow> t" | CallUndefined: "\<lbrakk>\<Gamma> p=None\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Call p ,Normal s\<rangle> =Suc n\<Rightarrow> Stuck" | StuckProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> =n\<Rightarrow> Stuck" | DynCom: "\<lbrakk>\<Gamma>\<turnstile>\<langle>(c s),Normal s\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> =n\<Rightarrow> t" | Throw: "\<Gamma>\<turnstile>\<langle>Throw,Normal s\<rangle> =n\<Rightarrow> Abrupt s" | AbruptProp [intro,simp]: "\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> =n\<Rightarrow> Abrupt s" | CatchMatch: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'; \<Gamma>\<turnstile>\<langle>c\<^sub>2,Normal s'\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Catch c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t" | CatchMiss: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c\<^sub>1,Normal s\<rangle> =n\<Rightarrow> t; \<not>isAbr t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Catch c\<^sub>1 c\<^sub>2,Normal s\<rangle> =n\<Rightarrow> t" inductive_cases execn_elim_cases [cases set]: "\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Skip,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Guard f g c,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Basic f,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Spec r,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Cond b c1 c2,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>While b c,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Call p ,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>DynCom c,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Throw,s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Catch c1 c2,s\<rangle> =n\<Rightarrow> t" inductive_cases execn_Normal_elim_cases [cases set]: "\<Gamma>\<turnstile>\<langle>c,Fault f\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>c,Stuck\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>c,Abrupt s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Skip,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Basic f,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Cond b c1 c2,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Throw,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> =n\<Rightarrow> t" lemma execn_Skip': "\<Gamma>\<turnstile>\<langle>Skip,t\<rangle> =n\<Rightarrow> t" by (cases t) (auto intro: execn.intros) lemma execn_Fault_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and s: "s=Fault f" shows "t=Fault f" using exec s by (induct) auto lemma execn_Stuck_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and s: "s=Stuck" shows "t=Stuck" using exec s by (induct) auto lemma execn_Abrupt_end: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and s: "s=Abrupt s'" shows "t=Abrupt s'" using exec s by (induct) auto lemma execn_block: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t; \<Gamma>\<turnstile>\<langle>c s t,Normal (return s t)\<rangle> =n\<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> u" apply (unfold block_def) by (fastforce intro: execn.intros) lemma execn_blockAbrupt: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Abrupt t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> Abrupt (return s t)" apply (unfold block_def) by (fastforce intro: execn.intros) lemma execn_blockFault: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Fault f\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> Fault f" apply (unfold block_def) by (fastforce intro: execn.intros) lemma execn_blockStuck: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Stuck\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> Stuck" apply (unfold block_def) by (fastforce intro: execn.intros) lemma execn_call: "\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t; \<Gamma>\<turnstile>\<langle>c s t,Normal (return s t)\<rangle> =Suc n\<Rightarrow> u\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> u" apply (simp add: call_def) apply (rule execn_block) apply (erule (1) Call) apply assumption done lemma execn_callAbrupt: "\<lbrakk>\<Gamma> p=Some bdy;\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Abrupt t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> Abrupt (return s t)" apply (simp add: call_def) apply (rule execn_blockAbrupt) apply (erule (1) Call) done lemma execn_callFault: "\<lbrakk>\<Gamma> p=Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Fault f\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> Fault f" apply (simp add: call_def) apply (rule execn_blockFault) apply (erule (1) Call) done lemma execn_callStuck: "\<lbrakk>\<Gamma> p=Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Stuck\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> Stuck" apply (simp add: call_def) apply (rule execn_blockStuck) apply (erule (1) Call) done lemma execn_callUndefined: "\<lbrakk>\<Gamma> p=None\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =Suc n\<Rightarrow> Stuck" apply (simp add: call_def) apply (rule execn_blockStuck) apply (erule CallUndefined) done lemma execn_block_Normal_elim [consumes 1]: assumes execn_block: "\<Gamma>\<turnstile>\<langle>block init bdy return c,Normal s\<rangle> =n\<Rightarrow> t" assumes Normal: "\<And>t'. \<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Normal t'; \<Gamma>\<turnstile>\<langle>c s t',Normal (return s t')\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> P" assumes Abrupt: "\<And>t'. \<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Abrupt t'; t = Abrupt (return s t')\<rbrakk> \<Longrightarrow> P" assumes Fault: "\<And>f. \<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Fault f; t = Fault f\<rbrakk> \<Longrightarrow> P" assumes Stuck: "\<lbrakk>\<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =n\<Rightarrow> Stuck; t = Stuck\<rbrakk> \<Longrightarrow> P" assumes Undef: "\<lbrakk>\<Gamma> p = None; t = Stuck\<rbrakk> \<Longrightarrow> P" shows "P" using execn_block apply (unfold block_def) apply (elim execn_Normal_elim_cases) apply simp_all apply (case_tac s') apply simp_all apply (elim execn_Normal_elim_cases) apply simp apply (drule execn_Abrupt_end) apply simp apply (erule execn_Normal_elim_cases) apply simp apply (rule Abrupt,assumption+) apply (drule execn_Fault_end) apply simp apply (erule execn_Normal_elim_cases) apply simp apply (drule execn_Stuck_end) apply simp apply (erule execn_Normal_elim_cases) apply simp apply (case_tac s') apply simp_all apply (elim execn_Normal_elim_cases) apply simp apply (rule Normal,assumption+) apply (drule execn_Fault_end) apply simp apply (rule Fault,assumption+) apply (drule execn_Stuck_end) apply simp apply (rule Stuck,assumption+) done lemma execn_call_Normal_elim [consumes 1]: assumes exec_call: "\<Gamma>\<turnstile>\<langle>call init p return c,Normal s\<rangle> =n\<Rightarrow> t" assumes Normal: "\<And>bdy i t'. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =i\<Rightarrow> Normal t'; \<Gamma>\<turnstile>\<langle>c s t',Normal (return s t')\<rangle> =Suc i\<Rightarrow> t; n = Suc i\<rbrakk> \<Longrightarrow> P" assumes Abrupt: "\<And>bdy i t'. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =i\<Rightarrow> Abrupt t'; n = Suc i; t = Abrupt (return s t')\<rbrakk> \<Longrightarrow> P" assumes Fault: "\<And>bdy i f. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =i\<Rightarrow> Fault f; n = Suc i; t = Fault f\<rbrakk> \<Longrightarrow> P" assumes Stuck: "\<And>bdy i. \<lbrakk>\<Gamma> p = Some bdy; \<Gamma>\<turnstile>\<langle>bdy,Normal (init s)\<rangle> =i\<Rightarrow> Stuck; n = Suc i; t = Stuck\<rbrakk> \<Longrightarrow> P" assumes Undef: "\<And>i. \<lbrakk>\<Gamma> p = None; n = Suc i; t = Stuck\<rbrakk> \<Longrightarrow> P" shows "P" using exec_call apply (unfold call_def) apply (cases n) apply (simp only: block_def) apply (fastforce elim: execn_Normal_elim_cases) apply (cases "\<Gamma> p") apply (erule execn_block_Normal_elim) apply (elim execn_Normal_elim_cases) apply simp apply simp apply (elim execn_Normal_elim_cases) apply simp apply simp apply (elim execn_Normal_elim_cases) apply simp apply simp apply (elim execn_Normal_elim_cases) apply simp apply (rule Undef,assumption,assumption,assumption) apply (rule Undef,assumption+) apply (erule execn_block_Normal_elim) apply (elim execn_Normal_elim_cases) apply simp apply (rule Normal,assumption+) apply simp apply (elim execn_Normal_elim_cases) apply simp apply (rule Abrupt,assumption+) apply simp apply (elim execn_Normal_elim_cases) apply simp apply (rule Fault,assumption+) apply simp apply (elim execn_Normal_elim_cases) apply simp apply (rule Stuck,assumption,assumption,assumption,assumption) apply (rule Undef,assumption,assumption,assumption) apply (rule Undef,assumption+) done lemma execn_dynCall: "\<lbrakk>\<Gamma>\<turnstile>\<langle>call init (p s) return c,Normal s\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>dynCall init p return c,Normal s\<rangle> =n\<Rightarrow> t" apply (simp add: dynCall_def) by (rule DynCom) lemma execn_Seq': "\<lbrakk>\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>c2,s'\<rangle> =n\<Rightarrow> s''\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> =n\<Rightarrow> s''" apply (cases s) apply (fastforce intro: execn.intros) apply (fastforce dest: execn_Abrupt_end) apply (fastforce dest: execn_Fault_end) apply (fastforce dest: execn_Stuck_end) done lemma execn_mono: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" shows "\<And> m. n \<le> m \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =m\<Rightarrow> t" using exec by (induct) (auto intro: execn.intros dest: Suc_le_D) lemma execn_Suc: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =Suc n\<Rightarrow> t" by (rule execn_mono [OF _ le_refl [THEN le_SucI]]) lemma execn_assoc: "\<Gamma>\<turnstile>\<langle>Seq c1 (Seq c2 c3),s\<rangle> =n\<Rightarrow> t = \<Gamma>\<turnstile>\<langle>Seq (Seq c1 c2) c3,s\<rangle> =n\<Rightarrow> t" by (auto elim!: execn_elim_cases intro: execn_Seq') lemma execn_to_exec: assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" using execn by induct (auto intro: exec.intros) lemma exec_to_execn: assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" shows "\<exists>n. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" using execn proof (induct) case Skip thus ?case by (iprover intro: execn.intros) next case Guard thus ?case by (iprover intro: execn.intros) next case GuardFault thus ?case by (iprover intro: execn.intros) next case FaultProp thus ?case by (iprover intro: execn.intros) next case Basic thus ?case by (iprover intro: execn.intros) next case Spec thus ?case by (iprover intro: execn.intros) next case SpecStuck thus ?case by (iprover intro: execn.intros) next case (Seq c1 s s' c2 s'') then obtain n m where "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> s'" "\<Gamma>\<turnstile>\<langle>c2,s'\<rangle> =m\<Rightarrow> s''" by blast then have "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =max n m\<Rightarrow> s'" "\<Gamma>\<turnstile>\<langle>c2,s'\<rangle> =max n m\<Rightarrow> s''" by (auto elim!: execn_mono intro: max.cobounded1 max.cobounded2) thus ?case by (iprover intro: execn.intros) next case CondTrue thus ?case by (iprover intro: execn.intros) next case CondFalse thus ?case by (iprover intro: execn.intros) next case (WhileTrue s b c s' s'') then obtain n m where "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> s'" "\<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> =m\<Rightarrow> s''" by blast then have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =max n m\<Rightarrow> s'" "\<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> =max n m\<Rightarrow> s''" by (auto elim!: execn_mono intro: max.cobounded1 max.cobounded2) with WhileTrue show ?case by (iprover intro: execn.intros) next case WhileFalse thus ?case by (iprover intro: execn.intros) next case Call thus ?case by (iprover intro: execn.intros) next case CallUndefined thus ?case by (iprover intro: execn.intros) next case StuckProp thus ?case by (iprover intro: execn.intros) next case DynCom thus ?case by (iprover intro: execn.intros) next case Throw thus ?case by (iprover intro: execn.intros) next case AbruptProp thus ?case by (iprover intro: execn.intros) next case (CatchMatch c1 s s' c2 s'') then obtain n m where "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" "\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =m\<Rightarrow> s''" by blast then have "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =max n m\<Rightarrow> Abrupt s'" "\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =max n m\<Rightarrow> s''" by (auto elim!: execn_mono intro: max.cobounded1 max.cobounded2) with CatchMatch.hyps show ?case by (iprover intro: execn.intros) next case CatchMiss thus ?case by (iprover intro: execn.intros) qed theorem exec_iff_execn: "(\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t) = (\<exists>n. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t)" by (iprover intro: exec_to_execn execn_to_exec) definition nfinal_notin:: "('s,'p,'f) body \<Rightarrow> ('s,'p,'f) com \<Rightarrow> ('s,'f) xstate \<Rightarrow> nat \<Rightarrow> ('s,'f) xstate set \<Rightarrow> bool" ("_\<turnstile> \<langle>_,_\<rangle> =_\<Rightarrow>\<notin>_" [60,20,98,65,60] 89) where "\<Gamma>\<turnstile> \<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T = (\<forall>t. \<Gamma>\<turnstile> \<langle>c,s\<rangle> =n\<Rightarrow> t \<longrightarrow> t\<notin>T)" definition final_notin:: "('s,'p,'f) body \<Rightarrow> ('s,'p,'f) com \<Rightarrow> ('s,'f) xstate \<Rightarrow> ('s,'f) xstate set \<Rightarrow> bool" ("_\<turnstile> \<langle>_,_\<rangle> \<Rightarrow>\<notin>_" [60,20,98,60] 89) where "\<Gamma>\<turnstile> \<langle>c,s\<rangle> \<Rightarrow>\<notin>T = (\<forall>t. \<Gamma>\<turnstile> \<langle>c,s\<rangle> \<Rightarrow>t \<longrightarrow> t\<notin>T)" lemma final_notinI: "\<lbrakk>\<And>t. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t \<Longrightarrow> t \<notin> T\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T" by (simp add: final_notin_def) lemma noFaultStuck_Call_body': "p \<in> dom \<Gamma> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` (-F)) = \<Gamma>\<turnstile>\<langle>the (\<Gamma> p),Normal s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` (-F))" by (clarsimp simp add: final_notin_def exec_Call_body) lemma noFault_startn: assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and t: "t\<noteq>Fault f" shows "s\<noteq>Fault f" using execn t by (induct) auto lemma noFault_start: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and t: "t\<noteq>Fault f" shows "s\<noteq>Fault f" using exec t by (induct) auto lemma noStuck_startn: assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and t: "t\<noteq>Stuck" shows "s\<noteq>Stuck" using execn t by (induct) auto lemma noStuck_start: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and t: "t\<noteq>Stuck" shows "s\<noteq>Stuck" using exec t by (induct) auto lemma noAbrupt_startn: assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and t: "\<forall>t'. t\<noteq>Abrupt t'" shows "s\<noteq>Abrupt s'" using execn t by (induct) auto lemma noAbrupt_start: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" and t: "\<forall>t'. t\<noteq>Abrupt t'" shows "s\<noteq>Abrupt s'" using exec t by (induct) auto lemma noFaultn_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Fault f" by (auto dest: noFault_startn) lemma noFaultn_startD': "t\<noteq>Fault f \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> s \<noteq> Fault f" by (auto dest: noFault_startn) lemma noFault_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Fault f" by (auto dest: noFault_start) lemma noFault_startD': "t\<noteq>Fault f\<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t \<Longrightarrow> s \<noteq> Fault f" by (auto dest: noFault_start) lemma noStuckn_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Stuck" by (auto dest: noStuck_startn) lemma noStuckn_startD': "t\<noteq>Stuck \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> s \<noteq> Stuck" by (auto dest: noStuck_startn) lemma noStuck_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Stuck" by (auto dest: noStuck_start) lemma noStuck_startD': "t\<noteq>Stuck \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t \<Longrightarrow> s \<noteq> Stuck" by (auto dest: noStuck_start) lemma noAbruptn_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Abrupt s'" by (auto dest: noAbrupt_startn) lemma noAbrupt_startD: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Normal t \<Longrightarrow> s \<noteq> Abrupt s'" by (auto dest: noAbrupt_start) lemma noFaultnI: "\<lbrakk>\<And>t. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t \<Longrightarrow> t\<noteq>Fault f\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f}" by (simp add: nfinal_notin_def) lemma noFaultnI': assumes contr: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f \<Longrightarrow> False" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f}" proof (rule noFaultnI) fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" with contr show "t \<noteq> Fault f" by (cases "t=Fault f") auto qed lemma noFaultn_def': "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f} = (\<not>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f)" apply rule apply (fastforce simp add: nfinal_notin_def) apply (fastforce intro: noFaultnI') done lemma noStucknI': assumes contr: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Stuck \<Longrightarrow> False" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Stuck}" proof (rule noStucknI) fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" with contr show "t \<noteq> Stuck" by (cases t) auto qed lemma noStuckn_def': "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Stuck} = (\<not>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Stuck)" apply rule apply (fastforce simp add: nfinal_notin_def) apply (fastforce intro: noStucknI') done lemma noFaultI: "\<lbrakk>\<And>t. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t \<Longrightarrow> t\<noteq>Fault f\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}" by (simp add: final_notin_def) lemma noFaultI': assumes contr: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f\<Longrightarrow> False" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}" proof (rule noFaultI) fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" with contr show "t \<noteq> Fault f" by (cases "t=Fault f") auto qed lemma noFaultE: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f\<rbrakk> \<Longrightarrow> P" by (auto simp add: final_notin_def) lemma noStuckI: "\<lbrakk>\<And>t. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t \<Longrightarrow> t\<noteq>Stuck\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (simp add: final_notin_def) lemma noStuckI': assumes contr: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Stuck \<Longrightarrow> False" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}" proof (rule noStuckI) fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" with contr show "t \<noteq> Stuck" by (cases t) auto qed lemma noStuckE: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Stuck\<rbrakk> \<Longrightarrow> P" by (auto simp add: final_notin_def) lemma noStuck_def': "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck} = (\<not>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Stuck)" apply rule apply (fastforce simp add: final_notin_def) apply (fastforce intro: noStuckI') done lemma noFaultn_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<noteq>Fault f" by (simp add: nfinal_notin_def) lemma noFault_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<noteq>Fault f" by (simp add: final_notin_def) lemma noFaultn_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<noteq>Fault f" by (auto simp add: nfinal_notin_def dest: noFaultn_startD) lemma noFault_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault f}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<noteq>Fault f" by (auto simp add: final_notin_def dest: noFault_startD) lemma noStuckn_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<noteq>Stuck" by (simp add: nfinal_notin_def) lemma noStuck_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<noteq>Stuck" by (simp add: final_notin_def) lemma noStuckn_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<noteq>Stuck" by (auto simp add: nfinal_notin_def dest: noStuckn_startD) lemma noStuck_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<noteq>Stuck" by (auto simp add: final_notin_def dest: noStuck_startD) lemma noFaultStuckn_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault True,Fault False,Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<notin>{Fault True,Fault False,Stuck}" by (simp add: nfinal_notin_def) lemma noFaultStuck_execD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault True,Fault False,Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> t\<notin>{Fault True,Fault False,Stuck}" by (simp add: final_notin_def) lemma noFaultStuckn_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>{Fault True, Fault False,Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<notin>{Fault True,Fault False,Stuck}" by (auto simp add: nfinal_notin_def ) lemma noFaultStuck_exec_startD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>{Fault True, Fault False,Stuck}; \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>t\<rbrakk> \<Longrightarrow> s\<notin>{Fault True,Fault False,Stuck}" by (auto simp add: final_notin_def ) lemma noStuck_Call: assumes noStuck: "\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" shows "p \<in> dom \<Gamma>" proof (cases "p \<in> dom \<Gamma>") case True thus ?thesis by simp next case False hence "\<Gamma> p = None" by auto hence "\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>Stuck" by (rule exec.CallUndefined) with noStuck show ?thesis by (auto simp add: final_notin_def) qed lemma Guard_noFaultStuckD: assumes "\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` (-F))" assumes "f \<notin> F" shows "s \<in> g" using assms by (auto simp add: final_notin_def intro: exec.intros) lemma final_notin_to_finaln: assumes notin: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T" proof (clarsimp simp add: nfinal_notin_def) fix t assume "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" and "t\<in>T" with notin show "False" by (auto intro: execn_to_exec simp add: final_notin_def) qed lemma noFault_Call_body: "\<Gamma> p=Some bdy\<Longrightarrow> \<Gamma>\<turnstile>\<langle>Call p ,Normal s\<rangle> \<Rightarrow>\<notin>{Fault f} = \<Gamma>\<turnstile>\<langle>the (\<Gamma> p),Normal s\<rangle> \<Rightarrow>\<notin>{Fault f}" by (simp add: noFault_def' exec_Call_body) lemma noStuck_Call_body: "\<Gamma> p=Some bdy\<Longrightarrow> \<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck} = \<Gamma>\<turnstile>\<langle>the (\<Gamma> p),Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (simp add: noStuck_def' exec_Call_body) lemma exec_final_notin_to_execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T" by (auto simp add: final_notin_def nfinal_notin_def dest: execn_to_exec) lemma execn_final_notin_to_exec: "\<forall>n. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T" by (auto simp add: final_notin_def nfinal_notin_def dest: exec_to_execn) lemma exec_final_notin_iff_execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow>\<notin>T = (\<forall>n. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>\<notin>T)" by (auto intro: exec_final_notin_to_execn execn_final_notin_to_exec) lemma Seq_NoFaultStuckD2: assumes noabort: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)" shows "\<forall>t. \<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> t \<longrightarrow> t\<notin> ({Stuck} \<union> Fault ` F) \<longrightarrow> \<Gamma>\<turnstile>\<langle>c2,t\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)" using noabort by (auto simp add: final_notin_def intro: exec_Seq') lemma Seq_NoFaultStuckD1: assumes noabort: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)" shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)" proof (rule final_notinI) fix t assume exec_c1: "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> t" show "t \<notin> {Stuck} \<union> Fault ` F" proof assume "t \<in> {Stuck} \<union> Fault ` F" moreover { assume "t = Stuck" with exec_c1 have "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow> Stuck" by (auto intro: exec_Seq') with noabort have False by (auto simp add: final_notin_def) hence False .. } moreover { assume "t \<in> Fault ` F" then obtain f where t: "t=Fault f" and f: "f \<in> F" by auto from t exec_c1 have "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow> Fault f" by (auto intro: exec_Seq') with noabort f have False by (auto simp add: final_notin_def) hence False .. } ultimately show False by auto qed qed lemma Seq_NoFaultStuckD2': assumes noabort: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)" shows "\<forall>t. \<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> t \<longrightarrow> t\<notin> ({Stuck} \<union> Fault ` F) \<longrightarrow> \<Gamma>\<turnstile>\<langle>c2,t\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` F)" using noabort by (auto simp add: final_notin_def intro: exec_Seq') (* ************************************************************************* *) subsection {* Lemmas about @{const "sequence"}, @{const "flatten"} and @{const "normalize"} *} (* ************************************************************************ *) lemma execn_sequence_app: "\<And>s s' t. \<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =n\<Rightarrow> s'; \<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>sequence Seq (xs@ys),Normal s\<rangle> =n\<Rightarrow> t" proof (induct xs) case Nil thus ?case by (auto elim: execn_Normal_elim_cases) next case (Cons x xs) have exec_x_xs: "\<Gamma>\<turnstile>\<langle>sequence Seq (x # xs),Normal s\<rangle> =n\<Rightarrow> s'" by fact have exec_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases xs) case Nil with exec_x_xs have "\<Gamma>\<turnstile>\<langle>x,Normal s\<rangle> =n\<Rightarrow> s'" by (auto elim: execn_Normal_elim_cases ) with Nil exec_ys show ?thesis by (cases ys) (auto intro: execn.intros elim: execn_elim_cases) next case Cons with exec_x_xs obtain s'' where exec_x: "\<Gamma>\<turnstile>\<langle>x,Normal s\<rangle> =n\<Rightarrow> s''" and exec_xs: "\<Gamma>\<turnstile>\<langle>sequence Seq xs,s''\<rangle> =n\<Rightarrow> s'" by (auto elim: execn_Normal_elim_cases ) show ?thesis proof (cases s'') case (Normal s''') from Cons.hyps [OF exec_xs [simplified Normal] exec_ys] have "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s'''\<rangle> =n\<Rightarrow> t" . with Cons exec_x Normal show ?thesis by (auto intro: execn.intros) next case (Abrupt s''') with exec_xs have "s'=Abrupt s'''" by (auto dest: execn_Abrupt_end) with exec_ys have "t=Abrupt s'''" by (auto dest: execn_Abrupt_end) with exec_x Abrupt Cons show ?thesis by (auto intro: execn.intros) next case (Fault f) with exec_xs have "s'=Fault f" by (auto dest: execn_Fault_end) with exec_ys have "t=Fault f" by (auto dest: execn_Fault_end) with exec_x Fault Cons show ?thesis by (auto intro: execn.intros) next case Stuck with exec_xs have "s'=Stuck" by (auto dest: execn_Stuck_end) with exec_ys have "t=Stuck" by (auto dest: execn_Stuck_end) with exec_x Stuck Cons show ?thesis by (auto intro: execn.intros) qed qed qed lemma execn_sequence_appD: "\<And>s t. \<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<exists>s'. \<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =n\<Rightarrow> s' \<and> \<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =n\<Rightarrow> t" proof (induct xs) case Nil thus ?case by (auto intro: execn.intros) next case (Cons x xs) have exec_app: "\<Gamma>\<turnstile>\<langle>sequence Seq ((x # xs) @ ys),Normal s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases xs) case Nil with exec_app show ?thesis by (cases ys) (auto elim: execn_Normal_elim_cases intro: execn_Skip') next case Cons with exec_app obtain s' where exec_x: "\<Gamma>\<turnstile>\<langle>x,Normal s\<rangle> =n\<Rightarrow> s'" and exec_xs_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),s'\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) show ?thesis proof (cases s') case (Normal s'') from Cons.hyps [OF exec_xs_ys [simplified Normal]] Normal exec_x Cons show ?thesis by (auto intro: execn.intros) next case (Abrupt s'') with exec_xs_ys have "t=Abrupt s''" by (auto dest: execn_Abrupt_end) with Abrupt exec_x Cons show ?thesis by (auto intro: execn.intros) next case (Fault f) with exec_xs_ys have "t=Fault f" by (auto dest: execn_Fault_end) with Fault exec_x Cons show ?thesis by (auto intro: execn.intros) next case Stuck with exec_xs_ys have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck exec_x Cons show ?thesis by (auto intro: execn.intros) qed qed qed lemma execn_sequence_appE [consumes 1]: "\<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> =n\<Rightarrow> t; \<And>s'. \<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =n\<Rightarrow> s';\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P" by (auto dest: execn_sequence_appD) lemma execn_to_execn_sequence_flatten: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" shows "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> =n\<Rightarrow> t" using exec proof induct case (Seq c1 c2 n s s' s'') thus ?case by (auto intro: execn.intros execn_sequence_app) qed (auto intro: execn.intros) lemma execn_to_execn_normalize: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" shows "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t" using exec proof induct case (Seq c1 c2 n s s' s'') thus ?case by (auto intro: execn_to_execn_sequence_flatten execn_sequence_app ) qed (auto intro: execn.intros) lemma execn_sequence_flatten_to_execn: shows "\<And>s t. \<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" proof (induct c) case (Seq c1 c2) have exec_seq: "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten (Seq c1 c2)),s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases s) case (Normal s') with exec_seq obtain s'' where "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c1),Normal s'\<rangle> =n\<Rightarrow> s''" and "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c2),s''\<rangle> =n\<Rightarrow> t" by (auto elim: execn_sequence_appE) with Seq.hyps Normal show ?thesis by (fastforce intro: execn.intros) next case Abrupt with exec_seq show ?thesis by (auto intro: execn.intros dest: execn_Abrupt_end) next case Fault with exec_seq show ?thesis by (auto intro: execn.intros dest: execn_Fault_end) next case Stuck with exec_seq show ?thesis by (auto intro: execn.intros dest: execn_Stuck_end) qed qed auto lemma execn_normalize_to_execn: shows "\<And>s t n. \<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" proof (induct c) case Skip thus ?case by simp next case Basic thus ?case by simp next case Spec thus ?case by simp next case (Seq c1 c2) have "\<Gamma>\<turnstile>\<langle>normalize (Seq c1 c2),s\<rangle> =n\<Rightarrow> t" by fact hence exec_norm_seq: "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten (normalize c1) @ flatten (normalize c2)),s\<rangle> =n\<Rightarrow> t" by simp show ?case proof (cases s) case (Normal s') with exec_norm_seq obtain s'' where exec_norm_c1: "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten (normalize c1)),Normal s'\<rangle> =n\<Rightarrow> s''" and exec_norm_c2: "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten (normalize c2)),s''\<rangle> =n\<Rightarrow> t" by (auto elim: execn_sequence_appE) from execn_sequence_flatten_to_execn [OF exec_norm_c1] execn_sequence_flatten_to_execn [OF exec_norm_c2] Seq.hyps Normal show ?thesis by (fastforce intro: execn.intros) next case (Abrupt s') with exec_norm_seq have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by (auto intro: execn.intros) next case (Fault f) with exec_norm_seq have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by (auto intro: execn.intros) next case Stuck with exec_norm_seq have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by (auto intro: execn.intros) qed next case Cond thus ?case by (auto intro: execn.intros elim!: execn_elim_cases) next case (While b c) have "\<Gamma>\<turnstile>\<langle>normalize (While b c),s\<rangle> =n\<Rightarrow> t" by fact hence exec_norm_w: "\<Gamma>\<turnstile>\<langle>While b (normalize c),s\<rangle> =n\<Rightarrow> t" by simp { fix s t w assume exec_w: "\<Gamma>\<turnstile>\<langle>w,s\<rangle> =n\<Rightarrow> t" have "w=While b (normalize c) \<Longrightarrow> \<Gamma>\<turnstile>\<langle>While b c,s\<rangle> =n\<Rightarrow> t" using exec_w proof (induct) case (WhileTrue s b' c' n w t) from WhileTrue obtain s_in_b: "s \<in> b" and exec_c: "\<Gamma>\<turnstile>\<langle>normalize c,Normal s\<rangle> =n\<Rightarrow> w" and hyp_w: "\<Gamma>\<turnstile>\<langle>While b c,w\<rangle> =n\<Rightarrow> t" by simp from While.hyps [OF exec_c] have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> w" by simp with hyp_w s_in_b have "\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> =n\<Rightarrow> t" by (auto intro: execn.intros) with WhileTrue show ?case by simp qed (auto intro: execn.intros) } from this [OF exec_norm_w] show ?case by simp next case Call thus ?case by simp next case DynCom thus ?case by (auto intro: execn.intros elim!: execn_elim_cases) next case Guard thus ?case by (auto intro: execn.intros elim!: execn_elim_cases) next case Throw thus ?case by simp next case Catch thus ?case by (fastforce intro: execn.intros elim!: execn_elim_cases) qed lemma execn_normalize_iff_execn: "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t = \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by (auto intro: execn_to_execn_normalize execn_normalize_to_execn) lemma exec_sequence_app: assumes exec_xs: "\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> \<Rightarrow> s'" assumes exec_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> \<Rightarrow> t" shows "\<Gamma>\<turnstile>\<langle>sequence Seq (xs@ys),Normal s\<rangle> \<Rightarrow> t" proof - from exec_to_execn [OF exec_xs] obtain n where execn_xs: "\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =n\<Rightarrow> s'".. from exec_to_execn [OF exec_ys] obtain m where execn_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =m\<Rightarrow> t".. with execn_xs obtain "\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> =max n m\<Rightarrow> s'" "\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> =max n m\<Rightarrow> t" by (auto intro: execn_mono max.cobounded1 max.cobounded2) from execn_sequence_app [OF this] have "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> =max n m\<Rightarrow> t" . thus ?thesis by (rule execn_to_exec) qed lemma exec_sequence_appD: assumes exec_xs_ys: "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> \<Rightarrow> t" shows "\<exists>s'. \<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> \<Rightarrow> s' \<and> \<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> \<Rightarrow> t" proof - from exec_to_execn [OF exec_xs_ys] obtain n where "\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> =n\<Rightarrow> t".. thus ?thesis by (cases rule: execn_sequence_appE) (auto intro: execn_to_exec) qed lemma exec_sequence_appE [consumes 1]: "\<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq (xs @ ys),Normal s\<rangle> \<Rightarrow> t; \<And>s'. \<lbrakk>\<Gamma>\<turnstile>\<langle>sequence Seq xs,Normal s\<rangle> \<Rightarrow> s';\<Gamma>\<turnstile>\<langle>sequence Seq ys,s'\<rangle> \<Rightarrow> t\<rbrakk> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P" by (auto dest: exec_sequence_appD) lemma exec_to_exec_sequence_flatten: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" shows "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> \<Rightarrow> t" proof - from exec_to_execn [OF exec] obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t".. from execn_to_execn_sequence_flatten [OF this] show ?thesis by (rule execn_to_exec) qed lemma exec_sequence_flatten_to_exec: assumes exec_seq: "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> \<Rightarrow> t" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" proof - from exec_to_execn [OF exec_seq] obtain n where "\<Gamma>\<turnstile>\<langle>sequence Seq (flatten c),s\<rangle> =n\<Rightarrow> t".. from execn_sequence_flatten_to_execn [OF this] show ?thesis by (rule execn_to_exec) qed lemma exec_to_exec_normalize: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" shows "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> \<Rightarrow> t" proof - from exec_to_execn [OF exec] obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t".. hence "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t" by (rule execn_to_execn_normalize) thus ?thesis by (rule execn_to_exec) qed lemma exec_normalize_to_exec: assumes exec: "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> \<Rightarrow> t" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" proof - from exec_to_execn [OF exec] obtain n where "\<Gamma>\<turnstile>\<langle>normalize c,s\<rangle> =n\<Rightarrow> t".. hence "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by (rule execn_normalize_to_execn) thus ?thesis by (rule execn_to_exec) qed lemma execn_to_execn_subseteq_guards: "\<And>c s t n. \<lbrakk>c \<subseteq>\<^sub>g c'; \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t\<rbrakk> \<Longrightarrow> \<exists>t'. \<Gamma>\<turnstile>\<langle>c',s\<rangle> =n\<Rightarrow> t' \<and> (isFault t \<longrightarrow> isFault t') \<and> (\<not> isFault t' \<longrightarrow> t'=t)" proof (induct c') case Skip thus ?case by (fastforce dest: subseteq_guardsD elim: execn_elim_cases) next case Basic thus ?case by (fastforce dest: subseteq_guardsD elim: execn_elim_cases) next case Spec thus ?case by (fastforce dest: subseteq_guardsD elim: execn_elim_cases) next case (Seq c1' c2') have "c \<subseteq>\<^sub>g Seq c1' c2'" by fact from subseteq_guards_Seq [OF this] obtain c1 c2 where c: "c = Seq c1 c2" and c1_c1': "c1 \<subseteq>\<^sub>g c1'" and c2_c2': "c2 \<subseteq>\<^sub>g c2'" by blast have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact with c obtain w where exec_c1: "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> w" and exec_c2: "\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t" by (auto elim: execn_elim_cases) from exec_c1 Seq.hyps c1_c1' obtain w' where exec_c1': "\<Gamma>\<turnstile>\<langle>c1',s\<rangle> =n\<Rightarrow> w'" and w_Fault: "isFault w \<longrightarrow> isFault w'" and w'_noFault: "\<not> isFault w' \<longrightarrow> w'=w" by blast show ?case proof (cases "s") case (Fault f) with exec have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') show ?thesis proof (cases "isFault w") case True then obtain f where w': "w=Fault f".. moreover with exec_c2 have t: "t=Fault f" by (auto dest: execn_Fault_end) ultimately show ?thesis using Normal w_Fault exec_c1' by (fastforce intro: execn.intros elim: isFaultE) next case False note noFault_w = this show ?thesis proof (cases "isFault w'") case True then obtain f' where w': "w'=Fault f'".. with Normal exec_c1' have exec: "\<Gamma>\<turnstile>\<langle>Seq c1' c2',s\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) then show ?thesis by auto next case False with w'_noFault have w': "w'=w" by simp from Seq.hyps exec_c2 c2_c2' obtain t' where "\<Gamma>\<turnstile>\<langle>c2',w\<rangle> =n\<Rightarrow> t'" and "isFault t \<longrightarrow> isFault t'" and "\<not> isFault t' \<longrightarrow> t'=t" by blast with Normal exec_c1' w' show ?thesis by (fastforce intro: execn.intros) qed qed qed next case (Cond b c1' c2') have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact have "c \<subseteq>\<^sub>g Cond b c1' c2'" by fact from subseteq_guards_Cond [OF this] obtain c1 c2 where c: "c = Cond b c1 c2" and c1_c1': "c1 \<subseteq>\<^sub>g c1'" and c2_c2': "c2 \<subseteq>\<^sub>g c2'" by blast show ?case proof (cases "s") case (Fault f) with exec have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') from exec [simplified c Normal] show ?thesis proof (cases) assume s'_in_b: "s' \<in> b" assume "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t" with c1_c1' Normal Cond.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c1',Normal s'\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "\<not> isFault t' \<longrightarrow> t' = t" by blast with s'_in_b Normal show ?thesis by (fastforce intro: execn.intros) next assume s'_notin_b: "s' \<notin> b" assume "\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =n\<Rightarrow> t" with c2_c2' Normal Cond.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c2',Normal s'\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "\<not> isFault t' \<longrightarrow> t' = t" by blast with s'_notin_b Normal show ?thesis by (fastforce intro: execn.intros) qed qed next case (While b c') have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact have "c \<subseteq>\<^sub>g While b c'" by fact from subseteq_guards_While [OF this] obtain c'' where c: "c = While b c''" and c''_c': "c'' \<subseteq>\<^sub>g c'" by blast { fix c r w assume exec: "\<Gamma>\<turnstile>\<langle>c,r\<rangle> =n\<Rightarrow> w" assume c: "c=While b c''" have "\<exists>w'. \<Gamma>\<turnstile>\<langle>While b c',r\<rangle> =n\<Rightarrow> w' \<and> (isFault w \<longrightarrow> isFault w') \<and> (\<not> isFault w' \<longrightarrow> w'=w)" using exec c proof (induct) case (WhileTrue r b' ca n u w) have eqs: "While b' ca = While b c''" by fact from WhileTrue have r_in_b: "r \<in> b" by simp from WhileTrue have exec_c'': "\<Gamma>\<turnstile>\<langle>c'',Normal r\<rangle> =n\<Rightarrow> u" by simp from While.hyps [OF c''_c' exec_c''] obtain u' where exec_c': "\<Gamma>\<turnstile>\<langle>c',Normal r\<rangle> =n\<Rightarrow> u'" and u_Fault: "isFault u \<longrightarrow> isFault u' "and u'_noFault: "\<not> isFault u' \<longrightarrow> u' = u" by blast from WhileTrue obtain w' where exec_w: "\<Gamma>\<turnstile>\<langle>While b c',u\<rangle> =n\<Rightarrow> w'" and w_Fault: "isFault w \<longrightarrow> isFault w'" and w'_noFault: "\<not> isFault w' \<longrightarrow> w' = w" by blast show ?case proof (cases "isFault u'") case True with exec_c' r_in_b show ?thesis by (fastforce intro: execn.intros elim: isFaultE) next case False with exec_c' r_in_b u'_noFault exec_w w_Fault w'_noFault show ?thesis by (fastforce intro: execn.intros) qed next case WhileFalse thus ?case by (fastforce intro: execn.intros) qed auto } from this [OF exec c] show ?case . next case Call thus ?case by (fastforce dest: subseteq_guardsD elim: execn_elim_cases) next case (DynCom C') have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact have "c \<subseteq>\<^sub>g DynCom C'" by fact from subseteq_guards_DynCom [OF this] obtain C where c: "c = DynCom C" and C_C': "\<forall>s. C s \<subseteq>\<^sub>g C' s" by blast show ?case proof (cases "s") case (Fault f) with exec have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') from exec [simplified c Normal] have "\<Gamma>\<turnstile>\<langle>C s',Normal s'\<rangle> =n\<Rightarrow> t" by cases from DynCom.hyps C_C' [rule_format] this obtain t' where "\<Gamma>\<turnstile>\<langle>C' s',Normal s'\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "\<not> isFault t' \<longrightarrow> t' = t" by blast with Normal show ?thesis by (fastforce intro: execn.intros) qed next case (Guard f' g' c') have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact have "c \<subseteq>\<^sub>g Guard f' g' c'" by fact hence subset_cases: "(c \<subseteq>\<^sub>g c') \<or> (\<exists>c''. c = Guard f' g' c'' \<and> (c'' \<subseteq>\<^sub>g c'))" by (rule subseteq_guards_Guard) show ?case proof (cases "s") case (Fault f) with exec have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') from subset_cases show ?thesis proof assume c_c': "c \<subseteq>\<^sub>g c'" from Guard.hyps [OF this exec] Normal obtain t' where exec_c': "\<Gamma>\<turnstile>\<langle>c',Normal s'\<rangle> =n\<Rightarrow> t'" and t_Fault: "isFault t \<longrightarrow> isFault t'" and t_noFault: "\<not> isFault t' \<longrightarrow> t' = t" by blast with Normal show ?thesis by (cases "s' \<in> g'") (fastforce intro: execn.intros)+ next assume "\<exists>c''. c = Guard f' g' c'' \<and> (c'' \<subseteq>\<^sub>g c')" then obtain c'' where c: "c = Guard f' g' c''" and c''_c': "c'' \<subseteq>\<^sub>g c'" by blast from c exec Normal have exec_Guard': "\<Gamma>\<turnstile>\<langle>Guard f' g' c'',Normal s'\<rangle> =n\<Rightarrow> t" by simp thus ?thesis proof (cases) assume s'_in_g': "s' \<in> g'" assume exec_c'': "\<Gamma>\<turnstile>\<langle>c'',Normal s'\<rangle> =n\<Rightarrow> t" from Guard.hyps [OF c''_c' exec_c''] obtain t' where exec_c': "\<Gamma>\<turnstile>\<langle>c',Normal s'\<rangle> =n\<Rightarrow> t'" and t_Fault: "isFault t \<longrightarrow> isFault t'" and t_noFault: "\<not> isFault t' \<longrightarrow> t' = t" by blast with Normal s'_in_g' show ?thesis by (fastforce intro: execn.intros) next assume "s' \<notin> g'" "t=Fault f'" with Normal show ?thesis by (fastforce intro: execn.intros) qed qed qed next case Throw thus ?case by (fastforce dest: subseteq_guardsD intro: execn.intros elim: execn_elim_cases) next case (Catch c1' c2') have "c \<subseteq>\<^sub>g Catch c1' c2'" by fact from subseteq_guards_Catch [OF this] obtain c1 c2 where c: "c = Catch c1 c2" and c1_c1': "c1 \<subseteq>\<^sub>g c1'" and c2_c2': "c2 \<subseteq>\<^sub>g c2'" by blast have exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases "s") case (Fault f) with exec have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') from exec [simplified c Normal] show ?thesis proof (cases) fix w assume exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> Abrupt w" assume exec_c2: "\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t" from Normal exec_c1 c1_c1' Catch.hyps obtain w' where exec_c1': "\<Gamma>\<turnstile>\<langle>c1',Normal s'\<rangle> =n\<Rightarrow> w'" and w'_noFault: "\<not> isFault w' \<longrightarrow> w' = Abrupt w" by blast show ?thesis proof (cases "isFault w'") case True with exec_c1' Normal show ?thesis by (fastforce intro: execn.intros elim: isFaultE) next case False with w'_noFault have w': "w'=Abrupt w" by simp from Normal exec_c2 c2_c2' Catch.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c2',Normal w\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "\<not> isFault t' \<longrightarrow> t' = t" by blast with exec_c1' w' Normal show ?thesis by (fastforce intro: execn.intros ) qed next assume exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t" assume t: "\<not> isAbr t" from Normal exec_c1 c1_c1' Catch.hyps obtain t' where exec_c1': "\<Gamma>\<turnstile>\<langle>c1',Normal s'\<rangle> =n\<Rightarrow> t'" and t_Fault: "isFault t \<longrightarrow> isFault t'" and t'_noFault: "\<not> isFault t' \<longrightarrow> t' = t" by blast show ?thesis proof (cases "isFault t'") case True with exec_c1' Normal show ?thesis by (fastforce intro: execn.intros elim: isFaultE) next case False with exec_c1' Normal t_Fault t'_noFault t show ?thesis by (fastforce intro: execn.intros) qed qed qed qed lemma exec_to_exec_subseteq_guards: assumes c_c': "c \<subseteq>\<^sub>g c'" assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c',s\<rangle> \<Rightarrow> t' \<and> (isFault t \<longrightarrow> isFault t') \<and> (\<not> isFault t' \<longrightarrow> t'=t)" proof - from exec_to_execn [OF exec] obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" .. from execn_to_execn_subseteq_guards [OF c_c' this] show ?thesis by (blast intro: execn_to_exec) qed (* ************************************************************************* *) subsection {* Lemmas about @{const "merge_guards"} *} (* ************************************************************************ *) theorem execn_to_execn_merge_guards: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" shows "\<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> =n\<Rightarrow> t " using exec_c proof (induct) case (Guard s g c n t f) have s_in_g: "s \<in> g" by fact have exec_merge_c: "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases "\<exists>f' g' c'. merge_guards c = Guard f' g' c'") case False with exec_merge_c s_in_g show ?thesis by (cases "merge_guards c") (auto intro: execn.intros simp add: Let_def) next case True then obtain f' g' c' where merge_guards_c: "merge_guards c = Guard f' g' c'" by iprover show ?thesis proof (cases "f=f'") case False from exec_merge_c s_in_g merge_guards_c False show ?thesis by (auto intro: execn.intros simp add: Let_def) next case True from exec_merge_c s_in_g merge_guards_c True show ?thesis by (fastforce intro: execn.intros elim: execn.cases) qed qed next case (GuardFault s g f c n) have s_notin_g: "s \<notin> g" by fact show ?case proof (cases "\<exists>f' g' c'. merge_guards c = Guard f' g' c'") case False with s_notin_g show ?thesis by (cases "merge_guards c") (auto intro: execn.intros simp add: Let_def) next case True then obtain f' g' c' where merge_guards_c: "merge_guards c = Guard f' g' c'" by iprover show ?thesis proof (cases "f=f'") case False from s_notin_g merge_guards_c False show ?thesis by (auto intro: execn.intros simp add: Let_def) next case True from s_notin_g merge_guards_c True show ?thesis by (fastforce intro: execn.intros) qed qed qed (fastforce intro: execn.intros)+ lemma execn_merge_guards_to_execn_Normal: "\<And>s n t. \<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" proof (induct c) case Skip thus ?case by auto next case Basic thus ?case by auto next case Spec thus ?case by auto next case (Seq c1 c2) have "\<Gamma>\<turnstile>\<langle>merge_guards (Seq c1 c2),Normal s\<rangle> =n\<Rightarrow> t" by fact hence exec_merge: "\<Gamma>\<turnstile>\<langle>Seq (merge_guards c1) (merge_guards c2),Normal s\<rangle> =n\<Rightarrow> t" by simp then obtain s' where exec_merge_c1: "\<Gamma>\<turnstile>\<langle>merge_guards c1,Normal s\<rangle> =n\<Rightarrow> s'" and exec_merge_c2: "\<Gamma>\<turnstile>\<langle>merge_guards c2,s'\<rangle> =n\<Rightarrow> t" by cases from exec_merge_c1 have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> s'" by (rule Seq.hyps) show ?case proof (cases s') case (Normal s'') with exec_merge_c2 have "\<Gamma>\<turnstile>\<langle>c2,s'\<rangle> =n\<Rightarrow> t" by (auto intro: Seq.hyps) with exec_c1 show ?thesis by (auto intro: execn.intros) next case (Abrupt s'') with exec_merge_c2 have "t=Abrupt s''" by (auto dest: execn_Abrupt_end) with exec_c1 Abrupt show ?thesis by (auto intro: execn.intros) next case (Fault f) with exec_merge_c2 have "t=Fault f" by (auto dest: execn_Fault_end) with exec_c1 Fault show ?thesis by (auto intro: execn.intros) next case Stuck with exec_merge_c2 have "t=Stuck" by (auto dest: execn_Stuck_end) with exec_c1 Stuck show ?thesis by (auto intro: execn.intros) qed next case Cond thus ?case by (fastforce intro: execn.intros elim: execn_Normal_elim_cases) next case (While b c) { fix c' r w assume exec_c': "\<Gamma>\<turnstile>\<langle>c',r\<rangle> =n\<Rightarrow> w" assume c': "c'=While b (merge_guards c)" have "\<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> w" using exec_c' c' proof (induct) case (WhileTrue r b' c'' n u w) have eqs: "While b' c'' = While b (merge_guards c)" by fact from WhileTrue have r_in_b: "r \<in> b" by simp from WhileTrue While.hyps have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal r\<rangle> =n\<Rightarrow> u" by simp from WhileTrue have exec_w: "\<Gamma>\<turnstile>\<langle>While b c,u\<rangle> =n\<Rightarrow> w" by simp from r_in_b exec_c exec_w show ?case by (rule execn.WhileTrue) next case WhileFalse thus ?case by (auto intro: execn.WhileFalse) qed auto } with While.prems show ?case by (auto) next case Call thus ?case by simp next case DynCom thus ?case by (fastforce intro: execn.intros elim: execn_Normal_elim_cases) next case (Guard f g c) have exec_merge: "\<Gamma>\<turnstile>\<langle>merge_guards (Guard f g c),Normal s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases "s \<in> g") case False with exec_merge have "t=Fault f" by (auto split: com.splits split_if_asm elim: execn_Normal_elim_cases simp add: Let_def is_Guard_def) with False show ?thesis by (auto intro: execn.intros) next case True note s_in_g = this show ?thesis proof (cases "\<exists>f' g' c'. merge_guards c = Guard f' g' c'") case False then have "merge_guards (Guard f g c) = Guard f g (merge_guards c)" by (cases "merge_guards c") (auto simp add: Let_def) with exec_merge s_in_g obtain "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) from Guard.hyps [OF this] s_in_g show ?thesis by (auto intro: execn.intros) next case True then obtain f' g' c' where merge_guards_c: "merge_guards c = Guard f' g' c'" by iprover show ?thesis proof (cases "f=f'") case False with merge_guards_c have "merge_guards (Guard f g c) = Guard f g (merge_guards c)" by (simp add: Let_def) with exec_merge s_in_g obtain "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) from Guard.hyps [OF this] s_in_g show ?thesis by (auto intro: execn.intros) next case True note f_eq_f' = this with merge_guards_c have merge_guards_Guard: "merge_guards (Guard f g c) = Guard f (g \<inter> g') c'" by simp show ?thesis proof (cases "s \<in> g'") case True with exec_merge merge_guards_Guard merge_guards_c s_in_g have "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t" by (auto intro: execn.intros elim: execn_Normal_elim_cases) with Guard.hyps [OF this] s_in_g show ?thesis by (auto intro: execn.intros) next case False with exec_merge merge_guards_Guard have "t=Fault f" by (auto elim: execn_Normal_elim_cases) with merge_guards_c f_eq_f' False have "\<Gamma>\<turnstile>\<langle>merge_guards c,Normal s\<rangle> =n\<Rightarrow> t" by (auto intro: execn.intros) from Guard.hyps [OF this] s_in_g show ?thesis by (auto intro: execn.intros) qed qed qed qed next case Throw thus ?case by simp next case (Catch c1 c2) have "\<Gamma>\<turnstile>\<langle>merge_guards (Catch c1 c2),Normal s\<rangle> =n\<Rightarrow> t" by fact hence "\<Gamma>\<turnstile>\<langle>Catch (merge_guards c1) (merge_guards c2),Normal s\<rangle> =n\<Rightarrow> t" by simp thus ?case by cases (auto intro: execn.intros Catch.hyps) qed theorem execn_merge_guards_to_execn: "\<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c, s\<rangle> =n\<Rightarrow> t" apply (cases s) apply (fastforce intro: execn_merge_guards_to_execn_Normal) apply (fastforce dest: execn_Abrupt_end) apply (fastforce dest: execn_Fault_end) apply (fastforce dest: execn_Stuck_end) done corollary execn_iff_execn_merge_guards: "\<Gamma>\<turnstile>\<langle>c, s\<rangle> =n\<Rightarrow> t = \<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> =n\<Rightarrow> t" by (blast intro: execn_merge_guards_to_execn execn_to_execn_merge_guards) theorem exec_iff_exec_merge_guards: "\<Gamma>\<turnstile>\<langle>c, s\<rangle> \<Rightarrow> t = \<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> \<Rightarrow> t" by (blast dest: exec_to_execn intro: execn_to_exec intro: execn_to_execn_merge_guards execn_merge_guards_to_execn) corollary exec_to_exec_merge_guards: "\<Gamma>\<turnstile>\<langle>c, s\<rangle> \<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> \<Rightarrow> t" by (rule iffD1 [OF exec_iff_exec_merge_guards]) corollary exec_merge_guards_to_exec: "\<Gamma>\<turnstile>\<langle>merge_guards c,s\<rangle> \<Rightarrow> t \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c, s\<rangle> \<Rightarrow> t" by (rule iffD2 [OF exec_iff_exec_merge_guards]) (* ************************************************************************* *) subsection {* Lemmas about @{const "mark_guards"} *} (* ************************************************************************ *) lemma execn_to_execn_mark_guards: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" assumes t_not_Fault: "\<not> isFault t" shows "\<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> =n\<Rightarrow> t " using exec_c t_not_Fault [simplified not_isFault_iff] by (induct) (auto intro: execn.intros dest: noFaultn_startD') lemma execn_to_execn_mark_guards_Fault: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" shows "\<And>f. \<lbrakk>t=Fault f\<rbrakk> \<Longrightarrow> \<exists>f'. \<Gamma>\<turnstile>\<langle>mark_guards x c,s\<rangle> =n\<Rightarrow> Fault f'" using exec_c proof (induct) case Skip thus ?case by auto next case Guard thus ?case by (fastforce intro: execn.intros) next case GuardFault thus ?case by (fastforce intro: execn.intros) next case FaultProp thus ?case by auto next case Basic thus ?case by auto next case Spec thus ?case by auto next case SpecStuck thus ?case by auto next case (Seq c1 s n w c2 t) have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> w" by fact have exec_c2: "\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t" by fact have t: "t=Fault f" by fact show ?case proof (cases w) case (Fault f') with exec_c2 t have "f'=f" by (auto dest: execn_Fault_end) with Fault Seq.hyps obtain f'' where "\<Gamma>\<turnstile>\<langle>mark_guards x c1,Normal s\<rangle> =n\<Rightarrow> Fault f''" by auto moreover have "\<Gamma>\<turnstile>\<langle>mark_guards x c2,Fault f''\<rangle> =n\<Rightarrow> Fault f''" by auto ultimately show ?thesis by (auto intro: execn.intros) next case (Normal s') with execn_to_execn_mark_guards [OF exec_c1] have exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards x c1,Normal s\<rangle> =n\<Rightarrow> w" by simp with Seq.hyps t obtain f' where "\<Gamma>\<turnstile>\<langle>mark_guards x c2,w\<rangle> =n\<Rightarrow> Fault f'" by blast with exec_mark_c1 show ?thesis by (auto intro: execn.intros) next case (Abrupt s') with execn_to_execn_mark_guards [OF exec_c1] have exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards x c1,Normal s\<rangle> =n\<Rightarrow> w" by simp with Seq.hyps t obtain f' where "\<Gamma>\<turnstile>\<langle>mark_guards x c2,w\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) with exec_mark_c1 show ?thesis by (auto intro: execn.intros) next case Stuck with exec_c2 have "t=Stuck" by (auto dest: execn_Stuck_end) with t show ?thesis by simp qed next case CondTrue thus ?case by (fastforce intro: execn.intros) next case CondFalse thus ?case by (fastforce intro: execn.intros) next case (WhileTrue s b c n w t) have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> w" by fact have exec_w: "\<Gamma>\<turnstile>\<langle>While b c,w\<rangle> =n\<Rightarrow> t" by fact have t: "t = Fault f" by fact have s_in_b: "s \<in> b" by fact show ?case proof (cases w) case (Fault f') with exec_w t have "f'=f" by (auto dest: execn_Fault_end) with Fault WhileTrue.hyps obtain f'' where "\<Gamma>\<turnstile>\<langle>mark_guards x c,Normal s\<rangle> =n\<Rightarrow> Fault f''" by auto moreover have "\<Gamma>\<turnstile>\<langle>mark_guards x (While b c),Fault f''\<rangle> =n\<Rightarrow> Fault f''" by auto ultimately show ?thesis using s_in_b by (auto intro: execn.intros) next case (Normal s') with execn_to_execn_mark_guards [OF exec_c] have exec_mark_c: "\<Gamma>\<turnstile>\<langle>mark_guards x c,Normal s\<rangle> =n\<Rightarrow> w" by simp with WhileTrue.hyps t obtain f' where "\<Gamma>\<turnstile>\<langle>mark_guards x (While b c),w\<rangle> =n\<Rightarrow> Fault f'" by blast with exec_mark_c s_in_b show ?thesis by (auto intro: execn.intros) next case (Abrupt s') with execn_to_execn_mark_guards [OF exec_c] have exec_mark_c: "\<Gamma>\<turnstile>\<langle>mark_guards x c,Normal s\<rangle> =n\<Rightarrow> w" by simp with WhileTrue.hyps t obtain f' where "\<Gamma>\<turnstile>\<langle>mark_guards x (While b c),w\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) with exec_mark_c s_in_b show ?thesis by (auto intro: execn.intros) next case Stuck with exec_w have "t=Stuck" by (auto dest: execn_Stuck_end) with t show ?thesis by simp qed next case WhileFalse thus ?case by (fastforce intro: execn.intros) next case Call thus ?case by (fastforce intro: execn.intros) next case CallUndefined thus ?case by simp next case StuckProp thus ?case by simp next case DynCom thus ?case by (fastforce intro: execn.intros) next case Throw thus ?case by simp next case AbruptProp thus ?case by simp next case (CatchMatch c1 s n w c2 t) have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> Abrupt w" by fact have exec_c2: "\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t" by fact have t: "t = Fault f" by fact from execn_to_execn_mark_guards [OF exec_c1] have exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards x c1,Normal s\<rangle> =n\<Rightarrow> Abrupt w" by simp with CatchMatch.hyps t obtain f' where "\<Gamma>\<turnstile>\<langle>mark_guards x c2,Normal w\<rangle> =n\<Rightarrow> Fault f'" by blast with exec_mark_c1 show ?case by (auto intro: execn.intros) next case CatchMiss thus ?case by (fastforce intro: execn.intros) qed lemma execn_mark_guards_to_execn: "\<And>s n t. \<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t' \<and> (isFault t \<longrightarrow> isFault t') \<and> (t' = Fault f \<longrightarrow> t'=t) \<and> (isFault t' \<longrightarrow> isFault t) \<and> (\<not> isFault t' \<longrightarrow> t'=t)" proof (induct c) case Skip thus ?case by auto next case Basic thus ?case by auto next case Spec thus ?case by auto next case (Seq c1 c2 s n t) have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (Seq c1 c2),s\<rangle> =n\<Rightarrow> t" by fact then obtain w where exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards f c1,s\<rangle> =n\<Rightarrow> w" and exec_mark_c2: "\<Gamma>\<turnstile>\<langle>mark_guards f c2,w\<rangle> =n\<Rightarrow> t" by (auto elim: execn_elim_cases) from Seq.hyps exec_mark_c1 obtain w' where exec_c1: "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> w'" and w_Fault: "isFault w \<longrightarrow> isFault w'" and w'_Fault_f: "w' = Fault f \<longrightarrow> w'=w" and w'_Fault: "isFault w' \<longrightarrow> isFault w" and w'_noFault: "\<not> isFault w' \<longrightarrow> w'=w" by blast show ?case proof (cases "s") case (Fault f) with exec_mark have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_mark have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_mark have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') show ?thesis proof (cases "isFault w") case True then obtain f where w': "w=Fault f".. moreover with exec_mark_c2 have t: "t=Fault f" by (auto dest: execn_Fault_end) ultimately show ?thesis using Normal w_Fault w'_Fault_f exec_c1 by (fastforce intro: execn.intros elim: isFaultE) next case False note noFault_w = this show ?thesis proof (cases "isFault w'") case True then obtain f' where w': "w'=Fault f'".. with Normal exec_c1 have exec: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) from w'_Fault_f w' noFault_w have "f' \<noteq> f" by (cases w) auto moreover from w' w'_Fault exec_mark_c2 have "isFault t" by (auto dest: execn_Fault_end elim: isFaultE) ultimately show ?thesis using exec by auto next case False with w'_noFault have w': "w'=w" by simp from Seq.hyps exec_mark_c2 obtain t' where "\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t'" and "isFault t \<longrightarrow> isFault t'" and "t' = Fault f \<longrightarrow> t'=t" and "isFault t' \<longrightarrow> isFault t" and "\<not> isFault t' \<longrightarrow> t'=t" by blast with Normal exec_c1 w' show ?thesis by (fastforce intro: execn.intros) qed qed qed next case (Cond b c1 c2 s n t) have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (Cond b c1 c2),s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases s) case (Fault f) with exec_mark have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_mark have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_mark have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') show ?thesis proof (cases "s'\<in> b") case True with Normal exec_mark have "\<Gamma>\<turnstile>\<langle>mark_guards f c1 ,Normal s'\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) with Normal True Cond.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' = Fault f \<longrightarrow> t'=t" "isFault t' \<longrightarrow> isFault t" "\<not> isFault t' \<longrightarrow> t' = t" by blast with Normal True show ?thesis by (blast intro: execn.intros) next case False with Normal exec_mark have "\<Gamma>\<turnstile>\<langle>mark_guards f c2 ,Normal s'\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) with Normal False Cond.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' = Fault f \<longrightarrow> t'=t" "isFault t' \<longrightarrow> isFault t" "\<not> isFault t' \<longrightarrow> t' = t" by blast with Normal False show ?thesis by (blast intro: execn.intros) qed qed next case (While b c s n t) have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (While b c),s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases s) case (Fault f) with exec_mark have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_mark have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_mark have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') { fix c' r w assume exec_c': "\<Gamma>\<turnstile>\<langle>c',r\<rangle> =n\<Rightarrow> w" assume c': "c'=While b (mark_guards f c)" have "\<exists>w'. \<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> w' \<and> (isFault w \<longrightarrow> isFault w') \<and> (w' = Fault f \<longrightarrow> w'=w) \<and> (isFault w' \<longrightarrow> isFault w) \<and> (\<not> isFault w' \<longrightarrow> w'=w)" using exec_c' c' proof (induct) case (WhileTrue r b' c'' n u w) have eqs: "While b' c'' = While b (mark_guards f c)" by fact from WhileTrue.hyps eqs have r_in_b: "r\<in>b" by simp from WhileTrue.hyps eqs have exec_mark_c: "\<Gamma>\<turnstile>\<langle>mark_guards f c,Normal r\<rangle> =n\<Rightarrow> u" by simp from WhileTrue.hyps eqs have exec_mark_w: "\<Gamma>\<turnstile>\<langle>While b (mark_guards f c),u\<rangle> =n\<Rightarrow> w" by simp show ?case proof - from WhileTrue.hyps eqs have "\<Gamma>\<turnstile>\<langle>mark_guards f c,Normal r\<rangle> =n\<Rightarrow> u" by simp with While.hyps obtain u' where exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal r\<rangle> =n\<Rightarrow> u'" and u_Fault: "isFault u \<longrightarrow> isFault u'" and u'_Fault_f: "u' = Fault f \<longrightarrow> u'=u" and u'_Fault: "isFault u' \<longrightarrow> isFault u" and u'_noFault: "\<not> isFault u' \<longrightarrow> u'=u" by blast show ?thesis proof (cases "isFault u'") case False with u'_noFault have u': "u'=u" by simp from WhileTrue.hyps eqs obtain w' where "\<Gamma>\<turnstile>\<langle>While b c,u\<rangle> =n\<Rightarrow> w'" "isFault w \<longrightarrow> isFault w'" "w' = Fault f \<longrightarrow> w'=w" "isFault w' \<longrightarrow> isFault w" "\<not> isFault w' \<longrightarrow> w' = w" by blast with u' exec_c r_in_b show ?thesis by (blast intro: execn.WhileTrue) next case True then obtain f' where u': "u'=Fault f'".. with exec_c r_in_b have exec: "\<Gamma>\<turnstile>\<langle>While b c,Normal r\<rangle> =n\<Rightarrow> Fault f'" by (blast intro: execn.intros) from True u'_Fault have "isFault u" by simp then obtain f where u: "u=Fault f".. with exec_mark_w have "w=Fault f" by (auto dest: execn_Fault_end) with exec u' u u'_Fault_f show ?thesis by auto qed qed next case (WhileFalse r b' c'' n) have eqs: "While b' c'' = While b (mark_guards f c)" by fact from WhileFalse.hyps eqs have r_not_in_b: "r\<notin>b" by simp show ?case proof - from r_not_in_b have "\<Gamma>\<turnstile>\<langle>While b c,Normal r\<rangle> =n\<Rightarrow> Normal r" by (rule execn.WhileFalse) thus ?thesis by blast qed qed auto } note hyp_while = this show ?thesis proof (cases "s'\<in>b") case False with Normal exec_mark have "t=s" by (auto elim: execn_Normal_elim_cases) with Normal False show ?thesis by (auto intro: execn.intros) next case True note s'_in_b = this with Normal exec_mark obtain r where exec_mark_c: "\<Gamma>\<turnstile>\<langle>mark_guards f c,Normal s'\<rangle> =n\<Rightarrow> r" and exec_mark_w: "\<Gamma>\<turnstile>\<langle>While b (mark_guards f c),r\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) from While.hyps exec_mark_c obtain r' where exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> r'" and r_Fault: "isFault r \<longrightarrow> isFault r'" and r'_Fault_f: "r' = Fault f \<longrightarrow> r'=r" and r'_Fault: "isFault r' \<longrightarrow> isFault r" and r'_noFault: "\<not> isFault r' \<longrightarrow> r'=r" by blast show ?thesis proof (cases "isFault r'") case False with r'_noFault have r': "r'=r" by simp from hyp_while exec_mark_w obtain t' where "\<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' = Fault f \<longrightarrow> t'=t" "isFault t' \<longrightarrow> isFault t" "\<not> isFault t' \<longrightarrow> t'=t" by blast with r' exec_c Normal s'_in_b show ?thesis by (blast intro: execn.intros) next case True then obtain f' where r': "r'=Fault f'".. hence "\<Gamma>\<turnstile>\<langle>While b c,r'\<rangle> =n\<Rightarrow> Fault f'" by auto with Normal s'_in_b exec_c have exec: "\<Gamma>\<turnstile>\<langle>While b c,Normal s'\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) from True r'_Fault have "isFault r" by simp then obtain f where r: "r=Fault f".. with exec_mark_w have "t=Fault f" by (auto dest: execn_Fault_end) with Normal exec r' r r'_Fault_f show ?thesis by auto qed qed qed next case Call thus ?case by auto next case DynCom thus ?case by (fastforce elim!: execn_elim_cases intro: execn.intros) next case (Guard f' g c s n t) have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (Guard f' g c),s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases s) case (Fault f) with exec_mark have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_mark have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_mark have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') show ?thesis proof (cases "s'\<in>g") case False with Normal exec_mark have t: "t=Fault f" by (auto elim: execn_Normal_elim_cases) from False have "\<Gamma>\<turnstile>\<langle>Guard f' g c,Normal s'\<rangle> =n\<Rightarrow> Fault f'" by (blast intro: execn.intros) with Normal t show ?thesis by auto next case True with exec_mark Normal have "\<Gamma>\<turnstile>\<langle>mark_guards f c,Normal s'\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) with Guard.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> t'" and "isFault t \<longrightarrow> isFault t'" and "t' = Fault f \<longrightarrow> t'=t" and "isFault t' \<longrightarrow> isFault t" and "\<not> isFault t' \<longrightarrow> t'=t" by blast with Normal True show ?thesis by (blast intro: execn.intros) qed qed next case Throw thus ?case by auto next case (Catch c1 c2 s n t) have exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f (Catch c1 c2),s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases "s") case (Fault f) with exec_mark have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_mark have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_mark have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') note s=this with exec_mark have "\<Gamma>\<turnstile>\<langle>Catch (mark_guards f c1) (mark_guards f c2),Normal s'\<rangle> =n\<Rightarrow> t" by simp thus ?thesis proof (cases) fix w assume exec_mark_c1: "\<Gamma>\<turnstile>\<langle>mark_guards f c1,Normal s'\<rangle> =n\<Rightarrow> Abrupt w" assume exec_mark_c2: "\<Gamma>\<turnstile>\<langle>mark_guards f c2,Normal w\<rangle> =n\<Rightarrow> t" from exec_mark_c1 Catch.hyps obtain w' where exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> w'" and w'_Fault_f: "w' = Fault f \<longrightarrow> w'=Abrupt w" and w'_Fault: "isFault w' \<longrightarrow> isFault (Abrupt w)" and w'_noFault: "\<not> isFault w' \<longrightarrow> w'=Abrupt w" by fastforce show ?thesis proof (cases "w'") case (Fault f') with Normal exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,s\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) with w'_Fault Fault show ?thesis by auto next case Stuck with w'_noFault have False by simp thus ?thesis .. next case (Normal w'') with w'_noFault have False by simp thus ?thesis .. next case (Abrupt w'') with w'_noFault have w'': "w''=w" by simp from exec_mark_c2 Catch.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' = Fault f \<longrightarrow> t'=t" "isFault t' \<longrightarrow> isFault t" "\<not> isFault t' \<longrightarrow> t'=t" by blast with w'' Abrupt s exec_c1 show ?thesis by (blast intro: execn.intros) qed next assume t: "\<not> isAbr t" assume "\<Gamma>\<turnstile>\<langle>mark_guards f c1,Normal s'\<rangle> =n\<Rightarrow> t" with Catch.hyps obtain t' where exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t'" and t_Fault: "isFault t \<longrightarrow> isFault t'" and t'_Fault_f: "t' = Fault f \<longrightarrow> t'=t" and t'_Fault: "isFault t' \<longrightarrow> isFault t" and t'_noFault: "\<not> isFault t' \<longrightarrow> t'=t" by blast show ?thesis proof (cases "isFault t'") case True then obtain f' where t': "t'=Fault f'".. with exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s'\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) with t'_Fault_f t'_Fault t' s show ?thesis by auto next case False with t'_noFault have "t'=t" by simp with t exec_c1 s show ?thesis by (blast intro: execn.intros) qed qed qed qed lemma exec_to_exec_mark_guards: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" assumes t_not_Fault: "\<not> isFault t" shows "\<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> \<Rightarrow> t " proof - from exec_to_execn [OF exec_c] obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" .. from execn_to_execn_mark_guards [OF this t_not_Fault] show ?thesis by (blast intro: execn_to_exec) qed lemma exec_to_exec_mark_guards_Fault: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f" shows "\<exists>f'. \<Gamma>\<turnstile>\<langle>mark_guards x c,s\<rangle> \<Rightarrow> Fault f'" proof - from exec_to_execn [OF exec_c] obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f" .. from execn_to_execn_mark_guards_Fault [OF this] show ?thesis by (blast intro: execn_to_exec) qed lemma exec_mark_guards_to_exec: assumes exec_mark: "\<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> \<Rightarrow> t" shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t' \<and> (isFault t \<longrightarrow> isFault t') \<and> (t' = Fault f \<longrightarrow> t'=t) \<and> (isFault t' \<longrightarrow> isFault t) \<and> (\<not> isFault t' \<longrightarrow> t'=t)" proof - from exec_to_execn [OF exec_mark] obtain n where "\<Gamma>\<turnstile>\<langle>mark_guards f c,s\<rangle> =n\<Rightarrow> t" .. from execn_mark_guards_to_execn [OF this] show ?thesis by (blast intro: execn_to_exec) qed (* ************************************************************************* *) subsection {* Lemmas about @{const "strip_guards"} *} (* ************************************************************************* *) lemma execn_to_execn_strip_guards: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" assumes t_not_Fault: "\<not> isFault t" shows "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t " using exec_c t_not_Fault [simplified not_isFault_iff] by (induct) (auto intro: execn.intros dest: noFaultn_startD') lemma execn_to_execn_strip_guards_Fault: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" shows "\<And>f. \<lbrakk>t=Fault f; f \<notin> F\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> Fault f" using exec_c proof (induct) case Skip thus ?case by auto next case Guard thus ?case by (fastforce intro: execn.intros) next case GuardFault thus ?case by (fastforce intro: execn.intros) next case FaultProp thus ?case by auto next case Basic thus ?case by auto next case Spec thus ?case by auto next case SpecStuck thus ?case by auto next case (Seq c1 s n w c2 t) have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> w" by fact have exec_c2: "\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t" by fact have t: "t=Fault f" by fact have notinF: "f \<notin> F" by fact show ?case proof (cases w) case (Fault f') with exec_c2 t have "f'=f" by (auto dest: execn_Fault_end) with Fault notinF Seq.hyps have "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s\<rangle> =n\<Rightarrow> Fault f" by auto moreover have "\<Gamma>\<turnstile>\<langle>strip_guards F c2,Fault f\<rangle> =n\<Rightarrow> Fault f" by auto ultimately show ?thesis by (auto intro: execn.intros) next case (Normal s') with execn_to_execn_strip_guards [OF exec_c1] have exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s\<rangle> =n\<Rightarrow> w" by simp with Seq.hyps t notinF have "\<Gamma>\<turnstile>\<langle>strip_guards F c2,w\<rangle> =n\<Rightarrow> Fault f" by blast with exec_strip_c1 show ?thesis by (auto intro: execn.intros) next case (Abrupt s') with execn_to_execn_strip_guards [OF exec_c1] have exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s\<rangle> =n\<Rightarrow> w" by simp with Seq.hyps t notinF have "\<Gamma>\<turnstile>\<langle>strip_guards F c2,w\<rangle> =n\<Rightarrow> Fault f" by (auto intro: execn.intros) with exec_strip_c1 show ?thesis by (auto intro: execn.intros) next case Stuck with exec_c2 have "t=Stuck" by (auto dest: execn_Stuck_end) with t show ?thesis by simp qed next case CondTrue thus ?case by (fastforce intro: execn.intros) next case CondFalse thus ?case by (fastforce intro: execn.intros) next case (WhileTrue s b c n w t) have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> w" by fact have exec_w: "\<Gamma>\<turnstile>\<langle>While b c,w\<rangle> =n\<Rightarrow> t" by fact have t: "t = Fault f" by fact have notinF: "f \<notin> F" by fact have s_in_b: "s \<in> b" by fact show ?case proof (cases w) case (Fault f') with exec_w t have "f'=f" by (auto dest: execn_Fault_end) with Fault notinF WhileTrue.hyps have "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s\<rangle> =n\<Rightarrow> Fault f" by auto moreover have "\<Gamma>\<turnstile>\<langle>strip_guards F (While b c),Fault f\<rangle> =n\<Rightarrow> Fault f" by auto ultimately show ?thesis using s_in_b by (auto intro: execn.intros) next case (Normal s') with execn_to_execn_strip_guards [OF exec_c] have exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s\<rangle> =n\<Rightarrow> w" by simp with WhileTrue.hyps t notinF have "\<Gamma>\<turnstile>\<langle>strip_guards F (While b c),w\<rangle> =n\<Rightarrow> Fault f" by blast with exec_strip_c s_in_b show ?thesis by (auto intro: execn.intros) next case (Abrupt s') with execn_to_execn_strip_guards [OF exec_c] have exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s\<rangle> =n\<Rightarrow> w" by simp with WhileTrue.hyps t notinF have "\<Gamma>\<turnstile>\<langle>strip_guards F (While b c),w\<rangle> =n\<Rightarrow> Fault f" by (auto intro: execn.intros) with exec_strip_c s_in_b show ?thesis by (auto intro: execn.intros) next case Stuck with exec_w have "t=Stuck" by (auto dest: execn_Stuck_end) with t show ?thesis by simp qed next case WhileFalse thus ?case by (fastforce intro: execn.intros) next case Call thus ?case by (fastforce intro: execn.intros) next case CallUndefined thus ?case by simp next case StuckProp thus ?case by simp next case DynCom thus ?case by (fastforce intro: execn.intros) next case Throw thus ?case by simp next case AbruptProp thus ?case by simp next case (CatchMatch c1 s n w c2 t) have exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> Abrupt w" by fact have exec_c2: "\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t" by fact have t: "t = Fault f" by fact have notinF: "f \<notin> F" by fact from execn_to_execn_strip_guards [OF exec_c1] have exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s\<rangle> =n\<Rightarrow> Abrupt w" by simp with CatchMatch.hyps t notinF have "\<Gamma>\<turnstile>\<langle>strip_guards F c2,Normal w\<rangle> =n\<Rightarrow> Fault f" by blast with exec_strip_c1 show ?case by (auto intro: execn.intros) next case CatchMiss thus ?case by (fastforce intro: execn.intros) qed lemma execn_to_execn_strip_guards': assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" assumes t_not_Fault: "t \<notin> Fault ` F" shows "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t" proof (cases t) case (Fault f) with t_not_Fault exec_c show ?thesis by (auto intro: execn_to_execn_strip_guards_Fault) qed (insert exec_c, auto intro: execn_to_execn_strip_guards) lemma execn_strip_guards_to_execn: "\<And>s n t. \<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t \<Longrightarrow> \<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t' \<and> (isFault t \<longrightarrow> isFault t') \<and> (t' \<in> Fault ` (- F) \<longrightarrow> t'=t) \<and> (\<not> isFault t' \<longrightarrow> t'=t)" proof (induct c) case Skip thus ?case by auto next case Basic thus ?case by auto next case Spec thus ?case by auto next case (Seq c1 c2 s n t) have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (Seq c1 c2),s\<rangle> =n\<Rightarrow> t" by fact then obtain w where exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,s\<rangle> =n\<Rightarrow> w" and exec_strip_c2: "\<Gamma>\<turnstile>\<langle>strip_guards F c2,w\<rangle> =n\<Rightarrow> t" by (auto elim: execn_elim_cases) from Seq.hyps exec_strip_c1 obtain w' where exec_c1: "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> w'" and w_Fault: "isFault w \<longrightarrow> isFault w'" and w'_Fault: "w' \<in> Fault ` (- F) \<longrightarrow> w'=w" and w'_noFault: "\<not> isFault w' \<longrightarrow> w'=w" by blast show ?case proof (cases "s") case (Fault f) with exec_strip have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_strip have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_strip have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') show ?thesis proof (cases "isFault w") case True then obtain f where w': "w=Fault f".. moreover with exec_strip_c2 have t: "t=Fault f" by (auto dest: execn_Fault_end) ultimately show ?thesis using Normal w_Fault w'_Fault exec_c1 by (fastforce intro: execn.intros elim: isFaultE) next case False note noFault_w = this show ?thesis proof (cases "isFault w'") case True then obtain f' where w': "w'=Fault f'".. with Normal exec_c1 have exec: "\<Gamma>\<turnstile>\<langle>Seq c1 c2,s\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) from w'_Fault w' noFault_w have "f' \<in> F" by (cases w) auto with exec show ?thesis by auto next case False with w'_noFault have w': "w'=w" by simp from Seq.hyps exec_strip_c2 obtain t' where "\<Gamma>\<turnstile>\<langle>c2,w\<rangle> =n\<Rightarrow> t'" and "isFault t \<longrightarrow> isFault t'" and "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" and "\<not> isFault t' \<longrightarrow> t'=t" by blast with Normal exec_c1 w' show ?thesis by (fastforce intro: execn.intros) qed qed qed next next case (Cond b c1 c2 s n t) have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (Cond b c1 c2),s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases s) case (Fault f) with exec_strip have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_strip have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_strip have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') show ?thesis proof (cases "s'\<in> b") case True with Normal exec_strip have "\<Gamma>\<turnstile>\<langle>strip_guards F c1 ,Normal s'\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) with Normal True Cond.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" "\<not> isFault t' \<longrightarrow> t' = t" by blast with Normal True show ?thesis by (blast intro: execn.intros) next case False with Normal exec_strip have "\<Gamma>\<turnstile>\<langle>strip_guards F c2 ,Normal s'\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) with Normal False Cond.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" "\<not> isFault t' \<longrightarrow> t' = t" by blast with Normal False show ?thesis by (blast intro: execn.intros) qed qed next case (While b c s n t) have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (While b c),s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases s) case (Fault f) with exec_strip have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_strip have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_strip have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') { fix c' r w assume exec_c': "\<Gamma>\<turnstile>\<langle>c',r\<rangle> =n\<Rightarrow> w" assume c': "c'=While b (strip_guards F c)" have "\<exists>w'. \<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> w' \<and> (isFault w \<longrightarrow> isFault w') \<and> (w' \<in> Fault ` (-F) \<longrightarrow> w'=w) \<and> (\<not> isFault w' \<longrightarrow> w'=w)" using exec_c' c' proof (induct) case (WhileTrue r b' c'' n u w) have eqs: "While b' c'' = While b (strip_guards F c)" by fact from WhileTrue.hyps eqs have r_in_b: "r\<in>b" by simp from WhileTrue.hyps eqs have exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal r\<rangle> =n\<Rightarrow> u" by simp from WhileTrue.hyps eqs have exec_strip_w: "\<Gamma>\<turnstile>\<langle>While b (strip_guards F c),u\<rangle> =n\<Rightarrow> w" by simp show ?case proof - from WhileTrue.hyps eqs have "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal r\<rangle> =n\<Rightarrow> u" by simp with While.hyps obtain u' where exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal r\<rangle> =n\<Rightarrow> u'" and u_Fault: "isFault u \<longrightarrow> isFault u'" and u'_Fault: "u' \<in> Fault ` (-F) \<longrightarrow> u'=u" and u'_noFault: "\<not> isFault u' \<longrightarrow> u'=u" by blast show ?thesis proof (cases "isFault u'") case False with u'_noFault have u': "u'=u" by simp from WhileTrue.hyps eqs obtain w' where "\<Gamma>\<turnstile>\<langle>While b c,u\<rangle> =n\<Rightarrow> w'" "isFault w \<longrightarrow> isFault w'" "w' \<in> Fault ` (-F) \<longrightarrow> w'=w" "\<not> isFault w' \<longrightarrow> w' = w" by blast with u' exec_c r_in_b show ?thesis by (blast intro: execn.WhileTrue) next case True then obtain f' where u': "u'=Fault f'".. with exec_c r_in_b have exec: "\<Gamma>\<turnstile>\<langle>While b c,Normal r\<rangle> =n\<Rightarrow> Fault f'" by (blast intro: execn.intros) show ?thesis proof (cases "isFault u") case True then obtain f where u: "u=Fault f".. with exec_strip_w have "w=Fault f" by (auto dest: execn_Fault_end) with exec u' u u'_Fault show ?thesis by auto next case False with u'_Fault u' have "f' \<in> F" by (cases u) auto with exec show ?thesis by auto qed qed qed next case (WhileFalse r b' c'' n) have eqs: "While b' c'' = While b (strip_guards F c)" by fact from WhileFalse.hyps eqs have r_not_in_b: "r\<notin>b" by simp show ?case proof - from r_not_in_b have "\<Gamma>\<turnstile>\<langle>While b c,Normal r\<rangle> =n\<Rightarrow> Normal r" by (rule execn.WhileFalse) thus ?thesis by blast qed qed auto } note hyp_while = this show ?thesis proof (cases "s'\<in>b") case False with Normal exec_strip have "t=s" by (auto elim: execn_Normal_elim_cases) with Normal False show ?thesis by (auto intro: execn.intros) next case True note s'_in_b = this with Normal exec_strip obtain r where exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s'\<rangle> =n\<Rightarrow> r" and exec_strip_w: "\<Gamma>\<turnstile>\<langle>While b (strip_guards F c),r\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) from While.hyps exec_strip_c obtain r' where exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> r'" and r_Fault: "isFault r \<longrightarrow> isFault r'" and r'_Fault: "r' \<in> Fault ` (-F) \<longrightarrow> r'=r" and r'_noFault: "\<not> isFault r' \<longrightarrow> r'=r" by blast show ?thesis proof (cases "isFault r'") case False with r'_noFault have r': "r'=r" by simp from hyp_while exec_strip_w obtain t' where "\<Gamma>\<turnstile>\<langle>While b c,r\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" "\<not> isFault t' \<longrightarrow> t'=t" by blast with r' exec_c Normal s'_in_b show ?thesis by (blast intro: execn.intros) next case True then obtain f' where r': "r'=Fault f'".. hence "\<Gamma>\<turnstile>\<langle>While b c,r'\<rangle> =n\<Rightarrow> Fault f'" by auto with Normal s'_in_b exec_c have exec: "\<Gamma>\<turnstile>\<langle>While b c,Normal s'\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) show ?thesis proof (cases "isFault r") case True then obtain f where r: "r=Fault f".. with exec_strip_w have "t=Fault f" by (auto dest: execn_Fault_end) with Normal exec r' r r'_Fault show ?thesis by auto next case False with r'_Fault r' have "f' \<in> F" by (cases r) auto with Normal exec show ?thesis by auto qed qed qed qed next case Call thus ?case by auto next case DynCom thus ?case by (fastforce elim!: execn_elim_cases intro: execn.intros) next case (Guard f g c s n t) have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (Guard f g c),s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases s) case (Fault f) with exec_strip have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_strip have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_strip have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') show ?thesis proof (cases "f\<in>F") case True with exec_strip Normal have exec_strip_c: "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s'\<rangle> =n\<Rightarrow> t" by simp with Guard.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> t'" and "isFault t \<longrightarrow> isFault t'" and "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" and "\<not> isFault t' \<longrightarrow> t'=t" by blast with Normal True show ?thesis by (cases "s'\<in> g") (fastforce intro: execn.intros)+ next case False note f_notin_F = this show ?thesis proof (cases "s'\<in>g") case False with Normal exec_strip f_notin_F have t: "t=Fault f" by (auto elim: execn_Normal_elim_cases) from False have "\<Gamma>\<turnstile>\<langle>Guard f g c,Normal s'\<rangle> =n\<Rightarrow> Fault f" by (blast intro: execn.intros) with False Normal t show ?thesis by auto next case True with exec_strip Normal f_notin_F have "\<Gamma>\<turnstile>\<langle>strip_guards F c,Normal s'\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) with Guard.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c,Normal s'\<rangle> =n\<Rightarrow> t'" and "isFault t \<longrightarrow> isFault t'" and "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" and "\<not> isFault t' \<longrightarrow> t'=t" by blast with Normal True show ?thesis by (blast intro: execn.intros) qed qed qed next case Throw thus ?case by auto next case (Catch c1 c2 s n t) have exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F (Catch c1 c2),s\<rangle> =n\<Rightarrow> t" by fact show ?case proof (cases "s") case (Fault f) with exec_strip have "t=Fault f" by (auto dest: execn_Fault_end) with Fault show ?thesis by auto next case Stuck with exec_strip have "t=Stuck" by (auto dest: execn_Stuck_end) with Stuck show ?thesis by auto next case (Abrupt s') with exec_strip have "t=Abrupt s'" by (auto dest: execn_Abrupt_end) with Abrupt show ?thesis by auto next case (Normal s') note s=this with exec_strip have "\<Gamma>\<turnstile>\<langle>Catch (strip_guards F c1) (strip_guards F c2),Normal s'\<rangle> =n\<Rightarrow> t" by simp thus ?thesis proof (cases) fix w assume exec_strip_c1: "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s'\<rangle> =n\<Rightarrow> Abrupt w" assume exec_strip_c2: "\<Gamma>\<turnstile>\<langle>strip_guards F c2,Normal w\<rangle> =n\<Rightarrow> t" from exec_strip_c1 Catch.hyps obtain w' where exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> w'" and w'_Fault: "w' \<in> Fault ` (-F) \<longrightarrow> w'=Abrupt w" and w'_noFault: "\<not> isFault w' \<longrightarrow> w'=Abrupt w" by blast show ?thesis proof (cases "w'") case (Fault f') with Normal exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,s\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) with w'_Fault Fault show ?thesis by auto next case Stuck with w'_noFault have False by simp thus ?thesis .. next case (Normal w'') with w'_noFault have False by simp thus ?thesis .. next case (Abrupt w'') with w'_noFault have w'': "w''=w" by simp from exec_strip_c2 Catch.hyps obtain t' where "\<Gamma>\<turnstile>\<langle>c2,Normal w\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" "\<not> isFault t' \<longrightarrow> t'=t" by blast with w'' Abrupt s exec_c1 show ?thesis by (blast intro: execn.intros) qed next assume t: "\<not> isAbr t" assume "\<Gamma>\<turnstile>\<langle>strip_guards F c1,Normal s'\<rangle> =n\<Rightarrow> t" with Catch.hyps obtain t' where exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s'\<rangle> =n\<Rightarrow> t'" and t_Fault: "isFault t \<longrightarrow> isFault t'" and t'_Fault: "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" and t'_noFault: "\<not> isFault t' \<longrightarrow> t'=t" by blast show ?thesis proof (cases "isFault t'") case True then obtain f' where t': "t'=Fault f'".. with exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s'\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) with t'_Fault t' s show ?thesis by auto next case False with t'_noFault have "t'=t" by simp with t exec_c1 s show ?thesis by (blast intro: execn.intros) qed qed qed qed lemma execn_strip_to_execn: assumes exec_strip: "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t' \<and> (isFault t \<longrightarrow> isFault t') \<and> (t' \<in> Fault ` (- F) \<longrightarrow> t'=t) \<and> (\<not> isFault t' \<longrightarrow> t'=t)" using exec_strip proof (induct) case Skip thus ?case by (blast intro: execn.intros) next case Guard thus ?case by (blast intro: execn.intros) next case GuardFault thus ?case by (blast intro: execn.intros) next case FaultProp thus ?case by (blast intro: execn.intros) next case Basic thus ?case by (blast intro: execn.intros) next case Spec thus ?case by (blast intro: execn.intros) next case SpecStuck thus ?case by (blast intro: execn.intros) next case Seq thus ?case by (blast intro: execn.intros elim: isFaultE) next case CondTrue thus ?case by (blast intro: execn.intros) next case CondFalse thus ?case by (blast intro: execn.intros) next case WhileTrue thus ?case by (blast intro: execn.intros elim: isFaultE) next case WhileFalse thus ?case by (blast intro: execn.intros) next case Call thus ?case by simp (blast intro: execn.intros dest: execn_strip_guards_to_execn) next case CallUndefined thus ?case by simp (blast intro: execn.intros) next case StuckProp thus ?case by blast next case DynCom thus ?case by (blast intro: execn.intros) next case Throw thus ?case by (blast intro: execn.intros) next case AbruptProp thus ?case by (blast intro: execn.intros) next case (CatchMatch c1 s n r c2 t) then obtain r' t' where exec_c1: "\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> r'" and r'_Fault: "r' \<in> Fault ` (-F) \<longrightarrow> r' = Abrupt r" and r'_noFault: "\<not> isFault r' \<longrightarrow> r' = Abrupt r" and exec_c2: "\<Gamma>\<turnstile>\<langle>c2,Normal r\<rangle> =n\<Rightarrow> t'" and t_Fault: "isFault t \<longrightarrow> isFault t'" and t'_Fault: "t' \<in> Fault ` (-F) \<longrightarrow> t' = t" and t'_noFault: "\<not> isFault t' \<longrightarrow> t' = t" by blast show ?case proof (cases "isFault r'") case True then obtain f' where r': "r'=Fault f'".. with exec_c1 have "\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> =n\<Rightarrow> Fault f'" by (auto intro: execn.intros) with r' r'_Fault show ?thesis by (auto intro: execn.intros) next case False with r'_noFault have "r'=Abrupt r" by simp with exec_c1 exec_c2 t_Fault t'_noFault t'_Fault show ?thesis by (blast intro: execn.intros) qed next case CatchMiss thus ?case by (fastforce intro: execn.intros elim: isFaultE) qed lemma exec_strip_guards_to_exec: assumes exec_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t" shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t' \<and> (isFault t \<longrightarrow> isFault t') \<and> (t' \<in> Fault ` (-F) \<longrightarrow> t'=t) \<and> (\<not> isFault t' \<longrightarrow> t'=t)" proof - from exec_strip obtain n where execn_strip: "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t" by (auto simp add: exec_iff_execn) then obtain t' where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" "\<not> isFault t' \<longrightarrow> t'=t" by (blast dest: execn_strip_guards_to_execn) thus ?thesis by (blast intro: execn_to_exec) qed lemma exec_strip_to_exec: assumes exec_strip: "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" shows "\<exists>t'. \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t' \<and> (isFault t \<longrightarrow> isFault t') \<and> (t' \<in> Fault ` (-F) \<longrightarrow> t'=t) \<and> (\<not> isFault t' \<longrightarrow> t'=t)" proof - from exec_strip obtain n where execn_strip: "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by (auto simp add: exec_iff_execn) then obtain t' where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t'" "isFault t \<longrightarrow> isFault t'" "t' \<in> Fault ` (-F) \<longrightarrow> t'=t" "\<not> isFault t' \<longrightarrow> t'=t" by (blast dest: execn_strip_to_execn) thus ?thesis by (blast intro: execn_to_exec) qed lemma exec_to_exec_strip_guards: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" assumes t_not_Fault: "\<not> isFault t" shows "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t" proof - from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t" by (auto simp add: exec_iff_execn) from this t_not_Fault have "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t" by (rule execn_to_execn_strip_guards ) thus "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t" by (rule execn_to_exec) qed lemma exec_to_exec_strip_guards': assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" assumes t_not_Fault: "t \<notin> Fault ` F" shows "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t" proof - from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t" by (auto simp add: exec_iff_execn) from this t_not_Fault have "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> t" by (rule execn_to_execn_strip_guards' ) thus "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> t" by (rule execn_to_exec) qed lemma execn_to_execn_strip: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" assumes t_not_Fault: "\<not> isFault t" shows "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" using exec_c t_not_Fault proof (induct) case (Call p bdy s n s') have bdy: "\<Gamma> p = Some bdy" by fact from Call have "strip F \<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> s'" by blast from execn_to_execn_strip_guards [OF this] Call have "strip F \<Gamma>\<turnstile>\<langle>strip_guards F bdy,Normal s\<rangle> =n\<Rightarrow> s'" by simp moreover from bdy have "(strip F \<Gamma>) p = Some (strip_guards F bdy)" by simp ultimately show ?case by (blast intro: execn.intros) next case CallUndefined thus ?case by (auto intro: execn.CallUndefined) qed (auto intro: execn.intros dest: noFaultn_startD' simp add: not_isFault_iff) lemma execn_to_execn_strip': assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" assumes t_not_Fault: "t \<notin> Fault ` F" shows "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" using exec_c t_not_Fault proof (induct) case (Call p bdy s n s') have bdy: "\<Gamma> p = Some bdy" by fact from Call have "strip F \<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> s'" by blast from execn_to_execn_strip_guards' [OF this] Call have "strip F \<Gamma>\<turnstile>\<langle>strip_guards F bdy,Normal s\<rangle> =n\<Rightarrow> s'" by simp moreover from bdy have "(strip F \<Gamma>) p = Some (strip_guards F bdy)" by simp ultimately show ?case by (blast intro: execn.intros) next case CallUndefined thus ?case by (auto intro: execn.CallUndefined) next case (Seq c1 s n s' c2 t) show ?case proof (cases "isFault s'") case False with Seq show ?thesis by (auto intro: execn.intros simp add: not_isFault_iff) next case True then obtain f' where s': "s'=Fault f'" by (auto simp add: isFault_def) with Seq obtain "t=Fault f'" and "f' \<notin> F" by (force dest: execn_Fault_end) with Seq s' show ?thesis by (auto intro: execn.intros) qed next case (WhileTrue b c s n s' t) show ?case proof (cases "isFault s'") case False with WhileTrue show ?thesis by (auto intro: execn.intros simp add: not_isFault_iff) next case True then obtain f' where s': "s'=Fault f'" by (auto simp add: isFault_def) with WhileTrue obtain "t=Fault f'" and "f' \<notin> F" by (force dest: execn_Fault_end) with WhileTrue s' show ?thesis by (auto intro: execn.intros) qed qed (auto intro: execn.intros) lemma exec_to_exec_strip: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" assumes t_not_Fault: "\<not> isFault t" shows "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" proof - from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t" by (auto simp add: exec_iff_execn) from this t_not_Fault have "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by (rule execn_to_execn_strip) thus "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" by (rule execn_to_exec) qed lemma exec_to_exec_strip': assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" assumes t_not_Fault: "t \<notin> Fault ` F" shows "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" proof - from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>t" by (auto simp add: exec_iff_execn) from this t_not_Fault have "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by (rule execn_to_execn_strip' ) thus "strip F \<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" by (rule execn_to_exec) qed lemma exec_to_exec_strip_guards_Fault: assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f" assumes f_notin_F: "f \<notin> F" shows"\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> Fault f" proof - from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow>Fault f" by (auto simp add: exec_iff_execn) from execn_to_execn_strip_guards_Fault [OF this _ f_notin_F] have "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> =n\<Rightarrow> Fault f" by simp thus "\<Gamma>\<turnstile>\<langle>strip_guards F c,s\<rangle> \<Rightarrow> Fault f" by (rule execn_to_exec) qed (* ************************************************************************* *) subsection {* Lemmas about @{term "c\<^sub>1 \<inter>\<^sub>g c\<^sub>2"} *} (* ************************************************************************* *) lemma inter_guards_execn_Normal_noFault: "\<And>c c2 s t n. \<lbrakk>(c1 \<inter>\<^sub>g c2) = Some c; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t; \<not> isFault t\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> t \<and> \<Gamma>\<turnstile>\<langle>c2,Normal s\<rangle> =n\<Rightarrow> t" proof (induct c1) case Skip have "(Skip \<inter>\<^sub>g c2) = Some c" by fact then obtain c2: "c2=Skip" and c: "c=Skip" by (simp add: inter_guards_Skip) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact with c have "t=Normal s" by (auto elim: execn_Normal_elim_cases) with Skip c2 show ?case by (auto intro: execn.intros) next case (Basic f) have "(Basic f \<inter>\<^sub>g c2) = Some c" by fact then obtain c2: "c2=Basic f" and c: "c=Basic f" by (simp add: inter_guards_Basic) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact with c have "t=Normal (f s)" by (auto elim: execn_Normal_elim_cases) with Basic c2 show ?case by (auto intro: execn.intros) next case (Spec r) have "(Spec r \<inter>\<^sub>g c2) = Some c" by fact then obtain c2: "c2=Spec r" and c: "c=Spec r" by (simp add: inter_guards_Spec) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact with c have "\<Gamma>\<turnstile>\<langle>Spec r,Normal s\<rangle> =n\<Rightarrow> t" by simp from this Spec c2 show ?case by (cases) (auto intro: execn.intros) next case (Seq a1 a2) have noFault: "\<not> isFault t" by fact have "(Seq a1 a2 \<inter>\<^sub>g c2) = Some c" by fact then obtain b1 b2 d1 d2 where c2: "c2=Seq b1 b2" and d1: "(a1 \<inter>\<^sub>g b1) = Some d1" and d2: "(a2 \<inter>\<^sub>g b2) = Some d2" and c: "c=Seq d1 d2" by (auto simp add: inter_guards_Seq) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact with c obtain s' where exec_d1: "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> s'" and exec_d2: "\<Gamma>\<turnstile>\<langle>d2,s'\<rangle> =n\<Rightarrow> t" by (auto elim: execn_Normal_elim_cases) show ?case proof (cases s') case (Fault f') with exec_d2 have "t=Fault f'" by (auto intro: execn_Fault_end) with noFault show ?thesis by simp next case (Normal s'') with d1 exec_d1 Seq.hyps obtain "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Normal s''" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Normal s''" by auto moreover from Normal d2 exec_d2 noFault Seq.hyps obtain "\<Gamma>\<turnstile>\<langle>a2,Normal s''\<rangle> =n\<Rightarrow> t" and "\<Gamma>\<turnstile>\<langle>b2,Normal s''\<rangle> =n\<Rightarrow> t" by auto ultimately show ?thesis using Normal c2 by (auto intro: execn.intros) next case (Abrupt s'') with exec_d2 have "t=Abrupt s''" by (auto simp add: execn_Abrupt_end) moreover from Abrupt d1 exec_d1 Seq.hyps obtain "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Abrupt s''" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Abrupt s''" by auto moreover obtain "\<Gamma>\<turnstile>\<langle>a2,Abrupt s''\<rangle> =n\<Rightarrow> Abrupt s''" and "\<Gamma>\<turnstile>\<langle>b2,Abrupt s''\<rangle> =n\<Rightarrow> Abrupt s''" by auto ultimately show ?thesis using Abrupt c2 by (auto intro: execn.intros) next case Stuck with exec_d2 have "t=Stuck" by (auto simp add: execn_Stuck_end) moreover from Stuck d1 exec_d1 Seq.hyps obtain "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Stuck" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Stuck" by auto moreover obtain "\<Gamma>\<turnstile>\<langle>a2,Stuck\<rangle> =n\<Rightarrow> Stuck" and "\<Gamma>\<turnstile>\<langle>b2,Stuck\<rangle> =n\<Rightarrow> Stuck" by auto ultimately show ?thesis using Stuck c2 by (auto intro: execn.intros) qed next case (Cond b t1 e1) have noFault: "\<not> isFault t" by fact have "(Cond b t1 e1 \<inter>\<^sub>g c2) = Some c" by fact then obtain t2 e2 t3 e3 where c2: "c2=Cond b t2 e2" and t3: "(t1 \<inter>\<^sub>g t2) = Some t3" and e3: "(e1 \<inter>\<^sub>g e2) = Some e3" and c: "c=Cond b t3 e3" by (auto simp add: inter_guards_Cond) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact with c have "\<Gamma>\<turnstile>\<langle>Cond b t3 e3,Normal s\<rangle> =n\<Rightarrow> t" by simp then show ?case proof (cases) assume s_in_b: "s\<in>b" assume "\<Gamma>\<turnstile>\<langle>t3,Normal s\<rangle> =n\<Rightarrow> t" with Cond.hyps t3 noFault obtain "\<Gamma>\<turnstile>\<langle>t1,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>t2,Normal s\<rangle> =n\<Rightarrow> t" by auto with s_in_b c2 show ?thesis by (auto intro: execn.intros) next assume s_notin_b: "s\<notin>b" assume "\<Gamma>\<turnstile>\<langle>e3,Normal s\<rangle> =n\<Rightarrow> t" with Cond.hyps e3 noFault obtain "\<Gamma>\<turnstile>\<langle>e1,Normal s\<rangle> =n\<Rightarrow> t" "\<Gamma>\<turnstile>\<langle>e2,Normal s\<rangle> =n\<Rightarrow> t" by auto with s_notin_b c2 show ?thesis by (auto intro: execn.intros) qed next case (While b bdy1) have noFault: "\<not> isFault t" by fact have "(While b bdy1 \<inter>\<^sub>g c2) = Some c" by fact then obtain bdy2 bdy where c2: "c2=While b bdy2" and bdy: "(bdy1 \<inter>\<^sub>g bdy2) = Some bdy" and c: "c=While b bdy" by (auto simp add: inter_guards_While) have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact { fix s t n w w1 w2 assume exec_w: "\<Gamma>\<turnstile>\<langle>w,Normal s\<rangle> =n\<Rightarrow> t" assume w: "w=While b bdy" assume noFault: "\<not> isFault t" from exec_w w noFault have "\<Gamma>\<turnstile>\<langle>While b bdy1,Normal s\<rangle> =n\<Rightarrow> t \<and> \<Gamma>\<turnstile>\<langle>While b bdy2,Normal s\<rangle> =n\<Rightarrow> t" proof (induct) prefer 10 case (WhileTrue s b' bdy' n s' s'') have eqs: "While b' bdy' = While b bdy" by fact from WhileTrue have s_in_b: "s \<in> b" by simp have noFault_s'': "\<not> isFault s''" by fact from WhileTrue have exec_bdy: "\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> s'" by simp from WhileTrue have exec_w: "\<Gamma>\<turnstile>\<langle>While b bdy,s'\<rangle> =n\<Rightarrow> s''" by simp show ?case proof (cases s') case (Fault f) with exec_w have "s''=Fault f" by (auto intro: execn_Fault_end) with noFault_s'' show ?thesis by simp next case (Normal s''') with exec_bdy bdy While.hyps obtain "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Normal s'''" "\<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Normal s'''" by auto moreover from Normal WhileTrue obtain "\<Gamma>\<turnstile>\<langle>While b bdy1,Normal s'''\<rangle> =n\<Rightarrow> s''" "\<Gamma>\<turnstile>\<langle>While b bdy2,Normal s'''\<rangle> =n\<Rightarrow> s''" by simp ultimately show ?thesis using s_in_b Normal by (auto intro: execn.intros) next case (Abrupt s''') with exec_bdy bdy While.hyps obtain "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'''" "\<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Abrupt s'''" by auto moreover from Abrupt WhileTrue obtain "\<Gamma>\<turnstile>\<langle>While b bdy1,Abrupt s'''\<rangle> =n\<Rightarrow> s''" "\<Gamma>\<turnstile>\<langle>While b bdy2,Abrupt s'''\<rangle> =n\<Rightarrow> s''" by simp ultimately show ?thesis using s_in_b Abrupt by (auto intro: execn.intros) next case Stuck with exec_bdy bdy While.hyps obtain "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Stuck" "\<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Stuck" by auto moreover from Stuck WhileTrue obtain "\<Gamma>\<turnstile>\<langle>While b bdy1,Stuck\<rangle> =n\<Rightarrow> s''" "\<Gamma>\<turnstile>\<langle>While b bdy2,Stuck\<rangle> =n\<Rightarrow> s''" by simp ultimately show ?thesis using s_in_b Stuck by (auto intro: execn.intros) qed next case WhileFalse thus ?case by (auto intro: execn.intros) qed (simp_all) } with this [OF exec_c c noFault] c2 show ?case by auto next case Call thus ?case by (simp add: inter_guards_Call) next case (DynCom f1) have noFault: "\<not> isFault t" by fact have "(DynCom f1 \<inter>\<^sub>g c2) = Some c" by fact then obtain f2 f where c2: "c2=DynCom f2" and f_defined: "\<forall>s. ((f1 s) \<inter>\<^sub>g (f2 s)) \<noteq> None" and c: "c=DynCom (\<lambda>s. the ((f1 s) \<inter>\<^sub>g (f2 s)))" by (auto simp add: inter_guards_DynCom) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact with c have "\<Gamma>\<turnstile>\<langle>DynCom (\<lambda>s. the ((f1 s) \<inter>\<^sub>g (f2 s))),Normal s\<rangle> =n\<Rightarrow> t" by simp then show ?case proof (cases) assume exec_f: "\<Gamma>\<turnstile>\<langle>the (f1 s \<inter>\<^sub>g f2 s),Normal s\<rangle> =n\<Rightarrow> t" from f_defined obtain f where "(f1 s \<inter>\<^sub>g f2 s) = Some f" by auto with DynCom.hyps this exec_f c2 noFault show ?thesis using execn.DynCom by fastforce qed next case Guard thus ?case by (fastforce elim: execn_Normal_elim_cases intro: execn.intros simp add: inter_guards_Guard) next case Throw thus ?case by (fastforce elim: execn_Normal_elim_cases simp add: inter_guards_Throw) next case (Catch a1 a2) have noFault: "\<not> isFault t" by fact have "(Catch a1 a2 \<inter>\<^sub>g c2) = Some c" by fact then obtain b1 b2 d1 d2 where c2: "c2=Catch b1 b2" and d1: "(a1 \<inter>\<^sub>g b1) = Some d1" and d2: "(a2 \<inter>\<^sub>g b2) = Some d2" and c: "c=Catch d1 d2" by (auto simp add: inter_guards_Catch) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> t" by fact with c have "\<Gamma>\<turnstile>\<langle>Catch d1 d2,Normal s\<rangle> =n\<Rightarrow> t" by simp then show ?case proof (cases) fix s' assume "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" with d1 Catch.hyps obtain "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" by auto moreover assume "\<Gamma>\<turnstile>\<langle>d2,Normal s'\<rangle> =n\<Rightarrow> t" with d2 Catch.hyps noFault obtain "\<Gamma>\<turnstile>\<langle>a2,Normal s'\<rangle> =n\<Rightarrow> t" and "\<Gamma>\<turnstile>\<langle>b2,Normal s'\<rangle> =n\<Rightarrow> t" by auto ultimately show ?thesis using c2 by (auto intro: execn.intros) next assume "\<not> isAbr t" moreover assume "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> t" with d1 Catch.hyps noFault obtain "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> t" and "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> t" by auto ultimately show ?thesis using c2 by (auto intro: execn.intros) qed qed lemma inter_guards_execn_noFault: assumes c: "(c1 \<inter>\<^sub>g c2) = Some c" assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" assumes noFault: "\<not> isFault t" shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> t \<and> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> =n\<Rightarrow> t" proof (cases s) case (Fault f) with exec_c have "t = Fault f" by (auto intro: execn_Fault_end) with noFault show ?thesis by simp next case (Abrupt s') with exec_c have "t=Abrupt s'" by (simp add: execn_Abrupt_end) with Abrupt show ?thesis by auto next case Stuck with exec_c have "t=Stuck" by (simp add: execn_Stuck_end) with Stuck show ?thesis by auto next case (Normal s') with exec_c noFault inter_guards_execn_Normal_noFault [OF c] show ?thesis by blast qed lemma inter_guards_exec_noFault: assumes c: "(c1 \<inter>\<^sub>g c2) = Some c" assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" assumes noFault: "\<not> isFault t" shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> t \<and> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> \<Rightarrow> t" proof - from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by (auto simp add: exec_iff_execn) from c this noFault have "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> t \<and> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> =n\<Rightarrow> t" by (rule inter_guards_execn_noFault) thus ?thesis by (auto intro: execn_to_exec) qed lemma inter_guards_execn_Normal_Fault: "\<And>c c2 s n. \<lbrakk>(c1 \<inter>\<^sub>g c2) = Some c; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f\<rbrakk> \<Longrightarrow> (\<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>c2,Normal s\<rangle> =n\<Rightarrow> Fault f)" proof (induct c1) case Skip thus ?case by (fastforce simp add: inter_guards_Skip) next case (Basic f) thus ?case by (fastforce simp add: inter_guards_Basic) next case (Spec r) thus ?case by (fastforce simp add: inter_guards_Spec) next case (Seq a1 a2) have "(Seq a1 a2 \<inter>\<^sub>g c2) = Some c" by fact then obtain b1 b2 d1 d2 where c2: "c2=Seq b1 b2" and d1: "(a1 \<inter>\<^sub>g b1) = Some d1" and d2: "(a2 \<inter>\<^sub>g b2) = Some d2" and c: "c=Seq d1 d2" by (auto simp add: inter_guards_Seq) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact with c obtain s' where exec_d1: "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> s'" and exec_d2: "\<Gamma>\<turnstile>\<langle>d2,s'\<rangle> =n\<Rightarrow> Fault f" by (auto elim: execn_Normal_elim_cases) show ?case proof (cases s') case (Fault f') with exec_d2 have "f'=f" by (auto dest: execn_Fault_end) with Fault d1 exec_d1 have "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Fault f" by (auto dest: Seq.hyps) thus ?thesis proof (cases rule: disjE [consumes 1]) assume "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Fault f" hence "\<Gamma>\<turnstile>\<langle>Seq a1 a2,Normal s\<rangle> =n\<Rightarrow> Fault f" by (auto intro: execn.intros) thus ?thesis by simp next assume "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Fault f" hence "\<Gamma>\<turnstile>\<langle>Seq b1 b2,Normal s\<rangle> =n\<Rightarrow> Fault f" by (auto intro: execn.intros) with c2 show ?thesis by simp qed next case Abrupt with exec_d2 show ?thesis by (auto dest: execn_Abrupt_end) next case Stuck with exec_d2 show ?thesis by (auto dest: execn_Stuck_end) next case (Normal s'') with inter_guards_execn_noFault [OF d1 exec_d1] obtain exec_a1: "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Normal s''" and exec_b1: "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Normal s''" by simp moreover from d2 exec_d2 Normal have "\<Gamma>\<turnstile>\<langle>a2,Normal s''\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>b2,Normal s''\<rangle> =n\<Rightarrow> Fault f" by (auto dest: Seq.hyps) ultimately show ?thesis using c2 by (auto intro: execn.intros) qed next case (Cond b t1 e1) have "(Cond b t1 e1 \<inter>\<^sub>g c2) = Some c" by fact then obtain t2 e2 t e where c2: "c2=Cond b t2 e2" and t: "(t1 \<inter>\<^sub>g t2) = Some t" and e: "(e1 \<inter>\<^sub>g e2) = Some e" and c: "c=Cond b t e" by (auto simp add: inter_guards_Cond) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact with c have "\<Gamma>\<turnstile>\<langle>Cond b t e,Normal s\<rangle> =n\<Rightarrow> Fault f" by simp thus ?case proof (cases) assume "s \<in> b" moreover assume "\<Gamma>\<turnstile>\<langle>t,Normal s\<rangle> =n\<Rightarrow> Fault f" with t have "\<Gamma>\<turnstile>\<langle>t1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>t2,Normal s\<rangle> =n\<Rightarrow> Fault f" by (auto dest: Cond.hyps) ultimately show ?thesis using c2 c by (fastforce intro: execn.intros) next assume "s \<notin> b" moreover assume "\<Gamma>\<turnstile>\<langle>e,Normal s\<rangle> =n\<Rightarrow> Fault f" with e have "\<Gamma>\<turnstile>\<langle>e1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>e2,Normal s\<rangle> =n\<Rightarrow> Fault f" by (auto dest: Cond.hyps) ultimately show ?thesis using c2 c by (fastforce intro: execn.intros) qed next case (While b bdy1) have "(While b bdy1 \<inter>\<^sub>g c2) = Some c" by fact then obtain bdy2 bdy where c2: "c2=While b bdy2" and bdy: "(bdy1 \<inter>\<^sub>g bdy2) = Some bdy" and c: "c=While b bdy" by (auto simp add: inter_guards_While) have exec_c: "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact { fix s t n w w1 w2 assume exec_w: "\<Gamma>\<turnstile>\<langle>w,Normal s\<rangle> =n\<Rightarrow> t" assume w: "w=While b bdy" assume Fault: "t=Fault f" from exec_w w Fault have "\<Gamma>\<turnstile>\<langle>While b bdy1,Normal s\<rangle> =n\<Rightarrow> Fault f\<or> \<Gamma>\<turnstile>\<langle>While b bdy2,Normal s\<rangle> =n\<Rightarrow> Fault f" proof (induct) case (WhileTrue s b' bdy' n s' s'') have eqs: "While b' bdy' = While b bdy" by fact from WhileTrue have s_in_b: "s \<in> b" by simp have Fault_s'': "s''=Fault f" by fact from WhileTrue have exec_bdy: "\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> s'" by simp from WhileTrue have exec_w: "\<Gamma>\<turnstile>\<langle>While b bdy,s'\<rangle> =n\<Rightarrow> s''" by simp show ?case proof (cases s') case (Fault f') with exec_w Fault_s'' have "f'=f" by (auto dest: execn_Fault_end) with Fault exec_bdy bdy While.hyps have "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Fault f" by auto with s_in_b show ?thesis by (fastforce intro: execn.intros) next case (Normal s''') with inter_guards_execn_noFault [OF bdy exec_bdy] obtain "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Normal s'''" "\<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Normal s'''" by auto moreover from Normal WhileTrue have "\<Gamma>\<turnstile>\<langle>While b bdy1,Normal s'''\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>While b bdy2,Normal s'''\<rangle> =n\<Rightarrow> Fault f" by simp ultimately show ?thesis using s_in_b by (fastforce intro: execn.intros) next case (Abrupt s''') with exec_w Fault_s'' show ?thesis by (fastforce dest: execn_Abrupt_end) next case Stuck with exec_w Fault_s'' show ?thesis by (fastforce dest: execn_Stuck_end) qed next case WhileFalse thus ?case by (auto intro: execn.intros) qed (simp_all) } with this [OF exec_c c] c2 show ?case by auto next case Call thus ?case by (fastforce simp add: inter_guards_Call) next case (DynCom f1) have "(DynCom f1 \<inter>\<^sub>g c2) = Some c" by fact then obtain f2 where c2: "c2=DynCom f2" and F_defined: "\<forall>s. ((f1 s) \<inter>\<^sub>g (f2 s)) \<noteq> None" and c: "c=DynCom (\<lambda>s. the ((f1 s) \<inter>\<^sub>g (f2 s)))" by (auto simp add: inter_guards_DynCom) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact with c have "\<Gamma>\<turnstile>\<langle>DynCom (\<lambda>s. the ((f1 s) \<inter>\<^sub>g (f2 s))),Normal s\<rangle> =n\<Rightarrow> Fault f" by simp then show ?case proof (cases) assume exec_F: "\<Gamma>\<turnstile>\<langle>the (f1 s \<inter>\<^sub>g f2 s),Normal s\<rangle> =n\<Rightarrow> Fault f" from F_defined obtain F where "(f1 s \<inter>\<^sub>g f2 s) = Some F" by auto with DynCom.hyps this exec_F c2 show ?thesis by (fastforce intro: execn.intros) qed next case (Guard m g1 bdy1) have "(Guard m g1 bdy1 \<inter>\<^sub>g c2) = Some c" by fact then obtain g2 bdy2 bdy where c2: "c2=Guard m g2 bdy2" and bdy: "(bdy1 \<inter>\<^sub>g bdy2) = Some bdy" and c: "c=Guard m (g1 \<inter> g2) bdy" by (auto simp add: inter_guards_Guard) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact with c have "\<Gamma>\<turnstile>\<langle>Guard m (g1 \<inter> g2) bdy,Normal s\<rangle> =n\<Rightarrow> Fault f" by simp thus ?case proof (cases) assume f_m: "Fault f = Fault m" assume "s \<notin> g1 \<inter> g2" hence "s\<notin>g1 \<or> s\<notin>g2" by blast with c2 f_m show ?thesis by (auto intro: execn.intros) next assume "s \<in> g1 \<inter> g2" moreover assume "\<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> =n\<Rightarrow> Fault f" with bdy have "\<Gamma>\<turnstile>\<langle>bdy1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>bdy2,Normal s\<rangle> =n\<Rightarrow> Fault f" by (rule Guard.hyps) ultimately show ?thesis using c2 by (auto intro: execn.intros) qed next case Throw thus ?case by (fastforce simp add: inter_guards_Throw) next case (Catch a1 a2) have "(Catch a1 a2 \<inter>\<^sub>g c2) = Some c" by fact then obtain b1 b2 d1 d2 where c2: "c2=Catch b1 b2" and d1: "(a1 \<inter>\<^sub>g b1) = Some d1" and d2: "(a2 \<inter>\<^sub>g b2) = Some d2" and c: "c=Catch d1 d2" by (auto simp add: inter_guards_Catch) have "\<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> =n\<Rightarrow> Fault f" by fact with c have "\<Gamma>\<turnstile>\<langle>Catch d1 d2,Normal s\<rangle> =n\<Rightarrow> Fault f" by simp thus ?case proof (cases) fix s' assume "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" from inter_guards_execn_noFault [OF d1 this] obtain exec_a1: "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" and exec_b1: "\<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Abrupt s'" by simp moreover assume "\<Gamma>\<turnstile>\<langle>d2,Normal s'\<rangle> =n\<Rightarrow> Fault f" with d2 have "\<Gamma>\<turnstile>\<langle>a2,Normal s'\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>b2,Normal s'\<rangle> =n\<Rightarrow> Fault f" by (auto dest: Catch.hyps) ultimately show ?thesis using c2 by (fastforce intro: execn.intros) next assume "\<Gamma>\<turnstile>\<langle>d1,Normal s\<rangle> =n\<Rightarrow> Fault f" with d1 have "\<Gamma>\<turnstile>\<langle>a1,Normal s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>b1,Normal s\<rangle> =n\<Rightarrow> Fault f" by (auto dest: Catch.hyps) with c2 show ?thesis by (fastforce intro: execn.intros) qed qed lemma inter_guards_execn_Fault: assumes c: "(c1 \<inter>\<^sub>g c2) = Some c" assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f" shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> =n\<Rightarrow> Fault f" proof (cases s) case (Fault f) with exec_c show ?thesis by (auto dest: execn_Fault_end) next case (Abrupt s') with exec_c show ?thesis by (fastforce dest: execn_Abrupt_end) next case Stuck with exec_c show ?thesis by (fastforce dest: execn_Stuck_end) next case (Normal s') with exec_c inter_guards_execn_Normal_Fault [OF c] show ?thesis by blast qed lemma inter_guards_exec_Fault: assumes c: "(c1 \<inter>\<^sub>g c2) = Some c" assumes exec_c: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> Fault f" shows "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> \<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> \<Rightarrow> Fault f" proof - from exec_c obtain n where "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> Fault f" by (auto simp add: exec_iff_execn) from c this have "\<Gamma>\<turnstile>\<langle>c1,s\<rangle> =n\<Rightarrow> Fault f \<or> \<Gamma>\<turnstile>\<langle>c2,s\<rangle> =n\<Rightarrow> Fault f" by (rule inter_guards_execn_Fault) thus ?thesis by (auto intro: execn_to_exec) qed (* ************************************************************************* *) subsection "Restriction of Procedure Environment" (* ************************************************************************* *) lemma restrict_SomeD: "(m|\<^bsub>A\<^esub>) x = Some y \<Longrightarrow> m x = Some y" by (auto simp add: restrict_map_def split: split_if_asm) (* FIXME: To Map *) lemma restrict_dom_same [simp]: "m|\<^bsub>dom m\<^esub> = m" apply (rule ext) apply (clarsimp simp add: restrict_map_def) apply (simp only: not_None_eq [symmetric]) apply rule apply (drule sym) apply blast done lemma restrict_in_dom: "x \<in> A \<Longrightarrow> (m|\<^bsub>A\<^esub>) x = m x" by (auto simp add: restrict_map_def) lemma exec_restrict_to_exec: assumes exec_restrict: "\<Gamma>|\<^bsub>A\<^esub>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" assumes notStuck: "t\<noteq>Stuck" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" using exec_restrict notStuck by (induct) (auto intro: exec.intros dest: restrict_SomeD Stuck_end) lemma execn_restrict_to_execn: assumes exec_restrict: "\<Gamma>|\<^bsub>A\<^esub>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" assumes notStuck: "t\<noteq>Stuck" shows "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" using exec_restrict notStuck by (induct) (auto intro: execn.intros dest: restrict_SomeD execn_Stuck_end) lemma restrict_NoneD: "m x = None \<Longrightarrow> (m|\<^bsub>A\<^esub>) x = None" by (auto simp add: restrict_map_def split: split_if_asm) lemma exec_to_exec_restrict: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" shows "\<exists>t'. \<Gamma>|\<^bsub>P\<^esub>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t' \<and> (t=Stuck \<longrightarrow> t'=Stuck) \<and> (\<forall>f. t=Fault f\<longrightarrow> t'\<in>{Fault f,Stuck}) \<and> (t'\<noteq>Stuck \<longrightarrow> t'=t)" proof - from exec obtain n where execn_strip: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" by (auto simp add: exec_iff_execn) from execn_to_execn_restrict [where P=P,OF this] obtain t' where "\<Gamma>|\<^bsub>P\<^esub>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t'" "t=Stuck \<longrightarrow> t'=Stuck" "\<forall>f. t=Fault f\<longrightarrow> t'\<in>{Fault f,Stuck}" "t'\<noteq>Stuck \<longrightarrow> t'=t" by blast thus ?thesis by (blast intro: execn_to_exec) qed lemma notStuck_GuardD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Guard m g c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; s \<in> g\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.Guard ) lemma notStuck_SeqD1: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.Seq ) lemma notStuck_SeqD2: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>s'\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c2,s'\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.Seq ) lemma notStuck_SeqD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Seq c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck} \<and> (\<forall>s'. \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>s' \<longrightarrow> \<Gamma>\<turnstile>\<langle>c2,s'\<rangle> \<Rightarrow>\<notin>{Stuck})" by (auto simp add: final_notin_def dest: exec.Seq ) lemma notStuck_CondTrueD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Cond b c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; s \<in> b\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.CondTrue) lemma notStuck_CondFalseD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Cond b c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; s \<notin> b\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.CondFalse) lemma notStuck_WhileTrueD1: "\<lbrakk>\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; s \<in> b\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.WhileTrue) lemma notStuck_WhileTrueD2: "\<lbrakk>\<Gamma>\<turnstile>\<langle>While b c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow>s'; s \<in> b\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>While b c,s'\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.WhileTrue) lemma notStuck_CallD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Call p ,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma> p = Some bdy\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>bdy,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.Call) lemma notStuck_CallDefinedD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk> \<Longrightarrow> \<Gamma> p \<noteq> None" by (cases "\<Gamma> p") (auto simp add: final_notin_def dest: exec.CallUndefined) lemma notStuck_DynComD: "\<lbrakk>\<Gamma>\<turnstile>\<langle>DynCom c,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>(c s),Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.DynCom) lemma notStuck_CatchD1: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.CatchMatch exec.CatchMiss ) lemma notStuck_CatchD2: "\<lbrakk>\<Gamma>\<turnstile>\<langle>Catch c1 c2,Normal s\<rangle> \<Rightarrow>\<notin>{Stuck}; \<Gamma>\<turnstile>\<langle>c1,Normal s\<rangle> \<Rightarrow>Abrupt s'\<rbrakk> \<Longrightarrow> \<Gamma>\<turnstile>\<langle>c2,Normal s'\<rangle> \<Rightarrow>\<notin>{Stuck}" by (auto simp add: final_notin_def dest: exec.CatchMatch) (* ************************************************************************* *) subsection "Miscellaneous" (* ************************************************************************* *) lemma execn_noguards_no_Fault: assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" assumes noguards_c: "noguards c" assumes noguards_\<Gamma>: "\<forall>p \<in> dom \<Gamma>. noguards (the (\<Gamma> p))" assumes s_no_Fault: "\<not> isFault s" shows "\<not> isFault t" using execn noguards_c s_no_Fault proof (induct) case (Call p bdy n s t) with noguards_\<Gamma> show ?case apply - apply (drule bspec [where x=p]) apply auto done qed (auto) lemma exec_noguards_no_Fault: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" assumes noguards_c: "noguards c" assumes noguards_\<Gamma>: "\<forall>p \<in> dom \<Gamma>. noguards (the (\<Gamma> p))" assumes s_no_Fault: "\<not> isFault s" shows "\<not> isFault t" using exec noguards_c s_no_Fault proof (induct) case (Call p bdy s t) with noguards_\<Gamma> show ?case apply - apply (drule bspec [where x=p]) apply auto done qed auto lemma execn_nothrows_no_Abrupt: assumes execn: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> =n\<Rightarrow> t" assumes nothrows_c: "nothrows c" assumes nothrows_\<Gamma>: "\<forall>p \<in> dom \<Gamma>. nothrows (the (\<Gamma> p))" assumes s_no_Abrupt: "\<not>(isAbr s)" shows "\<not>(isAbr t)" using execn nothrows_c s_no_Abrupt proof (induct) case (Call p bdy n s t) with nothrows_\<Gamma> show ?case apply - apply (drule bspec [where x=p]) apply auto done qed (auto) lemma exec_nothrows_no_Abrupt: assumes exec: "\<Gamma>\<turnstile>\<langle>c,s\<rangle> \<Rightarrow> t" assumes nothrows_c: "nothrows c" assumes nothrows_\<Gamma>: "\<forall>p \<in> dom \<Gamma>. nothrows (the (\<Gamma> p))" assumes s_no_Abrupt: "\<not>(isAbr s)" shows "\<not>(isAbr t)" using exec nothrows_c s_no_Abrupt proof (induct) case (Call p bdy s t) with nothrows_\<Gamma> show ?case apply - apply (drule bspec [where x=p]) apply auto done qed (auto) end
This is implementation of efficient and simple model for simulation of High-resolution atomic force microscopy (AFM), scanning probe microscopy (STM) and inelastic tunneling microscopy (IETS) images using classical forcefileds. There are two versions of the code: \begin{enumerate} \item currently developed Python/C++ version in PyProbe\_nonOrtho (branch master ); to get quick esence of this model you can also try web interface hostet here: http://nanosurf.fzu.cz/ppr/ for more details see wikipage: https://github.com/ProkopHapala/ProbeParticleModel/wiki \item Legacy fortran version in SHTM\_springTip2 (branch fortran ); more detailed description o the fortran version is here: http://nanosurf.fzu.cz/wiki/doku.php?id=probe\_particle\_model \end{enumerate} \cite{phapalamechhighresol} \cite{phapalaoriginhighresol} \section{C++ \& Python version} \subsection{Examples of results} \subsection{How it works} \begin{itemize} \item Pauli-repulsion ( currently approximated by repulsive part of Lenard-Jones potential $r^{-12}$ ) \item van der Waals attraction ( currently approximated by attractive part of Lenard-Jones potentia $r^{-6}$ ) \item electrostatic ( currently can be computed as coulomb pairwise interaction between PP and point charges in centers of atoms of sample, or by reading electrostatic force-field obtained by derivative of sample Hartree potential as described in supplementary of this paper \cite{phapalaoriginhighresol}. \end{itemize} The computation of images is divided into two parts: \begin{enumerate} \item Precompute vector Forcefield ( Fx(x,y,z), Fy(x,y,z), Fz(x,y,z) ) over sample and store it on a 3D-grid. ( see getLenardJonesFF and getCoulombFF functions for more details ). After individial components of forcefiled are sampled ( i.e. Lenard-Jones and electrostatic ) they are summed up to form one single total effective forcefield in which Probe-Particle moves. \item relax Probe-Particle attached to the tip under influence of the total effective forcefield. The relaxation of Probe-Particle is done using "Fast Inertial Realxation Engine" (FIRE) algorithm \cite{ebitzekstructrelaxmadesimple}. implemented in FIRE:move() function. In each step of relaxation the forcefield on the grid is interpolated in interpolate3DvecWrap function, considering periodic boundary condition. From python the relaxation is called as relaxTipStroke function providing 1D-array of tip positions, and obtaining back 1D-array of Probe-Particle position after the relaxation and of force between tip ProbePartcile and sample at that position. The lateral scan in (x,y) to obtained stack of images is done by calling relaxTipStroke at different (x,y) position of tip, where each call of relaxTipStroke does one approach along z-direction. \end{enumerate} \subsection{Why it is splitted like this ?} This splitting of computation ( first sampling of forcefiled on the grid, and than relaxation using interpolation) has several advantages over strightforward computation of interaction on the fly during relaxation process. \begin{itemize} \item \textbf{It is faster} - if there is ~100 atoms of sample, summing over each pairwise Lennard-Jones interactions, is much slower, than just interpolating the forcefield from the grid. Because force evaluation is done several-times for each voxel of the 3D scanning grid, it is more efficient to precompute it just once for each voxel, and then interpolate. \item \textbf{It is more flexible and general} - Decoupling of relaxation process and computation of forcefiled allows us to plug-in any forcefield. The original motivation was to used electrostatic forcefield obtained from Hartree potential from DFT calculation. However, it is not limited to that. We can plug in e.g. a derivative of potential energy of probe peraticle (i.e. Xe or CO ) obtained by scanning it in DFT code, in similar way as Guo did in \cite{chshguohighresolmodel} . The only limitation here is computational cost of obtaining such potential from ab-initio calculation. \end{itemize} \subsection{Code structure} The code is divided into Python and C++, where performance intensive computations are done in C++ and python is used as convenient scripting interface for doing tasks like file I/O, plotting, memory management. For binding of Python and C++ is used python ctypes library. \subsubsection{Dependencies:} \begin{itemize} \item \textbf{C++} : g++ ( tested with g++ (Ubuntu 4.8.1-2ubuntu1~12.04) 4.8.1 ) \item \textbf{Python} : python ( 2.7.3 ), numpy (1.9.2), matplotlib ( 1.4.3 ), ctypes ( 1.1.0 ) \end{itemize} \subsubsection{C++ source:} \begin{itemize} \item ProbeParticle.cpp - implementation of all performance intensive ProbeParticle model as dynamic library which can be called dynamically from python. \item Vec3.cpp,Mat3.cpp math subroutines for operations with 3D vectors and metrices \end{itemize} \subsubsection{Python source:} \begin{itemize} \item ProbeParticle.py - Interface between C++ core and python ising C-types. Here are also defined some python rutines like: \begin{itemize} \item conversion from Force to frequency shift ( Fz2df ), \item evaluation of Lenard-Jones coeffitints ( getAtomsLJ ) \item copy sample geometry to simulate periodic boundary condition ( PBCAtoms ) \item automatic setup of imagining area acroding to geometry of nonperiodic sample ( autoGeom ) \item default parameters of simulation ( params ) with subroutine to read this parameters from a file ( loadParams ) \end{itemize} \item test2.py, testServer2.py - two examples of python scripts with run actual computations using ProbeParticle library. The idea is that this files can be modified by user to match particular task \item basUtils.py - routines for loading of molecule geometry from xyz-format, ( loadAtoms ), finding bonds and other. \item Element.py and elements.py contains just parameters of atoms form periodic table ( like effective raidus, color for visualization etc. ). It is used by basUtils.py \end{itemize}
# Dimensional Reduction G. Richards (2016, 2018), based on materials from Ivezic, Connolly, Leighly, and VanderPlas **Before class starts, please try to do the following:** > find . -name β€œsdss_corrected_spectra.py” -print > ./anaconda/lib/python2.7/site-packages/astroML/datasets/sdss_corrected_spectra.py > emacs -nw ./anaconda/lib/python2.7/site-packages/astroML/datasets/sdss_corrected_spectra.py > #DATA_URL = 'http://www.astro.washington.edu/users/vanderplas/spec4000.npz' > DATA_URL = 'http://staff.washington.edu/jakevdp/spec4000.npz' Just in case that doesn't work, I've put "spec4000.npz" in PHYS_T480_F18/data. Copy this to your "astroML_data" directory. ## Curse of Dimensionality You want to buy a car. Right now--you don't want to wait. But you are picky and have certain things that you would like it to have. Each of those things has a probability between 0 and 1 of being on the the car dealer's lot. You want a red car which has a probability of being on the lot of $p_{\rm red}$; you want good gas mileage, $p_{\rm gas}$; you want leather seats, $p_{\rm leather}$; and you want a sunroof, $p_{\rm sunroof}$. The probability that the dealer has a car on the lot that meets all of those requirements is $$p_{\rm red} \, p_{\rm gas} \, p_{\rm leather} \, p_{\rm sunroof},$$ or $p^n$ where $n$ is the number of features (assuming equal probability for each). If the probability of each of these is 50%, then the probability of you driving off with your car of choice is only $0.5*0.5*0.5*0.5 = 0.0625$. Not very good. Imagine if you also wanted other things. This is the [Curse of Dimensionality](https://en.wikipedia.org/wiki/Curse_of_dimensionality). Let's illustrate the curse of dimensionality with two figures from [here.](https://medium.freecodecamp.org/the-curse-of-dimensionality-how-we-can-save-big-data-from-itself-d9fa0f872335) In the first example we are trying to find which box hold some treasure, which gets harder and harder with more dimensions, despite there just being 5 boxes in each dimension: In the next example we inscribe a circle in a square. The area outside of the circle grows larger and larger as the number of dimensions increase: Mathematically we can describe this as: the more dimensions that your data span, the more points needed to uniformly sample the space. For $D$ dimensions with coordinates $[-1,1]$, the fraction of points in a unit hypersphere (with radius $r$, as illustrated above) is $$f_D = \frac{V_D(r)}{(2r)^D} = \frac{\pi^{D/2}}{D2^{D-1}\Gamma(D/2)}$$ which goes to $0$ as $D$ goes to infinity! Actually, as you can see from the plot below, it is effectively 0 much earlier than that! ```python # Execute this cell # from Andy Connolly %matplotlib inline import numpy as np import scipy.special as sp from matplotlib import pyplot as plt def unitVolume(dimension, radius=1.): return 2*(radius**dimension *np.pi**(dimension/2.))/(dimension*sp.gamma(dimension/2.)) dim = np.linspace(1,100) #------------------------------------------------------------ # Plot the results fig = plt.figure() ax = fig.add_subplot(111) ax.plot(dim,unitVolume(dim)/2.**dim) ax.set_yscale('log') ax.set_xlabel('$Dimension$') ax.set_ylabel('$Volume$') plt.show() ``` Note that this works in the opposite direction too: let's say you want to find "rare" objects in 10 dimensions, where we'll define rare as <1% of the population. Then you'll need to accept objects from 63% of the distribution in all 10 dimensions! So are those really "rare" or are they just a particular 1% of the population? ```python import numpy as np p = 10**(np.log10(0.01)/10.0) print(p) ``` 0.6309573444801932 N.B. Dimensionality isn't just measuring $D$ parameters for $N$ objects. It could be a spectrum with $D$ values or an image with $D$ pixels, etc. In the book the examples used just happen to be spectra of galaxies from the SDSS project. But we can insert the data of our choice instead. For example: the SDSS comprises a sample of 357 million sources: - each source has 448 measured attributes - selecting just 30 (e.g., magnitude, size..) and normalizing the data range $-1$ to $1$ yields a probability of having one of the 357 million sources reside within a unit hypersphere of 1 in 1.4$\times 10^5$. ## Principal Component Analysis (PCA) In [Principal Component Analysis (PCA)](https://en.wikipedia.org/wiki/Principal_component_analysis) we seek to take a data set like the one shown below and apply a transform to the data such that the new axes are aligned with the maximal variance of the data. As can be seen in the Figure, this is basically just the same as doing regression by minimizing the square of the perpendicular distances to the new axes. Note that we haven't made any changes to the data, we have just defined new axes. ```python # Execute this cell # Ivezic, Figure 7.2 # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general %matplotlib inline import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Ellipse #------------------------------------------------------------ # Set parameters and draw the random sample np.random.seed(42) r = 0.9 sigma1 = 0.25 sigma2 = 0.08 rotation = np.pi / 6 s = np.sin(rotation) c = np.cos(rotation) X = np.random.normal(0, [sigma1, sigma2], size=(100, 2)).T R = np.array([[c, -s],[s, c]]) X = np.dot(R, X) #Same data, now rotated by R matrix. #------------------------------------------------------------ # Plot the diagram fig = plt.figure(figsize=(5, 5), facecolor='w') ax = plt.axes((0, 0, 1, 1), xticks=[], yticks=[], frameon=False) # draw axes ax.annotate(r'$x$', (-r, 0), (r, 0), ha='center', va='center', arrowprops=dict(arrowstyle='<->', color='k', lw=1)) ax.annotate(r'$y$', (0, -r), (0, r), ha='center', va='center', arrowprops=dict(arrowstyle='<->', color='k', lw=1)) # draw rotated axes ax.annotate(r'$x^\prime$', (-r * c, -r * s), (r * c, r * s), ha='center', va='center', arrowprops=dict(color='k', arrowstyle='<->', lw=1)) ax.annotate(r'$y^\prime$', (r * s, -r * c), (-r * s, r * c), ha='center', va='center', arrowprops=dict(color='k', arrowstyle='<->', lw=1)) # scatter points ax.scatter(X[0], X[1], s=25, lw=0, c='k', zorder=2) # draw lines vnorm = np.array([s, -c]) for v in (X.T): d = np.dot(v, vnorm) v1 = v - d * vnorm ax.plot([v[0], v1[0]], [v[1], v1[1]], '-k') # draw ellipses for sigma in (1, 2, 3): ax.add_patch(Ellipse((0, 0), 2 * sigma * sigma1, 2 * sigma * sigma2, rotation * 180. / np.pi, ec='k', fc='gray', alpha=0.2, zorder=1)) ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) plt.show() ``` Note that the points are correlated along a particular direction which doesn't align with the initial choice of axes. So, we should rotate our axes to align with this correlation. We'll choose the rotation to maximize the ability to discriminate between the data points: * the first axis, or **principal component**, is direction of maximal variance * the second principal component is orthogonal to the first component and maximizes the residual variance * ... PCA is a dimensional reduction process because we can generally account for nearly "all" of the variance in the data set with fewer than the original $K$ dimensions. See more below. We start with a data set $\{x_i\}$ which consists of $N$ objects for which we measure $K$ features. We start by subtracting the mean for each feature in $\{x_i\}$ and write $X$ as a $N\times K$ matrix. The covariance of this matrix is $$C_X=\frac{1}{N-1}X^TX.$$ There are off-diagonal terms if there are correlations between the measurements (e.g., maybe two of the features are temperature dependent and the measurements were taken at the same time). If $R$ is a projection of the data that is aligned with the maximal variance, then we have $Y= X R$ with covariance $$ C_{Y} = R^T X^T X R = R^T C_X R.$$ $r_1$ is the first principal component of $R$, which can be derived using Langrange multipliers with the following cost function: $$ \phi(r_1,\lambda_1) = r_1^TC_X r_1 - \lambda_1(r_1^Tr_1-1). $$ If we take derivative of $\phi(r_1,\lambda)$ with respect to $r_1$ and set it to 0, then we have $$ C_Xr_1 - \lambda_1 r_1 = 0. $$ $\lambda_1$ (the largest eigenvalue of the matrix) is the root of the equation $\det(C_X - \lambda_1 {\bf I})=0$ for which the eigenvalue is $$ \lambda_1 = r_1^T C_X r_1.$$ The columns of the full matrix, $R$ are the eigenvectors (known here as principal components). The diagonal values of $C_Y$ are the variance contained within each component. We aren't going to go through the linear algebra more than that here. But it would be a good group project for someone. See the end of 7.3.1 starting at the bottom on page 294 or go through [Karen Leighly's PCA lecture notes](http://seminar.ouml.org/lectures/principal-components-analysis/) if you want to walk through the math in more detail. ### Preparing data for PCA * Subtract the mean of each dimension (to "center" the data) * Divide by the variance in each dimension (to "whiten" the data) * (For spectra and images) normalize each row to yield an integral of unity. Below is a typical call to the PCA algorithm. Note that this is somewhat backwards. We are starting with `X` and then we are making it higher dimensional--to create a mock high-$D$ data set. Then we are applying PCA as a dimensionality reduction technique. ```python #Example call from 7.3.2 import numpy as np from sklearn.decomposition import PCA X = np.random.normal(size=(100,3)) # 100 points in 3D R = np.random.random((3,10)) # projection matrix X = np.dot(X,R) # X is now 10-dim, with 3 intrinsic dims pca = PCA(n_components=4) # n_components can be optionally set pca.fit(X) comp = pca.transform(X) # compute the subspace projection of X, 4 eigenvalues for each of the 100 samples mean = pca.mean_ # length 10 mean of the data components = pca.components_ # 4x10 matrix of components, multiply each by respective "comp" to reconstruct #Reconstruction of object1 #Xreconstruct[0] = mean + [components][comp[0]] ``` To illustrate what is happening here is a PCA reconstruction of handwritten "3s" from [Hastie et al.](https://web.stanford.edu/~hastie/ElemStatLearn/) : [Scikit-Learn's decomposition module](http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition) has a number of [PCA type implementations](http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA). Let's work through an example using spectra of galaxies take during the Sloan Digital Sky Survey. In this sample there are 4000 spectra with flux measurements in 1000 bins. 15 example spectra are shown below and our example will use half of the spectra chosen at random. ```python %matplotlib inline # Example from Andy Connolly # See Ivezic, Figure 7.4 import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) print(len(spectra), len(wavelengths)) #---------------------------------------------------------------------- # Compute PCA np.random.seed(500) nrows = 2000 # We'll just look at 2000 random spectra n_components = 5 # Do the fit with 5 components, which is the mean plus 4 ind = np.random.randint(spectra.shape[0], size=nrows) spec_mean = spectra[ind].mean(0) # Compute the mean spectrum, which is the first component # spec_mean = spectra[:50].mean(0) # use Randomized PCA for speed #pca = RandomizedPCA(n_components - 1) pca = PCA(n_components - 1,svd_solver='randomized') pca.fit(spectra[ind]) pca_comp = np.vstack([spec_mean,pca.components_]) #Add the mean to the components evals = pca.explained_variance_ratio_ print(evals) ``` downloading PCA-processed SDSS spectra from http://staff.washington.edu/jakevdp/spec4000.npz to /home/pranphy/astroML_data Downloading http://staff.washington.edu/jakevdp/spec4000.npz [=========================================] 27.15Mb / 27.15Mb 4000 1000 [0.889316 0.06058301 0.02481432 0.01012148] Now let's plot the components. See also Ivezic, Figure 7.4. The left hand panels are just the first 5 spectra for comparison with the first 5 PCA components, which are shown on the right. They are ordered by the size of their eigenvalues. ```python #Make plots fig = plt.figure(figsize=(10, 8)) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, bottom=0.1, top=0.95, hspace=0.05) titles = 'PCA components' for j in range(n_components): # plot the components ax = fig.add_subplot(n_components, 2, 2*j+2) ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax.xaxis.set_major_formatter(plt.NullFormatter()) else: ax.set_xlabel('wavelength (Angstroms)') ax.plot(wavelengths, pca_comp[j], '-k', lw=1) # plot zero line xlim = [3000, 7999] ax.plot(xlim, [0, 0], '-', c='gray', lw=1) ax.set_xlim(xlim) # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) # plot the first j spectra ax2 = fig.add_subplot(n_components, 2, 2*j+1) ax2.yaxis.set_major_formatter(plt.NullFormatter()) ax2.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax2.xaxis.set_major_formatter(plt.NullFormatter()) else: ax2.set_xlabel('wavelength (Angstroms)') ax2.plot(wavelengths, spectra[j], '-k', lw=1) # plot zero line ax2.plot(xlim, [0, 0], '-', c='gray', lw=1) ax2.set_xlim(xlim) if j == 0: ax.set_title(titles, fontsize='medium') if j == 0: label = 'mean' else: label = 'component %i' % j # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax2.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) ax.text(0.02, 0.95, label, transform=ax.transAxes, ha='left', va='top', bbox=dict(ec='w', fc='w'), fontsize='small') plt.show() ``` Now let's make "scree" plots. These plots tell us how much of the variance is explained as a function of the each eigenvector. Our plot won't look much like Ivezic, Figure 7.5, so I've shown it below to explain where "scree" comes from. ```python # Execute this cell import numpy as np from matplotlib import pyplot as plt #---------------------------------------------------------------------- # Plot the results fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(121) ax.plot(np.arange(n_components-1), evals) ax.set_xlabel("eigenvalue number") ax.set_ylabel("eigenvalue ") ax = fig.add_subplot(122) ax.plot(np.arange(n_components-1), evals.cumsum()) ax.set_xlabel("eigenvalue number") ax.set_ylabel("cumulative eigenvalue") plt.show() ``` How much of the variance is explained by the first two components? How about all of the components? ```python print("The first component explains {:.3f} of the variance in the data.".format(pca.explained_variance_ratio_[0])) print("The second component explains {:.3f} of the variance in the data.".format(pca.explained_variance_ratio_[0])) print("All components explain {:.3f} of the variance in the data.".format(sum(pca.explained_variance_ratio_))) ``` The first component explains 0.889 of the variance in the data. The second component explains 0.889 of the variance in the data. All components explain 0.996 of the variance in the data. This is why PCA enables dimensionality reduction. How many components would we need to explain 99.5% of the variance? ```python for num_feats in np.arange(1,20, dtype = int): pca = PCA(n_components=num_feats) pca.fit(spectra[ind]) if (sum(pca.explained_variance_ratio_[:num_feats])>0.995): break print("{:d} features are needed to explain 99.5% of the variance".format(num_feats)) ``` 8 features are needed vo explain 99.5% of the variance Note that we would need 1000 components to encode *all* of the variance. ## Interpreting the PCA - The output eigenvectors are ordered by their associated eigenvalues - The eigenvalues reflect the variance within each eigenvector - The sum of the eigenvalues is total variance of the system - Projection of each spectrum onto the first few eigenspectra is a compression of the data Once we have the eigenvectors, we can try to reconstruct an observed spectrum, ${x}(k)$, in the eigenvector basis, ${e}_i(k)$, as $$ \begin{equation} {x}_i(k) = {\mu}(k) + \sum_j^R \theta_{ij} {e}_j(k). \end{equation} $$ That would give a full (perfect) reconstruction of the data since it uses all of the eigenvectors. But if we truncate (i.e., $r<R$), then we will have reduced the dimensionality while still reconstructing the data with relatively little loss of information. For example, we started with 4000x1000 floating point numbers. If we can explain nearly all of the variance with 8 eigenvectors, then we have reduced the problem to 4000x8+8x1000 floating point numbers! Execute the next cell to see how the reconstruction improves by adding more components. ```python # Execute this cell import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import PCA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) #------------------------------------------------------------ # Compute PCA components # Eigenvalues can be computed using PCA as in the commented code below: #from sklearn.decomposition import PCA #pca = PCA() #pca.fit(spectra) #evals = pca.explained_variance_ratio_ #evals_cs = evals.cumsum() # because the spectra have been reconstructed from masked values, this # is not exactly correct in this case: we'll use the values computed # in the file compute_sdss_pca.py evals = data['evals'] ** 2 evals_cs = evals.cumsum() evals_cs /= evals_cs[-1] evecs = data['evecs'] spec_mean = spectra.mean(0) #------------------------------------------------------------ # Find the coefficients of a particular spectrum spec = spectra[1] coeff = np.dot(evecs, spec - spec_mean) #------------------------------------------------------------ # Plot the sequence of reconstructions fig = plt.figure(figsize=(8, 8)) fig.subplots_adjust(hspace=0) for i, n in enumerate([0, 4, 8, 20]): ax = fig.add_subplot(411 + i) ax.plot(wavelengths, spec, '-', c='gray') ax.plot(wavelengths, spec_mean + np.dot(coeff[:n], evecs[:n]), '-k') if i < 3: ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.set_ylim(-2, 21) ax.set_ylabel('flux') if n == 0: text = "mean" elif n == 1: text = "mean + 1 component\n" text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] else: text = "mean + %i components\n" % n text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] ax.text(0.01, 0.95, text, ha='left', va='top', transform=ax.transAxes) fig.axes[-1].set_xlabel(r'${\rm wavelength\ (\AA)}$') plt.show() ``` ### Caveats I PCA is a linear process, whereas the variations in the data may not be. So it may not always be appropriate to use and/or may require a relatively large number of components to fully describe any non-linearity. Note also that PCA can be very impractical for large data sets which exceed the memory per core as the computational requirement goes as $\mathscr{O}(D^3$) and the memory requirement goes as $\mathscr{O}(2D^2)$. ### Missing Data We have assumed so far that there is no missing data (e.g., bad pixels in the spectrum, etc.). But often the data set is incomplete. Since PCA encodes the flux correlation with wavelength (or whatever parameters are in your data set), we can actually use it to determine missing values. An example is shown below. Here, black are the observed spectra. Gray are the regions where we have no data. Blue is the PCA reconstruction, including the regions where there are no data. Awesome, isn't it? ```python # Execute this cell %matplotlib inline import numpy as np from matplotlib import pyplot as plt from matplotlib import ticker from astroML.datasets import fetch_sdss_corrected_spectra from astroML.datasets import sdss_corrected_spectra #------------------------------------------------------------ # Get spectra and eigenvectors used to reconstruct them data = fetch_sdss_corrected_spectra() spec = sdss_corrected_spectra.reconstruct_spectra(data) lam = sdss_corrected_spectra.compute_wavelengths(data) evecs = data['evecs'] mu = data['mu'] norms = data['norms'] mask = data['mask'] #------------------------------------------------------------ # plot the results i_plot = ((lam > 5750) & (lam < 6350)) lam = lam[i_plot] specnums = [20, 8, 9] subplots = [311, 312, 313] fig = plt.figure(figsize=(8, 10)) fig.subplots_adjust(hspace=0) for subplot, i in zip(subplots, specnums): ax = fig.add_subplot(subplot) # compute eigen-coefficients spec_i_centered = spec[i] / norms[i] - mu coeffs = np.dot(spec_i_centered, evecs.T) # blank out masked regions spec_i = spec[i] mask_i = mask[i] spec_i[mask_i] = np.nan # plot the raw masked spectrum ax.plot(lam, spec_i[i_plot], '-', color='k', lw=2, label='True spectrum') # plot two levels of reconstruction for nev in [10]: if nev == 0: label = 'mean' else: label = 'N EV=%i' % nev spec_i_recons = norms[i] * (mu + np.dot(coeffs[:nev], evecs[:nev])) ax.plot(lam, spec_i_recons[i_plot], label=label) # plot shaded background in masked region ylim = ax.get_ylim() mask_shade = ylim[0] + mask[i][i_plot].astype(float) * ylim[1] plt.fill(np.concatenate([lam[:1], lam, lam[-1:]]), np.concatenate([[ylim[0]], mask_shade, [ylim[0]]]), lw=0, fc='k', alpha=0.2) ax.set_xlim(lam[0], lam[-1]) ax.set_ylim(ylim) ax.yaxis.set_major_formatter(ticker.NullFormatter()) if subplot == 311: ax.legend(loc=1, prop=dict(size=14)) ax.set_xlabel('$\lambda\ (\AA)$') ax.set_ylabel('normalized flux') plt.show() ``` The example that we have been using above is "spectral" PCA. Some examples from the literature include: - [Francis et al. 1992](http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1992ApJ...398..476F&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf) - [Connolly et al. 1995](http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1995AJ....110.1071C&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf) - [Yip et al. 2004](http://iopscience.iop.org/article/10.1086/425626/meta;jsessionid=31BB5F11B85D2BF4180834DC71BA0B85.c3.iopscience.cld.iop.org) One can also do PCA on features that aren't ordered (as they were for the spectra). E.g., if you have $D$ different parameters measured for your objects. The classic example in astronomy is [Boroson & Green 1992](http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1992ApJS...80..109B&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf). ### Caveats II One of the things that I don't like about PCA is that the eigenvectors are defined relative to the mean. So they can be positive or negative and they often don't look anything like the original data itself. Whereas it is often the case that you might expect that the components would look like, well, the physical components. For example, quasars are fundamentally galaxies. So, part of their flux comes from the galaxy that they live in. But PCA doesn't return any component that looks like a typical galaxy. ## Non-negative Matrix Factorization (NMF) This is where [Non-negative Matrix Factorizaiton (NMF)](https://en.wikipedia.org/wiki/Non-negative_matrix_factorization) comes in. Here we are treating the data as a linear sum of positive-definite components. NMF assumes any data matrix can be factored into two matrices, $W$ and $Y$, with $$\begin{equation} X=W Y, \end{equation} $$ where both $W$ and $Y$ are nonnegative. So, $WY$ is an approximation of $X$. Minimizing the reconstruction error $|| (X - W Y)^2 ||$, nonnegative bases can be derived through an iterative process. Note, however, that the iterative process does not guarantee nonlocal minima (like $K$-means and EM), but using random initialization and cross-validation can be used to find the global minimum. An example from the literature is [Allen et al. 2008](http://arxiv.org/abs/0810.4231) In Scikit-Learn the [NMF implementation](http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html) looks like: ```python # Execute this cell import numpy as np from sklearn.decomposition import NMF X = np.random.random((100,10)) # 100 points in 10-D nmf = NMF(n_components=3) nmf.fit(X) proj = nmf.transform(X) # project to 3 dimension comp = nmf.components_ # 3x10 array of components err = nmf.reconstruction_err_ # how well 3 components capture the data ``` An example (and comparison to PCA) is given below. ```python # Execute the next 2 cells # Example from Figure 7.4 # Author: Jake VanderPlas # License: BSD %matplotlib inline import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import NMF from sklearn.decomposition import RandomizedPCA from sklearn.decomposition import PCA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) ``` ```python #---------------------------------------------------------------------- # Compute PCA, and NMF components def compute_PCA_NMF(n_components=5): spec_mean = spectra.mean(0) # PCA: use randomized PCA for speed #pca = RandomizedPCA(n_components - 1) pca = PCA(n_components - 1,svd_solver='randomized') pca.fit(spectra) pca_comp = np.vstack([spec_mean, pca.components_]) # NMF requires all elements of the input to be greater than zero spectra[spectra < 0] = 0 nmf = NMF(n_components) nmf.fit(spectra) nmf_comp = nmf.components_ return pca_comp, nmf_comp n_components = 5 decompositions = compute_PCA_NMF(n_components) #---------------------------------------------------------------------- # Plot the results fig = plt.figure(figsize=(10, 10)) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, bottom=0.1, top=0.95, hspace=0.05) titles = ['PCA components', 'NMF components'] for i, comp in enumerate(decompositions): for j in range(n_components): ax = fig.add_subplot(n_components, 3, 3 * j + 1 + i) ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax.xaxis.set_major_formatter(plt.NullFormatter()) else: ax.set_xlabel('wavelength (Angstroms)') ax.plot(wavelengths, comp[j], '-k', lw=1) # plot zero line xlim = [3000, 7999] ax.plot(xlim, [0, 0], '-', c='gray', lw=1) ax.set_xlim(xlim) if j == 0: ax.set_title(titles[i]) if titles[i].startswith('PCA') or titles[i].startswith('ICA'): if j == 0: label = 'mean' else: label = 'component %i' % j else: label = 'component %i' % (j + 1) ax.text(0.03, 0.94, label, transform=ax.transAxes, ha='left', va='top') for l in ax.get_xticklines() + ax.get_yticklines(): l.set_markersize(2) # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) plt.show() ``` ## Independent Component Analysis (ICA) For data where the components are statistically independent (or nearly so) [Independent Component Analysis (ICA)](https://en.wikipedia.org/wiki/Independent_component_analysis) has become a popular method for separating mixed components. The classical example is the so-called "cocktail party" problem. This is illustrated in the following figure from Hastie, Tibshirani, and Friedman (Figure 14.27 on page 497 in my copy, so they have clearly added some stuff!). Think of the "source signals" as two voices at a party. You are trying to concentrate on just one voice. What you hear is something like the "measured signals" pattern. You could run the data through PCA and that would do an excellent job of reconstructing the signal with reduced dimensionality, but it wouldn't actually isolate the different physical components (bottom-left panel). ICA on the other hand can (bottom-right panel). .](../images/HastieFigure14_37.png) [Hastie et al.](https://web.stanford.edu/~hastie/ElemStatLearn/): "ICA applied to multivariate data looks for a sequence of orthogonal projections such that the projected data look as far from Gaussian as possible. With pre-whitened data, this amounts to looking for components that are as independent as possible." In short you want to find components that are maximally non-Gaussian since the sum of 2 random variables will be more Gaussian than either of the components (remember the Central Limit Theorem). Hastie et al. illustrate this as follows: ICA is a good choice for a complex system with relatively indepent components. For example a galaxy is roughly a linear combination of cool stars and hot stars, and a quasar is just a galaxy with others component from an accretion disk and emission line regions. Ideally we want "eigenvectors" that are aligned with those physical traits/regions as opposed to mathematical constructs. The basic call to the [FastICA algoirthm](http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html) in Scikit-Learn looks like: ```python # Execute this cell import numpy as np from sklearn.decomposition import FastICA X = np.random.normal(size=(100,2)) # 100 objects in 2D R = np.random.random((2,5)) # mixing matrix X = np.dot(X,R) # Simulation of a 5D data space ica = FastICA(2) # Now reproject to 2-D ica.fit(X) proj = ica.transform(X) # 100x2 projection of the data comp = ica.components_ # 2x5 matrix of independent components ## sources = ica.sources_ # 100x2 matrix of sources ``` Execute the next 2 cells to produce a plot showing the ICA components. ```python %matplotlib inline #Example from Andy Connolly import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import FastICA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) #---------------------------------------------------------------------- # Compute PCA np.random.seed(500) nrows = 500 n_components = 5 ind = np.random.randint(spectra.shape[0], size=nrows) spec_mean = spectra[ind].mean(0) # spec_mean = spectra[:50].mean(0) ica = FastICA(n_components - 1) ica.fit(spectra[ind]) ica_comp = np.vstack([spec_mean,ica.components_]) #Add the mean to the components ``` ```python #Make plots fig = plt.figure(figsize=(10, 8)) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, bottom=0.1, top=0.95, hspace=0.05) titles = 'ICA components' for j in range(n_components): # plot the components ax = fig.add_subplot(n_components, 2, 2*j+2) ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax.xaxis.set_major_formatter(plt.NullFormatter()) else: ax.set_xlabel(r'wavelength ${\rm (\AA)}$') ax.plot(wavelengths, ica_comp[j], '-k', lw=1) # plot zero line xlim = [3000, 7999] ax.plot(xlim, [0, 0], '-', c='gray', lw=1) ax.set_xlim(xlim) # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) # plot the first j spectra ax2 = fig.add_subplot(n_components, 2, 2*j+1) ax2.yaxis.set_major_formatter(plt.NullFormatter()) ax2.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax2.xaxis.set_major_formatter(plt.NullFormatter()) else: ax2.set_xlabel(r'wavelength ${\rm (\AA)}$') ax2.plot(wavelengths, spectra[j], '-k', lw=1) # plot zero line ax2.plot(xlim, [0, 0], '-', c='gray', lw=1) ax2.set_xlim(xlim) if j == 0: ax.set_title(titles, fontsize='medium') if j == 0: label = 'mean' else: label = 'component %i' % j # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax2.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) ax.text(0.02, 0.95, label, transform=ax.transAxes, ha='left', va='top', bbox=dict(ec='w', fc='w'), fontsize='small') plt.show() ``` As with PCA and NMF, we can similarly do a reconstruction: ```python # Execute this cell #------------------------------------------------------------ # Find the coefficients of a particular spectrum spec = spectra[1] evecs = data['evecs'] coeff = np.dot(evecs, spec - spec_mean) #------------------------------------------------------------ # Plot the sequence of reconstructions fig = plt.figure(figsize=(8, 8)) fig.subplots_adjust(hspace=0) for i, n in enumerate([0, 2, 4, 8]): ax = fig.add_subplot(411 + i) ax.plot(wavelengths, spec, '-', c='gray') ax.plot(wavelengths, spec_mean + np.dot(coeff[:n], evecs[:n]), '-k') if i < 3: ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.set_ylim(-2, 21) ax.set_ylabel('flux') if n == 0: text = "mean" elif n == 1: text = "mean + 1 component\n" #text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] else: text = "mean + %i components\n" % n #text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] ax.text(0.01, 0.95, text, ha='left', va='top', transform=ax.transAxes) fig.axes[-1].set_xlabel(r'${\rm wavelength\ (\AA)}$') plt.show() ``` Ivezic, Figure 7.4 compares the components found by the PCA, ICA, and NMF algorithms. Their differences and similarities are quite interesting. If you think that I was pulling your leg about the cocktail problem, try it yourself! Load the code instead of running it and see what effect changing some things has. ```python # %load ../code/plot_ica_blind_source_separation.py """ ===================================== Blind source separation using FastICA ===================================== An example of estimating sources from noisy data. :ref:`ICA` is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what is played by each instrument. Importantly, PCA fails at recovering our `instruments` since the related signals reflect non-Gaussian processes. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import signal from sklearn.decomposition import FastICA, PCA ############################################################################### # Generate sample data np.random.seed(0) n_samples = 2000 time = np.linspace(0, 8, n_samples) s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal # s3[time>4] = 0 S = np.c_[s1, s2, s3] S += 0.2 * np.random.normal(size=S.shape) # Add noise S /= S.std(axis=0) # Standardize data # Mix data A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations # Compute ICA ica = FastICA(n_components=3) S_ = ica.fit_transform(X) # Reconstruct signals A_ = ica.mixing_ # Get estimated mixing matrix # We can `prove` that the ICA model applies by reverting the unmixing. assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_) # For comparison, compute PCA pca = PCA(n_components=3) H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components ############################################################################### # Plot results plt.figure(figsize=(8,8)) models = [X, S, S_, H] names = ['Observations (mixed signal)', 'True Sources', 'ICA recovered signals', 'PCA recovered signals'] colors = ['red', 'steelblue', 'orange'] for ii, (model, name) in enumerate(zip(models, names), 1): plt.subplot(4, 1, ii) plt.title(name) for sig, color in zip(model.T, colors): plt.plot(sig, color=color) plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46) plt.show() ``` Let's revisit the digits sample and see what PCA, NMF, and ICA do for it. ```python ## Execute this cell to load the digits sample %matplotlib inline import numpy as np from sklearn.datasets import load_digits from matplotlib import pyplot as plt digits = load_digits() grid_data = np.reshape(digits.data[0], (8,8)) #reshape to 8x8 plt.imshow(grid_data, interpolation = "nearest", cmap = "bone_r") print(grid_data) X = digits.data y = digits.target ``` Do the PCA transform, projecting to 2 dimensions and plot the results. ```python # PCA from sklearn.decomposition import PCA pca = PCA(n_components = 2) pca.fit_transform(X) X_reduced = pca.transform(X) plt.scatter(X_reduced[:,0], X_reduced[:,1], c=y, cmap="nipy_spectral", edgecolor="None") plt.colorbar() ``` Similarly for NMF and ICA ```python from sklearn.decomposition import NMF nmf = NMF(n_components=2) nmf.fit(X) X_reduced = nmf.transform(X) plt.scatter(X_reduced[:,0], X_reduced[:,1], c=y, cmap="nipy_spectral", edgecolor="None") plt.colorbar() ``` ```python # ICA from sklearn.decomposition import FastICA ica = FastICA(n_components=2) ica.fit(X) X_reduced = ica.transform(X) plt.scatter(X_reduced[:,0],X_reduced[:,1], c=y, cmap="nipy_spectral", edgecolor="None") plt.colorbar() ``` Take a second to think about what ICA is doing. What if you had digits from digital clocks instead of handwritten? I wasn't going to introduce [Neural Networks](https://en.wikipedia.org/wiki/Artificial_neural_network) yet, but it is worth noting that Scikit-Learn's [`Bernoulli Restricted Boltzman Machine (RBM)`](http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html) is discussed in the [(unsupervised) neural network](http://scikit-learn.org/stable/modules/neural_networks_unsupervised.html) part of the User's Guide and is relevant here as the data input must be either binary or values between 0 and 1, which is the case that we have here. We could think about doing dimensional reduction of the digits data set in another way. There are 64 pixels in each of our images. Presumably all of them aren't equally useful. Let's figure out exactly which pixels are the most relevant. We'll use Scikit-Learn's [`RandomForestRegressor`](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html). We won't get to regression until next week, but you don't need to understand the algorithm to do this, just look at the inputs and outputs. Which pixels are the most important? As a bonus see if you can plot digit images with those pixels highlighted. ```python from sklearn.ensemble import RandomForestRegressor RFreg = RandomForestRegressor()# Complete or leave blank as you see fit RFreg.fit(X,y)# Do Fitting importances = RFreg.feature_importances_# Determine "importances" pixelorder = np.argsort(importances)[::-1] #Rank importances (highest to lowest) print(pixelorder) plt.figure() plt.imshow(np.reshape(importances,(8,8)),interpolation="nearest") plt.show() ``` ```python ```
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Identity open import HoTT.Homotopy module HoTT.Equivalence where open variables private variable C : 𝒰 i module _ (f : A β†’ B) where qinv = Ξ£[ g ∢ (B β†’ A) ] (g ∘ f ~ id) Γ— (f ∘ g ~ id) -- Bi-invertible map linv = Ξ£[ g ∢ (B β†’ A) ] g ∘ f ~ id rinv = Ξ£[ g ∢ (B β†’ A) ] f ∘ g ~ id -- The book uses a flipped version rinv Γ— linv for the definition in Β§2.4. biinv = linv Γ— rinv -- Half-adjoint equivalence ishae = Ξ£[ g ∢ (B β†’ A) ] Ξ£[ Ξ· ∢ g ∘ f ~ id ] Ξ£[ Ξ΅ ∢ f ∘ g ~ id ] ap f ∘ Ξ· ~ Ξ΅ ∘ f module _ {f : A β†’ B} where module qinv (e : qinv f) where g = pr₁ e Ξ· = pr₁ (prβ‚‚ e) Ξ΅ = prβ‚‚ (prβ‚‚ e) qinvβ†’linv : qinv f β†’ linv f qinvβ†’linv e = g , Ξ· where open qinv e qinvβ†’rinv : qinv f β†’ rinv f qinvβ†’rinv e = g , Ξ΅ where open qinv e module ishae (e : ishae f) where g = pr₁ e Ξ· = pr₁ (prβ‚‚ e) Ξ΅ = pr₁ (prβ‚‚ (prβ‚‚ e)) Ο„ = prβ‚‚ (prβ‚‚ (prβ‚‚ e)) ishaeβ†’qinv : ishae f β†’ qinv f ishaeβ†’qinv e = g , Ξ· , Ξ΅ where open ishae e qinvβ†’ishae : qinv f β†’ ishae f qinvβ†’ishae e = g , Ξ· , Ξ΅' , Ο„ where open qinv e Ξ΅' : f ∘ g ~ id Ξ΅' b = Ξ΅ (f (g b)) ⁻¹ βˆ™ (ap f (Ξ· (g b)) βˆ™ Ξ΅ b) Ο„ : ap f ∘ Ξ· ~ Ξ΅' ∘ f Ο„ a = ap f (Ξ· a) =⟨ unitβ‚— ⟩ refl βˆ™ ap f (Ξ· a) =⟨ invβ‚— ⁻¹ βˆ™α΅£ _ ⟩ _ βˆ™ Ξ΅ (f (g (f a))) βˆ™ ap f (Ξ· a) =⟨ assoc ⁻¹ ⟩ _ βˆ™ (_ βˆ™ ap f (Ξ· a)) =⟨ _ βˆ™β‚— (_ βˆ™β‚— ap-id (ap f (Ξ· a)) ⁻¹) ⟩ _ βˆ™ (Ξ΅ (f (g (f a))) βˆ™ ap id _) =⟨ _ βˆ™β‚— ~-natural Ξ΅ (ap f (Ξ· a)) ⟩ _ βˆ™ (ap (f ∘ g) (ap f (Ξ· a)) βˆ™ _) =⟨ _ βˆ™β‚— (ap-∘ (f ∘ g) f (Ξ· a) ⁻¹ βˆ™α΅£ _) ⟩ _ βˆ™ (ap (f ∘ g ∘ f) (Ξ· a) βˆ™ _) =⟨ _ βˆ™β‚— (ap-∘ f (g ∘ f) (Ξ· a) βˆ™α΅£ _) ⟩ _ βˆ™ (ap f (ap (g ∘ f) (Ξ· a)) βˆ™ _) =⟨ _ βˆ™β‚— (ap (ap f) (~-natural-comm Ξ· a ⁻¹) βˆ™α΅£ _) ⟩ Ξ΅' (f a) ∎ where open =-Reasoning module biinv (e : biinv f) where h = pr₁ (pr₁ e) Ξ² = prβ‚‚ (pr₁ e) g = pr₁ (prβ‚‚ e) Ξ± = prβ‚‚ (prβ‚‚ e) biinvβ†’qinv : biinv f β†’ qinv f biinvβ†’qinv e = g , Ξ²' , Ξ± where open biinv e Ξ³ : g ~ h Ξ³ x = Ξ² (g x) ⁻¹ βˆ™ ap h (Ξ± x) Ξ²' : g ∘ f ~ id Ξ²' x = Ξ³ (f x) βˆ™ Ξ² x qinvβ†’biinv : qinv f β†’ biinv f qinvβ†’biinv e = (g , Ξ·) , (g , Ξ΅) where open qinv e module _ {f₁ : B β†’ C} {fβ‚‚ : A β†’ B} where ishae-∘ : ishae f₁ β†’ ishae fβ‚‚ β†’ ishae (f₁ ∘ fβ‚‚) ishae-∘ e₁ eβ‚‚ = g , Ξ· , Ξ΅ , Ο„ where open ishae e₁ renaming (g to g₁ ; Ξ· to η₁ ; Ξ΅ to Ρ₁ ; Ο„ to τ₁) open ishae eβ‚‚ renaming (g to gβ‚‚ ; Ξ· to Ξ·β‚‚ ; Ξ΅ to Ξ΅β‚‚ ; Ο„ to Ο„β‚‚) f = f₁ ∘ fβ‚‚ g = gβ‚‚ ∘ g₁ Ξ· : g ∘ f ~ id Ξ· x = ap gβ‚‚ (η₁ (fβ‚‚ x)) βˆ™ Ξ·β‚‚ x Ξ΅ : f ∘ g ~ id Ξ΅ x = ap f₁ (Ξ΅β‚‚ (g₁ x)) βˆ™ Ρ₁ x Ο„ : ap f ∘ Ξ· ~ Ξ΅ ∘ f Ο„ x = ap f (Ξ· x) =⟨ ap-∘ f₁ fβ‚‚ (ap gβ‚‚ (η₁ (fβ‚‚ x)) βˆ™ Ξ·β‚‚ x) ⟩ ap f₁ (ap fβ‚‚ (Ξ· x)) =⟨ ap (ap f₁) (ap-βˆ™ fβ‚‚ (ap gβ‚‚ (η₁ (fβ‚‚ x))) (Ξ·β‚‚ x)) ⟩ ap f₁ (ap fβ‚‚ (ap gβ‚‚ (η₁ (fβ‚‚ x))) βˆ™ ap fβ‚‚ (Ξ·β‚‚ x)) =⟨ ap (ap f₁) (ap fβ‚‚ _ βˆ™β‚— Ο„β‚‚ x) ⟩ ap f₁ (ap fβ‚‚ (ap gβ‚‚ (η₁ (fβ‚‚ x))) βˆ™ Ξ΅β‚‚ (fβ‚‚ x)) =⟨ ap (ap f₁) (ap-∘ fβ‚‚ gβ‚‚ _ ⁻¹ βˆ™α΅£ Ξ΅β‚‚ (fβ‚‚ x)) ⟩ ap f₁ (ap (fβ‚‚ ∘ gβ‚‚) (η₁ (fβ‚‚ x)) βˆ™ Ξ΅β‚‚ (fβ‚‚ x)) =⟨ ap (ap f₁) (~-natural Ξ΅β‚‚ (η₁ (fβ‚‚ x))) ⁻¹ ⟩ ap f₁ (Ξ΅β‚‚ (g₁ (f x)) βˆ™ ap id (η₁ (fβ‚‚ x))) =⟨ ap (ap f₁) (Ξ΅β‚‚ (g₁ (f x)) βˆ™β‚— ap-id (η₁ (fβ‚‚ x))) ⟩ ap f₁ (Ξ΅β‚‚ (g₁ (f x)) βˆ™ η₁ (fβ‚‚ x)) =⟨ ap-βˆ™ f₁ (Ξ΅β‚‚ (g₁ (f x))) (η₁ (fβ‚‚ x)) ⟩ ap f₁ (Ξ΅β‚‚ (g₁ (f x))) βˆ™ ap f₁ (η₁ (fβ‚‚ x)) =⟨ _ βˆ™β‚— τ₁ (fβ‚‚ x) ⟩ Ξ΅ (f x) ∎ where open =-Reasoning biinv-∘ : biinv f₁ β†’ biinv fβ‚‚ β†’ biinv (f₁ ∘ fβ‚‚) biinv-∘ e₁ eβ‚‚ = (h , Ξ²) , (g , Ξ±) where open biinv e₁ renaming (h to h₁ ; Ξ² to β₁ ; g to g₁ ; Ξ± to α₁) open biinv eβ‚‚ renaming (h to hβ‚‚ ; Ξ² to Ξ²β‚‚ ; g to gβ‚‚ ; Ξ± to Ξ±β‚‚) f = f₁ ∘ fβ‚‚ h = hβ‚‚ ∘ h₁ Ξ² : h ∘ f ~ id Ξ² x = ap hβ‚‚ (β₁ (fβ‚‚ x)) βˆ™ Ξ²β‚‚ x g = gβ‚‚ ∘ g₁ Ξ± : f ∘ g ~ id Ξ± x = ap f₁ (Ξ±β‚‚ (g₁ x)) βˆ™ α₁ x -- Choose isequiv :≑ biinv since it is quicker to compute. isequiv = biinv qinvβ†’isequiv = qinvβ†’biinv isequivβ†’qinv = biinvβ†’qinv isequiv-∘ = biinv-∘ _≃_ : 𝒰 i β†’ 𝒰 j β†’ 𝒰 (i βŠ” j) A ≃ B = Ξ£ (A β†’ B) isequiv infixr 5 _≃_ record Iso (A : 𝒰 i) (B : 𝒰 j) : 𝒰 (i βŠ” j) where field f : A β†’ B g : B β†’ A Ξ· : g ∘ f ~ id Ξ΅ : f ∘ g ~ id isoβ†’eqv : Iso A B β†’ A ≃ B isoβ†’eqv iso = f , qinvβ†’isequiv (g , Ξ· , Ξ΅) where open Iso iso eqvβ†’iso : A ≃ B β†’ Iso A B eqvβ†’iso e = record { f = pr₁ e ; g = g ; Ξ· = Ξ· ; Ξ΅ = Ξ΅ } where open qinv (isequivβ†’qinv (prβ‚‚ e)) module Eqv {i} {j} {A : 𝒰 i} {B : 𝒰 j} (e : A ≃ B) = Iso (eqvβ†’iso e) -- Lemma 2.4.12 -- (i) reflβ‚‘ : A ≃ A reflβ‚‘ = id , qinvβ†’isequiv (id , (Ξ» _ β†’ refl) , (Ξ» _ β†’ refl)) -- (ii) _⁻¹ₑ : A ≃ B β†’ B ≃ A e ⁻¹ₑ = g , qinvβ†’isequiv (pr₁ e , Ξ΅ , Ξ·) where open qinv (isequivβ†’qinv (prβ‚‚ e)) infix 30 _⁻¹ₑ -- (iii) _βˆ™β‚‘_ : A ≃ B β†’ B ≃ C β†’ A ≃ C e₁ βˆ™β‚‘ eβ‚‚ = pr₁ eβ‚‚ ∘ pr₁ e₁ , isequiv-∘ (prβ‚‚ eβ‚‚) (prβ‚‚ e₁) infixl 20 _βˆ™β‚‘_ idtoeqv : A == B β†’ A ≃ B idtoeqv p = transport id p , e where e : isequiv (transport id p) e rewrite p = prβ‚‚ reflβ‚‘ module ≃-Reasoning where _β‰ƒβŸ¨_⟩_ : (A : 𝒰 i) β†’ A ≃ B β†’ B ≃ C β†’ A ≃ C x β‰ƒβŸ¨ e₁ ⟩ eβ‚‚ = e₁ βˆ™β‚‘ eβ‚‚ infixr 2 _β‰ƒβŸ¨_⟩_ _∎ : (A : 𝒰 i) β†’ A ≃ A _ ∎ = reflβ‚‘ infix 3 _∎
Require Import Crypto.Arithmetic.PrimeFieldTheorems. Require Import Crypto.Specific.solinas32_2e206m5_9limbs.Synthesis. (* TODO : change this to field once field isomorphism happens *) Definition carry : { carry : feBW_loose -> feBW_tight | forall a, phiBW_tight (carry a) = (phiBW_loose a) }. Proof. Set Ltac Profiling. Time synthesize_carry (). Show Ltac Profile. Time Defined. Print Assumptions carry.
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA surface searchlight functions specific for handling AFNI datasets""" import numpy as np import os import tempfile from mvpa2.testing import * from mvpa2.support.nibabel import afni_niml, afni_niml_dset, afni_niml_roi, \ surf, afni_suma_spec from mvpa2.datasets import niml from mvpa2.datasets.base import Dataset class SurfTests(unittest.TestCase): """Test for AFNI I/O together with surface-based stuff NNO Aug 2012 'Ground truth' is whatever output is returned by the implementation as of mid-Aug 2012""" def _get_rng(self): keys = [(17 * i ** 5 + 78234745 * i + 8934) % (2 ** 32 - 1) for i in xrange(624)] keys = np.asanyarray(keys, dtype=np.uint32) rng = np.random.RandomState() rng.set_state(('MT19937', keys, 0)) return rng def test_afni_niml(self): # just a bunch of tests ps = afni_niml._partial_string assert_equal(ps("", 0, 0), "") assert_equal(ps("ab", 0, 0), "") assert_equal(ps("abcdefghij", 0, 0), "") assert_equal(ps("", 2, 0), "") assert_equal(ps("ab", 2, 0), "") assert_equal(ps("abcdefghij", 2, 0), "") assert_equal(ps("", 0, 1), "") assert_equal(ps("ab", 0, 1), " ... b") assert_equal(ps("abcdefghij", 0, 1), " ... j") assert_equal(ps("", 2, 1), "") assert_equal(ps("ab", 2, 1), "") assert_equal(ps("abcdefghij", 2, 1), " ... j") assert_equal(ps("", 0, 100), "") assert_equal(ps("ab", 0, 100), "ab") assert_equal(ps("abcdefghij", 0, 100), "abcdefghij") assert_equal(ps("", 2, 100), "") assert_equal(ps("ab", 2, 100), "") assert_equal(ps("abcdefghij", 2, 100), "cdefghij") data = np.asarray([[1347506771, 1347506772], [1347506773, 1347506774]], dtype=np.int32) fmt_data_reprs = dict(text='1347506771 1347506772\n1347506773 1347506774', binary='SRQPTRQPURQPVRQP', base64='U1JRUFRSUVBVUlFQVlJRUA==') minimal_niml_struct = [{'dset_type': 'Node_Bucket', 'name': 'AFNI_dataset', 'ni_form': 'ni_group', 'nodes': [{'data': data, 'data_type': 'Node_Bucket_data', 'name': 'SPARSE_DATA', 'ni_dimen': '2', 'ni_type': '2*int32'}, {'atr_name': 'COLMS_LABS', 'data': 'col_0;col_1', 'name': 'AFNI_atr', 'ni_dimen': '1', 'ni_type': 'String'}]}] def _eq(p, q): # helper function: equality for both arrays and other things return np.all(p == q) if type(p) is np.ndarray else p == q for fmt, data_repr in fmt_data_reprs.iteritems(): s = afni_niml.rawniml2string(minimal_niml_struct, fmt) d = afni_niml.string2rawniml(s) # ensure data was converted properly for k, v in minimal_niml_struct[0].iteritems(): if k == 'nodes': # at least in one of the data for node in v: for kk, vv in node.iteritems(): # at least one of the data fields should have a value matching # that from the expected converted value dvals = [d[0]['nodes'][i].get(kk, None) for i in xrange(len(v))] assert_true(any([_eq(vv, dval) for dval in dvals])) elif k != 'name': # check header was properly converted assert_true(('%s="%s"' % (k, v)).encode() in s) # check that if we remove some important information, then parsing fails important_keys = ['ni_form', 'ni_dimen', 'ni_type'] for k in important_keys: s_bad = s.replace(k.encode(), b'foo') assert_raises((KeyError, ValueError), afni_niml.string2rawniml, s_bad) # adding garbage at the beginning or end should fail the parse garbage = "GARBAGE".encode() assert_raises((KeyError, ValueError), afni_niml.string2rawniml, s + garbage) assert_raises((KeyError, ValueError), afni_niml.string2rawniml, garbage + s) @with_tempfile('.niml.dset', 'dset') def test_afni_niml_dset_with_2d_strings(self, fn): # test for 2D arrays with strings. These are possibly SUMA-incompatible # but should still be handled properly for i/o. # Addresses https://github.com/PyMVPA/PyMVPA/issues/163 (#163) samples = np.asarray([[1, 2, 3], [4, 5, 6]]) labels = np.asarray(map(list, ['abcd', 'efgh'])) idxs = np.asarray([np.arange(10, 14), np.arange(20, 24)]) ds = Dataset(samples, sa=dict(labels=labels, idxs=idxs)) for fmt in ('binary', 'text', 'base64'): niml.write(fn, ds, fmt) ds_ = niml.read(fn) assert_array_equal(ds.samples, ds_.samples) for sa_key in ds.sa.keys(): v = ds.sa[sa_key].value v_ = ds_.sa[sa_key].value assert_array_equal(v, v_) @with_tempfile('.niml.dset', 'dset') def test_afni_niml_dset(self, fn): sz = (100, 45) # dataset size rng = self._get_rng() # generate random data expected_vals = {(0, 0):-2.13856 , (sz[0] - 1, sz[1] - 1):-1.92434, (sz[0], sz[1] - 1):None, (sz[0] - 1, sz[1]):None, sz:None} # test for different formats in which the data is stored fmts = ['text', 'binary', 'base64'] # also test for different datatypes tps = [np.int32, np.int64, np.float32, np.float64] # generated random data data = rng.normal(size=sz) # set labels for samples, and set node indices labels = ['lab_%d' % round(rng.uniform() * 1000) for _ in xrange(sz[1])] node_indices = np.argsort(rng.uniform(size=(sz[0],))) node_indices = np.reshape(node_indices, (sz[0], 1)) eps = .00001 # test I/O # depending on the mode we do different tests (but on the same data) modes = ['normal', 'skipio', 'sparse2full'] for fmt in fmts: for tp in tps: for mode in modes: # make a dataset dset = dict(data=np.asarray(data, tp), labels=labels, node_indices=node_indices) dset_keys = dset.keys() if mode == 'skipio': # try conversion to/from raw NIML # do not write to disk r = afni_niml_dset.dset2rawniml(dset) s = afni_niml.rawniml2string(r) r2 = afni_niml.string2rawniml(s) dset2 = afni_niml_dset.rawniml2dset(r2)[0] else: # write and read from disk afni_niml_dset.write(fn, dset, fmt) dset2 = afni_niml_dset.read(fn) os.remove(fn) # data in dset and dset2 should be identical for k in dset_keys: # general idea is to test whether v is equal to v2 v = dset[k] v2 = dset2[k] if k == 'data': if mode == 'sparse2full': # test the sparse2full feature # this changes the order of the data over columns # so we skip testing whether dset2 is equal to dset nfull = 2 * sz[0] dset3 = afni_niml_dset.sparse2full(dset2, pad_to_node=nfull) assert_equal(dset3['data'].shape[0], nfull) idxs = dset['node_indices'][:, 0] idxs3 = dset3['node_indices'][:, 0] vbig = np.zeros((nfull, sz[1])) vbig[idxs, :] = v[np.arange(sz[0]), :] v = vbig v2 = dset3['data'][idxs3, :] else: # check that data is as expected for pos, val in expected_vals.iteritems(): if val is None: assert_raises(IndexError, lambda x:x[pos], v2) else: val2 = np.asarray(val, tp) assert_true(abs(v2[pos] - val2) < eps) if type(v) is list: assert_equal(v, v2) else: eps_dec = 4 if mode != 'sparse2full' or k == 'data': assert_array_almost_equal(v, v2, eps_dec) @with_tempfile('.niml.dset', 'dset') def test_niml(self, fn): d = dict(data=np.random.normal(size=(10, 2)), node_indices=np.arange(10), stats=['none', 'Tstat(2)'], labels=['foo', 'bar']) a = niml.from_niml(d) b = niml.to_niml(a) afni_niml_dset.write(fn, b) bb = afni_niml_dset.read(fn) cc = niml.from_niml(bb) os.remove(fn) for dset in (a, cc): assert_equal(list(dset.sa['labels']), d['labels']) assert_equal(list(dset.sa['stats']), d['stats']) assert_array_equal(np.asarray(dset.fa['node_indices']).ravel(), d['node_indices']) eps_dec = 4 assert_array_almost_equal(dset.samples, d['data'].transpose(), eps_dec) # some more tests to ensure that the order of elements is ok # (row first or column first) d = np.arange(10).reshape((5, -1)) + .5 ds = Dataset(d) writers = [niml.write, afni_niml_dset.write] for i, writer in enumerate(writers): for form in ('text', 'binary', 'base64'): if i == 0: writer(fn, ds, form=form) else: writer(fn, dict(data=d.transpose()), form=form) x = afni_niml_dset.read(fn) assert_array_equal(x['data'], d.transpose()) @with_tempfile('.niml.dset', 'dset') def test_niml_dset_voxsel(self, fn): if not externals.exists('nibabel'): return # This is actually a bit of an integration test. # It tests storing and retrieving searchlight results. # Imports are inline here so that it does not mess up the header # and makes the other unit tests more modular # XXX put this in a separate file? from mvpa2.misc.surfing import volgeom, surf_voxel_selection, queryengine from mvpa2.measures.searchlight import Searchlight from mvpa2.support.nibabel import surf from mvpa2.measures.base import Measure from mvpa2.datasets.mri import fmri_dataset class _Voxel_Count_Measure(Measure): # used to check voxel selection results is_trained = True def __init__(self, dtype, **kwargs): Measure.__init__(self, **kwargs) self.dtype = dtype def _call(self, dset): return self.dtype(dset.nfeatures) sh = (20, 20, 20) vg = volgeom.VolGeom(sh, np.identity(4)) density = 20 outer = surf.generate_sphere(density) * 10. + 5 inner = surf.generate_sphere(density) * 5. + 5 intermediate = outer * .5 + inner * .5 xyz = intermediate.vertices radius = 50 sel = surf_voxel_selection.run_voxel_selection(radius, vg, inner, outer) qe = queryengine.SurfaceVerticesQueryEngine(sel) for dtype in (int, float): sl = Searchlight(_Voxel_Count_Measure(dtype), queryengine=qe) ds = fmri_dataset(vg.get_empty_nifti_image(1)) r = sl(ds) niml.write(fn, r) rr = niml.read(fn) os.remove(fn) assert_array_equal(r.samples, rr.samples) def test_niml_dset_stack(self): values = map(lambda x:np.random.normal(size=x), [(10, 3), (10, 4), (10, 5)]) indices = [[0, 1, 2], [3, 2, 1, 0], None] dsets = [] for v, i in zip(values, indices): dset = Dataset(v) if not i is None: dset.fa['node_indices'] = i dsets.append(dset) dset = niml.hstack(dsets) assert_equal(dset.nfeatures, 12) assert_equal(dset.nsamples, 10) indices = np.asarray([ 0, 1, 2, 6, 5, 4, 3, 7, 8, 9, 10, 11]) assert_array_equal(dset.fa['node_indices'], indices) dset = niml.hstack(dsets, 10) dset = niml.hstack(dsets, 10) # twice to ensure not overwriting assert_equal(dset.nfeatures, 30) indices = np.asarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 12, 11, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]) assert_array_equal(dset.fa['node_indices'], indices) assert_true(np.all(dset[:, 4].samples == 0)) assert_array_equal(dset[:, 10:14].samples, dsets[1].samples) # If not enough space it should raise an error stacker = (lambda x: niml.hstack(dsets, x)) assert_raises(ValueError, stacker, 2) # If sparse then with no padding it should fail dsets[0].fa.node_indices[0] = 3 assert_raises(ValueError, stacker, None) # Using an illegal node index should raise an error dsets[1].fa.node_indices[0] = 666 assert_raises(ValueError, stacker, 10) @with_tempfile('.niml.roi', 'dset') def test_afni_niml_roi(self, fn): payload = """# <Node_ROI # ni_type = "SUMA_NIML_ROI_DATUM" # ni_dimen = "5" # self_idcode = "XYZ_QlRYtdSyHmNr39qZWxD0wQ" # domain_parent_idcode = "XYZ_V_Ug6er2LCNoLy_OzxPsZg" # Parent_side = "no_side" # Label = "myroi" # iLabel = "12" # Type = "2" # ColPlaneName = "ROI.-.CoMminfl" # FillColor = "0.525490 0.043137 0.231373 1.000000" # EdgeColor = "0.000000 0.000000 1.000000 1.000000" # EdgeThickness = "2" # > 1 4 1 42946 1 4 10 42946 42947 43062 43176 43289 43401 43512 43513 43623 43732 1 4 8 43732 43623 43514 43404 43293 43181 43068 42954 3 4 9 42954 42953 42952 42951 42950 42949 42948 42947 42946 4 1 14 43063 43064 43065 43066 43067 43177 43178 43179 43180 43290 43291 43292 43402 43403 # </Node_ROI>""" with open(fn, 'w') as f: f.write(payload) rois = afni_niml_roi.read(fn) assert_equal(len(rois), 1) roi = rois[0] expected_keys = ['ni_type', 'ColPlaneName', 'iLabel', 'Parent_side', 'EdgeColor', 'Label', 'edges', 'ni_dimen', 'self_idcode', 'EdgeThickness', 'Type', 'areas', 'domain_parent_idcode', 'FillColor'] assert_equal(set(roi.keys()), set(expected_keys)) assert_equal(roi['Label'], 'myroi') assert_equal(roi['iLabel'], 12) # check edges arr = np.asarray expected_edges = [arr([42946]), arr([42946, 42947, 43062, 43176, 43289, 43401, 43512, 43513, 43623, 43732]), arr([43732, 43623, 43514, 43404, 43293, 43181, 43068, 42954]), arr([42954, 42953, 42952, 42951, 42950, 42949, 42948, 42947, 42946])] for i in xrange(4): assert_array_equal(roi['edges'][i], expected_edges[i]) # check nodes expected_nodes = [arr([43063, 43064, 43065, 43066, 43067, 43177, 43178, 43179, 43180, 43290, 43291, 43292, 43402, 43403])] assert_equal(len(roi['areas']), 1) assert_array_equal(roi['areas'][0], expected_nodes[0]) # check mapping m = afni_niml_roi.read_mapping(rois) assert_equal(m.keys(), ['myroi']) unique_nodes = np.unique(expected_nodes[0]) assert_array_equal(m['myroi'], unique_nodes) @with_tempfile() def test_afni_suma_spec(self, temp_dir): # XXX this function generates quite a few temporary files, # which are removed at the end. # the decorator @with_tempfile seems unsuitable as it only # supports a single temporary file # make temporary directory os.mkdir(temp_dir) # generate surfaces inflated_surf = surf.generate_plane((0, 0, 0), (0, 1, 0), (0, 0, 1), 10, 10) white_surf = inflated_surf + 1. # helper function _tmp = lambda x:os.path.join(temp_dir, x) # filenames for surfaces and spec file inflated_fn = _tmp('_lh_inflated.asc') white_fn = _tmp('_lh_white.asc') spec_fn = _tmp('lh.spec') spec_dir = os.path.split(spec_fn)[0] # generate SUMA-like spec dictionary white = dict(SurfaceFormat='ASCII', EmbedDimension='3', SurfaceType='FreeSurfer', SurfaceName=white_fn, Anatomical='Y', LocalCurvatureParent='SAME', LocalDomainParent='SAME', SurfaceState='smoothwm') inflated = dict(SurfaceFormat='ASCII', EmbedDimension='3', SurfaceType='FreeSurfer', SurfaceName=inflated_fn, Anatomical='N', LocalCurvatureParent=white_fn, LocalDomainParent=white_fn, SurfaceState='inflated') # make SurfaceSpec object spec = afni_suma_spec.SurfaceSpec([white], directory=spec_dir) spec.add_surface(inflated) # test __str__ and __repr__ assert_true('SurfaceSpec instance with 2 surfaces' ', 2 states ' in '%s' % spec) assert_true(('%r' % spec).startswith('SurfaceSpec')) # test finding surfaces inflated_ = spec.find_surface_from_state('inflated') assert_equal([(1, inflated)], inflated_) empty = spec.find_surface_from_state('unknown') assert_equal(empty, []) # test .same_states minimal = afni_suma_spec.SurfaceSpec([dict(SurfaceState=s) for s in ('smoothwm', 'inflated')]) assert_true(spec.same_states(minimal)) assert_false(spec.same_states(afni_suma_spec.SurfaceSpec(dict()))) # test 'smart' surface file matching assert_equal(spec.get_surface_file('smo'), white_fn) assert_equal(spec.get_surface_file('inflated'), inflated_fn) assert_equal(spec.get_surface_file('this should be None'), None) # test i/o spec.write(spec_fn) spec_ = afni_suma_spec.from_any(spec_fn) # prepare for another (right-hemisphere) spec file lh_spec = spec rh_spec_fn = spec_fn.replace('lh', 'rh') rh_inflated_fn = _tmp(os.path.split(inflated_fn)[1].replace('_lh', '_rh')) rh_white_fn = _tmp(os.path.split(white_fn)[1].replace('_lh', '_rh')) rh_spec_fn = _tmp('rh.spec') rh_white = dict(SurfaceFormat='ASCII', EmbedDimension='3', SurfaceType='FreeSurfer', SurfaceName=rh_white_fn, Anatomical='Y', LocalCurvatureParent='SAME', LocalDomainParent='SAME', SurfaceState='smoothwm') rh_inflated = dict(SurfaceFormat='ASCII', EmbedDimension='3', SurfaceType='FreeSurfer', SurfaceName=rh_inflated_fn, Anatomical='N', LocalCurvatureParent=rh_white_fn, LocalDomainParent=rh_white_fn, SurfaceState='inflated') rh_spec = afni_suma_spec.SurfaceSpec([rh_white], directory=spec_dir) rh_spec.add_surface(rh_inflated) # write files all_temp_fns = [spec_fn, rh_spec_fn] for fn, s in [(rh_inflated_fn, inflated_surf), (rh_white_fn, white_surf), (inflated_fn, inflated_surf), (white_fn, white_surf)]: surf.write(fn, s) all_temp_fns.append(fn) # test adding views added_specs = afni_suma_spec.hemi_pairs_add_views((lh_spec, rh_spec), 'inflated', '.asc') for hemi, added_spec in zip(('l', 'r'), added_specs): states = ['smoothwm', 'inflated'] + ['CoM%sinflated' % i for i in 'msiap'] assert_equal(states, [s['SurfaceState'] for s in added_specs[0].surfaces]) all_temp_fns.extend([s['SurfaceName'] for s in added_spec.surfaces]) # test combining specs (bh=both hemispheres) bh_spec = afni_suma_spec.combine_left_right(added_specs) # test merging specs (mh=merged hemispheres) mh_spec, mh_surfs = afni_suma_spec.merge_left_right(bh_spec) assert_equal([s['SurfaceState'] for s in mh_spec.surfaces], ['smoothwm'] + ['CoM%sinflated' % i for i in 'msiap']) def suite(): # pragma: no cover """Create the suite""" return unittest.makeSuite(SurfTests) if __name__ == '__main__': # pragma: no cover import runner runner.run()
using ArgParse using YAML using Distributed @everywhere include("evo/robo.jl") s = ArgParse.ArgParseSettings() ArgParse.@add_arg_table( s, "--seed", arg_type=Int, default=0, "--id", arg_type=String, default="test", "--log", arg_type=String, default="evolution.log", "--cfg", arg_type=String, default="cfg/darwin.yaml", ) args = ArgParse.parse_args(s) cfg = YAML.load_file(args["cfg"]) cfg["seed"] = args["seed"] cfg["n_fitness"] = 1 e = Evolution(NeurodevoInd, cfg; id=args["id"], logfile=args["log"]) e.mutation = uniform_mutation e.evaluation = robo_eval e.generation = generation Darwin.run!(e)
```python import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import numpy as np import sympy as sym ``` ```python def f(X, n, q, b, c): Z = np.zeros(len(X)) for i in range(len(X)): for j in range(int(n)): for k in range(int(n)): Z[i] += q[j][k]*X[i][j]*X[i][k] for j in range(int(n)): Z[i] += b[j]*X[i][j] return Z ``` ```python def f_mesh(X, Y, q, b, c): Z = np.zeros(len(X)) Z = q[0][0]*X*X + q[0][1]*X*Y + q[1][0]*Y*X + q[1][1]*Y*Y + b[0]*X + b[1]*Y + c return Z ``` ```python def f2(X, Y, n, q, b, c): Z = q[0][0]*X*X + q[0][1]*X*Y + q[1][0]*Y*X + q[1][1]*Y*Y + b[0]*X + b[1]*Y + int(c[0]) return Z ``` ```python def grad_descent(X, X1, Y1, Y, n, q, b, c, eps=0.05, precision=0.0001, max_iter=200): X_old = np.zeros((1, 2)) X_new = np.zeros((1, 2)) dfr = np.zeros((1, 2)) X_new[0][0] = 4.9 X_new[0][1] = 4.9 i = 0 Xs = np.zeros((max_iter,2)) Ys = np.zeros(max_iter) x, y = sym.symbols('x y') df1 = sym.diff(f2(x, y, n, q, b, c), x) df2 = sym.diff(f2(x, y, n, q, b, c), y) # print("df1: {}, df2: {}".format(df1, df2)) while np.all(abs(X_new - X_old)) > precision and max_iter > i: Xs[i] = X_new Ys[i] = f2 (X_new[0][0], X_new[0][1], n, q, b, c) X_old = X_new dfr[0][0] = df1.evalf(subs={x: X_old[0][0], y: X_old[0][1]}) dfr[0][1] = df2.evalf(subs={x: X_old[0][0], y: X_old[0][1]}) X_new = X_old - eps * dfr # print("X_new: {}, X_old: {}, dfr: {}".format(X_new, X_old, dfr)) i += 1 eps *= 0.99 print("Finished with {} step".format(i)) if (i < max_iter): Xs[i] = X_new Ys[i] = f2(X_new[0][0], X_new[0][1], n, q, b, c) for j in range(max_iter - 1, i, -1): Xs = np.delete(Xs, j, axis=0) Ys = np.delete(Ys, j, axis=0) return Xs, Ys ``` ```python X1 = np.arange(-5, 5, 0.1) Y1 = np.arange(-5, 5, 0.1) Z1 = np.zeros(len(X1)) X_new = np.zeros((100,2)) for i in range(len(X1)): X_new[i][0] = X1[i] X_new[i][1] = Y1[i] Z1 = f(X_new, n, q, b, c) x_list, y_list = grad_descent(X_new, X1, Y1, Z1, n, q, b, c) ``` Finished with 200 step ```python n = input("Enter power of your function: ") q = [] for i in range(int(n)): q.append(input("Enter the function's coefficient matrix q's row q[{}]: ".format(i)).split()) b = input("Enter the function's coefficient b matrix: ").split() c = input("Enter the function's constant c: ") for i in range(int(n)): q[i] = list(map(float, q[i])) b = list(map(float, b)) c = list(map(float, c)) ``` Enter power of your function: 2 Enter the function's coefficient matrix q's row q[0]: 1 0 Enter the function's coefficient matrix q's row q[1]: 0 2 Enter the function's coefficient b matrix: 0 0 Enter the function's constant c: 0 ```python X1, Y1 = np.meshgrid(X1, Y1) Z1 = f_mesh(X1, Y1, q, b, c) X, Y = zip(*x_list) Z = y_list ax = plt.subplots(nrows=1, ncols=1, figsize=(10,10)) cs = plt.contour(X1, Y1, Z1) plt.clabel(cs, inline=1, fontsize=10) colors = ['b', 'g', 'm', 'c', 'orange'] for j in range(1, len(X)): ax[1].annotate('', xy=(X[j], Y[j]), xytext=(X[j-1], Y[j-1]), arrowprops={'arrowstyle': '->', 'color': 'r', 'lw': 1}, va='center', ha='center') ax[1].scatter(X, Y, s=40, lw=0) ax[1].set_xlabel('X') ax[1].set_ylabel('Y') ax[1].set_title('Minimizing function') ``` ```python fig = plt.figure() ax = plt.axes(projection='3d') ax.plot_surface(X1, Y1, Z1, rstride=1, cstride=1, cmap='viridis', edgecolor='none') ax.set_title('surface') plt.show() ``` ```python plt.figure() cs = plt.contour(X1, Y1, Z1) plt.clabel(cs, inline=1, fontsize=10) plt.title('Two-dimensional contour plot') plt.show() ``` ```python ```
%kExpAny 'Eports khoros files into many different format ' % This MatLab function was automatically generated by a converter (KhorosToMatLab) from the Khoros ExpAny.pane file % % Parameters: % InputFile: i 'Input File', required: 'First Input data object' % OutputFile: o 'Output File', required: 'Resulting output data object' % Toggle: color 'RGB-Color ', default: 0: 'generate a color-image' % Toggle: nonormalize 'Do not normalize', default: 0: 'if selected, no normalization will be performed. Range is usually 0..255' % % Example: o = kExpAny(i, {'i','';'o','';'color',0;'nonormalize',0}) % % Khoros helpfile follows below: % % PROGRAM % ExpAny - Eports khoros files into many different format % % DESCRIPTION % % % % EXAMPLES % % "SEE ALSO" % % RESTRICTIONS % % REFERENCES % % COPYRIGHT % Copyright (C) 1996-2003, Rainer Heintzmann, All rights reserved. % function varargout = kExpAny(varargin) if nargin ==0 Inputs={};arglist={'',''}; elseif nargin ==1 Inputs=varargin{1};arglist={'',''}; elseif nargin ==2 Inputs=varargin{1}; arglist=varargin{2}; else error('Usage: [out1,..] = kExpAny(Inputs,arglist).'); end if size(arglist,2)~=2 error('arglist must be of form {''ParameterTag1'',value1;''ParameterTag2'',value2}') end narglist={'i', '__input';'o', '__output';'color', 0;'nonormalize', 0}; maxval={0,0,0,0}; minval={0,0,0,0}; istoggle=[0,0,1,1]; was_set=istoggle * 0; paramtype={'InputFile','OutputFile','Toggle','Toggle'}; % identify the input arrays and assign them to the arguments as stated by the user if ~iscell(Inputs) Inputs = {Inputs}; end NumReqOutputs=1; nextinput=1; nextoutput=1; for ii=1:size(arglist,1) wasmatched=0; for jj=1:size(narglist,1) if strcmp(arglist{ii,1},narglist{jj,1}) % a given argument was matched to the possible arguments wasmatched = 1; was_set(jj) = 1; if strcmp(narglist{jj,2}, '__input') if (nextinput > length(Inputs)) error(['Input ' narglist{jj,1} ' has no corresponding input!']); end narglist{jj,2} = 'OK_in'; nextinput = nextinput + 1; elseif strcmp(narglist{jj,2}, '__output') if (nextoutput > nargout) error(['Output nr. ' narglist{jj,1} ' is not present in the assignment list of outputs !']); end if (isempty(arglist{ii,2})) narglist{jj,2} = 'OK_out'; else narglist{jj,2} = arglist{ii,2}; end nextoutput = nextoutput + 1; if (minval{jj} == 0) NumReqOutputs = NumReqOutputs - 1; end elseif isstr(arglist{ii,2}) narglist{jj,2} = arglist{ii,2}; else if strcmp(paramtype{jj}, 'Integer') & (round(arglist{ii,2}) ~= arglist{ii,2}) error(['Argument ' arglist{ii,1} ' is of integer type but non-integer number ' arglist{ii,2} ' was supplied']); end if (minval{jj} ~= 0 | maxval{jj} ~= 0) if (minval{jj} == 1 & maxval{jj} == 1 & arglist{ii,2} < 0) error(['Argument ' arglist{ii,1} ' must be bigger or equal to zero!']); elseif (minval{jj} == -1 & maxval{jj} == -1 & arglist{ii,2} > 0) error(['Argument ' arglist{ii,1} ' must be smaller or equal to zero!']); elseif (minval{jj} == 2 & maxval{jj} == 2 & arglist{ii,2} <= 0) error(['Argument ' arglist{ii,1} ' must be bigger than zero!']); elseif (minval{jj} == -2 & maxval{jj} == -2 & arglist{ii,2} >= 0) error(['Argument ' arglist{ii,1} ' must be smaller than zero!']); elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} < minval{jj}) error(['Argument ' arglist{ii,1} ' must be bigger than ' num2str(minval{jj})]); elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} > maxval{jj}) error(['Argument ' arglist{ii,1} ' must be smaller than ' num2str(maxval{jj})]); end end end if ~strcmp(narglist{jj,2},'OK_out') & ~strcmp(narglist{jj,2},'OK_in') narglist{jj,2} = arglist{ii,2}; end end end if (wasmatched == 0 & ~strcmp(arglist{ii,1},'')) error(['Argument ' arglist{ii,1} ' is not a valid argument for this function']); end end % match the remaining inputs/outputs to the unused arguments and test for missing required inputs for jj=1:size(narglist,1) if strcmp(paramtype{jj}, 'Toggle') if (narglist{jj,2} ==0) narglist{jj,1} = ''; end; narglist{jj,2} = ''; end; if ~strcmp(narglist{jj,2},'__input') && ~strcmp(narglist{jj,2},'__output') && istoggle(jj) && ~ was_set(jj) narglist{jj,1} = ''; narglist{jj,2} = ''; end; if strcmp(narglist{jj,2}, '__input') if (minval{jj} == 0) % meaning this input is required if (nextinput > size(Inputs)) error(['Required input ' narglist{jj,1} ' has no corresponding input in the list!']); else narglist{jj,2} = 'OK_in'; nextinput = nextinput + 1; end else % this is an optional input if (nextinput <= length(Inputs)) narglist{jj,2} = 'OK_in'; nextinput = nextinput + 1; else narglist{jj,1} = ''; narglist{jj,2} = ''; end; end; else if strcmp(narglist{jj,2}, '__output') if (minval{jj} == 0) % this is a required output if (nextoutput > nargout & nargout > 1) error(['Required output ' narglist{jj,1} ' is not stated in the assignment list!']); else narglist{jj,2} = 'OK_out'; nextoutput = nextoutput + 1; NumReqOutputs = NumReqOutputs-1; end else % this is an optional output if (nargout - nextoutput >= NumReqOutputs) narglist{jj,2} = 'OK_out'; nextoutput = nextoutput + 1; else narglist{jj,1} = ''; narglist{jj,2} = ''; end; end end end end if nargout varargout = cell(1,nargout); else varargout = cell(1,1); end global KhorosRoot if exist('KhorosRoot') && ~isempty(KhorosRoot) w=['"' KhorosRoot]; else if ispc w='"C:\Program Files\dip\khorosBin\'; else [s,w] = system('which cantata'); w=['"' w(1:end-8)]; end end [varargout{:}]=callKhoros([w 'expany" '],Inputs,narglist);
(* * Copyright 2014, General Dynamics C4 Systems * * SPDX-License-Identifier: GPL-2.0-only *) theory ArchVSpaceEntries_AI imports "../VSpaceEntries_AI" begin context Arch begin global_naming ARM_HYP (*FIXME: arch_split*) lemma a_type_pdD: "a_type ko = AArch APageDirectory \<Longrightarrow> \<exists>pd. ko = ArchObj (PageDirectory pd)" by (clarsimp) primrec pde_range_sz :: "pde \<Rightarrow> nat" where "pde_range_sz (InvalidPDE) = 0" | "pde_range_sz (SectionPDE ptr x y) = 0" | "pde_range_sz (SuperSectionPDE ptr x z) = 4" | "pde_range_sz (PageTablePDE ptr) = 0" primrec pte_range_sz :: "pte \<Rightarrow> nat" where "pte_range_sz (InvalidPTE) = 0" | "pte_range_sz (LargePagePTE ptr x y) = 4" | "pte_range_sz (SmallPagePTE ptr x y) = 0" primrec pde_range :: "pde \<Rightarrow> 11 word \<Rightarrow> 11 word set" where "pde_range (InvalidPDE) p = {}" | "pde_range (SectionPDE ptr x y) p = {p}" | "pde_range (SuperSectionPDE ptr x z) p = (if is_aligned p 4 then {x. x && ~~ mask 4 = p && ~~ mask 4} else {p})" | "pde_range (PageTablePDE ptr) p = {p}" primrec pte_range :: "pte \<Rightarrow> 9 word \<Rightarrow> 9 word set" where "pte_range (InvalidPTE) p = {}" | "pte_range (LargePagePTE ptr x y) p = (if is_aligned p 4 then {x. x && ~~ mask 4 = p && ~~ mask 4} else {p})" | "pte_range (SmallPagePTE ptr x y) p = {p}" abbreviation "valid_pt_entries \<equiv> \<lambda>pt. valid_entries pte_range pt" abbreviation "valid_pd_entries \<equiv> \<lambda>pd. valid_entries pde_range pd" definition obj_valid_pdpt :: "kernel_object \<Rightarrow> bool" where "obj_valid_pdpt obj \<equiv> case obj of ArchObj (PageTable pt) \<Rightarrow> valid_pt_entries pt \<and> entries_align pte_range_sz pt | ArchObj (PageDirectory pd) \<Rightarrow> valid_pd_entries pd \<and> entries_align pde_range_sz pd | _ \<Rightarrow> True" lemmas obj_valid_pdpt_simps[simp] = obj_valid_pdpt_def [split_simps Structures_A.kernel_object.split arch_kernel_obj.split] abbreviation valid_pdpt_objs :: "'z state \<Rightarrow> bool" where "valid_pdpt_objs s \<equiv> \<forall>x \<in> ran (kheap s). obj_valid_pdpt x" lemma valid_pdpt_init[iff]: "valid_pdpt_objs init_A_st" by (auto simp: init_A_st_def init_kheap_def valid_entries_def entries_align_def elim!: ranE split: if_split_asm) lemma set_object_valid_pdpt[wp]: "\<lbrace>valid_pdpt_objs and K (obj_valid_pdpt obj)\<rbrace> set_object ptr obj \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: set_object_def get_object_def, wp) apply (auto simp: fun_upd_def[symmetric] del: ballI elim: ball_ran_updI) done crunch valid_pdpt_objs[wp]: cap_insert, cap_swap_for_delete,empty_slot "valid_pdpt_objs" (wp: crunch_wps simp: crunch_simps ignore:set_object) crunches vcpu_save,vcpu_restore,vcpu_enable,get_vcpu,set_vcpu,vcpu_disable,vcpu_read_reg, read_vcpu_register,write_vcpu_register for valid_pdpt_objs[wp]: "valid_pdpt_objs" (wp: crunch_wps simp: crunch_simps ignore: set_object do_machine_op) lemma vcpu_switch_valid_pdpt_objs[wp]: "\<lbrace>valid_pdpt_objs\<rbrace> vcpu_switch v \<lbrace>\<lambda>_. valid_pdpt_objs\<rbrace>" apply (simp add: vcpu_switch_def) apply (rule hoare_pre) apply (wp | wpc | clarsimp)+ done crunch valid_pdpt_objs[wp]: flush_page "valid_pdpt_objs" (wp: crunch_wps simp: crunch_simps ignore: set_object) lemma add_3_eq_Suc'[simp]: "n + 3 = Suc (Suc (Suc n))" by simp lemma shift_0x3C_set: "\<lbrakk> is_aligned p 7; 8 \<le> bits; bits < 32; len_of TYPE('a) = bits - 3 \<rbrakk> \<Longrightarrow> (\<lambda>x. ucast (x + p && mask bits >> 3) :: ('a :: len) word) ` set [0 :: word32 , 8 .e. 0x78] = {x. x && ~~ mask 4 = ucast (p && mask bits >> 3)}" apply (clarsimp simp: upto_enum_step_def word_shift_by_3 image_image) apply (subst image_cong[where N="{x. x < 2 ^ 4}"]) apply (safe, simp_all)[1] apply (drule plus_one_helper2, simp_all)[1] apply (drule word_le_minus_one_leq, simp_all)[1] apply (rule_tac f="\<lambda>x. ucast (x && mask bits >> 3)" in arg_cong) apply (rule trans[OF add.commute is_aligned_add_or], assumption) apply (rule shiftl_less_t2n, simp_all)[1] apply safe apply (frule upper_bits_unset_is_l2p_32[THEN iffD2, rotated]) apply (simp add: word_bits_conv) apply (rule word_eqI) apply (simp add: word_ops_nth_size word_size nth_ucast nth_shiftr nth_shiftl neg_mask_test_bit word_bits_conv) apply (safe, simp_all add: is_aligned_nth)[1] apply (drule_tac x="Suc (Suc (Suc n))" in spec) apply simp apply (rule_tac x="ucast x && mask 4" in image_eqI) apply (rule word_eqI[rule_format]) apply (drule_tac x=n in word_eqD) apply (simp add: word_ops_nth_size word_size nth_ucast nth_shiftr nth_shiftl) apply (safe, simp_all) apply (rule order_less_le_trans, rule and_mask_less_size) apply (simp_all add: word_size) done lemma mapM_x_store_pte_updates: "\<forall>x \<in> set xs. f x && ~~ mask pt_bits = p \<Longrightarrow> \<lbrace>\<lambda>s. (\<not> page_table_at p s \<longrightarrow> Q s) \<and> (\<forall>pt. ko_at (ArchObj (PageTable pt)) p s \<longrightarrow> Q (s \<lparr> kheap := (kheap s) (p := Some (ArchObj (PageTable (\<lambda>y. if y \<in> (\<lambda>x. ucast (f x && mask pt_bits >> 3)) ` set xs then pte else pt y)))) \<rparr>))\<rbrace> mapM_x (\<lambda>x. store_pte (f x) pte) xs \<lbrace>\<lambda>_. Q\<rbrace>" apply (induct xs) apply (simp add: mapM_x_Nil) apply wp apply (clarsimp simp: obj_at_def fun_upd_idem) apply (simp add: mapM_x_Cons) apply (rule hoare_seq_ext, assumption) apply (thin_tac "valid P f Q" for P f Q) apply (simp add: store_pte_def set_pt_def set_object_def) apply (wp get_pt_wp get_object_wp) apply (clarsimp simp: obj_at_def a_type_simps) apply (erule rsubst[where P=Q]) apply (rule abstract_state.fold_congs[OF refl refl]) apply (rule ext, clarsimp simp add: vspace_bits_defs) apply (rule ext, clarsimp simp add: vspace_bits_defs) done lemma valid_pt_entries_invalid[simp]: "valid_pt_entries (\<lambda>x. InvalidPTE)" by (simp add:valid_entries_def) lemma valid_pd_entries_invalid[simp]: "valid_pd_entries (\<lambda>x. InvalidPDE)" by (simp add:valid_entries_def) lemma entries_align_pte_update: "\<lbrakk>entries_align pte_range_sz pt; (\<forall>y. (P y) \<longrightarrow> is_aligned y (pte_range_sz pte))\<rbrakk> \<Longrightarrow> entries_align pte_range_sz (\<lambda>y. if (P y) then pte else pt y)" by (simp add:entries_align_def) lemma entries_align_pde_update: "\<lbrakk>entries_align pde_range_sz pd; (\<forall>y. (P y) \<longrightarrow> is_aligned y (pde_range_sz pde))\<rbrakk> \<Longrightarrow> entries_align pde_range_sz (\<lambda>y. if (P y) then pde else pd y)" by (simp add:entries_align_def) lemma valid_pdpt_objs_pdD: "\<lbrakk>valid_pdpt_objs s; kheap s ptr = Some (ArchObj (arch_kernel_obj.PageDirectory pd))\<rbrakk> \<Longrightarrow> valid_pd_entries pd \<and> entries_align pde_range_sz pd" by (fastforce simp:ran_def) lemma valid_pdpt_objs_ptD: "\<lbrakk>valid_pdpt_objs s; kheap s ptr = Some (ArchObj (arch_kernel_obj.PageTable pt))\<rbrakk> \<Longrightarrow> valid_pt_entries pt \<and> entries_align pte_range_sz pt" by (fastforce simp:ran_def) lemma mapM_x_store_invalid_pte_valid_pdpt: "\<lbrace>valid_pdpt_objs and K (is_aligned p 7) \<rbrace> mapM_x (\<lambda>x. store_pte (x + p) InvalidPTE) [0, 8 .e. 0x78] \<lbrace>\<lambda>_. valid_pdpt_objs\<rbrace>" apply (rule hoare_gen_asm)+ apply (rule hoare_pre, rule_tac p="p && ~~ mask pt_bits" in mapM_x_store_pte_updates) apply clarsimp apply (rule mask_out_first_mask_some[where n=7]) apply (drule_tac d=x in is_aligned_add_helper) apply (drule subsetD[OF upto_enum_step_subset]) apply simp apply (erule order_le_less_trans, simp) apply (simp add: field_simps) apply (simp add: vspace_bits_defs) apply (clarsimp simp: ranI elim!: ranE split: if_split_asm) apply (intro conjI) apply (simp add: shift_0x3C_set vspace_bits_defs) apply (rule valid_entries_overwrite_groups [where S = "{x. x && ~~ mask 4 = ucast (p && mask 12 >> 3)}"]) apply (fastforce simp add: obj_at_def ran_def) apply simp apply clarsimp apply (case_tac v) apply (simp split:if_splits)+ apply (clarsimp) apply (case_tac v, simp_all split:if_splits) apply (intro conjI impI) apply (rule disjointI) apply (clarsimp)+ apply (rule entries_align_pte_update) apply (clarsimp simp:obj_at_def) apply (drule(1) valid_pdpt_objs_ptD) apply simp apply (simp) done lemma mapM_x_store_pde_updates: "\<forall>x \<in> set xs. f x && ~~ mask pd_bits = p \<Longrightarrow> \<lbrace>\<lambda>s. (\<not> page_directory_at p s \<longrightarrow> Q s) \<and> (\<forall>pd. ko_at (ArchObj (PageDirectory pd)) p s \<longrightarrow> Q (s \<lparr> kheap := (kheap s) (p := Some (ArchObj (PageDirectory (\<lambda>y. if y \<in> (\<lambda>x. ucast (f x && mask pd_bits >> 3)) ` set xs then pde else pd y)))) \<rparr>))\<rbrace> mapM_x (\<lambda>x. store_pde (f x) pde) xs \<lbrace>\<lambda>_. Q\<rbrace>" apply (induct xs) apply (simp add: mapM_x_Nil) apply wp apply (clarsimp simp: obj_at_def fun_upd_idem) apply (simp add: mapM_x_Cons) apply (rule hoare_seq_ext, assumption) apply (thin_tac "valid P f Q" for P f Q) apply (simp add: store_pde_def set_pd_def set_object_def) apply (wp get_pd_wp get_object_wp) apply (clarsimp simp: obj_at_def a_type_simps) apply (erule rsubst[where P=Q]) apply (rule abstract_state.fold_congs[OF refl refl]) apply (rule ext, clarsimp simp add: vspace_bits_defs) apply (rule ext, clarsimp simp add: vspace_bits_defs) done lemma mapM_x_store_pde_valid_pdpt_objs: "\<lbrace>valid_pdpt_objs and K (is_aligned p 7)\<rbrace> mapM_x (\<lambda>x. store_pde (x + p) InvalidPDE) [0, 8 .e. 0x78] \<lbrace>\<lambda>_. valid_pdpt_objs\<rbrace>" apply (rule hoare_gen_asm)+ apply (rule hoare_pre, rule_tac p="p && ~~ mask pd_bits" in mapM_x_store_pde_updates) apply clarsimp apply (rule mask_out_first_mask_some[where n=7]) apply (drule_tac d=x in is_aligned_add_helper) apply (drule subsetD[OF upto_enum_step_subset]) apply simp apply (erule order_le_less_trans, simp) apply (simp add: field_simps) apply (simp add: vspace_bits_defs) apply (clarsimp simp: ranI elim!: ranE split: if_split_asm) apply (simp add: shift_0x3C_set vspace_bits_defs) apply (rule conjI) apply (rule_tac valid_entries_overwrite_groups [where S = "{x. x && ~~ mask 4 = ucast (p && mask 14 >> 3)}"]) apply (fastforce simp add: obj_at_def ran_def) apply fastforce apply clarsimp apply (case_tac v, simp_all split:if_splits) apply clarsimp apply (case_tac v, simp_all split:if_splits) apply (intro conjI impI allI) apply (rule disjointI) apply clarsimp apply (rule entries_align_pde_update) apply (clarsimp simp:obj_at_def) apply (drule valid_pdpt_objs_pdD) apply (simp add:pd_bits_def pageBits_def) apply simp apply simp done lemma store_invalid_pde_valid_pdpt: "\<lbrace>valid_pdpt_objs and (\<lambda>s. \<forall>pd. ko_at (ArchObj (PageDirectory pd)) (p && ~~ mask pd_bits) s \<longrightarrow> pde = InvalidPDE)\<rbrace> store_pde p pde \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: store_pde_def set_pd_def, wp get_object_wp) apply (clarsimp simp: obj_at_def) apply (intro conjI) apply (rule valid_entries_overwrite_0, simp_all) apply (fastforce simp: ran_def) apply (simp add:fun_upd_def) apply (rule entries_align_pde_update) apply (drule(1) valid_pdpt_objs_pdD) apply simp apply simp done lemma store_pde_non_master_valid_pdpt: "\<lbrace>valid_pdpt_objs and (\<lambda>s. \<forall>pd. ko_at (ArchObj (PageDirectory pd)) (p && ~~ mask pd_bits) s \<longrightarrow> (pde_range_sz (pd (ucast (p && mask pd_bits >> 3) && ~~ mask 4)) = 0 \<and> pde_range_sz pde = 0))\<rbrace> store_pde p pde \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: store_pde_def set_pd_def, wp get_object_wp) apply (clarsimp simp: obj_at_def) apply (intro conjI) apply (rule valid_entries_overwrite_0) apply (fastforce simp:ran_def) apply (drule bspec) apply fastforce apply (case_tac "pd pa") apply (simp_all add: vspace_bits_defs) apply (case_tac pde,simp_all) apply (case_tac pde,simp_all) apply (case_tac pde,simp_all) apply (clarsimp simp: is_aligned_neg_mask_eq)+ apply (simp add:fun_upd_def) apply (rule entries_align_pde_update) apply (drule(1) valid_pdpt_objs_pdD,simp) apply simp done lemma store_invalid_pte_valid_pdpt: "\<lbrace>valid_pdpt_objs and (\<lambda>s. \<forall>pt. ko_at (ArchObj (PageTable pt)) (p && ~~ mask pt_bits) s \<longrightarrow> pte = InvalidPTE)\<rbrace> store_pte p pte \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: store_pte_def set_pt_def, wp get_object_wp) apply (clarsimp simp: obj_at_def) apply (intro conjI) apply (rule valid_entries_overwrite_0, simp_all) apply (fastforce simp: ran_def) apply (simp add:fun_upd_def) apply (rule entries_align_pte_update) apply (drule (1) valid_pdpt_objs_ptD,simp) apply simp done lemma store_pte_non_master_valid_pdpt: "\<lbrace>valid_pdpt_objs and (\<lambda>s. \<forall>pt. ko_at (ArchObj (PageTable pt)) (p && ~~ mask pt_bits) s \<longrightarrow> (pte_range_sz (pt (ucast (p && mask pt_bits >> 3) && ~~ mask 4)) = 0 \<and> pte_range_sz pte = 0))\<rbrace> store_pte p pte \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: store_pte_def set_pt_def, wp get_object_wp) apply (clarsimp simp: obj_at_def) apply (intro conjI) apply (rule valid_entries_overwrite_0) apply (fastforce simp:ran_def) apply (drule bspec) apply fastforce apply (case_tac "pt pa") apply simp apply (case_tac pte,simp_all) apply (clarsimp simp: is_aligned_neg_mask_eq vspace_bits_defs) apply (case_tac pte,simp_all) apply (simp add:fun_upd_def) apply (rule entries_align_pte_update) apply (drule (1) valid_pdpt_objs_ptD,simp) apply simp done lemma unmap_page_valid_pdpt[wp]: "\<lbrace>valid_pdpt_objs\<rbrace> unmap_page sz asid vptr pptr \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: unmap_page_def mapM_discarded cong: vmpage_size.case_cong) including no_pre apply wp prefer 2 apply (rule valid_validE[OF find_pd_for_asid_inv]) apply (rule hoare_pre) apply (wp get_object_wp get_pte_wp get_pde_wp lookup_pt_slot_inv_any store_invalid_pte_valid_pdpt store_invalid_pde_valid_pdpt mapM_x_store_invalid_pte_valid_pdpt mapM_x_store_pde_valid_pdpt_objs | simp add: mapM_x_map vspace_bits_defs largePagePTE_offsets_def superSectionPDE_offsets_def | wpc | simp add: check_mapping_pptr_def)+ apply (simp add: fun_upd_def[symmetric] is_aligned_mask[symmetric]) done crunch valid_pdpt_objs[wp]: flush_table "valid_pdpt_objs" (wp: crunch_wps simp: crunch_simps) (* NOTE: This isn't true, but is the main reason flush_table_kheap does not work now, I guess it is possible to prove this for a P that does not care about VCPU but let's wait and see where and how this lemma is used. lemma vcpu_switch_kheap[wp]:"\<lbrace>\<lambda>s. P (kheap s)\<rbrace> vcpu_switch v \<lbrace>\<lambda>_ s. P (kheap s)\<rbrace>" crunch kheap[wp]: flush_table "\<lambda>s. P (kheap s)" (wp: crunch_wps simp: crunch_simps) FIXME: Delete *) crunch kheap[wp]: get_cap "\<lambda>s. P (kheap s)" (wp: crunch_wps simp: crunch_simps) lemma unmap_page_table_valid_pdpt_objs[wp]: "\<lbrace>valid_pdpt_objs\<rbrace> unmap_page_table asid vptr pt \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: unmap_page_table_def) including no_pre apply (wp get_object_wp store_invalid_pde_valid_pdpt | wpc)+ apply (simp add: obj_at_def) apply (simp add: page_table_mapped_def) apply (wp get_pde_wp | wpc)+ apply simp apply (rule hoare_post_impErr, rule valid_validE, rule find_pd_for_asid_inv, simp_all) done lemma set_simple_ko_valid_pdpt_objs[wp]: "\<lbrace>\<lambda>s. \<forall>x\<in>ran (kheap s). obj_valid_pdpt x\<rbrace> set_simple_ko param_a param_b param_c \<lbrace>\<lambda>_ s. \<forall>x\<in>ran (kheap s). obj_valid_pdpt x\<rbrace>" unfolding set_simple_ko_def apply (subst option.disc_eq_case(2)) apply (wpsimp wp: set_object_valid_pdpt[THEN hoare_set_object_weaken_pre] get_object_wp simp: a_type_simps obj_at_def) apply (clarsimp simp: a_type_def split: kernel_object.splits) done crunch valid_pdpt_objs[wp]: finalise_cap, cap_swap_for_delete, empty_slot "valid_pdpt_objs" (wp: crunch_wps select_wp preemption_point_inv simp: crunch_simps unless_def ignore:set_object) lemma preemption_point_valid_pdpt_objs[wp]: "\<lbrace>valid_pdpt_objs\<rbrace> preemption_point \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" by (wp preemption_point_inv | simp)+ lemmas cap_revoke_preservation_valid_pdpt_objs = cap_revoke_preservation[OF _, where E=valid_pdpt_objs, simplified, THEN validE_valid] lemmas rec_del_preservation_valid_pdpt_objs = rec_del_preservation[OF _ _ _ _, where P=valid_pdpt_objs, simplified] crunch valid_pdpt_objs[wp]: cap_delete, cap_revoke "valid_pdpt_objs" (rule: cap_revoke_preservation_valid_pdpt_objs) crunch valid_pdpt_objs[wp]: invalidate_tlb_by_asid, page_table_mapped "valid_pdpt_objs" lemma mapM_x_copy_pde_updates: "\<lbrakk> \<forall>x \<in> set xs. f x && ~~ mask pd_bits = 0; is_aligned p pd_bits; is_aligned p' pd_bits \<rbrakk> \<Longrightarrow> \<lbrace>\<lambda>s. (\<not> page_directory_at p s \<longrightarrow> Q s) \<and> (\<not> page_directory_at p' s \<longrightarrow> Q s) \<and> (\<forall>pd pd'. ko_at (ArchObj (PageDirectory pd)) p s \<and> ko_at (ArchObj (PageDirectory pd')) p' s \<longrightarrow> Q (s \<lparr> kheap := (kheap s) (p' := Some (ArchObj (PageDirectory (\<lambda>y. if y \<in> (\<lambda>x. ucast (f x && mask pd_bits >> 3)) ` set xs then pd y else pd' y)))) \<rparr>))\<rbrace> mapM_x (\<lambda>x. get_pde (p + f x) >>= store_pde (p' + f x)) xs \<lbrace>\<lambda>_. Q\<rbrace>" including no_pre apply (induct xs) apply (simp add: mapM_x_Nil) apply wp apply (clarsimp simp: obj_at_def fun_upd_idem dest!: a_type_pdD) apply (simp add: mapM_x_Cons) apply wp apply (thin_tac "valid P f Q" for P f Q) apply (simp add: store_pde_def set_pd_def set_object_def cong: bind_cong split del: if_split) apply (wp get_object_wp get_pde_wp) apply (clarsimp simp: obj_at_def a_type_simps mask_out_add_aligned[symmetric] split del: if_split) apply (simp add: a_type_simps, safe) apply (erule rsubst[where P=Q]) apply (rule abstract_state.fold_congs[OF refl refl]) apply (rule ext, clarsimp) apply (rule ext, simp) apply (erule rsubst[where P=Q]) apply (rule abstract_state.fold_congs[OF refl refl]) apply (rule ext, clarsimp simp add: vspace_bits_defs) apply (rule ext, simp add: mask_add_aligned vspace_bits_defs) done lemma copy_global_mappings_valid_pdpt_objs[wp]: "\<lbrace>valid_pdpt_objs and valid_arch_state and pspace_aligned and K (is_aligned p pd_bits)\<rbrace> copy_global_mappings p \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (rule hoare_gen_asm) apply (simp add: copy_global_mappings_def) apply wp apply auto done lemma in_pte_rangeD: "x \<in> pte_range v y \<Longrightarrow> x && ~~ mask 4 = y && ~~ mask 4" by (case_tac v,simp_all split:if_splits) lemma in_pde_rangeD: "x \<in> pde_range v y \<Longrightarrow> x && ~~ mask 4 = y && ~~ mask 4" by (case_tac v,simp_all split:if_splits) lemma mapM_x_store_pte_valid_pdpt2: "\<lbrace>valid_pdpt_objs and K (is_aligned ptr pt_bits)\<rbrace> mapM_x (\<lambda>x. store_pte x InvalidPTE) [ptr, ptr + 8 .e. ptr + 2 ^ pt_bits - 1] \<lbrace>\<lambda>_. valid_pdpt_objs\<rbrace>" apply (rule hoare_gen_asm)+ apply (rule mapM_x_wp') apply (simp add:store_pte_def set_pt_def) apply (wp get_pt_wp get_object_wp) apply (clarsimp simp: mask_in_range split:Structures_A.kernel_object.splits arch_kernel_obj.splits) apply (rule conjI) apply (rule valid_entries_overwrite_0) apply (fastforce simp:ran_def obj_at_def) apply simp apply (simp add:fun_upd_def obj_at_def) apply (rule entries_align_pte_update) apply (drule (1) valid_pdpt_objs_ptD,simp) apply simp done lemma mapM_x_store_pde_valid_pdpt2: "\<lbrace>valid_pdpt_objs and K (is_aligned pd pd_bits)\<rbrace> mapM_x (\<lambda>x. store_pde ((x << 3) + pd) pde.InvalidPDE) [0.e.(kernel_base >> 20) - 1] \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (rule hoare_gen_asm) apply (rule mapM_x_wp') apply (simp add:store_pde_def set_pd_def) apply (wp get_pd_wp get_object_wp) apply (clarsimp simp: mask_in_range split:Structures_A.kernel_object.splits arch_kernel_obj.splits) apply (rule conjI) apply (rule valid_entries_overwrite_0) apply (fastforce simp:ran_def obj_at_def) apply simp apply (simp add:fun_upd_def obj_at_def) apply (rule entries_align_pde_update) apply (drule (1) valid_pdpt_objs_pdD,simp) apply simp done lemma non_invalid_in_pde_range: "pde \<noteq> InvalidPDE \<Longrightarrow> x \<in> pde_range pde x" by (case_tac pde,simp_all) lemma non_invalid_in_pte_range: "pte \<noteq> InvalidPTE \<Longrightarrow> x \<in> pte_range pte x" by (case_tac pte,simp_all) crunch valid_pdpt_objs[wp]: cancel_badged_sends "valid_pdpt_objs" (simp: crunch_simps filterM_mapM wp: crunch_wps ignore: filterM) crunch valid_pdpt_objs[wp]: cap_move, cap_insert "valid_pdpt_objs" lemma invoke_cnode_valid_pdpt_objs[wp]: "\<lbrace>valid_pdpt_objs and invs and valid_cnode_inv i\<rbrace> invoke_cnode i \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: invoke_cnode_def) apply (rule hoare_pre) apply (wp get_cap_wp | wpc | simp split del: if_split)+ done crunch valid_pdpt_objs[wp]: invoke_tcb "valid_pdpt_objs" (wp: check_cap_inv crunch_wps simp: crunch_simps ignore: check_cap_at) lemma invoke_domain_valid_pdpt_objs[wp]: "\<lbrace>valid_pdpt_objs\<rbrace> invoke_domain t d \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" by (simp add: invoke_domain_def | wp)+ crunch valid_pdpt_objs[wp]: set_extra_badge, transfer_caps_loop "valid_pdpt_objs" (rule: transfer_caps_loop_pres) crunch valid_pdpt_objs[wp]: send_ipc, send_signal, do_reply_transfer, invoke_irq_control, invoke_irq_handler "valid_pdpt_objs" (wp: crunch_wps simp: crunch_simps ignore: clearMemory const_on_failure set_object) lemma valid_pdpt_objs_trans_state[simp]: "valid_pdpt_objs (trans_state f s) = valid_pdpt_objs s" apply (simp add: obj_valid_pdpt_def) done lemma retype_region_valid_pdpt[wp]: "\<lbrace>valid_pdpt_objs\<rbrace> retype_region ptr bits o_bits type dev \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: retype_region_def split del: if_split) apply (wp | simp only: valid_pdpt_objs_trans_state trans_state_update[symmetric])+ apply (clarsimp simp: retype_addrs_fold foldr_upd_app_if ranI elim!: ranE split: if_split_asm simp del:fun_upd_apply) apply (simp add: default_object_def default_arch_object_def split: Structures_A.kernel_object.splits Structures_A.apiobject_type.split aobject_type.split)+ apply (simp add:entries_align_def) done lemma detype_valid_pdpt[elim!]: "valid_pdpt_objs s \<Longrightarrow> valid_pdpt_objs (detype S s)" by (auto simp add: detype_def ran_def) crunch valid_pdpt_objs[wp]: create_cap "valid_pdpt_objs" (ignore: clearMemory simp: crunch_simps unless_def) lemma init_arch_objects_valid_pdpt: "\<lbrace>valid_pdpt_objs and pspace_aligned and valid_arch_state and K (\<exists>us sz. orefs = retype_addrs ptr type n us \<and> range_cover ptr sz (obj_bits_api type us) n)\<rbrace> init_arch_objects type ptr n obj_sz orefs \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (rule hoare_gen_asm)+ apply (clarsimp simp: init_arch_objects_def split del: if_split) apply (rule hoare_pre) apply (wp | wpc)+ apply (rule_tac Q="\<lambda>rv. valid_pdpt_objs and pspace_aligned and valid_arch_state" in hoare_post_imp, simp) apply (rule mapM_x_wp') apply (rule hoare_pre, wp copy_global_mappings_valid_pdpt_objs) apply clarsimp apply (drule_tac sz=sz in retype_addrs_aligned) apply (simp add:range_cover_def) apply (drule range_cover.sz,simp add:word_bits_def) apply (simp add:range_cover_def) apply (clarsimp simp:obj_bits_api_def pd_bits_def pageBits_def arch_kobj_size_def default_arch_object_def range_cover_def)+ apply wp apply simp done lemma delete_objects_valid_pdpt: "\<lbrace>valid_pdpt_objs\<rbrace> delete_objects ptr bits \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" by (rule delete_objects_reduct) (wp detype_valid_pdpt) crunch valid_pdpt[wp]: reset_untyped_cap "valid_pdpt_objs" (wp: mapME_x_inv_wp crunch_wps simp: crunch_simps unless_def) lemma invoke_untyped_valid_pdpt[wp]: "\<lbrace>valid_pdpt_objs and invs and ct_active and valid_untyped_inv ui\<rbrace> invoke_untyped ui \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (rule hoare_pre, rule invoke_untyped_Q) apply (wp init_arch_objects_valid_pdpt | simp)+ apply (auto simp: post_retype_invs_def split: if_split_asm)[1] apply (wp | simp)+ done crunch valid_pdpt_objs[wp]: perform_asid_pool_invocation, perform_asid_control_invocation "valid_pdpt_objs" (ignore: delete_objects wp: delete_objects_valid_pdpt static_imp_wp) abbreviation (input) "safe_pt_range \<equiv> \<lambda>slots s. obj_at (\<lambda>ko. \<exists>pt. ko = ArchObj (PageTable pt) \<and> (\<forall>x\<in>set (tl slots). pt (ucast (x && mask pt_bits >> 3)) = pte.InvalidPTE)) (hd slots && ~~ mask pt_bits) s" abbreviation (input) "safe_pd_range \<equiv> \<lambda>slots s. obj_at (\<lambda>ko. \<exists>pd. ko = ArchObj (PageDirectory pd) \<and> (\<forall>x\<in>set (tl slots). pd (ucast (x && mask pd_bits >> 3)) = pde.InvalidPDE)) (hd slots && ~~ mask pd_bits) s" definition "page_inv_entries_pre entries \<equiv> let slots = (case entries of Inl (pte, slots) \<Rightarrow> slots | Inr (pde, slots) \<Rightarrow> slots) in (if \<exists>sl. slots = [sl] then case entries of Inl (pte, _) \<Rightarrow> obj_at (\<lambda>ko. \<exists>pt pte. ko = ArchObj (PageTable pt) \<and> pt (ucast (hd slots && mask pt_bits >> 3) && ~~ mask 4) = pte \<and> pte_range_sz pte = 0) (hd slots && ~~ mask pt_bits) and K (pte_range_sz pte = 0) | Inr (pde, _) \<Rightarrow> obj_at (\<lambda>ko. \<exists>pd pde. ko = ArchObj (PageDirectory pd) \<and> pd (ucast (head slots && mask pd_bits >> 3) && ~~ mask 4) = pde \<and> pde_range_sz pde = 0) (hd slots && ~~ mask pd_bits) and K (pde_range_sz pde = 0) else (\<lambda>s. (\<exists>p. is_aligned p 7 \<and> slots = map (\<lambda>x. x + p) [0, 8 .e. 0x78]))) and K (case entries of Inl (pte,slots) \<Rightarrow> pte \<noteq> InvalidPTE | Inr (pde,slots) \<Rightarrow> pde \<noteq> InvalidPDE)" definition "page_inv_entries_safe entries \<equiv> let slots = (case entries of Inl (pte, slots) \<Rightarrow> slots | Inr (pde, slots) \<Rightarrow> slots) in if \<exists>sl. slots = [sl] then case entries of Inl (pte, _) \<Rightarrow> obj_at (\<lambda>ko. \<exists>pt pte. ko = ArchObj (PageTable pt) \<and> pt (ucast (hd slots && mask pt_bits >> 3) && ~~ mask 4) = pte \<and> pte_range_sz pte = 0) (hd slots && ~~ mask pt_bits) and K (pte_range_sz pte = 0) | Inr (pde, _) \<Rightarrow> obj_at (\<lambda>ko. \<exists>pd pde. ko = ArchObj (PageDirectory pd) \<and> pd (ucast (head slots && mask pd_bits >> 3) && ~~ mask 4) = pde \<and> pde_range_sz pde = 0) (hd slots && ~~ mask pd_bits) and K (pde_range_sz pde = 0) else (\<lambda>s. (\<exists>p. is_aligned p 7 \<and> slots = map (\<lambda>x. x + p) [0, 8 .e. 0x78] \<and> (case entries of Inl (pte, _) \<Rightarrow> safe_pt_range slots s | Inr (pde, _) \<Rightarrow> safe_pd_range slots s )))" definition "page_inv_duplicates_valid iv \<equiv> case iv of PageMap asid cap ct_slot entries \<Rightarrow> page_inv_entries_safe entries | _ \<Rightarrow> \<top>" lemma pte_range_interD: "pte_range pte p \<inter> pte_range pte' p' \<noteq> {} \<Longrightarrow> pte \<noteq> InvalidPTE \<and> pte' \<noteq> InvalidPTE \<and> p && ~~ mask 4 = p' && ~~ mask 4" apply (drule int_not_emptyD) apply (case_tac pte,simp_all split:if_splits) apply (case_tac pte',simp_all split:if_splits) apply clarsimp apply (case_tac pte',simp_all split:if_splits) apply (case_tac pte', simp_all split:if_splits) done lemma pde_range_interD: "pde_range pde p \<inter> pde_range pde' p' \<noteq> {} \<Longrightarrow> pde \<noteq> InvalidPDE \<and> pde' \<noteq> InvalidPDE \<and> p && ~~ mask 4 = p' && ~~ mask 4" apply (drule int_not_emptyD) apply (case_tac pde,simp_all split:if_splits) apply (case_tac pde',simp_all split:if_splits) apply (case_tac pde',simp_all split:if_splits) apply clarsimp apply (case_tac pde', simp_all split:if_splits) apply (case_tac pde', simp_all split:if_splits) done lemma pte_range_sz_le: "(pte_range_sz pte) \<le> 4" by (case_tac pte,simp_all) lemma pde_range_sz_le: "(pde_range_sz pde) \<le> 4" by (case_tac pde,simp_all) (* BUG , revisit the following lemmas , moved from ArchAcc_R.thy *) lemma mask_pd_bits_shift_ucast_align[simp]: "is_aligned (ucast (p && mask pd_bits >> 3)::11 word) 4 = is_aligned ((p::word32) >> 3) 4" by (clarsimp simp: is_aligned_mask mask_def vspace_bits_defs) word_bitwise lemma mask_pt_bits_shift_ucast_align[simp]: "is_aligned (ucast (p && mask pt_bits >> 3)::9 word) 4 = is_aligned ((p::word32) >> 3) 4" by (clarsimp simp: is_aligned_mask mask_def vspace_bits_defs) word_bitwise lemma ucast_pt_index: "\<lbrakk>is_aligned (p::word32) (4 + pte_bits)\<rbrakk> \<Longrightarrow> ucast ((pa && mask 4) + (ucast (p && mask pt_bits >> pte_bits)::9 word)) = ucast (pa && mask 4) + (p && mask pt_bits >> pte_bits)" apply (simp add:is_aligned_mask mask_def vspace_bits_defs) apply word_bitwise apply (auto simp: carry_def) done lemma unat_ucast_9_32: fixes x :: "9 word" shows "unat (ucast x :: word32) = unat x" unfolding ucast_def unat_def apply (subst int_word_uint) apply (subst mod_pos_pos_trivial) apply simp apply (rule lt2p_lem) apply simp apply simp done lemma store_pte_valid_pdpt: "\<lbrace>valid_pdpt_objs and page_inv_entries_safe (Inl (pte, slots))\<rbrace> store_pte (hd slots) pte \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (rule hoare_name_pre_state) apply (clarsimp simp:page_inv_entries_safe_def split:if_splits) apply (clarsimp simp:store_pte_def set_pt_def) apply (wp get_pt_wp get_object_wp) apply (clarsimp simp:obj_at_def pte_bits_def split:pte.splits arch_kernel_obj.splits) apply (rule conjI) apply (drule(1) valid_pdpt_objs_ptD) apply (rule valid_entries_overwrite_0) apply simp apply (case_tac pte) apply simp+ apply (case_tac "pta p",simp_all) apply (clarsimp simp: is_aligned_neg_mask_eq) apply (simp add:fun_upd_def) apply (rule entries_align_pte_update) apply (drule (1) valid_pdpt_objs_ptD,simp) apply simp apply (simp add:hd_map_simp upto_enum_def upto_enum_step_def) apply (clarsimp simp:store_pte_def set_pt_def) apply (wp get_pt_wp get_object_wp) apply (clarsimp simp:obj_at_def pte_bits_def split:pte.splits arch_kernel_obj.splits) apply (drule(1) valid_pdpt_objs_ptD) apply (rule conjI) apply (rule valid_entries_overwrite_0) apply simp apply (rule ccontr) apply (drule pte_range_interD) apply clarsimp apply (simp add:ucast_neg_mask) apply (subst (asm) is_aligned_neg_mask_eq[where n = 4]) apply (rule is_aligned_shiftr[OF is_aligned_andI1]) apply simp apply (drule_tac x = "((p && ~~ mask pt_bits) + ((ucast pa) << 3))" in bspec) apply (clarsimp simp: tl_map_simp upto_0_to_n2 image_def) apply (rule_tac x = "unat (((ucast pa)::word32) - (p && mask pt_bits >> 3))" in bexI) apply (simp add:ucast_nat_def shiftl_t2n mask_out_sub_mask) apply (subst shiftl_t2n[where n = 3,simplified field_simps,simplified,symmetric]) apply (subst shiftr_shiftl1) apply simp+ apply (subst is_aligned_neg_mask_eq) apply (erule is_aligned_andI1[OF is_aligned_weaken]) apply simp apply simp apply simp apply (drule_tac s = "ucast (p && mask pt_bits >> 3)" in sym) apply (simp add:mask_out_sub_mask field_simps) apply (drule_tac f = "ucast::(9 word\<Rightarrow>word32)" in arg_cong) apply (simp add: ucast_pt_index[simplified pte_bits_def]) apply (simp add:unat_ucast_9_32) apply (rule conjI) apply (subgoal_tac "unat (pa && mask 4)\<noteq> 0") apply simp apply (simp add:unat_gt_0) apply (rule unat_less_helper) apply (rule le_less_trans[OF word_and_le1]) apply (simp add:mask_def) apply (simp add:field_simps neg_mask_add_mask) apply (thin_tac "ucast y = x" for y x) apply (subst (asm) less_mask_eq[where n = pt_bits]) apply (rule shiftl_less_t2n) apply (simp add:vspace_bits_defs) apply word_bitwise apply (simp add:vspace_bits_defs) apply (subst (asm) shiftl_shiftr_id) apply simp apply (simp,word_bitwise) apply (simp add:ucast_ucast_id) apply (simp add:fun_upd_def entries_align_def) apply (rule is_aligned_weaken[OF _ pte_range_sz_le]) apply (simp add:is_aligned_shiftr) done lemma ucast_pd_index: "\<lbrakk>is_aligned (p::word32) (4 + pde_bits)\<rbrakk> \<Longrightarrow> ucast ((pa && mask 4) + (ucast (p && mask pd_bits >> pde_bits)::11 word)) = ucast (pa && mask 4) + (p && mask pd_bits >> pde_bits)" apply (simp add:is_aligned_mask mask_def vspace_bits_defs) apply word_bitwise apply (auto simp:carry_def) done lemma unat_ucast_11_32: "unat (ucast (x::(11 word))::word32) = unat x" apply (subst unat_ucast) apply (rule mod_less) apply (rule less_le_trans[OF unat_lt2p]) apply simp done lemma ucast_pd_index11: "\<lbrakk>is_aligned (p::word32) 7\<rbrakk> \<Longrightarrow> ucast ((pa && mask 4) + (ucast (p && mask 14 >> 3)::11 word)) = ucast (pa && mask 4) + (p && mask 14 >> 3)" apply (simp add:is_aligned_mask mask_def) apply word_bitwise apply (auto simp:carry_def) done lemma store_pde_valid_pdpt: "\<lbrace>valid_pdpt_objs and page_inv_entries_safe (Inr (pde, slots))\<rbrace> store_pde (hd slots) pde \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (rule hoare_name_pre_state) apply (clarsimp simp:page_inv_entries_safe_def split:if_splits) apply (clarsimp simp:store_pde_def set_pd_def) apply (wp get_pd_wp get_object_wp) apply (clarsimp simp:obj_at_def pde_bits_def split:pde.splits arch_kernel_obj.splits) apply (drule(1) valid_pdpt_objs_pdD) apply (rule conjI) apply (rule valid_entries_overwrite_0) apply simp apply (case_tac pde,simp_all) apply (case_tac "pda p",simp_all) apply (clarsimp simp: is_aligned_neg_mask_eq) apply (case_tac "pda p",simp_all) apply (clarsimp simp: is_aligned_neg_mask_eq) apply (simp add:fun_upd_def) apply (rule entries_align_pde_update) apply simp+ apply (simp add:hd_map_simp upto_enum_def upto_enum_step_def) apply (clarsimp simp:store_pde_def set_pd_def) apply (wp get_pd_wp get_object_wp) apply (clarsimp simp:obj_at_def pde_bits_def split:pde.splits arch_kernel_obj.splits) apply (drule(1) valid_pdpt_objs_pdD) apply (rule conjI) apply (rule valid_entries_overwrite_0) apply simp apply (rule ccontr) apply (drule pde_range_interD) apply clarsimp apply (simp add:ucast_neg_mask) apply (subst (asm) is_aligned_neg_mask_eq[where n = 4]) apply (rule is_aligned_shiftr[OF is_aligned_andI1]) apply simp apply (drule_tac x = "((p && ~~ mask pd_bits) + ((ucast pa) << 3))" in bspec) apply (clarsimp simp: tl_map_simp upto_0_to_n2 image_def) apply (rule_tac x = "unat (((ucast pa)::word32) - (p && mask pd_bits >> 3))" in bexI) apply (simp add:ucast_nat_def shiftl_t2n mask_out_sub_mask) apply (subst shiftl_t2n[where n = 3,simplified field_simps,simplified,symmetric]) apply (subst shiftr_shiftl1) apply simp+ apply (subst is_aligned_neg_mask_eq) apply (erule is_aligned_andI1[OF is_aligned_weaken]) apply simp apply simp apply simp apply (drule_tac s = "ucast (p && mask pd_bits >> 3)" in sym) apply (simp add:mask_out_sub_mask field_simps) apply (drule_tac f = "ucast::(11 word\<Rightarrow>word32)" in arg_cong) apply (simp add:ucast_pd_index[simplified pde_bits_def]) apply (simp add:unat_ucast_11_32) apply (rule conjI) apply (subgoal_tac "unat (pa && mask 4)\<noteq> 0") apply simp apply (simp add:unat_gt_0) apply (rule unat_less_helper) apply (rule le_less_trans[OF word_and_le1]) apply (simp add:mask_def) apply (simp add:field_simps neg_mask_add_mask) apply (thin_tac "ucast y = x" for y x) apply (subst (asm) less_mask_eq[where n = pd_bits]) apply (rule shiftl_less_t2n) apply (simp add:vspace_bits_defs) apply word_bitwise apply (simp add:vspace_bits_defs) apply (subst (asm) shiftl_shiftr_id) apply simp apply (simp,word_bitwise) apply (simp add:ucast_ucast_id) apply (simp add:entries_align_def) apply (rule is_aligned_weaken[OF _ pde_range_sz_le]) apply (simp add:is_aligned_shiftr) done lemma set_cap_page_inv_entries_safe: "\<lbrace>page_inv_entries_safe x\<rbrace> set_cap y z \<lbrace>\<lambda>_. page_inv_entries_safe x\<rbrace>" apply (simp add:page_inv_entries_safe_def set_cap_def split_def get_object_def set_object_def) apply (wp | wpc)+ apply (case_tac x) apply (auto simp:obj_at_def Let_def split:if_splits option.splits) done crunch inv[wp]: pte_check_if_mapped, pde_check_if_mapped "\<lambda>s. P s" lemma perform_page_valid_pdpt[wp]: "\<lbrace>valid_pdpt_objs and valid_page_inv pinv and page_inv_duplicates_valid pinv\<rbrace> perform_page_invocation pinv \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: perform_page_invocation_def page_inv_duplicates_valid_def) apply (cases pinv, simp_all add: mapM_discarded page_inv_entries_safe_def split: sum.split arch_cap.split option.split, safe intro!: hoare_gen_asm hoare_gen_asm[unfolded K_def], simp_all add: mapM_x_Nil mapM_x_Cons mapM_x_map) apply (wp store_pte_valid_pdpt store_pde_valid_pdpt get_master_pte_wp get_master_pde_wp store_pte_non_master_valid_pdpt store_pde_non_master_valid_pdpt mapM_x_wp'[OF store_invalid_pte_valid_pdpt [where pte=pte.InvalidPTE, simplified]] mapM_x_wp'[OF store_invalid_pde_valid_pdpt [where pde=pde.InvalidPDE, simplified]] set_cap_page_inv_entries_safe hoare_vcg_imp_lift[OF set_cap_arch_obj_neg] hoare_vcg_all_lift | clarsimp simp: cte_wp_at_weakenE[OF _ TrueI] obj_at_def pte_range_sz_def pde_range_sz_def swp_def valid_page_inv_def valid_slots_def page_inv_entries_safe_def pte_check_if_mapped_def pde_check_if_mapped_def split: pte.splits pde.splits | wp (once) hoare_drop_imps)+ done definition "pti_duplicates_valid iv \<equiv> case iv of PageTableMap cap ct_slot pde pd_slot \<Rightarrow> obj_at (\<lambda>ko. \<exists>pd pde. ko = ArchObj (PageDirectory pd) \<and> pd (ucast (pd_slot && mask pd_bits >> 3) && ~~ mask 4) = pde \<and> pde_range_sz pde = 0) (pd_slot && ~~ mask pd_bits) and K (pde_range_sz pde = 0) | _ \<Rightarrow> \<top>" definition "invocation_duplicates_valid i \<equiv> case i of InvokeArchObject (InvokePage pinv) \<Rightarrow> page_inv_duplicates_valid pinv | InvokeArchObject (InvokePageTable pti) \<Rightarrow> pti_duplicates_valid pti | _ \<Rightarrow> \<top>" lemma perform_page_table_valid_pdpt[wp]: "\<lbrace>valid_pdpt_objs and valid_pti pinv and pti_duplicates_valid pinv\<rbrace> perform_page_table_invocation pinv \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: perform_page_table_invocation_def split_def vspace_bits_defs cong: page_table_invocation.case_cong option.case_cong cap.case_cong arch_cap.case_cong) apply (rule hoare_pre) apply (wp store_pde_non_master_valid_pdpt hoare_vcg_ex_lift set_cap_arch_obj mapM_x_store_pte_valid_pdpt2[simplified vspace_bits_defs, simplified] | wpc | simp add: swp_def | strengthen all_imp_ko_at_from_ex_strg)+ apply (clarsimp simp: pti_duplicates_valid_def valid_pti_def) apply (auto simp: obj_at_def cte_wp_at_caps_of_state valid_cap_simps cap_aligned_def vspace_bits_defs intro!: inj_onI) done lemma perform_page_directory_valid_pdpt[wp]: "\<lbrace>valid_pdpt_objs and valid_pdi pinv\<rbrace> perform_page_directory_invocation pinv \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: perform_page_directory_invocation_def split_def) apply (rule hoare_pre) apply (wp | wpc | simp)+ done crunch valid_pdpt_objs[wp]: perform_vcpu_invocation "valid_pdpt_objs" (ignore: delete_objects wp: delete_objects_valid_pdpt static_imp_wp) lemma perform_invocation_valid_pdpt[wp]: "\<lbrace>invs and ct_active and valid_invocation i and valid_pdpt_objs and invocation_duplicates_valid i\<rbrace> perform_invocation blocking call i \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (cases i, simp_all) apply (wp send_signal_interrupt_states | simp)+ apply (clarsimp simp: invocation_duplicates_valid_def) apply (wp | wpc | simp)+ apply (simp add: arch_perform_invocation_def) apply (rule hoare_pre) apply (wp | wpc | simp)+ apply (auto simp: valid_arch_inv_def invocation_duplicates_valid_def) done lemma neg_mask_pt_7_4: "(ptr && mask pt_bits >> 3) && ~~ mask 4 = (ptr::word32) && ~~ mask 7 && mask pt_bits >> 3" apply (simp add:vspace_bits_defs) apply word_bitwise apply (simp add:word_size) done lemma neg_mask_pd_7_4: "(ptr && mask pd_bits >> 3) && ~~ mask 4 = (ptr::word32) && ~~ mask 7 && mask pd_bits >> 3" apply (simp add:pd_bits_def pageBits_def) apply word_bitwise apply (simp add:word_size) done lemma mask_out_same_pt: "\<lbrakk>is_aligned p 7; x < 2 ^ 7 \<rbrakk> \<Longrightarrow> p + x && ~~ mask pt_bits = p && ~~ mask pt_bits" apply (subst mask_lower_twice[symmetric,where n = 7]) apply (simp add:vspace_bits_defs) apply (simp add:is_aligned_add_helper) done lemma mask_out_same_pd: "\<lbrakk>is_aligned p 7; x < 2 ^ 7 \<rbrakk> \<Longrightarrow> p + x && ~~ mask pd_bits = p && ~~ mask pd_bits" apply (subst mask_lower_twice[symmetric,where n = 7]) apply (simp add:pd_bits_def pageBits_def) apply (simp add:is_aligned_add_helper) done lemma ensure_safe_mapping_ensures[wp]: "\<lbrace>valid_pdpt_objs and (case entries of (Inl (SmallPagePTE _ _ _, [_])) \<Rightarrow> \<top> | (Inl (SmallPagePTE _ _ _, _)) \<Rightarrow> \<bottom> | (Inl (LargePagePTE _ _ _, [])) \<Rightarrow> \<bottom> | (Inr (SectionPDE _ _ _, [_])) \<Rightarrow> \<top> | (Inr (SuperSectionPDE _ _ _, [])) \<Rightarrow> \<bottom> | (Inr (SectionPDE _ _ _, _)) \<Rightarrow> \<bottom> | _ \<Rightarrow> page_inv_entries_pre entries)\<rbrace> ensure_safe_mapping entries \<lbrace>\<lambda>rv. page_inv_entries_safe entries\<rbrace>,-" proof - have [simp]: "\<And>s a. page_inv_entries_pre (Inl (pte.InvalidPTE, a)) s \<Longrightarrow> page_inv_entries_safe (Inl (pte.InvalidPTE, a)) s" apply (clarsimp simp:page_inv_entries_pre_def page_inv_entries_safe_def split:if_splits) done have name_pre: "\<And>F P Q. (\<And>s. P s \<Longrightarrow> \<lbrace>(=) s \<rbrace> F \<lbrace>Q\<rbrace>, -) \<Longrightarrow> \<lbrace>P\<rbrace> F \<lbrace>Q\<rbrace>,-" apply (simp add:validE_R_def validE_def) apply (rule hoare_name_pre_state) apply assumption done have mask_neg_mask_order[simp]: "\<And>a m n. a && ~~ mask m && mask n = a && mask n && ~~ mask m" by (simp add:word_bw_comms word_bw_lcs) have align_entry_ptD: "\<And>pt m x xb xc. \<lbrakk>pt m = pte.LargePagePTE x xb xc; entries_align pte_range_sz pt\<rbrakk> \<Longrightarrow> is_aligned m 4" apply (simp add:entries_align_def) apply (drule_tac x = m in spec,simp) done have align_entry_pdD: "\<And>pd m x xb xc. \<lbrakk>pd m = pde.SuperSectionPDE x xb xc; entries_align pde_range_sz pd\<rbrakk> \<Longrightarrow> is_aligned m 4" apply (simp add:entries_align_def) apply (drule_tac x = m in spec,simp) done have pt_offset_bitwise[simp]:"\<And>a. (ucast ((a::word32) && mask pt_bits && ~~ mask 7 >> 3)::9 word) = (ucast (a && mask pt_bits >> 3)::9 word) && ~~ mask 4" apply (simp add: vspace_bits_defs mask_def) apply word_bitwise done have pt_offset_bitwise_pt_bits[simp]:"\<And>a. (ucast ((a::word32) && mask pt_bits && ~~ mask 7 >> pte_bits)::9 word) = (ucast (a && mask pt_bits >> 3)::9 word) && ~~ mask 4" by (simp add: pte_bits_def) have pd_offset_bitwise[simp]:"\<And>a. (ucast ((a::word32) && mask pd_bits && ~~ mask 7 >> 3)::11 word) = (ucast (a && mask pd_bits >> 3)::11 word) && ~~ mask 4" apply (simp add: vspace_bits_defs mask_def) apply word_bitwise done have pd_offset_bitwise_pt_bits[simp]:"\<And>a. (ucast ((a::word32) && mask pd_bits && ~~ mask 7 >> pde_bits)::11 word) = (ucast (a && mask pd_bits >> 3)::11 word) && ~~ mask 4" by (simp add: pde_bits_def) have mask_neq_0: "\<And>z zs xa p g. \<lbrakk>[0 :: word32, 8 .e. 0x78] = z # zs; xa \<in> set zs; is_aligned p 7; 7 \<le> g\<rbrakk> \<Longrightarrow> (p + xa && mask g >> 3) && mask 4 \<noteq> 0" apply (rule ccontr) apply (simp add:is_aligned_mask[symmetric]) apply (drule is_aligned_shiftl[where n = 7 and m = 3,simplified]) apply (subst (asm) shiftr_shiftl1) apply simp+ apply (subst (asm) is_aligned_neg_mask_eq) apply (rule is_aligned_andI1) apply (erule aligned_add_aligned) apply (clarsimp simp :upto_enum_def upto_enum_step_def Fun.comp_def upto_0_to_n2 is_aligned_mult_triv2[where n = 3,simplified]) apply simp apply (simp add:is_aligned_mask mask_twice pt_bits_def pageBits_def min_def) apply (subst (asm) is_aligned_mask[symmetric]) apply (subst (asm) is_aligned_add_helper) apply simp apply (clarsimp simp :upto_enum_def upto_enum_step_def Fun.comp_def upto_0_to_n2) apply (subst shiftl_t2n [where n = 3,simplified field_simps,simplified,symmetric])+ apply (rule shiftl_less_t2n[where m = 7,simplified]) apply (rule word_of_nat_less) apply simp apply simp apply (clarsimp simp :upto_enum_def upto_enum_step_def Fun.comp_def upto_0_to_n2) apply (cut_tac x = "of_nat x" and n = 3 in word_power_nonzero_32) apply (simp add:word_of_nat_less word_bits_def)+ apply (simp add: of_nat_neq_0) apply simp done have neq_pt_offset: "\<And>z zs xa (p::word32). \<lbrakk>[0 , 8 .e. 0x78] = z # zs; xa \<in> set zs;is_aligned p 7 \<rbrakk> \<Longrightarrow> ucast (p + xa && mask pt_bits >> 3) && ~~ mask 4 \<noteq> ((ucast (p + xa && mask pt_bits >> 3))::9 word)" apply (rule ccontr) apply (simp add:mask_out_sub_mask ucast_and_mask[symmetric]) apply (drule arg_cong[where f = unat]) apply (simp add:unat_ucast) apply (subst (asm) mod_less) apply (rule unat_less_helper) apply (rule le_less_trans[OF word_and_le1]) apply (simp add:mask_def) apply (simp add:unat_eq_0) apply (drule(2) mask_neq_0[of _ _ _ _ pt_bits]) apply (simp add:pt_bits_def pageBits_def)+ done have neq_pd_offset: "\<And>z zs xa (p::word32). \<lbrakk>[0 , 8 .e. 0x78] = z # zs; xa \<in> set zs;is_aligned p 7 \<rbrakk> \<Longrightarrow> ucast (p + xa && mask pd_bits >> 3) && ~~ mask 4 \<noteq> ((ucast (p + xa && mask pd_bits >> 3)) :: 11 word)" apply (simp add:mask_out_sub_mask) apply (rule ccontr) apply (simp add:mask_out_sub_mask ucast_and_mask[symmetric]) apply (drule arg_cong[where f = unat]) apply (simp add:unat_ucast) apply (subst (asm) mod_less) apply (rule unat_less_helper) apply (rule le_less_trans[OF word_and_le1]) apply (simp add:mask_def) apply (simp add:unat_eq_0) apply (drule(2) mask_neq_0[of _ _ _ _ pd_bits]) apply (simp add:pd_bits_def pageBits_def)+ done have invalid_pteI: "\<And>a pt x y z. \<lbrakk>valid_pt_entries pt; (a && ~~ mask 4) \<noteq> a; pt (a && ~~ mask 4) = pte.LargePagePTE x y z \<rbrakk> \<Longrightarrow> pt a = pte.InvalidPTE" apply (drule(1) valid_entriesD[rotated]) apply (case_tac "pt a"; simp add:mask_lower_twice is_aligned_neg_mask split:if_splits) done have invalid_pdeI: "\<And>a pd x y z. \<lbrakk>valid_pd_entries pd; (a && ~~ mask 4) \<noteq> a; pd (a && ~~ mask 4) = pde.SuperSectionPDE x y z \<rbrakk> \<Longrightarrow> pd a = pde.InvalidPDE" apply (drule(1) valid_entriesD[rotated]) apply (case_tac "pd a", simp_all add:mask_lower_twice is_aligned_neg_mask split:if_splits) done have inj[simp]: "\<And>p. is_aligned (p::word32) 7 \<Longrightarrow> inj_on (\<lambda>x. toEnum x * 8 + p) {Suc 0..<16}" apply (clarsimp simp:inj_on_def) apply (subst (asm) shiftl_t2n[where n = 3,simplified field_simps,simplified,symmetric])+ apply (drule arg_cong[where f = "\<lambda>x. x >> 3"]) apply (simp add:shiftl_shiftr_id word_of_nat_less) apply (simp add:of_nat_inj) done show ?thesis apply (rule name_pre) apply (case_tac entries) apply (case_tac a, case_tac aa) apply (simp add:page_inv_entries_pre_def page_inv_entries_safe_def | wp | intro conjI impI)+ apply (simp split:list.splits add:page_inv_entries_pre_def)+ apply (rename_tac obj_ref vm_attributes cap_rights slot slots) apply (elim conjE exE) apply (subst mapME_x_Cons) apply simp apply wp apply (rule_tac Q' = "\<lambda>r s. \<forall>x \<in> set slots. obj_at (\<lambda>ko. \<exists>pt. ko = ArchObj (PageTable pt) \<and> pt (ucast (x && mask pt_bits >> 3)) = pte.InvalidPTE) (hd (slot # slots) && ~~ mask pt_bits) s" in hoare_post_imp_R) apply (wp mapME_x_accumulate_checks[where Q = "\<lambda>s. valid_pdpt_objs s"] ) apply (wp get_master_pte_wp| wpc | simp)+ apply clarsimp apply (frule_tac x = xa in mask_out_same_pt) apply (clarsimp simp:upto_enum_def upto_enum_step_def upto_0_to_n2) apply (erule notE) apply (subst shiftl_t2n[where n = 3,simplified field_simps,simplified,symmetric]) apply (rule shiftl_less_t2n[where m = 7,simplified]) apply (simp add:word_of_nat_less) apply simp apply (frule_tac x = z in mask_out_same_pt) apply (clarsimp simp:upto_enum_def upto_enum_step_def upto_0_to_n2) apply (clarsimp simp:field_simps obj_at_def split:pte.splits) apply (intro conjI impI) apply (clarsimp simp: pte_bits_def) apply (drule(1) valid_pdpt_objs_ptD) apply (clarsimp simp: word_bool_alg.conj_assoc) apply (frule align_entry_ptD,simp) apply (clarsimp simp: is_aligned_neg_mask_eq[of _ 4] pte_bits_def) apply clarsimp apply (drule(1) valid_pdpt_objs_ptD,clarify) apply (erule(4) invalid_pteI[OF _ neq_pt_offset]) apply (clarsimp simp: pte_bits_def) apply (clarsimp simp: pte_bits_def) apply (drule(1) valid_pdpt_objs_ptD) apply (frule align_entry_ptD,simp) apply (simp add: is_aligned_neg_mask_eq) apply (wp hoare_drop_imps |wpc|simp)+ apply (clarsimp simp:upto_enum_def upto_enum_step_def upto_0_to_n2 Fun.comp_def distinct_map) apply (intro exI conjI,fastforce+) apply (simp add:obj_at_def hd_map_simp upto_0_to_n2 upto_enum_def upto_enum_step_def) apply (frule_tac x = 1 in bspec,fastforce+) apply ((wp hoare_drop_imps |wpc|simp)+)[1] apply (simp add:page_inv_entries_pre_def page_inv_entries_safe_def | wp | intro conjI impI)+ apply (simp split:list.splits add:page_inv_entries_pre_def mapME_singleton) apply (wp get_master_pte_wp |wpc | simp)+ apply (clarsimp simp:obj_at_def split:pte.splits) apply (clarsimp simp:page_inv_entries_safe_def split:list.splits) apply (simp split:list.splits add:page_inv_entries_pre_def mapME_singleton) apply (case_tac b,case_tac a) apply ((simp add:page_inv_entries_pre_def page_inv_entries_safe_def | wp | intro conjI impI)+)[1] apply simp apply wp[1] apply (simp split:list.splits add:page_inv_entries_pre_def mapME_singleton) apply (wp get_master_pde_wp | wpc | simp)+ apply (clarsimp simp:obj_at_def page_inv_entries_safe_def pde_bits_def split:pde.splits) apply (simp split:list.splits if_splits add:page_inv_entries_pre_def Let_def page_inv_entries_safe_def) apply (elim conjE exE) apply (subst mapME_x_Cons) apply simp apply wp apply (rule_tac Q' = "\<lambda>r s. \<forall>x \<in> set x22. obj_at (\<lambda>ko. \<exists>pd. ko = ArchObj (PageDirectory pd) \<and> pd (ucast (x && mask pd_bits >> 3)) = pde.InvalidPDE) (hd (x21 # x22) && ~~ mask pd_bits) s" in hoare_post_imp_R) apply (wp mapME_x_accumulate_checks[where Q = "\<lambda>s. valid_pdpt_objs s"] ) apply (wp get_master_pde_wp| wpc | simp)+ apply clarsimp apply (frule_tac x = xa in mask_out_same_pd) apply (clarsimp simp:upto_enum_def upto_enum_step_def upto_0_to_n2) apply (erule notE) apply (subst shiftl_t2n[where n = 3,simplified field_simps,simplified,symmetric]) apply (rule shiftl_less_t2n[where m = 7,simplified]) apply (simp add:word_of_nat_less) apply simp apply (frule_tac x = z in mask_out_same_pd) apply (clarsimp simp:upto_enum_def upto_enum_step_def upto_0_to_n2) apply (clarsimp simp:field_simps obj_at_def split:pde.splits) apply (drule(1) valid_pdpt_objs_pdD) apply (intro conjI impI; clarsimp simp: pde_bits_def) apply (frule align_entry_pdD,simp) apply (clarsimp simp: is_aligned_neg_mask_eq pde_bits_def) apply (frule(1) align_entry_pdD) apply (simp add:is_aligned_neg_mask_eq) apply (frule(1) align_entry_pdD) apply (simp add:is_aligned_neg_mask_eq) apply (frule(1) align_entry_pdD) apply (erule(4) invalid_pdeI[OF _ neq_pd_offset]) apply (wp hoare_drop_imps |wpc|simp)+ apply (clarsimp simp:upto_enum_def upto_enum_step_def upto_0_to_n2 Fun.comp_def distinct_map) apply (intro exI conjI,fastforce+) apply (simp add:obj_at_def hd_map_simp upto_0_to_n2 upto_enum_def upto_enum_step_def) apply (frule_tac x = 1 in bspec,fastforce+) apply (wp get_master_pde_wp | simp | wpc)+ done qed lemma create_mapping_entries_safe[wp]: "\<lbrace>\<exists>\<rhd>pd and K (vmsz_aligned vptr sz) and K (is_aligned pd pd_bits) and K (vptr < kernel_base) and valid_vspace_objs and pspace_aligned and (\<exists>\<rhd> (lookup_pd_slot pd vptr && ~~ mask pd_bits))\<rbrace> create_mapping_entries ptr vptr sz rights attrib pd \<lbrace>\<lambda>entries. case entries of (Inl (SmallPagePTE _ _ _, [_])) \<Rightarrow> \<top> | (Inl (SmallPagePTE _ _ _, _)) \<Rightarrow> \<bottom> | (Inl (LargePagePTE _ _ _, [])) \<Rightarrow> \<bottom> | (Inr (SectionPDE _ _ _, [_])) \<Rightarrow> \<top> | (Inr (SectionPDE _ _ _, _)) \<Rightarrow> \<bottom> | (Inr (SuperSectionPDE _ _ _, [])) \<Rightarrow> \<bottom> | _ \<Rightarrow> page_inv_entries_pre entries\<rbrace>,-" apply (cases sz, simp_all add: largePagePTE_offsets_def superSectionPDE_offsets_def) defer 2 apply (wp | simp)+ apply (simp split:list.split) apply (subgoal_tac "lookup_pd_slot pd vptr \<le> lookup_pd_slot pd vptr + 0x78") apply (clarsimp simp:upto_enum_def not_less upto_enum_step_def vspace_bits_defs page_inv_entries_pre_def Let_def) apply (clarsimp simp:upto_enum_step_def upto_enum_def map_eq_Cons_conv upt_eq_Cons_conv) apply (drule_tac x = "lookup_pd_slot pd vptr" in spec) apply (subst (asm) upto_0_to_n2) apply simp apply clarsimp apply (drule lookup_pd_slot_aligned_6) apply (simp add: vspace_bits_defs) apply simp apply clarsimp apply (erule is_aligned_no_wrap'[OF lookup_pd_slot_aligned_6]) apply (simp add: vspace_bits_defs) apply simp apply (wp get_pde_wp | simp add:lookup_pt_slot_def | wpc)+ apply (clarsimp simp:upto_enum_def upto_enum_step_def page_inv_entries_pre_def Let_def ) apply (drule_tac ref = refa in valid_vspace_objsD) apply (simp add:obj_at_def) apply simp apply (simp add: vspace_bits_defs) apply (drule_tac x = "ucast (lookup_pd_slot pd vptr && mask pd_bits >> 3)" in spec) apply (simp add: vspace_bits_defs) apply (clarsimp simp:not_less[symmetric] split:list.splits) apply (clarsimp simp:page_inv_entries_pre_def Let_def upto_enum_step_def upto_enum_def) apply (subst (asm) upto_0_to_n2) apply simp apply (clarsimp simp:not_less[symmetric]) apply (subgoal_tac "(\<exists>xa xb. pda (ucast (lookup_pd_slot pd vptr && mask pd_bits >> 3)) = pde.PageTablePDE x) \<longrightarrow> is_aligned (ptrFromPAddr x + ((vptr >> 12) && 0x1FF << 3)) 7") apply (clarsimp simp: vspace_bits_defs) apply (rule_tac x="ptrFromPAddr x + ((vptr >> 12) && 0x1FF << 3)" in exI) apply (subst map_upt_append[where x=15 and y=16]; simp add: mask_def) apply clarsimp apply (rule aligned_add_aligned) apply (erule(1) pt_aligned) apply (rule is_aligned_shiftl[OF is_aligned_andI1]) apply (rule is_aligned_shiftr) apply (simp add:vmsz_aligned_def) apply simp done lemma decode_mmu_invocation_valid_pdpt[wp]: "\<lbrace>invs and valid_cap (cap.ArchObjectCap cap) and valid_pdpt_objs \<rbrace> decode_mmu_invocation label args cap_index slot cap excaps \<lbrace>invocation_duplicates_valid o Invocations_A.InvokeArchObject\<rbrace>, -" proof - have bitwise:"\<And>a. (ucast (((a::word32) && ~~ mask 7) && mask 14 >> 3)::11 word) = (ucast (a && mask 14 >> 3)::11 word) && ~~ mask 4" apply (simp add:mask_def) apply word_bitwise done have sz: "\<And>vmpage_size. \<lbrakk>args ! 0 + 2 ^ pageBitsForSize vmpage_size - 1 < kernel_base; vmsz_aligned (args ! 0) vmpage_size\<rbrakk> \<Longrightarrow> args ! 0 < kernel_base" apply (rule le_less_trans[OF is_aligned_no_overflow]) apply (simp add:vmsz_aligned_def) apply simp done show ?thesis supply if_split[split del] apply (simp add: decode_mmu_invocation_def) \<comment> \<open>Handle the easy cases first (trivial because of the post-condition invocation_duplicates_valid)\<close> apply (cases "invocation_type label \<notin> {ArchInvocationLabel ARMPageTableMap, ArchInvocationLabel ARMPageMap}") apply (wpsimp simp: invocation_duplicates_valid_def page_inv_duplicates_valid_def pti_duplicates_valid_def Let_def cong: if_cong) \<comment> \<open>Handle the two interesting cases now\<close> apply (clarsimp; erule disjE; cases cap; simp add: isPDFlushLabel_def isPageFlushLabel_def throwError_R') \<comment> \<open>PageTableMap\<close> apply (wpsimp simp: Let_def get_master_pde_def wp: get_pde_wp hoare_drop_imps hoare_vcg_if_lift_ER) apply (clarsimp simp: invocation_duplicates_valid_def pti_duplicates_valid_def mask_lower_twice bitwise obj_at_def vspace_bits_defs if_apply_def2 split: if_splits) apply wp \<comment> \<open>PageMap\<close> apply (rename_tac dev pg_ptr rights sz pg_map) apply (wpsimp simp: Let_def invocation_duplicates_valid_def page_inv_duplicates_valid_def wp: ensure_safe_mapping_ensures[THEN hoare_post_imp_R] check_vp_wpR hoare_vcg_if_lift_ER find_pd_for_asid_lookup_pd_wp) apply (fastforce simp: invs_psp_aligned page_directory_at_aligned_pd_bits word_not_le sz valid_cap_def valid_arch_cap_def lookup_pd_slot_eq split: if_splits) apply wp done qed lemma returnOk_lift : assumes P': "\<forall>s. P rv s" shows "\<lbrace>Q\<rbrace> (doE y \<leftarrow> f ; returnOk rv odE) \<lbrace>P\<rbrace>, -" by (wp,auto simp: returnOk_def return_def validE_R_def validE_def valid_def P') lemma decode_vcpu_invocation_valid_pdpt[wp]: "\<lbrace>Q\<rbrace> decode_vcpu_invocation label args vcap excaps \<lbrace>invocation_duplicates_valid o Invocations_A.InvokeArchObject\<rbrace>, -" apply (simp add: decode_vcpu_invocation_def) apply (wpsimp simp: decode_vcpu_set_tcb_def decode_vcpu_inject_irq_def decode_vcpu_read_register_def decode_vcpu_write_register_def decode_vcpu_ack_vppi_def if_apply_def2 | simp add: invocation_duplicates_valid_def)+ done lemma arch_decode_invocation_valid_pdpt[wp]: notes find_pd_for_asid_inv[wp del] shows "\<lbrace>invs and valid_cap (cap.ArchObjectCap cap) and valid_pdpt_objs \<rbrace> arch_decode_invocation label args cap_index slot cap excaps \<lbrace>invocation_duplicates_valid o Invocations_A.InvokeArchObject\<rbrace>,-" proof - show ?thesis apply (simp add: arch_decode_invocation_def) apply (rule hoare_pre) apply (wp | wpc)+ apply auto done qed lemma decode_invocation_valid_pdpt[wp]: "\<lbrace>invs and valid_cap cap and valid_pdpt_objs\<rbrace> decode_invocation label args cap_index slot cap excaps \<lbrace>invocation_duplicates_valid\<rbrace>,-" apply (simp add: decode_invocation_def split del: if_split) apply (rule hoare_pre) apply (wp | wpc | simp only: invocation_duplicates_valid_def o_def uncurry_def split_def Invocations_A.invocation.simps)+ apply clarsimp done crunch valid_pdpt_objs[wp]: handle_fault, reply_from_kernel "valid_pdpt_objs" (simp: crunch_simps wp: crunch_wps) lemma invocation_duplicates_valid_exst_update[simp]: "invocation_duplicates_valid i (trans_state f s) = invocation_duplicates_valid i s" apply (clarsimp simp add: invocation_duplicates_valid_def pti_duplicates_valid_def page_inv_duplicates_valid_def page_inv_entries_safe_def split: sum.splits invocation.splits arch_invocation.splits kernel_object.splits page_table_invocation.splits page_invocation.splits)+ done lemma set_thread_state_duplicates_valid[wp]: "\<lbrace>invocation_duplicates_valid i\<rbrace> set_thread_state t st \<lbrace>\<lambda>rv. invocation_duplicates_valid i\<rbrace>" apply (simp add: set_thread_state_def set_object_def get_object_def) apply (wp|simp)+ apply (clarsimp simp: invocation_duplicates_valid_def pti_duplicates_valid_def page_inv_duplicates_valid_def page_inv_entries_safe_def Let_def dest!: get_tcb_SomeD split: Invocations_A.invocation.split arch_invocation.split_asm page_table_invocation.split page_invocation.split sum.split ) apply (auto simp add: obj_at_def page_inv_entries_safe_def) done lemma handle_invocation_valid_pdpt[wp]: "\<lbrace>valid_pdpt_objs and invs and ct_active\<rbrace> handle_invocation calling blocking \<lbrace>\<lambda>rv. valid_pdpt_objs\<rbrace>" apply (simp add: handle_invocation_def) apply (wp syscall_valid set_thread_state_ct_st | simp add: split_def | wpc | wp (once) hoare_drop_imps)+ apply (auto simp: ct_in_state_def elim: st_tcb_ex_cap) done crunch valid_pdpt[wp]: handle_event, activate_thread,switch_to_thread, switch_to_idle_thread "valid_pdpt_objs" (simp: crunch_simps wp: crunch_wps alternative_valid select_wp OR_choice_weak_wp select_ext_weak_wp ignore: without_preemption getActiveIRQ resetTimer ackInterrupt getFAR getDFSR getIFSR OR_choice set_scheduler_action clearExMonitor) lemma schedule_valid_pdpt[wp]: "\<lbrace>valid_pdpt_objs\<rbrace> schedule :: (unit,unit) s_monad \<lbrace>\<lambda>_. valid_pdpt_objs\<rbrace>" apply (simp add: schedule_def allActiveTCBs_def) apply (wp alternative_wp select_wp) apply simp done lemma call_kernel_valid_pdpt[wp]: "\<lbrace>invs and (\<lambda>s. e \<noteq> Interrupt \<longrightarrow> ct_running s) and valid_pdpt_objs\<rbrace> (call_kernel e) :: (unit,unit) s_monad \<lbrace>\<lambda>_. valid_pdpt_objs\<rbrace>" apply (cases e, simp_all add: call_kernel_def) apply (rule hoare_pre) apply (wp | simp | wpc | rule conjI | clarsimp simp: ct_in_state_def | erule pred_tcb_weakenE | wp (once) hoare_drop_imps)+ done end end
State Before: Ξ± : Type u_1 inst✝ : LinearOrderedAddCommGroup Ξ± hΞ± : Archimedean Ξ± p : Ξ± hp : 0 < p a✝ b✝ c : Ξ± n : β„€ a b : Ξ± m : β„€ ⊒ toIcoMod hp a (b - m β€’ p) = toIcoMod hp a b State After: no goals Tactic: rw [sub_eq_add_neg, ← neg_smul, toIcoMod_add_zsmul]
[STATEMENT] lemma subset_eq_diff_conv: "A - C \<subseteq># B \<longleftrightarrow> A \<subseteq># B + C" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (A - C \<subseteq># B) = (A \<subseteq># B + C) [PROOF STEP] by (simp add: subseteq_mset_def le_diff_conv)
# -*- coding: utf-8 -*- """ Created on Thu Jan 15, 2015 @author: Wenchang Yang """ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from scipy.signal import butter, filtfilt # ---- Butterworth filter def _lowpass_ba(lowcut=0.25,fs=1.0,order=2): nyq = 0.5 * fs low = lowcut / nyq b,a = butter(order,low,btype='lowpass') return b,a def lowpass(X,lowcut=0.25,fs=1.0,order=2,axis=-1): b,a = _lowpass_ba(lowcut,fs=fs,order=order) Y = filtfilt(b,a,X,axis=axis) return Y def _highpass_ba(highcut=0.25,fs=1.0,order=2): nyq = 0.5 * fs high = highcut / nyq b,a = butter(order,high,btype='highpass') return b,a def highpass(X,highcut=0.25,fs=1.0,order=2,axis=-1): b,a = _highpass_ba(highcut,fs,order=order) Y = filtfilt(b,a,X,axis=axis) return Y def _bandpass_ba(lowcut=0.125,highcut=0.375,fs=1.0,order=2): nyq = 0.5 * fs low = lowcut /nyq high = highcut / nyq b,a = butter(order,[low,high],btype='bandpass') return b,a def bandpass(X,lowcut=0.125,highcut=0.375,fs=1.0,order=2,axis=-1): b,a = _bandpass_ba(lowcut,highcut,fs,order=order) Y = filtfilt(b,a,X,axis=axis) return Y # # ---- Lanczos filter def _lowpass_ba_lanczos(lowcut=0.25,fs=1.0,M=10): '''estimate the Lanczos lowpass filter coefficients. b_k = [\frac{\sin(2\pi f_{cut}k)}{\pi k}][\frac{\sin(\pi k/(M+1))}{\pi k/(M+1)}] https://books.google.com/books?id=p7YMOPuu8ugC&pg=PA612&lpg=PA612&dq=Lanczos+filter+coefficients&source=bl&ots=Zx1bDJvGh6&sig=WQqdwryB8SU5d-ygDwAwbpx8IsQ&hl=en&sa=X&ei=cGS5VOqKDNivoQSG0IHoAw&ved=0CD0Q6AEwBA#v=onepage&q=Lanczos%20filter%20coefficients&f=false http://www.unl.edu.ar/ceneha/uploads/LanczosFiltering(1979).pdf''' low = lowcut / fs M = float(M) k = np.arange(-M,M+1) # b = ( np.sin(2*np.pi*low*k) / (np.pi*k) )*( np.sin(np.pi*k/(M+1)) / (np.pi*k/(M+1)) ) # b[M] = 2*low b = 2*low*np.sinc(2*low*k) * np.sinc(k/(M+1)) b = b / b.sum() a = 1.0 return b,a def lowpass_lanczos(X,lowcut=0.25,fs=1.,M=10,axis=-1): b,a = _lowpass_ba_lanczos(lowcut,fs=fs,M=M) Y = filtfilt(b,a,X,axis=axis) return Y def _highpass_ba_lanczos(highcut=0.25,fs=1.0,M=10): '''estimate the Lanczos highpass filter coefficients''' b,a = _lowpass_ba_lanczos(lowcut=highcut,fs=fs,M=M) b = -b b[M] = 1+b[M] return b,a def highpass_lanczos(X,highcut=0.25,fs=1.,M=10,axis=-1): b,a = _highpass_ba_lanczos(highcut,fs=fs,M=M) Y = filtfilt(b,a,X,axis=axis) return Y def bandpass_lanczos(X,lowcut=0.125,highcut=0.375,fs=1.,M=10,axis=-1): # Ylow = lowpass_lanczos(X,lowcut=lowcut,fs=fs,M=M,axis=axis) # Yhigh = highpass_lanczos(X,highcut=highcut,fs=fs,M=M,axis=axis) # Y = X - Ylow - Yhigh Y = lowpass_lanczos(X,lowcut=highcut,fs=fs,M=M,axis=axis) Y = highpass_lanczos(Y,highcut=lowcut,fs=fs,M=M,axis=axis) return Y #
# Copyright (c) 2021 zfit from typing import List, Optional import iminuit import numpy as np import tensorflow as tf from .baseminimizer import BaseMinimizer, ZfitStrategy, print_params, print_gradients from .fitresult import FitResult from ..core.interfaces import ZfitLoss from ..core.parameter import Parameter from ..util.cache import GraphCachable class Minuit(BaseMinimizer, GraphCachable): _DEFAULT_name = "Minuit" def __init__(self, strategy: ZfitStrategy = None, minimize_strategy: int = 1, tolerance: float = None, verbosity: int = 5, name: str = None, ncall: Optional[int] = None, use_minuit_grad: bool = None, **minimizer_options): """ Args: strategy: A :py:class:`~zfit.minimizer.baseminimizer.ZfitStrategy` object that defines the behavior of the minimizer in certain situations. minimize_strategy: A number used by minuit to define the strategy, either 0, 1 or 2. tolerance: Stopping criteria: the Estimated Distance to Minimum (EDM) has to be lower then `tolerance` verbosity: Regulates how much will be printed during minimization. Values between 0 and 10 are valid. name: Name of the minimizer ncall: Maximum number of minimization steps. use_minuit_grad: If True, iminuit uses it's internal numerical gradient calculation instead of the (analytic/numerical) gradient provided by TensorFlow/zfit. """ minimizer_options['ncall'] = 0 if ncall is None else ncall if minimize_strategy not in range(3): raise ValueError(f"minimize_strategy has to be 0, 1 or 2, not {minimize_strategy}.") minimizer_options['strategy'] = minimize_strategy super().__init__(name=name, strategy=strategy, tolerance=tolerance, verbosity=verbosity, minimizer_options=minimizer_options) use_minuit_grad = True if use_minuit_grad is None else use_minuit_grad self._minuit_minimizer = None self._use_tfgrad = not use_minuit_grad def _minimize(self, loss: ZfitLoss, params: List[Parameter]): # create options minimizer_options = self.minimizer_options.copy() minimize_options = {} precision = minimizer_options.pop('precision', None) minimize_options['ncall'] = minimizer_options.pop('ncall') minimizer_init = {} if 'errordef' in minimizer_options: raise ValueError("errordef cannot be specified for Minuit as this is already defined in the Loss.") loss_errordef = loss.errordef if not isinstance(loss_errordef, (float, int)): loss_errordef = 1.0 # default of minuit minimizer_init['errordef'] = loss_errordef minimizer_init['pedantic'] = minimizer_options.pop('pedantic', False) minimizer_setter = {} minimizer_setter['strategy'] = minimizer_options.pop('strategy') if self.verbosity > 6: minuit_verbosity = 3 elif self.verbosity > 2: minuit_verbosity = 1 else: minuit_verbosity = 0 if minimizer_options: raise ValueError("The following options are not (yet) supported: {}".format(minimizer_options)) # create Minuit compatible names limits = tuple(tuple((param.lower, param.upper)) for param in params) errors = tuple(param.step_size for param in params) start_values = [p.numpy() for p in params] limits = np.array([(low.numpy(), up.numpy()) for low, up in limits]) errors = np.array([err.numpy() for err in errors]) multiparam = isinstance(start_values[0], np.ndarray) and len(start_values[0]) > 1 and len(params) == 1 if multiparam: # TODO(Mayou36): multiparameter params_name = None # autogenerate for the moment start_values = start_values[0] # errors = errors[0] limits = limits[0] gradients = gradients[0] else: params_name = [param.name for param in params] current_loss = None nan_counter = 0 def func(values): nonlocal current_loss, nan_counter self._update_params(params=params, values=values) do_print = self.verbosity > 8 is_nan = False try: loss_evaluated = loss.value().numpy() except tf.errors.InvalidArgumentError: is_nan = True loss_evaluated = "invalid, error occured" except: loss_evaluated = "invalid, error occured" raise finally: if do_print: print_params(params, values, loss_evaluated) is_nan = is_nan or np.isnan(loss_evaluated) if is_nan: nan_counter += 1 info_values = {} info_values['loss'] = loss_evaluated info_values['old_loss'] = current_loss info_values['nan_counter'] = nan_counter loss_evaluated = self.strategy.minimize_nan(loss=loss, params=params, minimizer=minimizer, values=info_values) else: nan_counter = 0 current_loss = loss_evaluated return loss_evaluated def grad_func(values): nonlocal current_loss, nan_counter self._update_params(params=params, values=values) do_print = self.verbosity > 8 is_nan = False try: loss_value, gradients = loss.value_gradients(params=params) loss_value = loss_value.numpy() gradients_values = [float(g.numpy()) for g in gradients] except tf.errors.InvalidArgumentError: is_nan = True loss_value = "invalid, error occured" gradients_values = ["invalid"] * len(params) except: gradients_values = ["invalid"] * len(params) raise finally: if do_print: print_gradients(params, values, gradients_values, loss=loss_value) is_nan = is_nan or any(np.isnan(gradients_values)) if is_nan: nan_counter += 1 info_values = {} info_values['loss'] = loss_value info_values['old_loss'] = current_loss info_values['nan_counter'] = nan_counter # but loss value not needed here _ = self.strategy.minimize_nan(loss=loss, params=params, minimizer=minimizer, values=info_values) else: nan_counter = 0 current_loss = loss_value return gradients_values grad_func = grad_func if self._use_tfgrad else None minimizer = iminuit.Minuit(func, start_values, grad=grad_func, name=params_name, ) minimizer.precision = precision for param in params: if param.has_step_size: minimizer.errors[param.name] = param.step_size if param.has_limits: minimizer.limits[param.name] = (param.lower, param.upper) if loss.errordef is None: raise ValueError("Errordef must not be None to be run with iminuit.") minimizer.errordef = loss.errordef minimizer.print_level = minuit_verbosity strategy = minimizer_setter.pop('strategy') minimizer.strategy = strategy minimizer.tol = self.tolerance / 1e-3 # iminuit 1e-3 and tolerance 0.1 assert not minimizer_setter, "minimizer_setter is not empty, bug. Please report. minimizer_setter: {}".format( minimizer_setter) self._minuit_minimizer = minimizer result = minimizer.migrad(**minimize_options) fitresult = FitResult.from_minuit(loss=loss, params=params, result=result, minimizer=self.copy()) return fitresult def copy(self): tmp_minimizer = self._minuit_minimizer new_minimizer = super().copy() new_minimizer._minuit_minimizer = tmp_minimizer return new_minimizer
Require Import Crypto.Arithmetic.PrimeFieldTheorems. Require Import Crypto.Specific.solinas32_2e322m2e161m1_14limbs.Synthesis. (* TODO : change this to field once field isomorphism happens *) Definition freeze : { freeze : feBW_tight -> feBW_limbwidths | forall a, phiBW_limbwidths (freeze a) = phiBW_tight a }. Proof. Set Ltac Profiling. Time synthesize_freeze (). Show Ltac Profile. Time Defined. Print Assumptions freeze.
lemma cis_cnj: "cnj (cis t) = cis (-t)"
## This is the function to combine the likelihood values from different measurements. Combination<-function(LikelihoodMatrix) { #print(LikelihoodMatrix); Dimension<-dim(LikelihoodMatrix); #print(Dimension); if (Dimension[2]==2) { CombinedLikelihood<-LikelihoodMatrix[2]; } else { CombinedLikelihood<-LikelihoodMatrix[2]; for (i in 3:Dimension[2]) { CombinedLikelihood<-CombinedLikelihood*LikelihoodMatrix[i]; } } return(CombinedLikelihood); }
[STATEMENT] lemma val_p_int_pow: "val (\<pp>[^](k::int)) = k" [PROOF STATE] proof (prove) goal (1 subgoal): 1. val (\<pp> [^] k) = eint k [PROOF STEP] using ord_p_pow_int p_intpow_closed(2) val_ord [PROOF STATE] proof (prove) using this: ord (\<pp> [^] ?n) = ?n \<pp> [^] ?n \<in> nonzero Q\<^sub>p ?a \<in> nonzero Q\<^sub>p \<Longrightarrow> val ?a = eint (ord ?a) goal (1 subgoal): 1. val (\<pp> [^] k) = eint k [PROOF STEP] by presburger
lemma LIMSEQ_iff: fixes L :: "'a::real_normed_vector" shows "(X \<longlonglongrightarrow> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
(* Use of this source code is governed by the license described * * in the LICENSE file at the root of the source tree. *) Set Implicit Arguments. Require Import fcf.Crypto. Require Import fcf.Encryption. Require Import fcf.CompFold. Require Import fcf.FCF. Section EncryptClassify. Variable Plaintext Ciphertext Key : Set. Variable KeyGen : Comp Key. Variable Encrypt : Key -> Plaintext -> Comp Ciphertext. Variable Decrypt : Key -> Ciphertext -> Plaintext. Hypothesis Ciphertext_EqDec : EqDec Ciphertext. Variable A_State : Set. Variable A1 : (Plaintext -> Comp Ciphertext) -> Comp (list (Plaintext * Plaintext) * (Plaintext * Plaintext) * A_State). Variable A2 : A_State -> (Plaintext -> Comp Ciphertext) -> list (Ciphertext * bool) -> Ciphertext -> Comp bool. Definition IND_CPA_SecretKey_Class_G := key <-$ KeyGen ; [lsP, p, s_A] <-$3 A1 (Encrypt key); [p0, p1] <-2 p; lsC <-$ compMap _ (fun p => b <-$ {0, 1}; p_b <- if b then (snd p) else (fst p); c_b <-$ Encrypt key p_b; ret (c_b, b)) lsP; b <-$ {0, 1}; pb <- if b then p1 else p0; c <-$ Encrypt key pb; b' <-$ A2 s_A (Encrypt key) lsC c; ret (eqb b b'). End EncryptClassify.
# Data frame continents_df <- data.frame( continents = c("Africa", "Antarctica", "Asia", "Europe", "North America", "South America", "Oceania"), area = c(30.3, 14, 44.5, 10.1, 24.7, 17.8, 8.6), population = c(1287.9, 0.004, 4545.1, 742.6, 587.6, 428.2, 41.2), shares_border = c(TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE) ) # Check structure of data frame str(continents_df) # Comparing data frame selections africa_area <- continents_df[1, "area"] asia_area <- continents_df[3, "area"] africa_area > asia_area # Only show data that's TRUE continents_df[shares_border, ] # Ordering data frame pop_order <- order(continents_df$population, decreasing = TRUE) continents_df[pop_order, ]
N @-@ 88 was unofficially designated around 1937 , connecting from N @-@ 29 , to N @-@ 86 and N @-@ 19 in Bridgeport . The route remained relatively the same as the state highway system was officially designated . Before 1955 , Nebraska did not have an adequate legal instrument to define the state highway system . By 1960 , N @-@ 19 was renumbered to US 385 , and US 26 was rerouted north near Bridgeport . The old alignment became part of N @-@ 92 . Two years later , N @-@ 29 was renumbered to N @-@ 71 . Between 1981 @-@ 82 , a road appeared on the official state map , extending from WYO 151 to N @-@ 71 . That road became part of N @-@ 88 by 1986 . No significant changes have been made since .
State Before: π•œ : Type u_1 inst✝⁸ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁢ : NormedSpace π•œ E F : Type u_3 inst✝⁡ : NormedAddCommGroup F inst✝⁴ : NormedSpace π•œ F G : Type ?u.441700 inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace π•œ G G' : Type ?u.441795 inst✝¹ : NormedAddCommGroup G' inst✝ : NormedSpace π•œ G' f fβ‚€ f₁ g : E β†’ F f' fβ‚€' f₁' g' e : E β†’L[π•œ] F x : E s t : Set E L L₁ Lβ‚‚ : Filter E hf : HasStrictFDerivAt f f' x hg : HasStrictFDerivAt g g' x ⊒ HasStrictFDerivAt (fun x => f x - g x) (f' - g') x State After: no goals Tactic: simpa only [sub_eq_add_neg] using hf.add hg.neg
…the verdict comes at a time when both governments are facing crises of legitimacy. Hun Sen has reason to celebrate the ruling. It may well boost his standing after he won re-election in July by a surprisingly thin margin. As ever, it is Thailand’s domestic politics that remains the main source of tension between Thailand and Cambodia, and it may prove so again. The current Thai prime minister, Yingluck Shinawatra, and her Pheu Thai party government, have suffered badly as a result of a brazen and aborted attempt to ram through an amnesty bill. The motion would have paved the way for the return of her brother, Thaksin Shinawatra, a former Thai prime minister who was deposed in a 2006 coup and as polarising a figure as is known in this part of the world. The mood among the ultra-royalists and -nationalists who oppose him, along with the Democrat Party camped in the streets of Bangkok, is already upbeat. They have thwarted the return of the man they most loathe (though they still have to figure out how to beat the Shinawatra clan in elections). This entry was posted in 2Bangkok News, Cambodia. Bookmark the permalink.
(* This code is copyrighted by its authors; it is distributed under *) (* the terms of the LGPL license (see LICENSE and description files) *) From Coq Require Export List. From Coq Require Import Arith Inclusion Inverse_Image Wf_nat Relation_Definitions. From Coq Require Import Relation_Operators Lexicographic_Product. From Buchberger Require Import Relation_Operators_compat LetP. From Buchberger Require Export WfR0. Set Default Proof Using "Type". Section Buch. Load hCoefStructure. Load hOrderStructure. Load hWfRO. Inductive stable : list (poly A0 eqA ltM) -> list (poly A0 eqA ltM) -> Prop := stable0 : forall P Q : list (poly A0 eqA ltM), (forall a : poly A0 eqA ltM, Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a P -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a Q) -> (forall a : poly A0 eqA ltM, Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a Q -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a P) -> stable P Q. Local Hint Resolve stable0 : core. Theorem stable_refl : forall Q : list (poly A0 eqA ltM), stable Q Q. Proof. auto. Qed. Theorem stable_trans : forall Q y R : list (poly A0 eqA ltM), stable Q y -> stable y R -> stable Q R. Proof. intros Q y R H' H'0; inversion H'; inversion H'0; auto. Qed. Theorem stable_sym : forall Q R : list (poly A0 eqA ltM), stable R Q -> stable Q R. Proof. intros Q R H'; elim H'; auto. Qed. Local Hint Resolve (Cb_in _ _ _ _ _ _ _ _ _ cs eqA_dec _ _ ltM_dec os) : core. Theorem Cb_stable : forall (a : poly A0 eqA ltM) (Q : list (poly A0 eqA ltM)), Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a Q -> stable Q (addEnd A A0 eqA n ltM a Q). Proof using os minusA invA divA cs A1. intros a Q H'0; apply stable0; auto. intros a0 H'1. apply Cb_trans with (b := a) (1 := cs); auto. Qed. Theorem in_incl : forall (A : Type) (p q : list A) (a b : A), incl p q -> In a p -> In a q. Proof. auto. Qed. Inductive reds : poly A0 eqA ltM -> poly A0 eqA ltM -> list (poly A0 eqA ltM) -> Prop := | reds0 : forall (P : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), red A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a b) P -> reds a b P | reds1 : forall (P : list (poly A0 eqA ltM)) (a b c : poly A0 eqA ltM), In c P -> reds a c P -> reds c b P -> divp A A0 eqA multA divA n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a b) c -> reds a b P. Theorem reds_com : forall (P : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), reds a b P -> reds b a P. Proof. intros P a b H'; elim H'; simpl in |- *; auto. intros P0 a0 b0 H'0. apply reds0; auto. apply red_com; auto. intros P0 a0 b0 c H'0 H'1 H'2 H'3 H'4 H'5. apply reds1 with (c := c); auto. apply divp_ppc; auto. Qed. (* Now we are ready!! We start with the definition of genCpC *) Inductive cpRes : Type := | Keep : forall P : list (poly A0 eqA ltM), cpRes | DontKeep : forall P : list (poly A0 eqA ltM), cpRes. Definition getRes : cpRes -> list (poly A0 eqA ltM). intros H'; case H'; auto. Defined. Definition addRes : poly A0 eqA ltM -> cpRes -> cpRes. intros i H'; case H'. intros H'0; exact (Keep (i :: H'0)). intros H'0; exact (DontKeep (i :: H'0)). Defined. Definition slice : poly A0 eqA ltM -> poly A0 eqA ltM -> list (poly A0 eqA ltM) -> cpRes. intros i a q; elim q; clear q. case (foreigner_dec A A0 A1 eqA multA n ltM i a). intros H; exact (DontKeep nil). intros H; exact (Keep nil). intros b q1 Rec. case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i a) b). intros divp10; exact (DontKeep (b :: q1)). intros divp10. case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i b) a). intros divp11; exact Rec. intros divp11; exact (addRes b Rec). Defined. Definition slicef : poly A0 eqA ltM -> poly A0 eqA ltM -> list (poly A0 eqA ltM) -> list (poly A0 eqA ltM). intros i a q; case (slice i a q); auto. Defined. Theorem slicef_incl : forall (a b : poly A0 eqA ltM) (P : list (poly A0 eqA ltM)), incl (slicef a b P) P. Proof. intros a b P; elim P; simpl in |- *; auto. unfold slicef in |- *; simpl in |- *; auto. case (foreigner_dec A A0 A1 eqA multA n ltM a b); intros H; apply incl_refl; auto with datatypes. intros c; unfold slicef in |- *; simpl in |- *. case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a b) c); auto with datatypes. case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a c) b); auto with datatypes. intros H' H'0 l; case (slice a b l); simpl in |- *; auto with datatypes. Qed. Theorem slice_inv : forall (a b : poly A0 eqA ltM) (P : list (poly A0 eqA ltM)) (c : poly A0 eqA ltM), In c P -> In c (getRes (slice a b P)) \/ divp A A0 eqA multA divA n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a c) b. Proof. intros a b P; elim P; simpl in |- *; auto. intros c H'; elim H'. intros p aP1; case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a b) p); simpl in |- *; auto. case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a p) b); auto. intros H' H'0 H'1 c H'2; elim H'2; [ intros H'3; rewrite <- H'3; clear H'2 | intros H'3; clear H'2 ]; auto. case (slice a b aP1); simpl in |- *; auto. intros P0 H' H'0 H'1 c H'2; elim H'2; [ intros H'3; rewrite <- H'3; clear H'2 | intros H'3; clear H'2 ]; auto. elim (H'1 c); [ intros H'5; try exact H'5 | intros H'5 | idtac ]; auto. intros P0 H' H'0 H'1 c H'2; elim H'2; [ intros H'3; rewrite <- H'3; clear H'2 | intros H'3; clear H'2 ]; auto. elim (H'1 c); [ intros H'5; try exact H'5 | intros H'5 | idtac ]; auto. Qed. Theorem slice_cons : forall (i a : poly A0 eqA ltM) (aP Q : list (poly A0 eqA ltM)), slice i a aP = DontKeep Q -> (exists c : poly A0 eqA ltM, In c Q /\ divp A A0 eqA multA divA n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i a) c) \/ foreigner A A0 A1 eqA multA n ltM i a. Proof. intros i a aP; elim aP. simpl in |- *; case (foreigner_dec A A0 A1 eqA multA n ltM i a); auto. intros H' Q H'0; inversion H'0. intros a0 l H' Q; simpl in |- *. case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i a) a0); auto. intros H'0 H'1; inversion H'1; auto. left; exists a0; split; simpl in |- *; auto. case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i a0) a); auto. generalize H'; clear H'; case (slice i a l); simpl in |- *; auto. intros P H' H'0 H'1 H'2; inversion H'2. intros P H' H'0 H'1 H'2; inversion H'2. elim (H' P); [ intros H'5; elim H'5; intros c E; elim E; intros H'6 H'7; clear E H'5 | intros H'5 | idtac ]; auto. left; exists c; split; simpl in |- *; auto. Qed. Definition Tl : list (poly A0 eqA ltM) -> list (poly A0 eqA ltM) -> Prop. exact (fun x y : list (poly A0 eqA ltM) => length x < length y). Defined. Theorem wf_Tl : well_founded Tl. Proof. apply (wf_inverse_image _ _ lt (length (A:=poly A0 eqA ltM))); auto. generalize lt_wf; auto. Qed. Scheme Sdep := Induction for prod Sort Prop. Theorem slice_Tl : forall (a ia : poly A0 eqA ltM) (L : list (poly A0 eqA ltM)), Tl (slicef a ia L) (a :: L). Proof. intros a b P; elim P; simpl in |- *; auto. unfold slicef in |- *; simpl in |- *; auto. case (foreigner_dec A A0 A1 eqA multA n ltM a b); unfold Tl in |- *; simpl in |- *; auto. intros c l. unfold slicef in |- *; simpl in |- *; auto. case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a b) c); auto. unfold Tl in |- *; simpl in |- *; auto. case (divp_dec _ _ _ _ _ _ _ _ _ cs n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a c) b); auto. intros H' H'0; case (slice a b l); simpl in |- *; auto. unfold Tl in |- *; simpl in |- *; auto. unfold Tl in |- *; simpl in |- *; auto. unfold Tl in |- *; intros H' H'0; case (slice a b l); simpl in |- *; auto with arith. Qed. Inductive genPcP : poly A0 eqA ltM -> list (poly A0 eqA ltM) -> list (poly A0 eqA ltM) -> list (poly A0 eqA ltM) -> Prop := | genPcP0 : forall (i : poly A0 eqA ltM) (L : list (poly A0 eqA ltM)), genPcP i nil L L | genPcP1 : forall (L L1 L2 L3 : list _) (a i : poly A0 eqA ltM), slice i a L1 = Keep L2 -> genPcP i L2 L L3 -> genPcP i (a :: L1) L (addEnd A A0 eqA n ltM (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os i a) L3) | genPcP2 : forall (L L1 L2 L3 : list _) (a i : poly A0 eqA ltM), slice i a L1 = DontKeep L2 -> genPcP i L2 L L3 -> genPcP i (a :: L1) L L3. Local Hint Resolve genPcP0 : core. Theorem genPcP_spolyp1 : forall (i : poly A0 eqA ltM) (L L1 L2 : list _), genPcP i L1 L L2 -> forall a : poly A0 eqA ltM, In a L2 -> (exists b : poly A0 eqA ltM, In b L1 /\ a = spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os i b) \/ In a L. Proof. intros i L L1 L2 H'; elim H'; clear H'; simpl in |- *; auto. intros L0 L3 L4 L5 a i0 H' H'0 H'1 a0 H'2. case (addEnd_cons A A0 eqA n ltM) with (1 := H'2); auto; intros H'7. rewrite H'7; auto. left; exists a; split; simpl in |- *; auto. elim (H'1 a0); auto. intros H'3; case H'3; intros b E; case E; intros H'4 H'5; rewrite H'5; clear E H'3. left; exists b; split; auto. right; try assumption. generalize (slicef_incl i0 a L3); unfold slicef in |- *; rewrite H'; auto. intros L0 L3 L4 L5 a i0 H' H'0 H'1 a0 H'2. elim (H'1 a0); [ intros H'5; elim H'5; intros b E; elim E; intros H'6 H'7; rewrite H'7; clear E H'5 | intros H'5 | idtac ]; auto. left; exists b; split; [ right | idtac ]; auto. generalize (slicef_incl i0 a L3); unfold slicef in |- *; rewrite H'; auto. Qed. Local Hint Resolve (addEnd_id2 A A0 eqA n ltM) : core. Local Hint Resolve (addEnd_id1 A A0 eqA n ltM) : core. Theorem genPcP_incl : forall (i : poly A0 eqA ltM) (L L1 L2 : list _), genPcP i L1 L L2 -> incl L L2. Proof. intros i L L1 L2 H'; elim H'; simpl in |- *; auto with datatypes. intros L0 L3 L4 L5 a i0 H'0 H'1 H'2. unfold incl in |- *; simpl in |- *; auto. Qed. Lemma spolyp_cons_genPcP0 : forall (aP R Q : list _) (i : poly A0 eqA ltM), genPcP i aP R Q -> ~ BuchAux.zerop A A0 eqA n ltM i -> forall b : poly A0 eqA ltM, In b aP -> ~ BuchAux.zerop A A0 eqA n ltM b -> exists c : poly A0 eqA ltM, In c aP /\ (In (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os i c) Q \/ foreigner A A0 A1 eqA multA n ltM i c) /\ divp A A0 eqA multA divA n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i b) c. Proof. intros aP R Q i H'; elim H'; clear H' i aP R Q; simpl in |- *; auto. intros i L H' b H'0; elim H'0. intros L L1 L2 L3 a i H' H'0 H'1 H'2 b H'3 H'4. cut (incl L2 L1); [ intros incl0 | generalize (slicef_incl i a L1); unfold slicef in |- *; rewrite H' ]; auto. elim H'3; [ intros H'5; rewrite <- H'5; clear H'3 | intros H'5; clear H'3 ]; auto. exists a; split; [ idtac | split; [ left | idtac ] ]; auto. rewrite H'5; auto. apply zerop_ddivp_ppc; auto. elim (slice_inv i a L1 b); [ intros H'10 | intros H'10 | idtac ]; auto. rewrite H' in H'10; simpl in H'10; auto. lapply H'1; [ intros H'3; elim (H'3 b); [ intros c E; elim E; intros H'9 H'11; elim H'11; intros H'12 H'13; elim H'12; [ intros H'14; clear H'12 H'11 E H'1 | intros H'14; clear H'12 H'11 E H'1 ] | clear H'1 | clear H'1 ] | clear H'1 ]; auto. exists c; split; [ right | idtac ]; auto. exists c; split; [ idtac | split; [ right | idtac ] ]; auto. exists a; split; [ idtac | split ]; auto. intros L L1 L2 L3 a i H' H'0 H'1 H'2 b H'3 H'4. cut (incl L2 L1); [ intros incl0 | generalize (slicef_incl i a L1); unfold slicef in |- *; rewrite H' ]; auto. elim H'3; [ intros H'5; rewrite <- H'5; clear H'3 | intros H'5; clear H'3 ]; auto. elim (slice_cons i a L1 L2); [ intros H'8; elim H'8; intros c E; elim E; intros H'9 H'10; clear E H'8 | intros H'8 | idtac ]; auto. lapply H'1; [ intros H'3; elim (H'3 c); [ intros c0 E; elim E; intros H'11 H'12; elim H'12; intros H'13 H'14; elim H'13; [ intros H'15; clear H'13 H'12 E H'1 | intros H'15; clear H'13 H'12 E H'1 ] | clear H'1 | clear H'1 ] | clear H'1 ]; auto. exists c0; split; [ idtac | split; [ left | idtac ] ]; auto. apply (divp_trans _ _ _ _ _ _ _ _ _ cs n ltM) with (y := ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i c); auto. apply divP_ppc; auto. apply divp_ppc; auto. apply zerop_ddivp_ppc; auto. rewrite H'5; auto. exists c0; split; [ idtac | split; [ right | idtac ] ]; auto. apply (divp_trans _ _ _ _ _ _ _ _ _ cs n ltM) with (y := ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i c); auto. rewrite H'5; auto. apply divP_ppc; auto. apply divp_ppc; auto. apply zerop_ddivp_ppc; auto. rewrite <- H'5; auto. apply divp_nzeropr with (1 := H'10); auto. exists a; split; [ idtac | split; [ right | idtac ] ]; auto. rewrite H'5; auto. apply zerop_ddivp_ppc; auto. elim (slice_inv i a L1 b); [ intros H'10 | intros H'10 | idtac ]; auto. rewrite H' in H'10; simpl in H'10; auto. lapply H'1; [ intros H'3; elim (H'3 b); [ intros c E; elim E; intros H'9 H'11; elim H'11; intros H'12 H'13; elim H'12; [ intros H'14; clear H'12 H'11 E H'1 | intros H'14; clear H'12 H'11 E H'1 ] | clear H'1 | clear H'1 ] | clear H'1 ]; auto. exists c; split; [ right | idtac ]; auto. exists c; split; [ idtac | split; [ right | idtac ] ]; auto. elim (slice_cons i a L1 L2); [ intros H'8; elim H'8; intros c E; elim E; intros H'9 H'11; clear E H'8 | intros H'8 | idtac ]; auto. lapply H'1; [ intros H'3; elim (H'3 c); [ intros c0 E; elim E; intros H'12 H'13; elim H'13; intros H'14 H'15; elim H'14; [ intros H'16; clear H'14 H'13 E H'1 | intros H'16; clear H'14 H'13 E H'1 ] | clear H'1 | clear H'1 ] | clear H'1 ]; auto. exists c0; split; [ idtac | split; [ left | idtac ] ]; auto. apply (divp_trans _ _ _ _ _ _ _ _ _ cs n ltM) with (y := ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i c); auto. apply (divp_trans _ _ _ _ _ _ _ _ _ cs n ltM) with (y := ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i a); auto. apply divP_ppc; auto. apply divp_ppc; auto. apply zerop_ddivp_ppc; auto. apply divP_ppc; auto. apply divp_ppc; auto. apply zerop_ddivp_ppc; auto. apply divp_nzeropr with (1 := H'10); auto. exists c0; split; [ idtac | split; [ right | idtac ] ]; auto. apply (divp_trans _ _ _ _ _ _ _ _ _ cs n ltM) with (y := ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i a); auto. apply divP_ppc; auto. apply divp_ppc; auto. apply zerop_ddivp_ppc; auto. apply (divp_trans _ _ _ _ _ _ _ _ _ cs n ltM) with (y := ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i c); auto. apply divP_ppc; auto. apply divp_ppc; auto. apply zerop_ddivp_ppc; auto. apply divp_nzeropr with (1 := H'10); auto. apply divp_nzeropr with (1 := H'11); auto. exists a; split; [ idtac | split; [ right | idtac ] ]; auto. Qed. Lemma spolyp_cons_genPcP : forall (aP R Q : list _) (i : poly A0 eqA ltM), genPcP i aP R Q -> ~ BuchAux.zerop A A0 eqA n ltM i -> forall b : poly A0 eqA ltM, In b aP -> ~ BuchAux.zerop A A0 eqA n ltM b -> exists c : poly A0 eqA ltM, In c aP /\ (In (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os i c) Q \/ red A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os i c) (addEnd A A0 eqA n ltM i aP)) /\ divp A A0 eqA multA divA n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM i b) c. Proof. intros aP R Q i H' H'0 b H'1 H'2. lapply (spolyp_cons_genPcP0 aP R Q i); [ intros H'7; lapply H'7; [ intros H'8; elim (H'8 b); [ intros c E; elim E; intros H'12 H'13; elim H'13; intros H'14 H'15; elim H'14; [ intros H'16; clear H'14 H'13 E H'7 | intros H'16; clear H'14 H'13 E H'7 ] | clear H'7 | clear H'7 ] | clear H'7 ] | idtac ]; auto. exists c; split; [ idtac | split; [ left | idtac ] ]; auto. exists c; split; [ idtac | split; [ right | idtac ] ]; auto. apply foreigner_red; auto. Qed. Theorem Cb_genPcP : forall (i : poly A0 eqA ltM) (P Q R S : list (poly A0 eqA ltM)), genPcP i P R Q -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec i S -> (forall a : poly A0 eqA ltM, In a P -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a S) -> (forall a : poly A0 eqA ltM, In a R -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a S) -> forall a : poly A0 eqA ltM, In a Q -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a S. Proof. intros i P Q R S H'; elim H'; simpl in |- *; auto. intros L L1 L2 L3 a i0 H'0 H'1 H'2 H'3 H'4 H'5 a0 H'6. case (addEnd_cons A A0 eqA n ltM) with (1 := H'6); auto; intros H'7. rewrite H'7; auto. apply Cb_sp; auto. apply H'2; auto. intros a1 H'8. apply H'4; auto. right. generalize (slicef_incl i0 a L1); unfold slicef in |- *; rewrite H'0; auto. intros L L1 L2 L3 a i0 H'0 H'1 H'2 H'3 H'4 H'5 a0 H'6; auto. apply H'2; auto. intros a1 H'7. apply H'4; auto. generalize (slicef_incl i0 a L1); unfold slicef in |- *; rewrite H'0; auto. Qed. Definition genPcPf0 : forall (i : poly A0 eqA ltM) (aP R : list (poly A0 eqA ltM)), {Q : list (poly A0 eqA ltM) | genPcP i aP R Q}. intros i aP; pattern aP in |- *. apply well_founded_induction_type with (A := list (poly A0 eqA ltM)) (R := Tl); clear aP; auto. try exact wf_Tl. intros aP; case aP. intros H' R; exists R; auto. intros a L1 Rec L; generalize (@refl_equal _ (slice i a L1)); pattern (slice i a L1) at 2 in |- *; case (slice i a L1). intros L2 H'. lapply (Rec L2); [ intros H'1; elim (H'1 L); intros L3 E | idtac ]; auto. exists (addEnd A A0 eqA n ltM (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os i a) L3); auto. apply genPcP1 with (L2 := L2); auto. generalize (slice_Tl i a L1); unfold slicef in |- *; rewrite H'; simpl in |- *; auto. intros L2 H'. lapply (Rec L2); [ intros H'1; elim (H'1 L); intros L3 E | idtac ]; auto. exists L3; auto. apply genPcP2 with (L2 := L2); auto. generalize (slice_Tl i a L1); unfold slicef in |- *; rewrite H'; simpl in |- *; auto. Defined. Definition genPcPf : poly A0 eqA ltM -> list (poly A0 eqA ltM) -> list (poly A0 eqA ltM) -> list (poly A0 eqA ltM). intros i aP Q; case (genPcPf0 i aP Q). intros x H'; exact x. Defined. (* The proof will carry on if we have the following 3 properties for the function genPcPf *) Theorem Cb_genPcPf : forall (b : poly A0 eqA ltM) (P Q R : list (poly A0 eqA ltM)), Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec b R -> (forall a : poly A0 eqA ltM, In a P -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a R) -> (forall a : poly A0 eqA ltM, In a Q -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a R) -> forall a : poly A0 eqA ltM, In a (genPcPf b P Q) -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a R. Proof. intros b P Q R; unfold genPcPf in |- *; case (genPcPf0 b P Q). intros x H' H'0 H'1 H'2 a H'3. apply Cb_genPcP with (i := b) (P := P) (Q := x) (R := Q); auto. Qed. Theorem genPcPf_incl : forall (a : poly A0 eqA ltM) (aL Q : list (poly A0 eqA ltM)), incl Q (genPcPf a aL Q). Proof. intros a aL Q; unfold genPcPf in |- *; case (genPcPf0 a aL Q). intros x H'. apply genPcP_incl with (i := a) (L1 := aL); auto. Qed. Local Hint Resolve genPcPf_incl : core. Theorem spolyp_addEnd_genPcPf : forall (aP R Q : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), ~ BuchAux.zerop A A0 eqA n ltM a -> ~ BuchAux.zerop A A0 eqA n ltM b -> In b aP -> exists c : poly A0 eqA ltM, In c aP /\ (In (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a c) (genPcPf a aP Q) \/ red A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a c) (addEnd A A0 eqA n ltM a aP)) /\ divp A A0 eqA multA divA n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a b) c. Proof. intros aP H' Q a b H'0 H'1 H'2. unfold genPcPf in |- *. case (genPcPf0 a aP Q). intros x H'3. apply spolyp_cons_genPcP with (R := Q); auto. Qed. (* Now we can define the optimized version of Buchberger *) Definition genOCPf : list (poly A0 eqA ltM) -> list (poly A0 eqA ltM). intros H'; elim H'. exact (nil (A:=poly A0 eqA ltM)). intros a l rec; exact (genPcPf a l rec). Defined. (* Now we can define the optimized version of Buchberger *) Theorem genOCPf_stable : forall (a : poly A0 eqA ltM) (P : list (poly A0 eqA ltM)), In a (genOCPf P) -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a P. Proof. intros a P; generalize a; elim P; clear a P; simpl in |- *; auto. intros a H; elim H. intros a l H' a0 H'0. apply Cb_genPcPf with (b := a) (P := l) (Q := genOCPf l); auto with datatypes. apply Cb_id with (1 := cs); auto with datatypes. intros; apply Cb_in1 with (1 := cs); auto. apply Cb_id with (1 := cs); auto with datatypes. intros; apply Cb_in1 with (1 := cs); auto. Qed. Inductive OBuch : list (poly A0 eqA ltM) -> list (poly A0 eqA ltM) -> list (poly A0 eqA ltM) -> Prop := | OBuch0 : forall aL : list (poly A0 eqA ltM), OBuch aL nil aL | OBuch1 : forall (a : poly A0 eqA ltM) (aP Q R : list (poly A0 eqA ltM)), OBuch (addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP) (genPcPf (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP Q) R -> ~ BuchAux.zerop A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) -> OBuch aP (a :: Q) R | OBuch2 : forall (a : poly A0 eqA ltM) (aP Q R : list (poly A0 eqA ltM)), OBuch aP Q R -> BuchAux.zerop A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) -> OBuch aP (a :: Q) R. Local Hint Resolve OBuch0 OBuch2 : core. Local Hint Resolve incl_refl incl_tl : core. Theorem incl_addEnd1 : forall (a : poly A0 eqA ltM) (L1 L2 : list (poly A0 eqA ltM)), incl (addEnd A A0 eqA n ltM a L1) L2 -> incl (a :: L1) L2. Proof. unfold incl in |- *; simpl in |- *; auto. intros a L1 L2 H' a0 H'0; case H'0; [ intros H'1; rewrite <- H'1; clear H'0 | intros H'1; clear H'0 ]; auto. Qed. Theorem ObuchPincl : forall aP R Q : list (poly A0 eqA ltM), OBuch aP Q R -> incl aP R. Proof. intros aP R Q H'; elim H'; simpl in |- *; auto. intros a aP0 Q0 R0 H'0 H'1 H'2; try assumption. apply incl_tran with (m := nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP0 :: aP0); simpl in |- *; auto. apply incl_addEnd1; auto. Qed. Theorem ObuchPred : forall aP R Q : list (poly A0 eqA ltM), OBuch aP Q R -> forall a : poly A0 eqA ltM, In a aP -> red A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec a R. Proof. intros aP R Q H'; elim H'; simpl in |- *; auto. intros; apply red_cons with (1 := cs); auto. Qed. Theorem ObuchQred : forall aP R Q : list (poly A0 eqA ltM), OBuch aP Q R -> forall a : poly A0 eqA ltM, In a Q -> red A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec a R. Proof. intros aP R Q H'; elim H'; simpl in |- *; auto. intros aL a H'0; elim H'0. intros a aP0 Q0 R0 H'0 H'1 H'2 a0 H'3; elim H'3; [ intros H'4; rewrite <- H'4; clear H'3 | intros H'4; clear H'3 ]; auto. apply red_incl with (1 := cs) (p := addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP0) aP0); auto. apply ObuchPincl with (Q := genPcPf (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP0) aP0 Q0); auto. apply nf_red with (cs := cs) (os := os) (aP := aP0); simpl in |- *; auto. unfold incl in |- *; auto. apply red_cons with (1 := cs); auto. apply H'1; auto. apply (genPcPf_incl (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP0) aP0 Q0); auto. intros a aP0 Q0 R0 H'0 H'1 H'2 a0 H'3; elim H'3; [ intros H'4; rewrite <- H'4; clear H'3 | intros H'4; clear H'3 ]; auto. apply red_incl with (1 := cs) (p := aP0); auto. apply ObuchPincl with (Q := Q0); auto. apply zerop_red with (cs := cs) (os := os); auto. Qed. Theorem OBuch_Stable : forall P Q R : list (poly A0 eqA ltM), OBuch P Q R -> (forall a : poly A0 eqA ltM, In a Q -> Cb A A0 eqA plusA multA eqA_dec n ltM ltM_dec a P) -> stable P R. Proof. intros P Q R H'; elim H'; simpl in |- *; auto. intros a aP Q0 R0 H'0 H'1 H'2 H'3. apply stable_trans with (y := addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP); auto. apply stable0; auto. intros a0 H'4. apply Cb_trans with (1 := cs) (b := nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP); auto. apply nf_Cb; auto. apply H'1; auto. intros a0 H'4. apply Cb_genPcPf with (b := nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) (P := aP) (Q := Q0); auto. apply Cb_id with (1 := cs); auto. intros; apply Cb_in with (1 := cs); auto. apply Cb_id with (1 := cs); auto. Qed. Inductive redIn : poly A0 eqA ltM -> poly A0 eqA ltM -> list (poly A0 eqA ltM) -> list (poly A0 eqA ltM) -> list (poly A0 eqA ltM) -> Prop := | redIn0b : forall (P Q R : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), redIn b a P Q R -> redIn a b P Q R | redIn0 : forall (P Q R : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), In (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a b) Q -> redIn a b P Q R | redIn1 : forall (P Q R : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), red A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a b) R -> redIn a b P Q R | redIn2 : forall (P Q R : list (poly A0 eqA ltM)) (a b c : poly A0 eqA ltM), In c P -> redIn a c P Q R -> redIn b c P Q R -> divp A A0 eqA multA divA n ltM (ppcp A A0 A1 eqA plusA invA minusA multA divA cs n ltM a b) c -> redIn a b P Q R. Local Hint Resolve redIn1 redIn0 : core. Remark lem_redIn_nil : forall (aP Q R : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), In a R -> In b R -> redIn a b aP Q R -> Q = nil -> aP = R -> reds a b R. Proof. intros aP Q R a b H' H'0 H'1; elim H'1; auto. intros P Q0 R0 a0 b0 H'2 H'3 H'4 H'5. apply reds_com; auto. intros P Q0 R0 a0 b0 H'2 H'3 H'4. rewrite H'3 in H'2; elim H'2. intros P Q0 R0 a0 b0 H'2 H'3 H'4; rewrite <- H'4. rewrite H'4. apply reds0; auto. intros P Q0 R0 a0 b0 c H'2 H'3 H'4 H'5 H'6 H'7 H'8 H'9. apply reds1 with (c := c); auto. rewrite <- H'9; auto. apply reds_com; auto. Qed. Theorem redIn_nil : forall (R : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), In a R -> In b R -> redIn a b R nil R -> reds a b R. Proof. intros R a b H' H'0 H'1. apply lem_redIn_nil with (aP := R) (Q := nil (A:=poly A0 eqA ltM)); auto. Qed. Remark lem_redln_cons : forall (aP R Q : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), In a aP -> In b aP -> redIn a b aP Q R -> forall (c : poly A0 eqA ltM) (Q1 : list (poly A0 eqA ltM)), Q = c :: Q1 -> red A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec c R -> redIn a b aP Q1 R. Proof. intros aP R Q a b H' H'0 H'1; elim H'1; auto. intros P Q0 R0 a0 b0 H'2 H'3 c Q1 H'4 H'5. apply redIn0b; auto. apply H'3 with (c := c); auto. intros P Q0 R0 a0 b0 H'2 c Q1 H'3 H'4. rewrite H'3 in H'2; elim H'2; auto. intros H'5; rewrite H'5 in H'4; auto. intros P Q0 R0 a0 b0 c H'2 H'3 H'4 H'5 H'6 H'7 c0 Q1 H'8 H'9. apply redIn2 with (c := c); auto. apply (H'4 c0); auto. apply (H'6 c0); auto. Qed. Theorem redln_cons : forall (aP R Q : list (poly A0 eqA ltM)) (a b c : poly A0 eqA ltM), In a aP -> In b aP -> redIn a b aP (c :: Q) R -> red A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec c R -> redIn a b aP Q R. Proof. intros aP R Q a b c H' H'0 H'1 H'2; try assumption. apply lem_redln_cons with (Q := c :: Q) (c := c); auto. Qed. Theorem redInclP : forall (P Q R : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), redIn a b P Q R -> forall P1 : list (poly A0 eqA ltM), incl P P1 -> redIn a b P1 Q R. Proof. intros P Q R a b H'; elim H'; auto. intros P0 Q0 R0 a0 b0 H'0 H'1 P1 H'2. apply redIn0b; auto. intros P0 Q0 R0 a0 b0 c H'0 H'1 H'2 H'3 H'4 H'5 Q1 H'6. apply redIn2 with (c := c); auto. Qed. Theorem redInInclQ : forall (P Q R : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), redIn a b P Q R -> forall Q1 : list (poly A0 eqA ltM), incl Q Q1 -> redIn a b P Q1 R. Proof. intros P Q R a b H'; elim H'; auto. intros P0 Q0 R0 a0 b0 H'0 H'1 Q1 H'2; try assumption. apply redIn0b; auto. intros P0 Q0 R0 a0 b0 c H'0 H'1 H'2 H'3 H'4 H'5 Q1 H'6; try assumption. apply redIn2 with (c := c); auto. Qed. Theorem redInclR : forall (P Q R : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), redIn a b P Q R -> forall R1 : list (poly A0 eqA ltM), incl R R1 -> redIn a b P Q R1. Proof. intros P Q R a b H'; elim H'; simpl in |- *; auto. intros P0 Q0 R0 a0 b0 H'0 H'1 R1 H'2; try assumption. apply redIn0b; auto. intros P0 Q0 R0 a0 b0 H'0 R1 H'1; try assumption. apply redIn1; auto. apply red_incl with (1 := cs) (p := R0); auto. intros P0 Q0 R0 a0 b0 c H'0 H'1 H'2 H'3 H'4 H'5 R1 H'6. apply redIn2 with (c := c); auto. Qed. Remark lem_redln_cons_gen : forall (aP R Q : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), In a aP -> In b aP -> redIn a b aP Q R -> forall (c : poly A0 eqA ltM) (Q1 : list (poly A0 eqA ltM)), incl (addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os c aP) aP) R -> Q = c :: Q1 -> redIn a b (addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os c aP) aP) Q1 R. Proof. intros aP R Q a b H' H'0 H'1; elim H'1; auto. intros P Q0 R0 a0 b0 H'2 H'3 c Q1 H'4 H'5. apply redIn0b; auto. intros P Q0 R0 a0 b0 H'2 c Q1 H'3 H'4. rewrite H'4 in H'2; elim H'2; auto. intros H'5; rewrite H'5. apply redIn1; auto. apply nf_red with (aP := P) (cs := cs) (os := os); auto. apply incl_tran with (m := nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os c P :: P); simpl in |- *; auto. apply incl_addEnd1; auto. apply red_cons with (1 := cs); auto. apply in_incl with (p := nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os c P :: P); auto. apply incl_addEnd1; auto. rewrite H'5; simpl in |- *; auto. intros P Q0 R0 a0 b0 c H'2 H'3 H'4 H'5 H'6 H'7 c0 Q1 H'8 H'9. apply redIn2 with (c := c); auto. Qed. Theorem redln_cons_gen : forall (aP R Q : list (poly A0 eqA ltM)) (a b c : poly A0 eqA ltM), In a aP -> In b aP -> redIn a b aP (c :: Q) R -> incl (addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os c aP) aP) R -> redIn a b (addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os c aP) aP) Q R. Proof. intros aP R Q a b c H' H'0 H'1 H'2. apply lem_redln_cons_gen with (Q := c :: Q); auto. Qed. Local Hint Resolve redln_cons_gen : core. Theorem red_gen_in : forall (a : poly A0 eqA ltM) (aP R Q : list (poly A0 eqA ltM)), ~ BuchAux.zerop A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) -> OBuch (addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP) (genPcPf (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP Q) R -> (forall b c : poly A0 eqA ltM, In b aP -> In c aP -> redIn b c aP (a :: Q) R) -> forall b : poly A0 eqA ltM, In b aP -> ~ BuchAux.zerop A A0 eqA n ltM b -> redIn (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) b (addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP) (genPcPf (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP Q) R. Proof. intros a aP R Q H' H'0 H'1 b H'2 H'3. lapply (spolyp_addEnd_genPcPf aP); [ intros H'5; elim (H'5 Q (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) b); [ intros c E; elim E; intros H'12 H'13; elim H'13; intros H'14 H'15; elim H'14; [ intros H'16; clear H'14 H'13 E | intros H'16; clear H'14 H'13 E ] | idtac | idtac | idtac ] | idtac ]; auto. apply redIn2 with (c := c); simpl in |- *; auto. apply redln_cons_gen; auto. apply redInInclQ with (Q := a :: Q); auto with datatypes. apply ObuchPincl with (Q := genPcPf (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP Q); auto. apply redIn2 with (c := c); simpl in |- *; auto. apply redIn1. apply red_incl with (p := addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP) (1 := cs); auto. apply ObuchPincl with (Q := genPcPf (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP Q); auto. apply redln_cons_gen; auto. apply redInInclQ with (Q := a :: Q); auto with datatypes. apply ObuchPincl with (Q := genPcPf (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP) aP Q); auto. Qed. Theorem OBuch_Inv : forall aP R Q : list (poly A0 eqA ltM), OBuch aP Q R -> (forall a b : poly A0 eqA ltM, In a aP -> In b aP -> redIn a b aP Q R) -> forall a b : poly A0 eqA ltM, In a R -> In b R -> reds a b R. Proof. intros aP R Q H'; elim H'; simpl in |- *; auto. intros aL H'0 a b H'1 H'2; try assumption. apply redIn_nil; auto. intros a aP0 Q0 R0 H'0 H'1 H'2 H'3 a0 b H'4 H'5. apply H'1; auto. intros a1 b0 H'6. case (addEnd_cons A A0 eqA n ltM) with (1 := H'6); auto. intros H'7; rewrite <- H'7; auto. intros H'8. case (addEnd_cons A A0 eqA n ltM) with (1 := H'8); auto. intros H'9; rewrite <- H'9; auto. apply redIn1; auto. apply red_id; auto. intros H'9. case (zerop_dec A A0 eqA n ltM b0); intros Z; auto. apply redIn1; auto. apply zerop_red_spoly_r; auto. rewrite H'7; auto. apply red_gen_in; auto. intros H'7 H'8. case (addEnd_cons A A0 eqA n ltM) with (1 := H'8); auto. intros H'9; rewrite <- H'9; auto. apply redIn0b. case (zerop_dec A A0 eqA n ltM a1); intros Z. apply redIn1; auto. apply zerop_red_spoly_r; auto. rewrite H'9. apply red_gen_in; auto. intros H'9. apply redln_cons with (c := a); simpl in |- *; auto. apply redInclP with (P := aP0); auto. apply redInInclQ with (Q := a :: Q0); auto with datatypes. unfold incl in |- *; auto. apply nf_red with (aP := aP0) (cs := cs) (os := os); auto. apply incl_tran with (m := addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP0) aP0); auto. unfold incl in |- *; auto. apply ObuchPincl with (Q := genPcPf (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP0) aP0 Q0); auto. apply red_cons with (1 := cs); auto. apply in_incl with (p := addEnd A A0 eqA n ltM (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP0) aP0); simpl in |- *; auto. apply ObuchPincl with (Q := genPcPf (nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a aP0) aP0 Q0); auto. intros a aP0 Q0 R0 H'0 H'1 H'2 H'3 a0 b H'4 H'5. apply H'1; auto. intros a1 b0 H'6 H'7. apply redln_cons with (c := a); auto. apply red_incl with (p := aP0) (1 := cs); auto. apply ObuchPincl with (Q := Q0); auto. apply zerop_red with (cs := cs) (os := os); auto. Qed. Theorem addEnd_incl : forall (a : poly A0 eqA ltM) (L1 L2 : list (poly A0 eqA ltM)), incl (a :: L1) L2 -> incl (addEnd A A0 eqA n ltM a L1) L2. Proof. unfold incl in |- *; simpl in |- *; auto. intros a L1 L2 H' a0 H'0. case (addEnd_cons A A0 eqA n ltM) with (1 := H'0); auto. Qed. Theorem genOCp_redln : forall aL1 R : list (poly A0 eqA ltM), incl aL1 R -> forall a b : poly A0 eqA ltM, In a aL1 -> In b aL1 -> redIn a b aL1 (genOCPf aL1) R. Proof. intros aL1; elim aL1; simpl in |- *; auto. intros a l H' R H'0 a0 b H'1 H'2. elim H'2; [ intros H'3; rewrite <- H'3; clear H'2 | intros H'3; clear H'2 ]; auto. elim H'1; [ intros H'2; rewrite <- H'2; clear H'1 | intros H'2; clear H'1 ]; auto. apply redIn1; auto. apply red_id; auto. apply redIn0b. case (zerop_dec A A0 eqA n ltM a); intros Z; auto. apply redIn1; auto. apply zerop_red_spoly_l; auto. case (zerop_dec A A0 eqA n ltM a0); intros Z1; auto. apply redIn1; auto. apply zerop_red_spoly_r; auto. lapply (spolyp_addEnd_genPcPf l); [ intros H'4; elim (H'4 (genOCPf l) a a0); [ intros c E; elim E; intros H'11 H'12; elim H'12; intros H'13 H'14; elim H'13; [ intros H'15; clear H'13 H'12 E | intros H'15; clear H'13 H'12 E ] | idtac | idtac | idtac ] | idtac ]; auto. apply redIn2 with (c := c); auto. simpl in |- *; auto. apply redInInclQ with (Q := genOCPf l); auto. apply redInclP with (P := l); auto. apply H'; auto. apply incl_tran with (m := a :: l); simpl in |- *; auto. apply redIn2 with (c := c); auto. simpl in |- *; auto. apply redIn1; auto. apply red_incl with (p := addEnd A A0 eqA n ltM a l) (1 := cs); auto. apply addEnd_incl; auto. apply redInclP with (P := l); auto. apply redInInclQ with (Q := genOCPf l); auto. apply H'; auto. apply incl_tran with (m := a :: l); auto. elim H'1; [ intros H'2; rewrite <- H'2; clear H'1 | intros H'2; clear H'1 ]; auto. case (zerop_dec A A0 eqA n ltM a); intros Z; auto. apply redIn1; auto. apply zerop_red_spoly_l; auto. case (zerop_dec A A0 eqA n ltM b); intros Z1; auto. apply redIn1; auto. apply zerop_red_spoly_r; auto. lapply (spolyp_addEnd_genPcPf l); [ intros H'4; elim (H'4 (genOCPf l) a b); [ intros c E; elim E; intros H'11 H'12; elim H'12; intros H'13 H'14; elim H'13; [ intros H'15; clear H'13 H'12 E | intros H'15; clear H'13 H'12 E ] | idtac | idtac | idtac ] | idtac ]; auto. apply redIn2 with (c := c); simpl in |- *; auto. apply redInInclQ with (Q := genOCPf l); auto. apply redInclP with (P := l); auto. apply H'; auto. apply incl_tran with (m := a :: l); simpl in |- *; auto. apply redIn2 with (c := c); simpl in |- *; auto. apply redIn1; auto. apply red_incl with (1 := cs) (p := addEnd A A0 eqA n ltM a l); auto. apply addEnd_incl; auto. apply redInclP with (P := l); auto. apply redInInclQ with (Q := genOCPf l); auto. apply H'; auto. apply incl_tran with (m := a :: l); auto. apply redInclP with (P := l); auto. apply redInInclQ with (Q := genOCPf l); auto. apply H'; auto. apply incl_tran with (m := a :: l); auto. Qed. Theorem OBuch_Stable_f : forall P Q : list (poly A0 eqA ltM), OBuch P (genOCPf P) Q -> stable P Q. Proof. intros P Q H'; try assumption. apply OBuch_Stable with (Q := genOCPf P); auto. intros a H'0; try assumption. apply genOCPf_stable; auto. Qed. Theorem OBuch_Inv_f : forall P Q : list (poly A0 eqA ltM), OBuch P (genOCPf P) Q -> forall a b : poly A0 eqA ltM, In a Q -> In b Q -> reds a b Q. Proof. intros P Q H' a b H'0 H'1; try assumption. apply OBuch_Inv with (aP := P) (Q := genOCPf P); auto. intros a0 b0 H'3 H'4. apply genOCp_redln; auto. apply ObuchPincl with (Q := genOCPf P); auto. Qed. Let FPset (A : list (poly A0 eqA ltM)) := list (poly A0 eqA ltM). Definition Fl : forall x : list (poly A0 eqA ltM), FPset x -> FPset x -> Prop. unfold FPset in |- *; simpl in |- *. intros H' P1 P2. exact (Tl P1 P2). Defined. Theorem wf_Fl : forall x : list (poly A0 eqA ltM), well_founded (Fl x). Proof. unfold FPset in |- *; simpl in |- *. intros x; generalize wf_Tl; auto. Qed. Let Co := @lexprod (list (poly A0 eqA ltM)) FPset (RO A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os) Fl. Theorem wf_Co : well_founded Co. Proof. unfold Co in |- *; apply wf_lexprod. apply wf_incl. exact wf_Fl. Qed. Definition PtoS : list (poly A0 eqA ltM) * list (poly A0 eqA ltM) -> sigT FPset. intros H'; case H'. intros P1 P2. exact (existT FPset P1 P2). Defined. Definition RL (x y : list (poly A0 eqA ltM) * list (poly A0 eqA ltM)) : Prop := Co (PtoS x) (PtoS y). Theorem wf_RL : well_founded RL. Proof. apply (wf_inverse_image _ _ Co PtoS); auto. try exact wf_Co. Qed. Definition pbuchf : forall PQ : list (poly A0 eqA ltM) * list (poly A0 eqA ltM), {R : list (poly A0 eqA ltM) | OBuch (fst PQ) (snd PQ) R}. intros pq; pattern pq in |- *. apply well_founded_induction_type with (A := (list (poly A0 eqA ltM) * list (poly A0 eqA ltM))%type) (R := RL). try exact wf_RL. intros x; elim x. intros P Q; case Q; simpl in |- *. intros H'; exists P; auto. intros a Q2 Rec. apply LetP with (A := poly A0 eqA ltM) (h := nf A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os a P). intros a0 H'. case (zerop_dec A A0 eqA n ltM a0); intros red10. elim (Rec (P, Q2)); simpl in |- *; [ intros R E | idtac ]; auto. exists R; auto. apply OBuch2; auto. rewrite <- H'; auto. red in |- *; unfold Co in |- *; unfold PtoS in |- *. apply (right_lex _ _ (RO A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os) Fl); auto. red in |- *; red in |- *; simpl in |- *; auto. elim (Rec (addEnd A A0 eqA n ltM a0 P, genPcPf a0 P Q2)); simpl in |- *; [ intros R E0; try exact E0 | idtac ]. exists R; auto. apply OBuch1; auto. rewrite <- H'; auto. rewrite <- H'; auto. rewrite H'. red in |- *; unfold Co in |- *; unfold PtoS in |- *. apply (left_lex _ _ (RO A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os) Fl); auto. apply RO_lem; auto. rewrite <- H'; auto. Defined. Definition strip : forall P : list (poly A0 eqA ltM) -> Prop, sig P -> list (poly A0 eqA ltM). intros P H'; case H'. intros x H'0; try assumption. Defined. Theorem pbuchf_Stable : forall P R : list (poly A0 eqA ltM), R = strip _ (pbuchf (P, genOCPf P)) -> stable P R. Proof. simpl in |- *. intros P R H'; try assumption. apply OBuch_Stable_f; auto. rewrite H'. case (pbuchf (pair P (genOCPf P))); simpl in |- *; auto. Qed. Theorem pbuchf_Inv : forall P R : list (poly A0 eqA ltM), R = strip _ (pbuchf (P, genOCPf P)) -> forall a b : poly A0 eqA ltM, In a R -> In b R -> reds a b R. Proof. intros P R H' a b H'0 H'1; simpl in |- *. apply OBuch_Inv_f with (P := P); auto. rewrite H'; simpl in |- *; auto. case (pbuchf (P, genOCPf P)); simpl in |- *; auto. Qed. Definition buch : list (poly A0 eqA ltM) -> list (poly A0 eqA ltM). intros P; exact (strip _ (pbuchf (P, genOCPf P))). Defined. Theorem buch_Stable : forall P : list (poly A0 eqA ltM), stable P (buch P). Proof. intros P; apply pbuchf_Stable; auto. Qed. Theorem buch_reds : forall (P : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), In a (buch P) -> In b (buch P) -> reds a b (buch P). Proof. intros P a b H' H'0. apply pbuchf_Inv with (P := P); auto. Qed. Theorem reds_SpolyQ : forall (P : list (poly A0 eqA ltM)) (a b : poly A0 eqA ltM), reds a b P -> Spoly_1 A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec P (s2p A A0 eqA n ltM a) (s2p A A0 eqA n ltM b). Proof. intros P a b H'; elim H'; auto. intros P0 a0 b0 H'0; cut (red A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec (spolyp A A0 A1 eqA plusA invA minusA multA divA cs eqA_dec n ltM ltM_dec os b0 a0) P0); auto. case a0; case b0; unfold red in |- *; simpl in |- *; auto. intros x H'1 x0 H'2 H'3; inversion H'3. apply Spoly_10 with (Cp := H'2) (Cq := H'1); auto. apply red_com; auto. intros P0 a0 b0 c. case c; case b0; case a0; simpl in |- *. intros x; case x; simpl in |- *; auto. intros c0 x0 c1 x1 c2 H'0 H'1 H'2 H'3 H'4 H'5; elim H'5. intros a1 l c0 x0; case x0; simpl in |- *. intros c1 x1 c2 H'0 H'1 H'2 H'3 H'4 H'5; elim H'5. intros a2 l0 c1 x1; case x1; simpl in |- *. intros c2 H'0 H'1 H'2 H'3 H'4 H'5; elim H'5. intros a3 l1 c2 H'0 H'1 H'2 H'3 H'4 H'5. change (Spoly_1 A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec P0 (pX a1 l) (pX a2 l0)) in |- *. apply Spoly_11 with (d := a3) (t := l1); auto. change (inPolySet A A0 eqA n ltM (s2p A A0 eqA n ltM (mks A A0 eqA n ltM (pX a3 l1) c2)) P0) in |- *. apply in_inPolySet; simpl in |- *; auto. red in |- *; intros H; inversion H. Qed. Theorem imp_in : forall (P : list (poly A0 eqA ltM)) (a : list (Term A n)), inPolySet A A0 eqA n ltM a P -> exists b : poly A0 eqA ltM, In b P /\ a = s2p A A0 eqA n ltM b. Proof. intros P a H'; elim H'; auto. intros a0 p H P0; exists (exist (fun l0 : list (Term A n) => canonical A0 eqA ltM l0) (pX a0 p) H); split; auto. simpl in |- *; auto. intros a0 p P0 H'0 H'1; elim H'1; intros b E; elim E; intros H'2 H'3; clear E H'1; auto. exists b; split; auto with datatypes. Qed. Theorem reds_SpolyQ1 : forall P : list (poly A0 eqA ltM), (forall a b : poly A0 eqA ltM, In a P -> In b P -> reds a b P) -> SpolyQ A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec P. Proof. intros P H'. apply SpolyQ0; auto. intros p q H'0 H'1 H'2 H'3. elim (imp_in P p); [ intros b E; elim E; intros H'7 H'8; clear E | idtac ]; auto. rewrite H'8. elim (imp_in P q); [ intros b0 E; elim E; intros H'9 H'10; clear E | idtac ]; auto. rewrite H'10. apply reds_SpolyQ; auto. Qed. Theorem buch_spolyQ : forall P : list (poly A0 eqA ltM), SpolyQ A A0 A1 eqA invA minusA multA divA eqA_dec n ltM ltM_dec (buch P). Proof. intros P. apply reds_SpolyQ1; auto. intros; apply buch_reds; auto. Qed. Theorem buch_Grobner : forall P : list (poly A0 eqA ltM), Grobner A A0 A1 eqA plusA invA minusA multA divA eqA_dec n ltM ltM_dec (buch P). Proof. intros P. apply ConfluentReduce_imp_Grobner; auto. apply SpolyQ_imp_ConfluentReduce with (1 := cs); auto. apply buch_spolyQ; auto. Qed. End Buch.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % UMB-CS240-2016S: Programming in C % Copyright 2016 Pejman Ghorbanzade <[email protected]> % Creative Commons Attribution-ShareAlike 4.0 International License % More info: https://github.com/ghorbanzade/UMB-CS240-2016S %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Question 2} Edgar Linton, a CS240 student, was asked to write a program that promps user for an integer and prints it on the screen. A sample run of the program was expected to be as given below. \begin{terminal} $ gcc prompt-number.c -o prompt-number $ ./prompt-number enter number: 125 number: 125 \end{terminal} To solve this problem, he wrote the following program. \lstset{language=c,tabsize=4} \begin{lstlisting} // Edgar Linton // <[email protected]> #include <stdio.h> #define MAX_LENGTH 32 int main(void) { int num = getNum(); printf("%d\n", num); } int getNum(void) { int res; char ch; int i = 0; char array[MAX_LENGTH]; while ((ch = getchar()) != '\n') array[i] = ch; i = 0; while (array[i] != '\0') res = res * 10 + array[i++] - '0'; return res; } \end{lstlisting} His program produces the following output. \begin{terminal} $ gcc prompt-number.c -o prompt-number $ ./prompt-number enter number: 125 number: 971397989 \end{terminal} Clearly, something is wrong with Edgar's code. This is why he is asking for your help to debug his program and fix all its bugs. Rewrite the program \texttt{prompt-number.c} such that its output matches the expected output provided previously.
PIMediaMetadata <- function(author = NULL, changeDate = NULL, description = NULL, name = NULL, size = NULL, links = NULL, webException = NULL) { if (is.null(author) == FALSE) { if (is.character(author) == FALSE) { return (print(paste0("Error: author must be a string."))) } } if (is.null(changeDate) == FALSE) { if (is.character(changeDate) == FALSE) { return (print(paste0("Error: changeDate must be a string."))) } } if (is.null(description) == FALSE) { if (is.character(description) == FALSE) { return (print(paste0("Error: description must be a string."))) } } if (is.null(name) == FALSE) { if (is.character(name) == FALSE) { return (print(paste0("Error: name must be a string."))) } } if (is.null(size) == FALSE) { } if (is.null(links) == FALSE) { className <- attr(links, "className") if ((is.null(className)) || (className != "PIMediaMetadataLinks")) { return (print(paste0("Error: the class from the parameter links should be PIMediaMetadataLinks."))) } } if (is.null(webException) == FALSE) { className <- attr(webException, "className") if ((is.null(className)) || (className != "PIWebException")) { return (print(paste0("Error: the class from the parameter webException should be PIWebException."))) } } value <- list( Author = author, ChangeDate = changeDate, Description = description, Name = name, Size = size, Links = links, WebException = webException) valueCleaned <- rmNullObs(value) attr(valueCleaned, "className") <- "PIMediaMetadata" return(valueCleaned) }
############################################################################# ## #W loewy.gi GAP 4 package SingerAlg Thomas Breuer ## ## This file contains implementations of GAP functions for studying ## the Loewy structure of Singer algebras A[q,z]. ## ## for those who worked with an earlier version of the package ... LoewyLayersData:= function( arg ) Print( "use LoewyStructureInfo not LoewyLayersData\n" ); return CallFuncList( LoewyStructureInfoGAP, arg ); end; if IsPackageMarkedForLoading( "JuliaInterface", "" ) then ############################################################################# ## #M LoewyStructureInfoJulia( <A> ) ## ## Call a Julia function, convert its result to a record, ## but keep the record components in Julia. ## InstallMethod( LoewyStructureInfoJulia, [ "IsSingerAlgebra" ], A -> CallFuncList( LoewyStructureInfoJulia, ParametersOfSingerAlgebra( A ) ) ); InstallMethod( LoewyStructureInfoJulia, [ "IsPosInt", "IsPosInt" ], { q, z } -> LoewyStructureInfoJulia( q, OrderMod( q, z ), z ) ); InstallMethod( LoewyStructureInfoJulia, [ "IsPosInt", "IsPosInt", "IsPosInt" ], { q, n, z } -> CallFuncList( Julia.SingerAlg.LoewyStructureInfo, List( [ q, n, z ], GAPToJulia ) ) ); fi; if IsPackageMarkedForLoading( "JuliaInterface", "" ) then ############################################################################# ## #M LoewyStructureInfo( <A> ) ## ## We prefer 'LoewyStructureInfoJulia' to 'LoewyStructureInfoGAP'. ## For that, we convert the Julia dictionary into a GAP record. ## InstallMethod( LoewyStructureInfo, [ "IsSingerAlgebra" ], A -> JuliaToGAP( IsRecord, LoewyStructureInfoJulia( A ), true ) ); InstallMethod( LoewyStructureInfo, [ "IsPosInt", "IsPosInt" ], { q, z } -> LoewyStructureInfo( q, OrderMod( q, z ), z ) ); InstallMethod( LoewyStructureInfo, [ "IsPosInt", "IsPosInt", "IsPosInt" ], { q, n, z } -> JuliaToGAP( IsRecord, LoewyStructureInfoJulia( q, n, z ), true ) ); fi; ############################################################################# ## #F LoewyStructureInfoGAP( <A> ) #F LoewyStructureInfoGAP( <q>[, <n>], <z> ) ## InstallMethod( LoewyStructureInfoGAP, [ "IsSingerAlgebra" ], A -> CallFuncList( LoewyStructureInfoGAP, ParametersOfSingerAlgebra( A ) ) ); InstallMethod( LoewyStructureInfoGAP, [ "IsPosInt", "IsPosInt" ], { q, z } -> LoewyStructureInfoGAP( q, OrderMod( q, z ), z ) ); InstallMethod( LoewyStructureInfoGAP, [ "IsPosInt", "IsPosInt", "IsPosInt" ], function( q, n, z ) local islessorequal, monomials, layers, degrees, predecessors, m, i, mon, lambda, pred, j, mm; if n mod OrderMod( q, z ) <> 0 then Error( "<z> must divide <q>^<n> - 1" ); fi; islessorequal:= function( mon1, mon2 ) local i; for i in [ 1 .. n ] do if mon2[i] < mon1[i] then return false; fi; od; return true; end; monomials:= [ 0 * [ 1 .. n ] ]; layers:= [ 0 ]; degrees:= [ 0 ]; # just for speedup: avoid comparisons predecessors:= [ 0 ]; m:= n * (q-1); for i in [ 1 .. z ] do mon:= CoefficientsQadicReversed( i, z, q, n ); lambda:= 0; pred:= 1; mm:= Sum( mon ); for j in [ 2 .. i ] do if lambda < layers[j] and degrees[j] < mm and islessorequal( monomials[j], mon ) then lambda:= layers[j]; pred:= j; fi; od; monomials[i+1]:= mon; layers[i+1]:= lambda + 1; degrees[i+1]:= mm; predecessors[i+1]:= pred; if lambda = 0 then if mm < m then m:= mm; fi; fi; od; # Extract information about one longest chain. i:= Length( monomials ); pred:= []; while i > 0 do Add( pred, i ); i:= predecessors[i]; od; return rec( monomials:= monomials, layers:= layers, chain:= pred, m:= m, LL:= lambda + 2, parameters:= [ q, n, z ] ); end ); ############################################################################# ## #F DimensionsLoewyFactorsGAP( <A> ) #F DimensionsLoewyFactorsJulia( <A> ) ## ## Return the GAP object or the Julia object, respectively. ## BindGlobal( "DimensionsLoewyFactorsGAP", function( A ) local data, v, i; data:= LoewyStructureInfoGAP( A ); v:= ListWithIdenticalEntries( data.LL, 0 ); for i in data.layers do v[ i+1 ]:= v[ i+1 ] + 1; od; return v; end ); if IsPackageMarkedForLoading( "JuliaInterface", "" ) then BindGlobal( "DimensionsLoewyFactorsJulia", A -> Julia.SingerAlg.LoewyVector( LoewyStructureInfoJulia( A ) ) ); fi; ############################################################################# ## #M DimensionsLoewyFactors( <A> ) ## ## If Julia is available then use the Julia functionality, ## otherwise use the GAP code. ## InstallMethod( DimensionsLoewyFactors, [ "IsSingerAlgebra" ], A -> DimensionsLoewyFactorsGAP( A ) ); if IsPackageMarkedForLoading( "JuliaInterface", "" ) then InstallMethod( DimensionsLoewyFactors, [ "IsSingerAlgebra" ], A -> JuliaToGAP( IsList, DimensionsLoewyFactorsJulia( A ), true ) ); fi; ############################################################################# ## #F LoewyVectorAbbreviated( <v> ) #F LoewyVectorExpanded( <v> ) ## InstallGlobalFunction( LoewyVectorAbbreviated, function( v ) local result, x, m, i; if not IsDenseList( v ) then Error( "<v> must be a dense list" ); elif Length( v ) = 0 then return []; fi; result:= []; x:= v[1]; m:= 1; for i in [ 2 .. Length( v ) ] do if v[i] = x then m:= m + 1; elif m = 1 then Add( result, x ); x:= v[i]; else Add( result, [ x, m ] ); x:= v[i]; m:= 1; fi; od; if m = 1 then Add( result, x ); else Add( result, [ x, m ] ); fi; return result; end ); InstallGlobalFunction( LoewyVectorExpanded, function( v ) local result, x, i; if not IsDenseList( v ) then Error( "<v> must be a dense list" ); fi; result:= []; for x in v do if IsList( x ) then for i in [ 1 .. x[2] ] do Add( result, x[1] ); od; else Add( result, x ); fi; od; return result; end ); ############################################################################# ## #F SingerAlgebra( <q>[, <n>], <z>[, <R>] ) #F SingerAlgebra( <arec>[, <R>] ) ## ## The algebra returned by this function claims to be a structure constants ## algebra (via the filter 'IsSCAlgebraObjCollection'), ## but the structure constants table is not created until one asks for ## something that needs it. ## Currently a special method for 'CanonicalBasis' makes sure that the ## relevant data get stored. ## InstallGlobalFunction( SingerAlgebra, function( arg ) local arec, paras, q, n, e, R, z, zero, filter, Fam, A; if Length( arg ) = 1 and IsRecord( arg[1] ) then # The record is assumed to belong to the database of Singer algebras. arec:= arg[1]; q:= arec.q; n:= arec.n; if IsBound( arec.z ) then z:= arec.z; elif IsBound( arec.e ) then z:= ( q^n - 1 ) / arec.e; else Error( "<arec> must contain one of the components z or e" ); fi; R:= Rationals; elif Length( arg ) = 2 and IsRecord( arg[1] ) and IsRing( arg[2] ) then # The record is assumed to belong to the database of Singer algebras. arec:= arg[1]; q:= arec.q; n:= arec.n; if IsBound( arec.z ) then z:= arec.z; elif IsBound( arec.e ) then z:= ( q^n - 1 ) / arec.e; else Error( "<arec> must contain one of the components z or e" ); fi; R:= arg[2]; elif Length( arg ) = 1 and IsList( arg[1] ) then # The parameters must be q, n, e[, R]. paras:= arg[1]; if Length( paras ) = 3 then q:= paras[1]; n:= paras[2]; e:= paras[3]; R:= Rationals; elif Length( paras ) = 4 then q:= paras[1]; n:= paras[2]; e:= paras[3]; R:= paras[4]; else Error( "usage: SingerAlgebra( <list> ) with list of length 3 or 4" ); fi; z:= ( q^n - 1 ) / e; elif Length( arg ) = 2 then # The parameters must be q, z. q:= arg[1]; z:= arg[2]; n:= OrderMod( q, z ); R:= Rationals; elif Length( arg ) = 3 and IsInt( arg[3] ) then # The parameters must be q, n, z. q:= arg[1]; n:= arg[2]; z:= arg[3]; R:= Rationals; elif Length( arg ) = 3 and IsRing( arg[3] ) then # The parameters must be q, z, R. q:= arg[1]; z:= arg[2]; R:= arg[3]; n:= OrderMod( q, z ); elif Length( arg ) = 4 then # The parameters must be q, n, z, R. q:= arg[1]; n:= arg[2]; z:= arg[3]; R:= arg[4]; else Error( "usage: SingerAlgebra( <arec>[, <R>] ) or ", "SingerAlgebra( <q>[, <n>], <z>[, <R>] ) or ", "SingerAlgebra( <list> )" ); fi; if not ( IsPosInt( q ) and IsPosInt( n ) and IsPosInt( z ) ) then Error( "<q>, <n>, <z> must be positive integers" ); elif z <> 1 and PowerMod( q, n, z ) <> 1 then Error( "<z> must divide <q>^<n> - 1" ); elif q = 1 then Error( "<q> must be an integer > 1" ); fi; # Create the algebra as far as necessary. # (Do not set a 'Name' value, in order to use the different methods # installed for 'ViewObj' and 'PrintObj'.) zero := Zero( R ); filter:= IsSCAlgebraObj; if IsAdditivelyCommutativeElementFamily( FamilyObj( zero ) ) then filter:= filter and IsAdditivelyCommutativeElement; fi; Fam:= NewFamily( "SCAlgebraObjFamily", filter ); if Zero( ElementsFamily( FamilyObj( R ) ) ) <> fail then SetFilterObj( Fam, IsFamilyOverFullCoefficientsFamily ); else Fam!.coefficientsDomain:= R; fi; Fam!.zerocoeff := zero; SetCharacteristic( Fam, Characteristic( R ) ); SetCoefficientsFamily( Fam, ElementsFamily( FamilyObj( R ) ) ); A:= Objectify( NewType( CollectionsFamily( Fam ), IsSingerAlgebra and IsAttributeStoringRep ), rec() ); SetLeftActingDomain( A, R ); SetParametersOfSingerAlgebra( A, [ q, n, z ] ); SetGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( A, [ 1 .. z+1 ] ); SetDimension( A, z+1 ); Fam!.fullSCAlgebra:= A; SetIsFullSCAlgebra( A, true ); return A; end ); ############################################################################# ## #M Display( <A> ) #M ViewObj( <A> ) #M PrintObj( <A> ) #M DisplayString( <A> ) #M ViewString( <A> ) #M PrintString( <A> ) #M String( <A> ) ## ## According to the Section "View and Print" in the GAP Reference Manual, ## we need methods (only) for ## 'String' (which then covers 'PrintString' and 'PrintObj') and ## 'ViewString' (which then covers 'ViewObj'). ## (We do not need 'DisplayString', which would cover 'Display'.) ## ## We want to *view* Singer algebras as 'A[q,n,z[,R]]', ## and to *print* them as calls to 'SingerAlgebra'. ## InstallMethod( ViewString, [ "IsSingerAlgebra" ], function( A ) local paras; paras:= ParametersOfSingerAlgebra( A ); if LeftActingDomain( A ) = Rationals then return Concatenation( "A[", JoinStringsWithSeparator( List( paras, String ), "," ), "]" ); else return Concatenation( "A[", JoinStringsWithSeparator( List( paras, String ), "," ), ",", String( LeftActingDomain( A ) ), "]" ); fi; end ); InstallMethod( String, [ "IsSingerAlgebra" ], function( A ) local paras; paras:= ParametersOfSingerAlgebra( A ); if LeftActingDomain( A ) = Rationals then return Concatenation( "SingerAlgebra( ", JoinStringsWithSeparator( List( paras, String ), ", " ), " )" ); else return Concatenation( "SingerAlgebra( ", JoinStringsWithSeparator( List( paras, String ), ", " ), ", ", String( LeftActingDomain( A ) ), " )" ); fi; end ); #T Currently the above installations are unfortunately *not* enough, #T since some 'ViewObj' and 'PrintObj' methods for algebras interfere, #T as well as a 'PrintString' method for magmas. InstallMethod( ViewObj, [ "IsSingerAlgebra" ], function( A ) Print( ViewString( A ) ); end ); InstallMethod( PrintObj, [ "IsSingerAlgebra" ], function( A ) Print( PrintString( A ) ); end ); InstallMethod( PrintString, [ "IsSingerAlgebra" ], String ); ############################################################################# ## #M CanonicalBasis( <A> ) ## ## This method provides the internal data for treating the Singer algebra ## <A> as a structure constants algebra in GAP. ## ## Formally, we require those filters that are required also by the ## GAP library method for full s.c. algebras, ## in order to guarantee a higher rank for our method; ## these filters are set in algebras returned by 'SingerAlgebra'. ## InstallMethod( CanonicalBasis, [ Concatenation( "IsSingerAlgebra and IsFreeLeftModule and ", "IsSCAlgebraObjCollection and IsFullSCAlgebra" ) ], function( A ) local paras, q, n, z, dim, coeffs, T, R, zero, one, empty, nonempty, i, j, Fam, gens; # Create the structure constants table. paras:= ParametersOfSingerAlgebra( A ); q:= paras[1]; n:= paras[2]; z:= paras[3]; dim:= Dimension( A ); coeffs:= List( [ 0 .. z ], k -> CoefficientsQadicReversed( k, z, q, n ) ); T:= []; R:= LeftActingDomain( A ); zero:= Zero( R ); one:= One( R ); empty:= MakeImmutable( [ [], [] ] ); nonempty:= List( [ 1 .. dim ], i -> MakeImmutable( [ [ i ], [ one ] ] ) ); for i in [ 1 .. dim ] do T[i]:= []; for j in [ 1 .. i-1 ] do T[i][j]:= T[j][i]; od; for j in [ i .. dim-i+1 ] do if q <= MaximumList( coeffs[i] + coeffs[j], 0 ) then T[i][j]:= empty; else T[i][j]:= nonempty[ i+j-1 ]; fi; od; for j in [ dim-i+2 .. dim ] do T[i][j]:= empty; od; od; T[ dim+1 ]:= 1; # commutativity flag T[ dim+2 ]:= zero; # Set the necessary entries in the family. Fam:= ElementsFamily( FamilyObj( A ) ); Fam!.sctable:= T; Fam!.names:= MakeImmutable( List( [ 0 .. dim-1 ], i -> Concatenation( "b", String( i ) ) ) ); Fam!.zerocoeff:= zero; Fam!.defaultTypeDenseCoeffVectorRep := NewType( Fam, IsSCAlgebraObj and IsDenseCoeffVectorRep ); SetZero( Fam, ObjByExtRep( Fam, ListWithIdenticalEntries( dim, zero ) ) ); # Set the algebra generators. gens:= MakeImmutable( List( IdentityMat( dim, R ), x -> ObjByExtRep( Fam, x ) ) ); SetGeneratorsOfAlgebra( A, gens ); SetGeneratorsOfAlgebraWithOne( A, gens ); SetOne( A, gens[1] ); Fam!.basisVectors:= gens; # Delegate to the library method for full s.c. algebras, # which has a lower rank. TryNextMethod(); end ); ############################################################################# ## #M Representative( <A> ) #M GeneratorsOfAlgebra( <A> ) #M GeneratorsOfAlgebraWithOne( <A> ) ## ## Note that we cannot use 'RedispatchOnCondition' here, ## because we have only the attribute tester 'HasCanonicalBasis' ## that may be missing, ## whereas 'RedispatchOnCondition' checks for missing property values ## plus their testers. ## InstallMethod( Representative, [ "IsSingerAlgebra" ], function( A ) if HasCanonicalBasis( A ) then TryNextMethod(); fi; # Set the necessary data and redispatch. CanonicalBasis( A ); return Representative( A ); end ); InstallMethod( GeneratorsOfAlgebra, [ "IsSingerAlgebra" ], function( A ) if HasCanonicalBasis( A ) then TryNextMethod(); fi; # Set the necessary data and redispatch. CanonicalBasis( A ); return GeneratorsOfAlgebra( A ); end ); InstallMethod( GeneratorsOfAlgebraWithOne, [ "IsSingerAlgebra" ], function( A ) if HasCanonicalBasis( A ) then TryNextMethod(); fi; # Set the necessary data and redispatch. CanonicalBasis( A ); return GeneratorsOfAlgebraWithOne( A ); end ); ############################################################################# ## #M GeneratingSubsetOfCanonicalBasisOfSingerAlgebra( <triv> ) ## ## Provide a method for the trivial subspace/subalgebra of a Singer algebra. ## (We cannot be sure that this attribute gets set on creation.) ## InstallMethod( GeneratingSubsetOfCanonicalBasisOfSingerAlgebra, [ "IsVectorSpace and HasParent" ], function( V ) if IsSingerAlgebra( Parent( V ) ) and IsTrivial( V ) then return []; fi; TryNextMethod(); end ); ############################################################################# ## #M LoewyLengthGAP( <A> ) #M LoewyLengthGAP( <q>, <z> ) #M LoewyLengthGAP( <q>, <n>, <z>, <m> ) ## ## Use stored 'LoewyStructureInfoGAP' values, ## use the cheap criteria when the upper bound is attained (using <m>), ## compute 'LoewyStructureInfoGAP' only if necessary. ## InstallMethod( LoewyLengthGAP, [ "IsSingerAlgebra and HasLoewyStructureInfoGAP" ], A -> LoewyStructureInfoGAP( A ).LL ); InstallMethod( LoewyLengthGAP, [ "IsSingerAlgebra" ], function( A ) local m, paras; # We need m(q,e) anyhow in order to compute the upper bound # to which the cheap criteria refer. m:= MinimalDegreeOfSingerAlgebraGAP( A ); if HasLoewyStructureInfoGAP( A ) then # Perhaps the computation of 'm' has triggered this. return LoewyStructureInfoGAP( A ).LL; else paras:= ParametersOfSingerAlgebra( A ); return LoewyLengthGAP( paras[1], paras[2], paras[3], m ); fi; end ); InstallMethod( LoewyLengthGAP, [ "IsPosInt", "IsPosInt" ], function( q, z ) local n; n:= OrderMod( q, z ); return LoewyLengthGAP( q, n, z, MinimalDegreeOfSingerAlgebraGAP( q, SingerAlgE( q, n, z ) ) ); end ); InstallMethod( LoewyLengthGAP, [ "IsPosInt", "IsPosInt", "IsPosInt", "IsPosInt" ], function( q, n, z, m ) local l; l:= LoewyLengthCheapGAP( q, n, z, m ); if l = 0 then l:= LoewyLengthHardGAP( q, n, z, m ); fi; return l; end ); ############################################################################# ## #F OrderModExt( <n>, <m>[, <bound>] ) ## ## The optional argument <bound> is not yet supported for 'OrderMod' ## in GAP 4.11.0, but it is useful in the context of this package. ## InstallGlobalFunction( OrderModExt, function( n, m, bound... ) local x, o, d; # check the arguments and reduce $n$ into the range $0..m-1$ if m <= 0 then Error("<m> must be positive"); fi; if n < 0 then n := n mod m + m; fi; if m <= n then n := n mod m; fi; # return 0 if $m$ is not coprime to $n$ if GcdInt(m,n) <> 1 then o := 0; # compute the order simply by iterated multiplying, $x= n^o$ mod $m$ elif m < 100 then x := n; o := 1; while x > 1 do x := x * n mod m; o := o + 1; od; # otherwise try the divisors of $\lambda(m)$ and their divisors, etc. else if Length( bound ) = 1 then # We know a multiple of the desired order. o := bound[1]; else # The default a priori known multiple is 'Lambda( m )'. o := Lambda( m ); fi; for d in PrimeDivisors( o ) do while o mod d = 0 and PowerModInt(n,o/d,m) = 1 do o := o / d; od; od; fi; return o; end ); ############################################################################# ## #F SufficientCriterionForLoewyBoundAttained( <q>, <n>, <z>, <m> ) ## InstallGlobalFunction( SufficientCriterionForLoewyBoundAttained, function( q, n, z, m ) local qm, e, r, p, sum, d, phi6; if n <= 3 then return "Cor. I.7.1 (n <= 3)"; elif z < 70 then # The bound is attained, by the classif. of small dim. Singer alg. return "z < 70"; elif m = 2 then return "La. I.6.3"; elif ( q - 1 ) mod m = 0 then return "Thm. I.7.1"; elif n * (q-1) < 3 * m then return "La. I.7.1 (iii)"; fi; qm:= q mod m; if 1 < qm and Int( n * ( qm-1 ) / m ) = 1 then return "Prop. II.3.15"; fi; e:= ( q^n - 1 ) / z; if e <= 32 then return "Prop. II.6.1 (e <= 32)"; elif e <= 3 * m then return "Prop. II.6.4"; elif n <= 5 and ((q^n-1)/(q-1)) mod e = 0 then return "Prop. II.5.3, II.5.6 (e | (q^n-1)/(q-1), n <= 5)"; elif n mod ( m / Gcd( m, q-1 ) * OrderModExt( q, e, n ) ) = 0 then return "La. II.5.2 (ii)"; fi; if ( (q^n-1)/(q-1) ) mod e = 0 then # we know m <= n if m >= n-1 then return "Prop. II.5.1 (ii)"; elif m = n-2 and ( q mod m ) in [ 1 .. Int( (m+1)/2 ) ] then return "Prop. II.5.1 (iii)"; elif Int( (n-m) * (q-1) / m ) mod ( n-m ) = 0 then return "Prop. II.5.1 (i)"; fi; fi; if ( n mod m = 0 ) then if Sum( List( [ 0 .. m-1 ], i -> q^(i*n/m) ) ) mod e = 0 then return "La. II.4.1 for r = 1"; fi; for r in DivisorsInt( n ) do if (n/r) mod m = 0 and Sum( [ 0 .. m-1 ], i -> q^(n*i/(m*r)) ) mod e = 0 then return "La. II.4.1"; fi; od; fi; p:= SmallestRootInt( e ); if p = 2 then return "Thm. II.4.3 (iii)"; elif IsPrimeInt( p ) then # (Here we know that 'q mod p <> 1' holds.) # Check whether 'p' is a Pierpont prime. p:= p - 1; while p mod 2 = 0 do p:= p/2; od; while p mod 3 = 0 do p:= p/3; od; if p = 1 then return "Thm. II.4.3 (ii)"; fi; fi; # Concerning Remark II.5.4, # we need not check \Phi_2 (since m = e if e divides q-1, # and we have checked whether m divides q-1), # \Phi_4, \Phi_8 (because then m = 2). phi6:= q^2 - q + 1; # this is \Phi_6(q) if phi6 mod e = 0 or ( q^3*(q^3+1) + 1 ) mod e = 0 or # this is \Phi_9(q) ( q^3*(q-1) + phi6 ) mod e = 0 then # this is \Phi_{10}(q) return "Rem. II.5.4"; fi; # We give up. return ""; end ); InstallGlobalFunction( LoewyLengthCheapGAP, function( q, n, z, m ) if SufficientCriterionForLoewyBoundAttained( q, n, z, m ) <> "" then return Int( n * ( q - 1 ) / m ) + 1; else return 0; fi; end ); InstallGlobalFunction( LoewyLengthHardGAP, { q, n, z, m } -> LoewyStructureInfoGAP( q, n, z ).LL ); ############################################################################# ## #M LoewyLengthJulia( <A> ) #M LoewyLengthJulia( <q>, <z> ) #M LoewyLengthJulia( <q>, <n>, <z>, <m> ) ## ## Use the same criteria as for the &GAP; variant. ## These methods are available only if &Julia; is available. ## if IsPackageMarkedForLoading( "JuliaInterface", "" ) then InstallMethod( LoewyLengthJulia, [ "IsSingerAlgebra and HasLoewyStructureInfoJulia" ], A -> JuliaToGAP( IsInt, Julia.Base.get( LoewyStructureInfoJulia( A ), JuliaSymbol( "LL" ), 0 ) )); InstallMethod( LoewyLengthJulia, [ "IsSingerAlgebra" ], function( A ) local paras; paras:= ParametersOfSingerAlgebra( A ); # Leave the computation of m(q,e) and of the Loewy length to Julia, # let Julia set also the 'MinimalDegreeOfSingerAlgebraJulia' value in A. return JuliaToGAP( IsInt, Julia.SingerAlg.LoewyLength( paras[1], paras[2], paras[3], A ) ); end ); InstallMethod( LoewyLengthJulia, [ "IsPosInt", "IsPosInt" ], function( q, z ) return JuliaToGAP( IsInt, Julia.SingerAlg.LoewyLength( q, z ) ); end ); InstallMethod( LoewyLengthJulia, [ "IsPosInt", "IsPosInt", "IsPosInt", "IsPosInt" ], function( q, n, z, m ) return JuliaToGAP( IsInt, Julia.SingerAlg.LoewyLength( q, n, z, m ) ); end ); fi; ############################################################################# ## #M RadicalOfAlgebra( <A> ) ## ## The Jacobson radical of a Singer algebra of dimension <M>z+1</M> ## has the basis <M>[ b_1, b_2, \ldots, b_z ]</M>. ## InstallMethod( RadicalOfAlgebra, [ "IsSingerAlgebra" ], function( A ) local B, range, S; B:= BasisVectors( CanonicalBasis( A ) ); range:= [ 2 .. Length( B ) ]; S:= SubalgebraNC( A, B{ range }, "basis" ); SetGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( S, range ); return S; end ); ############################################################################# ## #M RadicalSeriesOfAlgebra( <A> ) ## InstallMethod( RadicalSeriesOfAlgebra, [ "IsSingerAlgebra" ], function( A ) local result, data, B, i, S; result:= [ A, RadicalOfAlgebra( A ) ]; data:= LoewyStructureInfoGAP( A ); data:= SingerAlg.BasesOfRadicalSeries( data ); B:= BasisVectors( CanonicalBasis( A ) ); for i in [ 2 .. Length( data ) ] do S:= SubalgebraNC( A, B{ data[i] }, "basis" ); SetGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( S, data[i] ); result[i+1]:= S; od; Add( result, TrivialSubalgebra( A ) ); return result; end ); ############################################################################# ## #M SocleSeriesOfAlgebra( <A> ) ## InstallMethod( SocleSeriesOfAlgebra, [ "IsSingerAlgebra" ], function( A ) local result, data, B, i, S; result:= [ TrivialSubalgebra( A ) ]; data:= LoewyStructureInfoGAP( A ); data:= SingerAlg.BasesOfSocleSeries( data ); B:= BasisVectors( CanonicalBasis( A ) ); for i in [ 1 .. Length( data ) ] do S:= SubalgebraNC( A, B{ data[i] }, "basis" ); SetGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( S, data[i] ); result[i+1]:= S; od; Add( result, A ); return result; end ); ############################################################################# ## #M Intersection2( <A>, <B> ) ## InstallMethod( Intersection2, IsIdenticalObj, [ "IsVectorSpace and HasGeneratingSubsetOfCanonicalBasisOfSingerAlgebra", "IsVectorSpace and HasGeneratingSubsetOfCanonicalBasisOfSingerAlgebra" ], 100, # beat generic methods for two 'IsFLMLORWithOne' function( A, B ) local P, basis, data, S; P:= Parent( A ); if not IsIdenticalObj( P, Parent( B ) ) then TryNextMethod(); fi; basis:= BasisVectors( CanonicalBasis( P ) ); data:= Intersection2( GeneratingSubsetOfCanonicalBasisOfSingerAlgebra( A ), GeneratingSubsetOfCanonicalBasisOfSingerAlgebra( B ) ); S:= SubspaceNC( P, basis{ data }, "basis" ); SetGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( S, data ); return S; end ); ############################################################################# ## #M \+( <A>, <B> ) ## InstallOtherMethod( \+, IsIdenticalObj, [ "IsVectorSpace and HasGeneratingSubsetOfCanonicalBasisOfSingerAlgebra", "IsVectorSpace and HasGeneratingSubsetOfCanonicalBasisOfSingerAlgebra" ], 100, # beat generic methods for two rings, two left modules function( A, B ) local P, basis, data, S; P:= Parent( A ); if not IsIdenticalObj( P, Parent( B ) ) then TryNextMethod(); fi; basis:= BasisVectors( CanonicalBasis( P ) ); data:= Union( GeneratingSubsetOfCanonicalBasisOfSingerAlgebra( A ), GeneratingSubsetOfCanonicalBasisOfSingerAlgebra( B ) ); S:= SubspaceNC( P, basis{ data }, "basis" ); SetGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( S, data ); return S; end ); ############################################################################# ## #M ProductSpace( <A>, <B> ) ## InstallMethod( ProductSpace, IsIdenticalObj, [ "IsVectorSpace and HasGeneratingSubsetOfCanonicalBasisOfSingerAlgebra", "IsVectorSpace and HasGeneratingSubsetOfCanonicalBasisOfSingerAlgebra" ], 100, # beat generic methods for two algebras, two left modules function( A, B ) local P, basis, data, S; P:= Parent( A ); if not IsIdenticalObj( P, Parent( B ) ) then TryNextMethod(); fi; basis:= BasisVectors( CanonicalBasis( P ) ); data:= LoewyStructureInfoGAP( P ); data:= SingerAlg.BasisOfProductSpace( data, GeneratingSubsetOfCanonicalBasisOfSingerAlgebra( A ), GeneratingSubsetOfCanonicalBasisOfSingerAlgebra( B ) ); S:= SubspaceNC( P, basis{ data }, "basis" ); SetGeneratingSubsetOfCanonicalBasisOfSingerAlgebra( S, data ); return S; end ); ############################################################################# ## #F CoefficientsQadicReversed( <k>, <z>, <q>, <n> ) ## InstallGlobalFunction( CoefficientsQadicReversed, function( k, z, q, n ) local v, i, r, rq, d; v:= []; if k = z then for i in [ 1 .. n ] do v[i]:= q-1; od; else r:= k; for i in [ 1 .. n ] do rq:= r * q; d:= QuoInt( rq, z ); r:= rq - d * z; v[i]:= d; od; fi; return v; end ); ############################################################################# ## #F SingerAlg.MultTable( <data> ) ## ## <#GAPDoc Label="SingerAlg.MultTable"> ## <ManSection> ## <Func Name="SingerAlg.MultTable" Arg='data'/> ## ## <Description> ## Let <A>data</A> be the record returned by ## <Ref Oper="LoewyStructureInfoGAP" Label="for parameters"/> ## that describes a Singer algebra <M>A[q,z]</M>, ## and let <M>B = B(A)</M>. ## <Ref Func="SingerAlg.MultTable"/> returns the ## <M>(z+1) \times (z+1)</M> matrix that contains at the position ## <M>(i,j)</M> the value <M>i+j-1</M> if the product ## <M>B_i \cdot B_j</M> is nonzero ## (hence equal to <M>B_{{i+j-1}}</M>, the <M>i+j-1</M>-th basis vector), ## and <M>0</M> otherwise. ## <P/> ## <Example><![CDATA[ ## gap> data:= LoewyStructureInfoGAP( 2, 3, 7 );; ## gap> Display( SingerAlg.MultTable( data ) ); ## [ [ 1, 2, 3, 4, 5, 6, 7, 8 ], ## [ 2, 0, 4, 0, 6, 0, 8, 0 ], ## [ 3, 4, 0, 0, 7, 8, 0, 0 ], ## [ 4, 0, 0, 0, 8, 0, 0, 0 ], ## [ 5, 6, 7, 8, 0, 0, 0, 0 ], ## [ 6, 0, 8, 0, 0, 0, 0, 0 ], ## [ 7, 8, 0, 0, 0, 0, 0, 0 ], ## [ 8, 0, 0, 0, 0, 0, 0, 0 ] ] ## ]]></Example> ## <P/> ## The multiplication table of a Singer algebra of dimension <M>N</M> ## has the value <M>N</M> on the antidiagonal (<M>i+j = N+1</M>), ## is zero below the antidiagonal, ## and contains only <M>N-i</M> and zero on the <M>i</M> parallel above the ## antidiagonal. ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.MultTable:= function( data ) local monoms, n, nn, mat, q, qhalf, i, j; if not IsBound( data.multtable ) then monoms:= data.monomials; n:= Length( monoms ); # z+1 nn:= QuoInt( n+1, 2 ); mat:= NullMat( n, n ); q:= data.parameters[1]; if q mod 2 = 1 then qhalf:= QuoInt( q, 2 ) + 1; else qhalf:= QuoInt( q, 2 ); fi; for i in [ 1 .. nn ] do for j in [ 1 .. i-1 ] do if ForAll( monoms[i] + monoms[j], x -> x < q ) then mat[i,j]:= i+j-1; mat[j,i]:= i+j-1; fi; od; if ForAll( monoms[i], x -> x < qhalf ) then mat[i,i]:= i+i-1; fi; od; for i in [ nn+1 .. n ] do # The [i,j] entry can be nonzero only if i+j <= z+2 holds. for j in [ 1 .. n+1-i ] do if ForAll( monoms[i] + monoms[j], x -> x < q ) then mat[i,j]:= i+j-1; mat[j,i]:= i+j-1; fi; od; od; data.multtable:= mat; fi; return data.multtable; end; ############################################################################# ## #F SingerAlg.BasisOfSum( <data>, <I>, <J> ) #F SingerAlg.BasisOfIntersection( <data>, <I>, <J> ) ## ## <#GAPDoc Label="SingerAlg.BasisOfSum"> ## <ManSection> ## <Heading>SingerAlg.BasisOfSum and SingerAlg.BasisOfIntersection</Heading> ## <Func Name="SingerAlg.BasisOfSum" Arg='data, I, J'/> ## <Func Name="SingerAlg.BasisOfIntersection" Arg='data, I, J'/> ## ## <Description> ## For two subsets <A>I</A>, <A>J</A> of <M>\{ 1, 2, \ldots, z+1 \}</M>, ## these functions just return the union and the intersection, ## respectively, of <A>I</A> and <A>J</A>. ## <P/> ## <A>I</A> and <A>J</A> describe subsets of a basis, which generate the ## spaces <M>U</M> and <M>V</M>, say, then the result describes the subset ## of this basis that generates the sum and the intersection, respectively, ## of <M>U</M> and <M>V</M>. ## <P/> ## <Example><![CDATA[ ## gap> SingerAlg.BasisOfSum( data, [ 1, 2, 3 ], [ 2, 4, 6 ] ); ## [ 1, 2, 3, 4, 6 ] ## gap> SingerAlg.BasisOfIntersection( data, [ 1, 2, 3 ], [ 2, 4, 6 ] ); ## [ 2 ] ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.BasisOfSum:= { data, I, J } -> Union( I, J ); SingerAlg.BasisOfIntersection:= { data, I, J } -> Intersection( I, J ); ############################################################################# ## #F SingerAlg.BasisOfProductSpace( <data>, <I>, <J> ) ## ## <#GAPDoc Label="SingerAlg.BasisOfProductSpace"> ## <ManSection> ## <Func Name="SingerAlg.BasisOfProductSpace" Arg='data, I, J'/> ## ## <Description> ## Let <A>data</A> be the record returned by ## <Ref Oper="LoewyStructureInfoGAP" Label="for parameters"/> ## that describes a Singer algebra <M>A = A[q,z]</M>, ## let <M>B = B(A)</M>, ## and let <A>I</A>, <A>J</A> be subsets of ## <M>\{ 1, 2, \ldots, z+1 \}</M>, ## describing subspaces <M>U</M>, <M>V</M> of <M>A</M> with bases ## <M>( B_i; i \in I )</M> and <M>( B_i; i \in J )</M>, respectively. ## <Ref Func="SingerAlg.BasisOfProductSpace"/> returns the subset <M>K</M> ## of <M>\{ 1, 2, \ldots, z+1 \}</M> such that ## <M>( B_i; i \in K )</M> is a basis of the product space <M>U \cdot V</M>. ## <P/> ## <Example><![CDATA[ ## gap> data:= LoewyStructureInfoGAP( 2, 7 );; ## gap> radser:= SingerAlg.BasesOfRadicalSeries( data ); ## [ [ 2 .. 8 ], [ 4, 6, 7, 8 ], [ 8 ] ] ## gap> SingerAlg.BasisOfProductSpace( data, radser[1], radser[1] ); ## [ 4, 6, 7, 8 ] ## gap> SingerAlg.BasisOfProductSpace( data, radser[1], radser[2] ); ## [ 8 ] ## gap> SingerAlg.BasisOfProductSpace( data, radser[2], radser[2] ); ## [ ] ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.BasisOfProductSpace:= function( data, I, J ) local mat, basis, i, j; mat:= SingerAlg.MultTable( data ); basis:= []; for i in I do for j in J do if mat[i,j] <> 0 then AddSet( basis, i+j-1 ); fi; od; od; return basis; end; ############################################################################# ## #F SingerAlg.BasisOfIdeal( <data>, <I> ) ## ## <#GAPDoc Label="SingerAlg.BasisOfIdeal"> ## <ManSection> ## <Func Name="SingerAlg.BasisOfIdeal" Arg='data, I'/> ## ## <Description> ## Let <A>data</A> be the record returned by ## <Ref Oper="LoewyStructureInfoGAP" Label="for parameters"/> ## that describes a Singer algebra <M>A = A[q,z]</M>, ## let <M>B = B(A)</M>, ## and let <A>I</A> be a subset of <M>\{ 1, 2, \ldots, z+1 \}</M>, ## describing a subspace <M>U</M> of <M>A</M> with basis ## <M>( B_i; i \in I )</M>. ## <Ref Func="SingerAlg.BasisOfIdeal"/> returns the subset <M>J</M> ## of <M>\{ 1, 2, \ldots, z+1 \}</M> such that ## <M>( B_i; i \in J )</M> is a basis of the ideal <M>U \cdot A</M>. ## <P/> ## <Example><![CDATA[ ## gap> data:= LoewyStructureInfoGAP( 2, 7 );; ## gap> SingerAlg.BasisOfIdeal( data, [ 4 ] ); ## [ 4, 8 ] ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.BasisOfIdeal:= { data, I } -> SingerAlg.BasisOfProductSpace( data, I, [ 1 .. Length( data.monomials ) ] ); ############################################################################# ## #F SingerAlg.BasisOfAnnihilator( <data>, <I> ) ## ## <#GAPDoc Label="SingerAlg.BasisOfAnnihilator"> ## <ManSection> ## <Func Name="SingerAlg.BasisOfAnnihilator" Arg='data, I'/> ## ## <Description> ## Let <A>data</A> be the record returned by ## <Ref Oper="LoewyStructureInfoGAP" Label="for parameters"/> ## that describes a Singer algebra <M>A = A[q,z]</M>, ## let <M>B = B(A)</M>, ## and let <A>I</A> be a subset of <M>\{ 1, 2, \ldots, z+1 \}</M>, ## describing a subspace <M>U</M> of <M>A</M> with basis ## <M>( B_i; i \in I )</M>. ## <Ref Func="SingerAlg.BasisOfAnnihilator"/> returns the subset <M>J</M> ## of <M>\{ 1, 2, \ldots, z+1 \}</M> such that ## <M>( B_i; i \in J )</M> is a basis of the annihilator ## <M>\{ x \in A; x \cdot U = 0 \}</M> of <M>U</M> in <M>A</M>. ## <P/> ## <Example><![CDATA[ ## gap> data:= LoewyStructureInfoGAP( 2, 7 );; ## gap> radser:= SingerAlg.BasesOfRadicalSeries( data ); ## [ [ 2 .. 8 ], [ 4, 6, 7, 8 ], [ 8 ] ] ## gap> List( radser, I -> SingerAlg.BasisOfAnnihilator( data, I ) ); ## [ [ 8 ], [ 4, 6, 7, 8 ], [ 2, 3, 4, 5, 6, 7, 8 ] ] ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.BasisOfAnnihilator:= function( data, list ) local mat; mat:= SingerAlg.MultTable( data ); return Filtered( [ 1 .. Length( mat ) ], i -> ForAll( list, j -> mat[i,j] = 0 ) ); end; ############################################################################# ## #F SingerAlg.BasesOfRadicalSeries( <data> ) ## ## <#GAPDoc Label="SingerAlg.BasesOfRadicalSeries"> ## <ManSection> ## <Func Name="SingerAlg.BasesOfRadicalSeries" Arg='data'/> ## ## <Description> ## Let <A>data</A> be the record returned by ## <Ref Oper="LoewyStructureInfoGAP" Label="for parameters"/> ## that describes a Singer algebra <M>A = A[q,z]</M>, ## and let <M>B = B(A)</M>. ## <Ref Func="SingerAlg.BasesOfRadicalSeries"/> returns the list ## <M>[ I_1, I_2, \ldots, I_l ]</M> of subsets of ## <M>\{ 1, 2, \ldots, z+1 \}</M> such that ## <M>( B_i; i \in I_j )</M> is a basis of the <M>j</M>-th power of the ## Jacobson radical <M>J</M> of <M>A</M>, ## and such that <M>J^l</M> is nonzero and <M>J^{{l+1}}</M> is zero. ## <P/> ## <Example><![CDATA[ ## gap> data:= LoewyStructureInfoGAP( 2, 7 );; ## gap> radser:= SingerAlg.BasesOfRadicalSeries( data ); ## [ [ 2 .. 8 ], [ 4, 6, 7, 8 ], [ 8 ] ] ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.BasesOfRadicalSeries:= function( data ) local lay, ll, jbylayer, J, i; lay:= data.layers; ll:= data.LL; jbylayer:= List( [ 1 .. ll-1 ], i -> Positions( lay, i ) ); J:= [ jbylayer[ ll-1 ] ]; for i in [ 2 .. ll-1 ] do J[i]:= Union( J[ i-1 ], jbylayer[ ll - i ] ); od; return Reversed( J ); end; ############################################################################# ## #F SingerAlg.BasesOfSocleSeries( <data> ) ## ## <#GAPDoc Label="SingerAlg.BasesOfSocleSeries"> ## <ManSection> ## <Func Name="SingerAlg.BasesOfSocleSeries" Arg='data'/> ## ## <Description> ## Let <A>data</A> be the record returned by ## <Ref Oper="LoewyStructureInfoGAP" Label="for parameters"/> ## that describes a Singer algebra <M>A = A[q,z]</M>, ## and let <M>B = B(A)</M>. ## <Ref Func="SingerAlg.BasesOfSocleSeries"/> returns the list ## <M>[ I_1, I_2, \ldots, I_l ]</M> of subsets of ## <M>\{ 1, 2, \ldots, z+1 \}</M> such that ## <M>( B_i; i \in I_j )</M> is a basis of <M>S_j</M>, ## where <M>S_1</M> is the socle of <M>A</M>, ## <M>S_{{j+1}}/S_j</M> is the socle of <A>A</A><M>/S_j</M>, ## and <A>A</A><M>/S_l</M> is nonzero and its own socle. ## <P/> ## <Example><![CDATA[ ## gap> socser:= SingerAlg.BasesOfSocleSeries( data ); ## [ [ 8 ], [ 4, 6, 7, 8 ], [ 2 .. 8 ] ] ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.BasesOfSocleSeries:= function( data ) local lay, ll, sbylayer, S, i; lay:= Reversed( data.layers ); ll:= data.LL; sbylayer:= List( [ 0 .. ll-2 ], i -> Positions( lay, i ) ); S:= [ sbylayer[ 1 ] ]; for i in [ 2 .. ll-1 ] do S[i]:= Union( S[ i-1 ], sbylayer[i] ); od; return S; end; ############################################################################# ## #F SingerAlg.BasisOfPowers( <data>, <I>, <p>, <m> ) ## ## <#GAPDoc Label="SingerAlg.BasisOfPowers"> ## <ManSection> ## <Func Name="SingerAlg.BasisOfPowers" Arg='data, I, p, m'/> ## ## <Description> ## Let <A>p</A> be a prime integer, ## let <A>data</A> be the record returned by ## <Ref Oper="LoewyStructureInfoGAP" Label="for parameters"/> ## that describes a Singer algebra <M>A = A[q,z]</M>, ## let <M>B = B(A_p)</M>, ## let <A>I</A> be a subset of <M>\{ 1, 2, \ldots, z+1 \}</M>, ## describing a subspace <M>U</M> of <M>A_p</M> with basis ## <M>( B_i; i \in I )</M>, ## and let <A>m</A> be a positive integer. ## <Ref Func="SingerAlg.BasisOfPowers"/> returns the subset <M>J</M> ## of <M>\{ 1, 2, \ldots, z+1 \}</M> such that ## <M>( B_i; i \in J )</M> is a basis of the subspace ## <M>\{ x^{{p^m}}; x \in U \}</M> of <M>A_p</M>. ## <P/> ## <Example><![CDATA[ ## gap> data:= LoewyStructureInfoGAP( 3, 8 );; ## gap> SingerAlg.BasisOfPowers( data, [ 1 .. 9 ], 2, 1 ); ## [ 1, 3, 7, 9 ] ## gap> SingerAlg.BasisOfPowers( data, [ 1 .. 9 ], 2, 2 ); ## [ 1 ] ## gap> SingerAlg.BasisOfPowers( data, [ 1 .. 9 ], 3, 1 ); ## [ 1 ] ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.BasisOfPowers:= function( data, I, p, m ) local result, q, pm, quo, k; result:= []; q:= data.parameters[1]; pm:= p^m; quo:= QuoInt( q-1, pm ); for k in I do if Maximum( data.monomials[k] ) <= quo then Add( result, pm * ( k-1 ) + 1 ); fi; od; return result; end; ############################################################################# ## #F SingerAlg.BasisOfPMRoots( <data>, <I>, <p>, <m> ) ## ## <#GAPDoc Label="SingerAlg.BasisOfPMRoots"> ## <ManSection> ## <Func Name="SingerAlg.BasisOfPMRoots" Arg='data, I, p, m'/> ## ## <Description> ## Let <A>p</A> be a prime integer, ## let <A>data</A> be the record returned by ## <Ref Oper="LoewyStructureInfoGAP" Label="for parameters"/> ## that describes a Singer algebra <M>A = A[q,z]</M>, ## let <M>B = B(A_p)</M>, ## let <A>I</A> be a subset of <M>\{ 1, 2, \ldots, z+1 \}</M>, ## describing a subspace <M>U</M> of <M>A_p</M> with basis ## <M>( B_i; i \in I )</M>, ## and let <A>m</A> be a positive integer. ## (See Section <Ref Sect="sect:Singer algebras"/> for the definition of ## <M>A_p</M>.) ## <P/> ## <Ref Func="SingerAlg.BasisOfPMRoots"/> returns the subset <M>J</M> ## of <M>\{ 1, 2, \ldots, z+1 \}</M> such that ## <M>( B_i; i \in J )</M> is a basis of the subspace ## <M>\{ x \in A_p; x^{{p^m}} \in U \}</M> of <M>A_p</M>. ## <P/> ## <Example><![CDATA[ ## gap> data:= LoewyStructureInfoGAP( 3, 8 );; ## gap> SingerAlg.BasisOfPMRoots( data, [], 2, 1 ); ## [ 3, 6, 7, 8, 9 ] ## gap> SingerAlg.BasisOfPMRoots( data, [], 2, 2 ); ## [ 2, 3, 4, 5, 6, 7, 8, 9 ] ## gap> SingerAlg.BasisOfPMRoots( data, [ 3 ], 2, 1 ); ## [ 2, 3, 6, 7, 8, 9 ] ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.BasisOfPMRoots:= function( data, I, p, m ) local q, pm, quo; q:= data.parameters[1]; pm:= p^m; quo:= QuoInt( q-1, pm ); # The first condition means that B_k^{p^m} is zero # and hence inside the given subspace. # For the second condition, we may assume that B_k^{p^m} # is nonzero and hence equal to B_{p^m (k-1)+1}. return Filtered( [ 1 .. Length( data.monomials ) ], k -> Maximum( data.monomials[k] ) > quo or pm * (k-1) + 1 in I ); end; ############################################################################# ## #F SingerAlg.BasisOfPC( <data>, <I>, <J> ) ## ## <#GAPDoc Label="SingerAlg.BasisOfPC"> ## <ManSection> ## <Func Name="SingerAlg.BasisOfPC" Arg='data, I, J'/> ## ## <Description> ## Let <A>data</A> be the record returned by ## <Ref Oper="LoewyStructureInfoGAP" Label="for parameters"/> ## that describes a Singer algebra <M>A = A[q,z]</M>, ## let <M>B = B(A)</M>, ## let <A>I</A> and <M>J</M> be subsets of <M>\{ 1, 2, \ldots, z+1 \}</M>, ## describing subspaces <M>U</M> and <M>V</M> of <M>A</M> with bases ## <M>( B_i; i \in I )</M> and <M>( B_i; i \in J )</M>, ## respectively. ## <Ref Func="SingerAlg.BasisOfPC"/> returns the subset <M>K</M> ## of <M>\{ 2, 3, \ldots, z+1 \}</M> such that ## <M>( B_i; i \in K )</M> is a basis of the subspace ## <M>\{ x \in J(A); x \cdot U \subseteq V \}</M> of <M>J(A)</M>. ## <P/> ## (The perhaps strange name <Q>BasisOfPC</Q> was chosen because the ## result contains the indices of those basis vectors such that the ## <E>P</E>roduct with the space <M>U</M> is <E>C</E>ontained in the ## space <M>V</M>.) ## <P/> ## <Example><![CDATA[ ## gap> data:= LoewyStructureInfoGAP( 23, 585 );; ## gap> soc:= SingerAlg.BasesOfSocleSeries( data );; ## gap> rad:= SingerAlg.BasesOfRadicalSeries( data );; ## gap> I1:= SingerAlg.BasisOfPC( data, soc[3], rad[3] );; ## gap> Length( I1 ); ## 581 ## gap> data:= LoewyStructureInfoGAP( 212, 585 );; ## gap> soc:= SingerAlg.BasesOfSocleSeries( data );; ## gap> rad:= SingerAlg.BasesOfRadicalSeries( data );; ## gap> I2:= SingerAlg.BasisOfPC( data, soc[3], rad[3] );; ## gap> Length( I2 ); ## 545 ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## SingerAlg.BasisOfPC:= { data, I, J } -> Filtered( # Note that we are interested in subspaces of the radical. [ 2 .. Length( data.monomials ) ], k -> IsSubset( J, SingerAlg.BasisOfProductSpace( data, [ k ], I ) ) ); ############################################################################# ## #E
#ifndef _DSGLD_LDA_MODEL_H__ #define _DSGLD_LDA_MODEL_H__ #include <El.hpp> #include <gsl/gsl_rng.h> #include "sgld_model.h" using std::string; using std::vector; namespace dsgld { class LDAModel : public SGLDModel<double, int> { public: LDAModel( const El::Matrix<int>& X, const int K, const double alpha, const double beta); ~LDAModel() {}; El::Matrix<double> sgldEstimate(const El::Matrix<double>& theta) override; El::Matrix<double> nablaLogPrior(const El::Matrix<double>& theta) const override; void writePerplexities(const string& filename); int NumGibbsSteps() const; LDAModel* NumGibbsSteps(const int); protected: void gibbsSample( const El::Matrix<int>& doc, const El::Matrix<double>& theta, El::Matrix<int>& index_to_topic, El::Matrix<int>& topic_counts) const; double estimatePerplexity( const El::Matrix<double>& theta, const El::Matrix<double>& theta_sum_over_w, const int num_words_in_doc, const El::Matrix<int>& topic_counts) const; private: const double alpha_; const double beta_; const int W; const int K; int numGibbsSteps_; vector<double> perplexities_; const gsl_rng* rng; }; } // namespace dsgld #endif // _DSGLD_LDA_MODEL_H__
#' Get Impression Level Revenue Data from Ad Revenue Measurement API #' @description Get Impression Level Revenue Data from Ad Revenue Measurement API <https://developers.is.com/ironsource-mobile/air/ad-revenue-measurements> #' @importFrom httr add_headers content GET #' #' @param date Date of report in UTC timezone #' @param app_key Application key #' @param bearer_token Bearer API Authentication token #' #' @export is_revenue_impression <- function(date, app_key, bearer_token) { download_link <- GET("https://platform.ironsrc.com/partners/adRevenueMeasurements/v1?", query = list(date = date, appKey = app_key), add_headers("Authorization" = bearer_token)) if (download_link$status_code != 200) { stop(paste0("Error code ", download_link$status_code, ": ", content(download_link)$error)) } download_link <- content(download_link)$urls[[1]] return(download_link) }
#include <math.h> #include <gsl/gsl_ntuple.h> #include <gsl/gsl_histogram.h> struct data { double x; double y; double z; }; int sel_func (void *ntuple_data, void *params); double val_func (void *ntuple_data, void *params); int main (void) { struct data ntuple_row; gsl_ntuple *ntuple = gsl_ntuple_open ("test.dat", &ntuple_row, sizeof (ntuple_row)); double lower = 1.5; gsl_ntuple_select_fn S; gsl_ntuple_value_fn V; gsl_histogram *h = gsl_histogram_alloc (100); gsl_histogram_set_ranges_uniform(h, 0.0, 10.0); S.function = &sel_func; S.params = &lower; V.function = &val_func; V.params = 0; gsl_ntuple_project (h, ntuple, &V, &S); gsl_histogram_fprintf (stdout, h, "%f", "%f"); gsl_histogram_free (h); gsl_ntuple_close (ntuple); return 0; } int sel_func (void *ntuple_data, void *params) { struct data * data = (struct data *) ntuple_data; double x, y, z, E2, scale; scale = *(double *) params; x = data->x; y = data->y; z = data->z; E2 = x * x + y * y + z * z; return E2 > scale; } double val_func (void *ntuple_data, void *params) { struct data * data = (struct data *) ntuple_data; double x, y, z; x = data->x; y = data->y; z = data->z; return x * x + y * y + z * z; }
##### Copyright 2020 The TensorFlow Authors. ``` #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ``` # Quantum data <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://www.tensorflow.org/quantum/tutorials/quantum_data">View on TensorFlow.org</a> </td> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/quantum/blob/master/docs/tutorials/quantum_data.ipynb">Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/quantum/blob/master/docs/tutorials/quantum_data.ipynb">View source on GitHub</a> </td> <td> <a href="https://storage.googleapis.com/tensorflow_docs/quantum/docs/tutorials/quantum_data.ipynb">Download notebook</a> </td> </table> Building off of the comparisons made in the [MNIST](https://www.tensorflow.org/quantum/tutorials/mnist) tutorial, this tutorial explores the recent work of [Huang et al.](https://arxiv.org/abs/2011.01938) that shows how different datasets affect performance comparisons. In the work, the authors seek to understand how and when classical machine learning models can learn as well as (or better than) quantum models. The work also showcases an empirical performance separation between classical and quantum machine learning model via a carefully crafted dataset. You will: 1. Prepare a reduced dimension Fashion-MNIST dataset. 2. Use quantum circuits to re-label the dataset and compute Projected Quantum Kernel features (PQK). 3. Train a classical neural network on the re-labeled dataset and compare the performance with a model that has access to the PQK features. ## Setup ``` !pip -q install tensorflow==2.3.1 tensorflow-quantum ``` ``` import cirq import sympy import numpy as np import tensorflow as tf import tensorflow_quantum as tfq # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit np.random.seed(1234) ``` ## 1. Data preparation You will begin by preparing the fashion-MNIST dataset for running on a quantum computer. ### 1.1 Download fashion-MNIST The first step is to get the traditional fashion-mnist dataset. This can be done using the `tf.keras.datasets` module. ``` (x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data() # Rescale the images from [0,255] to the [0.0,1.0] range. x_train, x_test = x_train[..., np.newaxis]/255.0, x_test[..., np.newaxis]/255.0 print("Number of original training examples:", len(x_train)) print("Number of original test examples:", len(x_test)) ``` Filter the dataset to keep just the shirts and dresses, remove the other classes. At the same time convert the label, `y`, to boolean: True for 0 and False for 3. ``` def filter_03(x, y): keep = (y == 0) | (y == 3) x, y = x[keep], y[keep] y = y == 0 return x,y ``` ``` x_train, y_train = filter_03(x_train, y_train) x_test, y_test = filter_03(x_test, y_test) print("Number of filtered training examples:", len(x_train)) print("Number of filtered test examples:", len(x_test)) ``` ``` print(y_train[0]) plt.imshow(x_train[0, :, :, 0]) plt.colorbar() ``` ### 1.2 Downscale the images Just like the MNIST example, you will need to downscale these images in order to be within the boundaries for current quantum computers. This time however you will use a PCA transformation to reduce the dimensions instead of a `tf.image.resize` operation. ``` def truncate_x(x_train, x_test, n_components=10): """Perform PCA on image dataset keeping the top `n_components` components.""" n_points_train = tf.gather(tf.shape(x_train), 0) n_points_test = tf.gather(tf.shape(x_test), 0) # Flatten to 1D x_train = tf.reshape(x_train, [n_points_train, -1]) x_test = tf.reshape(x_test, [n_points_test, -1]) # Normalize. feature_mean = tf.reduce_mean(x_train, axis=0) x_train_normalized = x_train - feature_mean x_test_normalized = x_test - feature_mean # Truncate. e_values, e_vectors = tf.linalg.eigh( tf.einsum('ji,jk->ik', x_train_normalized, x_train_normalized)) return tf.einsum('ij,jk->ik', x_train_normalized, e_vectors[:,-n_components:]), \ tf.einsum('ij,jk->ik', x_test_normalized, e_vectors[:, -n_components:]) ``` ``` DATASET_DIM = 10 x_train, x_test = truncate_x(x_train, x_test, n_components=DATASET_DIM) print(f'New datapoint dimension:', len(x_train[0])) ``` The last step is to reduce the size of the dataset to just 1000 training datapoints and 200 testing datapoints. ``` N_TRAIN = 1000 N_TEST = 200 x_train, x_test = x_train[:N_TRAIN], x_test[:N_TEST] y_train, y_test = y_train[:N_TRAIN], y_test[:N_TEST] ``` ``` print("New number of training examples:", len(x_train)) print("New number of test examples:", len(x_test)) ``` ## 2. Relabeling and computing PQK features You will now prepare a "stilted" quantum dataset by incorporating quantum components and re-labeling the truncated fashion-MNIST dataset you've created above. In order to get the most seperation between quantum and classical methods, you will first prepare the PQK features and then relabel outputs based on their values. ### 2.1 Quantum encoding and PQK features You will create a new set of features, based on `x_train`, `y_train`, `x_test` and `y_test` that is defined to be the 1-RDM on all qubits of: $V(x_{\text{train}} / n_{\text{trotter}}) ^ {n_{\text{trotter}}} U_{\text{1qb}} | 0 \rangle$ Where $U_\text{1qb}$ is a wall of single qubit rotations and $V(\hat{\theta}) = e^{-i\sum_i \hat{\theta_i} (X_i X_{i+1} + Y_i Y_{i+1} + Z_i Z_{i+1})}$ First, you can generate the wall of single qubit rotations: ``` def single_qubit_wall(qubits, rotations): """Prepare a single qubit X,Y,Z rotation wall on `qubits`.""" wall_circuit = cirq.Circuit() for i, qubit in enumerate(qubits): for j, gate in enumerate([cirq.X, cirq.Y, cirq.Z]): wall_circuit.append(gate(qubit) ** rotations[i][j]) return wall_circuit ``` You can quickly verify this works by looking at the circuit: ``` SVGCircuit(single_qubit_wall( cirq.GridQubit.rect(1,4), np.random.uniform(size=(4, 3)))) ``` Next you can prepare $V(\hat{\theta})$ with the help of `tfq.util.exponential` which can exponentiate any commuting `cirq.PauliSum` objects: ``` def v_theta(qubits): """Prepares a circuit that generates V(\theta).""" ref_paulis = [ cirq.X(q0) * cirq.X(q1) + \ cirq.Y(q0) * cirq.Y(q1) + \ cirq.Z(q0) * cirq.Z(q1) for q0, q1 in zip(qubits, qubits[1:]) ] exp_symbols = list(sympy.symbols('ref_0:'+str(len(ref_paulis)))) return tfq.util.exponential(ref_paulis, exp_symbols), exp_symbols ``` This circuit might be a little bit harder to verify by looking at, but you can still examine a two qubit case to see what is happening: ``` test_circuit, test_symbols = v_theta(cirq.GridQubit.rect(1, 2)) print(f'Symbols found in circuit:{test_symbols}') SVGCircuit(test_circuit) ``` Now you have all the building blocks you need to put your full encoding circuits together: ``` def prepare_pqk_circuits(qubits, classical_source, n_trotter=10): """Prepare the pqk feature circuits around a dataset.""" n_qubits = len(qubits) n_points = len(classical_source) # Prepare random single qubit rotation wall. random_rots = np.random.uniform(-2, 2, size=(n_qubits, 3)) initial_U = single_qubit_wall(qubits, random_rots) # Prepare parametrized V V_circuit, symbols = v_theta(qubits) exp_circuit = cirq.Circuit(V_circuit for t in range(n_trotter)) # Convert to `tf.Tensor` initial_U_tensor = tfq.convert_to_tensor([initial_U]) initial_U_splat = tf.tile(initial_U_tensor, [n_points]) full_circuits = tfq.layers.AddCircuit()( initial_U_splat, append=exp_circuit) # Replace placeholders in circuits with values from `classical_source`. return tfq.resolve_parameters( full_circuits, tf.convert_to_tensor([str(x) for x in symbols]), tf.convert_to_tensor(classical_source*(n_qubits/3)/n_trotter)) ``` Chooe some qubits and prepare the data encoding circuits: ``` qubits = cirq.GridQubit.rect(1, DATASET_DIM + 1) q_x_train_circuits = prepare_pqk_circuits(qubits, x_train) q_x_test_circuits = prepare_pqk_circuits(qubits, x_test) ``` Next, compute the PQK features based on the 1-RDM of the dataset circuits above and store the results in `rdm`, a `tf.Tensor` with shape `[n_points, n_qubits, 3]`. The entries in `rdm[i][j][k]` = $\langle \psi_i | OP^k_j | \psi_i \rangle$ where `i` indexes over datapoints, `j` indexes over qubits and `k` indexes over $\lbrace \hat{X}, \hat{Y}, \hat{Z} \rbrace$ . ``` def get_pqk_features(qubits, data_batch): """Get PQK features based on above construction.""" ops = [[cirq.X(q), cirq.Y(q), cirq.Z(q)] for q in qubits] ops_tensor = tf.expand_dims(tf.reshape(tfq.convert_to_tensor(ops), -1), 0) batch_dim = tf.gather(tf.shape(data_batch), 0) ops_splat = tf.tile(ops_tensor, [batch_dim, 1]) exp_vals = tfq.layers.Expectation()(data_batch, operators=ops_splat) rdm = tf.reshape(exp_vals, [batch_dim, len(qubits), -1]) return rdm ``` ``` x_train_pqk = get_pqk_features(qubits, q_x_train_circuits) x_test_pqk = get_pqk_features(qubits, q_x_test_circuits) print('New PQK training dataset has shape:', x_train_pqk.shape) print('New PQK testing dataset has shape:', x_test_pqk.shape) ``` ### 2.2 Re-labeling based on PQK features Now that you have these quantum generated features in `x_train_pqk` and `x_test_pqk`, it is time to re-label the dataset. To achieve maximum seperation between quantum and classical performance you can re-label the dataset based on the spectrum information found in `x_train_pqk` and `x_test_pqk`. Note: This preparation of your dataset to explicitly maximize the seperation in performance between the classical and quantum models might feel like cheating, but it provides a **very** important proof of existance for datasets that are hard for classical computers and easy for quantum computers to model. There would be no point in searching for quantum advantage in QML if you couldn't first create something like this to demonstrate advantage. ``` def compute_kernel_matrix(vecs, gamma): """Computes d[i][j] = e^ -gamma * (vecs[i] - vecs[j]) ** 2 """ scaled_gamma = gamma / ( tf.cast(tf.gather(tf.shape(vecs), 1), tf.float32) * tf.math.reduce_std(vecs)) return scaled_gamma * tf.einsum('ijk->ij',(vecs[:,None,:] - vecs) ** 2) def get_spectrum(datapoints, gamma=1.0): """Compute the eigenvalues and eigenvectors of the kernel of datapoints.""" KC_qs = compute_kernel_matrix(datapoints, gamma) S, V = tf.linalg.eigh(KC_qs) S = tf.math.abs(S) return S, V ``` ``` S_pqk, V_pqk = get_spectrum( tf.reshape(tf.concat([x_train_pqk, x_test_pqk], 0), [-1, len(qubits) * 3])) S_original, V_original = get_spectrum( tf.cast(tf.concat([x_train, x_test], 0), tf.float32), gamma=0.005) print('Eigenvectors of pqk kernel matrix:', V_pqk) print('Eigenvectors of original kernel matrix:', V_original) ``` Now you have everything you need to re-label the dataset! Now you can consult with the flowchart to better understand how to maximize performance seperation when re-labeling the dataset: In order to maximize the seperation between quantum and classical models, you will attempt to maximize the geometric difference between the original dataset and the PQK features kernel matrices $g(K_1 || K_2) = \sqrt{ || \sqrt{K_2} K_1^{-1} \sqrt{K_2} || _\infty}$ using `S_pqk, V_pqk` and `S_original, V_original`. A large value of $g$ ensures that you initially move to the right in the flowchart down towards a prediction advantage in the quantum case. Note: Computing quantities for $s$ and $d$ are also very useful when looking to better understand performance seperations. In this case ensuring a large $g$ value is enough to see performance seperation. ``` def get_stilted_dataset(S, V, S_2, V_2, lambdav=1.1): """Prepare new labels that maximize geometric distance between kernels.""" S_diag = tf.linalg.diag(S ** 0.5) S_2_diag = tf.linalg.diag(S_2 / (S_2 + lambdav) ** 2) scaling = S_diag @ tf.transpose(V) @ \ V_2 @ S_2_diag @ tf.transpose(V_2) @ \ V @ S_diag # Generate new lables using the largest eigenvector. _, vecs = tf.linalg.eig(scaling) new_labels = tf.math.real( tf.einsum('ij,j->i', tf.cast(V @ S_diag, tf.complex64), vecs[-1])).numpy() # Create new labels and add some small amount of noise. final_y = new_labels > np.median(new_labels) noisy_y = (final_y ^ (np.random.uniform(size=final_y.shape) > 0.95)) return noisy_y ``` ``` y_relabel = get_stilted_dataset(S_pqk, V_pqk, S_original, V_original) y_train_new, y_test_new = y_relabel[:N_TRAIN], y_relabel[N_TRAIN:] ``` ## 3. Comparing models Now that you have prepared your dataset it is time to compare model performance. You will create two small feedforward neural networks and compare performance when they are given access to the PQK features found in `x_train_pqk`. ### 3.1 Create PQK enhanced model Using standard `tf.keras` library features you can now create and a train a model on the `x_train_pqk` and `y_train_new` datapoints: ``` def create_pqk_model(): model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(32, activation='sigmoid', input_shape=[len(qubits) * 3,])) model.add(tf.keras.layers.Dense(16, activation='sigmoid')) model.add(tf.keras.layers.Dense(1)) return model pqk_model = create_pqk_model() pqk_model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(learning_rate=0.003), metrics=['accuracy']) pqk_model.summary() ``` ``` pqk_history = pqk_model.fit(tf.reshape(x_train_pqk, [N_TRAIN, -1]), y_train_new, batch_size=32, epochs=1000, verbose=0, validation_data=(tf.reshape(x_test_pqk, [N_TEST, -1]), y_test_new)) ``` ### 3.2 Create a classical model Similar to the code above you can now also create a classical model that doesn't have access to the PQK features in your stilted dataset. This model can be trained using `x_train` and `y_label_new`. ``` def create_fair_classical_model(): model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(32, activation='sigmoid', input_shape=[DATASET_DIM,])) model.add(tf.keras.layers.Dense(16, activation='sigmoid')) model.add(tf.keras.layers.Dense(1)) return model model = create_fair_classical_model() model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(learning_rate=0.03), metrics=['accuracy']) model.summary() ``` ``` classical_history = model.fit(x_train, y_train_new, batch_size=32, epochs=1000, verbose=0, validation_data=(x_test, y_test_new)) ``` ### 3.3 Compare performance Now that you have trained the two models you can quickly plot the performance gaps in the validation data between the two. Typically both models will achieve > 0.9 accuaracy on the training data. However on the validation data it becomes clear that only the information found in the PQK features is enough to make the model generalize well to unseen instances. ``` plt.figure(figsize=(10,5)) plt.plot(classical_history.history['accuracy'], label='accuracy_classical') plt.plot(classical_history.history['val_accuracy'], label='val_accuracy_classical') plt.plot(pqk_history.history['accuracy'], label='accuracy_quantum') plt.plot(pqk_history.history['val_accuracy'], label='val_accuracy_quantum') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() ``` Success: You have engineered a stilted quantum dataset that can intentionally defeat classical models in a fair (but contrived) setting. Try comparing results using other types of classical models. The next step is to try and see if you can find new and interesting datasets that can defeat classical models without needing to engineer them yourself! ## 4. Important conclusions There are several important conclusions you can draw from this and the [MNIST](https://www.tensorflow.org/quantum/tutorials/mnist) experiments: 1. It's very unlikely that the quantum models of today will beat classical model performance on classical data. Especially on today's classical datasets that can have upwards of a million datapoints. 2. Just because the data might come from a hard to classically simulate quantum circuit, doesn't necessarily make the data hard to learn for a classical model. 3. Datasets (ultimately quantum in nature) that are easy for quantum models to learn and hard for classical models to learn do exist, regardless of model architecture or training algorithms used.
function [name mfcc] = readKaldiFeature(fileName) endian = 'l'; % FID = fopen('D:\Data\MagorBN\MFCC_LDA_MLLT_MVN\Ark\cml_mfcc_train.10.ark', 'r'); FID = fopen(fileName, 'r'); name = {}; mfcc = {}; byte_cnt = 1; while 1 [tmp,byte_cnt] = readUttName(FID, byte_cnt); if length(tmp)==0 break; end name{end+1} = tmp; % fprintf('name{%d} = %s\n', length(name), name{end}); header = readHeader(FID, byte_cnt, endian); data = fread(FID, header.nframe * header.dim, 'float32', 0, endian)'; mfcc{end+1} = reshape(data, header.dim, header.nframe); if 0 imagesc(mfcc{end}); title(regexprep(name{end}, '_', '\\_')); colorbar; pause end end fclose(FID); %% function [header,byte_cnt] = readHeader(FID,byte_cnt, endian) header.format = []; byte_cnt = skipGap(FID, byte_cnt); while 1 tmp = fread(FID, 1, 'char'); byte_cnt = byte_cnt + 1; if tmp==' ' break; else header.format(end+1) = tmp; end end header.format = char(header.format); byte_cnt = skipGap(FID,byte_cnt); header.nframe = fread(FID, 1, 'int32', 0, endian); byte_cnt = byte_cnt + 4; byte_cnt = skipGap(FID,byte_cnt); header.dim = fread(FID, 1, 'int32', 0, endian); byte_cnt = byte_cnt + 4; function byte_cnt = skipGap(FID, byte_cnt) while 1 tmp = fread(FID, 1, 'int8'); byte_cnt = byte_cnt + 1; if tmp==0 || tmp==4 break; end end function [uttName,byte_cnt] = readUttName(FID,byte_cnt) uttName = []; while 1 tmp = fread(FID, 1, 'char'); if length(tmp) == 0 % read end of the file break; elseif tmp==' ' break; else uttName(end+1) = tmp; end byte_cnt = byte_cnt + 1; end uttName = char(uttName);
#! python # -*- coding: utf-8 -*- import wx import cv2 import numpy as np from mwx.controls import LParam from mwx.graphman import Layer import editor as edi class Plugin(Layer): """Gaussian Blur and Threshold --adaptive """ menu = "Plugins/&Basic Tools" category = "Basic Tools" def Init(self): self.params = ( LParam("ksize", (1,99,2), 15), LParam("sigma", (0,100,1), 0), LParam("block", (1,255*3,2), 3), LParam("C", (0,255,1), 0), ) self.cutoff_params = ( LParam("hi", (0, 1 ,0.001), 0.01), LParam("lo", (0, 1, 0.001), 0.01) ) btn = wx.Button(self, label="Execute", size=(66,22)) btn.Bind(wx.EVT_BUTTON, lambda v: self.calc()) self.layout( self.params, title="blur-threshold", type='vspin', cw=0, lw=48, tw=48 ) ## self.layout( ## self.cutoff_params, title="cutoff [%]", ## type='vspin', cw=-1, lw=16, tw=44 ## ) self.layout((btn,)) def calc(self, frame=None): if not frame: frame = self.selected_view.frame k, s, block, C = np.int32(self.params) hi, lo = np.float32(self.cutoff_params) src = frame.buffer buf = edi.imconv(src, hi, lo) if k > 1: buf = cv2.GaussianBlur(buf, (k,k), s) self.output.load(buf, "*Gauss*", localunit=frame.unit) dst = cv2.adaptiveThreshold(buf, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, block, C) self.output.load(dst, "*threshold*", localunit=frame.unit) return dst
CY001954 843 C T resistance to the neuraminidase inhibitors CY001953 793 T C resistance to the adamantanes CY001953 805 G A resistance to the adamantanes
-- Andreas, 2015-05-01 -- With clauses for functions with flexible arity. -- {-# OPTIONS -v tc.with:40 #-} open import Common.Prelude open import Common.Equality mutual even : Nat β†’ Bool even 0 = true even (suc n) = odd n odd : Nat β†’ Bool odd 0 = false odd (suc n) = even n NPred : Nat β†’ Set NPred 0 = Bool NPred (suc n) = Nat β†’ NPred n const : Bool β†’ βˆ€{n} β†’ NPred n const b {0} = b const b {suc n} m = const b {n} allOdd : βˆ€ n β†’ NPred n allOdd 0 = true allOdd (suc n) m with even m ... | true = const false ... | false = allOdd n test : allOdd 4 1 3 5 7 ≑ true test = refl
Formal statement is: lemma LIMSEQ_iff_nz: "X \<longlonglongrightarrow> L \<longleftrightarrow> (\<forall>r>0. \<exists>no>0. \<forall>n\<ge>no. dist (X n) L < r)" for L :: "'a::metric_space" Informal statement is: A sequence $X$ converges to $L$ if and only if for every $\epsilon > 0$, there exists $N$ such that for all $n \geq N$, we have $|X_n - L| < \epsilon$.
Hellblazer ( also known as John Constantine , Hellblazer ) is an American contemporary horror comic book series , originally published by DC Comics , and subsequently by the Vertigo imprint since March 1993 when the imprint was introduced . Its central character is the streetwise magician John Constantine , who was created by Alan Moore and Stephen R. Bissette , and first appeared as a supporting character in The Saga of the Swamp Thing # 37 ( June 1985 ) , during that creative team 's run on that title . Hellblazer had been published continuously since January 1988 , and was Vertigo 's longest running title , the only remaining publication from the imprint 's launch . In 2013 , the series concluded with issue 300 , and has been replaced by a DC Universe title , Constantine . Well known for its political and social commentary , the series has spawned a film adaptation , television show , novels , multiple spin @-@ offs and crossovers .
[STATEMENT] lemma pathfinish_translation: "pathfinish((\<lambda>x. a + x) \<circ> g) = a + pathfinish g" [PROOF STATE] proof (prove) goal (1 subgoal): 1. pathfinish ((+) a \<circ> g) = a + pathfinish g [PROOF STEP] by (simp add: pathfinish_def)
During the reintroduction of corn crakes to England in the 2003 breeding season , enteritis and ill health in pre @-@ release birds was due to bacteria of a pathogenic Campylobacter species . Subsequently , microbiology tests were done to detect infected individuals and to find the source of the bacteria in their environment .
lemma powser_0_nonzero: fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}" assumes r: "0 < r" and sm: "\<And>x. norm (x-\<xi>) < r \<Longrightarrow> (\<lambda>n. a n * (x-\<xi>) ^ n) sums (f x)" and [simp]: "f \<xi> = 0" and m0: "a m \<noteq> 0" and "m>0" obtains s where "0 < s" and "\<And>z. z \<in> cball \<xi> s - {\<xi>} \<Longrightarrow> f z \<noteq> 0"
open import Common.Equality open import Common.Prelude NaN : Float NaN = primFloatDiv 0.0 0.0 NaNβ‰’-NaN : primFloatEquality NaN (primFloatNegate NaN) ≑ false NaNβ‰’-NaN = refl
\documentclass[a4paper]{article} \usepackage[pdftex]{graphicx} \usepackage{xspace} \def\G#1{\texttt{G#1}\xspace} \def\P#1{\texttt{P#1}\xspace} \def\D#1{\texttt{D#1}\xspace} \parindent 0pt \parskip 0pt \begin{document} \title{How Pulley Produces Incremental Output} \author{Rick van Rein} \maketitle \begin{abstract}\noindent\em The Pulley script langauge provides a manner of specifying, almost in a SQL style, how variables from various places in LDAP should be related to produce output. The implementation is incremental, making Pulley a very pragmatic component to pass through changes rather than complete new configurations. But how is this done? \end{abstract} First, during analysis of the Pulley script, the variabels mentioned in each line is noted. Conditions can only be computed when all their variables are known, and this results in a partitioning of variables. For each partition, there is a set of conditions that can be computed over them. Variables that are not subjected to conditions form partitions of their own. \section{Deriving impacted drivers} Generators produce tuples containing variables, and drivers output variables. This leads to a notion of overlap between these entities. The figure below uses \G{$i$}, \P{$j$} and \D{$k$} to encode generator $i$, variable partition $j$ and driver $k$, respectively. \centerline{\includegraphics[scale=0.5]{img/network0-varoverlap.pdf}} Now let's assume that an update arrives on generator \G2 forks a tuple addition (or removal, which is similar except for its impact on the driver). We use the red colour to indicate downward reasoning and draw: \centerline{\includegraphics[scale=0.5]{img/network1-generate.pdf}} This generator produces variables that are constrained by conditions, represented by variable partitions \P1 and \P2, \centerline{\includegraphics[scale=0.5]{img/network2-varparts.pdf}} These partitions may impact a number of drivers, in this case \D1, \D2 and \D3: \centerline{\includegraphics[scale=0.5]{img/network3-drivers.pdf}} The drivers shown in red are impacted by the forked tuple from our starting point, \G2. \section{Deriving co-generators} Whereas a generator, such as \G2, produces a \textbf{fork}, that is a tuple addition or removal, there is a need to incorporate the values for other, related generators, the so-called co-generators. The original generator produces a single value, for we will need to iterate over all values that have already been generated by co-generators, to be able to produce all the newly initiated output to send to drivers. Well, after applying conditions, that is. \subsection{Co-generators for complete production of \G2} To provide the impacted drivers with input, we need to be able to produce variable values from a number of partitions, of course constrained by the conditions that apply to them. The partititons that apply here contain at least the partitions discovered during the downward movement (shown in red) so we draw these upward addition of \P3 in green: \centerline{\includegraphics[scale=0.5]{img/network4-varsneeded.pdf}} To be able to produce these variable partitions we need at least the original generator \G2, but there may be additional ones shown again in green; in this case, we also need \G1 and \G3: \centerline{\includegraphics[scale=0.5]{img/network5-gensneeded.pdf}} The additional generators in green, so \G1 and \G3, are called the \textbf{co-generators} needed for the production of the drivers impacted by our starting point, \G2 or, briefly put, they are the co-generators for the \textbf{complete production} of \G2. Thanks to the two colours we can create an overview image, where green are the upward additions, \centerline{\includegraphics[scale=0.5]{img/network6-combined.pdf}} \subsection{Co-generators of \G2 for production of \D1} Implementations may vary in their ability to produce all impacted drivers at once; for our implementation on top of SQLite3 we produce only one driver at a time. We will now look into the production of \D1 alone. \centerline{\includegraphics[scale=0.5]{img/network3-drivers-w1.pdf}} This requires only \P1, \centerline{\includegraphics[scale=0.5]{img/network4-varsneeded-w1.pdf}} For which we need to run \G1 and \G2, \centerline{\includegraphics[scale=0.5]{img/network5-gensneeded-w1.pdf}} In this case, \G1 is a co-generator to \G2 for the production of \D1. This is much simpler than the general case. \subsection{Co-generators of \G2 for production of \D2} We now turn to another production, namely for output \D2. As this will demonstrate, we may not always find simpler outcomes by looking at single drivers at a time. \centerline{\includegraphics[scale=0.5]{img/network3-drivers-w2.pdf}} This requires \P1, \P2 and \P3, \centerline{\includegraphics[scale=0.5]{img/network4-varsneeded-w2.pdf}} For which we need to run \G1, \G2 and \G3, just as in the general case, \centerline{\includegraphics[scale=0.5]{img/network5-gensneeded-w2.pdf}} In this case, \G1 and \G3 are the co-generators to \G2 for the production of \D2. \section{Determining guards for drivers} A driver outputs variables, but not necessarily the precise amount that is generated by a production from the Pulley script. Even when only the co-generators for its specific output are produced, then the variable partitions involved may still supply extra variables that are not passed on to the driver as output. Variables that are produced alongside the variables for a driver's output are called \textbf{guards}. When they are not explicitly declared by a user, they count as \textbf{implicit guards}. They are important because productions create unique combinations of guards plus output, but output on its own may not be unique and require the guard as add-on information. Drivers may take guards into account to make this possible, or the Pulley could count how many guards were produced for a given output. To that end, it could store the output (or a hash of the output) together with a counter. When co-generators are derived for the production of output for multiple drivers at once, then guards may be larger than when a generating them for a single driver. The principle remains the same, although optimisations may exist. \section{Producing output from a fork} Given the addition or removal of a fork by a generator, we need to produce output, either adding or removing them through various. driver. We first derive impacted drivers, and co-generators for either one driver are all at once; the following applies to both but require repeating when multiple drivers are separately considered. \begin{enumerate} \item Bind the forked tuple to its variables. \item Run all co-generators in a nested fashion to produce their cartesian product. \item Bind the elements of the cartesian product to their variables. \item Skip further processing of variable bindings that fail on one of the conditions defined for the used variable partitions. \item For each driver, hash the output values and increment its use count. \item When the output values are new on addition, send an addition to the driver. \item When the output values are removed for the last time, send a removal to the driver. \end{enumerate} This procedure ensures that output is generated by a driver for as long as at least one of its entries occurs in the LDAP system. Some drivers may however accept the addition of guards, which makes them responsible of managing the multiplicity from these extra variables. There is no reason why this could be problematic, as the guards will be as consistent on reproduction as are the normal output variables. \section{Compiling the Pulley script language} The compiler built into Pulley performs a fair amount of semantic analysis to be able to produce the incremental output for drivers. The result of the analysis is a series of SQLite3 queries, aimed at producing one driver at a time (and running multiple of these as a result of a single generator fork). \subsection{Storage model} The SQLite3 database holds the following information: \begin{itemize} \item\textbf{Generator tuples}, holding each of the variable values as a separate blob. These tables are extended when a fork is added, and reduced when a fork is removed. They are used to produce the cartesian product when the generator serves as a co-generator. Generators that never serve as co-generators do not need this table. \item\textbf{Driver output use-counts}, stored as a hash over the output variables (in their normal order) together with the number of fork additions minus the number of fork removals. When not in the table, the use-count is considered 0. Transitions from 0 to 1 cause the driver to be supplied with an output addition, and transitions from 1 to 0 cause the driver to be supplied with an output removal. This is not required when an output has no guards, or when it handles the guards internally. \end{itemize} \subsection{Global process of the Pulley script Compiler} The following phases define the broad processing of the Pulley compiler: \begin{enumerate} \item\textbf{Download} of the Pulley script from LDAP and/or files into the re-entrant parser is possible, because it consists of lines without structure, and processing does not depend on the order of occurrence of the lines. \item\textbf{Hashing} of individual lines, and their combination to an overall script hash in an order-independent manner support a quick check whether the Pulley script has changed. This is instrumental for fast restarts; complete reset of the output is only required when the Pulley script changes and when SyncRepl updates over LDAP fails. \item\textbf{Parsing} introduces new variables in generators, each time using a unique name. Initially, each variable is assigned to a unique partition. \item\textbf{Analysis} produces knowledge about variable partitions and co-generators, initially targeted at a single driver at a time. \item\textbf{Production} produces the computation rules for an engine, initially SQLite3 with generation of queries that process generator forks and produce output through drivers. \end{enumerate} \subsection{Analysis of a Pulley script} The analysis phase is the most complex phase during compilation, and is summarised by the images presented before. The following steps are taken during the analysis phase: \begin{enumerate} \item\textbf{Structural analysis} derives variable partitions and the things a driver needs for its work, and the things a generator needs for its work. \item\textbf{Structural consistency} validates that every variables is bound by precisely one generator, that every condition contains at least one variable and that driver output always contains at least one variable. \item\textbf{Cost analysis} is not needed with the SQLite3 engine; it analyses the cheapest generators through estimated costs; this is overtaken by the analysis done by SQLite3 during query optimisation. \item\textbf{Generate paths} is not needed with the SQLite3 engine; it produces what is thought to be the cheapest path, known as the \textbf{path of least resistence}, for production of output for drivers. \end{enumerate} \end{document}
[STATEMENT] lemma in_obs_valid: assumes "n' \<in> obs n S" shows "valid_node n" and "valid_node n'" [PROOF STATE] proof (prove) goal (1 subgoal): 1. valid_node n &&& valid_node n' [PROOF STEP] using \<open>n' \<in> obs n S\<close> [PROOF STATE] proof (prove) using this: n' \<in> obs n S goal (1 subgoal): 1. valid_node n &&& valid_node n' [PROOF STEP] by(auto elim:obsE intro:path_valid_node)
Formal statement is: lemma GPicard2: assumes "S \<subseteq> T" "connected T" "S \<noteq> {}" "open S" "\<And>x. \<lbrakk>x islimpt S; x \<in> T\<rbrakk> \<Longrightarrow> x \<in> S" shows "S = T" Informal statement is: If $S$ is a nonempty open connected subset of a topological space $T$, and if every point of $T$ that is a limit point of $S$ is in $S$, then $S = T$.
State Before: Ξ± : Type u_1 inst✝ : DecidableEq Ξ± s✝ s' s : Cycle Ξ± h : Nodup s x : Ξ± hx : x ∈ s ⊒ ↑(formPerm s h) x = next s h x hx State After: case h Ξ± : Type u_1 inst✝ : DecidableEq Ξ± s s' : Cycle Ξ± x : Ξ± a✝ : List Ξ± h : Nodup (Quot.mk Setoid.r a✝) hx : x ∈ Quot.mk Setoid.r a✝ ⊒ ↑(formPerm (Quot.mk Setoid.r a✝) h) x = next (Quot.mk Setoid.r a✝) h x hx Tactic: induction s using Quot.inductionOn State Before: case h Ξ± : Type u_1 inst✝ : DecidableEq Ξ± s s' : Cycle Ξ± x : Ξ± a✝ : List Ξ± h : Nodup (Quot.mk Setoid.r a✝) hx : x ∈ Quot.mk Setoid.r a✝ ⊒ ↑(formPerm (Quot.mk Setoid.r a✝) h) x = next (Quot.mk Setoid.r a✝) h x hx State After: no goals Tactic: simpa using List.formPerm_apply_mem_eq_next h _ (by simp_all) State Before: Ξ± : Type u_1 inst✝ : DecidableEq Ξ± s s' : Cycle Ξ± x : Ξ± a✝ : List Ξ± h : Nodup (Quot.mk Setoid.r a✝) hx : x ∈ Quot.mk Setoid.r a✝ ⊒ x ∈ a✝ State After: no goals Tactic: simp_all
function masks = char2img( strings, h, pad ) % Convert ascii text to a binary image using pre-computed templates. % % Input strings can only contain standard characters (ascii character % 32-126). First time char2img() is ever called with a given height h, % txt2img() is used to create a template for each ascii character. All % subsequent calls to to char2img() with the given height are very fast as % the pre-computed templates are used and no display/screen capture is % needed. % % USAGE % masks = char2img( strings, h, [pad] ) % % INPUTS % strings - {1xn} text string or cell array of text strings to convert % h - font height in pixels % pad - [0] amount of extra padding between chars % % OUTPUTS % masks - {1xn} binary image masks of height h for each string % % EXAMPLE % mask=char2img('hello world',50); im(mask{1}) % mask=char2img(num2str(pi),35); im(mask{1}) % % See also TXT2IMG % % Piotr's Image&Video Toolbox Version 2.65 % Copyright 2012 Piotr Dollar. [pdollar-at-caltech.edu] % Please email me if you find bugs, or have suggestions or questions! % Licensed under the Simplified BSD License [see external/bsd.txt] % load or create character templates (or simply store persistently) persistent chars h0 if(isempty(h0) || h0~=h) pth=fileparts(mfilename('fullpath')); fName=sprintf('%s/private/char2img_h%03i.mat',pth,h); h0=h; if(exist(fName,'file')), load(fName); else chars=char(32:126); chars=num2cell(chars); chars=txt2img(chars,h,{'Interpreter','none'}); save(fName,'chars'); end end % add padding to chars if(nargin<3 || isempty(pad)), pad=0; end charsPad=chars; if(pad), pad=ones(h,pad,'uint8'); for i=1:length(chars), charsPad{i}=[pad chars{i} pad]; end; end % create actual string using templates if(~iscell(strings)), strings={strings}; end n=length(strings); masks=cell(1,n); for s=1:n, str=strings{s}; str(str<32 | str>126)=32; str=uint8(str-31); M=[charsPad{str}]; masks{s}=M; end
# coding: utf-8 import sys import jieba import numpy from sklearn import metrics from sklearn.feature_extraction.text import HashingVectorizer from sklearn.naive_bayes import MultinomialNB def input_data(train_file, test_file): train_words = [] train_tags = [] test_words = [] test_tags = [] with open(train_file, 'r') as f1: for line in f1: tks = line.split('\t', 1) train_words.append(tks[1]) train_tags.append(tks[0]) with open(test_file, 'r') as f1: for line in f1: tks = line.split('\t', 1) test_words.append(tks[1]) test_tags.append(tks[0]) return train_words, train_tags, test_words, test_tags with open('stopwords.txt', 'r') as f: stopwords = set([w.strip() for w in f]) comma_tokenizer = lambda x: jieba.cut(x, cut_all=True) def vectorize(train_words, test_words): v = HashingVectorizer(tokenizer=comma_tokenizer, n_features=30000, non_negative=True) train_data = v.fit_transform(train_words) test_data = v.fit_transform(test_words) return train_data, test_data def evaluate(actual, pred): m_precision = metrics.precision_score(actual, pred) m_recall = metrics.recall_score(actual, pred) print 'precision:{0:.3f}'.format(m_precision) print 'recall:{0:0.3f}'.format(m_recall) def train_clf(train_data, train_tags): clf = MultinomialNB(alpha=0.01) clf.fit(train_data, numpy.asarray(train_tags)) return clf def main(): if len(sys.argv) < 3: print '[Usage]: python classifier.py train_file test_file' sys.exit(0) train_file = sys.argv[1] test_file = sys.argv[2] train_words, train_tags, test_words, test_tags = input_data(train_file, test_file) train_data, test_data = vectorize(train_words, test_words) clf = train_clf(train_data, train_tags) pred = clf.predict(test_data) evaluate(numpy.asarray(test_tags), pred) if __name__ == '__main__': main()
(* Title: L3_Lib.thy Original author: Anthony Fox, University of Cambridge Contributions by: Kyndylan Nienhuis <[email protected]> L3 operations. *) theory L3_Lib imports "HOL-Word.Word" "HOL-Library.Code_Target_Numeral" "HOL-Library.Monad_Syntax" begin translations "_do_block (_do_cons (_do_bind p t) (_do_final e))" <= "CONST bind t (\<lambda>p. e)" (* avoid syntax clash with shift-right operation *) no_syntax "_thenM" :: "['a, 'b] \<Rightarrow> 'c" (infixr ">>" 54) (* basic state Monad *) definition "return = Pair" definition bind :: "('state \<Rightarrow> ('a \<times> 'state)) \<Rightarrow> ('a \<Rightarrow> 'state \<Rightarrow> ('b \<times> 'state)) \<Rightarrow> ('state \<Rightarrow> ('b \<times> 'state))" where "bind f g = (\<lambda>s. let (a, s') = f s in g a s')" (* use do syntax for this state monad *) adhoc_overloading Monad_Syntax.bind L3_Lib.bind definition read_state :: "('state \<Rightarrow> 'a) \<Rightarrow> 'state \<Rightarrow> 'a \<times> 'state" where "read_state f = (\<lambda>s. (f s, s))" definition update_state :: "('state \<Rightarrow> 'state) \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state" where "update_state f = (\<lambda>s. ((), f s))" definition extend_state :: "'b \<Rightarrow> ('b \<times> 'state \<Rightarrow> 'a \<times> 'b \<times> 'state) \<Rightarrow> 'state \<Rightarrow> 'a \<times> 'state" where "extend_state v f = (\<lambda>s. let (a, s') = f (v, s) in (a, snd s'))" definition trim_state :: "('state \<Rightarrow> 'a \<times> 'state) \<Rightarrow> 'b \<times> 'state \<Rightarrow> 'a \<times> 'b \<times> 'state" where "trim_state f = (\<lambda>(s1, s2). let (a, s') = f s2 in (a, s1, s'))" fun foreach_loop :: "'a list \<times> ('a \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state) \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state" where "foreach_loop ([], _) = return ()" | "foreach_loop (h # t, a) = bind (a h) (\<lambda>u. foreach_loop (t, a))" function for_loop :: "nat \<times> nat \<times> (nat \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state) \<Rightarrow> 'state \<Rightarrow> unit \<times> 'state" where "for_loop (i, j, a) = (if i = j then a i else bind (a i) (\<lambda>u. for_loop ((if i < j then i + 1 else i - 1), j, a)))" by auto termination by (relation "measure (\<lambda>(i, j, _). if i < j then j - i else i - j)") auto (* Because there are no constraints on i, j and a on the left-hand side of the definition, every occurrence of for_loop can be simplified by for_loop.simps, and since the definition is recursive the simplifier might diverge. For this reason we remove for_loop.simps from the simp set. *) declare for_loop.simps [simp del] (* Monad laws *) lemma bind_left_identity [simp]: shows "bind (return a) f = f a" unfolding return_def bind_def by auto lemma bind_right_identity [simp]: shows "bind m return = m" unfolding return_def bind_def by auto lemma bind_associativity: shows "bind (bind m f) g = bind m (\<lambda>a. bind (f a) g)" (is "?l = ?r") proof fix s show "?l s = ?r s" unfolding return_def bind_def by (cases "m s") auto qed (* Projections *) lemma project_return [simp]: shows "fst (return a s) = a" and "snd (return a s) = s" unfolding return_def by auto lemma project_read_state [simp]: shows "fst (read_state f s) = f s" and "snd (read_state f s) = s" unfolding read_state_def by auto lemma project_update_state [simp]: shows "fst (update_state f s) = ()" and "snd (update_state f s) = f s" unfolding update_state_def by auto (* Other monad simplifications *) lemma read_state_constant [simp]: shows "read_state (\<lambda>s. a) = return a" unfolding read_state_def return_def .. lemma update_state_id [simp]: shows "update_state (\<lambda>s. s) = return ()" unfolding update_state_def return_def .. lemma foreach_loop_return [simp]: shows "foreach_loop (l, \<lambda>_. return a) = return ()" by (induct l) simp_all lemma extend_state_return [simp]: shows "extend_state v (return a) = return a" unfolding extend_state_def return_def by simp lemma extend_state_trim_state [simp]: shows "extend_state v (trim_state m) = m" (is "?l = ?r") proof fix s show "?l s = ?r s" unfolding extend_state_def trim_state_def by (cases "m s") auto qed (* extra character operations *) definition Ord :: "char \<Rightarrow> nat" where "Ord = nat_of_char" definition Chr :: "nat \<Rightarrow> char" where "Chr = char_of_nat" definition is_lower :: "char \<Rightarrow> bool" where "is_lower c = (Ord (CHR ''a'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''z''))" definition is_upper :: "char \<Rightarrow> bool" where "is_upper c = (Ord (CHR ''A'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''Z''))" definition is_space :: "char \<Rightarrow> bool" where "is_space c = (Ord (CHR '' '') = Ord c \<or> 9 \<le> Ord c \<and> Ord c \<le> 13)" definition is_digit :: "char \<Rightarrow> bool" where "is_digit c = (Ord (CHR ''0'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''9''))" definition is_hex_digit :: "char \<Rightarrow> bool" where "is_hex_digit c = (is_digit c \<or> Ord (CHR ''a'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''f'') \<or> Ord (CHR ''A'') \<le> Ord c \<and> Ord c \<le> Ord (CHR ''F''))" definition is_alpha :: "char \<Rightarrow> bool" where "is_alpha c = (is_lower c \<or> is_upper c)" definition is_alpha_num :: "char \<Rightarrow> bool" where "is_alpha_num c = (is_alpha c \<or> is_digit c)" definition to_lower :: "char \<Rightarrow> char" where "to_lower c = (if is_upper c then Chr (Ord c + 32) else c)" definition to_upper :: "char \<Rightarrow> char" where "to_upper c = (if is_lower c then Chr (Ord c - 32) else c)" (* numeric strings *) fun list_to_nat :: "nat \<Rightarrow> nat list \<Rightarrow> nat" where "list_to_nat _ [] = 0" | "list_to_nat base (h # t) = h mod base + base * list_to_nat base t" fun nat_to_list :: "nat \<Rightarrow> nat \<Rightarrow> nat list" where "nat_to_list base n = (if n < base \<or> base < 2 then [n mod base] else n mod base # nat_to_list base (n div base))" (* Because there are no constraints on n on the left-hand side of the definition, every occurrence of nat_to_list can be simplified by nat_to_list.simps, and since the definition is recursive the simplifier might diverge. For this reason we remove nat_to_list.simps from the simp set. *) declare nat_to_list.simps [simp del] definition hex :: "nat \<Rightarrow> char" where "hex n = (if n = 0 then CHR ''0'' else if n = 1 then CHR ''1'' else if n = 2 then CHR ''2'' else if n = 3 then CHR ''3'' else if n = 4 then CHR ''4'' else if n = 5 then CHR ''5'' else if n = 6 then CHR ''6'' else if n = 7 then CHR ''7'' else if n = 8 then CHR ''8'' else if n = 9 then CHR ''9'' else if n = 10 then CHR ''A'' else if n = 11 then CHR ''B'' else if n = 12 then CHR ''C'' else if n = 13 then CHR ''D'' else if n = 14 then CHR ''E'' else if n = 15 then CHR ''F'' else undefined)" definition unhex :: "char \<Rightarrow> nat" where "unhex c = (if c = CHR ''0'' then 0 else if c = CHR ''1'' then 1 else if c = CHR ''2'' then 2 else if c = CHR ''3'' then 3 else if c = CHR ''4'' then 4 else if c = CHR ''5'' then 5 else if c = CHR ''6'' then 6 else if c = CHR ''7'' then 7 else if c = CHR ''8'' then 8 else if c = CHR ''9'' then 9 else if c = CHR ''a'' \<or> c = CHR ''A'' then 10 else if c = CHR ''b'' \<or> c = CHR ''B'' then 11 else if c = CHR ''c'' \<or> c = CHR ''C'' then 12 else if c = CHR ''d'' \<or> c = CHR ''D'' then 13 else if c = CHR ''e'' \<or> c = CHR ''E'' then 14 else if c = CHR ''f'' \<or> c = CHR ''F'' then 15 else undefined)" definition string_to_nat :: "nat \<Rightarrow> string \<Rightarrow> nat" where "string_to_nat base s = list_to_nat base (map unhex (rev s))" definition nat_to_string :: "nat \<Rightarrow> nat \<Rightarrow> string" where "nat_to_string base n = rev (map hex (nat_to_list base n))" definition "bin_string_to_nat \<equiv> string_to_nat 2" definition "nat_to_bin_string \<equiv> nat_to_string 2" definition "dec_string_to_nat \<equiv> string_to_nat 10" definition "nat_to_dec_string \<equiv> nat_to_string 10" definition "hex_string_to_nat \<equiv> string_to_nat 16" definition "nat_to_hex_string \<equiv> nat_to_string 16" definition nat_from_bin_string :: "string \<Rightarrow> nat option" where "nat_from_bin_string s = (if s \<noteq> '''' \<and> list_all (\<lambda>c. c = CHR ''0'' \<or> c = CHR ''1'') s then Some (bin_string_to_nat s) else None)" definition nat_from_dec_string :: "string \<Rightarrow> nat option" where "nat_from_dec_string s = (if s \<noteq> '''' \<and> list_all is_digit s then Some (dec_string_to_nat s) else None)" definition nat_from_hex_string :: "string \<Rightarrow> nat option" where "nat_from_hex_string s = (if s \<noteq> '''' \<and> list_all is_hex_digit s then Some (hex_string_to_nat s) else None)" definition dec_string_to_int :: "string \<Rightarrow> int" where "dec_string_to_int r = (case r of [] \<Rightarrow> 0 | h # t \<Rightarrow> (if h = CHR ''-'' \<or> h = CHR ''~'' then -int (dec_string_to_nat t) else int (dec_string_to_nat r)))" definition int_to_dec_string :: "int \<Rightarrow> string" where "int_to_dec_string i = (if i < 0 then CHR ''~'' # nat_to_dec_string (nat (-i)) else nat_to_dec_string (nat i))" definition string_to_bool :: "string \<Rightarrow> bool" where "string_to_bool s = (if s = ''true'' then True else if s = ''false'' then False else undefined)" definition string_to_char :: "string \<Rightarrow> char" where "string_to_char s = (case s of [c] \<Rightarrow> c | _ \<Rightarrow> undefined)" (* extra Nat operation *) fun log2 :: "nat \<Rightarrow> nat" where "log2 n = (if n = 0 then undefined else if n = 1 then 0 else Suc (log2 (n div 2)))" (* Because there are no constraints on n on the left-hand side of the definition, every occurrence of log2 can be simplified by log2.simps, and since the definition is recursive the simplifier might diverge. For this reason we remove log2.simps from the simp set. *) declare log2.simps [simp del] lemma log2_bounds: assumes "n \<noteq> 0" shows "2 ^ (log2 n) \<le> n" and "n < 2 ^ (Suc (log2 n))" proof - (* "The induction works better if we prove one goal instead of two goals" *) have "2 ^ (log2 n) \<le> n \<and> n < 2 ^ (Suc (log2 n))" using assms proof (induct "log2 n" arbitrary: n) case 0 hence "n = 1" by (simp add: log2.simps) (meson nat.simps(3)) thus ?case by (simp add: log2.simps) next case (Suc k) show ?case proof (cases "n = 1") case True thus ?thesis by (simp add: log2.simps) next case False hence "1 < n" using Suc(3) by simp hence "(n div 2) \<noteq> 0" by auto have log2: "log2 n = Suc (log2 (n div 2))" using `1 < n` by (simp add: log2.simps) hence "k = log2 (n div 2)" using Suc(2) by simp note Suc(1)[OF this `(n div 2) \<noteq> 0`] thus ?thesis using log2 by auto qed qed thus "2 ^ (log2 n) \<le> n" "n < 2 ^ (Suc (log2 n))" by auto qed lemma log2_unat_bounds: fixes x :: "('a :: len) word" assumes "x \<noteq> 0" shows "log2 (unat x) < len_of TYPE('a)" proof - have "unat x \<noteq> 0" using assms by (simp add: unat_eq_zero) have "unat x < 2 ^ len_of TYPE('a)" by simp note le_less_trans[OF log2_bounds(1)[OF `unat x \<noteq> 0`] this] thus ?thesis by auto qed (* extra int operations *) definition quot :: "int \<Rightarrow> int \<Rightarrow> int" (infixl "quot" 70) where "i quot j = (if j = 0 then undefined else if 0 < j then if 0 \<le> i then i div j else -(-i div j) else if 0 \<le> i then -(i div -j) else -i div -j)" definition rem :: "int \<Rightarrow> int \<Rightarrow> int" (infixl "rem" 70) where "i rem j = (if j = 0 then undefined else i - i quot j * j)" definition quot_rem :: "int * int \<Rightarrow> int * int" where "quot_rem p = (case p of (i, j) \<Rightarrow> (i div j, i rem j))" (* extra option operations *) definition is_some :: "'a option \<Rightarrow> bool" where "is_some x = (case x of Some _ \<Rightarrow> True | _ \<Rightarrow> False)" lemma is_some_alt: shows "is_some x = (x \<noteq> None)" unfolding is_some_def using option.disc_eq_case(2) by auto lemma is_some_simps [simp]: shows "\<not> (is_some None)" and "is_some (Some x)" unfolding is_some_def by simp_all (* extra list operations *) fun splitl :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<times> 'a list" where "splitl _ [] = ([], [])" | "splitl P (h # t) = (if P h then let (l, r) = splitl P t in (h # l, r) else ([], h # t))" definition splitr :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<times> 'a list" where "splitr P x = (let (l, r) = splitl P (rev x) in (rev r, rev l))" definition pad_left :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where "pad_left c n s = replicate (n - length s) c @ s" definition pad_right :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where "pad_right c n s = s @ replicate (n - length s) c" fun index_find :: "nat \<Rightarrow> 'a \<times> 'a list \<Rightarrow> nat option" where "index_find _ (_, []) = None" | "index_find i (v, h # t) = (if v = h then Some i else index_find (Suc i) (v, t))" definition "index_of = index_find 0" definition remove :: "'a list * 'a list \<Rightarrow> 'a list" where "remove p = (case p of (l1, l2) \<Rightarrow> filter (\<lambda>x. x \<notin> set l1) l2)" definition remove_except :: "'a list * 'a list \<Rightarrow> 'a list" where "remove_except p = (case p of (l1, l2) \<Rightarrow> filter (\<lambda>x. x \<in> set l1) l2)" fun remove_duplicates :: "'a list \<Rightarrow> 'a list" where "remove_duplicates [] = []" | "remove_duplicates (h # t) = (if h \<in> set t then remove_duplicates t else h # remove_duplicates t)" lemma splitl_length: shows "length (fst (splitl P l)) + length (snd (splitl P l)) = length l" by (induct l, auto simp add: case_prod_beta) lemma splitl_fst_length [simp]: shows "length (fst (splitl P x)) \<le> length x" using splitl_length by (metis order_refl trans_le_add1) lemma splitl_snd_length [simp]: shows "length (snd (splitl P x)) \<le> length x" using splitl_length by (metis order_refl trans_le_add2) lemma pad_left_length [simp]: shows "length (pad_left e n l) = max (length l) n" unfolding pad_left_def by auto lemma pad_right_length [simp]: shows "length (pad_right e n l) = max (length l) n" unfolding pad_right_def by auto lemma pad_left_nth: shows "pad_left e n l ! m = (if m < n - List.length l then e else l ! (m - (n - List.length l)))" unfolding pad_left_def nth_append by simp (* extra string operations *) lemma fields_termination_lem [simp]: assumes "a \<noteq> []" and "length a \<le> length c" shows "length a - b < Suc (length c)" by (simp add: assms(2) le_imp_less_Suc less_imp_diff_less) function (sequential) tokens :: "(char \<Rightarrow> bool) \<Rightarrow> string \<Rightarrow> string list" where "tokens _ '''' = []" | "tokens P x = (let (l, r) = splitl (\<lambda>e. ~P e) x in if l = [] then tokens P (tl r) else l # tokens P r)" by pat_completeness auto termination tokens apply (relation "measure (length o snd)") apply auto apply (case_tac "~ P v", auto simp add: case_prod_beta le_imp_less_Suc) apply (case_tac "~ P v", auto simp add: case_prod_beta le_imp_less_Suc) done function (sequential) fields :: "(char \<Rightarrow> bool) \<Rightarrow> string \<Rightarrow> string list" where "fields _ '''' = [[]]" | "fields P x = (let (l, r) = splitl (\<lambda>e. ~P e) x in if l = [] then [] # fields P (tl r) else if r = [] then [l] else l # fields P (tl r))" by pat_completeness auto termination fields apply (relation "measure (length o snd)") apply auto apply (case_tac "~ P v", auto simp add: case_prod_beta le_imp_less_Suc) apply (case_tac "~ P v", auto simp add: case_prod_beta) done (* bit-string operations - extends Bool_List_Representation.thy *) definition nat_to_bitstring :: "nat \<Rightarrow> bool list" where "nat_to_bitstring n = (if n = 0 then [False] else bin_to_bl (log2 n + 1) (int n))" definition "bitstring_to_nat = nat o bl_to_bin" definition fixwidth :: "nat \<Rightarrow> bool list \<Rightarrow> bool list" where "fixwidth n v = (let l = length v in if l < n then pad_left False n v else drop (l - n) v)" definition bitwise :: "(bool \<Rightarrow> bool \<Rightarrow> bool) \<Rightarrow> bool list \<Rightarrow> bool list \<Rightarrow> bool list" where "bitwise f v1 v2 = (let m = max (length v1) (length v2) in map (case_prod f) (zip (fixwidth m v1) (fixwidth m v2)))" definition "bor = bitwise (\<or>)" definition "band = bitwise (\<and>)" definition "bxor = bitwise (\<noteq>)" definition bitstring_shiftl :: "bool list \<Rightarrow> nat \<Rightarrow> bool list" where "bitstring_shiftl v m = pad_right False (length v + m) v" definition bitstring_shiftr :: "bool list \<Rightarrow> nat \<Rightarrow> bool list" where "bitstring_shiftr v m = take (length v - m) v" definition bitstring_field :: "nat \<Rightarrow> nat \<Rightarrow> bool list \<Rightarrow> bool list" where "bitstring_field h l v = fixwidth (Suc h - l) (bitstring_shiftr v l)" definition bitstring_rotate :: "bool list \<Rightarrow> nat \<Rightarrow> bool list" where "bitstring_rotate v m = (let l = length v in let x = m mod l in if l = 0 \<or> x = 0 then v else bitstring_field (x - 1) 0 v @ bitstring_field (l - 1) x v)" definition bitstring_test_bit :: "bool list \<Rightarrow> nat \<Rightarrow> bool" where "bitstring_test_bit v n = (bitstring_field n n v = [True])" definition bitstring_modify :: "(nat \<times> bool \<Rightarrow> bool) \<times> bool list \<Rightarrow> bool list" where "bitstring_modify p = (case p of (f, l) \<Rightarrow> map f (zip (rev (upt 0 (length l))) l))" definition bitstring_field_insert :: "nat \<Rightarrow> nat \<Rightarrow> bool list \<Rightarrow> bool list \<Rightarrow> bool list" where "bitstring_field_insert h l v1 v2 = bitstring_modify (\<lambda>(i, b). if l \<le> i \<and> i \<le> h then bitstring_test_bit v1 (i - l) else b, v2)" lemma nat_to_bitstring_zero [simp]: shows "nat_to_bitstring 0 = [False]" unfolding nat_to_bitstring_def by simp (* We do not add the following rule to the simp set, because n occurs twice at the right hand side, and therefore the state might not become simpler when applying this rule. *) lemma nat_to_bitstring_length: shows "length (nat_to_bitstring n) = (if n = 0 then 1 else log2 n + 1)" unfolding nat_to_bitstring_def by (simp del: bin_to_bl_def) lemma fixwidth_length [simp]: shows "length (fixwidth n l) = n" unfolding fixwidth_def Let_def by auto lemma bitwise_length [simp]: shows "length (bitwise f v1 v2) = max (length v1) (length v2)" unfolding bitwise_def Let_def by auto (* extra word operations *) definition unsigned_min :: "'a::len word \<times> 'a::len word \<Rightarrow> 'a::len word" where "unsigned_min p = (case p of (w1, w2) \<Rightarrow> (if w1 \<le> w2 then w1 else w2))" definition unsigned_max :: "'a::len word \<times> 'a::len word \<Rightarrow> 'a::len word" where "unsigned_max p = (case p of (w1, w2) \<Rightarrow> (if w1 \<le> w2 then w2 else w1))" definition word_log2 :: "'a::len word \<Rightarrow> 'a::len word" where "word_log2 w = of_nat (log2 (unat w))" definition word_quot :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" where "word_quot i j = of_int (sint i quot sint j)" definition word_rem :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" where "word_rem i j = of_int (sint i rem sint j)" definition word_sdiv :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" where "word_sdiv i j = of_int (sint i div sint j)" definition word_smod :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" where "word_smod i j = of_int (sint i mod sint j)" definition word_modify :: "(nat \<times> bool \<Rightarrow> bool) \<times> 'a::len word \<Rightarrow> 'a::len word" where "word_modify p = (case p of (f, w) \<Rightarrow> of_bl (bitstring_modify (f, to_bl w)))" definition word_bit_field_insert :: "nat \<Rightarrow> nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word \<Rightarrow> 'b::len word" where "word_bit_field_insert h l w1 w2 = word_modify (\<lambda>(i, b). if l \<le> i \<and> i \<le> h then test_bit w1 (i - l) else b, w2)" definition word_bits :: "nat \<Rightarrow> nat \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word" where "word_bits h l w = (w >> l) AND mask (Suc h - l)" definition word_extract :: "nat \<Rightarrow> nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word" where "word_extract h l w = ucast (word_bits h l w)" definition word_replicate :: "nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word" where "word_replicate n a = word_rcat (replicate n a)" (* floating-point stubs *) datatype ieee_rounding = roundTiesToEven | roundTowardPositive | roundTowardNegative | roundTowardZero datatype ieee_compare = LT | EQ | GT | UN record ieee_flags = DivideByZero :: bool InvalidOp :: bool Overflow :: bool Precision :: bool Underflow :: bool consts fp32_abs :: "32 word \<Rightarrow> 32 word" fp32_add :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word" fp32_add_with_flags :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> ieee_flags \<times> 32 word" fp32_compare :: "32 word \<Rightarrow> 32 word \<Rightarrow> ieee_compare" fp32_div :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word" fp32_div_with_flags :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> ieee_flags \<times> 32 word" fp32_equal :: "32 word \<Rightarrow> 32 word \<Rightarrow> bool" fp32_from_int :: "ieee_rounding \<Rightarrow> int \<Rightarrow> 32 word" fp32_greater :: "32 word \<Rightarrow> 32 word \<Rightarrow> bool" fp32_greater_equal :: "32 word \<Rightarrow> 32 word \<Rightarrow> bool" fp32_is_integral :: "32 word \<Rightarrow> bool" fp32_is_finite :: "32 word \<Rightarrow> bool" fp32_is_nan :: "32 word \<Rightarrow> bool" fp32_is_normal :: "32 word \<Rightarrow> bool" fp32_is_signalling_nan :: "32 word \<Rightarrow> bool" fp32_is_subnormal :: "32 word \<Rightarrow> bool" fp32_less :: "32 word \<Rightarrow> 32 word \<Rightarrow> bool" fp32_less_equal :: "32 word \<Rightarrow> 32 word \<Rightarrow> bool" fp32_mul :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word" fp32_mul_with_flags :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> ieee_flags \<times> 32 word" fp32_mul_add :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word" fp32_mul_add_with_flags :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> ieee_flags \<times> 32 word" fp32_mul_sub :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word" fp32_mul_sub_with_flags :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> ieee_flags \<times> 32 word" fp32_neg_inf :: "32 word" fp32_neg_max :: "32 word" fp32_neg_min :: "32 word" fp32_neg_zero :: "32 word" fp32_negate :: "32 word \<Rightarrow> 32 word" fp32_pos_inf :: "32 word" fp32_pos_max :: "32 word" fp32_pos_min :: "32 word" fp32_pos_zero :: "32 word" fp32_round_to_integral :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word" fp32_snan :: "32 word" fp32_sqrt :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word" fp32_sqrt_with_flags :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> ieee_flags \<times> 32 word" fp32_sub :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> 32 word" fp32_sub_with_flags :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> 32 word \<Rightarrow> ieee_flags \<times> 32 word" fp32_qnan :: "32 word" fp32_to_int :: "ieee_rounding \<Rightarrow> 32 word \<Rightarrow> int option" consts fp64_abs :: "64 word \<Rightarrow> 64 word" fp64_add :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word" fp64_add_with_flags :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> ieee_flags \<times> 64 word" fp64_compare :: "64 word \<Rightarrow> 64 word \<Rightarrow> ieee_compare" fp64_div :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word" fp64_div_with_flags :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> ieee_flags \<times> 64 word" fp64_equal :: "64 word \<Rightarrow> 64 word \<Rightarrow> bool" fp64_from_int :: "ieee_rounding \<Rightarrow> int \<Rightarrow> 64 word" fp64_greater :: "64 word \<Rightarrow> 64 word \<Rightarrow> bool" fp64_greater_equal :: "64 word \<Rightarrow> 64 word \<Rightarrow> bool" fp64_is_integral :: "64 word \<Rightarrow> bool" fp64_is_finite :: "64 word \<Rightarrow> bool" fp64_is_nan :: "64 word \<Rightarrow> bool" fp64_is_normal :: "64 word \<Rightarrow> bool" fp64_is_signalling_nan :: "64 word \<Rightarrow> bool" fp64_is_subnormal :: "64 word \<Rightarrow> bool" fp64_less :: "64 word \<Rightarrow> 64 word \<Rightarrow> bool" fp64_less_equal :: "64 word \<Rightarrow> 64 word \<Rightarrow> bool" fp64_mul :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word" fp64_mul_with_flags :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> ieee_flags \<times> 64 word" fp64_mul_add :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word" fp64_mul_add_with_flags :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> ieee_flags \<times> 64 word" fp64_mul_sub :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word" fp64_mul_sub_with_flags :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> ieee_flags \<times> 64 word" fp64_neg_inf :: "64 word" fp64_neg_min :: "64 word" fp64_neg_max :: "64 word" fp64_neg_zero :: "64 word" fp64_negate :: "64 word \<Rightarrow> 64 word" fp64_pos_inf :: "64 word" fp64_pos_min :: "64 word" fp64_pos_max :: "64 word" fp64_pos_zero :: "64 word" fp64_round_to_integral :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word" fp64_snan :: "64 word" fp64_sqrt :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word" fp64_sqrt_with_flags :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> ieee_flags \<times> 64 word" fp64_sub :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> 64 word" fp64_sub_with_flags :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 64 word \<Rightarrow> ieee_flags \<times> 64 word" fp64_qnan :: "64 word" fp64_to_int :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> int option" consts fp32_to_fp64 :: "32 word \<Rightarrow> 64 word" fp64_to_fp32 :: "ieee_rounding \<Rightarrow> 64 word \<Rightarrow> 32 word" code_printing constant "fp32_abs" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp32'_abs\")" and (OCaml) "!(fun '_ -> failwith \"fp32'_abs\")" and (Haskell) "!(\\ '_ -> error \"fp32'_abs\")" | constant "fp32_add" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_add\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_add\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_add\")" | constant "fp32_add_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_add'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_add'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_add'_with'_flag\")" | constant "fp32_compare" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_compare\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_compare\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_compare\")" | constant "fp32_div" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_div\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_div\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_div\")" | constant "fp32_div_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_div'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_div'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_div'_with'_flag\")" | constant "fp32_equal" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_equal\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_equal\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_equal\")" | constant "fp32_from_int" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_from'_int\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_from'_int\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_from'_int\")" | constant "fp32_greater" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_greater\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_greater\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_greater\")" | constant "fp32_greater_equal" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_greater'_equal\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_greater'_equal\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_greater'_equal\")" | constant "fp32_is_integral" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp32'_is'_integral\")" and (OCaml) "!(fun '_ -> failwith \"fp32'_is'_integral\")" and (Haskell) "!(\\ '_ -> error \"fp32'_is'_intagral\")" | constant "fp32_is_finite" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp32'_is'_finite\")" and (OCaml) "!(fun '_ -> failwith \"fp32'_is'_finite\")" and (Haskell) "!(\\ '_ -> error \"fp32'_is'_finite\")" | constant "fp32_is_nan" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp32'_is'_nan\")" and (OCaml) "!(fun '_ -> failwith \"fp32'_is'_nan\")" and (Haskell) "!(\\ '_ -> error \"fp32'_is'_nan\")" | constant "fp32_is_normal" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp32'_is'_normal\")" and (OCaml) "!(fun '_ -> failwith \"fp32'_is'_normal\")" and (Haskell) "!(\\ '_ -> error \"fp32'_is'_normal\")" | constant "fp32_is_signalling_nan" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp32'_is'_signalling'_nan\")" and (OCaml) "!(fun '_ -> failwith \"fp32'_is'_signalling'_nan\")" and (Haskell) "!(\\ '_ -> error \"fp32'_is'_signalling'_nan\")" | constant "fp32_is_subnormal" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp32'_is'_subnormal\")" and (OCaml) "!(fun '_ -> failwith \"fp32'_is'_subnormal\")" and (Haskell) "!(\\ '_ -> error \"fp32'_is'_subnormal\")" | constant "fp32_less" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_less\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_less\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_less\")" | constant "fp32_less_equal" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_less'_equal\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_less'_equal\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_less'_equal\")" | constant "fp32_mul" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_mul\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_mul\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_mul\")" | constant "fp32_mul_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_mul'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_mul'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_mul'_with'_flag\")" | constant "fp32_mul_add" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_mul'_add\")" and (OCaml) "!(fun '_ '_ '_ '_ -> failwith \"fp32'_mul'_add\")" and (Haskell) "!(\\ '_ '_ '_ '_ -> error \"fp32'_mul'_add\")" | constant "fp32_mul_add_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_mul'_add'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_mul'_add'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_mul'_add'_with'_flag\")" | constant "fp32_mul_sub" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_mul'_sub\")" and (OCaml) "!(fun '_ '_ '_ '_ -> failwith \"fp32'_mul'_sub\")" and (Haskell) "!(\\ '_ '_ '_ '_ -> error \"fp32'_mul'_sub\")" | constant "fp32_mul_sub_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_sub'_add'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_mul'_sub'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_mul'_sub'_with'_flag\")" | constant "fp32_neg_inf" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_neg'_inf\")" and (OCaml) "!(failwith \"fp32'_neg'_inf\")" and (Haskell) "!(error \"fp32'_neg'_inf\")" | constant "fp32_neg_min" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_neg'_min\")" and (OCaml) "!(failwith \"fp32'_neg'_min\")" and (Haskell) "!(error \"fp32'_neg'_min\")" | constant "fp32_neg_max" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_neg'_max\")" and (OCaml) "!(failwith \"fp32'_neg'_max\")" and (Haskell) "!(error \"fp32'_neg'_min\")" | constant "fp32_neg_zero" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_neg'_zero\")" and (OCaml) "!(failwith \"fp32'_neg'_zero\")" and (Haskell) "!(error \"fp32'_neg'_zero\")" | constant "fp32_negate" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp32'_negate\")" and (OCaml) "!(fun '_ -> failwith \"fp32'_negate\")" and (Haskell) "!(\\ '_ -> error \"fp32'_negate\")" | constant "fp32_pos_inf" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_pos'_inf\")" and (OCaml) "!(failwith \"fp32'_pos'_inf\")" and (Haskell) "!(error \"fp32'_pos'_inf\")" | constant "fp32_pos_min" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_pos'_min\")" and (OCaml) "!(failwith \"fp32'_pos'_min\")" and (Haskell) "!(error \"fp32'_pos'_min\")" | constant "fp32_pos_max" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_pos'_max\")" and (OCaml) "!(failwith \"fp32'_pos'_max\")" and (Haskell) "!(error \"fp32'_pos'_max\")" | constant "fp32_pos_zero" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_pos'_zero\")" and (OCaml) "!(failwith \"fp32'_pos'_zero\")" and (Haskell) "!(error \"fp32'_pos'_zero\")" | constant "fp32_snan" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_snan\")" and (OCaml) "!(failwith \"fp32'_snan\")" and (Haskell) "!(error \"fp32'_snan\")" | constant "fp32_round_to_integral" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_round'_to'_integral\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_round'_to'_integral\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_to'_integral\")" | constant "fp32_sqrt" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_sqrt\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_sqrt\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_sqrt\")" | constant "fp32_sqrt_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_sqrt'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_sqrt'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_sqrt'_with'_flag\")" | constant "fp32_sub" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_sub\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_sub\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_sub\")" | constant "fp32_sub_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp32'_sub'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp32'_sub'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp32'_sub'_with'_flag\")" | constant "fp32_qnan" \<rightharpoonup> (SML) "!(raise Fail \"fp32'_qnan\")" and (OCaml) "!(failwith \"fp32'_qnan\")" and (Haskell) "!(error \"fp32'_qnan\")" | constant "fp32_to_int" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp32'_to'_int\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp32'_to'_int\")" and (Haskell) "!(\\ '_ '_ -> error \"fp32'_to'_int\")" | constant "fp64_abs" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp64'_abs\")" and (OCaml) "!(fun '_ -> failwith \"fp64'_abs\")" and (Haskell) "!(\\ '_ -> error \"fp64'_abs\")" | constant "fp64_add" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_add\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_add\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_add\")" | constant "fp64_add_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_add'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_add'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_add'_with'_flag\")" | constant "fp64_compare" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_compare\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_compare\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_compare\")" | constant "fp64_div" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_div\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_div\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_div\")" | constant "fp64_div_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_div'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_div'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_div'_with'_flag\")" | constant "fp64_equal" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_equal\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_equal\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_equal\")" | constant "fp64_from_int" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_from'_int\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_from'_int\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_from'_int\")" | constant "fp64_greater" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_greater\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_greater\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_greater\")" | constant "fp64_greater_equal" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_greater'_equal\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_greater'_equal\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_greater'_equal\")" | constant "fp64_is_integral" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp64'_is'_integral\")" and (OCaml) "!(fun '_ -> failwith \"fp64'_is'_integral\")" and (Haskell) "!(\\ '_ -> error \"fp64'_is'_intagral\")" | constant "fp64_is_finite" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp64'_is'_finite\")" and (OCaml) "!(fun '_ -> failwith \"fp64'_is'_finite\")" and (Haskell) "!(\\ '_ -> error \"fp64'_is'_finite\")" | constant "fp64_is_nan" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp64'_is'_nan\")" and (OCaml) "!(fun '_ -> failwith \"fp64'_is'_nan\")" and (Haskell) "!(\\ '_ -> error \"fp64'_is'_nan\")" | constant "fp64_is_normal" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp64'_is'_normal\")" and (OCaml) "!(fun '_ -> failwith \"fp64'_is'_normal\")" and (Haskell) "!(\\ '_ -> error \"fp64'_is'_normal\")" | constant "fp64_is_signalling_nan" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp64'_is'_signalling'_nan\")" and (OCaml) "!(fun '_ -> failwith \"fp64'_is'_signalling'_nan\")" and (Haskell) "!(\\ '_ -> error \"fp64'_is'_signalling'_nan\")" | constant "fp64_is_subnormal" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp64'_is'_subnormal\")" and (OCaml) "!(fun '_ -> failwith \"fp64'_is'_subnormal\")" and (Haskell) "!(\\ '_ -> error \"fp64'_is'_subnormal\")" | constant "fp64_less" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_less\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_less\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_less\")" | constant "fp64_less_equal" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_less'_equal\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_less'_equal\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_less'_equal\")" | constant "fp64_mul" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_mul\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_mul\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_mul\")" | constant "fp64_mul_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_mul'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_mul'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_mul'_with'_flag\")" | constant "fp64_mul_add" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_mul'_add\")" and (OCaml) "!(fun '_ '_ '_ '_ -> failwith \"fp64'_mul'_add\")" and (Haskell) "!(\\ '_ '_ '_ '_ -> error \"fp64'_mul'_add\")" | constant "fp64_mul_add_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_mul'_add'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_mul'_add'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_mul'_add'_with'_flag\")" | constant "fp64_mul_sub" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_mul'_sub\")" and (OCaml) "!(fun '_ '_ '_ '_ -> failwith \"fp64'_mul'_sub\")" and (Haskell) "!(\\ '_ '_ '_ '_ -> error \"fp64'_mul'_sub\")" | constant "fp64_mul_sub_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_sub'_add'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_mul'_sub'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_mul'_sub'_with'_flag\")" | constant "fp64_neg_inf" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_neg'_inf\")" and (OCaml) "!(failwith \"fp64'_neg'_inf\")" and (Haskell) "!(error \"fp64'_neg'_inf\")" | constant "fp64_neg_min" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_neg'_min\")" and (OCaml) "!(failwith \"fp64'_neg'_min\")" and (Haskell) "!(error \"fp64'_neg'_min\")" | constant "fp64_neg_max" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_neg'_max\")" and (OCaml) "!(failwith \"fp64'_neg'_max\")" and (Haskell) "!(error \"fp64'_neg'_max\")" | constant "fp64_neg_zero" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_neg'_zero\")" and (OCaml) "!(failwith \"fp64'_neg'_zero\")" and (Haskell) "!(error \"fp64'_neg'_zero\")" | constant "fp64_negate" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp64'_negate\")" and (OCaml) "!(fun '_ -> failwith \"fp64'_negate\")" and (Haskell) "!(\\ '_ -> error \"fp64'_negate\")" | constant "fp64_pos_inf" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_pos'_inf\")" and (OCaml) "!(failwith \"fp64'_pos'_inf\")" and (Haskell) "!(error \"fp64'_pos'_inf\")" | constant "fp64_pos_min" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_pos'_min\")" and (OCaml) "!(failwith \"fp64'_pos'_min\")" and (Haskell) "!(error \"fp64'_pos'_min\")" | constant "fp64_pos_max" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_pos'_max\")" and (OCaml) "!(failwith \"fp64'_pos'_max\")" and (Haskell) "!(error \"fp64'_pos'_max\")" | constant "fp64_pos_zero" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_pos'_zero\")" and (OCaml) "!(failwith \"fp64'_pos'_zero\")" and (Haskell) "!(error \"fp64'_pos'_zero\")" | constant "fp64_snan" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_snan\")" and (OCaml) "!(failwith \"fp64'_snan\")" and (Haskell) "!(error \"fp64'_snan\")" | constant "fp64_round_to_integral" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_round'_to'_integral\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_round'_to'_integral\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_to'_integral\")" | constant "fp64_sqrt" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_sqrt\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_sqrt\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_sqrt\")" | constant "fp64_sqrt_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_sqrt'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_sqrt'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_sqrt'_with'_flag\")" | constant "fp64_qnan" \<rightharpoonup> (SML) "!(raise Fail \"fp64'_qnan\")" and (OCaml) "!(failwith \"fp64'_qnan\")" and (Haskell) "!(error \"fp64'_qnan\")" | constant "fp64_sub" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_sub\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_sub\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_sub\")" | constant "fp64_sub_with_flags" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => fn '_ => raise Fail \"fp64'_sub'_with'_flags\")" and (OCaml) "!(fun '_ '_ '_ -> failwith \"fp64'_sub'_with'_flag\")" and (Haskell) "!(\\ '_ '_ '_ -> error \"fp64'_sub'_with'_flag\")" | constant "fp64_to_int" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_to'_int\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_to'_int\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_to'_int\")" | constant "fp32_to_fp64" \<rightharpoonup> (SML) "!(fn '_ => raise Fail \"fp32'_to'_fp64\")" and (OCaml) "!(fun '_ -> failwith \"fp32'_to'_fp64\")" and (Haskell) "!(\\ '_ -> error \"fp32'_to'_fp64\")" | constant "fp64_to_fp32" \<rightharpoonup> (SML) "!(fn '_ => fn '_ => raise Fail \"fp64'_to'_fp32\")" and (OCaml) "!(fun '_ '_ -> failwith \"fp64'_to'_fp32\")" and (Haskell) "!(\\ '_ '_ -> error \"fp64'_to'_fp32\")" end
(* Property from Productive Use of Failure in Inductive Proof, Andrew Ireland and Alan Bundy, JAR 1996. This Isabelle theory is produced using the TIP tool offered at the following website: https://github.com/tip-org/tools This file was originally provided as part of TIP benchmark at the following website: https://github.com/tip-org/benchmarks Yutaka Nagashima at CIIRC, CTU changed the TIP output theory file slightly to make it compatible with Isabelle2017.*) theory TIP_prop_33 imports "../../Test_Base" begin datatype Nat = Z | S "Nat" definition(*fun*) one :: "Nat" where "one = S Z" fun t2 :: "Nat => Nat => Nat" where "t2 (Z) y = y" | "t2 (S z) y = S (t2 z y)" fun t22 :: "Nat => Nat => Nat" where "t22 (Z) y = Z" | "t22 (S z) y = t2 y (t22 z y)" fun fac :: "Nat => Nat" where "fac (Z) = S Z" | "fac (S y) = t22 (S y) (fac y)" fun qfac :: "Nat => Nat => Nat" where "qfac (Z) y = y" | "qfac (S z) y = qfac z (t22 (S z) y)" theorem property0 : "((fac x) = (qfac x one))" oops end
C> \ingroup selci C> @{ subroutine selci_wthcon(iflcon, title, multi, nelec, issss, $ norbs, & nnsmax, nci, noconf, nintpo, nbitpi, nbpsy, isym, nsym, & inttyp,nsneed) * * $Id$ * character*80 title dimension nbpsy(8), isym(255), nsneed(3) c c write header of the ciconf file c write(iflcon) title, multi, nelec, issss, norbs, nnsmax, & nci, noconf, nintpo, nbitpi, nbpsy, isym, nsym, inttyp, & nsneed c write(6,*) ' in rdhcon ' c write(6,*) ' title, multi, nelec, issss, norbs, nnsmax, nci,', c & 'noconf, nintpo, nbitpi ' c write(6,*) title c write(6,*) multi, nelec, issss, norbs, nnsmax, nci, noconf, c & nintpo, nbitpi, nbpsy, isym, inttyp, nsneed end C> @}
# Probabilistic Programming and Bayesian Methods for Hackers Chapter 1 <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://drive.google.com/file/d/1r0JJuIQ9Uujpy8L941oMpJVrdQ6JLtSk/view?usp=sharing">Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/13ec2c5a49406d6986b6b5f2468d6fa0b8b5d5ac/Chapter1_Introduction/Ch1_Introduction_TFP.ipynb">View source on GitHub</a> </td> </table> <br> <br> <br> Original content ([this Jupyter notebook](https://nbviewer.jupyter.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Ch1_Introduction_PyMC2.ipynb)) created by Cam Davidson-Pilon ([`@Cmrn_DP`](https://twitter.com/Cmrn_DP)) Ported to [Tensorflow Probability](https://www.tensorflow.org/probability/) by Matthew McAteer ([`@MatthewMcAteer0`](https://twitter.com/MatthewMcAteer0)), with help from the TFP team at Google ([`[email protected]`](mailto:[email protected])). Welcome to Bayesian Methods for Hackers. The full Github repository is available at [github/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers](https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers). The other chapters can be found on the project's [homepage](https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/). We hope you enjoy the book, and we encourage any contributions! --- - [Dependencies & Prerequisites](#scrollTo=YcJ8nEDVH30J) - [The Philosophy of Bayesian Inference](#scrollTo=dXqjzSnXRRr3) - [The Bayesian state of mind](#scrollTo=YO2eSwZQRRqv) - [Bayesian Inference in Practice](#scrollTo=FXUBMaYsRWvl) - [Are frequentist methods incorrect then?](#scrollTo=rACyvZBVdqB9) - [Our Bayesian framework](#scrollTo=TTUDkI8peKw6) - [Example: Mandatory coin-flip example](#scrollTo=DkB3Ou8UjW-F) - [Example: Bug, or just sweet, unintended feature?](#scrollTo=5UKnxit-mevN) - [Probability Distributions](#scrollTo=2zNt6157C0Cr) - [Discrete Case](#scrollTo=xG03a_sgDRlc) - [Continuous Case](#scrollTo=ipS19FlBEmqK) - [But what is $\lambda \;$?](#scrollTo=_1fhqQhAFLkk) - [Example: Inferring behaviour from text-message data](#scrollTo=JrRddMMfHHKJ) - [Introducing our first hammer: Tensorflow Probability](#scrollTo=mCz2BozPcYNy) - [specify the joint log-density](#scrollTo=gYVjgZQ3hOw-) - [Specify the posterior sampler](#scrollTo=KnyDyY8Tjyiy) - [Execute the TF graph to sample from the posterior](#scrollTo=N1mb2NDUkJLU) - [Plot the Results](#scrollTo=vIxEqx9qkhWr) - [Interpretation](#scrollTo=FfiTXgF80sDA) - [Exercises](#scrollTo=cgCrDy8M3IZT) - [References](#scrollTo=nDdph0r1ABCn) ### Dependencies & Prerequisites ``` #@title Tensorflow Probability Installation (make sure to run this cell) { display-mode: "form" } TFP_Installation = "Stable TFP" #@param ["Most Recent TFP", "Stable TFP", "Stable TFP-GPU", "Most Recent TFP-GPU", "TFP Already Installed"] if TFP_Installation == "Stable TFP": !pip3 install -q --upgrade tensorflow-probability print("Up-to-date, stable TFP version installed") elif TFP_Installation == "Most Recent TFP": !pip3 install -q tfp-nightly print("Most recent TFP version installed") elif TFP_Installation == "Stable TFP-GPU": !pip3 install -q --upgrade tensorflow-probability-gpu print("Up-to-date, stable TFP-GPU version installed") print("(make sure GPU is properly configured)") elif TFP_Installation == "Most Recent TFP-GPU": !pip3 install -q tfp-nightly-gpu print("Most recent TFP-GPU version installed") print("(make sure GPU is properly configured)") elif TFP_Installation == "TFP Already Installed": print("TFP already instaled in this environment") pass else: print("Installation Error: Please select a viable TFP installation option.") ``` Up-to-date, stable TFP version installed ``` #@title Imports and Global Variables (make sure to run this cell) { display-mode: "form" } from __future__ import absolute_import, division, print_function warning_status = "ignore" #@param ["ignore", "always", "module", "once", "default", "error"] import warnings warnings.filterwarnings(warning_status) with warnings.catch_warnings(): warnings.filterwarnings(warning_status, category=DeprecationWarning) warnings.filterwarnings(warning_status, category=UserWarning) import numpy as np import os matplotlib_style = 'fivethirtyeight' #@param ['fivethirtyeight', 'bmh', 'ggplot', 'seaborn', 'default', 'Solarize_Light2', 'classic', 'dark_background', 'seaborn-colorblind', 'seaborn-notebook'] import matplotlib.pyplot as plt; plt.style.use(matplotlib_style) import matplotlib.axes as axes; from matplotlib.patches import Ellipse %matplotlib inline import seaborn as sns; sns.set_context('notebook') from IPython.core.pylabtools import figsize notebook_screen_res = 'png' #@param ['retina', 'png', 'jpeg', 'svg', 'pdf'] %config InlineBackend.figure_format = notebook_screen_res import tensorflow as tf tfe = tf.contrib.eager # Eager Execution use_tf_eager = False #@param {type:"boolean"} # Use try/except so we can easily re-execute the whole notebook. if use_tf_eager: try: tf.enable_eager_execution() except: pass import tensorflow_probability as tfp tfd = tfp.distributions tfb = tfp.bijectors def evaluate(tensors): """Evaluates Tensor or EagerTensor to Numpy `ndarray`s. Args: tensors: Object of `Tensor` or EagerTensor`s; can be `list`, `tuple`, `namedtuple` or combinations thereof. Returns: ndarrays: Object with same structure as `tensors` except with `Tensor` or `EagerTensor`s replaced by Numpy `ndarray`s. """ if tf.executing_eagerly(): return tf.contrib.framework.nest.pack_sequence_as( tensors, [t.numpy() if tf.contrib.framework.is_tensor(t) else t for t in tf.contrib.framework.nest.flatten(tensors)]) return sess.run(tensors) class _TFColor(object): """Enum of colors used in TF docs.""" red = '#F15854' blue = '#5DA5DA' orange = '#FAA43A' green = '#60BD68' pink = '#F17CB0' brown = '#B2912F' purple = '#B276B2' yellow = '#DECF3F' gray = '#4D4D4D' def __getitem__(self, i): return [ self.red, self.orange, self.green, self.blue, self.pink, self.brown, self.purple, self.yellow, self.gray, ][i % 9] TFColor = _TFColor() def session_options(enable_gpu_ram_resizing=True, enable_xla=True): """ Allowing the notebook to make use of GPUs if they're available. XLA (Accelerated Linear Algebra) is a domain-specific compiler for linear algebra that optimizes TensorFlow computations. """ config = tf.ConfigProto() config.log_device_placement = True if enable_gpu_ram_resizing: # `allow_growth=True` makes it possible to connect multiple colabs to your # GPU. Otherwise the colab malloc's all GPU ram. config.gpu_options.allow_growth = True if enable_xla: # Enable on XLA. https://www.tensorflow.org/performance/xla/. config.graph_options.optimizer_options.global_jit_level = ( tf.OptimizerOptions.ON_1) return config def reset_sess(config=None): """ Convenience function to create the TF graph & session or reset them. """ if config is None: config = session_options() global sess tf.reset_default_graph() try: sess.close() except: pass sess = tf.InteractiveSession(config=config) reset_sess() ``` ## The Philosophy of Bayesian Inference >You are a skilled programmer, but bugs still slip into your code. After a particularly difficult implementation of an algorithm, you decide to test your code on a trivial example. It passes. You test the code on a harder problem. It passes once again. And it passes the next, even more difficult, test too! You are starting to believe that there may be no bugs in this code... If you think this way, then congratulations, you already are thinking Bayesian! Bayesian inference is simply updating your beliefs after considering new evidence. A Bayesian can rarely be certain about a result, but he or she can be very confident. Just like in the example above, we can never be 100% sure that our code is bug-free unless we test it on every possible problem; something rarely possible in practice. Instead, we can test it on a large number of problems, and if it succeeds we can feel more confident about our code, but still not certain. Bayesian inference works identically: we update our beliefs about an outcome; rarely can we be absolutely sure unless we rule out all other alternatives. ## The Bayesian state of mind Bayesian inference differs from more traditional statistical inference by preserving uncertainty. At first, this sounds like a bad statistical technique. Isn't statistics all about deriving certainty from randomness? To reconcile this, we need to start thinking like Bayesians. The Bayesian world-view interprets probability as measure of believability in an event, that is, how confident we are in an event occurring. In fact, we will see in a moment that this is the natural interpretation of probability. For this to be clearer, we consider an alternative interpretation of probability: Frequentist, known as the more classical version of statistics, assume that probability is the long-run frequency of events (hence the bestowed title). For example, the probability of plane accidents under a frequentist philosophy is interpreted as the long-term frequency of plane accidents. This makes logical sense for many probabilities of events, but becomes more difficult to understand when events have no long-term frequency of occurrences. Consider: we often assign probabilities to outcomes of presidential elections, but the election itself only happens once! Frequentists get around this by invoking alternative realities and saying across all these realities, the frequency of occurrences defines the probability. Bayesians, on the other hand, have a more intuitive approach. Bayesians interpret a probability as measure of belief, or confidence, of an event occurring. Simply, a probability is a summary of an opinion. An individual who assigns a belief of 0 to an event has no confidence that the event will occur; conversely, assigning a belief of 1 implies that the individual is absolutely certain of an event occurring. Beliefs between 0 and 1 allow for weightings of other outcomes. This definition agrees with the probability of a plane accident example, for having observed the frequency of plane accidents, an individual's belief should be equal to that frequency, excluding any outside information. Similarly, under this definition of probability being equal to beliefs, it is meaningful to speak about probabilities (beliefs) of presidential election outcomes: how confident are you candidate A will win? Notice in the paragraph above, I assigned the belief (probability) measure to an individual, not to Nature. This is very interesting, as this definition leaves room for conflicting beliefs between individuals. Again, this is appropriate for what naturally occurs: different individuals have different beliefs of events occurring, because they possess different information about the world. The existence of different beliefs does not imply that anyone is wrong. Consider the following examples demonstrating the relationship between individual beliefs and probabilities: * I flip a coin, and we both guess the result. We would both agree, assuming the coin is fair, that the probability of Heads is 1/2. Assume, then, that I peek at the coin. Now I know for certain what the result is: I assign probability 1.0 to either Heads or Tails (whichever it is). Now what is your belief that the coin is Heads? My knowledge of the outcome has not changed the coin's results. Thus we assign different probabilities to the result. * Your code either has a bug in it or not, but we do not know for certain which is true, though we have a belief about the presence or absence of a bug. * A medical patient is exhibiting symptoms *x*, *y* and *z*. There are a number of diseases that could be causing all of them, but only a single disease is present. A doctor has beliefs about which disease, but a second doctor may have slightly different beliefs. This philosophy of treating beliefs as probability is natural to humans. We employ it constantly as we interact with the world and only see partial truths, but gather evidence to form beliefs. Alternatively, you have to be trained to think like a frequentist. To align ourselves with traditional probability notation, we denote our belief about event $A$ as $P(A)$. We call this quantity the prior probability. John Maynard Keynes, a great economist and thinker, said "When the facts change, I change my mind. What do you do, sir?" This quote reflects the way a Bayesian updates his or her beliefs after seeing evidence. Even β€” especially β€” if the evidence is counter to what was initially believed, the evidence cannot be ignored. We denote our updated belief as $P(A|X)$, interpreted as the probability of $A$ given the evidence $X$. We call the updated belief the posterior probability so as to contrast it with the prior probability. For example, consider the posterior probabilities (read: posterior beliefs) of the above examples, after observing some evidence $X$: 1. $P(A)$: the coin has a 50 percent chance of being Heads. $P(A|X)$: You look at the coin, observe a Heads has landed, denote this information $X$, and trivially assign probability 1.0 to Heads and 0.0 to Tails. 2. $P(A)$: This big, complex code likely has a bug in it. $P(A|X)$: The code passed all $X$ tests; there still might be a bug, but its presence is less likely now. 3. $P(A)$: The patient could have any number of diseases. $P(A|X)$: Performing a blood test generated evidence $X$, ruling out some of the possible diseases from consideration. It's clear that in each example we did not completely discard the prior belief after seeing new evidence $X$, but we re-weighted the prior to incorporate the new evidence (i.e. we put more weight, or confidence, on some beliefs versus others). By introducing prior uncertainty about events, we are already admitting that any guess we make is potentially very wrong. After observing data, evidence, or other information, we update our beliefs, and our guess becomes less wrong. This is the alternative side of the prediction coin, where typically we try to be more right. ## Bayesian Inference in Practice If frequentist and Bayesian inference were programming functions, with inputs being statistical problems, then the two would be different in what they return to the user. The frequentist inference function would return a number, representing an estimate (typically a summary statistic like the sample average etc.), whereas the Bayesian function would return probabilities. For example, in our debugging problem above, calling the frequentist function with the argument "My code passed all $X$ tests; is my code bug-free?" would return a YES. On the other hand, asking our Bayesian function "Often my code has bugs. My code passed all $X$ tests; is my code bug-free?" would return something very different: probabilities of YES and NO. The function might return: >YES, with probability 0.8; NO, with probability 0.2 This is very different from the answer the frequentist function returned. Notice that the Bayesian function accepted an additional argument: "Often my code has bugs". This parameter is the prior. By including the prior parameter, we are telling the Bayesian function to include our belief about the situation. Technically this parameter in the Bayesian function is optional, but we will see excluding it has its own consequences. ### Incorporating evidence As we acquire more and more instances of evidence, our prior belief is washed out by the new evidence. This is to be expected. For example, if your prior belief is something ridiculous, like "I expect the sun to explode today", and each day you are proved wrong, you would hope that any inference would correct you, or at least align your beliefs better. Bayesian inference will correct this belief. Denote $N$ as the number of instances of evidence we possess. As we gather an infinite amount of evidence, say as $Nβ†’βˆž,$ our Bayesian results (often) align with frequentist results. Hence for large N, statistical inference is more or less objective. On the other hand, for small $N$, inference is much more unstable: frequentist estimates have more variance and larger confidence intervals. This is where Bayesian analysis excels. By introducing a prior, and returning probabilities (instead of a scalar estimate), we preserve the uncertainty that reflects the instability of statistical inference of a small N dataset. One may think that for large $N$, one can be indifferent between the two techniques since they offer similar inference, and might lean towards the computationally-simpler, frequentist methods. An individual in this position should consider the following quote by Andrew Gelman (2005)[1], before making such a decision: Sample sizes are never large. If $N$, is too small to get a sufficiently-precise estimate, you need to get more data (or make more assumptions). But once $N$, is "large enough," you can start subdividing the data to learn more (for example, in a public opinion poll, once you have a good estimate for the entire country, you can estimate among men and women, northerners and southerners, different age groups, etc.). $N$, is never enough because if it were "enough" you'd already be on to the next problem for which you need more data. ## Are frequentist methods incorrect then? No. Frequentist methods are still useful or state-of-the-art in many areas. Tools such as least squares linear regression, LASSO regression, and expectation-maximization algorithms are all powerful and fast. Bayesian methods complement these techniques by solving problems that these approaches cannot, or by illuminating the underlying system with more flexible modeling. ### A note on *Big Data* Paradoxically, big data's predictive analytic problems are actually solved by relatively simple algorithms [2][4]. Thus we can argue that big data's prediction difficulty does not lie in the algorithm used, but instead on the computational difficulties of storage and execution on big data. (One should also consider Gelman's quote from above and ask "Do I really have big data?") The much more difficult analytic problems involve medium data and, especially troublesome, really small data. Using a similar argument as Gelman's above, if big data problems are big enough to be readily solved, then we should be more interested in the not-quite-big enough datasets. ## Our Bayesian framework We are interested in beliefs, which can be interpreted as probabilities by thinking Bayesian. We have a prior belief in event A, beliefs formed by previous information, e.g., our prior belief about bugs being in our code before performing tests. Secondly, we observe our evidence. To continue our buggy-code example: if our code passes X tests, we want to update our belief to incorporate this. We call this new belief the posterior probability. Updating our belief is done via the following equation, known as Bayes' Theorem, after its discoverer Thomas Bayes: $$ P(A|X) = \frac{P(X | A) P(A) }{P(X) } $$ $$ P(A|X) \propto{P(X | A) P(A) } $$ NOTE: ($\propto$ is "proportional to") The above formula is not unique to Bayesian inference: it is a mathematical fact with uses outside Bayesian inference. Bayesian inference merely uses it to connect prior probabilities $P(A)$ with an updated posterior probabilities $P(A|X)$. ## Example: Mandatory coin-flip example Every statistics text must contain a coin-flipping example, I'll use it here to get it out of the way. Suppose, naively, that you are unsure about the probability of heads in a coin flip (spoiler alert: it's 50%). You believe there is some true underlying ratio, call it p, but have no prior opinion on what p might be. We begin to flip a coin, and record the observations: either H or T. This is our observed data. An interesting question to ask is how our inference changes as we observe more and more data? More specifically, what do our posterior probabilities look like when we have little data, versus when we have lots of data. Below we plot a sequence of updating posterior probabilities as we observe increasing amounts of data (coin flips), while also demonstrating some of the best practices when it comes to evaluating tensors and plotting the data. First, the easy part: We define the values in our Tensorflow graph ``` # Build graph. probs_of_heads = tf.linspace(start=0., stop=1., num=100, name="linspace") n_trials_ = [0, 1, 2, 3, 4, 5, 8, 15, 50, 500] coin_flip_prior = tfp.distributions.Bernoulli(probs=0.5) coin_flip_data = coin_flip_prior.sample(n_trials[-1]) n_trials_unpacked = tf.unstack(tf.constant(n_trials)) counted = [] # this will be the list of processed head count tensors for k, N in enumerate(n_trials_): result_tensor = tf.reduce_sum(coin_flip_data[:N]) counted.append(result_tensor) headcounts = tf.stack(counted, 0) observed_head_probs = [] # this will be the list of processed probability tensors for k, N in enumerate(n_trials_): result_tensor = tfp.distributions.Beta( concentration1 = tf.to_float(1 + headcounts[k]), concentration0 = tf.to_float(1 + n_trials_[k] - headcounts[k])).prob(probs_of_heads) observed_head_probs.append(result_tensor) observed_probs_heads = tf.stack(observed_head_probs, 0) ``` Next we move onto executing the graph. When it comes to calculations that need to be made frequently and repeatedly, this method of first-defining and then executing graphs provides a handy speed boost. We can actually use a custom `evaluate()` function that allows us to evaluate tensors whether we are operating in TF Graph mode, or whether we have Eager mode active. The function looks like the following: ```python def evaluate(tensors): """Evaluates Tensor or EagerTensor to Numpy `ndarray`s. Args: tensors: Object of `Tensor` or EagerTensor`s; can be `list`, `tuple`, `namedtuple` or combinations thereof. Returns: ndarrays: Object with same structure as `tensors` except with `Tensor` or `EagerTensor`s replaced by Numpy `ndarray`s. """ if tf.executing_eagerly(): return tf.contrib.framework.nest.pack_sequence_as( tensors, [t.numpy() if tf.contrib.framework.is_tensor(t) else t for t in tf.contrib.framework.nest.flatten(tensors)]) return sess.run(tensors) ``` To graph the tensors, we need to convert into numpy variables. One handy way of associating tensors with their corrresponding numpy variables is to append an underscore to the numpy-like arrays. For example, if the input to `evaluate()` is `variable`, then we assign that value to `variable_`. Below we see an example of how we use both `evaluate()` and this new styling. ``` # Execute graph [ n_trials_unpacked_, coin_flip_data_, probs_of_heads_, headcounts_, observed_probs_heads_, ] = evaluate([ n_trials_unpacked, coin_flip_data, probs_of_heads, headcounts, observed_probs_heads, ]) ``` Finally, we move onto plotting our evaluated tensors in matplotlib. ``` # For the already prepared, I'm using Binomial's conj. prior. plt.figure(figsize(16, 9)) for i in range(len(n_trials_)): sx = plt.subplot(len(n_trials_)/2, 2, i+1) plt.xlabel("$p$, probability of heads") \ if i in [0, len(n_trials_)-1] else None plt.setp(sx.get_yticklabels(), visible=False) plt.plot(probs_of_heads_, observed_probs_heads_[i], label="observe %d tosses,\n %d heads" % (n_trials_[i], headcounts_[i])) plt.fill_between(probs_of_heads_, 0, observed_probs_heads_[i], color=TFColor[3], alpha=0.4) plt.vlines(0.5, 0, 4, color="k", linestyles="--", lw=1) leg = plt.legend() leg.get_frame().set_alpha(0.4) plt.autoscale(tight=True) plt.suptitle("Bayesian updating of posterior probabilities", y=1.02, fontsize=14) plt.tight_layout() ``` The posterior probabilities are represented by the curves, and our uncertainty is proportional to the width of the curve. As the plot above shows, as we start to observe data our posterior probabilities start to shift and move around. Eventually, as we observe more and more data (coin-flips), our probabilities will tighten closer and closer around the true value of $p=0.5$ (marked by a dashed line). Notice that the plots are not always peaked at 0.5. There is no reason it should be: recall we assumed we did not have a prior opinion of what p is. In fact, if we observe quite extreme data, say 8 flips and only 1 observed heads, our distribution would look very biased away from lumping around 0.5 (with no prior opinion, how confident would you feel betting on a fair coin after observing 8 tails and 1 head?). As more data accumulates, we would see more and more probability being assigned at $p=0.5$, though never all of it. The next example is a simple demonstration of the mathematics of Bayesian inference. ## Example: Bug, or just sweet, unintended feature? Let $A$ denote the event that our code has no bugs in it. Let $X$ denote the event that the code passes all debugging tests. For now, we will leave the prior probability of no bugs as a variable, i.e. $P(A)=p$. We are interested in $P(A|X)$, i.e. the probability of no bugs, given our debugging tests $X$. To use the formula above, we need to compute some quantities. What is $P(X|A)$, i.e., the probability that the code passes $X$ tests given there are no bugs? Well, it is equal to 1, for a code with no bugs will pass all tests. $P(X)$ is a little bit trickier: The event $X$ can be divided into two possibilities, event X occurring even though our code indeed has bugs (denoted $∼A$, spoken not $A$), or event $X$ without bugs $(A)$. $ P(X)$ can be represented as: $$ \begin{align*} P(A|X) &= \frac{P(X | A) P(A) }{P(X) } \\ P(X) &= P(X \text{ and } A) + P(X \text{ and } \sim A) \\ &= P(X|A)P(A) + P(X | \sim A)P(\sim A) \\ &= P(X|A)p + P(X | \sim A)(1-p) \end{align*} $$ We have already computed $P(X|A)$ above. On the other hand, $P(X|∼A)$ is subjective: our code can pass tests but still have a bug in it, though the probability there is a bug present is reduced. Note this is dependent on the number of tests performed, the degree of complication in the tests, etc. Let's be conservative and assign $P(X|∼A)=0.5$. Then: $$ \begin{align*} P(A | X) &= \frac{1\cdot p}{ 1\cdot p +0.5 (1-p) } \\ &= \frac{ 2 p}{1+p} \end{align*} $$ This is the posterior probability. What does it look like as a function of our prior, $p∈[0,1]$? ``` # Defining our range of probabilities p = tf.linspace(start=0., stop=1., num=50) # Convert from TF to numpy. [p_] = evaluate([p]) # Visualization. plt.figure(figsize=(12.5, 6)) plt.plot(p_, 2*p_/(1+p_), color=TFColor[3], lw=3) #plt.fill_between(p, 2*p/(1+p), alpha=.5, facecolor=["#A60628"]) plt.scatter(0.2, 2*(0.2)/1.2, s=140, c=TFColor[3]) plt.xlim(0, 1) plt.ylim(0, 1) plt.xlabel("Prior, $P(A) = p$") plt.ylabel("Posterior, $P(A|X)$, with $P(A) = p$") plt.title("Are there bugs in my code?"); ``` We can see the biggest gains if we observe the $X$ tests passed when the prior probability, $p$, is low. Let's settle on a specific value for the prior. I'm a strong programmer (I think), so I'm going to give myself a realistic prior of 0.20, that is, there is a 20% chance that I write code bug-free. To be more realistic, this prior should be a function of how complicated and large the code is, but let's pin it at 0.20. Then my updated belief that my code is bug-free is 0.33. Recall that the prior is a probability: $p$ is the prior probability that there are no bugs, so $1βˆ’p$ is the prior probability that there are bugs. Similarly, our posterior is also a probability, with $P(A|X)$ the probability there is no bug given we saw all tests pass, hence $1βˆ’P(A|X)$ is the probability there is a bug given all tests passed. What does our posterior probability look like? Below is a chart of both the prior and the posterior probabilities. ``` # Defining our priors and posteriors prior = tf.constant([0.20, 0.80]) posterior = tf.constant([1./3, 2./3]) # Convert from TF to numpy. [ prior_, posterior_, ] = evaluate([ prior, posterior, ]) # Our Simple Visualization plt.figure(figsize=(12.5, 4)) colours = [TFColor[0], TFColor[3]] plt.bar([0, .7], prior_, alpha=0.70, width=0.25, color=colours[0], label="prior distribution", lw="3", edgecolor=colours[0]) plt.bar([0+0.25, .7+0.25], posterior_, alpha=0.7, width=0.25, color=colours[1], label="posterior distribution", lw="3", edgecolor=colours[1]) plt.xticks([0.20, .95], ["Bugs Absent", "Bugs Present"]) plt.title("Prior and Posterior probability of bugs present") plt.ylabel("Probability") plt.legend(loc="upper left"); ``` Notice that after we observed $X$ occur, the probability of bugs being absent increased. By increasing the number of tests, we can approach confidence (probability 1) that there are no bugs present. This was a very simple example of Bayesian inference and Bayes rule. Unfortunately, the mathematics necessary to perform more complicated Bayesian inference only becomes more difficult, except for artificially constructed cases. We will later see that this type of mathematical analysis is actually unnecessary. First we must broaden our modeling tools. The next section deals with probability distributions. If you are already familiar, feel free to skip (or at least skim), but for the less familiar the next section is essential. ## Probability Distributions Let's quickly recall what a probability distribution is: Let $Z$ be some random variable. Then associated with $Z$ is a probability distribution function that assigns probabilities to the different outcomes $Z$ can take. Graphically, a probability distribution is a curve where the probability of an outcome is proportional to the height of the curve. You can see examples in the first figure of this chapter. We can divide random variables into three classifications: * $Z$ is discrete: Discrete random variables may only assume values on a specified list. Things like populations, movie ratings, and number of votes are all discrete random variables. Discrete random variables become more clear when we contrast them with... * $Z$ is continuous: Continuous random variable can take on arbitrarily exact values. For example, temperature, speed, time, color are all modeled as continuous variables because you can progressively make the values more and more precise. * $Z$ is mixed: Mixed random variables assign probabilities to both discrete and continuous random variables, i.e. it is a combination of the above two categories. ### Discrete Case If $Z$ is discrete, then its distribution is called a *probability mass function*, which measures the probability $Z$ takes on the value $k$, denoted $P(Z=k)$. Note that the probability mass function completely describes the random variable $Z$, that is, if we know the mass function, we know how $Z$ should behave. There are popular probability mass functions that consistently appear: we will introduce them as needed, but let's introduce the first very useful probability mass function. We say $Z$ is *Poisson*-distributed if: $$P(Z = k) =\frac{ \lambda^k e^{-\lambda} }{k!}, \; \; k=0,1,2, \dots $$ $\lambda$ is called a parameter of the distribution, and it controls the distribution's shape. For the Poisson distribution, $\lambda$ can be any positive number. By increasing $\lambda$, we add more probability to larger values, and conversely by decreasing $\lambda$ we add more probability to smaller values. One can describe $\lambda$ as the *intensity* of the Poisson distribution. Unlike $\lambda$, which can be any positive number, the value $k$ in the above formula must be a non-negative integer, i.e., $k$ must take on values 0,1,2, and so on. This is very important, because if you wanted to model a population you could not make sense of populations with 4.25 or 5.612 members. If a random variable $Z$ has a Poisson mass distribution, we denote this by writing $$Z \sim \text{Poi}(\lambda) $$ One useful property of the Poisson distribution is that its expected value is equal to its parameter, i.e.: $$E\large[ \;Z\; | \; \lambda \;\large] = \lambda $$ We will use this property often, so it's useful to remember. Below, we plot the probability mass distribution for different $\lambda$ values. The first thing to notice is that by increasing $\lambda$, we add more probability of larger values occurring. Second, notice that although the graph ends at 15, the distributions do not. They assign positive probability to every non-negative integer. ``` # Build graph. grid_of_days = tf.range(start=0., limit=16.) texts_per_day = tf.constant([1.5, 4.25]) text_count_probs = tfp.distributions.Poisson( rate=texts_per_day[:, tf.newaxis]).prob(grid_of_days) # Execute graph [ grid_of_days_, texts_per_day_, text_count_probs_, ] = evaluate([ grid_of_days, texts_per_day, text_count_probs, ]) # Display results plt.figure(figsize=(12.5, 4)) colours = [TFColor[0], TFColor[1]] plt.bar(grid_of_days_, text_count_probs_[0], color=colours[0], label="$\lambda = %.1f$" % texts_per_day_[0], alpha=0.60, edgecolor=colours[0], lw="3") plt.bar(grid_of_days_, text_count_probs_[1], color=colours[1], label="$\lambda = %.1f$" % texts_per_day_[1], alpha=0.60, edgecolor=colours[1], lw="3") plt.xticks(grid_of_days_ + 0.4, grid_of_days_) plt.legend() plt.ylabel("probability of $k$") plt.xlabel("$k$") plt.title("Probability mass function of a Poisson random variable; differing " "$\lambda$ values"); ``` ### Continuous Case Instead of a probability mass function, a continuous random variable has a *probability density function*. This might seem like unnecessary nomenclature, but the density function and the mass function are very different creatures. An example of continuous random variable is a random variable with *exponential density*. The density function for an exponential random variable looks like this: $$f_Z(z | \lambda) = \lambda e^{-\lambda z }, \;\; z\ge 0$$ Like a Poisson random variable, an exponential random variable can take on only non-negative values. But unlike a Poisson variable, the exponential can take on *any* non-negative values, including non-integral values such as 4.25 or 5.612401. This property makes it a poor choice for count data, which must be an integer, but a great choice for time data, temperature data (measured in Kelvins, of course), or any other precise *and positive* variable. The graph below shows two probability density functions with different $\lambda$ values. When a random variable $Z$ has an exponential distribution with parameter $\lambda$, we say *$Z$ is exponential* and write $$Z \sim \text{Exp}(\lambda)$$ Given a specific $\lambda$, the expected value of an exponential random variable is equal to the inverse of $\lambda$, that is: $$E[\; Z \;|\; \lambda \;] = \frac{1}{\lambda}$$ ``` # Defining our Data and assumptions (use tf.linspace for continuous) a = tf.range(start=0., limit=4., delta=0.04) a = a[..., tf.newaxis] lambdas = tf.constant([0.5, 1.]) # Now we use TFP to compute probabilities in a vectorized manner. pdf_at_z = tfp.distributions.Exponential(rate=lambdas).prob(a) # Convert from TF to numpy [ a_, lambdas_, pdf_at_z_, ] = evaluate([ a, lambdas, pdf_at_z, ]) # Visualizing our results plt.figure(figsize=(12.5, 4)) for i in range(lambdas_.size): plt.plot(a_.T[0], pdf_at_z_.T[[i]][0], lw=3, color=TFColor[i], label="$\lambda = %.1f$" % lambdas_[i]) plt.fill_between(a_.T[0], pdf_at_z_.T[[i]][0], color=TFColor[i], alpha=.33) plt.legend() plt.ylabel("PDF at $z$") plt.xlabel("$z$") plt.ylim(0,1.2) plt.title("Probability density function of an Exponential random variable;\ differing $\lambda$"); ``` ## But what is $\lambda \;$? **This question is what motivates statistics**. In the real world, $\lambda$ is hidden from us. We see only $Z$, and must go backwards to try and determine $\lambda$. The problem is difficult because there is no one-to-one mapping from $Z$ to $\lambda$. Many different methods have been created to solve the problem of estimating $\lambda$, but since $\lambda$ is never actually observed, no one can say for certain which method is best! Bayesian inference is concerned with *beliefs* about what $\lambda$ might be. Rather than try to guess $\lambda$ exactly, we can only talk about what $\lambda$ is likely to be by assigning a probability distribution to $\lambda$. This might seem odd at first. After all, $\lambda$ is fixed; it is not (necessarily) random! How can we assign probabilities to values of a non-random variable? Ah, we have fallen for our old, frequentist way of thinking. Recall that under Bayesian philosophy, we *can* assign probabilities if we interpret them as beliefs. And it is entirely acceptable to have *beliefs* about the parameter $\lambda$. #### Example: Inferring behaviour from text-message data Let's try to model a more interesting example, one that concerns the rate at which a user sends and receives text messages: > You are given a series of daily text-message counts from a user of your system. The data, plotted over time, appears in the chart below. You are curious to know if the user's text-messaging habits have changed over time, either gradually or suddenly. How can you model this? (This is in fact my own text-message data. Judge my popularity as you wish.) ``` # Defining our Data and assumptions count_data = tf.constant([ 13, 24, 8, 24, 7, 35, 14, 11, 15, 11, 22, 22, 11, 57, 11, 19, 29, 6, 19, 12, 22, 12, 18, 72, 32, 9, 7, 13, 19, 23, 27, 20, 6, 17, 13, 10, 14, 6, 16, 15, 7, 2, 15, 15, 19, 70, 49, 7, 53, 22, 21, 31, 19, 11, 18, 20, 12, 35, 17, 23, 17, 4, 2, 31, 30, 13, 27, 0, 39, 37, 5, 14, 13, 22, ], dtype=tf.float32) count_data_mean = tf.reduce_mean(count_data) n_count_data = tf.shape(count_data) count_of_text_msgs = tf.range(n_count_data[0]) # Convert from TF to numpy. [ count_data_, count_data_mean_, n_count_data_, count_of_text_msgs_, ] = evaluate([ count_data, count_data_mean, n_count_data, count_of_text_msgs, ]) # Visualizing the Results plt.figure(figsize=(12.5, 4)) plt.bar(count_of_text_msgs_, count_data_, color="#5DA5DA") plt.xlabel("Time (days)") plt.ylabel("count of text-msgs received") plt.title("Did the user's texting habits change over time?") plt.xlim(0, n_count_data_[0]); print("Count Data Mean: ", count_data_mean_) ``` Before we start modeling, see what you can figure out just by looking at the chart above. Would you say there was a change in behaviour during this time period? How can we start to model this? Well, as we have conveniently already seen, a Poisson random variable is a very appropriate model for this type of *count* data. Denoting day $i$'s text-message count by $C_i$, $$ C_i \sim \text{Poisson}(\lambda) $$ We are not sure what the value of the $\lambda$ parameter really is, however. Looking at the chart above, it appears that the rate might become higher late in the observation period, which is equivalent to saying that $\lambda$ increases at some point during the observations. (Recall that a higher value of $\lambda$ assigns more probability to larger outcomes. That is, there is a higher probability of many text messages having been sent on a given day.) How can we represent this observation mathematically? Let's assume that on some day during the observation period (call it $\tau$), the parameter $\lambda$ suddenly jumps to a higher value. So we really have two $\lambda$ parameters: one for the period before $\tau$, and one for the rest of the observation period. In the literature, a sudden transition like this would be called a *switchpoint*: $$\lambda = \begin{cases} \lambda_1 & \text{if } t \lt \tau \cr \lambda_2 & \text{if } t \ge \tau \end{cases} $$ If, in reality, no sudden change occurred and indeed $\lambda_1 = \lambda_2$, then the $\lambda$s posterior distributions should look about equal. We are interested in inferring the unknown $\lambda$s. To use Bayesian inference, we need to assign prior probabilities to the different possible values of $\lambda$. What would be good prior probability distributions for $\lambda_1$ and $\lambda_2$? Recall that $\lambda$ can be any positive number. As we saw earlier, the *exponential* distribution provides a continuous density function for positive numbers, so it might be a good choice for modeling $\lambda_i$. But recall that the exponential distribution takes a parameter of its own, so we'll need to include that parameter in our model. Let's call that parameter $\alpha$. \begin{align} &\lambda_1 \sim \text{Exp}( \alpha ) \\\ &\lambda_2 \sim \text{Exp}( \alpha ) \end{align} $\alpha$ is called a *hyper-parameter* or *parent variable*. In literal terms, it is a parameter that influences other parameters. Our initial guess at $\alpha$ does not influence the model too strongly, so we have some flexibility in our choice. A good rule of thumb is to set the exponential parameter equal to the inverse of the average of the count data. Since we're modeling $\lambda$ using an exponential distribution, we can use the expected value identity shown earlier to get: $$\frac{1}{N}\sum_{i=0}^N \;C_i \approx E[\; \lambda \; |\; \alpha ] = \frac{1}{\alpha}$$ An alternative, and something I encourage the reader to try, would be to have two priors: one for each $\lambda_i$. Creating two exponential distributions with different $\alpha$ values reflects our prior belief that the rate changed at some point during the observations. What about $\tau$? Because of the noisiness of the data, it's difficult to pick out a priori when $\tau$ might have occurred. Instead, we can assign a *uniform prior belief* to every possible day. This is equivalent to saying \begin{align} & \tau \sim \text{DiscreteUniform(1,70) }\\\\ & \Rightarrow P( \tau = k ) = \frac{1}{70} \end{align} So after all this, what does our overall prior distribution for the unknown variables look like? Frankly, *it doesn't matter*. What we should understand is that it's an ugly, complicated mess involving symbols only a mathematician could love. And things will only get uglier the more complicated our models become. Regardless, all we really care about is the posterior distribution. We next turn to [TensorFlow Probability](https://tensorflow.org/probability), a Python library for performing Bayesian analysis that is undaunted by the mathematical monster we have created. ## Introducing our first hammer: TensorFlow Probability TensorFlow Probability (TFP) is a Python library for programming Bayesian analysis. It is intended for data scientists, statisticians, machine learning practitioners, and scientists. Since it is built on the TensorFlow (TF) stack, it brings the runtime benefits of TF to Bayesian analysis. These include write-once run many (ability to your your development model in production) and speedups via state-of-the-art hardware (GPUs and TPUs). Since TFP is relatively new, the TFP community is actively developing documentation, especially docs and examples that bridge the gap between beginner and hacker. One of this book's main goals is to solve that problem, and also to demonstrate why TFP is so cool. We will model the problem above using TFP. This type of programming is called *probabilistic programming*, an unfortunate misnomer that invokes ideas of randomly-generated code and has likely confused and frightened users away from this field. The code is not random; it is probabilistic in the sense that we create probability models using programming variables as the model's components. Model components are first-class primitives within the PyMC3 framework. B. Cronin [5] has a very motivating description of probabilistic programming: > Another way of thinking about this: unlike a traditional program, which only runs in the forward directions, a probabilistic program is run in both the forward and backward direction. It runs forward to compute the consequences of the assumptions it contains about the world (i.e., the model space it represents), but it also runs backward from the data to constrain the possible explanations. In practice, many probabilistic programming systems will cleverly interleave these forward and backward operations to efficiently home in on the best explanations. Because of the confusion engendered by the term *probabilistic programming*, I'll refrain from using it. Instead, I'll simply say *programming*, since that's what it really is. TFP code is easy to read. The only novel thing should be the syntax. Simply remember that we are representing the model's components ($\tau, \lambda_1, \lambda_2$ ) as variables. ## Specify the joint log-density We'll assume the data is a consequence of the following generative model: $$\begin{align*} \lambda_{1}^{(0)} &\sim \text{Exponential}(\text{rate}=\alpha) \\ \lambda_{2}^{(0)} &\sim \text{Exponential}(\text{rate}=\alpha) \\ \tau &\sim \text{Uniform}[\text{low}=0,\text{high}=1) \\ \text{for } i &= 1\ldots N: \\ \lambda_i &= \begin{cases} \lambda_{1}^{(0)}, & \tau > i/N \\ \lambda_{2}^{(0)}, & \text{otherwise}\end{cases}\\ X_i &\sim \text{Poisson}(\text{rate}=\lambda_i) \end{align*}$$ Happily, this model can be easily implemented using TF and TFP's distributions: This code creates a new function `lambda_`, but really we can think of it as a random variable: the random variable $\lambda$ from above. The [gather](https://https://www.tensorflow.org/api_docs/python/tf/gather) function assigns `lambda_1` or `lambda_2` as the value of `lambda_`, depending on what side of `tau` we are on. The values of `lambda_` up until `tau` are `lambda_1` and the values afterwards are `lambda_2`. Note that because `lambda_1`, `lambda_2` and `tau` are random, `lambda_` will be random. We are **not** fixing any variables yet. ``` def joint_log_prob(count_data, lambda_1, lambda_2, tau): tfd = tfp.distributions alpha = np.array(1. / count_data.mean(), np.float32) rv_lambda_1 = tfd.Exponential(rate=alpha) rv_lambda_2 = tfd.Exponential(rate=alpha) rv_tau = tfd.Uniform() lambda_ = tf.gather( [lambda_1, lambda_2], indices=tf.to_int32(tau * count_data.size <= np.arange(count_data.size))) rv_observation = tfd.Poisson(rate=lambda_) return ( rv_lambda_1.log_prob(lambda_1) + rv_lambda_2.log_prob(lambda_2) + rv_tau.log_prob(tau) + tf.reduce_sum(rv_observation.log_prob(count_data)) ) ``` Notice that the implementation is arguably very close to being a 1:1 translation of the mathematical model. The main difference is merely that once we've specified the probabilistic model, we return the sum of the log_probs. ## Specify the posterior sampler The code below will be explained in Chapter 3, but we show it here so you can see where our results come from. One can think of it as a *learning* step. The machinery being employed is called *Markov Chain Monte Carlo* (MCMC), which we also delay explaining until Chapter 3. This technique returns thousands of random variables from the posterior distributions of $\lambda_1, \lambda_2$ and $\tau$. We can plot a histogram of the random variables to see what the posterior distributions look like. Below, we collect the samples (called *traces* in the MCMC literature) into histograms. ``` # Set the chain's start state. initial_chain_state = [ tf.to_float(tf.reduce_mean(count_data)) * tf.ones([], dtype=tf.float32, name="init_lambda1"), tf.to_float(tf.reduce_mean(count_data)) * tf.ones([], dtype=tf.float32, name="init_lambda2"), 0.5 * tf.ones([], dtype=tf.float32, name="init_tau"), ] # Since HMC operates over unconstrained space, we need to transform the # samples so they live in real-space. unconstraining_bijectors = [ tfp.bijectors.Exp(), # Maps a positive real to R. tfp.bijectors.Exp(), # Maps a positive real to R. tfp.bijectors.Sigmoid(), # Maps [0,1] to R. ] def joint_log_prob(count_data, lambda_1, lambda_2, tau): tfd = tfp.distributions alpha = (1. / tf.reduce_mean(count_data)) rv_lambda_1 = tfd.Exponential(rate=alpha) rv_lambda_2 = tfd.Exponential(rate=alpha) rv_tau = tfd.Uniform() lambda_ = tf.gather( [lambda_1, lambda_2], indices=tf.to_int32(tau * tf.to_float(tf.size(count_data)) <= tf.to_float(tf.range(tf.size(count_data))))) rv_observation = tfd.Poisson(rate=lambda_) return ( rv_lambda_1.log_prob(lambda_1) + rv_lambda_2.log_prob(lambda_2) + rv_tau.log_prob(tau) + tf.reduce_sum(rv_observation.log_prob(count_data)) ) # Define a closure over our joint_log_prob. def unnormalized_log_posterior(lambda1, lambda2, tau): return joint_log_prob(count_data, lambda1, lambda2, tau) # Initialize the step_size. (It will be automatically adapted.) step_size = tf.get_variable( name='step_size', initializer=tf.constant(0.05, dtype=tf.float32), trainable=False) # Sample from the chain. [ lambda_1_samples, lambda_2_samples, posterior_tau, ], kernel_results = tfp.mcmc.sample_chain( num_results=10000, num_burnin_steps=1000, current_state=initial_chain_state, kernel=tfp.mcmc.TransformedTransitionKernel( inner_kernel=tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=unnormalized_log_posterior, num_leapfrog_steps=2, step_size=step_size, step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(), state_gradients_are_stopped=True), bijector=unconstraining_bijectors)) # Convert our samples to what the book's code expects. tau_samples = tf.floor(posterior_tau * tf.to_float(tf.size(count_data))) # tau_samples, lambda_1_samples, lambda_2_samples contain # N samples from the corresponding posterior distribution N = tf.shape(tau_samples)[0] expected_texts_per_day = tf.zeros(n_count_data) # Initialize any created variables. init_g = tf.global_variables_initializer() init_l = tf.local_variables_initializer() ``` ## Executing the TF graph to sample from the posterior ``` evaluate(init_g) evaluate(init_l) [ lambda_1_samples_, lambda_2_samples_, tau_samples_, kernel_results_, N_, expected_texts_per_day_, ] = evaluate([ lambda_1_samples, lambda_2_samples, tau_samples, kernel_results, N, expected_texts_per_day, ]) print("acceptance rate: {}".format( kernel_results_.inner_results.is_accepted.mean())) print("final step size: {}".format( kernel_results_.inner_results.extra.step_size_assign[-100:].mean())) ``` acceptance rate: 0.5887 final step size: 0.02644856460392475 ## Plot the Results ``` plt.figure(figsize=(12.5, 15)) #histogram of the samples: ax = plt.subplot(311) ax.set_autoscaley_on(False) plt.hist(lambda_1_samples_, histtype='stepfilled', bins=30, alpha=0.85, label="posterior of $\lambda_1$", color=TFColor[0], normed=True) plt.legend(loc="upper left") plt.title(r"""Posterior distributions of the variables $\lambda_1,\;\lambda_2,\;\tau$""") plt.xlim([15, 30]) plt.xlabel("$\lambda_1$ value") ax = plt.subplot(312) ax.set_autoscaley_on(False) plt.hist(lambda_2_samples_, histtype='stepfilled', bins=30, alpha=0.85, label="posterior of $\lambda_2$", color=TFColor[6], normed=True) plt.legend(loc="upper left") plt.xlim([15, 30]) plt.xlabel("$\lambda_2$ value") plt.subplot(313) w = 1.0 / tau_samples_.shape[0] * np.ones_like(tau_samples_) plt.hist(tau_samples_, bins=n_count_data_[0], alpha=1, label=r"posterior of $\tau$", color=TFColor[2], weights=w, rwidth=2.) plt.xticks(np.arange(n_count_data_[0])) plt.legend(loc="upper left") plt.ylim([0, .75]) plt.xlim([35, len(count_data_)-20]) plt.xlabel(r"$\tau$ (in days)") plt.ylabel("probability"); ``` ## Interpretation Recall that Bayesian methodology returns a *distribution*. Hence we now have distributions to describe the unknown $\lambda$s and $\tau$. What have we gained? Immediately, we can see the uncertainty in our estimates: the wider the distribution, the less certain our posterior belief should be. We can also see what the plausible values for the parameters are: $\lambda_1$ is around 18 and $\lambda_2$ is around 23. The posterior distributions of the two $\lambda$s are clearly distinct, indicating that it is indeed likely that there was a change in the user's text-message behaviour. What other observations can you make? If you look at the original data again, do these results seem reasonable? Notice also that the posterior distributions for the $\lambda$s do not look like exponential distributions, even though our priors for these variables were exponential. In fact, the posterior distributions are not really of any form that we recognize from the original model. But that's OK! This is one of the benefits of taking a computational point of view. If we had instead done this analysis using mathematical approaches, we would have been stuck with an analytically intractable (and messy) distribution. Our use of a computational approach makes us indifferent to mathematical tractability. Our analysis also returned a distribution for $\tau$. Its posterior distribution looks a little different from the other two because it is a discrete random variable, so it doesn't assign probabilities to intervals. We can see that near day 45, there was a 50% chance that the user's behaviour changed. Had no change occurred, or had the change been gradual over time, the posterior distribution of $\tau$ would have been more spread out, reflecting that many days were plausible candidates for $\tau$. By contrast, in the actual results we see that only three or four days make any sense as potential transition points. ### Why would I want samples from the posterior, anyways? We will deal with this question for the remainder of the book, and it is an understatement to say that it will lead us to some amazing results. For now, let's end this chapter with one more example. We'll use the posterior samples to answer the following question: what is the expected number of texts at day $t, \; 0 \le t \le 70$ ? Recall that the expected value of a Poisson variable is equal to its parameter $\lambda$. Therefore, the question is equivalent to *what is the expected value of $\lambda$ at time $t$*? In the code below, let $i$ index samples from the posterior distributions. Given a day $t$, we average over all possible $\lambda_i$ for that day $t$, using $\lambda_i = \lambda_{1,i}$ if $t \lt \tau_i$ (that is, if the behaviour change has not yet occurred), else we use $\lambda_i = \lambda_{2,i}$. ``` plt.figure(figsize=(12.5, 9)) for day in range(0, n_count_data_[0]): # ix is a bool index of all tau samples corresponding to # the switchpoint occurring prior to value of 'day' ix = day < tau_samples_ # Each posterior sample corresponds to a value for tau. # for each day, that value of tau indicates whether we're "before" # (in the lambda1 "regime") or # "after" (in the lambda2 "regime") the switchpoint. # by taking the posterior sample of lambda1/2 accordingly, we can average # over all samples to get an expected value for lambda on that day. # As explained, the "message count" random variable is Poisson distributed, # and therefore lambda (the poisson parameter) is the expected value of # "message count". expected_texts_per_day_[day] = (lambda_1_samples_[ix].sum() + lambda_2_samples_[~ix].sum()) / N_ plt.plot(range(n_count_data_[0]), expected_texts_per_day_, lw=4, color="#E24A33", label="expected number of text-messages received") plt.xlim(0, n_count_data_[0]) plt.xlabel("Day") plt.ylabel("Expected # text-messages") plt.title("Expected number of text-messages received") plt.ylim(0, 60) plt.bar(np.arange(len(count_data_)), count_data_, color="#5DA5DA", alpha=0.65, label="observed texts per day") plt.legend(loc="upper left"); ``` Our analysis shows strong support for believing the user's behavior did change ($\lambda_1$ would have been close in value to $\lambda_2$ had this not been true), and that the change was sudden rather than gradual (as demonstrated by $\tau$'s strongly peaked posterior distribution). We can speculate what might have caused this: a cheaper text-message rate, a recent weather-to-text subscription, or perhaps a new relationship. (In fact, the 45th day corresponds to Christmas, and I moved away to Toronto the next month, leaving a girlfriend behind.) ## Exercises 1. Using `lambda_1_samples` and `lambda_2_samples`, what is the mean of the posterior distributions of $\lambda_1$ and $\lambda_2$? ``` #type your code here. ``` 2. What is the expected percentage increase in text-message rates? `hint:` compute the mean of `lambda_1_samples/lambda_2_samples`. Note that this quantity is very different from `lambda_1_samples.mean()/lambda_2_samples.mean()` ``` #type your code here. ``` 3. What is the mean of $\lambda_1$ **given** that we know $\tau$ is less than 45? That is, suppose we have been given new information that the change in behaviour occurred prior to day 45. What is the expected value of $\lambda_1$ now? (You do not need to redo the TFP part. Just consider all instances where `tau_samples < 45`.) ``` #type your code here. ``` ## References [1] Gelman, Andrew. N.p.. Web. 22 Jan 2013. [N is never large enough](http://andrewgelman.com/2005/07/31/n_is_never_larg) [2] Norvig, Peter. 2009. [The Unreasonable Effectiveness of Data](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf). [3] Jimmy Lin and Alek Kolcz. Large-Scale Machine Learning at Twitter. Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD 2012), pages 793-804, May 2012, Scottsdale, Arizona. [4] Cronin, Beau. "Why Probabilistic Programming Matters." 24 Mar 2013. Google, Online Posting to Google . Web. 24 Mar. 2013. <https://plus.google.com/u/0/107971134877020469960/posts/KpeRdJKR6Z1>. [5] Introducing Tensorflow Probability ([on Medium](https://medium.com/tensorflow/introducing-tensorflow-probability-dca4c304e245)) [6] Tensorflow Probability Style Guide ([on Github](https://github.com/tensorflow/probability/blob/master/STYLE_GUIDE.md)) [7] How Not To Program the Tensorflow Graph ([on KDnuggets](https://www.kdnuggets.com/2017/05/how-not-program-tensorflow-graph.html)) [8] Tensorflow's Map Function ([link](https://www.tensorflow.org/api_docs/python/tf/map_fn)) [9] Visualizing Tensorflow graphs in Jupyter Notebooks ([link](https://blog.jakuba.net/2017/05/30/tensorflow-visualization.html)) [10] Tensorflow 1.10 Documentation ([link](https://www.tensorflow.org/api_docs/)) [11] Tensorflow Probability whitepaper ([link](https://arxiv.org/abs/1711.10604)) [12] TensorFlow | A Concise Handbook of TensorFlow ([link](https://tf.wiki/)) [13] TensorFlow | A Concise Handbook of TensorFlow, alternatie URL ([link](https://github.com/snowkylin/Tensorflow-cn)) [14] Google Colab | Examples ([Overview of Colaboratory](https://colab.research.google.com/notebooks/basic_features_overview.ipynb)) ([Forms](https://colab.research.google.com/notebooks/forms.ipynb)) ([Charts in Colaboratory](https://colab.research.google.com/notebooks/charts.ipynb)) ``` from IPython.core.display import HTML def css_styling(): styles = open("../styles/custom.css", "r").read() return HTML(styles) css_styling() ```
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Category.Functor open import Data.Maybe open import Function open import Level open import Relation.Binary.PropositionalEquality module Optics.Functorial where Lens' : (F : Set β†’ Set) β†’ RawFunctor F β†’ Set β†’ Set β†’ Set Lens' F _ S A = (A β†’ F A) β†’ S β†’ F S data Lens (S A : Set) : Set₁ where lens : ((F : Set β†’ Set)(rf : RawFunctor F) β†’ Lens' F rf S A) β†’ Lens S A private cf : {A : Set} β†’ RawFunctor {Level.zero} (const A) cf = record { _<$>_ = Ξ» x x₁ β†’ x₁ } if : RawFunctor {Level.zero} id if = record { _<$>_ = Ξ» x x₁ β†’ x x₁ } -- We can make lenses relatively painlessly without requiring reflection -- by providing getter and setter functions mkLens' : βˆ€ {A B : Set} β†’ (B β†’ A) β†’ (B β†’ A β†’ B) β†’ Lens B A mkLens' {A} {B} get set = lens (Ξ» F rf f b β†’ Category.Functor.RawFunctor._<$>_ {F = F} rf {A = A} {B = B} (set b) (f (get b))) -- Getter: -- this is typed as ^\. _^βˆ™_ : βˆ€{S A} β†’ S β†’ Lens S A β†’ A _^βˆ™_ {_} {A} s (lens p) = p (const A) cf id s -- Setter: set : βˆ€{S A} β†’ Lens S A β†’ A β†’ S β†’ S set (lens p) a s = p id if (const a) s infixr 4 _βˆ™~_ _βˆ™~_ = set -- _|>_ is renamed to _&_ by Util.Prelude set? : βˆ€{S A} β†’ Lens S (Maybe A) β†’ A β†’ S β†’ S set? l a s = s |> l βˆ™~ just a infixr 4 _?~_ _?~_ = set? -- Modifier: over : βˆ€{S A} β†’ Lens S A β†’ (A β†’ A) β†’ S β†’ S over (lens p) f s = p id if f s infixr 4 _%~_ _%~_ = over -- Composition infixr 30 _βˆ™_ _βˆ™_ : βˆ€{S A B} β†’ Lens S A β†’ Lens A B β†’ Lens S B (lens p) βˆ™ (lens q) = lens (Ξ» F rf x x₁ β†’ p F rf (q F rf x) x₁) -- Relation between the same field of two states This most general form allows us to specify a -- Lens S A, a function A β†’ B, and a relation between two B's, and holds iff the relation holds -- between the values yielded by applying the Lens to two S's and then applying the function to -- the results; more specific variants are provided below _[_]L_f=_at_ : βˆ€ {β„“} {S A B : Set} β†’ S β†’ (B β†’ B β†’ Set β„“) β†’ S β†’ (A β†’ B) β†’ Lens S A β†’ Set β„“ s₁ [ _~_ ]L sβ‚‚ f= f at l = f (s₁ ^βˆ™ l) ~ f (sβ‚‚ ^βˆ™ l) _[_]L_at_ : βˆ€ {β„“} {S A} β†’ S β†’ (A β†’ A β†’ Set β„“) β†’ S β†’ Lens S A β†’ Set β„“ s₁ [ _~_ ]L sβ‚‚ at l = _[_]L_f=_at_ s₁ _~_ sβ‚‚ id l infix 4 _≑L_f=_at_ _≑L_f=_at_ : βˆ€ {S A B : Set} β†’ (s₁ sβ‚‚ : S) β†’ (A β†’ B) β†’ Lens S A β†’ Set s₁ ≑L sβ‚‚ f= f at l = _[_]L_f=_at_ s₁ _≑_ sβ‚‚ f l infix 4 _≑L_at_ _≑L_at_ : βˆ€ {S A} β†’ (s₁ sβ‚‚ : S) β†’ Lens S A β†’ Set s₁ ≑L sβ‚‚ at l = _[_]L_f=_at_ s₁ _≑_ sβ‚‚ id l
subroutine psopareto(basnam) !======================================================================================== !==== This subroutine executes basic pso in estimation mode. ==== !==== by Adam Siade ==== !======================================================================================== !======================================================================================== use psodat implicit none ! specifications: !---------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------- ! external routines for run management via YAMR !---------------------------------------------------------------------------------------- external rmif_run integer rmif_run external rmif_get_num_failed_runs integer rmif_get_num_failed_runs external rmif_get_failed_run_ids integer rmif_get_failed_run_ids external rmif_get_num_total_runs integer rmif_get_num_total_runs external rmif_delete integer rmif_delete !---------------------------------------------------------------------------------------- ! local PSO-main variables !---------------------------------------------------------------------------------------- integer::err,irun,iiter,ipart,iparm,iparm1,iparm2,repred,iptout,iobs,ipto,irep,fail,& inpar double precision::alpha character(len=100),intent(in)::basnam !---------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------- err = 0 repred = 0 iptout = 1 fail = 0 alpha = 0.0d+00 ! ! remove all repository output files from previous runs !call system('rm ./*.rep') ! ! restart from previous run if requested if (rstpso == 1) then ! call readrst(basnam) ! if (nrepact > 1) then ! ! manage repository and calculate fitness if (repmode == 1) then ! ! use grid-based method described by Coello et al, 2004 call repgrid(repred) ! else if (repmode == 2) then ! ! use loneliness method call loneliness(repred,alpha) ! end if ! else if (nrepact == 1) then ! do irep=1,npop+nrep if (repindx(irep) == 1) fitness(irep) = 1.00d+00 end do ! end if ! ! write initial conditions to record file call listipt(basnam) ! call listpto(-1,iptout,basnam,alpha) ! else ! ! write initial conditions to record file call listipt(basnam) ! !-- generate random parameter sets and velocities, set pbest, and add corresponding runs to the queue call random_seed() ! inpar = 0 ! do ipart=1,npop ! if (initp == 1 .and. ipart == 1) then ! do iparm=1,npar partval(ipart,iparm) = parval1(iparm) end do ! call unisamp(ipart,0) ! else if (initp == 2) then ! inpar = inpar + 1 ! do iparm1=1,npar ! do iparm2=1,npar ! if (trim(parnme(iparm1)) == trim(iprnme(iparm2))) then partval(ipart,iparm1) = (iprval(iparm2,inpar) - offset(iparm1))/scale(iparm1) exit end if ! if (iparm2 == npar) then ! write(*,'(A,A/A)')'Parameter names in Pareto parameter file do not match',& ' in control file','-- stopping execution --' stop ! end if ! end do ! end do ! call unisamp(ipart,0) ! if (inpar == nitp) initp = 0 ! else ! call unisamp(ipart,1) ! end if ! do iparm=1,npar parval(iparm) = scale(iparm)*partval(ipart,iparm) + offset(iparm) end do ! ! add model runs to the queue call modelrm(1,irun,fail) ! end do ! !-- execute model runs err = rmif_run() ! !-- evaluate each initial objective value for each particle do ipart=1,npop ! modfail(ipart) = 0 ! ! get model run results call modelrm(0,ipart-1,fail) ! modfail(ipart) = fail ! if (fail == 0) then ! call ptoobjeval(ipart) ! ! save observations for recording purposes do iobs=1,nobs mobssav(ipart,iobs) = mobsval(iobs) end do ! else ! do ipto=1,nptogp ptogp(ipart,ipto) = 1.00d+30 end do ! if (nptocon > 0) violate(ipart) = 1.00d+30 ! end if ! if (nptocon > 0) then ! ! since this is the initial condition, vioopt set directly to initial violate vioopt(ipart) = violate(ipart) ! end if ! ! since this is the initial condition, ptogpopts set directly to their objs do ipto=1,nptogp ptogpopt(ipart,ipto) = ptogp(ipart,ipto) end do ! end do ! ! check if maximum allowable model failures has been exceeded fail = 0 ! do ipart=1,npop fail = fail + modfail(ipart) end do ! if (fail > nforg) then write(*,'(I0,A,I0)')fail,' failed model runs greater than limit set by user, ',nforg write(*,'(A)')'-- stopping execution --' stop end if ! ! update pareto repository call repcont(0,repred) ! if (nrepact > 1) then ! ! manage repository and calculate fitness if (repmode == 1) then ! ! use grid-based method described by Coello et al, 2004 call repgrid(repred) ! else if (repmode == 2) then ! ! use loneliness method call loneliness(repred,alpha) ! end if ! else if (nrepact == 1) then ! do irep=1,npop+nrep if (repindx(irep) == 1) fitness(irep) = 1.00d+00 end do ! end if ! ! list output for pareto call listpto(0,iptout,basnam,alpha) ! !-- write restart data if requested if (trim(rstfle) == 'restart') then call wrparerst(basnam) end if ! ! stop if noptmax = 0 if (noptmax == 0) then ! err = rmif_delete() ! call wrfinpareto(basnam) ! stop ! end if ! end if ! begin the PSO iterative procedure ! --------------------------------- do iiter=1,noptmax ! !-- write message to terminal call witmess(iiter) ! !-- calculate velocities and update particle positions call pertpareto(iiter) ! !-- reinitialize run manager and make another set of runs call initialrm(1) ! !-- add model runs to the queue do ipart=1,npop ! do iparm=1,npar parval(iparm) = scale(iparm)*partval(ipart,iparm) + offset(iparm) end do ! call modelrm(1,irun,fail) ! end do ! !-- execute model runs err = rmif_run() ! !-- evaluate objective value for each particle, find pbest, gbest and gindex do ipart=1,npop ! modfail(ipart) = 0 ! !---- get model run results call modelrm(0,ipart-1,fail) ! modfail(ipart) = fail ! if (fail == 0) then ! call ptoobjeval(ipart) ! do iobs=1,nobs mobssav(ipart,iobs) = mobsval(iobs) end do ! else ! do ipto=1,nptogp ptogp(ipart,ipto) = 1.00d+30 end do ! if (nptocon > 0) violate = 1.00d+30 ! end if ! end do ! ! check if maximum allowable model failures has been exceeded fail = 0 ! do ipart=1,npop fail = fail + modfail(ipart) end do ! if (fail > nforg) then write(*,'(I0,A,I0)')fail,' failed model runs greater than limit set by user, ',nforg write(*,'(A)')'-- stopping execution --' stop end if ! !-- update pareto repository call repcont(iiter,repred) ! if (nrepact > 1) then ! ! manage repository and calculate fitness if (repmode == 1) then ! ! use grid-based method described by Coello et al, 2004 call repgrid(repred) ! else if (repmode == 2) then ! ! use loneliness method call loneliness(repred,alpha) ! end if ! else if (nrepact == 1) then ! do irep=1,npop+nrep if (repindx(irep) == 1) fitness(irep) = 1.00d+00 end do ! end if ! !-- set pbest call pbestpareto(iiter) ! !-- list output for pareto call listpto(iiter,iptout,basnam,alpha) ! !-- write restart data if requested if (trim(rstfle) == 'restart') then call wrparerst(basnam) end if ! end do ! ! end main loop of PSO iterative procedure !----------------------------------------- ! ! write out final repository data call wrfinpareto(basnam) end subroutine psopareto